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généralisations les plus prospectives de l'approche repose surlÄôimplémentation d'une méthode numérique pour le calcul de structures laser avec des supports périodiques tels que des points quantiques, des ls quantiques, des cristaux photoniques et des réseaux.

Spin-lasers are semiconductor devices in which the radiative recombination processes involving spin-polarized carriers result in an emission of circularly polarized photons. Nevertheless, additional linear in-plane anisotropies in the cavity generally lead in preferential linearly-polarized laser emission and to possible coupling between modes. In this thesis, a general method for the modeling of semiconductor laser such as vertical-(external)-cavity surface-emitting laser containing multiple quantum wells and involving anisotropies that may reveal i) a local linear birefringence due to the strain eld at the surface or ii) a birefringence in quantum wells (QWs) due to phase amplitude coupling originating from the reduction of the biaxial D 2d to the C 2v symmetry group at the III-V ternary semiconductor interfaces. A novel scattering S-matrix recursive method is implemented using a gain tensor derived analytically from the Maxwell-Bloch equations. It enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with multiple quantum well active zones by searching for the resonant eigenmodes of the cavity. The method is demonstrated on real laser structures and is used for the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments. The method is generalized to nd the laser eigenmodes in the most general case of circular polarized pumps (unbalance between the spinup and spin-down channels) and linear gain dichroism. In addition, the measurement of full 4 × 4 Mueller matrix for multiple angles of incidence and in-plane azimuthal angles has been used for extraction of optical permittivity tensors of surface strained layers and quantum wells. Such spectral dependence of optical tensor elements are crucial for modeling of spin-laser eigenmodes, resonance conditions, and also for understanding of sources of structure anisotropies. Titre : Sv¥telné koherentní zdroje se spinov¥ polarizovaným proudem Klí£ová slova : spinové lasery, VCSELs, ellipsometrie Muellerových matic Abstrakt :

Spinové lasery jsou polovodi£ové za-°ízení v nichº zá°ivé p°echody zahrnující spin nosi£• vedou k emisi kruhov¥ polarizovaných foton•. Lokální anisotropie p°ítomné v rezonátoru v²ak ovliv¬ují výslednou polarizaci a vedou k emisi lineárních nebo elipticky polarizovaných vlastních mód• a k p°ípadné vazb¥ mezi nimi. V této práci je popsána obecná metoda modelování povrchov¥ emitujících polovodi£ových laser• s vertikální geometrií zahrnující vícenásobné kvantové jámy a p°ítomné lokální anisotropie: i) linearní dvojlom a dichroismus na povrchu ii) anisotropie v kvantových jamách pocházející z fázov¥-amplitudové vazby vzhledem k redukci D 2d symetrie na C 2v symetrii na rozhraní III-V ternárních polovodi£•. Nová metoda zahrnující S-maticový p°ístup a vyuºívající tenzor zesílení odvozený z Maxwell-Blochových rovnic umoºnuje modelování vlastností spinového laseru (laserový práh, vyzá°enou polarizaci, frekven£ní rozestup mód•) s vícenásobnými aktivními oblastmi. Metoda je demonstrována na p°íkladu reálné laserové struktury a je vyuºita pro výpo£et lokálních optických tenzor• permitivity na povrchu a v kvantových jamách. Metoda je dále zobecn¥na pro popis spinových laser• s elektrickým a optickým £erpáním a s lineárním dichroismem v zesílení. Pro výpo£et anizotropních optických konstant bylo vyuºito m¥°ení 4×4 Muellerovy matice pro r•zné úhly dopadu a r•zné azimutální úhly. Spektrální závislost optických konstant je klí£ová pro modelování vlastních módu, podmínek rezonance a také pro pochopení rozdílných zdroj• anizotropie v laserových strukturách. The electric eld of s-polarization is oriented perpendicularly to the plane of incidence, while p-polarization lies in the plane of incidence. . 35 3.5 Multilayer structure embeded in isotropic halfspaces (0) and (N + 1). Each layer is characterized by the permittivity tensor ε(n) and the thickness d (n) . 39 Evolution of the polarization state and the frequency detuning [START_REF] Frougier | Towards spin-LED and spin-VECSEL operation at magnetic remanence[END_REF]44]. . . 65
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Résumé

Les spin-lasers sont des dispositifs semi-conducteurs dans lesquels les processus de recombinaison radiative impliquant des porteurs polarisés en spin résultent en une émission de photons polarisés circulairement. L'ajout du degré de liberté de spin fournit de nouveaux eets et de nouvelles fonctionnalités. Cela ouvre de nouveaux horizons à des dispositifs modernes combinant les propriétés de l'électronique mainstream à base de charges avec des processus dépendant du spin. De tels dispositifs émetteurs de lumière à commande de spin orent de nombreux avantages aux futurs systèmes de communication optique tels que des interconnexions optiques recongurables pilotées par spin, une dynamique de modulation rapide, une commande de polarisation ainsi que des performances plus élevées, par exemple une réduction du seuil laser, une intensité laser améliorée et une stabilité de polarisation. D'un point de vue technologique, les lasers à géométrie verticale à semi-conducteurs III-V optiquement actifs sont considérés comme de bons candidats pour les dispositifs hautement implémentables à température ambiante. Dans de tels dispositifs, la propagation optique est normale à la surface du substrat et le gain est fourni par plusieurs puits quantiques pris en sandwich dans la cavité optique.

Néanmoins, des anisotropies linéaires supplémentaires dans la cavité conduisent généralement à une émission laser préférentiellement polarisée linéairement et à un éventuel couplage entre modes. Dans cette thèse, une méthode générale pour la modélisation de lasers à semi-conducteurs tels que le laser à surface verticale (externe) à cavité contenant des puits quantiques multiples et impliquant des anisotropies pouvant révéler (i) une biréfringence linéaire locale due au champ de déformation à la surface ou (ii) une biréfringence dans les puits quantiques due au couplage d'amplitude de phase provenant de la réduction de la symétrie D 2d biaxiale au groupe de symétrie C 2v aux interfaces semi-conductrices ternaires III-V. Pour les raisons mentionnées ci-dessus, une modélisation précise de l'émission et de la propagation de la lumière dans la structure active multicouche avec des anisotropies locales est requise. L'objectif principal de la thèse est de modéliser les propriétés optiques du rayonnement électromagnétique émis par les structures multicouches spin-LED et spin-VCSEL. L'approche proposée est basée sur deux étapes: (i) la représentation des couches de puits quantiques actives avec des sources dipolaires et (ii) la modélisation de la propagation de la lumière dans des structures multicouches résonantes en utilisant une approche matricielle appropriée respectant les équations de Maxwell dans chaque couche et les conditions aux limites aux interfaces.

Une nouvelle méthode récursive à matrices S de diusion est mise en oeuvre 2 LIST OF FIGURES en utilisant un tenseur de gain calculé analytiquement à partir des équations de Maxwell-Bloch. Il permet de modéliser les propriétés de l'émission (seuil, polarisation, dédoublement de mode) du laser avec plusieurs zones actives à puits quantiques en recherchant les modes propres résonnants de la cavité. La méthode est validée sur des structures laser réelles et est utilisée pour l'extraction de tenseurs de permittivité optique de déformation de surface et de puits quantiques en accord avec des données expérimentales. La méthode est généralisée pour trouver les modes propres du laser dans le cas le plus général de pompes polarisées circulaires (déséquilibre entre les canaux de spin-up et de spin-down) et le dichroïsme à gain linéaire. De plus, la mesure de la matrice de Mueller 4×4 complète pour des angles d'incidence multiples et des angles azimutaux dans le plan a été utilisée pour l'extraction de tenseurs de permittivité optique de couches contraintes supercielles et de puits quantiques.

Une telle dépendance spectrale des éléments tensoriels optiques est cruciale pour la modélisation des modes propres du laser à spin, des conditions de résonance, et aussi pour la compréhension des sources d'anisotropies de structure. L'ellipsométrie matricielle de Mueller est présentée comme la technique de choix pour l'étude des anisotropies locales dans les structures semi-conductrices multicouches telles que le 1/2 VCSEL dédié au pompage optique ou électrique.

L'approche proposée dans cette thèse convient au développement futur de la modélisation laser avancée. En particulier, la méthode peut être étendue à la description du comportement dynamique de spin-VCSELs avec plusieurs régions de puits quantiques actifs, y compris la modélisation du champ électrique dépendant du temps dans la cavité décrite par les équations de Maxwell-Bloch. L'une des Chapter 1

Introduction

Spin electronics, also called spintronics, refers to a branch of physics, in which charge and spin of an electron are considered together and not separately as in conventional electronics, which ignores spin. Adding the spin degree of freedom provides new effects and new functionalities. This opens new horizons for modern devices combining properties of maintream charge-based electronics with spin-dependent phenomena.

The perspective of spintronic devices and theirs application in technology was open in 1988 by Albert Fert and Peter Grunberg [1,2] by discovering the giant magnetoresistance eect (GMR), which demonstrated the inuence of the spin of electrons on the electrical properties in magnetic multilayers composed of alternate ferromagnetic and nonmagnetic layers. In the consecutive years, an intensive research eort in the investigation of spin injection, spin manipulation, and spin detection in metals has been stimulated. Since then, the GMR and more general spintronic eects like tunneling magneto-resistance (TMR) have been applied in hard disk drives, bio-sensors, micro-electro-mechanical systems, and many others. While metal spintronics has already found its role in industry, semiconductor spintronics is yet to demonstrate its full potencial, in particular for specic optoelectronic properties like explained in this manuscript.

The rise of semiconductor spin-lasers

In the past decade, a continuous research eort has been devoted to the physics and development of a novel type of spintronic devices with possibility to control polarization states of emitted light. In such spin-polarized light sources, the radiative recombination of injected spin-polarized carriers results in emission of circularly polarized photons through the quantum optical selection rules [3]. The direct link between the polarization of the injected carriers and the emitted photons makes such spin-polarized sources suitable for many applications. A prerequisite for the realization of such devices has been the development of solid state spin-injectors at room temperature.

The rst spin-polarized photoluminescence based on a semiconductor light emitting diode (spin-LED) was proposed by Fiederling textitet al. in 1999 [4]. He demon- injection into AlGaAs/GaAs quantum well system resulting in a high-degree emitted circular polarization (47%) in a room-temperature regime by using CoFe/MgO metal tunnel junction [START_REF] Jiang | Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100)[END_REF]. Unfortunately, all these experiments required an out-ofplane applied external magnetic eld due to the natural shape anisotropy of thin ferromagnetic lms, which force the in-plane magnetization.

From a technological point of view, the spin-LED devices would be competitive in practical applications only if they operate in a room-temperature regime without the external magnetic eld. Several groups have already achieved spin injection into semiconductors using spin injectors with a perpendicular magnetic anisotropy at magnetic remanence. Using both conguration with a Schottky contact and a MgO tunnel contact, respectively, Hovel et al. [START_REF] Hovel | Room temperature electrical spin injection in remanence[END_REF] has achieved spin injection at remanence while the maximum degree of circular polarization of the emitted light was 3% at room temperature. The maximal degree of emitted circular polarization (8%) at zero All above mentioned limitation can be overcome by combining a proper active medium with a resonant optical cavity leading to the stimulated emission regime.

Such spin-laser would lead to a highly-coherent and spatially-focused emission with a high degree of emitted circular polarization even with a relatively low degree of injected spin-polarization due to the amplication eects in the cavity. Therefore maximal conversion eciency between injected spin and easily switchable output circular polarization can be achieved. Such spin-controlled light-emitting devices provide many advantages for future optical communication systems such as spin driven recongurable optical interconnects [21], fast modulation dynamics [22,23],

polarization control [START_REF] Ando | Photon-spin controlled lasing oscillation in surface-emitting lasers[END_REF][START_REF] Holub | Electrical spin injection and threshold reduction in a semiconductor laser[END_REF] as well as higher performances such as laser threshold reduction [START_REF] Rudolph | Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spinpolarized electrons[END_REF][START_REF] Holub | Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing[END_REF], improved laser intensity, and polarization stability.

From a technological point of view, optically active III-V semiconductors based lasers with vertical geometry (VCSELs) are considered as a good candidates for room-temperature highly-implementable devices. In such devices, the optical propagation is normal to the substrate surface and the gain is provided by several quantum wells sandwiched in the optical cavity. It exists nowadays two kinds of surface-1.2. GOAL AND MOTIVATION OF THESIS emitting semiconductor lasers: monolithic micro-cavity-type VCSELs for highlyintegrated devices and vertical-external-cavity surface-emitting lasers (VECSEL).

Figure 1.1 shows the dierence between both types of the laser structures. Monolithic VCSEL consists of distributed Bragg mirrors (DBR), which plays the role of internal mirrors in the resonator. The active region, usually quantum wells (QWs) [17,18] or quantum dots (QDs) [19,20,[START_REF] Li | Stability analysis of quantum-dot spin-VCSELs[END_REF], are responsible for the emission of coherent light through electron-hole recombination [18]. Two magnetic contacts are used to achieve spin injection into the active region. In the past decade, spin-operation regime with an electroluminescence of circular polarization of 23% has been demonstrated e.g. by Holub et al. [17] with monolithic VCSEL by using electrical pumping in a low-temperature range (50 K). Considering electrical injection, the distance of the spin-injector and active medium plays a crucial role and must be optimized to reduce spin relaxation between injection and recombination. Despite impressive technological eort [17,19,20], highly ecient electrical spin-injection in VCSEL at room temperature and magnetic remanence without an external magnetic eld remains to be demonstrated.

Alternatively, spin-polarized carriers can be injected optically by using circularlypolarized light [START_REF] Ando | Photon-spin controlled lasing oscillation in surface-emitting lasers[END_REF][START_REF] Rudolph | Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spinpolarized electrons[END_REF]2931]. In particular, experimental investigations showed that the output circular polarization degree can exceed the input one via non-linear gain eects [START_REF] Gerhardt | Enhancement of spin information with vertical cavity surface emitting lasers[END_REF]. Figure 1.1b shows vertical-external-cavity surface-emitting laser structure based on 1/2-VCSEL without upper Bragg mirror, which is replaced by highreective output coupler [START_REF] Frougier | Control of light polarization using optically spininjected vertical external cavity surface emitting lasers[END_REF]. The conguration with the external cavity enables to benet from an additional degree of freedom provided by the cavity adjustment.

For example, it is possible to tune laser parameters by adjusting the cavity length or by adding additional intra-cavity optical components [START_REF] Frougier | Towards spin-LED and spin-VECSEL operation at magnetic remanence[END_REF][START_REF] Joly | Compensation of the residual linear anisotropy of phase in a vertical-externalcavity-surface-emitting laser for spin injection[END_REF]. Moreover, the external cavity of VECSEL enables to deposit an ultra-thin electrical spin-injector perpendicularly-magnetized at magnetic remanence close to the active quantum wells and thus the impact of the spin-relaxation mechanisms occurring during electron transport can be minimized [16]. In addition, the optical pumping is considered as a most eective method to maximize the eciency of spin-injection into an active medium [START_REF] Gerhardt | Enhancement of spin information with vertical cavity surface emitting lasers[END_REF][START_REF] Frougier | Towards spin-LED and spin-VECSEL operation at magnetic remanence[END_REF][START_REF] Joly | Compensation of the residual linear anisotropy of phase in a vertical-externalcavity-surface-emitting laser for spin injection[END_REF].

Goal and motivation of thesis

As already mentioned above, in spin-LEDs and spin-lasers, the optical polarization of the emitted photons is directly related to the spin polarization of the carriers through the quantum optical selection rules [3,[START_REF] Dyakonov | Chapter 2 -theory of optical spin orientation of electrons and nuclei in semiconductors[END_REF]. Nevertheless, this is not the only factor, which determines the polarization state of the emitted light. The second factor is related to additional in-plane anisotropies in the multilayer semiconductor cavity, which strongly impact the performance and properties of spin-laser operation [START_REF] Miguel | Light-polarization dynamics in surface-emitting semiconductor lasers[END_REF] and lead to complex polarization dynamics. Although the V(E)CSEL geometry exhibits theoretically good isotropic behavior, even a small local anisotropy in a cavity can break this in-plane symmetry and beat the emitted circular polarization result-1.2. GOAL AND MOTIVATION OF THESIS 7 ing in preferential linearly-polarized laser emission.

Previous theoretical as well as experimental investigations [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF] have allowed to separate between several dierent contributions: i) a linear birefringence originating from interfaces between ternary quantum wells and barriers (GaAsP/InGaAs/GaAsP), ii) possible local surface strain of III-V material after surface crystalline reconstruction [38,39], iii) magneto-optical anisotropy originating from magnetized ferromagnetic spin injectors [40]. First contribution, the in-plane optical anisotropy of III-V quantum well structures, was found due to the reduction from D 2d to C 2v symmetry group when the host materials do not share any common atoms, [38,39,41] as well as chemical segregation [38] and strain eect in quantum well. The second contribution originating from the surface may have two dierent causes: a surface-bulk electro-optic eect due to the appearance of a signicant electric eld developing from the top surface by pinning of the Fermi level and an eect related to strain by surface reconstruction.

[42] The last contribution is given by magneto-optical eects which causes a circular dichroism and birefringence in a magnetized ferromagnetic layer used as a spin-injector. In addition, the Mueller matrix ellipsometry will be applied to study anisotropic multilayer 1/2-VCSEL structure with anisotropic surface and multiple quantum well Chapter 5 is dedicated to the detailed analysis of a general method for the modeling of semiconductor lasers such as spin-polarized vertical-cavity surface-emitting laser and vertical-external-cavity surface-emitting laser. In the beginning of this chapter we will describe the recent 2 × 2 Jones matrix analysis of spin-VECSEL developed by Alouini and described in Ref. 44. This simple model can describe evolution of the polarization eigen states in the cavity as a function of the eective linear birefringence and circular gain dichroism induced by the spin injected carriers. However, it is not suitable for description of more complex laser structures with multiple quantum wells (dipolar active sources) inside a cavity and with local anisotropies.

Moreover, the modeling method developed in this work contains description of the amplication processes in multiple quantum wells, multiple reections, propagation between them, and involving anisotropies that may reveal i) a local linear birefringence due to the strain eld at the surface or ii) a birefringence in quantum wells (QWs) due to phase amplitude coupling originating from the reduction of the biaxial D 2d to the C 2v symmetry group at the III-V ternary semiconductor interfaces. From a numerical point of view, a novel scattering S-matrix recursive method is implemented using a gain or amplication tensor derived analytically Chapter 2

Basic principles of spin vertical-cavity surface-emitting lasers and diodes

This chapter introduces basic principles of spin-LED and spin-VCSELs. In the beginning we give a brief introduction of the optical quantum selection rules, which govern an emission from quantum well region. We will describe electrical and optical pumping methods, which enable spin injection in semiconductors. Multilayer spin-V(E)CSEL devices will be briey described together with possible local anisotropies present in the laser structures. In the end of the chapter we describe an eective measurement method of the anisotropies in the laser structures. Details of VCSEL and V(E)CSEL devices fundamentals and functionalities are given in Coldren textbook [46] and in general review paper in Ref. 47.

Conversion of spin state to polarization state of light

We give a simple description of the optical selection rules in the dipolar Hamiltonian approximation, well documented in the literature [3,48], in order to illustrate in the following chapters the power of our technical method to model the properties of light emission from quantum heterostructures. The optical selection rules are found by evaluating the dipole moment of the transition between the conduction band state |c⟩ and the valence band state |v⟩ at the center (Γ-point) of the Brillouin zone (BZ) using the transition matrix element

D cv = ⟨ c | D | v ⟩ , (2.1) 
where D stands for the dipole moment operator at rst order of perturbation. The electronic Bloch states may be expressed as |J, m j ⟩, where J denotes the total angular momentum and its pro jection onto the z axis described by the magnetic quantum number m j along the photon wavevector k and the crystal axis of the cubic A III B V crystal (001) in the z direction. The electron state of the conduction band can be described using the Bloch wave function

ψ CB km = u CB m e ik ′ r , (2.2) 
where the Bloch amplitudes have the following form

u CB 1/2 = |S ↑⟩, u CB -1/2 = |S ↓⟩.
(2.

3)

The |S⟩ denotes the s -type wavefunction and arrows denote spin functions. The Bloch amplitudes of the valence band can be described using the p-type wavefunctions |X⟩, |Y ⟩ and |Z⟩ with the symmetry around x, y, and z axes, respectively

u HH 3/2 = - 1 √ 2 (|X ↑⟩ + i|Y ↑⟩) (2.4) u HH -3/2 = 1 √ 2 (|X ↓⟩ -i|Y ↓⟩) (2.5) u LH 1/2 = 1 √ 3 [ - 1 √ 2 (|X ↓⟩ + i|Y ↓⟩) + √ 2|Z ↑⟩ ] (2.6) u LH -1/2 = 1 √ 3 [ 1 √ 2 (|X ↑⟩ -i|Y ↑⟩) + √ 2|Z ↓⟩
] .

(2.7)

The characteristic matrix elements given by the dipolar Hamiltonian coupling both the conduction and valence bands are in Table 2.1 [3]. 

0 |3/2, -3/2⟩ 0 √ 1/2(x -iŷ) LH |1/2, +1/2⟩ √ 2/3ẑ - √ 1/6(x + iŷ) |1/2, -1/2⟩ √ 1/6(x -iŷ) √ 2/3ẑ
We remind the main conclusions concerning dipole transitions. As required from the conservation of the angular momentum, radiative recombinations lead to an emission of right-(σ + ) and left-circularly polarized photons (σ -) with a projec- tion of angular momentum along the direction of their k ′ wave-vector equal to ±1, respectively. Moreover, from intensity of dipoles follows, that the heavy hole (HH) transitions are three times larger than corresponding light hole (LH) transitions.

Note, that the transition probability is proportional to |D cv | and the photon emission are oriented perpendicularly to the QW plane. Figure 2.1 depicts the selection rules in direct bulk semiconductor and 2D quantum well system [3,17]. Transitions for which ∆m j = +1 and ∆m j = -1 result in the emission of circularly polarized photons with negative (σ -) and positive (σ + ) helicity, respectively.

Moreover, transitions involving heavy holes (HH) are three times more probable then those involving light holes (LH). When we consider 2D quantum system (Fig 2 .1b), the energetic splitting between HH and LH states appears as a consequence of the quantum connement and epitaxial strain. In this case, the depicted selection rules are valid only for vertical geometry [3,17] Figure 2.1: Selection rules in a) direct bulk semiconductor and (b) 2D quantum system [3,17].

Spin injection into semiconductor: Pumping methods

Spin-polarized carrier populations are generated in semiconductor quantum wells via i) electrical, ii) optical pumping with circularly polarized light, and iii) mixed pumping by using both of them. The evolution of the electrical and optical injection in spin-LEDs and spin-VCSELs has been shortly described in previous chapter.

Electrical pumping

The electrical spin injection is preferred for many applications because of its ability to be integrated in the compact devices. Firstly, such type of injection requires a source of spin-polarized carriers. Under action of the magnetic eld in paramagnetic 2.2. SPIN INJECTION INTO SEMICONDUCTOR: PUMPING METHODS or ferromagnetic materials, the spin-up and spin-down bands are splitted leading to a dierent number of spin-polarized electrons at Fermi level. This leads to a net spin polarization which can be injected into an adjacent layer. However, it is wellknown that the large conductivity mismatch between a ferromagnetic material and semiconductor leads to a negligible spin-injection eciency [49]. The only way to match the boundary conditions is to introduce an additional resistance in only one of two spin channels, which compensates the splitting in the semiconductor, or by introducing a high resistance in both spin channels [12,49]. Suitable solution for this kind of interfacial spin-dependent resistance is using tunnel contact in which the transmission is proportional to the product of the density of states on both sides.

In that case the spin-dependent resistance is caused by the spin asymmetry in the density of states in the ferromagnet.

From a technological point of view the easiest way is by using the Schottky contact, which is naturally formed between a semiconductor and a metal. When the barrier is biased in the reverse direction, the carriers tunnel through it at the Fermi level and the density of states in the ferromagnet leads to a spin-dependent tunneling probability. The rst experimental demonstration was realized by [START_REF] Zhu | Room-temperature spin injection from Fe into GaAs[END_REF] The circular polarization degree of the observed electroluminescence revealed the spin injection eciency of 2% [5]. In the following year, the spin eciency up to 32% has been achieved by Hanbicky et al. by using Fe/AlGaAs contact [15]. These observations provided conclusive evidence that tunneling is the dominant transport mechanism enabling signicant spin injection across the metal/semiconductor interface. However, intermixing between a ferromagnetic and a semiconductor layer during growth can lead to reduced interface quality, which plays an important role in an eective spin injection.

