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Introduction

When designing a supply-demand distribution network it is convenient to give it a
tree structure in which it is preferable to regroup mass in the transportation process.
This assumption emerges from numerous observations, for instance the structure of
the blood vessels in the cardiovascular system is required to distribute blood from a
concentrated source in the heart to a widespread volume or vice-versa, the root system
of a tree needs to recollect water from the soil. In these situations we may observe how
broad and long vessels are preferable rather than thin spread out ones. The assumption
we make is that the actual observed network is optimal with respect to some given cost
among all possible networks developing from a source and irrigating a given sink. These
structures appear in a wide range of situations (figure (1)) and many efforts have been
made by the mathematical community in order to give a precise model able to describe
all the observable features of these networks.

Figure 1: On the left: root network of a tree. On the right: angiography of an eye in
which it is possible to recognize the tree structure of the network of blood vessels.

A first well known approach in the framework of graph theory was proposed by
Gilbert in [PSTT15] where he deals with the Steiner Minimal Tree [AT04,[PS13] problem.
The latter consists in finding the graph connecting a given set of points {zg,...,zx}
with minimal total length. More formally, a Steiner minimal tree is the solution of the
variational problem

argmin {Hl(K) : K compact, connected and contains z, . . . ,xN} , (1)

where H!(K) is the Hausdorff 1-dimensional measure of F' (the length of K, if it is
1-dimensional and sufficiently smooth). As stated in Courant and Robbins [CR79)
the Steiner minimal tree problem can be thought of as a naif model for the network
of highways connecting a set of cities. The drawback of the model is that the local
intensity of the traffic is not taken into account. Nevertheless it allows to appreciate
the issues emerging from these models. As observed in the quoted paper [PST15] in a
Steiner minimal tree, differently from the Minimal Spanning Tree [Krub6], new vertices
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Figure 2: Steiner Minimal Tree connecting 10000 points randomly distributed in the
plane. The problem was solved using the GeoSteiner algorithm [WZ97], which is cur-
rently the most efficient exact algorithm for computing minimum Steiner trees.

may be added in order to minimize the total length thus, rather than the network itself,
the real unknown is its topology. An example of this situation is shown in Figure [3]
This feature appears as well in other models in which the cost per unit length depends
on the intensity of the traffic flux [Gil67]. In light of this high combinatorial complexity,
the problem is in the list of NP-complete problems from Karp [Kar72] and it is still an
active field of research even in the operational research community [FMBM16].

(—1/2,/3/2) (=1/2,v/3/2)

>1o >—10
(—1/2,-/3/2) (—1/2,-/3/2)

Figure 3: On the left: Minimal Spanning Tree connecting three points situated at the
vertices of an equilateral triangle (length = 2 \/§) On the right: Steiner Minimal Tree
constrained to connect the same set of points (length = 3). In dark blue the additional
vertex which allows to decrease the total length.

The purpose of this thesis is to devise approximations of some Branched Transporta-
tion problems. Branched Transportation is a mathematical framework for modeling
supply-demand distribution networks which is more general than the Steiner prob-
lem presented above. In particular the supply factories and the demand locations are
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modeled as measures supported on points and the network is interpreted as a vector
measure, eventally the problem is cast as a constrained optimization problem. Given
a function h, the transport cost of a mass m along an edge with length ¢ is h(m) ¢ and
the total cost of a network is defined as the sum of the contributions of all its edges.
The branched transportation case corresponds to the specific choice h(m) = |m|* with
a € [0,1). The sub-additivity of the cost function, h(m; + msg) < h(my) + h(ms),
ensures that transporting two masses jointly is cheaper than doing it separately. This
formulation shares much of the numerical complexities presented above in the case of
the Steiner Minimal tree problem. In this work we introduce various variational ap-
proximations by means of elliptic-type functionals to obtain more efficient numerical
schemes. Eventually the proposed method is generalized to Plateau-type problems,
which is a framework to model soap films spanning a given boundary. In its more
general formulation the unknown of this problems is a k-dimensional surface in R"
spanning a (k — 1)-dimensional boundary and minimizing a certain cost. Branched
transportation corresponds to a Plateau type problem for the choice k = 1.

Figure 4: Example of a surface spanning a 1-dimensional boundary consisting of three
oriented circles.

Description of the model

Let us introduce precisely the framework for Branched Transportation [BCM09, [Vil03].
First we introduce transport networks in a open set 2 € R”, and the associated cost
functional. For this purpose consider a segment > C €2, a positive real number m € R,
and the vector 7 € S"~! tangent to ¥. The writing

mTHLY (2)

defines a vector valued measure, where H'LY is the Hausdorff 1-dimensional measure
in R™ restricted to the segment ¥. Intuitively, the Radon measure H!'L Y associates
to any measurable set A the length of A NX. We say that a vector valued measure
o € M(,R") is polyhedral if it is a finite sum of measures of the form (2), namely
o =Y. m7H'LE;. The action of o on Cy(2, R") is defined by the formula

(‘7:90)22/ m; -7y dH! for any ¢ € Cy(©2, R").
i
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A transport cost function b : R — [0, +00) is an application such that

(3)

b { even, lower semicontinuous,
is

sub-additive, with h(0) = 0.

Given a transport cost function h we define the Gilbert energy of a polyhedral vector
measure o as

& (o) = Z h(m)HY(Z;).

We endow M(Q, R™) with its weak-*x topology and extend &}, by relaxation, namely
for a vector measure o € M(Q,R") we let

&p(0) = inf {limjnf &n(o;) 1 05 = o and o polyhedral} : (4)
J—+00
By White in [Whi99al, 6] conditions (3)) are sufficient in order to extend &, on M(£2, R™).

Choosing h(m) = |m| in equation (4)) we obtain the mass functional which associates
to each vector measure o its total variation

o = sup{(p,0) : ¢ € Co(R"), [[¢flee <1}

Otherwise, with h(m) = X{mzo}, where x denotes the characteristic function of a set,
&, reduces to the size functional which measures the length of the support of o, namely
o > H!(supp(c)). Other remarkable choices are represented in Figure [5]

h(m) h(m)
1) 2)
Wm) = |m| Bm) <l
h(m) h(m)
3) 4)
M) = xrey  m) = (14 B mDxgmry
h(m)
5)

m
h(m) = min{«y 'm|, ay |m|+ p1}

Figure 5: For h as in the graphs we obtain respectively the: 1) Mass, 2) a-Mass, 3)
Size, 4) Affine cost, 5) Urban planning functional.
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To model the source and the sink of the transport network we introduce two
probability measures py, p— € P(£2) and restrict our attention to the vector space
XH+r=C M(2,R"™) consisting of those vector measures o satisfying

divo = py —p- (5)

in the sense of distributions. As shown in the note [CEMI§] if the relaxation is obtained
with respect to polyhedral measures in X#+#- we still obtain the functional .

Finally we are interested in approximating minimizers of the Gilbert energy under
the divergence constraint , namely:

min {&,(0) : 0 € XFHH-}. (6)

The Branched Transportation case corresponds to the choice h(m) = |m|* with « €
[0,1) and has been introduced by Xia who has investigated as well the problem of
existence and regularity of solutions. In [Xia03] the author, taking advantage of vari-
ationals methods, proves the following

Theorem 0.1 (Existence Theorem). Given a € (1— %, 1] and two probability measures
L, i € P(Q), there ezists a vector valued measure o € XF++= for which &,(o) is
minimal. Furthermore for 6 € argmin &;,(0) we have the following estimate

. 1 V/n diam(Q2)
én(0) < 9l—n(l—a)—1 9

In a subsequent result [Xia04, Theorem 2.7] the same author addresses the problem
of regularity. To state the result we need to introduce the notion of rectifiable vector
measure. Namely a vector measure o is said rectifiable if

oc=mTH'LY (7)

where ¥, the support of ¢ as a distribution, is an H!-rectifiable set, its H!-density
is the function m € LY(H'LY) and 7 : ¥ — S" ! spans for H'-a.e. point in X the
tangent space to X. In the following we denote with (m, 7, %) the rectifiable measure

o defined in ([7)).

Theorem 0.2 (Structure of finite energy networks). Let py, p— € P(). For0 < a <
1 if o € XH+l= 4s of finite total variation and finite &, energy then it is rectifiable.
Furthermore if o = (m,7,%) we have

én(o) :/E|m|°‘ dH'. (8)

Equation is of particular relevance since it extends the explicit representation of
the functional to any rectifiable measure. The case of general vector valued measures
and general transport cost functions h has been taken into consideration by Brancolini
and Wirth in [BW18| Proposition 2.32] which shows that
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Proposition 0.1 (Generalized Gilbert-Steiner Energy). Let p,, u— € P(Q), o €
M(Q,R™) with finite total variation and such that dive = p, — p_ then o can be
decomposed as

c=0"+mrH'LY

where (m,T,Y) is the H'-rectifiable component of o and ot is the diffused one. Fur-
thermore

&n(o) = K (0)|or](Q) + / h(m) dH'. 9)

>
With an abuse of notation we have denoted h'(0) = lim,, o h(m)/m.

Before introducing problems involving surfaces and other higher dimensional objects
let us highlight the fact that the Steiner minimal tree problem connecting some points
{zo,...,xy} may be modeled in the context of Branched transportation. Firstly, with
the choice a = 0, &), reduces to the size functional. Secondly the divergence constraint
forces any considered vector measure to join the support of u, to the support of p_
thus, by choosing py = 6., and u_ = 1/N Zf\il 0., we force zy to be connected to each
x;. Gathering all together, with these choices, a minimizer o of (@ is supported on
a set connecting the points in {xi,...,zx} to 2o and has support with minimal total
length thus is a solution to (|1)).

The energy introduced above for rectifiable measures supported on 1-dimensional
surfaces can be generalized to any dimension k € {1,...,n}. To this aim is necessary
to introduce the concept of k-currents in R"™. Denote with D*(£2) the space of smooth
differential forms on the open set Q. The vector space of k-currents, Dy (1), is the dual
to D*(Q) and it is naturally endowed with its weak-* topology. We mainly follow the
notation of [KP0g| [Fed69] the main difference being the use of o to denote a k-current
instead of a latin capital letter. For a current we can define a notion of boundary by
duality as follows

(Oo,w) = (0, dw) for all (k — 1)-differential forms w.

We call mass of a k-current the supremum of (o, w) among all k-differential forms with
comass bounded by 1, and denote it with |o|. In particular by the Radon-Nikodym
theorem we can identify a k-current o with finite mass with the vector valued measure
Ty Where p, is a finite positive valued measure and 7 is a p,-measurable map in the
set of unitary k-vectors for the mass norm. The relation with vector measure is evident
when we consider the fact that the vector spaces A;R"™, A'R" identify with R™. Thus
any vector measure ¢ € M(Q,R") with finite mass identifies with a 1-current with
finite mass and vice-versa. Furthermore the divergence operator acting on measures in
the sense of distributions is defined by duality as the boundary operator for currents.
Thus, in analogy with what has been presented for vector measures, in equation ([7),
a k-current o is said to be k-rectifiable if we can associate to it a triplet (6,7, %) such
that

(o,w) = /29<w,7'> dHF

where ¥ is a countably k-rectifiable subset of Q, 7 at H* a.e. point is a unit simple
k-vector that spans the tangent plane to ¥ and 6 is an L'(Q2, H¥LY) function with
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values in R;. The vector space of Rectifiable Currents is denoted with Rj(€2). Among
these we single out the subset P;(2) of rectifiable currents for which ¥ is a finite union
of polyhedra and @ is constant on each of them, these will be called Polyhedral Chains.
For any k-current o such that both ¢ and do are of finite mass we say that o is a
normal k-current and we write 0 € Ng(€2). On the space Dy (2) we can define the flat
norm by

F(o) =inf {|og| + |0s| : 0 = 0or+ Jog where o5 € Dy11(2) and or € Dr(Q)},

which metrizes the weak-* topology on currents on compact subsets of Ni(€2). Finally
the flat chains F,(Q2) consist of the closure of P,(€2) in the F topology. By the scheme
of Federer [Fed69, 4.1.24] it holds

Following the strategy proposed by Fleming [FEFGQ, [Fle66] in the context of flat
chains with coefficients in groups we now define the energy &), on the space of flat
chains. Let h be a transport cost function and o = > (m;7;,%;) a polyhedral current

we let
&n(o) = Z h(my)H* ().

In analogy to what has been done before we extend &), on the space of flat chains by
relaxation. For o € Fj(Q2),

én(o) = inf {lim inf &, (0;) : o; polyhedral and F(o; — o) — 0 } : (10)

Jj—0o0
In Chapter [3| we look for approximations to problems of the type
min{&, (o) : 0o = doy} (11)

where o0¢ is a given polyhedral k-current. These problems have been introduced and
studied in [Mor89, [DPHO3| by Morgan, De Pauw and Hardt among others to propose
different models for soap film minimal surfaces. The latter is the k-dimensional gener-
alization to the minimization problem defined in @ As sketched in [Whi99al (Whi99b)]
&, has an explicit formulation on rectifiable currents, namely for a rectifiable current
(m,7,3) we have

én(o) = /Eh(m) dH".

This result has been proved in [CDRMS17, Proposition 2.6], is and is the consequence
of the following polyhedral approximation theorem

Theorem 0.3 (Polyhedral approximation). Let h be a transport cost function and let
o = (m,7,%) be a rectifiable k-current. For every 6 > 0 there exists a polyhedral
k-chain 6 = > (m;, 7;,%;) such that

F(6—0) <48, Y h(m)H" (%) < / h(m)dH* +6  and |6] < |o| +4.
i %
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In addition Colombo et al. in [CDRMSI7, Proposition 2.7] have shown that the
condition
Jim 201
ml0 m

is equivalent to the fact
&(0) finite if and only if o is rectifiable.

This result may be seen in correlation with equation @ presented above. Let us
highlight that the polyhedral approximation result from Colombo et al. does not take
into account any boundary constraint for the k-currents. An analogous result with
boundary constraint has been proved in the note [CEMI8]. We conclude this section
with an important sufficient condition for a flat chain to be rectifiable, proved by White
in [Whi99al Corollary 6.1].

Theorem 0.4 (Rectifiability for currents). Let o € Ni(Q2) be a normal k-current
supported on a k-rectifiable set; then o is rectifiable.

We will take advantage of this theorem even in the context of vector measures.
With the notation introduced above it reads as

Theorem 0.5 (Rectifiability for vector-valued measures). Let 0 € M(Q,R"™). If
lo](R2) + |V - o|(R) < oo, V-0 is at most a countable sum of Dirac masses and
there exists a Borel set 3 with H'(X) < co and o = oLLY, then o is a rectifiable vector
measure.

Variational approximation for minimization problems

We provide approximations to the problems defined in (@ in the sense of I'-convergence.
The latter is a notion of functional convergence introduced by De Giorgi [DGT5H] to
deal with variational problems. Following [DM93, Bra98| [AD00, Bra02] we give the
operative definition of I'-convergence.

Definition 1 (I'-convergence). Let X be a metric space, and for € > 0 let #. : X —
[0, +00]. We say that .Z. I'-converges to .# : X — [0,4+00] on X as ¢ — 0 and we note

Fe L 7 if the following two conditions hold:
(LB) T’ — liminf inequality: for any x € X and any x. — x it holds

liminf Z (z.) > Z(x),

e—0

(UB) T' —lim sup inequality: for any z € X there exists a sequence (Z.) C X such that
T, — x and
limsup Z.(2.) < F(x).

e—0
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The sequence () si called recovery sequence for . Condition (UB) is frequently
hard to prove thus it is convenient to find a subset D C X such that: for every
r € X there exists an approximating sequence (z,,) C D such that z, — = and
F(x,) — F(x). If we are able to recover D then a simple diagonal argument shows
that it is enough to verify condition (UB) for all z € D rather than for every z € X. In
the context of our work the set D corresponds with the set vector space of polyhedral
vector measures. Since the definition of ['-convergence may appear cumbersome let us
provide this alternative characterization that allows to appreciate its relevance in the
context of the Calculus of Variations.

Theorem 0.6 (Characterization of I-convergence). Let X be a metric space, and for
e > 0 let be given Z. : X — [0,4+00] and F : X — [0, +00]. Z. Lz if and only if for
every & continuous functional, if x. minimizes .+ 9 and x. — x then x minimizes
F+Y.

Our strategy is to replace the singular energy &, with a sequence of smoother elliptic

type functionals .%. and prove that .7, L &, Then we prove that the family (%)
is equicoercive: any sequence of minima (Z;) is precompact in X. This ensures that
the sequence of minimizers z. converge to a minimum. Finally we look for numerical
methods to approximate a minimum 2.

Let us present three remarkable examples of I'-convergence: Modica-Mortola, Am-
brosio Tortorelli and a variation of the latter. Consider a container  C R? of unitary
volume containing two immiscible liquids modeled by a binary function ¢ : Q@ — {0, 1}
so that [, |¢] dz =V € (0,1) represents the percentage of one liquid with respect to
the container’s volume. We associate to the system an energy depending on the surface
tension, by supposing that it is directly proportional to the area of the interface J,
between the liquids

M (2) = H2(J,). (12)
An alternative way to model this system is to assume that the transition is not given by
an infinitesimal separating interface, but is rather a continuous phenomenon occurring
in a thin layer of size e. In view of this Cahn and Hilliard [CH58] consider a continuous
phase function ¢ : Q — [0, 1] representing the pointwise mixing between the fluids and
postulate an energy of the type

/Q[€Q|V<pl2+so2(1—so)2] dz. (13)

The term ¢? (1 —¢)? is called a double well potential and penalizes values far from 0 or
1; inhomogeneity is unfavoured by the gradient term. The link between and
was discovered by Modica and Mortola in their papers [MMT77al, MMT77b]. Their result
is more general, as a matter of fact, they prove that a suitable rescaling of the above
energy ['-converges to the perimeter functional in any domain dimension.

Theorem 0.7. Let 2 C R", and let X = BV(Q) N L>(Q2). Forp e X,V >0 and
e >0, set

/ [e\V(p[Q + ol Ul dz, if p € W"(Q,1]0,1]) and / lo| de =V
%g(@) — 0 c ) y [V 0 ;

—+00, otherwise in X.
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Let ¢ = 2f01 t2(1 — )% dt and

cH"'(J,), ifp=xa and |A| =V,
400, otherwise in X.

VA r={

Then L 4 ase— 0 in the L topology.

In the above BV(Q) denotes the space of those functions ¢ such that ¢ € L'(Q2) and
the distributional gradient D¢ is a Radon measure. For Bounded Variation functions
the distributional gradient can be decomposed into three measures, namely

Dy =V + D+ [p|H" 'L J,

where V¢ is the component of Dy absolutely continuous with respect to the Lebesgue
measure, D% is a Cantor measure and [p]H" 'L.J, is called the jump component
of the measure and is absolutely continuous with respect to the measure Hausdorff
measure H" ! restricted to the discontinuity set J,. In particular if ¢ € BV(Q2) and
¢ = x4 then J, is the essential boundary of A contained in Q and [p] = 1. For further
results on the theory of functions of Bounded Variations we refer to [AFP00] and the
technical introduction of Chapter [l Section [1.2] Theorem is correlated with its
respective equicoercivity property.

Corollary 0.1. Ife | 0 and p. minimizes M. then the sequence (p.) si pre-compact
with respect to the weak-* topology in BV and any limit point minimizes M .

Another example comes from the approximation of the Mumford-Shah functional
for image segmentation. In [MS89] the authors consider a function g, defined on a
domain €, representing the gray scale values of an image of a group of objects given
by a camera, with discontinuities along the edges of the objects. The idea is that the
segmented image u should be sufficiently smooth outside an (n — 1)-dimensional set
containing the discontinuity set K, namely u € W'?(Q \ K), and the latter should
be chosen of minimal H" !-size. Therefore they propose to optimize in the variables
(u, K) the energy

/Q\K 1Vul + a(u— g)?] de+ BH™(K).

The parameters o, 3 control the weight between the fidelity term |u—g|? and the size of
the discontinuity set K. It is convenient to recast the problem in its weak formulation
letting u € BV(Q2) and replacing the set K with J, obtaining the functional

() = /Q IVul + a(u— g)%] de + BH"(J,).

To give an approximation of the energy ., Ambrosio and Tortorelli have proposed the
family of functionals

Fe(u, ) = /Q IVul?p + g {5|Vg0\2 + @] dx + oz/Q(u —g)*dz.

10
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In the articles [AT90, [AT92] it is proved that .7 L 7. Let us give a heuristic idea
behind this result. Since u is close to g, in the event of a strong discontinuity of g the
gradient term |Vu| explodes. Indeed, high values in the gradient |Vu| are controlled
by values close to zero in the state function ¢. On the other hand the term in square
brackets strongly penalizes values of ¢ far from 1. The competition of the terms in ¢
results in the fact that 1 — ¢ represents a smoothed version of the function 1 — x,.
Finally in the limit ¢ | 0 the Modica-Mortola term converges to the H"~! size of the
set {¢ # 1} which contains the jump set of u. Functionals modeled on the ones from
Ambrosio and Tortorelli and the latter functional itself are frequently known under the
name of phase-field approximations. This is not only because of the strict relation with
the Modica-Mortola functional but even because we may interpret the function ¢ as a
state function, which acquires value 0 on the jump set of u, i.e. on the set of strong
discontinuity of the function, and value 1 where v is sufficiently smooth. The two
behaviors of u are then interpreted as two possible states and ¢ models the pointwise
state function for the system. This observation has been taken into consideration in
the work on fracture theory from Iurlano et al. [CEI16, Turl3]. There ¢ models the
damage state of a material and u is replaced with a displacement function.

To conclude the section we present a variation of the Ambrosio Tortorelli functional
proposed by Bonnivard, Lemenant and Santambrogio [LS14) BLS15] to recover in the
limit the functional associated to the Steiner minimal tree problem for some points
{zg,...,xzx} C Q© C R? Given a continuous function ¢ : Q@ — [0,1] the authors
introduce a geodesic distance weighted on ¢, namely

dy(z,y) = inf {/gp dH : v € C([0,1],9Q), v(0) =z, v(1) = y} )

The distance d,(x,y) vanishes if and only if the two points x, y are joined by a path
on which ¢ is equal to 0. Now consider the functional

/ €|V50|2+(1_—(’0)2 deriiV:d(a: ;)
O de C: = PO e

where ¢, — 0 as ¢ — 0. First observe that if

N

Z%(fﬁo,l‘i) =0 (14)

i=1

then the set {¢p = 0} should include a path-connected subset containing {zo,...,zy}.
The heuristic argument for the I'-convergence result follows the ideas presented in the
case of the Ambrosio-Tortorelli functional. The exact result in [BLS15] is

Theorem 0.8 (Bonnivard-Lemenant-Santambrogio). Let Q@ C R? be an open set,
{zo,...,an} CQand p = + Zf\il dz;. Consider the functional

2.0 [ [wwu%} do+ [ Laofono) dp (15)

€

11
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and a sequence . such that

95)5(905) — inf 935(90) — 0.
© e—0
Then the sequence of functions d,_ converges uniformly (up to a subsequence) to a
function d such that the set K := {d = 0} minimizes H' among all compact, connected
sets containing the points {xq,...,T,}.

A first approach to the problem of approximating the energy &, in the case h = |-|*
was proposed by Santambrogio and Oudet in [OS11]. They introduce a functional of
the type

/ e M|Vol? + 2ol with o € W(Q,R?) and V-0 = (g — p1) % p.
Q

with f = (4da —2)/(a+ 1) and p. an approximation to the identity. Actually the com-
plete I — lim sup inequality for the latter result has been provided by Monteil [Mon15],
Mon17].

Structure of the thesis

In the First Chapter we study a variation of the functional proposed by Lemenant
and Santambrogio. Motivated by the observation that

dy(z,y) = min {/ plo|dz : 0 € M(Q,R") and dive =9, — 5y}
Q

we replace the term depending on the geodesic distance in ((15]) with a term depending
on the product ¢|o|. The proposed functional is defined on couples (o, ¢) is

plo|? / € s, (1—¢)?
L d - ~— 7| d
/Q 5 x+ g 2|Vg0| + 5 T,

where o is a vector-valued function complemented with the constraint

dive = (us — pi-) * pe. (16)

In the above p. is a given approximation of the identity and the phase functions ¢ €
LY(Q) are bounded from below by the quantity Se, where 3 > 0 a given parameter.
First, we show that this functional I'-converges to the energy &, for the choice

h(m) = 1+pB8m, ifm#0, (17)
' 0, otherwise.

The proof of the I'-convergence result is obtained for open convex subsets of R2. The
advantage of choosing a quadratic penalization in ¢ is that the augmented Lagrangian
problem associated to the functional may be explicitly solved in the dual variable.
Therefore it is possible to devise an alternate minimization algorithm composed of
two smooth elliptic functionals solvable via finite elements methods. The algorithm is

12
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proposed and studied at the end of the chapter. We further present and study other
algorithms which take advantage of a concept of ’shape derivative’ to improve the
quality of the approximation.

The generalization to €2 C R" is the matter of the Second Chapter. To obtain the
result in higher dimension the Modica-Mortola component of the functional needs to be
rescaled. As observed in [Ghil4] this leads to the introduction of some non linearities
in the functional as follows

2 1 — 2
/ il dx+/ [s”_"+1|Vg0|p+ (Sl O du, (18)
Q Q

€ gnfl

for some p > n — 1. Again ¢ is complemented with the divergence constraint for
a suitable choice of p. and we require a lower bound for the the phase field functions,
namely ¢ > (". We prove the I'-convergence of the above functional to 5@;‘1 where

the cost function hg_l is the limit in € of an optimization problem depending on the
co-dimension n — 1. Namely for a ball B, C R"! we let

o 1—¢)?
/ |:(10|€| +€p—n+1|vgp|p+ ( 90> :| d[[‘,

gn—l

hg_l(m) = min

o € W'(B,), p =1 on 0B, and 0 dx = m.
B

The latter optimization problem corresponds to the O-dimensional version of . We
introduce and study h¢ ; (obtained replacing n — 1 with d in the latter formula) in the
appendix. Some similar phase transition problems with mass constraint which leads to
measures concentrated on atoms have been studied by Bouchitté, Dubs and Seppecher
in [BDS96] in the context of droplets equilibrium. In particular we show that hf is
independent of r and that it is a transport cost function satisfying the conditions .
We prove as well that there exists a constant ¢ > 0 such that

hg(m)
= 1++/Bm =

Remark that the Modica-Mortola component of the functional studied in the second
chapter depends on n — 1, the co-dimension of the problem in the case of rectifiable

measures. In Chapter Three we investigate a different rescaling to approach minima
to defined for k-currents, namely

2 1 — 2
/90“” da:+/ {sp—”+k|v¢|p+% dz. (19)
Q Q en

3

1
- ¢ form > 0.
c

In this context, o is no longer a vector measure, to take into account the boundary the
constraint needs to be suitably modified. Let oy be a given polyhedral k-current, for p.
a standard approximation of the identity we let ¢ be a a smooth k-current such that

do = Jog * pe.

(In equation the current is identified with its density measure.) In the chapter we
introduce formally the energy and show that it I'-converges to the energy & defined
in for the transport cost function h = hg’k studied in the appendix.

13
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+ - 15| =0.125
(5=0.95
+ \ — 1 -
\ a=0.05
+ - 0.5 p=1
+ o % 0.5 1

Figure 6: Computed mass flux o and phase fields ¢1, @9, 3 for the cost function shown
on the right, € = 0.005. The color in ¢ indicates which phase field is active. The result
is obtained by optimizing the functional defined in Chapter Three.

In the Fourth and Fifth Chapters we restrict again our attention to sets Q C R?
and develop two functionals for the approximation of any concave and continuous
transport cost function h. Note that we say that a transport cost function is concave if
it is an even function whose restriction to [0, 4+00) is concave. The first result regards
transport cost functions A of the form

h(m) = min{a; |m|+ 5; : 0 <i < N},

for ag > a3 > ... >ay >0and 0 < By < f1 < ... < Byn. Our approach takes
advantage of the result in the First Chapter in which we recovered in the I'-limit affine
cost functions of the form 1 + §|m|. In the case N = 1 and [y > 0 the proposed
phase-field energy takes the form

2.2 2.2 2
/ [min{sog T R }ﬂ} 0 + BoT(00) + Fu ()
Q Bo Bi 2e

where .7, is an energy of the Modica-Mortola type defined as

7te) = [ [avetor+ L=

Let us highlight the presence of two phase-fields which interact in the constraint compo-
nent of the functional. Ideally each 1—¢; is a smooth indicator function of some subset
of the support of the limit rectifiable measure o. In particular ¢; = 0 if the choice of
the i-th component in the definition of h is optimal with respect to the intensity of
the flux of 0. The entire Fourth Chapter is devoted to establish the proof of the
['-convergence result and the study of numerical methods developed in collaboration
with Carolin Rossmanith and Benedikt Wirth from Munster University.

In the final chapter of the thesis we study functionals of the form

2
Fioe)i= [ ool + 5 e1vel + £ da

The two main differences with respect to the previous models are the linear penalization
in |o| and the presence of the term ? instead of (1—¢)?. Analogous models with a linear
penalization of the |o| component have been studied recently in the case of fracture
theory and the generalized Mumford-Shah functional [ABS99, DMOT16]. Our main

14



Introduction

contribution is to find an explicit form of the weight function f to obtain in the limit
the energy &;,. For a continuous and concave transport cost function h, we define f as

f(t) = (=h) ().

The function h, is the (concave) Legendre transform of h. In this model ¢ takes value
0 and not 1 outside the support of the limit measure ¢. By virtue of this general
result we address the problem of the numerical approximation of the functional .%,.
The linear penalization in ¢ may be seen as a drawback with respect to the methods
previously studied which where deeply based on the quadratic cost |o]?. In view of
this difference we started investigating new numerical methods based on the Beckman
model [Bech2] for transportation. The same result may be obtained with different
choice of the well potential. Namely, given a potential W which is an even function,
increasing on [0, +00) and vanishing in 0 we introduce the transition energy

lt]
cw (t) ::/0 24/ W (s) ds.

Then choosing f(t) = (—h.) " o e (t) the same I'-convergence result may be obtained
with a family of functionals defined as

Fioe)i= [ (ol +3 4708 + T2 ao

In force of this degree of freedom in the choice of the potential W we start analyzing
which would be the best choice. These and other questions are the subject of the
concluding section which investigates possible developments of the proposed methods.
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Chapter 1

Affine cost function

1.1 Introduction

In this chapter we devise an approximation for the minimization problem defined in
the introduction in equation @ In particular we consider the energy &, choosing as
cost function
1+ Bm|, ifm=#£0
hm) = { Blm| /

0, otherwise,

where § > 0 is a fixed positive parameter. Furthermore we will consider only atomic
probability measures p,, p_ € P(€2) to define the constraint. The results contained in
this chapter have been published in the paper [CEFM17a]. Let us introduce the precise
framework of our approximation. Let p € C°(R?* R, ) be a classical radial mollifier
with suppp C B1(0) and [ p = 1. For € € (0,1], we set p.(z) = e ?p(e'z) and we
define the space V.(2) of square integrable vector fields with weak divergence satisfying

the constraint
V0. = (g —p_)*p. in D'(R?). (1.1)

For an n = n(e) > 0, we denote
W.(Q) ={peW™Q) :n<e<1inQ, p=1o0ndQ}.

We denote with X.(Q2) = V.(2) x W.(Q) and define the energy .Z. : M(Q,R?) x
LY(Q) — [0, +00] as

/ L 2o d-’L‘+/ FVSO’Q PO 4 i (0g) € Xu(9),
r9\5(0', QO) = 0 2e QO 2 2e (12)
400, otherwise.
From now on, we assume that
N ] (1.3)

3

We denote M »(Q) the set of R2-valued measures ¢ € M(R? R?) with support in Q
such that the constraint

dive = py —p_  in D'(R?) (1.4)

17



Chapter 1. Affine cost function

holds. We define the limit energy &5 : M(Q, R?) x LY(Q) — [0, +00] as

/(1 FAm) A’ =1, 0 € My () and o = (m, 7, %),
b

(0, ) = (1.5)

+ 00 otherwise.

We prove the I'-convergence of the sequence (%) to the energy &3 as ¢ | 0. More
precisely the convergence holds in M (Q, R?) x L'(Q2) where M(Q,R?) is endowed
with the weak-* topology and L'(Q) is endowed with its classical strong topology.
We begin by proving the equicoercivity of the sequence (%#.). In this statement and
throughout the chapter, we make a small abuse of language by denoting (a.)-¢c(o,1) and
calling sequence a family {a.} labeled by a continuous parameter ¢ € (0,1]. In the
same spirit, we call subsequence of (a.), any sequence (a.,) with £; — 0 as j — +oo0.
We establish the following lower bound.

Theorem 1.1 (T’ —liminf). For any sequence (0., ¢.) C M(2,R?) x L'(Q) such that
0. = 0 and p. — ¢ in the L*(Q) topology, with (o, p) € M(,R?) x L'(Q),

liminf .7, (0., ¢.) > &s(0, ).

k——+o0

To complete the I'-convergence analysis, we establish the matching I'-limsup in-
equality.

Theorem 1.2 (I'—limsup). For any (o, ) C M(Q,R?)x LY(Q) there exists a sequence
(0c, @) such that o. = o and . — ¢ in the L' () topology and

lim sup 9\5(0'5, st) < é36<0'7 (:0)-

k——+o0

Theorem 1.3 (Equicoercivity). Assume 8 > 0. For any sequence (0, :)ec(0,1] C
M(Q,R?) x LY(Q) with uniformly bounded energies, i.e.

sup (0., 0:) < 400,

there exist a subsequence ¢; | 0 and a measure 0 € M (2, R?) such that o, — o with
respect to the weak-x convergence of measures and p., — 1 in LY(Q). Moreover, o is
a rectifiable measure (i.e., it is of the form o = (m,7,%)).

Structure of the chapter: In Section [1.2] we introduce and recall some notation
and several tools and notions on SBV functions and introduce an operator acting on
vector field measures. In Section [1.3] we study the behavior of the functional .%. on
vector fields of the form Vu (dropping the divergence constraint). In Section we
prove the equicoercivity result, Theorem and we establish the lower bound stated
in Theorem [1.1} In Section [I.5 we prove the upper bound of Theorem Finally, in
the last section, we present and discuss various numerical simulations.

18



1.2. Preliminaries for the chapter

1.2 Preliminaries for the chapter

In the following 2 CC () c R¢ are bounded open convex sets. Given X C R? (in
practice X = Q or X = ), we denote by A(X) the class of all relatively open subsets
of X and by Ag(X) the subclass of all simply connected relatively open sets O C X
such that O NS = (). We denote by (ej,...,eq) the canonical orthonormal basis of
R, by | - | the euclidean norm and by (-,-) the euclidean scalar product in R%. The
open ball of radius r centered at x € R? is denoted by B,(z). The (d — 1)-dimensional
Hausdorff measure in R? is denoted by H™!. We write |E| to denote the Lebesgue
measure of a measurable set £ C R?. When pu is a Borel meaure and £ C R? is a
Borel set, we denote by pul E the measure defined as pul E(F) = p(E N F).

Let us remark that from Section onwards, we work in dimension d = 2.

For any fixed couple (o, ), with .Z. (o, ¢; O) we denote the value of the functional
on any set O € A(2). Similarly we define the with version &3(c, ¢; O) the localization
of & to O.

