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RÉSUMÉ iii

Résumé

Les matériaux soumis à de grandes déformations présentent pour la plupart l’apparition de
déformations inélastiques. Ce phénomène est souvent accompagné d’une localisation des
déformations dans une zone étroite, précurseuse de la rupture. Les bandes de cisaillement
représentent un cas particulier mais très fréquent et apparaissent pour beaucoup de géoma-
tériaux. Ces bandes peuvent être rencontrées à des niveaux allant de l’échelle kilométrique
pour les zones de subduction à l’échelle micrométrique à l’intérieur des zones de faille.
Étudier et modéliser la création de ces zones d’instabilité est fondamental pour décrire
la rupture des géomatériaux et les phénomènes associés comme les glissements sismiques
dans les zones de faille mature de la lithosphère. Les conditions de pression, de tempé-
rature, l’interaction de l’eau interstitielle avec un matériau finement broyé conduisent à
l’apparition de multiples processus physiques impliqués dans les glissements sismiques.

Dans ce travail, nous modélisons la création de bandes de cisaillement à l’intérieur des
gouges de faille par l’intermédiaire des milieux continus de Cosserat, ainsi que les couplages
Thermo-Hydro-Mécaniques. L’utilisation de la théorie de Cosserat permet non seulement
de régulariser le problème de localisation des déformations par l’introduction d’une lon-
gueur interne dans les lois constitutives, mais aussi de prendre en compte l’effet de la
microstructure.

Deux approches sont employées pour étudier le système d’équations couplées aux dérivées
partielles non linéaires : l’analyse de stabilité linéaire et la méthode des éléments finis.
L’analyse de stabilité linéaire permet d’examiner les conditions d’apparitions d’instabilités
pour un système mécanique avec des couplages multi-physiques. Par ailleurs, des considé-
rations sur les perturbations appliquées dans ces analyses au système permettent aussi de
déterminer l’épaisseur de la zone de cisaillement - un paramètre clé pour la compréhension
du mécanisme des failles. Ces estimations sont confirmées par l’intégration numérique pour
des déformations restant dans une gamme donnée. Elles sont confrontées aux observations
expérimentales et in situ et présentent une bonne corrélation. D’autre part, les simulations
numériques permettent d’obtenir la réponse mécanique de la gouge de faille et de donner
des informations sur l’influence des différents couplages dans le budget énergétique d’un
tremblement de terre.

Mots-clé : Localisation des déformations, mécanique des failles , couplages THM, Analyse
de stabilité linéaire, éléments finis, microstructure, milieux continus de Cosserat.
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ABSTRACT v

Abstract

When materials are subjected to large deformations, most of them experience inelastic
deformations. It is often accompanied by a localization of these deformations into a narrow
zone leading to failure. One particular case of localization is the shear bands and they are
the most common patterns observed in geomaterials. They appear at very different scales,
from kilometer scale for subduction zone, to micrometric scale inside fault cores. Studying
and being able to model their creation is fundamental to describe the failure of geomaterials
and understand phenomena that are associated with their existence such as seismic slip
for mature crustal faults. The pressure and temperature conditions in these faults and the
interaction with the pore water inside a highly fractured materials highlight the importance
of different physical processes involved in the nucleation of earthquakes.

In this thesis, we model the creation of shear bands inside fault gouges taking into account
the effect of microstructure by resorting to elastoplastic Cosserat continua and Thermo-
Hydro-Mechanical couplings. The use of Cosserat theory not only enables to regularize the
problem of localization by introducing an internal length into the constitutive equations,
but at the same time it introduces informations about the microstructure.

Two approaches are used to study the coupled non-linear partial differential set of equa-
tions: linear stability analysis and finite element simulations. Linear stability analysis
allows to study the occurrence of localized deformation in a mechanical system with multi-
physical couplings. Considerations on the perturbations applied permit also to determine
the width of the localized zone. It is confirmed by numerical integration in the post-
localization regime for a certain range of deformation. The shear band thicknesses obtained,
key parameters for understanding fault behavior, are in agreement with experimental and
field observations. Moreover, numerical simulations enable to obtain the mechanical re-
sponse of the gouge and give an insight into the influence of different couplings in the
energy budget of a seismic slip.

Keywords:

Strain Localization, fault mechanics, THM couplings, linear stability analysis, Finite Ele-
ment modelling, microstructure, Cosserat continuum.
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Introduction

L’épaisseur de localisation des déformations dans les zones failles est un
paramètre primordial pour la compréhension de leur dynamique. Dans cette
thèse, on s’intéresse en particulier au rôle de la microstucture et des couplages
Thermo-Hydro-Mécaniques dans le processus de localisation ainsi que dans la
réponse du matériau. Pour cela, un modèle élasto-plastique pour les milieux
continus de Cosserat avec couplages est développé.

Le présent manuscrit est divisé en quatre chapitres. Le premier constitue
une introduction détaillée au sujet. La mécanique des failles y est expliquée
ainsi que les différents phénomènes physiques se produisant au sein de la faille
au cours d’un glissement sismique. Ceux-ci peuvent conduire à une diminu-
tion de la résistance de la faille au cours du glissement et engendrer ainsi un
glissement dynamique à l’origine des tremblements de terre. La localisation
des déformations est une conséquence de ces mécanismes d’affaiblissement de
la zone de faille et son étude peut nous permettre de mieux appréhender le
mécanisme des tremblements de terre. Les outils théoriques pour l’étude de
la localisation sont également introduits. Dans le second chapitre, un modèle
est développé pour lequel on applique une analyse de stabilité linéaire afin de
déterminer l’influence des différents paramètres sur le déclenchement de la lo-
calisation et sur l’épaisseur de la bande de cisaillement. Le troisième chapitre
présente l’implémentation numérique du modèle ainsi que la démarche suivie
pour la validation du code. Le quatrième et dernier chapitre constitue une étude
numérique de la localisation des déformations dans les zones de failles et de la
réponse du matériau en termes de contraintes et déformations.
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According to Kanamori and Brodsky (2004), the thickness of fault slip zones is the key
parameter for understanding fault dynamics (see also Sibson (2003), Rice (2006a)).

In this Thesis we investigate the effect of the microstructure and of Thermo-Hydro-Mechanical
(THM) couplings on the behavior of mature fault slip zones and the evolution of their thick-
ness during pre- and co-seismic slip. Seismic slip is accompanied by extreme shear strain
localization into a narrow, thin zone, which is often called Principal Slip Zone (PSZ). Ac-
cording to field observations, the PSZ has finite thickness (see for instance Punchbowl fault,
San Andreas system (Chester and Chester, 1998), Big Hole normal fault, Utah (Shipton
et al., 2006), Median Tectonic line, Japan (Wibberley and Shimamoto, 2003)) and varies
from hundreds of microns to few centimetres (Sibson, 2003), depending on the size of the
microstructure and of THM mechanisms. The PSZ lies within a zone of highly fragmented,
granulated material called gouge (Ben-Zion and Sammis, 2003).

Theoretical and experimental research show that strain localization is caused and enhanced
by weakening mechanisms that can either be of pure mechanical origin (e.g. geometrical
and mechanical changes of the solid skeleton (Togo and Shimamoto, 2012), such as grain
cataclasis, reorientation, debonding etc.) or of a combination of various physico-chemical
couplings (Sulem and Stefanou, 2016). For instance, thermal pressurization of the pore
fluid in saturated fault materials is a THM mechanism that plays a fundamental role in
the weakening of fault zones (Viesca and Garagash, 2015, Lachenbruch, 1980). Thermal
pressurization is a consequence of the contrast between the thermal expansion coefficient
of the pore fluids and the solid matrix (Rice, 2006b) and leads to a decrease of the effective
mean stress and consequently to a reduction of the shear strength of the gouge. This
weakening is linked to the progressive development of the PSZ, whose thickness governs
the temperature build-up and the overall energy budget. It is worth mentioning that
the activation of additional multi-physical phenomena that involve chemical processes are
precisely controlled by the thickness of the localization zone (Veveakis et al., 2013, Sulem
and Stefanou, 2016, Brantut et al., 2011, Platt et al., 2015).

Models that are able to describe the localization thickness and its evolution have to take
into account both the size of the microstructure of a fault gouge as well as the THM
couplings that take place during seismic slip. The reason is that these features are cen-
tral to the evolution of the PSZ thickness and, therefore, to the correct representation of
the physics of the problem. Cosserat theory allows in a natural way to account for the
aforementioned characteristics, leading to a shear band of finite thickness, even under low
strain rates (Mühlhaus and Vardoulakis, 1987). The use of this theoretical framework is
also justified by the fact that it offers a unified modeling environment as it can cover a large
spectrum of strain rates, i.e. from very low (pre-seismic) to quite high (co-seismic). Notice
that existing models for fault gouges based on the classical, Cauchy continuum (also called
Boltzmann continuum (Vardoulakis, 2009)) lead to an infinitely small localized zone (slip
on a mathematical plane) (Vardoulakis, 1985) unless rate-dependent constitutive behavior
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is considered for high strain rates (Rice et al., 2014, Platt et al., 2014). Moreover, grain
size can hardly be considered in the constitutive description of Cauchy continua, despite
the fact that it has been recognized to play an important role on fault gouge behavior
(Cashman et al., 2007, Anthony and Marone, 2005, Phillips and White, 2017).

Cosserat continuum (Cosserat and Cosserat, 1909) is a special case of micromorphic con-
tinua (Godio et al., 2016, Germain, 1973a), also called generalized or higher order continua.
In addition to the translational degrees of freedom of the Cauchy continuum, Cosserat the-
ory provides rotational degrees of freedom at the material point that allow for a better
representation of the physics and the mechanical behavior of heterogeneous solids with
non-negligible microstructure. Cosserat continuum theory naturally incorporates in the
constitutive equations of the material one or several material lengths related to the mi-
crostructure .

The theory of Cosserat continuum has been previously applied for studying the behavior
of fault gouges and strain localization (Sulem et al., 2011, Veveakis et al., 2013). In these
works the conditions for the onset of localization were investigated under THM couplings
with a microstructure of given size. In this Thesis, we extend the aforementioned works
by studying:

(a) The evolution of the localization zone thickness and its dependency on various pa-
rameters such the size of the microstructure;

(b) The full stress-strain response of the fault gouge, which is related to the transition
from seismic to aseismic slip (Scholz, 2002, Tse and Rice, 1986);

(c) The link between the shear band thickness evolution obtained from the linear stability
and the one obtained from an numerical integration of the nonlinear set of equations.

It is worth emphasizing that computing the evolution of strain localization is a challenging
task due to the difficulties that arise when dealing with softening behavior. It entails a loss
of ellipticity of the governing equations in the classical continuum theory framework (Var-
doulakis and Sulem, 1995, de Borst et al., 1993). The boundary value problem becomes
mathematically ill-posed (Vardoulakis, 1986) and the results of classical finite element
computations exhibit mesh dependency (as deformations localize in a band of thickness
equal to the finite element size). Moreover, mesh refinement leads towards zero energy
dissipation, which is nonphysical. However, the Cosserat Finite Element (FE) formulation
followed herein does not suffer from the above limitations as it possesses a material pa-
rameter with dimension of length, which regularizes physically the numerical problem (see
also (de Borst, 1991, Godio et al., 2016, Stefanou et al., 2017)).

The present manuscript is organized into four chapters. The first one gives a detailed
introduction to the subject. The current state of knowledge in fault mechanics is briefly
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summarized and the main physical phenomena taking place in the fault core during seismic
slip are explained. These phenomena can lead to a weakening of the fault strength, which
is accompanied by strain localization giving rise to dynamic slip, i.e. to earthquakes. The
theoretical tools for studying strain localization are also introduced in this chapter. In the
second chapter, a model of three-dimensional elasto-plastic Cosserat continuum with THM
couplings is developed. Bifurcation theory and Linear Stability Analysis (LSA) is applied
for this model to determine the influence of the various parameters on the onset of strain
localization and on the the shear band thickness. In order to complete the investigation
carried out with the LSA, in the third chapter the Cosserat THM model is implemented
numerically in a parallel fully-coupled FE code. The strategy for integrating the nonlinear
boundary value problem is presented in details and the tests carried out to verify thoroughly
the implementation are described. The fourth and final chapter is devoted to the numerical
study of strain localization in fault zones. The numerical results are compared to the ones
obtained from the LSA. It also provides useful information regarding the complete response
of the system, which is a key feature to determine the stability of a fault and study the
transition from aseismic to seismic slip.



Chapter 1

Fault mechanics, instability and
strain localization

Ce chapitre présente les éléments fondamentaux de la mécanique des failles
permettant d’appréhender les mécanismes à l’origine du déclenchement des
séismes. Les ondes qui se propagent au sein de la croûte terrestre et engendrent
des dégats matériels ainsi que des pertes humaines sont généralement la consé-
quence d’une instabilité frictionelle le long d’une faille pré-existante.

Les observations in situ et en laboratoire montrent que les zones de failles
sont très hétérogènes et possèdent une épaisseur non négligeable. En particu-
lier, la couche de localisation des déformations au sein de la zone de faille
a un rôle essentiel dans le déclenchement des séismes. Cette localisation des
déformations fait intervenir de multiples couplages physiques liés notamment
à la présence d’eau interstitielle dans les pores du matériau, la forte augmen-
tation de température (engendrée par la vitesse considérable atteinte lors d’un
glissement sismique) et l’activation de réactions chimiques.

La localisation peut être modélisée comme un phénomène de bifurcation.
L’état de déformation homogène devient instable au sens de Lyapunov. Une
analyse de stabilité linéaire permet alors de déterminer les conditions d’appa-
ritions de la localisation.

Afin de suivre l’évolution de la taille de la zone localisée au cours du glisse-
ment, une méthode de régularisation doit être associée à l’intégration numérique
du système d’équations non linéaires qui gouvernent le problème.
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1.1 Fault mechanics

In this section, we describe the current understanding of the origin of earthquake in faults
zones. The global mechanism of the unstable slip is first introduced in Section 1.1.1. In
Section 1.1.2, the fault architecture and behavior is explained based on field observations
and laboratory experiments. Finally, the different physical mechanisms involved and their
couplings during the fault slipping process are presented in Section 1.1.3.

1.1.1 Mechanics of earthquake nucleation

The seismic waves that propagate through the earth’s crust and cause dramatic deaths and
structural damages are, in most cases, generated by a sudden slip along a fault. This expla-
nation appeared in several publications, for instance Gilbert (1884) based on examinations
of the Great Basin after the Owens Valley earthquake, but it became dominant after the
1906 San Francisco earthquake and the analysis of Reid (1910). Note that it was developed
at the same time as the plate tectonics theory that has blossomed due to observations of
the ocean floor and the development of a worldwide network of seismographs in the 1960s
(Kramer, 1996).

The lithosphere, which is the rigid outermost shell of the Earth (the crust and upper
mantle), is divided into tectonic plates, wich move with respect to each other. Their
motion is principally driven by convective forces from the mantle (Coltice et al., 2017).
As the upper portion of the mantle that is cooler and denser lies on top of a warmer and
less dense material, the situation is unstable and leads to the creation of convection cells.
However, it is not the only proposed mechanism to explain plate movement, ridge push
and slab pull may also play a role (Hager, 1978).

One of the consequence of plate tectonics is the creation of earthquakes at the plate bound-
aries. The precise location of this seismic activity is one of the ways to determine the posi-
tion of the plate boundaries. Moreover, volcanic activity, mountain-building, and oceanic
trench formation also occur along these plate boundaries. Locally, the movement between
two portions of the crust occurs on pre-existing or new offsets in the geologic structure
called faults, which are by nature irregular.

The relative motion of the plates entails the storage of elastic energy in the material near
the fault zones. It causes an increase of the shear stress until the shear strength is reached.
The slip along the fault is then triggered, but this slip can be quasi-static or dynamic
depending on the strength evolution during slippage. This mechanism is called the elastic
rebound and can be illustrated by a simple spring-slider model (Fig. 1.1) (Scholz, 2002).

The sliding along the fault is frequently modeled by the motion of a block on an interface.
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Figure 1.1: Simple spring-slider model to explain the origin of slip instability. (a) Sketch
of the system studied. (b) Triggering of the instability when the strength
decreases faster than the force applied by the spring.

F represents the fault strength and the spring of stiffness k represents the elasticity of
the surrounding rock mass. The system is loaded by a constant velocity v applied at
the extremity of the spring that simulates the tectonic motion at some distance from the
fault. This velocity is of the order of some centimeters per year. If the strength of the
fault increases with the slip δ, then the system is stable (no dynamic propagation occurs).
However, if the strength decreases with the slip, two configurations are possible. If the
slope of the load-displacement diagram is less steep than the spring stiffness, the system is
also stable. If, on the contrary, the slope of the load-displacement diagram is steeper than
the spring stiffness, the forces applied to the block cannot be balanced and the system is
unstable, in the sense that the block slips dynamically. The condition for the instability
of the system can be expressed as dF

dδ < −k.

This instability results in stick-slip motions as observed by Brace and Byerlee (1966) in
the frictional sliding of rocks. These observations led these authors to propose it as an
explanation for the mechanism of earthquakes. Indeed, most of earthquakes are created by
a friction instability along a pre-existing fault in the brittle part of the lithosphere (usually
between 3 and 14 km depth (Marone and Scholz, 1988)). Moreover, this simple example
shows the key importance of the strength evolution of the fault to assess the stability of
its motion and its capacity to generate earthquakes.

Many studies since the publication of Brace and Byerlee (1966) have focused on the fric-
tional behavior of rocks and in particular the effect of velocity (Dieterich, 1979). Ruina
(1983) showed theoretically that for a velocity-strengthening material, the unstable sliding
is quickly damped, whereas a velocity-weakening material always exhibits growing oscilla-
tions and presents a stick-slip behavior. This phenomenon can be captured by using the
empirical rate-and-state friction laws that also apply to a wide range of materials such as
plastic or glass (Baumberger et al., 1999). Nevertheless, these laws are phenomenological
and describe the behavior of an interface by introducing a state variable that represents
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the average age of contact for asperities. However, a mature fault that has accommo-
dated meters of slip is composed of highly crushed granular material that presents a shear
zone of finite width. It is, thus, likely that this representation by an interface does not
systematically reflect the real physical mechanisms (Brantut, 2010).

In the framework of a fault zone with a finite thickness, many parameters can strongly
affect the mechanical strength during slip and consequently the slippage stability, like the
pore fluid pressure, the temperature or the confining pressure. Moreover, the thickness is
of major importance for the energy efficiency of an earthquake as only a part of the elastic
energy is radiated by elastic waves and the thickness controls the temperature rise during
the coseismic slip (Kanamori and Rivera, 2006, Sibson, 2003).

1.1.2 In situ observations and laboratory experiments

To understand the physical mechanism of earthquakes, we need to examine the source,
where rupture initiates and propagates. Many drilling projects were undertaken to in-
vestigate the properties of fault zones directly. Examples are for the Aigion fault in the
Corinthian Gulf (Cornet et al., 2004), the San Andreas fault in California at different loca-
tions (Zoback et al., 1988, 2011) and the Nojima fault in Japan (Ando, 2001) among others.
These inland drilling projects were completed by offshore subduction drilling projects (Losh
et al., 1999, Vannucchi and Leoni, 2007, Sakaguchi et al., 2011). These cores enable us
to obtain valuable informations about the fault zone structure, material and the stress
conditions at the depth of the fault. However, the information is obtained only at a single
point of the fault zone, so it is difficult to generalize the obtained features, as the fault is
usually not planar but has many kinks, joints, jogs, steps, and branches (Fukuyama, 2009).
Furthermore, the depths of drilling remain shallow (less than 3 kilometers) compared to
the seismogenic zone (3 to 14 kilometers) and, thus, the conditions of temperature and
pressure may be significantly different.

To overcome these problems, field investigations have been conducted on exhumed faults,
on which earthquakes occurred long time ago at greater depth and are presently exposed on
the surface. Based on the observation of these outcrops, it could be assessed that fault slip
occurred within a very thin region of the fault (Poulet et al., 2014, Chester and Chester,
1998, Collettini et al., 2014), that has accommodated several kilometers of slip. The slip
zone is surrounded by a broader damage zone.

From field observations, the fault zone structure and its evolution can be tracked. First,
a set of fractures appears due to the shear stresses within the rock mass (Riedel shear
(Riedel, 1929)). This network of fractures enlarges and becomes denser until the emergence
of several dominant slip planes in which all the deformations are concentrated, forming
the fault zone core. Around this core, lies a complex zone of damaged and fractured
rocks. Then, with increasing deformations, severe fracturing and damage of core rocks
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continues until the formation of a gouge, which composed of ultra-cataclasite materials
(highly crushed particles) (Rafini, 2008). Further investigations reveal a zone of highly
localized shear of the order of 10µm to a few centimeters wide nested within the fault
gouge called the Principal Slip Zone (PSZ) (Poulet et al., 2014, Sibson, 2003, De Paola
et al., 2008, Shipton et al., 2006, Heermance et al., 2003). A map of a fault zone is shown in
Fig. 1.2 as well as pictures of the PSZ in the Glarus thrust fault in Switzerland in Fig. 1.3
.

Figure 1.2: Detailed map of a fault gouge and the surrounding fracture network realized
digitally from photographs of outcrops in the Valley of Fire State Park, south-
ern Nevada, USA (Myers and Aydin, 2004)

Many investigations have been carried out in the laboratory to understand the behavior of
fault gouges (see Marone (1998) for a review) using drilling core specimens (Sulem et al.,
2004, Brantut et al., 2008, Boulton et al., 2017, Ujiie and Tsutsumi, 2010, Scuderi et al.,
2013) or simulated fault gouges (Ikari et al., 2009, Samuelson and Spiers, 2012, Verberne
et al., 2013). In these experiments, a fine granular materials is sheared using either a
double direct shear device, a triaxial cell or a rotary shear apparatus, both in wet and
dry conditions. The experiments show the development of a localization zone, which is
usually characterized by a grain cataclasis (see Fig. 1.4). Most of the laboratory tests are
performed under a low slip velocity ( < 0.1 m/s) and small displacements only (on the order
of centimeters). In these conditions, the rate-and-state friction laws seem appropriate to
model the layer’s behavior. However, the recent technical development of a new generation
of rotary shear apparatus has enabled researchers to reach coseismic slip velocities (a few
m/s) together with normal stresses and temperature at seismogenic depths (Tsutsumi and
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(a)

(b) (c)

Figure 1.3: Photos from the Glarus thrust outcrop (Switzerland) illustrating the structure
of a fault zone on three different scales: (a) The fault has moved on a very
sharp boundary at the kilometer scale. (b) A closer look reveals a meter-wide
fault core, at the (c) center of which an ultralocalized centimeter-thick most
recent PSZ is clearly visible. (Poulet et al., 2014)
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Shimamoto, 1997, Di Toro et al., 2010). These high-velocity rotary-shear experiments
showed that rocks weaken dramatically at seismic slip rates and the rate-and-state laws do
not adequately describe this weakening (Rempe, 2015). Several thermally and mechanically
activated weakening mechanisms were proposed to understand the experimental results at
seismic slip rates (Di Toro et al., 2011), but it remains an open problem. Some of the most
important weakening mechanisms are presented in the next section.

Figure 1.4: Scanning Electron Microscope image of a high-strain shear band obtained in
a rotary shear apparatus for calcite with a normal stress applied of 17.3 MPa
and a maximum applied shear velocity of 0.4 m.s−1 (Smith et al., 2015)

1.1.3 Multi-physical couplings and the role of the microstructure

Poromechanical theories and experiments have shown that the presence of a fluid inside
the pore space of rocks has a fundamental effect on their behavior (Coussy, 2004). This is
also the case in fault zones that are saturated with water. This effect can be addressed in
a first approach by Terzaghi’s principle for frictional materials. This principle states that
the maximum applied shear stress τF is proportional to the applied effective normal stress
σ′: τF = µ.σ′ = µ.(σ + p) (where µ is the friction coefficient, σ is the total normal stress
and p the pore pressure; compression negative). This equation is central for the study
of earthquake nucleation: If the pore pressure increases, the shear strength decreases and
the slip is triggered. It is widely used to explain the mechanism of induced seismicity as
the injection of a fluid (e.g. water or CO2) induces a pore pressure change and, thus,
a shear strength decrease (Simpson, 1976, Ando, 2001, Cappa, 2012, Gan and Frohlich,
2013). High pore pressure might also explain the apparent weakness of the San Andreas
fault (Rice, 1992).
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Pore pressure not only influences the slip nucleation but also the stability of the fault as it
can evolve with deformation. During slip, an increase of the porosity (dilatant behavior) or
a decrease (compaction) can occur. In the former case, the pore pressure decreases, whereas
in the latter it increases affecting, thus, the slip behavior (see Fig. 1.1). Field observations
confirmed the influence of pore pressure changes with slip. Sibson (1981) describes the
effusions and the hydrothermal vein systems found in exhumed fault zones due to the
intermittent channel flow of fluids that accompanies slip. This hydraulic fracturing of the
rock is due to the modification of pore water pressure. In addition, experimental works
were also conducted to investigate the effect of water on the friction properties (Scuderi
et al., 2014, Verberne et al., 2014).

The large slip rates developed during seismic slip, which are of the order of 1m/s (Scholz,
2002), induce an important shear heating. As a result, the temperature increase can be
very large and can induce various mechanisms. One of them is thermal pressurization of the
pore fluid: high pore-fluid pressure is generated due to frictional heating during seismic slip
(Sibson, 1973) as the thermal expansion of water is larger than the thermal expansion of
the solid grains (Lachenbruch, 1980, Garagash and Rudnicki, 2003, Rice, 2006b, Segall and
Rice, 2006, Ghabezloo and Sulem, 2009). Recently, Viesca and Garagash (2015) showed
that this phenomenon is a potentially ubiquitous weakening mechanism, compatible with
earthquake data over a wide range of magnitudes. Advances in experimental setups have
also enabled observation of this phenomenon in the laboratory within seismic slip conditions
(Ujiie et al., 2011).

