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Part I

Introduction

X-ray Computed tomography scanning (CT-scan) is a non-destructive imaging method that yields high-resolution, three-dimensional images of the complex structures of materials. In recent years, the use of X-ray Computed tomography scanning (CT-scan), once mostly devoted to medical imaging, has been eased by improved access to X-ray CT scanner and increasing computational capabilities. The growing interest in CT-scan expands to a large variety of use cases. A wider range of materials are being studied by this type of acquisition. The detailed analysis of such materials includes image analysis, stochastic modelling, physical simulation. Thus, it requires advanced knowledge from various fields of studies. While significant efforts have been devoted to improve CT technology, the conversion of grey scale CT volumes into a discrete form fit for microscale analysis is still a task reserved to experts, that has to be adapted to each new materials. The increasing need for tools to extract the tridimensional structures motivates this work.

The final goal of this thesis is to provide a semi-automatic chain to process large acquisitions of CT-scan that can be used on a wide range of complex granular materials. The studied materials feature multi-phasic composition, structural deformations (fragmentation) and acquisition defects. The morphological identification is performed on concrete, on real energetic materials or equivalents, before or after mechanical stresses.

The project "Segmentation automatique de matériaux granulaires -automatic segmentation of granular materials (SAMG)" is conducted in partnership with the Centre de Morphologie Mathématique -Center for Morphological Mathematic (CMM), the Direction Générale de l'Armement (DGA), the Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Transvalor and Sciences & Applications -Expertise Industrielle et Recherche Appliquée sous Contrat (SA). The proposed segmentation method is implemented in an industrial software that is to be distributed by Transvalor. Acquisitions were made by Commissariat à l'énergie atomique et aux énergies alternatives (CEA) and by Sciences & Applications -Expertise Industrielle et Recherche Appliquée sous Contrat (SA). Financial support was provided by Direction Générale de l'Armement (DGA). From this work, a professional software is to be produced, that handles the segmentation of various CT-scan in an semi-automatic fashion, adaptable to a variety of materials. This application is aimed towards non-specialists in image processing.

The core of this thesis is organised in 10 chapters grouped into 4 parts, which can be described as follows:

-Multi-class adapted filter with geometric discrimination -Segmentation of grains -Algorithmic optimisation of image processing primitives Parts II and III can be read separately from part IV according to the reader's interest. An adaptative automatic filter is presented in part II. A morphological approach to granular materials segmentation is presented within part III of the thesis. Those two first parts are aimed to readers familiar with image analysis. In part IV, the optimisation of the segmentation chain is presented and is aimed at an audience whose interests include algorithmic optimisation. Each chapter of the last part can be read or used separately in regards to the rest of the work.

We start by introducing the acquisitions and the inherent defects in chapter 1. CT-scans present defects such as Partial Volume Effect (PVE), ring artefacts or beam hardening halos. The studied materials are composite materials with an elastic binder . Some are degraded by a mechanical impact of a falling mass. A variety of materials is used to validate the method, as we aim at building a generic method of segmentation for granular materials. In chapter 2, notions of mathematical morphology (MM) and of image processing are defined, and lay down the theorical fundation for the following parts II to IV.

In part II, several statistical measures are processed in the spectral domain and in the spatial domain. Various characteristics of the studied material are estimated. The number of phases and the size distribution are inferred by statistical models. The binder phase is detected using the percolation measures on each phase. Those previous measures lead to an efficient and adapted filtering and lessen the impact of artefacts.

In part III, a complete segmentation chain from the filtered image is proposed. The filtered acquisition is first over-segmented, so that grains or fragments are divided into separate, non-overlapping objects. To achieve that, the watershed transformation is applied. This over-segmentation is then removed by imposing a hierarchy on the contours of objects. In chapter 8, we present affinities that characterise the shape of the frontiers between two adjacent objects. This method is then applied in chapter 8 to reconstruct whole grains from fragments.

The part IV presents the work done on optimising the previous method for modern architectures. In chapter 9, an algorithmic optimisation of the 2-scan method for Connected Component Labeling (CCL) is presented. A new approach is proposed that extends the block-based CCL with decision forests.

In chapter 10, the watershed transform is optimised. The task of optimising the watershed is complex due to the non-locality of the flooding. The flooding graph is introduced to represent the dependencies between neighbour nodes. This graph is to be explored to reconstruct the flooding basins. A cellular automaton method is proposed, and allows the parallel processing of catchment basins.

Chapter 1

Imaging procedure and sample preparation

The first chapter of this thesis is dedicated to the introduction of the problematic and to the identification of the major difficulties that will be encountered during the filtering and the segmentation of granular material originating from CT-scan. The CT-scan is described, and consists in the reconstruction from a set of projectional radiographies of a 3D volume. Several problems are inherent to this acquisition technique. Among those, also called reconstruction artefacts, we identify the Ring artefacts, the Beam hardening and the Partial Volume Effect (PVE) as the major sources of errors in the filtering step and the segmentation step. Despite the major interest given in this work to the processing of consequent 3D volumes, we also consider 2D optical micrographies. Higher resolution acquisitions are obtained by this technique, but it requires intensive preparations, that damage the studied materials.

X-Ray Microtomography

The microstructures are acquired by CT-scan. The process of CT-scan is sketched in fig. 1.1. The sample is illuminated with a penetrating radiation. X-rays are absorbed by matter and their absorptions depend on the atomic mass of their absorbing atoms. The transmitted beam is detected downstream of the object and a projectionial radiography of the amount of absorption is produced. By rotating/translating the sample, several projections are produced and the 3D structure is reconstructed. In [START_REF] Baruchel | X-ray tomography in material science[END_REF], the method to reconstruct a 3D volume from the projectionial radiography are presented. The technique is non-destructive as the imaging process does not include cutting apart the sample.

Two types of imaging systems exist. The fan-beam system involves a one-dimensional X-ray detector (such as in a single row of detectors) and is typically used in medical imaging. Rotating the sample creates 2D cross-sections of the object. By adjusting the height of the sample in regard to the X-ray source and to the detector, several 2D images are produced and correspond to slices of the sample at different heights. The 3D image of the sample is obtained by stacking the 2D images.

The cone-beam system is based on a 2D charge-coupled device camera, focused on a scintillator material. The scintillator converts X-ray to visible light, which is captured by the camera. Projection images from different angles are used to reconstruct the image crosssections.

Figure 1.1 -The imaging process of a CT-scan. The sample is illuminated with a penetrating radiation. The transmitted beam is projected on a scintillator material. The projection is captured downstream by charge-couple device camera. The X-ray source/camera couple rotates around the sample and several projection images are captured from different angles.

In both systems, two setups exists. In the first setup, the source and the detector rotate while the sample remains stationary. In the second setup, the object being scanned is rotated.

Acquisitions were performed using a SKYSCAN 1172 with a maximum resolution of 0.5 µmeter/voxel. The SKYSCAN 1172 is a cone-beam system which features an 11 megapixels camera. The scanner used a rotating pair of source-detector with a stationary sample. The acquisitions were performed by CEA at Centre d'études de Gramat.

Alternative acquisition: micrography

A micrography is a digital image taken through a microscope to show a magnified image of an item. The preparation of the samples is mechanical and this technique is destructive as it involves degrading the sample to obtain a flat surface, called micro-sections. 2D acquisitions of a planar surface is achieved after polishing by frictions the material until a flat surface appears. A first step of abrasion machining is applied. The sample is then polished by applying frictional stresses, which are to be minimized. Only shear forces are exercised. Lubrication of the sample restrains the thermal emission and allows the elimination of small debris. SA performed the preparation of the samples and the micrographies. 

Noise artefacts and physical defects

Limitations have been observed during experiments concerning both CT-scans and micrographies.

Acquisition defects

The idealised situation is with high radiation dose and high photon counts, monochromatic X-rays, infinite detector resolution, perfect detectors, no motion, and no scatter. If any of those conditions is not met, then artefacts occur, see [START_REF] Boas | CT artifacts: causes and reduction techniques[END_REF].

-Ring artefacts appear due to the reconstruction process of the 3D stack by interpolating the 1D data. They are mainly caused by a miscalibrated X-ray detector and appear as bright or dark rings placed on the centre of rotation, see fig. 1.2(a). -High attenuation objects are the cause of beam hardening, especially with high atomic number materials such as metal. This artefact arises due to polychromatic X-ray beams. Lower energy photons tend to be more easily attenuated than higher energy photons. This phenomenon produces dark streaks along the long axis of a single high attenuation object while bright streaks occur in other directions. It is also known as the cupping artefact and is shown in figs. -Partial Volume Effect (PVE) occurs when the voxel resolution of the CT-scan is greater than the volume of the object. It happen around highly contrasted surfaces, the resulting voxel will be an average of the correct values for the different materials. This effect is illustrated in fig. 1.2(d). Most modern micro-CT systems include beam-hardening correction, alignment optimisation, ring artefact correction. However, small artefacts can still occur and PVE remains, impacting the segmentation of the smallest particles.

SKYSCAN 1172 features a 12-bit fiber-optically charge-coupled device (CCD) and produces 12-bit images. Those images are reduced to 8-bits by CEA. The 12-bit color space has been cut off on both ends, so that the remaining frequencies can be coded on a 8-bit color space. Pixels, whose original color was removed from the distribution, has been revalued with the closest corresponding 8-bit coded color. Colour saturation occurs on both sides of the colour space. This defect can be observed in fig. 1.2(e).

Fall tower damaging

It is a common occurence to observe fragmented granular materials. This phenomenon can have various origins, such as poor storage conditions, mechanical sollicitations or thermal reactivity. In this work, the fragmentation of materials has been induced mechanically by a fall tower. The following scheme, illustrated in fig. 1.3, allows the predictable fall of a mass on the material. This process is applied multiple times to achieve different ratios of fragmentation. It allows to simulate the commonly observed fragmentation in real applications.

Polishing the surface

As previously described, polishing is applied to obtain micrographies. The physical limitations are linked to mechanical properties and more specifically to the contrast of mechanical strength between the binder and the grains. The binder is flexible and hard to polish in theory. In opposite, most minerals such as ammonium perchlorate (AP) and 1. Imaging procedure and sample preparation Figure 1.4 -Fragmentation is observed. Empty space can be observed between fragments. Lower slices emerged at those sockets from the polishing process (outlined in red). ammonium hexafluorosilicate (AHF) are fragile and tend to fragment. The difference of behaviour between the materials and the coating will cause fragmentation that can be contained by a proper use of lubricant. Some grains can be displaced or shrunk by fragmentation and empty space can appear forming a void socket around grains. Due to the 3D structures of the materials, lower slices can emerge at those sockets from the polishing process. This phenomenon is observed in fig. 1.4.

Chemical reactivity

Some materials of interest are affected by exposition to air, water or other chemical compounds. It occurs during the preparation of the micro-sections. The most spectacular chemical reactivity is between AP and water. Water is used heavily during the preparation phase as a cleaning and cooling agent. It allows the removal of nanometric or submicronic abrasive particles during the finishing phase. Water cooling is performed during the mechanical polish phase and water is more or less present as a surrogate for the suspension agent of the submicronic or nanometric abrasives during finishing.

Water contained in the atmosphere can also interact with AP, whose effects are reinforced with a high hydrometry or with a longer exposition time, when the resolution of the images are high. AP is not the only component to be affected by water exposition. It is also the case of AHF or potassium chloride (KCl). Solubility to alcohol is also to be considered, affecting some materials. Alcohol is contained in various proportions in some polishing agent and in some cleaning agent.

Finally, thermal reactivity also degrades the samples, especially during the mechanical solicitations of the preparation of the micro-sections. Shear and friction stresses can induce a pyrotechnical risk due to the nature of the samples.

Materials

Several types of materials are used in this work. Amongst them, we denote composite materials of coarse grains bonded together with an elastic binder. The elastic binder is a polymeric binder Hydroxyl-terminated polybutadiene (PBHT) in which various components and a plasticizer were added. This binder is notably deformable and non-polishable. In contrast, minerals such as AP or AHF tend to fragment. Fracturation tends to occur when shear forces are applied. Concrete is also studied as a composite material of coarse aggregate bonded with a fluid cement hardened over time. The CT-scans shown in appendix A compose our data set:

-polished distributed mono-phasic butalite (B200) (see fig. The samples are either cubes or cylinders having a width of less than 10 mm. They can be coated with a X-ray permeable material and the resulting samples are cylinders exhibiting a width of less than 20 mm and a height of less than 20 mm. In appendix A, a micrography is also included of a material, the polishing of which has produced empty sockets, where the lower slices of the materials are visible, see fig. A.17.

Chapter 2

Introduction to the image processing for granular materials

In this chapter, several notions of mathematical morphology (MM) and, more generally, of image processing are introduced. Acquisitions are considered as discrete volume in nD dimensions. This volume is made of pixels(2D)/voxels(3D), ou more generally of points, each of which are associated with a numerical value, also known as grey level. We will introduce the neighbourhood relationship and the notion of connectivity. Notions of topographic relief and topographic structures are defined. Then, the concept of connected component and a set-wise defintion of the watershed transformation are introduced. All of those notions are used throughout the document and lay down the theorical foundation of this work. Finally, a first sketch of the processing chain is proposed, and will be the reading guide through the two first part of this thesis.

Discrete spaces, binary and grey tone images, sets

MM was first defined for Euclidean spaces and the corresponding theory is referred to as Euclidean morphology. Most image analysis technologies use digital image data, as it is the case with the studied acquisitions. The discrete version of a n-dimensional Euclidean space R n is Z n . With Z the set of all integers and Z n a set of ordered n-tuples of elements of Z:

x ∈ Z n ⇔ x = (x 0 , x 1 , . . . , x n ), x 0 , x 1 , . . . , x n ∈ Z (2.1)
A network of evenly distributed points is usually considered, as shown in fig. 2.1. Discrete image is defined by associating a numerical value with each cell of the digitisation network. A pixel in 2D corresponds to a cell on those grids. Similarly, a voxel is a cell in a 3D grid.

We now present the formal definitions and notations that are used throughout this document. In our application, images are defined over a rectangular frame for micrographies or a parallelepiped rectangle frame for CT-scan. This frame is called the definition domain and is noted D. A nD image (n-dimensional) refers to an image whose definition domain is a n-dimensional orthogonal parallelotope, subset of the n-dimensional discrete space Z n . CT-scan are 3D images, micrographies are 2D images, and some examples in this document are given in 1D signals.

We distinguish binary and grey tone images by the range of values given to the pixels or voxels of the digitisation network. 
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f : D ⊂ Z n → {0, 1} (2.2) 
Regarding grey tone images, the range of values is not restricted to {0, 1} but is extended to a larger finite set of non-negative integers. Let V be the valuation domain, a bounded set of finite chain of non-negative integers.

Definition 2.1.2. A grey tone image is a mapping of

D ⊂ Z n of f into the valuation domain V. f : D ⊂ Z n → V (2.3)
where V is a set such as V = {0, 1, . . . , t max }, and t max is the maximum value. Pixels/Voxels are usually coded on n bits, therefore t max is equal to 2 n -1. The range of our acquisitions is 8 bits. Thus, in our application, V corresponds to the subset of naturals {0, . . . , 255}. The digitisation process or change from the continuous space R n to the discrete space Z n is achieved by sampling R n and quantifying each element. Unlike points of the Euclidean geometry, pixels or voxels do not have an infinitely small surface area because they usually represent the mean luminance or X-rays absorbance over a small area. When a cell lays within an area where two different phases meet, the associated value corresponds to a weighted sum of the absorbance of both phases. The digitisation process is thus the cause of the PVE effect discussed earlier. Pixels/voxels are referred as points to address the general nD case.

In this document, we aim at describing the material under study as the union of two sets X and X . The set X corresponds to hard phases and X (X ≡ complement of X ) to the binder. For each hard phase i, we note the corresponding set of points as X i , such that X i ⊆ X . Each phase contains multiple grains, denoted by X i j , which are subsets of X i . The following axioms are desired on X , X i and X i j . The entire set of grains X and the binder X cover the whole definition domain:

Axiom 1. X ∪ X = D (2.4)
An overlap between two individual phases is not allowed. A voxel belongs to one and only one phase, or to the binder:

Axiom 2. ∀i, j, i = j, X i ∩ X j = ∅ (2.5)
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The union of all phases gives X :

Axiom 3. i X i = X (2.6)
An overlap between two individual grains is not allowed:

Axiom 4. ∀i, ∀j, k, j = k, X i j ∩ X i k = ∅ (2.7)
The union of all grains is strictly equal to the set of the corresponding phase:

Axiom 5. ∀i, j X i j = X i (2.8)
Thus, the goal of the segmentation is to determine precisely the set of all hard phases X , invidual hard phases X i and the grains X i j . In part II and part III, we present a methodology using MM specifically conceived to segment huge volume of data from micrographies and CT-scan.

Morphological operators aim at extracting relevant structures of the image by using set operations. It is achieved by probing the image with another set of a known shape called structuring element (SE).

Neighbourhood Relation

In the following, let ∼ denote the neighbourhood relationship on D. If a, b ∈ D, a = b are neighbours, we write a ∼ b.

A neighbourhood relationship is symmetric is the following property holds:

Proposition 2.1. a ∼ b ⇔ b ∼ a (2.9)

Structuring element

If a neighbourhood relationship is invariant by translation, it can be defined by offsets. For a given point a, the set of neighbours gives the SE centered on a. Hence, a SE is defined as a collection of offsets and is denoted B. This collection of offsets defines a neighbourhood relationship, so that: This collection of offsets translates into a shape, such as illustrated in fig. 2.2. The shape of the SE is usually chosen to accord to some a priori knowledge about the geometry of the relevant structures. A square SE might be used to detect rectangular grains and a straight line might be used to detect ellongated grains. The SEs used in this study are n-dimensional flat SEs. For each SE, an origin is defined and allows the positioning of the SE at any given point of D. In 2D images, the origin of a SE is chosen to be (0, 0). Examples of SEs are shown in fig. 2.2. We now define the SEs that are used in this work:

Definition 2.3.1. a ∼ b ⇔ ∃δ ∈ B, a = b + δ (2.
Let D ⊂ Z 2 :
-B 4 is a cross given by :

B 4 = {(i, j)}, with | i | + | j |≤ 1 (see fig. 2.2(a)).
-B hex is a hexagon given by : B 6 = {(0, 0), (-1, -0.5), (-1, 0.5), (0, -1), (0, 1), (1, -0.5), (1, 0.5)} (see fig. 2.2(b)). -B 8 is a square given by :

B 8 = {{(i, j)}, with | i |≤ 1, | j |≤ 1 (see fig. 2.2(c)). Let D ⊂ Z 3 : -B 6 is a discrete 3D cross given by : B 6 = {(i, j, k)}, with | i | + | j | + | k |≤ 1.
-B 26 is a discrete cube featuring 27 points including the origin.

B 26 = {(i, j, k)}, with | i |≤ 1, | j |≤ 1, | k |≤ 1
The shape and size of the SE is to be adapted to the geometry of the objects of interest. One can scale up the elementary SEs to match bigger structures. Let, for example, B 2 8 be the square SE of 5*5 points and B 3 8 be the square SE of 7*7 points. A square SE of width 2r + 1 can be obtained by the following equation:

B r 8 = {(i, j), | i |≤ r, | j |≤ r} (2.11)
and a cube of width 2r + 1 by:

B r 26 = {(i, j, k), | i |≤ r, | j |≤ r, | k |≤ r} (2.12)

Operators

An operation is a mapping or transformation of one set or one function into another. Two types of operators are considered. A point image operator modifies the value of an image point independently of the values of other points. A neighbourhood image operator modifies the value of a point by combining the image values which lie within the neighbourhood of the considered point. This neighbourhood corresponds to one of the previously defined SEs.

Examples of point image operators are complementing an image or producing a cross section (CS) of f :

Definition 2.4.1. The complement f -1 of f is an inverse function such as (f -1) -1 = f . The complement of a set is X = D \ X.
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An example of an inverse function on grey tone images is given: 

Example 2.4.1. ∀x ∈ D, f -1 (x) = t max -f (x) (2.
CS [a,b] (f )(x) = t max , if a ≤ f (x) ≤ b 0 otherwise (2.14) CS [a,∞] , also noted CS [a]
, is denoted as the thresholding of f and a is called the threshold. CS [a,b] is widely used in analysis of granular materials. When one encounters an idealised situation where distinct ranges of tone correspond to distinct materials and artefacts are limited, cross-sectioning the acquisition at a chosen level produces accurate results to assess a phase X i .

Morphological operators

Two fundamental operators are used in MM : the erosion and the dilation. We will present the analytical expressions for those operators as defined in [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. Those operators are based on the intersects/unions of a set X by the same set translated. We denote the set

X translated by b, b ∈ Z n , X b so that if x ∈ X, x + b ∈ X b .
The points associated to a SE are used as support for the erosion and dilation.

B is the transposed set of B, also known as the reflected set

( B = {-b, b ∈ B}). If B = B, then B is said symmetric.
In a binary image, the result of an erosion is the answer to the following question: Does B x fit inside X ?. All points 1 of an eroded binary image correspond to points where the answer is affirmative. The analytical expression for the eroded set of X by B is given by: Definition 2.4.3.

X B = {x | B x ⊂ X} = b∈B X -b (2.15)
The dilation is known as the dual operator of the erosion, so that X ⊕ B = (X B) and corresponds to the question Does B x hit the set X?. The analytical expression of the dilated set of X by B is given by: Definition 2.4.4.

X ⊕ B = {x | B x ∩ X = ∅} = b∈B X b (2.16)
The erosion and dilation operators can be extended to grey tone images: Definition 2.4.5. The erosion of f is:

B (f ) = inf{f b | b ∈ B} (2.17)
Definition 2.4.6. The dilation of f is: 

δ B (f ) = sup{f b | b ∈ B} (2.

Operation Neighbourhood

Input Output CS [START_REF] Sezgin | Survey over image thresholding techniques and quantitative performance evaluation[END_REF] None

B (f ) B hex ( ) δ B (f ) B hex ( ) Figure 2.
3 -Examples of morphological operators.

Topographic relief and topographic structures

One can consider a grey tone image as a topographic relief, where all grey values are seen as elevations on this relief. This topographic relief contains a various number of topographic structures such as domes, valleys, ridges, thalwegs, regional minima and maxima, plateaus, and so on. The absolute heights of the pixels/voxels are not needed for defining some of those topographic structures, such as regional minima, maxima or plateaus. They depend only on the relative heights of the neighbouring pixels.

By using the relative height of adjacent pixels, we can further distinguish those three relations:

2. Introduction to the image processing for granular materials Definition 2.5.1.

a ∼ b,      f (a) < f (b) ⇔ a is a lower neighbour of b, noted a ≺ b f (a) > f (b) ⇔ a is a upper neighbour of b, noted a b f (a) = f (b) ⇔ a, b are level-neighbours, noted a b
We define the notion of plateau: Definition 2.5.2. The transitive closure + defines a plateau p -a connected region of constant-level.

From now on, let P denote the set of all plateaus and p i its elements. Definition 2.5.3. A pixel whose neighbours are all upper-neighbors is a local minimum.

A plateau from which one cannot reach a lower altitude with a non-increasing path is called regional minimum. We can define this notion using the following equation: Definition 2.5.4. m ∈ P, m is a regional minimum if and only if:

∀a ∈ m, ∀b, b ∼ a ⇒ b ∈ m or b a (2.19)
The set of all minima of an image, denoted by min(f ), is the set of both regional minima and the 1-pixel sets of local minima. The set of all minima is shown in fig. 2.4. Similarly, we can define the set of maxima: Definition 2.5.5. A pixel whose neighbours are all lower-neighbours is a local maximum. Definition 2.5.6. m ∈ P, m is a regional maximum if and only if:

∀a ∈ m, ∀b, b ∼ a ⇒ b ∈ m or b ≺ a (2.20)
The set of all maxima of an image, denoted by max(f ), is the set of both regional maxima and of all 1-pixel sets of local maxima. 

Connected components

In image processing, the notion of connected components is applied to binary images, where objects consist of points which have value 1 (foreground), while the background have points of value 0, as defined in [START_REF] Rosenfeld | Sequential operations in digital picture processing[END_REF].

Let a and b be two foreground points. a ∼ b is often referred to as a is connected to b. The transitive closure of the neighbour relationship is denoted as reachability. When one consider a symmetric SE, the reachability is an equivalence relation since it checks the three following relationships:

-Reflexivity: a is reachable from a as there exists a path of length zero from any point to itself. -Symmetry : if a is reachable from b, b is also reachable from a.

-Transitivity : if a is reachable from b and b is reachable from c, then a is reachable from c. This connectivity relation of adjacent pixels can be encoded by using a non-oriented graph G = (N, E), where N ↔ D and the set E is generated by the connectivity ∼.

We define the notion of connected components as the induced subgraphs of G formed by the equivalence classes of the reachability.

Watershed transform

The watershed transform is a standard tool for morphological segmentation. It is based on region growth and edge detection in most cases applied to a gradient of the original image. One definition reflects the water flood on a topographic relief. This definition creates thin watershed lines and is chosen for the most common algorithms. Intuitevely, the topographic surface is perforated at the location of regional minima and is immersed in water, so that the water rises from those holes and creates lakes. Different lakes, each originating from a different minimum, are not allowed to mix. Their intersections will form dams. The set of all dams is called the watershed lines and represents the desired contours.

The notion of watershed was first introduced in [START_REF] Beucher | Sur l'utilisation des lignes de partage des eaux en détection de contours[END_REF] and its computation involves an iterative process of successive thresholding at increasing heights. An algorithm based on hierarchical queue was introduced in [START_REF] Meyer | Un algorithme optimal de ligne de partage des eaux[END_REF] and is considered in many aspects as optimal. It uses a hierarchical queue to process pixels in increasing order. A rigorous definition of the watershed was given in [START_REF] Meyer | Integrals, gradients and watershed lines[END_REF][START_REF] Najman | Definition and some properties of the watershed of a continuous function[END_REF] during the first workshop of mathematical morphology in 1993 and the topographic distance was introduced to unify the watershed line and the SKIZ transform independently in [START_REF] Meyer | Topographic distance and watershed lines[END_REF][START_REF] Najman | Definition and some properties of the watershed of a continuous function[END_REF].

A set-wise definition of the flooding

The watershed transform can be described using sets. In this section, a definition of the watershed transform as a hierarchical flood is described. This transform is an iterative process until idempotence, k denotes the current step of the iterative process. Sets of points are obtained by this definition. Let us denote by B k m , the catchment basins associated to a minimum m, and W k the watershed lines.

At step 0, only the minima are flooded and the sets are initialised as such:

∀m ∈ min(f ), B 0 m = {a, a ∈ m} W 0 = ∅ (2.21)
The remaining points to be flooded at step 0 are then:
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R 0 = D \ m B 0 m
As the flood level increases for each new iterations, the next set of reachable points are the neighbours of the catchment basins, that are not yet flooded. Let denotes this set of points by:

δB k m = {a | a ∈ R k , ∃b, b ∈ B k m
, a ∼ b} Amongst this set of points, only the lowest are flooded at a given iteration. Let us note C k this set of flooded points, which is given by the given relation:

C k = arg min(f (a)), a ∈ m δB k m
We now write the following iteration rules:

         W k+1 =W k ∪ (C k ∩ ( m,n δB k m ∩ δB k n )) B k+1 m =B k m ∪ (C k \ W k+1 ) R k+1 =R k \ C k (2.22)
This iteration process ends when m δB k m = ∅. Notice that R k can be different from the empty set.

An ideal situation is encountered when every minimum corresponds to one and only one object to segment. In pratice, minima are imposed so that this assumption holds. The imposed minima are commonly referenced as markers. This enhancement of the watershed transformation consists in flooding the relief from this selected set of markers.

Part II

Image content adapted filtering using spatial and intensity distributions 2.5 -The proposed approach is presented in this overview. Two analyses in the spectral domain and in the spatial domain lead to a parametrised filter by which the segmentation is performed.

In chapter 3, we review several filters, convolutional filters and non-linear filters. The goal of this chapter is to introduce different filtering approaches available, and to try to obtain the best possible filter, with no prior information on the acquisition. Chapters 4 and 5 are dedicated to the parametrising of the various filters. We adapt the non-linear filter to the properties of the image and its content by performing statistical measurements in the domain of intensities and in the spatial domain. In those chapters, image measurements are performed and aim at characterising the objects of an image by some numerical values. Using those tools, various morphological features of the material structures are estimated. Subsequently, we choose a set of criteria that discriminate each grain and each phase from one another and from the binder. A filter with better, adapted parameters will emerge from the two analyses. This statistical approach to filtering has been chosen to obtain the ability to adapt to a wide variety of materials. Figure 2.5 shows the overall scheme which leads in the later chapters to the final segmentation.

Chapter 3

Filtering the original acquisitions

Chapter 1 enumerates the differents noises and artefacts that deteriorate the quality of the images of our materials. Denoising puts in place a foundation stone for our processing chain. This step is of prime role to the segmentation. Thus, a state-of-the-art of the filtering technique is established. Pros and cons of each filter are discussed thoroughly. Finally, a method of evaluation is proposed. This method also allows the automatic setting of parameters.

Pixel/voxel values represent the intensity in case of a micrography or the X-ray absorption in case of a CT-scan but are subject to noise and artifacts. In the latter part, we estimate the mean intensity corresponding to the absorption of each phase. We base our analysis of intensities on the distribution of f , noted as H(f ), the histogram of f . Figure 3.1 shows several histograms.

Our work is based on the hypothesis that each phase is separable by intensity. The samples are made up of connected regions occupying homogeneous areas. We can model the observed intensities as the sum of a pure signal s(x) and noises n i (x) originating from the previously listed artefacts, so that:

f (x) = s(x) + i n i (x)
However, the distribution of intensities of a noisy tomography has an unfavourable shape for the following analysis. One well-represented noise in CT-scan is due to the insufficient photon counts. One would expect the spectral distribution inside an object to be one single peak corresponding to the X-ray absorption of the matter composing this object. Instead, a bell-like shape is observed, due to this insufficient photon count. We suppose that those shapes can be modelled by Gaussians, the mean of which corresponds to the expected physical characteristic. These Gaussians are given by their mean values and spread out by their standard deviation. This noise is most visible for distributed bi-phasic (IEX3)-0 in fig. 3.1.

Moreover, other noises add up, such as the PVE effect. This last effect is visible on regions where intensities are rapidly changing or very contrasted contours. As the various components are embedded in a binder, this artefact will most likely blur the frontier between the binder and grains, and when two grains of different phases touch. It results in the skewness on the bell-like shapes in the histogram due to the spreading out of values in between two phases spatially touching. This noise is notable for multi-phasic epoxy material of sand grains of 250 µm with aluminium particules of diameter 74 µm (S-Al) in fig. 3 It is also noticeable that, in most acquisitions, saturations occur at both ends of the distribution. It is due, as previously stated, to the reduction of V from 12 bits to 8 bits and to the beam hardening artefacts.

However, some acquisitions feature noises stronger than the signal itself. IEX3-0, concrete distributed multi-phasic materials (BET)-1 and S-Al have phases indistinguishable from each other. For those acquisitions, a pre-filtering of the image is required, and should result in thinning of the distribution around its peaks.

We assume the phases to be separable by intensity. However, as shown in fig. 3.1, IEX3-0 has a phase, whose intensity is masked by the intensity of some other phase. A filter is applied to the raw acquisition, to verify this hypothesis. However, this filtering step is to be considered as temporary, as it will only be applied during the analysis of the distribution of intensities. A more adapted filter will be applied and parametrized by the latter analysis. The goal of this first filter is to produce homogenous regions corresponding to phases, whose mean intensities appear as peaks in the filtered histogram.

The filters that we review for this purpose can be divided in two categories : local filters and non-local filters. We start by studying several filters from each category.

Local filters

Neighbourhood image operators are suited to the extraction or suppression of image objects or structures. The following filters are based on neighbourhood operators.

Morphological opening and closing

The erosion of an image removes structures that cannot contain the structuring element, it also shrinks every other structures. One can try to recover the original structures by performing a dilation using the same structuring element. This leads to the definition of the morphological opening operator, dating from the end of the 1960s, [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF]. Structures completely erased by this erosion are not recovered by the dilation. However, structures shrunk by the erosion are recovered, at least partially. We call the opening of X with respect to B the following set, denoted by γ B (f ):

Definition 3.1.1. γ B (f ) = (X B) ⊕B
The opening filter has the following three properties: -Anti-extensive:

γ B (f ) ⊂ X. -Increasing: X ⊂ Y ⇒ γ B (f ) ⊂ γ B (Y ). -Idempotent: γ B (γ B(X) ) = γ B (f ).
The morphological closing operator is the dual operator of the opening:

ϕ B (f ) = γ B (f )
The dual operator of the opening is the morphological closing operator, which consists of a dilation followed by an erosion. The closing of a set X by a structuring element B is denoted by ϕ B (f ) and is defined as such:

Definition 3.1.2. ϕ B (f ) = (X ⊕B) B
By adjunction, the closing ϕ B (f ) is extensive, increasing and idempotent. Both operators are at the basis of the morphological approach to image filtering. This operator acts as a filter when applied to a grey-scale image. We denote the filtered image by the Opening filter (OP) by:

fOP = ((f B) ⊕ B) (3.1)
Optimisation of automatic segmentation of granular fragmented materials Finally, the filtered image by the Closing filter (CL) is:

fCL = ((f ⊕ B) B) (3.2)

Mean filter

Mean filter (MA) is achieved by convolving an image by a flat window of finite length, which consists of replacing the central value by the mean value of its neighbours (central point included). It is a simple method of smoothing images and allows the reduction of intensity variation. Gaussian noise can be reduced using such spatial filter, though, an undesirable outcome may result in the blurring of fine-scaled image edges and details, as they also correspond to blocked high frequencies. The mean filter is defined as the following convolution, where M d is a kernel of diameter d, which values are 1

|M d | : fMA (x) = f (x) * M d (x) (3.3)
where * is the convolution.

Gaussian filter

The Gaussian filter (GA) is defined as the convolution of a signal by a Gaussian function. The window used is an odd number of points wide square in Z 2 or a cube in Z 3 . Its central point is the peak of the Gaussian and its points values follow the following Gaussian function:

G σ (x) = 1 √ 2πσ 2 exp -x 2 2σ 2
In discrete space, a finite window length is chosen as the Gaussian function decays rapidly. The width is usually chosen to be at least 4σ. Finally, the filtered image is given by:

fGA (x) = (f * G σ )(x)
(3.4)

Median filter and rank filter

Median filter (MD) is a statistical filter achieved by probing an image by a flat window of finite length and replacing the central value by the median value of its neighbours (central point included). It is a special case of a class of filters called rank filters. A rank filter of rank k with a structuring element B is obtained by sorting in ascending order the pixel values falling within B when placed at the central pixel and selecting the kth value in the sorted array. We note that dilation and erosion are also two special cases of the rank filter, as those operations take the maximum and minimum of the sorted array. The median filter is defined as such, where N d (x) is a window of diameter d centred on x:

fMD (x) = Median{f (y), y ∈ N d (x)} (3.5)

Non-linear filters

The filters presented in section 3.1 operate on a small neighbourhood, computing the same operation on the subset of pixels/voxels. The intuition is that values tend to vary slowly over space, and neighbours tend to have similar values. The noise values that corrupt the neighbourhood are mutually less correlated than the signal values. Therefore, the noise 3. Filtering the original acquisitions disappears while the signal is preserved. However, this assumption fails at sharp edges, and the latter tend to be blurred by the previous filters. The median filter behaves better on preserving the edges as it picks the median value of the subset of neighbours, giving it more chance to just ignore the values on the other side of the edge. Non-linear filters prevent the edges from blurring by also acting on the spacial space.

Anisotropic diffusion filter

A popular, non-linear denoising method is the Anisotropic diffusion (AD), introduced in [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]. The similarity of the neighbours is evaluated by measuring the local variation. This leads to a diffusion coefficient which prevents the smoothing of values over sharp edges. The filtered image is obtained by solving the following partial differential equation:

∂f (x, t) ∂t = ∇. [g (||∇f (x, t)||) ∇f (x, t)] (3.6)
where t is the time parameter and f (x, 0) is the original image, ∇f (x, t) is the gradient of image at time t, and, finally, g(.) is the conductance function. Several conductance functions have been proposed. Perona and Malik introduced the following two conductance functions:

g 1 (x) = exp - x K 2 (3.7)
g 1 favours high contrast edges over low contrast ones.

g 2 (x) = 1 1 + x K 2 (3.8)
g 2 favours wide regions over smaller ones. K controls conduction as a function of the gradient. If K is low, small intensity gradients are able to block conduction and hence diffusion across edges. A large value reduces the influence of intensity gradients on conduction.