BV(Q) is the space of functions u € L'(Q2) having as distributional derivative Du
a measure with finite total variation. Following the classical notation as in [AFP00,

ABM14] and [Bra98] for u € BV (€2) we have
Du = Vudz+ (vt —u ), H" L J, + D,

where J, is the set of “approximate jump points” x where y — u(z + py) converge as
p = 0to ut X {yu,>01 + U X{yw,<oy for some (u™, u*,v,) and D is the Cantor “part”.
Let us introduce the space of special functions of bounded variation and a variant:

SBV () :={u € BV(Q) : D°u = 0},

GSBV(Q) := {u € L*(Q) : max(—T, min(u,T)) € SBV(Q) VT > 0}.

Eventually, in Section [1.3] the following space of piecewise constant functions will be
useful.

PC(Q) ={ue GSBV () : Vu = 0}. (1.6)

To conclude this section we recall the slicing method for functions of bounded variation.
Let 7 € S9! and let

I, .= {y € R*: (y,7) = 0}.

If y € IL, and E C RY, we define the one dimensional slice
E,,={teR:y+treE}
For u : 2 — R, we define u,, : Q., - R as
Ury(t) :=u(y +t7), t €,

Functions in GSBV () can be characterized by one-dimensional slices (see [Bra98|
Thm. 4.1))
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Chapter 1. Affine cost function

Theorem 1.4. Let u € GSBV(Q). Then for all T € S™! we have
u-, € GSBV(Q,,) for Hi g y el
Moreover for such y, we have

“/T,y(t) =(Vu(y +tr),7) forae teQ,,,
Ju,, ={t eR:y+tr e J,},

and
uT,y(ti) = ui(y +t1)  or uw(ti) =ut(y+tr)

according to whether (v,,7) > 0 or (v,,7) < 0. Finally, for every Borel function
g:Q—=R,

/H > 9m(t) dH“(y)z/ gl (v, )| AR (1.7)

T t€dur, v

Conversely if u € L'(Q) and if for all 7 € {e1,...,eq} and almost every y € 11, we
have u., € SBV(Q.,) and

/ | Dty (92r,) dHHy) < +oo
HT

then u € SBV ().

Let us introduce the linear operator L that associates to each vector v = (vy,vq) €
R? the vector v+ = (—wvq,v1) obtained via a 90° counterclockwise rotation of v. Notice
that the L operator maps divergence-free R2-valued measures onto curl free R2-valued
measures. Let O C R? be a simply connected and bounded open set. It is possible
to generalize Stokes Theorem to divergence free measures. If i is a smooth divergence
free vector field on O we have u = Vu't for some smooth function with zero mean
value. Then by Poincaré inequality |u|p1 < C|p|r1. The result for p general divergence
free finite vector measure follows by regularization. On the other hand for u € PC(f2),
o := Du" is divergence free and,

o= (u" —u))vrH =U(J,, [u],v)). (1.8)

» T u

1.3 Local Result

In this section we introduce a localization of the family of functionals (.%;) (see ([1.2)).
We establish a lower bound and a compactness property for these local energies. In
this section we assume € C RY.

Localization. Let O € Ag(Q2) be a simply connected relatively open subset of €. For
u. € WH3(0) and p. € WH2(0), we define

gs<ue790e§0) = ye(vu&QOe;O)
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1.3. Local Result

i.e. as the evaluation of the functional .%. on vector fields of the form Vu with no
requirement on the divergence. Notice that for ¢ < d(O, S), we have V- 0. =0 in O
for any 0. € V.(Q). By Stokes theorem we have Dul = o. for some u. € W?(O) and
we have

Fe(0c,00;0) =Yo(ue, pe; O).
The rest of the section is devoted to the proof of

Theorem 1.5. Let (u.).e01) C WH(O) be a family of functions with zero mean
value and let (¢.) C WH(O) such that . € WH(O,[n(e),1]). Assume that cq :=
sup, Y- (ue, ¢:; O) is finite. Then there exist a subsequence €; and a function u € BV ()
such that

a) ., — 1 in L*(0),
b) ue, — u with respect to the weak-+ convergence in BV,
c) ue PC(O).

Furthermore for any piecewise function u € PC(O) and any sequence (ue,p:) such
that u. = u and @. — 1, we have the following lower bound of the energy:

limipf 4. (e 250) = [ (14 Blull) dn

JuNO

The proof is achieved in several steps and mostly follows ideas from [Turl3] (see
also [CFI16]). In the first step we obtain (a) and (b). In step 2 we prove (¢) and
the lower bound for one dimensional slices of ¢.. Finally in step 3 we prove (¢) and
the lower bound in dimension d. The construction of a recovery sequence that would
complete the I'-limit analysis is postponed to the global model in Section [1.5]

Proof. Step 1: Ttem (a) is a straightforward consequence of the definition of the func-
tional. Indeed, we have

/(1—905)2 de <29 (us,p:) < 2,¢c0€ 0,
o

For (b), since (u.) has zero mean value, we only need to show that sup.¢ (o1 [Duc|(O) <
+o00. Using Cauchy-Schwarz inequality we get

1wl = ( [ |Vu5|)2s (2= [ ) [ommur). o

By assumption, the second therm in the right hand side of ((1.9) is bounded by 2¢j. In
order to estimate the first term we split O in the two sets {p. < 1/2} and {¢. > 1/2}.

We have,
1 1 1
o0 ¥z {pe<1/2} Pe {pe>1/2} Pe
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Since n < . < 1/2 on {p. < 1/2} it holds (1 — ¢.)? > n*(1 — 1/2)? therefore

1 2 (1—¢.)? 8
) S 2 2 S _2007
{pe<1/2} Pz n?(1—1/2) {pe<1/2} 2e n

1 / 1
— < oy = Alee 2172}
/{soe>1/2} vz o212y (1/2)? ]
Eventually, as [{¢. > 1/2}| < |O|, combining these estimates with (1.9) we obtain

2 . 16 2
(| Duc|(0))* < %1603+8E|Olco =40 ﬁ—jo < . (1.10)
This establishes (b).

Step 2: In this step we suppose O to be an interval of R, so that u., ¢. are one-
dimensional. We first prove that u is piecewise constant. The idea is that in view of
the constraint component of the energy, variations of u. are balanced by low values
of ¢.. On the other hand the Modica-Mortola component of the energy implies that
@ ~ 1 in most of the domain and that transitions from ¢. ~ 1 to ¢. ~ 0 have a
constant positive cost (and therefore can occur only finitely many times).

Step 2.1: (Proof of u € PC(0).) Let us define

3 1
B, = {3360:(,05(3:)<Z} D A = {xGO:ng(a:)<§}, (1.11)
and let
C. = {I connected component of B, : I N A, # 0}. (1.12)

Let us show that the cardinality of C. is bounded by a constant independent of e. Let
e be fixed and consider an interval I € C.. Let a,b € I such that {¢.(a),p:(b)} =
{1/2,3/4}. Using the usual Modica-Mortola trick, we have

/2 1 — E2
Gupst) > [AEL L USED g,
1

2e

> [ el - ) de
(a,b)

3/4 5
> [ —pa = 2
/1/2 2

Since all the elements of C. are disjoint and ¥.(u., ¢, -) is additive, we deduce from
the energy bound that
#CE S 2560/37

where we denote #C. the cardinality of C.. Next, up to extracting a subsequence we
assume that #C. = N is fixed. The elements of C. are of the form I7 = (m§ —w§, m; +

ws) for i =1,--- | N, with m§ < m5,,. Since ¢, — 1 in L*(O) we have
N
SO =D2uf 0. (1.13)
IFeC. i—1
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Up to extracting a subsequence, we can assume that each sequence (mg) converges in
O. We call m; < my < -+ < my their respective limits. We now prove that

| Dul(O\ {mi}iL) =0, (1.14)

thus supp(|Du|) C {my,--- ,my}. The latter ensures that u has no Cantor component
since Du is supported on a finite number of points and that is a.e. constant outside
{my, -+ ,my} so that v € PC(O), (1.6). To this aim, we fix x € O\ {m;}Y, and
establish the existence of a neighborhood Bs(x) of x for which |Du|(Bs(z)) = 0. Let
0 < 8 < min; |[z—m;|/2. Equation (1.13)) ensures that for € small enough Bs(z)NC. = 0.
Notice that from the definitions in (1.11)) and we have that ¢, > 1/2 outside the
union of the sets in C.. Hence, using Cauchy-Schwarz inequality, we have for £ small

enough,
2
(/ |l | dx) < 26/ lul|* dz
Bs(z) Bs(z)

<@ (5 [ e o)
22 JBy(a)

< 166020 =5 0.

By lower semicontinuity of the total variation on open sets we conclude that | Du|(Bs(x))
0, which proves the claim (|1.14]).

Step 2.2: (Proof of the lower bound for 4..) Without loss of generality we can
assume N = 1, thus J, is composed of a single point, otherwise the argument we
propose can be applied on each m,; separately. Up to a translation m; = 0 and we
denote = u(0") = —u(07) > 0. For any 0 < d < D there exist six points

Il < &2 < a? <y, such that

IN T

lim o (y1) = lim g () = 1,
. N 1 2
u (%) = —D +d, u () = D —d.

Since . — ¢ and u, — w in L' up to a subsequence they converge point-wise almost
everywhere and this implies the first and third fact. Let inf,, ,,) . = c., then Jensen
inequality implies

Y2 20,02 2 Y2 2
002/ dezc—a(/ |u;|dx)
Y1 2e 2E(y2 - yl) Y1

Then ¢, must vanish with € implying statement ([1.15]). Using the Modica-Mortola trick
in the intervals (y;,x!) and (22, 1y,) as above, we compute:

lirgionf%(ua, @e; (Y1, 2b) U (22, 42)) >

S / (1 - po)lgl] do + / (1— @)l dz | > 1.

Y1 x2
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Chapter 1. Affine cost function

For the estimate on the interval I. = (z!,7?) let us introduce:

G.:={weW" (L) w(@l)=-D+d, w@?) =D —d},
7, = {z e W (1) :n<z<1ae. on Ig} ,

1 (1—2)?
H. = — PP+ —"]d
w.2) o= [ (g )
he(z) = inf H.(w,z) for z € Z..

weEG,

Note that for w € G, and z € Z., we can apply an inequality similar to (1.9)). In
particular, for z replacing ¢, and w’ taking the place of Du. we get

(s < () (1 2)

Reversing the latter and taking into account the conditions on w obtains

e () ([2) = 0o ([ 2)"

From this we deduce the lower bound

he(z) > 4(D — d)? (2 /I = dzx >_1+/IE % d. (1.17)

Let us remark that optimizing H.(w, z) with respect to w € G. we see that this
inequality is actually an equality. Consider for 0 < A < 1 the inequalities:

1 |1 1 1 2 (1—¢.)?
< S ——— ———dx ).
2= N / PR GRS VEPe </ 22

{z€leipe >N} {w€lcipe <A}

Applying both of them in ((1.17)) we obtain

Go(ue, e, I.) > he(pe)
2D — d)? 1—p.)?
>a|I| 1 (22 )1 (1=p:)2 +/(( Qf))dw
N <f[ e dx) I

2e

> 2(1—)\)g(D—d) - (1—)\)2;7—?/(‘;' (1.18)

where the latter inequality is obtained by minimizing the function:

2D - d)2 + 1.

5|IE 262t

|
+
Therefore we can pass to the limit in (1.18) and obtain:

limig)nfge(ue, e, 1) > (1 = N)B2(D —d).
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1.3. Local Result

Sending A and d to 0 and recalling the estimate in (({1.16)) we get

liniénfgg(ug, 0oy (Y1,92)) > 1+ 82D = 1+ Blu(07) —u(07)]. (1.19)

Step 3: Indeed by Fatou’s Lemma for any 7 € ST and H?! almost every y € Q. it
holds

limig)nf G (ue, pe; O) >

o L o 2, € s (L= (pe)y)? d—1
Jimint | [ S IGE + S+ T e | ant ),
11, 0;

Then by the results in Step 2.1 and 2.2, in particular inequality (1.19)), it holds
hmmfg (te, pe; O / Z 1+ Blug (m]) — u;(m;)]] dH (y).

Therefore by Theorem we have u € SBV(O). Moreover, since (u'); = 0 on each
slice, we have u € PC(O). Applying identity ((1.7) we get

liminf%(ua,%;O)z/ v - 7| [1+ Bl[u]] dH. (1.20)
e—0 JuNO

In order to conclude, we use the following localization method stated by Braides
in [Bra98, Prop. 1.16].

Lemma 1.1. Let p: A(X) — [0,400) be an open-set function superadditive on open
sets with disjoint compact closures and let A be a positive measure on X. For anyi € N
let v; be a Borel function on X such that u(A) > [, 1; dX for all A € A(X). Then

A)z/AdeA

For any u € PC(O) let us introduce the increasing set function p defined on A(O) by

where 1) := sup, ¥;.

w(A) = inf : {lim iglf%(us, O} A)} , for any A € A(O).

(pe,ue) (1w

Observe that for any two open sets A and B with disjoint compact closure and for any
(uz, @.) such that u. — u and . — 1 on AU B, the restriction of u. to A (resp. B)
weak-* converges in A (resp. B) to the restriction of w on A (resp. B) and it follows

p(A+ B) = u(A) + p(B).

This proves that p is superaddittive on open sets with disjoint compact closures. Let
A be a Radon measure defined as

A= [1+ Blu(x™) —u(z”)|JHT L .
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Chapter 1. Affine cost function

Fix a sequence (7;);en dense in S, By (1.20)) we have

u(O)Z/wi A\, €N,
O

where

(@), ), iz €
Yilz) = {o, ifze0\ .

Hence by Lemma [I.1] we finally obtain

lim inf 4. (u., ¢c; O) 2/
e—0

supti(e) du= [ (1 ) ane
O 1 JuNO

1.4 Equicoercivity and I'-liminf

From now till the end of the chapter we assume that Q0 C R2. Let us first produce the
following construction.

Lemma 1.2. Given two probability measures jiy and p_ supported on a finite set of
points S = {xg,...,xN}, there ezists a vector measure v = U(m., T, X,) and a finite

partition (§2;) C A(QY) of Q such that
a) V-y=—py+pu_,
b) each Q; is a polyhedron,
c) X, C U, 0%,
d) S is of finite perimeter for each i and Q; N Q; =0 fori # j,
e) |2\ U; Q| = 0.

Moreover if M is a 1 dimensional countably rectifiable set, we can choose v and (€);)
such that H'(M NY,; 0%) = 0.

Proof. Let us fix a point p € 2\ S and assume

N
TR T
=0

Consider the map =2t +p: [0,1] — 2, then the measure

| —pl
Vi = < L : +in> [0, 1]
Ip — i #

is supported on the segment [p,z;] =: ¥, and is such that V -~; = 6,, — 9, for i €
{0,---,N}. We define
N
T = Z @i
i=1
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1.4. Equicoercivity and I'-liminf

By construction (a) holds true. Moreover, up to a small shift of p we may assume that
[pa xz] N [pa JC]'] = {p} for 7& J-

Next, let D; be the straight line supporting [p,z;]. We define the sets (€2;) as the
connected components of Q\ (Do U ---U Dy). We see that (c,d, e) hold true.

For the last statement, we observe that by the coarea formula, we have H'(XN(J, ;) =
0 for a.e. choice of p. O

Figure 1.1: Example of the construction of the H!-rectifiable measure v (red) and of
the partition {€;} (gray) in the case M (green) is being a H!-rectifiable set. Here
My = 5960 and H— = 1/3(5561 + 51‘2 + (5333)

We now prove the compactness property (Theorem . Let us consider a sequence
(02, ¢.) € M(Q,R?) uniformly bounded in energy by ¢y < +00,

0 < F(o-,¢:) < co for € € (0, 1]. (1.21)

Proof of Theorem[1.3. First observe that by definition (1.2)) and equation (1.21]), we
have 0. € V.(2) and ¢. € W.(Q).
Next, using the arguments of Step 1 of the proof of Theorem with |o.| instead

of [Vu,|, inequality (1.10) reads

2 c 4
|o|(Q) < \/166—2 2+ 8¢|Qlcy =5 % < 0. (1.22)
7

Thus the total variation of (o). is uniformly bounded as long as 8 > 0 and there exists
a 0 € My(Q) such that up to a subsequence . — ¢ in M(Q).
Now, considering the last term in the energy (|1.2)) we have

/(1 — @)t da < 2e Fo(0.,0.) < 26 ¢y — 0.
Q

Hence, . — 1 in L?(Q).

Let us now study the structure of the limit measure o. Let us recall that Qs a
bounded convex relatively open set such that 2 C 2 and let us extend o. by 0 and
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Chapter 1. Affine cost function

@ by 1 in Q\ Q. Obviously we have .Z.(0., ¢.;Q) = Z.(0.. p-;Q), therefore for any
ONS AS(Q) applying the localization described in Section we can associate to each
o. a function u. € W'*(O) with mean value 0 such that o. = Vul in O. Since
|Vut| = |Vu.| by Theorem [1.5| there exists a u € PC(O) such that, up to extracting

a subsequence, u, — u. Eventually, from formula (T.8)), we get
oLO =Du"LO = —[ulvy H'L(J,NO).

Since we can cover )\ S by countable many sets O € Ag(Q), this shows that o
decomposes as

0= My Toy Xo) + w,
where w is a measure absolutely continuous with respect to H°LS. By Lemma
there exists a rectifiable measure v = U(m,, 7, %,) such that V- (¢ +v) = 0 and
H'(X,N3X,) = 0. Then there exists a u € BV (Q) such that Du = o+ + v*. Since

u € BV(€2) and S is composed by a finite number of points, we deduce |Du|(S) = 0
which implies |w|(S) = 0. Hence o writes in the form (m,, 7,, %,). O

Let us now use the local results of Section to prove the I' — lim inf inequality.

Proof of Theorem[1.1 Let (0., p.) such that o, X o and Ye — @ as in the statement
of the theorem. Without loss of generality, we can suppose that Z.(o., ¢.) < +o0.
Let Q be as in the proof of Theorem and let us define xy = I' — liminf, %, (0., .)
and A = Blo| + H'LY,. Consider the countable family of sets {O;} C Ag(Q) made of
the relatively open rectangles O; C Q \ S with vertices in Q2. The local result stated
in Theorem [I.5] gives for any : € N

Y(A) > 5(0: N A) > AO0; N A) = / Gy A,

where 1; := 1¢,. Therefore Lemma [1.1] gives

[ —liminf F=(02, 2) = () 2 A(Q) = Blo|() +H' (%)

since sup, ¥; is the constant function 1. ]

1.5 [-limsup inequality

Let us prove the I'-limsup inequality stated in Theorem [1.2} Recall that the latter
consists in finding a sequence (0., .) for any given couple (o, p) € M(Q,R?) x L}(Q)
such that 0. = o, ¢. — ¢ in L'(Q) and

lim sup . (0., ¢:) < &s(0, ). (1.23)
el0

When &3(0,¢) = 400 the inequality is valid for any sequence therefore by defini-
tion (L.5) we can assume o = (m,7,%) and ¢ = 1. In view of the results from

28



1.5.  T'-limsup inequality

White [Whi99b], [Whi99a] and Xia [Xia0O3] polyhedral vector measures are dense in
energy and it is sufficient to consider vector measures of the form

n

o= (mi 7, %), (1.24)

=1

where Y; is a segment, m; € R, is H!'-a.e. constant and 7; is an orientation of 3
for each i. We included in appendix [A] a proof of this result based on BV functions.
Without loss of generality we can suppose that for each couple of segments >;, M;,
for ¢ # j, the intersection ¥; N M; is at most a point (called branching point) not
belonging to the relative interior of ¥; and M;. We first produce the estimate
for o concentrated on a single segment thus let us assume o = me; H'L (0,1) x {0}.

Notation: Let us fix the values

mpe
if 1-—
a. = 2 itf>0 , b.:=c¢ln < 77) and 7. = max{e,a.}.
e ifB=0 c

Let dy(z, S) be the distance function from z to the set S C Q relative to the infinity
norm on R? and Q,(P) = {z € R?: d(x, P) < r} the square centered in P of size 2r
and sides parallel to the axes. Introduce the sets

I. :={x € R? : doo(,[0,1] x {0}) < a.}UQ,.(0,0) UQ,.(I,0),
={r € R? 1 do(z,1,.) < b} \ L.,

I, ={zeR* 1 do(z,(I,,UL)) <e}\ (I, UL,),

Iy, == Q\ (Lo, UL, UL,),
Ne(t) == {(t,m2) © |wa| < e},

and define R. = I,_\ (Q,.(0,0) UQ,_(L,0)).

Figure 1.2: Example of the neighborhoods of the segment [0,[] x {0}. On the left the
case in which r. = ¢, on the right the case in which r. = a. > €. The cyan region is R.
and I,. = R. U (Q,.(0,0) UQ,.(1,0)). Remark that supp(p.) = B(0,¢).

Costruction of o.: We build 0. as a vector field supported on I,,. In particular we
add together three different constructions performed respectively on R, @Q,_(0,0) and
Q..(1,0). We construct o. on R. in order to obtain the I'-limsup inequality, on the
other hand we are forced to modify such construction in a square neighborhood of each
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Chapter 1. Affine cost function

ending point of the segment to control V-o.. As a matter of fact we need to verify that
the piecewise definitions coincide on the sets ¥.(r.) and ¥.(I — r.) which correspond
to the interfaces between @,.(0,0) and R., and, R. and @,_({,0). Let r = r./¢ and
consider the problem

Au==+m (§;, xp), on Q,(0,0),

ou +m " 9 mp3
27 — - <
- H() on X {:v ER 1z =41, |15 < 5 },
ou . +
E 0, otherwise on 0Q,.(0,0) \ 7.

= B1(0,0)

(0,0)
Z+
77777777777777777 Q:(0,0)

In the latter the set ©* (resp. X7) is the image of the set Y. (r.) (resp. (I —r.)) via
the map
x ( z —(1,0) >
T — —, resp. T r—> ————= :
£ £

Let u be the solution relative to the problem in which every occurrence of = is replaced
by + and let u~ defined accordingly. Then set

’M7 on Q. (0,0),
Oc = 277;6 €1, on Fe, (1'25>
\ Vu~ ((z _5 (l>0))/<’5)7 on Q,.(1,0).

Indeed, the Neumann Boundary conditions imposed for ™ (resp. u~) on Xt (resp.
Y.7) ensure that the latter piecewise definition is continuous on . (r.) and X.(I — r.).

By construction we have that V- o. = m [(d0,0) — d,0)) * p<] and o, = . Let us point
out as well that there exists a constant ¢(«, m) such that

e(a, m) ::/ 0.2 dx:/ 0.2 da
Qre (1,0) Qr-(0,0)

(1.26)
:/ IVt (z)| dx:/ IV (2)]? da.
Qr(0,0) Qr(0,0)

30



1.5.  T'-limsup inequality

Costruction of p.: Most of the properties of ¢. are a consequence of the inequalities
obtained in Theorem and the structure of o.. On one hand we need . to attain
the lowest value possible on I, in order to compensate the concentration of o, in this
set, on the other, as shown in inequality , we need to provide the optimal profile
for the transition from this low value to 1. For this reasons we are led to consider the
following ordinary differential equation associated with the optimal transition

(1.27)

Observe that w. =1 — (1 —n)exp (=) is the explicit solution of equation (L.27) and
set

n, iteel,,
We(doo (2, 1,,)), ifeel,,
doo(z, Iy,) —e+1, ifzel,,
1, otherwise.

FEvaluation of F.(0,:): (case of a o concentrated on a line segment)
We prove inequality (1.23]) for the sequence we have produced. Since the sets I,_, I_,
I.. and I, are disjoint we can split the energy as follows

ﬁe(aa 905) = ﬁg(gﬁ Pe; Iag) + ys(‘fs?%%; Ibg) + ys(‘fs?@s; Icg) + EE(O’R Pes Ids) (129)

and evaluate each component individually. Since o is null and (. is constant and equal
to 1 in I;. we have that .#.(o, ¢.;14.) = 0. For the other components we strongly use
the definitions in (1.25) and (1.28). First we split again the energy on the set I, as
following

,9-‘;(0'57 Pe; [ag) = g&(o'sa Pe; Rz—:) + yz—:(asu Pes Qrs(ov 0)) + yz—:(asu Pes Qrs(la O))

Now identity (1.26]) leads to the estimate

(009500 0.0)) = Fule 00, 0,0) = (s m) 4 L 02
and )
o) = o || + O g < W00 L st
Then passing to the limsup we obtain
lim sup 7. (0, ¢c; Io.) < mpBl=mBH'([0,1] x {0}). (1.30)

el0

To obtain the inequality on the sets I, and [.. we are going to apply the coarea
formula therefore let us observe that for both do(z,1,.) and d(z,Iy.) there holds
|Vdoo(z,-)| =1 for a.e. x € Q and that there exist a constant k = k(f, m) such that

31



Chapter 1. Affine cost function

the level lines {d(z,-) = t} have H' length controlled by 2/ + kt. In view of these
remarks we obtain

5 1—p.)?
Floweaiti) = [ [5ve+ CS L] 1wice ) as
I, €

-/ § [M # SO (Al o) = 1))

2e
be

< (21 + ke) E(l — wa(t))ﬂ

0

:(l—%) (1= =] > 1=H(0.0 % {0})  (13)

el0

and

dx

€ 1— )2
yz—:(aea Pe; [CE) = / |:§‘V(PE|2 + (2—¢)1 ‘Vdoo(xalbg)
I. €

_ /05 {(1 —t—;; —1)? " %} H' ({doo (-, L, U I,,) = t}) dt
v

2
= (2l + ke) &® T 0. (1.32)

3

< (20 + ke) {%

Finally adding up equations (|1.29)), (1.30)), (1.31]) and (1.32]) we obtain

lim sup Fe(0e,0:) < (14 8m) 1 ([0,1] x {0}).

Case of a generic o of the form (1.24):

Let us call o, gpé the functions obtained above for each o; = m; 7 H'LY; and set

n
= Zaé, Pe = miin @k
i=1
In view of the constraint, it holds

(g —p)=V-0=> V- (mrH' L) = Zmi(fspj —dp-),

7

where P;” and P, are the starting and ending point of the segment 3; according to its

orientation 7;. Replacing each o; with of we have
V.o.= ZVU_ZmZ P+—5 )k pe = (py — ) * pe.

Thus o, satisfies constraint . We now prove inequality ((1.23). The following
inequality holds true

1 : L2 . i 12 € . i\ 12 (1—m1n<pl)2
ulowpe) = [ 5-|ming] 2ot + 5V minee) ++

/!mmgps\ ]205\2 dx—i—Z/ —|Vl* + 5) dz, (1.33)

dx
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1.6. Numerical Approximation

therefore let us estimate the first integral in the latter. Observe that for ¢ sufficiently
small we can assume that all the R are pairwise disjoint thus we study the behavior
in the squares. Let M;,,..., M;,  be the segments meeting at a branching point P.
For j = 41,...,%m, let us call Qrg(P) the squared neighborhood of P relative to the
segment M; as constructed previously. Let us recall that by definition ¢, is constant

and equal to non U @, (P) then we have the estimate

©? <R [ 2 0? &K
€ 2 _ € 2 £ 12
/ o loel dx—Z/zgge dz + / %\Zag da

UL, (RIUQ 4 (P) =R urr g T
p? n?
< e Pdz+mp — / 2 q
Z/ R SR
J= 11 J= “QTg(P)
1 ) ) imp 772
<Z | el et e =0 [ 3 egmy) | 3
(RJUQ ( ) J=1
C(meB;mi17~u,mimp)e

(1.34)

Applying inequality ((1.34]) on each branching point in equation (1.33)) and recomposing
the integral gives

lim sup .Z. (0., ¢.) < hmsupz Lot o) +ne(n, B,ms, ..., my)e
el0 el0 i—1

< Z(l + B m;) 1 (%)

:/ (14 Bm) dH' = &y(0,1)
supp(o)

which ends the proof.

1.6 Numerical Approximation

In this section we present numerical evidence of the ['-convergence result we have shown
in the setting of the Steiner Minimal Tree problem. Thus we consider p; = d,, and
[ = ~ Zjvzl d,, for some points {wzo,...,xx} C Q. The first issue we address is
how to impose the divergence constraint. To this aim it is convenient to introduce the
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following notation

1 N
fa: 5350 _NZ(5$]' * Pes

Jj=1

1
Galonp) = /Q {2—€|¢]2|0|2] dz, ifo eV, and ¢ € W,

+00, otherwise in L?(Q2, R?),

1— 2
/ [E|V90\2 + ﬂ} dz, if p € W,
aQl2 2e

+00, otherwise in L'(Q).

A(p) = (1.35)

Then let us observe that the following equality holds

1
min _ G.(o,p) = inf { sup / 2—€]g0|2|a|2 +u(V-o—f.) dx} .
0

ceL?(Q,R?) ceL?(Q,R?) uEW:2(Q)

By von Neumann’s min-max Theorem [ABM14, Thm. 9.7.1] we can exchange inf and
sup obtaining for each ¢ > 0 and ¢ € W,

1
min G, (o, ¢) = sup inf/ 2—€|<,0|2|a|2 — ((Vu,o) +uf.) do
ag U g Q

Vul? —
= —min/ el u2] +uf. dr = —min G.(u, ),
u Jo 2|l v

with 0 = £%5%, this naturally leads to the following alternate minimization problem:
given an initial guess o we define
. €VU]'
?;
i1 = argmin G.(oj, ¢) + A ().

where  u; := argmin G.(u, ¢;),

O'j:

This formulation led to Algorithm [II We define a circular domain ) containing the
points in S endowed with a uniform mesh and four values 3, €;,, €eng and N, and
a gaussian convolution kernel p,_ , in order to define f.. We have implemented the
algorithm in FREEFEM-++ choosing for the discrete spaces for v and ¢ the space of
piecewise polynomials of order 1. To validate Algorithm (1] we tested on the con-
straint given by four points defining a square inscribed in the unitary circumfer-
ence, namely o = (—v/2/2,—v/2/2), z1 = (v/2/2,-V2/2), x5 = (v/2/2,1/2/2) and
zy = (—v/2/2,4/2/2). Indeed, for such constraint, we can obtain an explicit solution
which allows a visual comparison with the one obtained with Algorithm As it is
shown in Figure the solution is far from being satisfactory. We think the failure of
this procedure is due to the relation between the geometry of the space and the one
of the solution itself. In particular, to obtain a good approximation it is necessary to
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1.6. Numerical Approximation

Algorithm 1 Alternate Minimization
Require: S ={zg,...,2n}, €in, Eends Nie, [0, index.
function ALt. MIN.(2¢, ..., TN, Ein, Eends Nicers B P)
set fo = (NOyy — S0 04,) % pe,,, and @ = 1
for j=1,..., N do
€j = (%) Ein — (ﬁ) €end

¢ < L'-projection of @3,

set u; := argmin G, (u, ;1)
z—:zVuj
Pji—1 )
set ;1= argmin G., (0, ¢) + A ()
set p; = max{n, ¢;}
end for
end function

return ¢y, ., On,., -

set 0; =

Figure 1.3: On the left: Graph of @y, obtained via the Alternate Minimization
Algorithm [I} On the right: in red, one of the solutions to the Steiner problem, while
in blue, a minimizer of the energy &3.

refine the mesh where ¢ attains values close to zero but we observed that this restrains
the process of approaching the solution. To overcame the problem we propose a mod-
ifications to Algorithm to include a step of joint minimization. Let us consider a
smooth diffeomorphism 7" : 2 — € and define

or =@oT(x), or =o0oT(x),
and the functional
FAT)=G(coT,poT)+ A(poT).
Let dF.(Id) be the differential of the the functional F. evaluated for T = Id. We
represent dF as function V € W12(Q2, Q) by solving the elliptic problem
(V,Whwe = (dF.(Id), W)ynr2  for any test vector field W.

Let V be a solution to the latter problem, we perform a gradient descent in the direction
—V. In Algorithm , we implemented this joint minimization step. As it is possible to
remark from a visual comparison of Figure [[.4 and Figure the joint minimization
procedure allows to displace the functions. Indeed, as shown in Figure [I.5] the energy
decreases during the joint minimization procedure as it. Let us propose a second
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Algorithm 2 Joint Minimization

Require: S ={zg,....,2n}, €in, Eends N, [, index,
function JOINT MIN.(xq, ..., 2N, Ein, €ends Nier, 55 P)
N
set fo = (Nbz — D iy 0p,) * pe,,, and @ =1
for j=1,..., N, do

. — j_Niter L ]
8‘] ( Niter ) 87,77, (Niter) gend

¢ < L'-projection of @3,
set u; := argmin G, (u, ;1)
Ejvuj
Pji—1 )
set ;1= argmin G, (0, ¢) + A ()
if j% Ny, == 0& j > index then
solve (V, W) = (dF;,(Id), W)
set p; = pj(x —V)
end if
set p; = max{n, ¢, }
end for
end function
return ¢y, ., On,.,-

set 0; =

freq:

Figure 1.4: On the left the graph of ¢z on the right the one of oy, obtained via

the Joint Minimization Algorithm [2]
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Figure 1.5: Behaviour of the energy during the joint minimization iterations of Algo-

rithm 2

modification to Algorithm [I} Let us observe that the optimization of the component
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1.6. Numerical Approximation

A defined in equation ([1.35)) is the one responsible for the length minimization of the
support of o. Therefore it is reasonable to look for a gradient descent in the component
A.. In Algorithm [3| we implement such procedure. This method enhances the length

Algorithm 3 Length Minimization
Require: S ={zg,...,2n}, €in, Eends Nies, 0, index, Np..
function LENGTH MIN.(zo,. .., TN, Ein,s Eends Niers 5B, )
set fs = (Néxo - Zfil 5%) * Peena and Yo = 1
for j=1,..., N do

o — (Jd=Niter \ ~. _ [_J_
6‘] ( Niter )g’LTL (Niter> gend

¢ + L'-projection of go?,l
set u; := argmin G;J.(U, ©j-1)

€ Vu;
set ;1= gyrgmin G, (0j,0) + A(p)
if j% Ny, == 0& j > index then
solve (V, W) = (dA.,(Id), W)
set p; = pj(x+1T)
end if
set p; = max{n, ¢, }
end for
end function
return ¢y, ., On,.,-

set 0; =

minimization process since but has the drawback is that displacing ¢ and ¢ in the
direction —dA we could loose the divergence constraint. To avoid such eventuality we
perform several steps of Alternate Minimization after the displacement. In the next
figures we show the graphs obtained for the couple (on,.., ¥n.,) Via Algorithm |3 with
the choices f = 0.05, €;, = 0.5, €, = 0.05, = 0.05, N,,.. = 500 and index = 300. We
have chosen to make simulations for points located on the vertices of regular polygons
of respectively 3, 4, 5 and 6 vertices. A direct visual comparison between the obtained
results in Figure and the exact solutions in Figure [1.7]
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Chapter 1. Affine cost function

Figure 1.6: Graph of the couple (on,.,, ¢n,.,) Obtained via Algorithm [1]in the case of
3,4, 5 and 6 points located on the vertices of a regular polygon.