A micro-mechanical consequence of the high-velocity slip is the intense heating at micro-
asperity contacts, called flash heating. This weakening mechanism was first studied in
tribology for metals and then applied to fault zones by Rice (1999). The increase of
temperature for highly stressed frictional microcontacts between grains with rapid slip
induces a reduction of the friction coefficient (Rice, 2006a). Flash heating provides a
consistent explanation for the observed dynamic weakening in laboratory experiments for
small displacements (less than a millimeter) (Brantut and Viesca, 2017). This weakening
is triggered prior to macroscopic melting and is one of the possible explanations for rapidly
diminishing fault strength as slip accumulates. Indeed, evidences for narrowness of the zone
where frictional work is dissipated imply temperature rises, which far exceed those for onset
of melting (around 1000/oC for wet granitic materials) if no weakening is considered (Rice,
2006a).

The only clear evidence of melting in some fault zone outcrops is the presence of Pseu-
dotachylytes (Sibson, 1975). Pseudotachylyte is a glassy looking rock embedding survivor
clasts of the host rock and is the result of solidification of friction-induced melt produced
during seismic slip (Di Toro et al., 2009). These rocks are rarely observed in the field (Rice,
2006a), which means that the temperature increase is precluded in much of the seismogenic
zone. This assertion is qualitatively consistent with low heat outflow measured from major
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faults (Lachenbruch and Sass, 1980).

A potential mechanism that would cap the temperature increase is the triggering of en-
dothermic chemical reactions like the decomposition of carbonates (Collettini et al., 2014,
Hirono et al., 2007, Sulem and Famin, 2009a) or dehydration reactions (Veveakis et al.,
2010, Brantut et al., 2011, 2017). These reactions have an activation temperature that
is lower than the melting point of the minerals and act as a sink in the energy balance
equation. Thermo-Chemical mechanisms can also alter the mechanical properties of the
material and lead to weakening (Wibberley, 2005, Brantut and Sulem, 2012a).

At high confinement, like in seismogenic faults, we observe a substantial grain size reduction
or grain cataclasis (Sammis and Ben-Zion, 2008). This is usually used as a marker to
identify the principal slip zone. However, the microstructure change has an effect on
many physical mechanisms. The production of fine particles can significantly weaken the
material. Some studies have shown that the addition of nanograins to slip surfaces reduces
the friction coefficient due to the rolling of the grains (Han et al., 2010, Di Toro et al.,
2011). Anthony and Marone (2005) have shown that the grain size in the gouge affects the
its frictional behavior. Grain size also has an effect on the strength of the gouge (Dieterich,
1981) and on the chemical reactions kinetics as it depends on the specific surface: crushing
a solid into smaller parts means that more particles are present at the surface, and the
frequency of collisions between these and reactant particles, if they are present in the pore
space, increases, so that the chemical reaction occurs more rapidly.

A fault zone is, thus, a complex system where various physical mechanisms occur and are
coupled together. Many studies have been devoted to the understanding of the weakening
mechanisms that accompany the pre- and coseismic slip. A key parameter to study the
slippage is the formation and the evolution of the zone of localized deformation. The
thickness of this deforming zone is, on one side, determined by the weakening processes
and the microstructure, but on the other side, it also controls the magnitude of the multi-
physical couplings as, for example, the temperature rise is determined by the shear band
width.

1.2 Strain localization analysis

In this section, we introduce the theoretical concepts useful for studying strain localiza-
tion. A brief introduction to the bifurcation theory is given with an application to strain
localization.
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1.2.1 Instability and bifurcation

From an engineering point of view the stability of a system can be seen as a sensitivity
to small perturbations for a given state of equilibrium. It is stable if small changes in the
input (disturbances in the loading system, material imperfections, etc...) do not induce
catastrophic consequences for the system (Chambon et al., 2004). This conception of
stability is simplistic but it can be linked with the theoretical definitions of stability.

Stability was rigorously defined by Lyapunov in a paper published in 1892 and translated
into English one century later (Lyapunov, 1992). It is worth mentioning that a french
translation was published in 1907 by Edouard Davaux, son in law of François Cosserat
(Chatzis and Brocato, 2009).

Lyapunov stability depends on the points considered. A system can have several fixed
points and some can be stable and other not. If the system starts sufficiently close to the
fixed point, then it will stay arbitrarily close to the fixed point forever. It means that the
state of the system will not run away but it does not mean that the state of the system
will come back to the fixed point.

To express it in a mathematical manner, we have to introduce some definitions and for
that we take the same notations as Pac (2012). We consider a system, whose evolution is
described by an ordinary differential equation in the form: ẋ = f(x), where x is a vector
that describes the state of a system, ẋ its time derivative, and f ∈ C1(Rn,Rn).

Definition x0 is an equilibrium point (also called fixed point or stationary point) if and
only if f(x0) = 0.

x1 is a regular point if it is not an equilibrium point, i.e. if and only if f(x1) 6= 0.

One may note that the system is linear if there is an endomorphism A of Rn such as
f(x) = A(x). 0 is an equilibrium point for all linear systems and if A is injective it is the
only one (otherwise it is a vector subspace of Rn).

Definition The point x0 is Lyapunov stable if and only if

∀R > 0, ∃ε > 0, ‖x(t = 0)− x0‖ < ε =⇒ ∀t > 0 ‖x(t)− x0‖ < R

With this definition we remark that a stable system can present persistent small oscillations
around the fixed point. For engineers it would be ideal for these oscillations to disappear
in the long term, which is called asymptotic stability and is defined below. According to
A. T. Fuller in the guest editorial of the English translation of Lyanpunov’s manuscript
(Lyapunov, 1992), Lyapunov paid more attention to this definition of stability because
he was mainly concerned with astronomical problems. This class of problems is mathe-
matically described without any dissipation, so that asymptotic stability is not possible.
Indeed the best we can expect for the bodies is that they perform small oscillations around
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their nominal motions. To address the concept of asymptotic stability, we introduce the
definition of an attracting point. If the system starts sufficiently close to an attracting
point, it will converge to it.

Definition The point x0 is attracting if and only if

∃ε > 0, ‖x(t = 0)− x0‖ < ε =⇒ lim
t→∞
‖x(t)− x0‖ = 0

None of the definitions above is included in the other. A point can be Lyapunov stable
and not attracting (as mentioned above, it can exhibit persistent small oscillations around
the fixed point) and conversely it can be attracting and not Lyapunov stable as shown in
the following example.

Example Consider the equation θ̇ = 1− cos(θ). We can draw the phase diagram for this
equation and we observe that the origin is half-stable, so if we perturb the system such as
θ(t = 0) > 0, θ increases from θ(t = 0) to π and then from −π to 0 (it travels around a
circle), so it reaches the fixed point, which is thus an attracting point, but it has diverged
first before coming back, which means it is not Lyapunov stable.

-Π - Π
2

Π
2

Π Θ
-0.5

1

2

Θ 

Figure 1.5: Phase diagram for the equation θ̇ = 1− cos(θ)

A fixed point is considered asymptotically stable if it is at the same time Lyapunov stable
and attracting. This property is due to the ability of the system to damp the effects of
perturbations acting on it. If it is only Lyapunov stable and not attracting, it is called
marginally or neutrally stable. A basic example of this behavior is the simple pendulum
with small angle approximation and no dissipation. The amplitude of oscillations can be
limited by choosing appropriate initial conditions.

Thus, asymptotic stability implies Lyapunov stability by definition. On the contrary, the
attraction causes asymptotic stability only if the system is linear (see the example of
equation θ̇ = 1− cos(θ) which is non-linear).

In Fig. 1.5, a phase diagram is shown. This graph is very convenient for understanding
the behavior of linear or non-linear systems, but the pattern of the figure can change as
parameters vary. For example a fixed point can disappear, a new one can be created or
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their stability can change. These modifications not only modify the values of fixed points,
they affect the complete behavior of the system. These qualitative changes are called
bifurcations (Strogatz, 1994) and the parameter’s values for which this change occurs are
called bifurcation points. We will not give the mathematical definition of this concept
because it involves topological considerations that are not useful to our study.

In Fig. 1.6, we present an idealized diagram of bifurcation, with a governing parameter in
the horizontal axis and the equilibrium state in the vertical axis. This kind of diagram can
be found in May (1976), where the authors studied the evolution of an insect population.
Here the state is the population and the parameter is the rate of growth for this population.
We observe that beyond λ1 the population has several states available, which means that
its numbers will oscillate between these values, and beyond a critical value of the parameter
the behavior can become chaotic and the number of states available becomes infinite.

Figure 1.6: Example of bifurcation diagram from Prigogine (Prigogine and Nicolis, 1985)

The dashed lines represent unstable states, whereas the solid lines for stable ones. The state
for λ < λ1 is stable and the population is equal to 0. When λ > λ1, this aforementioned
state is no longer stable and new stable states appear. In that case the loss of uniqueness is
accompanied with an exchange of stability. The previous solution becomes unstable while
the new ones are stable.

For localization phenomena in geomaterials, we look for alternative solutions presenting
heterogeneous deformation. It is also possible to have alternative solutions that are homo-
geneous (Lesniewska and Wood, 2011). The localized zone is called a deformation band,
which can be a compaction, dilation or shear band. These different bands influence the
strength of the body as deformation localizes and, thus, the persistence of the heteroge-
neous deformation pattern.

The softening behavior of a material favors a localization of deformation (Molinari and
Leroy, 1991, Molinari and Clifton, 1986) (see Fig. 1.7 for an example of material with soft-
ening). However, it is not a necessary condition as we can observe strain localization even
for materials with a strain-hardening behavior (e.g. materials presenting non-associative
or non-coaxial plastic response (Rudnicki and Rice, 1975b, Issen and Rudnicki, 2000)).



18
CHAPTER 1: FAULT MECHANICS, INSTABILITY AND STRAIN

LOCALIZATION

Figure 1.7: Stress-strain torsion response of a steel that presents a strain-softening (Moli-
nari, 1997)

1.2.2 Localization conditions

To explore under which condition a homogeneous solution is stable/unstable, we perform a
stability analysis of the homogeneous state, which is considered as a fixed point according
to the above terminology. This analysis corresponds to the first method developed by
Lyapunov in his manuscript (Lyapunov, 1992).

As an example, the method is applied to a Cauchy continuum to determine the classical
condition of localization (Stefanou and Alevizos, 2016).

The momentum balance equation for this problem is:

σij,j = ρüi (1.1)

where σij is the stress tensor in a Cauchy continuum, ρ is the density of the material and
ui are the displacements defined at each point of the continuum.

Considering a reference homogeneous state, which is in equilibrium, we obtain:

σ0
ij,j = 0 (1.2)

where σ0
ij is the stress tensor of the homogeneous state. We consider that for the class of

material studied and for a small increment, the constitutive law can be linearized around
the homogeneous state as follows:

∆σij = Cijkl∆uk,l (1.3)
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where ∆ui is an increment of displacements from the homogeneous solution u0
i . Inserting

the constitutive law into Eq. 1.1, we get:

Cijkl∆uk,lj = ρ∆üi (1.4)

The method of separation of variables is used to find the solution of this linearized system
∆ui = X(xk)Ui(t), which results to:

CijklX,ljUk = ρXÜi (1.5)

The solutions for X are sinusoidal functions and as we are looking for solutions in the form
of deformation bands, which are planar, they can be written as X(xk) = eiξnjxj , where
ni is the unit vector normal to the band, ξ is the wave number of the perturbation and
i2 = −1. This expression of X is inserted in Eq. 1.5 and by setting U̇i = Vi, we obtain the
following system of Ordinary Differential Equations of first order in Vi and Ui:

ρV̇i = −Cijklξ2nlnjUk

U̇i = Vi (1.6)

A particular solution of this system is Uj(t) = gje
st and Vj(t) = fje

st, where gj and
fj are non-zero constant vectors and s is the so-called “Lyapunov exponent” or “growth
coefficient” of the perturbation. After some algebra, the system becomes:

[Cijklnlnj + ρ(
s

ξ
)2δik]gk = 0 (1.7)

where δik is the Kronecker symbol. Thus, a non-zero solution for gk is possible only if the
determinant of the second order tensor between the brackets vanishes. This condition yields
a polynomial equation for the growth coefficient s (characteristic polynomial). If a solution
of this polynomial has a positive real part, then the corresponding perturbation grows
exponentially in time and the homogeneous solution is unstable, leading to a localization.
This condition coincides with Hadamard’s stability condition (Hadamard, 1903) by setting
c = s

ξ i. The second order tensor Cijklnlnj is usually called the acoustic tensor.

As we are looking for the change of sign of the real part of s to determine the bifurcation
condition for the triggering of localization, a necessary condition for the onset is that the
determinant of the acoustic tensor is zero. This localization condition can also be obtained
considering a thin layer bounded by two discontinuities (Mandel, 1966, Rudnicki and Rice,
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1975a).

The inner product of the unit vector to the band nj and the vector for the direction of
perturbation increment gj determine the nature of the deformation band:



njgj = 1 : pure dilation band

0 < njgj < 1 : dilatant shear dilation band

njgj = 0 : simple shear band

−1 < njgj < 0 : compactive shear band

njgj = −1 : pure compaction band

(1.8)

Figure 1.8: Illustration of the different deformation bands in granular media from Du
Bernard et al. (2002)

For elasto-plastic materials, the threshold for the bifurcation condition is usually expressed
in terms of the hardening modulus. The orientation nj , for which the hardening modulus is
maximum, is sought (Rudnicki and Rice, 1975a). Nevertheless, in the case of a fault gouge,
as it is modeled as a shear band, the polarization vector gj and the normal to the band nj
are already determined. Therefore we search only for the critical hardening modulus.

This condition for a purely mechanical system has been applied for various constitutive
models (Bardet, 1990, Bigoni and Hueckel, 1991) and the methodology presented here is
general enough to be applied to many problems. For instance, it has been applied to
mechanical system taking into account different couplings: Hydro-mechanical couplings
(Rice, 1975, Benallal and Comi, 2003, Loret and Prevost, 1991), Thermo-Mechanical cou-
plings (Benallal and Bigoni, 2004, Armero and Park, 2003) or Thermo-Hydro-Mechanical
couplings (Rice et al., 2014, Benallal, 2005, Sulem et al., 2011). Furthermore, despite
considering a Cauchy continuum, the same approach can also be applied to higher order
continua (Mühlhaus and Vardoulakis, 1987, Veveakis et al., 2012).
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1.3 Post-bifurcation analysis

A first approach to study a localization problem consists at looking at the possible critical
conditions for which the constitutive equations of the material allow a bifurcation point
as explained above. But in some cases, we would like to know the evolution of the system
after the onset of localization. For instance, the study of the principal slip zone evolution
enables to extract information about seismic slip. For that, we need to approximate the
solution of a nonlinear boundary value problem numerically. It is a challenging task due to
the complications that arise while dealing with a softening behavior. Indeed, the classical
continuum theory cannot be used because the governing system of equations is ill-posed
(Vardoulakis, 1985) and a regularization of the problem is needed.

1.3.1 Regularization methods

This ill-posedness of the localization problem in the Cauchy continuum can be tracked
back to the fact that constitutive models do not contain material parameters with the
dimension of length and, thus, the size of the localized zone is zero. This phenomenon
is observed numerically by mesh dependency of the numerical results. The deformation
localizes in only one element of the mesh and the behavior of the system depends therefore
on the mesh size. The non-objectivity can lead to nonphysical results and this pathological
issue has to be addressed by resorting to appropriate theories that enable a regularization
of the problem.

The need to introduce a length scale into the constitutive description can be explained by
the fact that when the localization process occurs, the macroscopic mechanical characteris-
tic scale becomes of the same magnitude as the microstructural length scale. Therefore, the
hypothesis of scale separation to derive a homogenized classical continuous material is no
longer valid (Forest and Lorentz, 2004). The scale of heterogeneities of the microstructure
and the scale of interactions of closed points have to be taken into account.

A number of theories have been proposed which set out to enrich the continuum description
with more physics such that localization can develop while ellipticity of the equations is
preserved:

- Viscous regularization by considering strain rate hardening/softening together with iner-
tia terms (Needleman, 1988, Wang et al., 1996).

- Generalized continua with microstructure, such as the Cosserat continuum (de Borst,
1991, Mühlhaus and Vardoulakis, 1987) or second gradient models (Collin et al., 2006).

- Non-local models of the integral type (Jirasek, 2015, Pijaudier and Bazant, 1987) for
which integral relations relate stress and strain evolution.

However, enhanced models restore the mesh objectivity of the solution, but not the the
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uniqueness of the solution.

1.3.2 Numerical methods

In order to integrate the nonlinear set of equations considering a higher-order theory, an
efficient numerical method has to be considered. Most of the numerical methods are based
on a discretization of the continuous system of equations in time and space.

The most intuitive one is the method of Finite Differences (FDM), which is based on
Taylor’s expansions of the derivatives (Taylor, 1715). The method was developed in the
18th century and was applied for the first time for approximating the solution of an en-
gineering problem for dams by Richardson (1911). Many variants of this method have
emerged since, improving the stability and convergence of the method (e.g. Runge-Kutta
(Butcher, 1996) or Crank-Nicolson (Crank et al., 1947)). Nowadays, FDM is mainly used
for the discretization of the time derivatives of the Partial Differential Equations (PDE) to
solve. This strategy, is also applied in this Thesis, for the time derivatives. In particular,
a backward Euler method is applied for the time integration.

As far as it concerns the spatial discretization of our mathematical problem, we use the
Finite Element Method (FEM) in this Thesis. FEM blossomed in the 60s after the pioneer
works of A. Hrennikoff, R. Courant and I. Argyris in the 40s and 50s. The method consists
in calculating the solution of the variational form of the mathematical problem (Zienkiewicz
and Taylor, 1994). The Finite Element implementation is presented in details in Chapter
3.

An alternative for the spatial discretization of our PDEs is, between others, the pseudo-
spectral method. This method is strongly related to spectral methods, as the Chebyshev
polynomials usually used for interpolating the functions are Fourier series in disguise. In-
deed, a change of variables turn the cosines and sines of the Fourier series into a Chebyshev
polynomial. Thus, most of the properties demonstrated for the Fourier series are true for
these polynomials, such as completeness or convergence. The spectral methods developed
by Fourier in 1822 to solve the heat equation (Fourier, 1822) consists of projecting the
solution on to a finite family of trigonometric functions.

This method knew a great development through the algorithm of Fast Fourier Transform
by Cooley and Tukey in 1965 which speed up significantly the calculation of the coefficients
(Cooley and Tukey, 1965). Pseudo-spectral methods appear to be very efficient for simple
geometries, but as the interpolation functions are defined over the whole domain, difficulties
appear in the integration of complex geometries (see Boyd (2000) for a detailed description).
Moreover, there are might be other problems related to Aliasing, Spectral Blocking and
Blow-up, which hinder the direct application of the method in highly non-linear, fully
coupled problems. This is why we preferred to stick to the classical FEM.



Chapter 2

Theory and linear stability analysis
of strain localization in a 3D
continuum with microstructure and
multi-physical couplings

Un modèle Thermo-Hydro-Mécanique (THM) dans les milieux de Cosserat
est développé dans ce chapitre afin de montrer l’influence de l’échauffement
par frottement et de la pressurisation thermique de l’eau dans les pores sur
le phénomène de localisation des déformations. Cette localisation est considé-
rée comme le résultat d’une instabilité de l’état de déformations homogènes.
Un cadre général est présenté pour mener une analyse de bifurcation dans les
milieux élasto-plastiques de Cosserat présentant des couplages THM et, ainsi,
prédire le déclenchement de l’instabilité. D’autre part, la présence d’une lon-
gueur au sein de la loi constitutive permet une estimation de l’épaisseur de
localisation. En effet, cela conduit à la sélection d’une longueur d’onde préfé-
rentielle du mode instable correspondant au mode dont le coefficient d’accrois-
sement est le plus élevé. Un lien est établi entre la microstructure du matériau
et la longueur interne de la loi constitutive. Ces concepts sont ensuite appli-
qués pour comprendre le mécanisme des failles qui créent des séismes. Pour
ce faire, nous considérons le modèle d’une couche granulaire infinie saturée et
cisaillée. L’influence des couplages THM sur la bifurcation et la taille de bande
est analysée. En considérant des paramètres représentatifs d’une gouge de faille
à une profondeur centrale de la partie fragile de la lithosphère, l’évolution de
la taille de la bande de cisaillement est obtenue. Une analyse de l’influence des
principaux paramètres sur les résultats est aussi menée. Finalement, l’effet de
l’écrasement des grains au sein de la bande est exploré en modifiant la valeur
de la longueur interne.
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2.1 Introduction

In this chapter, we focus on the thermal pressurization process. It has been recognized to
play ubiquitous role in the weakening of fault zones (Viesca and Garagash, 2015, Lachen-
bruch, 1980). This phenomenon is a consequence of the discrepancy between the thermal
expansion of pore water and the solid matrix (Rice, 2006b). It results in a decrease of the
effective mean stress and consequently of the shear strength. To determine the thickness
of the localized zone, the frame of classical continuum theory is not appropriate as it leads
to an infinitely small localized zone (Vardoulakis, 1985). A rate dependent constitutive
behavior is a common procedure to overcome this issue (Rice et al., 2014), but it is rather
empirical. Another approach is to consider continua with microstructure, like Cosserat
continua. They also enable us to introduce the effect of the microstructure into the consti-
tutive relationships. A major asset as the microstructure has been recognized to play an
important role on gouge behavior (Phillips and White, 2017, Anthony and Marone, 2005).

Cosserat continua (Cosserat and Cosserat, 1909) is a theory that considers more degrees of
freedom than the classical Cauchy continuum and provides a better representation of the
physics and the mechanical behavior of continua with microstructure. This microstructure
is related naturally to the model by the presence of several characteristic lengths (see A.2).

In this chapter, we focus mainly on using bifurcation theory and Linear Stability Analysis
(LSA). The approach is analytical and it allows us to explore qualitatively the influence
of the evolution of the hardening parameter and of the grain size on the thickness of the
localized zone. In Sections 2.2 and 2.3 we present the momentum, mass and energy balance
equations of the problem and the full constitutive equations for general Cosserat elasto-
plastic continua. The bifurcation analysis in this framework is presented in Section 2.4
and linked with classical results like the singularity of the acoustic tensor. Finally, the
bifurcation analysis is applied to the problem of slip in a fault zone (Section 2.5) and the
influence of the main parameters of the model is investigated as far it concerns the onset
of localization and the shear band thickness evolution.

2.2 Basic concepts of three-dimensional Cosserat continuum
mechanics and balance equations

The Cosserat continuum is a special case of first order micromorphic continua, for which
the particle is considered rigid (Godio et al., 2016, Stefanou et al., 2010). In the frame
of Cosserat theory the kinematics of a material point in three-dimensional (3D) space is
described by six degrees of freedom, which are three translations ui and three rotations
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ωci (i = 1, 2, 3). In this section, the basic concepts of Cosserat theory are outlined.

2.2.1 Cosserat kinematics

Compared to a Cauchy continuum formed by a set of particles identified by their coordi-
nates xi, we attach to every particle a system of axes parallel to the Cartesian one and
with M, the center of mass of the particle, as origin.

If we consider a point M’, in the particle of center M, defined by its coordinates x′i, the
displacement field in M’, u′i, can be written as follows, considering only terms of first order.

u′i = ui + χij x
′
j (2.1)

Einstein summation convention is followed herein. χij is the micro-deformation tensor. As
the microstructure is considered rigid in Cosserat theory, the micro-volume cannot deform
and can only rotate. Thus, the micro-deformation tensor χij is antisymmetric and is called
the Cosserat rotation ωcij . As ω

c
ij is antisymmetric, we can write :

ωcij = −eijk ωck (2.2)

where eijk is the Levi-Civita symbol.

The following kinematic fields are introduced:: the deformation tensor γij - which is split
into its symmetric εij and antisymmetric part γ[ij] - and the curvature tensor κij - also
split into its symmetric κ(ij) and antisymmetric part κ[ij].

εij =
1

2
(ui,j + uj,i) Ωij =

1

2
(ui,j − uj,i)

γ[ij] = Ωij − ωcij κij = ωci,j

γij = εij + γ[ij] = ui,j − ωcij = ui,j + eijk ω
c
k (2.3)

The macroscopic strain and rotation tensors (εij and Ωij) are the symmetric and antisym-
metric parts of the displacement gradient as in a classical Cauchy continuum. γ[ij] is the
difference between the macroscopic rotation Ωij and the rotation of the microstructure ωcij .
The curvature tensor κij is defined as the gradient of Cosserat rotations.
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2.2.2 Momentum and angular momentum balance equations

Correspondingly the stress tensor τij is also divided into its symmetric σij and antisym-
metric part τ[ij]. The symmetric part corresponds to the macroscopic stresses (the ones
that are considered in Cauchy continuum), the antisymmetric one is nonzero in general.
A tensor for the couple-stress is defined by µij linked to the curvature.

x1

x2

x3

σ33

σ23

σ13

σ32

σ22

σ12 σ21

σ31

σ11

μ22

μ32
μ12

μ23

μ33
μ13

μ31
μ11

μ21

Figure 2.1: Representation of stress and couple-stress components.

The momentum balance equations can be written as follows (assuming no body forces
acting on the medium)(Vardoulakis and Sulem, 1995, Stefanou et al., 2017):

τij,j − ρ
∂2ui
∂t2

= 0 (2.4)

µij,j − eijk τjk − ρI
∂2ωci
∂t2

= 0 (2.5)

where ρ is the density, I is the micro-inertia, which is considered isotropic here. For
example, I = 2

5R
2 if we identify the particle as spherical grains with radius R (I = 1

2R
2 in

2D ) (Vardoulakis and Sulem, 1995).