Diffusion methods average over extended regions by solving partial differential equations. Perona and Malik discretised 3.6 to the following iteration rules, where t is the iteration step:

ft+1 (x) = ft + λ |η x | p∈ηx g K (|∇f (x, p)|)∇f (x, p) (3.9)
λ ∈ (0, 1] influences the rate of diffusion, while η x refers to the neighbourhood set, similar to the one defined by the structuring element B 6 . The symbol ∇, which in the continuous form is used for the gradient operator, now represents a scalar defined as the difference between neighbouring pixels in each direction:

∇f (x, p) = f t (p) -f t (x), p ∈ η x (3.10)
Several iterations are needed and it is crucial to estimate correctly its parameters. The optimisation of parameters is an mathematically ill-posed problem, see [START_REF] Weickert | Anisotropic Diffusion in Image Processing[END_REF]. There is an ongoing extensive research to optimize this filter in regard to its parameters, see [START_REF] Tsiotsios | On the choice of the parameters for anisotropic diffusion in image processing[END_REF]. In addition to those computational limitations, some smoothing can still occur on sharp edges while being efficient on homogeneous regions.

Total variation filter

Another PDE-based approach is the Total variation filter (TV), introduced in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The rationale behind this method is to minimize the intensity variation in the image by means of the following cost function:

fT V = arg min f | ∇ f (x) | dx + λ | f (x) -f (x) | 2 dx (3.11)
where arg min are the arguments of the minima, λ is a scale parameter that controls the trade-off between regularization, i.e., smoothing, and fidelity to the raw data f . The solution is achieved with the following set of coupled PDE's:

f 0 = f ∂ fT V ∂t = ∇. ∇ fT V | ∇ fT V | + λ f -fT V + K ∂K ∂t = α f -fT V (3.12)
where f and fT V is short for f (x, t) and fT V (x, t). The time step control α can be made adaptive to ∂K ∂t . The number of iterations, used as a stopping criterion, is less crucial as compared to fAD , because the solution does not converge to uniform intensity due to the fidelity term used in eq. (3.11).

Non-local Means filter

Unlike the previous methods, the Non-local means filter (NM) is a linear filter, i.e., the grey value at the current location is the average of grey values at other locations, assigned with some suitable weighting factors, w. However, in contrast to standard linear filters (Gaussian filter, mean filter, etc.), it does not use a small-sized kernel, but potentially the entire image as a search window. The rationale is to compare the neighbourhoods of all voxels y of D, the definition domain of f , with the neighbours of the current voxel at location x, see [START_REF] Buades | A non local algorithm for image denoising[END_REF].

fNL (x) = y∈D w(x, y)f (y) (3.13)
Thus, a distant voxel will influence the new value of the current voxel, depending on the value of the weight w(x, y). More specifically, the weights are signifiant only if a Gaussian kernel G σ with standard deviation σ around y looks like the corresponding Gaussian kernel around x:

w(x, y) = 1 Z(x) exp - G σ (n) * | f (x + n) -f (y + n) | 2 dn h 2 (3.14)
where n scans the neighbourhood, h acts as a filtering parameter that can be adapted to the level of image noise and Z(x) is the normalizing factor. Note that the computational cost for the neighbourhood search in the entire image can become excessive. Thus, restricting the search to a certain window size (y ∈ S in 3.13) is required, see [START_REF] Buades | Nonlocal image and Movie denoising[END_REF].

Bilateral filter

The bilateral filter, introduced in [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], is an edge-preserving, non-iterative filter and is straightforward to parametrise. It uses an additional range kernel along with the spatial kernel. This kernel is used to prevent the averaging to occur over an edge. The bilateral filtering b f of an image f is given by:

b f (x) = η -1 w(y)φ(f (x -y) -f (x))f (x -y)dy (3.15)
where η, the normalization constant which preserves the local mean, is given by:

η = w(y)φ(f (x -y) -f (y))dy (3.16)
In eq. (3.15), w(x) denotes the spatial kernel and φ(x) the range kernel. One can choose a Gaussian kernel for the spatial kernel and the range kernel, defined as such:

w(y) = exp - 1 2 d(y) σ w φ(f (x -y) -f (y)) = exp - 1 2 δ(f (x -y) -f (x)) σ r (3.17)
In eq. (3.17), d(y) denotes the Euclidean distance and δ(f (x -y) -f (y)) is a measure of distance in the spectral space defined as such:

δ(f (x -y) -f (y)) =| f (x -y) -f (x) | (3.18) 
One can see that this filter depends mainly on two parameters: σ w and σ r . They correspond to the standard deviation of the Gaussian kernels in the spacial domain and in the spectral domain. While the spatial kernel acts as in the Gaussian filter, the range kernel measures the spectral similarity between pixels. If the similarity is high at the central point x, φ(x) holds a value close to 1. On the contrary, if the similarity is low, φ(x) is close to 0, effectively preserving sharp edges.

A recursive implementation of the bilateral filter was introduced in [START_REF] Yang | Recursive bilateral filtering[END_REF]. In this work, we have adapted the recursive bilateral filter to 3D grey-level acquisitions and obtained a bilateral filter that holds low computation overhead.

Denoising with default parameters

The eight previously defined filters have been parametrised according to a collection of studies such as [START_REF] Sheppard | Techniques for image enhancement and segmentation of tomographic images of porous materials[END_REF][START_REF] Schlüter | Image processing of multiphase images obtained via X-ray microtomography: A review[END_REF]. The proposed parameters originate from studies of CT-scan and are adapted to various noises encountered in this kind of acquisition. However, the amount of noise differs from one acquisition to another and can result in inappropriate filtering strength in some acquisitions.

The Gaussian filter (GA) have been applied with a Gaussian function of σ = 4. The radius of the kernel of Mean filter (MA) is 4. The Median filter (MD) was applied with a cubic window of side d = 9. Both morphological operators, Closing filter (CL) and Opening filter (OP), were applied using B 2 26 . As for the Anisotropic diffusion (AD), we have used g 2 as conductance function with K = 17.3 and perform 20 iterations with a σ = 0.28. The total variation filter was applied with λ = 2, for 35 iterations. Finally, the Non-local means filter (NM) was applied with a cubic kernel of d = 9 for the neighbourhood search with a Gaussian convolution kernel of σ = 2 in a reduced search window S of d = 23 voxels. In fig. 3.2, the results of the previously described filters on S-Al are presented. One can see that a filtering step is useful to reveal hidden modes in the distribution. As for S-Al, it corresponds to the phase, whose values are within the range [START_REF] Gillibert | Stochastic multiscale segmentation constrained by image content[END_REF]50]. This phase is composed of small black grains surrounded by the binder phase, whose values are within the range [START_REF] Chabardès | Local blur estimation based on toggle mapping[END_REF]170]. It is heavily affected by the PVE noise and the additive noise, due to its small mean size of grains. The PVE noise blends the value between the binder and this phase, and the resulting values are similar to the bigger dark grey grains of values ranging between 60 and 100. We are looking for a balance between smoothing and edge preserving. Some filters are superior to others in regard to those requirements and the non-local means filter (NM) is one of the best candidate from the preliminary analysis resulting in the fig. 3.2.

We can observe a shift towards lower values in the distribution when an opening (OP) is applied. Oppositely, a shift towards higher values is observed with a closing (CL). Those two filters can be discarded, as the peaks are no longer representative of the phase, see fig. 3.3. The median filter (MA) cause the flattening of the zones in between higher peaks. It smoothes edges too heavily and increases the effect of the PVE. However, a small peak does appear at the peak intensity of the small phase.

The remaining 5 filters are the Gaussian filter (GA), the median filter (MD), the anisotropic diffusion filter (AD), the total variation filter (TV) and the non-local means filter (NM). While the Gaussian filter and the median filter have only one parameter and are therefore easy to optimise, the choice of fitting parameters for the anisotropic diffusion filter, the total variation filter and the non-local means filter is complex. All the previously described filters have different behaviours, relying on different parameters. Those parameters are often non-trivial to set. Indeed, a lot of research has been performed on the configuration of the anisotropic diffusion, see [START_REF] Tsiotsios | On the choice of the parameters for anisotropic diffusion in image processing[END_REF].

Optimising the parameters

Parameters discussed in the state-of-the-art are often not consistent with each other and, at best, work on given set of acquisitions that vary in applications. Despite this lack of consistency, we can judge the quality of the filtering by analysing the resulting distributions of intensities. One wants to describe a phase by its corresponding mode in the histogram.

The peak of the mode would correspond to the mean value of the phase. Most of the noises result in widening of the modes. The desired effect of a filter would be the opposite, i.e., the thinning around the modes. Thus, we propose to judge the quality of a filter, whether the maxima of the histogram are increased and the minima are decreased.

We propose in this section an approach to evaluate and optimize the parameters of the previously described filters. This work is experimental, as we do not pretend that our approach will lead to optimal parameters. However, in contrast to many approaches on denoising of CT-scans of the state-of-the-art, it allows us to justify the use of some parameters, up to a certain extent of reliability.

This evaluation is based on two vectors A of size n and B of size m, whose components are intensities. The components of A correspond to the intensities of the phases that we wish to maximise, while the components of B corresponds to the intensities of the artefacts that we wish to minimise. min(f ) and max(f ) are as defined in section 2.5 of chapter 2, the components of A and B are chosen as:

A k ∈ arg min i H f (i), ∀k ∈ [1, n] B k ∈ arg max i H f (i), ∀k ∈ [1, m] (3.19)
where H f (i) corresponds to the frequency of the intensity i in the image f . Figure 3.4 shows the two corresponding sets for S-Al. Let us denote f , the image f after being applied a filter. An efficient filter will maximise the distance between

H f (A k ) and H f (A k ), ∀k ∈ [1, n] and maximise the distance between H f (B k ) and H f (B k ), ∀k ∈ [1, m].
In the following, we define two vectors x and y of size n + m:

x = (H f (A 0 )}, . . . , H f (A n )}, H f (B 0 ), . . . , H f (B m )) y = (H f (A 0 )}, . . . , H f (A n )}, H f (B 0 ), . . . , H f (B m )) (3.20)
The following score is a measure of the efficiency of a filter, where d is a distance:

s = d( x, y) (3.21)
Several choices are available for the distance such as distance L 1 or L ∞ . However, one must take into account the relative height of the peaks. A peak that is better filtered with an increased filtering strength can contribute more to the global score than other peaks, that would potentially disappear. Thus, we propose to use the Mahalanobis distance, proposed in [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF].

This distance takes into account the variance and correlation of a given series. It allows the normalisation of the elements of vectors, so that highly scattered components influence less the resulting distance measure. It can be defined as a measure of dissimilarity between two random vectors x and y of equal distribution, where Σ is a covariance matrix:

d M ( x, y) = ( x -y) T Σ -1 ( x -y) (3.22)
Let us denote v = {x 1 , . . . , x n } where n is the number of components. The covariance matrix is a n × n matrix and we estimate its values as follows:

(Σ) (i,j) =    x i y i if i = j 0 otherwise (3.23)
When the quantity y i is evaluated to 0, the distance is set to ∞. Equation (3.21) is a distance that we wish to maximise in order to optimise the parameters of the filters that we presented in the previous section. Any non-derivative minimisation methods can be employed to minimize 1/s, such as Nelder-Mead [START_REF] Nelder | A simplex method for function minimization[END_REF] or Powell [START_REF] Powell | An efficient method for finding the minimum of a function of several variables without calculating derivatives[END_REF]. Filters that depend only on one parameters can be optimised by a dichotomic search of the minimum.

For each set of materials, we have manually the vectors A and B. Figure 3.4 shows the selected intensities for S-Al. Figure 3.5 shows the results of this optimisation on S-Al. This optimisation step results in very sharp edges for AD, TV and NM. The textures inside bigger grains are smoothed, while smaller grains are efficiently preserved.

The following parameters of table 3.1 have been obtained with Nelder-Mead minimisation for AD, TV and NM and a dichotomic search has been implemented for GA and MD. The average score, shown in table 3.2, has been obtained for NM, which conforms with the visual appreciation from [START_REF] Schlüter | Image processing of multiphase images obtained via X-ray microtomography: A review[END_REF][START_REF] Mahbub | X-ray computed tomography imaging of the microstructure of high pressure one-dimensional compression[END_REF]. Median values of the optimised parameters from table 3.1 serve as default parameters for the proposed filters.

Conclusion

The parameters listed in table 3.1 resulting from the proposed optimisation scheme of section 3.3 can differ from one acquisition to the other. We have found parameters for some materials such as IEX3 or BET that differ heavily from the median values.

The purpose of this analysis is to guide the choice of the user on the parameters of the filter. While this approach provides satisfactory results on our set of acquisitions, the user can choose to make small adjustments to better fit to the data.

Our experimental set of materials features different characteristics such as presence of pores, presence of more than one or two phases, different scales of grains and so on…In the next two chapters, informations about each classes are collected and those informations will allow the fine tuning of the parameters of the filters.

The first step is the analysis in the intensity domain in chapter 4. We identify the classes that compose the materials solely on their intensity distribution. This analysis might lead to an over-estimation of the number of classes. An over-estimated number of classes is refined by the spatial analysis in chapter 5. Informations about the spatial distribution of the individual grains of each classes are also estimated in this spatial analysis. Table 3.2 -The scores for each of the selected five filters, obtained for each set of materials. The bottom row shows the average score obtained for each filter.

Optimisation of automatic segmentation of granular fragmented materials

Chapter 4

Analysis of the intensity distribution

The goal of this chapter is to decompose the intensity histogram into meaningful subhistograms. Automatic thresholding have been subject to extensive researches. Reviews of the state of the art on automatic multi-level thresholding are available in [START_REF] Sezgin | Survey over image thresholding techniques and quantitative performance evaluation[END_REF][START_REF] Hammouche | A comparative study of various metaheuristic techniques applied to the multilevel thresholding problem[END_REF]. We will present an approach, adapted to CT-scan, based on modeling of the histogram by a mixture of Gaussians, and compare it to the state-of-the-art. Spectral informations about the phases of the material will be deduced from the parametrised model.

The Gaussian mixture model

One can regard the distribution as a Gaussian Mixture Model (GMM), this method was for the first time introduced in [START_REF] Xu | On convergence properties of the EM algorithm for Gaussian mixtures[END_REF]. GMM is a parametric statistical model that assumes that the data originate from a weighted sum of K Gaussian functions. GMM has been used to model histograms to perform contrast enhancement in recent studies such as [START_REF] Lai | Gaussian mixture modeling of histograms for constrast enhancement[END_REF][START_REF] Abdoli | Gaussian mixture modelbased contrast enhancement[END_REF].

In this model, the probability of the pixel grey value t, with respect to the j th Gaussian function is defined as:

g(t, µ j , σ j ) = 1 2πσ 2 j exp -(t -µ j ) 2 2σ 2 j (4.1)
µ j is the mean and σ j is the variance of the Gaussian. The mixture model of the mixture of K Gaussians depends on a set θ of 3 * K parameters defined as such, where (α 1 , . . . , α K ) are the mixture ratios:

θ = (α 1 , . . . , α K , µ 1 , . . . , µ K , σ 1 , . . . , σ K ) (4.2)
The mixture model of the distribution can be expressed using this parameter:

p(t, θ) = K j=1 α j g(t, µ j , σ j ) (4.3)
The goal of this chapter is to model each of the observed phases as a Gaussian. The sum of all Gaussians should be as close as possible to the original histogram. Gaussians overlap at a certain range. Those overlaps correspond to the transition zones between two phases, the points of which take in-between values and have no definite attribution to one class or the other. One can see each Gaussian component, as a probability of a given value to be originating from a given phase. A Gaussian is dominant at intensity i if its associated probability is higher than of the others Gaussians.

In this work, the notion of intervals is used to denote the partition of a histogram. An interval would correspond to a range of the distribution of intensities, where the corresponding Gaussian is dominant. Let T j = t lef t j , t right j denote the interval in which the j th Gaussian is dominant, and we note the set of K intervals T = [T 1 , . . . , T K ]. In an idealised situation, the number of intervals, i.e. the number of Gaussians, would correspond exactly to the number of observed phases.

At the end of this chapter, we will obtain a partitioning of the histogram and the previously introduced Gaussian mixture. We will review methods to obtain partitions and methods to obtain the GMM. Beforehand, we will describe how to obtain one from the other. The first method allows to obtain a sub-histogram partition from a GMM, while the latter performs the opposite. Thus, we will then be able to obtain both one way or the other. Those two methods are indirectly used by a wide range of thresholding methods, such as Otsu thresholding [START_REF] Otsu | A threshold selection method from gray-level histogram[END_REF] or Minimum error thresholding [START_REF] Kittler | Minimum error thresholding[END_REF].

Histogram partition from a Gaussian mixture

From a given mixture, the histogram can be divided into sub-histograms, where only one component is dominant. In this section, we propose to compute T j for j = 1, . . . , K from the intersections of two Gaussians of the mixture.

Let us consider two gaussians whose parameters are (α i , µ i , σ i ) and (α j , µ j , σ j ). We assume that µ i < µ j and we do not consider Gaussians that have equal means. The intersections between the two Gaussians can be found analytically:

α i g(t, µ i , σ i ) = α j g(t, µ j , σ j ) α i 2πσ 2 i exp 1 2 ( t -µ i σ i ) 2 = α j 2πσ 2 j exp 1 2 ( t -µ j σ j ) 2 α i σ j α j σ i = exp 1 2 ( t -µ j σ j ) 2 - 1 2 ( t -µ i σ i ) 2 log α i σ j α j σ i = 1 2 t -µ j σ j 2 - 1 2 t -µ i σ i 2 2σ 2 j σ 2 i (log(α i ) + log(σ j ) -log(α j ) -log(σ i )) = σ 2 i (t -µ j ) 2 -σ 2 j (t -µ i ) 2 (4.4)
Equation (4.4) is a quadratic equation of form at 2 +bt+c = 0. Here are the corresponding values for a, b, c:

a = σ 2 i -σ 2 j (4.5) b = 2µ i σ 2 j -2µ j σ 2 i (4.6) c = µ 2 j σ 2 i -µ 2 i σ 2 j -2σ 2 j σ 2 i (log(α i ) + log(σ j ) -log(α j ) -log(σ i )) (4.7) 40 
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The determinant δ is therefore:

δ = b 2 -4ac (4.8)
Thus, we get one intersection point if δ = 0 and two intersections points if δ > 0. If δ < 0, eq. (4.7) have imaginary roots and one of two components is dominant on the whole domain of the intensities. As Gaussians are not normalized to 1, this can be the case. However, the smallest Gaussians of the two can be discarded from the mixture.

Once one has obtained the intersections for two Gaussians, the threshold level corresponds to the intersection that is within the range [µ i , µ j ]:

t i,j = -b - √ δ 2a , -b + √ δ 2a ∩ [µ i , µ j ] (4.9) 
Let us consider an indexing of the set of K Gaussians given the following index set {1, . . . , K}, so that each Gaussians are indexed in ascending intensities, as such:

∀i < j ∈ {1, . . . , K} ⇔ µ i ≤ µ j (4.10)
The following equations give the interval for each sub-histogram:

t lef t 0 = 0 t right K = ∞ t lef t i = t i-1,i t right i = t i,i+1 (4.11) 
Let us note the interval for the j th class by

T j = [t lef t j , t right j ].
One obtains a partition of the distribution of intensities, denoted by T = {T 0 , . . . , T K-1 }, such that:

t right i = t lef t i+1 (4.12)

Gaussian mixture from a histogram partition

We now consider the opposite situation, where a partition T of the histogram has been determined, and we estimate a GMM from this partition. We denote H j the set of frequencies extracted from H corresponding to the sub-histogram T j :

H j = H(t), for t ∈ T j (4.13)
We can now give an estimation θ of the parameters of the GMM from this subset. μj and σj are given by the following equations:

μj = t∈Tj H(t) |T j | σj = t∈Tj (H(t) -μj ) 2 |T j | (4.14)
This estimation is biased as only a portion of the domain is considered. A given Gaussian takes value in [-∞, ∞] and we only consider intensities within a finite interval.

At its mean value, αj , the scaling factor of the j th Gaussian is set so that αj g(μ j , μj , σj ) matches the height of the peak in H(f ):

H( μj ) -αj g( μj , μj , σj ) = 0 ⇒ αj = H( μj ) g( μj , μj , σj ) ⇒ αj = 2π σj 2 H( μj ) (4.15)

Thresholding techniques

A partition of the histogram can be found by various thresholding methods. The determination of thresholds has been subject to intensive research since many decades. In particular, multi-class thresholding methods can generate partitions with more than two classes. In our case, materials are not restricted to the elastic binder phase and one hard phase of grains. We consider cases where the materials is composed of one or more hard phases. Thus, multi-class thresholding is reviewed in order to generate a partition fitted to multi-phasic materials.

We will review Otsu [START_REF] Otsu | A threshold selection method from gray-level histogram[END_REF], Kapur [START_REF] Kapur | A new method for gray-level picture thresholding using the entropy of the histogram[END_REF], minimum error thresholding [START_REF] Kittler | Minimum error thresholding[END_REF], Gaussian smoothing [START_REF] Tsai | A fast thresholding selection procedure for multimodal and unimodal histograms[END_REF] and assess their performance regarding the acquisitions at hand. Those methods are amongst the most popular thresholding methods.

Otsu's threshold

Otsu's thresholding was first proposed in [START_REF] Otsu | A threshold selection method from gray-level histogram[END_REF] to perform grey-level image thresholding, originally designed for 2-level threshold. Optimal thresholds are selected by maximizing the between-class variance with an exhaustive search. In [START_REF] Liao | A fast algorithm for multilevel thresholding[END_REF][START_REF] Huang | Automatic multilevel thresholding based on two-stage otsu's method with cluster determination by valley estimation[END_REF], multi-class fast thresholding methods are proposed, derived from the Otsu's thresholding of [START_REF] Otsu | A threshold selection method from gray-level histogram[END_REF]. We discuss here the multi-class approach. This thresholding method is based on the normalised histogram, which can be seen as a probability density function. The probability function of a given class j is given by α j , the mixture ratio of this probability density function. The sum of the cumulative probability functions of K classes equals one:

K k=1 α k = 1 (4.16)
The sum of the means of K classes weighted by their cumulative probabilities is:

µ K = K k=1 α k µ k (4.17)
One can obtain α k and µ k for a given T from the normalised histogram with eqs. (4.14) and (4.15). The corresponding between-class variance is expressed as follows:

σ 2 K (T ) = K k=1 α k µ 2 k -µ 2 K (4.18)
The optimal thresholds T are chosen by maximizing the between-class variance of eq. (4.18):

T = arg max T (σ 2 K (T )) (4.19)

Entropy maximisation

There are various forms of thresholding by entropy maximisation. Here, we implement and discuss the algorithm of entropy maximisation as defined in [START_REF] Kapur | A new method for gray-level picture thresholding using the entropy of the histogram[END_REF]. Similarly as Otsu [START_REF] Otsu | A threshold selection method from gray-level histogram[END_REF], optimal thresholds are selected by maximizing an objective function. This function is now the entropy measure.

Let us first define the probability associated with the grey level t as:

p t = H(t) N , where N = y H(y) (4.20)
The entropy associated with the interval T i is:

H(T i ) = - t∈Ti p t P Ti ln p i P Ti (4. 21 
)
where

P Ti = t∈Ti p t (4.22)
Thus,

H(T i ) = - 1 P Ti t∈Ti p t ln p t -P Ti ln P Ti (4.23) H(T i ) = lnP Ti - 1 P Ti t∈Ti p t ln p t (4.24)
Let us define the sum of all entropies of the intervals T = {T 0 , . . . , T K-1 } is given by:

ψ(T ) = ln (P T0 ) + • • • + ln P T K-1 -t∈T0 p t ln p t P T0 -• • • -- t∈T K-1 p t ln p t P T K-1 (4.25)
In this work, this method has been implemented similarly to the algorithm for Otsu [START_REF] Huang | Automatic multilevel thresholding based on two-stage otsu's method with cluster determination by valley estimation[END_REF], and benefits of the same optimisations.

Minimum error threshold

This thresholding method, introduced in [START_REF] Kittler | Minimum error thresholding[END_REF], has been derived under the assumption of intensities being normally distributed. The principal idea behind the method is to optimise the average pixel classification error rate, using an exhaustive search or an iterative algorithm.

The iterative approach is a very fast method suited for multi-level thresholding. The following steps describe the algorithm:

-Step 1: Pick an arbitrary initial set of intervals T 0 , i ← 0.

-Step 2: Compute the GMM from T i as described by eqs. (4.14) and (4.15).

-Step 3: Compute the updated intervals T i+1 as described by eq. (4.11).

-Step 4: if T i = T i+1 , then terminate the algorithm, else go to Step 2 with i ← i + 1.

In case of coarse quantisation of the intensity values, this algorithm can converge towards the boundaries of domain of intensities. Several iterations with different initial sets of intervals are performed and the K -1 most recurrent boundaries (or threshold values) are kept.

Gaussian smoothing thresholding

This method, presented in [START_REF] Tsai | A fast thresholding selection procedure for multimodal and unimodal histograms[END_REF], detects the thresholds at the local minima, also called valleys, between two adjacent local maxima, or peaks. Peaks are assumed to correspond to homogeneous regions of the image while valleys would correspond to regions laying in between two homogeneous regions. The position of peaks are defined as follows:

P = {t, H(t) > H(t -1) and H(t) > H(t + 1)} (4.26)
While the valleys are defined as:

V = {t, H(t) < H(t -1) and H(t) < H(t + 1)} ∩ [min(P), max(P)] (4.27) 
Only valleys that are contained within two peaks are kept. Because of the fluctuation of the histogram and its coarse quantisation, the number of peaks would exceed the desired number of classes. This method iteratively smoothes the histogram by convolution with increasing Gaussian kernels until the desired number of peaks is reached. Let us denote by H r the histogram filtered by the convolution with G r , a Gaussian kernel of radius r, such that the number of peaks is greater than K for H(f ) * G r-1 and less or equal than K for

H(f ) * G r .
If the number of peaks of H r is equal to the desired number of classes, then the obtained valleys corresponds to the threshold values.

If the number of peaks is less than the desired number of classes, the curvature of the histogram is computed. In [START_REF] Tsai | A fast thresholding selection procedure for multimodal and unimodal histograms[END_REF], the discrete version of curvature is expressed as follows:

ψ(t) = 1 R R j=1 H(t + j) -H(t -j) 2j (4.28)
Where R specifies the region of support, typically small (R ≤ 3). The threshold values are obtained from V and completed by the K -1 -|V| local maxima of ψ, in order of magnitude.

Expectation maximisation

We now review the methods to obtain a GMM of the histogram. GMM can be fitted using several tools. The most common way is by Expectation-maximization [START_REF] Hartley | Maximum likelihood estimation from incomplete data[END_REF] or its variant based on Variational Bayes Inference [START_REF] Mcgrory | Variational approximations in Bayesian model selection for finite mixture distributions[END_REF]. One can also use the Dirichlet process mixture model [START_REF] Antoniak | Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[END_REF], also known as Chinese Restaurant Process or the collapsed Gibbs sampling a MCMC method [START_REF] Maceachearn | Estimating mixture of Dirichlet process models[END_REF][START_REF] Neal | Markov chain sampling methods for Dirichlet process mixture models[END_REF]. We review the method using Expectation-maximisation, which is the most common tool for this purpose.

Each iteration of the Expectation-maximisation algorithm consists of two processes. In the first process of expectation, the missing data are estimated given the observed data and current estimate of the model parameters. This is achieved using the conditional expectation. In the maximisation step, the likelihood function is maximized under the assumption that the missing data are known. The estimate of the missing data from the first step is used instead of the actual missing data.

We consider a sample X = (x 1 , . . . x n ) from K normal distributions. The goal of GMM by Expectation-maximisation is to optimize the unknown parameters θ = ( α 1 , . . . , α K , µ 1 , . . . , µ K , σ 1 , . . . , σ K ) representing the mixing values α k , the means µ k and the variances 4. Analysis of the intensity distribution σ k of each Gaussians. The Gaussian mixture distribution is written as a linear combination of Gaussians so that:

p(x, θ) = K k=1 α k g(x, µ k , σ k ) (4.29)
where

K k=1 α k = 1 (4.30) and ∀k, 0 ≤ α k ≤ 1 (4.31)
In order to compute the optimal θ, this log-likelihood function is to be maximised:

L(X, θ) = n i=1 ln p(x i , θ) (4.32)
This log-likelihood is called incomplete-data, as it is difficult to maximise, but it can be easily determined if some data is already known. The algorithm of Expectation-maximization allows this problem to be separated into K trivial problems, by adding the following information. Let Z = (z i,k ), a |X| × K matrix, be the latent variables that determine the component from which the observation originates. z i,k is 1 if x i is an observation of the Gaussian k and 0 otherwise. Let us denote z i the K-dimensional binary random variable, so that z i = {z i,1 , . . . , z i,K }. For a given z i , only one element z i,k is equal to 1 and all other elements are equal to 0. The values of z i,k are within {0, 1} and K z i,k = 1. For a given z i , K states are possibles according to which element z i,k is equal to 1. The marginal distribution over z i is given in terms of the mixing value α i :

P (z i,k = 1) = α k (4.33)
We can also write:

P (z i ) = K k=1 α z i,k k (4.34)
The conditional distribution of X given a particular value for z i is a Gaussian:

P (X | z i,k = 1) = N (X | µ k , σ k ) (4.35)
which can also be written in the form:

P (X | z i ) = K k=1 N (X | µ k , σ k ) zi,k (4.36)
The Bayes' theorem gives:

P (x i , z i ) = P (z i )P (x i | z i ) (4.37)
Therefore, the Gaussian mixture can be expressed involving the joint distribution P (X, z):

P (X) = N i=1 P (X, z i ) = N i=1 P (z i )P (x i | z i ) (4.38)
Futhermore, we can compute P (z i = 1 | x i ) and we denote this quantity by γ(z i,k ):

γ(z i,k ) = P (z i,k = 1)P (x i | z i,k = 1) K j=1 P (z i,j = 1)P (x i | z i,j = 1) = α k N (x i | µ k , σ k ) K j=1 α j N (x i , µ j , σ j ) (4.39)
The prior probability of z i,k = 1 is given by α k , and the quantity γ(z i,k ) corresponds to the posterior probability once x i has been observed. Thus, the first step of the Expectationmaximisation algorithm corresponds to the evaluation of the posterior probability γ(z i,k ).

The second step is to find the parameter that maximises ln P (X | θ). The new parameters can be computed using three equations. In the next step, the mixture ratios are given by:

α k = 1 n n i=1 γ(z i,k ) (4.40)
The estimations of µ j and σ j are given by the following two equations:

µ k = n i=1 γ(z i,k )x i n i=1 γ(z i,k ) (4.41) σ k = n i=1 γ(z i,k )(x i -µ k ) 2 n i=1 γ(z i,k ) (4.42) 
This two-step process is repeated until convergence on a local maximum. In practice, Expectation-maximisation is computed several times using different initialisations in order to reach the global maximum of likelihood.

Greedy approach

In this section, we present a greedy approach to the computation of the mixture of Gaussians, similar to [START_REF] Abdoli | Gaussian mixture modelbased contrast enhancement[END_REF]. It is based on a successive decomposition of the histogram. It starts with:

H 1 = H(f ) (4.43)
A first Gaussian is fitted and (μ 1 , σ1 , α1 ) are estimated. In the following sections 4.3.1 and 4.3.3, two methods to estimate µ i and σ i are introduced. The estimation of α i is obtained with eq. (4.15).

At step i + 1, the i + 1 th Gaussian is estimated from H i+1 , defined as such:

H i+1 (t) = H i (t) -αi g(t, μi , σi ), ∀t (4.44) 
Figure 4.1 shows the decomposition of H. This step is repeated until a given criterion is achieved. For example, one can stop when K Gaussians are obtained. One could also stop the iterations when the resulting mixture covers up to a certain amount (say, 99%) of the original histogram, This criterion is an area criterion.

When a criterion is used, such as the area criterion, K is an unknown parameter in contrast to the previous approach. This approach allows us to also give an estimation K of the number of components, and, thus, an estimation of the number of phases in the studied material.

We introduced an innovative criterion based on dominance of Gaussians in the latter part of section 4.3. In this work, the iteration is stopped at step i if the i + 1 th is no longer dominant at its peak value. 1.8 
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Mean estimation

As in [START_REF] Abdoli | Gaussian mixture modelbased contrast enhancement[END_REF], the algorithm picks the intensity in H i , for which the highest Gaussian can be fit around it. μi is the estimation of the mean value of the i th Gaussian. The following objective function is defined as the one maximising the correlation between a normalized Gaussian and H i :

μi = arg max µ x∈X g(x, µ, σ 0 )H i (x) (4.45) 
where we note by H i (x) the value of the H i at intensity x. This method is very similar to picking the maximum of H i except it is more robust to noise. σ 0 is chosen to be small. In our work, a value of 5 is chosen for σ 0 as it takes into account most of the small-scale noise on the intensity distribution of our acquisitions.

Interval of dominance of a gaussian

Due to the unlimited support of a Gaussian distribution, every point on the x-axis has a non-zero probability of belonging to all Gaussians. However, the variances can be estimated within a certain range of the histogram, denoted by [b 1 , b 2 ], where the Gaussian being computed is considered as the most dominant. This step is the basis for calculations in the following steps, it is essential to find the most accurate value to avoid error propagation.

Optimisation of automatic segmentation of granular fragmented materials [START_REF] Abdoli | Gaussian mixture modelbased contrast enhancement[END_REF] Our method Left is the method presented in [START_REF] Abdoli | Gaussian mixture modelbased contrast enhancement[END_REF]; detected bounds are [0, 255]. Right is our method; detected bounds are [START_REF] Malladi | A fast level set based algorithm for topology-independent shape modeling[END_REF][START_REF] Morrin | Chain-link copression of arbitrary black-white images[END_REF].

In [START_REF] Abdoli | Gaussian mixture modelbased contrast enhancement[END_REF], b 1 is the first local minimum left of μi in H i , and b 2 is the first local minimum right of μi . We do not consider this method able to find the interval of dominance, especially in the case of a unimodal histogram, such as S-Al. For S-Al, the intensity of the most dominant peak is 88, see fig. One way to approximate the interval of dominance is to find the first inflexion point of H i left of μi and the first inflexion point right of μi . It can be found by computing the curvature of the histogram, as in eq. (4.28). Moreover, a good fit for the variance is found with a smaller interval rather than with a bigger interval, which may contain more noise and be less pure.

This step can require a smoothing of H i to ensure that no abnormal local peak can affect the determination of [b 1 , b 2 ]. For this purpose, H i has been convolved with a Gaussian kernel of small radius (say, 3).

