
HAL Id: tel-01947767
https://pastel.hal.science/tel-01947767

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Superior Evolutionary Algorithms via Insights
From Black-Box Complexity Theory

Jing Yang

To cite this version:
Jing Yang. Designing Superior Evolutionary Algorithms via Insights From Black-Box Complexity
Theory. Computational Complexity [cs.CC]. Université Paris Saclay (COmUE), 2018. English. �NNT :
2018SACLX054�. �tel-01947767�

https://pastel.hal.science/tel-01947767
https://hal.archives-ouvertes.fr

N
N

T
: 2

01
8S

A
C

LX
05
4

From a Complexity Theory of
Evolutionary Computation to Superior

Randomized Search Heuristics
Thèse de doctorat de l’Université Paris-Saclay

préparée à l’Ecole Polytechnique

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 04 Sep 2018, par

MME JING YANG

Composition du Jury :

Mme Johanne Cohen
Directrice de recherche, Université Paris-Sud (Unité de recherche) Président
Mme Laetitia Jourdan
Professeur, Université de Lille (Unité de recherche) Rapporteur
M. Christoph Durr
Directeur de recherche, Sorbonne Université (Unité de recherche) Rapporteur
Benjamin Doerr
Professeur, École Polytechnique (Unité de recherche) Directeur de thèse
Carola Doerr
Chargé de recherche, Sorbonne Université (Unité de recherche) Co-directeur de thèse
Timo Kötzing
Senior researcher, HPI Potsdam (Unité de recherche) Examinateur
Michalis Vazirgiannis
Professeur, École Polytechnique (Unité de recherche) Examinateur

iii

Résumé

De nombreux problèmes d’optimisation du monde réel sont trop complexes pour
être résolus en temps polynomial. Un moyen de traiter de tels problèmes utilise «
randomized search heuristics » (RSHs), qui produisent des solutions plus efficacement
en compromettant l’optimalité, l’exhaustivité, l’exactitude ou la précision. Les RSHs
initialisent d’abord un point de recherche avec une position aléatoire dans l’espace de
recherche, puis résolvent les problèmes de manière itérative jusqu’à ce qu’un critère de
terminaison soit rempli. À chaque itération, ils répètent les étapes suivantes : générer
un ou plusieurs candidats ; évaluer la qualité des nouveaux individus ; mettre à jour
les informations connues. Puisque les RSHs ne nécessitent aucune information que
les valeurs objectives des points de recherche évalués, nous les appelons algorithmes
d’optimisation de boîte noire.

Les RSHs sont des algorithmes paramétrés et leurs performances typiquement dé-
pendent de manière cruciale de la valeur de ces paramètres. Un nombre de résultats
montrent qu’il peut être avantageux de choisir les paramètres de manière dynamique,
afin de permettre aux algorithmes de s’adapter au problème à résoudre et à l’état ac-
tuel du processus d’optimisation. Une évaluation rigoureuse des gains de performance
pouvant être obtenus en modifiant les paramètres lors de l’exécution fait toutefois lar-
gement défaut.

Dans ce travail, nous contribuons à notre connaissance de la manière de contrôler
les paramètres en ligne de diverses façons. Nous étudions la fonction OneMax qui
est définie via {0, 1}n → R, x 7→ ∑n

i=1 xi. Dans un premier temps, nous démontrons
une borne inférieure pour l’efficacité de tout algorithme unaire non-biaisée de type
boîte noire. Plus précisément, nous prouvons que tout algorithme de ce type nécessite
n ln(n) − cn± o(n) itérations, en moyenne, pour trouver la solution optimale à ce
problème, où c est une constante entre 0, 2539 et 0, 2665. Ce temps d’exécution peut
être obtenu avec un (1+1)-type algorithme simple en utilisant un paramètre fitness-
dépendant. Le meilleur algorithme non-biaisé statique a besoin de n ln(n)− 0.1159n
itérations (borne optimale de RLS). Pour tout budget fixe d’évaluations de fonc-
tions, notre algorithme génère des solutions 13% meilleures que celles proposées par
le meilleur algorithme unaire non-biaisé à paramètres statiques.

Sur la base des paramètres dynamiques optimaux analysés pour OneMax, nous
montrons que le paramètre fitness-dépendant peut être remplacé par un paramètre
d’auto-ajustement sans perte d’efficacité. Le mécanisme d’ajustement consiste à ap-
prendre de manière adaptative la stratégie actuellement optimale des itérations précé-
dentes. Il utilise donc des évaluations antérieures pour estimer les progrès espérés qui
peuvent être atteint par les différentes valeurs des paramètres, et choisit avidement
celui qui maximise cette estimation. Seulement avec une faible probabilité o(1), une
valeur de paramètre uniformément aléatoire est choisie.

Nous étendons ensuite notre stratégie d’auto-ajustement aux algorithmes d’évolu-
tion (EAs) basés sur la population, qui utilisent des mécanismes inspirés par l’évolu-
tion biologique, tels que la reproduction, la mutation, la recombinaison et la sélection.
Grosso modo, l’idée principale des EAs est de créer par itération λ points de recherche
en utilisant deux valeurs de paramètre différentes. Chacun génère la moitié de la po-
pulation. Le paramètre est ensuite mis à jour en fonction de celui utilisé dans la
sous-population qui contient le meilleur point de recherche. Nous analysons comment
cette (1+ λ) EA d’auto-ajustement optimise la fonction de test pour OneMax. Nous

iv

prouvons qu’il trouve l’optimum dans un nombre espéré de O(nλ/ log λ+n logn) ité-
rations. Ce temps est asymptotiquement inférieur au temps d’optimisation du clas-
sique (1+ λ) EA avec des paramètres statiques. Des travaux antérieurs montrent que
la performance de notre algorithme est la meilleure possible parmi tous les λ-parallèle
algorithmes non-biaisés mutation-basés.

Nous proposons et analysons également une version auto-adaptative de (1, λ) EA
dans laquelle le taux de mutation actuel fait partie de l’individu et est donc également
soumis à la mutation. Une analyse rigoureuse du temps d’exécution de la fonction
de benchmark OneMax révèle qu’un schéma de mutation locale simple pour le taux
conduit à un temps d’optimisation espéré du meilleur possible O(nλ/ log λ+n logn).
Notre résultat montre que l’auto-adaptation dans le calcul évolutif peut trouver des
paramètres optimaux complexes à la volée. Dans le même temps, il prouve qu’un
schéma d’auto-ajustement relativement compliqué peut être remplacé par le schéma
endogène simple.

Abstract

Many real-world optimization problems are too complex to be solved in polyno-
mial time. One way to deal with such problems is using randomized search heuristics
(RSHs), which produce solutions more efficiently by compromising on optimality,
completeness, accuracy, or precision. RSHs first initialize a search point with a ran-
dom position in the search-space and then solve problems iteratively until a termina-
tion criterion is met. In each iteration, they repeat the following steps: generate one
or more candidates; evaluate the quality of the new individuals; update the known in-
formation. Since RSHs do not require any other information than the objective values
of the evaluated search points, we call them black-box optimization algorithms.

RSHs are parametrized algorithms, and their performance typically depends very
crucially on the value of these parameters. A number of results show that it can
be advantageous to chose the parameters dynamically, to allow the algorithms to
adjust to the problem at hand and to the current state of the optimization process.
A rigorous evaluation of the performance gains that can be obtained by changing the
parameters during the execution is, however, largely missing.

In this work, we contribute to our knowledge of how to control the parameters
online in various ways. We study the OneMax function which is defined via {0, 1}n →
R, x 7→∑n

i=1 xi. In a first step, we prove a lower bound for the efficiency of any unary
unbiased black-box algorithm. More precisely, we prove that any such algorithm needs
n ln(n)− cn± o(n) iterations, on average, to find an optimal solution for this problem,
where c is a constant between 0.2539 and 0.2665. This runtime can be achieved with
a simple (1+1)-type algorithm using a fitness-dependent parameter setting. The
best static unary unbiased algorithm needs n ln(n)− 0.1159n iterations (sharp RLS
bound). For any fixed budet of function evaluations, our algorithm generates solutions
that are better by 13% than those offered by the best unary unbiased algorithm with
static parameters.

Based on the analyzed optimal dynamic parameters for OneMax, we show that
the fitness-dependent setting can be replaced by a self-adjusting one without losing
efficiency. The adjusting mechanism is to adaptively learn the currently optimal strat-
egy from previous iterations. It thus uses past evaluations to estimate the expected
progress that can be achieved by the different parameter values, and greedily chooses
the one that maximizes this estimation. Only with a small o(1) probably a uniformly
random parameter value is chosen.

We then extend our self-adjusting strategy to population-based evolutionary al-
gorithms (EAs) which use mechanisms inspired by biological evolution, such as repro-
duction, mutation, recombination, and selection. Roughly speaking, the main idea
of the EAs is to create per iteration λ search points using two different parameter
values. Each one generates half of the population. The parameter is then updated
based on the one used in that subpopulation which contains the best search point. We
analyze how this self-adjusting (1+ λ) EA optimizes the OneMax test function. We
prove that it finds the optimum in an expected number of O(nλ/ log λ+n logn) iter-
ations. This time is asymptotically smaller than the optimization time of the classic
(1+ λ) EA with static parameters. Previous work shows that the performance of our
algorithm is best-possible among all λ-parallel mutation-based unbiased black-box
algorithms.

We also propose and analyze a self-adaptive version of the (1, λ) EA in which the
current mutation rate is part of the individual and thus also subject to mutation. A
rigorous runtime analysis on the OneMax benchmark function reveals that a simple

vi

local mutation scheme for the rate leads to an expected optimization time of the best
possible O(nλ/ log λ+n logn). Our result shows that self-adaptation in evolutionary
computation can find complex optimal parameter settings on the fly. At the same
time, it proves that a relatively complicated self-adjusting scheme can be replaced by
the simple endogenous scheme.

vii

Contents

Résumé iii

Abstract v

1 Introduction 1
1.1 Bit-counting Problems . 2
1.2 Summary of Contributions . 3
1.3 Related Work . 6

2 Preliminaries 11
2.1 Black-box Complexity . 11
2.2 Evolutionary Algorithms . 12
2.3 Randomized Local Search . 13
2.4 Drift Theorems . 13
2.5 Chernoff Bounds . 17
2.6 Occupation Probabilities . 17
2.7 Useful Equations and Inequalities . 20

3 Precise Unary Unbiased Black-box Complexity 23
3.1 Problem Setting and Useful Tools . 25
3.2 Maximizing Drift is Near-Optimal . 28
3.3 Fitness-Dependent Mutation Strength 37
3.4 Runtime Analysis for the Approximate Drift-Maximizer Ã∗ε 51
3.5 Fixed-Budget Analysis . 53
3.6 Self-adjusting Mutation Rate . 55
3.7 Mathematical Runtime Analysis on OneMax 56
3.8 Experimental Results . 61

4 Self-adjusting (1+λ) EA 63
4.1 Algorithm . 65
4.2 Proof Overview . 66
4.3 The Far Region . 68
4.4 The Middle Region . 76
4.5 The Near Region . 78
4.6 Putting Everything Together . 81
4.7 Experimental Results . 82

5 Self-adapting (1,λ) EA 89
5.1 Algorithm . 91
5.2 The Far Region . 91
5.3 The Near Region . 104
5.4 Putting Everything Together . 110
5.5 Experimental Results . 110

viii

6 Conclusions 115

Bibliography 117

1

Chapter 1

Introduction

Many real-world optimization problems are too complex to be solved in polynomial
time. One way to deal with such problems is using heuristic algorithms which produce
solutions more efficiently by compromising on optimality, completeness, accuracy, or
precision. The objective of a heuristic is to produce a “good enough” solution in a
reasonable runtime. This solution may not be an optimal one, but it is still valuable
because finding it does not require a prohibitively long time.

An important class of heuristic algorithms are randomized search heuristics
(RSHs) which try to optimize a problem in an iterative trial and error fashion. Since
these algorithms use only the function values of the evaluated solutions, and do not
require any additional information (in particular, no gradients, etc.), RSH are also
referred to as black-box methods. RSH first initialize a search point with a random
position in the search-space and then solve problems iteratively until a termination
criterion is met (e.g. number of iterations performed, or adequate objective value
(referred to as fitness) reached). In each iteration, RSHs repeat the following steps:
generate one or more solution candidates; evaluate the quality of the new individuals;
update the known information.

Among the most prominent RSHs are local search variants, simulated annealing,
evolutionary and genetic algorithms, and swarm intelligence algorithms. In this work,
we focus on randomized local search (RLS) and evolutionary algorithms (EAs). Local
search takes a potential solution to a problem and checks its immediate neighbors
(that is, solutions that are similar except for very few minor details) in the hope of
finding an improved solution. Evolutionary algorithms use mechanisms inspired by
biological evolution, such as reproduction, mutation, recombination, and selection.
Search points (offspring) play the role of individuals in a population, and evolution
takes place at the end of each iteration based on offsprings’ quality.

RSHs are parametrized algorithms, and their performance typically depends very
crucially on the value of these parameters. An important goal of research on RSHs
is to determine optimal parameter choices in these algorithms—a challenging task
due to the complex inter-dependencies between different parameters and the random
choices of the algorithms. Theory of randomized search heuristics, and in particular
the sub-discipline of runtime analysis, aims to contribute to the parameter selection
question by providing mathematically founded statements that lay open the influence
of the parameter values on the performance.

The majority of these works investigate static parameter settings, i. e., the pa-
rameters are fixed before the start of the algorithm and are not changed during its
execution. More recently, a number of results were shown which prove an advan-
tage of dynamic parameter settings, that is, the parameters of the algorithm are
changed during its execution. Many of these rely on making the parameters func-
tionally dependent on the current state of the search process, e.g., on the fitness of
the current-best individual. While this provably can lead to better performances, it

2 Chapter 1. Introduction

leaves the algorithm designer with an even greater parameter setting task, namely
inventing a suitable functional dependence instead of fixing numerical values for the
parameters.

Finding appropriate fitness-dependent parameter values is non-feasible already for
quite simple optimization problems, and seems out of range for real-life optimization
tasks. Luckily, it turns out that this step is not necessarily needed, as good parameter
values can sometimes be found by automated parameter selection mechanisms, which
take into account the recent performance. A number of results show that such on
the fly or self-adjusting parameter settings can give an equally good performance as
the optimal fitness-dependent parameter setting, however, with much less input from
the algorithm designer. Inspiration comes from the continuous optimization, e.g., the
1/5-th rule independently discovered in [Rec73; Dev72; SS68]. In a nutshell, this
rule suggests to increase the search radius when more than 1/5-th of all offspring are
better than the current-best solution, and to decrease the search radius otherwise.
The 1/5-th rule originates from theoretical studies of the optimization of the sphere
function ∑x2

i with a so-called (1 + 1) Evolution Strategy. This rule has inspired
success-based parameter control mechanisms, which update the parameter values
depending on whether or not an iteration has been successful in finding a better than
the previous-best solution. This rule has found applications in continuous and in
discrete optimization.

In this work, we focus on parameter control for discrete search spaces, especially
for the OneMax problem, which is one of most frequently analyzed problems in the
theory of evolutionary algorithms (cf. Section 1.1 for a definition). To deeply under-
stand the influence of the parameters, we first compute a preise lower bound for the
efficiency of any so-called unary unbiased black-box algorithm on this problem. Such
unary unbiased algorithms are of (1 + 1) type (that is, they produce and evaluate in
each iteration only one new solution candidate by modifying at most one of the previ-
ously evaluated ones) and treat both the bit-positions and the bit-values in a symmet-
ric fashion. We prove that any such algorithm needs n ln(n)− cn± o(n) iterations, on
average, to find an optimal solution for this problem, where c is a constant between
0.2539 and 0.2665. This runtime can be achieved with a simple fitness-dependent pa-
rameter setting. In contrast, the best static unary unbiased algorithm, Randomized
Local Search, needs n ln(n)− 0.1159n iterations [DD16] to optimize OneMax. This
smallish looking improvement of roughly 0.14n in the Θ(n logn) runtime translates
into a 13% better fixed-budget performance, in the sense that after a fixed number
(budget) of iterations the expected distance of the solution found by our algorithm
with dynamic parameter choices to the optimal solution is roughly 13% smaller than
the distance produced by RLS, provided that the budget allows for at least 0.2675n
iterations. After we know what the suitable fitness-dependent mutation strengths
look like, we design for three different algorithms strategies to control the parameters
and prove, by mathematical means, that they achieve close-to-optimal performance
on the OneMax problem.

1.1 Bit-counting Problems
Here we introduce three functions mapping bit strings to integers. These func-

tions were artificially designed to highlight characteristics of the studied evolutionary
algorithms (EAs) when tackling optimization problems and to build up runtime anal-
ysis.

1.2. Summary of Contributions 3

OneMax The OneMax problem is a classic bit-counting problem. It maps each
bit string to the number of ones it contains, i.e., each bitstring x ∈ {0, 1}n of length
n is mapped to

Om(x) :=
n∑
i=1

xi.

It has maximal value Om(1 . . . 1) = n and minimal value Om(0 . . . 0) = 0.

LeadingOnes The LeadingOnes problem counts the number of one-bits from left
to right. It is another classic bit-counting problem. For bitstring x ∈ {0, 1}n of length
n, its LeadingOnes value is defined as

Lo(x) := max {i ∈ [0, . . . , n] | ∀j ≤ i : xj = 1} .

It also has maximal value Lo(1 . . . 1) = n and minimal value Lo(0 . . . 0) = 0.

Needle The Needle function returns the function value 1 for the all-ones bit string
(1, . . . , 1) and function value 0 anywhere else (needle-in-a-haystack); i.e.,

Needle(x) := 1x=1...1.

This function thus consist of a huge plateau of constant fitness and only one optimal
point.

We notice that all three functions have unique optima. Such functions without
local optima are called unimodal. The OneMax function is smooth and can be easily
solved using hill climbing algorithms; the LeadingOnes function is one the simplest
non-separable functions in discrete optimization, which means that the influence of
individual bit values on the overall function value can depend on the other bit values;
the Needle function is a typical plateau function where algorithms can basically
just do a random walk. These problems are popular in the theoretical works on the
analysis of the EAs.

Among these functions, and, more generally, among all benchmark functions ana-
lyzed in the theory of randomized search heuristics, the OneMax function is the most
popular one since it allows to analyze how the heuristics perform on smooth parts of
an optimization problem, where better function values guide the search towards the
optimum. It is widely believed that heuristics which solve (much more complex) real-
world problems should have no problem to optimize the OneMax problem. In the
theory of randomized search heuristics, a good performance on OneMax is therefore
often considered to be a minimum requirement that an algorithm needs to pass before
it is investigated further. In this work, we focus on the theoretical analysis on the
OneMax problem. We also do experimental runs on the LeadingOnes problem in
Chapter 3. Both LeadingOnes function and Needle function will be used in the
description of related works.

1.2 Summary of Contributions

1.2.1 Drift Maximizer Achieves the Precise Unary Unbiased Black-
Box Complexity (Apart From an o(n) Additive Term)

The inherent difficulty of proving runtime guarantees for evolutionary algorithms
and other RSHs for a long time prohibited runtime results that are more precise than

4 Chapter 1. Introduction

giving the asymptotic order of magnitude. It is known that the unary unbiased black-
box complexity of OneMax is of order n logn [LW12]. We note here that black-box
complexity is the minimum expected runtime that a black-box optimization algorithm
needs to solve a problem; the unary unbiased back-box model in addition requires
that all search points are sampled from unary distributions which are symmetric with
respect to bit values and bit positions, cf. Section 2.1 for a detailed description. The
simple randomized local search heuristic (RLS), which in each iteration applies a ran-
dom single bit flip on a best-so-far search point, is easily seen to have a runtime of
(1 + o(1))n ln(n) by a reduction to the coupon collector problem. Its precise opti-
mization time is n ln(n)+ (γ− ln(2))+ o(1) ≈ n lnn− 0.1159n, where γ = 0.5772 . . .
is the Euler-Mascheroni constant [DD16]. The previously best known unary unbiased
algorithm has an expected runtime that is smaller than that of RLS by an additive
Θ(
√
n logn) term [LDD15].

In Chapter 3, we bring precise runtime analysis and black-box complexity to-
gether. By determining the black-box complexity more precisely than up to the
asymptotic order, we shall understand more precisely the problem difficulty, but also
learn improved ways to solve the problem. Taking the unary unbiased black-box com-
plexity as first object of investigation, we derive a simple (1+1)-type algorithm that,
by using a fitness-dependent mutation strength, has a time complexity larger than
the theoretical optimum by only an additive εn term (ε a small constant). We show
a precise bound for the unary unbiased black-box complexity of OneMax. More
precisely, we show that it is n ln(n)− cn± o(n) for a constant c for which we show
0.2539 < c < 0.2665. We also show how to numerically compute this constant with
arbitrary precision. Equally important, our analysis reveals (and needs) a number
of interesting structural results. In particular, in the language of fixed-budget com-
putation as introduced by Jansen and Zarges [JZ14], the drift-maximizing algorithm
with a budget of at least 0.2675n iterations computes a solution with expected fitness
distance to the optimum roughly 13% smaller than the output of the previously best
known algorithm. The result have been published at GECCO’16 [DDY16b].

1.2.2 Self-adjusting RLS also Achieves the Same Complexity

Based on the analysis of the near-optimal mutation strength, we have proposed at
PPSN’16 [DDY16a] a variant of RLS with self-adjusting mutation strengths which can
both avoid the performance loss of standard bit mutation and avoid the risk of getting
stuck in local optima. The idea is to let the algorithm learn the optimal mutation rate
autonomously by analyzing the past performance of the different mutation strengths.
Such an on-the-fly learning are subject to an exploration-exploitation trade-off in
that they want to exploit those parameter values that are assumed to be optimal at
different stages of the optimization process, but also need to allocate some positive
probability to select sub-optimal parameter values, in order to be able to detect if some
of these have become superior in the meantime. Our algorithm therefore chooses in
each iteration with some small probability δ a random parameter and greedily selects
the parameter value from which it expects the best progress in fitness otherwise, i.e.,
with probability 1− δ.

We experimentally analyze our new algorithm on the LeadingOnes and the min-
imal spinning tree (MST) problem. We observe that, for suitable parameter settings,
it clearly outperforms the (1+1) EA. Interestingly, it even beats the randomized local
search (RLS) heuristic (flipping always one bit) for the LeadingOnes problem and
the variant of RLS flipping one or two bits for the MST problem. This shows that
for these problems a better performance can be obtained from a mutation strength

1.2. Summary of Contributions 5

that changes over time, and that our algorithm is able to find such superior fitness-
dependent mutation strengths on the fly. We also make this effect mathematically
precise for OneMax. We show that our algorithm essentially is able to find the
close-to-optimal mutation schedule identified in our above-described work [DDY16b].
More precisely, with high probability our algorithm always (apart from a lower-order
fraction of the iterations) uses a mutation strength which gives an expected progress
equal to the best possible progress (again, apart from lower order terms). Conse-
quently, it has the same optimization time (apart from an o(n) additive lower order
term) and the same asymptotic 13% superiority in the fixed-budget perspective as
the drift maximizer proposed in [DDY16b].

1.2.3 Self-adjusting (1+λ) EA Achieves the λ-parallel Mutation-
Based Unbiased Black-box Complexity

Inspired by the self-adjusting algorithm proposed in [DDY16a], we notice that
some of the difficulties of the learning mechanism, e.g., the whole book-keeping being
part of it and also the setting of the parameters regulating how to discount information
over time, can be overcome by using a (1+λ) EA, which samples λ independent
offspring per iteration. In a sense, the use of larger populations enables us to adjust
the mutation rate solely on information learned in the current iteration. However,
we do also use the idea of [DDY16a] to intentionally use parameter settings which
appear to be slightly off the current optimum to gain additional insight and to be
able to detect and to react to a change in the optimal parameter values.

In Chapter 4, we propose a new way to self-adjust the mutation rate in population-
based evolutionary algorithms in discrete search spaces. It aims at overcoming some
of the difficulties of the learning mechanism just described. It consists of creating half
the offspring with a mutation rate that is twice the current mutation rate and the
other half with half the current rate. The mutation rate is then updated according
to which subpopulation contains the best offspring. Instead of always modifying the
mutation rate to the rate of the best offspring, we shall take this winner’s rate only
with probability a half and else modify the mutation rate to a random one of the two
possible values (twice and half the current rate). Our motivation for this modification
is that we feel that the additional random noise will not prevent the algorithm from
adjusting the mutation rate into a direction that is more profitable. However, the
increased amount of randomness may allow the algorithm to leave a possible basin of
attraction of a locally optimal mutation rate.

We analyze how the (1 + λ) evolutionary algorithm with this self-adjusting mu-
tation rate optimizes the OneMax test function. We prove that this dynamic version
of the (1 + λ) EA finds the optimum in an expected optimization time (number of
fitness evaluations) of O(nλ/ log λ + n logn). This time is asymptotically smaller
than the optimization time of the classic (1+ λ) EA. Previous work in [BLS14] shows
that this performance is best-possible among all λ-parallel mutation-based unbiased
black-box algorithms.

As an interesting side remark, our proofs reveal that a quite non-standard but
fixed mutation rate of r = ln(λ)/2 also achieves the Θ(log log λ) improvement as
it implies the bound of Θ(n/ log λ) generations if λ is not too small. Hence, the
constant choice r = O(1) as studied in [GW17] does not yield the asymptotically
optimal number of generations unless λ is so small that the n logn-term dominates.
These results have been presented at GECCO’17 [Doe+17]. 1

1. This is a joint work with Christian Gießen and Carsten Witt from Technical University of
Denmark. Every author contributes equally to the collaboration.

6 Chapter 1. Introduction

1.2.4 Extend the Self-adjusting Strategy to Non-elitist Algorithm
Self-adaptive (1,λ) EA

In Chapter 5, we propose and analyze a self-adaptive version of the (1, λ) evolu-
tionary algorithm in which the current mutation rate is part of the individual and
thus also subject to mutation. A rigorous runtime analysis on the OneMax bench-
mark function reveals that a simple local mutation scheme for the rate leads to an
expected optimization time (number of fitness evaluations of O(nλ/ log λ+ n logn).
This time is asymptotically smaller than the optimization time of the classic (1, λ)
EA and as mentioned above (1+ λ) EA for all static mutation rates and best possible
among all λ-parallel mutation-based unbiased black-box algorithms.

Our result shows that self-adaptation in evolutionary computation can find com-
plex optimal parameter settings on the fly. At the same time, it proves that a relatively
complicated self-adjusting scheme for the mutation rate proposed in Chapter 4 can
be replaced by our simple endogenous scheme. These results will be presented at
GECCO’18 [DWY18]. 2.

1.3 Related Work
Since the parameter setting has a decisive influence on the performance of RSHs,

it is not surprising that it is one of the most intensively studied research questions
in the domain of heuristic optimization. Most works, however, study the influence
of the parameters on performance by empirical means, whereas here in this work
we are rather concerned with rigorous mathematical runtime results. We summarize
in this section some of the few known results that are precise enough to determine
optimal parameter settings. Not surprisingly, the OneMax benchmark problem also
considered in this thesis plays a central role in the works.

1.3.1 Static Parameter Choices

A very early work on precise runtime analysis, apparently overlooked by many
subsequent works, is the very detailed analysis on how the (1+1) EA with general mu-
tation rate c/n, c a constant, optimizes the Needle and OneMax functions [GKS99].
Disregarding here the results on the runtime distributions, this work shows that the
(1+1) EA with mutation rate c/n finds the optimum of the Needle function in
(1 + o(1)) 1

1−e−c 2n time.
For OneMax, the runtime estimate in [GKS99] is (1+ o(1)) ecc n ln(n), more pre-

cisely, ec

c n ln(n)±O(n). The proof of the latter result uses several deep tools from
probability theory, among them Laplace transforms and renewal theory. For a simple
proof of the upper bound (1+ o(1))en ln(n) for mutation rate 1/n, see, e.g., [DJW02].
The first proofs of a lower bound of order (1 − o(1))en ln(n) using more elemen-
tary methods where given, independently, in [DFW10; Sud13]. An improvement to
en ln(n)−O(n) was presented in [DFW11]. Very recently, again for the case c = 1, a
very precise analysis of the expected runtime, specifying all lower order terms larger
than Θ(log(n)/n) with precise leading constant, was given in [Hwa+18].

That the runtime bound of (1 + o(1)) ecc n ln(n) holds not only for OneMax, but
any linear pseudo-Boolean function, was shown in [Wit13]. Since the mutation rate
determines the leading constant of the runtime, a rate of 1/n gives the asymptotically
best runtime. Using single bit flips is also a suitable choice for the classic randomized

2. This is a joint work with Carsten Witt from Technical University of Denmark. Every author
contributes equally to the collaboration.

1.3. Related Work 7

local search with static mutation strengths. By a reduction to the coupon collector
problem, we obtain a runtime of (1 + o(1))n ln(n) which matches the current known
unary unbiased black-box complexity of order n logn.

An extension of the OneMax result to (1+ λ) EAs was obtained in [GW15]. The
bound of (1 + o(1))(ecc n ln(n) + nλ ln ln(λ)/2 ln(λ)) fitness evaluations contains the
surprising result that the mutation rate is important for small offspring population
sizes, but has only a lower-order influence once λ is sufficiently large (at least when
restricted to mutation rates in the range Θ(1/n); note that Lemma 4.2 indicates
that mutation rates of a larger order of magnitude can give asymptotically smaller
runtimes for larger values of λ).

In parallel independent work, the precise expected runtime of the (1+1) EA on
the LeadingOnes benchmark function was determined in [BDN10; Sud13] (note
that [Sud13] is the journal version of a work that appeared at the same conference
as [BDN10]). The work [Sud13] is more general in that it also regards the (1+1) EA
with Best-of-µ initialization (instead of just initializing with a random individual),
the approach of [BDN10] has the advantage that it also allows to determines the
distribution of the runtime (this was first noted in [Doe+13a] and was formally proven
in [Doe18a]). The work [BDN10] also shows that the often recommended mutation
rate of p = 1/n is not optimal. A runtime smaller by 16% can be obtained from taking
p = 1.59/n and another 12% can be gained by using a fitness-dependent mutation
rate.

1.3.2 Dynamic Parameter Choices

While it is clear that EAs with parameters changing during the run of the al-
gorithm (dynamic parameter settings) can be more powerful than those only using
static parameter settings, only recently considerable advantages of dynamic choices
could be demonstrated by mathematical means (for discrete optimization problems;
in continuous optimization, step size adaptation is obviously necessary to approach
arbitrarily closely a target point). To describe the different ways to dynamically con-
trol parameters and to summarize the most relevant works, we use in the following
the taxonomy proposed in [DD18b], which distinguishes between state-dependent,
success-based, learning-inspired, and endogenous, parameter choices.

State-Dependent Parameter Control

In the classification of [DD18b], state-dependent parameter control subsumes those
mechanisms that depend only on the current state of the search process, e.g., the
current population, its fitness values, its diversity, but also a time or iteration counter.
Hence this subsumes the classic deterministic category in [EHM99] and all other
parameter setting mechanisms which determine the current parameter values via a
pre-defined function that maps algorithm states to parameter values, possibly in a
randomized manner. All these mechanisms require the user to precisely specify how
the parameter value depends on the current state and as such need a substantial
understanding of the problem to be solved.

The first to rigorously analyze this scheme in the context of evolutionary computa-
tion are Jansen and Wegener [JW06]. They regard the performance of the (1+1) EA
which uses in iteration t the mutation rate k/n, where k ∈ {1, 2, . . . , 2dlog2 ne−2} is
chosen such that log2(k) ≡ t− 1 (mod dlog2 ne − 1). In other words, they cyclically
use the mutation rates 1/n, 2/n, 4/n, . . . ,K/n, where K is the largest power of two
that is less than n/2. Jansen and Wegener demonstrate that there exists an example

8 Chapter 1. Introduction

function where this dynamic EA significantly outperforms the (1+1) EA with any
static mutation rate. However, they also observe that for many classic problems, this
EA is slower by a factor of Θ(logn).

After the first the time-dependent parameter scheme, Böttcher, Doerr, and Neu-
mann conducted a runtime analysis for a fitness-dependent parameter in [BDN10].
They proposed to use the mutation rate of 1/(Lo(x) + 1) for the optimization of
the LeadingOnes test function. They proved that with this choice, the runtime
of the (1+1) EA improves to roughly 0.68n2 compared to a time of 0.86n2 stem-
ming from the classic mutation rate 1/n or a runtime of 0.77n2 stemming from the
asymptotically optimal static rate of approximately 1.59/n.

For the (1 + (λ, λ)) genetic algorithm (GA), a fitness-dependent offspring pop-
ulation size of order λ = Θ(

√
n/d(x)) was suggested in [DDE15a], where d(x) is

the fitness-distance of the parent individual to the optimum. This choice improves
the optimization time (number of fitness evaluations until the optimum is found) on
OneMax from Θ(n

√
log(n) log log log(n)/ log log(n)) stemming from the optimal

static parameter choice to O(n), as was proven in [DD18a]. Since in this adaptive
algorithm the mutation rate p is functionally dependent on the offspring population
size, namely via p = λ/n, the dynamic choice of λ is equivalent to a fitness-dependent
mutation rate of 1/

√
nd(x).

In the aforementioned work by Badkobeh et al. [BLS14], a fitness-dependent
mutation rate of max

{
lnλ

n ln(en/d(x)) ,
1
n

}
was shown to improve the classic runtime of

O
(
n log log λ

log λ + n logn
λ

)
to O

(
n

log λ + n logn
λ

)
for OneMax problem. They also proved

that it is the asymptotically best-possible runtime all λ-parallel mutation-based un-
biased black-box algorithms. We notice here that this complexity is exactly what
we aim at in Chapter 4 and Chapter 5 but using self-adjusting and self-adaptative
parameter control schemes. We will discuss such schemes below.

Success-Based Parameter Control

As one important type of self-adjusting parameter control mechanisms, success-
based parameter settings are classified as all those mechanisms which change the
parameters from one iteration to the next, based on the outcome of the iteration.
This includes in particular multiplicative update rules which change parameters by
constant factors depending on whether the iteration was considered a success or not.

The last years have produced a profound understanding of success-based parame-
ter choices. The first to perform a mathematical analysis were [LS11], who considered
the (1+λ) EA and a simple parallel island model together with two self-adjusting
mechanisms for population size or island number, including halving or doubling it
depending on whether the current iteration led to an improvement or not. These
mechanisms were proven to give significant improvements of the “parallel” runtime
(number of generations) on various test functions without increasing significantly the
“sequential” runtime (number of fitness evaluations).

In [DD15] it was shown by empirical means that the fitness-dependent choice of
λ for the (1 + (λ, λ)) GA can also be found in a self-adjusting way. To this aim,
another success-based mechanism was proposed, which imitates the 1/5-th rule from
evolution strategies. It was later proven to yield indeed an optimal linear runtime
on OneMax [DD18a]. With some modifications, the self-adjusting mechanism also
works on random satisfiability problems [BD17]. For the problem of optimizing an
r-valued OneMax function, a self-adjustment of the step size inspired by the 1/5-th
rule was found to find the asymptotically best possible runtime in [DDK16]. Empirical

1.3. Related Work 9

results show that similar mechanisms work very well also to control the mutation rate
of the (1+1) EA optimizing OneMax and LeadingOnes [DW18].

Our (1+λ) EA in Chapter 4 uses a success-based parameter control mechanism,
of a different and novel type. The idea is that the mutation rate is updated according
to the rate which generates the best offspring. We add one modification to this basic
idea, by taking the winner’s rate only with probability a half and else modifying the
mutation rate randomly to a rate used in that iteration.

Learning-Inspired Parameter Control

In contrast to the success-based parameter control mechanisms, learning-inspired
parameter control mechanisms are classified as all those schemes which aim at ex-
ploiting more than one iteration.

To allow such learning mechanisms to also adapt quickly to changing environ-
ments, older information is taken into account to a lesser extend than more recent
ones. This can be achieved by only regarding information from (static or sliding)
time windows or by discounting the importance of older information via weights that
decrease (usually exponentially) with the anciency of the data.

Most experimental results within the evolutionary computation context borrow
tools from machine learning. The upper confidence bound (UCB)-algorithm originally
proposed in [PA02] is an example. It plays an important role in machine learning, as
it is one of the few strategies that can be proven to behave optimally in a classical
operator selection problem.

Our learning-based RLS in Chapter 3 is the only theoretical result so far for a
learning-inspired parameter control mechanism in the context of RSHs.

Endogenous Parameter Control (Self-adaptation)

Endogenous parameter control corresponds to the self-adaptive parameter control
mechanisms in the taxonomy of [EHM99]. Such mechanisms are classified as all those
schemes where the parameter is encoded in the genome and thus subject to variation
and selection. The understanding of self-adaptation is still very limited. The only
theoretical work on this topic [DL16], however, is promising and shows examples
where self-adaptation can lead to significant speed-ups for non-elitist evolutionary
algorithms.

Our (1,λ) EA in Chapter 5 is the first non-artificial example for the use of self-
adaptation in the theory literature. The mutation strength and bit string is combined
together in an individual. Therefore, parameter is adapted automatically when se-
lecting the best offspring.

11

Chapter 2

Preliminaries

In this chapter we formally define the black-box setting and the algorithm ana-
lyzed in this work. We present some fundamental probabilities tools for the analysis
including drift theorems, Chernoff bounds, and occupation probability.

2.1 Black-box Complexity
The black-box complexity of a problem is the minimum average number of fitness

evaluations that a black-box optimization algorithm (that is, an algorithm that has
only access to the objective function, but not to an explicit problem description) needs
in order to find an optimal solution. This notion was introduced in [DJW06] and has
attracted significant attention in the past years. In particular, black-box complexity
insight has been used to design better algorithms [DDE15b], and specific black-box
models (allowing only a restricted class of black-box algorithms) have been proposed
to understand particular properties of evolutionary algorithms and to better reflect
how typical evolutionary algorithms look like.

In this work, we build on the unary unbiased black-box complexity [LW12], which
is a reasonable model for mutation-based search heuristics. In simple words, a unary
unbiased black-box algorithm is allowed (i) to sample random search points and (ii) to
generate new search points from applying unbiased mutation operators to previously
found search points. We first limit the number of search points that are used to
generate the offspring. By looking at unary variation operators, we consider using
only one search point to produce new search point. Moreover, unbiased means that
the operator is invariant under automorphisms of the hypercube, so in particular, it
is not allowed to prefer certain bit-positions or bit-values. Furthermore, all selection
operations have to be independent of the bit-string representation of the individual.
The algorithms follows the blueprint described in Algorithm 1.

The unary unbiased black-box complexity of OneMax is the smallest expected
number of function evaluations that any algorithm following the structure of Algo-
rithm 1 exhibits on this problem. In line 9 of Algorithm 1 a unary unbiased variation
operator is asked for. In the context of optimizing pseudo-Boolean functions, a unary
operator is an algorithm that is build upon a family (p(· | x))x∈{0,1}n of probability
distributions over {0, 1}n. Given some input x it outputs a new string that it samples
from the distribution p(· | x). A unary operator is unbiased if all members of its
underlying family of probability distributions are symmetric with respect to the bit
positions [n] = [1..n] where notation [l..r] is defined as the set of integers from l to r
inclusively and the bit values 0 and 1 (cf. [LW12] for a discussion).

12 Chapter 2. Preliminaries

Algorithm 1 Blueprint of a unary unbiased black-box algorithm
t← 0.
Choose x(t) uniformly at random from S = {0, 1}n.
for t← 1, 2, . . . do

Compute f(x(t− 1)).
Choose probability distribution ps on [0..t− 1].
Randomly choose an index i according to ps.
Choose a unary unbiased operator (p(·|x))x∈{0,1}n .
Generate x(t) according to p(·|x(i)).

2.2 Evolutionary Algorithms
All mutation-based (µ+λ) or (µ, λ) EAs with standard bit mutation or 1-bit flips

belong to the class of unbiased black-box algorithms. In this work, we analyze the
performance of (1,λ) EA and (1+λ) EA on OneMax problem. In each generation, λ
parallel offspring are generated using the same single parent. Below are the structures
of these two algorithms.

Algorithm 2 (1+λ) EA with static mutation strength r for minimizing f : {0, 1}n →
R

Select x uniformly at random from {0, 1}n
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Create xi by flipping each bit in a copy of x independently with probability

r/n.
x∗ ← arg minxi f(xi) (breaking ties randomly).
if f(x∗) ≤ f(x) then

x← x∗.

Algorithm 3 (1,λ) EA with static mutation strength r for minimizing f : {0, 1}n →
R

Select x uniformly at random from {0, 1}n
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Create xi by flipping each bit in a copy of x independently with probability

r/n.
x← arg minxi f(xi) (breaking ties randomly).

The only difference between the (1+λ) EA and the (1,λ) EA is whether the
parent is updated to the best offspring when all offspring are worse than the parent.
The (1+λ) EA takes the best search point among λ offspring and the parent itself,
whereas the (1,λ) EA simply replaced the parent by the winner of λ offspring. We
notice that the (1+λ) EA is an elitist algorithm since the fitness distance is non-
increasing. However, the (1,λ) EA is non-elitist and may result in exponential runtime
due to insufficient population size. We shall analyze the performance of the above
two algorithms on the OneMax in Chapter 4 and Chapter 5 respectively.

2.3. Randomized Local Search 13

2.3 Randomized Local Search
Randomized Local Search is very similar to the simplest evolutionary algorithm

(1 + 1) EA. They both generate one search point in each iteration and do selection
between the parent and its single offspring. The only difference is that, the (1 + 1)
EA generates offspring using standard bit mutation whereas RLS generates offspring
from the neighborhood. Assuming using mutation strength of r for both, the (1+ 1)
EA flips every bit independently with probability r/n, whereas the RLS chooses r
bits uniformly at random from all n bits and flip exactly these bits. Below is the
structure of RLS.

Algorithm 4 RLS with static mutation strength r for minimizing f : {0, 1}n → R

Select x uniformly at random from {0, 1}n
for t← 1, 2, . . . do

Choose a r-subset S ⊂ [1..n] uniformly at random.
Create x∗ by flipping bits in S in a copy of x.
if f(x∗) ≤ f(x) then

x← x∗.

Classic RLS applies static mutation rate. By taking r = 1, solving the One-
Max problem is reduced to a coupon collect problem which has a known complexity
Θ(n lnn). We prove in Chapter 3 that RLS with fitness dependent mutation rate
is the nearly optimal unary unbiased black-box algorithm apart from an additional
o(n) term. To analyze the runtime impact caused by different mutation strengths,
we introduce drift theorems which relate expected progress to expected runtime.

2.4 Drift Theorems
The main tool in our work is drift analysis, a well-established method in the theory

of randomized search heuristics. Drift analysis tries to translate information about
the expected progress an algorithm does into information about the expected runtime.
Drift analysis was introduced to the field in the seminal work of He and Yao [HY04].
They proved the following additive drift theorem, which assumes a uniform bound on
the expected progress.

Theorem 2.1 (Additive drift theorem [HY04]). Let (Xt)t≥0 be a sequence of non-
negative random variables over a finite state space in R. Let T be the random variable
that denotes the earliest point in time t ≥ 0 such that Xt = 0. If there exist c, d > 0
such that

c ≤ E (Xt −Xt+1 | T > t) ≤ d,
then

X0
d
≤ E (T | X0) ≤

X0
c

.

A uniform bound on the drift is often not convenient, since the progress of many
algorithms slows down the closer one is to the optimum. For this reason, multiplicative
drift assuming a progress proportional to the distance to the optimum was proposed
in [DJW12]. While it is often a good tool for the analysis of randomized search
heuristic on the OneMax test function and related problems, for the very precise
bound we aim at in Chapter 3 it does not suffice to approximate the true drift
behavior via a linear progress estimate. For this reason, we resort to the most general
technique known in the area of drift analysis, which is called variable drift, and which

14 Chapter 2. Preliminaries

assumes no particular behavior of the progress. Variable drift was independently
developed in [MRC09] and [Joh10]. The latter result reads as follows.

Theorem 2.2 (Johannsen’s Theorem [Joh10]). Let (Xt)t≥0 be a sequence of non-
negative random variables over a finite state space in S ⊂ R and let xmin = min{x ∈
S : x > 0}. Furthermore, let T be the random variable that denotes the earliest
point in time t ≥ 0 such that Xt = 0. Suppose that there exists a continuous and
monotonically increasing function h : R+

0 → R+
0 such that for all t < T it holds that

E (Xt −Xt+1 | Xt) ≥ h(Xt).

Then
E (T | X0) ≤

xmin
h(xmin)

+
∫ X0

xmin

1
h(x)

dx.

The variable drift theorem is often applied in the special case of additive drift in
discrete spaces: assuming E(Xt −Xt+1 | Xt = x;Xt > 0) ≥ ε for some constant ε,
one obtains E(T | X0 = x′) ≤ x′/ε.

Since we will make frequent use of it in the following sections as well, we will
also give the version of the Multiplicative Drift Theorem for upper bounds, due to
[DJW12]. Again, this is implied by the previous variable drift theorem.

Theorem 2.3 (Multiplicative drift [DJW12]). Let (Xt)t≥0 be random variables de-
scribing a Markov process over a finite state space S ⊆ R+

0 and let xmin := min{x ∈
S | x > 0}. Let T be the random variable that denotes the earliest point in time t ≥ 0
such that Xt = 0. If there exist δ > 0 such that for all x ∈ S with Pr(Xt = x) > 0
we have

E(Xt −Xt+1 | Xt = x) ≥ δx ,

then for all x′ ∈ S with Pr(X0 = x′) > 0,

E(T | X0 = x′) ≤
1 + ln

(
x′

xmin

)
δ

.

