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Title : Coherent light sources with spin polarized current

Keywords : spin-lasers, VCSELs, Mueller matrix ellipsometry

Résumé : Spin-lasers are semiconductor devices in
which the radiative recombination processes involving
spin-polarized carriers result in an emission of circu-
larly polarized photons. Nevertheless, additional lin-
ear in-plane anisotropies in the cavity generally lead
in preferential linearly-polarized laser emission and
to possible coupling between modes. In this thesis,
a general method for the modeling of semiconductor
laser such as vertical-(external)-cavity surface-emitting
laser containing multiple quantum wells and involving
anisotropies that may reveal i) a local linear birefrin-
gence due to the strain �eld at the surface or ii) a
birefringence in quantum wells (QWs) due to phase
amplitude coupling originating from the reduction of
the biaxial D2d to the C2v symmetry group at the
III-V ternary semiconductor interfaces. A novel scat-
tering S-matrix recursive method is implemented using
a gain tensor derived analytically from the Maxwell-
Bloch equations. It enables to model the properties of

the emission (threshold, polarization, mode splitting)
from the laser with multiple quantum well active zones
by searching for the resonant eigenmodes of the cavity.
The method is demonstrated on real laser structures
and is used for the extraction of optical permittivity
tensors of surface strain and quantum wells in agree-
ment with experiments. The method is generalized to
�nd the laser eigenmodes in the most general case of
circular polarized pumps (unbalance between the spin-
up and spin-down channels) and linear gain dichroism.
In addition, the measurement of full 4× 4 Mueller ma-
trix for multiple angles of incidence and in-plane az-
imuthal angles has been used for extraction of optical
permittivity tensors of surface strained layers and quan-
tum wells. Such spectral dependence of optical tensor
elements are crucial for modeling of spin-laser eigen-
modes, resonance conditions, and also for understand-
ing of sources of structure anisotropies.

Titre : Sv¥telné koherentní zdroje se spinov¥ polarizovaným proudem

Klí£ová slova : spinové lasery, VCSELs, ellipsometrie Muellerových matic

Abstrakt : Spinové lasery jsou polovodi£ové za-
°ízení v nichº zá°ivé p°echody zahrnující spin nosi£·
vedou k emisi kruhov¥ polarizovaných foton·. Lokální
anisotropie p°ítomné v rezonátoru v²ak ovliv¬ují
výslednou polarizaci a vedou k emisi lineárních
nebo elipticky polarizovaných vlastních mód· a k
p°ípadné vazb¥ mezi nimi. V této práci je pop-
sána obecná metoda modelování povrchov¥ emitujících
polovodi£ových laser· s vertikální geometrií zahrnu-
jící vícenásobné kvantové jámy a p°ítomné lokální
anisotropie: i) linearní dvojlom a dichroismus na
povrchu ii) anisotropie v kvantových jamách pocháze-
jící z fázov¥-amplitudové vazby vzhledem k redukci D2d

symetrie na C2v symetrii na rozhraní III-V ternárních
polovodi£·. Nová metoda zahrnující S-maticový p°ístup
a vyuºívající tenzor zesílení odvozený z Maxwell-

Blochových rovnic umoºnuje modelování vlastností
spinového laseru (laserový práh, vyzá°enou polarizaci,
frekven£ní rozestup mód·) s vícenásobnými aktivními
oblastmi. Metoda je demonstrována na p°íkladu reálné
laserové struktury a je vyuºita pro výpo£et lokálních
optických tenzor· permitivity na povrchu a v kvan-
tových jamách. Metoda je dále zobecn¥na pro popis
spinových laser· s elektrickým a optickým £erpáním a
s lineárním dichroismem v zesílení. Pro výpo£et ani-
zotropních optických konstant bylo vyuºito m¥°ení 4×4
Muellerovy matice pro r·zné úhly dopadu a r·zné az-
imutální úhly. Spektrální závislost optických konstant
je klí£ová pro modelování vlastních módu, podmínek
rezonance a také pro pochopení rozdílných zdroj· ani-
zotropie v laserových strukturách.
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Résumé

Les spin-lasers sont des dispositifs semi-conducteurs dans lesquels les processus de
recombinaison radiative impliquant des porteurs polarisés en spin résultent en une
émission de photons polarisés circulairement. L'ajout du degré de liberté de spin
fournit de nouveaux e�ets et de nouvelles fonctionnalités. Cela ouvre de nouveaux
horizons à des dispositifs modernes combinant les propriétés de l'électronique main-
stream à base de charges avec des processus dépendant du spin. De tels dispositifs
émetteurs de lumière à commande de spin o�rent de nombreux avantages aux futurs
systèmes de communication optique tels que des interconnexions optiques recon�g-
urables pilotées par spin, une dynamique de modulation rapide, une commande de
polarisation ainsi que des performances plus élevées, par exemple une réduction du
seuil laser, une intensité laser améliorée et une stabilité de polarisation. D'un point de
vue technologique, les lasers à géométrie verticale à semi-conducteurs III-V optique-
ment actifs sont considérés comme de bons candidats pour les dispositifs hautement
implémentables à température ambiante. Dans de tels dispositifs, la propagation
optique est normale à la surface du substrat et le gain est fourni par plusieurs puits
quantiques pris en sandwich dans la cavité optique.

Néanmoins, des anisotropies linéaires supplémentaires dans la cavité conduisent
généralement à une émission laser préférentiellement polarisée linéairement et à un
éventuel couplage entre modes. Dans cette thèse, une méthode générale pour la mod-
élisation de lasers à semi-conducteurs tels que le laser à surface verticale (externe)
à cavité contenant des puits quantiques multiples et impliquant des anisotropies
pouvant révéler (i) une biréfringence linéaire locale due au champ de déformation
à la surface ou (ii) une biréfringence dans les puits quantiques due au couplage
d'amplitude de phase provenant de la réduction de la symétrie D2d biaxiale au
groupe de symétrie C2v aux interfaces semi-conductrices ternaires III-V. Pour les
raisons mentionnées ci-dessus, une modélisation précise de l'émission et de la prop-
agation de la lumière dans la structure active multicouche avec des anisotropies
locales est requise. L'objectif principal de la thèse est de modéliser les propriétés
optiques du rayonnement électromagnétique émis par les structures multicouches
spin-LED et spin-VCSEL. L'approche proposée est basée sur deux étapes: (i) la
représentation des couches de puits quantiques actives avec des sources dipolaires et
(ii) la modélisation de la propagation de la lumière dans des structures multicouches
résonantes en utilisant une approche matricielle appropriée respectant les équations
de Maxwell dans chaque couche et les conditions aux limites aux interfaces.

Une nouvelle méthode récursive à matrices S de di�usion est mise en oeuvre

1
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en utilisant un tenseur de gain calculé analytiquement à partir des équations de
Maxwell-Bloch. Il permet de modéliser les propriétés de l'émission (seuil, polarisa-
tion, dédoublement de mode) du laser avec plusieurs zones actives à puits quantiques
en recherchant les modes propres résonnants de la cavité. La méthode est validée sur
des structures laser réelles et est utilisée pour l'extraction de tenseurs de permittivité
optique de déformation de surface et de puits quantiques en accord avec des don-
nées expérimentales. La méthode est généralisée pour trouver les modes propres du
laser dans le cas le plus général de pompes polarisées circulaires (déséquilibre entre
les canaux de spin-up et de spin-down) et le dichroïsme à gain linéaire. De plus, la
mesure de la matrice de Mueller 4×4 complète pour des angles d'incidence multi-
ples et des angles azimutaux dans le plan a été utilisée pour l'extraction de tenseurs
de permittivité optique de couches contraintes super�cielles et de puits quantiques.
Une telle dépendance spectrale des éléments tensoriels optiques est cruciale pour
la modélisation des modes propres du laser à spin, des conditions de résonance, et
aussi pour la compréhension des sources d'anisotropies de structure. L'ellipsométrie
matricielle de Mueller est présentée comme la technique de choix pour l'étude des
anisotropies locales dans les structures semi-conductrices multicouches telles que le
1/2 VCSEL dédié au pompage optique ou électrique.

L'approche proposée dans cette thèse convient au développement futur de la
modélisation laser avancée. En particulier, la méthode peut être étendue à la de-
scription du comportement dynamique de spin-VCSELs avec plusieurs régions de
puits quantiques actifs, y compris la modélisation du champ électrique dépendant
du temps dans la cavité décrite par les équations de Maxwell-Bloch. L'une des
généralisations les plus prospectives de l'approche repose surl
Äôimplémentation
d'une méthode numérique pour le calcul de structures laser avec des supports péri-
odiques tels que des points quantiques, des �ls quantiques, des cristaux photoniques
et des réseaux.



Chapter 1

Introduction

Spin electronics, also called spintronics, refers to a branch of physics, in which charge
and spin of an electron are considered together and not separately as in conventional
electronics, which ignores spin. Adding the spin degree of freedom provides new ef-
fects and new functionalities. This opens new horizons for modern devices combining
properties of maintream charge-based electronics with spin-dependent phenomena.
The perspective of spintronic devices and theirs application in technology was open
in 1988 by Albert Fert and Peter Grunberg [1, 2] by discovering the giant magneto-
resistance e�ect (GMR), which demonstrated the in�uence of the spin of electrons on
the electrical properties in magnetic multilayers composed of alternate ferromagnetic
and nonmagnetic layers. In the consecutive years, an intensive research e�ort in the
investigation of spin injection, spin manipulation, and spin detection in metals has
been stimulated. Since then, the GMR and more general spintronic e�ects like tun-
neling magneto-resistance (TMR) have been applied in hard disk drives, bio-sensors,
micro-electro-mechanical systems, and many others. While metal spintronics has al-
ready found its role in industry, semiconductor spintronics is yet to demonstrate its
full potencial, in particular for speci�c optoelectronic properties like explained in
this manuscript.

1.1 The rise of semiconductor spin-lasers

In the past decade, a continuous research e�ort has been devoted to the physics
and development of a novel type of spintronic devices with possibility to control
polarization states of emitted light. In such spin-polarized light sources, the radiative
recombination of injected spin-polarized carriers results in emission of circularly
polarized photons through the quantum optical selection rules [3]. The direct link
between the polarization of the injected carriers and the emitted photons makes
such spin-polarized sources suitable for many applications. A prerequisite for the
realization of such devices has been the development of solid state spin-injectors at
room temperature.

The �rst spin-polarized photoluminescence based on a semiconductor light emit-
ting diode (spin-LED) was proposed by Fiederling textitet al. in 1999 [4]. He demon-
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4 1.1. THE RISE OF SEMICONDUCTOR SPIN-LASERS

strated a successful high-degree spin injection (90 %) into nonmagnetic bulk GaAs
by using a quaternary II-VI magnetic semiconductor BexMnyZn1−x−ySe as a spin-
aligner under the application of an external magnetic �eld along the normal direc-
tion of the growth layers at a low-temperature regime. A high degree of injected
spin polarization was con�rmed by the measurement of the circular polarization
state of emitted light. This opened new horizons in a new research �eld called spin-
optoelectronics. In the consecutive years, the spin-LEDs have been used in experi-
mental spintronics for detection and characterization of spin-polarized carriers in a
new generation of spintronic structures [4�11].

Achieving an e�ective spin-polarized electron injection into a semiconductor at
room-temperature has been one of the most important challenges in spin-optoelectronics.
Signi�cant e�ort has been made to incorporate ferromagnetic metals in the semi-
conductor spintronic devices because they o�er an e�ective source of spin-polarized
electrons. It has been shown that the obstacle with the conductivity mismatch be-
tween the injecting ferromagnetic and receiving semiconductor materials can be
overcome by a tunneling mechanism through a barrier [12�14]. In 2003 Habinski et
al. observed an electron spin polarization of 32% at room-temperature in a GaAs
quantum well due to electrical spin injection from Fe/AlGaAs Schottky contact,
which provided a natural tunnel barrier between the metal contact and the semi-
conductor [15]. Two years later in 2005, Jiang et al. demonstrated an e�ective spin
injection into AlGaAs/GaAs quantum well system resulting in a high-degree emit-
ted circular polarization (47%) in a room-temperature regime by using CoFe/MgO
metal tunnel junction [7]. Unfortunately, all these experiments required an out-of-
plane applied external magnetic �eld due to the natural shape anisotropy of thin
ferromagnetic �lms, which force the in-plane magnetization.

From a technological point of view, the spin-LED devices would be competitive
in practical applications only if they operate in a room-temperature regime without
the external magnetic �eld. Several groups have already achieved spin injection into
semiconductors using spin injectors with a perpendicular magnetic anisotropy at
magnetic remanence. Using both con�guration with a Schottky contact and a MgO
tunnel contact, respectively, Hovel et al. [9] has achieved spin injection at remanence
while the maximum degree of circular polarization of the emitted light was 3% at
room temperature. The maximal degree of emitted circular polarization (8%) at zero
magnetic �eld has been accomplished by Liang et al. by using CoFeB/MgO metal
tunnel junction spin-injector on a top of InGaAs/GaAs quantum well system. These
types of ultrathin perpendicular spin injectors are of great interest to realize the
electrical switching of the injector magnetization owing to the advanced spin-transfer
torque properties of the CoFeB layer. Moreover such injector can be directly included
in optical cavities for future spin-lasers due to their very low optical absorption
loss [16].

Despite all above mentioned results with the spin-LEDs, such devices remain a
wonderful tool for characterization and optimization of spin-injection in semicon-
ductor, however, they are limited for practical application for the following reasons.
i) A spontaneous emission regime limits the e�ciency of spin conversion to emitted
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light polarization, which is proportional to the ratio between a carrier recombina-
tion time and a spin-lifetime in an active medium. This leads to a low polarization
degree of circularly-polarized photons, especially at room-temperature regime with
reduced spin-lifetime. ii) Light emission from spin-LED is non-coherent and spatially
unfocused with a polarization state, which depends on a direction of emission.

Active region

     (QWs) 

DBR

   Air gap

  Spin-injector

a) b)

Figure 1.1: a)Monolithic VCSEL consists of distributed Bragg mirrors (DBR), which
plays the role of mirrors. The active region, usually quantum wells (QWs) [17, 18]
or quantum dots (QDs) [19, 20], are responsible for the emission of coherent light
through electron-hole recombination [18]. Figure reprinted from [18]. b) The VEC-
SEL con�guration with an external cavity.

All above mentioned limitation can be overcome by combining a proper active
medium with a resonant optical cavity leading to the stimulated emission regime.
Such spin-laser would lead to a highly-coherent and spatially-focused emission with
a high degree of emitted circular polarization even with a relatively low degree of
injected spin-polarization due to the ampli�cation e�ects in the cavity. Therefore
maximal conversion e�ciency between injected spin and easily switchable output
circular polarization can be achieved. Such spin-controlled light-emitting devices
provide many advantages for future optical communication systems such as spin
driven recon�gurable optical interconnects [21], fast modulation dynamics [22, 23],
polarization control [24, 25] as well as higher performances such as laser threshold
reduction [26, 27], improved laser intensity, and polarization stability.

From a technological point of view, optically active III-V semiconductors based
lasers with vertical geometry (VCSELs) are considered as a good candidates for
room-temperature highly-implementable devices. In such devices, the optical propa-
gation is normal to the substrate surface and the gain is provided by several quantum
wells sandwiched in the optical cavity. It exists nowadays two kinds of surface-
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emitting semiconductor lasers: monolithic micro-cavity-type VCSELs for highly-
integrated devices and vertical-external-cavity surface-emitting lasers (VECSEL).
Figure 1.1 shows the di�erence between both types of the laser structures. Monolithic
VCSEL consists of distributed Bragg mirrors (DBR), which plays the role of inter-
nal mirrors in the resonator. The active region, usually quantum wells (QWs) [17,
18] or quantum dots (QDs) [19, 20, 28], are responsible for the emission of coher-
ent light through electron-hole recombination [18]. Two magnetic contacts are used
to achieve spin injection into the active region. In the past decade, spin-operation
regime with an electroluminescence of circular polarization of 23% has been demon-
strated e.g. by Holub et al. [17] with monolithic VCSEL by using electrical pumping
in a low-temperature range (50 K). Considering electrical injection, the distance
of the spin-injector and active medium plays a crucial role and must be optimized
to reduce spin relaxation between injection and recombination. Despite impressive
technological e�ort[17, 19, 20], highly e�cient electrical spin-injection in VCSEL
at room temperature and magnetic remanence without an external magnetic �eld
remains to be demonstrated.

Alternatively, spin-polarized carriers can be injected optically by using circularly-
polarized light [24, 26, 29�31]. In particular, experimental investigations showed that
the output circular polarization degree can exceed the input one via non-linear gain
e�ects [29]. Figure 1.1b shows vertical-external-cavity surface-emitting laser struc-
ture based on 1/2-VCSEL without upper Bragg mirror, which is replaced by high-
re�ective output coupler [32]. The con�guration with the external cavity enables to
bene�t from an additional degree of freedom provided by the cavity adjustment.
For example, it is possible to tune laser parameters by adjusting the cavity length
or by adding additional intra-cavity optical components [33, 34]. Moreover, the ex-
ternal cavity of VECSEL enables to deposit an ultra-thin electrical spin-injector
perpendicularly-magnetized at magnetic remanence close to the active quantum
wells and thus the impact of the spin-relaxation mechanisms occurring during elec-
tron transport can be minimized [16]. In addition, the optical pumping is considered
as a most e�ective method to maximize the e�ciency of spin-injection into an active
medium [29, 33, 34].

1.2 Goal and motivation of thesis

As already mentioned above, in spin-LEDs and spin-lasers, the optical polarization of
the emitted photons is directly related to the spin polarization of the carriers through
the quantum optical selection rules [3, 35]. Nevertheless, this is not the only factor,
which determines the polarization state of the emitted light. The second factor is
related to additional in-plane anisotropies in the multilayer semiconductor cavity,
which strongly impact the performance and properties of spin-laser operation [36]
and lead to complex polarization dynamics. Although the V(E)CSEL geometry ex-
hibits theoretically good isotropic behavior, even a small local anisotropy in a cavity
can break this in-plane symmetry and beat the emitted circular polarization result-
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ing in preferential linearly-polarized laser emission.
Previous theoretical as well as experimental investigations [37] have allowed to

separate between several di�erent contributions: i) a linear birefringence originating
from interfaces between ternary quantum wells and barriers (GaAsP/InGaAs/GaAsP),
ii) possible local surface strain of III-V material after surface crystalline reconstruc-
tion [38, 39], iii) magneto-optical anisotropy originating from magnetized ferromag-
netic spin injectors [40]. First contribution, the in-plane optical anisotropy of III-V
quantum well structures, was found due to the reduction from D2d to C2v symmetry
group when the host materials do not share any common atoms, [38, 39, 41] as well
as chemical segregation [38] and strain e�ect in quantum well. The second contri-
bution originating from the surface may have two di�erent causes: a surface-bulk
electro-optic e�ect due to the appearance of a signi�cant electric �eld developing
from the top surface by pinning of the Fermi level and an e�ect related to strain by
surface reconstruction. [42] The last contribution is given by magneto-optical e�ects
which causes a circular dichroism and birefringence in a magnetized ferromagnetic
layer used as a spin-injector.

For the aforementioned reasons, a precise modeling of light emission and prop-
agation in the multilayer active structure with local anisotropies is required. The
main goal of the thesis is to model the optical properties of the electromagnetic
radiation emitted from spin-LED and spin-VCSEL multilayer structures. It could
be based on two steps: (i) representation of active quantum well layers with dipole
sources and (ii) modeling of light propagation in resonant multilayer structures by
using an appropriate matrix approach ful�lling Maxwell equations in each layer and
boundary conditions at the interfaces.

We propose the approach, which (i) describes polarization of emitted photons
related to the quantum optical selection rules and consider spin polarization of
injected current or generally polarized optical pumping �eld, (ii) describes the prop-
agation of emitted �eld in general anisotropic multilayer system consisting of locally
anisotropic layers a�ected by the symmetry reduction on the III-V semiconductor
interfaces, surface reconstruction, strain and magneto-optical e�ects, (iii) correctly
de�nes phases of incoherent spontaneous emission (spin-LED) and coherent stim-
ulated emission (spin-lasers), and (iv) describes the complete polarization state of
emitted �eld from laser structure and conditions for laser resonance. In that mind,
new recursive formulas derived in this thesis are used for calculation of the e�ective
active region and enable to include the interference and re�ection e�ects between
both active regions together with ampli�cation of multiple re�ected light inside the
multiple quantum wells (MQWs). Consequently, it enables to model the properties
of the emission (threshold, polarization, mode splitting) from the laser with MQW
active zones by searching for the resonant eigenmodes of the cavity. The method
will be demonstrated on real laser structures and will be used for the extraction of
optical permittivity tensors of surface strain and quantum wells in agreement with
experiments.

In addition, the Mueller matrix ellipsometry will be applied to study anisotropic
multilayer 1/2-VCSEL structure with anisotropic surface and multiple quantum well
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region. We demonstrate that both surface and QWs birefringences are the origins
of the optical frequency splitting, as observed in semiconductor laser measurement
developed in Montpellier by the group of A. Garnache.

1.3 Organisation of the thesis

This thesis in organized as follows.
Chapter 2 introduces basic principles of spin-LED and spin-VCSELs. After a

brief introduction of the optical selection rules, we will describe pumping methods,
which enable spin injection in semiconductors. Multilayer spin-V(E)CSEL devices
will be brie�y described together with possible local anisotropies present in the laser
structures.

Chapter 3 o�ers a brief review of the electromagnetic theory for the multilayer
anisotropic structures together with the Mueller matrix experimental measurement
and modeling of real VECSEL laser structure. After derivation of wave equation
for generally anisotropic medium, we show the 4× 4 matrix formalism for modeling
of electromagnetic response of multilayer anisotropic structures. The change of a
polarization state of light due to the local anisotropy is theoretically described using
the Jones and the Mueller matrices.

Together with experimental measurements using the Mueller matrix ellipsometry
for multiple angles of incidence and in-plane azimuthal angles and in combination
with proper parametrization of optical functions, the optical permittivity tensors of
surface strained layers and QWs are extracted. The Mueller matrix measurement
and analysis are presented in Chapter 4 and have been submitted in the journal
Applied Physics Letters [43].

Chapter 5 is dedicated to the detailed analysis of a general method for the mod-
eling of semiconductor lasers such as spin-polarized vertical-cavity surface-emitting
laser and vertical-external-cavity surface-emitting laser. In the beginning of this
chapter we will describe the recent 2 × 2 Jones matrix analysis of spin-VECSEL
developed by Alouini and described in Ref. 44. This simple model can describe evo-
lution of the polarization eigen states in the cavity as a function of the e�ective
linear birefringence and circular gain dichroism induced by the spin injected car-
riers. However, it is not suitable for description of more complex laser structures
with multiple quantum wells (dipolar active sources) inside a cavity and with local
anisotropies.

Moreover, the modeling method developed in this work contains description of
the ampli�cation processes in multiple quantum wells, multiple re�ections, propa-
gation between them, and involving anisotropies that may reveal i) a local linear
birefringence due to the strain �eld at the surface or ii) a birefringence in quan-
tum wells (QWs) due to phase amplitude coupling originating from the reduction
of the biaxial D2d to the C2v symmetry group at the III-V ternary semiconductor
interfaces. From a numerical point of view, a novel scattering S-matrix recursive
method is implemented using a gain or ampli�cation tensor derived analytically
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from the Maxwell-Bloch equations. It enables to model the properties of the emis-
sion (threshold, polarization, mode splitting) from the laser with multiple quantum
well (MQW) active zones by searching for the resonant eigenmodes of the cavity.
The results have been published in the journal Physical Review A [37] and in Ref. 45.

Chapter 6 is focused on a numerical and experimental investigation of the local
anisotropies in LED and VCSEL cavities. We start with a simple model of multilayer
spin-LED structure, which includes magneto-optical spin-injector and we show the
e�ect of magneto-optical e�ects on an emitted polarization state. Then we will use
derived S-matrix recursive formalism for modeling of a frequency splitting and we
will compare with experimentally measured values in order to extract anisotropic
permittivity tensors of surface layers and quantum wells of a real VCSEL struc-
ture. The chapter is completed by numerical simulation of the polarization states
of emitted eigenmodes including local anisotropies such as linear gain dichroism
and surface strain. The results presented in this chapter have been published in the
journal Journal of Optics [40].
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Chapter 2

Basic principles of spin
vertical-cavity surface-emitting lasers
and diodes

This chapter introduces basic principles of spin-LED and spin-VCSELs. In the be-
ginning we give a brief introduction of the optical quantum selection rules, which
govern an emission from quantum well region. We will describe electrical and optical
pumping methods, which enable spin injection in semiconductors. Multilayer spin-
V(E)CSEL devices will be brie�y described together with possible local anisotropies
present in the laser structures. In the end of the chapter we describe an e�ective
measurement method of the anisotropies in the laser structures. Details of VCSEL
and V(E)CSEL devices fundamentals and functionalities are given in Coldren text-
book [46] and in general review paper in Ref. 47.

2.1 Conversion of spin state to polarization state of

light

We give a simple description of the optical selection rules in the dipolar Hamiltonian
approximation, well documented in the literature [3, 48], in order to illustrate in the
following chapters the power of our technical method to model the properties of light
emission from quantum heterostructures. The optical selection rules are found by
evaluating the dipole moment of the transition between the conduction band state
|c⟩ and the valence band state |v⟩ at the center (Γ-point) of the Brillouin zone (BZ)
using the transition matrix element

Dcv = ⟨ c | D̂ | v ⟩ , (2.1)

where D̂ stands for the dipole moment operator at �rst order of perturbation. The
electronic Bloch states may be expressed as |J, mj⟩, where J denotes the total
angular momentum and its projection onto the z axis described by the magnetic
quantum number mj. The conduction band is represented by two di�erent electron

11



122.1. CONVERSION OF SPIN STATE TO POLARIZATION STATE OF LIGHT

quantum states |1/2, ±1/2⟩ , while the valence band is represented by two heavy
hole states |1/2, ±3/2⟩ and two light hole states |1/2, ±1/2⟩ in the center of the
zone at the Γ+

8 valley. The quantization axis for the angular momentum is �xed
along the photon wavevector k and the crystal axis of the cubic AIIIBV crystal
(001) in the z direction. The electron state of the conduction band can be described
using the Bloch wave function

ψCB
km = uCB

m eik
′r, (2.2)

where the Bloch amplitudes have the following form

uCB
1/2 = |S ↑⟩, uCB

−1/2 = |S ↓⟩. (2.3)

The |S⟩ denotes the s-type wavefunction and arrows denote spin functions. The
Bloch amplitudes of the valence band can be described using the p-type wavefunc-
tions |X⟩, |Y ⟩ and |Z⟩ with the symmetry around x, y, and z axes, respectively

uHH
3/2 = − 1√

2
(|X ↑⟩+ i|Y ↑⟩) (2.4)

uHH
−3/2 =

1√
2
(|X ↓⟩ − i|Y ↓⟩) (2.5)

uLH1/2 =
1√
3

[
− 1√

2
(|X ↓⟩+ i|Y ↓⟩) +

√
2|Z ↑⟩

]
(2.6)

uLH−1/2 =
1√
3

[
1√
2
(|X ↑⟩ − i|Y ↑⟩) +

√
2|Z ↓⟩

]
. (2.7)

The characteristic matrix elements given by the dipolar Hamiltonian coupling both
the conduction and valence bands are in Table 2.1 [3].