Variance estimation

Let us consider f an intensity and f . The following ratio, called drop ratio, is given by:

d f, = H(f ) H(f + ) (4.46)
Let us consider a Gaussian component of parameter α, µ, σ that is dominant within 

[b 1 , b 2 ] for a given mixture. For each value of the interval [b 1 -f, b 2 -f ], the drop ratio d µ, is computed. As the i th Gaussian is supposed dominant in [b 1 , b 2 ], the value
H(f ) ∼ = αg(f, µ, σ), for f ∈ [b 1 , b 2 ]
. Thus, the drop ratio d µ, can be approximated by:

d µ, ∼ = αg(µ, µ, σ) αg(µ + , µ, σ) ∼ = α √ 2σ 2 α √ 2σ 2 exp -1 2 σ 2 ∼ = exp 2 2σ 2 (4.47)
The variance of the Gaussian, with parameters (µ, σ, α), can be estimated by using this drop ratio. An estimated standard deviation σ is obtained:

σ ∼ = 2 log(d µ, ) (4.48) 
We observe that this estimation depends only on the drop ratio and on the mean value of the Gaussian. An estimation of the mean value, μi has been obtained with eq. (4.45). An accurate estimation σi of the standard deviation of the i th Gaussian is obtained by applying eq. (4.48

) with ∈ [b 1 -f, b 2 -f ]: σi = Median({ 2 log(d μi, ) | ∈ {b 1 -f, . . . , -1, 1, . . . , b 2 -f }}) (4.49)

Criterion to stop the iterations

As we add successively Gaussian components to the mixture, we need a criterion that tells us when to stop. As we compute a new component, its mean is evaluated and its variance is estimated through a dominance interval. However, this interval of dominance is only an estimation, and is more likely to under-estimate the true interval of dominance. However, true dominance on a given intensity can be verified once all the parameters of a component has been estimated. We propose the following definition of dominance: Definition 4.3.1. A Gaussian is dominant on an intensity h if its value at h is greater than the sum of the values at h of all other components. Thus, we can now verify if a component is dominant on a given intensity. We propose the following novel criterion to stop the iteration. The iterations are stopped at step i if the i + 1 th Gaussian is no longer dominant at its peak value. This can be verified by the following inequality:

αi+1 g(x, μi+1 , σi+1 ) < i j=1 αj g(x, μj , σj ), x = μj (4.50)
At its peak value, the component is equal to the value H i+1 (μ i+1 ), where H i is the residue of the decomposition of the histogram H as defined in eq. (4.44):

H i+1 (μ i+1 ) < i j=1 α j g(μ j , μj , σj ) (4.51)
The iterative rule in eq. (4.44) gives:

H i+1 = H 1 - i j=1 αj g(μ j , μj , σj ) (4.52)
which gives the following expression for the second term of eq. (4.51):

i j=1 αj g(μ j , μj , σj ) = H 1 -H i+1 H i+1 (μ i+1 ) < H 1 (μ i+1 ) -H i+1 (μ i+1 ) (4.53)
Finally, this criterion is given:

H i+1 (μ i+1 ) < H 1 (μ i+1 ) 2 (4.54)
We observe that this criterion only depends on the value of the residue H i+1 and on the original histogram H 1 . This inequality can be verified before the estimation of σi+1 and αi+1 and is convenient when one wants to retain only the most dominant Gaussians.

Estimation of the number of classes

Except for the greedy approach, the previously described thresholding methods need the number of classes to be manually determined. The research of automatic determination of the number of classes is increasingly popular. In [START_REF] Yaju | Research on image segmentation based on fuzzy theory[END_REF], the watershed transformation is used to determine the number of clusters and a fuzzy C-Mean method separates objects of interest from complicated backgrounds. In [START_REF] Grady | Isoperimetric graph partitioning for image segmentation[END_REF][START_REF] Li | A new image thresholding method based on isoperimetric ratios[END_REF], two methods based on isoperimetric graph theory are introduced. In this work, those methods are demanding in term of computational resources, especially for the volume of our acquisitions. We assume that the previous filtering step is able to make the phases separable by intensity and we review a method based on the shape of the histogram.

Let us consider H(f ) as a 1D topographic relief. The number of classes is estimated by the number of peaks of H(f ). Those peaks correspond to maxima of the relief as defined in section 2.5. In between those peaks lay valleys, which are the minima of the relief as defined in section 2.5. We estimate the number of classes by estimating the number of valleys:

K = |{m ∈ min(H(f )), {t 0 , t max } ∩ m = ∅}| + 1 (4.55)
where t max is the previously defined maximum of grey level valuation domain. To counter high fluctuations inherent to noise, a smoothing filter must be applied to this relief, such as a Gaussian filter or a Median filter. In [START_REF] Huang | Automatic multilevel thresholding based on two-stage otsu's method with cluster determination by valley estimation[END_REF], this filtering is replaced by the binning of the original histogram, which also reduces noise and acts as a smoothing spatial filter.

While this method will hold undesirable results on a unimodal histogram such as in fig. 4.2, we work under the assumption that the filter succeeded in separating of phases. 

Skewness correction

We have discussed in chapter 3 the asymmetric nature of the bell-like shapes that we can observe in the histogram. One contribution of this work on this particular issue is to consider a new model of mixture. A class can be modelled by two half Gaussians:

a j (x, µ j , σ lef t j , σ right j , α lef t j , α right j ) = α lef t j g(x, µ j , σ lef t j ) if x < µ j α right j g(x, µ j , σ right j ) otherwise (4.56)
Where (µ j , σ lef t j , α lef t ) is the parameters of the left half Gaussian and (µ j , σ right j , α right ) is the parameters of the right half Gaussian. Thus, the resulting model of the mixture of K components depends on a set of 5 * K parameters θ defined as such:

θ = µ 1 , . . . , µ K , σ lef t 1 , . . . , σ lef t K , σ right 1 , . . . , σ right K , α lef t 1 , . . . , α lef t K , α right 1 , . . . , α right K (4.
57) The mixture model of the distribution can be expressed using this parameter:

p(x, θ) = K j=1 α(x, µ j , σ lef t j , σ right j , α lef t j , α right j ) (4.58)
Despite adding 2 * K parameters to the model, only few modifications have to be made to fit this new model to the greedy approach or the threshold to GMM method.

In section 4.1.2, σleft and σright are estimated from the following two sub-histograms using eq. (4.14):

H lef t j = h ∈ H, t lef t j ≤ h < μj H right j = h ∈ H, μj < h ≤ t right j (4.59)
αleft and αright can be estimated for each σleft and σright using eq. (4.15). In section 4.3.3, two standard deviations are estimated instead of one. In eq. (4.48), σleft

j is estimated with lef t = [b 1 , μj [ and σright j is estimated with right = [μ j , b 2 [
The benefit of this model is illustrated in fig. 4.3. While the improvement appears small, the new threshold value is 119 instead of 124. Thus, the small shift of the threshold value adds up to approximately 200000 points being correctly reclassified, i.e. 5% of the total number of points.

Comparison of the different thresholding methods

In this section, we compare Otsu [START_REF] Otsu | A threshold selection method from gray-level histogram[END_REF], Kappur [START_REF] Kapur | A new method for gray-level picture thresholding using the entropy of the histogram[END_REF], minimum error [START_REF] Kittler | Minimum error thresholding[END_REF], Gaussian smoothing [START_REF] Tsai | A fast thresholding selection procedure for multimodal and unimodal histograms[END_REF] and Greedy thresholding with a fixed number of classes. Minimum error thresholding has been performed 50 times with different initial states and the three most recurrent thresholds have been selected. An initial radius of 3 for the Gaussian kernel has been selected for the Gaussian smoothing thresholding and the curvature has been computed with a segment of size 3 as region of support. As for the greedy approach, the interval of dominance has been computed on H i filtered by a Gaussian kernel of size 3. Otsu and Kappur are non-parametric. Figure 4.4 shows the thresholds resulting from those methods for uni-modal, bi-modal and multi-modal histograms.

In fig. 4.4(a), a two-level thresholding is performed on a uni-modal histogram. IEX3-1 features a high level of noise that causes the histogram to appear uni-modal. A low level of filtering applied to this acquisition allows two peaks to appear, corresponding to the visually identified binder and grains phases. However, it is still interesting to assess the capability of a thresholding method to identify the threshold value in the uni-modal case. In the unimodal case, Otsu and Kappur are able to identify a sound threshold regarding the visual inspection of the acquisition. The greedy approach only detects one peak and is not able to extract a threshold value. The minimum error and the Gaussian smoothing do not give satisfying values.

In fig. 4.4(b), a two-level thresholding is performed on a bi-modal histogram. This case relates to the most frequent expected application. All thresholding methods are able to find a correct value for the threshold. However, the greedy approach and the minimum error approach are closer to the expected Gaussian intersection.

In fig. 4.4(c), a three-level thresholding is performed on a multi-modal histogram. Minimum error, Gaussian smoothing and Greedy thresholdings obtained good estimations of T . Otsu is biased towards the class of higher volume fraction, although the resulting classes are coherent with the visual appreciation of S-Al, see fig. 4.4(d). The Kapur thresholding method fails completely in identifying meaningful thresholds.

In the bi-modal and multi-modal cases, the minimum error and the greedy approaches have been found to be the most reliable and less likely to be affected by bias. The minimum error requires several iterations with different initialisations, which are not required with the greedy approaches. However, the greedy approach is not able to find a valid threshold values for the uni-modal case. In this case, Otsu is preferred. 

The Expectation-maximisation approach

The variational Bayesian variant of the approach by Expectation-maximisation has been used to generate the result from fig. 4.5. The variational Bayesian is an alternative to Markov chain Monte Carlo for performing approximate Bayesian inference for models with latent variables, see [START_REF] Mcgrory | Variational approximations in Bayesian model selection for finite mixture distributions[END_REF]. It avoids the singularities often found in Expectation-maximisation solutions. This algorithm will tend to put more weights on few components and set the remaining components weights close to zero. Fewer components are therefore generated, even if a higher number of desired components is requested. In this particular application, we have set the upper limit of components to ten. All components whose area is less than 1% of the area of the original histogram are discarded.

We run this algorithm on our filtered distributions. We obtained mixtures, which sum is close to H(f ). However, most of the obtained Gaussian components are not fit for our application. Indeed, the Expectation-maximisation approach tends to prefer mixtures close to the original signal, rather than Gaussians close to the peaks observed in H(f ). In fig. 4.5, multiple examples of this assumption are observed. In the second run of IEX3-0, the rightmost peak is modelled by two Gaussians. Neither of those reaches the full height of the peak observed in the histogram but their sum is a tight fit to this peak.

Moreover, the first filtering step and the PVE can produce plateaus between two high dynamic peaks, and cause asymmetry between the two concerned bell-like shapes. Several components of small variances and decreasing weights are fitted, see the second run of B200 in fig. 4.5.

In this section, our goal is to model peaks by Gaussians. As the first filtering step decreases the width of the peaks, we expect and suppose that all observed classes are modelled by a peak in the filtered histogram. The Expectation-maximisation approach is therefore not adapted to our goal. Moreover, this approach has several other drawbacks. Firstly, it is highly dependant on the starting set of parameters. Choosing a bad set of starting points for the maximisation might cause the solution to diverge. Finally, this approach is complex and not adapted for time-consuming applications.

Image of classes

We refer to the grey tone image S K as the image with only K different values which indicate for each pixel from which component it originates. This value is chosen to be the mean of the given component. This image is referred to as the image of classes and is defined as such:

S K (x) = µ j , f (x) ∈ T j (4.60)
where T j is an element j of the obtained partition of the histogram, µ j is the mean of the class j.

Conclusion

Figure 4.6 shows the GMM produced by the greedy approach of section 4.3 on a selected set of materials, while providing the original materials for visual inspection. Figure 4.7 shows a portion of the images of classes generated for each of our acquisitions. Notice that some artefacts noises are reduced heavily but still detected and represented as a component of the GMM. The PVE effect is still present in some of the image of classes. 
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In this chapter, the global histogram is split into sub-histograms. While Otsu's method is the most effecient for uni-modal or bimodal histogram, a greedy approach was reviewed for multi-modal histogram. A new stop criterion and a skewness correction were proposed. While a focus has been made on deterministic techniques, the perspectives of this chapter includes the study of learning techniques.

Chapter 5

Analysis of spatial distribution

From chapter 4, we obtained the images of classes illustrated in fig. 4.7. This image of classes associates to each pixel a label corresponding to a phase. For some acquisitions, we estimated too many classes in contrast to the visual inspection of the acquisitions. However, the obtained GMM is sound when compared to the distribution. This over-estimation is due to the presence of artefacts that are not removed by the previous filter of chapter 3. Only by injecting new informations into this preliminary analysis will one be able to assess the relevancy of each sub-histogram. The spatial analysis of the detected phases is performed to produce the final threshold values.

From the results shown in fig. 4.7, we observe two types of wrongly assessed components. The locality of some components are strongly correlated to others. They are located on edges between phases. This phenomenon is observed in B200, IEX3-2, mono-phasic epoxy material of perchlorate amonium (100 µm) (PA)-0 and PA-1. Others are more related to textures. One can see this kind of behaviour in mono-phasic butaline polished at 5 mm (BOL), BOL-CHOC-0, BOL-CHOC-1, cyclotetramethylene-tetranitramine (HMX), MRT and multi-phasic epoxy material of sand grains of 250 µm with alumine particules of 44-74 µm (S-A). Figure 5.1 shows those supernumerary phases that appear during of the spectral analysis.

Local correction of the global thresholding

From chapter 4, the image of classes is obtained from the global information on the distribution of the intensities. As no spatial information is taken into account when the image of classes is built, many points are classified in a wrong class.

Here, we will focus on combining the spatial information and the spatial relation to produce a more reliable image of classes. Points that lie within a high-gradient region are reclassified. The use of local information can correct most of the misclassification due to the PVE and beam hardening artefacts and takes into account the high-frequency noise.

The subject of locally adaptive methods has been intensively researched and, to date, many methods exists. In [START_REF] Iassonov | Segmentation of x-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures[END_REF], the most popular of the locally adaptive methods have been implemented and tested on a broad set of CT-scan acquisitions. The method of image thresholding by Kriging [START_REF] Oh | Image thresholding by indicator Kriging[END_REF] is adapted for a 2-level thresholding. An initial segmentation of the histogram, provides a 2-class image. The middle unassigned region is further segmented by the use of the indicator Kriging. This approach is already lengthy for a bimodal histogram and the performance depends highly on the appropriate selection of the middle unassigned region. This approach might need some careful supervision in order to obtain the best potential segmentation. Fuzzy C-means [START_REF] Pham | Image segmentation using probabilistic fuzzy c-means clustering[END_REF] combines the spatial probabilistic model of Kriging and the fuzzy c-means algorithm. It is an improvement of the previous approach [START_REF] Oh | Image thresholding by indicator Kriging[END_REF]. It is, however, even more computationally demanding.

In this section, we choose to review an approach by watershed segmentation [START_REF] Beucher | Sur l'utilisation des lignes de partage des eaux en détection de contours[END_REF][START_REF] Schlüter | Image processing of multiphase images obtained via X-ray microtomography: A review[END_REF]] and an approach by Bayesian Markov Random Field (BMRF) [START_REF] Berthod | Bayesian image classification using Markov random fields[END_REF]. Both methods will result in the reclassification of a number of points. Although classes are not assessed on their pertinences, we aims at reducing drastically the number of points of an incorrect class. By comparing the volume of points before and after the reclassification by either methods, one would theorically be able to assess the pertinence of a given class.

Bayesian Markov Random Field

The BMRF is pseudo-stochastic method of energy optimisation. It is a statistical model which can be used within segmentation methods. BMRF modelises spatial interaction between neighbouring points. They are typically used to take into account the fact that most points belong to the same class as their neighboring pixels. Let S K be an image of K classes, D the definition domain, its energy is given by:

E(S K ) = x∈D T 1 (x)T 2 (x) (5.1)
In eq. (5.1), the energy minimisation depends on two terms, T 1 and T 2 . In the energy minimisation, T 1 (x), is influenced by the statistics of each class, while T 2 (x) evaluates the interaction between direct neighbours. β is a constant that represents the homogeneity of regions. γ is the following function:

T 1 (x) = 2πσ 2 c(x) exp (f (x) -µ c(x) ) 2 2σ 2 c(x) (5.
γ(x) = -1 if c(x) = c(y) 1, otherwise (5.4) 
An optimal labelling is given by:

ŜK = arg max S K [lnE(S K )] (5.5) 
A modified Metropolis optimisation algorithm [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] was first implemented. This approach was found unappropriate for 3D images, which correlates with [START_REF] Kulkarni | Three-dimensional multiphase segmentation of X-ray CT data of porous materials using a Bayesian Markov random field[END_REF]. An approach by Iterated Conditional Modes [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF] was also implemented, which converges much faster.

Figure 5.2 shows the result of this correction on S-Al, B200 and IEX3-2. The correction works for smaller grains, heavily affected by the PVE effect. Smaller dark grains from S-Al are reassigned to the black phase. A substantial amount of smaller dark grains are recovered by this method. However, an undesired effect arises as flat zones within bigger grains are also reclassified and a texture appears, as observed in B200 and IEX3-2.

In fig. 5.2, the image of classes of S-Al does not hold a class that is unrevelant. A total of 21% of points have been reclassified. However, no class has been reduced enough to be considered as unrevelant. B200 and IEX3-2 both feature an undesired class in the image of classes. However, the BMRF method results in an increase of number of points belonging to the undesired class. This effect is the opposite of what was desired.

Local thresholding based on the watershed transformation

In this section, points from the image of class S k , whose attribution to a class is not certain, are relabeled using the watershed transform as described in section 2.7. Some points are set to unclassified according to some criterion. Several choices are available for this criterion. One can use an edge detection method such as Sobel [START_REF] Sobel | A 3x3 isotropic gradient operator for image processing[END_REF], Canny [START_REF] Canny | A computational approach to edge detection[END_REF]. Another method is to unclassify points, which have a neighbour attributed to another class [START_REF] Schlüter | Image processing of multiphase images obtained via X-ray microtomography: A review[END_REF]. In this work, we introduce a novel criterion, based on the morphological gradient. The certainty of the attribution of a point to a class is determined by the gradient value of the grey-level image f .

Morphological gradient

The morphological gradient G B (f ) of f by the structuring element B is expressed as:

G B (f ) = f ⊕ B -f B (5.6)
The morphological gradient of B200 by B 26 is shown in fig. 5.3(a). When one observes the distribution of intensities of the gradient of f , the resulting histogram is uni-modal, as illustrated in fig. 5.3(b). The gradient values of points in homogeneous regions make up for the dominant peak of the histogram. Oppositely, edges which feature high values in the gradient of f are minority and contribute to the elongated tail of the histogram. The threshold is placed, so that as many as possible edges are selected, while preserving points in homogeneous regions.

T-point algorithm

The threshold value is determined by the T-point algorithm introduced in [START_REF] Coudray | A robust thresholding algorithm for unimodal image histograms[END_REF]. The T-point algorithm is a thresholding method adapted to uni-modal histograms, robust to noise and to random histogram fluctuations.

The peak intensity of the uni-modal histogram, denoted by p, is detected, as described in section 4.3.1. On the right side of the peak, the descending slope can be decomposed into two parts: a steep descending part immediately after the peak and a slightly descending part in the flat tail.

Given a point t, so that t ∈ [p, t max ], two lines are fitted by the least squares method, as in section 6.2. The goal of this method is to find the best fitting two straight lines D 1 andD 2 . D 1 fits the left part of the descending slope, given by [m, t], and D 2 fits the right part of the tail

[t + 1, m].
For a given t, the parameters of D 1 are (α 1 (t), β 1 (t)) and the parameters of D 2 are (α 2 (t), β 2 (t)). We obtain the following model of the tail of the histogram:

ĥt (x) = α 1 (t)h(x) + β 1 (t), if x ∈ [p, k] α 2 (t)h(x) + β 2 (t), if x ∈ [k + 1, t max ] (5.7)
For each possible k, the error between the model ĥt (x) and the histogram h(x) is:

(k) = tmax x=p (h(x) -ĥt (x)) 2 (5.8)
The T-point threshold value is given by: 

T = arg min k (k) (5.

Image of classes masking

Let ∅ denotes the unclassified label. The image of classes S K is masked using the T-point threshold of the gradient. S K is the resulting masked image:

S K (x) = S K (x), if G B (x) < T ∅, otherwise (5.10) 
The watershed transformation is now applied. The gradient image G B (f ) is used as the topographic relief, while S K is used as the markers of the flooding process. The unclassified points from S K are replaced by their corresponding catchment basins.

Figure 5.4 shows the results of this method on S-Al, B200 and IEX3-2. This correction removes most of the PVE effect on B200 and IEX3-2. However, it was unable to recover the smaller dark grains in S-Al and its performance were poorer in comparaison to the BMRF in this matter. Moreover, this method tends to create bridges between grains, such as seen in B200 in fig. 5.4.

The number of points for the undesired classes of B200 and IEX3-2 has been drastically reduced (92% of points removed for B200 and 94% for IEX3-2). Those classes can therefore be removed from the mixture. The watershed local thresholding has been successful in the assessment of the pertinence of a class. However, the quality of the resulting image may vary.

BMRF and the watershed local thresholding methods seem to solve some of the artefacts, but their accuracies vary for various acquisitions. No satisfaying results were obtained on the whole set of acquisitions. The main issue is a problem of scalability of the two methods. In BMRF, if good results are obtained on smaller grains, bigger grains will be affected. BMRF propagates value iteratively and requires a substantial number of iterations in order to affect the bigger grains. table shows some results of the watershed local thresholding on S-Al, B200 and IEX3-2. While the PVE effect is reduced, some of the darker grains of S-Al disappear. The PVE effect is also removed in B200 and in IEX3-2. However, bridges tend to appear in between grains such as the two middle top grains in B200.
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Oppositely in the watershed method, if good results are obtained on bigger grains, smaller grains are heavily affected. The watershed transform is able to propagate on larger regions, due to the nature of the flooding process. Thus, bigger grains can be correctly relabeled. However, it tends to ignore smaller grains and is less sensitive to finer details.

In the next section, we will exploit statistical measures in order to assess the pertinence of each class. We will first review the covariance measure. The covariance measure is used to detect patterns in a signal. Then, the cross-correlation measure between two classes will be introduced. This measure is able to assess the similarity of two signals, by measuring the displacement of one relative to the other.

Covariance

In statistics, one can analyse patterns in a signal by using the autocorrelation. The equivalent tool in the MM theory is the covariance measure [START_REF] Matheron | Random sets and integral geometry[END_REF]. This approach involves analysing the covariance measure at small scales and at higher scales. The goal is to detect the pattern related to grains or its abscence as expected for noisy components. We will start by defining the covariance measure and then apply this statistical tool to each class. We will finally assess the pertinence of each class.

The simplest SE besides the ones defined previously in section 2.3 is the pair of points. Let B = {(0, 0), h} be the union of the two extremities of the vector -→ Oh. The vector -→ Oh is of modulus h and direction α. Let us now consider the erosion of a set X by B. The point x belongs to the eroded set X \ B if and only if x and x + h ∈ X .

When X is composed of several grains, the eroded set is larger at small h value. It is empty when h = ∞ and it is X when h = 0. This is illustrated in fig. 5.5. The measure of Figure 5.5 -Erosions by segments of various length h and the corresponding covariance measures
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h ≥ 6 0 the eroded set is the covariance, noted K(h).

Definition 5.2.1. The covariance measure is [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]:

K(h) = Mes(X B)
where B is the union of the two extremities of a vector as defined before. Mes(X) is a Lebesgue measure of X and corresponds to the length, area or volume according to the dimension of D (1D, 2D or 3D respectively).

The definition domain D is bounded, and we can expect the covariance points to be 0 for distance higher than the length of D. Hence, we measure the eroded set for h smaller than half of the length of D.

The notion of covariance is able to give some information about the structures of the materials at hand. From the evolution of the covariance function, we can estimate the mean width of objects in a given direction or the existence and size of clusters. 

Parameter estimation for the covariance

The first few covariance points are indicators of phenomena occuring at a small scale. The slope of the tangent is directly related to the extinction of small particles. An important drop therefore indicates the presence of particles of small size. This phenomenon is visible in fig. 5.6.

This slope is estimated by fitting a straight line using the least squares method on the first m covariance points. In this case, the first four points have been chosen, m = 4. The estimated line is of form:

y = α 0 x + β 0 (5.11)
Let (x k , y k ) be the co-ordinates of the experimental covariance points with k ∈ [1, m] and X = (x 1 , . . . , x k ), Y = (y 1 , . . . , y k ). α 0 and β 0 are estimated by :

α 0 = mX T Y -X Y mX T X -X 2 β 0 = Y X T X -X X T Y mX T X -X 2 (5.
12)

The obtained β 0 value differs from the covariance point of abscissa 0 and the difference is referred to as the nugget. The nugget represents variability at distances smaller than the typical sample spacing, including measurement errors. Hence, the covariance of the pure signal starts from K(0) -β 0 . As previously stated, p = K(0) corresponds to the volume fraction of the component.

In theory, the pure signal will approach its sill at p 2 -β 2 0 . When K reaches its sill at some value h, the component includes no structure, of radius larger than h. As granular materials feature grains of finite size, we expect the covariance to level off at a given amplitude. This justifies the use of the covariance instead of the variogram, as we do not expect the variogram to grow indefinitely. However, those two notions are closely related when one describes the superposition of structures.

The sill value can be estimate by least squares on a limited set of covariance points. In [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF], the following criteria are proposed:

-compute the abscissa d of the intersection of the estimated line at the origin with the horizontal p 2 -β 2 0 . -use only the data whose abscissae are larger than 3 2 d. The estimator of the asymptote α ∞ and β ∞ are computed using eq. ( 5.12) with m ∈

[ 3 2 d, . . . ].
In the classes resulting from the analysis of the distribution of intensities, such as fig. 5.6, we observe that the covariance function crosses and goes under the asymptote. This behaviour is indicative of the extinction of grains at bigger scales. The first minimum below 0 of K(h) -α ∞ h + β ∞ is denoted by the range of the covariance. We can estimate the mean size of grains by the range value. In fig. 5.6, the range has been estimated at 60, which corresponds to the visually assessed mean size of the grains.

Estimation of the number of grains

The number of grains in a component can be estimated by the use of the covariance measure. We represent the component by a Boolean model of spheres with a fixed diameter d, [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF][START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. This diameter corresponds to the range of the covariance that we previously estimated. The Boolean model of spheres S is obtained by implantation of primary spheres S i on Poisson points x i , with possible overlaps so that S = S i .

A random closed set X is a random variable taking values in (K , σ f ), the class of closed subsets in the Euclidean space, R 2 , with the σ-algebra generated by the Hit or Miss topology, see [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. We consider here a stationary process, i.e. its probability distribution is invariant with respect to translations. Let X be a random closed set, the probability that X hits a compact set B is:

T (B) = P {X ∩ B = ∅} (5.13)
The probability distribution of any general random closed set is uniquely determined by its capacity functional, [START_REF] Matheron | Random sets theory and its applications to stereology[END_REF]. Boolean sets are infinitely divisible with respect to the union, i.e. X is equivalent to the union of X 1 , . . . , X n independent and equivalent random closed sets. G. Matheron further stated that a function T on K is associated with an infinitely divisible random closed set X without fixed points, if and only if there exists an alternating capacity of infinite order Ψ satisfying, for any compact set B, Ψ(∅) = 0 and

P (B ⊂ X ) = 1 -T (B) = exp(-Ψ(B)).
Hence, by using the previously introduced pair of points B h = {0, h}, the covariance Q(h) of the complementary set S is expressed as follows, where q is the volume fraction of S and λ is the Poisson point process intensity:

Q(h) = P {x ∈ S , x + h ∈ S } = 1 -T (B h ) = q 2 exp(-λK(h)) (5.14) 
For h = 0, Q(0) corresponds to q, the volume fraction of the porous phase.

q = exp(-λK(0)) (5.15)
Hence, we obtain the following estimation of the density of the Poisson point process:

λ = - log(q) K(0) (5.16)
K(0) correspond to the volume of spheres of diameter d. λ = -6 log(q) πd 3

(5.17)

λ can be interpreted as the average number of grains per voxels. To obtain an estimation of the number of grains in a given sample, one can multiply λ by the size of D.

Using the covariance as a discriminating criterion

In this section, we look at the potential of the covariance measure for discriminating noise from effective grain phases. We observe, in our materials of study, a pattern regarding the covariance on noisy components and on actual grains components. One fitting example is HMX. We have obtained three classes from the analysis of the intensity distribution of this acquisition. From visual inspection, one class has been assessed as the binder, another as the hard phase (fig. 5.7(b)), and the last one is a supernumerary class (fig. 5.7(c)). From the image of class S k , a binary image B j of class j can be extracted:

B j (x) = 1 if S K (x) = j 0, otherwise (5.18) 
In fig. 5.7, the covariance of the hard phase and the covariance of the supernumerary class are computed from the corresponding binary images. The covariance of the supernumerary class rapidly decreases and reaches its sill, while the covariance of the hard phase slowly decreases and occilates around its sill.

However, one can not apply this observation to all materials. S-Al features both small grains and bigger grains. The covariance for the smaller grains behaves as the covariance of the noisy component of HMX, see fig. 5.8. Hence, the covariance does not discriminate the noise from actual phases.

Cross-correlation

We are also interested in the similarity between two components. A variation of the covariance, the cross-correlation, is able to measure such similarities.

Instead of measuring the set {x ∈ X i , x + h ∈ X i }, one can measure the set {x ∈ X i , x + h ∈ X j }. This measure informs about the spatial relation between two components.

We have observed that the analysis of the intensities distribution often provides a higher number of Gaussians than necessary since some phases are over-segmented. One can expect a high spatial correlation between pixels of two cross-sections from an over-segmented phase. The cross-correlation measure will reflect this event.

Parameter estimation for the cross-correlation

At h = 1, the cross-correlation measure summed for all orientations corresponds to the contact surface of the phases i and j. The first few cross-correlation points are indicators of correlation at small scales. In contrast, disparities are reflected by high values of the cross-correlation at higher scales. In figs. 5.9 and 5.10, two cross-correlation measures are shown on BET-0. In fig. 5.9, the cross-correlation measure is acquired between a hard-phase and a supernumerary class, voxels of which are wrapped around the objects of the hard phase. In fig. 5.9(c), a large contact surface is observed and a rapid decrease occurs after h = 10. In fig. 5.10, the cross-correlation measure is acquired between the binder and a hard-phase. The first few points of the cross-correlation show a large contact surface and an inflexion of the curve is observed at h = 20. However, the cross-correlation is still increasing until h = 200. This increase shows the disparities between the two phases.

In both cases, the cross-correlation measure shows an inflexion at some small scale. This inflexion divides the cross-correlation points into two sets. The first set of cross-correlations points corresponds to pairs of voxels from the contact surface. The second set corresponds to pairs of uncorrelated voxels. The range d, at which this inflexion occurs, is estimated.

In fig. 5.9, the measure has a relative maximum at h = 8. This corresponds to the first stationary point of the cross-correlation measure.

In fig. 5.10, the measure is monotonically increasing for h < 200. d is visually estimated at 20, which corresponds to the h, at which the curve changes from being concave (concave downward) to convex (concave upward), also known as the inflection point in differential calculus.

The first stationary point in fig. 5.10 is at h = 202 and does not correspond to the visual appreciation of d. The first inflection point in fig. 5.9 is at h = 15, which also does not correspond to the visual appreciation of d. Thus, d is estimated as the minimum between the first stationary point and the first inflexion point. Once the range d is estimated, the cross-correlation function is modelled at scales higher that d by the function f CC :

f CC (x) = a + b exp( c x ) (5.19) 
This model is fitted by using non-linear least squares. Cross-correlation points at higher scales are less reliable than at smaller scales. As D is finite and the event x ∈ X i and x + h ∈ X j become independent, unexpected behaviours occurs for h reaching the boundary of D, such as h = 400 in fig. 5.11. Thus, the model is only fitted on h < 200 in fig. 5.11 on BET-0. This limit corresponds to half the width of the domain D.

An approached value estimating the asymptotic value can be found by use of this model. A negative slope of the exponential function indicates some level of positive correlation, while a positive slope indicates inverse correlation between the two components. The models for the two previous cross-correlations are shown in fig. 5.11.

Using the cross-correlation as a discriminating criterion

As previously stated, high values at low scales reflect the proximity of the two components while high values at higher scales reflect repulsions. One way to quantify this statement is to compute the ratio between the value at d and the value at the asymptote estimated by the exponential model:

r CC = d f CC (∞) (5.20)
We propose to merge components highly correlated iteratively. The previous ratio of eq. (5.20) is computed for each class. The two most correlated classes are merged. We pick the class featuring the highest peak to remain and update the sub-histograms from the resulting mixture, as given by section 4.1.1. This procedure is stopped when no more ratio superior to a chosen threshold is found. In this work, an experimental threshold has been set to 1.5. Figure 5.12 shows the results of this method on MIXTE. This method is efficient to remove nested structures such as observed in fig. 5.12(c).

Shape compactness Measure

One could say hypothetically that an over-segmentation occurring on the edges between two phases will result in a very tortuous component. Attempts to quantify this property include measuring the arch-chord ratio for each object of a component, see [START_REF] Peyrega | Estimation of tortuosity and reconstruction of geodesic paths in 3D[END_REF]. This ratio is that of the geodesic length of the object and the euclidean distance between the two corresponding extremities. This measure is costly in terms of computation.

Another assumption is made on the overall shapes of grains. Most materials at hand have convex shapes, although overall complex. As fibres are not included in the data set, most grains will have a high shape compactness measure. This measure is used to refine the previous cross-correlation measure, so that falsely detected slender components are to be removed. The shape compactness, also known as circularity in 2D, is taken from the isoperimetric inequality. This inequality is defined by:

P 2 ≥ 4πA (5. 21 
)
where P is the shape perimeter of the object:

P (X) =| {x, x ∈ X, ∃y ∼ x, y ∈ D \ X} | (5.22)
and A is the shape area of the object:

A(X) =| X | (5.23) 
Thus, the normalized circularity measure in 2D is given by:

C 2D = 4πA P 2 (5.24)
The volumetric version of the isoperimetric inequality is given by:

A 3 ≥ 36πV 2 (5.25)
where A is the enclosing surface of a 3D object and V its volume. Hence, the normalized shape compactness measure in 3D:

C 3D = 36πV 2 A 3 (5.26)
Those shape compactness ratios can be computed for each component X i . If a component is spherical, a ratio close to 1 is expected. Figure 5.13 shows several measures of shape compactness. The hypothesis of sphericity of the grians is indeed verified on most materials. However, BET-0 is a counter-example and features a very noisy binder, resulting in a tortuous component. This component can be falsely detected as noise. Moreover, its peak is close to the grains phase. Reapplying the Gaussian filter from the spectral analysis provides a thicker cross-section, which has an overall lower shape compactness measure.

By choosing empirically a threshold value of shape compactness of 0.36, we have successfully removed most undesired components from the previously obtained mixtures, while preserving those corresponding to the phases of the material.

Figure 5.14 shows the results of this approach. As this approach requires an empiric determination of the threshold value, it might not apply across all acquisitions. In our set of acquisition, the highest value that we want to preserve is 0.50 and the lowest value to be removed is 0.22.

Binder detection

One of the previously detected components corresponds to the binder phase, X . In this section, we aim at identifying which component is the one most likely to be the binder.

Figure 5.15 -The grains can be seen as holes in the binder phase, here in B200. The binder is white, while all other components are black.

Fill holes method

The first hypothesis that one can make about the binder is that it embeds all grains. In this case, one would observe grains as holes in the binder phase, see fig. 5. [START_REF] Beucher | The Morphological Approach to Segmentation : the Watershed Transformation[END_REF].

Holes of a binary image can be defined as the set of its regional minima (black spots) which are not connected to the image border. Thus, filling the holes of a binary image is equivalent to imposing the set of minima which are connected to the image border.

From this hypothesis, one would assume that the component corresponding to the binder would be the component, which features the highest increase in area by applying the Fillhole transformation.

However, due to the nature of the studied 3D acquisitions, grains are densely packed and connections which are not always observed on a 2d slice, are numerous when considering the whole 3d stack. Hence, most grains connect into a single minimum, which connects to the border of the image. Figure 5. [START_REF] Bieniek | A parallel watershed algorithm[END_REF] shows both examples of true positives and false positives. This method is not reliable to accurately detect the binder phase.

Stochastic approximation of the percolation

In this approach, another hypothesis is made. The binder phase is, hypothetically, the component, which percolates the most. One could identify the binder by assessing the percolation of each component.

Percolation refers to the movement of a fluid through porous media. One would say that a component percolates by considering this component as void and the remaining components as solid. If a fluid can flow from one side to the opposite side in the latter hypothetical media, this component is said to percolate.

The percolation can be assessed by means of MM methodology. One can verify if a path exists from one side to the other, by assessing the existence of a connected component spanning across D.

In MM, we refer to the operation of assigning a unique label to each connected component as Connected Component Labeling (CCL). Let L be the image of labels such as L : D → N (The set of naturals N being considered as the set of labels). The existence of a connected Figure 5.17 shows two different paths that a fluid can take in B200. Those two components are percolating in this 2D slice of S-Al. From this observation, one must carefully choose the subset of D, in which the percolation is assessed.

Coarse grains are more connected in 3D space than in 2D space. Two touching grains result most likely in a single contact point or a single contact edge due to their overall convex geometry. One expects that this contact surface is infinitesimally small. Due to the discretization of the acquisition, its width is expected to be one voxel large. By performing the percolation assessment on a 3D subset of D, one would expect this contact surface to be included. However, slicing the acquisition at a random height induces a low probability that such surface appears. By only considering 2D slices, we lower the chance that a component, which does not correspond to the binder phase, percolates. Therefore, the proposed method involves slicing D randomly along every axis and performing the percolation assessment several times.