We recall that our search space is discrete. Therefore by redoing the proof of
Theorem in [Joh10], we derive a discrete drift theorem, which uses the elementary
idea to approximate a step function by continuous functions.

Theorem 2.4 (Discrete variable drift, upper bound). Let (Xt)t≥0 be a sequence of
random variables in [0..n] and let T be the random variable that denotes the earliest
point in time t ≥ 0 such that Xt = 0. Suppose that there exists a monotonically
increasing function h : {1, . . . , n} → R+

0 such that

E (Xt −Xt+1 | Xt) ≥ h(Xt)

holds for all t < T . Then

E (T | X0) ≤
X0∑
i=1

1
h(i)

.

Proof. For all 0 < ε < 1, define a function hε : [1, n]→ R+ by

hε(x) :=

{
h(bxc) + x−bxc

ε

(
h(dxe)− h(bxc)

)
for 0 < x− bxc ≤ ε,

h(dxe) for ε < x− bxc,
(2.1)

2.4. Drift Theorems 15

The continuous monotone function hε satisfies E(Xt −Xt+1 | Xt) ≥ hε(Xt) for
all t < T . We compute

∫ X0

1

1
hε(x)

dx ≤
X0∑
i=2

ε

h(i− 1) +
1− ε
h(i)

=
ε

h(1) −
ε

h(X0)
+

X0∑
i=2

1
h(i)

.

Hence by Theorem 2.2, we have E(T | X0) ≤ ε
h(1) − ε

h(X0)
+
∑X0
i=1

1
h(i) for all ε > 0,

which proves the claim.

Inspired by Theorem 2.1, it is intuitive to think that there is a lower bound
variable drift theorem which has similar structure as the upper bound variable drift
theorem. Theorem 2.5 in [DFW11] shows how lower bounds on the expected first
hitting time can be derived from upper bounds on the drift. As a main difference
to the upper bound case, it is now required that the process with probability one in
each round does not move too far towards the target (first condition of the theorem
below).

Theorem 2.5 (Variable drift, lower bound [DFW11]). Let (Xt)t≥0 be a decreasing
sequence of non-negative random variables over a finite state space in S ⊂ R and
let xmin = min{x ∈ S : x > 0}. Furthermore, let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt = 0. Suppose that there exists
two continuous and monotonically increasing function c, h : R+

0 → R+
0 such that

1. Xt+1 ≥ c(Xt),
2. E(Xt −Xt+1 | Xt) ≤ h(c(Xt)).

Then
E (T | X0) ≥

xmin
h(xmin)

+
∫ X0

xmin

1
h(x)

dx.

The first condition of the theorem above, that with probability one no progress
beyond a given limit is made, is a substantial restriction to the applicability of the
theorem, in particular, when working with evolutionary algorithms, where often any
parent can give birth to any offspring (though usually with very small probability).
In [DFW11], this problem was overcome with the simple argument that a progress of
more than

√
x from a search point with fitness distance x occurs with such a small

probability that it does with high probability not occur in a run of typical length.
For the precise bounds that we aim at, we show a different version of the lower

bound variable drift theorem, which allows larger jumps, if only they occur sufficiently
rarely. The way to such a theorem is, in fact, quite easy. Instead of using a blunt
union bound over all bad events of too large jumps (as sketched above), we take these
large jumps into account when computing the (additive) drift in a proof analogous
to the one of [DFW11]. This idea was already used in [GW16], where an essentially
similar, but slightly more technical drift theorem for random processes in arbitrary
domains is derived. Note here that in contrast to [GW16] we restrict ourselves to
processes over the non-negative integers.

Theorem 2.6 (Discrete variable drift, lower bound). Let (Xt)t≥0 be a sequence of
decreasing random variables in [0..n] and let T be the random variable that denotes
the earliest point in time t ≥ 0 such that Xt = 0. Suppose that there exists two
monotonically increasing functions c : [n] → [0..n] and h : [0..n] → R+

0 , and a
constant 0 ≤ p < 1 such that

16 Chapter 2. Preliminaries

1. Xt+1 ≥ c(Xt) with probability at least 1− p for all t < T ,
2. E(Xt −Xt+1 | Xt) ≤ h(c(Xt)) holds for all t < T .

Let g : [0..n]→ R+
0 be the function defined by g(x) =

∑x−1
i=0

1
h(i) . Then

E(T | X0) ≥ g(X0)−
g2(X0)p

1 + g(X0)p
.

Proof. The function g is strictly monotonically increasing. We have g(Xt) = 0 if and
only if Xt = 0. Using condition 1 and the monotonicity of h, in the case Xt+1 ≥ c(Xt)
we have

g(Xt)− g(Xt+1) =
Xt−1∑
i=Xt+1

1
h(i)

≤ Xt −Xt+1
h(Xt+1)

≤ Xt −Xt+1
h(c(Xt))

,

and otherwise
g(Xt)− g(Xt+1) ≤ g(Xt) ≤ g(X0).

Using inequality E(Xt−Xt+1 | Xt) ≤ E(Xt−Xt+1 | Xt+1 ≥ c(Xt)) and condition 2,
we have

E (g(Xt)− g(Xt+1) | g(Xt)) ≤ E
(
Xt −Xt+1
h(c(Xt))

| Xt+1 ≥ c(Xt)

)
(1− p) + g(X0)p

≤ 1 + g(X0)p.

Applying the additive drift theorem 2.1 to g(Xt)t≥0, we obtain

E (T | X0) = E (T | g(X0)) ≥
g(X0)

1 + g(X0)p
= g(X0)−

g2(X0)p

1 + g(X0)p
.

To apply the drift theorem above (or Theorem 2.5) one needs to guess a suitable
function h such that h ◦ c is an upper bound for the drift. The following simple
reformulation overcomes this difficulty by making h(x) simply an upper bound for
the drift from a state x. This also makes the result easier to interpret. The influence
of large jumps, as quantified by c, now is that the runtime bound is not anymore the
sum of all h(x)−1 as in the upper bound theorem, but of all h(µ(x))−1, where µ(x)
is the largest point y such that c(y) ≤ x. So in simple words, we have to replace the
drift at x pessimistically by the largest drift among the points from which we can go
to x (or further) in one round with probability more than p.

Theorem 2.7 (Discrete variable drift, lower bound). Let (Xt)t≥0 be a sequence of
decreasing random variables in [0..n] and let T be the random variable that denotes
the earliest point in time t ≥ 0 such that Xt = 0. Suppose that there exists two
functions c : {1, . . . , n} → [0..n] and monotonically increasing h : [0..n] → R+

0 , and
a constant 0 ≤ p < 1 such that

1. Xt+1 ≥ c(Xt) with probability at least 1− p for all t < T ,
2. E(Xt −Xt+1 | Xt) ≤ h(Xt) holds for all t < T .

Let µ : [0..n] → [0..n] be the function defined by µ(x) = max{i|c(i) ≤ x} and
g : [0..n]→ R+

0 be the function defined by g(x) =
∑x−1
i=0

1
h(µ(i)) . Then

E(T | X0) ≥ g(X0)−
g2(X0)p

1 + g(X0)p
.

2.5. Chernoff Bounds 17

Proof. Let ĉ : [0..n] → [0..n], r 7→ ĉ(r) := min{i|µ(i) ≥ r}. By definition, ĉ is
monotonically increasing. Let r ∈ [n]. Since r ∈ {i|c(i) ≤ c(r)}, we have µ(c(r)) ≥ r,
which implies c(r) ∈ {i|µ(i) ≥ r}. Hence ĉ(r) ≤ c(r). This shows that we have
Xt+1 ≥ ĉ(Xt) for all t < T .

The definition of ĉ implies that µ(ĉ(r)) ≥ r. Together with the monotonicity
of h, we obtain E(Xt − Xt+1 | Xt) ≤ h(Xt) ≤ h(µ(ĉ(Xt))). Let ĥ : [0..n] →
R+

0 , r 7→ ĥ(r) := h(µ(r)). It is easy to see from the definition that µ is monotonically
increasing, therefore, ĥ is also monotonically increasing and it satisfies E(Xt−Xt+1 |
Xt) ≤ ĥ(ĉ(Xt)). Applying Theorem 2.6 to ĥ and ĉ shows the claim.

2.5 Chernoff Bounds
In probability theory, the Chernoff bound gives exponentially decreasing bounds

on tail distributions of sums of independent random variables. It is a sharper bound
than the known first or second moment based tail bounds such as Markov’s inequality
or Chebyshev inequality, which only yield power-law bounds on the tail decay. We
notice that the Chernoff bound requires that the variates be independent. However,
the Chernoff bound also holds when the variates are dependent, but the sums follows
a hypergeometric distribution.

For reasons of self-containedness, we state the well-known multiplicative Chernoff
bounds, additive Chernoff bounds, and a lesser known additive Chernoff bound that
is also known in the literature as Bernstein’s inequality. These bounds can be found,
e.g., in [Doe11].

Theorem 2.8 (Bernstein’s inequality, Chernoff bounds). Let X1, . . . , Xn be indepen-
dent random variables and X =

∑n
i=1Xi.

1. Let b be such that E(Xi) − b ≤ Xi ≤ E(Xi) + b for all i = 1, . . . , n. Let
σ2 =

∑n
i=1 Var(Xi) = Var[X]. Then for all ∆ ≥ 0,

Pr(X ≥ E(X) + ∆) ≤ exp
(
− ∆2

2(σ2 + 1
3b∆)

)
.

2. Assume that for all i = 1, . . . , n, the random variable Xi takes values in [0, 1]
only. Then

(a) Pr(X ≤ (1− δ)E(X)) ≤
(

e−δ

(1−δ)1−δ

)E(X)
≤ exp

(
δ2E(X)
−2

)
for all 0 ≤ δ ≤ 1,

(b) Pr(X ≥ (1 + δ)E(X)) ≤
(

eδ

(1+δ)1+δ

)E(X)
≤ exp

(
−δ2E(X)

2+δ

)
for all δ ≥ 0,

(c) Pr(X ≤ E(X)− λ) ≤ exp
(−2λ2/n

)
for all λ > 0,

(d) Pr(X ≥ E(X) + λ) ≤ exp
(−2λ2/n

)
for all λ > 0.

3. All bounds in item 2 are valid also if X is a random variable with hypergeometric
distribution.

2.6 Occupation Probabilities
In Chapter 4 and Chapter 5, we design a scheme for evolutionary algorithms

to adjust the mutation strength automatically based on the performance of all λ
offspring. Thus, we will be analyzing two depending stochastic processes: the random
decrease of fitness distance and the random change of the mutation rate. Often, we
will prove by drift analysis that the rate is drifting towards values that yield an

18 Chapter 2. Preliminaries

almost-optimal distance decrease. However, once the rate has drifted towards such
values, we would also like the rates to stay in the vicinity of these values in subsequent
steps. To this end, we state two occupation theorems here. One is Theorem 7 from
[KLW15], which assumes that the process in each step moves at most some constant
distance. The other is Theorem 2.3 in [Haj82] which is a stronger because it considers
the strong drift toward the target.

Theorem 2.9 (Theorem 7 in [KLW15]). Let a Markov process (Xt)t≥0 on R+
0 , where

|Xt−Xt+1| ≤ c, with additive drift of at least d towards 0 be given (i. e., E(Xt−Xt+1 |
Xt;Xt > 0) ≥ d), starting at 0 (i.e. X0 = 0). Then we have, for all t ∈ N and
b ∈ R+

0 ,
Pr(Xt ≥ b) ≤ 2e

2d
3c (1−b/c).

Theorem 2.10 (Theorem 2.3 in [Haj82]). Suppose that (Fk)k≥0 is an increasing
family of sub-σ-fields of F and (Yk)k≥0 is adapted to (Fk). If

E
(
(eη(Yk+1−Yk);Yk > a | Fk

)
≤ ρ and E

(
eη(Yk+1−1);Yk ≤ a | Fk

)
≤ D,

then
Pr (Yk ≥ b | F0) ≤ ρkeη(Y0−b) +

1− ρk
1− ρ De

η(a−b).

We rewrite the above two theorems into the following lemmas respectively such
that they can be directly applied.

Lemma 2.11. If there is a point a ≥ 4 such that Pr(rt+1 < rt | rt > a) ≥ 1/2 + ε
for some constant ε > 0, then for all t′ ≥ min{t | rt ≤ a} and all b ≥ 2 it holds
Pr(rt′ ≥ a · 2b+1) ≤ 2e−2bε/3.

Proof. Apply Lemma 2.9 to the process Xt := max{0, blog2(rt/a)c}. Note that this
process is on N0, moves by an absolute value of at most 1 and has drift E(Xt −
Xt+1 | Xt;Xt > 0) ≥ 2ε. We use c := 1 and d := 2ε in the theorem and estimate
1− b ≤ −b/2.

Lemma 2.12. Consider a stochastic process Xt, t ≥ 0, on R such that for some
p ≤ 1/25 the transition probabilities for all t ≥ 0 satisfy Pr(Xt+1 ≥ Xt + a | Xt >
1) ≤ pa+1 for all a ≥ −1/2 as well as Pr(Xt+1 ≥ a+ 1 | Xt ≤ 1) ≤ pa+1 for all
a ≥ 0. If X0 ≤ 1 then for all t ≥ 1 and k > 1 it holds that

Pr(Xt ≥ 1 + k) ≤ 11 (ep)k .

Proof. We aim at applying Theorem 2.10. There are two cases depending on Xt: for
Xt ≤ 1, using the monotonicity of eλ(Xt+1−1) with respect to Xt+1 − 1, we obtain

D(p, λ) := E(eλ(Xt+1−1) | Xt ≤ 1) ≤ E(eλmax{dXt+1−1e,0} | Xt ≤ 1)

= e0 Pr(Xt+1 ≤ 1 | Xt ≤ 1) +
∞∑
a=1

eλa Pr(a < Xt+1 ≤ a+ 1 | Xt ≤ 1)

≤ e0 +
∞∑
a=1

eλa Pr(Xt > a | Xt ≤ 1),

using the assumption that Pr(Xt+1 ≥ a+ 1 | Xt ≤ 1) ≤ pa+1 for all a ≥ 0 then

D(p, λ) ≤ 1 +
∞∑
a=1

eλapa = 1 + eλp

1− eλp ;

2.6. Occupation Probabilities 19

and for Xt > 1, using the monotonicity of eλ(Xt+1−Xt) respect to Xt+1−Xt, we have

ρ(p, λ) := E(eλ(Xt+1−Xt) | Xt > 1) ≤ E(eλmax{d2(Xt+1−Xt)e/2,−1/2} | Xt > 1)

= e−λ/2 Pr
(
Xt+1 −Xt ≤ −

1
2 | Xt > 1

)
+
∞∑
a=0

eλa/2 Pr
(
a− 1

2 < Xt+1 −Xt ≤
a

2 | Xt > 1
)

≤ e−λ/2 +
∞∑
a=0

eλa/2 Pr
(
Xt+1 −Xt >

a− 1
2 | Xt > 1

)
,

using the assumption that Pr(Xt+1 ≥ Xt+ a | Xt > 1) ≤ pa+1 for all a ≥ −1/2 then

ρ(p, λ) := e−λ/2 +
∞∑
a=0

eλa/2p(a+1)/2 =
p1/2

(eλp)1/2 +
p1/2

1− (eλp)1/2 .

Using λ := ln(1/(ep)) such that eλp = 1/e, we have

ρ := ρ(p, λ) ≤ e1/2p1/2 +
p1/2

1− e−1/2 ≤
e1/2

5 +
1/5

1− e−1/2 < 0.84,

D := D(p, λ) ≤ 1 + (1/e)/(1− 1/e) < 1.6.

Theorem 2.3, inequality (2.8) in [Haj82] yields with a := 1 and b := 1 + k that

Pr(Xt ≥ 1 + k | X0) ≤ ρte−λ(1+k−X0) +
1

1− ρDe
−λk

≤ (ep)k +
1.6

1− 0.84 (ep)
k = 11(ep)k.

For the simpler case of a random process that runs on the positive integers and
that has a strong drift to the left, we have the following estimate for the occupation
probabilities.

Lemma 2.13. Consider a random process defined on the positive integers 1, 2,
Assume that from each state i different from 1, only the two neighboring states i− 1
and i+ 1 can be reached (and there is no self-loop on state i). From state 1, only state
2 can be reached and the process can stay on state 1. Let pi be an upper bound for
the transition probability from state i to state i+ 1 (valid in each iteration regardless
of the past). Assume that

pi−1 ≥
pi

1− pi
holds for all i ≥ 2. Assume that the process starts in state 1. Then at all times, the
probability to be in state i is at most

qi :=
i−1∏
j=1

pj
1− pj

,

where as usual we read the empty product as q1 = 1.

Proof. The claimed bound on the occupation probabilities is clearly true at the start
of the process. Assume that it is true at some time. By this assumption and the
assumptions on the process, the probability to be in state i ≥ 2 after one step is at

20 Chapter 2. Preliminaries

most

qi−1pi + qi+1 = qi−1

(
pi +

pi−1
1− pi−1

pi
1− pi

)
≤ qi−1

(
pi

1− pi
+

pi−1
1− pi−1

pi
1− pi

)
= qi−1

(
pi(1− pi−1)

(1− pi−1)(1− pi)
+

pi−1
1− pi−1

pi
1− pi

)
≤ qi−1

pi
(1− pi−1)(1− pi)

≤ qi−1
pi−1

1− pi−1
= qi.

Trivially, the probability to be in state 1 after one step is at most q1 = 1. Hence,
by induction over time, we see that qi is an upper bound for the probability to be in
state i at all times.

2.7 Useful Equations and Inequalities
In this section, we list frequently used equations and estimations. Lemma 2.14

provides some useful inequalities involving logarithmic function and Lemma 2.15 is
about binomial coefficient.

Lemma 2.14. 1. For all x > 0, we have ln x ≤ x/e.
2. For all x ∈ R, we have 1 + x ≤ ex.
3. For all 0 ≤ x ≤ 2/3, we have 1− x ≥ e−x−x2.
4. For all 0 ≤ x ≤ 1/2, we have 1− x ≥ e−3x/2.
5. Weierstrass product inequality: For all p1, . . . , pn ∈ [0, 1],

1−
n∑
i=1

pi ≤
n∏
i=1

(1− pi).

Proof. Since (ln x− x/e)′ = 1/x− 1/e, x > 0, then (e, 0) is the maximum point of
ln x− x/e, x > 0. Thus part 1 holds.

We notice that (1+ x− ex)′ = 1− ex, then (0, 0) is the maximal point of 1+ x−
ex. Therefore part 2 holds.

For the proof of part 3, let f(x) = 1 − x − e−x−x2 for 0 ≤ x ≤ 2/3. Then
f ′(x) = (1 + 2x)e−x−x2 − 1 and f ′′(x) = (1 − 4x − 4x2)e−x−x

2 . We notice that
f ′′(x) has only one zero point between 0 and 2/3. Let x0 denote the zero point.
Thus f ′′(x) is positive before x0, and then becomes negative after x0. Using the fact
f ′(0) = 0 and f ′(2/3) < 0, we can easily see that f ′(x) first increases from 0 to
f ′(x0) > 0, and then decreases below 0. This means the minimum of f(x) is attained
at 0 or 2/3. Due to the fact that f(0) = 0 and f(2/3) > 0, the first inequality in
part 3 holds.

For the proof of part 4, We notice that (1− x− e−3x/2)′ = −1 + (3/2)e−3x/2.
It is positive for 0 < x < (2/3) ln(3/2) and negative for (2/3) ln(3/2) < x ≤ 1/2.
Since 1− 0 = e0 and 1− 1/2 > e−3/4, the statement holds.

Using the fact that pn ≥ (
∏n−1
i=1 (1 − pi))pn, part 5 is easily derived by doing

induction over n.

Lemma 2.15. Consider m,n ∈ N0 and m ≤ n. We abbreviate (n)m := n(n −
1) . . . (n−m+ 1) = ∏m−1

i=0 n− i.
1. (nm) =

n!
m!(n−m)! =

(n)m
m! ≥

(
n
m

)m and (nm) = (n−1
m−1) + (n−1

m).

2.7. Useful Equations and Inequalities 21

2. (n−m+ 1)m ≤ (n)m ≤ nm.
3. (nm) = (n

n−m), (nm)m = n(n−1
m−1), and (nm)(n− i) = n(n−1

m).

In our analysis, we deal with binomial distributions frequently. Here we list some
results from [Doe18b, Lemma 10.20] and [DD18a, Lemma 1].

Lemma 2.16. Let n ∈N, p ∈ [0, 1], and µ = dnpe. Let X ∼ Bin(n, p).
1. if 1/n < p < 1, then Pr(X > E(X) + 1) > 1/2−

√
n

2πµ(n−µ) .

2. if 1/n < p < 1− 1/n, then Pr(X > E(X) + 1) ≥ 0.037.
3. if 0.29/n < p, then Pr(X > E(X)) ≥ 1/4.
4. if k ∈ [0..n], then E(X | X ≥ k) ≤ E(X) + k.

23

Chapter 3

Precise Unary Unbiased
Black-box Complexity

With the goal of starting a complexity theory targeting precise results, we an-
alyze the unary unbiased black-box complexity of the OneMax benchmark func-
tion. It is known that the unary unbiased black-box complexity of OneMax is
of order Θ(n logn) [LW12]. The simple randomized local search heuristic, a hill-
climber flipping single random bits, is easily seen to have a runtime of at most
n ln(n) + γn+ 1

2 ≈ n ln(n) + 0.5772n where γ = 0.5772 . . . is the Euler-Mascheroni
constant.

In this chapter, we show that the unary unbiased black-box complexity of One-
Max is

n ln(n)− cn± o(n)
for a constant c for which we show 0.2539 < c < 0.2665. We propose a fitness-
dependent randomized local search which achieves this complexity. We also show
that such state-dependent parameter control can be replaced by a learning-inspired
parameter control.

The proof of our results is in the following structures.

Maximizing Drift is Near-Optimal

Evolutionary algorithms build on the idea that iteratively maximizing the fitness
is a good approach. This suggests to try to generate the offspring in a way that the
expected fitness gain over the best-so-far solution is maximized. Clearly, this is not a
successful idea for each and every problem, as easily demonstrated by examples like
the distance and the trap functions [DJW02], where the fitness leads the algorithm
into a local optimum, or the difficult-to-optimize monotonic functions constructed
in [Doe+13c; Len18], where the fitness leads to the optimum, but via a prohibitively
long trajectory. Still, one might hope that for problems with a good fitness-distance
correlation (and Om has the perfect fitness-distance correlation), maximizing the
expected fitness gain is a good approach, and this is roughly what we are able to
show.

More precisely, we cannot show that maximizing the expected fitness gain leads
to the optimal unary unbiased black-box algorithm. It turns out this is also not
true, even if we restrict ourselves to elitist algorithms, which cannot use tricks like
minimizing the fitness and inverting the search point once the all-zero string was
found. In fact, the elitist algorithm flipping in each iteration the number of bits
that minimizes the expected remaining runtime is different from the drift-maximizing
one. For all realistic problem sizes, however, the differences between the expected
runtime of our drift maximizer and that of the optimal elitist algorithm are negligibly
small [BD18].

24 Chapter 3. Precise Unary Unbiased Black-box Complexity

What we can prove, however, is that the algorithm which in each iteration takes
the best-so-far solution and applies to it the unary unbiased mutation operator max-
imizing the expected fitness gain has an expected optimization time which exceeds
the unary unbiased black-box complexity by at most a term of order O(n2/3 log9 n).

We note that this result, while natural, is quite difficult to obtain and relies on a
number of properties particular to this process, in particular, the fact that we have a
good structural understanding of the maximal drift.

Maximizing the Drift via the Right Fitness-Dependent Mutation Strength

Once we decided how to choose the parent individual, in principle it is easy to
mutate it in such a way that the drift is maximized. Since any unary unbiased
mutation operator can be seen as a convex combination of r-bit flip operators, r ∈
[0..n], and since the drift stemming from such an operator is the corresponding convex
combination of the drifts stemming from the r-bit flip operators, we only need to
determine, depending on the fitness of the parent, a value for r such that flipping r
random bits maximizes the fitness gain over the parent. For a concrete value of n and
a concrete fitness of the parent, one can compute the best value of r in time O(n2).

We need some more mathematical arguments to (i) obtain a structural under-
standing of this r-value and (ii) to obtain a runtime estimate valid for all values of
n. To this aim, we shall first argue that when the parent fitness distance d is at most
(1

2 − ε)n for an arbitrarily small constant ε, the optimal drift is obtained from flipping
a constant number r of bits (Lemma 3.14). For any constant r, the drift obtained
from flipping r bits can be well approximated by a degree r polynomial in the relative
fitness distance d/n (Theorem 3.16). By this, we overcome the dependence on n,
that is, apart from this small approximation error we can, by regarding these poly-
nomials, determine a function R̃opt : [0, 1

2 − ε] → N such that for all n ∈ N and all
d ∈ [0..(1

2 − ε)n] the near-optimal number of bits to flip (that is, optimal apart from
the approximation error) is R̃opt(d/n). This R̃opt is decreasing, that is, the closer we
are to the optimum, the smaller is the optimal number of bits to flip. Interestingly,
R̃opt is never even, so the optimal number of bits to flip is always odd. These (and
some more) properties allow to compute numerically the interval in which flipping r
bits is optimal (for all odd r). From these we estimate the runtime by numerically
approximating the integral describing the runtime via the resulting drifts. This gives
approximations for both the runtime of our drift-maximizer and the unary unbiased
black-box complexity, which are precise apart from an arbitrary small O(n) term.

We note that previous works have studied drift maximizing variants of RLS and
the (1+1) EA by empirical means. For n = 100 Bäck [Bäc92] computed the drift-
maximizing mutation rates for different (1+λ) and (1, λ)-EAs. Fialho and co-authors
considered (1 + λ)-type RLS-variants which choose between either flippling exactly
1, 3, or 5 bits or applying standard bit mutation with mutation rate p = 1/n.
A simple empirical Monte Carlo evaluation is conducted to estimate the average
progress obtained by any of these four operators. [Fia+08] studies the n = 1, 000-
dimensional OneMax function, and [Fia+09] the case n = 10, 000. None of the
three mentioned works, however, further investigates the difference between the drift
maximizing algorithm and the optimal (i.e., time-minimizing) one.

Fixed-Budget Result

Computing the runtime of our drift-maximizing algorithm, we observe that the
fitness-dependent mutation strength gives a smallish-looking improvement of roughly

3.1. Problem Setting and Useful Tools 25

0.14n in the Θ(n logn) runtime. However, if we view our result in the fixed-budget
perspective [JZ14], then (after using the Azuma inequality in the martingale version to
show sufficient concentration) we see that if we take the expected solution quality after
a fixed number (budget) of iterations as performance measure, then our algorithm
gives a roughly 13% smaller fitness distance to the optimum compared to the previous-
best algorithm (provided that the budget is at least 0.2675n).

RLS with learning-inspired parameter control

The example of solving the OneMax problem shows that using a problem-specific
optimal mutation strength can lead to a fair speed-up over standard bit mutation,
however, with the risk of making the algorithm fail badly when choosing a wrong
mutation strength. For this reason, we design a simple hill climber that autonomously
tries to choose the optimal mutation rate by analyzing the past performance of the
different mutation strengths. This aims both at exploiting that different problems
ask for different mutation strengths and at exploiting that for a fixed problem the
optimal mutation strength may change during the optimization process; a problem
even less understood than what is the right problem-specific static mutation strength.

The heart of this work is making this effect mathematically precise for the One-
Max function. For our new algorithm with self-adjusting mutation strength, we show
that it essentially is able to find this optimal mutation schedule on the fly. More pre-
cisely, with high probability our algorithm always (apart from a lower-order fraction
of the iterations) uses a mutation strength which gives an expected progress equal to
the best possible progress (again, apart from lower order terms). Consequently, our
algorithm has the same optimization time (apart from an o(n) additive lower order
term) and the same asymptotic 13% superiority in the fixed budget perspective as
the fitness- dependent algorithm.

We also experimentally analyze our new algorithm on the LeadingOnes and the
MST problem. We observe that for suitable parameter settings, it clearly outperforms
the (1+1) EA. Interestingly, it even beats the randomized local search (RLS) heuristic
(flipping always one bit) for the LeadingOnes problem and the variant of RLS
flipping one or two bits for the MST problem. This shows that for these problems
a better performance can be obtained from a mutation strength that changes over
time, and that our algorithm is able to find such superior fitness-dependent mutation
strengths.

3.1 Problem Setting and Useful Tools
In this section we briefly describe the black-box setting regarded in this work, the

unary unbiased model proposed by Lehre and Witt [LW12]. The variation operators
that are admissible in this model are characterized in Lemma 3.1.

The main goal of our work is to determine a precise bound for the unary unbiased
black-box complexity of OneMax, the problem of maximizing the function Om :
{0, 1}n → R, x 7→ ∑n

i=1 xi, which assigns to each bit string the number of ones in
it. That is, we aim at identifying a best-possible mutation-based algorithm for this
problem.

The unary unbiased black-box complexity of OneMax is the smallest expected
number of function evaluations that any algorithm following the structure of Algo-
rithm 1 (cf. Section 2.1) exhibits on this problem. In the optimization process of
Algorithm 1 a unary unbiased variation operator is asked for. In the context of opti-
mizing pseudo-Boolean functions, a unary operator is an algorithm that is build upon

26 Chapter 3. Precise Unary Unbiased Black-box Complexity

a family (p(· | x))x∈{0,1}n of probability distributions over {0, 1}n. Given some input
x it outputs a new string that it samples from the distribution p(· | x). A unary op-
erator is unbiased if all members of its underlying family of probability distributions
are symmetric with respect to the bit positions [n] := {1, . . . , n} and the bit values
0 and 1 (cf. [LW12] for a discussion). Unary unbiased variation operators are also
referred to as mutation operators.

The following characterization of unary unbiased variation operators states that
each such operator is uniquely defined via a probability distribution rp over the set
[0..n] := {0} ∪ [n] describing how many bits (chosen uniformly at random without
replacement) are flipped in the argument x to create a new search point y. Finding
a best possible mutation-based algorithm is thus identical to identifying an opti-
mal strategy to select the distribution rp. This characterization can also be derived
from [Doe+13b, Proposition 19], although the original formulation of Proposition 19
in [Doe+13b] requires as search space [n]n−1.

Lemma 3.1. For every unary unbiased variation operator (p(·|x))x∈{0,1}n there exists
a probability distribution rp on [0..n] such that for all x, y ∈ {0, 1}n the probability
p(y|x) that (p(·|x))x∈{0,1}n samples y from x equals the probability of sampling a
random number r from rp and then flipping r bits in x to create y. On the other
hand, each distribution rp on [0..n] induces a unary unbiased variation operator.

To prove Lemma 3.1, we introduce the following notation.

Definition 3.2. Let r ∈ [0..n]. For every x ∈ {0, 1}n the operator flipr creates
an offspring y from x by selecting r positions i1, . . . , ir in [n] uniformly at random
(without replacement), setting yi := 1− xi for i ∈ {i1, . . . , ir}, and copying yi := xi
for all other bit positions i ∈ [n] \ {i1, . . . , ir}.

With this notation, Lemma 3.1 states that every unary unbiased variation opera-
tor (p(·|x))x∈{0,1}n can be described by Algorithm 5, for a suitably chosen probability
distribution rp.

Since it will be needed several times in the remainder of this work, we briefly recall
the following simple fact about the expected Om-value of an offspring generated by
flipr.

Remark 3.3. Let x ∈ {0, 1}n and r ∈ [0..n]. The number of 1-bits that are flipped
by the variation operator flipr follows a hypergeometric distribution with expectation
equal to rOm(x)/n. The expected number of 0-bits that are flipped by the operator
flipr equals r(n−Om(x))/n. The expected Om-value of an offspring generated from
x by applying flipr is thus equal to Om(x)− rOm(x)/n+ r(n−Om(x))/n = (1−
2r/n)Om(x) + r.

Algorithm 5 The unary unbiased operator rp samples for a given x an offspring by
sampling from rp the number r of bits to flip and then applying flipr to x.

Choose an integer r ∈ [0..n] according to rp;
Sample y ← flipr(x);

To prove Lemma 3.1 we show the following.

Lemma 3.4. For every unary unbiased variation operator (p(·|x))x∈{0,1}n there exists
a exists a probability distribution rp on [0..n] such that for all x, y ∈ {0, 1}n

p (y|x) = rp(H(x, y))/

(
n

H(x, y)

)
, (3.1)

3.1. Problem Setting and Useful Tools 27

where here and henceforth H(x, y) denotes the Hamming distance of x and y.

Proof. Let p be a unary unbiased variation operator. We first show that for all
x, y1, y2 ∈ {0, 1}n with H(x, y1) = H(x, y2), the equality p(y1|x) = p(y2|x) holds.
This shows that for any fixed Hamming distance d ∈ [n] and every string x, the
probability distribution on the d-neighborhood Nd(x) :=

{
y ∈ {0, 1}n, H(x, y) = d

}
of x is uniform.

Using the fact that the bit-wise XOR operator ⊕ preserves the Hamming distance,
we obtain that for any y1, y2 ∈ Nd(x) it holds that

H(x⊕ x, y1 ⊕ x) = H(x⊕ x, y2 ⊕ x) = d.

Since x⊕ x = (0, . . . , 0), we thus observe that
n∑
i=1

(y1 ⊕ x)i =
n∑
i=1

(y2 ⊕ x)i = d.

This implies that there exists a permutation σ ∈ Sn such that

σ(y1 ⊕ x) = y2 ⊕ x.

According to the definition of unary unbiased variation operators, p is invariant under
"⊕" and "σ", yielding

p(y1|x) = p(y1 ⊕ x|x⊕ x)
= p(σ(y1 ⊕ x)|σ(x⊕ x))
= p(y2 ⊕ x|x⊕ x) = p(y2|x).

This shows that p(·|x) is uniformly distributed on Nd(x) for any d ∈ [n] and any
x ∈ {0, 1}n.

For every x ∈ {0, 1}n and every d ∈ [n] let p(d,x) denote the probability of sampling
a specific point at distance d from x. That is, for y1 ∈ Nd(x) we have p(y1|x) = p(d,x).
For x′ 6= x let y′ denote y1 ⊕ (x⊕ x′). Then by the unbiasedness of p we obtain that

H(y′, x′) = H(y1, x) = d, and
p(d,x′) = p(y′|x′) = p(y′ ⊕ x⊕ x′ | x′ ⊕ x⊕ x′) = p(y1|x) = p(d,x).

Thus, for all x, x′ ∈ {0, 1}n it holds that p(d,x) = p(d,x′) =: p(d).
For the unary unbiased variation operator p we can therefore define a distribution

rp on [0..n] by setting

rp(d) =

(
n

d

)
p(d).

For all x, y ∈ {0, 1}n we obtain

p(y|x) = p(d,x) = p(d) = rp(d)/

(
n

d

)
,

where we abbreviate d := H(x, y). This shows the desired equation (3.1).

28 Chapter 3. Precise Unary Unbiased Black-box Complexity

3.2 Maximizing Drift is Near-Optimal
The goal of this section is to show that the algorithm which maximizes the ex-

pected progress over the best-so-far search point is optimal, apart from lower-order
terms o(n), among all unary unbiased black-box algorithms. Consequently, its ex-
pected optimization time is essentially the unary unbiased black-box complexity.

3.2.1 The Drift Maximizing Algorithm

We regard as drift maximizing algorithm the algorithm summarized in Algo-
rithm 6. We denote this algorithm by A∗. A∗ starts by querying a uniform solution
x ∈ {0, 1}. In each iteration of the main loop the algorithm generates a new solution
y from x by flipping exactly R(Om(x)) bits in x, where R : [0..n]→ [0..n] is a func-
tion that assigns to each fitness value the number of bits that should be flipped in a
search point of this quality. We choose R such that the expected progress (drift) is
maximized. When there is more than one value maximizing the drift, R chooses the
smallest among these. That is,

R(Om(x)) := min
{

arg max
(

max{Om(flipr(x))−Om(x), 0}
)
| r ∈ [0..n]

}
. (3.2)

Algorithm 6 RLS for minimizing f : {0, 1}n → R

Choose x uniformly at random from S = {0, 1}n.
for t← 1, 2, . . . do

y ← flipR(Om(x))(x)
if Om(y) ≥ Om(x) then

x← y.

In this definition, we make use of the fact that the expected progress
E
(

max{Om(flipr(x))−Om(x), 0}
)
depends only on the fitness of x but not on its

structure. This is due to the symmetry of the function Om. The offspring y replaces
its parent x if and only if Om(y) ≥ Om(x).

Note here that the function R is deterministic, i.e., we only make use of a unary
unbiased mutation operator which deterministically depends on the fitness of the
current-best solution. Note further that the search point kept in the memory of
algorithm A∗ is always a best-so-far solution. A∗ can be seen as an RLS-variant with
fitness-dependent mutation strength.

3.2.2 Main Result and Proof Strategy

The main result of this entire section is the following statement, which says that
the expected runtime of A∗ cannot be much worse than the unary unbiased black-box
complexity of OneMax.

Theorem 3.5. Let A be a unary unbiased black-box algorithm. Denote by T (A) its
runtime on OneMax and by T (A∗) the runtime of A∗. Then E(T (A)) ≥ E(T (A∗))−
O(n2/3 ln9(n)).

For the proof of Theorem 3.5 we derive in Section 3.2.3 a lower bound for the
expected runtime of any unary unbiased algorithm, cf. Theorem 3.8. We then prove
in Section 3.2.4 an upper bound for the expected runtime of A∗, cf. Theorem 3.9.
For both statements, we use the variable drift theorems presented in Section 2.4.

3.2. Maximizing Drift is Near-Optimal 29

We therefore need to define suitable drift functions which bound from below the
expected progress that can be made by algorithm A∗ and from above the maximal
expected progress that any unary unbiased algorithm can make at every step of the
optimization process. This is the purpose of the remainder of this subsection.

The Distance Function

Before we define the drift functions, we first note that in order to maximize the
function Om, an optimal algorithm may choose to first minimize the function, and to
then flip all bits at once to obtain the optimal Om-solution. Instead of regarding the
maximization of the function Om, we therefore regard in the following the problem of
minimizing the distance function d, which assigns to each string x the value d(x) :=
min{n−Om(x),Om(x)}. The black-box complexities of both problems are almost
identical, as the following lemma shows.

Lemma 3.6. The unary unbiased black-box complexities of maximizing OneMax is
at least as large as that of minimizing d and it is larger by at most one.

Proof. For the first statement, it suffices to observe that we can simulate the optimiza-
tion of d when OneMax-values are available. The second statement follows from the
already mentioned fact that once we have found a string x of distance value d(x) = 0,
then either x or its bit-wise complement x̄ has maximal OneMax-value.

Drift Expressions

For the definition of the drift functions used in the proofs of Theorems 3.8 and 3.9,
we use the following notation. For a unary unbiased algorithm A we denote by
(x(0), x(1), . . . , x(t)) the sequence of the first t+ 1 search points evaluated by A. For
every such sequence of search points, we abbreviate by

Xt := min{d(x(i))|i ∈ [0..t]}

the quality of a best-so-far solution with respect to the distance function d. Note
that for all t ≥ 0 it holds that Xt ≥ Xt+1, i.e., the sequence (Xt)t≥0 is monotonically
decreasing in t. For each k ∈ [0..n] let H(t, k) be the collection of all sequences
(x(0), x(1), . . . , x(t)) of search points for which Xt(x(0), x(1), . . . , x(t)) = k. Abus-
ing notation, we write x ∈ ((x(0), x(1), . . . , x(t))) when x = x(i) for some i ∈ [0..t].

Denoting by U the set of all unary unbiased operators acting on {0, 1}n, the
maximal possible drift that can be achieved by a unary unbiased variation operator
when the best-so-far distance is equal to k ∈ [0..n] is equal to

ĥ(k) := max {max {k−E(min{k, d(τ (x))}) | τ ∈ U , x ∈ H} | t ∈N, H ∈ H(t, k)} .

Using Lemma 3.1 it is not difficult to show that

ĥ(k) = max {k−E(min{k, d(flipr(x))}) | r ∈ [0..n], x ∈ {0, 1}n with d(x) ≥ k} .(3.3)

To obtain a monotonically increasing function (as required by Theorem 2.7), we
set

h(k) := max{ĥ(i) | i ∈ [0..k]}. (3.4)

Note that h(k) ≥ ĥ(k) for all k ∈ [0..n].

30 Chapter 3. Precise Unary Unbiased Black-box Complexity

Finally, we set

h̃(k) := max {E(max{Om(flipr(x))−Om(x), 0})
| x ∈ {0, 1}n with Om(x) = n− k, r ∈ [0..n]} , (3.5)

the maximal Om-drift that can be obtained from a search point whose Om-value is
exactly equal to n− k. We certainly have h̃(k) ≤ h(k) for all k ≤ n/2. However, we
will show in Section 3.2.4 that for all values k ≤ n/2−n0.6 the difference between the
functions h and h̃ is small, showing that we can approximate the maximal drift h by
mutating a best-so-far solution. This will be the key step in proving the upper bound
for the expected runtime of algorithm A∗. We also notice that h̃(k) ≥ max{Om(x̄)−
Om(x), 0} ≥ 2k − n. Therefore for any x ∈ {0, 1}n with Om(x) = n− k we have
Om(x) + h̃(k) ≥ max{Om(x),Om(x̄)} ≥ n/2, so that A∗ very quickly has a search
point of function value Om(x) ≥ n/2. Informally, the interesting part of the runtime
analysis for A∗ is therefore the fitness increase from a value around n/2 to n.

3.2.3 A Lower Bound for all Unary Unbiased Algorithms

Before proving the lower bound, we first introduce the following lemma arguing
that the probability to make a large fitness gain is bounded by a small probability,
as required by the condition to apply Theorem 2.7.

Lemma 3.7. There exists an n0 ∈ N such that, for all n ≥ n0, for all r ∈ [0..n],
and for all x ∈ {0, 1}n, it holds that

Pr (d (flipr(x)) ≥ c̃ (d(x))) ≥ 1− n−4/3 ln7(n), (3.6)

where

c̃ : [n]→ [0..n], i 7→ c̃(i) :=

i−√n lnn for i ≥ n/6,
i− ln2(n) for n1/3 ≤ i < n/6,
i− 1 for i < n1/3.

Proof. Set p := n−4/3 ln7(n). To show (3.6), we first note that we can assume without
loss of generality that Om(x) ≥ n/2. This is due to the symmetry of the distance
function. In addition, we can assume that 0 < r ≤ n/2, because d(flipr(x)) and
d(flipn−r(x)) are identically distributed.

We make a case distinction according to the size of d := d(x). For all differ-
ent cases we note that the event d(flipr(x)) < d happens in two cases, namely if
Om(flipr(x)) > Om(x) or if Om(flipr(x)) < n−Om(x). We denote by Z the num-
ber of good flips in an application of flipr to x; i.e., the number of bits flipping from
0 to 1. Z follows a hypergeometric distribution and E(Z) = rd(x)/n, as discussed
in Remark 3.3.

Case 1: d(x) ≥ n/6. We first regard the case that d := d(x) ≥ n/6. The
Chernoff bound (e.g., the variants presented in Theorems 1.11 and 1.17 in [Doe11])
applied to Z show that, for all λ > 0, Pr(Z > E(Z) + λ) ≤ exp(−2λ2/n) and
Pr(Z < E(Z)−λ) ≤ exp(−2λ2/n). Using that Om(flipr(x)) = Om(x) + 2Z − r and
that n−Om(x) ≤ E(Om(flipr(x))) ≤ Om(x), we obtain that

Pr (Om(flipr(x)) < n−Om(x)− 2λ)
≤ Pr (Om(flipr(x)) < E(Om(flipr(x)))− 2λ)
= Pr (Om(x) + 2Z − r < Om(x) +E(2Z)− r− 2λ)
= Pr (2Z < E(2Z)− 2λ) ≤ exp(−2λ2/n),

3.2. Maximizing Drift is Near-Optimal 31

and that

Pr (Om(flipr(x)) > Om(x) + 2λ)
≤ Pr (Om(flipr(x)) > E(Om(flipr(x))) + 2λ)
= Pr (2Z > E(2Z) + 2λ) ≤ exp(−2λ2/n).

From these two inequalities we conclude that

Pr(d(flipr(x)) < c̃(d(x)) = Pr(d(flipr(x)) < d−√n lnn) ≤ 2 exp(− ln2(n)/2) < p

for all d ≥ n/6.
Case 2: n1/3 ≤ d(x) < n/6. By our assumptions r ≤ n/2 and Om(x) ≥ n/2 we

obtain from Remark 3.3 that E(Om(flipr(x))) = (1− 2r
n)Om(x) + r ≥ (1− 2r

n)
n
2 +

r = n/2. Using Chernoff bounds (e.g., Theorems 1.11 and 1.17 in [Doe11]) we thus
get Pr(Om(flipr(x)) < n/6) ≤ exp(−2(n/2− n/6)2/n) = o(p).

Consider the event Om(flipr(x)) ≥ Om(x) + ln2(n). It intrinsically requires that
r ≥ ln2(n). We apply the Chernoff bound from Corollary 1.10 (b) in [Doe11] to Z
and obtain that

Pr (Om(flipr(x)) > Om(x)) = Pr
(
Z >

r

2

)
= Pr

(
Z >

n

2d E(Z)
)
≤
(2de
n

)r/2

(3.7)

≤
(
e

3

)r/2
= O(n−Ω(ln(n))) = o(p).