2.2.3 Energy balance equation

The energy and mass balance equations as classically derived for a saturated Cauchy con-
tinuum are extended here to a saturated Cosserat continuum.

The energy conservation in a quasi-static transformation is expressed as follows:

ρC
∂T
∂t

= PH − jQi,i (2.6)

where ρC is the specific heat per unit volume of the material in its reference state and jQi
represents the heat flux density. It is assumed here that the rate of heat produced PH is
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due to plastic dissipation, thus, PH = σij ε̇
p
ij + τ[ij]γ̇

p
[ij] +µij κ̇

p
ij . This expression is the sum

of three terms, one corresponding to the plastic work due to the symmetric part of the
stress tensor (Cauchy), σij ε̇

p
ij , and the two others are due to Cosserat effects (Vardoulakis

and Sulem, 1995). ε̇pij , γ̇
p
[ij] and κ̇ij

p are the plastic symmetric deformation rate, plastic
antisymmetric deformation rate and the plastic curvature rate tensors respectively. The
heat flux is linked to the temperature gradient by Fourier’s law:

jQi = −kT T,i (2.7)

where kT is the thermal conductivity of the material which is assumed homogeneous here.
Substituting these two expressions gives the energy balance equation.

ρC(
∂T
∂t
− cthT,ii) = σij ε̇

p
ij + τ[ij]γ̇

p
[ij] + µij κ̇

p
ij (2.8)

where cth = kT
ρC is the thermal diffusivity.

2.2.4 Mass balance equation

We consider a porous medium consisting of two phases, i.e. the solid skeleton and the fluid
contained in the pores. The conservation of the mass of the skeleton and the fluid, when
no mass exchange occurs is:

dsms

dt
= 0

dfmf

dt
= 0 (2.9)

where dπ

dt refers to the particle derivative with respect to particle π (= s or f) (Coussy,
2004). mf and ms are respectively the fluid mass and the skeleton mass per unit volume
of the medium. If ρs and ρf are the skeleton and fluid mass densities so that ρs (1−n) dΩt

and ρf n dΩt are respectively the skeleton mass and the fluid mass currently contained in
the material volume with an Eulerian porosity n, we obtain:

dsms

dt
=
ds(ρs (1− n) dΩt)

dt
=
ds(ρs (1− n))

dt
dΩt + ρs (1− n)

dsdΩt

dt
dfmf

dt
=
df (ρf n dΩt)

dt
=
df (ρf n)

dt
dΩt + ρf n

dfdΩt

dt
(2.10)
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By applying the Eulerian continuity conditions and using the expression of the particle
derivative (Coussy, 2004) we get:

∂(ρs (1− n))

∂t
+ ((ρs (1− n))V s

i ),i = 0

∂(ρf n)

∂t
+ (ρf n V f

i ),i = 0 (2.11)

where V s
i and V f

i are the velocity fields of the solid and fluid phase respectively. (),i

represents the divergence operator applied to the current state. However, we keep a small
strain framework and therefore no distinction will be made in the following between the
reference and the deformed configuration.

If we neglect the gradient of the density of the fluid and solid phases, Eq. 2.11 becomes

−ρs∂n
∂t

+ (1− n)
∂ρs

∂t
+ ρs ((1− n)V s

i ),i = 0 (2.12)

n

ρf
∂ρf

∂t
+
∂n

∂t
+ n V f

i,i = 0 (2.13)

Finally, adding Eq. 2.12 divided by ρs and Eq. 2.13 yields:

n

ρf
∂ρf

∂t
+

1− n
ρs

∂ρs

∂t
+ V s

i,i + (n(V f
i − V

s
i )),i = 0 (2.14)

If we assume that the density of the fluid ρf and of the solid ρs only depend on the pressure
and temperature (Rice, 2006b), we obtain:

∂ρf

∂t
= ρf βf

∂p

∂t
− ρf λf

∂T

∂t
∂ρs

∂t
= ρs βs

∂p

∂t
− ρs λs

∂T

∂t
(2.15)

where βf and βs are the compressibilities per unit volume of the pore fluid and the solid
phase respectively and λf , λs the thermal expansivities per unit volume. The fluid mass
flux is assumed to obey the isotropic Darcy’s law (for a quasi-static flow without any body
force).

n(V f
i − V

s
i ) = − χ

ηf
p,i (2.16)
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where χ is the intrinsic permeability of the porous medium, and ηf is the viscosity of the
pore fluid. Inserting Eqs. 2.15, 2.16 in Eq. 2.14 we obtain

∂p

∂t
= chy p,ii +

λ∗

β∗
∂T
∂t
− 1

β∗
∂εv
∂t

(2.17)

where chy = χ/(ηfβ∗) is the hydraulic diffusivity, β∗ = nβf + (1 − n)βs is the mixture
compressibility, λ∗ = (nλf + (1− n)λs) is the coefficient of thermal expansion of the soil-
water mixture (Vardoulakis, 1986). This formulation differs from Sulem et al. (2011) and
Rice (2006b), where the authors introduce the mechanical constitutive equation through
the variation of porosity. Therefore, instead of having the term depending on total vol-
umetric deformation εv, they have one depending on plastic volumetric deformation εpv.
In Eq. 2.17, we keep the volumetric deformation without assuming any particular consti-
tutive equation (Lachenbruch, 1980). Its evolution can be controlled by damage, plastic
deformation or evolution of the porous space. The link between the two formulations in
the case of an elasto-plastic constitutive model is shown in Appendix A.1.

2.3 Thermo-Hydro elasto-plastic model for fluid-saturated
isotropic Cosserat materials

For simplicity, constitutive equations are written in terms of the Terzaghi effective stress
for both the elastic and plastic strains. However the underlying assumption of elastically
incompressible grains can be overcome without difficulty by resorting to Biot’s theory of
poromechanics (Biot and Willis, 1957).

2.3.1 Isotropic elastic constitutive law

The general constitutive equations for a linear isotropic elastic Cosserat continuum are
defined by six coefficients. The two classical deformation moduli, K and G, and four
additional coefficients, Gc, L, M , and Mc (Mindlin, 1964).

τij = Kγekk δij + 2G(εeij −
1

3
γekk) + 2Gcγ

e
[ij] (2.18)

µij = Lκekk δij + 2M(κe(ij) −
1

3
κekk) + 2Mcκ

e
[ij] (2.19)

(.)e denotes elastic quantities. In comparison with the classical Cauchy continuum four
additional moduli are used for an isotropic, centrosymmetric linear elastic Cosserat con-
tinuum. The first one is Gc, which has a dimension of stress and relates the antisymmetric
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parts of the stress and deformation tensors, which are conjugate in energy. The other
moduli, L, M and Mc have the dimension of length squared times stress. Any ratio of L,
M or Mc to K, G or Gc results in a material parameter of dimension of length squared
(Cowin, 1970).

In the analyses of simple shearing of an infinite layer presented in Section 2.5 the choice of
L does not have any influence due to invariance in x1 and x3 directions. Moreover, setting
Mc = M = GR2

h3
, where h3 a coefficient defined in A.2, we assure that no out-of-plane

moments are developed (see Fig. 2.1 and Eq. 2.19).

The generalized elastic stress-strain relationships are written as:

τij = Ceijkl γkl

µij = M e
ijkl κkl (2.20)

where the elastic stiffness tensors Ceijkl and M
e
ijkl are derived from (Eqs. 2.18 - 2.19).

Ceijkl = (K − 2

3
G)δijδkl + (G+Gc)δikδjl + (G−Gc)δilδjk (2.21)

M e
ijkl = (L− 2

3
M)δijδkl + (M +Mc)δikδjl + (M −Mc)δilδjk (2.22)

2.3.2 Thermo-elasto-plastic incremental constitutive relationship

Following Mühlhaus and Vardoulakis (1987), a flow theory of plasticity for granular media
with Cosserat microstructure can be derived by keeping the same definitions for the yield
surface and the plastic potential as in the classical theory and by generalizing the stress
and strain invariants for Cosserat continua. We decompose the deformation rate tensor
and the curvature rate tensor into elastic, plastic and thermal parts (Lemaitre et al., 2009):

γ̇ij = γ̇eij + γ̇pij + γ̇thij and κ̇ij = κ̇eij + κ̇pij (2.23)

˙(.) denotes the time derivative. Thermal strains are written as: γ̇thij = αṪ δij where α is
the coefficient of thermal expansion. No thermal part for the curvature is considered as
the thermal expansion for isotropic solids does not have a direct effect on the rotations
inside the medium.

Denoting F the yield function and assuming that F depends on the stress invariants and
on accumulated plastic strains F = F (τ, σ, γp, εpv), we obtain

Ḟ =
∂F

∂τ
τ̇ +

∂F

∂σ
σ̇ +

∂F

∂γp
γ̇p +

∂F

∂εpv
ε̇v
p = 0 (2.24)

An example of generalized invariants used for Cosserat media is presented in detail in part
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2.4.

Denoting Q the plastic potential and λ̇ the plastic multiplier, we have

γ̇pij = λ̇
∂Q

∂τij

κ̇pij = λ̇
∂Q

∂µij
(2.25)

The hardening modulus Hs is defined by:

Hs = − ∂F
∂γp

(2.26)

We assume the following equalities that can be proven for several yield functions that have
a linear dependence in τ and σ (see for example Drucker-Prager in the following):

λ̇ = γ̇p and ε̇pv = β γ̇p (2.27)

The consistency condition gives

λ̇ =
< 1 >

Hp
(
∂F

∂τij
Ceijkl(γ̇kl − α Ṫ δkl)) +

∂F

∂µij
M e
ijklκ̇kl (2.28)

or,

λ̇ =
< 1 >

Hp
(bFkl (γ̇kl − α Ṫ δkl) + bFMkl κ̇kl) (2.29)

with

Hp =
∂F

∂τij
Ceijkl

∂Q

∂τkl
+

∂F

∂µij
M e
ijkl

∂Q

∂µkl
+Hs (2.30)

< 1 >=

1 if F = 0 and λ̇ > 0 (plastic loading)

0 otherwise
(2.31)

and,

bFkl =
∂F

∂τij
Ceijkl (2.32)

bQij = Ceijkl
∂Q

∂τkl
(2.33)

bFMkl =
∂F

∂µij
M e
ijkl (2.34)

bQMij = M e
ijkl

∂Q

∂µkl
(2.35)



2.3 THERMO-HYDRO ELASTO-PLASTIC MODEL FOR
FLUID-SATURATED ISOTROPIC COSSERAT MATERIALS 33

Using Eqs. 2.25 and 2.29, the incremental constitutive equations can be expressed as:

τ̇ij = (Ceijkl −
< 1 >

Hp
bQijb

F
kl) ˙γkl − αṪ (Ceijkl −

< 1 >

Hp
bQijb

F
kl)δkl −

< 1 >

Hp
bQijb

FM
kl κ̇kl

µ̇ij = (M e
ijkl −

< 1 >

Hp
bQMij bFMkl ) κ̇kl −

< 1 >

Hp
bQMij bFkl γ̇kl − αṪ

< 1 >

Hp
bQMij bFkl δkl (2.36)

These constitutive relationships can be written in the general form.

τ̇ij = Cepijkl γ̇kl +Dep
ijkl κ̇kl + Eepijkl Ṫ δkl

µ̇ij = M ep
ijkl κ̇kl + Lepijkl γ̇kl +N ep

ijkl Ṫ δkl (2.37)

with,

Cepijkl = Ceijkl −
< 1 >

Hp
bQijb

F
kl Dep

ijkl = −< 1 >

Hp
bQijb

FM
kl

Eepijkl = −(Ceijkl −
< 1 >

Hp
bQijb

F
kl) Lepijkl = −< 1 >

Hp
bQMij bFkl

M ep
ijkl = M e

ijkl −
< 1 >

Hp
bQMij bFMkl N ep

ijkl =
< 1 >

Hp
bQMij bFkl (2.38)

2.3.3 Drucker-Prager yield surface

The classical Drucker-Prager plastic model for cohesionless materials was extended to
Cosserat media by Mühlhaus and Vardoulakis (1987) for a 2D continuum. Herein, we
follow the same approach to develop a 3D THM model for Cosserat continua.

F = τ + µ σ and Q = τ + β σ (2.39)

The generalized stress invariants are defined as:

σ =
τkk
3

(2.40)

τ =

√
h1 sij sij + h2 sij sji +

1

R2
(h3mijmij + h4mijmji) (2.41)

Similarly, the generalized plastic deviatoric strain rate is written as:

γ̇p =
√
g1 ė

p
ij ė

p
ij + g2 ė

p
ij ė

p
ji +R2(g3 k̇

p
ij k̇

p
ij + g4 k̇

p
ij k̇

p
ji) (2.42)

where sij , mij , eij and kij are the deviatoric parts of the stress, couple-stress, strain and
curvature respectively. The evaluation of the parameters hi and gi is discussed in A.2
based on micro-mechanical considerations. Some values are summarized in Table 2.1.



34 CHAPTER 2: THEORY AND LINEAR STABILITY ANALYSIS

2D model 3D model
static model {hi} = {3/4,−1/4, 1, 0} {hi} = {2/3,−1/6, 2/3,−1/6}

{gi} = {3/2, 1/2, 1, 0} {gi} = {8/5, 2/5, 8/5, 2/5}
Kinematic model {hi} = {3/8, 1/8, 1/4, 0} {hi} = {2/5, 1/10, 2/5, 1/10}

{gi} = {3,−1, 4, 0} {gi} = {8/3,−2/3, 8/3,−2/3}

Table 2.1: Values for the coefficients in the stress and strain deviatoric generalized in-
variants for a Cosserat continuum from Mühlhaus (1986), Mühlhaus and Var-
doulakis (1987), Sulem and Vardoulakis (1990), Unterreiner (1994)

The hardening shear modulus is:

−Hs =
∂F

∂γp
=

∂µ

∂γp
σ (2.43)

and the hardening coefficient is:

hs =
∂µ

∂γp
(2.44)

The gradient terms of the yield function and plastic potential are expressed as :

∂F

∂τij
=

1

τ
(h1 sij + h2 sji) +

µ

3
δij (2.45)

∂Q

∂τij
=

1

τ
(h1 sij + h2 sji) +

β

3
δij (2.46)

∂F

∂µij
=

∂Q

∂µij
=

1

τR2
(h3 µij + h4 µji) (2.47)

It is easily shown that λ̇ = γ̇p and ε̇pv = β γ̇p by decomposing γ̇pij (obtained from the
plastic flow rule) into its deviatoric and volumetric part and then replacing them into the
expression for γ̇p. Moreover, we have

bFkl = Kµ δkl +
skl
q

(
(G+Gc)h1 + (G−Gc)h2

)
+
slk
q

(
(G+Gc)h2 + (G−Gc)h1

)
(2.48)

bQij = Kβ δij +
sij
τ

(
(G+Gc)h1 + (G−Gc)h2

)
+
sji
τ

(
(G+Gc)h2 + (G−Gc)h1

)
(2.49)

bFMkl = bQMkl =
1

τR2

[
mkl ((M +Mc)h3 + (M −Mc)h4) +mlk ((M −Mc)h3 + (M +Mc)h4)

]
(2.50)
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∂F

∂σij
Cijkl

∂Q

∂σkl
= K µ β +

sklskl
τ2

(
(G+Gc)(h

2
1 + h2

2) + 2(G−Gc)h1h2

)
+
sklslk
τ2

(
(G−Gc)(h2

1 + h2
2) + 2(G+Gc)h1h2

)
(2.51)

∂F

∂µij
Mijkl

∂Q

∂µkl
=

1

τ2R4

[
mkl mkl ((M +Mc)(h

2
3 + h2

4) + 2(M −Mc)h3h4)

+mkl mlk ((M −Mc)(h
2
3 + h2

4) + 2(M +Mc)h3h4)
]

(2.52)

2.4 Bifurcation analysis

Let us consider an evolution problem described by Eqs. 2.4, 2.5, 2.8 and 2.17. This set
of equations presents a homogeneous steady state without Cosserat effects if adiabatic,
undrained and prescribed total stresses as boundary conditions are applied. This steady
state is defined by T = Ts, p = ps, τij = τ0

ij , γij = γ0
ij , µij = 0 and κij = 0, where Ts and

ps are a reference temperature and pressure respectively,τ0
ij and γ0

ij are the homogeneous
stress and deformation tensors that depend on the geometry and boundary conditions. We
denote all the fields corresponding to this steady state with a superscript 0.

We are interested in determining the conditions for which the above homogeneous solutions
become unstable in the Lyapunov sense (Lyapunov, 1892, Stefanou and Alevizos, 2016).
The relevant variables of the problem are expressed as follows:

T (xi, t) = T 0 + T ∗(xi, t) p(xi, t) = p0 + p∗(xi, t)

τ ′kl(xi, t) = τ ′0kl + τ ′∗kl(xi, t) uk(xi, t) = u0
k(xi) + u∗k(xi, t)

ωck(xi, t) = ωc0k + ωc∗k (xi, t) (2.53)

where the superscript * denotes a perturbation from the reference homogeneous state.

The constitutive equations 2.37 can be linearized around the reference state to obtain the
following relationships between the perturbations of stresses, couple stresses, strains and
curvatures:

τ ′∗kl = Cepklmn γ
∗
mn +Dep

klmn κ
∗
mn + Eepklmn T

∗ δmn

µ∗kl = M ep
klmn κ

∗
mn + Lepklmn γ

∗
mn +N ep

klmn T
∗ δmn (2.54)

Eqs. 2.4, 2.5, 2.8 and 2.17 become then:
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Cepklmn(u∗m,nl + emnq ω
c∗
q,l) + Eepklmn T

∗
,lδmn +Dep

klmn ω
c∗
m,nl − p∗,l δkl − ρ

∂2u∗k
∂t2

= 0 (2.55)

M ep
klmn ω

c∗
m,nl + Lepklmn (u∗m,nl + emnq ω

c∗
q,l) +N ep

klmn T
∗
,lδmn

−eklm(Ceplmnq(u
∗
n,q + enqr ω

c∗
r ) + Eeplmnq T

∗δnq +Dep
lmnq ω

c∗
n,q)− ρI

∂2ωc∗i
∂t2

= 0 (2.56)

ρC(
∂T ∗

∂t
− cthT ∗,kk) = τ ′0kl(u̇

∗
k,l + eklm ω̇c∗m,l) + µ0

klω̇
c∗
k,l (2.57)

∂p∗

∂t
= chy p

∗
,kk + Λ

∂T ∗

∂t
− 1

β∗
∂u∗k,k
∂t

(2.58)

To obtain Eq. 2.57, we neglect the perturbations of the elastic deformation and curvature
tensors as compared to the plastic ones.

The system of Eqs. 2.55 - 2.58 is a linear system of eight equations with eight unknowns
(the perturbed fields). It is convenient to apply a space Fourier transform to study it. The
system admits solutions of the form:

X∗k(xl, t) = Xk(t).exp(i ξ xl nl) (2.59)

where ξ is a wave number, nj is a polarization direction, i2 = −1 and X∗i (xj , t) a vector
containing the eight perturbation unknowns as follows:

X∗k(xl, t) = [u∗k(xl, t) ωc∗k (xl, t) T ∗(xl, t) p∗(xl, t)]
t (2.60)

Inserting Eq. 2.59 in Eqs. 2.55 - 2.58, we obtain a system of ordinary differential equations,
which admits solutions of the form:

Xk(t) = Xk.exp(s t) (2.61)

where s is the rate of growth of the perturbation and Xk a vector of algebraic quantities.
This leads to the following linear system of equations, written in matrix form:


Γkm − ρs2δkm ∆km Eepklmniξnlδmn −iξnk

Ξkm Πkm − ρIs2δkm −eklmEeplmnqδnq +N ep
klmnδmn 0

−τ ′0klsiξnlδkm −τ ′0klsieklm − µ0
klsiξnlδkm ρC(s+ cthξ

2) 0
1
β∗ siξnk 0 −Λs s+ chyξ

2



um

ωcm

T

p

 = 0

(2.62)

where
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Γkm = −Cepklmnξ
2nnnl

∆km = Cepklqneqnmiξnl −D
ep
klmnξ

2nnnl

Ξkm = −Lepklmnξ
2nnnl − eklrCeplrmqiξnq

Πkm = −M ep
klmnξ

2nnnl + Lepklrnernmiξnl − eklrC
ep
lrnqenqm − eklrD

ep
lrmqiξnq (2.63)

For non-trivial solutions, the determinant of the matrix in Eq. 2.62 must be zero. This
condition yields a polynomial equation in terms of s. The roots of this equation provide
us information about the stability of the system. If one of the roots has a real part strictly
positive the considered homogeneous state is unstable. If all the roots have a real part
that is strictly negative, the homogeneous state is stable. We cannot conclude anything in
the case where at least one of the roots has a real part equal to 0 and all the others have
a real part strictly negative.

Note that the classical condition of localization for rate-independent plastic materials with
a Cauchy continuum is retrieved (Rudnicki and Rice, 1975b), i.e. det(Γkm) = 0, where
Γkm is the acoustic tensor. The localization condition for a purely mechanical system in
the framework of Cosserat continuum is:

det

[
Γkm − ρs2δkm ∆km

Ξkm Πkm − ρIs2δkm

]
= 0 (2.64)

The singularity of the above tensor is similar to the condition found in Iordache and
William (1998), Steinmann and Willam (1991) for the onset of localization (s = 0). In
these papers, the authors derive the localization condition from the kinematic and static
compatibility conditions across the shear band as done classically for strain localization
analysis (Vardoulakis and Sulem, 1995).

2.5 Application to rapid shearing in fault zones

Field observations of faults show that shear deformation is extremely localized in so-called
slip-zones of finite but small thickness, composed of cataclastic material due to excessive
shearing (Engelder, 1974, Myers and Aydin, 2004). Outcrops indicate that an even thinner
zone of ultracataclastic material is often identified inside the fault core called the principal
slip zone (PSZ) (Rice, 2006b). The thickness of the PSZ appears to be a key parameter
for understanding fault behavior (Kanamori and Brodsky, 2004) as it is related to the
triggering and evolution of various multi-physical couplings and energy dissipation during
seismic slip. From the mechanics point of view, the deformations are localized in a shear
band whose thickness can be measured from field observations and laboratory tests.
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Strain localization in narrow bands can be seen as a bifurcation from the homogeneous de-
formation solution of the underlying mathematical problem. In this section, we determine
the conditions for shear band formation by taking into account the THM couplings devel-
oped in the previous sections. The results are then compared to field and experimental
data.

2.5.1 Fault core model under THM couplings

A simple configuration of a fault core is represented in Fig. 2.2 as a homogeneous infinite
layer of fluid saturated granular material with a thickness h. The material inside this layer is
modeled as a Cosserat continuum in order to take into account its granular microstructure.

h
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m32w3
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=0τ 22=-τ

τ
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τ 12=τt

m32
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Figure 2.2: Boundary conditions for the infinite sheared layer modeling a saturated gouge

Prior to localization, the state of stress, strain, pore pressure and temperature is assumed
to be homogeneous in the layer. As a condition of zero couple stress is applied at the
boundaries, the couple stresses are identically zero in the medium. Thus, the medium
behaves like a Cauchy continuum.

τ12 = τ21 µij = 0 (2.65)

Moreover, the different fields depend only on the component x2 due to the invariance in
the x1 and x3 directions. Eqs. 2.48 to 2.52 can be simplified at the homogeneous state:

∂F

∂σij
Cijkl

∂Q

∂σkl
= µβK +G (2.66)

∂F

∂mij
Mijkl

∂Q

∂mkl
= 0 (2.67)

so,
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Hp = µβK +G+Hs (2.68)

Moreover,

bQMij = bFMkl = 0 (2.69)

bQijb
F
kl = K2µβδijδkl +

KµG

τ
sijδkl +

KβG

τ
δijskl +

G2

τ2
sijskl (2.70)

We introduce the following dimensionless quantities:

x =
x1

R
; z =

x2

R
; ui =

ui
R

; p =
p

τn
;

τ ij =
τ ij
τn

; t =
cth
R2

t; T =
Λ

τn
T ; ξ =

ξ

R
(2.71)

Considering Eq. 2.71 , the dimensionless form of the matrix in 2.62 is:
1
σn
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1
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ep
klmniξnlδmn −iξni
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2 1
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(2.72)

where,

∆̃ik =
1

τn
(Cepijqleqlkiξnj −

1

R
Dep
ijklξ

2nlnj)

Ξ̃ik =
1

τn
(− 1

R
Lepijklξ

2nlnj − eijqCepjqkmiξnm)

Π̃ik =
1

τn
(− 1

R2
M ep
ijklξ

2nlnj +
1

R
Lepijqleqlkiξnj − eijqC

ep
jqlmelmk −

1

R
eijqD

ep
jqkmiξnm)

αij =
τ ′0ijΛ

ρCτn
; ζij =

µ0
ijΛ

ρCτnR
; Le =

cth
chy

(2.73)



40 CHAPTER 2: THEORY AND LINEAR STABILITY ANALYSIS

parameters values units parameters values units
K 16.67× 103 MPa µ 0.5
G 10× 103 MPa β 0
Gc 5× 103 MPa λ∗ 7.4× 10−5 /oC
R 0.01 mm ρC 2.8 MPa/oC
ρ 2500 kg/m3 cth 1 mm2/s
σn 200 MPa chy 12 mm2/s
τ ′0 67 MPa αs 2.5× 10−5 /oC
β∗ 8.2× 10−5 MPa−1 n 0.04

Table 2.2: Numerical values for the parameters of a deep rock gouge from Sulem et al.
(2011), Rice (2006b)

2.5.2 Linear stability and wavelength selection

We consider a fault at 7km depth to study its stability and the shear band thickness
predicted by our model. The values of the different parameters are retrieved from Sulem
et al. (2011) and Rice (2006b). They correspond to fault gouge and were obtained from
experiments on samples from the Median Tectonic Line, Japan, and the Aegion fault in
Greece. They are summarized in Table 2.2. In this example, we obtain a a critical value for
the hardening parameter at bifurcation state Hcr = 2MPa (corresponding to hs = 0.015).
For Hs > Hcr, all the real roots of the polynomial are negative (Figure 2.3) and some
complex roots feature a positive real part. For Hs < Hcr, some real roots are positive
(Figure 2.3).