Table 2.1: Matrix elements of the dipole moment Dcv/D [3].
CB ⟨1/2, +1/2| ⟨1/2, +1/2|
HH |3/2, +3/2⟩ −

√
1/2(x̂+ iŷ) 0

|3/2, −3/2⟩ 0
√
1/2(x̂− iŷ)

LH |1/2, +1/2⟩
√

2/3ẑ −
√

1/6(x̂+ iŷ)

|1/2, −1/2⟩
√

1/6(x̂− iŷ)
√

2/3ẑ

We remind the main conclusions concerning dipole transitions. As required from
the conservation of the angular momentum, radiative recombinations lead to an
emission of right- (σ+) and left-circularly polarized photons (σ−) with a projec-
tion of angular momentum along the direction of their k′ wave-vector equal to ±1,
respectively. Moreover, from intensity of dipoles follows, that the heavy hole (HH)
transitions are three times larger than corresponding light hole (LH) transitions.
Note, that the transition probability is proportional to |Dcv|2. Let us de�ne normal-
ized transition probabilities according to

ξHH = 3/4 ξLH = 1/4 ξHH + ξLH = 1. (2.8)
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In bulk semiconductor, the HH and LH bands are degenerate at the Γ-point and the
present rules are valid for any direction of the emission. In the case of QW struc-
tures, this bulk-degeneracy between the HH and LH valence bands is lifted due to
quantum con�nement or by biaxial epitaxial strain. Moreover, these selection rules
are valid only in the vertical (Faraday) geometry where the carrier spin orientation
and the photon emission are oriented perpendicularly to the QW plane. Figure 2.1
depicts the selection rules in direct bulk semiconductor and 2D quantum well system
[3, 17]. Transitions for which ∆mj = +1 and ∆mj = −1 result in the emission of cir-
cularly polarized photons with negative (σ−) and positive (σ+) helicity, respectively.
Moreover, transitions involving heavy holes (HH) are three times more probable then
those involving light holes (LH). When we consider 2D quantum system (Fig 2.1b),
the energetic splitting between HH and LH states appears as a consequence of the
quantum con�nement and epitaxial strain. In this case, the depicted selection rules
are valid only for vertical geometry [3, 17]

Figure 2.1: Selection rules in a) direct bulk semiconductor and (b) 2D quantum system
[3, 17].

2.2 Spin injection into semiconductor: Pumping meth-

ods

Spin-polarized carrier populations are generated in semiconductor quantum wells
via i) electrical, ii) optical pumping with circularly polarized light, and iii) mixed
pumping by using both of them. The evolution of the electrical and optical injection
in spin-LEDs and spin-VCSELs has been shortly described in previous chapter.

2.2.1 Electrical pumping

The electrical spin injection is preferred for many applications because of its ability
to be integrated in the compact devices. Firstly, such type of injection requires a
source of spin-polarized carriers. Under action of the magnetic �eld in paramagnetic
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or ferromagnetic materials, the spin-up and spin-down bands are splitted leading
to a di�erent number of spin-polarized electrons at Fermi level. This leads to a net
spin polarization which can be injected into an adjacent layer. However, it is well-
known that the large conductivity mismatch between a ferromagnetic material and
semiconductor leads to a negligible spin-injection e�ciency [49]. The only way to
match the boundary conditions is to introduce an additional resistance in only one
of two spin channels, which compensates the splitting in the semiconductor, or by
introducing a high resistance in both spin channels [12, 49]. Suitable solution for
this kind of interfacial spin-dependent resistance is using tunnel contact in which
the transmission is proportional to the product of the density of states on both sides.
In that case the spin-dependent resistance is caused by the spin asymmetry in the
density of states in the ferromagnet.

From a technological point of view the easiest way is by using the Schottky con-
tact, which is naturally formed between a semiconductor and a metal. When the
barrier is biased in the reverse direction, the carriers tunnel through it at the Fermi
level and the density of states in the ferromagnet leads to a spin-dependent tunnel-
ing probability. The �rst experimental demonstration was realized by Zhu et al. in
2001. The circular polarization degree of the observed electroluminescence revealed
the spin injection e�ciency of 2% [5]. In the following year, the spin e�ciency up to
32% has been achieved by Hanbicky et al. by using Fe/AlGaAs contact [15]. These
observations provided conclusive evidence that tunneling is the dominant transport
mechanism enabling signi�cant spin injection across the metal/semiconductor in-
terface. However, intermixing between a ferromagnetic and a semiconductor layer
during growth can lead to reduced interface quality, which plays an important role
in an e�ective spin injection.

Besides the possibility of using Schottky barriers, the oxide tunnel barriers such
as AlOx [50] and MgO [8] are suitable alternatives. Shortly after the demonstration
of the spin injection using Schottky barriers, Al2O3 tunnel barriers were implemented
into spin-LEDs [50]. Since that time, several devices have been presented that show
a very high spin injection e�ciency even at elevated temperatures. Typical values
obtained with the AlOx barriers on GaAs are about 21% and 16% at 80 and 300 K,
respectively [50] while with (001)-grown epitaxial MgO the spin polarization reaches
even 57% at 100 K and 47% at 290 K, respectively [7]. To conclude, using the MgO
tunnel barrier seems to be the most attractive way for e�ective injection into a
semiconductor as we will consider in calculations of the emitted polarization state
in Chapter 5.

2.2.2 Optical pumping

Despite the preferable electrical spin injection for compact devices, the optical pump-
ing is widely used for several advantages. I) Optically-pumped structures have a more
simple design. They are usually electronically undoped and there is no need to de-
posit the spin injector. Thus preparation is much more simple. II) Optical pumping
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Figure 2.2: Concept of the optically-pumped VECSEL.

allows a uniform carrier excitation over a large area of active region and also ab-
sorption in a broad wavelength region. Moreover, cheaper pump diodes can be used
due to the larger wavelength tolerance which is linked to the absorption range in
semiconductors [51]. III) Optically-pumped lasers such as VECSELs bene�ts from
their additional degree of freedom and enable using of intra-cavity optical elements
such as Faraday rotators. The concept of optically-pumped semiconductor lasers
with the vertical geometry has been developed in 1966 by Basov et al. [52], however,
it took more than two decades to fully demonstrate this technique with optimized
working structures [53] in a high-power regime [54].

Circularly-polarized pumping reveals as an e�ective way for spin injection in the
semiconductor laser structures as depicted in Fig. 2.2. In that case, the absorption
of the circularly-polarized light is the reverse mechanism of spin-polarized carriers
recombination and follows the same selection rules. Ando et al. demonstrated in 1998
by using VCSEL structure based on the GaAs active region that the partial electron-
spin alignment, created by pumping with circularly-polarized light, largely a�ects
the polarization state of lasing output and generates the circular lasing output. Spin-
up or spin-down electrons were found to provide greater gain for the left- or right-
circularly polarized lasing modes, respectively. Figure 2.3a shows typical polarization
characteristics of the VCSEL output slightly above the threshold obtained with the
σ+ circularly polarized pump light. Ando et al. found that for the σ+ excitation the
lasing output from the VCSEL mainly consists of σ+ circularly polarized light even
for partially spin-polarized electrons [24].

Since spin-polarized electrons couple selectively to either the left- or right-circularly
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Figure 2.3: a) Lasing emission spectra of two orthogonal circular components, σ+

and σ−, from a VCSEL excited with σ+ circularly polarized pump pulses. Figure
reprinted from Ref. 24. b) Emission vs pump intensity for the determination of the
VCSEL threshold intensity. Figure reprinted from Ref. 57.

polarized lasing mode in VCSEL, pumping with the 100% spin-polarized current
should result in a laser featuring circularly polarized stimulated emission with half
of the threshold current. This phenomena has been intuitively described by Zutic et
al. using "the bucket model" [55, 56]. Figure 2.4 shows the bucket model for (a) a
conventional laser and (b) a spin laser. Water added to the bucket represents the
carriers, and the water coming out represents the emitted light. Small leaks depict
spontaneous emission, and over�owing water reaching the large opening corresponds
to the lasing threshold. One can observe two main properties of spin-lasers: i) In the
case of spin-polarized laser less water needs to be pumped for it to reach the threshold
which result in a stimulated emission with theoretical half of the threshold current
and ii) even a small spin unbalance can lead to a pure circular polarization (case
slightly above and below the opening). One should note that the boundary between
both spin reservoirs is not perfect. This leads to a small spin-�ip between them [55].

Threshold reductions have been observed by Rudolph et al. at both low and
room-temperature regimes for an optically-pumped InGaAs/GaAs QWVCSEL struc-
ture [26, 57]. The results of an experiment in a low-temperature operation are de-
picted in Fig.2.3b. Rudolph et al. clearly demonstrated that the threshold is reduced
by pumping with spin-polarized electrons under circularly-polarized excitation in
comparison to unpolarized electrons with the linearly polarized excitation [57]. The
same group demonstrated a 2.5% threshold current reduction at room temperature
in an optically-pumped AlGaAs/GaAs QW VCSEL for injected electrons with 50%
spin polarization [26].
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Figure 2.4: The bucket model for a) conventional laser b) spin-laser proposed by
Zutic et al. [55, 56].

2.3 Design of the V(E)CSEL structure

Generally, the V(E)CSEL device is based on a laser resonator and the active gain
medium: quantum wells or quantum dots. Figure 2.5 shows a schematic description
of the 1/2-VCSEL semiconductor structure without top mirror dedicated for the
optical pumping in the VECSEL con�guration. The structures studied in this thesis
have been grown on [0 0 1]-GaAs substrate by metalorganic vapour-phase epitaxy
(MOCVD) by Dr. Isabelle Sagnes from C2N (LPN Marcoussis).

The 13λ/2 thick active region is constituted of 6 strain-balanced 8 nm In-
GaAs/GaAsP QWs with the emitting laser frequency at λ ≃ 1µm. The strain

Figure 2.5: Schematic description of the 1/2-VCSEL structure dedicated to the
optical pumping.
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induced by adding 20% of indium in QW is compensated by inclusion of 5% of
phosphorus in GaAsP barriers. Moreover, incorporation of the phosphorus increases
the barriers gap from Eg = 1.423 eV to Eg = 1.488 eV, however, it also reduces the
electron capture e�ciency in the QW [33]. Each pair of QWs is separated by GaAs
spacers, which size decreases when getting closer to the surface. Thicknesses of these
spacers are designed to ensure QW placement in the maxima of the electromagnetic
�eld in the cavity. A 30 nm thick insulating AlAs layer in-between the surface and
the active medium is used as a carrier con�nement layer in optical pumping experi-
ments. The nominal thickness of GaAs capping layer is 10 nm.

The structure consists also of the epitaxial high-re�ectivity (99.9%) bottom
AlAs/GaAs Bragg mirror (DBR, 26 pairs) of the nominal thicknesses tAlAs = 85.37 nm
and tGaAs = 71.8 nm, which acts as a laser feedback. Bottom DBR is designed to
be highly re�ective while top DBR (output coupler) is partially re�ective. These
re�ectors act as a one-dimensional photonic crystal (with a photonic band-gap),
which consists of epitaxially-grown semiconductor layers having the thicknesses of
the quarter wavelengths and alternating with high and low-refractive indices. The
principle of such dielectric mirrors is based on the interference of light re�ected from
the di�erent layers of the dielectric stack. Each interface between the two materials
e.g. AlAs/GaAs contributes to the partial re�ection of an optical wave. Then if the
optical path length di�erence between re�ections from subsequent interfaces is half
of the wavelength then all re�ected components from the interfaces interfere con-
structively, which results in a strong re�ection in a large spectral region called the
bandgap. The achieved re�ectivity is determined by the number of layer pairs and
by the refractive index contrast between the layer materials.

Figure 2.6 shows the calculated dependence of the re�ectivity from a Bragg
mirror for two di�erent numbers of layer pairs. The calculation is based on the
matrix formalism, which is explained in the following chapter. This structure consists
of GaAs/AlAs semiconductor pairs designed for central wavelength λ = 1 µm. The
achieved re�ectivity strongly depends on the number of layer pairs. For 5 pairs the
maximal re�ectivity is around 80 % (red curve). One can observe three main regions
(green curve): i) the photonic bandgap with the high re�ectivity around λ = 1000 nm
sorrounded by ii) the transparent region for λ > 800 nm with strong interference
e�ects in multilayer structure, and iii) the absorbing region for λ < 800 nm, where
the top GaAs layer absorbs the incident light. The peaks around λ ≈ 250 nm and
λ ≈ 400 nm are given by the absorption of the top GaAs layer as can be seen from
a comparison with the re�ectivity of GaAs (blue curve).

2.4 Linear birefringence and circular gain dichroism

Additional linear in-plane anisotropies in the multilayer semiconductor cavity strongly
impact the performance and properties of spin-laser operation [36] leading to com-
plex polarization dynamics. Previous theoretical as well as experimental investiga-
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Figure 2.6: Dependence of the Bragg mirror re�ectivity on the incident wavelength
for two di�erent number of periods.

tions [37] have allowed to separate between several di�erent contributions: i) a linear
birefringence originating from interfaces between ternary quantum wells and barriers
(GaAsP/InGaAs/GaAsP) and ii) possible local surface strain of III-V material af-
ter surface crystalline reconstruction [38, 39], and iii) a magneto-optical anisotropy.
First contribution, an in-plane optical anisotropy of III-V quantum well structures,
was found due to the reduction from D2d to C2v symmetry group when the host
materials do not share any common atoms [38, 39, 41], as well as chemical segre-
gation [38] and strain e�ect in quantum well. The second contribution originating
from the surface may have two di�erent causes: a surface-bulk electro-optic e�ect
due to the appearance of a signi�cant electric �eld developing from the top surface
and an e�ect related to strain by surface reconstruction [42]. The last contribution
is given by magneto-optical e�ects, which causes the circular dichroism and birefrin-
gence in a magnetized ferromagnetic layer used as a spin-injector [40, 58]. The last
contribution is discussed in details in Section 3.1.5, Chapter 3.

Natural interface anisotropy

The natural interface anisotropy is a form of an inversion asymmetry, which results
from the structure of chemical bonding at the interfaces [59]. Such interface e�ect
reduces the symmetry from D2d to C2v. This argument becomes clear from Fig-
ure 2.7, which depicts the atomic structure of zinc-blend type quantum wells along
the [110] axis grown on a [001]-oriented substrates. Figure 2.7a shows the case of a
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quantum well/barrier system with a common atom (Fig. 2.7a). While within each
layer the anions (black circles) are surrounded by equivalent cations (white circles),
the interfacial anion is bonded to di�erent cations from the upper and lower layers.
Example of such system is GaAs/AlAs structure depicted in Fig. 2.7d. The planes
of the As-Al and As-Ga bonds involving a common anion are rotated by π/2 with
respect to each other at each side of the interface. It results from this particular C2v

symmetry leading to a possible heavy to light hole mixing in the component of the
wavefunction at interface leading to the optical anisotropy [60, 61]. Consequently,
di�erent optical properties are expected along the [110] and [110] directions. How-
ever, even if the top interface exhibits any anisotropy due to the symmetry reason,
such anisotropy would be compensated at the bottom interface because the chemi-
cal bonds themselves are the same. The quantum well/barrier system thus remain
symmetric [42]. On the other hand, a di�erent situation is in the case when quantum
well/barrier system does not share any common atoms as depicted in Fig. 2.7b and
Fig. 2.7c. The anisotropy of top interface is not compensated at the bottom interface
because the chemical bondings are di�erent and thus the system is not symmetric.

The latter case has been clearly demonstrated by Hall et al. on binary InAs/GaSb
superlattices with no common atoms [62]. Krebs et al. have examined and theoret-
ically predicted the interface anisotropy in ternary semiconductor quantum well
systems such as GaInAs/InP. Although both well and barrier materials contain the
common atom indium (In), the "average" atom (GaIn) in quantum well is di�erent
from In in the barrier and therefore contributes to the interface asymmetry [59]. Two
years later in 1998, Krebs et al. reported polarization-resolved optical transmission
measurements performed on GaInAs/InP multi-quantum wells evidencing a large
dichroism [63].

In the case of systems studied in this work, In(22%)Ga(78%)As/GaAs(95%)P(5%),
quantum wells and barriers share the common atoms Ga and As. However, the "av-
erage" cation-type and anion-type atoms (InGa) and (As) in quantum wells are
di�erent from the "average" atoms (Ga) and (AsP) in the barriers. Therefore the
symmetry breaking leading to the optical linear birefringence and dichroism is ex-
pected. Moreover, the local surface strain of III-V material due to even a small
lattice mismatch after surface crystalline reconstruction as well as due to the chemi-
cal segregation can be present [38, 39]. The detailed origin of such optical interfacial
anisotropies are currently under study in LSI-UMφ by advanced k.p methods in a
frame of the PhD study of Quang Duy To.

Anisotropy at surface

The linear birefringence and dichroism originating from the surface may have two
di�erent causes: the e�ect related to the strain by surface reconstruction [42, 64] and
the surface-bulk electro-optic e�ect due to the appearance of a signi�cant electric
�eld at a surface.

One contribution to the overall anisotropy predicted and observed at clean (001)
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Figure 2.7: Origin of the natural interface asymmetry [59].

surfaces of binary III-V semiconductors is caused by the the surface reconstruction
with its characteristic dimer-con�guration and back-bonds as depicted in Fig. 2.8.
This anisotropy could be understood on the basis of trigonally bonded overlayers
leading to the strain and thus di�erent optical properties along the [110] and [110]
directions [65]. Typical examples are the As or Ga dimers found on the di�erent
reconstructions of the GaAs surface. Since the dimers have a preferential orientation,
electronic transitions involving these states are expected to be highly anisotropic.
Moreover, reconstruction induces small changes in atomic positions in the atomic
layers close to the surface and thus produces a strain �eld [42, 64].

Another contribution to the surface linear anisotropy is due to the linear electro-
optic, bulk-related e�ect induced by the sample surface electric �eld. Such e�ect
originates from an electric charge exchange between the bulk and the surface states
of the semiconductor, in order for the material to attain thermodynamic equilibrium.
As a result of this process, the Fermi level becomes pinned at the semiconductor
surface at an energy in the forbidden gap. The presence of the surface electric �eld
results in the breaking of the symmetry of GaAs near the surface and in the loss of
the optical isotropy in this region. A systematic study of this e�ect on n-type GaAs
has been done by Acosta-Ortiz et al. by using re�ectance-di�erence technique [66].

On the other hand, the electro-optic e�ects can appear also in the presence of
the applied external electric �eld (electrically-injected VCSELs) or the electric �eld
from high-power pumping laser (optically-pumped VECSELs). When an electric
�eld is present along [001] direction, the refractive indices along [110] and [110] can
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Figure 2.8: The surface reconstruction with its characteristic dimer-con�guration
and back-bonds.

be calculated as in Ref. [67]:

n[110] = n0 −
n3
0

2
r̃E, (2.9)

n[110] = n0 +
n3
0

2
r̃E, (2.10)

where n0 is the refractive index in the absence of an electric �eld E and r̃ is the
electro-optic coe�cient. Such electro-optical birefringence can be used to control the
cavity resonance of the polarized light along the [110] and [110] directions, which are
shifted to shorter and longer wavelength depending on the direction of the applied
electric �eld [68]. Figure 2.9 shows the emission spectra of the VCSEL device investi-
gated by Park et al., where the birefringence has been induced at the top of DBR by
applying an electric �eld along the [001] direction. The emission spectrum measured
in the absence of an electric �eld represents the [110] mode. For the +10 V applied
voltage, the emission spectrum shifts to a longer wavelength because the [110] mode
shows a red shift (dashed curve). On the other hand, for the -10 V applied voltage,
the emission spectrum of the [110] mode also shows a small red shift (dotted curve)
so that the dominant polarization mode occurs along the [110] or [110] direction
for the negative or positive electric �eld application. By varying the direction and
strength of the electric �eld, a wanted polarization mode can selected [68].

Measurement of the linear birefringence in optically-pumped
1/2-VCSEL structure

The birefringence of the VCSEL structure can be generally measured and extracted
from the induced frequency splitting between two emitted polarization states caused
by the di�erence of their optical path. However, in the case of VECSEL with long
cavities (cm), the frequency splitting is expected in the range of a few MHz and
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Figure 2.9: Shift of emission spectrum at positive and negative applied voltages.
Figure extracted from Ref. 68.

therefore can not be observed with optical spectrum analyzers limited to GHz res-
olution. To overcome this di�culty, transferring the optical frequency detuning be-
tween the two laser modes into the electrical domain has been proposed by groups
at Unite Mixte de Physique CNRS-Thales [69] and at IES Montpellier [70]. The
measurement principle is show in Fig. 2.10. The output orthogonally-polarized laser
modes are equally projected to the polarizer axis oriented at 45◦ with respect to
the polarization axis. The beam is then focused on a low noise detector with a fast
photodiode and a low noise ampli�er. The relative intensity noise (RIN) spectrum
of the laser is measured with an radio-frequency (RF) spectrum analyzer [70]. Then
the peak observed in RIN spectrum re�ects the beat note due to the orthogonal
polarizations which are splitted in a frequency. We will discuss results in details in
Chapter 6. Together with a formalism derived in this work we will extract the linear
permittivity tensors at surface and in the quantum wells.

2.5 Conclusion of the chapter

This chapter introduced basic principles of spin-V(E)CSELs. As has been shown,
the emission of circularly-polarized light originates from the radiative recombination
of spin-polarized carriers. We described the electrical and optical pumping methods,
which enable the spin injection in semiconductor quantum wells. The advantages of
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Figure 2.10: Experimental setup of the birefringence measurement. Figure extracted
from Ref. 70.

the optical pumping have been pointed out. Multilayer spin-V(E)CSEL devices have
been brie�y described together with the possible local anisotropies in the quantum
wells, interfaces, and at surface. Such local anisotropies have the crucial impact on
the polarization state of the light emitted from the laser structures as well as on the
frequency detuning between laser modes. Such detuning is expected in the range of
a few MHz. Therefore, transferring the optical detuning into the electrical domain
is an e�ective method to study the birefringences in multilayer laser structures such
as the 1/2-VCSELs.



Chapter 3

Polarization state of light: Focus on
ellipsometry of multilayer
semiconductor lasers

This chapter o�ers a brief review of the electromagnetic theory, which describes the
properties of the electromagnetic wave propagation in anisotropic multilayer struc-
tures. This theoretical background is required for the fundamental understanding
and characterization of passive VECSEL structures with local linear birefringence
and dichroism. After derivation of wave equation for generally anisotropic medium,
we demonstrate the 4× 4 matrix formalism for modeling of the electromagnetic re-
sponse of the anisotropic multilayer structures. The change of a polarization state
of light due to the local linear anisotropy is theoretically described using the Jones
and Mueller matrices. Finally to characterize VECSEL structure we introduce the
Mueller matrix ellipsometry as an e�ective measurement technique used in this work.
We compare the Mueller matrix ellipsometry to other widely used techniques such
as re�ectance di�erence spectroscopy and spectroscopic ellipsometry, and we point
out the advantage of this method.

3.1 Electromagnetic response of anisotropic struc-

ture

3.1.1 Electromagnetic �eld equations in anisotropic media

The presence of the electromagnetic �eld in a linear anisotropic medium is governed
by the partial di�erential equations known as the Maxwell equations. These equa-
tions describe the classical properties of the electromagnetic �eld inside the media

25
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and can be written in the following di�erential form:

∇ ·D(r, t) = ρ, (3.1a)
∇ ·B(r, t) = 0, (3.1b)

∇× E(r, t) = −∂B(r, t)

∂t
, (3.1c)

∇×H(r, t) = j(r, t) +
∂D(r, t)

∂t
, (3.1d)

where E(r, t), H(r, t), D(r, t), B(r, t), ρ, and j(r, t) denote the electric �eld intensity,
the magnetic �eld intensity, the electric displacement, the magnetic �ux density, the
volume density of free charges, and the current density, respectively. The medium
properties, i.e. the medium polarization P(r, t) and the magnetization M(r, t), are
connected to the �eld quantities by additional constitutive relations:

D(r, t) = ε0E(r, t) +P(r, t) = ε̂E(r, t), (3.2a)
B(r, t) = µ0H(r, t) +M(r, t) = µ̂H(r, t), (3.2b)

where ε̂ and µ̂ are respectively the (generally tensorial) electric permittivity and the
magnetic permeability functions of a medium. The permittivity and the permeability
of free space are denoted as ε0 and µ0, respectively. The medium conductivity tensor
σ̂ connects the electric �eld intensity with the current density by the following way:

j(r, t) = σ̂E(r, t). (3.3)

In the optical spectral region, the magnetic susceptibility χM = µ/µ0−1 assumes
very small values monotonously dependent on the radiation frequency due to the
weak feedback of the magnetic dipoles in a medium. It is therefore reasonable to
set its value to a real scalar constant equal to a very small number or zero [71].
Therefore, the magnetic permeability for optical frequencies is taken as:

µ = µ0. (3.4)

Considering no free charges in the medium (ρ = 0) allows to rewrite the Maxwell
equations (3.1) in the di�erential form:

∇ · [ε̂E(r, t)] = 0, (3.5a)
∇ ·H(r, t) = 0, (3.5b)

∇× E(r, t) = −µ0
∂H(r, t)

∂t
, (3.5c)

∇×H(r, t) = σ̂E(r, t) + ε̂
∂E(r, t)

∂t
. (3.5d)
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3.1.2 Wave equation

One of the most important prediction of the Maxwell equations is the existence of
electromagnetic waves which can transport energy and which are described by one of
the most fundamental equations to all of electromagnetic theory - the wave equation.
Let us derive the wave equation for the electric �eld E directly from the Maxwell
equations (3.5) for isotropic absorbing medium (tensorial ε̂ and σ̂ are reduced to
scalars ε and σ) and discuss its solution.