Varying the window size is also considered. Considering this problem at several scales also increases the likelihood that the binder percolates. Indeed, if one considers a wide window, the binder is more likely to be trapped inside a cluster of grains and not able to pass through the media. Conversely, if one only consider smaller scales, it is more likely that most of the considered window is occupied by a cluster of grains.

Let W ⊂ D, be a rectangular slice of random size and location, in one of the three dimensions of D. The size is chosen to be at least twice the maximal value from the set of ranges computed in section 6.2 for every components. This ensures that a grain is less likely to occupy the whole sub-domain W . We denote the first line and the last line of W by W 0 and W ∞ .

For each class, we extract the binary image B j as defined in eq. (5.18). The CCL is performed on the slice W of the binary image and we obtain L W (B j ), the mapping of W to a set of labels. The event that a given class percolates is:

j percolates in W ⇔ ∃l, so that l ∈ L W (B j ∩ W 0 ), and l ∈ L W (B j ∩ W ∞ ) (5.27)
Let us denote the indicator function 1 W :

1 W (k) = 1, if k percolates in W 0, otherwise (5.28) 
W is a set of slices of the binary image and | W | is the cardinal of W. Let us define the density function df (k):

df (k) = W ∈W 1 W (k) | W | (5.29)
The component, for which the maximum of this function is reached, gives the estimated binder phase.

k binder = arg max k df (k)
(5.30) 

Conclusion

In this chapter, the previously obtained sub-histograms are further processed using spatial measures. Several criteria based on the cross-correlation and shape compactness measures allow for the validation of the previously obtained classes. Moreover, some characteristics of the observed phases are estimated, such as the binder, the number and the average radius of grains. Those estimations will then be used during the segmentation of the acquisition.

Chapter 6

Combining the filtering step and the analysis

One can see why a good filtering step from chapter 4 is necessary for the accurate determination of the phases. Two phases close in intensities and heavily affected by noise will appear as one peak in the histogram. However, an adapted filter will produce two peaks. Oppositely, classes wrongly detected can disappear with a more adapted filter. Artefacts, such as beam hardening or ring artefacts, can appear as bright or dark strikes. Those strikes are frequently saturated and appear on the beginning or on the end of the distribution of intensities. An appropriate amount of filtering will erase most of those artefacts and less classes are therefore detected. We now focus on improving the filter of chapter 3 and on discussing the relation between the filter and the determination of classes. In this chapter, the first processing chain is assembled, combining both the analysis and the filtering step.

General method

We have presented an optimisation scheme for the parameters of various filters in section 3.4. This method relies on two sets of intensity histogram frequencies, one to maximise and the other to minimise. An obvious correlation can be made between the estimated classes and those two sets. The set of frequencies to maximise corresponds to the mean intensity of each class, while the set to minimise corresponds to the threshold values between two adjacent sub-histograms T .

While good results have been obtained with this method, optimising the parameters through the minimisation of section 3.4 is computationaly expensive. We present in the next section a method to parametrise the bilateral filter, presented in section 3.2.4, that do not rely on minimisation.

Bilateral filter

We have introduced the bilateral filter as an edge-preserving, non-iterative filter. The estimation of its parameters can be obtained without requiring a minimisation step, which can be computationally expensive due to the number of steps required to converge. In this section, we propose to estimate its parameters from the previous analysis. The bilateral filter depends on a set of two parameters: the standard deviation of the spatial kernel σ w and the standard deviation of the spectral kernel σ r . We will estimate lower and upper bounds for both parameters.

The spectral kernel is used to prevent the averaging to occur over an edge. Thus, a point from a given class should be less affected by a point from another class. For a given class j within the interval T j , points whose intensities are higher than t right j or lower than t lef t j should affect less the points from the interval [t lef t j , t right j ]. With this in mind, we make the hypothesis that a spectral kernel size should be less than the difference between the peak intensity and the threshold values between adjacent classes, so that the averaging is prevented from occurring between points of two different classes.

The width of the Gaussian peak of a class is induced by the presence of noises. This noise is smoothed if the range kernel is at least the standard deviation of the Gaussian. Thus, for a given gaussian, we estimate a lower bound for σ r by the standard deviation of the modeled Gaussian.

From those observations, we estimate a lower bound and an upper bound of the range kernel size, so that each class is appropriately filtered. Figure 6.1 shows the estimation of the lower and upper bounds for each class of S-Al. Let [σ - r,i , σ + r,i ] denote this interval for the i th class. The estimated bounds for σ r,i are given by:

σ - r,i = σ i σ + r,i = min(µ i -t lef t i , µ i -t right i ) (6.1) 
The spatial kernel size, if it is close enough to the average size of grains, has been observed to have less influence on the results of the filter. The average size of grains has been estimated in as the estimated range of the covariance. Hence, we estimated σ w by the estimated range of the covariance.

We have estimation of σ r and σ w for each component. However, the bilateral filter requires only one value for each variable. One could set both by taking the minimum value of all estimations. This would preserve important structures while still removing some noise. We choose another approach by applying a different kernel, depending on the value of the central pixel. Each kernel is associated to a component, and, therefore, a sub-histogram. The central pixel is filtered using the kernel corresponding to the sub-histogram it originates from.

Noise differs from one class to another. This approach allows to adapt the amount of noise removed for each class. A point which is correctly classified, will be filtered according to the amount of noise of the corresponding class. In the space domain, this allows us to apply a stronger filtering on grains of bigger size, while preserving the smaller grains by using a small kernel. In the spectral domain, this allows us to produce almost flat zones on heavily textured grains, or grains affected by a strong noise such as the ring artefact, while preserving two components of similar values. Thus, we obtain a class-adaptive bilateral filter.

A mis-classified point would lie near the threshold value between the correct class and the wrong class. The difference between the intensity of neighbours from the correct class should be smaller in average than the estimated size of the range kernel. Thus, they still influence its value. Figure 6.2 shows the results when assigning different values of σ r . By setting σ r,i to its lower bound, most of the noise remains. On the contrary, by setting it to its upper bound, a lot of the edges are blurred away, and many flat zones appear. Choosing the middle point of the interval gives sharper edges than the unfiltered acquisition, while removing most of the noises. 

An iterative process

The following hypothesis is made : the determination of classes will allow to perform a better filtering, while an appropriate filtering will allow to provide a fitter model. We propose to alternate between a phase of filter optimisation and a phase of class determination until the number of detected classes is stable.

The full chain involves the analysis of the intensity distribution, the cross-correlation measure, the circularity measure, the local thresholding and the optimisation of the filter. First, the acquisition is filtered by using default parameters as in chapter 3. The classes of the unfiltered original acquisition are then estimated. This leads to an over-estimation of the number of classes. Measures are performed, reducing the number of classes. Finally, the image is filtered with the knowledge acquired during the previous iteration. New classes are estimated from this filtered image and the whole process is reiterated. The iterations stop when the number of classes is stable for subsequent runs. This process is illustrated in fig. 6.3.

We have tested this process on all our acquisitions. This iterative process is an improvement on most acquisitions over the previous sequential scheme presented in fig. 2.5. However, on a set of acquisitions, the number of classes does not converge after several iterations. The resulting image of classes is not satisfaying for those acquisitions. Despite this issue on a portion of our acquisitions, we have observed that when this process converges towards a fixed number of classes, the resulting classes corresponds to the visual appreciation and is satisfying. Moreover, when the number of classes is set by the user, a more satisfying filtered image is produced after a couple of iterations, see fig. 6.4. Our hypothesis that a more accurate determination of classes induces a better overall filtered image is verified on our acquisitions.

Conclusion of the analysis

We have presented a complete analysis chain and an adapted filter. The results of this analysis is an image close to the pure signal removed of all its noise. Figure 6.3 presents a detailed overview of the analysis. We tried to solve the general case, and set good parameters for all acquisitions available. Moreover, in the design of this chain, efforts have been made in finding the best balance between quality and efficiency. Some operations have been discarded due to their computational cost, which impairs the segmentation process with the substantial amount of data that holds a CT-scan. However, we proposed a method to estimate the number of phases K, the binder X and each set X i .

In this work, we do not propose a solution that works across every CT-scan acquisition that can be available. It has failed on all three MRT acquisitions. These three acquisitions are extremely noisy, and, even with a careful visual inspection, the grey grains are barely distinguishable from the binder. Only the white phase has been extracted by our method. On one hand, the contrast between phases is insufficient and, on the other hand, the noise is too heavy. Figure 6.5 shows the result of our method on MRT. In both cases, producing new acquisitions of those materials should be considered.

Some steps are more likely to fail than other. The number of detected phases heavily depends on the quality of the image, i.e. the amount of artefacts. However, settings a manual value for K only requires a short visual inspection of the acquisition by the user. Oppositely, the process of determining automatically an accurate value for K is extremely complex, and prone to errors. The user will want to provide an accurate value for K. We have only 6. Combining the filtering step and the analysis Figure 6.4 -This figure shows the first three runs of the iterative process when the number of classes is fixed by the user (BOL:3, MRT-0:3, S-Al:3). After each run, the bilateral filter is able to smooth the image more accurately from the knowledge gained during the analysis. Fewer artefacts are observed. In MRT-0 and S-Al, the ring artefacts are barely visible at the end of the third run. MRT-0 has grains that are not visible in Run 1, but grains appear as flat zones in Run 3. Table 6.1 -This table shows the number of classes detected for each successive run of analysis and filterings. For B200, BOL, HMX, IEX3-0, IEX3-1n MIXTE, MRT-2, BET-0, BET-1, PA-0, S-Al and S-V1-A-Al, the iterative process converges towards the exact value of K. For those materials, the obtained classes are satisfying. However, for BOL-CHOC-0, BOL-CHOC-1, IEX3-2, MRT-0, MRT-1, PA-1 and S-A, this process does not converge after a few runs. 

Marker-based segmentation

The previous analysis gives an estimation of the pure signal for each acquisition. We also separate intensities into several classes that are the binder X and the different phases X . This chapter of the thesis is dedicated to the segmentation of every grain. By segmentation, we refer to the process of partitioning the previous set of pixels X i of a given phase i, into multiple segments. Each segment is a set of pixels, and we refer to it as an object. At the end of this section, we aim at obtaining objects consistent with the grains observed in the acquisitions. We will obtain a tessellation in n objects, which follows the axioms 4 and 5. Our method is based on the refinement of an over-segmentation. This over-segmentation is obtained by applying the watershed transformation on a modified gradient obtained from the filtered image of the previous part. Each obtained contour is then hierarchised, and this hierarchy is what allows us to create the final segmentation.

State-of-the-art of 3D multi-phasic materials segmentation

The number of segmentation algorithms found in the literature is very high, see [START_REF] Pal | A review on image segmentation techniques[END_REF][START_REF] Pham | A survey of current methods in medical image segmentation[END_REF]. Due to the nature of the problem of segmentation, most of these algorithms are specific to a particular problem, thus, having little significance for most other problems. An overview of the segmentation methods for 3D images of granular materials is presented in [START_REF] Wirjadi | Survey of 3D image segmentation methods[END_REF]. Some approaches are extended from two concepts : splitting and merging, [START_REF] Pavlidis | Picture segmentation by a directed split-and-merge procedure[END_REF]6]. The input data is organised into a pyramidal grid structure of regions. Merging refers to process of successive merging based on a criterion of similarity of a fine partition of regions of the original merging. Splitting refers to the process of successive division of the original image into smaller regions until a given condition is achieved. The main advantage of this method is that no seed points are needed, in contrast with most modern approaches. However, it requires the input to be organised into a pyramidal grid structure, which has an impact on the performance of the algorithm. CT-scans are unfit for those methods, as they are huge datasets.

Level set methods have been also popular [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Malladi | A fast level set based algorithm for topology-independent shape modeling[END_REF]. Isosurfaces are defined by connecting voxels with intensities equal to the isovalue in a 3D volume. Level sets, introduced in [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF], are moving fronts. Level-sets are numerical techniques designed to track the evolution of interfaces, which in the 3D case, would be the isosurface. Level-set methods exploit a strong link between moving surfaces and computational fluid equations.

Many approaches are based on region growing. Region growing is a technique to extract a connected region from a 3D volume based on some pre-defined connecting criterion. In the simplest form, region growing requires a seed point to start growing a region [START_REF] Monga | Segmentation d'images! vers une méthodologie[END_REF][START_REF] Pavlidis | Integrating region growing and edge detection[END_REF]. Modern approaches rely on a step of region growing [START_REF] Jiang | Comparative performance evaluation of segmentation methods based on region growing and division[END_REF]. Starting from small distinguishable seeds, most algorithms of region growing work by measuring the relative height between unattributed and attributed points.

In [START_REF] Hashemi | A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing[END_REF], a segmentation adapted to tri-phased granular materials is proposed, based on the simultaneous growing of regions extracted from the three phases. A comparative study of the region growing methods is published in [START_REF] Jiang | Comparative performance evaluation of segmentation methods based on region growing and division[END_REF]. Improving the selection criterion has been extensively studied, either by imposing a limit size for resulting regions, or by imposing a minimal distance to the source of the region. Region growing is simple, but not often used for segmentation by itself. It is often used as a primary method to understand a 3D volume before more complex segmentations are applied to it.

Graph cuts were introduced to perform the segmentation on graphs generated from the original acquisition, see [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. In [START_REF] Stawiaski | Region merging via graph-cuts[END_REF], graph cuts are used to merge the regions of the Watershed transform. Those methods are based on the problem of maximum flow, where the image is seen as a weighted directed graph, provided with a source and a sink node. The weights can be chosen from several models, such as relying on the gradient of the image, or on the mean intensity. The goal is to find the minimum cut that cuts all the edges connecting the points of different objects with each other.

Approaches based on super-pixels are also noticeable, see [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Machairas | Waterpixels[END_REF]. The idea behind super-pixels is to create super-pixels regions by regrouping pixels into significant atomic regions. This regrouping replaces the structure of grid of the image. Finally, a random walk was introduced in 2006 in [START_REF] Grady | Random walks for image segmentation[END_REF].

A more common approach is, however, the Watershed transform [START_REF] Beucher | Sur l'utilisation des lignes de partage des eaux en détection de contours[END_REF], which has gained growing interests in many segmentation applications. It originates from MM theory and is based on the growing of regions and contour detections. We impose source points, also called markers, from which an inundation process occurs. We have defined the Watershed transform in section 2.7. Gillibert and al. [START_REF] Gillibert | Stochastic multiscale segmentation constrained by image content[END_REF] used a multiscale stochastic watershed. The estimation of the granulometry makes it possible to select appropriate scales to perform several stochastic watersheds and combine them to obtain a correct segmentation for each size of grains. This approach works best if the sizes of grains are uniform.

State of the art of touching objects separation

Due to the high connectivity between grains, this problem can also be considered as a touching objects separation problem. A volumetric segmentation proves to be more complicated in comparison to the equivalent 2D approach. We observe a representation of the connected components of B200 in fig. 7.1, with one colour per connected component. Figure 7.1(a) is the 2D case, where only one slice of the whole volume is processed using the SE B 8 , and fig. 7.1(b) is the 3D case using B 26 . While the connected components of fig. 7.1(a) are already consistent with the grains and are a satisfying segmentation, the 3D CCL features a component, which includes 82% of the voxels of the grains phase. From this observation, we conclude that our method must not only find the boundaries between the binder and the grains, but also between the grains themselves. Those last boundaries lie within regions, which intrinsic variation of grey tone is small, and they must, therefore, be dealt with attention.

Separation of touching objects is a recurring problem in image processing. Classical techniques like Hough-transform [START_REF] Leavers | Shape Detection in Computer Vision Using the Hough Transform[END_REF] introduced in [START_REF] Hough | Method and means for recognizing complex patterns[END_REF] or the watershed applied to the inverse of the distance function perform well when the objects of interest possess regular shapes such as spheres. Unfortunately, when shape and size of objects vary considerably or when clusters contain many objects, classical methods may fail to produce the desired separation. Different approaches exist. In [START_REF] Schmitt | Morphological multiscale decomposition of connected regions with emphasis on cell clusters[END_REF], a size independent technique is developed based on the analysis of the morphological-scale space, generated by iterative erosion. Morphology-based procedures are based on the Watershed transform [START_REF] Beucher | Segmentation d'Images et Morphologie Mathématique[END_REF]. In [START_REF] Rosin | Shape partitioning by convexity[END_REF], a new formulation of convexity is proposed as a criterion for the decomposition of 2D shapes into convex subparts. Finally, some methods rely on level set transforms, such as in [START_REF] Dejnozkova | Modelling of overlapping circular objects based on level set approach[END_REF][START_REF] Schüpp | Fast statistical level sets image segmentation for biomedical applications[END_REF]. Morphological multiscale decomposition can decompose clusters into size-specific scales, carrying markers for each disjoint region [START_REF] Heijmans | Algebraic framework for linear and morphological scale-spaces[END_REF]. Methods exist for shape specific objects. In [START_REF] Talbot | Elliptical Distance Transforms and Object Splitting[END_REF], a method based on a modified version of the pseudo-Euclidean distance transformation is able to split merged ellipses. In [START_REF] Faessel | Touching grain kernels separation by gap-filling[END_REF], a gap-filling method is proposed for elliptic shapes.

The over-segmentation

In this section, a novel segmentation method is presented. It is based on the refinement of an over-segmentation. This over-segmentation is generated by the watershed method. This watershed transform is obtained from a modified gradient, and flooding occurs from the minima of the gradient. The result of this first step is an over-segmentation, where each grain can be split into a few fragments, but no object gather more than one grain.

On top of this over-segmentation, a graph is built, where each object of the oversegmentation is a node and edges are built for each adjacent region. A simulated stochastic watershed generates weight on the edges of the graph. We propose to construct the final segmentation from this graph. The minimum spanning tree of this graph is computed and defines a hierarchy. A hierarchical clustering performed on the hierarchy produces the final segmentation. The proposed method is generic, in 2D and in 3D, and works across various shapes of objects.

A topographic relief enhancing boundaries

The watershed transformation is typically applied to the gradient of the original image and it reflects the water flood on this topographic relief. This allows the basins to spread on homogeneous regions while separations are done on edges featuring a high value in the gradient image. From the previous analysis, we observe that grains are heavily connected and that the separation between grains does not lie within a high gradient region. A new gradient image must be used in order to separate correctly grains from one another.

We propose to produce a relief image, so that values within the centre of a grain are low, and values near the border are high. This is achieved through the use of a distance transformation. The distance transformation is an operator normally applied to binary images. The result is a grey-level image, in which the intensity inside a foreground region reflects the distance to the closest boundary from the background. In the literature, several distance transformations exist [START_REF] Meijster | A general algorithm for computing distance transforms in linear time[END_REF], depending upon which metric is used to determine the distance between pixels. The three most common metrics are chessboard, city block and the euclidean metrics.

The binary image, on which the distance transformation is applied, is extracted from the image of classes obtained previously. Each point, which is from a non-binder class, is set to 1 and binder points are set to 0. Let us denote this image f b and define it as follows, where 96
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T binder is the binder class:

f b (x) = 0 if f (x) ∈ T binder 1 otherwise (7.1)
Each point value of the distance image is the distance to the nearest binder points. The three distance transformations EDT (euclidean), M DT (city block), CDT (chessboard) are defined for a nD image as follows, where the point a is defined as the tuple of n coordinates (a 1 , . . . , a n ):

EDT (a) = min    i<n (a i -b i ) 2 , b ∈ D, f b (b) = 0    M DT (a) = min i<n |a i -b i |, b ∈ D, f b (b) = 0 CDT (a) = min max i<n |a i -b i |, b ∈ D, f b (b) = 0 (7.2)
The euclidean distance image is illustrated in fig. 7.3, as a heat map on B200. As one can observe, high values are located in the centre of grains, while low values are located at the border of grains. We proposed to use the inverse of this distance image as the gradient function for the flooding. EDT is often regarded as too computationally intensive, and CDT and M DT as approximations of the Euclidean distance. However, they do not yield the exact Euclidean distance. As shown in fig. 7.3, the exact Euclidean provides accurate maxima for the two connected grains, while the two other metrics do not always separate correctly connected grains. Efficient algorithms allow the implementation of those distances in linear time, such as in [START_REF] Meijster | A general algorithm for computing distance transforms in linear time[END_REF].

The modified gradient g : D → N is expressed as follows:

g(x) = t max if f (x) ∈ T binder t max -EDT (x) otherwise (7.3)
We have obtained a gradient image, values of which are low within the centre of a grain, and high near the border of grains. This watershed transformation is applied on this gradient from a given set of markers. From section 2.7, the image is considered as a topographic relief and is flooded upwards from the minima. Flooding from the minima results in an over-segmentation. To avoid obtaining an over-segmentation, two approaches exist.

In the first approach, markers are chosen explicitly. This method is called constrained watershed. The markers can be imposed by the user. However, for huge data such as CT-scan, it has to be done automatically. The markers can be selected from the set of minima where unfit candidates are removed until only one marker remains for each grain. This process must be adapted to each acquisition and has to be done carefully. In [START_REF] Faessel | Segmentation of 3D microtomographic images of granular materials with the stochastic watershed[END_REF], an approach by explicit markers and an automatic approach based on the stochastic watershed are proposed for the segmentation of granular materials.

In the second approach, the flooding occurs from the minima of the relief and an oversegmentation is produced. In our case, grains can have complex shapes, and there is no guarantee that a grain contains only one minimum. Elongated grains are more likely to receive multiple markers. The modified gradient will work best for convex grains, the shape of which are close to a sphere. If the minima are taken as markers, no markers exists for the binder, as all binder points have value ∞. By applying the watershed transform, we obtain a tesselation as in fig. 7.2. The over-segmentation f os is obtained by the following equation:

f os = CC(f b ∩ ws(g)) (7.4)
where CC is the connected component labeling transform and ws(g) is a mask produced from the watershed lines on g. An over-segmentation is shown in fig. 7.4. One can see that there is at least one object for each grain. However, many grains have more than one object, and are therefore oversegmented. This over-segmentation will be solved through region merging in the next section.

Two resolutions can now be observed in the previous segmentation. The lowest resolution is the voxel level. The second level corresponds to the regions. The previous fine partition generated by the over-segmentation contains all essential edges, that will be present in the final segmentation. This partition can be represented as an undirected graph. This section focuses on the higher resolution in order to transform the fine partition into the final partition of grains.

Notions of graph

A undirected graph X is a pair (N, E) composed of a set N of nodes and a set E of edges. Nodes are sets of voxels, while edges are pairs of connected nodes. The edge denoted by e p,q , links the node p and the node q in the graph X and is equivalent to e q,p . Let X be a graph, the nodes set of X is denoted by N (X) and the edges set by E(X).

A path, π, is an alternating sequence of vertices and edges which begins and ends with vertices, as such : (n 0 , e 0,1 , n 1 , e 1,2 , . . . , n k-1 , e k-1,k , n k ). In this work, it is required that each edge of a path are distinct from one another. We can now define the notion of connected graph as a graph where each pair of nodes is connected by a path.

A subgraph is a graph Y derived from X, so that N (Y ) ⊆ N (X) and E(Y ) ⊆ E(X). We write Y X. 7.1 -Comparison between the maximum connectivity of grains in the 2D case and in the 3D case for each material. One slice has been picked from the 3D volume as the image for the 2D case.

Let X be a graph and Y a subgraph of X. Y is said to be a connected component of X if Y is connected and maximal for this property. Hence, for any connected graph Y Z X, Z is necessarily equal to Y .

Edges and nodes can be weighted. We denote the weights associated to the nodes by W N and the weights associated to the edges by W E . The function η : N → W N takes the value η n on the node n. The function υ : E → W E takes the value υ p,q on the edge e p,q .

A graph from the over-segmentation

From the previous over-segmentation of eq. ( 7.4), we propose the following graph G, where each node corresponds to a region or equivalently a set of pixels of the previous segmentation, while excluding regions issued from the binder class:

n ∈ N (G) ↔ ∀x ∈ n, f (x) ∈ T binder (7.5)
An edge e p,q is added to E(G) if the following condition holds:

e p,q ∈ E(G) ↔ p = q, ∃x ∈ p, y ∈ q, x ∼ y (7.6) Table 7.1 shows the maximum connectivity for each of our acquisitions. Thus, the previously defined graph G is likely to be a disconnected graph, as regions are not necessarily joint. Not all regions are adjacent. This graph can be seen as a collection of k connected components (C i ) i<k , so that:

N (C i ) = N (G) (7.7) E(C i ) = E(G) (7.8)
A set of weights can be associated to each edge or to each node. In [START_REF] Meyer | Minimum spanning forests for Morphological segmentation[END_REF][START_REF] Meyer | Stochastic watershed hierarchies[END_REF], the proposed edge weight function is the Ultrametric distance. The ultrametric distance is defined as the maximum altitude of the path π. Among all paths between two nodes p and q, the paths with the lowest altitude are called critical paths; their altitude constitutes an metric δ pq (and not a distance as δ pq = 0 ⇒ p = q) between p and q:

δ pp = 0 -for (p, q, s) : δ ps ≤ δ pq ∨ δ qs . This last inequality is called ultrametric inequality and the metric δ pq ultrametric distance.

We propose the following weight for each edge of the graph G:

υ p,q = max(g(x) ∨ g(y) | x ∈ p, y ∈ q, x ∼ y) (7.9)
where g is the previously introduced modified gradient.

In the previous flooding, watershed lines lie within points of the highest gradient. Thus, any given path that joins one catchment basin's minimum to the adjacent catchment basin's minimum will hold its highest edge along the watershed lines. Taking the minimal values of the watershed lines that are within the intersection of two catchment basins will be equivalent to the ultrametric distance of the critical path linking the minima of the two catchment basins.

The minimum spanning tree

As previously defined, a path is required to have no repeating edges. A cycle can, therefore, be defined as a path starting and ending at the same node. An undirected graph is said to be acyclic, if it does not contain any cycle. An connected undirected acyclic graph is also referred to as a tree. An undirected graph, all connected components of which are trees, is called a forest.

A spanning tree T of an undirected connected graph G is defined as a subgraph of G, that is a tree which includes every vertex of G, with the minimum possible number of edges. For a connected graph with k nodes, any spanning tree will have k -1 edges.

A minimum spanning tree is a spanning tree, whose sum of edge weights is minimal. Many algorithms are able to compute the minimal spanning tree for a given connected graph, such as the Kruskal's algorithm [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF], which is chosen in this work. Any edge-weight undirected graph has a minimum spanning forest, which is the union of the minimum spanning trees for its connected components. In fig. 7.5, the minimal spanning trees of a connected graph are shown.

Hierarchical clustering 7.4.1 Constrained watershed using a spanning tree

From a given spanning tree, a partition can be obtained by cutting any edge. The operation of cutting an edge will produce two subtrees. Partitions can be obtained from a selected subset of nodes within N , also called markers, see [START_REF] Meyer | Minimum spanning forests for Morphological segmentation[END_REF]. Let T be a spanning tree. Let us consider two markers m 1 and m 2 , taken from the set of nodes N . As T is a spanning tree, m 1 and m 2 are connected by a single path. By cutting any edge along this path, we obtain two subtrees, and each subtree includes one of the markers. We, thus, obtain a partition of T . In order to minimize the total weight of the edges, one cuts the highest edge along this path. For a given family of i markers (m i ), a corresponding partition can be obtained. For a given pair of markers m 1 and m 2 , a unique path joins the two markers. If no other marker is present along the path joining both markers, then cutting the edge with the highest weight produces the expected separation between the two markers [START_REF] Meyer | Minimum spanning forests for Morphological segmentation[END_REF]. This can be applied to all pairs of markers until the desired partition is obtained.

A more efficient process implies applying a variant of the watershed as proposed in section 2.7 on the spanning tree. Each node is labeled. A hierarchical queue is used to process each edge of the tree starting from the set of labeled markers. At initialisation, each edge originating from a marker is added to the hierarchical queue. Edges are then processed in increasing order in regard to their weights. Each time an edge e pq is processed, the label of its origin node is propagated towards its destination node. The edges originating from the destination node are added to the hierarchical queue. If two labels meet at a given edge, this edge is to be cut. Once all edges are explored, a set of edges to cut is obtained, and the partition resulting from those cuts is the desired partition.

If the considered hierarchical queue uses an in-place sort algorithm for adding a new edge, then the complexity of this process is linear in regard to the number of edges.

The stochastic watershed

Every type of image and its corresponding application requires to use a proper definition and extraction of markers in order to generate the desired segmentation. In practice, a lot of efforts have to be devoted to the selection of appropriate markers replacing the minima of a grey level image. This step is the most difficult part of the constrained watershed-based segmentation. The stochastic watershed was first introduced in [START_REF] Angulo | Stochastic watershed segmentation[END_REF][START_REF] Angulo | Multiscale stochastic watershed for unsupervised hyperspectral image segmentation[END_REF] to bypass the need for deterministic markers. Instead of using well-defined markers generated from some criteria, random markers are used.

Let us consider a tree T . N markers are generated randomly from a continuous uniform distribution. N is chosen to be the previous estimation of the number of grains in section 5.2.2. The i th node of the tree is associated to a probability P i of being hit by a marker. The probability that no marker falls within the node i is therefore (1 -P i ) N . The node is marked if there is at least one marker hitting the i th node and the associated probability is 1 -(1 -P i ) N . Several options are available as for the value of P i . To simulate the stochastic watershed as proposed in [START_REF] Angulo | Stochastic watershed segmentation[END_REF], one can use a value based on the area of the node in the over-segmentation. Let us consider that the area associated to the node n i is A i . The sum of all areas is S = i A i . The probability that a marker hits a node is P i = Ai S . Another possible choice is to give an even value for all nodes:

P i = 1 |N (T )| .
The set of marked nodes is then used to generate a segmentation as previously described. From the segmentation, we obtain a partition, and a set of edges that are cut in order to form the partition.

This process is repeated R times. Let us define the following weight associated to each edge of the tree υ s (e) : E → Z. This weight associates to each edge the probability that this edge is cut for a random set of markers and is defined as follows:

υ s (e) = 1 R P (e is cut) (7.10)
Minimum spanning trees are computed for each connected component of the graph proposed in section 7.3.3. Then, this process is applied to each spanning tree until each edge is associated with this stochastic weight. A probability density function pdf : D → [0, 1] can be obtained by associating the weight υ s (e pq ) to each point of the watershed line of the over-segmentation located between the catchment basin p and the catchment basin q. In fig. 7.6, the steps of the construction of the probability density function is shown for R = 100.

The Hierarchy

Previously, we have associated to each node a stochastic weight. In this section, our goal is to merge nodes depending on the weight of their shared edge. The previous weight ranges from 0 to 1.

Let T be a tree. Let λ ∈ [0, 1] be the merging level. At level λ, we build a partition P λ of N (T ) using eq. (7.11).

n ∈ p, ∃e n,m ∈ E(T ), υ nm < λ ⇒ m ∈ p (7.11)
where p ⊂ P λ , n, m ∈ N (T ): At λ = 0, we obtained the following partition P 0 of N (T ):

P 0 = {{n}, n ∈ N (T )} (7.12)
By varying λ from 0 to 1, we can build a hierarchy of partitions as illustrated in fig. 7.7. By choosing an adequate value for λ, one can obtain a partition that fits the visual inspection of the data. In fig. 7.8, a lambda of 0.6 has been chosen and 5 clusters are obtained. Some methods exist to automatically determine the number of clusters, such as the elbow method [START_REF] Goutte | On clustering fMRI Time Series[END_REF], the X-means [START_REF] Pelleg | X-means: extending K-means with efficient estimation of the number of clusters[END_REF] or information criteria [START_REF] Goutte | Feature-space clustering for fMRI meta-analysis[END_REF]. 

A geometric cut of the hierarchy

In this work, we present a new cutting process based on a geometric criterion. The previous hierarchy can be seen as a binary tree. A binary tree is an oriented tree, in which each node has at most two children. Children are referred to as the left child and the right child. A binary tree can be defined as a tuple (L, R), where L and R are binary trees or the empty set.

For a given spanning tree T , we build the binary tree B with eq. (7.11). Each node of B corresponds to an element of a partition of N (T ). Let us define the function s : N (B) → P(N (T )), which associates to each node of B a subset of nodes of N (T ). Nodes of B at level λ = 0 are called leaves, have no child and are of form (∅, ∅). Leaves of B correspond to singletons of N (T ). n = (n l , n r ) is a non-leaf node of B and n l is the left child of n and n r the right child. We have the following: The root of B is the node r so that s(r) = N (T ). Thus, each node of B corresponds to a merge of two subsets of N (T ).

s(n) = s(n l ) ∪ s(n r ) (7.13)

A cut based on a criterion

A partition of N (T ) can be obtained by a top-down search or a bottom-up search of B, for a defined criterion. In a top-down search, one starts from the root of B and applies the following process to each node denoted as n = (n l , n r ):

1. If the given node n satisfies the criterion, keep s(n) in the final partition.

2. Else apply step 1 to n l and to n r .

In a bottom-up search, one starts from the leaves of B and applies the following process to each node: 1. If s(n l ) or s(n r ) satisfies the criterion and s(n) does not satisfy the criterion, then keep s(n l ) and s(n r ) in the final partition.

2. Else applies step 1 to the parent node of n.

Thus, a cut of the hierarchy can be found by applying a criterion to each merging of the binary tree. A merging at node n = (n l , n r ) of B implies that an element of s(n l ) and an element of s(n r ) share an edge in E(T ). Figure 7.9 shows that touching objects tend to be indented near their intersection. This indentation lowers the value of the distance map near the intersection. Oppositely, over-segmented objects do not feature this indentation and the value of the distance is similar to the value found in the centre of the objects. Thus, we propose a criterion based on this visual observation of the behaviour of the previously introduced Euclidean distance. We will associate new weights on the edges and on the nodes of T and propose a criterion based on those new weights. We associate to each node of T a weight which is determined by the Euclidean distance transformation of f b :

η n = max(EDT (x) | x ∈ n) (7.14)
We also propose the following weight for each edge of the graph G:

υ p,q = max(EDT (x) | x ∈ p, y ∈ q, x ∼ y) (7.15)
Let T be a tree, and n and m be nodes of T . We define the following ratio:

r nm = min(η n , η m ) υ n,m (7.16) 
Let n = (n l , n r ) be a node of B, and let a ∈ s(n l ) and b ∈ s(n r ) be two nodes of N (T ), so that ∃e a,b ∈ E(T ). We propose the following criterion:

r a,b < 1 - (7.17)
where ∈ R + , 1. Thus, the allowed indent is , and is normalised. We apply this criterion to the bottom-up search previously described. With a value of = 0, we obtain the following results on 5 small images, fig. 7.10.

Conclusion

We have proposed a segmentation process adapted to 3D images. It is based on the refinement of an over-segmentation by applying the watershed transformation on a modified gradient of the filtered image. From the hierarchy of contours, the final segmentation is created. A new geometric criterion is proposed for the cut of the hierarchy. Figure 7.11 shows the result of the segmentation on B200. Chapter 8

Fragments aggregation

Some of our acquisitions originate from damaged samples. Damage occurs when a mechanical shock is applied, causing fragmentation of the grains. The damaged structure affects the behavior of the material. Grains are commonly fragmented due to external conditions: aging, storage conditions, or even user-induced mechanical deformations. Grains are crushed into multiple fragments of different shape and volume; those fragments drift from one another in the binder phase. Evaluating the extent of fragmentation may be useful for estimating effects on the properties of the mixture.

The drift of fragments in the binder phase can not be solved solely using a method based on the barycenter distance, as e.g. in [START_REF] Gillibert | Stochastic multiscale segmentation constrained by image content[END_REF], see figure (8.1). Highly clustered fragments and complex shapes require specific methods to identify all connections.

This chapter focuses on reconstruction of grains from these fragments using scores that match the local thickness and the regularity of the interface between two objects from a given primary segmentation of the material. An affinity graph is built from those scores and optimized for a given application using a user-generated ground truth on a portion of the 3D structures. A minimum spanning tree is generated, and a hierarchical cut is performed. This process allows to reassemble drifted fragments into whole grains.