In Figures 2.3 and 2.4, the dashed lines represent the real parts of the roots that have a
nonzero imaginary part. For these values the system diverges by oscillating, it corresponds
to a so-called "flutter instability". As mentioned in Benallal and Comi (2003), our system
is not differentiable due to the Kuhn-Tucker condition (Eq. 2.54), therefore to develop the
above equations, we have assumed monotonous loading conditions to stay in the plastic
regime. Therefore, one cannot assess that the flutter type instabilities obtained in this
analysis are meaningful. Moreover, in Simões and Martins (2005), the authors performed
linear stability and finite element analyses for a non-associative elastic-plastic layer and
observed that the complex eigenvalues with a positive real part, do not always correspond
to an unstable behavior in the numerical results.

The value for the critical hardening modulus given in Sulem et al. (2011) is retrieved. The
results are very sensitive to the ratio λ∗/β∗ because shear heating destabilizes the system
and instability can occur even in the hardening regime. When plastic shear deformations
occur, the energy is dissipated by heat and the temperature in the gouge increases. The
presence of the thermal pressurization term λ∗

β∗
∂T
∂t in the mass balance equation, entails

an increase of the pore pressure and thus a decrease of the effective normal stresses if the
total stress is kept constant. This decrease of the normal stress induces a decrease of the
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Figure 2.3: Real parts of the growth coefficient as a function of the wavelength of the
perturbation for Hs = 2.1 MPa > Hcr. The different colors represent different
roots. The dashed lines represent the real part of the roots with non zero
imaginary parts whereas the continuous lines correspond to real roots.
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Figure 2.4: Real parts of the growth coefficient as a function of the wavelength of the
perturbation for Hs = 1.9 MPa < Hcr. The different colors represent different
roots. The dashed lines represent the real part of the roots with non zero
imaginary parts whereas the continuous lines correspond to real roots.
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fault strength and destabilizes the system.

For a given hardening modulus below the critical value Hs < Hcr, we can see in Figure 2.4
that the real roots of the polynomial equation present a maximum. This finite maximal
growth coefficient of the instability is obtained thanks to the introduction of the inertia
terms (Sulem et al., 2011). For a Cauchy continuum, we would obtain infinite growth for
a zero wavelength of the perturbation and for a Cosserat continuum without the inertia
terms infinite growth for a finite wavelength of the perturbation (Sulem et al., 2011). This
maximum corresponds to the instability mode with fastest growth (see Eq. 2.61). If we
consider that the width of the localized zone corresponds to the wavelength of fastest
growth, we can plot in Fig. 2.5 the evolution of the selected wavelength λmax (normalized
by the Cosserat material length R) as a function of the hardening modulus.
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Figure 2.5: wavelength of the perturbation with fastest growth λmax as a function of the
hardening coefficient hs

The selected wavelength tends to infinity for Hs → H−cr and decreases with decreasing
hardening modulus. This general trend is similar to (Mühlhaus and Vardoulakis, 1987).
The authors observed that for dry granular materials the shear band thickness is infinite
at the bifurcation state and then decreases in the post-bifurcation regime as the strain
localization evolves.

When a layer of granular material is sheared, experiments show that the shear stress evolves
towards a residual value and, thus, the hardening modulus tends to 0 after sufficient slip
(see Fig. 2.12 and Chambon et al. (2006), Di Toro et al. (2011)). In this example, the width
of localization for Hs → 0 is 320 × R = 3.2mm. Indeed, Rice (2006b) stated that most
of the models that calculate the width of localization for dry granular materials predict a
thickness between 7 to 30 times d50 (the mean particle diameter)(Oda and Kazama, 1998,
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Muir Wood, 2002, Tordesillas et al., 2004) and this is much smaller that what is observed
here. However, it should be noted that most of these analyses were performed considering
sand and calibrated on data from triaxial experiments performed at much lower confining
pressure than the ones acting at a depth of a few kilometers.

2.5.3 Effect of friction and dilatancy on localization

The yield surface for a Drucker-Prager model is defined with two parameters: the friction
and the dilatancy coefficients. In this section, we look at their influence on the triggering
of localization. The critical hardening parameter, under which the homogeneous state of
deformation is unstable for some wavelengths of the perturbation, is plotted as a function
of β and µ.

In granular materials, inelastic deformations can induce volume changes. In low porosity
rocks dilatancy can be the result from rearrangement of close packed particles due to
shearing or from uplift sliding over asperity contacts. But the opposite effect, compaction,
can also be observed as a result of pore collapse or grain crushing (Rudnicki, 2000). To
illustrate the influence of these effects on the stability of our system, we plot on Fig. 2.6 the
value of the bifurcation parameter Hcr as a function of the dilatancy coefficient β ranging
from -0.004 to 0.004 for Mechanical, Hydro-Mechanical and Thermo-Hydro-Mechanical
couplings.

The mechanical system presents a linear evolution of the critical hardening modulus with
β. For a dilatant material (β > 0), bifurcation occurs in the softening regime, whereas
for a compacting material (β < 0), bifurcation occurs in the hardening regime for a value
much greater than the one obtained for β = 0.

For HM couplings, the evolution is bilinear and the two lines intersect at β = 0. The
bifurcation is the same as for the mechanical system in the dilatant regime, whereas it is
obtained for higher values of Hs in the contractant regime. The appearance of this second
line in the contractant regime is due to the undrained behavior that becomes unstable
before the underlying drained one (Rice, 1975). Indeed, the dilatancy coefficient affects
the evolution of pore pressure. If the material is compacting the pore volume decrease
induces pore fluid pressurization, which triggers instability.

The introduction of thermal pressurization in the THM model has the effect of shifting
the line in the contractant regime to even higher values of Hcr, but the slope remains the
same. Thus, the undrained behavior is affected by thermal pressurization but the drained
behavior is not.

The initial friction coefficient µ also plays a role in the value of the bifurcation parameter.
In Fig. 2.7, we plot the value of the critical hardening parameter against the initial friction
coefficient ranging from 0.3 to 0.8 (typical values obtained experimentally for a gouge
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Figure 2.6: Critical hardening modulus at bifurcation Hcr plotted as a function of the
dilatancy coefficient β considering Mechanical (M), Hydro-Mechanical (HM)
and Thermo-Hydro-Mechanical (THM) couplings (µ = 0.5).

(Scott et al., 1994, Scuderi et al., 2013)). For a higher value of µ, the shear stress applied
to the sheared layer is greater and thus the mechanical energy dissipated is greater which
makes the system more unstable.
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Figure 2.7: Critical hardening modulus at bifurcation Hcr for different values of friction
coefficient considering THM couplings (β = 0).

2.5.4 Sensitivity analysis to hydraulic parameters and normal stress

The hydraulic parameters of the problem are not well constrained, they depend on the
material, the pore pressure, the temperature, the porosity, etc... To have a better insight



2.5 APPLICATION TO RAPID SHEARING IN FAULT ZONES 45

into the effects of some parameters on the behavior of the system, we plot the evolution of
the wavelength selection λmax with the hardening coefficient for different values of them.

Several studies were conducted in order to investigate the value of permeability and dif-
fusivity inside the fault core (Wibberley and Shimamoto, 2003, Sulem et al., 2004, Rafini,
2008). They show that the gouge has a much lower permeability than the surrounding
fractured rock mass. It can be three orders of magnitude less (10−19m2 for the gouge com-
pared to 10−16m2 for surrounding rock). In Figure 2.8, the selected wavelength is plotted
as a function of the hardening modulus for three values of χ. For a very low permeability
χ = 10−21m2 the results are similar to χ = 10−19m2. For χ = 10−17m2, the bifurcation
parameter is the same but the significant effect is on the wavelength selection. For Hs → 0,
λmax/R tends towards 373 for χ = 10−17m2.
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Figure 2.8: wavelength selection λmax as a function of the hardening coefficient hs for
different values of the permeability χ.

Several parameters of the model also depend on the porosity (e.g. the permeability, the
thermal pressurization term, the mixture compressibility...). In addition, they evolve dur-
ing the shear process because of deformations and possible thermally activated chemical
reactions (Sulem and Famin, 2009b). To take into account the effect of porosity on the
permeability, we use a cubic Kozeny-Carman permeability law.

χ = χ0(
1− n0

1− n
)2(

n

n0
)3 (2.74)

where χ0 and n0 are the reference permeability and porosity respectively and their values
are the ones considered in Table 2.2. The other parameters of the model modified by the
change of porosity in this study are the ratio λ∗/β∗ and the mixture compressibility. The
effect of porosity on the wavelength selection is shown in Figure 2.9. It has a major effect
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on the bifurcation parameter and on the shear band width. The greater the porosity, the
more unstable the system is. Indeed, when the porosity increases the pore pressure increase
due to thermal pressurization is more pronounced and further destabilizes the system.
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Figure 2.9: wavelength selection λmax as a function of the hardening coefficient hs for
different values of the porosity n.

However, the parameter that has the biggest impact on the stability is the ratio λ∗/β∗ as
shown in Figure 2.10. Considering the different values of the thermal expansion coefficient
and of the compressibility for the fluid and the solid given in Rice (2006b), it varies between
0.59 and 1.62 MPa/oC(its value is 0.9 MPa/oC in Table 2.2) . We can see that for a value
of 0.59 MPa/oC, the bifurcation is obtained for a value of the hardening coefficient close to
zero (hcrit = 0.002). However, for λ∗/β∗=1.62 MPa/oC, the critical value of the hardening
coefficient lies clearly in the hardening regime (hcrit = 0.045).

Another effect studied here is the change of the normal stress applied to the sheared layer
and its effect on the wavelength selection. We have taken values of 100 and 300 MPa
corresponding to 3.5 and 10 kilometers depth in the crust respectively. The highest value
corresponds to a typical depth of transition between brittle and ductile behavior in the
Earth crust. As for the permeability, the bifurcation state is not strongly affected whereas
the wavelength selection is. The greater the normal stress is, the smaller the selected
wavelength is and thus the thinner the shear band is.



2.5 APPLICATION TO RAPID SHEARING IN FAULT ZONES 47

0.59 MPa/°C

0.9 MPa/°C

1.62 MPa/°C

-0.04 -0.02 0.00 0.02 0.04
hs

200

400

600

800

1000

1200

λmax

R

Figure 2.10: wavelength selection λmax as a function of the hardening coefficient hs for
different values of the ratio λ∗/β∗ that governs the thermal pressurization
effect.
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Figure 2.11: wavelength selection as a function of the hardening coefficient hs for different
values of normal stress τn
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2.5.5 Evolution of the shear band thickness with the hardening state

In the previous section, we have studied how the selected wavelength evolves with the
hardening modulus for various values of the material parameters. We recall that the
above linear stability analysis (LSA) is performed from a reference state which is assumed
homogeneous in the system. In the following, we consider a typical stress-strain curve for a
fault gouge material under shear and explore the evolution of shear band thickness in due
course of the shearing process. This is done by evaluating the selected wavelength from the
LSA assuming homogeneous deformation at each state which is not strictly speaking the
case because of progressive strain localization. However, it can give an interesting insight
which will be confirmed in Chapter 4 by performing a fully coupled numerical analysis of
the post-localization regime.

Ikari et al. (2009) performed double direct shear experiments on a series of saturated fault
gouges containing Montmorillonite, Illite, Chlorite and Quartz at effective normal stresses
from 12-59 MPa and at subseismic velocities (1 to 300 µm/s). In Fig. 2.12, results for
a Montmorillonite-Quartz mixture are presented. From the curve τ (the tangential stress
applied) versus γ (the total shear deformation), the plastic hardening modulus is related
to tangent modulus Htan through the relationship Htan = Hs

1+Hs
G

. The hardening coefficient

is related to the plastic hardening modulus by hs = Hs
τn

.
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Figure 2.12: Stress-strain curve for a clay-rich gouge from Ikari et al. (2009).

In Fig. 2.13, the evolution of the hardening coefficient with the shear deformations obtained
from Fig. 2.12 is shown. It is positive until the maximum shear stress is reached and then
negative. Its evolution presents a minimum value of -0.055, which corresponds to the
minimum value of the shear band thickness and then it increases towards zero.

From the evolution of the plastic hardening coefficient in Fig. 2.13, we can calculate the
evolution of the selected wavelength as shown in Fig. 2.14 for the material parameters
considered in Table 2.2. In Fig.2.14, we observe that the evolution of the selected wave-
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Figure 2.13: Evolution of the plastic hardening coefficient for the stress-strain response
given in Fig. 2.12.

length follows the evolution of the plastic hardening coefficient hs: Consequently, the shear
band thickness first decreases to a minimum value of 1.5 mm and then increases to reach
a residual value of 3.2 mm.
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Figure 2.14: Evolution of the wavelength selection along with deformations considering the
evolution of the hardening coefficient depicted in Fig. 2.13.

2.5.6 Effect of microstructure evolution

At high mean stresses, like for faults at great depth, grain crushing is observed from
exhumed samples and also in experiments (Verberne et al., 2013, Brantut et al., 2008,
Marone and Scholz, 1989). Structural fabrics occurring within fault zones are commonly
characterized by distinct grain size and shape distributions that are generally interpreted
as strain localization indicators.

Sammis et al. (1987) measured the particle distribution of intact gouge samples, retrieved
from the Lopez Fault in the San Gabriel Mountains of Southern California and observed
a fractal dimension of approximately 2.6. On the basis of the observations, they proposed
the so-called comminution model, for the mechanical processes that generate fault gouges.
Several experiments were conducted on natural and simulated fault gouges supporting
Sammis’ theory (Steacy and Sammis, 1991, An and Sammis, 1994) with some exceptions
(Marone and Scholz, 1989, Storti et al., 2003).

The introduction of a characteristic length in the Cosserat continuum enables us to take
into account the microstructure evolution of the medium (Bauer, 2016). In our model this
characteristic length is related to the mean grain diameter (see Appendix A.2). Thus, to
model a grain size evolution, we assume an exponential decrease with increasing total shear
strain γ12 (Montési and Hirth, 2003).
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D(γ12) = (D0 −Dfin)e
− γ12
γc +Dfin (2.75)

where D0 is the initial grain diameter, Dfin is the final grain diameter and γc is a char-
acteristic deformation that accounts for the rate of evolution (here taken as 1). In Gu
and fong Wong (1994), the authors conducted saw-cut experiments on simulated quartz
gouges. The particle size distributions of gouge samples before and after frictional sliding
were characterized using a laser diffraction particle size analyzer. They obtained a decrease
of 30 % of the mean grain diameter after a total shear strain γ12 of 6 . To see the effect
of a more intense grain crushing, we study also the case of a decrease of 50 % of the mean
grain diameter.

In Fig. 2.15, we have taken into account the evolution of both the grain size and the
hardening modulus with the total shear strain. The decrease of shear band width is almost
proportional to the decrease of grain size: for a decrease of 50 % of D we have a decrease
of 50 % of the shear band width.
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Figure 2.15: Evolution of the shear band thickness along with deformations considering
the evolution of the hardening coefficient as plotted in Fig. 2.13 and a final
mean grain diameter that is 70 % and 50 % of the initial one.
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2.6 Conclusion

In this chapter, a THM model for three dimensional Cosserat continua is developed. It
is based on the generalization in 2D for Cosserat continua of the Drucker-Prager yield
criterion (Mühlhaus and Vardoulakis, 1987). The application of bifurcation theory to this
set of equations is presented and appears to be a generalization of the study of the classical
acoustic tensor for Cauchy continua.

This framework is applied to analyze the formation of shear bands inside fault gouges.
The destabilizing effect of thermal pressurization is highlighted. Indeed, the gouge layer
becomes unstable even in the hardening regime. Moreover, taking into account the inertia
terms in the momentum balance equations enable us to obtain a finite Lyapunov exponent
for all unstable wavelengths of the perturbation. Therefore, the shear band thickness is
evaluated as the wavelength of maximum growth and is plotted as a function of the hard-
ening modulus. The sensitivity of the shear band size to the initial porosity, permeability,
pressurization coefficient and normal stress is investigated. The calculation of a hardening
modulus evolution from experimental results enable us to follow the localization process
during the shearing of a gouge. We observe a decrease of the shear band thickness at
the beginning of the process, followed by a progressive increase towards a steady state
value. The modification of the microstructure with deformations can also be taken into
account with our model by modifying the internal length in the constitutive laws. A grain
comminution causes a decrease of the shear band width.

This model is a promising step in studying the stability fault gouges and enables us to
take into account the microstructure within the constitutive equations as several studies
have shown its importance on the behavior of faults (Anthony and Marone, 2005, Cashman
et al., 2007). However, this analysis determines only the stability and shear band thickness
considering infinitesimally small perturbations away from uniform shear. Nonlinear effects
become important when the perturbation grows and numerical analyses are required to
follow the evolution of the considered system in the post-bifurcation regime. In Chapter 4,
the full system of equations is integrated using finite elements, allowing also a determination
of the material response.



Chapter 3

Implementation and validation of a
Finite Element code for
Thermo-Hydro-Mechanical couplings
in a Cosserat continuum

Dans cette partie, nous présentons l’implémentation et la validation nu-
mérique du modèle défini dans le chapitre précédent. Le système d’équations
non linéaires est intégré en utilisant la méthode des éléments finis. Ce déve-
loppement a été réalisé au sein de l’école d’ingénierie pétrolière de l’Université
de Nouvelle Galles du Sud (UNSW, Sydney) en utilisant le code intitulé RED-
BACK créé dans ce laboratoire. Ce code a pour objectif de résoudre des pro-
blèmes multi-physiques pour les géomatériaux. Il est basé sur le logiciel MOOSE
qui offre un cadre structurel de résolution d’équations par éléments finis avec
couplages forts.

Dans un premier temps, les différents logiciels sont présenté ainsi que la
façon dont les milieux de Cosserat et les couplages THM sont intégrés. Nous
exposons l’algorithme de retour radial utilisé pour les équations incrémentales
de plasticité locale, ainsi que l’algorithme de résolution global du sytème.

Dans un second temps, la démarche suivie afin de vérifier que les équations
sont correctement définies est présentée en détails. Tous les termes sont vérifiés
un par un en comparant les résultats obtenus lors de simulations avec solutions
analytiques ou des résultats d’autres simulations présentes dans la littérature.
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3.1 Introduction

In order to integrate numerically the full system of equations presented in Chapter 2, the
finite element method has been chosen as it enables us to model complex geometries and
more importantly to efficiently solve highly nonlinear coupled problems. The model of a
fault core developed in Chapter 2 is an infinite sheared layer, a 1D problem, for which the
pseudo-spectral method is a suitable candidate, however the aim was to develop a code
that can be used also for various geomechanical applications. Moreover, the FEM offers
a more flexible and efficient way to treat highly nonlinear incremental problems including
plasticity which is used here. For this reason, we chose to use the FEM and in particular the
software MOOSE, which allows us to easily perform computations on parallel architectures.

3.2 Implementation of the model

3.2.1 MOOSE Framework and REDBACK

The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite element
framework developed at the Idaho National Laboratory since 2008. It is an open-source
software written in C++ that uses advanced nonlinear solvers and offers a general envi-
ronment for solving systems of tightly coupled multi-physical systems of partial differential
equations (Gaston et al., 2009). Underneath MOOSE is libMesh, another finite element
framework developed by the CFDLab at the University of Texas at Austin that provides
general finite element functions (Kirk et al., 2006). LibMesh furnishes a set of utilities for
massively parallel finite element based computations, including mesh generation, a finite
element library, and interfaces to solver packages such as the Portable, Extensible Toolkit
for Scientific Computation (PETSc) for both serial and parallel platforms (Balay et al.,
2017) and LASPack on serial machines (Skalicky, 1995). To profit from the fact that the
code can be run on state-of-the-art high-performance computational resources, we mainly
use the PETSc solvers, which are based on the Message Passing Interface (MPI) standard.
Note that Moose is a layered program and its structure is summarized in Fig. 3.1.

MOOSE is appealing as it is not only a user-friendly framework for modelers, but also acts
as a code development tool. Indeed, users are encouraged to contribute to the development
of the code by adding new physics and capabilities within the framework through the
Github development environment (Gaston et al., 2014). These changes, which must be
approved by the main development team, help to rapidly improve this multi-physics tool.
Each module, or application, within MOOSE is usually named after an animal and is
devoted to the study of a particular multi-physical system of equations. BISON is the
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Physics

libMesh

Solvers

Weak form Parameters

Mesh FEM

PETSc LASPack
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Figure 3.1: MOOSE Structure

first MOOSE application and solves the fully coupled equations of thermomechanics and
species diffusion for fuel performance. Table 3.1 clusters some applications of MOOSE and
a short description for each one of them.

Name Desciption

Bison Thermo-mechanics, Chemical, diffusion, coupled mesoscale
Marmot 4th order phasefield mesoscale
Falcon Geomechanics, coupled mesoscale
Rat Porous ReActive Transport

Pronghorn Neutronics, Porous flow
Redback Thermo-hydro-chemo-mechanical couplings in Geomechanics

Table 3.1: Examples of MOOSE Applications and their description.

Among the over twenty MOOSE-based applications now in development, REDBACK is
derived to tackle the problem of Rock mEchanics with Dissipative feedBACKs (Poulet and
Veveakis, 2016) at the University of New South Wales in Sydney, Australia. It is named
after a notorious Australian spider. REDBACK is built on MOOSE’s tensor mechanics
module and extends this module with additional constitutive models for the overstress
plasticity formulation following the generic approach from (Wang et al., 1997) and using a
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fully implicit integration scheme for the stress update algorithm. The aim is to solve tightly
coupled Thermo-Hydro-Mechanical-Chemical (THMC) systems of equations in geomate-
rials targeting applications involving material instabilities. For instance, REDBACK was
used to study fault mechanics (Poulet et al., 2016, Tung et al., 2017), fluid-microstructure
interaction (Lesueur et al., 2017), borehole stability (Hu et al., 2017), boudinage and fold-
ing (Peters, 2016), or the phenomenon of pore collapse in sandstone and mudstone (Poulet
and Veveakis, 2016). The model presented in Chapter 2 is implemented in this module as
most of the physics is already present and the field of study is similar. Nevertheless, we
use a consistent plasticity algorithm different from the overstress plasticity already applied
but it will enable comparisons and combinations of the different methods in the future.

3.2.2 Weak form of the equations

A displacement-rotation-temperature-pore pressure incremental finite element formulation
is used to numerically integrate our model. The integration in time is implicit using the
backward Euler method, which is implemented in REDBACK (Poulet et al., 2016).

The weak form of the linear and angular momentum balance equations Eqs.2.4-2.5 is
written (Godio et al., 2015) using Green’s identity:

−
∫

Ω
τijψi,jdΩ +

∫
∂ΩΣ

τijnjψidS = 0 (3.1)

−
∫

Ω
µijψi,jdΩ +

∫
∂ΩΣ

µijnjψidS −
∫

Ω
εijkτjkψidΩ = 0 (3.2)

The energy and fluid mass balance equations are also written in their weak forms:

∫
Ω
ṗψdΩ + chy(

∫
Ω
p,iψ,idΩ−

∫
∂Ω
p,iniψdS)− Λ

∫
Ω
ṪψdΩ +

1

β∗

∫
Ω
ε̇vψdΩ = 0 (3.3)∫

Ω
ṪψdΩ + cth(

∫
Ω
T,iψ,idΩ−

∫
∂Ω
T,iniψdS)− 1

ρC

∫
Ω

(τij γ̇
p
ij + µij κ̇

p
ij)ψ,idΩ = 0 (3.4)

where ψ and ψi are tests functions. chy, cth, ρC, β∗ and Λ are considered constant herein.

Linear Lagrange test functions are chosen for all the fields and full integration is performed.
An alternative choice would be to use quadratic functions with reduced integration to
improve the rate of mesh convergence (Godio et al., 2015), but they are not used here for
simplicity.

The different terms of the system of Eqs.3.1,3.2, 3.3 and 3.4 are implemented one by one,
called Kernels and boundary conditions in MOOSE, in order to include/exclude these terms
in/from a simulation as desired. MOOSE provides by default some common Kernels and
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Boundary Conditions, which were used to account for the time derivative and diffusion
terms. The other kernels were implemented in REDBACK specifically.

Some Kernels were added for the use of Cosserat continuum and most of the others had
to be modified as their expressions changed or the number of coupled variables increased,
due to the rotations.

The break down of the equations in Kernels (in red) and Boundary Conditions (in blue)
is shown below:

CosseratStressDivergenceTensors︷ ︸︸ ︷
−
∫

Ω
τijψi,jdΩ +

BCs︷ ︸︸ ︷∫
∂ΩΣ

τijnjψidS = 0 (3.5)

CosseratStressDivergenceTensors︷ ︸︸ ︷
−
∫

Ω
µijψi,jdΩ +

BCs︷ ︸︸ ︷∫
∂ΩΣ

µijnjψidS−

MomentBalancing︷ ︸︸ ︷∫
Ω
εijkτjkψidΩ = 0 (3.6)

T imeDerivative︷ ︸︸ ︷∫
Ω
ṗψdΩ +

MassDiffusion︷ ︸︸ ︷
chy

∫
Ω
p,iψ,idΩ−

BCs︷ ︸︸ ︷
chy

∫
∂Ω
p,iniψdS−

ThermalPressurization︷ ︸︸ ︷
Λ

∫
Ω
ṪψdΩ +

Poromechanics︷ ︸︸ ︷
1

β∗

∫
Ω
ε̇vψdΩ = 0

(3.7)
T imeDerivative︷ ︸︸ ︷∫

Ω
ṪψdΩ +

ThermalDiffusion︷ ︸︸ ︷
cth

∫
Ω
T,iψ,idΩ −

BCs︷ ︸︸ ︷
cth

∫
∂Ω
T,iniψdS−

MechDissipHO︷ ︸︸ ︷
1

ρC

∫
Ω

(τij γ̇
p
ij + µij κ̇

p
ij)ψ,idΩ = 0

(3.8)

Note that the first terms of the momentum and angular balance equations are implemented
in the CosseratStressDivergenceTensors as their expressions are very similar, but they are
applied to different variables. The use of flags enable us to modify the terms in the Jacobian
matrix.