Eliminating H(r, t) by application of the operators ∇× and ∂/∂t on the equa-
tions (3.5c) and (3.5d), respectively, and by application of the identity:

∇× (∇× E) = ∇ (∇ · E)−∇2E, (3.6)

we arrive to the wave equation:

∇2E(r, t)− εµ0
∂2E(r, t)

∂t2
− σµ0

∂E(r, t)

∂t
= 0. (3.7)

The solution can be found for a monochromatic wave with the angular frequency ω
and the complex amplitude Eω(r):

E(r, t) = Eω(r)eiωt. (3.8)

Hence, all time derivatives can be simply replaced by the iω factor and the wave
equation (3.7) can be rewritten as:

∇2Eω(r) + ω2µ0ε̃Eω(r) = 0, (3.9)

known as the Helmholtz equation, where ε̃ = ε0εr = ε− i
ω
σ is the complex permit-

tivity with εr denoting the relative permittivity. Considering the velocity of light c
and the wavenumber k0 in vacuum:

c =
1√
µ0ε0

(3.10)

k0 =
ω

c
, (3.11)

yields to the Helmholtz equation in the form:[
∇2 + k20εr

]
Eω(r) = 0, (3.12)

where we consider the relationship between the wave vector k and the refractive
index:

k2 = k20εr = k20n
2. (3.13)
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3.1.3 Plane electromagnetic wave in isotropic medium

Let us examine one of the elementary solution of the Helmholtz equation (3.12) in
an isotropic medium: a monochromatic electromagnetic wave with the wavevector
k whose complex amplitude vectors are plane waves so that:

Eω(r) = E0e−ikr, (3.14)
Hω(r) = H0e−ikr, (3.15)

where E0 andH0 are the complex envelopes in an isotropic medium (free of charges).
Substitutions of (3.15) into the Maxwell equations with the isotropic relative per-
mittivity εr leads to:

k.E0 = 0, (3.16a)
k.H0 = 0, (3.16b)

E0 = − 1

ωε0εr
k×H0, (3.16c)

H0 = − 1

ωµ0

k× E0. (3.16d)

From the above equations it follows, that E0, H0, and k are mutually orthogonal,
as illustrated in Fig. 3.1. Moreover, the complex Poynting vector SP = 1

2
E ×H∗ is

parallel to the wavevector k. This means that the power transferred by wave �ows
along a normal direction to the wavefronts with magnitude:

I =
1

2
|E0H

∗
0 | =

|E0|2
η

, (3.17)

where η =
√
µ0/ε denotes the impedance of the medium.

To demonstrate the attenuation of light due to the absorption in the isotropic
material with the complex refractive index n = ℜ(n) − iℑ(n) =

√
εr, where ℜ(n)

and ℑ(n) denote, respectively, the real and imaginary part of n, one can consider
for the wave traveling in the z direction:

Eω (z) = E0e−ik0nz = E0e−ik0ℜ(n)ze−k0ℑ(n)z, (3.18)

giving the Beer-Lambert law:

I(z) = I0e−2k0ℑ(n)z = I0e−α̃z, (3.19)

where α is the absorption coe�cient of the absorbing medium. Certain media, such
as used in lasers, can amplify rather than attenuate the light and thus exhibit α̃ < 0
in which case γ̃ = −α̃ is called the medium gain [72]. Note that Eq. (3.19) does not
include any interface or interference e�ects, which will be explained later.
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k

fronts

Figure 3.1: Orthogonal orientation of E, H, and k vectors of the plane wave in an
isotropic medium.

3.1.4 Plane electromagnetic wave in anisotropic medium

The Maxwell equations (3.16c) and (3.16d) can be for an anisotropic medium with
the tensorial relative permittivity ε̂r generalized to the form:

k×H0 + ωε0ε̂rE0 = 0, (3.20a)
k× E0 − ωµ0H0 = 0. (3.20b)

Elimination of H0 from Eqs. (3.20) and application of the identity:

k× (k× E0) = (k · E0)k− (k · k)E0, (3.21)

lead to the wave equation for anisotropic medium:

k20 ε̂E0 − k2E0 + k (k · E0) = 0. (3.22)

Particular solutions of this equation are discussed in next section.

3.1.5 Materials characteristics

Anisotropic materials can be represented by the 9-element permittivity tensor such
that the electric �eld E and displacement �eld D are related by Eq. (3.2a). As has
been discussed, the general form of the complex permittivity tensor ˆ̃ε includes losses
in material given by the conductivity tensor σ̂ so that:

ˆ̃ε = ε0ε̂r = ε̂− i

ω
σ̂, (3.23)
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where the relative permittivity tensor ε̂r can be generally written as follows:

ε̂r =

⎛⎝ εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎞⎠ . (3.24)

Crystals, in general, are described by a symmetric permittivity tensor. By making the
appropriate choice of axes, called principal axes, the dielectric tensor for orthorombic
crystal can be diagonalized as given by:

ε̂r =

⎛⎝ εx 0 0
0 εy 0
0 0 εz

⎞⎠ , (3.25)

where εx, εy, and εz are called the principal dielectric constants.
For an uniaxial crystal with optical axis parallel to z axis, such as with trigonal,

tetragonal, and hexagonal symmetry, two of three components are equal εx = εy but
the third one εz is di�erent. Thus one can write:

ε̂r =

⎛⎝ εx 0 0
0 εx 0
0 0 εz

⎞⎠ . (3.26)

The simplest form of dielectric tensor reveals for cubic crystal:

ε̂r =

⎛⎝ εx 0 0
0 εx 0
0 0 εx

⎞⎠ =

⎛⎝ εr 0 0
0 εr 0
0 0 εr

⎞⎠ . (3.27)

Magneto-optical tensor

An optical response in magnetic media, such as Co, Fe, or Ni, depends on their mag-
netic state, and this dependence manifests itself in magneto-optic (MO) e�ects [71,
73]. In a magnetized but otherwise optically isotropic medium, one can observe the
linear and the circular birefringence and dichroism, depending on the orientation of
the magnetization in the medium. We mention the case (called the polar con�gura-
tion) with the magnetization oriented normal to the interface (along z coordinate
axis). In general, the alignment of spins upon injection into a semiconductor implies
the presences of a magnetic layer somewhere in the vicinity of the contact of the
spin-optoelectronic device. For this reason, using of ferromagnetic layer as a part
of spin-injector in polar magnetization is necessary. The permittivity tensor of such
cubic crystal ferromagnet with polar magnetization has the form:

ε̂r,polar =

⎛⎝ εxx −iεxy(Mz) 0
iεxy(Mz) εxx 0

0 0 εxx

⎞⎠ , (3.28)
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where the o�-diagonal components εxy(Mz) = −εyz(Mz) are proportional to the
(polar) magnetization component Mz. We note that the quadratic and higher-order
terms in magnetization are neglected here. Then the solution of the wave equa-
tion admits circularly polarized proper polarizations propagating along z- direction
with di�erent velocities and absorptions leading to the circular birefringence and
dichroism, respectively.

3.1.6 Polarization states of light: Jones and Stokes vectors

The time course of the direction of E(r, t) determines a polarization state of the
light, which plays an important role in the interaction of light in absorbing medium
such as in bulk media but also in gain laser structures. For example: i) the amount
of light re�ected or transmitted through a certain material is polarization dependent
and ii) the absorption and the ampli�cation of light during its traveling in a laser
cavity depends on the helicity of the circular polarization. The polarization state of
light is described by the 2× 2 Jones matrix calculus. Let us de�ne the complex
envelope of the wave traveling in the z- direction in the following way:

E0 = E0xx̂+ E0yŷ, (3.29)

where x̂ and ŷ are the unit Cartesian vectors. The polarization state is commonly
described using a column matrix known as Jones vector [74]:

J =

[
E0x

E0y

]
=

[
|E0x| eiϕx

|E0y| eiϕy

]
, (3.30)

where ϕx,y are the initial phases and the total intensity is I =
(
|Ex0|2 + |Ey0|2

)
/2η [72].

Using two parameters, the ratio R = |Ey0| / |Ex0| and the phase di�erence ϕ =
ϕy − ϕx, is su�cient to determine the orientation and the shape of generally ellip-
tically polarized light:

tan 2θ =
2R

1−R2
cosϕ (3.31a)

sin 2ϵ =
2R

1 +R2
sinϕ, (3.31b)

(3.31c)

where θ and ϵ are the azimuth and the ellipticity of the polarization ellipse, respec-
tively [72]. The normalized Jones vectors for some special polarizations are shown
in Table 3.1.

The Jones vector de�ned by (3.30) only spans the space of fully polarized light
and cannot be used for description of partially polarized or unpolarized light. Math-
ematically convenient and a more general description of the polarization state of
light was de�ned by G.G. Stokes as a set of four real numbers S0, S1, S2, and S3
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LP in x J =

[
1
0

]
LP at angle θ J =

[
cos θ
sin θ

]

x

y

x

y

θ

RCP J = 1√
2

[
1
i

]
LCP J = 1√

2

[
1
−i

]

x

y

x

y

EP J =

[
cos θ cos ϵ− isin θ sin ϵ
sin θ cos ϵ+ icos θ sin ϵ

]

x

y

Table 3.1: The normalized Jones vectors of linearly (LP), right- and left circularly
(RCP, LCP), and elliptically (EP) polarized light.
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x

y

Figure 3.2: The polarization state of light described by the azimuth θ and the
ellipticity ϵ of the polarization ellipse.

which de�ne the Stokes vector:

S =

⎛⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Ix + Iy
Ix − Iy
I45 − I−45

IRP − ILP

⎞⎟⎟⎠ , (3.32)

which shows the light intensities of di�erent polarization states and could describe
unpolarized, partially polarized, and fully polarized light. The Stokes parameters
are for fully polarized light de�ned as:

• S0 = Ix + Iy = ExE
∗
x + EyE

∗
y ... the total light intensity,

• S1 = I0 = Ix − Iy = ExE
∗
x − EyE

∗
y ... the intensity di�erence between light

linearly polarized in x and y directions,

• S2 = I45−I−45 = ExE
∗
y+E

∗
xEy ... the intensity di�erence between light linearly

polarized along the plane with angle ±45◦ about the x-plane,

• S3 = IR − IL = i
(
E∗

xEy − ExE
∗
y

)
... the intensity di�erence between right and

left circularly polarized light.

The three Stokes vector components (S1, S2, S3) are the Cartesian coordinates of
the point on the Poincaré sphere (w1, w2, w3) = (cos 2ϵ cos 2θ, cos 2ϵ sin 2θ, sin 2ϵ)
multiplied by S0 [72] as depicted in Fig. 3.3. For example, the points on the equator
with 2θ = 0◦ and 2θ = 90◦ represent states of the linear polarization along the
x axis and the linear polarization at angle 45◦ from x axis, respectively. The north
and south poles 2ϵ = ±90◦ represents, respectively, right and left circularly polarized
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Figure 3.3: The three Stokes vector components (S1, S2, S3) are the Cartesian
coordinates of the point on the Poincaré sphere (of unit radius) (w1, w2, w3) =
(cos 2ϵ cos 2θ, cos 2ϵ sin 2θ, sin 2ϵ). Points on the Poincaré sphere representing lin-
early (LP) and right circularly (RCP) polarized light are marked with black points.

states. Moreover, the portion of an electromagnetic wave, which is polarized, can be
described by the degree of polarization de�ned by:

P =

√
S2
1 + S2

2 + S2
3

S0

, (3.33)

which for totally polarized, unpolarized, and partially polarized light is equal to
P = 1, P = 0, and 0 < P < 1, respectively.

3.1.7 Jones and Stokes-Mueller formalism

In the absense of depolarization e�ects, the interaction of the fully polarized incident
light transforms the input Jones vector (3.30) into output Jones vector through the
linear transformation: [

Ex

Ey

]
out

=

[
Jxx Jxy
Jyx Jyy

] [
Ex

Ey

]
in

, (3.34)

where Jij are the elements of the 2 × 2 Jones matrix. Another basis widely used is
related to the plane of incidence, which is the plane made by the incoming propaga-
tion direction and the vector perpendicular to the plane of an interface as depicted
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Figure 3.4: The electric �eld of s-polarization is oriented perpendicularly to the
plane of incidence, while p-polarization lies in the plane of incidence.

in Fig. 3.4. The linearly polarized light with its electric �eld normal to the plane
of incidence is called s-polarized (senkrecht, German term for perpendicular) while
the light with its polarization along the plane of incidence is denoted as p-polarized
(parallel).

For isotropic samples, the independence of s- and p- polarizations implies that
the Jones matrix is diagonal and can be written in the form:

J =

[
rss 0
0 rpp

]
, (3.35)

where rss and rpp are the complex Fresnel coe�cients for re�ection.
Although the 2 × 2 Jones formalism provides an e�cient method to describe

fully polarized light, it is not su�cient for description of depolarizing devices. As
mentioned above, any partially polarized state can be described by the Stokes vector
which is given by Eq. (3.32). Upon interaction of incident light Sin with a sample,
transformation of such partially polarized light into Sout can be described by the
linear transformation:

Sout = MSin, (3.36)

where M is the 4× 4 Mueller matrix. Although the Stokes vector is directly related
to the light intensities and thus the Mueller matrix does not (in contrast to the Jones
matrix) contain any information about the overall phase shift, it can fully character-
ize the polarization response of any depolarizing or non-depolarizing sample. In the
case of the absence of the depolarization, both formalism are equivalent and simple
Jones-Mueller matrix conversion is possible via the following relationship [74]:

M = A (J⊗ J∗)A−1, (3.37)
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where ⊗ denotes the Kronecker product and A is de�ned as:

A =

⎡⎢⎢⎣
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎤⎥⎥⎦ . (3.38)

Considering the anisotropic non-depolarizing sample described by the Jones ma-
trix (3.34), the full Jones-Mueller matrix is in the form:

M =

⎡⎢⎢⎢⎢⎢⎣
1
2

(
|Jss|2 + |Jsp|2 + |Jps|2 + |Jpp|2

)
1
2

(
|Jss|2 − |Jsp|2 + |Jps|2 − |Jpp|2

)
ℜ
(
JspJ

∗
ss + JppJ

∗
ps

)
−ℑ

(
JspJ

∗
ss + JppJ

∗
ps

)
1
2

(
|Jss|2 + |Jsp|2 − |Jps|2 − |Jpp|2

)
1
2

(
|Jss|2 − |Jsp|2 − |Jps|2 + |Jpp|2

)
ℜ
(
JspJ

∗
ss − JppJ

∗
ps

)
ℑ
(
−JspJ

∗
ss + JppJ

∗
ps

)
ℜ
(
JpsJ

∗
ss + JppJ

∗
sp

)
ℜ
(
JpsJ

∗
ss − JppJ

∗
sp

)
ℜ
(
JppJ

∗
ss + JpsJ

∗
sp

)
ℑ
(
−JppJ

∗
ss + JpsJ

∗
sp

)
ℑ
(
JpsJ

∗
ss + JppJ

∗
sp

)
ℑ
(
JpsJ

∗
ss − JppJ

∗
sp

)
ℑ
(
JppJ

∗
ss + JpsJ

∗
sp

)
ℜ
(
JppJ

∗
ss − JpsJ

∗
sp

)

⎤⎥⎥⎥⎥⎥⎦ .

(3.39)

Linear birefringence

Let us consider linearly birefringent medium with thickness l through which the
wave with the wavelength λ is propagating. The principal axes are along x and y
directions and the anisotropic medium is described by real refraction indices nx and
ny. Description of the change of the polarization state during propagation can be
done using the Jones matrix:

JLB =

[
e−i 2π

λ
nxl 0

0 e−i 2π
λ
nyl

]
= e−i 2π

λ
n̄l

[
e−iLB/2 0

0 eiLB/2

]
, (3.40)

where LB = 2π
λ
(nx − ny)l describes the linear birefringence and n̄ = (nx + ny)/2

is the average real part of optical index, while the matrix prefactor represents an
overall phase delay. The Jones-Mueller matrix is then according to (3.39) in the
form:

MLB =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 cos(LB) -sin(LB)
0 0 sin(LB) cos(LB)

⎤⎥⎥⎦ LB≪1≈

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −LB
0 0 LB 1

⎤⎥⎥⎦ , (3.41)

which shows thatM34 = −M43 are the most important elements revealing the optical
linear birefringence.

Linear dichroism

Linearly dichroic medium is a medium in which linearly polarized waves along x
and y directions are attenuated di�erently. Such e�ect can be described by the
Jones matrix in the form:

JLD =

[
e−i 2π

λ
(n−ikx)l 0

0 e−i 2π
λ
(n−iky)l

]
= e−i 2π

λ
nle−

2π
λ
k̄l

[
e−LD/2 0

0 eLD/2

]
(3.42)
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where LD = 2π
λ
(kx − ky)l describes the linear dichroism and k̄ = (kx + ky)/2 is

the average imaginary part of optical index, while the matrix prefactors represents
an overall phase delay and absorption. The Jones-Mueller matrix is then according
to (3.39) in the form:

MLD = e−
4π
λ
k̄l

⎡⎢⎢⎣
cosh(LD) −sinh(LD) 0 0
−sinh(LD) cosh(LD) 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ LD≪1≈ e−
4π
λ
k̄l

⎡⎢⎢⎣
1 −LD 0 0

−LD 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
(3.43)

which shows theM12 =M21 the most important elements revealing the optical linear
dichroism.

3.2 Electromagnetic �eld in anisotropic multilayer

structure

The electromagnetic response of generally anisotropic multilayer structure can be
calculated in the following steps: I) solving of the wave equation (3.22) derived in
Sec. 3.1 for each generally anisotropic layer, II) including the boundary conditions
at interfaces, and III) calculation of the Jones matrix, the Mueller matrix or ellip-
sometric angles upon re�ection or transmission from the structure.

3.2.1 Solution of the Maxwell equation in anisotropic medium

Let us consider an anisotropic multilayer structure consisting of N -anisotropic layers
characterized by permittivity tensors ε̂(n) and the thicknesses d(n), with n = 1, ..., N .
The surrounding media are denoted by (0) for superstrate and (N +1) for substrate
as depicted in Fig. 3.5. The interface planes are normal to a common axis parallel
to the z axis of the Cartesian coordinate system. The wave equation (3.22) for each
layer can be written in the following form [75, 76]:

k20 ε̂
(n)E

(n)
0 − k2(n)E

(n)
0 + k(n)[k(n)E

(n)
0 ] = 0, (3.44)

where E0
(n) is the amplitude of the electric �eld in each layer E(n) = E

(n)
0 ei(ωt−k(n)r).

Because of the Snell law, the wave propagates in each medium with the same tan-
gential component of the wave vector k(n) = k0(Nxx̂+Nyŷ+N

(n)
z ẑ). Let us choose

coordinate system, for which Nx = 0 and Ny = n(n)sin θ(n) = const., where θ(n) is
the propagation angle in the (n)-th layer, and rewrite the wave equation (3.44) in
the matrix form:⎛⎜⎝ ε

(n)
xx −N2

y −N
(n)2
z ε

(n)
xy ε

(n)
xz

ε
(n)
yx ε

(n)
yy −N

(n)2
z ε

(n)
yz +NyN

(n)
z

ε
(n)
zx ε

(n)
zy +NyN

(n)
z ε

(n)
zz −N2

y

⎞⎟⎠
  

♠

⎡⎢⎣ E
(n)
0x

E
(n)
0y

E
(n)
0z

⎤⎥⎦ = 0, (3.45)
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where the condition for existence of nontrivial solution is ensured by fourth-order
algebraic equation:

det(♠) = 0. (3.46)

Four solutions with N (n)
zj , where (j = 1, 3) and (j = 2, 4), correspond to the forward

and backward propagating modes called eigen-modes. The eigenmode polarizations
E

(n)
0j are speci�c for each media and do not change during the propagation and take

the form:
E

(n)
0j = A

(n)
j e

(n)
j , (3.47)

where A(n)
j is the amplitude of particular wave and e

(n)
j is the normalized eigen-

polarization satisfying: [
e
(n)
j

]+
e
(n)
j = 1, (3.48)

where
[
e
(n)
j

]+
denotes the Hermitian adjoint. In a similar way, the magnetic �eld

vector H(n)
0j can be expressed as

H
(n)
0j =

√
ε0
µ0

A
(n)
j h

(n)
j , (3.49)

where h(n)
j is the magnetic eigen-polarization. Inside n-th layer at the interface n/n+

1, we express the �eld vectorE(n) as a linear combination of these eigen-polarizations:

(n/n+1)E(n) =
4∑

j=1

A
(n)
j e

(n)
j . (3.50)

During the propagation in the n-th layer change the �eld vector according to a
factor exp

[
ik0N

(n)
zj d

(n)
]
as depicted in Fig 3.6. Then the �eld vector at the (n−1/n)

interface can be expressed as:

(n−1/n)E(n) =
4∑

j=1

A
(n)
j e

(n)
j exp

[
ik0N

(n)
zj d

(n)
]
. (3.51)

3.2.2 Boundary conditions at interfaces

The boundary conditions require continuity of the tangential components of the �eld
vectors E and H at the interface:

(n−1/n)E
(n)
x =(n−1/n) E

(n−1)
x , (n−1/n)E

(n)
y =(n−1/n) E

(n−1)
y ,

(n−1/n)H
(n)
x =(n−1/n) H

(n−1)
x , (n−1/n)H

(n)
y =(n−1/n) H

(n−1)
y .
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Figure 3.5: Multilayer structure embeded in isotropic halfspaces (0) and (N + 1). Each
layer is characterized by the permittivity tensor ε̂(n) and the thickness d(n).

From Eq (3.50) and Eq. (3.51) follows, that these conditions can be expressed as:

4∑
j=1

A
(n−1)
j e

(n−1)
xj =

4∑
j=1

A
(n)
j e

(n)
xj exp

[
ik0N

(n)
zj d

(n)
]
, (3.52)

4∑
j=1

A
(n−1)
j h

(n−1)
yj =

4∑
j=1

A
(n)
j h

(n)
yj exp

[
ik0N

(n)
zj d

(n)
]
, (3.53)

4∑
j=1

A
(n−1)
j e

(n−1)
yj =

4∑
j=1

A
(n)
j e

(n)
yj exp

[
ik0N

(n)
zj d

(n)
]
, (3.54)

4∑
j=1

A
(n−1)
j h

(n−1)
xj =

4∑
j=1

A
(n)
j h

(n)
xj exp

[
ik0N

(n)
zj d

(n)
]
, (3.55)

and in the matrix form:

D(n−1)A(n−1) = D(n)P(n)A(n),
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where D(n) (the dynamic matrix) and P(n) (the propagation matrix) have the fol-
lowing form

D(n) =

⎛⎜⎜⎜⎝
e
(n)
x1 e

(n)
x2 e

(n)
x3 e

(n)
x4

h
(n)
y1 h

(n)
y2 h

(n)
y3 h

(n)
y4

e
(n)
y1 e

(n)
y2 e

(n)
y3 e

(n)
y4

h
(n)
x1 h

(n)
x2 h

(n)
x3 h

(n)
x4

⎞⎟⎟⎟⎠ , A(n) =

⎡⎢⎢⎢⎣
A

(n)
1

A
(n)
2

A
(n)
3

A
(n)
4

⎤⎥⎥⎥⎦ (3.56)

P(n) =

⎛⎜⎜⎜⎝
ik0N

(n)
z1 d

(n) 0 0 0
0 ik0N

(n)
z2 d

(n) 0 0
0 0 ik0N

(n)
z3 d

(n) 0
0 0 0 ik0N

(n)
z4 d

(n)

⎞⎟⎟⎟⎠ . (3.57)

Using P(n) and D(n), the amplitudes in the halfspaces (0) and (N + 1) can be
related as follows:

A(0) =
[
D(0)

]−1
D(1)P(1) . . .

[
D(N)

]−1
D(N+1)P(N+1)  

M

A(N+1), (3.58)

where M is the total transfer matrix of the system.

Figure 3.6: Transfer matrix relates the proper polarization �elds of amplitudes A(n)
j

in the layer (n) and (n+ 1).

Note, that in the case of isotropic layered media, the electromagnetic �eld can be
divided into two uncoupled modes: s-modes and p-modes with electric �eld vector
perpendicular and parallel to the plane of incidence, respectively. Since they are
uncoupled, characteristic equation for N (n)

z,j is biquadratic with the solution:

N
(n)
z,1,3 = −N (n)

z,2,4 = n(n)cos θ(n), (3.59)

and the dynamic matrix takes the block diagonal form:

D =

⎛⎜⎜⎝
1 1 0 0

n(n)cos θ(n) −n(n)cos θ(n) 0 0
0 0 cos θ(n) cos θ(n)

0 0 −n(n) n(n)

⎞⎟⎟⎠ . (3.60)



3.2. ELECTROMAGNETIC FIELD IN ANISOTROPIC MULTILAYER
STRUCTURE 41

3.2.3 Scattering matrix formalism

While the transfer matrix formalism provides an e�ective tool for the calculation of
the electromagnetic response of multilayer anisotropic structures, we explain later,
that it can not be used for recursive calculation of the gain tensor in active laser
structure with multiple active QWs. For this reason we introduce the scattering
matrix formalism, whose approach is depicted in Fig. 3.7. While the transfer matrix
M in Eq. (3.58) relates the upper and lower �eld amplitudes, the scattering matrix
(S-matrix) is de�ned using the amplitudes of the waves incoming toward (A(0)

down,
A

(N+1)
up ) and outgoing from the structure (A(0)

up , A
(N+1)
down ). Let us rewrite Eq. (3.58)

in more compact form:[
A

(0)
up

A
(0)
down

]
=

[
Muu Mud

Mdu Mdd

][
A

(N+1)
up

A
(N+1)
down

]
, (3.61)

where the amplitude vectors corresponding to two orthogonal polarizations A(0)
down =

[A
(0)
1 ; A

(0)
3 ]T , A(0)

up = [A
(0)
2 ; A

(0)
4 ]T and Mkl denotes the 2× 2 sub-matrices.

Then the amplitudes of the waves incoming toward and outgoing from the struc-
ture are connected by the scattering matrix S:[

A
(0)
up

A
(N+1)
down

]
=

[
Suu Sud

Sdu Sdd

]
  

S

[
A

(N+1)
up

A
(0)
down

]
, (3.62)

where

S =

[
Muu −MudM

−1
ddMdu MudM

−1
dd

M−1
ddMdu M−1

dd

]
. (3.63)

We will intensively use this relationship in Chapter 5 dealing with the description
of the spin-lasers properties.