The work presented in this chapter requires a primary segmentation of the acquisition, such as the one presented in chapter 7. We suppose one fragment for every grain isolated, which effectively induces an over-segmentation, where grains are divided into multiple fragments. Then, we succesively merge pairs of fragments, whose affinity is the highest. Several approaches can be considered to create this over-segmentation. Gillibert et al. [START_REF] Gillibert | Stochastic multiscale segmentation constrained by image content[END_REF] used a multiscale stochastic watershed. The estimation of the granulometry makes it possible to select appropriates scales to perform several stochastic watersheds and to combine them to obtain a correct segmentation for each size of grains. However, this approach is tedious A morphological approach for removing cracks is to use the morphological closing combined with a volumetric opening, see [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF][START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. Small connected components are therefore removed, and fragments close in space are merged. The constrained watershed transform introduced by [START_REF] Beucher | Sur l'utilisation des lignes de partage des eaux en détection de contours[END_REF] used on the closed image can differentiate a fragmented grain from two grains merging. Markers have to be chosen to represent each grain appropriately and are an important parameter in this method. Two approaches exist. The first approach is topological and used the h-minima filter [START_REF] Soille | Morphological image analysis: principles and applications[END_REF] introduced in [START_REF] Grimaud | La géodésie numérique en morphologie mathématique. Application à la détection automatique de microcalcifications en mammographie numérique[END_REF]. The use of the h-minima with the watershed in the distance map is standard, but if the grains are highly fragmented and the fragments are scattered, the algorithm fails to reconstruct grains accurately.

The second approach is based on a method of cluster analysis, the K-means clustering, which aims to partition a set of observations into K clusters, as introduced in [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. The number of clusters can be automatically calculated from a covariance measure, as introduced in chapter 5. In [START_REF] Gillibert | 3D reconstruction and analysis of the fragmented grains in a composite material[END_REF], the K-means is used to generate the appropriate markers for the watershed transformation. The results of [START_REF] Gillibert | 3D reconstruction and analysis of the fragmented grains in a composite material[END_REF] are shown in fig. 8.2, and presented some errors due to the barycenter distance, which does not properly take into account the drift of fragments in the binder medium.

Definitions

As said previously, an initial segmentation is needed in this chapter. We assume that we have a set X of N objects as X = {X i } i<N , so that X i ⊂ D and X i ∩ X j = ∅ if i = j. This initial segmentation can be obtained as described in the previous section 7. Let f : D → {0, 1} be a binary image, where D is the definition domain. A pixel is set to 1 if it belongs to an object X i , and to 0 otherwise.

We defined previously the three distance transformation EDT , M DT and CDT so that d : D → N is the application labeling each pixel with the distance to the background pixels according to a chosen metric. Let us consider d(f ), so that each background pixel is labeled by the distance to the nearest object, as shown in fig. 8

.4(c).

A zone of influence of an object X i of X is the subset of D that are closer to X i than to any other object, and we note it zi(i). A SKIZ is defined as the boundary of all zones of influence. The SKIZ can be obtained by computing the watershed on f with X as markers and it corresponds to the resulting watershed lines. We note this set skiz(X ) and we assume the set thin and connected using some structuring element B, such as B 26 for 3D images.

We define the set T of triple points as the set of pixels that are equidistant to three or more distinct objects. We have extended the set T by including points on the border of D that are equidistant to two objects. The triple points are the extremities of a given segment of the SKIZ, and are shown in fig. 8.4(d).

Interfaces

In 2D, the skiz is a collection of segments, whereas in 3D it is a collection of surfaces. We define interfaces between X i , X j as part of the segments or surfaces along the SKIZ, that are at the intersection between X i and X j . We denote by I the set of interfaces, and I ij the interface between two distinct objects X i and X j . The distance decreases when going from triple points inwards, as shown in figure (8.5). However, this distance behaves differently when observed closer to the objects of interest. We define an iterative process to thin the skiz into a set of non-increasing segments. The process starts from the whole set of points that belong to the SKIZ:

I 0 = skiz(X ) (8.1)
At step i, the set I i is thinned from a set of points T i . T 0 is initialised as the set of triple points:

T 0 = T (8.2)
The following rules are applied until stability:

T i+1 = {a | ∃b ∈ T i , b ∼ a, d(b) > d(a)} (8.
3)

I i+1 = I i \ T i+1 (8.4)
As defined before, a zone of influence of an object X i of X is the subset of D that are closer to X i than to any other object, and we note it zi(i). Finally, we define Those interfaces are the support for building our new affinity scores. It is important to notice that those interfaces are segments in 2D, and surfaces in 3D. Figure 8.5(b) illustrates the interfaces I ij between various objects given some initial segmentation (fig. 8.4(b). We will now consider the distance mapping along the pixels of an interface and deduce various insight regarding the shape of the interface between two objects.

I ij = I ∞ ∩ zi(i) ∩ zi(j).

Weights of the interfaces

In the following part, we propose several measures to weight the interfaces. All proposed weights are w : I → R. However, it is important to notice that the range of w differs regarding the considered weight.

While the shape of interfaces differ for 2D and 3D acquisitions, the proposed weights still apply. They can be used independently, or combined. The combination of affinities is explored in section 8.3.2 and it can be adapted to a given set of acquisitions, the properties of which differ from other sets of acquisitions.

The barycenter distance

The simplest measure already used in [START_REF] Gillibert | 3D reconstruction and analysis of the fragmented grains in a composite material[END_REF] is the Euclidean distance between barycenters of two distinct objects: 2 , where X denotes the barycenter of the object labeled X in X .

w bar (I ij ) = X i -X j L

Length or area of the interfaces

Let w a (I ij ) be the Lebesgue measure of I ij :

w a (I ij ) = Mes(I ij ) (8.5)
This measure corresponds to the length of the interface in 2D or the area of the interface in 3D

Sum of the interfaces distance

Let w d (I ij ) be the sum of the distance mapping on the interface I ij :

w d (I ij ) = x∈Iij d(x) (8.6)
with d the distance mapping on f previously introduced.

Mean

Let w µ (I ij ) be the mean of the distance mapping on the interface I ij :

w µ (I ij ) = w d (I ij )/w a (I ij ) (8.7)

Variance

Let w σ 2 (I ij ) be the variance of the distance mapping on the interface I ij :

w σ 2 (I ij ) = x∈Iij d(x) 2 -w 2 µ (I ij ) (8.8)

Affinities.

Let A be a positive and symmetric matrix, with a ij ∈ (0, 1) the affinity score of X i and X j , where a value close to 1 corresponds to two closely related objects and a value close to 0 to distinct objects. All previous weights w = w a , w d , w µ , w σ 2 can be transformed to affinities. We use a Gaussian kernel for all weights that relate to a distance, where σ w is the scale of the kernel, as follows:

A = G(w, σ w ) = 1 √ 2πσ w e -w 2 2σ 2 w (8.9)
Using the previous eqs. (8.5) to (8.8), we have

A bar , A d , A a , A µ , A σ 2 .

Interface-to-surface ratio

Other affinities can be obtained from the previous weights. Below, we use an affinity based on the surface of the objects. We refer to the morphological half-gradient of the image f as G(X) = X -X B, where B is a structuring element. We define s(X) the surface of the object X as s(X) =| {x, x ∈ G(X), x ∈ X} |, where G(X) is a morphological halfgradient of X. We now define the new affinity A s as follows:

(a s ) ij = w a (I ij ) min(s(X i ), s(X j )) (8.10)
Note that w a (I ij ) can be bigger than the surface of an object, and the resulting affinity has to be bounded to (0, 1). 

Hierarchical clustering.

All those affinities can be used as such with clustering techniques. However, those affinities complement each other and we can combine K affinities as follows:

A = k<K A k λ k (8.11)
This equation presupposes that all the affinities A k have the same phsical dimension. We have proposed several affinities, whose dimensions are not consistent. w µ , w bar and w d have the dimension of length, and w σ 2 is a sum of two terms with dimension of area. w µ , w d , w bar and w √ σ 2 are consistent and an appropriate linear combination can be obtained from those weights.

We can use the linear combination with several existing clustering methods, such as K-means, spectral clustering, DBSCAN and other [START_REF] Xu | Survey of clustering algorithms[END_REF]. The inconvenience is when the number of fragments increases computational issues appear (running time, instability of convergence, memory consumption).

However, this combination of affinities can be used to form a hierarchy between fragments merging, as in section 7.3.1.

Maximum spanning tree and hierarchical cut

The previous affinity matrix A encodes a non-oriented graph. Due to the previous thinning of the SKIZ, this graph might not be connected. The missing edges are diverging all along the SKIZ and therefore of low affinities. Moreover, filtering the graph by removing edges that feature low affinity values can be done to process graphs of lower density. Each connected component can be processed afterwards independently. We propose to perform a hierarchical clustering in a similar fashion as in section 7.3.1.

In the previous chapter, a hierarchy was built by selecting edges with increasing weights. As edges code the maximal gradient value between two objects, the simulation of the constrained watershed involves selecting the lowest edges first in order to mimic the water flood on a topographic relief.

Oppositely, in this chapter, edges with high affinities are to be merged first. Low affinities edges can be removed by extracting the maximum spanning forest from this graph, see fig. 8.6. A maximal spanning tree is a tree, whose sum of edge weights is maximal, the computation of which can be achieved using Kruskal's algorithm [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF]. From this graph, a forest of maximum spanning trees can be computed. From this forest, a hierarchy is built so that edges with high affinity are merged first. Let T be a maximum spanning tree of this forest, λ ∈ [0, 1] be the merging level. At λ = 1, we obtained the following partition P 1 of N (T ):

P 1 = {{n}, n ∈ N (T )} (8.12) 
We present here a modified version of the equation eq. ( 7.11), that will favor edges with high affinities over edges with low affinities:

Let

p ⊂ P λ , n, m ∈ N (T ): n ∈ p, ∃υ nm ∈ E(T ), υ nm > λ ⇒ m ∈ p (8.13) 
By varying λ from 1 to 0, we produce a hierarchy of partitions as illustrated in the figure (8.7).

Cutting the hierarchy depends on the material that is considered. MAT1 is a homogeneous composite with one size of grains. Therefore, the criterion that we used to cut the hierarchy is volumetric. The covariance analysis of the raw data can give us an estimate of the mean size µ of the grains, see section 6.2. We have associated with each cluster n the sum w(n) of the volumes of the individual objects composing the former. The final partition is obtained by a top-down search on the hierarchy. Cutting the hierarchy can be achieved by the following steps of algorithm 1.

Thus, the estimation of grains size is used to cut this hierarchy and produce the final result, as shown in fig. 8.7(c). In the next section, we optimized the linear combination by minimizing a score between the resulting segmentation and a ground truth.

Optimizing the affinity

In the previous section, we have seen that, given an affinity, a partition can be obtained by a hierarchical cut. The choice of the affinity is crucial to obtain the desired result. One can see that a single affinity, such as the barycenter distance, is not enough to reassemble the fragments, see (fig. 8.1). The K-means algorithm is based on the barycenter distance and is not able to reassemble fragments that have drifted far away from their original positions. The size distribution of fragments is wide, the drift between similar fragments can be too large to be caught by the naive border-to-border distance as illustrated. We assume that a combination of affinities is the key to obtain better results.

Thus, we choose as affinity a linear combination of the four affinities A bar , A µ , A σ 2 and A s . We optimize the weights using a user-provided ground truth (GT) on one or more 2D slices of the 3D image.

We construct a bivariate histogram H from the labels of GT and from the labels obtained by hierarchical clustering extracted from the same slices. H = [h ij ] is an M × N sparse matrix where M is the number of detected objects and N the number of objects in the GT. In fig. 8.8, the bivariate histogram is constructed from a ground truth of MAT1 and its segmentation with hierarchical clustering.

From H, we compute the F 1 score of the segmentation in the following way: A sum of a line i = const, P (i) = j h ij , is the detection rate of label i. The index l = arg max j h ij , is the label corresponding to i in GT. We now compute the true positive T P (i) = h il , the false positive

F P (i) = i h ij -h il .
The sensitivity and the positive predictive value for every i is:

Sens(i) = T P (i) P (i) and P P V (i) = T P (i) T P (i)+F P (i) .
A F 1 score is computed for every detected object, with H the harmonic mean: F 1 (i) = H(Sens(i), P P V (i)). The overall F 1 score of the result is the harmonic mean of all scores:

F 1 = H(F 1 (i)), 1 ≤ i ≤ M .
Other global scores could be consider, such the Jaccard index. However, F 1 puts more weight on outliers. The vector (λ k ) in equation 8.11 is then determined by minimizing 1 -F 1 . The minimization method is a modification of Powell's method [START_REF] Powel | An efficient method for finding the minimum of a function of several variables without calculating derivatives[END_REF], [115]. It performs sequential one-dimensional minimizations along each vector of the directions set. 

Labeling

Connected Component Labeling (CCL) is one of the most fundamental operations in image processing. We have defined connected components in section 2.6. CCL is a procedure for assigning a unique label to each connected components. In this work, it is used to identify uniquely each marker used for the segmentation in part III and is a mandatory step between low-level image processing of part II and the high-level image processing of part III.

Due to its importance in vision, CCL has a long history of research efforts. The first algorithms were proposed more than 50 years ago. The CCL algorithms applied to image processing can be grouped into three categories, based on the methodology adopted for the scan over the image:

-Two-scan [START_REF] Rosenfeld | Sequential operations in digital picture processing[END_REF]74,[START_REF] Schwartz | An efficient algorithm for finding connected components in a binary image[END_REF][START_REF] Samet | An improved approach to connected component labeling of images[END_REF][START_REF] Fiorio | Two linear time union-find strategies for image processing[END_REF][START_REF] Wu | Optimizing conected component labeling algorithms[END_REF][START_REF] He | A linear time two-scan labeling algorithm[END_REF][START_REF] He | A run-based two-scan labeling algorithm[END_REF][START_REF] He | Fast connected-components labeling[END_REF]: A first raster scan of the image is made producing redundant labels. Redundancies are stored in an equivalence table and solved so that all redundant set of labels are linked to one final label. A final scan updates the labels produced by the first scan, exploiting the solved equivalence table. -Multi-scan [50,[START_REF] Suzuki | Linear-time connected component labeling based on sequential local operations[END_REF][START_REF] Wu | Optimizing conected component labeling algorithms[END_REF]: The equivalence table in two-scan algorithms requires a significant amount of memory. To tackle these limitations, multi-scan algorithms were proposed as an alternative. By iteratively performing forward and backward raster scan passes, the equivalence are solved without the use of an equivalence table. -Contour Tracing (CT) [26,[START_REF] Morrin | Chain-link copression of arbitrary black-white images[END_REF]22,[START_REF] Kruse | A fast algorithm for segmentation of connected components in binary images[END_REF]29,23]: Those approaches exploit the inner contour of the objects and require only one scan of the input image to produce the final labelled image. [47] offers a complete review of the history of the different approaches from the Rosenfeld's algorithm [START_REF] Rosenfeld | Sequential operations in digital picture processing[END_REF] up until the He's algorithm [START_REF] He | Fast connected-components labeling[END_REF]. In fig. 9.1, timelines from [47] are shown, along with an updated timeline with the most recent papers.

In [START_REF] Rosenfeld | Sequential operations in digital picture processing[END_REF], Rosenfeld introduced the first algorithm for image labeling. It is the most classic approach to CCL and modern approaches are based on the same sequences of scans. Two scans are performed. The first scan produces an output image containing temporary labels. At the end of this step, connected components can have multiple labels. However, redundancies are detected during the first scan, when two labels meets in the neighbourhood of a pixel. Those redundancies are stored in an equivalence table. At the end of the first scan, this equivalence table is repeatedly processed using a sorting algorithm and redundant entries are removed. A final scan corrects the labels through the solved equivalence table.

In [START_REF] Samet | An improved approach to connected component labeling of images[END_REF], this equivalence resolution of redundant labels was, for the first time, linked to the notion of disjoint-set. The Union-Find algorithm [START_REF] Tarjan | Data Structures and Network Algorithms[END_REF] allows the equivalence to be solved in a quasi linear time and most modern CCL approaches involve the Union-Find operation. The main benefit of the Union-Find approach is the resolution of a redundancy when it is first encountered during the first scan. Thus, it is guaranteed, that at each step of the first scan, the equivalence table is up to date. Improvements of the processing of the equivalence table was also made, such as path compression in [START_REF] Meijster | A disjoint set algorithm for the watershed transform[END_REF], which has been used later on for CCL in [START_REF] Wu | Optimizing conected component labeling algorithms[END_REF].

However, each operation of Union or Find of this algorithm is costly. Most modern approaches have one goal, reducing to its strict minimum the number of Union and Find operations. In [START_REF] Wu | Optimizing conected component labeling algorithms[END_REF], a new type of algorithm was first proposed by the following observation: among all the neighbours of an 8-connex neighbourhood, often only one of them is sufficient to determine the label of the current pixel. This observation leaded to the specification of an algorithm based on decision trees.

As the time of writing of this document, the algorithm presented in [47] represents the state-of-the-art for connected components analysis. It is a two-scan algorithm based on the work of [START_REF] He | Fast connected-components labeling[END_REF]. In [47], a block-based approach on a two-scan CCL is proposed, which drastically reduces the number of comparisons. The raster-scan labeling is performed in a block-wise manner. Unfortunately, no extension to 3D has been proposed and this approach is limited to 2D labeling for 8-connected connected components.

In [45], a prediction based algorithm is proposed, which minimised the number of memory accesses, by exploiting the information provided by already seen pixels, removing the need to check them again. The scan of the entire image is no longer performed with a decision tree but with a forest of decision trees connected into a single graph.

In this chapter we present a two-scan CCL algorithm following the work of [47]. We will present an algorithm that minimises Union and Find operations by combining the approach of [45] based on a forest of decision trees and the Block-based Decision Trees (BBDT) [47]. This work can be generalised to other connectivities, including 3D connexities such as B 6 and B 26 . The implementation and results were possible thanks to [START_REF] Grana | YACCLAB -Yet Another Connected Components Labeling Benchmark[END_REF]. [START_REF] Grana | YACCLAB -Yet Another Connected Components Labeling Benchmark[END_REF] is an open source project which runs and tests on several image databases the following CCL algorithms [START_REF] Chang | A linear-time component-labeling algorithm using contour tracing technique[END_REF]25,[START_REF] Stefano | A simple and efficient connected components labeling algorithm[END_REF]47,69,[START_REF] Wu | Optimizing 2-pass connected components labeling algorithms[END_REF][START_REF] He | Configuration-transition-based connectedcomponent labeling[END_REF][START_REF] Zhao | Stripe-based connected components labeling with pixel prediction[END_REF]45] In [START_REF] Grana | YACCLAB -Yet Another Connected Components Labeling Benchmark[END_REF], benchmarks were realised on the most recent algorithms and BBDT behaves better than all other algorithms on a Complex Intruction Set Computing (CISC) architecture, see table 9.1. 

Two-scan connected components labeling

Notions and notations of neighbourhood and connexities are introduced in chapter 2. Labeling algorithms are applied to binary images. Meaningful regions, previously denoted as X , are called foreground, while X is usually referenced as the background. In a binary image, foreground points are usually set to 1, while background points are set to 0.

The goal of every labeling algorithm is to produce the function l, a mapping of each pixel to a label. In this work, the set of labels is

L = [1, N ], where N ∈ N + . l : D → L (9.1)
The label 0 denotes background points, while each connect component is given a unique label, a positive non-zero integer so that ∀x,

f (x) = 1 → l(x) ∈ L.
The three steps of the two-scan approach are: -First raster scan to assign temporary labels while updating the equivalence table.

-Resolution of Equivalences.

-Second raster scan to produce final labels through the solved equivalence table. Two-scan algorithms start with l(x) ← 0, ∀x. The first scan is performed in a raster scan. At each point x of the image f , the neighbourhood of x is searched. If only one label is found, this label is passed on to x. If multiple labels are found, only one label is passed on, while all found labels are marked as equivalent in the equivalence table. If no labels are found, a new label is created. Formally, if two points a and b are connected, their labels are equivalent:

a ∼ b ⇔ l(a) ≡ l(b) (9.2) 
During this first scan, only the already processed points have potentially been assigned a label. This observation allows to reduce the number of points to read. Only the already processed neighbours are kept in a scan mask (in raster scan). Several masks are proposed for each connectivity in fig. 9.2. Each point of this mask has been indexed in alphabetic order, while the index x indicates the central point. Recent developments focus on 8-connex. Examples in this work are given for B 8 but can be generalised for all usual connexities.

Let l i , l j be elements of L. We can define the equivalence class of the label l i as the application p : L → P(L), where P(L) is the powerset of L. The following propositions are imposed on p:

1. p is reflexive and never empty: l i ∈ p(l i ).

p is symmetric :

l j ∈ p(l i ) → l i ∈ p(l j )
The equivalence table can be defined as a set of equivalence classes of the set of labels. For each label l i , a corresponding set of labels p(l i ) is assigned in the equivalence table. Thus, the equivalence table is used to keep track of all equivalent labels. At the beginning of the first scan, the equivalence table p is:

∀i ∈ L, p(l i ) = {l i } (9.3) 
Every time multiple labels are encountered in the neighbourhood of a pixel, the equivalences are stored in an equivalence table. If l i , l j are determined as equivalent (eq. (9.2)) during the first raster scan, l i is added to p(l j ) and l i is added to p(l j ), so that:

l i ≡ l j ⇔ l i ∈ p(l j ), l j ∈ p(l i ) (9.4) 
In the second step, all the provisional labels are aggregated into a disjoint set, or disjoint equivalence classes. As soon as an unprocessed equivalence is found, a merging between classes is needed, that is some operation which allows marking of all involved labels as equivalent. This corresponds to the disjoint set union problem and it has been widely studied 9. Labeling during the past decades [START_REF] Galil | Data structures and algorithms for disjoint set union problems[END_REF]. The problem consists of maintaining a collection of disjoint sets under the operation of union. More precisely, the problem is to perform a sequence of operations of the following two kinds on disjoint sets:

-Union (A, B): Combine the two sets A and B into a new set.

-Find (x): Return the name of the unique set containing the element x. Efficient algorithms to compute Union-Find are Suzuki [START_REF] Suzuki | Linear-time connected component labeling based on sequential local operations[END_REF], REM [START_REF] Patwary | Experiments on union-find algorithms for the disjoint-set data structure[END_REF]. Modern algorithms derive from historical ones. REM is shown to have better overall behaviour [START_REF] Patwary | Experiments on union-find algorithms for the disjoint-set data structure[END_REF].

A class proxy p is chosen for each equivalent class, usually chosen to be the lowest equivalent label, such as:

∀i ∈ L, p(l i ) = min p(l i ) (9.5) 
The third step is a second raster scan over the image and points are assigned the proxy label p of its equivalent class. Figure 9.3 shows the detailed execution of the two-scan approach on a simple image.

Decision tables

The problem of assigning a value to a point, given its neighbours' values, can be seen as a deterministic finite automaton. Given a set of inputs, an action is given. The first raster scan can be decomposed into a sequence of commands and a set of actions. Each point in the scan mask corresponds to a token of a command. The value of each token is either 0 if the corresponding neighbour belongs to the background or 1 if it belongs to the foreground.

Let us consider the simple 8-connected mask from fig. 9.2(f). However, the following method is straightforward generalisable to any other connectivity. Given the value of f (x), f (a), f (b), f (c), f (d), the command is the vector as follows:

c = {f (x), f (a), f (b), f (c), f (d)} (9.6) 
We denote by C, the set of all possible commands. To simplify the notation, we denote by {10101} a command, where f (x) = 1, f (a) = 0, f (b) = 1, f (c) = 0 and f (d) = 1. For each command, an action is given. The possible actions are:

A = {∅, NL, a, b, M (a, b), c, M (a, c), M (b, c), M (a, b, c), d, M (a, d), M (b, d), M (a, b, d), M (c, d), M (a, c, d), M (b, c, d), M (a, b, c, d)} (9.7)
The action None (written ∅ for short) corresponds to "l(x) ← 0". Thus, x is a background pixel. If x is a foreground point, different types of actions can be performed. A new label is attributed to x if no labels are in its neighbourhood. This corresponds to the action New label (written NL). An action with a single index, such as a, corresponds to the action "l(x) ← l(a)". n labels can be marked as equivalent through the operation merge, M (l 1 , . . . , l n ). After merging equivalent sets, one of the labels is assigned to x. The operation of merging involves updating the equivalence table, and its corresponds to the operation, the number of executions of which we wish to minimise.

To the values 0 and 1 associated to each token of a command, we addas "don't care". The symbol "-", or "don't care" term indicates that the given point of the mask does not need to be assessed for the corresponding action to be executed. For example, if x is 0, the command {0 ----} is associated with the action ∅, as no other points of the mask needs to be verified. The straightforward decision table than one can build from this set of commands and actions is the decision table of table 9.2. This table results from the direct application of the process described in section 9.1. This detailed decision tree is equivalent to testing every point of the scan mask and applying the corresponding action.

(b) l(x) ← 1 x a b c d (c) l(x) ← 2 x a b c d (d) l(x) ← 1 x a b c d (e) l(x) ← 2 x a b c d (f) l(x) ← 1 x a b c d (g) l(x) ← 1, p(1) = {1, 2}, p(2) = {2, 1} ( 

Table 9.2 -A detailed decision table

Commands Actions

x a b c d ∅ NL a b M (a, b) c M (a, c) M (b, c) M (a, b, c) d M (a, d) M (b, d) M (a, b, d) M (c, d) M (a, c, d) M (b, c, d) M (a, b, c, d) 0 - - - - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Binary decision trees

Considering the simple 8-connected mask of fig. 9.2(f), the following observation is made. At a given point x, if two neighbours of x are adjacent, then, in a previous step, one of them was a central point and the other was in the neighbours mask of the latter. Thus, the label from one was inherited to the other, or both labels were marked as equivalent.

Consequently, the labels of adjacent neighbours are already equivalent or equal. Oppositely, if two points of the neighbourhood mask are not connected within this mask, then a value of 1 for x will create a "bridge" that connects those two points. In this case, the equivalence table has to be updated.

The connectivity between elements of the mask can be used to reduce the number of neighbours assessed. Considering the mask of fig. 9.2(f), if the neighbour a is a foreground pixel, there is no need to examine the value of b or d, because a ∼ b, a ∼ d, l(a) ≡ l(b) and l(a) ≡ l(d). However, the value of c still needs to be assessed, as a and c are not connected, but x is the "bridge" between the two points : a ∼ x ∼ c. Moreover, b is connected to every point of the mask. If b is a foreground pixel, then x takes immediately the label of b without any further evaluation.

Thus, there is an optimal scan of the reading mask to perform fewer examinations. Several optimal decision trees exist for a given mask. tree, as proposed in [START_REF] Wu | Optimizing conected component labeling algorithms[END_REF].

This tree is explored on each pixel of f . Each node corresponds to a point in the mask, while each edge associates a value to the parent node. Leaves correspond to actions to be performed. A given path from the root of the tree to one of its leaf gives a series of conditions to test and a corresponding action. One can already observe that on each given path, not every variable is assessed. For example, if the value of x is 0, there is no need to explore the mask, as the label of x is the label of the background.

The following decision table of table 9.3 can be deduced by exploring every path from the root and listing every command associated with its corresponding leaf action. One can already see that the number of commands and actions is smaller than of the table 9.2. In the next section, our goal is to simplify the detailed table of table 9.3 until one of the possible optimal decision tables. Then, a decision tree will be built upon the reduced decision table. 
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Equivalent commands

The previous observation was that if two points are already connected in the mask, there is no need to merge their labels in the equivalence table. Therefore, merging M (l(n 1 ), l(n 2 )) between label l(n 1 ) and l(n 2 ), so that n 1 ∼ n 2 , can be replaced by two equivalent actions: assign l(n 1 ) or l(n 2 ). The need to update the equivalence table is removed.

The neighbours have values either of 0 or 1 and define the command. The connected components can be computed from the set of neighbours. If only one connected component is found, then the merging action associated to this command can be replaced by the assignment of any label of the foreground points of the neighbours' set. If n connected components are found, then merging any points picked from each connected components of the neighbours' set are equivalent.

Let us consider the command {11011} and the associated action M (a, c, d), in table 9.2. The points a and d are connected, a ∼ d. The set of neighbours can be decomposed into two connected components : C 1 = {a, d} and C 2 = {c}. The mergers between any point of C 1 and any point of C 2 are equivalent:

M (a, c, d) ≡ M (a, c) M (a, c, d) ≡ M (c, d) (9.8)
By applying those simplifications to each action, we obtain the table 9.4.

Table 9.4 -Each complex action has been decomposed into its equivalent simpler actions. Cases in red have been set to 0 and are no longer performed, while cases in green are set to 1 and are performed instead.

Commands Actions 
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In table 9.4, several columns are now fully filled with 0. The corresponding actions are no longer performed and the columns can be removed. We obtained the decision table of 9. Labeling pairs deriving from c k+1 by flipping the value of a token to "0" or to "1". For example, the set of pairs of {101 --} is {{1010-}, {1011-}} and {{101 -0}, {101 -1}}.

We associate with each command a gain g, which is a natural value representing the amount of compression that this command achieves. In every c 0 , no compression has been achieved and, therefore, the gain is 0. The gain associated to a c k+1 command with k tokens set tois computed with the gains of the set of pairs P of c k that the c k+1 is derived from. If the two commands share an action, then this action can be performed regardless of the state of the token, that is not common to both. If no action is shared, then no gain is achieved by combining both commands. Thus the gain of combining a pair of commands is given by the sum of the individual gains plus the number of actions in common. The gain of a given command is the maximum of the gain obtained by combining the pairs of command, from which it is derived:

g(c k+1 ) = max c k ,c k ∈P g(c k ) + g(c k )+ | a(c k ) ∩ a(c k ) | (9.10)
where the operator | . | is the cardinal of a set and a(c k ) is the action set associated to the command c k . The action set of c k+1 is given by:

a(c k+1 ) = c k ,c k ∈P a(c k ) ∩ a(c k ) (9.11)
Consider {1 -100} for the mask fig. 9.2(f). By setting the "don't care" token (corresponding to a in the mask) to "0" or "1", we obtain the pair {10100} and {11100}. Those two last commands are bounded to the same action "Assign b". We set the gain: g{1 -100} ← 1 and associate the action "Assign b": a({1 -100}) ← {b}.

Consider {1-1-0}, its next pairs configurations are:

P = {{{1-100}, {1-110}}, {{101- 0}, {111 -0}}} g({1 -1 -0}) = max(g({1 -100}) + g({1 -110}) + | a({1 -100}) ∩ a({1 -110}) | , g({101 -0}) + g({111 -0}) + | a({101 -0}) ∩ a({111 -0}) | ) = max(3, 3) = 3 a({1 -1 -0}) = a({1 -100}) ∩ a({1 -110})∩ a({101 -0}) ∩ a({111 -0}) = b
We have now proposed a method to compute the gain of the set of commands c k+1 from the set of command c k . Starting with k = 0, we compute the gains and the actions set of all commands c 1 , using eqs. (9.10) and (9.11). By incrementing k and applying eqs. (9.10) and (9.11), we obtain the gain and the actions set of all possible commands.

At the end of this process, we have obtained a gain and an actions set for the command {-----}. In most case, the actions set of this command is the empty set.

We now present the process that allows to build a decision tree from an OR-table. Starting from {-----}, we choose the next two commands c 4 derived from {-----} that give the highest gain. It is {0 ----} and {1 ----}, which corresponds to testing the pixel x. The first node is therefore x, see fig. 9.5(a).

A leaf is reached in the decision tree, when the considered command has a non-empty actions set. As {0 ----} is associated with the command ∅, a leaf is reached. As for {1 ----}, the next pair of commands derived from {1 ----} that gives the highest gain are {1 -0 --} and {1 -1 --}, which corresponds to testing the pixel b, see fig. 9.5(b). We add the node b to the decision tree. {1 -1 --} is associated with the action assign the label of b, a leaf is reached.

The highest gain pair derived from {1 -0 --} is {100 --} and {110 --}, which corresponds to testing the pixel a, see fig. 9.5(c). This process is repeated until every path of the decision tree is ended with a leaf, see fig. 9.5(d). Figure 9.5 shows each successive step of the construction of the decision tree.

The total gain of this tree is given by g({-----}). Out of the initial 32 commands, the gain is 24. 32 -24 = 8 gives the total number of remaining commands of the generated tree.

Block-based approach

The previous two-scan technique is versatile and allows us to enlarge our neighbourhood exploration window, with the aim to further speed up the connected components labeling process. As in [47], the following two observations are made in 8-connectivity:

-The pixels of a 2 × 2 square are fully connected.

-A 2 × 2 square is the largest set of pixels in which this property holds. Those observations imply that all foreground pixels in a 2 × 2 square share the same label at the end of the first scan.

Grana [47] applied the following method to the mask illustrated in fig. 9.6(a), which allows to process 12 neighbours and 4 pixels at a time. We propose the mask illustrated in fig. 9.6(b), which allows us to process 6 neighbours and 4 pixels at a time. This last mask has the minimum information necessary for the algorithm to hold the correct result. Hence, less read/write operations are necessary from distant pixels. However, Grama mask might be able to exploit more complex situations, and a Union/Find operation can be avoided for such situations. However, we suppose that those situations are a rare event and that this added complexity might slow down the overall process.

Similar observations can be made for B 4 , B hex , B 6 and B 26 . For B 4 and B 6 (in 3D), segments of size 2 are fully connected. For B 26 , cubes of 2 × 2 × 2 are fully connected (8 points labeled at once).

Finally, for B hex , triangles of size 1 are fully connected, see fig. 9.7. Two types of triangles are observed in a hexagonal grid: triangles with the horizontal base facing up and triangles with the horizontal base facing down. However, a block-label can be performed by alternating the two masks illustrated in fig. 9.7.

In this section, we consider masks with more than one central point. The mask can be separated into two sets: the central points and the set of neighbours. In any case, we only consider masks, where the set of central points are fully connected. Therefore, they all inherit the same label. This is not the case for the set of neighbours, as they are never fully connected. Moreover, in more complex masks, such as in fig. 9.6, points from the neighbours set can be disconnected from the set of central points. In this case, only neighbours connected to the set of central points are considered. By considering only the neighbours connected to the set of central points, labels can be passed onto the set of central points and central points can effectively become bridges, though requiring a merging operation.

The same process of section 9.1 can be used, while applying this restriction to the neighbours' set. This process can be extended to any mask. The mask in fig. 9.6(a) proposed by Grana in [47] gives a total gain of 65325 from 65526 initial commands. The total remaining commands are 211. Our mask proposed in fig. 9.6(b) has a total gain of 971 from 1024 initial commands. Only 53 commands remain.

An AND-table from an OR-table

We have obtained a table with multiple actions associated to a given command. This table is called an OR-table. Among equivalent actions, Grana [47] chooses the most frequent one to produce an AND-table. Thus, in an AND-table, each command is associated to only one action. While, an optimal decision tree can be produced from an AND-table [START_REF] Schumacher | The synthetic approach to decision table conversion[END_REF], the AND-table does not always select the optimal action for each command. Thus, in this work, we were able to observe this defect only for more complex masks, such as fig. 9.6(b).

To produce an AND-table, [47] makes the following assumption. The more commands share the execution of the same action, the more likely those commands can be expressed 9. Labeling into one command, where some tokens are fused by the value "don't care". Thus, the following greedy approach is proposed in [47]. The number of occurrences of each action is counted. Iteratively the most common one is selected, and for each command where this action is present, all the other actions are removed, until no more changes are required. Table 9.6 -Only the most frequent actions are kept (green), to produce an AND-table from an OR-table. the red cases are actions that are no longer associated to a command.
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The following table 9.6 is the result of this greedy process on table 9.5 and only one action has been kept for each row. This would effectively lower the number of commands in the resulting decision table. Despite giving an optimal AND-table for table 9.6, it does not lead to the optimal decision table for every considered mask.

This can be illustrated in fig. 9.9, using the mask that we proposed in fig. 9.6(b). The commands {1100101000} and {1100101100} can be compressed with the OR-table into {1100101 -00} with the action M (a, c). However, this compression is no longer possible with the AND-table as the action M (a, c) has been removed from the command {1100101100}, because M (a, d) was the most frequent of the two.

Fortunately, the transformation of an OR-table into an AND-table is not needed in order to obtain an optimal decision tree, as shown in section 9.5.

Decision forest

From [45], the following observation is made. Between two steps of the raster scan, an overlap exists. A number of points are shared between the mask at a given point x and the mask translated to x + 1. 9.9 -The first table (a) features two commands associated to the action M (a, c) and M (a, d). The second table (b) is the AND-table obtained by the greedy procedure of [47]. In (a), those two commands have only one token of difference and can be compressed into {1100101 -00} with the action {M (a, c)}. However, this compression is no longer possible after applying the greedy compression, as in (b).