Besides the possibility of using Schottky barriers, the oxide tunnel barriers such as AlO x [50] and MgO [8] are suitable alternatives. Shortly after the demonstration of the spin injection using Schottky barriers, Al 2 O 3 tunnel barriers were implemented into spin-LEDs [50]. Since that time, several devices have been presented that show a very high spin injection eciency even at elevated temperatures. Typical values obtained with the AlO x barriers on GaAs are about 21% and 16% at 80 and 300 K, respectively [50] while with (001)-grown epitaxial MgO the spin polarization reaches even 57% at 100 K and 47% at 290 K, respectively [START_REF] Jiang | Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100)[END_REF]. To conclude, using the MgO tunnel barrier seems to be the most attractive way for eective injection into a semiconductor as we will consider in calculations of the emitted polarization state in Chapter 5.

Optical pumping

Despite the preferable electrical spin injection for compact devices, the optical pumping is widely used for several advantages. I) Optically-pumped structures have a more simple design. They are usually electronically undoped and there is no need to deposit the spin injector. Thus preparation is much more simple. II) Optical pumping allows a uniform carrier excitation over a large area of active region and also absorption in a broad wavelength region. Moreover, cheaper pump diodes can be used due to the larger wavelength tolerance which is linked to the absorption range in semiconductors [51]. III) Optically-pumped lasers such as VECSELs benets from their additional degree of freedom and enable using of intra-cavity optical elements such as Faraday rotators. The concept of optically-pumped semiconductor lasers with the vertical geometry has been developed in 1966 by Basov et al. [START_REF] Basov | Semiconductor lasers with radiating mirrors[END_REF], however, it took more than two decades to fully demonstrate this technique with optimized working structures [START_REF] Le | Scalable high-power optically pumped GaAs laser[END_REF] in a high-power regime [START_REF] Kuznetsov | High-power (>0.5-w cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams[END_REF].

Circularly-polarized pumping reveals as an eective way for spin injection in the semiconductor laser structures as depicted in Fig. for partially spin-polarized electrons [START_REF] Ando | Photon-spin controlled lasing oscillation in surface-emitting lasers[END_REF].

Since spin-polarized electrons couple selectively to either the left-or right-circularly polarized lasing mode in VCSEL, pumping with the 100% spin-polarized current should result in a laser featuring circularly polarized stimulated emission with half of the threshold current. This phenomena has been intuitively described by Zutic et al. using "the bucket model" [START_REF] Lee | Mapping between quantum dot and quantum well lasers: from conventional to spin lasers[END_REF][START_REF] Zutic | Taken for a spin[END_REF]. to the lasing threshold. One can observe two main properties of spin-lasers: i) In the case of spin-polarized laser less water needs to be pumped for it to reach the threshold which result in a stimulated emission with theoretical half of the threshold current and ii) even a small spin unbalance can lead to a pure circular polarization (case slightly above and below the opening). One should note that the boundary between both spin reservoirs is not perfect. This leads to a small spin-ip between them [START_REF] Lee | Mapping between quantum dot and quantum well lasers: from conventional to spin lasers[END_REF].

Threshold reductions have been observed by Rudolph et al. at both low and room-temperature regimes for an optically-pumped InGaAs/GaAs QW VCSEL structure [START_REF] Rudolph | Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spinpolarized electrons[END_REF][START_REF] Rudolph | Laser threshold reduction in a spintronic device[END_REF]. The results of an experiment in a low-temperature operation are depicted in Fig. Zutic et al. [START_REF] Lee | Mapping between quantum dot and quantum well lasers: from conventional to spin lasers[END_REF][START_REF] Zutic | Taken for a spin[END_REF].

Design of the V(E)CSEL structure

Generally, the V(E)CSEL device is based on a laser resonator and the active gain medium: quantum wells or quantum dots. The 13λ/2 thick active region is constituted of 6 strain-balanced 8 nm In-GaAs/GaAsP QWs with the emitting laser frequency at λ ≃ 1 µm. The strain the dierent layers of the dielectric stack. Each interface between the two materials e.g. AlAs/GaAs contributes to the partial reection of an optical wave. Then if the optical path length dierence between reections from subsequent interfaces is half of the wavelength then all reected components from the interfaces interfere constructively, which results in a strong reection in a large spectral region called the bandgap. The achieved reectivity is determined by the number of layer pairs and by the refractive index contrast between the layer materials.

Figure 2.6 shows the calculated dependence of the reectivity from a Bragg mirror for two dierent numbers of layer pairs. The calculation is based on the matrix formalism, which is explained in the following chapter. This structure consists of GaAs/AlAs semiconductor pairs designed for central wavelength λ = 1 µm. The achieved reectivity strongly depends on the number of layer pairs. For 5 pairs the maximal reectivity is around 80 % (red curve). One can observe three main regions (green curve): i) the photonic bandgap with the high reectivity around λ = 1000 nm sorrounded by ii) the transparent region for λ > 800 nm with strong interference eects in multilayer structure, and iii) the absorbing region for λ < 800 nm, where the top GaAs layer absorbs the incident light. The peaks around λ ≈ 250 nm and λ ≈ 400 nm are given by the absorption of the top GaAs layer as can be seen from a comparison with the reectivity of GaAs (blue curve).

Linear birefringence and circular gain dichroism

Additional linear in-plane anisotropies in the multilayer semiconductor cavity strongly impact the performance and properties of spin-laser operation [START_REF] Miguel | Light-polarization dynamics in surface-emitting semiconductor lasers[END_REF] leading to complex polarization dynamics. Previous theoretical as well as experimental investiga- tions [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF] have allowed to separate between several dierent contributions: i) a linear birefringence originating from interfaces between ternary quantum wells and barriers (GaAsP/InGaAs/GaAsP) and ii) possible local surface strain of III-V material after surface crystalline reconstruction [38,39], and iii) a magneto-optical anisotropy.

First contribution, an in-plane optical anisotropy of III-V quantum well structures, was found due to the reduction from D 2d to C 2v symmetry group when the host materials do not share any common atoms [38,39,41], as well as chemical segregation [38] and strain eect in quantum well. The second contribution originating from the surface may have two dierent causes: a surface-bulk electro-optic eect due to the appearance of a signicant electric eld developing from the top surface and an eect related to strain by surface reconstruction [42]. The last contribution is given by magneto-optical eects, which causes the circular dichroism and birefringence in a magnetized ferromagnetic layer used as a spin-injector [40,[START_REF] Vi²¬ovský | Magneto-optical permittivity tensor in crystals[END_REF]. The last contribution is discussed in details in Section 3.1.5, Chapter 3.

Natural interface anisotropy

The natural interface anisotropy is a form of an inversion asymmetry, which results from the structure of chemical bonding at the interfaces [START_REF] Dyakonov | Spin physics in semiconductors[END_REF]. In the case of systems studied in this work, In(22%)Ga(78%)As/GaAs(95%)P(5%), quantum wells and barriers share the common atoms Ga and As. However, the "average" cation-type and anion-type atoms (InGa) and (As) in quantum wells are dierent from the "average" atoms (Ga) and (AsP) in the barriers. Therefore the symmetry breaking leading to the optical linear birefringence and dichroism is expected. Moreover, the local surface strain of III-V material due to even a small lattice mismatch after surface crystalline reconstruction as well as due to the chemical segregation can be present [38,39]. The detailed origin of such optical interfacial anisotropies are currently under study in LSI-UMφ by advanced k.p methods in a frame of the PhD study of Quang Duy To.

Anisotropy at surface

The linear birefringence and dichroism originating from the surface may have two dierent causes: the eect related to the strain by surface reconstruction [42,[START_REF] Hunderi | On the AlAs/GaAs (001) interface dielectric anisotropy[END_REF] and the surface-bulk electro-optic eect due to the appearance of a signicant electric eld at a surface.

One contribution to the overall anisotropy predicted and observed at clean (001) This anisotropy could be understood on the basis of trigonally bonded overlayers leading to the strain and thus dierent optical properties along the [110] and [110] directions [START_REF] Van Der Veen | The GaAs (001)-c(4x4) and (2x4) reconstructions: a comparative photoemission study[END_REF]. Typical examples are the As or Ga dimers found on the dierent reconstructions of the GaAs surface. Since the dimers have a preferential orientation, electronic transitions involving these states are expected to be highly anisotropic.

Moreover, reconstruction induces small changes in atomic positions in the atomic layers close to the surface and thus produces a strain eld [42,[START_REF] Hunderi | On the AlAs/GaAs (001) interface dielectric anisotropy[END_REF].

Another contribution to the surface linear anisotropy is due to the linear electrooptic, bulk-related eect induced by the sample surface electric eld. Such eect originates from an electric charge exchange between the bulk and the surface states of the semiconductor, in order for the material to attain thermodynamic equilibrium.

As a result of this process, the Fermi level becomes pinned at the semiconductor surface at an energy in the forbidden gap. The presence of the surface electric eld results in the breaking of the symmetry of GaAs near the surface and in the loss of the optical isotropy in this region. A systematic study of this eect on n-type GaAs has been done by Acosta-Ortiz et al. by using reectance-dierence technique [START_REF] Acosta-Ortiz | Electro-optic eects in the optical anisotropies of (001) GaAs[END_REF].

On the other hand, the electro-optic eects can appear also in the presence of be calculated as in Ref. [START_REF] Yariv | Optical electronics[END_REF]:

n [110] = n 0 - n 3 0 2 rE, (2.9 
)

n [110] = n 0 + n 3 0 2 rE, (2.10) 
where n 0 is the refractive index in the absence of an electric eld E and r is the electro-optic coecient. Such electro-optical birefringence can be used to control the cavity resonance of the polarized light along the [110] and [110] directions, which are shifted to shorter and longer wavelength depending on the direction of the applied electric eld [START_REF] Park | Polarization control of vertical-cavity surface-emitting lasers by electrooptic birefringence[END_REF]. shows a red shift (dashed curve). On the other hand, for the -10 V applied voltage, the emission spectrum of the [110] mode also shows a small red shift (dotted curve) so that the dominant polarization mode occurs along the [110] or [110] direction for the negative or positive electric eld application. By varying the direction and strength of the electric eld, a wanted polarization mode can selected [START_REF] Park | Polarization control of vertical-cavity surface-emitting lasers by electrooptic birefringence[END_REF].

Measurement of the linear birefringence in optically-pumped 1/2-VCSEL structure

The birefringence of the VCSEL structure can be generally measured and extracted from the induced frequency splitting between two emitted polarization states caused by the dierence of their optical path. However, in the case of VECSEL with long cavities (cm), the frequency splitting is expected in the range of a few MHz and the peak observed in RIN spectrum reects the beat note due to the orthogonal polarizations which are splitted in a frequency. We will discuss results in details in Chapter 6. Together with a formalism derived in this work we will extract the linear permittivity tensors at surface and in the quantum wells.

Conclusion of the chapter

This chapter introduced basic principles of spin-V(E)CSELs. As has been shown, the emission of circularly-polarized light originates from the radiative recombination of spin-polarized carriers. We described the electrical and optical pumping methods, which enable the spin injection in semiconductor quantum wells. The advantages of We compare the Mueller matrix ellipsometry to other widely used techniques such as reectance dierence spectroscopy and spectroscopic ellipsometry, and we point out the advantage of this method.

3.1 Electromagnetic response of anisotropic structure

Electromagnetic eld equations in anisotropic media

The presence of the electromagnetic eld in a linear anisotropic medium is governed by the partial dierential equations known as the Maxwell equations. These equations describe the classical properties of the electromagnetic eld inside the media 25 and can be written in the following dierential form:

∇ • D(r, t) = ρ, (3.1a) ∇ • B(r, t) = 0, (3.1b) ∇ × E(r, t) = - ∂B(r, t) ∂t , (3.1c) 
∇ × H(r, t) = j(r, t) + ∂D(r, t) ∂t , (3.1d) where E(r, t), H(r, t), D(r, t), B(r, t), ρ, and j(r, t) denote the electric eld intensity, the magnetic eld intensity, the electric displacement, the magnetic ux density, the volume density of free charges, and the current density, respectively. The medium properties, i.e. the medium polarization P(r, t) and the magnetization M(r, t), are connected to the eld quantities by additional constitutive relations:

D(r, t) = ε 0 E(r, t) + P(r, t) = εE(r, t), (3.2a) B(r, t) = µ 0 H(r, t) + M(r, t) = μH(r, t), (3.2b) 
where ε and μ are respectively the (generally tensorial) electric permittivity and the magnetic permeability functions of a medium. The permittivity and the permeability of free space are denoted as ε 0 and µ 0 , respectively. The medium conductivity tensor σ connects the electric eld intensity with the current density by the following way: j(r, t) = σE(r, t).

(3.3)

In the optical spectral region, the magnetic susceptibility χ M = µ/µ 0 -1 assumes very small values monotonously dependent on the radiation frequency due to the weak feedback of the magnetic dipoles in a medium. It is therefore reasonable to set its value to a real scalar constant equal to a very small number or zero [71].

Therefore, the magnetic permeability for optical frequencies is taken as:

µ = µ 0 . (3.4)
Considering no free charges in the medium (ρ = 0) allows to rewrite the Maxwell equations (3.1) in the dierential form:

∇ • [εE(r, t)] = 0, (3.5a) ∇ • H(r, t) = 0, (3.5b) ∇ × E(r, t) = -µ 0 ∂H(r, t) ∂t , (3.5c) ∇ × H(r, t) = σE(r, t) + ε ∂E(r, t) ∂t .
(3.5d)
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Wave equation

One of the most important prediction of the Maxwell equations is the existence of electromagnetic waves which can transport energy and which are described by one of the most fundamental equations to all of electromagnetic theory -the wave equation.

Let us derive the wave equation for the electric eld E directly from the Maxwell equations (3.5) for isotropic absorbing medium (tensorial ε and σ are reduced to scalars ε and σ) and discuss its solution.

Eliminating H(r, t) by application of the operators ∇× and ∂/∂t on the equations (3.5c) and (3.5d), respectively, and by application of the identity:

∇ × (∇ × E) = ∇ (∇ • E) -∇ 2 E, (3.6) 
we arrive to the wave equation:

∇ 2 E(r, t) -εµ 0 ∂ 2 E(r, t) ∂t 2 -σµ 0 ∂E(r, t) ∂t = 0. (3.7)
The solution can be found for a monochromatic wave with the angular frequency ω and the complex amplitude E ω (r):

E(r, t) = E ω (r)e iωt . (3.8) 
Hence, all time derivatives can be simply replaced by the iω factor and the wave equation (3.7) can be rewritten as:

∇ 2 E ω (r) + ω 2 µ 0 εE ω (r) = 0, (3.9) 
known as the Helmholtz equation, where ε = ε 0 ε r = ε -i ω σ is the complex permittivity with ε r denoting the relative permittivity. Considering the velocity of light c and the wavenumber k 0 in vacuum: 3.11) yields to the Helmholtz equation in the form:

c = 1 √ µ 0 ε 0 (3.10) k 0 = ω c , ( 
[ ∇ 2 + k 2 0 ε r ] E ω (r) = 0, (3.12)
where we consider the relationship between the wave vector k and the refractive index:

k 2 = k 2 0 ε r = k 2 0 n 2 .
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Plane electromagnetic wave in isotropic medium

Let us examine one of the elementary solution of the Helmholtz equation (3.12) in an isotropic medium: a monochromatic electromagnetic wave with the wavevector k whose complex amplitude vectors are plane waves so that:

E ω (r) = E 0 e -ikr , (3.14) 
H ω (r) = H 0 e -ikr , (3.15) where E 0 and H 0 are the complex envelopes in an isotropic medium (free of charges).

Substitutions of (3.15) into the Maxwell equations with the isotropic relative permittivity ε r leads to:

k.E 0 = 0,

(3.16a) k.H 0 = 0, (3.16b) E 0 = - 1 ωε 0 ε r k × H 0 , (3.16c 
)

H 0 = - 1 ωµ 0 k × E 0 . (3.16d)
From the above equations it follows, that E 0 , H 0 , and k are mutually orthogonal, as illustrated in Fig. 3.1. Moreover, the complex Poynting vector S P = 1 2 E × H * is parallel to the wavevector k. This means that the power transferred by wave ows along a normal direction to the wavefronts with magnitude:

I = 1 2 |E 0 H * 0 | = |E 0 | 2 η , (3.17) 
where η = √ µ 0 /ε denotes the impedance of the medium.

To demonstrate the attenuation of light due to the absorption in the isotropic material with the complex refractive index n = ℜ(n) -iℑ(n) = √ ε r , where ℜ(n) and ℑ(n) denote, respectively, the real and imaginary part of n, one can consider for the wave traveling in the z direction:

E ω (z) = E 0 e -ik 0 nz = E 0 e -ik 0 ℜ(n)z e -k 0 ℑ(n)z , (3.18)
giving the Beer-Lambert law:

I(z) = I 0 e -2k 0 ℑ(n)z = I 0 e -αz , (3.19)
where α is the absorption coecient of the absorbing medium. Certain media, such as used in lasers, can amplify rather than attenuate the light and thus exhibit α < 0 in which case γ = -α is called the medium gain [72]. Note that Eq. (3.19) does not include any interface or interference eects, which will be explained later. 

Plane electromagnetic wave in anisotropic medium

The Maxwell equations (3.16c) and (3.16d) can be for an anisotropic medium with the tensorial relative permittivity εr generalized to the form:

k × H 0 + ωε 0 εr E 0 = 0, (3.20a) k × E 0 -ωµ 0 H 0 = 0. (3.20b)
Elimination of H 0 from Eqs. (3.20) and application of the identity: (3.21) lead to the wave equation for anisotropic medium:

k × (k × E 0 ) = (k • E 0 ) k -(k • k) E 0 ,
k 2 0 εE 0 -k 2 E 0 + k (k • E 0 ) = 0. (3.22)
Particular solutions of this equation are discussed in next section.

Materials characteristics

Anisotropic materials can be represented by the 9-element permittivity tensor such that the electric eld E and displacement eld D are related by Eq. (3.2a). As has been discussed, the general form of the complex permittivity tensor ε includes losses in material given by the conductivity tensor σ so that:

ε = ε 0 εr = ε - i ω σ, (3.23) 
where the relative permittivity tensor εr can be generally written as follows:

εr = ⎛ ⎝ ε xx ε xy ε xz ε yx ε yy ε yz ε zx ε zy ε zz ⎞ ⎠ . (3.24)
Crystals, in general, are described by a symmetric permittivity tensor. By making the appropriate choice of axes, called principal axes, the dielectric tensor for orthorombic crystal can be diagonalized as given by:

εr = ⎛ ⎝ ε x 0 0 0 ε y 0 0 0 ε z ⎞ ⎠ , (3.25) 
where ε x , ε y , and ε z are called the principal dielectric constants.

For an uniaxial crystal with optical axis parallel to z axis, such as with trigonal, tetragonal, and hexagonal symmetry, two of three components are equal ε x = ε y but the third one ε z is dierent. Thus one can write:

εr = ⎛ ⎝ ε x 0 0 0 ε x 0 0 0 ε z ⎞ ⎠ . (3.26)
The simplest form of dielectric tensor reveals for cubic crystal:

εr = ⎛ ⎝ ε x 0 0 0 ε x 0 0 0 ε x ⎞ ⎠ = ⎛ ⎝ ε r 0 0 0 ε r 0 0 0 ε r ⎞ ⎠ . (3.27)

Magneto-optical tensor

An optical response in magnetic media, such as Co, Fe, or Ni, depends on their magnetic state, and this dependence manifests itself in magneto-optic (MO) eects [71,73]. In a magnetized but otherwise optically isotropic medium, one can observe the linear and the circular birefringence and dichroism, depending on the orientation of the magnetization in the medium. We mention the case (called the polar conguration) with the magnetization oriented normal to the interface (along z coordinate axis). In general, the alignment of spins upon injection into a semiconductor implies the presences of a magnetic layer somewhere in the vicinity of the contact of the spin-optoelectronic device. For this reason, using of ferromagnetic layer as a part of spin-injector in polar magnetization is necessary. The permittivity tensor of such cubic crystal ferromagnet with polar magnetization has the form:

εr,polar = ⎛ ⎝ ε xx -iε xy (M z ) 0 iε xy (M z ) ε xx 0 0 0 ε xx ⎞ ⎠ , (3.28) 
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where the o-diagonal components ε xy (M z ) = -ε yz (M z ) are proportional to the (polar) magnetization component M z . We note that the quadratic and higher-order terms in magnetization are neglected here. Then the solution of the wave equation admits circularly polarized proper polarizations propagating along zdirection with dierent velocities and absorptions leading to the circular birefringence and dichroism, respectively.

Polarization states of light: Jones and Stokes vectors

The time course of the direction of E(r, t) determines a polarization state of the light, which plays an important role in the interaction of light in absorbing medium such as in bulk media but also in gain laser structures. For example: i) the amount of light reected or transmitted through a certain material is polarization dependent and ii) the absorption and the amplication of light during its traveling in a laser cavity depends on the helicity of the circular polarization. The polarization state of light is described by the 2 × 2 Jones matrix calculus. Let us dene the complex envelope of the wave traveling in the zdirection in the following way:

E 0 = E 0x x + E 0y ŷ, (3.29) 
where x and ŷ are the unit Cartesian vectors. The polarization state is commonly described using a column matrix known as Jones vector [74]:

J = [ E 0x E 0y ] = [ |E 0x | e iϕx |E 0y | e iϕy
] , (3.30) where ϕ x,y are the initial phases and the total intensity is I =

( |E x0 | 2 + |E y0 | 2 ) /2η [72]
. Using two parameters, the ratio R = |E y0 | / |E x0 | and the phase dierence ϕ = ϕ yϕ x , is sucient to determine the orientation and the shape of generally elliptically polarized light:

tan 2θ = 2R 1 -R 2 cos ϕ (3.31a) sin 2ϵ = 2R 1 + R 2 sin ϕ, (3.31b) (3.31c)
where θ and ϵ are the azimuth and the ellipticity of the polarization ellipse, respectively [72]. The normalized Jones vectors for some special polarizations are shown in Table 3.1.

The Jones vector dened by (3.30) only spans the space of fully polarized light and cannot be used for description of partially polarized or unpolarized light. Mathematically convenient and a more general description of the polarization state of light was dened by G.G. Stokes as a set of four real numbers S 0 , S 1 , S 2 , and S 3 The polarization state of light described by the azimuth θ and the ellipticity ϵ of the polarization ellipse. which dene the Stokes vector: 

LP in x J = [ 1 0 ] LP at angle θ J = [ cos θ sin θ ] x y x y θ RCP J = 1 √ 2 [ 1 i ] LCP J = 1 √ 2 [ 1 -i ]
S = ⎛ ⎜ ⎜ ⎝ S 0 S 1 S 2 S 3 ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ I x + I y I x -I y I 45 -I -45 I RP -I LP ⎞ ⎟ ⎟ ⎠ ,
• S 0 = I x + I y = E x E * x + E y E * y ... the total light intensity, • S 1 = I 0 = I x -I y = E x E * x -E y E * y .
.. the intensity dierence between light linearly polarized in x and y directions,

• S 2 = I 45 -I -45 = E x E * y +E * x E y ..
. the intensity dierence between light linearly polarized along the plane with angle ±45 • about the x-plane,

• S 3 = I R -I L = i ( E * x E y -E x E * y )
... the intensity dierence between right and left circularly polarized light.

The three Stokes vector components (S 1 , S 2 , S 3 ) are the Cartesian coordinates of the point on the Poincaré sphere (w 1 , w 2 , w 3 ) = (cos 2ϵ cos 2θ, cos 2ϵ sin 2θ, sin 2ϵ) multiplied by S 0 [72] as depicted in Fig. 3.3. For example, the points on the equator with 2θ = 0 • and 2θ = 90 • represent states of the linear polarization along the x axis and the linear polarization at angle 45 • from x axis, respectively. The north and south poles 2ϵ = ±90 • represents, respectively, right and left circularly polarized states. Moreover, the portion of an electromagnetic wave, which is polarized, can be described by the degree of polarization dened by:

P = √ S 2 1 + S 2 2 + S 2 3 S 0 , (3.33) 
which for totally polarized, unpolarized, and partially polarized light is equal to P = 1, P = 0, and 0 < P < 1, respectively.