OO

Figure 1.7: Graph of the exact solutions to the Steiner Problem constrained as in the
previous figure.
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Chapter 2

Multidimensional case

2.1 Introduction

The content of this and the following chapter are the argument of the published pa-
per [CFM17bh]. We generalize the result obtained in the previous chapter to any ambient
space R". Indeed, since n > 2 we cannot take advantage of the localization procedure
described previously, namely divergence free vector valued measures may not be re-
garded as the rotated gradient of a BV function. For this matter we need to introduce
different techniques from the previous ones. Furthermore for scaling issues we need
to consider a p-laplacian energy rather than the elliptic one in the Modica-Mortola
component of the functional similarly to [Ghil4]. Here we take advantage of a result
from White [Whi99b, (Whi99a] to show that if the family of functionals is equibounded
in energy, then up to a subsequence we can extract a sequence of vector measures
converging to a 1-rectifiable vector measure. Furthermore the result is based on the
study of a dimension reduced problem which is studied in the appendix. This reduced
dimension problem has some analogies with the functional studied in [BDS96] in the
case of droplets equilibrium featuring measures with fixed total mass which concentrate
on atoms.

Let us define the approximating family of functionals precisely. Again let p, and
{t— be two probability measures supported on a countable number of points. Let
p: R™ — R, be a classical radial mollifier such that supp p C B;(0) and fBl(O) p=1
For e > 0, we set p. = e "p(-/¢). Consider vector fields satisfying equation

Vo, = (puy —p_)*pe in D'(R"). (2.1)

We also consider the functions ¢ € W'P(€,[n,1]) such that ¢ = 1 on 99, where
n = n(e) satisfies

n=pe" (2.2)
for some 5 € R;. We denote by X () the set of pairs (o, ) such that ¢ is as stated

above and o € L*(Q,R") satisfies equation (2.1)). This set is naturally embedded in
M(Q,R™) x L*(Q). For (0,p) € M(Q,R") x L*(Q) and p > n — 1 we set

1 - ) ?
Q

T (o, 01 Q) = (2.3)

400, otherwise.
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Chapter 2. Multidimensional case

Let X be the subset of M(Q,R") x L%(Q) consisting of those couples (o, ¢) such
that ¢ =1 and o = (m, 7, %) satisfies the constraint

V.o, =py — - in D'(R"). (2.4)

Given any sequence £ = (g;);eny of positive numbers such that ¢; | 0, we show that
F. 5 family of functionals I'-converges to

/ hg(m(z)) dH (z), if (0,9) € X and 0 = m7H'LY,
&3(0,9;Q) = ¢z (2.5)

400, otherwise.

The function hs : Ry — Ry (introduced and studied in Appendix [B)) is the minimum
value of some optimization problem depending on 5 and on the codimension n — 1 (we
note hg, with d = n — k in the general case 1 < k < n—1). In particular we prove that
hg is lower semicontinuous, subadditive, increasing, hg(0) = 0 and that there exists
some ¢ > 0 such that
< _fs(m)
“1++Bm
The I'-convergence holds for the topology of the weak-* convergence for the sequence
of measures (o.) and for the strong L? convergence for the phase field (¢.). For a

1
- <c¢ form >0. (2.6)
c

sequence (0., p.) we write (o, ¢.) — (0,¢) if 0. = o and || — ¢|z2 — 0. In the
sequel we first establish that the sequence of functionals (%, g). is coercive with respect
to this topology.

Theorem 2.1 (Equicoercivity). Assume that 5 > 0. For any sequence (0, ¢.) C
M(Q,R") x L*(Q) with € | 0, such that

yg,ﬂ(UsaSﬁ’s;Q) S FO < +OO7
there exists 0 € M(Q, R™) such that, up to a subsequence, (0., ¢.) — (0,1) € X.
Then we prove the I'-liminf inequality

Theorem 2.2 (I'—lim inf inequality). Assume that 8 > 0. For any sequence (0., p.) C
M(Q,R™) x L*(Q) that converges to (o,¢) € M(,R") x L*(Q) as e | 0 it holds

hl’ﬂul)nf yg_"ﬁ(o-{;‘j Pe; Q) > gﬁ(gv s ﬁ)

We also establish the corresponding I'-limsup inequality

Theorem 2.3 (I'-lim sup inequality). Assume that 8 > 0. For any (o,¢) € M(Q,R™)x
L*(Q) there exists a sequence (o, ) C M(Q,R"™) x L*(Q) such that

(0o ) =5 (0,9)  in M(Q,R™) x L*(92)

and

lim sup .Z. g(0., p.; Q) < (0, ¢; ).
el0
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2.2. Reduced problem results in dimension n — k

Notice that the coercivity of the family of functionals only holds in the case g > 0.
However, as | 0 we have the important phenomena:

hg @) cl+) pointwise,

for some ¢ > 0. As a consequence ([2.5)) is an approximation of ¢H!' (%) for § > 0 small.

In the first section of this chapter we anticipate the optimization problem defining
the cost function h,‘é and some results which are studied in the Appendix This
problem is studied independently as it is useful to obtain similar results for k-currents
replacing vector valued measures. This extension is studied in the following chapter.

2.2 Reduced problem results in dimension n — k

This section is devoted to introducing some notation and results corresponding to the
case k = 1. In the sequel, these results are used to describe the energetical behaviour
of the (n — k)-dimensional slices of the configuration (o, ¢.). We postpone the proofs
to Appendix [B.3| [B.4 and [B.5] We set d = n—k, p > d and consider ¢ to be a sequence
such that € | 0. Let B.(0) C R? be the ball of radius 7 centered in the origin. We
consider the functional

1— )2 II?
Go0.0i8) = [ | ver+ 24 2L o (27)

where ¢ € WP(B,) is constrained to satisfy the lower bound ¢ > S =: 5 and

¥ € L*(B,) is such that supp(d) C B; with 0 < 7 < r, |||y = m. This leads to define
the set

}/E,B(m’n 7:) = {(19’ 90) € L2(BT) X Wl?p(Brv [777 1]) : ”19”1 = m and supp(ﬁ) - Bf}7
and the optimization problem

hgﬂ(m,r,f): inf 9. 50, ¢; B,). (2.8)

YE,B(mv""i)

Let hf : [0,+00) — R be defined as

: Bm? ¥ o
oS =+ wa 7+ (d— 1) wa ¢5.(0,7) p,  for m >0,
Wq T

h(m) = (2.9)
0, for m = 0,
with
+o0
¢ (€,7) == inf {/r TP+ (1= 0)?] dt :oo(f) =€ and tEerooU(t) = 1} )
(2.10)

for r > 0, £ > 0. For a graph of the profile v realizing the infimum in the latter see
Figure B.I] We have the following results
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Chapter 2. Multidimensional case

Proposition 2.1. For any r > 7 > 0, it holds

h%nf he 5(m,r,7) > hi(m). (2.11)

There exists a uniform constant k = k(d, p) such that
hg(m) > K for every m > 0. (2.12)

Proposition 2.2. For fized m > 0 let r, be the minimizing radius in the definition of
hg(m) (2.9). For any 6 > 0 and € small enough there exist a function ¥, = clp, . with
c > 0 such that fBr Y. = m and a nondecreasing radial function . : B, — [n,1] such
that v-(0) =n, ¢. =1 on IB, and

9. 5(0c, ¢e; By) < h(m) + 6. (2.13)

Proposition 2.3. The function h% is continuous in (0,+00), increasing, sub-additive

and h$(0) = 0.

2.3 Compactness

We prove the compactness Theorem for the family of functionals (%, s).. Let us
consider a family of functions (o, ¢.):j0, such that (o, ¢.) € X.(2) and

§€7B<U€7@E;Q) < FO~ (214>
As a first step we prove:

Lemma 2.1. Assume 8 > 0. There exists C > 0, depending only on 2, Fy and B such
that

/\05\ <C, Ve (2.15)
Q

As a consequence there exist a positive Radon measure p € (R™,Ry) supported in Q
and a vectorial Radon measure o € M(Q,R") with V -0 = a;0,, and |o| < p such
that up to a subsequence

0. — 1 in L*(), loo| = pin M(R™), o. = o in M(R",R").

Proof. We divide the proof into three steps.

Step 1. We start by proving the uniform bound (2.15). Let A € (0,1] and let
Qo ={xeQ: p.>A\}.

Being 0. square integrable we identify the measure 0. with its density with respect to
Z". Therefore splitting the total variation of o., we write

lo-|(©2) :/ o] d:ic:/ o] d:L’+/ loe| dz.
Q Qx Q2
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2.3. Compactness

We estimate each term separately. By the Cauchy-Schwarz inequality we have

9N 1/2 1/2
[l ([ 25 ([ 2)
Q) Q. € Q, Pe

Since A < . < 1 on Qy and [, (¢c|oc?)/(e) dv is bounded by F. 5(0c, ¢e; ), from
the previous inequality we get

/|0!< /%l%P 1/2\/@<,/|Q|5F0
Q) o= Q. 9 AT A .

Next, in Q \ Q,, by the Young inequality, we have

2
2/ o] S/ Pl +/ c.
0\ oo, € o\Q, Pe

Using ¢. > (), n/e" = a and (1 — X)? < (1 —¢.)? in Q\ Q,, we obtain

1 <|oe|? " 1—9.)?  F F
[ eelfent, o puser n
O\, 2Ja ¢ 2n (L=A)? Jo et 2 28(1-))?

Hence
FO FO ‘Q‘SFO
)< = 4+ —————— —_.
ol =5+ ogaae T Vo

As 8 > 0, this yields (2.15)).
Step 2. We easily see from [,(1 —¢.)* < Foe"! that p. — 1 in L*(Q2) as € | 0.

Step 3. The existence of the Radon measures 1 and ¢ such that, up to extraction,
lo.| = pand 0. = o follows from (2.15). The properties on the support of p, on
the divergence of o and the fact that |o| < p follow from the respective properties of
O.. ]

We have just showed that the limit o of a family (0., ¢.). equibounded in energy is
bounded in mass. In what follows, we assume [ > 0 and that o. is bounded in mass.
We show that the limiting o is rectifiable.

Proposition 2.4. Assume 5 > 0 and that the conclusions of Lemma hold true.
There exists a Borel subset ¥ with finite length and a Borel measurable function 7 :
¥ — 8" such that o = 7|o|LY. Moreover, we have the following estimate,

7_[1<Z) < C*FO7
where the constant C, > 0 only depends on d and p.
This proposition together with Lemma [2.1] and Theorem [0.5| leads to

Proposition 2.5. ¢ is a 1-rectifiable vector measure and in particular 32 is a countably
H!-rectifiable set.
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Chapter 2. Multidimensional case

The latter ensures that the limit couple (o, 1) belongs to X and concludes the proof of
Theorem 2.1 We now establish Proposition

Sketch of the proof: We first define 3. Then we show in Lemma that for z € X,
we have liminf, o .%; g(oc, .; B(z,7;)) > kr; for a sequence of radii r; L 0 and ~ > 0.
The proof of the lemma is based on slicing and on the results of Appendix [Bl The
proposition then follows from an application of the Besicovitch covering theorem.

First we introduce the Borel set

Y= {l‘ €Q:Vr>0, |o|(B.(z)) >0 and 37 = 7(z) € S" ! such that 7 = lim, o ;fféf@%} :

We observe that by Besicovitch derivation theorem,
o =T|o|LY.

Next we fix 6 € (0,1/4™) and define

~ B,
I' .= {JcEZ : drg > 0 such that, M

4
< 0 for every r € (O,ro]} :
o] (Br(x))
We show that this set is |o|-negligible.
Lemma 2.2. We have |o|(I") = 0.

Proof. Let x € I'. Applying the inequality |o|(B,4(z)) < 8|o|(B.(x)) with r = ry, =
47%rg, k >0, we get |o|(B,,) < 6%|c|(B,,). Hence there exists C' > 0 such that

lo|(B,(z)) < Crn1/0)/(nd)

Letting A = (In3)/(In4), we have by assumption A\ > n. Therefore, for every £ > 0
there exists 1 = r¢(z) € (0,1) such that

|1(Bre(2)) < &]Br ()]

Now, for R > 0, we cover I' N Br with balls of the form Brg(x)(a:). Using Besicovitch
covering theorem, we have
I'NBr ¢ UYYB;

where N(n) only depends on n and each B; is a (finite or countable) disjoint union of
balls of the form B, (,)(zx). Then we get

lo|(TN Bg) < Zla! ' (n)¢|B;| < N(n)|Br1lé.

Sending £ to 0 and then R to oo, we obtain |o|(I") = 0. O

Set Y = % \ T, from Lemma , we have o0 = 7]|o|LX. Recall that . = supp p4 U
SUpp fi_.

44



2.3. Compactness

Figure 2.1: Illustration of the sections of B,, B,; and C,,. In grayscale we represent
the level sets of the function x,, (2")11_s .

Lemma 2.3. For every x € ¥\ .77, there exists a sequence (r;) = (r;(x)) C (0,1) with
ri 4 0 such that

hm&)nf Feploe, 03 B(x,ry)) > V2K 15,
1>
where Kk s the constant of Proposition (2.1,

Proof. Let x € ¥\ .. Without loss of generality, we assume = 0 and 7(z) = e;. Let
& > 0 be a small parameter to be fixed later. From the definition of X, there exists a
sequence (r;) = (rj(x)) C (0,d(x,.”)) such that for every j > 0,

o(By;)-e1 > (1=8lo|(B,,) and lo|(By,/a) > 0lo|(B,,). (2.16)

Let us fix j > 0 and set, to simplify the notation, r = r; and r. = r/ V2. Recall the
notation x = (z1,2’) € R x R"! and define the cylinder

Cr, ={z |z <r. and |2| <1}

so that C,, C B, and B,y C C,, /2, as shown in figure . Let x € C(R"1[0,
be a radial cut-off function such that x(z) = 1 if |2'| < 5 and x(2') = 0 for |2| >
Then, we note x,. (¢') = x(2'/r,) and for s € [—r,r|, we set

1;))

Vs € [_Tv T]a gz—:(s) = e / 0'5(5,.’17/) Xr. (17/) da’.
By,
Since o, is divergence free, e; - 0.(+, s) has a meaning on the hyperplane {z; = s}

in the sense of trace, moreover, g. is continuous. Now, let us fix 7 € [(1 — &)r,, 7] such
that u({—7,7} x B..) = 0 (which holds true for a.e. 7 € [(1 —&)r,,r.]) and let us define

the mean value,
1 7
Je = Q—f/_fga(s) ds.
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Chapter 2. Multidimensional case

* *
From 0. — o, |o.| — p, we have

1
limg. = [ — o (2) do(s,2') | -eq =: m. 2.17
€l0 g (27" /(_f,qa)xB;* X ( )) : ( )

From ([2.16)), we see that m > 0 for £ small enough. Indeed, we have
(1=9lo|(B,) < 2fm+ a(B,) - e
— / (1= xr.(2)1Zs) do(s,2') e

i

< 2fm+/ (1= Xr. (7)1 szy) dlol(s,2)

T

<2+ 0|(B) = [ x()1n diol(s. o)
Since by construction x,, (#')1[_#4# > 1p,,, using the second inequality of (2.16), we
have
m >

1
— (0 — B,) > 0,

(6 O)lol(B,)
for ¢ small enough. Similarly, denoting IT : R" — R"™!, (¢,2') — 2’ the orthogonal
projection onto the last (n — 1) coordinates, we deduce again from ([2.16)) that

VET (2.18)

m—f r.

o |(C,,) <

Now, for € small enough, we have V - 0. = 0 in C,,. Using this, we have for almost
every s,t € [—7, 7], with s < ¢,

9:(t) — g=(s) = / t [ /B oc(2',h) - V'xp, (2') da’| dh.

Integrating in s over (—7,7), we get for almost every t € [—r, 7],

1

27 (—#,7)xBL,

g-(t) — g. oi(h,2') - o(h,2') da’ dh
with
, h+ ) Vi (&) ifh <t
b(h ') = ( A) / ( /) |
(h—7)V'x,.(2") ifh>t

We deduce the following convergence

€l0 1

g:(t) —m — o¢(h,x') - do(h,z’) (2.19)

21 J (s #)x B,
in the L'(—7,7) topology. Using (2.18), we see that the above right hand side is

La}(l)utnded by cmiim. Taking into account (2.18) and the continuity of g., we conclude
a

liminf g.(t) > (1—0 Ve )m for te[-7,7].

el0 m—f
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2.4. T-liminf inequality

Next, by decomposing the integral we have

- g,
Fep(0c, 0e; By) /;T/, |:5P n+1|Vgo |p—}—( €n901) ‘Ps‘gs‘ :| do’ dt

_ / 2
> / / [ep‘”+1|V<ps|p+( nipls) + Pe|Xr. ()| } dsz’ dt.
—F . 9

(2.20)

9

Let us set
V(") = |xr, (7)o (t, 2)].

By construction ¥ has the properties:

e o€ Li(B]),
e liminf,. o fB;* VL(a') dz’ > liminf, g g.(t) > (1 — cif) m=m >0,
e supp(d?) C BL with 7 := 3r, <r,.

By definition of the minimization problem introduced in Section we have

o0z, 003 By) > / { inf 4. 5(09, v; B, } dt = / RS (e, ) dt.
,/5( ) = . (D,0)€Yz g (1i0,r,7) 7,3( ) s e,B ( )
(2.21)

Taking the infimum limit, by Fatou’s lemma and equation (2.12)) of Proposition we
get

liminf .Z, 5(o., vc; By) 2/ lim inf h?gl (m,r,7) dt > 27 k.
el0 . el ’

=T

The latter holds for almost every # € [(1—&)r,, r,] and eventually, since the r, = r/v/2,
we conclude
limig)nf Feploe,023Br) > V2K

]

The proof of Proposition is then obtained via the Besicovitch covering theo-
rem [EGI15].

2.4 TI'-liminf inequality

In this section we prove the I' — lim inf inequality stated in Theorem [2.2]

Proof of Theorem [2.3. With no loss of generality we assume that liminf. o .Z. (0., p:) <
+o00 otherwise the inequality is trivial. For a Borel set A C €2, we define

H(A) = lilg%nf Fep(0:, 03 A),

so that H is a subadditive set function. By assumption, the limit measure o is 1-
rectifiable; we write 0 = m7H!'LY. Furthermore we can assume o to be compactly
supported in 2. Consider a convex open set €2y such that supp(V-o) = . CC Qy CC Q
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Chapter 2. Multidimensional case

and let f :=1[0,1] x R™ — R" be a smooth homotopy of the indentity map on R™ onto
a contraction of ) into Qg such that f(¢,-) restricted to € is the identity map, for any
t € 10,1]. Let oy = f(t,-)fo, indeed liminf, g% (0y,1) > F(0,1) as 0, — o. Further
V -0y =V -0 since h(t,-) is the identity on .. Now we claim that

i (77)

lim inf > hg(m(z))  for H'-almost every x € 3. (2.22)

710 2r

Let us fix A > 1 and let us note hg (t) := min(hg(t), A). We then introduce the Radon
measure

H;\(A) ::/2 Ah/g,)\(m) dHl
N

Now, let 6 € (0,1). Assuming that (2.22) holds true, there exists ¥y C ¥ with
H(X\Xo) = 0 such that for every x € ¥, there exists ro(z) > 0 with

(1+6)H <B(:)§,r)> > %hga(m(z))  for every r € (0,ro(x)).

By the Besicovitch differentiation Theorem, there exists ¥; C ¥ with H'(Z\3;) = 0
such that for every x € ¥y, there exists ry(z) > 0 with

(1+ 6)2rhs(m(z)) > H, (B(oc, 7“)) for every r € (0,71(z)).

We consider the familly B of closed balls B(z,r) with z € XN ¥ and 0 < r <
min(ro(x),r;(z)) and we apply the Vitali-Besicovitch covering theorem [AFP00L, The-

orem 2.19] to the family B and to the Radon measure H}. We obtain a disjoint family
of closed balls B’ C B such that

H(Q) = Hy(Z) = > (Ble.)
B(z,r)eB’

<(+0? > H(Blr) < (1+07H(©).

B(z,r)eB’

Sending A to infinity and then ¢ to 0, we get the lower bound H(Q) > [, hg(m) dH'
which proves the theorem.

Let us now establish the claim (2.22)). Since o is a rectifiable measure, we have for
H!-almost every x € ¥ and for every ¢ € C.(R"),

3 [ el ) diolty) = miz) /R pltr(x)) dt (2.23)
and . o
o r(y) = 7(@)| dlol(y) = 0. (2:24)
B(z,r)nX

Let z € ¥\ S be such a point. Without loss of generality, we assume x = 0, 7(0) = ¢;
and m :=m(0) > 0. Let 6 € (0,1). Our goal is to establish a precise lower bound for
Feploz,9:;C) where C' is a cylinder of the form

C0 = {x € R" : |my| < or, |2/| <7},
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2.4. T-liminf inequality

For this we proceed as in the proof of Lemma [2.3] here, the rectifiability of o simplifies
the argument. Let x° € C>®(R"1,[0,1]) be a radial cut-off function with x°(z’) = 1
if |2/| < 6/2, x°(z') = 0 if |[2/] > §. For e > 0 and r € (0,d(0,09)), we define for
s € (—r,r),

gg”’(s) = e / o(s, ') X‘S(:c'/r) d’.
Rnfl
We also introduce the mean value

_T 1 T ,
g = o #gg’ (s) ds.

From ([2.23)), we have for » > 0 small enough,
—_— 1 T
o = —/ el / o.(s,2")X°(z'/r) dz ds > (1 — &)mm.
2T —r Rn—1

For such r > 0, we deduce from o, — ¢ that for £ > 0 small enough

N r
g(sv’r p— i 6,’!‘
e =
2r J_.7°

(s) ds > (1 —20)m. (2.25)

We study the variation of g>"(s). Using V - 0. = 0 in C?, we compute as in the proof
of Lemma [2.3],

7 1
gor(t) — g2 = o G(x' h) - o (2’ h) da’ dh
r (—=r,r)X Bsy
with
o(ha') = (h+ ) V'O (' /r) if h<t,
e (h— ) VX ) if h>t.

. . *
Using again the convergence o. — o, we deduce

el0 1

gg’r(t) — gg’r - oi(2' h) - do(2',h),

27 J(=r,r)x Bs,

in L'(—r, 7). Now, since e; - V/x? = 0, we deduce from (2.24) that the right hand side

goes to 0 as r | 0. Hence, for » > 0 small enough,

1
2r

/ (2’ h) - o(2' h) d’ dh| < dm.
(=r,r)X B

Using ([2.25]), we conclude that for » > 0 small enough and then for £ > 0 small enough,
we have
@ (t) > (1 —36)m, for a.e. t € (—r,7).

By definition of the reduced dimension problem, we conclude that

Feploe 0 CF) 2 205 (L= 35)m).
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Chapter 2. Multidimensional case

Sending ¢ | 0, we obtain
H(C?) > 2rhi' (1 — 30)m).

We notice that H(B, j35z,) = H(C?). Recall that for the case n — 1 we omit the
superscript in the definition of A, thus dividing by 24/1 + 62 r and taking the liminf as
r 0, we get
H(B —30m
g T Burizes) - R (1= 30)m)
0 2y/1+6%r V1462
Sending 0 to 0, we get (2.22) by lower semi-continuity of hg. O

2.5 [I'-limsup inequality
Proof of Theorem [2.3

Let us suppose 7 (0, ;) < 400, so that in particular ¢ = 1. From Xia [Xia04],
we can assume o to be supported on a finite union of compact segments and to have
constant multiplicity on each of them, namely polyhedral vector measures are dense
in energy. We first construct a recovery sequence for a measure o concentrated on
a segment with constant multiplicity. Then we show how to deal with the case of a
polyhedral vector measures.

Step 1. (o concentrated on a segment.)  Assume that o is supported on the
segment I = [0, L] x {0} and writes as me;H'L ;. Consider m constant so that V-o =
m(d.0) = d(z0)) and

&s(0,1;Q) = hg(m) H'(I) = L hg(m).

For § > 0 fixed, we consider the profiles

n, for 0 <t < r,e,

t m xp:__(2')
©.(t) = -, forr,e<t<r, and V= ——==——
P.() Us (6) Irnext>r 1 =T g (er)n !

1 for r <'t,

with r, and vs, defined in Proposition [2.2] with d = n — 1. Assume r, > 1 and let
d(x,I) be the distance function from the segment I and introduce the sets

Lo ={xeQ : dx,I) <re}, and I ={xeQ : dzI)<r}.

Set ¢.(x) = p.(d(z,I)) and o2 = (mH'LI) * p., where p. is the mollifier of equa-
tion (2.1)). We first construct the vector measures

1

0'61 =0. 6 and 0?(%,55/) = I (|2']

)61.

Alternatively, 02 = o * p for the choice pc(z1,2") = xp;__(2')/ wn—1(er)""'. Let us
highlight some properties of o! and o2. Both vector measures are radial in 2/, with an
abuse of notation we denote 7. (1, s) = 7. (z1,|2'|). Since, both ¢! and o2 are obtained

20



2.5. T'-limsup inequality

trough convolution it holds supp(o!) U supp(¢?) C I, . and they are oriented by the
vector e; therefore |o}| = 7! and |0?| = oJ.. Furthermore for any zy, it holds

[, o) o 226)
T1yX "‘E

1

1 and ¢2. To this aim consider a cutoff

We construct o. by interpolating between o
function (. : R — R, satisfying

Ca(t) =
C(t)

and define o, component-wise as

1 fort<ryeort>L—r.e, , 1
and Gel <
0 for2r,e<t<L—2r,.e, T4E

3 —
0'5'61—0,

'l

. |z
ol ei(zy, 7)) = —C(71) T / s"7? [ol(z1,8) — V.(s)] ds, fori=2,...,n.
0

|x/‘n71

The integral corresponds to the difference of the fluxes of ¢! and 2 through the (n—1)-
dimensional disk {z;} x B’. For 02 we have the following

n / |

Vool =—Cx)) [<|x/‘1n_1 3 (n’x]nlfﬁ) /le s"2 [GL (21, 8) — V-(s)] ds

=2
2

Ti 1= _
TR [T (21, [2"]) — 195(|1:’|)}} = —C(z1) [Fh(a, |2]) — 9(2])] . (2:27)
Let
o.=Col+(1—¢)o2+02.
In force of equation (2.27) and from the construction of ¢!, 6% and (. we have
V'Uezv'(CEUEI)‘i‘V'(1—C5)U€2+V-0§
=(V-ol+{@-9.)+V- o
=( V-0l =V (0xp.).

In addition for any (z1,2’) such that |2'| > r.e from ([2.26) we derive

|2'|
T n—1 —
ol ei(xy,2") = (1) e /0 s"H [ol(z1, 8) — Y.(s)] ds =0

which justifies supp(o.) C I,... Let us now prove

lim sup Z; g(oc, pe; Q) < Lhg(m) + C6.
el0

We split  as the union of Q\ I, C,.. :==I,N[2e, L —2¢] x R" ! and D, and D’,
as show in figure 2.2, where D, = {zy <2r,e}NI,,.and D. ={zy > L—-2r.e}NI, ..
On Q\ I, we notice that 0. = 0 and . = 1 therefore

ye,ﬁ(o'sa Pes Q \ Ir) = 0.
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Chapter 2. Multidimensional case

2ery L-— 2er,

Figure 2.2: Tllustration of the interval I and both its r and (r.e)-enlargement for r, > 1.
In grayscale we plot the levels of the function (., whilst the striped region corresponds
to the cylinder C,. .

Observe that |D.| = |D.| = Ce™, then we have the upper bound

2,.2
/ ]05|2dx§2m_7;* (/ p2d:L'+C>.
€ En B

Taking into consideration this estimate we obtain

1 — 2
ﬁ&,ﬂ(O-g,gOg; Da) = ‘9‘875(0‘& Pe; D;) < (En—?)gn(Da) + 2m2 ’I“z en—

(2.28)

Finally on C,. both 0. and ¢. are independent of x; and are radial in 2’ then by
Fubini’s theorem and Proposition [2.2] we get

L—2¢er,

o g(0erp; o) = / / G, 5(0er0.) < L (hy(m) +C3).
2 :

ETx

Adding all together gives the desired estimate. It remains to discuss the case r, < 1.
From the point of view of the construction of o. we need to replace the functions (.
with (., satifying

Ce (t) =

fort<eort>L—¢,

1
<
C(t)=0 for2e<t<L-2¢, N

]
a .

1
and -
€

This choice ensures that o. has all the properties previously obtained with r, € replaced
by ¢ accordingly. Define

n, for t < V/3e,

we(t) == 1—n
t—V3)+n, forv3e<t<r,

and set
¢ = min{p_(d(z, 1)), we(|z|), we(|lz — (L, 0)])}.

With these choices for . and o, the estimates follow analogously with small differences
in the constants.
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2.5. T'-limsup inequality

Q

Figure 2.3: On the left the striped region corresponds to supp(o.), remark that the
balls of radius v/3¢ centered respectively in (0;0) and (L;0) contain the modifications
we have performed to satisfy the constraint. On the right we illustrate the level-lines
of the cutoff function (. in grayscale.

Step 2. (Case of a generic o in polyhedral form.) Indeed, in force of the results
quoted in Chapter [1| it is sufficient to show equation ([2.3) for a polyhedral vector
measure. Following the same notation introduced therein let

N
o= ijHILZj Tj-

=1

With no loss of generality we can assume that the segments >J; intersect at most at
their extremities. We consider measures o satisfying constraint (2.4]) so that if a point
P belongs to ¥;,,...,3;, it must satisfy of Kirchhoff law,

Jjp

(2.29)

E :ijj:

- 0, otherwise.
1

Jr {Ci, if Pe. ..

where z;, is +1 if P is the ending point of the segment >J; with respect to its orientation,
and —1 if it is the starting point. Let o/ and ¢’ be the sequences constructed above
for each segment ¥, and define

N
oe=» ol and ¢, ijin{SOi}-
j=1

Let P; and @); be respectively the initial and final point of the segment »; and recall
that, by the construction made above, for each j
V.ol =m, (5Pj - 5Qa’) * Pe

then by linearity of the divergence operator, it holds

N N
V'USZZV'Ug:Zm]’ (5pj—5Qj)*pg
j=1 =1

and the latter satisfies constraint (2.1]) in force of equation (2.29). To conclude let us
prove that

N
lim sup % 5(0, ;) < E hg(my)H (). (2.30)
el0 -

J=1
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Chapter 2. Multidimensional case

Indeed the following inequality holds true

=z

Fep(000:0) <Y F 0,03 Q).
j=1

Suppose

supp(cl') Nsupp(cl?) N -+ Nsuppol” # &
for some ji,...,jp and all . Let 771, ... 7P be the radii introduced above for each
of these measures, let 7, = max{rl',...,ri? 1} , set m = max{m;,,...,m;,} and
consider Dj,, ..., D;, as defined previously. Since

2 Jjp
k S CZ|O’§‘2
k=1

and @, < ¢! for any j, we have the following inequality

Fe5(0¢, pessupp(olt) N -+ Nsupp(ol”)) <CZ (0F, % Dy).
k=j1

And by inequality ([2.28]) follows

2 jp
%(as,%;suppwgl)n-~msupp<agp>>SC< S+ )

k=j1

which vanishes as ¢ | 0. Let us remark that the intersection supp(c?') N supp(a?2) N

-« Msupp 027 is non empty for any ¢ only if the segments 3, ..., %;, have a common
point. Since we are considering a polyhedral vector measure composed by N segments
the worst case scenario is that we have 2V intersections in which at most N segments
intersects. We conclude

1_ 2 JP
Fep(0e, 9 ) <Zf%aa ul; Q) + O(N ><(TZ$" (Dy) +2m* 72 J-z)

g
k=j1

which, passing to the limit, yields inequality ([2.30)). O]
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Chapter 3

The k-dimensional problem

3.1 Introduction

In this chapter we analyze how to address the problem of approximating the k-dimensional
Plateau problem. In particular we aim at extending Theorems [2.1] and in
the case where the l-currents (vector measures) are replaced with k-currents. Let
0o € Py(Q2) a polyhedral k-current with finite mass and let . := supp(dog) be com-
pactly contained in 2. We want to minimize a functional of the type where the

set of candidates ranges among all currents Dy (€2) such that
OJo = doy in D*(R"). (3.1)
Let us introduce a parameter n = n(e) which satisfies
n(e) = B for BER, (3.2)

and let X_(Q) be the set of pairs (0., p.) where p. € W'?(Q, [n,1]) and has trace 1 on
0f) and o, is of finite mass with density absolutely continuous with respect to Z". In
this case we identify the current o, with its L'(Q, Ax(R")) density. Furthermore as in
equation given a convolution kernel p. we impose the constraint

do. = (Doy) * pe in D*(R").

For (0., p.) € Dp(Q) x L*(Q) let

p—n+k P (1 - §06>2 (p5|05|2 .
yekﬁ(o—aa Pes Q) = /S; |:€ ’V%! - gn—k * 5 dl’, if (067905) < XE(Q>7
400, otherwise.
(3.3)
Let us denote with X the set of pairs (o, ¢) such that o is a k-rectifiable current
satisfying and ¢ = 1. In this section we show that for any sequence ¢ | 0 the

[-limit of the family (#f;).cr, is the functional

_ hg_k(m(aj)) dH*(z), if (o,¢0) € X,

(gaéﬂ(g, ©; Q) = /suppa (34)

400, otherwise in M (2, R") x L*(Q2),
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Chapter 3. The k-dimensional problem

where the function hg_k : Ry — R, is the function obtained in Appendix |B| for the
choice d = n — k and is endowed with the same properties stated in Chapter 2. In
particular under the assumption p > n — k we first prove a compactness theorem.

Theorem 3.1. Assume that 3 > 0. For any sequence ¢ | 0, (0., p.) € Dp(Q) x L*()
such that
32.’?/8((757906;9) < Fp < 400

£

then o. — 1 in L*(Q) and there exists a rectifiable k-current o € Dy(Q) such that, up
to a subsequence, 0. — o and (0,1) € X.

Then we show the I'-convergence result, namely
Theorem 3.2. Assume that 5 > 0.

1. For any (0,¢) € Dp(Q) x L2(Q) and any sequence (0., ¢.) € Di(Q) x L*(Q) such
that (0., v:) — (0,¢) it holds

lim inf 25 (02, 0:: Q) 2 65 (0.¢: ).
2. For any couple (0, ) € Di(Q) x L3(Q) there exists a sequence (0., p.) € Dy(Q) x
L*(Q) such that (0., .) — (0,¢) and
lim sup ﬁiﬂ(aa, ;) < g;(@ 0; Q).

el0

3.2 Compactness and k-rectifiability

Proof of Proposition[3.1. By the same procedure of Lemma [2.1] we obtain

Fy Fo ] e Fo
[(S) e A -
ol =5+ soa—ne X\

and
/(1 — @5)2 <"k F,.
Q

Therefore by the weak compactness of D(€2) we obtain the existence of a limit k-
current ¢ a limit measure y and a subsequence € such that o, = o, |o.| = p. As in the
1-dimensional case it is still necessary to prove the rectifiability of the limit current.
This is obtained by showing that the support of ¢ is of finite size.

