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Résumé

Nous présentons ici un résumé en français de la thèse. Par souci d’intelligibilité, nous pro-
posons quelques éléments contextuels avant d’introduire nos différentes contributions scien-
tifiques.

Contexte applicatif de la thèse

Le stockage de données en ligne, aussi connu sous le nom de « stockage sur le cloud », a connu
un essor spectaculaire ces dernières années. Les utilisateurs de ce type de service trouvent pra-
tique de pouvoir déposer, partager ou accéder à des fichiers, et ce de manière facile et rapide.
Néanmoins, des problèmes de confidentialité sont récemment apparus concernant son usage
massif : par exemple, on peut citer l’utilisation commerciale de données personnelles telles
que les détails d’accès à des fichiers spécifiques. C’est dans ce contexte cryptographique que
se place cette thèse. En un sens, le problème soulevé paraît ardu : on désire garder un contrôle
fort sur des fichiers dont le stockage a été délégué à un système distant. Néanmoins, des
modèles de sécurité et des protocoles ont été déployés au cours des années, afin de proposer
certaines fonctionnalités. En voici deux exemples.

Supposons qu’un système de stockage distant détienne une série de fichiers M = (M1, . . . , Mk).
On pourrait se demander s’il est possible de récupérer un certain fichier Mi, pour i ∈ {1, . . . , k},
en ne révélant aucune information sur i au système de stockage. Ce problème est connu sous
la terminologie anglaise de private information retrieval (PIR), que l’on traduira par récupération
confidentielle d’information. Des protocoles efficaces ont été conçus dans le but de résoudre ce
problème, bien qu’ils requièrent de borner le système de stockage d’une certaine manière (par
exemple dans sa capacité de calcul, ou dans son contrôle de l’ensemble des fichiers).

Dans un autre cas d’application, supposons qu’un utilisateur veuille vérifier si le système de
stockage détient véritablement les fichiers déposés. Si ces fichiers sont très volumineux, il est
légitime de supposer que l’utilisateur voudrait effectuer cette vérification en utilisant peu de
bande passante ; par exemple, une vérification consistant à télécharger les fichiers et en tester
l’intégrité est considérée comme trop coûteuse. Des protocoles apportant une solution à cette
problématique sont des preuves de récupérabilité, ou en anglais proofs of retrievability (PoR).

Les protocoles résolvant les problèmes présentés ci-dessus peuvent être qualifiés de crypto-
graphiques, dans le sens où ils supposent un adversaire potentiellement malicieux. En effet,
dans un protocole de PIR, le système de stockage voudrait obtenir de l’information sur le
fichier voulu par l’utilisateur. De façon similaire, dans un protocole de PoR, le serveur aime-
rait diminuer ses coûts de stockage en effaçant des parties de fichier, tout en laissant croire à
l’utilisateur qu’il les détient encore.

vii
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Durant l’exécution des protocoles, il est aussi intéressant d’exiger qu’une faible quantité de
bits soient échangée entre le client et le serveur. Plus généralement, la complexité de commu-
nication nécessaire à la réalisation d’une tâche a été beaucoup abordée en informatique. Par
exemple, en théorie des codes, la correction d’une partie d’un mot en accédant à seulement
quelques symboles de celui-ci est un problème étudié depuis plus de deux décennies. Des
codes correcteurs proposant une telle fonctionnalité sont qualifiés de localement corrigibles (lo-
cally correctable code, ou LCC en anglais).

Cette thèse a pour objectif d’étudier ces codes à propriétés locales ainsi que leur application à
la construction de protocoles cryptographiques présentés ci-dessus.

Codes localement corrigibles

Présentation. Les codes localement décodables et corrigibles ont été formellement définis
par Katz et Trevisan [KT00] au début des années 2000. Un code C ⊆ Fn

q est dit localement
corrigible s’il existe un algorithme probabiliste LC, acceptant comme entrée un indice i ∈ [1, n]
où corriger un mot bruité y ∈ Fn

q , et ayant les propriétés suivantes. Premièrement, l’algorithme
LC doit effectuer au plus ` requêtes à y, où `� n est un paramètre appelé la localité du code.
Deuxièmement, pour un certain δ > 0 fixé, lorsqu’il existe un mot c ∈ C tel que la distance
de Hamming entre c et y est plus petite que δn, l’algorithme LC doit renvoyer ci avec grande
probabilité. La quantité δ est appelée la fraction d’erreurs admissible.

Les codes localement corrigibles (LCC) ont été étudiés sous différents régimes de paramètres.
La plupart des résultats se placent le régime à localité constante, typiquement ` = 2 ou 3.
Étant fixée une valeur de `, le but est alors de construire un LCC de localité ` avec un taux
d’information R = dim(C)/n aussi grand que possible, ou de donner des bornes sur R.
D’autres travaux se sont focalisés sur le régime à taux (d’information) constant. Dans ce cas,
on cherche des familles de LCCs dont la valeur asymptotique du taux est non nulle, et le
rapport `/n est aussi petit que possible. Ce deuxième régime est le plus pertinent pour des
applications pratiques, c’est donc celui sur lequel nous nous sommes concentrés dans cette
thèse.

Les codes de Reed-Muller à bas degré représentent une famille typique de LCCs à taux
constant. Rappelons que ces codes sont constitués de mots d’évaluation sur Fm

q de polynômes
multivariés f ∈ Fq[X1, . . . , Xm] dont le degré total est borné par un certain entier d ≥ 0. Si
d < q− 1, alors la restriction d’un tel polynôme f à une droite affine L de Fm

q définit un poly-
nôme univarié f|L, lui aussi de degré ≤ d. On peut ensuite remarquer que l’ensemble des mots
d’évaluation de polynômes univariés de degré ≤ d constitue un code que l’on sait corriger
(précisément un code de Reed-Solomon). Ainsi, il est possible de définir un algorithme de
correction locale pour un code de Reed-Muller de bas degré d. Il se définit informellement
comme suit : (i) tirer aléatoirement et uniformément une droite affine L passant par la coor-
donnée i du mot à corriger ; (ii) corriger y|L , la restriction du mot bruité aux coordonnées
correspondant à la droite ; (iii) renvoyer la version corrigée de yi.

Lorsque le paramètre m reste fixe et lorsque d et q croissent de manière proportionnelle (tou-
jours sous la contrainte d < q − 1), la famille de codes de Reed-Muller obtenue possède
asymptotiquement un taux d’information R non nul. Néanmoins, ce taux est borné par 1/m!.
Quelques travaux récents [KSY14, GKS13, HOW15] ont conduit à des LCCs à localité sous-
linéaire en leur longueur, et dont le taux asymptotique peut être fixé arbitrairement proche de
1. Dans cette thèse, nous nous intéressons en particulier à la seconde construction [GKS13],
introduite par Guo, Kopparty et Sudan.
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L’idée de la construction de Guo et al. [GKS13] se base sur l’observation suivante : sous cer-
taines contraintes arithmétiques, il existe des polynômes multivariés f ∈ Fq[X] de degré
strictement plus grand qu’un certain entier d, dont la restriction à n’importe quelle droite
affine peut être décrite par un polynôme univarié de degré plus petit que d. En réunissant
ces polynômes et ceux du code de Reed-Muller de degré d, on obtient un code C sur lequel
l’algorithme de décodage local décrit ci-dessus fonctionne toujours. Le code C est précisément
appelé relèvement du code de Reed-Solomon de degré d, que l’on abrégera par relèvement de code
ou code relevé. Bien entendu, il contient le code de Reed-Muller de même degré, mais de ma-
nière surprenante, il atteint un taux arbitrairement grand pour certaines plages de paramètres.
Une des contributions principales de la thèse réside dans la construction et l’analyse détaillée
d’analogues de ces codes définis sur des espaces projectifs. Mais présentons dans un premier
temps un travail concernant la construction de codes localement corrigibles à partir d’objets
combinatoires appelés block designs.

Contribution : codes localement corrigibles à travers une généralisation des codes basés sur
les designs. Un (block) design D est un couple (X,B) d’ensembles finis non-vides, X étant
appelé l’ensemble des points, tandis que B est un ensemble de sous-ensembles ∅ 6= B ⊂ X
appelés blocs. Si tout ensemble de points de taille t appartient à un même nombre de blocs,
alors on parle de t-design. Il est bien connu que l’on peut construire un code à partir de D.
Précisément, le code C ⊆ FX

q fondé sur le design D = (X,B) est constitué des mots c ∈ FX
q

tels que pour tout B ∈ B, l’équation de parité ∑x∈X cx = 0 est satisfaite. En d’autres termes,
on impose que c|B appartienne au code de parité, pour tout B ∈ B.

Si D est un 2-design dont la taille de tous les blocs est `, nous démontrons qu’un algorithme
de correction locale lisse1 de localité ` − 1 peut être défini. Simplement, l’idée est de tirer
aléatoirement un bloc B passant par x ∈ X, la position à corriger. Puis, on utilise l’équation
de parité dont le support est B 3 x afin de retrouver cx.

Néanmoins, un tel algorithme ne résiste pas à la présence d’un nombre important d’erreurs
sur le mot de code, car il requiert qu’aucun des ` − 1 symboles lus ne soient erronés. Pour
pallier cet inconvénient, nous proposons la généralisation suivante des codes basés sur les
designs. Soit D = (X,B) un design ; on se donne également L = (LB, B ∈ B) une famille de
codes LB ⊆ FB

q indexés par B ∈ B. Le code basé sur la paire (D,L) est alors défini comme :

Codeq(D,L) = {c ∈ FX
q | ∀B ∈ B, c|B ∈ LB} .

On peut observer que, si L contient uniquement des codes de parité, on retrouve la définition
initiale d’un code basé sur un design. En revanche, si chacun des codes LB corrige une fraction
constante d’erreurs, alors nous démontrons qu’il est possible d’obtenir des codes localement
corrigibles admettant une grande fraction admissible d’erreurs δ.

Contribution : construction de relèvements de codes projectifs. Rappelons que les relève-
ment de codes de Guo et al. [GKS13] permettent d’obtenir une famille de codes localement
corrigibles dont le taux d’information dépasse 1/2. Ils sont formellement définis ainsi :

Lift(RSq(k), m) = {evAm( f ) | pour tout droite affine L ⊂ Am, evA1( f|L) ∈ RSq(k)} ,

où RSq(k) représente le code de Reed-Solomon de dimension k + 1, et evAm est l’applica-
tion d’évaluation sur l’espace affine tout entier. Dans la thèse, nous étudions l’extension de

1c’est-à-dire, dont la répartition des requêtes est uniforme
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cette construction à l’espace projectif Pm. Pour cela, nous définissons proprement evPm , une
application d’évaluation de polynômes homogènes sur Pm, ainsi qu’une famille de plonge-
ments P1 → Pm, notée EmbP(m), qui respecte le choix de l’évaluation effectué pour evPm . Un
relèvement de code projectif peut ainsi être défini :

Lift(PRSq(k), m) := {evPm( f ) | ∀L ∈ EmbP(m), evP1( f ◦ L) ∈ PRSq(k)} ,

où PRSq(k) désigne le code de Reed-Solomon projectif (aussi appelé code de Reed-Solomon
doublement étendu) de dimension k + 1.

Nous démontrons ensuite que les relèvements de codes projectifs admettent un algorithme
de décodage analogue à celui des relèvements affines. En voici une version simplifiée, étant
donnés un mot corrompu y ∈ FPm

q et une position de correction x ∈ Pm. D’abord, un plon-
gement L : P1 → Pm tel que x ∈ L(P1) est tiré aléatoirement. Puis, on effectue les ` = q + 1
requêtes sur les symboles yi, i ∈ L(P1). Enfin, on corrige le mot y|L(P1) qui, par définition du
relèvement Lift(PRSq(k), m), appartient au code PRSq(k) (ou à un code équivalant à celui-ci,
et que l’on sait parfaitement expliciter). Une version formelle de cet algorithme est présentée
dans le Chapitre 3, Algorithme 10.

Nous explorons ensuite les propriétés algébriques et combinatoires des relèvements de codes
projectifs. Nous prouvons qu’ils admettent une base constituée d’évaluations de monômes,
et nous étudions en détail la structure de l’ensemble des exposants de ces monômes, appelé
ensemble des degrés. Un de nos résultats principaux réside dans la démonstration d’une relation
récursive liant les ensembles des degrés de relèvements affines et projectifs. Plus précisément,
si PDeg(m, k) (resp. ADeg(m, k)) représente l’ensemble des degrés de Lift(PRSq(k), m) (resp.
Lift(RSq(k), m)), nous donnons une bijection explicite entre PDeg(m, k) et l’union disjointe
PDeg(m− 1, k) ∪ADeg(m, k− 1).

Cette caractérisation inductive est d’un intérêt premier. D’abord, elle fournit une manière pra-
tique de calculer une base — et a fortiori la dimension — des relèvements de codes projectifs.
Ensuite, elle permet d’obtenir des relations explicites entre les codes relevés (affines et projec-
tifs) à travers les opérations de poinçonnement et de raccourcissement de code. Par exemple,
le raccourcissement de Lift(PRSq(k), m) sur n’importe quel hyperplan projectif donne un code
isomorphe à Lift(RSq(k− 1), m). Plus généralement, on démontre l’existence de la suite exacte

0→ Lift(RSq(k− 1), m)→ Lift(PRSq(k), m)
π−→ Lift(PRSq(k), m− 1)→ 0

où π est l’application de restriction sur n’importe quel hyperplan projectif de Pm. Ce résultat
n’est pas anodin, car des suites exactes très similaires sont connues pour les codes de Reed-
Muller et pour les codes basés sur des designs géométriques.

Ainsi, en un certain sens nos résultats suggèrent que les relèvements de codes forment un lien
entre des codes purement algébriques de type Reed-Muller et des codes purement combina-
toires basés sur les designs. Nous appuyons cette idée en prouvant que les relèvements de
codes peuvent être vus comme des codes Codeq(D,L), où D est un design géométrique et L
une famille de codes de Reed-Solomon (affine ou projectif selon le cas).

Nous justifions ensuite l’aspect pratique des relèvements de codes en étudiant certains de
leurs grandeurs et objets caractéristiques. Notamment, nous prouvons leur caractère quasi-
cyclique (ce qui permet de réduire les besoins de stockage de ces codes), et nous fournissons
une famille d’ensembles d’information explicites de taille importante.

Pour terminer cette étude, nous proposons une analyse fine de l’ensemble des degrés d’un
relèvement de code affine dans le cas m = 2, qui correspond aux codes de plus fort taux
d’information. Nous soulignons l’aspect fractal d’une représentation de l’ensemble de leur
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degrés, et nous procédons à un calcul précis de leur cardinal. Cela nous permet en particulier
d’améliorer les connaissances sur la dimension K de Lift(RS2e(2e − 2e−c − 1), 2), donnée uni-
quement comme une borne et un fait dans [GKS13], en prouvant qu’elle vaut exactement, pour
1 ≤ c ≤ e,

K = 4e
(

1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c

+
1
2e

(
3c − 1
2c+2

))
.

Précisons que cette plage de paramètres est d’un intérêt particulier, car elle permet d’obtenir
une famille de codes localement corrigibles asymptotiquement bons. Enfin, dans un contexte
plus général de corps finis Fpe de caractéristique quelconque, nous démontrons que lorsque

e→ ∞, le taux asymptotique ρ
(p)
∞ (c) de la famille de codes Lift(RSpe(pe − pe−c − 1), 2) est :

ρ
(p)
∞ (c) = 1−

(
1 +

1
p + 2

)(
1 + 1/p

2

)c

+
1

p + 2

(
1
p2

)c

.

Récupération confidentielle d’information

Présentation. La problématique du PIR (récupération confidentielle d’information) a été for-
mellement introduite par Chor, Goldreich, Kushilevitz et Sudan [CGKS95] en 1995, c’est-à-
dire plusieurs années en amont du déploiement effectif des services de stockage en ligne. Ces
auteurs se placent dans le contexte d’une base de données M constituée de k entrées (ou fi-
chiers) de taille 1 bit. Ils prouvent que, lorsqu’un seul serveur stocke la base de données, un
protocole de PIR qui ne laisse fuiter aucune2 information sur l’indice i de l’entrée Mi désirée
doit utiliser Ω(k) bits de communication. Bien entendu, il est impensable d’utiliser un proto-
cole aussi inefficace, et deux solutions sont alors apparues. Dans un premier temps, Chor et
al. [CGKS95, CKGS98] ont proposé l’utilisation de plusieurs serveurs qui ne communiquent
pas tous entre eux, en préservant une sécurité du point de vue de la théorie de l’information.
Une autre solution consiste à n’utiliser qu’un seul serveur, mais dégrade la sécurité en impo-
sant « seulement » qu’il soit calculatoirement difficile de retrouver un bit d’information sur i.
Dans un certain sens, la première solution restreint l’adversaire (serveur malicieux) dans sa
connaissance des requêtes, tandis que la seconde le borne dans sa capacité de calcul. Dans
toute la suite, on s’intéressera uniquement à la première approche.

Dans leur travail précurseur, Chor et al. [CGKS95] ont proposé une première construction de
protocoles de PIR dont la complexité de communication est sous-linéaire en la taille de la
base de données. Quelques années plus tard, Katz et Trevisan [KT00] ont démontré que l’al-
gorithme de décodage d’un LCC lisse fournit un protocole de PIR dont la localité est propor-
tionnelle à celle du code. De plus, au prix d’un précalcul de l’encodage de la base de données,
les serveurs n’auront aucun calcul à effectuer durant la phase de récupération. Néanmoins, la
redondance de stockage induite par l’encodage de la base de données peut être rédhibitoire,
notamment lorsque le taux d’information du LCC est faible.

Dans le but de réduire les besoins de stockage de ce type de protocoles, Augot, Levy-dit-Vehel
et Shikfa [ALS14] ont suggéré un partage de l’encodage de la base de données sur les diffé-
rents serveurs, qui respecte la propriété de confidentialité de la phase de récupération. Leur
construction se focalise sur la famille des codes à multiplicité [KSY14] (multiplicity codes en
anglais), et a permis d’obtenir les premiers protocoles de PIR à communication sous-linéaire
et redondance de stockage inférieure à 2. En réalité, l’idée d’Augot et al. peut être étendue
à n’importe quel LCC dont le support peut être partitionné de telle sorte que les requêtes
de l’algorithme de décodage local soient « transverses » à la partition. Dans cette thèse, nous

2un tel protocole étant qualifié de sûr du point de vue de la théorie de l’information
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poursuivons cette approche en adoptant un point de vue plus général, par l’intermédiaire de
designs transversaux.

Contribution : protocoles de PIR à base de designs transversaux. La plupart des construc-
tions récentes de protocoles de PIR se concentrent sur l’obtention d’une complexité de commu-
nication optimale dans le sens serveur vers client. Cependant, la question du coût calculatoire
de la réponse du serveur est souvent négligée, bien qu’elle représente un obstacle pour le
déploiement effectif des protocoles de PIR. En particulier, il semble déraisonnable pour un
serveur de devoir lire la base de donnée entière, lorsque la réponse à renvoyer est de la taille
d’une entrée.

Dans cette thèse, nous proposons un schéma générique pour la construction de protocoles
de PIR, qui prend particulièrement en compte la problématique de la complexité calculatoire.
Plus précisément, les protocoles que nous construisons sont optimaux en rapport à leur com-
plexité de communication, dans le sens où chaque serveur doit simplement lire et renvoyer
une entrée de la base de données qu’il détient.

Notre construction est fondée sur des structures combinatoires appelées designs transversaux
(en anglais, transversal designs). Ce sont des designs (X,B) munis d’un ensemble de groupes
G qui forme une partition de X, et tel que chaque paire non ordonnée {x1, x2} ⊂ X est, ou
bien contenue dans un groupe, ou bien contenue dans exactement λ blocs, pour un certain
λ ≥ 1. On impose aussi que tous les blocs aient même taille `, et que tous les groupes aient
même taille s. Un tel design est ainsi noté TDλ(`, s). Le code C ⊆ FX

q issu du design TDλ(s, `)
admet donc un support X de taille s`, qui peut être partitionné en ` groupes G1, . . . , G`, et tel
que pour toute paire d’indices {x1, x2} ⊂ X n’appartenant pas au même groupe, il existe une
équation de parité pour C dont le support est de taille ` et contient {x1, x2}.

Donnons maintenant un aperçu de notre construction de protocole de PIR. Soit (X,B,G)
un design transversal TDλ(`, s), et C ⊆ FX

q le code associé, de dimension k. On considère `
serveurs S1, . . . , S` qui stockent un encodage c ∈ C de la base de données M à k entrées de
la manière suivante : pour 1 ≤ i ≤ `, le serveur Si détient c|Gi

. La phase de récupération de
l’entrée cx, pour x ∈ X, se présente alors comme suit. D’abord, l’utilisateur choisit un bloc
B ∈ B tel que x ∈ B. Décrivons maintenant la requête adressée au serveur Si, pour i ∈ [1, `]. Si
x ∈ Gi, alors le serveur doit renvoyer aléatoirement l’un des symboles qu’il détient. Sinon, il
doit renvoyer cyi , où yi est l’unique point de Gi ∩ B. À la réception des réponses des serveurs,
l’utilisateur peut collecter le vecteur (cb : b ∈ B \ {x}). Grâce à l’équation de parité de C dont
le support est B, il peut donc retrouver cx. Enfin, notons que la valeur de x reste confidentielle
(du point de vue d’un seul serveur), car pour tout point yi ∈ X n’appartenant pas au même
groupe que x, il existe un nombre constant λ de blocs contenant {x, yi}.

La construction présentée ci-dessus admet, comme escompté, une complexité de calcul opti-
male pour chacun des serveurs Si, 1 ≤ i ≤ `. En effet, le serveur Si ne doit lire et renvoyer
qu’un unique symbole parmi les données c|Gi

qu’il détient. Par ailleurs, la complexité de com-
munication du protocole est égale à ` fois la taille de l’entrée désirée, où l’on rappelle que `
est la taille des blocs du design TDλ(`, s).

Pour un ` fixé, un objectif reste de trouver des designs TDλ(`, s) dont le code associé C ad-
met un taux d’information dim(C)/s` important. Ainsi, on pourra atténuer la redondance de
stockage sur les serveurs. Dans cette optique, nous proposons plusieurs instances de designs
transversaux qui fournissent des codes à haut taux d’information. Deux premières familles
proviennent des relations d’incidence entre points, droites et hyperplans dans les espaces
affine et projectifs. Une troisième famille provient d’une construction classique de designs
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Code de base C0OO

équivalence
��

Tableau orthogonal

construction classique [CD06, ch.II.2]
��

Design transversal TC0

matrice d’incidence
��

Code d’incidence ICq(C0) = Codeq(TC0)

encodage de la base de données
��

Protocole de PIR

Figure 1 – Résumé de la construction d’un protocole de PIR à base de codes d’inci-
dences.

transversaux à base de tableaux orthogonaux de force 2. Cela nous conduit à introduire la notion
nouvelle de code d’incidences, dont les étapes de construction sont représentées en Figure 1.
Par la suite, nous proposons une étude complète des codes d’incidence ICq(C0) := Codeq(TC0)
provenant de codes C0 MDS et de dimension 2.

Finalement, une dernière famille de designs transversaux donnant des codes de grande di-
mension provient de codes C0 divisibles, c’est-à-dire, dont tous les mots ont un poids de Ham-
ming divisible par un même entier. Nous démontrons que dans ce cas, le code C = ICq(C0)
contient un sous-code de codimension 1 de son code dual ; son taux d’information est donc
minoré approximativement par 1/2.

Pour terminer, l’utilisation de tableaux orthogonaux de force t = 2 pour la construction de
protocoles de PIR nous a amené à examiner le cas des forces t > 2. Nous montrons que dans
cette situation, les protocoles obtenus restent confidentiels, même si jusqu’à t − 1 serveurs
échangent l’information contenue dans leurs requêtes respectives. Pour clore cette partie, nous
proposons et analysons les protocoles de PIR issus d’une famille de tableaux orthogonaux à
force t > 2 quelconque.

Preuves de récupérabilité

Présentation. Sans rentrer dans les détails, une preuve de récupérabilité (PoR) fonctionne
comme suit. Elle implique deux agents : le propriétaire d’un fichier M (aussi nommé le client,
ou le vérifieur), et le système de stockage (que l’on appelle aussi le serveur ou le prouveur).

– Dans une première phase d’initialisation, le vérifieur effectue deux opérations : (i) il
engendre, ou dérive de M, des données K gardées secrètes, et (ii) il encode son fichier
M en un autre fichier W. Ensuite, le vérifieur transmet W au prouveur, supprime M
localement et garde K secrètement.

– La seconde phase, dite de vérification, est le cœur de la PoR. C’est un protocole interactif
dans lequel le vérifieur engendre un défi c puis l’envoie au prouveur, qui produit une
réponse r en accord avec c et ce qu’il détient de W. Enfin, sur la connaissance de r, c et
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K, le vérifieur estime s’il est toujours possible d’extraire M du prouveur. Notons que les
données échangées durant cette phase doivent être de petite taille.

– Enfin, si le vérifieur est convaincu que son fichier est extractible grâce à la phase précé-
dente, il peut lancer un protocole interactif d’extraction qui doit renvoyer M avec grande
probabilité.

La première définition des preuves de récupérabilité (PoR) a été proposée par Juels et Ka-
liski [JK07]. Les auteurs donnent aussi une construction à base de sentinelles, c’est-à-dire de
petites parties du fichier gardées secrètement et dont l’intégrité est vérifiée lors de la phase de
vérification. D’autres schémas ont ensuite été introduits (par exemple [SW13, WWR+11]), et
Paterson, Stinson et Upadhyay ont fourni un cadre pour en analyser la sécurité [PSU13]. Plus
précisément, leur idée est de modéliser par un mot (de taille potentiellement importante) la
collection des réponses du prouveur à tous des défis possibles du vérifieur, de manière à ce
que la procédure d’extraction corresponde à la correction d’un mot de code bruité.

Contribution : preuves de récupérabilité à partir de codes à propriétés locales. Dans cette
thèse, nous proposons une construction générique de PoR dont la sécurité repose sur la vérifi-
cation d’équations de parité sur un mot de code. Donnons ici l’essence de notre construction.
Soit C ⊆ Fn

q un code, et H un ensemble d’équations de parité pour C de poids ` � n. Dans
une phase d’initialisation, le vérifieur encode son fichier M en un mot de code C ∈ C et chiffre
ensuite C symbole par symbole, en un mot W ∈ Fn

q à déposer sur le serveur. La phase de
vérification consiste ensuite à tester des relations de parité (chiffrées) sur W. Précisément, le
vérifieur choisit aléatoirement une équation de parité h ∈ H, et demande au prouveur de lui
fournir les symboles de W correspondant au support de h. Ensuite, le vérifieur déchiffre les
symboles renvoyés par le prouveur, résultant en un mot a, et vérifie si l’équation ∑i hiai = 0
est satisfaite.

Dans notre travail, nous formalisons une version plus générale de l’idée présentée ci-dessus.
Pour cela, nous introduisons la notion de structure de vérification pour un code, qui généralise
l’utilisation d’une équation de parité pour la phase de vérification de la PoR. Nous aboutissons
à un protocole de PoR dont les avantages premiers sont sa généralité (plusieurs familles de
codes C peuvent d’être utilisées) ainsi que la faible complexité de calcul lors de la phase de
vérification. Nous procédons ensuite à une analyse fine de la sécurité de notre construction, en
utilisant le cadre proposé par Paterson et al. [PSU13]. Nous dégageons enfin des instanciations
possibles de notre construction, par exemple à travers des produits tensoriels de codes, des
codes basés sur des designs, ou des relèvements de codes.



Introduction

Context

Informal context. Outsourced data storage, also known as cloud storage, is a service adopted
by a vast majority of Internet users. People desire to upload, share or access files stored
on servers in a fast and convenient manner. Quite recently, privacy issues also emerged
when using such online services. For instance, numerous scandals broke concerning the
commercial use of personal data, such as details on customers’ access to specific files. This
thesis takes place in this cryptographic context. In a sense, the problem seems hard: one wants
to keep control on files whose storage has been delegated to remote systems. Still, models
and protocols have been deployed to provide specific features. Let us give two examples.

Given a collection of files stored on a remote storage system, one could first question whether
it is possible to download one specific file Mi of a database M = (M1, . . . , Mk), without
leaking any information about i, the index of the desired file. This problem is known as
private information retrieval (PIR). Efficient protocols have been designed to tackle it, but they
require the storage system to be bounded in a certain way (e.g. its computational power, or its
control on the files).

Customers may also want to verify whether the remote server actually stores the files they have
uploaded. Assuming files are very large, they would like to run this verification efficiently
in terms of bandwidth. For instance, trying to download the entire files is considered as
inefficient. Protocols proposing a solution to this problem are called proofs of retrievability
(PoRs).

Both previous problems can be qualified as cryptographic, as they may involve a malicious ad-
versary: in private information retrieval, the remote system wants to obtain some information
about the requested file; in proofs of retrievability, the server wants the customer to believe
that it still holds the database, while it has maliciously erased (part of) it in order to reduce
its storage costs.

We have also seen that both problems require that only a few bits are exchanged between the
user and the storage system. More generally speaking, the communication complexity necessary
to perform a given task has been studied a lot in computer science. For instance in coding
theory, correcting pieces of a codeword with only a few queries to the codeword symbols is
an issue addressed for almost two decades. Codes allowing such a correction are called locally
correctable codes (LCCs).

In this thesis, we study the application of LCCs (or similar codes) in the cryptographic pro-
tocols presented above. Very informally, assume uploaded files are encoded according to an
LCC. Then, the requirements necessary to the local correction (e.g. the number and structure of

xv
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queries) allows to retrieve information on the remote file, in an efficient and (sort of) uniform
way. Let us give more details in the following paragraphs.

Locally correctable codes. Locally decodable and correctable codes were formally defined by
Katz and Trevisan [KT00] in the early 2000’s. A code C ⊆ Fn

q is said to be locally correctable
if there exists a probabilistic algorithm LC, taking as input i ∈ [1, n], the coordinate of the
symbol to correct, with the following properties. First, LC makes at most ` queries to a noisy
word y ∈ Fn

q ; the parameter ` is called the locality and should be thought as of being much
smaller than n. Second, LC must return ci with high probability, if the Hamming distance
between y and c ∈ C is smaller than δn, where δ > 0 is the admissible fraction of errors.

Locally correctable codes (LCCs) are studied under different regimes of parameters. Most
works focus on the constant locality regime, typically ` = 2, 3. For a given locality, the goal is
to build an LCC with maximum information rate R = dim(C)/n, or to give bounds on R —
for instance, we refer to [Yek08, Efr12] for constructions and [KdW04, Woo12] for bounds.

Other results appeared in the constant rate regime. In this case we look for families of LCCs
whose asymptotic rate is positive, and whose ratio locality to length is as low as possible.
Since it is the most interesting for practical applications, we focus on this regime in the present
thesis.

Reed-Muller (RM) codes certainly define the most typical family of constant rate LCCs. They
consist in the evaluation of polynomials f ∈ Fq[X1, . . . , Xm] over Fm

q , where the total degree of
f is bounded by some integer d ≥ 0. If d < q− 1, then the restriction of every polynomial f to
any affine line L defines a univariate polynomial f|L of degree ≤ d. This univariate polynomial
can be corrected with a few queries to its evaluations. Thus, a local correcting algorithm for
RM codes can be defined as follows: (i) pick uniformly at random a line through the position
of the symbol to correct, and (ii) correct the noisy univariate polynomial along the line.

However, RM codes of length n = qm and degree d < q − 1 have rate bounded by 1/m!,
when their locality is n1/m. A few recent works [KSY14, GKS13, HOW15] lead to LCCs whose
asymptotic rate R can be set arbitrarily close to 1, and whose locality remains sublinear in
the length. In this thesis we mostly focus on the second construction, introduced by Guo,
Kopparty and Sudan, and shortly named lifted codes.

Lifted codes generalise RM codes, based on the following evidence: under some arithmetic
conditions, there exists polynomials f of total degree > d, such that the restriction of f to
any affine line L describes a univariate polynomial of degree ≤ d. Gathering polynomials
satisfying this property and polynomials of degree less than d, we get a code on which the
local correcting algorithm of RM codes still works. This code, called the lifting of the Reed-
Solomon code (in short, lifted code since we mostly lift Reed-Solomon codes), contains the RM
code and reaches arbitrarily high rate for a certain range of parameters. One purpose of the
thesis is to provide and analyse an analogue of lifted codes over projective spaces.

Finally, one must report that when d = q− 2, a lifted code can be seen as the code based on
AG1(m, q), the design of points and lines in the affine space (also known as the classical affine
geometry design of 1-flats). Hence, in some sense the lifting process generalise the construction
of codes from designs.

Private information retrieval. Private information retrieval (PIR) was formally introduced
in a work of Chor, Goldreich, Kushilevitz and Sudan [CGKS95] in 1995, that is, years before
the actual deployment of cloud storage services. The authors considered the case of a database
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M consisting in k files (or entries) of size 1. They proved that, when a single server stores the
database, a PIR protocol leaking no information on the index i of the entry Mi (such a protocol
being called information-theoretically secure) must use Ω(k) bits of communication. Of course,
such an expensive protocol is not affordable, and two solutions have since appeared. The
first one consists in restricting the definition to computational privacy; the second one allows
the use of several servers, not all of them colluding, but remains information-theoretically
secure. In some ways, the first solution bounds the adversary (the remote storage system)
in its computational power, while the second one bounds it in its knowledge of the queries.
Hereafter we only focus on the second model that makes use of several servers.

In their seminal work, Chor et al. [CGKS95] proposed a first construction of PIR protocols
with sublinear communication complexity, which besides decreases as the number of servers
used in the protocol grows. A few years later, Katz and Trevisan [KT00] proved that so-called
smooth LCCs (that is, LCCs whose queries are close to uniform) provide PIR protocols whose
communication complexity is essentially the locality of the code. Moreover, if the encoding
of the database M is precomputed, then each server’s answer only consists in reading one
entry of the codeword it holds. Therefore, the computational complexity of the protocol is low.
Nevertheless, the storage overhead induced by the encoding can be prohibitive, especially if
the LCC has vanishing rate.

Hence, aiming at reducing the storage needs of PIR protocols, Augot, Levy-dit-Vehel and
Shikfa [ALS14] proposed to split the encoding of the database among the servers. In this
setting, servers hold different pieces of the codeword instead of copies of it, and the over-
all storage cost is drastically reduced. Using high-rate LCCs (the multiplicity code construc-
tion [KSY14]), they obtained the first PIR protocols with sublinear communication and re-
dundancy < 2. In fact, Augot et al.’s idea can be extended to any LCC whose support can be
split in a way that most queries of the local correcting algorithm are transversal to the parti-
tion. In this thesis we develop this approach with a more generic perspective, making use of
so-called transversal designs.

Proofs of retrievability. Without going into the technicalities, proofs of retrievability (PoRs)
can be introduced as follows. A PoR involves two entities: the owner of a file M that we name
Alice, also called the client or the verifier, and Bob who stores of the file (also referred to as
the server or the prover). In a first initialisation phase, Alice performs two operations: (i) she
generates some secret material K and (ii) she encodes the file M into a string W according to
K. Then, the string W is sent to Bob, and Alice erases M and keeps K secretly. The core of
a PoR is the second phase, where Alice checks whether her file is extractable from Bob. This
step consists in an interactive protocol where Alice defines a random challenge c, sends it to
Bob who answers a response r according to c and to what he actually stores. Typically, the
challenge can consist in some coordinates of the string W that Bob must send back. Then,
based on c, r and her secret material K, Alice appraises whether she can retrieve M from Bob.
Notice that it is highly desirable that this verification phase admits a low communication cost
(compared to the size of M). Finally, if Alice is convinced that her file is retrievable (e.g. after
several successful verification protocols), then she can run an extraction protocol whose output
shall be M with high probability.

With the increasing use of decentralised storage systems, PoRs have found multiple recent
applications. For instance, Storj [WBB+16] is a practical and implemented decentralised cloud
storage network which uses PoRs to maintain data integrity. Though they slightly differ from
PoRs, one should also notice that other kinds of schemes proving storage have been introduced
during the last decade, such as provable data possession (PDP), proofs of replication (PoRep).
They also were deployed in very practical applications, such as Filecoin [com17] for proofs of
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replication. In this thesis, we however focus on PoRs and give a generic construction whose
verification step is based on local dependencies between codewords’ symbols.

Summary of contributions

Generalised design-based codes. An initial contribution concerns the construction of error-
resilient locally correctable codes via block designs. In short, a block design D is a pair (X,B)
of non-empty sets, X being a finite set of points, and B being a set of subsets B ⊂ X called
blocks. The code based on a block design (X,B) is the linear code C ⊆ FX

q , such that every
c ∈ C satisfies ∑x∈B cx = 0 for every block B ∈ B. In other words, we require that c|B belongs to
the parity code for every B ∈ B. If D is a 2-design of block size `, we prove that a very natural
local correcting algorithm of locality `− 1 can be defined for C. First, one picks at random
a block B passing through the index x where to decode. Second, one uses the parity-check
equation induced by the block B to recover cx.

However, such local correction algorithms are not resilient to many errors, since they require
that absolutely no error occur on symbols supported by B. To tackle this problem, we propose
to consider generalised design-based codes, defined as follows. Let D = (X,B) be a block design,
and L = (LB : B ∈ B) be a family of local codes LB ⊆ FB

q , indexed by blocks in B ∈ B. The
code based on D and L, called generalised design-based code, is

Codeq(D,L) = {c ∈ FX
q | ∀B ∈ B, c|B ∈ LB} .

We see that, if L consists only in parity-check codes, we end up with the usual definition of
design-based codes. But, if every code LB ∈ L corrects a constant fraction of errors, we show
that we improve the error resilience of the local correcting algorithm presented above. Details
are given more formally in Section 2.4.

Projective lifted codes. As we have seen in a previous paragraph, lifted Reed-Solomon
codes [GKS13] were initially built in order to provide an asymptotic family of LCCs achieving
rate > 1/2. They can be formally defined as:

Lift(RSq(k), m) = {evAm( f ) | for all affine lines L ⊂ Am, evA1( f|L) ∈ RSq(k)} ,

where RSq(k) denotes a Reed-Solomon code. In this thesis, we propose to extend this con-
struction to the evaluation of polynomials over projective spaces. To this end, we require
appropriate definitions for an evaluation map of homogeneous polynomials over projective
spaces evPm , and for a space of embeddings P1 → Pm denoted EmbP(m) — see Chapter 3 for
details. Projective lifted codes can then be defined as follows:

Lift(PRSq(k), m) := {evPm( f ) | ∀L ∈ EmbP(m), evP1( f ◦ L) ∈ PRSq(k)} ,

where PRSq(k) denotes a projective (or doubly-extended) Reed-Solomon code.

We then show that projective lifted codes admit a local correcting algorithm analogous to the
one used for lifted codes defined over affine spaces (that we name affine lifted codes). Let
us sketch how it corrects a symbol yx of a noisy codeword y, for x ∈ Pm. First, one picks
uniformly at random an embedding L : P1 → Pm such that x ∈ L(P1). Then, one corrects the
restricted word y|L(P1), since it should lie in PRSq(k). A more formal presentation is given in
Algorithm 10, Chapter 3.
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We then explore properties of projective lifted codes. We first prove they admit a basis made
of evaluation vectors of monomials, and we then study the set of exponents of this monomial
basis, called the degree set. A main result is a recursive relation between degree sets of affine
and projective lifted codes. More precisely, denoting by PDeg(m, k) (resp. ADeg(m, k)) the
degree set of Lift(PRSq(k), m) (resp. Lift(RSq(k), m)), we give an explicit bijection between
PDeg(m, k) and PDeg(m− 1, k) ∪ADeg(m, k− 1), see Theorem 3.23.

This recursive characterisation has multiple consequences. First, it is a convenient way to
compute a basis — and a fortiori the dimension — of projective lifted codes. Second, it al-
lows us to exhibit links between lifted codes via puncturing and shortening operations: for
instance, shortening Lift(PRSq(k), m) on any projective hyperplane gives a code isomorphic to
Lift(RSq(k− 1), m). More precisely, we prove that the following exact sequence

0→ Lift(RSq(k− 1), m)→ Lift(PRSq(k), m)
π−→ Lift(PRSq(k), m− 1)→ 0

holds, where π is the restriction map on a fixed projective hyperplane of Pm. In fact, a similar
exact sequence was already known for Reed-Muller codes and codes based on geometric
designs.

In some ways, lifted codes bridge algebraic constructions of codes such as Reed-Muller codes
and combinatorial constructions based on block designs. For low degrees k ≤ q(1 − 1/p)
where p = char(Fq), Kaufman and Ron [KR06] proved that Lift(RSq(k), m) = RMq(k, m). On
the opposite, if k = q − 2, then Lift(RSq(k), m) is the code based on the design AG1(m, q).
More generally, we prove that projective and affine lifted codes are generalised design-based
codes.

We also study several properties of projective lifted codes that emphasize their practicality.
We show they admit quasi-cyclic automorphisms that can help to reduce their storage cost.
We also give a large and explicit family of information sets for these codes.

Finally, we analyse in details the degree sets of affine lifted codes in the case m = 2, which
corresponds to the codes with highest rates. We highlight their fractal representation and
provide a precise computation of their dimension. We notably improve upon a bound given
as a claim in [GKS13], proving that the dimension K of Lift(RS2e(2e − 2e−c − 1), 2), for 1 ≤ c ≤
e− 1, is exactly

K = 4e
(

1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c

+
1
2e

(
3c − 1
2c+2

))
.

This particular setting is of main interest, since for fixed c and increasing e, it provides an
asymptotically good family of locally correctable codes. More generally, in any characteristic
p ≥ 2 we prove that for e → ∞, the asymptotic rate ρ

(p)
∞ (c) of the family of lifted codes

Lift(RSpe(pe − pe−c − 1), 2) is

ρ
(p)
∞ (c) = 1−

(
1 +

1
p + 2

)(
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2

)c

+
1

p + 2

(
1
p2

)c

,

and can thus be set arbitrarily close to 1.

Private information retrieval based on transversal designs. Most recent constructions of
PIR protocols mainly focus on obtaining an optimal download communication complexity
during the retrieval process. However, the computational cost of servers’ answers is neglected
even though it sometimes represents a barrier to PIR practicality. For instance, it seems un-
reasonable for a server to read a whole database in order to give an answer whose size is
roughly the size of an entry.
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In this thesis, we propose a new generic framework for the construction of PIR protocols
which takes into account the computational complexity issue. More precisely, the protocols
we give are computationally optimal with respect to the communication complexity of the
protocol, in the sense that each server only needs to read one entry in the database it holds.

Our construction is based on combinatorial structures called transversal designs. They are block
designs (X,B) equipped with a set of so-called groups G that forms a partition of X, and such
that every pair {x1, x2} ⊂ X is either contained in a group, or in a fixed number λ of blocks.
If the block size is ` and the group size is s, such a transversal design is denoted TDλ(`, s).
The code C based on a TDλ(`, s) therefore admits a support X, |X| = s`, that can be split into
` groups G1, . . . , G`. Furthermore, for every pair of coordinates {x1, x2} that do not lie in the
same group, there exists a parity-check equation for C whose support contains {x1, x2}.

Let us now give a quick overview of the construction of our `-server PIR protocol — more
details are given in Chapter 4. Given an encoding c ∈ C of the database, the user first uploads
to the i-th server Si the restriction c|Gi

of c, for 1 ≤ i ≤ `. Now assume the user wants to
privately retrieve an entry cx for x ∈ X. Then, they pick at random a block B ∈ B such that
x ∈ B. Let us now describe queries to server Si, for 1 ≤ i ≤ `. If i is such that x /∈ Gi, then the
user queries cyi , where yi is the only point in Gi ∩ B. Otherwise, the user query cy, for some
uniformly random y ∈ Gi.

Upon reception of servers’ answers, we see that the user collects the tuple (cb ∈ Fq : b ∈
B \ {x}). Hence, the user can retrieve cx thanks to the parity-check equation having B as
support. The privacy of the protocol comes from the fact that for every pair {x, yi} that do
not lie in the same group, there exists a constant number of blocks B that contain {x, yi}.

The PIR construction we propose features, as expected, low computational complexity for
each server Si, 1 ≤ i ≤ `: it only needs to read one symbol in c|Gi

. The overall communication
complexity is proportional to the block size `. In fact, the only parameter that depends on the
chosen instance of transversal design is the storage overhead of the scheme. In practice, low
storage overhead are desirable, so we look for transversal designs TDλ(`, s) whose associated
linear code C have dimension as large as possible compared to their length s`.

Therefore, we propose several instances of transversal designs that lead us to codes with large
rate. The first two families come from incidences between points and lines in the affine (resp.
projective) space. They are closely related to the classical geometric designs of 1-flats. The
third family of instances makes use of a classical transformation of so-called orthogonal arrays
of strength 2 into transversal designs. This leads us to introduce PIR protocols based on
incidence codes, that arise from the steps depicted in Figure 2.

We then proceed to a thorough study of the dimension of incidence codes coming from MDS
codes C0 of dimension 2. Finally, a last family of practical instances appears when showing
that divisible codes C0 admit incidence codes of rate roughly greater than one half. However,
the existence of such codes over large alphabets remains an open question.

The use of orthogonal arrays of strength t = 2 for the construction of PIR protocols leads
us to examine the case of higher strengths t > 2. We prove that such orthogonal arrays
allow the construction of PIR protocols which remain private, even if up to t − 1 servers
collude (i.e. they exchange information about their respective queries). Finally, we exhibit and
analysed instances of orthogonal arrays with large strength to conclude this chapter.

Codes with locality for proofs of retrievability. A formal definition of PoRs was proposed
by Juels and Kaliski in [JK07], where the authors also give a first construction based on sen-
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Base code C0OO

equivalence (Rem. 4.20)
��

Orthogonal array

Construction 4.18 [CD06, ch.II.2]
��

Transversal design TC0

incidence matrix
��

Incidence code ICq(C0) = Codeq(TC0)

database encoding
��

Distributed PIR protocol

Figure 2 – Outline of the construction of a distributed PIR protocol using incidence
codes.

tinels (small pieces of W that Alice keeps secretly and whose integrity is checked during the
verification phase). Many other schemes were then introduced (notably [SW13, WWR+11]),
and Paterson, Stinson and Upadhyay provided a coding-theoretic framework to analyse their
security [PSU13]. Precisely, the idea of Paterson et al. is to model the collection of Bob’s
responses to challenges as a (very long) word, so that the extraction can be seen as an error-
correction procedure.

Building on this framework, we propose a new construction of proofs of retrievability based
on linear codes. Our idea is essentially the following. Let C ⊆ Fn

q be a code and H be a set of
parity-check equations for C of low weight ` � n. Alice encodes her file M into a codeword
C ∈ C and encrypts C into W (using a suitable cipher and a key K). The verification phase
then consists in testing random parity-check equations on W. Precisely, Alice picks at random
an h ∈ H, and asks Bob to send back symbols of W supported by h. Then Alice decrypts the
symbols returned by Bob, resulting in a plaintext a, and she checks whether ∑i hiai = 0.

In Chapter 5, we firstly define a security model for PoRs, in order to give a formal version of
our construction. We then introduce verification structures for codes that generalise the use of
parity-check equations that we depicted above. We then proceed to give a detailed and generic
analysis of the security of our PoR schemes, using the framework of Paterson et al. [PSU13]
which particularly suits our work. The main advantages of our construction are its gener-
ality (many different codes can be used, with various parameters) and its low computation
complexity, once the initialisation is performed.

In practice, the communication complexity of our PoRs depends on the weight ` of the parity-
check equations that are used (or more generally, the locality parameter ` of the verification
structure for C). Therefore, for practical reasons we look for codes with a quite elaborate
and structured set of parity-check equations of small weight. This leads us to propose sev-
eral instantiations of our PoR constructions, using well-known codes with locality that were
introduced previously in the thesis (e.g. Reed-Muller codes or design-based codes).
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Outline of the thesis

The present document is composed of two main parts. Chapters 1–3 are devoted to codes
with locality, mostly locally correctable codes. Their application into two cryptographic pro-
tocols — namely private information retrieval and proofs of retrievability — are proposed,
respectively in Chapters 4 and 5.

In the first chapter, we recall notions of coding and design theory that will be used throughout
the thesis. This allows us to fix convenient but less common notation for codes, and to recall
well-known constructions and results.

Chapter 2 is mostly devoted to a review of locally decodable and correctable codes. We first
give formal definitions of these codes, and we explain some important existing constructions
and bounds. We also take the opportunity to define very properly a smooth version of their
local correcting algorithms. Finally, we propose in Section 2.4 a new perspective for the
construction of locally correctable codes, through the generalisation of design-based codes
presented earlier.

The third chapter focuses on the construction and analysis of projective lifted codes. After
an introduction of the algebraic background necessary to the construction, we provide formal
definitions of projective lifted codes, and we give their first properties. A local correcting
algorithm is presented in Section 3.3, matching the parameters of the affine lifted codes of
Guo et al. [GKS13]. Then we present recursive relations between affine and projective lifted
codes, via shortening and puncturing. Some practical features (such as explicit information
sets and automorphisms) are given in Section 3.4, and we end this chapter with a precise
computation and analysis of the degree sets and the dimension of lifted codes of order m = 2.

In Chapter 4, we consider the application of codes based on transversal design in the construc-
tion of private information retrieval protocols. A quick review of existing schemes is proposed
in Section 4.1, and motivates our construction given in the next section. We then suggest and
analyse several families of instances that yield practical parameters, notably the ones based
on geometric designs. Finally, in Section 4.4 we propose a generalisation of our construction
using orthogonal arrays, in order to resist collusions between some of servers.

Finally, Chapter 5 examines the construction of proofs of retrievability using codes with loc-
ality. After referencing some important existing PoR schemes, we define a security model
matching the framework due to Paterson et al. [PSU13]. According to this model, we present
and analyse our PoR construction in Section 5.3. Its performance is described in the next
section, and we propose several instantiations based on well-known codes and designs in
Section 5.5.

A conclusion including further avenues of research completes the document.
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Codes with locality
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Chapter 1

Basics of coding and design theory
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1.2.1 Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Reed-Muller codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Hadamard codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Combinatorial constructions through block designs . . . . . . . . . . . . . . . . . . . 9

1.3.1 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Design-based codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Overall notation. Lowercase bold characters represent tuples, codewords or vectors, while
uppercase ones are used for higher-dimensional data structures (such as matrices or tensors).
Sets are usually denoted in classical uppercase characters, and their elements in lowercase.

We denote by [1, n] := {1, 2, . . . , n}. A k-subset of a finite set S, k ≤ |S|, is a subset of S of
cardinality k. We also denote by S(S) the set of permutations on S.

For any set A, the power set AS represents the set of maps f : S → A. Since S is finite, a
function f ∈ AS can also be seen as a tuple a over A indexed by S, through its evaluation
tuple a = ( f (x) : x ∈ S) ∈ AS. In the tuple a ∈ AS, the symbol indexed by x ∈ S is written
ax ∈ A. In our context, the correspondence between evaluation tuples and functions is very
convenient and will be used regularly. In order to distinguish the two representations, recall
that tuples are written in bold characters. We also identify A[1,n] with An.

If R is a ring, the ideal generated by a finite subset U of an R-module is written SpanR(U), or
in short Span(U) if the base ring is implicit.

If K is a field, K× represents the non-zero elements of K. We denote by K[X] the ring of
univariate polynomials over K with indeterminate X, and by K[X] = K[X1, . . . , Xm] the ring of
polynomials with m variables over K. The subspace of polynomials of total degree bounded
by d is denoted by K[X]≤d.

The coordinate-wise product (also known as Schur, or Hadamard product) of two vectors
a, b ∈ KS is a ? b := (axbx : x ∈ S) ∈ KS. Notice it corresponds to the classical product f g of
two maps f , g : S→ K.

3
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The m-dimensional affine space over K is simply Km, and it is sometimes denoted Am(K),
or Am. We can also define the projective space Pm(K) as the quotient Km+1/ ∼, where the
relation ∼ is defined by:

u ∼ u′ ⇐⇒ ∃λ ∈ K×, u = λu′ .

Given two K-vector spaces U and V, the space of linear maps U → V is denoted Hom(U, V),
and the invertible ones Iso(U, V). If U = V we shortly write Hom(U) and Iso(U). The set of
maps φ : Kt → Km, φ(x) = ψ(x) + b, where b ∈ Km and ψ ∈ Hom(Kt, Km) is injective, is called
the set of affine transformations from Kt to Km. One must discern affine transformations from
generic affine maps, from the fact that we require affine transformations to be injective. We
will mostly deal with affine transformations, that we denote by Aff(Kt, Km), or Aff(Kt) when
t = m.