Jones and Stokes-Mueller formalism

In the absense of depolarization eects, the interaction of the fully polarized incident light transforms the input Jones vector (3.30) into output Jones vector through the linear transformation:

[ E x E y ] out = [ J xx J xy J yx J yy ] [ E x E y ] in , (3.34) 
where J ij are the elements of the 2 × 2 Jones matrix. Another basis widely used is related to the plane of incidence, which is the plane made by the incoming propagation direction and the vector perpendicular to the plane of an interface as depicted The electric eld of s-polarization is oriented perpendicularly to the plane of incidence, while p-polarization lies in the plane of incidence. in Fig. 3.4. The linearly polarized light with its electric eld normal to the plane of incidence is called s-polarized (senkrecht, German term for perpendicular) while the light with its polarization along the plane of incidence is denoted as p-polarized (parallel).

For isotropic samples, the independence of sand ppolarizations implies that the Jones matrix is diagonal and can be written in the form:

J = [ r ss 0 0 r pp ] , (3.35) 
where r ss and r pp are the complex Fresnel coecients for reection.

Although the 2 × 2 Jones formalism provides an ecient method to describe fully polarized light, it is not sucient for description of depolarizing devices. As mentioned above, any partially polarized state can be described by the Stokes vector which is given by Eq. (3.32). Upon interaction of incident light S in with a sample, transformation of such partially polarized light into S out can be described by the linear transformation: 

S out = MS in , (3.36 
M = A (J ⊗ J * ) A -1 , (3.37) 
where ⊗ denotes the Kronecker product and A is dened as:

A = ⎡ ⎢ ⎢ ⎣ 1 0 0 1 1 0 0 -1 0 1 1 0 0 i -i 0 ⎤ ⎥ ⎥ ⎦ . (3.38)
Considering the anisotropic non-depolarizing sample described by the Jones matrix (3.34), the full Jones-Mueller matrix is in the form:

M = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2 ( |Jss| 2 + |Jsp| 2 + |Jps| 2 + |Jpp| 2 ) 1 2 ( |Jss| 2 -|Jsp| 2 + |Jps| 2 -|Jpp| 2 ) ℜ ( JspJ * ss + JppJ * ps ) -ℑ ( JspJ * ss + JppJ * ps ) 1 2 ( |Jss| 2 + |Jsp| 2 -|Jps| 2 -|Jpp| 2 ) 1 2 ( |Jss| 2 -|Jsp| 2 -|Jps| 2 + |Jpp| 2 ) ℜ ( JspJ * ss -JppJ * ps ) ℑ ( -JspJ * ss + JppJ * ps ) ℜ ( JpsJ * ss + JppJ * sp ) ℜ ( JpsJ * ss -JppJ * sp ) ℜ ( JppJ * ss + JpsJ * sp ) ℑ ( -JppJ * ss + JpsJ * sp ) ℑ ( JpsJ * ss + JppJ * sp ) ℑ ( JpsJ * ss -JppJ * sp ) ℑ ( JppJ * ss + JpsJ * sp ) ℜ ( JppJ * ss -JpsJ * sp ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . (3.39)
Linear birefringence

Let us consider linearly birefringent medium with thickness l through which the wave with the wavelength λ is propagating. The principal axes are along x and y directions and the anisotropic medium is described by real refraction indices n x and n y . Description of the change of the polarization state during propagation can be done using the Jones matrix:

J LB = [ e -i 2π λ nxl 0 0 e -i 2π λ nyl ] = e -i 2π λ nl [ e -iLB/2 0 0 e iLB/2 ] , (3.40) 
where LB = 2π λ (n xn y )l describes the linear birefringence and n = (n x + n y )/2

is the average real part of optical index, while the matrix prefactor represents an overall phase delay. The Jones-Mueller matrix is then according to (3.39) in the form:

M LB = ⎡ ⎢ ⎢ ⎣ 1 0 0 0 0 1 0 0 0 0 cos(LB) -sin(LB) 0 0 sin(LB) cos(LB) ⎤ ⎥ ⎥ ⎦ LB≪1 ≈ ⎡ ⎢ ⎢ ⎣ 1 0 0 0 0 1 0 0 0 0 1 -LB 0 0 LB 1 ⎤ ⎥ ⎥ ⎦ , (3.41) 
which shows that M 34 = -M 43 are the most important elements revealing the optical linear birefringence.

Linear dichroism

Linearly dichroic medium is a medium in which linearly polarized waves along x and y directions are attenuated dierently. Such eect can be described by the Jones matrix in the form:

J LD = [ e -i 2π λ (n-ikx)l 0 0 e -i 2π λ (n-iky)l ] = e -i 2π λ nl e -2π λ kl [ e -LD/2 0 0 e LD/2 ] (3.42) 3.2. ELECTROMAGNETIC FIELD IN ANISOTROPIC MULTILAYER STRUCTURE 37
where LD = 2π λ (k xk y )l describes the linear dichroism and k = (k x + k y )/2 is the average imaginary part of optical index, while the matrix prefactors represents an overall phase delay and absorption. The Jones-Mueller matrix is then according to (3.39) in the form:

M LD = e -4π λ kl ⎡ ⎢ ⎢ ⎣ cosh(LD) -sinh(LD) 0 0 -sinh(LD) cosh(LD) 0 0 0 0 1 0 0 0 0 1 ⎤ ⎥ ⎥ ⎦ LD≪1 ≈ e -4π λ kl ⎡ ⎢ ⎢ ⎣ 1 -LD 0 -LD 1 0 0 0 1 0 0 0 ⎤ ⎥ ⎥ ⎦ (3.43)
which shows the M 12 = M 21 the most important elements revealing the optical linear dichroism.

Electromagnetic eld in anisotropic multilayer structure

The electromagnetic response of generally anisotropic multilayer structure can be calculated in the following steps: I) solving of the wave equation (3.22) derived in Sec. 3.1 for each generally anisotropic layer, II) including the boundary conditions at interfaces, and III) calculation of the Jones matrix, the Mueller matrix or ellipsometric angles upon reection or transmission from the structure.

Solution of the Maxwell equation in anisotropic medium

Let us consider an anisotropic multilayer structure consisting of N -anisotropic layers characterized by permittivity tensors ε(n) and the thicknesses d (n) , with n = 1, ..., N . The surrounding media are denoted by (0) for superstrate and (N + 1) for substrate as depicted in Fig. 3.5. The interface planes are normal to a common axis parallel to the z axis of the Cartesian coordinate system. The wave equation (3.22) for each layer can be written in the following form [75,76]:

k 2 0 ε(n) E (n) 0 -k 2 (n) E (n) 0 + k (n) [k (n) E (n) 0 ] = 0, (3.44) 
where E 0

(n)
is the amplitude of the electric eld in each layer

E (n) = E (n) 0 e i(ωt-k (n) r) .
Because of the Snell law, the wave propagates in each medium with the same tangential component of the wave vector k

(n) = k 0 (N x x + N y ŷ + N (n) z ẑ).
Let us choose coordinate system, for which N x = 0 and N y = n (n) sin θ (n) = const., where θ (n) is the propagation angle in the (n)-th layer, and rewrite the wave equation (3.44) in the matrix form: 

⎛ ⎜ ⎝ ε (n) xx -N 2 y -N (n)2 z ε (n) xy ε (n) xz ε (n) yx ε (n) yy -N (n)2 z ε (n) yz + N y N (n) z ε (n) zx ε (n) zy + N y N (n) z ε (n) zz -N 2 y ⎞ ⎟ ⎠    ♠ ⎡ ⎢ ⎣ E (n) 0x E (n) 0y E (n) 0z ⎤ ⎥ ⎦ = 0,

E

(n) 0j are specic for each media and do not change during the propagation and take the form:

E (n) 0j = A (n) j e (n) j , (3.47) 
where A

(n) j

is the amplitude of particular wave and e

(n) j

is the normalized eigenpolarization satisfying:

[ e

(n) j ] + e (n) j = 1, (3.48) 
where

[ e (n) j ] +
denotes the Hermitian adjoint. In a similar way, the magnetic eld vector H

(n) 0j can be expressed as

H (n) 0j = √ ε 0 µ 0 A (n) j h (n) j , (3.49) 
where h

(n) j is the magnetic eigen-polarization. Inside n-th layer at the interface n/n+ 1, we express the eld vector E (n) as a linear combination of these eigen-polarizations:

(n/n+1) E (n) = 4 ∑ j=1 A (n) j e (n) j . (3.50)
During the propagation in the n-th layer change the eld vector according to a factor exp

[ ik 0 N (n) zj d (n)
] as depicted in Fig 3 .6. Then the eld vector at the (n -1/n) interface can be expressed as:

(n-1/n) E (n) = 4 ∑ j=1 A (n) j e (n) j exp [ ik 0 N (n) zj d (n)
] .

(3.51)

Boundary conditions at interfaces

The boundary conditions require continuity of the tangential components of the eld vectors E and H at the interface: From Eq (3.50) and Eq. ( 3.51) follows, that these conditions can be expressed as:

(n-1/n) E (n) x = (n-1/n) E (n-1) x , (n-1/n) E (n) y = (n-1/n) E (n-1) y , (n-1/n) H (n) x = (n-1/n) H (n-1) x , (n-1/n) H (n) y = (n-1/n) H (n-1) y .
4 ∑ j=1 A (n-1) j e (n-1) xj = 4 ∑ j=1 A (n) j e (n) xj exp [ ik 0 N (n) zj d (n)
] ,

(3.52)

4 ∑ j=1 A (n-1) j h (n-1) yj = 4 ∑ j=1 A (n) j h (n) yj exp [ ik 0 N (n) zj d (n) ] , (3.53) 4 ∑ j=1 A (n-1) j e (n-1) yj = 4 ∑ j=1 A (n) j e (n) yj exp [ ik 0 N (n) zj d (n) ] , (3.54) 4 ∑ j=1 A (n-1) j h (n-1) xj = 4 ∑ j=1 A (n) j h (n) xj exp [ ik 0 N (n) zj d (n)
] , (3.55) and in the matrix form: 

D (n-1) A (n-1) = D (n) P (n) A (n) ,
D (n) = ⎛ ⎜ ⎜ ⎜ ⎝ e (n) x1 e (n) x2 e (n) x3 e (n) x4 h (n) y1 h (n) y2 h (n) y3 h (n) y4 e (n) y1 e (n) y2 e (n) y3 e (n) y4 h (n) x1 h (n) x2 h (n) x3 h (n) x4 ⎞ ⎟ ⎟ ⎟ ⎠ , A (n) = ⎡ ⎢ ⎢ ⎢ ⎣ A (n) 1 A (n) 2 A (n) 3 A (n) 4 ⎤ ⎥ ⎥ ⎥ ⎦ (3.56) P (n) = ⎛ ⎜ ⎜ ⎜ ⎝ ik 0 N (n) z1 d (n) 0 0 0 0 ik 0 N (n) z2 d (n) 0 0 0 0 ik 0 N (n) z3 d (n) 0 0 0 0 ik 0 N (n) z4 d (n) ⎞ ⎟ ⎟ ⎟ ⎠
. (3.57) Using P (n) and D (n) , the amplitudes in the halfspaces (0) and (N + 1) can be related as follows: 0) ] -1 D (1) P (1) . . .

A (0) = [ D ( 
[ D (N ) ] -1 D (N +1) P (N +1)    M A (N +1) , (3.58)
where M is the total transfer matrix of the system. Note, that in the case of isotropic layered media, the electromagnetic eld can be divided into two uncoupled modes: s-modes and p-modes with electric eld vector perpendicular and parallel to the plane of incidence, respectively. Since they are uncoupled, characteristic equation for N

(n) z,j is biquadratic with the solution:

N (n) z,1,3 = -N (n) z,2,4 = n (n) cos θ (n) , (3.59) 
and the dynamic matrix takes the block diagonal form: 

D = ⎛ ⎜ ⎜ ⎝ 1 1 0 0 n (n) cos θ (n) -n (n) cos θ (n) 0 0 0 0 cos θ (n) cos θ (n) 0 0 -n (n) n (n) ⎞ ⎟ ⎟ ⎠ . ( 3 

Scattering matrix formalism

While the transfer matrix formalism provides an eective tool for the calculation of the electromagnetic response of multilayer anisotropic structures, we explain later, that it can not be used for recursive calculation of the gain tensor in active laser structure with multiple active QWs. For this reason we introduce the scattering matrix formalism, whose approach is depicted in Fig. 3.7. While the transfer matrix M in Eq. (3.58) relates the upper and lower eld amplitudes, the scattering matrix (S-matrix) is dened using the amplitudes of the waves incoming toward (A (0) down ,

A (N +1) up

) and outgoing from the structure (A

(0) up , A (N +1) down ).
Let us rewrite Eq. (3.58) in more compact form:

[

A (0) up A (0) down ] = [ M uu M ud M du M dd ] [ A (N +1) up A (N +1) down ] , (3.61) 
where the amplitude vectors corresponding to two orthogonal polarizations A

(0) down = [A (0) 1 ; A (0) 3 ] T , A (0) up = [A (0) 2 ; A (0) 4 ] T and M kl denotes the 2 × 2 sub-matrices.
Then the amplitudes of the waves incoming toward and outgoing from the structure are connected by the scattering matrix S:

[ A (0) up A (N +1) down ] = [ S uu S ud S du S dd ]    S [ A (N +1) up A (0) down ] , (3.62) 
where

S = [ M uu -M ud M -1 dd M du M ud M -1 dd M -1 dd M du M -1 dd
] .

(3.63)

We will intensively use this relationship in Chapter 5 dealing with the description of the spin-lasers properties. where for s-polarized incident wave (A (0) 3 = 0):

Reection coecients

r ss = A (0) 2 A (0) 1 = M 21 M 33 -M 23 M 31 M 11 M 33 -M 13 M 31 , (3.65) 
r sp = A (0) 4 A (0) 1 = M 41 M 33 -M 43 M 31 M 11 M 33 -M 13 M 31 , (3.66) 
and for p-polarized incident wave (A (0) 1 = 0):

r ps = - A (0) 2 A (0) 3 = M 13 M 21 -M 11 M 23 M 11 M 33 -M 13 M 31 , (3.67) 
r pp = - A (0) 4 A (0) 3 = M 13 M 41 -M 11 M 43 M 11 M 33 -M 13 M 31 . (3.68)
Note, that the reection coecients are generally complex numbers with amplitudes |r pq | and the absolute phases δ pq , where subscripts (p, q) refers to (s, p) polarizations, and can be written in the form: while each uniaxial anisotropic layer with thickness d (n) can be described by the permittivity components ε

r pq = |r pq | exp [iδ pq ] .
(n)

xx and ε

(n) yy . The dynamical matrix of each layer is in the simplied form:

D (n) = [ D (n) xx 0 0 D (n) yy ] = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 1 0 0 √ ε (n) xx - √ ε (n) xx 0 0 0 0 1 1 0 0 - √ ε (n) yy √ ε (n) yy ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , (3.70) 
while the transfer matrix of each layer is according to (3.58) in the form

T (n) = 1 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 1 0 0 √ ε (n) xx - √ ε (n) xx 0 0 0 0 1 1 0 0 - √ ε (n) yy √ ε (n) yy ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ e ik 0 √ ε (n) xx d (n) 0 0 0 0 e -ik 0 √ ε (n) xx d (n) 0 0 0 0 e ik 0 √ ε (n) yy d (n) 0 0 0 e ik 0 √ ε (n) yy d (n) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 1 √ ε (n) xx 0 0 1 -1 √ ε (n) xx 0 0 0 0 1 -1 √ ε (n) yy 0 0 1 1 √ ε (n) yy ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
.

This matrix can be rewritten as

T (n) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ cos k 0 √ ε (n) xx d (n) i ε (n) xx sin k 0 √ ε (n) xx d (n) 0 0 iε (n) xx sin k 0 √ ε (n) xx d (n) cos k 0 √ ε (n) xx 0 0 0 0 cos k 0 √ ε (n) yy d (n) -i ε (n) xx sin k 0 √ ε (n) xx d (n) 0 0 -iε (n) xx sin k 0 √ ε (n) xx cos k 0 √ ε (n) yy d (n) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ≈ k 0 √ ε (n) xx,yy d (n) ≪1 ⎡ ⎢ ⎢ ⎣ 1 i k 0 d (n) 0 0 i k 0 ε (n) xx d (n) 1 0 0 0 0 1 -i k 0 d (n) 0 0 -i k 0 ε (n) yy d (n) 1 ⎤ ⎥ ⎥ ⎦ , (3.71) 
where we consider approximation for ultra-thin layer k 0 √ ε

(n) xx,yy d (n) ≪ 1.
This approach can be generalized for multiple anisotropic layer according to 

N ∏ i=1 T (i) = ⎡ ⎢ ⎢ ⎣ 1 i k 0 ∑ d (i) 0 0 i k 0 ∑ ε (i) xx d (i) 1 0 0 0 0 1 -i k 0 ∑ d (i) 0 0 -i k 0 ∑ ε (i) yy d (i) 1 ⎤ ⎥ ⎥ ⎦ , ( 3 
M = [ D (0) ] -1 N ∏ i=1 T (i) D (N +1) , (3.73) 
where D (0) and D (N +1) are the dynamical matrices of superstrate (air) and substrate, respectively.

Let us now consider one anisotropic ultra-thin layer with the optical constants ε xx = ε and ε yy = ε + ∆ε, and thickness d (n) , which is embedded between substrate with the optical constant ε and air with ε 0 = 1. Then the reection coecients are calculated according to (3.65), (3.68), and (3.73) analysis to the measurement of InGaAs/GaAs quantum well system measured by Yu [38], where ∆r/r ≈ 10 -4 for 7 nm and λ ≈ 1µm gives order of the anisotropy magnitude |∆ε| ≈ 0.05, which is in a good agreement with ellipsometric analysis described in Chapter 4.

r xx = r = M 21 M 11 = 1 - √ ε 1 + √ ε (3.74) r yy = r -∆r = - M 43 M 33 = 1 - √ ε -ik 0 ∆εd 1 + √ ε + ik 0 ∆εd , ( 3 

Ellipsometric angles

In ellipsometry measurements, the polarization states of incident and reected light are described by the coordinates of sand p-polarizations. Upon light reection both polarizations exhibit dierent changes in amplitude and phase which can be in the case of isotropic non-depolarizing sample conveniently described by using two ellipsometric angles Ψ and ∆ by the following relation: (3.82)

r pp r ss = tan Ψ exp (i∆),

MUELLER MATRIX ELLIPSOMETRY

The simplest RAS spectrometer based on the intensity modulation has been designed by Aspnes [82], where linearly polarized light is incident on a sample rotating with angular frequency ω s . Then the intensity of the light reected by the sample is:

I RAS ∝ R - ∆R 2 cos 2ω s t, (3.83) 
where R and ∆R represents, respectively, the average and the anisotropy of the reected intensities given by: R = (3.85)

|r xx | 2 + |r yy | 2 2 , ( 3 
The measured ratio the oscillatory I 2ω and time-independent contribution I 0 to the reected intensity is a direct measure of ∆R/R:

I 2ω I 0 = 1 2 √ 2 ∆R R , (3.86) 
while for small anisotropies:

∆R R ≈ 2ℜ ( ∆r r 
) .

(3.87)

This measured quantity is directly included in Mueller matrix components M 12 and M 21 . Considering the Jones vector in the form of (3.82), the Mueller matrix (3.39) can be expressed as:

M = ⎡ ⎢ ⎢ ⎣ 1 2 (|r xx | 2 + |r yy | 2 ) 1 2 (|r xx | 2 -|r yy | 2 ) 0 0 1 2 (|r xx | 2 -|r yy | 2 ) 1 2 (|r xx | 2 + |r yy | 2 ) 0 0 0 0 ℜ(r yy r * xx ) ℑ(-r yy r * xx ) 0 0 ℑ(r yy r * xx ) ℜ(r yy r * xx ) ⎤ ⎥ ⎥ ⎦ . (3.88)
One can clearly see the connection of M 12 = M 21 to ∆R/R given by:

m 21 = M 21 M 11 = ∆R 2R m 12 = M 12 M 11 = ∆R 2R , (3.89) 
where m 12 and m 21 are normalized Mueller matrix components. The main disadvantage of the RAS spectroscopy based on the intensity modulation is unsuitability for the implementation in in-situ real-time measurement because of a need for the sample rotation. Moreover, it only enables the measurements of the real part of the complex quantity ∆r/r.

An improved way for RAS measurements, which has become popular, is based on photoelastic phase modulation [81], where one linear polarization, perpendicular to modulation axis is unaected by modulator, but the polarization along the modulation axis undergoes an oscillatory retardation Γ r with the frequency ω r and the amplitude Γ r,0 : Γ r = Γ r,0 sin (ω r t) .

(3.90)

Then the measured intensity is in the form of harmonic series I RAS = I 0 + I ω + I 2ω + . . ., where I 0 is time-independent contribution and remaining terms are oscillatory contribution with angular frequencies indicated by subscripts. Real and imaginary parts of the ∆r/r are now included in the measured intensities, particularly in the ratios I mω /I 0 :

I mω I 0 = 2J m (Γ r,0 ) ℜ (∆r/r) 1 + |∆r/r| 2 /4 ≈ 2J m (Γ r,0 ) ℜ ( ∆r r 
) , (3.91) where J m (Γ r,0 ) is a Bessel function of order m (even integer), and

I mω I 0 = 2J m (Γ r,0 ) ℑ (∆r/r) 1 + |∆r/r| 2 /4 ≈ 2J m (Γ r,0 ) ℑ ( ∆r r 
) , (3.92) where m is an odd integer. The possibility of a measurement of the imaginary part ∆r/r brings greater information about structure including phase changes upon a reection.

The connection between the imaginary part of ∆r/r and the Mueller matrix is straightforward. One can easily proof that for small anisotropies we obtain:

m 34 = -m 43 = M 34 M 11 = - M 43 M 11 = 2ℑ (-r yy r * xx ) |r x | 2 + |r y | 2 ≈ 2ℑ ( ∆r r 
) .

(3.93)

To conclude, the Mueller matrix obtained by using ellipsometry measurement provides complete information about ∆r/r ratio which is measured by the RAS measurement.

Comparison of Mueller matrix ellipsometry with standard spectroscopic ellipsometry

The spectroscopic ellipsometry allows to determine two independent quantities, the ellipsometric angles Ψ and ∆, dened by Eq. (3.77) as a function of the photon energy. One of the mostly used conguration is based on the phase modulation similarly as used in the RAS measurement. Considering the polarizer-modulatoranalyzer conguration with the respective azimuthal angles α P , α M , and α A with respect to the plane of incidence, the measured intensity is [83]:

I SE (t) = I 0,SE [1 + I S sin (Γ(t)) + I C cos (Γ(t))] , (3.94) 
where The Mueller matrix polarimetry enables to measure and determine both ellipsometric angles in one fast measurement. For non-depolarizing isotropic sample, the normalized Mueller matrix has the following form: 

I S = sin [2 (α A -α M )] sin 2α P sin 2Ψ sin∆, (3.95) 
I C = sin [2 (α A -α M )] [sin2α M (cos 2Ψ -cos 2α P ) + sin 2α P cos 2α M sin 2Ψ cos ∆] . ( 3 
M norm = ⎡ ⎢ ⎢ ⎣ 1 -cos 2Ψ 0 0 -cos 2Ψ 1 0 0 0 0 sin 2Ψ cos ∆ sin 2Ψ sin ∆ -sin 2Ψ sin ∆ sin 2Ψ cos ∆ ⎤ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎣ 1 -I C ′ 0 0 -I C ′ 1 0 0 0 0 I C I S 0 0 -I S I C ⎤ ⎥ ⎥ ⎦ , ( 3 

Conclusion of the chapter

This chapter has been dedicated to the theory of the electromagnetic response of multilayer anisotropic structures. After derivation of the wave equation for generally anisotropic medium, we introduced the transfer and the scattering matrix formalism as eective methods for calculation of the reection coecients, ellipsometric angles and the Mueller matrix components. In the end of this chapter we have compared the Mueller matrix ellipsometry used in this thesis with other widely used measurement techniques such as the reectance anisotropy spectroscopy and standard spectroscopic ellipsometry and we have pointed out the benets of this method.