3.2.4 Re�ection coe�cients

Eq. (3.58) provides the complete information about the electromagnetic response of
the anisotropic multilayer structure. Let us choose the eigenmodes of the incident
light in isotropic superstrate (0) perpendicular to the plane of incidence (s-polarized)
and parallel to the plane of incidence (p-polarized). The relations between the inci-
dent and the re�ected electric �eld amplitudes can be expressed in the form of 2× 2
Jones re�ection matrix:

J =

[
rss rsp
rps rpp

]
, (3.64)
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Transfer matrix formalism Scattering matrix formalism

Figure 3.7: Comparison between the transfer matrix and the scattering matrix
formalism.

where for s-polarized incident wave (A(0)
3 = 0):

rss =
A

(0)
2

A
(0)
1

=
M21M33 −M23M31

M11M33 −M13M31
, (3.65)

rsp =
A

(0)
4

A
(0)
1

=
M41M33 −M43M31

M11M33 −M13M31
, (3.66)

and for p-polarized incident wave (A(0)
1 = 0):

rps = −A
(0)
2

A
(0)
3

=
M13M21 −M11M23

M11M33 −M13M31
, (3.67)

rpp = −A
(0)
4

A
(0)
3

=
M13M41 −M11M43

M11M33 −M13M31
. (3.68)

Note, that the re�ection coe�cients are generally complex numbers with amplitudes
|rpq| and the absolute phases δpq, where subscripts (p, q) refers to (s, p) polarizations,
and can be written in the form:

rpq = |rpq| exp [iδpq] . (3.69)

3.2.5 Re�ection coe�cients with local anisotropic layers

In this subsection we propose to connect the change of the re�ectivity due to the
local anisotropic layers measured by re�ectance anisotropy spectroscopy (RAS). Let
us consider the light with normal incidence θ(0) = 0 on the multilayer structure,
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while each uniaxial anisotropic layer with thickness d(n) can be described by the
permittivity components ε(n)xx and ε(n)yy . The dynamical matrix of each layer is in the
simpli�ed form:

D(n) =

[
D

(n)
xx 0

0 D
(n)
yy

]
=

⎡⎢⎢⎢⎢⎣
1 1 0 0√
ε
(n)
xx −

√
ε
(n)
xx 0 0

0 0 1 1

0 0 −
√
ε
(n)
yy

√
ε
(n)
yy

⎤⎥⎥⎥⎥⎦ , (3.70)

while the transfer matrix of each layer is according to (3.58) in the form

T(n) =
1

2

⎡⎢⎢⎢⎢⎣
1 1 0 0√
ε
(n)
xx −

√
ε
(n)
xx 0 0

0 0 1 1

0 0 −
√

ε
(n)
yy

√
ε
(n)
yy

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

eik0
√

ε
(n)
xx d(n)

0 0 0

0 e−ik0

√
ε
(n)
xx d(n)

0 0

0 0 eik0
√

ε
(n)
yy d(n)

0 0 0 eik0
√

ε
(n)
yy d(n)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1 1√
ε
(n)
xx

0 0

1 − 1√
ε
(n)
xx

0 0

0 0 1 − 1√
ε
(n)
yy

0 0 1 1√
ε
(n)
yy

⎤⎥⎥⎥⎥⎥⎥⎦ .

This matrix can be rewritten as

T(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos k0

√
ε
(n)
xx d(n) i

ε
(n)
xx

sin k0

√
ε
(n)
xx d(n) 0 0

iε
(n)
xx sin k0

√
ε
(n)
xx d(n) cos k0

√
ε
(n)
xx 0 0

0 0 cos k0
√
ε
(n)
yy d(n) − i

ε
(n)
xx

sin k0

√
ε
(n)
xx d(n)

0 0 −iε(n)xx sin k0

√
ε
(n)
xx cos k0

√
ε
(n)
yy d(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≈
k0

√
ε
(n)
xx,yyd(n)≪1

⎡⎢⎢⎣
1 i k0d

(n) 0 0

i k0ε
(n)
xx d(n) 1 0 0
0 0 1 −i k0d(n)
0 0 −i k0ε(n)yy d(n) 1

⎤⎥⎥⎦ , (3.71)

where we consider approximation for ultra-thin layer k0
√
ε
(n)
xx,yyd(n) ≪ 1. This ap-

proach can be generalized for multiple anisotropic layer according to

N∏
i=1

T(i) =

⎡⎢⎢⎣
1 i k0

∑
d(i) 0 0

i k0
∑
ε
(i)
xxd(i) 1 0 0

0 0 1 −i k0
∑
d(i)

0 0 −i k0
∑
ε
(i)
yyd(i) 1

⎤⎥⎥⎦ , (3.72)
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so that the total transfer matrix of the system is given by

M =
[
D(0)

]−1
N∏
i=1

T(i) D(N+1), (3.73)

whereD(0) andD(N+1) are the dynamical matrices of superstrate (air) and substrate,
respectively.

Let us now consider one anisotropic ultra-thin layer with the optical constants
εxx = ε and εyy = ε+∆ε, and thickness d(n), which is embedded between substrate
with the optical constant ε and air with ε0 = 1. Then the re�ection coe�cients are
calculated according to (3.65), (3.68), and (3.73)

rxx = r =
M21

M11
=

1−√
ε

1 +
√
ε

(3.74)

ryy = r −∆r = −M43

M33
=

1−√
ε− ik0∆εd

1 +
√
ε+ ik0∆εd

, (3.75)

where the �rst relation is the well-known Fresnel equation and the second equation
describes di�erent re�ection due to the anisotropic term ∆ε. Then the di�erence in
re�ectivity ∆r = rxx − ryy normalized to the mean re�ectance r = (rxx + ryy) /2 is
given by

∆r

r
=

−2ikd

ε− 1

∆ε

ε
. (3.76)

This equation can be also derived by approximate solution of the Helmholtz equa-
tion [77] for thin anisotropic �lm and is widely used for an interpretation of re-
�ectance anisotropy spectroscopy and for the extraction of optical constants of lay-
ers with local anisotropies such as with surface strain [78]. One can connect this
analysis to the measurement of InGaAs/GaAs quantum well system measured by
Yu [38], where ∆r/r ≈ 10−4 for 7 nm and λ ≈ 1µm gives order of the anisotropy
magnitude |∆ε| ≈ 0.05, which is in a good agreement with ellipsometric analysis
described in Chapter 4.

3.2.6 Ellipsometric angles

In ellipsometry measurements, the polarization states of incident and re�ected light
are described by the coordinates of s- and p-polarizations. Upon light re�ection
both polarizations exhibit di�erent changes in amplitude and phase which can be in
the case of isotropic non-depolarizing sample conveniently described by using two
ellipsometric angles Ψ and ∆ by the following relation:

rpp
rss

= tanΨ exp (i∆), (3.77)

where tanΨ = |rpp| / |rss| corresponds to the amplitude ratio and∆ = δp−δs denotes
the di�erence in phase shift upon re�ection. On the other hand for anisotropic
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sample, the o�-diagonal elements of the Jones matrix (3.64) appears:

J ∝
[

1 rsp
rss

rps
rss

rpp
rss

]
, (3.78)

where
rsp
rss

= tanψsp exp (i∆sp), (3.79)

rps
rss

= tanψps exp (i∆ps), (3.80)

and ψsp, ψps, ∆sp, ∆ps are the generalized ellipsometric angles [74, 79]. Accordingly,
the Jones matrix of anisotropic sample is characterized by six independent param-
eters instead of only two parameters for an isotropic structure.

3.3 Mueller matrix ellipsometry

The Mueller matrix ellipsometry has been widely applied for optical characterization
of optically anisotropic structures. The important feature of this kind of ellipsome-
try is its ability to directly measure the Mueller matrix components corresponding
to a sample [79, 80]. Moreover, in comparison to generalized spectroscopic ellip-
sometry, the Mueller matrix ellipsometry can be used to extract the depolarization
e�ects of a sample originating from incoherent superposition of di�erent polariza-
tion states upon transmission or re�ection from the sample. More details about the
measurement procedure are given in next chapter supported by experimental results
obtained on real laser structures. In this section we will compare the Mueller matrix
ellipsometry with widely used techniques such as re�ectance anisotropy spectroscopy
and standard spectroscopic ellipsometry and we will point out the bene�ts of this
method.

3.3.1 Comparison of Mueller matrix ellipsometry with re-
�ectance anisotropy spectroscopy (RAS)

Another widely used technique sensitive to anisotropic optical response of surface
reconstructions, strain, and interface bonds is re�ectance anisotropy spectroscopy
(RAS) [81], which measures the di�erence in re�ectance (∆r = rxx − ryy) of normal
incidence linearly-polarized light between two orthogonal directions normalized to
the mean re�ectance r = (rxx + ryy) /2:

∆r

r
= 2

rxx − ryy
rxx + ryy

, (3.81)

while the Jones vector is given by:

J =

[
rxx 0
0 ryy

]
. (3.82)
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The simplest RAS spectrometer based on the intensity modulation has been
designed by Aspnes [82], where linearly polarized light is incident on a sample ro-
tating with angular frequency ωs. Then the intensity of the light re�ected by the
sample is:

IRAS ∝ R− ∆R

2
cos 2ωst, (3.83)

where R and ∆R represents, respectively, the average and the anisotropy of the
re�ected intensities given by:

R =
|rxx|2 + |ryy|2

2
, (3.84)

and
∆R = |rxx|2 − |ryy|2 . (3.85)

The measured ratio the oscillatory I2ω and time-independent contribution I0 to the
re�ected intensity is a direct measure of ∆R/R:

I2ω
I0

=
1

2
√
2

∆R

R
, (3.86)

while for small anisotropies:

∆R

R
≈ 2ℜ

(
∆r

r

)
. (3.87)

This measured quantity is directly included in Mueller matrix components M12

and M21. Considering the Jones vector in the form of (3.82), the Mueller ma-
trix (3.39) can be expressed as:

M =

⎡⎢⎢⎣
1
2
(|rxx|2 + |ryy|2) 1

2
(|rxx|2 − |ryy|2) 0 0

1
2
(|rxx|2 − |ryy|2) 1

2
(|rxx|2 + |ryy|2) 0 0

0 0 ℜ(ryyr∗xx) ℑ(−ryyr∗xx)
0 0 ℑ(ryyr∗xx) ℜ(ryyr∗xx)

⎤⎥⎥⎦ . (3.88)

One can clearly see the connection of M12 =M21 to ∆R/R given by:

m21 =
M21

M11

=
∆R

2R
m12 =

M12

M11

=
∆R

2R
, (3.89)

where m12 and m21 are normalized Mueller matrix components. The main disad-
vantage of the RAS spectroscopy based on the intensity modulation is unsuitability
for the implementation in in-situ real-time measurement because of a need for the
sample rotation. Moreover, it only enables the measurements of the real part of the
complex quantity ∆r/r.

An improved way for RAS measurements, which has become popular, is based
on photoelastic phase modulation [81], where one linear polarization, perpendic-
ular to modulation axis is una�ected by modulator, but the polarization along the
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modulation axis undergoes an oscillatory retardation Γr with the frequency ωr and
the amplitude Γr,0:

Γr = Γr,0 sin (ωrt) . (3.90)

Then the measured intensity is in the form of harmonic series IRAS = I0+Iω+I2ω+
. . ., where I0 is time-independent contribution and remaining terms are oscillatory
contribution with angular frequencies indicated by subscripts. Real and imaginary
parts of the ∆r/r are now included in the measured intensities, particularly in the
ratios Imω/I0:

Imω

I0
=

2Jm (Γr,0)ℜ (∆r/r)

1 + |∆r/r|2/4 ≈ 2Jm (Γr,0)ℜ
(
∆r

r

)
, (3.91)

where Jm (Γr,0) is a Bessel function of order m (even integer), and

Imω

I0
=

2Jm (Γr,0)ℑ (∆r/r)

1 + |∆r/r|2/4 ≈ 2Jm (Γr,0)ℑ
(
∆r

r

)
, (3.92)

where m is an odd integer. The possibility of a measurement of the imaginary part
∆r/r brings greater information about structure including phase changes upon a
re�ection.

The connection between the imaginary part of ∆r/r and the Mueller matrix is
straightforward. One can easily proof that for small anisotropies we obtain:

m34 = −m43 =
M34

M11

= −M43

M11

=
2ℑ (−ryyr∗xx)
|rx|2 + |ry|2

≈ 2ℑ
(
∆r

r

)
. (3.93)

To conclude, the Mueller matrix obtained by using ellipsometry measurement pro-
vides complete information about ∆r/r ratio which is measured by the RAS mea-
surement.

3.3.2 Comparison of Mueller matrix ellipsometry with stan-
dard spectroscopic ellipsometry

The spectroscopic ellipsometry allows to determine two independent quantities, the
ellipsometric angles Ψ and ∆, de�ned by Eq. (3.77) as a function of the photon
energy. One of the mostly used con�guration is based on the phase modulation
similarly as used in the RAS measurement. Considering the polarizer-modulator-
analyzer con�guration with the respective azimuthal angles αP , αM , and αA with
respect to the plane of incidence, the measured intensity is [83]:

ISE(t) = I0,SE [1 + ISsin (Γ(t)) + ICcos (Γ(t))] , (3.94)

where
IS = sin [2 (αA − αM)] sin 2αP sin 2Ψ sin∆, (3.95)

IC = sin [2 (αA − αM)] [sin2αM (cos 2Ψ− cos 2αP ) + sin 2αP cos 2αM sin 2Ψ cos∆] .
(3.96)
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One can clearly see that for unambiguous determination of the ellipsometric angles
∆ and Ψ, at least two measurements must be done [83]. For example two mea-
surements with con�gurations: i) αM = 0◦, αA = 45◦, and αP = 45◦ for which
IS = sin 2Ψ sin∆, IC = sin 2Ψ cos∆, and ii) αM = 45◦, αA = 90◦, and αP = 45◦ for
which IS = sin 2Ψ sin∆, IC = IC′ = cos 2Ψ.

The Mueller matrix polarimetry enables to measure and determine both ellipso-
metric angles in one fast measurement. For non-depolarizing isotropic sample, the
normalized Mueller matrix has the following form:

Mnorm =

⎡⎢⎢⎣
1 −cos 2Ψ 0 0

−cos 2Ψ 1 0 0
0 0 sin 2Ψ cos∆ sin 2Ψ sin∆

−sin 2Ψ sin∆ sin 2Ψ cos∆

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 −IC′ 0 0

−IC′ 1 0 0
0 0 IC IS
0 0 −IS IC

⎤⎥⎥⎦ ,

(3.97)
where IC , IC′ , and IS are the intensities measured by the standard spectroscopic ellip-
sometry.

3.4 Conclusion of the chapter

This chapter has been dedicated to the theory of the electromagnetic response of multi-
layer anisotropic structures. After derivation of the wave equation for generally anisotropic
medium, we introduced the transfer and the scattering matrix formalism as e�ective meth-
ods for calculation of the re�ection coe�cients, ellipsometric angles and the Mueller matrix
components. In the end of this chapter we have compared the Mueller matrix ellipsometry
used in this thesis with other widely used measurement techniques such as the re�ectance
anisotropy spectroscopy and standard spectroscopic ellipsometry and we have pointed out
the bene�ts of this method.



Chapter 4

Experimental study of surface and
interfacial optical anisotropy

This chapter is devoted to the experimental study of local linear anisotropies in In-
GaAs/GaAsP semiconductor VECSEL laser structure using the Mueller matrix ellipsom-
etry. Such anisotropic e�ects originate from i) the reduction from D2d to C2v symmetry
group at the III-V semiconductor interface and ii) locally present strain at surface and in
the quantum wells. We present ellipsometry results in the spectral range from 0.73 to 6.4
eV in order to disentangle surface and quantum wells (QWs) contributions to the linear
optical birefringence of the structures. The measurement of the full 4 × 4 Mueller matrix
for multiple angles of incidence and in-plane azimuthal angles in combination with proper
parametrization of optical functions has been used for extraction of optical permittivity
tensors of surface strained layers and QWs. Such spectral dependence of optical tensor
elements are crucial for modeling of future spin-laser eigenmodes, resonance conditions,
and also for understanding of sources of structure anisotropies. The Mueller matrix mea-
surement and analysis have been published in the journal Applied Physics Letters [43].

4.0.1 Experimental setup

The Mueller matrix ellipsometer Woollam RC2 was used for the measurement of the com-
plete Mueller matrix of the VECSEL laser structure. Figure 4.1 shows the PCSCA con�gu-
ration [80] of the experimental measurement (polarizer-compensator-sample-compensator-
analyzer) used to collect all 16 elements of the Mueller matrix [84]. The ellipsometer uses a
combination of halogen bulb and deuterium lamp as a light source in the UV-NIR spectral
region from 0.74 eV to 6.42 eV (193-1700 nm). The beam is collimated by an achromatic
lens and then passes through a �xed MgF2 Rochon polarizer, and �nally through an achro-
matic rotating (10 Hz) prism compensator. The detector consists of two spectrometers: i)
Si CCD detector for UV-VIS spectral range and ii) InGaAs photodiode array for NIR re-
gion. The sample is mounted to the stage, which enables in-plane rotation of the sample
around z axis. In re�ection, the angle of incidence θ(0) can be varied from 19◦-85◦.

49
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Figure 4.1: Con�guration of the experimental measurement: light source (S), po-
larizer (P), dual-rotating compensator (RC), analyzer (A), and detector (D).

4.1 Sample description

Figure 4.2 shows schematically the VECSEL laser structure consisting an epitaxial high-
re�ectivity (99.9%) bottom AlAs/GaAs Bragg mirror (26 pairs) of the nominal thicknesses
tAlAs = 85.37 nm and tGaAs = 71.8 nm. The 13λ/2 thick active region is constituted of
6 strain-balanced 8 nm InGaAs/GaAsP QWs with emitting laser frequency at λ ≃ 1µm.
Each pairs of QWs is separated by a GaAs spacer which size decreases when getting closer
to the surface. A 30 nm thick insulating AlAs layer in-between the surface and the active
medium used as a carrier con�nement layer in optical pumping experiments. The nominal
thickness of GaAs capping layer is 10 nm.

Figure 4.2: Schematic description of studied VECSEL structure.

4.2 Optical function of semiconductor layers

The critical step involved in �tting Mueller matrix ellipsometric data to a given structural
model is the proper parametrization of the dispersion of the unknown energy-dependent
complex optical functions εr(E) = ε1 − iε2. We have used a Kramers-Kronig (KK) consis-
tent Tauc-Lorentz (TL) model function, which was developed by Jellisson [85] using the
Tauc joint density of states and the Lorentz oscillator. This approach is combined by subset
of more general Herzinger-Johs parametrized function shape with KK properties [86] to
model the shape of an M0 critical point seen in direct gap semiconductors such as GaAs
around the gap energy Eg.
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Tauc-Lorentz model

In the approximation of parabolic bands, Tauc's dielectric function describing inter-band
mechanism above the band edge is in the form:

εT2 (E) =

⎧⎪⎨⎪⎩
AT

(
E−Eg

E

)2
E ≥ Eg

0 E ≤ Eg

, (4.1)

where AT is the Tauc coe�cient, E is the photon energy, and Eg is the energy of the
optical bandgap.

On the other hand, the derivation of the Lorentz oscillator is based on the classical
theory of interaction between light and matter and is used to describe frequency dependent
polarization due to bound charge, which supposed to be analogy to a spring-mass system.
Bounded electrons react to an electromagnetic �eld by vibrating like damped harmonic
oscillator leading to the imaginary part of the relative permittivity [85]:

εL2 =
ALΓE0E(

E2 − E2
0

)2
+ Γ2E2

, (4.2)

where Γ is the broadening parameter and E0 is the energy of central peak with amplitude
AL.

Multiplying of Eq. (4.1) and Eq. (4.2) leads to the Tauc-Lorentz dispersion formula:

ε2 (E) =

⎧⎨⎩
1
E

AE0Γ(E−Eg)
2

(E2−E2
0)

2
+Γ2E2

E ≥ Eg

0 E ≤ Eg

, (4.3)

with the overal amplitude A = ATAL. The real part of the dielectric function is derived
using Kramers-Kronig integration [85]:

ε1(E) = ε1∞ +
2

π
PC

∫ ∞

Eg

E′ε2 (E
′)

E′2 − E2
dE′, (4.4)

where PC is the Cauchy principal value and ε1∞ is the constant term originating from
high-energy absorptions.

Herzinger-Johs model

The model developed by Johs [86], which combines functional shape with Kramers-Kronig
consistent properties, is convenient when reproducing complicated dielectric function shape
without the need of additional oscillators between critical points. Analytically, a single
oscillator is formed by four-order Gaussian-broadened polynomials, which are grouped into
four polynomial ensembles connected end-to-end and centred on critical point EC . Each
spline connects smoothly with the adjacent spline, forming a single, continuous function as
depicted in Fig 4.3. Generally, each critical point is described by 9 parameters. EC is the CP
energy with amplitude AC , while EL and EU are the end points. Energies ELM and EUM

with respective amplitudes ALM and AUM describes two control points for establishing
the assymetry of the lineshape. The center (EC), the bounding energies (EL and EU ) and
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Figure 4.3: Schematic of a single unbroadened CP structure in the Herzinger-Johs
model.

center amplitude (AC) are speci�ed absolutely. The position of the control points, which
correspond to the joining points of four polynomials, are de�ned relative to these absolutes.

The general expression of the dielectric function is then given as a summation of the
Herzinger-Johs dielectric function εHJ (ω) = εHJ

1 − iεHJ
2 and Po poles representing contri-

bution from outside region of studied spectra:

ε (ω) = 1 + εHJ (ω) +

Po∑
j=1

Aj

(h̄ω)2 − E2
j

. (4.5)

The imaginary part of the Herzinger-Johs dielectric function εHJ
2 is described using m

energy-bounded polynomials given by [86]:

εHJ
2 (ω) =

m∑
j=1

∫ Emax

Emin

Wj (E) Φ (h̄ω, E, σj) dE, (4.6)

where Φ (h̄ω, E, σj) is the Gaussian broadening factor and Wj(E) is the fourth-order (N =
4) polynomial function:

Wj (E) =
N∑
k=0

Pj,kE
ku (E − aj)u (bj − E) , (4.7)

with coe�cients Pj,k and unit step functions u(x). The corresponding real part of the
dielectric function εHJ

1 is obtained by Kramers-Kronig transformation. In this work, we
use HJ function to model the shape of M0 CP of the zinc-blende semiconductor such as
GaAs as depicted in Fig. 4.4.

4.3 Fitting procedure and �gure of merit

The important part of data analysis process is quantifying how well the quantity calculated
by the optical model "agrees" with the raw measured data. Therefore we must de�ne some
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Figure 4.4: Model of the bandgap andM0 critical point of GaAs by using Herzinger-
Johs and Tauc-Lorentz oscillators. Blue and red circles correspond to tabulated
data, black solid curves describe model and grey solid curves correspond to model
oscillators.

quantity, which represents the quality of the match between the measured and calculated
data. The mostly used quantity, χ2 function, is de�ned by:

χ2 =
1

NλNo −Np

Nwvl∑
w=1

∑
(ij)̸=(1,1)

(
mth

ij,w −mexp
ij,w

σij,λ

)2

, (4.8)

where Nλ is the number of spectral points, No is the number of observables (No = 15 for
normalized Mueller matrix measurement), Np is the number of variable (�t parameters),
and σij,λ is the wavelength-dependent standard deviation. The subscripts th and exp refer
to the calculated and the measured data, respectively.

To obtain the best �t between the experimentally measured and model generated data
(to achieve the lowest χ2), parameters of the optical model called �t parameters such
as thicknesses or optical functions must be adjusted. This procedure is done by using a
standard non-linear iterative optimalization analysis called the Levenberg-Marquardt least
square algorithm [87]. When evaluating the �t results, one must follow the following rules:
i) The model must be physical. This for example means that optical function determined
from a model �t must be Kramers-Kronig consistent. ii) The model should be unique.
The general rule is to choose the simplest model that adequately �ts the data set. It is
always possible to reduce χ2 function by adding more �t parameters, but unless the χ2

is signi�cantly reduced, the additional complexity is not justi�ed. On the other hand, for
complex structure, one can try alternate models to partially verify model uniqueness.
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4.4 Results

Figure 4.5 displays the measured spectra of the Mueller matrix components M21, M34, and
M44 in the full range from 0.73 to 6.4 eV compared with data �t with using the tabulated
optical constants of GaAs, AlAs, InGaAs, GaAsP [88, 89], and including also GaAs oxide
layer on the top [90]. These components of the Mueller matrix together with M12 = M21,
M43 = −M34, andM33 = M44 are the most important to reveal the linear birefringence and
dichroism. Considering the general form of the re�ection coe�cient rss and rpp (without
s- and p- polarized light conversion), one can recall Eq. (3.88) and show that M21 ∝
|rss|2 − |rpp|2 and M44 ∝ ℜ

{
rssr

∗
pp

}
leading to the sensitivity on linear dichroism, while

M34 ∝ ℑ
{
rssr

∗
pp

}
is the most sensitive element to the linear birefringence [91]. From the

spectral measurement, one can clearly observe two di�erent regions: i) the transparent
region from 0.73 to 1.7 eV (730-1700 nm) with visible interference e�ect, where the light
is propagating in the whole structure due to the negligible absorption in semiconductor
multilayers with presence of photonic Bragg bandgap in the the range from 1.2 to 1.3 eV
(953-1033 nm), and ii) the range from 1.7 to 6.4 eV (193-730 nm) without any interferences,
where the AlAs/GaAs surface layers absorb incident light.

Wavelength (nm)
200 400 600 800 1000 1200 1400 1600 1800
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34
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44
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Energy (eV)6 5 4 3 2 1
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Figure 4.5: Measured and modeled Mueller matrix element spectra. The angle of
incidence of θ(0) = 40◦ has been chosen.

The analysis procedure of VECSEL structure consists of the following steps: I) The
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Figure 4.6: The measured Mueller matrix elements as a function of the in-plane
azimuth rotation angle ranging from 0 to 360 degrees for E = 2.2 eV and for the
angle of incidence θ(0) = 40◦.