Step 1. (Preliminaries and good representative for v € A, (R™).)  Let us introduce
the set
7= {I:(Zl,,Zk)1§11 < lg < v e <2k§n}

and denote e; = e;, A --- Ae;,. So that Ay(R"™) is the Euclidean space with basis
{er}rer. Let v € A,(R"™) and consider the problem

ap=max{a e R :v=afy \--- AN f+1:
(f1,..., f) orthonormal basis, t € (fy A--- A fi)"}.
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3.2. Compactness and k-rectifiability

Notice that ag > 1/4/|Z|. Assume that the optimum for the preceding problem is
obtained with (fi,..., f,) = (e1,...,¢e,). We note

v = apep, +Za161+2a161
1€l Ieg
with Iy = (1,...,k) and
Too={I=0(iy,....0x) €T : 1<iy < - <ipy <k <ip <n},

We claim that a; = 0 for I € Z;. Indeed, let Iy = (eq,...,e-1,€141,.-.,€r,€x) € Iy
and for ¢ € R, let e® be orthonormal base defined as

e =ef for i # {l,h}, e; = cos(p)e! — sin(¢)ey, e, = sin(¢)el + cos(d)el.
In this basis
v = (agcos(¢) + ar, (—1)F'sin(¢)) e +t°, with w? € (e?)*.
By optimality of (eq, ..., e,) we deduce a;, = 0 which proves the claim. Hence we write
v = aper, +t, witht € spanfe; : I € J}. (3.6)

Now we let Let 6 € (0,1/4") and ¥ be the set of points for which there exists a sequence
r; 4 0 such that

o(B,,(x))

0](B,, ()
0(B,, (@) =0

—s w(z) € SALR™)  and o](B,,(z)) =

In particular w is a |o|-measurable map and we have 0 = w |o|LX.

Step 2. (Flux of o. trough a small (n — k)-disk.) Consider a point z € ¥ \ .7,
with no loss of generality we assume x = 0. Let v = w(0), up to a change of basis, by
equation (|3.6)) we write

v =aper, +t, witht € span{e; : [ € J}.
Let j sufficiently small, such that B, N . = & and
o(B,)) v > (1-€)lol(B,,). (3.7)

Set, to simplify notation, r; = r and 7, = r/v/2. For € R" we write (2/,2") €
R* x R"* for the usual decomposition and denote B!, B’ the k-dimensional and the
(n—k)-dimensional ball respectively. Let x € C*°(BY) be a radial cut-off function with
x(z") =1 for |2”| < 1/2 and x(z”) = 0 for |2"| > 3/4. Set x,,(z") = x(a”/r.), then
since o, is a L' function for € > 0 we can define

go(') = / Yo (2 {os e1,) da” = / xou (&) da” (3.8)
B B

" 7
T T
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Chapter 3. The k-dimensional problem

for any 2’ € B, . Let us compute 9,g.(z') for [ € {1,...,k}. Since do. = 0 in B,, it
holds (0., dw) = 0 for any smooth (k — 1)-differential form w € D*(B,). Choosing
w of the form

w=0(z)dzy A... de_g A daggg A A dag, (3.9)

we obtain
dw = (=1)"1'9,8(z) dzy A -+ A day+

d
Dl Z OpB(x) dzy Ao dzpy A dagg A--- A dag A day,.
h=k+1

Denote 0! = (0, '), then imposing (0., dw) = 0 for every 8 € C°(B,) in (3.9) yields

(—1)F9,0° + > Aol = 0.

he{k+1,...,d}
I=(1,...,l—-1,1+1,....k,h)

Hence,

1)kl
g9 (2) = (=1) Z onxr. (2ol da”. (3.10)

Let us introduce the notation

denoting with V' the gradient with respect to 2/, equation (3.10|) rewrites as

1
V'ge(a') = —/ Y (a:) ol da”. (3.11)

Ty T

Where Y is smooth and compactly supported in Bf and with values into the linear
maps : span{e; : [ € Z;} — RF. Let us prove that, for some 7, the functions g.
converge in BV-x to some ¢. First for a.e. choice of 7 € [(1 — &)r,, 7] it must hold
w(OB,, x By ) =0 so that

g-(z') = /” xr (") (0, e,) da” == /” Xr. (") d{o,er,) =: g(2'). (3.12)

Secondly we define the mean value

= 1 / / 1 " 0 /
g=— [ g@)dd = — / Xr (2") do”| d2’.
Bl /e B Jy [ .

and taking advantage of (3.7 and the definition of 3, we see that

_ 0 |o1(B:)
g = (ﬁ—f) B > 0.
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3.2. Compactness and k-rectifiability

On the other hand, denoting I : R® — R" %, x + 2", from ({3.6]), we have
0
[Ho|(B: x By,) < /3¢ (\/ﬁ - f) | B g.
Now from (3.11)) - - (3.12)) and the latter we obtain

<D/g, ¢> = l/ ¢($I) Y (.T_) dohr and |D’g|(B7’;) < C |Bf‘ \/Eg
B x B!, .

Ty Ty r

Finally from Poincaré - Wirtinger inequality and the convergence g. — g in L'(B.) is
easy to show that for any sufficiently small ¢ the sets

AE:{xEBf :gs(x)zg}

are such that |A.| > |B.|/2.

Step 3. (Conclusion.)  Set 9.(z',z") = |x,,(x")o?| and observe that for fixed z’
by construction

/ Do (o 2") da” = g.(2).
B’I’*

Therefore for any 2’ € A it holds [, 9.(a',2") dz" > §/8. Furthermore supp(¥.(z')) C
Bl with 7 := %r* < r4. Now, by Fubini

€

_ 2 /oY |2
2/ / {ef"”*‘“lwelu (L= ) | pelbe(@, )] } da” da’
A, ;/* en

1— € 2 elVe 2
ysk,ﬁ(aaa@e;Br) Z/ / |:€p_n+k|V905|p+ ( gni) + L4 |U ’ } dl’” d$,
Ac 4

(3.13)
With the notation introduced in section [2.2] and by definition of A,

Z. ‘B, > inf @k (9. 0) da’
«p(0e 0 Br) 2 /A (9,0)EVs 5(3/87) ca(0s ) do

— / h'5* (g/8,r,7) da’

= hi5" (9/8,7,7) |Ad.
Taking the infimum limit, by Proposition [2.1] in particular equation (2.12) we get

Bl
llrgénf T g(0e, pe; Br) > hng&)nf h25" (/8,7 7) |Adl > R 5 (3.14)

Recall that the latter stands for a.e. 7 € [(1 — &)r,,7.] and r, = r/+/2 thus we may

rewrite

wkr"’

c 91+k/2"

limui)nfﬁelfﬁ(UmSDaBr) e

As in Lemma we conclude applying Besicovitch theorem to obtain H*(¥) < +o0.
Finally, thanks to the latter and equation (3.5)), White’s rectifiability theorem [Whi99b,
Thm 6.1] applies and o is a k-rectifiable current. ]
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Chapter 3. The k-dimensional problem

3.3 [-liminf inequality

Proof of item 1) of Theorem . With no loss of generality we assume that
liminf, 4?5’“7 8 (0-,p:) < 400 otherwise the inequality is trivial. For a Borel set A C ,

we define
Hk’(A) = IIH{L%)Hf ﬁ‘:ﬁ((fg, Pes A)7

&

so that H* is a subadditive set function. By assumption, the limit current o is k-
rectifiable; we write 0 = m 7 H*L Y. We claim that

H* (B(ac, 7“))
liminf ————~

0 wy TF
Assuming the latter the proof is achieved as in Theorem[2.2] To establish the claim (3.15)

we restrict our attention to a single point and we assume x = 0, m = m(0) and
7(0) = ey A -+ Aeg then for any £ > 0 there exists o = r(£) such that

> hg_k(m(:v)) for H*-almost every = € ¥. (3.15)

(o,ex N+~ Neg)(By) > (1 =¢)|o|(B,) and

0|(B,) (3.16)

(1-¢m < = < (1+&)m, for r < ry.

WET

Let § be an infinitesimal quantity and set, for r < rq, # = v/1 — 62 r and 7 = ér and
define the cylinder

Csrler, A= Ney) = Csp o= {(2';2") € RF x R*™ : |2/| <7 and |2"| < F}.

Let x(2”) be the radial cutoff introduced in the previous proposition and set yz(z") =

x(z"/7), 0¥ = (0.,e1 A -+ Aeg) and for any 2/ € Bl set

)= [ el dloen) = [ sl aot

as in equation (3.8). Up to a smaller choice for ry we can assume B,.N.% = & therefore
Jol_B, = 0, and from equations (3.8 - (3.11]) it holds

V'g.(z') = % /B Y(%) o2t

For a.e. choice of ¢ it holds |o|(0B: x BY) = 0 therefore, for any such choice, 7.
converges in BV (B;) to

g(a') = /B xe(@")do® and - (D'g,¢) = < /B LCoR (x—) do™.

r r

Now we use (3.16]) to improve the estimates on g and |D’g|. Indeed, for ¢ sufficiently
small, 7 < 7/2 therefore By C B} x B/ and
1

limg. > (1 —&)—— () dlo] > (1= &)%m.
é}fggg_( €)|B;,| B;XB;/X*(JI) lo| > (1 =&)™m
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3.4. T'-limsup inequality

and denoting IT: R* — R" %, z — 2’ we have

C'|B,
Hol(C) < (1+ )V Bl m  and | Dgl(By < SIBLVEm
7
Choose r sufficiently small then by Poincaré - Wirtinger inequality there exists a set
A of almost full measure in B; such that g.(z') > (1 — £)*m, and following the proof
of the previous lemma (Step 3) up to equation (3.14]) we get

.. k . s n—k 2 ~
llrg/(l)nf F5(0e, 0 Byr) > hIilul)Ilf he (1 =82 m,r,7) Al

Since ¢ and § are arbitrary and |A| can be chosen arbitrary close to |B;| applying
Proposition [2.1| with d = n — k to the latter we conclude

lirg%nf FLEy(0e, ¢e5 By) > hZ’k (m) wyr®.

3.4 TI'-limsup inequality

For the lim-sup inequality, we start by approximating ¢ with a polyhedral current:
given 0 > 0, there exists a k polyhedral current ¢ satisfying 06 = 0oy and with
F(¢ — o) < 6 and &,(6) < &,(0) + €. This result of independent interest is established
in [CFM18]. A similar result has been proved recently by Colombo et al. in [CDRMS17,
Prop. 2.6] (see also [Whi99bl Section 6]). The authors build an approximation of a
k-rectifiable current in flat norm and in energy but their construction creates new
boundaries and can not ensure the condition do = doy.

Proof of item 2) of Theorem [3.3:
By [CEMIS8, Theorem 1.1 and Remark 1.6] we can assume that o is a polyhedral

current. We show how to produce the approximating (0., ¢.) for o supported on a
single k-dimensional simplex (). We assume with no loss of generality that Q C R,
and that o writes as

mHkLQ/\(€1/\"'/\€k).
For § > 0 fixed, we consider the optimal profiles
7, for 0 <t < r.e,

m XB;'/*E (ﬂf”)

Wk (€7, )" F

t
P.(t) == vs (—> , forre<t<r, and R
€

1 for r <t,
with r, and vs, defined in Proposition for the choice d = n — k. We denote 0Q)

the relative boundary of @) and given a set S we write d(z, S) for the distance function
from S. Recall that we use the notation S; for the t-enlargement of the set S and S’
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Chapter 3. The k-dimensional problem

to denote its projection into R*. We first assume, as did for the case k = 1, r, > 1,
and introduce (. a 0-form depending on the first k variables 2/, satisfying

(2" =1, for 2’ € (0Q);.. ={r € Q : d(a',0Q) < r.e},

C(a") =0, for 2’ € Q\ (0Q)y,...,

1
| d¢ | < —.

T'4E

Then we proceed by steps, first set . := (|o| * p.)
ol =Gley N ANep  and  oZ(2,2") =9 (|27]) Aler A Aey).

and observe that supp(c!)Usupp(c?) C Q,.,., both ¢! and o2 are radial in 2" and with
a small abuse of notation we denote 7:(z/,s) = 7.(2/, |2"]), finally for any 2’

/{ L B = (e e =
&'} xBY,.

Now we take advantage of (. in order to interpolate between o! and o2, note that such
interpolation may affect the boundary of the new current therefore we first introduce
o2 which corrects this defect. In particular set

N|

n . |
oz, 2") = — Z [M”x\ﬁ /0 s"TRL (2, s)0.(s)] L ¢ ds| Ae,

i=k+1
and
O = U;I_Cg + ‘752‘—<1 — )+ U?-

With this choice by a calculation similar to equation (2.27)) it holds

Oo. = —00 * p.L(. — ol d(. — 0oL (1 — () +02L d¢. + do? = () * p..
=0
On the other hand the phase-field is simply defined as ¢.(z) = @.(d(x,Q)). In the

case 1, < 1 we need to modify the construction. For o, it is sufficient to replace every
occurrence of (. with (., which satisfies

() =1, for 2/ € (0Q). :=={x € Q : d(«/,0Q) <&},
G(2') =0, for 2’ € O\ (0Q)s.,

o1
lag| <=
€
Now let
n, for t < V/3e,
we(t):=< 1—n
t—/3)+ , for\/ﬁégtgr.
r—\/ﬁ( )+
and set

pe = min{g, (d(z, Q)), we(d(x,0Q))}.
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3.5. Discussion about the results

Remark 1. Given a polyhedral current o such that do = doy we perform our con-
struction on each simplex and define o. as the sum of these elements. The linearity
of the boundary operator grants that do. = dog * p.. The phase field is chosen as the
pointwise minimum of the local phase fields. Finally the estimation for the I'-limsup
inequality is achieved in the same manner as Theorem [2.3]

[]

3.5 Discussion about the results

By Lemma for any fixed d = n — k the cost function h% pointwise converges as
B 1 0 to the function

h(m) K, for m > 0,
"™ =N0, itm=o0,

where x is the constant value obtained in Proposition and depends on d. This
condition is sufficient to prove that the family of functionals &%, parametrized in j,
I'-converges to the functional

kHEENQ), foro=m7THLY,
EMo:Q) =
400, otherwise.

As a matter of fact for any sequence o3 — o in Dy (€2) it holds

liminf & (o: Q) > &5 (: Q)
Hgfon B(ga )— (07 )

since hg(m) > k. On the other hand setting o3 := o we construct a recovery sequence
for any ¢ and obtain the I'-limsup inequality

lim sup g[éf((}'/@); Q) = limsup éaﬁl“(a; Q) = & (0; Q).
B0 B0

This allows to interpret our result as an approximation of the Plateau problem in any
dimension and co-dimension.
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Chapter 4

Piecewise affine cost functions

4.1 Introduction

The present chapter is the result of a collaboration with Benedikt Wirth and Carolin
Rossmanith from Mnster University. We generalize the approach of Chapter [1| to the
case in which the cost function h is piecewise affine. Let N € N and co > ag > a1 >
o> any>0,0=0) < 1 < < By < oo, we define the piecewise affine transport
cost h : [0,00) — [0, 00),

h(m) = minN{ozim + Bi} .

1=0,...,

If ap = oo we interpret h as

—— ifm =0,
m =
min;,—y_y{a;m + B;} else.

We first remark that if oy = oo the right derivative of h in the origin diverges, then
én(0) is finite if and only if ¢ is a rectifiable vector measure as stated in [CDRMS17,
Proposition 2.7]. On the contrary, in the case ay < oo, the energy &), may be finite
on more complicated structures. Consider the usual probability measures py and p_
which, in the case ay < oo may be considered diffuse, and let ¢ be a vector measure
satisfying the constraint V- o = pu, — p_. Recall that in force of the Generalized
Gilbert-Steiner formula presented in Proposition and our choice of h we have

& () :ao\aﬂ(QH/zh(m) A,

in the latter ap = h/(0), the right derivative in 0. Above we have decomposed o as
=0t +mrH'LE

where (m, 7,X) is an H! rectifiable measure and o is H!-diffuse.

The functional proposed in this chapter resembles the one introduced in the first
chapter. Let us remark that in the first chapter we were able to recover in the limit
any affine cost function of the form 1+ §|m/|. Here we rescale the functional presented
therein and introduce multiple phase fields, each one responsible for a different com-
ponent of the piecewise affine cost function. The constraint component is modified to
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Chapter 4. Piecewise affine cost functions

let interact the different phase fields. Let us be more formal. We let X*+#- denote
the space of (N + 1)-uples (0, ¢1, ..., ¢n) where o € M(€, R?) such that

Vo= (up —p-)*p-

and p; € L' (Q) for each i = {1,..., N}. Eventually we let

L%(J,gpl,...,gpN):/QwE (ag,% lo(z > daH—Z@ ©i),

where we abbreviated (with some p > 1)

zd-3 [ [e|w<x>|2+w] d,

Ye(x) = min {gpl 24 52/51} ,

_17 7

e ‘JI : Q
= if |o| < 2o
We (QO,MJU(ZE)!) =2 o _ | |_7;/E + eP|o(z)]? for ap < o0,
£ a(lo] — 59) if o > 2%
2
We (ao, T :U), |a(x)|) = 2 ol for ag = 0.
3 e 2

(4.1)

Remark 2 (Motivation of w. (ao, =) o (z )|) via relaxation). Keeping the phase

fields ¢4, . . ., @y fixed and ignoring the regularlzmg term e”|o|?, the integrand w.(ap, =, |o|)
is the convexification in o of

2 2.2 2 2 2 2 2 9
min {040|0|7 (1 + a1e”/B1)]|o] (o + ane?/Bn)|o| } — min {a0|a| Ve |o| } 7

2¢e Y 2e e 2

2

which shows the intuition of the phase field functional much clearer. Indeed, the
minimum over N + 1 terms parallels the minimum in the definition of h, and the 7*®
term for ¢ = 0,..., N describes (part of) the transportation cost a;m + ;. However,
since the above is not convex with respect to o, a functional with this integrand would
not be weakly lower semi-continuous in ¢ and consequently possess no minimizers in
general. Taking the lower semi-continuous envelope corresponds to replacing the above
by we(ao, =, |o]) (note that this only ensures existence of minimizers, but will not
change the F limit of the phase field functional).

Note that the pointwise minimum inside 7. is well-defined almost everywhere, since
all elements of X/+#- are Lebesgue-measurable. Note also that for fixed phase fields
©1, ..., oy the phase field cost functional .%, is convex in 0. This ensures the existence
of minimizers for .%,, which follows by a standard application of the direct method as
it will be shown in the following section. Eventually we extend the functional on the
whole M (2, R?) x LY(Q)" letting (N + 1)-uples (0,01, ..., pn) we let

Fe(0,01,...,pN) = 00
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4.2. Remarks

if (0,¢1,...,¢0n) € X.. For consistency we introduce the set X consisting of those
(N + 1)-tuples (o, ¢1,...,on) such that each ¢; = 1 for each i and 0 € M(Q,R") is
a vector valued measure satifing the constraint

Vo =pp—p-.

Then we define the limit energy

(goh(o-)’ if (0-’9017"'a90N)€Xa
~+00, otherwise.

E(0,01,...,0oN) = { (4.2)

In particular in this chapter we will prove the following theorems.

Theorem 4.1 (Convergence of phase field cost functional). For admissible py,p_ €
P(§2) we have
I'-lim.%. =&,

where the T-limit is with respect to weak-+ convergence in M(Q;R?) and strong con-
vergence in L*(Q)N.

In the above we say admissible since we will implicitly assume that if ag = oo then
p— and py are supported on a countable number of points. The proof of this result
is provided in the next section. Together with the following equicoercivity statement,
whose proof is also deferred to the next section, we have that minimizers of the phase
field cost functional .#. approximate minimizers of the original cost functional &.

Theorem 4.2 (Equicoercivity). For ¢ — 0 let (0°,¢5,...,¢%) be a sequence with
uniformly bounded phase field cost functional F.(0%,¢5,...,¢%) < C < oo. Then,
along a subsequence, o° = o in M(Q;R?) for some 0 € M(Q;R?) and ¢ — 1 in
LY(Q),i=1,...,N. As a consequence, if ji,, i € P(Q) are admissible and such that
there exists o € M(Q,R?) with &(o,1,...,1) < oo, then any sequence of minimizers
of F. contains a subsequence converging to a minimizer of & as e — 0.

4.2 Remarks

Before moving to the proofs of the results previously stated let us stress out some
important remarks.

Proposition 4.1 (Existence of minimizers to the phase field functional). The phase
field cost functional Z. has a minimizer (o,¢1,...,on) € Xe.

Proof. The functional is bounded below by 0 and has a nonempty domain. Indeed,

choose ¢; = ... = ¢y = 1 and 6 = Vo, where ) solves Ayp = p — p° in Q with

Neumann boundary conditions Vi) - v5q = 0, vy being the unit outward normal to

Q. (Since [, pu5 — p° dz = 0, a solution 1) exists and lies in W*?(Q2) by standard

elliptic regularity.) Obviously, (7, ¢1,...,¢n) € Xt+H- with Z. (6, ¢1,...,Pn) < 00.
Now consider a minimizing sequence (0%, %, ... ©%) € Xp+r= k€ N, with

Fo(ok o ok — inf Z.
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Chapter 4. Piecewise affine cost functions

monotonically as k — oo. Since .Z. is coercive with respect to H = L*(Q;R?) x
WLV (o, o, ..., ¢%) is uniformly bounded in H so that we can extract a weakly
converging subsequence, still indexed by & for simplicity,

(0", @, .. o) = (0,01, on)

Due to the closedness of X! +#- with respect to weak convergence in H we have
(0,01,...,0on) € XttH=_ Note that the integrand of .Z. is convex in o(z) and the
Vpi(x) as well as continuous in o(z) and the ¢;(x), thus .Z. is lower semi-continuous
along the sequence. Indeed, consider a subsequence along which each term .7 [pF]
converges and along which the ¥ converge pointwise almost everywhere (so that also
VE(x) = mini—y v {F(2)? + a2e?/B;} converges for almost all z € Q). By Mazur’s
lemma, a sequence of convex combinations Z;”:’“k )\;‘.’Jj of the o* converges strongly (and
up to another subsequence again pointwise) so that by Fatou’s lemma we have

inf.Z. = lim Z.(c", %, ..., o%)
k—o00
= HOREIE. +i5 fim (¢!
T e QwE @0, T 17T T2 P En el
mg (
k 5
>klggozk)\]/w€ <a0, o (z > d:c—i—Zﬁz
]:
S 7 (x)
leli’ggf;/\f% (ao, 58 o? (x ) d:L‘—{—ZﬁZ

mi .
imi k mf 228
Z/llgng;Ajwe (Ozo’iklg.f,mk £ lo? @ ) dx—i—ZBl
]:
Mol (x ) dx+2&9
=1

> | liminfw, | aq, 1nf
o k—oo i=k,...,mg

_’g‘( 9017"'7901\7)7

where we exploited the weak lower semi-continuity of .7, the monotonicity of

We (040 ) 2e(2)

continuity in its latter two arguments. O]

(3:)]) in its second argument, its convexity in its last argument, and its

Remark 3 (Regularization of o). Note that the phase field cost functional .7, is
L?(Q; R?)-coercive in o, which is essential to have sequentially weak compactness of
subsets of X/ +#- with finite cost (and as a consequence existence of minimizers). For
@y < 0o this is ensured by the regularization term e?|o|? (which has no other purpose).
Without it, the functional would only feature weak-* coercivity for o in M(Q; R?),
however, the integral [, w. (v, 2 =) o (z )]) dz with 7. Lebesgue-measurable would in
general not be well-defined for o E M(Q; R).

Remark 4 (Phase field boundary conditions). Recall that we imposed boundary con-
ditions ; = 1 on 0f2. Without those, the recovery sequence from the following section
could easily be adapted such that all full phase field profiles near the boundary will be
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4.3. The T'-limit of the phase field functional

replaced by half, one-sided phase field profiles. It is straightforward to show that the
resulting limit functional would become

min{ogm,a;m+ By, ...,aym+ By}
pITe)

+/ min{agm,a;m+ £1/2,...,aym+ fn/2} + aolal](ﬁ),
$NOQ

where fluxes along the boundary are cheaper and thus preferred.

Remark 5 (Divergence measure vector fields and flat chains). Any divergence measure
vector field can be identified with a flat 1-chain or a locally normal 1-current (see
for instance [SO7, Sec.5] or [BWI7, Rem.2.29(3)]; comprehensive references for flat
chains and currents are [Whi57, [Fed69]). Furthermore, for a sequence ¢/, j € N, of
divergence measure vector fields with uniformly bounded ||V-07|| »(, weak-* convergence
is equivalent to convergence of the corresponding flat 1-chains with respect to the
flat norm [BWI17, Rem.2.29(4)]. Analogously, scalar Radon measures of finite total
variation and bounded support can be identified with flat 0-chains or locally normal
O-currents [Whi99bl Thm. 2.2], and for a bounded sequence of compactly supported
scalar measures, weak-x convergence is equivalent to convergence with respect to the
flat norm of the corresponding flat 0-chains.

From the above it follows that in Theorems and [4.2| we may replace weak-* con-
vergence by convergence with respect to the flat norm. Indeed, for both results it suf-
fices to consider sequences (0%, ¢5, ..., ¢% ) with uniformly bounded cost .%.. For those
we have uniformly bounded ||o¢||r¢ (by Theorem as well as uniformly bounded
IV - o|m = |5 — 1% || am so that weak-+ and flat norm convergence are equivalent.

4.3 The I'-limit of the phase field functional

In this section we prove the I'-convergence result. As it is canonical, we begin with the
lim inf-inequality, after which we prove the lim sup-inequality as well as equicoercivity.

4.3.1 The I'-liminf inequality for the dimension-reduced prob-
lem

Here we consider the energy reduced to codimension-1 slices of the domain 2. In our
particular case of a two-dimensional domain, each slice is just one-dimensional, which
will simplify notation a little (the procedure would be the same for higher codimensions,
though). The reduced functional depends on the (scalar) normal flux ¥ through the
slice as well as the scalar phase fields ¢y, ..., N restricted to the slice. First observe
that any measure 9y € M(I) can be decomposed into its atoms and a remainder, namely

¥ = myHLSy + 9+,

where Sy C I is the set of atoms of ¥, my : Sy — R is HOL Sy-measurable, and
Y+ contains no atoms. Analogously to the functional introduced above we define the
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Chapter 4. Piecewise affine cost functions

reduced cost functional 4, (-; 1) : M(I) — [0, 0),

Y hllmg(a))) + K (©O)9*|(1)

xE€SyNI

for ap < oo and otherwise

ZIES&HI h(|ml9(3:)‘) lf ’l?J‘ e
o0 else.

gh(lg,[) = {

Its extension to M(I) x L*(I)N is G(-; 1) : M(I) x L*(I)N — [0, 0),

G, (0 1) ifp=...= = 1 almost h
%(ﬂ,gpl,...,goN;I):{ W(0; 1) if ¢y ON almost everywhere,

00 else.

For any (9, ¢1,...,0n) € L?(I) x WH2(I)N we define the reduced phase field functional
on [ as

gg(ﬁ,cpl,...,gpN;]):/w€<a0,%(x), ) > dx+2@ (i 1],
I

0= [ [P+ M] e

2 €

with w. and 7. from equation . Eventually we extend the above functional on
M(I) x LYZ)N by setting 4.(9, ¢1,...,on;1) = +oo if (9,p1,...,0n) & L*(I) X
W1,2 (I)N

For notational convenience, we next introduce the sets K; on which the pointwise
minimum inside &. (or also .Z.) is realized by the i*" element.

Definition 2 (Cost domains). For given (9,1, ...,pn) € L2(I) x WH2(I)N we set

QpE
i = K0, 10w D) = {i € 1| 060 > ; }

K = KW, ooni D) = {z € INUZKG |0

The sets are analogously defined for (o, ¢1,...,¢on) € L*(;R?) x WH2(Q)N, where
we use the same notation (which case is referred to will be clear from the context).

We now show the following lower bound on the energy, from which the I' — lim inf
inequality for the dimension-reduced situation will automatically follow.

Proposition 4.2 (Lower bound on reduced phase field functional). Let I = (a,b) C R
and 0 <0 <n <1. Let I, C {x € I|pi(z),...,on(z) > n}, and denote the collec-
tion of connected components of I\ I, by C,. Furthermore define the subcollection of
connected components C; = {C € C, | infc ¢1,...,info oy > 0} and C= = Uca:% C.
Finally assume @;(a),p;(b) >n for alli=1,...,N.
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4.3. The T'-limit of the phase field functional

1. If oy < 0o we have

G, pr. . pni ) > (n—5)2/ cold| dz

I,uC=

+ (=0 ) max{ﬁl,h</0|ﬁ| d:c)} — ozg’;‘{l(f)%.

cecy)\C7

2. If ap = 0o we have

2
52
G.(9,01,...,0on 1) > ——+— 9| d
r i) 2e?ﬂ<f><}awc>' | x)

IR max{ﬁl,h(/cw dx)} (D)

Ccec,)\Ciy

Proof. 1 (ap < 0o) We first show that without loss of generality we may assume

Qpé 1
> K§. 4.
|§| = 2’)/5 1— (77 . 5>2 on 0 ( 3)

The motivation is that there may be regions in which a phase field ; is (still) small,
but in which we actually have to pay «p|?|. Thus, in those regions we would like
we (0, 22 |9(2)]) to approximate ag|d(x)| sufficiently well, and the above condition

g
on ¥ ensures

2

Qpe P),9]2 > _£\2 f K¢
2. () + P9 > (n — §) | ()| for xz € ( G )
4.4

We achieve ([£.3) by modifying ¢ while keeping the cost as well as [ I, |¥| dz and

Jo 19| dx for all C' € C, the same so that the overall estimate of the proposition is
not affected. The modification mimics the relaxation from Remark 2} the modified 9
oscillates between small and very large values. Indeed, for fixed C' € C, U {I,} and
x € C set

e (0 =L 01 ) = auloe)] -

max{#o‘aé) —1_(771_5)2,19(:1:)} if x € K§N(—o0,tc],

Wzx) = S if x € K§N(te,0),
V() else,

where t¢ is chosen such that [, 0] do = Jo |9] da (this is possible, since for tc = oo
we have || > [0] and for tc = —oo we have || < || everywhere on C'). The cost did
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Chapter 4. Piecewise affine cost functions

not change by this modification since

g&(’lg,(pl’...’(pN;I) —ge(ﬁ,@l,...,@N;[)

- [ o (o %S),i@)) i (a0 22, f(x)) aa
=~ [ (d@1=53555) - (coon - 57555) o
:ao/g ()] dx—ao/gw(x)] dz

=0.

Note that the modification ¥ has a different set K&(, @1, . .., n; 1) than the original
v. Indeed, by deﬁmtlon of U we have K5(0, ¢1,...,on;1) C KE(0, 01, ..., on: 1) and

|¥(z)| > Ty T ( o on K§ (0, <p1,...,g0N,I) as desired.

Let us now abbreviate my = |¥| dz. Using the definition of w. as well

f(InuCZ)\Kg
as 7. > 0% on I, U C= we compute
We (ao, e ]19\) dr + — i 9] da
2e Jiruo2)\K;
52 2
2eH (I, UC’>)\K5) ’

ge(ﬁ,sol,...,gaN;Inuo>)2/

(InuCZ)NKE

> (77—6)2/ apld| dx — agmgy +
I,uCc=
where we have employed (4.4)) and Jensen’s inequality. Upon minimizing in mg, which
yields the optimal value aog’H (I, UC=)\ K§)/d* for mg, we thus obtain

ageH (I, U C=)
202

G, s soni Iy UCZ) > (1 — 5)/ aol] dz —
I,uC=

mn

Next consider for each C' € C,, \an and ¢ = 1,..., N the subsets
CZ = CNK:N{pi =4}, Cf = CNE: N {pi <3},

and abbreviate my = [, [J| dz for any A C I. Using Young’s inequality, for i,j =
1,..., N we have

2 2.2/4 2
/><Pi+0%5 /@w'z dxz/ +g€/51|19|2 de

2e €

2

/2 e 1 e
> /Cf a; |9 — m dx > ajme> — 2_527.[ (CZ).

Similarly, using Jensen’s inequality we have

2 2.2
©; +aje’ /B 2 4 Bi 2 / 2 4 Bi 2
i o Tam St -1 > —1
/cf e |9]* + ( ) da > - 2@ \19] 5( )° dx

afe 1

= 26, HI(CF)

</ 19| dx) +61(1—5)27{1(0;)zai(l—é)mcf,
of
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4.3. The T'-limit of the phase field functional

where in the last step we optimized for H!(C;). Finally, if infc ¢; < § we have (using
Young’s inequality)

5 p; —1 2
/ e+ PN s g [ el - el de
o\Cs 2 £ o\cs

f )
z@-(/c =l dot [ Igili- o dx)z@-(/n o-ldpt ['1-p d%)
= 6:;((1— 5)2 - (1- 77)2) > Bi(n — 5)27

where (¢, d) and (e, f) denote the first and the last connected component of C'\ C;.
Next, for C' € C, \ C;” define j(C) = max{j € {1,...,N}|infc p; < d}. Summa-
rizing the previous estimates we obtain

G.(0,01,...,0on; L\ (I, uC2))

N 2 2.2
Ve 0+ a2e? /B s
> e Rt e il
> Z (/Cm@%(ao,g,]ﬁ\) d:)/:—k}Z(/C.Z 5 |9|° dz
0 =1 i

cec,\C7

2 | 022 | 1)
+/ 2 +0415 /5z|19|2 1( ©; — 1)2 dCL’—i—/ & <5|Q0;|2+ (90 ) ) dx))
C7l< 2e C\Ci< 2 15

N 2
>y (<n—6>2aommg+z (aseme: - 25w c)
=1

cec,\C7

+ a;(1 — 5)mcf) + Z Bi(n — 5)2>

info ¢, <

> ) ((77 8)*(ajicyme + Bjcy) — ;(;)8H1(0)>
CeCy\Ci
>(n—0)7° ) max{ﬁl, (/ 1] dx)} 3‘; 0

Ccec,\C3

Finally, we obtain the desired estimate,

g&(ﬁa(plw"a(pN;[) :g5(197901a---790N;[77U02)+g€(1979017"'7§0N7[\< U0>))

27_[1([)
> (n — §)? AN CY)
> (- 5) /Inucz%'ﬁ' e

VRS max{ﬁl, </ 19| dx)} ;‘g ).

CeC,\Cr

[4 (g = o) In this case the set K§ is empty, and the cost functional reduces to

%<197901’---790N%f>=/%+25’ [gm NI 1—1)} =

1
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With Jensen’s inequality we thus compute

e 62
G.(9,¢1,...,0n; [, UCZ) > / 7—\19]2 dz > % 19)? dx

I,uCz € € Jr,ucz

2 2
- 52 (fl,,ucz [ da:) - 52 (fInUCE ] dx)
~ 2 HYI,UCZ) T 2 HY(T)

Furthermore, the same calculation as in the case ay < oo yields

ge(ﬁaspla"w(p]\f;]\(IUUCZ)) >

> 07 % max{pn ([ 191 as) b - Sniay

CEeC,\Ciy

so that we obtain the desired estimate

g&(ﬁaﬁplv"'agpN;I):ga(ﬁﬂpla---?gpN;[nucz)+g€(197§017"'7(;0N;[\(Inucz))

> 5_2(ffnw> ] dx)2 +m—=0)? > max{ﬁl,hUCw\ dx)}_og—ig Y1),

— 2 HY(T) o

]

Corollary 4.1 (I —lim inf inequality for reduced functionals). Let J C R be open and
bounded, 9 € M(J), and ¢1,...,pxn € L'(Q). Then

L —lminf&./0,¢1,....on:J) 290,01, N3 )

with respect to weak-+ convergence in M(J) and strong convergence in L*(J)".
Proof. Let (¥°,¢5,...,¢%) be an arbitrary sequence converging to (¢, ¢1,...,pn) in
the considered topology as € — 0, and assume without loss of generality that the limit
inferior of ¥.[9°, ¢, ..., ¥%; J] is actually a limit and is finite (else there is nothing to
show).