Chapter 4 Experimental study of surface and interfacial optical anisotropy

This chapter is devoted to the experimental study of local linear anisotropies in In-GaAs/GaAsP semiconductor VECSEL laser structure using the Mueller matrix ellipsometry. Such anisotropic eects originate from i) the reduction from D 2d to C 2v symmetry group at the III-V semiconductor interface and ii) locally present strain at surface and in the quantum wells. We present ellipsometry results in the spectral range from 0.73 to 6.4 eV in order to disentangle surface and quantum wells (QWs) contributions to the linear optical birefringence of the structures. The measurement of the full 4 × 4 Mueller matrix for multiple angles of incidence and in-plane azimuthal angles in combination with proper parametrization of optical functions has been used for extraction of optical permittivity tensors of surface strained layers and QWs. Such spectral dependence of optical tensor elements are crucial for modeling of future spin-laser eigenmodes, resonance conditions, and also for understanding of sources of structure anisotropies. The Mueller matrix measurement and analysis have been published in the journal Applied Physics Letters [43].

Experimental setup

The Mueller matrix ellipsometer Woollam RC2 was used for the measurement of the complete Mueller matrix of the VECSEL laser structure. Figure 4.1 shows the PCSCA conguration [80] of the experimental measurement (polarizer-compensator-sample-compensatoranalyzer) used to collect all 16 elements of the Mueller matrix [84]. The ellipsometer uses a combination of halogen bulb and deuterium lamp as a light source in the UV-NIR spectral region from 0.74 eV to 6.42 eV (193-1700 nm). The beam is collimated by an achromatic lens and then passes through a xed MgF 2 Rochon polarizer, and nally through an achromatic rotating (10 Hz) prism compensator. The detector consists of two spectrometers: i) Si CCD detector for UV-VIS spectral range and ii) InGaAs photodiode array for NIR region. The sample is mounted to the stage, which enables in-plane rotation of the sample around z axis. In reection, the angle of incidence θ (0) can be varied from 19 • -85 • . 

Sample description

Optical function of semiconductor layers

The critical step involved in tting Mueller matrix ellipsometric data to a given structural model is the proper parametrization of the dispersion of the unknown energy-dependent complex optical functions ε r (E) = ε 1iε 2 . We have used a Kramers-Kronig (KK) consistent Tauc-Lorentz (TL) model function, which was developed by Jellisson [START_REF] Jellison | Parameterization of the optical functions of amorphous materials in the interband region[END_REF] using the Tauc joint density of states and the Lorentz oscillator. This approach is combined by subset of more general Herzinger-Johs parametrized function shape with KK properties [START_REF] Johs | Development of a parametric optical constant model for Hg 1-x Cd x Te for control of composition by spectroscopic ellipsometry during MBE growth[END_REF] to model the shape of an M 0 critical point seen in direct gap semiconductors such as GaAs around the gap energy E g .

Tauc-Lorentz model

In the approximation of parabolic bands, Tauc's dielectric function describing inter-band mechanism above the band edge is in the form:

ε T 2 (E) = ⎧ ⎪ ⎨ ⎪ ⎩ A T ( E-Eg E ) 2 E ≥ E g 0 E ≤ E g , (4.1) 
where A T is the Tauc coecient, E is the photon energy, and E g is the energy of the optical bandgap.

On the other hand, the derivation of the Lorentz oscillator is based on the classical theory of interaction between light and matter and is used to describe frequency dependent polarization due to bound charge, which supposed to be analogy to a spring-mass system. Bounded electrons react to an electromagnetic eld by vibrating like damped harmonic oscillator leading to the imaginary part of the relative permittivity [START_REF] Jellison | Parameterization of the optical functions of amorphous materials in the interband region[END_REF]:

ε L 2 = A L ΓE 0 E ( E 2 -E 2 0 ) 2 + Γ 2 E 2 , (4.2)
where Γ is the broadening parameter and E 0 is the energy of central peak with amplitude A L . Multiplying of Eq. ( 4.1) and Eq. ( 4.2) leads to the Tauc-Lorentz dispersion formula:

ε 2 (E) = ⎧ ⎨ ⎩ 1 E AE 0 Γ(E-Eg) 2 (E 2 -E 2 0 ) 2 +Γ 2 E 2 E ≥ E g 0 E ≤ E g , (4.3) 
with the overal amplitude A = A T A L . The real part of the dielectric function is derived using Kramers-Kronig integration [START_REF] Jellison | Parameterization of the optical functions of amorphous materials in the interband region[END_REF]:

ε 1 (E) = ε 1∞ + 2 π P C ∫ ∞ Eg E ′ ε 2 (E ′ ) E ′2 -E 2 dE ′ , (4.4) 
where P C is the Cauchy principal value and ε 1∞ is the constant term originating from high-energy absorptions.

Herzinger-Johs model

The model developed by Johs [START_REF] Johs | Development of a parametric optical constant model for Hg 1-x Cd x Te for control of composition by spectroscopic ellipsometry during MBE growth[END_REF], which combines functional shape with Kramers-Kronig consistent properties, is convenient when reproducing complicated dielectric function shape without the need of additional oscillators between critical points. Analytically, a single oscillator is formed by four-order Gaussian-broadened polynomials, which are grouped into four polynomial ensembles connected end-to-end and centred on critical point E C . Each spline connects smoothly with the adjacent spline, forming a single, continuous function as depicted in Fig 4 .3. Generally, each critical point is described by 9 parameters. E C is the CP energy with amplitude A C , while E L and E U are the end points. Energies E LM and E U M with respective amplitudes A LM and A U M describes two control points for establishing the assymetry of the lineshape. The center (E C ), the bounding energies (E L and E U ) and center amplitude (A C ) are specied absolutely. The position of the control points, which correspond to the joining points of four polynomials, are dened relative to these absolutes.

The general expression of the dielectric function is then given as a summation of the Herzinger-Johs dielectric function ε HJ (ω) = ε HJ 1iε HJ 2 and P o poles representing contribution from outside region of studied spectra:

ε (ω) = 1 + ε HJ (ω) + Po ∑ j=1 A j (hω) 2 -E 2 j . (4.5) 
The imaginary part of the Herzinger-Johs dielectric function ε HJ 2 is described using m energy-bounded polynomials given by [START_REF] Johs | Development of a parametric optical constant model for Hg 1-x Cd x Te for control of composition by spectroscopic ellipsometry during MBE growth[END_REF]:

ε HJ 2 (ω) = m ∑ j=1 ∫ Emax E min W j (E) Φ (hω, E, σ j ) dE, (4.6) 
where Φ (hω, E, σ j ) is the Gaussian broadening factor and W j (E) is the fourth-order (N = 4) polynomial function:

W j (E) = N ∑ k=0 P j,k E k u (E -a j ) u (b j -E) , (4.7) 
with coecients P j,k and unit step functions u(x). The corresponding real part of the dielectric function ε HJ 1 is obtained by Kramers-Kronig transformation. In this work, we use HJ function to model the shape of M 0 CP of the zinc-blende semiconductor such as GaAs as depicted in Fig. 4.4.

Fitting procedure and gure of merit

The important part of data analysis process is quantifying how well the quantity calculated by the optical model "agrees" with the raw measured data. Therefore we must dene some quantity, which represents the quality of the match between the measured and calculated data. The mostly used quantity, χ 2 function, is dened by:

χ 2 = 1 N λ N o -N p N wvl ∑ w=1 ∑ (ij)̸ =(1,1) ( m th ij,w -m exp ij,w σ ij,λ ) 2 , (4.8) 
where N λ is the number of spectral points, N o is the number of observables (N o = 15 for normalized Mueller matrix measurement), N p is the number of variable (t parameters), and σ ij,λ is the wavelength-dependent standard deviation. The subscripts th and exp refer to the calculated and the measured data, respectively.

To obtain the best t between the experimentally measured and model generated data (to achieve the lowest χ 2 ), parameters of the optical model called t parameters such as thicknesses or optical functions must be adjusted. This procedure is done by using a standard non-linear iterative optimalization analysis called the Levenberg-Marquardt least square algorithm [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF]. When evaluating the t results, one must follow the following rules: i) The model must be physical. This for example means that optical function determined from a model t must be Kramers-Kronig consistent. ii) The model should be unique. The general rule is to choose the simplest model that adequately ts the data set. It is always possible to reduce χ 2 function by adding more t parameters, but unless the χ 2 is signicantly reduced, the additional complexity is not justied. On the other hand, for complex structure, one can try alternate models to partially verify model uniqueness. 

Results

Figure 4.5 displays the measured spectra of the Mueller matrix components M 21 , M 34 , and M 44 in the full range from 0.73 to 6.4 eV compared with data t with using the tabulated optical constants of GaAs, AlAs, InGaAs, GaAsP [START_REF] Palik | Handbook of optical constants of solids I[END_REF][START_REF] Bass | Handbook of optics[END_REF], and including also GaAs oxide layer on the top [START_REF] Zollner | Model dielectric functions for native oxides on compound semiconductors[END_REF]. These components of the Mueller matrix together with M 12 = M 21 , M 43 = -M 34 , and M 33 = M 44 are the most important to reveal the linear birefringence and dichroism. Considering the general form of the reection coecient r ss and r pp (without sand ppolarized light conversion), one can recall Eq. (3.88) is the most sensitive element to the linear birefringence [START_REF] Losurdo | Ellipsometry at the nanoscale[END_REF]. From the spectral measurement, one can clearly observe two dierent regions: i) the transparent region from 0.73 to 1.7 eV (730-1700 nm) with visible interference eect, where the light is propagating in the whole structure due to the negligible absorption in semiconductor multilayers with presence of photonic Bragg bandgap in the the range from 1.2 to 1.3 eV (953-1033 nm), and ii) the range from 1.7 to 6.4 eV (193-730 nm) without any interferences, where the AlAs/GaAs surface layers absorb incident light. The measured Mueller matrix elements as a function of the in-plane azimuth rotation angle ranging from 0 to 360 degrees for E = 2.2 eV and for the angle of incidence θ (0) = 40 analysis of the full measured spectra from 0.73 to 6.4 eV, variable angle of incidence, and using tabulated optical constants in order to extract the precise thicknesses of all semiconductor layers. Example of thickness t is shown in Fig. 4.5. Comparison of the obtained thicknesses and nominal values of selected layers are shown in Table 4.1. II) Including data with 360 degree range of azimuthal sample-rotation angles, replacing the tabulated constant by the proper parametric functions of the AlAs/GaAs top layers, and tting the parameters of the oscillators in the absorption region E > 1.8 eV, where the sensitivity to surface is maximal due to an absorption of the top layers. III) Fitting of all azimuthal angles in whole spectral range including mainly transparent region E < 1.8 eV, replacing the tabulated constant by parametric function of the InGaAs quantum wells and tting of a few parameters of the optical oscillators while the surface optical constants obtained in the previous step are xed.

Wavelength (nm)

Mueller matrix components

As mentioned above, the critical step involved in tting Mueller matrix ellipsometric data to a given structural model is the proper parametrization of the energy-dependent 56 4.4. RESULTS complex material optical functions described by the complex permittivity ε(E) = ε 1iε 2 . We have used the Kramers-Kronig (KK) consistent Tauc-Lorentz (TL) model function [START_REF] Jellison | Parameterization of the optical functions of amorphous materials in the interband region[END_REF] described in Section 4.2. This approach is combined by subset of more general Herzinger-Johs parametrized function shape with KK properties [START_REF] Johs | Development of a parametric optical constant model for Hg 1-x Cd x Te for control of composition by spectroscopic ellipsometry during MBE growth[END_REF] to model the shape of an M 0 critical point seen in direct gap semiconductors such as GaAs around the gap energy E g . In combination with 4 × 4 matrix formalism describing the light propagation in anisotropic stratied media, the Levenberg-Marquardt least square algorithm [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] is used to obtain Mueller matrix data t. Clear evidence of the broken in-plane symmetry in the surface GaAs/AlAs layers is observed due to the 180 degree (π) symmetry of the measured MM dependence on the rotation angle. Note that eects of the sample tilt and misalignment would exhibit 360 degree (2π) symmetry. Presented model is based on the optical functions parametrization of the GaAs/AlAs top layers by TL model with the amplitudes as a tting parameters in the absorbing range from 1.7 to 6.4 eV, while all other structure parameters (thicknesses, optical constants of quantum wells and barriers, etc.) are xed. The resulting optical constants are shown in Fig 4 .7a) and Fig. 4.8a). For the lasing energy of E = 1.24 eV, the dierence between ordinary and extraordinary optical constants ∆ε 1 = ε 1,oε 1,eo gives ∆ε 1 = 0.115 ± 0.005 for 10 nm thick GaAs and ∆ε 1 = 0.021 ± 0.005 for 30 nm thick AlAs, giving the average value about ∆ε 1 = 0.04 for a 40 nm thick layer composed of GaAs/AlAs at surface in agreement with our recent analysis using active lasing conguration described in Chapter 6 and published in our paper [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF].
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We will now discuss the connection between particular interband transitions of zincblende-type semiconductor depicted in Fig. 4.10 with the obtained permittivity functions. The fundamental absorption edge of zinc-blende-type GaAs and AlAs corresponds to direct transitions from the highest valence band to the lowest conduction band at the Γ point (Brillouin zone center) with the energy E g = 1.42 eV for GaAs and E g = 2.89 eV for AlAs as depicted in Figs. 4.7a) and 4.8a). Above the E g critical point, we observe E 1 and E 1 + ∆ (spin-orbit split) transitions, which occur at the L point of the Brillouin zone or along the Λ lines [START_REF] Adachi | Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles[END_REF]. The E ′ 0 describes the transitions between the valence bands and higher conduction band at the Γ point. The imaginary part of the permittivity ε 2 reaches a strong absolute maximum known as the E 2 peak, which contains contribution over a large region close to the edges in the [100] (X point) and [110] (K point) directions of the Brillouin zone [START_REF] Yu | Fundamentals of semiconductors: physics and materials properties[END_REF].

ε 1 = ε 1,o ε 2 = ε 2,o ∆ε 1 = ε 1,o -ε 1,eo ∆ε 2 = ε 2,o -ε 2,
In Figure 4.7b and Fig. 4.8b one can observe each of the resonant peak absorption corresponding to each critical points of the Brillouin zone. The main contribution of the anisotropy of the GaAs originates from the E 1 and E 1 + ∆ transitions giving up a positive anisotropy between ordinary and extraordinary axis ∆ε 1 > 0 and ∆ε 2 > 0 up to the energy of E = 2.9 eV and opposite ∆ε 1 < 0 for higher energy. The contribution of AlAs to the surface anisotropy for energy below band gap E g is much smaller due to the compensation between E 1 and E ′ 0 oscillators. On the other hand, in higher energy range, these oscillators play crucial role and contribute most to the surface strain.

In the following step, the extracted optical constants of the surface layers have been considered xed, while the optical constants of the InGaAs QW are parametrized and tted to the experimental data in the in the full range from 0.73 to 6.4 eV. The optical constants in all QWs are considered the identical (coupled) in order to reduce a number of tting parameters. Results are depicted in Fig. 4.9a and Fig. 4.9b. We note that the highest accuracy is obtained for region below 1.8 eV, while the features above are determined only quantitatively. The contribution of the QW to the overal birefringence admits two main parts: i) one positive originating from the region of E 1 and E ′ 1 spin-orbit split transitions and ii) the negative from the region of higher energies around E 2 transition. For the lasing energy E = 1.24 eV, this gives ∆ε 1 = 0.047 ± 0.005 for 8 nm thick InGaAs QW (48 nm total). We rst note a positive sign of ∆ε 1 > 0, identical to the surface birefringence, which should be correlated to a corresponding negative sign in the regime of laser operation due to the population inversion. The larger value of ∆ε 1 , although not yet understood, may originate in the non-saturated inversion of population in laser operation, where the average birefringence has been extracted close to 6 • 10 -3 [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF]. The order of magnitude of ∆ε 1 is in agreement with the RAS measurement of the similar single quantum well system InGaAs/GaAs in Ref. 38.
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Conclusion of the chapter

The Mueller matrix ellipsometry presented in this chapter is useful method for study of local anisotropies in multilayer semiconductor structures such as VECSEL lasers. In a future work, this experimental method can be combined with S-matrix recursive formalism for lasing structures developed in our previous work in Ref. 37 and in the next chapter of this thesis to nd the best material conditions (semiconductor host, active zone, quantum well alloying) to eliminate or compensate overall birefringence in compact spin-VCSEL devices, which will lead to circularly-polarized laser emission.

E g E 0 ' E 1 E 1 +¡ E 2
Wave vector k This chapter is dedicated to the detailed analysis of a general method for the modeling of semiconductor lasers such as spin-polarized vertical-cavity surface-emitting lasers and vertical-external-cavity surface-emitting lasers. In the beginning of this chapter we will describe the recent 2 × 2 Jones matrix analysis of spin-VECSEL developed by Alouini and described in Ref. 44. This simple model can describe evolution of the polarization eigen states in the cavity as a function of the eective linear birefringence and circular gain dichroism induced by the spin of injected carriers. However, it is not suitable for description of more complex laser structures with multiple quantum wells (dipolar active sources) inside a cavity and with local anisotropies.

On the other hand, the modeling method developed in this work contains description of the amplication processes in multiple quantum wells, multiple reections, propagation between them, and involving anisotropies that may reveal i) a local linear birefringence due to the strain eld at the surface or ii) a birefringence in quantum wells (QWs) due to phase amplitude coupling originating from the reduction of the biaxial D 2d to the C 2v symmetry group at the III-V ternary semiconductor interfaces. From a numerical point of view, a novel scattering S-matrix recursive method is implemented using a gain or amplication tensor derived analytically from the Maxwell-Bloch equations. It enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with multiple quantum well (MQW) active zones by searching for the resonant eigenmodes of the cavity. The results presented in this chapter have been published in the journal Physical Review A [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF] and in Ref. 45. Let us consider a cavity depicted in Fig. 5.1 which exhibits a residual phase anisotropy (linear birefringence) and circular gain dichroism induced by a spin-population unbalance.

The Jones matrix of the is given by Eq. (3.40). We recall:

J LB = [ e -i 2π λ nxl 0 0 e -i 2π λ nyl ] = e -i 2π λ nl [ e -iLB/2 0 0 e iLB/2
] ,

( 5.1) where LB = 2π λ 0 (n xn y )l describes the linear birefringence and n = (n x + n y )/2 is the average real part of optical index, while the matrix prefactor represents an overall phase delay. It is usual to rewrite the Jones vector in the term of the phase anisotropy γ so that:

J LB = e -i 2π λ nl [ e -iγ 0 0 e iγ ] , (5.2) 
where γ = π λ 0 (n xn y ) l.

(5.3)

In the case of spin-polarized pumping, a cavity exhibits the gain circular dichroism ∆G = G + -G -, where G + and G -are the gains for right and left circularly-polarized light, respectively. If we introduce the average gain as Ḡ = (G + + G -) /2, then the associated Jones matrix is:

J GD = [ Ḡ -i 2 ∆G + i 2 ∆G Ḡ ] .
(5.4)

The complete cavity is closed with the input and the output mirrors. The Jones vectors of the mirror with reectivity R m can be written in the form .5) Considering the input mirror with perfect reectivity and output mirror with reectivity R m , we can express the complete Jones vector of the cavity as: (5.6) where the e iφ term describes the accumulated phase during propagation in the laser cavity. By including the particular Jones matrices from Eqs.(5.2)-( 5.5) we express the nal Jones matrix of the cavity as: 5.7) where l eff = n a l a + nl + l ext represents the eective length of the cavity while n a , l a , and l ext are optical index of the active medium, its length, and the length of the air cavity, respectively. The normalized circular gain dichroism is ∆ G = ∆G/ Ḡ. The resonance condition of the electric eld E is then solved using the eigenvalue equation with eigenvalue λ E :

J M = √ R m [ 1 0 0 1 ] . ( 5 
J C = e iφ J LB J GD J LB J M ,
J C = Ḡ√ R M e -2ik 0 l eff [ e -2iγ -i 2 ∆ G + i 2 ∆ G e 2iγ ] , ( 
J C E = λ E E. (5.8)
The eigenvalue equation is then:

(λ E -cos 2γ) 2 = 1 4 ∆ G2 -sin 2 2γ.
(5.9)

We will now discuss general non-trivial case for which both linear birefringence and circular gain dichroism induced by spin unbalance are present: γ and ∆ G ̸ = 0.

Case i) the linear birefringence is dominant: 1 4 ∆ G2 < sin 2 2γ Solving of Eq. (5.9) leads to two complex solutions:

λ ± E = cos 2γ ± i √ sin 2 2γ - 1 4 ∆ G2 . (5.10)
It is straightforward that the imaginary part causes frequency degeneracy breaking so that each polarization state has its own lasing frequency. The detuning between these eigenpolarization is then: .11) By developing (5.8) we express the ratio between the electric-eld components as:

∆f = c 2πl ef f arctan √ sin 2 2γ -1 4 ∆ G2 cos 2γ . ( 5 
E y E x = 2 sin 2γ ∆ G ⎛ ⎝ 1 ± √ 1 - ∆ G2 4sin 2 2γ ⎞ ⎠ .
(5.12)

Because of the requirement 1 4 ∆ G2 < sin 2 2γ, the ratio E y /E x is real so that the laser admits two linearly polarized eigenmodes whose orientation depends on the ratio between the circular dichroism term 1 4 ∆ G2 and the linear birefringence term sin 2 2γ. Case ii) the linear birefringence and the gain dichroism have equal magnitudes:

1 4 ∆ G2 = sin 2 2γ
This case represents a transition point between the linearly and circularly (elliptically) polarized eigenmodes. The solution of Eq. ( 5.9) gives real value: 5.13) so that the electric eld components verify: 5.14) which describes linearly polarized mode oriented at -45 • from the birefringence axis x.

λ ± E = cos 2γ ( 
E y E x = -1, ( 
Both eigenstates are therefore degenerate in frequency and with the same polarization state so that they are indistinguishable.

Case iii) the circular gain dichroism is dominant:

1 4 ∆ G2 > sin 2 2γ
In comparison to the previous case i), now the solving Eq. ( 5.9) leads to two real solutions:

λ ± E = cos 2γ ± √ 1 4 ∆ G2 -sin 2 2γ. (5.15)
It is now straightforward that pure real solutions of λ ± E lead to no change in phases of two eigenmodes and therefore both eigenmodes oscillate with same frequency. The output polarization is then given by their superposition. The ratio between the electric eld components are given by:

E y E x = e -2iγ -λ ± E 1 2 i G (5.16)
with the module:

⏐ ⏐ ⏐ ⏐ E y E x ⏐ ⏐ ⏐ ⏐ = 1
(5.17) and the phase:

arg ( E y E x ) = ∓arctan ( G2 4sin 2 2γ - 1 
) , (5.18) which straightly describe elliptically polarized eigenmodes. The resolution of the eigenvalue equation (5.9) gives access to the respective gain for each eigen state:

G ± = 1 √ R M λ ± E = [ √ R M cos 2γ ± √ 1 4 ∆ G2 -sin 2 2γ
] -1 .

(5.19)

The conclusion of the presented analysis is shown in Fig. 5.2. If the linear birefringence is dominant ( 14 ∆ G2 < sin 2 2γ) both eigen polarizations are linearly polarized oscillating with dierent frequencies while their respective orientation depends on the ratio between the terms describing the circular gain dichroism ∆ G and the linear birefringence sin 2γ. When the circular gain dichroism increases, the linearly polarized and fully degenerated eigenmodes lose their orthogonality and converge in one direction oriented at -45 • from the birefringence axis for 1 4 ∆ G2 = sin 2 2γ. With increasing circular gain dichroism, the linear polarizations change to an elliptical one with the long axis oriented at 45 • from the birefringence axis up to the state which can be considered as circularly polarized. Second orthogonal elliptical (circular) polarization with lower gain appears for higher 1 4 ∆ G2 . 5.2 Physics of spin-pumped gain medium with linear birefringence

Maxwell-Bloch Equations

The carrier-photon dynamics of spin-lasers can be modeled, from the basis of the Maxwell-Bloch equations [94103], using a spin-dependent rate equation analysis. The rate equations can provide a direct relation between material properties and device parameters [104106].

Recalling the general form for the electric eld E and the polarization P:

E = 1 2 E 0 e i(ωt-kr) + c.c. = 1 2
Aη 0 e i(ωt-kr) + c.c.

(5.20)

P = 1 2 P0 e i(ωt-kr) + c.c. = 1 2
Pη 0 e i(ωt-kr) + c.c., (5.21) we will now discuss three rate equations governing the behaviour of a single-frequency laser for i) the polarization of the active medium, ii) the inversion of a spin-polarized population, and iii) the electric eld in a cavity.

