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(1.7) Cette équation de sélection pure est importante pour la théorie de la dynamique adaptative (cf. Section 4.1.2 pour l'étude de son comportement en temps long).

La première partie cette thèse porte sur l'étude du comportement en temps long des solutions de l'équation (1.6) (voir Section 2.1 puis Chapitres 3 et 4). On s'intéresse tout particulièrement au cas p s0, 1r :

-Existence de mesures stationnaires.

-Comportement en temps long.

La dynamique adaptative

La théorie de la dynamique adaptative vise à décrire la dynamique évolutive des phénotypes, en mettant en jeu les trois principales forces de l'évolution : l'hérédité, les mutations et la sélection naturelle. Elle se place sous les hypothèses suivantes : les populations sont constituées d'un grand nombre d'individus, les mutations sont rares, ont de petits effets et la sélection est rapide. Cette théorie s'est développée dans les années 1990 à travers les articles Metz et al. [66],[65], Dieckmann-Law [30]. Les travaux de Champagnat [16] en donnent une justification mathématique rigoureuse en revenant à une description des populations à l'échelle individuelle, comme celle présentée au début de la Section 1.2.1. L'approche employée permet d'étendre naturellement les dynamiques adaptatives à différents scénarios écologiques : communautés proies-prédateurs (cf. Costa et al. [22]), populations structurées spatialement (cf. Leman [57]) et populations structurées en âge [63]. Décrivons les idées générales de [63]. Le Processus de substitution des traits est un processus de saut pur décrivant des invasions successives de mutants se fixant dans une population résidente à l'équilibre. Il est montré dans [63] que son générateur est de la forme (on suppose ici que le noyau de mutation kpx, a, yq kpx, yq ne dépend pas de l'âge) : Lϕpxq
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Évolution dans les populations structurées en âge

Chez de nombreuses espèces, les populations sont structurées en âge. Les individus se reproduisent à des instants différents et ont donc des âges différents, influant sur leur reproduction et leur survie. On appelle histoire de vie la donnée d'un couple de fonctions pBpaq, Dpaqq aR décrivant les taux de reproduction et de mortalité d'un individu au cours de sa vie. On observe dans la nature une grande diversité des histoires de vie (cf. Jones [START_REF] Jones | Diversity of ageing across the tree of life[END_REF]). Depuis le développement de la théorie de l'évolution, de nombreux biologistes s'intéressent à la question de l'impact de la sélection naturelle sur l'évolution des histoires de vie (cet aspect n'ayant pas été abordé par C. Darwin). Les fondements théoriques sont développés successivement par Fisher [START_REF] Fisher | The genetical theory of natural selection : a complete variorum edition[END_REF], Haldane [START_REF] Haldane | New paths in genetics[END_REF] et Medawar [START_REF] Medawar | An unsolved problem of biology[END_REF]. Une de leurs conclusions est la suivante : la force de sélection décroit avec l'âge. Cette idée est formalisée par Hamilton [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF] dans l'article fondateur "On the moulding of senescence by natural selection". Les paragraphes qui suivent visent à expliquer ce principe.

Histoire de vie et paramètre de Malthus

La théorie de l'évolution des histoires de vie connaît un tournant avec les travaux de Fisher [START_REF] Fisher | The genetical theory of natural selection : a complete variorum edition[END_REF] qui introduit le paramètre de Malthus comme indicateur de la fitness d'une histoire de vie. Considérons une grande population d'individus asexués et haploïdes, n'interagissant pas, dont les histoires de vie sont données par un couple de fonctions pB, Dq. La dynamique du nombre d'individus d'âge a à l'instant t notée vpt, aq est décrite par l'équation de McKendrick-Von Foerster (cf. [START_REF] Foerster | Some remarks on changing populations[END_REF]) : 5 fv ft pt, aq fv fa pt, aq ¡Dpaqvpt, aq, pt, aq R 2 vpt, 0q ³ V 0 Bpαqvpt, αqdα.