3.2.3 Return map algorithm for plasticity

Based on the above finite element formulation, the software solves the system for the
unknown variables, which are displacements, rotations, pressure and temperature. The
parameters of the model as well as the stresses and couple-stresses are updated through
a procedure called Materials, in which the constitutive law is implemented. However, as
an elasto-plastic constitutive law is considered here, an iterative solution scheme must be
introduced to determine at each Gauss point and each increment, the values of stresses
and couple-stresses. Herein, an implicit backward-Euler Closest-Point-Projection (CPP)
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solution algorithm is adopted (Godio et al., 2016).

Non-associated plasticity requires the definition of a plastic potential (see Eq. 2.39). The
flow rule (Eqs. 2.25) states that in the plastic regime, the changes of plastic strains and
curvatures and the normal to the potential surface have the same direction. The magnitude
of the plastic strain increment is determined by the plastic multiplier λ̇ and together with
the yield surface, they must respect the Karush-Kuhn-Tucker conditions (Kuhn and Tucker,
1951, Lemaitre et al., 2009):

F 6 0 λ̇ > 0 λ̇F = 0 (3.9)

The class of return map algorithms intially introduced by Wilkins (1964) enables us to
integrate the incremental constitutive equations of plasticity that respect the conditions
3.9. Among these algorithms, the CPP algorithm is probably the most employed (Simo and
Taylor, 1985) as it provides an effective and robust integration scheme. It was generalized
and enhanced by Godio et al. (2016) for Cosserat continua with multi-surface plasticity.
The simplified procedure for a single surface Cosserat continuum consists of the following
steps:

τij,  μij

F=0

(n) (n)
τij,  μij

T T

=
τij   , μij

(n+1) (n+1) τij,  μij

F=0

(n) (n)

τij,  μij
T T

τij   , μij
(n+1) (n+1)

(a) (b)

Figure 3.2: Geometrical interpretation of the CPP algorithm adopted for Cosserat mate-
rials: (a) Elastic unloading (b) Closest point projection.

(1) Increments of the displacement dun+1
i and Cosserat rotation fields dωc,n+1

i are given
for the generic load step (n + 1).

(2) Total strain and curvature increments dγij and dκij are computed through Eqs. 2.3.
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(3) An elastic solution is predicted as trial [ ]T solution:

γe,Tij = γe,nij + dγe,n+1
ij

κe,Tij = κe,nij + dκe,n+1
ij

γp,Tij = γp,nij

κp,Tij = κp,nij

qT = qn

τTij = Ceijkl γ
e,T
kl

µTij = M e
ijkl κ

e,T
kl

(3.10)

We denote by q the hardening variable that allows the yield surface to evolve.

(4) The yield criterion is checked F (τTij , µ
T
ij , q

T ).

(5) If the trial state falls inside the elastic domain i.e.:

F (τTij , µ
T
ij , q

T ) 6 0 (3.11)

then the trial solution is retained as the solution for the step (elastic increment illustrated
in Fig.3.2(a)).

(6) If the plastic surface is activated, i.e.:

F (τTij , µ
T
ij , q

T ) > 0 (3.12)

then an elastoplastic increment occurs, and the trial state needs to be corrected (see
Fig. 3.2(b)). Procedure 1 consists of solving the incremental elastoplastic problem, here
reported as: 

τn+1
ij = Ceijkl(γ

n+1
ij − γp,n+1

ij )

µn+1
ij = M e

ijkl(κ
n+1
ij − κp,n+1

ij )

dq = dλ

qn+1 = qn + dq

γp,n+1
ij = γp,nij + dλ ∂Q

∂τij

κp,n+1
ij = κp,nij + dλ ∂Q

∂µij

F (τn+1
ij , µn+1

ij , qn+1) = 0

(3.13)

This problem is solved at every increment (n) by employing a classical Newton-Raphson
iterative method as described in (Godio et al., 2016).

(8) If the condition dλ > 0 is satisfied, the algorithm has converged to the elasto-plastic
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solution.

This procedure is schematized in Fig. 3.3. All the symbolic calculations for the return map
algorithm are performed with the software Mathematica. The results are then exported
in a Fortran file that is compiled independently as a library. This library is called inside
the Materials module in REDBACK. This procedure enables us to easily change the yield
criterion without having to write another algorithm for studying a different plastic surface.

Total strain and
curvature increment

dγij dκij

Trial solution
dτij

T T Tdμij dq

Displacement and
rotation increment

dui dωi
c

Definition of the
yield surface

F(τij, μij, q)

Check
plastic

surface

Elastic increment
(solution)

Elastoplastic
problem

Elastoplastic
increment
(solution)

Check
consistency

dλ > 0
dλ ≤ 0 dλ > 0

(1)

(2)

(3)

(4)
(5)(6)

(7) (8)

P
ro

ce
du

re
 1

 o
f S

im
o

Update for the
next increment

F(τij, μij, q)> 0 F(τij, μij, q)≤ 0

Figure 3.3: Illustration of the return map algorithm adopted for Cosserat materials (Godio
et al., 2016).



62 CHAPTER 3: FEM IMPLEMENTATION

3.2.4 Global integration of the nonlinear set of equations

The weak form of the equations is then expressed in the form of a residual function as
follows:

Rj(ui, ω
c
i , p, T ) = 0 j = 1, ..., N (3.14)

where Rj : RN → RN , where N is the number of unknowns (here eight). We name zk the
vector containing all the unknowns zk = [ui, ω

c
i , p, T ]t. This leads to the following form of

Newton’s Method:

Jij(zk) δz
(n+1)
j = −Rj(z(n)

k ) (3.15)

z
(n+1)
j = z

(n)
j + δz

(n+1)
j (3.16)

where the superscript (n) denotes the iteration count of the Newton iteration and Jij(zk)
is the Jacobian matrix evaluated at the current iterate. Jij : RN → RN×N is defined by:

Jij(zk) =
∂Ri(zk)

∂zj
(3.17)

To solve the linear system at each iteration, the expression for the Jacobian matrix is
needed. Alternatively, the GMRES (Generalized Minimal RESidual) method can be used
(a Krylov iterative method) as it is already implemented in MOOSE. In GMRES, the
expression Jij(zk) is never explicitly needed, only its action on a vector. Thus, it can be
approximated using finite differences. Using this Jacobian-free approach, the dominant
cost of the algorithm shifts from evaluating the Jacobian to the solution of the linear
system. Nevertheless, this method is efficient only if a good preconditioning is applied to
the system and the preconditioner depends on the problem studied. In our case, the rate
of convergence was better with the use of the expression for the Jacobian matrix (probably
due to the many nonlinearities of the problem). Thus, all the the terms in Jij(zk) had to
be calculated and implemented. To help with this task, MOOSE comes with a Jacobian
Debugger script to assist the developers. It compares the Jacobian approximated with
finite differences and the one defined analytically.

3.3 Validation of the code

The implementation is tested through a series of tests based on various benchmarks for all
physical couplings. The tests are summarized in this section. All the input files and results
for these tests are stored in REDBACK. When a modification of the code is carried out,
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the tests are executed and the results are compared to the existing ones in order to verify
that the modifications did not cause unwanted side-effects.

3.3.1 Mechanical tests

As a first step, the implementation of the equations for a Cosserat continuum and of the
constitutive laws are checked. For elasticity, the numerical results are compared to the
analytical solution of shearing of an elastic layer and for plasticity with results found in
the literature.

3.3.1.1 Elasticity tests

The numerical results are compared with an analytical solution called the boundary layer
effect in Cosserat continua described in Vardoulakis and Sulem (1995). We consider the
shearing of an elastic infinite layer of thickness h in plane strain conditions. The geometry
is described in Fig. 3.4.

x2

x1
h

x2=0

τ21
τ 12

m
32w3

u1

c

u1=0 w3
c=W21

u1=0,01 w3
c=-0,1

Figure 3.4: Simple shear of a strip consisting of linear elastic Cosserat material

We use the stress-strain relationships of a 2D-linear isotropic elastic Cosserat medium in
plane strain conditions.

τ11 = (k +G)γ11 + (k −G)γ22 (3.18)

τ22 = (k +G)γ22 + (k −G)γ11 (3.19)

σ12 = σ21 = 2G ε12 (3.20)

τ[12] = −τ[21] = 2Gc γ[12] (3.21)

µ(ij) = 2M κ(ij) (3.22)

µ[ij] = 2M κ[ij] (3.23)
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where k is the 2D-bulk modulus, µ(ij) and µ[ij] are the symmetric and antisymmetric parts
of the couple-stress tensor respectively, κ(ij) and κ[ij] are the symmetric and antisymmetric
parts of the curvature tensor respectively. All the other symbols are defined in Section
2.2.1. The torsion modulus L is taken 0 and the two other moduli from the flexural
bending rigidity tensor M and Mc are equal (see Eq. 2.22). All mechanical properties
are assumed to be independent from the x1 coordinates, which results in γ11 = 0 and
κ31 = 0. We also assume that τ22 = 0 at the top and u2 = 0 at the bottom, which results
in τ11 = τ22 = γ22 = 0 everywhere in the layer.

In that case, the equilibrium equations can be reduced to only two equations:

∂τ12

∂x2
= 0 or τ12 = constant = τc (3.24)

∂µ32

∂x2
+ τ21 − τ12 = 0 (3.25)

Then, we insert the constitutive equations to obtain a coupled system of partial differential
equations in u1 and ωc3 :

(G+Gc)
∂2u1

∂x2
2

+ 2Gc
∂ωc3
∂x2

= 0 (3.26)

M
∂2ωc3
∂x2

2

− 4Gcω
c
3 = 2Gc

∂u1

∂x2
(3.27)

The general solution of this system is:

ωc3 = K1 e
δ.x2 +K2 e

−δ.x2 − τc
2G

(3.28)

u1 = − 2Gc
G+Gc

(
K1

δ
eδ.x2 − K2

δ
e−δ.x2) +

τc
G
x2 +K3 (3.29)

where δ = 2
√

G Gc
(G+Gc)M

The four constants (K1, K2, K3 and τc) are determined from the boundary conditions in
u1 and ωc3.

At the bottom of the layer (x2 = 0), the displacement is equal to 0 and the Cosserat
rotation is constrained to be equal to the rigid body rotation.

u1(x2 = 0) = 0 and ωc3(x2 = 0) = Ω21(x2 = 0) = −1

2

∂u1

∂x2
(x2 = 0) (3.30)

At the top of the layer (x2 = h), the displacement is imposed equal to 0.01mm and the
Cosserat rotation is equal to -0.1.

u1(x2 = h) = 0.01mm and ωc3(x2 = 0) = −0.1 (3.31)
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We plot the solutions in Fig.3.5 for the set of parameters defined in Table 3.2.

Parameters values units
G 10 GPa
Gc 20 GPa
h 10−3 m
R 10−4 m
M G R2 kN

Table 3.2: Values of the parameters used for the boundary layer elastic test

We choose a characteristic length R (or bending length) one order of magnitude less than
the thickness of the band and we observe that the Cosserat effects are confined in a layer
of size about three times R adjacent to the upper boundary, where the rotation and dis-
placement are imposed.

ωc 3

u1

0.0 0.2 0.4 0.6 0.8 1.0

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

x2

u,
ω
c

Figure 3.5: Analytical solutions for the displacement and the rotation for the example of
the boundary layer in elastic Cosserat continua

For the geometry of the numerical simulation, we consider a cube of dimensions 1*1*1mm3

with 50 elements along x2-direction, 10 along x1-direction and 1 along x3-direction. The
elements chosen are hexaedric with eight nodes (linear shape functions).

We prescribe periodic boundaries in the x1- and x3-directions. We have 6 variables in our
model (u1, u2, u3, ωc1, ωc2, ωc3), thus their values or the values of their derivatives have to
be imposed at the top and bottom edges.

Bottom edge (x2=0) :

u1 = 0; u2 = 0; u3 = 0; ωc1 = 0; ωc2 = 0; ωc3 = Ω21 (3.32)
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Figure 3.6: Geometry and mesh considered for the Finite Element model in Redback

Top edge (x2=h) :

u1

h
= 0.01;

∂u2

∂x2
= 0; u3 = 0; ωc1 = 0; ωc2 = 0; ωc3 = −0.1 (3.33)

Applying the condition ωc3 = Ω21 at the bottom of the layer poses certain difficulties. In
order to solve them, we use a boundary condition module called Postprocessor Dirichlet
Boundary condition, which prescribes the value obtained through a postprocessor to the
variable. Thus, the antisymmetric part of the strain (or macro-rotation) Ω21 is calculated
at the end of an iteration of the global Newton’s algorithm and this numerical value is
prescribed to the Cosserat rotation around x3 for the next iteration.

In Fig. 3.7, the results for the displacements are plotted on the deformed mesh. In Figs. 3.8-
3.9, we compare the values obtained for u1 and ωc3 with the analytical solution presented
above. The difference between the numerical and analytical solutions is negligible. More-
over, a mesh convergence analysis is conducted for the value of the Cosserat rotation at
x2 = 0.9 (see Fig.3.10), which shows that the relative error is less than 1.2 % for 40 ele-
ments and decreases to 0.01 % for 400 elements (see also Godio et al. (2015) for a mesh
convergence in terms of modal frequencies with Cosserat continuum).
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Figure 3.7: Results of the FEM simulation for the elasticity test with 50 elements in the
vertical direction (Deformation Scale Factor: 20)
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Figure 3.8: Comparison of the profiles of the Cosserat rotation ωc3 obtained from the ana-
lytical solution and the FEM simulation with 50 points in the x2-direction
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Figure 3.9: Comparison of the profiles of the displacement u1 obtained from the analytical
solution and the FEM simulation with 50 points in the x2-direction
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Figure 3.10: Relative error of the results obtained by FEM for the Cosserat rotation
ωc3(x2 = 0, 9) as a function of the number of elements in the x2-axis direction
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3.3.1.2 Plasticity tests

The Drucker-Prager plastic model for three dimensional Cosserat continua is developed in
Chapter 2 assuming a hardening law arising from the evolution of the friction coefficient
(see Eq.2.43). In order to compare with results in the literature that consider a von Mises
yield criterion, we assume the following expression for the yield criterion:

F = τ + µσ(1 + hsqξ)− c(1 + hsq(1− ξ)) (3.34)

Q = τ + βσ(1 + hsqξ)− c(1 + hsq(1− ξ)) (3.35)

where σ = τkk
3 and τ is the generalized second invariant of the deviatoric stresses. ξ is

a parameter that allows us either to have a hardening on the friction coefficient (ξ = 1)
as for the Drucker-Prager model derived in Chapter 2, or on the cohesion (ξ = 0) as
for the von Mises yield criterion. hs is a parameter controlling the magnitude of the
hardening/softening rate and q is the hardening variable.

As an example, we consider an infinite layer of height h = 60mm subjected to pure shear at
constant velocity V (see Fig.4.1). The same material parameters with Godio et al. (2016)
are chosen in order to have a comparison.

h 21

12
m32

u1

τ22=0

τ
τ

u2=0

u2

=0w3
c

u1=V.t

u1=0

=0w3
c

w3
c

Figure 3.11: Pure shear of an infinite layer with Cosserat microstructure. Notations and
boundary conditions.

The yield criterion is based on a von Mises model adapted for Cosserat continua, as in
de Borst et al. (2012). In the equation 3.34, we consider ξ = 0, µ = 0 in order to obtain
the same expression.

F = τ − c(γp) (3.36)

where c is the equivalent plastic stress (or cohesion) that depends linearly on γp the equiv-
alent plastic strain and τ is the generalized invariant of the deviatoric stress tensor, defined
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in Eq.2.3.3. The coefficients in the stress invariant are h1 = h2 = 3
4 , h3 = 3

2 and h4 = 0. In
the plastic strain invariant they are g1 = g2 = 1

3 , g3 = 2
3 and g4 = 0. These values for the

coefficients differ from Mühlhaus and Vardoulakis (1987), Mühlhaus (1986), Vardoulakis
and Sulem (1995) (see Table 2.1), because of the use of a von Mises criterion for which
yielding occurs when τ reaches the yield strength of the material in simple tension, leading
to the conditions h1 + h2 = 3

2 and g1 + g2 = 2
3 . In the other papers, yielding is chosen

to occur when τ reaches the yield strength of the material in pure shear, leading to the
conditions h1 + h2 = 1

2 and g1 + g2 = 2. The influence of the invariants’ expression on the
stress-strain graph is shown in Fig. 3.15.

In this purely mechanical example, a linear softening rule is chosen to exhibit a localization
of the deformations. The equivalent plastic stress is c = 100 MPa and the hardening
modulus is hs = −4 MPa.

The elastic properties of the material are K = 4000 MPa, G = 4000 MPa and Gc = 2000

MPa. The internal length of the microstructured continuum is chosen to be R = 2.5 mm.

We investigate, first, the mesh-convergence of the model, which is the one of the most
interesting features of the Cosserat continua. A three-dimensional geometry is considered
with periodic boundary conditions for the right, left, front and back side of the cube. A
regular mesh is chosen with one element in directions x1 and x3, and a range of 32 to 300
in the direction x2. In Fig. 3.12, the shear stress τ12 at the top of the layer is plotted
versus the normalized horizontal displacement at the top. The plastic regime is reached
for τ12 = c√

3
as expected and shows a softening behavior, exactly like Godio et al. (2016)

and de Borst (1991). The results for 200 and 300 elements in the vertical direction exhibit
no clear difference, showing a mesh-convergence.
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Figure 3.12: Mesh convergence with Cosserat continua
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In Fig. 3.13, the Cosserat rotation around direction x3 is plotted on the deformed mesh
for τ12 = 26MPa. The magnitude of the rotations is higher inside the zone of localized
deformations as observed experimentally (Hall et al., 2010).

Figure 3.13: Cosserat rotation with 80 elements for the last timestep

In Fig. 3.14, the shear strain γ12 is plotted along the height of the layer for different
discretizations and for τ12 = 26MPa. The deformation profile is practically identical for 80
and 200 elements showing also a mesh convergence.
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Figure 3.14: Mesh convergence of the strain profile
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Figure 3.15: Stress-strain graph for converged meshes with coefficients of Mühlhaus and
Vardoulakis (1987) (“M&V”) and de Borst (1991) (“dB”) for the stress and
strain invariants

To test the hardening implementation more quantitatively for the friction coefficient and
for the cohesion as well, we perform two tests using the coefficients of De Borst for a
positive and a negative hardening modulus (-400 MPa and 400 MPa), and two others are
performed using the static Mühlhaus-Vardoulakis coefficients for a positive and a negative
hardening modulus (-400 MPa and 400 MPa). The stress-strain graph for these simulations
executed with only one element for the mesh are shown. In Fig. 3.16, we present the
stress-strain evolution of the shear layer discretized with only one element. This allows
us to test the implementation of the hardening/softening constitutive behavior. Both the
static Mühlhaus-Vardoulakis and De Borst coefficients for the shear stress and shear strain
generalized invariants are used and a hardening/softening coefficient of 4/-4 MPa is used.
We observe that the yield criterion is reached for τ12 = c√

3
considering De Borst coefficients

and τ12 = c considering Mühlhaus-Vardoulakis choice of coefficients.

In Fig. 3.17, we plot the generalized stress invariant τ as a function of the generalized
plastic strain invariant γp. The slopes in this diagram enable us to verify that the value of
the hardening modulus is the one expected.
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Figure 3.16: Stress-strain graph with coefficients of Mühlhaus and Vardoulakis (1987)
(“M&V”) and de Borst (1991) (“dB”)
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Figure 3.17: Shear stress invariant as a function of the plastic shear strain invariant with
coefficients of Mühlhaus and Vardoulakis (1987) (“M&V”) and de Borst (1991)
(“dB”)
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3.3.2 Thermo-Mechanical tests

These tests concern the verification of the coupling between the energy balance equation
and the mechanical equations (Eqs. 3.1, 3.2 and 3.4).

First, we look at the heating of a rod of length 10mm with a section of 1×1mm2 (Fig. 3.18).

x2

T=1°C

x1
x3

L

Figure 3.18: Geometry and boundary conditions for the rod used in the first test for
Thermo-Mechanical couplings

For the first test, two different thermal diffusivities are used cth = 1−2 mm2/s. In Fig. 3.19,
the evolution of temperature at the middle of the rod is compared to the solution obtained
analytically using series. In both cases we observe a good agreement. In Fig. 3.20, the
evolution of the displacement at the free end of the rod is plotted for cth = 1 mm2/s. It
tends to a value of 2.5× 10−2mm as expected (thermal dilation coefficient : 2.5× 10−2/◦C).

FEM, cth=1mm
2 /s

Analytic, cth=1mm
2 /s

FEM, cth=2mm
2 /s

Analytic, cth=2mm
2 /s

100 200 300 400 500
time(s)

0.2
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0.8

1.0

T (°C)

Figure 3.19: Comparison of the FEM and analytical results for temperature. Results show
the temperature evolution in time for a point in the middle of the rod with
two different thermal diffusivities cth = 1− 2 mm2/s.

Additional tests are performed, for the same geometry of the rod, but with different bound-
ary conditions. In these tests the normal displacements of all faces are fixed except on one
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Figure 3.20: Normal displacement at the end of the rod u3(x3 = L) due to thermal dilation
for cth = 1 mm2/s

side as shown in Fig. 3.21. The rod is no longer free to expand in all directions and the pre-
cluded deformations cause the development of stresses that can be calculated analytically
in elasticity.

T=1°C

x2 x1
x3

L

Figure 3.21: Geometry and boundary conditions for the second rod used in the tests for
Thermo-Mechanical couplings

The deformation along the x3-axis of the rod is given by:

γ33 =
3K

K + 4
3G

α∆T (3.37)

and the stresses perpendicular to the axis of the rod are:

τ11 = τ22 = (K − 2

3
G)γ33 − 3Kα∆T (3.38)

Therefore, when the temperature reaches a steady state ∆T = 1◦C, we obtain γ33 =
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3.75× 10−2 and τ11 = τ22 = −1.125× 10−2MPa (with K = 3MPa and G = 1.5MPa).
These values are in agreement with the results of the numerical simulation shown in
Fig. 3.22.
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Figure 3.22: Results for the heated elastic confined rod: (a) stress τ11 as a function of time,
(b) displacement u3 at the end of the rod as a function of time.

The two last tests are dedicated to Thermo-Mechanical couplings considering an elasto-
plastic behavior in order to observe the influence of a temperature rise on the plastic
behavior of the material. The configuration for the first test is the one shown in Fig. 3.21,
but this time a yield stress (cohesion) is set to 0.01MPa. Perfect plasticity is considered in
this example but with no plastic dissipation in the energy balance equation. In Fig. 3.23,
the results for the stress and displacement are compared. We observe that τ11 remains
constant after reaching the value of 0.01MPa. The development of plastic deformations
also has a consequence on the displacement in the rod axis direction (x3), which is higher
than that for the elastic rod. Nevertheless, no difference is observed for the evolution of
the temperature as the mechanical dissipation term is neglected in this example. Thus, no
feedback between the mechanical behavior and the energy balance is possible.

In order to have an insight into the feedback of the mechanics on the energy balance equa-
tion (due to the plastic dissipation term), a shear test is modeled. The same parameters
as the plastic tests with a height of 60mm and only one element is considered for the mesh
in the vertical direction. For simplicity, we neglect heat diffusion and only consider the
effect of plastic dissipation on the temperature change:

ρC
∂T
∂t

= σij ε̇
p
ij + τ[ij]γ̇

p
[ij] + µij κ̇

p
ij (3.39)

From this test, we verify the value of the mechanical dissipationτ12
∆γp12
∆t at each time step.

Moreover, from the energy balance equation (Eq. 3.39), the temperature increase between



3.3 VALIDATION OF THE CODE 77

(a) (b)

●

●

● ● ● ●

■

■
■ ■ ■ ■

τ11
● elastic

■ elasto-plastic

0 100 200 300 400 500

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

time (s)

st
re
ss
(M
P
a)

●

●

● ● ● ●

■

■

■
■ ■ ■

u3 (x3=L)
● elastic

■ elasto-plastic

0 100 200 300 400 500
0.00

0.01

0.02

0.03

0.04

time (s)

di
sp
la
ce
m
en
t
(m
m
)

Figure 3.23: Comparison of results for (a) the displacement u3(x3 = L) and (b) the stress
τ11, for the heated confined rod in elasticity and plasticity

two time steps in the plastic regime is equal to τ12∆γp12∆t
ρC (with ρC taken equal to 1 MPa/◦C

here). The comparison of this expression and of the actual temperature increase is plotted
in Fig. 3.24 showing no difference.

Elastic Plastic

Figure 3.24: Comparison of the temperature increment as a function of time for the shear-
ing test with the mechanical dissipation term considered in the energy balance
equation.

3.3.3 Hydro-Mechanical tests

Four tests have been designed in order to check the hydro-mechanical couplings (Eqs. 3.3,
3.1 and 3.2).

The first test is the same as the diffusion test for the temperature, but this time it is
applied to the mass balance equation to examine the pore pressure increase. The exact
same results are found as in Fig. 3.19 considering this time different hydraulic diffusivities
instead of the thermal diffusivities.
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For the three other tests, an undrained oedometer configuration is considered. The geom-
etry and boundary conditions are shown in Fig. 3.25.

x2

x1

x3

v3

Figure 3.25: Geometry and boundary conditions used for hydro-mechanical oedometer
tests.