Interaction Hamiltonian

The Maxwell-Bloch equations derive from the evolution of the density matrix [9497,102,103] under the action of the electrical dipolar Hamiltonian: Then in order to have interaction, we have to consider states |1⟩ and |2⟩ with oposite parity. Hence the interaction Hamiltonian is in the form: 5.23) where we introduce the notation: (5.24) which with the form for electric eld (5.20) becomes [107]:

Ĥd = -d • E = - ∑ i di E i , ( 5 
Ĥd = [ 0 V V * 0 ] , ( 
V = -d 21 • E,
V = -hαe i(ωt-kr)hβe -i(ωt-kr) , (5.25) where .27) Note that 2α = ω R is usually called the Rabi angular frequency of the light. Then the total Hamiltonian for two-level atom with the transition angular frequency ω 21 reads:

α = d 21 • η 0 2h A, (5.26) β = d 21 • η * 0 2h A * . ( 5 
Ĥ = [ 1 2 hω 21 V V * -1 2 hω 21 ] .
(5.28)

Density matrix and population matrix

In the case of two-level atom with states |1⟩ and |2⟩, the density matrix ρ is used for describing the probability that an atom occupies a particular state. For example the matrix element ρ22 denotes the probability, that the atom occupies state |2⟩. The evolution of ρ22 is governed by the Von Neumann equation [108]: .29) An introducing of the new variables: 5.30) allows us to write the Bloch equations for two-level system as: 5.32) where δ ′ = ω -ω 21 is the detuning factor. From the above equations we can clearly see, that if the interaction with the electric eld is present (α ̸ = 0 and (β ̸ = 0), two terms appear: one slowly varying proportional to β and one high frequency varying term proportional to α. Clearly, atoms cannot well respond to the latter and one can neglect them in the so-called Rotating Wave Approximation [109]. This approximation widely used in quantum optics allows us to write the equations (5.31) and (5.32) in the following form [107]: .34) In real lasers, we consider not only two-level atom interacting with the electric eld, but many atoms bounded together and creating lattices in bulk or quantum well semiconductors. In the case of a large number of atoms, the density matrix ρ is replaced by the population matrix ρ, which is the averaged density matrix over a large number of atoms N with the density matrices ρi : .35) Moreover, since a laser is a dissipative system, including relaxations is important as depicted in Fig. 5.3. We introduce them phenomenologically into the optical Bloch equations (5.33) and (5.34). Since the levels |1⟩ and |2⟩ exhibit nite lifetimes τ 1 and τ 2 , we can dene the relaxation rates for the populations ρ 11 and ρ 22 :

ih ∂ ρ ∂t = [ Ĥ, ρ] . ( 5 
σ 21 = σ * 12 = ρ21 e -i(ωt-kr) , ( 
∂ ρ22 ∂t = - ∂ ρ11 ∂t = -i ( αe 2i(ωt-kr) + β ) σ 21 + c.c., (5.31) ∂ ∂t σ 21 = -iδ ′ σ 21 -i ( α * e -2i(ωt-kr) + β * ) (ρ 22 -ρ11 ) + c.c., ( 
∂ ∂t (ρ 22 -ρ11 ) = -2i (βσ 21 -β * σ * 21 ) (5.33) ∂ ∂t σ 21 = -iδ ′ σ 21 -iβ * (ρ 22 -ρ11 ) . ( 5 
ρ = 1 N ∑ i ρi . ( 5 
γ 1 = 1 τ 1 (5.36) γ 2 = 1 τ 2 .
(5.37)

Now we consider that some of the population decaying from level |2⟩ feeds level |1⟩, for example, by spontaneous emission with the rate γ 21 . By introducing Γ as a o-diagonal damping factor for the coherences ρ 12 , and the pumping rates Λ 1 and Λ 2 of levels |1⟩ and |2⟩, allows us to rewrite the optical Bloch equations (5.33) and (5.34) as follows:

∂ ∂t ρ 22 = Λ 2 -γ 2 ρ 22 -i (βσ 21 -β * σ * 21 ) , (5.38) ∂ ∂t ρ 11 = Λ 1 -γ 1 ρ 11 + γ 21 ρ 22 + i (α * σ 21 -ασ * 21 ) , (5.39) ∂ ∂t σ 21 = - ( Γ + iδ ′ ) σ 21 -iβ * (ρ 22 -ρ 11 ) .
(5.40)

Equation of evolution for the polarization

Under the action of the light eld each atom develops an electric dipole. As the number of atoms contained in a small volume (small as compared with the light wavelength) is always large, one can assume that at each spatial position r there exists a polarization given by the quantum-mechanical expectation value of the electric dipole moment operator d. When using the density (population) matrix formalism, this expectation value is computed as the trace: where N and ρ are, respectively, the atomic density and the density matrix, so that:

P = N Tr ( ρ d) ( 
P = N (ρ 21 d 12 + c.c.) .
(5.42)

By considering: ωt-kr) , (5.43) Eq. ( 5.42) yields:

σ 21 = σ * 12 = ρ 21 e -i(
P = N [ σ 21 d 12 e -i(ωt-kr) + c.c. ] .
(5.44)

By comparing with the general form of the polarization (5.21) and inserting into Eq. ( 5.40) using Eq. ( 5.27) we obtain the rate equation for the evolution of polarization:

∂ P0 ∂t = - ( Γ + iδ ′ ) P0 -i µ 2 h E 0 ∆n.
(5.45)

Equation of evolution for the population inversion

We now simplify the calculation for four-level system for which the lower level |1⟩ decays very fast (τ 1 ≪ τ 2 ) and is not pumped (Λ 1 = 0) so that it is considered empty (ρ 11 = 0).

Then the population inversion is given by: ∆N = N ρ 22 .

(5.46)

The rate equation for the population inversion (5.38) takes the form: 5.47) where γ = 1/τ 2 = 1/τ is the damping rate of the carrier densities and ∆N 0 = N Λ 2 τ is the population pumping term. The Maxwell-Bloch dynamical equations link the electric eld E and the medium polarization P in a vectorial form vs. the carrier density, which may be dierent, using electrical or optical elliptically polarized pumps. In the slowlyvarying-amplitude approximation limit, rate equations for dynamics of the electric eld E and carrier density can be determined once one admits that the medium polarization P adiabatically follows the electric eld dynamics. 

∂∆N ∂t = -γ (∆N -∆N 0 ) - i h ( E * 0 P0 -E 0 P * 0 ) , ( 

Equation of eld evolution in laser cavity

The evolution of the electric eld in the cavity is governed by wave equation (3.7) which can be rewritten with help of the additional relation for the polarization P (3.2a): (5.48) where losses in the cavity (absorption and output losses) are introduced by a generalized conductivity σ, which depends on the photon lifetime in the cavity τ ph so that: σ ∼ 1/τ ph . The polarization term in Eq. ( 5.48) contains two terms: the material polarization:

∂ 2 E ∂z 2 -ε 0 µ 0 ∂ 2 E ∂t 2 -σµ 0 ∂E ∂t = µ 0 ∂ 2 P ∂t 2 ,
P mat = ε 0 χE = ε 0 (ε r -1) E (5.49)
and the nonlinear polarization of the active atoms P which acts as a source term, so that P = P mat + P.

(5.50)

Taking into account that

c = 1 √ µ 0 ε 0 , (5.51)
we nally write:

∂ 2 E ∂z 2 - ε r c 2 ∂ 2 E ∂t 2 -σµ 0 ∂E ∂t = µ 0 ∂ 2 P ∂t 2 .
(5.52)

By inserting Eqs. ( 5.20) and ( 5.21) into the eld wave equation ( 5.52) one can expect long equation for the amplitude and polarization amplitudes E 0 and P0 . Therefore we use the slowly-varying-amplitude approximation which is valid when losses and gain in the cavity are weak enough. Then we can neglect all the second time and space derivatives, for example if:

⏐ ⏐ ⏐ ⏐ ∂ 2 E 0 ∂z 2 ⏐ ⏐ ⏐ ⏐ ≪ k ⏐ ⏐ ⏐ ⏐ ∂E 0 ∂z ⏐ ⏐ ⏐ ⏐ .
(5.53)

Moreover we can also neglect the term ∂E 0 /∂z with respect to ∂E 0 /∂t. With these assumptions we reach the wave equation in the form: (5.54) where we introduced the lifetime of the photons in the cavity τ ph :

∂E 0 ∂t = - 1 2τ ph E 0 + i ω 2ε r P0 ,
τ ph = ε r σ (5.55)

Generalized Maxwell-Bloch Equations

Generally, a common dynamic spin-ip model (SFM) originally developed by San Miguel and coworkers two decades ago is used to describe the left-or right-handed polarization switching and bistability [START_REF] Miguel | Light-polarization dynamics in surface-emitting semiconductor lasers[END_REF][START_REF] Martin-Regalado | Polarization properties of vertical-cavity surface-emitting lasers[END_REF]110]. The polarization properties of the light generated by VCSELs depend on the quantum numbers of the angular momentum in the electronic states between which the optical transitions take place generally under local strain elds. One possibility of considering anisotropy is a generalization of the equations with the considerable simplication of neglecting the longitudinal variations within the system, by taking the z average (where z is the direction of propagation of light) of the optical constant in order to develop the equivalent of the mean-eld model in the Jones vector analysis [111]. Such an approach, although rst satisfactory, prevents a full multiscale description treating the exact eect of the local strain eld on the optical birefringence and of the gain. The full scattering matrix method [40,45] developed in this work fullls all these requirements.

One admits here that the transverse relaxation time of the optical polarizability is very short corresponding to the main class-A and class-B lasers [112]. In the semiconductor host constituting the optical cavity, the vectors E and P are linked by the dielectric constant (or the optical refractive index) that we will consider locally via a layer-by-layer approach. However, crystallographic and electro-optical anisotropies can cause the directions of the vectors E and P to slightly dier in the active regions where carrier recombination takes place. Even if the resulting optical gain only represents a small fraction of the electromagnetic wave intensity in the cavity, the non collinearity property between E and P in QWs is of major importance to understand polarizations and mode coupling. The noncollinearity between E and P also impacts on the competition between circular pumps and native linear gain anisotropy as observed in recent experiments [START_REF] Frougier | Control of light polarization using optically spininjected vertical external cavity surface emitting lasers[END_REF][START_REF] Joly | Compensation of the residual linear anisotropy of phase in a vertical-externalcavity-surface-emitting laser for spin injection[END_REF].

We propose to tackle the problem of non-collinearity between E and P by deriving a certain optical amplication matrix describing the electric eld entering the active zone and its emission from the laser. We refer now to the sketch and notations given in Fig. 5.4. Let us dene the electromagnetic eld of the two-mode laser E (1,2) as a sum of two orthogonal coupled lasing eigenmodes A (1,2) η (1,2) in the following way: 5.56) 5.57) where the η (1,2) are the two polarized eigenmodes we are searching for, either ( 1) or ( 2); A (i) (r, t) and P(i) are, respectively, the slowly time-varying envelope amplitudes and the polarizations of the modes i (i = 1, 2). k (i) are the wave vectors. In the following, we consider wave propagation parallel to the z direction. The derivation is made by projecting the ongoing electric-eld vector of the propagating wave crossing the active region over the two optically active circular reference basis [(+) for spin ↑ and (-) for spin ↓ dened along the direction normal to the layers].

E = ∑ i=1,2 1 2 E (i) exp [ i ( ω (i) t -k (i) r )] + c. c. = ∑ i=1,2 1 2 A (i) η (i) exp [ i ( ω (i) t -k (i) r )] + c. c., ( 
P = ∑ i=1,2 1 2 P(i) exp [ i ( ω (i) t -k (i) r )] + c. c., ( 
For that purpose, the dipolar amplitude responsible for the optical gain and corresponding to each of the two spin populations has to be derived. We dene A d ± as those amplitudes in the Jones vector form like largely emphasized in the remaining part of this chapter. For a two-level model, N ± denotes the respective spin-up (+) and spin-down (-) carrier densities in QWs above transparency (tr) where N ± = N ↑↓ -N tr follows the respective pumping rates N 0± . Recent theoretical investigations based on the steady-state ab initio laser theory (SALT) allow an extension from a two-level model to more complex media involving multilevel transitions [102,103]. The dynamical behavior of each of physical constituents, E and P follows [START_REF] Khanin | Fundamentals of laser dynamics[END_REF][START_REF] Hodges | Multimode laser model with coupled cavities and quantum noise[END_REF]:

∂ P(1,2) ∂t = -(Γ + iδ ′ ) P(1,2) -i µ 2 h [( E (1,2) A d * + ) A d + N + + ( E (1,2) A d * - ) A d -N - ] (5.58) 
∂N ± ∂t = -γ (N ± -N 0± ) ∓ γ s (N + -N -)) - i h ∑ i=1,2 {( E * (i) A d ± ) ( P(i) A d * ± ) +c.c } (5.59)
where Γ is the o-diagonal damping factor for the o-diagonal density-matrix elements (media polarization), γ is the damping rate of the carrier densities, γ s is the corresponding spin-ip rate, and δ ′ is the spectral detuning.

Those two equations together with the wave equation ( 5.52) represent a generalization of the Maxwell-Bloch equations and of the spin-ip model we were searching for to the case of anisotropic active regions. The dierence with previous approaches is now that we have projected the E-and Pelds within a non-orthogonal basis imposed by the anisotropy. Indeed, from the rst equation, one can be convinced that the vectorial optical gain is not necessarily collinear to the incoming E-eld for < η (2) |A d + ≯ = 0 and < η (1) |A d -≯ = 0. This feature is reinforced if birefringences within the semiconductor host 5.2. PHYSICS OF SPIN-PUMPED GAIN MEDIUM WITH LINEAR BIREFRINGENCE are considered. Our modeling method satises the whole Eqs. ( 5.52), (5.58), and (5.59) in each of the layers, active regions, barriers, and semiconductor host by using selected optical constants. In particular, the last equation describes the propagation of the electromagnetic eld throughout the structure including a certain optical loss. This can be modeled by a certain imaginary part into the dielectric constant tensor (or the optical refractive index) describing a possible temporal damping parameter κ ∼ 1/τ layer where τ layer denotes the photon lifetime. In the following, we will derive the optical gain properties by considering QWs free of losses.

Derivation of the optical gain including linear anisotropies

Derivation of the optical gain tensor

We are now searching for a general numerical scheme for the determination of the resonant eigenmodes in cavities. The assumption of the slowly variable amplitude approximation (see Eq. 5.54) and of a fast polarization damping leads, in a steady-state operation regime, to:

∂E (i) ∂t = - 1 2 κE (i) + i ω 2ε r P(i) (5.60) 
and

⟨ P(i) ⟩ = -i µ 2 h [( E (i) A d * + ) A d + N + + ( E (i) A d * - ) A d -N - ] Γ + iδ ′ (5.61) 
which yields:

∂E (i) ∂t = - 1 2 κE (i) (5.62) + ωµ 2 2ε r (Γ + iδ ′ ) h [( E (i) A d * + ) A d + N + + ( E (i) A d * - ) A d -N - ] .
This is the general dynamical equation controlling the change of the E-eld envelope amplitude in a non-zero polarization-medium. It gives then the expression for the eld amplication in an active layer (QWs) once the spin-polarized carriers densities N ± are given. A slow dynamics of N ± may come into play when one considers two or several coupled modes [START_REF] Türeci | Self-consistent multimode lasing theory for complex or random lasing media[END_REF]101] or oscillation emission, which we will not consider henceforth. Although we will discuss the impact of anisotropies on a possible two transverse mode coupling, we only address here the issue of a single mode laser and we are searching for such modes.

If one neglects any optical losses in QWs (κ QW → 0), one can implement a fast integration in time of Eq. (5.60) leading thus to the required jump in δE (i) according to

δE (i) = nW ωµ 2 2cϵ(Γ+iδ ′ )h [( E (i) .A d * + ) A d + N + + ( E (i) .A d * - ) A d -N - ]
with the result: where

δE (i),m = g 0 T mn E (i),n , (5.63) 
T mn = [ A d * +,m A d +,n N + N + + N - + A d * -,m A d -,n N - N + + N - ] . (5.64) 
W represents the QW thickness and T is the optical gain tensor for the electromagnetic eld E (i) with the corresponding gain amplitude

g 0 = nωµ 2 N W 2cε r (Γ + iδ ′ ) h , (5.65) 
where N = N + + N -is the total pumped carrier density above transparency and the N W product represents the carrier sheet density in QWs. We recall that the subscripts (m, n) are the space coordinates. As largely discussed in the following, this particular form of the gain we derived should include the phase-amplitude coupling known as the Henry factor α = Real(∂χ/∂N) Imag(∂χ/∂N) [where χ(ω) is the matter susceptibility]. In that sense, g 0 may be written as g 0 = g 00 (1iα). The relevance of the so-called Henry's factor also manifests on the steady-state SALT equations described in Refs. 102 and 103. Equation (5.63) simply reects an amplication of the m-component (m = x, y) of the E-eld for an incoming n-component (n = x, y) when N ± are controlled parameters at present (Fig. 5.4). Odiagonal components of the T -matrix reect the non-collinearity between dipole sources and eigenmodes, originating from the linear gain dichroism.

The particular expression for the prefactor gain g 0 is the one given at low out-of equilibrium carrier densities. It can be shown that the dependence of the gain on pumped carrier density has generally logarithmic dependence so that Eq. ( 5.65) can be generalized into:

g 0 = nωµ 2 2cε r (Γ + iδ ′ ) h (N th W ) ln ( N + N s N th + N s ) (5.66)
giving g 0 (N ) ≃ ∂g 0 ∂N N with the dierential gain ∂g 0 ∂N . Here N th is the carrier density at threshold (or slightly smaller) and N s is an adjustable parameter controlling the correct gain variation with N [46].

In order to derive the expression of the 2×2 optical gain tensor T ij , one needs to consider the two dierent Eeld polarization sources, A d ± within the active regions (QWs). These are described in a Jones vector form and correspond separately to the two dierent spin eigenchannels, + and -. Due to the quantization axis of the wave functions, along the z direction normal to the layers, the correct basis is the ± spin basis along z even in the case of a linearly polarized pump (the particular case with

N + = N -). A d ± are complex conjugate from each other A d -= ( A d + ) * but not necessarily orthogonal.
Eect of the linear gain anisotropy.

We consider now the possible case of a linear gain anisotropy in the active layers (QWs), imposed by a certain bonding anisotropy at the interface with the barriers due to the symmetry reduction from D 2d to C 2v . The overall gain anisotropies may be characterized by i) a ∆ parameter departing from 1 (we will see in the following that ∆ = 1 will correspond to a perfect isotropy) and ii) by the eective spin-polarization in QWs of carriers pumped: The evaluation of [110] crystallographic basis for the two reference optical directions. Associated to a possible anisotropy of the optical oscillator strengths along X ′ and Y ′ , two dierent dipolar transition matrix elements can be ascribed for an E emission along

P s = N + -N - N + + N - . ( 5 
A d ± is performed in the X ′ = [110], Y ′ =
X ′ or Y ′ according to Π x ′ =< S|p x ′ |X ′ >= -ih < S|∇ x ′ |X ′ > and Π y ′ =< S|p y ′ |Y ′ >= -ih < S|∇ y ′ |Y ′ > with Π y ′ = ∆Π x ′ ; ∆ ̸ = 1
then refers to a certain linear gain anisotropy. pm is the impulsion operator and Π m is the corresponding optical transition element. We refer, e. g., to the notation of Zutic et al. [113] for the description of the respective S (conduction band) and X, Y, and Z, (P-type orbitals of the valence band) quantum states describing the optical interband dipolar terms. We rewrite the basis states |X⟩ and |Y ⟩ into the basis |X ′ ⟩ and |Y ′ ⟩ rotated by π/4 using the following transformation:

|X⟩ = 1 √ 2 (⏐ ⏐ X ′ ⟩ + ⏐ ⏐ Y ′ ⟩) (5.68) |Y ⟩ = 1 √ 2 (⏐ ⏐ X ′ ⟩ - ⏐ ⏐ Y ′ ⟩) . (5.69) 
Then the heavy hole valence band for the respective spin ↑ (+) and spin ↓ (-) channels can be described as:

|X⟩ ∓ i |Y ⟩ = 1 √ 2 [1 ∓ i] ⏐ ⏐ X ′ ⟩ + 1 √ 2 [1 ± i] ⏐ ⏐ Y ′ ⟩ . (5.70)
By application of the oscillator strength anisotropy ∆ on the second term we have:

|X⟩ ∓ i |Y ⟩ = 1 2 [(1 + ∆) ∓ i (1 -∆)] |X⟩ + 1 2 [(1 -∆) ∓ i (1 + ∆)] |Y ⟩ . (5.71)
Then the normalized dipolar source vector for the spin ↑ (+) and spin ↓ (-) channels can be expressed as:

A d ± = 1 √ 1 + ∆ 2 [ (1 + ∆)/2 ∓ i(1 -∆)/2 ∓i(1 + ∆)/2 + (1 -∆)/2 ] , (5.72) 
from which follows that A d -= (A d + ) * are complex conjugate from each other. Nonetheless, they are generally not orthogonal in the presence of certain linear gain anisotropy. The two measurable optical laser polarization eigenmodes η ± derived from the diagonalization of the optical T -matrix are then orthogonal. It may result in a non-orthogonality between A d ± and η ± as depicted in Fig. 5.5. This is the source of a strong mode coupling between the two transverse modes.

The resulting dipolar amplication matrix T from Eq. ( 5.64) is given by:

T = g 00 (1 -iα) [ 1+∆ 2 2 1-∆ 2 2 -iP s ∆ 1-∆ 2 2 + iP s ∆ 1+∆ 2 2 ] , (5.73) 
where g 00 (1iα) is the optical gain parameter. The E-eld in the QW obeys in) where T = I 2×2 + T admits an Hermitian form. As discussed before, we have also introduced the phase-amplitude Henry's coecient α [114,115] describing the local change in the optical constant from free carriers. Via a diagonalization procedure of T (or T), one nds the two dierent polarized eigenmodes we are searching for, η (1,2) , together with the optical gain g (1,2) as the corresponding eigenvalues. Those are given as a function of the spin-polarization of carriers P s and the oscillator strength anisotropy ∆:

E (out) - E (in) = g 00 (1 -iα) T E (in) or E (out) = T E (
η (1,2) = 1 √ 2 ⎡ ⎢ ⎣ 1 ± 1-∆ 2 2 -iP S ∆ √ ( 1-∆ 2 2 ) 2 +(Ps∆) 2 ⎤ ⎥ ⎦ <100> , (5.74) 
where the < 100 > subscript means that the present expression for the modes is expressed in the cubic < 100 > reference crystallographic axis. g (1,2) are expressed as:

g (1,2) = g 0 (N + + N -) ⎡ ⎣ 1 + ∆ 2 2 ± √ ( 1 -∆ 2 2 ) 2 + P 2 s ∆ 2 ⎤ ⎦ (5.75) or g (1,2) = g 0 (N + + N -)ḡ (1,2) .
(5.76)

In the above formula for g (1,2) the (+) sign refers to the mode (1) whereas the () sign refers to the mode (2).

ḡ(1,2) = 1+∆ 2 2 ± √ ( 1-∆ 2 2
) 2 + P 2 s ∆ 2 are the reduced gains. One recovers g (1,2) = g ± = 1 ± P s for ∆ = 1 (no linear anisotropy) whereas g (1) = 1 and g (2) = ∆ 2 for P s = 0 for the linear polarized pump, as expected. In the more general case, eigenmodes and corresponding gain display a more complex form. However, one can be convinced that the two sets of vectors η 1,2 and A d ± are generally not collinear to each other, leading to a strong mode coupling between the two transverse modes η 1 and η 2 as discussed below. We note that P s (τ s ) in Eq. 5.67 depends on the spin-relaxation time τ s and thus such eects can be included in the model.

Coupling between transverse modes.