(1.1)

Cette équation est l'extension directe de l'équation de Malthus (cf. [START_REF] Malthus | An essay on the principle of population : or, A view of its past and present effects on human happiness[END_REF]) à des populations structurées en âge. Elle vérifie la propriété de croissance exponentielle asymptotique :

vpt, aq tÑ V ¢» V 0 vp0, αqφpαqdα e λt N paq, (1.2) 
où le paramètre de Malthus λ est l'unique solution réelle de l'équation de Euler-Lotka Ce choix est notamment justifié pour des populations sans interaction par les équations de la génétique des populations (cf. Charlesworth [20, Section 1.5.1 et 4.6.1]).

Évolution des histoires de vie et force de sélection âgespécifique

La sénescence est généralement définie comme une altération de fonctions d'un organisme vivant, qui s'accompagne d'une baisse de la reproduction et d'une hausse de la mortalité avec l'âge. Ainsi, l'évolution de la sénescence semble aller à l'encontre des principes de la sélection naturelle puisque ce mécanisme diminue la fitness d'un individu. Comprendre l'évolution de la sénescence (qui s'apparente donc à un sous-domaine de l'évolution des histoires de vie) est à la source de nombreux travaux depuis le début du vingtième siècle. De nombreuses théorie se basent notamment sur le principe que la force de sélection décroît avec l'âge. Par exemple, la théorie de l'accumulation de mutation (cf. Medawar [START_REF] Medawar | An unsolved problem of biology[END_REF]) explique la sénescence par une accumulation de mutations délétères s'exprimant aux âges avancés. Ces mutations ne sont pas éliminés (car la force de sélection est trop faible) et entraînent la dégradation de l'organisme. Hamilton (cf. [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF]) formalise rigoureusement la notion de force de sélection âge-spécifique en calculant la sensibilité du paramètre de Malthus à une perturbation locale des taux de reproduction et de mortalité. Supposons qu'une mutation ait un effet ¡ 0 sur le taux de naissance à un âge a 0 . Le mutant aura un taux de naissance Bpaq δ a 0 pdaq où δ a 0 pdaq désigne la mesure de Dirac en a 0 . Notons λ ,a 0 B le paramètre de Malthus associé à l'histoire de vie mutante pB δ a 0 pdaq, Dq. En utilisant l'équation de Euler-Lotka introduite en Section 1.1.1, on peut calculer la limite des taux d'accroissements (cf. Caswell [START_REF] Caswell | Reproductive value, the stable stage distribution, and the sensitivity of the population growth rate to changes in vital rates[END_REF], le nombre G est l'âge moyen de reproduction ou temps de génération, le nombre b s'apparente au taux de reproduction) :

λ ,a 0 B ¡ λ ÝÑ Ñ0 N pa 0 q bG . ( 1.3) 
De la même façon, on peut considérer des perturbations âges-spécifiques sur le taux de mortalité. On obtient alors la quantité λ ¡ λ ,a 0 D ÝÑ Ñ0 φpa 0 qNpa 0 q bG .

(1.4)

Les Formules (1.3) et (1.4) décrivent la force de sélection à l'âge a 0 . Ces quantités sont décroissantes en a 0 : la force de sélection décroît avec l'âge.

Ainsi, comme cela est souligné dans [20, p. 190], "l'étude théorique de l'évolution des histoires de vie se réduit souvent à une discussion sur les conséquences de perturbations sur des paramètres démographiques comme le paramètre de Malthus".

De la description individu-centrée des populations aux dynamiques adaptatives

Nous présentons une approche alternative pour étudier l'évolution des histoires de vie. Nous introduisons tout d'abord un modèle individu-centré décrivant la dynamique d'une population structurée en trait et en âge (cf. Tran [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], Méléard-Tran [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]). Nous en déduisons des modèles de biologie évolutive qui décrivent l'évolution de phénotypes à l'échelle de temps évolutionnaire. Nous verrons que dans le cadre de cette théorie, l'utilisation du paramètre de Malthus comme indicateur de la fitness peut encore être justifié.