Given a set S, the notation s ←R S means that s is picked uniformly at random from the set
S. We also denote by B(p) the Bernoulli distribution with parameter p, and we recall that
if a random variable X follows B(p), then its mean value is E(X) = p and its variance is
D(X) := E((X − E(X))2) = p(1− p). Let X and Y be two discrete random variables with
finite support. We say that X and Y are independent if we have

Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y)

for every x, y lying in the respective support of X and Y. When X and Y are real-valued, we
say that X and Y are uncorrelated if E(XY) = E(X)E(Y). As a consequence, two uncorrelated
variables X, Y satisfy D(X + Y) = D(X) + D(Y). Two independent random variables are un-
correlated. Finally, a family of random variables {Xi}i∈I is pairwise independent (resp. pairwise
uncorrelated) if for all i 6= j ∈ I, Xi and Xj are independent (resp. uncorrelated).

Let us also recall that Markov’s inequality states that, for a non-negative random variable X,
we have for every a > 0:

Pr(X ≥ a) ≤ E(X)

a
.

Furthermore, the deviation from the mean value is bounded by Chebychev’s inequality. This
states that, for any real-valued random variable X and for every b > 0, we have:

Pr(|X−E(X)| ≥ b) ≤ D(X)

b2 .

Given two positive functions f , g : N → R+, we say that f = O(g) if there exists α > 0 such
that f (n) ≤ αg(n) for all large enough n ∈ N. We write f = Õ(g) if f = O(g log(g)c) for
some constant c > 0.

If for every ε > 0, f (n) ≤ εg(n) holds for large enough n ∈N, then we write f = o(g). Finally,
the notation f = Ω(g) is equivalent to g = O( f ), and we write f = Θ(g) when f = Ω(g) and
f = O(g).

1.1 Elementary notions in coding theory

This section is devoted to recall basic notions related to coding theory. Here we choose to
use the tuple representation for elements in ΣS since it is the most commonly used in the
literature. When meaningful, we also give correspondence of the definitions and results in the
functional representation. In the whole section, we refer to [HP10] for details and proofs.
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Generic notions. Given an alphabet Σ and a finite set S, an error-correcting code over Σ is a
subset C ⊆ ΣS. The set S is the set of coordinates of the code, and its size n = |S| is the length of
the code. Elements c ∈ C are called codewords. As its name suggests, an error-correcting code
is usually employed to correct errors and erasures that can occur in messages, for instance
during transmission. Given a codeword c ∈ C ⊆ ΣS and a noisy version y ∈ (Σ ∪ {⊥})S of
c, where ⊥ denotes the erasure symbol, an error is a symbol yi /∈ {ci,⊥} for some i ∈ S, while
an erasure is a symbol yj =⊥ for some j ∈ S. If not stated otherwise, we assume in this thesis
that only errors can occur in words. A well-suited metric for modelling errors is the Hamming
distance, defined by d(y, z) := |{i ∈ S, yi 6= zi}| for any two words y, z ∈ ΣS. The distance
of y ∈ ΣS to a code C is then d(y, C) := min{d(y, c), c ∈ C}, and the minimum distance of the
code C is dmin(C) := min{d(c, c′) | (c, c′) ∈ C2, c 6= c′}. It is also convenient to consider the
relative distance between two words y, z ∈ ΣS, defined by δ(y, z) := d(y, z)/|S|. Similarly one
can define the relative distance of a word to a code, and the relative minimum distance of a
code.

A nearest-neighbour correcting algorithm for C is an algorithm which takes as input any word
y ∈ ΣS, and outputs a word c ∈ C such that d(y, c) = d(y, C). Let t :=

⌊
dmin(C)−1

2

⌋
be the

packing radius of C. Clearly, if d(y, C) ≤ t, then the output is unique. Therefore, a half-distance
correcting algorithm for C is an algorithm that outputs the unique c ∈ C nearest to y, provided
y ∈ ΣS satisfies d(y, C) ≤ t. More generally, one can also consider T-bounded-distance correcting
algorithms when d(y, C) is bounded by some integer T ≤ t.

Linear codes. We have defined codes C ⊆ ΣS with a general perspective, but they are mostly
studied in the context S = [1, n] and Σ = Fq, where Fq is the finite field with q elements. If C
has a Fq-vector space structure, then C is said to be (Fq-)linear. In this thesis, every code is
assumed to be Fq-linear with alphabet Σ = Fq, except stated otherwise. Thus, linear codes
over Fq are referred to as codes for short. We call dimension of the code the integer k = dimFq C.
The support of a word y ∈ FX

q is supp(y) := {i ∈ X, yi 6= 0}. Its weight wt(y) := d(0, y) is also
the cardinality of its support. The minimal distance of a linear code C ⊆ FX

q can therefore be
seen as the minimum weight wt(c) of a non-zero codeword c ∈ C.

Any injective map E : Fk
q → C is an encoder for C, and elements m ∈ Fk

q are called messages
and usually written in rows m = (m1, . . . , mk). Given an encoder E : Fk

q → C, one can define a
nearest neighbour decoding algorithm for (C, E), as an algorithm which takes as input any word
y ∈ ΣS, and outputs a message m ∈ Fk

q such that d(y, E(m)) = d(y, C). Similarly, half-distance
and T-bounded-distance decoding algorithm can be defined.

For y ∈ FS
q and I ⊆ S, we denote by y|I = (yi : i ∈ I). This corresponds to the restriction

to I in the functional representation. The code Short(C, I) := {c|S\I , c ∈ C, c|I = 0} is called
the shortening of C on I. The puncturing of C on I (or its restriction on S \ I) is Punct(C, I) :=
C|S\I = {c|S\I , c ∈ C}. Both shortening and puncturing operations give linear codes over Fq,
and Short(C, I) ⊆ Punct(C, I).

If |I| = dim(C|I) = dim(C) holds, then we say that I is an information set for C. Given any
information set I ⊆ S and any encoder E, there exists a linear map φI : FI

q → Fk
q such that

φI ◦ E = idFk
q
. Denote by φI = (φ1, . . . , φk) : FI

q → Fk
q. If moreover, there exists a one-to-one

map σ : I → [1, k] such that, φi(x) = xσ(i) for every x ∈ FI
q, then we say that E is a systematic

encoder with respect to the information set I. In simple words, a systematic encoder is a linear
map Fk

q → C such that, by selecting k coordinates {i1, . . . , ik} = I, one can read any message
m from the coordinates indexed by I in its encoded version E(m).
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Let G ∈ F
[1,k]×S
q be a matrix whose rows and columns are respectively indexed by [1, k] and

S. The matrix G is a generator matrix for C if the map m 7→ mG is an encoder for C. For
such a matrix G, an information set I for C corresponds to a set of columns for which the
minor G|[1,k]×I is invertible. Furthermore, the matrix G gives a natural systematic encoder if
its submatrix G|[1,k]×I is the k× k identity matrix (up to a permutation of the columns).

Duality. We denote by 〈x, y〉 = ∑i∈S xiyi the classical inner product between two elements
x, y ∈ FS

q . Every linear code C admits an orthogonal space with respect the classical inner
product, denoted C⊥ and historically but confusingly called the dual code of C. This is a linear
space of dimension |S| − dim(C). Elements of C⊥ are called parity-check equations for C. The
dual distance of C is simply d⊥(C) := dmin(C⊥).

Any matrix H ∈ F
[1,r]×S
q satisfying Hc = 0 if and only if c ∈ C is called a parity-check matrix

for C. Notice we do not restrict ourselves to r = |S| − dim(C). For y ∈ FS
q , the vector Hy ∈ Fr

q
is called a syndrome.

It is clear that, if G is a generator matrix for C, then we have HG = 0. Moreover, the rows of
H generates the dual code C⊥. Therefore, rank(H) = |S| − dim(C), and a row-reduced form
of H defines a generator matrix for C⊥.

Permutations, automorphisms. Any permutation σ ∈ S(S) induces a map FS
q → FS

q , defined
by σ∗(y) := (yσ(x) : x ∈ S). In the functional representation, this corresponds to the composi-
tion of functions, i.e. σ∗ : f 7→ f ◦ σ. A code C ⊆ FS

q is said to be invariant by σ if σ∗(C) = C.
For a given C, such permutations form a group under the composition law; it is called the
permutation group of C and denoted Perm(C).

More generally, the semi-direct product (F×q )S oS(S) acts on FS
q by

(a, σ) : y 7→ a ? σ∗(y) .

The group of elements (a, σ) ∈ (F×q )
S oS(S) which leave a code C invariant is called the

automorphism group of C and denoted Aut(C).

Isomorphisms between codes. Given a one-to-one map φ : A → B, one can also define a
map φ∗ : FA

q → FB
q by φ∗(y) := (yφ(x) : x ∈ A). Then, we say that two codes C ⊆ FA

q and
C ′ ⊆ FB

q are permutation-equivalent if φ∗(C) = C ′. Similarly, if there exists b ∈ (F×q )
B such that

b ? φ∗(C) = C ′, then C and C ′ are isomorphic. Notice that any pair (b, φ) defines an isometry
between metric spaces FA

q and FB
q , where the metric is the Hamming distance.

The last remark is crucial regarding correction issues. It notably implies that, if a code C
admits a t-bounded-distance correcting algorithm Corr, then one can also correct any code C ′
isomorphic to C up to t errors. Indeed, let y′ ∈ FB

q be a noisy word, y′ = c′ + e′, where c′ ∈ C ′
and e′ is the error. We first build

(φ∗)−1(b−1 ? y′) = (φ∗)−1(b−1 ? c′)︸ ︷︷ ︸
=c∈C

+(φ∗)−1(b−1 ? e′) ∈ FA
q ,

and e := (φ∗)−1(b−1 ? e′) has the same weight properties as e′. Therefore, if Corr is able to
recover the correct codeword c ∈ C, then we get b ? φ∗(c) = c′.
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Parameters and bounds. Linear codes admit three significant parameters, being their length
n, dimension k and minimum distance d. One usually records these parameters between
brackets: [n, k, d], or [n, k] if the minimum distance is unknown. For a given length n, it
is meaningful to look for codes with large dimension (i.e. large amount of data stored in a
single codeword) and large minimum distance (that potentially induces a large correction
capability). However, there must be a trade-off between these two quantities: informally, one
can not correct many errors on codewords if they do not contain enough redundancy symbols.
More precisely, the famous Singleton bound states that

k + d ≤ n + 1 .

Codes attaining the Singleton bound are called maximum distance separable (MDS). If C ⊆ FS
q

is MDS, then any k-subset of S is an information set for C. As well, the dual code of an MDS
code is an MDS code.

Codes with extreme parameters. Codes with minimum distance 1 or dual distance 1 are
considered as degenerate, since they admit bad correction properties. The zero code {0} and
the full code FS

q are examples of degenerate codes. Codes of dimension and codimension 1
are more relevant. The [n, 1, n] code generated by a ∈ (F×q )

S, |S| = n, is the a-repetition
code Rep(n, a); it can be seen as the code of constant functions in the functional notation. If
a = 1 := (1, . . . , 1), then Rep(n) := Rep(n, 1) is simply referred to as the repetition code. Its
dual code is the so-called a-parity-check code Par(n, a), with parameters [n, n − 1, 2], and it
consists in words c ∈ FS

q satisfying ∑i∈S ciai = 0. Similarly one can define Par(n) := Par(n, 1).
Notice that repetition codes and parity-check codes are MDS.

1.2 Algebraic constructions of codes

A convenient way to build good and non-extreme codes C ⊆ FS
q is to use subspaces of poly-

nomial functions S → Fq. Codes can be defined as such, but the correspondence between
polynomials and polynomial functions is sometimes tricky: over Fq, several polynomials may
correspond to the same function.

Therefore, it is sometimes more convenient to see these codes as evaluation codes. That is,
codewords are explicitly given as evaluation vectors of polynomials. More precisely, given a
vector space of polynomials R ⊂ Fq[X1, . . . , Xm] and a set S ⊆ Fm

q , we define an evaluation
map

evS : R → FS
q

f 7→ ( f (x) : x ∈ S)

If evS is injective, then the associated evaluation code C = evS(R) has length |S| and dimen-
sion dim(R).

1.2.1 Reed-Solomon codes

Reed-Solomon codes [RS60] define one of the most famous family of evaluation codes. We
here provide a definition of their generalised version in both vector and functional represent-
ations.
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Definition 1.1 (Reed-Solomon codes). Let S ⊆ Fq and y ∈ (F×q )
S. Assume that n = |S| > 0

and let 0 ≤ k ≤ n− 1. The associated generalised Reed-Solomon code (GRS code) of degree k is

GRSq(k, S, y) := {(yx f (x) : x ∈ S), f ∈ Fq[X], deg f ≤ k} ⊆ FS
q .

Subscript q can be omitted for convenience. The set S is the set of evaluation points, while y
consists in the column multipliers. If y = 1, then the code is simply called a Reed-Solomon code
and denoted RS(k, S). Furthermore, if S = Fq, then we get a full-length Reed-Solomon code,
denoted RS(k).

In the functional representation, if g ∈ FS
q satisfies g(x) = yx for every x ∈ S, then we have

GRSq(k, S, y) = {g · f|S, f ∈ Fq[X]≤k} ⊆ FS
q . Let us also list several useful properties of GRS

codes:

1. If |S| = n, then GRS(k, S, y) is an [n, k + 1, n− k] MDS code.
2. We have GRS(k, S, y)⊥ = GRS(n− k− 1, S, y′), where y′x = (yx ∏z∈S\{x}(x− z))−1.
3. GRS(0, S, y) is the y-repetition code, while GRS(n− 1, S, y) is the y′-parity-check code,

where y′ is defined above.
4. When S = Fq, we have Aff(Fq) ⊆ Aut(RS(k)).

GRS codes also admit efficient correction algorithms. Precisely, one can correct any pattern
of e erasures and v errors, as long as e + 2v ≤ d − 1, where d is the minimum distance of
the GRS code. Also notice that, since GRS codes are MDS, a strategy could consist in (i) first
correcting errors in a punctured code of length n − e and (ii) recovering the e erasures by
interpolation. For the sake of completeness, we give two references: [RTM79], which is one of
the first efficient error-and-erasure correcting algorithm for RS codes; and [Gao03], one of the
currently most efficient half-distance decoding algorithms for GRS codes.

1.2.2 Reed-Muller codes

The m-variate generalisation of Reed-Solomon codes are called Reed-Muller codes. They were
first designed over the binary field, then generalised over any finite field.

Definition 1.2 (Reed-Muller codes). Let m ≥ 1 and 0 ≤ r ≤ m(q− 1). The q-ary Reed-Muller
code (RM code) of order m and degree r is

RMq(m, r) := {( f (x) : x ∈ Fm
q ), f ∈ Fq[X1, . . . , Xm], deg f ≤ r} .

Notice that RMq(m, r) = evFm
q
(Fq[X]≤r), where Fq[X]≤r denotes the space of m-variate poly-

nomials of total degree bounded by r. Unfortunately one cannot derive parameters of Reed-
Muller as easily as those of Reed-Solomon codes, since evFm

q
is not injective for r larger than

q.

Still, if r ≤ q− 1, then evFm
q

is injective over Fq[X]≤r, hence dim(RMq(m, r)) = (m+r
m ). Further-

more, in that case the minimum distance of RMq(m, r) is (q− r)qm−1. In the next chapter, we
will see that this low-degree setting provides Reed-Muller codes local correcting properties.

For r ≥ q, the evaluation map evFm
q

is not injective anymore. Though, its kernel is gener-
ated by {Xq

i − Xi}1≤i≤m, which corresponds to bounding by q− 1 the partial degrees of the
polynomials to be evaluated. Then it can be proved [AK92] that

dim(RMq(m, r)) =
r

∑
i=0

m

∑
j=0

(−1)j
(

m
j

)(
i− jq + m− 1

i− jq

)
,
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and if we write r = a(q− 1) + b for 0 ≤ b < q− 1, we also have

dmin(RMq(m, r)) = (q− b)qm−1−a .

Remark 1.3. The Reed-Muller code RMq(m, r) can be seen as a subfield subcode of a Reed-
Solomon code defined over the extension field Fqm . Precisely, up to isomorphism, RMq(m, r)

is included into RSqm(qm − d) ∩ F
Fqm
q , where d = dmin(RMq(m, r)). See for instance [KLP68]

for details on this embedding.

A non-trivial consequence of Remark 1.3 is that one can employ decoding/correcting al-
gorithm of Reed-Solomon codes in order to decode/correct Reed-Muller codes. Marvellously,
one sees that related RM codes and RS codes have the same minimum distance. As a consequence,
Reed-Muller codes are efficiently correctable up to half their minimum distance. Moreover,
Pellikaan and Wu [PW04] used this property to obtain an efficient list-decoding algorithm for
Reed-Muller codes.

1.2.3 Hadamard codes

Hadamard codes, also known as simplex codes, have been studied for a long time for their struc-
tural properties. They can be defined as evaluation codes of linear forms over the set of
non-zero elements of the binary affine space.

Definition 1.4 (Hadamard code). Let m ≥ 2 and S = Fm
2 \ {0}. The binary Hadamard code of

order m is:
Had2(m) = SpanF2

{evS(Xi), 1 ≤ i ≤ m} .

The code Had2(m) ⊆ FS
2 has length |S| = 2m − 1, dimension m and minimum distance 2m−1,

since every non-zero linear form vanishes on a hyperplane. We will see later that Hadamard
codes are related to combinatorial constructions and satisfy nice local properties.

Notice that q-ary [ qm−1
q−1 , m, qm−1] Hadamard codes Hadq(m) can also be defined, through the

evaluation of linear forms over the q-ary projective space Pm−1(Fq).

1.3 Combinatorial constructions through block designs

In this section, we recall basic notions of design theory and how to build codes from block
designs. Details can be found in the following books [AK92, Sti04].

1.3.1 Designs

Definition 1.5 (Block design). A block design, or simply design, is a pair D = (X,B), where X
is a finite set and B 6= ∅ is a collection of non-empty subsets of X. Elements of X and B are
respectively named points and blocks.

Designs are usually considered with incidence constraints between points and blocks. For
instance, we can require that each pair of points appears the same number of times in the set
of blocks; we then obtain balanced incomplete block designs.
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Definition 1.6 (BIBD). Let λ ≥ 1, and 2 ≤ k < v. A (v, k, λ)-balanced incomplete block design
(BIBD) is a design (X,B) such that:

– |X| = v;
– for all B ∈ B, |B| = k;
– each pair of points appears in exactly λ blocks.

Let us give some examples of BIBDs.

Example 1.7. Let 2 ≤ k ≤ v and X a set of cardinality v. If B is the set of all k-subsets of X,
then (X,B) defines a (v, k, (v−2

k−2))-BIBD.

Example 1.8 (Fano plane). The Fano plane is a (7, 3, 1)-BIBD. Recall it is defined as follows. If
we denote its points by X = {1, 2, 3, 4, 5, 6, 7}, then its block set is:

B = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}} .

We give a representation of the Fano plane in Figure 1.1. Notice that it corresponds to the
incidence structure of points and lines in the projective plane P2(F2). More generally, the
projective plane P2(Fq) gives rise to a (q2 + q + 1, q + 1, 1)-BIBD.

6

1

3 5

2

7

4

Figure 1.1 – Fano plane.

Example 1.9 (classical affine and projective space designs). BIBDs can also be defined in higher
dimensional ambient spaces. For instance:

– If X = Am(Fq) and B is the set of affine lines of Am(Fq), then (X,B) defines a (qm, q, 1)-
BIBD. It is called the design of the classical affine space and denoted AG1(m, q).

– Similarly, X = Pm(Fq) equipped with the set B of its projective lines, defines a ((qm+1−
1)/(q − 1), q + 1, 1)-BIBD called the design of the classical projective space and denoted
PG1(m, q).

– The classical affine design of s-flats AGs(m, q) can also be defined: it consists in points and
subspaces of dimension s in the affine space of dimension m. It is a (qm, qs,

[ m−1
s−1

]
q)

BIBD, where, for any a ≥ b, the Gaussian coefficient [ a
b ]q is defined by

[
a
b

]
q

:=
(qa − 1)(qa−1 − 1) . . . (qa−b+1 − 1)

(qb − 1)(qb−1 − 1) . . . (q− 1)

if b 6= 0, and by [ a
0 ]q := 1.

– Similarly, its projective analogue PGs(m, q) is the classical projective design of s-flats. It is

a (θm,q, θs,q,
[ m−1

s−1

]
q) BIBD, where θa,q := qa+1−1

q−1 is the number of points in a projective
space of dimension a.
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Designs of higher order. BIBDs naturally generalise by requiring that each t-subset of points
appears in exactly λ blocks, for some t ≥ 1. These constructions are termed t-(v, k, λ)-designs.
Thus a BIBD is a 2-design. Let us report the following well-known results (see [Sti04, The-
orem 9.4] and its corollaries for instance).

Theorem 1.10. Let D = (X,B) be a t-(v, k, λ)-design for t ≥ 1. Then, for 0 ≤ s ≤ t, each s-subset
appears in exactly λs blocks, where

λs = λ
(v−s

t−s)

(k−s
t−s)

.

As a corollary,

1. if s ≥ 1, then D is also an s-(v, k, λs)-design,
2. there are exactly λ(v

t)/(
k
t) blocks in B.

1.3.2 Design-based codes

In this section, we present how one can build linear codes from designs, and we discuss their
properties. For this purpose, we need to introduce a data structure that stores incidences
between points and blocks, namely the incidence matrix of the design.

Definition 1.11 (incidence matrix). Let D = (X,B) be a design. The incidence matrix of D over
Fq, denoted Matq(D), is the matrix M whose rows and columns are respectively indexed by
blocks and points, and such that for all x ∈ X, B ∈ B,

MB,x =

{
1 if x ∈ B,
0 otherwise.

Definition 1.12 (design-based code). Let D = (X,B) be a design. The design-based code over
Fq associated to D, denoted Codeq(D), is the Fq-linear code C ⊆ FX

q admitting M = Matq(D)
as a parity-check matrix.

A crucial property of design-based codes is the following. Let C = Codeq(D) where D =
(X,B). Then c ∈ FX

q lies in C if and only if for every B ∈ B we have ∑b∈B cb = 0.

Notice that Codeq(D) ⊆ FX
q has length |X| and dimension |X| − rankFq(M), where M =

Matq(D). Furthermore, if Fq is an extension of Fp, then Codeq(D) = SpanFq
(Codep(D)).

Here one should emphasize that M is a {0, 1}-matrix, but its rank highly depends on the
choice of the base field. To see this, let us first view M as a matrix over Z, and consider Γ ⊂ Z

the multiset of elementary divisors of the matrix M, counted with multiplicity. The rank of
M over Fp is then the number of elements g ∈ Γ such that p - g. It now clear that rankFp(M)
depends on p, but one should also remark that the rank stabilizes when p→ ∞.

Example 1.13 (Fano plane, continued). The Fano plane D admits the incidence matrix

M =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 1 0 1 0 0 1
0 0 1 1 0 1 0
0 0 1 0 1 0 1
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where columns and rows are listed according to the order of points and blocks given in
Example 1.8. A computation can show that the multiset of elementary divisors of M is Γ =
{14, 22, 61}, where gi means that the element g ∈ Z is counted with multiplicity i. Hence,
matrix M has rank 4 over F2, rank 6 over F3, and rank 7 over any other prime finite field
Fp. In other words, Codep(D) is the zero code for all primes p /∈ {2, 3}, and Code3(D) is the
[7, 1, 7] repetition code over F3. Fortunately, over F2 (and its extensions) Code2(D) presents
more interesting properties; specifically, one can prove it is isomorphic to the binary [7, 3, 4]
Hadamard code Had2(3) (see Proposition 2.28).

On the dimension of design-based codes. Finding the rank of a single design over a fixed
field — or equivalently the dimension of its associated code — is a simple task if the para-
meters of the design are small enough. Indeed, it only consists in computing the rank of a
matrix whose size is |B| × |X|. However, deriving a formula for the rank of a family of designs
appears to be much harder. Especially, little is known about families of designs with low-rank
incidence matrices (equivalently, families of high-rate design-based codes).

For 2-designs, one can first report negative results.

Proposition 1.14 (Hamada [Ham68]). Let D be a 2-(v, k, λ)-design, and denote by r = λ v−1
k−1 its

replication number. Let also p be a prime number. Then, dim(Codep(D)) ≥ 2 implies that p | r−λ.
Precisely,

1. if p - r− λ and p | r, then dim(Codep(D)) ≤ 1;
2. if p - r(r− λ), then dim(Codep(D)) = 0.

Classical affine and projective designs over Fpe satisfy p | r − λ. Therefore it is of interest to
study them over Fp. It is proved that the design of points and hyperplanes in the projective
space satisfies:

rankp(PGm−1(m, pe)) =

(
p + m− 1

m

)e

+ 1 .

This result has been found independently by Smith [Smi69], by Goethals and Delsarte [GD68],
and by MacWilliams and Mann [MM68]. Hamada generalised it for subspaces of any dimen-
sion, leading us to the famous Hamada’s formula given in next theorem.

Theorem 1.15 (Hamada’s formula [Ham68]). The p-rank of the projective geometry design PGt(m, pe)
is given by

∑
(s0,..., se)∈S

e−1

∏
j=0

L(sj+1,sj)

∑
i=0

(−1)i
(

m + 1
i

)(
m + sj+1 p− sj − ip

m

)
(1.1)

where L(sj+1, sj) = b
sj+1 p−sj

p c and S is the set of tuples s = (s0, . . . , se) ∈ Ze+1 such that:
s0 = se,
t + 1 ≤ sj ≤ m + 1,
0 ≤ sj+1 p− sj ≤ (m + 1)(p− 1) .

Notice that ranks of affine geometry designs can also be computed thanks to another result
due to Hamada [Ham68]:

rankp AGt(m, pe) = rankp PGt(m, pe)− rankp PGt(m− 1, pe) . (1.2)

Though Equation (1.1) is quite cumbersome, one can highlight a few important consequences.
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If we fix m and t and let e grow, we get families of codes with increasing rate. Let us be more
specific with the case t = 1 and m = 2. Hamada’s formula gives:

rankp AG1(2, pe) =

(
p + 1

2

)e

and rankp PG1(2, pe) =

(
p + 1

2

)e

+ 1 .

Roughly, it means that when p is fixed and e → ∞, the rate of the associated codes is 1−
O(n− logp(e)) where n = Θ(p2e) is the code length. It means that, in the setting (m, t) = (2, 1),
codes based on geometric designs reach rates arbitrarily close to 1.

If we fix m and e, we remark that p 7→ rankp(AG1(2, pe)) is a polynomial in p of degree at
most me. Hence, it can be computed by interpolation (or by expanding Equation (1.1)). For
instance, in the case m = 3, e = 2 we can find:

rankp AG1(3, p2) =

(
p3 −

(
p + 1

3

))2

+ 2
(

p
2

)(
p + 1

3

)
.

Finally, if we fix t and q = pe, the dimension of the code Cm = Codep(PGt(m, q)) is a polyno-
mial in m of degree less than (q− 1)t, as it is proved by Calkin, Key and de Resmini [CKdR99].
Since its length is exponential in m, it means that the family of codes {Cm}m has vanishing
rate.
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Classical correcting algorithms allow us to retrieve a codeword c from a damaged version y
of c. They usually take as input the entire noisy word y and return, hopefully, the entire
codeword c.

Assume now that one wants to retrieve only one symbol ci of c. Of course, one can use the
previous algorithm which returns c entirely, and then on can extract the desired symbol ci.
However, the complexity of this method is at least linear in the length of the code. Local
correcting algorithms were introduced in order to reach a better computation complexity for
this problem. Explicitly, they aim at retrieving a correct symbol from a damaged codeword,
with high probability (w.h.p.) and in sublinear time.

In this chapter, we recall formal definitions of locally decodable and locally correctable codes. We
then present algebraic constructions in the high-rate regime, which is of main interest for our
applications. We also review current bounds and issues in this area. Next, we show how
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locally correctable codes (LCCs) can be built from block designs. Finally, after introducing
generalised design-based codes, we discuss to what extent they can lead us to high-rate LCCs.

2.1 Motivation and definitions

2.1.1 Historical points

The notion of locality in codes appeared in computational theory in the early 1990s. It
was initially raised in the scope of testing computations and self-correcting programs, see
e.g. [BLR93, BFLS91, GLR+91, GS92]. A typical question was to output w.h.p. the image f (x)
of x ∈ S by a low-degree polynomial f , given a program P that computes f (y) correctly for
only a constant fraction of entries y ∈ S.

Later, codes with locality also turned out to be useful to obtain short probabilistic checkable
proofs (PCPs). Very informally, assume one wants to assess w.h.p. whether a long string x
belongs to some language L, with the restriction that one can make only a small number of
oracle queries1 to x or to another long string derived from x. Generically, if we directly access
x, the partial information we get cannot be sufficient to determine whether x ∈ L. Thus, a
natural idea is to encode x into a longer proof π, so that a few oracle queries to π assert w.h.p.
if π corresponds to an encoding of an element of L. This leads us to the notion of locally testable
codes which were a key element for proving the well-known PCP Theorem [AS98, ALM+98].

A few years later, Katz and Trevisan [KT00] formally introduced so-called locally decodable
codes in an information theoretic perspective. This seminal work was motivated by sublinear-
time data recovery in large corrupted databases. The authors proved that codes equipped
with a local decoding procedure must be somewhat smooth, in the sense that queries should
be sufficiently balanced. They also gave first lower bounds on the number of redundancy
symbols needed in the codeword, and they proposed an application to private information
retrieval protocols — see Chapter 4 for more details.

2.1.2 Definitions

Let us formally introduce locally correctable and decodable codes, as defined in Yekhanin’s
survey [Yek12]. In this thesis, an oracle query to a string y ∈ ΣS refers to a map y 7→ yi for some
i ∈ S. One usually considers that the computational cost of such a map is 1, and the index i
is sometimes called a query. If an algorithm A is only allowed to access a string y via oracle
queries, we say it has oracle access to y, and we represent it by A(y). Notice that, if the string
y ∈ ΣS is seen as a map gy : S → Σ, then an oracle query is purely the evaluation of gy at
i ∈ S.

Definition 2.1 (locally correctable code, or LCC). Let C ⊆ ΣS be an Fq-linear code, |S| = n. Let
also 1 ≤ ` ≤ n, δ ∈ (0, 1) and ε < 1/2. We say that C is an (`, δ, ε)-locally correctable code (LCC)
if there exists a randomised algorithm LC, taking as input i ∈ S and having oracle access to
words y ∈ ΣS, which satisfies the following requirements. For every y ∈ ΣS and c ∈ C such
that d(y, c) ≤ δn, and for every i ∈ S, we have:

– Pr(LC(y)(i) = ci) ≥ 1− ε, the probability being taken over the internal randomness of
LC, and

1an oracle query is a map y 7→ yi for some index i, see Subsection 2.1.2
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– LC(y)(i) queries at most ` symbols of y.

We refer to ` as the locality of the code C, and to LC as the local correcting algorithm.

In the literature, it is usually considered sufficient to have a failure probability ε ≤ 1/3. The
idea is that, by repeating the local correcting algorithm LC several times on the same input i,
one can attain values of ε exponentially small in the number of procedures we run.

Definition 2.2 (locally decodable code, or LDC). Let C ⊆ ΣS be an Fq-linear code, |S| = n,
equipped with an encoder E : Fk

q → C. Let also 1 ≤ ` ≤ k, δ ∈ (0, 1) and ε < 1/2. We
say that C is an (`, δ, ε)-locally decodable code (LDC) if there exists a randomised algorithm
LD, taking as input i ∈ [1, k] and having oracle access to words y ∈ ΣS, which satisfies the
following requirements. For every y ∈ ΣS and m ∈ Fk

q such that d(y, E(m)) ≤ δn, and for
every i ∈ [1, k], we have:

– Pr(LD(y)(i) = mi) ≥ 1− ε, the probability being taken over the internal randomness of
LD, and

– LD(y)(i) queries at most ` symbols of y.

Once again, ` is the locality of the code C, and LD is referred to as a local decoding algorithm.

Remark 2.3. Let C ⊆ ΣS be an (`, δ, ε)-LCC with ` ≤ k = dim(C). If we know a systematic
encoder E : Fk

q → C, then the code C is also (`, δ, ε)-locally decodable. Indeed, any message
symbol mi, 1 ≤ i ≤ k, is also a codeword symbol cj for some j ∈ S, and the local correcting
algorithm C thus becomes a local decoding algorithm.

For γ ∈ (0, 1), we say that a locally correctable code C ⊆ ΣS is γ-smooth if, for all i, j ∈ S,
algorithm LC(i) queries yj with probability at most γ. Moreover, C is called perfectly smooth
if symbols yj are queried with equal probability. Hence, a perfectly smooth LCC is (`/n)-
smooth, but the converse may be false when some vectors of queries have size strictly less
than `. Smooth LDCs can be defined very similarly to smooth LCCs, the only difference being
that i ∈ [1, k] is a message coordinate instead of a codeword coordinate.

In fact, any LCC intrinsically admits a certain smoothness, as we show in the following result
inspired by [KT00, Theorem 1].

Proposition 2.4. Let C ⊆ ΣS be an (`, δ, ε)-LCC of length n. For every γ > `
δn , the code C is also a

γ-smooth (`, δ− `
γn , ε)-LCC.

Proof. Let γ > `
δn and δ′ = δ − `

γn , and denote by LC the local correcting algorithm for
C. Relying on LC, we will describe another local correcting algorithm LCγ for C, with the
additional γ-smooth property.

Let y ∈ ΣS and c ∈ C such that d(y, c) ≤ δ′n. On input i ∈ S, define

Si := {j ∈ S | Pr(LC(y)(i) reads yj) > γ}

as the set of coordinates which are queried too often. Let us now consider a new word y′ ∈ ΣS,
defined for all j ∈ S as follows:

y′j =
{

0 if j ∈ Si
yj otherwise.

The new algorithm LCγ is simply defined by LC
(y)
γ (i) := LC(y′)(i). Let us analyse its properties.
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As we removed all queries that LC makes with probability larger than γ, the algorithm LCγ

is γ-smooth. Moreover, we can easily check that |Si| ≤ `/γ. Hence d(y′, y) ≤ `/γ, and
d(y′, c) ≤ `/γ + δ′n = δn follows. Therefore LC

(y)
γ (i) outputs ci with probability ≥ 1− ε as

expected.

The previous proposition may question the relevance of focusing on the smoothness of LCCs.
However, we see that we cannot make any LCC perfectly smooth, since δ is strictly less than 1.
Therefore, searching for perfectly smooth LCCs remains a very relevant goal.

2.1.3 A first example: the binary Hadamard code

The binary Hadamard code Had2(m) is a classical example of locally correctable code — see
Subsection 1.2.3 for a definition. Since the code consists in evaluation vectors of linear forms
over Fm

2 , the 3 non-zero points of any plane give rise to a parity-check equation for Had2(m).
Such equations can then be exploited to recover any symbol with only 2 queries.

For convenience we here adopt the functional representation. Formally, denote by S = Fm
2 \

{0} and let f ∈ C (that is, f is a linear form over Fm
2 ). For all u 6= v ∈ S, we see that u + v ∈ S,

and the fact that f (u) + f (v) = f (u + v) leads us to the following local correcting algorithm.

Algorithm 1: A smooth (2, δ, 2δ)-local correcting algorithm for Had2(m).

Input: a point u ∈ S := Fm
q \ {0}, and an oracle access to g ∈ FS

2 such that d(g, f ) ≤ δn
for some f ∈ Had(m), where n = |S|.

Output: f (u) with high probability.
1 Pick v←R S \ {u} uniformly at random.
2 Toss a random binary coin b ∈ {0, 1}, following B

( 2
n+1

)
.

3 if b = 1 then
4 Query {g(u)} and output g(u).

5 else
6 Query {g(v), g(u + v)} and output g(u + v)− g(v).

Algorithm 1 is often presented with steps 1 and 6 only. In that case, coordinate u is never
queried. We here add the tossing trick in order to make the algorithm perfectly smooth, as we
can see in the following proposition.

Proposition 2.5. Let δ < 1/4, and m ≥ 2. By using Algorithm 1, the Hadamard code Had2(m) is a
perfectly smooth (2, δ, 2δ)-locally correctable code.

Proof. We first check that evaluations of g are queried with equal probability. We see that g(u)
is read with probability 2/(n + 1), and g(v), v ∈ S \ {u}, is read with probability(

1− 2
n + 1

)
× 2× 1

n− 1
=

2
n + 1

.

Let us now prove that the output is correct with probability ≥ 1− 2δ, and denote by E =
supp( f − g) the support of the errors (we have |E| ≤ δn). We also define Su as the (random)
support of the query made by LC(g)(u). Notice that Pr(v ∈ Su) = 2/(n + 1) for every v ∈
S. From Algorithm 1 we see that Su can be either {u} or {v, u + v} for some v 6= u. If
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Su = {u}, then the local correcting algorithm LC(g)(u) outputs f (u) if and only if u /∈ E. If
Su = {v, v + u}, then LC(g)(u) = f (u) if and only if |E ∩ Su| ∈ {0, 2}, in other words, if and
only if E ∩ Su = ∅ or Su.

Thus, the probability of success of LC(g)(u) is given by:

Pr(LC(g)(u) = f (u)) = 1− Pr(|E ∩ Su| = 1) ≥ 1− Pr(|E ∩ Su| ≥ 1) ≥ 1−E(|E ∩ Su|) .

Furthermore, by linearity we obtain

E(|E ∩ Su|) = ∑
v∈E

Pr(v ∈ Su) = ∑
v∈E

2
n + 1

= |E| 2
n + 1

≤ δn
2

n + 1
< 2δ .

Recall that Had2(m) has dimension m. Denote by {e1, . . . , em} (resp. {X1, . . . , Xm}) the canon-
ical basis of the affine space Fm

2 (resp. the space of linear forms over Fm
2 ). The information

set I = {e1, . . . , em} ⊂ S induces a systematic encoder E : Fm
2 → FS

2 for Had2(m), given by
E(mi) = evS(Xi) for every m ∈ Fm

2 . Therefore Had2(m) is also a (2, δ, 2δ)-LDC.

Quantitatively, Hadamard codes define a family of binary LCCs with increasing length 2m− 1
and constant query size 2. However, the dimension m of these codes is only logarithmic in
their length. In the following section, we will see that a certain class of Reed-Muller codes
defines another family of LCCs, achieving constant rate provided an increase of the query
size.

2.2 Some algebraic constructions of LCCs

This section is devoted to presenting families of locally correctable codes that are built by eval-
uating polynomials over vector spaces. In Subsection 2.2.1, we detail two smooth local cor-
recting algorithms for Reed-Muller codes. We show how perfect smoothness can be achieved,
and we depict qualitative relations between the three parameters of LCCs. Next subsections
are then devoted to more evolved algebraic constructions leading to high-rate LCCs, namely
multiplicity codes and lifted codes.

2.2.1 Reed-Muller codes

Reed-Muller codes have been defined in Subsection 1.2.2. In this subsection, we let C =
RMq(m, r) for 0 ≤ r ≤ m(q− 1). Informally, we see that if r is small enough, then restrictions
of C to subspaces A ⊆ Fm

q define non-degenerate codes, which consist in the evaluation
vectors of low degree polynomials over A. This key property will be used for local correcting
purposes. Before going deeper into details, we state a few results which are straightforward
to prove.

Lemma 2.6. Let 1 ≤ t ≤ m and φ ∈ Aff(Ft
q, Fm

q ) be an injective affine map.

1. If f ∈ Fq[X1, . . . , Xm], deg( f ) ≤ r, then there exists g ∈ Fq[X1, . . . , Xt], deg(g) ≤ r, such
that

∀u ∈ Ft
q, ( f ◦ φ)(u) = g(u) . (2.1)

2. Conversely, if g ∈ Fq[X1, . . . , Xt], deg(g) ≤ r, then there exists f ∈ Fq[X1, . . . , Xm] with
deg( f ) ≤ r, such that (2.1) holds.
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In terms of codes, Lemma 2.6 implies the next corollary.

Corollary 2.7. Let C = RMq(m, r) with r ≤ t(q− 1) for some t ≥ 1, and φ ∈ Aff(Ft
q, Fm

q ). Then
φ∗(C) = RMq(t, r). In particular, if we denote by A = im(φ) the t-dimensional affine space that
φ defines, then C|A ⊆ FA

q is permutation-equivalent to RMq(t, r), the permutation being given by
φ : Ft

q → A.

A first local correcting algorithm. Corollary 2.7 induces a local correcting procedure for
RMq(m, r), r < t(q− 1). It consists in picking at random φ ∈ Aff(Ft

q, Fm
q ), and correcting the

noisy codeword restricted to the image of φ, thanks to an efficient decoding algorithm for
RMq(t, r).

Thus, we now assume to have at our disposal a correcting algorithm Corr for RMq(t, r), which
corrects 1 erasure and up to w errors, where 2+ 2w = dmin(RMq(t, r)). Such an algorithm can
be derived from an efficient half-distance 1-erasure correcting algorithm for Reed-Solomon
codes, as those we have mentioned in Subsection 1.2.2.

Algorithm 2: A perfectly smooth local correcting algorithm of locality ` = qt − 1 for the
Reed-Muller code RMq(m, r), where r < t(q− 1).

Input: a coordinate u ∈ S := Fm
q , and an oracle access to g ∈ FS

q such that d( f , g) ≤ δn,
for some f ∈ RMq(m, r), where n = |S|.

Output: f (u) with high probability.
/* CorrA denotes a half-distance one-erasure correcting algorithm for the

code RMq(m, r)|A, isomorphic to RMq(t, r). */
1 Pick uniformly at random φ ∈ Aff(Ft

q, Fm
q ) such that u ∈ A := im(φ).

2 Toss a random binary coin b ∈ {0, 1}, following B(p) with p := qt−1
qm .

3 if b = 1 then
4 Pick v uniformly at random in A \ {u}.
5 else
6 Define v← u.

7 Define A′ = A \ {v} and query {g(v) : v ∈ A′}.
8 Define g′ ∈ (Fq ∪ {⊥})A by g′|A′ = g|A′ and g′(v) =⊥. Run CorrA on input g′.
9 if CorrA fails then

10 Abort with fail.

11 else
12 Denote by h ∈ FA

q the output of CorrA. Output h(u).

Let us give additional notation to make the analysis of Algorithm 2 simpler. We write r =
a(q− 1) + b, with 0 ≤ b ≤ q− 1 and a ≤ m− 1, the degree of the Reed-Muller code RMq(m, r),
and we recall that dmin(RMq(m, r)) = (q− b)qm−a−1. We also denote by

w =

⌊
dmin(RMq(t, r))− 2

2

⌋
=

⌊
(q− b)qt−a−1 − 2

2

⌋
the number of errors that Corr can correct, and by τ := w/(qt − 1) its ratio compared to the
locality parameter.

Proposition 2.8. Let m ≥ 2 and r = a(q− 1) + b such that a ≤ m− 1 and 0 ≤ b < (q− 1). Let
also τ be the relative error correcting capability, defined as above. Then, for every δ < τ/2 and every
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a + 1 ≤ t ≤ m − 1, the Reed-Muller code RMq(m, r) is a perfectly smooth (qt − 1, δ, δ/τ)-locally
correctable code, using Algorithm 2.

Proof. We use the same arguments as for Hadamard codes. First, we notice that Algorithm 2
is smooth: every point is chosen with probability p = (qt − 1)/qm. Let us now bound its
probability of success.

Denote by S = Fm
q , |S| = n. Let g = f + e ∈ FS

q , where f ∈ RMq(m, r), e ∈ FS
q with

E = supp(e) and |E| ≤ δn. Let also A′u represent the random queries made by LC(g)(u). We
know the algorithm succeeds if |E ∩ A′u| ≤ w, where 1 + 2w = dmin(RMq(t, r))− 1. Hence,

Pr(LC(g)(u) = f (u)) ≥ 1− Pr(|E ∩ A′u| ≥ w + 1) ≥ 1− E(|E ∩ A′u|)
w + 1

by Markov’s inequality. Let us now estimate E(|E ∩ A′u|). By linearity

E(|E ∩ A′u|) = ∑
v∈E

Pr(v ∈ A′u) = ∑
v∈E

p ≤ δqm qt − 1
qm = δ(qt − 1) .

Finally, we get

Pr(LC(g)(u) = f (u)) ≥ 1− δ(qt − 1)
τ(qt − 1) + 1

≥ 1− δ

τ
.

Many parameters are involved in Proposition 2.8. If we fix the degree r of the Reed-Muller
code, there remains freedom for the choice of t. We see that t affects exponentially the loc-
ality, but its influence on τ is moderate, since we have approximately τ ' (q− b)q−(a+1)/2.
Therefore, choosing the minimum t = a + 1 appears to be the most relevant choice since the
locality is a crucial parameter.

A second local correcting algorithm for RM codes. In Algorithm 2, the strategy was to use
the full correcting capability of the local code C|A ' RMq(t, r), hoping that the number of errors
on the queried symbols does not exceed the packing radius w of C|A. One can reduce the
locality at the expense of an increase of the failure probability. Simply, the idea is to pick at
random a map φ ∈ Iso(Ft

q, A) and an information set I ⊂ A for the local code C|A, and then to
query the noisy codeword only on I. Hoping for no corrupted symbols on I, we get an LCC
of locality ` = dim(C|A) = dim(RMq(t, r)).

A minor difficulty appears if we require smoothness. Indeed we need that each individual
query is uniformly distributed over the support Fm

q , when information sets I are picked at
random. Fortunately, Reed-Muller codes admit an automorphism group which contains the
doubly-transitive group Aff(Ft

q) of affine transformations. Therefore, if I is a fixed information
set for RMq(t, r), then every elements of its orbit under Aff(Ft

q) is also an information set for
RMq(t, r). Hence, it allows us to define the smooth query generator given in Algorithm 3.

Let us first explain why our choice of p = qt−`
qm−` makes Algorithm 3 smooth.

Lemma 2.9. In Algorithm 3, for every u, v ∈ Fm
q and every information set I for RMq(t, r) we have:

Pr(v ∈ Query(u, I)) =
`

qm ,

where ` = |I|.



22 CHAPTER 2. LOCALLY DECODABLE AND CORRECTABLE CODES

Algorithm 3: A smooth query generator Query(u, I) for Reed-Muller codes.
Input: a coordinate u ∈ Fm

q , an information set I for RMq(t, r).
Output: an affine injective map φ ∈ Aff(Ft

q, Fm
q ) such that u ∈ im(φ) and J = φ(I)

satisfies Pr(v ∈ J) = `/qm for every v ∈ Fm
q , where ` = |I|.

1 Pick uniformly at random ψ ∈ Aff(Ft
q, Fm

q ) such that u ∈ im(ψ).
2 do
3 Pick σ ∈ Aff(Ft

q) uniformly at random, and define J = (ψ ◦ σ)(I).

4 Toss a binary coin b ∈ {0, 1}, following B(p) with p = qt−`
qm−` .

5 while (u ∈ J and b = 0);
6 Output φ = ψ ◦ σ.

Proof. Let β := `/qt represent Pr(u ∈ J) at step 5. A quick analysis shows that

Pr(u ∈ Query(u, I)) = βp + β(1− p)Pr(u ∈ Query(u, I)) .

Thus we get Pr(u ∈ Query(u, I)) = βp/(1− (1− p)β). If we set

p =
`(1− β)

(qm − `)β
=

qt − `

qm − `
,

then we get Pr(u ∈ Query(u, I)) = `/qm which is one of our requirements. Now, it only
remains to notice that, since Aff(Ft

q) is doubly-transitive, any other point v 6= u has equal
probability to lie in the image of the output φ. Hence, Pr(v ∈ Query(u, I)) = `/qm for every
v 6= u.

Now that we are equipped with a smooth query generator, we can define Algorithm 4, a
perfectly smooth local correcting algorithm for Reed-Muller codes with smaller locality than
in Algorithm 2. We give its analysis in Proposition 2.10.

Algorithm 4: A perfectly smooth local correcting algorithm of locality ` = dim RMq(t, r)
for the Reed-Muller code RMq(m, r), where r < t(q− 1).

Input: u ∈ S := Fm
q , and an oracle access to g ∈ FS

q such that d( f , g) ≤ δn where
f ∈ RMq(m, r), where n = |S|.

Output: f (u) with high probability.
/* We assume that an information set I for RMq(t, r) is given. */

1 Randomly pick φ← Query(u, I).
2 Compute w = φ−1(u).
3 Query {(g ◦ φ)(v), v ∈ I}.
4 Interpolate h ∈ RMq(t, r) such that h|I = (g ◦ φ)|I .
5 Output h(w).

Proposition 2.10. Let m ≥ 2 and r = a(q − 1) + b such that a ≤ m − 1 and 0 ≤ b < q − 1.
Fix some a + 1 ≤ t ≤ m − 1 and denote by `t = dim RMq(t, r). Then, for every δ < 1/2`t and
every a + 1 ≤ t ≤ m − 1, the Reed-Muller code RMq(m, r) is a perfectly smooth (`t, δ, δ`t)-locally
correctable code, using Algorithm 4.

Proof. Smoothness being proved in Lemma 2.9, let us give a short explanation for the probab-
ility of failure. We use the notation of Algorithm 4. Similarly to the proofs of Propositions 2.5
and 2.8, it is sufficient to show that Pr(LC(g)(u) = f (u)) ≥ 1− E(|E ∩ J|), where J = φ(I)
and E is the support of errors. Furthermore, E(|E ∩ J|) = δ`t holds by linearity of the mean
value.
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A short analysis of algorithms parameters. The setting t = 1 might be the most interesting
to study, since it provides the smallest locality. So for a moment, let us focus on RMq(m, r),
r ≤ q− 2. Essentially, we learned that:

– Algorithm 2 equips Reed-Muller codes with an (`, δ, δ/τ)-local correcting algorithm, for
` = q− 1 and τ ' 1

2 (1− r/q);
– Algorithm 4 equips Reed-Muller codes with an (`, δ, δ`)-local correcting algorithm, for
` = r + 1.

Therefore, Algorithm 4 outperforms Algorithm 2 if k < 1/τ, that is, if k . q
2 (1−

√
1− 8/q).

It means that Algorithm 4 should not be neglected when q is moderate and k is small. In
every other case, Algorithm 2 allows us to correct much more errors for a small increase of
the locality.

Now let us focus on asymptotic families of Reed-Muller codes, indexed by their length n = qm.
Notice that, when referring to the locality parameter, it is implicitly assumed that Algorithm 2
is used.

1. A first possible construction consists in letting m grow to infinity, all other parameters
being fixed. We therefore obtain a family of LCCs with constant locality, but whose rate

R =
1

qm

(
r + m

m

)
<

1
m!

(
r + m

q

)m

∼ exp(r)
exp(m)

qm
√

2πm
= O

(
1

n1−logq(exp(1))

)

vanishes quickly for any q ≥ 3.
2. We can then consider the case where both q and r both grow to infinity according to

r = ρq, 0 < ρ < 1. In a sense, it means that we fix the local correction capability (see
Proposition 2.8). If all other parameters are fixed, then we get a family of LCCs with
sublinear locality ` ≤ n1/m. The rate is much better than previously: we obtain

R =
1

qm

(
r + m

m

)
∼ 1

m!
ρm

which is a non-zero constant.

Families of codes with positive asymptotic rate are important for practical issues. They lead
us to introduce a precise definition of so-called asymptotically good LCCs.

Definition 2.11. Let {Ci}i be a family of codes of respective length ni, such that ni → ∞ when
i → ∞. The family {Ci}i is an asymptotically good family of LCCs if there exists 0 < δ, ε, R < 1
such that for every i, the code Ci is (`i, δi, ε i)-locally correctable, and if we have(

δi, ε i,
dim(Ci)

ni

)
→ (δ, ε, R) when i→ ∞ .

From the previous discussion, we see that for ρ ∈ (0, 1), the second family of Reed-Muller
codes {RMq(m, ρq)}q defined above is asymptotically good, with R = ρm/m! and ε ≤ 2δ

1−ρ .

However, the asymptotic rate of RM codes is exponentially small in m, the parameter which
quantifies the locality parameter ` = n1/m. Moreover, the rate stays stuck below 1/2 for its
minimum value (m = 2). In the next two sections, we will show how this barrier has been
broken with algebraic constructions, namely the multiplicity codes of Kopparty et al. [KSY14]
and the lifted Reed-Solomon codes of Guo et al. [GKS13].
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2.2.2 Multiplicity codes

Presentation. Multiplicity codes define the first family of asymptotically good LCCs achiev-
ing rate > 1/2. They were built by Kopparty, Saraf and Yekhanin in the early 2010’s [KSY14]
and they generalise Reed-Muller codes by evaluating low-degree multivariate polynomials
and their derivatives. Indeed, while Reed-Muller codes RMq(m, r) need to satisfy r < q− 1 in
order to remain non-trivial on lines, multiplicity codes allow higher degrees r thanks to the
evaluation of the derivatives of the polynomials.

More formally, let us first introduce the Hasse derivatives of an m-variate polynomial f ∈ Fq[X]

as the unique collection of polynomials {H(i)( f )(X)}i∈Nm satisfying

f (X + Y) = ∑
i∈Nm

H(i)( f )(X)Y i ,

where Y i := Yi1
1 . . . Yim

m . For instance, one can check that H(0)( f ) = f . For s ≥ 0, we define the
s-order evaluation of f ∈ Fq[X1, . . . , Xm] at point u ∈ Fm

q as

evs( f )(u) :=
(

H(i)( f )(u) : i ∈Nm, |i| ≤ s
)
∈ Σs,m := F

Ts,m
q

where Ts,m := {i ∈Nm, |i| ≤ s}. Then, the s-order evaluation vector associated to f is

evs( f ) := (evs( f )(u) : u ∈ Fm
s ) ∈ (Σs,m)

Fm
q .