No mass diffusion is considered in these tests and, therefore, the mass conservation equation
becomes:

∂p

∂t
= − 1

β∗
∂εv
∂t

(3.40)

A cubic single element of dimensions 1 × 1 × 1 mm3 representing a fully saturated sam-
ple with its lateral displacements prevented is considered. Moreover, all boundaries are
impervious. A constant downward velocity v3 is applied on the top boundary.

The deformation of the cube in the direction of the applied velocity is:

γ33 = −v3t

L
(3.41)

The effective normal stresses are linked to the elastic deformation by:

τ ′11 = τ ′22 = (K − 2G

3
)γ33 (3.42)

τ ′33 = (K +
4G

3
)γ33 (3.43)

No shear stresses are developed and the rise in pore pressure is obtained by:

p = −γ33

β∗
(3.44)

We consider first two tests with an elastic behavior for the material and two different
values of β∗. The comparison of the pore pressure rise compared to the analytical solution
is plotted in Fig. 3.26 and the two evolution match perfectly (v3 = 10−2mm.s−1).

The solution in terms of total stresses validated against analytical results is shown in
Fig. 3.27.



3.3 VALIDATION OF THE CODE 79

●

●

●

●

●

●

●

●

●

●

●

★

★

★

★

★

★

★

★

★

★

★

● Num for β*=2MPa-1

Analytical for β*=2MPa-1

★ Num for β*=3MPa-1

Analytical for β*=3MPa-1

1 2 3 4 5
time (s)

0.005

0.010

0.015

0.020

0.025

p (MPa)

Figure 3.26: Comparison of numerical and analytical results for the pore pressure in a
undrained oedometric test for different mixture compressibility β∗
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Figure 3.27: Comparison of numerical and analytical results for the stresses in a undrained
oedometric test
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A last test is designed for HM couplings considering an elasto-plastic behavior and allows us
to test the numerical implementation of the plastic constitutive behavior and its coupling
with the pore pressure. In this test a cohesion of 0.1 MPa is considered with zero friction.

In oedometric conditions, the generalized shear stress invariant is equal to:

τ =

√
2

3
(h1 + h2)(τ ′11 − τ ′33)2 (3.45)

Combining Eqs. 3.45, 3.42 and 3.3.3 the yield criterion is reached at a time:

t =

√
3cL

2Gv3

√
2(h1 + h2)

(3.46)

which is equal to 3.33s for the parameters considered here (G = 1.5MPa, v3 = 10−2mm.s−1

and De Borst coefficients in the invariant). This value is compatible with the numerical
results presented in Fig. 3.28.
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Figure 3.28: Stresses evolution with time in a undrained oedometric test in the elastic and
elasto-plastic regimes

3.3.4 Thermo-Hydro-Mechanical tests

In order to test the implementation of THM couplings, we consider a shear test taking into
account the full set of equations of our model (Eqs. 3.3, 3.4, 3.1 and 3.2). Similar to the
shearing test for Thermo-Mechanical couplings, a height of 60mm with only one element in
the vertical direction is considered. Assuming no heat and fluid flux (undrained adiabatic
case), the mass balance equation is:

∂p

∂t
=
λ∗

β∗
∂T

∂t
(3.47)
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In this test, we focus on the thermal pressurization term in the mass balance equation. The
coefficient λ∗

β∗ is taken equal to 0.5 MPa/◦C. The results for the pressure and temperature
are plotted in Fig. 3.29.
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Figure 3.29: Evolution of the pore pressure and temperature for the sheared layer of 60mm
with a mesh of only one element considering simplified THM couplings (no
diffusion)

We can see that there is a ratio of 0.5 MPa/◦C between the two graphs, which corresponds
to the value of the thermal pressurization coefficient. We observe here that the plastic
dissipation induces an increase of temperature, which leads to a pore pressure increase
(thermal pressurization).

3.4 Conclusion

In this chapter, the numerical implementation of a three dimensional Cosserat continuum
with THM couplings is presented and thoroughly tested. The model defined in Chapter
2 is introduced in the Finite Element solver REDBACK, part of the MOOSE software, in
order to create a general code that can be used not only for the problem of the infinite
sheared layer, but also for other geomechanical problems. The return map and the global
integration algorithms are also presented in details. All the tests developed to verify and
validate the implementation are successfully passed. The proposed tests can be used also
as guidelines for implementations of a THM code.
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Chapter 4

Post-bifurcation analysis in a 3D
continuum with microstructure and
multi-physical couplings

Un modèle élasto-plastique prenant les couplages THM pour les milieux de
Cosserat a été développé au Chapitre 2. Son implémentation numérique ainsi
que sa validation ont été présentées au Chapitre 3. Dans le présent Chapitre,
des simulations numériques sont réalisées afin d’étudier le problème de locali-
sation dans les noyaux de faille et compléter les résultats obtenus par l’analyse
de stabilité linéaire. La présence d’une longueur interne dans la loi constitu-
tive des milieux de Cosserat permet de régulariser le problème de localisation
et ainsi de résoudre le problème de dépendance au maillage rencontré dans les
milieux de Cauchy.

D’autre part, les influences de la microstructure et la loi d’écrouissage choi-
sie sont mises en relief pour un système purement mécanique. Cette étude per-
met d’étudier quantitativement l’évolution de l’épaisseur de localisation qui est
ensuite confrontÃľe à celle obtenue en ajoutant les couplages THM.

Ces développements de la taille de la bande de cisaillement sont ensuite
comparés avec ceux obtenus via l’analyse de stabilité linéaire. Quand le champ
de déformation inhomogène domine, les estimations de la taille de bande ob-
tenues par analyse de stabilité linéaire diffèrent des résultats numériques. Par
ailleurs, l’analyse par éléments finis nous permet d’observer l’influence de tous
les paramètres sur la réponse contrainte-déformation de la faille. Cette réponse
est primordiale pour la transition d’un glissement asismique à sismique. Elle
nous donne aussi des informations sur le budget énergétique du glissement.
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4.1 Introduction

The thickness of the localization zone was investigated using Linear Stability Analysis
(LSA) in Chapter 2. This analytical approach allowed us to explore qualitatively the
influence of various (bifurcation) parameters of the gouge layer, such as the grain size, the
hardening modulus, the friction and dilatancy angles, the thermal pressurization coefficient,
the normal stress, the porosity and the permeability.

However, the aforementioned investigation is based on a Linear Stability Analysis that has
two drawbacks (see also (Chambon et al., 2004)). The first one is the linearization of the
system of equations, which regarding mechanics does not distinguish between loading and
unloading conditions. The second one is that the linearization is performed on a reference
state that does not evolve with deformation. These are strong assumptions for studying
the post-bifurcation behavior of a non-linear system. This is why, in the present Chapter,
the full system of non-linear equations (see Chapter 2) is integrated numerically, using a
novel three-dimensional (3D) Finite Element (FE) code, which accounts for a general, 3D
Cosserat continuum formulation with Thermo-Hydro-Mechanical (THM) couplings. An
elasto-plastic constitutive model that accounts for the progressive softening of the material
and the grain size is implemented in the numerical code as explained in Chapter 3.

This numerical tool allows us to point out the limitations of the LSA presented in Chapter
2 and offers a more accurate description of the evolution of the thickness of the localization
zone. Moreover, it enables us to investigate the full stress-strain response of a fault gouge,
and explore its dependency on various parameters such the grain size and the applied
shear rate. The precise evaluation of the stress-strain response of the fault zone under
THM couplings is of key importance for studying earthquake nucleation as the softening
rate controls the transition from aseismic to seismic slip (Scholz, 2002, Tse and Rice, 1986).

It is worth emphasizing that computing the evolution of strain localization is a challenging
task due to the difficulties that arise when dealing with softening behavior. It entails a
loss of ellipticity of the governing equations in the classical continuum theory framework
(Vardoulakis and Sulem, 1995, de Borst et al., 1993). The boundary value problem becomes
mathematically ill-posed (Vardoulakis, 1986) and the results of classical finite element
computations exhibit a mesh dependency (as deformations localize in a band of thickness
equal to the finite element size). Moreover, mesh refinement leads towards zero energy
dissipation, which is nonphysical. However, the Cosserat FE formulation followed herein
does not suffer from the above issues as it possesses a material parameter with dimension
of length which regularizes the numerical problem (see also de Borst (1991), Godio et al.
(2016), Stefanou et al. (2017)).

Besides Cosserat, different methods have been developed to address the problem of mesh
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dependency: viscoplastcity (but only under dynamic loading conditions) (Needleman,
1988), non-local continua (Pijaudier and Bazant, 1987), gradient plasticity (Vardoulakis
and Aifantis, 1991) and continua with microstructure (Papanastasiou and Vardoulakis,
1992, Collin et al., 2006), among others. As these methods are not based on the same
assumptions, the choice of one or another depends on the physical mechanisms that the
modeler wants to describe (Papanastasiou and Zervos, 2016) (see (de Borst et al., 1993)
for a detailed comparison). For instance, if non-negligible rate dependency is experimen-
tally observed for a given material, visco-plasticity is the natural framework. In the case
of microstructure with non-negligible size (e.g. granular materials, faults), Cosserat con-
tinuum (a special case of continua with microstructure (Germain, 1973b)) appears to be
the most appropriate framework (Papanastasiou and Zervos, 2016) (see also the second
Chapter (Rattez et al., 2017)).

This Chapter is organized as follows. In Section 4.2, the particular problem of an infinite
sheared layer without THM couplings is presented. The limitations of the classical Cauchy
continuum are discussed and the advantages of the Cosserat continuum are emphasized for
modeling the behavior of a fault gouge. The influence of the main constitutive parameters
and of the size of the microstructure on the stress-strain diagram and on strain localization
evolution is examined. In Section 4.3, the THM couplings are introduced and their impact
on the overall behavior of a fault gouge is investigated. The role of thermal pressurization
is highlighted. Finally, in Section 4.4, the numerically obtained shear band thickness is
compared to the results of the LSA presented in Chapter 2 (Rattez et al., 2017).

4.2 Simple shear of a layer without THM couplings

In this section, we present the problem of localization of deformation in a sheared layer by
considering a geometry and parameters that are consistent with a gouge in a fault core.
Only the mechanical equations for an elasto-plastic Cosserat continuum are considered
(without couplings). The results are compared to the ones already published (de Borst,
1991, Tejchman, 2008, Godio et al., 2016). The methodology for the evaluation of the shear
band thickness is presented. Emphasis is given to describing the influence of the internal
length and different softening laws on the localization and the response of the material.
These results and investigations are then used as a reference to study the influence of the
THM couplings (Section 4.3).

4.2.1 Problem statement and mesh convergence

The fault core is modeled as an infinite layer of height h subjected to pure shear under
constant velocity V and normal stress τn, as shown in Fig. 4.1. The values of the different
parameters are chosen to represent a fault gouge at a seismogenic depth of 7km, which is
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a typical centroidal depth for crustal faults. Furthermore, as this set of parameters was
used in previous studies, we can compare our results to foregoing works on the subject
and complement them (Rice, 2006b, Sulem et al., 2011, Platt et al., 2014). The rotations
are imposed at the upper and lower boundaries (ωc3 = 0) as it entails the development
of a single band in the middle of the layer and facilitates the comparisons of stress-strain
diagrams as explained in Appendix A.4.

h
21

12

m32w3

u1

c

=0τ 22=0

τ
τ

u2=0

u2

w3
c

=0w3
c

u1=V.t

u1=0

Figure 4.1: Infinite layer of a fault material under shear. Notations and boundary condi-
tions.

The Drucker-Prager yield criterion is generalized for Cosserat continua, as in (Rattez et al.,
2017) with a friction coefficient which evolves with plastic shear deformation:

F = τ + µ.σ′ − c (4.1)

where c is the cohesion and τ is the generalized second invariant of the deviatoric stress
tensor, defined by:

τ =

√
h1 sij sij + h2 sij sji +

1

R2
(h3mijmij + h4mijmji) (4.2)

The hardening coefficient hs defines the evolution of the friction coefficient with the accu-
mulated plastic shear strain:

hs =
dµ

dγp
(4.3)

and is linked to the hardening modulus Hs by the equation Hs = hsσ
′.

The coefficients in the stress invariant are h1 = h3 = 2
3 and h2 = h4 = −1

6 and R is
the internal length of the Cosserat continuum as in (Sulem and Vardoulakis, 1990). The
generalized plastic strain rate invariant is defined as:

γ̇p =
√
g1 ė

p
ij ė

p
ij + g2 ė

p
ij ė

p
ji +R2(g3 k̇

p
ij k̇

p
ij + g4 k̇

p
ij k̇

p
ji) (4.4)
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with g1 = g3 = 8
5 , g2 = g4 = 2

5 . In (Sulem and Vardoulakis, 1990, Mühlhaus and Var-
doulakis, 1987, Mühlhaus, 1986), these coefficients were calculated based on micromechan-
ical considerations. An example of calculation for one set of invariants is presented in
Appendix B of the companion paper (Rattez et al., 2017). The influence of the invariants’
expression on the stress-strain graph is shown in Fig. 4.5 and the values of the different
sets of coefficients are recalled in Table 4.1.

2D model 3D model
Static model {hi} = {3/4,−1/4, 1, 0} {hi} = {2/3,−1/6, 2/3,−1/6}

{gi} = {3/2, 1/2, 1, 0} {gi} = {8/5, 2/5, 8/5, 2/5}
Kinematic model {hi} = {3/8, 1/8, 1/4, 0} {hi} = {2/5, 1/10, 2/5, 1/10}

{gi} = {3,−1, 4, 0} {gi} = {8/3,−2/3, 8/3,−2/3}

Table 4.1: Values for the coefficients of the stress and strain generalized deviatoric sec-
ond invariants for a Cosserat continuum from (Mühlhaus, 1986, Mühlhaus and
Vardoulakis, 1987, Sulem and Vardoulakis, 1990, Unterreiner, 1994)

In this purely mechanical example, a linear softening rule is chosen to illustrate strain
localization. In the numerical examples, h=1 mm, the cohesion of the material is chosen
equal to c = 100 kPa and a linear softening rule with a hardening coefficient equal to
hs = −0.5.

The elastic parameters of the material areK = 20000 MPa, G = 10000 MPa andGc = 5000

MPa. The internal length of the Cosserat continuum is chosen to be R = 10µm, which
is an average grain size for highly finely granulated (ultra-cataclastic) fault core (Chester
and Chester, 1998, Rice and Cocco, 2007). An initial isotropic state of stress is applied to
the layer, such that σ = −133.33MPa, which is a typical value at 7km depth. The values
of the parameters are summarized in Table 4.2.

Mesh convergence is first investigated for the considered Cosserat model. A 3D geometry
is considered with periodic boundary conditions for the lateral sides of the specimen, which
results in a 1D problem equivalent to the problem presented in Fig. 4.1. A regular mesh
with hexahedric elements is chosen with a single element in directions x1 and x3, and a
range of 40 to 240 elements in the vertical direction x2. Given the periodic boundary

parameters values units parameters values units
K 20× 103 MPa µ 0.5
G 10× 103 MPa β 0
Gc 5× 103 MPa c 100 kPa
R 10 µm hs -0.5

Table 4.2: Numerical values of the mechanical parameters of a deep rock gouge from (Rice,
2006b, Sulem et al., 2011)
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conditions and the choice of the shape functions, the invariance in the x1 and x3 directions
is guaranteed. In Fig. 4.2, the shear stress τ12 at the top of the layer is plotted versus the
normalized horizontal displacement at the top. As expected, the plastic regime is reached
for τ12 = µσ and followed by a softening behavior. The results for 160 and 240 elements
in the vertical direction exhibit no clear difference, indicating a mesh-convergence.
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Figure 4.2: Stress-strain diagram obtained for an elasto-plastic infinite sheared layer mod-
eled as a Cosserat continuum for different numbers of elements in the vertical
direction

In Fig. 4.3, the Cosserat rotation ωc3 is plotted on the deformed mesh with 80 elements
in the vertical direction (not finer, for a clearer visualization) at the last timestep. The
magnitude of the rotations is higher inside the zone of localized deformations as observed
experimentally for granular materials (Hall et al., 2010).

Figure 4.3: Cosserat rotation with 80 elements in the vertical direction for τ12 = 48MPa

In Fig. 4.4, the total shear strain γ12 is plotted along the height of the layer for different



90 CHAPTER 4: POST-BIFURCATION

space discretizations and a shear stress τ12 = 48MPa. This graph shows that when the
mesh is fine enough, the shear band thickness is indeed mesh-independent which is a key
feature of the Cosserat model. The deformation profile is almost identical for 80 and 160
elements. The profile for 240 elements is not represented in this graph as it coincides with
the one obtained with the mesh of 160 elements.
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Figure 4.4: Mesh-independency of the shear strain profile for τ12 = 48 MPa
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Figure 4.5: Stress-strain graph for converged meshes computed with different values of the
coefficients in the stress and strain generalized invariants (see Table 4.1)

4.2.2 Comparison with classical Cauchy continuum

The results obtained using a classical Cauchy continuum are retrieved in the particular
case of Gc → 0, and R→ 0, as explained in (Iordache and William, 1998). In Fig. 4.6, the



4.2 SIMPLE SHEAR OF A LAYER WITHOUT THM COUPLINGS 91

shear stress is plotted as a function of the normalized horizontal displacement at the top.
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Figure 4.6: Stress-strain diagram obtained for an elasto-plastic infinite sheared layer mod-
eled as a classical Cauchy continuum for different numbers of elements in the
vertical direction

This diagram shows the dependency of the softening branch on the mesh size. As expected,
the plastic deformations localize in a single hexahedric element (see Fig. 4.7) and the smaller
the mesh size is, the steeper the softening branch becomes. Note that the shear band is not
located in the middle of the layer. As no imperfection is introduced to restrict its position,
it appears “randomly” in the system due to numerical approximations.

Figure 4.7: Shear strain plotted on the deformed mesh with 50 elements τ12 = 1 MPa with
a Cauchy continuum

This mesh-dependency of the load-displacement diagram has a consequence on energy
dissipation. To investigate this effect, we calculate for different discretizations of the layer
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the plastic part of the mechanical energy, Ep, and the elastic part, Ee, both with a Cosserat
and a Cauchy continuum. The elastic energy is evaluated by considering an unloading for
τ12 = 48MPa. Elastic and plastic parts of the mechanical energy are shown in Fig. 4.8.
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Figure 4.8: Elastic (Ee) and plastic (Ep) parts of the mechanical energy for: (a) a Cosserat
continuum with 240 elements in the vertical direction, (b) a Cauchy continuum
with 100 elements in the vertical direction.

The energy partition is computed for different numbers of elements (Fig. 4.9). For the
Cosserat formulation, the plastic part of the mechanical energy tends to a constant value
when the mesh size is small enough, whereas for a Cauchy continuum, the plastic energy
tends to the total mechanical energy at peak. This is due to the fact that the softening
branch gets steeper while increasing the number of elements. To complete the analysis of
the Cauchy continuum with more elements an arc-length algorithm is necessary. It enables
us to capture a “snap-back” behavior and the plastic energy will tend to zero (de Borst,
1991).

This mesh-dependency of the energy dissipated by the system leads to unphysical results.
It is even more problematic when Thermo-Mechanical couplings are incorporated in the
model because the amount of heat produced is calculated from the plastic dissipation
(Eq. 2.8).
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Figure 4.9: Computed dissipation as a function of the number of elements in the vertical
direction (ny) for a Cosserat continuum and a Cauchy continuum

4.2.3 Evaluation of the shear band thickness and sensitivity analysis

As stated in the companion paper (Rattez et al., 2017), the shear band thickness is a
key parameter for assessing the energy dissipation when localization occurs. In order to
compare the results of the linear stability analysis with the numerical simulations, we need
to define a measure of this thickness.

For defining this measure we refer to the profile of the plastic strain rate invariant, γ̇p(x2)

(cf. (Platt et al., 2014)). This a convenient proxy not only for the evaluation of the
shear band thickness, as explained below, but also for comparing numerical results with
experimental ones that are obtained by Digital Image Correlation (Hall et al., 2010)
(γ̇(x2) ≈ γ̇p(x2) inside the shear band). Furthermore, it provides a better representa-
tion of the localization process at a given time, unlike the plastic strain invariant, γp,
or the Cosserat rotation, ωci , whose distributions strongly depend on the stress path and
history of the system.

Inside the shear band the computed plastic shear strain increment can be interpolated
accurately by a cosine function, whose wavelength is defined here as the thickness of the
localization zone:

γ̇p(x2) ≈ B.χ[Y−λ
2

;Y+λ
2

](x2).[cos(2π
(x2 − Y )

λ
) + 1] (4.5)

where B is half of the maximum plastic strain rate, Y is the position of the center, λ is the
wavelength of the cosine function and χ[Y−λ

2
;Y+λ

2
](x2) is a rectangular function defined by:
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χ[Y−λ
2

;Y+λ
2

](x2) =

1 if x2 ∈ [Y − λ
2 ;Y + λ

2 ]

0 otherwise
(4.6)

Notice that this definition of the thickness of the localization zone allows a clear link with
the results of the Linear Stability Analysis performed in Chapter 2. More details and
arguments on the choice of this definition as well as comparisons with alternative ones
found in the literature are given in Appendix A.3.

A key parameter to determine the localization of deformation and used as a bifurcation
parameter in linear stability analyses is the softening modulus Hs (Rudnicki and Rice,
1975b, Issen and Rudnicki, 2000). Thus, we investigate numerically its effect in the fol-
lowing. The stress-strain diagram depicted in Fig. 4.10 shows as expected that the higher
(in absolute value) the softening modulus is, the steeper the stress-displacement response
becomes.
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Figure 4.10: Effect of the hardening coefficient on the stress-strain diagram

In Fig. 4.11, the total shear strain profile is plotted for different hardening values but for
the same shear stress applied at the boundary of the layer (48 MPa). We observe that the
shear strain profiles are mathematically similar and in particular the higher the hardening
is, the higher the maximum shear strain gets. Note that, these profiles correspond to
the same applied shear stress τ12 (48 MPa) and therefore to different displacement at the
boundary. Less negative values of the softening coefficient correspond to larger applied
displacement and consequently to a larger maximum shear strain γ12 inside the localized
zone. In other words, the hardening plays a direct role in the evolution rate of localization
and determines the maximum total shear strain. However, the thickness of the shear band,
described in Eqs. 4.5 and 4.6, is unchanged.

The evolution of the shear band thickness in the post-localization regime is shown in
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Figure 4.11: Effect of the hardening coefficient on the shear strain γ12 profile for τ12 =
48MPa

Fig. 4.12. In all cases, the thickness decreases faster at the beginning of the post-peak
regime. For a more negative softening coefficient, and for the same value of the shear
displacement at the boundary u1

h , the shear stress drop is stronger which results in a
narrower shear band. Thus, the hardening modulus has an effect on the shear stress
evolution, but directly not on the shear band thickness. The different shear band thickness
evolutions with increasing deformation are due to the different evolutions of the shear stress
(Fig.4.12).
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Figure 4.12: Effect of the hardening modulus on the shear band thickness evolution

It is also interesting to explore how the internal length of the Cosserat model affects the
response of the system in terms of the stress-strain diagram, the shear band thickness
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evolution and the shear strain profile (Khoei et al., 2010, Ebrahimian et al., 2012). In
Fig. 4.13, the stress-strain diagrams for different values of Cosserat internal length are
plotted for a hardening coefficient hs = −0.5. For lower values of the internal length, the
softening branch of the stress-displacement curve is steeper.
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Figure 4.13: Effect of the internal length on the stress-strain graph

In Fig. 4.14, the effect of the internal length on the shear band thickness evolution is shown.
For smaller internal length, shear band thickness decreases faster with increasing strain.
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Figure 4.14: Effect of the internal length on the shear band thickness evolution

As shown in Fig. 4.15, the distribution of the shear strain γ12 differs for different values
of the internal length R. The value of the maximum is the same, but the profiles are dif-
ferent (unlike Fig. 4.12). For larger internal lengths, the shear band thickness is larger, in
agreement with previous studies (Mühlhaus and Vardoulakis, 1987, Sharbati and Naghd-
abadi, 2006, Sulem et al., 2011). Thus, the difference of the stress-strain curves in the
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post-bifurcation regime for different internal lengths is mainly due to different values of
shear band thickness.
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Figure 4.15: Effect of the internal length on the total shear strain profile for τ12 = 48MPa

4.2.4 Exponential softening law to model granular flow

Experimental works on granular materials have shown that a granular medium under shear
evolves towards a steady state characterized by a constant friction coefficient and zero di-
latancy. In the frame of classical soil mechanics, this state is called the critical state
(Schofield and Wroth, 1968). Faults exhibit a similar behavior when sheared over suffi-
ciently large distances (see (Chambon et al., 2002)). This behavior has to be integrated
into the constitutive description of the material in order to approximate the overall me-
chanical response of the system. An exponential evolution of the friction coefficient is thus
assumed, which can be easily calibrated from experimental data (Mizoguchi et al., 2007, Di
Toro et al., 2011). In Mizoguchi et al. (2007), Di Toro et al. (2011), the authors have con-
ducted shear experiments on simulated fault gouges at seismic slip rate and they observed
an exponential decay of the friction coefficient due to various multi-physical mechanisms.
For experiments performed on dry materials, these authors suggest that friction softening
can be attributed to gel lubrication or nano-particles lubrication.