Material Obtained thickness Nominal thickness
GaAs 9.3±0.2 nm 10 nm
AlAs 29.8±0.3 nm 30 nm

InGaAs QW 7.8±0.4 nm 8 nm

Table 4.1: The obtained and the nominal thicknesses of GaAs/AlAs layers on the
top of surface and InGaAs quantum wells.

analysis of the full measured spectra from 0.73 to 6.4 eV, variable angle of incidence, and
using tabulated optical constants in order to extract the precise thicknesses of all semicon-
ductor layers. Example of thickness �t is shown in Fig. 4.5. Comparison of the obtained
thicknesses and nominal values of selected layers are shown in Table 4.1. II) Including
data with 360 degree range of azimuthal sample-rotation angles, replacing the tabulated
constant by the proper parametric functions of the AlAs/GaAs top layers, and �tting the
parameters of the oscillators in the absorption region E > 1.8 eV, where the sensitivity
to surface is maximal due to an absorption of the top layers. III) Fitting of all azimuthal
angles in whole spectral range including mainly transparent region E < 1.8 eV, replacing
the tabulated constant by parametric function of the InGaAs quantum wells and �tting of
a few parameters of the optical oscillators while the surface optical constants obtained in
the previous step are �xed.

As mentioned above, the critical step involved in �tting Mueller matrix ellipsometric
data to a given structural model is the proper parametrization of the energy-dependent
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complex material optical functions described by the complex permittivity ε(E) = ε1 − iε2.
We have used the Kramers-Kronig (KK) consistent Tauc-Lorentz (TL) model function [85]
described in Section 4.2. This approach is combined by subset of more general Herzinger-
Johs parametrized function shape with KK properties [86] to model the shape of an M0

critical point seen in direct gap semiconductors such as GaAs around the gap energy Eg.
In combination with 4×4 matrix formalism describing the light propagation in anisotropic
strati�ed media, the Levenberg-Marquardt least square algorithm [87] is used to obtain
Mueller matrix data �t.

E1 E1+� E'0

E2

Eg

a) b)

Figure 4.7: a) The ordinary (blue curve) and extraordinary (red curve) optical
constants and b) the permittivity di�erences of real ∆ε1 and imaginary ∆ε2 parts
of GaAs

Figure 4.6 displays the measured Mueller matrix elements as a function of the in-plane
azimuth rotation angle ranging from 0 to 360 degree for the photon energy of E = 2.2 eV.
Clear evidence of the broken in-plane symmetry in the surface GaAs/AlAs layers is observed
due to the 180 degree (π) symmetry of the measured MM dependence on the rotation
angle. Note that e�ects of the sample tilt and misalignment would exhibit 360 degree
(2π) symmetry. Presented model is based on the optical functions parametrization of the
GaAs/AlAs top layers by TL model with the amplitudes as a �tting parameters in the
absorbing range from 1.7 to 6.4 eV, while all other structure parameters (thicknesses, optical
constants of quantum wells and barriers, etc.) are �xed. The resulting optical constants
are shown in Fig 4.7a) and Fig. 4.8a). For the lasing energy of E = 1.24 eV, the di�erence
between ordinary and extraordinary optical constants ∆ε1 = ε1,o − ε1,eo gives ∆ε1 =
0.115± 0.005 for 10 nm thick GaAs and ∆ε1 = 0.021± 0.005 for 30 nm thick AlAs, giving
the average value about ∆ε̃1 = 0.04 for a 40 nm thick layer composed of GaAs/AlAs at
surface in agreement with our recent analysis using active lasing con�guration described
in Chapter 6 and published in our paper [37].

We will now discuss the connection between particular interband transitions of zinc-
blende-type semiconductor depicted in Fig. 4.10 with the obtained permittivity functions.
The fundamental absorption edge of zinc-blende-type GaAs and AlAs corresponds to direct
transitions from the highest valence band to the lowest conduction band at the Γ point
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Figure 4.8: a) The ordinary (blue curve) and extraordinary (red curve) optical con-
stants and b) the permittivity di�erences of real ∆ε1 and imaginary ∆ε2 parts of
AlAs.

ε1 = ε1,o ε2 = ε2,o ∆ε1 = ε1,o − ε1,eo ∆ε2 = ε2,o − ε2,eo

GaAs 12.30 0 0.115 0
AlAs 8.69 0 0.021 0

InGaAs 13.10 0.76 0.047 0.026

Table 4.2: Table of the optical constants and their extracted di�erence.

(Brillouin zone center) with the energy Eg = 1.42 eV for GaAs and Eg = 2.89 eV for
AlAs as depicted in Figs. 4.7a) and 4.8a). Above the Eg critical point, we observe E1 and
E1 + ∆ (spin-orbit split) transitions, which occur at the L point of the Brillouin zone or
along the Λ lines [92]. The E′

0 describes the transitions between the valence bands and
higher conduction band at the Γ point. The imaginary part of the permittivity ε2 reaches
a strong absolute maximum known as the E2 peak, which contains contribution over a
large region close to the edges in the [100] (X point) and [110] (K point) directions of the
Brillouin zone [93].

In Figure 4.7b and Fig. 4.8b one can observe each of the resonant peak absorption
corresponding to each critical points of the Brillouin zone. The main contribution of the
anisotropy of the GaAs originates from the E1 and E1+∆ transitions giving up a positive
anisotropy between ordinary and extraordinary axis ∆ε1 > 0 and ∆ε2 > 0 up to the energy
of E = 2.9 eV and opposite ∆ε1 < 0 for higher energy. The contribution of AlAs to the
surface anisotropy for energy below band gap Eg is much smaller due to the compensation
between E1 and E′

0 oscillators. On the other hand, in higher energy range, these oscillators
play crucial role and contribute most to the surface strain.

In the following step, the extracted optical constants of the surface layers have been
considered �xed, while the optical constants of the InGaAs QW are parametrized and
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Figure 4.9: a) The ordinary (blue curve) and extraordinary (red curve) optical
constants and b) the permittivity di�erences of real ∆ε1 and imaginary ∆ε2 parts
of InGaAs quantum wells.

�tted to the experimental data in the in the full range from 0.73 to 6.4 eV. The optical
constants in all QWs are considered the identical (coupled) in order to reduce a number of
�tting parameters. Results are depicted in Fig. 4.9a and Fig. 4.9b. We note that the highest
accuracy is obtained for region below 1.8 eV, while the features above are determined only
quantitatively. The contribution of the QW to the overal birefringence admits two main
parts: i) one positive originating from the region of E1 and E

′
1 spin-orbit split transitions

and ii) the negative from the region of higher energies around E2 transition. For the lasing
energy E = 1.24 eV, this gives ∆ε1 = 0.047 ± 0.005 for 8 nm thick InGaAs QW (48 nm
total). We �rst note a positive sign of ∆ε1 > 0, identical to the surface birefringence, which
should be correlated to a corresponding negative sign in the regime of laser operation
due to the population inversion. The larger value of ∆ε1, although not yet understood,
may originate in the non-saturated inversion of population in laser operation, where the
average birefringence has been extracted close to 6 · 10−3 [37]. The order of magnitude of
∆ε1 is in agreement with the RAS measurement of the similar single quantum well system
InGaAs/GaAs in Ref. 38.

4.5 Conclusion of the chapter

The Mueller matrix ellipsometry presented in this chapter is useful method for study
of local anisotropies in multilayer semiconductor structures such as VECSEL lasers. In a
future work, this experimental method can be combined with S-matrix recursive formalism
for lasing structures developed in our previous work in Ref. 37 and in the next chapter of
this thesis to �nd the best material conditions (semiconductor host, active zone, quantum
well alloying) to eliminate or compensate overall birefringence in compact spin-VCSEL
devices, which will lead to circularly-polarized laser emission.
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Figure 4.10: Electronic energy-band structure of GaAs calculated by density func-
tion theory (DFT) using Wien2K. The main interband transitions are indicated by
the vertical arrows.
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Chapter 5

Theoretical and numerical techniques
for the analysis of eigenmodes of
spin-VECSELs with local linear
birefringence and gain dichroism

This chapter is dedicated to the detailed analysis of a general method for the modeling
of semiconductor lasers such as spin-polarized vertical-cavity surface-emitting lasers and
vertical-external-cavity surface-emitting lasers. In the beginning of this chapter we will
describe the recent 2 × 2 Jones matrix analysis of spin-VECSEL developed by Alouini
and described in Ref. 44. This simple model can describe evolution of the polarization
eigen states in the cavity as a function of the e�ective linear birefringence and circular
gain dichroism induced by the spin of injected carriers. However, it is not suitable for
description of more complex laser structures with multiple quantum wells (dipolar active
sources) inside a cavity and with local anisotropies.

On the other hand, the modeling method developed in this work contains description
of the ampli�cation processes in multiple quantum wells, multiple re�ections, propagation
between them, and involving anisotropies that may reveal i) a local linear birefringence due
to the strain �eld at the surface or ii) a birefringence in quantum wells (QWs) due to phase
amplitude coupling originating from the reduction of the biaxial D2d to the C2v symmetry
group at the III-V ternary semiconductor interfaces. From a numerical point of view, a
novel scattering S-matrix recursive method is implemented using a gain or ampli�cation
tensor derived analytically from the Maxwell-Bloch equations. It enables to model the
properties of the emission (threshold, polarization, mode splitting) from the laser with
multiple quantum well (MQW) active zones by searching for the resonant eigenmodes of
the cavity. The results presented in this chapter have been published in the journal Physical
Review A [37] and in Ref. 45.

61
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ANALYSIS OF SPIN-VECSEL

5.1 Recent mathematical description: The 2×2 Jones

matrix analysis of spin-VECSEL

Let us consider a cavity depicted in Fig. 5.1 which exhibits a residual phase anisotropy
(linear birefringence) and circular gain dichroism induced by a spin-population unbalance.
The Jones matrix of the is given by Eq. (3.40). We recall:

JLB =

[
e−i 2π

λ
nxl 0

0 e−i 2π
λ
nyl

]
= e−i 2π

λ
n̄l

[
e−iLB/2 0

0 eiLB/2

]
, (5.1)

where LB = 2π
λ0
(nx − ny)l describes the linear birefringence and n̄ = (nx + ny)/2 is the

average real part of optical index, while the matrix prefactor represents an overall phase
delay. It is usual to rewrite the Jones vector in the term of the phase anisotropy γ so that:

JLB = e−i 2π
λ
n̄l

[
e−iγ 0
0 eiγ

]
, (5.2)

where
γ =

π

λ0
(nx − ny) l. (5.3)

In the case of spin-polarized pumping, a cavity exhibits the gain circular dichroism
∆G = G+−G−, where G+ and G− are the gains for right and left circularly-polarized light,
respectively. If we introduce the average gain as Ḡ = (G+ +G−) /2, then the associated
Jones matrix is:

JGD =

[
Ḡ − i

2∆G
+ i

2∆G Ḡ

]
. (5.4)

The complete cavity is closed with the input and the output mirrors. The Jones vectors of
the mirror with re�ectivity Rm can be written in the form

JM =
√
Rm

[
1 0
0 1

]
. (5.5)

Considering the input mirror with perfect re�ectivity and output mirror with re�ectivity
Rm, we can express the complete Jones vector of the cavity as:

JC = eiφJLBJGDJLBJM, (5.6)

where the eiφ term describes the accumulated phase during propagation in the laser cavity.
By including the particular Jones matrices from Eqs.(5.2)-(5.5) we express the �nal Jones
matrix of the cavity as:

JC = Ḡ
√

RMe−2ik0leff

[
e−2iγ − i

2∆G̃

+ i
2∆G̃ e2iγ

]
, (5.7)

where leff = nala + n̄l + lext represents the e�ective length of the cavity while na, la,
and lext are optical index of the active medium, its length, and the length of the air
cavity, respectively. The normalized circular gain dichroism is∆G̃ = ∆G/Ḡ. The resonance
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Figure 5.1: Schematic representation of the simpli�ed laser cavity.

condition of the electric �eld E is then solved using the eigenvalue equation with eigenvalue
λE :

JCE = λEE. (5.8)

The eigenvalue equation is then:

(λE − cos 2γ)2 =
1

4
∆G̃2 − sin2 2γ. (5.9)

We will now discuss general non-trivial case for which both linear birefringence and circular
gain dichroism induced by spin unbalance are present: γ and ∆G̃ ̸= 0.

Case i) the linear birefringence is dominant: 1
4
∆G̃2 < sin2 2γ

Solving of Eq. (5.9) leads to two complex solutions:

λ±
E = cos 2γ ± i

√
sin2 2γ − 1

4
∆G̃2. (5.10)

It is straightforward that the imaginary part causes frequency degeneracy breaking so that
each polarization state has its own lasing frequency. The detuning between these eigen-
polarization is then:

∆f =
c

2πleff
arctan

√
sin2 2γ − 1

4∆G̃2

cos 2γ
. (5.11)

By developing (5.8) we express the ratio between the electric-�eld components as:

Ey

Ex
= 2

sin 2γ

∆G̃

⎛⎝1±
√

1− ∆G̃2

4sin2 2γ

⎞⎠ . (5.12)

Because of the requirement 1
4∆G̃2 < sin2 2γ, the ratio Ey/Ex is real so that the laser

admits two linearly polarized eigenmodes whose orientation depends on the ratio between
the circular dichroism term 1

4∆G̃2 and the linear birefringence term sin2 2γ.
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Case ii) the linear birefringence and the gain dichroism have equal mag-
nitudes: 1

4
∆G̃2 = sin2 2γ

This case represents a transition point between the linearly and circularly (elliptically)
polarized eigenmodes. The solution of Eq. (5.9) gives real value:

λ±
E = cos 2γ (5.13)

so that the electric �eld components verify:
Ey

Ex
= −1, (5.14)

which describes linearly polarized mode oriented at −45◦ from the birefringence axis x.
Both eigenstates are therefore degenerate in frequency and with the same polarization state
so that they are indistinguishable.

Case iii) the circular gain dichroism is dominant: 1
4
∆G̃2 > sin2 2γ

In comparison to the previous case i), now the solving Eq. (5.9) leads to two real solutions:

λ±
E = cos 2γ ±

√
1

4
∆G̃2 − sin2 2γ. (5.15)

It is now straightforward that pure real solutions of λ±
E lead to no change in phases of

two eigenmodes and therefore both eigenmodes oscillate with same frequency. The out-
put polarization is then given by their superposition. The ratio between the electric �eld
components are given by:

Ey

Ex
=

e−2iγ − λ±
E

1
2 iG̃

(5.16)

with the module: ⏐⏐⏐⏐Ey

Ex

⏐⏐⏐⏐ = 1 (5.17)

and the phase:

arg
(
Ey

Ex

)
= ∓arctan

(
G̃2

4sin2 2γ
− 1

)
, (5.18)

which straightly describe elliptically polarized eigenmodes. The resolution of the eigenvalue
equation (5.9) gives access to the respective gain for each eigen state:

G± =
1√

RMλ±
E

=

[√
RMcos 2γ ±

√
1

4
∆G̃2 − sin2 2γ

]−1

. (5.19)

The conclusion of the presented analysis is shown in Fig. 5.2. If the linear birefringence
is dominant ( 1

4∆G̃2 < sin2 2γ) both eigen polarizations are linearly polarized oscillating
with di�erent frequencies while their respective orientation depends on the ratio between
the terms describing the circular gain dichroism ∆G̃ and the linear birefringence sin 2γ.
When the circular gain dichroism increases, the linearly polarized and fully degenerated
eigenmodes lose their orthogonality and converge in one direction oriented at −45◦ from
the birefringence axis for 1

4∆G̃2 = sin2 2γ. With increasing circular gain dichroism, the
linear polarizations change to an elliptical one with the long axis oriented at 45◦ from the
birefringence axis up to the state which can be considered as circularly polarized. Second
orthogonal elliptical (circular) polarization with lower gain appears for higher 1

4∆G̃2.
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Figure 5.2: Evolution of the polarization state and the frequency detuning [33, 44].

5.2 Physics of spin-pumped gain medium with lin-

ear birefringence

5.2.1 Maxwell-Bloch Equations

The carrier-photon dynamics of spin-lasers can be modeled, from the basis of the Maxwell-
Bloch equations [94�103], using a spin-dependent rate equation analysis. The rate equations
can provide a direct relation between material properties and device parameters [104�106].
Recalling the general form for the electric �eld E and the polarization P̃:

E =
1

2
E0ei(ωt−kr) + c.c. =

1

2
Aη0e

i(ωt−kr) + c.c. (5.20)

P̃ =
1

2
P̃0ei(ωt−kr) + c.c. =

1

2
P̃η0e

i(ωt−kr) + c.c., (5.21)

we will now discuss three rate equations governing the behaviour of a single-frequency laser
for i) the polarization of the active medium, ii) the inversion of a spin-polarized population,
and iii) the electric �eld in a cavity.

Interaction Hamiltonian

The Maxwell-Bloch equations derive from the evolution of the density matrix [94�97, 102,
103] under the action of the electrical dipolar Hamiltonian:

Ĥd = −d̂ ·E = −
∑
i

d̂iEi, (5.22)
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where d̂ is the electric dipole operator with the o�-diagonal matrix elements between two
levels |1⟩ and |2⟩, with µ ≡ d21,i = ⟨1|d̂i|2⟩ as the dipolar coupling coe�cient.

All atomic eigenstates have well de�ned parity (even or odd) due to the central character
of the atomic potential, so that d11 = d22 = 0 and d12 = d∗

21. Then in order to have
interaction, we have to consider states |1⟩ and |2⟩ with oposite parity. Hence the interaction
Hamiltonian is in the form:

Ĥd =

[
0 V
V ∗ 0

]
, (5.23)

where we introduce the notation:
V = −d21 ·E, (5.24)

which with the form for electric �eld (5.20) becomes [107]:

V = −h̄αei(ωt−kr) − h̄βe−i(ωt−kr), (5.25)

where

α =
d21 · η0

2h̄
A, (5.26)

β =
d21 · η∗

0

2h̄
A∗. (5.27)

Note that 2α = ωR is usually called the Rabi angular frequency of the light. Then the total
Hamiltonian for two-level atom with the transition angular frequency ω21 reads:

Ĥ =

[
1
2 h̄ω21 V
V ∗ −1

2 h̄ω21

]
. (5.28)

Density matrix and population matrix

In the case of two-level atom with states |1⟩ and |2⟩, the density matrix ρ̃ is used for
describing the probability that an atom occupies a particular state. For example the matrix
element ρ̃22 denotes the probability, that the atom occupies state |2⟩. The evolution of ρ̃22
is governed by the Von Neumann equation [108]:

ih̄
∂ρ̃

∂t
=
[
Ĥ, ρ̃

]
. (5.29)

An introducing of the new variables:

σ21 = σ∗
12 = ρ̃21e−i(ωt−kr), (5.30)

allows us to write the Bloch equations for two-level system as:

∂ρ̃22
∂t

= −∂ρ̃11
∂t

= −i
(
αe2i(ωt−kr) + β

)
σ21 + c.c., (5.31)

∂

∂t
σ21 = −iδ′σ21 − i

(
α∗e−2i(ωt−kr) + β∗

)
(ρ̃22 − ρ̃11) + c.c., (5.32)

where δ′ = ω−ω21 is the detuning factor. From the above equations we can clearly see, that
if the interaction with the electric �eld is present (α ̸= 0 and (β ̸= 0), two terms appear:
one slowly varying proportional to β and one high frequency varying term proportional
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to α. Clearly, atoms cannot well respond to the latter and one can neglect them in the
so-called Rotating Wave Approximation [109]. This approximation widely used in quantum
optics allows us to write the equations (5.31) and (5.32) in the following form [107]:

∂

∂t
(ρ̃22 − ρ̃11) = −2i (βσ21 − β∗σ∗

21) (5.33)

∂

∂t
σ21 = −iδ′σ21 − iβ∗ (ρ̃22 − ρ̃11) . (5.34)

In real lasers, we consider not only two-level atom interacting with the electric �eld,
but many atoms bounded together and creating lattices in bulk or quantum well semicon-
ductors. In the case of a large number of atoms, the density matrix ρ̃ is replaced by the
population matrix ρ, which is the averaged density matrix over a large number of atoms
N with the density matrices ρ̃i:

ρ =
1

N
∑
i

ρ̃i. (5.35)

Moreover, since a laser is a dissipative system, including relaxations is important as
depicted in Fig. 5.3. We introduce them phenomenologically into the optical Bloch equa-
tions (5.33) and (5.34). Since the levels |1⟩ and |2⟩ exhibit �nite lifetimes τ1 and τ2, we can
de�ne the relaxation rates for the populations ρ11 and ρ22:

γ1 =
1

τ1
(5.36)

γ2 =
1

τ2
. (5.37)

Now we consider that some of the population decaying from level |2⟩ feeds level |1⟩, for
example, by spontaneous emission with the rate γ21. By introducing Γ as a o�-diagonal
damping factor for the coherences ρ12, and the pumping rates Λ1 and Λ2 of levels |1⟩ and
|2⟩, allows us to rewrite the optical Bloch equations (5.33) and (5.34) as follows:

∂

∂t
ρ22 = Λ2 − γ2ρ22 − i (βσ21 − β∗σ∗

21) , (5.38)

∂

∂t
ρ11 = Λ1 − γ1ρ11 + γ21ρ22 + i (α∗σ21 − ασ∗

21) , (5.39)

∂

∂t
σ21 = −

(
Γ + iδ′

)
σ21 − iβ∗ (ρ22 − ρ11) . (5.40)

Equation of evolution for the polarization

Under the action of the light �eld each atom develops an electric dipole. As the number of
atoms contained in a small volume (small as compared with the light wavelength) is always
large, one can assume that at each spatial position r there exists a polarization given by
the quantum-mechanical expectation value of the electric dipole moment operator d̂. When
using the density (population) matrix formalism, this expectation value is computed as the
trace:

P̃ = NTr
(
ρd̂
)

(5.41)
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Figure 5.3: The relaxation and pumping of a two-level system.

where N and ρ are, respectively, the atomic density and the density matrix, so that:

P̃ = N (ρ21d12 + c.c.) . (5.42)

By considering:
σ21 = σ∗

12 = ρ21e−i(ωt−kr), (5.43)

Eq. (5.42) yields:

P̃ = N
[
σ21d12e−i(ωt−kr) + c.c.

]
. (5.44)

By comparing with the general form of the polarization (5.21) and inserting into Eq. (5.40)
using Eq. (5.27) we obtain the rate equation for the evolution of polarization:

∂P̃0

∂t
= −

(
Γ + iδ′

)
P̃0 − i

µ2

h̄
E0∆n. (5.45)

Equation of evolution for the population inversion

We now simplify the calculation for four-level system for which the lower level |1⟩ decays
very fast (τ1 ≪ τ2) and is not pumped (Λ1 = 0) so that it is considered empty (ρ11 = 0).
Then the population inversion is given by:

∆N = Nρ22. (5.46)

The rate equation for the population inversion (5.38) takes the form:

∂∆N

∂t
= −γ (∆N −∆N0)−

i

h̄

(
E∗

0P̃0 −E0P̃
∗
0

)
, (5.47)

where γ = 1/τ2 = 1/τ is the damping rate of the carrier densities and ∆N0 = NΛ2τ is
the population pumping term. The Maxwell-Bloch dynamical equations link the electric
�eld E and the medium polarization P in a vectorial form vs. the carrier density, which
may be di�erent, using electrical or optical elliptically polarized pumps. In the slowly-
varying-amplitude approximation limit, rate equations for dynamics of the electric �eld E
and carrier density can be determined once one admits that the medium polarization P
adiabatically follows the electric �eld dynamics.



5.2. PHYSICS OF SPIN-PUMPED GAIN MEDIUM WITH LINEAR
BIREFRINGENCE 69

Equation of �eld evolution in laser cavity

The evolution of the electric �eld in the cavity is governed by wave equation (3.7) which
can be rewritten with help of the additional relation for the polarization P (3.2a):

∂2E

∂z2
− ε0µ0

∂2E

∂t2
− σ̃µ0

∂E

∂t
= µ0

∂2P

∂t2
, (5.48)

where losses in the cavity (absorption and output losses) are introduced by a generalized
conductivity σ̃, which depends on the photon lifetime in the cavity τph so that: σ̃ ∼ 1/τph.
The polarization term in Eq. (5.48) contains two terms: the material polarization:

Pmat = ε0χE = ε0 (εr − 1)E (5.49)

and the nonlinear polarization of the active atoms P̃ which acts as a source term, so that

P = Pmat + P̃. (5.50)

Taking into account that

c =
1√
µ0ε0

, (5.51)

we �nally write:
∂2E

∂z2
− εr

c2
∂2E

∂t2
− σ̃µ0

∂E

∂t
= µ0

∂2P̃

∂t2
. (5.52)

By inserting Eqs. (5.20) and (5.21) into the �eld wave equation (5.52) one can expect
long equation for the amplitude and polarization amplitudes E0 and P̃0. Therefore we use
the slowly-varying-amplitude approximation which is valid when losses and gain in the
cavity are weak enough. Then we can neglect all the second time and space derivatives, for
example if: ⏐⏐⏐⏐∂2E0

∂z2

⏐⏐⏐⏐≪ k

⏐⏐⏐⏐∂E0

∂z

⏐⏐⏐⏐ . (5.53)

Moreover we can also neglect the term ∂E0/∂z with respect to ∂E0/∂t. With these as-
sumptions we reach the wave equation in the form:

∂E0

∂t
= − 1

2τph
E0 + i

ω

2εr
P̃0, (5.54)

where we introduced the lifetime of the photons in the cavity τph:

τph =
εr
σ̃

(5.55)

5.2.2 Generalized Maxwell-Bloch Equations

Generally, a common dynamic spin-�ip model (SFM) originally developed by San Miguel
and coworkers two decades ago is used to describe the left- or right-handed polarization
switching and bistability [36, 97, 110]. The polarization properties of the light generated
by VCSELs depend on the quantum numbers of the angular momentum in the electronic
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states between which the optical transitions take place generally under local strain �elds.
One possibility of considering anisotropy is a generalization of the equations with the
considerable simpli�cation of neglecting the longitudinal variations within the system, by
taking the z average (where z is the direction of propagation of light) of the optical constant
in order to develop the equivalent of the mean-�eld model in the Jones vector analysis [111].
Such an approach, although �rst satisfactory, prevents a full multiscale description treating
the exact e�ect of the local strain �eld on the optical birefringence and of the gain. The
full scattering matrix method [40, 45] developed in this work ful�lls all these requirements.

One admits here that the transverse relaxation time of the optical polarizability is very
short corresponding to the main class-A and class-B lasers [112]. In the semiconductor host
constituting the optical cavity, the vectors E and P are linked by the dielectric constant
(or the optical refractive index) that we will consider locally via a layer-by-layer approach.

Figure 5.4: Scheme of the quantum well and barrier system with crystal axes.