A very good point is that for every s ≥ 0 and m ≥ 1, f 7→ evs( f ) is injective as long as
deg( f ) < (s + 1)(q− 1).

Notation. For c ∈ (F
Ts,m
q )Fm

q , we denote by c(i)x ∈ Fq the symbol corresponding to the order of
derivation i ∈ Ts,m and the coordinate x ∈ Fm

q .

We are now able to build multiplicity codes properly.

Definition 2.12 (Multiplicity code [KSY14]). Let m ≥ 1, and r, s ≥ 0. Define an alphabet
Σs,m = F

Ts,m
q , Ts,m = {i ∈ Nm, |i| ≤ s}. The multiplicity code Multq(m, r, s) is the Fq-linear code

defined over the alphabet Σs,m, which consists in s-order evaluation vectors of multivariate
polynomials with total degree bounded by r. Explicitly:

Multq(m, r, s) := {evs( f ), f ∈ Fq[X1, . . . , Xm], deg( f ) ≤ r} ⊆ (Σs,m)
Fm

q .

For m = 1, multiplicity codes Multq(1, r, s) ⊆ ΣFq
s,1 are also known as derivative codes [GW13].

They can be efficiently decoded up to half their minimum distance, thanks to an adaptation
of the Berlekamp-Welch algorithm [KSY14].

In the following, we will only consider the setting r < (s + 1)(q− 1) which is of most interest
for local correcting purposes. One must take care that multiplicity codes are defined over the
alphabet Σs,m, but they are Fq-linear codes and have dimension

dimFq(Multq(m, r, s)) =
(

r + m
m

)
over Fq since the evaluation map evs is injective. Therefore their rate satisfies

R =
(r+m

m )

(m+s
m )qm

≥
(

r + 1
(s + 1)q

)m

.
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Local correction. We here give high-level ideas concerning local correction of multiplicity
codes. Details are quite technical and can be found in [KSY14, Yek12]. Assume one wants
to recover evs( f )(u). Basically, the idea is to pick at random a certain number of affine lines
that pass through u (e.g. |Ts,m| lines for Algorithm 5), and to use dependencies between the
evaluations of the derivatives in order to recover evs( f )(u).

Before being more formal, let us first state a few results whose proofs are given in [KSY14,
Yek12] for instance.

Claim 2.13. For any u ∈ Fm
q and v ∈ Fm

q \ {0} we define φu,v(T) = u + Tv ∈ Fq[T]. Assume s ≥ 0
and r < (s + 1)(q− 1), and let f ∈ Fq[X] such that deg( f ) ≤ r.

1. We have evs( f ◦ φu,v) ∈ Multq(1, r, s), and the following holds

( f ◦ φu,v)(T) = ∑
i

H(i)( f )(u)viT|i| .

2. Let u ∈ Fm
q and V ⊆ Fm

q \ {0} of size (m+s
m ). Given the knowledge of (( f ◦ φu,v)(T) : v ∈ V),

one can retrieve (H(i)( f )(u) : |i| ≤ s) by solving a linear system.

Algorithm 5: Outline of a local correcting algorithm for Multq(m, r, s).

Input: a coordinate u ∈ Fm
q , and an oracle access to a word y ∈ (Σs,m)

Fm
q , such that

d(y, c) ≤ δqm for some c ∈ Multq(m, r, s).
Output: The Σs,m-symbol cu.

1 Pick at random a subset V ⊆ Fm
q \ {0} of size (m+s

m ).
2 Query {yu+tv ∈ Σs,m, t ∈ Fq, v ∈ V}.
3 foreach v ∈ V do
4 Build gv = ((∑|i|=j y(i)u+tv : 0 ≤ j ≤ s) : t ∈ Fq) ∈ ΣFq

s,1.
5 Correct gv with a correcting algorithm for Multq(1, r, s).
6 Interpolate the output, giving hv(T) ∈ Fq[T].

7 Retrieve and output (H(i)( f )(u) : |i| ≤ s) from (hv(T) : v ∈ V), as in Claim 2.13.

Denote by ∆ := 1− r/(s + 1)q; informally, ∆ is a lower bound on the relative distance of the
derivative code Multq(1, r, s). Kopparty, Saraf and Yekhanin proposed a first local correcting
algorithm [KSY14], which works if few errors occur on the codeword (small δ). This algorithm
is given in Algorithm 5, and it outputs the correct symbol as long as there is no more than
∆/2 errors on every queried line. Thus, after analysis of the correction failure, the authors
conclude that multiplicity codes are (`, δ, ε)-locally correctable, where

` = 1 + (q− 1)
(

m + s
m

)
, δ = O(∆/`), ε = O(1) ,

and their rate R satisfies R ≥ (1− ∆)m.

In order to find asymptotically good families of LCCs, it is natural to let q grow to infinity
as we did for Reed-Muller codes. We see that the rate of multiplicity codes can be made
arbitrarily close to 1 by choosing r close enough to (s + 1)q. However in this setting, one can
check that δ vanishes when q→ ∞.

Kopparty, Saraf and Yekhanin proposed to solve this issue by picking a set V of size slightly
larger than (m+s

m ), and expecting that most of the queried lines are corrupted with less than ∆/2
errors. Then, step 7 is replaced by solving a so-called noisy linear system and moreover, it can be
efficiently done thanks to results of Kim and Kopparty [KK17]. We also refer to [KSY14, Yek12]
for more details about this technical improvement; let us simply report their main theorem.



26 CHAPTER 2. LOCALLY DECODABLE AND CORRECTABLE CODES

Theorem 2.14 (Theorem 10 of [KSY14]). Let q, m, r, s be such that r < (s + 1)(q − 1), and let
∆ = 1− r/(s + 1)q. If q is large enough2, then Multq(m, r, s) is (`, δ, ε)-locally correctable, where

` ≤ q
(s + m)m

m!
, δ = ∆/10, ε ≥ 0.8 .

Therefore, if we consider a sequence of multiplicity codes Multq(m, r, s) with increasing q and
a parameter ∆ = 1− r/(s + 1)q upper bounded by some constant 1− τ, then we obtain

Theorem 2.15 (Theorem 3 of [KSY14]). Let m, s be fixed integers and τ > 0. For large enough prime
powers q = Ω(m, s, 1/τ), let rq be such that τ(s + 1)q ≤ rq < (s + 1)(q− 1). Then the sequence
{Multq(m, rq, s)}q defines an asymptotically good family of LCCs of length n over Σs,m, with

` = Θ(n1/m), δ = Θ(1− τ), ε ≥ 0.8

and rate R ≥ τm.

Notice that the locality parameter ` is sublinear in the code length, and the exponent of
sublinearity 1/m can be set arbitrarily small.

2.2.3 Lifted codes

Presentation. Chronologically, lifted Reed-Solomon codes are the second class of high-rate
LCCs that has been designed [GKS13]. They also generalise Reed-Muller codes, but in a very
different manner. We have seen that multiplicity codes [KSY14] solved the low dimension
drawback of Reed-Muller codes by a modification of the evaluation map, taking into account
formal derivatives of the polynomials.

Guo, Kopparty and Sudan [GKS13] used a different approach and considered the whole set
of multivariate polynomials that interpolate into a low-degree polynomial when restricted
to any affine line. Quite surprisingly, under some arithmetic conditions it appears that this
set contains more polynomials than the low-degree ones evaluated in Reed-Muller codes.
Example 2.16 illustrates this property with small parameters. Notice that first appearances of
the lifting process can be found in [BMSS11, BS11].

Example 2.16. Consider the Reed-Muller code RMq(m, r) with q = 4, m = 2 and r = 2. Let

f (X, Y) = X2Y2 and c = evF2
4
( f ) ∈ F

F2
4

4 . One can easily check that c /∈ RM4(2, 2), since f has
total degree 4 > 2. Any restriction of c to an affine line of F2

4 can be written evF4(g), where
g ∈ F4[T] is defined by

g(T) = f (aT + b, cT + d)

for some a, b, c, d ∈ F4, such that ac 6= 0. Since char(F4) = 2, we then get:

g(T) = (aT + b)2(cT + d)2 = a2c2 · T4 + (a2d2 + b2c2) · T2 + b2d2 .

Let us now notice that evF4(T
4) = evF4(T), hence evF4(g) is actually the evaluation of a

univariate polynomial of degree at most 2. To sum up, c is the evaluation of a bivariate
polynomial of degree 4, such that its restriction to any affine line of F2

4 corresponds to the
evaluation of a univariate polynomial of degree at most 2.

2technically one needs q ≥ max{10m, d+6
s+1 , 5(s + 2)}
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Let us now introduce the construction of Guo, Kopparty and Sudan in its full generality,
where the authors define the lifting of any affine-invariant code. An affine-invariant code is a
code C ⊆ FS

q , S = Ft
Q and FQ an extension of Fq, which satisfies Aff(S) ⊆ Aut(C).

Definition 2.17 (lifting of affine-invariant codes [GKS13]). Let C ⊆ FS
q , be an affine-invariant

code, where S = Ft
Q and FQ is an extension of Fq. The lifting of order m ≥ t of C is:

Lift(C, m) =
{

evFm
Q
( f ), f ∈ FQ[X], such that evFt

Q
( f ◦ φ) ∈ C

for every φ ∈ Aff(Ft
Q, Fm

Q)
}

.

One can check that Lift(C, m) ⊆ F
Fm

Q
q is an Fq-linear code, invariant under Aff(Fm

Q). In their
work [GKS13], the authors give several constructions by letting different parameters vary
(e.g. m, t, logq(Q), etc.). Here we will mainly focus on settings that give rise to high-rate LCCs,
namely Q = q and t small, and particularly t = 1.

Full-length Reed-Solomon codes define a typical family of affine-invariant codes supported
by the affine line Fq. By definition, their lift consists in the evaluation of every m-variate
polynomial which corresponds to a low-degree univariate polynomial when restricted to any
affine line of the space Fm

q . We have seen previously that Reed-Muller codes satisfy this
property; therefore lifted Reed-Solomon codes contain Reed-Muller codes.

Proposition 2.18. For every 0 ≤ r ≤ q− 1, we have

RMq(m, r) ⊆ Lift(RSq(r), m) .

Proof. Thanks to Lemma 2.6, for all c = evFm
q
( f ) ∈ RMq(m, r) and φ ∈ Aff(Ft

q, Fm
q ), there exists

g ∈ Fq[X1, . . . , Xt], such that evFt
q
(g) = evFt

q
( f ◦ φ) and deg(g) ≤ r.

Kaufman and Ron proved in a paper [KR06] anterior to Guo et al.’s work, that RMq(m, r) =
Lift(RSq(r), m) as long as r < q − q

p , where p = char(Fq). But for higher degrees r, the
inclusion can be strict, as we have seen in Example 2.16.

More details concerning the construction of lifted Reed-Solomon codes will be given in Chapter 3.
Here we only report one of Guo et al.’s results, asserting for any order m the existence of lifted
Reed-Solomon codes of rate arbitrary close to 1 and constant relative distance. For readability
we give a simplified version where m is a power of 2.

Theorem 2.19 (High-rate high-error construction of [GKS13], simplified). Let α ≥ 1 and m =
2µ. Define c = 2(1+ µ)m2mα, and assume q = 2s where s ≥ c. Finally, let C = RSq((1− 2−c)q− 1).
Then, the lifting Lift(C, m) has rate R ≥ 1− 2−α.

Local correction. Lifted Reed-Solomon codes have the same properties as Reed-Muller codes
when restricted to affine lines. Therefore, when specified with t = 1, Algorithms 2 and 4
provide perfectly smooth local correction to lifted Reed-Solomon codes. We here propose
another local correcting algorithm, which (i) generalises both previous algorithms in a sense
that the locality ` can be any integer between k and q − 1 (ii) is simpler than Algorithm 4,
since Reed-Solomon codes are MDS and therefore admit any k-subset of Fq as an informa-
tion set. This generic local correcting algorithm is given in Algorithm 6. It is analysed in
Proposition 2.20.

Proposition 2.20. Let k + 1 ≤ ` ≤ q− 1, and denote by t = b `−(k+1)
2 c. Then, using Algorithm 6,

for every δ ≤ t+1
2` the code Lift(RSq(k), m) is a smooth (`, δ, δ`

t+1 )-locally correctable code.
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Algorithm 6: A perfectly smooth local correcting algorithm of locality ` ∈ [k + 1, q− 1]
for the lifted Reed-Solomon code C = Lift(RSq(k), m).

Input: a point u ∈ S := Fm
q , and an oracle access to g ∈ FS

q such that d( f , g) ≤ δn, for
some f ∈ C, where n = |S|.

Output: f (u) with high probability.
/* CorrA denotes a half-distance (q− `)-erasure correcting algorithm for the

code C|A isomorphic to RSq(k). */
1 Pick uniformly at random φ ∈ Aff(Ft

q, Fm
q ) such that u ∈ A := im(φ).

2 Toss a random binary coin b ∈ {0, 1} following B(p), where p := `/qm.
3 if b = 0 then
4 Pick uniformly at random a subset A′ ⊂ A \ {u} of size `.

5 else
6 Pick uniformly at random a subset A′ ⊂ A \ {u} of size `− 1.
7 Add u in A′.

8 Query {g(v) : v ∈ A′}.
9 Define g′ ∈ (Fq ∪ {⊥})A by g′|A′ = g|A′ and g′(v) =⊥ for every v ∈ A \ A′.

10 Run CorrA on input g′.
11 if CorrA fails then
12 Abort.

13 else
14 Denote by h ∈ FA

q the output of CorrA. Output h(u).

Proof. First, we can easily check that the algorithm is smooth. Concerning the extraction
success, the method is similar to previous proofs. Denoting by E the support of the errors,
Markov’s inequality gives:

Pr(LC(g)(u) = f (u)) = 1− Pr(|E ∩ A′| ≥ t + 1) ≥ 1− E(|E ∩ A′|)
t + 1

,

and as usual we have
E(|E ∩ A′|) ≤ δ` .

As a corollary, when q → ∞ and the parameters t and ` remain linearly dependent in q, we
get asymptotically good LCCs.

Corollary 2.21. Let 0 < τ, ρ < 1 and m ≥ 2 be fixed. Let also (`q) and (kq) be sequences of integers
such that ρq ≤ kq + 1 ≤ `q ≤ q − 1 and tq = b `q−kq−1

2 c satisfies tq+1
`q
≥ τ. Then, the sequence

of codes {Lift(RSq(kq), m)}q defines an asymptotically good family of LCCs with ε ≤ δ/τ and rate
R = dim(Lift(RSq(kq), m))/qm. Moreover, their rate R is larger than ρm/m!, and their locality
satisfies ` = Θ(n1/m).

From Corollary 2.21, one sees that we can obtain asymptotically good high-rate LCCs if we
manage to find specific sub-sequences of q and kq such that Lift(RSq(kq), m) has large di-
mension. Such instances have been found by Guo, Kopparty and Sudan, as we reported in
Theorem 2.19. Therefore, we get the following asymptotic result.

Theorem 2.22. For fixed m = 2µ and α ≥ 1, and choosing maximum locality ` = q− 1, the sequence
of codes indexed by q given in Theorem 2.19 is an asymptotically good family of LCCs, with

R ≥ 1− 2−α and ε ≤ 2δ

(
1

1− R

)2(1+µ)m2m

.
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Proof. Applying Theorem 2.19 and Corollary 2.21 leads to ε ≤ 2c+1δ, where c is defined in
Theorem 2.19.

2.2.4 A short comparison between multiplicity and lifted codes

Guo proposed in [Guo16] a comparison between the asymptotic parameters of lifted Reed-
Solomon codes and multiplicity codes. This comparison is mostly based on the bound on the
rate R of Lift(RSq((1− 2−c)q− 1), m) given in Theorem 2.19. However, this bound is far from
being tight, especially for small values of m. For instance, in the case m = 2 the bound states
that R ≥ 1− ((1/2)1/32)c, while the actual asymptotic rate, given in Proposition 3.63 is

R∞ = 1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c

.

For this reason, we choose to focus our comparison on codes of finite length, whose rate can be
explicitly computed. In Figure 2.1, we give a few diagrams presenting high-rate multiplicity
and lifted codes. Let us give a few explanations. Given two reals 0 < δ, λ < 1 — for instance
δ = 1/16 and λ = 0.01 for the first subfigure — we plot all lifted codes and multiplicity
codes with relative distance approximately δ and relative locality `/n less than λ. Red dots
represent multiplicity codes Multq(m, r, s) for various values of s, r and m. Blue dots represent
lifted codes of order 2 (in other words, the codes Lift(RSq((1− δ)q, 2)) satisfying the previous
requirements). We also remove every code with rate < 0.2 for clarity.

Figure 2.1 confirms a usual observation (see [GKS13, Guo16] for instance): lifted codes attain
rates above 1/2 with shorter lengths than multiplicity codes. However, multiplicity codes
allow us to reach higher rates.

We end this section by reporting a construction due to Wu [Wu15], which crosses lifted codes
and multiplicity codes. More precisely, the author considers the space of multivariate polyno-
mials f ∈ Fq[X], whose s-order evaluation vector ev(s)( f ), when restricted to any affine line,
lies in Multq(1, r, s). Furthermore, for some range of parameters, this space strictly contains the
multiplicity code Multq(m, r, s). Notice that for s = 0, one retrieves the lifted Reed-Solomon
code construction of Guo et al. [GKS13].

2.3 Other constructions and bounds

In this section we quickly report recent constructions and current bounds related to LDCs
and LCCs. Notice that, when their dimension is small, it is not clear that LDCs and LCCs
can achieve the same parameters since we require local correction of much more symbols in
LCCs. Different regimes must be taken into account:

– The positive rate, or high-rate regime consists in studying families of codes whose asymp-
totic rate is non-zero. We then look for codes admitting the lowest possible locality ` as
a function of the dimension k (or equivalently the length n).

– In the constant locality regime, we consider families of LCCs with fixed locality `, and we
focus on finding codes with lowest length n compared to the dimension k. Usually, the
settings ` = 2, ` = 3 and ` > 3 are studied separately.

– The sublinear locality regime consists in seeing ` as a sublinear function of the dimension
k (or of the length n if the code rate is non-zero). In this context we can write ` = kβ

for some constant 0 < β < 1 (that can be made arbitrary close to 0), and we try to
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Figure 2.1 – High-rate lifted and multiplicity codes correcting a constant fraction δ of
errors, with relative locality at most λ. Red dots represent multiplicity codes; blue dot
represents lifted codes of order 2.
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find codes with highest possible rate, or approaching well-known bounds such as the
Singleton bound.

We will sometimes use the binary L-notation to easily represent asymptotic complexities.
Recall it is defined by:

Lk(a, b) = 2(b+o(1))(log k)a(log log k)1−a
.

Parameter a is the most relevant: Lk(1, b) represent complexities exponential in log k, while
Lk(0, b) complexities polynomial in log k, with degree bounded by b.

2.3.1 Constructions

Matching vector codes. Matching vector codes (MVCs) define a broad class of LDCs per-
forming well in the constant locality regime. They were introduced in a seminal paper of Yekh-
anin [Yek08], and then developed in a large series of works, notably [Efr12, DGY11, BDL14,
SY11].

MVCs are based on the existence of so-called matching families. Denote by Zr = Z/rZ and fix
A ⊂ Zr \ {0}. Also recall that 〈·, ·〉 represents the usual inner product. An A-matching family
of size k is a pair of ordered lists U = (u(1), . . . , u(k)), V = (v(1), . . . , v(k)) of elements in Zm

r ,
satisfying 〈u(i), v(i)〉 = 0 and 〈u(i), v(j)〉 ∈ A for all 1 ≤ i, j ≤ k, i 6= j.

Now, assume that F×q admits a multiplicative subgroup of order r, denoted Dr, generated by
g. For w ∈ Zm

r and v an element of the list V, define a so-called multiplicative line

Lv,w = {gw+λv, λ ∈ Zr} ,

where gw+λv represents the k-tuple (gw1+λvm , . . . , gwk+λvm) ∈ Dm
r .

Let now u be an element in the list U. Then it holds that

∀gw+λv ∈ Lv,w, (gw+λv)u = g〈u,w〉(gλ)〈u,v〉 . (2.2)

In other words, the evaluation of the multivariate monomial Xu on the multiplicative line
Lv,w corresponds to the evaluation of the univariate monomial f (Y) = g〈u,w〉Y〈u,v〉 on Dr =
{gλ, λ ∈ Zr}. This property will be used to define codes with a local decoding procedure.

Given (U, V) an A-matching family of size k, one can define the matching vector code as the
evaluation code over Dm

r of polynomial functions in Span{Xu, u ∈ U}. That is,

MVC(U) :=

{(
k

∑
j=1

mjxu(j)
: x ∈ Dm

r

)
, m ∈ Fk

q

}
⊆ F

Dm
r

q . (2.3)

Let now v(i) ∈ V and w ∈ Zm
r . If F = ∑k

j=1 mjXu(j)
, then using (2.2) and the definition of a

matching family, we see that

F(gw+λv(i)
) =

k

∑
j=1

mjg〈u
(j),w〉(gλ)〈u

(j),v(i)〉 = mig〈u
(i),w〉 + ∑

a∈A

 ∑
〈u(j),v(i)〉=a

mjg〈u
(j),w〉

 (gλ)a .

In other words, if c = evDm
r
(F) ∈ MVC(U), then for every gw+λv(i) ∈ Lw,v(i) we have F(gw+λv(i)

) =

fi(gλ) where

fi(Y) = xig〈u
(i),w〉 + ∑

a∈A

 ∑
〈u(j),v(i)〉=a

xjg〈u
(j),w〉

Ya (2.4)
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is a univariate polynomial composed by monomials Ya, for a ∈ A ∪ {0}. Thus, the restriction
of c to multiplicative lines Lw,vi admit a non-trivial structure that can be used for correction
purposes. Specifically, a local decoding algorithm follows, depicted in Algorithm 7.

Algorithm 7: Outline of an local decoding algorithm for C = MVC(U) equipped with
the encoder E implicit in (2.3). The pair (U, V) is an A-matching family, |A| = `− 1.

Input: a coordinate i ∈ [1, k], and an oracle access to h ∈ FS
q , S = Dm

r such that
d(E(m), h) ≤ δrm, for some m ∈ Fk

q.
Output: mi with high probability.

1 Pick uniformly at random w ∈ Zm
r .

2 Define Q = {gw+λv(i)
, 0 ≤ λ ≤ `− 1} ⊂ Lw,v(i) .

3 Query {h(x), x ∈ Q}.
4 Interpolate the associated univariate polynomial fi(Y).
5 Output f (0)/g〈u

(i),w〉.

We should clarify that step 4 of Algorithm 7 essentially consists in inverting a Vandermonde
matrix. Hence, the output is correct as long as there is no error on the queries, since fi(0) =
xig〈u

(i),w〉 according to (2.4). Therefore, after analysis of the success probability, one can prove
that Algorithm 7 is a perfectly smooth (`, δ, δ`)-local decoding algorithm for C = MVC(U),
where (U, V) is an A-matching family, |A| = `− 1.

As for Reed-Muller codes, another strategy consists in querying more values on the multiplic-
ative line Lw,v(i) even if we need to correct a few errors on it. This correction can be performed
as long as the univariate polynomial f (Y) has low degree. Thus, for b ≥ 0 we say that (U, V)
is b-bounded if for all a ∈ A, we have a ≤ b (where a ∈ Zr is seen as an integer bounded by
r− 1).

We obtain:

Proposition 2.23. Let σ > 0. If there exists a σm-bounded A-matching family (U, V) in Zm
r of size

k, then the code C = MVC(U) is (m, δ, 2δ/(1− σ))-locally decodable, for all δ < (1− σ)/4.

MVCs with good local properties rely on the existence of A-matching families in Zm
r with

small m and large k. In a series of papers (e.g. [Gro00, Gro02]), Grolmusz provides explicit
constructions of such families. Some of them are based on multilinear polynomials modulo
composite integers; we refer to [Gro00, Gro02] and Yekhanin’s survey [Yek12] for details. Let
us only report the asymptotic families of LDCs they induce, which currently define some of
the best families in the constant locality regime.

Proposition 2.24. (based on [DGY11, Efr12] and subsequent works) For large enough ` > 3, there
exist asymptotic families of (`, δ,O(1))-locally decodable matching vector codes of dimension k, with
the following parameters:

1. in the low-error regime (precisely, δ = O(1/`) when `→ ∞), the length n = 2 f (k,`) of the codes
satisfies

f (k, `) = Lk (1/ log `, 1) ;

2. in the high-error regime (precisely, δ = 1/4−O(1/ log log `) when ` → ∞), the length n =
2 f (k,`) of the codes satisfies

f (k, `) = Lk (α`, log `) ,

with α` = O
(

log log `
log `

)
.
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Expander codes. Expander codes were initially introduced by Sipser and Spielman [SS96], and
have been proven to provide an asymptotically good family of codes with efficient decoding
algorithms [Zém01, BZ06]. Shortly after the high-rate breakthroughs [KSY14, GKS13], Hem-
enway, Ostrovsky and Wootters [HOW15] showed that some families of expander codes also
admit sublinear local correcting algorithms from a constant fraction of errors, while preserving
a rate arbitrary close to one.

Expander codes are named after expander graphs. Given a graph G = (V, E), we denote by
E(v) := {{v, w} ∈ E} the edges incident to v, and the neighbourhood of a subset of vertices
W ⊆ V is N(W) := {v ∈ V | ∃w ∈ W, {v, w} ∈ E}. Recall that a d-regular expander graph
has expansion parameter λ if for every subset W ⊂ V of size ≤ |V|/2, we have |N(W) \W| ≥
λ|W|. It is important to remark that Ramanujan graphs (introduced in [LPS88]) define extremal
d-regular expander graphs, i.e. they satisfy λd ≤ 2

√
d− 1. From now on, we assume G is a

Ramanujan graph.

Denote by G′ = (V ′, E′) the double cover of G = (V, E). In other words, G′ is a bipartite graph
where V ′ = V0 t V1 (V0, V1 being disjoint copies of V) and (u0, v1) ∈ E′ if {u0, v1} ∈ E. Let
C0 ⊆ Fd

q be a code of relative distance δ0 and rate r0. Finally, let Φ = {φv : [1, d] → E′(v)}v∈V′

be a collection of bijective maps indexed by v ∈ V ′.

Definition 2.25 (Expander code). For C0, G, Φ defined as above, and a given finite field Fq,
the associated expander code is:

Exp(C0, G, Φ) = {c ∈ FE′
q such that ∀v ∈ V ′, c ◦ φv ∈ C0} ⊆ FE′

q .

Code C0 is called the inner code of Exp(C0, G, Φ).

Before getting into the main result of Hemenway et al., we need a last definition. We say that
(Q, R) is an (s, `0)-smooth local reconstructing algorithm for C0 ⊆ Fd

q if, for every 1 ≤ i ≤ d,

1. Q(i) outputs random subsets of [1, d] of size less than `0;
2. there exists Si of size s such that Q(i) is uniformly distributed over Si;
3. R is deterministic and R(c|Q, Q) = ci for all Q←R Q(i) and c ∈ C0.

In a sense, an (s, `0)-smooth local reconstructing algorithm can be thought as a local decoding
algorithm, with specific smoothness requirements for the queries, but working only without
errors on the codeword.

Finally, Hemenway et al. [HOW15] proved the following result concerning local correctability
of expander codes.

Theorem 2.26 (Theorem 5 in [HOW15]). Let C0, G, Φ as above, and equip C0 ⊆ Fd
q with an (s, `0)-

smooth local reconstructing algorithm. Denote by `′0 = `0 + d − s. Let also γ < 1/2 and ζ > γ
such that 8λ < γ/(eζ`0)1/γ. Then, for any δ < γ/(eζ`0)1/γ − 2λ, the code Exp(C0, G, Φ) is an
(`, δ, ε)-LCC of length n = |V|d, with

` = |V|α, α =

(
1 +

ln(`′0) + 1
ζ − γ

)
· ln(`′0)

ln(d/4)

and
ε =

1
|V|1/ ln(d/4)

.

Moreover, the rate of Exp(C0, G, Φ) is at least 2r0 − 1, where r0 is the rate of C0.

We just sketch the principle of the local correction (for details, see [HOW15] or Wootters’ PhD
thesis [Woo14]). Assume we want to retrieve symbol c(e), e = (u, v) ∈ E′. The algorithm
consists in three steps.
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1. Compute a subset of edges S ⊂ E′ which is merely independent from e. We know that the map
φu : [1, d] → E′(u) is such that c ◦ φu ∈ C0. Therefore, we can use the query generator
Q to generate a set S1 = {(u0 = u, s(i)1 ), 1 ≤ i ≤ `0} satisfying R(c ◦ φu, φ−1

u (e)) = c(e).
We name T1 the tree with root e and leaves S1. It is possible that edges in S1 are still
not uniformly distributed over E′ (they are too close to e), so let us repeat the previous
procedure on every edge in S1. The tree we get is called T2. Inductively, there will exist
an L > 0 such that leafs SL of tree TL are close to uniform over E′ (a good point is that
neither L nor S is too large since G is an expander code). At this time we define S := SL.

2. Recover all c( f ), f ∈ S, with high probability. Now S is uniformly distributed over E′, hence
we know that c( f ), f ∈ S, is correct with probability merely 1− δ. In order to correct
c( f ) w.h.p., once again we compute trees T( f )

M of depth M. Without diving into details,

by querying values c( f ′), f ′ ∈ T( f )
M (that are possibly corrupted), and then applying

in-depth majority-logic decoding, we retrieve w.h.p. each correct coordinates c( f ).
3. Retrieve c(e). Assuming we get correct values c( f ), f ∈ S, it is now easy to go back up

the initial tree TL until we reach its root, and with the help of algorithm R we recover
c(e). Notice this last step outputs the desired symbol c(e) as soon as all the c( f ), f ∈ S
are correctly recovered.

Other algebraic constructions. Table 2.1 summarises parameters of the constructions we
presented above. We only give bounds or asymptotics of these parameters when exact values
are unknown or hard to interpret.

Construction LCC `(n) k(n) ε(δ)

Hadamard code Had2(m) yes 2 log(n) 2δ

RMq(m, (1− 2τ)q) (Algo. 2) yes n1/m ≤ (1−2τ)m

m! · n δ/τ

RMq(m, (1− 2τ)q) (Algo. 4) yes (1− 2τ)n1/m ≤ 1
m! · n `(n) · δ

Multq(m, τ(s + 1)q, s) yes ≥ sm

m! · n1/m ≥ τm · n ≥ 0.8

Liftq(RSq((1− 2−c)q), m),
yes n1/m ≥ (1− 2−α) · n ≤ 2

(
n

n−k(n)

)c

with c = 2(1 + log(m))m2mα

Matching vector code
no ` Õ

(
2(log log n)log `

)
O(1)

(Prop. 2.24.1, asymptotics in `)

Matching vector code
no ` Õ

(
2(

log log n
log ` )

log `
log log `

)
O(1)

(Prop. 2.24.2, asymptotics in `)

Expander code with a
yes

( n
d

)Θ(log d) (2τ − 1) · n ( n
d

)−Θ(1/ log d)

[d, τd] local code C0

Table 2.1 – A summary of constructions of locally decodable or correctable codes presen-
ted earlier.

Let us also report other recent constructions of high rate LCCs. First, the work of Ben-
Sasson et al. [BGK+13] proposed to use Reed-Muller-like decoding algorithm on evaluation
codes defined over other algebraic varieties than the classical affine space, namely Cartesian
products Hm of Hermitian curves H. The reason of this choice is that the Hermitian func-
tion field admits a large automorphism group which can be used to define structured queries
that are close to uniform over Hm. Several correction techniques are then proposed, includ-
ing a direct analogue of the Reed-Muller local correction on lines (instead we get codewords
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supported by the Hermitian curve), or a so-called fractal decoding where a tree of local Her-
mitian curves to be queried is computed. Notice that the notion of degree-lifting mentioned
in [BGK+13] is different from the lifting process of Guo et al. [GKS13]; indeed it refers to the
way of weighing monomials in order to construct the space of multivariate polynomials to
be evaluated. However, codes in [BGK+13] still have rate bounded by 1/m! while their loc-
ality is ` = O(n1/m); compared to Reed-Muller codes the quantitative improvement consists
essentially in the size of the alphabet.

Following his work on the affine space [GKS13], Guo [Guo16] proposed to increase the rate
of previous codes by computing an actual lift of Hermitian codes on the Cartesian product
Hm. To this end, the author adopts a more generic framework where he considers the lifting
process with respect to a set a maps. Formally, if C0 ⊆ FS

q and Φ is a collection of maps
Sm → S, the lift of C0 with respect to Φ is

LiftΦ(C0) := {c ∈ FSm

q | ∀φ ∈ Φ, c ◦ φ ∈ C0} . (2.5)

Of course, the definition given in (2.5) can be paired with Definition 2.17. But one also should
remark formal similarities with the definition of expander codes, even though they instantiate
very differently (polynomials and algebraic varieties for lifted codes vs. graphs and combin-
atorial structures for expander codes).

Finally, we report a recent construction of high-rate LCCs with query complexity subexpo-
nential in log n, given by Kopparty, Meir, Ron-Zewi and Saraf [KMRS17]. They build LCCs of
length n, constant rate arbitrarily close to 1, constant relative distance and locality Ln(1/2, 1).
Notice this is an exponential improvement compared to other high-rate LCC (multiplicity
codes, lifted codes, expander codes) whose locality is Ln(1, α) for arbitrary α > 0. The con-
struction is very elaborate, and mixes multiplicity codes in a low-error regime with the Alon-
Luby distance-amplification method [AL96], by using expander graphs and concatenation of
codes.

2.3.2 Bounds

We here report a few lower bounds on the length of LDCs and LCCs, depending on their
dimension and locality. In the low-dimension regime, recall we must take care to distinguish
locally decodable and locally correctable codes, since the last ones are much more constrained.
Indeed, LCCs require local recovery of any codeword symbol, while in LDCs this requirement
must be met only for information symbols. If k� n, this difference can be crucial.

Most of current bounds on codes with locality were established for LDCs. The reason is that
authors mainly focused on the constant locality regime, for which LDCs might attain higher
dimensions than LCCs. In this section we quickly report some of these bounds, as well as
some bounds on LCCs when they exist.

When the locality is 1, Katz and Trevisan [KT00] proved that every (1, δ, ε)-LDC which en-
codes binary strings (that is, a code C ⊆ Σn equipped with an encoder E : Fk

2 → C) must
have constant dimension k ≤ log(|Σ|)

δ(1−H(ε))
, where H(x) = −x log x − (1 − x) log(1 − x) is the

binary entropy function. For larger but constant localities ` ≥ 2, they used a graph theoretic
formalism to prove the following result.

Theorem 2.27 (Theorem 6 in [KT00]). Let C ⊆ Σn, equipped with an encoder E : Fk
2 → Σn, be an

(`, δ, ε)-locally decodable code. Then:

n ≥
(
(1/2− ε)δ

`2

) 1
`−1
(

3k(1− H(ε))

4 log(|Σ|)

)1+ 1
`−1

(2.6)
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Asymptotically, Equation (2.6) rewrites n = Ω(( k
log(|Σ|) )

1+ 1
`−1 ) when k → ∞. Therefore, The-

orem 2.27 shows that, for constant locality and alphabet size, there cannot exist asymptotically
good families of LDCs. However, the gap between this bound and existing constructions is
still exponential: for instance, for ` = 2, binary Hadamard codes satisfy n = 2k − 1.

In the early 2000’s, Goldreich, Karloff, Schulman, and Trevisan proved that linear LDCs with
locality 2 must have exponential length n = 2Ω(k) [GKST06]. Kerenidis and de Wolf [KdW04]
generalised the result to unrestricted codes, using arguments from quantum information the-
ory. Notice that both results were stated for finite fields of bounded size; Dvir and Shpilka
then proved it for any (possibly infinite) field [DS07]. Notice that this means that Hadamard
codes are essentially optimal LDC for locality ` = 2. Concerning LCCs, it is shown in [BDSS16]
that 2-queries LCCs over Fp must have length n = pΩ(δk). This induces an exponential gap
between the length of optimal 2-queries LDCs over Fp (e.g. the p-ary Hadamard code) and
lower bounds on the length of 2-queries LCCs over the same alphabet. For infinite fields, it is
even proved in [BDYW11] that 2-queries LCCs must have bounded dimension k = O(1/δ9)
regardless of their length.

For ` = 3, a series of papers including [Yek08, Efr12] proved constructively that subexponen-
tial length is achievable. On the opposite, Katz and Trevisan’s lower bound has been improved
into a quadratic one (n = Ω(k2)) by Woodruff in [Woo12], slightly raised to n = Ω(k2+α),
α > 0, for codes over reals in [DSW17]. Still, there remains an exponential gap for the length
of 3-queries LDCs, between existing constructions and proven lower bounds.

For larger but constant localities ` > 3, only a few results are known. They are mostly based
on reduction from ` queries to 2, and then using above bounds. This way, Woodruff [Woo07]
obtained a bound n = Ω̃(k1+1/(d`/2e−1)) when k→ ∞.

2.4 LCCs from a design theory perspective

In this section, we study the links between designs and locally correctable codes. The intuition
is that, in a code C based on a well-structured design (say, a 2-design), blocks support parity-
check equations for C whose coordinate are uniformly distributed over the support of the code.
Hence, regardless of quantitative parameters, a design naturally induces a locally correctable
code. The converse construction is however trickier. Indeed, few assumptions are made
concerning the queries and the reconstruction step of a generic LCC. Notice that the link
between LCCs and designs has been studied in [BIW10] where the authors show that LCCs
based on secret sharing schemes give rise to almost 2-designs, in the sense that the incidence
requirements of 2-designs hold for almost every points and blocks.

We should emphasize that we do not claim to give new constructions of LCCs achieving
specifically good parameters in this section. The incentive is to propose a generic conversion
from combinatorial structures such as block designs, into linear codes admitting a probabilistic
local correcting algorithm. Nevertheless, we hope that this perspective can open new tracks
of research for constructions (or bounds) of locally correctable codes.

2.4.1 Formulating some LCCs as design-based codes

We begin by noticing that binary Hadamard codes can be seen as design-based codes. Recall
that PG1(m, 2) denotes the classical design of points and lines in the projective space over F2.
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Proposition 2.28. Let m ≥ 2. Denote by S = Fm
2 \ {0} and by Pm−1 the projective space of order

(m − 1) over F2. Then Had2(m) ⊂ FS
2 and Code2(PG1(m − 1, 2)) ⊂ FPm−1

2 are permutation-
equivalent, through the canonical bijective map S→ Pm−1.

Proof. We identify affine points in S and projective points in Pm−1 since we are over F2,
meaning we work up to the canonical bijection S → Pm−1. Let evS( f ) ∈ Had2(m), where
f ∈ F2[X1, . . . , Xm] is a linear form over Fm

2 . Then, for any projective line L = {u, v, u + v} of
Pm−1, we have:

∑
x∈L

f (x) = f (u) + f (v) + f (u + v) = 0

since f has degree 1 and 1 = −1 over F2. Therefore evS( f ) ∈ Code2(PG1(m− 1, 2)).

Let now c ∈ Code2(PG1(m− 1, 2)) be a non-zero codeword. Denote by ei the i-th element of
the canonical basis of Fm

2 . By induction on the Hamming weight of x ∈ Pm−1, one can prove
that cx = ∑i:xi=1 cei , and thus we get cx = fc(x) where

f (X1, . . . , Xm) =
m

∑
i=1

cei Xi

as degree 1. This proves that c ∈ Had2(m).

The same kind of relation lies between Lift(RSq(q − 2), m) and the classical affine design
AG1(m, q).

Proposition 2.29. Let m ≥ 1. It holds:

Lift(RSq(q− 2), m) = Codeq(AG1(m, q)) .

Proof. Recall that c = evFm
q
( f ) ∈ F

Fm
q

q lies in Lift(RSq(q − 2), m) if and only if for all φ ∈
Aff(Fq, Fm

q ), we have evFq( f ◦ φ) ∈ RSq(q − 2). We have seen in the previous chapter that
RSq(q− 2) is the parity-check code, meaning that

RSq(q− 2) = {a ∈ F
Fq
q | ∑

t∈Fq

at = 0} .

Since any affine line L can be written φ(Fq) for φ ∈ Aff(Fq, Fm
q ), we get our result.

Propositions 2.28 and 2.29 imply that some designs give rise to locally correctable codes. In
the following subsection we prove a more general statement.

2.4.2 Design-based codes for low-error LCCs

Let D = (X,B) be a design, and C = Codeq(D) be the associated code over Fq. The idea for
correcting C locally is the following. Given c ∈ C and x ∈ X, if we want to correct symbol
cx, we pick at random a block B ∈ B such that x ∈ B and we retrieve cx thanks to the the
parity-check equation of the code that we know to be supported by B. As long as there is no
error supported by B, the algorithm outputs the right symbol.

Informally, one sees that the distribution of blocks must be uniform over X if we want to get
smooth queries. Therefore, 2-designs seems to be adapted for instantiating the above idea.
Let us formalise it in Algorithm 8.
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Algorithm 8: An (`, δ, δ`)-local correcting algorithm for a code C ⊆ FX
q based on a 2-

design D = (X,B) with block size `+ 1.

Input: x ∈ X, and an oracle access to y ∈ FX
q such that d(y, c) ≤ δn for some c ∈ C,

where n = |X|.
Output: cx with high probability.

1 Pick uniformly at random a block B ∈ B such that x ∈ B.
2 Toss a random binary coin b, which is 0 with probability p = `/(n + `− 1).
3 if b = 0 then
4 Query {yx} and output yx.

5 else
6 Query {yb, b ∈ B \ {x}} and output −∑b∈B\{x} yb.

Proposition 2.30. Let D = (X,B) be a 2-(n, ` + 1, λ)-design, and C = Codeq(D). Then using
Algorithm 8, for every δ < 1/2` the code C is a perfectly smooth (`, δ, δ`)-locally correctable code.

Proof. The proof relies on arguments that might now be redundant to readers. We first prove
that individual queries are uniform on the support X. In Algorithm 8, the desired coordinate
x is queried with probability p = `/(n + ` − 1). Moreover, for every a 6= x, there exists a
constant number λ of blocks B of same size `+ 1, such that the pair {x, a} ⊂ B. Therefore, for
every a 6= x, we have

Pr(a is queried) = (1− p)Pr(a ∈ B) =
(

1− `

n + `− 1

)
`

n− 1
=

`

n + `− 1
= p .

Then, Algorithm 8 succeeds if there is no error on the queried symbols. Therefore, denoting
Sx the set of queries, and E ⊂ X, |E| ≤ δn, the support of the errors, we obtain:

Pr(LC(y)(x) = cx) ≥ 1−E(|E ∩ Sx|) ≥ 1−∑
e∈E

Pr(e ∈ Sx)

≥ 1− δn`
(n + `− 1)

> 1− δ` .
(2.7)

Since AG1(m, q) and PG1(m, 2) are 2-designs, thanks to Proposition 2.28 and 2.29 we retrieve
the fact that binary Hadamard codes and lifted Reed-Solomon codes of dimension q− 1 are
locally correctable. Also notice that in Equation (2.7), the last inequality is tight up to a
constant factor (since ` ≤ n), thus the correction failure ε is Θ(δ`) even if we are overcautious
in bounding ε.

To sum up, we have seen that (`, δ, δ`)-locally correctable codes can be built from 2-designs
of block size ` + 1. Their local correcting algorithm is inspired by the low-error correcting
algorithms of Hadamard codes or Reed-Muller codes of degree q− 2. We have seen in pre-
vious subsections that a larger amount of errors can be corrected if the reconstruction step is
resilient to a fraction of errors. Next subsection is devoted to pushing this idea in the world
of design-based codes.
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2.4.3 Generalised design-based codes

We introduce a generalisation of design-based codes in order to be able to correct locally a
fraction of errors, similarly to the high-error local correction procedures of Reed-Muller codes.
Notice that, in this subsection, elements in FX

q will be preferably seen as maps X → Fq.

Definition 2.31 (Generalised design-based code). Let D = (X,B) be a design, and L = (LB ⊆
FB

q : B ∈ B) be a family of codes indexed by blocks B ∈ B, called the local codes. The generalised
design-based code with respect to L is:

Codeq(D,L) := {c ∈ FX
q such that ∀B ∈ B, c|B ∈ LB} ⊆ FX

q .

Our terminology and notation for generalised design-based codes makes sense, since Codeq(D)
is actually an instance of Code(D,L), where we define L = (LB : B ∈ B) to be such that every
LB is a parity-check code.

Example 2.32. Let D = AG1(m, q) be the classical affine design. For each affine line B ∈ B, let
φB : Fq → Fm

q be an affine injective map such that im(φB) = B, and define the code LB as the

code isomorphic to RSq(k) ⊆ F
Fq
q by the action of φB. Then, denoting L = (LB : B ∈ B), we

have
Code(D,L) = Lift(RSq(k), m) .

Indeed, for every line B ∈ B, c|B ∈ LB holds if and only if φ∗B(c|B) ∈ RSq(k). It remains to
notice that φ∗B(c|B) corresponds to the evaluation of c ◦ φB on Fq.

For a fixed design D, let us understand the impact of the family L on Code(D,L). For two
families of local codes L,L′ indexed by B, we say that L ⊆ L′ if we have LB ⊆ L′B for all
B ∈ B.

Definition 2.33. We say that a family of codes L = (LB ⊆ FB
q , B ∈ B) is (1, w)-correcting if

every LB corrects at least any 1 erasure and w errors.

In the next result, we prove that the minimum distance of generalised design-based codes can
be lower-bounded, depending on the minimum of the local codes ones.

Proposition 2.34. Let t ≥ 2, and D = (X,B) be a t-(n, `+ 1, λ)-design. Let L be a family of codes
indexed by B, and C = Code(D,L). Finally, define d := min{dmin(LB), B ∈ B}. Then,

dmin(C) ≥ 1 +
n− 1
`

(d− 1) .

Proof. We will prove the result for t = 2. Since every t-(n, `+ 1, λ)-design is also a 2-(n, `+
1, λ(n−(t−2)

t−2 ))-design (see Lemma 1.10), the proposition will be also proved for larger t ≥ 2.

If C = {0}, the result trivially holds, so let us assume C 6= {0}. Let c ∈ C be a minimum-
weight codeword, wt(c) = D 6= 0. By definition there exists x ∈ X such that c(x) 6= 0. Define
Bx = {B ∈ B, x ∈ B}; we know that |Bx| = λ n−1

`−1 . Furthermore,

∑
B∈Bx

wt(c|B) = |Bx|+ ∑
B∈Bx

wt(c|B\{x}) = |Bx|+ λ(D− 1)

since every point of X \ {x} appears exactly λ times in the summation. Therefore, there must
exist a block B0 ∈ Bx such that

wt(c|B0
) ≤ 1
|Bx| ∑

B∈Bx

wt(c|B) = 1 +
λ(D− 1)
|Bx|

= 1 +
(D− 1)(`− 1)

n− 1
.

Since c|B0
∈ LB0 is non-zero, we have wt(c|B0

) ≥ d, which gives the expected result.
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As a corollary, using the same notation as in Proposition 2.34, the Singleton bound implies
that dim(C) ≤ n(1− d−1

`−1 ) +
d−1
`−1 for codes based on 2-designs.

Local correction of generalised design-based codes. We here show how our generalisation
of codes based on designs leads to locally correctable codes handling a constant fraction of
errors. A generic local correcting algorithm is presented in Algorithm 9. The analysis of the
fraction of errors the code can handle is given in Proposition 2.35 for the case of 2-designs,
and Proposition 2.36 for the case of 3-designs.

Algorithm 9: A local correcting algorithm with locality ` for a code C = Code(D,L) ⊆
FX

q , where D = (X,B) is a design of block size ` + 1, and L is bτ`c-correcting for
0 < τ < 1.

Input: x ∈ X, and an oracle access to g ∈ FX
q , |X| = n, such that d(g, f ) ≤ δn for some

f ∈ C.
Output: f (x) with high probability.
/* CorrB denotes an algorithm correcting at least bτ`c errors and 1 erasure

in the code LB. */
1 Pick uniformly at random a block B ∈ B such that x ∈ B.
2 Toss a random binary coin b, which is 0 with probability p = `/n.
3 if b = 0 then
4 Pick y uniformly at random in B \ {x}.
5 else
6 Define y = x.

7 Define A = B \ {y}.
8 Define g′ ∈ (Fq ∪ {⊥})B by g′|A = g|A and g′(y) =⊥. Run CorrB on input g′.
9 if CorrB fails then

10 Abort.

11 else
12 Denote by h ∈ FB

q the output of CorrB. Output h(x).

Proposition 2.35 (Case of 2-designs). Let 0 < τ < 1 and D be a 2-(n, `+ 1, λ)-design. Assume L
is a bτ`c-correcting family of local codes for D. Then, for every δ < τ/2, the code Code(D,L) is a
perfectly smooth (`, δ, δ/τ)-LCC.

Proof. We use the notation of Algorithm 9. Once again, the proof is similar to other proofs
for high-error resilient LCCs. We easily check the algorithm is perfectly smooth. Thanks to
Markov’s inequality, we also get:

Pr(LC(g)(x) = f (x)) ≥ 1− Pr(|E ∩ A| ≥ τ`+ 1) ≥ 1− E(|E ∩ A|)
bτ`c+ 1

,

and the average number of errors on A is bounded by

E(|E ∩ A|) = ∑
e∈E

Pr(e ∈ A) = |E| `
n
≤ δ` .

We conclude easily since δ`
bτ`c+1 ≤

δ
τ .
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Proposition 2.36 (Case of 3-designs). Let 0 < τ < 1 and D be a 3-(n, `+ 1, λ)-design. Assume L
is a bτ`c-correcting family of local codes for D. Then, for every δ < τ− 1/

√
2`, the code Code(D,L)

is a perfectly smooth (`, δ, ε)-LCC where

ε =
δ(1− δ)

(τ − δ)2 ·
1
`

.

Moreover, ε = O(1/`) when `→ ∞.

Proof. We use the notation of Algorithm 9 and we denote by E the support of the error. As
always, we begin by checking that queries are smooth, and we notice that

Pr(LC(g)(x) = f (x)) ≥ 1− Pr(|E ∩ A| ≥ bτ`c+ 1) .

For each query A of the algorithm, let us fix an ordering (a1, . . . , a`) of points in A. For
1 ≤ i ≤ `, we also consider the random variable Yi = 1ai∈E such that we have |E∩A| = ∑`

i=1 Yi.
We see that, for every 1 ≤ i ≤ `, Yi is a Bernoulli variable of parameter |E|n ≤ δ. Hence its
mean value and variance satisfy respectively E(Yi) ≤ δ and D(Yi) ≤ δ(1− δ).

Since D is a 3-design, there exists a constant number of blocks B containing any 3-subset of
X. Hence, even if we only consider the blocks that pass through x, the random variables {Yi}
are pairwise independent. Therefore we get

E(|E ∩ A|) ≤ δ` and D(|E ∩ A|) ≤ `δ(1− δ) .

From Chebyshev’s inequality, we obtain:

Pr(|E ∩ A| ≥ bτ`c+ 1) ≤ Pr
(∣∣|E ∩ A| −E(|E ∩ A|)

∣∣ ≥ bτ`c+ 1−E(|E ∩ A|)
)

≤ D(|E ∩ A|)
(bτ`c+ 1−E(|E ∩ A|))2

≤ `δ(1− δ)

(bτ`c+ 1− δ`)2

<
δ(1− δ)

(τ − δ)2 ·
1
`

.

It remains to notice that, if δ < τ − 1/
√

2`, then δ(1−δ)
`(τ−δ)2 < 1/2.

We emphasize that Proposition 2.35 and 2.36 analyse the same local correcting algorithm, but
this algorithm is applied on codes based on designs whose block structure is more or less
elaborate. The difference in the result comes from the fact that blocks in 3-designs have a
more refined structure than blocks in 2-designs, which allows the algorithm to succeed more
frequently. Using 3-designs thus provides two improvements compared to 2-designs. First,
the maximum error rate δ is now bounded by τ−O(1/

√
`) instead of τ/2. Second, the failure

probability is O(1/`) instead of O(1) when ` grows.

Remark 2.37. The use of highly structured set of queries can be found in other algebraic con-
structions of LCCs. A first occurrence might be the work of Woodruff and Yekhanin [WY05]
in the perspective of resisting collusions in private information retrieval protocols. Given a
multiplicity code (though the terminology did not appear yet), the authors proposed to re-
cover symbols by generating queries supported by low-degree curves. This idea was then
explicitly formalised for local correcting purposes in Yekhanin’s survey [Yek12], where the
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local correcting algorithm uses degree-2 curves. If we see these curves as blocks, the design
we obtain is close to be a 3-design, in the sense that most of triplets of points are contained in
a unique curve of degree 2. Quite similarly, we also report the local correction algorithm on
curves for lifted codes given by Chee, Wu and Xing in [CWX14].