We discuss here the impact of non-collinearity between η 1,2 and A d ± on the transverse mode coupling, as sketched in Fig. 5.5, and leading to possible polarization beating. The possible 5.2. PHYSICS OF SPIN-PUMPED GAIN MEDIUM WITH LINEAR BIREFRINGENCE mode coupling between longitudinal modes [101] of the same polarization is not considered here because of the absence of any polarization beating. One gets the eective optical gain β + 1 and β - 2 from the squared projection of the natural optical eigenmode polarization along the dipole source direction according to:

β + 1 = |⟨η (1) |A d + ⟩| 2 = 1 + sin (2φ 1 + φ 2 ) 2 (5.77) β - 2 = |⟨η (2) |A d -⟩| 2 = 1 -sin (2φ 1 -φ 2 ) 2 (5.78)
as depicted in Fig. 5.5. In the same spirit, the coupling between modes or the cross-coupling terms θ - 1 and θ + 2 [116118], involving linear gain anisotropy, are calculated from the squared projection of the optical eigenmode polarization along the cross-dipole source direction:

θ - 1 = |⟨η (1) |A d -⟩| 2 = 1 + sin (2φ 1 -φ 2 ) 2 , (5.79) 
θ + 2 = |⟨η (2) |A d + ⟩| 2 = 1 -sin (2φ 1 + φ 2 ) 2 , (5.80) 
where φ 1 and φ 2 are given by

φ 1 = arctan ( 1 -∆ 1 + ∆ ) (5.81) φ 2 = arctan ( 2P s ∆ 1 -∆ 2 ) . (5.82) 
It results that θ - 1 and θ + 2 couple the two mode amplitudes and that this coupling is strongly correlated to the linear gain dichroism ∆ and the carrier spin polarization P S . A zero linear gain dichroism ∆ = 1 leads to no coupling θ -,+ 1,2 = 0 whatever the spin-polarization P S . The increase of the linear gain dichroism (∆ < 1) increases the coupling between modes (θ -,+ 1,2 > 0) even in the case of a non-zero spin-polarization P s . The dynamics of carriers pumped are given by the generalization of Eq. (5.59):

∂N + ∂t = -γ (N + -N 0+ ) -γ s (N + -N -) -γ ( ḡ(1) (N )β + 1 I (1) I sat + ḡ(2) (N )θ - 1 I (2) I sat ) , (5.83) 
∂N - ∂t = -γ (N --N 0-) + γ s (N + -N -) -γ ( ḡ(1) (N )θ + 2 I (1) I sat + ḡ(2) (N )β - 2 I (2) I sat ) , (5.84) 
with the eld intensity at saturation

I sat = εrch 2 (Γ 2 +δ ′2 )γ nµ 2 Γ
. We recover the expression for the dynamics of coupling modes vs. the coupling coecient θ [START_REF] Frougier | Control of light polarization using optically spininjected vertical external cavity surface emitting lasers[END_REF]119] from the Lamb model (described in more details in Appendix A), that we have expressed vs. the linear gain dichroism parameter ∆ appearing in ḡ(1,2) , β (1,2) and θ (1,2) . In that picture, the overall [116118] between the two transverse intensity modes I (1) and I (2) is written:

C = θ - 1 θ + 2 β + 1 β - 2 = (1 -cos(2φ 1 ) sin(φ 2 )) 2 -sin 2 (2φ 1 ) cos 2 (φ 2 ) (1 + cos(2φ 1 ) sin(φ 2 )) 2 -sin 2 (2φ 1 ) cos 2 (φ 2 ) . (5.85) 
The simultaneous oscillation of two orthogonally polarized states is ruled by the strength of the nonlinear coupling between the two eigenstates in the active medium. Whether the coupling constant C is higher or lower than 1 leads, respectively, to two distinct regimes, namely, bistability and simultaneity [116]. In this case of laser modes with linearly polarized optical gain along the [110] and [110] directions and no spin-polarized pump (P s = 0), the respective gains are g (1) = 1 and g (2) = ∆ 2 as expected. These experimental conditions are often fullled in real situations with no spin-polarized carrier pump, corresponding to two possible linear modes along [110] and [110] directions.

Source of linear birefringence in the optical cavity

Vector dipolar sources in active regions of VECSELs do not necessarily force the polarization to be emitted in the same direction because of the residual linear birefringences within the semiconductor multilayers. These anisotropic properties of the dielectric function strongly impacts the performance and properties of laser operation leading to the complex polarization dynamics and polarization switching [46]. Previous theoretical and experimental investigations allowed separation between two dierent contributions. The rst anisotropy to consider is the unavoidable linear phase anisotropy induced by a possible local strain-eld in the host material via electro-optical eects [START_REF] Park | Polarization control of vertical-cavity surface-emitting lasers by electrooptic birefringence[END_REF][START_REF] Garnache | A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation[END_REF] and originating, e.g., from the lattice mismatch [121] or from the crystal relaxation at the surface [38,39,42,122]. As a result, the directional degeneracy between the two in-plane [110] and [110] directions will be removed and the frequencies for the corresponding two linear polarizations will be split. The second source of anisotropy is the linear birefringence originating from the interface between ternary quantum wells and barriers (GaAsP/InGaAs/GaAsP). An in-plane optical anisotropy in III-V QWs was found due to the breakdown of the rotoinversion symmetry at interfaces when the host materials do not share any common atoms (symmetry breaking from D 2d to C 2v ) [39] or due to an In chemical segregation [38]. This optical anisotropy has been evaluated by the pseudo-potential microscopic model as well as by k•p models including relevant electronic boundary conditions [39,41,123,124]. Such an eect of linear birefringence in the QWs is generally measured by optical reectance [78], by optical transmission [125] or by optical absorption [126]. In the next section, we will introduce the necessary 4 × 4 matrix formalism enabling us to describe the wave propagation inside the anisotropic multilayer laser cavity as described by Eq. ( 5.52) of the Maxwell-Bloch equations. In this section, we describe the main properties of the optical gain tensor derived above and the propagation of the electromagnetic eld inside the multilayer laser. One denes the amplitude of the source Jones vector in a Cartesian s-p basis according to

A d down = [A d 1 ; A d 3 ] T and A d up = [A d 2 ; A d 4 ]
T (with T transpose vectors) as illustrated in Fig. 5.6. Those describe the E waves, respectively, propagating downward and upward. We call, respectively, A ′ up,down and A ′′ up,down the amplitudes of the E eld traveling towards the respective up and down directions in the region of space below ( ′′ ) and above ( ′ ) a given active QW region, as depicted in Fig. 5.6. Amplication eects by the dipole sources in the active layers can be expressed in the following matrix form: 5.86) where the rst term describes the stimulated emission involving the amplication tensor T uu and T dd (uu for up-ingoing and up-outgoing and dd for down-ingoing and downoutgoing), the precise form will be given later. The second term in the right-hand side of the equation describes the spontaneous emission (stochastic process) weighted by the coecient γ sp . After reections on mirrors and back and forth traveling, the wave polarization A ′ down may be dierent from the source A d down because of residual birefringences (linear or circular) in the host. Note also that, for elliptical modes, polarization and Jones vectors are changed after reections on Bragg mirrors leading to the denition of two dierent opticalgain tensors for up-and down-propagation. The result [45] is that one has to consider the gain tensor, T αβ mn , in a supermatrix form with double index, one m, n = x, y, z for the coordinates and the other α, β=uu,dd for the propagation direction (up, down). In that sense, (up,up) means amplication from an up-incoming wave into an up-outgoing wave, and similarly for (down,down) combination.

[ A ′ up A ′′ down ] = [ T uu 0 0 T dd ] [ A ′′ up A ′ down ] + γ sp [ A d up A d down ] , ( 
Considering normalized vector sources, ( A d down ) + A d down = 1, T uu and T dd admit the form: (5.87) with

T uu = I + g 00 [1 -iαT uu ] T uu
T uu = [ A d 2 A d * 2 A d 2 A d * 4 A d 4 A d * 2 A d 4 A d * 4 ] (5.88) 
and

T dd = I + g 00 [1 -iαT dd ] T dd (5.89)
with 5.90) returning to previous form for the amplication matrix T. Here, I is the 2 × 2 identity matrix. We recall that g 00 is the scalar gain to nd at threshold and α = ∂nr/∂N ∂n i /∂N is the Henry's coecient accounting for the relative change of the real part of the optical index (n r ) [114].

T dd = [ A d 1 A d * 1 A d 1 A d * 3 A d 3 A d * 1 A d 3 A d * 3 ] , ( 
In the previous form given by Eq. ( 5.73), the expression for α dealing with a satellite mode does not take into account the gain saturation by the central mode. The previous expression of α in (5.87) and (5.89) is therefore changed into αT uu and αT dd in order to consider gain self-saturation without much computational eort. For example, if one considers for the case of P s = 0: 5.91) then by diagonalization procedure of the second term in (5.87) one nds .92) for the two dierent eigenmodes η (1,2) = [1; ±1]. Then the corresponding gains are g (1) = 1 multiplied by the factor 1iα and g (2) = ∆ 2 multiplied by the factor 1 -iα∆ 2 . This difference causes a particular frequency splitting between two modes as expected and demonstrated in the next chapter.

T uu = [ 1+∆ 2 2 1-∆ 2 2 1-∆ 2 2 1+∆ 2 2 ] , ( 
[ 1 -iα 1 -iα∆ 2 ] [ 1 ∆ 2 ] ( 5 

Transfer and scattering matrix formalism for anisotropic cavity

We are now going to tackle the issue of propagation end eigenmodes in optical cavities including active regions (QWs), barriers, and Bragg mirrors. One considers rst a single QW as an optical source. Fig. 5.6 displays a simple laser structure consisting of a single active dipole layer embedded in multilayer systems. The multilayers above and below the AND SPIN-LED active layer are described by transfer matrices M (1) and M (2) . Those transfer matrices connect the amplitudes of the outgoing and ingoing waves from the external parts of the active layer to the top (1) and bottom (2), respectively. In that sense, the M matrix contains all the optical properties of the host (birefringence, strain, and optical anisotropies) from the permittivity tensor. Moreover, the T matrix includes information on the optical gain. 

A (N +1) down ] = -γ sp [ A d up A d down ] , (5.93) 
where

ÃM = [ -M(1) uu T uu M (2) ud T dd M(1) du -M (2) dd 
] .

(5.94)

The condition for a resonant eigenmode (no spontaneous emission γ sp = 0) is the zero determinant of the constituent matrix ÃM . In the simplest case of a laser cavity of thickness d, wave vector k 0 = 2π/λ, and complex refractive index n = n rin i , one obtains in this way the well-known condition for the resonance wavelength k 0 dn r = mπ by nding the zero of the imaginary part of the determinant. From the zero of its real part, one obtains g = e k 0 dn i /2 -1, giving the condition for the optical gain g at the laser threshold. From (5.93), the conditions for resonance and eigenmodes for a single active layer are then generally given by: det

[ ÃM ] = 0 (5.95) or equivalently

[ T dd M(1) du ( M (1) 
uu

) -1 ] -1 = T uu M (2) ud ( M (2) dd 
) -1 .

(5.96)

However, the transfer matrices M (1) and M (2) described by (B.1) and (B.2), respectively, connecting the upper and lower eld amplitudes is only suitable to describe the single active region. One can easily be convinced that it cannot be extended to the case of multiple QWs. 

ÃS = [ S (1) uu 0 0 S (2) dd ] -1 [ T ud S (1) 
du -I T uu S

(2) ud

T dd S

(1) du 5.97) where I is the 2×2 unit matrix. The ÃS matrix in Eq. (5.97) is in a more general expression suitable for recursive calculations. T dened in (5.86) is generalized into a more general form including possible o-diagonal submatrices T ud and T du required to describe coherent multiple reections and interference eects between two active regions (discussed in details in the next subsection). These cannot be included in the M-matrix formulation and they are derived from a general recursive formula detailed hereafter. In the case where T ud = T du = 0 (a single active region is considered), nding the zero-determinant of the ÃM and ÃS matrices in Eqs. (5.94) and (5.97) gives naturally equivalent results for optical modes (polarization, wavelength) and gain (threshold). The conditions for resonance and eigenmodes for multiple-QWs structures are: (5.98) or equivalently det

T du S (2) ud -I ] , ( 
det [ ÃS ] = 0 
[ T ud S (1) 
du -I T uu S

(2) ud

T dd S

(1) du

T du S (2) 
ud -I ] = 0 (5.99) that we will consider now by implementing a general recursion method for deriving S and T tensors in the most general cases. The resonant condition can be written as:

[ T dd S (1) du ( T ud S (1) 
du -I The S-matrix scheme adopted here is suitable to describe multiple optical active zones, their optical amplication, and the propagation of the electromagnetic inside the cavity.

) -1 ] -1 = T uu S (2) ud 
In particular, the S-matrix scheme enables us to provide a recursive formula for the optical gain involving multiple dipole sources that could be implemented in numerical procedures for the derivation of optical eigenmodes of VCSELs and spin-VCSELs. The result is the following. Let us consider that the dipole active layers are described by the dipole source vectors A (n) d and A (n+1) d and the optical gain tensor T (n) and T (n+1) . The denition of vectors and optical gain are similar to (5.86). The eective dipole layer is found by using the following generalized relationship: (5.102) where T (n,n+1) is in the form

[ A (n) ′ up A (n+1) ′′ down ] = T (n,n+1) [ A (n+1) ′′ up A (n) ′ down ] + A (n,n+1) d ,
T (n,n+1) = [ T (n,n+1) uu T (n,n+1) ud T (n,n+1) du T (n,n+1) dd ] .
(5.103)

The equivalent dipole source vector, A (n,n+1) d , and optical gain tensor T (n,n+1) of the total system are written:

T (n,n+1) = [ 0 T (n) ud T (n+1) du 0 ] + B [ T (n+1) uu 0 0 T (n) dd ] ,
(5.104) (5.105) where

A (n,n+1) d = A (n) d + B A (n+1) d ,
B = [ T (n) uu S (n) uu T (n) uu S (n) ud T (n+1) dd S (n) du T (n+1) dd S (n) dd ] [ I -T (n+1) ud S (n) du -T (n+1) ud S (n) dd -T (n) du S (n) uu I -T (n) du S (n) ud ] -1 .
(5.106) Note that the eective T matrix consists of non-zero o-diagonal sub-matrices T ud and T du , describing coherent reection processes between consecutive active regions. In Sec. 6.2, we will show that T ud and T du may largely impact the resonance conditions on the wavelength and the frequency splitting in anisotropic VCSELs. More details of the numerical recursive procedure are shown in Appendix C.

Conclusion of the chapter

The mathematical approach presented in this chapter and published in our paper [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF] oers a powerful method for modeling of the laser eigenmodes of VCSELs and spin-VCSELs lasers with the local linear birefringence and the linear gain dichroism caused by symmetry reduction on the III-V semiconductor interfaces, surface reconstruction and strain eects. Recursive formulas used for calculation of the eective active region enable to include the interference and reection eects between both active regions together with amplication of multiple reected light inside the MQWs region. In the next chapter we reveal the important role of the dierent local birefringences in the eigenmodes and frequency splitting together with the need to correctly describe optical amplication.

Chapter 6

Application of formalism to the real 1/2 (spin-) VECSELs and spin-LEDs Chapter 6 is focused on a numerical and experimental investigation of the local anisotropies in LED and VCSEL cavities. We start with a simplied model of multilayer spin-LED structure, which includes magneto-optical spin-injector and we show the eect of magnetooptical eects on the emitted polarization state. Then we will use derived S-matrix recursive formalism for modeling of a frequency splitting and we will compare it with experimentally measured values in order to extract anisotropic permittivity tensors of surface layers and quantum wells of real VCSEL structures. The chapter is completed by numerical simulation of the polarization states of emitted eigenmodes including local anisotropies such as linear gain dichroism and surface strain.

Model of realistic single-source spin-LED

In this section we will demonstrate our approach on half spin-VCSEL structure in LED regime (with spontaneous emission), which is constituted of only one DBR. Such structures can benet from the external cavity degree of freedom ensured by an external mirror, which is placed outside to stimulate Fabry-Perot resonance.

For the following model, the particular form of the Jones source vector (5.72) will be used. From the previous section, it becomes now clear that if 100% spin-polarized carriers are injected in the active medium with a m j = 1/2 state, the emitted light will consist of photons with both negative (σ -) and positive (σ + ) helicity at the 3:1 ratio (in the +z direction ↓). Recalling N ± the densities of electrons in the ±1/2 electron states and θ (n) the propagation angle in n-th layer, we can use the following combination of the dipole sources in a simplied scheme according to: spin-polarization parameter P s and (ii) polarization eects originating by transmission and reection from the magneto-optical Co layer. The eect of the injected spin polarization is related to the transition probabilities for heavy and light holes (see Figure 2.1). For the spin polarization P s = 1 (subplot a of Fig. 6.2), both heavy hole transition (resulting in RCP in -z direction) and light hole transition (resulting in LCP) polarization are involved, while HH transitions are three times more probable than LH transitions. Moreover the total intensity S 0 changes slightly. These changes are caused by the selective polarization transmission through the structure related to Faraday magneto-optical eect in the ferromagnetic Co layer. Circularly polarized eigenmodes in Co layer with perpendicularly oriented magnetic eld are absorbed dierently and have dierent velocity due to the magnetic circular dichroism and birefrigence, respectively. After crossing the Co layer, the input wave transforms in such a way that its azimuth is rotated and its polarization becomes generally elliptical. Thus even if unpolarized carriers P s = 0 are injected (subplot c and d of Fig. 6.2) and the source is linearly polarized, we can observe non-zero circular S 3 component, which has dierent sign for opposite magnetic eld orientation. The component S 3 switches sign due to dierent transition probabilities for dierent current spin-polarization P s (subplot e and f of Fig. 6.2). Experimental measurement of the Stokes vector can thus bring valuable information about injected spin-polarized current.

A d ↓↑ = N + N + + N - [ √ ξ HH ( 1 -icos θ (n) ) + e i φ√ ξ LH ( 1 icos θ (n) )] + + N - N + + N - [ √ ξ LH ( 1 -icos θ (n) ) + e i φ√ ξ HH ( 1 icos θ (n) )] , ( 6 
Figure 6.3 displays the evolution of the Stokes vector components when varying the injected spin polarization in the case of the heavy hole transitions (ξ HH = 1). As expected for the injected current P s = 1, 100% circularly-polarized light is emitted. As can be seen in Figure 6.4, the thickness of the GaAs lm has an impact on outside eld pattern due to the interference eects. We turn now to experiments and connect our calculation method to some real experimental 1/2-VECSELs structures for two dierent cavity geometries involving linear birefringences. The typical set-up is displayed in Fig. 6.5. This section includes robust numerical predictions for eigenmodes with strong local linear birefringence and linear gain anisotropy eects. The results are compared to experimental measurements with the goal to disentangle both surface and interface anisotropies. We will consider two dierent sources of linear birefringence at the interface and/or in the QWs.

Main physical issues: From a single source to multiple QWs recursion

It is well-known that the birefringence in the laser optical cavity may induce a degeneracy shift of the optical frequencies of polarized eigenvectors, leading to a frequency splitting in the radio-frequency (RF) domain due to dierence of their optical path. A simple model for the derivation of the corresponding phase or frequency splitting between two consecutive modes after one round trip in the optical cavity of length L c is given by [112]: 6.4) where ∆n = n yn x is the modal optical index dierence between the eigenvector axis (integrated over the cavity length), and k 0 is the free-space wavevector of light. The frequency splitting is given by 2π∆f = -∆ϕ l c/2nL c where n is the average modal index.

∆ϕ l = 2k 0 L c ∆n, ( 
In the non intentionally doped GaAs-based nanostructures considered here, emitting vertically along the [001] crystal axis under optical pumping (no vertical static electric eld applied), the typical sources of linear optical anisotropy, and thus birefringence, might nd their origin in three characteristic regions [70]:

• At the Bragg interfaces;

• In the QW layers;

• At the top air-semiconductor interface.

We will consider the latter two contributions as the strongest. An important remark is that the eective phase-amplitude birefringence in QWs depends on the optical gain and then on the losses unlike purely electro-optic birefringence arising from the surface.

The power of the proposed method is to correctly include the gain properties in a self-consistent manner. For instance, we will show that restricting ourselves to the use of a simple round-trip model suppressing main interferences and inter-QW amplication [switching-o T ud and T du in Eq. (5.97)] may lead to inaccuracy in the determination of the birefringence from the value of the average refractive index, ∆n.

Modeling real VECSELs involving linear anisotropies.

Description of the 1/2-VCSEL structures.

We consider two dierent structures (S1 and S2 for samples 1 and 2) schematically shown in Fig. 6.6, the anisotropic optical properties of which have been investigated by highresolution microwave RF-techniques [70]. In details, the non intentionally doped 1/2-VCSEL structure was grown by MOCVD on a [001] GaAs substrate [135]. Structures S1 and S2 are composed of a high reectivity (99.9%) bottom AlAs/GaAs Bragg mirror (31.5 pairs), and a GaAs active layer of 13λ/2 thickness containing six strain-balanced InGaAs/GaAsP QWs emitting at λ ≃ 1 µm for S1 and λ ≃ 1.06 µm for S2. Each QWs is placed at an antinode of the optical standing wave, following a non-uniform longitudinal distribution ensuring uniform QWs carrier excitation. This ensures a low threshold carrier density and homogeneous gain broadening as needed for single longitudinal mode operation [70,134,135]. Structure S1 is terminated by a dielectric anti-reection coating. Structure S2 is ended by a moderately reective top epitaxial AlGaAs Bragg mirror, that may aect the sensitivity of the surface and QW anisotropy. This leads to an optical connement of the electromagnetic eld which is strongly enhanced on the QWs. The VECSEL devices are depicted in Fig. 6.5. The gain structures were optically pumped in the GaAs barriers close to Brewster incidence angle θ B , by using a linearly polarized single mode 800nm laser diode, focused with a pair of aspheric lenses with the focal lengths f 1 and f 2 on a ≃ 35-µm spot radius with a circular in-plane geometry. The passive optical cavity is a high nesse stable plano-concave resonator of L c ≃ 7.5 mm, closed by a concave output coupler (T = 0.7 % for S1 and 13 % for S2) of radius of curvature R c = 10 mm. The minimum waist of the Gaussian beam occurs at the plan mirror. The typical fundamental TEM 00 beam waist is w 0 ∼ 37 µm here, and exhibits a circular geometry. From an experimental point of view, in contrast to the case of monolithic micro-cavity-VCSEL devices [110,133,136], for conventional VECSELs both the frequency splitting and the power beating between polarization eigenmodes are too small to be able to be measured using optical spectrometers. Those experiments are thus based on the mixing of the two orthogonal cavity eigenvectors (see Siegman's book for reference [112]), and on the observation of the beat note in the RF domain, by measuring on a photodiode the power spectral density of the laser total power uctuations [70,112], as shown in Fig. 6.7.

Optical constants.

The optical constants ε = n 2 used in the calculation are the following: ε GaAs (λ = 1000 nm) = 12.3, ε GaAs (λ = 1060 nm) = 12.09, ε AlAs (λ = 1000 nm) = 8.7, ε AlAs (λ = 1060 nm) = 8.63 [START_REF] Palik | Handbook of optical constants of solids I[END_REF], ε InGaAs (λ = 1000 nm) = 13.1, ε InGaAs (λ = 1060 nm) = 12.9 [START_REF] Bass | Handbook of optics[END_REF], ε GaAsP (λ = 1000 nm) = 12.15, and ε GaAsP (λ = 1060 nm) = 11.9 [137]. These optical constants are also in agreement with ellipsometry measurements and modeling that we have recently performed [43] and that are shown in Chapter 4. Concerning the InGaAs quantum well, we switched o the imaginary part of the optical constant being replaced by the optical gain as a controlled input parameter. Detailed birefringence analysis on 1/2-VCSELs.

We are going now to apply our numerical method to three dierent physical situations of a) a linear birefringence at the surface only b) an intrinsic linear birefringence in QWs, and c) a linear birefringence at the surface and phase-amplitude coupling in QWs.

Case a) The laser resonance can be found by searching for the maximum of 1/det [ ÃS ] in Eq. (5.99). To obtain laser parameters, we calculate the 1/det[ ÃS ] as a function of wavelength λ and gain g 00 via a step-by-step mesh-calculation procedure. Under these conditions, one nds a comb of resonance doublets, as expected, two representatives of which are plotted in Fig. 6.8 for Sample 2. The linear gain dichroism has been xed at ∆ = 0.95 in the present example and the linear birefringence at the surface ∆ε s = ( ε x ′ x ′ε y ′ y ′ ) /2 = 0.02, where ε x ′ x ′ and ε y ′ y ′ are the permittivity tensor components of a surface layer along the directions parallel to [110] and [110], respectively, as depicted in Fig. 5.4. The thickness of the birefringent surface layer has been xed to 50 nm. The analysis of the eigenmode polarization demonstrates an orientation of the E-wave along respective [110] and [110] directions for the whole doublets. One can note that the two consecutive peaks occur at two dierent frequencies as expected from the linear birefringence and moreover occur for two dierent calculated amplitude gains, respectively, 0.85 and 0.95 per each quantum well for loss compensation and corresponding to external mirror transmission of about 13% on the electromagnetic wave intensity (6× QWs ×2 on the intensity gain). The relative dierence of the gain of about 10% is then representative dierential gains (1 -∆ 2 ) chosen for this particular example.