Le modèle microscopique et son approximation en grande population

Nous introduisons le modèle individu-centré défini dans [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] qui décrit la dynamique aléatoire d'une population finie structurée en trait et en âge. Les mutations créent de la variabilité phénotypique et la sélection naturelle est modélisée par une compétition inter-individus. La dynamique est donnée par un processus de naissance et mort logistique dont les taux de naissance et de mort d'un individu i N ¦ à l'instant t R dépendent de son trait x i ptq S R d et de son âge a i ptq R . La population est représentée par une mesure positive finie

Z K t 1 K N K t i1
δ px i ptq,a i ptqq M pS ¢ R q (1.5) où K N ¦ est un paramètre d'échelle décrivant l'ordre de grandeur de la taille de la population, N K t est la taille de la population. Un individu de trait x et d'âge a se reproduit à taux Bpx, aq. Avec probabilité 1 ¡p K r0, 1s, son descendant hérite du trait

x, avec probabilité p K une mutation apparaît et modifie le trait du parent. Le trait y du descendant est distribué suivant une mesure de probabilité kpx, a, yqdy. Il vieillit à vitesse 1 : un individu d'âge a à l'instant t aura l'âge a s à l'instant t s. Il meurt à taux Dpx, aq cN K t où c ¡ 0 où Dpx, aq est le taux de mortalité intrinsèque et cN K t modélise la compétition inter-individus.

L'introduction du paramètre d'échelle K permet de calculer des approximations de la dynamique microscopique sous l'hypothèse de grande population. Le Théorème 1.2.1, établi dans [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF] est un résultat de type loi des grands nombres. Il montre que lorsque K Ñ V, la dynamique microscopique est approchée par la solution (déterministe) d'une équation aux dérivées partielles. Théorème 1.2.1. [81, Section 3.2] Supposons que p K Ñ p r0, 1s lorsque K Ñ V. Supposons que la suite de conditions initiales pZ K 0 q K¥0 (vérifiant certaines conditions sur les moments) converge en loi vers une mesure positive n 0 . Pour tout T ¡ 0, la suite de processus pZ K q K¥0 dans l'espace de Skorohod D pr0, T s , M pS ¢ R qq converge en loi vers l'unique fonction n solution faible de l'équation 5 f t n t px, aq f a n t px, aq ¡ ¡ Dpx, aq c ³ S ¢ R n t py, αqdydα La mesure δ x u x paqda est l'unique solution stationnaire de l'équation aux dérivées partielle (1.6) avec p 0 et ν δ x . La quantité u x p0q décrit donc le taux de production d'un mutant par la population résidente de trait x. La fonction 1 ¡ zpy, xq est la fonction de fitness d'invasion. Elle décrit la capacité d'un mutant de trait y à survivre dans une population résidente de trait x. Elle est définie comme la probabilité de survie d'un processus de branchement structuré en âge de taux de naissance Bpy, .q et de taux de mort Dpy, .q c ³ R u x pαqdα. Comme la compétition ne dépend pas des traits des individus, on a (cf. [ Si la population mutante de trait y survit, elle atteint une taille suffisante pour que l'on puisse approcher la dynamique dimorphe par une solution de l'équation (1.6) avec p 0 et ν δ x δ y . Sous l'hypothèse que λpyq ¡ λpxq, la solution de (1.6) converge vers l'équilibre monomorphe δ y n y paqda (cf. Section 4.1.2). Ainsi, la population mutante atteint un voisinage de δ y n y paqda et l'on peut approcher la dynamique du résident par un processus de branchement sous-critique qui s'éteint presque sûrement. Dans ce cas, nous avons la propriété dite d'invasion implique fixation. En résumé, sous les hypothèses de la dynamique adaptative, et dans le cas où la compétition ne dépend pas des traits, un mutant de trait y peut envahir puis se fixer dans une population résidente de trait x si et seulement si les paramètre de Malthus vérifient λpyq ¡ λpxq. Sous ces hypothèses, le paramètre de Malthus représente donc un bon indicateur de la fitness. Pour se placer sous l'hypothèse de "petites mutations", on introduit un paramètre d'échelle ¡ 0 décrivant la taille des mutations. Le processus normalisé p Xp t 2 q, t ¥ 0q est un processus de Markov de générateur (1.8)

L
L'équation (1.8) décrit la dynamique du trait x dans une échelle de temps évolutionnaire.

