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Notation

Symbols:

— Scalars: a, b... A, B... a, (...

— Vectors: a, b...

— 2 order tensors: A, B... a, B3...
— 4t order tensors: A, B...

— Quantities with undefined order: A, B...

2"l and 4" order identity tensors:

1 1 if i=7y
(Dig =0 (Dijrw = 5(0iwdju + dudje)  where 5y = { 0 if iy

Tensorial products:

— Single contracted products:

— Twice contracted products:

A:B=A;B; (A: B);j = AijiuBr (A B)ijir = AijmnBrnki

— Dyadic products:

(a®b);; = a;b, (A® B)ji = Aij B (A® B)ijr = AiBji (A® B)iju = AuBjy



NOTATION

— Undefined order scalar product:

A x B if A and B are scalars
AxB = A-B if Aand B are vectors
A: B if Aand B are 2" order tensors
Tensorial operators:
— Transpose:
(AN = A (AT)iju = Apiij

Trace of a 2" order tensor:

— Inverse of a 2" order tensor:

Al such as

At such as

A A=A A=T

A:AT=ATA=T1

(as long as A is invertible)

Inverse of a 4" order tensor that has the minor symmetries (Ayji = A = Ay

(as long as A is invertible)

Differential operators:

— Gradient:
Oa da;
(gradw(a))i = (Gradx(a))zj = o,
— Divergence:
. da; : _ 04y
divg(a) = oz, (divy(A)), = O,
— Rate:
. dA
A=

Positive and negative part of a scalar:

Ja ifa>0
(9, =10 ifazo

a ifa<0
<@:{o ifa>0




Voigt notation:

As usual in continuum mechanics, the symmetric 2" order tensors (A;; = A;;) and the
4™ order tensors having at least the minor symmetries (A;jx = Ajiy = Aijix) can be con-
sidered with reduced orders according to the Voigt notation for simplifying the calculations.
In this manuscript the following Voigt notation is adopted.

When symmetric, a 2"¢ order tensor has only 6 independent components and can be
written under the form of a 6 x 1 vector. The "stress-type" and "strain-type" 2" order
tensors, respectively denoted by o and e, are expressed in Voigt notation as follows:

(

011
022
011 012 013
033
g — 0922 0923 — 0 = s
Voigt not. J12
SyI1nmn. 033
013
L 923 )
(
€11
€22
€11 €12 €13 c
33
g = €99 E93 — &€ =
Voigt not. 2612
SyIn. €33 9
€13
k2€23/

Using this formalism, the twice contracted product between a "stress-type" and a "strain-
type" quantity can be written as a scalar product of two vectors:

(0'11\ T r e \
022 €22
g.g — 733 X < £33
Voigt not. 012 2812
013 2e13
L 023 | [ 2623

However, some precautions must be taken when dealing with the twice contracted product of
two 2"? order tensors of the same type. In order to be well consistent with the the tensorial
calculation, the following expressions are proposed to express the twice contracted product
between two "stress-type" or between two "strain-type" quantities:

(/)" 100000 (o1
Jéz 1 00 00 0929
O'/ o — O'ég 5 1 0 00 5 033 :
Voigt not. 0192 2 00 012
0'33 2 0 013
093 ) sym. 2 | 023 )




NOTATION

e )T 100000 (1)
8/22 1 0 0 0 O £929
E, e 833 % 1 0 0 0 % €33
Voigt not. 25/12 % 0 0 2612
2¢! 10 2¢e13
 2e93 ) sym. 3 [ 2623 |

A 4 order tensor with the minor symmetries has only 36 independent components and
can be written under the form of a 6 x 6 matrix. There are four types of 4" order tensors:
the "stiffness-type", the "compliance-type", the "stress-to-stress-type'" and the "strain-to-
strain-type". They are respectively denoted in this section by C, S, B and A.

A "stiffness-type" tensor results from the dyadic product of two "stress-type" tensors.
The twice contracted product of a "stiffness-type" 4" order tensor with a "strain-type" 2"
order tensor returns a "stress-type" quantity. Written with the help of the Voigt notation,
this gives:

Cllll CY1122 CY1133 CY1112 CY1113 01123
C'2211 C'2222 C’2233 C’2212 C’2213 C’2223

C=0c'®o”" —C=
Voigt not. 01211 01222 01233 01212 01213 01223

: _ / "
with Cyjp = 00k

4 A 4 3\
011 Ciiin Ciizz Chiss Ciiiz Ciis Chigs €11
022 Cao11 Cazoa Caozs Caora Caorg Caog €22
o—=C:¢ o33\ _ Cssi1 Cszaa Cszzs Czzia Cszig Csgos % €33
Voigt not. 012 01211 01222 01233 01212 01213 C'1223 2€12
013 Cizi1 Cizza Ciszzs Cisiz Cizis Chsas 2¢e13
L 023 ) Casin Cazaa Casss Cazia Caziz Casos \2523 )

A "compliance-type" tensor results from the dyadic product of two "strain-type" tensors.
The twice contracted product of a "compliance-type" 4" order tensor with a "stress-type"
274 order tensor returns a "strain-type" quantity. Written with the help of the Voigt nota-
tion, this gives:

Stiiir Stz Suss 25112 251113 251123
Soo11 S22 Sz 259212 259213 2592203
S S S 25 25 25
S—e @e S _ 3311 3322 3333 3312 3313 323 |
Voigt not. 251211 251222 251233 451212 4Si213 451203
251311 251322 251333 451312 451313 451323
259311 259322 259333 459312 452313 452323




: o

e=S:0 ———
Voigt not.

.

€11
€22
€33
2612
2613
L 2823 )

\

51122
52222

53322
251222

251322
252320

51133
S2233

S3333
251233

251333
259333

251112 251113 257123
25912 25213 252903
2533120 253313 253323
451912 451213 451223
451312 451313 451323
459312 452313 459323

011
022
033
012
013

L 023

A "stress-to-stress-type" tensor results from the dyadic product of a "stress-type" with

a "strain-type" tensor. The twice contracted product of a "stress-to-stress-type

tensor with a "stress-type order tensor returns a "stress-type" quantity. Written with

" 2nd

the help of the Voigt notation, this gives:

B=0'®e —— B=
Voigt not.

M _ ! -

c'=B:0 —

Voigt not.

7
023)

Bii2a  Biiss
Bz Bagss
B3z Bssss
Biag2  Biass
Bizgo  Biass
Ba3as  Basss

Biiss
Baass
Bs3ss
Biass
Bi3ss
Bo3ss

2Bi112
2B212
2B3312
2B1212
2B1312
2Bo312

2Bi1112
2B212
2Bs312
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2B1312
2B9319

2B113
2B2213
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2B1223
2B1323
2B9393

2By123
2Ba293
2B3323
2B1223
281323
2Ba323

" 4th

011
022
033
012
013

923 )

order

A "strain-to-strain-type" tensor results from the dyadic product of a "strain-type" with

a "stress-type" tensor. The twice contracted product of a "strain-to-strain-type

tensor with a "strain-type order tensor returns a "strain-type" quantity. Written with

" 2nd

the help of the Voigt notation, this gives:

A=e'Ro — > A =

Voigt not.

3 _ ! /

e'"=A:e ——
Voigt not.

(

V72
€1

€92
€33
2¢ey
2€l3
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NOTATION

Note that, with the Voigt notation, the inverse of a "stiffness-type" tensor returns a
"compliance-like" tensor and reciprocally, the inverse of a "compliance-like" tensor returns
a "stiffness-like" tensor. The inverse of a "stress-to-stress" or a "strain-to-strain" tensor
gives a tensor of the same type.

Additionally, the 2"¢ and 4" order identity tensors are given in Voigt notation by:

(1) 100 000
1 100 00
1 100 0
I= o’ = 1 00
0 10
L0 sym. 1
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GENERAL INTRODUCTION

1 Motivations and context

A composite is a material constructed from two or more constituents with significantly
different physical properties which, when combined, produce a new material with charac-
teristics unavailable from its individual components. The constituents remain separate and
distinct within the composite material. A vast majority of composites especially in auto-
motive industry, are made of a polymer matrix and fibres (or reinforcement). The matrix
surrounds and supports the fibres by maintaining their positions. The fibres impart their
stiffness and strength properties to mechanically enhance the matrix, which is usually lighter
than the reinforcement. This produces materials that are particularly suitable for structural
applications. They have very interesting properties in terms of stiffness and/or strength,
while being relatively light when compared to traditional materials like metals.

For several decades, composite materials, due to their remarkable properties, have been
extensively utilized in many industries, such as aeronautic or automotive, where designing
lightweight structures becomes an objective of prime importance. This increasing utilization
is achieved with strong requirements in terms of performance, strength and durability. In the
automotive industry, thermoplastic-based composites appear to be an interesting alternative
to classical metallic materials. Indeed, besides their lightweight and good mechanical prop-
erties, this type of composites can be easily and rapidly manufactured for a reduced cost.
Today, thermoplastic-based composites are mainly utilized for moderately loaded structural
components (i.e. bumpers). However, the actual economic and ecological requirements lead
the manufacturers to consider composite materials also for highly loaded components that
were classically made of metals until now.

The wide-scale use of thermoplastic-based composites in structural applications has been
hampered by the lack of predictive simulation tools, especially for failure and lifetime estim-
ation. Unlike classical materials, the fatigue of thermoplastic-based composites still remains
a major scientific issue and the current prediction tools do not take into account all the
specificities that exist in such materials. Among them, it can be mentioned: the damage
mechanisms coupled to the rheology of the matrix, the anisotropy, and the effects related to
the microstructure, which play a key role in the initiation and evolution of these phenomena.

2 Scope of the thesis

This thesis is part of the innovative COPERSIM Fatigue project (COmposite PERform-
ance SIMulation), which aims at structuring the modelling and simulation tools towards the
durability prediction of composite components. It involves a consortium with the follow-
ing industrial and academic partners: IRT Jules Verne (project management leader), PSA,
Renault, Solvay, and Plastic-Omnium and Arts et Métiers ParisTech (scientific leader). The
aim of this project is the development of an integrated multi-scale modelling approach for
failure analyses and lifetime estimations of composite structures for automotive applications.
To achieve these objectives, it is essential to fully understand and predict the cyclic and
time-dependent behaviour of thermoplastic-based composites through the description of the
local damage mechanisms and deformation processes. This is the scope of the present thesis,
where the attention will be focused on the case of thermoplastic-based woven composites.

In this thesis, a multi-scale model established from the concept of periodic homogeniz-
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ation is utilized to describe the cyclic and time-dependent response of thermoplastic-based
woven composites. In the proposed approach, the macroscopic response of the composite
is determined from a FE simulation of the unit cell representative of the microstructure,
where the local constitutive laws of the components are integrated (matrix and the yarns).
The local behaviour of the thermoplastic matrix is described by a phenomenological multi-
mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and ductile
damage. For the yarns, a hybrid micromechanical-phenomenological constitutive model is
utilized to describe the local behaviour of the yarns. The latter considers anisotropic damage
and anelasticity induced by the presence of a diffuse micro-crack network inside the yarns.
Besides describing the cyclic and time-dependent response of thermoplastic-based woven
composites, the multi-scale model is employed to understand the local damage mechanisms
and deformation processes, and to analyse their influence on the macroscopic response of
the composite. In parallel to the modelling efforts, experimental works are also carried out
on both the studied composite and the unfilled matrix in order to feed and to validate the
fully integrated multi-scale modelling approach.

It is important to mention that the proposed multi-scale modelling approach is entirely
modular, as it results from the assembly of several sub-models and from the geometric defin-
ition of the microstructure. Thus, if a composite with another composition and/or another
periodic microstructure is to be studied, then the present multi-scale approach is still valid
and only the ingredients should change.

This thesis is structured as follows:

— In Chapter I, a comprehensive framework of multi-scale modelling based on the concept
of periodic homogenization is presented and applied to the case of woven composites.
The approach establishes a proper transition between the macroscopic and microscopic
scales, enabling to simulate the macroscopic response of a composite through the in-
tegration of the local constitutive equations of each individual component (the matrix
and the yarns).

— In Chapter II, a phenomenological multi-mechanisms constitutive model is proposed
to describe the mechanical behaviour of thermoplastic polymers and is intended to
be used as matrix phase in the multi-scale modelling approach for the woven com-
posite. The constitutive equations lie within the framework of thermodynamics and
account for viscoelasticity, viscoplasticity and ductile damage. The developed model
is identified for the polyamide 6-6 through a suitable experimental program as well as
a stepwise strategy.

— In Chapter III, a hybrid micromechanical-phenomenological constitutive model is pro-
posed to predict the mechanical behaviour of unidirectional composites and is intended
to be used as yarn phase in the multi-scale modelling approach for the woven compos-
ite. The constitutive equations are formulated within the framework of thermodynam-
ics and account for anisotropic damage and anelasticity induced by the presence of a
diffuse micro-crack network. The representation of damage is achieved through a mi-
cromechanical description of a micro-cracked Representative Volume Element (RVE).

— In Chapter IV, a multi-scale model for woven composites is established from the ho-
mogenization scheme described in Chapter I, in which the local constitutive models

11



GENERAL INTRODUCTION

of the matrix and the yarns presented in Chapters IT and III, respectively, are intro-
duced. This multi-scale model is employed to capture the cyclic and time-dependent
macroscopic response of the studied composites.

3 Studied composite

The composite material studied in this work is supplied by Solvay under the denom-
ination FEwvolite. As shown in Figure 1, this composite is made of a polyamide 6-6 matrix
and a E-glass balanced 2-2 twill weave woven reinforcement (650 g.m~2). Such a weaving
pattern is obtained by passing a weft yarn over two warp yarns and then under two warp
yarns and so on, with an offset, between rows to create the characteristic diagonal pattern.
The material is manufactured by thermocompression process and, after impregnation, has
a fibre volume fraction of 50%. It is provided under the form of plates with the following
stacking sequences: [0°],, [£15°],, [£30°], and [£45°],. The thickness of the individual lay-
ers is about 0.5 mm, making a total thickness of 2 mm for the plates.

— -
e
o
¥ New
¥ ot oy
I 8 concept
ot
! ! | .'n “‘
T -
Continuous 12 A
Resin fiber Evolite
Thermoplastic by Technyl
polyamide

Figure 1: Studied composite material: Evolite by Solvay.
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CHAPTER I. MULTI-SCALE MODELLING OF WOVEN COMPOSITES
USING PERIODIC HOMOGENIZATION

The content of this chapter was discussed in various conference proceedings [164, 166,
184].

1 Introduction

Homogenization and multi-scale analyses of heterogeneous materials in which the com-
ponents exhibit non-linear mechanical responses, such as thermoplastic-based woven com-
posites, is nowadays at the centre of the research attentions. Among all the existing theories,
two of them appear to be particularly attractive for this purpose, as they can easily account
for many types of constitute laws and microstructures (including woven reinforcements):

— The mean-field approaches [172] based on the Eshelby solution [59] such as the mi-
cromechanical scheme of Mori-Tanaka [137, 16|, the self-consistent method |77, 141|
or the method proposed by Ponte Castafieda and Willis [161]. These theories usually
deal with randomly distributed ellipsoidal inclusions as inhomogeneities and can also
account for an eventual coating [17, 19]. Particularly adapted to the cases of short
and long fibres reinforced composites, woven composites may be eventually considered
if the yarns undulation is neglected, or by discretizing the wavy yarns into smaller
segments and replacing them with an equivalent system of ellipsoids [1]. While ini-
tially developed for linear elasticity or thermoelasticity [158|, these methods can be
extended to the case of non-linear behaviours through an incremental formulation
[66, 96, 49, 29, 157, 159, 160, 41, 27, 196, 134, 45, 90, 195, 2, 33]. In such analyses,
the local instantaneous stiffness (tangent operator) of each phase is used to compute
the stress-strain localisations and the resultant overall instantaneous response of the
composite. While these methods are based on semi-analytical solutions with fast com-
putations, they unfortunately keep a limited accuracy and must be used with caution,
especially when the matrix phase exhibits a non-linear response [96]. This inaccuracy
is mainly caused by the local fields in the matrix that are considered in an average
way. This is likely not to give good enough estimates when the non-linearity is matrix-
dominated. However, it should be noted that more accurate solutions are sometimes
obtained via specific enhancements [49, 29, 157, 196, 195]. Another issue regarding
the Eshelby-based mean-field methods is the lack of energetic consistency between the
macroscopic and microscopic works (non-respect of the Hill-Mandel condition). This
issue is illustrated by the absence of major symmetry on the macroscopic elasticity
tensor estimated from Mori-Tanaka or self-consistent for certain configurations of mul-
tiple inhomogeneities with different shapes [18].

— The periodic homogenization [173, 181, 133|, by opposition to the mean-field theor-
ies, is a full-field approach that is particularly suitable for composites with periodic
microstructure such as woven composites. Fundamentally, periodic homogenization
provides a rigorous framework allowing to properly define the concept of homogen-
ized behaviour [30]. Moreover, this framework is independent of the choice of the
local constitutive laws of the constituents [34]. Due to its periodicity, the RVE is
represented by the smallest repeating element, commonly referred as the unit cell,
on which well-defined boundary conditions are applied. Except for particular cases,
the resolution of such a problem requires the use of numerical techniques, mostly the
finite element method, that may lead to important computational costs. The geo-
metry of the unit cell is then represented through a finite element mesh integrating
the local constitutive equations of each sub-domain. Thereby, the obtained solutions
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generally show good accuracy, depending on the mesh discretization, and are well
energetically consistent, as it is proven that the Hill-Mandel condition holds when
dealing with periodic homogenization. This last point is very important, because it
allows to extend this approach to fully-coupled thermomechanical analyses |32, 22, 33|.

From the above discussion, the theories of periodic homogenization are the most suit-
able to the case of woven composites. This chapter presents a comprehensive framework
of multi-scale modelling based on the concept of periodic homogenization [173, 181, 133]
that lies within the small strain assumption at isothermal conditions. The approach estab-
lishes a proper transition between the macroscopic and microscopic scales. The macroscopic
response of a composite with a periodic microstructure is then obtained through the simu-
lation of its unit cell, integrating the local constitutive laws of each individual component.
From a practical point of view, specific boundary conditions are used to control the unit cell
with the help of additional degrees of freedom that are directly linked to the macroscopic
strains and stresses [112, 113, 114]. Proceeding this way then allows to apply any state of
macroscopic strain, stress or even mixed stress-strain on the unit cell. A novel extension of
this method is also proposed, permitting to control the unit cell with any type of off-axis
loading paths, while keeping a unit cell defined in its coordinate system.

In order to apply the framework of periodic homogenization to the case of woven com-
posites, it is necessary to provide a geometric representation of the unit cell along with its
associated finite element mesh. In this purpose, many works have been already undertaken
[116, 117, 188, 118, 177, 40, 115| , leading to the development of several dedicated tools.
Among these tools, the TexGen platform [115], an open source and free software developed
at the University of Nottingham, shows very interesting capabilities in generating finite ele-
ment unit cells of any woven patterns. That is why it is utilized in this work.

This chapter is structured as follows: In Section 2, a general framework of multi-scale
modelling based on the concept of periodic homogenization [173, 181, 133| is presented.
The latter includes both theoretical and practical aspects of the approach. Section 3 is de-
voted to the geometrical and finite element representation of unit cells for woven composites
via the software TexGen [115]. Section 4 presents applicative examples dealing with linear
elasticity like the assessments of the homogenized stiffness properties of a woven composite.
Note that non-linear applications will be treated in Chapter IV, once the local constitutive
laws will have been introduced in Chapters II and III. To finish, Section 5 summarizes the
main conclusions related to this chapter.
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2 Periodic homogenization

2.1 Theoretical framework

2.1.1 Scale separation

A periodic medium is defined by a unit cell that is representative of the microstructure.
If the dimensions of the unit cell are small enough compared to the dimensions of the mac-
roscopic media, then a scale separation can be assumed and two scales are considered:

— A macroscopic scale defined by the macroscopic (or global) coordinates denoted by .

— A microscopic scale defined by the microscopic (or local) coordinates denoted by x.
The assumption of scale separation (£ >> x) allows to consider the unit cell as a macro-
scopic material point. Thus, at the macroscopic scale, the heterogeneous medium is replaced

by an equivalent homogenized medium, which has an equivalent macroscopic response in an
average sense (Figure 1.1).

Lt
------------ v

€Te

ov

unit cell

micro-scale

macro-scale

Figure I.1: Schematic representation of a heterogeneous material with a periodic micro-
structure by considering a scale separation.

Under quasi-static conditions (the inertia effects are considered negligible), the motion
of any macroscopic and microscopic material point M(Z) and M(Z,x), respectively, is
governed by the macro-scale and micro-scale equations given in Table I.1.

Constitutive law

Mechanical work

Equations Macro-scale Micro-scale

Vx eV, Vit VecV,VeeV,Vt
Equilibrium divg(T) + by =0 div,(o) =0
Kinematics €= %(Gradx(ﬂ) + Grad%(ﬂ)) €= %(Gradx(u) + GradZ(u))

o =F(x,e¢)

W=0:¢

Table I.1: Macro-scale and micro-scale equations.
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The macroscopic problem is defined by the macro-scale equations in the left part of Table
[.1 along with macroscopic boundary conditions, as illustrated on Figure I.1:

(T, 1) = Uy (T, t) vz €S, C OV
o(Z,t) n(T) = f,(x,t) YT e S;CIV with S,NS; =g, (I.1)
o(z,t) -n(™) =0 vz € OV \ (S, USy)

where T stands for the outgoing normal of each macroscopic point on the border of the
macroscopic medium (V& € V). @, represents the applied displacements on S, and ?a
the applied forces (force per unit of surface) on §f, In Table 1.1, b, is an eventual mac-
roscopic body force (force per unmit of volume) applied on V. Note that b, does not have
any microscopic counterpart as a direct consequence of the scale separation assumption [141].

The microscopic problem, also called the unit cell problem, is defined by the micro-scale
equations in the right part of Table 1.1 while considering the periodicity conditions. The
latter will be described in Section 2.1.3.

The homogenization consists in defining the global constitutive behaviour, described by
the operator F (see the left part of Table 1.1), from the known local behaviours, defined
by the operator F' (see the right part of Table 1.1) and the geometrical characteristics
of the various constituents in the unit cell. The local constitutive equations may be non-
linear, time-dependent (viscoelasticity, viscoplasticity...) and involve internal state variables,
according to the framework of thermodynamics |67, 68, 69, 109, 33| that is briefly described
in Appendix B.

2.1.2 Connection between scales

In order to link the micro-scale with the macro-scale equations, a connection between
scales is required. To do so, as it is usual in homogenization, the macroscopic stress and
strain fields are identified through volume averaging of their microscopic counterparts over
the unit cell [78, 141, 172]. Moreover, from the divergence theorem, it can be demonstrated
that the stress and strain averages within a unit cell are also connected to the traction and
displacement vectors applied on its boundaries:

o(x,t) = %/‘/U(E,m,t) dV = % . o, z,t) nlx)@x dS, (I.2)
E@J%;%KF@wJ)ﬂ“:%;m(Mimﬁ@n@%Hﬂ@@u@wﬁDd&(M)

where m stands for the outgoing normal defined on each point of the unit cell borders
(Vo € 9V). In addition, it is worth mentioning that, according to the Hill-Mandel postulate
[141], the macroscopic mechanical work is equal to the volume average of its microscopic
field within the unit cell:

W@ﬂ:%AW@wﬁdV (1.4)

If the latter condition is verified, a connection between scales can be also ensured for certain
thermodynamical quantities (see Table B.1 in Section 2 in Appendix B). Indeed, if the
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local stress-strain relationships are established from the derivation of a state potential, then
the existence of a macro state potential can be demonstrated [141]. Accordingly, for the
Helmholtz and Gibbs potentials, this respectively gives:

— 1 _ o _ o
v(®,t) = o /Vpi/}(:c, x,t) dV such that T =Py and o = Poe (1.5)
— 1 _ o _ oy
* - * h th =— = — L.
V(. 1) ﬁv/va (T, z,t) dV  such that e P og and € =y (1.6)

where p stands for the macroscopic density '. Therewith, by assuming isothermal conditions
and integrating the Claussius-Duhem inequality (see Table B.1 in Section 2 in Appendix B)
over the volume of the unit cell [32], the macroscopic dissipation respectively becomes for
the Helmholtz and Gibbs potentials:

(@ 1) = % /V b(@,2,1) dV = W (%.t) — 5@ 1) > 0, (L7)

(@, 1) = % /V B(E,m,1) dV = —TVo(&,t) — 5O (F, 1) > 0. (1.8)

2.1.3 Periodicity

The assumption of periodicity [181] implies that, within the unit cell, the displacement
vector u of any microscopic material point M (T, x) can be written under the following
additive form:

u(Z, x,t) = (T, t) -+ u' (T, x,t) + uo(T, t). (L.9)

As illustrated in Figure 1.2, the first term stands for the affine part of the local displacement
field that is directly related to the macroscopic strain €, while the second term u’ represents
a periodic fluctuation within the unit cell. The last term wug depicts a rigid body motion
that comes out from the macroscopic problem and consequently does not depend on the
microscopic problem.

Figure 1.2: Definition of the displacement field within the unit cell as the sum of an affine
part and a periodic fluctuation. The part related to the rigid body motion is purposely
omitted as this term is independent from the microscopic scale.

Note that, as u’ is periodic, it takes the same value on each pair of opposite points @
and x_ of the unit cell boundaries (x4, z_ € 9V):

u (T, xy,t) =u' (T, z_,1). (1.10)

1. The macroscopic density is obtained from the volume average of its microscopic counterpart, namely:

1
D= v / p(x) dV, and is considered as constant under the small strain assumption.
v
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Substituting (1.9) into (I1.10), these specific conditions can be expressed in terms of u instead
of w/, while involving the macroscopic strain tensor €:

u(@, 4, t) —u(®,x_,t) =(x,1t)  (xy —x_). (L.11)

Through the periodicity assumption (1.9), the local strain field becomes:
e(®,x,t) =(x,t) + ' (T, x, ), (L.12)
with X
(T, x,t) = §<Gradm (v'(Z, z,t)) + Grad,, (v'(z, a:,t))). (L.13)
g’ represents the part of the local strain induced by w’, the periodic aspect of the latter
implies that:

1 1
—/ e'(x,x,t) dV = — (u'(f, z,t) @n(zx) + n(z) @ u'(z, m,t)) dS =0, (1.14)
Vv 2V Jov
and thus ensures the compatibility between equations (1.9) and (I.3).
The local stress field satisfies the conditions of equilibrium within the unit cell (local

equilibrium) and a proper connection with the surrounding unit cells. The second condition
implies an anti-periodicity of the tractions vectors, namely o -, on the unit cell borders:

o(@,xy,t) n(ry) =—0o(@ x_,t) n(x_). (L.15)

Considering the Hill lemma, obtained from the difference between the volume average of
the microscopic works and the macroscopic work, along with the divergence principle, the
following equality can be written:

1 _
—/W(z,m,t) AV — T (@, 1)
Vi Jy

:%/‘/U(E,m,t):e(ﬁ,az,t) AV — (1) : &(@, 1)

! (1.16)
=7/ (u(f,w,t) —E(@,1) - zc) : (a’(i,w,t) n(z) — 7T, 1) -n(w)) ds.
Then, based on (1.9), the Hill lemma eventually gives:

1 _ =
—/ W@, 2,t) dV — T (E 1)
Vv
_1 (u'(z z,1) + uo(E t)) : (U(i z,t) n(z) - (F,1) n(az)) ds = 0.

V av ) ) ) R Y ) Y (1'17)

u’/ ;(;iodic on ana:periodic

In the above equation, due to the periodicity of w/ and the anti-periodicity of o - n, the
Hill-Mandel condition (I.4) holds.
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2.1.4 Solution of the unit cell problem

Considering a strain driven approach on a single macroscopic material point M (Z), a
unique solution of the displacement field w can be found (up to a rigid body motion), for a
given macroscopic strain €, by solving the micro-scale equations (see the right part of Table
[.1) along with (I.11) as Dirichlet boundary conditions. Subsequently, the macroscopic stress
& can be determined using equation (I.2).

Alternatively, with a stress driven approach, a unique solution of the displacement field
u can be found (up to a rigid body motion) by solving the micro-scale equations (see the
right part of Table I.1) in which a macroscopic stress & is applied on the unit cell with the
help of (I.2) as Neumann boundary conditions. Subsequently, the macroscopic strain € can
be determined using equation (I.3).

Finally, let’s remark that the solution of the micro-scale equations (see the right part of
Table 1.1) obtained with the appropriate boundary conditions, namely (I.11) or (I.2), while
considering the connection between the microscopic and macroscopic scales in (1.2) and
(1.3), allows to define the global constitutive behaviour of the unit cell and consequently
the operator F. Indeed, for a given macroscopic strain or stress loading path applied
on a single macroscopic material point M(E), the macroscopic strain or stress response
can be determined through the resolution of the unit cell problem. The latter includes
the geometrical characteristics of the unit cell as well as the local constitutive equations
(operator F).

2.1.5 Solution of the macroscopic problem

The solution of the macroscopic problem is treated as any mechanical problem at the
exception that, for each macroscopic material point, the stress-strain relationship is obtained
from the solution of the unit cell problem (Section 2.1.4). Consequently, as the solutions
of the macroscopic and microscopic problems are interdependent, such a two-scales analysis
requires to solve both problems simultaneously [61, 63, 62, 9, 182, 184, 183].

2.1.6 Homogenized stiffness properties

In the case of linear elasticity, the local constitutive law, with the help of the Voigt
notation, is given by:

( ) (
011 Ciii1 Ciize Chiss Ciiiz Ciis Chios €11
0922 Cazoa Caazs Cazia Cazig Cagog €92
o33 \ _ Cszzz Csz12 Csziz Chzas €33
= X : (L.18)
012 Ci212 Ciais Chags 2e19
013 Ciz13 Clses 2e13
L 023 Sym. Ca323 | 2623 |
~ N
o(x,x,t) C(x) e(®,xz,t)
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or, in its inverse form:

= St Stz Stizz 251112 251113 251123 (011 )
€92 So22o  S233 252212 289213 259293 092
€33 Ss333 253312 253313 253323 033 (1.19)
2¢e19 451912 451213 451223 o’ '
2e13 451313 4Si323 013

 2€23 sym. 459393 L 023

—_——— N —~ VN —
e(xT,x,t) S(x) o(T,x,t)

where C and S are the microscopic fourth order stiffness and compliance tensors, respectively,
one being the inverse of the other:

C=s". (1.20)

As written in (I1.18) and (I.19), the elastic stiffness and compliance tensors have necessarily
the minor and major symmetries.

It can be shown that, in the same way, the global constitutive law is also linear. With
the help of the Voigt notation, this gives:

011 Cin €1122 €1133 91112 g1113 g1123 (211 )
022 Ca222 92233 92212 22213 92223 €92
f33 C'3333 €3312 g 3313 €3323 y 5_33 (1.21)
012 Ciaiz Ciztg Chzos 2 (7
013 Ciz13 Cliszs 2813
\623 J sym. 62323 \ 2823 y,
-~ —_———’
& (®,t) T @)
or, in its inverse form:
(21 ) St Stz Suss 25112 251113 251123 (G171 )
€92 S2922 52233 2§2212 2§2213 2§2223 022
€33 Sszzz 253312 253313 253303 033 (1.22)
2812 451212 451213 451223 o2 [’ '
2813 451313 451323 713
L 2523 ) Syml. 4?2323 \623 )
(@ ,t) 5 F(@.1)

where C and S are the macroscopic fourth order stiffness and compliance tensors, respect-
ively.

Through a strain driven approach, the macroscopic stiffness tensor C can be recovered
by calculating the macroscopic stress resulting from the six unitary strain states. With the
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help of the Voigt notation, the unitary strain states are written such as:

(

— _ _ _ _ _ T
6(11) = (611 =4 E99 = 0 €33 — 0 2512 =0 2813 =0 2823 = 0)
— _ _ _ _ _ _ T
€(22) = (611 =0 &9 = €33 =0 2615 =0 2513=0 2e93 = 0)
— — _ _ _ _ _ T
5(33) = (511 =0 E99 = 0 £33 = ) 2512 =0 2513 =0 2823 = O)

: (1.23)

_ _ _ _ _ _ _ T
E(lg) = (811 =0 E99 = 0 €33 — 0 2612 =4 2513 =0 2823 = 0)
_ _ _ _ _ _ _ T
5(13) = (611 =0 E99 = 0 €33 = 0 2812 =0 2813 =0 2523 = 0)

— — — — — _ T
\ €(23) = (611 =0 €3=0 £33 — 0 261o=0 2813 =0 2523 = 5)

where § is a real value (the simplest is to take 6 = 1). Thus, the ijkl component of the
macroscopic stiffness tensor is given by the 77 component of the stress tensor calculated for
the kl elementary strain state, divided by 0:

T i gl = 11,22, 33

. Ekl(kL) =

Cim =14 = %, ij,kl = 11,22,33,12,13,23.  (L.24)
TEED) i g = 12,13, 23
28 ki(k1)

Similarly, through a stress driven approach, the macroscopic compliance tensor S can be
recovered by calculating the macroscopic strain resulting from the six unitary stress states.
With the help of the Voigt notation, the unitary stress states are written such as:

/

_ _ _ _ _ _ T
0'(11):(011:5 022=0 033=0 012=0 0713=0 02320)

_ — — — — _ T
0'(22)2(01120 Op=0 033=0 T12=0 013=0 02320)

_ _ _ _ _ T
T3 = (011 =0 Tp=0 T33=0 012=0 T13=0 023 =0)

, (1.25)

—_ — — _ — _ T
0'(12):(011:0 002=0 033=0 012=0 013=0 023:0)

O(13) = (511 =0 T2=0 033=0

gi2=0 Ti3=0 523=O)T

_ _ _ _ _ _ T
| T3y = (011=0 G22=0 T33=0 T12=0 T13=0 To3=19)

Thus, the ikl component of the macroscopic compliance tensor is given by the 77 component
of the strain tensor calculated for the kl elementary stress state, divided by ¢ for the tension
stress states or 20 for the shear stress states:

Cijkt) _ Eijkl)

if ki =11,22,33

o Tki(kl)

Sijkl - _ _ . (126)
Skt _ SUt) e 19,13, 23
QEM(M) 20 T
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It can be shown that, when using periodic homogenization, the macroscopic compliance
tensor is well equal to the inverse of the macroscopic stiffness tensor (and vice versa):

c=5" (1.27)
Thus, the strain and stress driven approaches are strictly equivalent. Moreover, as written
in (I.21) and (1.22), the resulting macroscopic stiffness and compliance tensors always have
the major symmetry. This is ensured by the energetic consistency between the macroscopic
and microscopic works [133] demonstrated in Section 2.1.3.

For non-linear cases, when solving the macroscopic problem with an implicit resolution
scheme, the identification of the instantaneous macroscopic stiffness (tangent operator) is
required to achieve a fast convergence of the solution within a given time increment. Then,
the instantaneous macroscopic stress-strain relationship is expressed, at each macroscopic
integration point, by:

do(z,t) = Cy(z,t) : de(z, 1), (1.28)

where C; is the macroscopic tangent operator. The resolution of the macroscopic problem
is performed by calling the microscopic problem for each macroscopic integration point and
at each time increment. During the resolution of the microscopic problem, to achieve fast
convergence, the local constitutive relationships are also written in their instantaneous forms
at each microscopic integration point:

do(z,z,t) = Ci(x, x,t) : de(T, x, t), (1.29)

where C; is the microscopic tangent operator whose formulation is obtained from the lin-
earisation of the local constitutive equations (see for example Section 3.3 in Chapter IT and
Section 3.3 in Chapter III). Thus, the macroscopic tangent operator C; can be recovered
at each time increment, in a similar manner than for the elastic case, using a unit cell in
which the local instantaneous stiffness C; is assigned to each microscopic integration point.
Note that, according to the considered local constitutive equations, the microscopic and
macroscopic tangent operators do not have necessarily the major symmetry.

2.2 Finite element resolution of the unit cell problem

The concept of periodic homogenization is generally well suited with the Finite Element
Method. However, its use requires specific periodic boundary conditions. This section
introduces a generalized method for defining periodic boundary conditions, allowing to apply
any state of macroscopic strain, stress or even mixed stress-strain on a cubic periodic finite
element unit cell.