µ = µres(1 +
∆µ

µres
.e−q/γe) (4.7)

q̇ = γ̇p (4.8)

where µres is the residual friction coefficient, ∆µ = µini − µres the variation of the fric-
tion coefficient (µini is the initial friction coefficient), γe is a characteristic slip weakening
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deformation and q is the hardening variable. An example of evolution of the friction co-
efficient from µini=0.5 to µres=0.3 is shown in Fig. 4.16. Alternatively to the flow theory
of plasticity that is used in the present paper, a Cosserat continuum within the frame-
work of hypoplasticity can be used to model granular materials (Huang and Bauer, 2003,
Tejchman, 2008).

μres=0.3 and Δμ=0.2

0.0 0.2 0.4 0.6 0.8 1.0
γp

0.1

0.2

0.3

0.4

0.5
μ

Figure 4.16: Example of evolution of the friction coefficient in terms of the plastic defor-
mation for an exponential hardening law (γe = 0.2).

In Fig. 4.17(a), the influence of the characteristic deformation γe is investigated. The initial
friction coefficient is 0.5 and the residual one is 0.3. As expected, the bigger the factor
is, the steeper the softening branch becomes. However, all the curves tend to the same
asymptote around 43.73 MPa, a value higher than µres.σ = 40MPa. The reason is that the
yield surface is written in terms of the generalized stress invariant τ (see Eq. 4.1) and not
of τ12. This formulation is more general and efficient for geomaterials as it allows us to take
into account the evolution of all the components of the stress and couple stress tensors that
are especially important under multi-physical couplings. An example of the distribution of
shear stresses τ12 and τ21 as well as the couple stress µ32 is shown in Fig. 4.18 for a global
deformation of the layer u1

h of 1.2 for the case γe = 0.2 and µres = 0.3.

In Fig. 4.17(b), the evolution of shear band thickness is plotted for different values of the
parameter γe. We observe that, at the beginning of the localization, the shear band size
decreases until a minimum that corresponds to the inflection point of the softening branch.
Then, it progressively increases towards a finite value, which is independent of the γe value.
Thus, this parameter only affects the evolution of the softening behavior and the evolution
of the shear band thickness but not their final values.

The stress-strain diagram for various values of the residual friction coefficient is depicted
in Fig. 4.19 for a given value of the characteristic weakening deformation (γe = 1). In
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Figure 4.17: Effect of characteristic weakening deformation, γe, on: (a) the stress-strain
diagram, (b) the shear band thickness evolution (µres = 0.3).
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Figure 4.18: In the case of γe = 0.2 and µres = 0.3.(a) Profile of the stresses τ12 and τ21

(b) Profile of the couple stresses µ32
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Figure 4.19: Effect of the residual friction, µres, on the stress-strain diagram(γe = 1).
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Figure 4.20: Effect of the residual friction, µres, on the shear band thickness evolution
(γe = 1).
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Fig. 4.20, the evolution of the shear band thickness with the deformation shows that the
final value and also the minimum of the shear band size are influenced by the residual
friction and consequently by the total shear stress drop. A larger stress drop is associated
with a thinner localized zone.

A single material length R is used in the present model to represent the size of the mi-
crostructure. Previous studies on sands with a narrow grain size distribution showed a
good agreement between the shear band size observed experimentally and the results ob-
tained with a Cosserat continuum taking R equal to the mean grain size (Mühlhaus and
Vardoulakis, 1987, Alsaleh, 2004). However, as noted by Rice (2006b), the distribution in
gouge materials follows a fractal law and is much broader. Based on these observations,
Sammis et al. (1987) developed a communition model to explain the generation of fault
gouges. This theory is supported by experiments conducted in the laboratory (Steacy and
Sammis, 1991, An and Sammis, 1994). Therefore, the use of a single material length (i.e.
the mean grain size D50) to describe gouge materials is an open question. However, Rice
(2006b) argues that the cohesion between small particles in an ultracataclasite layer would
be much more important and could lead to the clustering of small particles into aggregates.
This effect would raise the effective size of the microstructure to consider in the analysis
(greater than D50). Moreover, the formation of vortex patterns linked to force chain buck-
lings in shear bands (Rognon et al., 2015, Tordesillas et al., 2016) imply the rotation of
a set of particles and would also lead to a larger effective internal length. Therefore, a
sensivity analysis on the parameter R is carried out to explore its effect on the global
softening response.
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Figure 4.21: Effect of the internal length, R, on the stress-strain diagram (µres = 0.3 and
γe = 0.2).

We observe the influence of the internal length on the stress-strain diagram (Fig. 4.21)
and the shear band thickness (Fig. 4.22). The shear stresses tend to the same values
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Figure 4.22: Effect of the internal length, R, on the shear band thickness evolution (µres =
0.3 and γe = 0.2).

asymptotically. However, the final values of the shear band thicknesses are different. The
minimum and the residual values are plotted in Fig. 4.23 and we observe a linear evolution
for the two estimations. A similar trend is found using hypoplastic model in the frame of
Cosserat continua (Huang and Bauer, 2003).

In Rice (2006b), the case of a principal slip zone observed in an exposure of the Punchbowl
fault (Chester et al., 2005) is presented. Inside the ultacataclasite layer, a shear band with
an apparent thickness of 100-300 µm seems to have accommodated most of the slip. The
mean grain size is estimated to be D50=1µm. Therefore, with the set of parameters chosen
here, the internal length appropriate to reproduce this pattern is one order of magnitude
larger than the mean grain size (Fig. 4.23 ).
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Figure 4.23: Evolution of the minimum and residual shear band thickness with the internal
length R.
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parameters values units parameters values units
K 20× 103 MPa µ 0.5
G 10× 103 MPa β 0
Gc 5× 103 MPa λ∗ 7.4× 10−5 /oC
R 10 µm ρC 2.8 MPa/oC
ρ 2500 kg/m3 cth 1 mm2/s
β∗ 8.2× 10−5 MPa−1 chy 12 mm2/s
n 0.04 αs 2.5× 10−5 /oC

Table 4.3: Numerical values for the parameters of a deep rock gouge from (Sulem et al.,
2011, Rice, 2006b).

4.3 Effect of Thermo-Hydro-Mechanical couplings

In the section above, the results of a dry sheared layer modeled as a Cosserat continuum
have been shown in terms of stress-strain response and evolution of the shear band thick-
ness. In this section, we consider a saturated layer and explore the effect of pore pressure
and temperature changes on the strain localization process.

The numerical values for the parameters of the model refer to a saturated fault gouge at
7km depth, a centroidal depth for crustal faults (Rice, 2006b, Sulem et al., 2011). The
mechanical conditions are the same as in Section 4.2 and the values for all parameters are
summarized in Table 4.3.

An homogeneous and isotropic initial state of total stress of -200 MPa and an initial
homogeneous pore pressure of 66.66 MPa is assumed. In terms of initial effective stresses,
it corresponds to τ ′11 = τ ′22 = τ ′33 = −133.33MPa. A constant velocity of 1m/s, in the
range of values estimated for seismic slip (Sibson, 1973), is applied at the top of the layer.

4.3.1 Influence of the various couplings

In this section, we highlight the effects and the importance of Thermo-Mechanical (TM),
Hydro-Mechanical (HM) and Thermo-Hydro-Mechanical (THM) couplings on the overall
behavior of the system. The geometry and boundary conditions are kept the same as in
the previous section. In Figs. 4.24 and 4.25, we present the shear stress-strain response, for
hs = −0.5 and hs = 0 respectively, of the fault gouge by activating the various couplings.
The response is juxtaposed with the response of the gouge without any couplings. We
observe that a clear difference is observed only when the thermal pressurization term
(Eq. 2.8) is activated, i.e. for the THM model. The system under HM couplings does not
show any difference compared to the purely mechanical one as no dilatancy is considered.
This assumption is common for fault gouges (Sulem et al., 2011), which have already
experienced significant sliding. For more details on the effect of dilatancy, we refer to
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Chapter 2 and to Rice (1975), Vardoulakis (1985, 1996), Garagash and Rudnicki (2003),
Benallal and Comi (2003).

Regarding the TM response, it barely differs from the mechanical one. The reason is that
thermal expansion is restrained by the boundary conditions and therefore it entails only
a slight increase of the isotropic part of the stress tensor, which in turn leads to a slight
strengthening of the system.
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Figure 4.24: Effect of Thermo-Mechanical (TM) and Thermo-Hydro-Mechanical (THM)
couplings on the stress-strain diagram with a linear softening law hs = −0.5
(R=10 µm).
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Figure 4.25: Effect of Thermo-Hydro-Mechanical (THM) couplings on the stress-strain di-
agram assuming perfect plasticity (R=10 µm).

4.3.2 Effect of the thermal pressurization coefficient

Thermal pressurization is a weakening mechanism that has been largely studied in the
context of earthquakes in order to explain the reduction of fault strength with slip (Sibson,
1973, Lachenbruch, 1980, Rempel and Rice, 2006). This phenomenon is due to the discrep-
ancy between thermal expansion coefficients of the solid matrix and pore fluids. Frictional
heat induces a pore fluid pressure increase that results in a decrease of the effective mean
stress. This weakening mechanism is controlled by the thermal pressurization coefficient
Λ.

In Fig. 4.26, we investigate the influence of the thermal pressurization coefficient, Λ, on
the mechanical behavior of the system. This coefficient depends on many parameters, such
as the nature of the material and of the pore fluid, the stress state and the temperature
among others. Previous studies have proposed a wide range of values for Λ. For instance
in Palciauskas and Domenico (1982), the authors take a value of 0.59 MPa/oC for Kayenta
sandstone, while in Lachenbruch (1980), the value taken for an intact rock at great depth
is 1.5 MPa/oC. For the analysis, presented in the companion paper, the thermal pressur-
ization coefficient was considered equal to 0.9 MPa/oC for a fault at 7km depth. Of course,
if Λ= 0 MPa/oC, the response coincides with that of the purely mechanical system, and
the higher the thermal pressurization coefficient is, the stronger the weakening becomes.

In Fig. 4.27, we focus on the evolution of pore pressure and temperature in the middle
of the shear band. The temperature evolution shows an exponential development and is
slightly influenced by the value of the thermal pressurization coefficient. For Λ=2 MPa/oC,
the increase of temperature is faster than for lower thermal pressurization coefficients, but
the final value attained is lower as the shear band width is decreasing faster and thus the
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Figure 4.26: Effect of thermal pressurization coefficient on the stress-strain diagram for
hs=-0.5 and an internal length R=10 µm.

maximum shear strain reached is smaller. The pore pressure evolution is more affected
than the temperature by the thermal pressurization, as it is acting as a source term in
the fluid mass balance equation. When the pore pressure increases, τ ′11 and τ ′33 and τ ′22

decrease in the same way. It results in a decrease of the mean effective normal stress and
causes a weakening of the shear stress.
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Figure 4.27: Effect of the thermal pressurization coefficient for hs=-0.5 and an internal
length R=10 µm : Evolution of (a) the increase of pore pressure and (b) the
increase of temperature, in the middle of the layer.
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4.3.3 Rate dependency induced by THM couplings

As shown in Section 4.2, the mechanical constitutive law that is used in the present paper is
rate independent. This means that the constitutive behavior of the fault gouge is considered
independent of the applied shear velocity at the boundary of the system. However, this
does not mean that the overall behavior of the system remains rate-independent when
THM couplings are activated due to thermal pressurization and diffusion. It is worth
emphasizing that due to the Cosserat formulation, which leads to a finite dissipation and
thickness of the localization zone (see Section 4.2), that the effect of rate dependency due
to THM couplings is possible to study.
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Figure 4.28: Effect of slip rate on the stress-strain diagram for perfect plasticity (hs = 0),
and an internal length R=10 µm

In Fig. 4.28, we present the stress-strain diagram for different slip rates that vary from
100 µm/s to 1m/s. Constant temperature and pore pressure are imposed at the top and
bottom boundaries. The hardening modulus is taken equal to zero (perfect plasticity) in
order to illustrate the effect of softening due to thermal pressurization. Notice that for
low velocities, no softening is observed as the effect of thermal pressurization is negligible.
On the contrary, for higher velocities that reach the co-seismic slip velocities the softening
is significant. In Fig. 4.29, the evolution of the shear band thickness is plotted. For high
velocities, a more intense localization is observed. In particular, for slip velocity lower
than 0.01 m/s, no localization occurs. The reason is that due to the low shear velocity,
temperature and pore pressure increase rates are low, allowing diffusion to dominate, which
inhibits localization. In other words the source term is counterbalanced by diffusion, which
leads eventually to a steady state (constant pressure and temperature profiles).

During the nucleation of an earthquake, the slip accelerates to reach a maximum velocity of
about 1m/s. The total slip required to reach that speed is in the order of a few millimeters
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Figure 4.29: Effect of slip rate on the shear band thickness for perfect plasticity (hs = 0),
and an internal length R=10 µm

(Segall and Rice, 2006). Therefore, Fig. 4.28 shows that THM couplings can greatly
affect the fault behavior during this phase (after a sufficient slip necessary for thermal
pressurization to become significant). Moreover, the slip along the fault is not homogeneous
(Wald and Heaton, 1994) and at the border of the slip patch, the displacements are much
smaller than in the middle. The large difference of shear band thickness obtained in
Fig. 4.29 can explain the heterogeneity of localization thickness observed along the same
fault as the slip is highly heterogeneous. For example, two drilling projects at different
locations in the Chelungpu fault found very different sizes of the localization zone. Boullier
et al. (2009) found a principal slip zone of 3-20mm thick, whereas Heermance et al. (2003)
observed a PSZ 50-300 µm in the same range as for the exhumed part of the Punchbowl
fault.
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Figure 4.30: Effect of slip rate for perfect plasticity (hs = 0), and an internal length R=10
µm on the temperature profile, at u1

h = 0.5.



110 CHAPTER 4: POST-BIFURCATION

v=1m/s

v=0.1m/s

v=0.01m/s

0.2 0.4 0.6 0.8 1.0
x2 (mm)

5

10

15

20

25

30

35

p (MPa)

Figure 4.31: Effect of slip rate for perfect plasticity (hs = 0), and an internal length R=10
µm on the pore pressure profile, at u1

h = 0.5.

4.3.4 Exponential softening law

The computations presented in Section 4.2.4 with an exponential softening are performed
again with the addition of the THM couplings. We present here the results for different
values of the internal length. In Fig. 4.32, the stress-displacement diagram is plotted.
We observe that when THM couplings are considered, the shear stress τ12 does not reach
a plateau, but keeps decreasing, as the heat produced by plastic dissipation continues
to reduce the strength due to thermal pressurization. Nevertheless, the mechanical and
THM models follow the same decrease at the beginning of the softening and then diverge
with increasing shear deformation. As expected, thermal pressurization does not play a
significant role on the nucleation of the instability, but rather on the evolution of the slip
and on energy dissipation (Segall and Rice, 2006).

In Fig. 4.33, the evolution of the shear band thickness is investigated for the exponential
softening. The THM couplings tend to make the band thinner and have more effect on
the residual thickness than on the minimum. We notice that even though the shear stress
does not reach a steady state, the width of the band does. The minimum and the residual
values for various internal lengths are represented in Fig. 4.34, and we observe also a linear
evolution for the two estimations with THM couplings.

For R=10µm, we compare these minima and residual values of the shear band width with
the values obtained for perfect plasticity (Fig. 4.29). In both cases, the shear rate applied
is 1m/s. The evolution of the thickness is similar as we first observe a decrease followed
by an increase. Still, the values of the minimum and residual thickness are different. In
the case of perfect plasticity, the minimum value is 124 µm and the residual thickness is
128 µm (Fig. 4.29). They are larger than the values obtained considering an exponential
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Figure 4.32: Effect of THM couplings on the stress-strain diagram for an exponential hard-
ening (µres = 0.3 and γe = 0.2) and different internal lengths (R=10, 20 and
30 µm) considering a slip rate of 1m/s.
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Figure 4.33: Effect of THM couplings on the shear band thickness evolution for an expo-
nential hardening (µres = 0.3 and γe = 0.2) and different internal lengths
(R=10, 20 and 30 µm).



112 CHAPTER 4: POST-BIFURCATION

softening: 69 µm and 85 µm (Fig. 4.33). Thus, we can conclude that the localization
process also depends on the history of the loading.

Finally, thermal pressurization does not greatly affect the shear band thickness when the
material softening alone is significant (Fig. 4.33). However, if the mechanical behavior
is perfectly plastic, no localization is observed unless THM couplings are considered and,
therefore, the thermal pressurization plays a crucial role in the control of the size of the
principal slip zone. In both cases, the internal length required to simulate a shear band
thickness with a size in agreement with observations of the Punchbowl fault (see Section
4.2.4) is one order of magnitude larger than the mean grain size and is closer to D70

(mesh size corresponding to 70% of passing mass in sieve analysis). Note that most of
the existing laboratory experiments and DEM simulations have been performed with a
relatively narrow grain size distribution. For this case, taking a Cosserat length of the
order of D50 is valid (see (Mühlhaus and Vardoulakis, 1987)). We expect in the future to
bring new experimental results on the effect of wider grain size distribution on the shear
band thickness.
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Figure 4.34: Effect of THM couplings on the evolution of the minimum shear band thick-
ness and the residual one with the internal length.

4.4 Comparisons with results of the linear stability analysis

Strain localization is seen as an instability of the inelastic macroscopic constitutive laws.
The initial homogeneous state becomes unstable (bifurcation) which triggers the onset of
localization (Rudnicki and Rice, 1975b). Moreover, we can assess the size of the localized
zone by analyzing the dominant wavelength of the perturbation modes. In (Rice et al.,
2014), the system of equations presents a critical wavelength over which all perturbations
are unstable. The band width is estimated as half the value of the critical wavelength.
In Chapter 2 (see also (Sulem et al., 2011, Veveakis et al., 2013)) the use of a Cosserat
continuum with inertia terms enables us to have a stability diagram (Lyapunov exponent
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(Lyapunov, 1992) plotted versus the wavelength of the perturbation) that does not present
a vertical asymptote. Thus, the shear band thickness is calculated from the value of the
wavelength of the perturbation that grows the fastest (the maximum of the Lyapunov
exponent).

In this section, we will compare the values of the shear band thickness obtained from the
LSA and the one obtained from FEM computations. For that, at each time step of the
numerical computation, we define an associated system of a homogeneous state for which
LSA is performed. This associated homogeneous system is assumed to be in a softening
state obtained from the slope of the numerical stress-strain (τ12 in function of u1/h) curve
at the considered time step. Moreover, this methodology which is explained in details in
Appendix A.5, permits us to understand how the loss of homogeneity in the system further
influences the evolution of the localization process.

4.4.1 Comparisons for mechanical simulations with linear softening

In this section, we compare the evolution of the shear band thickness obtained numerically
as described in 4.2.3 with the one predicted by the linear stability analysis for purely
mechanical examples and considering a linear evolution of the friction coefficient. The
parameters chosen are defined in Section 4.2.1 and we study the effect of the internal
length and the height of the layer on the comparison.

In Fig. 4.35, we compare the shear band thickness evolution obtained with LSA considering
the minimum wavelength for which the system is unstable λmin and the wavelength with
the fastest growth λmax. We observe that the shear band thickness evolution deduced from
LSA considering λmin is closer to the one obtained from FEM computations. Therefore,
in the following the comparison will be performed on the basis of λmin without specifying
it in the graphs.

In Fig. 4.36, we consider internal lengths ranging from 10 µm to 30 µm and heights of
the layer of 1 or 2 mm. For a height of 1mm and R=10µm (Fig. 4.36 (a)), the thickness
obtained at the initiation of the localization process is identical for the LSA and the finite
element simulation as this state of the layer is the closest to a homogeneous state of
deformation as considered in the definition of the associated system for which the linear
analysis is applied. Nevertheless, for R=20 and 30 µm and the same height (Fig. 4.36 (b)
and (c)), we do not observe the same behavior. This apparent discrepancy is due to the
height of the layer which is not sufficiently large to have vanishing couple stresses in the
profile. The associated problem differs significantly from the original one in that case and
leads to different values of the shear band thickness. For a height of 2mm (Fig. 4.36 (e)
and (f)), this is no longer an issue and the size of the bands obtained at the nucleation by
LSA and FEM match.

After the initiation of localization, the LSA tends to overestimate the thickness of the
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Figure 4.35: Comparisons of the shear band thickness evolution obtained by FEM, LSA
with λmin and LSA with λmax for R=10µm, h=1mm using a linear evolution
of the friction coefficient.

shear band, as the state of deformation in the original system is no longer homogeneous.
Yet, the difference remains small and tends to decrease as the height of the layer increases,
but if the height gets too large, we face convergence problems as the softening branch gets
too steep. The tendency at the end of the numerical simulations to have a thickness that
decreases to the value of the internal length is also captured by the LSA.
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Figure 4.36: Comparisons of the shear band thickness evolution for internal lengths be-
tween 10 and 30 µm and two heights of the layer h, 1 and 2 mm using a linear
evolution of the friction coefficient.
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4.4.2 Comparisons for mechanical simulations with exponential harden-
ing

The comparison between LSA and FEM is also made for the case of an exponential harden-
ing evolution in Fig. 4.37 . The parameters and the results of the simulations are presented
in Section 4.2.4. We consider here a residual friction coefficient of 0.3 and a factor in the
exponential γe of 0.2. As in the preceding section, the analysis focuses on the effect of the
internal length and of the height of the layer.

For the initiation of localization, we observe that the thicknesses predicted by the LSA fit
well the numerical ones for internal lengths of 10 and 20 µm (Fig. 4.37 (a), (b), (d) and
(e)). It is not the case for R=30 µm as the distribution of couple stress µ32 over the layer
doesn’t reach a value close to zero at the boundary, even for a height of 2 mm (Fig. 4.37
(c) and (f)). Note that in Fig. 4.37(d) (R=10µm and h=2mm), the y-axis ranges from 0 to
1mm. Indeed, the numerical results exhibit the formation of two symmetrical shear bands
at a quarter and three quarters of the layer thickness. Therefore the comparison with LSA
is performed by considering only half of the layer (of thickness 1mm) in order to capture
only one band.

After the nucleation, the shear band size decrease is well captured by the LSA. But as the
thickness approaches its minimum value, the two curves begin to diverge significantly. The
level of deformation is higher than the one corresponding to a linear softening of the friction
coefficient, which explains this apparent contradiction with the section above. Moreover,
when the shear stress tends to the residual value, the hardening modulus tends to zero.
Thus, the shear band thickness obtained by the linear analysis grows indefinitely.

4.4.3 Comparisons for THM simulations

The comparison of LSA and FEM results is then performed for the system of the infinite
sheared layer considering Thermo-Hydro-Mechanical couplings with the set of parameters
described in Table 4.3. Only one example for a linear evolution of the friction coefficient
and one example for the exponential law are presented here.

In Fig. 4.38, the evolution of the shear band size is plotted for an internal length of 10
µm, a height of 1 mm and a hardening coefficient hs=-0.5 assuming linear softening. The
conclusions of section 4.4.1 remain the same.

In Fig. 4.39, the evolution of the shear band thickness is shown for an internal length of 10
µm, a height of 1 mm for an exponential softening with µres=0.3 and γe=0.2. The initiation
and the decrease of the shear band size at the beginning of the localization process are
well captured by the LSA. When the deformation increases, the two lines diverge as it is
observed for the purely mechanical system. However, unlike the mechanical system, when
the shear stress converges to a residual value and the hardening modulus tends to zero,
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Figure 4.37: Comparisons of the shear band thickness evolution for internal lengths be-
tween 10 and 30 µm and two heights of the layer h, 1 and 2 mm using an
exponential evolution of the friction coefficient.
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the linear analysis tends to a finite value in the THM system because the bifurcation is
obtained for a positive hardening modulus (see Chapter 2). This value is larger than the
height of the layer and one order of magnitude larger than the residual thickness obtained
numerically.
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Figure 4.38: Comparisons of LSA and FEM results for the shear band thickness evolution
for the THM model assuming an internal length R = 10µm, a height of 1 mm,
a hardening coefficient hs = −0.5 and using a linear evolution of the friction
coefficient.
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Figure 4.39: Comparisons of LSA and FEM results for the shear band thickness evolution
for the THM model assuming an internal length R = 10µm, a height of 1 mm
and using an exponential evolution of the friction coefficient (µres = 0.3 and
γe = 0.2).

4.5 Conclusion

In this chapter, the importance of using a continuum with microstructure to model a fault
zone is shown. It enables to study the role of the microstructure on the localization process
and on the energy budget. The influence of the constitutive parameters is investigated.
For instance, the hardening (softening) modulus encapsulates and upscales various mi-
cromechanical phenomena and, together with the intrinsic Cosserat lengths, affects the
stress-strain response. However, the roles of the hardening modulus and grain size are
distinct. It is shown that the hardening modulus controls only the slope of the softening
branch, while the grain size controls the slope and the localization thickness as well. Dif-
ferent softening laws are used and the most appropriate to model the granular nature of
a fault gouge is an exponential decrease of the friction coefficient. This law can also be
easily calibrated based on experimental data.

The thermal pressurization appears to be a mechanism that gradually destabilizes the
system but is not active at the nucleation of the slip. It is shown that both the softening
behavior and the shear band thickness depend on the applied velocity, despite the fact
that the constitutive description of the material was considered rate-independent. Rate
dependency observed for natural faults can be explained by a thermal and pore-pressure
diffusions mechanism.

The comparison of the shear band thicknesses obtained from the linear stability analysis
and the finite element simulations are compatible as long as the effects of the induced
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perturbation of the initial homogeneous state are small enough. It highlights the relevance
of using numerical simulations to study localization problems. They also provide an insight
into the complete material response of the system, a key feature to determine the stability
of a fault and the transition from aseismic to seismic slip.

In this study, we focus on the thermal pressurization phenomenon that has been shown to
be prominent for seismic slips (Viesca and Garagash, 2015). Yet, the model can be extended
to account for other weakening processes active in fault zones, such as grain cataclasis by
varying the internal length of the model (Bauer, 2016) or chemical dissolution (Veveakis
et al., 2013).