Case b) Fig. 6.9a displays the frequency splitting between two consecutive longitudinal modes with and without the linear birefringence ∆ε QW in the QWs introduced as an adjustable parameter for a total thickness of 48 nm (for six quantum wells, 8 nm each). Canceling all the birefringence ∆ε QW = 0, the frequency splitting between longitudinal The long extension of the air cavity compared to the semiconductor part makes it so that the optical phase develops preferentially in that region. Fig. 6.9b) shows the details of the two transverse modes from the ones calculated in Fig. 6.9a). One note that switching o any inter-QWs amplication processes (by switching o the o-diagonal elements T du and T ud ) leads to a certain inaccuracy of the mode splitting ∆f in the MHz range for 1/2 cavity VCSELs. Switching on T du and T ud odiagonal components appears then mandatory for a correct determination of the layerselected anisotropic optical constant ∆n (permittivity tensor ∆ε).

Case c) We now proceed to the investigation of eigenmodes including linear gain anisotropy as relaxed parameters with phase-amplitude correlation (Henry's factor α = 3). We do not consider any other linear birefringence ∆ε QW than the phase-amplitude coupling. This section refers to the recent work of Seghilani [70] giving opposite sign of the frequency splitting ∆f = -16.5 MHz and ∆f = +69 MHz for S1 and S2. Here, ∆f is counted positive when f [110] > f [1 10] according to our convention. The two-dimensional maps presented in Figs. 6.10a) (S1 sample) and Fig. 6.10b) (S2 sample) display the particular dependence of the frequency splitting, ∆f , between the two orthogonal linear polarizations for the two 1/2-VCSELs vs the gain anisotropy parameter ∆ and an additional surface linear birefringence (∆ε s ) with an eective surface thickness of 50 nm. In these examples, we x the value of α = 3 [70]. The two linear polarizations are, respectively, found along [110] and [110] directions with inverted frequency splitting between Samples 1 and 2. One observes separately the dependence of ∆f on ∆ for xed ∆ε s (lines from left to right) and the dependence of ∆f on the linear gain anisotropy ∆ on the horizontal axis. Simple linear parametrization resulting from our calculation gives a phenomenological dependence of ∆f [MHz] on ∆ε s and ∆ for both samples as:

∆f 1 [M Hz] = -1220∆ε s,1 + 40(1 -∆ 1 ) (6.5) ∆f 2 [M Hz] = -1700∆ε s,2 + 550(1 -∆ 2 ). (6.6)
The sensitivity of ∆f 2 (S2) on the linear gain dichroism ∆ 2 is more than a factor of 13 larger than that of S1. This nding describes the micro-resonance eect in the region of QWs combined with a larger carrier optical pumping due to the particularly high decay rate of the cavity. On the other hand, the birefringence at the surface, delocalized from the optical connement region, gives about the same equivalent eect on the frequency mode splitting for the two samples. If one assumes that the two samples are characterized by an identical surface strain and birefringence ∆ε s = ∆ε s,1 = ∆ε s,2 , and identical active zones (the same linear gain dichroism ∆ = ∆ 1 = ∆ 2 ), the common solution of the above equations gives ∆ε s = +0.02 and ∆ = 0.82. The change of the sign of the frequency splitting between S1 and S2 may then be understood as 1) an opposite eect of the linear birefringence between surface and active layers together with 2) a main contribution from the surface for S1 due to small optical losses and gain, and small optical connement, and 3) an enhanced contribution of linear birefringence of QWs for S2 due to larger optical losses and gain together with a strong optical connement.

The matching of the frequency splitting to the experimental situation under the assumption of the same linear gain dichroism of ∆ = 0.95 (linear gain dichroism of 10% on the intensity) for samples S1 and S2, gives a surface strain birefringence ∆ε s,1 of opposite sign of the order of +0.015 for S1 and ∆ε s,2 = -0.025 for S2. QW gain dichroism of about 

Case of the circular pumps with local linear anisotropies

In this section, we will focus on a case with spin-injected current. The calculation procedure is following: i) calculation of the resonance condition given by maximum of 1/det[A s ] by varying the wavelength λ and modal gain per QW g 00 for each value of surface anisotropy ∆ε s (or linear gain dichroism ∆) and the spin-injection degree P s . ii) Calculation of eigenvectors of A s in resonance for each value of surface anisotropy ∆ε s and the spin-injection degree P s . iii) We will draw the calculated Stokes vector components of the output polarization for three dierent cases: cases with surface anisotropy without and with phaseamplitude coupling, and case with the linear gain dichroism.

Eect of surface strain and polarization degree spininjected current

First of all we apply the derived formalism to calculate the dependence of the output polarization state on the spin-injection degree P s of the electrons in the conduction band of QWs and the surface strain ∆ε s = (ε xxε yy ) /2. This corresponds to the situation of a more simpler model described in the beginning of Chapter 5 and published by Alouini [44] (see Fig. 5.2). Figure 6.11 shows the calculated Stokes vector components of two eigenmodes (with subscripts a and b) as a function of the spin-injection degree P s and the surface strain ∆ε s . One can observe three main regions: i) A region with pure circularly-polarized emission S 3a = -1 and S 3b = 1. This emission is ensured by considering no linear anisotropy at surface ∆ε s for every value of the spininjection |P s | > 0. Moreover, one can see that even for small value of surface anisotropy ∆ε s , the emitted light is circularly polarized for a high degree of spin-injection P s . ii) A region with decreasing degree of circularly-polarized emission with 0 < |S 3a | < 1 and 0 < |S 3b | < 1. This eect is caused by the surface anisotropy ∆ε s , which cancels emission of circular polarization and leads to an emission of elliptically polarized light.

iii) Region with no circular polarization S 3a = 0 and S 3b = 0. It can be seen that even high degree of spin-injection |P s | → 1 is not sucient to force the emission of circularly polarized light when the strong linear anisotropy at surface ∆ε s is present. In that case, both linear polarization are rotated to the direction of -45 degree from birefringence axis leading to S 2a = -1 and S 2b = -1. These regions are schematically shown in Fig. 6.12b).

The frequency splitting between two eigenmodes is shown in Figure 6.12. In the region with linear eigen polarizations, both modes oscillate with dierent frequencies. On the other hand, circularly polarized eigenmodes are fully degenerated and oscillate with the same frequency. As can be seen in Fig. 6.11, for real value of surface anisotropy extracted in this thesis ∆ε s ≈ 0.02, one would need the spin polarization P s > 0.2 to obtain the elliptically and circularly-polarized eigenmodes. Note that if we would consider ∆ε s = (

ε x ′ x ′ -ε y ′ y ′ )
/2, the component S 1 turn to component S 2 and vice versa.

ANISOTROPIES

We will now turn on the phase-amplitude coupling term α, which originates from the dierence of the gain between the two modes for the same population inversion, while n + and n -constitutes a unique reservoir for the two modes. In the case with spin-pumping, n + mainly concerns one circular mode and n -mainly the second one and then the two gains are less correlated. For that reason, we will consider α = 1.5 in comparison to α = 3 considered in the case with no spin-polarized pump. Figure 6.13 displays the calculated Stokes vector components. One can observe same three regions as in the previous case. However, with nonzero α the transition between linear and circular modes are more rapid and rotation of the linear modes to -45 degree from birefringence axis is more suppressed (see S 2a and S 2b components). Figure 6.14 also displays the frequency splitting between two modes. In comparison to the case with α = 0 (Figure 6.12) one can observe non-degeneracy in frequency also between circular (or elliptical) modes, which due to the phase-amplitude coupling oscillate with dierent frequencies.

Eect of linear gain dichroism and polarization degree spin-injected current

We will now apply the formalism derived in Chapter 5 and include all material characteristics and cavity properties of real Sample S2 including the linear gain anisotropy ∆. Figure 6.15 shows dependence of the Stokes vector components on the linear gain dichroism ∆ and the spin polarization P s . One can see observe three main regions: i) Region of pure circularly-polarized emission S 3 = ±1. This emission is ensured by no linear gain dichroism ∆ = 1 for every value of the spin-injection |P s | > 0. Moreover, one can see that even for small linear gain dichroism ∆ ≈ 1, the emitted light is circularly polarized for high degree of spin-injection P s . For real value of the linear gain dichroism ∆ = 0.95, one would need the spin polarization |P s | > 0.15 to obtain the elliptically and circularly-polarized eigenmodes.

ii) Region with decreasing degree of circularly-polarized emission 0 < |S 3 | < 1. This eect is caused by the linear gain dichroism ∆, which cancels emission of circular polarization and leads to an emission of elliptically-polarized light.

iii) Region of no circular polarization S 3 = 0. It can be seen that even high degree of spininjection |P s | → 1 is not sucient for emission of circularly polarized light when strong linear gain dichroism is present. In that case the circularly-polarized eigenmodes change to the linearly polarized modes with polarization along x ′ and y ′ axis ([110 and 110]) re- spectively. Note, that for pure isotropic case (∆ = 1 and P s = 0) S 1 = ±1. That means, that numerical solution gives two linear modes oscillating along x and y axis. However, in isotropic case all directions are equivalent. For general case (∆ ̸ = 1 and P s ̸ = 0), S 1 = 0. 

Overall conclusion and perspectives Conclusion

Objective of this thesis is the theoretical and experimental study of spin-polarized lasers and light-emitting diodes such as (spin-)VCSELs and spin-LEDs with the local anisotropies. Achieved results can be summarized as follows:

1. Experimental study of in-plane local anisotropy using the Mueller matrix ellipsometry at multiple angles of incidence and in-plane azimuthal angles. In combination with proper parametrization of optical functions, the optical permittivity tensors of surface strained layers and QWs have been extracted (Figs. 4.7,4.8,and 4.9 in Sec. 4.4). The Mueller matrix ellipsometry has been presented as the useful method for study of local anisotropies in multilayer semiconductor structures such as 1/2-VCSEL dedicated for optical or electrical pumping. Results discussed in Chapter 4 have been submitted to Applied Physics Letters [43].

2. We have proposed the model which is based on two steps: (i) representation of active quantum well layers with dipole sources and (ii) modeling of light propagation in resonant multilayer structures by using an appropriate matrix approach fullling Maxwell equations in each layer and boundary conditions at the interfaces. Results have been published in Physical Review A [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF] and in Journal of Optics [40]. Advantages of the proposed model are:

(i) The model describes polarization of emitted photons related to the quantum optical selection rules and consider spin polarization of injected current or generally polarized optical pumping eld and eects of in-plane symmetry breaking leading to the linear gain dichroism [Eq. (5.73) in Sec. 5.2] and to the possible coupling between modes [Eq. (5.85) in Sec. 5.2].

(ii) Our approach describes the propagation of emitted eld in general anisotropic multilayer system consisting of locally anisotropic layers aected by the symmetry reduction on the III-V semiconductor interfaces, surface reconstruction, strain and magneto-optical eects. The 4 × 4 matrix formalism provides eective approach for investigation of the propagation of electromagnetic radiation in anisotropic layered media, where each layer may display anisotropic optical properties and is characterized by the complex relative permittivity tensor. In the case of anisotropic layered media, the electromagnetic eld in an individual layer can be expressed as a linear superposition of monochromatic plane waves with four eigenmode polarizations obtained by nontrivial solutions of wave equation in each anisotropic layer.

(iii) The proposed model correctly denes phases of incoherent spontaneous emission (spin-LED) and coherent stimulated emission (spin-lasers). In the case of spin-LED with in the spontaneous emission regime, we improved the model of Benisty [128] by suppressing possible interference eects originating from spontaneous emission [Eq. (6.3) in Sec. 6.1].

(iv) Describes the complete polarization state of emitted eld from laser structure and conditions for laser resonance [Eqs. (5.93)-(5.97) in Sec. 5.3.2].

(v) New recursive formulas derived in this thesis are used for calculation of the eective active region and enable to include the interference and reection eects between both active regions together with amplication of multiple reected light inside the multiple quantum wells (MQWs). Consequently, it enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with MQW active zones by searching for the resonant eigenmodes of the cavity [Eqs. (5.102)-( 5.106) in Sec. 5.3.3].

3. Numerical and experimental investigation of the local anisotropies in a LED and VCSEL cavities. We started with a simple model of multilayer spin-LED structure, which includes magneto-optical spin-injector and we showed the eect of magnetooptical spin injector on a emitted polarization state (Fig. 6.2 in Sec. 6.1). Then we applied S-matrix recursive formalism for modeling of a frequency splitting and we compared with experimentally measured values in order to extract anisotropic permittivity tensors of surface layers and quantum wells of real VCSEL structures (Table 6.1 in Sec. 6.2.2). Results have been published in Physical Review A [START_REF] Fördös | Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism[END_REF].

4. Numerical simulation of the polarization states of emitted eigenmodes including local anisotropies such as linear gain dichroism and surface strain. We demonstrated the dependence of the Stokes vector components on the local anisotropies in laser structure. From these calculation, we showed the particular value of the spin-polarization P s needed to obtain the emission of circularly-polarized light from the laser structures with local anisotropies.

Perspectives

The approach derived in this thesis is suitable for future development of advanced laser modeling. In particular, we will extend the method for description of dynamical behavior of spin-VCSEL with multiple active quantum well region, including modeling of timedependent electric eld in the cavity described by the Maxwell-Bloch equations. The models of dynamical properties of spin-VCSELs are under development of pregraduate student Mariusz Drong under supervision of the author of this thesis. One of the most perspective generalization of the approach will be done by implementing of numerical method for the calculation of laser structures with periodic media such as quantum dots, quantum wires, photonic crystals, and gratings. The Maxwell equations in a periodic grating will be solved by using rigorous coupled wave analysis (RCWA) which is based on approximation of the permittivity function and eld components by their Fourier series. In this context, the layer-by-layer formalism including the scattering matrix formalism for description of emission from multiple active region, is very suitable for RCWA implementation. This will lead to advanced model, which enables calculation of properties (threshold, polarization state of the emitted light, mode splitting) of perspective quantumdot and quantum-wire spin-lasers. However, the model has to be further generalized to avoid spurious interferences between Fourier modes.

We also plan to extend participation on technology of laser preparation and experimental demonstration of spin-VCSELs properties. This will include pump-probe experiments with femtosecond pulse laser by using new experimental setup, which will be built soon at Technical University of Ostrava. Future work will be also focused on a searching for alternative source of (coherent) THz radiation. Main idea of the alternative THz laser is based on a photomixing of two continuous-wave laser modes of VCSEL, which are separated in frequency domain. Such frequency splitting is caused by linear anisotropies which are naturally present in semiconductor layers (interface, surface), externally induced (e.g. by electric eld), or added to the laser cavity using birefringent optical element. The optical beatnote between two laser modes at dierent frequencies are then converted into an AC current oscillating at THz frequency and radiated by an appropriately designed antenna. ing Eqs. (5.102) and (5.103), where the eective dipole source vector A (n,n+1) d and the eective optical gain tensor T (n,n+1) appear in the most general case in the following form: The eective T matrix consists of non-zero o-diagonal sub-matrices T ud and T du , originating from the interference and reection processes between consecutive active regions.

T (n,n+1) = [ 0 T (n) ud
Note that the single active layer (n + 1) added in the recursion procedure does not admit any o-diagonal component T while the optical interactions between rst and second, and second and third, dipole layers are characterized by the scattering matrices S (1) and S (2) , respectively. In the rst step we calculate the eective dipole layer for the rst two active regions, n = 1: T (n,n+1) = T (1,2) . According to Eqs. (D.1)-(D.3), the recursion formula gives for the gain tensor components:

T (n,n+1) uu = T (1,2) uu = T (1) uu S (1) uu T (2) uu (D.5)

T

(n,n+1) ud = T

(1,2) ud = T (1) uu S

(1) ud T ud,du describe coherent multiple reections and interference eects between active regions (1) and ( 2). In the second step of the numerical procedure, we set T (2) ≡ T (1,2) followed by third step, when we calculate the complete eective gain tensor for n = 2: T = T (2,3) according to T (2,3) uu = T (2) uu 1
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The present recursive approach can be applied for an arbitrary number of active source layers and arbitrary structures. It can be thus applied for the calculation of the eective gain tensor of any complex light-emitting multilayer structures such as VCSELs and spin-VCSELs.

Spin-lasers are semiconductor devices in which the radiative recombination processes involving spin-polarized carriers result in an emission of circularly polarized photons. Nevertheless, additional linear in-plane anisotropies in the cavity generally lead in preferential linearly-polarized laser emission and to possible coupling between modes. In this thesis, a general method for the modeling of semiconductor laser such as vertical-(external)-cavity surface-emitting laser containing multiple quantum wells and involving anisotropies that may reveal i) a local linear birefringence due to the strain eld at the surface or ii) a birefringence in quantum wells (QWs) due to phase amplitude coupling originating from the reduction of the biaxial D 2d to the C 2v symmetry group at the III-V ternary semiconductor interfaces. A novel scattering S-matrix recursive method is implemented using a gain tensor derived analytically from the Maxwell-Bloch equations. It enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with multiple quantum well active zones by searching for the resonant eigenmodes of the cavity. The method is demonstrated on real laser structures and is used for the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments. The method is generalized to nd the laser eigenmodes in the most general case of circular polarized pumps (unbalance between the spinup and spin-down channels) and linear gain dichroism. In addition, the measurement of full 4 × 4 Mueller matrix for multiple angles of incidence and in-plane azimuthal angles has been used for extraction of optical permittivity tensors of surface strained layers and quantum wells. Such spectral dependence of optical tensor elements are crucial for modeling of spin-laser eigenmodes, resonance conditions, and also for understanding of sources of structure anisotropies. Titre : Source de lumière cohérente avec courant polarisé en spin Mots clefs : spin-lasers, VCSEL, ellipsométrie de la matrice de Mueller Abstract : Les spin-lasers sont des dispositifs semiconducteurs dans lesquels les processus de recombinaison radiative impliquant des porteurs polarisés en spin résultent en une émission de photons polarisés circulairement. Néanmoins, des anisotropies linéaires supplémentaires dans la cavité conduisent généralement à une émission laser préférentiellement polarisée linéairement et à un éventuel couplage entre modes. Dans cette thèse, une méthode générale pour la modélisation de lasers à semi-conducteurs tels que laser à surface verticale (externe) à cavité et contenant des puits quantiques multiples et impliquant des anisotropies pouvant révéler (i) une biréfringence linéaire locale due au champ de déformation à la surface ou (ii) une biréfringence dans les puits quantiques due au couplage d'amplitude de phase provenant de la réduction du D 2d biaxial au groupe de symétrie C 2v aux interfaces semiconductrices ternaires III-V. Une nouvelle méthode récursive à matrice S de diusion est mise en oeuvre en utilisant un tenseur de gain d'erivé analytiquement des équations de Maxwell-Bloch. Il permet de modéliser les propriétés de l'émission (seuil, polarisation, dédoublement de mode) du laser avec plusieurs zones actives à puits quantiques en recherchant les modes propres résonnants de la cavité. La méthode est démontrée sur des structures laser ràelles et est utilisée pour l'extraction de tenseurs de permittivité optique de déformation de surface et de puits quantiques en accord avec des expériences. La méthode est généralisée pour trouver les modes propres au laser dans le cas le plus général des pompes polarisées circulaires (déséquilibre entre les canaux de spinup et de spin-down) et le dichroïsme à gain linéaire. De plus, la mesure de la matrice de Mueller 4 × 4 complète pour des angles d'incidence multiples et des angles azimutaux dans le plan a été utilisée pour l'extraction de tenseurs de permittivité optique de couches contraintes supercielles et de puits quantiques. Une telle dépendance spectrale des éléments tensoriels optiques est cruciale pour la modélisation des modes propres du laser de spin, les conditions de résonance, et aussi pour la compréhension des sources d'anisotropies de structure.
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 41 THE RISE OF SEMICONDUCTOR SPIN-LASERS strated a successful high-degree spin injection(90 %) into nonmagnetic bulk GaAs by using a quaternary II-VI magnetic semiconductor Be x Mn y Zn 1-x-y Se as a spin- aligner under the application of an external magnetic eld along the normal direction of the growth layers at a low-temperature regime. A high degree of injected spin polarization was conrmed by the measurement of the circular polarization state of emitted light. This opened new horizons in a new research eld called spinoptoelectronics. In the consecutive years, the spin-LEDs have been used in experimental spintronics for detection and characterization of spin-polarized carriers in a new generation of spintronic structures [411]. Achieving an eective spin-polarized electron injection into a semiconductor at room-temperature has been one of the most important challenges in spin-optoelectronics. Signicant eort has been made to incorporate ferromagnetic metals in the semiconductor spintronic devices because they oer an eective source of spin-polarized electrons. It has been shown that the obstacle with the conductivity mismatch between the injecting ferromagnetic and receiving semiconductor materials can be overcome by a tunneling mechanism through a barrier [1214]. In 2003 Habinski et al. observed an electron spin polarization of 32% at room-temperature in a GaAs quantum well due to electrical spin injection from Fe/AlGaAs Schottky contact, which provided a natural tunnel barrier between the metal contact and the semiconductor [15]. Two years later in 2005, Jiang et al. demonstrated an eective spin

Figure 1

 1 Figure 1.1: a)Monolithic VCSEL consists of distributed Bragg mirrors (DBR), which plays the role of mirrors. The active region, usually quantum wells (QWs) [17, 18] or quantum dots (QDs) [19, 20], are responsible for the emission of coherent light through electron-hole recombination [18]. Figure reprinted from [18]. b) The VEC-SEL conguration with an external cavity.

For

  the aforementioned reasons, a precise modeling of light emission and propagation in the multilayer active structure with local anisotropies is required. The main goal of the thesis is to model the optical properties of the electromagnetic radiation emitted from spin-LED and spin-VCSEL multilayer structures. It could be based on two steps: (i) representation of active quantum well layers with dipole sources and (ii) modeling of light propagation in resonant multilayer structures by using an appropriate matrix approach fullling Maxwell equations in each layer and boundary conditions at the interfaces.We propose the approach, which (i) describes polarization of emitted photons related to the quantum optical selection rules and consider spin polarization of injected current or generally polarized optical pumping eld, (ii) describes the propagation of emitted eld in general anisotropic multilayer system consisting of locally anisotropic layers aected by the symmetry reduction on the III-V semiconductor interfaces, surface reconstruction, strain and magneto-optical eects, (iii) correctly denes phases of incoherent spontaneous emission (spin-LED) and coherent stimulated emission (spin-lasers), and (iv) describes the complete polarization state of emitted eld from laser structure and conditions for laser resonance. In that mind, new recursive formulas derived in this thesis are used for calculation of the eective active region and enable to include the interference and reection eects between both active regions together with amplication of multiple reected light inside the multiple quantum wells (MQWs). Consequently, it enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with MQW active zones by searching for the resonant eigenmodes of the cavity. The method will be demonstrated on real laser structures and will be used for the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments.

1. 3 .

 3 ORGANISATION OF THE THESIS region. We demonstrate that both surface and QWs birefringences are the origins of the optical frequency splitting, as observed in semiconductor laser measurement developed in Montpellier by the group of A. Garnache.1.3 Organisation of the thesisThis thesis in organized as follows.Chapter 2 introduces basic principles of spin-LED and spin-VCSELs. After a brief introduction of the optical selection rules, we will describe pumping methods, which enable spin injection in semiconductors. Multilayer spin-V(E)CSEL devices will be briey described together with possible local anisotropies present in the laser structures. Chapter 3 oers a brief review of the electromagnetic theory for the multilayer anisotropic structures together with the Mueller matrix experimental measurement and modeling of real VECSEL laser structure. After derivation of wave equation for generally anisotropic medium, we show the 4 × 4 matrix formalism for modeling of electromagnetic response of multilayer anisotropic structures. The change of a polarization state of light due to the local anisotropy is theoretically described using the Jones and the Mueller matrices. Together with experimental measurements using the Mueller matrix ellipsometry for multiple angles of incidence and in-plane azimuthal angles and in combination with proper parametrization of optical functions, the optical permittivity tensors of surface strained layers and QWs are extracted. The Mueller matrix measurement and analysis are presented in Chapter 4 and have been submitted in the journal Applied Physics Letters [43].

1. 3 .