Remark 2.38. We have limited our study to the cases of t-designs with t ∈ {2, 3}, because
larger values of t do not provide significant improvements on the local correction parameters,
when applying the same proof techniques as in Propositions 2.35 and 2.36.

We complete this section by recalling that 3-designs actually exist. For instance, so-called
inversive planes provide an infinite family of 3-(q2 + 1, q + 1, 1) designs. An inversive plane can
be defined as follows. Let X = Fq2 ∪ {∞} ' P1(Fq2). Let B0 = (Fq ∪ {∞}) ⊂ X, and B be the
orbit of B0 under PGL(2, Fq2), the projective linear group consisting in homographies of the
projective line P1(Fq2). Then (X,B) is a 3-design.

However, first experimentations tend to show that inversive planes do not provide non-trivial
codes. To see this, we report in Table 2.2 elementary divisors of the incidence matrices of
inversive plane over Fq, for small values of q. We observe that the associated code has dimen-
sion either 0 or 1, depending on q and the characteristic of the base field of the code. Based on
the results presented in Table 2.2, we can also conjecture that the elementary divisors of the
incidence matrix of the inversive plane over Fq are {1q2+1} if 2 | q, and {1q2

, 21} otherwise.

q ΓZ(Mq) dimF2(C) dimFp(C), p 6= 2

2 {15} 0 0
3 {19, 21} 1 0
4 {117} 0 0
5 {125, 21} 1 0
7 {149, 21} 1 0
8 {165} 0 0
9 {181, 21} 1 0
11 {1121, 21} 1 0

Table 2.2 – Elementary divisors ΓZ(Mq) of the incidence matrix Mq of the inversive
plane over Fq.

2.4.4 Further perspectives

To conclude the chapter, we open a few questions regarding the link between LCCs and
(generalised) design-based codes that has been exhibited in the last section.

First, we have seen that, given a generalised design-based code C = Code(D,L), the paramet-
ers of a local correcting algorithm for C can be derived from the structure of D and from the
error-correction capability of the family L. Naturally, this raises the following problem: given
a design D (or given a set of design parameters t, n, `, λ), find families of codes L leading to
the largest code C.

For instance, Example 2.32 proved that lifted codes — which are LCCs with particularly high
rate — can be seen as codes based on the affine geometry design D = AG(m, q) and the family
L of Reed-Solomon codes. Computations convinced us quickly that using a random family
of codes L′ (instead of the family L of Reed-Solomon codes) lead to very poor design-based
codes C = Code(D,L′). A better understanding of the very reason of this irregularity should
then be of primary relevance.
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Secondly, one could notice that codes are mathematical structures that can be considered
without any underlying decoding algorithm. However, the definition of locally correctable
codes requires to attach a local and probabilistic algorithm to the code, and the parameters of
the LCC (especially δ and ε) depend on the compatibility between the algorithm and the code.

The concept of generalised design-based codes allows us to relax this requirement, and to
see codes with locality as purely combinatorial structures. An avenue of research could be
to develop this idea and to propose a combinatorial definition for locally correctable codes,
whose parameters could then be analysed independently of an underlying decoding algorithm.
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In Chapter 2 was presented a family of high-rate and asymptotically good locally correctable
codes called lifted Reed-Solomon codes [GKS13]. We recall they are built through the evaluation
over the affine space of all the multivariate polynomials whose restriction to any affine line
can be interpolated into a low-degree univariate polynomial. The first goal of this chapter is
to give a formal definition of their analogues over projective spaces, that we name projective
lifted codes. We will see they also admit perfectly smooth local correcting algorithms, whose
parameters correspond quantitatively to the affine setting. As well, we exhibit interesting
intertwined relations between projective and affine lifted codes, similar to those that hold for
the families of Reed-Muller codes and design-based codes.
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The chapter is organised as follows. A first section is devoted the introduction of the math-
ematical background necessary to our construction. Projective lifted codes are formally in-
troduced in Section 3.2, where we also derive their first properties. We notably investigate
their degree sets, a crucial notion introduced in Guo et al.’s work [GKS13]. Local correct-
ing algorithms are proposed in Section 3.3. Last sections are devoted to further analyses
of the codes. Relations with affine lifted codes via shortening and puncturing are given in
Section 3.4; it allows us to produce recursive formulae for the dimension and some bases of
projective lifted codes. Section 3.5 is devoted to features that are commonly studied in coding
theory — such as the minimum distance, the automorphism group, or explicit information
sets. This emphasizes the practicality of lifted codes. Finally, Section 3.6 is devoted to the
practical computation of the dimension and bases of lifted codes.

3.1 Preliminaries

Let us here introduce the algebraic background for the definition of affine and projective
lifted codes. Some notation and definitions are borrowed from the seminal work of Guo et
al. [GKS13].

3.1.1 Affine and projective evaluation codes

Projective geometry. A base field Fq is fixed throughout the chapter. Coordinates of a repres-
entative of a projective point a ∈ Pm are denoted (a0 : . . . : am). We know that each projective
point admits (q− 1) different representatives; we call standard representative the only one such

that ∀j < i, aj = 0 and ai = 1. The projective space Pm contains θm,q := qm+1−1
q−1 distinct points.

The hyperplane at infinity Π∞ := {a ∈ Pm, a0 = 0} is isomorphic to Pm−1, and the bijective map
(a1, . . . , am) 7→ (1 : a1 : . . . : am) embeds Am into Pm. A projective line is a (q + 1)-subset of Pm

of the form
La,b := {xa + yb, (x : y) ∈ P1} ,

where a, b are distinct points in Pm. The line La,b is the only one containing both a and b, and
there are exactly θm−1,q = |Pm−1| = qm−1

q−1 projective lines on which a given point a ∈ Pm lies.

Polynomials and degrees. Given a multivariate polynomial f (X) = ∑d fdXd ∈ Fq[X], the
set {d ∈Nm, fd 6= 0} is called the set of degrees of f and denoted Deg( f ). This terminology is
borrowed from [GKS13] for instance. If D ⊆ Nm, we denote by Poly(D) the vector space of
polynomials generated by monomials Xd for d ∈ D:

Poly(D) := SpanFq
{Xd, d ∈ D} ⊆ Fq[X] .

For instance, f ∈ Poly(Deg(D)). We write |d| := ∑i di the weight of a tuple of integers d. Some
subsets D are of particular interest. For instance, for v ∈N,

(i) the 1-norm ball Bm
1 (v) := {d ∈Nm, |d| ≤ v} generates the space Fq[X]≤v of multivariate

polynomials of total degree bounded by v,
(ii) the ∞-norm ball Bm

∞(v) := {d ∈ Nm | di ≤ v, 1 ≤ i ≤ m} generates the space of
multivariate polynomials of partial degree bounded by v,

(iii) the 1-norm sphere Sm+1(v) := {d ∈ Nm+1, |d| = v} generates the space Fq[X]Hv of
homogeneous polynomials of degree v (plus the zero polynomial).



3.1. PRELIMINARIES 47

Evaluation of homogeneous polynomials on a projective point. For any homogeneous
polynomial f ∈ Fq[X]Hv , it is well-known that

f (λX) = λv f (X) , ∀λ ∈ F×q .

It means that different representatives of a fixed projective point may result to different eval-
uations by f . In order to remove any ambiguity, we adopt the following convention. Let
(x0 : . . . : xm) be the standard representation of a projective point x ∈ Pm. Then we define the
evaluation of f at x as:

evx( f ) := f (x0, . . . , xm) .

In other words, every projective point must be written in the unique standard representation when
evaluated by homogeneous polynomials. Thanks to this definition, the following evaluation
map can be defined without ambiguity for all v ≥ 0:

evPm : Fq[X]Hv → F
θm,q
q

f 7→ (evx( f ) : x ∈ Pm)

Recall its affine analogue is:

evAm : Fq[X] → F
qm

q
f 7→ ( f (x) : x ∈ Am)

Clearly, evPm and evAm are Fq-linear maps. Since xq = x for all x ∈ Fq, we have

ker(evAm) = SpanFq[X]{X
q
i − Xi, 1 ≤ i ≤ m} . (3.1)

Moreover, since evPm evaluates homogeneous polynomials, for a fixed v ∈N we obtain

ker(evPm) =
(

SpanFq[X]

{
Xq

i Xj − XiX
q
j , ∀i 6= j ∈ {0, . . . , m}

})
∩Fq[X]Hv . (3.2)

Proofs can be found in [RTR97] for instance.

Evaluation codes. We have seen in previous chapters that a common way to build linear
codes is to evaluate polynomials over a list of points. Let us here formally define the family
of evaluation codes we are studying.

Definition 3.1 (affine evaluation code). Let F be a linear subspace of Fq[X]. The affine eval-
uation code associated to F is the Fq-linear code of length n = |Am| = qm composed by the
evaluation vectors of polynomials in F :

evAm(F ) = {evAm( f ), f ∈ F} ⊆ FAm

q .

Definition 3.2 (projective evaluation code). Let v ∈ N and F be a linear subspace of Fq[X]Hv .
The projective evaluation code associated to F is the Fq-linear code of length n = |Pm| = θm,q
composed by the evaluation vectors of polynomials in F :

evPm(F ) = {evPm( f ), f ∈ F} ⊆ FPm

q .

We point out a specific class of evaluation codes, generated by evaluation vectors of monomi-
als. As we will see later, so-called monomial codes turn out to be very convenient to describe.

Definition 3.3 (monomial code). An affine evaluation code C = evAm(F ) (resp. a projective
evaluation code C = evPm(F )) is said to be monomial if F = Poly(D) for some D ⊆Nm (resp.
D ⊆ Sm+1(v)).
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Projective Reed-Solomon and Reed-Muller codes.

Definition 3.4 (Projective Reed-Solomon code). Let 0 ≤ k ≤ q− 1. The projective Reed-Solomon
code of degree k over Fq is the linear code of length q + 1 = |P1| consisting in the evaluation
of bivariate homogeneous polynomials of degree k over Fq:

PRSq(k) := {evP1( f ), f ∈ Fq[X, Y]Hk } .

Projective Reed-Solomon codes are [q + 1, k + 1, q− k]-MDS codes over Fq. In the literature,
they are sometimes called extended, or doubly-extended Reed-Solomon codes. The reason is
that, when puncturing PRSq(k) ⊆ FP1

q on the point at infinity (0 : 1), we obtain the full-length
Reed-Solomon code RSq(k).

Similarly, Reed-Muller codes admit analogues in projective spaces, which were firstly defined
and studied by Lachaud [Lac86, Lac90] and Sørensen [Sør91].

Definition 3.5 (Projective Reed-Muller code). Let 0 ≤ v ≤ m(q− 1). The projective Reed-Muller
code of order m and degree v over Fq is the linear code of length |Pm| = (qm+1 − 1)/(q −
1) consisting in evaluation vectors of (m + 1)-variate homogeneous polynomials over Fq of
degree v:

PRMq(m, v) := {evPm( f ), f ∈ Fq[X]Hv } .

The dimension of PRMq(m, v) has been given by Sørensen [Sør91]:

dim(PRMq(m, v)) = ∑
t∈Iv

(
m+1

∑
j=0

(−1)j
(

m + 1
j

)(
t− jq + m

t− jq

))
, (3.3)

where Iv = {t ∈ [1, v], t ≡ v mod q − 1}. Notice that, for small v ≤ q − 1, Equation (3.3)
simplifies to dim(PRMq(m, v)) = (m+v

v ).

By definition, we see that PRMq(1, k) = PRSq(k) for every 0 ≤ k ≤ q− 1.

3.1.2 Reduced degree sets

In the previous subsection, we have seen that well-known families of linear codes are defined
as the image of polynomials by evaluation maps. For coding theoretic reasons (e.g. giving the
dimension of the code, or computing a basis), it is interesting to find sets D ⊆ Sm+1(v) (resp.
D ⊆ Bm

1 (v)) such that the evaluation map evPm (resp. evAm ) is injective over Poly(D).

Generally, we can group monomials according to their evaluation over the affine (resp. pro-
jective) space. Then, in each class of monomials, we can point out a specific representative
Xd — typically the lowest one according to a certain monomial order — and its exponent d
represents its whole class of monomials. Such exponents d will be referred to as reduced tuples,
or reduced degrees.

Definition 3.6 (A and P-reduced tuples).

1. A tuple d ∈Nm is A-reduced if it lies in Bm
∞(q− 1).

2. A tuple d = (d0, . . . , dm) ∈Nm+1 is P-reduced if, for all 0 ≤ i ≤ m:

di ≥ q ⇒
{

dj = 0 ∀j < i ,
dj ≤ q− 1 ∀j > i .
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We see that any A-reduced tuple is also P-reduced. We also say that a set D of tuples is
A-reduced (resp. P-reduced) if every tuple it contains is A-reduced (resp. P-reduced).

We denote by (e1, . . . , em) the canonical basis of Nm. If d = (d1, . . . , dm) ∈ Nm and 1 ≤ j ≤ m
is such that dj ≥ q, then we define

ρj(d) := d− (q− 1)ej .

Similarly, if d ∈ Sm+1(v) for some v > 0, and 0 ≤ i < j ≤ m are such that dj ≥ q and di ≥ 1,
we define

τij(d) := d + (q− 1)(ei − ej) .

Remark 3.7. Let d ∈Nm. From (3.1) we see that evAm(Xρj(d)) = evAm(Xd) for every 1 ≤ j ≤ m
such that dj ≥ q. Moreover, as long as they are defined, ρj ◦ ρ` = ρ` ◦ ρj. Let us consider the
image of d after repeatedly applying maps ρj until we cannot apply any of them. Then, we
can see that the tuple we get is A-reduced.

Similarly, let d ∈ Sm+1(v) and 0 ≤ i < j ≤ m. First notice that |τij(d)| = |d|, hence every
map τij lets Sm+1(v) invariant. We also have evPm(Xτij(d)) = evPm(Xd), and as long as they are
defined, τij ◦ τk` = τk` ◦ τij. So once again, if we consider the image of d after applying maps
τij while it is possible, we get a P-reduced tuple.

The previous remark naturally leads to the upcoming definitions.

Definition 3.8. Let d ∈ Nm. The A-reduction of d is the tuple d ∈ Nm which is obtained by
applying iteratively ρj (for 1 ≤ j ≤ m) until the result lies in Bm

∞(q− 1). It satisfies evAm(Xd) =

evAm(Xd). The A-reduction of D ⊆Nm+1, denoted D, consists in the A-reduction of the tuples
in D.

Definition 3.9. Let d ∈ Sm+1(v) for some v ≥ 0. The P-reduction of d is the tuple d ∈ Sm+1(v)
which is obtained by applying iteratively τij (for 0 ≤ i < j ≤ m) until the result is P-reduced.
It satisfies evPm(Xd) = evPm(Xd). The P-reduction of D ⊆ Sm+1(v), denoted D, consists in the
P-reduction of the tuples in D.

A- and P-reduction are defined in order to make the evaluation maps evAm and evPm injective
over polynomial spaces of the form Poly(D), where D is A- or P-reduced. Next lemma details
these properties.

Lemma 3.10. Let m ≥ 1 and v ∈N. The following properties hold:

1. If D ⊆Nm is A-reduced, then the map evAm is injective over Poly(D).
2. If D ⊆ Sm+1(v) is P-reduced, then the map evPm is injective over Poly(D).
3. For every D ⊆Nm, the A-reduction D of D is the unique A-reduced subset of Nm satisfying

evAm(Poly(D)) = evAm(Poly(D)) .

4. For every D ⊆ Sm+1(v), the P-reduction D of D is the unique P-reduced subset of Sm+1(v)
satisfying

evPm(Poly(D)) = evPm(Poly(D)) .

Proof.

1. By definition, if D is A-reduced, then D is a subset of Bm
∞(q− 1). Therefore Poly(D) ∩

Span{Xq
i − Xi, 1 ≤ i ≤ m} = {0}. The result follows from the fact that evAm vanishes

only on Span{Xq
i − Xi, 1 ≤ i ≤ m}.
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2. Recall that Equation (3.2) states that

ker(evPm) = Span{Xq
i Xj − XiX

q
j , 0 ≤ i < j ≤ m} ∩Fq[X]Hv .

We prove the statement by induction over m.

For m = 1 and v ∈ N, let D be a P-reduced subset of S2(v). If v ≤ q, it is clear that
ker(evP1) ∩ Poly(D) = {0}. So assume v > q and let f (X, Y) ∈ Poly(D) ∩ ker(evP1).
Since D is P-reduced, we can write

f (X, Y) := fvYv +
q−1

∑
i=0

fiXv−iYi .

Then, we see that fv = f (0, 1) = 0, hence the polynomial g(Y) := f (1, Y) = ∑
q−1
i=0 fiYi

lies in Poly(D′), for some set D′ ⊆ B1
∞(q − 1). Moreover f ∈ ker(evP1) implies that

g ∈ ker(evA1). Hence, applying the first point of this lemma to subset D′ shows that
g = 0, and f = 0 follows.

For m > 1, let v ∈ N. The proof works similarly. Let D be a P-reduced subset of
Sm+1(v), and let

f (X) := f0(X1, . . . , Xm) + X0 f1(X0, X1, . . . , Xm) ∈ Poly(D) ∩ ker(evPm) .

Since f0 does not depend on X0, we can see that f0 ∈ ker(evPm−1) and f0 ∈ Poly(D0)
where D0 ⊂ Sm(v). Furthermore, D0 is P-reduced as a subset of D. Therefore, by
induction f0 = 0, and f = X0 f1(X0, X1, . . . , Xm) follows. Let us define g(X1, . . . , Xm) :=
f (1, X1, . . . , Xm); we see that g ∈ ker(evAm) and g ∈ Poly(D′) where D′ ⊆ Bm

∞(q − 1)
since D is P-reduced and every tuple in D′ comes from a tuple d ∈ D such that d0 6= 0.
Thanks again to the first point of the lemma, it follows that g = 0. Therefore, f = αXv

0
for some α ∈ Fq, which necessarily implies f = 0 (evaluate f at (1 : 0 : . . . : 0)).

3. Since evAm(Xd) = evAm(Xd) for every d ∈Nm, we have evAm(Poly(D)) = evAm(Poly(D)).
Uniqueness comes from the injectivity of evAm .

4. Same argument.

Definition 3.11 (Degree set). Let C = evAm(Poly(D)) be an affine (resp. let C = evPm(Poly(D))
be a projective) monomial code. Its degree set is the unique A-reduction (resp. P-reduction) of
D, and is denoted Deg(C).

By definition, if C is monomial, then we have C = ev(Poly(Deg(C))) where ev ∈ {evAm , evPm}
depending on the context. Moreover, since the evaluation map is injective over Poly(Deg(C)),
it also holds that:

dim(C) = |Deg(C)| .

Example 3.12. Reed-Solomon and Reed-Muller codes, as well as their projective analogues,
are monomial codes. Table 3.1 presents their degree sets.

3.1.3 Isomorphisms and embeddings

The original definition of affine lifted codes makes use of restriction of polynomials to lines.
We here give a formalism that embrace this notion for both affine and projective spaces.



3.1. PRELIMINARIES 51

Code Degree set

Reed-Solomon code RSq(k) B1
1(k) = {0, 1, . . . , k}

Reed-Muller code RMq(m, v) Bm
1 (v) = {e | e ∈Nm, |e| ≤ v}

projective Reed-Solomon code PRSq(k) S2
1(k) = {(k, 0), (k− 1, 1), . . . , (0, k)}

projective Reed-Muller code PRMq(m, v) Sm+1
1 (v) = {d | d ∈Nm+1, |d| = v}

Table 3.1 – Degree sets of some classical monomial codes.

Isomorphisms. Each isomorphism ψ ∈ Iso(Fm+1
q ) induces a permutation of Pm, but ψ does

not necessarily preserve the standard representation of projective points. Still, for every x ∈
Pm there exists λψ,x ∈ F×q such that the standard representative of ψ(x) is λψ,xψ(x). For every
f ∈ Fq[X]Hv , we then have:

evψ(x)( f ) = f (λψ,xψ(x)) = (λψ,x)
v f (ψ(x)) = (λψ,x)

v evx( f ◦ ψ) ,

and we see that (λψ,x)v does not depend on f (only on its total degree). So let us denote by
w(ψ,v) := ((λψ,x)−v : x ∈ Pm) ∈ (F×q )

Pm
. Then, we have:

evPm( f ◦ ψ) = w(ψ,v) ? ψ∗(evPm( f )) ,

where we recall that ψ∗ denotes the permutation of tuples indexed by Pm which is induced
by ψ. Thus it is natural to introduce the group of isomorphisms Projv(P

m) := {(w(ψ,v), ψ), ψ ∈
Iso(Fm+1

q )} ⊆ FPm

q ×S(Pm). One notices that Projv(P
m) ⊆ Aut(PRMq(m, v)), since for every

f ∈ Fq[X]Hv and every ψ ∈ Iso(Fm+1
q ), the polynomial f ◦ ψ also lies in Fq[X]Hv .

Embeddings. Let EmbP(m) be the set of full-rank (i.e. injective) linear maps from F2
q to Fm+1

q :

EmbP(m) := {L ∈ Hom(F2
q, Fm+1

q ), rank(L) = 2} .

Each L ∈ EmbP(m) induces a projective embedding P1 → Pm sending (x : y) 7→ L(x, y).
One can easily check that this map is well-defined over projective spaces. Moreover, the set
{L(P1), L ∈ EmbP(m)} describes all the projective lines of Pm, although a projective line is
obviously associated to many maps L in EmbP(m). Similarly, the set

EmbA(m) := {L′ = (L1, . . . , Lm) ∈ Hom(F2
q, Fm

q ) | L = (L0, . . . , Lm) ∈ EmbP(m)}

defines affine embeddings A1 → Am by t 7→ L′(1, t). The set {L′(1, A1), L′ ∈ EmbA(m)} is
the set of affine lines of Am. Also notice that the embeddings A1 → Am we describe here
are exactly those in Aff(Fq, Fm

q ), but we prefer the formalism given by EmbA(m) due to its
similarity with the projective setting.

Remark 3.13. For convenience and when the context is clear, we will improperly write L′(t)
instead of L′(1, t). By using this notation, we want to emphasize that, for every f ∈ Fq[X] and
every L′ ∈ EmbA(m), the map t 7→ f (L′(1, t)) can be interpolated as a univariate polynomial
denoted f ◦ L′ ∈ Fq[T].

Remark 3.14. For local correction purposes (see Section 3.3), it is important to notice the
following points.
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1. In the affine setting, for every L′ ∈ EmbA(m) and f ∈ Fq[X], the word evA1( f ◦ L′) is
the subword of evAm( f ) with coordinates L′(A1) ⊂ Am.

2. In the projective setting, evP1( f ◦ L) is not necessary a subword of evPm( f ), since nothing
asserts that L preserves the standard representation of projective points. This issue is
similar to the one concerning isomorphisms, and we solve it the same manner. Let
x ∈ P1 and L ∈ EmbP(m). We know there exists λL,x ∈ F×q such that the standard
representative of L(x) is λL,xL(x) ∈ Pm. Then it holds:

∀ f ∈ Fq[x]Hv , evL(x)( f ) = f (λL,xL(x)) = (λL,x)
v( f ◦ L)(x) .

Therefore, as previously we define w(L,v) := ((λL,x)
−v : x ∈ P1) ∈ (F×q )

P1
. Then

(w(L,v))−1 ? evP1( f ◦ L) is the subword of evPm( f ) with coordinates L(P1) ⊂ Pm.

Let us illustrate the second point of Remark 3.14 with a simple example.

Example 3.15. For clarity, let us fix an ordering of points in P1(F3) and P2(F3):

P1(F3) =
(
(1 : 1), (1 : 2), (1 : 0), (0 : 1)

)
P2(F3) =

(
(1 : 1 : 1), (1 : 1 : 2), (1 : 1 : 0), (1 : 2 : 1), (1 : 2 : 2), (1 : 2 : 0),
(1 : 0 : 1), (1 : 0 : 2), (1 : 0 : 0), (0 : 1 : 1), (0 : 1 : 2), (0 : 1 : 0), (0 : 0 : 1)

)
Let f = X1 ∈ F3[X0, X1, X2]H1 and L = (L0, L1, L2) ∈ EmbP(2) defined by

L0(S, T) = S + T,
L1(S, T) = T,
L2(S, T) = S .

Denote by c = evP2( f ) = (1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0) ∈ F13
3 . On the one hand we have

L(P1) = ((2 : 1 : 1), (0 : 2 : 1), (1 : 0 : 1), (1 : 1 : 0))
= ((1 : 2 : 2), (0 : 1 : 2), (1 : 0 : 1), (1 : 1 : 0)) ,

(3.4)

hence c|L(P1) = (c5, c11, c7, c3) = (2, 1, 0, 1). On the other hand ( f ◦ L)(S, T) = T ∈ F3[S, T]H1 ,
and we get evP1( f ◦ L) = (1, 2, 0, 1). So clearly c|L(P1) 6= evP1( f ◦ L).

Nevertheless, w(L,1) can be obtained through the homogenisation made in (3.4):

w(L,1) = (2, 2, 1, 1) .

Therefore it gives:
evP1( f ◦ L) = (2, 1, 0, 1) = w(L,1) ? c|L(P1) .

3.2 Definition and first properties of projective lifted codes

Before introducing the construction of projective lifted codes, we recall the definition of affine
lifted codes given by Guo, Kopparty and Sudan [GKS13]. We restrict our study to the lifting
of projective Reed-Solomon codes, but we are convinced that our construction can be extra-
polated to the lifting of projective Reed-Muller codes. Notice that our formalism is slightly
different from the paper of [GKS13], since their notion of restriction f|L of a polynomial f
along a line L is somewhat ambiguous.
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3.2.1 Affine lifted codes

We recall that, for f ∈ Fq[X] and L ∈ EmbA(m), the notation f ◦ L represents the univariate
polynomial f (L(1, T)). The affine lifting of order m of the Reed-Solomon code RSq(k) is

Lift(RSq(k), m) := {evAm( f ) | f ∈ Fq[X] such that ∀L ∈ EmbA(m), evA1( f ◦ L) ∈ RSq(k)} .

In this chapter, Lift(RSq(k), m) will be referred to as an affine lifted code for short, since we will
only deal with lifted Reed-Solomon codes.

We first introduce a few additional notation. For a non-negative integer a, we denote by
∑i a(i)pi its p-adic decomposition. One can now define a partial order ≤p over N by:

a ≤p b ⇐⇒ a(i) ≤ b(i), ∀i . (3.5)

Relation ≤p can be naturally extended to m-tuples by a ≤p b ⇐⇒ ∀j, aj ≤p bj. We also
extend usual binomial coefficients to m-tuple entries by (a

b) := ∏m
i=1 (

ai
bi
).

Guo et al. proved that every affine lifted code Lift(RSq(k), m) is a monomial code that satisfies

Lift(RSq(k), m) = SpanFq

{
evAm(Xd)

∣∣∣ d ∈ Bm
∞(q− 1), ∀e ≤p d, |e| ≤ k

}
, (3.6)

where p = char(Fq) and |e| = ∑i ei. Furthermore, a careful observation of their degree sets
shows that Lift(RSq(k), m) fits between two projective Reed-Muller codes:

RMq(m, k) ⊆ Lift(RSq(k), m) ⊆ RMq(m, k + (m− 1)(q− 1)) . (3.7)

We also recall that the main interest of affine lifted codes appears for k ≥ q− q
p , where the first

inclusion is proper [KR06]. More details can be found in a previous chapter (Subsection 2.2.3),
and methods for the precise computation of degree sets will be given in Section 3.6.

3.2.2 Projective lifted codes

We are now ready to define the projective analogues of lifted Reed-Solomon codes. One wants
to define them as projective evaluation codes corresponding to a subspace of polynomials
which satisfy a collection of local constraints. Recall we build evaluation codes over projective
spaces by evaluating homogeneous polynomials of fixed degree v. It raises the problem of
determining a meaningful expression for v. By analogy with the affine setting, Equation (3.7)
suggests to set v = vm,k := k + (m− 1)(q− 1).

Definition 3.16 (projective lifted code). Let 0 ≤ k ≤ q, m ≥ 1 and v = k + (m− 1)(q− 1). The
projective lifting of order m of the projective Reed-Solomon code PRSq(k) is

Lift(PRSq(k), m) := {evPm( f ) | f ∈ Fq[X]Hv , ∀L ∈ EmbP(m), evP1( f ◦ L) ∈ PRSq(k)} .

Such a code will be called a projective lifted code for short, and its length equals θm,q = |Pm| =
(qm+1 − 1)/(q− 1).

Let us get rid of the case k = q as of now. The associated projective Reed-Solomon code
PRSq(q) = FP1

q is degenerate. Hence we get Lift(PRSq(q), m) = FPm

q , which is also degenerate.
Also notice that, for k ≤ q− 1, it clearly holds that Lift(PRSq(k), 1) = PRSq(k).

So, from now on, if not stated otherwise we assume m ≥ 2 and 0 ≤ k ≤ q− 1.
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3.2.3 Monomiality of projective lifted codes

Similarly to the affine setting, a main issue remains to give a basis of Lift(PRSq(k), m). In this
subsection, we prove that projective lifted codes are monomial, and then we compute their
degree set. Precisely, we state the following new result, which proves the monomiality of a
broader family of codes.

Theorem 3.17. Let C = evPm(F ) be a projective evaluation code, where F is a subspace of Fq[X]Hv
for some m, v ≥ 1. Assume that Projv(P

m) ⊆ Aut(C). Then C is monomial.

Before diving straight into the proof, we first observe that Projv(P
m) contains elements (w(ψ,v), ψ)

where ψ ∈ Iso(Fm+1
q ) can be:

– a diagonal isomorphism diaga for any a ∈ (F×q )
m+1, where

diaga : Pm → Pm

(x0 : . . . : xm) 7→ (a0x0 : . . . : amxm)

– an elementary transposition si,j for any 0 ≤ i, j ≤ m, i 6= j, where

si,j : Pm → Pm

(x0 : . . . : xi : . . . : xj : . . . : xm) 7→ (x0 : . . . : xj : . . . : xi : . . . : xm)

– an elementary transvection ti,j,β for any 0 ≤ i, j ≤ m, i 6= j, and β ∈ Fq, where

ti,j,β : Pm → Pm

(x0 : . . . : xi : . . . : xm) 7→ (x0 : . . . : xi + βxj : . . . : xm)

We first need to prove a technical lemma.

Lemma 3.18. The following equality over bivariate polynomials holds:

∑
β∈Fq

(βX + Y)q−1 = −Xq−1 .

Proof. Let F(X, Y) = ∑β∈Fq
(βX + Y)q−1 + Xq−1. Since evA2 is injective over polynomials of

partial degree bounded by q− 1, it is sufficient to prove that evA2(F) = 0.

Let (x, y) ∈ F2
q. If x = 0, then F(x, y) = F(0, y) = ∑β∈Fq

yq−1 = 0. Otherwise, β 7→ βx + y is a
bijection over Fq, hence we have:

F(x, y) = ∑
β∈Fq

(βx + y)q−1 + xq−1 = ∑
γ∈Fq

γq−1 + 1 = q− 1 + 1 = 0 .

Proof of Theorem 3.17. Let c = evPm( f ) ∈ C, where f = ∑d fdXd, and denote by D = Deg( f ) =
{d, fd 6= 0}. Our goal is to prove that every d ∈ D satisfies evPm(Xd) ∈ C. The proof will
consist in three main parts:

(i) we show that evPm(Qd(X)) ∈ C, where Qd(X) is a polynomial such that d ∈ Deg(Qd),
and such that Deg(Qd) is much smaller than Deg(C);

(ii) we analyse and rewrite Deg(Qd), which then allows us to write the polynomial Qd(X)

as Xd1
1 . . . Xda

a R(X0, Xa+1, . . . , Xm) for some (m− a+ 1)-variate homogeneous polynomial
R;
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(iii) we prove that, if there exists an (m− a + 1)-variate polynomial R satisfying some pre-
scribed properties and such that evPm(Xd1

1 . . . Xda
a R(X0, Xa+1, . . . , Xm)) ∈ C, then we can

compute an (m− a)-variate polynomial R′ satisfying the same properties, and such that
the vector evPm(Xd1

1 . . . Xda+1
a+1 R′(X0, Xa+2, . . . , Xm)) ∈ C.

Reasoning inductively on the last part will conclude the proof.

Proof of part (i). Let d ∈ D, and define

Qd(X) := (−1)m+1 ∑
a∈(F×q )m+1

( m

∏
i=0

a−di
i

)
( f ◦ diaga)(X) .

Since C is linear and diaga ∈ Aut(C) for every a ∈ (F×q )
m+1, we know that evPm(Qd(X)) lies

in C. Let us now rewrite Qd(X):

Qd(X) = (−1)m+1 ∑
a∈(F×q )m+1

( m

∏
i=0

a−di
i

)
∑

j
fj aj0

0 . . . ajm
m X j

= (−1)m+1 ∑
j

fj ∑
a∈(F×q )m+1

( m

∏
i=0

aji−di
i

)
X j

One can notice that developping the product ∏m
i=0(∑ai∈F×q

aji−di
i ) gives ∑a∈(F×q )m+1 ∏m

i=0 aji−di
i .

Hence we get:

Qd(X) = (−1)m+1 ∑
j

fj

m

∏
i=0

(
∑

ai∈F×q

aji−di
i︸ ︷︷ ︸

=0 if ji 6≡di mod (q−1), −1 otherwise

)
X j

= ∑
j∈Ed

fjX j ,

where Ed = {j ∈ D, j ≡ d mod (q− 1)} ⊆ D.

Proof of part (ii). The code C is invariant under the action of elementary switches of coordinates.
Therefore one can assume without loss of generality that, if they exist, the only coordinates
di of d satisfying q− 1 | di all lie at the end of the tuple d. Furthermore, by P-reduction and
by definition of Ed, we can assume that, if di /∈ {0, q− 1} then di = ji, except maybe for the
leftmost non-zero coordinate of j and d. To sum up, without loss of generality there exists an
index a ∈ [1, m] such that every j ∈ Ed satisfies the following three properties

∀1 ≤ i ≤ a, we have ji = di < q− 1
∀a < i ≤ m, we have ji ∈ {0, q− 1} and di ∈ {0, q− 1}
j0 = v−∑m

i=1 ji .

Therefore, Qd(X) can be written as Xd1
1 . . . Xda

a R(X0, Xa+1, . . . , Xm), where R is an homogen-
eous polynomial of degree v−∑a

i=1 di, whose monomials have partial degree either 0 or q− 1,
for every coordinate Xi, i > a.

Proof of part (iii). Recall that we want to prove that evPm(Xd0
0 Xd1

1 . . . Xdm
m ) ∈ C, and we know that

evPm(Qd(X)) ∈ C. Our strategy is to proceed inductively, from i = a to m, by proving there
exists an (m− i + 1)-variate polynomial Ri such that d ∈ Deg(Xd1

1 . . . Xdi
i Ri(X0, Xi+1, . . . , Xm))

and evPm(Xd1
1 . . . Xdi

i Ri(X0, Xi+1, . . . , Xm)) ∈ C. Notice that step i = a has been proved in part
(ii), and that step i = m concludes the proof. Hence there remains to prove the induction step.
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Write Ri = R′i + Xq−1
i+1 R′′i , where polynomials R′i and R′′i do not depend on Xi+1. Let Si =

Xd1
1 . . . Xdi

i Ri(X0, Xi+1, . . . , Xm), and assume that evPm(Si) ∈ C and d ∈ Deg(Si). If R′′i = 0,
then the induction step is proved. Otherwise:

• 1st case: di+1 = 0. Since ∑β∈Fq
(Xi+1 + βX0)q−1 = −Xq−1

0 (see Lemma 3.18), we get

∑
β∈Fq

Si(X0, . . . , Xi+1 + βX0, . . . , Xm)

= Xd1
1 . . . Xdi

i ∑
β∈Fq

(
R′i(X0, Xi+2, . . . , Xm) + (Xi+1 + βX0)

q−1R′′i (X0, Xi+2, . . . , Xm)
)

=
(

∑
β∈Fq

Xd1
1 . . . Xdi

i R′i(X0, Xi+2, . . . , Xm)
)
− Xd1

1 . . . Xdi
i Xq−1

0 R′′i (X0, Xi+2, . . . , Xm)

= −Xd1
1 . . . Xdi

i Xq−1
0 R′′i (X0, Xi+2, . . . , Xm) .

By linearity and invariance of C under transvections, evPm(Si) ∈ C ensures that the word
evPm(Xd1

1 . . . Xdi
i Xq−1

0 R′′i (X0, Xi+2, . . . , Xm)) ∈ C. We conclude by defining Ri+1 = −Xq−1
0 R′′i .

• 2nd case: di+1 = q− 1. Since ∑β∈Fq
(βXi+1 + X0)q−1 = −Xq−1

i+1 , we get

∑
β∈Fq

Si(X0, . . . , Xi+1 + βX0, . . . , Xm)

= Xd1
1 . . . Xdi

i ∑
β∈Fq

(
R′i(X0, Xi+2, . . . , Xm) + (βXi+1 + X0)

q−1R′′i (X0, Xi+2, . . . , Xm)
)

= −Xd1
1 . . . Xdi

i Xq−1
i+1 R′′i (X0, Xi+2, . . . , Xm) .

Similarly to the first case, we can conclude by defining Ri+1 = −R′′i .

The converse of Theorem 3.17 is obviously false: for instance, if F = SpanFq
{XY, Y2}, then

evP2(F ) is monomial, but not invariant under Proj2(P
2).

A good point is that, similarly to PRM codes, projective lifted codes can be proved invariant
under Projv(P

m).

Lemma 3.19. Let k ≤ q− 1, m ≥ 1 and C = Lift(PRSq(k), m). Then Projv(P
m) ⊆ Aut(C). Said

differently,
∀c = evPm( f ) ∈ C, ∀ψ ∈ Iso(Fm+1

q ), evPm( f ◦ ψ) ∈ C .

Proof. It is sufficient to notice that, for every L ∈ EmbP(m) and every ψ ∈ Iso(Fm+1
q ), the map

ψ ◦ L also lies in EmbP(m).

As a corollary, Theorem 3.17 implies that

Corollary 3.20. Every projective lifted code is monomial.

3.2.4 Degree sets of lifted codes

A natural question is now to determine the degree set of Lift(PRSq(k), m). Let us first recall
that affine lifted codes have the following degree sets (see Equation (3.6)):

ADegq(m, k) := Deg(Lift(RSq(k), m)) = {d ∈ Bm
∞(q− 1) | ∀e ≤p d, |e| ≤ k} .
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Similarly, we define PDegq(m, k) := Deg(Lift(PRSq(k), m)).

In this subsection, we state a few links between degree sets of affine and projective lifted codes.
Propositions 3.21 and 3.22 show that every d ∈ PDegq(m, k) can be bijectively sent either to
ADegq(m, k − 1) or to PDegq(m− 1, k), according to the value of d0. Thus, in Theorem 3.23
we derive a recursive formula on the degree sets of affine and projective lifted codes, which
translates into another recursive formula on the dimension of these codes (Corollary 3.24).

Proposition 3.21. Let v = k+ (m− 1)(q− 1) for 1 ≤ k ≤ q− 1 and m ≥ 2. Let also d = (d0, d∗) ∈
Sm+1(v) such that d0 6= 0. Then:

evPm(Xd0
0 Xd∗) ∈ Lift(PRSq(k), m) ⇐⇒ evAm(Xd∗) ∈ Lift(RSq(k− 1), m) ,

or, equivalently,

d = (d0, d∗) ∈ PDegq(m, k) ⇐⇒ d∗ ∈ ADegq(m, k− 1) .

Proof. (⇒). Let evPm(Xd0
0 Xd∗) ∈ Lift(PRSq(k), m) with d0 6= 0, and L′ ∈ EmbA(m). We need

to prove that evA1(Xd∗ ◦ L′) ∈ RSq(k− 1). Let us define L = (L0, . . . , Lm) ∈ Hom(F2
q, Fm+1

q ) as
follows:

– the last m coordinate-maps (L1, . . . , Lm) equal L′,
– the first coordinate-map L0 is chosen to be either L0(S, T) = S or L0(S, T) = T, in order

to have rank(L) = 2.

Now notice that without loss of generality we can assume that L0(S, T) = S. Two points could
be clarified here. First, if the linear map (S, L′(S, T)) has rank 1, by definition of EmbA(m) the
linear map (T, L′(S, T)) has rank 2. Second, the particular choice L0(S, T) = S can be done
since PRSq(k) is invariant under Proj(P1).

Finally we get

evP1(Xd0
0 Xd∗ ◦ L) = evP1(X0Xd∗ ◦ L) = evP1(S · (Xd∗ ◦ L′)(S, T)) ∈ PRSq(k) (3.8)

since Xd0
0 Xd∗ and X0Xd∗ evaluate identically, and by definition of projective lifted codes.

Moreover, we know that any homogeneous polynomial P(S, T) satisfies

evP1(S · P(S, T)) ∈ PRSq(k) ⇐⇒ evA1(P(1, T)) ∈ RSq(k− 1) . (3.9)

Applying this to P(S, T) = (Xd∗ ◦ L′)(S, T), we get our result.

(⇐). Let evAm(Xd∗) ∈ Lift(RSq(k − 1), m) and L ∈ EmbP(m). Let also d0 6= 0 such that
(d0, d∗) ∈ Sm+1(v). We need to prove that evP1(Xd0 Xd∗ ◦ L) ∈ PRSq(k). If L0 = 0, then the
result holds since 0 ∈ PRSq(k). Otherwise, it is worthwhile to notice that, since PRSq(k) is
invariant under Proj(P1), we can assume without loss of generality that L0(S, T) = S. Define
L′ = (L1, . . . , Lm), which lies in EmbA(m) by definition. Therefore evA1(Xd∗ ◦ L′) ∈ RSq(k− 1),
and using (3.8) and (3.9), we prove the expected result.

Similarly, we have:

Proposition 3.22. Let v = k+ (m− 1)(q− 1) for 1 ≤ k ≤ q− 1 and m ≥ 2. Let also d = (d0, d∗) ∈
Sm+1(v), and assume that d0 = 0. Then:

evPm(Xd) ∈ Lift(PRSq(k), m) ⇐⇒ evPm−1(Xd∗) ∈ Lift(PRSq(k), m− 1) ,

or equivalently,
d = (0, d∗) ∈ PDegq(m, k) ⇐⇒ d∗ ∈ PDegq(m− 1, k) .



58 CHAPTER 3. PROJECTIVE LIFTED CODES

Proof. (⇒). Let evPm(Xd) ∈ Lift(PRSq(k), m) where d = (d0, d∗) and d0 = 0. Let also L′ ∈
EmbP(m− 1). We need to prove that evP1(Xd∗ ◦ L′) ∈ PRSq(k). First, notice that any linear
map L0 ∈ Hom(F2

q, Fq) extends L′ to L = (L0, L′) ∈ EmbP(m). Therefore,

evP1(Xd∗ ◦ L′) = evP1(X0
0Xd∗ ◦ L) = evP1(Xd ◦ L) (3.10)

lies in PRSq(k) since evPm(Xd) ∈ Lift(PRSq(k), m).

(⇐). Let d = (d0, d∗) ∈ Sm+1(v) with d0 = 0, and assume that evPm−1(Xd∗) ∈ Lift(PRSq(k), m−
1). Let also L ∈ EmbP(m). We need to prove that evP1(Xd ◦ L) ∈ PRSq(k). Write L = (L0, L′).
If L′ ∈ EmbP(m− 1), then the result follows using (3.10). The case rank L′ = 1 is a bit trickier.
Since Projk(P

1) lets the code PRSq(k) invariant, we can assume without loss of generality that
L′(S, T) can be written (λ1S, . . . , λmS) with some non-zero tuple (λ1, . . . , λm) ∈ Fm

q . Therefore,
(Xd ◦ L)(S, T) = αS|d

∗| with α ∈ Fq, and evP1(Xd ◦ L) = α evP1(S|d
∗|) ∈ PRSq(k) since the P-

reduction of (|d∗|, 0) is (k, 0) which lies in Deg(PRSq(k)).

In Propositions 3.21 and 3.22 we avoided the case k = 0. Let us treat it here. PRSq(0) is the
repetition code of length (q + 1) over Fq. Therefore, the definition of projective lifted codes
impose that their codewords correspond to polynomials that evaluate as constants on every
projective line of the space. Since projective lines intersects, the constant must be the same for
every line. It means that Lift(PRSq(0), m) is the repetition code of length |Pm|. Now, notice
that this extends Propositions 3.21 and 3.22, by using the convention RSq(−1) := {0}.

This leads us to the following theorem.

Theorem 3.23. For every m ≥ 2 and 0 ≤ k ≤ q− 1, there is a bijection between PDeg(m, k) and
PDeg(m− 1, k) ∪ADeg(m, k− 1).

Proof. According to Propositions 3.21 and 3.22, this bijection is given by:

d = (d0, d∗) 7→
{

d∗ ∈ ADeg(m, k− 1) if d0 6= 0
d∗ ∈ PDeg(m− 1, k) otherwise.

A recursive formula on the dimension of lifted codes can be easily derived from the last
theorem.

Corollary 3.24. Let m ≥ 2 and 0 ≤ k ≤ q− 1. Then,

dim(Lift(PRSq(k), m)) = dim(Lift(PRSq(k), m− 1) + dim(Lift(RSq(k− 1), m)) .

Since Lift(PRSq(k), 1) = PRSq(k) and Lift(PRSq(k− 1), 1) = RSq(k− 1), we also get:

Corollary 3.25. Let m ≥ 1 and 0 ≤ k ≤ q− 1. Then,

dim(Lift(PRSq(k), m)) =
m

∑
j=1

dim(Lift(RSq(k− 1), j)) + 1 .

It could be interesting to make PDegq(m, k) explicit, as it was done for affine lifted codes. To
achieve this, we use iteratively the bijective map given in Theorem 3.23 and the characterisa-
tion of ADegq(j, k− 1), 1 ≤ j ≤ m, given in Equation (3.6). For d = (d0, . . . , dm) ∈ Sm+1(v),
define imin(d) the minimum i such that di 6= 0, and η(d) = (dimin(d)+1, . . . , dm) ∈ Sm−imin(d)(v).
We then obtain:
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Corollary 3.26. Let m ≥ 2 and 0 ≤ k ≤ q− 1. Denote by v = k + (m− 1)(q− 1). Then,

PDegq(m, k) =
{

d, d ∈ Sm+1(v) such that ∀e ≤p η(d), |e| ≤ k− 1
}

.

Notice that there exists a bijective transformation sending any degree d ∈ Sm+1(k) to a degree
d′ lying in Deg(Lift(PRSq(k), m)), by adding (q− 1)(m− 1) to its leftmost non-zero coordinate.
Moreover, it holds that evPm(Xd) = evPm(Xd′), even if formally, the underlying evaluation
maps are different since they take as input homogeneous polynomials of distinct degree.

Hence we obtain another corollary, being the projective analogue of Equation (3.7).

Corollary 3.27. Let 1 ≤ k ≤ q− 1 and v = k + (m− 1)(q− 1). Then we have:

PRMq(m, k) ⊆ Lift(PRSq(k), m) ⊆ PRMq(m, v) .

Example 3.28. We give here the smallest example of a projective lifted code that is not iso-
morphic to a projective Reed-Muller code. This is the analogue of Example 2.16 presented in
a previous chapter. Let q = 4, m = 2 and k = 3, giving v = k + (m − 1)(q − 1) = 6. The
projective Reed-Muller code PRMq(m, k) = PRM4(2, 3) has length q2 + q + 1 = 21, dimension
(m+k

k ) = 10, and admits

D = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0),
(0, 2, 1), (0, 1, 2), (0, 0, 3)}

as a degree set. A tedious computation shows that Lift(PRS4(3), 2) is given by the following
degree set:

DL = {(6, 0, 0), (5, 1, 0), (5, 0, 1), (4, 2, 0), (4, 1, 1), (4, 0, 2), (0, 6, 0),
(0, 5, 1), (0, 4, 2), (0, 0, 6), (2, 2, 2)} .

One can point out that DL = D′ ∪ {(2, 2, 2)}, where D′ is obtained by adding q− 1 = 3 to the
leftmost non-zero coordinate of every d ∈ D. Furthermore, the affine lifted code Lift(RS4(2), 2)
has the following degree set:

DA = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 2)} .

We see that DA corresponds to the puncturing on their first coordinate of elements d ∈ DL
such that d0 6= 0. We also notice that the set of remaining elements is

{(0, 6, 0), (0, 5, 1), (0, 4, 2), (0, 0, 6)} .

In other words, these are elements which, punctured at first on their first coordinate, and then
P-reduced, give the degree set {(3, 0), (2, 1), (1, 2), (0, 3)} of PRS4(3).

Finally, notice that the extra degree (2, 2, 2) which makes Lift(PRS4(3), 2) larger than PRMq(2, 3)
corresponds to the codeword c = evP2(X2Y2Z2). Similarly to Example 2.16, one can then con-
firm that any embedding (S, T) 7→ (a0S + b0T, a1S + b1T, a2S + b2T) sends c to a projective
Reed-Solomon codeword.

3.3 Local correction

After Guo et al.’s work [GKS13], we know that affine lifted codes are perfectly smooth locally
correctable codes — see also Subsection 2.2.3. In this section, we prove that projective lifted



60 CHAPTER 3. PROJECTIVE LIFTED CODES

codes have similar local correction properties. For convenience, throughout this section we fix
a projective lifted code C = Lift(PRSq(k), m). We also denote by n = θm,q its length and by
v = k + (m− 1)(q− 1) the degree of polynomials evaluated in C.

By definition of projective lifted codes, if c = evPm( f ) ∈ C, then evP1( f ◦ L) ∈ PRSq(k) for all
L ∈ EmbP(m). In Remark 3.14 we noticed that evP1( f ◦ L) is not a subword of c. Nevertheless,
there still exists w(L,v) ∈ (F×q )

q+1 such that (w(L,v))−1 ? evP1( f ◦ L) is such a subword. Given
L and the standard representation of points in P1, each Fq-symbol in w(L,v) is expressed as
the v-th power of a linear combination of O(m) other Fq-symbols. Moreover, a v-th power
can be computed as k-th power since every x ∈ Fq satisfies xq = x. Therefore, the tuple
(w(L,v))−1 ∈ FP1

q can be computed in O(mq log k) operations over Fq. To sum up we get:

Lemma 3.29. Let c = evPm( f ) ∈ Lift(PRSq(k), m) and L ∈ EmbP(m). There exists a determin-
istic algorithm which computes evP1( f ◦ L) from c and L, with q + 1 queries to c and O(mq log k)
operations in Fq.

Let us now denote by ∞ the point (0 : 1) ∈ P1, and for a given u ∈ Pm,

EmbP(m, u) := {L ∈ EmbP(m), ev∞(L) = u}

the set of embeddings having u as image of the point at infinity.

We present in Algorithm 10 a generic local correcting algorithm for projective lifted codes. It
is very similar to Algorithm 6 that locally corrects affine lifted codes. As well, this algorithm
depends on a locality parameter ` ∈ [k + 1, q], and it informally works as follows: (i) it picks
at random ` points on a random projective line of Pm so that individual queries are uniform,
(ii) it corrects the associated noisy PRSq(k) codeword, and (iii) it outputs the desired corrected
symbol.

For this purpose, we assume to have at our disposal an error-and-erasure correcting algorithm
for PRSq(k), which corrects q + 1− ` erasures and up to t = b `−k−1

2 c errors (we recall that
PRSq(k) is an MDS code of dimension k + 1). We call CorrPRS

` this correcting algorithm. For
instance, one can use extensions of classical correcting algorithms for Reed-Solomon codes, as
presented by Dür [Dür91] and Jensen [Jen95].

Proposition 3.30. Let k+ 1 ≤ ` ≤ q and t = b `−k−1
2 c. For every δ ≤ t+1

2` , the code Lift(PRSq(k), m)

is a perfectly smooth (`, δ, δ`
t+1 )-locally correctable code using Algorithm 10.

Proof. The proof is exactly the same as for Proposition 2.20.

For the sake of completeness, we exhibit the two extreme instances (` = k + 1 and ` = q)
which correspond respectively to a low-error and high-error correction setting.

Corollary 3.31 (` = k + 1). For every δ ≤ 1
2(k+1) , the code Lift(PRSq(k), m) is a perfectly smooth

(k + 1, δ, δ(k + 1))-locally correctable code.

Proof. ` = k + 1 implies t = 0.

Corollary 3.32 (` = q). Let τ = 1
qb

q−k−1
2 c. For every δ ≤ τ/2, the code Lift(PRSq(k), m) is a

perfectly smooth (q, δ, δ/τ)-locally correctable code.

Proof. We have δ`/(t + 1) ≤ δ/τ, since t = τ`.
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Algorithm 10: A generic local correcting algorithm of locality ` ∈ [k + 1, q] for C =
Lift(PRSq(k), m)

Input: a point u ∈ Pm, and an oracle access to y ∈ FPm

q such that d(y, c) ≤ δn, for some
c = evPm( f ) ∈ C, where n = |Pm|.