Therefore

Pr(d(flipr(x)) < c̃(d(x)) = Pr(d(flipr(x)) < d− ln2 n)

≤ Pr(Om(flipr(x)) < n/6) + Pr (Om(flipr(x)) > Om(x)) = o(p)

for all n1/3 ≤ d < n/6.
Case 3: d(x) < n1/3. We finally consider the case d < n1/3. Applying this con-

dition to the first line of Equation (3.7), we obtain Pr(Om(flipr(x)) > Om(x)) ≤
Θ(n−4/3) = o(p) for all r ≥ 4. For r < 4 we consider the operators separately and
observe that

Pr (Om(flip3(x)) > Om(x)) =
(d2)(

n−d
1) + (d3)

(n3)
= O(n−4/3) = o(p)

and
Pr (Om(flip2(x)) > Om(x)) =

(d2)

(n2)
= O(n−4/3) = o(p).

Thus, altogether, we obtain that

Pr(d(flipr(x)) < c̃(d(x)) = Pr(d(flipr(x)) < d− 1)
≤ Pr(Om(flipr(x)) < n/6) + Pr (Om(flipr(x)) > Om(x)) = o(p)

for all r ≥ 2 and d < n1/3. Needless to say that Pr(d(flip1(x)) < c̃(d(x)) = 0. This
proves Equation (3.6).

Using Lemma 3.7 and Theorem 2.7, we are now ready to show the following lower
bound.

32 Chapter 3. Precise Unary Unbiased Black-box Complexity

Theorem 3.8. Let s := n/2− n0.6. The expected runtime of any unary unbiased
algorithm A on the OneMax problem satisfies

E (TA) ≥
s∑

x=1

1
h(x)

−Θ(n2/3 ln9(n)).

Proof. For convenience, we assume that n is sufficiently large. Let A be a unary
unbiased algorithm. We recall that by (x(0), x(1), . . .) we denote the sequence of
search points evaluated by A and by Xt = min{d(x(i)) | i ∈ [0..t]} the best-so-far
distance after first t iterations of the main loop. Let T := min{t ∈ N | Xt = 0}.
Then T ≤ TA := min{t ∈N | Om(x(t)) = n}. We prove a lower bound on T .

Every unary unbiased black-box algorithm has to create its first search point uni-
formly at random. This initial search point x0 has expected fitness E(Om(x0)) = n/2.
By Chernoff’s bound (we can use, for example, the variant presented in Theorem 1.11
in [Doe11]) it furthermore holds that Pr(X0 < s) = Pr(|Om(x0)− n/2| > n0.6) ≤
2 exp(−2n0.2). This probability is small enough such that even optimistically assum-
ing TA = 0 whenever X0 < s, the contribution of such events affect the lower bound
by a term of O(n2/3 ln9(n)). We can therefore safely assume that X0 ≥ s.

For all i ∈ [n] let c(i) := min{c̃(j) | j ≥ i}, where c̃ is the function defined in
Lemma 3.7. For all r ∈ [0..n], x ∈ {0, 1}n, and all distance levels d′ ≤ d(x) it holds
that

c(d′) ≤ c̃(d(x)) and Pr (d(flipr(x)) > c(d′)) ≥ Pr (d(flipr(x)) > c̃(d(x))) ≥ 1− p.

By Lemma 3.1, this statement can be extended to arbitrary unary unbiased variation
operators. Therefore,

Pr (Xt+1 > c(Xt)) ≥ 1− p for all t ∈N.

We apply Theorem 2.7 to c and h. We first compute µ as in Theorem 2.7. By
definition, µ(i) = max{x | c(x) ≤ i} = max{x | min{c̃(y) | y ≥ x} ≤ i} = max{x |
c̃(x) ≤ i}, giving

µ(i) :=

i+ 1 for i < n1/3 − ln2(n),
i+ ln2(n) for n1/3 − ln2(n) ≤ i < n/6−√n lnn,
i+
√
n lnn for n/6−√n lnn ≤ i < n/2−√n lnn,

bn/2c for n/2−√n lnn ≤ i ≤ n/2.

According to Theorem 2.7, we can thus bound E(T | X0) by

E (T | X0) ≥ g(X0)−
g2(X0)p

1 + g(X0)p
with g(x) =

x−1∑
i=1

1
h(µ(x))

.

Since h(µ(x)) ≥ h̃(µ(x)) ≥ E(max{Om(flip1(x)) − Om(x), 0} | x ∈
{0, 1}n with Om(x) = n− µ(x)) = µ(x)/n ≥ x/n, we obtain g(X0) ≤

∑X0−1
i=1

n
i =

O(n ln(n)). Therefore g2(X0)p
1+g(X0)p

= O(n2/3 ln9(n)) for p = n−4/3 ln7(n). Using the

3.2. Maximizing Drift is Near-Optimal 33

monotonicity of h and the fact that all summands are positive, we estimate g(X0) by

X0−1∑
x=0

1
h(µ(x))

≥
n1/3−ln2(n)∑

x=1

1
h(x)

+
n/6−

√
n lnn+ln2(n)∑
x=n1/3

1
h(x)

+
X0∑

x=n/6

1
h(x)

≥
X0∑
x=1

1
h(x)

− ln2(n)

h(n1/3 − ln2(n))
−

√
n lnn− ln2(n)

h(n/6−√n lnn+ ln2(n))

≥
X0∑
x=1

1
h(x)

−Θ(n2/3 ln2(n)).

Therefore we obtain E(TA) ≥ E(T | X0 ≥ s) − O(n2/3 ln9(n)) ≥ ∑s
x=1

1
h(x) −

Θ(n2/3 ln9(n)).

3.2.4 Upper Bound for the Drift Maximizer

The lower bound in Theorem 3.8 also holds for drift-maximizer A∗ described in
the beginning of this section. We next show that A∗ achieves this runtime bound
apart from the lower order term Θ(n2/3 ln9(n)).

Theorem 3.9. Let s := n/2− n0.6. The expected runtime of algorithm A∗ on One-
Max satisfies

E (TA∗) ≤
s∑

x=1

1
h(x)

+ Θ(n0.6).

From the variable drift theorem, Theorem 2.4, we easily get ∑s
x=1

1
h̃(x)

as upper
bound for the expected runtime of A∗. We therefore need to show that the difference
between h(Xt) and h̃(Xt) is small. This is the purpose of the next subsection.

Maximizing Drift by Mutating a Best-So-Far Solution

As mentioned above, we show that the expected drift of any unary unbiased
algorithm cannot be significantly better than that of A∗. The main result of this
subsection is the following lemma.

Lemma 3.10. For sufficiently sufficiently large n and k ≤ n/2− n0.6 it holds that
0 ≤ h(k)− h̃(k) ≤ n exp(−Ω(n0.2)).

We start our proof of Lemma 3.10 by observing that the expected Om-value of the
search point obtained from mutating and selecting the best of parent and offspring
is strictly increasing with the quality of the parent. The proof is by induction. The
base case is covered by the following lemma.

Lemma 3.11. Let x, y ∈ {0, 1}n with Om(y) = Om(x) + 1 ≥ n/2 and let r ∈
[0..n/2]. For all t ≥ 1 it holds that

Pr (Om(flipr(x)) = Om(y) + t) ≤ Pr (Om(flipr−1(y)) = Om(y) + t) . (3.8)

Proof. We first notice that for t > r − 1 both two probabilities are zero. We can
therefore assume that 1 ≤ t ≤ r− 1. Let d := n−Om(y), and let i be the number of
zeros in y that flipr−1 flips from zero to one. Then there are r− 1− i ones that flip to
zero. We thus have Om(flipr−1(y)) = Om(y) + t if and only if i− (r− 1− i) = t; i.e.,

34 Chapter 3. Precise Unary Unbiased Black-box Complexity

if and only if i = (t+ r− 1)/2. By the same reasoning Om(flipr(x)) = Om(y) + t if
and only if i′ − (r− i′) = t+ 1 for i′ being the number of zeros flipped by flipr. This
implies i′ = (r− 1 + t)/2 = i+ 1. We thus obtain

Pr (Om(flipr−1(y)) = Om(y) + t) =
(di)(

n−d
r−1−i)

(n
r−1)

Pr (Om(flipr(x)) = Om(y) + t) =
(d+1
i+1)(

n−d−1
r−(i+1))

(nr)

To show equation (3.8), we abbreviate j := r − 1 − i and use the facts that
(d+1
i+1) = (di)

d+1
i+1 , (

n−d
j) = (n−d−1

j) n−d
n−d−j , and (n

i+j+1) = (n
i+j)

n−i−j
i+j+1 to obtain that

(d+1
i+1)(

n−d−1
r−(i+1))
(nr)

(di)(
n−d
r−1−i)

(n
r−1)

=
(d+ 1)(n− d− j)(1 + i+ j)

(i+ 1)(n− d)(n− i− j) .

We aim to show the above ratio less or equal to 1. To this end, we compute the
difference between the numerator and the denominator, and obtain (d+ 1)(n− d−
j)(1+ i+ j)− (i+ 1)(n− d)(n− i− j) = (1+ i+ j+ d−n)(n+ in− (1+ i+ j)d)−
j) = (r+ d−n)(n+ in− rd− j). The first factor in this expression is negative, since
both r ≤ n/2 and d ≤ n/2. The second factor is positive, because n > j, i > r/2
and d ≤ n/2 implying that in− rd > (r/2)n− r(n/2) ≥ 0.

We now regard the case that the same number r of bits are flipped in the two
strings x and y.

Lemma 3.12. Let x, y ∈ {0, 1}n with Om(y) = Om(x) + 1 and let r ∈ [0..n]. It
holds that

E (max{Om(flipr(x))−Om(x), 0}) ≥ E (max{Om(flipr(y))−Om(y), 0}) . (3.9)

Proof. Since permutation on bit-positions does not affect the analysis, we assume
that x and y are of the following form.

x = 11 · · · 11︸ ︷︷ ︸
n
2 +δ

00 · · · 00︸ ︷︷ ︸
n
2−δ−1

0 and y = 11 · · · 11︸ ︷︷ ︸
n
2 +δ

00 · · · 00︸ ︷︷ ︸
n
2−δ−1

1. (3.10)

For any r-sized subset S of [n] let xS (yS) denote the offspring of x (y) in which the
r positions in S are flipped. Then xS and yS differ only in the last bit and we have
Om(xS)−Om(yS) ∈ {−1, 1} for all S. Therefore

max{Om(flipr(x)),Om(x)} −max{Om(flipr(y)),Om(y)} ≥ −1 for all S

Using that Om(y)−Om(x) = 1 we obtain

E (max{Om(flipr(x))−Om(x), 0})−E (max{Om(flipr(y))−Om(y), 0})
= E (max{Om(flipr(x)),Om(x)} −Om(x))−E (max{Om(flipr(y)),Om(y)} −Om(y))

= E (max{Om(flipr(x)),Om(x)} −max{Om(flipr(y)),Om(y)}) + 1 ≥ 0.

We now extend the last two lemmas to the case Om(y)−Om(x) > 1.

3.2. Maximizing Drift is Near-Optimal 35

Corollary 3.13. Let x, y ∈ {0, 1}n with Om(y) > Om(x).
1. if Om(x) ≥ n/2, r ∈ [0..n/2], and r′ = max{r− (Om(y)−Om(x)), 0}. Then

for all t ∈N≥1 we have

Pr (Om(flipr(x)) = Om(y) + t) ≤ Pr (Om(flipr′(y)) = Om(y) + t) . (3.11)

2. It also holds that
h̃(Om(x)) ≥ h̃(Om(y)).

Proof. To see the first statement, we first regard the case that r′ = 0. In this case,
we have r ≤ Om(y)−Om(x), so that the probability that Om(flipr(x)) = Om(y) + t
is zero for t > 0. For t = 0 the statement trivially holds, since the right-hand side
of (3.11) is equal to one. For r′ > 0 the first statement follows from Lemma 3.11 and
an induction over Om(y)−Om(x).

To prove the second statement we first assume that Om(y)−Om(x) = 1. Let r
be the value that maximizes E (max{Om(flipr(y))−Om(y), 0}). Using Lemma 3.12
we obtain

h̃(Om(y)) = E (max{Om(flipr(y))−Om(y), 0})
≤ E (max{Om(flipr(x))−Om(x), 0}) ≤ h̃(Om(x)).

The general statement now follows by induction over Om(y)−Om(x).

We are now ready to prove the main result of this subsection, Lemma 3.10.

of Lemma 3.10. Let k ≤ n/2−n0.6, x a search point with d(x) ≥ k and let r ∈ [0..n].
Since all random variables d(flipr(x)), d(flipn−r(x)), d(flipr(x̄)), and d(flipn−r(x̄))
are identically distributed, we can assume without loss of generality that Om(x) ≥
n/2 and that r ≤ n/2.

Using this and the observations made in Remark 3.3, we easily see that

E(Om(flipr(x))) = Om(x)− rOm(x)
n + rn−Om(x)

n

= Om(x)(1− r/n) + (n−Om(x))r/n ≥ n/2.

This shows that E(Om(flipr(x)))− n0.6 ≥ n/2− n0.6 ≥ k. Together with a Chernoff
bound applied to Om(flipr(x)) we thus obtain

Pr (Om(flipr(x)) < k)

≤ Pr
(
Om(flipr(x)) < E(Om(flipr(x)))− n0.6

)
= exp(−Ω(n0.2)). (3.12)

We first aim at bounding ĥ(k). To this end, we use the estimate 3.12 to obtain

E (k−min{k, d(flipr(x))})
= E (Om(flipr(x))− (n− k) | Om(flipr(x)) > n− k)Pr (Om(flipr(x)) > n− k)
+ E (k−Om(flipr(x)) | Om(flipr(x)) < k)Pr (Om(flipr(x)) < k)

≤ E (max{Om(flipr(x))− (n− k), 0}) + n exp(−Ω(n0.2)).

Let x′ be a search point with Om(x′) = n−k, and let r′ = max{r− (d(x)−d(x′)), 0}.
According to Corollary 3.13 it holds for all i ∈N that

Pr(Om(flipr(x)) = n− k+ i) ≤ Pr(Om(flipr′(x′)) = n− k+ i).

36 Chapter 3. Precise Unary Unbiased Black-box Complexity

Using that E (max{Om(flipr(x))− (n− k), 0}) = ∑
i≥1 iPr(Om(flipr(x)) = n− k+

i) we obtain

E (k−min{k, d(flipr(x))}) ≤ E (max{Om(flipr′(x′))− (n− k), 0})+n exp(−Ω(n0.2)).

Referring to the definition of ĥ and h̃ in equations (3.3) and (3.5), and using the
symmetries mentioned in the beginning of this proof, we bound

ĥ(k) = max{k−E (min{k, d(flipr(x))}) | r ∈ [0..n], x ∈ {0, 1}n with d(x) ≥ k}
=max{k−E (min{k, d(flipr(x))}) | r ∈ [0..n/2], x ∈ {0, 1}n with n/2 ≤ Om(x) ≤ n− k}
≤max{E (max{Om(flipr′(x′))− (n− k), 0}) | r′ ∈ [0..n/2], x′ ∈ {0, 1}n with Om(x′) = n− k}
+ n exp(−Ω(n0.2))

≤h̃(k) + n exp(−Ω(n0.2)).

According to the definition of h(k) in Equation (3.4), we obtain

h(k) = max{ĥ(i) | i ∈ [0..k]} ≤ max{h̃(i) | i ∈ [0..k]}+ n exp(−Ω(n0.2)

= h̃(k) + n exp(−Ω(n0.2),

where the last equality uses the monotonicity of h̃(k) with respect to k shown in
Corollary 3.13.

As we will see in the next subsection, the n exp(−Ω(n0.2)) term in this bound
accounts for an additive O(1) error in the runtime estimate only.

Proof of Theorem 3.9

With Lemma 3.10 at hand, we are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. As mentioned above, we easily obtain from Theorem 2.4 that

E (TA∗ | x(0)) ≤
n−Om(x(0))∑

x=1

1
h̃(x)

. (3.13)

According to Lemma 3.10 it holds that 0 < h(x) − h̃(x) ≤ n exp(−Ω(n0.2)) for
x ≤ n/2− n0.6. Using again that flipping a single bit on a bit string with x zeros
gives an expected progress in the Om-value of x/n, we recall that h(x) ≥ h̃(x) ≥ x/n
for all x ∈ [n/2]. Therefore,

1
h̃(x)

− 1
h(x)

=
h(x)− h̃(x)
h̃(x)h(x)

≤ n exp(−Ω(n0.2))

(x/n)(x/n)
≤ n3 exp(−Ω(n0.2)) for all 1 ≤ x ≤ s.

Replacing h̃(x) by h(x) in inequality (3.13) and pessimistically assuming Om(x(0)) =
0 we thus obtain

E (TA∗) ≤
s∑

x=1

(1
h(x)

+ n3 exp(−Ω(n0.2))

)
+

n∑
x=s

1
h̃(x)

=
s∑

x=1

1
h(x)

+
n∑
x=s

1
h̃(x)

+O(1).

3.3. Fitness-Dependent Mutation Strength 37

Using that h̃(x) ≥ x/n for all 0 < x ≤ n and h̃(x) ≥ 2x− n for all n/2 < x ≤ n, we
conclude

n∑
x=s

1
h̃(x)

≤
n/2+n0.6∑
x=s

n

x
+

n∑
x=n/2+n0.6

1
2x− n ≤

2n1.6

s
+

n/2
2n0.6 = Θ(n0.6).

Theorem 3.5 follows from Theorems 3.8 and 3.9 by observing that Θ(n0.6) =
o(n2/3 ln9(n)).

3.3 Fitness-Dependent Mutation Strength
In the previous section we have seen that in order to compute the expected run-

time of a best possible unary unbiased black-box algorithm for OneMax we can
regard the algorithm A∗ that maximizes at any point in time the fitness drift. By
Theorems 3.8 and 3.9 this algorithm cannot be worse (in expectation) than an optimal
unary unbiased one by more than an additive Θ(n2/3 ln9(n)) term.

In this section we give a relatively concise description of A∗, i.e., we compute
approximately the number of bits that need to be flipped in order to maximize the
fitness drift. Since we are here talking about the drift in the fitness, it will be con-
venient to denote in this section by d(x) = n−Om(x) the fitness distance to the
target. We also denote by

Ropt(d, n) := min
{

arg max E (max{Om(flipr(x))−Om(x), 0})

| r ∈ [0..n],Om(x) = n− d
}
, (3.14)

the number of bits that need to be flipped in a search point x ∈ {0, 1}n with
Om(x) = n−d such that the expected drift E(max{0,Om(flipRopt(d,n)(x))−Om(x)})
is maximized (breaking ties by flipping fewer bits).

The exact analysis of Ropt is rather tedious, as we will demonstrate below. Luckily,
it turns out that we can safely approximate this point-wise drift maximizing function
Ropt(d, n) by some a function R̃opt : [0, 1] → [0..n] which maps the relative fitness
distance d(x)/n to a mutation strength. Since R̃opt is much easier to work with, this
is the focus of Section 3.3.2. For the approximation R̃opt we make use of the fact that
for values of r that are reasonably small compared to the problem dimension n and
the current fitness distance d(x), the expected drift E(max{0,Om(flipRopt(d,n)(x))−
Om(x)}) is almost determined by the relative fitness distance d(x)/n. For very small
d(x) = o(n) the fitness drift of flipping Ropt(d/n) = 1 bit is exactly d(x)/n, without
any estimation error. We will also see in Section 3.3.1 that it suffice to regard constant
values r.

Once the approximation of the function Ropt by R̃opt is established, we demon-
strate in Section 3.3.3 a few properties of these two functions that will be useful in
our subsequent computations; in particular for the numerical approximation of R̃opt,
which is carried out in Section 3.4.2. Most importantly, we shall see that R̃opt is
monotone, i.e., the number of bits to flip in order to maximize the approximated
point-wise drift decreases with increasing fitness. We also show that both Ropt and
R̃opt take only odd values, implying that flipping an even number of bits is suboptimal
in all stages of the optimization process.

38 Chapter 3. Precise Unary Unbiased Black-box Complexity

To ease the computation of R̃opt, we analyze in detail the mutation rate for search
points x(t) with fitness distance Xt ≤ (1/2 − ε)n, where the constant ε satisfies
0 < ε < 1/2. Notice that by selecting between parent and its offspring at the end of
each iteration in Algorithm 6 we have Om(x(t)) = n−Xt. For the remaining fitness
distances, we simply take R̃opt(1/2− ε) for all (1/2− ε)n < Xt ≤ n/2 and n for
all Xt > n/2. A detailed definition of R̃opt,ε is provided in equation (3.19). We will
prove in Theorem 3.28 that our adhoc definition of R̃opt,ε(p) for p ≥ 1/2− ε only
causes an error term of O(εn) in the runtime.

3.3.1 The Exact Fitness Drift B(n, d, r)

In this subsection, we compute the exact fitness gain obtained from flipping r bits.
We shall then argue that once we have a fitness of at least (1

2 + ε)n for some constant
ε, the maximal fitness drift stems from flipping some constant number of bits.

Let x be a binary string of length n with fitness distance d, that is, with OneMax-
value n− d. By the symmetry of the OneMax function, the expected progress of
flipping r bits in x does not depend on the structure of x but only on its fitness. We
can therefore define the expected fitness gain from flipping r random bits in x by

B(n, d, r) := E (max{0, d− d(flipr(x))} | Om(x) = n− d) .

To compute B(n, d, r) arithmetically, let us assume that i ∈ [0..r] is the number
of bits flipped from 0 to 1. Then r− i bits have flipped in the opposite direction from
1 to 0, resulting in a progress of i− (r − i). This progress is positive if and only if
i > r− i, i.e., if and only if i > r/2. The probability for i bits flipping in the ”good”
direction is (di)(

n−d
r−i)/(

n
r). We therefore obtain

B(n, d, r) =
r∑

i=dr/2e

(di)(
n−d
r−i) (2i− r)

(nr)
.

We show that the maximal fitness drift is obtained from flipping a constant number
of bits once we have a fitness of at least (1

2 + ε)n. The main argument is that flipping
a single random bit already gives a better expected fitness gain than flipping many
bits, which is due to the fact that when flipping many bits, the strong concentration
of the hypergeometric distributions renders it highly unlikely that a fitness gain is
obtained at all.

Lemma 3.14. Let 0 < ε < 1/2 and α := 2 log(4/(ε2(1/2− ε)). Then for all n ∈N,
d ≤ (1/2− ε)n, and all r ≥ 2α/ε2, we have B(n, d, r) < B(n, d, 1)/2.

Proof. Let Z denote the number of “good” flips (i.e., the number of bits flipping from
0 to 1). As discussed in Remark 3.3, the random variable Z follows a hypergeometric
distribution with mean value E(Z) = dr/n = pr < r/2, where we abbreviate p :=
d/n. Applying the Chernoff bound presented in Theorem 1.9 (b) in [Doe11] to Z, we
obtain

Pr (Z > r/2) = Pr (Z > E(Z)/(2p)) ≤
(

e1/(2p)−1

(1/(2p))1/(2p)

)E(Z)

=
(
(2p)1/(2p)e1/(2p)−1

)rp
=

(
(2pe)1/(2p)

e

)rp
=

(2pe
e2p

)r/2
. (3.15)

3.3. Fitness-Dependent Mutation Strength 39

We then regard B(n, d, r)/(B,n, d, 1) ≤ rPr(Z > r/2)/(d/n) = (r/p)
(

2pe
e2p

)r/2
=

r(2e)r/2pr/2−1e−pr. We notice that for fixed r ≥ 2α/ε2 and 0 < p < 1/2− ε,

(pr/2−1e−pr)′ = (r/2− 1)pr/2−2e−pr − rpr/2−1e−pr = pr/2−2e−pr(r/2− 1− rp)
≥ pr/2−2e−pr(2α/ε− 1) > 0,

thus it remains to check the statement for d = (1/2 − ε)n. Using the Tay-
lor expansion e2δ = 1 + 2δ + 2δ2 + (4/3)δ3 + O(δ4) < 1 + 2δ + 3δ2 we see
that limp→1/2−ε 2pe/e2p = limδ→ε 2(1/2 − δ)e/e2(1/2−δ) = limδ→ε(1 − 2δ)e2δ <
limδ→ε(1 − 2δ)(1 + 2δ + 3δ2) = 1 − ε2 − 6ε3 < 1 − ε2. Therefore we obtain
B(n, d, r) ≤ rPr(Z > r/2) ≤ r(2pe/e2p)r/2 < r(1 − ε2)r/2. Using the fact
that (1 − ε2)1/ε2

< 1/e, r ≥ 2α/ε2 > 2/ε2, and r(1 − ε2)r/2 monotonically de-
creases when r > 2/ε2, we obtain B(n, d, r) < r exp(−α) ≤ 2α exp(−α)/ε2.
Since log(α exp(−α)) = log(α) − α < −α/2, then B(n, d, r) < 2α exp(−α)/ε2 <
2 exp(−α/2)/ε2 = (2/ε2)(ε2(1/2− ε)/4) = (1/2− ε)/2 = B(n, d, 1)/2 for d =
(1/2− ε)n.

3.3.2 Approximating B(n, d, r) via A(r, d
n , 1− d

n)

When n and d are large compared to r, the expected progress B(n, d, r) is almost
determined by d/n. This inspires the following definition of A(r, p, q) which will have
the property that A(r, dn , 1− d

n) is a good approximation of B(n, d, r). The definition
for general p and q instead of p and q = 1− p will be useful in the following proofs.

Definition 3.15. For all r ∈N, p ∈ [0, 1], and q ∈ [0, 1], let

A(r, p, q) :=
r∑

i=dr/2e

(
r

i

)
(2i− r)piqr−i. (3.16)

The following Theorem 3.16 makes precise how well for p = d/n and q = 1− p
the value A(r, p, q) approximates the expected progress B(n, d, r).

Theorem 3.16. Let 0 < ε < 1/2 and α = 2 log(4/(ε2(1/2− ε)) (as in Lemma 3.14).
Then for all n ∈ N large enough, all r < 2α/ε2, and all 2r ≤ d ≤ (1/2− ε)n, we
have ∣∣∣∣A(r, dn, n− dn

)
−B(n, d, r)

∣∣∣∣ < 3r3

d
. (3.17)

The first step in the proof of Theorem 3.16 is the following statement, which
compares suitable A-values with B-values. Note that here we profit from the general
definition of A(r, p, q) instead of the special case A(r, p, 1− p).

Lemma 3.17. Consider n ∈ N large enough and 1 ≤ r ≤ d ≤ (1/2− ε)n with
0 < ε < 1/2. It holds that

A

(
r,
d

n
,
n− d
n− r

)
≥ B(n, d, r) ≥ A

(
r,
d− r
n

,
n− d− r

n

)
. (3.18)

Proof. For any two positive integers r and i ≤ r we abbreviate

(r)i := r(r− 1) . . . (r− i+ 1) =
i−1∏
j=0

(r− j).

40 Chapter 3. Precise Unary Unbiased Black-box Complexity

With this notation, we can express B(n,m, r) as

B(n, d, r) =
r∑

i=dr/2e

(di)(
n−d
r−i) (2i− r)

(nr)
=

r∑
i=dr/2e

(d)i(n− d)r−i
(n)r

(
r

i

)
(2i− r) .

From the elementary fact that for all dr/2e ≤ i ≤ r, we have (n− d)r−i ≤ (n− d)r−i
and (n)r ≥ (n)i(n− r)r−i, we obtain

(d)i(n− d)r−i
(n)r

≤ (d)i(n− d)r−i
(n)i(n− r)r−i

≤
(
d

n

)i (n− d
n− r

)r−i
.

This shows B(n, d, r) ≤ A
(
r, dn ,

n−d
n−r

)
.

To show the second inequality, we use the fact that for all i ≤ r ≤ n, we have
(n)r ≤ nr, (d)i ≥ (d− r)i, and (n− d)r−i ≥ (n− d− r)r−i. Consequently,

(d)i(n− d)r−i
(n)r

≥ (d− r)i(n− d− r)r−i
nr

=

(
d− r
n

)i (n− d− r
n

)r−i
,

yielding B(n, d, r) ≥ A
(
r, d−rn , n−d−rn

)
.

With Lemma 3.17 at hand, we now prove Theorem 3.16.

Proof of Theorem 3.16. According to the definition of A(r, p, q) in (3.16) we have

∂A(r, p, q)

∂q
=

r∑
i=dr/2e

(r− i)
(
r

i

)
(2i− r)piqr−i−1

<
r

2

r∑
i=dr/2e

(
r

i

)
(2i− r)piqr−i−1 =

rA(r, p, q)

2q <
r2

2q ,

where we have used in the last step that A(r, p, q) ≤ r.
Using that n−d

n > 1/2 and 0 < n−d
n−r − n−d

n = n−d
n−r · rn < (1 + o(1)) rn , we bound

A

(
r,
d

n
,
n− d
n− r

)
−A

(
r,
d

n
,
n− d
n

)
≤ r2

2(1/2)

(
n− d
n− r −

n− d
n

)
≤ (1 + o(1))r3

n
.

Similarly we have

∂A(r, p, q)

∂p
=

r∑
i=dr/2e

i

(
r

i

)
(2i− r)pi−1qr−i

< r
r∑

i=dr/2e

(
r

i

)
(2i− r)pi−1qr−i =

rA(r, p, q)

p
<
r2

p
.

Using d ≥ 2r we obtain

A

(
r,
d

n
,
n− d− r

n

)
−A

(
r,
d− r
n

,
n− d− r

n

)
≤ r2

(d− r)/n ·
r

n
=

r3

d− r >
2r3

d
.

Therefore

A

(
r,
d

n
,
n− d
n− r

)
−A

(
r,
d− r
n

,
n− d− r

n

)
=

(1 + o(1))r3

n
+

2r3

d
<

3r3

d
.

3.3. Fitness-Dependent Mutation Strength 41

By Lemma 3.17, it suffices to estimate |A(r, dn , n−dn)−B(n, d, r)| < A(r, dn ,
n−d
n−r)−

A(r, d−rn , n−d−rn) < 3r3

d .

3.3.3 Approximate Optimal Number of Bits to Flip

The goal of this section is to approximate the function Ropt which tells us how
many bits one should flip in order to maximize the point-wise drift. Given Theo-
rem 3.16 above, it is tempting to assume that the map p 7→ arg maxr∈N A(r, p, 1− p)
should do. Analogous to Lemma 3.14 we show in the following lemma that it suffices
to regard constant r for the approximated drift.

Lemma 3.18. Let 0 < ε < 1/2 and α := 2 log(4/(ε2(1/2− ε)). For all n ∈N with
d ≤ (1/2− ε)n and all r ≥ 2α/ε2, the expected approximated drift A(r, dn ,

n−d
n) <

A(1, dn ,
n−d
n)/2.

Proof. Consider the binomial random variable Z ∼ Bin(r, d/n). Let p = d/n then
E(Z) = pr. Applying the Chernoff bound presented in Theorem 1.9 (b) in [Doe11]
to Z, we obtain

Pr (Z > r/2) = Pr (Z > E(Z)/(2p)) ≤
(

e1/(2p)−1

(1/(2p))1/(2p)

)E(Z)

=

(2pe
e2p

)r/2
,

which is the same inequality as (3.15) in Lemma 3.14. Since A(r, p, 1 − p) :=∑r
i=dr/2e (

r
i)(2i − r)pi(1 − p)r−i ≤ r

∑r
i=0 12i>r(

r
i)p

i(1 − p)r−i = rPr(Z > r/2)
and A(1, p, 1− p) = p, apply the samle analysis as in Lemma 3.14, the statement
holds.

In the remainder of this section we show that flipping a number r of bits that
maximizes A(r, d/n, 1− d/n) yields indeed a good approximation of the best possible
expected progress. Since in principle there could be more than one r maximizing
A(r, p, 1− p) for a given relative distance p ∈ (0, 1/2), we break ties by preferring
smaller values of r. For p ≥ 1/2− ε, where our reasoning above was not applicable,
we do not try to find an optimal number of bits to flip, but rather one that does the
job of giving a near-optimal runtime. Since a random initial search point has a fitness
close to n/2, not too much time is spent in this regime anyway. Consequently, we
define, for all ε > 0,

R̃opt,ε(p) :=

min

{
arg maxr∈N A(r, p, 1− p)

}
for 0 < p ≤ 1/2− ε,

R̃opt (1/2− ε) for 1/2− ε < p ≤ 1/2,
n for p > 1/2,

(3.19)

According to Lemma 3.18 the function R̃opt,ε is well defined (for all ε > 0).
We prove two important properties of the functions R̃opt,ε, which are summarized

in the following theorem.

Theorem 3.19. For all ε > 0 the function R̃opt,ε is monotonically increasing with
respect to p. For all d ≤ n/2, R̃opt,ε(d/n) and Ropt(d, n) are odd values.

The proof of the second claim in Theorem 3.19 will be carried out in Section 3.3.3.
It is purely combinatorial. The proof of the monotonicity of R̃opt,ε, in contrast, is
surprisingly technical. It will be carried out in Section 3.3.3.

42 Chapter 3. Precise Unary Unbiased Black-box Complexity

Ropt and R̃opt Attain Only Odd Values

One possibly surprising property of the functions Ropt and R̃opt,ε is that they
take only odd values. That is, regardless of how far we are from the optimum, the
maximal drift is obtained for an odd number of bit flips. The following two lemmas
show this statement for the approximate and the exact drift, respectively.

Lemma 3.20 (flipping even numbers of bits is sub-optimal, statement for the approx-
imated drift A). For all k ∈N and p ∈ (0, 1) it holds that A(2k,p,1−p)2k = A(2k+1,p,1−p)

2k+1 .
Consequently R̃opt,ε(d/n) takes odd values for all d ≤ n/2 and all ε > 0.

Proof. By definition of the function A in (3.16) and using the facts that for all r ∈N

and all i ≤ r we have(
r

i

)
=

(
r

r− i

)
,

(
r

i

)
i = r

(
r− 1
i− 1

)
, and

(
r

i

)
(r− i) = r

(
r− 1
i

)
,

we easily see that

A(r, p, q) =
r∑

i=dr/2e

(
r

i

)
(2i− r)piqr−i

=
r∑

i=dr/2e

((
r

i

)
i−

(
r

i

)
(r− i)

)
piqr−i

= r
r∑

i=dr/2e

((
r− 1
i− 1

)
−
(
r− 1
i

))
piqr−i. (3.20)

This shows that, for all k ∈N,

A(2k+ 1, p, q)
2k+ 1 =

2k+1∑
i=k+1

((
2k
i− 1

)
−
(

2k
i

))
piq2k+1−i

=
2k+1∑
i=k+1

((
2k− 1
i− 1

)
−
(

2k− 1
i

)
+

(
2k− 1
i− 2

)
−
(

2k− 1
i− 1

))
piq2k+1−i

=
2k∑

i=k+1

((
2k− 1
i− 1

)
−
(

2k− 1
i

))
piq2k+1−i +

2k+1∑
i=k+1

((
2k− 1
i− 2

)
−
(

2k− 1
i− 1

))
piq2k+1−i

=
2k∑

i=k+1

((
2k− 1
i− 1

)
−
(

2k− 1
i

))
piq2k+1−i +

2k∑
i=k

((
2k− 1
i− 1

)
−
(

2k− 1
i

))
pi+1q2k−i

=
2k∑
i=k

((
2k− 1
i− 1

)
−
(

2k− 1
i

))(
piq2k+1−i + pi+1q2k−i

)
−
((

2k− 1
k− 1

)
−
(

2k− 1
k

))
pkqk+1

=
2k∑
i=k

((
2k− 1
i− 1

)
−
(

2k− 1
i

))
piq2k−i =

A(2k, p, q)
2k ,

where we have used in the last step that p+ q = 1 and (2k−1
k−1) = (2k−1

k).

Lemma 3.20 is not an artifact of the approximation of the drift by function A but
also holds for the exact drift-maximizing function B. This lemma will not be needed
in the following, but we believe it to be interesting in its own right. The reader only
interested in the proof of the main results of this work can skip this proof.

3.3. Fitness-Dependent Mutation Strength 43

Lemma 3.21 (flipping even numbers of bits is sub-optimal, statement for exact drift
B). For all n, d, k ∈ N satisfying 0 < d ≤ n

2 and 0 < 2k + 1 ≤ n, it holds that
B(n, d, 2k) < B(n, d, 2k+ 1). Moreover, B(n,d,2k)

2k = B(n,d,2k+1)
2k+1 holds.

Proof. Using again the shorthand (r)i := r(r− 1) · · · (r− i+ 1) for all positive inte-
gers r and i ≤ r, we get

B(n, d, 2k+ 1) =
1

(n
2k+1)

2k+1∑
i=k+1

(
d

i

)(
n− d

2k− i+ 1

)
(2i− 2k− 1)

=
1

(n
2k+1)

k∑
i=0

(
d

i+ k+ 1

)(
n− d
k− i

)
(2i+ 1)

=
(n− 2k− 1)!

n!

k∑
i=0

(
2k+ 1
k− i

)
(d)i+k+1(n− d)k−i(2i+ 1).

Similarly, we obtain

B(n, d, 2k) =
1

(n2k)

2k∑
i=k+1

(
d

i

)(
n− d
2k− i

)
(2i− 2k)

=
1

(n2k)

k−1∑
i=0

(
d

i+ k+ 1

)(
n− d

k− i− 1

)
(2i+ 2)

=
(n− 2k)!

n!

k−1∑
i=0

(
2k

k− i− 1

)
(d)i+k+1(n− d)k−i−1(2i+ 2).

Therefore, the ratio of B(n, d, 2k) and B(n, d, 2k+ 1) is

B(n, d, 2k)
B(n, d, 2k+ 1) =

(n− 2k)∑k−1
i=0 (2k

k−i−1)(d)i+k+1(n− d)k−i−1(2i+ 2)∑k
i=0 (

2k+1
k−i)(d)i+k+1(n− d)k−i(2i+ 1)

=
(n− 2k)∑k−1

i=0 (2k
k−i−1)(d− k− 1)i(n− d)k−i−1(2i+ 2)∑k

i=0 (
2k+1
k−i)(d− k− 1)i(n− d)k−i(2i+ 1)

.

Replacing (d− k) with u and (n− d) with v gives

B(n, d, 2k)
B(n, d, 2k+ 1) =

(u+ v− k)∑k−1
i=0 (2k

k−i−1)(u− 1)i(v)k−i−1(2i+ 2)∑k
i=0 (

2k+1
k−i)(u− 1)i(v)k−i(2i+ 1)

.

Using the shorthand λji for the coefficient of rj in the polynomial (r)i, we now
take a close look at the denominator, which is a polynomial in u and v. It is not
difficult to see that for all a, b ∈ N ∪ {0}, the coefficient of the term uavb in the
denominator equals

ψ(a, b) =
k∑
i=0

(
2k+ 1
k− i

)
λa+1
i+1 λ

b
k−i(2i+ 1),

while the coefficient of term uavb in numerator equals

φ(a, b) =
k−1∑
i=0

(
2k

k− i− 1

)(
λai+1λ

b
k−i−1 + λa+1

i+1 λ
b−1
k−i−1 − kλa+1

i+1 λ
b
k−i−1

)
(2i+ 2).

44 Chapter 3. Precise Unary Unbiased Black-box Complexity

Since (r)i+1 = (r− i)(r)i, it is easily verified that

λji − iλj+1
i = λj+1

i+1 . (3.21)

We use (3.21) to simplify φ(a, b) in the following way.

φ(a, b) =
k−1∑
i=0

(
2k

k− i− 1

)(
λa+1
i+2 λ

b
k−i−1 + λa+1

i+1 λ
b
k−i

)
(2i+ 2)

=
k∑
i=0

((
2k

k− i− 1

)
(2i+ 2) +

(
2k
k− i

)
(2i)

)
λa+1
i+1 λ

b
k−i

=
k∑
i=0

(
(2i+ 2) + k+ i+ 1

k− i (2i)
)(2k

k− i− 1

)
λa+1
i+1 λ

b
k−i

=
k∑
i=0

2k(2i+ 1)
k− i

(
2k

k− i− 1

)
λa+1
i+1 λ

b
k−i

=
2k

2k+ 1

k∑
i=0

(
2k+ 1
k− i

)
λa+1
i+1 λ

b
k−i(2i+ 1)

=
2k

2k+ 1ψ(a, b).

The above holds for all 0 ≤ a, b ≤ k, showing that indeed

B(n, d, 2k)
B(n, d, 2k+ 1) =

2k
2k+ 1.

Monotonicity of R̃opt,ε

We now argue that, for all ε > 0, the function R̃opt,ε is monotone. It seems quite
intuitive that the optimal number of bit flips should decrease with decreasing distance
to the optimum, and this has been previously observed empirically, e.g., in [Bäc92;
Fia+08; Fia+09]. However, formally proving the desired monotonic relationship re-
quires substantial technical work. We note that, as a side result, Lemma 3.26 shows
that for search points having a distance of less than n/3 to the optimum (or its
complement), the maximal approximated fitness gain is obtained by 1-bit flips.

Lemma 3.22 (and definition of cut-off points). For any two integers 0 ≤ k1 <
k2, the functions p 7→ A(2k1 + 1, p, 1 − p) and p 7→ A(2k2 + 1, p, 1 − p) intersect
exactly once in the interval (0, 1/2]. Denoting this intersection p0 and letting A0 :=
A(2k1 + 1, p0, 1− p0), we call (p0, A0) the cut-off point of A(2k1 + 1, p, 1− p) and
A(2k2 + 1, p, 1− p).

We have A(2k1 + 1, p, 1− p) > A(2k2 + 1, p, 1− p) if and only if 0 < p < p0.

The graph in Figure 3.1 illustrates the functions p 7→ A(k, p, 1 − p) for k =
1, 3, 5, 7. The precise cut-off points will be computed numerically in Section 3.4.2.

In order to prove Lemma 3.22, we first show the following combinatorial lemma.

Lemma 3.23. For all k, r ∈N∪ {0} and 0 ≤ q ≤ 1 it holds that

k∑
i=0

(
k+ r+ 1

i

)
(1− q)k−iqi =

k∑
i=0

(
i+ r

r

)
qi. (3.22)

3.3. Fitness-Dependent Mutation Strength 45

Figure 3.1: The approximated drift A(k, p, 1− p) for k = 1, 3, 5, 7.
By Lemma 3.26 the function r 7→ A(r, p, 1− p) is maximized for r = 1

whenever p < 1/3.

Proof. We prove the equation by induction. It is obvious that equation (3.22) holds
for all r ≥ 0 and k = 0. Assume that it holds for some pair of integers (k, r + 1),
then the following computation shows that it also holds for (k+ 1, r).

k+1∑
i=0

(
k+ 1 + r+ 1

i

)
(1− q)k−i+1qi

=

(
k+ r+ 2
k+ 1

)
qk+1 + (1− q)

k∑
i=0

(
k+ (r+ 1) + 1

i

)
(1− q)k−iqi

=

(
k+ r+ 2
r+ 1

)
qk+1 + (1− q)

k∑
i=0

(
i+ r+ 1
r+ 1

)
qi

=
k+1∑
i=0

(
i+ r

r

)
qi.

For arbitrary combinations of k and r, we thus get the desired correctness of (3.22)
for the pair (k, r) inductively from that of the pair (0, r+ k).

We use Lemma 3.23 to compute the second derivative of A(r, p, q) for q in
Lemma 3.24 and then obtain the second derivative of A(r, p, q) for p in Lemma 3.25.
We first notice that A(1, p, 1− p) = p and dA(1, p, 1− p)/dp = 1. Thus we only look
at the second derivative for r > 1.

Lemma 3.24. For all k ∈N and all 0 < p ≤ 1/2, it holds that

d2A(2k+ 1, p, 1− p)
(d(1− p))2 = ckp

k−1(1− p)k−1, (3.23)

where ck is a constant related to k via

ck := 2(2k− 1)(2k+ 1)
(

2k− 2
k− 1

)
=

4k+ 2
β(k, k)

,

and β(x, y) :=
∫ 1

0 t
x−1(1− t)y−1dt = Γ(x)Γ(y)

Γ(x+y) is the well-known beta function.

46 Chapter 3. Precise Unary Unbiased Black-box Complexity

Proof. Set q := 1− p. We expand A(2k + 1, p, q) according to Equation (3.20) and
use Lemma 3.23 to obtain the following

A(2k+ 1, p, q) = (2k+ 1)
2k∑
i=k

((
2k
i

)
−
(

2k
i+ 1

))
pi+1q2k−i

= (2k+ 1)
k∑
i=0

((
2k
k+ i

)
−
(

2k
k+ i+ 1

))
pk+i+1qk−i

= (2k+ 1)pk+1 ·
k∑
i=0

((
2k
i

)
−
(

2k
i− 1

))
pk−iqi

= (2k+ 1)pk+1
[
k∑
i=0

(
k+ (k− 1) + 1

i

)
pk−iqi + q

k−1∑
i=0

(
(k− 1) + k+ 1

i

)
pk−1−iqi

]

= (2k+ 1)pk+1
[
k∑
i=0

(
i+ (k− 1)

i

)
qi + q

k−1∑
i=0

(
i+ k

i

)
qi
]

= (2k+ 1)pk+1 ·
k∑
i=0

((
k+ i− 1

i

)
−
(
k+ i− 1
i− 1

))
qi.