 3 ORGANISATION OF THE THESIS 9 from the Maxwell-Bloch equations. It enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with multiple quantum well (MQW) active zones by searching for the resonant eigenmodes of the cavity. The results have been published in the journal Physical Review A [37] and in Ref. 45. Chapter 6 is focused on a numerical and experimental investigation of the local anisotropies in LED and VCSEL cavities. We start with a simple model of multilayer spin-LED structure, which includes magneto-optical spin-injector and we show the eect of magneto-optical eects on an emitted polarization state. Then we will use derived S-matrix recursive formalism for modeling of a frequency splitting and we will compare with experimentally measured values in order to extract anisotropic permittivity tensors of surface layers and quantum wells of a real VCSEL structure. The chapter is completed by numerical simulation of the polarization states of emitted eigenmodes including local anisotropies such as linear gain dichroism and surface strain. The results presented in this chapter have been published in the journal Journal of Optics [40].
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 22 Figure 2.2: Concept of the optically-pumped VECSEL.

2. 2 .

 2 Figure 2.3: a) Lasing emission spectra of two orthogonal circular components, σ + and σ -, from a VCSEL excited with σ + circularly polarized pump pulses. Figure reprinted from Ref. 24. b) Emission vs pump intensity for the determination of the VCSEL threshold intensity. Figure reprinted from Ref. 57.

Figure 2 .

 2 4 shows the bucket model for (a) a conventional laser and (b) a spin laser. Water added to the bucket represents the carriers, and the water coming out represents the emitted light. Small leaks depict spontaneous emission, and overowing water reaching the large opening corresponds

Figure 2 . 4 :

 24 Figure 2.4: The bucket model for a) conventional laser b) spin-laser proposed by

Figure 2 .

 2 5 shows a schematic description of the 1/2-VCSEL semiconductor structure without top mirror dedicated for the optical pumping in the VECSEL conguration. The structures studied in this thesis have been grown on [0 0 1]-GaAs substrate by metalorganic vapour-phase epitaxy (MOCVD) by Dr. Isabelle Sagnes from C2N (LPN Marcoussis).

Figure 2 . 5 :

 25 Figure 2.5: Schematic description of the 1/2-VCSEL structure dedicated to the optical pumping.

Figure 2 . 6 :

 26 Figure 2.6: Dependence of the Bragg mirror reectivity on the incident wavelength for two dierent number of periods.

  Fig. 2.7c. The anisotropy of top interface is not compensated at the bottom interface because the chemical bondings are dierent and thus the system is not symmetric. The latter case has been clearly demonstrated by Hall et al. on binary InAs/GaSb superlattices with no common atoms [62]. Krebs et al. have examined and theoretically predicted the interface anisotropy in ternary semiconductor quantum wellsystems such as GaInAs/InP. Although both well and barrier materials contain the common atom indium (In), the "average" atom (GaIn) in quantum well is dierent from In in the barrier and therefore contributes to the interface asymmetry[START_REF] Dyakonov | Spin physics in semiconductors[END_REF]. Two years later in 1998, Krebs et al. reported polarization-resolved optical transmission measurements performed on GaInAs/InP multi-quantum wells evidencing a large dichroism[START_REF] Krebs | Giant optical anisotropy in semiconductor heterostructures with no-common atom[END_REF].
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 27 Figure 2.7: Origin of the natural interface asymmetry [59].

Figure 2 . 8 :

 28 Figure 2.8: The surface reconstruction with its characteristic dimer-conguration and back-bonds.

Figure 2 .

 2 9 shows the emission spectra of the VCSEL device investigated by Park et al., where the birefringence has been induced at the top of DBR by applying an electric eld along the [001] direction. The emission spectrum measured in the absence of an electric eld represents the [110] mode. For the +10 V applied voltage, the emission spectrum shifts to a longer wavelength because the [110] mode

Figure 2 . 9 :

 29 Figure 2.9: Shift of emission spectrum at positive and negative applied voltages.

Figure

  Figure extracted from Ref. 68.

2. 5 .

 5 Figure 2.10: Experimental setup of the birefringence measurement. Figure extracted from Ref. 70.
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 131 Figure 3.1: Orthogonal orientation of E, H, and k vectors of the plane wave in an isotropic medium.
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 3 Figure 3.2:

  light intensities of dierent polarization states and could describe unpolarized, partially polarized, and fully polarized light. The Stokes parameters are for fully polarized light dened as:

Figure 3 . 3 :

 33 Figure 3.3: The three Stokes vector components (S 1 , S 2 , S 3 ) are the Cartesian coordinates of the point on the Poincaré sphere (of unit radius) (w 1 , w 2 , w 3 ) = (cos 2ϵ cos 2θ, cos 2ϵ sin 2θ, sin 2ϵ). Points on the Poincaré sphere representing linearly (LP) and right circularly (RCP) polarized light are marked with black points.

3. 1 .Figure 3

 13 Figure 3.4:

  )where M is the 4 × 4 Mueller matrix. Although the Stokes vector is directly related to the light intensities and thus the Mueller matrix does not (in contrast to the Jones matrix) contain any information about the overall phase shift, it can fully characterize the polarization response of any depolarizing or non-depolarizing sample. In the case of the absence of the depolarization, both formalism are equivalent and simple Jones-Mueller matrix conversion is possible via the following relationship [74]:

  ELECTROMAGNETIC FIELD IN ANISOTROPIC MULTILAYER STRUCTURE where the condition for existence of nontrivial solution is ensured by fourth-order algebraic equation: det(♠) = 0. (3.46) Four solutions with N (n) zj , where (j = 1, 3) and (j = 2, 4), correspond to the forward and backward propagating modes called eigen-modes. The eigenmode polarizations

Figure 3 . 5 :

 35 Figure 3.5: Multilayer structure embeded in isotropic halfspaces (0) and (N + 1). Each layer is characterized by the permittivity tensor ε(n) and the thickness d (n) .
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 32 ELECTROMAGNETIC FIELD IN ANISOTROPIC MULTILAYER STRUCTURE where D (n) (the dynamic matrix) and P (n) (the propagation matrix) have the following form

Figure 3 . 6 :

 36 Figure 3.6: Transfer matrix relates the proper polarization elds of amplitudes A (n) j

Eq. ( 3 . 2 Jones

 32 Figure 3.7: Comparison between the transfer matrix and the scattering matrix formalism.

5

 5 Reection coecients with local anisotropic layersIn this subsection we propose to connect the change of the reectivity due to the local anisotropic layers measured by reectance anisotropy spectroscopy (RAS). Let us consider the light with normal incidence θ (0) = 0 on the multilayer structure, 3.2. ELECTROMAGNETIC FIELD IN ANISOTROPIC MULTILAYER STRUCTURE 43

  .75) where the rst relation is the well-known Fresnel equation and the second equation describes dierent reection due to the anisotropic term ∆ε. Then the dierence in reectivity ∆r = r xxr yy normalized to the mean reectance r = (r xx + r yy )

  be also derived by approximate solution of the Helmholtz equation [77] for thin anisotropic lm and is widely used for an interpretation of reectance anisotropy spectroscopy and for the extraction of optical constants of layers with local anisotropies such as with surface strain [78]. One can connect this

  tan Ψ = |r pp | / |r ss | corresponds to the amplitude ratio and ∆ = δ p -δ s denotes the dierence in phase shift upon reection. On the other hand for anisotropic 3.3. MUELLER MATRIX ELLIPSOMETRY 45 sample, the o-diagonal elements of the Jones matrix (3.64) appears: tan ψ sp exp (i∆ sp ), (3.79) r ps r ss= tan ψ ps exp (i∆ ps ),(3.80) and ψ sp , ψ ps , ∆ sp , ∆ ps are the generalized ellipsometric angles[74, 79]. Accordingly, the Jones matrix of anisotropic sample is characterized by six independent parameters instead of only two parameters for an isotropic structure.3.3 Mueller matrix ellipsometryThe Mueller matrix ellipsometry has been widely applied for optical characterization of optically anisotropic structures. The important feature of this kind of ellipsometry is its ability to directly measure the Mueller matrix components corresponding to a sample [79, 80]. Moreover, in comparison to generalized spectroscopic ellipsometry, the Mueller matrix ellipsometry can be used to extract the depolarization eects of a sample originating from incoherent superposition of dierent polarization states upon transmission or reection from the sample. More details about the measurement procedure are given in next chapter supported by experimental results obtained on real laser structures. In this section we will compare the Mueller matrix ellipsometry with widely used techniques such as reectance anisotropy spectroscopy and standard spectroscopic ellipsometry and we will point out the benets of this method. 3.3.1 Comparison of Mueller matrix ellipsometry with reectance anisotropy spectroscopy (RAS) Another widely used technique sensitive to anisotropic optical response of surface reconstructions, strain, and interface bonds is reectance anisotropy spectroscopy (RAS) [81], which measures the dierence in reectance (∆r = r xxr yy ) of normal incidence linearly-polarized light between two orthogonal directions normalized to the mean reectance r = (r xx + r yy )

  .84) and ∆R = |r xx | 2 -|r yy | 2 .

  see that for unambiguous determination of the ellipsometric angles ∆ and Ψ, at least two measurements must be done[83]. For example two measurements with congurations: i) α M = 0 • , α A = 45 • , and α P = 45 • for which I S = sin 2Ψ sin ∆, I C = sin 2Ψ cos ∆, and ii) α M = 45 • , α A = 90 • , and α P = 45 • for which I S = sin 2Ψ sin ∆, I C = I C ′ = cos 2Ψ.

  .[START_REF] Martin-Regalado | Polarization properties of vertical-cavity surface-emitting lasers[END_REF] where I C , I C ′ , and I S are the intensities measured by the standard spectroscopic ellipsometry.

Figure 4 . 1 :

 41 Figure 4.1: Conguration of the experimental measurement: light source (S), polarizer (P), dual-rotating compensator (RC), analyzer (A), and detector (D).

Figure 4 .

 4 Figure 4.2 shows schematically the VECSEL laser structure consisting an epitaxial highreectivity (99.9%) bottom AlAs/GaAs Bragg mirror (26 pairs) of the nominal thicknesses t AlAs = 85.37 nm and t GaAs = 71.8 nm. The 13λ/2 thick active region is constituted of 6 strain-balanced 8 nm InGaAs/GaAsP QWs with emitting laser frequency at λ ≃ 1 µm. Each pairs of QWs is separated by a GaAs spacer which size decreases when getting closer to the surface. A 30 nm thick insulating AlAs layer in-between the surface and the active medium used as a carrier connement layer in optical pumping experiments. The nominal thickness of GaAs capping layer is 10 nm.
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 42 Figure 4.2: Schematic description of studied VECSEL structure.

4. 3 .Figure 4 . 3 :

 343 Figure 4.3: Schematic of a single unbroadened CP structure in the Herzinger-Johs model.

Figure 4 . 4 :

 44 Figure 4.4: Model of the bandgap and M 0 critical point of GaAs by using Herzinger-Johs and Tauc-Lorentz oscillators. Blue and red circles correspond to tabulated data, black solid curves describe model and grey solid curves correspond to model oscillators.

Figure 4 . 5 :

 45 Figure 4.5: Measured and modeled Mueller matrix element spectra. The angle of incidence of θ (0) = 40 • has been chosen.
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 446 Figure 4.7: a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the permittivity dierences of real ∆ε 1 and imaginary ∆ε 2 parts of GaAs

Figure 4

 4 Figure 4.8: a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the permittivity dierences of real ∆ε 1 and imaginary ∆ε 2 parts of AlAs.

Figure 4

 4 Figure 4.9: a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the permittivity dierences of real ∆ε 1 and imaginary ∆ε 2 parts of InGaAs quantum wells.

Figure 4 . 10 :

 410 Figure 4.10: Electronic energy-band structure of GaAs calculated by density function theory (DFT) using Wien2K. The main interband transitions are indicated by the vertical arrows.
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 621 RECENT MATHEMATICAL DESCRIPTION: THE 2 × 2 JONES MATRIX ANALYSIS OF SPIN-VECSEL 5.1 Recent mathematical description: The 2×2 Jones matrix analysis of spin-VECSEL
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 16351 Figure 5.1: Schematic representation of the simplied laser cavity.
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 641 RECENT MATHEMATICAL DESCRIPTION: THE 2 × 2 JONES MATRIX ANALYSIS OF SPIN-VECSEL
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 26552 Figure 5.2: Evolution of the polarization state and the frequency detuning[START_REF] Frougier | Towards spin-LED and spin-VECSEL operation at magnetic remanence[END_REF] 44].

  .22) BIREFRINGENCE where d is the electric dipole operator with the o-diagonal matrix elements between two levels |1⟩ and |2⟩, with µ ≡ d 21,i = ⟨1| di |2⟩ as the dipolar coupling coecient. All atomic eigenstates have well dened parity (even or odd) due to the central character of the atomic potential, so that d 11 = d 22 = 0 and d 12 = d * 21 .
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 53 Figure 5.3: The relaxation and pumping of a two-level system.

Figure 5 . 4 :

 54 Figure 5.4: Scheme of the quantum well and barrier system with crystal axes.
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 2 PHYSICS OF SPIN-PUMPED GAIN MEDIUM WITH LINEAR BIREFRINGENCE 73

Figure 5 . 5 :

 55 Figure 5.5: Scheme of the two orthogonal laser eigenmodes η 1,2 and dipolar source vectors A d ± . The dipolar source vectors are not necessarily orthogonal to each other depending on the dichroism into play. The non-orthogonality between A d ± is at the
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 2 PHYSICS OF SPIN-PUMPED GAIN MEDIUM WITH LINEAR BIREFRINGENCE 77 coupling coecient C

5. 3 .

 3 GENERALIZATION FOR EMISSION FROM MULTILAYER SPIN-LASER AND SPIN-LED 5.3 Generalization for emission from multilayer spinlaser and spin-LED 5.3.1 Description of the optical gain in multilayers

Figure 5 . 6 :

 56 Figure 5.6: Schematic description of the structure with a single active layer showing wave propagation inside the cavity.
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 3 GENERALIZATION FOR EMISSION FROM MULTILAYER SPIN-LASER AND SPIN-LED 79

  More details are given in Appendix B. From (B.1), (B.2), and (5.86) we obtain a compact form of the basic equation for the calculation of the eld amplitudes emitted from the structure A

(Figure 5 . 7 :

 57 Figure 5.7: Sketch of the phase matching in a 1/2 VCSEL structure involving multiple reection, propagation, and amplication processes in the optical semiconductor cavity containing one eective active layer, the properties of which are derived by recursive method. S du and S ud correspond to propagation and reection eects with respective N (top) and M (bottom) reections processes. T ud and T du represent reection after amplication in the eective active zone whereas T uu and T dd correspond to forward amplication.
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 1626364 Figure 6.2:The eect of the electron spin polarization. Subplots show emission pattern for varying injected spin polarization P s = 1 (a), P s = 0.5 (b), and P s = 0 (c) with the magnetization of Co layer oriented in the +z direction. Subplots d), e), and f ) show emission pattern for varying injected spin polarization P s = 0, P s = -0.5 and P s = -1, respectively, with the magnetization of Co layer oriented in the -z direction.
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 2 Emission from 1/2-VCSELs structures with linear birefringence and gain dichroism: model vs. experiments

90 6. 2 .Figure 6 . 5 :

 90265 Figure 6.5: Sketch and geometry of the 1/2-VCSEL devices investigated in this study showing 1/2-VCSEL structure as the gain mirror, the optical pumping system, and the stable plano-concave-type optical cavity (air gap L c = 7.5 mm) [70, 133, 134].
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 66 Figure 6.6: Description of the 1/2-VECSEL structures under study a) without (S1, left) and b) with (S2, right) the moderately reective Bragg mirror. S1 is composed of an antireection coating at the surface.
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 679368 Figure 6.7: Experimental birefringence measurement, via orthogonal E-eld polarization mode beating on a low noise photodiode with a laser beam passing through a polarizer rotated at 45 • from [110] axis: an example of measured RF-spectrum, obtained with Sample 1 in a 7.5 mm long cavity and a concave output coupler with T = 0.7 %. The absence of the peak in the red dashed curve, conrms that the observed beat note is due the orthogonal polarization mode [70].

1 :

 1 Measured polarization modes beat frequency ∆f b [70], extracted anisotropic parameters ∆ε s,1,2 for experimentally obtained ∆ = ∆ 1 = ∆ 2 = 0.95, and anisotropic parameters ∆ε s = ∆ε s,1 = ∆ε s,2 = (ε x ′ x ′ε y ′ y ′ ) /2 together with ∆ = 0.82. modes ∆f = 19.2 GHz matches pretty well the value ∆f = c/ (2t air ) = 20 GHz expected from the calculation of the phase matching in a simple air external cavity of thickness t air .

Figure 6

 6 Figure 6.9: a) Calculation of multimode emission and mode splitting for ∆ε QW = 0 (solid blue line) and ∆ε QW = 0.05 (dashed red line with peak doublets), respectively, inside the QW of Sample 1. b) Calculation of mode splitting inside the QW of Sample 1. The solid blue curve (∆f = 359 MHz) and the dashed red curve (∆f = 195 MHz) describe the resonance conditions for models with and without o-diagonal elements T du and T ud , respectively.

  Figure 6.10: Dependence of ∆f between two orthogonal linear polarizations on linear gain dichroism ∆ and surface anisotropy ∆ε s of a) S1 and b) S2.

Figure 6 .Figure 6 .Figure 6 .

 666 Figure 6.11: Dependence of the Stokes vector components of two eigenmodes (with subscripts a and b) on the spin polarization P s and surface anisotropy ∆ε s for α = 0.

Figure 6 .

 6 Figure 6.14: Dependence of the frequency shift ∆f on the the spin polarization P s and surface anisotropy ∆ε s for α = 1.5.

Figure 6 .

 6 Figure 6.15: Dependence of the Stokes vector components on the linear gain dichroism ∆ and the spin polarization P s .

A

  (n,n+1) d = A (n) d + B A (n+1) d ,

  of no internal multiple reections. Let us demonstrate the recursive calculation for the case of three dipolar layers (ñ = 1, 2, 3) described by the block-diagonal matrix T

  

Table 2 .

 2 

		1: Matrix elements of the dipole moment D cv /D [3].
	CB HH	|3/2, +3/2⟩ -	⟨1/2, +1/2| √ 1/2(x + iŷ)	⟨1/2, +1/2|

  and show that M 21 ∝ |r ss | 2 -|r pp | 2 and M 44 ∝ ℜ { r ss r *

	M 34 ∝ ℑ	{ r ss r * pp	}	pp	}	leading to the sensitivity on linear dichroism, while

Table 4 .

 4 • .

	Material	Obtained thickness	Nominal thickness
	GaAs	9.3±0.2 nm	10 nm
	AlAs	29.8±0.3 nm	30 nm
	InGaAs QW	7.8±0.4 nm	8 nm

1: The obtained and the nominal thicknesses of GaAs/AlAs layers on the top of surface and InGaAs quantum wells.

Table 4 .

 4 eo

	GaAs	12.30	0	0.115	0
	AlAs	8.69	0	0.021	0
	InGaAs	13.10	0.76	0.047	0.026

2: Table of the optical constants and their extracted dierence.

  6.3. CASE OF THE CIRCULAR PUMPS WITH LOCAL LINEAR ANISOTROPIES 97 10-30 % has been measured in Refs. [70, 135]. On the other hand, a surface birefringence dierence with opposite sign between S1 and S2 would be surprising from a technological and physical point of view.

1.3. ORGANISATION OF THE THESIS

4.5. CONCLUSION OF THE CHAPTER
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We consider the outside angle of emission θ (0) ∈< 0, π/2 > for A d ↓↑ . By averaging the nal Stokes intensities over the random phase φ, we describe the independence of stochastic HH and LH transitions. If we consider anisotropic non-stochastic emission by specic broken symmetry, particular φ can be chosen for describing preferential emitted polarization e.g. in the case of strain-induced broken symmetry of interfaces with GaAs quantum wells [127].

The polarization state of the emitted light is then calculated by solving of Eq. (5.93). In the simple case of an isotropic structure and for purely spontaneous emission (with gain g = 0), this approach corresponds to the approach described by Benisty [128]. However, note that the spontaneous emission is not a coherent process and thus the terms γ sp A d up and γ sp A d down have to be added incoherently to the incident wave. In the present method we suppress possible interference eects originating from coherence spurious superposition.

To that goal, we consider breaking phase factor e i φ of the source vector on the right side of Eq. (5.93) 

T (with T transpose vectors). Then by averaging outside Stokes vector components over φ:

we succeed to obtain outside Stokes vector of the structure with polarized source including the inherent incoherence property of spontaneously emitted waves. GaAs with an active plane in the center and Bragg structure AlAs/InGaAs. Figure 6.1 schematically displays the model of the multilayered structure including, from top to bottom, the metallic capping layer (Au), the magnetic and magneto-optically active thin spin-injector (Co) described in a polar geometry ε

the oxide tunnel barrier (MgO) dedicated to electrical spin-injection issue [12,130,131], the active layer GaAs with the active medium QW (plane) in the center and a Bragg reector at the bottom. The energy of the emitted light was for demonstration xed to E = 1.6 eV, corresponding to the wavelength of λ = 775 nm. Optical constants for the materials in the structure are n Au = 0.17 -4.86i [START_REF] Palik | Handbook of optical constants of solids I[END_REF], n Co = 2.44 -4.71i [132], n MgO = 1.73 [START_REF] Bass | Handbook of optics[END_REF], n GaAs = 3.69 -0.01i, n AlAs = 3.02, and n InGaAs = 3.76 -0.28i [START_REF] Bass | Handbook of optics[END_REF]. Note, that all plots describe emission to the halfspace (0) in direction ↑ with the chosen parameters for the spontaneous emission γ sp = 1 and for the stimulated emission g 0 = 1. Figures 6.2 demonstrates the changes of the Stokes vector components when varying the injected carrier spin-polarization dened by (5.67). We observe two eects on outgoing emitted light polarization: (i) an eect of the injected spin polarization described by the 
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Appendix A Lamb's model

In Chapter 5 we derived the coupling coecients θ ±

(1,2) and β ± (1,2) for the most general case involving the spin-polarized carriers together with the linear gain dichroism as depicted in Fig 5 .5. The rst simple model for the coupling between two modes but without the linear gain dichroism was given by Lamb [119]. For the class-A laser with adiabatically neglected population inversion, the temporal evolution of the two circularly-polarized modes intensities (I (1) = I + and I (2) = I -) with the respective gains G + and G -can be described by two coupled dierential equations:

where β + and β -are the self-saturation coecients for the right-and left-circularly polarized modes, respectively. θ ± and θ ∓ are the cross-coupling coecients. Depending on the circular gain dichroism ∆G = G + -G -induced by the injected spin and on the Lamb coupling constant dened similarly to Eq. ( 5.85 as:

The laser will then oscillate on one of these eigen polarizations or on both. By using an approximation where β = β + = β -, θ = θ +-= θ -+ , the steady-state intensities can be expressed as: simultaneous oscillations of the two modes. For strong coupling (C = 0.9), the range of simultaneous oscillations becomes very narrow leading to the easy switch from one eigenstates to another even for a very small normalized gain dichroism (about 10%). This has been observed in recent experiments in the case of spin 1/2 VECSEL structures [START_REF] Frougier | Control of light polarization using optically spininjected vertical external cavity surface emitting lasers[END_REF]. 

Appendix B

Transfer matrix formalism for multilayer lasers and LED Figure 5.6 shows the modeled structure consisting of an active dipole layer surrounded by a multilayer system described by the transfer matrices M (1) and M (2) . The matrices relate the amplitudes of the waves propagating from and toward the system

[

and from (B.2) one can obtain by matrix inversion

where A (0) and A (N +1) describe the amplitudes in the superstrate and substrate. Similarly, A ′ and A ′′ are the amplitudes above and below the active dipole layer. Note that four waves propagate in each layer of the system. Therefore, the amplitudes in (B.1) and (B.2) represent the amplitude vectors corresponding to two orthogonal polarizations, for example, A , in which the active dipole layer is surrounded by the multilayer subsystems described using the scattering matrices S (1) and S (2) . The amplitudes of the waves are related using the matrix formulas ) uu S

(1) ud S

du S ) uu S

(2) ud S

du S = 0. From (C.1), (C.2), and (5.86) we obtain the basic equation (5.93) for the eld emitted from the structure with the matrix ÃS in Eq. (5.97) which consists of a more general expression suitable for the recurrent calculation.

Appendix D

Recursive calculation of the eective gain tensor

The S-matrix approach enables us to describe optical amplication, propagation, as well as interferences in multiple QW structure. The recursive S-matrix method we propose here provides a numerical solution scheme to describe any type of multilayered structures. Let us consider that the dipole active layers are described by the dipole source vectors A (n) d and A (n+1) d and the optical gain tensor T (n) and T (n+1) . The denitions of vectors and optical gain are similar to (5.86). The eective dipole layer is found by us-