It suffices to show the lim inf-inequality for each connected component I = (a,b)

of J separately. Due to 4.[0°,¢5, ..., 0% I] > 2|5 — 1||2, for i = 1,..., N we must

— 2
have ¢ — 1 in L2(1) and thus also in L'(]) so that @; = 1. Even more, after passing
to another subsequence, by Egorov’s Theorem all ¢ converge uniformly to 1 outside
a set of arbitrarily small measure. In particular, for any ¢ > 0 we can find an open
interval (a +&,0—¢&) C I C I such that 5 — 1 uniformly on JI, and for any n < 1
there is an open set I, C I with H'(I'\ I,,) <1 —n such that o5 > n on I, UdI for all
t=1,..., N and all € small enough.

We now choose § = £'/* and n = 1 —¢ and denote by C,(¢) and CZ(¢) the collections
of connected components of I\ I, from Theorem (4.2| (which now depend on ¢). Further
we abbreviate C(e) = Cy(e) \ C;(¢). The bound of Theorem implies that the

number of elements in C;(¢) is bounded uniformly in ¢ and 7. Passing to another
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4.3. The T'-limit of the phase field functional

subsequence we may assume Cy () to contain K sets C(¢), ..., Ck(g) whose midpoints
converge to z1, ..., xx € I, respectively. Thus for an arbitrary ¢ > 0 we have that for all
e small enough each C' € C(¢) lies inside the closed (-neighbourhood B¢ ({1, ..., 7x})

of {x1,..., 2k}
Now for oy < oo we obtain from Theorem

hran_gonfgs(ﬁ 1 P1y - ,QON,I)

K
Zlimiglf(n—cS)Q/ ap|9?| dz + (n—é)QZmax{Bl,h(/ |0°| dx)}
E— CZ(E)

L,UCZ=(e) i=1
K

> liminf(n — 5)2/ aold®| dz + (n—6)*) h (/ |0°| da:)
e=0 IN\B¢({z1,...xx }) Z Be({z:})

""" =1
K

> aolI|(I\ Be({wr, - oxc}) + Yk (19I(Be({xi}))) .

i=1

where in the second inequality we used

/ aolV) dx+h(/ | dx) z/aow\ dx+h</ 9] dx) +h(/ 1| dsc>
AUB C A B C
2/&0]19| dx+h</ 19| dx)
A BUC

for all measurable A, B, C' C I (due to the subadditivity of k) and in the third inequality
we used h(m) < agm as well as the lower semi-continuity of the mass on an open set.
Letting now ¢ — 0 (so that by the o-continuity of ¢ we have |9|(I\B;({z1,...,2x})) —
|9|(I\ {z1,...,2K})) we obtain

K
lim inf (0%, @1, . oi 1) 2 ao O[T\ {an, 2 }) + ;h(!mﬁ(ﬂfiﬂ)

2a0|f§L|(I)+/ h(lmy]) dH® =% (9;1).

SNl

If on the other hand ay = co we obtain from Theorem
62 i
: s € 1> g . > : 3 €
1lgglfg6(0 05,0 L) > lllgglf SHD) /Inuc>(s) |v°| dz

52 2
> lim inf ——— / [9°] d
e—0 2€HI(I> < IN\B¢({z1,...,xx}) )

,,,,,

which implies [9|(I \ {1,...,2x}) = 0 and thus |[9+[(I) = 0 as well as Sy NI C
{z1,...,2x}. Next note that for all i € {1,...,K} with |my(z;)] > 0 we have
Jo,o 19°| dz > 0 for all € small enough. Indeed,

|mg(z;)| < liminf/ |9¢ | dleiminf/ |9°| dx—i—/ 9| dz,
=0 JB({xi}) =0 Jey(e) Be({z:})\Ci(e)
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Chapter 4. Piecewise affine cost functions

where [ Be({z\Ci(e) |¥¢| da decreases to zero by Theorem . Therefore, Theorem

implies

hi_n_gonfge(ﬁ yP1y - 790N7[>

2
52 / =
> liminf ———— 9| dz | + (n—9)? h(/ 9° dx)
e—0  2eHY(I) ( IWUCZ(5)| | ) ( ) Z Ci(5)| |

=1
[myg (z;)|>0
2 K 2
> lim inf / |v¢| dz
=0 2eHI(I) Z:; (Bd{xz})\cz(e) )
|myg (24)|>0
K
+ ) h/ 97| dx —al/ 97| dz
i—1 Be({zi}) Be({z:})\Ci(e)
|m,9(a:i)\>0
& adeH (T)
> liminf >~ h/ 0] da | — 2=
=0 = Be({:}) 20
Imy (2:)]>0
K
> > h(WI(B({x:})))
o (21)[>0

- / W(lmal) dH® =9(0;1),

where in the second inequality we used h(my + mg) < h(my) + aymy for any m; > 0,
mo > 0 and in the third we optimized in fBC({x'})\C-(a) |¥¢| dz.

The proof is concluded by letting £ — 0 and noting lim infe o ¥ (J; 1) > ¥4 (v; ). O

4.3.2 The I' — liminf inequality

We now prove the desired lim inf-inequality, which will be obtained by slicing.

Proposition 4.3 (I' — liminf of phase field functional). Let u,,u_ € P(Q). We have

I' = liminf #. =&

e—0
with respect to weak-+ convergence in M(Q; R?) and strong convergence in L'(Q)V.

Proof. Let (0%, ¢, ..., ¢%) converge to (o, ¢1,...,pn) in the considered topology. We
first extend o and o to R?\ Q by zero and ¢¢ and ¢; to R2\ Q by 1 fori =1,..., N.
The phase field cost functional and the cost functional are extended to R? in the
obvious way (their values do not change). Without loss of generality (potentially after
extracting a subsequence) we may assume lim. o .%.(0%, ¢, ..., ¢%) to exist and to be
finite (else there is nothing to show). As a consequence we have V- 0° = p5 — pf as
wellas Vo =py —p_ and o3 = ... = pn = 1 (since the phase field cost functional
is bounded below by SV, 5|07 — 1)12,).

i=1 2¢
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4.3. The T'-limit of the phase field functional

Now let A C R? open and bounded; the restriction of the phase field cost func-
tional to a domain A will be denoted .Z.(-; A). Choosing some ¢ € S', by Fubini’s
decomposition theorem we have

(0%, 07, ..., o5 A)

/ /AU (wa (ao’ ix) [ W) +§:% [gvau(‘PiT—UT )g,t dz dt

= (72) 2N
e)ét e %
>
_/_OO/A“% (ao, : ,\Ug,t\) 25 [e

_ / G.(0% 0 (¢)enr - (050)ers Acy) d.

where .Z. is the dimension-reduced phase field energy and for simplicity we identified
the domain Ag,; of the sliced functions with an open subset of the real line. Fatou’s
lemma thus implies

lil;ll_}glf Fe(0%, 07, .., o5 A) > / liIEIl_}glf ge(agt, (OD)ests -+ (PR )ers Aer) dt.

By assumption, the left-hand side is finite so that the right-hand side integrand is
finite for almost all t € R as well. Pick any such ¢ and pass to a subsequence such
that liminf turns into lim. Indeed o, BN o¢ . for every ¢ and almost all ¢, as o° Ao
and Theorem [C.I} Thus, Theorem on the reduced dimension problem implies

lim Hlf/ (Ug,ﬁ ((,Di)g’t, ey (@?V)é,tv A{,t) 2 32(0'57,5, (@1)57,5, ceey (@N)f,t; A&t)

e—0

for almost all ¢ € R so that
liminf 7. (0%, ¢, .., ¢y A) 2 / G(oct, (P1)es - (ON)es Aey) dt.

For notational convenience let us now define the auxiliary function x, defined for
open subsets A C R?, as

k(A) = liminf Z (0%, ¢, ..., 05 A).

e—0

Furthermore, introduce the nonnegative Borel measure

MA) = aolot|(4) + / h(m,) dH!

SoNA

as well as the |o|-measureable Borel functions

v RP =R, =

for some sequence &/, j € N, dense in S*.
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Chapter 4. Piecewise affine cost functions

Since o is a divergence measure vector field, we have

H(A) > / g(%z‘,t, (901)51',t, cee (@N)gj,t; Agj,t) dt

- /_oo [aol(asf,t)H(Afj’t) +/SU A

eie et
—anlot €A+ [ hllmoie, €] @t = [ 0y
SsNA A

for all 7 € N where we used Remark @ in the last equality. By [Bra98, Prop.1.16] the
above inequality implies

h(lmo,, 1) d”HO] dt

K(A) > /Asupwj dA

j
for any open A C R2. In particular, choosing A as the 1-neighbourhood of € we obtain

lim iglf F (0%, 07, ..., 05 Q) = k(A)
e—

2/supwj dA
W

J

:aoyaLy(AH/ h(my) dH!

SsNA

=&(0),
the desired result. O

4.3.3 Equicoercivity

Proof of Theorem[{.3. Due to C > Z.(0°,¢5,...,05) > g—;ngf — 1|3, for all ¢ =
1,...,N, we have ¢ — 1 in L*(Q) and thus also in L'(). Furthermore, we will
show further below that ||0¢||: = ||o¢|| s is uniformly bounded, which by the Banach—
Alaoglu theorem implies existence of a weakly-* converging subsequence (still denoted
o¢) with limit ¢ € M(Q; R?). It is now a standard property of I'-convergence that, due
to the above equicoercivity, any sequence of minimizers of .%, contains a subsequence
converging to a minimizer of &.

To finish the proof we show uniform boundedness of o in M(£2; R?). Indeed, using
we (g, %im), lo(z)]) > %|o(z)| for 2 € K§ (remember that K5 = ) for ay = 00) we

obtain
ol =Y [ o ar <2043 [ o s
i=0 VK7 0 = YK

(the first term is interpreted as zero for ag = 00). Furthermore, by Holder’s inequality
we have

2
¢ (©5)2 4+ aZe?/ B, . 2¢
(/Kf\o|d:c> §</g 5 \U|2dg:> (/[(f((p§>2+a?€2/6i d:z:)

2e
=¢ (/K (902 + oZe2/B; dx) |
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4.3. The T'-limit of the phase field functional

Choosing now some arbitrary A € (0,1) we can estimate

/ 2¢ d / 2 d
x = x
ke (95)% +aie?/B; Kenfes<ny (95)% +aie?/B;
2e
+ / dx
KEN{ps>A\} (5)* + afe?/B;

4 Bi(1 — ¢f)? 2 o
L — ———= de + SH(Q
- Oé?(l — )\)2 Laﬁ{w <A} 2e v /\ZH ( )

4C 2e
< L0,
S oottt @

Summarizing, ||o€||pm < 2a0 +3 \/ 4102)\)2 + ZEH2(Q). O

4.3.4 The I' — limsup inequality

Proposition 4.4 (I' — limsup of phase field functional). Let puy,p_ € P(Q) be an
admissible source and sink. We have

I' = limsup %#. =&
e—0

with respect to weak-+ convergence in M(2; R?) and strong convergence in L'(2)N.

Proof. Consider a mass flux o between the measures 1y and p_. We will construct a
recovery sequence (0%, ¢5,...,¢%) such that o° Soand ¢f = 1,..., ¢y — 1 1in the
desired topology as ¢ — 0 as well as limsup,_,, Z.(0%, ¢5,...,¢%) < &(0,1,...,1).
Without loss of generality we may restrict our attention to fluxes for which

én(o) =8&(0,1,...,1) < C <

since otherwise there is nothing to prove. By [BW17, Def. 2.2 & Prop. 2.32| there exists

a sequence
M;

1
o=y my O ML

of polyhedral divergence measure vector fields in €2 such that
S oy =y — i

RN ol e
P = p, &y (0g) = &7 (o).

In the above formula and in the sequel we will specify the constraint measure for the
energy &, to improve readability. If uy and p_ are finite linear combinations of Dirac
masses (which we have assumed in the case ag = 00), we may even choose py = p.
We will construct the recovery sequence based on those polyhedral divergence measure
vector fields. In the following we will use the notation

F(o —/ 2e(z) - .
e 7@17"'7Q0N)_ Qwa Qy, c ,|O'($)| dx—i—z&ﬁ
i=1
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Chapter 4. Piecewise affine cost functions

for the phase field cost functional even without divergence constraints.

Step 1. Initial construction for a single polyhedral segment

In this step we approximate a single line element my ;60 ;/H'LY, ; of o; by a phase
field version. To this end we fix j and 0 < k < M; and drop these indices from now
on in the notation for the sake of legibility. Without loss of generality we may assume
¥ =10,L] x {0}, m > 0, and 0 = e; the standard Euclidean basis vector. Set

r=argmin{a;m+ p;|i=0,...,N}

to identify the phase field that will be active on 3 (z = 0 means that no phase field is
active). We first specify (a preliminary version of) the vector field o°. To this end let
ds, denote the distance function associated with > and define the width

ac = 0423218 ifz>0 anda=agme otherwise (4.5)
over which the vector field will be diffused. We now set
m

Voud =
€
2af

X{ds<at} €1,

where x4 shall denote the characteristic function of a set A. Note that this vector
field encodes a total mass flux of m that is evenly spread over the ai-enlargement of
Yl. The corresponding active phase field will be zero in that region. Indeed, consider
the auxiliary Cauchy problem

d=Z(-6), 60)=0,

whose solution ¢.(t) = 1 — exp (—%) represents the well-known optimal Ambrosio—

Tortorelli phase field profile. Then we set ©; = 0 for all 2 # ¢ and, if ¢ # 0,

0 if ds,(z) < ag,

7 (7) = ¢e(max{0,ds(z) — af}) = {1 exp (Lﬁ) . if ds(z) > af.

Let us now evaluate the corresponding phase field cost. In the case ¢ = 0 (which
can only occur for ay < 00) we obtain

y&(as(x)7¢i7'-'7¢§\/> :/w€ <a07k7|68|> dxg/a0‘65|+€p’56‘2 dz
Q € Q

1+
:/ 2% gy = (aemL+maim?e)(1+ Z3) = agm L+ C(m, L)e?,
{ds<ag} ’

where we abbreviated ¢ = min{1l,p — 1} > 0 and C(m, L) > 0 denotes a constant
depending on m and L. In the case i # 0 we have [6°] = (3;/(q;e) as well as 7. = a2e?/5;
on the support of [5°| so that

- 2.2
/ W, <ao, k, |E€]) dz = ae
Q € Bz

= %ZmL + C(m, L)e7.

2

2e

B

(6753

B:

Qg

p—2

) (2a7 L+ (a5)*)
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Figure 4.1: Left: Sketch of the optimal profile of |5°| and a phase field @ for some
t>0withm=2,¢=0.1, ay =1, f; = 1. Right: Sketch of the numerical solution to
the 1D problem with the same parameters.

1—%°)?
/ {5|V¢‘§|2 + w] Sx+
2 Jo €
5Z € 5
=5 (2LaZ + W(a[)Q)

5 [ o (Gt —at) 1
+ 2 / /{} {smut )+

Furthermore we have Z.(%5) = 0 for i # ¢ and, employing the coarea formula,

5;2(@?) = be

- ] dH'(z) dt
= 2% (2La; + m(a)?) + S /C:O éexp <@) (2L + 2mt) dt
_ (%m + @_) L+C(m, L.

Summarizing,

F-(@, 75, Py) < h(m) L+ C(m, L)e?.
Step 2. Adapting sources and sinks of all polyhedral segments

The vector field constructions @7, ; from the previous step for each polyhedral segment
¥k; are not compatible with the divergence constraint associated with the measure o7,
that is,

M;
Vo DT | # e (uh —pl)
k=1

We remedy this by adapting the source and sink of each o7y ;. Set

. % if ag = 00,
r(j) = max |my;l- o
k=1,...,M; max | gt, o else,

then all vector fields @7 ; have support in a band around X ; of width no larger than
r(j)e. Without loss of generality we assume r(j) > 1 (else we just increase it). Again
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Chapter 4. Piecewise affine cost functions

we concentrate on a single segment with fixed j and k& and drop these indices in the
following (we will also write r instead of r(j)). Denote by s™ and s~ the starting and
ending point of the segment ¥ with respect to the orientation induced by 6. Consider
the elliptic boundary value problems

{Aui(x) =+m (px*dp)(x) on B,(0),
Vut(z) - v(z) = eo°(ex + s*) - v(z) on 0B,(0),

where ¢, denotes a Dirac mass centered at y, B,(y) denotes the open ball of radius
r around y, and v denotes the outer unit normal to dB,(0). Note that the boundary
value problems and their solutions u™ and v~ are independent of € due to the definition
of °. Setting

(o) = {vui«x — st)/e) /e if & € Bay(sF),

G
o°(x) else,

(where we assume e small enough such that B.,(s*) and B..(s~) do not intersect) it
is straightforward to check

V(6% =mpe* (0, —ds5-) .

Furthermore, to have at least one phase field zero on the new additional support
B (sT) U B.,.(s7) of the vector field we set

o _ , 0 ift<re,
#i(@) = min {7i(2), Pz = s71), P(le = s*])} with P(t) = {L L
TE
and 5 = 5, ..., % = 5. Reintroducing now the indices k and 7, we set
M;
6 =) 0p; and  (¢f); = min{(¢;)j1, -, (¥5)j; }
k=1
fori=1,..., N. Obviously, we have, as desired,

V-6;=V-(p.x0;) =pex (ph — ) .

Let us now estimate the costs. Let us assume that ¢ is small enough so that all balls
Ber(j)(sij) are disjoint as are the supports supp &% ; \ (Ber(s) (55 ;) U Ber(jy (5, ) for all
k. An upper bound can then be achieved via

Fe(05,(01)gs 5 (0N)5) <) FelT5 4 (Pkgs - -+ (PN kgl +
1

—I—/ W (ao,—(%)j, \&ﬂ) dr +
Ber(j)(s;":k)UBs'r(j)(Sj_,k) €

B 1
+ el V()P + = ((¢f); —1)? da.
(Baer () (5] 1) UBacr(5) (576N (055 < (#5),} €

B
Il
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4.3. The T'-limit of the phase field functional

The last summand can be bounded above by
1

B[ AP (P + Z(P(el) - 1P do < C
Baer(5)(0) €

for some constant C' > 0. For the second summand, note that (7.); < afe?/8; on
Ber(j)(sfj) due to (¢7); = 0 there; furthermore,

_ - (:YE) p ate
N e e o e il
wa(a()’ (7&)]/57 |UJ|) < ( 90 + e |0_j| = 251 +e€ |U |

Thus, if we set S* = {l € {1,...,M,}| sjfl = s} for fixed s = s;j or s = s, . we have
/ o (ao,“—a)j,rﬂ) de < cg/ 552 da
Bs'r(j)(s) € Bs'r(j)(s)
2
Vi () | Vup ()
_ CE/ al + g\ e
0|2 > ——

g
leS+ lesS—
dx + /
Z Bsr(j)(s)

2
V“J'rl(u)
<cem; |Y / Vi)
Ber(5)(s) leS—

leS+

dx

2

vuj_l(?)
€

dx

= CeM; Z/ ‘Vuzl( 2 dor + Z/ |Vu;l(x)‘2 d:v]
LleS+ By.(;5(0 leS— By.(j)(s)
= C(S, O'j)€

for some constant C(o;) > 0 depending on the polyhedral divergence measure vector
field o; and the considered point s. In summary, we thus have

Fe(05,(P1))s -5 (P)5) <

k:m

M;
Z (mye)H (Zj%) + C(myg, Lig)e® + C(s ]k”o—])g_'_C( jk70]>€+05:|

: i
< &, " (0j)+ C(oj)e?
for some constant C(o;) depending on 0.

Step 3. Correction of the global divergence

Recall that the vector field ¢ to be constructed has to satisfy V- o0° = p. * (uy — p).
In the case ap = oo the vector field &5 already has that property due to ui = L4
(thus we set o5 = 75). However, if ap < 0o (so that admissible sources and sinks
g and p— do not have to be finite linear combinations of Dirac masses) we still
need to adapt the vector field to achieve the correct divergence. To this end, let
)\j e M({z € Q|dist(z,09) > &;R?) be the optimal Wasserstein-1 flux between
py and pix, that is, )\i minimizes [|A||xs among all vector-valued measures A with
Vo= — s Settmg

0 =65+ p.x (V.- N)
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Chapter 4. Piecewise affine cost functions

we thus obtain V.05 = p.*(py — i), as desired. The additional cost can be estimated
using the fact

We 0407@70’_}_() Swa O‘Ouﬁaa +Oé()b +€pa2+2b2
9 9

, where ||/, || o is an upper bound for the total

as well as [|p. # N, || < Cllat iz lx

mass moved by )\ﬂE and the constant C' > 0 depends on p. With those ingredients we
obtain

Fe(05,(07)5, -5 (08)5) < Fel65, (99)j, - -, ()]
+ aollpe % (X = M)l + 71165172 + 2llp= + (M — A1) [132) -

Now [|p+(Ny =N )1 < IV =M Jlax < IV Laa IV flae = Wi, p )W (s i) =
r; for a constant x; > 0 satisfying

k(oj) >0  asj— o0

since the Wasserstein-1 distance Wi (-, -) metrizes weak-* convergence. Furthermore,
in the previous steps we have already estimated e?||65(|7. < C(0;)e?. Finally,

ellpe + (N = M)172 < e¥llpex (W = N )llzeelpe + (M = N )|
< 20" (il + N1l a)s

Summarizing,

i : :
Fe(05: (9055 (98);) < & " (0,)+C(0)e 4+ oy + 20 ([ v+ (|| an) 5
i
< é?ihﬂui (O'j) + CFJJ' + C(O’j)&q
for some constant C' > 0 and C(¢;) > 0 depending only on o;.

Step 4. Extraction of a diagonal sequence
We will set 0° = 0;(€)%, ¢] = (¥1)j()s-- - €Ny = (¢)j() for a suitable choice j(e).

Indeed, for a monotonic sequence £y, €, . .. approaching zero we set j(e;) = 1 and
. . 1
i) = 476G OO > T
jlei) +1 else.

Then j(e;) = oo and C(0j.,))e] — 0 as i — oo so that
Fei(07, 01, oN) = ggi(o—;égiy (90?)]'(61')7 ) (@?\?)j(ﬂ))
<ET T (05e) + ORjey + Clojey e
1

< g:+ - (Uj(fi)) + C"ij(%‘) +

(&)
S EM(g) = & (0).
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4.4. Numerical experiments

4.4 Numerical experiments

Here we describe the numerical discretization with finite elements and the subsequent
optimization procedure used in our experiments.

4.4.1 Discretization

The proposed phase field approximation allows a simple numerical discretization with
piecewise constant and piecewise linear finite elements. Let 7, be a triangulation of the
space  of grid size h such that Q = UTeTh T. Denoting by P™ the space of polynomials
of degree m, we define the finite element spaces

Xy = {on € L®(Q) | vnr €'Y T € T},
X} ={v, €C°Q) |vpr €EP"VT €T}.

Using as before the notation

7 _ () 6. 7o
fe(ga ©1, - >90N) = Qwa Q, - >|0(I)| dx + Zﬁzja(‘%)a
1=1

the discretized phase field problem now reads

minO lNﬁE(a,gol,...,goN)
(015N ) EXY X(X})
p1loa=-..=pNloa=1

such that /—U-V)\ da::/pa*(,qu—,u_)vh dz VA € X},
Q Q

where all integrals are evaluated using midpoint quadrature and the divergence con-
straint is enforced in weak form. In our numerical experiments we use Q = (0, 1)? with
a regular quadrilateral grid whose squares are all divided into two triangles.

4.4.2 Optimization

Here we describe the numerical optimization method used to find a minimizer of the
objective functional. We first elaborate the simplest case in which the transport cost
h only features a single affine segment, that is, oy = oo and N = 1. Afterwards we
consider the setting with N > 1 and subsequently also with oy < oo, which requires
more care due to the higher complexity of the energy landscape.

Single phase field and no diffuse mass flux (N =1, oy = 00) In this case the
energy reads

Fiog) = [ B (v + EE=E) 0

with v.(z) = p(x)? + a?e?/B;. The employed optimization method is similar to the
one presented in [CFM17b] and updates the variables o and ¢ alternatingly.
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Chapter 4. Piecewise affine cost functions

Let us abbreviate f. = p. * (44 — p—). For minimization with respect to o, we use
the dual variable A € X} to enforce the divergence constraint and write

2 2
. Ve |O . Ve |O
min —E‘—l dr = min max —su—a-V)\—)\fE dx
oeX]) Q€ 2 cexVrex} Jo € 2

Jo o VA+Af: dz=0VAEX])

2
:maxmin/kﬂ—a-V)\—/\fa dx,

XeX}oex? Jg € 2

where the last step follows by standard convex duality. The minimization in ¢ can be
performed explicitly, yielding o = aj—’\ Inserting this solution leads to a maximization

problem in A,
2
max /—€|VM — Af. dx.
A Q 2’7&

The corresponding optimality conditions,

\-
/de:—/ufgdx Vue X, (4.6)
Q e Q

represent a linear system of equations that can readily be solved numerically for A
so that subsequently o can be computed (note that fQ fe dz = 0 so that the above
equation has a solution).

Fixing o, the optimality condition for ¢ reads

B

2
/ Ialgsm/} +/ieVe Vit e = 1e dr=0 Yy € X with gpg =0,  (4.7)
Q

which can again be solved under the constraint ¢, 55 = 1 by a linear system solver.

In addition to the alternating minimization a stepwise decrease of the phase field pa-
rameter ¢ is performed, starting from a large value &g, for which the energy landscape
shows fewer local minima. Algorithm [4] summarizes the procedure.

Algorithm 4 Minimization for N =1, oy = 00
function SPFS(Estarta €end; Nitera a, 517 Ky po—, Peend)

set fo = (U-&- - :u—) * Peenas 0’ =0

for j =1,..., Nije do
set € = et — (7 — 1) ==
set ¢’ to the solution of for given fixed o = 0771
set 7L = ()" + afe} /by
set M to the solution of for given fixed 7. = ~J

. J

set 0f =

end for
end function
return O-Niter’ (pNiter’ \Niter
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Multiple phase fields and no diffuse mass flux (N > 1, ap = 00) Again we
aim for an alternating minimization scheme. Fixing ¢, ..., ¢y, the optimization for
o is the same as before, since only . changes. However, the optimization in the phase
fields @1, ..., @y is strongly nonconvex (due to the minimum in +.) and thus requires
a rather good initialization and care in the alternating scheme.

To avoid minimization for phase field ¢; with the min-function inside . we perform
a heuristic operator splitting: in each iteration of the optimization we first identify at
each location which term inside 7. = min(p? + a2e?/by, ..., % + aie?/By) is the
minimizer, which is equivalent to specifying the regions

R ={z € Q|7.(2) = pi(x)* + ae®/B}, i=1,...,N. (4.8)

Afterwards we then optimize the energy .%. separately for each phase field ¢; assuming
the regions R; fixed, that is, we minimize

Bi (pi(z) — 1) q
2 €

X (1) + el V(o) + ",

€ 2

@)+ a2e? /B o (x)?
|

where X ge is the characteristic function of region R;. Similarly to the case N =1 of a
single phase field, this amounts to solving the linear system

0t

= da Vo € X} with ¢ [pe=0 (4.9)

/ @;w ’0|2XR§ + BieVi - Vi + 5,
0

for ¢; € X} with ¢; [so= 1.

Since in the above simple approach the regions R; and phase fields ¢; can move,
but cannot nucleate within a different region (indeed, imagine for instance R = (2,
then o, ..., pn will be optimized to equal 1 everywhere so that in the next iteration
again RS = (1), a suitable initial guess is crucial. To provide such a guess for the initial
regions RS, we proceed as follows. We first generate some flux network ¢° consistent
with the given source and sink. This can for instance be done using the previously
described algorithm for just a single phase field: in our simulations we simply ignore
©2, ..., pn and pretend only the phase field ¢; would exist (essentially this means we
replace the cost function A by m — aym + (8, for m > 0; of course, an alternative
choice would be to take m +— am + 3 for some «, 3 > 0 that better approximate h
for a larger range of values m). We then identify the total mass flowing through each
branch of ¢”. To this end we convolve |¢°] with the characteristic function xz, () of a
disc of radius 7. If r is sufficiently large compared to the width of the support of o°,
we obtain

(X * 10°]) () = / L 16°16) dy = 2rm(r)
B (x

where m(x) denotes the mass flux through the nearby branch of ¢°. Now we can
compute the regions

R ={xe€Qli= argminjzlmN{ajm(ﬂc) + Bi}} (4.10)

0

and furthermore use ¢" as initial guess of the vector field. Algorithm [5|summarizes the

full procedure.

87



Chapter 4. Piecewise affine cost functions

Algorithm 5 Minimization for N > 1, g = 00
function MPFS<55tart7 €end) Nitera aq,...,0nN, 517 CII) 6N7 Mgy o—,s peend)

set fe = (,u-&- - :u—) * Peena

set (007 ) ) = SPFS(gstarta €end; Niter> aq, 617 Mgy oy psend>

compute regions RJ,..., Ry via

for j =1,..., Nier do
set €j = Estart — (] - 1)85;\7':;561nd
set ¢! to the solution of for given fixed 0 =071, i=1,...,N
update regions RS, ..., RS, via
set 44 = min;_y v ((¢])% + a?e?/B))
set M to the solution of for given fixed 7. = +J

277
end for
end function
A N; N;
return gNiver | pyliter L pititer

Note that the estimate m(z) of the flowing mass is only valid in close proximity
of the support of ¢° so that the regions R: are only reliable near ¢°. However, away
from o¥ all phase fields will be close to 1 anyway so that the regions R¢ do not play a
role there. The effectiveness of the initialization can be further improved by an energy
rescaling which we typically perform in our simulations: Recall that the optimal width
of the support of the vector field o not only depends on the transported mass
m(z), but also on which phase field is active at x. Thus, initializing with some vector
field o that was computed based on preliminary active phase fields may erroneously give
slight preference to incorrect phase fields. This can be avoided by a small parameter
change which assigns a different € to each phase field. Indeed, setting e; = ;/q; to be
the phase field parameter associated with phase field y;, equation shows that the
support width of ¢ becomes me and thus no longer depends on the phase field. Thus,
in practice we usually work with the phase field cost

Fiorprsevevom) = [ we (a0, 25 o)) dw+gmi<w> (.11

with §.(z) = mini—_ n{pi(7)? + a2eg;/B;} = mini—y n{i(x)? + a;e?}. The T-
convergence result can readily be adapted to this case.

Multiple phase fields and diffuse mass flux (N > 1, ag < o0) The difference to
the previous case is that now there may be nonnegligible mass flux ¢ in regions where
no phase field ¢1, ..., ¢y is active. Correspondingly, we adapt the previous alternating
minimization scheme by introducing the set

which according to the form of w. in equation (4.1)) describes the region in which mass
flux o is penalized by ag|o|. The regions in which the i*" phase field is active are thus
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4.4. Numerical experiments

modified to

R; =R\ R;. (4.12)
As before, we now separately minimize

N ()2 2.2/3 9 . o e
> / el GBI, (0 + v + 2O gy )

for each phase field ¢;. The optimization for o changes a little compared to the previous
case since the problem is no longer quadratic and thus no longer reduces to solving
a linear system. Instead we will perform a single step of Newton’s method in each
iteration. The optimization problem in o reads

. Ye
min we (g, —, || ) dx,
O'EXQ Q 15

Jo o VA+ASfe de=0VAeX}

and its optimality conditions are

O_/é(‘o-’)a.qﬁ—V)\-w(SJ: fOra11¢€X2>
Q

(4.14)
O:/U-Verufadx for all € X},
Q
where .
§(lo]) = 0= (a0, =, lof) = min (2,28 ) 4 26,
o] € e ol

Letting & and A be the coefficients of ¢ and X in some basis {00}; of X and {b!}; of
X}, respectively, the optimality conditions can be expressed as

0=R(G,\) = (M [g(T!aD] Jé?) (i) N (g) |

where the finite element matrices and vectors are defined as
Mgy = / 0 dz, By = / WV de, F = / b da.
9] 0 Q

In each iteration of the alternating minimization scheme we now take one Newton step
for 0 = R(&,S\). As before, the algorithm requires a suitable initial guess, which is
determined in the same way as for the case without diffuse component. Algorithm [f]
summarizes the alternating scheme.

4.4.3 Experimental results

The algorithms were implemented in MATLAB®; parameters reported in this section
refer to the rescaled cost . We first present simulation results for a single phase
field and no diffuse mass flux, N = 1 and ay = co. Figure [£.2] and show solutions
for a source and a number of equal sinks arranged as a regular polygon. If a; is small
as in Figure , the solution looks similar to the Steiner tree (which would correspond
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Chapter 4. Piecewise affine cost functions

Algorithm 6 Minimization for N > 1, ap < 00

function MPFSD (estart, Cend, Niters Oty -« s AN, B1y oo oy BNy fots ey Peuy)

set fo = (fi4 — H) * Pepn

set (007 "y )\0) = SPF‘S(Estarty é:enda Niter; ag, ﬁl) Moty H—,s psend)

compute regions RS, R5, ..., RS, via

for j =1,..., Nijer do
set £j = Estare — (J — 1) ==
set ! to the minimizer of for given fixed o =077, i=1,...,N
update regions RS, R, ..., RS via and
set 74 = min;—1,n ((¢])* + a?e?/B:)
set (67, M) = (6771, M~1) — DR(67", M=) "L R(671, A1) for . = ~I~!

end for
end function
return gNier oiVier | pNiter

~« XK
NS
NN\

SCES

Figure 4.2: Optimal transportation networks for branched transportation from a single
source to a number of identical sinks at the corners of regular polygons. The top row
shows the ground truth, computed by finite-dimensional optimization of the vertex
locations in a network with straight edges, the bottom rows show the computation
results from the phase field model, the mass flux ¢ (middle, only support shown) and
phase field ¢ (bottom). Parameters were a; = 0.05, 5 = 1, € = 0.005.
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4.4. Numerical experiments

SOV
<D0l

Figure 4.3: Truly optimal network (top), computed mass flux ¢ (middle), and phase
field ¢ (bottom) for same branched transportation problems as in F igure , only with
ar =1, 51 =1, e =0.005.
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Chapter 4. Piecewise affine cost functions

Figure 4.4: Computed mass flux ¢ and phase field ¢ for same parameters as in Fig-
ure

to a; = 0), while the solutions become much more asymmetric for larger «; as in
Figure 4.3 More complex examples are displayed in Figure 4.4

Figure [4.5| shows simulation results for the same source and sink configuration as in
Figure [£.4] but this time with N = 3 different linear segments in h and corresponding
phase fields. It is clear that different phase fields become active on the different network
branches according to the mass flux through each branch. This can be interpreted
as having streets of three different qualities: the street @3 allows faster (cheaper)
transport, but requires more maintenance than the others, while street ¢ requires the
least maintenance and only allows expensive transport.