We extract the term pk+1 in the above equation and define the polynomial fk(q) :=∑∞
i=0 a

i
kq
i with coefficient aik = 0 when i > k and

aik :=

(
k+ i− 1

i

)
−
(
k+ i− 1
i− 1

)
=

(
k+ i− 1

i

)
k− i
k

when i ≤ k. (3.24)

Then A(2k + 1, p, q) = (2k + 1)pk+1fk(q). We use the general Leibniz rule for the
second derivative (informally, this rule states that (fg)

′′
= f ′′g + 2f ′g′ + fg′′) and

obtain

d2A(2k+ 1, p, q)
d2q

= (2k+ 1)pk−1 ·
(
p2f ′′k (q)− 2(k+ 1)pf ′k(q) + (k+ 1)kfk(q)

)
.

It remains to prove that

p2f ′′k (q)− 2(k+ 1)pf ′k(q) + (k+ 1)kfk(q) = 2(2k− 1)
(

2k− 2
k− 1

)
qk−1. (3.25)

We look at the coefficient of qi in the left part of equation (3.25) and we denote it by
cik. By expanding fk(q) into a polynomial and replacing p by 1− q, we see that cik
equals the coefficient of qi in the following expression

(1− q)2(aikq
i + ai+1

k qi+1 + ai+2
k qi+2)′′

−2(k+ 1)(1− q)(aikqi + ai+1
k qi+1)′

+(k+ 1)k(aikqi).

This shows that cik is equal to

aik ((k+ 1)k+ 2(k+ 1)i+ i(i− 1))
+ ai+1

k (−2(k+ 1)(i+ 1)− 2(i+ 1)i)
+ ai+2

k ((i+ 2)(i+ 1)) .

3.3. Fitness-Dependent Mutation Strength 47

According to (3.24) the coefficient aik satisfies

ai+1
k = aik + ai+1

k−1, and (3.26)

ai+1
k−1 = aik ·

k

i+ 1 ·
k− i− 2
k− i , for k > i. (3.27)

We use Equation (3.26) to rewrite the expression of cik for i ≤ k − 2, and then use
Equation (3.27) to simplify the equation in the following way

cik = aik (k(k− 1)) + ai+1
k−1 (−2(k− 1)(i+ 1)) + ai+2

k−2 ((i+ 2)(i+ 1))

= aikk(k− 1)− 2aikk(k− 1)k− i− 2
k− i + aikk(k− 1)k− i− 4

k− i
= 0.

Noticing that akk = 0 shows that fk(q) has a degree of k − 1. This implies that the
term qk−1 has the highest degree in (3.25). Its coefficient is

ck−1
k = ak−1

k ((k+ 1)k+ 2(k+ 1)(k− 1) + (k− 1)(k− 2))

= 2(2k− 1)
(

2k− 2
k− 1

)
.

This proves the claimed equality in (3.23).

Lemma 3.25. For all k ∈N and all 0 < p ≤ 1/2, it holds that

d2A(2k+ 1, p, 1− p)
dp2 = ckp

k−1(1− p)k−1,

dA(2k+ 1, p, 1− p)
dp = ck

∫ p

0
xk−1(1− x)k−1dx and

A(2k+ 1, p, 1− p) = ck

∫ p

0

∫ y

0
xk−1(1− x)k−1dxdy.

Furthermore for all k ∈N0 we can write

A(2k+ 1, p, 1− p) =
∫ p

0

dA(2k+ 1, x, 1− x)
dp dx.

Proof. The first equality can be easily obtained from the equality in (3.23). Conse-
quently,

dA(2k+ 1, p, q)
dp = ck

∫ p

0
xk−1(1− x)k−1dx+C1 with C1 ∈ R,

A(2k+ 1, p, q) = ck

∫ p

0

∫ y

0
xk−1(1− x)k−1dxdy+C1p+C2 with C2 ∈ R.

Using the fact that limp→0A(2k + 1, p, q) = o(p) for k ≥ 1, we obtain C1 = C2 = 0
as claimed.

For the last statement, we only need to consider the case k = 0. Recalling that
A(1, p, 1− p) = p and dA(1, p, 1− p)/dp = 1 shows that the equality also applies to
this case.

We next prove Lemma 3.22.

48 Chapter 3. Precise Unary Unbiased Black-box Complexity

Proof of Lemma 3.22. Using the notation from Lemma 3.24, we first notice that for
all k > 0 we have

ck+1
ck

=
2(2k+ 1)(2k+ 3)(2k

k)

2(2k− 1)(2k+ 1)(2k−2
k−1)

=
4k+ 6
k

> 4. (3.28)

Let 0 < k1 < k2. By the above, we have 4 < (4 + 6/k2)k2−k1 < ck2 /ck1 < (4 +
6/k1)k2−k1 . Notice that ck1(pq)

k1−1 − ck2(pq)
k2−1 = (pq)k1−1(ck1 − ck2(pq)

k2−k1).
We now use the fact that limp→0 pq = 0 and limp→1/2 pq = 1/4 to obtain that for all
k2 > k1 > 0,

limp→0(ck1 − ck2(pq)
k2−k1) > 0 while limp→1/2

(
ck1 − ck2(pq)

k2−k1
)
< 0.

This shows that the function p 7→ ck1(pq)
k1−1 intersects with p 7→ ck2(pq)

k2−1 in
at most one point pI ∈ (0, 1/2). Moreover, we have that ck1(pq)

k1−1 ≥ ck2(pq)
k2−1 if

and only if p ∈ [0, pI]. Therefore, when p > 0, the function p 7→ ∫ p
0 ck1(x− x2)k1−1dx

intersects with the function p 7→ ∫ p
0 ck2(x− x2)k2−1dx at most once for p ∈ (0, 1/2).

We now prove that the intersection exists.
Notice that for all k > 1 we have

ck

∫ 0.5

0
(x− x2)k−1dx =

ck
2

∫ 1

0
(x− x2)k−1dx =

ck
2 β(k, k) = 2k+ 1,

and thus

lim
p→1/2

(∫ p

0
ck1(x− x2)k1−1dx−

∫ p

0
ck2(x− x2)k2−1dx

)
= 2(k1 − k2) < 0,

while ∫ p

0
ck1(x− x2)k1−1dx >

∫ p

0
ck2(x− x2)k2−1dx for all p ∈ (0, pI).

There exists a intersection point pII ∈ (0, 1/2) such that∫ p

0
ck1(x− x2)k1−1dx ≥

∫ p

0
ck2(x− x2)k2−1dx if and only if p ∈ [0, pII].

This shows that for all k2 > k1 > 0 there exists a point pII ∈ (0, 1/2) such that

dA(2k1 + 1, p, q)
dp ≥ dA(2k2 + 1, p, q)

dp if and only if p ∈ [0, pII]. (3.29)

To extend the conclusion to k1 = 0, let k2 > k1 = 0. We have limp→1/2
∫ p

0 ck2(x−
x2)k2−1dx = 2k2 + 1 and limp→0

∫ p
0 ck2(x− x2)k2−1dx = 0, while dA(1, p, q)/dp = 1.

Therefore the intersection point pII still exists and there is a unique such point.
As a result we see that the function

∫ p
0 dA(2k1 + 1, x, 1− x) intersects with the

function
∫ p

0 dA(2k2 + 1, x, 1− x) at most once for p ∈ (0, 1/2) and∫ p

0
dA(2k1 + 1, x, q) >

∫ p

0
dA(2k2 + 1, x, q) for all p ∈ (0, pII) while

lim
p→1/2

(A(2k1 + 1, p, q)−A(2k2 + 1, p, q)) < 0.

This shows that A(2k1 + 1, p, q) intersects with A(2k2 + 1, p, q) exactly once at some
value pIII < 1/2.

3.3. Fitness-Dependent Mutation Strength 49

We are now ready to prove the monotonicity of R̃opt,ε.

Proof of the first part of Theorem 3.19. Let ε > 0, let p0 ∈ (0, 1), and set q0 :=
1− p0. By Lemma 3.20 it holds that A(2k, p0, q0) < A(2k + 1, p0, q0). This shows
that R̃opt,ε(p0) is odd. Let k ∈N∪ {0} such that R̃opt,ε(p0) = 2k+ 1. By definition
of R̃opt,ε (cf. equation (3.19)), k is the smallest integer obtaining a drift of A(2k +
1, p0, q0). For all integers k′ < k we thus obtain

A(2k+ 1, p0, q0) > A(2k′ + 1, p0, q0). (3.30)

By Lemma 3.22 we also get that for all p > p0 it holds that

A(2k+ 1, p, q) > A(2k′ + 1, p, q). (3.31)

Therefore R̃opt,ε(p) ≥ 2k + 1 for all p > p0. Since the statement holds for all p0 ∈
(0, 1/2− ε] we obtain the monotonicity of R̃opt,ε.

R̃opt,ε(p) = 1 when 0 < p < 1/3 and Ropt(d, n) = 1 when 0 < d = o(n)

We first show that flipping one bit is optimal for the approximated drift when the
distance to the optimal solution is less than n/3.

Lemma 3.26. For all ε > 0 and all 0 < p < 1/3 it holds that R̃opt,ε(p) = 1.

Proof. Let ε > 0. Due to the monotonicity of R̃opt,ε, it suffices to show that
R̃opt,ε(1/3) = 1. By Lemma 3.20 we only need to consider odd values of r. Accord-
ing to Lemma 3.25 if the second derivative ckxk−1(1− x)k−1 > ck+1x

k(1− x)k for all
x ∈ (0, 1/3) then A(2k− 1, 1/3, 2/3) > A(2k+ 1, 1/3, 2/3) and thus R̃opt,ε 6= 2k+ 1.
We notice that

ck+1 x
k(1− x)k

ck xk−1(1− x)k−1 =
4k+ 6
k

x(1− x) ≤ 4k+ 6
k
· 29 for all 0 < x <

1
3.

For all k > 12 it holds that (4k+ 6)/k < 9/2, which implies that ckxk−1(1−x)k−1 >
ck+1x

k(1−x)k. We therefore obtain that R̃opt,ε(1/3) ≤ 25. For the remaining values,
i.e., for r = 1, 3, . . . , 25, we can compute A(r, 1/3, 2/3) numerically. This numerical
evaluation shows that the maximum value 1/3 is obtained (only) by r = 1 and r = 3.
This proves R̃opt,ε(1/3) = 1.

We show in Lemma 3.27 that flipping one bit is also optimal for the exact fitness
drift when the distance is a lower-order term of n.

Lemma 3.27. For all 0 < d = o(n) it holds that Ropt(d, n) = 1.

Proof. Since d < n/4, Lemma 3.14 yields with ε := 1/4 that Ropt(d, n) < 44 log(4).
Referring to Lemma 3.17, we obtain for all 3 ≤ r ≤ 44 log(4) that B(n, d, r) <
A(r, d/n, 1) = Θ((d/n)(r+1)/2) = o(d/n). Since Ropt attains only odd values, we
obtain Ropt(d, n) = 1 for all 0 < d = o(n).

3.3.4 Runtime Loss From Using the Approximated Drift

We show in this section that the expected runtimes of the exact and the approx-
imate drift maximizer do not differ substantially. More precisely, we show that also

50 Chapter 3. Precise Unary Unbiased Black-box Complexity

the approximate drift maximizer also obtains an expected runtime on OneMax that
is very close to that of an optimal unary unbiased black-box algorithm, cf. Corol-
lary 3.29. To make things precise, we denote for every ε > 0 by Ã∗ε the algorithm
which we obtain from Algorithm 6 by replacing the mutation rate R(Om(x)) by
R̃opt,ε(1−Om(x)/n).

To state the main result, for all ε > 0, for all n ∈N, and all 0 < p ≤ 1/2− ε we
abbreviate

Amax,ε(p) := A(R̃opt,ε(p), p, 1− p) and Bmax(p, n) := B(n, bpnc, Ropt(bpnc, n)).
(3.32)

We notice from Lemma 3.14 and Lemma 3.18 that R̃opt,ε(1/2 − ε) = Θ(1) and
Ropt(b(1/2− ε)nc, n) = Θ(1). Considering the drift of single bit flip, we see that
Amax,ε(1/2− ε) ≥ 1/2− ε. According to the definition of h̃ in equation (3.5), we
have Bmax(d/n, n) = h̃(d) ≥ d/n for all 0 < d ≤ (1/2− ε)n.

Theorem 3.28. For all constant 0 < ε < 1/2 the expected runtime of algorithm Ã∗ε
on OneMax satisfies

E
(
TÃ∗ε

)
≤

(1/2−ε)n∑
x=1

1
h(x)

+
εn

Amax,ε(1/2− ε) + o(n).

Moreover,

E
(
TÃ∗ε

)
≤

(1/2−ε)n∑
x=1

1
Amax,ε(x/n)

+
εn

Amax,ε(1/2− ε) + o(n).

Proof. Let constant 0 < ε < 1/2. It is easily seen from Theorem 2.4 and from the
definition of R̃opt,ε in (3.19) that

E
(
TÃ∗ε | x(0)

)
≤

n−Om(x(0))∑
x=1

1
B(n, x, R̃opt,ε(x/n))

≤
n/2∑
x=1

1
B(n, x, R̃opt,ε(x/n))

+ 1.

To ease representation, let rA(x) := R̃opt,ε(x/n) and rB(x) := Ropt(x, n) for all
0 < x ≤ (1/2− ε)n. According to Theorem 3.16 we have∣∣∣∣A(rA(x), xn, 1− x

n

)
−B (n, x, rA(x))

∣∣∣∣ = O(1/x) and∣∣∣∣A(rB(x), xn, 1− x

n

)
−B(n, x, rB(x))

∣∣∣∣ = O(1/x).

Since A(rB(x), x/n, 1 − x/n) ≤ A(rA(x), x/n, (n − x)/n) = Amax,ε(x/n) and
B(n, x, rA(x)) ≤ B(n, x, rB(x)) = Bmax(x/n, n) = h̃(x), we obtain from Theo-
rem 3.16 that, for all 0 < x < (1/2− ε)n,∣∣∣B(n, x, rA(x))− h̃(x)

∣∣∣ = O(1/x) and
|Amax,ε(x/n)−B(n, x, rA(x))| = O(1/x),

where we use the fact that rA(x) = Θ(1) according to Lemma 3.18. Referring to
Lemma 3.26 and Lemma 3.27, we have rB(x) = rA(x) = 1 when 0 < x = o(n).
Therefore,

Amax,ε(x/n) = B(n, x, rA(x)) = h̃(x) for all 0 < x = o(n).

3.4. Runtime Analysis for the Approximate Drift-Maximizer Ã∗ε 51

Notice that h(x) ≥ B(n, x, 1) = x/n for all x > 0. Using the fact that 0 < h(x)−
h̃(x) ≤ n exp(−Ω(n0.2)) for 0 < x < n/2− n0.6 in Lemma 3.10, we obtain∣∣∣∣ 1
B(n, x, rA(x))

− 1
h(x)

∣∣∣∣ =
|h(x)−B(n, x, rA(x))|
B(n, x, rA(x))h(x)

≤
{

o(1/n) for 0 < x ≤ n0.99,

O((1/x)/(x/n)2) for n0.99 < x ≤ (1/2− ε)n.
.

Referring to Lemma 3.12 and the definition of B(n, x, r) we see that, for all
fixed n and r, the fitness drift B(n, x, r) monotonically increases with respect to
x. Therefore, for all x > (1/2 − ε)n, we have rA(x) = rA((1/2 − ε)n) and
B(n, x, rA(x)) ≥ B(n, (1/2− ε)n, rA((1/2− ε)n)) ≥ Amax,ε(1/2− ε) −O(1/n) ≥
1/2− ε−O(1/n) = Ω(1), thus

E(TÃ∗ε) ≤
(1/2−ε)n∑
x=1

1
h(x)

+O(1) +O(n0.03) +
εn

Amax,ε(1/2− ε) + o(n).

This proves the first statement.
The second statement can be shown by using similar methods to bound the ab-

solute difference |1/B(n, x, rA(x))− 1/Amax,ε(x/n)| for 0 < x ≤ n/2.

Corollary 3.29. For all constant 0 < ε < 1/2 the difference between the expected
runtime of Ã∗ε on OneMax and that of an optimal unary unbiased black-box algorithm
is O(εn). Furthermore, the absolute difference between the expected runtimes of A∗
and Ã∗ε is also O(εn).

Proof. Let constant 0 < ε < 1/2 and let A be an arbitrary unary unbiased black-box
algorithm. By Theorems 3.8 and 3.28 it holds that

E (TA) ≥
n/2−n0.6∑
x=1

1
h(x)

−Θ(n2/3 ln9(n))

≥
(1/2−ε)n∑
x=1

1
h(x)

− o(n)

≥ E
(
TÃ∗ε

)
−O(εn).

The second statement is a direct consequence of the first and Theorem 3.5.

3.4 Runtime Analysis for the Approximate Drift-
Maximizer Ã∗ε

We compute in this section the expected time needed by Algorithm Ã∗ε to optimize
OneMax. We fix 0 < ε < 1/2. As proven in Lemma 3.26 algorithm Ã∗ε flips
R̃opt,ε(p) = 1 bit whenever 0 < p < 1/3. In this regime Ã∗ε is thus equal to RLS. It is
well known (and easy to prove by a simple fitness-level argument) that the expected
time needed by RLS starting in a search point of OneMax value 2n/3 to reach the
all-ones string equals n∑n/3

i=1 1/i = nHn/3 = n(ln(n/3) + γ) + 3/2+O(1/n), where
γ ≈ 0.57721 . . . denotes again the Euler–Mascheroni constant. It therefore remains
to compute the time needed by Ã∗ε to reach for the first time a search point having
fitness at least 2n/3.

52 Chapter 3. Precise Unary Unbiased Black-box Complexity

Formally, we also need to show that the first search point having fitness at least
2n/3 does not have a fitness value that is much larger than this. Since we flip a
constant number of bits only, we get this statement for free. Note also that it is
shown below that in the interval before reaching this fitness level the algorithm flips
only 3 bits. Apart from this situation around fitness layer 2n/3 we do not have to
take care of jumping several fitness layers by hand, but this is taken into account
already in the drift theorems from which we derive our runtime estimates.

3.4.1 Drift Analysis

As we did in Section 3.2, we employ the variable drift theorems, Theorems 2.4
and 2.7, to compute upper and lower bounds for the expected runtime of algorithm
Ã∗ε. We will provide a numerical evaluation of these expressions in Section 3.4.2.

Lower bound. We first compute a lower bound for the expected runtime E(TA)
of any unary unbiased black-box algorithm A on OneMax. According to Theo-
rem 3.8 and using a similar method to estimate |1/Amax,ε(x/n)− 1/h(x)| = o(1) as
in Theorem 3.28 for 0 < x ≤ (1/2− ε)n, we obtain that

E (TA) ≥
n/2−n0.6∑
x=1

1
h(x)

−Θ(n2/3 ln9(n)) ≥
(1/2−ε)n∑
x=1

1
Amax(x/n)

− o(n)

= nHn/3 +
(1/2−ε)n∑
x=bn/3c

1
Amax(x/n)

− o(n).

Let k ∈ N and let 1/2− ε =: p0 > p1 > . . . > pk > 1/3. Using the fact that Amax,ε
is increasing, we bound E(TA) by

E (TA) ≥ n
(

ln
(
n

3

)
+ γ +

k∑
i=1

pi−1 − pi
Amax,ε(pi−1)

+
∫ pk

1/3

dp
Amax,ε(p)

)
− o(n). (3.33)

Upper bound. Using the fact that R̃opt,ε(x/n) = 1 for all 0 < x ≤ n/3 and
referring to Theorem 3.28, we obtain

E
(
TÃ∗ε

)
≤ nHn/3 +

(1/2−ε)n∑
x=bn/3c

1
Amax,ε(x/n)

+
εn

Amax,ε(1/2− ε) + o(n).

Using the same partition points as in the lower bound statement and the monotonicity
of Amax,ε, we have

E(TÃ∗ε) ≤ n
(

ln
(
n

3

)
+ γ +

k∑
i=1

pi−1 − pi
Amax,ε(pi)

+
1/2− p0
Amax,ε(p0)

+
∫ pk

1/3

dp
Amax,ε(p)

)
+ o(n).

(3.34)

3.4.2 Numerical Evaluation of the Expected Runtime

In this section we evaluate expressions (3.33) and (3.34) numerically to compute
an estimate for the expected runtime of algorithm Ã∗ε on OneMax and for the unary
unbiased black-box complexity.

3.5. Fixed-Budget Analysis 53

r Lr Rr Amax,ε(Lr) Amax,ε(Rr) Rr −Lr
3 0.333333333 0.367544468 0.333333 0.405267 0.034211135
5 0.367544468 0.386916541 0.405267 0.467174 0.019372073
7 0.386916541 0.399734261 0.467174 0.522084 0.012817721
9 0.399734261 0.409006003 0.522084 0.571870 0.009271741
11 0.409006003 0.416109983 0.571870 0.617718 0.007103980

Table 3.1: The optimal number of bit flips in interval (Lrn,Rrn] is
r.

Theorem 3.30. For sufficiently small ε > 0 the expected runtime E(TÃ∗ε) of algo-
rithm Ã∗ε on OneMax is n ln(n) − cn± o(n) for a constant c between 0.2539 and
0.2665. This bound is also the unary unbiased black-box complexity of OneMax.

We can rewrite the expression in Theorem 3.30 to n (ln (n/3) + γ + c′) + o(n)
for a constant c′ between 0.2549 and 0.2675 to ease a comparison with the expected
runtime of the previously best known unary unbiased algorithm, which is the one
presented in [LDD15]. This latter algorithm has an expected runtime equaling that
of RLS up to an additive term of order o(n). It is hence n(ln(n/2) + γ)± o(n). For
sufficiently small ε > 0 Algorithm Ã∗ε is thus by an additive (ln(3)− ln(2)− c′)n±
o(n) term faster, on average, than RLS or the algorithm presented and analyzed
in [LDD15]. That is, compared to RLS, algorithm Ã∗ε saves between 0.138n± o(n)
and 0.151n± o(n) iterations on average.

To compute E(TÃ∗ε), we split the interval (0, 1
2) into intervals (L2i+1, R2i+1],

i = 0, 1, . . ., such that for each i and each p ∈ (L2i+1, R2i+1] the number R̃opt,ε(p) of
bits that need to be flipped in order to maximize the approximated expected fitness
increase A(·, p, 1− p) is 2i+ 1 (note that this is independent of ε, since ε just deter-
mines the cut-off point after which only use a bound for the drift-maximizing number
of bit flips). Table 3.1 displays the first few intervals along with the corresponding
drift values at the borders of the interval. We observe that the further we are away
from the optimum (this corresponds to larger r by Theorem 3.19), the smaller the
size of the interval.

The bound for the expected runtime of algorithm Ã∗ε reported in Theorem 3.30 is
obtained by setting p0 = R4001, pk = R9 and using the following partition points

p0 = R4001 > R3001 > R2001 > R1001 > R951 > R901 > R851 >

· · · > R200 > R151 > R101 > R35 > R34 > · · · > R10 > R9 = pk.

The accuracy of our approximation can be increased by adding denser partition points,
especially to the smaller side near pk.

3.5 Fixed-Budget Analysis
In this section, we compare the algorithms developed in this work with the classic

RLS heuristic (which was the essentially best previous unary unbiased algorithm for
Om) in the fixed-budget perspective, that is, we compare the expected fitnesses ob-
tained after a fixed budget B of iterations. This performance measure was introduced
by Jansen and Zarges [JZ14] to reflect the fact that the most common use of search
heuristics is not to compute an optimal solution, but only a solution of reasonable
quality. We note that the time to reach a particular solution quality, called TA,f (a)
in [Doe+13a] where this notion was first explicitly defined, would be an alternative
way to phrase such results. We do not regard this performance measure here, but we

54 Chapter 3. Precise Unary Unbiased Black-box Complexity

would expect that, in a similar vein in as the following analysis, also in this measure
our algorithm is superior to RLS by a (small) constant percentage.

Our main result in this section is that our drift maximizer with a fixed budget
compute solutions having a roughly 13% smaller fitness distance to the optimum.
This result contrasts the lower-order advantage in terms of the expected runtime,
i.e., the average time needed to find an optimal solution.

The main challenge is proving the innocent statement that the time taken by our
algorithm to find a solution x of fitness Om(x) ≥ 2n/3 is strongly concentrated.
Such difficulties occur often in fixed-budget analyses, see, e.g. [Doe+13a]. We prove
the desired concentration via the following well-known martingale version of Azuma’s
inequality [Azu67] (as opposed to the simpler method of bounded differences, which
appears not to be applicable here).

Theorem 3.31 (Method of Bounded Martingale Differences). Let X1, X2, . . . , Xn

be an arbitrary sequence of random variables and let f be a function satisfying
the property that for each i ∈ [n], there is a non-negative ci such that |E(f |
X0, X1, . . . , Xi−1)−E(f | X0, X1, . . . , Xi)| ≤ ci. Then

Pr (|f −E(f)| ≥ δ) ≤ 2 exp
(
− δ2

2∑n
i=1 c

2
i

)

for all δ > 0.

Consider a run of the algorithm Ã∗ε with small constant 0 < ε < 1/6. Let
Xt := n−max{Om(x(i)) | i ∈ [0..t]} be the current smallest fitness distance and
let rmax := R̃opt,ε(1/2 − ε) be the maximal mutation strength. Let T1/3 be the
first time at which the distance to the optimum is at most n/3, i.e., T1/3 is the
smallest t for which Xt ≤ n/3. Let N := 3rmaxn and define the function f by setting
f(X0, X1, . . .) := min{N,T1/3}.

We notice that Pr(T1/3 > f) = Pr(T1/3 > N) = Pr(XN > n/3). Re-
ferring to Lemma 3.16, we obtain for all Xt > n/3 that E(Xt − Xt+1 | Xt) =
B(n,Xt, R̃opt(Xt/n)) ≥ Amax,ε(Xt/n)−O(1/Xt) ≥ 1/3− o(1). Using the fact that
Xt −Xt+1 ≤ rmax, we obtain Pr(Xt > Xt+1 | Xt > n/3) ≥ 1/(3rmax) − o(1).
Define binary random variables Yt by setting Yt := 1Xt>Xt+1 , if Xt > n/3, and oth-
erwise by having Yt = 1 with probability 1/(3rmax)− o(1) independently for all such
Yt. Note that, by definition, we have Pr[Yt = 1] ≥ 1/(3rmax)− o(1) regardless of
the outcomes of Yt′ , t′ < t. Consequently, by well-known results, e.g., Lemma 3
in [Doe18a], the Yt admit the same Chernoff bounds for the lower tail as independent
binary random variables with success probability 1/(3rmax)− o(1). We thus estimate
Pr(XN > n/3) ≤ Pr(Y1 + Y2 + · · ·+ YN < (2/3)n) = exp(−Ω(n)). Consequently
E(T1/3 − f) < E(T)Pr(T1/3 > f) = exp(−Ω(n)).

Using the fact that Xt −Xt+1 ≤ rmax, the additive drift theorem yields that the
expected influence of one iteration on the remaining optimization time is at most
rmax/(1/3− o(1)) < 4rmax. Consequently, for 1 ≤ i ≤ N , we have

|E(f | X0, X1, · · · , Xi−1)−E(f | X0, X1, · · · , Xi)| ≤ 4rmax.

3.6. Self-adjusting Mutation Rate 55

Applying Theorem 3.31 and using the fact that Pr(T1/3 > f) = exp(−Ω(n)) and
E(T1/3 − f) = exp(−Ω(n)), we compute

Pr
(
|T1/3 −E(T1/3)| ≥ n0.6

)
≤ Pr

(
|f −E(T1/3)| ≥ n0.6

)
+ exp(−Ω(n))

≤ Pr
(
|f −E(f)−E(T1/3 − f)| ≥ n0.6

)
+ exp(−Ω(n))

≤ Pr
(
|f −E(f)| ≥ n0.6 −E(T1/3 − f)

)
+ exp(−Ω(n))

≤ Pr
(
|f −E(f)| ≥ n0.6/2

)
+ exp(−Ω(n))

≤ 2 exp
(
− n1.2/4

2N(4rmax)2

)
+ exp(−Ω(n)) = o(exp(−n0.1)).

According to the computation in the proof of Theorem 3.30 and using the fact
that E(T1/3) = E(TÃ∗ε)− nHn/3, we obtain with probability 1−O(exp(−n0.1)) that
0.2549n ≤ T1/3 ≤ 0.2675n.

Consider a budget of B = kn iterations with k ≥ 0.2675. Let s := b0.2675nc.
With probability 1−O(exp(−n−0.1)), a run of algorithm Ã∗ε has Xs ≤ n/3. Condi-
tional on this, in the remainder Ã∗ε mutates exactly one bit in each iteration according
to Lemma 3.26. Since E(Xt | Xt−1) = Xt−1(1− 1/n) in this case, we have for all
t ≥ s that

E(Xt | Xs) = E(Xs) (1− 1/n)t−s ≤ (n/3)(1− 1/n)t−s.

Therefore, with a budget of B ≥ 0.2675n algorithm Ã∗ε reaches a fitness distance XB

satisfying

E(XB) ≤ E(XB | Xs ≤ n/3) + n ·Pr(Xs > n/3) ≤ (1 + o(1))(n/3)(1− 1/n)B−0.2675n.

Using the same reasoning for RLS, we compute for YB the fitness distance RLS
reaches with the same budget of B that

E(YB) = (n/2)(1− 1/n)B

= (3/2)(1− 1/n)0.2675n(n/3)(1− 1/n)B−0.2675n

≥ (1− o(1))(3/2) exp(−0.2675)E(XB)

= (1− o(1))1.1479... E(XB).

In other words, E(XB) ≤ (1 + o(1))0.8711... E(XA), that is, with the same budget,
Algorithm Ã∗ε is roughly 13% closer to the optimum than RLS.

3.6 Self-adjusting Mutation Rate
While it is clear that choosing the best mutation strength for each fitness level

can improve the performance, it is not so clear how to find a good mutation strength
function efficiently. To overcome this difficulty, we propose to choose the mutation
strength in each iteration based on the experience in the optimization process so far.
We enforce gaining a certain experience by designating each iteration with probability
δ as learning iteration. In a learning iteration, we flip a random number of bits (chosen
uniformly at random from a domain [1..rmax]) and store (in an efficient manner) the
progress made in these iterations. In all regular iterations, we use the experience

56 Chapter 3. Precise Unary Unbiased Black-box Complexity

made in these learning iterations to determine the most promising mutation strength
and create the offspring with this mutation strength.

More precisely, let us denote by xt the search point after the t-th iteration, that is,
after the mutation and selection step of iteration t. Denote by x0 the random initial
search point. If t is a learning iteration, denote by rt the random mutation strength
r used in this iteration. Otherwise set rt = 0.

The main idea of our algorithm is to learn the efficiency of the mutation strengths,
that is, the expected progress made when flipping r bits, for all r ∈ [1..rmax]. We do
so via a time-discounted average of the progresses observed in the learning iterations:
We define the estimated progress, called velocity in the absence of a better name,
after the t-th iteration by

vt[r] :=
∑t
s=1 1rs=r(1− ε)t−s(f(xs)− f(xs−1))∑t

s=1 1rs=r(1− ε)t−s
. (3.35)

In this expression, the parameter ε, called forgetting rate, determines the decrease of
the importance of older information. Since (1− ε)1/ε ≈ 1/e, the reciprocal of the
forgetting rate is (apart from constant factors) the information half-life.

We first observe that we can compute the velocities iteratively and thus, unlike
equation (3.35) might suggest, do not need to store the full history of the learning
iterations. To this aim, we need to store one additional value for each r, namely the
sum of the (1− ε)t−s terms used in the weighted average, that is,

wt[r] :=
t∑

s=1
1rs=r(1− ε)t−s.

Then the following recursive description of the velocities and weight sums is easily
seen: If in iteration t+ 1 we have not done a learning step with mutation strength r,
that is, rt+1 6= r, then vt+1[r] = vt[r] and wt+1[r] = (1− ε)wt[r]. If rt+1 = r, then

vt+1[r] =
(1− ε)wt[r]vt[r] + f(xt+1)− f(xt)

(1− ε)wt[r] + 1 ,

wt+1[r] = (1− ε)wt[r] + 1.

For exploiting the experience gained in the learning iterations, we adopt a greedy
strategy and always choose the mutation strength with highest velocity (breaking ties
randomly, but giving preference to the previous-best mutation strength). Our greedy
choice of the mutation strength might be detrimental for fitness landscapes in which
the optimal mutation strength changes very frequently. Therefore a velocity-weighted
random choice might be more fruitful.

From this discussion, we derive the algorithm randomized local search with self-
adjusting mutation strength (Algorithm 7).

3.7 Mathematical Runtime Analysis on OneMax
In this section, we analyze via mathematical means how self-adjusting algorithm

optimizes the OneMax function. This is an asymptotic analysis in terms of the
problem size n. We refer to the previous well-established runtime analysis literature
for more details on the motivations of mathematical runtime analysis and on the
meaning of asymptotic results.

3.7. Mathematical Runtime Analysis on OneMax 57

Algorithm 7 Randomized local search with self-adjusting mutation strength. The
parameters of the algorithm are the maximum mutation strength rmax, the learning
rate δ, and the forgetting rate ε. The operator flip(x, r) generates from x a new search
point by flipping exactly r random bit positions.
Initialization:
Choose x ∈ {0, 1}n uniformly at random.
for r ← 1, 2, . . . , rmax do (v[r], w[r]) := (0, 0).
Set r∗ ← 1.
Optimization:
for t← 1, 2, . . . do

z ← random([0, 1]).
if z ≤ δ then% learning iteration

r ← random({1, . . . , rmax}).
y ← flip(x, r).
(v[r], w[r])←

(
(1−ε)w[r]v[r]+max{0,f (y)−f (x)}

(1−ε)w[r]+1 , (1− ε)w[r] + 1
)
.

for r′ ∈ {1, . . . , rmax} \ {r} do w[r′]← (1− ε)w[r′].
else

r+ ← random(argmaxr(v[r])).
if v[r+] > v[r∗] then r∗ ← r+.
y ← flip(x, r∗).
for r ∈ {1, . . . , rmax} do w[r]← (1− ε)w[r].

if f(y) ≥ f(x) then x← y.

The main result of this section is a proof that our algorithm with reasonable
parameter settings very precisely detects the optimal mutation strength. It thus,
apart from the learning iterations, has the same performance as the randomized
local search algorithm with fitness dependent mutation strength. The main technical
challenge in this analysis are the dependencies between the progress of the algorithm
and the learning system trying to estimate the velocities. We overcome these, among
others, via a domination argument developed in [Doe11] (Lemma 1.20).

Throughout this section, we assume that rmax is a constant independent of n. For
simplicity, we only regard the parameters ε = n−0.99 and δ = n−0.01, but remark that
broader ranges of these parameters would work as well. In addition to the notation
introduced in the previous section, we write r∗t for the number of bits flipped in a
non-learning iteration. We also define the fitness distance d(x) = n− f(x) for all
x ∈ {0, 1}n.

We start with two elementary results on the fitness progress made in one iteration.
We frequently use two elementary facts about the progress from flipping a constant
number of bits.

Lemma 3.32. Consider a run of our algorithm. Let t and H be such that d(xt)H ≥
n1.01. Then d(xt+H) ≥ d(xt)(1− 2Hrmax/n) with probability 1− exp(−Ω(n0.01)).

Proof. Consider an iteration t+ i that creates xt+i from xt+i−1. Independent of what
happened in the previous iterations, the progress d(xt+i−1)− d(xt+i) is dominated
by the number of 0-bits (of xt+i−1) that are flipped in the mutation step, which again
is dominated by the number of flipped positions that were 0 in xt. Consequently,
d(xt+i−1)− d(xt+i) is dominated by a hypergeometric distribution with parameters
n, d(xt), rmax. By Lemma 1.20 of [Doe11], d(xt)− d(xt+H) is dominated by a sum
of H independent random variables each having a hypergeometric distribution as

58 Chapter 3. Precise Unary Unbiased Black-box Complexity

above. Consequently, E((xt)−d(xt+H)) ≤ Hrmaxd(xt)/n and Pr(d(xt)−d(xt+H) ≥
2Hrmaxd(xt)/n) ≤ exp(−Hrmaxd(xt)/3nr2

max).

Without proof, we state the following elementary fact.

Lemma 3.33. Let r ∈ [1..rmax]. For d ∈ [0..n], let Xd := Xr
d := max{d(x) −

d(flip(x, r)), 0}, where x is any search point with d(x) = d. In other words, Xd

describes the fitness gain in one iteration that starts with a search point with fitness
f(xt) and in which the mutation consists of flipping exactly r bits. Then E(Xd)−
E(Xd−H) = O(H/n). Also, Xd stochastically dominates Xd−H .

The following lemma states that, apart from an initial segment of the optimization
process, the values of wt[r] can essentially assumed to be constant over time.

Lemma 3.34. Let r ∈ [1..rmax], t ≥ H := (1/ε) ln(n) and w∗ := δ/rmaxε. Then
with probability 1− exp(−nΩ(1)),

|wt[r]−w∗| ≤ w∗O(n−0.002).

Proof. By definition, we have wt[r] =
∑t
s=1 1rs=r(1− ε)t−s. The random variables

1rs=r are independent Bernoulli trials with success probability δ/rmax. Consequently,

E(wt[r]) = (δ/rmax)
t∑

s=1
(1− ε)t−s = (δ/rmax)

1− (1− ε)t+1

1− (1− ε) ,

which is smaller than δ/rmaxε and greater than (δ/rmaxε)(1 − (1 − ε)H) ≥
(δ/rmaxε)(1− n−1), the latter using t ≥ H and the well-known estimate (1− ε) ≤
exp(−ε) valid for all ε ∈ R.

By the multiplicative Chernoff bound in Theorem 2.8, taking γ = n−0.002, we
have Pr[|wt[r] − E(wt[r])| ≥ γ(δ/rmaxε)] ≤ 2 exp(−γ2(1 − 1/n)2(δ/rmaxε)/3) =
exp(−Ω(n0.006)).

The following two lemmas show how well our learning mechanism is able to detect
the currently most profitable mutation strength.

Lemma 3.35. Let r ∈ [1..rmax], t ≥ 1 and H = (1/ε)2 ln(n).
Then with probability at least 1 − exp(−nΩ(1)), we have vt+H [r] ≤ (1 +
O(n−0.002))max{E(Xr

f (xt+H)), (ε/δ)n0.01}.

Proof. Let S :=
∑t+H
s=1 1rs=r(1− ε)t+H−s(f(xs)− f(xs−1)). Since f(xs)− f(xs−1) ≤

r ≤ rmax, we have S0 :=
∑t
s=1 1rs=r(1 − ε)t+H−s(f(xs) − f(xs−1)) ≤

∑t
s=1(1 −

ε)t+H−srmax ≤ rmax(1/ε)(1− ε)H ≤ rmax/εn2.
For the rest S1 =

∑t+H
s=t+1 1rs=r(1 − ε)t+H−s(f(xs) − f(xs−1)) of the sum

S, we argue as follows. Independent of what happened before iteration s,
by Lemma 3.33 the progress f(xs) − f(xs−1) is dominated by a random vari-
able with distribution Xd(xt). By Lemma 1.20 in [Doe11], S1 is dominated
by S′ =

∑t+H
s=t+1 1rs=r(1 − ε)t+H−sYs, where the Ys are independent copies

of the random variable Xd(xt). We have E(S′) =
∑t+H
s=t+1(δ/rmax)(1 −

ε)t+H−sE(Xd(xt)) ≤ (δ/rmaxε)E(Xd(xt)) ≤ (δ/rmaxε)max{E(Xd(xt)), (ε/δ)n0.01} ≤
(1 +O(H/n))(δ/rmaxε)max{E(Xd(xt+H)), (ε/δ)n0.01} =: U , where the changing xt
into xt+H for an extra (1 + O(H/n)) factor is justified by Lemma 3.33 (note that
d(xt+H) ≥ d(xt)−E(Xd(xt))O(H) ≥ d(xt)−O(d(xt)/n)O(H) with high probabil-
ity is justified by Lemma 3.32). The multiplicative Chernoff bound, recall (i) that

3.7. Mathematical Runtime Analysis on OneMax 59

these bounds remain valid when the expectation is replaced by an upper bound for
the expectation and (ii) that our independent summands take values in [0, rmax],
gives that Pr[S′ ≥ (1 + γ)U] ≤ exp(−γ2U/3r2

max) = exp(−Ω(γ2n0.01)), which is
exp(−Ω(n0.006)) for γ = n−0.002.

Consequently, with probability at least 1− exp(−Ω(n0.006)), we have S = S0 +
S1 ≤ rmax/εn2 + (1 + O(n−0.002))(δ/rmaxε)max{E(Xf (xt+H)), (ε/δ)n0.01} = (1 +

O(n−0.002))(δ/rmaxε)max{E(Xf (xt+H)), (ε/δ)n0.01}.
By Lemma 3.34, we have wt+H [r] = (1−O(n−0.002))δ/rmaxε with probability at

least 1− exp(−nΩ(1)). Consequently, with probability at least 1− exp(−nΩ(1)), we
have vt+H [r] = S/wt+H [r] ≤ (1 +O(n−0.002))max{E(Xf (xt+H)), (ε/δ)n0.01}.

Lemma 3.36. Let r ∈ [1..rmax], t ≥ 1 and H = (1/ε) ln(n). Assume that
E(Xr

d(xt+H)) = Ω(n0.01ε/δ). Then with probability at least 1− exp(−nΩ(1)), we have
vt+H [r] ≥ (1−O(n−0.002))E(Xr

f (xt+H)).

Proof. Let S :=
∑t+H
s=1 1rs=r(1− ε)t+H−s(f(xs) − f(xs−1)). This dominates S1 =∑t+H

s=t+1 1rs=r(1− ε)t+H−s(f(xs)− f(xs−1)). Independent of what happened in iter-
ations before iteration s, the progress in the s-th iteration f(xs)− f(xs−1) dominates
Xd(xt+H). Let S′ :=

∑t+H
s=t+1 1rs=r(1− ε)t+H−sYs, where the Ys are independent ran-

dom variables with distribution Xd(xt+H). By Lemma 1.20 of [Doe11], S dominates
S′.

By construction, S′ is a sum of independent random variables each taking values
in [0, rmax]. Estimating the geometric series as in Lemma 3.34, we compute E(S′) =∑t+H
s=t+1(δ/rmax)(1 − ε)t+H−sE(Xd(xt+H)) ≥ (1 − 1/n)(δ/rmaxε)E(Xd(xt+H)) =:

L. The multiplicative Chernoff bound gives Pr(S′ ≤ (1 − γ)L) ≤
exp(−γ2L/2r2

max), which is exp(−nΩ(1)) for γ = n−0.002 and using E(Xd(xt+H)) =

Ω(n0.01ε/δ). Consequently, with probability 1 − exp(−nΩ(1)), we have S ≥ (1 −
O(n−0.002))(δ/rmaxε)E(Xd(xt+H)).

Since by Lemma 3.34, we have wt+H [r] = (1 + O(n−0.002))δ/rmaxε with prob-
ability at least 1 − exp(−nΩ(1)), we conclude that with probability at least 1 −
exp(−nΩ(1)), we have vt+H [r] = S/wt+H [r] ≥ (1 +O(n−0.002))E(Xf (xt+H)).

The fact that our algorithm very precisely detects the optimal mutation strength
implies that its fitness progress in each iteration is very close to the maximum possible
(Theorem 3.37) and that it has a performance very close to the algorithm developed
in Section 3.3 (Theorem 3.38).

Theorem 3.37. Let T be the optimization time of our algorithm with parameters
δ = n−0.01 and ε = n−0.99 on the OneMax function. Let T ′ = min{T, 2n ln(n)}.
Then with probability at least 1 − O(n0.19), for each non-learning iteration t ∈
[2 ln(n)/ε, T ′], we have

E(X
r∗t
d(xt−1)

) ≥ (1−O(n−0.002))max{E(Xr
d(xt−1)

) | r ∈ [1..rmax]}.

Proof. Assume that none of the polynomially many exceptional events in Lem-
mas 3.34, 3.35, and 3.36 (occurring each with probability at most exp(−nΩ(1)))
appears in the first T ′ iterations. Let t be such that d(xt−1) ≥ n0.04. Then
E(X1

d(xt−1)
) = d(xt−1)/n ≥ n−0.96 > n−0.97 = n0.01ε/δ. Consequently, by

Lemma 3.35 and 3.36 and the fact that r∗t ∈ argmaxr vt−1[r], we have E(Xr∗t
d(xt−1)

) ≥
(1−O(n−0.002))max{E(Xr

d(xt−1)
) | r ∈ [1..rmax]}.

60 Chapter 3. Precise Unary Unbiased Black-box Complexity

We now exploit that more-bit flips have a very small chance to be accepted towards
the end of the process. More precisely, for r ≥ 2 we have Pr(Xr

d) = O((d/n)2) with
the asymptotics for d/n → 0. Consequently, the probability that in some iteration
with d(xt) ≤ n0.3 a progress is made with a more-bit flip is O(T ′n−1.4) = Õ(n−0.4).
Let us condition on this event. Then, also by the previous paragraph, the opti-
mization process from a fitness distance of n0.3 to n0.04 equal the process of the
classic randomized local search heuristic (doing one-bit flips) prolonged by unsuccess-
ful multi-bit flips at a rate of Θ(δ). Consequently, via the standard arguments of
the analysis of randomized local search on OneMax (which essentially is the coupon
collector process), we see that with probability 1− exp(−nΩ(1)), it takes more than
0.25n ln(n) iterations to reduce the fitness distance from n0.3 to n0.04.