2.2.1 Control of the unit cell

Using the finite element method, it seems evident that the meshing of the unit cell must
be well periodic. This means that for each border node, there must be another node at the
same relative position on the opposite border. Considering a cubic unit cell, the aim of the
method is to apply a macroscopic strain €, by taking into account the periodic boundary
conditions previously described in (I.11). A displacement gradient is then applied between
each pair of opposite boundary nodes, respectively denoted by the indices ¢ and j. This
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gradient is directly related to the macroscopic strain tensor €:

i J = =_ = i J
Uy — Uy €11 €12 €13 Ty — I
u’z — ué = €99 €93 X l’l2 — ZL’% . (130)
ub — u sym. €33 Tl —

In the above expression, uy, us, uz and xq, xo, x3 are the components of the displacement
and position vectors, u and @, respectively. The proposed method introduces the six com-
ponents of the macroscopic strain tensor as additional degrees of freedom that are directly
involved in the boundary conditions [112, 113, 114|. Theses additional degrees of freedom
are linked to the mesh of the unit cell using kinematic constraint equations obtained from
(I.30) and are thus used as "constraint drivers". From a practical point of view, the "con-
straint drivers" can be introduced by adding six new nodes among which only the first

degree of freedom is used. The displacement of those "constraint drivers", noted u{¢, usg,

usd, usd, usd and usd, takes the values of each component of the macroscopic strain tensor:
Z11, €92, B33, 212, 2813 and 28,3, respectively. The dual forces on the "constraint drivers”,
noted F{d, Fd, F§d, Fed) Fed and Fgd, are directly related to the corresponding components

of the macroscopic stress tensor: @11, 0o, 033, 012, 013 and Ta3, respectively.

As an example, for the tension term 11, the previously given kinematic equation (1.30)
is reduced to: . .
u—ul =7 Azy o uwl —u] —ut Az =0, (1.31)

where Az is the length of the unit cell in the z; direction. In the same way, Axy and
Axsz are the lengths of the unit cell in the x5 and z3 directions, respectively. The term
g11Ax; corresponds to the global displacement of the unit cell needed to represent a mac-
roscopic strain ;7. On the other hand, 7,y AxsAxs corresponds to the global force needed
to represent a macroscopic stress oi;. Then, if the value of 11 is set as displacement in
the "constraint driver" node 11 (u$4 = &;;), the computed dual force will give the product
between the macroscopic stress @17 and the volume (Fff = 011Az1 AxeAxg) and vice versa
(see Figure 1.3).

011 Al‘g AJ,’;;
Aws i
hode i ¢
— ArNg ,cd — =
P e uj] =&n
~node j&\
3 ASIZ’Q
To
uh — ] —uSt Az =0

Figure 1.3: Kinematic constraint equation for tension 11.

For the shearing term 12, the kinematic equation (I1.30) is reduced to:

1
ub —ub =2z, §Ax2 e ub —ul —ufl 2Ax2 = 0. (1.32)
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and

; 1

, A . 1
J _ 9= i J cd
Uy — Uy = 2819 §Aa:1 S Uy — Uy — Uy =

Similarly, if the value of 2g, is set to the "constraint driver" node 12 (u$d = 22)5), then the

computed dual force will directly provide the product between the macroscopic stress 9
and the volume (F¥ = 7oAz AzyAxs) and vice versa (see Figure 1.4).

ElgAIQA.Tg

A.T)g ) | 521A.’I?1A1’3
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up —uy —uf55 Az = 0| |uy —uy —uf5A2, =0

Figure 1.4: Kinematic constraint equations for shear 12.

Using the six "constraint drivers" (one for each component of the macroscopic strain
tensor), the approach can be generalized in three dimensions in order to apply any state
of macroscopic strain or stress on the unit cell. Even mixed stress-strain states can be
considered. Indeed, each "constraint driver" can be independently set either in displacement
(macroscopic strain) or in force (macroscopic stress by the volume) as illustrated in Figure
[.5. As previously mentioned the solution of a periodic homogenization is defined up to a
rigid body motion. For this reason, a node of the model needs to be clamped in order to
guarantee the uniqueness of the solution and the solvability of the finite element system.

.
A$3 ° u‘i‘f =11 = Ff{i =011V
o uf==¢ & P =05V
Az . 22 22 22 22

equations - -
E o ugs =23 & Fi5 =03V
__________________ o ul=2, & Fi=0,V

x _ _
! ° uﬁ =283 & Flcéi =013V

V = AJ’] A.’L‘Q A’L‘3 d _ ed i

3 AJ?Q
T

Figure 1.5: Connection of the "constraint drivers" with the unit cell

The details for all the kinematic constraint equations used to connect the "constraint
drivers" with the unit cell can be found in Appendix A.
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2.2.2 Off-axis control of the unit cell

In some cases, it can be interesting to control the unit cell with an off-axis stress-strain
state. In this purpose, as illustrated in Figure 1.6, a rotation of the unit cell is considered.
Thus, a 2" order tensor T' expressed in the unit cell coordinate system (¥, T, ¥3) is ob-
tained from its counterpart expressed in a reference coordinate system (Z, ¥, Z) through the
following relationships:

11(51752753) = R . T(f’g"g) . RT = Q . T(i",ﬂ,i‘) Where Q = R @ R (134)

As usual in mechanics, the rotational R is a 2"¢ order orthonormal tensor such as R- R~ =
R - R" = 1. Its general expression is given by:

a b
R=|d e (1.35)
h

9

S-S 0

where the coefficients a, b, ¢, d, e, f, g, h and 7 are to be defined according to the considered
rotation. As an example, for the case of a rotation around the Z axis (see Figure 1.6b),
these coefficients are directly related to the angle of rotation € such as a = e = cos(6),
b=—d=sin(f),i=1and c = f = g = h = 0. Using this formalism, with the help of the
Voigt notation, the relationship (I1.34), written in terms of macroscopic strain, becomes:

(211 ) a’> b ab ac be Tox |
Tao e f? de df ef Eyy
g3 | g> h?r gh qgi hi o E (1.36)
2219 2ad  2be 2cf bd+ae cd+af ce+bf P I '
2213 2ag 2bh 2ci bg+ah cg+ai ch+bi 22,,
[ 2823 2dg 2eh 2ft eg+dh fg+di fh+et | 28y )
— N ~~ d
E(i, ,@o,73) Q E(2,7,2)
whereas, written in terms of macroscopic stress, this gives:
(G171 ) a’> b 2 2ab 2ac 2bc (G )
T2 d e f 2de 2df 2ef Eyy
gl | & B 2R 2gi 2hi s (137)
T12 ad be cf bd+ae cd+af ce+bf Oy [ '
013 ag bh c bg+ah cg+at ch+bi [
(023 ) dg eh fi eg+dh fg+di fh+ei Ty
—— N ~ ——
G (#,#2,%3) Q G (7,4,
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zZ Z
a A
T,’S A T3
T
fl &
Y /9 y
i x T
(a) General rotation (b) Rotation around the Z axis

Figure 1.6: Illustration of the unit cell coordinate system (7,7, Z3) and the reference
coordinate system (7, ¥, 2).

The "constraint drivers" previously defined allow only to describe the macroscopic be-
haviour in the coordinate system of the unit cell (1,75, Z3). In order to consider an off
axis stress-strain state, it is proposed to create six new "constraint drivers" that will rep-
resent the behaviour of the unit cell in the reference coordinate system (Z, ¢/, Z). These new
"constraint drivers" are also introduced by adding six new nodes (among which only the
first degree of freedom is used). Their displacements are noted u$%, uSy, uS?, ufh, ufl and
uyz, and take the values of each component of the macroscopic strain tensor defined in the
reference coordinate system: €,4, €y, €2z, 264y, 284, and 2€,,, respectively. Then, as shown
in Figure 1.7, the link between the new constrain drivers, defining the macroscopic strain
n (Z,v,Z), and the previous ones, defining the macroscopic strain in (7, ¥, Z3), is ensured
using a set of six new kinematic constraint equations directly obtained from (1.36):

( ,cd 2 ,cd 2 ,cd 2 ,cd cd cd cd __
uf] — a” ugy — 0% ugy, — ¢ ugl —ab ugy, — ac ug; —be uyy =0
cd 2 ,,cd 2 ,cd 2 ,cd cd cd
ugy — d° ugy — e gy — f°ugl —de ugy —df ug; —ef up; =0
cd cd 2 ,cd cd
ugd — g* usd —h uyy—z us? ghu —gi u —hiuy, =0

u§y — 2ad gl — 2be ull — 2¢f usd — (bd + ae) uft — (cd + af) usl — (ce + bf) ug‘i =0

zy
us§ — 2ag ufl — 20h ul — 2ci ul — (bg + ah) ull — (cg + ai) ull — (ch + bi) ull =0
( usg — 2dg uil — 2eh ull — 2fi ull — (eg + dh) uSh — (fg+ di) uSl — (fh+ ei) ull =0
(1.38)
The dual forces on these new "constraint drivers", noted F¢ [Fed ped ped ped and Fred

xr) T Yyyr T zzd T ayo Yz
directly give the product between the macroscopic stress in the reference coordinate system

(the corresponding components: G,u, Gyy, Tzz, Oay, O and 7,,) and the volume of the unit
cell (see Figure 1.7).
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A."Cl

Figure 1.7: Connexion between the "constraint drivers" defining the macroscopic stress-
strain in the unit cell coordinate system (', ¥2,Z3) and the "constraint drivers" defining
the macroscopic stress-strain in reference coordinate system (Z, 7, 2)

This methodology is particularly helpful because it allows to apply any complex off-axis
stress-strain state on the unit cell, while the latter is always geometrically defined in its

equations

€«

d =
u(l(l =E&n
'llg(é = Egp

acd =
uz3 = Es3

u§s = 22,
u§d = 223

ugd = 2293

KO R

Fl =5,V
Fng = E!/z/v
F=5..V
Frc;i = Emyv
Fi =7,V
Fyl =5,V

axes. This point is illustrated through an example of an off-axis tension in Section 4.2.
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3 Unit cells for woven composites

As mentioned in the introductory section, in this work, the geometrical and finite element
representation of woven composites unit cells are performed with the help of the software
TexGen? [115], where much of the details regarding the modelling theory can be found in
[177].

3.1 Geometrical representation of woven microstructures

Independently from the weaving pattern, the geometry of a woven microstructure is
defined through the parameters a, b, h, [ and §. As shown in Figure 1.8, a and b are the
dimensions of the yarns cross section that is assumed to be elliptic, A denotes the thickness of
the microstructure, [ is the in plane distance between the centres of two consecutive parallel
yvarns and ¢ defines the vertical space between two perpendicular yarns. Let’s remark that, in
reality, the yarns are composed of numerous fibres unidirectionally oriented embedded in the
matrix. With the described modelling approach, the yarns are considered as an equivalent
homogeneous medium with an anisotropic constitutive behaviour that depends on a certain
material orientation. The latter is defined for each yarn material point with respect to the
yarns middle line. The waviness of this middle line is automatically calculated according to
the considered weaving pattern (see Figure 1.9) via the TexGen utilities [115, 177].

a/2

Figure 1.8: Geometric definition of a woven microstructure. The grey domain represents the
matrix phase, while the blue and red domains are the warp and weft yarns, respectively.

e ———— D S
( ) Plain weave pattern ) 2-2 Twill weave pattern ) 5-H Satin weave pattern

Figure 1.9: Examples of weaving patterns.

2. http://texgen.sourceforge.net/index.php/Main_Page
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Note that, in such composites, the periodicity of the microstructure is well respected in
the plane of the reinforcement, but is not always ensured in the 3" direction. Nevertheless,
in this work it will be considered that the 3D periodicity stands. Thus, the RVE of the
microstructure is directly defined by its unit cell that represents the smallest repeating unit
element.

3.2 Finite element mesh of the unit cell

The previously described geometry is periodically meshed through the TezGen utilities
[115, 177]. So as to illustrate this feature, the mesh of the unit cell considered for the studied
composite is presented in Figure 1.10. Its characteristic dimensions (see Figure 1.8) are later
identified in Section 2 of Chapter IV. The mesh of the unit cell contains 8522 nodes and
40060 first order tetrahedral elements (C3D4 in ABAQUS). Note that a spatial convergence
analysis was carried out regarding the mesh refinement in order to obtain a good enough
compromise between accuracy and reasonable computational cost.
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(c) Side view of the mesh

R
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(d) Material orientations of the yarns elements: the blue and yellow arrows represent the 1* and 2" axes,
respectively

Figure 1.10: Finite element mesh of the unit cell of the studied composite. The weaving
pattern is a 2-2 twill weave (see Figure 1.9b). The characteristic dimensions (see Figure 1.8)
are identified later in Section 2 in Chapter IV. They are provided in Table IV.1.

As already mentioned, the yarns are considered as an equivalent homogeneous medium
with an anisotropic behaviour that depends on a certain material orientation. Thus, for
each yarns element, a local material coordinate system is defined in such a way that the
1% axis is always oriented along the middle line of the yarns, while the 2"¢ axis is always
parallel to the plane of the woven reinforcement, as shown in Figure 1.10d.
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4 Examples

In this section, applicative examples dealing with linear elasticity are proposed to illus-
trate the framework of periodic homogenization described in Section 2. The unit cell of the
studied composite is utilized (see Figure 1.10) with the following elastic properties:

Constituent Parameter value  unit

Matrix (isotropic) E 2074  MPa
v 0.3 -

Yarns (transversely isotropic) FEj 62615 MPa
E, = Ej 21526 MPa
V19 = 13 0.228 -
Vo3 = 50 — 1 0.268 -
G2 = Gh3 8661  MPa
Go3 = 515y 8488  MPa

Table 1.2: Elastic properties of the composite constituents, namely: the matrix and the
yarns. These properties are identified in Section 1 of Appendix G.

4.1 Computation of the homogenized stiffness tensor

In this first example, The homogenized stiffness tensor of the whole composite is com-
puted through the strain driven approach (see Section 2.1.6). Thus, according to the rela-
tionship (I.24), each term of the macroscopic stiffness tensor is recovered from the stresses
resulting from the six unitary strain states (I.23) whose deflections are shown in Figures 1.11,
[.12, 1.13, 1.14, 1.15 and 1.16. With the help of the Voigt notation, this gives the following
stiffness tensor:

25016 3618 2171 O 0 0
25016 2171 O 0 0
— 6453 0 0 0
C= 4551 O 0 MPa. (1.39)
1883 0
sym. 1883

The computed macroscopic stiffness tensor shows that the homogenized behaviour can be
considered as orthotropic with tetragonal symmetry® [186], since C111; = Caaga, Ciizz =
C33 and C1313 = Cazos.

3. Note that the computed terms of C were slightly modified so that the latter is perfectly orthotropic
with tetragonal symmetry. Indeed, due to numerical approximations, a small deviation of a few MPa may
be observed.
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(a) Entire unit cell (b) Yarns

Figure I.11: Deflection of the unit cell for the unitary strain state €.

(a) Entire unit cell (b) Yarns

Figure 1.12: Deflection of the unit cell for the unitary strain state €.

8 ////\\\
€3
.A,\/ i

(a) Entire unit cell (b) Yarns

Figure 1.13: Deflection of the unit cell for the unitary strain state €ss).
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A A
(b)

(a) Entire unit cell

Yarns

Figure [.14: Deflection of the unit cell for the unitary strain state ;o).

<>

(a) Entire unit cell (b) Yarns

Figure [.15: Deflection of the unit cell for the unitary strain state ;3.

¥

(a) Entire unit cell (b) Yarns

Figure [.16: Deflection of the unit cell for the unitary strain state €(a3).

4.2 Off-axis tension

This second example illustrates the off-axis control of the unit cell as introduced in
Section 2.2.2. Thus, the case of an off-axis tension is proposed as shown in Figure 1.17.
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Figure 1.17: Illustration of an off-axis uni-axial test.

The unit cell is defined in the coordinate system (71, ¥, T3), itself defined with respect
to the reference coordinate system (Z, ¥, 2) by a rotation around the 2" axis. This rotation
is quantified by an angle § = 30°. The composite is then subjected to a uni-axial strain in
the reference coordinate system, namely: £,, = ¢, while being free of stress in all the other
components:

(( Epo = O ) ( 5,, = unknown )
Eyy = unknown Oy = 0
Z,, = unknown 0., =0 MPa (.40)
28,y = unknown [’ Opy = 0 ' '
2., = unknown 0., = 0

| 28,. = unknown | [ Ty-= 0 )

After computation, the unknown values of the macroscopic strain and stress tensor in the
reference coordinate system are obtained:

(Ee = 1 ) (G, = 15284
Z,, = —0.4378 s = 0
gzz = —0.1882 Ezz =0
9z, = —0.4175 [ <% E x & MPa. (L41)
2., = 0.0000 Gp. = 0
| 25,. = 0.0000 | (5 -0 |

The associated deflection of the unit cell is shown in Figure 1.18. Expressed in the coordinate
system of the unit cell (¥, Z2, Z3), with the help of (1.36) and (I1.37), the macroscopic strain
and stress respectively become:

( gll = 04598 ) ( 611 - 11463 )
522 - 01024 622 - 3821
533 — —01882 533 - 0
2y = —14530 g1y = —o61s (<0 MPa (1.42)
2813 = 0.0000 oi3= 0
2?23 - 00000 ) \ 523 = 0 )

\

Thus, it can be remarked that the obtained values are well consistent with the macroscopic
stiffness tensor previously computed in (1.39).
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<y

2 2

L. L.

(a) Reference and unit (b) Entire unit cell (c¢) Yarns
cell coordinate systems,

(:f7 27, Z) and (.’I?h .’fg, 53),

respectively.

Figure 1.18: Deflection of the unit cell under an off-axis tension.
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5 Conclusions

In this chapter, a general framework of multi-scale modelling based on the concept of
periodic homogenization has been introduced and applied to the particular case of woven
composites through the use of the dedicated tool TerGen. A new method is proposed to
perform off-axis control of the unit cell, while the latter remains geometrically defined in its
axes. Although only applications dealing with linear elasticity are treated in this chapter,
the proposed framework is independent from the local constitutive equations, thus it can be
easily utilized with complex non-linear behaviours. For this purpose, specific constitutive
models will be developed in Chapters IT and IIT for the matrix and the yarns, respectively,
and will be applied together with the unit cell geometrical characteristics to study the com-
posite non-linear response under cyclic loading conditions, in Chapter V.
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CHAPTER II. PHENOMENOLOGICAL MULTI-MECHANISMS
CONSTITUTIVE MODELLING FOR THERMOPLASTIC MATRICES

The content of the present chapter was the scope of a peer-reviewed paper entitled "Phe-
nomenological multi-mechanisms constitutive modelling for thermoplastic poly-
mers, implicit implementation and experimental validation" published in Mechan-
ics of Materials [163].

1 Introduction

Thermoplastics and more especially semi-crystalline polymers are well known to exhibit
a mechanical time-dependent (or rate-dependent) behaviour combining both solid and fluid
properties. They also appear to be sensitive to the environmental conditions, namely rel-
ative humidity and temperature [102, 7, 6, 121, 122, 120, 123]. Investigations showed that
these materials are also subjected to stiffness reduction during loading caused by the ex-
istence of damage mechanisms related to the initiation, the growth and the coalescence of
micro defects [47].

The growing interest for this type of materials, especially for automotive applications,
has contributed to many modelling efforts aiming at capturing the complex behaviour of
thermoplastics or thermoplastic-based composites. Among the existing models, those based
on phenomenological approaches account for one or several dissipative mechanisms. Indeed,
to capture the overall behaviour of polymers or polymeric composites, some authors refer to
the theories of viscoelasticity [174, 136, 86, 138], viscoplasticity |56, 57, 3, 52, 50, 51, 54, 55],
coupled viscoelasticity and viscoplasticity [53, 135, 189, 197, 198], damage [143, 144] or
even both coupled viscoelasticity, viscoplasticity and damage [101, 99, 89, 187, 103, 200].
Some other models integrate aspects related to physics of polymers, such as the molecular
chains network reorganization [126] or the partial phase transformation between crystal-
line and amorphous phases [146, 147|. Other works [8] have introduced conformational
rearrangement as mechanisms behind yielding and plasticity of glassy polymers. More re-
cent studies [190] consider the deformation of glassy polymers through the evolution of
the free volume and shear transformation zones during the generation of plastic strain.
Despite their efficiency, the latter type of constitutive models requires physical data that
can be difficult to measure experimentally or to control during the manufacturing process.
Thermodynamically-based phenomenological models are more suitable since they require
material parameters that can be identified from conventional mechanical tests. Indeed, the
phenomenological approaches focus only on the overall description of the material behaviour,
using internal state variables. For polymers, the deformation and degradation mechanisms
are generally time-dependent. These phenomena are introduced through anelastic strain
and stiffness reduction, along with their related dissipation. When acting simultaneously,
these dissipative mechanisms can be modelled together using coupled formulations.

With regard to viscoelasticity, two main modelling approaches can be used, namely: the
hereditary integral [135, 89] or the differential form. The hereditary integral representation
is based on the concept of relaxation or creep functions that need to be integrated through
the whole time history to establish the stress-strain relationship. The main interest of the
integral form is that the viscoelastic mechanism can be modelled through a single strain
state variable. However, its practical use is generally adopted for the case of isotropic vis-
coelasticity and an extension to non-isotropic media is not straightforward. In addition, the
fully coupled thermomechanical behaviour cannot be easily integrated within the integral
formalism, since such coupling effects require derivative operations of the thermodynamic
potentials that may be complicated within a formulation involving time integral. On the
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other hand, the differential representation is based on the assembly of rheological elements
that store or dissipate energy, namely: springs and dash-pots respectively. Such a descrip-
tion may involve a certain number of strain state variables in order to capture properly the
complete viscoelastic response. The main advantage of this formalism is that it permits an
explicit splitting of the various energetic terms of the thermodynamic potentials. It also
offers more flexibilities for the integration of additional effects such as thermally activated
mechanisms [197, 198| or anisotropy.

Concerning damage, several approaches can be found in the literature. In some of them,
the effect of damage is introduced through a micromechanical representation based on a
physical definition of a damaged representative volume element that accounts for material
micro-discontinuities |71, 165]. For semi-crystalline polymers such a description requires a
deep knowledge of the involved degradation mechanisms at the macromolecular chains scale
[47] and also a proper modelling theory. This task is neither straightforward nor feasible
due to the fact that the definition of a continuum medium does not stand at this scale.
Alternatively, damage can also be taken into account in a purely phenomenological manner,
where only its effect on the overall material response is considered, namely: the stiffness
reduction. For this purpose, the Continuum Damage Mechanics (CDM) theories are partic-
ularly adapted. Therefore, the damage is introduced with the help of one or several internal
state variables [109, 110] and is hence considered as a continuum quantity describing the
state of the material at the scale of interest.

In this chapter, a constitutive model accounting for viscoelasticity, viscoplasticity and
ductile damage is proposed. It is formulated within a proper thermodynamical framework
and is applied to predict the deformation of semi-crystalline polymers under the small strain
assumption. It is well established that such materials are time and temperature-dependent
[8]. The temperature may play a significant role due to the self-heating phenomenon arising
from dissipative mechanisms, especially upon cyclic loading [13, 14, 15, 198]. With the
present model, it is important to mention that only the time-dependency is accounted for,
while the material is assumed to stay under isothermal conditions. The formulation of the
proposed model is partially inspired by the works of [89, 88|, especially regarding the in-
tegration of viscoplasticity and damage. Nevertheless, the main difference lies within the
viscoelastic contribution. In [89, 88|, the latter is described through the Prony series (several
Maxwell branches in parallel) with the help of an integral representation. In the present
work, the viscoelasticity is described from a series of Kelvin-Voigt branches, considering a
differential representation. Despite the fact that both approaches have a different formal-
ism?!, it should be mentioned that they are both equivalent in terms of global response,
including both creep and relaxation effects. The choice of the adopted formalism, namely:
series of Kelvin-Voigt branches with a differential representation, is motivated by its flex-
ibilities regarding a potential extension to fully-coupled thermomechanical analyses and/or
the integration of anisotropic effects, as previously mentioned.

The constitutive model proposed in this chapter will be used as matrix phase for the
whole woven composite through the multi-scale approach previously introduced in Chapter

1. Their practical difference is the following: Prony series (several Maxwell branches in parallel) imply
an additive decomposition of the stress as proposed by several authors, among them [135, 89]. Indeed, the
sum of the stresses in each single Maxwell branch provides the total stress, while all the Maxwell branches
share the same strain. On the other hand, a multiple Kelvin Voigt (several Kelvin-Voigt branches in series)
implies an additive decomposition of the strain. Each Kelvin-Voigt branch has its own viscoelastic strain,
while all branches share the same stress.
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I. Let’s recall that another constitutive model will be proposed for the yarn phase in Chapter
I1I, before presenting the whole multi-scale model for thermoplastic-based woven composites
in Chapter IV.

This chapter is structured as follows: In Section 2, the constitutive equations and the
thermodynamics framework of the proposed model are presented. Section 4 focuses on the
experimental procedure and the identification strategy of the model parameters for the poly-
amide 6-6, as well as its experimental validation under various loading conditions. Section
5 illustrates the model’s capabilities through examples of simulations (including a 3D FE
analysis) highlighting the time-dependent response of the material as well as its dissipative
behaviour, especially under cyclic loading. To finish, Section 6 summarizes the main con-
clusions related to this chapter.

In this chapter, the operators hyd(o) and Dev(o) designate the hydrostatic pressure
and the deviatoric part of a stress tensor o, respectively, whereas eq(o) is the equivalent
Von Mises stress:

hyd(o) — %tr(a), (IL.1)

Dev(o) = o — hyd(o)I, (I1.2)

eq(o) = \/g (Dev(a) : Dev(a)). (I1.3)
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2 Constitutive equations and thermodynamical frame-
work

The objective of this section is to present the formulation of a thermodynamically based
phenomenological model accounting for viscoelasticity, viscoplasticity and ductile damage
in semi-crystalline polymers. The proposed model is represented by the rheological scheme
given in Figure Il.1a. Tt is composed of several elements positioned in series, which are
detailed below. The damage is introduced through the CDM theories based on the well-
known principle of effective stress [109, 110]. First introduced in the uni-axial case, a similar
formalism can be easily applied in 3D if damage is regarded as an isotropic phenomenon.
Thus, the definition of the effective stress tensor, that has been adopted here, is simply
given by:

- o

where D is the damage variable expressed as a scalar quantity. Actually, even if the ma-
terial is assumed to be initially isotropic, the overall response may exhibit anisotropic
effects induced by damage that are governed by the directions of the principal stresses.
Examples of extensions to 3D damage induced anisotropy can be found in the literature
[28, 58, 110, 44, 43]. Nevertheless, such a description requires quantification through further
experimental data highlighting the behaviour in the other directions or from experiments
where the material is subjected to multi-axial loading conditions. In the absence of these
data, the simplest assumption remains the case of isotropic damage.

The rheological model consists of the following elements:

— One single linear spring subjected to an elastic strain e..

— N viscoelastic Kelvin-Voigt branches, consisting of a linear spring and a linear dash-
pot assembled in parallel (Figure II.1b). Each Kelvin-Voigt branch i is subjected to a
viscoelastic strain €,,. From a conceptual point of view, a single linear Kelvin-Voigt
branch offers interesting capabilities, capturing the creep and relaxation effects, but
only within a particular range of time. Considering several Kelvin-Voigt branches al-
low to account for similar effects within an extended range of time [149].

— One viscoplastic branch, consisting of a frictional element, a non-linear spring and a
non-linear dash-pot both assembled in parallel (Figure I1.1c). This branch is subjected
to a viscoplastic strain e, that is only generated if the equivalent effective stress eq(o)
exceeds a certain threshold.

The assembly in series of all those elements implies an additive decomposition of the total

strain e:
N

€==¢€c+ Zevi + &p, (IL.5)

i=1

while all the branches act on the same effective stress . Nevertheless, the viscoplastic
branch is assumed to be only sensitive to deviatoric part of & through the effective equivalent
stress eq(a). The duality between stress and strain implies the existence of an effective
equivalent viscoplastic strain denoted by the scalar variable r. The latter is connected to
the viscoplastic strain tensor €, through the evolution laws. It is worth noticing that,
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in the proposed model, the damage is assumed to be "ductile" as it only evolves when

the viscoplastic strain is being generated, making those two mechanisms directly coupled
[108, 110, 89].

Vo, \ Vo H,m
_ P eqi?) L eq(o) B P
”’1—D<=_§£,\N\‘_ T T Nl Re | > 27710
AN AN
VYN YV
Co, Co Cox K
=
€e >N o Ev; o Euy €p
(a) Complete rheological scheme
Vo, H,m
e e ¢
B - ~ - B - eq(o) eq(o) ~ -
7=ip < - > 15 ”:ﬁ<=<=_JRnI_—=>=>”:ﬁ
g — Oy, g — 0Oy AN
i-p ¢ 71D R < WW— > 7
C,, K.n
.
Euv,; Ep
(b) Single Kelvin-Voigt branch (c) Viscoplastic branch

Figure I1.1: Rheological scheme of the proposed model.

Finally, the observable state variable of the proposed model is €, while the internal state
variables are €,,, €p, 7 and D. The elastic strain €. is not considered as a state variable
but, for convenience, is expressed by the difference between the total strain and both the
viscoelastic and viscoplastic strains.

2.1 State laws

The proposed model is formulated within the framework of thermodynamics [67, 68, 69,
109, 33| , which is briefly described in Appendix B. Accordingly, the material state laws are
based on a state potential, the Helmholtz free energy in the present case, that depends on
the state variables previously mentioned. This potential is written as the sum of the stored

energy functions of the single spring 1., each Kelvin-Voigt branch ,, and the viscoplastic
branch v,:

N
w(ea Evm spv 7ﬂ7 D) = ¢6<€’ 61’2‘7 €P7 D) + Z wvi (Evi’ D) + wp(r)7 (116)
=1

with

] N N
phe = 5 (5 - sti - s,,) :(1-D)C,: <€ - st - ep), (I1.7)
=1 i=1

1
pwvi = 58'1)1' : (1 - D)C’Ul : s’viu (118)
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oty = [ R(E) a (1L.9)

The associated variables, namely o, —0o,,, —0, R and —Y are obtained from the derivation
of the potential with respect to the state variables €, €,,, €p, 7 and D, respectively:

5 N
o= pa—f =(1-D)C,: (r—: — ;&;i — ep>, (I1.10)

o, = p;j}i — (1-D)C,, ey — 0, (IL11)
- pg_i, (IL12)

R(r) pg—qf, (IL13)

Y = p% — Y, - ily (11.14)

Ce and C,,, denote the initial fourth order stiffness tensors of the single spring and the spring
of the i'" Kelvin-Voigt branch, respectively. These tensors are classically formulated for bulk
isotropic materials and are defined by the Young modulus E. or E,,, respectively, as well
as the Poisson ratio v that is assumed to be the same in each stiffness tensor. The viscous
stress o,, and the difference between o and o,, respectively represent the stress acting on
the linear dash-pot and spring of the iy, Kelvin-Voigt branch (Figure I1.1b). The hardening
function R(r) stands for the effective equivalent stress acting on the non-linear spring of the
viscoplastic branch (Figure II.1¢). R(r) must be an increasing function defined positive and
null at » = 0. In this model, R(r) is chosen under the form of a power law:

R(r) = Kr", (11.15)

where K and n are material parameters. The total energy density release Y is written as the
sum of the energy density releases associated with the single spring and each Kelvin-Voigt
branch, Y, and Y, respectively, as expressed in (I1.14). These quantities can be formulated
either in terms of strain:

N N
—Y:pawe:—1 eE— Y &y, —€p| :Ce: s—Zs.—s (11.16)
e 9D 5 : v; p e 2 v; p|>

O _ 1
Pop — 2%

or, by introducing (I1.10) into (II.16) and (II.11) into (II.17), in terms of stress:

-Y,, = 1 Co, €, (I1.17)

~ eq(o)?
‘" 2E.(1-D)?

T.(o), (I1.18)

eq(o — 0'1,1.)2

Y, =T
« T 9B, (1-D)?

T, (0,0.,), (I1.19)
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where T, ans T,, are the stress triaxiality functions of the single spring and the i** Kelvin-
Voigt branch, respectively:

T.(0) = 2(1 + ) +3(1— 2v) [}Zif))] (11.20)
T (0, 00) = %(1 + )4 3(1— 20) {%] | (1L.21)

It is worth noticing that, under uni-axial stress conditions, 7, and T, are equal to 1.

The state and associated variables of the proposed model are summarised in Table II.1.

State variables Associated variables

Observable internal -

€ o
Ev; —0,
€p —o
r R
D -Y

Table II.1: State and associated variables of the proposed model.

2.2 Evolution laws

The second law of thermodynamics implies that the mechanical dissipation has to be
always positive or null through the Clausius-Duhem inequality (see Section 1.3 in Appendix
B). Considering isothermal conditions (see Section 2 in Appendix B), the rate of the dis-
sipated energy @ is expressed by the difference between the rate of the strain energy W,
and the rate of the stored energy pi, in which equations (I1.10), (II.11), (IL.12), (I1.13) and
(I1.14) are substituted:

‘PZWa—P@/}ZO
N
:U:é—p<8—¢:€'+z 9 :ew+a—¢;ép+a—¢¢+a—wb> >0

e < Jey, Jep or ID (I1.22)

N
= 0y €y +0:é—Ri+YD>0.

i=1

In order to satisfy the above inequality, the evolution laws expressing the rate of the in-
ternal state variables must be derived from a convex dual dissipation potential or a convex
indicative function of the associated variables, in which the state variables themselves may
act as parameters (see Section 1.5 in Appendix B).

44



CHAPTER II. PHENOMENOLOGICAL MULTI-MECHANISMS
CONSTITUTIVE MODELLING FOR THERMOPLASTIC MATRICES

2.2.1 Evolution laws for viscoelasticity

The evolution of each viscoelastic strain €,, is governed by a dual dissipation potential
written as the sum of the sub-potentials of the linear dash-pot of each Kelvin-Voigt branch:

N
0" (00 D) =Y _ @ (00 D), (I1.23)
i=1
where ot
x 1 v
oy (00 D) = 30 Tt Our (I1.24)

Then, the evolution of each viscoelastic strain e, is obtained from the derivation of the
pseudo-potential ¢* with respect to its associated variable o,,:

do* 0o v, !
fyy = o0 = Pu v

" do, Oo, 1—D (I1.25)

o n

The introduction of (II.11) into (I1.25) finally allows to express the effective stress as a

function of e, and its rate:

o
1-D

=C,, 1 €y, + Vy, 1 &y, (I1.26)

where V., denotes the viscosity tensor of the linear dash-pot of the i'® Kelvin-Voigt branch.
As for the stiffness tensors, each viscosity tensor is classically formulated for bulk isotropic
materials and is defined by a viscosity 7,, and the Poisson ratio v. The latter is assumed
to be the same in each stiffness and viscosity tensor. It is noted that the viscosity is intro-
duced only in the dissipation potential and not in the Helmholtz free energy. This is always
the case when viscoelasticity is described in differential form. In integral formulations, the
viscocity is integrated directly in the Helmholtz free energy [89].

Within such a differential relationship (I1.26), a characteristic time can be clearly iden-
tified for each Kelvin-Voigt branch by observing its creep response. Indeed, if a sudden
constant effective stress o is applied on a single Kelvin-Voigt branch at a time ¢, (Figure
I1.2a), then it can be shown [149] that the strain response is approaching exponentially in
time the strain of the pure elastic material €3 (Figure 11.2b):

t—t ~
€y, (1) = €y, <1 — exp (— 0)) where e’ =C,": 7. (I1.27)

To;

(3

In the above equation, 7,, is the characteristic time given by:

Tl =C,l 1 V,, or Ty, = % (I1.28)

From a mathematical point of view, 7,, corresponds to the time needed to reach 63% of the
pure elastic strain 3 (Figure 11.2b), as 1 — exp(—1) = 0.63. Basically, the characteristic
time provides an information about which range of time a Kelvin-Voigt branch is expected
to move.
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o (t)
Fo|
t t
to to t() + Tvi
(a) Application of a sudden constant effective (b) Strain response
stress

Figure I1.2: Illustration of the creep response of a single Kelvin-Voigt branch.

Considering any type of loading conditions as being a continuous succession of creep
stage, the Boltzmann superposition principle [149] allows to express the evolution of each
viscoelastic strain e,, from an integral representation that involves the whole history of the

effective stress:
Ev, (t) = /t c,} (1 — exp (—tT_ 5)) : %S) de. (I1.29)

Thus, the relations governing each viscoelastic strain can be expressed either under the
differential formalism (I1.26) or under the integral one (I1.29). Both representations have
advantages and drawbacks as previously discussed in the introductory section (Section 1).
The integral formulation in (I1.29) along with the relationships (I1.27) and (I1.28) are only
valid if the stiffness and viscosity tensors C,, and V,,, respectively, are defined as isotropic
with the same Poisson ratio. However, it is worth noticing that the differential form (II.26)
provides more freedom regarding the expressions of C,, and V,,. With this formalism,
anisotropy can be integrated in a straightforward manner. In this work, it is recalled that
the differential representation (I11.26) has been adopted.