Commands

Actions If a, b, e, f are known, only 6 pixels remain to be tested. From a given leaf of the decision tree, the set of assessed points during a scan can be traced back up to the root of the tree, see fig. 9.11. Each branch gives us the value of the node, when this path has been explored. Thus, the path gives us a command. In fig. 9.11, this command is {-00 -1}.
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We generate a new decision tree, whose root is the following command {-00 -1-}, see fig. 9.12. A new decision tree emerges from this root and it is much simpler than the previous decision tree, with only 2 nodes and 3 actions.

In a similar fashion, we generate all decision trees when reaching a leaf of the tree from {-----}. From those new trees, we generate all subsequent trees. We effectively obtain a forest of trees, all linked through the leaves. For the proposed mask of fig. 9.6(b), we obtained the forest of table 9.7.

Moreover, we observe that, in the subsequent trees, the decision tree with root {----------} is never called. On a given image, the borders of the image impose that some or every neighbour in a mask are set to 0. In a 2D image, two different starting commands are possible for the mask of fig. 9.2(f) : {-0000}, {-0 --0}. The same observation is made for every other mask, resulting in different starting commands. In our mask proposed in fig. 9.6(b), the following starting commands are illustrated in fig. 9.13. We can perform a loop unrolling optimisation and generate forests for the 3 different starting commands.

We obtain the following forests for our proposed mask: -6 trees for the first row with a maximum of 9 leaves.

-11 trees for the middle rows with a maximum of 43 leaves.

-9 trees for the last row with a maximum of 17 leaves. 9. Labeling noise with 9 different foreground densities (10% up to 90%), from a low resolution of 32×32 pixels to a maximum resolution of 4096 × 4096 pixels, allowing to test the scalability and the effectiveness of different approaches when the number of labels get high. For every combination of size and density, 10 images are provided for a total of 720 images. The resulting dataset allows to evaluate performance both in terms of scalability on the number of pixels and on the number of labels (density). MIRflickr: Otsu-binarized version of the MIRflickr dataset, publicly available under a Creative Commons License. It contains 25000 standard resolution images taken from Flickr. These images have an average resolution of 0.17 megapixels, there are few connected components (495 on average) and they are generally composed of not too complex patterns, so the labeling is quite easy and fast.

Hamlet: A set of 104 images scanned from a version of the Hamlet found on Project Gutenberg. Images have an average number of 2.71 million of pixels to analyse and 1447 components to label, with an average foreground density of 0.0789. Tobacco800: A set of 1290 document images. It is a realistic database for document image analysis research as these documents were collected and scanned using a wide variety of equipment over time. Resolutions of documents in Tobacco800 vary significantly from 150 to 300 DPI and the dimensions of images range from 1200 by 1600 to 2500 by 3500 pixels. Since CCL is one of the initial preprocessing steps in most layout analysis or OCR algorithms, hamlet and tobacco800 allow to test the algorithm performance in such scenarios.

3DPeS: It comes from 3DPeS (3D People Surveillance Dataset), a surveillance dataset designed mainly for people identification in multi-camera systems with non-overlapped fields of view. The background models for all cameras are provided, so a very basic technique of motion segmentation has been applied to generate the foreground binary masks, i.e., background subtraction and fixed thresholding. The analysis of the foregorund masks to remove small connected components and for nearest neighbour matching is a common application for CCL.

Medical: This dataset is composed by histological images and allow us to cover this fundamental medical field. The dataset is a collection of 343 binary histological images with an average number of 1.21 million of pixels to analyse and 484 components to label.

Several methods are used for benchmarks in the following results. NULL defines a lower bound limit for the CCL algorithms. It does not provides the correct connected component for a given image. It only checks the pixels of that image and sets almost randomly the value of the output. We refer to a two-scan, applied with our proposed mask in fig. 9.6(b) as BBDT. We refer to the method presented in [47] as BBDT. SAUF, DiStefano, CT, CCIT, LSL, CTB, SBLA, PRED refers respectively to the algorithms of [START_REF] Wu | Optimizing 2-pass connected components labeling algorithms[END_REF][START_REF] Stefano | A simple and efficient connected components labeling algorithm[END_REF][START_REF] Chang | A linear-time component-labeling algorithm using contour tracing technique[END_REF]25,69,[START_REF] He | Configuration-transition-based connectedcomponent labeling[END_REF][START_REF] Zhao | Stripe-based connected components labeling with pixel prediction[END_REF]45]. We refer to CHBDT to our method based on forests of decision trees.

The mask proposed by Grana in [47] gives a total gain of 65325 from 65526 initial commands. The total remaining commands are 211. Our mask proposed in fig. 9.6(b) has a total gain of 971 from 1024 initial commands. Only 53 commands remain. Despite this relatively low number of commands, our mask is equivalent to the Grana mask. This mask provides correct results and the number of memory accesses is given in table 9.8. A similar number of memory accesses has been found for both masks.

Time measurements are overall better for the proposed approach. No pre-fetching of the data as in BBDT. This method behaves better on bigger images. Finally, it is generalisable to other connexities. 

Watershed

The watershed transform is a powerful tool for morphological segmentation. Most common implementations of this method involve a strict hierarchy on gray tones in processing the pixels composing an image. This hierarchical dependency complexifies the efficient use of modern computational architectures. This chapter introduces a new way of computing the watershed transform that alleviates the sequential nature of hierarchical queue propagation. It is shown that this method can directly relate to the hierarchical flooding, as defined in section 2.7. Simultaneous and disorderly growth can now be used to maximize performances on modern architectures. Higher speed is reached, bigger data volume can be processed. Experimental results show increased performances regarding execution speed and memory consumption.

The watershed transform is a standard tool for morphological segmentation. It is based on region growth and edge detection in most cases applied to a gradient of the original image. One definition reflects the water flood on a topographic relief. This definition creates thin watershed lines and is chosen for the most common algorithms. Considering the topographic surface as perforated at the location of regional minima, it is immersed in water, so that the water rises from those holes and creates lakes. Those different lakes, each originating from a different minimum, are not allowed to mix. Their intersections will form dams. The set of all dams is called the watershed lines and represents the desired contours.

Most algorithms replicate this principle by processing pixels regarding a global, strict hierarchical order implemented using a specific type of queue: a hierarchical queue. This queue-driven propagation is sequential and only efficient for uniprocessors. The current limitation of the clock rate limited by physical constraints brought the need for multiprocessor architectures and adaptation of usual methods to the new specifications. The hierarchical queue principle is challenging to optimize for modern architectures and does not allow to meet the speed required by the ever-growing amount of data to be processed. This limitation motivates the work presented in this chapter.

State-of-the-art

The notion of watershed was first introduced in [START_REF] Beucher | Sur l'utilisation des lignes de partage des eaux en détection de contours[END_REF] and its computation involves an iterative process of successive thresholding at increasing heights. An algorithm based on a hierarchical queue was introduced in [START_REF] Meyer | Un algorithme optimal de ligne de partage des eaux[END_REF] and is considered in many aspects as optimal. The hierarchical queue is used to process pixels in increasing order. A rigorous definition of the watershed was given during the first workshop of mathematical morphology in 1993 [START_REF] Meyer | Integrals, gradients and watershed lines[END_REF][START_REF] Najman | Definition and some properties of the watershed of a continuous function[END_REF] and the topographic distance was introduced to unify the watershed line and the SKIZ transform independently in [START_REF] Meyer | Topographic distance and watershed lines[END_REF][START_REF] Najman | Definition and some properties of the watershed of a continuous function[END_REF]. The watershed was shown to be equivalent to the SKIZ of the topographic distance and the hierarchical queue implements this definition.

In a digital grid, complications appear and lead to different approaches. One can be interested in creating a tessellation, where each tile contains pixels that are closer to a seed than any other. Ambiguity appears when a pixel is equidistant to two different seeds. On the other hand, one can be interested in a thin contiguous line that defines a set of points equidistant from two distinct seeds. Two pixels can exist, so that the first is closer to a seed and the second to another without a third pixel in between. Those two approaches require an arbitrary choice for assigning such pixels to one seed or a watershed line living on both edges and nodes, as produced by the proposed method.

A review on watershed algorithms is made in [START_REF] Roerdink | The Watershed transform: definitions, algorithms and parallelization strategies[END_REF]. [START_REF] Cousty | Watershed cuts: minimum spanning forests and the drop of water principle[END_REF] defined the watershed cuts on edge-weighted graphs using minimum spanning forest. In [START_REF] Beucher | Algorithmes sans biais de ligne de partage des eaux[END_REF], a different approach is considered that removes the bias introduced by the arbitrary queueing order of points in a hierarchical queue. Another criterion has been proposed in [START_REF] Meyer | A watershed algorithm progressively unveiling its optimality[END_REF], in which it is shown that the hierarchical queue implements an infinite lexicographic distance. This last criterion minimized the number of arbitrary choices in order to build a partition.

Many parallel implementations have been introduced (see [START_REF] Roerdink | The Watershed transform: definitions, algorithms and parallelization strategies[END_REF], [START_REF] Dejnozkova | A parallel algorithm for solving the Eikonal equation[END_REF], [START_REF] Dejnozkova | Architecture dédiée au traitement d'image base sur les équations aux dérivées partielles[END_REF],[100]), and a tendency to introduce altered definitions of the watershed transform appeared to simplify the parallelization process. Two classes of parallel algorithms: domain decomposition and functional decomposition. Splitting the image into smaller images was studied in [START_REF] Meijster | A proposal for the implementation of a parallel watershed algorithm[END_REF] and in [START_REF] Bieniek | A parallel watershed algorithm[END_REF], with a preprocessing of the overlapping areas and distribution of those images to multiple processing units. Gillibert and Jeulin worked on an iterative processing of smaller images and a merging procedure of the results until idempotence in [START_REF] Gillibert | Stochastic multiscale segmentation constrained by image content[END_REF]. However, Beucher et al. realizes a study showing the difficulties encountered in the parallelization process of the hierarchical queue algorithm in [START_REF] Beucher | Réalisation de la Ligne de Partage des Eaux par File d'Attente Hierarchique Parallèle[END_REF].

Morphological transformations often rely on the relative heights of neighboring pixels. The arrowing operator was first introduced as an efficient representation of the local relation between pixels. This operator was for the first time introduced as early as in 1982 as a means of processing the watershed transform [START_REF] Maisonneuve | Sur le partage des eaux[END_REF]. Another iterative approach based on the arrowing operator has been introduced in 1990 in [START_REF] Beucher | Segmentation d'Images et Morphologie Mathématique[END_REF]. A more recent method on the watershed generalized on graphs and implemented with arrowing operators was developed in 2012 in [START_REF] Meyer | The steepest watershed: from graphs to images[END_REF].

The watershed transformation with hierachical queues

A hierarchical queue is a data structure which allows the definition and implementation of several morphological transformations [START_REF] Beucher | Hierarchical queues: general description and implementation in MAMBA image library[END_REF]. Given a valuation domain V, the hierarchical queue is the assembly of 2 |V| simple queues. A simple queue references to a FIFO register (First In First Out). Each queue is associated with a grey tone and has a priority level linked to the grey values of V. In the case of the watershed transformation, this priority level corresponds to the decreasing order of grey value. Thus, the queue of level 0 is the highest priority queue, while the queue of level t max is the lowest priority queue.

A point a is pushed to a queue according to its grey tone. As for popping, the highest priority queue is processed first until empty. When the latter is empty, it is removed and the next highest priority queue is popped. When a queue is empty and removed, it can not be created again and new incoming points of the corresponding grey tone are then queued in the lowest queue available. This data structure allows the processing of points by increasing order of grey value This algorithm starts from this initialisation state:

l(x) = i if ∃m i ∈ M, x ∈ m i 0 otherwise (10.1)
Algorithm 2 is the pseudo-code for the implementation of the watershed transformation based on hierarchical queues.

In this work, we present a new method to calculate watershed lines using a local hierarchy. Compared to traditional methods, the proposed method preserves the locality of data and allows an optimized implementation without compromising the quality of the extracted contours. The new propagation scheme alleviates the sequential nature of hierarchical queue propagation. This yields an increase in speed and an efficient use of memory. We compare ourselves with the two approaches of hierarchical queue propagation. We compare ourselves with the two following methods: a hierarchical queue-driven propagation [START_REF] Beucher | The Morphological Approach to Segmentation : the Watershed Transformation[END_REF] and successive geodesic thickenings of the regional minima [START_REF] Meyer | Topographic distance and watershed lines[END_REF].

The algorithm proposed in this chapter can be classified as a parallel algorithm, based on the arrowing operator. We propose a method to produce a hybrid result as in [START_REF] Beucher | Algorithmes sans biais de ligne de partage des eaux[END_REF], where no arbitrary choice is necessary. The resulting watershed line is centred and thin but discontinuous. A tesselation is produced on all pixels except those equidistant to two seeds, where a watershed line is produced.

Digraphs

A gray-level image is defined by the mapping f : D → V, where D is the set of pixels and V the valuation domain. V can be N, Z or R without impact on performance. We associate this function with its corresponding topographic relief, where all gray values are seen as elevations on the relief. This topographic relief contains a various number of topographic structures such as domes, valleys, ridges, thalwegs, regional minima, plateaus, and so on. Among those, a few interest us as flooding paths, plateaus, regional minima and catchment basins. The absolute heights of the pixels are not needed for defining the topographic structures. They depend only on the relative heights of neighboring pixels. 

Extraction of catchment basins from minima

Let ρ(a, b) = (a=x 1 , . . . , x n =b) with x i+1 ∼ x i be a path in N . Let us further distinguish the increasing paths as ρ (a, b) = (a=x 1 , . . . , x n =b) with x i+1 x i .

Let l(ρ) denote the length of the path ρ defined by l(ρ) = max xi∈ρ f (x i ) as the maximum value found along the path. Let the distance from a to b be given as the minimum length of any path when going from a to b, defined by A watershed basin associated to a minimum m i is usually defined as a collection of points closer to m i than to any other minimum m j .

B i = {x | d(x, m i ) < d(x, m j ), ∀j = i} (10.3)
which ensures a property of empty intersection of any two basins:

i = j → B i ∩ B j = ∅. (10.4) 
In case of equality of the distance to two minima a watershed line is formed

W = N \ i B i (10.5)
The distance used in eq. 10.2 reflects the minimum altitude to climb when moving on a topographic relief. It allows to simulate the process of flooding but does not yield a convenient tesselation. Namely, the basins 

B i = {x | d(x, m i ) < d(x, m j )}
B ⊂ i = {x | x ∈ B i , ∃ρ (m j , x), j = i} (10.6)
The subset B ⊂ i can potentially be limited to m i . Proof. If all predecessors x of y belong to B ⊂ i then there is no increasing path from another B ⊂ j to y. Consequently y belongs to B ⊂ i .

From which it immediately follows that Proposition 10.2.1. B ⊂ i can be extracted by region growing from its seeding minimum m i and independently of any other B ⊂ j , for j = i.

There will remain some points y that cannot be associated to any B ⊂ i according to (10.7)

y : ∃ a,b ≺ y, with a ∈ B ⊂ i , b ∈ B ⊂ j → y ∈ W (10.8)
will necesarily make part of the complementary set, denoted by W in equation 10.5 above. However, W obtained in this way is not thin. The condition on the predecessors x of y in eq. 10.7 can be further relaxed to obtain larger B i instead of much too restrictive B ⊂ i .

Proposition 10.2.2. given a set {B ⊂ i } there is a set {B i } such that B i ⊃ B ⊂ i , for ∀i, and B i ∩ B j = ∅, for i = j, such that if for some y we have ∀x ≺ y, x ∈ B i or x ∈ W then also y ∈ B i (10.9)

Proof. We prove this proposition by contradiction. By convention ∀i we have B i ∩ W = ∅.

Then for some y ∈ B i such that ∃x, x ≺ y and x ∈ W, then if ∃ρ (m j , y) and x ∈ ρ (m j , y) then ρ (m j , y) ⊂ B j . Then the point y does not belong to B j , for ∀j, j = i. 

Behavior on plateaus

We are now interested in the behavior of the flooding on a plateau. Suppose we have a plateau p, such that its decreasing border v = {b ∈ p, ∃a ∈ N , a ≺ b} has been either assigned to W or to a catchment basin. The hierarchical queue implements a geodesic dilation on the plateau of the catchment basins, as shown in fig. 10.3.

The flooding graph

Water flooding a relief rises from bottom up. A natural choice to simulate this phenomenon is to use the increasing graph G(N , e ), since at every pixel there are arrows to all its upper neighbors. However, this graph contains no arcs on plateaus to indicate how to flood the plateaus.

If a natural relief plateau is flooded, the water floods from its decreasing borders onwards. To simulate this behavior analogously, we shall equip all plateaus with e arrows oriented from the decreasing borders onwards. This behaviour is well known and has been referred to the lower completion of the graph in [START_REF] Meyer | Minimum spanning forests for Morphological segmentation[END_REF]. We modify the image values in a way that non-minima plateaus are no longer present in the image and element ordering in the rest of the image remains the same.

Consider some plateau p and its decreasing border v, v ⊂ p. Let d p (a, v), a ∈ p denote a geodesic distance in p from a to v. We redefine the set of increasing edges in the following Figure 10.4 shows in 1D the completion of the increasing graph of the initial image with an increasing graph of the geodesic distance on plateaus. The plateau p 2 is equipped with two arrows (in red). The plateaus p 1 and p 3 are left unchanged (a regional minimum, and a plateau only containing a decreasing border. Now, when all minima are labeled and the increasing graph completed on the plateaus, we will propagate the labels to the catchment basins. 

A cellular automaton for catchment basins extraction

Algorithms to compute the watershed transform using cellular automata have been proposed in [START_REF] Kolomazník | Interative Processing of Volumetric Data[END_REF]100,[START_REF] Kauffman | Cellular automaton for ultra-fast watershed transform on GPU[END_REF]. We can define the proposed procedure as a cellular automaton executed independently on every node of N . This cellular automaton will have two separate behaviors for labels propagation and for homotopy modification. In this section, we will write a rule that will propagate the labels from the minima upwards. In the next section, we will introduce a new rule to modify the topographic relief, in places where the first rule was not able to propagate a label due to the discrete configuration known as a button hole. In a given step of the execution of the cellular automaton, those two rules apply to two separate subsets of N . One subset corresponds to the set of nodes where a label can propagate. The other subset corresponds to the set of nodes which are part of a singular topographic structure denoted by a button hole.

Let a cellular automaton be the tuple (S, T, f ). S is the set of possible states of a node, denoted by a pair of label and elevation such that S ⊂ L × V. Let L = U ∪ F , where U = {∅, β} is the set of intermediate labels and F = N ∪ {ws} is the set of final labels, where ws is a special label for pixels from watershed lines.

We denote by T ⊂ N , the set of neighbors, so that ∀a ∈ N , b ∈ T → a ∼ b. The state of a node will depend on its current state and on the states of its |T | neighbors. Therefore, s : S |T |+1 → S is the transition rule.

Let l i (x) be the label of x at step i and h i (x) be the elevation of x at step i. After the initial step of preprocessing minina, we obtain sets of labeled nodes corresponding to the minima and a set of unlabeled nodes. The initial state of this cellular automaton is therefore the following: To expand the initial catchment basins, we will expand them with nodes that verify the proposition 10.2.2 and the equation 10.8. Notice that, in both equations, the label assigned to a node depends only on the labels of its predecessors. For some node a ∈ N , let Q i (a) = {l i (b) | b ≺ a} \ {ws, β} denote at step i the set of different labels on lower neighbors of a except the special watershed label ws. The set Q i is without repetition, that is, if some node a has three lower neighbors a b

l 0 (a) ← i, if a ∈ m i ∅ otherwise (10.
i , i = 1, 2, 3, bearing labels l(b 1 ) = 1, l(b 2 ) = 2 and l(b 3 ) = 1, then Q i = {1, 2}. Let further denote |Q i | the cardinality of Q i , here |Q i (a)| = 2.
Let λ ∈ L denote a label, and a ∈ N a node. The following transition rule constructs catchment basins from minima:

a ∈ N, l i (a) = ∅, ∅ ∈ Q i (a) : |Q i (a)| = 0 l i+1 (a) ← β, h i+1 (a) ← ∞ (10.12a) |Q i (a)| = 1, l i+1 (a) ← λ, λ ∈ Q i (a) (10.12b) |Q i (a)| > 1 l i+1 (a) ← ws (10.12c)
Notice that the rule l is only applied to nodes which fulfill the condition ∅ ∈ Q i (a). At step 0, this subset of N corresponds to the nodes adjacent to the minima set. At step i, it corresponds to the nodes all predecessors of which are being processed.

Three rules appear in eq. ( 10.12): The basins B ⊂ i are built independently from other B ⊂ j (10.12b). Intersecting influence zones B i and B j are built using (10.12c) by separating them by label ws. And finally, the rule (10.12a) corresponds to a case not defined by the section 10.2.1, where no basin labels are available at the predecessors. These pixels are assigned a special label β denoting pixels where no basin label can be assigned. The following section proposes a method to handle the buttonhole situation and assign all β nodes their final labels.

Button holes and modification of homotopy

We have seen that the catchment basins are grown from the minima using propositions 10.2.1 and 10.2.2. If predecessors of a point carry the same label, this label propagates further (proposition 10.2.1, eq. (10.12b)). If the predecessors carry the watershed label and only one basin label, this label propagates too (proposition 10.2.2, rule 10.12b). The section 10.2.1 however does not handle the case where no predecessor at all is labeled with a basin label. A button hole is entered by a point all predecessors of which carry indeed the watershed label. The rule eq. (10.12a) assigns the button hole entrance the special (button hole) label β. Catchment basins grow from minima using propositions 10.2.1 and 10.2.2. If predecessors carry the same label, this label propagates further (proposition 10.2.1, rule 11.12b). Definition 10.5.2. A pixel a belongs to a button hole if at the moment when all its predecessors b, b ≺ a, are assigned a label, i.e. ∅ ∈ Q i (a), all b carry either the watershed label ws or the button hole label β. Definition 10.5.3. A button hole is a connected component of pixels labeled β for i = ∞ when the growing process eqs. (10.12) ends.

Until now, the label of one node depended only on its direct lower neighbors. If rules 10.12 are applied as such, it results in (potentially thick) zones of β label, that do not belong to the final state F . Figure 10.5 shows a case of buttonhole using the hexagonal connectivity. Below we will show that this zone can be processed as before using the rule 10.12 after modifying the topography at β zones. The following transition rule modifies the topography from button hole crest line towards button hole entrance, propagating the minimum height of the set of button hole entrances 10. Watershed of a button hole. a ∈ N , l i (a) = β, :

|Q i (a)| ≥ 1 h i+1 = min{h i (b)|b ∼ a} (10.13a) |Q i (a)| = 0 h i+1 = min{h i (b)|b ∼ a, l i (b) = β} (10.13b) a is a BHE or ∃b ∼ a, l i (b) = ∅ l i+1 = ∅ (10.13c)
This rule only applies to β regions. Rules (11.13a) and (11.13b) effectively create a new plateau in place of the buttonhole of height equal to the minimum height of all BCLs.

The equation (11.13c) allows the reactivation of the previously defined transition rule on label propagation.

Complexity analysis and experimental results

This method has been tested using a shared memory architecture implementing the multiple instructions on multiple data scheme. The synchronization between different computing units is assured using atomic operations to protect data I/O. Each computing unit is given a number of tasks which correspond to one minimum of the topographic relief. The minima are distributed evenly amongst the computing units to balance the workload. The locality of reference is assured by giving only spatially close minima to a given processing unit. At any given point, a computing unit can pick a minimum, and process its upward propagation using the rules (11.12) described in previous section 10. [START_REF] Angulo | Multiscale stochastic watershed for unsupervised hyperspectral image segmentation[END_REF]. The process is completed whenever every single minimum has been processed.

The method has been implemented on top of OpenMP for randomly generated tridimensional images which sizes vary from 27 million to 1.7 billions of pixels. The processor used is an Intel(R) Xeon(R) CPU E5-2640 v3 clocked at 2.6 GHz that features 2*8 physical cores that can be hyperthreaded up to 32 virtual cores.

Figure 10.6 shows the execution times for 60 different images using 16 threads. We have compared those with times acquired using Matlab R2016a Linux 64-bit, which implements [START_REF] Meyer | Topographic distance and watershed lines[END_REF]. The Matlab algorithm is mono-threaded and the previous architecture was used to produce those results. It has also been compared to [START_REF] Faessel | SMIL: Simple (but efficient) Morphological Image Library[END_REF], which features an up-to-date hierarchical implementation of the watershed as described in [START_REF] Beucher | The Morphological Approach to Segmentation : the Watershed Transformation[END_REF]. The resulting curve shows that the proposed method performs linearly. The implementation [START_REF] Kolomazník | Interative Processing of Volumetric Data[END_REF] of the watershed on GPU using cellular automaton has been a candidate for this benchmark. The time measurement was estimated to be ten times faster than our method, but the limitation of memory bus of the GPU did not allow to execute the implementation on images of comparable size.

The execution time T (P ), when P processors are used, have been measured. Speedup SP (P ) = T (1)/T (P ) and efficiency E(P ) = P/SP (P ) are computed, and figure 10.7 shows the behavior of the method when the number of threads varies. Example of execution of the watershed transform is shown in figure 10.8.

Conclusion

We proposed a method to calculate the watershed transform in linear time that requires no sorting of pixels by their elevation. This approach starts by detecting the seeds of the flooding, the regional minima of the input image. The image is represented in an acyclic directed graph or forest, using the ascending relation and the geodesic distance on plateaus. A bottom-up propagation is then performed on each seed asynchronously until every minimum has been processed.

It produces identical results to the hierarchical method [START_REF] Beucher | Algorithmes sans biais de ligne de partage des eaux[END_REF]. It is observed that this algorithm is linear in regards to the volume of the input images and that it is scalable. An increasing speed-up is achieved until 32 processors. Removing the sequential nature of the transform allows to reach higher performances by exploiting parallel computation. This approach shows that transformations of morphological mathematics that were considered difficult to parallelize efficiently can be optimized for modern architectures using optimized In part III, the filtered image is segmented, so that each grain of each phase is individually labeled. In chapter 7, an over-segmentation is produced on a modified gradient image. The final segmentation is produced from this over-segmentation by means of region merging. An undirected graph is built on top of this over-segmentation and the fragments of oversegmented grains are merged by using a hierarchical clustering method.

In chapter 8, the segmentation of acquisitions from fragmented materials is discussed. New affinities of fragments are introduced, that describe the frontier between two adjacent fragments. Those affinities are combined, and the resulting affinity produces a hierarchy between each fragment. Thus, hierarchical clustering can be used to merge fragments. A method is proposed to evaluate the quality of the merging of fragments and a score is given. This score is maximised and an optimal combination of affinities is found.

The execution time and the memory optimisation were one of the primary concerns in this work. Transformations that can be processed in parallel or on a reduced set of data such as graphs have been preferred. Many efforts have been made on the optimisation of the processing chain. The part II needs the supervision of the user and some of the steps can fail, such as the estimation of the number of classes and the detection of the binder. Thus, this step needs interactivity. The recursive bilateral filter [START_REF] Yang | Recursive bilateral filtering[END_REF] has been adapted to 3D images, resulting in short execution times for 400 3 images. Most proposed measures, such as the analysis of intensity distribution, the covariance measure, the cross-correlation measure, the binder estimation, can be restricted to a subset of the image, resulting in faster executions.

Our affinities work on graph representation of the objects of the acquisition. While 3D acquisitions feature a considerable amount of voxels, a graph, whose nodes correspond to grains, has a smaller memory footprint. In part IV, new algorithms have been proposed. Improved execution times have been obtained on the 2-scan labeling by introducing forests of decision trees. The watershed transformation is adapted to multi-core processing.

Conjointly to this work, a professional software is produced. At the time of writing of this thesis, the Technology readiness level (TRL) of this software is estimated to be greater or equal to four. The underlying principles have been described in the first part of this document and tested with the set of acquisitions provided in this work. The critical analysis of each component of the method is provided and a comparison to the state-of-the-art is proposed. The software is, at the time of writing, being validated within the Centre de Morphologie Mathématique -Center for Morphological Mathematic (CMM) and used in a subsequent doctoral thesis, which focus is on the simulation and modeling of such granular materials. It is also used by CEA on new sets of materials and is to become a commercial software, deployed by Transvalor.

This software is provided as a set of Python scripts, that implements the proposed pipeline. Each script is a module, corresponding to one of the primitive actions described in this document. The list of modules is the following: analysis of intensities distribution, filters, binder detection, covariance model, cross-correlation model, Gaussian mixture, local threshold, segmentation of fragments, over-segmentation correction and fragments aggregation. A visualisation has been developed along with the software, which provides a 3D overview of the segmentation, efficient despite the number of voxels to display. The new algorithms have been written in C + + and OpenMP, and added to the Smil image library [START_REF] Faessel | SMIL: Simple (but efficient) Morphological Image Library[END_REF].

We use this software to produce the segmentations from appendix A. Our range of materials is wide and includes concretes as well as energetic materials. The difficulties observed in chapter 1 are included in this set of materials. We have observed a non-uniform size distribution of grains. For example, we observe that S-Al contains two scales of grains. Smaller grains are densily packed, while bigger grains are scattered and of various shapes. In BET, elongated grains are observed. Moreover, the contrast also varies. Concretes materials are typically impermeable and, therefore, with a high x-ray absorption. Some acquisitions feature highly contrasted grains, such as IEX3-2. Others are visually degraded by a dense noise, such as IEX3-0 and IEX3-1. In MIXTE, the mean intensity of the phases is close to the mean intensity of the binder. Thus, the low contrast can compromise the accuracy of the image of classes.

Each CT-scan of the materials, presented in chapter 1, has been segmented, except for MRT. Except for the number of classes, which has been visually assessed, the pipeline adapts its own parameters to the image content. Thus, the method applied on those materials is semi-automatic.

Despite all the difficulties enumerated previously, satisfying results were obtained, except on IEX3-0, IEX3-1 and on MRT acquisitions. Multi-phasic materials were successfully detected. The binder was correctly assessed in all acquisitions.

IEX3-0 and IEX3-1 are heavily affected with noise. Although good results were obtained with IEX3-0, the automatic segmentation of IEX3-1 was less successful. Thus, we observe that the semi-automatic method is prone to errors, and the careful supervision of each step may be required on difficult acquisitions such as IEX3. Despite the low contrast between the grains and the binder, BET was successfully segmented with the automatic adaptation of the filter to the image content. As for MRT, the difference in intensity between the binder and the hard phase is small, and the segmentation of those materials was not successful. Those acquisitions are difficult, and shows the limits of the proposed method. Manual fine-tuning of the parameters and additional filtering are required.

The segmentation of a 2D micrography of 7717 by 7654 pixels is also included in fig. A.17. This micrography includes fragmented grains. In this material, the polishing of the visible surface produces empty sockets, where lower slices of the material can be observed. We have not included the aggregation of fragments on this material and we show only the result of the segmentation, as described in chapter 7. This segmentation was successful despite the observed difficulties.

Our method was designed for granular materials with rounded grains. While the shapes of grains were supposed to be more or less round, the method does not restrict itself to round objects. Our materials feature various shapes of grains. Elongated grains have been observed in materials such as BET-0 and PA-0. From our results, it has been observed that the method is able to correctly segment grains of various shapes, convex or non-convex and of various sizes. Thus, our segmentation does not restrict itself to round shapes, and the proposed hierachical clustering handles elongated grains from BET, and grains with straight edges from HMX. Some limitations have been observed with the software. The best results have been obtained with contrasted acquisitions, while acquisitions with a low contrast between two phases are harder to process, and many errors can appear on the final segmentation. This low contrast problem is recurrent in the state-of-the-art. While we do not provide a definite answer to this problem, our filtering step is, however, more adapted to such difficulties. Nonetheless, further enhancements may need to be performed before or after the filtering step, in order to provide classes coherent with the visual inspection of the acquisitions. This low contrast problem has been encountered with MRT and BET. While, BET-0 and BET-1 were successfully segmented with the semi-automatic chain, MRT acquisitions were not correctly segmented by our method without any additional supervision.

Many perspectives arise from this work. Extending this work to new materials, such as fibers, can be considered. The software can be extended also with a higher level analysis, such as providing models or some common simulations. The limitations, such as observed on MRT materials, still need to be answered for. Flat zones have been obtained on the hard phase with multiple iterations of the adaptive filter. However, grains are not yet distinguishable Dans la partie II, un certain nombre de statistiques sont effectuées dans le domaine spectral et dans le domaine spatial. De ces mesures, nous estimerons les charactéristiques des matériaux étudiés. Le nombre de phases et la distribution de la taille des grains pourront ainsi être estimés. Le liant est détecté par des mesures de percolation sur chacune des phases détectées. Ces mesures nous permetteront de construire un filtrage adapté à l'acquisition et de réduire les artefacts de reconstruction.

Dans la partie III, une chaîne complète de segmentation est construite. L'acquisition filtrée est tout d'abord sur-segmentée, de tel sorte que chaque grain ou fragment est divisé en éléments discrets, séparés, ne se recoupant pas. Pour se faire, la transformation de ligne de partage des eaux est utilisée. Une sur-segmentation est obtenue, et cette dernière est alors corrigée en imposant une hiérarchie sur les contours des objets obtenus. Enfin, dans le chapitre 8, nous introduirons de nouvelles mesures d'affinité qui permettent d'évaluer l'interface entre deux objets adjacents. Ces affinités sont alors appliquées dans le chapitre 8 pour permettre de reconstruire les grains entiers à partir de leurs fragments.

Dans la dernière partie, nous présentons les travaux effectués sur l'optimisation de la chaîne de traitement pour des architectures modernes. Dans le chapitre 9, nous apportons une nouvelle amélioration algorithmique de la méthode de 2-scan labeling. Cette approche est une extension de la méthode par bloc qui utilise des forêts d'arbres de décision.

Enfin, dans le chapitre 10, la transformation de ligne de partage des eaux est optimisée. La parallelisation de la ligne de partage des eaux est un sujet complexe, car l'inondation est un processus global. La notion de graphe d'inondation est proposé pour représenter les dépendances entre pixels voisins. Ce graphe est exploré pour reconstruire les basins d'attraction. Une méthode basée sur les automates cellulaires est proposée, et permet le calcul parallèle des basins d'attraction.

Imaging procedure and sample preparation

Le premier chapitre de cette thèse introduit la problématique et est consacré à l'identification des difficultés majeures, auxquelles nous nous efforcerons d'apporter des solutions tout au long du présent document. La technique de micro-tomographie à rayons X y est décrite. Elle consiste à reconstruire à partir d'une série de projections 2D un volume 3D. Certains problèmes sont inhérents à l'utilisation de cette technique. Parmi ces problèmes, usuellement dénommés artefacts de reconstruction, le Ring artefacts, le Beam hardening ainsi que le Partial Volume Effect (PVE), sont identifiés comme les principales sources d'erreur lors du filtrage et de la segmentation des données. Bien que l'intérêt premier de ces travaux porte sur le traitement de volumes 3D conséquents, des acquisitions par micrographie optique sont également considérées. Cette technique d'acquisition est capable de fournir des images 2D de très haute qualités, mais nécessite une préparation importante, et, de plus, destructive des matériaux étudiés.

Introduction to the image processing for granular materials

Nous abordons dans ce chapitre différentes notions de la Morphologie Mathématique, et plus généralement du traitement d'image. Les acquisitions y sont décrites comme un volume discret dans un espace à n dimensions. Ce volume est constitué de pixels(2D)/voxels(3D), ou plus généralement de points, auxquels sont associés une valeur numérique, autrement appelée niveau de gris. Nous introduirons les relations de voisin et de connexité. Plusieurs opérateurs morphologiques sont décrits. Les notions de relief topographique et de structures topographiques y sont également abordées. Le concept de composante connexe et une définition ensembliste de la transformation de ligne de partage des eaux sont introduits. L'ensemble de ces notions est utilisé lors de la construction de la chaîne de traitement et servent de fondations théoriques. Finalement, une première ébauche de la chaîne de traitement est proposée et sert de guide de lecture pour la suite du document.