We estimate, for each r ≥ 2, the value of vt[r] after the first iteration t with
d(xt) = n0.04. Since the previous t′ = 0.25n lnn iterations did not see any successful r-
bit flip, we have S =

∑t
s=1 1rs=r(1− ε)t−s(f(xs)− f(xs−1)) ≤

∑t−t′
s=1(1− ε)t−srmax ≤

rmax(1/ε)(1 − ε)t′ , wt[r] ≤ (1 − O(n0.002))ε/δrmax, and thus vt[r] = S/wt[r] ≤
(1 +O(n0.002))r2

max(1/δ)(1− ε)t′ =: L. Since in the remaining run of the algorithm
no positive update to v[r] is made, we have vt+i[r] ≤ L for all i ≥ 1.

We now estimate vt+i[1]. We have St+i :=
∑t+i
s=1 1rs=r(1 − ε)t+i−s(f(xs) −

f(xs−1)) ≥ (1− ε)i∑t
s=1 1rs=r(1− ε)t−s(f(xs) − f(xs−1)) = (1− ε)irt[1] ≥ (1−

ε)i(1 − O(n−0.002))E(X1
d(xt)

) ≥ (1 − ε)i(1 − O(n−0.002))(d(xt)/n) = (1 − ε)i(1 −
O(n−0.002))n−0.97. Consequently, again using Lemma 3.34, we have vt+i[1] =
St+i/wt+i[r] ≥ (1 − ε)i(1 − O(n−0.002))n−0.97/(δ/rmaxε). Comparing this to L
above, we see that vt+i[1] is significantly larger than vt+i[r], r ≥ 2, as long
as, e.g., i ≤ 0.24n lnn =: t′′. Hence for the remaining t′′ iterations, our algo-
rithm performs 1-bit flips (apart from the few learning-iterations). Consequently,
E(d(xt+i)) ≤ d(xt)(1 − 1−δ

n)t
′′ ≤ n0.04 exp(−(1 − δ)(1/n)t′′) = n−0.2(1−δ). By

Markov’s inequality, the probability that the algorithm has not found the optimum
until iteration t+ t′′ thus is at most n−0.2(1−δ). Consequently, apart from this failure
probability, our algorithm has also chosen the optimal r, in this case r = 1, in the
time interval [t..T].

Theorem 3.38. Let Trmax be the minimal expected runtime on the OneMax prob-
lem among all randomized local search algorithms with fitness dependent mutation
strength. Then the expected runtime T of our algorithm A is at most Trmax + o(n).
Consequently, by taking rmax large enough, our algorithm has the same expected
runtime (apart from o(n) terms) as the algorithm using the near-optimal fitness-
dependent mutation strength of Algorithm Ã∗ε(cf. Section 3.3). Also, with any fixed-
budget of B ≥ 0.2675n iterations, it computes a solution approximately 13% closer to
the optimum than the classic RLS heuristic.
Proof. Denote by RLS(rmax) the class of all randomized local search algorithms for
functions f : {0, 1}n → [0..n] with fitness dependent mutation strength r : [0..n] →
[0..rmax]. Let Amax ∈ RLS(rmax) be the randomized local search algorithm with in
each iteration t flips that number r ∈ [1..rmax] of bits that maximizes the expected
progress E(f(xt)− f(xt−1)). Let A∗ ∈ RLS(rmax) be the randomized local search
algorithm with minimal expected optimization time (on f = OneMax). In Sec-
tion 3.2, it has been shown that the expected runtimes of both algorithms differ
by at most o(n), that is, E(TAmax) ≤ E(TA∗) + o(n). We show the assertion of
this theorem by showing that our algorithm A has an expected runtime satisfying
E(TA) ≤ E(TAmax) + o(n).

Denote the maximum expected progress from a search point x with fitness dis-
tance d(x) by hmax(d(x)) := max{E(Xr

d(x)) | r ∈ [1..rmax]}. Assume first that

3.8. Experimental Results 61

our algorithm A for the first T ′ = min{TA, 2n ln(n)} iterations has E(Xr∗t
d(xt−1)

) ≥
(1−O(n−0.002))hmax(d(xt−1)) in each non-learning iteration (this is the good case
in Theorem 3.37). Then in each iteration t ∈ [1..T ′], we have h(d(xt−1)) :=
E(f(xt) − f(xt−1)) ≥ (1 − δ)(1 − O(n−0.002))hmax(d(xt−1)) by ignoring possible
progress in learning iterations. By the variable drift theorem, as in Section 2.4,
we have that the expected time taken from a fixed initial search point x0 to a fitness
distance of, say, 0.1n, is

∫ f (x0)
0.1n

1
h(t)dt+ o(n). Since h and hmax are so close, this equals∫ f (x0)

0.1n
1

hmax(t)
dt+ o(n), which, again as shown in Section 3.2 via the variable drift the-

orem for lower bounds, is a lower bound for the time Amax needs to optimize x0 to
a fitness distance of 0.1n. From a fitness distance of 0.1n on, Amax does only 1-bit
flips and A does only 1-bit flips apart from the learning iterations. Consequently, the
classic coupon collector argument shows that Amax needs at least ∑0.1n−rmax

i=1 (n/i)
iterations to reach the optimum from the first search point reached that has fitness
distance at most 0.1n, whereas Amax does take at most ∑0.1n

i=1 (n/i(1− δ)) iterations
from any search point with fitness distance 0.1n or less. Again, these terms are equal
apart from o(n) terms, showing our claim for the good case of Theorem 3.37 assuming
that the initial search point has a fitness distance of at least 0.1n.

In the exceptional case of Theorem 3.37, which occurs with probability at most
O(n−0.19), or in the regular case of the theorem but for an initial search point with
fitness distance less than 0.1n (which occurs with probability exp(−Ω(n))), we argue
as follows. By only regarding the learning iterations and only those in which rt = 1
was chosen, we see that the expected time to reduce a fitness distance of d (by
at least one) is at most (n/dδrmax). This gives an upper bound for the expected
runtime of O(n log(n)/δ) = O(n1.01 logn). Since these exceptional cases occur only
with probability O(n−0.19), they contribute at most o(n) to the expected runtime of
A.

Since we have essentially the same (variable) drift as Ã∗ε from Section 3.3, the
proof for the second statement on the fixed-budget performance follows from the
same arguments in Section 3.5.

3.8 Experimental Results
In this section we describe some experimental results for our self-adjusting RLS.

These are by no means intended to account for a thorough scientific investigation,
both for reasons of space and because we feel that the mathematical investigation in
the subsequent section is more insightful, also with respect to why the proposed ideas
work well. Nevertheless, the experimental results indicate that our new algorithm
gives good results also for problems other than OneMax, they give some hints on
how to choose the parameters rmax, δ and ε, and they taught us that finding suitable
parameters was not very difficult—we were immediately faster than the (1+1) EA
and with at most a few trials were able to beat RLS. All experiments were repeated
20 times, all numbers given below are the averages of these 20 runs.

LeadingOnes function: The LeadingOnes function is defined by
LeadingOnes(x) := max{i ∈ [0..n] | ∀j ≤ i : xj = 1}, that is, it counts,
starting from the left end, how many consecutive ones the bit-string x contains.
The expected optimization time (number of iterations until the optimum is found)
for RLS is 0.5n2 ± O(n), that of the (1+1) EA with mutation rate p = 1/n is
0.5n2(1− 1/n)((1− 1/n)−n − 1) = 0.5(e− 1)n2 ±O(n) ≈ 0.8591n2. When taking
the asymptotically optimal mutation rate of approximately 1.59, the optimization

62 Chapter 3. Precise Unary Unbiased Black-box Complexity

time drops to approximately 0.7720n2. When taking a (best-possible) fitness-
dependent mutation rate of pi = 1/(i+ 1) at fitness i, then the optimization time
drops to (e/4)n2 ±O(n) ≈ 0.6796n2 [BDN10].

Experimentally, for n = 10, 000 and taking the parameters rmax = 5, δ = 0.1 and
ε = 1/(5, 000, 000), we observed an average optimization time of 45.5 million itera-
tions, that is, 0.455n2, which clearly beats RLS and all (1+1) EA results described
above. The relative standard deviation is low, 4.48% to be precise. 1

Minimum spanning trees: Given a connected undirected graph G = (V,E)
with edge weights w : E → R>0, the minimum spanning tree problem asks for finding
a tree in G that connects all vertices and that has minimal total weight. This problem
can be solved via evolutionary methods by taking a bit-string representation (each bit
describes whether some edge is part of the tree or not) and taking as fitness function
(to be minimized) the sum of the weights of the edges in the string representation
plus a punishment term for each connected component (except the first one). For
this representation of the problem, both RLS (flipping one or two bits with equal
probability) and the (1+1) EA find an optimal solution in any input in expected time
O(|E|2 log(|E|wmax), where wmax is the maximum weight of an edge (see [NW07]).

We ran the following experiments. We took as graph G the complete graph on
50 vertices (hence |E| = 1225) with edge weights chosen independently at random in
[0, 1], thus having a unique minimum spanning tree. On this instance, RLS in the
variant that flips either one or two bits (random choice between these two alternatives)
took 4.68 · 106 ± 38.43% iterations. Our algorithm with rmax = 5, δ = 0.1, and
ε = 1/(20, 000) took 2.66 · 106 ± 30.05% iterations. Analyzing these runs in more
detail, we observe that the preferred mutation strength r after a short initial phase
takes the maximum value 5, then decreases to one, and finally goes back to two,
which is then used for the large remainder of the optimization process. For reasons
of computation time, we could not evaluate the (1+1) EA on graphs on 50 vertices.
For graphs on 20 vertices, the (1+1) EA was roughly 4 times slower that RLS.

1. We report in the following the mean and relative standard deviations of our experiments by
expressing, for example, the previous numbers as 45.5 · 106 ± 4.48%.

63

Chapter 4

Self-adjusting (1+λ) EA

In this chapter, we propose a way to adjust the mutation rate on the fly for
algorithms using larger offspring populations. The simple idea is to create half the
offspring with twice the current mutation rate and the other half using half the
current rate. The mutation rate is then modified to the rate which was used to
create the best of these offspring (choosing the winning offspring randomly among
all best in case of ambiguity). We do not allow the mutation probability to leave the
interval [2/n, 1/4], so that the probability used in the subpopulations are always in
the interval [1/n, 1/2].

We add one modification to the very basic idea described in the first paragraph
of this section. Instead of always modifying the mutation rate to the rate of the best
offspring, we shall take this winner’s rate only with probability a half and else modify
the mutation rate to a random one of the two possible values (twice and half the
current rate). Our motivation for this modification is that we feel that the additional
random noise will not prevent the algorithm from adjusting the mutation rate into
a direction that is more profitable. However, the increased amount of randomness
may allow the algorithm to leave a possible basin of attraction of a locally optimal
mutation rate. Observe that with probability Θ(1/n2), a sequence of log2 n random
modifications all in the same direction appears. Hence with this inverse-polynomial
rate, the algorithm can jump from any mutation rate to any other (with the restriction
that only a discrete set of mutation rates can appear). We note that the existence of
random modifications is also exploited in our runtime analysis, which will show that
the new self-adjusting mechanism selects mutation rates good enough to lead to the
asymptotically optimal runtime among all dynamic choices of the mutation rate for
the (1+λ) EA.

In this first work proposing this mechanism, we shall not spend much effort fine-
tuning it, but rather show in a proof-of-concept manner that it can find very good
mutation rates. In a real application, it is likely that better results are obtained by
working with three subpopulations, namely an additional one using (that is, exploit-
ing) the current mutation rate. Also, it seems natural that more modest adjustments
of the mutation rate, that is, multiplying and dividing the rate by a number F that
is smaller than the value F = 2 used by our mechanism, is profitable. We conduct
some elementary experiments supporting this intuition in Section 4.7.

To prove that the self-adjusting mechanism just presented can indeed find good
dynamic mutation rates, we conduct a rigorous runtime analysis for our self-adjusting
(1+λ) EA on the classic test function OneMax.

The runtime of the (1+λ) EA with fixed mutation rates on OneMax is well
understood [DK15; GW17]. In particular, [GW17] show that the expected runtime
(number of generations) is (1± o(1))

(
1
2 · n ln lnλ

lnλ + er

r · n lnn
λ

)
when a mutation rate

of r/n, r a constant, is used. Thus for λ not too large, the mutation rate determines

64 Chapter 4. Self-adjusting (1+λ) EA

the leading constant of the runtime, and a rate of 1/n gives the asymptotically best
runtime.

As a consequence of their work on parallel black-box complexities, Badkobeh,
Lehre, and Sudholt [BLS14] showed that the (1+λ) EA with a suitable fitness-
dependent mutation rate finds the optimum of OneMax in an asymptotically better
runtime of O(n

log λ + n logn
λ), where the improvement is by a factor of Θ(log log λ). 1

This runtime is best-possible among all λ-parallel unary unbiased black-box opti-
mization algorithms. In particular, no other dynamic choice of the mutation rate
in the (1+λ) EA can achieve an asymptotically better runtime. The way how the
mutation rate depends on the fitness in the above result, however, is not trivial.
When the parent individual has fitness distance d, then mutation rate employed is
p = max{ lnλ

n ln(en/d) ,
1
n}.

Our main technical result is that the (1+λ) EA adjusting the mutation rate ac-
cording to the mechanism described above has the same (optimal) asymptotic run-
time. Consequently, the self-adjusting mechanism is able to find on the fly a mutation
rate that is sufficiently close to the one proposed in [BLS14] to achieve asymptotically
the same expected runtime.

Theorem 4.1. Let λ ≥ 45 and λ = nO(1). Let T denote the number of generations
of the (1+λ) EA with self-adjusting mutation rate to minimize OneMax. Then,

E(T) = Θ
(

n

log λ +
n logn
λ

)
.

This corresponds to an expected number of function evaluations of Θ(λn
log λ + n logn).

To the best of our knowledge, this is the first time that a simple mutation-based
EA achieves a super-constant speed-up via a self-adjusting choice of the mutation
rate.

As an interesting side remark, our proofs reveal that a quite non-standard but
fixed mutation rate of r = ln(λ)/2 also achieves the Θ(log log λ) improvement as
it implies the bound of Θ(n/ log λ) generations if λ is not too small. Hence, the
constant choice r = O(1) as studied in [GW17] does not yield the asymptotically
optimal number of generations unless λ is so small that the n logn-term dominates.

Lemma 4.2. Let λ ≥ 45 and λ = nO(1), Let T denote the number of generations of
the (1+λ) EA with fixed mutation rate r = ln(λ)/2. Then,

E(T) = O

(
n

log λ +
n logn√

λ

)
.

This corresponds to an expected number of function evaluations of

O

(
λn

log λ +
√
λn logn

)
.

This chapter is structured as follows: In Section 4.1 we give the algorithm and
the mutation scheme. Afterwards, Section 4.2 gives a high-level overview of our main
proof strategy. The following technical sections deal with the runtime analysis of

1. As usual in the analysis of algorithms, we write log when there is no need to specify the base
of the logarithm, e.g., in asymptotic terms like Θ(log n). To avoid the possible risk of an ambiguity
for small arguments, as usual, we set log x = max{1, log x}. All other logarithms are used in their
classic meaning, that is, for all x > 0, we denote by ln x the natural logarithm of x and by log2 x its
binary logarithm.

4.1. Algorithm 65

the expected time spent by the (1+λ) EA on OneMax in each of three regions of
the fitness distance d. We label these regions the far region, middle region and near
region, each of which will be dealt with in a separate section. The proof of the main
theorem and of Lemma 4.2 is then given in Section 4.6. Finally, we conduct some
elementary experiments supporting this intuition in Section 4.7.

4.1 Algorithm
We consider the (1+λ) EA with self-adjusting mutation rate for the minimization

of pseudo-boolean functions f : {0, 1}n → R, defined as Algorithm 8.
The general idea of the mutation scheme is to adjust the mutation strength ac-

cording to its success in the population. We perform mutation by applying standard
bit mutation with two different mutation probabilities r/(2n) and 2r/n and we call
r the mutation rate. More precisely, for an even number λ ≥ 2 the algorithm creates
λ/2 offspring with mutation rate r/2 and with 2r each.

The mutation rate is adjusted after each selection. With probability a half, the
new rate is taken as the mutation rate that the best individual (i. e. the one with
the lowest fitness, ties broken uniformly at random) was created with (success-based
adjustment). With the other 50% probability, the mutation rate is adjusted to a
random value in {r/2, 2r} (random adjustment). Note that the mutation rate is
adjusted in each iteration, that is, also when all offspring are worse than the parent
and thus the parent is kept for the next iteration.

If an adjustment of the rate results in a new rate r outside the interval [2, n/4],
we replace this rate with the corresponding boundary value. Note that in the case
of r < 2, a subpopulation with rate less than 1 would be generated, which means
flipping less than one bit in expectation. At a rate r > n/4, a subpopulation with
rate larger than n/2 would be created, which again is not a very useful choice.

We formulate the algorithm to start with an initial mutation rate rinit. The only
assumption on rinit is to be greater than or equal to 2. The (1+λ) EA with this
self-adjusting choice of the mutation rate is given as pseudocode in Algorithm 8.

Algorithm 8 (1+λ) EA with two-rate standard bit mutation
Select x uniformly at random from {0, 1}n and set r ← rinit.
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Create xi by flipping each bit in a copy of x independently with probability

rt/(2n) if i ≤ λ/2 and with probability 2rt/n otherwise.
x∗ ← arg minxi f(xi) (breaking ties randomly).
if f(x∗) ≤ f(x) then

x← x∗.
Perform one of the following two actions with prob. 1/2:

— Replace rt with the mutation rate that x∗ has been created with.
— Replace rt with either rt/2 or 2rt, each with probability 1/2.
Replace rt with min{max{2, rt}, n/4}.

Let us explain the motivation for the random adjustments of the rate. Without
such random adjustments, the rate can only be changed into some direction if a
winning offspring is generated with this rate. For simple functions like OneMax,
this is most likely sufficient. However, when the fitness of the best of λ/2 offspring,

66 Chapter 4. Self-adjusting (1+λ) EA

viewed as a function of the rate, is not unimodal, then several adjustments into a
direction at first not yielding good offspring might be needed to reach good values
of the rate. Here, our random adjustments enable the algorithm to cross such a
valley of unfavorable rate values. We note that such ideas are not uncommon in
evolutionary computation, with standard-bit mutation being the most prominent
example (allowing to perform several local-search steps in one iteration to cross fitness
valleys).

A different way to implement a mechanism allowing larger changes of the rate to
cross unfavorable regions would have been to not only generate offspring with rates
r/2 and 2r, but to allow larger deviations from the current rate with some small
probability. One idea could be choosing for each offspring independently the rate
r2−i with probability 2−|i|−1 for all i ∈ Z, i 6= 0. This should give similar results, but
to us the process appears more chaotic (e.g., with not the same number of individuals
produced with rates r/2 and 2r).

The runtime, also called the optimization time, of the (1+λ) EA is the smallest t
such that an individual of minimum f -value has been found. Note that t corresponds
to a number of iterations (also called generations), where each generation creates
λ offspring. Since each of these offspring has to be evaluated, the number of func-
tion evaluations, which is a classical cost measure, is by a factor of λ larger than
the runtime as defined here. However, assuming a massively parallel architecture
that allows for parallel evaluation of the offspring, counting the number of gener-
ations seems also a valid cost measure. In particular, a speed-up on the function
OneMax(x1, . . . , xn) := x1 + · · ·+ xn by increasing λ can only be observed in terms
of the number of generations. Note that for reasons of symmetry, it makes no differ-
ence whether OneMax is minimized (as in the present paper) or maximized (as in
several previous research papers).

Throughout the chapter, all asymptotic notation will be with respect to the prob-
lem size n.

4.2 Proof Overview
Since the following runtime analysis of our self-adjusting (1+λ) EA on the One-

Max function is slightly technical, let us outline the main proof ideas here in an
informal manner. Let always x denote the parent individual of the current iterations
and k := f(x) its fitness distance from the optimum (recall that we are minimizing
the OneMax function, hence the fitness distance equals the objective function value
which in turn is the Hamming distance from the optimum x∗ = (0, . . . , 0) ∈ {0, 1}n
and thus the number of ones in x).

The outer proof argument is variable drift, that is, for each fitness value k we
estimate the expected fitness gain (“progress”) in an iteration starting with a parent
individual x with f(x) = k and then we use the variable drift theorem (Theorem 2.4)
to translate this information on the progress into an expected runtime (number of
generations until the optimum is found).

To obtain sufficiently strong lower bounds on the expected progress, we need
to argue that the rate self-adjustment sufficiently often sets the current rate to a
sufficiently good value. This is the main technical difficulty as it needs a very precise
analysis of the quality of the offspring in both subpopulations. Since this requires
different arguments depending on the current fitness distance k, we partition the
process into three regimes.

4.2. Proof Overview 67

In the far region covering the fitness distance values k ≥ n/ ln(λ), we need a rate r
that is at least almost logarithmic in λ to ensure that the average progress is high
enough. Note that to gain the Θ(n) fitness levels from the initial value of approxi-
mately n/2 to n/ lnλ in at most a time of O(n/ log λ), we need an average progress
of Ω(lnλ) per iteration. We shall not be able to obtain this progress throughout this
region, but we will obtain an expected progress of

Ω

(
log λ
log en

k

)

in an iteration with initial fitness distance k. This will be sufficient to reach a fitness
distance of n/ log λ in the desired O(n/ log λ) iterations.

As said, the main difficulty is arguing that the self-adjusting mechanism keeps the
rate sufficiently often in the range we need, which is roughly[

1
2 ln en

k

lnλ, 4n2

(n− 2k)2 lnλ
]

for all k ∈ [n/ lnλ, n/2− 1]. Note that these range boundaries, in particular the
upper one, depend strongly on k. Hence for arguing that our rate is sufficiently often
in this range, we need to consider both the rate changes from the self-adjustments
and the changing k-value. In this region we profit from the fact that we work with
relatively high rates, which lead to strong concentration behaviors. This allows to
argue that, for example, exceeding the upper boundary already by small constant
factors is highly unlikely.

The middle region covering the fitness distances k ∈ [n/λ, n/ lnλ] is small enough
so that we do not require the algorithm to find a near-optimal rate very often. In
fact, it suffices that the rate is below 1

2 lnλ with constant probability. This ensures
an expected progress of at least min{1

8 ,
√
λk/32n}, which is sufficient to traverse

also this region in time O(n/ log λ). Consequently, in this region we only need to
argue that the rate does not become too large, whereas there is no lower bound on r
which we require. Further, the upper bound of 1

2 lnλ is large enough so that strong
concentration arguments can be exploited, which show that deviations above the
upper bound are highly unlikely. Since the upper bound does not change over time,
we can now conveniently use an occupation probability argument to show that the
rate with constant probability is only a small constant factor over the desired range,
which is enough since the random fluctuations of the rate with constant probability
reduce the rate further to the desired range.

In the near region covering the remaining fitness distance values k ≤ n/λ, the
parent individual is already so close to the optimum that any rate higher than the min-
imal rate r = 2 is sub-optimal. Hence in this region, we know precisely the optimum
value for the rate. Nevertheless, it is not very easy to show that the subpopulation us-
ing the smaller rate r/2 has a higher chance of containing the new parent individual.
Due to the small rates predominant in this region and the fact that progress gen-
erally is difficult (due to the proximity to the optimum), often both subpopulations
will contain best offspring (which are in fact copies of the parent). Hence the typical
reason for the winning offspring stemming from the smaller-rate subpopulation is not
anymore that the other subpopulation contains only worse individuals, but only that
the smaller-rate subpopulation contains more best offspring.

By quantifying this effect we establish a drift of the rate down to its minimum
value 2 in the near region, and another occupation probability argument is used to

68 Chapter 4. Self-adjusting (1+λ) EA

show that the rate with sufficiently high probability will take this value in subsequent
sets. Nevertheless, the concentration of the rate around this target value is weaker
than in the other regions, and additional care has to be taken to handle iterations
in the near region in which the unlikely, but still possible event occurs that the rate
exceeds lnλ. This value is a critical threshold in the near region since rates larger
than lnλ will typically make all offspring worse than the parent. As an additional
obstacle, there is a small interval of rates above the threshold in which we cannot show
a drift of the rate to its minimum. To show that this small interval nevertheless is
left towards its lower end with probability Ω(1), the occupation probability argument
is combined with a potential function whose shape exploits the random adjustments
that the (1+λ) EA performs with 50% probability.

4.3 The Far Region
In this first of three technical sections, we analyze the optimization behavior of

our self-adjusting (1+λ) EA in the regime where the fitness distance k is at least
n/ lnλ. Since we are relatively far from the optimum, it is relatively easy to make
progress. On the other hand, this regime spans the largest number of fitness levels
(namely Θ(n)), so we need to exhibit a sufficient progress in each iteration. Also,
this is the regime where the optimal mutation rate varies most drastically. Since it is
not important for the following analysis, we remark without proof that the optimal
rate is n for k ≥ n/2 + ω(

√
n log λ), (1 + o(1))n/2 for k = n/2± o(√n log λ), and

then quickly drops to r = Θ(log λ) for k ≤ n/2− εn. Despite these difficulties, our
(1+λ) EA manages to find sufficiently good mutation rates to be able to reach a
fitness distance of k = n/ lnλ in an expected number of O(n/ log λ) iterations.

Lemma 4.3. Let n be sufficiently large and 0 < k < n/2. We define c1(k) =
(2 ln(en/k))−1 and c2(k) = 4n2/(n− 2k)2.

1. If n/ lnλ ≤ k and r ≤ c1(k) lnλ, then the probability that a best offspring has
been created with rate 2r is at least 0.64.

2. Let λ ≥ 100. If c2(k) lnλ ≤ r ≤ n/4, then the probability that all best offspring
have been created with rate r/2 is at least 0.51.

3. If r ≥ 2(1 + γ)c2(k) lnλ, then the probability that all best offspring are worse
than the parent is at least 1− λ−γ.

Proof of Lemma 4.3 part 1. Let q(k, i, r) and Q(k, i, r) be the probabilities that stan-
dard bit mutation with mutation rate p = r/n creates from a parent with fitness
distance k an offspring with fitness distance exactly k− i and at most k− i. Then

q(k, i, r) =
k−i∑
j=0

(
k

i+ j

)(
n− k
j

)(
r

n

)i+2j (
1− r

n

)n−i−2j

and Q(k, i, r) = ∑k
j=i q(k, j, r). We first show that the probability of not achieving

i ≥ 2r is less than 0.2. This is because for large enough n and r ≥ 2 we have
(1 − o(1))(k2r) ≥ (1 − o(1))4!(k/(2r))2r > 4(k/(2r))2r and for r ≤ c1(k) lnλ =

o(
√
n) by Lemma 2.14, part 3 we have (1− 2r/n)n ≥ e−2r−4r2/n = (1− o(1))e−2r,

4.3. The Far Region 69

thus

Q(k, 2r, 2r) ≥ q(k, 2r, 2r) ≥
(
k

2r

)(2r
n

)2r (
1− 2r

n

)n
≥ 4

(
k

2r

)2r (2r
n

)2r
e−2r ≥ 4

(
k

en

)2r
≥ 4

(
k

en

)2c1(k) lnλ
=

4
λ

.

Considering λ/2 offspring using rate 2r, the probability that none of them achieves a
fitness improvement of at least 2r is less than (1− 4/λ)λ/2 < exp(−4/2) < 0.2. We
next argue that an offspring having a progress of 2r or more with good probability
comes from the 2r-subpopulation. We notice that

q(k, i, 2r)
q(k, i, r/2) ≥ 4i

(1− 2r/n
1− r/(2n)

)n
≥
(
1− o(1)

)
4ie−1.5r.

Thus for r ≥ 2 and i ≥ 2r we have

q(k, i, 2r)
q(k, i, r/2) ≥

(
1− o(1)

)(4
e

)2r
> 4.

Therefore if the best progress among all λ offspring is i and i ≥ 2r, the conditional
probability that an offspring having fitness distance k− i is generated with rate 2r is
at least q(k, i, 2r)/(q(k, i, 2r) + q(k, i, r/2)) ≥ 4/5. In total, the probability that a
best offspring has been created with rate 2r is at least

(1− 0.2) · 4/6 = 0.64.

Proof of Lemma 4.3 part 3. Let λ ≥ 100 and c2(k) lnλ ≤ r ≤ n/4. Our idea is
to show a probability of o(1/λ) for the event that an offspring with rate 2r is not
worse than the expected fitness of an offspring with rate r/2. Let X(k, r) denote the
random decrease of the fitness distance when applying standard bit mutation with
probability p = r/n to an individual with k ones. Then

E(X(k, r)) = kp− (n− k)p = (2k− n)r
n

,

Var(X(k, r)) = np(1− p) = r

(
1− r

n

)
.

According to Bernstein’s inequality (Theorem 2.8 1), for any ∆ > 0 we have

Pr(X ≥ E(X) + ∆) ≤ exp
(

−∆2

2 Var(X) + 2∆/3

)
≤ exp

(
−∆2

2 Var(X) + 2∆

)

We apply this bound with X = X(k, 2r) and ∆ = E(X(k, r/2))−E(X(k, 2r)) =
(n− 2k)1.5r/n > 0. Then,

Pr(X(k, 2r) ≥ E(X(k, r/2))) ≤ exp
(

−∆2

2 Var(X(k, 2r)) + 2∆

)

= exp
(
−9(n− 2k)2r

4n(7n− 8r− 6k)

)
≤ exp

(
−9(n− 2k)2c2(k) lnλ

28n2

)
=

1
λ9/7 .

70 Chapter 4. Self-adjusting (1+λ) EA

We notice that we have 7n− 8r − 6k > 7n− 4n− 3n = 0 in the second inequality.
From a union bound we see that with probability less than λ−9/7(λ/2) < 100−2/7/2 <
0.14, the best offspring created with rate 2r is at least as good as the expected fitness
of an individual created with rate r/2.

We estimate the probability that the best offspring using rate r/2 has a fitness
distance at most E(X(k, r/2)). Let y be an offspring obtained from x via standard
bit mutation with mutation rate r/(2n). Let X+ and X− be the number of one-bits
flipped and zero-bits flipped, respectively.

X+ := |{i ∈ {1, . . . , n} | xi = 1∧ yi = 0}|,
X− := |{i ∈ {1, . . . , n} | xi = 0∧ yi = 1}|.

Both X+ and X− are binomially distributed and X(k, r/2) = X+ −X−. We aim at
a lower bound for Pr(X(k, r/2) ≥ E(X(k, r/2))). We have Pr(X+ ≥ E(X+)− 1) ≥
1/2, since the median ofX+ is between bE(X+)c and dE(X+)e by [KB80]. It remains
to bound Pr(X− ≤ E(X−)− 1). We notice that E(X−) = (n− k)r/(2n) > lnλ > 1
and E(X−) ≤ (n− k)/4. Applying Lemma 2.16 to binomial random variable X̃− :=
(n− k)−X−, we obtain Pr(X− ≤ E(X−)− 1) = Pr(X̃− ≥ E(X̃−) + 1) ≥ 0.037.
Therefore

Pr(X(k, r/2) ≥ E(X(k, r/2))) ≥ Pr(X− ≤ E(X−)− 1)Pr(X+ ≥ E(X+)− 1)
≥ 0.037 · 0.5 = 0.0185.

For λ/2 offspring using rate r/2, the probability that the best one has a fitness
distance at most E(X(k, r/2)) is more than 1− (1− 0.0185)λ/2 ≥ 1− 0.981550 ≥ 0.6.
Therefore with probability at least 0.6 · (1− 0.14) > 0.51, all best offspring are from
the r/2-subpopulation. This proves the second statement of the lemma.

Proof of Lemma 4.3 part 2. Let r ≥ 2(1 + γ)c2(k) lnλ. An offspring created with
mutation rate r/n is at least as good as its parent if and only if X(k, r) ≥ 0. By using
Bernstein’s inequality (Theorem 2.8 1) with X = X(k, r) and ∆ = −E(X(k, r)), we
have

Pr(X(k, r) ≥ 0) ≤ exp
(
− E(X(k, r))2

2 Var(X(k, r)) + 2E(X(k, r))

)

= exp
(
− (n− 2k)2r

2n(2n− 2k− r)

)
≤ exp

(
− (n− 2k)2r

4n2

)
.

Since r ≥ 2(1 + γ)c2(k) lnλ, the corresponding probabilities for rate r/2 and 2r are
at most 1/λ1+γ and 1/λ4+4γ , respectively. By a union bound, with probability at
most 1/λγ , the best offspring is at least as good as its parent. This proves part 3.

The lemma above shows that the rate r is subject to a constant drift towards
the interval [c1(k) lnn, c2(k) lnn]. Unfortunately, we cannot show that we obtain a
sufficient fitness progress for all r-values in this range. However, we can do so for a
range smaller only by constant factors. This is what we do now (for large values of
k) and in Lemma 4.5 (for smaller values of k). This case distinction is motivated by
the fact that c2(k) becomes very large when k approaches n/2. Having a good fitness
drift only for such a smaller range of r-values is not a problem since the random
movements of r let us enter the smaller range with constant probability. This is what
we will exploit in Theorem 4.6 and its proof.

4.3. The Far Region 71

Let 2 ≤ r ≤ n/4 be the current rate and let r̃ ∈ {r/2, 2r}. Let ∆̃(λ/2, k, r̃)
denote the fitness gain of the best of λ/2 offspring generated with rate r̃ from
a parent x with fitness distance k := OneMax(x) and the parent itself. More
precisely, let x(i), i ∈ {1, . . . , λ/2}, be independent offspring generated from x by
flipping each bit independently with probability r̃/n. Then the random variable
∆̃(λ/2, k, r̃) is defined by max{0, k −min{OneMax(x(i)) | i ∈ {1, . . . , λ/2}}}. We
use ∆ := max{∆̃(λ/2, k, r/2), ∆̃(λ/2, k, 2r)} to denote the fitness gain in a iteration
which uses x as parent and r as mutation rate.

We next show that a region contained in [c1(k) lnλ, c2(k) lnλ] provides at least a
logarithmic (in λ) drift on fitness.

Lemma 4.4. Let n be sufficiently large, 2n/5 ≤ k < n/2 and λ ≥ e10. If ln(λ) ≤
r ≤ min{n2 ln(λ)/(25(n− 2k)2), n/4}, then E(∆ | k) ≥ 10−6 lnλ.

Proof. We first notice that n2/(25(n − 2k)2) ≥ 1/(25 · 0.22) = 1 for all 2n/5 ≤
k < n/2. We aim to prove ∆̃(λ/2, k, r̃) ≥ 10−5 lnλ with r̃ = r/2. If r̃ ≤ 13, the
probability that an offspring using rate r̃/n achieving a fitness distance of k− 1 is at
least (

k

1

)
r̃

n

(
1− r̃

n

)n−1
≥ (1− o(1))0.4e−r̂ > 9 · 10−7.

For λ/2 offspring using rate r̃ ≤ 13,

Pr(∆ ≥ 1 | k) ≥ 1−
(
1− 9 · 10−7

)λ/2
> 9 · 10−3 for all λ > e10.

This satisfies the statement that E(∆ | k) ≥ 10−6 lnλ since lnλ ≤ 2r̃ ≤ 26. Therefore,
it remains to consider r̃ > 13.

Let X+ and X− be the number of one-bits flipped and zero-bits flipped, respec-
tively, in an offspring using rate p = r̃/n. X+ and X− follow binomial distributions
Bin(k, p) and Bin(n− k, p), respectively. Let u := E(X+) = kp and ũ = due. Then
u ≤ k/8, u ≥ (k/n)r̃ ≥ 5.2, and u ≥ (k/n) ln(λ)/2 ≥ 0.4 · 0.5 · lnλ = 0.2 lnλ.
Furthermore, let

B(x) := Pr(X+ = x) =

(
k

x

)
px(1− p)k−x for all x ∈ {0, 1, . . . , k},

F (x) := Pr(X+ ≥ x) =
k∑

i=dxe
B(i) for all x ∈ [0, k].

Applying Lemma 2.16, we obtain F (u) = Pr(X+ ≥ E(X+)) ≥ 1/4. Similarly
Pr(X− ≤ E(X−)) ≥ 1/4. We prove that for δ := dE(X−)−E(X+) + 0.02 lnλe =
d(n− 2k)p+ 0.02 lnλe, we have F (u+ δ) ≥ λ−0.36/e13, and thus Pr(X+ −X− ≥
0.02 lnλ) ≥ λ−0.36/(4e13). Since for any x ∈ Z≥u we have

B(x+ 1)
B(x)

=
k− x
x+ 1 ·

p

1− p ≤
u− up

u− up+ 1− p < 1,

72 Chapter 4. Self-adjusting (1+λ) EA

we obtain B(ũ) > B(ũ+ 1) > · · · > B(k), and thus F (u+ δ) ≥ δB(ũ+ 2δ) as well
as δB(ũ) ≥ F (u)− F (u+ δ). We see that

B(ũ+ 2δ)
B(ũ)

=
(k− ũ) · · · (k− ũ− 2δ + 1)

(ũ+ 1) · · · (ũ+ 2δ) · p2δ

(1− p)2δ

≥
(
k− u− 2δ
k(1− p)

)2δ u2δ

(ũ+ 1) · · · (ũ+ 2δ) ≥
(

1− 2δ
7u

)2δ u2δ

(ũ+ 1) · · · (ũ+ 2δ) ,

where we used k(1− p) = k − u ≥ 8u− u = 7u. Using a sharp version of Stirling’s
approximation due to Robbins [Rob55], we compute

(ũ+ 2δ)! ≤
√

2π(ũ+ 2δ)
(
(ũ+ 2δ)

e

)ũ+2δ
exp

(1
12(ũ+ 2δ)

)
,

ũ! ≥
√

2πũ
(
ũ

e

)ũ
exp

(1
12ũ+ 1

)
.

Notice that 12ũ+ 1 < 12(ũ+ 2δ), we obtain

1
(ũ+ 1) · · · (ũ+ 2δ) =

ũ!
(ũ+ 2δ)! ≥

√
ũ

ũ+ 2δ
ũũe2δ

(ũ+ 2δ)ũ+2δ ≥
√

ũ

ũ+ 2δ
uũe2δ

(ũ+ 2δ)ũ+2δ .

Therefore

B(ũ+ 2δ)
B(ũ)

≥
(

1− 2δ
7u

)2δ
√

ũ

ũ+ 2δ
uũ+2δe2δ

(ũ+ 2δ)ũ+2δ

≥
√

ũ

ũ+ 2δ exp
(

2δ ln
(

1− 2δ
7u

)
+ (ũ+ 2δ) ln

(
1− 2δ + 1

ũ+ 2δ

)
+ 2δ

)
.

We notice that u ≥ max{0.2 lnλ, 5.2} and

(n− 2k)p+ 0.02 lnλ ≤ 0.2np+ 0.02 lnλ ≤ 0.5u+ 0.02 lnλ < 0.6u.

Thus δ < u and ũ− δ ≥ 0.4u− 1 > 1. Since ũ− δ is an interger, ũ− δ ≥ 2. Therefore
2δ/(7u) < 1/2 and (2δ+ 1)/(ũ+ 2δ) < 2/3. By Lemma 2.14 item 3 and 4, we have
ln(1− x) ≥ −x− x2 for 0 ≤ x ≤ 2/3 and ln(1− x) ≥ −3x/2 for 0 ≤ x ≤ 1/2. We
compute

2δ ln
(

1− 2δ
7u

)
≥ −3

2 ·
4δ2

7u ≥ −
δ2

u
,

(ũ+ 2δ) ln
(

1− 2δ + 1
ũ+ 2δ

)
≥ −(2δ + 1)− (2δ + 1)2

ũ+ 2δ ≥ −2δ− 4δ2

u
− 3,

B(ũ+ 2δ)
B(ũ)

≥
√

1
3 exp

(
−5δ2

u
− 3

)
> exp(−0.36 lnλ− 11).

4.3. The Far Region 73

where in the last inequality, using ln(λ)/2 ≤ r̃ ≤ n2 ln(λ)/(50(n−2k)2), we estimate

5δ2

u
≤ 5((n− 2k)r̃/n+ 0.02 lnλ+ 1)2

kr̃/n

=
5n
k

(
(n− 2k)2r̃

n2 +
2(n− 2k)0.02 lnλ

n
+

(0.02 lnλ)2

r̃
+

2(n− 2k)
n

+
2 · 0.02 lnλ

ln(λ)/2 +
1
r̃

)

≤ 5
0.4

(
lnλ
50 + 2 · 0.2 · 0.02 lnλ+ 0.022 lnλ

0.5 + 0.4 + 0.08 + 1
13

)
≤ 0.36 lnλ+ 7.

Recalling F (u+ δ) ≥ δB(ũ+ 2δ) and δB(ũ) ≥ F (u)− F (u+ δ), we compute

F (u+ δ) ≥ δB(u+ 2δ) ≥ δe−0.36 lnλ−11B(u+ 2δ) ≥ e−0.36 lnλ−11(F (u)− F (u+ δ)).

Since F (u) ≥ 1/4 and λ > e10, we obtain

F (u+ δ) ≥ e−0.36 lnλ−11F (u)

1 + e−0.36 lnλ−11 ≥
λ−0.36e−11/4

1 + e−0.36·10−11 >
λ−0.36

e13 .

Using Pr(X+ −X− ≥ 0.02 lnλ) ≥ λ−0.36/(4e13), we bound

Pr(∆̃(λ/2, k, r/2) ≥ 0.02 lnλ | k) ≥ 1− (1− λ−0.36/(4e13))λ/2

≥ 1− (1− e−0.36·10−13/4)e10/2 > 1.7 · 10−4.

Finally E(∆ | k) ≥ 1.7 · 10−4 · 0.02 lnλ > 10−6 lnλ.

We now extend the lemma to the whole region of n/ lnλ ≤ k < n/2. If k < 2n/5
the situation becomes easier because 4 ≤ c2(k) < 100 and every r in the smaller
range [c1(k) lnλ, ln(λ)/2] provides at least an expected fitness improvement that
is logarithmic in λ. Together with the previous lemma, we obtain the following
statement for the drift in the whole region n/ lnλ ≤ k < n/2.

Lemma 4.5. Let n be sufficiently large, n/ lnλ ≤ k < n/2 and λ ≥ e10. If
c1(k) lnλ ≤ r ≤ c2(k) ln(λ)/100 with c1(k), c2(k) defined as in Lemma 4.3, then

E(∆ | k) ≥ 10−6 ln(λ)/ ln(en/k).

Proof. If r > ln(λ), then c2(2n/5) = 100 implies k > 2n/5 and the claim follows
from Lemma 4.4. Hence let us assume r ≤ ln(λ) in the remainder and compute
∆̃(λ/2, k, r̃) with r̃ = r/2.

We consider the probability Q(k, i, r̃) of creating from a parent with distance
k an offspring with fitness distance at most k − i via standard bit mutation with
mutation rate p = r̃/n. Let i := max{1, bc1(k) ln(λ)/2c} ≤ max{1, r/2} = r̃. If
bc1(k) ln(λ)/2c < 1, using (1− p)n ≥ e−pn−p2n ≥ (1− o(1))e−r̃ by Lemma 2.143, we
compute

Q(k, 1, r̃) ≥ kp(1− p)n ≥ kr̃

n
(1− p)n ≥ (1− p)n

lnλ ≥ (1− o(1))e− ln(λ)/2

lnλ ≥ 1
λ

.

74 Chapter 4. Self-adjusting (1+λ) EA

Otherwise if bc1(k) ln(λ)/2c > 1, using (ki) ≥ (k/i)i, we obtain

Q(k, i, r̃) ≥
(
k

i

)
pi(1− p)n ≥

(
k

i
· r̃
n

)i
e−r̃−p

2n ≥
(
k

n

)i
e−r̃−p

2n

≥
(
k

en

)i
e−r̃ ≥

(
k

en

) lnλ
4 ln(en/k)

e−r̃ = e− ln(λ)/4−r̃ ≥ e− lnλ =
1
λ

.

Hence, Pr(∆̃(λ/2, k, r̃) ≥ i | k) ≥ 1− (1− 1/λ)λ/2 ≥ 1− e−1/2 > 0.3. We notice
that i ≥ c1(k) ln(λ)/4, since i = 1 ≥ c1(k) ln(λ)/4 when c1(k) lnλ < 2 and i =
bc1(k) ln(λ)/2c ≥ c1(k) ln(λ)/4 when c1(k) lnλ ≥ 2. Consequently

E(∆ | k) > Pr(∆̃(λ/2, k, r̃) ≥ i | k) · i ≥ 0.3 · c1(k) ln(λ)/4 ≥ 10−6 ln(λ)/ ln(en/k).

If we only consider generations that use a rate within the right region, we can
bound the expected runtime to reach k ≤ n/ lnλ by O(n/ log λ) since the drift on
the fitness is of order log λ. The following theorem shows that the additional time
spent with adjusting the rate towards the right region does not change this bound on
the expected runtime.

Theorem 4.6. The (1+λ) EA with self-adjusting mutation rate reaches a OneMax-
value of k ≤ n/ lnλ within an expected number of O(n/ log λ) iterations. This bound
is valid regardless of the initial mutation rate.