2.2.2 Evolution laws for coupled viscoplasticity and damage

As previously mentioned, viscoplasticity and damage are considered to be coupled phe-
nomena [108, 110, 89]. Such a connection requires a non-associative mechanism. Con-
sequently, the evolution of r, €, and D cannot be obtained from a dual dissipation potential.
However, the evolution laws are expressed by the normality of a an indicative function given
by:

F(o,R,Y;D)= f(o,R; D)+ fp(Y; D). (I1.30)

In the above equation, f(o, R; D) is the yield criterion function that is expressed in the
effective stress space in order to account for the coupling between damage and viscoplasticity:

fomD) =49 _p g (IL.31)
1—-D
where Ry is the yield threshold. In (II.30), The damage contribution fp(Y; D) is given by:
S Y B+1
Y:D) = L 11.32
124D) = =y () (132
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where S and [ are material parameters. Then, as previously mentioned, the evolution of r,
ep and D are given by the normality of the indicative function F(o, R,Y’; D), introducing
a viscoplastic-damage multiplier A (A > 0):

' OF . of . .
P=—oph=—onh=4 (I1.33)
_OF; 0f: 3Dev(o) A
= P " 90" 2 eqo) 1-D (TL.34)
. OF. 3fp. (V)7 A
0_5?A_57A_(S)1_D. (11.35)

The introduction of (I1.33) into (I1.34) and (I1.35) allows to express the evolution of &, and
D under the form of flow equations:

Ep = ﬁal))h D = 199%7'“, (I1.36)
where A(o) and Q(Y) are given by:
_ 3Dev(o) (Y g
Ao) = 3 eqlo) | QY) = <§) : (I1.37)

Note that, for semi-crystalline polymers the damage growth appears to be relatively fast at
the beginning of a loading stage and gradually decreases as the loading continues [47|. In
order to account for this experimentally observed tendency, the parameter 5 in (I11.32) and
(I1.37) must be negative. When 3 is positive the inverse trend is obtained (slow initiation
and faster subsequent growth), which is frequently observed in metals [89].

The evolution of the multiplier A = 7 is activated (# > 0) only if the criterion function f
becomes positive. In order to account for the visoplasticity, a rate dependency is introduced
by considering that the positive part of f is equal to the effective equivalent stress acting on
the non-linear dash-pot of the viscoplastic branch (Figure II.1c). This stress is connected
to the rate of r through the function (7). This finally gives a relationship between the
effective equivalent stress, the variable r and its rate:

<§¥%-R@-R@+:Q@. (I1.38)

7
The function Q(7) must be increasing, positive and null at # = 0. In this model, this
function is chosen under the form of a power law:

Qi) = Hi'™, (I1.39)

where H and m are material parameters. It is worth noticing that r can only increase (7 > 0
if f > 0) or remain constant (# = 0 if f < 0). Consequently, the part of the stored energy
related to the viscoplastic branch v, written in (I1.9), appears to be irrecoverable, as it
cannot return back to zero.

2.3 Summary of the constitutive equations

In summary, the proposed model can be described by the set of constitutive equations
given above in Table I1.2.
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Observable

state variable

Associated variable (state law)

N
a:pg—f:(l—D)Ce: (s—Zevi—sp>
i=1

Internal

state variables

Associated variables (state laws)

Evolution laws

oy , A
v, —Oy, = pagvi =(1—-D)Cy, : €y, — O | €y, = don " I1-D O,
8 Y, L _OFi Al
P 7= e, P~ 9" 1-D
oY . oF .
r R_pE_R(T) 7’——@)\—)\
o . OF . Q).
D y =, D=%5=
PaD v 1D
Multiplier Criterion Active (A > 0) if f >0
A=r F=29 Ry, (), = Q)
1—-D +

Table I1.2: Summary of the constitutive equations.
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3 Numerical implementation: Backward Euler time im-
plicit algorithm

The proposed constitutive model is implemented into the FE solver ABAQUS/Standard
through a User MATerial subroutine (UMAT). The latter is based on the "convex cutting
plane" form of the "return mapping algorithm" [179, 145, 178|, which is described in this
section for this model.

Let’s recall that a FE solver, like ABAQUS/Standard, employs a backward Euler (or
time-implicit) integration scheme. Accordingly, the value of a given quantity = is computed
from the previous time increment n to the current one n+1 such that "+ = 2 4 Ag(+1),
Such a relationship is usually solved through an iterative scheme. Thus, the current value
of the quantity z is corrected for each iteration k by: z(»FDE+D = g+ D(E) 4 §p(n+1)(k) op
Ag(FDED) — Ag(r+Dk) 1 520+DE) yntil 2+ converges.

The implementation of a constitutive model in such a FE solver is usually ensured by a
User MATarial subroutine (UMAT). When the analysis is completed at the time increment
n, the FE solver provides, for each integration point, all the state variables at the time in-
crement n along with the increment of total strain Ae™*!). From these data, the role of the
UMAT subroutine is to compute: i) the stress and the state variables at the time increment
n+1, and ii) the tangent operator C; that is necessary to achieve a fast convergence for the
next FE calculation.

3.1 Residuals

When considering the backward Euler time-implicit method, it is convenient to write the
equations governing the evolutions of the state variables under the form of residual functions
that must satisfy a nullity condition. In the case of the proposed model, the evolution law
of each viscoelastic strain €, (I1.26) is written under the form of a tensorial function ¢,,
that must always remain null as the viscoelasticity is always active:

G, (0, €0;,E0,, D) =€y, — V1 <1 UD —C,, : 5117;) =0. (I1.40)

In the same principle, the evolution law governing viscoplasticity and damage through the
variable r (I1.38) is written under the form of a scalar function ¢, that must remain null as
long as f is positive:

¢ (o, r,7, D) =7 — Q! < % — R(r) — R0> =0. (11.41)

f>0

Q~'(f) is the inverse function of Q(r) that is defined in (I.39). Moreover, the proposed
implementation is based on the "convex cutting plane" form of the "return mapping al-
gorithm" [179, 145, 178], which does not require to integrate the flow equations (I1.36) as
residual functions.

The implicit implementation of the proposed model requires to linearise the above re-
siduals, as well as the stress. The details of these calculations are provided in Appendix D.
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3.2 Computation of the stress
3.2.1 Stress prediction

In order to initiate the computation of the stress, the internal state variables are as-
sumed not to evolve at first (Ag,, V=0 = o Ar(+DE=0) = ( Ag, (mHDE=0) = ¢
and AD™HI(=0 = () while the total strain at the end of the increment is given by
) = g + Ae(®*1) Therefore, the stress is predicted along with the residuals ¢,,. At
the end of this step, the nullity of the residuals ¢,, cannot be respected, then the stress
must be corrected in order to satisfy this condition. It is the role of the next step so-called
the "viscoelastic stress correction /prediction".

3.2.2 Viscoelastic stress correction/prediction

During the "viscoelastic stress correction/prediction", only the viscoelastic strains e,,
evolve, while the other internal state variables are still assumed to be unchanged, as it is
not known yet whether the viscoplasticity and damage are active or not. Consequently:
Sk = 0 §g,("T®) = 0 and §D™+VK) = (0. The "visoelastic stress correction/
prediction” consists in returning the residuals ¢, back to zero by developing only the
viscoelastic strains €,,, while the total strain does not evolve: de*D*) = 0. Accordingly,
the viscoelastic strains €,, are updated at each iteration k by:

e (n+1)(k+1)

Ui

= e{® 4 selrthk), (11.42)
where all the 565,:.L+1)(k) are obtained from the nullity condition of all the residuals ¢,,:
T IB 4 5B = 0. (I1.43)

In the above equation, all the 5¢§,?+1)(k) are expressed by linearisation. After proper calcu-
lation (D.2), this gives (all the quantities are taken at the increment ("+1(®));

pw, = Ap,o 1 00 + Ay, : OEs,. (I1.44)

In the same manner (D.4), 0o is written as:

N
0o =Y Boy, : ey, (I1.45)

=1

By introducing (II.45) into (II.44), while considering (I1.43), the unknown values of de,,
are computed from the known residuals ¢,, through the construction of the following "vis-
coelastic corrector system":

55171 ]L’vlvl Lvlvg Lvlvg s LvlvN _¢'U1
* * * *
56’02 ]L"vg'vl vafvg ng’ug s ng’uN _¢'v2
* * * *
56”3 - ]L’Usvl IL"v3v2 vasva o IL‘1-’3’01\7 X _¢"3 ) (1146>
* * * *
[ 0€uy Lover Loyos Loyos -+ Loyox =29
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with
* * * * -1
L’vlvl mevg Lvl'vg et Lvl'vN K'Ul'vl K'Ul'UQ Kvl'vzs K'Ul'UN
]Lzz'vl ]L’T)Q'Uz L:2'03 te LZQ'UN K'UQUI K’UQ’UQ K’UQ’U?) K’UQUN
]L’jlk)?,’ul L:;g’uz L’T73’03 et L’T73’0N - K'USUI K'US'UQ K'U3'U3 K'US'UN 5
]L'jlkJN'Ul LT)NUQ IL:N’Ug et IL:N’UN K'UN'Ul K'UN'U2 K'UN'US IKv]\f'vl\f
(I1.47)
where
. A'vicr . BO”U]‘ + Avivi lf Z = .]
Koo, = { Pt i) (I1.48)

Once the viscoelastic strains are updated, the stress and the residuals ¢,, are reassessed
through the relationships (I1.10) and (I1.40), respectively. This correction procedure is it-
eratively repeated (k loop) until the convergence is reached ?, namely when ](;bS,TH)(kH” <
0+ 4.

At the end of this step, the criterion function f is checked in order to identify whether
the viscoplasticity and the damage are active or not:

— If fD+D <0, then the viscoplasticity and the damage are not active and the stress
does not need to be corrected any more.

— If f+DEHD 5 () then the viscoplasticity and the damage are active. In the present
state, the nullity of ¢, cannot be respected, then the stress must be corrected once
more, in order to satisfy the nullity condition of all the residuals ¢, and ¢, at the
same time. It is the role of the final step, so-called the "full stress correction".

3.2.3 Full stress correction

The "full stress correction" consists in returning all the residuals ¢,, and ¢, back to
zero by developing all the internal state variables, while the total strain does not evolve:
se k) = 0. Accordingly, all the internal state variables are updated at each iteration &
by:

gD+ — gt D(®) et (I1.49)
g HDUHD) — gt D®) 4 5eHD) (11.50)
pOADEHD) — (DR 4 5 (n kDR (I1.51)

and
DDk — plnthk) 4 5 pntk) (I1.52)

where all the 555,?“)%) and 67"tV are obtained from the nullity condition of all the
residuals ¢,,, and ¢,:
Ejrz—i-l)(k) + 5¢£}7iz+1)(k:) —0

(I1.53)
(mHD®) | samrD®) _

2. Normally, as the differential equations governing the viscoelasticity are linear, it can be shown that
only one correction is sufficient to reach the convergence. However, this scheme can also be applied to
non-linear viscoelasticity where several corrections would be likely required.
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In the above equation, all the 6" ™™ and 56" ™® are expressed by linearisation. After

proper calculation (D.2 and D.3), this gives (all the quantities are taken at the increment
(n+1)(R));

5o, = Ao : 60 + Ay, : 08y, + Ay p0r

(1L.54)
0p, = Apg 2 00 + A,..0T
In the same manner (D.4), 0o is written as:
N
0o = ZIB%M,J. 1 0€y, + Bgror. (I1.55)

=1

By introducing (I1.55) into (II1.54) while considering (I1.53), the unknown values of de,,
and or are computed from the known residuals ¢,,, and ¢, through the construction of the
following "full corrector system":

3

( ( 3\
58’01 L'vlvl Lvlvz ]Lvlvg s ]LvlvN L'vﬂ" _¢v1
65’02 ngvl ]L’uz’vz ]L’ug'vg s L’UQ’UN L’UQ'I‘ _d)’vz
56’03 L'U?,'Ul IL"Ug’Uz ]L"U;g'vg o ]L"U3’UN L’U31‘ _d)’UB
¢ = : ) . , . . X , ) (I1.56)
55'01\; Lva L’UN’UQ IL4'vN'v3 oo IL”UN’UN L'er _¢'IJN
\ or Lrvl Lrvg L’I"U3 S LrvN er \ _¢7“ )
with
]L'vl'ul ]Lvlvg ]L"ul’vg s ]L"ul’vN Lvlr Kvlvl K’l}1’l]2 K'vlvg s KvlvN Kvl'r‘
H—"UQ’Ul L’UQ’UQ Lv2v3 s ]I"’UQ’UN L’l)21‘ K’Ug'vl K’uz’vg K'vgvg s K’UQ’UN K’vg'r‘
I["'vgvl L’ugvg ng’vg, ng’vN ng’r’ Kvg'vl K'vgvz K'l)3'l)3 Kvng Kvgr
]L’UN’Ul IL”UN’UQ Lva3 e IL”UN’UN L’UN’I” K’UN’Ul K'UN’UQ K'UN'UJ LR K’UN’UN K’UN'P
L’r‘vl L’I"Ug LT"D3 s LT"DN er‘ Krvl KT‘UQ KT"U3 s K?"’UN Krr
(IL57)

where the terms K,,,,; are provided by (I1.48) and where
Kvir = Avia : Ba"r + A’Ui'l‘u Kr'vj = A'rcr : IBO"U]’) K = Aro- : Ba’r + Arr‘ (1158)

Furthermore, according to the 'convex cutting plane" method?3, se ™™ and §DM+IK),
are directly linked to or™+)®) by:

5€(n+1)(k) _ A(O’(n-l-l)(k)) (n+1)(k) 5D(TL+1)(/<:) _ Q(Y(n-i-l)(k))

T () N T spnt(R)
P 1— Dok " ! T DerDm " . (IL39)

Once the internal state variables are updated, the stress and the residuals ¢,, and ¢, are re-
assessed through the relationships (I1.10), (IT.40) and (I1.41), respectively. This correction
procedure is iteratively repeated (k loop) until the convergence is reached, namely when
|¢n+1 k+1)| <0+ 6 and |¢n+1 k+1)| <046

3. Note that, according to the "convex cutting plane" method [179, 145, 178], the flow equations (I1.36)
79 and 705
are calculated from the previously updated state (taken at the increment ("+1)(k)). Nevertheless, it is worth
pointing out that the time integration remains implicit. Despite this simplification, the "convex cutting
plane" method provides a good accuracy compared to other schemes, while involving less computational
cost [171, 170, 83].

are explicitly integrated within the correction procedure. This is why in (II.59) the flows and
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3.3 Tangent operator

Besides the computation of the stress, the global finite element solver also requires the
tangent operator C, which defines the current rate in the variation of stress with the vari-
ation of total strain. As previously mentioned, the proposed implementation is based on
the "convex cutting plane" form of the "return mapping algorithm", which utilizes the con-
tinuum tangent operator [178]. The formulation of the latter is obtained by identifying a
linear relationship between do and de through a continuum description. To do so, the stress-
strain relationship is written in differential form and the evolution equations are substituted.

With the proposed model, two configurations of tangent operator are to be taken into
account, namely: the "viscoelastic tangent operator" and the "full tangent operator".

3.3.1 Viscoelastic tangent operator

If the "return mapping algorithm" stops at the "viscoelastic stress correction /prediction",
then only the viscoelasticity is active. In this case, the stress-strain relationship (I1.10) is
written in differential form. After proper calculation (D.4), this gives:

N
do =Boe :de + Y By, : dey,. (I1.60)

Jj=1

The fact that the viscoelasticity is always active implies that d¢,, = 0. Written in differen-
tial form (D.2), this condition becomes:

Aoy, = Ay,o 1 do + Ay, @ dey, = 0. (I1.61)

By introducing (11.60) into (I1.61), a linear relationship can be identified between each de,,
and de:

N
dey, =X, :de  where X =-> L;, Ay :Bo.. (11.62)
=1

Finally, the substitution of (I1.62) into (I1.60) leads to the formulation of the "viscoelastic
tangent operator":

N
do=Cy:de  where Cy=Boet+ » By X} .. (11.63)

j=1

3.3.2 Full tangent operator

If the "return mapping algorithm" passes to the "full stress correction", then both vis-
coelasticity, viscoplasticity and damage are active. In this case, the stress-strain relationship
(I1.10) is written in differential form. After proper calculation (D.4), this gives:

N
do =Boe :de + Y By, : dey, + Bopdr. (11.64)
j=1
The fact that both viscoelasticity, viscoplasticity and damage are active implies that d¢,,, =
0 and d¢, = 0. Written in differential form (D.2 and D.3), these conditions become:

Ay, = Ay,o : do + Ay, = dey, + Aypdr =0
(I1.65)
d¢, = Aye :do+ A,..dr =0
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By introducing (I1.64) into (I1.65), a linear relationship can be identified between each de,,
and de, and between dr and de:

4

\

dey, =Xye:de  where  Xyo=— Ly, Avo  Boe — Ly © Apo : Boe

dr=X,.:de  where  Xpe=—) Ly, : Avo:Boe — LipArg : Boe

(11.66)
Finally, the substitution of (I1.66) into (I1.64) leads to the formulation of the "full tangent
operator":
N
do =Cy:de  where  Cy=Boe+ Y Boy : Xy + Bor @ Xpe. (I1.67)

j=1
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4 Experimental identification, strategy and validation

4.1 Experimental procedure and testing

In this section, it is proposed to apply the previously formulated constitutive model to
describe the behaviour of the polyamide 6-6. This type of material is well known to be
highly sensitive to the environmental conditions [102, 7, 6, 121, 122, 120, 123|, especially
the relative humidity (RH) and the temperature (7'). In the present case, the following
environmental conditions were considered: RH = 50% and T = 23°C' (room temperature).
For all the experiments, uni-axial tests were carried out on ISO527-2-1A tensile specimens
(see Figure 11.3). A particular attention has been paid concerning the RH conditioning
prior to performing the mechanical testing. The specimens were placed in a oven with an
air containing 50% of relative humidity at the temperature of 70°C' until the equilibrium
in water concentration was reached within the material. This was checked by regularly
weighting the samples until their mass does not evolve any more. Next, the specimens
were placed in a sealed bag before testing. The tensile tests were performed with a servo-
hydraulic tensile machine at room temperature. During the tests, the axial strain e1; is
locally measured by means of an extensometer (see Figure I1.4a), while the axial stress oy;
is monitored by a load cell.

80

112

%

10

R 60 —4-
170

Figure I1.3: ISO527-2-1A tensile specimen (dimensions in mm).

In order to properly identify and validate the model, an experimental program involving
the following types of tests is proposed:

— Monotonic tests:
The material is subjected to a relatively high level of strain, about 0.08, followed by an
unloading stage up to zero stress. These tests are performed at different strain rates,
namely: 8.0 x 1074, 8.0 x 1072 and 8.0 x 1072 s~1. This test configuration emphasizes
the global rate effect related to the viscoelasticity and viscoplasticity. In addition, the
unloading stage highlights the apparent stiffness reduction due to damage.

— Creep and strain recovery tests:
The material is first loaded in 5 s up to a certain level of stress, namely: 30, 40 and
50 MPa. This stress is then held for 300 s before being released in 5 s. Finally, the
material is left free of stress for another 300 s. This test configuration mainly emphas-
izes the creep effects caused by the viscoplasticity and the viscoelasticity acting under
long periods of time. Moreover, the strain recovery stage (when the material is kept
under zero stress) enables to distinguish the part of the total strain that is recoverable
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(viscoelastic) and the part that is irrecoverable (viscoplastic).

— Stress-controlled cyclic tests:
The material is subjected to a triangular stress signal oscillating between a top and
a bottom stress level at a frequency of 1 Hz during 100 s, i.e. 100 cycles. Three top
stress levels: 30, 40 and 50 MPa, are considered, while the bottom stress level is always
the same: 5 MPa. This test configuration brings out the accumulation of damage and
strain occurring through a long period of time. Moreover, at each cycle, the hysteresis
loops highlight the viscoelasticity acting under short periods of time.

For the stress-controlled cyclic tests, as complementary data, thermal measurements
were carried out by means of an IR thermal camera, as shown in Figure II.4a. Indeed,
as mentioned in Section 1, it is well established that thermoplastic polymers may exhibit
a significant elevation of temperature, especially upon cyclic loading [13, 14, 15, 198], due

to the self-heating phenomenon arising from the dissipative mechanisms (see Section 1.6 in
Appendix B).

t area of interest

(a) Experimental setup (b) Measurment of the average temperature
within the aera of interest

Figure 11.4: Thermomechanical testing.

It is important to recall that the proposed constitutive model assumes isothermal con-
ditions. Neither the temperature effect on the mechanical properties, nor the heat induced
by the mechanical work are accounted for. Nevertheless, a simple way to evaluate if a the
self-heating is likely to occur is to integrate the mechanical dissipation ® as a heat source
in an uncoupled thermal analysis (see Appendix C). This provides an estimation of the
temperature elevation caused the mechanical dissipation that can be compared to the one
experimentally observed. Assuming uniform thermomechanical fields in the area of interest,
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the heat equation can be reduced to its "0D" formalism (see Section 1 in Appendix C). This
gives:

pc (T(t) + T(t)%T‘X’) = d(t), (11.68)

where p and c stand for the material density and the specific heat capacity, respectively. The
characteristic time 7 quantifies the local heat losses which are assumed to be proportional to
the difference between the current temperature of the material 7'(¢) and the its equilibrium
temperature T, (room temperature). The thermal data utilized in this chapter are listed in
Table I1.3. The "0D" heat equation (I1.68) is then solved independently from the mechanical
problem with the help of a time-implicit algorithm (see Section 2 in Appendix C).

Feature Parameter value unit

Density p 1.120 x 1072 T.mm™3
Specific heat capacity c 1.638 x 107 mJ. T-teC!
Characteristic time (heat losses) 7 160 S

Table I1.3: Parameters of the uncoupled "0D" thermal problem for polyamide 6-6 speci-
mens. The values for the density and the specific heat capacity were taken from [13]|. The
characteristic time 7 was evaluated for the ISO527-2-1A tensile specimens (see Figures 11.3
and I1.4) using the methodology proposed by [20] that is briefly presented in Section 3 in
Appendix C.

4.2 Identification strategy

It is well known that parameters related to viscoelasticity can be identified from Dy-
namic Mechanical Analysis (DMA) by calibrating the storage and loss modulus E’ and E”
on the master curve within a predefined frequency range [97]. Nevertheless, even though
from a theoretical point of view, this method is very convenient, it may not provide satisfy-
ing results. Indeed, these tests are usually performed at very low stress levels, which may
not bring about the same mechanisms than those considered in the proposed model. In the
present work, a direct identification procedure is proposed as an alternative way.

The identification of such complex constitutive models, where several mechanisms are
simultaneously involved, often requires a suitable methodology. Indeed, most of the times,
it is impossible to completely isolate a single mechanism in order to identify independently
its related parameters. Consequently, the identification procedure necessitates the use of
reverse engineering methods. To do so, an optimization algorithm based on the Levenberg-
Marquardt technique [111, 125, 131, 129] has been utilized. The aim of this method is to
identify a set of parameters p by minimizing a cost function C. In the present case, this
cost function is expressed by the least squares between the numerical and experimental
responses, m™" and m®P, respectively:

2
wi [mi ™ (p) = i) (11.69)
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where N, is the number of measuring points and wj a weighting term given to each of
them. In the present case, the response of the material m denotes either the uni-axial
stress 011 if the associated test is strain-controlled (a uni-axial strain e1; is applied), or the
uni-axial strain €1; if the associated test is stress-controlled (a uni-axial stress o5 is applied).

This identification method permits, starting from an initial set of parameter, to find out
a new one by satisfying a local minimum condition of the cost function C. However, the
local minimum is not necessarily the global one and/or the solution may not be unique.
This is why it is very important to carry out the identification from an experimental data
base where all the considered mechanisms are well emphasized (see Section 4.1). It is noted
that, for complicated constitutive models, this procedure cannot guarantee uniqueness of
the obtained set of parameters.

For the present model, given the number of parameters involved, it is strongly advised
not to directly identify all of them simultaneously. Instead, to facilitate the identification
procedure, the following three-step strategy is proposed:

— Step 1:
At low stress levels, the effects of damage and viscoplasticity can be neglected so that
the material remains in the viscoelastic regime. This condition is obtained at the
beginning of the "monotonic tests", from which the parameters related to the vis-
coelasticity are identified in a first time.

— Step 2:
The parameters previously identified are kept constant, while the parameters related
to viscoplasticity and damage are identified from the complete "monotonic tests" along
with the "creep and strain recovery tests'.

— Step 3:
Starting from the previously obtained values, all the parameters are identified once
more from the same tests than the previous step, adding the five first cycles of the
"stress-controlled cyclic test" performed at the intermediate stress level (40 MPa).
This last step mainly enables to adjust the viscoelasticity acting under short periods
of time and thus to capture the hysteresis loop appearing at each cycle.

Note that, except the Poisson ratio v, all the other parameters of the model can be
identified from uni-axial stress-strain responses. Obviously, the Poisson ratio can be obtained
from measurements of the transverse strain (92 or £33) in addition to the longitudinal one
(e11), at a stress level low enough so that no plastic strains are generated.

4.3 Identification and validation

Using the previously described strategy, the parameters of the proposed constitutive
model have been identified considering four Kelvin-Voigt branches for the viscoelastic part
besides the viscoplaticity coupled to damage. The obtained parameters are listed in Table
II.4. Due to the lack of data regrading the transverse strain, the standard value of 0.3 is
considered for the Poisson ratio.
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Mechanical feature Parameter value unit
Viscoelasticity Single spring E, 2731 MPa
Kelvin-Voigt branch 1 E,, 8766 MPa
T, 1395 MPa.s
To, = ]%11 0.16 s
Kelvin-Voigt branch 2 £, 13754 MPa
Mg 165601  MPa.s
Tyy = };—2 12.04 S
Kelvin-Voigt branch 3 E,, 15010 MPa
Nos 457955  MPa.s
Tos = g—g 30.51 s
Kelvin-Voigt branch 4 E,, 11634 MPa
Moy 1307516 MPa.s
Toy = g_i 112.39 s
Poisson ratio (standard value) v 0.3 -
Viscoplasticity Yield threshold Ry 4.86 MPa
coupled to damage Hardening function K 1304.33 MPa
n 0.674 -
Viscous stress function H 47.35 MPa.s™
m 0.068 -
Damage S 21.607  MPa
g —1.105 -

Table I1.4: Identified parameters for polyamide 6-6.

It is worth mentioning that, as explained in the previous section, all the monotonic
and creep tests (see Figures I1.5 and I1.6, respectively) were utilized as identification data.
Besides the previously mentioned tests, the identification data were completed by the five
first cycles of the cyclic test performed at the intermediate stress level (40 MPa). This test
is shown in Figures I1.8. All the other experimental data, namely: the entire cyclic tests
(see Figures I1.7, 11.8 and I1.9), are kept for the validation of the model. The overall good
agreement between the experimental and simulated results demonstrates the efficiency of the
identification procedure as well as the model’s capabilities to capture the time-dependent
and cyclic response of the polyamide 6-6 with a single set of parameters.

Under monotonic loading (see Figure I1.5), the stress response takes a higher amplitude
when the strain rate increases. Moreover, upon unloading, an apparent stiffness reduction
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can be observed. The good agreement between the model and the experiments demonstrates
both viscoelastic, viscoplastic and damage mechanisms are appropriate to capture both the
global rate effect and the apparent stiffness reduction.

For the creep and strain recovery tests (see Figure I1.6), note that, under a constant
stress level, the strain rapidly increases at first and subsequently slows down as the material
continues to creep. The higher this stress level is, the strain generated during the creep stage
takes bigger values. Once this stress is released, a certain amount of strain is gradually re-
covered over a certain time, while another part does not recover. The creep response of the
material is also well described by the model. Even so, the prediction becomes less accurate
for the highest stress level (50 MPa) and the damage is slightly overestimated during the
creep stage.

Under cyclic loading (see Figures 11.7, 11.8 and 11.9), the material exhibits an accumula-
tion of strain from one cycle to another. As remarked for the creep and strain recovery tests,
the higher amplitude of stress signal results in bigger strain accumulation. Its evolution is
relatively fast within the first cycles and subsequently decreases once a certain number of
cycles have passed. In addition, hysteresis loops can also be observed at each cycle. Once
more, the simulated responses are in good agreement with the experimental data. For each
stress level, the model is able to properly predict the observed accumulation of strain and
damage occurring throughout the repeated cycles. In addition, the hysteresis loops appear-
ing at each single cycle are also well represented.

From an energetic point of view, the dissipative behaviour of the model seems to be
accurate as the elevations of temperature computed from the uncoupled "0D" thermal ana-
lyses (see Figures I1.10, I1.11 and I1.12) are of the same order than the ones experimentally
observed. Moreover, it can be remarked that, within the 100 cycles performed during the
tests, the temperature elevation induced by the dissipative mechanisms remains relatively
low (about 1.5 to 4.5 °C). Thus, the isothermal assumption can be reasonably considered as
relevant in the present cases. However, it is worth noticing that the observed temperature
elevations are far from any stabilized regime within 100 cycles. This means that, under a
more important number of cycles, a significant temperature increase may likely occur.

In order to illustrate this point, an additional test has been carried out for the highest
stress level (50 MPa) with the same frequency (1 Hz), but this time 1000 cycles are per-
formed (instead of 100). The model is confronted to this additional test (see Figure I1.13)
and the elevations of temperature computed from the uncoupled "0D" thermal analyses is
compared to the one experimentally observed (see Figure I1.14). It can be remarked that
the predicted strain response and temperature elevation are accurate as long as the latter
remains limited. However, after a certain number of cycles, the temperature becomes signi-
ficant enough and starts having a non-negligible effect on the material. Such temperature
dependencies are not integrated within the proposed model which explains why the predic-
tion starts deviating once a hundred of cycles have passed. The treatment of such cases
requires to enhance the model with a fully-coupled thermomechanical formalism where the
temperature effects would be integrated as well as the heat induced by the mechanical work.
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identification.
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Figure I11.6: Creep and strain recovery tests performed at the stress level of 30, 40 and

50 MPa, represented in black, red and blue, respectively.

identification.

These data are used for the
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level of 30 MPa. These data are used for the validation.
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Figure I1.8: Stress-controlled cyclic test: 100 cycles performed at 1 Hz with a top stress
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test is kept for the validation.
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Figure I1.9: Stress-controlled cyclic test: 100 cycles performed at 1 Hz with a top stress
level of 50 MPa. These data are used for the validation.
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Figure I1.10: Assessment of the temperature elevation induced by the dissipation through
the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic tests:
100 cycles performed at 1 Hz with a top stress level of 30 MPa (see Figure I1.7).
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Figure I1.11: Assessment of the temperature elevation induced by the dissipation through
the uncoupled "0OD" thermal analysis (see Appendix C) for the stress-controlled cyclic tests:
100 cycles performed at 1 Hz with a top stress level of 40 MPa (see Figure I1.8).

eC

o
]
pel

Dissipation [mW.mm_s]
atur

-+ experiment
. |=_model

80 100

R

20 80 100 0 20

0 60 0 _ 60

Time [s] Time [s]
(a) Dissipation (®) vs. time (b) Temperature (T') vs. time

Figure I1.12: Assessment of the temperature elevation induced by the dissipation through

the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic tests:
100 cycles performed at 1 Hz with a top stress level of 50 MPa (see Figure 11.9).
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Figure II.13: Stress-controlled cyclic test: 1000 cycles performed at 1 Hz with a top stress
level of 50 MPa.
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Figure II.14: Assessment of the temperature elevation induced by the dissipation through

the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic tests:
1000 cycles performed at 1 Hz with a top stress level of 50 MPa (see Figure 11.13).
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5 Numerical simulations

All the simulations presented in this section were carried out with the parameters pre-
viously identified for the polyamide 6-6 in Table 11.4.

5.1 Mechanical responses and dissipative behaviour of a material
point

In order to provide a better understanding of the proposed constitutive model, its dis-
sipative behaviour is illustrated through the four following uni-axial simulations carried out
on a single material point:

— Simulation 1: stress relaxation
A strain of 0.04 is first applied on the material in 5 s. This strain is then held for
300 s before returning back to zero in 5 s. In a final stage, the material is kept at
zero strain for another 300 s. The results of this simulation are presented in Figure
I1.15. Note that the computation is carried out with a constant time increment of 0.05 s

— Simulation 2: creep and strain recovery
A stress of 50 MPa is first applied on the material in 5 s. This stress is then held for
300 s before returning back to zero in 5 s. In a final stage, the material is kept at
zero stress for another 300 s. The results of this simulation are presented in Figure
I1.16. Note that the computation is carried out with a constant time increment of 0.05 s

— Simulation 3: cyclic strain
The material is subjected to a cyclic triangular strain signal. The latter oscillates
between 0.04 and 0 with a frequency of 1 Hz. 20 cycles are performed. The results
of this simulation are presented in Figure I1.17. Note that the computation is carried
out with a constant time increment of 0.005 s, i.e. 200 time increments per cycle.

— Simulation 4: cyclic stress
The material is subjected to a cyclic triangular stress signal. The latter oscillates
between 50 and 0 MPa with a frequency of 1 Hz. 20 cycles are performed. The results
of this simulation are presented in Figure I1.18. Note that the computation is carried
out with a constant time increment of 0.005 s, i.e. 200 time increments per cycle.

First of all, in terms of energy balance (see Figures 11.15g, 11.16g, I1.17g and I1.18g), it
can be noticed that the strain energy W, is well equal to the sum of the stored and dissip-
ated energies, pi» and @, respectively. Moreover the dissipated energy always increases or
remains constant (® > 0), which is well in accordance with the Clausius Duhem inequality
(I1.22).

In the simulation 1 (see Figure I1.15), during a relaxation stage, the stress gradually
decreases under the action of a constant strain (see Figures I1.15a, I1.15b and II.15¢). The
material exhibits an energy transfer as the strain energy W, does not evolve, while the stored
energy pi is converted into dissipated energy ® (see Figure I1.15¢g). This energy transfer is
mainly caused by the viscoelastic mechanism. The latter acts during the time necessary for
all the Kelvin-Voigt branches to reach an equilibrium (see Figure I11.15d). The development
of the viscoplastic strain and damage mainly occurs during the first loading stage. However,
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it can be noticed that, a small amount of viscoplasticity and damage is also generated at the
beginning of the first relaxation, until the stress decreases below the current yield threshold:
namely when f < 0 (see Figures I1.15d and II.15e).

In the simulation 2 (see Figure I1.16), during the creep stage, the strain gradually in-
creases under the action of a constant stress (see Figures I1.16a, I1.16b and I1.16¢). All the
dissipative mechanisms (viscoelasticity, viscoplasticity and damage) are active and evolve
according to the constant applied stress (see Figures I1.16d and II.16e). Over this stage,
the material both stores and dissipates energy (py > 0 and ® > 0). In the next stage,
the material is unloaded and left free of stress. The elastic strain as well as the 1%¢ vis-
coelastic strain are quasi-instantaneously recovered, whereas a certain amount of time is
necessary to recover the other viscoelastic strains (see Figure 11.16d). Note that the vis-
coelastic strain of the 1% Kelvin-Voigt branch is quasi-instantaneously recovered because
its characteristic time is far lower than the time length of the unloading. During the strain
recovery stage, the material exhibits an energy transfer as the strain energy W. does not
evolve, while the stored energy pi is converted into dissipated energy ® (see Figure 11.16g).
At the end of the simulation, the quasi totality of the viscoelastic strains have returned
back to zero and only the viscoplastic strain remains along with its associated stored energy
p, (see Figures I1.16d and I1.16g). The latter is irrecoverable, as explained in Section 2.2.2.