However, crystallographic and electro-optical anisotropies can cause the directions of
the vectors E and P to slightly di�er in the active regions where carrier recombination
takes place. Even if the resulting optical gain only represents a small fraction of the elec-
tromagnetic wave intensity in the cavity, the non collinearity property between E and P
in QWs is of major importance to understand polarizations and mode coupling. The non-
collinearity between E and P also impacts on the competition between circular pumps and
native linear gain anisotropy as observed in recent experiments [32, 34].

We propose to tackle the problem of non-collinearity between E and P by deriving a
certain optical ampli�cation matrix describing the electric �eld entering the active zone and
its emission from the laser. We refer now to the sketch and notations given in Fig. 5.4. Let
us de�ne the electromagnetic �eld of the two-mode laser E(1,2) as a sum of two orthogonal
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coupled lasing eigenmodes A(1,2)η(1,2) in the following way:

E =
∑
i=1,2

1

2
E(i)exp

[
i
(
ω(i)t− k(i)r

)]
+ c. c.

=
∑
i=1,2

1

2
A(i)η(i)exp

[
i
(
ω(i)t− k(i)r

)]
+ c. c., (5.56)

P̃ =
∑
i=1,2

1

2
P̃(i)exp

[
i
(
ω(i)t− k(i)r

)]
+ c. c., (5.57)

where the η(1,2) are the two polarized eigenmodes we are searching for, either (1) or (2);
A(i)(r, t) and P̃(i) are, respectively, the slowly time-varying envelope amplitudes and the
polarizations of the modes i (i = 1, 2). k(i) are the wave vectors. In the following, we
consider wave propagation parallel to the z direction. The derivation is made by projecting
the ongoing electric-�eld vector of the propagating wave crossing the active region over the
two optically active circular reference basis [(+) for spin ↑ and (−) for spin ↓ de�ned along
the direction normal to the layers].

For that purpose, the dipolar amplitude responsible for the optical gain and correspond-
ing to each of the two spin populations has to be derived. We de�neAd

± as those amplitudes
in the Jones vector form like largely emphasized in the remaining part of this chapter. For
a two-level model, N± denotes the respective spin-up (+) and spin-down (−) carrier densi-
ties in QWs above transparency (tr) where N± = N↑↓−Ntr follows the respective pumping
rates N0±. Recent theoretical investigations based on the steady-state ab initio laser the-
ory (SALT) allow an extension from a two-level model to more complex media involving
multilevel transitions [102, 103]. The dynamical behavior of each of physical constituents,
E and P̃ follows [94, 96]:

∂P̃(1,2)

∂t
= −(Γ + iδ′)P̃(1,2)

−i
µ2

h̄

[(
E(1,2)A

d∗
+

)
Ad

+N+ +
(
E(1,2)A

d∗
−

)
Ad

−N−

]
(5.58)

∂N±
∂t

= −γ (N± −N0±)∓ γs (N+ −N−))

− i

h̄

∑
i=1,2

{(
E∗

(i)A
d
±

)(
P̃(i)A

d∗
±

)
+c.c

}
(5.59)

where Γ is the o�-diagonal damping factor for the o�-diagonal density-matrix elements
(media polarization), γ is the damping rate of the carrier densities, γs is the corresponding
spin-�ip rate, and δ′ is the spectral detuning.

Those two equations together with the wave equation (5.52) represent a generalization
of the Maxwell-Bloch equations and of the spin-�ip model we were searching for to the
case of anisotropic active regions. The di�erence with previous approaches is now that
we have projected the E- and P̃- �elds within a non-orthogonal basis imposed by the
anisotropy. Indeed, from the �rst equation, one can be convinced that the vectorial op-
tical gain is not necessarily collinear to the incoming E-�eld for < η(2)|Ad

+ ≯= 0 and
< η(1)|Ad

− ≯= 0. This feature is reinforced if birefringences within the semiconductor host
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are considered. Our modeling method satis�es the whole Eqs. ( 5.52), (5.58), and (5.59) in
each of the layers, active regions, barriers, and semiconductor host by using selected optical
constants. In particular, the last equation describes the propagation of the electromagnetic
�eld throughout the structure including a certain optical loss. This can be modeled by a
certain imaginary part into the dielectric constant tensor (or the optical refractive index)
describing a possible temporal damping parameter κ ∼ 1/τlayer where τlayer denotes the
photon lifetime. In the following, we will derive the optical gain properties by considering
QWs free of losses.

5.2.3 Derivation of the optical gain including linear anisotropies

Derivation of the optical gain tensor

We are now searching for a general numerical scheme for the determination of the resonant
eigenmodes in cavities. The assumption of the slowly variable amplitude approximation
(see Eq. 5.54) and of a fast polarization damping leads, in a steady-state operation regime,
to:

∂E(i)

∂t
= −1

2
κE(i) + i

ω

2εr
P̃(i) (5.60)

and

⟨P̃(i)⟩ = −i
µ2

h̄

[(
E(i)A

d∗
+

)
Ad

+N+ +
(
E(i)A

d∗
−
)
Ad

−N−
]

Γ + iδ′
(5.61)

which yields:

∂E(i)

∂t
= −1

2
κE(i) (5.62)

+
ωµ2

2εr (Γ + iδ′) h̄

[(
E(i)A

d∗
+

)
Ad

+N+ +
(
E(i)A

d∗
−

)
Ad

−N−

]
.

This is the general dynamical equation controlling the change of the E-�eld envelope
amplitude in a non-zero polarization-medium. It gives then the expression for the �eld
ampli�cation in an active layer (QWs) once the spin-polarized carriers densities N± are
given. A slow dynamics of N± may come into play when one considers two or several
coupled modes [99, 101] or oscillation emission, which we will not consider henceforth.
Although we will discuss the impact of anisotropies on a possible two transverse mode
coupling, we only address here the issue of a single mode laser and we are searching for
such modes.

If one neglects any optical losses in QWs (κQW → 0), one can implement a fast in-
tegration in time of Eq. (5.60) leading thus to the required jump in δE(i) according to

δE(i) =
nWωµ2

2cϵ(Γ+iδ′)h̄

[(
E(i).A

d∗
+

)
Ad

+N+ +
(
E(i).A

d∗
−
)
Ad

−N−
]
with the result:

δE(i),m = g0 Tmn E(i),n, (5.63)
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where

Tmn =

[
Ad∗

+,mAd
+,n

N+

N+ +N−
+Ad∗

−,mAd
−,n

N−
N+ +N−

]
. (5.64)

W represents the QW thickness and T is the optical gain tensor for the electromagnetic
�eld E(i) with the corresponding gain amplitude

g0 =
nωµ2NW

2cεr (Γ + iδ′) h̄
, (5.65)

where N = N+ + N− is the total pumped carrier density above transparency and the
NW product represents the carrier sheet density in QWs. We recall that the subscripts
(m,n) are the space coordinates. As largely discussed in the following, this particular form
of the gain we derived should include the phase-amplitude coupling known as the Henry
factor α = Real(∂χ/∂N)

Imag(∂χ/∂N)
[where χ(ω) is the matter susceptibility]. In that sense, g0 may be

written as g0 = g00(1− iα). The relevance of the so-called Henry's factor also manifests on
the steady-state SALT equations described in Refs. 102 and 103. Equation (5.63) simply
re�ects an ampli�cation of the m-component (m = x, y) of the E-�eld for an incoming
n-component (n = x, y) when N± are controlled parameters at present (Fig. 5.4). O�-
diagonal components of the T -matrix re�ect the non-collinearity between dipole sources
and eigenmodes, originating from the linear gain dichroism.

The particular expression for the prefactor gain g0 is the one given at low out-of equilib-
rium carrier densities. It can be shown that the dependence of the gain on pumped carrier
density has generally logarithmic dependence so that Eq. (5.65) can be generalized into:

g0 =
nωµ2

2cεr (Γ + iδ′) h̄
(NthW ) ln

(
N +Ns

Nth +Ns

)
(5.66)

giving g0(N) ≃ ∂g0
∂NN with the di�erential gain ∂g0

∂N . Here Nth is the carrier density at
threshold (or slightly smaller) and Ns is an adjustable parameter controlling the correct
gain variation with N [46].

In order to derive the expression of the 2×2 optical gain tensor Tij , one needs to consider
the two di�erent E- �eld polarization sources, Ad

± within the active regions (QWs). These
are described in a Jones vector form and correspond separately to the two di�erent spin
eigenchannels, + and −. Due to the quantization axis of the wave functions, along the z
direction normal to the layers, the correct basis is the ± spin basis along z even in the
case of a linearly polarized pump (the particular case with N+ = N−). Ad

± are complex
conjugate from each other Ad

− =
(
Ad

+

)∗ but not necessarily orthogonal.

E�ect of the linear gain anisotropy.

We consider now the possible case of a linear gain anisotropy in the active layers (QWs),
imposed by a certain bonding anisotropy at the interface with the barriers due to the
symmetry reduction fromD2d to C2v. The overall gain anisotropies may be characterized by
i) a ∆ parameter departing from 1 (we will see in the following that ∆ = 1 will correspond
to a perfect isotropy) and ii) by the e�ective spin-polarization in QWs of carriers pumped:

Ps =
N+ −N−
N+ +N−

. (5.67)
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Figure 5.5: Scheme of the two orthogonal laser eigenmodes η1,2 and dipolar source
vectors Ad

±. The dipolar source vectors are not necessarily orthogonal to each other
depending on the dichroism into play. The non-orthogonality between Ad

± is at the
origin of a strong mode-coupling as discussed in the text.

The evaluation of Ad
± is performed in the X ′ = [110], Y ′ = [110] crystallographic basis

for the two reference optical directions. Associated to a possible anisotropy of the optical
oscillator strengths along X ′ and Y ′, two di�erent dipolar transition matrix elements can
be ascribed for an E emission along X ′ or Y ′ according to Πx′ =< S|px′ |X ′ >= −ih̄ <
S|∇x′ |X ′ > and Πy′ =< S|py′ |Y ′ >= −ih̄ < S|∇y′ |Y ′ > with Πy′ = ∆Πx′ ; ∆ ̸= 1
then refers to a certain linear gain anisotropy. p̂m is the impulsion operator and Πm is the
corresponding optical transition element. We refer, e. g., to the notation of Zutic et al. [113]
for the description of the respective S (conduction band) and X, Y, and Z, (P-type orbitals
of the valence band) quantum states describing the optical interband dipolar terms. We
rewrite the basis states |X⟩ and |Y ⟩ into the basis |X ′⟩ and |Y ′⟩ rotated by π/4 using the
following transformation:

|X⟩ =
1√
2

(⏐⏐X ′⟩+ ⏐⏐Y ′⟩) (5.68)

|Y ⟩ =
1√
2

(⏐⏐X ′⟩− ⏐⏐Y ′⟩) . (5.69)

Then the heavy hole valence band for the respective spin ↑ (+) and spin ↓ (−) channels
can be described as:

|X⟩ ∓ i |Y ⟩ = 1√
2
[1∓ i]

⏐⏐X ′⟩+ 1√
2
[1± i]

⏐⏐Y ′⟩ . (5.70)

By application of the oscillator strength anisotropy ∆ on the second term we have:

|X⟩ ∓ i |Y ⟩ = 1

2
[(1 + ∆)∓ i (1−∆)] |X⟩+ 1

2
[(1−∆)∓ i (1 + ∆)] |Y ⟩ . (5.71)

Then the normalized dipolar source vector for the spin ↑ (+) and spin ↓ (−) channels can
be expressed as:

Ad
± =

1√
1 + ∆2

[
(1 + ∆)/2∓ i(1−∆)/2
∓i(1 + ∆)/2 + (1−∆)/2

]
, (5.72)
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from which follows that Ad
− = (Ad

+)
∗ are complex conjugate from each other. Nonetheless,

they are generally not orthogonal in the presence of certain linear gain anisotropy. The
two measurable optical laser polarization eigenmodes η± derived from the diagonalization
of the optical T -matrix are then orthogonal. It may result in a non-orthogonality between
Ad

± and η± as depicted in Fig. 5.5. This is the source of a strong mode coupling between
the two transverse modes.

The resulting dipolar ampli�cation matrix T from Eq. (5.64) is given by:

T = g00(1− iα)

[
1+∆2

2
1−∆2

2 − iPs∆
1−∆2

2 + iPs∆
1+∆2

2

]
, (5.73)

where g00(1 − iα) is the optical gain parameter. The E-�eld in the QW obeys E(out) −
E(in) = g00 (1− iα) T E(in) or E(out) = T E(in) where T = I2×2 + T admits an Hermitian
form. As discussed before, we have also introduced the phase-amplitude Henry's coe�cient
α [114, 115] describing the local change in the optical constant from free carriers. Via a
diagonalization procedure of T (or T), one �nds the two di�erent polarized eigenmodes
we are searching for, η(1,2), together with the optical gain g(1,2) as the corresponding
eigenvalues. Those are given as a function of the spin-polarization of carriers Ps and the
oscillator strength anisotropy ∆:

η(1,2) =
1√
2

⎡⎢⎣ 1

±
1−∆2

2
−iPS∆√(

1−∆2

2

)2
+(Ps∆)2

⎤⎥⎦
<100>

, (5.74)

where the < 100 > subscript means that the present expression for the modes is expressed
in the cubic < 100 > reference crystallographic axis. g(1,2) are expressed as:

g(1,2) = g0(N+ +N−)

⎡⎣1 + ∆2

2
±
√(

1−∆2

2

)2

+ P2
s∆

2

⎤⎦ (5.75)

or

g(1,2) = g0(N+ +N−)ḡ(1,2). (5.76)

In the above formula for g(1,2) the (+) sign refers to the mode (1) whereas the (�) sign refers

to the mode (2). ḡ(1,2) =
1+∆2

2 ±
√(

1−∆2

2

)2
+ P2

s∆
2 are the reduced gains. One recovers

g(1,2) = g± = 1 ± Ps for ∆ = 1 (no linear anisotropy) whereas g(1) = 1 and g(2) = ∆2 for
Ps = 0 for the linear polarized pump, as expected. In the more general case, eigenmodes
and corresponding gain display a more complex form. However, one can be convinced that
the two sets of vectors η1,2 and Ad

± are generally not collinear to each other, leading to a
strong mode coupling between the two transverse modes η1 and η2 as discussed below. We
note that Ps(τs) in Eq. 5.67 depends on the spin-relaxation time τs and thus such e�ects
can be included in the model.

Coupling between transverse modes.

We discuss here the impact of non-collinearity between η1,2 andAd
± on the transverse mode

coupling, as sketched in Fig. 5.5, and leading to possible polarization beating. The possible
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mode coupling between longitudinal modes [101] of the same polarization is not considered
here because of the absence of any polarization beating. One gets the e�ective optical gain
β+
1 and β−

2 from the squared projection of the natural optical eigenmode polarization along
the dipole source direction according to:

β+
1 = |⟨η(1)|Ad

+⟩|2 =
1 + sin (2φ1 + φ2)

2
(5.77)

β−
2 = |⟨η(2)|Ad

−⟩|2 =
1− sin (2φ1 − φ2)

2
(5.78)

as depicted in Fig. 5.5. In the same spirit, the coupling between modes or the cross-coupling
terms θ−1 and θ+2 [116�118], involving linear gain anisotropy, are calculated from the squared
projection of the optical eigenmode polarization along the cross-dipole source direction:

θ−1 = |⟨η(1)|Ad
−⟩|2 =

1 + sin (2φ1 − φ2)

2
, (5.79)

θ+2 = |⟨η(2)|Ad
+⟩|2 =

1− sin (2φ1 + φ2)

2
, (5.80)

where φ1 and φ2 are given by

φ1 = arctan

(
1−∆

1 +∆

)
(5.81)

φ2 = arctan

(
2Ps ∆

1−∆2

)
. (5.82)

It results that θ−1 and θ+2 couple the two mode amplitudes and that this coupling
is strongly correlated to the linear gain dichroism ∆ and the carrier spin polarization
PS . A zero linear gain dichroism ∆ = 1 leads to no coupling θ−,+

1,2 = 0 whatever the
spin-polarization PS . The increase of the linear gain dichroism (∆ < 1) increases the
coupling between modes (θ−,+

1,2 > 0) even in the case of a non-zero spin-polarization Ps.
The dynamics of carriers pumped are given by the generalization of Eq. (5.59):

∂N+

∂t
= −γ (N+ −N0+)− γs (N+ −N−)

−γ

(
ḡ(1)(N)β+

1

I(1)

Isat
+ ḡ(2)(N)θ−1

I(2)

Isat

)
, (5.83)

∂N−
∂t

= −γ (N− −N0−) + γs (N+ −N−)

−γ

(
ḡ(1)(N)θ+2

I(1)

Isat
+ ḡ(2)(N)β−

2

I(2)

Isat

)
, (5.84)

with the �eld intensity at saturation Isat =
εrch̄

2(Γ2+δ′2)γ
nµ2Γ

. We recover the expression for
the dynamics of coupling modes vs. the coupling coe�cient θ [32, 119] from the Lamb
model (described in more details in Appendix A), that we have expressed vs. the linear
gain dichroism parameter ∆ appearing in ḡ(1,2), β(1,2) and θ(1,2). In that picture, the overall
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coupling coe�cient C [116�118] between the two transverse intensity modes I(1) and I(2) is
written:

C =
θ−1 θ

+
2

β+
1 β

−
2

=
(1− cos(2φ1) sin(φ2))

2 − sin2(2φ1) cos
2(φ2)

(1 + cos(2φ1) sin(φ2))
2 − sin2(2φ1) cos2(φ2)

. (5.85)

The simultaneous oscillation of two orthogonally polarized states is ruled by the strength
of the nonlinear coupling between the two eigenstates in the active medium. Whether the
coupling constant C is higher or lower than 1 leads, respectively, to two distinct regimes,
namely, bistability and simultaneity [116]. In this case of laser modes with linearly polarized
optical gain along the [110] and [110] directions and no spin-polarized pump (Ps = 0), the
respective gains are g(1) = 1 and g(2) = ∆2 as expected. These experimental conditions are
often ful�lled in real situations with no spin-polarized carrier pump, corresponding to two
possible linear modes along [110] and [110] directions.

5.2.4 Source of linear birefringence in the optical cavity

Vector dipolar sources in active regions of VECSELs do not necessarily force the polar-
ization to be emitted in the same direction because of the residual linear birefringences
within the semiconductor multilayers. These anisotropic properties of the dielectric func-
tion strongly impacts the performance and properties of laser operation leading to the
complex polarization dynamics and polarization switching [46]. Previous theoretical and
experimental investigations allowed separation between two di�erent contributions. The
�rst anisotropy to consider is the unavoidable linear phase anisotropy induced by a possi-
ble local strain-�eld in the host material via electro-optical e�ects [68, 120] and originating,
e.g., from the lattice mismatch [121] or from the crystal relaxation at the surface [38, 39,
42, 122]. As a result, the directional degeneracy between the two in-plane [110] and [110]
directions will be removed and the frequencies for the corresponding two linear polariza-
tions will be split. The second source of anisotropy is the linear birefringence originating
from the interface between ternary quantum wells and barriers (GaAsP/InGaAs/GaAsP).
An in-plane optical anisotropy in III-V QWs was found due to the breakdown of the rotoin-
version symmetry at interfaces when the host materials do not share any common atoms
(symmetry breaking from D2d to C2v ) [39] or due to an In chemical segregation [38]. This
optical anisotropy has been evaluated by the pseudo-potential microscopic model as well as
by k·p models including relevant electronic boundary conditions [39, 41, 123, 124]. Such an
e�ect of linear birefringence in the QWs is generally measured by optical re�ectance [78],
by optical transmission [125] or by optical absorption [126]. In the next section, we will
introduce the necessary 4 × 4 matrix formalism enabling us to describe the wave prop-
agation inside the anisotropic multilayer laser cavity as described by Eq. (5.52) of the
Maxwell-Bloch equations.
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5.3 Generalization for emission from multilayer spin-

laser and spin-LED

5.3.1 Description of the optical gain in multilayers

In this section, we describe the main properties of the optical gain tensor derived above
and the propagation of the electromagnetic �eld inside the multilayer laser. One de�nes
the amplitude of the source Jones vector in a Cartesian s-p basis according to Ad

down =
[Ad

1; Ad
3]
T and Ad

up = [Ad
2; Ad

4]
T (with T transpose vectors) as illustrated in Fig. 5.6.

Those describe the E waves, respectively, propagating downward and upward. We call,
respectively, A′

up,down and A
′′
up,down the amplitudes of the E �eld traveling towards the

respective up and down directions in the region of space below (′′) and above (′) a given
active QW region, as depicted in Fig. 5.6. Ampli�cation e�ects by the dipole sources in
the active layers can be expressed in the following matrix form:[

A′
up

A′′
down

]
=

[
Tuu 0
0 Tdd

] [
A′′

up

A′
down

]
+ γsp

[
Ad

up

Ad
down

]
, (5.86)

where the �rst term describes the stimulated emission involving the ampli�cation tensor
Tuu and Tdd (uu for up-ingoing and up-outgoing and dd for down-ingoing and down-
outgoing), the precise form will be given later. The second term in the right-hand side
of the equation describes the spontaneous emission (stochastic process) weighted by the
coe�cient γsp.

Figure 5.6: Schematic description of the structure with a single active layer showing
wave propagation inside the cavity.

After re�ections on mirrors and back and forth traveling, the wave polarization A′
down

may be di�erent from the source Ad
down because of residual birefringences (linear or cir-

cular) in the host. Note also that, for elliptical modes, polarization and Jones vectors are
changed after re�ections on Bragg mirrors leading to the de�nition of two di�erent optical-
gain tensors for up- and down- propagation. The result [45] is that one has to consider
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the gain tensor, T αβ
mn , in a supermatrix form with double index, one m,n = x, y, z for the

coordinates and the other α, β=uu,dd for the propagation direction (up, down). In that
sense, (up,up) means ampli�cation from an up-incoming wave into an up-outgoing wave,
and similarly for (down,down) combination.

Considering normalized vector sources,
(
Ad

down

)+
Ad

down = 1, Tuu and Tdd admit the
form:

Tuu = I+ g00 [1− iαTuu] Tuu (5.87)

with

Tuu =

[
Ad

2A
d∗
2 Ad

2A
d∗
4

Ad
4A

d∗
2 Ad

4A
d∗
4

]
(5.88)

and
Tdd = I+ g00 [1− iαTdd] Tdd (5.89)

with

Tdd =

[
Ad

1A
d∗
1 Ad

1A
d∗
3

Ad
3A

d∗
1 Ad

3A
d∗
3

]
, (5.90)

returning to previous form for the ampli�cation matrix T. Here, I is the 2 × 2 identity
matrix. We recall that g00 is the scalar gain to �nd at threshold and α = ∂nr/∂N

∂ni/∂N
is the

Henry's coe�cient accounting for the relative change of the real part of the optical index
(nr) [114].

In the previous form given by Eq. (5.73), the expression for α dealing with a satellite
mode does not take into account the gain saturation by the central mode. The previous
expression of α in (5.87) and (5.89) is therefore changed into αTuu and αTdd in order
to consider gain self-saturation without much computational e�ort. For example, if one
considers for the case of Ps = 0:

Tuu =

[
1+∆2

2
1−∆2

2
1−∆2

2
1+∆2

2

]
, (5.91)

then by diagonalization procedure of the second term in (5.87) one �nds[
1− iα

1− iα∆2

] [
1

∆2

]
(5.92)

for the two di�erent eigenmodes η(1,2) = [1;±1]. Then the corresponding gains are g(1) = 1

multiplied by the factor 1− iα and g(2) = ∆2 multiplied by the factor 1− iα∆2. This dif-
ference causes a particular frequency splitting between two modes as expected and demon-
strated in the next chapter.

5.3.2 Transfer and scattering matrix formalism for anisotropic
cavity

We are now going to tackle the issue of propagation end eigenmodes in optical cavities
including active regions (QWs), barriers, and Bragg mirrors. One considers �rst a single
QW as an optical source. Fig. 5.6 displays a simple laser structure consisting of a single

active dipole layer embedded in multilayer systems. The multilayers above and below the
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active layer are described by transfer matrices M(1) and M(2). Those transfer matrices
connect the amplitudes of the outgoing and ingoing waves from the external parts of the
active layer to the top (1) and bottom (2), respectively. In that sense, theMmatrix contains
all the optical properties of the host (birefringence, strain, and optical anisotropies) from
the permittivity tensor. Moreover, the T matrix includes information on the optical gain.
More details are given in Appendix B. From (B.1), (B.2), and (5.86) we obtain a compact
form of the basic equation for the calculation of the �eld amplitudes emitted from the
structure A

(0)
up and A

(N+1)
down :

ÃM

[
A

(0)
up

A
(N+1)
down

]
= −γsp

[
Ad

up

Ad
down

]
, (5.93)

where

ÃM =

[
−M̃

(1)
uu TuuM

(2)
ud

TddM̃
(1)
du −M

(2)
dd

]
. (5.94)

The condition for a resonant eigenmode (no spontaneous emission γsp = 0) is the
zero determinant of the constituent matrix ÃM. In the simplest case of a laser cavity of
thickness d, wave vector k0 = 2π/λ, and complex refractive index n = nr− ini, one obtains
in this way the well-known condition for the resonance wavelength k0dnr = mπ by �nding
the zero of the imaginary part of the determinant. From the zero of its real part, one
obtains g = ek0dni/2 − 1, giving the condition for the optical gain g at the laser threshold.
From (5.93), the conditions for resonance and eigenmodes for a single active layer are then
generally given by:

det
[
ÃM

]
= 0 (5.95)

or equivalently [
TddM̃

(1)
du

(
M̃(1)

uu

)−1
]−1

= TuuM
(2)
ud

(
M

(2)
dd

)−1
. (5.96)

However, the transfer matricesM(1) andM(2) described by (B.1) and (B.2), respectively,
connecting the upper and lower �eld amplitudes is only suitable to describe the single active
region. One can easily be convinced that it cannot be extended to the case of multiple QWs.
The scattering matrix (S-matrix) formalism is much more appropriate to treat this general
case. It describes the ampli�cation and optical propagation/di�usion of the ingoing wave
amplitudes into outgoing wave-amplitudes. For more details see Appendix C. From (C.1),
(C.2), and (5.86), one derives:

ÃS =

[
S
(1)
uu 0

0 S
(2)
dd

]−1 [
TudS

(1)
du − I TuuS

(2)
ud

TddS
(1)
du TduS

(2)
ud − I

]
, (5.97)

where I is the 2×2 unit matrix. The ÃS matrix in Eq. (5.97) is in a more general expression
suitable for recursive calculations. T de�ned in (5.86) is generalized into a more general
form including possible o�-diagonal submatrices Tud and Tdu required to describe coherent
multiple re�ections and interference e�ects between two active regions (discussed in details
in the next subsection). These cannot be included in the M-matrix formulation and they
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are derived from a general recursive formula detailed hereafter. In the case where Tud =
Tdu = 0 (a single active region is considered), �nding the zero-determinant of the ÃM

and ÃS matrices in Eqs. (5.94) and (5.97) gives naturally equivalent results for optical
modes (polarization, wavelength) and gain (threshold). The conditions for resonance and
eigenmodes for multiple-QWs structures are:

det
[
ÃS

]
= 0 (5.98)

or equivalently

det

[
TudS

(1)
du − I TuuS

(2)
ud

TddS
(1)
du TduS

(2)
ud − I

]
= 0 (5.99)

that we will consider now by implementing a general recursion method for deriving S and
T tensors in the most general cases. The resonant condition can be written as:[

TddS
(1)
du

(
TudS

(1)
du − I

)−1
]−1

= TuuS
(2)
ud

(
TduS

(2)
ud − I

)−1
(5.100)
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Figure 5.7: Sketch of the phase matching in a 1/2 VCSEL structure involving multi-
ple re�ection, propagation, and ampli�cation processes in the optical semiconductor
cavity containing one e�ective active layer, the properties of which are derived by
recursive method. Sdu and Sud correspond to propagation and re�ection e�ects with
respective N (top) and M (bottom) re�ections processes. Tud and Tdu represent
re�ection after ampli�cation in the e�ective active zone whereas Tuu and Tdd cor-
respond to forward ampli�cation.
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or equivalently:

TddS
(1)
du

(
TudS

(1)
du − I

)−1
TuuS

(2)
ud

(
TduS

(2)
ud − I

)−1
= I

TddS
(1)
du

∑
N

(
TudS

(1)
du

)N
TuuS

(2)
ud

∑
M

(
TduS

(2)
ud

)M
= I (5.101)

giving the general phase-matching conditions for the optical waves after all possible optical
pathways (S-matrix) and ampli�cations (T -matrix) in the optical cavity. In that sense, N
and M are the number of the partial back-and-forth travelings in the respective upper and
down part of the cavity (see Fig. 5.7).