Proof. Let us denote by k(x) the fitness distance of a search point x ∈ {0, 1}n.
We first argue that it takes an expected number of at most O(

√
n) iterations to

reach a fitness distance of less than n/2. To this end, consider a parent x with fitness
distance k(x) ≥ n/2. Let 2 ≤ r ≤ n/4 be the current rate and let r̃ ∈ {r/2, 2r}. Let
y be an offspring obtained from x via standard bit mutation with mutation rate r̃/n.
Let

X+ := |{i ∈ {1, . . . , n} | xi = 1∧ yi = 0}|,
X− := |{i ∈ {1, . . . , n} | xi = 0∧ yi = 1}|.

Then the fitness improvement is k(x)−k(y) = X+−X− and bothX+ andX− follow
binomial distributions. From elementary properties of the binomial distribution, see,
e.g., Lemma 2.16, we have Pr(X+ ≥ E(X+) + 1) = Ω(1) and Pr(X− ≤ E(X−)) =
Ω(1), and these are independent events. Hence with constant probability, we have

k(y) = k(x)−X+ +X− ≤ k(x)−E(X+)− 1 +E(X−)

≤ k(x)− 1− (2k(x)− n) r̃n ≤ k(x)− 1.

Clearly, for the best offspring z out of the λ offspring generated in this iteration,
we have k(z) ≤ k(y). Consequently, in each iteration starting with a parent x with
k(x) ≥ n/2, with constant probability we gain at least one fitness level. By the addi-
tive drift theorem (see Theorem 2.4 and the subsequent discussion), from the initial
random search point x0 it takes an expected O(max{0, k(x0)−n/2+ 1}) iterations to
reach a parent with fitness distance less than n/2. Since X := k(x0) ∼ Bin(n, 1/2),

4.3. The Far Region 75

we have

E(max{0, X − n/2}) = 1
2E(|X −E(X)|) ≤ 1

2

√
E((X −E(X))2)

= 1
2

√
Var(X) = 1

4
√
n,

where we first exploited the symmetry of X and then the well-known estimate
E(Y)2 ≤ E(Y 2) valid for all random variables Y , in particular, for Y = |X −E(X)|.
By the law of total expectation, the expected time to reach a search point with k-value
below n/2 is O(

√
n).

Without loss of generality we can now assume k < n/2 for the initial state.
Our intuition is that once we begin to use a rate r ∈ [(c1(k)/2) lnλ, c2(k) lnλ] at
some distance level k, we will have a considerable drift on the OneMax-value and
the strong drift on the rate keeps r within or close to this interval. After we make
progress and k decreases to a new level, the corresponding c1 and c2 decrease, and
the algorithm may take some time to readjust r into new bounds.

We consider the stochastic process Xt = blog2(rt)c and the current OneMax-
value Yt. According to Lemma 4.3 item 1 and 2, there exists ε = Ω(1) such that

Pr(Xt+1 −Xt | Xt;Xt < log2(c1(Kt) lnλ)− 1) ≥ ε,
Pr(Xt −Xt+1 | Xt;Xt > log2(c2(Kt) lnλ)) ≥ ε.

Let k0 > k1 > · · · > kN be all the different OneMax-values taken by Yt until
for the first time Yt ≤ n/ lnλ. By the additive drift theorem, it takes at most
O(logn) iterations to have rt ∈ [(c1(k0)/2) lnλ, c2(k0) lnλ], regardless of how we
set the initial rate. Since c1(Yt) is non-increasing, rt ≥ c1(Yt) ln(λ)/2 implies rt ≥
c1(Yt+1) ln(λ)/2. Thus, no readjustments are necessary to satisfy the lower bound
rt ≥ c1(Yt) ln(λ)/2 once we have rt ≥ c1(k0) ln(λ)/2. We now regard the upper
bound condition rt ≤ c2(Yt) ln(λ). Let (ksi) be the subsequence consisting of all
ksi such that {t | rt ≤ c2(Yt) ln(λ), Yt = ksi} 6= ∅. If ki is in the subsequence,
once rt ≤ c2(Yt) ln(λ) is achieved, the runtime until the first time Yt = ki+1 can be
computed using the occupation lemma and the variable drift theorem. After that, it
takes at most O(log(c2(ki)/c2(ki+1))) more iterations to readjust rt from c2(ki) ln(λ)
to c2(ki+1) ln(λ) by the additive drift theorem. Similar arguments hold for ki+1 if it
is also in the subsequence. Otherwise let kj < ki+1 denote the next OneMax-values
after ki in the subsequence. By definition, the fitness distance decreases from ki+1
to kj before the rate being adjusted into the corresponding range. This means that
improvements in distance are made during readjustment. Analogous to above, the
expected (readjusting) time to decrease the rate from c2(ki+1) ln(λ) to c2(kj) ln(λ) is
O(log(c2(ki+1)/c2(kj))). Therefore, the expected number of total readjusting time
is at most

si+1≤N∑
i=1

O

(
log

(
c2(ksi)

c2(ksi+1)

))
= O

(
log

(
c2(k0)

c2(kN)

))
= O(logn).

When computing the expected number of non-adjusting iterations until Yt = kN ,
we choose a constant b ∈N≥2 large enough such that 2e−2bε/3 ≤ 1/2− δ/2 holds for
some positive constant δ > 0. When rt ∈ [(c1(k)/2) lnλ, c2(k) lnλ] and Yt = k for

76 Chapter 4. Self-adjusting (1+λ) EA

some t, then by Lemma 2.11, we obtain

Pr(rt′ ≥ 2b+1c2(k) lnλ) ≤ 2e−2bε/3 and
Pr(rt′ ≤ 2−b−2c1(k) lnλ) ≤ 2e−2bε/3 for t′ ≥ t.

Hence, we obtain that rt′ ∈ [2−b−2c1(k) lnλ, 2b+1c2(k) lnλ] happens with probability
at least δ. We see that there are at most dlog2(100)e steps between being in the range
[(c1(k)/2) lnλ, c2(k) lnλ] and being in the smaller range [c1(k) lnλ, c2(k) ln(λ)/100]
which is described in Lemma 4.5. If rt ∈ [2−b−2c1(k) lnλ, 2b+1c2(k) lnλ], it takes
at most a constant number of iterations α in expectation to reach the smaller range
[c1(k) lnλ, c2(k) ln(λ)/100] because our mutation scheme employs a 50% chance to
perform a random step of the mutation rate. Based on Lemma 4.5, the fitness drift
at distance k of all rates within the narrow region is at least 10−6 ln(λ)/ ln(en/k).
This contributes to an average drift of at least

10−6 · ln(λ)
ln(en/k)

· δ

1 + α
= Ω

(log(λ)
log(n/k)

)
for all random rates at distance k. Using the variable drift theorem (Theorem 2.4),
we estimate the runtime as

O

(
log(log λ)

log λ +
∫ n/2

n/ log λ

log(n/k)dk
log λ

)
= O

(
1

log λ

∫ n/2

n/ log λ

(
log(n)− log(k)

)
dk
)

=O

 1
log λ

(
log(n)k− k log(k) + log(k)

)∣∣∣∣∣
n/2

n/ log λ

=O

(1
log λ

(
log(n)

(
n

2 −
n

log λ

)
− n

2 log
(
n

2

)
+

n

log λ log
(

n

log λ

)
+ log

(
n/2

n/ log λ

)))
=O

(1
log λ

(
n log 2

2 − n log(log λ)
log λ + log(log λ)

))
= O

(
n

log λ

)
.

We notice that the expected runtime for adjusting rt is O(logn) = O(n/ log λ).
Therefore, the total runtime is O(n/ log λ) in expectation.

4.4 The Middle Region
In this section we estimate the expected number of generations until the number

of one-bits has decreased from k ≤ n/ lnλ to k ≤ n/λ. We first claim that the right
region for r is 1 ≤ r ≤ ln(λ)/2. Hence, the (1+λ) EA is not very sensitive to the
choice of r here. Intuitively, this is due to the fact that a total fitness improvement
of only O(n/ log λ) suffices to cross the middle region, whereas an improvement of
Ω(n) is needed for the far region.

We estimate the drift of the fitness in Lemma 4.7 and apply that result afterwards
to estimate the number of generations to cross the region.

Lemma 4.7. Let n/λ ≤ k ≤ n/ lnλ, λ ≥ 26 and 2 ≤ r ≤ lnλ. Then

E(∆ | k) ≥ min
{

1
8 ,
√
λk

32n

}
.

4.4. The Middle Region 77

Proof. We aim at computing ∆̃(λ/2, k, r̃) with r̃ = r/2. The probability that no zero-
bit flips in a single offspring stemming from rate r̃ is (1− r̃/n)n−k ≥ e−r̃ ≥ 1/

√
λ.

We regard the number Z of offspring of rate r̃ that have no flipped zeros. The
expectation E(Z) is at least (1/

√
λ) · (λ/2) =

√
λ/2. Applying Chernoff bounds

(Theorem 2.8), we observe that Z exceeds λ0 :=
√
λ/4 with probability at least

1− exp(−
√
λ/16) > 1/4 since λ ≥ 26. Assuming this to happen, we look at the

first λ0 offspring without flipped zeros. For i ∈ {1, . . . , λ0} let Xi be the number of
flipped ones in the i-th offspring. Then the Xi are i.i.d. with Xi ∼ Bin(k, r̃/n). Let
X∗ := max{Xi}. The expectation of X∗ is analyzed in [GW17, Lemma 4, part 2];
more precisely the following statement is shown for constant r̃:

If λ0kr̃

n
≥ α then E(X∗) ≥ α

1 + α
.

Since r̃ is not necessarily assumed constant here, we generalize the result by closely
following the proof in [GW17]. Note that X∗ ≥ 1 if at least one of the offspring does
not flip a zero-bit. Hence,

E(X∗) ≥ 1−
((

1− r̃

n

)k)λ0

≥ 1−
((

1− r̃

n

)αn/(λ0r̃)
)λ0

≥ 1−
(
e−α/λ0

)λ0
= 1− e−α ≥ 1− 1

1 + α
=

α

1 + α
,

where the second inequality used the assumption λ0kr̃/n ≥ α, the third one ex ≥
1 + x for x ∈ R. and the fifth one the equivalent to the previous inequality e−x ≤
1/(1 + x). Hence, Lemma 4, part 2 in [GW17] holds also for arbitrary r̃.

Setting α := λ0kr̃/n, we now distinguish between two cases. If α ≥ 1, we obtain
E(X∗) ≥ α/(1 + α) ≥ 1/2; otherwise we have 1 + α < 2, hence E(X∗) ≥ α/2 =
λ0kr̃/(2n). Thus,

E(X∗) ≥ min{1/2,
√
λk/(8n)}.

Hence, using the law of total probability, we obtain the lower bound on the drift for
the middle region.

We now use our result on the drift to estimate the time spent in this region.
We notice that c2(k) = 4 + o(1) when k = o(n). This means we will often have
rt ∈ [2, ln(λ)] which provides the drift we need.

Theorem 4.8. Let λ ≥ 26 and λ = nO(1). Assume k ≤ n/ lnλ for the current
OneMax-value of the self-adjusting (1+λ) EA. Then the expected number of gener-
ations until k ≤ n/λ is O(n/ log λ).

Proof. For k ≤ n/ lnλ the upper bound from Lemma 4.3 is c2(k) = 4/(1− 2/ lnλ) <
11. According to the lemma we have for Xt := dlog2 rte that E(Xt−Xt+1 | Xt;Xt >
log2(c2(k) lnλ)) ≥ 2ε = Ω(1). The additive drift theorem yields that in O(logn)
time we have rt ≤ c2(k) lnλ. We choose b large enough such that 2e−2bε/3 ≤ 1− δ
holds for some positive constant δ > 0 and note that b is constant. Applying
Lemma 2.11 we obtain Pr(rt ≥ 2bc2(k) lnλ) ≤ 2e−2bε/3 and rt ≤ 2bc2(k) lnλ hap-
pens with probability at least δ. Once rt < 2bc2(k) lnλ < 2b(11 lnλ) it takes at
most a constant number of iterations α in expectation to draw rt to ln(λ) or less.
According to Lemma 4.7 this ensures a drift of at least (1/4)min{1/2,

√
λk/(8n)} ≥

(1/32)min{1,
√
λk/n}, which implies an average drift of at least cmin{1,

√
λk/n}

over all random rates at distance k, where c > 0 is a constant. Considering

78 Chapter 4. Self-adjusting (1+λ) EA

min{1,
√
λk/n}, the minimum is taken on the first argument if k > n/

√
λ, and

on the second if k < n/
√
λ.

We are interested in the expected time to reduce the OneMax-value to at most
n/λ. To ease the application of drift analysis, we artificially modify the process and
make it create the optimum when the state (OneMax-value) is strictly less than
n/λ. Clearly, the first hitting time of state at most n/λ does not change by this
modification. Applying the variable drift theorem (Theorem 2.4) with xmin = n/λ,
X0 = k ≤ n/ lnλ and h(x) = cmin{1,

√
λk/n}, the expected number of generations

to reach state at most n/λ is bounded from above by

n/λ
c
√
λ(n/λ)/n

+
∫ n/

√
λ

n/λ

n

c
√
λx

dx+
∫ n/ lnλ

n/
√
λ

1
c

dx = O

(
n√
λ

)
+O

(
n log λ√

λ

)
+O

(
n

log λ

)
,

which is O(n/ log λ). The overall expected number of generations spent is O(logn+
n/ log λ) = O(n/ log λ) since λ = nO(1) by assumption.

4.5 The Near Region
In the near region, we have k ≤ n/λ. Hence, the fitness is so low that we can

expect only a constant number of offspring to flip at least one of the remaining one-
bits. This assumes constant rate. However, higher rates are detrimental since they
are more likely to destroy the zero-bits of the few individuals flipping one-bits. Hence,
we expect the rate to drift towards constant values, as shown in the following lemma.

Lemma 4.9. Let k ≤ n/λ, λ ≥ 45 and 4 ≤ rt ≤ ln(λ)/4. Then the probability that
rt+1 = rt/2 is at least 0.5099.

Proof. To prove the claim we exploit the fact that only few one-bits are flipped in
both subpopulations. Using r := rt, we shall argue as follows. With sufficiently high
(constant) probability, (i) the 2r-subpopulation contains no individual strictly better
than the parent, that is, with fitness less than k, and (ii) all 2r-offspring with fitness
at least k are identical to the parent. Conditional on this, either the r/2-population
contains individuals with fitness less than k and the winning individual surely stems
from this subpopulation, or the r/2-population contains no better offspring. In the
latter case, we argue that there are many more individuals with fitness exactly k in the
r/2-population than in the 2r-population, which gives a sufficiently high probability
for taking the winning individual from this side (as it is chose uniformly at random
from all offspring with fitness k).

Let Nr/2 and N2r be the number of offspring that did not flip any zero-bits
using rate r/2 and 2r, respectively. Then E(Nr/2) = (λ/2)(1− r/(2n))n−k ≥ (1−
o(1))λe−r/2/2, since k ≥ 1 and

(
1− r

2n

)n−1
≥ e− r2

(
1− r

2n

) r
2−1
≥ e− r2

(
1− c lnn

8n

) c lnn
8 −1

= (1− o(1))e− r2 ,

where we used that r ≤ lnλ/4 and λ = nO(1), i. e. lnλ ≤ c lnn for some constant c.
Using k ≤ n/λ we get E(N2r) = (λ/2)(1− 2r/n)n−k ≤ (λ/2)e−2r(1−1/λ). In fact,
we can discriminate Nr/2 and N2r by using Theorem 2.8 in the following way: we

4.5. The Near Region 79

have

Pr
(
Nr/2 ≤

λ

4 e
− r2
)
≤ exp

(
−(1− o(1))3 λ

16e
− r2
)

≤ exp
(
−(1− o(1)) 1

16λ
7/8
)

< 0.175,

for sufficiently large n, since r ≤ (lnλ)/4 and λ ≥ 45. Similarly, we obtain

Pr
(
N2r ≥ λe−2r(1− 1

λ
)
)
≤ exp

(
−1

6λ
1− 1

2 (1− 1
λ)
)
< 0.312.

Note that e−2r(1−1/λ) < e−r/2/4 holds for all r ≥ 4 and λ ≥ 45. Since the offspring
are generated independently, the events Nr/2 > λe−r/2/4 and N2r < λe−2r(1− 1

λ
)

happen together with probability at least (1− 0.175) · (1− 0.312) ≥ 0.567 =: 1− perr1 .
Conditioning on this and by using a union bound the probability perr2 that at least
one of the N2r offspring that do not flip any zero-bits flips at least one one-bit can
be upper bounded by

perr2 := N2r ·
2kr
n
≤ 2re−2r(1− 1

λ) ≤ 0.004

using k/n ≤ 1/λ in the first and r ≥ 4 and λ ≥ 45 in the last inequality. By using a
union bound, we find the probability perr3 that at least one 2r-offspring flips exactly
one one-bit and exactly one zero-bit to be at most

perr3 :=
λ

2
2rk
n

(
1− 2r

n

)k−1 2r(n− k)
n

(
1− 2r

n

)n−k−1

≤ 2r2
(

1− 2r
n

)n−2
≤ (1 + o(1))2e2(ln(r)−r) < (2 + o(1))e−

6
5 r < 0.017,

for sufficiently large n, using k/n ≤ 1/λ for the first inequality. The third inequality
is due to ln x− x ≤ −(1− e−1)x < −(3/5)x for all x > 0 (see Lemma 2.14.a) and
the last inequality stems from r ≥ 4. The second inequality follows from(

1− 2r
n

)n−2
≤ e− 2r

n
(n−2) = e−2r(1− 2

n) = (1 + o(1))e−2r,

using again r ≤ lnλ ≤ c lnn for some constant c. Let Mr be the number of such
offspring. Any other fitness-decreasing flip-combinations of zeroes and ones in the
2r-subpopulation require an offspring to flip at least two one-bits. The probability
that such an offspring is created is at most

perr4 :=
λ

2

(
k

2

)(2r
n

)2
≤ ln2 λ

16λ < 0.021,

using k ≤ n/λ and r ≤ lnλ/4 and the fact that (ln2 x)/x is decreasing for x ≥ e2

and λ ≥ 45 > e2.
The events Nr/2 > λe−r/2/4, N2r < λe−2r(1− 1

λ
), Mr = 0, and the event that no

fitness-decreasing offspring is created in the 2r-subpopulation are sufficient to ensure
that the best individual is either surely from the r/2-population or chosen uniformly
at random from the Nr/2 +N2r offspring. Conditioning on these events, we have that

80 Chapter 4. Self-adjusting (1+λ) EA

the probability that the best offspring is chosen from the r/2-population is at least

Nr/2
Nr/2 +N2r

≥ 1
1 + 4e−r(2(1− 1

λ)−
1
2)

> 0.988.

Hence, using a union bound for the error probabilities, the unconditional probability
is at least

(1− perr1 − perr2 − perr3 − perr4) · 0.988 + 1
2

2 > 0.5099.

We note that the restriction rt ≥ 4 in the lemma above is not strictly necessary.
Also for smaller rt, the probability that the winning individual is chosen from the rt/2-
population is by an additive constant larger than 1/2. Showing this, however, would
need additional proof arguments as for smaller rt, the event that both subpopulations
contain individuals with fitness k− 1 becomes more likely. We avoid this additional
technicality by only arguing for rt ≥ 4, which is enough since any constant rt is
sufficient for the fitness drift we need (since we do not aim at making the leading
constant precise).

In the following proof of the analysis of the near region, we use the above lemma
(with quite some additional arguments) to argue that the r-value quickly reaches 4
or less and from then on regularly returns to this region. This allows to argue that in
the near region we have a speed-up of a factor of Θ(λ) compared to the (1+1) EA,
since every offspring only has a probability of O(1/λ) of making progress (see also
[DK15; GW17]).

Theorem 4.10. Assume k ≤ n/λ for the current OneMax-value of the self-
adjusting (1+λ) EA. Then the expected number of generations until the optimum
is reached is O(n log(n)/λ+ logn).

Proof. The aim is to estimate the OneMax-drift at the points in time (genera-
tions) t where rt = O(1). To bound the expected number of generations until the
mutation rate has entered this region, we basically consider the stochastic process
Zt := max{0, blog2(rt/a)c}, where a := 4, which is the lower bound on rt from
Lemma 4.9. However, as we do not have proved a drift of Zt towards smaller values
in the region L := (lnλ)/4 ≤ rt ≤ 16 lnλ =: U (where 16 is an upper bound on c2(k)
from Lemma 4.5), we use the potential function

Xt(Zt) :=

Zt if a ≤ rt ≤ L
log2(L/a) +

∑dlog2(rt/L)e
i=1 4−i if L < rt < U

log2(L/a) +
∑log2(U/L)+1
i=1 4−i + 4− log2(U/L)−1blog2(rt/a)c otherwise.

assuming that L and U have been rounded down and up to the closest power of 2,
respectively. We note that Xt ≥ log2(rt/a) − 1 = log2(rt/(2a)) if rt ≤ L and
Xt ≥ (L/U)2 log2(rt/(2a)) in all three cases.

The potential function has a slope of 1 for a ≤ rt ≤ L. Lemma 4.9 gives us
the drift E(Xt −Xt+1 | Xt; a ≤ rt ≤ L) ≥ (0.5099− 0.4901)/(2a) = Ω(1). The
function satisfies Xt(Zt)−Xt(Zt − 1) ≥ 4(Xt(Zt+1)−Xt(Zt)) if L < rt < U , which
corresponds to the region where the probability of decreasing rt by a factor of 1/2 has
only be bounded from below by 1/4 due to the random steps. Still, E(Xt −Xt+1 |
Xt;L < rt < U) ≥ (1/4)4− log2(U/L)−1 − (3/4)4− log2(U/L) = Ω(1) in this region due
to the concavity of the potential function. Finally, E(Xt −Xt+1 | Xt; rt ≥ U) =

4.6. Putting Everything Together 81

4− log2(U/L)−1(1/(2a))Ω(1) = Ω(1) by Lemma 4.5. Hence, altogether E(Xt−Xt+1 |
Xt; rt ≥ a) ≥ κ for some constant κ > 0. As X0 = O(logn), additive drift analysis
yields an expected number of O(logn) generations until for the first time Xt = 0
holds, corresponding to rt ≤ a. We denote this hitting time by T .

We now consider an arbitrary point of time t ≥ T . The aim is to show a drift
on the OneMax-value, depending on the current OneMax-value Yt, which satisfies
Yt ≤ n/λ with probability 1. To this end, we will use Lemma 2.11. We choose b large
enough such that 2e−2b·κ/4 ≤ 1− δ holds for some positive constant δ > 0 and note
that b is constant. We consider two cases. If Xt ≤ b, which happens with probability
at least δ according to the lemma, then the bound Xt ≥ (L/U)2(log2(rt/(2a)))
implies rt ≤ 2(U/L)22a2b. Hence, we have rt = O(1) in this case and obtain a
probability of at least

1−
(

1−
(
Yt
1

)(2rt
n

)(
1− 2rt

n

)n−1
)λ
≥ 1−

(
1−Θ

(
Yt
n

))λ
= Ω(λYt/n)

to improve the OneMax-value by 1, using that Yt = O(n/λ) and pessimistically
assuming a rate of 2rt in all offspring. If Xt > b, we bound the improvement from
below by 0. Using the law of total probability, we obtain

E(Yt − Yt+1 | Yt;Yt ≤ n/λ) = δΩ(λYt/n) = Ω(λYt/n).

Now a multiplicative drift analysis with respect to the stochastic process on the
Yt, more precisely Theorem 2.3 using δ = Θ(λ/n) and minimum state 1, gives an
expected number of O((n/λ) log Y0) = O(n log(n)/λ) generations until the optimum
is found. Together with the expected number O(logn) until the r-value becomes at
most a, this proves the theorem.

4.6 Putting Everything Together
In this section, we put together the analyses of the different regimes to prove our

main result.

Proof of Theorem 4.1. The lower bound actually holds for all unbiased parallel black-
box algorithms, as shown in [BLS14].

We add up the bounds on the expected number of generations spent in the three
regimes, more precisely we add up the bounds from Theorem 4.6, Theorem 4.8 and
Theorem 4.10, which gives us O(n/ log λ+ n log(n)/λ+ logn) generations. Due to
our assumption λ = nO(1) the bound is dominated by O(n/ log λ+ n log(n)/λ) as
suggested.

Proof of Lemma 4.2. We basically revisit the regions of different OneMax-values an-
alyzed in this chapter and bound the time spent in these regions under the assumption
r = ln(λ)/2. In the far region, Lemmas 4.4 and 4.5, applied with this value of r,
imply a fitness drift of Ω(log(λ)/ log(en/k)) per generation, so the expected number
of generations spent in the far region is O(n/ log λ) as computed by variable drift
analysis in the proof of Theorem 4.6.

The middle region is shortened at the lower end. For k ≥ n/
√
λ, Lemma 4.7 gives

a fitness drift of Ω(1), implying by additive drift analysis O(n/ log λ) generations to
reduce the fitness to at most n/

√
λ.

In the near region, which now starts at n/
√
λ, we have to argue slightly differently.

Note that every offspring has a probability of at least (1− r)n ≥ e− ln(λ)/2+O(1) =

82 Chapter 4. Self-adjusting (1+λ) EA

Ω(λ−1/2) of not flipping a zero-bit. Hence, we expect Ω(
√
λ) such offspring. We

pessimistically assume that the other individuals do not yield a fitness improvement;
conceptually, this reduces the population size to Ω(

√
λ) offspring, all of which are

guaranteed not to flip a zero-bit. Adapting the arguments from the proof of The-
orem 4.10, the probability that at least of one of these individuals flips at least a
one-bit is at least

1−
(

1−
(
Yt
1

)(
rt
n

))Ω(
√
λ)

≥ 1−
(

1−Θ
(
Yt
n

))Ω(
√
λ)

= Ω(
√
λYt/n),

which is a lower bound on the fitness drift. Using the multiplicative drift analysis,
the expected number of generations in the near region is O(n log(n)/

√
λ). Putting

the times for the regions together, we obtain the lemma.

4.7 Experimental Results
Since our analysis is asymptotic in nature we performed some elementary experi-

ments in order to see whether besides the asymptotic runtime improvement (showing
an improvement for an unspecified large problem size n) we also see an improvement
for realistic problem sizes. For this purpose we implemented the (1+λ) EA in C using
the GNU Scientific Library (GSL) for the generation of pseudo-random numbers. In
this section our performance measure is the runtime, represented by the number of
generations until the optimum is found for the first time.

The first plot in Figure 4.1 displays the average runtime over 10000 runs of the
self-adjusting (1+λ) EA on OneMax for n = 5000 as given in Algorithm 8 over
λ = 100, 200, . . . , 1000; the second plot shows the corresponding interquartile ranges
to support that the results are statistically significant. We set the initial mutation
rate to 2, i. e., the minimum mutation rate the algorithm can attain. Moreover, the
plot displays the average runtimes of the classic (1+λ) EA using static mutation
probabilities of 1/n and of (lnλ)/(2n), the latter of which is asymptotically optimal
for large λ according to Lemma 4.2.

The average runtimes of both algorithms profit from higher offspring population
sizes λ leading to lower average runtimes as λ increases. Interestingly, the two static
settings of the classic (1+λ) EA outperform the self-adjusting (1+λ) EA for small
values of λ up to λ = 400. For higher offspring population sizes the self-adjusting
(1+λ) EA outperforms the classic ones, indicating that the theoretical performance
gain of ln lnλ can in fact be relevant in practice. Furthermore, we implemented the
self-adjusting (1+λ) EA without the random steps, that is, when the rate is always
adjusted according to how the best offspring are distributed over the two subpopula-
tions. The experiments show that this variant of the self-adjusting (1+λ) EA performs
generally slightly better on OneMax. Since the OneMax fitness landscape is struc-
turally very simple, this result is not totally surprising. It seems very natural that the
fitness of the best of λ/2 individuals, viewed as a function in the rate, is a unimodal
function. In this case, the advantage of random steps to be able to leave local optima
of this function is not needed. On the other hand, of course, this observation suggests
to try to prove our performance bound rigorously also for the case without random
rate adjustments. We currently do not see how to do this. Lastly, we implemented
the (1+λ) EA using the fitness-depending mutation rate p = max{ lnλ

n ln(en/d) ,
1
n} as

presented in [BLS14]. The experiments suggest that this scheme outperforms all other
variants considered.

4.7. Experimental Results 83

200 400 600 800 1000

10
00

15
00

20
00

25
00

30
00

λ

A
ve
ra
ge

ru
n
ti
m
e
ov
er

1
00

00
ru
n
s

Self-adj. (1+λ) EA
Self-adj. (1+λ) EA (no random steps, F = 1.2)
Static (1+λ) EA (p = ln(λ)/(2n))
Static (1+λ) EA (p = 1/n)
(1+λ) EA using p = max(1/n, ln(λ)/(ln(en/d(x))))

200 400 600 800 1000

10
00

15
00

20
00

25
00

30
00

λ

A
ve
ra
ge

ru
n
ti
m
e
ov
er

10
00

0
ru
n
s

Self-adj. (1+λ) EA
Self-adj. (1+λ) EA (no random steps, F = 1.2)
Static (1+λ) EA (p = ln(λ)/(2n))
Static (1+λ) EA (p = 1/n)
(1+λ) EA using p = max(1/n, ln(λ)/(ln(en/d(x))))

Figure 4.1: Static and Self-adjusting (1+λ) EA average runtime com-
parison (n = 5000) on OneMax and the corresponding interquartile

ranges.

84 Chapter 4. Self-adjusting (1+λ) EA

Additionally we implemented another variant of the self-adjusting (1+λ) EA using
three equally-sized subpopulations i. e. the additional one is using (that is, exploit-
ing) the current mutation rate. We compared this variant with the self-adjusting
(1+λ) EA, both with and without using random steps. The results are shown in
Figure 4.2, again with respect to average runtimes and interquartile ranges. The
experiments suggest that the variant using three subpopulations outperforms the
self-adjusting (1+λ) EA slightly for small population sizes. For very high population
sizes, using just two subpopulations seems to be a better choice.

To gain some understanding on how the parameters influence the runtime, we
implemented the self-adjusting (1+λ) EA using different mutation rate update factors,
that is, we consider the self-adjusting (1+λ) EA as given in Algorithm 8 where the
mutation rate rt is increased or decreased by some factor F (instead of the choice
F = 2 made in Algorithm 8). Note that we do not change the rule that we use the
rates r/2 and 2r to create the subpopulations. Furthermore, after initialization, the
algorithm starts with rate F and the rate is capped below by F and above by 1/(2F)
during the run, accordingly.

The results are shown in Figure 4.3. The plot displays the average runtime over
10000 runs of the self-adjusting (1+λ) EA on OneMax for n = 5000 over λ =
100, 200, . . . , 1000 using the update factors F = 2.0, 1.5, 1.01. The plot suggests
that lower values of F yield a better performance. This result is not immediately
obvious. Clearly, a large factor F implies that the rate changes a lot from generation
to generation (namely by a factor of F). These changes prevent the algorithm from
using a very good rate for several iterations in a row. On the other hand, a small value
for F implies that it takes longer to adjust the rate to value that is far from the current
one. We also performed experiments for F > 2 and observed even worse runtimes
than for F = 2.0. The figure does not display the outcomes of these additional
experiments since this would impair the readability of the diagram.

Finally, to illustrate the nontrivial development of the rate during a run of the
algorithm we plotted the rate of three single runs of the self-adjusting (1+λ) EA using
different factors F over the fitness in Figure 4.4. Since the algorithm initialized with
the rate F , the rate increases after initialization and decreases again with decreasing
fitness-distance to the optimum. The plot suggests that for higher values of F the
rate is more unsteady due to the greater impact of the rate adjustments while smaller
rate updates yield a more stable development of the rate. Interestingly, for all three
values of F , the rates seem to correspond to the same rate after the initial increasing
phase from F . Note that this illustration does not indicate the actual runtime. In
fact, the specific runtimes are 19766 for F = 1.01, 19085 for F = 1.05 and 19857 for
F = 1.1. A similar, more pronounced behaviour can be seen for F = 2.0; we chose
these particular values of F for illustrative purposes since for F = 2.0 the variance
in the rate can be visually confusing for the reasons given above.

While we would draw from this experiment the conclusion that a smaller choice
of F is preferable in a practical application of our algorithm, the influence of the
parameter on the runtime is not very large. So it might not be worth optimizing it
and rather view Algorithm 8 as a parameter-less algorithm.

4.7. Experimental Results 85

200 400 600 800 1000 1200 1400

10
00

15
00

20
00

25
00

30
00

35
00

λ

A
ve
ra
ge

ru
n
ti
m
e
ov
er

10
00

0
ru
n
s

Self-adj. (1+λ) EA, 3 subpop.
Self-adj. (1+λ) EA
Self-adj. (1+λ) EA, 3 subpop. (no random steps)
Self-adj. (1+λ) EA (no random steps)

200 400 600 800 1000 1200 1400

10
00

15
00

20
00

25
00

30
00

35
00

λ

A
ve
ra
ge

ru
n
ti
m
e
ov
er

10
00

0
ru
n
s

Self-adj. (1+λ) EA, 3 subpop.
Self-adj. (1+λ) EA
Self-adj. (1+λ) EA, 3 subpop. (no random steps)
Self-adj. (1+λ) EA (no random steps)

Figure 4.2: Average runtime of the self-adjusting (1+λ) EA with
two and three subpopulations each with and without random steps on

OneMax (n = 5000) with corresponding interquartile ranges.

86 Chapter 4. Self-adjusting (1+λ) EA

200 400 600 800 1000

10
00

15
00

20
00

25
00

30
00

λ

A
ve
ra
ge

ru
n
ti
m
e
ov
er

1
00

00
ru
n
s

F = 2.0
F = 1.5
F = 1.2

200 400 600 800 1000

10
00

15
00

20
00

25
00

30
00

λ

A
ve
ra
ge

ru
n
ti
m
e
ov
er

10
00

0
ru
n
s

F = 2.0
F = 1.5
F = 1.2

Figure 4.3: Average runtime of the self-adjusting (1+λ) EA with
different mutation rate update factors F on OneMax (n = 5000)

with corresponding interquartile ranges

4.7. Experimental Results 87

0 10000 20000 30000 40000 50000

0
10

0
20

0
30

0
40

0
50

0
60

0

fitness

ra
te

F = 1.1
F = 1.05
F = 1.01

Figure 4.4: Development of the rate over the fitness of three example
runs of the self-adjusting (1+λ) EA on OneMax (n = 100000, λ =

1000), using different factors F

89

Chapter 5

Self-adapting (1,λ) EA

In this chapter we propose a version of the (1, λ) evolutionary algorithm (EA)
with a natural self-adaptive choice of the mutation rate and prove that it optimizes
the classic OneMax benchmark problem in a runtime that is asymptotically optimal
among all λ-parallel black-box optimization algorithms and that is, for λ ≥ C lnn with
a large enough constant C and λ = nO(1), better than the runtimes of the (1,λ) EA
and the (1+λ) EA for all static choices of the mutation rate. It obviously cannot beat
the (also asymptotically optimal) runtimes of the (1 + λ) EA with fitness-dependent
mutation rate of Badkobeh, Lehre, and Sudholt [BLS14] and of the (1 + λ) EA with
self-adjusting (exogenous) mutation rate we proposed in Chapter 4. Hence the good
news of our result is that this optimal runtime could be obtained in a generic manner.
Note that both the fitness-dependent mutation rate of [BLS14] and the self-adjusting
rate of Chapter 4 with its mix of random and greedy rate adjustments would have been
hard to find without a deeper understanding of the mathematics of these algorithms.

Not surprisingly, the proof of our main result has some similarity to the analysis
of the self-adjusting (1 + λ) EA of Chapter 4. In particular, we also estimate the
expected progress in one iteration and use variable drift analysis. Also, we need a
careful probabilistic analysis of the progress obtained from different mutation rates
to estimate which rate is encoded in the new parent individual (unfortunately, we
cannot reuse the analysis of Chapter 4 since it is not always strong enough for our
purposes). The reason, and this is also the main technical challenge in this work, is
that the (1,λ) EA can lose fitness in one iteration. This happens almost surely when
the mutation rate is too high. For this reason, we need to argue more carefully that
such events do not happen regularly. To do so, among several new arguments, we also
need a stronger version of the occupation probability result [KLW15, Theorem 7] since
(i) we need sharper probability estimates for the case that movements away from the
target are highly unlikely and (ii) for our process, the changes per time step cannot
be bounded by a small constant. Note that for the (1 + λ) EA, an excursion into
unfavorable rate regions is less a problem as long as one can show that the mutation
rate returns into the good region after a reasonable time. The fact that the (1,λ) EA
can lose fitness also makes it more difficult to cut the analysis into regimes defined by
fitness levels since it is now possible that the EA returns into a previous regime. In
this work, we also gained two insights which might be useful in the design of future
self-adaptive algorithms.

Need for non-elitism: Given the previous works, it would be natural to try a self-
adaptive version of the (1+λ) EA. However, this is risky. While the self-adjusting EA
of Chapter 4 can cope with the fact that the current mutation rate is far from the ideal
one and in this case provably quickly changes the rate to an efficient setting, a self-
adaptive algorithm cannot do so. Since the mutation rate is encoded in the individual,
a change of the rate can only occur if an offspring is accepted. For an elitist algorithm
like the (1 + λ) EA, this is only possible when an offspring is generated that is good

90 Chapter 5. Self-adapting (1,λ) EA

enough to compete with the parent(s). Consequently, if the parent individual in a
self-adaptive (1+λ) EA has a high fitness, but a detrimental (that is, large) mutation
rate, then the algorithm is stuck with this individual for a long time. Already for
the simple OneMax function, such a situation can lead to an exponential runtime.
Needless to say, when using a comma strategy we have to choose λ sufficiently large
to avoid losing the current-best solution too quickly; see [RS14] for a precise analysis
of this phenomenon for the (1,λ) EA using a static mutation rate of 1/n.

Tie-breaking towards lower mutation rates: To prove our result, we need that the
algorithm in case of many offspring of equal fitness prefers those with the smaller
mutation rate. Given that the usual recommendation for the mutation rate is small,
namely 1

n , and that it is well-known that large rates can be very detrimental, it is
natural to prefer smaller rates in case of ties (where, loosely speaking, the offspring
population gives not hint which rate is preferable). This choice is similar to the
classic tie-breaking rule of preferring offspring over parents in case of equal fitness
(again, the fitness indicates no preference, but the simple fact that one is maybe
working already for quite some time with this parent suggest to rather prefer the
new individual). Without proof, we remark that without this tie-breaking rule we
would need λ = nΩ(1) to ensure a positive drift towards the optimum throughout the
process.

The main result of this work Theorem 5.1 is a mathematical runtime anal-
ysis of the performance of the algorithm proposed above on the classic bench-
mark function OneMax : {0, 1}n → R defined by OneMax(x) =

∑n
i=1 xi for all

x = (x1, . . . , xn) ∈ {0, 1}n. Since such runtime analyses are by now a well-established
way of understanding the performance of evolutionary algorithms, we only briefly give
the most important details and refer the reader to the textbook [Jan13].

Our main result is as follows.

Theorem 5.1. Let λ ≥ C lnn for a sufficiently large constant C, and λ = nO(1),
and F = 32. Then the expected number of generations of the self-adapting (1,λ) EA
to minimize OneMax is O(n/ log λ + (n logn)/λ), corresponding to an expected
number of fitness evaluations of O(nλ/ log λ+ n logn).

The aim of runtime analysis is predicting how long an evolutionary algorithm takes
to find the optimum or a solution of sufficient quality. As implementation-independent
performance measure usually the number of fitness evaluations performed in a run
of the algorithm is taken. More precisely, the optimization time of an algorithm on
some problem is the number of fitness evaluations performed until for the first time
an optimal solution is evaluated. Obviously, for a (1,λ) EA, the optimization time is
essentially λ times the number of iterations performed until an optimum is generated.

As in classic algorithms analysis, our main goal is an asymptotic understanding
of how the optimization time depends on the problems size n. Hence all asymptotic
notation in the chapter will be with respect to n tending to infinity.

The proof of the theorem is based on a careful, technically demanding drift analysis
of both the current OneMax-value kt (which is also the fitness distance, recall that
our goal is the minimization of the objective function) and the current rate rt of the
parent. In very rough terms, a similar division of the run as in Chapter 4 into regions
of large OneMax-value, the far region (Section 5.2), and of small OneMax-value,
the near region (Section 5.3) is made. The middle region considered in Chapter 4 is
subsumed under the far region here.

In the remaining of our analysis, we regard n sufficiently large, λ ≥ C lnn with a
large constant C, and λ = nO(1).

5.1. Algorithm 91

5.1 Algorithm
We propose a (1,λ) EA with self-adaptive mutation rate for the minimization of

pseudo-boolean functions f : {0, 1}n → R as defined in Algorithm 9.
To encode the mutation rate into the individual, we extend the individual rep-

resentation by adding the rate parameter. Hence the extended individuals are pairs
(x, r) consisting of a search point x ∈ {0, 1}n and the rate parameter r, which shall
indicate that r/n is the mutation rate this individual was created with.

The extended mutation operator first changes the rate to either r/F or Fr with
equal probability (F > 1). It then performs standard bit mutation with the new rate.

In the selection step, we choose from the offspring population an individual with
best fitness. If there are several such individuals, we prefer individuals having the
smaller rate r/F , breaking still existing ties randomly. In this winning individual,
we replace the rate by F if it was smaller and by n/(2F) if it was larger.

We formulate the algorithm to start with an initial mutation rate rinit, which we
require to be in [F, n/(2F)]. For the result we shall show in this work, the initial rate
is not important, but without this prior knowledge we would strongly recommend
to start with the smallest possible rate rinit = F . Due to the multiplicative rate
adaptation, the rate can quickly grow if this is profitable. On the other hand, a
too large initial rate might lead to an erratic initial behavior of the algorithm. For
the adaptation parameter, we shall use F = 32 in our runtime analysis. Having
such a large adaptation parameter eases the already technical analysis, because now
the two competing rates r/F and Fr are different enough to lead to a significantly
different performance. For a practical application, we suspect that a smaller value of
F is preferable as it leads to a more stable optimization process. The choice of the
offspring population size depends mostly on the degree of parallelism one wants to
obtain. Clearly, λ should be at least logarithmic in n to prevent a too quick loss of
the current-best solution. For our theoretical analysis, we require λ ≥ C lnn for a
sufficiently large constant C.

Algorithm 9 The (1,λ) EA with self-adapting mutation rate, adaptation parameter
F > 1, and initial mutation rate rinit/n such that rinit ∈ [F, n/(2F)] and rinit = F i

for some i ∈N.
Select x0 uniformly at random from {0, 1}n.
Set r0 ← rinit.
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Choose rt,i ∈ {rt−1/F, Frt−1} uniformly at random.
Create xt,i by flipping each bit in x independently with probability rt,i/n.

Choose i ∈ [1..λ] such that f(xt,i) = minj∈[1..λ] f(xt,j); in case of a tie, prefer
an i with rt,i = rt−1/F ; break remaining ties randomly.

(xt, rt)← (xt,i, rt,i).
Replace rt with min{max{F, rt}, n/(2F)}.

5.2 The Far Region
In this section, we analyze the optimization behavior of our self-adaptive (1,λ) EA

in the regime where the fitness distance k is at least n/λ. Due to our assumption
λ ≥ C lnn, it is very likely to have at least one copy of the parent among λ offspring

92 Chapter 5. Self-adapting (1,λ) EA

for r = O(lnλ). Thus the (1,λ) EA works almost the same as the (1 + λ) EA but
can lose fitness with small probability. The following lemma is crucial in order to
analyze the drift of the rate depending on k, which follows a similar scheme as with
the (1 + λ) EA proposed in [Doe+17].

Roughly speaking, the rate leading to optimal fitness progress is n for k ≥ n/2+
ω(
√
n ln(λ)), n/2 for k = n/2± o(

√
n log(λ)), and then the optimal rate quickly

drops to r = Θ(log λ) when k ≤ n/2− εn.
To ease the representation, we first define two fitness dependent bounds L(k) and

R(k).

Definition 5.2. Let n/ lnλ < k < n/2 and F = 32. We define L(k) :=
(F ln(en/k))−1 and U(k) := n(2n− k)/(22(n− 2k)2).

According to the definition, both L(k) and R(k) monotonically increase when k
increases.

Lemma 5.3. Let F = 32. Consider an iteration of the self-adaptive (1,λ) EA with
current fitness distance k and current rate r.

Then:
1. If n/ lnλ < k and F ≤ r ≤ L(k) lnλ, the probability that all best offspring have

been created with rate Fr is at least 1−O(ln3(λ)/λ1/(4 ln lnλ)).
2. If k < n/2 and n/(2F) ≥ r ≥ U(k) lnλ, then the probability that all best

offspring have been created with rate r/F is at least 1− λ1−(23/22)r/(U(k) lnλ).