In the simulation 3 (see Figure I1.17), when a cyclic strain is applied on the material,
an overall relaxation is observed as the stress decreases from one cycle to another under
the action of the mean strain. Similarly, in the simulation 4 (see Figure I1.18), when a
cyclic stress is applied on the material, an overall creep is observed as the strain increases
from one cycle to another under the action of the mean stress. This behaviour is partially
caused by the growth in viscoplastic strain and damage acting when the stress exceeds the
current yield threshold, namely when f < 0. This actually occurs at each cycle, when the
stress approaches its top level, creating an accumulation of viscoplastic strain and dam-
age throughout the whole cyclic loading. Besides the coupled viscoplasticity and damage,
this overall relaxation or creep is also caused by viscoelasticity and more especially by the
Kelvin-Voigt branches having a characteristic time far greater than the time length of a
single cycle, the 274, 3" and 4" Kelvin-Voigt branches in the present case. These branches
are over-damped as they do not have the time to significantly move within a cycle but only
do on a larger range of time. Oppositely, the 15 Kelvin-Voigt branch is under-damped as
it characteristic time is far lower than the time length of a single cycle. Consequently, this
branch has the time to significantly move within a cycle. Nevertheless, the small retard
effect of the 1% Kelvin-Voigt branch generates a phase shift in the oscillating material re-
sponse. This can be clearly observed in the stress-strain space by the hysteresis loops. It
must be noticed that, after a certain number of cycles, most of the dissipation comes from
this under-damped viscoelastic mechanism and that the amount of dissipated energy is al-
most the same at each cycle.
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Figure 11.15: Simulation 1: stress relaxation.
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Figure 11.16: Simulation 2: creep and strain recovery.
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Figure 11.17: Simulation 3: cyclic strain.
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Figure 11.18: Simulation 4: cyclic stress.
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5.2 Structural FE application and model capabilities

To illustrate the capabilities of model in simulating the mechanical response of a 3D
body through the FE method, the present section deals with an example of FE analysis
carried out on a bracket (see Figure I1.19a). The latter is made of polyamide 6-6 with the
previously identified parameters (see Table I1.4). The bottom face of the bracket is clamped,
while a cyclic loading along the x direction is applied on the holes located at the top (see
Figure I11.19¢). This load is set up on a master node that lies at the centre of the hole and is
linked to it using a tie constraint. Due to symmetry, half of the geometry is represented and
appropriate boundary conditions are set on the plane of symmetry, i.e. the displacements
perpendicular to the plane of symmetry are set to zero. Note that the mesh, shown in
Figure I1.19b, contains 43997 nodes and 28213 second order tetrahedral elements (C3D10
in ABAQUS). A cycle of loading is defined as follows: first, a load of —5 kN is applied in
0.5 s on the bracket (the half represented). This load is subsequently held for 2 s before
being released in 0.5 s. In a last step, the bracket is left free of loading during another 2 s.
This cycle is repeated 10 times (see Figure I11.20a). The computation is carried out with a
constant time increment of 0.01 s, i.e. 500 time increments per cycle.

A L @ »

(a) Bracket (dimensions in mm: (c) Loading and boundary condi-
200 x 200 x 200) the structure is represented tions applied on the bracket
due to symmetry

Figure 11.19: Example of FE analysis: Bracket.

First of all, it is worth noticing that the proposed implicit implementation and espe-
cially the formulation of the tangent operator (see Section 3) show a good efficiency as for
each time increment, only one or two iterations are necessary to reach the global convergence.

Figure 11.20b shows the displacement of the master node, on which the load is applied.
Thus, the creep effects previously described (see Section 5.1) can be observed at the scale
of the structure. At first, the bracket exhibits a rapid creep response, as the displacement
of the master node gradually increases each time the load is held constant within each
cycle. This rapid creep is predominately triggered by the Kelvin-Voigt branches having
short characteristic times compared to the time length of a single cycle. Afterwards, the
bracket is also subjected to a secondary creep occurring throughout the repeated cycles
the bracket, as the displacement also increases from one cycle to another. This secondary
creep is mainly caused by the Kelvin-Voigt Branches having a long characteristic times. As
shown in Figure I1.21, the viscoplasticity and damage initiate at the most stressed location
of the structure. They gradually grow and spread around this location as the stress exceeds
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the yield threshold. This growth acts at each time the structure is loaded, creating an
accumulation of viscoplastic strain and damage throughout the repeated cycles.
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Figure I1.20: Applied force and resulting displacement of the master node (located at the
centre of the hole).
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Figure I1.21: Evolution of damage (D) within the bracket.
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6 Conclusions

In this chapter, a phenomenological multi-mechanisms constitutive model for thermo-
plastic polymers has been proposed. The latter is intended to be used as matrix phase in
the multi-scale approach for the whole woven composite in Chapter IV. The constitutive
equations are formulated in a proper thermodynamical formalism and account for viscoelasti-
city, viscoplasticity and ductile damage. The viscoelastic contribution is based on a series
of Kelvin-Voigt branches, enabling to represent time-dependent effects (creep and relaxa-
tion), acting on several time length. The damage mechanism is based on the well-known
concept of effective stress, which permits, in a straightforward manner, to include anelastic
deformation mechanisms through a coupled formulation. Moreover, the damage is called as
ductile as its evolution is directly governed by the viscoplasticy.

The constitutive equations of the model are provided along with an implicit resolution
scheme based on the "convex cutting plane" form of the "return mapping algorithm" as well
as the formulation of the tangent operator. The latter is implemented into the FE solver
ABAQUS/Standard.

The proposed model is successfully identified for the polyamide 6-6 through a suitable
experimental program including several types of tests, namely: monotonic, creep and cyclic
tests. The good agreement between experimental and numerical results demonstrates the
capabilities of the model to capture, with a single set of parameters, the mechanical response
of thermoplastic polymers under various conditions and especially cyclic loading.

Examples of simulations where the material is subjected to complex uni-axial loading
conditions have been performed in order to provide a better understanding of the model
and to identify the influence of each non-linear mechanism (viscoelasticity, viscoplasticity
and damage). These analyses highlighted the importance of the multi-mechanism formu-
lation to capture the time-dependent response of thermoplastic polymers, especially under
cyclic loading. Indeed, the coupled viscoplasticity and damage as well as the Kelvin-Voigt
branches having a long characteristic time, all together, mainly enable to capture the ac-
cumulation of strain and damage throughout repeated cycles. Oppositely, the Kelvin-Voigt
branches having a short characteristic time are more appropriate to represent the hysteresis
loops occurring among each single cycle, and produce most of the dissipation over a long
period of time. Finally, the capabilities of the proposed model along with its numerical
implementation are demonstrated through an example of FE analysis.
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CHAPTER III. HYBRID MICROMECHANICAL-PHENOMENOLOGICAL
MODELLING OF ANISOTROPIC DAMAGE AND ANELASTICITY
INDUCED BY MICRO-CRACKS IN THE YARNS

The content of the present chapter was the scope of a peer-reviewed paper entitled
"Hybrid micromechanical-phenomenological modelling of anisotropic damage
and anelasticity induced by micro-cracks in unidirectional composites" published
in Composite Structures [165].

1 Introduction

As previously mentioned, at the microscopic scale a yarn is an assembly of fibres as a
bundle. The yarns are then composed of numerous unidirectionally oriented fibres embedded
in the matrix. Consequently, their behaviour can be considered as equivalent to the one of
a unidirectional composite. In such materials, the damage mechanisms are governed by the
specific arrangement of the reinforcement, leading to an anisotropic evolution of their mech-
anical response. In the case of unidirectional composites reinforced with stiff fibres (e.g.,
glass or carbon), the longitudinal behaviour exhibits a linear elastic response up to the ma-
terial brittle failure due to fibres breakage. The presence of continuous fibrous reinforcements
actually prevents the appearance of others damage mechanisms in the fibre direction. The
transverse tension and the in-plane shear responses generally exhibit a progressive stiffness
degradation prior to failure. Indeed, the transverse damage is induced by the appearance
of a diffuse micro-crack network that initiates by debonding at the fibre/matrix interfaces
(Figure III.1a) and propagates by coalescence (Figure II1.1b).

(a) Initiation of the micro-cracks by debonding (b) Coalescences turning into micro-cracks
of the fibre/matrix interfaces

Figure III.1: Transverse damage mechanism in unidirectional composites [64].

Most of the modelling efforts have therefore focused on the definition of damage vari-
ables related to the previously described behaviour. Continuum Damage Mechanics (CDM)
along with the concept of effective stress formulated within the framework of thermody-
namics [109, 110] is particularly adapted for such a description. Initially developed in the
context of isotropic material response, the CDM was adapted to the anisotropic case of uni-
directional composites [106, 95, 93, 5, 25, 26, 119]. The effects of micro-cracks are usually
accounted through the introduction of several damage state variables that directly define
the reduction of the material stiffness. In addition, the anelastic mechanisms are generally
described by a plastic-like strain tensor whose evolution is governed by a yield function
written in the effective stress space in order to account for the coupling with the damage.
Nevertheless, if the use of CDM is convenient and straightforward in the isotropic case, its
extension to anisotropy may lead to the following issues:
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— Several damage state variables are assumed to capture properly the anisotropic evol-
ution of the material response. Each variable is associated with an evolution equation
that potentially depends on several field variables (temperature, stress) where multi-
axial couplings may be included. Such a modelling strategy leads to an important
number of material parameters with additional difficulties regarding their identifica-
tion.

— The definition of the effective stress tensor is required to account for coupling effects
with the anelastic mechanisms. In the case of anisotropic materials the physical mean-
ing of the effective stress is not obvious [110].

To overcome those issues, the evolution of the mechanical response of such composites can
be rather based on the evolution of the micro-crack network itself through micromechanics
[105, 104, 155].

The main objective of this chapter is to propose a computationally efficient, hybrid
micromechanical-phenomenological model that has a reduced number of internal variables.
The evolution of these variables is controlled by criteria that depend on local stress estim-
ations, providing hence a physically based description of the damage mechanisms.

The model proposed in this chapter accounts for anisotropic damage and anelasticity
induced by micro-cracks in unidirectional composites. The damage is introduced through a
micromechanical description of a Representative Volume Element (RVE) containing micro-
cracks. Those defects are quantified by a unique internal state variable whose evolution is
governed by a local stress criterion. The anisotropic evolution of the stiffness as well as the
connection between overall and local stress-strain fields are therefore determined using mi-
cromechanical relationships that are directly incorporated within the constitutive equations.
In that sense, the proposed model is based on a hybrid micromechanical-phenomenological
formulation [40, 201, 169]. A novelty of the proposed model consists in accounting for
anelastic deformation mechanisms by introducing the concept of damage induced anelasti-
city, where permanent strains are assumed to be caused by non-closure effect of the micro-
cracks. The constitutive equations are then expressed within the framework of thermody-
namics of irreversible processes applied to the overall medium, describing its mechanical
response under the small strain assumption and isothermal conditions.

Compared to classical CDM models for unidirectional composites [106, 95, 93, 5, 25, 26,
119], the present modelling strategy leads to a reduced number of parameters with a certain
ease regarding their identification. Moreover, the hybrid micromechanical-phenomenological
formulation brings a physical basis to the model, while its practical use remains as compu-
tationally efficient as any purely phenomenological approach.

This chapter is structured as follows: In Section 2, the constitutive equations, the thermo-
dynamical framework and the micro-mechanical aspects of the proposed model are presen-
ted. Section 4 focuses on the identification strategy of the model parameters. The latter
is illustrated from experimental data of a flax-epoxy unidirectional composite taken from
the literature. Section 5 presents illustrative examples of simulations (including a 3D FE
analysis) where the material is subjected to complex loading conditions. To finish, Section
6 summarizes the main conclusions related to this chapter.
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2 Constitutive equations and thermodynamical frame-
work

The main idea of the proposed model is to link, through micromechanical concepts,
the overall stiffness reduction of a unidirectional composite with the evolution of a single
scalar state variable 4. that quantifies the state of the involved damage mechanism, the
oriented micro-cracking in the present case. This stiffness reduction is represented under
the form of a fourth order tensor ID(~,.) that gradually lowers the initial stiffness tensor Cg
of the material, the latter having transversely isotropic properties as it represents the elastic
behaviour of the undamaged unidirectional composite (initial material). The tensor D(~.)
is evaluated by homogenization of the initial material in which a micro-crack density 7, is
introduced (Figure I11.2). The latter is defined as a void volume fraction created when the
material is being damaged. Due to the microstructure arrangement, the micro-cracks are
forced to propagate in a plane parallel to the fibre direction Z;. Moreover, if the material
is mainly loaded in plane stress (plane 71, Z3) as it is often the case, then the propagation
plane of the micro-cracks can be considered as being perpendicular to the second direction
79 and consequently always oriented in the same plane (Figure I11.2).

i) ii) iii)

=

0 Co — D(v.)

y e
Figure I11.2: i) Initial state: transversely isotropic. ii) Damaged state: introduction of a
micro-crack density ~. (void volume fraction) in the RVE. iii) Evaluation of the stiffness
reduction induced by 7. by homogenization.

Damage in such type of materials generally brings about permanent strains due to the
micro-cracks non-closure and the resultant sliding with friction [106, 95, 25, 26, 119]. In the
present model, these damage induced permanent strains are phenomenologically described
by an anelastic strain tensor denoted by €5. The total strain is then expressed by summation
of the elastic strain €, with the anelastic strain e:

€ = €, + &s. (ITL.1)

The observable state variable of the model is the total strain € while the internal state
variables are 7, and €,. The elastic strain e, is not considered as a state variable but, for
convenience, is expressed as the difference between the total strain and the anelastic strain.

2.1 State laws

According to the framework of thermodynamics [67, 68, 69, 109, 33] , which is briefly
described in Appendix B, the state laws are based on a state potential. For the proposed
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model, the Helmholtz free energy is chosen to describe the energetic state of the material.
The latter is formulated as a stored energy function of the state variables:

pY(€,€45,7e) = %(r—: — &)1 [Co—D(7e)] : (e — &s). (T11.2)

The associated thermodynamic variables, namely the stress o, —o and the energy density
release —Y,, are obtained from the derivation of the potential with respect to the state
variables €, €, and 7., respectively:

0
o= pa—f = [Co = D(.)] : (e — &s), (II1.3)
0
—0 = pai, (II1.4)
0 1 ID(7,
—Y, = pa_;i = —5(5 —€&g): 8(72 ) (e —es). (IIL.5)

The state and associated variables of the proposed model are summarized in Table III.1.

State variables Associated variables

Observable internal -

€ o
Eg —0
Ve _Y;

Table II1.1: State and associated variables of the proposed model.

2.2 Micromechanical aspects

Obviously, the state laws formulated on the previous section depend on the exact phys-
ical signification given to the micro-crack density 7. along with the definition of the stiffness
reduction tensor D(.). As previously mentioned, in the proposed model it has been chosen
to identify these quantities using micromechanical concepts [105, 104, 155, 40].

2.2.1 Definition of the stiffness reduction

By assuming micro-cracks as oriented quasi-flat ellipsoidal inclusions of void, an explicit
expression of the stiffness tensor D(+..) can be obtained according to the void volume fraction
Ve, also referred as the micro-crack density [127, 128, 130, 202]. The voids represent the
micro-discontinuities as a part of the material that is unable to sustain stress. This is taken
into account by considering zero stiffness tensor for the void inclusions. Using mean-field
approaches [172], the overall stiffness of the damaged composite, namely Co — D(7,), is
determined from a two-phases RVE consisting of a volume fraction ~. of void inclusions
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(with zero stiffness) embedded in a reference medium (the virgin part of the material in the
present case). This gives:

(CO - D(Vc) - (1 - '70)(20 : AO(’VC)' (IHG)

In the above equation, Ag(7.) is the strain localisation tensor in the virgin part of the
material that is to be defined. The strain localisation in the void inclusions is represented
by the tensor A.(7.). It is well established [172] that, for a two-phases RVE, one can write
the following relationship between the strain localisation tensors:

(1= 7e)Ao(7e) + vehe(re) = L. (I1L.7)

According to the micromechanical scheme of Mori-Tanaka [137], the strain localisation in the
inclusions A.(7,.) is calculated from the strain localisation in the reference medium Ag(7,),
the latter is then directly deduced from (II1.7):

Ac(’yc) =T,: AO(’YC) and AO('VC) = (I[ + ’YC(TC - H))ilv (HIS)

where T, is the interaction tensor obtained from the solution of [59]. For void inclusions
with zero stiffness, this interaction tensor can be easily expressed as:

T.=(1-Sg) " (I11.9)

Sk is the well-known Eshelby tensor [59] that depends on the stiffness tensor of the reference
medium Cy and the relative dimensions a1, as and ag (Figure I11.3) of the void ellipsoidal
inclusions. Because of the anisotropic properties of the reference medium (Cyp), the Eshelby
tensor Sg must be numerically evaluated using the methodology proposed by [66] that is
briefly presented in Appendix F. Finally, the introduction of (IT1.7) and (II1.8) into (I11.6)
leads to the following formulation of the overall stiffness tensor of the damaged material,
highlighting the expression of the stiffness reduction tensor D(7,):

(CO — D(’}/C) = CO - ")/CCO : Tc : Ao("}/c), (IIIlO)

thus,
D('Yc) = ’YCCO : P]Fc : AO(’VC>‘ (11111)

Besides computing the stiffness reduction, the strain localisation tensors (II1.8) allow to
define the local strain fields, and more especially the one in the virgin part of the material:

€o(€,€s,7) = Ao(7e) : (€ — €s). (II1.12)
Similarly, the local stress in the virgin part of the material o9 = Cq : €9 can be written
either in terms of strain €, or in terms of stress o, if (I11.3) is substituted:

oo(e,€s,7) = Co : Ao(7e) : (€ — €5) or oo(0,7:) = Bo(.) : o, (IT1.13)

where the stress localisation tensor Bg(7.) is obtained by introducing (II11.3) into (II1.13)
while considering (II1.6). This gives:

I
B 1_/70

Bo(7e) = Co : Ag(ve) : [Co—D(7e)] (I11.14)

From equations (II1.8) and (II1.14), it is easy to verify that, when the material is undam-
aged: Ag(7.=0)=Bo(7.=0) =1, g9 = (e —€5) and o9 = 0.
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T

Figure ITI.3: Ellipsoid with its relative dimensions.

Note that the interaction tensor T, is directly calculated from the Eshelby tensor Sg in
(IT1.9) and consequently does not depend on any field variable. Therefore, T, can be con-
sidered as an input of the model and is hence computed only one time prior to any analysis.
Such consideration is particularly important since the numerical evaluation of the Eshelby
tensor is a computationally expensive task that should be avoided in a numerical process.

It is also important to point out that, although the tensors Sg, T, and Ay do not have
the major symmetry, the tensor D(+,.) always does. Indeed, for a two-phase RVE (compos-
ite and voids in the present case) the major symmetry of the homogenized stiffness tensor
is ensured with the micromechanical scheme of Mori-Tanaka [18|. This point is essential
because it allows the definition of a thermodynamic state potential, as formulated in (II1.2)
for the proposed model.

As mentioned in the introduction (Section 1), CDM-based model needs several damage
state variables to consider anisotropic damage. With the proposed approach the definition
of damage is provided through a micromechanical description. The anisotropic stiffness
reduction induced by the micro-cracks is computed as a tensorial function which directly
depends on the micro-crack density ~.. The latter is denoted as an internal state variable,
which has a physical signification from a micromechanical point of view.

2.2.2 Geometrical aspects of the voids

The orientation as well as the quasi-flat aspect of the void ellipsoidal inclusions imply
specific conditions on their relative dimensions (Figure I11.3). Indeed, the flattening ratios
01 and &3 must tend to infinite values:

3]

o =—— o0, (53 = — — OQ. (11115)
a9 a9

In practice, large enough values of flattening ratios are utilized for the numerical evaluation
of the stiffness reduction. The latter is also influenced by the micro-cracks shape ratio 9.,
where

01 a
03 03'

Oc

(I11.16)
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If §. = 1, then the shape of the micro-cracks is perfectly circular (penny shape). If §. — oo,
then the micro-cracks get across the volume element along ' (see Figure IIl.4a), whereas
in the opposite case, when ¢, — 0, the micro-cracks get across the volume element along '3
(see Figure IIL.4b).

|
e
T3 T3 =
7 T 7 T
(a) crossing micro-crack along 7y (6. — 00) (b) crossing micro-crack along #3 (6. — 0)

Figure II1.4: Illustration of the crossing micro-cracks configurations.

As an example, the stiffness reduction tensor ID(7.) has been determined (Figures II1.5
and II1.6) for several configurations of void inclusions, as detailed in Table II1.2. For these
computations, stiffness properties taken from a flax-epoxy unidirectional composite have
been considered. These properties have been extracted from the experimental data of [119]
as shown later in Section 4. The initial stiffness tensor of this material, namely Cgp, is
presented below with the help of the Voigt notation.

21975 2678 2678 0 0 0
5711 1942 0 0 0
5711 0 0 0
Co = 9100 0 0 MPa. (TT1.17)
2100 0
sym. 1885

Note that Coq is Welll transversely isotrolpic, since Cogyny = Coggasr Co110s = Corrazs Coymn =
001313 and C’02323 = 5(002222 - CV02233) = 5(003333 - C(02233)'
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configuration of the void inclusions

flattening ratios  shape ratio

51:(1_1 53:(1_3 (50_51:ﬂ

P as T 0 a3
circular micro-cracks (penny shape) 100 100 1
circular micro-cracks (penny shape) 200 200 1
circular micro-cracks (penny shape) 300 300 1
circular micro-cracks (penny shape) 400 400 1
crossing micro-cracks along 7'y 400000 400 1000

crossing micro-cracks along 7'

400 400000 0.001

Table I11.2: Flattening and shape ratios of the void inclusions.

As expected, it can be noticed that the presence of micro-cracks does not affect all the
terms of the stiffness reduction tensor in the same way, leading to an anisotropic stiffness
reduction. On Figures I11.5 and II1.6, it can be observed that the terms 1122, 2222 2233,
1212 and 2323 of the stiffness are the most reduced, while the terms 1111, 3333 and 1313
are almost not affected for the considered range of micro-crack density. The flattening of
the voids inclusions appears to have a shift effect on the stiffness reduction. The influence
of the flattening ratios ¢; and d3 seems to become negligible from a certain value. Similar
observations have been reported by [127| and validate the choice of large finite values to
represent infinite ratios. Regarding the shape of the cracks, it can be noticed that the micro-
cracks shape ratio J. mainly influences the stiffness reduction of the in-plane shear (term
1212), that appears to be more important when the micro-cracks get across the volume

element along #1, namely when §. — oo.
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Figure IIL.5: Relative components of the stiffness reduction tensor (upper left quadrant) for
several values of void flattening and shape ratios.
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Figure II1.6: Relative components of the stiffness reduction tensor (lower right quadrant)
for several values of void flattening and shape ratios.
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2.3 Evolution laws

The second law of thermodynamics implies that the mechanical dissipation has to be
always positive or null through the Clausius-Duhem inequality (see Section 1.3 in Appendix
B). Considering isothermal conditions (see Section 2 in Appendix B), the rate of the dissip-
ated energy @ is expressed by the difference between the rate of the strain energy W, and the
rate of the stored energy pt, in which equations (IIL.3), (II1.4) and (IIL.5) are substituted:

qD:WE_IOwZO

=0g:—p a—w'é+a¢:és+a—¢% >0 (IT1.18)
Oeg 0.

Oe
:G€s+Y;:7c20

From an energetic point of view, it is worth noticing that, according to the proposed
model formulation, the internal energy function pip presented in (III1.2) is only associated
with the elastic part of the total strain. Indeed, in this formalism, there is no energetic term
linked to the anelastic strain €4 that could permanently store energy in the material, like a
hardening function in the case of plasticity. Consequently, pi is fully and instantaneously
recoverable when the stress is released. Thus, the non-linear mechanisms of the proposed
model only dissipate and do not store energy in an unrecoverable manner (see Figure I11.7).
Note that this latter point is an assumption of the model.

o

J “Co — D(7.)

pY

€

€s
Figure I11.7: Balance between the dissipated (®) and stored (pi)) energies for the proposed
model.

2.3.1 Damage activation and development

Classically, in most of the CDM models for unidirectional composites [106, 95, 93, 5, 25,
26, 119], the damage variables are driven by a criterion based on their associated variables,
namely the energy density releases. With the present formulation, such a control would be
inappropriate, since the growth of oriented micro-cracks is only generated under a certain
type of stress state, namely when o,, and o,, are involved. For this reason, it is proposed to
drive the development of the micro-crack density <. by an anisotropic quadratic interaction
criterion |76, 148] expressed from the local stress in the virgin part of the material (II1.13).
This criterion, in its general form, is given by:

H.(0¢) =\ 0oo:H: . (II1.19)
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In the above equation, H is a fourth order tensor configured in such a way that H, stays
sensitive only to the components 22 and 12 of 9. With the help of the Voigt notation, this
gives:

!0_011 \N T 0 P 0 0 0 0 (0011 )
0029 RZ, 0 0 0 0 0022 9 9
0 0 0 0 o 00 90
H2= Q7% 4 x x g 0= ( 22) + ( 12) - (II1.20
¢ 0012 RL% 0 0 0012 Ras Ry ( )
0013 0 O 0013
L 0023 ) sym. 0 0023

As illustrated in Figure I11.8a, Rys and Ris denote the initial thresholds in pure transverse
tension and in pure in-plane shear, respectively. According to the relationships (II1.13) and
(IT1.14), the local stress o and the overall stress o have the same direction and a nearly
equal amplitude since the micro-crack density 7. takes relatively small values. Nevertheless,
a criterion based on this local stress oy is more appropriate as it accounts for the neat part
of the material sustaining the loading.

The development of the micro-crack density is formulated in such a way that the damage
initiates only when H,. exceeds 1. After this stage, the micro-crack density . is expressed as
a function g of the maximal value reached by the criterion H,. in the whole loading history,
noted hereafter as sup(H.). The function g is chosen as a Weibull-like law [192] that is
commonly utilized in micromechanics-based models to express the evolution of various types
of damage mechanisms like micro-cracking [42, 130] or interface debonding [107, 199, 46].
Thus, in the proposed model, the development of the micro-crack density is expressed as

follows:
sup(H,) — B
Ye = g(sup(H,)) = [1 — exp ( - [< p(H:) 1>+] >] : (II1.21)

S

where S and [ are the length and exponent parameters, respectively. 72° denotes the level
of micro-crack saturation such that 7. < ~2°, as shown in Figure II1.8b. If no saturation
appears experimentally, then the parameter v2° can be simply fixed to a large enough value
so that only the first part of the Weibull function (0 < sup(H.) < 1+5) acts (Figure I111.8b).

H. = sup(H,.)

0.63 x 4

00y

Ry sup(H,) x Rao ' 1

(a) Stress criterion H, (b) Weibull-like law

sup(H,)

Figure II1.8: Development of the micro-crack density.

It is worth noticing that the development relationship (IT1.21) accounts well for the
irreversible aspect of damage, implying that 7. > 0. Indeed, as illustrated in Figure III.8a,
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damage is activated and evolves (7. > 0) when H, = sup(H.), while it remains constant
(7. = 0) when H. < sup(H.). From a thermodynamic point of view, the inequality Y. > 0
ensures that the dissipation related to the stiffness reduction is always positive or null, i.e.
Yeye = 0.

2.3.2 Evolution law for anelasticity

Classically, in most of the CDM models for unidirectional composites [106, 95, 93, 5, 25,
26, 119], the anelastic mechanisms are formulated in a similar manner as plasticity, where
the anelastic strains are governed by a yield criterion written in the effective stress space
[109, 110]. Alternatively, the proposed approach considers that the anelasticity occurs as
permanent strains caused by the micro-cracks non-closure upon unloading. Therefore, this
anelasticity is a direct consequence of the micro-cracking that is represented by the internal
state variable 7.. Accordingly, the evolution of the anelastic strain e is directly linked to
the variable of the micro-crack density 7., making the two mechanisms directly coupled and
simultaneously activated. This evolution is expressed through the normality of a convex
indicative function given by:

F(o,Y,) = Hy(o) + Y. where Hi(o)=Vvo:F:o. (I11.22)

In the above equation, H; is another anisotropic quadratic interaction criterion |76, 148| in
which the fourth order tensor F is configured in such a way that H, stays sensitive only to
the components 22 and 12 of . With the help of the Voigt notation, this gives:

(0, )" 00 0 0 0 0 (0,
(o8 az, 0 0 0 0 0,
. o, 0 0 0 0 o,
H: = o X @2, 0 0 X oo [ (I11.23)
0.4 0 O 0.4
(O3 sym. 0 <y

where ass and a1o are material parameters. The normality of the indicativg function F(o,Y,)
allows to express the rate of 7. and g, through a common multiplier A (A > 0):

OF . .
o= o A=A, 111.24
e =5y (111.24)
F. 0H,. TF:o.
e, 0L Oy Eios (IT1.25)

Jo Jo Hy(o)
The evolution of the multiplier, that appears to be the rate of the micro-crack density itself
(A = 4. > 0), that is obtained through the damage development relationship (IT1.21). Then,
by introducing (I11.24) into (II1.25) the evolution of the anelastic strain €, eventually takes
the form of a flow equation:

€s = As(0)7e where As(o) = —— (I11.26)
It is worth noticing that Hs(o) is related to the direction of the anelastic strain, whereas
H.(o¢) is related to the damage activation and development, as expressed in (II1.21). In
that sense, the anelastic strain is governed by a non-associative flow rule. The form of F
in (II1.23) implies that only the components 22 and 12 of the anelastic strain tensor 4 are
active and evolve with the micro-crack density, namely when v, > 0. In addition, it is worth
noting that the anelastic mechanism can be deactivated by setting ass = 0 and a5 = 0.
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2.4 Remarks and discussion

With the present model, the damage development and the direction of the anelastic
strain are governed by the stress criteria H,. (I11.20) and H, (I11.23), respectively. Although
simple, the choices of these criteria are motivated by the fact that each one involves only
two parameters that can be easily identified, as detailed in Section 4. It is worth recalling
that the criteria H,. and H, are both formulated as anisotropic quadratic interaction criteria
based on the work of [76] and [148]. These criteria imply symmetric envelopes in the stress
space. Consequently, they cannot account for asymmetric effects such as the difference in
response between tension and compression. Nevertheless, H. and H, can be easily replaced
by other criteria [82, 185, 74, 73, 84| accounting for more complicated multi-axial coupling
and asymmetric effects. Such advanced criteria though would require additional parameters
that need to be identified from experiments including tension-compression, and combined
loading conditions. In the absence of such data, the proposed quadratic interaction criteria
remain the best compromise.

As mentioned at the beginning of Section 2, the present model considers that the micro-
cracks are always oriented in the same direction. This orientation is conditioned by the
reinforcement and by an assumed plane stress state. In certain cases, this hypothesis could
be violated. Indeed, according to the well-established Puck criterion [167, 168], it is known
that the cracking plane may exhibit different types of orientation, especially when a trans-
verse compressive stress is involved (o, < 0). The present modelling approach can be
combined with such criterion to account for a load dependent micro-cracks orientation.
However, integrating this feature may lead to several modelling difficulties. First, when
the material is subjected to highly non-proportional loading, different cracking planes exist
and may interact each other. Second, even though advanced algorithms have been already
developed for the determination of a potential cracking plane [193, 175], the computational
cost related to this task is often prohibitive and the application of the algorithms in non-
linear FE schemes is not straightforward.

The introduction of local damage in FE structural analyses may cause additional dif-
ficulties, related to the localization effects. Indeed, this well-known unstable phenomenon
caused by the loss of ellipticity of the system of equations cannot be described correctly
with phenomenological models using local variables. Usually, in FE computations the loc-
alization is activated under any small perturbation, which may be caused by defects in
the material, irregularities in the geometry of the structure or non-homogeneous boundary
conditions. The numerical solution is then mesh dependent and the actual results are not
reliable. Often, size effects and localization mechanisms can be captured with non-local
models [48, 191, 75, 87, 98], which use gradients of the variables and introduce a character-
istic length. In the current work the proposed damage model is formulated and implemented
in the framework of CDM with the assumption of diffuse damage prior to localization. All
the numerical calculations are performed well before any unstable phenomenon occurs, thus
the analyses do not suffer from the loss of uniqueness. For structural applications the model
can be considered accurate as long as the material at every point of the structure does not
reach the limit where localization appears. Note that the same remarks are also applicable
for the constitutive model previously presented in Chapter II.
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2.5 Summary of the constitutive equations

In summary, the proposed model can be described by the set of constitutive equations
given above in Table I11.3.

Observable Associated variable (state law)

state variable

0
€ o= pa—f = [Co —D(7.)] : (e — €s)
Internal Associated variables (state laws) Evolution laws
state variables
oY OF .
—0 = 's =—A\= As .c
€ 7 P e, ® = 9o (o)y
o oF . .
c —Y, = e = A=A
ot o e = 5y

Micromechanical Local mean strain and stress in the virgin part of the material

variables
€o g0 = Ao(7c) : (€ —€5)
oo 00=Co:Ap(7:): (e—€5) or o9g=DBo(7):0
Multiplier Criterion Active (A > 0) if H, = sup(H,)
A=1 H.=+\/0o:H: 0o, Ye = g(sup(H,))

Table II1.3: Summary of the constitutive equations.
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3 Numerical implementation: Backward Euler time im-
plicit algorithm

The proposed constitutive model is implemented into the FE solver ABAQUS/Standard
through a User MATerial subroutine (UMAT). The latter is based on the "convex cutting
plane" form of the "return mapping algorithm" [179, 145, 178|, which is described in this
section for this model.

3.1 Residual

When considering the backward Euler time-implicit method, it is convenient to write the
equations governing the evolutions of the state variables under the form of residual functions
that must satisfy a nullity condition. With the proposed model, the damage development
relationship (II1.21) is written under the form of scalar function ¢, that takes negative
values when damage is not active (v, = 0), or that must remain null when damage is active

(. > 0):

it ¢, <0, v.=0
= -7 < e ’ c . .
Pre(Hesve) = g(He) = 7e < 0, { i o =0, >0 (IT1.27)
Moreover, the proposed implementation is based on the "convex cutting plane" form of the
"return mapping algorithm" [179, 145, 178, which does not require to integrate the flow
equation (II1.26) as a residual function.

The implicit implementation of the proposed model requires to linearise the above re-
sidual, the criterion H., as well as the stress. The details of these calculations are provided
in Appendix E.

3.2 Computation of the stress
3.2.1 Stress prediction

In order to initiate the computation of the stress, the internal state variables are assumed
not to evolve at first (A" V=0 = ¢ and (ntD) (k=0) _ = 0), while the total strain at the
end of the increment is given by e+ = g + Ae™_ Thus, the stress is predicted along
with the residual ¢,.. The latter is then checked to identify whether the damage mechanism
is active or not:

- If gb (nF+1)( < 0, then the damage is not active and consequently, the stress does not
need to be corrected.

- If gb(nH (k=0) 0, then the damage is active. Thus, the "stress correction" is required.

3.2.2 Stress correction

The "stress correction" consists in returning the residual ¢, back to zero by developing
the internal state variables, while the total strain does not evolve: de+*D®) = 0. Accord-
ingly, the internal state variables are updated at each iteration k by:
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AEADGAD) =t )(k) | 5 (1 (R) (I11.28)
et D(FY) — (D)) 5ot )(k), (I11.29)

where 57£"+1)(k) is obtained from the nullity condition of the residual ¢, :
Pt D) 1 gntHk) = o, (I11.30)

In the above equation, (5¢£,7Z+1)(k) is expressed by linearisation. After proper calculation
(E.2), this gives (all the quantities are taken at the increment ("+D(k));

5¢% = AWCHCCSHC + A%%ﬁ%- (11131)

In the same manner (E.3), 0H, is written as:
0H. = B .07 (111.32)

By introducing (III.32) into (II1.31) while considering (III.30), the unknown value of 6. is
computed from the known value of the residual ¢, :

6’)/0 - % Where K’YC'YC = A’YCHCBHC’YC + A’YC'YC‘ (11133)

YeYe

Furthermore, according to the "convex cutting plane" method !, el

) is directly linked
to 0 (nF1)( )by:

Se(MDE) — A (g FDIR)) g (D R), (T11.34)

Once the internal state variables are updated, the stress and the residual ¢, are reassessed
through the relationships (II1.3) and (III.27), respectively. This correction procedure is
iteratively repeated (k loop) until the convergence is reached, namely when |p{"™* )| <

0+ 0.

3.3 Tangent operator

Besides the computation of the stress, the global finite element solver also requires the
tangent operator C;, which defines the current rate in the variation of stress with the vari-
ation of total strain. As previously mentioned, the proposed implementation is based on
the "convex cutting plane" form of the "return mapping algorithm", which utilizes the con-
tinuum tangent operator |178|. The formulation of the latter is obtained by identifying a
linear relationship between do and de through a continuum description. To do so, the stress-
strain relationship is written in differential form and the evolution equations are substituted.