Output: evu( f ) with high probability
/* CorrA denotes a half-distance (q + 1− `)-erasure correcting algorithm for

the code C|A isomorphic to PRSq(k). */
1 Pick uniformly at random L ∈ EmbP(m) such that u ∈ A := L(P1).

2 Toss a random binary coin b ∈ {0, 1}, following B(p) with p = `(q−1)
qm+1−1 .

3 if b = 0 then
4 Pick uniformly at random a subset A′ ⊂ A \ {u} of size `.

5 else
6 Pick uniformly at random a subset A′ ⊂ A \ {u} of size `− 1.
7 Add u in A′.

8 Query {yx : x ∈ A′}.
9 Define y′ ∈ (Fq ∪ {⊥})A by:

y′x :=
{

(w(L,v))x · yx if x ∈ A′,
⊥ otherwise,

where we recall that w(L,v) is such that w(L,v) ? c|A = evP1( f ◦ L) ∈ PRSq(k).
10 Run CorrA on input y′.
11 if CorrA fails then
12 Abort.

13 else
14 Denote by y ∈ FA

q the output of CorrA. Output yu.

It must be noticed that, in the minimum locality setting ` = k + 1, we obtain an LCC with
parameters of the kind (`, δ, δ`). These parameters were already obtained for the local cor-
rection of design-based codes (Proposition 2.30) and of Reed-Muller codes in the minimum
locality case (Proposition 2.10). In the maximum locality setting ` = q, we obtain parameters
of the kind (`, δ, 2δ/δloc), where δloc is the relative minimum distance of the local PRS code.
Once again, these parameters are similar to those of the first local correcting algorithm of
Reed-Muller codes (Proposition 2.10), for instance.

Remark 3.33. In Algorithm 10, we can avoid to compute the tuple w(L,v). Indeed, it can
be proved that for every projective line A ⊂ Pm and every point u ∈ A, there exists an
L ∈ EmbP(m) such that L(P1) = A, u ∈ {ev(1:0)(L), ev∞(L)} and w(L,v) = (1, . . . , 1).

Let L ∈ Hom(F2
q, Fm+1

q ) such that L(P1) = A and L(∞) = u (for instance). The matrix of L in
the canonical basis is then

M =


...

...
a u
...

...

 .

Define i the minimum integer such that (ai, ui) 6= 0, and j > i the minimum integer such that
the minor (

ai ui
aj uj

)
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is invertible.

If ui 6= 0, then by definition of i, it must hold that a0 = · · · = ai−1 = 0. We then compute

M′ =


...

...
u 1

λ (a− u)
...

...

 ,

where λ is the first non-zero coordinate of a− u. Let L′ ∈ Hom(F2
q, Fm+1

q ) with matrix M′.
Then L′(P1) = L(P1) = A since P1 is invariant under Iso(F2

q). Moreover, we can check that
L′((1 : 0)) = u, and that L′ preserves the standard representation. Hence, w(L′,v) = 1.

If ui = 0, then we compute

M′′ =


...

...
1
µ a u
...

...


where µ is the first non-zero coordinate of a. Similarly to the previous case, L′′(P1) = A, and
points in L′′(P1) are written in standard representation, hence w(L′′,v) = 1. Finally, we see that
L′′(∞) = u.

3.4 Intertwined relations between affine and projective lifted codes

In this section we state links between affine and projective lifted codes, notably after shorten-
ing and puncturing operations.

3.4.1 Motivation and similar results

The embedding of both Pm−1 and Am into Pm has raised relations between affine and project-
ive Reed-Muller codes. Indeed, the hyperplane at infinity Π∞ := {x ∈ Pm, x0 = 0} defines a
restriction map

π : FPm

q → F
Π∞
q

y 7→ y|Π∞
,

and π induces a map PRMq(m, k) → PRMq(m − 1, k) by seeing Π∞ as the projective space
Pm−1. Moreover, this map is surjective since every m-variate homogeneous polynomial of
degree k can be also considered as an (m + 1)-variate homogeneous polynomial of the same
degree (in which the new variable, denoted X0, does not appear).

Furthermore, the vector space K := ker
(

PRMq(m, k)� PRMq(m− 1, k)
)

consists in evaluation
vectors of homogeneous polynomials P ∈ Fq[X0, . . . , Xm]Hk such that X0 divides P. That is,

K = {evPm(X0Q(X)), Q(X) ∈ Fq[X]Hk−1} .

We now remark that restricting K to coordinates in (Pm \ Π∞) ' Am gives a vector space
isomorphic to RMq(m, k− 1), since the monomial X0 evaluates to 1 on every point of Am.

To sum up, we obtain the following short exact sequence:

0→ RMq(m, k− 1)→ PRMq(m, k) π−→ PRMq(m− 1, k)→ 0 .
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From a coding theoretic point of view, it may be more comfortable to consider this sequence
in the terminology of puncturing and shortening of codes. Indeed, up to isomorphism, the
surjective map π corresponds to the puncturing of PRMq(m, k) on coordinates lying in Am ⊂
Pm, while the injection RMq(m, k− 1) ↪−→ PRMq(m, k) corresponds to its shortening on Pm−1 ⊂
Pm.

A very similar exact sequence holds for the codes based on classical geometric designs. For
instance, we have

0→ Code(AGt(m, q))→ Code(PGt(m, q)) π−→ Code(PGt(m− 1, q))→ 0 .

This result is presented by Assmus and Key in [AK92, Lemma 5.7.1] for the dual of these
codes, but it remains true for the codes we consider, since duality of codes preserves such
short sequences.

In this section, our goal is to prove similar results for lifted codes.

3.4.2 Shortening and puncturing projective lifted codes

We recall that Π∞ denotes the hyperplane of Pm defined by X0 = 0.

Theorem 3.34. Let m ≥ 1, 1 ≤ k ≤ q − 1, and v = k + (m − 1)(q − 1). Let also C =
Lift(PRSq(k), m). Then we have

Short(C, Π∞) = Lift(RSq(k− 1), m)

and
Punct(C, Pm \Π∞) = Lift(PRSq(k), m− 1).

Proof. For short, we denote by S = Short(C, Π∞) and P = Punct(C, Pm \Π∞).

(i) Proof of S = Lift(RSq(k− 1), m). Let c = evAm(Xd) ∈ Lift(RSq(k− 1), m) and extend it to
c′ = evPm(Xd0

0 Xd), with d0 = v− |d| > 0. We have c′ ∈ Lift(PRSq(k), m) due to our previous
study of degree sets (see Theorem 3.23). Thus, we simply notice that c′ vanishes on Π∞, and
that c′ = c elsewhere, hence c ∈ S .

Conversely, let c ∈ S . There exists f ∈ Fq[X]Hv such that c′ = evPm( f ) satisfies c′ = 0 over
all coordinates of Π∞, and c′ = c elsewhere. It means that the polynomial f vanishes on
the whole projective hyperplane Π∞ given by X0 = 0. Therefore f vanishes over the affine
hyperplane Π′∞ ⊆ Am+1 given by X0 = 0.

The previous remark makes sense since we can apply the Combinatorial Nullstellensatz proved
by Alon in [Alo99]. This result asserts the following. Assume that W = ∏m

i=0 Wi ⊆ Fm+1
q and

that deg( f ) can be written as |t| = ∑m
i=0 ti, where each ti < |Wi|. Then, f (W) = {0} implies

that ft = 0, where ft denotes the coefficient of the monomial Xt in f . In our context, let
W = {0} × Fm

q and t satisfies t0 = 0 and ti ≤ q − 1 for all i > 0. The Combinatorial
Nullstellensatz then shows that Coeff( f , Xt) = 0. Therefore every monomial in f must be
divisible by X0. Said differently, f is a sum of monomials Xd with d such that d0 6= 0, and
Proposition 3.21 then shows that evAm( f ) ∈ Lift(RSq(k− 1), m).

(ii) Proof of P = Lift(PRSq(k), m − 1). First, we see that Lift(PRSq(k), m − 1) ⊆ P . Indeed,
a codeword c = evPm−1(Xd) ∈ Lift(PRSq(k), m − 1) can be extended to c′ = evPm(Xd′) ∈
Lift(PRSq(k), m), where we define d′ by adding q− 1 to the leftmost non-zero coordinate of d.
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Conversely, let c′ = evPm( f ) ∈ Lift(PRSq(k), m) such that c′|Π∞
∈ P \ {0}. Let Xd be a

monomial in f . If d0 6= 0, then evPm(Xd)|Π∞
= 0, hence one can assume that every monomial

Xd composing f satisfies d0 = 0. Using Proposition 3.22 and linearity, we get that c′|Π∞
∈

Lift(PRSq(k), m− 1).

Remark 3.35. For m = 1, we know that by definition, Lift(RSq(k − 1), 1) = RSq(k − 1) and
Lift(PRSq(k), 1) = PRSq(k). Therefore, Theorem 3.34 rewrites the well-known result stating
that the shortening at infinity of the projective Reed-Solomon code is a classical Reed-Solomon
code of dimension one less.

Theorem 3.34 also translates in terms of exact sequences:

Corollary 3.36. The following exact sequence holds for every 1 ≤ k ≤ q− 1 and m ≥ 1:

0→ Lift(RSq(k− 1), m)→ Lift(PRSq(k), m)
π−→ Lift(PRSq(k), m− 1)→ 0 ,

where π is the restriction map to points at infinity.

3.4.3 Projective lifted codes as generalised design-based codes

We here prove that projective lifted codes are generalised design-based codes. Let D =
(Pm,B) = PG1(m, q) be the classical design of points and projective lines.

For B ∈ B, let L ∈ EmbP(m) such that L(P1) = B. If 0 ≤ k ≤ q − 1, we define the code
L(k)

B ⊆ FB
q , as the image of PRSq(k) by the action of L on its support P1. In other words,

L(k)
B := L∗(PRSq(k)) ⊆ FB

q .

Finally, we define L(k) := (L(k)
B : B ∈ B).

Proposition 3.37. Let L(k) defined as above. The projective lifted code Lift(PRSq(k), m) is the gener-
alised design-based Codeq(PG1(m, q),L(k)).

Proof. For every projective line B ∈ B, choose L ∈ EmbP(m) such that L(P1) = B and
w(L,v) = 1. Such an embedding exists thanks to Remark 3.33. Define the code LB =
(w(L,v))−1 ?PRSq(k) = PRSq(k). According to Remark 3.14, we know that for all c = evPm( f ) ∈
Lift(PRSq(k), m), we have c|B = evP1( f ◦ L). Therefore c|B lies in PRSq(k). By definition, we
then get

Lift(PRSq(k), m) = {c ∈ FPm

q | ∀B ∈ B, c|B ∈ PRSq(k)} = Codeq(PG1(m, q),L) .

In particular, if k = q− 1, we see that projective lifted codes are actually codes based on the
design PG1(m, q). Let us now recall that the rank of such designs was given in Chapter 1.
Hence, we get:

Corollary 3.38. For any t ≥ 1 and any prime p, we have:

dim
(

Lift(PRSpt(2, pt − 1))
)
= p2t + pt −

( p(p + 1)
2

)t
.

Remark 3.39. Very similarly, let AG1(m, k) = (X,B). For B ∈ B and 0 ≤ k ≤ q− 2, we can
define L(k)

B := L∗(RSq(k)) ⊆ FB
q a code isomorphic to RSq(k), where L(A1) = B. A result

similar to Proposition 3.37 then holds for affine lifted codes:

Lift(RSq(k), m) = Code(AG1(m, k), (L(k)
B : B ∈ B)) .
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3.5 Other properties towards practicality

We here present miscellaneous results emphasizing the practicality of projective lifted codes.
In Subsection 3.5.1, we prove that the storage cost of projective lifted codes can be reduced
since they admit (quasi-)cyclic automorphisms. Explicit information sets are then computed
in Subsection 3.5.2. We conclude this section by estimating their minimum distance (Subsec-
tion 3.5.3).

3.5.1 Automorphisms and (quasi-)cyclicity

In coding theory, automorphism groups of codes, and a fortiori their permutation groups, are
interesting for many reasons. For instance, they can be used for reducing the practical storage
cost of the codes. Cyclic codes are known to be specifically efficient in that sense.

In this section, we address the question of (quasi-)cyclicity for projective lifted codes. We
prove in Proposition 3.44 that under arithmetic conditions, the code Lift(PRSq(k), m) is quasi-
cyclic up to a diagonal isomorphism. This result relies deeply on the fact that Lift(PRSq(k), m)
is invariant under the action of Projv(P

m), that has been proved in Lemma 3.19. But let us
first define cyclicity and quasi-cyclicity.

Definition 3.40 (Cyclicity, quasi-cyclicity). A code C ⊆ FX
q , |X| = n, is cyclic if Perm(C)

contains a cyclic permutation of order n (that is, an n-cycle). It is said to be quasi-cyclic of
index d if Perm(C) contains a permutation which is the product of d different (n/d)-cycles
with disjoint orbits. In particular, a cyclic code is a quasi-cyclic code of index 1.

In all what follows, we fix an integer m ≥ 1, and we denote by n = θm,q and by d = gcd(n, q−
1). Let also φ : Fqm+1 → Fm+1

q be an isomorphism of Fq-vector spaces, and ω be a primitive
element of Fqm+1 . We define β := ωq−1. It is clear that β has order n in the multiplicative group
F×qm+1 since (q− 1)n = qm+1 − 1. For every 0 ≤ i < d, we now define:

Ui = {φ
(
ωiβd), . . . , φ

(
ωi(βd)n/d)} ⊂ Fm+1

q ,

and the union U = ∪d−1
j=0 Uj.

Definition 3.41 (representation of Pm). Recall that n = |Pm|. We say that an n-subset V =
{v1, . . . , vn} ⊂ Fm+1

q represents Pm if the projective points that V defines fill Pm entirely.

Lemma 3.42. If n/d and q− 1 are coprime, then U represents Pm.

Proof. We only need to prove that the elements φ(ωiβdj) ∈ Fm+1
q define distinct projective

points for 0 ≤ i < d and 1 ≤ j ≤ n/d. Since φ is bijective, it reduces to prove that, for
0 ≤ i1, i2 < d and 1 ≤ j1, j2 ≤ n/d, if ωi1−i2 βd(j1−j2) ∈ Fq, then (i1, j1) = (i2, j2).

Assume (ωi1−i2 βd(j1−j2))q−1 = 1. Then ord(ω) = (q− 1)n divides (q− 1)× ((i1 − i2) + d(q−
1)(j1 − j2)), that is, n | (i1 − i2) + d(q− 1)(j1 − j2).

Since d | n, we get d | (i1 − i2) which implies i1 = i2 because 0 ≤ i1, i2 < d. Hence n |
d(q− 1)(j1 − j2), and our assumption gcd(n/d, q− 1) = 1 ensures that (n/d) | j1 − j2. Since
1 ≤ j1, j2 < n/d, we finally obtain j1 = j2.
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Of course, every u = φ(ωiβdj) ∈ U is not necessarily represented in a standard form. Denote
by xu ∈ Fm+1

q its standard form. As usual we have xu = λuu for some λu ∈ F×q , and we can
define

w(v) := ((λu)
−v : u ∈ U) ∈ (F×q )

U .

Similarly to the definition of evPm given previously, we can define an evaluation map over
U ⊂ Fm+1

q by evU : Fq[X0, . . . , Xm] → FU
q , f 7→ ( f (u) : u ∈ U). The proof of the following

lemma is elementary.

Lemma 3.43. Assume n/d and q − 1 are coprime, and recall that v = k + (m − 1)(q − 1). Let
C = Lift(PRSq(k), m), and denote by D = Deg(C). Let finally C ′ = evU(Poly(D)). Then,

C ′ = w(v) ? C ,

when coordinates U ⊂ Fm+1
q \ {0} are seen as projective points.

Let us now introduce σ : Fqm+1 → Fqm+1 given by x 7→ βx. We also denote by ψ := φ ◦ σ ◦ φ−1

the associated map over the vector space Fm+1
q . It is clear that ψ ∈ Hom(Fm+1

q , Fm+1
q ), and

since σ and φ are bijective maps, we get ψ ∈ Iso(Fm+1
q ). For i ≥ 0, we finally denote by ψi the

i-fold composition of ψ. Notice that ψi(x) = φ(ωi(q−1)φ−1(x)) holds for every point x ∈ Pm .

Proposition 3.44. If n/d and (q − 1) are coprime, then C ′ := w(v) ? Lift(PRSm(k), m) is quasi-
cyclic of index d, through the permutation ψd ∈ S(U). The orbits of ψd are given by the subsets Ui,
0 ≤ i ≤ d− 1.

Proof. We can check that ψd(U) = U, hence ψd ∈ S(U). Since ψd ∈ Iso(Fm+1
q ), the polynomial

space Poly(D), D = Deg(C), is invariant under ψd. Moreover, we have C ′ = evU(Poly(D))
thanks to Lemma 3.43. Therefore ψd ∈ Perm(C ′).

Let us now prove that ψd is an (n/d)-cycle. For φ(ωiβjd) ∈ Ui, we have

ψd(φ(ωiβjd)) = φ(ωiβjdβd) = φ(ωiβ(j+1)d) ∈ Ui .

It remains to show that the order of ψd is n/d. Since φ is one-to-one and U represents Pm, for
every 0 ≤ s ≤ t < n/d we have:

∀u ∈ Ui, (ψd)s(u) = (ψd)t(u) ⇐⇒ ω(t−s)d(q−1) = 1 ⇐⇒ n | (t− s)d(q− 1) .

Our assumption on n/d and (q− 1) implies that t = s; hence ψd has order n/d.

As a corollary, when d = 1 we obtain the following result.

Corollary 3.45. If n and q− 1 are coprime, then for all 1 ≤ k ≤ q− 1 the code

w(v) ? Lift(PRSq(k), m)

is a cyclic code.

Remark 3.46. A very similar approach was used by Berger and de Maximy in [BdM01], in
order to prove the quasi-cyclicity of codes isomorphic to our definition of projective Reed-
Muller codes.
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3.5.2 Explicit information sets

In this section, we give explicit information sets for projective lifted codes. Among other
applications, such sets are useful to extend the local correctability of lifted codes to a local
decodability property (see [Yek12]).

Our techniques are highly inspired by the work of Guo and Kopparty [GK16, Appendix A].
We also prove a stronger result, being that a large family of affine evaluation codes present
the same information sets as affine lifted codes.

Monomiality of bounded degree affine evaluation codes. Similarly to the previous section,
let φ : Fqm → Fm

q be an Fq-isomorphism. We denote by Fq[X]∞q−1 := Poly(Bm
∞(q − 1)) the

space of m-variate polynomials of partial degree bounded by q − 1. If f ∈ Fq[X]∞q−1 is seen
as a function, then the map f ◦ φ : Fqm → Fqm can be interpolated uniquely as a univariate
polynomial Fqm [X] of degree less than qm − 1. We denote by φ∗ this process, which also
appears to be an Fq-isomorphism:

φ∗ : Fq[X]∞q−1 → Fqm [X]qm−1

f (X) 7→ ( f ◦ φ)(X) .

For a nonzero a ∈ F×qm , we denote by µa : Fqm → Fqm , x 7→ ax. It is well-known that Iso(Fqm) =

{µa, a ∈ F×qm}. Every map µa being Fq-linear, we can define Ma := φ ◦ µa ◦ φ−1 ∈ Iso(Fm
q ). The

map Ma is often known as the Fq-homomorphism of the multiplication by a ∈ Fqm .

Let F be a subspace of Fq[X]. The group of automorphisms of F , denoted Aut(F ), is the
group of invertible linear maps Fq[X] → Fq[X] which let the set F invariant. We also recall
that every φ = (φ1, . . . , φm) ∈ Hom(Fm

q ) can be seen as a linear map Fq[X] → Fq[X], through
the action φ∗( f ) : f (X) 7→ f (φ1(X), . . . , φm(X)).

Lemma 3.47. Let F be a subspace of Fq[X]∞q−1, and assume that Iso(Fm
q ) ⊆ Aut(F ). Then

Iso(Fqm) ⊆ Aut(φ∗(F )).

Proof. Let f ◦ φ ∈ φ∗(F ). For every µa ∈ Aut(Fqm), we have f ◦ φ ◦ µa = f ◦ Ma ◦ φ by
definition of the matrix of the multiplication by a. But Ma ∈ Aut(Fm

q ), hence f ◦Ma ∈ F and
we get f ◦ φ ◦ µa ∈ φ∗(F ).

Let us define the subgroup of diagonal isomorphisms

Diag(Fm
q ) := {diaga : x 7→ (a1x1, . . . , amxm), a ∈ (F×q )

m} ⊆ Iso(Fm
q ) .

Proposition 3.48. Let F be a subspace of m-variate polynomials of partial degree bounded by q− 2,
that is F ⊆ Poly(Bm

∞(q− 2)). If Diag(Fm
q ) ⊆ Aut(F ), then F is generated by monomials.

Proof. Let f ∈ F , such that f (X) = ∑d∈D fdXd with D = {d ∈ Nm, fd 6= 0}. It is sufficient to
prove that for all d ∈ D, Xd lies in F .

Let d ∈ D. Similarly to the proof of Theorem 3.17, we define

Qd(X) := (−1)m ∑
a∈(F×q )m

( m

∏
i=1

a−di
i

)
( f ◦ diaga)(X)
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Since F is a vector space and Diag(Fm
q ) ⊆ Aut(F ), we see that Qd(X) ∈ F .

Qd(X) = ∑
a∈(F×q )m

( m

∏
i=1
−a−di

i

)
∑

j
fj aj1

1 . . . ajm
m X j

= ∑
j

fj ∑
a∈(F×q )m

( m

∏
i=1
−aji−di

i

)
X j

= ∑
j

fj

m

∏
i=1

(
− ∑

ai∈F×q

aji−di
i︸ ︷︷ ︸

=0 if di 6=ji , 1 otherwise

)
X j = fdXd .

We know that d ∈ D, hence fd 6= 0 and by linearity we obtain Xd = 1
fd

Qd(X) ∈ F .

Notice that the last result can be seen as a reformulation of the monomial extraction lemma of
Kaufman and Sudan [KS08] in the case of invariance under diagonal automorphisms of the
affine space.

Information sets of some affine evaluation codes.

Lemma 3.49. Let F ⊆ Poly(Bm
∞(q − 1)) and assume that S ⊆ A1(Fqm) is an information set for

evA1(φ∗(F )). Then φ(S) is an information set for evAm(F ).

Proof. This follows from the fact that φ∗(F ) = { f ◦ φ, f ∈ F} and φ is an Fq-isomorphism.

In the next proposition, we give a result that improves upon the theorem given by Guo and
Kopparty in [GK16, Appendix A], in the specific case of codes evaluating polynomials with
partial degree bounded by q− 2 (which is the case for many interesting codes). Indeed, their
result holds for affine-invariant codes while here we only need codes invariant under Iso(Fm

q ).

Proposition 3.50. Let C = evAm(F ) be an affine evaluation code of dimension k over Fq, and assume
that F ⊆ Poly(Bm

∞(q− 2)) and Iso(Fm
q ) ⊆ Aut(F ). Then, for every primitive element ω of Fqm , and

every isomorphism φ : Fqm → Fm
q , the set {φ(ω), . . . , φ(ωk)} is an information set for C.

Proof. Thanks to Lemma 3.49, it is sufficient to prove that S = {ω, . . . , ωk} is an information set
for C ′ = evA1(φ∗(F )). Moreover, since Diag(Fm

q ) ⊆ Iso(Fm
q ), Proposition 3.48 and Lemma 3.47

ensures that C ′ is monomial. Denote by I = Deg(C ′) = {i1, . . . , ik}, and let g(X) = ∑i∈I aiXi ∈
F . We need to prove that:

g 6= 0 =⇒ evS(g) 6= 0 .

To this end, let us remark that
ωi1 ωi2 . . . ωik

ω2i1 ω2i2 . . . ω2ik

...
...

. . .
...

ωki1 ωki2 . . . ωkik




a1
a2
...

ak

 =


g(ω)
g(ω2)

...
g(ωk)

 = evS(g) .

Since the left-hand square matrix is a Vandermonde matrix and ω is primitive, it is invertible
and the result is proved.
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As a corollary we retrieve Guo and Kopparty’s result, since Iso(Fm
q ) is a subgroup of the group

of affine transformations.

Corollary 3.51 (given in [GK16]). Let C = Lift(RSq(k), m) for k ≤ q − 2. Then, for every ω

primitive element of Fqm , and every φ isomorphism Fqm → Fm
q , the set {φ(ω), . . . , φ(ωdim C)} is an

information set for C.

The case of projective evaluation codes. We would like to prove a similar result for pro-
jective lifted codes. Unfortunately, it does not make sense to define an isomorphism between
P1(Fqm) and Pm(Fq) since they do not have same cardinality. To solve this issue, our idea is to
decompose Pm(Fq) into affine parts, and to use recursively the links between projective and
affine lifted codes we stated in Section 3.2.

Let Pm(Fq) = tm
i=0Am,i(Fq), where

Am,i(Fq) := {(0 : . . . : 0 : 1 : x1 : . . . : xi), (x1, . . . , xi) ∈ Ai(Fq)} .

Informally, Am,i(Fq) is the affine part of the i-dimensional projective subspace at infinity of
Pm(Fq).

Theorem 3.52. Let C = Lift(RSq(k), m) for k ≤ q− 1. Let us fix, for every 1 ≤ i ≤ m, a primitive
element ωi of Fqi and an isomorphism φi : Fqi → Am,i(Fq). Then, the set

S = tm
i=0{φi(ωi), . . . , φi(ω

dim Ci
i )}

is an information set for C, where Ci = Lift(RSq(k− 1), i) for i > 0, and by convention, dim(C0) = 1
and φ0(Fq0) := {(0 : . . . : 0 : 1)}.

Proof. We proceed by induction on m.

– Case m = 1. Since C = PRSq(k) is an MDS code of dimension k + 1, any (k + 1)-subset
of P1 is an information set for C. In particular, S = {(0 : 1)} ∪ {φ1(ω1), . . . , φ1(ω

k
1)} is

one of them.
– Induction step. Assume the result holds for step m− 1. A basis of Lift(PRSq(k), m) con-

sists in evaluating monomials with exponents in PDegq(m, k). Thanks to Theorem 3.23,
we know that PDegq(m, k) is in bijection with the disjoint union ADegq(m, k − 1) ∪
PDegq(m− 1, k), where the bijection is given in the proof of the theorem. Hence, there
exists a generator matrix of Lift(PRSq(k), m) defined as follows:





G0 0

∗ G1

· · · (1 : x1 : . . . : xm) · · · (0 : . . . )

 Am(Fq) ' Pm−1(Fq)


evaluation of monomials with
degrees in ADeg(m, k− 1)

evaluation of monomials with
degrees in PDeg(m− 1, k)

where G0 and G1 are respective generator matrices for the codes Lift(RSq(k− 1), m) and
Lift(PRSq(k), m− 1).
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Since G0 and G1 are full-rank, we know that the union of an information set S0 of
Lift(RSq(k − 1), m) and an information set S1 of Lift(PRSq(k), m − 1) gives an inform-
ation set S of Lift(PRSq(k), m). Information sets of affine lifted codes are described in
Corollary 3.51 (we just need to take care about the way we represent affine points in
the projective space, whence the definition of the Am,i, 1 ≤ i ≤ m). Therefore we have
S0 = {φm(ωm), . . . , φm(ω

dim Cm
m )} where φm, ωm are defined as in the statement of the

theorem. Moreover, the inductive step gives the information set of Lift(PRSq(k), m− 1):
it is exactly S1 = tm−1

i=0 {φi(ωi), . . . , φi(ω
dim Ci
i )}.

Setting S = S0 ∪ S1 finally leads us to the result at step m.

3.5.3 Estimation of the minimum distance

We give bounds on the minimum distance of a projective lifted code, depending on the min-
imum distance of the underlying projective Reed-Solomon code. In this section, nzPm( f )
denotes the number of zeroes of f ∈ Fq[X0, . . . , Xm]Hv over the set Pm, and recall that θm,q =
qm+1−1

q−1 .

Proposition 3.53 (upper bound). Let 1 ≤ k ≤ q− 1 and PRSq(k) be the projective Reed-Solomon
code of dimension k + 1 and distance d = q + 1− k. Then the distance D of Lift(PRSq(k), m) satisfies:

D ≤ dqm−1 + θm−2,q .

As a corollary, the respective relative distances δ and ∆ of PRSq(k) and Lift(PRSq(k), m) satisfy:

∆ ≤ (1− b)δ + b, where 0 ≤ b ≤ q−2 .

Proof. Let c = evP1(g) ∈ PRSq(k) be a minimum-weight codeword, i.e. wt(c) = d. Assume
that g(X0, X1) = ∑k

i=0 giXi
0Xk−i

1 , and let

f (X0, . . . , Xm) := g0X(q−1)(m−1)+k
1 +

k

∑
i=1

giX
(q−1)(m−1)+i
0 Xk−i

1 ∈ Fq[X0, . . . , Xm]
H
v

where v = (q− 1)(m− 1)+ k. By studying the degrees of f , one can check that c′ := evPm( f ) ∈
Lift(PRSq(k), m). Moreover, for every (x0 : x1) ∈ P1, we have:

f (x0, x1, x2, . . . , xm) = g(x0, x1), ∀x = (x2, . . . , xm) ∈ Fm−1
q .

Hence c′ is non-zero, and:

D ≤ wt(c′) = θm,q − nzPm( f ) ≤ θm,q − nzP1(g) qm−1 = θm,q − qm−1(q + 1− d) . (3.11)

It remains to notice that θm,q − (q + 1)qm−1 = θm−2,q. For the bound on the relative distance,
we divide both sides of Equation (3.11) by θm,q and we use the definition d = (q + 1)δ. Then
we get:

∆ ≤ 1 + (δ− 1)a ,

where a = (q+1)qm−1

θm,q
= 1− qm−1−1

qm+1−1 satisfies 1− q−2 ≤ a ≤ 1. Denoting b = 1− a concludes the
proof.

Proposition 3.54 (lower bound). Let 1 ≤ k ≤ q− 1 and PRSq(k) be a projective Reed-Solomon code
of dimension k + 1 and distance d = q + 1− k. Then the distance D of Lift(PRSq(k), m) satisfies:

D ≥ 1 + (d− 1)θm−1,q
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where θm−1,q = qm−1
q−1 . As a corollary, the relative distances δ of PRSq(k) and ∆ of Lift(PRSq(k), m)

satisfy:
∆ ≥ (1− b′)δ− b′, where 0 ≤ b′ ≤ q−1 .

Proof. Proposition 3.37 shows that the code Lift(PRSq(k), m) is a generalised design-based
code Code(PG1(m, q),L). Every LB is isomorphic to a projective Reed-Solomon code PRSq(k)
which has minimum distance d. Therefore the bound D ≥ 1 + (d − 1)θm−1,q comes from
Proposition 2.34. Dividing both sides by θm,q and using θm,q = qθm−1,q + 1, we finally get:

∆ ≥
(q + 1)θm−1,q

θm,q
δ−

θm−1,q − 1
θm,q

≥ (1− b′)δ− b′ ,

where b′ = θm−1,q−1
θm,q

= qb and b is defined in the previous proposition.

We do not have any result concerning the sharpness of the bounds presented in Proposi-
tions 3.53 and 3.54. Yet, letting q → ∞ for fixed 0 < δ < 1, we see that the family of lifted
codes {Lift(PRSq((q+ 1)(1− δ)), m)}q reaches the same asymptotical relative distance δ as the
family of PRS codes {PRSq((q + 1)(1− δ))}q.

3.6 Rate and degree sets of lifted codes

The explicit construction of affine and projective lifted codes is not as easy as many other
families of codes, since their definition is not constructive. It is still possible to build a parity-
check matrix for these codes, by listing the parity-check equations given by the constraints
on the lines. Then, a basis of the code can be obtained by solving a linear system. However,
this technique admits two main drawbacks. First, it does not produce a basis of the code that
we really understand (for instance, we have few information about which polynomials are
evaluated in the basis we obtain). Second, it can be quite inefficient: the number of equations
of the linear system can be quadratic in the dimension of code we look for, since for large
values of m, the number of lines in Am or Pm is almost quadratic in the number of points.

The degree set of a lifted code provides a solution to the first issue: it gives a simple and un-
derstandable basis of the code, since it represents the exponents of a monomial basis. Though
its definition is not constructive either, in Subsection 3.6.1 we propose an algorithm to com-
pute it efficiently. Subsection 3.6.2 is devoted to the analysis of the degree sets of second order
lifted codes (m = 2).

Notice that this section mainly focuses on affine lifted codes, since we have seen in The-
orem 3.23 that degree sets of projective lifted codes can be obtained easily from those of
affine lifted codes.

3.6.1 Computation of degree sets

Let S ⊆ [0, q− 1]m. We know that (S,≤p) is a partially ordered set, or poset. Let d, d′ ∈ S such
that d ≤p d′. Using classical poset terminology, we say that d is a lower bound for d′, and that
d′ is an upper bound for d. The subset of S that consists in lower (resp. upper) bounds for d
is denoted LowD(d) (resp. UpD(d)). Similarly, one can define lower and upper bounds for
subsets T ⊆ S:

LowS(T) := {d ∈ S | ∀t ∈ T, d ≤p t} ,
UpS(T) := {d ∈ S | ∀t ∈ T, t ≤p d} .
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The subset T is said to be ≤p-closed in S if LowS(T) = T. We say that d′ is a cover of d 6= d′

in S, written d lp d′, if the existence of e ∈ S such that d ≤p e ≤p d′ implies that e ∈ {d, d′}.
We also say that d is a co-cover of d′. The set of covers (resp. co-covers) of d is denoted
CoverS(d) ⊆ UpS(d) (resp. CocoverS(d) ⊆ LowS(d)). Informally, covers and co-covers are
nearest upper and lower bounds.

Assume that S = [0, k]m. A rewriting of the degree set D = Deg(Lift(RSq(k), m)) is given by

D =
{

d ∈ S | ∀e ∈ LowS(d), |e| ≤ k
}

. (3.12)

Using Equation (3.12), the following lemma can be easily stated.

Lemma 3.55. The degree set Deg(Lift(RSq(k), m)) is ≤p-closed in S = [0, k]m.

More generally, one must notice that this result can be seen as a consequence to the fact that
Aff(Fm

q ) ⊆ Aut(Lift(RSq(k), m)).

Lemma 3.56. The degree set of every monomial affine-invariant code C is ≤p-closed, where p is the
characteristic of the base field.

Proof. Original proof of this lemma can be found in a paper of Kaufman and Sudan [KS08].

A direct consequence of Lemma 3.55 is that, if some tuple e /∈ Deg(Lift(RSq(k), m)), then we
have UpS(e) ∩Deg(Lift(RSq(k), m)) = ∅. It naturally leads us to the design of Algorithm 12,
which computes the degree set of affine lifted codes. Notice that Algorithm 12 makes use of
a subroutine JoinUp given in Algorithm 11. This subroutine simply computes efficiently the
union between UpS(d), for some d ∈ S = [0, k]m, and a subset C ⊆ S whose complementary
set is ≤p-closed. We also assume that:

– A function Iterate([0, k]m) returns an iterator on elements d ∈ [0, k]m which respects the
partial order ≤p. In other words, if d is returned before d′, then it cannot hold that
d′ ≤p d.

– A function AReduce(d) computes the A-reduction |d|. It can be done in time O(m log2 q).
– The set CoverS(d) can be computed in O(em), where q = pe. Since |CoverS(d)| ≤ em, it

corresponds to say that testing membership in the set S is O(1), which is realistic using
hash tables lookup.

Algorithm 11: Procedure JoinUp which computes the union C ∪UpS(d)

Input: integers p, e, m, k such that k ≤ pe − 1, a set C ⊆ S = [0, k]m, and a tuple d ∈ C.
Output: the set C ∪UpS(d).

1 T ← CoverS(d)
2 for t ∈ T \ C do
3 C ← C ∪ {t}
4 C ← JoinUp(C, t, p, e, m, k)

5 return C

Thanks to (3.12), it is clear that Algorithm 12 computes correctly Deg(Lift(RSq(k), m)), since
the algorithm essentially eliminates every tuple d that does not satisfy the needed require-
ments. Furthermore, Algorithm 12 has complexity O(emkm) = O(n log(n)), where n is the
length of Lift(RSpe(k), m), since every element d ∈ [0, k]m is queried at most O(|CoverS(d)|) =
O(em) times.
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Algorithm 12: Algorithm computing the degree set of Lift(RSpe(k), m)

Input: a prime p, and three integers e, m and k such that 0 ≤ k ≤ pe − 1
Output: the degree set of Lift(RSpe(k), m)

1 D ← ∅
2 C ← ∅ /* intended to store elements not in D */
3 for d← Iterate([0, k]m) do
4 if d /∈ C then
5 if AReduce(d) ≤ k then
6 D ← D ∪ {d}
7 else
8 C ← C ∪ {d}
9 C ← JoinUp(C, d, p, e, m, k)

10 return D

Remark 3.57. The study of degree sets is linked with the concept of defining set of cyclic
codes. One must first notice that a code C invariant under Aff(Fm

q ) can be viewed as the
extension of a cyclic code. Indeed, puncture C at 0 ∈ Am. Then C ′ = Punct(C, {0}) is cyclic,
since the group of affine transformation that fix 0 contains a cyclic subgroup.

Kasami, Lin and Peterson [KLP67] proved that, in the univariate case, every affine-invariant
code C extending a primitive cyclic code can be described by a so-called defining set I ⊆
[0, q − 1]. Originally, this defining set represents the exponents i of zeroes αi ∈ Fq of the
polynomial representation of codewords in that lie in C. In fact, it can be proved that, for
such codes, I = Deg(C⊥). Without going into technicalities, using the Mattson-Solomon
transform, one can write extended cyclic codes as evaluation codes (arguments can be found
in Wolfmann’s paper [Wol89]). Then, affine-invariance proves that these codes are monomial
(or trace-monomial if the alphabet is a subfield of Fq). Finally, analysing the degree sets with
the help of Charpin’s work [Cha90] provides the claim.

3.6.2 The case m = 2

In this subsection we focus particularly on the case m = 2, since it is the most simple and
it gives the best code rates. More precisely, we describe the degree set of affine lifted codes
Lift(RSpe(k, 2)) for prime powers pe and k ≤ pe − 1.

We first need to introduce a few notation. For 0 ≤ k ≤ pe − 1, we define two particular kind
of subsets of [0, pe − 1]2:

– subsets representing degree sets of affine lifted codes:

Ap(e, k) := Deg(Lift(RSpe(k, 2))) ;

– subsets representing degree sets of Reed-Muller codes:

Rp(e, k) := {(i, j) ∈ [0, pe − 1]2, i + j ≤ k} .

For an integer 0 ≤ d < pe, we define

∆p(d) := {d′ ∈ [0, pe − 1], d′ ≤p d} ,
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Figure 3.1 – Representation of degree sets R2(2, 4), R2(2, 2) and A2(2, 2). The square
S2 = [0, 22− 1]2 is represented by a 4× 4 grid. A black square at coordinates (i, j) means
that (i, j) lies in the degree set.

and we extend this definition to m-tuples by ∆p(d) = ∆p(d1)× · · · ×∆p(dm). For convenience,
we denote by ψe(d) the A-reduction of |d| := ∑i di when q = pe, as defined in Subsection 3.1.2.
Hence we can rephrase the degree set of affine lifted codes as follows:

Ap(e, k) = {d ∈ [0, pe − 1]2, ψe(∆p(d)) ⊆ [0, k]} .

Finally, we denote by Se = [0, pe − 1]2. If e ≥ 2, we partition the square Se into p2 subsquares
S(i,j)

e = {(ipe−1, jpe−1)}+ Se−1, for 0 ≤ i, j ≤ p− 1. Notice that here we denote by A + B :=
{a + b, a ∈ A, b ∈ B} the Minkowski sum of two subsets A and B of integer tuples.

In the m = 2 setting, we can have a visual representation of degree sets. It is illustrated in
Figure 3.1. We see that degree sets Rp(e, k) of Reed-Muller codes RMpe(2, k) are represented
by discrete triangles if k ≤ pe, and generally by discrete polygons. Degree sets of strict affine
lifted codes are more complicated to describe. This is the purpose of the following paragraphs.

Characteristic p = 2. For convenience we write ∆ := ∆2. Our goal is to prove the following
result.

Theorem 3.58. Let 0 ≤ k ≤ 2e − 1. The degree set A2(e, k) of Lift(RS2e(k), 2) satisfies:

A2(e, k) = R2(e− 1, k) ∪
(

∆((2e, 2e)) + A2(e− 1, k− 2e−1)
)

.

In other words, we want to prove that

A2(e, k) ∩ S(0,0)
e = R2(e− 1, k)

A2(e, k) ∩ S(1,0)
e = {(2e−1, 0)}+ A2(e− 1, k− 2e−1)

A2(e, k) ∩ S(0,1)
e = {(0, 2e−1)}+ A2(e− 1, k− 2e−1)

A2(e, k) ∩ S(1,1)
e = {(2e−1, 2e−1)}+ A2(e− 1, k− 2e−1)

(3.13)

Figure 3.2 might give an overview of this result. Given the right-hand side degree set A2(4, 14),
we see it can be decomposed according to four 8× 8 subsquares S(0,0)

4 , S(0,1)
4 , S(1,0)

4 , and S(1,1)
4 .

The lower-bottom one corresponds to the degree set R2(3, 14) of a Reed-Muller code, and the
three others are equivalent to A2(3, 6), the degree set of a smaller lifted code (with the blue
frame in Figure 3.2). This decomposition is recursive, as proves the red subsquares in the
same figure.

Proof of Theorem 3.58. First notice that, if k < 2e−1, then the theorem is proved thanks to the
result of Kaufman and Ron [KR06] who essentially showed that Lift(RSq(k), m) = RM(m, k)
when k < q− q/p. So let us now assume that k ≥ 2e−1.

Then, we know that (i, j) ∈ A2(e, k) if and only if (j, i) ∈ A2(e, k). Hence the second and third
equations in (3.13) are equivalent. We finally end our proof by stating Lemmata 3.59 and 3.61
which follow.
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Figure 3.2 – Illustration of recursive patterns in degree sets. Here are represented
A2(e, 2e − 2) = Deg(Lift(RS2e(2e − 2), 2)), for e = 2, 3, 4 respectively.

Lemma 3.59. Let 2e−1 ≤ k ≤ 2e − 1. Then,

A2(e, k) ∩ S(0,0)
e = R2(e− 1, k)

Proof. If u ∈ A2(e, k) ∩ S(0,0)
e , then in particular u1 + u2 = ψe(u) ≤ k. In other words, u ∈

R2(e− 1, k). Conversely, if u ∈ R2(e− 1, k), then clearly u ∈ S(0,0)
e . Moreover, for any y ∈ ∆(u),

we have ψe(y) = y1 + y2 ≤ u1 + u2 ≤ k. Hence u ∈ A2(e, k).

The first equality in (3.13) is therefore proved. We need a preliminary result for the three other
statements.

Lemma 3.60. Let 2e−1 ≤ k ≤ 2e − 1, u ∈ S(0,0)
e and d ∈ {(2e−1, 0), (2e−1, 2e−1)}. Then, the

following assertions are equivalent:

(i) ψe(∆(u) + ∆(d))) ⊆ [0, k],
(ii) ψe−1(∆(u)) ⊆ [0, k− 2e−1].

Proof.

(i)⇒ (ii). Let v ∈ ∆(u). If v1 + v2 < 2e−1, then:

ψe−1(v) = v1 + v2 = 2e−1 + v1 + v2 − 2e−1 = ψe(v + (2e−1, 0)︸ ︷︷ ︸
∈∆(u)+∆(d)

)− 2e−1 ≤ k− 2e−1 .

Otherwise,

ψe−1(v) = v1 + v2 − (2e−1 − 1) ≤ (2e−1 − 1) + v2 − (2e−1 − 1) = (2e−1 + v2)− 2e−1

= ψe((0, v2) + (2e−1, 0)︸ ︷︷ ︸
∈∆(u)+∆(d)

)− 2e−1 ≤ k− 2e−1 .
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(ii)⇒ (i). Let v + w ∈ ∆(u) + ∆(d). If v1 + v2 < 2e−1, we first claim that ψe(v + w) ≤
v1 + v2 + 2e−1. It is clear if w = 0. If |w| = 2e−1, then ψe(v+w) = v1 + v2 + 2e−1. Finally,
if |w| = 2e, then ψe(v + w) = v1 + v2 + 1 ≤ v1 + v2 + 2e−1. Hence,

ψe(v + w) ≤ v1 + v2 + 2e−1 = ψe−1(v) + 2e−1 ≤ k− 2e−1 + 2e−1 ≤ k .

If v1 + v2 ≥ 2e−1, then the result holds if w = 0. So assume w 6= 0. Then,

ψe(v + w) = v1 + v2 + w1 + w2 − (2e − 1) ≤ v1 + v2 + 1

≤ ψe−1(v) + 2e−1 − 1 + 1 ≤ k− 2e−1 + 2e−1 ≤ k .

Lemma 3.61. Let 2e−1 ≤ k ≤ 2e − 1. The last three statements in (3.13) hold.

Proof. Let u ∈ A2(e− 1, k− 2e−1) and d ∈ {(2e−1, 0), (2e−1, 2e−1)}. Lemma 3.60 proves that, for
every v ∈ ∆(u) + ∆(d), we have ψe(v) ∈ [0, k]. Hence u + d ∈ A2(e, k).

Let now w ∈ A2(e, k), and assume w /∈ S(0,0)
e . Write uniquely w = u + d where u ∈ S(0,0)

2 and
b ∈ ∆((2e−1, 2e−1)) \ {0}. Thanks to symmetry in the problem, without loss of generality we
can assume that d ∈ {(2e−1, 0), (2e−1, 2e−1)}. We need to prove that ∆(u) ⊆ A2(e− 1, k− 2e−1).
Notice that ψe(∆(u) + ∆(d)) ⊆ [0, k] since u + d = w ∈ A2(e, k). Hence Lemma 3.60 shows
that ψe−1(∆(u)) ⊆ [0, k− 2e−1], proving the result we claim.

Since the cardinality of the degree set of a code equals its dimension, we get the following
corollary.

Corollary 3.62. Let 0 ≤ k ≤ 2e − 1. The dimension |A2(e, k)| of Lift(RS2e(k), 2) satisfies the
recursive relation:

|A2(e, k)| = |R2(e− 1, k)|+ 3|A2(e− 1, k− 2e−1)| ,

where by convention, A2(e− 1, k) = ∅ if k < 0.

We now consider the case k = 2e − 2e−c − 1, for some 1 ≤ c ≤ e − 1. In other words, it
corresponds to setting the information rate of the underlying Reed-Solomon code to 2−c. In
Proposition 3.63, we state an exact formula for the dimension of the associated affine lifted
code. This new result improves upon Guo et al.’s Claim 3.19 in [GKS13], which was only a
lower bound on the dimension of the lifted code.

Proposition 3.63. For every 1 ≤ c ≤ e− 1. Let ke,c = 2e − 2e−c − 1. Then,

dim(Lift(RS2e(ke,c), 2)) = 4e
(

1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c

+
1
2e

(
3c − 1
2c+2

))
.

Proof. Let us fix c ≤ e. For every 0 ≤ i ≤ c, define ai := |A2(e − i, 2e−i − 2e−c − 1)| and
ri := |R2(e− 1− i, 2e−i − 2e−c − 1)| . Previous corollary translates into

a0 − 3a1 = r0 ,

and more generally we have
ai − 3ai+1 = ri
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polygon R2(4, 27)

polygon R2(3, 11)

polygon R2(2, 3)

polygon R2(3, 13)

polygon R2(2, 5)

polygon R2(1, 1)

Figure 3.3 – A typical example of a triangle R2(e− k, 2e−k − 2e−c − 1) that can be parti-
tioned into polygons of the shape R2(e− k− i− 1, 2e−k−i− 2e−c− 1), for 0 ≤ i ≤ c− k− 1.
The instances correspond to (e, c, k) = (5, 3, 0) (on the left), and (e, c, k) = (5, 4, 1) (on
the right).

for every 0 ≤ i ≤ c. Notice that ac = 0 and rc = 0, and recall that we look for a closed formula
for a0. Therefore, it is useful to notice that:

c−1

∑
i=0

3iri =
c−1

∑
i=0

3i(ai − 3ai+1) = a0 − 3cac = a0 .

We now claim that, for every 0 ≤ k ≤ c− 1, we have

c−k−1

∑
i=0

2iri+k = tk :=
(

2e−k − 2e−c + 1
2

)
.

This can be seen by decomposing the triangle R2(e− k, 2e−k − 2e−c − 1) into polygons of the
shape R2(e− k− i− 1, 2e−k−i − 2e−c − 1) (see Figure 3.3). Therefore we get

c−1

∑
i=0

3iri =
c−1

∑
i=0

2iri +
c−1

∑
i=0

(3i − 2i)ri = t0 +
c−1

∑
i=1

(
i−1

∑
k=0

3k2i−1−k

)
ri

= t0 +
c−1

∑
k=0

c−1

∑
i=k+1

3k2i−1−kri = t0 +
c−1

∑
k=0

3k
c−k−2

∑
i=0

2iri+k+1

= t0 +
c−1

∑
k=0

3ktk+1 .

(3.14)

Then,

2
c−1

∑
k=0

3ktk+1 =
c−1

∑
k=0

3k(2e−k−1 − 2e−c + 1)(2e−k−1 − 2e−c)

=
c−1

∑
k=0

3k(4e−k−1 + 4e−c − 22e−k−c + 2e−k−1 − 2e−c)

= 4e−1
c−1

∑
k=0

(3/4)k + (4e−c − 2e−c)
c−1

∑
k=0

3k + (2e−1 − 22e−c)
c−1

∑
k=0

(3/2)k

= 4e − 3c4e−c +
(4e−c − 2e−c)(3c − 1)

2
+ 2e−c3c − 2e − 22e−2c+13c + 22e−c+1 .
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Figure 3.4 – Illustration of the sequence of degree sets A2(e, 2e − 2e−c − 1), for c = 5 and
e = 5, . . . , 10. Recall that a black square at coordinate (i, j) means that (i, j) lies is the
degree set. For increasing e we observe that the black shape converges to a finite union
of triangles.

Hence,

2a0 = 2t0 + 2
c−1

∑
k=0

3ktk+1 = (2e − 2e−c + 1)(2e − 2e−c) + 2
c−1

∑
k=0

3ktk+1

= 4e + 4e−c − 22e−c+1 + 2e − 2e−c + 4e − 3c4e−c

+
(4e−c − 2e−c)(3c − 1)

2
+ 2e−c3c − 2e − 22e−2c+13c + 22e−c+1

= 4e · (2 + 2−14−c − 5 · 2−13c4−c) + 2e · (3c2−c−1 − 2−c−1) .

Finally,

a0 = 4e
(

1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c

+
1
2e

(
3c − 1
2c+2

))
.

Remark 3.64. We know that Lift(RS2e(2e − 2), 2) is equivalent to Code2e(AG1(2, 2e)). Taking
c = e in the last corollary, we get the well-known result concerning the dimension of affine
geometry design-based codes: for every e ≥ 2, we have

dim(Lift(RS2e(2e − 2), 2)) = 4e − 3e .

As we said previously, it is claimed in [GKS13] that

dim(Lift(RS2e(2e − 2e−c − 1), 2)) ≥ 4e
(

1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c)
.

We can notice their lower bound corresponds to the asymptotic dimension of the family of
codes Lift(RS2e(2e − 2e−c − 1), 2), when e→ ∞ and c is fixed.

Let us propose an interpretation to this observation. In Figure 3.4, we represent the evolution
of dim(Lift(RS2e(2e − 2e−c − 1), 2)) when e grows. It is reasonable to conjecture that the rate
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c

ρ∞

0 1

1

5 10 15 20

asymptotic Singleton bound for δ = 2−c
ρ∞(c) for Lift(RSq((1− 2−c)q− 1), 2)
ρ∞(c) for RMq((1− 2−c)q, 2)

Figure 3.5 – Asymptotic rates of Reed-Muller codes RMq((1− 2−c)q, 2) and affine lifted
codes Lift(RSq((1 − 2−c)q − 1), 2), with comparable local correcting capabilities. We
make e → ∞, where q = pe. The black curve represents the asymptotic Singleton
bound for codes with relative distance 2−c, corresponding approximately to the relative
distance of both Reed-Muller and lifted codes.

of the code tends to the (finite) sum of the area of triangles that show up. To prove this, it is
sufficient to see that lime→∞(tk/4e−k) = (1− 2k−c)2/2, where tk := (2e−k−2e−c+1

2 ) is defined in
the proof of Proposition 3.63. Furthermore, if c is fixed, we can make e tend to infinity in the
equality

4−ea0 = 4−e

(
t0 +

c−1

∑
k=0

3ktk+1

)
that we derive from (3.14). Formally denote by

ρ∞(c) := lim
e→∞

dim(Lift(RS2e(2e − 2e−c − 1), 2))
4e

the asymptotic rate of the family of affine lifting of Reed-Solomon codes of rate 2−c. Then we
get

ρ∞(c) = lim
e→∞

(4−ea0) =
(1− 2−c)2

2
+

1
4

c−1

∑
k=0

(
3
4

)k (1− 2k+1−c)2

2
.