5.3.3 Generalization to emission from multiple QW: Recur-
sive formulas for multiple active QW regions

The S-matrix scheme adopted here is suitable to describe multiple optical active zones,
their optical ampli�cation, and the propagation of the electromagnetic inside the cavity.
In particular, the S-matrix scheme enables us to provide a recursive formula for the optical
gain involving multiple dipole sources that could be implemented in numerical procedures
for the derivation of optical eigenmodes of VCSELs and spin-VCSELs. The result is the
following. Let us consider that the dipole active layers are described by the dipole source
vectors A(n) d and A(n+1) d and the optical gain tensor T(n) and T(n+1). The de�nition of
vectors and optical gain are similar to (5.86). The e�ective dipole layer is found by using
the following generalized relationship:[

A
(n)′
up

A
(n+1)′′

down

]
= T(n,n+1)

[
A

(n+1)′′
up

A
(n)′

down

]
+A(n,n+1) d, (5.102)

where T(n,n+1) is in the form

T(n,n+1) =

[
T

(n,n+1)
uu T

(n,n+1)
ud

T
(n,n+1)
du T

(n,n+1)
dd

]
. (5.103)

The equivalent dipole source vector, A(n,n+1) d, and optical gain tensor T(n,n+1) of the
total system are written:

T(n,n+1) =

[
0 T

(n)
ud

T
(n+1)
du 0

]
+B

[
T

(n+1)
uu 0

0 T
(n)
dd

]
, (5.104)

A(n,n+1) d = A(n) d +BA(n+1) d, (5.105)

where

B =

[
T

(n)
uu S

(n)
uu T

(n)
uu S

(n)
ud

T
(n+1)
dd S

(n)
du T

(n+1)
dd S

(n)
dd

][
I−T

(n+1)
ud S

(n)
du −T

(n+1)
ud S

(n)
dd

−T
(n)
du S

(n)
uu I−T

(n)
du S

(n)
ud

]−1

. (5.106)
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Note that the e�ective T matrix consists of non-zero o�-diagonal sub-matrices Tud

and Tdu, describing coherent re�ection processes between consecutive active regions. In
Sec. 6.2, we will show that Tud and Tdu may largely impact the resonance conditions on
the wavelength and the frequency splitting in anisotropic VCSELs. More details of the
numerical recursive procedure are shown in Appendix C.

5.4 Conclusion of the chapter

The mathematical approach presented in this chapter and published in our paper [37] o�ers
a powerful method for modeling of the laser eigenmodes of VCSELs and spin-VCSELs
lasers with the local linear birefringence and the linear gain dichroism caused by symmetry
reduction on the III-V semiconductor interfaces, surface reconstruction and strain e�ects.
Recursive formulas used for calculation of the e�ective active region enable to include the
interference and re�ection e�ects between both active regions together with ampli�cation of
multiple re�ected light inside the MQWs region. In the next chapter we reveal the important
role of the di�erent local birefringences in the eigenmodes and frequency splitting together
with the need to correctly describe optical ampli�cation.
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Chapter 6

Application of formalism to the real
1/2 (spin-) VECSELs and spin-LEDs

Chapter 6 is focused on a numerical and experimental investigation of the local anisotropies
in LED and VCSEL cavities. We start with a simpli�ed model of multilayer spin-LED
structure, which includes magneto-optical spin-injector and we show the e�ect of magneto-
optical e�ects on the emitted polarization state. Then we will use derived S-matrix recursive
formalism for modeling of a frequency splitting and we will compare it with experimentally
measured values in order to extract anisotropic permittivity tensors of surface layers and
quantum wells of real VCSEL structures. The chapter is completed by numerical simulation
of the polarization states of emitted eigenmodes including local anisotropies such as linear
gain dichroism and surface strain.

6.1 Model of realistic single-source spin-LED

In this section we will demonstrate our approach on half spin-VCSEL structure in LED
regime (with spontaneous emission), which is constituted of only one DBR. Such structures
can bene�t from the external cavity degree of freedom ensured by an external mirror, which
is placed outside to stimulate Fabry-Perot resonance.

For the following model, the particular form of the Jones source vector (5.72) will be
used. From the previous section, it becomes now clear that if 100% spin-polarized carriers
are injected in the active medium with a mj = 1/2 state, the emitted light will consist
of photons with both negative (σ−) and positive (σ+) helicity at the 3:1 ratio (in the +z
direction ↓). Recalling N± the densities of electrons in the ±1/2 electron states and θ(n)

the propagation angle in n-th layer, we can use the following combination of the dipole
sources in a simpli�ed scheme according to:

Ad
↓↑ =

N+

N+ +N−

[√
ξHH

(
1

−icos θ(n)

)
+ eiϕ̃

√
ξLH

(
1

icos θ(n)

)]
+

+
N−

N+ +N−

[√
ξLH

(
1

−icos θ(n)

)
+ eiϕ̃

√
ξHH

(
1

icos θ(n)

)]
, (6.1)

where ξLH and ξHH are normalized transition probabilities de�ned by

ξHH = 3/4 ξLH = 1/4 ξHH + ξLH = 1. (6.2)

85
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We consider the outside angle of emission θ(0) ∈< 0,π/2 > for Ad
↓↑. By averaging

the �nal Stokes intensities over the random phase ϕ̃, we describe the independence of
stochastic HH and LH transitions. If we consider anisotropic non-stochastic emission by
speci�c broken symmetry, particular ϕ̃ can be chosen for describing preferential emitted
polarization e.g. in the case of strain-induced broken symmetry of interfaces with GaAs
quantum wells [127].

The polarization state of the emitted light is then calculated by solving of Eq. (5.93).
In the simple case of an isotropic structure and for purely spontaneous emission (with gain
g = 0), this approach corresponds to the approach described by Benisty [128]. However,
note that the spontaneous emission is not a coherent process and thus the terms γspA

d
up

and γspA
d
down have to be added incoherently to the incident wave. In the present method

we suppress possible interference e�ects originating from coherence spurious superposition.
To that goal, we consider breaking phase factor eiϕ̄ of the source vector on the right side of
Eq. (5.93) so that Ad

down = [Ad
1; A

d
3]
T and Ad

up = eiϕ̄[Ad
2; A

d
4]
T (with T transpose vectors).

Then by averaging outside Stokes vector components over ϕ̄:

Sout =
⟨
S↑, ↓
out (ϕ̄)

⟩
ϕ̄
, (6.3)

we succeed to obtain outside Stokes vector of the structure with polarized source including
the inherent incoherence property of spontaneously emitted waves.

Figure 6.1: Modeled spin-structure shown schematically including the gold capping
layer (Au), magneto-optical spin-injector (Co), tunnel barrier (MgO), active layer
GaAs with an active plane in the center and Bragg structure AlAs/InGaAs.

Figure 6.1 schematically displays the model of the multilayered structure including, from
top to bottom, the metallic capping layer (Au), the magnetic and magneto-optically active
thin spin-injector (Co) described in a polar geometry ε

(Co)
xy = −ε

(Co)
yx = −1.14+0.19i [129],

the oxide tunnel barrier (MgO) dedicated to electrical spin-injection issue [12, 130, 131], the
active layer GaAs with the active medium QW (plane) in the center and a Bragg re�ector
at the bottom. The energy of the emitted light was for demonstration �xed to E = 1.6 eV,
corresponding to the wavelength of λ = 775 nm. Optical constants for the materials in
the structure are nAu = 0.17 − 4.86i [88], nCo = 2.44 − 4.71i [132], nMgO = 1.73 [89],
nGaAs = 3.69 − 0.01i, nAlAs = 3.02, and nInGaAs = 3.76 − 0.28i [89]. Note, that all plots
describe emission to the halfspace (0) in direction ↑ with the chosen parameters for the
spontaneous emission γsp = 1 and for the stimulated emission g0 = 1.

Figures 6.2 demonstrates the changes of the Stokes vector components when varying
the injected carrier spin-polarization de�ned by (5.67). We observe two e�ects on outgoing
emitted light polarization: (i) an e�ect of the injected spin polarization described by the
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Figure 6.2: The e�ect of the electron spin polarization. Subplots show emission
pattern for varying injected spin polarization Ps = 1 (a), Ps = 0.5 (b), and Ps = 0 (c)
with the magnetization of Co layer oriented in the +z direction. Subplots d), e), and
f) show emission pattern for varying injected spin polarization Ps = 0, Ps = −0.5
and Ps = −1, respectively, with the magnetization of Co layer oriented in the −z
direction.
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Figure 6.3: The e�ect of the electron spin polarization in the case of the heavy hole
transitions. Subplots show emission pattern for varying injected spin polarization
Ps = 1, Ps = 0.5, and Ps = 0 with the magnetization of Co layer oriented in the +z
direction.
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Figure 6.4: E�ect of thickness d(n) = dGaAs in the case of the hh transitions. Subplot
a) dGaAs = 4λ/nGaAs and subplot b) dGaAs = 8λ/nGaAs.
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spin-polarization parameter Ps and (ii) polarization e�ects originating by transmission and
re�ection from the magneto-optical Co layer. The e�ect of the injected spin polarization
is related to the transition probabilities for heavy and light holes (see Figure 2.1). For the
spin polarization Ps = 1 (subplot a of Fig. 6.2), both heavy hole transition (resulting in
RCP in -z direction) and light hole transition (resulting in LCP) polarization are involved,
while HH transitions are three times more probable than LH transitions.

Moreover the total intensity S0 changes slightly. These changes are caused by the se-
lective polarization transmission through the structure related to Faraday magneto-optical
e�ect in the ferromagnetic Co layer. Circularly polarized eigenmodes in Co layer with per-
pendicularly oriented magnetic �eld are absorbed di�erently and have di�erent velocity
due to the magnetic circular dichroism and birefrigence, respectively. After crossing the Co
layer, the input wave transforms in such a way that its azimuth is rotated and its polar-
ization becomes generally elliptical. Thus even if unpolarized carriers Ps = 0 are injected
(subplot c and d of Fig. 6.2) and the source is linearly polarized, we can observe non-zero
circular S3 component, which has di�erent sign for opposite magnetic �eld orientation. The
component S3 switches sign due to di�erent transition probabilities for di�erent current
spin-polarization Ps (subplot e and f of Fig. 6.2). Experimental measurement of the Stokes
vector can thus bring valuable information about injected spin-polarized current.

Figure 6.3 displays the evolution of the Stokes vector components when varying the
injected spin polarization in the case of the heavy hole transitions (ξHH = 1). As expected
for the injected current Ps = 1, 100% circularly-polarized light is emitted. As can be seen
in Figure 6.4, the thickness of the GaAs �lm has an impact on outside �eld pattern due to
the interference e�ects.

6.2 Emission from 1/2-VCSELs structures with lin-

ear birefringence and gain dichroism: model vs.

experiments

We turn now to experiments and connect our calculation method to some real experimen-
tal 1/2-VECSELs structures for two di�erent cavity geometries involving linear birefrin-
gences. The typical set-up is displayed in Fig. 6.5. This section includes robust numerical
predictions for eigenmodes with strong local linear birefringence and linear gain anisotropy
e�ects. The results are compared to experimental measurements with the goal to disentan-
gle both surface and interface anisotropies. We will consider two di�erent sources of linear
birefringence at the interface and/or in the QWs.

6.2.1 Main physical issues: From a single source to multiple
QWs recursion

It is well-known that the birefringence in the laser optical cavity may induce a degeneracy
shift of the optical frequencies of polarized eigenvectors, leading to a frequency splitting in
the radio-frequency (RF) domain due to di�erence of their optical path. A simple model for
the derivation of the corresponding phase or frequency splitting between two consecutive
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Figure 6.5: Sketch and geometry of the 1/2-VCSEL devices investigated in this study
showing 1/2-VCSEL structure as the gain mirror, the optical pumping system, and
the stable plano-concave-type optical cavity (air gap Lc = 7.5 mm) [70, 133, 134].

modes after one round trip in the optical cavity of length Lc is given by [112]:

∆ϕl = 2k0Lc∆n, (6.4)

where ∆n = ny−nx is the modal optical index di�erence between the eigenvector axis (in-
tegrated over the cavity length), and k0 is the free-space wavevector of light. The frequency
splitting is given by 2π∆f = −∆ϕlc/2nLc where n is the average modal index.

In the non intentionally doped GaAs-based nanostructures considered here, emitting
vertically along the [001] crystal axis under optical pumping (no vertical static electric �eld
applied), the typical sources of linear optical anisotropy, and thus birefringence, might �nd
their origin in three characteristic regions [70]:

• At the Bragg interfaces;

• In the QW layers;

• At the top air-semiconductor interface.

We will consider the latter two contributions as the strongest. An important remark is
that the e�ective phase-amplitude birefringence in QWs depends on the optical gain and
then on the losses unlike purely electro-optic birefringence arising from the surface.

The power of the proposed method is to correctly include the gain properties in a
self-consistent manner. For instance, we will show that restricting ourselves to the use
of a simple round-trip model suppressing main interferences and inter-QW ampli�cation
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[switching-o� Tud and Tdu in Eq. (5.97)] may lead to inaccuracy in the determination of
the birefringence from the value of the average refractive index, ∆n.

6.2.2 Modeling real VECSELs involving linear anisotropies.

Description of the 1/2-VCSEL structures.

We consider two di�erent structures (S1 and S2 for samples 1 and 2) schematically shown
in Fig. 6.6, the anisotropic optical properties of which have been investigated by high-
resolution microwave RF-techniques [70]. In details, the non intentionally doped 1/2-
VCSEL structure was grown by MOCVD on a [001] GaAs substrate [135]. Structures
S1 and S2 are composed of a high re�ectivity (99.9%) bottom AlAs/GaAs Bragg mirror
(31.5 pairs), and a GaAs active layer of 13λ/2 thickness containing six strain-balanced
InGaAs/GaAsP QWs emitting at λ ≃ 1µm for S1 and λ ≃ 1.06µm for S2. Each QWs
is placed at an antinode of the optical standing wave, following a non-uniform longitu-
dinal distribution ensuring uniform QWs carrier excitation. This ensures a low threshold
carrier density and homogeneous gain broadening as needed for single longitudinal mode
operation [70, 134, 135]. Structure S1 is terminated by a dielectric anti-re�ection coating.
Structure S2 is ended by a moderately re�ective top epitaxial AlGaAs Bragg mirror, that
may a�ect the sensitivity of the surface and QW anisotropy. This leads to an optical con-
�nement of the electromagnetic �eld which is strongly enhanced on the QWs. The VECSEL
devices are depicted in Fig. 6.5. The gain structures were optically pumped in the GaAs
barriers close to Brewster incidence angle θB, by using a linearly polarized single mode 800-
nm laser diode, focused with a pair of aspheric lenses with the focal lengths f1 and f2 on a
≃ 35-µm spot radius with a circular in-plane geometry. The passive optical cavity is a high
�nesse stable plano-concave resonator of Lc ≃ 7.5mm, closed by a concave output coupler
(T = 0.7% for S1 and 13% for S2) of radius of curvature Rc = 10mm. The minimum waist
of the Gaussian beam occurs at the plan mirror. The typical fundamental TEM00 beam
waist is w0 ∼ 37µm here, and exhibits a circular geometry. From an experimental point of
view, in contrast to the case of monolithic micro-cavity-VCSEL devices [110, 133, 136], for
conventional VECSELs both the frequency splitting and the power beating between po-
larization eigenmodes are too small to be able to be measured using optical spectrometers.
Those experiments are thus based on the mixing of the two orthogonal cavity eigenvectors
(see Siegman's book for reference [112]), and on the observation of the beat note in the RF
domain, by measuring on a photodiode the power spectral density of the laser total power
�uctuations [70, 112], as shown in Fig. 6.7.

Optical constants.

The optical constants ε = n2 used in the calculation are the following: εGaAs(λ = 1000 nm) =
12.3, εGaAs(λ = 1060 nm) = 12.09, εAlAs(λ = 1000 nm) = 8.7, εAlAs(λ = 1060 nm) =
8.63 [88], εInGaAs(λ = 1000 nm) = 13.1, εInGaAs(λ = 1060 nm) = 12.9 [89], εGaAsP (λ =
1000 nm) = 12.15, and εGaAsP (λ = 1060 nm) = 11.9 [137]. These optical constants are
also in agreement with ellipsometry measurements and modeling that we have recently
performed [43] and that are shown in Chapter 4. Concerning the InGaAs quantum well,
we switched o� the imaginary part of the optical constant being replaced by the optical
gain as a controlled input parameter.
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a) b)

Figure 6.6: Description of the 1/2-VECSEL structures under study a) without (S1,
left) and b) with (S2, right) the moderately re�ective Bragg mirror. S1 is composed
of an antire�ection coating at the surface.

Figure 6.7: Experimental birefringence measurement, via orthogonal E-�eld polar-
ization mode beating on a low noise photodiode with a laser beam passing through
a polarizer rotated at 45◦ from [110] axis: an example of measured RF-spectrum,
obtained with Sample 1 in a 7.5 mm long cavity and a concave output coupler with
T = 0.7 %. The absence of the peak in the red dashed curve, con�rms that the
observed beat note is due the orthogonal polarization mode [70].
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Figure 6.8: Calculation of the resonance conditions of Sample 2 for two linearly
polarized eigenmodes oriented along the [110] and [110] direction and ∆εs = 0.02.
∆ was taken equal to 0.95.

Detailed birefringence analysis on 1/2-VCSELs.

We are going now to apply our numerical method to three di�erent physical situations of
a) a linear birefringence at the surface only b) an intrinsic linear birefringence in QWs, and
c) a linear birefringence at the surface and phase-amplitude coupling in QWs.

Case a) The laser resonance can be found by searching for the maximum of 1/det[ÃS]

in Eq. (5.99). To obtain laser parameters, we calculate the 1/det[ÃS] as a function of
wavelength λ and gain g00 via a step-by-step mesh-calculation procedure. Under these
conditions, one �nds a comb of resonance doublets, as expected, two representatives of
which are plotted in Fig. 6.8 for Sample 2. The linear gain dichroism has been �xed
at ∆ = 0.95 in the present example and the linear birefringence at the surface ∆εs =(
εx′x′ − εy′y′

)
/2 = 0.02, where εx′x′ and εy′y′ are the permittivity tensor components of

a surface layer along the directions parallel to [110] and [110], respectively, as depicted in
Fig. 5.4. The thickness of the birefringent surface layer has been �xed to 50 nm. The analysis
of the eigenmode polarization demonstrates an orientation of the E-wave along respective
[110] and [110] directions for the whole doublets. One can note that the two consecutive
peaks occur at two di�erent frequencies as expected from the linear birefringence and
moreover occur for two di�erent calculated amplitude gains, respectively, 0.85 and 0.95 per
each quantum well for loss compensation and corresponding to external mirror transmission
of about 13% on the electromagnetic wave intensity (6× QWs ×2 on the intensity gain).
The relative di�erence of the gain of about 10% is then representative di�erential gains
(1−∆2) chosen for this particular example.

Case b) Fig. 6.9a displays the frequency splitting between two consecutive longitudinal
modes with and without the linear birefringence ∆εQW in the QWs introduced as an
adjustable parameter for a total thickness of 48 nm (for six quantum wells, 8 nm each).
Canceling all the birefringence ∆εQW = 0, the frequency splitting between longitudinal
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Sample 1 Sample 2
∆fb −16.5MHz +69MHz

∆εs,1,2 (∆ = 0.95) +0.0152 −0.0245
∆εs (∆ = 0.82) +0.02

Table 6.1: Measured polarization modes beat frequency ∆fb [70], extracted
anisotropic parameters ∆εs,1,2 for experimentally obtained ∆ = ∆1 = ∆2 = 0.95,
and anisotropic parameters ∆εs = ∆εs,1 = ∆εs,2 = (εx′x′ − εy′y′) /2 together with
∆ = 0.82.

modes ∆f = 19.2 GHz matches pretty well the value ∆f = c/ (2tair) = 20 GHz expected
from the calculation of the phase matching in a simple air external cavity of thickness tair.
The long extension of the air cavity compared to the semiconductor part makes it so that
the optical phase develops preferentially in that region.

Fig. 6.9b) shows the details of the two transverse modes from the ones calculated in
Fig. 6.9a). One note that switching o� any inter-QWs ampli�cation processes (by switching
o� the o�-diagonal elements Tdu and Tud) leads to a certain inaccuracy of the mode
splitting ∆f in the MHz range for 1/2 cavity VCSELs. Switching on Tdu and Tud o�-
diagonal components appears then mandatory for a correct determination of the layer-
selected anisotropic optical constant ∆n (permittivity tensor ∆ε).

Case c) We now proceed to the investigation of eigenmodes including linear gain
anisotropy as relaxed parameters with phase-amplitude correlation (Henry's factor α = 3).
We do not consider any other linear birefringence ∆εQW than the phase-amplitude cou-
pling. This section refers to the recent work of Seghilani [70] giving opposite sign of the
frequency splitting ∆f = −16.5 MHz and ∆f = +69 MHz for S1 and S2. Here, ∆f is
counted positive when f[110] > f[11̄0] according to our convention. The two-dimensional
maps presented in Figs. 6.10a) (S1 sample) and Fig. 6.10b) (S2 sample) display the par-
ticular dependence of the frequency splitting, ∆f , between the two orthogonal linear po-
larizations for the two 1/2-VCSELs vs the gain anisotropy parameter ∆ and an additional
surface linear birefringence (∆εs) with an e�ective surface thickness of 50 nm. In these
examples, we �x the value of α = 3 [70]. The two linear polarizations are, respectively,
found along [110] and [110] directions with inverted frequency splitting between Samples
1 and 2. One observes separately the dependence of ∆f on ∆ for �xed ∆εs (lines from
left to right) and the dependence of ∆f on the linear gain anisotropy ∆ on the horizontal
axis. Simple linear parametrization resulting from our calculation gives a phenomenological
dependence of ∆f [MHz] on ∆εs and ∆ for both samples as:

∆f1 [MHz] = −1220∆εs,1 + 40(1−∆1) (6.5)

∆f2 [MHz] = −1700∆εs,2 + 550(1−∆2). (6.6)

The sensitivity of ∆f2 (S2) on the linear gain dichroism ∆2 is more than a factor of 13
larger than that of S1. This �nding describes the micro-resonance e�ect in the region of
QWs combined with a larger carrier optical pumping due to the particularly high decay
rate of the cavity. On the other hand, the birefringence at the surface, delocalized from
the optical con�nement region, gives about the same equivalent e�ect on the frequency
mode splitting for the two samples. If one assumes that the two samples are characterized
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a)

b)

Figure 6.9: a) Calculation of multimode emission and mode splitting for ∆εQW = 0
(solid blue line) and∆εQW = 0.05 (dashed red line with peak doublets), respectively,
inside the QW of Sample 1. b) Calculation of mode splitting inside the QW of Sample
1. The solid blue curve (∆f = 359 MHz) and the dashed red curve (∆f = 195 MHz)
describe the resonance conditions for models with and without o�-diagonal elements
Tdu and Tud, respectively.
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Figure 6.10: Dependence of ∆f between two orthogonal linear polarizations on
linear gain dichroism ∆ and surface anisotropy ∆εs of a) S1 and b) S2.

by an identical surface strain and birefringence ∆εs = ∆εs,1 = ∆εs,2, and identical active
zones (the same linear gain dichroism ∆ = ∆1 = ∆2), the common solution of the above
equations gives ∆εs = +0.02 and ∆ = 0.82. The change of the sign of the frequency
splitting between S1 and S2 may then be understood as 1) an opposite e�ect of the linear
birefringence between surface and active layers together with 2) a main contribution from
the surface for S1 due to small optical losses and gain, and small optical con�nement, and
3) an enhanced contribution of linear birefringence of QWs for S2 due to larger optical
losses and gain together with a strong optical con�nement.

The matching of the frequency splitting to the experimental situation under the as-
sumption of the same linear gain dichroism of ∆ = 0.95 (linear gain dichroism of 10% on
the intensity) for samples S1 and S2, gives a surface strain birefringence ∆εs,1 of opposite
sign of the order of +0.015 for S1 and ∆εs,2 = −0.025 for S2. QW gain dichroism of about
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10−30% has been measured in Refs. [70, 135]. On the other hand, a surface birefringence
di�erence with opposite sign between S1 and S2 would be surprising from a technological
and physical point of view.