If the "return mapping algorithm" stops at the "stress prediction", then the damage
mechanism is not active (7. = 0). In this case, the tangent operator is simply given by
the current elastic stiffness: C; = Co — D(.). However, if the "return mapping algorithm"

1. Note that, according to the "convex cutting plane" method [179, 145, 178], the flow equation (II1.26)
is explicitly integrated within the correction procedure. This is why in (II1.34) the flows A; is calculated
from the previously updated state (taken at the increment (”“)(k)). Nevertheless, it is worth pointing out
that the time integration remains implicit. Despite this simplification, the "convex cutting plane" method
provides a good accuracy compared to other schemes, while involving less computational cost [171, 170, 83].
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passes to the "stress corection", then the damage mechanism is active (v, > 0). In this case,
the stress-strain relationship (I11.3) is written in differential form. After proper calculation
(E.4), this gives:

do = By : de + By dr.. (I11.35)

The fact that the damage mechanism is active implies that d¢,, = 0. Written in differential
form (E.2), this condition becomes:

doy, = Ay g dH. + A, ., dy. = 0. (I11.36)
In the same manner (E.3), dH, is written as:

dH, = By, : de + By - d7.. (111.37)

By introducing (I11.37) into (II1.36), a linear relationship can be identified between d-. and
de:
_A'yCHCBHce

K

YeVe

dy. = Xy, : de where Xe = (IT1.38)

Finally, the substitution of (II1.38) into (II1.35) leads to the formulation of the tangent
operator Cy:
do =C; : de where Ct =Boe + Bory, @ X e (I11.39)
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4 Model identification and experimental validation

In this section, a suitable procedure is proposed for the identification of the model. This
procedure is illustrated with experimental data coming from the work of [119] on a flax-
epoxy composite. Note that, compared to classical unidirectional composites with stiff fibres
(e.g., glass or carbon), the case of the flax-epoxy is unusual. Indeed, due to the nature of
the flax fibres, a slightly non-linear response can be observed in the longitudinal direction.
It is important to mention that this peculiar aspect of the flax-epoxy composite cannot be
properly captured with the proposed model. The latter has been preferentially developed
for classical unidirectional composites and therefore assumes a linear response in the lon-
gitudinal direction. However, the transverse and in-plane shear behaviour in the flax-epoxy
composite involves the same mechanisms than those described by the model. Consequently,
in this study, the attention is more focused on the description of the transverse and in-plane
shear, while in the longitudinal direction, the response is considered as being linear elastic
with an average slope (see Figure II1.12a).

All the experimental data come from uni-axial tests performed on symmetric and bal-
anced laminated specimens (Figure I11.9a). In these conditions, neither tension-shear nor
tension-bending couplings appear. Thus, the overall laminate exhibits a purely uni-axial
stress state in the specimen’s coordinate system (Z, 7/, Z). However, each single layer (Figure
II1.9b), due to its orientation, is subjected to complex plane stress states in its local coordin-
ate system (', ¥, Z3). During the test a longitudinal strain e , was applied on the speci-
mens, while the responses in terms of transversal strain € , and longitudinal stress o, were
monitored. Based on the individual behaviour of each single layer, the non-linear response
of such multi-layered composite is simulated through a homogenization scheme. Although
the non-linear extension of the classical laminate theory is commonly used for this purpose
[21, 154], it is convenient to consider instead a scheme based on periodic homogenization
[34] in order to keep the constitutive model in its 3D formalism. Both methods actually
provide the same results as long as laminates with a symmetric stacking are considered.

J

/

]

a
»

Sl

(a) Laminate: multi-layered composite (b) Single layer

Figure I11.9: Definition of a laminate, (Z,¥,2) is the coordinate system of the laminate,
while (%, ¥y, ¥3) is the material one within a single layer.

It is proposed to identify, at first, the parameters related to the micro-crack density
evolution (I11.21) and the anelasticity (I11.26) in the transverse tension, namely, Ras, S, [,
7% and agy. These parameters can be assessed with a [90°];4 laminated specimen repeatedly
loaded and unloaded at progressively increasing maximum stress levels (Figure II1.10a).
Indeed, with this stacking sequence, the layers are only subjected to a uni-axial stress state
in the transverse direction (0,, = o,,) so that the transverse elastic strain (e,, — €,,) is
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given by:
(522 - 5822) = 52222 (70) Oy (11140)

In the above equation S,,,,(7.) is the term 2222 of the current compliance tensor S(7.).
Furthermore, Sg represents the initial compliance tensor. They are expressed as follows:

1

S(ve) = [Co —=D(7)] ", So=Cq". (11L.41)
For convenience, equation (I11.40) is written under the following form:

Oy = [Eoz - D2 (’YC)} (522 - 6522>’ (11142)

where FEj, is the initial transverse Young modulus, while D, (7,.) represents the transverse
uni-axial stiffness reduction. They are given by:

1 1 1
= y D Ye) = - .
’ 502222 2< ) 502222 52222 (’VC)

It is important to mention that D, (7.) is not a term of the stiffness reduction tensor D(+.)
but it is related to latter the by the above relationship. When performing the test, at each
stress level, the load release allows a direct measurement of the stiffness reduction D, as
well as the anelastic strain ,,, as illustrated in Figure III.10a. Subsequently, considering
the relationship (II1.43), the micro-crack density corresponding to each stiffness reduction
measurement is recovered (see Figure IT1.10b). Once the damage threshold Ry, is identified
(Figure I11.10a), it becomes easy to compute the stress criterion H, from (I111.20) and (I11.13).
For a uni-axial positive stress state in the transverse direction, H. is reduced to:

E, (I11.43)

Oas (IT1.44)

Ho=—T2__
(1 —7e)Raz

Then, the parameters S, 3, v2° of the function g (IT1.21), that expresses the relationship
between the micro-crack density 7. and the criterion H., can be easily identified from the
obtained experimental points (Figure III.11a). Note that, for the considered material, it is
observed that the saturation of damage is not reached at the end of the experiments (Figure
[I1.11a). Thus, the parameter 72°, corresponding to the saturation regime, is set to a large
enough value (see Table I11.4) so that only the first part of the function g (IT1.21) is acting,
as explained in Section 2.3.1. Still considering a uni-axial stress state in the transverse
direction, the evolution law governing the anelastic strain (II1.26) can be reduced to:

€599 = A29Vc- (111.45)

Then, in the same way, the parameter ag, is identified from the experimental points (Figure
[I1.11b).
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Figure II1.10: For each stress level (o,, = o,,), the stiffness reduction (D,) as well as the
anelastic strain (e,,) are measured. Thereafter, from (I11.43), the micro-crack density (7.)
corresponding to each measurement of stiffness reduction is recovered.
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Figure III.11: Identification of the parameters related to the micro-crack density evolution
and the anelasticity in the transverse direction, namely S, 3, 72° and ags.

Similarly to the previously described procedure, the remaining parameters, Ri» and aq»,
could be determined from an in-plane shear test. Since pure shear tests are not easy to
perform, it has been chosen to identify these parameters by means of reverse engineering,
from a test performed on a [+£45°],, laminated specimen, where the damage is mainly gov-
erned by shear stress fields. Then the two remaining parameters are obtained by minimizing
a cost function formulated from the least squares between the numerical and experimental

mechanical response of the specimen [131, 129]|. The obtained parameters are listed in Table
I11.4.
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Feature Parameter value unit
Pure transverse tension threshold Ry 8 MPa
Pure in-plane shear threshold Ry 6 MPa
Weibull length parameter S 854 -
Weibull exponent parameter 15} 3.86 -
Micro-cracks saturation (fixed) v 0.025 -
Transverse tension anelasticity parameter ass 8.222 -
In-plane shear anelasticity parameter a12 3.064 -

Table I11.4: Identified parameters for flax-epoxy unidirectional composite.

The initial stiffness properties are provided in (II1.17). They have been evaluated by
measuring the initial slopes of the tensile tests performed on [0°];4, [90°]16 and [£45°]45 lam-
inated specimens. It is worth recalling that, as explained in Section 2.2.1, the initial stiffness
tensor Cq is required to compute the stiffness reduction along with a chosen configuration
of void inclusions, in the present case: "crossing micro-cracks along ;" (see Table 111.2).

Figures II1.12a, II1.12b and III.12¢ show the comparison between the simulated and ex-
perimental data used for the identification, respectively, the tensile tests performed on [0y,
[90°]16 and [£45°]4s laminates. Despite a slight deviation on the transverse response on the
[£45°]4s laminate (see Figure I11.12¢), the overall good agreement between the simulations
and the experiments demonstrates the capability of the model to capture the behaviour of
unidirectional composites with a rather low number of material parameters.

Furthermore, in order to validate the identified model, Figure T11.12d shows a compar-
ison between the simulated and experimental data performed on a [+67.5°|4, laminate that
were not used for the identification. As it can be seen, the model provides a good overall
prediction for both longitudinal and transversal responses. For the transverse behaviour,
both loading and unloading stages are excellently captured. With respect to the longitudinal
direction, the model provides the same order of stress, but overestimates the initial slope
compared to the experiment, which induces a deviation of the stress-strain predicted curve.
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Figure II1.12: Stress (o,,) vs. strain (¢,, an € ) for different configurations of laminate,
comparison between model and experiments. The [0°],, [90°],, and [£45°],, laminates are
used for the identification, while the [+67.5°],, laminate is kept for the validation.
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5 Numerical simulations

All the simulations presented in this section were carried out with the parameters pre-
viously identified for the flax-epoxy in Table II1.4.

5.1 Mechanical responses and dissipative behaviour of a material
point

In order to provide a better understanding of the proposed model, its dissipative beha-
viour is illustrated through the two following simulations carried out on a single material
point;:

— Simulation 1: in-plane shear
An in-plane shear stress o, of 20 MPa is applied on the material before returning back
to zero. This cycle is repeated 2 times with an increase of 5 MPa at each cycle. The
results of this simulation are presented in Figure 1I1.13. Note that the computation is
carried out with a constant time increment of 0.2 s.

— Simulation 2: non-proportional combined transverse tension and in-plane shear
The material is first loaded with a transverse normal stress o,, of 25 MPa that is held
constant for a certain period of time. While o,, is held, an in-plane shear stress o,, of
15 MPa is applied and then released. Subsequently, the transversal stress o,, is fully
unloaded. The results of this simulation are presented in Figure I11.14. Note that the
computation is carried out with a constant time increment of 0.2 s.

First of all, in terms of energy balance (see Figures I11.13g and I11.14f), it can be noticed
that the strain energy W. is well equal to the sum of the stored and dissipated energies, pv
and ®, respectively. Moreover the dissipated energy always increases or remains constant
(® > 0), which is well in accordance with the Clausius Duhem inequality (TTT.18).

In the simulation 1 (see Figure I11.13), during the first loading stage, the development
of the micro-cracking initiates when the stress exceeds the damage threshold, namely when
H. > 1. The micro-crack density is next growing along with the anelastic strain as the ma-
terial keeps being loaded (Figures I11.13d and III.13e). This growth stops when the material
is unloaded and restarts in the following cycles, when the maximal value of H, is reached
again, namely when H. = sup(H,.). Let’s remark that the the material dissipates energy
when the damage mechanism is active (Figures I11.13f and I11.13g) and recovers all its stored
energy when fully unloaded. Indeed, as explained in Section 2.3, the model assumes that
py is fully recoverable.

In the simulation 2 (see Figure II1.14), during the first stage (0 s < ¢t < 40 s), when
the transverse stress o,, is applied on the material, a growth of micro-crack density is first
generated and is accompanied by anelastic strain in the transverse direction (Figures I11.14c
and I11.14d), both along with their related dissipations (Figures I1I.14e and I11.14f). Next,
the transverse stress is held and no change in the overall material response is observed, as
expected, since no time dependency effects is accounted for with the proposed model (no
creep or relaxation). In the second stage (40 s < ¢ < 80 s), the transverse stress o,, is still
being held and an in-plane shear stress o, is applied in addition, before being subsequently
released. The micro-crack density is growing again, but at this time, anelastic strains are
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generated in both transverse and shear directions (Figures III.14¢ and II1.14d). The ma-
terial dissipates energy during the application of the shear stress and recovers a part of its
stored energy when the shear stress is released (Figures I11.14e and II1.14f). Finally, in the
last stage (80 s < ¢ < 120 s) the transverse stress is unloaded and the remaining part of the
stored energy returns back to zero (Figure II1.14f), as pt is fully recoverable.
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Figure I1I.13: Simulation 1: in-plane shear.
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Figure II1.14: Simulation 2: non-proportional combined transverse tension and in-plane
shear.

5.2 Structural FE application and model capabilities

To illustrate the capabilities of the model in simulating the mechanical response of a
3D body through the FE method, the present section deals with an example of FE ana-
lysis carried out on a laminated Meuwissen-like specimen [132; 131]. The latter is made
of 8 layers of flax-epoxy unidirectional composite (see properties in Table 111.4) with the
following stacking sequence: [0°/445°/—45°/90°|s (see Figure II1.9 for the definition of a
laminate). Each layer has a thickness of 0.5 mm, making a total thickness of 4 mm, among
which half of it is represented due to symmetry (see Figure II1.15a). The mesh contains
12825 nodes and 10752 first order hexahedral elements (C3D8 in ABAQUS). As shown on
Figure II1.15b, the left face (located in —x) of the specimen is clamped in the plane (the
displacements along the z axis are left free), while the displacements along the y axis are set
to zero on the right face (located in +x), on which a load along the x axis is also applied.
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The specimen (the half represented) is thus loaded in 50 s with a force of 6.5 kN before
being unloaded in another 50 s (see Figure II1.16a). Note that, a multi-point constraint
equation is utilized to force the displacements along the = axis to be equal on all the right
face, so that the left and right faces always remain parallel during the deformation of the
specimen. In addition, appropriate boundary conditions are set on the plane of symmetry,
i.e. the displacements perpendicular to the plane of symmetry are set to zero (face located
in —z). The computation is carried out with constant time increment of 0.5 s.
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Figure II1.15: Example of FE analysis: Meuwissen specimen.

First of all, it is worth noticing that the proposed implicit implementation and espe-
cially the formulation of the tangent operator (see Section 3) show a good efficiency as for
each time increment, only one or two iterations are necessary to reach the global convergence.

Figure II1.16b shows the displacement of the right face on which the load is applied.
This displacement is increasing as the specimen is being loaded. During this first stage,
the overall response of the structure is slightly non-linear due to the development of the
micro-cracking and its related anelasticty at the most stressed locations (see Figure I11.17).
When the load is being released, the displacement is decreasing with a lower slope as the
structure has lost a part of its stiffness. Once fully unloaded, it can be observed that the
specimen keeps an overall deformation as a consequence of the remaining anelastic strains.
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Figure I11.16: Applied force and resulting displacement of the right face (located in +x).

SDV_gamma_c
(Avg: 75%)

(a) Micro-crack density (v.) field at the middle of
the 0° layer

SDV_gamma_c

(Avg: 75%)
0.0017
0.0016
0.0014
0.0013
0.0011
0.0010
0.0009
0.0007

(¢) Micro-crack density (v,) field at the middle of
the +45° layer

SDV_gamma_c
(Avg: 75%)

(b) Micro-crack density (7.) field at the middle of
the 90° layer

SDV_gamma_c

(Avg: 75%)
0.0017
0.0016
0.0014
0.0013
0.0011
0.0010

(d) Micro-crack density (7.) field at the middle of
the

d
he —45° layer
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6 Conclusions

In this chapter, a hybrid micromechanical-phenomenological constitutive model has been
proposed to predict the mechanical behaviour of unidirectional composites and is intended to
be used as yarn phase in the multi-scale modelling approach of the whole woven composites
in Chapter IV. The constitutive equations are formulated in the framework of thermody-
namics and account for anisotropic damage and anelasticty induced by the presence of a
diffuse oriented micro-crack network in an initially transversely isotropic medium. The rep-
resentation of damage is achieved through a micromechanical description of a micro-cracked
RVE. This gives a better description of the physical damage mechanism and its influence
of the overall material response. Furthermore, anelastic deformation mechanisms are phe-
nomenologically introduced through the new concept of damage induced anelasticity, where
permanent strains are assumed to be caused by the non-closure effect of the micro-cracks.
This modelling strategy leads to a reduced number of parameters with a certain ease re-
garding their identification, compared to classical models for unidirectional composites.

The constitutive equations of the model are provided along with an implicit resolution
scheme based on the "convex cutting plane" form of the "return mapping algorithm" as well
as the formulation of the tangent operator. The latter is implemented into the FE solver
ABAQUS/Standard.

The identification and the prediction capabilities have been validated from experimental
data for flax-epoxy unidirectional composite. The model appears to be well adapted to de-
scribe the transverse tension and the in-plane shear responses of unidirectional composites.

[llustrative examples of simulations are performed in order to provide a better under-
standing of the model and to identify the influence of the involved mechanisms. Finally,
the capabilities of the proposed model along with its numerical implementation are demon-
strated through an example of FE analysis.
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1 Introduction

Thermoplastic-based woven composites are known to have a complex behaviour inherent
to the coupling between the microstructure effects and the rheological properties of the ther-
moplastic matrix. The polymeric matrix plays a key role in the development of the damage
mechanisms over long periods of time. In recent years, the modelling of such composites
has been at the focal point of many research interests, highlighting two main approaches in
this purpose:

— On one hand, the overall behaviour of thermoplastic-based composites can be described
in a purely phenomenological manner. However, the complexity of these composites
requires models integrating numerous features like anisotropic, damage, anelasticity
and /or viscous effects [95, 79, 153, 152, 80, 81, 124, 101, 4, 187, 91, 92, 119, 60]. Such
a modelling strategy generally leads to a large number of parameters that may be
difficult to identify. Besides this fact, once the model’s parameters are identified, they
are only valid for a unique microstructure configuration, which is a real limitation
towards the integration of the local behaviours and processes. Moreover, the experi-
mental data required for the identification may be costly and complicated to obtain.
Despite this drawback, phenomenological models are generally numerically efficient
and suitable for large-scale structural applications.

— On the other hand, the composites response can be also described through multi-scale
approaches. The main advantage of this modelling strategy is that the local beha-
viours of the constituents are directly integrated along with the geometric definition
of the microstructure. Thereby, the evolutions of the local deformation processes and
the damage mechanisms are considered at the microscopic scale through the local re-
sponses of the different phases, as well as the microstructure interactions. This brings
about a more physical description of the damage mechanisms. Moreover, as long as
the local behaviours are known, the variability of the microstructure can be accounted
for. Nevertheless, such a multi-scale modelling strategy may be difficult to apply for
the simulation of large-scale structures, especially if the scale transition implies the
resolution of a FE system. Indeed, even though the connection of a FE unit cell to
each integration point of a macroscopic FE model is feasible through the FE? method
[61, 63, 62, 9, 182, 184, 183|, the computational cost involved in such a process is
highly expensive and the dedicated numerical techniques are still under development.
This prevents its direct use for industrial applications.

Considering these two different methodologies, it is possible to combine their advantages,
while getting around their issues. The main idea is to employ the multi-scale modelling ap-
proach to generate a "virtual test" database that could be subsequently utilized to identify
a purely phenomenological model [65, 2]. Hence, the multi-scale model is only used to per-
form simulations on a single macroscopic material point, so-called "virtual tests". These
"virtual tests" can be obtained within a reasonable and acceptable computational time, and
for a reduced cost. Moreover, any type of test can be simulated, for example: monotonic,
cyclic, multi-axial or non-proportional loading conditions. Once the "virtual test" database
is established, the next step is to identified from it a phenomenological model, able to repro-
duce the overall response of the composite, which in turn can be utilized for the simulation
of a large-scale structures. The present multi-scale modelling approach is intended to be
developed in this context. In a complementary purpose, the proposed multi-scale model
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can also be utilized to analyse the influence of each individual component and the local
processes, as well as the architecture of the microstructure on the macroscopic response of
the composite.

It is important to mention that such approach is entirely modular, as it results from
the assembly of several sub-models and from the geometric definition of the microstructure.
Thus, if a composite with another composition and/or another periodic microstructure is
to be studied, then the present multi-scale approach is still valid and only the ingredients
should change.

This final chapter studies the cyclic and more generally the time-dependent response of
thermoplastic-based woven composites through the proposed multi-scale model. The latter
is built from the local constitutive models of the matrix and the yarns, presented in Chapters
IT and TIII, respectively. They are assembled together with the help of the multi-scale mod-
elling approach presented in Chapter I.

This chapter is structured as follows: Section 2 briefly presents the experimental eval-
uation of the microstructure geometrical characteristics. Section 3 focuses on the exper-
imental identification of the parameters of the yarn phase that remain unknown. The
validation of the multi-scale model is achieved by comparing the predictions of the model
against experimental data obtained from quasi-static and cyclic loading conditions. Section
4 presents illustrative examples of simulations where the composite is subjected to complex
loading configurations. Among them: monotonic, creep, cyclic and non-proportional multi-
axial loading conditions. Finally, Section 5 summarizes the main conclusions related to this
chapter.
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2 Unit cell and microstructure characteristics

For the studied composite, whose microstructure follows the geometric definition intro-
duced in Section 3.1 of Chapter I (recalled in Figure IV.1a), the characteristic dimensions
a, b and [ are evaluated through of X-Ray computed tomography (see Figure IV.2a). h is
obtained by dividing the total thickness of the provided plates by the number of layers they
contain. Note that the parameter § has been deliberately over-sized in order to ensure a
proper enough meshing within the matrix domain. The average values considered for the
multi-scale model are listed in Table IV.1. Additionally, it is recalled that the architecture
of the woven reinforcement of the studied composite is 2-2 twill weave pattern as shown in
Figure IV.1b.

¢

h

a/2

(a) Characteristic dimensions of a woven microstructure (b) 2-2 Twill weave pattern

Figure TV.1: Geometric definition of the microstructure. The grey domain represents the
matrix phase, while the blue and red domains are the warp and weft yarns, respectively.

(a) 3D reconstruction of the microstructure (b) Intra-yarn micrography, the diameter of the
of the studied composite using X-Ray com- fibres is about 17 um
puted tomography with a voxel size of 6 um

Figure IV.2: Experimental observations of the microstructure of the studied composite.
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Characteristic dimensions a b ) h 1)

Values (mm) 3.46 | 0.21 | 3.75 | 0.5 | 0.025

Table IV.1: Characteristic dimensions of the microstructure, adopted values for the studied
composite.

Using the data of Table IV.1, the unit cell of the studied composite is generated and
subsequently meshed through the TexGen utilities (see Section 3.2 in Chapter I). Note that,
under this configuration, the unit cell yields to a yarn volume fraction of 59%. Furthermore,
analyses from micrography have shown that the intra-yarn fibre volume fraction is about
85%. This volume fraction corresponds to a high compaction as the fibres are almost all in
contact with each-other (see Figure IV.2b). Overall, the fibre volume fraction in the whole
composite is about 50%, which is well in accordance with the supplier data.

As previously mentioned, the constitutive models presented in Chapters II and III are
assigned to the matrix and yarn phases, respectively.
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3 Experimental identification, strategy and validation

3.1 Experimental procedure and testing

Similar environmental conditions to the unfilled polyamide 6-6 matrix (see Section 4.1
in Chapter II) were considered for the composite: RH = 50% and T = 23°C' (room temper-
ature) with the same experimental procedure regarding the RH conditioning of the material.

The experimental program was carried out on tensile laminated specimens (see Figures
IV.3a and IV.3b) axially loaded along the Z direction. Symmetric and balanced [£6],
stacking sequences are considered for the specimens with the following angles: 6§ = 0°, 15°,
30° and 45°. It is recalled that, under this configuration, neither tension-shear nor tension-
bending couplings appear, so the whole laminate can be axially loaded without generating
any unsuitable shear deformations or curvatures. The thickness of a single layer is about
0.5 mm, making a total thickness of 2 mm for the whole laminated specimens. In order
to obtain experimental data that are reasonably representative of the macroscopic response
of the composite, rectangular specimens with large enough dimensions were considered: a
length of 250 mm and a width of 45 mm. Depending on the orientation, 2 to 3 unit cells
are included across the width (see Figure IV.3c¢). The tensile tests were performed with a
servo-hydraulic tensile machine at room temperature. During the tests, the axial strain g,,
is locally measured by means of an extensometer, while the axial stress 7, is monitored by
a load cell.
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(a) Laminate: multi-layered composite (b) Single layer
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115 x 15 | =

i 6 = 45°

‘ 250
j/,‘

(c) Geometry and adopted dimensions of the tensile laminated specimens (dimensions in mm)

Figure 1V.3: Tensile laminated specimens [+6],, (Z,7,7) is the coordinate system of the
laminate, while (7, #5, ¥3) is the material one within a single layer.

For the purpose of the identification, it is necessary to numerically simulate the uni-axial
responses of the laminated specimens, in order to be compared to the experimental results.
As already discussed in Section 4 in Chapter III, the response of a multi-layered composite
is usually simulated through the classical laminate theory |21, 154]. Alternatively, a scheme
based on periodic homogenization can also be utilized for symmetric laminates [34]. In
an even simpler approach, the uni-axial response of a [£6], laminate can be simulated by
considering only one single layer with appropriate stress-strain conditions arising from the
configuration of such laminates. Indeed, the balanced stacking sequence prevents the whole
laminate from deforming in in-plane shear. This is why, in every single layer, 2g,, = 0. As
a consequence, a non-null in-plane shear stress (7,,) is induced in each layer. Nevertheless,
this stress takes opposite values from a 46 layer to a —6 layer and consequently vanishes at
the scale of the whole laminate. Thus, in order to simulate the uni-axial response of a [6],
laminated specimen, the following stress-strain states, defined in the specimen’s coordinate
system (&, 7, Z), are applied to the unit cell with the help of the off-axis control proposed in
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Section 2.2.2 in Chapter I. For the simulation of a strain-controlled test, this gives ':

TN ) ) ( .. = unknown
Eyy = unknown oy = 0
Z,. = unknown 0, = 0
IV.1
28, = 0 ’ 04y = unknown # 0 (Iv.-1)
22,, = unknown = 0 Tz = 0
[ 28y = unknown ~ 0 | [ Ty-= 0 )
In the same principle, the simulation of a stress-controlled test is performed with:
(£, = unknown (( Gow = Tuul(t) )
€yy = unknown oyy = 0
Z,. = unknown 0., = 0
IV.2
26,y = 0 ’ \ Oy = unknown #0 [’ (Iv.2)
22,, = unknown = 0 Oz = 0
2g,. = unknown =~ 0 ) [ Ty = 0 )

where the axial strain and stress, namely ., and 7,,, can be compared to the experimental
results.

For the experimental program, two types of tests that are suitable for the identification
and the validation of the multi-scale model are proposed:

— Quasi-static tests:
The laminated specimens are repeatedly loaded and unloaded at progressively increas-
ing stress levels until failure. These tests are performed at a relatively slow strain rate
(about 3.5 x 1072 s71).

— Stress-controlled cyclic tests:

The laminated specimens are subjected to a sinusoidal stress signal oscillating between
a top and a bottom stress level at a frequency of 1 Hz during 100 s, i.e. 100 cycles.
For the [0°],, [£15°], and [£30°], specimens, about 80% of the quasi-static ultimate
stress is considered for the top stress level. However, for the [£45°], specimens, as
they exhibit a much more ductile response, top stress level of 95 MPa is taken instead,
in order to keep a moderate strain amplitude. Note that the bottom stress level is
about 10 MPa, same for all the specimens.

Similarly to the unfilled polyamide 6-6 in Section 4 in Chapter II, during the stress-
controlled cyclic tests, thermal measurements were carried out by means of an IR thermal
camera. Although the proposed multi-scale model is formulated for isothermal conditions,
an estimation of the self-heating will be assessed by integrating the macroscopic dissipation
® as heat source in an uncoupled thermal analysis (see Appendix C). Thus, the estimated
temperature elevation will be compared to the one experimentally observed. Assuming
uniform thermomechanical fields in the area of interest, the "0D" heat equation integrated
over the volume of the unit cell takes the following form:

m(f(t) + T(’”%T‘”) ~ B, (1V.3)

1. In the specimen’s coordinate system (&, 7, Z), the rotated unit cell presents a fully anisotropic response
(in the plane zy), leading to tension-shear coupling. This is why the shear stress ., can take non-null
values when the shear strain 2g,, is set to zero.
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where p and ¢ stand for the macroscopic density and specific heat capacity, respectively. It
should be pointed out that characteristic time 7 quantifies the heat losses which are assumed
to be proportional to the difference between the current temperature of the composite T'(t)
and the its equilibrium temperature T, (room temperature). The thermal data utilized in
this chapter are listed in Table IV.2.

Feature Parameter value unit
Macroscopic density Iz 1.870 x 107 T.mm™3
Macroscopic specific heat capacity ¢ 0.990 x 107 mJ. T-teC!
Characteristic time (heat losses) 7 149 S

Table IV.2: Parameters of the uncoupled "0D" thermal problem for the composite. The
values for the macroscopic density and the specific heat capacity are provided by the in-
dustrial partners. The characteristic time 7 was evaluated for the laminated specimens (see
Figures I1.3 and II1.4) using the methodology proposed by [20] that is briefly presented in
Section 3 in Appendix C.

3.2 Identification strategy

It is recalled that the matrix has been already identified from experiments directly per-
formed on the unfilled polyamide 6-6 (see Section 4 in Chapter II) whose parameters are
listed in Table I[.4. Regarding the yarns, the identification procedure proposed in Section
4 in Chapter III is not applicable in the present case, since it is impossible to isolate this
component in order to perform mechanical tests on it. Instead, it is proposed to identify
the yarns parameters from the macroscopic response of the whole woven composite. In this
purpose, a reverse engineering algorithm is utilized, similarly to the approach used for the
unfilled matrix described in Section 4.2 in Chapter II.

It is also important to recall that the behaviour of the yarns is assumed to be time-
independent. Thus, for the whole multi-scale model, the overall time-dependency is only
caused by the matrix phase. With this in mind, the parameters related to the yarns are
identified only from the quasi-static tests, while the stress-controlled cyclic tests are kept
for the validation.

3.3 Identification and experimental validation

Beforehand, the initial stiffness of the yarns is estimated by means of periodic homogen-
ization (see Section 1 in Appendix G) so that only the parameters related to the damage
and the anelasticity in the yarns are identified through the reverse engineering procedure.
The obtained values of these parameters are listed in the lower part of Table IV.3, while
the initial elastic properties are recalled in the upper part of the same table. Note that, the
stiffness reduction induced by micro-cracks in the yarns (see Section 2 in Appendix G) is
computed considering the following configuration for the void inclusions: "crossing micro-
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cracks along 71" (see Figure I11.4a and Table I11.2). The behaviour of the isolated yarns is
illustrated through basics examples in Section 3 of Appendix G.

Feature Parameter value unit
Transversely isotropic stiffness tensor Coys 65822 MPa
(non-null components) Co11as = Coyyss 7041  MPa
Cogny = Csass 23947 MPa
Coy93s 6971  MPa
Co1015 = Coya1s 8661 MPa
Cozgzs = 3(Coggzs — Cogssy) 8488 MPa
Pure transverse tension threshold Ras 20.0 MPa
Pure in-plane shear threshold Ry 7.5 MPa
Weibull length parameter S 12.3 -
Weibull exponent parameter B 2.75 -
Micro-cracks saturation (fixed) v 0.025 -
Transverse tension anelasticity parameter aqo 3.60 -
In-plane shear anelasticity parameter a1 2.15 -

Table IV.3: Identified parameters for the yarns. The initial stiffness properties (in the
upper part of the table) are computed by means of periodic homogenization (see Section 1
in Appendix G), while the damage and anelastic parameters (in the lower part of the table)
are obtained from the response of the whole woven composite by reverse engineering.

Figures IV.4, IV.5, IV.6 and IV.7 show the numerical simulations provided by the multi-
scale model and the experimental data for the quasi-static tests performed with the [0°],,
[£15°],, [£30°], and [£45°], specimens, respectively. First of all, it is observed that the
response of the [0°], specimen is quasi-elastic, as only a small amount of overall damage
and anelasticity are generated before the composite brutally fails at a relatively high level
of stress (about 430 MPa). On the contrary, for the [£45°], specimen, the response is much
more ductile and no failure occurs at the end of the test?. For the [£15°], and [£30°],
specimens, the composite exhibits an intermediate response between the ones observed with
the [0°], and [£45°]..

This important difference of behaviour for the different layers angles brings out the strong
anisotropy induced by the microstructure which is, overall, well captured by the multi-scale
model. Indeed, for the [0°],, [£15°], and [£30°], specimens, the simulated quasi-static re-
sponses are in good agreement with the experiments (see Figures IV.4, IV.5 and IV.6). For
the [£45°], specimen, the multi-scale model overestimates the quasi-static response. Nev-
ertheless, same order of stress levels and a similar tendency are obtained. This deviation
may be caused by eventual missing damage mechanisms occurring under significant in-plane

2. If no failure occurs, the test stops at 0.1 of strain, which is the limit of the extensometer.
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shear stress levels (not taken into account in the present multi-scale model), like the de-
bonding at the yarns/matrix interface for example.
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Figure IV.4: Quasi-static test for a [0°], laminated specimen. These data are used for the
identification.
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Figure IV.5: Quasi-static test for a [+15°], laminated specimen. These data are used for
the identification.
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Figure IV.6: Quasi-static test for a [+30°], laminated specimen. These data are used for

the identification.
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Figure IV.7: Quasi-static test for a [£45°], laminated specimen. These data are used for
the identification.

Figures IV.8, IV.9, IV.10 and I[V.11 show the predictions provided by the multi-scale
model and the experimental data obtained for the stress-controlled cyclic tests performed
with the [0°],, [£15°],, [£30°], and [£45°], specimens, respectively. It is recalled that these
tests were not used for the identification. Note that the failure occurred after 80 and 71
cycles for the [0°], and [£30°], specimens, respectively. For the other specimens, no fail-
ure occurred before the completion of the 100 cycles. When the composite is subjected to
a cyclic loading, phenomena directly inherited from the matrix phase can be clearly ob-
served, namely: the accumulation of strain accompanied by a progressive stiffness reduction
(see Sections 4.3 and 5.1 In Chapter IT). Nevertheless, according to the layers angles, the
amplitudes of these phenomena are quite different and, once more, bring out the aniso-
tropy induced by the microstructure. Note that, overall, similar tendencies are predicted
by the multi-scale model, compared to the experimental results. The macroscopic strain
responses are in relatively good agreement for the [0°], and the [£15°], specimens, while the
overall accumulation of strain and damage is underestimated for the [£30°], and [445°],
specimens. As previously mentioned, this emphasizes that other mechanisms and/or other
time-dependent features in the yarn phase may be involved when the composite is mainly
loaded in in-plane shear.
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Figure IV.8: Stress-controlled cyclic test: 100 cycles performed at 1 Hz for a [0°], laminated
specimen. These data are used for the validation.
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Figure IV.9: Stress-controlled cyclic test: 100 cycles performed at 1 Hz for a [£15°], lamin-
ated specimen. These data are used for the validation.
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Figure IV.10: Stress-controlled cyclic test: 100 cycles performed at 1 Hz for a [430°],
laminated specimen. These data are used for the validation.

125



CHAPTER IV. MULTI-SCALE ANALYSIS OF THE CYCLIC AND
TIME-DEPENDENT BEHAVIOUR OF THERMOPLASTIC-BASED WOVEN

COMPOSITES
100
|‘H\‘H‘\H‘ “H“H”H“‘
©
< 60
2
-
5 | | ‘ :
5 o I |
0
0 20 0 _ 60 80 100
Time [s]
(a) Applied stress (7,,) vs. time
0.04]
0.03] 0.03
T i
g 0.02 g 0.02
n »
0.0y 0.01
0j 0
0 20 0 _ 60 80 100 0 20 0 _ 60 80 100
Time [s] Time [s]
(b) Experimental strain response (Z,,) vs. time (c) Simulated strain response (£,,) vs. time
100f 100f
80r 80f
© ©
< 60 < 60
Py P
@ 40t @ 40t
? 20 ? 20
Op or
0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
Strain [-] Strain [-]
(d) Stress (G44) vs. strain (2,,), experiement (e) Stress (Gyy) vs. strain (£,,), simulation
100f-- experiment .
— model 7/
80 1
g
E 60F 7
?
3 400 :
-
)
20r 1
ot -
0 0.01 0.02 0.03 0.04

Strain [-]

(f) Stress (G,.) vs. strain (£,,) for the 15¢, 10t" and 100** cycles, represented in black,
red and blue, respectively

Figure IV.11: Stress-controlled cyclic test: 100 cycles performed at 1 Hz for a [445°],
laminated specimen. These data are used for the validation.
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Regarding the temperature measurements, it can be noticed that, within the 100 cycles
performed during the tests, temperature elevations remain relatively low (about 3.5 to 4
°C) for the [0°], and [£15°], specimens (see Figures IV.12 and IV.13). Thus, the isothermal
conditions can be reasonably considered as correct for these cases. However, for the [£30°],
and [+45°], specimens, the temperature elevations start becoming significant (see Figures
IV.14 and TV.15), making the isothermal assumption no longer valid. This point may also
explain why a deviation is observed for these specimens between the experimental response
and the one simulated with the multi-scale model, which is formulated under isothermal
conditions. Moreover, as it has been also observed for the unfilled polyamide 6-6 matrix
(see Section 4.3 in Chapter II), the temperature elevations are far from the stabilized regime
within 100 cycles and consequently a significant temperature increase is likely to occur after
a more important number of cycles.