An easy computation then shows that

ρ∞(c) = 1− 5
4

(
3
4

)c

+
1
4

(
1
4

)c

.

In Figure 3.5 we depict the asymptotic rate of lifted codes and Reed-Muller codes, for the
setting m = 2, p = 2, e→ ∞. We see that lifted codes outperform Reed-Muller codes, and that
their rate tends to 1 when we let their relative distance 2−c tend to 0.

Characteristic p 6= 2. Odd characteristic makes recursive relations between Ap(·, ·) and

Rp(·, ·) more complex, since Se = [0, pe − 1]2 must be split into more subsquares S(i,j)
e . By

analogy with the even characteristic setting, we claim that

Ap(e, k) ∩ S(i,j)
e =

 S(i,j)
e if i + j ≤ p− 3
{(ipe−1, jpe−1)}+ Rp(e− 1, k− (p− 2)pe−1) if i + j = p− 2
{(ipe−1, jpe−1)}+ Ap(e− 1, k− (p− 1)pe−1) if i + j ≥ p− 1

(3.15)



80 CHAPTER 3. PROJECTIVE LIFTED CODES

A3(3, 24) A5(2, 22)

Figure 3.6 – Degree sets Ap(e, k) of Lift(RSpe(k), 2) in odd characteristic p. On the left-
hand side, (p = 3, e = 3, k = 24); on the right-hand side, (p = 5, e = 2, k = 22). In
black, we plot regions S(i,j)

e for i + j ≤ p− 3; in red, regions of the form Rp(e− 1, k −
(p− 2)pe−1); in orange, regions of the form Ap(e− 1, k− (p− 1)pe−1) which are defined
recursively.

A full proof of this result would be very technical to state, but very similar to the one of
Theorem 3.58. Instead, we give in Figure 3.6 an overview of the structure of the degree sets
for small values of p, e and k.

Using recursive relations given in (3.15), we get

|Ap(e, k)| =
(

p− 1
2

)
· |S(0,0)

e |

+ (p− 1) · |Rp(e− 1, k− (p− 2)pe−1)|

+

(
p
2

)
· |Ap(e− 1, k− (p− 1)pe−1)|

As previously, we consider the case k = pe − pe−c − 1, corresponding to lifting Reed-Solomon
codes of rate p−c. We also denote by ai := |Ap(e− i, pe−i − pe−c − 1)| and by ri := |Rp(e− 1−
i, 2pe−i−1 − pe−c − 1)|. With arguments very similar to the proof of Proposition 3.63, one can
then show that

ai −
(

p
2

)
ai+1 =

(
p− 1

2

)
p2(e−i−1) + (p− 1)ri, 0 ≤ i ≤ c− 1 .

We then obtain

a0 =
c−1

∑
i=0

(
p
2

)i ((p− 1
2

)
p2(e−i−1) + (p− 1)ri

)
,

which leads us, after quite technical computations, to

|Ap(e, k)| = a0 = t0 +

(
p
2

) c−1

∑
k=0

(
p + 1

2

)k

tk+1 ,

where tk := (pe−k−pe−c+1
2 ).
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Asymptotic analysis. Recall that lime→∞(tk/p2(e−k)) = (1− pk−c)2/2. A quite tedious computa-
tion then gives

ρ
(p)
∞ (c) = lim

e→∞
(a0/p2e) = 1−

(
1 +

1
p + 2

)(
1 + 1/p

2

)c

+
1

p + 2

(
1
p2

)c

.

One can first check that the above formula matches with the even characteristic setting.
Moreover, we see that lifted codes over fields of odd characteristic also produce locally cor-
rectable codes with arbitrarily large rate.
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Chapter 4

Private information retrieval from
transversal designs
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A private information retrieval (PIR) protocol aims reassuring a user that he can retrieve
some entry Mi of a remote database M without revealing the index i to the server(s) holding
the database. In this chapter, we propose a specific encoding of the database which yields
PIR protocols with reasonable communication complexity, low storage overhead and optimal
computational complexity for the servers. This encoding is based on incidence matrices of
transversal designs, from which a natural and efficient recovering algorithm is derived (Sec-
tion 4.2). We also present practical instances of the construction in Section 4.3, making use
of finite geometries and orthogonal arrays. Furthermore, we give a generalisation of the con-
struction in order to resist collusions of servers (Section 4.4). Finally, we review very recent
constructions and bounds on PIR protocols to conclude the chapter.
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4.1 Private information retrieval

4.1.1 PIR models

Two kinds of security models for PIR have been introduced so far. In [CGKS95, CKGS98],
Chor, Goldreich, Kushilevitz and Sudan considered so-called information-theoretic PIR (IT-PIR):
one requires that absolutely no information on i is leaked to the servers when querying the
database. However, the authors proved that in this model, if only one server stores the data-
base M, then one must download at least Ω(|M|) bits in order to retrieve a single entry of
the database. A second security model was proposed a few years later by Chor and Gil-
boa [CG97], named computational PIR (CPIR). Here, one requires that it is computationally
hard for the server to recover any bit of information on i. Notice that, in practice, CPIR
constructions are much less efficient than IT-PIR constructions.

We situate our work in the information-theoretic PIR (IT-PIR) model. Throughout the chapter,
a user U is the owner of a database M = (M1, . . . , MK) composed of messages Mi lying in
some message spaceM. A system of ` servers S1, . . . , S` is at his disposal, and stores possibly
encoded versions of the messages. The goal of U is to retrieve some message Mi, for 1 ≤ i ≤ K,
without revealing any information about i to the servers.

In the first model given by Chor, Goldreich, Kushilevitz and Sudan [CGKS95, CKGS98], the
user simply replicates M on the servers.

Definition 4.1 (replication-based PIR protocol). We assume that every server Sj, 1 ≤ j ≤ `,
stores a copy of the database M = (M1, . . . , MK). An `-server replication-based PIR protocol
is a set of three algorithms (Query, Ans, Rec) running the following steps on input i ∈ [1, K]:

1. Query generation. The randomised algorithm Query generates ` queries

(q1, . . . , q`)←R Query(i) .

Query qj is sent to server Sj.
2. Servers’ answer: Each server Sj computes an answer

aj ← Ansj(qj, M)

and sends it back to U.
3. Reconstruction: Denote by a = (a1, . . . , a`) and q = (q1, . . . , q`). User U computes and

outputs
R← Rec(i, a, q) .

The PIR protocol is said to be:

– correct if R = Mi when the servers follow the protocol;
– t-private if, for every 1 ≤ i, i′ ≤ K and every T ⊆ [1, `] such that |T| ≤ t, the distributions

Query(i)|T and Query(i′)|T are the same. We also say that the PIR protocol resists a
collusion of t servers.

In practice, it is usual that the answer of server Sj does not depend on j; in that case we simply
write Ans(qj, M). We call communication complexity the total number of bits sent between the
user and the servers during one iteration of the protocol. The server (resp. user) computational
complexity is the maximal number of operations in the underlying field made by a server in
order to compute an answer aj (resp. made by Rec to reconstruct the desired item). The storage
rate of the protocol is the ratio between the size |M| of the database, and the size of what is
actually stored on the servers. For replication-based protocols, it is then 1/`.
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A way to reduce the storage overhead of a PIR protocol is to preprocess the database in order
to distribute it smartly among the servers. From now on, we denote by C an encoded version
of M, that can be split into ` parts C1, . . . , C`, where Cj generally lies in some set Cj. One can
consider that the map M 7→ C = (C1, . . . , C`) is performed by the user, and the part Cj is then
uploaded on server Sj. This leads us to the definition of distributed PIR protocols.

Definition 4.2 (coded, or distributed PIR protocol). Assume that for 1 ≤ j ≤ `, server Sj
holds the part Cj of an encoded version C of the database M = (M1, . . . , MK). An `-server
distributed PIR protocol is a set of three algorithms (Query, Ans, Rec) running the following
steps on input i ∈ [1, K]:

1. Query generation. The randomised algorithm Query generates ` queries

(q1, . . . , q`)←R Query(i) .

Query qj is sent to server Sj.
2. Servers’ answer. Each server Sj computes an answer aj ← Ansj(qj, Cj) and sends it back

to the user.
3. Reconstruction. Denote by a = (a1, . . . , a`) and q = (q1, . . . , q`). User U computes and

outputs
R← R(i, a, q) .

Correctness and privacy are defined identically to Definition 4.1.

Communication and computational complexities, as well as storage rate, are defined similarly
to the replication-based model. Furthermore, we see that the definition of replication-based
PIR protocols is included in Definition 4.2, by means of an encoding map

M 7→ (C1 = M, . . . , C` = M) .

There exists a basic replication-based PIR protocol that uses only ` = 1 server: it simply
consists in downloading M entirely. This protocol will be called the trivial PIR protocol. It is
clear that it is private, but it also admits a huge download complexity. Unfortunately, Chor et
al. proved that, in the case ` = 1, this protocol is essentially optimal in terms of communication
complexity [CKGS98]. Precisely, one cannot achieve information-theoretic privacy with only
1 server, expect by downloading Ω(|M|) bits. So from now on we assume ` ≥ 2.

4.1.2 First constructions, and links with locally decodable codes

In their seminal paper, Chor et al. [CKGS98] proposed a first PIR protocol involving ` servers
with a total communication complexity O(` log(`)K1/ log(`)) bits (each message Mi has size 1
bit). Their construction relies on a smart arrangement of bits in M in a log(`)-dimensional
binary array. Then, the user queries sum of bits supported by random Cartesian products in
order to retrieve the desired bit.

A few years later, Katz and Trevisan [KT00] showed that any smooth locally decodable
code C ⊆ Fn

q of locality ` gives rise to an `-server PIR protocol whose communication
complexity is essentially ` log(nq). Building on this idea, many PIR constructions (notably
[BIKR02, Yek08, Efr12, DG16]) successively decreased the communication complexity, achiev-

ing O(K
√

log log K/ log K) bits with only ` = 2 servers.

In fact, the definition of PIR in [KT00] allows the protocol to fail with small probability ε > 0,
which corresponds to the failure probability of the underlying LDCs. In this thesis we choose
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to use the most-common definition of PIR, which does not allow retrieval failure. Hence we
need to replace LDCs by (`, `)-local reconstructing algorithms, as defined in the paragraph
about expander codes in Subsection 2.3.1.

So, let C ⊆ ΣX be a code of dimension K equipped with an (`, `)-local reconstructing algorithm
(Q, R), and denote by E a systematic encoder for C. Assume the database M = (M1, . . . , MK)
is replicated over ` servers. Let also x ∈ X such that Mi = E(M)x (we recall that Mi is the
message to be retrieved privately). The PIR protocol based on (Q, R) can be described as
follows:

– Query generation. User U calls the query generator Q on input x. It produces a subset
Q = {q1, . . . , q`} ⊆ X. Query qj is sent to server Sj.

– Servers’ answer. Each server Sj computes the encoding E(M)qj and returns it to U. In
other words,

Ans(qj, M) = E(M)qj .

– Reconstruction. User U collects a = (E(M)q1 , . . . , E(M)q`), and feeds R with a and Q.
Then U outputs Rec(i, a, q) = R(a, Q).

By definition of local reconstructing algorithms, each individual query of Q(i) is uniformly
distributed in X. Therefore, the servers get no information about i. Moreover, the output is
correct as long as the servers’ answers are correct.

Remark 4.3. Most known perfectly smooth LDCs and LCCs of locality ` are actually (`, `)-
local reconstructing algorithms. This is the case for all the LCCs we presented in Chapters 2
and 3. Hence, for convenience and conformity with the literature, we will say that protocols
presented above are LDC-based PIR protocols.

Remark 4.4. The construction of Chor et al. [CKGS98] can also be seen as an LDC-based PIR
protocol. The underlying LDC is the evaluation code of log(`)-linear forms over the space Fm

2
where m = K1/ log(`).

The main drawback of LDC-based PIR protocols is their computational cost: each server must
compute a new symbol of E(M) for each run of the protocol. The cost of this computation is
usually Ω(|M|). Preprocessing the encoding can reduce this cost, but in this case, each server
has to store the encoding E(M). Therefore the induced PIR storage rate is RC/`, where RC is
the rate of the code C. For small `, this quantity is impractical since we have seen in Chapter 2
that constant locality LDCs have vanishing rate.

Aiming at reducing this storage overhead, Augot, Levy-dit-Vehel and Shikfa [ALS14] pro-
posed to benefit from a natural partition of the evaluation support of multiplicity codes
defined in [KSY14]. In a more generic setting, assume that each codeword c ∈ C can be
split into ` disjoint parts c(1), . . . , c(`), such that each coordinate qj of any possible query
q = (q1, . . . , q`) of the PIR protocol corresponds to some symbols on the piece c(j). Defin-
ing Cj := c(j), we obtain a distributed PIR protocol as in Definition 4.2. The PIR protocols we
present in Sections 4.2 and 4.4 should be seen in the spirit of Augot et al.’s construction. In-
deed we propose a generalisation of this support partition idea, which makes use of transversal
designs, and achieves small storage overhead and low computational complexity for both user and
servers.

To further emphasize the relevance of our work, we point out that most current PIR construc-
tions admit a large computational complexity (see Section 4.5). In the context of a system
storing a large amount of files accessed very frequently, one could question the practical-
ity of such schemes. Especially, in a survey [Yek12] Yekhanin brings attention to this issue,
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and claims that ‘the overwhelming computational complexity of PIR schemes (...) currently
presents the main bottleneck to their practical deployment’.

4.2 A 1-private protocol based on transversal designs

In the upcoming constructions, the database can be viewed as a message m ∈ Fk
q, and the user

wants to retrieve its entry mi for 1 ≤ i ≤ k.

4.2.1 Transversal designs

We refer to Section 1.3 for basics on design-based codes. We also recall that 2-designs give
rise to perfectly smooth locally correctable codes. Therefore it is natural to use them in the
LDC-based PIR construction. In fact, since we want to use the splitting technique of Augot et
al. [ALS14], we can relax a few constraints on the incidence between points and blocks. This
leads us to introduce transversal designs.

Definition 4.5 (transversal design). Let s, ` ≥ 1 and λ ≥ 1 be integers. A transversal design,
denoted TDλ(`, s), is a block design (X,B) equipped with a partition G = {G1, . . . , G`} of X
called the set of groups, such that:

– |X| = `s;
– every group in G has size s and every block in B has size `;
– every unordered pair of elements from X is contained either in exactly one group, or in

exactly λ blocks.

When λ = 1, we use the simpler notation TD(`, s).

Remark 4.6. In a transversal design, a block and a group intersect in a set of size at most 1,
otherwise the third condition of the definition would be disproved. Moreover, since the block
size equals the number of groups, any block must meet any group. Hence the following holds:

∀(B, G) ∈ B × G, |B ∩ G| = 1 .

The definition also implies that there must lie exactly λs2 blocks in B. To prove this, let S be
the set of unordered pairs {x, y} ⊆ X which are contained in a block B ∈ B. Notice that S
contains exactly (s`

2 )− `(s
2) elements: there are (s`

2 ) unordered pairs in X, but for each group
G ∈ G, we need to remove (s

2) pairs contained in G. On the one hand, we have

N := ∑
{x,y}∈S

∑
B∈B

1{x,y}⊂B = ∑
{x,y}∈S

λ = λ
(
(s`

2 )− `(s
2)
)
= λs2(`2) .

by definition of transversal designs. On the other hand,

N = ∑
{x,y}∈S

∑
B∈B

1{x,y}⊂B = ∑
B∈B

∑
{x,y}∈S

1{x,y}⊂B = ∑
B∈B

(`2) = |B|(
`
2) ,

which proves our claim.

Example 4.7. Let us define a transversal design as follows. The points X are those of the
affine plane A2(F3). Any set of three pairwise disjoint affine lines of A2(F3) define the set of
groups G. For instance, one can consider

G = { {(0, 0), (0, 1), (0, 2)}, {(1, 0), (1, 1), (1, 2)}, {(2, 0), (2, 1), (2, 2)} } .
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The other 9 affine lines define the blocks B. The design T = (X,B,G) we obtain is a transversal
design TD(3, 3). Indeed, T is composed of `s = 9 points, ` = 3 groups of size s = 3 and
s2 = 9 blocks of size ` = 3 each. Moreover, in the affine plane every unordered pair of points
is contained in a single line, which is represented in T either by a group or by a block. More
generally, for any prime power q, a transversal design TD(q, q) can be built with the affine
plane A2(Fq).

Also notice that the code C = Code3(T ) is a linear code over F3, of length 9 and dimension 3.
A full-rank generator matrix of C is given by:

G =

 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

 ,

where the ordering of the points X we have chosen can be read in the columns of G. One can
check that C is identical to Code3(AG1(2, 3)), the code based on the classical affine design,
though the designs T and AG1(2, 3) are different. This property will be proved in a more
generic setting in Proposition 4.13.

4.2.2 The protocol

In this section we present a construction of PIR protocols relying on transversal designs. The
idea is that the knowledge of one point of a block of a transversal design gives (almost) no
information on the other points lying on this block. This privacy property is transferred to
the coordinates of words lying on the code based on a transversal design. Hence, if messages
are encoded such a way, we obtain a 1-private PIR protocol. Though this protocol cannot
resist collusions, we will see in Subsection 4.4.1 that a natural generalisation gives t-private
PIR protocols, for t > 1.

Remark 4.8. One must notice that Barkol, Ishai and Weinreb consider in [BIW10] the case of
LCCs arising from designs for applications to PIR. In that sense, their approach is close to
ours. Nevertheless, the protocols they propose are costly in terms of storage (they use the
replication-based model), and focus on small communication complexity. Moreover, they do
not address the computational complexity issue.

Let T be a transversal design TD(`, s) and n = |X| = `s. Denote by C = Codeq(T ) ⊆ FX
q

the associated Fq-linear code, and let k = dim(C). A PIR protocol based on C is defined in
Figure 4.1. We refer to this protocol as the TD-based PIR protocol. We then summarise the
steps of the construction in Figure 4.2.

Theorem 4.9 states that the protocol we build in Figure 4.1 is indeed a 1-private PIR protocol.

Theorem 4.9. If there exists a transversal design TDλ(`, s) whose associated code has dimension k,
then there exists a distributed `-server 1-private PIR protocol for databases with k entries over Fq,
where:

– only one Fq-symbol to read for each server,
– `− 1 field operations over Fq for the user,
– ` log(sq) bits of communication (` log s are uploaded, ` log q are downloaded),
– a storage rate RC = k/`s.

Proof. Recall the PIR protocol we are dealing with is defined in Figure 4.1.
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System parameters. T = (X,B,G) a transversal design TDλ(`, s), and C =
Codeq(T ) its associated code of length n = `s and dimension k.

1) Initialisation step.
1. Encoding. User U computes a systematic encoding of the database m ∈ Fk

q,
resulting in the codeword c ∈ C. We denote by x ∈ X the point such that
cx = mi.

2. Distribution. Each server Sj receives c|Gj
, for 1 ≤ j ≤ `, where Gj ∈ G.

2) Retrieval of symbol cx = mi. Denote by jx ∈ [1, `] the index of the unique group
Gjx ∈ G which contains i. Also denote by Bx the subset of blocks containing x. The
three steps of the distributed PIR protocol are:

1. Queries generation. User U picks uniformly at random a block B ∈ Bx. For
j 6= jx, U sends the unique index qj ∈ B ∩ Gj to server Sj. Server Sjx receives
a random query qjx uniformly picked in Gjx . To sum up, Q ←R Query(i) is
defined by:

B←R Bx

and {
Q(i)jx ←R Gjx where jx satisfies x ∈ Gjx
Q(i)j ← B ∩ Gj for j 6= jx

2. Servers’ answer. Each server Sj (including Sjx ) reads aj := cqj and sends it back
to the user. That is,

Ans(qj, c|Gj
) := cqj .

3. Reconstruction. Denote by a = (a1, . . . , a`) and q = (q1, . . . , q`). User U outputs

Rec(i, a, q) := − ∑
j 6=jx

ajx = − ∑
j 6=jx

cqj .

Figure 4.1 – A 1-private distributed PIR protocol based on the Fq-linear code defined by
a transversal design.

Transversal design TD(`, s)

incidence matrix
��

TD-based linear code Codeq(TD(`, s)) ⊆ F`s
q

database encoding
��

Distributed PIR scheme

Figure 4.2 – Summary of the steps leading to the construction of a transversal-design-
based PIR scheme.

Correctness. By definition of the code C = Codeq(T ), the incidence vector 1B of any block B ∈
B belongs to the dual code C⊥. Hence, for any c ∈ C, the inner product 〈1B, c〉 = ∑y∈B cy = 0.
We recall that jx represents the index of the group which contains x, where x satisfies cx = mi.
Since the servers Sj, j 6= jx, receive queries corresponding to the points of a block B which
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contains x, we have cx = −∑y∈B\{x} cy = −∑j 6=jx cqj . Therefore, the PIR protocol is correct as
long as there is no error on the symbols cqj returned by the servers.

Security (1-privacy). We need to prove that for all 1 ≤ j ≤ `, it holds that I(i ; qj) = 0, where
I(· ; ·) denotes the mutual information. If j = jx, then it is clear that qj is picked independently
to i, therefore I(i ; qjx) = 0. Now assume that j 6= jx. By definition of a transversal design, the
number of blocks containing both x and qj is exactly λ, and the total number of blocks passing
through x is λs. Therefore the probability Pr(qj | i) = 1/s, and we also get I(i ; qj) = 0.

Communication complexity. Exactly one index qj ∈ [1, s] and one symbol cqj ∈ Fq are
exchanged between each server and the user. So the overall communication complexity is
`× (log(s) + log(q)) = ` log(sq) bits.

Storage rate. The number of bits stored on a server is s log q, giving a storage rate of k/s` = R,
the code rate. Equivalently, the storage overhead is (s`− k) log q bits.

Computational complexity. Each server Sj only needs to read the symbol defined by query
qj, and the protocol does not incur any extra computational cost.

Theorem 4.9 shows that best practical parameters of the TD-based PIR protocol appear for
small values of `, the number of groups of the transversal design. However, one also observes
that the dimension k of Codeq(T ) strongly depends on ` and n, and tiny values of ` can lead
us to degenerate or very small codes. This issue should be carefully taken into account, since
for instance, codes of dimension k ≤ ` represent PIR protocols which are more expensive in
terms of communication than the trivial one. Hence, it is very natural to raise the main issue
of the TD-based construction.

Problem 4.10. Find codes C = Codeq(T ) arising from transversal designs T = TDλ(`, s) with few
groups (small `) and large dimension k = dim(C) compared to their length n = `s.

A first answer comes by adapting Proposition 1.14 to transversal designs. Essentially, it shows
that the characteristic of the base field Fq must be chosen properly in order to have a chance
to get high-rate codes.

Proposition 4.11. Let T = (X,B,G) be a TDλ(`, s). Let q = pe, p prime. If p - λs, then

Codeq(T ) ⊆ {c ∈ FX
q | ∀G ∈ G, c|G ∈ Rep(s)} ,

where Rep(s) represents the repetition code of length s. In particular, if p - λs, then Codeq(T ) has
dimension at most `.

Proof. For x ∈ X, recall that Bx = {B ∈ B, x ∈ B}, and denote by a(x) = ∑B∈Bx
1B. We know

that a(x) ∈ Codeq(T )⊥, since Codeq(T )⊥ is generated by {1B, B ∈ B}. Denote by Gx ∈ G the
only group that contains x. We see that:

a(x)
x = λs

a(x)
i = 0 for all i ∈ Gx \ {x}

a(x)
j = λ for all j ∈ X \ Gx .

Therefore a(x) − a(y) = λs(1{x} − 1{y}) if x and y lie in the same group G. If p - λs, then we
get 1{x} − 1{y} ∈ Codeq(T )⊥. Let now

C = SpanFq
{1{x} − 1{y}, ∀{x, y} ⊂ G ∈ G}

We see that C⊥ = {c ∈ FX
q | ∀G ∈ G, c|G ∈ Rep(s)}. Therefore we obtain the expected

result.
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Section 4.3 is devoted to the construction of transversal designs leading to codes with high
rate, in the perspective of providing solutions to Problem 4.10. Collusions of servers will be
addressed in Section 4.4.

4.3 Instances

From now on, we denote by `(k) the number of servers involved in a given PIR protocol
running on a database with k entries, and by n(k) the actual number of symbols stored by all
the servers. As it is proved in Theorem 4.9, both parameters are crucial for the practicality
of the TD-based PIR protocol, and they respectively correspond to the block size and the
number of points of the transversal design used in the construction. In practice, we look for
small values of ` and n as explained in Problem 4.10.

In this section, we first give two classical instances of transversal designs derived from finite
geometries (Subsections 4.3.1 and 4.3.2), leading us to good PIR parameters. We then show
how orthogonal arrays produce transversal designs, and we more deeply study a family of
such arrays producing high-rate codes. Subsection 4.3.4 is finally devoted to another family of
orthogonal arrays whose divisibility properties ensure to give an upper bound on the storage
overhead of related PIR protocols.

4.3.1 Transversal designs from affine geometries

Transversal designs can be built with incidence properties between subspaces of an affine
space.

Definition 4.12 (affine transversal design). Let Am(Fq) be the affine space of dimension m
over Fq, and G = {G1, . . . , Gq} be a collection of q affine hyperplanes that partition Am(Fq).
We define a transversal design TA(m, q) as follows:

– the point set X consists in all the points in Am(Fq);
– the set of groups G is defined as above;
– the blocks in B are all the 1-dimensional affine subspaces (lines) which do not entirely lie

in one of the Hj, for 1 ≤ j ≤ q. We also say that such lines are secant to the hyperplanes
in H.

This design is a TD(q, qm−1).

Let us now focus on the dimension of codes based on TA(m, q). In order to obtain a large
dimension, Proposition 4.11 inclines us to choose a code whose base field characteristic divides
q = pe, so let us choose Fp. We see that the block set of TA(m, q) is contained in the block set
of AG1(m, q), therefore

Codep(AG1(m, q)) ⊆ Codep(TA(m, q)) .

Let us prove that equality holds.

Proposition 4.13. For every q = pe and m ≥ 2, we have

Codep(AG1(m, q)) = Codep(TA(m, q)) .

Proof. Denote by B(AG) the blocks of AG1(m, q), and by B(T ) and G(T ) the blocks and groups
of TA(m, q). Thanks to the previous discussion, we only need to show that for every block
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B ∈ B(AG) contained in a group G ∈ G(T ), it holds that 1B ∈ Codep(TA(m, q))⊥. To this end,
let us first notice that Codep(TA(m, q))⊥ = Span{1B′ , B′ ∈ B(T )}.

Let now G ∈ G(T ) and B ∈ B(AG) such that B ⊆ G. Recall that G is a hyperplane of Am(Fq),
and let P be a 2-dimensional affine plane of Am(Fq) such that P ∩ G = B. We claim that
1P ∈ Span{1B′ , B′ ∈ B(T )}. Indeed, P admits a partition into affine lines which are secant to
every hyperplane in G, thus 1P is the sum of the characteristic vectors of these lines.

Now let x ∈ B, and B(T )
x,P := {B′ ∈ B(T ), {x} ∈ B′ ⊂ P} ⊆ B(T ). Define b(x) = ∑B′∈B(T )x,P

1B′ . It

is clear that b(x) ∈ Span{1B′ , B′ ∈ B(T )}, and we can notice that
b(x)

x = q = 0
b(x)

i = 0 for all i ∈ B \ {x}
b(x)

j = 1 for all j ∈ P \ B .

In other words, b(x) = 1P − 1B, therefore 1B ∈ Span{1B′ , B′ ∈ B(T )}.

Now recall that the dimension of Codep(TA(m, q)) is known thanks to Hamada’s formu-
lae (1.1) and (1.2) that we reported in Chapter 1. However, for generic values of m and q, they
do not allow us to grasp how large the dimension can be. So let us focus on the case m = 2.

In this case, we get rankp(AG1(2, pe)) = (p+1
2 )

e
, hence Codep(TA(2, pe)) has dimension p2e −

(p+1
2 )

e
. Therefore we obtain the following family of PIR protocols.

Proposition 4.14. Let M be a database with k = p2e − (p+1
2 )

e
entries, p a prime, e ≥ 1. There exists

a distributed 1-private PIR protocol for M with:

`(k) = pe and n(k) = p2e .

For fixed p and k→ ∞, we have

`(k) =
√

k + Θ(k
1
2+cp) and n(k)/k =

1

1−
(

1+1/p
2

)e = 1 + Θ(kcp)→ 1 , (4.1)

where cp = 1
2 logp(

1+1/p
2 ) < 0.

Proof. The existence of the PIR protocol is a consequence of the Theorem 4.9. Let us state the
asymptotics of the parameters. Recall that prime p is fixed, and let e→ ∞. First we have:

n(k)
k

=
p2e

p2e − (p+1
2 )

e =
1

1−
(

1+1/p
2

)e

= 1 +
(

1 + 1/p
2

)e

+O
((

1 + 1/p
2

)2e
)

.

(4.2)

Notice that

logp k = 2e + logp

(
1−

(
1 + 1/p

2

)e)
= 2e +O

((
1 + 1/p

2

)e)
.
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Hence, (
1 + 1/p

2

)e

=

(
1 + 1/p

2

) 1
2 logp k+O

((
1+1/p

2

)e)

= k
1
2 logp

(
1+1/p

2

)
×
(

1 + 1/p
2

)O(( 1+1/p
2

)e)

= Θ (kcp) ,

since
(

1+1/p
2

)O(( 1+1/p
2

)e)
→ 1 when e→ ∞. Using (4.1) we obtain the asymptotics we claimed

for n(k)/k.

For `(k), we see that n(k) = `(k)2. Therefore, we get

`(k) =
√

k
√

n(k)/k =
√

k
√

1 + Θ(kcp) =
√

k + Θ(k
1
2+cp) .

We give in Table 4.1 the dimension of codes arising from some affine transversal designs. In
this table, m is not restricted to 2 but remains small. Finally, for a better understanding of the
parameters we can point out two instances of PIR protocols:

– choosing m = 2 and ` = 4096, there exists a PIR protocol on a ' 2.0MB file with 6kB of
communication and only 3.2% storage overhead;

– for a ' 46GB database (m = 3, ` = 8192), we obtain a PIR protocol with 39kB of
communication and 27.1% storage overhead.

m ` = q n = s` = qm k = dim(C) R = k/n
2 8 64 37 0.578
2 16 256 175 0.684
2 32 1024 781 0.763
2 64 4096 3367 0.822
2 1024 1 048 576 989 527 0.944
2 4096 16 777 216 16 245 775 0.968
2 16 384 268 435 456 263 652 487 0.982
2 65 536 4 294 967 296 4 251 920 575 0.990
3 8 512 139 0.271
3 16 4096 1377 0.336
3 64 262 144 118 873 0.453
3 256 16 777 216 9 263 777 0.552
3 1024 1 073 741 824 680 200 873 0.633
3 8192 549 755 813 888 400 637 408 211 0.729
4 8 4096 406 0.099
4 64 16 777 216 2 717 766 0.162
4 256 4 294 967 296 890 445 921 0.207
5 8 32 768 994 0.030
5 64 1 073 741 824 44 281 594 0.041

Table 4.1 – Dimension and rate of binary codes arising from TA(m, q). Remind that the
rate R of the code is the server storage rate of the PIR protocol, and that q = ` is the
number of servers, which essentially corresponds to the communication complexity of
the PIR protocol.
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4.3.2 Transversal designs from projective geometries

Projective geometries are closely related to affine geometries, but contrary to them, there is
no partition of the projective space into hyperplanes, since every pair of distinct projective
hyperplanes intersects in a projective space of co-dimension 2. To tackle this problem, an idea
is to consider the hyperplanes Hi which intersect on a fixed subspace of co-dimension 2 (call
it Π∞). Then, all the sets Hi \ Π∞ are disjoint, and their union gives exactly Pm(Fq) \ Π∞,
where Pm(Fq). Moreover, every projective line disjoint from Π∞ is either contained in one of
the Hi, or is 1-secant to all of them. It results to the following construction:

Definition 4.15 (Projective transversal design). Let Pm(Fq) and Π∞ defined as above. Let us
define

– a point set X = Pm(Fq) \Π∞;
– a group set G = {projective hyperplanes H ⊂ Pm(Fq), Π∞ ⊂ H};
– a block set B = {projective lines L ⊂ Pm(Fq), L ∩Π∞ = ∅ and ∀H ∈ G, L 6⊂ H} .

Finally, denote by TP(m, q) := (X,B,G). Then TP(m, q) is a TD(q + 1, (q + 1)qm−1).

The incidence matrix MTP(m,q) of TP(m, q) is a submatrix of MPG1(m,q), from which we removed:

– the columns corresponding to the points in Π∞,
– the rows corresponding to the lines not in B.

Said differently, the code associated to TP(m, q) contains (as a subcode) the Π∞-shortening of
the code associated to PG1(m, q). Hence we have

dim Code(TP(m, q)) ≥ dim Code(PG1(m, q))− |Π∞| .

Once again, Hamada’s formula allows us to compute dim Code(PG1(m, q)) efficiently, and it
gets simpler for m = 2. We obtain the following proposition.

Proposition 4.16. Let M be a database with k = p2e + pe − (p+1
2 )

e − 1 entries, p a prime and e ≥ 1.
There exists a distributed 1-private PIR protocol for M with:

`(k) = pe + 1 and n(k) = p2e + pe .

Asymptotics are the same as in Equation (4.1).

In order to emphasize that both previous constructions are asymptotically the same, in Fig-
ure 4.3 we draw the rates of the codes involved in these PIR protocols.

4.3.3 Orthogonal arrays and the incidence code construction

In this subsection, we first recall a way to produce transversal designs from another combin-
atorial construction called orthogonal array.

Definition 4.17 (orthogonal array). Let λ, s ≥ 1 and 1 ≤ t ≤ `, and let A be an array with `
columns and λst rows, whose entries are elements of a set S of size s. We say that A is an
orthogonal array OAλ(t, `, s) if, in any subarray A′ of A formed by t columns and all its rows,
every row vector from St appears exactly λ times in the rows of A′. We call λ the index of the
orthogonal array, t its strength and ` its degree. If t (resp. λ) is omitted, it is understood to be 2
(resp. 1). When both these parameters are omitted we simply write A = OA(`, s).
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Figure 4.3 – Rate of binary codes coming from TA(m, q) (in red) and TP(m, q) (in blue).
For every fixed m, we let q grow.

From now on, we restrict Definition 4.17 to orthogonal arrays with no repeated column and
no repeated row. Next paragraph introduces a link between orthogonal arrays and transversal
designs.

Construction of transversal designs from orthogonal arrays. We can build a transversal
design TD(`, s) from an orthogonal array OA(`, s) with the following construction, given as a
remark in [CD06, ch.II.2].

Construction 4.18 (Transversal designs from orthogonal arrays). Let A be an OA(`, s) of strength
t = 2 and index λ = 1 with symbol set S, |S| = s. Denote by Rows(A) the set of rows of A. We
define the point set X = S× [1, `]. To each row a ∈ Rows(A) we associate a block

Ba := {(aj, j), 1 ≤ j ≤ `} ,

so that the block set is defined as

B := {Ba, a ∈ Rows(A)} .

Finally, let G := {S× {j}, 1 ≤ j ≤ `}. Then (X,B,G) is a transversal design TD(`, s).

Example 4.19. A very simple example of this construction is given in Figure 4.4, where for
clarity we use letters {a, b} for elements of the symbol set, while the ` = 3 columns are indexed
by integers. On the left-hand side, A is an OA1(2, 3, 2) with symbol set S = {a, b}. On the
right-hand side, the associated transversal design TD(3, 2) is represented as a hypergraph: the
nodes are the points of the design, its groups are depicted in columns, and a block consists in
all nodes linked with a path of a fixed colour. One can check that every pair of nodes either
belongs to the same group or is linked with one path.

Remark 4.20. If one lists in an array the codewords of a (possibly non-linear) code C0 ⊆ S`, it
gives rise to an orthogonal array whose strength t is derived from the dual distance d′ of C0
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A =


a b b
b b a
b a b
a a a

 =⇒

(a, 1) (a, 2) (a, 3)

(b, 1) (b, 2) (b, 3)

Figure 4.4 – A representation of the construction of a transversal design from an ortho-
gonal array.

by t = d′ − 1. Notice that for linear codes, the dual distance is simply the minimum distance
of the dual code, but it can also be defined for non-linear codes (see [MS77, Ch.5.§5.]). More
details about the link between orthogonal arrays and codes can also be found in [CD06]. For
example, the orthogonal array of Figure 4.4 comes from the binary parity-check code Par(3)
(replacing a by 0 and b by 1). One can check that its dual distance is 3 and its associated
transversal design has strength 2.

Let us state more formally the link between the dual distance of a linear code, and the strength
of the orthogonal array made of its codewords.

Lemma 4.21. Let C0 ⊆ FX
q be a linear code and T ⊂ X, |T| = t where t < d⊥(C0). For a ∈ FT

q ,
denote by Va = {c ∈ C0, c|T = a}, and Na = |Va|. Then,

1. V0 = {v ∈ FX
q | v|T = 0 and v|X\T ∈ Short(C0, T)} is a linear subcode of C0;

2. for every non-zero a ∈ FT
q , there exists a non-zero c(a) ∈ C0 such that

Va = V0 + {c(a)} ;

3. for every a ∈ FT
q , Na = qk−t where k = dim C0.

Proof.

1. The fact that V0 = {v ∈ FX
q | v|T = 0 and v|X\T ∈ Short(C0, T)} is actually the definition

of the shortening of a code.
2. Let a ∈ FT

q be non-zero, and let us first prove that there exists c(a) ∈ C0 such that

c(a)
|T = a. If it were not the case, then we would have Punct(C0, X \ T) 6= Ft

q by definition,

or equivalently Short(C⊥0 , X \ T) = Punct(C0, X \ T)⊥ 6= {0}. But this is impossible since
C⊥0 contains no non-zero codeword of weight less that t.
It is then easy to check that Va = V0 + {c(a)}.

3. First notice that Va ∩ Vb = ∅ if a 6= b. Since

C0 =
⋃

a∈Ft
q

Va ,

we get the expected result.

Given a code C0, we denote by AC0 the orthogonal array it defines and by TC0 the transversal
design built from AC0 thanks to Construction 4.18.

As a straightforward corollary of Lemma 4.21, we get:

Proposition 4.22. Let C0 ⊆ FX
q be a linear code of dimension k, and denote by t = d⊥(C)− 1. Then,

the array AC0 whose rows are codewords of C0 is an orthogonal array OAλ(t, |X|, q), where λ = qk−t.
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Proof. It is clear that AC0 has qk = λqt rows, since the dimension of C0 is k. Let T ⊂ X such
that |T| = t, and let a ∈ FT

q . Thanks to Lemma 4.21, there exists exactly λ = sk−t rows r of
AC0 such that r|T = a. It proves that AC0 has strength t.

Example 4.23. Let S be a set of ` pairwise distinct elements of Fq. We recall that RSq(1, S) ⊆ FS
q

denotes the Reed-Solomon code of length ` and dimension 2 over Fq, with evaluation points
from S. Then, RSq(1, S) has dual distance 3, so its codewords form an orthogonal array
ARSq(1,S) = OA(`, q) of strength 2. Columns of this array can be naturally indexed by S instead
of [1, `]. Now, we use Construction 4.18 to obtain a transversal design TRSq(1,S) = TD(`, q). The
point set is X = Fq × S, and the blocks are Reed-Solomon codewords, that is, sets of the form
{(cα, α), α ∈ S} with c ∈ RSq(1, S) ⊆ FS

q . The set of groups G = {Gα, α ∈ S} correspond to the
` coordinates of the code: Gα = Fq × {α}, α ∈ S.

Remark 4.24. The use of low-degree polynomials for the construction of orthogonal arrays
was described as early as 1952 by Bush [Bus52], that is, even before the actual formalisation
of Reed-Solomon codes [RS60].

We can finally summarise the construction by introducing the code Codeq(TC0) that arises from
C0 through Construction 4.18. We call Codeq(TC0) the incidence code of C0. Our motivation is
that studying the structure of C0 may lead us to properties of Codeq(TC0) which is used in PIR
protocols.

Definition 4.25 (incidence code). Let C0 ⊆ ΣS be an unrestricted code of length |S| = ` over
an alphabet Σ of size s. The incidence code of C0 over Fq, denoted ICq(C0), is the Fq-linear code
of length n = s` built from the transversal design TC0 , that is:

ICq(C0) := Codeq(TC0) .

Notice that the field Fq does not need to be identical to the alphabet Σ of the code C0.

Incidence codes are introduced in order to design PIR protocols, as summarises Figure 4.5.
From previous results, it is clear that, if C0 has dual distance more than 3, then the induced
PIR protocol is 1-private. A generalisation will be formally proved in a next section, see
Corollary 4.46.

Base code C0OO

equivalence (Rem. 4.20)
��

Orthogonal array

Construction 4.18 [CD06, ch.II.2]
��

Transversal design TC0

incidence matrix
��

Incidence code ICq(C0) = Codeq(TC0)

database encoding
��

Distributed PIR protocol

Figure 4.5 – Outline of the construction of a distributed PIR protocol using incidence
codes.
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Example 4.26. Here we provide a full example of the construction of an incidence code. In
order to have clearer representations of matrices and tuples, we will choose a particular order
of points and groups of a design, but one should keep in mind this is not necessary.

Let C0 = RS4(1) ⊆ F4
4 be the full-length Reed-Solomon code of dimension 2 over the field F4,

whose elements are arbitrarily ordered as follows: {0, 1, α, α2 = α + 1}. The orthogonal array
associated to C0 is composed of the following list of codewords:

A =



0, 0, 0, 0
1, 1, 1, 1
α, α, α, α
α2, α2, α2, α2

0, 1, α, α2

0, α, α2, 1
0, α2, 1, α
1, 0, α2, α
1, α2, α, 0
1, α, 0, α2

α, α2, 0, 1
α, 0, 1, α2

α, 1, α2, 0
α2, α, 1, 0
α2, 1, 0, α
α2, 0, α, 1



Using Construction 4.18, we get a transversal design TC0 = (X,B,G) with 16 points (4 groups
made of 4 points) and 16 blocks. Let us recall how we map a row of A to a word in {0, 1}16.
For instance, consider the fifth row of A, highlighted in grey:

a := (0, 1, α, α2) .

We turn a into a block Ba := {(0, 1), (1, 2), (α, 3), (α, 4)} ∈ B, and we build the incidence
vector 1Ba of the block Ba over the point set X = {(β, i), β ∈ F4, i ∈ [1, 4]}. In order to see 1Ba

as a word in {0, 1}16, we can also order elements in X, for instance as follows:

(
(0, 1) , (1, 1), (α, 1), (α2, 1), (0, 2), (1, 2) , (α, 2), (α2, 2),

(0, 3), (1, 3), (α, 3) , (α2, 3), (1, 4), (1, 4), (α, 4), (α2, 4)
)

.

Using this ordering, we get:

1Ba =
(

1 , 0, 0, 0, 0, 1 , 0, 0, 0, 0, 1 , 0, 0, 0, 0, 1
)
∈ {0, 1}16 .



4.3. INSTANCES 101

By computing all characteristic vectors 1Ba of every a ∈ Rows(A), we obtain the following
incidence matrix M for the transversal design TC0 :

M =



1000 1000 1000 1000
0100 0100 0100 0100
0010 0010 0010 0010
0001 0001 0001 0001
1000 0100 0010 0001
1000 0010 0001 0100
1000 0001 0100 0010
0100 1000 0001 0010
0100 0001 0010 1000
0100 0010 1000 0001
0010 0001 1000 0100
0010 1000 0100 0001
0010 0100 0001 1000
0001 0010 0100 1000
0001 0100 1000 0010
0001 1000 0010 0100



,

Notice that this matrix can be quickly obtained by respectively replacing entries 0, 1, α and
α2 in the array A by the binary 4-tuples (1000), (0100), (0010) and (0001) in the matrix M (of
course this map depends on the ordering of X we choose, but another choice would lead us to
a column-permutation-equivalent matrix, hence a permutation-equivalent code). Notice that
in matrix M, coordinates lying in the same group have been distinguished by dashed vertical
lines.

Matrix M then defines, over any extension F2e of the prime field F2, the dual code of the incid-
ence code IC2e(C0). For all values of e, the incidence codes IC2e(C0) have the same generator
matrix G, being:

G =



1001 0000 0011 1010
0101 0000 0110 0011
0011 0000 0101 0110
0000 1001 0101 1100
0000 0101 0011 0110
0000 0011 0110 0101
0000 0000 1111 1111


.

A deeper analysis of incidence codes coming from linear MDS codes of dimension 2. In-
cidence codes lead to a very large family of PIR protocols — as many as there exists codes
C0 — but most of them are not practical, since the incidence codes are too small. To simplify
their study, one can first remark that intuitively, the more blocks a transversal design, the
larger its incidence matrix, and consequently, the lower the dimension of its associated code.
Furthermore, the number of blocks of TC0 is the cardinality of C0. Hence, heuristically the
smaller the code C0, the larger IC(C0).

In this paragraph we analyse the incidence codes constructed with MDS codes of dimension
2. Their interest lies in being the smallest codes with dual distance 3, which is the minimal
setting for defining 1-private PIR protocols. Recall that generalised Reed-Solomon codes are
MDS. The next lemma shows they are essentially the only one of dimension 2.

Lemma 4.27. All [`, 2, `− 1]q MDS linear codes with 2 ≤ ` ≤ q are generalised Reed-Solomon codes.
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Proof. Let C be an [`, 2, ` − 1]q code with 2 ≤ ` ≤ q. Since C is MDS, it has dual distance
d⊥(C) = 3, and we claim there exists a codeword c ∈ C with Hamming weight `. To see
this, let G = (g1, . . . , g`) be a generator matrix of C, where gi ∈ F2

q is an affine point written
in column. Notice that each point gi is non-zero (otherwise d⊥(C) = 1) and 0, gi, gj are not
collinear for i 6= j (otherwise d⊥(C) = 2). Moreover, the gi’s are not all on the same affine line
(otherwise, dim(C) ≤ 1).

An important remark is that one can see codewords in C as evaluations of linear maps µ :
F2

q → Fq over (g1, . . . , g`):

C = {(µ(g1), . . . , µ(g`)), µ ∈ Hom(F2
q, Fq)} .

Since ` ≤ q, there exists a = (a0, a1) ∈ F2
q \ {0} such that a does not lie in the affine

line through 0 and any of the gi’s (indeed there are q + 1 affine lines through 0). Let now
µa(X, Y) = a1X − a0Y: it is a non-zero linear form which must vanish on a line of F2

q, and
since µa(a) = a, it vanishes on Span{a}. To sum up, for every i ∈ [1, `], we have µa(gi) 6= 0.
Hence, c = (µa(g1), . . . , µa(g`)) belongs to C and has Hamming weight `.

Let now d ∈ C such that {c, d} spans C. Then c = 1 ? c and d = c ? (c−1 ? d), where c−1 is the
coordinate-wise inverse of c. Hence, the code C can be written c ? C ′ where C ′ is generated by
{1, c−1 ? d}. These two tuples are respectively the evaluation of polynomials 1 and X over the
set S of symbols in c−1 ? d. Hence, C = GRSq(1, S, c).

Let us understand the consequences of Lemma 4.27 in terms of transversal designs. We say a
map φ : X → X′ is an isomorphism between transversal designs (X,B,G) and (X′,B′,G ′) if
it is one-to-one and if it preserves the incidence relation. In other words, we require that φ is
invertible on the points, blocks and groups:

φ(X) = X′, φ(B) = B′, φ(G) = G ′.

Lemma 4.28. Let C, C ′ ⊆ F`
q be two codes such that C ′ = y ? C for some y ∈ (F×q )

`. Denote by
TC , TC ′ the transversal designs they respectively define. Then, TC and TC ′ are isomorphic.

Proof. Write TC = (X,B,G) and TC ′ = (X′,B′,G ′). From the definition it is clear that X =
X′ = Fq × [1, `] and G = G ′ = {Fq × {i}, 1 ≤ i ≤ `}. Now consider the block sets. We see that
B = {{(ci, i), 1 ≤ i ≤ `}, c ∈ C} and B′ = {{(yici, i), 1 ≤ i ≤ `}, c ∈ C}. Let:

φy : Fq × [1, `] → Fq × [1, `]
(x, i) 7→ (yix, i)

The vector y is ?-invertible, hence φy is one-to-one on the point set X. It remains to notice that
φy maps G to itself since it only acts on the first coordinate, and that φy(B) is exactly B′ by
definition of C and C ′.

Proposition 4.29. Let 2 ≤ ` ≤ q and C0 be an [`, 2, `− 1]q MDS code. Let also Fp be any finite field.
The incidence code ICp(C0) is permutation-equivalent to ICp(RSq(1, S)), for some S ⊆ Fq, |X| = `.

Proof. Lemma 4.27 shows that all [`, 2, `− 1]q linear codes C0 are generalised Reed-Solomon
codes GRSq(1, S, y) = y ? RSq(1, S) for some S ⊆ Fq, |X| = `. Moreover, with the previous
notation φy(TRSq(1,S)) = Ty?RSq(1,S), so we have

ICp(y ? RSq(1, S)) = Codep(φy(TRSq(1,S))) .



4.3. INSTANCES 103

Now, let:
φ̃y : FX

p → FX
p

c = (cx)x∈X 7→ (c ◦ φy(x))x∈X
.

Clearly φ̃y(ICp(RSq(1, S))) = Codep(φy(TRSq(1,S))) and φ̃y acts as a permutation of coordin-
ates. So ICp(C0) is permutation-equivalent to ICp(RSq(1, S)) which proves the result.

Proposition 4.29 allows us to restrict our study to incidence codes of Reed-Solomon codes of
dimension 2. Let us first consider the case of full-length Reed-Solomon codes RSq(1) ⊆ F

Fq
q .

An interesting result is that these incidence codes are equivalent to codes based on affine
geometric designs.

Proposition 4.30. The following two codes are equal up to permutation:

1. C1 = ICq(RSq(1)), the incidence code over Fq of the q-ary full-length Reed-Solomon code of
dimension 2;

2. C2, the code over Fq based on the transversal design TA(2, q).

Proof. It is sufficient to show that the transversal design defined by C0 = RSq(1) is isomorphic
to TA(2, q). We first recall that TC0 = (X,B,G) where:

X = Fq ×Fq
B = {{(cx, x), x ∈ Fq}, c ∈ C0}
G = {{(α, x), α ∈ Fq}, x ∈ Fq} .

Up to an affine transformation of the plane A2, the groups of TA(2, q) = (X′,B′,G ′) can be set
to {{(α, x), α ∈ Fq}, x ∈ Fq}. Hence, up to isomorphism TA(2, q) can be written as:

X′ = Fq ×Fq
B′ = {{(ax + b, x), x ∈ Fq}, (a, b) ∈ F2

q, }
G ′ = {{(α, x), α ∈ Fq}, x ∈ Fq} .

It remains to notice that a codeword c ∈ C0 is the evaluation of a polynomial of degree ≤ 1
over Fq. Hence for some (a, b) ∈ F2

q, we have cx = ax + b, ∀x ∈ Fq.

We now need to study the more general case of subsets S ⊂ Fq, |S| = ` < q. First, it worth
noticing that ICq(RSq(1, S)) is a shortening of ICq(RSq(1)). Indeed, we have the following
property:

Lemma 4.31. Let C0 ⊂ FS
q , S = `, and Punct(C0, I) its puncturing on coordinates I ⊂ S. Then for

every prime p,
ICp(Punct(C0, I)) = Short(ICp(C0), J)

where J = ∪i∈IGi and Gi = Fq × {i} is the group indexed by i ∈ S in the transversal design TC0 .

Proof. Let us analyse the link between TPunct(C0,I) = (X′,B′,G ′) and TC0 = (X,B,G). We have:

X′ = Fq × (S \ I) ⊂ S,
G ′ = {Fq × {i}, i ∈ (S \ I)} ⊂ G,
B′ = {B ∩ X′, B ∈ B} .

Let C = ICp(C0) and C ′ = ICp(Punct(C0, I)). For u ∈ FX′
p , we define an extension ext(u) ∈ FX

p
of u, such that ext(u)|X′ = u and ext(u)|X\X′ = 0. By definition of the shortening operation,
all we need to prove is:

C ′ = {c ∈ FX′
p , ext(c) ∈ C}.
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Let c ∈ C ′, and consider u = ext(c). For every B ∈ B, we have ∑b∈B ub = ∑b′∈B∩X′ cb′ = 0, since
1B∩X′ is a parity-check matrix for C ′. Hence ext(c) ∈ C. The converse inclusion is similar.