The case ay < oo finally can be interpreted as the situation in which mass can also
be transported off-road, that is, part of the transport may happen without a street
network, thus having maintenance cost Sy = 0, but at the price of large transport
expenses ap per unit mass. Corresponding results for again the same source and sink
configuration are shown in Figure In contrast to the case ay = oo it is now also
possible to have sources and sinks that are not concentrated in a finite number of
points. A corresponding example is shown in Figure [4.7]
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N
o)
Il

0.5

Figure 4.5: Computed mass flux ¢ and phase fields 1, @2, @3 for the same source and
sink as in Figure [4.4] and for the cost function shown on the right, e = 0.005. The color

in ¢ indicates which phase field is active.
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a=0.425 a=0.175
3=0.9 3=0.95

0

0.5 1

Figure 4.6: Computed mass flux o and phase fields @1, s for the same source and sink
as in Figurd4.4) and for the cost function shown on the right, ¢ = 0.005.
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1.5 a=0.05
B=1
1
a=20
0.5 ﬁ=0
0

Figure 4.7: Computed mass flux o and phase field ¢ for a central point source and a
spatially uniform sink outside a circle of radius and for the cost function shown on the
right, € = 0.005.
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Chapter 5

Generalized cost functions

5.1 Introduction

In the previous chapters we have considered the phase field function (1 — ¢)? to model
the characteristic function of the support of the vector valued measure . The main
idea behind this approach was, for a weakly differentiable function ¢, to consider the
measure

pod) = [ velli—lde= [ [ow(e) de

QNA

where A is any Borel set and W (t) = t?/2. As a matter of fact, given a sequence of
functions ¢, for which the quantity

L(awg%%) dz

is bounded independently of € then the sequence of Radon measures p,. weakly-*
converges up to subsequence to the measure H"'L{p # 1}. As already stated in the
introduction of this thesis, this fact is essential when approximating the Mumford -
Shah functional as in the limit energy one aims at recovering the length of the jump set
of some BV function which is contained in the set {¢ # 1}. Later on some more general
functionals have been introduced with different penalization of the jump set [BBB95]
to model fractures. Recently [ABS99, DMOT16] other phase-field methods have dealt
with the problem of efficiently approaching these energies. The main idea is that the
limit ¢ rather then acquiring only the values {0, 1} should range over [0, +00). In this
chapter we follow this method to approximate any functional &, where h is a concave
cost function.

A way to approximate an energy &, is to substitute for h a sequence hy, of piecewise
affine functions pointwise converging to h and apply the method described in Chapter [4]
The quality of such approximation depends on the number of phase fields used and
for an accurate approximation, the numerical complexity of the method may become
prohibitive. Here we propose a different model with a single phase function ¢ its main
drawback is that the term in the energy that penalizes ¢ is linear in o, it was quadratic
or at least strictly convex in the preceding models of the thesis. Let us be more formal.
Let us consider a convex open set  C R% We let p_, u, € P(Q) and denote by X,
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the subset of M(Q,R?) x L*(Q) of those pairs (o, ) such that

Vo= (g —p-)*p:

for a standard symmetric convolution kernel p.. For a couple (o, ) € M(Q) x L*(Q)
we set

(0, 0) = /Q[f(sf))|o—|+%(a|w|2+%2)] dz i (0,¢) € X.

+00 otherwise.

Fe

where the function f : R — R is defined as

F() = (=h) (). (5.1)

In the above formula h, is the concave Legendre transform of h (see Section for its
precise definition). The limit energy & is defined in equation (4.2 of Chapter 4l We
prove:

Theorem 5.1. Let

h:R — [0,400) be an even, continuous function

5.2
such that h(0) = 0 and h is concave on [0, +00). (5.2)

Let f be defined as above then
Z.5 & (5.3)
as € — 0.

In Section [5.2| we recall the definition of Legendre transform for a concave function
and obtain some properties of the function f which are essential to the I'-convergence
result. The convergence result is obtained again by slicing and we will take advantage
of the results in Appendix [C] following a strategy similar to the one in Chapter il We
introduce the reduced dimension problem and study the upper and lower bound for
the I'-convergence result in Section [5.3

5.2 Origin of the model and preliminaries

Let us give a brief idea of the model. Let o = (m, 7,3) be a rectifiable vector measure
so that the energy may be written as

én(o) = / h(m(z)) dH".
2
Now recall that for a concave function its Legendre transform is defined as
h.(z) = inf{zm — h(m)}.

Furthermore by [ABM14, Theorem 9.3.2] it holds h.. := (h.). = h thus we may write

(o) = /Z inf{zm(z) — ha(2)} dH.
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Now letting z be a function we can interchange the integral and the inf signs obtaining

z

84(0) = inf /E (2 m(z) — ha(2(x)) dH.

In the above formula we may notice the presence of two measures supported on the rec-
tifiable set ¥ with H'L3-density respectively z(z) m(z) and h,(z(z)). We now model
our approximating functional. The main idea is to retrieve the measure h,(z(x)) H'LY
by means of a phase field approach. Contrary to the previous approaches we now sup-
pose that the phase field ¢ takes value 0, not 1, outside an e-neighborhood of ¥ and
some value p(z) € [0,1] if z € ¥. Given a potential W : R — R we let

It

ew (t VW (s)ds (5.4)

be the cost of the transition between 0 and a value t. We set —h,(z(z)) = ew(¢(x))
and suppose that h, is invertible so that, setting f(¢(z)) := (=hs.) "t o e (p(x)), by a
change of variables we have

mf/f ) + e (p(x)) dH".

Let us observe that the first addend in the latter corresponds to [, f(¢(x)) d|o|. Fur-
thermore by reversing the Modica-Mortola arguments used in the previous chapters
when dealing with the ¢ components we know that, up to a small error, [, cw (¢(x)) dH!

is equal to [, [5]Vgp|2 —] dx. Considering as potential the function W (z) = z?

and replacing ¢ with a mollified version of itself we are led to the proposed approxi-
mating functional, namely

/f Dol + 2 [e\VgoF *’;1 dz. (5.5)

Let us specify what we will consider when talking about the Legendre transform of h.
Since h is an even function first of all consider its restriction to [0, +00). Define the
quantities

lim _h(m) =ap >0, lim M = Qo > 0 and lim (e m —h(m)) = fuc.
maNOt T m 4o M m /' 400

Being h concave and non decreasing we have

—o0, f < Qo
inf {mz—h(m)}= 0 e
me[0,400) 0, for z > «y.

The first fact follows easily from the inequality h(m) < agm. For the second observe
that for any m and ¢ > m we have

h(m) = h (TH (1 - T) o) > ?h(t) + (1 - T) h(0)

t t
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thus passing to the limit as ¢ — +o0o we obtain h(m) > asm. We call Legendre
transform the function

he(z):= inf {mz—h(m)}.

me[0,00)

In the following we will always consider the restriction of h, on the interval in which
is well defined and finite, namely h. : [, 0] = [~0x,0]. In the case ay = o0
or B, = oo the latter intervals are to be considered open. Let us give some of the

h(z)
h(z)

Figure 5.1: Graphs of the function A in red and the corresponding h, in blue for the
choices: h(x) = 2y/x on the left and h(x) = 32'/3 on the right.

properties for h.
Lemma 5.1 (Properties for h,). We have:
1. hy is continuous,
2. hy 1s concave,
3. hy 18 non decreasing,
4. hi(ag) =0.

Proof. The function h, is continuous and concave since is the infimum of a family of
affine functions. Let us prove that h, is monotone non decreasing. By contradiction
suppose the existence of two values z; < z3 such that h,(z1) > h.(22). Therefore there
exists an € > 0 such that for any z € [0, 00) it holds

218 — hy(z1) + € < 200 — hy(22).
Now let . be such that zpx. — h(x.) < hi(22) + £/2 so we obtain

h(ze)+e < z12.—he +€ < 290 — hy(22) < h(x.) +

DO ™
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The latter is a contradiction thus h, is monotone non decreasing. Finally, by the
inequality h(m) < ag we obtain

hi(ag) = inf{agm — h(m)} >0
and the latter is actually a minimum as it is evident by choosing m = 0. O]

The properties stated above ensure that —h, defines a bijection between the inter-
vals [, ] and [0, 8] and may be inverted. Consider the inverse function (—h,)™*
which, in the case S, < 00, we extend constant on [0,+00). Recalling the equa-
tion (j5.4]) we set

f=(=h) " oew. (5.6)

From the properties of h, we easily derive:

Lemma 5.2 (Properties for f). Let W : R — Ry be a non negative, increasing for
x >0 and even function such that W (0) = 0 then the function f := (—h,)™' o cyy is:

a. continuous on [0, 00),
b. non decreasing,
c. f>0and f(0) = ay,
Furthermore the following identity holds true

inf { f(z)m+cw(z)} = h(m).

z€[0,1]

Before moving to the proof of the I'-convergence result let us produce some examples

of function f. In all these cases we will consider the potential function W (z) = z?.

1. The first examples we consider is given by a function with linear growth both at
the origin and at in infinity. In facts, for some values ag > a3 > ... > ay >0
and 0 < By < 1 < ... < By we consider the piecewise affine functions

h(m) =min{a;m+ 5; : i € {1,...,N}}.
Indeed, we have

limM =y, Qoo = QN and B = BN
ml0 m

A direct evaluation gives

—00, r < ay,
h@) = it fom—hm)} = § -2 w0~ o< a <a,
0, T > .
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h(x)

o1 Qg

— xr
2=0lxo h*(x)

Bos

Thus by our notion of Legendre transform h, is the restriction of the above to the
interval [ay, ap]. Indeed, h. defines a bijection of [ay, ap] onto [—f,0]. Since
for our choice of W we have cy(z) = z? the function f is given by

o — OG—1 2
f<x> = ﬁz 6z 1(1‘ Bl + ay, \/ Bz 17\/@

ap, x>/ Bn.

Remark that we have extended (—h,)™! on [By,00) with the value ay.

. The second example is a function with linear growth near at the origin namely

let h(m) := /1 + |m| — 1. We have

1
a0:§’ oo =0 and [ = +00.
For this choice we obtain

inf {zm —h(m )}:1—%—i

me[0,00) 4z

which is well defined and invertible on the interval [0, 1/2], namely we have

r+1—Va2+ 22
2

(~h.) (@) =

and we set

2?2+ 1 —Vat+ 222

fla) = ;

3. The third example has linear growth at infinity and is given by h(m) := m++/m.

100
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5.3. Proof of Theorem

(O, Cko) ¥

In this case the Legendre transform is given by h.(z) = 1/(4 — 4x) and the
function f may be defined as

. The last example we deal with is the branched transport case. For p > 1 consider
the function h(m) = pm!/? for which we have

gy = +00, 0o =0 and Sy = +o00.

A direct evaluation gives h,(z) = (1 — p) 2"/'~? as show in Figure[5.1] Therefore

we have
272 1-p
ro=(5)

5.3 Proof of Theorem

5.1

This section is devoted to the proof of the I'-convergence result. Throughout the whole
section we will consider the potential W (t) := t? for simplicity but the result is valid
for a wider class of problems. The I' — liminf inequality is obtained again by slicing.
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()

For this reason following the strategy of Chapter [4, Section [4.3] we define the reduced
dimension problem. Given an interval I and a measure § € M(I) we recall that it may
be decomposed into its atomic component and diffuse one so that

0 =0+ myHLS,

where Sy is a countable set of points. Analogously to what has been already done in
the previous chapter let us introduce the functional & : M(I)x L*(I) — [0, 00) defined
as
WO+ [ hma) 4, it g o
So
400, otherwise.

G(0,p;1) =

We introduce as well the the reduced phase field functional

2

1 %
oI+ 5 ,2+_)]d, for (0, ) € LY(I) x L*(I),
G.(0,p;1) = /I {f((pﬂ | 9 (5|90| 5 x, for (6,¢) (I) (I)
T, otherwise on M (I) X LQ(])_
We prove that

Lemma 5.3 (I' — liminf reduced inequality). Let I C R be an open set, (0,p.) €
M(I) x L*(I). For any (0., ¢.) such that . = 0 and . — ¢ it holds

limui)nfge(@g,gog;f) >9(0,0,1).

Proof. With no loss of generality we may assume that [ is an interval, that for every
e>0,0. € LYI), p. € WH(I) and

lirnui)nfge(@g,gpa;]) < M < 400

otherwise the inequality is trivial. We further assume that the decomposition for the

limit measure 6 reads
0=0"+> md,.
JEN
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Since we have assumed the family (6., ¢.) to be equibounded in energy it holds

/go?dxgaM.
0

Therefore, up to a subsequence, p. — 0 pointwise almost everywhere. Let 6 > 0 be a
small value to be chosen later. By Egorov’s Theorem ¢, converge uniformly to 0 on
I'\ J for some open set J C I with |J| < §/2. Now consider

J=JuJw; —6/27%%,p; + /2
jeEN
where the points p; correspond to the support of the atomic component of 6. For the
sake of clarity we may rewrite J = U;enC; with C; = (a;, b;). By uniform convergence

we have

lim e (a;) = lim e (b;) = 1.

We set
25 = sup ||
C;

Now by Young’s inequality and a change of variables we have the estimate

b;
G0, 0. (as, b)) > / G0+ el da

i b
> 1) / 6. dz + ()2,

Applying the latter on each interval C; we get

(0r. i 1 /fsoe|9|d$+2[ )/CiIHSIdH(Zf)Q]

Let us pass to the liminf in the latter equation taking advantage of Fatou’ lemma and
the lower semicontinuity of the total variation. Since ¢. — 0 uniformly on 7'\ J and f
is continuous, we have

.. . N2
lngénf%(@g,gos,f) F(0)|6](1 —i—Z (2:)101(Cy) + (2:)?]

FOIOIIN ) +Z Inf | LF(2)10](C:) + (2:)°]

Recalling the properties for f obtained in Lemma we have
lim inf > h
0 1) 2 KO )+ (I

We conclude observing that |0|(C;) > |m;| if C; contains some p; and that 6 coincides
with 0+ on I\ J therefore sending § to zero we obtain

.. . > p/ J_
11%3)11%5(95,%,1) > KW(0)|6-](1) + Zh Im;l).

JEN

103



Chapter 5. Generalized cost functions

The latter lemma allows to prove the lower bound for the result in Theorem

I' — liminf inequality for Theorem[5.1. Let (0., p.) converge to (o, ) in the considered
topology. We first extend o., o, ¢. and ¢ to R?\ Q by zero. The phasefield cost
functional and the cost functional are extended to R? in the obvious way (their values
do not change). Without loss of generality (potentially after extracting a subsequence)
we may assume lim._,o.%.(0., ¢.) to exist and to be finite (else there is nothing to
show). As a consequence we have divo® = pt — p- as well as diva = ,u — 1~ and
¢ = 0 (since the phasefield cost functional is bounded below by = 2% fQ ©?). Choosing
some ¢ € S!, by Fubini’s decomposition theorem we have

&:t)2
Fel0e, 93 4) = / F(eE)ot| + 5 [|<so§¢>'|2+—<; ] swar
A&t

:/ G (05, S ASY) dLt.

Fatou’s lemma thus implies

liminf .7, (o, ¢-; A) 2/ hmmfg( obt oSt ASYY 6t

e—0 00 e—0

By assumption, the left-hand side is finite so that the right-hand side integrand is finite
for almost all t € R as well. Pick any such ¢ and pass to a subsequence such that lim inf
turns into lim. Indeed o&* = ¢ for every ¢ and almost all ¢, as 0. — o. Thus, the
reduced dimension problem implies

hmlnfg( o8t o8t ASY) > G (0t 5 ASY
for almost all ¢ € R so that

liminf %, (0., ¢.; A / G (oSt &t ASY) 6t
e—0

For notational convenience let us now define the auxiliary function x, defined for open
subsets A C R?, as

k(A) = liminf .Z (0., pe; A) .

e—0

Furthermore, introduce the nonnegative Borel measure
AA) = KW (0)|o|(A) +/ h(m,) dH!
S.NA

as well as the |o|-measurable Borel functions

i.gj

o]

¢ :R* =R, 4=
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5.3. Proof of Theorem

for some sequence &7, j € N, dense in S!. Since o is a divergence measure vectorfield,
we have

K(A) > / G0, S AT dt

-/ " 000 M 1(AS) + / h(im o)) dH di

s Sy . NA&It
&1t

ROl ¢l4) + |

SsNA

maI6s €1 4t = [ vy ax

for all 7 € N where we have used Remark@ in the last equality. By [Bra98, Prop. 1.16]
the above inequality implies

5(A) > /A sup 1 6\

J
for any open A C R2. In particular, choosing A as the 1-neighborhood of  we obtain
liminf .Z (0., ¢-; Q) = k(A) > / sup ¥; 6A
e—0 A J

— B 0)]o(A) + / h(m,) dHY = &0 o],

S.NA
the desired result. OJ

We now prove the associated upper bound, actually we only construct the recovery
sequence for a segment. The general case can be handled as in the previous chapters
of the thesis.

[’ — limsup inequality for Theorem[5.1. As always we concentrate on a single segment
assuming o = H'LY with ¥ = [0, L] x {0} and 6 = me; with m > 0. Let

Zm = argmin{z € [0, +00) : f(z)m + 2*}.

For the vector field we define

O = 1
82

where dy, is the distance function from the set ¥. For the phase-field, we let ® be the
solution of the following Cauchy problem in R

¢ = —|ol,
90(0) = Zm,

whose solution on [0, 00) is given by the function ®(¢) = ze*. Let ¢, be defined as

Zm,s if d2($) < 527
(x) = d —&?
() P (%) ., otherwise.
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Chapter 5. Generalized cost functions

Considering the fact that o. = 0 in the set {ds > ?} we have

. m 1 Rz
Je(aea 908) - f(zm)_Q dr + 5 |VQ0€| +— | dx
{ds(2)<e?} € {ds (x)>e2} €

Let us remark that in force of the fact Q C R? we have |{ds(z) > &?}| = €2 L + o(e?)
and H'({dy'(s)}) = 2 L + 27 s. Taking advantage of a change of variables we obtain:

Fe(0e,0e) = f(zm)m L+ o(1) + /OOO |®'(¢)[|®(¢)| [2L + 27 (et — 62)} dt.

By evaluating the integral on the righthand side directly and passing to the superior
limit we conclude

limsup Z. (o, v:) = (f(zm) m + z?n) L = h(m) L.
el0

Observe that this corresponds exactly with

lim sup 7. (0., ¢.) = / h(m) dH?
el0 b

and the proof in the case of a segment is concluded. O]
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Conclusion

To conclude this work we highlight some possible developments of the treated themat-
ics. We first focus on a theoretical claim and then we will present some numerical
methods which could be implemented in the future.

Let us analyze the h-mass transport problem in R?. In a recent work [BEZI5)] the
authors propose to substitute for the gradient of the phase field term in the Ambrosio-
Tortorelli functional a term depending on a second order differential operator. This
modification enhances the regularity of the phase fields and allows for computational
and practical improvements of the existing schemes. Inspired by this idea and those of
the last chapter we are led to consider a functional of the form

Fio.0)= [ [stol + (21802 + )] 0 67)

complemented with the usual divergence constraint V - o = pu, — p_. The latter
functional resembles closely the one studied in the last Chapter 5| and the heuristic
[-convergence argument is analogous. The main difference relies in the definition of
the penalization function f. In order to define this function we need to consider the
transition cost for the phase field which is associated to the following minimization
problem

w [ "y lv’r2 v(r)?| r dr
. ain [(“U*r ) + <>] dr,
v € HE.((0,+00)), v(0) =z, v'(0) = 0, lim v(r)=0.

r—-+00

With this definition for the function 7" we may follow the same strategy used previously
and set f = (—h,)"'oT. A first point of investigation would be to prove the following
claim

Claim 5.2. For any sequence € | 0 we have
F. 5 &
Where & is defined in equation (4.2)).

This result is quite expected and the proof should follow closely the one in the
Chapter |5l Indeed we could use the same Modica-Mortola component which has been
used in Chapter |3 to obtain a similar result. The advantage of this choice is related to
the numerical method presented below.
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Conclusion

Regarding the numerical approximations it would be interesting to apply some
of the techniques proposed by Bonnivard, Bretin and Lemenant in [BBLIS8] to our
problems. Let us recall that for fixed ¢ < 1 the minimization problem associated to
the functional defined in equation has the form

1 g02
—|elVelP+ )| d
wind [ |15 (96 + £ )] a0 s
e eW2(Q),cc LNQ) and V-0 = py — pu_

We propose an alternate minimization scheme which is suitable to the case in which
either py or p_ is atomic. Focus on the minimization in ¢ for fixed ¢, namely

min{/gf(gp)](ﬂ de : o€ L(Q) andv-a:u+—u}. (5.9)

The latter is equivalent to the Beckman model for congested transportation [Bec52]
in which f(¢) models the congestion rate at each point. We reformulate as a
minimization problem on the set of continuous paths, namely C([0,1],€2). We let
(g, 1—) be the set of measures @ on C([0,1],€) such that

eop@ =p- and e 4Q = puy (5.10)

where eg(y) = 7(0) and e;(y) = v(1) for any v € C([0,1],92). For any Q € I'(p, )
the expression

o / SH'LA([0,1])) dQ
C([O,l],Q)

defines a vector measure o € M(§2, R") such that V- o = p; — p_, viceversa [Smi93)
CS11l, [San14] to any such o we may associate a measure @) € I'(u, p_). Remark that

/Q f(@)lo] dz = / £(0) dlo]
- [ 5014 ( [ Bl d@)
Q C([0,1],9)
— dH' d
/C([OJLQ) /7([071]) f(SO) “

So that the minimization problem (5.9) is equivalent to

. d ld : F B '
mln{/c([O,l]’Q) [Y([Oyl})f(@ HdQ : Q€T (py, p )}

This equivalence is particularly interesting in the case u4 = d,,. As a matter of fact in
this case the minimizer in the above is achieved when the measure () is supported on
the geodesics, with respect to the Riemannian metric induced by f(¢), joining zy to
each point in supp(p_). Therefore the minimization procedure reduces to the problem
of finding each one of these geodesics. Eventually this research can be done in a fast and
efficient way by means of the Fast Marching Method [Set99]. The minimization of
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Conclusion

with respect to ¢ can be done by solving via Fast Fourier Transform the associated
PDE, namely

¥ /
Ay — = = ['(p)lol =0.

This approach has two major benefits. Firstly, allows to minimize in the o variable
overcoming the non-differentiability of the norm, secondly it would be quite efficient
since it relies on fast algorithms. Furthermore the presented method can be applied as
well to the functional defined in equation (5.7)). The PDE associated to the ¢ problem
depends on the bilaplacian of ¢ and takes the form

p
SN — 5 = [(p)lo] = 0.

In this the Fast Fourier Transform would provide a better tool with respect to finite
elements methods. The same method could be applied to the functional studied in
Chapter [3] but would lead to a PDE with worst non-linearities.
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Appendix A

Density result for vector measures

in R?

We show that measures which have support contained in a finite union of segments, are
dense in energy. Without loss of generality let us assume that ¢ € Mg(Q) is such that
&3(0,1) < oo. In particular ¢ = U(m,, 7, X,) is a H'-rectifiable measure. Applying
Lemma we obtain an H!-rectifiable measure v = U(m,, 7, X,) and a partition of
Q made of polyhedrons {€;} such that ¥, C U;0Q;, H (X, NU;08;) =0 and o + v is
divergence free.

From the above properties, we can write

JL—i-*yL:Du

for some u € PC(2). Our strategy is the following, using existing results [BCG14],
we build an approximating sequence for u on each €2; whose gradient is supported on
a finite union of segments. We then glue these approx1matlons together to obtain a
sequence (w;) approximating u in (). Where (2 is an open set containing €). The main
difficulty is to establish that Dw;L[UJ;0€;] is close to Dul [U;00;] = y*. First let us
recall the result in [BCGI14]

Lemma A.1. Let u € PC(2) be such that

S, Q) = /Q () ! < e

for h a continuous, sub-additive and increasing function on [0,400) such that h(0) =0
and limy_,o = MY — 4 o0, Then there exists a sequence (u;) C PC(Q) with the following
properties:

o limy, oo u; = u in LY(Q),
i hml—)—l—oo ngh(ula Q) - éah(u7 Q)7

e J,, is contained in a finite union of facets of polytopes for any h € N. In partic-
ular for any n € N,

HH QN T,) =H"H QN T,) and  H(T,) < +oo.
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Appendix A. Density result for vector measures in R?

Lemma A.2 (Approximation of u). There exists a sequence (w;) C PC(Q) with the
following properties:

a) w; — u weakly in BV (Q),

b) suppw; C Q,

¢) limsup,_,, &s(w;, 1) < &p(u, 1),

d) Ju,; is contained in a finite union of segments for any j € N,
e) |Dw; — Du|(U0;) — 0.

Proof. Step 1: In order to apply the results of [BCG14], we first need to modify u and
the energy. Let us denote the energy density function h(t) = 1+ 8t and for k£ > 0 and
t > 0 let us introduce the approximation

(22 4 272/t for t < 27,
h(t), otherwise.

1.8}
161
1.4}

1.2} 2

o8t/ 7
0.6/

04h,

0.2k T k|

0 0.01 0.02 0.03 004 0.05 0.06 007 0.08 0.09 01

Figure A.1: Graph of h and two of its approximations hy, and hy, with k; < k.

We have 0 < hy, < h and h, = h on [2_"7, +00). Notice that h; is continuous, sub-

).
additive and increasing on [0, +00) and that hi(0) = 0 with lim,;_, h’“t(t) = 4o00. We

define the associated energy for functions v € PC() as &, (v, ) := L5 na e([v]) M

N ~ ~

Now we denote PCi(£2) the set of functions v € PC(Q2), (1.6), such that v(Q) C
27*7Z. For these functions we have [v"(z) — v~ ()| > 27* for H!-almost every x € J,,.
Consequently, one has

N N

ghk (U, Q) = gh(v, Q)
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For each fixed k£ > 0, let us introduce the function
up = 27F 2%

where [t] denotes the integer part of the real t. Note that uy € PC’k(Q) with J,, C J,
and ||u — ug|le < 27%. Notice also that in view of ‘(u; —uy) — (ut —u)| < 27F we
have

IDu— Dul(@) < 27 (). (A1)
Indeed, uy — u strongly in BV(Q), as H! ( ) < +00. Moreover, we see that

Step 2: Let us approximate the function ug. Let us fix £ > 0 and ;. We can apply
Lemma to the function u,L €2; and to the energy &, (-, €2;). We obtain a sequence
(w;) which enjoys the following properties:

wh() C up() € 27%Z,  Vj € N, hence w! € PCy(),
w! — wy in L) as j — +oo,
lim é"hk(wé,ﬁi) = lim 5h(w§,9i) = & (ug, ),
J—+oo

j—+oo

J i is contained in a finite union of segments for any j € N,
/ | Tw} — Tug| dH' — 0 where T : BV (;) — L'(9€2;) denotes the trace operator.
09,

Let us now define globally
J
From the above properties, we have w; 5w,

and

Eventually, using a diagonal argument, we have proved the existence of a sequence
(w;) C PC(Q) satistying claims (a), (b) and (d) of the lemma. Moreover, item (c) is

the consequence of (A.2) and (A.3) and item (e) follows from (A.1)) and (A.4)). O

Going back to the H!-rectifiable measures ¢ = U(my,7,,Xs), we define the se-
quence
oj = —Duwi — 7.

We recall that v = U(m.,, 7, 2,) with M, C U9S;. In particular v = —Du*L (U;08;).
We deduce from the previous lemma:

Lemma A.3. There exists a sequence (0;) € Mg(Q) with the properties:

- 0j — o with respect to weak-x convergence of measures,
- 05 = UMy, To;, Xo;) with My, contained in a finite union of segments,

- lim SUP; 00 g/3<0—j7 1) < gﬁ<0—> 1)

113



Appendix A. Density result for vector measures in R?

114



Appendix B

Reduced problem
in dimension n — k

B.1 Auxiliary problem

In this appendix we show the results previously stated in Section of Chapter [2]
with the notation introduced therein let us define the auxiliary set

Y. s(m,r) = {(9,) € L*(B,) x W(By.[n, 1)) « 9]l = m and gjom, =1},

and the associated minimization problem

B y(m,r) = _inf @ 5(0,¢;B,). (B.1)

Y. g(m,r)

For the sake of clarity let us recall that the functional introduced in equation (2.7) has
the expression

dzx.

1 —)? 92
g575<797 2 Br) = / |:8pd‘V(‘p’p + ( 8;0) + SDL |

T

Analogous optimization problem to with mass constraint appears in models of
droplets equilibrium. Bouchitté et al. in [BDS96] study a one dimensional smooth
version of the problem in which the mass constraint is on the phase field variable ¢.
Minimizing in ¥ we obtain a functional depending only on the variable ¢ which
can be interpreted as a variant in higher dimension of the cited work.

The outline of the appendix is the following. First we show that both h¢

w(m, r, )

—d
and h_z(m,r) are bounded by the same constant as € | 0 and that the value of the
second term is achieved by a radially symmetric pair of 7575(m, r). These two facts

are then used to show that for each m the limit values of h_ 4(m,r) and he 5(m,r,7) as
e ] 0 are equal and independent of the choices (r,7) to the extent that 0 < 7 < r. Let
us start by showing the first two properties.

Lemma B.1. For each e, m >0 and r >0
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Appendix B. Reduced problem in dimension n — k

a) there exists a constant C = C(m, 8) < Co(1 + /Bm) such that for

Ve T

O<e< min{
there holds,
he g(m,r,7) < C and Eiﬁ(m,r) < C. (B.2)

b) Both the problem defined in equation and equation admit a minimizer.
Moreover among the minimizers of 9. 53 in'Y . g(m,r) it is possible to choose a radi-
ally symmetric pair (V., pe) such that @, is radially non-decreasing and ¥ is radially
NoN-1ncreasing.

Proof. a) Let r; > 0 and € > 0 such that re <7, (14 ry)e < r, we define

n if |z| < re,
oe(z) == ¢+ 1 =n)(|z|/e —r1) ifre<|z|<(1+mr)e,
1 if (1+mr)e<lz|<m,
and
g lz| < e
D.(z) = { |Brel ’
0 if e < x| <.

By construction, (¢.,9.) € Yz 5(m,r,7) NY.5(m,r). We estimate successively the
three terms of the energy. First, since ¢|Ve.| = (1 —7n) < 1in B4 \ By and
vanishes outside,

/ »Sp_d|Vgoa|p dz < [Bayr)e \ Briel el < wa(l+ rl)d.

T

Next, bounding |1 — .| by the characteristic function of B(14+,)e We have

1— )
/(g—dgp)dxﬁ wa(1+ 1)t

Finally,

5 ward ettt ward

/ 905\195\2(1 1 ogm®  pm?
x

Gathering the estimates yields to the bound
am?

wdrf'

max{hgﬂ(m,r, f),ﬁiﬁ(m,r)} <Y 53(pe, V) < 2wq(1 + rl)d +

Then, assuming (v/Bm)Y% < 7 and (1 + (v/Bm)Y9)e < r, we can set r, =
(v/Bm)'/?. We obtain,

max{h¢ 5(m, r, 7), he 5(m,7)} < C(1 +/Bm).
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B.1. Auxiliary problem

b) To show the existence of minimizers for both minimization problems we use the
direct method of the Calculus of Variation. The lower semicontinuity of the integral
with integrand u|J|* is ensured by Ioffe’s theorem [AFP00, theorem 5.8]. Now
given any minimizing pair (195, @.) € Y.5(m,7), let 9. be the decreasing Steiner
rearrangement of J. and . the increasing rearrangement of ¢.. Indeed, since ¢,
has range in [, 1], we still have ¢, |95, = 1. Polya’s Szego and Hardy-Littlewood’s
inequalities [Tal70, [LI197] ensure

~

g&:ﬁ(ﬂm 306) S ge,ﬂ (/1967 @s)
]

. . _ —d
Let us prove the asymptotic equivalence of the values hg’ g(m,r,7) and h_gz(m,r) as
el 0.

Lemma B.2 (Equivalence of the two problems). For any 7 < r and m > 0 it holds

By (m, v, 7) — B y(m, )| =2 0

Proof. Step 1: [h¢ g(m,r,7) < Eiﬁ(m,r) +0(1)/
Consider for each ¢ the radially symmetric and monotone pair (9, p.) € Y. 5(m,7) as
introduced in the previous lemma. Take £ € (n,1) and let us set

re :==sup{t € (0,7) : ¢-(t) <&}  with re = 0 if the set is empty. (B.3)

By Cauchy-Schwartz inequality it holds

2
/ 0|9 ? do | || da
O Z BT\BT& > 5 ( BT\BTE > )

€ wq T

Let us define A¢ := 19.|, the latter ensures that A¢ € o(c'/2). Let us now set

Jonm,

~

0, = ( me ) 1p,, which is not null for e small. We have (J.,¢.) € Yz 5(m,r,7) if

I, Ve
and only if re < 7. Indeed, this holds as
1—p.)? d
CZ/ #dxz wa (1 —€)? <E> ) (B.4)
B € €

/
3

which ensures that re = O(e). Finally let us evaluate the energy

£

1 — )2 21, |2
:/ [5p_d|Vg0£|p+—< fs) } d:zH—/ Permt Vel |19€\2 dx
s € By, 5<fBTf Ue)

gs,ﬁ(ﬂsa @s) = [1 + O(U]gs,ﬁ(ﬁsa 905)'

~ 1— . 2 A 195 2
gg,ﬁ(ﬁaﬂpa) :/ lgp_d|v‘palp + ( E;p ) + ' ’ ’ ] da

m2 Wy

S T
Us.. )
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Appendix B. Reduced problem in dimension n — k

Passing to the infimum we get

he s(m, . 7) < B 5(m,r) + O(1). (B.5)

£

Step 2: /ﬁgﬁ(m,r) < hgﬂ(m,r, 7) +o(1)]
Consider a minimizing pair (Y., ¢.) such that

hiﬁ(m,r, 7) =9 5(Ve, ).

Let x be a smooth cutoff function such that y(z) = 1if [z| < 7 and x(z) = 0if |z| > =~
and set v. = xp. + (1 — x). By construction (9J.,v.) € Y. z(m,r), furthermore, since
¢- € (0,1], it holds that ¢. < v. and (1 — .)? > (1 — v.)?. Moreover as v. = .
on By we have [ ¢ |0.]> dv = [ v.|0.]* dv. Eventually, we estimate the gradient
component of the energy as follows

(/ é}ﬂ?hupdxzi/ U\ V. + (. — VAP da
[ B,
< / (V| + [Vx|)? da
B'r
< / PV, |P do + C(r, x) (%;;1/”(195, vg)gp% + €p_d)

where we have used the inequality (|a| + |b])? < |a|P + C,(|a[P~![b| + |b|P) and Holder
inequality. We get

R () < G g (9o, v:) < Do p(Wer02) + O ) = fT(m, 1) + o(1) (B.6)

Step 3: Combining inequalities (B.5) and we obtain

hiﬁ(m,r, T) —Eiﬁ(m,r) = o(1).

B.2 Study of the transition energy

Given two values r; < 7y let us introduce the functional

T v; (ry,1m9)) 1= /T2 41 (V'[P + (1 —v)?] dt

T1

and for any triplet (&, r1, m2) € [0,1] x RT x R we set
q(&,71,19) == inf {fd(v; (r1,79)) = v € WYP(r, 1), v(r) = & and v(ry) = 1} . (B.7)

This value represents the cost of the transition from ¢ to 1 in the ring B,, \ B,,. We
will say that a function v is admissible for the triplet (&,71,79) if it is a competitor
in the above minimization problem. Let us investigate the properties of the function
introduced.
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B.2. Study of the transition energy

Lemma B.3. For any fized triplet (§,r1,72) € [0,1] x Ry X Ry the infimum in equa-
tion is a minimum. Moreover there is a unique function achieving the minimum
which is nondecreasing with range in the interval [€,1]. Finally the function q¢ satisfies
the following properties

1. 1o = q4(&,ry,19) is nonincreasing,
2. 11— q4(&,71,12) is nondecreasing,
3. & w q%&, ry,m0) is nonincreasing, and g(1,71,7r9) = 0.