Conclusions and future work

4.6 Concluding remarks

Seismic slip takes place in a narrow, thin zone (PSZ), whose thickness plays a fundamental
role regarding the behavior of ultracataclastic fault cores. In this Thesis we investigate
the effects of the microstructure on the evolution of the thickness of the PSZ. The various
Thermo-Hydro-Mechanical couplings that are fundamental during pre- and co-seismic slip
of faults are also considered.

Our analysis is based on a three-dimensional Thermo-Hydro-Mechanical model for Cosserat
continua. The latter allows to take into account in a direct way the size of the microstruc-
ture and its evolution. The model is a generalization of the (Mühlhaus and Vardoulakis,
1987, Vardoulakis and Sulem, 1995) model in three-dimensions (3D). Regarding the con-
stitutive description of the fault gouge material, an elasto-plastic constitutive model is
adopted. The constitutive description is general and can be calibrated from experimental
tests. Our formulation extends the existing ones on Cosserat (Sulem et al., 2011, Iordache
and William, 1998, Manzari, 2004, de Borst, 1991) as it is in three-dimensions and ac-
counts for strong couplings between the involved fields, i.e. the temperature, the pore fluid
pressure and mechanics. These couplings are derived on one hand by the mass and energy
balance equations and on the other hand by the considered constitutive laws.

Bifurcation theory (Linear Stability Analysis) is applied on the coupled, non-linear Cosserat
system of equations in order to extract the conditions for the onset of localization. The
mathematical treatment of the equations is kept general in order (a) to show the differences
with the classical approaches that use the acoustic tensor (Rudnicki and Rice, 1975b) or
LSA (Benallal and Comi, 2003) and (b) to allow a variety of applications in geomechanics.
However, the derived criteria are used here for studying the onset of localization in fault
zones. It is worth mentioning also that the present work extends further the works of
(Sulem et al., 2011, Veveakis et al., 2013) by investigating the evolution of the localized zone
thickness and its dependency on various parameters such as the grain size, the hardening
modulus, the porosity, the permeability, the pressurization coefficient and the normal stress.
These parameters have competing effects on the size of the localization thickness, which
is assessed from the wavelength of the perturbation with the maximum growth coefficient
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(Lyapunov exponent).

The LSA shows that the localization zone thickness is directly scaled with the grain size.
This means that the larger the grains are the larger the shear band becomes. This intrinsic,
physical length scale is introduced by the material parameters of the Cosserat continuum,
which can be experimentally determined. Two additional length scales are intrinsic to
the presented model. These lengths emerge from the thermal and hydraulic diffusivities
that control equally the shear band thickness. In particular the higher these diffusivites
are the larger the localization zone becomes. Consequently, the permeability, which is
directly related to the hydraulic diffusivity, influences the size of the shear band, i.e. a
more permeable medium leads to a broader localization zone. Nevertheless, this effect is
small in the range of typical gouge permeabilities.

The role of porosity is twofold regarding localization. Higher porosity commonly corre-
sponds to higher permeability (e.g. Kozeny-Carman law). It also leads to a lower thermal
pressurization coefficient. This latter has a more significant influence on the shear band
thickness. Higher permeability and lower thermal pressurization coefficient both result in
a broader thickness of the localized zone. On the other hand, higher porosity results in a
higher mixture compressibility, which on the contrary leads to thinner localized zone. Of
course the dominance of one or another of these competing mechanisms depends on the
fault material. However, for the material parameters used here, a more porous material
presents a narrower localization zone, because the effect of porosity on mixture compress-
ibility is dominant. Nevertheless, the thermal pressurization is not only affected by the
porosity but also by other material parameters and the analysis have shown that this
parameter has a very significant influence on the localized zone thickness.

The shear band thickness also depends on the confining stress. Although the condition
for localization is independent of the confining stress if we assume a linear yield criterion,
it affects the shear band thickness. More specifically, large confining stress (e.g. deeper
faults) leads to narrower PSZ.

The evolution of the friction coefficient during shearing has an impact on the shear band
thickness development. The friction coefficient evolution is represented by the hardening
modulus variation. A typical hardening modulus evolution for gouge material is considered
herein and, combined with LSA, allows to follow the evolution of the localization zone
during shearing. We observe a decrease of the shear band thickness at the beginning
of the localization process, followed by a progressive increase towards a steady value. By
assuming an exponential grain size reduction under shearing, which was taken into account
by modifying the internal length of the model, a qualitative estimation of the effect grain
cataclasis during slip is provided. It is shown that grain communition causes a decrease of
the PSZ.

In order to complete the investigation carried out with the LSA, the three-dimensional
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model of elasto-plastic Cosserat continuum with THM couplings is implemented numeri-
cally in a FEM code. This code allows to perform computations in parallel, which offers
an important computational speed up. A detailed description of the implementation and
validation is presented and can be used as guidelines for the implementation of a THM
code.

The comparison of the shear band thicknesses obtained from the linear stability analysis
and the finite element simulations have shown that the obtained values are comparable
as long as long as the effects of the induced perturbation of the initial homogeneous state
are small enough. It highlights the importance of the induced heterogeneities in the pro-
gressive localization process and the importance of using numerical simulations to obtain
quantitative results when studying strain localization. Moreover, the numerical simula-
tions provide fundamental information both on the stress-strain response, and also on the
temperature and pore pressure evolution inside the PSZ.

As far as it concerns the role of the grain size, the numerical analyses corroborate the
analytical findings of the LSA. Indeed, the numerical analyses show that the evolution
of the thickness of the localization zone depends on the size of the grains of the fault
core. The larger the grains are, the larger the shear band thickness is. Moreover, using
an appropriate softening law for fault core materials, it is shown that the final residual
thickness of the localization zone is proportional to the grain size.

The numerical analyses allow in addition the investigation of the stress-strain response of
the system and its dependence on the size of the microstructure. The smaller the grain
size is in our model, the steeper the softening branch becomes. This has a direct effect on
earthquake nucleation and on the transition from aseismic to seismic slip (Scholz, 2002).

Given that the Cosserat continuum leads to a localization zone of finite thickness (contrary
to the Cauchy continuum, cf. Section 4.2.2) it makes possible the investigation of the influ-
ence of the hardening modulus evolution on the shear band thickness. Different softening
laws are used, including an exponential softening of the friction coefficient, which is ade-
quate for modeling the mechanical behavior of fault gouges and can be calibrated based
on experimental data. Hardening (softening) modulus encapsulates and upscales various
micromechanical phenomena and, together with the intrinsic Cosserat lengths, affects the
stress-strain response. However, the roles of the hardening modulus and grain size are
distinct. It is shown that the hardening modulus controls only the slope of the softening
branch, while the grain size controls the slope and the localization thickness as well.

Thermal pressurization is a destabilizing mechanism that is practically negligible at the nu-
cleation phase of seismic slip. Its effect is rather noticed during rapid co-seismic slip, where
temperature increases significantly due to friction. The magnitude of this phenomenon is
described through the, so-called, thermal pressurization coefficient, which expresses the
increase of pore pressure in the gouge due to temperature increase. The numerical anal-
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yses confirm the qualitative results of the LSA (Chapter 2), and go further. Under high
shearing deformation rates, it is shown that the thermal pressurization coefficient has a
direct impact on the post peak evolution of the stress-strain response. In particular, in-
creased softening is observed for higher values of the aforementioned coefficient, which is
compatible to the fact that the localization zone is thinner as explained above. The effect
of thermal pressurization is pronounced even when no-hardening/softening is considered,
showing the significance of the mechanism in modeling the energy budget during seismic
slip.

A substantial result exhibited in this Thesis is that both the softening, post-peak behavior
and the shear band thickness depend on the applied velocity, showing thus rate depen-
dency. This is despite the fact that the constitutive description of the material is assumed
rate-independent. Thermal pressurization is again the central mechanism for this apparent
rate-dependent behavior. In particular, the applied velocity controls the local dissipation
rate due to friction and, consequently, the pore pressure increase rate. The pore pressure
increase rate is controlled in parallel by the thermal and pore-pressure diffusion mecha-
nisms, which introduce a characteristic time scale. Under high velocities the characteristic
diffusion rate is small in comparison to the dissipation rate, which has as a result a more
localized profile of deformation and a steeper post-peak softening branch. However, under
low velocities, the diffusion mechanisms dominate leading to a homogeneous deformation
profile and no softening, if perfect plasticity is chosen.

4.7 Perspectives

In this study, we focus on the role of the most prominent THM couplings related to seismic
slip and of the microstructure. Yet, the present model can be extended to account for other
weakening processes observed in fault zones:

• Grain cataclasis can be modeled by adequately varying the internal length of the
Cosserat model (see Chapter 2), but it should be completed by a damage law that
takes into account the evolution of mechanical properties with microstructure change.

• Chemical reactions can be taken into account by adding additional terms to the
constitutive description of the Cosserat material and the mass and energy balance
equations (Veveakis et al., 2013, Sulem and Famin, 2009b, Platt et al., 2015, Brantut
and Sulem, 2012b).

• The flash heating phenomenon can also be incorporated into the model considering
a thermal weakening into the plastic equations.

The above mentioned processes will provide a finer description of the main weakening mech-
anisms that take place at finer time and length scales and give valuable results regarding



4.7 PERSPECTIVES 125

seismic slip and energy dissipation.

Regarding the constitutive law, the architecture of the numerical implementation is general
enough to allow more elaborated constitutive descriptions. For instance, depending on the
available experimental data, more sophisticated rate independent or rate dependent elasto-
(visco)-plastic laws (Forest et al., 1997) combined with damage can be used. In order to
allow a more detailed description of the mechanical behavior of the fault gouge material.
Moreover, based on adequate upscaling schemes, detailed micro-mechanical grain-by-grain
simulations can be used in order to determine the effective Cosserat constitutive properties
and their evolution with seismic slip.

The formulation of this model is limited to small deformations. However, valuable informa-
tion about earthquake nucleation and seismic slip was obtained. Modeling seismic slip of
large magnitude earthquakes which exceeds the centimetric scale is possible by extending
our model to large deformations (Sievert et al., 1998). This seems to be straightforward
by adopting an updated Lagrange framework.

The present work enabled to assess the influence of the microstructure on the stress-strain
response and therefore on the energy dissipation during seismic slip. It is an on-going work
to quantify the role of the various weakening mechanisms on the seismic energy budget.
This will allow the comparison with field measurements of earthquakes and in this way to
obtain more information about the seismic sources.

Finally, despite the fact that we focused in this Thesis on fault mechanics, the developed
tools and theory are general and flexible to allow the study of other instability problems
in geomechanics.
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Appendices

A.1 Link between different formulations of the mass balance
equation

After writing the mass conservation for the fluid and the solid phase (see section 2.2.4),
we obtain equations 2.12 and 2.13.

−ρs∂n
∂t

+ (1− n)
∂ρs

∂t
+ ρs (1− n)V s

i,i = 0 (A.9)

n

ρf
∂ρf

∂t
+

1− n
ρs

∂ρs

∂t
+ V s

i,i + (n(V f
i − V

s
i )),i = 0 (A.10)

As V s
i,i = ε̇v, Eqs. A.9 and A.10 can be written:

− 1

1− n
∂n

∂t
+

1

ρs
∂ρs

∂t
+ ε̇v = 0 (A.11)

n

ρf
∂ρf

∂t
+

1− n
ρs

∂ρs

∂t
+ ε̇v + (n(V f

i − V
s
i )),i = 0 (A.12)

n represents the porosity of the current volume dΩt, as it refers the current volume to the
current configuration, it is called the Eulerian porosity (Coussy, 2004). In contrast, the
Lagrangian porosity, written here φ, refers the current porous volume to the initial volume
dΩt0. We have the relationship:

n dΩt = φ dΩt0 (A.13)

The hypothesis of infinitesimal transformations gives us the approximation:

dΩt0 ≈
dΩt

1 + εv
≈ dΩt(1− εv) (A.14)

If we insert Eq. A.14 in Eq. A.13, take the time derivative and neglect the second order
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terms, we get the relationship between the variation of Lagrangian porosity and Eulerian
porosity.

ṅ = φ̇− φ ε̇v (A.15)

From Eqs. A.11, A.13 and A.15, we have

ε̇v = φ̇− 1− φ
ρs

∂ρs

∂t
(A.16)

φ

ρf
∂ρf

∂t
+

1− φ
ρs

∂ρs

∂t
+ ε̇v + (φ(V f

i − V
s
i )),i = 0 (A.17)

We can insert the expression of εv in Eq. A.16 into Eq. A.17.

φ

ρf
∂ρf

∂t
+ φ̇+ (φ(V f

i − V
s
i )),i = 0 (A.18)

Following Rice (2006b), the porosity is then decomposed into its elastic and inelastic part
n = nel + nie. Thus,

∂φ

∂t
=
∂φel

∂t
+
∂φie

∂t
= φ βn

∂p

∂t
+ φ λn

∂T

∂t
+
∂φie

∂t
(A.19)

where βn and λn are the compressibility and the thermal expansivity of the pore volume
respectively.

βn =
βd − βs

φ
− βs

λn = λs (A.20)

where βd = 1/K is the drained compressibility. Finally, from Eqs. A.18, A.19, 2.15 and
2.16

∂p
∂t

= c∗hy p,ii + Λ
∂T
∂t
− 1

β∗∗
∂φie

∂t
(A.21)

In Eq. A.21, c∗hy = χ/(ηfβ∗∗) is the hydraulic diffusivity, β∗∗ = φ(βf + βn) is the storage
capacity, Λ = (λf−λn)/(βf +βn) is the undrained thermal pressurization coefficient (Rice,
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2006b).
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A.2 Micro-mechanical considerations

In this section, we will follow the method presented in Mühlhaus and Vardoulakis (1987) to
define the stress and plastic strain invariants for a granular medium modeled by a Cosserat
continuum. The granular medium is represented by a random assembly of spheres with a
radius R. If we consider two spheres in contact embedded in a continuum, which is defined
by the fields ui and ωci , like in Fig. A.40, the relative displacement and rotation of the 2
particles is given by (for small rotations):

u∗i − ui = 2R ui,j nj

ωc∗ij − ωcij = 2R ωcij,k nk (A.22)

x2

u

u*

Δut
2R

ωc
ij

ωc*
ij i

i

i
-Rni

Rni

2

1
x1

x3

Figure A.40: Relative displacement and rotation for 2 grains in contact

We express the displacement of the different spheres at the contact point:

u
(1)
i = ui +R ωcij nj

u
(2)
i = u∗i −R ωc∗ij nj (A.23)

Thus the relative displacement at the contact point can be written:

∆ui = u
(2)
i − u

(1)
i = 2R(ui,j − ωcij −Rωcij,k nk) nj (A.24)
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or,

∆ui = 2R(γij +R eijk κkl nl) nj (A.25)

And the tangential part, of the relative displacement:

∆uti = 2R(γij − γpq np nq δij +R eijk κkl nl) nj (A.26)

We can calculate its quadratic mean around a sphere of radius R, which defines a invariant
measure of slip:

< ∆uti >= [
1

S

∫
s

∆uti∆u
t
idS]1/2 (A.27)

where S is the surface of the sphere. By using the following identities:

∫
s
ninjdS =

4π

3
R2δij∫

s
ninjnkdS = 0∫

s
ninjnknldS =

4π

15
R2(δijδkl + δikδjl + δilδjk) (A.28)

we get,

< ∆uti >=

√
16

15
eij eij −

4

15
eij eji +R2(

16

15
kij kij −

4

15
kij kji) (A.29)

In order to retrieve the classical shear strain intensity
√

2 eij eij when the Cosserat effects
vanishes (eij = eji and κij → 0 ), the coefficients in Eq. A.29 are multiplied by a factor
5/2 (Vardoulakis, 2009). It results in the following definition for γp:

γp =
√
g1 eij eij + g2 eij eji +R2(g3 kij kij + g4 kij kji)

g1 = g3 =
8

3
and g2 = g4 = −2

3
(A.30)

The expression of the shearing intensity τ that is dual in energy with γp is deduced from
Eq. A.30. We set the plastic strain rate to be equal to the Lagrange multiplier and we
obtain some conditions. Its final form is:
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τ =

√
h1 sij sij + h2 sij sji +

1

R2
(h3mijmij + h4mijmji)

h1 = h3 =
2

5
and h2 = h4 =

1

10
(A.31)

A micro-mechanical model could also be developed by considering that the normal stresses
acting on a elementary volume aren’t uniform and, thus, introduce moments. This hy-
pothesis is justified knowing that continuum with micro-structure present large gradients
of stresses and their variation at the level of micro-structure can’t be ignored.

By emphasizing the contact tractions over the periphery of grains, it results on a different
definitions of the invariants (Sulem and Vardoulakis, 1990) (Mühlhaus and Vardoulakis,
1987). It is called the "static" Cosserat model.

A.3 Determination of the shear band thickness

In this paper, the plastic strain rate distribution in the layer, γ̇p(x2), is chosen to evaluate
the shear band thickness, like previous numerical as it enables to follow the instantaneous
evolution of the system (Platt et al., 2014, Hall et al., 2010). The function used to in-
terpolate this field and determine from its expression the thickness is a Cosine function.
However, it is not the only choice and previous authors have used a Gaussian shape ap-
proximation of the strain rate profile (Andrews, 2002, Noda et al., 2009, Garagash, 2012,
Platt et al., 2014, Rempel and Rice, 2006) at each time step:

γ̇p(x2) ≈ A√
2πD

e−
1
2

(
x2−Y
D

)2
(A.32)

where A is the amplitude of the maximum plastic strain rate, D is the standard deviation
of the Gaussian distribution and Y is the position of the center. From the fitting of γ̇p(x2)

with this Gaussian shape function, we define the shear band thickness as twice the full
width at half maximum 2

√
2ln(2)D.

The trigonometric interpolating function used in the paper is defined by:

γ̇p(x2) ≈ B.χ[Y−λ
2

;Y+λ
2

](x2).[cos(2π
(x2 − Y )

λ
) + 1] (A.33)

where B is twice the maximum plastic strain rate, Y is the position of the center, λ is the
wavelength of the cosine function and χ[Y−λ

2
;Y+λ

2
](x2) is a rectangular function defined by:

χ[Y−λ
2

;Y+λ
2

](x2) =

1 if x2 ∈ [Y − λ
2 ;Y + λ

2 ]

0 otherwise
(A.34)
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As stated in the paper, the wavelength of the cosine function is interpreted directly as the
shear band thickness and allows a clearer link with results of the linear stability analysis
(Rattez et al., 2017).
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Figure A.41: Interpolation of γ̇p(x2) with a Gaussian and a cosine functions for τ12 = 48
MPa in the example presented in Section 4.2.1

In Fig. A.41, we notice that the interpolation by the two different functions are very similar.
To evaluate the goodness of the fit, we determine the adjusted coefficient of determination
at each time step in the plastic regime. The mean value over the full localization process
of this coefficient for the Gaussian fit is 0.983, whereas the mean value for the cosine fit is
0.995.

In Fig. A.42, the shear band width evaluated by both approximations is shown for the
example of Section 4.2.1, with a mesh of 80 elements. Furthermore, we have plotted the
size of the plastic zone (the zone defined by F = 0 (see Eq. 4.1). All curves exhibit the
same tendency: a progressive decrease of the size of the band with accumulated slip. In
the paper, the shear band thickness is computed using the Cosine function, as the adjusted
coefficient of determination is better.
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Figure A.42: Interpolation of γ̇p(x2) with a Gaussian and a Cosine function for the last
timestep of the example presented in Section 4.2.1
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A.4 Influence of the boundary conditions

The above numerical results are obtained by imposing zero rotations at the upper and
lower boundaries of the layer. This type of boundary condition leads to the formation of
a boundary layer in the elastic regime at the top and bottom edges. Consequently, no
imperfection in the plastic regime is needed to trigger the localization (de Borst, 1991,
Ebrahimian et al., 2012). Moreover, it makes the comparison between the different com-
putations easier as the shear band always develops in the middle, where the rotations can
freely develop (see Fig.4.3).

In Fig. A.43, we present the results of computations imposing a zero moment boundary
condition (µ32 = 0) at the top and bottom of the layer. These results are compared
with the ones obtained when zero Cosserat rotation is imposed at the boundary ωc3 = 0.
The influence of the position of an imperfection is explored by inserting notches in the
geometry. We observe that without any imperfection, numerical errors are sufficient to
trigger the localization, which occurs a bit later (in terms of deformation) as compared
to the case with zero rotation imposed at the boundary. The position of the shear band
is determined by numerical approximations and in general is not located in the middle of
the layer (Fig. A.44 (a)). The form of the softening branch in the post localization regime
looks the same as only one band develops. To overcome this issue, a notch of 10µm in the
middle and at one quarter of the layer is introduced to trigger the localization from the
beginning of the softening branch and at the location of the notch (de Borst, 1991).

ωc z=0

μ32=0

μ32=0 notch middle

μ32=0 notch quarter
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Figure A.43: Effect of the Boundary conditions on the stress-strain diagram

In the example with a notch at one quarter of the layer and zero moment boundary condi-
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tions, the shear band develops at the upper boundary (Fig. A.44 (c)). The notch provokes
the initiation of the shear band, but the band migrates then to the upper boundary. Thus,
only half a band dissipates the energy of the system. This explains why the softening
branch gets much steeper.

Nevertheless if we put a notch in the middle, a band appears at the location of the notch and
remains there, but we also observe the emergence of two half bands at the top and bottom
boundaries (Fig. A.44 (b)). As two full bands in total dissipate the plastic energy in this
case, the softening branch is less steep. Appearence of multiple shear bands is acceptable as
the solution of the underlying non-linear mathematical problem is not unique, as explained
in Chambon et al. (2001). In this paper, the authors have developed a random initialization
of the directional searching algorithm to observe different possible solution of a problem
in post-localization. As shown in Besuelle et al. (2006) for the case of biaxial loading,
different patterns of localized solutions for the same problem are obtained after a random
initialization, showing solutions with 1, 2 or 3 bands.

w3
c

(a) (b) (c)

Figure A.44: Cosserat rotations, ωc3, plotted on the deformed mesh for τ12 = 47MPa of
each simulation with µ32 = 0 imposed at the top and bottom of the layer
and for: (a) no notch (b) a notch in the middle of the layer (c) a notch at
the quarter of the layer.
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A.5 Methodology to compare LSA and FEM shear band thick-
ness

The methodology to assess the shear band thickness performing a Linear Stability Analysis
(LSA) is widely developed in Chapter 2. In this section, we briefly describe the main results
and explain how it is applied in order to compare with the numerical results described in
Section 4.2.3.

The bifurcation parameter used for the Lyapunov stability analysis in the companion paper
is the hardening modulus. For a value of this modulus, the study of the stability diagram
enables to obtain an evaluation of the shear band thickness. The way this modulus de-
velops during shearing is calculated from a stress-strain diagram obtained either from an
experiment or a numerical simulation. Thus, the first step for the comparison consists in
assessing the hardening modulus evolution for each numerical simulations.

In order to determine the hardening modulus evolution to insert in the LSA, some prelim-
inary calculations are performed for compatibility of the homogeneous associated system
for which the LSA is applied. The LSA in the companion paper is performed consider-
ing boundary conditions for the perturbation to the layer defined as µ32 = 0. In other
words, the linear stability analysis is valid for a geometry that has no Cosserat effects at
its boundary. To fulfil this condition, the evolution of profiles for the shear stresses τ12, τ21

and the couple stresses µ32 are plotted (see Fig. A.45). From these profiles, we can extract
of value of the effective height h∗ used to calculate the deformation. h∗ is defined as the
minimum distance between the points for which µ32 is less than 0.1% of the maximum
absolute value.

The global deformation for the associated system is then calculated using the formula

γ∗12 =
u1(h−h

∗
2

)−u1(h+h∗
2

)

h∗ . The elastic part of the deformation is retrieved by γ∗e12 = τ12
G .

The plastic part of the shear deformation is calculated by γ∗p12 = γ∗12 − γ∗e12 and is equal to
the generalized plastic shear strain γ∗p with the assumptions of small perturbations from
the homogeneous state (Cauchy continuum). Furthermore, outside of the shear band,
where Cosserat effects are negligible (τ12 ≈ τ21 and µ32 ≈ 0), the generalized shear stress
τ is equal to the shear stress τ12. We can therefore plot the τ − γp diagram and from the
slope of this diagram obtain an effective hardening modulus that can be used for the LSA
(see Fig. A.46).

In order to evaluate the shear band thickness in the companion paper from the linear
stability analysis, THM couplings and inertia terms are considered. But these assump-
tions are not fulfilled for all numerical simulations. When only THM couplings are taken
into account(but not the inertia), the stability diagram presents a asymptote instead of a
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Figure A.45: Profile of shear stresses τ12, τ21 and couple stress µ32 for hs=-0.5, R = 10µm
at the last time step to illustrate the effective height for the calculation of
the plastic strain.
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Figure A.46: Schematic diagram of the shear stress invariant versus plastic shear strain
invariant showing the geometric interpretation of the hardening modulus Hs
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maximum and the shear band thickness is the wavelength associated with the position of
this asymptote (see Fig. A.47). If inertia terms are considered for the purely mechanical
system, there is a maximum in the stability diagram. Without inertia, it is not possible to
perform a LSA for this system as no temporal terms remain in the equations. Therefore,
the diagram is plotted with inertia terms, and the values of the minimum unstable wave-
length λmin and the wavelength of fastest propagation λmax are extracted (see Figs. A.48
and A.49).

0.2 0.4 0.6 0.8 1.0
λ (mm)
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1
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Figure A.47: Example of stability diagram for a THM example neglecting inertia terms
showing an asymptote for λ=0.6mm (Hs = −25 MPa).
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Figure A.48: Example of stability diagram for an isothermal, drained example considering
inertia terms showing the wavelength selection (Hs = −200 MPa).
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Figure A.49: Example of wavelengths selection evolution with hardening for an isothermal,
drained example considering inertia terms.
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