It is worth pointing out that the hysteresis loops upon the loading/unloading stages of
each single cycle are not well reproduced by the multi-scale model. This is likely due to
the sub-model of the yarn phase, which, unlike the one of the matrix, does not integrate
any viscoelastic mechanism and time-dependent features in general. This point can also be
concluded from an energetic point of view. Indeed, the elevations of temperature computed
from the uncoupled "0D" thermal analyses (see Figures 1V.12, V.13, IV.14 and IV.15) are
far lower than the ones experimentally observed (especially for the the [£30°], and [£45°],
specimens), evidencing that the multi-scale model does not capture accurately the energy
dissipated by the composite. Integrating viscoelastic mechanisms within the yarn phase
might likely resolve this issue.
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Figure IV.12: Assessment of the temperature elevation induced by the dissipation through
the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic test:
100 cycles performed at 1 Hz for a [0°], laminated specimen (see Figure IV.8).
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Figure TV.13: Assessment of the temperature elevation induced by the dissipation through
the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic test:
100 cycles performed at 1 Hz for a [£15°], laminated specimen (see Figure IV.9).
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Figure IV.14: Assessment of the temperature elevation induced by the dissipation through
the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic test:
100 cycles performed at 1 Hz for a [+30°], laminated specimen (see Figure IV.10).
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Figure IV.15: Assessment of the temperature elevation induced by the dissipation through
the uncoupled "0D" thermal analysis (see Appendix C) for the stress-controlled cyclic test:
100 cycles performed at 1 Hz for a [+45°], laminated specimen (see Figure IV.11).
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4 Numerical simulations, mechanical responses and dis-
sipative behaviour of a macroscopic material point

All the simulations presented in this section were carried out with the parameters pre-
viously identified for the matrix and the yarns in Tables I1.4 and IV.3, respectively.

In order to provide a better understanding of the multi-scale model, its dissipative be-
haviour is illustrated through examples of simulations carried out on a single macroscopic
material point, so-called "virtual tests" (see Section 1). In these examples, the composite
is subjected to warp tension, in-plane shear and combined warp tension and in-plane shear
stress states (see Figure IV.16). The following simulations (or set of simulations) are pro-
posed:

— Simulation set 1: Monotonic warp tension
A normal strain in the warp direction £;; of 0.02 is applied on the material in 1 s for
the first simulation, 10 s for the second one and 100 s for the third one, providing a
strain rate of 2 x 1072, 2 x 1072 and 2 x 10™* s7!, respectively. The results of these
simulations are presented in Figures V.17 and IV.18. Note that the computations are
carried out with a constant time increment equal to 1/200"" of the total duration of
the corresponding simulation.

— Simulation set 2: Monotonic in-plane shear
An in-plane shear strain 22,5 of 0.05 is applied on the composite in 1 s for the first
simulation, 10 s for the second one and 100 s for the third one, providing a strain rate
of 5x 1072, 5 x 1072 and 5 x 107% s7!, respectively. The results of these simulations
are presented in Figures IV.19 and IV.20. Note that the computations are carried out
with a constant time increment equal to 1/200"" of the total duration of the corres-
ponding simulation.

— Simulation 3: warp tension creep and strain recovery
A normal stress in the warp direction 71, of 350 MPa is first applied on the composite
in 5 s. This stress is then held for 300 s before returning back to zero in 5 s. In a
final stage, the composite is kept at zero stress for another 300 s. The results of this
simulation are presented in Figures IV.21 and IV.22. Note that the computation is
carried out with a constant time increment of 0.05 s.

— Simulation 4: in-plane shear creep and strain recovery
An in-plane shear stress @15 of 40 MPa is first applied on the composite in 5 s. This
stress is then held for 300 s before returning back to zero in 5 s. In a final stage, the
composite is kept at zero stress for another 300 s. The results of this simulation are
presented in Figures IV.23 and IV.24. Note that the computation is carried out with
a constant time increment of 0.05 s.

— Simulation 5: cyclic warp tension stress
The composite is subjected to a cyclic triangular stress signal in the warp direction
o11. The latter oscillates between 350 and 0 MPa with a frequency of 1 Hz. 20 cycles
are performed. The results of this simulation are presented in Figures IV.25 and 1V.26.
Note that the computation is carried out with a constant time increment of 0.005 s,
i.e. 200 time increments per cycle.
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— Simulation 6: cyclic in-plane shear stress
The composite is subjected to a cyclic triangular in-plane shear stress signal o15. The
latter oscillates between 40 and 0 MPa with a frequency of 1 Hz. 20 cycles are per-
formed. The results of this simulation are presented in Figures IV.27 and 1V.28. Note
that the computation is carried out with a constant time increment of 0.005 s, i.e. 200
time increments per cycle.

— Simulation set 7: Non-proportional combined warp tension and in-plane shear

The composite is subjected to a combined warp tension and in-plane shear stress state,

which is applied through two different loading paths having the same amplitudes:

— Path 1: A normal stress in the warp direction @, of 200 MPa is first applied in 5
s. In the next stage, 017 is held constant, while an in-plane shear stress 15 of 30
MPa is applied in 5 s. Afterwards, both 1, and @5 are held constant for 5 s before
being released in another 5 s.

— Path 2: An in-plane shear stress 15 of 30 MPa is first applied in 5 s. In the next
stage, 012 is held constant, while a normal stress in the warp direction 71; of 200
MPa is applied in 5 s. Afterwards, both 1, and @5 are held constant for 5 s before
being released in another 5 s.

The results of these simulations are presented in Figures V.29, IV.30 and IV.31. Note

that the computations are carried out with a constant time increment of 0.05.

0-11-.-011 . Ollj.Lo—ll
012 012
(a) Warp tension (b) In-plane shear (¢) Combined warp tension and in-

plane shear

Figure IV.16: Illustrations of the simulated loading configurations.

In all the simulations, the energy balance is well respected (see_Figures IV.21e, IV.23e,
IV.25e, IV.27e, IV.29f and 1V.29g): the macroscopic strain energy W, is always equal to the
sum of the macroscopic stored and dissipated energies, pib and @, respectively. Moreover

the macroscopic dissipated energy always increases (® > 0), which is in accordance with
the Clausius Duhem inequality written in its macroscopic formalism in equation (1.7).

The results of these simulations are presented in four different subsections. The first one
is dedicated to the simulation sets 1 and 2 (Section 4.1: Monotonic loading), the second one
to the simulations 3 and 4 (Section 4.2: Creep and strain recovery), the third one to the
simulations 5 and 6 (Section 4.3: Cyclic loading), and the fourth one to the simulation set
7 (Section 4.4: Non-proportional combined warp tension and in-plane shear).
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4.1 Monotonic loading

In the simulation set 1 (see Figures IV.17 and IV.18), when the composite is loaded
in the warp direction, most of the load is carried by the warp yarns in their longitudinal
direction (see Figure IV.18¢). Meanwhile, a lesser part of this load is also carried by the weft
yarns in their transverse direction (see Figure IV.18d), causing micro-cracking to develop
only in these yarns (see Figure IV.18f). In the matrix, most of the stresses are concentrated
in the yarns-crossing areas, leading to the development of some damage in these locations
(see Figures TV.18a and TV.18b). Nevertheless, the degradations occurring in the weft yarns
and in the matrix seem to have limited consequences at the macroscopic scale, as most of
the load is carried by the warp yarns in their longitudinal direction, which behave elastically
with an important stiffness. For this reason, the response of the composite remains quasi-
linear and the overall rate effect appears to be almost not observable (see Figure TV.17).
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Figure IV.17: Simulation set 1: monotonic warp tension.
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SEH

(a) Local equivalent Von Mises stress (eq(o)) in the (b) Local damage (D) in the matrix
matrix

(e) Local in-plane shear stress (o12) in the yarns (f) Local micro-crack density (v.) in the yarns

Figure TV.18: Simulation set 1: monotonic warp tension, local fields at the end of the
simulation performed with ;; = 2.0 x 1072 s~!. Note that the local stresses in the yarns
are expressed in the local coordinate system of each yarn material point (see Figure 1.10d).

In the simulation set 2 (see Figures IV.19 and IV.20), when the composite is loaded
in in-plane shear, there are almost neither longitudinal nor transverse stresses generated
in the yarns (see Figures IV.20c and IV.20d), which are only subjected to in-shear stress
fields (see Figure IV.20e). This brings about a fast growth of the micro-cracking and the
stiffness reduction in both warp and weft yarns (see Figure IV.20f). Then, the overall load
is progressively transferred to the matrix where the stresses are mainly concentrated in the
inter-yarns areas and damage develops (see Figures IV.20a and IV.20b). Note that those
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degradation mechanisms have a significant influence on the macroscopic in-plane shear re-

sponse of the composite, which appears to be more matrix-dominated, as the rate effect can
be clearly observed (see Figure IV.19c).
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Figure IV.19: Simulation set 2: monotonic in-plane shear.
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(e) Local in-plane shear stress (o12) in the yarns (f) Local micro-crack density (v.) in the yarns

Figure TV.20: Simulation set 2: monotonic in-plane shear, local fields at the end of the
simulation performed with 2815 = 5.0 x 1072 s7!. Note that the local stresses in the yarns
are expressed in the local coordinate system of each yarn material point (see Figure 1.10d).

4.2 Creep and strain recovery

In the simulations 3 and 4 (see Figures IV.21, IV.22, IV.23 and 1V.24), during the creep
stage, similarly to the unfilled matrix (see Section 5.1 in Chapter II), the macroscopic strain
increases under the action of a constant macroscopic stress. Over this period, the composite
both stores and dissipates energy () > 0 and ® > 0). In the next stage, the composite is
unloaded and left free of stress. A part of the macroscopic strain is quasi-instantaneously
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recovered, whereas another part is recovered through a certain amount of time, at the end
of which an irrecoverable part remains (see Figures IV.21b and IV.23b). During this strain
recovery stage, the stored energy is converted into dissipated energy (see Figures IV.21e and
IV.23e). The macroscopic creep response of the composite is caused by the time-dependent
behaviour of the matrix phase, as well as the microstructure interactions between the mat-
rix and the yarn phases. Although the sub-model of the yarns does not account for any
time-dependent feature, a micro-crack density growth is observed within the yarn phase
(see Figures IV.22 and 1V.24). Indeed, when the matrix locally creeps and gets damaged,
a part of its sustained load is gradually transferred to the yarns, leading to an increase of
micro-crack density in this phase. Moreover, in warp tension the macroscopic creep is quite
low, in contrast to the in-plane shear. This is due to the fact that, in the latter case, the
behaviour of the composite is mainly matrix-dominated.
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Figure IV.21: Simulation 3: warp tension creep and strain recovery.
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Figure IV.22: Simulation 3: warp tension creep and strain recovery, local fields.
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Figure IV.23: Simulation 4: in-plane shear creep and strain recovery.
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Figure IV.24: Simulation 4: in-plane shear creep and strain recovery, local fields.

4.3 Cyclic loading

In the simulations 5 and 6 (see Figures 1V.25, IV.26, IV.27 and IV.28), under cyclic stress
conditions, the composite exhibits an overall creep as the macroscopic strain increases from
one cycle to another under the action of the mean macroscopic stress. Through the repeated
cycles, damage accumulates in the matrix and is accompanied by a micro-crack growth in
yarns due to the microstructure interactions. This leads to a gradual reduction of the com-
posite stiffness throughout the repeated cycles and an increase of the remaining strain upon
unloading. As previously remarked for the simulations 3 and 4, and for the same reasons,
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this phenomenon is much more important when the composite is loaded in in-plane shear.
Moreover, despite being hardly observable (especially in warp tension), hysteresis loops in-
herited from the viscoelasticity of the matrix phase (see Section 5.1 in Chapter II) can be
observed at the macroscopic scale, bringing a certain amount of dissipated energy at each

cycle. This matrix-related dissipation represents, after a certain number of cycles, most of
the total macroscopic dissipated energy.
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Figure IV.25: Simulation 5: cyclic warp tension stress.
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Figure IV.26: Simulation 5: cyclic warp tension stress, local fields.
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Figure IV.27: Simulation 6: cyclic in-plane shear stress.

(e) Strain, dissipated and stored energies (W, ® and
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P, respectively) vs. time
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(a) Local damage (D) in the matrix at the end of the (b) Local micro-crack density (7.) in the yarns at the
15t cycle (t =1 s) end of the 1%¢ cycle (t =1 s)

(c) Local damage (D) in the matrix at the end of the (d) Local micro-crack density (+.) in the yarns at the
10*" cycle (t =10 s) end of the 10" cycle (t = 10 s)

(e) Local damage (D) in the matrix at the end of the  (f) Local micro-crack density (7.) in the yarns at the
20" cycle (t = 20 s) end of the 20" cycle (t = 20 s)

Figure IV.28: Simulation 6: cyclic in-plane shear stress, local fields.

4.4 Non-proportional combined warp tension and in-plane shear

The simulation set 7 (see Figures 1V.29, IV.30 and IV.31) highlights the importance
of the loading path when the composite is subjected to combined stress state. Although
the same stress amplitudes are applied for both paths 1 and 2, it can be noticed that the
amplitudes of the strain responses are quite different. The maximal value of the normal
strain €7 resulting from the path 1 is slightly greater than the one obtained from the path
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2. Indeed, for the path 1, the normal stress ;; is held longer than for the path 2. Con-
sequently, the composite is exposed more time to creep in the warp direction. Similarly,
the maximal value of the in-plane shear strain 2g,5 resulting from the path 2 is far greater
than the one obtained from the path 1. Indeed, for the path 2, the in-plane shear stress
019 is held longer than for the path 1. Consequently, the composite is exposed more time
to creep in in-plane shear. Nevertheless, the difference in the strain amplitudes is much
more important in in-plane shear, as in this case the behaviour of the composite is more
matrix-dominated and therefore exhibits more creep. From an energetic point of view (see
Figures IV.29f and IV.29g), the composite has dissipated more energy with the loading path
1 than with the path 2, whereas the maximal amount of stored energy is approximately the
same for both paths. However, a larger part of this stored energy has been recovered with
the path 2. Overall, the loading path 1 involves more strain energy than the path 2.
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Figure IV.29: Simulation set 7: non-proportional combined warp tension and in-plane shear.
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(Avg: 75%)
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(a) Path 1: local damage (D) in the matrix at ¢t =5 (b) Path 1: local micro-crack density (v.) in the
s (T11 = 200 MPa and 712 = 0 MPa) yarns at t =5 s (17 = 200 MPa and @152 = 0 MPa)
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(c) Path 1: local damage (D) in the matrix at ¢ =10 (d) Path 1: local micro-crack density (7.) in the
s (011 = 200 MPa and 712 = 30 MPa) yarns at ¢ = 10 s (o131 = 200 MPa and 712 = 30
MPa)

(e) Path 1: local damage (D) in the matrix at t = 15  (f) Path 1: local micro-crack density (v.) in the yarns
s (11 = 200 MPa and 712 = 30 MPa) at t =15 s (711 = 200 MPa and 715 = 30 MPa)

Figure IV.30: Simulation set 7: non-proportional combined warp tension and in-plane shear,
local fields for the loading path 1.
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(a) Path 2: local damage (D) in the matrix at t =5 (b) Path 2: local micro-crack density (v.) in the
s (11 = 0 MPa and 712 = 30 MPa) yarns at t =5 s (717 = 0 MPa and 715 = 30 MPa)
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(c) Path 2: local damage (D) in the matrix at ¢t =10 (d) Path 2: local micro-crack density (v.) in the
s (011 = 200 MPa and 712 = 30 MPa) yarns at ¢ = 10 s (o117 = 200 MPa and 712 = 30
MPa)

(e) Path 2: local damage (D) in the matrix at t = 15  (f) Path 2: local micro-crack density (v.) in the yarns
s (11 = 200 MPa and 712 = 30 MPa) at t = 15 s (11 = 200 MPa and 712 = 30 MPa)

Figure IV.31: Simulation set 7: non-proportional combined warp tension and in-plane shear,
local fields for the loading path 2.
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5 Conclusions

In this final chapter, a multi-scale model for thermoplastic-based woven composites is
built from the local constitutive models of the matrix and the yarns, presented in Chapters
IT and III, respectively. They are assembled together with the help of the multi-scale mod-
elling approach presented in Chapter I.

The unit cell of the studied composite is generated from microstructural data extrac-
ted from X-Ray computed tomography. The unknown parameters of the yarn phase are
identified from experimental tests performed on [0°],, [£15°] , [£30°], and [£45°], lamin-
ated specimens under quasi-static conditions. Afterwards the predictions of the multi-scale
model are compared to similar tests where the composite is subjected to cyclic loading
conditions. The good agreements between the predicted tendencies and the experiments
demonstrate the capabilities of the multi-scale model to capture the anisotropic response of
the composite induced by the microstructure, as well as the time-dependent effects inherent
to the matrix phase, namely: the accumulation of strain and damage under cyclic loading.
The predictions are quite accurate for the [0°], and [+15°], laminated specimens, while a
deviation can be observed for the [£30°], and [£45°] ones, especially under cyclic load-
ing. This emphasizes that there may be other damage mechanisms (such as debonding at
yarn,/matrix interface) and/or time-dependent features in the yarns (such as viscoelasticity)
involved when the composite is preferentially loaded in in-plane shear. Those ones are not
taken into account in the present multi-scale model.

Additional examples are proposed to illustrate the capabilities of the multi-scale model
towards performing "virtual tests", as well as analysing the influence of the local deform-
ation processes on the macroscopic behaviour of the composite. These simulations have
shown that, under warp tension, the local damage mechanisms mainly occurs in the weft
yarns and the matrix. Nevertheless, these degradations do not have a significant impact on
the macroscopic response as the much of the load is carried by the warp yarns, which exhibit
an elastic and stiff response in their longitudinal direction. Oppositely, under in-plane shear,
the macroscopic response is much more matrix-dominated, as the local damage mechanisms
occur in both warp en weft yarns, leading to a rapid load transfer to the matrix phase. In this
case, the degradation mechanisms play a significant role on the macroscopic response, where
the time-dependent effects related to the matrix phase are clearly observable. Moreover, it
is worth pointing out that these matrix-related time-dependent effects interact though the
microstructure with the yarn phase, whose damage mechanism is time-independent. Besides
damage in the matrix, these microstructural interactions create a growth in the intra-yarn
damage, when the composite is subjected to a constant or cyclic stress levels. Finally, the
multi-scale model enables to analyse the effect of the loading path when the composite is
subjected to combined stress states, highlighting the importance of this latter point.
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1 Introduction

Les composites tissés a matrice de thermoplastique sont connus pour avoir un comporte-
ment complexe di au couplage entre les effets de microstructure et les propriétés rhéolo-
giques de la matrice thermoplastique. En effet, la matrice polymérique joue un roéle clé
dans le développement des mécanismes d’endommagement sur le long terme. Au cours des
derniéres années, la modélisation de tels composites a donné lieu & deux principales ap-
proches:

— D’une part, le comportement global des composites a matrice thermoplastique peut
étre décrit de maniére purement phénoménologique. Cependant, la complexité de
leur comportement nécessite l'utilisation de modéles intégrant de nombreuses ca-
ractéristiques comme 1’anisotropie, 'endommagement, 'anélasticité et/ou les effets
visqueux [95, 79, 153, 152, 80, 81, 124, 101, 4, 187, 91, 92, 119, 60]. Une telle stratégie
de modélisation conduit généralement & un grand nombre de parameétres qui peuvent
étre difficiles a identifier. En plus de cela, une fois les paramétres du modéle identi-
fiés, ils ne sont valables que pour une configuration unique de microstructure, ce qui
constitue une réelle limitation dans I'intégration des comportements et des processus
locaux. De plus, les données expérimentales requises pour l'identification peuvent étre
coliteuses et compliquées a obtenir. Malgré cet inconvénient, les modéles phénoméno-
logiques sont généralement numériquement efficaces et par conséquent adaptés pour
le calcul de structures.

— D’autre part, la réponse mécanique des composites peut également étre décrite a tra-
vers des approches multi-échelles. Le principal avantage de cette stratégie de modélisa-
tion est que les comportements locaux des constituants sont directement intégrés avec
la définition géométrique de la microstructure. Ainsi, les évolutions des mécanismes de
déformation et d’endommagement sont considérées & 1’échelle microscopique a travers
les comportements locaux des différentes phases, et les interactions de microstructure.
Cela entraine une description plus physique des mécanismes d’endommagement. De
plus, tant que les comportements locaux sont connus, la variabilité de la microstruc-
ture peut étre prise en compte. Néanmoins, la modélisation multi-échelle peut étre
difficile & appliquer pour le calcul de structures, notamment si la transition d’échelle
implique la résolution d'un systéme EF. En effet, méme si la connexion d’une cellule
unitaire EF' & chaque point d’intégration d’un macro-modéle EF est réalisable par la
méthode FE? [61, 63, 62, 9, 182, 184, 183, le temps de calcul impliqué par un tel
processus est trés long et les techniques numériques associées sont encore en dévelop-
pement. Cela empéche son utilisation directe dans le cadre d’applications industrielles.

En considérant ces deux approches de modélisation, il est possible de combiner leurs
avantages, tout en contournant leurs inconvéniants. L’idée est d’utiliser la modélisation
multi-échelles pour générer une base de données "d’essais virtuels" qui pourrait étre utilisée
par la suite pour identifier un modéle purement phénoménologique [65, 2|. Ainsi, le mod-
éle multi-échelle n’est utilisé que pour effectuer des simulations sur un seul point matériel
macroscopique, que 'on appelle "essais virtuels". Ces "essais virtuels" peuvent étre obtenus
avec des temps de calcul raisonnables et pour un coiit réduit. De plus, tout type d’essai
peut étre simulé, par exemple: chargements monotones, cycliques ou encore multiaxiaux
non proportionnels. Une fois la base de données "d’essais virtuels" établie, ’étape suivante
consiste a en identifier un modéle phénoménologique, capable de reproduire le comporte-
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ment global du composite, qui a son tour peut étre utilis¢ pour le calcul de structures.
I’approche de modélisation multi-échelle présentée dans cette thése est principalement des-
tinée a cet usage. Par ailleurs, le modéle multi-échelle proposé peut également étre utilisé
pour analyser 'influence de chaque constituant et de la microstructure sur le comportement
macroscopique du composite.

Il est important de préciser qu'une telle approche est entiérement modulaire, car elle
résulte de l'assemblage de plusieurs sous-modéles et de la représentation géométrique de
la microstructure. Ainsi, si un composite avec une autre composition et/ou une autre mi-
crostructure périodique doit étre étudié, alors 'approche multi-échelle actuelle est toujours
valide et seuls les ingrédients sont & changer.

Danc ce dernier chapitre, le comportement cyclique et plus généralement, le comporte-
ment dependant du temps des composites tissés a matrice thermoplastique est étudié a
travers le modéle multi-échelle proposé. Ce dernier est construit & partir des modéles con-
stitutifs locaux de la matrice et des torons, présentés dans les Chapitres II et III, respect-
ivement. Ils sont assemblés a l'aide de 'approche de modélisation multi-échelle présentée
au chapitre .

Ce chapitre est structuré de la maniére suivante: la Section 2 présente briévement la
caracterisation expérimentale de la microstructure. La Section 3 porte sur I'identification
expérimentale des paramétres relatifs a la loi de comportement des torons qui restent in-
connus. Le modéle multi-échelle est validé en comparant les simulations numériques aux
données expérimentales. Ces derniéres proviennent d’essais quasi-statiques et cycliques. La
Section 4 présente des exemples de simulations ou le composite est soumis & des conditions
de chargement complexes: chargements monotones, fluage, chargements cycliques et charge-
ments multiaxiaux non-proportionnels. Enfin, la Section 5 résume les principales conclusions
relatives a ce chapitre.

151



VERSION FRANCAISE DU CHAPITRE IV. ANALYSE MULTI-ECHELLE
DU COMPORTEMENT CYCLIQUE ET DEPENDANT DU TEMPS DES
COMPOSITES TISSES A MATRICE THERMOPLASTIQUE

2 Caractéristiques de la microstructure et de la cellule
unitaire

Pour le composite étudié, dont la microstructure suit la définition géométrique présentée
en Section 3.1 du Chapitre I (rappelée en Figure IV.1a), les dimensions caractéristiques
a, b et | ont été évaluées par microtomographie a rayons X (voir Figure IV.2a). h a été
obtenu en divisant I’épaisseur totale des plaques fournies par le nombre de couches qu’elles
contiennent. En ce qui concerne le paramétre 9, ce dernier a été délibérément surdimen-
sionné afin d’assurer un maillage suffisamment propre de la matrice. Les valeurs moyennes
considérées pour le modéle multi-échelle sont listées dans le Tableau IV.1. En outre, il est
rappelé que le renfort tissé du composite étudié est un sergé 2-2, comme illustré sur la Figure
IV.1b.

h

a/2
(a) Dimensions caractéristiques d’une microstructure tissée (b) Motif de tissage de type
sergé 2-2

Figure IV.1: Définition géométrique de la microstructure. Le domaine gris représente la
phase matricielle, tandis que les domaines bleu et rouge représentent les torons de chaine et
de trame, respectivement.
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(a) Reconstruction 3D de la microstructure (b) Micrographie de l'intra-toron, le diamétre des
du composite étudié par microtomographie a fibres est d’environ 17 pm
rayons X (résolution: 6 pm)

Figure TV.2: Observations expérimentales de la microstructure du composite étudié.

Dimensions caractéristiques | a b [ h )

Valeurs (mm) 3.46 | 0.21 | 3.75 ] 0.5 | 0.025

Tableau I'V.1: Dimensions caractéristiques de la microstructure, valeurs considérées pour le
composite étudié.

En utilisant les données du Tableau IV.1, la cellule unitaire du composite étudié a été
générée, puis maillée via le logiciel TexGen (voir Section 3.2 in Chapter I). Dans cette con-
figuration, la cellule unitaire a une fraction volumique de toron de 59%. De plus, les analyses
effectuées par micrographie ont permis de déterminer la fraction volumique de fibres dans les
torons: environ 85%. Cette fraction volumique correspond & une forte compaction puisque
les fibres sont presque toutes en contact les unes avec les autres (voir Figure IV.2b). Au
final, la fraction volumique de fibres dans ’ensemble du composite est d’environ 50%, ce qui
est bien en accord avec les données du fournisseur.

Comme mentionné précédemment, les modéles constitutifs présentés dans les Chapitres
IT et TIT sont affectés aux phases de matrice et des torons, respectivement.
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3 Identification expérimentale, stratégie et validation

3.1 Procédure expérimentale

Les essais présentés dans cette section ont étés réalisés dans les mémes conditions en-
vironnementales que celles considérées pour la matrice polyamide 6-6 seule (voir Section 4.1
du Chapitre II): RH = 50% et T' = 23°C' (température ambiante), avec la méme procédure
expérimentale concernant le conditionnement RH du matériau.

Les essais expérimentaux ont été réalisés sur des éprouvettes stratifiées (voir Figures
IV.3a and IV.3b) chargées axialement suivant la direction #. Les éprouettes présentent des
séquences d’empilement symétriques et équilibrées de type [6],, avec les angles suivants:
6 = 0°, 15°, 30° et 45°. Rappelons qu’avec ce type de configuration, aucun couplage traction-
cisaillement ou traction-flexion n’apparait. De cette maniére, les éprouvettes peuvent étre
chargées en traction pure, sans générer de déformation en cisaillement et sans effets de
courbure. L’épaisseur du pli est d’environ 0.5 mm, ce qui donne une épaisseur totale de 2 mm
pour ’ensemble des éprouvettes. Afin d’obtenir des données expérimentales raisonnablement
représentatives de la réponse macroscopique du composite, des éprouvettes rectangulaires
avec des dimensions suffisamment importantes ont été considérées: une longueur de 250 mm
et une largeur de 45 mm. Selon 'orientation, 2 & 3 cellules unitaires sont comprises dans
toute la largeur de I'éprouvette (voir Figure IV.3c). Les essais de traction ont été réalisés
a température ambiante avec une machine de traction a commande hydraulique. Pendant
les essais, la déformation axiale £,, est mesurée localement au moyen d’un extensomeétre,
tandis que la contrainte axiale o,, est enregistrée par une cellule de force.
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(c) Géométrie et dimensions adoptées pour les éprouvettes de traction (dimensions en mm)

Figure IV.3: Eprouvettes de traction stratifiées [+£6] , (Z, v, Z) désigne le repére de référence
du stratifié, tandis que (&, 75, 3) désigne le repére matériau du pli élémentaire.

Pour les besoins de l'identification, il est nécessaire de simuler numériquement les ré-
ponses uni-axiales des éprouvettes stratifiées, afin de les comparer aux résultats expérimen-
taux. Comme nous l'avons déja vu dans la Section 4 du Chapitre III, la réponse d’un
composite multicouche est généralement simulée a I’aide de la théorie classique des stratifiés
[21, 154]. Alternativement, un schéma basé sur ’homogénéisation périodique peut égale-
ment étre utilisé pour les stratifiés symétriques [34]. Dans une approche encore plus simple,
la réponse uniaxiale d’un stratifié [+6], peut étre simulée en ne considérant qu’une seule
couche avec des conditions de contrainte-déformation appropriées. Ces derniéres résultent
de la configuration particuliére de ce type de stratifiés. En effet, la séquence d’empilement
équilibrée empéche toute déformation du stratifié en cisaillement plan. Ainsi dans chaque
couche élémentaire 2g,, = 0. Ce qui génére une contrainte de cisaillement plan non nulle
(4y) dans cette méme couche. Néanmoins, cette contrainte prend des valeurs opposées
d’une couche 46 a une couche —@ et par conséquent disparait a 1’échelle de 1’ensemble
du stratifié. Ainsi, afin de simuler la réponse uni-axiale d’une éprouvette stratifiée [6],,
les états de contrainte-déformation suivants, définis dans le repére de référence du stratifié
(Z, 7, Z), sont appliqués a la cellule unitaire a 'aide d’un pilotage hors-axes, comme expliqué
dans la Section 2.2.2 du Chapite 1. Pour la simulation d’un essai piloté en déformation, cela
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donne ':

( — — 3\ — .
Erx = Egu(t) ( G,, = inconnu )
Eyy = Inconnu Oyy = 0
£,, = inconnu .. = 0
9% — 0 , . 0 (IV.1)
Exy = Oy = inconnu #
2., = inconnu = 0 Oz = 0

| 28y, = inconnu ~ 0 ) [ Ty=-= 0 J

Dans le méme principe, la simulation d’un essai piloté en contrainte est réalisée avec:

( ) (

.. = Inconnu Opx = Ogzz(t)
gy = Inconnu Oyy = 0
£,, = inconnu 0., = 0
= ) _* . , (IV.2)
2, = 0 Oy = inconnu # 0
2., = inconnu ~ 0 Oz = 0
[ 28y, = nconnu ~0 | (| Ty = 0 J

ou la déformation et la contrainte axiale, a savoir g,, et 7,,, peuvent étre comparées aux
résultats expérimentaux.

Pour la campagne expérimentale, deux types d’essais adaptés a l'identification et a la
validation du modéle multi-échelle sont proposés:

— Essais quasi-statiques:
Les éprouvettes stratifiées sont chargées et déchargées de maniére répétée en augment-
ant a chaque chargement le niveau de contrainte, et ce jusqu’a rupture. Ces tests sont
effectués a une vitesse de déformation relativement lente (de I'ordre de 3.5 x 1073 s71).

— Essais cycliques contrélés en contrainte:

Les éprouvettes stratifiées sont soumises & une charge cyclique de forme sinusoidale.
Cette charge oscille entre un niveau de contrainte max et min & une frenquence de 1 Hz
pendant 100 s, soit 100 cycles. Pour les éprouvettes [0°],, [£15°], et [£30°],, environ
80% de la contrainte a rupture en quasi-statiques est considérée pour le niveau de
contrainte max. Cependant, en ce qui concerne les éprouvettes [pm45°]_, ces derniéres
présentent une réponse beaucoup plus ductile. Par conséquent, un niveau de con-
trainte max de 95 MPa a été choisi, afin de garder une amplitude de déformation
modérée. Le niveau de contrainte min est d’environ 10 MPa, et est le méme pour
toutes les éprouvettes.

De la méme maniére que pour le polyamide 6-6 seul (voir la Section 4 du Chapitre IT), des
mesures de température ont été effectuées lors des essais cycliques, au moyen d’une caméra
thermique IR. Bien que le modéle multi-échelle proposé soit formulé dans ’hypothése de
conditions isothermes, une estimation de I'auto-¢chauffement sera évaluée en intégrant la
dissipation macroscopique ® en tant que terme source dans une analyse thermique découplée
(voir Annexe C). Ainsi, ’élévation de température estimée sera comparée a celle observée
expérimentalement. En supposant des champs thermomécaniques uniformes dans la zone

1. Dans le repére de référence du stratifié (Z, 7, Z), de par 'orientation de couche élémentaire, la cellule
unitaire présente une réponse entiérement anisotrope (dans le plan xy), conduisant & un couplage traction-
cisaillement. C’est pourquoi la contrainte de cisaillement &,, peut prendre des valeurs non nulles lorsque la
déformation de cisaillement 2g,, est mise & zéro.
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d’intérét, 'équation de la chaleur "OD" intégrée sur le volume de la cellule unitaire prend
la forme suivante: - -
. t) — -
(70 + T ) < (v
T

oll p et € représentent respectivement la masse volumique et la capacité calorifique a léchelle
macroscopique. Le temps caractéristique 7 quantifie les pertes de chaleur supposées propor-
tionnelles a la différence entre la température actuelle du composite 7'(t) et sa température
a l'équilibre T, (température ambiante). Les données thermiques utilisées dans ce chapitre
sont répertoriées dans le Tableau IV.2.

Caractéristique Paramétre valeur unité

Masse volumique macroscopique Iz 1.870 x 107° T.mm™3
Capacité calorifique macroscopique [ 0.990 x 107 mJ.T-teC™!
Temps caractéristique (pertes de chaleur) 7 149 S

Tableau IV.2: Paramétres du probléme thermique "0D" découplé pour le composite. Les
valeurs pour la masse volumique et la capacité calorifique ont été fournies par les partenaires
industriels. Le temps caractéristique 7 a été évalué pour les éprouvettes stratifiées (voir Fig-
ures I1.3 et I1.4) en utilisant la méthodologie proposée par |20|, qui est briévement présentée
dans la Section 3 de ’Annexe C.

3.2 Stratégie d’identification

Il est rappelé que la matrice a déja été identifiée a partir d’essais directement réalisés sur
le polyamide 6-6 seul (voir Section 4 du Chapitre II), dont les paramétres sont listés dans
le Tableau I1.4. En ce qui concerne les torons, la procédure d’identification proposée en
Section 4 du Chapite III n’est pas applicable dans le cas présent, du fait qu’il est impossible
d’isoler ce composant pour effectuer sur celui-ci des essais mécaniques. A la place, il est
proposé d’identifier les paramétres des torons a partir de la réponse macroscopique de tout
le composite tissé. Pour ce faire, un algorithme de résolution par méthode inverse a été util-
isé, identiquement a ce qui a été fait pour le polyamide 6-6 seul en Section 4.2 du Chapitre II.

Il est également important de rappeler que le comportement des torons est supposé in-
dépendant du temps. Ainsi, pour I'’ensemble du modéle multi-échelle, la dépendance au
temps de tout le composite est uniquement due a la matrice. Les parameétres liés aux tor-
ons sont donc identifiés uniquement a partir des essais quasi-statiques, tandis que les essais
cycliques sont conservés pour la validation.