6.3 Case of the circular pumps with local linear

anisotropies

In this section, we will focus on a case with spin-injected current. The calculation procedure
is following: i) calculation of the resonance condition given by maximum of 1/det[As] by
varying the wavelength λ and modal gain per QW g00 for each value of surface anisotropy
∆εs (or linear gain dichroism ∆) and the spin-injection degree Ps. ii) Calculation of eigen-
vectors of As in resonance for each value of surface anisotropy ∆εs and the spin-injection
degree Ps. iii) We will draw the calculated Stokes vector components of the output po-
larization for three di�erent cases: cases with surface anisotropy without and with phase-
amplitude coupling, and case with the linear gain dichroism.

6.3.1 E�ect of surface strain and polarization degree spin-
injected current

First of all we apply the derived formalism to calculate the dependence of the output
polarization state on the spin-injection degree Ps of the electrons in the conduction band
of QWs and the surface strain ∆εs = (εxx − εyy) /2. This corresponds to the situation of a
more simpler model described in the beginning of Chapter 5 and published by Alouini [44]
(see Fig. 5.2). Figure 6.11 shows the calculated Stokes vector components of two eigenmodes
(with subscripts a and b) as a function of the spin-injection degree Ps and the surface strain
∆εs. One can observe three main regions:
i) A region with pure circularly-polarized emission S3a = −1 and S3b = 1. This emission
is ensured by considering no linear anisotropy at surface ∆εs for every value of the spin-
injection |Ps| > 0. Moreover, one can see that even for small value of surface anisotropy
∆εs, the emitted light is circularly polarized for a high degree of spin-injection Ps.
ii) A region with decreasing degree of circularly-polarized emission with 0 < |S3a| < 1 and
0 < |S3b| < 1. This e�ect is caused by the surface anisotropy ∆εs, which cancels emission
of circular polarization and leads to an emission of elliptically polarized light.
iii) Region with no circular polarization S3a = 0 and S3b = 0. It can be seen that even
high degree of spin-injection |Ps| → 1 is not su�cient to force the emission of circularly
polarized light when the strong linear anisotropy at surface ∆εs is present. In that case,
both linear polarization are rotated to the direction of -45 degree from birefringence axis
leading to S2a = −1 and S2b = −1. These regions are schematically shown in Fig. 6.12b).
The frequency splitting between two eigenmodes is shown in Figure 6.12. In the region
with linear eigen polarizations, both modes oscillate with di�erent frequencies. On the
other hand, circularly polarized eigenmodes are fully degenerated and oscillate with the
same frequency. As can be seen in Fig. 6.11, for real value of surface anisotropy extracted
in this thesis ∆εs ≈ 0.02, one would need the spin polarization Ps > 0.2 to obtain the
elliptically and circularly-polarized eigenmodes. Note that if we would consider ∆εs =(
εx′x′ − εy′y′

)
/2, the component S1 turn to component S2 and vice versa.
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We will now turn on the phase-amplitude coupling term α, which originates from the
di�erence of the gain between the two modes for the same population inversion, while n+

and n− constitutes a unique reservoir for the two modes. In the case with spin-pumping,
n+ mainly concerns one circular mode and n− mainly the second one and then the two
gains are less correlated. For that reason, we will consider α = 1.5 in comparison to α = 3
considered in the case with no spin-polarized pump. Figure 6.13 displays the calculated
Stokes vector components. One can observe same three regions as in the previous case.
However, with nonzero α the transition between linear and circular modes are more rapid
and rotation of the linear modes to -45 degree from birefringence axis is more suppressed
(see S2a and S2b components). Figure 6.14 also displays the frequency splitting between two
modes. In comparison to the case with α = 0 (Figure 6.12) one can observe non-degeneracy
in frequency also between circular (or elliptical) modes, which due to the phase-amplitude
coupling oscillate with di�erent frequencies.

6.3.2 E�ect of linear gain dichroism and polarization degree
spin-injected current

We will now apply the formalism derived in Chapter 5 and include all material charac-
teristics and cavity properties of real Sample S2 including the linear gain anisotropy ∆.
Figure 6.15 shows dependence of the Stokes vector components on the linear gain dichroism
∆ and the spin polarization Ps. One can see observe three main regions:
i) Region of pure circularly-polarized emission S3 = ±1. This emission is ensured by no
linear gain dichroism ∆ = 1 for every value of the spin-injection |Ps| > 0. Moreover, one
can see that even for small linear gain dichroism ∆ ≈ 1, the emitted light is circularly
polarized for high degree of spin-injection Ps. For real value of the linear gain dichroism
∆ = 0.95, one would need the spin polarization |Ps| > 0.15 to obtain the elliptically and
circularly-polarized eigenmodes.
ii) Region with decreasing degree of circularly-polarized emission 0 < |S3| < 1. This e�ect
is caused by the linear gain dichroism ∆, which cancels emission of circular polarization
and leads to an emission of elliptically-polarized light.
iii) Region of no circular polarization S3 = 0. It can be seen that even high degree of spin-
injection |Ps| → 1 is not su�cient for emission of circularly polarized light when strong
linear gain dichroism is present. In that case the circularly-polarized eigenmodes change
to the linearly polarized modes with polarization along x′ and y′ axis ([110 and 110]) re-
spectively. Note, that for pure isotropic case (∆ = 1 and Ps = 0) S1 = ±1. That means,
that numerical solution gives two linear modes oscillating along x and y axis. However, in
isotropic case all directions are equivalent. For general case (∆ ̸= 1 and Ps ̸= 0), S1 = 0.
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Figure 6.11: Dependence of the Stokes vector components of two eigenmodes (with
subscripts a and b) on the spin polarization Ps and surface anisotropy ∆εs for α = 0.
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a) b)

Figure 6.12: a) Dependence of the frequency shift ∆f on the the spin polarization
Ps and surface anisotropy ∆εs for α = 0. In the region with linear eigen polariza-
tions, both modes oscillate with di�erent frequencies. On the other hand, circularly
polarized eigenmodes are fully degenerated and oscillate with the same frequency.
b) Scheme of the evolution of the output polarization state.
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Figure 6.13: Dependence of the Stokes vector components and the spin polarization
Ps and surface anisotropy ∆εs for α = 1.5.
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Conclusion

Objective of this thesis is the theoretical and experimental study of spin-polarized lasers
and light-emitting diodes such as (spin-)VCSELs and spin-LEDs with the local anisotropies.
Achieved results can be summarized as follows:

1. Experimental study of in-plane local anisotropy using the Mueller matrix ellipsom-
etry at multiple angles of incidence and in-plane azimuthal angles. In combination
with proper parametrization of optical functions, the optical permittivity tensors
of surface strained layers and QWs have been extracted (Figs. 4.7, 4.8, and 4.9 in
Sec. 4.4). The Mueller matrix ellipsometry has been presented as the useful method
for study of local anisotropies in multilayer semiconductor structures such as 1/2-
VCSEL dedicated for optical or electrical pumping. Results discussed in Chapter 4
have been submitted to Applied Physics Letters [43].

2. We have proposed the model which is based on two steps: (i) representation of ac-
tive quantum well layers with dipole sources and (ii) modeling of light propagation
in resonant multilayer structures by using an appropriate matrix approach ful�lling
Maxwell equations in each layer and boundary conditions at the interfaces. Results
have been published in Physical Review A [37] and in Journal of Optics [40]. Advan-
tages of the proposed model are:

(i) The model describes polarization of emitted photons related to the quantum
optical selection rules and consider spin polarization of injected current or generally
polarized optical pumping �eld and e�ects of in-plane symmetry breaking leading to
the linear gain dichroism [Eq. (5.73) in Sec. 5.2] and to the possible coupling between
modes [Eq. (5.85) in Sec. 5.2].

(ii) Our approach describes the propagation of emitted �eld in general anisotropic
multilayer system consisting of locally anisotropic layers a�ected by the symmetry
reduction on the III-V semiconductor interfaces, surface reconstruction, strain and
magneto-optical e�ects. The 4× 4 matrix formalism provides e�ective approach for
investigation of the propagation of electromagnetic radiation in anisotropic layered
media, where each layer may display anisotropic optical properties and is character-
ized by the complex relative permittivity tensor. In the case of anisotropic layered
media, the electromagnetic �eld in an individual layer can be expressed as a lin-
ear superposition of monochromatic plane waves with four eigenmode polarizations
obtained by nontrivial solutions of wave equation in each anisotropic layer.
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(iii) The proposed model correctly de�nes phases of incoherent spontaneous emission
(spin-LED) and coherent stimulated emission (spin-lasers). In the case of spin-LED
with in the spontaneous emission regime, we improved the model of Benisty [128]
by suppressing possible interference e�ects originating from spontaneous emission
[Eq. (6.3) in Sec. 6.1].

(iv) Describes the complete polarization state of emitted �eld from laser structure
and conditions for laser resonance [Eqs. (5.93)-(5.97) in Sec. 5.3.2].

(v) New recursive formulas derived in this thesis are used for calculation of the
e�ective active region and enable to include the interference and re�ection e�ects
between both active regions together with ampli�cation of multiple re�ected light
inside the multiple quantum wells (MQWs). Consequently, it enables to model the
properties of the emission (threshold, polarization, mode splitting) from the laser
with MQW active zones by searching for the resonant eigenmodes of the cavity
[Eqs. (5.102)-(5.106) in Sec. 5.3.3].

3. Numerical and experimental investigation of the local anisotropies in a LED and
VCSEL cavities. We started with a simple model of multilayer spin-LED structure,
which includes magneto-optical spin-injector and we showed the e�ect of magneto-
optical spin injector on a emitted polarization state (Fig. 6.2 in Sec. 6.1). Then
we applied S-matrix recursive formalism for modeling of a frequency splitting and
we compared with experimentally measured values in order to extract anisotropic
permittivity tensors of surface layers and quantum wells of real VCSEL structures
(Table 6.1 in Sec. 6.2.2). Results have been published in Physical Review A [37].

4. Numerical simulation of the polarization states of emitted eigenmodes including local
anisotropies such as linear gain dichroism and surface strain. We demonstrated the
dependence of the Stokes vector components on the local anisotropies in laser struc-
ture. From these calculation, we showed the particular value of the spin-polarization
Ps needed to obtain the emission of circularly-polarized light from the laser struc-
tures with local anisotropies.

Perspectives

The approach derived in this thesis is suitable for future development of advanced laser
modeling. In particular, we will extend the method for description of dynamical behavior
of spin-VCSEL with multiple active quantum well region, including modeling of time-
dependent electric �eld in the cavity described by the Maxwell-Bloch equations. The models
of dynamical properties of spin-VCSELs are under development of pregraduate student
Mariusz Drong under supervision of the author of this thesis.

One of the most perspective generalization of the approach will be done by implementing
of numerical method for the calculation of laser structures with periodic media such as
quantum dots, quantum wires, photonic crystals, and gratings. The Maxwell equations in
a periodic grating will be solved by using rigorous coupled wave analysis (RCWA) which
is based on approximation of the permittivity function and �eld components by their
Fourier series. In this context, the layer-by-layer formalism including the scattering matrix
formalism for description of emission from multiple active region, is very suitable for RCWA
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implementation. This will lead to advanced model, which enables calculation of properties
(threshold, polarization state of the emitted light, mode splitting) of perspective quantum-
dot and quantum-wire spin-lasers. However, the model has to be further generalized to
avoid spurious interferences between Fourier modes.

We also plan to extend participation on technology of laser preparation and experimen-
tal demonstration of spin-VCSELs properties. This will include pump-probe experiments
with femtosecond pulse laser by using new experimental setup, which will be built soon at
Technical University of Ostrava. Future work will be also focused on a searching for alter-
native source of (coherent) THz radiation. Main idea of the alternative THz laser is based
on a photomixing of two continuous-wave laser modes of VCSEL, which are separated
in frequency domain. Such frequency splitting is caused by linear anisotropies which are
naturally present in semiconductor layers (interface, surface), externally induced (e.g. by
electric �eld), or added to the laser cavity using birefringent optical element. The optical
beatnote between two laser modes at di�erent frequencies are then converted into an AC
current oscillating at THz frequency and radiated by an appropriately designed antenna.
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Appendix A

Lamb's model

In Chapter 5 we derived the coupling coe�cients θ±(1,2) and β±
(1,2) for the most general case

involving the spin-polarized carriers together with the linear gain dichroism as depicted in
Fig 5.5. The �rst simple model for the coupling between two modes but without the linear
gain dichroism was given by Lamb [119]. For the class-A laser with adiabatically neglected
population inversion, the temporal evolution of the two circularly-polarized modes inten-
sities (I(1) = I+ and I(2) = I−) with the respective gains G+ and G− can be described by
two coupled di�erential equations:

∂

∂t
I+ = I+ (G+ − β+I+ − θ±I−) , (A.1)

∂

∂t
I− = I− (G− − β−I− − θ∓I+) , (A.2)

where β+ and β− are the self-saturation coe�cients for the right- and left-circularly polar-
ized modes, respectively. θ± and θ∓ are the cross-coupling coe�cients. Depending on the
circular gain dichroism ∆G = G+ − G− induced by the injected spin and on the Lamb
coupling constant de�ned similarly to Eq. (5.85 as:

C =
θ±θ∓
β+β−

. (A.3)

The laser will then oscillate on one of these eigen polarizations or on both. By using an
approximation where β = β+ = β−, θ = θ+− = θ−+, the steady-state intensities can be
expressed as:

I+ =
G

β

(
1−

√
C
)
+ ∆G

2G

(
1 +

√
C
)

1− C (A.4)

I− =
G

β

(
1−

√
C
)
− ∆G

2G

(
1 +

√
C
)

1− C , (A.5)

whereG = (G+ +G−) /2 is the average gain. The evolution of the two eigenstate intensities
are depicted in Fig. A.1 as a function of the normalized gain dichroism for four values of
the constant C. For no coupling (C = 0), two eigen-modes oscillate independently and
the intensities are proportional to the normalized gain dichroism. When C increases, the
oscillation of one mode saturates the gain of the other one leading to a limited range of
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simultaneous oscillations of the two modes. For strong coupling (C = 0.9), the range of
simultaneous oscillations becomes very narrow leading to the easy switch from one eigen-
states to another even for a very small normalized gain dichroism (about 10%). This has
been observed in recent experiments in the case of spin 1/2 VECSEL structures [32].

Figure A.1: The evolution of the two eigenstates intensities as a function of the
normalized gain dichroism for four values of the constant C: 0, 0.3, 0.6, and 0.9.



Appendix B

Transfer matrix formalism for
multilayer lasers and LED

Figure 5.6 shows the modeled structure consisting of an active dipole layer surrounded by
a multilayer system described by the transfer matrices M(1) and M(2). The matrices relate
the amplitudes of the waves propagating from and toward the system[

A′′
up

A′′
down

]
=

[
M

(2)
uu M

(2)
ud

M
(2)
du M

(2)
dd

][
A

(N+1)
up

A
(N+1)
down

]
, (B.1)

[
A

(0)
up

A
(0)
down

]
=

[
M

(1)
uu M

(1)
ud

M
(1)
du M

(1)
dd

] [
A′

up

A′
down

]
, (B.2)

and from (B.2) one can obtain by matrix inversion[
A′

up

A′
down

]
=

[
M̃

(1)
uu M̃

(1)
ud

M̃
(1)
du M̃

(1)
dd

][
A

(0)
up

A
(0)
down

]
, (B.3)

whereA(0) andA(N+1) describe the amplitudes in the superstrate and substrate. Similarly,
A′ and A′′ are the amplitudes above and below the active dipole layer. Note that four
waves propagate in each layer of the system. Therefore, the amplitudes in (B.1) and (B.2)
represent the amplitude vectors corresponding to two orthogonal polarizations, for example,
A

(0)
down = [A

(0)
1 ; A

(0)
3 ]T and A

(0)
up = [A

(0)
2 ; A

(0)
4 ]T . The submatrices in (B.1) and (B.2) are

2×2 matrices and the tilde denotes the blocks of the inverse matrix M̃(1) = [M(1)]−1. Note
that in the case of lasers the light is only emitted from the structure: A(0)

down = A
(N+1)
up = 0.

Equations (B.1) and (B.2) are compactly written as the 4×4 matrix equations (1) and (2)
from Ref. [40].

From (B.1), (B.2), and (5.86) we obtain a compact form of the basic equation (5.93)
for the �eld emitted from the structure, which is used to calculate the amplitudes of the
�eld emitted from the structure A

(0)
up and A

(N+1)
down from the dipole source vectors Ad

up

and Ad
down. Equations (5.88), (5.90), and (5.93) are the compactly written 4 × 4 matrix

equations (8)-(10) in Ref. 40.
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Appendix C

Scattering matrix formalism for
multilayer lasers and LED

While the transfer matrix M described by Eqs. (B.1) and (B.2) relates the upper and
lower �eld amplitudes, the scattering matrix (S-matrix) is de�ned using the amplitudes
of the waves incoming toward and outgoing from the structure. Let us consider a similar
structure shown in Fig. D.1, in which the active dipole layer is surrounded by the multilayer
subsystems described using the scattering matrices S(1) and S(2). The amplitudes of the
waves are related using the matrix formulas[

A
(0)
up

A′
down

]
=

[
S
(1)
uu S

(1)
ud

S
(1)
du S

(1)
dd

][
A′

up

A
(0)
down

]
= S(1)

[
A′

up

A
(0)
down

]
(C.1)

and [
A′′

up

A
(N+1)
down

]
=

[
S
(2)
uu S

(2)
ud

S
(2)
du S

(2)
dd

][
A

(N+1)
up

A′′
down

]
= S(1)

[
A

(N+1)
up

A′′
down

]
. (C.2)

If we expect that light is only emitted from the structure then A
(0)
down = A

(N+1)
up = 0. From

(C.1), (C.2), and (5.86) we obtain the basic equation (5.93) for the �eld emitted from the
structure with the matrix ÃS in Eq. (5.97) which consists of a more general expression
suitable for the recurrent calculation.
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Appendix D

Recursive calculation of the e�ective
gain tensor

The S-matrix approach enables us to describe optical ampli�cation, propagation, as well
as interferences in multiple QW structure. The recursive S-matrix method we propose
here provides a numerical solution scheme to describe any type of multilayered structures.
Fig. D.1 schematically shows the structure including two active dipole layers, respectively,
(n) and (n + 1), the latter being the new one to add by recursion. The composite of the
two can be substituted by a single e�ective active dipole layer described on its own by a
single e�ective matrix T

(n,n+1)
uu,ud,du,dd and single e�ective dipole vector A(n,n+1) d according to

the following description.

Figure D.1: Schematic description of the application of the recursive formula.

Let us consider that the dipole active layers are described by the dipole source vec-
tors A(n) d and A(n+1) d and the optical gain tensor T(n) and T(n+1). The de�nitions of
vectors and optical gain are similar to (5.86). The e�ective dipole layer is found by us-
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ing Eqs. (5.102) and (5.103), where the e�ective dipole source vector A(n,n+1) d and the
e�ective optical gain tensor T(n,n+1) appear in the most general case in the following form:

T(n,n+1) =

[
0 T

(n)
ud

T
(n+1)
du 0

]
+B

[
T

(n+1)
uu 0

0 T
(n)
dd

]
, (D.1)

A(n,n+1) d = A(n) d +BA(n+1) d, (D.2)

where

B =

[
T

(n)
uu S

(n)
uu T

(n)
uu S

(n)
ud

T
(n+1)
dd S

(n)
du T

(n+1)
dd S

(n)
dd

][
I−T

(n+1)
ud S

(n)
du −T

(n+1)
ud S

(n)
dd

−T
(n)
du S

(n)
uu I−T

(n)
du S

(n)
ud

]−1

. (D.3)

The e�ective T matrix consists of non-zero o�-diagonal sub-matrices Tud and Tdu, origi-
nating from the interference and re�ection processes between consecutive active regions.

Note that the single active layer (n + 1) added in the recursion procedure does not
admit any o�-diagonal component T

(n+1)
ud = 0 and T

(n+1)
du = 0 because of no internal

multiple re�ections. Let us demonstrate the recursive calculation for the case of three
dipolar layers (ñ = 1, 2, 3) described by the block-diagonal matrix

T(ñ) =

[
T

(ñ)
uu 0

0 T
(ñ)
dd

]
, (D.4)

while the optical interactions between �rst and second, and second and third, dipole layers
are characterized by the scattering matrices S(1) and S(2), respectively. In the �rst step we
calculate the e�ective dipole layer for the �rst two active regions, n = 1: T(n,n+1) = T(1,2).
According to Eqs. (D.1)-(D.3), the recursion formula gives for the gain tensor components:

T(n,n+1)
uu = T(1,2)

uu = T(1)
uuS

(1)
uuT

(2)
uu (D.5)

T
(n,n+1)
ud = T

(1,2)
ud = T(1)

uuS
(1)
udT

(1)
dd (D.6)

T
(n,n+1)
du = T

(1,2)
du = T

(2)
dd S

(1)
dd T

(2)
uu +T

(2)
dd S

(1)
du (D.7)

T
(n,n+1)
dd = T

(1,2)
dd = T

(2)
dd S

(1)
dd T

(1)
dd , (D.8)

where new o�-diagonal components T
(1,2)
ud,du describe coherent multiple re�ections and in-

terference e�ects between active regions (1) and (2). In the second step of the numerical
procedure, we set T(2) ≡ T(1,2) followed by third step, when we calculate the complete



119

e�ective gain tensor for n = 2: T = T(2,3) according to

T(2,3)
uu = T(2)

uu

1

I− S
(2)
udT

(2)
du

S(2)
uuT

(3)
uu (D.9)

T
(2,3)
ud = T

(2)
ud +T(2)

uuS
(2)
ud

1

I−T
(2)
duS

(2)
ud

T
(2)
dd (D.10)

T
(2,3)
du = T

(3)
dd S

(2)
dd

1

I−T
(2)
duS

(2)
udT

(2)
duS

(2)
uu

T(3)
uu

+T
(3)
dd S

(2)
du (D.11)

T
(2,3)
dd = T

(3)
dd S

(2)
dd

1

I−T
(2)
duS

(2)
ud

T
(2)
dd . (D.12)

The present recursive approach can be applied for an arbitrary number of active source
layers and arbitrary structures. It can be thus applied for the calculation of the e�ective
gain tensor of any complex light-emitting multilayer structures such as VCSELs and spin-
VCSELs.
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Title : Coherent light source with spin polarized current

Keywords : spin-lasers, VCSELs, Mueller matrix ellipsometry

Résumé : Spin-lasers are semiconductor devices in
which the radiative recombination processes involving
spin-polarized carriers result in an emission of circu-
larly polarized photons. Nevertheless, additional lin-
ear in-plane anisotropies in the cavity generally lead
in preferential linearly-polarized laser emission and
to possible coupling between modes. In this thesis,
a general method for the modeling of semiconductor
laser such as vertical-(external)-cavity surface-emitting
laser containing multiple quantum wells and involving
anisotropies that may reveal i) a local linear birefrin-
gence due to the strain �eld at the surface or ii) a
birefringence in quantum wells (QWs) due to phase
amplitude coupling originating from the reduction of
the biaxial D2d to the C2v symmetry group at the
III-V ternary semiconductor interfaces. A novel scat-
tering S-matrix recursive method is implemented using
a gain tensor derived analytically from the Maxwell-
Bloch equations. It enables to model the properties of

the emission (threshold, polarization, mode splitting)
from the laser with multiple quantum well active zones
by searching for the resonant eigenmodes of the cavity.
The method is demonstrated on real laser structures
and is used for the extraction of optical permittivity
tensors of surface strain and quantum wells in agree-
ment with experiments. The method is generalized to
�nd the laser eigenmodes in the most general case of
circular polarized pumps (unbalance between the spin-
up and spin-down channels) and linear gain dichroism.
In addition, the measurement of full 4× 4 Mueller ma-
trix for multiple angles of incidence and in-plane az-
imuthal angles has been used for extraction of optical
permittivity tensors of surface strained layers and quan-
tum wells. Such spectral dependence of optical tensor
elements are crucial for modeling of spin-laser eigen-
modes, resonance conditions, and also for understand-
ing of sources of structure anisotropies.

Titre : Source de lumière cohérente avec courant polarisé en spin

Mots clefs : spin-lasers, VCSEL, ellipsométrie de la matrice de Mueller

Abstract : Les spin-lasers sont des dispositifs semi-
conducteurs dans lesquels les processus de recombinai-
son radiative impliquant des porteurs polarisés en spin
résultent en une émission de photons polarisés circu-
lairement. Néanmoins, des anisotropies linéaires sup-
plémentaires dans la cavité conduisent généralement à
une émission laser préférentiellement polarisée linéaire-
ment et à un éventuel couplage entre modes. Dans cette
thèse, une méthode générale pour la modélisation de
lasers à semi-conducteurs tels que laser à surface ver-
ticale (externe) à cavité et contenant des puits quan-
tiques multiples et impliquant des anisotropies pouvant
révéler (i) une biréfringence linéaire locale due au champ
de déformation à la surface ou (ii) une biréfringence
dans les puits quantiques due au couplage d'amplitude
de phase provenant de la réduction du D2d biaxial au
groupe de symétrie C2v aux interfaces semiconductrices
ternaires III-V. Une nouvelle méthode récursive à ma-
trice S de di�usion est mise en oeuvre en utilisant un
tenseur de gain d'erivé analytiquement des équations de
Maxwell-Bloch. Il permet de modéliser les propriétés de

l'émission (seuil, polarisation, dédoublement de mode)
du laser avec plusieurs zones actives à puits quantiques
en recherchant les modes propres résonnants de la cav-
ité. La méthode est démontrée sur des structures laser
ràelles et est utilisée pour l'extraction de tenseurs de
permittivité optique de déformation de surface et de
puits quantiques en accord avec des expériences. La
méthode est généralisée pour trouver les modes propres
au laser dans le cas le plus général des pompes polar-
isées circulaires (déséquilibre entre les canaux de spin-
up et de spin-down) et le dichroïsme à gain linéaire. De
plus, la mesure de la matrice de Mueller 4× 4 complète
pour des angles d'incidence multiples et des angles az-
imutaux dans le plan a été utilisée pour l'extraction de
tenseurs de permittivité optique de couches contraintes
super�cielles et de puits quantiques. Une telle dépen-
dance spectrale des éléments tensoriels optiques est cru-
ciale pour la modélisation des modes propres du laser
de spin, les conditions de résonance, et aussi pour la
compréhension des sources d'anisotropies de structure.
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