Recalling the definition (2.10) of ¢2,, we have ¢% (¢, 7) = q%(&,71,00), and ¢% (0,0) > 0.
Furthermore for any r > 0 the map & — ¢% (&, r) is convex and continuous on (0, +00).

Proof. Let (§,11,72) € [0,1] xRy xRy, the infimum is actually a minimum by means of
the direct method of the calculus of variations. Such minimum is absolutely continuous
on the interval (ry,73) by Morrey’s inequality and is unique since 7%(v; (ry, 7)) is
strictly convex in v. Let v € WP(ry, ;) be a minimizer of set

U = min{max(v,§), 1}

then T4(v; (r1,m2)) < T4 v; (r1,72)) if v # T. As a consequence for every minimizer
of (B.7)) we have ¢ < v < 1. Similarly setting

v(s) = max{v(t) : m <t < s}
we have T4(v; (r1,19)) < T v; (r1,m9)) if v # v. Hence v is nondecreasing. Let us

Optimal profile

Figure B.1: Profile of the transition function ¥ obtained by a numerical optimiza-
tion (B.7) . Thus v = argmin 7 %(v,71,73), for the choice of the parameters p = 3,
d=2,r1=2,1r5=40and £ = 0.

now study the monotonicity of ¢¢. To do so let v be the minimizer for (&,ry,75):

1. Let 73 > 1o and let us extend v by 1 on the interval (r3,75). We have
U (& r1,m0) = TUv; (r1,m0)) = T (v; (11, T2)) 2 ¢ (€11, T2).

Hence 75 — ¢% is nonincreasing.
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Appendix B. Reduced problem in dimension n — k

2. Let 0 <7, <7 and set A =74 —7 > 0 and 7, = (14 — A)a < r5. Define the
diffeomorphism

¢ : (T17T2) — (FlvFQ)a (BS)
s e [s1— A

Let v be the minimizer of (B.7) and (s) = v o ¢(s). Let us remark that ¢'(s) =

5371 /¢ (s)47L, thus it holds

qd(gv r1,T2) = /r2 ! le‘p + (1 — U)Q} dt
= N P(s)471 [% + (1 - 6)2} o(s) ds

-2 ) e ra-o2| d
Sd—A v v S

Therefore 7, — ¢? is nondecreasing.

3. Let 0 < € < € <1 and v the absolutely continuous, nondecreasing minimizer of
problem ¢%(&,71,72). Then there exists 7 € (rq, ry) for which v(7) = £. Hence

qd(&rlarQ) > yd(v; (77 TQ)) > qd(gw T, TQ) > qd(ga 7’1,7‘2>.

Hence, & — ¢% is nonincreasing. Finally, for £ = 1 consider the constant function
v=1to get ¢?(1,7,75) = 0.
Indeed, in view of the monotonicity, for every r; and r, we have
g(oa 71, TQ) > g<07 07 +OO) = qgo(oa O)
Let us show ¢ (0,0) > 0. As a matter of facts, taken the minimizer v for the prob-
lem ((2.10)), there exists r € (0, 400) such that v(r) = 1/2 and we have
T r d
q% (0,0) > / WP+ (1 —0)?] dt = / t P dt + Z—d
0 0

A direct evaluation gives

min {/ t P dt : o(r) =0 and v(r) = 1/2} = g

0

and we obtain the estimate
d

d c r
0.0)>-+—>0.
45 (0, )_r+4d

Lastly, let us show that for any 7 the function ¢ (-,7) is convex. Consider two values
€1, & € (0,1) and the associated minimizers vy, vy for the respective energy g2 (-, 7).
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B.3. Proof of Proposition

Indeed, for any A € (0,1) the function Av; + (1 — A)vg is a competitor for the mini-
mization problem g% (A& + (1 — M), ), therefore it holds

gL (N + (1= N)ég, ) < /Oo t 1 [Avr = (1= NoofP + (1= Avp + (1= A)wo)?] dt

T

<A@ (&) + (1= N) ¢ (&)

Thus ¢4 (-,7) is continuous in the open interval (0,1). To show the continuity in 0 let
¢ be small and v = argmin ¢% (£, 7). Set

1
f(t) — 1_\/g(t_€>a Z€<\/Z>
t, t> /¢

and observe that f owv is a competitor for the problem ¢Z (0,7). Then

o< [ T (fou) P4 (1— fou?] di

1 d % ov)? — (1 —v)2
< o a6+ [ = euf (-] at

Let us estimate the second addend in the latter. By the definition of f we have

/mtd—l (1= fov)?—(1—v)? dt = / "1 [(1= fov—v)’(v— fov)’] dt
" {v<v€}

< 4¢ / =1 dt
{v<v&}
<

<aver G5 (&,7)-

Since ¢2 (-, 7) is monotone we have

la-dor kL,
TV a-verS"”

which shows that ¢Z (-, ) is continuous in 0. O

14 (0,7) — g (€, 7)] < max{

B.3 Proof of Proposition 2.1

We show that

lirilui)nfﬁiﬁ(m, r) > h%(m)

then equation ([2.11)) easily follows from Lemma . For m=0set ¥ =0 and u =1,
then (9, ¢) € Y. 5(0,r) for any radius r and ¥- 3(v, ¢; B,) = 0 for each €. Now suppose
m > 0 and let £ € (n,1). Consider the radially symmetric and monotone minimizing
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Appendix B. Reduced problem in dimension n — k

pair (¥, p.) of Lemma and 7¢ introduced in equation (B.3)). Let us split the set of

integration in the two sets BT& and B, \ BQ, we obtain

—d
haﬁ(ma T) = g&,ﬁ (7957 905) >

1-— 3 2 11— € 2 € 19"5 ?
/ {ep_d|V<p€|p + #} dz +/ # dzr + / PelVe] dz. (B.9)
BT\BT5 € B € r

- 9
€
—~ ~ N~
ac be

We deal with each addend separately. First observe that by Cauchy-Schwarz inequality;,

it holds )
m
— < / 0% da.
1 — EYe
fBr De dz -
Plugging the latter in the term b. of we have
1— . 2 2
be > / U=ee) gy — 1
B'y'g 3 g (fBr\B'rg ; dx + fBr,’: E dx)

taking into account n < ¢, < £ in Brg, E<p.<1lin B’,,\B,n5 and n = Be%*! we obtain

m2

b > wa(l — €)? (E)d +— (B.10)

Since b, < Eiﬁ(m, r) < C(m) we deduce that 7¢/c belongs to a fixed compact subset
K = K(m,€) of (0,400). Up to extracting a subsequence, which we do not relabel,
we can suppose 7¢ /e to converge to some 7 > 0. Let us now consider the term a.. Let
v: be the radial profile of .

1 — .)?
a. :/ [sp_d|V<pg|p—|——< f ) ] dx
B:\Br, €

r/e
—a= e [ 0]
re/e

With the notation introduced in section [B.2] and Lemma [B.3] therein we deduce

limig]nf a. > (d—1)wy limui)nfqd (& (refe,r/e)) > (d—1)wy qffo(g,f),

where ¢% has been defined in (2.10). Combining inequality (B.10) and the latter we

get

B m?

. =—d d ~ 2 ~d
l;fglhsﬁ(mﬂ“) > (d=1wigs(&7) + (1= &)  wa 7+ wy 74

Sending & to 0 we have, by continuity (Lemma [B.3) ¢ (£,7) — ¢% (0,7). Then taking
the infimum in 7, we obtain

lim inf 7" (m,r) > min < (d —1)wgq%(0,7) + w f*d+ﬁm2
el0 & ’ - 5 d 900 \Y> d wdf’d .

122



B.4. Proof of Proposition

Again by Lemma the function ¢ (0,7) is nondecreasing in #, and ¢% (0,0) > 0
therefore setting
k= (d — 1) wy g% (0,0) < hE(m)

we conclude the proof of Proposition [2.1]

B.4 Proof of Proposition 2.2

Let 6 > 0, by Lemma for e sufficiently small

¢ (n; (re,r/2)) < ¢ (0,7.) + 6.

bet v5(t) = argmin {fd <v; (r*, g)) dt : v(r.)=nandv <£> - 1} '
and set n for 0 <t <r.e
e(t) == Vs (é) forrie <t <r

Set ¥.(s) to be constant equal to +)d on the ball B.,, and zero outside. Indeed,

O T
the pair (9., p-(|x])) belongs to Y. g(m,r). That is because ¢, is greater then n and

attains value 1 at the border of B, and

/T Ue(x) do = L)d wa(er,)® = m.

wa(ers

Let us show that the pair (9., ¢.) defined satisfy inequality (2.13]). Taking advantage
of the radial symmetry of the functions we get

1—_%%)]

- (
td 1 {gp-i-d’gpup_{_ =

(1 ;de wa (er.)' + 2 (%)2 wa ().

T

gg,ﬂ(ﬁa, QOE) = / dt +

ETx

_|_

By simplifying the expression and considering the change of variable s = ﬁ in the latter
it holds

% 2
G, 5(0er02) = (d — 1)wd/sd1 Wb + (1= v5)] ds + (1 — n)2awgrd 4 —1

- i,
< (A= 1) wa g (o (resr/e) + (L= g !+ 2
Then, by Lemma for € sufficiently small we have
Go0erpe) S O g4 (0= 1) g 00,7 (D 18 = W) + O

which ends the proof of Proposition [2.2]
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B.5 Proof of Proposition (2.3

Propositions 2.1 2.2] and lemma ensure that

hi(m) = lgﬁlﬁgﬂ(m’ r) = lsiﬁ]l he 5(m,r,7) (B.11)

independently of the choices for » and 7 < r. For the sake of clarity we introduce

pm’

wy T

T(m,r) = { + war?+(d—1) wa qfo(o,r)}

and recall that h$(m) = min, T'(m,r) for m > 0 and h%(0) = 0, see (2.9).

Proof.
Let us prove the continuity of hg) on (0,+00). For my,my € (0,+00) and for i = 1,2
let 7; be such that h§(m;) = T(m;,r;). On one hand comparing with r = 1 it holds

2

» frd < hf(m;) < T(my, 1) (B.12)

m

on the other hand analougusly we have
Wd—1 7“? < hdg(mi) < T(mg,1). (B.13)

Consequently wy 1 ¢ belongs to the compact set [m;/T (m;, 1), T(m;,1)]. Now remark
that
hg(ml) S T(ml, TQ) = hg(mg) + T(ml, T‘Q) — T(mg, TQ)

thus ) ,
() — B(ma)| < |T(ms, ra) — Tma, )] < —mL =2

wq_1 min{r¢, rg}

and taking into account inequality (B.12)) we have

T(mq,1) T(mo,1
15 0m1) = 18 oma)| < s+ ma s { ) EO Dy
1 2

Observing that T'(-,1) is continuous we conclude that A is continuous on (0, +00).
Next, we see that hf is non decreasing. Let 0 < m; < my and r > 0. Let (J,¢) €

Y. s(ma,7) such that 4. 5 (9, ¢; B,) = Eiﬂ(mg, 7). Set ¥ = my9/m, and remark that
the pair (J, u) belongs to Y. g(m1, 7). Therefore we have the following set of inequalities

—d m119

— —d
hg,g(mh T) S ge,ﬂ(ﬁa 2 BT) = ge,ﬂ (m_7 ¥; Br) < gx—:,ﬂ (197 ¥; Br) = hg,ﬁ(mQJ T)-
2

Passing to the limit as € | 0 we obtain
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B.5. Proof of Proposition

Let us now prove the sub-additivity. For a radius r consider the competitors (9;,u;) €
Y. p(mj,r) for j =1,2. Consider the ball By, 41 centered in the origin and two points
x1, 22 such that the balls B,.(z1), B,(x2) are disjoint and contained in By, 1. Set

Y(x —x1), x€ By(21),
I(x) = { Va(x — 23), = € Bp(x2),
0, otherwise,
and
u(z —x1), € B.(11),
u(x) == us(x — x9), = € B.(x2),
1, otherwise,

and observe that the pair (J,) belongs to Y (m; + mag, 2r + 1). Being the balls B, (z;)
disjoint we have

h. g(my +ma, 1 +19) <Y p(01(z — 21),u1 (2 — 11); By (1)) +
+ 9. 5(Va(x — z2), us(x — x9); By (x2))
= Eiﬂ(ml, r)+ hgﬁ(mg, r).

Passing to the limit as € | 0, and recalling that it is independent of the choice of the
radius, we get
hi(my +ma) < hi(ma) + hg(mo).

We conclude the appendix by showing that

Lemma B.4. For any sequence 3; | 0 it holds
hgz — Iil(oyoo)
pointwise.

Proof. We have already shown that h%(m) > & for m > 0. For m > 0 choose 7 =
(v/Bm)Y?, then by definition it holds

o < Hm) < (d = Vg0, (/Bm) )+ oa/ B + Y,

Finally simply recall that (d — 1) wq¢% (0,0) = & and that ¢¢ (0,-) is continuous. [
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Appendix C

Slicing of measures

We derive now some technical construction for divergence measure vector fields which
are needed to reduce the I' — liminf inequality of Chapters 4| and [5| to the lower-
dimensional setting. In particular, we will introduce slices of a divergence measure
vector field, which in the language of geometric measure theory correspond to slices of
currents. We will slice in the direction of a unitary vector £ € S"! with orthogonal
hyperplanes of the form

Hey = ng(t) for the projection ¢ : R" = R, me(z) =z - €.
The orthogonal projection onto He, is denoted
T, (1) = (I =@ &)x + 1.

The slicing will essentially be performed via disintegration. Let o be a compactly
supported divergence measure vector field. By the Disintegration Theorem [AFPQ0,
Thm. 2.28], for all £ € S"! and almost all ¢ € R there exists a unique measure
ver € M(Hg,) such that

[veellm =1 and  o0-&=ve @meylo-E|(t).
We decompose ¢ #|a - €| into its absolutely continuous and singular part according to
Teylo - &l = o¢(t) dt + o
for dt the Lebesgue measure on R.

Lemma C.1. For any ¢ € S™ ! and any compactly supported divergence measure
vector field o we have o = 0, that is, the measure Teylo - & = o¢(t) dt is absolutely
continuous with respect to the Lebesgue measure on R. Moreover, for almost allt € R
and any compactly supported 6 € C*°(R"™) we have

ag(t)/ 0 dve, :/ Vo - d0+/ 6 ddive. (C.1)
He, {ea<t) {ea<t)

Proof. Abbreviate H = £+ = Hg with corresponding orthogonal projection 7, let
¢ € C*(H) and ¥ € C*°(R) be compactly supported, and define

Ko, ) = | o(mu(x))p(me(r)) d(o-&)(@).

Rn
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Appendix C. Slicing of measures

Introducing ¥ (t) = ffoo Y(s) ds we obtain via the chain and product rule

(pomy)(ome) = (pomy)VIVom]=V[(pomy)(Vom)] —V[pomy|(Vom)

so that (denoting by x4 the characteristic function of a set A)

16.0)= [ ViGom)(Werg]- do- [ Vipomul(¥ory): do

Rn n

—— [ @om(Wory ddivo~ [ Vipoml(Wory- do

n

—00

- [ Voo mala) ( / Z@)ws) ds) o

—— [ ot ([ xieaats) ds) daivotw

me(x)
= _ . d(my(z)) (/ (s) ds) ddivo(z)

- Vip o my](z) </R X(eazs) () ds) do

(Note that we could just as well have used X{ea>sy instead of xiep>qp, Which would
ultimately lead to integration domains {£ -« < ¢} in (C.1]); for almost all ¢ this will be
the same.) Applying the Fubini-Tonelli Theorem we obtain

Ho.0) = [ (o) /{ghm}vwom]@» do(z) + /{M} oln(2) ddivo(e)| ds
- [ /{ . Vieoml(@)- dote)+ /{ L dmno) daivo(w)] ds,

where in the second step we just added 0 = fR" Vipory] do+ fRn ¢pormy ddive in
the square brackets. On the other hand, using the disintegration of o - £ we also have

(o, 9) = | ¢(mu(@))y(me(x)) d(o-&)(x)

R”

_ /R [w(s) [ o) dyg,s(y)] (0e(s) ds + do(s)).

Comparing both expressions for (¢, 1)) we can identify

[ i o(mu(y)) dVg,s(y)] (0¢(s) ds+ daé(s))

- | [ oo do)+ [ ofmat) ddiva) ds

{&a<s}

Since the right-hand side has no singular component with respect to the Lebesgue

measure, we deduce [st d(mr(y)) du&s(y)} g (s) = 0. Now note that any compactly
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supported function in C°(R") or C!(R™) can be arbitrarily well approximated (in the
respective norm) by finite linear combinations of tensor products (¢ o mg)(¢) o 7¢)
with ¢ € C®(H) and ¢ € C>*(R) with compact support. Thus, the above implies

I [ng 0(y) dugys(y)] dog (s) = 0 for any compactly supported 6 € C°(R") so that

Ves @ aé(s) =0 and thus 02‘(8) =0.

Summarizing, we have o - { = 0¢(s)ve s ® ds and

O ())oe(s) dves(z) ds

He s

= / Vg ormyl(x) - do(zx) —|—/ ¢(mu(x)) ddivo(z)
{§z<s}

{&a<s}

for all compactly supported ¢ € C*°(H). Note that the right-hand side is left-continuous
in s so that the left-hand side is as well. Consequently, o¢(s)ve s is left-continuous in
s with respect to weak-* convergence. Now let y € C*(R) with x = 1 on (—o0,0],
X =0on [1,00), and 0 < y < 1, and define for p > 0

mwe(x)—1 . me()—t
Y(z) = x (%) , o’ =xo, p=x"dive, of = %X’ < 5(p) > o (8)ves.
In the distributional sense we have
dive’ = p” +0f ® ds

so that for any compactly supported § € C*°(R™) we have

V8~d0p+/ Gdup:—// 0 dog, ds.
R» R” R JH, ’

Letting p — 0 and using the left-continuity of o¢(s)ve s in s we arrive at (C.1J). O

We now define the slice of a divergence measure vector field as the measure obtained
via disintegration with respect to the one-dimensional Lebesgue measure.

Definition 3 (Sliced sets, functions, and measures). Let £ € S"™! and ¢t € R.
1. For A C R" we define the sliced set A¢y = AN He,.

2. For f: A — R we define the sliced function fe; : Aey — R, fer = fla,,. For
fiA— R"wedefine fe;: Aey — R", fer =& flag,-

3. We define the sliced measure of a compactly supported divergence measure vector
field o as

Ocr = 0¢(t) Vey .
By Lemma it holds 0 - { = 0, ® dt.
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Appendix C. Slicing of measures

Remark 6 (Properties of sliced functions and measures). 1. By Fubini’s theorem
it follows that for any function f of Sobolev-type W™P the corresponding sliced
function f¢; is well-defined and also of Sobolev-type W™ for almost all £ € S"!
and ¢t € R. For the same reason, strong convergence f; —; o f in WP implies
strong convergence (fj)er — fesr in WP on the sliced domain.

2. The definitions of sliced functions and measures are consistent in the following
sense. If we identify a Lebesgue function f with the measure y = fL£ for £ the
Lebesgue measure, then the same identification holds between f¢, and x¢, for
almost all £ € S" ! and ¢t € R.

3. Let o be a divergence measure vector field, then the properties [AFP00, Thm. 2.28]
of the disintegration o - § = vg; @ me o - E[(t) = ves ® 0¢(l) dt = 0y ® di Im-
mediately imply the following. The map ¢ + ||o¢||m s integrable and satisfies

[ Nocalaa at = [ oe(t) dt = o€l
R R

Furthermore, for any measurable function f : R® — R, absolutely integrable
with respect to |o - £, it holds

do-£ = dyg 4 dme |0 = dog 4 dt.
(@ are= [ [ ) o) dreglodlin = [ [ ) docte) a

We briefly relate our definition of sliced measures to other notions of slices from the
literature.

Remark 7 (Notions of slices). 1. Let Lip(A) denote the set of bounded Lipschitz
functions on A C R". An alternative definition of the slice of a divergence
measure vector field o was introduced by Silhavy [S07] as the linear operator

. o1
et - Llp(H&i) — R’ Ug,t(S0|H§7t) - (151{‘% g/{ R™ | t—d<z-£<t} (‘05 e (Cz>
zeR™ |[t—0<z-£<

for all ¢ € Lip(R") (the right-hand side is well-defined and only depends on |y, ,
[S07, Thm. 3.5 & Thm. 3.6]). This ¢, equals the so-called normal trace of o on
He, (see [SO7] for its definition and properties). In general it is not a measure
but continuous on Lip(He,) in the sense

a¢i(¢) < (lolam + [[div ol sl pllwre for all ¢ € Lip(He,) -

2. Interpreting a divergence measure vector field as a 1-current or a flat 1-chain,
Silhavy’s definition of o¢; is identical to the classical slice of o on H¢, as for
instance defined in [Whi99b] or [Fed69, 4.3.1] (note that Silhavy’s definition cor-
responds to [SO7, (3.8)], whose analogue for currents is [Fed69, 4.3.2(5)]).

3. Our notion of a sliced measure from Definition |3| is equivalent to both above-
mentioned notions. Indeed, (C.1)) implies

oer = (divo)L{z - & <t} —div(oL{z - £ < t}),

which shows that the sliced measure represents the normal flux through the
hyperplane He, = {z - { = t}. This, however, is the same characterization
as given in [S07, (3.6)] and [Fed69, 4.2.1] for both above notions of slices.
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We conclude the section with several properties needed for the I'—lim inf inequality.
The following result makes use of the Kantorovich—Rubinstein norm (see for instance
[LLSV14, eq. (2) & (5)]; in geometric measure theory it is known as the flat norm) on
M(R"), defined by

lpellxr = mf{[|pallae + [lp2llacl € M(R™), g € MR R"), p= pn + div o}

= sup {/ [ du ' f Lipschitz with constant 1, |f| < 1} .
)

For measures of uniformly bounded support and uniformly bounded mass it is known
to metrize weak-* convergence (see for instance [BWI17, Rem.2.29(3)-(4)]). We will
furthermore make use of the following fact. Let T : x — x — s be the translation by s
in direction —¢. It is straightforward to check that for any divergence measure vector
field 4 € M(R"; R™) we have

diV(ﬂ'H&t#(,U, - éé)) = Tng,t#( div :U’) :
As a consequence, for any p € M(Hg,) and v € M(Hey5) we have

I —v|kr > |0 — Topv|kr -

Indeed, let § > 0 arbitrary and p; € M(R"), o € M(R™; R") with p—v = pg +div pso
such that [l —vllkr = [l llve + g2l — 0, then i = 7w, o1 and fig = 7, (12 —
po - £§) satisfy p — Topv = fiy + div fig and thus

I = Togvller < i llaa + Al < llpallae + llpallame < llpe = vllke 49

Theorem C.1 (Weak convergence of sliced measures). Let 0/ = o as j — oo for a
sequence {07} of compactly supported divergence measure vector fields with uniformly
bounded || div o’||r. Then for almost all € € S™™! and t € R we have

O'ét S oey
Proof. It suffices to show Ué,t X o¢, for a subsequence.

Consider the measures v/ = |07| + |dive?|. Since |[t7]|a¢ is uniformly bounded,
a subsequence converges weakly-* to some compactly supported nonnegative v &
M(R™) (the subsequence is still indexed by j). For I C R introduce the nota-
tion Her = Uje; Her- Then for almost all t € R, v(Hep—siys) — 0 as well as
(lo|+|divo|)(He —st+s) — 0 as s \, 0. For such a ¢t we show convergence of Ug,t —O¢y
to zero in the Kantorovich-Rubinstein norm which implies weak-x convergence. To
this end fix some arbitrary ¢ > 0. Given ¢ > 0 let p; = p(-/()/¢ for a nonnegative
smoothing kernel p € C*(R) with support in [-1,1] and [ p dt = 1. For any com-
pactly supported divergence measure vector field A we now define the convolved slice

Aece by
/ g dAs,c,tZ/Pc(—S)
Hgyt R
(—s)

/ ¢ / go Ts d)\&t_;'_s dS Vg - C(Hf,t) s
R He

/ 9 dTsyAerys ds
Hﬁ,t

)
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Appendix C. Slicing of measures

where T : x — x — s€ is the translation by s in direction —¢. By Remark |§| we have
ol cs = ¢ ¢t Furthermore, there exist ¢ > 0 and J € N such that |lo¢; —o¢ce|lkr < 3

and Hagyt — Ug,g,tHKR < % for all j > J. Indeed, for a compactly supported divergence
measure vector field \ we have

e — Aecalln < /R pe(=5)es — Tophesssllxn ds
< [ pd=9les = Acesaln ds
= [ P O H ) = (N H e e ds
< /R pe(=5) [ (Heoase) + | div Al (Hejuern)] ds

< AM(He jt—¢evq) + [ div A/ (He i—¢.e1) 5

where in the equality we employed Remark . Thus, we can simply pick ¢ such that
|o|(He,jt—c ) +| div o (He jr—c4¢) < $ and V(Hgy[t_}’tﬂ]) < %, while we choose J such
that (Vj—V)(]:],E,[t_<7t+C]) < S forall j > J. Now let J > J such that 0% ci—0ecillkr <
g for all 5 > J, then we obtain

o}, — oeillkr < |lod, — ol ¢ illkr + lof ;= oecillkr + [logcr — oeillkr <0
for all 5 > J. The arbitrariness of § concludes the proof. O

Remark 8 (Flat convergence of sliced currents). The convergence from Theorem [C.1
is consistent with the following property of slices of 1-currents: If o7, j € N, is a
sequence of 1-currents of finite mass with ¢/ — ¢ in the flat norm, then (potentially
after choosing a subsequence) ag’t — 0¢, in the flat norm for almost every £ € S"1,
t € R (see [CDRMSIT, step 2 in proof of Prop. 2.5] or [Whi99bl Sec. 3]).

Remark 9 (Characterization of sliced measures). 1. Let the compactly supported
divergence measure vector field o be countably 1-rectifiable, that is, 0 = OmH!'LS
for a countably l-rectifiable set S C R™ and H!L S-measurable functions m :
S — [0,00) and 6 : S — S™! tangent to S H'-almost everywhere. Then the
coarea formula for rectifiable sets [Fed69, Thm.3.2.22] implies |0 - £{HI'LS =
HOUSe, ® H'(t) so that

. — . 1 — . 0
/nf do - & /Sfmﬁ & dH /R ‘., fmsgn(€-0) dH® dt

for any Borel function f. Hence, for almost all ¢,
ocr = sgn(€ - 0) mH L Se, .

The choice f = % sgn(§ - 0) yields

/ST(m>|0-§| d#! :/R/Swf(m) d#H° dt.
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2. Let the compactly supported divergence measure vector field o be H!-diffuse,
that is, it is singular with respect to the one-dimensional Hausdorff measure on
any countably 1-rectifiable set. Then for almost all £ € S" ! and t € R, o¢; is
H -diffuse, that is, it does not contain any atoms. Indeed, let o¢; have an atom
at v € Hey, then

xe@(a):{xeR”

it [o](5,(x)) /> 0

where B,(x) denotes the open ball of radius p centred at . This can be deduced
as follows. Let ¢ € C>*°(R) be smooth and even with support in (—1,1) and
#(0) = sgn(oe4({z})). Further abbreviate K = max,er |¢'(z)] > 0 and ¢, =
é(| - —x|/p) for any p > 0. Equation now implies

¢, dogy :/ ®p ddiva+/ Vo, do
He,t {&z<t} {&x<t}

B
§/ bp ddiva—i—KM.
{¢z<t} P

Taking on both sides the limit inferior as p — 0 we obtain
loce({}) < Kliminf |o|(By(2))/p.

as desired. As a result, for a given ¢ the set of ¢ such that o¢, is not H"-diffuse
is a subset of m¢(0). Thus it remains to show that for almost all £ € S"~! the
set m¢(©) is a Lebesgue-nullset. Writing

o=Je, for@p:{azeR"

peN

1
N 1
i nf 0(3,(1))/p > p} |

it actually suffices to show that m¢(©) is a Lebesgue-nullset for any p € N. Now
by the properties of the 1-dimensional density of a measure [AFP00, Thm. 256],

H'(6,) < £l0](6))

so that ©, can be decomposed into a countably 1-rectifiable and a purely 1-
unrectifiable set [AFP00, p. 83],

e,=6rue:

(©, purely 1-unrectifiable means Hl(@g N f(R)) = 0 for any Lipschitz f: R —
R"). By the H!-diffusivity assumption on o we have (abbreviating the Lebesgue
measure by L)

T T p T
L(me(6})) < H'(6}) < Tlol(6]) =0,
and by a result due to Besicovitch [AFP00, Thm. 2.65] we have
L(me(©;)) =0

for almost all £ € S"~!. Thus, for almost all £ € S"~! we have L(7¢(0,)) = 0, as
desired.
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Remark 10 (Characterization of divergence measure vector fields). By a result
due to Smirnov [Smi93], any divergence measure vector field o can be decomposed
into simple oriented curves o, = yx¥ dsL[0, 1] with v : [0,1] — R" a Lipschitz
curve and ds the Lebesgue measure, that is,

o= /J oy dpo(7)

with J the set of Lipschitz curves and u, a nonnegative Borel measure. The
results of this section can alternatively be derived by resorting to this character-
ization, since the slice of a simple oriented curve o, can be explicitly calculated.



Appendix D

Résumé substantiel en langue
francaise

Lors de la conception d’un réseau de distribution offre-demande, il convient de lui
donner une structure d’arbre dans laquelle il est préférable de regrouper la masse
dans le processus de transport. Cette hypothese émerge de nombreuses observations,
par exemple, la structure des vaisseaux sanguins dans le systeme cardiovasculaire est
requise pour distribuer le sang d’une source concentrée dans le cceur a un volume
répandu ou vice-versa, le systeme racinaire d’un arbre a besoin de récupérer 1’'eau
du sol. Dans ces situations, nous pouvons observer a quel point des vaisseaux larges
et longs sont préférables plutot que des vaisseaux éparpillés. L’hypothese que nous
faisons est que le réseau observé est optimal par rapport a un cout donné parmi tous
les réseaux possibles se développant a partir d'une source et irriguant un puits donné.
Ces structures apparaissent dans un large gamme de situations et de nombreux efforts
ont été faits par la communauté mathématique afin de donner un modele précis capable
de décrire toutes les caractéristiques observables de ces réseaux.

Figure D.1: A gauche: réseau de racines d'un arbre. A droite: angiographie d’un oeil
dans lequel il est possible de reconnaitre la structure d’arbre du réseau des vaisseaux
sanguins.

Une premiere approche bien connue dans le cadre de la théorie des graphes a été
proposée par Gilbert dans [PST15] ou il s’occupe du probleme de [’arbre minimal de
Steiner [AT04, [PS13]. Ce dernier consiste & trouver le graphique reliant un ensemble
donné de points {xg,...,xy} avec une longueur totale minimale. Plus formellement,
un arbre minimal Steiner est la solution du probleme variationnel

argmin {'HI(K) : K compact, connecté et contient xg, . .. ,xN} , (D.1)
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ot H'(K) est la mesure de Hausdorff 1-dimensionnelle de k. (la longueur de K, si il
est 1-dimensionnelle et suffisamment lisse.). Comme indiqué dans Courant and Rob-
bins [CR79], le probléme de I’arbre minimal de Steiner peut étre considéré comme un
modele naaf pour le réseau d’autoroutes reliant un ensemble de villes. L’inconvénient

Figure D.2: Steiner Minimal Tree reliant 10000 points répartis aléatoirement dans
le plan. Le probleme a été résolu en utilisant I’algorithme GeoSteiner [WZ97], qui
est actuellement 'algorithme exact le plus efficace pour calculer les arbres Steiner
minimums.

du modele est que 'intensité locale du trafic n’est pas prise en compte. Néanmoins il
permet d’apprécier la problématique de ces modeles. Comme observé dans le docu-
ment cité dans un arbre minimal Steiner, différemment du Minimal Spanning
Tree [Krub56], de nouveaux sommets peuvent étre ajoutés afin de minimiser la longueur
totale ainsi, plutot que le réseau lui-méme, la vraie inconnue est la topologie. Un ex-
emple de cette situation est illustré dans la Figure Cette caractéristique apparait
également dans d’autres modeles dans lesquels le cotit par unité de longueur dépend
de l'intensité du flux [Gil67]. A la lumiere de cette complexité combinatoire élevée, le
probleme se trouve dans la liste des problemes NP-complets de Karp [Kar72] et c’est

toujours 'argument de [FMBMIG6].

Le but de cette these est de concevoir des approximations de certains problemes de
Transport Branché. Le transport branché est un cadre mathématique de modélisation
des réseaux de distribution offre-demande qui est plus général que le probleme Steiner
présenté ci-dessus. En particulier les usines d’approvisionnement et les lieux de de-
mande sont modélisés comme des mesures supportées sur des points et le réseau est
interprété comme une mesure vectorielle, enfin le probleme est présenté comme un
probleme d’optimisation sous contraintes. Le cotit de transport d’une masse m le long
d’un bord de longueur ¢ est h(m) ¢ et le cout total d'un réseau est défini comme la
somme de la contribution sur tous ses bords. Le cas de transport branché consiste
dans le choix spécifique h(m) = |m|* avec a € [0, 1). La sous-additivité de la fonction
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(=1/2,v/3/2) (=1/2,v/3/2)

(=1/2,-V3/2) (=1/2,-V/3/2)

Figure D.3: On the left: Minimal Spanning Tree connecting three points situated at
the vertices of an equilateral triangle (longueur = 2+/3). Sur la droite: Steiner Minimal
Tree contraint de connecter le méme ensemble de points (longueur = 3). En bleu foncé
le sommet supplémentaire qui permet de diminuer la longueur totale.

de cotit, h(my + ms) < h(my) + h(ms), assure que transporter deux masses conjointe-
ment est moins cher que de le faire séparément. Cette formulation partage la plupart
des complexités numériques présentées ci-dessus dans le cas du probleme de l'arbre
minimal de Steiner. Dans ce travail, nous introduisons diverses approximations varia-
tionnelles au moyen de fonctions de type elliptique pour obtenir des schémas numériques
plus efficaces. Finalement, la méthode proposée est généralisée aux problemes de type
Plateau qui est un cadre pour modéliser les films de savon couvrant une frontiere
donnée. Dans sa formulation plus générale, 'inconnu de ces probléemes est une surface
k-dimensionnelle en R™ enjambant une frontiere (k — 1)-dimensionnelle et minimisant
un certain cotuit. Le transport branché correspond a un probleme de type Plateau pour
le choix k£ = 1.

Figure D.4: Exemple d’une surface enjambant une frontiere 1-dimensionnelle composée
de trois cercles orientés.

Description du modele

Présentons précisément le schéma du Transport Branché [BCMQ9, [Vil03]. Tout d’abord,
nous introduisons les réseaux de transport dans un ensemble ouvert 2 € R", et le fonc-
tionnelle de cott associé. Pour cela, considérez un segment > C €2, un nombre réel
positif m € R et un vecteur 7 € S"~! tangent & X, I'écriture

mTH'LY (D.2)
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définit une mesure a valeur vectorielle, ot H'L Y est la mesure de Hausdorff 1-dimensionnelle
en R" limitée au segment Y. Intuitivement, la mesure Radon H'LY associe & tout en-
semble mesurable A la longueur de A N . Nous disons qu'une mesure vectorielle

o € M(Q,R") est polyhedral si ¢’est une somme finie de mesures de la forme (D.2)),

a savoir o = ) m;H'LY,;. Laction de o sur Cy(2, R™) est définie par la formule
suivante

(0,¢) = Z/ mip-7 dH'  pour tout ¢ € Co(, R").
i

Une fonction de cott de transport h : RR — [0, +00) est une application telle que

(D.3)

I ost pair, semi-continu inférieurements,
es
sous-additif, avec h(0) = 0.