Proof of Lemma 5.3 part 1. Let q(k, i, r) and Q(k, i, r) be the probability that stan-
dard bit mutation with mutation rate p = r/n creates from a parent with fitness
distance k an offspring with fitness distance exactly k− i and at most k− i, respec-
tively. Then

q(k, i, r) =
k−i∑
j=0

(
k

i+ j

)(
n− k
j

)
pi+2j(1− p)n−i−2j (5.1)

and Q(k, i, r) = ∑k
j=i q(k, j, r). We aim at finding i such that Q(k, i, Fr) ≥ ln(λ)/λ

while Q(k, i, r/F) = O(ln3(λ)/λ1+1/4(ln lnλ)). Then we use these to bound the prob-
ability that at least one offspring using rate Fr obtains a progress of i or more while
at the same time all offspring using rate r/F obtains less than i progress. Let i∗ be
the largest i such that Q(k, i, Fr) ≥ ln(λ)/λ. Using the fact that ln(1−x) ≥ −x−x2

for all 0 < x < 2/3, we notice that (1− Fp)n−i ≥ (1− Fp)n ≥ e−Fr−(Fr)
2/n. By

the assumption that r ≤ L(k) lnλ ≤ lnλ, we obtain (Fr)2/n = O(ln2 λ/n) = o(1).
Thus (1− Fp)n−i = (1− o(1))e−Fr. We also notice that (ki) = (k/i)((k − 1)/(i−
1)) · · · (k− i+ 1) > (k/i)i−1(k− i) = (k/i)i((k− i)i/k) > 2(k/i)i for 2 < i < k− 2.
Thus for i > 2 we can bound Q(k, i, Fr) by

Q(k, i, Fr) ≥ q(k, i, Fr) ≥
(
k

i

)
(Fp)i(1− Fp)n−i ≥

(
k

i
· Fr
n

)i
e−Fr. (5.2)

Let i = max{(F − 1)r, lnλ/(8 ln lnλ)}. We prove i∗ ≥ i by distinguishing between
two cases according to which argument maximizes i.

5.2. The Far Region 93

If i = lnλ/(8 ln lnλ), then r ≤ i/(F − 1) and Fr ≤ 2i. Referring to inequality
(5.2) and using the fact that k/n ≥ 1/ lnλ, i < lnλ, and ln ln(λ) > 1, we obtain

ln(Q(k, i, Fr)) ≥ i ln
(
k

in

)
− Fr ≥ −i ln(ln2 λ)− 2i

= −2i ln lnλ− 2i > −4i ln lnλ = − lnλ
2 ≥ ln

(lnλ
λ

)
and thus Q(k, i, Fr) ≥ ln(λ)/λ.

If i = (F − 1)r, then r ≥ lnλ/(8(F − 1) ln lnλ) since F is a constant. Using
r ≤ L(k) lnλ, we obtain lnλ ≥ ln(en/k)Fr which is equivalent to (k/en)Fr ≥ 1/λ.
Furthermore, (k/n)i > (k/n)Fr since i = (F − 1)r < Fr. Thus

Q(k, i, Fr) ≥
(
k

i
· Fr
n

)i
e−Fr ≥

(
F

F − 1

)(F−1)r (k

en

)Fr
≥ 2r

(
k

en

)Fr
≥ lnλ

λ
.

Since Q(k, i, r) is decreasing in i, we obtain i∗ ≥ max{(F − 1)r, lnλ/(8 ln lnλ)}.
Using a Chernoff bound and recalling that the expected number of flipped bits is
bounded by FL(k) lnλ ≤ lnλ/ ln(2e), we notice that i∗ ≤ lnλ. This upper bound
will be used to estimate Q(k, i∗, F r)/Q(k, i∗ + 1, F r) in the following part of the
proof.

We now prove that Q(k, i∗, r/F) = o(1/λ). By comparing each component in
q(k, i, r/F) and q(k, i, Fr), and applying Lemma 2.14 3 to estimate (1−Fr/n)n and
(1− r/(Fn))n with r = O(lnλ) = o(n1/2) for large enough n, we obtain

q(k, i, Fr)

q(k, i, r/F)
≥ F 2i (1− Fr/n)n

(1− r/(Fn))n

≥
(
1− o(1)

)
F 2ie−(F−1/F)r > F 2ie−Fr.

Therefore Q(k, i∗, F r)/Q(k, i∗, r/F) ≥ F 2i∗e−Fr = exp(2i∗ lnF − Fr) ≥
exp(2i∗ lnF −Fi∗/(F −1)) > exp(3i∗) > λ1/(4 ln lnλ), where in the first inequality, we
use the fact that i∗ ≥ (F − 1)r. To prove Q(k, i∗, r/F) = O(ln3(λ)/λ1+1/4(ln lnλ)),
we first show Q(k, i∗, F r)/Q(k, i∗ + 1, F r) = O(ln2 λ). Then we use this to bound
Q(k, i∗, F r) = O(ln3(λ)/λ) according to the definition of i∗. Finally we obtain
Q(k, i∗, r/F) ≤ Q(k, i∗, F r)/λ1/(4 ln lnλ) = O(ln3(λ)/λ1+1/4(ln lnλ)). It remains to
bound Q(k, i∗, F r)/Q(k, i∗+ 1, F r). We show that the majority of q(k, i, r) are from
the first 3r terms in the summation of equation (5.1). Let q(k, i, r)j denote the j-th
item (k

i+j)(
n−k
j)pi+2j(1− p)n−i−2j in equation (5.1). Then

q(k, i, r)j+1
q(k, i, r)j

=
k− i− j
i+ j + 1 ·

n− k− j
j + 1 · p2 · (1− p)−2 ≤ r2

(i+ j + 1)(j + 1) .

94 Chapter 5. Self-adapting (1,λ) EA

If j > 3r, then r2/((i+ j + 1)(j + 1)) < 1/9, and thus

q(k, i, r) ≤
 3r∑
j=0

q(k, i, r)j

+ q(k, i, r)3r

 k−i∑
j=3r+1

(1/9)j−3r

≤

 3r∑
j=0

q(k, i, r)j

+ q(k, i, r)3r ·
1/9

1− 1/9

=

3r−1∑
j=0

q(k, i, r)j

+
9
8 · q(k, i, r)3r ≤

9
8

3r∑
j=0

q(k, i, r)j .

We notice that

q(k, i+ 1, r)j
q(k, i, r)j

=
(k
i+j+1)(

n−k
j)pi+2j+1(1− p)n−i−2j−1

(k
i+j)(

n−k
j)pi+2j(1− p)n−i−2j

=
(k− i− j)p

(i+ j + 1)(1− p) ,

using the fact that ∑3r
j=0 q(k, i, r)j ≤ q(k, i, r) ≤ (9/8)∑3r

j=0 q(k, i, r)j for all (k, i, r),
we compute

q(k, i∗ + 1, F r)
q(k, i∗, F r)

≥
∑3Fr
j=0 q(k, i

∗ + 1, F r)j
(9/8)∑3Fr

j=0 q(k, i
∗, F r)j

≥ 8
9 ·

k− i∗ − 3Fr
i∗ + 3Fr+ 1 ·

p

1− p .

Since i∗ ≥ (F − 1)r, i∗ ≤ lnλ, and k ≥ n/ lnλ = ω(lnλ), we obtain

q(k, i∗ + 1, F r)
q(k, i∗, F r)

= Ω
(
kp

i∗

)
= Ω

(
kr

i∗n

)
= Ω

(1
ln2 λ

)
.

Consequently we have q(k, i∗, F r)/Q(k, i∗ + 1, F r) ≤ q(k, i∗, F r)/q(k, i∗ + 1, F r) =
O(ln2 λ) and

Q(k, i∗, F r)

Q(k, i∗ + 1, F r) = 1 + q(k, i∗, F r)

Q(k, i∗ + 1, F r) = O(ln2 λ).

So finally Q(k, i∗, F r) = O(ln3(λ)/λ) due to the definition of i∗, and

Q(k, i∗, r/F) ≤ Q(k, i∗, F r)

F 2i∗e−Fr
= O

(
ln3 λ

λ · λ1/(4 ln lnλ)

)
.

A simple union bound shows that with probability 1 − O(ln3(λ)/λ1/(4 ln lnλ)), no
offspring of rate r/F manages to obtain a progress of i∗ or more. However, the
probability that an offspring has rate Fr and obtains at least i∗ progress is ln(λ)/(2λ).
Thus the probability that no offspring generated with rate Fr achieves a progress of
at least i∗ is at most (1− ln(λ)/(2λ))λ ≤ λ−1/2 = o(ln3(λ)/λ1/(4 ln lnλ)). This proves
the first statement of the lemma.

Proof of Lemma 5.3 part 2. For r̃ ∈ {r/F, Fr} let the random variable X(k, r̃)
denote the number of flipped bits in k ones and Y (k, r̃) denote the number of
flipped bits in n − k zeros when applying standard bit mutation with probability
p = r̃/n. Let Z(k, r̃) := Y (k, r̃) − X(k, r̃) denote the improvement in fitness.
Let Z∗(k, r̃) denote the minimal Z(k, r̃) among all offspring which apply rate r̃.
E(Z(k, r̃)) = (n− k)r̃/n− kr̃/n = (n− 2k)r̃/n. Our aim is to find a β such that

5.2. The Far Region 95

Pr (Z(k, r/F) ≤ β) = Θ(1) while Pr (Z(k, Fr) ≤ β) = o(1/λ), and use this to ob-
tain a high value for Pr (Z∗(k, r/F) < Z∗(k, Fr)).

Let β := E(Z(k, r/F)). We notice that Pr(X(k, r/F) > E(X(k, r/F))− 1) ≥
1/2 since the median of binomial distribution X(k, r/F) is bE(X(k, r/F)c or
dE(X(k, r/F)e. Applying Lemma 2.16 to Pr(Y (k, r/F) < E(Y (k, r/F))− 1) with
E(Y (k, r/F)) = Ω(lnλ) = ω(1) by assumption r ≥ U(k) lnλ and E(Y (k, r/F)) <
(n− k)/2, we obtain for n sufficiently large that

Pr
(
Y (k, r/F) < E(Y (k, r/F))− 1

)
≥ 1

2 −
√

n− k
2πb(n− k)pc(n− k− b(n− k)pc) >

2
5. (5.3)

Thus Pr(Z(k, r/F) ≤ β) > (1/2)(2/5) = 1/5. We use Bernstein’s inequality (ver-
sion Lemma 5.7) to bound Pr (Z(k, Fr) ≤ β) and obtain

Pr
(
Z(k, Fr) ≤ E(Z(k, Fr))−∆

)
≤ exp

(
− ∆2

2(Var(Z(k, Fr)) + ∆/3)

)
for all ∆ > 0.

With ∆ = E(Z(k, Fr))− β = (n− 2k)(Fr/n− r/(Fn)) = (n− 2k)(F 2− 1)r/(Fn)
and Var(Z(k, Fr)) = Fr(1− Fr/n) < Fr, we compute

Pr

(
Z(k, Fr) ≤ β

)
≤ exp

(
−1

2 ·
(F 2 − 1)2(n− 2k)2r2

F 2n2(Fr+ (n− 2k)(F 2 − 1)r/(3Fn))

)

= exp
(
−1

2 ·
(F 2 − 1)2(n− 2k)2r

F 3n2 + Fn(n− 2k)(F 2 − 1)/3

)

≤ exp
(
−3

2 ·
(F 2 − 1)2(n− 2k)2r

3F 3n2 + F 3n(n− 2k)

)

= exp
(
−3

4 ·
(F 2 − 1)2(n− 2k)2r

F 3n(2n− k)

)
.

Given F = 32 and r ≥ U (k) lnλ then

Pr
(
Z(k, Fr) ≤ β

)
< exp

(
−23.9(n− 2k)2r

n(2n− k)

)
< λ

− 23.9r
22U(k) lnλ .

With a simple union bound, we obtain Pr(Z∗(k, Fr) ≤ β) < λPr(Z(k, Fr) ≤ β) <
λ1−23.9r/(22U(k) lnλ). The probability that an offspring has rate r/F and obtains
β is at least (1/2)(1/5) = 1/10. Thus the probability that no offspring gener-
ated with r/F has a Z-value of at least β is at most (1− 1/10)λ = exp(−Θ(λ)).
Therefore Pr(Z∗(k, Fr) < Z∗(k, r/F)) < λ1−23.9r/(22U(k) lnλ)(1 − exp(−Θ(λ))) =
o(λ1−23r/(22U(k) lnλ)), which means with probability at least 1− λ1−(23r/(22U(k) lnλ)

all best offspring have been created with rate r/F .

Lemma 5.3 will be crucial in order to bound the expected progress on fitness in the
far region. We notice that lnλ = o(

√
n) in the lemma we may allow r > lnλ when k is

large and r = Θ(n) when k = n/2−Θ(
√
n lnλ). It is easy to show a positive progress

on fitness for r < lnλ since there will be sufficiently many offspring that do not flip
zeroes. When r ≥ lnλ we expect all offspring to flip zeros, but we can still show a
positive drift when k > 7n/20, as stated in the following lemma. The idea is that the

96 Chapter 5. Self-adapting (1,λ) EA

standard variation of the number of flipping ones is
√
kr/n(1− r/n) = Θ(

√
r). This

makes a deviation compensating bad flips among the remaining n− 2k zeros likely
enough.

Lemma 5.4. Let 7n/20 ≤ k < n/2, F = 32 and α = 10−4. Assume r ≤
min{n2 lnλ/(12(n− 2k)2), n/(2F)}. Assume that from a parent with fitness distance
k we generate an offspring using standard bit mutation with mutation rate p = r/n.
Then the probability that this offspring has a fitness distance of at most k − s with
s := α(min{lnλ, r}+ (n− 2k)r/n), is at least λ−0.98.

Proof. We first look at the case when r < 1/(2α). In this case s ≤ α(r + (n −
2k)r/n) ≤ α(2r) < 1. Then the probability that this offspring has a fitness distance
of k− 1 > k− s is at least(

k

1

)(
r

n

)1 (
1− r

n

)n−1
= Θ(e−r) = ω(λ−0.98).

Therefore it remains to consider r ≥ 1/(2α).
Let random variablesX and Y denote the number of flips in k one-bits and (n−k)

zero-bits, respectively, in an offspring using rate p = r/n. Then X −Y is the decrease
of fitness distance. X and Y follow binomial distributions Bin(k, p) and Bin(n−k, p),
respectively. Let

B(x) := Pr(X = x) =

(
k

x

)
px(1− p)k−x for all x ∈ {0, 1, . . . , k},

F (x) := Pr(X ≥ x) =
k∑

i=dxe
B(i) for all x ∈ [0, k].

Since r ≥ 1/(2α) ≥ 5000 and n ≤ 20k/7, then p = r/n ≥ 5000 · 7/(20k) = 1750/k.
Using this and the fact that p ≤ 1/(2F), we apply Lemma 2.16 and obtain

Pr(X > E(X)) >
1
2 −

√
k

2πbkpc(k− bkpc) >
1
2 −

√
1

2kp >
2
5

Similarly Pr(Y ≤ E(Y)) = 2/5. Since E(X − Y) = kp− (n− k)p = −(n− 2k)p, we
bound

Pr
(
X − Y ≥ s

)
≥ Pr

(
X ≥ E(X) + (n− 2k)p+ s

)
Pr
(
Y ≤ E(Y)

)

≥ 2
5F
(
kp+ (n− 2k)p+ s

)
.

Let δ := d(n − 2k)p + se, u := kp and ũ := due. We notice that u = rk/n ≥
(1/(2α))(7/20) = 1750. Furthermore, we have δ < ũ− 2 < u since

δ = d(n− 2k)p+ se < (1 + α)(n− 2k)p+ αmin{lnλ, r}+ 1

≤ (1 + α)
n− 2k
n

r+ αr+ 1 ≤
(
(1 + α)

3
10 + α

)
r+ 1

=
3 + 13α

10 · n
k
· u+ 1 < 3 + 13α

10 (3u) + 1 < 0.91u+ 1

= u− 0.09u+ 1 ≤ u− (0.09 · 1750− 1) = u− 156.5.

5.2. The Far Region 97

We aim at proving F (u+ δ) = ω(λ−0.98) to obtain this lemma. If F (u+ δ) = Θ(1)
then the conclusion holds. It remains to consider F (u + δ) = o(1) while F (u) −
F (u+ δ) ≥ 2/5− o(1) as stated in equation (5.3). For any x ∈ Z≥u we have

B(x+ 1)
B(x)

=
k− x
x+ 1 ·

p

1− p ≤
u− up

u− up+ 1− p < 1.

Since ũ = due then B(ũ) > B(ũ+ 1) > · · · > B(k), and thus F (u+ δ) ≥ δB(ũ+ 2δ)
as well as F (u)−F (u+ δ) ≤ δB(ũ). Using the fact that p/(1− p) = u/(k− u) and
ũ− 1 < u, we see that

B(ũ+ 2δ)
B(ũ)

=
(k− ũ) · · · (k− (ũ+ 2δ) + 1)

(ũ+ 1) · · · (ũ+ 2δ) · p2δ

(1− p)2δ

≥ (k− (ũ− 1)− 2δ)2δ

(ũ+ 1) · · · (ũ+ 2δ) ·
u2δ

(k− u)2δ ≥
(

1− 2δ
k− u

)2δ u2δ

(ũ+ 1) · · · (ũ+ 2δ) .

We compute the following factorials using Robbins’s Stirling’s approximation in
[Rob55]

(ũ+ 2δ)! ≤
√

2π(ũ+ 2δ)
(
ũ+ 2δ
e

)ũ+2δ
exp

(1
12(ũ+ 2δ)

)
,

ũ! ≥
√

2πũ
(
ũ

e

)ũ
exp

(1
12ũ+ 1

)
.

Notice that 12ũ+ 1 < 12(ũ+ 2δ), we obtain

1
(ũ+ 1) · · · (ũ+ 2δ) =

ũ!
(ũ+ 2δ)! ≥

√
ũ

ũ+ 2δ
ũũe2δ

(ũ+ 2δ)ũ+2δ ≥
√

ũ

ũ+ 2δ
uũe2δ

(ũ+ 2δ)ũ+2δ .

Therefore

B(ũ+ 2δ)
B(ũ)

≥
(

1− 2δ
k− u

)2δ
√

ũ

ũ+ 2δ
uũ+2δe2δ

(ũ+ 2δ)ũ+2δ

=

√
ũ

ũ+ 2δ exp
(

2δ ln
(

1− 2δ
k− u

)
+ (ũ+ 2δ) ln

(
u

ũ+ 2δ

)
+ 2δ

)

≥
√

ũ

ũ+ 2δ exp
(

2δ ln
(

1− 2δ
k− u

)
+ (ũ+ 2δ) ln

(
1− 2δ + 1

ũ+ 2δ

)
+ 2δ

)
.

We notice that 2δ/(k − u) ≤ 2δ/(2Fu− u) = 2δ/(63u) < 2/63 < 1/2 and (2δ +
1)/(ũ+ 2δ) < (2δ+ 1)/(3δ+ 2) < 2/3. Referring to Lemma 2.14 3, 4, we compute

2δ ln
(

1− 2δ
k− u

)
≥ −3

2 ·
4δ2

k− u = − 6δ2

u/p− u ≥ −
6δ2

2Fu− u ≥ −
δ2

10u,

(ũ+ 2δ) ln
(

1− 2δ + 1
ũ+ 2δ

)
≥ −(2δ + 1)− (2δ + 1)2

ũ+ 2δ ≥ −2δ− 4δ2

u
− 3,

B(ũ+ 2δ)
B(ũ)

≥
√

ũ

ũ+ 2δ exp
(
−41δ2

10u − 3
)
≥
√

1
3e
−3 exp

(
−41δ2

10u

)
.

(5.4)

98 Chapter 5. Self-adapting (1,λ) EA

where the last inequality used that ũ/(ũ+ 2δ) ≥ 1/3 since δ ≤ ũ. Using n/k ≤ 20/7
and r ≤ n2 lnλ/(12(n− 2k)2), we obtain

41δ2

10u =
41n
10k ·

d(1 + α)((n− 2k)/n)r+ αmin{lnλ, r}e2
r

≤ 41n
10k ·

((1 + α)((n− 2k)/n)r+ αmin{lnλ, r}+ 1)2

r

≤ 41n
10k ·

(
((1 + α)((n− 2k)/n)r+ αmin{lnλ, r})2

r
+ 2(1 + α)

n− 2k
n

+ 2α+
1
r

)

≤ 82
7 ·

(
(1 + α)2

(
n− 2k
n

)2
r+ 2(1 + α)

n− 2k
n

α lnλ+ α2 lnλ+ 1
)

≤ 82
7 ·

(
(1 + α)2 lnλ

12 +
3(1 + α)α

5 lnλ+ α2 lnλ+ 1
)
< 0.978 lnλ+ 82

7 .

Plugging the last estimate into inequality (5.4), we obtain B(ũ + 2δ)/B(ũ) =
ω(λ−0.98). Thus F (u+ δ)/(F (u)−F (u+ δ)) = ω(λ−0.98) and F (u+ δ) = ω(λ−0.98)
which proves the statement in this lemma.

For k < 7n/20, we need a more careful analysis, where we will estimate the
expected progress on fitness averaged over the random rates the algorithm may have
at a time. Hence, we assume a fixed current fitness but a random current rate and
compute the average drift of fitness with respect to the distribution on the rates. This
approach is similar to the one by Jägersküpper [Jäg11], who computes the average
drift of the Hamming distance to the optimum when the (1+1) EA is optimizing a
linear function, where the average is taken with respect to a distribution on all search
points with a certain Hamming distance.

Of course, we want to exploit that a rate yielding near-optimal fitness progress is
used most of the time such that too high (or too low) rates do not have a significant
impact. To this end, Lemma 2.12 about occupation probabilities will be crucial.

We now define two fitness dependent bounds rl(k) and ru(k). We show in
Lemma 5.6 that for any rate, if r/F or Fr is within the bounds, then the algorithm
has logarithmic drift on fitness.

Definition 5.5. Let n/ lnλ < k < n/2 and F = 32. We define

ru(k) :=

{
n2 ln(λ)/(12(n− 2k)2) if 7n/20 ≤ k < n/2,
10U(k) ln(λ)/9 if n/ lnλ < k < 7n/20.

rl(k) :=

{
L(k) ln(λ)/2 if n/ lnλ ≤ k < n/2,
F if n/λ < k < n/ lnλ.

where L(k) and U(k) are defined as in Definition 5.2.

We notice that Lemma 5.3 can be applied to all r > ru or r < rl because for
all 7n/20 ≤ k < n/2, we have ru/(U(k) lnλ) = 22n/(12(2n− k)) ≥ 22/(12(2−
0.35)) = 10/9. For k < n/ lnλ, we set rl to the minimal possible value of r. Finally
note that ru is non-decreasing in k due to the monotonicity of n2/(n− 2k)2 and U (k).

Lemma 5.6. Let n/λ < k < n/2 with F = 32. Let ∆(k, r) denote the fitness gain
of the best offspring using rate in {r/F, Fr}.

5.2. The Far Region 99

1. The negative drift of fitness for too high rates r ≥ Fru is bounded by

E(∆(k, r)) ≥ −
(
1 + o(1)

)n− 2k
n

r

F
.

2. When k ≥ 7n/20 the positive drift of fitness for good rate r ≤ Fru is bounded
by

E(∆(k, r)) ≥
(
1− o(1)

)
· 10−4

(
n− 2k
n

· r
F

+ min
{

lnλ, r
F

})
.

3. When n/λ < k < 7n/20 the positive drift of fitness for good rate r ≤ Fru is
bounded by

E(∆(k, r)) ≥
(
1− o(1)

)
min

{
r

F
,

lnλ
F ln(en/k)

}
.

Proof. The probability of using rate r/F is 1/2. Thus with probability at least
1− (1/2)λ = 1− o(1/n3), at least one offspring uses rate r/F . For this offspring,
the expected loss is (n− 2k)r/(Fn). If the complementary event (hereinafter called
failure) of probability o(1/n3) happens, we estimate ∆(k, r) pessimistically by −n.
This proves the first statement.

To prove the second item, we take i = 10−4((n− 2k)r/(Fn) + min{lnλ, r/F}).
According to Lemma 5.4, the probability that an offspring uses rate r/F and achieves
progress of i or more is at least λ−0.98/2. Thus for λ offspring, we obtain Pr(∆(k, r) ≥
i) ≥ 1− (1− λ−0.98/2)λ = 1−O(exp(−λ0.02/2)) = 1− o(1). If the failure event
happens, we estimate ∆(k, r) pessimistically by −(n− 2k)r/(Fn) = O(i). Thus the
statement holds.

For the third item, we take i := min{r, ln(λ)/ ln(en/k)}/F . Notice that for k <
7n/20 we have ru(k) < ru(7n/20) = (25/27) lnλ < 0.93 lnλ. Applying Lemma 2.143
with r/F ≤ ru(k) = o(

√
n) we obtain (1− r/(Fn))n ≥ (1− o(1))e−r/F . Therefore

the probability that one offspring using rate r/F < 0.93 lnλ makes a progress of at
least i is lower bounded by (assuming n large enough)(

k

i

)(
r

Fn

)i (
1− r

Fn

)n
≥
(
k

i
· r
Fn

)i(
(1− o(1))e− r

F

)

>

(
k

en

)i
e−0.94 lnλ ≥ λ−1/F−0.94 > λ−0.98.

Thus for λ offspring, we obtain Pr(∆(k, r) ≥ i) ≥ 1 − (1 − λ−0.98/2)λ = 1 −
o(1/ ln(λ)). If the failure event happens we estimate ∆(k, r) pessimistically by
−(n − 2k)r/(Fn) = O(lnλ). The contribution of failure events is o(1) which is
also o(i). Therefore the third statement holds.

As discussed, our aim is to show that rt/F or Frt stays in the right range fre-
quently enough such that the overall average drift is still logarithmic. We notice that
small rates rt < rl intuitively do not have a negative effect, therefore we focus on
the probability that rt < Fru. Since ru monotonically decreases when k decreases,
we need to analyze whether r still stays in the right range if there are large jumps
in fitness distance k. Intuitively, the speed at which the mutation rate is decreased
is much higher than than the decrease of fitness distance. To make this rigorous, we
first look at the probability of large jumps, as detailed in the following lemma.

100 Chapter 5. Self-adapting (1,λ) EA

Lemma 5.7. Assume r ≤ n/2 and let Z(k, r) denote the fitness-distance increase
when applying standard bit mutation with probability p = r/n to an individual with
k ones. Then

Pr (Z(k, r) ≤ (n− 2k)r/n− ∆) ≤ exp
(

−∆2

2(1− p)(r+ ∆/3)

)
,

Pr (Z(k, r) ≥ (n− 2k)r/n+ ∆) ≤ exp
(

−∆2

2(1− p)(r+ ∆/3)

)
.

Proof. Without loss of generality, we assume that the individual has k leading ones
and n − k trailing zeros. Let random variables Z1, . . . , Zn be the contribution to
fitness distance increase in each position after standard bit mutation. Then

Pr(Zi = −1) = p and Pr(Zi = 0) = 1− p for all 1 ≤ i ≤ k;
Pr(Zi = 1) = p and Pr(Zi = 0) = 1− p for all k < i ≤ n.

The random variables Z1, . . . , Zn are independent and Z(k, r) = ∑n
i=1 Zi. Similarly

as in the proof of Lemma 5.3 2, we have E(Z(k, r)) = −kp+ (n− 2k)p = (n− 2k)p
and Var(Z(k, r)) =

∑n
i=1 Var(Zi) = np(1− p) = (1− p)r. To apply Bernstein’s

inequality (Theorem 2.8), we construct Z̃i such that Z̃i = Zi + p for all 1 ≤ i ≤ k
and Z̃i = Zi − p for all k < i ≤ n. Therefore E(Z̃i) = 0 and Var(Z̃i) = Var(Zi).

Pr(Z̃i = −1 + p) = p and Pr(Z̃i = p) = 1− p for all 1 ≤ i ≤ k;
Pr(Z̃i = 1− p) = p and Pr(Z̃i = −p) = 1− p for all k < i ≤ n.

By assuming r ≤ n/2, we have p ≤ 1/2 and thus p− 1 ≤ Z̃i ≤ 1− p for all 1 ≤
i ≤ n. Using the fact that ∑n

i=1 Z̃i = Z(k, r)−E(Z(k, r)), Theorem 2.8 yields with
b := 1− p and σ2 := (1− p)pn = (1− p)r that

Pr
(

n∑
i=1

Z(k, r)−E(Z(k, r)) ≥ ∆

)
≤ exp

(
−∆2

2(1− p)(r+ ∆/3)

)
.

Similarly the lower tail bound holds.

We now use Lemma 5.7 to show that once rt ≥ Fru(kt), there will be a strong
drift for rt/ru(kt) to decrease down to 1.

Lemma 5.8. Let kt < n/2 and F = 32. Let τ := logF (3/
√

10) and Xt :=
logF (rt/ru(kt))− τ with ru(kt) defined in Definition 5.5, we have

Pr (Xt+1 −Xt ≥ a | Xt > 1) ≤ λ−Ω(a+1) for all a ≥ −1/2,
Pr (Xt+1 − 1 ≥ a | Xt ≤ 1) ≤ λ−Ω(a+1) for all a > 0.

Proof. Using the fact that rt+1 ∈ {Frt, rt/F}, we see that

Xt+1 −Xt ∈
{

1 + logF
(
ru(kt)

ru(kt+1)

)
,−1 + logF

(
ru(kt)

ru(kt+1)

)}
.

According to the monotonicity that ru(k) increases with respect to k, we notice that
kt ≥ kt+1 is a necessary condition for Xt+1 −Xt ≥ 1. We also notice that Xt ≥ τ
is equivalent to rt/ru(kt) ≥ 3/

√
10, which is sufficient to apply Lemma 5.32 since

ru(k) ≥ (10/9)U(k) lnλ as defined in Definition 5.5.

5.2. The Far Region 101

We first consider the case kt+1 ≥ kt (equivalent to ru(kt+1) ≥ ru(kt)). In this
case Xt+1 −Xt ≤ 1 thus Pr(Xt+1 ≥ 1 ∩ kt+1 ≥ kt | Xt < 0) = 0 and Pr(Xt+1 − 1 ≥
1 ∩ kt+1 ≥ kt | Xt ≤ 1) = 0. It remains to consider

Pr(Xt+1 −Xt ≥ a ∩ kt+1 ≥ kt | Xt > 1) with − 1/2 ≤ a ≤ 1, and
Pr(Xt+1 − 1 ≥ a ∩ kt+1 ≥ kt | 0 ≤ Xt ≤ 1) with 0 < a < 1.

If rt+1 = rt/F then Xt+1 −Xt ≤ −1. Clearly Xt+1 −Xt ≥ a ≥ −1/2 is impossible.
It also makes Xt+1 ≥ 1 with 0 ≤ Xt ≤ 1 impossible. Thus, the two probabilities
above are bounded by Pr(rt+1 = Frt ∩ kt+1 ≥ kt | Xt ≥ τ) ≤ Pr(rt+1 = Frt | Xt ≥
τ) = λ−Ω(1) according to Lemma 5.32.

It remains to consider kt+1 < kt (equivalent to ru(kt+1) < ru(kt)). We make a
case distinction based on the value of (n− 2kt)2.

Case 1: (n− 2kt)2 < 2Fn lnλ. In this case, ru(kt) = n2 lnλ/(12(n− 2kt)2) ≥
n/(24F) which means that Xt < 1 for all rates r ≤ n/(2F). Thus Pr(Xt+1 −Xt <
a ∩ kt+1 < kt | Xt > 1) = 0. When computing Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt |
Xt ≤ 1), we notice that Xt+1 ≥ 1 + a implies logF ((n/2F)/ru(kt+1)) ≥ 1 + a+ τ .
Furthermore,

n/2F
ru(kt+1)

=
12(n− kt+1)2

(2F)n lnλ ≥ F 1+a+τ =
3F 1+a
√

10
if and only if (n−kt+1)

2 ≥ 16F 1+an lnλ√
10

.

Therefore a necessary condition for Xt+1 ≥ 1 + a while Xt ≤ 1 and (n − kt)2 ≤
2Fn lnλ is kt − kt+1 ≥ ((4F (1+a)/2/101/4 −

√
2F)/2)

√
n lnλ > (6F a/2 − 4)

√
n lnλ.

We notice that E(kt+1 − kt) > 0, applying Lemma 5.7 and using a union bound we
obtain for ∆ := (6F a/2 − 4)

√
n lnλ > 2

√
n lnλ that

Pr (kt − kt+1 > ∆ | Xt ≤ 1) = Pr (kt+1 − kt < −∆ | Xt ≤ 1)
< Pr (kt+1 − kt < E(kt+1 − kt)− ∆ | Xt ≤ 1)

< λ exp
(

−∆2

2(n/2 + ∆/3)

)
< λ exp

(
−∆2

n+ ∆

)
= λ−Ω(1+a).

Therefore Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt | Xt ≤ 1) = λ−Ω(1+a).
Case 2: (n− 2kt)2 ≥ 2Fn lnλ. Let

σ2
t := ru(kt)/ru(kt+1) = (n− 2kt+1)

2/(n− 2kt)2,

then Xt+1 −Xt ∈ {1 + logF (σ2
t),−1 + logF (σ2

t)}. We rewrite for Xt > 1 and a ≥
−1/2

Pr (Xt+1 −Xt ≥ a ∩ kt+1 < kt | Xt)

≤Pr
(
rt+1 = rt/F ∩ σ2

t ≥ F a+1 | Xt

)
+ Pr

(
rt+1 = Frt ∩ σ2

t ≥ F a−1 | Xt

)
≤Pr

(
σ2
t ≥ F a+1 | Xt

)
+ Pr

(
σ2
t ≥ F a−1 | Xt

)
1a>2 + Pr (rt+1 = Frt | Xt)1a≤2,

(5.5)

102 Chapter 5. Self-adapting (1,λ) EA

as well as for Xt ≤ 1 and a > 0

Pr (Xt+1 − 1 ≥ a ∩ kt+1 < kt | Xt) = Pr (Xt+1 −Xt ≥ 1 + a−Xt ∩ kt+1 < kt | Xt)

≤Pr
(
rt+1 = rt/F ∩ σ2

t ≥ F a+2−Xt | Xt

)
+ Pr

(
rt+1 = Frt ∩ σ2

t ≥ F a−Xt | Xt

)
≤Pr

(
σ2
t ≥ F a+1 | Xt

)
+ Pr

(
rt+1 = Frt ∩ σ2

t ≥ F a−Xt | Xt

)
, (5.6)

where the second item in the above inequality (5.6) is furthermore bounded in (5.7)
by making a distinction between Xt ≥ τ ∧ a ≤ 2 and the remaining cases.

Pr
(
rt+1 = Frt ∩ σ2

t ≥ F a−Xt | Xt

)
≤Pr

(
σ2
t ≥ F a−Xt | Xt

)
1Xt<τ∨a>2 + Pr (rt+1 = Frt | Xt)1Xt≥τ∧a≤2. (5.7)

Applying Lemma 5.32 we see that both Pr (rt+1 = Frt | Xt)1a≤2 from (5.5) and
Pr (rt+1 = Frt | Xt)1Xt≥τ∧a≤2 from (5.7) are of order λ−Ω(1). This Ω(1) exponent
is sufficient to prove the lemma for a ≤ 2. We also notice that the event σ2

t ≥
F a−τ subsumes all the other remaining events in inequalities (5.5), (5.6), and (5.7).
Therefore it remains to validate Pr

(
σ2
t ≥ F a−τ | Xt

) ≤ λ−Ω(a+1) for a ≥ 0. To ease
representation, let s := F (a−τ)/2 − 1 ≥ F−τ/2 − 1 = (10/9)1/4 − 1 > 1/40. Since
s = Ω(1 + a), proving Pr(σt ≥ 1 + s | Xt) = O

(
λ−Ω(s)

)
is sufficient to conclude the

analysis of this case and therefore the lemma. We rewrite

Pr (σt ≥ 1 + s | Xt) = Pr
(
n− 2kt+1
n− 2kt

≥ 1 + s | Xt

)
= Pr (kt − kt+1 ≥ s(n− 2kt)/2 | Xt) .

Let ∆ := (s/2+ p)(n− 2kt) for 0 < p ≤ 1/2. Applying Lemma 5.7 and using a union
bound we obtain

Pr (σt ≥ 1 + s | Xt) < λ exp
(

max
0<p≤1/2

{
−∆2

2(1− p)(pn+ ∆/3)

})

<λ exp
(

max
0<p≤1/2

{
−∆

2(1 + 1/3)1pn≤∆ +
−∆2

2(1− p)(pn)(1 + 1/3)1pn>∆

})

<λ exp
(
− min

0<p≤1/2

{
∆
3 1pn≤∆ +

∆2

3(1− p)(pn)1pn>∆

})

We notice that ∆ ≥ (s/2)
√

2Fn ln(λ) = 4s
√
n ln(λ) and (s/2 + p)2/((1 − p)p)

attains the minimal value s(2 + s) > 2s when p = s/(2(s+ 1)). Using the fact that
(n− 2kt)2/n ≥ 2F ln(λ) and s > 1/40,

Pr (σt ≥ 1 + s | Xt) < λ exp
(
−min

{
s
√
n lnλ1pn≤∆ +

(2s)2F lnλ
3 1pn>∆

})
< λ exp

(
−min

{
s
√
n ln(λ)1pn≤∆ + 42s ln(λ)1pn>∆

})
= λ−Ω(s).

We finally use Lemma 5.8 and Lemma 2.12 to obtain a logarithmic drift on aver-
age. After this major effort, it is a matter of a relatively straightforward drift analysis
of fitness distance to obtain the following bound on the time to leave the far region.

5.2. The Far Region 103

Theorem 5.9. The (1,λ) EA with self-adapting mutation rate reaches a OneMax-
value of k ≤ n/λ within an expected number of O(n/ log λ) iterations, regardless
of the initial mutation rate. Furthermore, with probability at least 1− o(1), it holds
kt′ ≤ 2n/λ and rt′ ≤ (7/9) lnλ for some t′ = O(n/ log λ).

Proof. We first argue that within an expected number of O(
√
n) generations we

will have kt < n/2. Consider the case that kt ≥ n/2 and let the independent
random variables X and Y denote the number of flips in kt one-bits and (n− kt)
zero-bits, respectively, in an offspring using rate p = r/n. Referring to Lemma 2.16
for p ∈ [2/n, 1/2] we obtain, using similar arguments in the proof Lemma 5.32
that Pr(X ≥ E(X) + 1) = Θ(1) and Pr(Y ≤ E(Y)) = Θ(1). Then Pr(X − Y ≥
E(X)− E(Y) + 1) = Θ(1). Since E(X) ≥ E(Y), the probability that an offspring
choose rates r̃ ∈ {rt/F, Frt} with 2 ≤ r̃ ≤ n/2 and have X − Y ≥ 1 is at least
1/2 ·Θ(1) = Θ(1). Since the best of λ = Ω(lnn) offspring is selected, the probability
that kt+1 ≤ kt − 1 holds is at least 1− exp(−Θ(λ)) = 1− o(1/n2). By an additive
drift theorem, it takes O(max{k0 − n/2, 0}) = O(

√
n) iterations from the initial

random search point to reach a parent with fitness distance less than n/2.
Without loss of generality, we can now assume k0 < n/2. Consider the number of

one-bits flips X and zero-bits flips Y in a parent with fitness distance kt < n/2 and
rate 2 ≤ r < n/2. As argued above Pr(X − Y ≥ E(X)−E(Y) + 1) = Θ(1). Since
kt− (E(X)−E(Y)) = kt− (kt− (n− kt))r/n = kt(1− r/n) + (n− kt)(r/n) < n/2
for all r < n/2, the probability that an offspring has fitness distance at most n/2−1 is
Θ(1). Thus for λ = Ω(lnn) offspring, we have Pr(kt+1 < n/2) ≥ 1− exp(−Θ(λ)) =
1− o(1/n2). Since that we aim at proving a hitting time of O(n/ lnλ) and only
consider phases of this length, we may furthermore assume kt < n/2 for all t ≥ 0,
which only introduces an o(1) error term by a union bound.

Define random variables Xt := logF (rt/ru(kt))− τ with τ = logF (3/
√

10) < 0.
We notice that when (n − 2kt)2 ≤ 2Fn lnλ we have Xt < 1. If rt ≥ Fru(kt),
according to Lemma 5.32, with probability 1− o(1) we have rt−1 = rt/F . Therefore
within O(lnn) iterations we will obtain Xt ≤ 1.

The idea of the remaining proof is to compute an average drift for any fixed
distance using the distribution of mutation rates, and then to apply the variable drift
theorem to obtain a runtime bound. Applying Lemma 5.8 and Lemma 2.12 to the
Xt, we see that

Pr(rt ≥ F 1+a+τru(kt)) ≤ λ−Ω(a) for all a > 0.

Let r(i), i ∈ Z, denote the rate between (F iru(k), F i+1ru(k)] corresponding to fitness
distance k. Thus, for all i ≥ 1, we obtain

Pr
(
r(i)
)
≤ Pr

(
rt > F iru(kt)

)
≤ Pr

(
rt ≥ F 1+(i−1−τ)+τru(kt)

)
≤ λ−Ω(i−1−τ).

According to Lemma 5.6, E(∆(k, r(i))) ≥ −(1 + o(1))(n− 2k)r(i)/n) for i ≥ 1 and
E(∆(k, r(0))) ≥ Ω((n− 2k)r(0)/n). The contribution of the negative drift is a lower
order term compared to the contribution of the positive drift. Let ∆(k) denote the
average drift at distance k. We obtain

∆(k) =
∑
i∈Z

E(∆(k, r(i)))Pr(r(i)) ≥ (1− o(1))
∑
i≤0

E(∆(k, r(i)))Pr(r(i)).

104 Chapter 5. Self-adapting (1,λ) EA

We notice that∑i≤0 Pr(r(i)) = 1− o(1) and E(∆(k, r(i))) > 0 for all i ≤ 0. According
to Lemma 5.31, with at least constant probability rt = Ω(rl(kt)). Since for any rate
r = Ω(rl(k)) and r ≤ Fru the drift is E(∆(k, r)) ≥ Θ(ln(λ)/ ln(n/kt)) according to
Lemma 5.6, the average drift satisfies

∆(k) ≥ Θ(ln(λ)/ ln(n/k)).

Using the variable drift theorem (Theorem 2.4) and the fact that

∫ n/2

n/λ

ln(n/k)
ln(λ) dk =

(
k ln(n)− k ln(k) + k

)∣∣∣n/2

n/λ

lnλ =
Θ(n)

lnλ ,

the expected time to reduce the fitness distance to at most n/λ conditioning on the
assumption that kt < n/2 for some t = O(

√
n) and kt′ < n/2 for all t ≤ t′ =

O(n/ log λ) is then Θ(n/ log λ). Thus the expected runtime of O(n/ log λ) holds
with probability Ω(1) due to Markov’s inequality. Using a restart argument we then
obtain the claimed expected runtime since the expected number of repetition of a
phase of length O(n/ log λ) is O(1).

To prove the second statement of the theorem, we notice that the correspond-
ing upper bound on the rate for kt = o(n) is ru(kt) ≤ (10/9)(U(kt)) lnλ =
((10/9)(2/22) + o(1)) lnλ < (1/9) lnλ and the occupation probability satisfies
Pr(rt ≤ (7/9)F lnλ | kt = o(n)) ≥ 1− λ−Ω(1) = 1− o(1). Therefore with prob-
ability 1− o(1), the first iteration such that kt ≤ 2n/λ has rate rt ≤ (7/9) lnλ. We
then argue for this iteration that with high probability it satisfies rt+1 = rt/F and
kt+1 ≤ 2n/λ. The probability of being no worse than parent using mutation proba-
bility p ≤ (7/9) ln(λ)/n is at least (1− p)n ≥ (1− o(1))λ−7/9 > λ−8/9. Therefore,

Pr(kt+1 ≤ kt | rt ≤ (7/9)F lnλ) ≥ 1−
(
1− λ−8/9/2

)λ
= 1− o(1).

Furthermore Pr(rt+1 = Frt | kt = o(n), rt ≥ (7/9) lnλ) ≤ λ1−(23/22)7 = o(1).
Then we obtain an iteration with kt ≤ 2n/λ and rt ≤ (7/9) lnλ with probability
1− o(1).

5.3 The Near Region
We now analyze the drift in rate and fitness distance in the regime in which the

fitness distance satisfies k = kt = O(n/λ), the so-called near region. Informally
speaking, this region is responsible for the (n logn)/λ term in the expected number
of generations since here the probability of an improvement is only O(1/λ) and the
offspring population can boost this probability by a factor of Θ(λ), assuming constant
rate.

We start with a preparatory lemma determining the probability of making progress
in one mutation and similar events.

Lemma 5.10. Let 0 < k ≤ 3n/λ, and r = o(λ1/4). Let x ∈ {0, 1}n with fitness
distance f(x) = k. Let y ∈ {0, 1} be obtained from x by flipping each bit independently

5.3. The Near Region 105

with probability r/n. Consider the probabilities

p−(r) := Pr(f(y) < f(x)),

p0(r) := Pr(f(y) = f(x)),

p′(r) := Pr(∀i ∈ [1..n] : xi = 0 =⇒ yi = 0),

that is, the probabilities that the offspring is better than the parent, that is is equally
good, and that none of the 0-bits of the parent were flipped in the generation of the
offspring.

Then

(1− o(1))krn e−r < p−(r) < (1 + o(1))krn e
−r,

(1− o(1))e−r < p0(r) < (1 + o(1))e−r,
(1− o(1))e−r < p′(r) < (1 + o(1))e−r.