Filtering the original acquisitions

Le chapitre 1 de cette thèse référence les différents bruits et artefacts qui dégradent les images des matériaux étudiés. Débruiter l'acquisition constitue la première brique de notre chaîne de traitement. Cette étape est primordiale au bon déroulement de la segmentation. De ce fait, un état de l'art des techniques de filtrage est établi. Les avantages et inconvénients de chaque filtre sont discutés et approfondis. Finalement, une méthode d'évaluation du filtrage est proposée. Cette méthode permet également le paramétrage des différents filtres pour améliorer la qualité du filtrage.

Analysis of spatial distribution

Des images de classes ont été obtenus dans le chapitre 4. Cette image de classes associe à chaque pixels/voxels un label correspondant à une classe. Pour certaines acquisitions, nous avons estimé un trop grand nombre de classes en comparaison à l'inspection visuelle de l'image 3D. Cependant, la mélange de Gaussians est sensiblement identique à la distribution d'intensité. Cette sur-estimation est dûe à la présence d'artefacts de reconstruction qui ne sont pas supprimés par le filtre du chapitre 3. C'est seulement en ajoutant de nouvelles informations à cette analyse préliminaire que les classes obtenues précédement pourront être validées. L'analyse spatiale des classes détectées est effectuée pour valider chacune des classes.

Marker-based segmentation

L'analyse précédente donne une estimation du signal débruité pour chaque acquisition. Nous avons également réparti les intensités de l'image entre les différentes classes X i et le binder X . Ce chapitre de la thèse porte sur la segmentation de chacun des grains. Par segmentation, nous faisons référence au processus de partitionnement de chacun des ensembles X i en segments. Chacun de ces segments est un ensemble de points, que nous nommerons objet. A la fin de cette section, nous obtiendrons des objets consistants avec les grains observés dans les acquisitions. La tessellation obtenue en n objets, respectera les axiomes de la section 2.1 du chapitre 2. Notre méthode est basée sur le raffinement d'une sur-segmentation. Cette sur-segmentation est obtenue en appliquant l'algorithme de ligne de partage des eaux sur un relief modifié issue de l'image filtrée de la partie précédente. Chaque contour en résultant est alors hiérarchisé, et cette hiérarchie nous permet d'obtenir la segmentation finale.

Labeling

L'étiquetage des composantes (CCL) connexes est l'une des operations fondamentales du traitement d'image. Nous avons défini les composantes connexes dans la section 2.6. Connected Component Labeling (CCL) est une procédure qui permet d'assigner une unique étiquette pour chacune des composantes connexes. Dans ce travail, cette opération est utilisée pour identifier uniquement les marqueurs de la segmentation de la partie III et est une étape indispensable entre le traitement d'image de bas niveau et le traitement d'image de haut niveau.

Watershed

La transformation de ligne de partage des eaux est un outil puissant pour la segmentation morphologique. La plupart des implémentations courantes de cette méthode implique une hiérarchie stricte sur les niveaux de gris dans la sélection des pixels. Cette forte dépendance hiérarchique complexifie grandement l'utilisation efficace des architecture modernes de traitement. Ce chapitre introduit une nouvelle façon de calculer la ligne de partage des eaux qui ne prend pas en compte la nature séquentielle de la propagation hiérarchique. On montre que cette méthode peut être reliée directement à l'inondation hiérarchique tel que définit dans la section 2.7. La croissance simultanée et désordonnée est alors rendue possible, ce qui permet de maximiser les performances sur les architectures modernes. Des vitesses de traitement plus élevées sont atteintes, et des volumes de données plus importantes peuvent être traités. Les résultats expérimentaux montrent un accroissement des performances, tant en vitesse d'exécution qu'en empreinte mémoire.

Conclusion

Dans le cadre de cette thèse, nous avons proposé une nouvelle approche de segmentation de matériaux granulaires. Cette chaîne prends en compte l'ensemble des étapes nécessaires à la segmentation, et ce de façon automatique. Des résultats satisfaisants ont été obtenues sur les acquisitions étudiées. Elle peut également s'adapter à de matériaux plus complexes, affectés par les différents bruits observables dans les acquisitions par la technique de CT-scan. Sa polyvalence a été remarqué par la nature même des acquisitions acquisies par Commissariat à l'énergie atomique et aux énergies alternatives (CEA) et Sciences & Applications -Expertise Industrielle et Recherche Appliquée sous Contrat (SA).

Cette chaîne de traitement peut être considéré comme un pipeline, dans les étapes sont expliqués du chapitre 3 au chapitre 8. Ces étapes sont divisés en deux parties: un filtre adaptative et une segmentation des grains.

La partie 3 établit la définition d'un nouveau filter multi-classe adaptatif. Dans le chapitre 3, plusieurs filtres sont étudiés and appliqués aux CT-scan. Les performances de chacun sont discutées. Les deux chapitres suivants 4 et 5 sont dédiés à l'analyse des acquisition. Cette analyse permet l'adaptation d'un filtre à l'image. Dans le chapitre 4, la distribution des intensités est partitionée, et des classes en sont extraites. Un mélange de Gaussian est appliqué à la distribution.

Le chapitre 5 a un objectif double: extraire l'information spatiale de chaque acquisition et vérifier la concordance de chacune des classes détectées lors de l'analyse de la distribution des intensités. Des mesures statistiques sont réalisées, tels que la covariance et les corrélations croisées. La mesure de covariance est utilisé pour obtenir une estimation du rayon moyen des grains d'une phase et une estimation du nombre de grains. Les corrélations croisées et la mesure de sphéricité peuvent être utilisés pour valider les phases détectées. Le liant est automatiquement détecté via des mesures de percolation. Deux méthodes de seuillage automatiques sont également étudiés: par champ aléatoire bayesian de Markov et par ligne de partage des eaux.

Dans le chapitre 6, les analyses de distributions spatiales et d'intensité sont combinées et un filtre multi-classe adaptatif est proposé. Un chaîne de traitement est proposée. Cette chaîne permet d'améliorer itérativement le filtrage. Cependant, la convergence vers le nombre exacte de classes n'est pas vérifiée. Estimer le nombre exacte de phase s'avère être une tâche complexe. Si la procédure automatique échoue lors de la détection du nombre de classe, les images filtrées obtenues en demeurent améliorer si le nombre de classe est imposé par l'utilisateur. Plusieurs itérations de ce filtre adaptatif et des étapes d'analyse permettent d'améliorer la qualité des images filtrées, en particulier sur les acquisitions fortement affectées par le bruit et les artefacts tels que BET. Ce filtre adaptatif requière la supervision de l'utilisation, pour obtenir les meilleurs résultats possibles.

Dans la partie III, l'image filtrée est segmentés, de tel sorte que chaque grain de chaque phase est étiqueté uniquement. Dans le chapitre 7, une sur-segmentation est générée sur un relief gradient modifié. La segmentation finale est obtenue à partir de cette sur-segmentation via une procédure de fusion de régions. Un graphe non-orienté est construit à partir de la sur-segmentation et les fragments de chaque grains sur-segmentés sont réunies par une méthode de regroupement hiérarchique.

Dans le chapitre 8, la segmentation des acquisitions provenant de matériaux fragmentés est discutée. On propose de nouvelles affinités, qui décrivent la forme de la frontière entre deux fragments adjacents. Ces affinités peuvent être combinées, et l'affinité résultante produit une hierarchie de fusion entre deux pairs de fragments. De ce fait, une méthode de regroupement hiérarchique peut être utilisé pour réunir les fragments entre eux. Une méthode est proposée pour évaluer la qualité des résultats obtenues. Le score obtenu peut alors être maximisé et une combinaison idéal d'affinités est alors déterminée.

Les temps d'execution et l'empreinte mémoire de la chaîne de traitement est un des impératifs de ce travail. Les transformations pouvant être traitées en parallèle ou sur une portion des données, tels que la répresentation par graphe, ont été préférées. De nombreux efforts ont été fait sur l'optimisation de la chaîne de traitement. La partie II nécessite la supervision de l'utilisateur et l'estimation du nombre de grains de phase ou la détection du liant sont suceptibles d'échouer. Ainsi, cette étape doit être interactif. Le filtre bilatéral récursif [START_REF] Yang | Recursive bilateral filtering[END_REF] a été adapté aux images 3D, ce qui permet d'obtenir des temps réduits d'exécutions pour le volume traitée de données. Les mesures proposées, tels que l'analyse de la distribution des intensités, la covariance, les corrélations croisées ou l'estimation du liant peuvent être réduite à un sous-ensemble de l'image. Ainsi, les temps d'exécutions s'en retrouve grandement réduit. Nos affinités proposées s'appliquent à des représentations par graphe des objects présents dans les acquisitions. Alors que les images 3D comportent un nombre considérables de voxels, un graphe a une empreinte bien moindre. Dans la partie IV, deux nouveaux algorithmes ont été proposés. De meilleurs temps d'exécutions ont été obtenus sur l'étiquetage des composantes connexes, en introduisant les forêts d'arbres de décision. La transformation de ligne de partage des eaux a été adapté au calcul multi-processeurs.

Conjointement à ce travail, un logiciel professionelle a été produit. Au moment de redaction de ce mémoire, un Technology readiness level (TRL) a été estimé supérieur ou égal à quatre. Les composantes théoriques ont été décrites dans la première partie de ce travail et testées avec l'ensemble des acquisitions à notre disposition. L'analyse critique de chacune de ces composantes a été fournie et une comparaison avec l'état de l'art est proposée. Le logiciel est, au moment de rédaction, en cours de validation au sein du Centre de Morphologie Mathématique -Center for Morphological Mathematic (CMM) et utilisé dans des projets subséquents de thèse, qui se concentrent sur la simulation et la modélisation de matériaux granulaires. Ce logiciel est également utilisé par le CEA sur de nouveaux matériaux et deviendra un logiciel commercial, dont le déployement sera assuré par Transvalor.

Le logiciel est actuellement disponible sous la forme de modules python, qui implémente la chaîne proposée dans ce document. Chaque module correspond à l'une des actions primitives décrites dans ce document. La liste des modules est la suivante: Analyse de la distribution des intensités, filtrage, Détection du liant, Modèle de covariance, Modèle de corrélations croisées, Modèle de mélange de Gaussians, Seuillage local, Segmentation des fragments, Correction de la sur-segmentation, Aggregation des fragments. Une visualisation a été également développée, et permet de voir en 3D la segmentation, malgré le considérable volume des données à afficher. Les nouveaux algorithmes ont été écrits en C + + et OpenMP, et ont été ajoutés à la librairie de traitement d'image Smil [START_REF] Faessel | SMIL: Simple (but efficient) Morphological Image Library[END_REF].

Nous utilisons ce logiciel pour produire les segmentations qui apparaissent dans les annexes A. Nos matériaux sont variés et incluent du béton ainsi que des matériaux énergétiques. Les difficultés observées dans le chapitre 1 font parties de cette ensemble de données. Nous avons observé dans de multiples acquisitions une distribution hétérogène de taille de grains. Par exemple, nous avons observé que S-Al contient deux échelles de grains. De plus petit grains sont réparties de façon compacte, alors que des grains plus volumineux sont éparpillés et de taille et forme variables. BET contient des grains allongés. De plus, le contraste peut varier entre deux acquisitions de CT-scan. Les acquisitions issues de béton, typiquement imperméable aux rayons X, présentent une phase de grains peut discernable du liant. Certaines acquisitions présentent des grains très contrastés, tels que IEX3-2. D'autres sont fortement affectés par la présence d'un bruit dense, tel que IEX3-0 et IEX3-1. Dans le cas de MIXTE, l'intensité moyenne de chaque phase et proche de l'intensité du liant. Ce faible contraste peut compromettre la précision de l'image des classes et exacerber l'impacte des artefacts de reconstruction.

Chacun des CT-scan des matériaux, présentés dans le chapitre 1, a été segmentés, à l'exception de MRT. A l'exception du nombre de classes, qui a été déterminé visuellement, le processus adapte ces propres paramètres au contenu de l'image. La méthode ainsi appliquée sur ces matériaux est semi-automatique.

Malgré toutes les difficultés que nous avons énumérées précédemment, des résultats satisfaisant ont été obtenus, à l'exception de IEX3-0, de IEX3-1 et de MRT. Les matériaux multi-phasiques ont été correctement détectés. Le liant a été correctement estimé dans toutes les acquisitions disponibles.

IEX3-0 et IEX3-1 sont fortement affectés par du bruit. Malgré de bons résultats obtenus pour IEX3-0, la segmentation automatique de IEX3-1 est moins satisfaisante. Nous observons alors que la méthode semi-automatique proposée est encline à l'erreur, et nécessite la supervision de l'utilisateur à chaque étape de la chaîne de traitement pour des acquisitions difficiles tels que IEX3. Malgré le faible contraste entre les grains et le liant, BET a été segmenté avec succès grace à l'adaptation automatique du filtre à contenu de l'image. Quant à MRT, la différence d'intensité entre le liant et les phases solides est faible, et la segmentation de ces matériaux a échoué. Ces acquisitions démontre la limite de la méthode proposée. Un réglage minutieux des paramètres et un filtrage supplémentaire sont nécessaires.

La segmentation d'une micrographie 2D de 7717 par 7654 pixels a été également incluse, voir la figure A.17. Cette micrographie inclut des grains fragmentés et le pollisage de la surface visible a produit des cavités vides, dans lesquelles les couches inférieures du matériaux sont visibles. Si l'aggregation n'est pas présentée dans cette figure, le résultat de la segmentation est néamoins visible et prouve que la méthode s'adapte à des acquisitions 2D.

Notre de méthode a été établie pour des matériaux granular dont les grains ont des formes arrondies. Bien que l'hypothèse de grains arrondis soit émise, la méthode ne se restraint pas unique à cette forme de grains. Les grains allongés ont été observés dans BET-0 et PA-1. De nos résultats, il a été observé que notre méthode est capable de correctement segmenter des grains de forme variée, convexe ou non, et de taille variée. En conclusion, la segmentation proposée est versatile.

Quelques limitations du logiciel produit ont été cependant observées. Les meilleurs résultats ont été obtenus sur des acquisitions présentant un fort contraste, alors que les acquisitions avec un faible contraste entre deux phases se sont révélés plus complexes. De nombreuses erreurs peuvent alors se produire sur la segmentation finale. Ce problème de contraste est récurrent dans l'état de l'art. Nous ne proposons pas de solution définitive pour ce problème, mais notre étape de filtrage est néamoins plus adaptée à cette problématique. Toutefois, de nouvelles améliorations sont nécessaires avant ou après l'étape de filtrage, pour obtenir des classes plus cohérentes avec l'inspection visuelle des matériaux. Ce problème de contraste est particulièrement visibles dans MRT et BET. Si BET-0 et BET-1 ont été correctement segmentés, toutes les acquisitions issues de MRT ne purent être segmentées correctement par notre méthode sans une supervision méthodique.

De nombreuses perspectives se rélèvent de ce travail. Etendre le travail à de nouveaux matériaux, tels que fibreux, peut être considéré. Le logiciel peut également être étendu avec l'ajout d'une analyse de plus haut niveau, tel que l'apport de modèles ou de simulations. Les limitations, tels qu'observés sur MRT, sont toujours en attente de solutions. De zones plates ont été obtenues sur les phases solides en utilisant plusieurs itérations du filtre adaptatif. Cependant, les grains ne sont toujours pas distinguables du liant dans la distribution des intensités. Détecter les zones plates peut être une des pistes de recherche, pour produire l'image de classe nécessaire à la segmentation.

Résumé

Les propriétés physiques macroscopiques des matériaux granulaires découlent directement de leurs micro-structures. L'étude de tels matériaux nécessite la segmentation de leur structures 3D à partir d'images acquises par CT-scans. Cependant, ces images sont parfois difficiles à analyser, car de nombreux défauts et artefactes de reconstruction peuvent apparaître. Obtenir des structures 3D proches des données réelles nécessite un filtrage adapté, qui ne peut être obtenu que par une analyse approfondie du matériaux. Un filtrage adapté améliore la perception de chacun des grains et la structure 3D peut être alors obtenue par segmentation. La complexité de ces structures rend la tâche difficile : les grains qui la représentent prennent des formes irrégulières, allongées et pas nécessairement convexes. Ces grains sont généralement fortement agglomérés et difficiles à séparer. De plus, des phénomènes de fracturation sont fréquemment observés. Les grains sont éclatés en petits fragments pouvant s'éloigner de la position d'origine du grain. Dans le cadre de cette thèse, une chaîne complète de segmentation est présentée. Les données brutes d'acquisition sont tout d'abord filtrées et pré-traitées pour en extraire un certain nombre de mesures statistiques, telles que le nombre de phases, le nombre de grains de chaque phase, la distribution des tailles de grains et l'identification spectrale de chaque phase. Une première segmentation est effectuée en utilisant la transformation de ligne de partage des eaux. Une hiérarchie des contours obtenus permet d'éliminer la sur-segmentation. Enfin, une méthode permettant d'évaluer la similitude entre deux bords adjacents est présentée, et nous permettra de réassembler les grains fragmentés, dont les fragments ont été dispersés. Les acquitions par CT-scan sont conséquentes et leur étude nécessite une utilisation efficace des architectures récentes de calcul. Le choix de la chaîne de traitement est basé sur l'étude de l'état de l'art et son application aux données 3D, avec comme objectif d'équilibrer les coûts de traitement et la qualité de la segmentation. Une nouvelle méthode de segmentation nous permet d'atteindre de meilleurs performances en améliorant également la qualité des résultats. Enfin, deux nouveaux algorithmes sont proposés pour la détection de composantes connexes et la transformation de ligne de partage des eaux.
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Abstract

The physical properties of granular materials on a macroscopic scale derive from their microstructures. The segmentation of CTimages of this type of material is the first step towards simulation and modeling but it is not a trivial task. However, the quality of those images is often affected by the presence of noise and reconstruction artefacts. Obtaining 3D structures that fit the reality requires an adapted filter, which can only be obtained by a complete analysis of the material. This adapted filter enhances each grain and the full structure of the material is obtained by segmentation. However, non-spherical, elongated or non-convex objects fail to be separated with classical methods. Moreover, grains are commonly fragmented due to external conditions. Grains are ground into multiple fragments of different shape and volume; those fragments drift from one another in the binder phase. In this thesis, a complete process chain is proposed to segment complex structures that can be acquired by CT-scan. The raw data is first filtered and processed, and statistical features are extracted such as the number of phases, the number of grains of each phase, the size distribution and spectral identification of the phases. A primary segmentation is performed to identify every connection between touching grains and is based on the watershed transform. A hierarchy is built on the obtained contours to eliminate over-segmentation. Reconstruction of grains from fragments is achieved using affinities that match the local thickness and the regularity of the interface. Typical CT-images are voluminous, and the study of granular materials requires efficient use of modern computing architectures. Studying the state-of-the-art and its application to 3D data has allowed us to balance the quality of segmentation and the computing cost. A novel segmentation method allows for higher performances while improving the quality of the result. Finally, two new algorithms are proposed for the labeling of connected components and for the watershed transformation.
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1. 1

 1 The imaging process of a CT-scan. The sample is illuminated with a penetrating radiation. The transmitted beam is projected on a scintillator material. The projection is captured downstream by charge-couple device camera. The X-ray source/camera couple rotates around the sample and several projection images are captured from different angles. . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Imaging artefacts observed on CT-scans. (a) shows a ring artefact on MIXTE. (b) and (c) show two beam hardening effects on MRT. (d) shows a PVE on MIXTE. (e) shows the effect of the colorspace reduction from 12-bit to 8-bit images. . . 1.3 Scheme of a fall tower experiment in (a). Two crops (b) and (c) of BOL-CHOC obtained after dropping a mass of 2kg from 15 to 30cm. . . . . . . . . . . . . . 1.4 Fragmentation is observed. Empty space can be observed between fragments.

3. 1

 1 Intensity histograms of B200, IEX3-0, BET-1 and S-Al. . . . . . . . . . . . . . . 3.2 Effects of filters on the distribution of S-Al. S-Al is composed of a light grey binder, big grey grains and smaller dark grey grains. In the left column, the filtered images are shown. In the right column, the corresponding histograms are shown, where the original histogram is shown in dotted lines, and the histogram of the filtered image is shown in plain lines. . . . . . . . . . . . . . . . . . . . . . . . . xv Optimisation of automatic segmentation of granular fragmented materials 3.3 Effects of the Opening and Closing operators on the distribution of S-Al. In the left column, the filtered images are shown. In the right column, the corresponding histograms are shown, where the original histogram is shown in dotted lines, and the histogram of the filtered image is shown in plain lines. A shift is observed towards lower values for the Opening filter and towards higher values for the Closing filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 The two vector of intensities to maximise/minimise are displayed. A = (40, 67, 176) and B = (55, 124). The distribution of intensities of the original image is shown as dotted blue line, while the distribution of the filtered image is shown as plain red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 The result of the optimisation of the parameters of the filters AD, TV and NM on S-Al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Greedy decomposition of a histogram. The different H i are shown in color. . . . 4.2 Boundaries in which the estimated Gaussian is considered dominant. The acquisition is S-Al. Left is the method presented in [1]; detected bounds are [0, 255]. Right is our method; detected bounds are [80, 96]. . . . . . . . . . . . . . . . . . 4.3 The skewness correction allows tighter fit of the model to the histogram of IEX3-1. Left is the classic GMM model, while right is the skewness corrected model. The resulting intersection is closer to the desired threshold value (119 against 124). 4.4 The thresholds values obtained for Otsu, Kappur, minimum error, Gaussian smoothing and Greedy thresholdings for unfiltered IEX3-1, B200, S-Al is shown in fig. 4.4(c). We imposed the number of classes K = 2, K = 2 and K = 3 in each case. In the uni-modal case, only Otsu and Kappur were able to found coherent threshold values. In the bi-modal case, all thresholding methods are able to found sound values. Kapur thresholding differs from the expected threshold values in the multi-modal case. Otsu found a different threshold (at 58 in green) than minimum error, Gaussian smoothing and Greedy thresholdings, which are closer to 10 (in red). However, it's close to the observed class of S-Al, as shown in fig. 4.4(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Gaussian mixture model obtained by using variational Bayesian Gaussian mixture, two different runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Gaussians mixture produced by the greedy approach. Left is the original image, right is the Gaussian mixture produced by the greedy approach. The original intensity distribution is shown as a dashed line, while each component of the skewness corrected model is shown as a solid line. The number K of detected classes is shown for each acquisition. . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Cross-sections produced by the analysis of the intensity distribution for each material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Two types of defects from the spectral analysis are shown. (a) shows an oversegmentation of the edges between the binder and the grains. (b) shows an over-segmentation which appears as textures on the inner part of the grains. . . 5.2 This figure shows some results of the BMRF on S-Al, B200 and IEX3-2. . . . . . 5.3 The morphological gradient G B (f ) of B200 by the cubic structuring element B 26 is shown in (a). The corresponding histogram is shown in (b). The peak value is indicated by the left dashed line at intensity 11, and the T-point threshold is indicated by the dashed line at intensity 48. D 1 is shown in blue, while D 2 is shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi List of Figures

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Erosions by segments of various length h and the corresponding covariance measures 5.6 IEX3-0 features both small particles due to noise and clusters of particles. In fig. 5.6(b), small particles in the white component are reflected in the covariance at small distances. The dashed lines are the estimated straight lines at the origin and at the asymptote, while the dotted vertical line indicates the range of the covariance. The estimated range of the covariance is 60, which corresponds to the mean size of the clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 HMX has two detected components beside the binder. The binder is shown in black in fig. 5.7(a), while the noisy component is in grey and the actual grains are in white. In fig. 5.7(b), the covariance of the grain component is shown. In fig. 5.7(c), the covariance of the noise is shown. . . . . . . . . . . . . . . . . . . 5.8 S-Al has two detected components beside the binder. The binder is shown in black in fig. 5.7(a), while the small grains component is in grey and the big grains component are in white. In fig. 5.8(b) the covariance of the small grains component is shown. In fig. 5.8(c) the covariance of the big grains component is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Two highly correlated components of BET-0. fig. 5.9(a) and fig. 5.9(b) show the two concerned components, while fig. 5.9(c) shows the corresponding crosscorrelation measure. In fig. 5.9(c), the position of the stationary point is shown as a dashed line, while the inflexion point is shown as a dotted line. The range d is estimated from the first stationary point, at h = 8 . . . . . . . . . . . . . . . . 5.10 Two uncorrelated components of BET-0. fig. 5.10(a) and fig. 5.10(b) show the two concerned components, while fig. 5.10(c) shows the corresponding crosscorrelation measure. In fig. 5.10(c), the position of the stationary point is shown as a dashed line, while the inflexion point is shown as a dotted line. The range d is estimated from the first inflexion point, at h = 20 . . . . . . . . . . . . . . . . 5.11 The cross-correlations of fig. 5.9(c) and fig. 5.10(c) are modelled using an exponential function on BET-0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.12 The results of the proposed procedure on MIXTE. Nested structures of fig. 5.12(c), whose colours blend towards black tone, are merged into one black component, fig. 5.12(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.13 The shape compactness measure for several materials is shown in heat maps. A tortuous component is close to 0, whereas a spherical component has a compactness close to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.14 Cross-sections after applying the shape compactness filtering step. The crosssections from the spectral analysis are on the left, the resulting cross-sections are on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15 The grains can be seen as holes in the binder phase, here in B200. The binder is white, while all other components are black. . . . . . . . . . . . . . . . . . . . . 5.16 The binders (in white) detected by filling the holes. IEX3-2 and S-Al are correctly identified, while BOL and HMX are not. . . . . . . . . . . . . . . . . . . . . . . 5.17 Two different paths in red leading from one side to the other in two different components of S-Al. Green is a connected component of the white phase and blue is a connected component of the black phase. . . . . . . . . . . . . . . . . . xvii Optimisation of automatic segmentation of granular fragmented materials 5.18 The detected binders using the stochastic approximation of the percolation are shown in white for IEX3-2, S-Al, BOL and HMX. . . . . . . . . . . . . . . . . . . 6.1 The interval [σ - j , σ + j ] is illustrated for each component in blue and red respectively. 6.2 This table shows the effect of the standard deviation of the range kernel on the result of the bilateral filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 The sequential flow chart is now replaced by an iterative process highlighted in red. Classes are first estimated on the original image. Unappropriate classes are removed via the cross-correlation measure or via the circularity measure. The filter is applied using parameters estimated by the determined classes. On the next run, new classes are estimated on the filtered image of the previous step. If the same number of classes are estimated on two consecutive cycles, the iterations are stopped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 7 1(c) is 3D view from B200. . . . . . . . . . . . . . . . . . . . . . 7.2 A tesselation (a) is generated from the modified gradient and the minima of the relief. The over-segmentation on grains is obtained on (b). . . . . . . . . . . . . 7.3 The distance function is shown as a heatmap for the euclidean metric. Maxima are located in the center of grains, while low values are on the boundaries of touching grains. In figs. 7.3(b) to 7.3(d), the effect of different metrics are shown. In fig. 7.3(b), two maxima are located on the two visually separated grains and this metric features the best overall relief, where the junction between the two grains is a saddle point. In fig. 7.3(c), two maxima are located on the center of both grains but a square shape distance induces high values near the junction. In fig. 7.3(d), only one maximum appears, and only one grain is therefore flooded. 7.4 The over-segmentation produced by using the minima of the relief is shown in this figure. In fig. 7.4(a), the filtered image obtained from part II is shown. In fig. 7.4(b), the obtained over-segmentation is shown. . . . . . . . . . . . . . . . 100 7.5 The minimal spanning tree of a connected graph is shown. Nodes are shown in square, while edges are weighted and shown in lines. In fig. 8.6(a), a connected graph issued from an over-segmentated grain is shown. The weights associated to each edge correspond to eq. (7.6). In fig. 7.5(b), a minimal spanning tree of fig. 8.6(a) is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.6 Construction of the probability density function from step 1 to step 100. Marked regions are shown in black. In the row Segmentation, watershed lines are produced. In pdf , each watershed line is associated to its probability, displayed in gray level (white: low probability, black: high probability). . . . . . . . . . . . . 105 xviii List of Figures 7.7 A hierarchy of a tree is shown. In fig. 7.7(a), the over-segmentation is shown with its associated minimum spanning tree. Each node is indexed. In fig. 7.7(b), the probability density function is shown. In fig. 7.7(c), the hierarchy of merges is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.8 A hierarchical cut is applied and 5 clusters are obtained. In fig. 7.8(a), the hierarchy is cut at 0.6. In fig. 7.8(b), the resulting partition is shown. . . . . . . 107 7.9 The euclidean distance on two synthetic images, on which the criterion is based.

  7.9(b), no indentations are visible, and the Euclidean distance has a maximum spanning a straight line that joins the centres of the two circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.10 The partitions (right) are obtained with = 0 from the over-segmentations (left).109 7.11 This is the segmentation result on B200 with r 0 = 1.1. . . . . . . . . . . . . . . 110 8.1 The fragment 2 is closer to 1 even though it should be associated to 3. . . . . . 111 8.2 Figures 8.2(a) and 8.2(b) are results obtained in [39], In fig. 8.2(a), the watershed segmentation is obtained on the closed image, and the markers used are filtered by the h-minima transformation. In fig. 8.2(b), the watershed segmentation uses markers obtained by the K-means technique. In figs. 8.2(a) and 8.2(b), we can observe several grains over-segmented or under-segmented. . . . . . . . 112 8.3 Figures 8.3(a) and 8.3(b) are 2D slices of CT-scan of fragmented granular materials. figs. 8.3(c) and 8.3(d) are the corresponding over-segmentations produced by the segmentation presented in 7.3.1. . . . . . . . . . . . . . . . . . . . . . . 113 8.4 The process to generate interfaces is illustrated. In fig. 8.4(a), a granular material is shown.
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 8 4(b) an example of segmentation obtained from section 7.3. In fig. 8.4(c), the Euclidean distance d(f ) is shown. In fig. 8.4(d), The SKIZ is drawn in red, the objects in gray, and triple points in blue. . . . . . . . . . . . . 114 8.5 The distance along the skiz increases towards the triple points. By iteratively pruning the SKIZ starting from the triple points, we obtain the interfaces shown in fig. 8.5(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.6 The maximal spanning tree of a connected graph is shown. Nodes are drawn as squares, while edges are weighted and drawn as lines. In fig. 8.6(a), a connected graph issued from an over-segmentated grain is shown. The weights associated to each edge correspond to eq. (8.11). In fig. 8.6(b), a maximal spanning tree is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.7 A simple case of hierarchy of partitions built from a maximum spanning tree is illustrated. In (a), objects are shown in black, and interfaces are valued using a colormap scheme. The affinity used to generate the valued edges is a linear combination of A µ , A σ 2 and A s .The resulting hierarchy is shown in (c), where 4 clusters are visually identified, and the y-axis is A. We can see that objects 1 and 3 have a lower affinity than 0 and 2, and are visually two distinct grains that are connected. The top-down cut from algorithm 1 returns the partition shown in (b).119 8.8 The bivariate histogram (c) is constructed from the labels of GT (a) and from the labels obtained by hierarchical clustering extracted from the same slices (b). A F 1 score of 0.88 is achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.9 (a) shows two fragments that heavily drift from one another on the bottom left. (b) shows the over-segmentation. (c) the result of the fragment merging. The round fragment in (b) in the bottom right corner colored in red and in blue, is oversegmented. In (c), the two objects were merged into one orange grain.) . 122 xix Optimisation of automatic segmentation of granular fragmented materials 8.10 Results of the fragments merging method.(a) Slice of reassembled MAT1. (b)
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 1 The timelines for each categories of CCL algorithms in (a), (b) and (c). The timeline of the most recent algorithms are in (d). . . . . . . . . . . . . . . . . . 9.2 The reading associated with B 4 , B 8 and B hex . Only the already processed neighbours are kept in the mask (in raster scan). Each point of this mask has been indexed in alphabetic order, while the index x indicates the central point. . 9.3 Steps of the 2-scan are shown. Label 1 is shown in blue, while label 2 is shown in green. A first raster scan attributes temporary labels in (a) to (g). The solved equivalence table is : p(1) = 1, p(2) = 1. In (h), the result of the second raster scan is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 An optimal decision is shown for B 8 . . . . . . . . . . . . . . . . . . . . . . . . .
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1 .Figure 1 . 2 -

 112 Figure 1.2 -Imaging artefacts observed on CT-scans. (a) shows a ring artefact on bi-phasic epoxy material of HMX (125-160 µm) and perchlorate amonium (40-80 µm) (MIXTE). (b) and (c) show two beam hardening effects on concrete distributed multi-phasic materials (MRT). (d) shows a PVE on MIXTE. (e) shows the effect of the colorspace reduction from 12-bit to 8-bit images.

Figure 1 . 3 -

 13 Figure 1.3 -Scheme of a fall tower experiment in (a). Two crops (b) and (c) of mono-phasic butaline polished at 5 mm after impact with a free falling 20 kg mass from a fall tower of 20 to 30 cm (BOL-CHOC) obtained after dropping a mass of 2kg from 15 to 30cm.

  A.1) -mono-phasic butaline polished at 5 mm (BOL) (see fig. A.2) -mono-phasic butaline polished at 5 mm after impact with a free falling 20 kg mass from a fall tower of 20 to 30 cm (BOL-CHOC) (see figs. A.3 and A.4) -cyclotetramethylene-tetranitramine (HMX) (see fig. A.5) -distributed bi-phasic (IEX3) (see figs. A.6 to A.8) -bi-phasic epoxy material of HMX (125-160 µm) and perchlorate amonium (40-80 µm) (MIXTE) (see fig. A.9) -concrete distributed multi-phasic materials (BET) (see figs. A.10 and A.11) -mono-phasic epoxy material of perchlorate amonium (100 µm) (PA) (see figs. A.12 and A.13) -multi-phasic epoxy material of sand grains of 250 µm with alumine particules of 44-74 µm (S-A) (see fig. A.14) -multi-phasic epoxy material of sand grains of 250 µm with aluminium particules of diameter 74 µm (S-Al) (see fig. A.15) -multi-phasic epoxy material of sand grains of 250 µm with both alumine (74 µm) and aluminium (44-74 µm) (S-V1-A-Al) (see fig. A.16) -concrete distributed multi-phasic materials (MRT) (see figs. A.18 to A.20)

Figure 2 . 1 -

 21 Figure 2.1 -Two 2D grids used to acquire or display images.

13 ) 2 . 4 . 2 .

 13242 Definition CS [a,b] is the set of points whose values are within the interval [a, b].

18 )Figure 2 .

 182 Figure 2.3 provides an example of CS on a grey tone image, and examples of an erosion and a dilation on binary images.

3 elevationFigure 2 . 4 -

 324 Figure 2.4 -The minima in 1D. Circles represent nodes N . Double/single-headed arrows represent / relations, respectively. The plateaus are P = {p 1 , p 2 , p 3 }. The set of regional minima is R = P \ {p 2 , p 3 } = {{a, b}} (in red). The set of local minima is L = {{h}} (in green). The set of minima is min(f ) = R ∪ S = {{a, b}, {h}}.

Figure 3 . 1 -

 31 Figure 3.1 -Intensity histograms of B200, IEX3-0, BET-1 and S-Al.

Original 4 Figure 3 . 2 -

 432 Figure 3.2 -Effects of filters on the distribution of S-Al. S-Al is composed of a light grey binder, big grey grains and smaller dark grey grains. In the left column, the filtered images are shown. In the right column, the corresponding histograms are shown, where the original histogram is shown in dotted lines, and the histogram of the filtered image is shown in plain lines.

Figure 3 . 3 -

 33 Figure 3.3 -Effects of the Opening and Closing operators on the distribution of S-Al. In the left column, the filtered images are shown. In the right column, the corresponding histograms are shown, where the original histogram is shown in dotted lines, and the histogram of the filtered image is shown in plain lines. A shift is observed towards lower values for the Opening filter and towards higher values for the Closing filter.

4 Figure 3 . 4 -

 434 Figure 3.4 -The two vector of intensities to maximise/minimise are displayed. A = (40, 67, 176) and B = (55, 124). The distribution of intensities of the original image is shown as dotted blue line, while the distribution of the filtered image is shown as plain red line.

Figure 3 . 5 -

 35 Figure 3.5 -The result of the optimisation of the parameters of the filters AD, TV and NM on S-Al.

Figure 4 . 1 -

 41 Figure 4.1 -Greedy decomposition of a histogram. The different H i are shown in color.

1 Figure 4 . 2 -

 142 Figure 4.2 -Boundaries in which the estimated Gaussian is considered dominant. The acquisition is S-Al. Left is the method presented in [1]; detected bounds are [0, 255]. Right is our method; detected bounds are [80, 96].