3.3 Identification et validation expérimentale

Au préalable, la raideur initiale des torons est estimée par homogénéisation périodique
(voir Section 1 de I’Annexe G), de sorte que seuls les paramétres liés & I'endommagement
et a 'anélasticité des torons soient identifiés par méthode inverse. Les valeurs obtenues
pour ces parameétres sont listées dans la partie inférieure du Tableau 1V.3, tandis que les
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propriétés élastiques initiales sont rappelées dans la partie supérieure de ce méme tableau.
Il est important de préciser que la perte de la rigidité induite par les microfissures dans les
torons (voir Section 2 de ’Annexe G) est calculée en considérant la configuration suivante
pour les inclusions de vides: "crossing micro-cracks along 7" (voir la Figure IIl.4a et le
Tableau I11.2). Le comportement des torons isolés est illustré a travers quelques exemples
dans la Section 3 de ’Annexe G.

Caractéristique Parameétre valeur unité
Tenseur de rigidités, isotrope transverse Cj,,,, 65822 MPa
(composantes non nulles) Corras = Coyyss 7041  MPa
Cog995 = Cossss 23947 MPa
Cogss 6971  MPa
Co1915 = Coya13 8661  MPa
Cosgzs = 3(Cosazs — Coggy) 8488 MPa
Seuil d’endo. en traction transverse Ry 20.0 MPa
Seuil d’endo. en cisaillement plan Ris 7.5 MPa
1" Parametre de la loi de Weibull S 12.3 -
2¢m¢ Paramétre de la loi de Weibull 15} 2.75 -
Saturation de la microfissuration (fixée) ~2° 0.025 -
Anélasticité en traction transverse Q29 3.60 -
Anélasticité en cisaillement plan Q19 2.15 -

Tableau IV.3: Paramétres identifiés pour les torons. Les raideurs initiales (dans la partie
supérieure du tableau) sont calculées par homogénéisation périodique (voir Section 1 de
I’Annexe ), tandis que les paramétres d’endommagement et d’anélasticité (dans la partie
inférieure du tableau) sont obtenus par méthode inverse a partir de la réponse de tout le
composite tissé.

Les Figures IV.4, IV.5, IV.6 et IV.7 montrent les simulations numériques obtenues avec
le modéle multi-échelle et les données expérimentales des essais quasi-statiques effectués
avec les éprouvettes [0°],, [£15°], [£30°], et [£45°],, respectivement. Tout d’abord, on
observe que la réponse de I’éprouvette [0°], est quasi-élastique. A I’échelle macroscopique,
le composite ne présente quasiment pas d’endommagement, ni d’anelasticité, avant que la
rupture ne se produise & un niveau de contrainte relativement élevé (environ 430 MPa).
A linverse, pour I’éprouvette [£45°] , la réponse est beaucoup plus ductile et la rupture
ne survient pas a la fin de I'éssai?. Pour les éprouvettes [+£15°], et [£30°],, le composite

S

présente une réponse intermédiaire entre celles observées avec les [0°], et [£45°]..

Cette importante différence de comportement entre les différents angles de stratifica-
tion fait ressortir la forte anisotropie induite par la microstructure, qui est globalement

2. Sila rupture ne survient pas, l’essai s’arréte lorque la déformation atteint 0.1, ce qui est la limite de
I’extensomeétre.
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bien capturée par le modéle multi-échelle. De bons accords sont obtenus entre les réponses
quasi-statiques simulées et les résultats expérimentaux pour les éprouvettes [0°],, [£15°],
et [£30°],. Pour I'éprouvette [£45°], le modéle multi-échelle surestime la réponse quasi-
statique. Néanmoins, la tendance obtenue reste proche de ce qui est observé expérimentale-
ment, avec des ordres de grandeur similaires. Cet écart est surement di au fait que d’autres
mécanismes d’endommagement, non pris en compte par le modéle multi-échelle, intervi-
ennent, comme la décohésion des interfaces torons/matrice par exemple.

--- experiment
400]—_model

Strain [-]

0 5 1'%me o 15 20 0 5 1'%me o 15 20
(a) Déformation appliquée (£;,) - temps (b) Réponse en contrainte (7,5) - temps
--- experiment] ' ' ' '
400f— model

T 300t

=3

@ 200

o

P 100;

ot
0 0.005 0.01 0.015 0.02
Strain [-]

(c) Contrainte (¢ ,,) - déformation (£,,)

Figure IV.4: Essai quasi-statique pour une éprouvette stratifiée [0°],. Ces données sont
utilisées pour 'identification.
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Figure IV.5: Essai quasi-statique pour une éprouvette stratifiée [+15°]_. Ces données sont
utilisées pour l'identification.
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Figure IV.6: Essai quasi-statique pour une éprouvette stratifiée [£30°],. Ces données sont
utilisées pour l'identification.
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Figure IV.7: Essai quasi-statique pour une éprouvette stratifiée [£45°] . Ces données sont
utilisées pour 'identification.

Les Figures IV.8, IV.9, IV.10 et IV.11 montrent les prédictions données par le modéle
multi-échelle et les résultats expérimentaux pour les essais cycliques controlés en contrainte
effectués pour les éprouvettes [0°],, [£15°],, [£30°], et [£45°],, respectivement. Il est rappelé
que ces essais n’ont pas été utilisés pour l'identification. Précisons que la rupture est surv-
enue au bout de 80 et 71 cycles, pour les éprouvettes [0°], et [£30°],, respectivement. Pour
les autres éprouvettes, aucune rupture ne s’est produite avant la fin des 100 cycles program-
més. Lorsque le composite est soumis & un chargement cyclique, des phénoménes proven-
ant directement de la matrice peuvent étre clairement observés, & savoir: 'accumulation
de déformation accompagnée d’une perte progressive de rigidité (voir Sections 4.3 et 5.1
du Chapitre II). Néanmoins, en fonction de 'angles de stratification des plis, les amp-
litudes de ces phénoménes sont assez différentes et mettent une fois de plus en évidence
I’anisotropie induite par la microstructure. Globalement, le modéle multi-échelle fournit des
tendances similaires aux résultats expérimentaux. Les réponses macroscopiques prédites
sont relativement précises pour les éprouvettes [0°], et [£15°],, alors que laccumulation
de 'endommagement et de la déformation est sous-estimée pour les éprouvettes [+30°], et
[+£45°]_. Comme mentionné précédemment, cela met en évidence que d’autres mécanismes
peuvent étre impliqués et/ou qu’un comportement dépendant du temps intervient dans les
torons, lorsque le composite est principalement chargé en cisaillement plan.
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Figure IV.8: Essai cyclique controlé en contrainte: 100 cycles effectués a 1 Hz pour une
éprouvette stratifiée [0°],. Ces données sont utilisées pour la validation.
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Figure IV.9: Essai cyclique controlé en contrainte: 100 cycles effectués a 1 Hz pour une
éprouvette stratifiée [+15°],. Ces données sont utilisées pour la validation.
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Figure IV.10: Essai cyclique controlé en contrainte: 100 cycles effectués a 1 Hz pour une
éprouvette stratifiée [£30°],. Ces données sont utilisées pour la validation.
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Figure IV.11: Essai cyclique controlé en contrainte: 100 cycles effectués a 1 Hz pour une
éprouvette stratifice [£45°],. Ces données sont utilisées pour la validation.
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En ce qui concerne les mesures de température, on peut remarquer que, dans les 100
cycles effectués pendant les essais, les élévations de température restent relativement faibles
(3.5 a 4 °C) pour les éprouvettes [0°], et [£15°], (voir Figures IV.12 et IV.13). Ainsi,
les conditions isothermes peuvent raisonnablement étre considérées comme correctes dans
ces cas. Cependant, pour les échantillons [£30°], et [+45°],, les élévations de température
commencent a devenir significatives (voir Figures IV.14 et 1V.15), rendant ’hypothése des
conditions isothermes non valide. Cela peut également expliquer les écarts observés pour
ces éprouvettes, entre les réponses expérimentales et celles simulées avec le modéle multi-
échelle, qui est formulé dans ’hypothése de conditions isothermes. De plus, comme cela a
également été observé pour la matrice polyamide 6-6 seule (voir Section 4.3 du Chapitre II),
les élévations de température sont loin d’avoir atteint le régime stabilisé dans les 100 cycles
effectués. Ce signifie qu'une augmentation significative de la température est susceptible de
se produire si un nombre de cycles plus important est appliqué au composite.

Il convient de remarquer que les boucles d’hystérésis qui apparaissent a chaque cycle ne
sont pas bien reproduites par le modéle multi-échelle. Ceci est probablement d au sous-
modéle des torons, qui, contrairement a celui de la matrice, n’intégre aucun mécanisme vis-
coélastique et aucun mécanisme dependant du temps en général. La méme conclusion peut
étre faite d'un point de vue énergétique. En effet, les élévations de température calculées a
partir des analyses thermiques "0D" découplées (voir Figures IV.12, TV.13, IV.14 et IV.15)
sont beaucoup plus faibles que celles observées expérimentalement (en particulier pour les
éprouvettes [£30°], et [£45°] ). Cela montre que le modéle multi-échelle ne capture pas pré-
cisément 1'énergie dissipée par le composite. [’intégration de mécanismes viscoélastiques
dans les torons pourrait trés certainement résoudre ce probléme.
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Figure IV.12: Elévation de température induite par la dissipation évaluée a partir de
I'analyse thermique "0D" découplée (voir ’Annexe C) pour un essai cyclique controlé en
contrainte: 100 cycles effectués a 1 Hz pour une éprouvette stratifiée [0°], (Figure IV.8).
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Figure IV.13: Elévation de température induite par la dissipation évaluée a partir de
’analyse thermique "0D" découplée (voir PAnnexe C) pour un essai cyclique controlé en
contrainte: 100 cycles effectués & 1 Hz pour une éprouvette stratifiée [£15°], (Figure IV.9).
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Figure IV.14: Elévation de température induite par la dissipation évaluée a partir de
'analyse thermique "0D" découplée (voir ’Annexe C) pour un essai cyclique controlé en
contrainte: 100 cycles effectués a 1 Hz pour une éprouvette stratifiée [£30°], (Figure IV.10).
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Figure IV.15: Elévation de température induite par la dissipation évaluée a partir de
'analyse thermique "0D" découplée (voir ’Annexe C) pour un essai cyclique controlé en
contrainte: 100 cycles effectués a 1 Hz pour une éprouvette stratifiée [£45°] (Figure IV.11).
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4 Simulations numériques, réponses mécaniques et com-
portement dissipatif d’un point matériel macroscopique

Toutes les simulations présentées dans cette section ont été réalisées avec les paramétres
précédemment identifiés pour la matrice et les torons dans les Tableaux I1.4 et IV.3, re-
spectivement.

Afin de mieux comprendre le modéle multi-échelle, son comportement dissipatif est il-
lustré par des exemples de simulations réalisées sur un seul point matériel macroscopique,
dits "essais virtuels" (voir Section 1). Dans ces exemples, le composite est soumis a de la
traction sens chaine, a du cisaillement plan et a des états de contrainte combinants traction
sens chaine et cisaillement plan (voir Figure IV.16). Les simulations (ou jeux de simulations)
suivantes sont proposées:

— Jeu de simulations 1: traction monotone sens chaine
Une déformation dans le sens chaine £1; de 0.02 est appliquée au matériau en 1 s pour
la premiére simulation, 10 s pour la seconde et 100 s pour la troisiéme. Ce qui corres-
pond & une vitesse de déformation de 2 x 1072, 2 x 1072 et 2 x 10™*, respectivement.
Les résultats de ces simulations sont présentés en Figures IV.17 et TV.18. Ces calculs
sont effectués avec un incrément de temps constant égal & 1/200°¢ de la durée totale
de la simulation correspondante.

— Jeu de simulations 2: cisaillement plan monotone
Une déformation en cisaillement de 0.05 est appliquée au matériau en 1 s pour la
premiére simulation, 10 s pour la seconde et 100 s pour la troisiéme. Ce qui correspond
a une vitesse de déformation de 5 x 1072, 5 x 1073 and 5 x 10~* s, respectivement.
Les résultats de ces simulations sont présentés en Figures IV.19 et IV.20. Ces calculs
sont effectués avec un incrément de temps constant égal & 1/200°¢ de la durée totale
de la simulation correspondante.

— Simulation 3: fluage et recouvrance en traction sens chaine
Une contrainte normale sens chaine 1; de 350 MPa est appliquée en 5 s sur le com-
posite, dans un premier temps. Cette contrainte est ensuite maintenue pendant 300
s, avant de retourner a zéro en 5 s. Dans une derniére étape, le composite est laissé
libre de contrainte pour encore 300 s. Les résultats de cette simulation sont présentés
en Figures IV.21 et TV.22. Ce calcul est effectué avec un incrément de temps constant
de 0,05 s.

— Simulation 4: fluage et recouvrance en cisaillement plan
Une contrainte de cisaillement plan 715 de 40 MPa est appliquée en 5 s sur le com-
posite, dans un premier temps. Cette contrainte est ensuite maintenue pendant 300
s, avant de retourner a zéro en 5 s. Dans une derniére étape, le composite est laissé
libre de contrainte pour encore 300 s. Les résultats de cette simulation sont présentés
en Figures [V.23 et IV.24. Ce calcul est effectué avec un incrément de temps constant
de 0,05 s.

— Simulation 5: traction cyclique sens chaine
Le composite est soumis & une contrainte cyclique dans le sens chaine 717 (signal tri-
angulaire). Cette derniére oscille entre 350 et 0 MPa avec une fréquence de 1 Hz. 20
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cycles sont effectués. Les résultats de cette simulation sont présentés en Figures 1V.25
et IV.26. Ce calcul est effectué avec un incrément de temps constant de 0,005 s, soit
200 incréments de temps par cycles.

— Simulation 6: cisaillement plan cyclique
Le composite est soumis & une contrainte cyclique en cisaillement plan 75 (signal
triangulaire). Cette derniére oscille entre 40 et 0 MPa avec une fréquence de 1 Hz. 20
cycles sont effectués. Les résultats de cette simulation sont présentés en Figures [V.25
et IV.26. Ce calcul est effectué avec un incrément de temps constant de 0,005 s, soit
200 incréments de temps par cycles.

— Jeu de simulations 7: traction sens chaine et cisaillement plan combinés non propor-
tionnellement

Le composite est soumis a un état de contrainte combinant traction sens chaine et

cisaillement plan qui est appliqué a travers deux chemins de chargement différents

ayant les mémes amplitudes:

— Chemin 1: Une contrainte normale sens chaine 1; de 200 MPa est appliquée en
5 s dans un premier temps. op; est ensuite maintenue constante, tandis qu’une
contrainte de cisaillement plan @5 de 30 MPa est appliquée en 5 s. Ces deux
contraintes @, et 7o sont maintenues pendant 5 s, avant de retourner a zéro en
encore 9 s.

— Chemin 2: Une contrainte de cisaillement plan 15 de 30 MPa est appliquée en
5 s dans un premier temps. oo est ensuite maintenue constante, tandis qu’'une
contrainte normale sens chaine 7;; de 200 MPa est appliquée en 5 s. Ces deux
contraintes @, et 7o sont maintenues pendant 5 s, avant de retourner a zéro en
encore 9 s.

Les résultats de ces simulations sont présentés en Figures V.29, TV.30 et 1V.31. Ces

calculs sont effectués avec un incrément de temps constant de 0,05 s.

e --m I. " L.
012 012
(a) Traction sens chaine (b) Cisaillement plan (c¢) Traction sens chaine et cisaille-

ment plan combinés

Figure IV.16: Tllustrations des configurations de chargement simulées.

Dans toutes les simulations, le bilan énergétique est bien respecté (Voir Figures IV.21e,
IV.23e, TV.25e, TV.27e, TV.29f et TV.29g): I'énergie de déformation macroscopique W, est
toujours bien égale a la somme des énergies macroscopiques stockées et dissipées, 1 et .
De plus, I’énergie dissipée macroscopique ne fait qu’augmenter (® > 0), ce qui est bien en
accord avec I'inégalité de Clausius Duhem écrite dans son formalisme macroscopique dans
I'équation (I.7).

Les résultats de ces simulations sont présentés dans quatre sous-sections différentes. La
premiére est dédiée aux jeux de simulations 1 et 2 (Section 4.1: Chargements monotones),
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la seconde aux simulations 3 et 4 (Section 4.2: Fluage et recouvrance), la troisiéme aux
simulations 5 et 6 (Section 4.3: Chargements cycliques) et le quatriéme au jeu de simulation
7 (Section 4.4: Chargements non proportionnels, traction sens chaine et cisaillement plan
combineés).

4.1 Chargements monotones

Dans le jeu de simulation 1 (voir Figures IV.17 et IV.18), lorsque le composite est chargé
dans le sens chaine, la plus grande partie de I'effort est supportée par les torons de chaine
dans leur direction longitudinale (voir Figure IV.18¢). Au méme moment, une part moindre
de cet effort est également transmise aux torons de trame dans leur direction transversale
(voir Figure IV.18d), ce qui provoque de la microfissuration dans ces derniers (voir Figure
IV.18f). Dans la matrice, la plupart des contraintes sont concentrées dans les zones de
croisement entre torons, conduisant a I'apparition d’endommagement dans ces zones (voir
Figures IV.18a and IV.18b).

Néanmoins, les dégradations survenant dans les torons de trame et dans la matrice
semblent avoir des conséquences limitées a ’échelle macroscopique, car la plus grande partie
de la charge est portée par les torons de chaine dans leur direction longitudinale, qui se
comportent élastiquement avec une rigidité importante. Pour cette raison, la réponse du
composite reste quasi-linéaire et 'effet de vitesse a 1’échelle macroscopique n’est presque pas
visible (voir Figure IV.17).
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Figure IV.17: Jeu de simulations 1: traction monotone sens chaine.
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(a) Contrainte équivalente de Von Mises (eq(o)) (b) Endommagement (D) dans la matrice
dans la matrice

(e) Contrainte de cisaillement plan (o12) dans les tor- (f) Densité de microfissures (7.) dans les torons
ons

Figure IV.18: Jeu de simulations 1: traction monotone sens chaine, champs locaux a la
fin de la simulation effectuée avec une vitesse de déformation de ;; = 2.0 x 1072 7. 1l
est important de préciser que les contraintes locales dans les torons sont exprimées dans le
repére local de chaque point matériel de toron (voir Figure 1.10d).
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Dans le jeu de simulation 2 (voir Figures IV.19 et IV.20), lorsque le composite est chargé
en un cisaillement plan, les contraintes longitudinales et transversales restent presque nulles
dans les torons (voir Figures IV.20c et IV.20d), qui ne sont alors chargés qu’en cisaillement
(voir Figure IV.20e). Ceci entraine une croissance rapide de la microfissuration et donc une
réduction de la rigidité a la fois dans les torons de chaine et de trame (voir Figure IV.20f).
Ainsi, les efforts sont progressivement transférés vers la matrice oll les contraintes se con-
centrent principalement entre les torons, la ou l'endommagement matriciel se développe
(voir Figures IV.20a et IV.20b). Notons que ces mécanismes de dégradation ont une in-
fluence significative sur la réponse macroscopique en cisaillement plan du composite, qui

semble étre davantage dominée par la matrice, avec un effet de vitesse bien visible (voir
Figure IV.19c¢).
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Figure IV.19: Jeu de simulations 2: cisaillement plan monotone.
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(a) Contrainte équivalente de Von Mises (eq(o)) (b) Endommagement (D) dans la matrice
dans la matrice

(e) Contrainte de cisaillement plan (o12) dans les tor- (f) Densité de microfissures (7.) dans les torons
ons

Figure IV.20: Jeu de simulations 2: cisaillement plan monotone, champs locaux a la fin
de la simulation effectuée avec une vitesse de déformation de 2815 = 5.0 x 1072 =1, 11
est important de préciser que les contraintes locales dans les torons sont exprimées dans le
repére local de chaque point matériel de toron (voir Figure 1.10d).

4.2 Fluage et recouvrance

Dans les simulations 3 et 4 (voir Figures V.21, IV.22, IV.23 et IV.24), pendant la phase
de fluage, de méme maniére que pour la matrice seule (voir Section 5.1 du Chapitre II), la dé-
formation macroscopique augmente sous l’action d’une contrainte macroscopique constante.
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Au cours de cette période, le composite stocke et dissipe 1’énergie (p¢) > 0 and ® > 0). A
I’étape suivante, le composite est déchargé et laissé libre de toute contrainte. Une partie de
la déformation macroscopique se recouvre quasi instantanément, tandis qu’une autre partie
ne se recouvre qu’aprés un certain temps, a la fin duquel une partie non recouvrable reste
(voir Figures TV.21b et 1V.23b). Pendant cette phase de recouvrance, I’énergie stockée est
convertie en énergie dissipée (voir Figures IV.2le et IV.23e). La réponse macroscopique
en fluage du composite est due au comportement dépendant du temps de la matrice, ainsi
qu’aux interactions liées a la microstructure entre la matrice et les torons. Bien que le
sous-modéle des torons soit indépendant du temps, on observe une augmentation de la mi-
crofissuration dans ce composant (voir Figures 1V.22 et 1V.24). En effet, lorsque la matrice
flue et s’endommage localement, une partie de la charge qu’elle soutient est progressivement
transférée aux torons. Ce qui conduit & une augmentation de la densité de micro-fissures
dans les torons. On ajoutera, dans le cas de la traction sens chaine, que le fluage macro-
scopique est trés faible, contrairement au cisaillement plan. Ceci est di au fait que, dans
ce dernier cas, le comportement du composite est principalement dominé par celui de la
matrice.
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Figure IV.21: Simulation 3: fluage et recouvrance en traction sens chaine.
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(a) Endommagement (D) dans la matrice a la fin de  (b) Densité de microfissures (.) dans les torons a la
la phase de chargement (¢t =5 s) fin de la phase de chargement (t =5 s)

(¢) Endommagement (D) dans la matrice a la fin de  (d) Densité de microfissures (v.) dans les torons  la
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(e) Endommagement (D) dans la matrice, pour (f) Densité de microfissures (v.) dans les torons, pour
I’élément 26514 indiqué ci-dessus en Figures IV.22a 1’élément 30843 indiqué ci-dessus en Figures IV.22b
et IV.22c et IV.22d

Figure IV.22: Simulation 3: fluage et recouvrance en traction sens chaine, champs locaux.
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Figure IV.23: Simulation 4: fluage et recouvrance en cisaillement plan.
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(a) Endommagement (D) dans la matrice a la fin de  (b) Densité de microfissures (v.) dans les torons a la
la phase de chargement (t =5 s) fin de la phase de chargement (¢t =5 s)

(¢) Endommagement (D) dans la matrice a la fin de  (d) Densité de microfissures (v.) dans les torons a la
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(e) Endommagement (D) dans la matrice, pour (f) Densité de microfissures (v.) dans les torons, pour
I’élément 1998 indiqué ci-dessus en Figures IV.24a 1’élément 3372 indiqué ci-dessus en Figures IV.24b et
et IV.24c IV.24d

Figure IV.24: Simulation 4: fluage et recouvrance en cisaillement plan, champs locaux.

4.3 Chargements cycliques

Dans les simulations 5 et 6 (voir Figures IV.25, IV.26, IV.27 et IV.28), sous chargement
cyclique, le composite flue globalement, la déformation macroscopique augmente progress-
ivement d’un cycle a I'autre sous l'action d’une contrainte macroscopique moyenne. Au fil
des cycles répétés, 'endommagement s’accumule dans la matrice et s’accompagne de mi-
crofissuration intra-toron, en raison des interactions de microstructure. Ceci conduit & une
réduction progressive de la rigidité du composite tout au long des cycles répétés et a une
augmentation de la déformation rémanente, visible lors du déchargement. Comme déja re-

180



VERSION FRANCAISE DU CHAPITRE IV. ANALYSE MULTI-ECHELLE
DU COMPORTEMENT CYCLIQUE ET DEPENDANT DU TEMPS DES
COMPOSITES TISSES A MATRICE THERMOPLASTIQUE

marqué pour les simulations 3 et 4, et pour les mémes raisons, ce phénomeéne est beaucoup
plus important lorsque le composite est chargé en cisaillement plan. De plus, bien qu’elles
soient difficilement visibles (surtout en tension de chaine), des boucles d’hystérésis héritées
de la viscoélasticité de la matrice (voir Section 5.1 du Chapitre II) peuvent étre observées a
I’échelle macroscopique, apportant une certaine quantité d’énergie dissipée a chaque cycle.
Cette dissipation liée a la matrice représente, aprés un certain nombre de cycles, la plus
grande partie de 1’énergie totale dissipée par le composite.
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Figure IV.25: Simulation 5: traction cyclique sens chaine.

181



VERSION FRANCAISE DU CHAPITRE IV. ANALYSE MULTI-ECHELLE
DU COMPORTEMENT CYCLIQUE ET DEPENDANT DU TEMPS DES
COMPOSITES TISSES A MATRICE THERMOPLASTIQUE

se
Lh

o33

28
;

8

2

IR = ¢

(a) Endommagement (D) dans la matrice & la fin du
1¢" cycle (t =1 s)

(c) Endommagement (D) dans la matrice a la fin du
10™e cycle (¢t = 10 s)

(e) Endommagement (D) dans la matrice a la fin du
20°™¢ cycle (t =20 s)

(b) Densité de microfissures (v.) dans les torons a la
fin du 1¢" cycle (t =1 s)

SDV_yarn_001_gamma_c

(d) Densité de microfissures () dans les torons a la
fin du 10°™¢ cycle (¢ = 10 s)

SDV_yarn_001_gamma_c
(Avg: 75%)

(f) Densité de microfissures (7.) dans les torons a la
fin du 20°™° cycle (t = 20 s)

Figure IV.26: Simulation 5: traction cyclique sens chaine, champs locaux.
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Figure IV.27: Simulation 6: cisaillement plan cyclique.
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Figure IV.28: Simulation 6: cisaillement plan cyclique, champs locaux.

4.4 Chargements non proportionnels, traction sens chaine et cisaille-
ment plan combinés
Le jeu de simulation 7 (voir Figures IV.29, IV.30 et TV.31) met en évidence I'importance

du chemin de chargement lorsque le composite est soumis a un état de contrainte combiné.
Bien que les mémes amplitudes de contrainte soient appliquées pour les chemins 1 et 2, on
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peut remarquer que les amplitudes des réponses en déformation sont trés différentes. La
valeur maximale de la déformation Z;; obtenue pour le chemin 1 est légérement supérieure
que celle obtenue pour le chemin 2. En effet, pour le chemin 1, la contrainte 7,; a été
maintenue plus longtemps que pour le chemin 2. Par conséquent, le composite a davantage
eu le temps de fluer en traction sens chaine. De méme, la valeur maximale de la contrainte
de cisaillement plan 2,5 résultant du chemin 2 est beaucoup plus grande que celle obtenue
a partir du chemin 1. En effet, pour le chemin 2, la contrainte de cisaillement plan 75 a été
maintenue plus longtemps que pour le chemin 1. Par conséquent, le composite a davantage
eu le temps de fluer en cisaillement plan. Néanmoins, la différence dans les amplitudes de
déformation est beaucoup plus importante en cisaillement plan, car dans ce cas le comporte-
ment du composite est plus dominé par la matrice et davantage sujet au fluage. D’un point
de vue énergétique (voir Figures TV.29f et 1V.29g), le composite a dissipé plus d’énergie
avec le chemin 1 qu’avec le chemin 2, alors que la quantité maximale d’énergie stockée est
approximativement la méme pour les deux chemins. Cependant, une plus grande partie
de cette énergie stockée a été récupérée avec le chemin 2. Dans I'ensemble, le chemin de
chargement 1 implique plus d’énergie de déformation que le chemin 2.
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Figure IV.29: Jeu de simulations 7: traction sens chaine et cisaillement plan combinés non
proportionmetlemnment;
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Figure IV.30: Jeu de simulations 7: traction sens chaine combinés non proportionnellement,
champs locaux pour le chemin 1.
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Figure IV.31: Jeu de simulations 7: traction sens chaine combinés non proportionnellement,
champs locaux pour le chemin 2.
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5 Conclusions

Dans ce dernier chapitre, un modéle multi-échelle pour les composites tissés & matrice
thermoplastique a été mis en place a partir des modéles constitutifs locaux de la matrice et
des torons, présentés dans les Chapitres II et I, respectivement. Ils sont assemblés a I'aide
de 'approche de modélisation multi-échelle présentée au Chapitre 1.

La cellule unitaire du composite étudié est générée a partir de données microstructurales
obtenues par tomographie & rayons X. Les parameétres inconnus de la loi de compotement de
torons sont identifiés & partir d’essais expérimentaux effectués sur des éprouvettes stratifiées
[09],, [£15°],, [£30°], et [£45°], en conditions quasi-statiques. Par la suite, les prédictions
du modeéle multi-échelle sont comparées a d’autres essais ou le composite est soumis a des
chargements cycliques. Les bons accords entre les tendances prédites et les expériences
démontrent les capacités du modéle multi-échelle & capter la réponse anisotrope du com-
posite induite par la microstructure, ainsi que les effets dépendant du temps inhérents a la
matrice thermoplastique, & savoir: 'accumulation de la déformation et 'endommagement
sous chargement cyclique. Les prédictions sont assez précises pour les éprouvettes [0°], et
[+£15°],, alors qu’on observe certains écarts entre les réponses prédites et les résultats ex-
périemtaux pour le [£307], et [£45°], en particulier sous chargement cyclique. Cela met en
évidence qu’il peut y avoir d’autres mécanismes d’endommagement (tels que de la décohésion
a l'interface torons/matrice) impliqués lorsque le composite est chargé préférentiellement en
cisaillement plan, et /ou que les torons présentent un comportement dépendant du temps (tel
que la viscoélasticité). Ces aspects ne sont pas pris en compte dans le modéle multi-échelle
actuel.

Des exemples supplémentaires sont proposés pour illustrer les capacités du modéle multi-
échelles a réaliser des «essais virtuelsy, ainsi qu’a analyser I'influence des processus de dé-
formation locaux sur le comportement macroscopique du composite. Ces simulations ont
montré que, sous traction sens chaine, les mécanismes d’endommagement locaux se produis-
ent principalement dans les torons de trame et la matrice. Néanmoins, ces dégradations n’ont
pas d’impact significatif sur la réponse macroscopique car la plus grande partie de la charge
est portée par les torons de chaine, qui présentent une réponse élastique et rigide dans leur
direction longitudinale. A Iinverse, en cisaillement plan, la réponse macroscopique est beau-
coup plus dominée par la matrice, les mécanismes d’endommagement locaux se produisent
dans les torons de chaine et de trame, conduisant & un transfert de charge assez rapide
vers la matrice. Dans ce cas, les mécanismes de dégradation jouent un role significatif sur la
réponse macroscopique du composite, ot les effets dépendant du temps liés a la matrice sont
clairement visibles. En outre, il convient de remarquer que ces effets dépendant du temps
liés & la matrice interagissent & travers la microstructure avec les torons, dont le mécan-
isme d’endommagement est indépendant du temps. En plus de I’endommagement dans la
matrice, ces interactions microstructurales créent une augmentation de la microfissuration
intra-toron lorsque le composite est soumis a un niveau de contrainte constant ou cyclique.
Pour terminer, le modéle multi-échelle permet d’analyser 'effet du chemin de chargement
lorsque le composite est soumis a des états de contraintes combinés, mettant en évidence
I'importance de ce dernier point.
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GENERAL CONCLUSIONS AND PERSPECTIVES

1 General conclusions

Throughout this thesis, a multi-scale model is employed to describe the cyclic and time-
dependent behaviour of thermoplastic-based woven composites. This model results from
the assembly of the sub-models of the composite constituents through a fully integrated
multi-scale modelling strategy (see Figure 1). The latter has the strong advantage to be
entirely modular and applicable to any type of composites with periodic microstructure.
Furthermore, this modularity enables the multi-scale model to be easily enhanced with even
more advanced sub-models that might be developed in the future.
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Figure 1: Fully integrated multi-scale modelling approach.
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In Chapter I, a general framework of multi-scale modelling based on the concept of
periodic homogenization has been introduced and applied to the particular case of woven
composites through the use of the dedicated tool TexGen. The proposed approach allows to
determine the macroscopic response of the composite through a FE simulation of the unit
cell representative of the microstructure, where the local constitutive laws of each compon-
ents are integrated, namely: the matrix and the yarns.

In Chapter II, a phenomenological multi-mechanisms constitutive model for thermo-
plastic polymers has been proposed to describe the behaviour the matrix phase within the
composite. The constitutive equations are formulated through the framework of thermody-
namics and account for viscoelasticity, viscoplasticity and ductile damage. This model is
successfully identified for the polyamide 6-6 through a suitable experimental program includ-
ing several types of tests, namely: monotonic, creep and cyclic tests. The good agreement
between experimental and numerical results demonstrates the capabilities of the model to
capture the mechanical response of thermoplastic polymers under various conditions and
especially cyclic loading.

In Chapter III, a hybrid micromechanical-phenomenological constitutive model has been
proposed to predict the behaviour of the yarn phase within the composite. The constitutive
equations are formulated through the framework of thermodynamics and account for an-
isotropic damage and anelasticity, which are induced by the presence of a diffuse oriented
micro-crack network in an initially transversely isotropic medium. The representation of
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damage is obtained by a micromechanical description of a micro-cracked RVE, while the
anelastic deformations are phenomenologically introduced through the new concept of dam-
age induced anelasticity. The identification and the prediction capabilities have been val-
idated from experimental data for flax-epoxy unidirectional composite, demonstrating that
this model is well adapted to describe the transverse tension and the in-plane shear responses
of such media.

Finally, in Chapter IV, the multi-scale model for thermoplastic-based woven composites
is established the from the local constitutive models of the matrix and the yarns, presen-
ted in Chapters II and III, respectively. They are assembled together with the help of the
multi-scale modelling approach presented in Chapter I. Overall, the tendencies predicted
by the model are in good agreement with the experimental data. The model accuracy is
reduced when the composite is preferentially loaded in in-plane shear. This emphasizes
that, in this case, other damage mechanisms (such as debonding at yarn/matrix interface)
and/or time-dependent features in the yarns (such as viscoelasticity) may be involved. Fur-
thermore, the influence of the local damage mechanisms and deformation processes on the
macroscopic response of the composite are analysed through several examples where the
composite undergoes time-dependent deformations under monotonic loading, constant or
cyclic stress levels and non-proportional multi-axial loading.

2 Perspectives

2.1 Integration of the microstructure variability

In this thesis, the proposed geometric description of the composite unit cell (see Section
3 in Chapter I) is an idealised representation of the woven microstructure. In reality, the
geometry of the microstructure may experience some variability due to the manufacturing
process. Thus, a better geometrical description of the unit cell could be eventually predicted

through the simulation of the compaction and forming processes [162, 12, 70, 142].

2.2 Enhancement of the constitutive model of the yarns

It is recalled that the constitutive model considered for the yarn phase is time-independent
and all the time-dependent effects arise from the matrix phase, as well as the microstructure
interactions. In Section 3.3 of Chapter IV, it has been demonstrated that, in certain cases,
the multi-scale model does not capture accurately the overall time-dependency (the hyster-
esis loops for example) and also the energy dissipated by the composite. This highlights
the existence of other time-dependent deformation mechanisms related to the yarn phase,
that have not been accounted for in the present modelling. To resolve this issue, viscoelastic
mechanisms could be eventually added with the help of a coupled formulation [89, 92, 163].
Moreover, the evolution equations of the yarns could be also enhanced or/and modified in
order to account for visco-damage [85, 10, 11, 176].

2.3 Integration of debonding and interface mechanisms

In Section 3.3 of Chapter IV, it has been shown that, when the composite is mainly loaded
in in-plane shear, debonding mechanisms may be involved at the yarns/matrix interface.
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These mechanisms are not accounted for in the proposed multi-scale model, but could
eventually added by means of cohesive elements in the unit cell FE model [180, 45, 46, 35].

2.4 Virtual testing

As previously discussed in Section 1 of Chapter IV, the multi-scale modelling approach
presented in this thesis is intended to be employed to generate a "virtual tests" database that
would allow to identify a phenomenological model having an equivalent overall behaviour
[65, 2]. Subsequently, this model could be utilized for large-scale structural applications,
while keeping an acceptable computational cost.

2.5 FE? analyses

One of the major future challenges related to this type of multi-scale modelling is to
connect the unit cell problem to a FE macroscopic model with the help of a FE? computa-
tional scheme. In such two-scales analyses, the macroscopic problem is incrementally solved
by calling the microscopic problem at each time step and for each macroscopic integration
point [61, 63, 62, 9, 182, 184, 183|. Currently, the computational cost involved in such a pro-
cess is highly expensive and the dedicated numerical techniques are still under development,
preventing its use in an industrial context.