Proof. We regard the number X of flips in the k one-bits (“good flips” which reduce
the fitness distance) and the number Y of flips in the (n− k) zero-bits of the parent
(“bad flips” which increase the fitness distance). Then p−(r) is at least

p−(r) ≥ Pr(X = 1, Y = 0) = kr

n

(
1− r

n

)n−1
≥ (1− o(1))kr

n
e−r,

where the last estimate uses Lemma 2.14 3.
Since r = o(λ1/4), we have kr/n = o(1), kr2/n = o(1), and (kr2/n)1.5 =

o(kr/n). This allows to bound p−(r) from above by

p−(r) < Pr(X ∈ {1, 2}, Y = 0) +
2k−1∑
i=3

Pr(X + Y = i,X > Y)

<
kr

n

(
1− r

n

)n−1
+
k2r2

2n2

(
1− r

n

)n−2

+
2k−1∑
i=3

(i− 1)
(
r

n

)i (
1− r

n

)n−i(k

di/2e

)(
n− k
bi/2c

)

<
kr

n

(
1− r

n

)n−2 (
1− r

n
+
kr

2n

)
+

2k−1∑
i=3

(
r

n

)i (
1− r

n

)n−i
(kn)i/2

< (1 + o(1))kr
n

(
1− r

n

)n
+

2k−1∑
i=3

(
kr2

n

)i/2 (
1− r

n

)n−i
< (1 + o(1))kr

n
e−r.

Similarly for p0(r) we have

p0(r) > Pr(X = Y = 0) =
(

1− r

n

)n
≥ (1− o(1))e−r.

106 Chapter 5. Self-adapting (1,λ) EA

Using again the fact that kr2/n = o(1), we have

p0(r) = Pr(X = Y = 0) +
k∑
i=1

Pr(X = Y = i)

=

(
1− r

n

)n
+

k∑
i=1

(
k

i

)(
n− k
i

)(
r

n

)2i (
1− r

n

)n−2i

< e−r +
k∑
i=1

(
kr2

n

)i
e−r < (1 + o(1))e−r.

Finally, for p′(r) we compute p′(r) = Pr(Y = 0) = (1− r
n)
n−k = (1± o(1))e−r.

Lemma 5.11. Consider one iteration of the self-adaptive (1,λ) EA starting with an
individual of fitness distance k and rate r = o(λ−1/4). Then the probability that there
is an offspring which uses rate r/F and which inherits all 0-bits from the parent (and
thus is at least as good as the parent), is at least 1− exp(−1

2λ(1− o(1))e−r/F).

Proof. We compute

1− (1− 1
2p
′(rF))

λ ≥ 1− (1− 1
2 (1− o(1))e−r/F)λ ≥ 1− exp(−1

2λ(1− o(1))e−r/F).

The following lemma is the counterpart of Lemma 5.3 2, where now the optimal
rate is the smallest possible value F . Again, we regard the event that all best offspring
are created with the higher rate, since—due to our tie-breaking rule—only this leads
to an increase of the rate. Different from Lemma 5.3 2, now the probability of making
a rate-increasing step is no o(1) in general. If kt = Θ(n/λ) and rt = O(1), we still
have a small constant probability of increasing the rate.

Lemma 5.12. Let 0 < k ≤ 3n/λ and F = 32. The probability that all best offspring
have been created with rate Fr is at most (1+ o(1))λkFrn e−Fr when r < lnλ and it is
at most exp(−9r) for all r.

Proof. Let first r < lnλ. According to Lemma 5.10,

p−(Fr) ≤ (1 + o(1))Fkr
n

e−Fr and p0(r/F) ≥ (1− o(1))e−r/F .

Therefore with probability at least 1− λp−(Fr) = 1− (1 + o(1))λFkrn e−Fr, no off-
spring of rate Fr is better than its parent. Furthermore, by Lemma 5.11, with prob-
ability at most exp(−(1 − o(1)) 1

2λ exp(−r/F)) ≤ exp(−(1 − o(1)) 1
2λ

1−1/F) there
is no offspring using rate r/F and being equally good as its parent. Hence, the
probability that a best offspring has been created with rate r/F is more than

1− (1 + o(1))λFkr
n

e−Fr − exp(−(1− o(1)) 1
2λ

1−1/F) > 1− (1 + o(1))λFkr
n

e−Fr.

Note that for r < lnλ, the second bound follows from the first. If r ≥ lnλ, then
the second bound follows from applying Lemma 5.3 to U(k) = 1/11 + o(1).

We shall use the lemma above twice, first to bound the probability to have a
certain rate (which will be needed to estimate the negative fitness drift) and second

5.3. The Near Region 107

to estimate that a suitable two-dimensional drift is of the right order. We start with
the occupation probability argument for the rate values.

Lemma 5.13. Consider a run of the self-adaptive (1,λ) EA started with some search
point of fitness distance k0 ≤ 2n/λ and rate r0 = F . While the current search point of
the algorithm has a fitness distance of at most 3n/λ, the probability that the current
rate is F i is at most exp(−8F i−1) for all i ∈N≥2.

Proof. If the current search point has fitness distance at most 3n/λ and the current
rate is r, then by Lemma 5.12 the rate in the next iteration is Fr with probability at
most exp(−9r); note that this estimate is not affected by a possible cap of the rate
at rmax.

Consequently, the random process describing the rates is such that from rate F i,
i ∈ [1.. logF (rmax)], we go to rate F i+1 with probability at most pi = exp(−9F i).
Otherwise, we go to rate F i−1 if i ≥ 2 and stay at rate F if i = 1. By Lemma 2.13,
note that we obviously have pi/(1− pi) ≤ pi−1, in each iteration (such that the fitness
distance has never gone above 3n/λ) and for each i ≥ 2 the probability qi that the
current rate is F i is at most

qi ≤
i−1∏
j=1

pj
1− pj

≤ pi−1
1− pi−1

≤ exp(−8F i−1).

We use these occupation probabilities to estimate the drift away from the optimum
(“negative drift”). From this we derive the statement that with high probability, the
fitness distance does not increase to above 3n/λ in nλ iterations.

Lemma 5.14. In the situation of Lemma 5.13, the probability that the process within
the first nλ iterations reaches a search point (as parent individual) with fitness distance
more than 3n/λ, is o(1).

Proof. Consider a run of the self-adjusting (1,λ) EA starting in the situation of
Lemma 5.13. Denote by Xt the fitness distance at time t. We start by bound-
ing the negative drift E(max{0, Xt −Xt−1}) of the X process while it is at most
3n/λ. If the current rate is r, then by Lemma 5.11 with probability at least
1 − exp(−1

2λ(1 − o(1))e−r/F) there is an individual that used rate r/F and that
did not flip any zero-bit into a one-bit. Let us call this event “A” and note that,
naturally, under this event the drift cannot be negative as the individual without
flipped zeroes has at an least as good fitness as the parent.

We now analyze the case that A does not hold. Consider an individual conditional
on that it uses rate r/F and at least one zero-bit was flipped into a one-bit. The
number of such bad bits follows a distribution (X | X ≥ 1) with X ∼ Bin(n −
Xt−1, r/Fn) and has expectation at most 1+ r/F by Lemma 2.16. For an individual
using rate rF , the expected number of bad flips is (n− k) rFn ≤ rF . Consequently,
noting that 1 + r/F ≤ rF when r ≥ F and F ≥

√
2, the expected number of bad

flips in all individuals (conditional on not A) is at most λrF and this is an upper
bound on the negative drift.

In summary, in an iteration starting with rate r, the negative drift is at most

λrF exp(−1
2λ(1− o(1))e−r/F). (5.8)

108 Chapter 5. Self-adapting (1,λ) EA

With Lemma 5.13, we can estimate the probability to have a certain rate. Hence the
expected negative drift is

E(max{0, Xt −Xt−1}) ≤
logF rmax∑

i=1
Pr(r = F i)λF iF exp(−1

2λ(1− o(1))e−F
i/F)

≤
∞∑
i=2

exp(−8F i−1)λF i+1 exp(−1
2λ(1− o(1))e−F

i−1
)

+ λF 2 exp(−1
2λ(1− o(1))e−1).

Note that 1 for i ≥ dlogF (lnλ) + 1− 1
5e = i∗, we have λ ≤ exp(2F i−1) and thus

exp(−8F i−1)λF i+1 = exp(−(1− o(1))8F i−1)λ ≤ exp(−(1− o(1))6F i−1). Naturally,
exp(−1

2λ(1− o(1))e−F
i−1

) ≤ 1. Hence

∞∑
i=i∗

exp(−8F i−1)λF i+1 exp(−1
2λ(1− o(1))e−F

i−1
) ≤

∞∑
i=i∗

exp(−(1− o(1))6F i−1)

≤ exp(−(1− o(1))6F i∗−1) ≤ λ−3(1−o(1)).

For i < logF (lnλ) + 1− 1
5 , we have exp(−1

2λ(1− o(1))e−F
i−1

) ≤ exp(−1
2 (1−

o(1))λ1/2) and exp(−8F i−1)λF i+1 = O(λ). Hence

i∗−1∑
i=1

exp(−8F i−1)λF i+1 exp(−1
2λ(1− o(1))e−F

i−1
)

≤ O(log log λ)O(λ) exp(−1
2 (1− o(1))λ1/2) = o(λ−3).

Consequently, E(max{0, Xt −Xt−1}) ≤ λ−3(1−o(1)).
Define inductively Y0 = 0 and Yt = Yt−1 + max{0, Xt −Xt−1}, if max{Xs | s ∈

[0..t− 1]} ≤ 3n/λ and Yt = Yt−1 otherwise. In other words, the Y process collects
all the moves of the X process that go away from the optimum until the X process
goes above 3n/λ.

By our above computation, we have E(Yt) ≤ tλ−3(1−o(1)). Consequently, by
Markov’s inequality, we have

Pr(Yt ≥ tλ−2) ≤ λ−1+o(1)

for all t ∈N. In particular, for t = nλ, we have Pr(Yt ≥ n/λ) ≤ λ−1+o(1). Note that
Yt ≤ n/λ implies Xs ≤ 3n/λ for all s ≤ t.

Lemma 5.15. In the situation of Lemma 5.13, with probability at least 3
4 there is a

T ∗ = O(n ln(n/λ)/λ) such that kT ∗ = 0.

Proof. Since we are proving an asymptotic statement, we can assume that n is as
large as we find convenient. Consider a run of the self-adjusting (1,λ) EA from our
starting position. Let T be the first time that the fitness distance is larger than 3n/λ,
if such a time exists, and T = ∞ otherwise. Let kt denote the fitness distance at
time t and rt the rate used in iteration t, if t ≤ T , and (kt, rt) := (0, F) otherwise.

1. In this part of the proof, we use the fact that F = 32. This does not mean that for other not
too small values of F we would not obtain similar results, but it increases the readability to work
with this concrete value.

5.3. The Near Region 109

We show that the process (kt, rt) reaches (0, F) in time T ∗ with probability at least
1− 1/e2.

We use a two-dimensional drift argument. Let γ = 2F and define g : N×N→ R

by g(k, r) = k + γ(r − F) for all k and r. We show that if for some t we have
(k, r) = (kt, rt), then (k′, r′) := (kt+1, rr+1) satisfies

E(g(k′, r′)) ≤ g(k, r)(1− λ
10n) (5.9)

when assuming n to be sufficiently large.
There is nothing to show in the artificial case when k > 3n/λ as we have, by

definition, g(k′, r′) = 0 in this case. Among the interesting cases, we consider first
that r = F . We obtain an improvement in fitness in particular if there is an offspring
that uses rate r/F = 1, flips exactly one of the k missing bits, and flips no other bit.
Hence the probability to make a positive fitness progress is at least

1− (1− 1
2 (1− 1

n)
n−1 k

n)
λ ≥ 1− (1− k

2en)
λ ≥ 1− exp(− kλ

2en) ≥ kλ
3en ,

where we used (1− 1
n)
n−1 ≥ 1

e ,
kλ
2en ≤ 3

2e <
3
2 · 1

2 and Lemma 2.14 4. The expected
negative progress is at most λF 2 exp(−(1+ o(1)) 1

2eλ) as shown in (5.8). This negative
drift can be assumed to be O(n−2) by taking the implicit constant in the assumption
λ = Ω(logn) large enough. Consequently, E(k′) ≤ k− 1

3e
λk
n .

Regarding r′, we note that by Lemma 5.12 we have Pr(r′ = F 2) ≤ (1 +
o(1))λkn F 2 exp(−F 2) and r′ = F otherwise. Hence E(r′) = F + (1 + o(1))(F −
1)F 3 λk

n exp(−F 2). Consequently,

E(g(k, r)− g(k′, r′)) ≥ 1
3e
λk
n − γ(1 + o(1))(F − 1)F 3 λk

n exp(−F 2)

= λk
n (1

3e − γ(F − 1)F 3 exp(−F 2)− o(1))
≥ λk

n
1
10 = g(k, r) λ

10n .

Let now be r > F . Note that the minimum fitness loss among the offspring is
at most the minimum number of bits flipped, which in expectation is at most the
number of bits flipped in the first offspring, which is exactly Fr. Consequently,
we have E(k′) ≤ k + Fr. For r′, we note that by Lemma 5.12, we have r′ = Fr
with probability at most exp(−9r) and we have r′ = r

F otherwise. Consequently,
E(r′) ≤ Fr exp(−9r) + r

F . This yields

E(g(k, r)− g(k′, r′)) ≥ −Fr+ γ(r− Fr exp(−9r)− r
F)

≥ r(−F + γ − F exp(−9F 2)− 1
F)

≥ r(−F + γ − 2
F) ≥ 31r = r+ 30r ≥ F 2 + 30r

≥ 322 + 30r ≥ λ
10n (k+ γr) ≥ g(k, r) λ

10n ,

where we used that λ ≤ 2n; note that λ > 2n gives k0 = 0.
We have thus shown (5.9) for all (k, r). Since we start the process with a g-

potential of at most g(2n/λ, F) = 2n
λ , the multiplicative drift theorem gives that

after t = d10n
λ (2 + ln(2n

λ))e iterations, we have Pr(g(kt, rt) > 0) ≤ 1
e2 . Consequently,

with probability 1− 1
e2 , the potential is zero at time t, which implies kt = 0 or kt > 3n

λ .
By Lemma 5.14, note that λ = Ω(logn) implies t = O(n) = o(nλ), the probability
that kt > 3n

λ is o(1), hence with probability at least 3
4 , we have indeed kt = 0.

Theorem 5.16. Assume k0 ≤ 2n
λ and r0 ≤ 7

9 lnλ. Then there is a t =
O(n ln(n/λ)/λ) such that with probability at least 1

2 , we have kt = 0.

110 Chapter 5. Self-adapting (1,λ) EA

Proof. We first show that with good probability we quickly reach the initial situation
of Lemma 5.15. The probability of observing R∗− 1 := logF (r0)− 1 ≤ logF (7

9 lnλ)−
1 rate-decreasing steps in a row by Lemma 5.12 is at least

R∗∏
i=2

(
1− exp(−9F i)

)
≥ 1−

R∗∑
i=2

exp(−9F i) ≥ 1− 0.001

by the Weierstrass product inequality (Lemma 2.14 5).
The probability of not flipping any zero-bits in at least one offspring, resulting

in not increasing fitness distance, is for rate r ≤ 7
9 lnλ at least 1 − exp(−1

2λ(1 −
o(1))e−r/F) by Lemma 5.11. By a union bound over R∗− 1 iterations, the probability
of decreasing the initial rate to F in O(log log λ) iterations without losing fitness is
at least 1− 0.001− (R∗ − 1) exp(−1

2λ(1− o(1))e−r/F) ≥ 5/6 for sufficiently large n.
We can now apply Lemma 5.15 and obtain that with probability at least 3

4 we have
found the optimum within t = O(n ln(n/λ)/λ) iterations. This show the claim.

5.4 Putting Everything Together
We can now put everything together to prove our main result.

Proof. Starting with arbitrary initialization, Theorem 5.9 along with a Markov bound
yield that with probability Ω(1) after t = O(n/ log λ) iterations a search point is
reached such that kt ≤ 2n/λ and rt < 0.6(lnλ). Assuming this to happen, the as-
sumptions of Theorem 5.16 are satisfied. Hence, after another O((n logn)/λ) itera-
tions the optimum is found with probability at least 1/2. Altogether, with probability
Ω(1) the optimum is found from an arbitrary initial OneMax-value and rate within
T ∗ = O(n/ log λ+ (n logn)/λ) iterations. The claimed expected time now follows
by a standard restart argument, more precisely by observing that after expected O(1)
repetitions of a phase of length T ∗ the optimum is found.

5.5 Experimental Results
To gain some insight that cannot be derived from our asymptotic analysis, we

performed a few numerical experiments. To this end we implemented the (1,λ) EA in
C++11 using the default random engine to generate pseudo-random numbers. The
runtime is still measured via the number of generations until optimum is found.

We first see in Figure 5.1 how fitness distance and mutation strength evolve in
one run for n = 100, λ = 12 and F = 1.2. We used this small value of n to increase
the readability of the figure, we used larger values for n in the remainder. Given the
small value of n, we used a small mutation update factor of 1.2 instead of the value
F = 32 used in our theoretical analysis. This run uses Algorithm 9 with rinit = F .
We see that the algorithm prefers large mutation strengths at the beginning and small
mutation strengths near the end of the optimization process. We also see that fitness
distance can increase occasionally, in particular, when the rate is higher (in the plot,
this happened in iteration 52 and iteration 88).

In Figure 5.2, we display the average runtime over 100 runs of different versions
of the (1,λ) EA on OneMax for n = 105 and λ = 100, 200, . . . , 1000. For our self-
adaptive (1,λ) EA (Algorithm 9), we used the update strengths F ∈ {1.2, 2, 32}. We
did experiments also for F = 1.05, but the results were clearly inferior, so to not over-
load this figure we do not visualize them. We always set the initial mutation strength
to rinit = F . We further regard the classic (1,λ) EA using a static mutation rate of

5.5. Experimental Results 111

1
n and the (1,λ) EA with fitness-dependent mutation rate p = max{ lnλ

n ln(en/d) ,
1
n} as

presented in [BLS14].
The results clearly show that the update factor of F = 32 used in our mathe-

matical analysis gives sub-optimal results for these values of λ and n. Recalling the
working principle of the self-adaptive (1,λ) EA, this is not overly surprising. Even
using the minimal possible rate r = F , the algorithm creates half of the offspring
using an incredible large mutation probability of F 2/n = 1024/n. It is quite clear
that this cannot be overly effective, but this can also be seen from the figure. The
runtime of the self-adaptive (1,λ) EA with F = 32 is very close to the runtime of the
static (1,λ) EA for half the λ-value, suggesting that half the offspring created by the
self-adaptive (1,λ) EA, most likely the ones created with a mutation rate of F 2/n,
had no impact on the process.

The results in Figure 5.2 also show that the fitness-dependent mutation strength
of [BLS14] leads to a very good performance. In principle, of course, it is clear that
the best fitness-dependent rate gives better results than any self-regulating rate since
the latter needs to use also sub-optimal rates to find out what is the best rate. That
the rate suggested in [BLS14], a paper mostly concerned with asymptotic runtimes,
shows such good results, is remarkable.

To ease the comparison of the algorithms having a similar performance, we plot
in Figure 5.3 these runtimes relative to the one of the classic (1,λ) EA. This shows
that in most cases, the EAs using a dynamic mutation rate outperform the classic
(1,λ) EA. We also notice that the self-adaptive EA appears to outperform the one
using the fitness-dependent rate for sufficiently large values of λ, e.g., for λ ≥ 200
when F = 1.2.

To understand how our tie-breaking rule influences the performance, we also ran
the self-adapting (1,λ) EA without the bias towards smaller rates when breaking
ties. In Figure 5.4, we again plot the average runtimes over 100 runs relative to the
results of static (1,λ) EA. We use the three update factors 1.2, 2, and 32 and the two
tie-breaking rule of preferring the smaller rate in case of ties (as in our theoretical
analysis) and random tie-breaking, that is, choosing uniformly at random an offspring
with maximal fitness and taking its rate as the new rate of the algorithm. While for
the two larger factors F = 2 and F = 32, no significant differences are visible, we
see that for F = 1.2 random tie-breaking surpasses biased tie-breaking significantly
when λ become larger than 200.

To understand how the tie-breaking rule influences the mutation strength chosen
by the algorithm, we plot in Figure 5.5 the mutation strength used at each fitness
distance with a setting of n = 10000, λ = 500, and F = 1.2. We regarded one
exemplary runs of our algorithm with each tie breaking rule. In each of these two
experiments, we determined the set of all pairs (dt, rt) such that in iteration t, the
fitness distance of the parent individual was dt and its rate was rt. We then plotted
these sets, where to increase the readability we connected the points to polygonal
curve. This visualization clearly shows that random tie breaking lets the algorithm
pick larger rates more frequently. Together with the better runtimes, it appears that
biased tie-breaking has a small negative effect on the choice of the mutation strength.

Finally, we regard the question of how to set the initial rate rinit. From the
general experience that larger mutation rates are more profitable at the start of the
search process, one could guess that it is a good idea to start with the largest possible
rate rmax = F blogF (n/(2F))c instead of the smallest possible rate rmin = F . For the
settings used in Figure 5.5, that is, n = 10000, λ = 500, and F = 1.2, we obtain
(as average of 100 runs) the runtimes given in Table 5.1. So indeed an initialization
with a larger rate gives some improvement. Since it might be a particularity of the

112 Chapter 5. Self-adapting (1,λ) EA

Average runtime Biased ties breaking Random ties breaking
rinit = rmin 2137 2011
rinit = rmax 2080 1974

Table 5.1: Comparison of the average runtime of 100 runs for differ-
ent initial mutation rates (n = 10000, λ = 500, and F = 1.2)

−10 0 10 20 30 40 50 60 70 80 90 100 110 120

0

10

20

30

40

50

1

2

3

4

5

Iteration

Fi
tn

es
s

di
st

an
ce

M
ut

at
io

n
st

re
ng

th
ln

(r
)/

ln
(F

)

Figure 5.1: Development of fitness distance and mutation strength
in one run of self-adapting (1,λ) EA on OneMax (n = 100, F = 1.2,

λ = 12)

OneMax test function that huge rates are initially beneficial, we would not give out a
general recommendation to start with the rate rmax, but only state that we observed
moderate performance differences from using different initial rates, making the initial
rate not the most critical parameter of the algorithm, but still one that can be worth
optimizing.

5.5. Experimental Results 113

100 200 300 400 500 600 700 800 900 1,000

2

3

4

5

6

7

8

Populations size λ

Av
er

ag
e

ru
nt

im
e

ov
er

10
0

ru
ns

(·1
04)

Static (1,λ) EA using p = 1/n

(1,λ) EA using p = max{1/n, ln(λ)/(ln(en/d(x)))/n}
Self-adaptive (1,λ) EA using F = 32
Self-adaptive (1,λ) EA using F = 2
Self-adaptive (1,λ) EA using F = 1.2

Figure 5.2: Average runtime over 100 runs of five variants of the
(1,λ) EA on OneMax for n = 105.

100 200 300 400 500 600 700 800 900 1,000

0.8

0.9

1

1.1

1.2

Populations size λ

R
el

at
iv

e
av

er
ag

e
ru

nt
im

e
ov

er
10

0
ru

ns

Static (1,λ) EA using p = 1/n

(1,λ) EA using p = max{1/n, ln(λ)/(ln(en/d(x)))/n}
Self-adaptive (1,λ) EA using F = 2
Self-adaptive (1,λ) EA using F = 1.2

Figure 5.3: Average runtime of three dynamic (1,λ) EAs relative to
the average runtime of the static (1,λ) EA on OneMax (n = 105)

114 Chapter 5. Self-adapting (1,λ) EA

100 200 300 400 500 600 700 800 900 1,000

0.8

1

1.2

1.4

1.6

Populations size λ

R
el

at
iv

e
av

er
ag

e
ru

nt
im

e
ov

er
10

0
ru

ns
Self-adp (1,λ) EA using F = 32
Self-adp (1,λ) EA using F = 32 (breaking ties randomly)
Self-adp (1,λ) EA using F = 2
Self-adp (1,λ) EA using F = 2 (breaking ties randomly)
Self-adp (1,λ) EA using F = 1.2
Self-adp (1,λ) EA using F = 1.2 (breaking ties randomly)

Figure 5.4: Relative average runtime of self-adapting (1,λ) EAs with
different tie breaking rules on OneMax (n = 105)

0 1,000 2,000 3,000 4,000 5,000

0

5

10

15

20

25

30

Fitness distance

M
ut

at
io

n
st

re
ng

th
(lo

g F
(r

))

biased ties breaking
random ties breaking
fitness-dependent rate

Figure 5.5: Mutation strengths used at a certain fitness distance
level in two example runs of the self-adapting (1,λ) EA on OneMax
(n = 10000, λ = 500, F = 1.2). For comparison, also the fitness-
dependent rate proposed in [BLS14] is plotted. Recall that a mutation
strength of r in the self-adapting runs means that in average half the

offspring use the rate r/F and half use the rate rF .

115

Chapter 6

Conclusions

We numerically computed the precise unary unbiased black-box complexity on
OneMax problem. We showed that drift-maximization is near-optimal for this prob-
lem, thus the precise complexity can be achieved (apart from an additive o(n) term)
by a simple hill climber with fitness dependent mutation rate.

After analyzing the suitable mutation strength, we proposed a self-adjusting choice
of the mutation strength k for the hill climber. This use of k-bit flips instead of the
usually preferred standard bit mutation with its random mutation strength allowed to
much better exploit the most effective mutation strength. This self-adjusting choice
allowed to find the optimal mutation strength automatically and on-the-fly. By this,
also the risk of getting stuck in local optima, the known draw-back of k-bit flips, was
overcome.

Based on the learning-inspired parameter control on randomized local search, we
proposed and analyzed a new simple self-adjusting mutation scheme for the (1+λ) EA.
It consists of creating half the offspring with a slightly larger and the rest with
a slightly smaller mutation rate. Based on the success of the subpopulations, the
mutation rate is adjusted. This simple scheme overcomes difficulties of previous self-
adjusting choices, e.g., the careful choice of the exploration-exploitation balance and
the forgetting rate in the learning scheme.

We proved rigorously that this self-adjusting (1+λ) EA optimizes the OneMax
test function in an expected number of O(nλ/ log λ + n logn) fitness evaluations.
This matches the runtime shown in [BLS14] for a careful fitness-dependent choice
of the mutation rate, which was also shown to be asymptotically optimal among all
λ-parallel black-box optimization algorithms. Hence our runtime result indicates that
the self-adjusting mechanism developed in this work is able to find very good mutation
rates. To the best of our knowledge, this is the first time that a self-adjusting choice
of the mutation rate speeds up a mutation-based algorithm on the OneMax test
function by more than a constant factor.

After that, we analyzed the self-adaptive (1,λ) EA using a very simple scheme
for mutating the mutation rate and proved that is achieves the expected runtime
O(nλ/ log λ + n logn) on OneMax, which is optimal for all λ-parallel mutation-
based unbiased black-box algorithms. Hence, we have identified a simple and natural
example where self-adaptation of strategy parameters in discrete EAs can lead to
provably optimal runtimes that beat all known static parameter settings. Moreover,
a relatively complicated and partly unintuitive self-adjusting scheme for the mutation
rate proposed can be replaced by our simple endogenous scheme.

The analysis of the (1,λ) EA has revealed a highly non-trivial stochastic process
where drift happens in two dimensions, namely regarding fitness distance and muta-
tion rate. We have advanced the techniques for the analysis of such two-dimensional
drift processes, including a useful lemma about occupation probabilities. Altogether,

116 Chapter 6. Conclusions

we are optimistic that our research helps pave the ground for further analyses of
self-adaptive EAs.

117

Bibliography

[Azu67] Kazuoki Azuma. “Weighted sums of certain dependent variables”. In:
Tohoku Mathematical Journal 19 (1967), pp. 357–367.

[Bäc92] Thomas Bäck. “Self-adaptation in genetic algorithms”. In: Proc. of
ECAL ’92. MIT Press, 1992, pp. 263–271.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. “Unbiased
black-box complexity of parallel search”. In: Proc. of PPSN ’14. Springer,
2014, pp. 892–901.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. “Optimal fixed
and adaptive mutation rates for the LeadingOnes problem”. In: Proc. of
PPSN ’10. Springer, 2010, pp. 1–10.

[BD18] Nathan Buskulic and Carola Doerr. personal communication. 2018.
[BD17] Maxim Buzdalov and Benjamin Doerr. “Runtime Analysis of the (1 +

(λ, λ)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas”. In:
Proc. of GECCO ’17. ACM, 2017, pp. 1343–1350.

[DL16] Duc-Cuong Dang and Per Kristian Lehre. “Self-adaptation of mutation
rates in non-elitist populations”. In: Proc. of PPSN ’16. Springer, 2016,
pp. 803–813.

[Dev72] Luc Devroye. “The compound random search”. PhD thesis. Purdue
Univ., West Lafayette, 1972.

[Doe11] Benjamin Doerr. “Analyzing randomized search heuristics: tools from
probability theory”. In: Theory of Randomized Search Heuristics. Ed.
by Anne Auger and Benjamin Doerr. World Scientific Publishing, 2011,
pp. 1–20.

[Doe18a] Benjamin Doerr. “Better Runtime Guarantees via Stochastic Domina-
tion”. In: Proc. of EvoCOP ’18. 2018, pp. 1–17.

[Doe18b] Benjamin Doerr. “Probabilistic Tools for the Analysis of Randomized
Optimization Heuristics”. In: CoRR abs/1801.06733 (2018). arXiv: 1801.
06733. url: http://arxiv.org/abs/1801.06733.

[DD15] Benjamin Doerr and Carola Doerr. “Optimal parameter choices through
self-adjustment: applying the 1/5-th rule in discrete settings”. In: Proc.
of GECCO ’15. ACM, 2015, pp. 1335–1342.

[DD16] Benjamin Doerr and Carola Doerr. “The Impact of Random Initializa-
tion on the Runtime of Randomized Search Heuristics”. In: Algorithmica
75.3 (2016), pp. 529–553.

[DD18a] Benjamin Doerr and Carola Doerr. “Optimal Static and Self-Adjusting
Parameter Choices for the (1+ (λ, λ)) Genetic Algorithm”. In: Algorith-
mica 80 (2018), pp. 1658–1709.

https://arxiv.org/abs/1801.06733
https://arxiv.org/abs/1801.06733
http://arxiv.org/abs/1801.06733

118 Bibliography

[DD18b] Benjamin Doerr and Carola Doerr. “Theory of Parameter Control
Mechanisms for Discrete Black-Box Optimization: Provable Performance
Gains Through Dynamic Parameter Choices”. In: Theory of Randomized
Search Heuristics in Discrete Search Spaces. Ed. by Benjamin Doerr and
Frank Neumann. To appear. Springer, 2018.

[DDE15a] Benjamin Doerr, Carola Doerr, and Franziska Ebel. “From black-box
complexity to designing new genetic algorithms”. In: Theoretical Com-
puter Science 567 (2015), pp. 87–104.

[DDE15b] Benjamin Doerr, Carola Doerr, and Franziska Ebel. “From black-box
complexity to designing new genetic algorithms”. In: Theoretical Com-
puter Science 567 (2015), pp. 87 –104.

[DDK16] Benjamin Doerr, Carola Doerr, and Timo Kötzing. “Provably optimal
self-adjusting step sizes for multi-valued decision variables”. In: Proc. of
PPSN ’16. Springer, 2016, pp. 782–791.

[DDY16a] Benjamin Doerr, Carola Doerr, and Jing Yang. “k-Bit mutation with self-
adjusting k outperforms standard bit mutation”. In: Proc. of PPSN ’16.
Springer, 2016, pp. 824–834.

[DDY16b] Benjamin Doerr, Carola Doerr, and Jing Yang. “Optimal parameter
choices via precise black-box analysis”. In: Proc. of GECCO ’16. ACM,
2016, pp. 1123–1130.

[DFW10] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. “Quasirandom evo-
lutionary algorithms”. In: Proc. of GECCO ’10. ACM, 2010, pp. 1457–
1464.

[DFW11] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. “Sharp bounds by
probability-generating functions and variable drift”. In: Proc. of GECCO
’11. ACM, 2011, pp. 2083–2090.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. “Multiplicative
Drift Analysis”. In: Algorithmica 64 (2012), pp. 673–697.

[DK15] Benjamin Doerr and Marvin Künnemann. “Optimizing linear functions
with the (1+λ) evolutionary algorithm – different asymptotic runtimes
for different instances”. In: Theoretical Computer Science 561 (2015),
pp. 3–23.

[DWY18] Benjamin Doerr, Carsten Witt, and Jing Yang. “Runtime Analysis for
Self-adaptive Mutation Rates”. In: Proc. of GECCO ’18. ACM, 2018, to
appear.

[Doe+13a] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine Zarges.
“A method to derive fixed budget results from expected optimisation
times”. In: Proc. of GECCO ’13. ACM, 2013, pp. 1581–1588.

[Doe+13b] Benjamin Doerr, Timo Kötzing, Johannes Lengler, and Carola Winzen.
“Black-Box Complexities of Combinatorial Problems”. In: Theoretical
Computer Science 471 (2013), pp. 84–106.

[Doe+13c] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and
Christine Zarges. “Mutation rate matters even when optimizing mono-
tone functions”. In: Evolutionary Computation 21 (2013), pp. 1–21.

Bibliography 119

[Doe+17] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. “The
(1+λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate”. In:
Proc. of PPSN ’17. Full version available at http://arxiv.org/abs/1704.
02191. ACM, 2017, pp. 1351–1358.

[DW18] Carola Doerr and Markus Wagner. “On the Effectiveness of Sim-
ple Success-Based Parameter Selection Mechanisms for Two Classical
Discrete Black-Box Optimization Benchmark Problems”. In: Proc. of
GECCO ’18. To appear. Preliminary version available at https://arxiv.
org/abs/1803.01425. ACM, 2018.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the analysis of
the (1+1) Evolutionary Algorithm”. In: Theoretical Computer Science
276 (2002), pp. 51–81.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. “Upper and Lower
Bounds for Randomized Search Heuristics in Black-box Optimization”.
In: Theory of Computing Systems 39 (2006), pp. 525–544.

[EHM99] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz.
“Parameter control in evolutionary algorithms”. In: IEEE Transactions
on Evolutionary Computation 3 (1999), pp. 124–141.

[Fia+08] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag.
“Extreme Value Based Adaptive Operator Selection”. In: Proc. PPSN
’08. Vol. 5199. Lecture Notes in Computer Science. Springer, 2008,
pp. 175–184.

[Fia+09] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag.
“Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for
Adaptive Operator Selection in Evolutionary Algorithms”. In: Proc.
LION ’09. Vol. 5851. Lecture Notes in Computer Science. Springer, 2009,
pp. 176–190.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. “Rigorous Hitting
Times for Binary Mutations”. In: Evolutionary Computation 7 (1999),
pp. 173–203.

[GW17] Christian Gießen and Carsten Witt. “The interplay of population size
and mutation probability in the (1+λ) EA on OneMax”. In: Algorithmica
78 (2017), 587–609.

[GW15] Christian Gießen and Carsten Witt. “Population Size vs. Mutation
Strength for the (1+λ) EA on OneMax”. In: Proc. GECCO ’15. ACM,
2015, pp. 1439–1446.

[GW16] Christian Gießen and Carsten Witt. “Optimal Mutation Rates for the
(1+λ) EA on OneMax”. In: Proc. of GECCO ’16. 2016, pp. 1147–1154.

[Haj82] Bruce Hajek. “Hitting-time and occupation-time bounds implied by
drift analysis with applications”. In: Advances in Applied Probability 13
(1982), pp. 502–525.

[HY04] Jun He and Xin Yao. “A study of drift analysis for estimating computa-
tion time of evolutionary algorithms”. In: Natural Computing 3 (2004),
pp. 21–35.

[Hwa+18] Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi Tsai, and
Wei-Mei Chen. “Probabilistic analysis of the (1+1)-evolutionary algo-
rithm”. In: Evolutionary Computation 26 (2018), pp. 299–345.

http://arxiv.org/abs/1704.02191
http://arxiv.org/abs/1704.02191
https://arxiv.org/abs/1803.01425
https://arxiv.org/abs/1803.01425

120 Bibliography

[Jäg11] Jens Jägersküpper. “Combining Markov-chain analysis and drift analysis
– the (1+1) evolutionary algorithm on linear functions reloaded”. In:
Algorithmica 59 (2011), pp. 409–424.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms - The Computer
Science Perspective. Natural Computing Series. Springer, 2013. isbn:
978-3-642-17338-7.

[JW06] Thomas Jansen and Ingo Wegener. “On the analysis of a dynamic evolu-
tionary algorithm”. In: Journal of Discrete Algorithms 4 (2006), pp. 181–
199.

[JZ14] Thomas Jansen and Christine Zarges. “Performance analysis of ran-
domised search heuristics operating with a fixed budget”. In: Theoretical
Computer Science 545 (2014), pp. 39–58.

[Joh10] Daniel Johannsen. “Random combinatorial structures and randomized
search heuristics”. PhD thesis. Saarland University, 2010. url: http :
//scidok.sulb.uni-saarland.de/volltexte/2011/3529/.

[KB80] Rob Kaas and Jan M. Buhrman. “Mean, Median and Mode in Binomial
Distributions”. In: Statistica Neerlandica 34 (1980), pp. 13–18.

[KLW15] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. “(1+1) EA on gener-
alized dynamic OneMax”. In: Proc. of FOGA ’15. ACM, 2015, pp. 40–
51.

[LDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr.
“Money for Nothing: Speeding Up Evolutionary Algorithms Through
Better Initialization”. In: Proc. of the GECCO ’15. ACM, 2015, pp. 815–
822.

[LS11] Jörg Lässig and Dirk Sudholt. “Adaptive population models for off-
spring populations and parallel evolutionary algorithms”. In: Proc. of
FOGA ’11. ACM, 2011, pp. 181–192.

[LW12] Per Kristian Lehre and Carsten Witt. “Black-Box Search by Unbiased
Variation”. In: Algorithmica 64 (2012), pp. 623–642.

[Len18] Johannes Lengler. “A General Dichotomy of Evolutionary Algorithms
on Monotone Functions”. In: CoRR abs/1803.09227 (2018). arXiv: 1803.
09227. url: http://arxiv.org/abs/1803.09227.

[MRC09] Boris Mitavskiy, Jonathan E. Rowe, and Chris Cannings. “Theoretical
analysis of local search strategies to optimize network communication
subject to preserving the total number of links”. In: Journal of Intelligent
Computing and Cybernetics 2 (2009), pp. 243–284.

[NW07] Frank Neumann and Ingo Wegener. “Randomized local search, evolu-
tionary algorithms, and the minimum spanning tree problem”. In: The-
oretical Computer Science 378 (2007), pp. 32–40.

[PA02] Paul Fischer Peter Auer Nicoló Cesa-Bianchi. “Finite-time analysis of the
multiarmed bandit problem”. In: Machine Learning 47 (2002), 235–256.

[Rec73] Ingo Rechenberg. In: Evolutionsstrategie (1973).
[Rob55] Herbert Robbins. “A Remark on Stirling’s Formula”. In: The American

Mathematical Monthly 62 (1955), pp. 26–29.
[RS14] Jonathan E. Rowe and Dirk Sudholt. “The choice of the offspring popula-

tion size in the (1, λ) evolutionary algorithm”. In: Theoretical Computer
Science 545 (2014), pp. 20–38.

http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/
http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/
https://arxiv.org/abs/1803.09227
https://arxiv.org/abs/1803.09227
http://arxiv.org/abs/1803.09227

Bibliography 121

[SS68] Michael A. Schumer and Kenneth Steiglitz. “Adaptive step size random
search”. In: vol. 13. IEEE Transactions on Automatic Control, 1968,
270–276.

[Sud13] Dirk Sudholt. “A New Method for Lower Bounds on the Running Time
of Evolutionary Algorithms”. In: IEEE Transactions on Evolutionary
Computation 17 (2013), pp. 418–435.

[Wit13] Carsten Witt. “Tight Bounds on the Optimization Time of a Random-
ized Search Heuristic on Linear Functions”. In: Combinatorics, Proba-
bility & Computing 22 (2013), pp. 294–318.

Titre : Conception de meilleurs algorithmes évolutionnaires grâce à la théorie de la complexité boı̂te noire

Mots clés : randomized search heuristics, temps d’exécution, algorithmes d’évolution

Résumé : De nombreux problèmes d’optimisation du
monde réel sont trop complexes pour être résolus
en temps polynomial. Un moyen de traiter de tels
problèmes utilise � randomized search heuristics
� (RSHs), qui produisent des solutions plus effi-
cacement en compromettant l’optimalité, l’exhausti-
vité, l’exactitude ou la précision. Les RSHs initia-
lisent d’abord un point de recherche avec une position
aléatoire dans l’espace de recherche, puis résolvent
les problèmes de manière itérative jusqu’à ce qu’un
critère de terminaison soit rempli. À chaque itération,
ils répètent les étapes suivantes: générer un ou plu-
sieurs candidats; évaluer la qualité des nouveaux indi-
vidus; mettre à jour les informations connues. Puisque
les RSHs ne nécessitent aucune information que les
valeurs objectives des points de recherche évalués,
nous les appelons algorithmes d’optimisation de boı̂te
noire.
Les RSHs sont des algorithmes paramétrés et leurs
performances typiquement dépendent de manière
cruciale de la valeur de ces paramètres. Dans ce
travail, nous contribuons à notre connaissance de la
manière de contrôler les paramètres en ligne de di-
verses façons. Nous étudions la fonction ONEMAX
qui est définie via {0, 1}n → R, x 7→

∑n
i=1 xi.

Dans un premier temps, nous prouvons que tout
algorithme unaire non-biaisée de type boı̂te noire
nécessite n ln(n) − cn ± o(n) itérations, en moyenne,
pour trouver la solution optimale à ce problème, où c
est une constante entre 0, 2539 et 0, 2665. Ce temps
d’exécution peut être obtenu avec un (1+1)-type al-
gorithme simple en utilisant un paramètre fitness-
dépendant. Nous montrons également que ce pa-
ramètre peut être remplacé par un paramètre d’auto-
ajustement sans perte d’efficacité.
Nous étendons ensuite notre stratégie d’auto-
ajustement aux algorithmes d’évolution (EAs) basés
sur la population, qui utilisent des mécanismes ins-
pirés par l’évolution biologique, tels que la reproduc-
tion, la mutation, la recombinaison et la sélection.
Grosso modo, l’idée principale des EAs est de
créer par itération λ points de recherche en utili-
sant deux valeurs de paramètre différentes. Le pa-
ramètre est ensuite mis à jour en fonction de celui uti-
lisé dans la sous-population qui contient le meilleur
point de recherche. Nous proposons une version
d’auto-ajustement de (1 + λ) EA et une version auto-
adaptative de (1, λ) et nous prouvons qu’ils trouvent
tous les deux l’optimum dans un nombre espéré de
O(nλ/ log λ+ n log n) itérations.

Title : From a Complexity Theory of Evolutionary Computation to Superior Randomized Search Heuristics

Keywords : randomized search heuristics, runtime, evolutionary algorithms

Abstract : Many real-world optimization problems are
too complex to be solved in polynomial time. One
way to deal with such problems is using randomized
search heuristics (RSHs), which produce solutions
more efficiently by compromising on optimality, com-
pleteness, accuracy, or precision. RSHs first initialize
a search point with a random position and then solve
problems iteratively until a termination criterion is met.
In each iteration, they repeat the following steps: ge-
nerate one or more candidates; evaluate the quality
of the new individuals; update the known information.
Since RSHs do not require any other information than
the objective values of the evaluated search points,
we call them black-box optimization algorithms.
RSHs are parametrized algorithms, and their perfor-
mance typically depends very crucially on the value
of these parameters. In this work, we contribute to our
knowledge of how to control the parameters online in
various ways. We study the ONEMAX function which
is defined via {0, 1}n → R, x 7→

∑n
i=1 xi. In a first

step, we prove that unary unbiased black-box algo-

rithm needs n ln(n)− cn± o(n) iterations, on average,
to find an optimal solution for this problem, where c is a
constant between 0.2539 and 0.2665. This runtime can
be achieved with a simple (1+1)-type algorithm using
a fitness-dependent parameter setting. We also show
that this setting can be replaced by a self-adjusting
one without losing efficiency.
We then extend our self-adjusting strategy to
population-based evolutionary algorithms (EAs)
which use mechanisms inspired by biological evolu-
tion, such as reproduction, mutation, recombination,
and selection. Roughly speaking, the main idea of the
EAs is to create per iteration λ search points using
two different parameter values. The parameter is then
updated based on the one used in that subpopulation
which contains the best search point. We propose a
self-adjusting version of (1 + λ) and a self-adaptive
version of the (1, λ) and prove that they both find
the optimum in an expected number of best possible
O(nλ/ log λ+ n log n) iterations.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Résumé
	Abstract
	Introduction
	Bit-counting Problems
	Summary of Contributions
	Related Work

	Preliminaries
	Black-box Complexity
	Evolutionary Algorithms
	Randomized Local Search
	Drift Theorems
	Chernoff Bounds
	Occupation Probabilities
	Useful Equations and Inequalities

	Precise Unary Unbiased Black-box Complexity
	Problem Setting and Useful Tools
	Maximizing Drift is Near-Optimal
	Fitness-Dependent Mutation Strength
	Runtime Analysis for the Approximate Drift-Maximizer
	Fixed-Budget Analysis
	Self-adjusting Mutation Rate
	Mathematical Runtime Analysis on OneMax
	Experimental Results

	Self-adjusting (1+) EA
	Algorithm
	Proof Overview
	The Far Region
	The Middle Region
	The Near Region
	Putting Everything Together
	Experimental Results

	Self-adapting (1,) EA
	Algorithm
	The Far Region
	The Near Region
	Putting Everything Together
	Experimental Results

	Conclusions
	Bibliography