Despite this result, incidence codes of Reed-Solomon codes RSq(1, S) remain hard to classify
for |S| = ` < q. Indeed, for a given length ` < q, it appears that distinct subsets S may
produce non-equivalent incidence codes IC(RSq(1, S)). Even their dimension can differ, as
shows for instance an exhaustive search on IC2(RS16(1, S)) with pairwise distinct |S| = ` = 5:
we observe that 48 of these codes have dimension 24 while the 4320 others have dimension 22.
Further interesting research would then be to understand the subsets S which give the largest
codes.

4.3.4 High-rate incidence codes from divisible codes

In this subsection, we prove that linear codes C0 satisfying a divisibility condition yield incid-
ence codes whose rate is roughly greater than 1/2. Let us first define divisible codes.

Definition 4.32 (code divisibility). Let p ≥ 2. A linear code is p-divisible if p divides the
Hamming weight of any of its codewords.

When studying the incidence matrix which defines an incidence code, we exhibit the following
property.

Lemma 4.33. Let C0 ⊂ SI be an unrestricted code, |I| = `, and let T be the transversal design
associated to C0. We denote by M the incidence matrix of T , where rows of M are indexed by codewords
from C0. Then we have:

(MMT)c,c′ = `− d(c, c′), ∀c, c′ ∈ C0 .

Proof. For clarity we adopt the notation M[c, (α, i)] for the entry of M indexed by the codeword
c ∈ C0 (for the row), and (α, i) ∈ S× I (for the column). Given an assertion U , we also denote
by 1U the integer r ∈ {0, 1} such that r = 1 if and only if U is true. Now, let c, c′ ∈ C0.

(MMT)[c, c′] = ∑
α∈S, i∈I

M[c, (α, i)]M[c′, (α, i)] = ∑
α∈S, i∈I

1ci=α1c′i=α

= ∑
i∈I

∑
α∈S

1ci=c′i=α = ∑
i∈I

1ci=c′i
= `− d(c, c′) .

Hence, if some prime p divides ` as well as the weight of all the codewords in C0, then the
product MMT vanishes over any extension of Fp, and M is a parity-check matrix of a code
which contains its dual. A more general setting is analysed in the following proposition.

Proposition 4.34. Let C0 be a linear code of length ` over S, |S| = s. Let also C = ICq(C0) with
char(Fq) = p. Denote the length of C by n = `s, and recall that Par(n) is the parity-check code of
length n over Fq. If C0 is p-divisible, then

C⊥ ∩ Par(n) ⊆ C .

In particular, we get dim(C) ≥ n−1
2 . Moreover, if p | `, then C⊥ ⊆ C and dim(C) ≥ n

2 .

Proof. Let M be the incidence matrix of the transversal design TC0 . Also denote by J and J′ the
all-one matrices of respective size |C0| × n and |C0| × |C0|. An easy computation shows that

M JT = `J′ .
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If we assume that C0 is p-divisible, then Lemma 4.33 translates into

MMT = `J′ mod p . (4.3)

Hence, we obtain
M(M − J)T = 0 mod p . (4.4)

It leads us to consider the code A of length n generated over Fq by the matrix M − J. Equa-
tion (4.4) ensures that A ⊆ C. Let us prove that C⊥ ∩ Par(n) ⊆ A.

Assume p - ` and let c ∈ C⊥ ∩ Par(n). Then c = uM for some u ∈ F
|C0|
q , and ∑n

i=1 ci = 0.
Hence, `uJ′ = uM JT = cJT = 0. Since ` 6= 0 in Fq of characteristic p, we get uJ′ = 0, which
also implies that uJ = 0. Therefore, c = u(M − J) ∈ A, and it follows that:

C⊥ ∩ Par(n) ⊆ A ⊆ C .

Now, if p | `, then equation (4.3) turns into MMT = 0, meaning that C⊥ ⊆ C. Finally, the first
bound on the dimension comes from

dim(C) ≥ dim(C⊥ ∩ Par(n)) ≥ dim C⊥ − 1 = n− dim C − 1 ,

and the second bound is straightforward.

In terms of PIR protocols, previous result translates into the following corollary.

Corollary 4.35. Let p be a prime, and assume there exists a p-divisible linear code C0 of length `0
over Fq. Then using the incidence code ICq(C0), there exists k ≥ (`0q− 1)/2 such that we can build
a distributed PIR protocol for a k-entry database over Fq, and whose parameters are `(k) = `0 and
n(k) = `0q ≤ 2k + 1.

Divisible codes over small fields have been well-studied, and contain for instance the extended
Golay codes [MS77, ch.II.6], or the famous family of MDS codes of dimension 3 and length
q + 2 over Fq [MS77, ch.XI.6].

Example 4.36. The extended binary Golay code is a self-dual [24, 12, 8]2 linear code. It pro-
duces a transversal design with 24 groups, each storing 2 points. Its associated incidence code
Code2(Golay) has length n = 24× 2 = 48 and dimension k ≥ 24, and by computation we can
show that k = 24.

Remark 4.37. In the application for PIR protocols, we would like to find divisible codes C0
defined over large alphabets (compared to the code length), but these two constraints seem
to be inconsistent. For instance, the binary Golay code presented in Example 4.36 leads us
to a PIR protocol with a too expensive communication cost (24 bits of communication for an
original file of size... 24 bits: that is exactly the communication cost of the trivial PIR protocol
where the whole database is downloaded). Nevertheless, Example 4.36 represents the worst
possible case for the TD-based construction, in a sense that the rate of IC2(Golay2) is exactly
1/2 (it attains the lower bound), and that each server stores 2 bits (which is the smallest
possible). Codes with better rate and/or with larger server storage capability would then give
PIR protocols with relevant communication complexity. For instance, the extended ternary
Golay code gives better parameters — see Example 4.47.

To conclude this section, let us point out that to the best of our knowledge, divisible codes
over large fields does not seem to have been thoroughly studied (a reason might be that codes
over small alphabets are usually considered as the most practical ones). We hope that the
TD-based construction of PIR protocols based on divisible codes may encourage research in
this direction.
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4.4 The t-private construction

When servers are colluding, the PIR protocol based on a simple transversal design does not
ensure sufficient privacy, because the knowledge of two points lying on a block gives some
information on it. To solve this issue, we propose to use orthogonal arrays with higher strength
t > 2.

4.4.1 Generic construction and analysis

In the previous section, classical (t = 2) orthogonal arrays were used to build transversal
designs. Considering higher values of t, we naturally generalise the latter as follows.

Definition 4.38 (t-transversal design). Let ` ≥ t ≥ 1 and λ ≥ 1. A t-transversal design is a
block design D = (X,B) equipped with a group set G = {G1, . . . , G`} partitioning X such
that:

– |X| = s`;
– any group has size s and any block has size `;
– for any T = {i1, . . . , it} ⊆ [1, `] with |T| = t and for any (x1, . . . , xt) ∈ ∏t

j=1 Gij , there
exist exactly λ distinct blocks B ∈ B such that {x1, . . . , xt} ⊂ B.

A t-transversal design with parameters s, `, t, λ is denoted t-TDλ(`, s), or t-TD(`, s) for short,
when λ = 1.

Lemma 4.39. Let ` ≥ 2 and λ ≥ 1. For every ` ≥ t ≥ t′ ≥ 2, any t-TDλ(`, s) is also a t′-TDλ′(`, s),
where λ′ = λst−t′ .

Proof. Let T be a t-TDλ(`, s). Let T′ = {i1, . . . , it} ⊆ [1, `], |T| = t, and x = (x1, . . . , xt′) ∈
∏t′

j=1 Gij . For every y = (yt′+1, . . . , yt) ∈ ∏t
j=t′+1 Gij , we can define the tuple (x, y) ∈ ∏t

j=1 Gij .
Since T is a t-TDλ(`, s), there exists exactly λ blocks B such that {x1, . . . xt′ , yt′+1, . . . , yt} ⊆ B.
Since there are st−t′ possible choices for y, and since each choice defines pairwise distinct
blocks, we get our result.

Given a t-transversal design T , we can build a (t− 1)-private PIR protocol with the exactly
the same steps as in Section 4.2. First, we define the design-based code C = Codeq(T )
according to Definition 1.12, and then we follow the algorithm given in Figure 4.1. As we see
in Lemma 4.39, for t ≥ 2 any t-transversal design is also a 2-transversal design. Hence the
analysis of PIR protocols based on t-TDs is identical to the one using classical TDs. Even the
security proof is very similar, as shows the following argument.

Security ((t − 1)-privacy). Let T be a collusion of servers of size |T| ≤ t − 1. We need to
prove that I(i ; q|T) = 0 where i ∈ X is the coordinate of the desired item, and q is the random
query. For every xt ∈ Git such that it /∈ T, there exist exactly λ blocks that contain the points
in q|T ∪ {xt}. Hence, knowing q|T, the distribution of xt remains balanced. Thus we get
I(i ; q|T) = 0.

To sum up, the following theorem holds:

Theorem 4.40. Let D be a database with k entries over Fq, and T = t-TD(`, s) be a t-transversal
design, whose incidence matrix has rank `s− k over Fq. Then, there exists an `-server (t− 1)-private
PIR protocol with:
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– only 1 symbol over Fq to read for each server,
– `− 1 field operations for the user,
– ` log(sq) bits of communication,
– a storage rate RC = k/`s.

4.4.2 Instances

In this subsection we propose instances of t-transversal designs to be used in PIR protocols.

t-transversal designs from curves of degree ≤ t − 1 in the affine plane. Looking for in-
stances of t-transversal designs, it is natural to try to generalise the transversal designs given
in Definition 4.12. An idea is to turn affine lines into higher degree curves.

Definition 4.41. Let X be the set of points in the affine plane F2
q, and G = {G1, . . . , Gq} be a

partition of X = F2
q into q parallel lines. Without loss of generality we choose the following

one: Gi = {(αi, x), x ∈ Fq} for each αi ∈ Fq. Blocks in B are now defined as sets BF of the
form

BF = {(F(x), x), x ∈ Fq}, where F ∈ Fq[T], deg F ≤ t− 1.

Lemma 4.42. The design (X,B,G) given in Definition 4.41 defines a t-transversal design t-TD1(q, q).

Proof. The set of groups G we propose is indeed a partition of X into q groups, each of size
q. It remains to check the incidence property. Let {GT1 , . . . , GTt} be a set of t distinct groups,
and let ((yT1 , xT1), . . . , (yTt , xTt)) ∈ GT1 × · · · × GTt . From Lagrange interpolation theorem, we
know there exists a unique polynomial F ∈ Fq[T] of degree ≤ t− 1 such that:

F(xTj) = yTj ∀1 ≤ j ≤ t .

Said differently, there is a unique block BF which contains the t points {(yTj , xTj)}1≤j≤t.

We postpone the analysis of the dimension of these codes, since it corresponds to a particular
case of the generic construction we give below.

t-transversal designs from orthogonal arrays of strength t. Here we give a generic con-
struction of t-transversal designs, which is actually the same as the construction of transversal
designs with orthogonal arrays (Subsection 4.3.3).

Construction 4.43. Let A be an orthogonal array OAλ(t, `, s) define over a symbol set S. Recall that
the array A is composed of rows ai = (ai,j)1≤j≤` for 1 ≤ i ≤ λst. We define a design (X,B,G), where

– the point set is X = S× [1, `];
– the group set is G = {S× {i}, 1 ≤ i ≤ `};
– the blocks are Bi = {(ai,j, j), 1 ≤ j ≤ `} for all ai ∈ Rows(A).

Proposition 4.44. If A is an OAλ(t, `, s), then the design defined with A by Construction 4.43 is a
t-TDλ(`, s).

Proof. It is clear that G is a partition of X and that the sets of blocks and groups both have
the size we claim. Now focus on the incidence property. Let T ⊂ [1, `] with |T| = t, and let
(x1, . . . , xt) ∈ GT1 × . . .× GTt . We need to prove that there are exactly λ blocks B ∈ B such
that {x1, . . . , xt} ⊂ B.
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Consider the map from blocks in B to rows of A given by:

ψ : B → Rows(A)
Bi = {(ai,j, j), 1 ≤ j ≤ `} 7→ (ai,1, . . . , ai,`)

Since we assumed that orthogonal arrays have no repeated row, the map ψ is one-to-one. Let
x = (x1, , . . . , xt) ∈ Xt, where xu = (bu, ju) ∈ S × [1, `]. Denote by b = (b1, . . . , bt) ∈ St

the tuple formed by the first coordinates of x. From the definition of an orthogonal array of
strength t and index λ, we know that elements in b appear exactly λ times in the submatrix of
A defined by the columns indexed by T. Hence this defines λ preimages in B, which proves
the result.

Remark 4.45. As we noticed before, Construction 4.41 is a particular case of Construction 4.43.
Indeed, a block BF = {(F(x), x), x ∈ Fq}, with deg F ≤ t− 1 is in one-to-one correspondence
with a codeword cF of a Reed-Solomon code RS(t− 1).

Corollary 4.46. Let C0 be a code of length ` and dual distance t + 2 ≤ ` over a set S of size s. Then,
the PIR protocol defined by ICq(C0) is t-private.

Proof. Let A be the orthogonal array defined by C0. We know that A has strength t + 1
(see Proposition 4.22), hence from Proposition 4.44, the associated transversal design is a
(t + 1)-TD(`, s). Theorem 4.40 then ensures that the PIR protocol induced by this transversal
design is t-private.

As in Subsection 4.3.4, when the code C0 is divisible, we can lower bound the rate of its
incidence code. We provide two examples in finite (and small) length.

Example 4.47. A first example would be to consider extended Golay codes. Indeed, they are
known to be divisible by their characteristic [MS77, ch.II.6], they have large dual distance,
and Proposition 4.34 then ensures their incidence codes have non-trivial rate. In Remark 4.37,
we noticed that the binary Golay code does not give a practical PIR protocol due to a large
communication complexity. Thus, let us instead consider the [12, 6, 6]3 extended ternary Golay
code, that we denote Golay3. It is self-dual, hence d⊥(Golay3) = 6. Then, C = IC3e(Golay3),
e ≥ 1, has length 36 and Proposition 4.34 shows that dim C ≥ 18 (the bound can be proved
tight by computation). Hence, the associated PIR protocol works on a raw file of 18 symbols
over F3e , encoded into 36, and uses 12 servers (each storing 3 symbols). The upload commu-
nication complexity is cheap (only 12 symbols over F3) while the download communication
complexity is much more heavy (12 symbols over the extension field F3e . The main advantage
thus remains the computation cost of the protocol and its resistance to any collusion of one
third (i.e. 4) of the servers.

Example 4.48. A second example arises from the exceptional [q + 2, 3, q]q MDS codes in char-
acteristic 2 [MS77, ch.XI.6]. For instance, for q = 4, we obtain a 2-private PIR protocol with
6 servers, each storing 4 symbols of F2e for some e ≥ 1. Once again, the dimension of the
incidence code attains the lower bound, here k = 12.

Example 4.49. Examples of incidence codes which do not attain the lower bound of Propos-
ition 4.34 come from binary Reed-Muller codes of order 1, denoted RM2(m, 1). These codes
are 2-divisible since they are known to be equivalent to extended Hamming codes. They also
have length n = 2m and dual distance d⊥(RM2(m, 1)) = n/2. For instance, RM2(3, 1) provides
an incidence code of dimension k = 11 > 8, that is, a 2-private 8-server PIR protocol on a data-
base with 11 symbols over F2e , where each server stores 2 symbols. For m = 4, RM2(4, 1) gives
a 6-private 16-server PIR protocol on a database with 20 symbols over F2e , each server storing
2 symbols. We conjecture that IC2(RM2(m, 1)) leads us to a (2m−1 − 2)-private 2m-server PIR
protocol on a database with 2m + m symbols, each server storing 2 symbols.



4.5. RECENT PIR CONSTRUCTIONS AND BOUNDS 109

As pointed out in Subsection 4.3.3, incidence codes C = IC(C0) have the best chance to have
large rate if the dimension of C0 is small, since the cardinality of C0 is the number of rows in a
(non-full-rank) parity-check matrix which defines C. Moreover, in order to define a t-private
PIR protocol, we need an orthogonal array of strength t + 2, i.e. a code C0 with dual distance
t + 2. Conciliating both constraints, we are tempted to use MDS codes of dimension t + 1 for
C0.

Once again we pick the family of Reed-Solomon codes as an easily example. Through the
incidence code construction, these codes lead us to t-private PIR protocols with communic-
ation complexity approximately

√
n, where n is the length of the encoded database. For

C0 = RSt+1(Fq) and varying values of q and t, we were able to compute the rate of ICq(C0).
These rates are presented in Figure 4.6 and as expected, the rate of families of incidence codes
decreases with t, the privacy parameter. Figure 4.6 also shows that Reed-Solomon-based in-
stances cannot expect to reach at the same time constant information rate and resistance to a
constant fraction of colluding servers.
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Figure 4.6 – Rate of incidence codes used for the construction of t-private PIR protocols.
Base codes C0 are full-length Reed-Solomon codes of dimension t + 1 (dual distance
t + 2) over Fq. Associated PIR protocols then need q servers, each storing q symbols.

As a partial conclusion, the question of finding t-transversal designs with large strength t,
moderate block size ` and low rank remains completely open.

4.5 Recent PIR constructions and bounds

In this section, we conclude the chapter by reporting some constructions of PIR protocols and
some bounds on their parameters that appeared in the recent years.
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4.5.1 PIR capacity, and capacity achieving protocols

Communication complexity is widely considered as the most crucial parameter in PIR proto-
cols. Hence it is natural to raise the question of determining the minimum possible number
of bits exchanged in a PIR protocol, all other parameters being fixed. It is commonly admit-
ted that, theoretically, the upload communication complexity (the size of queries) is negligible
compared to the download communication complexity. The usual argument is that the upload
cost does not need to scale with the size of the individual message in the database [CHY15],
and typical databases store large files. Therefore, given a fixed storage system, one would
like to know what is the minimum number of bits one must download in order to retrieve
privately a desired message.

For a given PIR protocol, the ratio of the number of downloaded bits to the message size is
called the PIR rate. The maximum achievable PIR rate is called the PIR capacity.

The PIR capacity of replication-based 1-private PIR protocols were first analysed. Consider a
system of ` non-communicating servers, each storing a copy of the database consisting of K
messages of arbitrary large size L. In this context, Sun and Jafar [SJ17] proved that the PIR
capacity c is:

c =
1− 1/`

1− (1/`)K . (4.5)

One should emphasize that messages of size L ≥ `K are necessary in their capacity-achieving
construction. If one does not bound the number of files stored by the servers (i.e. K → ∞),
we get c = 1− 1

` . Notice that, in this setting, PIR capacity has been given and achieved in an
earlier work by Shah, Rashmi and Ramchandran in [SRR14].

If the servers store an unbounded number of messages encoded by an [`, R`]-code (each server
storing one symbol of each encoded message), Chan, Ho and Yamamoto proved that c ≤
1− R, with equality for MDS codes. Tajeddine and El Rouayheb [TR16] proposed optimal
constructions for a larger range of parameters, notably by the use of file stripings. This work
was finally extended by Kumar, Rosnes and Graell i Amat [KRGiA17] for non-MDS codes.
Recently, Banawan and Ulukus [BU18] showed that, when servers store K < ∞ messages
encoded with an [`, R`] code, the PIR capacity is:

c =
1− R

1− RK ,

matching the Equation (4.5) for replication-based PIR protocols.

If servers are colluding (so-called t-private PIR, t ≥ 2) and store K replicated messages, Sun
and Jafar [SJ18b] proved that the PIR capacity is given by

c =
1− t/`

1− (t/`)K .

For the coded case, Freij-Hollanti, Gnilke, Hollanti and Karpuk [FHGHK17] then proposed a
construction with PIR rate 1−(t+k−1)/`

1−((t+k−1)/`)K , and conjectured this quantity as being the PIR capa-
city. While the conjecture for finite K has been disproved in [SJ18a], the techniques involved
in their construction are elegant, notably by the use of star-product of codes. This way, they
manage to build PIR protocols on [`, k]-coded data, whose PIR rate equals 1− (k + t− 1)/`.
Note that their star-product scheme generalises to arbitrary collusion patterns [TGK+17].

Finally, in the case we allow the storage system to depend on the parameters of the database
(e.g. the number of servers depend on the size or number of messages), Shah, Rashmi and
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Ramchandran [SRR14] proved that one can obtain 1-private retrieval with only 1 extra down-
loaded bit, compared to classical retrieval. However in their construction, the system requires
` ≥ (L + 1)K−1 servers, where L is the size of each message. Recently, Blackburn, Etzion and
Paterson [BEP17] decreased this bound to ` ≥ L + 1 with an upload complexity Θ(KL log L).
They also built `-server PIR protocols with small download complexity (1 + 1

`−1 )L, where
`− 1 can be any divisor of L.

4.5.2 Is PIR rate the only criterion to consider?

Previous subsection mainly focused on optimal PIR protocols with respect to the download
communication complexity (only). However, other parameters could be taken into account
such as the storage overhead or the computational complexity, as we pointed out in the intro-
duction of this chapter.

In [FVY15a], Fazeli, Vardy and Yaakobi gave a generic transformation of a replication-based
PIR protocol into a coded PIR protocol, whose storage overhead is drastically reduced. In-
formally, the idea is to encode answers to user’s queries in a way that preserves privacy,
by the use of a so-called PIR code. Including the extended version of Fazeli et al.’s seminal
paper [FVY15b], several works focused on studying bounds on PIR codes and optimal con-
structions of such codes [RV16, BE17, AY17, Ska18]. Also notice that, with very different
techniques, the reduction of the storage overhead was also addressed the works of Shah et
al. [SRR14], Augot et al. [ALS14] and Blackburn et al. [BEP17] notably.

In most capacity-achieving PIR protocols, the answer of each server consists in computing a
linear combination of all the symbols it holds. Though a few existing schemes admit a low
computational complexity on the server side (e.g. [ALS14]), this problem was not addressed
for a long time. Very recently, Zhang, Yaakobi, Etzion and Schwartz [ZYES18] proposed to
consider the access complexity — that is, the number of bits read in order to output servers’
answers — as a fundamental parameter. The authors analysed trade-offs between PIR rate,
storage overhead and access complexity, and gave optimal constructions for some range of
parameters by the use of covering codes. The PIR constructions we proposed in this chapter
were motivated by the reduction of the computational complexity on the server side. However,
our strategy differs from [ZYES18], since we fix the access complexity to its minimum value,
being the download complexity. Given this requirement, our goal was to build PIR protocols
with the minimum PIR rate and maximum storage rate.
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Proofs of retrievability from codes with
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This chapter is devoted to the construction of proofs of retrievability (PoRs) which feature
low computation complexity on both client and server sides, as well as small client storage
(typically 512 bits). We adapt the security model initiated by Juels and Kaliski [JK07] and we
use the framework of Paterson et al. [PSU13] to analyse our construction. We thus provide
a rigorous treatment of the security of the generic design we propose; more precisely, we
sharply bound the extraction failure of our protocol according to this security model. Next,
we instantiate our formal construction with tensor-product codes, Reed-Muller codes and
affine lifted codes. This yields PoRs with moderate communication complexity and server
storage overhead, in addition to the aforementioned features.

113



114 CHAPTER 5. PORS FROM CODES WITH LOCALITY

5.1 Introduction

5.1.1 Motivation

The use of cloud services, such as computing and storage, has evolved quite spectacularly over
the past decade. In particular, data outsourcing allows users and companies to lighten their
storage burden and maintenance cost. Though, it raises several issues: for example, how can
a customer check efficiently that he can retrieve without any loss a massive file that he had
uploaded on a remote server and erased from his personal system?

Proofs of retrievability (PoRs) address this specific issue. They are cryptographic protocols
involving two parts: a client (or a verifier) and a server (or a prover). PoRs usually consist
in the following phases. First, a key generation creates secret material related to the file, and
meant to be kept by the client only. Then the file is initialised, that is, it is encoded and/or
encrypted according to the secret data held by the client. Only this processed file is uploaded
to the server. Then, the client can run a verification procedure, which is the core of the PoR.
Finally, if the client is convinced that the server still holds his file, the client can proceed at
any time to the extraction of the file.

In PoRs, several parameters must be taken into account. Plainly, the verification process has to
feature a low communication complexity, since the main goal is to avoid to download a large
part of the file while one only wants to check its extractability. Second, the storage overhead
induced by the protocol must be low since the amount of additional data usually impacts
the customer’s storage fees. Similarly, the computation cost of the verification procedure
must be low for the server, but also for the client which is supposed to own a small and
computationally restricted device.

Notice that proofs of data possession (PDPs) represent protocols close to what is needed in PoRs.
However, in PDPs one does not require the client to be able to extract the file from the server.
Instances of PDPs are given by Ateniese et al. [ABC+11]. The earlier protocols of Lillibridge et
al. [LEB+03] and Naor and Rothblum [NR09] are very often seen as precursors for PoRs. For
instance, Naor and Rothblum consider a setting in which the client directly accesses the file
stored by the server. However, the actual definition of PoRs is more restrictive, since according
to Shacham and Waters [SW13], PoRs allow the prover to be ‘an arbitrary program’ answering
challenges ‘in an arbitrary manner (...) as opposed to a simple memory layout’ for the earlier
schemes.

5.1.2 Previous works

Juels and Kaliski [JK07] gave the first formal definition of PoRs, from which our own defini-
tions in Section 5.2 are inspired. They also proposed a seminal construction based on so-called
sentinels: these are random parts of the file the client keeps secretly on his device, and whose
presence will be checked during the verification step. Additionally, an erasure code ensures
the soundness of the file to be extracted. Juels and Kaliski’s seminal work [JK07] also raised
several interesting points. On the one hand, it demonstrated that (i) the client must store some
secret data to be used in the verification step, and (ii) coding is needed in order to retrieve
the file without erasures or errors. On the other hand it highlighted a possible weakness for
PoRs: in the scheme they propose, the verification step can only be performed a finite number
of times, since sentinels cannot be reused many times.
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As a consequence, Shacham and Waters proposed to build PoRs with unbounded-use [SW13].
Precisely, two families of PoRs are built. The first one is based on linear combinations of
authenticators produced via pseudo-random functions; its security is proved using crypto-
graphic tools such as unforgeable MAC schemes, semantically secure symmetric encryption
and secure PRF. The second one is a publicly verifiable scheme based on Diffie-Hellman prob-
lem in groups equipped with a bilinear map.

Bowers, Juels and Oprea [BJO09] modelled PoRs with so-called inner and outer codes. The
encoded file which is uploaded lies in the outer code, while the inner code models the space
in which the server’s answers theoretically evolve. The authors then adopted this coding-
theoretic approach to compare variants of the constructions given in [JK07, SW13]. They
focused on the practical efficiency of the schemes, and proved that, despite bounded-use,
optimised variants of the construction of Juels and Kaliski are highly competitive compared
to other existing schemes.

In [PSU13], Paterson, Stinson and Upadhyay provide a general framework for PoRs in the
unconditional security model. They show how the question of the retrievability of the file can
be expressed as an error-correction problem in a so-called response code. This allows them to
precisely quantify the extraction success as a function of the success probability of a proving
algorithm: indeed, in this setting, extraction can be naturally seen as nearest-neighbour de-
coding in the response code. They notably apply their framework to examine the security of a
modified version of Shacham-Waters scheme. Also notice that, prior to [PSU13], Dodis, Vahan
and Wichs [DVW09] proposed another coding-theoretic model for PoRs that allowed them to
build efficient bounded-use and unbounded-use PoR schemes.

With practicality in mind, other features have been deployed for PoRs. For instance, Wang et
al. [WWR+11] presented a PoR construction based on Merkle hash trees, which allows efficient
file updates on the server. Their scheme is provably secure under cryptographic assumptions
(hardness of Diffie-Hellman in groups with bilinear maps, unforgeable signatures, etc.), and
has been improved by Mo, Zhou and Chen [MZC12] in order to prevent unbalanced trees.
More recently, other features have been proposed for PoRs, such as multi-prover PoRs (see
for instance the unpublished work [PSU18] of Paterson, Stinson and Upadhyay), or PoRs with
public verifiability (e.g. Sengupta and Ruj’s construction [SR16]).

5.1.3 Our approach

As we noticed earlier, most PoR schemes rely on two techniques: (i) the client stores on his
device some secret data in order to check the integrity of the file and (ii) the client encodes
the file in order to repair a small number of erasures/errors that may remain unnoticed by
the Verifier during the verification steps.

In this chapter, we propose to build a generic PoR scheme based on codes with local prop-
erties. When equipped with a suitable cipher, we prove that the construction fulfils both
previous requirements. More precisely, our idea is the following. Given a file F, a code C
and a suitable cipher Eκ, the client sends to the server an encoded and encrypted version
w = Eκ(C(F)) of his file1. Then, the verification step consists in checking short relations
between symbols of w, that arise for instance from low-weight parity-check equations for C.
Finally, if the file is considered as extractable, the code C provides the redundancy necessary
to repair erasures and potential unnoticed errors.

1the abusive notation C(F) is used to suggest that the specific encoding map of F in C is meaningless
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We here develop ideas published in [LL16], where we proposed a construction of PoRs based
on lifted codes. In this chapter we provide a more generic construction, and give a sharper
analysis of the security of the PoR.

The construction of PoRs we propose does not feature updatability nor public verifiability.
Though, we emphasize its generality since it is based on well-studied and broad families of
algebraic structures, namely codes and their parity-check equations. From a practical per-
spective, we highlight two main attributes of the construction. First, the client must only store
the few bits corresponding to the secret material necessary to the cipher. Second, an honest
server simply needs to read pieces of w during the verification step, and therefore has no
computational burden compared to many other PoR schemes.

5.1.4 Organisation

Section 5.2 is devoted to the definition of proofs of retrievability and their security model.
Despite the great disparity of models in PoR literature, we try to keep close to the definitions
given in [JK07, PSU13] for the sake of uniformity. Section 5.3 presents our construction of
PoR. Precisely, in Subsection 5.3.1, we introduce objects called verification structures for a code C
that will be used in the definition of our PoR scheme (Subsection 5.3.2). A rigorous analysis
of our scheme is the purpose of the remainder of that section. The performance of our con-
struction are given in Section 5.4. We then provide several instances in Section 5.5, proving
the practicality of our PoR schemes for some classes of codes.

5.2 Proofs of retrievability

5.2.1 Definition

In the context of proofs of retrievability, a user wants to estimate if a message m ∈ M can
be retrieved from a encoded version w ∈ W of the message stored on a server. In all what
follows, the user will be known as the Verifier (wants to verify the retrievability of the message)
while the server is the Prover (aims at proving the retrievability). We also denote by K the set
of secret values (or keys) kept by the Verifier, and by R the space of responses to challenges.

Definition 5.1 (Proof of retrievability). A keyed proof of retrievability (PoR) is a tuple of al-
gorithms (KeyGen, Init, Verify, Extract) running as follows:

1. The key generation algorithm KeyGen generates uniformly at random a key κ ←R K. The
key κ is secretly kept by the Verifier.

2. The initialisation algorithm Init is a deterministic algorithm which takes as input a message
m ∈ M and a key κ ∈ K, and outputs a file w ∈ W . Init is run by the Verifier who initially
holds the message m. After the process, the file w is sent to the Prover and the message
m is erased on Verifier’s side. Upon receipt of w, the Prover sets a deterministic algorithm
P(w) that will be run during the verification procedure.

3. The verification algorithm Verify is a randomised algorithm initiated by the Verifier which
needs a secret key κ ∈ K, and interacts with the Prover. Verify is depicted in Figure 5.1
and works as follows:

(i) the Verifier runs a random query generator that outputs a challenge u ∈ Q (Q being
the so-called query set);

(ii) the challenge u is sent to the Prover;
(iii) the Prover outputs a response ru ← P(w)(u) ∈ R;



5.2. PROOFS OF RETRIEVABILITY 117

(iv) the Verifier checks the validity of ru according to u and κ by the means of a sub-
routine Check(u, ru, κ), which outputs True if ru is compliant with u and κ.

4. The extraction algorithm Extract is run by the Verifier. It takes as input κ and r = (ru : u ∈
Q) ∈ RQ, and outputs either a message m′ ∈ M, or a failure symbol ⊥. We say that
extraction succeeds if Extract(r, κ) = m.

The vector r = (ru ← P(w)(u))u∈Q ∈ RQ is called the response word associated to P(w).

Verifier Prover

κ w

Pick u ←R Q at random

ru ← P(w)(u)

Output Check(u, ru, κ)

u

ru

Figure 5.1 – Definition of algorithm Verify

Note that, in assuming that response algorithms P(w) are deterministic and non-adaptive
(meaning that their behaviour only depends on the value of the challenge u, and not on
the success of past calls to the verification algorithm), we follow the work of Paterson et
al. [PSU13]. The authors justify determinism of response algorithms by the fact that any prob-
abilistic prover can be replaced by a deterministic prover whose success probability is at least
as good as the probabilistic one.

In Definition 5.1, we can see that the deterministic algorithm P(w) can be represented by the
vector of its outputs r = (P(w)(u), u ∈ Q), called the response word of P(w). Therefore, we
can assume that before the verification step, the Prover produces a word r ∈ RQ related to the
file w he holds. In other words, we model provers as algorithms P which, given an input w,
return a word r ∈ RQ.

Following [PSU13], we also assume in this chapter that the extraction algorithm Extract is de-
terministic, though in general it can be randomised. Finally, notice that proofs of retrievability
aim at proving the extractability of a file. The extraction algorithm is therefore a theoretical
tool for obtaining such a proof. Hence, its computational efficiency is not a crucial feature.

The following table summarises the information held by the two main entities after the ini-
tialisation step:

Verifier Prover

κ w

Let us also report the inputs and outputs of the algorithms involved in a PoR:

algorithm KeyGen Init Verify Check Extract

input 1λ m, κ r, κ u, ru, κ r, κ
output κ w True or False True or False m′ or ⊥



118 CHAPTER 5. PORS FROM CODES WITH LOCALITY

5.2.2 Security models

One should first notice that, despite many efforts, proofs of retrievability lack a general agree-
ment on the definition of their security model. For the sake of uniformity, our definitions
remain very close to the ones given in the original work of Juels and Kaliski [JK07].

For a response word r ∈ RQ given by the Prover and a key κ ∈ K kept by the Verifier, we first
define the success of r according to κ as:

succ(r, κ) := Pr (Check(u, ru, κ) = True) ,

where the probability is taken over the internal randomness of Verify. A first security model
can be defined as follows.

Definition 5.2 (security model, strong version). Let ε, τ ∈ [0, 1]. A proof of retrievability
(KeyGen, Init, Verify, Extract) is strongly (ε, τ)-sound if, for every file m ∈ M and every prover
P :W → RQ we have:

Pr

 Extract(r, κ) 6= m
and

succ(r, κ) ≥ 1− ε

∣∣∣∣∣∣
κ ←R KeyGen(1λ)
w← Init(m, κ)

r ← P(w)

 ≤ τ , (5.1)

the probability being taken over the internal randomness of KeyGen.

Let us propose a short scenario to illustrate this definition. The Verifier is the owner of a
file m ∈ M, and uploads on a server a file w ∈ W computed according to the initialisation
phase of an (ε, τ)-sound PoR. During a certain period of time, the Verifier proceeds to several
verification procedures for his file. This allows him to estimate2 the value of succ(r, κ) ∈ (0, 1).
Notice that the Verifier may only choose the most recent verification procedures, since we
need to assume that the response word r does not change over time. Finally, if the estimate
convinces the Verifier that succ(r, κ) ≥ 1− ε, then he knows that he can theoretically retrieve
his file from the server, with very high probability ≥ 1− τ.

Regarding parameters ε and τ, in the light of the above it is highly desirable to have τ very
small. For its part, the parameter ε measures the rate of unsuccessful audits which leads the
Verifier to believe the extraction will fail. Therefore, one does not necessarily need to have
large ε, though in practice large values of ε afford flexibility, for instance if communication
errors occur between the Prover and the Verifier during the verification procedure.

Definition 5.2 provides a strong security model, in the sense that (i) it does not require any
bound on the response algorithms given by the Prover (ii) the probability in (5.1) is taken
over fixed messages m (informally, it means the Prover knows m). However, keyed proofs of
retrievability are usually insecure according to Definition 5.2. For instance, in [PSU13] Pater-
son et al. noticed that, given the knowledge of m and w, in the Shacham-Waters scheme [SW13]
an unbounded Prover may be able to

1. compute (or at least guess) a key κ such that Init(m, κ) = w,
2. build m′ 6= m such that Init(m′, κ) = w′, and
3. define a malicious response word r′ ← P(w′) which (i) successfully passes every audit

and (ii) leads to the extraction of m′ 6= m.

Hence, we choose to use a weaker but still realistic security model, where informally, the
Prover only knows what he stores (that is, w) and has no information on the initial message
m. Therefore, this security model is also conform with the one given by Paterson et al.

2this can be formally done with estimation theory, as we can see for instance in [PSU13]
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Definition 5.3 (security model, weak version). Let ε, τ ∈ [0, 1]. A proof of retrievability
(KeyGen, Init, Verify, Extract) is weakly (ε, τ)-sound (or simply (ε, τ)-sound) if, for every prover
P :W → RQ, we have:

Pr

 Extract(r, κ) 6= m
and

succ(r, κ) ≥ 1− ε

∣∣∣∣∣∣∣∣
m←R M,
κ ←R KeyGen(1λ)
w← Init(m, κ)

r ← P(w)

 ≤ τ ,

Since we deal with values of τ very close to 0, we also say that a strongly (ε, τ)-sound PoR
admits λ = − log2(τ) bits of security.

Informally, stating that a PoR is not weakly sound amounts to finding a deterministic al-
gorithm P which

– takes as input a file w ∈ W and outputs a response word r ∈ RQ,
– makes the extraction fail with non-negligible probability (over messages m ∈ M and

keys κ ∈ K such that the corresponding response words are successfully audited).

5.3 The PoR construction

Schematically, in the initialisation phase of our construction the Verifier

(i) encodes his file according to a code C;
(ii) scrambles the resulting codeword using a tuple of permutations over the base field;

(iii) uploads the result to the Prover.

As we explained in the introduction, the verification step then consists in checking that the
server is still able to give answers that, once decrypted, satisfy low-weight parity-check equa-
tions for C. For this purpose, we introduce objects called verification structures for codes, that
will be used in the definition of our generic PoR scheme.

5.3.1 Verification structures for codes

Let 1 ≤ ` ≤ n, and u be an `-subset of [1, n]. For w ∈ Fn
q , the word w|u ∈ Fu

q can be seen as a
word in F`

q via a bijective map [1, `]→ u which corresponds to an ordering of elements in the
set u. Throughout the chapter will abuse this identification between Fu

q and F`
q, that we will

hide behind the notation R.

Definition 5.4 (Verification structure). Let 1 ≤ ` ≤ n and C ⊆ Fn
q be a code. Let also Q be

a non-empty set of ordered `-subsets of [1, n]. We define the collection R of restriction maps
associated to Q as:

R : Q×Fn
q → R

(u, w) 7→ w|u

where R ' F`
q as we explained previously. Given an integer s ≥ 1 and a linear map V :

Q×R → Fs
q, we say that (Q, V) is a verification structure for C if the following two constraints

are fulfilled:

1. for all i ∈ [1, n], there exists u ∈ Q such that i ∈ u;
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2. for all u ∈ Q, the linear map Fn
q → Fs

q given by a 7→ V(u, R(u, a)) is surjective and
vanishes on the code C. Explicitly,

∀c ∈ C, V(u, R(u, c)) = 0 .

The map V is then called a verification map, and the set Q a query set for C. By convention, for
w ∈ Fn

q and r ∈ RQ, we denote by

R(w) := (R(u, w) : u ∈ Q) ∈ RQ,

V(r) := (V(u, ru) : u ∈ Q) ∈ (Fs
q)
Q.

Finally, the code R(C) := {R(c), c ∈ C} is called the response code of C, similarly to [PSU13].

We recall that for convenience, if u is an ordered `-subset of [1, n], the set R represents either
F`

q or Fu
q which can be easily identified.

Remark 5.5. In Definition 5.4, the first constraint on (Q, V) ensures that each symbol of the
file will be part of at least one query, and thus can be checked during the verification phase.
The second constraint formalises the needs to distinguish non-corrupted files from corrupted
ones. On the one side, a non-corrupted file c satisfies V(u, R(u, c)) = 0; on the other side,
from the surjectivity of a 7→ V(u, R(u, a)), we hope that files a with several missing or noisy
symbols can be discerned. Finally, we allow flexibility in the soundness of the verification
map V, which is represented by the dimension s ≥ 1 of the codomain of V. Very informally,
the larger the s, the lower the probability that a malicious server produces a response which
vanishes on the verification map V.

Construction 5.6. Let C be a code, and H be a set of parity-check equations for C of Hamming weight
` whose supports are pairwise distinct. Define the query set Q = {supp(h), h ∈ H}, and for any
u ∈ Q, denote by h(u) the unique parity-check equation in H whose support is u. Finally, we define a
map V by:

V : Q×R → Fq

(u, x) 7→ ∑i∈u h(u)i xi .

By construction, it is clear that (Q, V) is a verification structure for C.

Construction 5.7 (using generalised design-based codes). Let D = (X,B) be a design whose
blocks B ∈ B have constant size `. Let also L = (LB ⊆ FB

q : B ∈ B) be a family of local codes,
each of dimension `− s. For every B ∈ B, we denote by HB : R ' FB

q → Fs
q a linear map such that

ker(HB) = LB. Finally, let C = Codeq(D,L) ⊆ FX
q the generalised design-based code associated to

D and L (see Subsection 2.4.3 for the definition of generalised design-based codes).

We can define a query set Q := B, and a verification map:

V : B ×R → Fs
q

(B, x) 7→ HB(x) .

Once again we see that (Q, V) is a verification structure for C. Indeed by definition, if c ∈ C, then
c|B ∈ LB for every B ∈ B.

Example 5.8. Let C = Had(3) ⊆ F7
2 be the binary Hadamard code of length n = 7 and

dimension k = 3. We know that C is the code based on the Fano plane, i.e. the (7, 3, 1)-
block-design PG1(2, 2) = (X,B). Hence one can use Construction 5.7 to obtain a verification
structure. As in Example 1.8, we write the point set X = [1, 7] and the block set is therefore:

B = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}} .
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Recall that according to Construction 5.7, we define Q = B. Then, the verification map
V : Q×F3

2 → F2 can be defined as follows: if u = {u1, u2, u3} ∈ B and b ∈ Fu
2 , we define

V(u, b) =
3

∑
i=1

bui .

Now, let m = (m1, m2, m3) ∈ F3
2. According to the previous ordering of points and blocks, the

message m can be encoded into

c = (m1, m2, m1 + m2, m3, m1 + m3, m1 + m2 + m3, m2 + m3) ∈ C .

Hence, the word r = R(c) ∈ (F3
2)

7 is:

r =

c1
c2
c3

 ,

c1
c4
c5

 ,

c1
c6
c7

 ,

c2
c5
c6

 ,

c2
c4
c7

 ,

c3
c4
c6

 ,

c3
c5
c7


=

 m1
m2

m1 + m2

 ,

 m1
m3

m1 + m3

 ,

 m1
m1 + m2 + m3

m2 + m3

 ,

 m2
m1 + m3

m1 + m2 + m3

 ,

 m2
m3

m2 + m3

 ,

 m1 + m2
m3

m1 + m2 + m3

 ,

m1 + m2
m1 + m3
m2 + m3


For each coordinate b = ri ∈ F3

2 of r = R(c), one can now check that ∑j bj = 0. Hence, we get
V(R(c)) = 0, as expected.

From now on, we denote by N = |Q| the length of the response code R(C) of a code C
equipped with a verification structure (Q, V).

5.3.2 A PoR scheme based on codes with locality

For pedagogical purposes, let us first present in Figure 5.2 a naive construction of PoR that
unfortunately fails. It is based on a linear code C and its verification structure (Q, V). We can
assume that C is public, and we denote by R = F`

q andW = Fn
q .

In short, in the tentative PoR scheme given in Figure 5.2, the client verifies parity-check equa-
tions in the codeword w that has been uploaded on the server. Hence such a PoR would admit
several advantages: first, it requires no computation for the server; second, it can achieve low
communication complexity if the parity-check equations have low weight; third, the storage
cost for the client is zero.

However, the protocol proposed in Figure 5.2 does not define a sound proof of retrievability.
Indeed, a malicious server can very easily produce a response word r(mal) which (i) always
pass the verification procedure, and (ii) leads to the extraction of a file different from m. For
instance, let w(mal) 6= w ∈ C, and define r(mal) = R(w(mal)). Then it is clear that V(u, r(mal)

u ) =
0 for every challenge u ∈ Q. However, the extraction procedure outputs the message m(mal)

whose encoded version is w(mal), and we have m(mal) 6= m.

To tackle the attack on the protocol, we need to prevent the Prover to create other codewords
than w, the original one. The solution we propose makes use of permutations, aiming at
breaking the structure of C. Let us formalise this idea.
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• Key generation: No key generation.
• Initialisation: The Verifier first encodes his file m ∈ Fk

q into a codeword w ∈ C. The
word w is sent to the Prover.
• Verification: Assume the Prover produced a response word r ← P(w).

1. The Verifier picks uniformly at random u ←R Q, where u = {u1, . . . , u`}. Then, the
Verifier sends u to the Prover, who is asked to send back R(u, w) = w|u ∈ R.

2. The Prover sends back to the Verifier the u-th coordinate ru ∈ R of r.
3. On input ru ∈ R, the Verifier checks whether V(u, ru) = 0.

• Extraction: The Verifier first collects r = (P(w)(u) : u ∈ Q) ∈ RQ. He then defines a
word r′ ∈ (R∪ {⊥})Q as follows:

r′u =

{
ru if V(u, ru) = 0,
⊥ otherwise.

Then he calls a bounded-distance error-and-erasure decoding algorithm for R(C) with
input r′ ∈ (R∪ {⊥})Q. It outputs either a word m ∈ Fk

q, or the failure symbol ⊥.

Figure 5.2 – A tentative PoR scheme that is not sound.

Let (Q, V) be a verification structure for C ⊆ Fn
q , and let σ = (σ1, . . . , σn) ∈ S(Fq)n be

an n-tuple of permutations which acts on Fn
q by σ(x) := (σ1(x1), . . . , σn(xn)). We define

σ(C) = {σ(c), c ∈ C}. Let also

Vσ : Q×R → Fs
q

(u, y) 7→ V(u, σ−1
|u (y))

where σ−1
|u (y) = (σ−1

u1
(y1), . . . , σ−1

u`
(y`)). The map Vσ is designed in order to satisfy

Vσ(u, R(u, σ(c))) = V(u, R(u, c))

for every (c, u) ∈ C ×Q. Based on these definitions, we propose a PoR construction based on
codes, given in Figure 5.3. This construction is generic in the sense that any code C equipped
with a verification structure (Q, V) could be used. Notice that, in the light of Constructions 5.6
and 5.7, any code admits a verification structure, although it might be too poor to lead to PoRs
with good parameters. More details concerning the required properties for these structures
will be given in the next section.

Algorithm 13: The extraction procedure Extract(r, σ).

Input: σ ∈ S(Fq)n and r ∈ RQ.
Output: m ∈ Fk

q, or a failure symbol ⊥.
1 Define r′ = σ−1(r).
2 On challenges u ∈ Q such that V(u, r′u) 6= 0, assign r′u ←⊥, where ⊥ here denotes the

erasure symbol.
3 Run a bounded-distance error-and-erasure decoding algorithm for R(C) with input

r′ ∈ (R∪ {⊥})Q. It outputs either a word m′ ∈ Fk
q, or the failure symbol ⊥.

4 Return this output.
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The code C and the verification structure (Q, V) for C are public parameters. We assume
that C is linear, and we denote by N = |Q|. Finally, let R = F`

q andW = Fn
q .

• Key generation: The Verifier generates uniformly at random an n-tuple of permutations

(σ1, . . . , σn) = σ ←R S(Fq)
n .

• Initialisation: The Verifier first encodes his file m ∈ Fk
q into a codeword c ∈ C with

a encoding algorithm for C. Then, the Verifier scrambles each coordinate ci using the
permutation σi:

wi = σi(ci), 1 ≤ i ≤ n .

Finally, w ∈ W is sent to the Prover, and m is erased by the Verifier. To sum up, the
deterministic algorithm Init is defined by

w = Init(m, σ) := σ(C(m)) ∈ W .

Based on his knowledge of w and public parameters, the Prover produces a word r ←
P(w), where r ∈ RQ, corresponding to the vector of outputs of the deterministic proving
algorithm P on input w.
• Verification:

1. The Verifier picks uniformly at random u ←R Q, where u = {u1, . . . , u`}. Then, the
Verifier sends u to the Prover, meaning the Prover is asked to send back R(u, w) =
w|u ∈ F`

q to the Verifier.
2. The Prover sends back the u-th restriction ru ∈ R of his response word r to the

Verifier.
3. On input ru ∈ R, the Verifier runs Vσ(u, ru) and outputs the result. Here we mean

that:

Check(u, ru, σ) :=
{

True if Vσ(u, ru) = 0
False otherwise.

• Extraction: The Verifier first collects r = (P(w)(u) : u ∈ Q) ∈ RQ. Then, he runs the
extraction procedure given in Algorithm 13 on inputs σ and r, and outputs his result.

Figure 5.3 – A PoR scheme based on a code equipped with a verification structure

5.3.3 Analysis

Let us now analyse the correctness and the soundness of the PoR scheme presented in Fig-
ure 5.3.

Preliminary results. We first give results concerning verification structures and response
codes. The following two lemmata are straightforward to prove.

Lemma 5.9. Let (Q, V) be a verification structure for a code C ⊆ Fn
q . Then (Q, Vσ) is a verification

structure for σ(C).

Lemma 5.10. Let (Q, V) be a verification structure for a code C ⊆ Fn
q . Then its response code R(C)

is an Fq-linear code over the alphabet R ' F`
q.

Remark 5.11. By considering σ(C), we lose Fq-linearity, but one can check that verification
structures still make sense and provide the result claimed in Lemma 5.9.
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The next result states that the action C 7→ σ(C) does not modify the distance between code-
words.

Lemma 5.12. Let also σ ∈ S(Fq)n, and R be the collection of restriction maps associated to a query
set Q. Then the following two maps

σ : Fn
q → Fn

q
w 7→ σ(w) .

and
σ′ : R(Fn

q ) → R(Fn
q )

R(w) 7→ R(σ(w)) .

are isometries of the respective metric spaces (Fn
q , d) and (R(Fn

q ), d), where d is the Hamming distance.

Proof. Since every σi is one-to-one, for every c, c′ ∈ C we get

d(c, c′) = |{i ∈ [1, n], ci 6= c′i}|
= |{i ∈ [1, n], σi(ci) 6= σi(c′i)}|
= d(σ(c), σ(c′)) .

The proof for response codes relies on the same argument.

Hence, if C is linear, then the minimum distance of R(σ(C)) is the minimum weight of R(C),
since R(C) is linear thanks to Lemma 5.10.

Definition 5.13. Let ε ∈ [0, 1] and (Q, V) be a verification structure for a code C ⊆ Fn
q . Denote

by N := |Q|. We say r ∈ RQ is ε-close to (Q, V) if

wt(V(r)) = |{u ∈ Q, V(u, ru) 6= 0}| ≤ εN .

Let now c ∈ C and β ∈ [0, 1]. We say that r ∈ RQ is a β-liar for (Q, V, c) if

|{u ∈ Q | V(u, ru) = 0 and ru 6= R(u, c)}| ≤ βN .

Finally, if ru = R(u, c) we say that ru is authentic.

Let A ⊆ Fn
q be any code of minimum distance d, and let a ∈ A be corrupted with b errors

and e erasures, resulting in a word r ∈ (Fq ∪ {⊥})n. Then, it is well-known that, as long
as 2b + e < d, it is possible to retrieve a from r thanks to a bounded-distance error-and-erasure
decoding algorithm (be it efficient or not). This is precisely the decoding algorithm that we
employ in Algorithm 13 on the code A = R(C).

Our framework allows us to reformulate the extraction success in terms of a probability to
decode corrupted codewords. More precisely:

Proposition 5.14. Let (Q, V) be a verification structure for a code C ⊆ Fn
q , and denote by N = |Q|.

Let σ ∈ S(Fq)n, m ∈ Fk
q and denote by d the minimum distance of R(C). Let also r ∈ RQ and

w = σ(C(m)). Finally, assume that r is ε-close to (Q, Vσ) and is also a β-liar for (Q, Vσ , w), with
(ε + 2β)N < d. Then, Extract(r, σ) = m, where Extract(r, σ) is defined in Algorithm 13.

Proof. Recall that r′ ∈ (R ∪ {⊥})Q represents the word we get from r after step 2 of Al-
gorithm 13. Let us now translate our assumptions on r in coding-theoretic terminology:
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– r is ε-close to (Q, Vσ) means there are at most εN challenges u ∈ Q for which we know
that the coordinate r′u is not authentic. This justifies that we assign erasure symbols to
these coordinates.

– r is a β-liar for (Q, V, c) means there are at most βN other corrupted values r′u, but we
cannot identify them. Therefore we can assimilate these coordinates to errors.

To sum up, we see r′ as a corruption of R(C(m)) with at most εN erasures and at most βN
errors, where N = |Q|. Since we assume that (ε + 2β)N < d, we know from the previous
discussion that the decoding succeeds to retrieve m.