  4.2. If one searches for the first minimum left and right of μi , [2, 255] will be found as value for b 1 and b 2 , see fig. 4.2, which is obviously not the interval of dominance.

48 4 .

 4 Analysis of the intensity distribution

Figure 4 . 3 -

 43 Figure 4.3 -The skewness correction allows tighter fit of the model to the histogram of IEX3-1. Left is the classic GMM model, while right is the skewness corrected model. The resulting intersection is closer to the desired threshold value (119 against 124).GMMUnskewed model

Figure 4 . 4 -

 44 Figure 4.4 -The thresholds values obtained for Otsu, Kappur, minimum error, Gaussian smoothing and Greedy thresholdings for unfiltered IEX3-1, B200, S-Al is shown in fig. 4.4(c).We imposed the number of classes K = 2, K = 2 and K = 3 in each case. In the uni-modal case, only Otsu and Kappur were able to found coherent threshold values. In the bi-modal case, all thresholding methods are able to found sound values. Kapur thresholding differs from the expected threshold values in the multi-modal case. Otsu found a different threshold (at 58 in green) than minimum error, Gaussian smoothing and Greedy thresholdings, which are closer to 10 (in red). However, it's close to the observed class of S-Al, as shown in fig.4.4(d).

Figure 4 . 5 -

 45 Figure 4.5 -Gaussian mixture model obtained by using variational Bayesian Gaussian mixture, two different runs.

Figure 4 . 6 - 4 56 4 .

 4644 Figure 4.6 -Gaussians mixture produced by the greedy approach. Left is the original image, right is the Gaussian mixture produced by the greedy approach. The original intensity distribution is shown as a dashed line, while each component of the skewness corrected model is shown as a solid line. The number K of detected classes is shown for each acquisition.

Figure 5 . 1 -

 51 Figure 5.1 -Two types of defects from the spectral analysis are shown. (a) shows an over-segmentation of the edges between the binder and the grains. (b) shows an oversegmentation which appears as textures on the inner part of the grains.

2 )Figure 5 . 2 -

 252 Figure 5.2 -This figure shows some results of the BMRF on S-Al, B200 and IEX3-2.

9 ) 5 . 4 (

 954 Figure 5.3 -The morphological gradient G B (f ) of B200 by the cubic structuring element B 26 is shown in (a). The corresponding histogram is shown in (b). The peak value is indicated by the left dashed line at intensity 11, and the T-point threshold is indicated by the dashed line at intensity 48. D 1 is shown in blue, while D 2 is shown in red.

Figure 5 .

 5 Figure 5.4 -Thistableshows some results of the watershed local thresholding on S-Al, B200 and IEX3-2. While the PVE effect is reduced, some of the darker grains of S-Al disappear. The PVE effect is also removed in B200 and in IEX3-2. However, bridges tend to appear in between grains such as the two middle top grains in B200.

Figure 5 . 6 -

 56 Figure 5.6 -IEX3-0 features both small particles due to noise and clusters of particles. In fig. 5.6(b), small particles in the white component are reflected in the covariance at small distances. The dashed lines are the estimated straight lines at the origin and at the asymptote, while the dotted vertical line indicates the range of the covariance. The estimated range of the covariance is 60, which corresponds to the mean size of the clusters.

Figure 5 . 7 -

 57 Figure 5.7 -HMX has two detected components beside the binder. The binder is shown in black in fig. 5.7(a), while the noisy component is in grey and the actual grains are in white. In fig. 5.7(b), the covariance of the grain component is shown. In fig. 5.7(c), the covariance of the noise is shown.

Figure 5 . 8 -Figure 5 . 9 - 8 (Figure 5 . 10 -

 58598510 Figure 5.8 -S-Al has two detected components beside the binder. The binder is shown in black in fig. 5.7(a), while the small grains component is in grey and the big grains component are in white. In fig. 5.8(b) the covariance of the small grains component is shown. In fig. 5.8(c) the covariance of the big grains component is shown.

Figure 5 . 11 -Figure 5 . 12 -

 511512 Figure 5.11 -The cross-correlations of fig. 5.9(c) and fig. 5.10(c) are modelled using an exponential function on BET-0.

Figure 5 . 13 -Figure 5 . 14 -

 513514 Figure 5.13 -The shape compactness measure for several materials is shown in heat maps. A tortuous component is close to 0, whereas a spherical component has a compactness close to 1. B200

Figure 5 . 16 -

 516 Figure 5.16 -The binders (in white) detected by filling the holes. IEX3-2 and S-Al are correctly identified, while BOL and HMX are not.

Figure 5 . 17 -

 517 Figure 5.17 -Two different paths in red leading from one side to the other in two different components of S-Al. Green is a connected component of the white phase and blue is a connected component of the black phase.

Figure 5 . 18 -Figure 5 .

 5185 Figure 5.18 -The detected binders using the stochastic approximation of the percolation are shown in white for IEX3-2, S-Al, BOL and HMX.

Figure 6 . 1 -Figure 6 . 2 -

 6162 Figure 6.1 -The interval [σ - j , σ + j ] is illustrated for each component in blue and red respectively.

Figure 6 . 5 -

 65 Figure 6.5 -This table shows the results of the analysis on MRT.

Figure 6 .

 6 Figure 6.6 shows crops of all the classes produced by the analysis on our dataset. All but MRT-0, MRT-1 and MRT-2 are satisfactory.

Figure 6 . 6 -

 66 Figure 6.6 -Classes produced by the analysis for each material. The black color is the detected binder phase.

Figure 7 . 1 -

 71 Figure 7.1 -Connectivity on 2D or 3D acquisitions.Figure 7.1(a) shows the connected components of the first slice of B200.Figure 7.1(b) shows the connected components of the same slice when CCL is processed on the entire 3D volume of B200. The maximum connectivity of the grains phase is about 5% in 2D and reaches 82% in 3D.Figure 7.1(c) is 3D view from B200.

Figure 7 .

 7 Figure 7.1 -Connectivity on 2D or 3D acquisitions.Figure 7.1(a) shows the connected components of the first slice of B200.Figure 7.1(b) shows the connected components of the same slice when CCL is processed on the entire 3D volume of B200. The maximum connectivity of the grains phase is about 5% in 2D and reaches 82% in 3D.Figure 7.1(c) is 3D view from B200.

Figure 7 .

 7 Figure 7.1 -Connectivity on 2D or 3D acquisitions.Figure 7.1(a) shows the connected components of the first slice of B200.Figure 7.1(b) shows the connected components of the same slice when CCL is processed on the entire 3D volume of B200. The maximum connectivity of the grains phase is about 5% in 2D and reaches 82% in 3D.Figure 7.1(c) is 3D view from B200.

Figure 7 .

 7 Figure 7.1 -Connectivity on 2D or 3D acquisitions.Figure 7.1(a) shows the connected components of the first slice of B200.Figure 7.1(b) shows the connected components of the same slice when CCL is processed on the entire 3D volume of B200. The maximum connectivity of the grains phase is about 5% in 2D and reaches 82% in 3D.Figure 7.1(c) is 3D view from B200.

  Figure 7.2 -A tesselation (a) is generated from the modified gradient and the minima of the relief. The over-segmentation on grains is obtained on (b).

Figure 7 . 3 -Figure 7 . 4 -

 7374 Figure 7.3 -The distance function is shown as a heatmap for the euclidean metric. Maxima are located in the center of grains, while low values are on the boundaries of touching grains. In figs. 7.3(b) to 7.3(d), the effect of different metrics are shown. In fig. 7.3(b), two maxima are located on the two visually separated grains and this metric features the best overall relief, where the junction between the two grains is a saddle point. In fig. 7.3(c), two maxima are located on the center of both grains but a square shape distance induces high values near the junction. In fig. 7.3(d), only one maximum appears, and only one grain is therefore flooded.

7 .Figure 7 . 5 -

 775 Figure 7.5 -The minimal spanning tree of a connected graph is shown. Nodes are shown in square, while edges are weighted and shown in lines. In fig. 8.6(a), a connected graph issued from an over-segmentated grain is shown. The weights associated to each edge correspond to eq. (7.6). In fig. 7.5(b), a minimal spanning tree of fig. 8.6(a) is shown.

Figure 7 . 6 -

 76 Figure 7.6 -Construction of the probability density function from step 1 to step 100. Marked regions are shown in black. In the row Segmentation, watershed lines are produced. In pdf , each watershed line is associated to its probability, displayed in gray level (white: low probability, black: high probability).

Figure 7 . 7 -Figure 7 . 8 -

 7778 Figure 7.7 -A hierarchy of a tree is shown. In fig. 7.7(a), the over-segmentation is shown with its associated minimum spanning tree. Each node is indexed. In fig. 7.7(b), the probability density function is shown. In fig. 7.7(c), the hierarchy of merges is shown.

Figure 7 . 9 -

 79 Figure7.9 -The euclidean distance on two synthetic images, on which the criterion is based. In fig.7.9(a), the maximum of the Euclidean distance is reached in the centre of the two circles. On the intersection of the two circle, the shape is indented and features smaller values. In fig.7.9(b), no indentations are visible, and the Euclidean distance has a maximum spanning a straight line that joins the centres of the two circles.

Figure 7 . 10 -

 710 Figure 7.10 -The partitions (right) are obtained with = 0 from the over-segmentations (left).

Figure 8 . 1 -

 81 Figure 8.1 -The fragment 2 is closer to 1 even though it should be associated to 3.

Figure 8 . 2 -

 82 Figure 8.2 -Figures 8.2(a) and 8.2(b) are results obtained in [39], In fig. 8.2(a), the watershed segmentation is obtained on the closed image, and the markers used are filtered by the h-minima transformation. In fig. 8.2(b), the watershed segmentation uses markers obtained by the K-means technique. In figs. 8.2(a) and 8.2(b), we can observe several grains over-segmented or under-segmented.

  3.1. In fig. 8.3, segmentations are shown for two fragmented materials. It is assumed that each X i represents an undamaged grain or a fragment of a damaged grain.

Figure 8 . 3 -

 83 Figure 8.3 -Figures 8.3(a) and 8.3(b) are 2D slices of CT-scan of fragmented granular materials. figs. 8.3(c) and 8.3(d) are the corresponding over-segmentations produced by the segmentation presented in 7.3.1.

Figure 8 . 4 -

 84 Figure 8.4 -The process to generate interfaces is illustrated. In fig. 8.4(a), a granular material is shown.Figure 8.4(b) an example of segmentation obtained from section 7.3. In fig. 8.4(c), the Euclidean distance d(f ) is shown. In fig. 8.4(d), The SKIZ is drawn in red, the objects in gray, and triple points in blue.

Figure 8 .

 8 Figure 8.4 -The process to generate interfaces is illustrated. In fig. 8.4(a), a granular material is shown.Figure 8.4(b) an example of segmentation obtained from section 7.3. In fig. 8.4(c), the Euclidean distance d(f ) is shown. In fig. 8.4(d), The SKIZ is drawn in red, the objects in gray, and triple points in blue.

Figure 8 . 5 -

 85 Figure 8.5 -The distance along the skiz increases towards the triple points. By iteratively pruning the SKIZ starting from the triple points, we obtain the interfaces shown in fig. 8.5(b).

Figure 8 . 6 -

 86 Figure 8.6 -The maximal spanning tree of a connected graph is shown. Nodes are drawn as squares, while edges are weighted and drawn as lines. In fig. 8.6(a), a connected graph issued from an over-segmentated grain is shown. The weights associated to each edge correspond to eq. (8.11). In fig. 8.6(b), a maximal spanning tree is shown.

Figure 8 . 7 -

 87 Figure 8.7 -A simple case of hierarchy of partitions built from a maximum spanning tree is illustrated. In (a), objects are shown in black, and interfaces are valued using a colormap scheme. The affinity used to generate the valued edges is a linear combination of A µ , A σ 2 and A s .The resulting hierarchy is shown in (c), where 4 clusters are visually identified, and the y-axis is A. We can see that objects 1 and 3 have a lower affinity than 0 and 2, and are visually two distinct grains that are connected. The top-down cut from algorithm 1 returns the partition shown in (b).

Figure 8 . 8 -Figure 8 . 9 - 1 -Figure 8 . 10 -

 88891810 Figure 8.8 -The bivariate histogram (c) is constructed from the labels of GT (a) and from the labels obtained by hierarchical clustering extracted from the same slices (b). A F 1 score of 0.88 is achieved.

Figure 9 . 1 -

 91 Figure 9.1 -The timelines for each categories of CCL algorithms in (a), (b) and (c). The timeline of the most recent algorithms are in (d).

B 8 Figure 9 . 2 -

 892 Figure 9.2 -The reading associated with B 4 , B 8 and B hex . Only the already processed neighbours are kept in the mask (in raster scan). Each point of this mask has been indexed in alphabetic order, while the index x indicates the central point.

Figure 9 . 3 -

 93 Figure 9.3 -Steps of the 2-scan are shown. Label 1 is shown in blue, while label 2 is shown in green. A first raster scan attributes temporary labels in (a) to (g). The solved equivalence table is : p(1) = 1, p(2) = 1. In (h), the result of the second raster scan is shown.

Figure 9 .Figure 9 . 4 -

 994 Figure 9.4 -An optimal decision is shown for B 8 .

  c) M (b, c) M (a, b, c) d M (a, d) M (b, d) M (a, b, d) M (c, d) M (a, c, d) M (b, c, d) M (a, b, c, d)

Figure 9 . 5 -

 95 Figure9.5 -The construction of an optimal decision tree is shown for B 8 .

x 1 x 2 x 3 x 4 ax 1 x 2 x 3 x 4 aFigure 9 . 6 -Figure 9 . 7 -

 24249697 Figure9.6 -The mask used in[47] and the mask we propose in this work. Both masks are proposed for the 8-connectivity.

x 1 x 2 x 3 x 4 a b c d e f Figure 9 . 8 -

 24f98 Figure 9.8 -The neighbours are not always connected to the central points. In this figure, d is not connected to x1 or x4, while a and f are connected. Points set to 0 in f are in grey color, while points set to 1 are in white.

Figure 9 .

 9 10 shows this overlap on fig. 9.2(f) and on fig. 9.6(b).

Figure

  Figure9.9 -The first table (a) features two commands associated to the action M (a, c) and M (a, d). The second table (b) is the AND-table obtained by the greedy procedure of[47]. In (a), those two commands have only one token of difference and can be compressed into {1100101 -00} with the action {M (a, c)}. However, this compression is no longer possible after applying the greedy compression, as in (b).

x 1 x 2 x 3 x 4 aFigure 9 . 10 -Figure 9 . 11 -Figure 9 . 12 -

 24910911912 Figure 9.10 -Overlaps observed for B 8 and for our black-based mask. The first scan is shown in black, the second scan translated by 1 is shown in red. In (a), x,b and c of the previous scan are overlapped with d, a and c of the next scan. In (b), x 2 , x 4 , c and d correspond to e, f , a and b.

2 :

 2 input : M, the set of markers. output : W, the watershed lines set output : B m , the catchment basin associated to minimum m foreach m ∈ M do pushHQ (m); end while not emptyHQ () do a ← popHQ (); foreach b ∼ a, l(b) = 0 do l(b) ← l(a); pushHQ (b); end end Algorithm Compute the watershed transformation based on hierarchical queues.

Figure 10 . 1 -

 101 Figure 10.1 -This figure shows the bias introduced by the hierarchical queue definition of the watershed transformation.

  d(a, b) = min ρi∈(a,b) l(ρ i ) (10.2) 150 10. Watershed with (a, b) = {ρ(a, b)} the collection of all paths from a to b.

Lemma 10 . 2 . 1 .

 1021 If all predecessors x of y belong to B ⊂ i then y also belongs to B ⊂ i y : ∀x, x ≺ y, x ∈ B ⊂ i → y ∈ B ⊂ i (10.7)

See the illustration fig. 10 . 2 .

 102 From the prop. 10.2.2 immediately follows eq. (10.12b) of the algorithm. The condition equation (10.8) gives eq. (10.12c).

Figure 10 . 2 -

 102 Figure 10.2 -Various types of basins B ⊂ i , B i and B i (with the inclusion relation B ⊂ i ⊆ B i ⊆ B i ) generated by the paths ρ (m i , x) starting in two minima m 1 and m 2 and terminating in some arbitrary point x.

Figure 10 . 3 -

 103 Figure 10.3 -Completion of the graph g(N , e ) in 2D. (a) gray-level image, with two local minima (green) and one plateau (pixels valued 4) (b) geodesic distance on a plateau to the decreasing border. (c) flooding graph, increasing graph on the relief (black), increasing graph on the geodesic distance (red). The hierarchical flood of a plateau starting from the descending border from two basins (blue and green) is shown in(d, e, f, g). In red is shown the nodes affected by the next dilation. In black is shown the nodes from the watershed set. It is shown that each step of the hierarchical flood implements a geodesic dilation on plateaus from the descending border.

Figure 10 . 3 elevationFigure 10 . 4 -

 103104 Figure 10.4 shows in 1D the completion of the increasing graph of the initial image with an increasing graph of the geodesic distance on plateaus. The plateau p 2 is equipped with two arrows (in red). The plateaus p 1 and p 3 are left unchanged (a regional minimum, and a plateau only containing a decreasing border. Now, when all minima are labeled and the increasing graph completed on the plateaus, we will propagate the labels to the catchment basins. Figure10.3 shows in 2-D the completion of the increasing graph and the corresponding flooding.

  11) h 0 (a) ← f (a) 154 10. Watershed We redefine the relations ≺, and taking into account the modification of homotopy : i (a) < h i (b) ⇔ a is a lower neighbor at step i of b, denoted by a ≺ b h i (a) > h i (b) ⇔ a is an upper neighbor at step i of b, denoted by a b h i (a) = h i (b) ⇔ a, b are level-neighbors at step i, denoted by a b

Definition 10 . 5 . 1 .

 1051 A pixel a is a button hole entrance (BHE) if l(b) = ws, ∀b ≺ a.

Figure 10 . 5 -Definition 10 . 5 . 4 .

 1051054 Figure 10.5 -The appearance of button holes. (a) gray level image with two minima. (b) increasing graph with the two minima labeled red and green. (c) The only lower neighbor (arrow arriving from) of the two nodes given in heavy line carries ws label. (d) the rule (10.12a) assigns the button hole the label β.

Figure 10 . 6 -Figure 10 . 7 -

 106107 Figure 10.6 -Timing comparison on a wide range of images scaling from 300 3 to 1500 3 .

Figure 10 . 8 -

 108 Figure 10.8 -Granular materials. (a) Input swamped image. (b) Output Image. (c) Input image. (d) Output image

Figure A. 3 -

 3 Figure A.3 -mono-phasic butaline polished at 5 mm after impact with a free falling 20 kg mass from a fall tower of 20 to 30 cm (BOL-CHOC)-0.

Figure A. 9 -

 9 Figure A.9 -bi-phasic epoxy material of HMX (125-160 µm) and perchlorate amonium (40-80 µm) (MIXTE).

Figure A. 12

 12 Figure A.12 -mono-phasic epoxy material of perchlorate amonium (100 µm) (PA) after polishing.

Figure A. 16

 16 Figure A.16 -multi-phasic epoxy material of sand grains of 250 µm with both alumine (74 µm) and aluminium (44-74 µm) (S-V1-A-Al).

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Figure 2.2 -Some elementary SEs used in this work. The origin of each SE is drawn as a cross.

	Optimisation of automatic segmentation of granular fragmented materials
	(a) B 4	(b) B hex	(c) B 8

[START_REF] Beucher | Hierarchical queues: general description and implementation in MAMBA image library[END_REF] 

where + denotes the vector addition. In this work, only symmetric SEs are considered: Proposition 2.2. A SE B is symmetric if and only if, for a given vector δ ∈ B, -δ is also an element of B.

segmentation Fragments aggregation Image Content Adapted Filter Figure

  

	2. Introduction to the image processing for granular materials
	CT-scan or Micrography
	Analysis	
	Intensity	Spatial
	distribution	distribution
	Adapted filter	
	Marker-based	

Table 3 .

 3 1 -Optimised parameters for each of the selected five filters. The bottom row shows the median, the mean and the squared variance for each set of parameters.

	Optimisation of automatic segmentation of granular fragmented materials	
	Input	GA	MD	AD	TV	NM
	B200	0.74	0.62	0.53	0.64	0.48
	BOL-CHOC-0	0.64	0.55	0.64	0.56	0.54
	BOL-CHOC-1	0.68	0.59	0.64	0.60	0.57
	BOL	0.58	0.46	0.34	0.48	0.46
	HMX	0.59	0.33	0.69	0.41	0.50
	IEX3-0	0.61	0.64	0.61	0.62	0.62
	IEX3-1	0.53	0.56	0.53	0.53	0.53
	IEX3-2	0.86	0.74	0.72	0.78	0.59
	MIXTE	0.79	0.76	0.82	0.75	0.72
	MRT-0	0.50	0.31	0.33	0.36	0.31
	MRT-1	0.33	0.26	0.32	0.29	0.26
	MRT-2	0.52	0.31	0.40	0.43	0.40
	BET-0	0.80	0.83	0.80	0.80	0.82
	BET-1	0.88	0.91	0.87	0.89	0.89
	PA-0	0.85	0.74	0.60	0.74	0.50
	PA-1	0.87	0.76	0.51	0.74	0.51
	S-A	0.89	0.83	0.87	0.91	0.89
	S-Al	0.76	0.67	0.61	0.67	0.60
	S-V1-A-Al	0.75	0.69	0.65	0.67	0.61

Average 0.69 ±0.02 0.61 ±0.04 0.60 ±0.03 0.62 ±0.03 0.57 ±0.03

Table 9 .

 9 1 -Average Results in ms (Lower is Better)

	Authors	3dpes fingerprints hamlet medical mirfilckr tobacco800
	Wu[142]	0.877	0.525	5.137	2.389	0.525	8.574
	DiStefano[132] 1.027	0.872	7.136	3.739	0.780	10.396
	Grana[47]	0.695	0.483	4.162	1.842	0.371	6.557
	Chang[25]	0.756	0.491	4.605	2.112	0.398	7.344
	Lacassagne[69] 2.446	0.571	10.375	4.116	0.463	15.405
	He[56]	1.108	0.497	5.285	2.412	0.431	7.842
	Zhao[147]	1.019	0.803	7.002	3.563	0.690	10.105
	Grana[45]	0.866	0.485	4.951	2.317	0.441	8.232

Table 9 .

 9 3 -This decision table has been built from fig. 9.4

	Commands	Actions

Table 9 .

 9 8 -The number of memory access for our mask (CHBDT) and Grana mask (BBDT) on the 3dpes data base.

	Algorithm Binary Image Label Image Equivalence Vector/s Total Accesses
	BBDT		0.423	0.612		0.007		1.042
	CHBDT		0.422	0.612		0.008		1.040
	NULL		0.406	0.406				0.811
			Table 9.9 -average results in ms (lower is better)
		SAUF DiStefano BBDT	CT	CCIT	LSL	CTB	SBLA	PRED CHBDT
	3dpes	0.739	0.789	0.531 1.326 0.577 1.896 0.851 0.706 0.664	0.469
	finger	0.447	0.677	0.372 1.229 0.376 0.434 0.382 0.619 0.372	0.353
	hamlet	5.232	7.291	4.123 12.363 4.511 11.119 5.353 7.171 4.973	3.765
	medical	2.398	3.868	1.846 5.495 2.121 4.169 2.435 3.555 2.327	1.669
	mirflickr 0.524	0.786	0.372 1.172 0.398 0.463 0.433 0.692 0.442	0.365
	tobac	8.578	10.499	6.587 16.846 7.414 15.488 7.888 10.163 8.281	5.911

Table 9 .

 9 10 -Analysis of memory accesses required by connected components computation for 'test random' dataset. The numbers are given in millions of accesses

	Algorithm Binary Image Label Image Equivalence Vector/s Other Total Accesses
	BBDT	6.012	4.757	1.468	12.237
	CHBDT	5.175	4.852	1.851	11.878

  are not disjoint, see fig.10.2. The zones equidistant to two minima are not necessarily thin. However, we show that this distance can be used to obtain disjoint basins by construction.In every B i in equation (10.3) there is a subset B ⊂ i that is not reachable from another minimum m j

(a) Image of classes (b) Filtered (c) Segmentation (d) 3D view

Certaines de nos acquisitions proviennent de matériaux endommagés. L'endommagement a pour origine un choc méchanique, provoquant la fracturation des grains. La structure en résultant affecte le comportement du matériaux. Les grains peuvent être fragmentés à cause de plusieurs facteurs externes tels que le vieillissement, les conditions d'entreposage, ou encore des sollicitations méchaniques de l'utilisateur. Ces grains sont alors désagrégés en plusieurs fragments de différentes tailles et de différents volumes. De plus, les fragments s'éloignent de leur position d'origine dans le liant élastique. Evaluer la fragmentation est alors primordiale pour pouvoir estimer son effet sur les propriétés du matériau.
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Fragments aggregation Image Content Adapted Filter Figure 6.3 -The sequential flow chart is now replaced by an iterative process highlighted in red. Classes are first estimated on the original image. Unappropriate classes are removed via the cross-correlation measure or via the circularity measure. The filter is applied using parameters estimated by the determined classes. On the next run, new classes are estimated on the filtered image of the previous step. If the same number of classes are estimated on two consecutive cycles, the iterations are stopped.

provided ways for automatic determination if the user want to process several acquisitions at once.

As the binder determination and the estimation of the mean size of grains is based on statistical inferences, those measures are also prone to error. However, a glance from the user will be able to detect those error and ajust the parameters to obtain a more satisfaying analysis of the material.

We have used the cross-correlation and the circularity measure to validate automatically the classes detected during the analysis of the intensity distribution. While those criteria prove to be able to remove undesired classes in most cases, they are not to be considered reliable on every possible acquisition. However, one can adapt those or add new measures to better fit the data. The thresholds of the cross-correlation and of the circularity can be raised or lowered. A manual validation of the inferred classes is also possible after a visual inspection of the resulting image of classes.

We proposed a chain that provides a complete template to empirical segmentation, easily adaptable to newly acquired data. It is to be used as a semi-automatic method, with a few parameters to adapt in order to obtain satisfying results. It is based on a iterative scheme. A first set of classes is produced by the spectral analysis. Then, the latter are improved iteratively until a satisfying result arises. All those operations are fast to compute and allow for an interactive try and fail manual interactive segmentation. The automatic estimation of the parameters can be considered as an aid for interactive semi-automatic segmentation.

Fragments aggregation

Data:

B a binary tree. Root (B) returns the root of B. Subtree (n, B) return the leaves of the subtree of B with root n.

Result: P , a partition. Algorithm 1: The hierarchy B is cut by a recursive top-down search. Leaves of B correspond to a singleton of N (T ), T the maximum spanning tree. n = (n l , n r ) is a non-leaf node of B. Each cluster n is associated with w(n), the sum of the volumes of the individual objects composing the former. n l is the left child of n and n r is the right child. µ is the estimation of the mean size of grains, given by the covariance analysis.

Results

(λ k ) has been learned on MAT1 and used as such on MAT2. Figure (8.9) shows a crop of a result obtained on MAT1. Figure (8.10) shows a 3D view of results on MAT1. Some grains are broken down into multiple small fragments, they have been successfully merged. Touching grains have been solved for MAT2 and MAT1 and visually satisfying results have been achieving for the merging of fragments.

The obtained vector (λ k ) for affinities A bar , A µ , A σ 2 and A s is [0.73, 1.85, 0.30, 1.33]. The affinity obtained from the mean of the distance on the interfaces has the highest influence on the combined affinity. Thus, the lower is the mean distance along the interface, the higher is the affinity A µ on this interface. The interface-to-surface ratio is also dominant in the linear combination of affinity. If the interface covers most of the surface of a grain, then a high affinity A s is associated to the interface. Finally, the barycentric distance and the variance of the distance on the interface have low influences on the resulting combined affinity. At first, a low value of the variance of the distance was thought to be quite relevant to detect two grains, the borders of which are similar. The resulting mixture ratio of 0.30 regarding this affinity shows that its importance is lesser than other affinities.

Table (8.1) shows the size of the generated graph for MAT1 and MAT2. One benefit of this method is to be able to work on a compressed representation of the studied materials from the raw tridimensional data. Further compression is achieved by using a -filtering of the weighted graph. Here, edges lower than mean(a) -2 * std(a) have been removed. An appropriate filtering will generate several connected components, which can each be processed independently and in parallel. table 9.5 Table 9.5 -Some actions are no longer performed and the corresponding columns are removed from the decision table.

Commands

Actions

In the next section, we show how to obtain an optimal decision tree from an OR-table.

Building a binary tree from an OR-table

From the previous section 9.4, we produced a set of commands, where every token has a value of "0" or "1". As no token has the value "don't care", no compression has been applied. In this section, our goal is to compress those commands through setting some token to "-". Let us denote c k the command with k tokens set to "-". Thus, the command {01010} is a command with k = 0 token set to "-". Our goal is to create a set of c k commands from the set c k-1 . This process starts with k = 1, as c 0 are known from the process described in section 9.1.

We define the distance between two commands, as the number of tokens that differ, this distance is also known as the Hamming distance. For example, {01010} and {01011}, the following distance d is obtained:

A pair of commands is defined as c k and c k , so that d(c k , c k ) = 1. In the previous example, {01010} and {01011} is a pair of commands, since only one value differs. Those two commands can be seen as the two possible states deriving from {0101-}, where the last bit has been flipped to 0 or to 1. We denote the set P of k pairs c k-1 , c k-1 the set of Optimisation of automatic segmentation of granular fragmented materials Table 9.7 -The following forest has been generated for our proposed mask. Each row is a root of a tree. For each tree, the gain and the number of leaves are given. Our method can be used to generate forests of optimal decision trees for every given mask. However, the size of the mask needs to be reasonable small. Indeed, in section 9.5, for a given mask, we compute the gains for every possible command. The total number of combinations possibles for a mask of size N is 3 N . For our proposed mask, we have N = 10, which gives us 59049 commands to evaluate. The neighbours to evaluate in B 26 in 3D images, is 13. The number of possible commands is therefore 3 14 = 4782969.

Results

The benchmarks set by Grana [START_REF] Grana | YACCLAB -Yet Another Connected Components Labeling Benchmark[END_REF] allows to test the accuracy of a given algorithm on different datasets. Those datasets include both synthetic and real images. All images are provided in 1 bit per pixel, with 0 being background and 1 being foreground. The following databases are given:

Random: A set of synthetic random noise images which contain black and white random

Conclusion

In this work, we proposed a new robust approach to the segmentation of granular materials. It can be used as a fully automatic chain and provides satisfactory results on adequate acquisitions. It is also adaptable to more complex acquisitions, heavily affected by the various noises that are inherent to the CT-scan technique. Its versatility was proved with the set of various acquisitions provided by CEA and by SA. Moreover, an new image content adaptive filter was proposed. A hierarchical clustering with geometric discrimination was introduced in chapter 7 and a new method for fragments merging is proposed in chapter 8. Some improvements over the state-of-the-art were proposed such as the threshold for CTscan, the binder detection, the CCL and the watershed transformation.

This processing chain can be considered as a pipeline, the steps of which are explained from chapter 3 to chapter 8. Those steps are divided in two parts: an adaptive filter and a segmentation of grains.

Part II leads to the definition of a multi-class adaptive filter. In chapter 3, several filters are reviewed and applied to CT-scans. The performance of each filter is reviewed. The next chapters 4 and 5 are dedicated to analysing the acquisition. This analysis allows for the adaptation of the filter to the image. In chapter 4, the distribution of intensities is partitioned, and classes are detected. A Gaussian mixture is fitted to the distribution.

In chapter 5, the aim is twofold: retrieve spatial information from each acquisition, and verify the relevance of each class detected during the analysis of intensity distribution. Statistical measures are performed, such as the covariance and the cross-correlation measures. The covariance measure is used to obtain estimations of the average radius and of the number of grains. The cross-correlation measure and the measure of shape compactness can be used in order to assess the relevance of each detected phase. The binder phase is automatically detected by using percolation measures. Two local thresholding methods are also reviewed: Bayesian Markov random field and local thresholding based on the watershed transformation.

In chapter 6, the analyses of spatial and intensity distributions are combined and a multiclass adaptive filter is proposed. A processing chain is proposed. The process iteratively improves the resulting filtered image. However, it does not always converge towards the real number of phases. Estimating the number of phases automatically reveals itself as being a complex task. In case the automated procedure fails to converge, satisfactory filtered images are obtained with a user-provided number of classes. Multiple iterations of filtering and analysis steps improve the quality of the final filtered image, especially on acquisitions heavily affected by noise and artefacts such as BET. This adaptive filter needs the supervision of the user, so that accurate results are obtained. 

Résumés en français

Introduction

La microtomographie aux rayons X est une technique non-destructive d'acquisition qui permet d'obtenir des images 3D, de haute résolution de matériaux dont la structure est complexe. La technique X-ray Computed tomography scanning (CT-scan) était longtemps réservé à un usage médical, mais l'accès à des microtomographes à rayons X s'est facilité au cours de ces dernières années et permet à un plus grand nombre de chercheurs et d'industriels de diversifier les domaines d'application de cette technique. Les matériaux étudiés par CT-scan se sont diversifiés. L'étude complète de ces matériaux comprend l'analyse d'image, la modélisation stochastique, la simulation physique et mécanique. Chacune de ces étapes demande un niveau de compétence avancé dans différents domaines d'étude. De nombreux efforts ont été consacrés à l'amélioration de technologie de CT-scan mais peu sont dédiées à l'extraction de la structures 3D à partir des images 3D, qui se présentent sous la forme d'un volume discretisé et valué en niveau de gris. Cette tâche n'est encore accessible qu'aux experts en traitement d'image et il n'existe pas d'outils ou de méthodologie générique permettant d'extraire la structure 3D à partir de tels images.

L'objectif de cette thèse est d'établir une chaîne de traitement, universel, qui permettrait de traiter des acquisitions volumineuses de CT-scan et qui peut être utilisée sur une variété de matériaux granulaires. Dans le cadre de ces développements, cette chaîne de traitement est appliquée à des matériaux complexes, ayant plusieurs phases, et pouvant être déformés et fragmentés. L'identification morphologique est effectuée sur des bétons, des matériaux énergétiques ou, du moins, simulant la structures de tels matériaux, avant ou après avoir été soumis à des sollicitations mécaniques.

Ces travaux sont regroupés dans le cadre d'un projet, nommé Segmentation automatique de matériaux granulaires -automatic segmentation of granular materials (SAMG). 

Analysis of the intensity distribution

Ce chapitre est dédié à la décomposition de l'histogramme de l'intensité en sous-histogrammes. Le seuillage automatique a été le sujet de nombreuses recherches. Nous citons plusieurs critiques de l'état de l'art portant sur le seuillage automatique, tels que [START_REF] Sezgin | Survey over image thresholding techniques and quantitative performance evaluation[END_REF][START_REF] Hammouche | A comparative study of various metaheuristic techniques applied to the multilevel thresholding problem[END_REF]. Nous proposons dans ce chapitre une approche par un modèle de mixture de Gaussians, et la comparons à l'état de l'art. De cette analyse, différentes informations spectrales sont déduites sur les constituants du matériau à partir de ce modèle.

Combining the filtering step and the analysis

Des chapitres précédents, il a été observé qu'un meilleur filtrage du chapitre 3 permet de déterminer des classes plus adaptées aux phases. Deux phases, d'intensités moyennes proches, apparaiteront comme un seul pic dans l'histogramme, si le bruit qui les affecte est important. Cependant, un filtre adapté produira deux pics séparés dans l'histogramme. De plus, des classes faussement détectées peuvent disparaître avec un filtrage plus adapté. Les artefacts, tels que le Beam hardening ou les Ring artefacts, apparaissent comme des rayures fortement saturées. Ces rayures apparaissent alors au début ou à la fin de l'histogramme. Un filtrage adapté permet de réduire ou de faire disparaître presque totalement ces artefacts. Moins de classes seront ainsi détectées. Nous nous intéressons à présent au lien existant entre l'étape de filtrage et l'étape de détermination des classes. Dans ce chapitre, la première chaine de traitement est assemblée, regroupant à la fois analyse et filtrage.
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