2.6 Multi-scale fully-coupled thermomechanical analyses

The modelling approaches presented in this thesis assumes isothermal conditions. How-
ever, it has been demonstrated that, under cyclic loading, a significant increase of tem-
perature arising from the dissipative mechanisms may likely occur, altering the mechanical
properties of the composite (see Section 3.3 in Chapter IV). In order to account for this
self-heating phenomenon, the present multi-scale model could be extended to fully-coupled
thermomechanical analyses [32, 22, 33|, where the mechanical and thermal problems are
simultaneously solved. Such analyses require to write the local constitutive equations with
a proper thermodynamical formalism [150, 151, 31, 197, 198 and to work with an ener-
getically consistent multi-scale theory, similar to the periodic homogenization framework
presented in Section 2 of Chapter 1.

2.7 Model reduction techniques

With a view to perform multi-scale analyses over long periods of time and/or a large
number of cycles within a reasonable computational time, it becomes of prime importance to
implement dedicated numerical schemes for fatigue analysis involving complex thermomech-
anical behaviours. A first category of numerical schemes is dedicated to reduce the problem
in terms of time integration. Among them it can be mentioned the cycle jump method [39],
the temporal homogenization [72| or the LArge Time INcrement (LATIN) method [38]. In
a second category, other more advanced numerical schemes allow to reduce the problem in
terms of space and time [36, 94, 140, 23|.

2.8 Fatigue criterion analyses and life-time estimation

Besides the model reduction techniques, fatigue analyses and life-time estimation re-
quire to establish an appropriate fatigue criterion. The latter might be based on both
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microscopic and/or macroscopic fields. Additionally, energy balanced analyses could also
be considered to establish such a criterion, as experimental investigations have shown that
energetic quantities seem to be appropriate indicators to predict the failure of thermoplastic-
based composites [100, 13, 156].
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Appendix A

Details of the kinematic constraint
equations

The setting up of periodic boundary conditions using the "constraint drivers" method
requires first to identify the nodes located on the faces, the edges and the corner of the cell.
For simplicity, the notation presented in Figure A.1 will be utilized:

To Aﬂ?g

Figure A.1: Locations of the faces, the edges and the corners on a unit cell

1 Kinematic constraint equations for faces

From the equation (I.30), the relationship between nodes at the same relative position
on the opposite faces can be written as follows:

(A B cd —
up —uy —ui{ Azqy =0

1
uy —uf — ufy AT =0 (A.1)

1
A B cd —
ug — uy — ujs §A$1 =0
\
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\

1
uf —ulP —uéd §A$2 =0
C D cd

us —uy —usy Axe =0

1
C_,D _ ,cd —
uy —uy — uss §Ax2 =0

E F cd _
uy —uy — u§g §Ax3f0
ul —ul — sl lAa: =0

2 2 23 5203 =

E_ ,F _ cd _
uy —us —uss Axg =0

where faces A to F are shown in Figure A.2.

Y

Al'l

Figure A.2: Kinematic equations for the faces

2 Kinematic constraint equations for the 1% group of

edges

For a node located on an edge (that belongs to two faces in the same time), it is clear
that two opposite nodes can be found at the same relative position. Then at first, from the
equation (I1.30), four equations can be deduced for each group of edges. For the first group
the equations are initially given by:

\

(11 I cd —
uyt —uy —u§{ Azy =0

1
I _ 0 _ cd _
uyt —uy — u§y §Ax1 =0

a1
39

11 1 c

Axlz()
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ultl — ydl — e —sz =0
utt —ull —usd Awy =0 | (A.5)
utlt — ull — usd —Axg =0
\
(
wll — V' —y$d Axy =0
I _ v _ ,cd _
Uy Uy — Uiy _Aml =0 (A.6)
r _ ,Iv _ o cd
ug'' —uz’ — ufy 2Aac1 =0
\
(
ulV —ul — usd —Axg =0
ulV —ul —ust Axg =0 | (A.7)
ulV — ul — usd —Aa:Q =0

\

where edges I to IV are shown in Figure A.3. However, if the equations are defined in this
way, there will be a redundancy making the system over-constrained and likely unsolvable.
Indeed, for instance, the edge III is both linked to the edges IT and IV that are themselves
linked to edge I. Thus, it will be preferable to replace the equations (A.5) and (A.6) by the
equation (A.8) that can be obtain by either putting (A.4) into (A.5) or (A.7) into (A.6):

(

\

1
wl —ul —ust Az — uéd EAZEQ =0
1
up' — uh — ugg 2A331 —ugj Azy =0 (A-8)
ulll —ul — ugd 2Aa:1 —ugd 2A:z:2 =0

Finally, only the equations (A.4), (A.7) and (A.8) will be used for the first group of edges.
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AZL’Q

Figure A.3: Kinematic equations for the 1% group of edges

3 Kinematic constraint equations for the 2"’ group of

edges

In the same way, from (1.30

), the equations of the second group of edge are given by:

"

\
UYII

VII
Ug

VII
Us

\

uVt —uy —u$d Azy =0
VI 1%
u¥l — Y —us 1Aa: =0
3 3 13 5T =
\
VIII 1% cd _
uy " —u —ufg §A£C3 =0
VIIT v cd _ A10
Uy —uy — ugs —Axg—O ’ ( )
VIIT VvV ed _
v 1
174
—u¥ —uéd 2Ax1 — usd 2Ax3 =0 , (A.11)
1%
—uy — ud A:cl —u§t Azy =0

where edges V to VIII are shown in Figure A.4.
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Figure A.4: Kinematic equations for the 2"¢ group of edges

4 Kinematic constraint equations for the 3"? group of

edges

In the same way, from (1.30), the equations of the third group of edge are given by:

p

\

\

X1
Uy

X1
Us

X1
Us

(

ul —ulX —ugd 2Ax2 =0
uy —ulX —ust Axg =0 (A.12)
X _ ,IX 1
s — X — gl 2Aaz3 =0
w T — X g Axg —0 > (A.13)
ud 't — ul® —usd Axs =0
Ix 1
—ulX —ugd 2Aac2 —usd 2A.Z'3 =0
—ul® —usd Azy — usd 2Aaz'3 =0 |, (A.14)
— uX — usd Ax2 —u§d Azg =0

where edges IX to XII are shown in Figure A.5.
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Figure A.5: Kinematic equations for the 3"¢ group of edges

5 Kinematic constraint equations for corners

Following the same methods, from (I.30), the equations for the corners are given by:

(
u? —ul —ust Az; =0

1
u3 — ud — ugd —Axl =0 (A.15)
u2 — u — ugd §Ax1 =0
\
(
u‘l1 — u% — uf‘é §Ax2 =
us —ul —usd Azy =0 | (A.16)

4 cd —
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) ul — ud — ugd —A:rg =0 ° (A-17)
\ uj —ud —usd Aws =0
(
ul —ut —ust Azy — usd —A:cg =0
ul — ud — ugd 2Ax1 —ust Awy =0 (A.18)
ul — ul — usd Axl — usd Aajg =0

\
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1
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7,1
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\

where corners 1 to 8 are shown in Figure A.6.
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Figure A.6: Kinematic equations for the corners
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Appendix B

Framework for thermodynamically-based
constitutive modelling of homogeneous
materials

The study of composite materials via micromechanics and multi-scale analyses requires
a deep knowledge of the material response of each individual component that appears in
the microstructure. In this purpose, the thermodynamic of irreversible processes [67, 68, 69,
109, 33| provides a rigorous framework to establish constitutive equations for homogeneous
materials. This appendix presents a brief overview of this framework. Basics of thermo-
dynamics for continuum media under the small perturbations assumption are introduced
along with some helpful definitions for readers that are not familiar with these concepts.

Before starting with the framework of thermodynamics, it is necessary to introduce the
following energetic quantities. The mechanical work of a material point is defined as the
twice contracted product between the stress and the strain:

W=o0:¢, (B.1)
written under its rate form, this gives:
W=W.+W, where W.=0:é¢ and W,=06:¢€. (B.2)

W. and W, are the strain and complementary energies, respectively. As illustrated in Figure
B.1, W, represents the area under the stress-strain curve, while by complementarity W, is
the area above the stress-strain curve.

205



APPENDIX B. FRAMEWORK FOR THERMODYNAMICALLY-BASED
CONSTITUTIVE MODELLING OF HOMOGENEOUS MATERIALS

o o
g g
(a) Strain energy (area under the stress-strain (b) Complementary energy (area above the stress-
¢ i
curve): We(t) :/ o(€): dz(;) d¢ strain curve): Wy (t) :/ dt;ég) ce(§) d¢
0 0

Figure B.1: Schematic representation of the strain and complementary energies W, and W,
respectively.

1 Basics of thermodynamics

1.1 1°" and 2" laws of thermodynamics

The 1% law of thermodynamics postulates that, in a material volume element, the rate
of internal energy is equal to the sum of the power produced by the material itself and its
deformation minus the power that leaves this material element through thermal conduction:

pé = w + W. — dive(q). (B.3)

In the above equation p stands for the material density, e denotes the internal energy per
unit of mass, w is an eventual heat source (power per unit of volume) an g the heat flux
(power per unit of surface).

The second law of thermodynamics is written under the form of an inequality expressing
the irreversibility of the involved physical phenomena:

. . q w
+d m<_>_—>0. B.4
ps + dive| T2 (B.4)
This principle introduces the notion of entropy, denoted by s (power per unit of mass per
unit of temperature):

1.2 State variables and state potentials

To describe the energetic state of the material, it is necessary to express the internal
energy e as a state function. The latter depends on the strain, the entropy and a set of
internal state variables denoted by the symbols Vy:

e=e(e, s, Vg). (B.5)

However, identifying a constitutive law in terms of entropy is not practical. Instead, it is
more convenient to introduce alternative potentials through an appropriate transformation.
In this purpose, either the Helmholtz or the Gibbs free energy potentials can be considered.
They are respectively written as:

Y(e, T, Vy) =e—Ts, (B.6)

206



APPENDIX B. FRAMEWORK FOR THERMODYNAMICALLY-BASED
CONSTITUTIVE MODELLING OF HOMOGENEOUS MATERIALS

v (o, T, Vi) :e—Ts—%. (B.7)

The Helmholtz potential considers the strain and the absolute temperature as observable (or
external) state variables, while it is the stress and the absolute temperature for the Gibbs
potential. It is worth noticing that observable state variables depict variables that can be
controlled (during an experiment for example). In an opposite way, internal state variables
cannot be controlled as they are only governed by specific evolution laws expressing their
kinetics with regard to the observable state variables.

1.3 Clausius-Duhem inequality

The Clausius-Duhem inequality, establishes that the dissipation (rate of dissipated en-
ergy) must be always positive or null to ensure that the constitutive relation of a material
is well thermodynamically allowable. This inequality is obtained by combining together
the 1°" and 2"¢ laws of thermodynamics in (B.3) and (B.4) with the Helmholtz free energy
potentials (B.6). This gives:

_g%dwm > 0. (B.8)

J/

Wa_p(¢+TS)+q

J/

Vv
mechanical dissipation

thermal dissipation

If the Gibbs potential (B.7) is used instead of Helmholtz, the Clausius-Duhem inequity

becomes: 4T
:Wg — (Y + TSZJrq . %&'() > 0. (B.9)

mechanical dissipation DA
P thermal dissipation

In both cases, two term can be clearly identified. The first one represents the mechanical
dissipation associated with the evolution of the internal state variables, generally resulting
in heat production from the material volume element. The second term depicts the thermal
dissipation due to heat conduction. Let’s remark that, the Fourier law implies that the
thermal dissipation is itself positive or null:

—grad_(7)
1 T
where K is the positive definite 2"¢ order conductivity tensor. The strong form of the

Clausius-Duhem inequality requires that the mechanical dissipation, henceforth denoted by
®, is always positive or null. For the Helmholtz and Gibbs potentials, this respectively gives:

>0 as qg=—K -grad,(T), (B.10)

d =W, — p(tb +Ts) > 0. (B.11)

d =W, — p(¥* +Ts) > 0. (B.12)

1.4 State laws and associated variables

Written under their rate form, the Helmholtz and Gibbs potentials are respectively given
by:

L/}:—:é+—T+Z—*Vk, (B.13)
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* * N *
_W LW T+Za¢

= 80’ . 8T *Vk (B14)

¢*

By introducing the expression of the Helmholtz free energy rate (B.13) in the Clausius-
Duhem inequality in (B.11) the expression of the mechanical dissipation eventually becomes:

N
éz(a—pg—f):é—p(s+%)T—;p%*Vk20. (B.15)
If the Gibbs potential is considered instead, (B.14) is introduced into (B.12), this gives:
: U\ A WA T
qD:—(e—i—paa):a—p(s—l—aT)T—;pavk*szo. (B.16)

Under certain assumptions, a few terms of the above equations, (B.15) and (B.16),
can be independently cancelled. Indeed, utilizing the Helmholtz potential, let’s assume an
isothermal strain state without any evolution in the internal state variables (¢ # 0, T=0
and Vi = 0). Such a process implies that the stress is defined by:

a—pa—fzo & o=p—. (B.17)

Thereafter, if only the temperature is evolving (¢ = 0, T # 0 and Vi = 0), such a a
thermomechanical state implies that the entropy is defined by:

o o
T T Tor (B.18)
If the Gibbs potential is utilized instead of Helmholtz, in the same idea, the strain is defined
by assuming an isothermal stress state without any evolution in the internal state variables

(6#0,T=0and V, =0):
o
o

o*

0 « s:—pa,
o

e+p (B.19)

and the entropy is obtained by assuming that only the temperature is evolving (¢ =0,
T # 0 and Vi, = 0):
oY* oY*
5T 0 & s 5T (B.20)
Additionally, the thermodynamical forces associated with the internal state variables are
defined as:

o o™

a—vka kzpavk-

By introducing (B.17), (B.18) and (B.21) into (B.11) or (B.19), (B.20) and (B.21) into
(B.12), the expression of the mechanical dissipation finally becomes:

S+

Ak:p A

(B.21)

N
O=-> AV >0 (B.22)

k=1
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1.5 Evolution laws

In order to have a thermodynamically admissible process, the evolution of the internal
state variables must be formulated in such a way that ® > 0. To ensure this condition, it
is convenient to derive the evolution law from a dissipation potential , expressed as scalar
and convex function of the internal state variables rates. In the potential, the state variables
may act themselves as parameters:

dp

= o(Vise or o, T, V), Ap = ———. (B.23)

OVy
Generally, it is more convenient to directly express the evolution law in terms of internal
state variable rates according to their corresponding thermodynamic forces. Thus, the
Legendre-Fenchel transformation allows to define the dual dissipation potential ¢* related
to . Thus ¢* is expressed as scalar and convex function of the thermodynamic forces, in
which the state variables may act themselves as parameters. The evolution laws are then
directly obtained by derivation of this dual potential:

0p*
OA;,

o= (Aeor o, T, V),  Vi=-— (B.24)

Another way to ensure ® > 0, is to express the evolution by normality of an indicative convex
function F' of the thermodynamic forces, in which the state variables may act themselves
as parameters.

. F .
F=F(Ageoro,T,Vy), Vi = —067)\, (B.25)
k

where A is a Lagrange multiplier, that is deduced from the consistency of the activation
condition of the considered mechanism, such as A > 0 if the mechanism is active or A = 0
if the mechanism is not active. Note that this last formalism (B.25) is particularly adapted
for time-independent and/or non-associative mechanisms, while the utilization of a dissip-
ation potential (B.23) or a dual potential (B.24) necessarily implies time-dependent and
associative mechanisms.

1.6 Heat equation

The heat equation is obtained from the 1% principle (B.3) in which the expression of the
Helmholtz potential (B.6) is substituted. After proper calculation, this gives:

x vk) . (B.26)

J/

: Do L 0A
pcT = —divy(q) +w — ZAk*vk+T( ey
oT ~~ &= JT

J/ N

<i>20 r
"
We

Instead of Helmholtz, if the Gibbs potential (B.7) is introduced in (B.3), the heat equation
becomes:

N

N
ch:—divm(q)+w—ZAk*Vk+T( 0‘+ZaAk *Vk) . (B.27)
k=1 ket

J

»1.

.v
®>0
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The term w. represents the heat (power per unit of volume) induced by the mechanical
work, and is composed of two terms: the mechanical dissipation ® and the thermomechanical
coupling sources I'. In the left member in equations (B.26) and (B.27), ¢ denotes the specific
heat capacity defined by:

c= Ta_T' (B.28)
Rigorously, the specific heat capacity may depend on the state variables. However, in most
of the cases, according to the considered model formulation, the heat capacity c is constant
or approximated as a constant '.

From equations (B.26) or (B.27), it is evident that the deformation of a material is usu-
ally accompanied by a change in temperature. Most of the times, the induced temperature
variation remains small with regards to the service temperatures or/and the temperature
sensitivity of the material. In these conditions, the heat generated by mechanical work
can be reasonably neglected through an uncoupled thermomechanical analysis or a clas-
sical mechanical analysis assuming isothermal conditions. Nevertheless, there are a few
cases where the heat induced by the mechanical work may lead to significant increase in
temperature (self-heating phenomenon) that may alter the mechanical properties of the ma-
terial itself. Such cases require to treat the mechanical and thermal problem simultaneously
through a fully-coupled thermomechanical analysis.

2 Simplified framework for isothermal conditions

Under the isothermal assumption, all the temperature dependent terms of the state po-
tential (Helmholtz or Gibbs) are constant. Hence, they can be removed from the problem
that is only treated in terms of mechanical-related variables, as summarized in Tables B.1
and B.2.

Note that, in the study performed in this work, it is assumed that the heat induced by
the mechanical work w. does not lead to significant change in temperature so that it can be
reasonably considered that the material stays at "constant temperature".

1. It should be mentioned that, depending on the considered state potential, the interpretation of the
specific heat capacity is different. For the Helmholtz potential, ¢ denotes the heat capacity at constant
volume, whereas for the Gibbs potential, ¢ denotes the heat capacity at constant pressure. Nevertheless,
for solids, these definitions are practically the same.
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State potential Helmholtz Gibbs
p¢(€7 Vk) pl/J* (0.7 Vk)
o o oY o*
tate 1 = p— = p— - _ —
State laws T =Py Ay, p@Vk € iy Ay, p@Vk
Dissipation d=W.—pp>0 d=—W,— pip* >0

N
(i):_ZAk*VkZO
k=1

Table B.1: State laws obtained from the derivation of a state potential (Helmholtz or Gibbs)
and expression of the dissipation.

Dissipation potential Potential Dual potential Indicative function

eV or o, V) | ¢*(Agie or o, Vi) | F(Age or o, V)

dp : op* - oF .
——= Vi = — Vi=—2—A\
V) T4, T 04

Evolution laws A, =

Table B.2: Evolution laws obtained from the derivation of a dissipation potential or dual
potential or by normality of an indicative function.
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Appendix C

Assessment of the self-heating from an
uncoupled "0D" thermal analysis

When performing a purely mechanical analysis, it may be interesting to evaluate if the
isothermal conditions hold and if the self-heating is likely to occur. In this purpose, it is
proposed to perform an uncoupled thermal analysis where the heat equation is separately
solved after the mechanical problem. In such an uncoupled thermomechanical analysis, it
is necessary to neglect the thermomechanical coupling sources (I‘ = 0). Therefore, in the
absence of any other heat sources (w = 0), the heat is only induced by the mechanical
dissipation ®. In this context, the heat equation (B.26 or B.27) becomes:

pcT(z,t) = —divy(q(z, 1)) + ®(x,t)  where  g(z,t) = —K - grad, (T(z,t)). (C.1)

In the above partial differential equation, ® is extracted from the mechanical problem and
is subsequently utilized as an input of the thermal problem. In this manner, the variation
of temperature induced by the mechanical dissipation is evaluated without accounting for
its effect on the mechanical problem.

1 Uncoupled "0D" thermal analysis

Considering a body ideally subjected to uniform thermomechanical fields, one can write
the heat equation (C.1) under its "0D" formalism [37, 20, 24, 13, 198|. Therefore, the
thermal problem can be reduced to the following differential equation:

pc(T(t) + M) = d(t), (C.2)

where the characteristic time 7 quantifies the heat losses of this body. They are assumed
to be proportional to the difference between the current temperature 7'(¢) of the body and
the equilibrium temperature 7,.

When performing tensile tests, such a "OD" analysis is particularly convenient as it
permits to focus on the thermomechanical response within the gauge length of a tensile
specimen. In this area of interest, the thermomechanical fields can be considered as uniform.
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2 Numerical resolution: Backward Euler time implicit
algorithm
When considering the backward Euler time implicit method, it is convenient to write

the governing equations under the form of residual functions that must satisfy a nullity
condition. In the present case, the residual form of the heat equation C.2 gives:

or(T,T) = pc (T 41 _TT°°) —d=0. (C.3)

In order to initiate the computation, at each time step, the temperature is assumed not
to evolve at first, such that: ATC+HD*=0 — (0 Once the residual ¢r is predicted, its
nullity cannot be respected, then the temperature must be corrected in order to satisfy this
condition. Accordingly, the temperature is updated at each iteration k by:

T(n+l)(k+1) _ T(n+1)(k) + 5T(n+1)(k), (04)
where §T( D) i obtained from the nullity condition of the residual ¢

oW gt = o, (C.5)
In the above equation, gbg? ) i expressed by linearisation. This gives (all the quantities
are taken at the increment (D).

dor Oor

_ %0r 5 y D0r s
001 = 5 0T B
oT At oT
_(9or 1 o o c5)
“\ar At 9T
_ - Oopr 1 0or B 1 1
— KTT5T where KTT = (aT Al -+ aT) = pc(At + 7—)'

Finally, by introducing (C.6) into (C.5), the unknown value of 07" is computed from the
known value of the residual ¢7. This gives:
_(n+1)(k)
sk — Z0r (C.7)

n+1)(k) *
Ko

Once the temperature is updated, the residual ¢ is reassessed through the relationship
(C.3). This correction procedure is iteratively repeated (k loop) until the convergence is
reached !, namely when |¢p{" ™| < 0 4 4.

3 Experimental evaluation of the heat losses

The heat losses can be determined by measuring the return to equilibrium occurring
after a rapid elevation of temperature [20]|. Indeed, at this stage, there is no heat generated

1. Normally, as the differential equation (C.2) is linear, it can be shown that only one correction is
sufficient to reach the convergence. However, this scheme could also be applied if this differential equation
was non-linear. In this case, several corrections would be likely required.
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by the material (& = 0) and the heat equation given in (C.2) is reduced to:
pc (T(t) + T(t)%TOO) =0, where  T(t=0)=1Ty > T (C.8)
Thus, the analytical solution of the above differential equation gives:
T(t) = Too + (Ty — To) exp (-%) (C.9)

where the characteristic time 7 can be easily identified, as illustrated on Figure C.1.

T(t) In(T — Ty)
To

T(1) =T +0.37 x (Ty — Two) 1
1 T
T, t t
p
(a) Temperature (T') vs. time (b) In(T — To) vs. time

Figure C.1: Identification of the characteristic time 7.

Note that the characteristic time 7 depends on the material thermal properties, the
geometry of the considered body and the heat exchanges between this body and its sur-
rounding medium (conduction and/or convection). If these parameters are likely to change,
the characteristic time 7 must be reassessed to account for the new configuration.
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Appendix D

Linearisation of the constitutive
equations of the matrix with the convex
cutting plane method

It is recalled that, with the "convex cutting plane" form of the "return mapping al-
gorithm" [179, 145, 178], a simplification is made regarding the linearisation of the flow
equations. Indeed, the gradients of the flows are not considered. Thus, with regard to the
proposed model, the linearisation of the flow equations (I1.36) are given by:

Alo)s,  5p= &)

¢p=1_p 1-D

or. (D.1)

Considering this point, the linearisation of the residuals ¢,, (I1.40) and ¢, (I1.41), and the
stress (I1.10) are expressed as follows:

Spy, = agz:i 0o + Zf” L 0y, + gf” L 0€y, + 8;;,2. oD
0y, Oy, Oy, 1 Oy, UY)
=55 0o + Dey, - 0€y, + Des, N 0€y,; + 5D 1-D D5r (D.2)
0oy, 0y, Oy, 1\ Oy, QUY)
= 5 100 + (asvi + De,, At) : 0€y, + D 1_D57’
=Ayo 00+ Ay, 0Ey, + Ay 0T,
00 06 06, 09
0, = 9o s 00 + o or + 5 or + 0D5D
00 06 00, 1 06, Q(Y)
= 3 s 00 + 5 or + BE Atér—l—aDl_Ddr (0.3)

oo or or At 0D1-D

=A,,: 00+ A,or,

D s (aasr L00 1 09, ﬂ(Y))&
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Jo

do do o
(50':—:56—1-2 v:5€vj+a—%:(5€p+

‘ Jdo e _1_8_0'. A(o) Sr 4 do Q(Y)

Oe — Oe,;, ' Oep 1-D OD1—D

. (D.4)
_ Jo do do  A(o) 0o QYY)
_—5€+Z 5Ev]+<a—€pﬁ+a—Dm or

o)

= Bye : 06 + ZIEBM,j 1 0€y, + Bgror.

where ; -
_ ¢Ui _ ’;L
Awa — 80' == 1_ D, (D5)
_ a¢'vz ad)’vl ]- o -1, ]I
Ao, = 0€,, + OE,, At =V, 1 Gy At (D.6)
0y, QY) VoY)
Avr = oD 1—-D  (1—-D)* (D.7)
_ 8¢r o anl A(O’)

Aro = do of 1-D’ (D.8)

Jo
Boe = - = (1= D)Ce, (D.10)

Jo
Bov, = Be,, = "1~ D)Ce. (D.11)

_ 9o Alg) 00 Q) _ . Q(Y)

Bor de, 1—D TeDi-D Ce € ;Evz |- p T A(o)|. (D.12)
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Appendix E

Linearisation of the constitutive
equations of the yarns with the convex
cutting plane method

It is recalled that, with the "convex cutting plane" form of the "return mapping al-
gorithm" [179, 145, 178], a simplification is made regarding the linearisation of the flow
equations. Indeed, the gradients of the flows are not considered. Thus, with regard to the
proposed model, the linearisation of the flow equation (III.26) is given by:

des = Ag(o)d7e. (E.1)

Considering this point, the linearisation of the residual ¢, (II1.27), the stress criterion H,
(II1.19) and the stress (II1.3) are expressed as follows:

¢ ¢
50, = gy 4 Wy
D = om, et 9,0 (E.2)

= A’YCHC(SHC + A'YCW(:(S’)/C?

§H, = gfg :dog where from (I11.13) dog = % 1 0g + g:) :0€s + _gzs 0Ye
OH. [0doq dog dog
= . _— —_ . AS c a_ c
Jdoy ( Oe oe Oes ()07 + 07 67) (E.3)
0H., OJoyg 0H. doy doyg
— L . . A.
dog Oe o oy (855 (o) + Ne )6%
= Bh,c : 06 + By, 07,
Jdo do do
50‘ = % : (55 + 863 . 563 + a—%é’}/c
Jo oo o
= — (S :AS 5 c _5 C
ge 05 ge, P As(@)07e + o0 (E.4)
oo oo do
= — . AS C
Oe be (868 () + 3%>M
= Bo-e :0e + Ba%(s%,
where 06 dg(H,)
_ 9P _ 99\
Au = Y ) (E.5)
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0,
A'YC’YC = 87’1 = _17 (E6)
ch 80'0 H : g
= P— = : cA E.
BHCe 80'0 (95 ( Hc ) CO 0(70)7 ( 7)

doy e
(5] s (htmins )
Boe = 00 = Co — D(1), (E.9)
Ban, = 50+ Aulo) + 57 = ~[Co~ D) Aulo) ~ 50 s e e (B0)
and 8]1({);(7?) ey ( Agfr) + %a%)éjc>> | (E11)
2R00e) — —o(0e)+ (Te = 1)+ ol (E.12)

220



Appendix F

Evaluation of the Eshelby tensor

For a general anisotropic medium surrounding an ellipsoidal inclusion, the Eshelby tensor
[59] is given by a surface integral, parametrized on the surface of the unit sphere [139]. The
components Sg; ;i of the Eshelby tensor Sg are given by:

1 +1 27
SEijkl - 8_COmnkl/ / (Gimjn(wa C3) + Gjmin<w7 C3)> dw dC37 (Fl)
n -1 Jo
where
_ _Ni.
Gijkl = Ck% Ja

G = 2—2, G =4/1=Ccos(w), C=1/1-CGsin(w), G=4G, (F.2)

1 o
D = €Ki Kn2 K3, Njj = §€ikl€jmnKkalna K, = CoijriGiG-

Coijiu are the components of the stiffness tensor of the infinite medium Cq, while ay, ay
and agz are the three principal axes of the ellipsoid (Figure II1.3). They are expressed in a
rectangular Cartesian coordinate system. w is an angular position and (3 is the longitudinal
coordinate. €;;; are the components of the 3" order permutation tensor expressed by:

0 ifi=j,i=k j=k
=19 1 if(4k) €{(1,23),(23,1),(3,1,2)} . (F.3)
—1 if (i,4,k) € {(1,3,2),(3,2,1),(2,1,3)}

When the infinite medium is isotropic or transversally isotropic, an analytical solution exists
for (F.1). For all the other cases, no explicit formulas have been developed. Thus, the
components of Sg must be evaluated numerically. As proposed by [66], this numerical
evaluation can be performed using the following Gaussian quadrature formula:

M N
1
Seijk = gCOmnkl Z Z (Gimjn(wm (3p) + Gimin(wg, CS;,)) Wha, (F.4)

p=1 ¢=1

where M and N are the number of points used for the integration over (3 and w, W, are
the Gaussian weights. More details about the determination of the Gaussian points and
weights can be found in [194].
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Appendix G

Behaviour of the yarns

1 Imitial stiffness

The initial stiffness of the yarns is first evaluated by mean of periodic homogenization
(see Section 2.1.6 in Chapter I). The homogenization is performed using a cubic unit cell
representing a unidirectional medium. The latter is idealised by a periodic hexagonal ar-
rangement (see Figure G.1) with a fibre volume fraction of 85%. This value was evaluated
from experimental observations (see Section 2 in Chapter IV). It should be mentioning
that, if the individual components are isotropic, a unit cell with a hexagonal arrangement
is supposed to provide a transversely isotropic homogenized stiffness tensor.

1 2

(a) Hexagonal arrangment (b) Unit cell (¢) Mesh of the unit cell

Figure G.1: Unit cell of an unidirectional medium with a hexagonal arrangement and a fibre
volume fraction of 85%.

The elastic properties of the constituents, namely: the matrix and the fibres, are listed in
Table G.1. For the fibres, typical data of E-glass were taken from [6]. For the matrix, since
the polyamide 6-6 is a time-dependent material (see Chapter IT), an average modulus is
considered. The latter is obtained from the initial slopes taken on several monotonic tensile
tests performed at several strain rates (see Figure 11.5). Note that the standard value of 0.3
is utilized for the Poisson ratio of the matrix.
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Constituent Parameter value unit

Matrix (isotropic) FE 2074 MPa
v 0.3 -

Fibres (isotropic) FE 72400 MPa
v 022 -

Table G.1: Elastic properties of the yarns constituents, namely: the matrix and the fibres.
For the fibres, typical data of E-glass were taken from [6]. For the matrix, since the polyam-
ide 6-6 is a time-dependent material, an average modulus is obtained from the initial slopes
taken on several monotonic tensile tests performed at several strain rates (see Figure I1.5).

The initial stiffness tensor of the yarns is recovered through the strain driven approach
(see Section 2.1.6 in Chapter I). Thus, according to the relationship (1.24), each term of
the stiffness tensor are recovered from the stresses resulting from the the six unitary strain
states (1.23). With the help of the Voigt notation, this gives the following stiffness tensor:

65822 7041 7041 0 0 0
23947 6971 0 0 0
23947 0 0 0
8661 0
sym. 8488

As expected, the computed stiffness tensor is well transversely isotropic!, since Cy,,,, =
_ _ _ 1 1
003333> C101122 - CY011337 C(01212 - 001313 and C’02323 - 5(002222 - 002233) - 5(003333 - 002233)'

2 Stiffness reduction

Let’s recall that the stiffness reduction tensor D(7.) is calculated from the initial stiffness
tensor Cq along with a chosen configuration of void inclusions, in the present case: "crossing
micro-cracks along 7" (see Figure I11.4a and Table II1.2). Figures G.2 and G.3 shows the
non-null term of D(~,) obtained with the initial stiffness previously computed in G.1.

1. Note that the computed terms of Cy were slightly modified so that the latter is perfectly transversely
isotropic. Indeed, due to numerical approximations, a small deviation of a few MPa may be observed.
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APPENDIX G. BEHAVIOUR OF THE YARNS

3 Mechanical response of the yarns

The parameters of the yarns, listed in Table IV.3, were identified from the macroscopic
response of the whole woven composite (see Section 3 in Chapter IV). In order to visualize
how the yarn phase would behave if this component was removed from the woven composite
and tested apart, basic simulations carried out on a single yarn material point are presen-
ted. In these simulations, the material is repeatedly loaded and unloaded at progressively
increasing maximum stress levels in longitudinal and transverse tension as well as in in-plane
shear (see Figures G.4a, G.4b and G.4c, respectively).
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Figure G.4: Behaviour of the yarns (see parameters in Table IV.3): in longitudinal tension
(a), transverse tension (b) and in-plane shear (c).
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Multi-scale modelling of thermoplastic-based woven composites, cyclic and
time-dependent behaviour

Abstract: In this thesis, a multi-scale model established from the concept of periodic ho-
mogenization is utilized to study the cyclic and time-dependent response of thermoplastic-based
woven composites. With the proposed approach, the macroscopic behaviour of the compos-
ite is determined from a finite element simulation of the representative unit cell of the periodic
microstructure, where the local constitutive behaviours of the components are directly integrated,
namely: the matrix and the yarns. The local response of the thermoplastic matrix is described by a
phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplas-
ticity and ductile damage. For the yarns, a hybrid micromechanical-phenomenological constitutive
model is considered. The latter accounts for anisotropic damage and anelasticity induced by the
presence of a diffuse micro-crack network through the micromechanical description of a micro-
cracked representative volume element. The capabilities of the multi-scale model are validated
by comparing the numerical predictions with experimental data. The capabilities of the model are
also illustrated through several examples where the composite undergoes time-dependent de-
formations under monotonic loading, constant or cyclic stress levels and non-proportional multi-
axial loading. Furthermore, the multi-scale model is also employed to analyse the influence of the
local deformation processes on the macroscopic response of the composite.

Keywords: Woven composites, Thermoplastic matrices, Constitutive modelling, Multi-scale
modelling, Periodic homogenization, Cyclic loading

Modélisation multi-échelle des composites tissés a matrice thermoplastique,
comportement cyclique et dépendance au temps

Résumé: Dans ce travail de thése, une modélisation multi-échelle est mise en place a partir
du concept d’homogénéisation périodique pour étudier le comportement cyclique et dépendant
du temps des composites tissés a matrice thermoplastique. Avec I'approche proposée, le com-
portement macroscopigue du composite est déterminé a partir d’'une simulation éléments finis
effectuée sur une cellule unitaire représentative de la microstructure périodique, ou les lois de
comportement des constituants sont directement intégrées, a savoir: la matrice et les torons. La
réponse locale de la matrice est décrite par une loi de comportement phénoménologique multi-
mécanismes intégrant viscoélasticité, viscoplasticité et endommagement ductile. Pour les tor-
ons, une loi de comportement hybride micromécanique-phénoménologique est considérée. Cette
derniére prend en compte 'endommagement anisotrope et I'anélasticité induite par la présence
d’un réseau diffus de microfissures a travers une description micromécanique d’'un volume élé-
mentaire représentatif contenant des microfissures. Les capacités du modele multi-échelles sont
validées en comparant les prédictions numériques aux essais expérimentaux. Les capacités du
modele sont également illustrées a travers plusieurs exemples ou le composite subit des dé-
formations dépendantes du temps lors de chargements monotones, de chargements a amplitude
constante ou cyclique et encore lors de chargement multiaxiaux non proportionnels. En outre, le
modele multi-échelle est aussi utilisé pour analyser l'influence des mécanismes de déformation
locaux sur la réponse macroscopique du composite.

Mots clés: Composites tissés, Matrices thermoplastiques, Lois de comportement, Modélisa-
tion multi-échelle, Homogénéisation périodique, Chargements cycliques
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