Bounding the extraction failure. According to Definition 5.3, our PoR scheme is weakly
(ε, τ)-sound if for every algorithm P outputting a response word r(w) from a file w, we have

Pr

 decoding r(w) into m fails
and

wt(Vσ(r(w))) ≤ εN

∣∣∣∣∣∣
m←R Fk

q,
σ ←R S(Fq)n,
w = σ(C(m))

 ≤ τ .

Using Proposition 5.14, the analyse of the security of our PoR scheme reduces to measuring
the Prover’s capability to produce a response word r which is ε-close to (Q, Vσ) and a β-liar
for (Q, Vσ , w), with (ε + βN) < d.

For fixed r ∈ RQ, σ ∈ S(Fq)n and w = σ(C(m)) the authentic file given to the prover, we
define:

– D(r, w) := {u ∈ Q, ru 6= R(w)u} and D(r, w) := |D(r, w)| = wt(r − R(w)). This
represents challenges u on which the response word r differs from the authentic one
R(w).

– E(r, σ) := {u ∈ Q, Vσ(u, ru) 6= 0} and E(r, σ) := |E(r, σ)| = wt(Vσ(r)). These are
challenges u on which the associated coordinate ru is not accepted by the verification
map (it corresponds to erasures in the decoding process),

– B(r, σ, w) := {u ∈ Q, ru 6= R(w)u and Vσ(u, ru) = 0} and B(r, σ, m) := |B(r, σ, m)|.
These are the challenges u on which the associated coordinate ru is accepted by the
verification map, but differs from the authentic response (it corresponds to errors in the
decoding process).

One can easily check that the sets E(r, σ) and B(r, σ, w) define a partition of D(r, w). The
probability of extraction failure can thus be written:

Pr

 2D(r, w)− E(r, σ) ≥ dmin(R(C))
and

E(r, σ) ≤ εN

∣∣∣∣∣∣
m←R Fk

q,
σ ←R S(Fq)n,
w← σ(C(m))

 . (5.2)

Given w ∈ Fn
q and r ∈ RQ, let us also rewrite the space of admissible permutations and

messages:
Φw := {(σ, m) ∈ S(Fq)

n ×Fk
q, w = σ(C(m))} .

We also define
α(r, w) := max

u∈D(r,w)
PrΦw(V

σ(u, ru) = 0) .

and α := max(r,w) α(r, w) where (r, w) are such that D(r, w) 6= 0. Here the notation PrΦw

refers to the fact that σ is uniformly drawn from Φw. Similarly we will use notation EΦw and
DΦw .
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The parameter α ∈ (0, 1) is called the bias of the verification structure (Q, V) for C. It corres-
ponds to the maximum probability that a response is accepted but does not correspond to the
original file.

Lemma 5.15. For all r ∈ RQ and w ∈ Fn
q , we have:

EΦw(E(r, σ)) ≥ (1− α)D(r, w) .

Proof. A simple computation shows that:

EΦw(E(r, σ)) = EΦw

(
∑

u∈D(r,w)

1Vσ(u,ru) 6=0

)
= ∑

u∈D(r,w)

PrΦw(V
σ(u, ru) 6= 0)

≥ ∑
u∈D(r,w)

(1− α) = (1− α)D(r, w) .

Lemma 5.15 essentially means that, if an adversary to our PoR scheme wants its response
word to be (in average) ε-close to the verification structure, then he must modify at most
D(r, w) ≤ εN

1−α responses. Below we take advantage of this fact and we measure the probability
of an extraction failure.

First, for δ, ε ∈ (0, 1), denote by

p(r, w; ε, δ) := PrΦw

(
2D(r, w)− E(r, σ) ≥ δN and E(r, σ) ≤ εN

)
= PrΦw

(
E(r, σ) ≤ min{εN, 2D(r, w)− δN}

)
.

The probability p(r, w; ε, δ) represents the probability that the extraction fails for a response
code of relative distance δ and an adversarial response word r associated to w, which is ε-close
to the verification structure. Recall that D(X) represents the variance of a random variable X,
and let us bound p(r, w; ε, δ).

Proposition 5.16. Let δ, ε ∈ (0, 1) such that δ 1−α
1+α > ε. Let also r ∈ RQ and w ∈ Fn

q . Then we have:

p(r, w; ε, δ) ≤ DΦw(E(r, σ))( 1+α
2

(
δ 1−α

1+α − ε
))2 N2

.

Proof. We distinguish three cases.

1. Case 2D(r, w)− δN < 0. The event E(r, σ) ≤ min{εN, 2D(r, w) − δN} never occurs
since E(r, σ) ≥ 0. Hence p(r, w; ε, δ) = 0.

2. Case εN ≤ 2D(r, w)− δN. In that case we have p(r, w; ε, δ) = PrΦw(E(r, σ) ≤ εN).
Moreover, if E(r, σ) ≤ εN holds, then we also have

E(r, σ)−EΦw(E) ≤ εN − (1− α)D(r, w)

≤ εN − (1− α)
ε + δ

2
N

≤ −1 + α

2

(
δ

1− α

1 + α
− ε

)
N .
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Hence,

p(r, w; ε, δ) ≤ PrΦw

(
|E(r, σ)−EΦw(E)| ≥ 1 + α

2

(
δ

1− α

1 + α
− ε

)
N
)

Finally, using Chebyshev’s inequality we get

p(r, w; ε, δ) ≤ DΦw(E(r, σ))( 1+α
2

(
δ 1−α

1+α − ε
))2 N2

.

3. Case 0 ≤ 2D(r, w) − δN < εN. The argument is similar to the second case. Here,
E(r, σ) ≤ 2D(r, w)− δN leads us to

E(r, σ)−EΦw(E) ≤ (1 + α)D(r, w)− δN

≤ (1 + α)
ε + δ

2
N − δN

≤ −1 + α

2

(
δ

1− α

1 + α
− ε

)
N.

Therefore, similarly to the previous case, we obtain the result we claim.

Now it remains to bound DΦw(E(r, σ)). For any u ∈ D(r, w), denote by Xu the {0, 1}-
random variable 1Vσ(u,ru)=0, when σ is uniformly drawn from Φw. It holds that E(r, σ) =

∑u∈D(r,w)(1−Xu). Also recall that two real random variables Y, Z are uncorrelated if E(YZ) =
E(Y)E(Z). If so, it holds that D(YZ) = D(Y)+D(Z). For instance, two independent random
variables are uncorrelated.

Lemma 5.17. Let r ∈ RQ and w ∈ Fn
q . If the random variables {Xu}u∈D(r,w) are pairwise uncorrel-

ated, then:
DΦw(E(r, σ)) ≤ D(r, w) .

Proof. By assumption, the random variables {Xu}u∈D(r,w) are pairwise uncorrelated, hence the
variables {1− Xu}u∈D(r,w) are too. Therefore we get:

DΦw(E(r, σ)) = ∑
u∈D(r,w)

DΦw(Xu) .

The bound DΦw(Xu) ≤ 1 then gives the result.

As a corollary of Proposition 5.16 and Lemma 5.17, under the same hypothesis and assuming
δ 1−α

1+α > ε, we get

p(r, w; ε, δ) ≤ 4

N ((1− α)δ− (1 + α)ε)2

since D(r, w) ≤ N. Moreover, if limN→∞ δ > 0 and limN→∞ α = 0, then p(r, w; ε, δ) = O(1/N).

Therefore, we end up with the following theorem.

Theorem 5.18. Let (Q, V) be a verification structure for C with bias α. Denote by N = |Q| and
δ = dmin(R(C))/N the relative distance of the response code of C. Finally, assume that, for any
r ∈ RQ and any w ∈ Fn

q the variables {Xu}u∈D(r,w) are pairwise uncorrelated. Then, for any
ε < δ 1−α

1+α , the PoR scheme associated to C and (Q, V) is (ε, τ)-sound, where

τ =
4

N ((1− α)δ− (1 + α)ε)2 .
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According to Theorem 5.18, we need to look for (sequences of) codes C and associated verific-
ation structures (Q, V) such that:

1. the response code R(C) admits a good relative distance δ = dmin(R(C))/N,
2. the bias α is small,
3. random variables {Xu}u∈D(r,w) are pairwise uncorrelated.

Subsections 5.3.4 and 5.3.5 characterise conditions under which the last two points are fulfilled.
Then, in Section 5.5 we study some response codes in the perspective of achieving good
relative distance.

5.3.4 Estimation of the bias

In this subsection we prove that, assuming Φw approximates the uniform distribution over
S(Fq)n in a sense we will make precise later, the bias α can be bounded according to the
parameters of the verification structure.

Let us fix r ∈ RQ, w ∈ Fn
q and u ∈ Q. We recall that α is defined by:

α = max
r,w

max
u∈D(r,w)

PrΦw(V
σ(u, ru) = 0)

where the randomness comes from σ ←R Φw = {(σ, m) ∈ S(Fq)n × Fk
q, w = σ(C(m))}. We

notice that this is equivalent to writing σ ←R {σ ∈ S(Fq)n, σ−1(w) ∈ C}.

Recall that for convenience we see ru ∈ R ' Fu
q as a vector indexed by the subset u ⊂ [1, n].

Hence we can easily denote by ru[i] ∈ Fq the coordinate of ru indexed by i ∈ u. We define
the code Ku := ker(V(u, ·)) ⊆ Fu

q , and by definition of V we have C|u ⊆ Ku. Moreover, for
every σ ∈ S(Fq)n, we have Vσ(u, ru) = 0 if and only if σ−1

u (ru) ∈ Ku. Finally, we denote by
Zu := {i ∈ u, ru[i] 6= R(w)u[i]} the set of coordinates of ru that are not authentic.

Let Yu(σ) represent the event ‘σ−1
u (ru) ∈ Ku | supp(σ−1

u (ru)) = Zu’. We say that Φw is
sufficiently uniform if, for every u ∈ Q, we have:

γu :=
Pr
[
Yu(σ) | σ ←R Φw

]
− Pr

[
Yu(σ) | σ ←R S(Fq)n]

Pr
[
Yu(σ) | σ ←R S(Fq)n

] = o(1) ,

when the file size n log(q)→ ∞.

In other words, Φw is sufficiently uniform if, when we measure the probability that Yu(σ)
happens, the random distribution induced by Φw is a good approximation of the uniform
distribution over n-tuples of permutations.

Lemma 5.19. Let r, w, u and Zu be defined as above. Let also Au = |{x ∈ Ku, supp(x) = Zu}|.
Then

PrΦw(V
σ(u, ru) = 0) ≤ (1 + γu)Au

(q− 1)|Zu|
.

Proof. For every σ ∈ Φw, we know that σ−1
u (R(w)u) ∈ Ku, and we recall that Vσ(u, ru) = 0 if

and only if σ−1
u (ru) ∈ Ku. Since Ku is linear, and up to considering σ−1

u (R(u, w)− ru) instead,
let us assume without loss of generality that σ−1

u (R(w)u) = 0. Hence, by definition of Zu, it
holds that σ−1

u (ru)[i] = 0 for every i ∈ u \ Zu.
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When σ is drawn uniformly in S(Fq)n, then we have

Pr
(

σ−1
u (ru) ∈ Ku

∣∣∣∣ σ ←R S(Fq)n

supp(σ−1
u (ru)) = Zu

)
= Pr

(
x ∈ Ku

∣∣∣∣ x←R F`
q

supp(x) = Zu

)
.

Furthermore,

Pr
(

x ∈ Ku

∣∣∣∣ x←R F`
q

supp(x) = Zu

)
=

Au

(q− 1)|Zu|
,

since Au counts the number of codewords in Ku having Zu as support. Therefore we get

PrΦw(V
σ(u, ru) = 0) ≥ PrΦw

(
Vσ(u, ru) = 0

∣∣∣ supp(σ−1
u (ru)) = Zu

)
= (1 + γu)Pr

(
Vσ(u, ru) = 0

∣∣∣∣ σ ←R S(Fq)n

supp(σ−1
u (ru)) = Zu

)
= (1 + γu)Pr

(
σ−1

u (ru) ∈ Ku

∣∣∣∣ σ ←R S(Fq)n

supp(σ−1
u (ru)) = Zu

)
= (1 + γu)Pr

(
x ∈ Ku

∣∣∣∣ x←R F`
q

supp(x) = Zu

)
=

(1 + γu)Au

(q− 1)|Zu|
.

Lemma 5.20. Let Su be the Fq-vector space SpanFq
{x ∈ Ku, supp(x) = Zu} and assume that

Su 6= {0}. We then have:
Au ≤ q|Zu|−dmin(Su)+1 .

Proof. Let us prove that, if Au > qe for some integer e ≥ 0, then dmin(Su) ≤ |Zu| − e, which
induces the result. If Au > qe, then dim(Su) > e since |Su| ≥ Au. The Singleton bound then
provides:

dmin(Su) ≤ |Zu| − dim(Su) + 1 ≤ |Zu| − e .

Finally, we get the following upper bound on α.

Proposition 5.21. Denote by ∆ = min{dmin(Ku), u ∈ Q}. If every Φw is sufficiently uniform (for
w ∈ Fn

q ), then

α ≤ (1 + γ)(1 + 1
q−1 )

`q−∆+1 ,

where γ = o(1) when n log(q)→ ∞.

Proof. The vector space Su := SpanFq
{x ∈ Ku, supp(x) = Zu}, defined in the previous lemma,

is a subcode of Short(Ku, u \ Zu). Hence dmin(Ku) ≤ dmin(Su). Due to our assumption on Φw,
we can apply Lemmata 5.19 and 5.20 to obtain the desired bound:

α ≤ max
u,r

{
(1 + γu)

(
q

q− 1

)|Zu|
q−dmin(Ku)+1

}
≤ (1 + γ)(1 + 1

q−1 )
`q−∆+1

where γ = maxu γu = o(1) when n log(q)→ ∞.
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5.3.5 Pairwise uncorrelation of variables {Xu}u∈D

This section is devoted to proving that variables {Xu}u∈D(r,w) are pairwise uncorrelated if the
supports of challenges u ∈ D(r, w) have small pairwise intersection. Let us recall that for
fixed r ∈ RQ, w and u ∈ D(r, w), the random variable Xu represents 1Vσ(u,ru)=0, when σ is
uniformly picked in Φw.

Proposition 5.22. If max{|u∩ v|, u 6= v ∈ Q} < min{d⊥(C|u), u ∈ Q}, then the random variables
{Xu}u∈Q are pairwise uncorrelated.

Proof. Recall that we denote by Ku := ker V(u, ·), and that by definition of a verification
structure, we have C|u ⊆ Ku. For u 6= v ∈ Q, let us prove that E(XuXv) = E(Xu)E(Xv). First,

E(XuXv) = Pr (Vσ(u, ru) = 0 and Vσ(v, rv) = 0)

= Pr
(

σ−1(ru)|u ∈ Ku and σ−1(rv)|v ∈ Kv

)
.

Denote by t = |u ∩ v| and let (a, b) ∈ (Ft
q)

2. We denote by Y(σ, a, b) the event

σ−1(ru)|u∩v = a and σ−1(rv)|u∩v = b .

We first notice that {σ−1
|u∩v, σ ∈ Φw} = S(Fq)t. We can here use an argument similar to the

proof of Lemma 4.21: the constraint σ−1(w) ∈ C is ineffective on σ−1
|u∩v, since |u ∩ v| ≤ t <

d⊥(C|z) for every z ∈ Q. Therefore, for every (a, b) ∈ (Ft
q)

2, we have

Pr(Y(σ, a, b)) = q−2t ,

and it follows that:

E(XuXv) =
1

q2t ∑
a,b∈(Ft

q)
2

Pr
(

σ−1(ru)|u ∈ Ku and σ−1(rv)|v ∈ Kv | Y(σ, a, b)
)

.

Recall that t < min{d⊥(C|u), u ∈ Q} ≤ min{d⊥(Ku), u ∈ Q}. Hence, for fixed a and b, the
variables σ−1(ru)|u ∈ Ku | Y(σ, a, b) and σ−1(rv)|v ∈ Kv | Y(σ, a, b) are independent (once
again we can adapt Lemma 4.21). Therefore:

E(XuXv) =
1

q2t ∑
a,b∈(Ft

q)
2

Pr
(
σ−1(ru)|u ∈ Ku | Y(σ, a, b)

)
× Pr

(
σ−1(rv)|v ∈ Kv | Y(σ, a, b)

)
.

Then,

E(XuXv) =
1

q2t ∑
a,b∈(Ft

q)
2

Pr(σ−1(ru)|u ∈ Ku | σ−1(ru)|u∩v = a)

× Pr(σ−1(rv)|v ∈ Kv | σ−1(rv)|u∩v = b) .

and we conclude since E(Xu) = q−t ∑a∈Ft
q

Pr(σ−1(ru)|u ∈ Ku | σ−1(ru)|u∩v = a).
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5.4 Performance

5.4.1 Efficient scrambling of the encoded file

In the PoR scheme we propose, the storage cost of an n-tuple of permutations in S(Fq)n is
excessive, since it is superlinear in the original file size. In this subsection, we propose a
storage-efficient way to scramble the codeword c ∈ C produced by the Verifier.

Precisely, given a codeword c ∈ C ⊆ Fn
q , we want to define a map σ : c 7→ w ∈ Fn

q with the
following requirements:

– the map σ is efficiently computable and requires a low storage,
– if w = σ(c), c ∈ C , then for every i ∈ [1, n] the local inverse map wi 7→ ci is efficiently

computable,
– given the knowledge of w = σ(c) and C, it is hard to produce a response word r ∈ RQ

such that Vσ(u, ru) = 0 and ru 6= w|u for many u ∈ Q.

We here propose to use an n-tuple of pseudo-random permutations (σ1, . . . , σn) = σ derived
from a suitable block cipher. Let us first give an explicit construction, so that we can discuss
its subtleties afterwards.

The construction. Let IV denote a random initialisation vector for a cipher in CTR mode
(IV could be a nonce concatenated with a random value). For example, we choose the AES
block cipher. Vector IV is kept secret by the Verifier, as well as a randomly chosen key κ for
the cipher. Let also f be a permutation polynomial over Fq of degree d > 1. For instance one
could choose f (x) = xd with gcd(d, q− 1) = 1. Notice that polynomial f can be published.

Let s =
⌊

256
dlog2 qe

⌋
be the number of Fq-symbols one can store in a 256-bit word3. Up to

appending a few random bits to c, we assume that s | n, and we denote by t = n/s. Let
us fix a partition of [1, n] into s-tuples i = (i1, . . . , is); it can be for instance (1, . . . , s), (s +
1, . . . , 2t), . . . , ((t − 1)s + 1, . . . , n). Notice that this partition does not need to be chosen at
random. Given c = (c1, . . . , cn) ∈ C and i an element of the above partition, we now define

bi =
(

f (ci1) | · · · | f (cis)
)
⊕AESκ(IV ⊕ i) ∈ {0, 1}256.

If log2 q - 256, trailing zeroes can be added to evaluations of f . Finally, the pseudo-random
permutation σ is defined by:

σ(c) := (b1, . . . , bt) .

Informal analysis. One could first question the necessity to use i as a part of the input of
the AES cipher. Assume that we do not. Then, the local permutation σj, 1 ≤ j ≤ n, would
not depend on j. As a consequence, for certain class of codes the local verification map
ru 7→ Vσ(u, ru) would not depend on u, and a malicious Prover would then be able to produce
accepted answers while storing only a small piece of the file w (e.g. w|u for only one u ∈ Q).

Second, one could wonder why a permutation polynomial f of degree d > 1 is used. Assume
for instance that f = id. Then, given the knowledge of w = σ(c), it would be very easy for
a malicious Prover to produce a word w′ 6= w, such that r′ = R(w′) is always accepted by
the Verifier. Simply, the Prover defines w′ = w + c′, where c′ is any non-zero codeword of

3in the scheme we propose, we will always have log(q) < 256
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C. Hence, one sees that the polynomial f must be nonlinear in order to prevent such kind of
attacks.

5.4.2 Parameters

Let us consider a PoR built upon a code C ⊆ Fn
q , with verification structure (Q, V) satisfying

R ' F`
q and V(R) = Fs

q. We also assume we use an n-tuple of pseudo-random permutations
as described in the previous subsection.

Communication complexity. At each verification step, the client sends an `-subset of co-
ordinates u ⊂ [1, n]. The server then answers with the corresponding symbols wi ∈ Fq, for
i ∈ u. Therefore the upload communication cost is ` log2 n bits while the download commu-
nication cost is ` log2 q, thus a total of `(log2 n + log2 q) bits.

Computation complexity. During the initialisation phase, following the encryption process
described above, the client essentially has:

– to compute the codeword c ∈ C associated to its message,
– to make n evaluations of the permutation polynomial f over Fq, and
– to compute t = n log2 q

256 AES ciphertexts to produce the word w to be sent to the server.

Given a generator matrix of C, the codeword c ∈ C can be computed in O(kn) operations over
Fq with a matrix-vector product. Notice that quasi-linear-time encoding algorithms exist for
some classes of codes. Moreover, if a monomial or a sparse permutation polynomial f is used,
then the cost of each evaluation of f is O((log2 q)3). If we denote by c the bitcost of an AES
encryption, we get a total bitcost of O(n2(log2 q)2 + n(log2 q)3 + cn log2 q) for the initialisation
phase. Recall this is a worst-case scenario in which the encoding process is inefficient.

At each verification step, an honest server only needs to read ` symbols from the file it stores.
Hence it has no computation complexity. The client has to compute a matrix-vector product
over Fq, where the matrix has size s× ` and the vector has size `, thus a computation cost of
O(`s) operations over Fq.

Storage needs. The client only stores 2× 256 bits for the secret material: the key κ and the
initialisation vector IV used in the AES cipher. The server storage overhead exactly corres-
ponds to the redundancy of the linear code C, that is (n− dim(C)) log2 q bits.

Other features. The PoR scheme we propose in Section 5.2 is unbounded-use, since each
challenge reveals nothing about the secret data held by the client. Unfortunately it does
not feature dynamic updates of files. However, we must emphasize that the file w the client
produces can be split among several servers, and the verification step remains possible even if
the servers do not communicate with each other. Indeed, computing a response to a challenge
does not require to mix distinct symbols wi of the file. Therefore, the scheme we propose is
well-suited for the storage of large static distributed databases.
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Client storage: 512 bits
Server total storage: n log2 q bits

Communication complexity (verif.): ` log2(nq) bits
Client computational complexity (verif.): ` decryptions, `s operations over Fq
Server computational complexity (verif.): ` reads, no computation

Table 5.1 – Summary of parameters of the proposed PoR construction. We assume the
file has size k log(q) bits, and the underlying code C ⊆ Fn

q has dimension k and is
equipped with a verification structure (Q, V) such that |u| = `, and rank V(u, ·) ≤ s for
all u ∈ Q.

5.5 Instantiations

In this section we present several instantiations for the PoR protocol presented in Section 5.2.
According to Theorem 5.18 and the study of parameters in the last section, we especially look
for codes C with positive rate (when its length n tends to infinity), such that the response code
R(C) has positive relative distance (when its length N tends to infinity).

5.5.1 Tensor-product codes

Let us first recall a specific construction of codes called the tensor product. For x ∈ FA
q and

y ∈ FB
q , we denote by x⊗ y the tuple c ∈ FA×B

q and given by ca,b = xayb. Then, if C ⊆ FA
q

and C ′ ⊆ FB
q are two linear codes, their tensor product C ⊗ C ′ ⊆ FA×B

q is the Fq-linear code
generated by words c⊗ c′, for c ∈ C and c′ ∈ C ′. If C, C ′ have respective parameters [n, k, d]
and [n′, k′, d′], then C ⊗ C ′ is [nn′, kk′, dd′]. We also denote by

C⊗s := C ⊗ · · · ⊗ C︸ ︷︷ ︸
s times

⊆ FAs

q

the s-fold tensor product of C with itself.

Next paragraph illustrates the PoR construction we propose with a simple code, though it
cannot be used in practice. More practical PoR instances appear in the following paragraphs.

A simple but non-practical instance. Let n = N`, and for 0 ≤ i ≤ N − 1, denote by ui =
{i`+ 1, i`+ 2, . . . , (i + 1)`}}. We define Q = {ui, i ∈ [0, N − 1]}. The set Q defines a partition
of [1, n]. We define the code

C = {c ∈ Fn
q | ∑

j∈u
cj = 0, ∀u ∈ Q} ⊆ Fn

q .

In other words, up to re-indexing the coordinates we have C = Par(`)⊗FN
q , and a parity-check

matrix H for C is given by:

H =


1 · · · 1 0 · · · · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1
. . .

...
...

...
...

. . . . . . 0
0 · · · · · · · · · · · · · · · 0 1 · · · 1

 .

The verification map V : Q×F`
q → Fq is defined by V(u, b) := ∑`

j=1 buj , for all (u, b) ∈ Q×F`
q.

By construction (see Construction 5.6), the pair (Q, V) defines a verification structure for C.
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Lemma 5.23. Let C = Par(`)⊗FN
q as above. Then the response code R(C) has minimum distance 1.

Proof. We see that the restriction map R sends the codeword (1,−1, 0, 0, . . . , 0) ∈ C to a word
of weight 1. Moreover, the map R is injective so dmin(R(C)) > 0.

Since δ = dmin(R(C))/N = 1/N → 0 when N → ∞, according to Theorem 5.18 a tentative
PoR scheme built upon C cannot be sound.

Remark 5.24. One can also see C as a design-based code. The underlying design is a 1-(n, `, 1)
design (X,B), also simply known as a partition. Indeed, the point set X is [1, n], and each
point xi,j = i`+ j ∈ X, for 0 ≤ i ≤ n/`− 1 and 1 ≤ j ≤ `, belongs to exactly one block ui ∈ B
of size `.

Higher order tensor-product codes. We first state a link between tensor-product codes and
generalised design-based codes. For 1 ≤ i ≤ s and x ∈ X := ∏s

j=1 Xj , we need to define
Li,x ⊆ X, the ‘i-th axis-parallel line with basis x’, as

Li,x := {y ∈ X | yj = xj, ∀j 6= i} .

Notice that the line Li,x can be seen as a translation of the axis Xi, whence its designation. One
should also pay attention to the fact that two distinct tuples x 6= x′ can define the same line
Li,x = Li,x.

Proposition 5.25. LetAi ⊆ F
Xi
q , 1 ≤ i ≤ s, be s linear codes of length `. Then, the tensor-product code

C = A1 ⊗ · · · ⊗ As is a generalised design-based code Code(D,L), with the following parameters.

– The underlying design D = (X,B) is a 1-(`s, `, s) design. Its point set is X = ∏i Xi, and its
block set is B = {Li,x, 1 ≤ i ≤ s, x ∈ X}.

– The set of local codes L = (LB, B ∈ B) is defined by LB = Ai if B = Li,x for some x ∈ X (using
a one-to-one map Xi → Li,x).

Proof. Let us prove that C ⊆ Code(D,L). The code C is generated by elementary tensors of
the form

a(1,j1) ⊗ · · · ⊗ a(s,js), 1 ≤ ji ≤ dimAi ,

where for every 1 ≤ i ≤ s, the set {a(i,j), 1 ≤ j ≤ dim(Ai)} defines a basis of Ai. So, by
linearity, let us prove the result for an elementary tensor e(j) := a(1,j1) ⊗ · · · ⊗ a(s,js), where
j = (j1, . . . , js).

We denote a(i,ji)[xi] the symbol of a(i,ji) supported by xi ∈ Xi. We can see that

e(j)
|Li,x

= (a(1,j1) ⊗ · · · ⊗ a(s,js))|Li,x
=

(
∏
t 6=i

a(t,jt)[xt]

)
a(i,ji) ∈ Ai , (5.3)

since a(i,ji) is an element of the basis we have given for Ai. Notice that we made here the
identification between Xi and Li,x. Finally, we get e(j)

|Li,x
∈ Ai for every Li,x ∈ B, which proves

by linearity that:

C ⊆ {c ∈ FX
q | ∀Li,x ∈ B, c|Li ,x ∈ Ai} = Code(D,L) .

The reverse inclusion can be proved very similarly. Finally, it is easy to check that D is a
1-(`s, `, s) design: every point x ∈ X belongs to exactly s distinct lines Li,x of cardinality `.
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For convenience we now consider the case where all Xi = X1 and Ai = A1, for every 1 ≤ i ≤ s.
So let A ⊆ FA

q be a non-degenerate [`, kA, dA]q-linear code, and define C = A⊗s ⊆ FX
q where

X = As, and n = |X| = `s. Thanks to Proposition 5.25, it is easy to define a verification
structure (Q, V) for C, see Construction 5.7. So let us analyse its response code.

Lemma 5.26. Let C = A⊗s as above. Then, R(C) has minimum distance s · dmin(A)s−1.

Proof. Let us first prove that the minimum distance of the response code is greater than s ·
dmin(A)s−1. Let r = R(c) ∈ R(C), and assume r 6= 0. Then, there exists L ∈ Q such that
0 6= rL = c|L ∈ A. Therefore cx 6= 0 for some x ∈ L ⊂ X. Now, for some 1 ≤ i ≤ s, consider
the set

Si,x = {y ∈ X, yi = xi} ⊆ X .

Very informally, the set Si,x corresponds to the hyperplane passing through x and ‘perpen-
dicular’ to the i-th axis. By definition of C = A⊗s, we know that c|Si,x

∈ A⊗(s−1) for every
1 ≤ i ≤ s. Denote by Ui = supp(c|Si,x

), and ti := |Ui| ≥ dmin(A⊗(s−1)) = dmin(A)s−1. One
can write Ui = {u(i,1), . . . , u(i,ti)}. For every u(i,j) ∈ Ui, the line Li,u(i,j) is such that c|L

i,u(i,j)
is a

non-zero codeword of A. Therefore,

wt(r) = |{L ∈ Q, rL 6= 0}| ≥
∣∣∣∣∣ s⋃
i=1

{
Li,u(i,j) , 1 ≤ j ≤ ti

}∣∣∣∣∣ ≥ s

∑
i=1

ti ≥ s · dmin(A)s−1 .

Let us now build a word r ∈ R(C) of weight s · dmin(A)s−1. Let w ∈ A \ {0} be a minimum-
weight codeword of A, and denote by W := supp(w) ⊆ A. Define c = w⊗s ∈ C; then
supp(c) = Ws. Let finally r = R(c). We see that rLi,x 6= 0 if and only if x ∈Ws. Hence we get

wt(r) = |{L ∈ Q, rL 6= 0}| =
∣∣∣∣∣ s⋃
i=1

{Li,x, x ∈Ws}
∣∣∣∣∣ = s · dmin(A)s−1 .

since each line Li,x is counted dmin(A) times when x runs over Ws.

Now denote by N = |Q| = s`s−1 the length of R(C). If A is an MDS code, we summarise the
parameters of a PoR scheme based on As in the next proposition.

Proposition 5.27. Let s ≥ 0, 0 < δ < 1 and A be an [`, `(1 − δ) + 1, `δ]q MDS code. Define
C = A⊗s and (Q, V) as above. If every Φw is sufficiently uniform, then the PoR scheme associated to
C and (Q, V) is (ε, τ)-sound for τ = O

(
1

(δ`)ss

)
and every ε < ε0, where ε0 = (1 +O(q−δ`+1))δs.

Asymptotics are given when n = `s → ∞.

Proof. First, the relative distance of R(C) is δs according to Lemma 5.26. Then, the random
variables {Xu}u∈D are pairwise uncorrelated because the inequality

max
u 6=v∈Q2

|u ∩ v| = 1 < `(1− δ) + 2 = min
u∈Q

d⊥(C|u)

allows us to apply Proposition 5.22. Furthermore, if every Φw is sufficiently uniform, the bias
α satisfies α ∈ O(q−δ`+1). Hence 1−α

1+α = 1 +O(q−δ`+1). Therefore we can use Theorem 5.18
and we get the desired result.
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Parameters. We mainly focus on the download communication complexity in the verification
step and on the server storage overhead, since they are the most crucial parameters which
depend on the family of codes C we use. Moreover, we consider as more relevant to analyse
the ratio of these quantities to the file size, rather than their absolute values.

For the PoR scheme based on tensor product of MDS codes analysed in Proposition 5.27, and
an initial file m of size |m| = ((1− δ)q + 1)s log2 q bits, we get

– a relative redundancy n log2 q
|m| =

(
q

(1−δ)q+1

)s
≤ 1

(1−δ)s ;

– a relative communication complexity ` log2 q
|m| = q

((1−δ)q+1)s ≤ 1
(1−δ)s q1−s.

Example 5.28. We present various parameters of PoR instances based on tensor-product codes,
for files of size approaching 104, 106 and 109 bits. We only report instances with comparable
success bound ε0, here 0.10 ≤ ε0 ≤ 0.16. Formally, recall that A is a [q, (1− δ)q + 1, δq]q MDS
code (e.g. a Reed-Solomon code), and C = A⊗s.

q δq s file size (bits) comm. rate redundancy rate ε0

16 10 4 9604 6.664 · 10−3 27.3 0.153
25 13 3 10 985 1.138 · 10−2 7.112 0.141
64 24 2 10 086 3.807 · 10−2 2.437 0.141
32 21 5 1 244 160 1.286 · 10−4 134.8 0.122
47 28 4 960 000 2.938 · 10−4 30.5 0.126
101 47 3 1 164 625 6.071 · 10−4 6.193 0.101
512 180 2 998 001 4.617 · 10−3 2.364 0.124
128 85 5 1 154 413 568 7.762 · 10−7 208.3 0.129
256 150 4 1 048 636 808 1.953 · 10−6 32.77 0.118
1024 550 3 1 071 718 750 9.555 · 10−6 10.02 0.155
12167 3900 2 957 037 536 1.78 · 10−4 2.166 0.103
16384 5500 2 1 658 765 150 1.383 · 10−4 2.266 0.113

Example 5.28 shows that, if the communication rate is reasonable for the PoR instances based
on tensor-product codes, their storage overhead is large. In fact, the problem lies in the fact
that δq must be large in order to reach non-vanishing values of ε. In the next subsection, we
will see that Reed-Muller codes, and more generally codes equipped admitting a verification
structure with a richer query set, allow us to reach better PoR parameters.

5.5.2 Reed-Muller and related codes

Low-degree Reed-Muller codes are known to admit many distinct low-weight parity-check
equations, whose supports corresponds to affine subspaces of the ambient space. Therefore
they seem naturally adapted to our construction. Let us first consider the plane (or bivariate)
Reed-Muller code case.

The plane Reed-Muller code RMq(2, q− 2). Let C be the Reed-Muller code RMq(2, q− 2).
Recall that C has length q2 and dimension (q − 1)(q − 2)/2. Furthermore, we have seen in
Chapter 2 that for every affine line L = {x = (at + b, ct + d), t ∈ Fq} ⊂ F2

q and every c ∈ C, it
holds that ∑x∈L cx = 0.

Therefore, we can define Q as the set of affine lines L of F2
q, and the verification map V by

V(L, b) = ∑`
j=1 bj ∈ Fq for every b ∈ R. From the previous discussion we know that (Q, V)
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is a verification structure for C. Also, there are q(q + 1) distinct affine lines in F2
q, hence

N = q(q + 1).

Lemma 5.29. Let C = RMq(2, q− 2) equipped with its verification structure defined as above. Then,
its response code R(C) has minimum distance q2 + 2.

Proof. Any non-zero codeword c ∈ C consists in the evaluation of a non-zero polynomial
f (X, Y) ∈ Fq[X, Y] of degree at most q− 2. Denote by L1, . . . , La ⊂ F2

q, the affine lines on which
f vanishes; i.e. f (x) = 0 for every x ∈ Li, 1 ≤ i ≤ a. We claim that a ≤ q− 2. Indeed, since f
has total degree < q− 1, f also vanishes on closed lines L1, . . . , La, i.e. affine lines seen in the
closure Fq

2, where Fq denotes the algebraic closure of Fq. Denote by gi ∈ Fq[X, Y] the monic
polynomial of degree 1 which defines Li. From Hilbert’s Nullstellensatz, there exists r > 0
such that (∏a

i=1 gi)| f r. Since the gi’s have degree 1 and are distinct, we get a ≤ deg f ≤ q− 2.
Hence, the affine lines different from L1, . . . , La correspond to non-zero coordinates of R(c).
There are q(q + 1)− a ≥ q2 + 2 such lines so dmin(R(C)) ≥ q2 + 2.

Now we claim there exists a word r ∈ R(C) of weight N − q + 2 = q2 + 2. Let L(0) and L(1)

be two distinct parallel affine lines respectively defined by X = 0 and X = 1. Now consider

the word c ∈ F
F2

q
q such that cx = −1 for x ∈ L(0), cy = 1 for y ∈ L(1) and cz = 0 elsewhere.

One can check that c ∈ C; indeed c is the evaluation vector of ∏α∈Fq\{0,1}(α− X), of degree
less than q − 2. Now, if we want to compute wt(R(c)), we only need to count the number
of lines which do not intersect L(0) or L(1). There are only q− 2 such lines, namely the lines
of equation X = β, where β ∈ Fq \ {0, 1}. Hence wt(R(c)) = q(q + 1) − (q − 2) and this
concludes the proof.

Proposition 5.30. Let C = RMq(2, q− 2), and (Q, V) its associated verification structure. If every
Φw is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound for ε =

1− o(1) and τ = O
(

1
(1−ε)q2

)
, when n = q2 → ∞.

Proof. One can check that the random variables {Xu}u∈D are pairwise uncorrelated since

max
u 6=v∈Q2

|u ∩ v| = 1 < `(1− δ) + 2 = min
u∈Q

d⊥(C|u) .

Moreover, the relative distance of R(C) is q2+2
q(q+1) → 1 according to Lemma 5.29. If every Φw is

sufficiently uniform, the bias α satisfies α ∈ O(1/q); hence 1−α
1+α = 1 +O(1/q). Therefore we

can use Theorem 5.18 and we get the desired result.

Parameters. For the plane Reed-Muller code setting and an initial file of size |m| = 1
2 (q−

1)(q− 2) log2 q bits, we get

– a relative redundancy q2 log2 q
|m| = 2

(1−1/q)(1−2/q) → 2;

– a relative communication complexity q log2 q
|m| = 2

q
1

(1−1/q)(1−2/q) = O(1/q).

Storage improvements via lifted codes. The redundancy rate of Reed-Muller codes presen-
ted above stays stuck above 2. Affine lifted codes, introduced by Guo, Kopparty and Su-
dan [GKS13], allow us to break this barrier while keeping the same verification structure. We
refer to Chapters 2 and 3 for more details about these codes. Here we focus on Lift(RSq(q−
2), 2), since it can be compared to RMq(2, q− 2). Furthermore, by definition of lifted codes,
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Lift(RSq(q− 2), 2) admits the same verification structure as the one presented previously for
RMq(2, q− 2).

Lemma 5.31. The response code of Lift(RSq(q− 2), 2) has minimum distance at least q2 − q + 2.

Proof. The rationale is similar to the proof of Lemma 5.29. Let 0 6= c ∈ C, where c = ( f (x))x∈F2
q
,

f ∈ Fq[X, Y]. recall that we can assume deg( f ) ≤ 2q − 2. Denote by L1, . . . , La ⊂ F2
q the

lines on which f vanishes. The restriction of f along Li can be interpolated as a univariate
polynomial f|Li

(T) of degree at most q− 2, since ( f (Q))Q∈Li lies in the Reed-Solomon code
RSq(q− 2), by definition of lifted codes. Therefore f|Li

(T) = 0, and f vanishes on Li. Using
arguments in the proof of Lemma 5.29, we get a ≤ deg( f ) ≤ 2q− 2, and dmin(R) ≥ q2 + q−
2q + 2 = q2 − q + 2, where R is the response code of Lift(RSq(q− 2), 2)).

We believe the bound given in Lemma 5.31 is not tight, but it is sufficient to have a response
code R of relative minimum distance dmin(R)/N → 1 when N → ∞. Similarly to Proposi-
tion 5.32, we can then prove that practical PoRs can be constructed with the family of lifted
codes Lift(RSq(q− 2), 2).

Proposition 5.32. Let C = Lift(RSq(q− 2), 2), and (Q, V) its associated verification structure. If
every Φw is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound for
every ε < 1 and τ = O

(
1

(1−ε)q2

)
.

The crucial improvement is that lifted codes potentially have much higher dimension than
Reed-Muller codes. For instance, if q = 2e, we have seen in Chapter 3 that the dimension of
Lift(RSq(q− 2), 2) is 4e − 3e, which is much larger that 2e−1(2e − 1).

Example 5.33. We present parameters of PoRs based on Reed-Muller codes and lifted codes,
using files of size approaching 104, 106 and 109 bits.

code q file size comm. rate redundancy rate
Lift 32 3905 4.10 · 10−2 1.311
RM 64 11 718 3.28 · 10−2 2.097
Lift 64 20 202 1.90 · 10−2 1.217
Lift 256 471 800 4, 34 · 10−3 1.111
RM 512 1 172 745 3, 93 · 10−3 2.012
Lift 512 2 182 149 2.11 · 10−3 1.081
Lift 8192 851 689 033 1.25 · 10−4 1.024
RM 16384 1 878 704 142 1.22 · 10−4 2.000
Lift 16384 3 691 134 818 6.21 · 10−5 1.018

Note that the family of lifted codes has been used in the PoR proposal [LL16].

Remark 5.34. Once again, we emphasize that the lifted codes we consider are actually design-
based codes. Here, the underlying design is the classical affine geometric design AG1(2, q). It
is a 2-(q2, q, 1) design.

On more generic families of codes. We have presented several families of codes producing
practical instances of PoR. We also revealed their link with (generalised) design-based codes,
and noticed that the PoR instances based on 2-designs give better parameters than the one
relying on 1-designs. Let us quickly mention other families of designs and codes that could
be interesting to consider.
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First, lifted codes over evaluation support Am or Pm, where m > 2, (or equivalently, codes
based on AG1(m, q) or PG1(m, q)) would decrease the communication complexity of the PoR
schemes we propose. Indeed, lines are smaller compared to the size of the ambient space. We
must however pay attention to the storage rate which could vanish if m gets large. Indeed,
we have seen previously that lifted codes and codes based on geometric designs of fixed field
size q have vanishing rate when m→ ∞.

In order to decrease the bound on the failure probability of the PoR schemes we propose, one
could also consider lifted codes Lift(RSq(d), 2) with a lower degree d < q− 2. A good point is
that the communication complexity remains unchanged; however if d is too small, we could
once again observe an overwhelming storage overhead.

5.5.3 Experimental estimate of the bias α

In this last section, we confirm our heuristic on the fact that Φw is sufficiently uniform, by
providing experimental estimates of α for finite length codes.

Setup. We consider PoR schemes using Reed-Muller codes C = RMq(2, q− 2), as presented
in Section 5.5.2. We also fix the word w ∈ Fn

q uploaded on the server during the initialisation
step, and without loss of generality we assume that w = 0. Proposition 5.21 claims that in
this context, α should be O(1/q) since ∆ = 2 and ` ≤ q. For convenience, we denote by
pΦ := PΦw(V

σ(u, ru) = 0), and we recall that α is an upper bound on pΦ (for varying u and
r).

We proceed to three kinds of tests in order to estimate α:

• Test 1. We sample N challenges u, and for each sample, we fix t ∈ [2, `] and ru in
{x ∈ F`

q, |Zu| = t}. Then, we estimate pΦ by running M trials and computing the
average number of times Vσ(u, ru) = 0 occurs. We denote by ξM(pΦ) this estimator. We
then collect the maximum value of ξM(pΦ) among the N samples of u.
• Test 2. A challenge u is fixed, and for several values of t, we pick N responses ru

randomly in {x ∈ F`
q, |Zu| = t}. For every ru, we estimate pΦ with M samples. We

collect the maximum value of ξM(pΦ) among the N values of ru that have been picked.
• Test 3. A challenge u is fixed, and for several values of t ∈ [2, `], we also set a response

ru to this challenge which satisfies |Zu| = t. We then run M trials and collect ξM(pΦ).

Influence of M and the chosen test on the estimator. At the end of the document, Fig-
ures 5.4, 5.5 and 5.6 confirm that, for fixed N and q, and for any Test i we use, i ∈ {1, 2, 3},
our estimator ξM(pΦ) converges to a value close to 1/(q− 1).

Influence of N on the estimator. Table 5.2 shows experimentally that, for M large enough
and fixed q, the number N has few influence on the estimator (N being respectively the
number of responses ru sampled in Test 2, and the number of challenges u sampled in Test 1).
The minor increase we can observe on ξM(pΦ) can be thought as a standard deviation due to
the fact that the number of samples M = 100, 000 is finite.

Influence of q on the estimator. In Table 5.3, we show that estimator ξM(pΦ) converges to
an expected value 1/(q− 1), for any value of q.
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N q = 8 q = 64
1 0.1418 0.0152
5 0.1433 0.0163
10 0.1443 0.0165
50 0.1455 0.0169

100 0.1452 0.0167
500 0.1464 0.0169

1/(q− 1) 0.1429 0.01587

N q = 8 q = 64
1 0.1414 0.0158
5 0.1431 0.0162
10 0.1452 0.0166
50 0.1450 0.0168
100 0.1458 0.0168
500 0.1470 0.0168

1/(q− 1) 0.1429 0.01587

Table 5.2 – Estimators ξM(pΦ) using Test 1 (on the left) and Test 2 (on the right) with
M = 100, 000 and t = 2, for q ∈ {8, 64} and various values of N. The quantity 1/(q− 1)
represents an estimated upper bound on α that ξM(pΦ) should approximate.

q ξM(pΦ) 1/(q− 1)
4 0.333 0.3333
8 0.143 0.1429
16 0.0665 0.06667
32 0.032 0.03226
64 0.0161 0.01587
128 0.00791 0.007874
256 0.00382 0.003922

q ξM(pΦ) 1/(q− 1)
7 0.166 0.1667
17 0.0627 0.0625
31 0.0335 0.03333
257 0.00398 0.004000

Table 5.3 – Estimators ξM(pΦ) using Test 3 with M = 1, 000, 000 and t = 2, for various
values of prime powers q. The quantity 1/(q− 1) represents an estimated upper bound
on α that ξM(pΦ) should approximate.
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Figure 5.4 – Estimators ξM(pΦ) for various values of M ∈ [103, 106], of q ∈ {8, 64}, and
of Test i, i ∈ {1, 2, 3}. Support size t = 2 is fixed. For Tests 1 and 2, the parameter N is
set to 10. Black horizontal lines represent the expected value of α.
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Figure 5.5 – Estimators for various values of M ∈ [103, 106], of q ∈ {8, 64}, and of Test i,
i ∈ {1, 2, 3}. Support size t = 3 is fixed. For Tests 1 and 2, the parameter N is set to 10.
Black horizontal lines represent the expected value of α.
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Figure 5.6 – Estimators for various values of M ∈ [103, 106], of q ∈ {8, 64}, and of Test i,
i ∈ {1, 2, 3}. Support size t = ` is fixed. For Tests 1 and 2, the parameter N is set to 10.
Black horizontal lines represent the expected value of α.





Conclusion

As a conclusion, we propose several tracks of research on topics we addressed in this thesis.

Codes with locality and designs. In Chapter 2 we proved that generalising the classical
construction of codes based on designs yields good LCCs. It could be of interest to pursue
this study, e.g. by providing bounds on their parameters (for instance their dimension, length
or locality). New good instances of design-based LCCs which do not come from classical
geometries or algebraic constructions would also be of interest, since they would highly differ
from the good LCCs we currently know.

More theoretically, one could also ask whether the combinatorial version of LCCs we give
(based on designs) can achieve parameters as good as general LCCs. Indeed, design-based
LCCs intrinsically give rise to local reconstruction algorithms (i.e. they never fail when the
codeword is not corrupted), which is not required in the definition of LCCs.

Finally, we know that, in the constant locality regime, there is a strict distinction between
LDCs and LCCs in terms of parameters. Thus, the construction of locally decodable codes from
designs might be worthwhile to address.

Lifted codes. At the end of Chapter 3, we proposed a thorough study of the degree set (and a
fortiori the dimension) of affine lifted codes Lift(RSq(k), m = 2). An immediate and interesting
project would be to extend the investigation to larger orders m ≥ 3.

A more ambitious and theoretical avenue of research would consider the generalisation of
the lifting process to other kind of varieties and embeddings. The work of Guo [Guo16],
where Hermitian codes are lifted, can be seen as a precursor to this study. But to the author’s
opinion (and ours), the construction admits minor weaknesses. For instance, Guo’s so-called
Φ-lifting of a code C0 ⊆ FX

q leads to a longer code C which, by construction, is supported
by direct products Xm. The local properties of C come from embeddings X → Xm, but they
highly depend on the richness of the automorphism group of X, and intrinsically give non-
perfectly smooth local correcting algorithms. Ideally speaking, one would like to result in codes
C supported by a variety V such that a nicely structured set of embeddings X → V yields
interesting local properties to C.

Private information retrieval. First natural questions related to our construction of PIR pro-
tocols concern the existence of transversal designs yielding codes with better parameters. We
would also be very curious to know if divisible codes over large alphabets can exist, given
that they lead to PIR protocols with storage overhead less than two.

143



144 CHAPTER 5. PORS FROM CODES WITH LOCALITY

In the vein of recent works in PIR (see Section 4.5), one could also look for the capacity of PIR
protocols with no computation on the server side. Indeed, the PIR rate we currently obtain
is very far from the capacity for usual coded PIR, due to the computational constraints on
servers. In that sense, it would also be of interest to relax a bit these constraints in order to
obtain better PIR rates — for instance we could require constant, or sublinear computational
complexity in the size of the database.

Other cryptographic applications? We proved in Chapters 4 and 5 that codes with locality
allow the construction of cryptographic protocols with low communication complexity. We
have also seen that a crucial point for proving the security of the underlying protocols is
the richness of the structure of low-weight parity-check equations for the code. We strongly
believe that the codes we presented above can be applied for the construction of other crypto-
graphic protocols that require low communication. Hence, we complete this thesis by encour-
aging research in this direction.
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Résumé : Les codes localement corrigibles ont
été introduits dans le but d’extraire une partie de
l’information contenue dans un mot de code bruité,
en effectuant un nombre limité de requêtes à ses sym-
boles, ce nombre étant appelé la localité du code. Ces
dernières années ont vu la construction de trois fa-
milles de tels codes, dont la localité est sous-linéaire
en la taille du message, et le rendement est arbitraire-
ment grand. Ce régime de paramètres est particulière-
ment intéressant pour des considérations pratiques.

Dans cette thèse, nous donnons une rapide revue de
littérature des codes localement corrigibles, avant d’en
proposer un modèle combinatoire générique, à base
de block designs. Nous définissons et étudions ensuite
un analogue, dans le cas projectif, des relèvements af-
fines de codes introduits par Guo, Kopparty et Sudan.
Nous établissons par ailleurs plusieurs liens entre ces
deux familles, pour finir par une analyse précise de
la structure monomiale de ces codes dans le cas du
relèvement plan.

Une deuxième partie de la thèse se focalise sur
l’application de ces codes à deux protocoles cryp-
tographiques. D’abord, nous proposons un pro-
tocole de récupération confidentielle d’information
(private information retrieval, PIR) à partir de codes
basés sur des designs transversaux, dont la taille
des blocs s’apparente à la localité d’un code loc-
alement corrigible. Les protocoles ainsi constru-
its ont l’avantage de n’exiger aucun calcul pour les
serveurs, et de présenter une faible redondance de
stockage ainsi qu’une complexité de communication
modérée. Ensuite, nous donnons une construction
générique de preuve de récupérabilité (proof of re-
trievability, PoR) à base de codes admettant une riche
structure d’équations de parité à petit poids. Nous en
donnons finalement une analyse de sécurité fine ainsi
que plusieurs instanciations fondées sur des codes à
propriétés locales.

Title: Codes with locality: constructions and applications to cryptographic protocols

Keywords: error-correcting codes, locally correctable codes, remote storage, cryptographic protocols, block
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Abstract: Locally correctable codes (LCCs) were intro-
duced in order to retrieve pieces of information from a
noisy codeword, by using a limited number of queries
to its symbols, this number being called the locality.
Three main families of LCCs reaching sublinear loc-
ality and arbitrarily high rate have been built so far.
This specific range of parameters is of particular in-
terest concerning practical applications of LCCs.

After giving a state of the art for LCCs, we study how
they can be built using block designs. We then give an
analogue over projective spaces of the family of affine
lifted codes introduced by Guo, Kopparty and Sudan.
We exhibit several links between both families, and
we give a precise analysis of the monomial structure
of the code in the case of the lifting of order 2.

The second part of the thesis focuses on the applica-
tion of these codes to two cryptographic protocols. We
first build a new private information retrieval (PIR)
protocol from codes based on transversal designs,
whose block size defines the locality of the code. Our
construction features no computation on the server
side, low storage overhead and moderate communic-
ation complexity. Then, we propose a new generic
construction of proof-of-retrievability (PoR) that uses
codes equipped with an elaborate structure of low-
weight parity-check equations. We give a rigorous
analysis of the security of our scheme, and we finally
propose practical instantiations based on codes with
locality.
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