Etant donné une fonction de cotit de transport h, nous définissons le énergie de Gilbert
sur la mesure vectorielle polyédrique comme suit

Eno) == Z h(mg)H (%)

Nous dotons M (2, R") avec sa topologie faible-* et étendons &), sur cet espace par
relaxation, a savoir pour une mesure vectorielle o nous fixons

Jj—+oo

ép(0) = inf {lim inf &,(0;) : 0; > 0 et o polyhedral} : (D.4)

Par White dans [Whi99a, 6] les conditions (D.3|) sont suffisantes pour étendre &, sur
M(2,R"). En choisissant h(m) = |m/| dans 'équation (D.4)) on obtient le fonctionnelle
de masse qui associe a chaque vecteur ¢ sa variation totale

o] = sup{(p,0) : ¢ € Co(,R"), [lpllec <1}

Sinon, avec h(m) = Xm0} ol X désigne la fonction caractéristique d’un ensemble, &,
se réduit au fonctionnelle de taille qui mesure la longueur du support de o, a savoir
o +— H!(supp(c)). D’autres choix remarquables sont représentés dans la Figure [D.5|

Pour modéliser la source et le puits du réseau de transport, nous introduisons deux
mesures de probabilité py, € P(2) et limitons notre attention a I’espace vectoriel
XHek—cC M(2,R") composé de ces mesures vectorielles o satisfaisant

dive = py — pu_ (D.5)

dans le sens de distributions. Comme est montre dans la note [CFM18§] si la relaxation
est obtenu par rapport aux mesures polyédriques en X*+#- nous obtenons toujours le

fonctionnel (D.4)).

Enfin, nous sommes intéressés a approcher les minimiseurs de 1’énergie de Gilbert
sous la contrainte de divergence (D.5)), & savoir:
min {&,(0) : 0 € XFHH-}. (D.6)

Le cas du Transport branché correspond au choix h(m) = |m|* avec o € [0,1) et a été
introduit par Xia qui a également étudié le probleme de 'existence et de la régularité
des solutions. Dans [Xia03] I'auteur, profitant des méthodes variationnelles, prouve ce
qui suit
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1) 2)
W)=l h(m) = fm]*
h(m) h(m)
3) 4)
h(m) = X{mz0) " h(m) = (1+8 Iml)X{m;éo?;L
h(m)
5)

m
h(m) = min{ag |ml, a1 [m| + 5}

Figure D.5: Pour h comme dans les graphes nous obtenons respectivement le : 1)
Masse, 2) a-Masse, 3) Taille, 4) Cout affine, 5) Planification urbaine fonctionnelle.

Theorem D.1 (Théoréme de l'existence). Donné o € (1 — £,1] et deux mesures de
probabilité py, p_ € P(R), il existe une mesure a valeurs vectorielle o € X#+H= pour
laquelle &, (o) est minimal. De plus, nous avons l’estimation suivante

1 Vv/ndiam(2)
n(0) < ol-n(l-a)-1 9

Dans un résultat subséquent [Xia04, Théoreme 2.7] le méme auteur analyse le
probleme de la régularité. Pour énoncer le résultat, nous devons introduire la no-
tion de rectifiable vector measure. A savoir une mesure vectorielle o est dit rectifiable
si

c=mTH'LY (D.7)
ol X, le support de o comme distribution, est un ensemble H!-rectifiable, sa densité

H! est la fonction m € LY(HLY) et 7 : ¥ — S"! génere pour H!-a.e. point dans
Y l'espace tangent a ¥. Dans ce qui suit, nous dénotons avec (m,7,3) la mesure

rectifiable o définie dans (D.7)).

Theorem D.2 (Structure des réseaux d’énergie finie). Pour 0 < a <1 sio € XF+H-
est de wvariation totale finie et d’énergie &, finie alors il est rectifiable. De plus si
o = (m,7,%) nous avons

é"h(a):/z|m|a . (D.8)

L’équation est particulierement significative puisqu’elle étend la représentation
explicite de la fonctionnelle a toute mesure rectifiable. Le cas des fonctions génériques
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de colt de transport a été pris en considération par Brancolini et Wirth in [BWIS|
Proposition 2.32] qui montre que

Proposition D.1 (Energie Gilbert-Steiner généralisée ). Soit s, € P(Q), o €
M(Q,R"™) a variation totale finie et telle que dive = py — p_ alors o peut étre
décomposé en tant que

oc=o0"+mrH'LY

ot (m, T,%) est le composant H-rectifiable de o et ot est le composant diffus. De plus

&1 (0) :h’(0)|ai|+/2h(m) dH. (D.9)

Lorsqu’avec un abus de notation, nous avons dénoté h'(0) = lim,, o h(m)/m.

Avant d’introduire des problemes impliquant des surfaces et d’autres objets de di-
mensions supérieures, soulignons le fait que le probleme de I'arbre minimal Steiner
reliant certains points {xg,...,zx} peut étre modélisé dans le contexte du trans-
port Branché. Tout d’abord, avec le choix a = 0, &), se réduit a le fonctionnelle
de taille. Deuxiemement, la contrainte de divergence oblige toute mesure vectorielle
considérée a joindre le support de p4 au support de p— donc, en choisissant p4 = 0,
et po = 1/N Zfil 0., nous forcons xy a étre connecté a chaque z;. En rassemblant
tous ensemble, avec ces choix, un minimiseur o of est supporté sur un ensemble
reliant chaque couple de points dans {xg,...,zx} et a un support avec une longueur
totale minimale donc est une solution du probléme (D.1)).

L’énergie introduite ci-dessus pour les mesures rectifiables supportées sur des sur-
faces 1-dimensionnelles peut étre généralisée a n’importe quelle dimension k € {1,...,n}.
Pour ce faire, il est nécessaire d’introduire le concept de k-courants dans R"™. Dénotez
avec D¥(Q) I'espace des formes différentielles lisses sur I’ensemble ouvert 2. L’espace
vectoriel de k-courants, Dy(2), est le dual de D*(Q) et il est naturellement doté de
sa topologie faible-*. Nous suivons principalement la notation de [KP0S8, [Fed69] la
principale différence étant 1'utilisation de o pour désigner un k-courant au lieu d'une
lettre alphabétique majuscule. Pour un courant on peut définir une notion de frontiere
par dualité comme suit

(Oo,w) = (0, dw) pour tous les (k — 1) formes différentiels w.

Nous appelons masse d’un k-courant la borne supérieure (o, w) parmi toutes les formes
différentielles k avec comass délimité par 1, et on le désigne avec |o|. En particulier
par le théoreme de Radon-Nikodym, nous pouvons identifier un k-courant ¢ a masse
finie avec la mesure a valeurs vectorielle 7y, ou p, est une mesure finie et positive,
et 7 est une fonction u,-mesurable a valeurs dans I’ensemble de k-vecteurs unitaires
pour la norme de masse. La relation avec la mesure vectorielle est évidente quand on
considere le fait que les espaces vectoriels A;R™, A'R" s’identifient avec R™. Ainsi,
chaque measure vectorielles 0 € M (2, R") de masse finie s’identifie avec un 1-courant
de masse finie et vice-versa. De plus, 'opérateur de divergence agissant sur les mesures
au sens de distribution est défini par la dualité comme 'opérateur de frontiere pour les
courants. Donc, en analogie avec ce qui a été présenté pour les mesures vectorielles,
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dans I'équation (D.7), un k-courant o est dit k-rectifiable si nous pouvons lui associer
un triplet (0, 7,3) de telle sorte que

(o,w) = /20<w,7> dHF

ol ¥ est un sous-ensemble k-rectifiable de 2, 7 & H* a.e. point est un simple k-vecteur
unitaire qui enjambe le plan tangent a X et 6 est une fonction L'(2, H¥LY) qui peut étre
supposée positive. L’espace vectoriel de Courants rectifiables est indiqué par Ry (€2).
Parmi ceux-ci nous nommons le sous-ensemble Py (£2) de courants rectifiables pour
lesquels ¥ est une union finie de polyedres et 6 est constant sur chacun d’eux, ceux-ci
seront appelés Chaines polyédriques. Pour tout k-courant o tel que o et do sont de
masse finie, nous disons que o est un k-courant normal et nous écrivons o € Ni(2).
Sur P'espace D (£2) nous pouvons définir la norme flat par

F(o) =inf {|og| + |os| : 0 =0r+ dog ol 05 € Dy11(R) et or € Dr(Q)},

qui métrifie la topologie faible-x pour les courants de Ni(2) avec support compact.
Enfin, Uespace de flat chains F,(£2) consiste en la fermeture de Py (£2) dans la topologie
F. Par le schéma de Federer [Fed69), 4.1.24] nous avons la suivante chaine d’inclusions

Pu(Q) C Ni(Q) C Fr(Q).

Suivant la stratégie proposée par Fleming [FEF60, [Fle66] dans le contexte des flat
chains a coefficients en groupes, nous définissons maintenant 1’énergie &), sur l'espace
des flat chains. Soit h est une fonction de cout de transport et o = > (m;7;, ;) un
courant polyédrique on impose

& (o) = Z h(m;)HE (2.

Par analogie a ce qui a été fait avant, nous étendions &), sur ’espace des chaines plates
par relaxation

én(o) = inf {lim inf &,(0;) : o, polyhedral et F(o; — o) — 0 } :
Jj—00
Dans le chapitre [3| nous cherchons des approximations aux problemes de type

min{&, (o) : 0o = doy} (D.10)

ol oy est unek-courant polyédrique donnée. Ces problemes ont été introduits et
étudiés dans [Mor89, [DPHO3|] par Morgan, De Pauw et Hardt entre autres pour pro-
poser différents modeles pour des surfaces minimales de film de savon. Ce dernier
est la généralisation k-dimensionnelle du probleme de minimisation défini dans (D.6).
Comme indiqué dans [Whi99al Whi99b] &}, a une formulation explicite pour les courants
rectifiables, & savoir pour un courant rectifiable (m, 7, ¥), nous avons

én(o) = /Eh(m) dH".

Ce résultat a été prouvé en [CDRMSI7, Proposition 2.6], et est la conséquence du
théoreme d’approximation polyédrique suivant
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Theorem D.3 (Approximation polyédrique). Soit h est une fonction de coit de trans-
port et = (m,7,%) un k-courant rectifiable. Pour chaque 6 > 0 il existe une k-chain
polyédrique 6 = (m;1;,%;) telle que

F(6 — o) <0, Zh(mi)?—[k(Ei)g/h(m) AH +6 et |5] < o] +0
- 5

En outre, Colombo et al. in [CDRMS17, Proposition 2.7] ont montré que la condi-
tion .
lim ﬂ =400
ml0 m

est I’équivalent au fait que
&n(0) est fini si et seulement si o est rectifiable.

Ce résultat peut étre vu en corrélation avec I’équation présentée précédemment.
Il faut souligner que le résultat d’approximation polyédrique de Colombo et al. ne
tient compte aucune contrainte de frontiere pour les k-courants. Un résultat analogue
avec contrainte de frontiere a été prouvé dans la note [CFMI§]. Nous concluons cette
section avec une condition suffisante pour qu’une flat chain soit rectifiable, prouvée par
White in [Whi99a), Corollaire 6.1].

Theorem D.4 (Rectifiabilité pour les courants). Soit o € Ni(2) une k-courant normal
supporté sur un ensemble k-rectifiable alors o est rectifiable.

Nous allons profiter de ce théoreme dans le contexte des mesures vectorielles, avec
la notation introduite ci-dessus le méme théoréme se lit comme suit

Theorem D.5 (Rectifiability for vector valued measures). Soit 0 € M(Q,R"). Si
lo|(2) + |V - 0|() < oo, V-0 est une somme dénombrable de masses Dirac et il
existe un ensemble de Borel ¥ avec H'(X) < oo et 0 = golLY. alors o est une mesure
vectorielle rectifiable.

Approximation variationnelle pour les problemes de
minimisation

Nous fournissons des approximations aux problemes définis dans dans le sens de
['-convergence. Cette derniere est une notion de convergence fonctionnelle introduite

par De Giorgi [DGT75] pour traiter des problemes variationnels. En suivant [DM93]
Bra98, [AD00), Bra02] on donne la définition opérationnelle de I'-convergence.

Definition 4 (I'-convergence). Soit X un espace métrique, et pour € > 0 on donne
F.: X — [0, +00]. Nous disons que .Z. I' converge vers F' sur X en tant que ¢ — 0 et

r . . . e
nous notons .%, — .% si les deux conditions suivantes sont satisfaites :

(LB) Inégalité I' — liminf: pour tout z € X et tout . — z on a

e e
hren_}glf Fe(z:) > F(v),
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(UP) Inégalité I' — limsup: pour tout z € X il existe une séquence (z.) C X telle que
T. —>x et
limsup #.(2.) < .Z ().
e—0

La séquence . est appelée recovery sequence pour x. La condition (UB) est souvent
difficile a prouver donc il est pratique de trouver un sous-ensemble D C X tel que :
pour chaque z € X il existe une séquence approchante (x,) C X tel que x, — z et
F(x,) — F(x). Sinous sommes capables de retrouver D alors un simple argument
diagonal montre qu'’il suffit de vérifier la condition (UB) pour tous les x € D plutot
que pour chaque z € X. Dans le contexte de notre travail, I’ensemble D correspond
a l'espace vectoriel des mesures vectorielles polyédriques. Puisque la définition de I'-
convergence peut paraitre encombrante, nous donnons une caractérisation alternative
qui permet de gotter sa pertinence dans le contexte du Calcul des Variations.

Theorem D.6 (Caractérisation pour la I'-convergence). Soit X un espace métrique,

et e >0, soit #.: X — [0,400] et F : X — [0,+00]. F L F si et seulement si
pour chaque & fonctionnel continu, si x. minimise #.+%9 et x. — x alors x minimise

F+9.

Notre stratégie est de remplacer ’énergie singuliere &}, par une séquence de fonction-

nels de type elliptique plus lisse %, et de prouver que %, 5 &. Puis nous prouvons
que la famille (%) est equicoercive : toute séquence de minima (Z;) est précompacte
en X. Ceci assure que la séquence de minimiseurs . convergent vers un minimum.
Enfin, nous cherchons des méthodes numériques pour approcher un minimum z..

On va exposer trois exemples remarquables de convergence I'. Considérons un
conteneur 2 C R? de volume unitaire contenant deux liquides non miscibles modélisés
par une fonction binaire ¢ : @ — Q — {0,1} de sorte que [,|p| dz =V € (0,1)
représente le pourcentage d’un liquide par rapport au volume du récipient. On associe
au systeme une énergie en fonction de la tension superficielle, en supposant qu’elle est
directement proportionnelle a la surface de l'interface J, entre les liquides.

M () = H(T,).

Une autre fagon d’étudier les systemes est de supposer que la transition n’est pas donnée
par une interface de séparation infinitésimale, mais qu’il s’agit plutot d’un phénomene
continu se produisant dans une fine épaisseur de taille e. Compte tenu de cela, Cahn et
Hilliard [CH58| envisagent une fonction de phase continue ¢ : 2 — [0, 1] représentant
le mélange ponctuel entre les fluides et supposons une énergie du type

/Q 2Vl + o (1 — )] de.

Le terme ¢? (1 — ¢)? est appelé un potentiel double puits et pénalise les valeurs loin
de 0 ou 1 et I'inhomogénéité n’est pas favorisée par le terme de gradient. Le lien entre
les deux énergies a été découvert par Modica et Mortola dans leurs papiers [MM77al,
MMT77h]. Leur résultat est plus général, ils prouvent qu’un rescaling approprié de
I’énergie ci-dessus I' converge vers le périmetre fonctionnel pour toutes le dimension de
domaine.
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Theorem D.7. Soit Q@ C R", et soit X = BV(Q) N L>*(Q). Pour p € X ete >0 on
pose

2 - 2
[ wer+ 20w yeew oy a [laa-v.
Q Q

+o00, autrement dans BV(Q,[0,1]).

M(p) =

Soit c =2 [} t>(1 — )2 dt et

H'T (), ifp=xa et |A=V,
+00, autrement dans BV(2).

A () ;:{

Alors M. Lo quand € — 0.

Dans ce qui précede BV(Q) indique I'espace de ces fonctions ¢ tel que ¢ € L'(Q)
et le gradient dans le sense des distributions Dy est une mesure de Radon. Pour les
fonctions a Variations Bornées, le gradient distributionnel peut étre décomposé en trois
mesures, a Savoir

Dy =V + D+ [p|H" 'L J,

o Vo est la composante de Dy absolument continue par rapport a la mesure de
Lebesgue, D est une mesure Cantor et [p]H" 'L.J, est appelé la composante de
saut de la mesure et est absolument continu par rapport a la mesure Hausdorff H"~!
restreinte a I'ensemble de discontinuité J,. En particulier si ¢ € BV(Q) et ¢ = x4
alors J, est la frontiere essentielle de A contenue dans Q et [p] = 1. Pour d’autres
résultats sur la théorie des fonctions a variations bornée, nous nous référons a [AFPO0]
et a I'introduction technique du Chapitre [I| Section [I.2] Le résultat est corrélé avec sa
respective propriété d’équicoercivité.

Corollary D.1. Sie | 0 et p. minimise 4. alors la séquence (p.) est pre-compact et
tout point limite minimise A .

Un autre exemple vient de ’approximation du fonctionnelle de Mumford-Shah pour
la segmentation d’images. Dans [MS89] les auteurs considerent une fonction g, définie
sur un domaine (), représentant le niveau de gris d’'une image d’un groupe d’objets
donnée par une caméra, avec des discontinuités long les bords des objets. L’idée est
que l'image segmentée u devrait étre suffisamment lisse a 'extérieur d’un ensemble
(n—1)-dimensionnel contenant I’ensemble de discontinuité K, & savoir u € WH2(Q\ K),
et ce dernier devrait étre choisi de H" !-size minimal. C’est pourquoi ils proposent
d’optimiser dans les variables (u, K') I'énergie

/ [[Vul* + a(u — g)?] dz+ BH" M (K).
O\K

The parameters «, 3 control the weight between the fidelity term |u—g|? and the size of
the discontinuity set K. It is convenient to recast the problem in its weak formulation
letting u € BV(Q2) and replacing the set K with J, obtaining the functional

() = /Q IVul + a(u— g)%] de + BH" ().

144



Pour approcher 1’énergie ., Ambrosio et Tortorelli ont proposé la famille des fonc-
tionnelles

(u, ) = /Q (Vul?p + g {€|V<p|2 + @} dx + Oz/Q(u —g)*dz.

Dans les articles [AT90, [AT92] il est prouvé que .7 L .. Donnons une idée heuristique
derriere ce résultat. Puisque u est proche de g dans le cas d'une discontinuité forte de
g, le terme de gradient |Vu| explose. En effet, valeurs élevées dans le gradient |Vu| sont
controlées par des valeurs proches de zéro dans la fonction d’état . D’autre part, le
terme entre crochets pénalise fortement les valeurs de ¢ loin de 1. La concurrence des
termes en @ se traduit par le fait que 1— représente une version lissée de la fonction 1—
X7, Enfin dans la limite € | 0 le terme Modica-Mortola converge vers la taille H"! de
I'ensemble {¢ # 1} qui contient ’ensemble de saut de u. Les fonctionnelles modelées sur
celles d’Ambrosio et de Tortorelli et cette derniere fonctionnelle elle-méme sont souvent
connues sous le nom d’approximations de champ de phase. Ce n’est pas seulement a
cause de la relation stricte avec la fonctionnelle de Modica-Mortola mais aussi parce
que nous pouvons interpréter la fonction ¢ comme une fonction d’état, elle acquiert la
valeur 0 sur ’ensemble de saut de u, c¢’est-a-dire sur 'ensemble de discontinuité forte
de la fonction, et la valeur 1 ot u est suffisamment lisse. Les deux comportements de
u sont alors interprétés comme deux états possibles et ¢ modélise la fonction d’état
dans chaque point pour le systeme. Cette observation a été prise en considération
dans les travaux sur la théorie de la fracture d’Turlano et al. [CET16, Turl3]. L&, ¢
modélise 1'état de détérioration d'un matériau et u est remplacé par une fonction de
déplacement.

Pour conclure la section, nous présentons une variation de la fonctionnelle de
Ambrosio-Tortorelli proposée par Bonnivard, Lemenant et Santambrogio [L.S14] BLS15]
pour récupérer dans la limite la fonctionnelle associée au probleme de I’arbre minimal
Steiner pour certains points {zg,..., oy} C Q@ C R% Etant donné une fonction con-
tinue ¢ : 2 — [0, 1] les auteurs introduisent une distance géodésique dépendant de ¢,
a savoir

dy(z,y) = inf {/(p dH' : v € C([0,1],9), v(0) = 2, v(1) = y} )

Y

La distance d,(x,y) est nulle si et seulement si les deux points z, y sont reliés par un
chemin sur lequel ¢ est égal a 0. Considérez la fonctionelle

/ »3|V<,0|2—|—(1_—90)2 dm—f—iid(m ;)
0 4e c. - L0y L4

ou ¢. — 0 quand ¢ — 0. Remarquez d’abord que si

alors 'ensemble {¢ = 0} devrait inclure un sous-ensemble connecté pour chemins
contenant {zo,...,xy}. L’argument heuristique pour le résultat de I' -convergence
suit les idées présentées dans le cas de la fonctionnelle de Ambrosio-Tortorelli. Le
résultat exact dans [BLS15)] est
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Appendix D. Résumé substantiel en langue francaise

Theorem D.8 (Bonnivard-Lemenant-Santambrogio). Soit Q@ C R? un ensemble ou-

vert, {zo,...,an} €Q et p=+ Zfio 0y, Considérons la fonctionnelle
1— )2 1
= [ [aver+ S8 wrs [ Li@na o)
Q 4e Q Ce

et une séquence p. telle que

%5(905) — inf %5(90) — 0.
©

e—0

Alors la séquence de fonctions d,_ converge uniformément (a moins d’une sous-séquence)
vers une fonction d telle que 'ensemble K := {d = 0} minimise H' parmi tous les en-
sembles compacts et connectés contenant les points {xq, ..., 2, }.

Une premiere approche au probleme de I'approximation de ’énergie &}, dans le cas
h =|-]* a été proposée par Santambrogio et Oudet dans [OSII]. IIs ont introduit un
fonctionnel du type

/ Vol 4+ e ol with o € WH(Q,R?) and V - 0 = (uy — pu_) * p.
0

avec § = (4a —2)/(a+1) et p. une suite régularisante. En fait, I'inégalité I' — lim sup
complete pour ce dernier résultat a été fournie par Monteil dans [Mon15l, Mon17].

Structure de la these

Dans le Premier Chapitre nous étudions une variation de la fonctionnelle proposée
par Lemenant et Santambrogio. Motivé par I'observation selon laquelle

dy(z,y) = min {/ plo|dz : 0 € M(Q,R") et dive =9, — (5y}
0

nous remplagons le terme dépendant de la distance géodésique dans (D.12)) par un terme
dépendant du produit ¢|o|. La fonctionnelle proposée est définie pour les couples (o, ¢)

est ‘ |2 ( )2
p|o € 9 1—0p
UL de + “IVolP+ 2 | dx
/Q 2e v /Q [2| | 2e } ’

ou o est une fonction a valeur vectorielle corrélée a la contrainte
dive = (puy — p_) * pe. (D.13)

Dans l'equation précédente, p. est une suite régularisante et les fonctions de phase
¢ € L'(Q) sont limitées par en bas par la quantité Se, ot 8 > 0 un paramétre donné.
Tout d’abord, nous montrons que cette fonctionelle I' converge vers I’énergie &;,, pour
le choix

h(m) = {1 + fBm, if m #0, (D.14)

0, otherwise,
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La preuve du résultat de convergence I est obtenue pour €2 des sous-ensembles convexes
et ouverts de R2. L’avantage de choisir une pénalisation quadratique en o est que le
probleme de Lagrange augmenté associé au fonctionnel peut atre explicitement résolu
dans la variable dual. Il est donc possible de concevoir un algorithme de minimisation
alterné composé de deux fonctionnelles elliptiques et lisses résolubles par des méthodes
d’éléments finis. The algorithm is proposed and studied at the end of the chapter.
L’algorithme est proposé et étudié a la fin du chapitre. De plus nous présentons et
étudions d’autres algorithmes qui profitent d'un concept de ‘dérivée de forme’ pour
améliorer la qualité de I’approximation.

La généralisation a {2 C R" est traitée dans le Deuxieme Chapitre. Pour obtenir
le résultat dans une dimension supérieure, la composante Modica-Mortola de la fonc-
tionnelle doit atre recalibrée. Comme observé dans [Ghil4] cela conduit a I'introduction
de certaines non linéarités dans le fonctionnelle comme suit

1— 2
Q D Q e

pour quelques p > n — 1. Encore une fois o est corrélé avec la contrainte de diver-
gence pour un choix approprié de p. et il faut imposer une borne inférieure pour
les fonctions de champ de phase, a savoir ¢ > (¢". Nous prouvons la ['-convergence
de la famille des fonctionnelles ci-dessus vers (g’hn 1 ot la fonction de coat hj~ Uest la

limite en ¢ d'un probleme d’optimisation dependant de la codimension n — 1. Plus
précisément pour une balle B, C R"! nous définissons

0|? 1—)?
/ l90|6| +5p—n+1|vw|p+—( gn—f) } dx,

h?gl(m) = min "
(1—¢) € W'(B,), ¢ =1 sur 9B, et / 6 de=m

T

Ce dernier probleme d’optimisation correspond & la version 0-dimensionnelle de (D.15)).
Nous introduisons et étudions hg’ 5 (obtenu en remplacant n—1 par d dans cette derniere
formule) dans l'annexe. Bouchitté, Dubs et Seppecher in [BDS96] ont étudié des
problemes similaires de transition de phase avec contrainte de masse qui conduisent a
des mesures concentrées sur des atomes dans le contexte de 1’équilibre des gouttelettes.
En particulier, nous montrons que hfé est indépendant de r et qu’il s’agit d’une fonction
de coat de transport satisfaisant aux conditions (D.3). Nous prouvons également qu’il
existe une constante ¢ > 0 telle que

d

%<M§c for m > 0.

~ 1+ +Bm

Remarquez que la composante Modica-Mortola de la composante fonctionnelle
étudiée dans le deuxieme chapitre dépend de n — 1, la co-dimension du probleme
dans le cas de mesures rectifiables. Dans le Chapitre Trois, nous étudions un
rééchelonnement différent pour approcher les minima de définis pour k-courants,

A savoir 9 1 2
/90\0! dx+/ [gp—mkmp‘u% dz. (D.16)
o ¢ Q e
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Appendix D. Résumé substantiel en langue francaise

Dans ce contexte, o n’est plus une mesure vectorielle, pour tenir compte de la frontiere,
la contrainte doit atre modifiée de fagon appropriée. Soit g une k-courant polyédrique
donnée, pour p. une suite régularisante standard, nous laissons ¢ atre un k-courant
telle que

do = 0oy * pe.

(Dans I'équation ([D.16]), le courant est identifié avec sa densité.) Dans le chapitre nous
introduisons formellement 1’énergie et montrons qu’elle I'-converge a I'énergie &), définie
dans (D.10) pour la fonction de coat de transport h = hg_k étudié dans appendice.

Dans les Quatrieme et Cinquieme Chapitres, nous limitons a nouveau notre
attention aux ensembles Q C R? et développons deux fonctions pour 1’approximation
de toutes fonctions de coat de transport h concave et continue. Remarquez que nous
disons qu’une fonction de coat de transport est concave si ¢’est une fonction paire dont
la restriction a [0, +00) est concave. Le premier résultat concerne les fonctions de coat
de transport h de la forme

h(m) = min{a; |m|+ 5; : 0 <i < N}

pour ag > a3 > ... >ay > 0et 0 < By < f1 < ... < By. Notre approche profite
du résultat du premier chapitre dans lequel nous avons récupéré dans la I'-limite des
fonctions de coat de transport affine de la forme 1+ 8|m|. Dans le cas N = 1 et 5 > 0
I’énergie de champ de phase proposée prend la forme suivante

2.2 2.2 2
/ {min {903 T ;o + 4 } |U—|} dz + o T(p1) + BrTz(2)
Q Bo Bi 2e

ol J, est une énergie du type Modica-Mortola définie comme suit

70)-3 [ [elW(w)HM] dr.

Soulignons la présence de deux champs de phase qui interagissent dans la composante
contrainte de la fonctionnelle. Idéalement, chaque 1 — ¢; est une fonction d’indicateur
lisse d’'un sous-ensemble du support de la mesure rectifiable limite o. En particulier
w; = 0 si le choix de la composante i-th dans la définition de h est optimal par rapport
a l'intensité du flux de o. Tout le Quatrieme Chapitre est consacré a la preuve
du résultat de I'-convergence et a ’étude des méthodes numériques développées en
collaboration avec Carolin Rossmanith et Benedikt Wirth de I’Université de Munster.

Dans le dernier chapitre de la these, nous étudions des fonctionnelles de la forme

2
Fo.0)i= [ 5ol + 3 |96 + = ao

Les deux principales différences par rapport aux modeles précédents sont la pénalisation
linéaire du terme en |o| et la présence du terme p? au lieu de (1 — )% Des modeles
analogues avec une pénalisation linéaire de la composante |o| ont été étudiés récemment
dans le cas de la théorie de la fracture et de la fonctionnelle de Mumford-Shah. [ABS99,

148



+ B 1.5 a=0.125
_ 3=0.95
+ \ 1 [
\ a=0.05
+ — 0.5 p=1
+ o % 0.5 1

Figure D.6: Computed mass flux ¢ and phase fields o1, 9, 3 for the cost function
shown on the right, ¢ = 0.005. The color in ¢ indicates which phase field is active.
The result is obtained by optimizing the functional defined in Chapter Three.

DMOT16]. Notre principale contribution est de trouver une forme explicite de la
fonction de poids f pour obtenir dans la limite 'énergie &),. FPour une fonction de
coat de transport continu et concave h, nous définissons f comme suit

f(t) = (=h) ().

La fonction h, est la transformation de Legendre (concave) de h. Dans ce modele,
¢ prend la valeur 0 et non 1 en dehors du support de la mesure limite o.En raison
de ce résultat général, nous abordons le probleme de I'approximation numérique de
Iapproximation fonctionnelle .%..La pénalisation linéaire en o peut atre considérée
comme un inconvénient par rapport aux méthodes étudiées précédemment qui étaient
profondément basées sur le coat quadratique |o|?. En raison de cette différence, nous
avons commencé a étudier de nouvelles méthodes numériques basées sur le modele de
transport introduit par Beckman dans [Bec52]. Le mame résultat peut atre obtenu
avec un choix différent du potentiel du puits. A savoir, étant donné un potentiel W qui
est une fonction paire, croissant sur [0, +00) et nulle dans 0 nous introduisons I’énergie

de transition |
e (1) ::/ 22/ T (s) ds.
0

Ensuite, en choisissant f(t) = (—h,) ' ocw(t) le mame résultat de I'-convergence peut
atre obtenu avec une famille de fonctionnels définie comme suit

Fore)i= [ (ol + 4708 + T2 an

En vigueur de ce degré de liberté dans le choix du potentiel W nous commencons a
analyser quel serait le meilleur choix. Ces questions, ainsi que d’autres, sont le sujet
de la section finale qui examine les développements possibles des méthodes proposées.
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Résumé Dans cette thése, nous concevons
des approximations par champ de phase de cer-
tains problemes de Transport Branché. Le Trans-
port Branché est un cadre mathématique pour
modéliser des réseaux de distribution offre-demande
qui présentent une structure d’arbre. En particulier, le
réseau, les usines d’approvisionnement et le lieu de
la demande sont modélisés en tant que mesures et
le probléme est présenté comme un probléme d’opti-
misation sous contrainte. Le co(t de transport d’'une
masse m le long d’'un bord de longueur ¢ est h(m)¢ et
le colt total d’'un réseau est défini comme la somme
de la contribution sur tous ses arcs. Le cas du Trans-
port Branché correspond avec la choix h(m) = «a|m)|
ou « est dans [0,1). La sous-additivité de la fonction
cout s’assure que déplacer deux masses conjointe-
ment est moins cher que de le faire séparément. Dans
ce travail, nous introduisons diverses approximations
variationnelles du probleme du transport branché. Les
fonctionnelles que on vais utiliser sont basées sur
une représentation par champ de phase du réseau
et sont plus lisses que le probleme original, ce qui

permet des méthodes d’optimisation numérique ef-
ficaces. Nous introduisons une famille des fonction-
nelles inspirées par le fonctionnelle de Ambrosio et
Tortorelli pour modéliser une fonction de co(t h af-
fine dans I'espace R?2. Pour ce cas, nous produi-
sons un résultat complet de I'-convergence et nous
le corrélons avec une procédure de minimisation al-
ternée pour obtenir des approximations numériques
des minimiseurs. Puis nous généralisons cette ap-
proche a n’importe quel espace R™ et obtenons un
résultat complet de I'-convergence dans le cas de
surfaces k-dimensionnelles avec k < n. En particulier,
nous obtenons une approximation variationnelle du
probléme du Plateau dans n’'importe quelle dimension
et co-dimension. Dans la derniéere partie de la theése,
nous proposons deux approches générales pour des
fonctions de colt concave. Dans le premier, nous in-
troduisons une approche par plusieurs champs de
phase et récupérons n’importe quelle fonction de
co(t affine par morceaux. Enfin, nous proposons et
étudions une famille de fonctions permettant d’obtenir
dans la limite toutes fonction de co(t concave h.

Title : Phase-field approximations for some branched transportation problems

Keywords : branched transport, calculus of variations, geometric measure theory, I"-convergence.

Abstract : In this thesis we devise phase field ap-
proximations of some Branched Transportation pro-
blems. Branched Transportation is a mathematical fra-
mework for modeling supply-demand distribution net-
works which exhibit tree like structures. In particular
the network, the supply factories and the demand lo-
cation are modeled as measures and the problem
is cast as a constrained optimization problem. The
transport cost of a mass m along an edge with length
¢ is h(m) ¢ and the total cost of a network is defined
as the sum of the contribution on all its edges. The
branched transportation case consists with the speci-
fic choice h(m) = |m|* where « is a value in [0,1).
The sub-additivity of the cost function ensures that
transporting two masses jointly is cheaper than doing
it separately. In this work we introduce various varia-
tional approximations of the branched transport opti-
mization problem. The approximating functionals are
based on a phase field representation of the network
and are smoother than the original problem which al-

lows for efficient numerical optimization methods. We
introduce a family of functionals inspired by the Am-
brosio and Tortorelli one to model an affine trans-
port cost functions. This approach is firstly used to
study the problem any affine cost function h in the
ambient space R?. For this case we produce a full I'-
convergence result and correlate it with an alternate
minimization procedure to obtain numerical approxi-
mations of the minimizers. We then generalize this
approach to any ambient space and obtain a full T'-
convergence result in the case of k-dimensional sur-
faces. In particular, we obtain a variational approxi-
mation of the Plateau problem in any dimension and
co-dimension. In the last part of the thesis we propose
two models for general concave cost functions. In the
first one we introduce a multiphase field approach and
recover any piecewise affine cost function. Finally we
propose and study a family of functionals allowing to
recover in the limit any concave cost function h.
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