De la transition Smurf au modèle bd 1.3.1 La transition Smurf

Comme nous l'avons rappelé au début de la Section 1.1.2, le vieillissement est généralement compris comme un phénomène progressif et continu (cf. Kirkwood-Austad [START_REF] Kirkwood | Why do we age ?[END_REF]). Une nouvelle vision est développée depuis 2011, à partir des travaux de Rera et al. [START_REF] Rera | Modulation of longevity and tissue homeostasis by the drosophila pgc-1 homolog[END_REF], [START_REF] Rera | Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in drosophila[END_REF]. Ils décrivent chez l'espèce Drosophila melanogaster une nouvelle forme de vieillissement : le phénotype Smurf. Au cours de sa vie, chaque individu passe par une phase critique caractérisée par une augmentation importante de la perméabilité intestinale observable in vivo par l'utilisation d'un colorant bleu non-toxique et non-absorbé par l'intestin qui rend presque instantanément bleu ou Smurf. La proportion d'individus Smurf croît linéairement en fonction de l'âge chronologique et chaque individu connaît cette transition avant sa mort. Les individus Smurf présentent un taux de mortalité élevé (par rapport aux individus non-Smurf, quel que soit leur âge chronologique), une augmentation de la perméabilité intestinale, et une fertilité réduite (cf. Rera et al. [START_REF] Rera | The smurf transition : new insights on ageing from end-of-life studies in animal models[END_REF]). Cette transition Smurf a ensuite été observée chez d'autres organismes tels que Caeno- [START_REF] Dambroise | Two phases of aging separated by the smurf transition as a public path to death[END_REF]), suggérant ainsi qu'elle ait pu être évolutivement conservée en tant que marqueur d'un âge physiologique avancé. À partir de ces différentes observations, Rera et al. proposent une nouvelle vision du vieillissement, discontinue, composé de deux phases séparées par une transition "Smurf" (cf. Tricoire-Rera [START_REF] Tricoire | A new, discontinuous 2 phases of aging model : lessons from drosophila melanogaster[END_REF]).

Un peu de modélisation

Nous souhaitons aborder l'étude de l'évolution de la transition Smurf du point de vue de la modélisation. Pour cela, nous adoptons la démarche présentée dans la Section 1.2. Tout d'abord, nous identifions un trait d'histoire de vie, qui permette de décrire le phénotype Smurf. Le trait est un couple de nombre réels positifs px b , x d q R 2 caracté- risant les taux de naissance et de mort des individus au cours de leur vie :

Bpx, aq 1 a¤x b , Dpx, aq 1 a¡x d . L'effet Lansing désigne le phénomène décrit par le proposition suivante : "la descendance de parents vieux ne vit pas aussi longtemps que celle de parents jeunes" (cf. Lansing [START_REF] Lansing | A transmissible, cumulative, and reversible factor in aging[END_REF], [START_REF] Lansing | A nongenic factor in the longevity of rotifers[END_REF]). Il a été décrit chez la drosophile (cf. Priest et al. [START_REF] Priest | The role of parental age effects on the evolution of aging[END_REF]) et également chez l'humain (cf. Arslan et al. [4]). L'effet Lansing pourrait permettre d'obtenir la concentration voulue. En effet, en intégrant cet effet au modèle, celui-ci aura tendance à faire baisser la pression de sélection sur le paramètre x b . Nous l'ajoutons de la façon suivante. Nous supposons qu'un individu de trait px b , x d q se reproduisant à un âge a ¡ x d transmet à son descendant le trait px b , 0q (aux mutations près). Ceci peut-être vu comme une mutation épigénétique, au sens où cette modification du phénotype n'est pas causée par une mutation génétique. Par l'introduction de l'effet Lansing l'effet Lansing, le modèle se différencie de celui présenté dans la Section 1.2.1. En effet, entre deux mutations, on a toujours création de variabilité phénotypique.

La seconde partie de la thèse porte sur l'étude de la dynamique adaptative pour ce modèle (voir Section 2. Ici, nous présentons les résultats principaux de cette thèse. Nous donnons les idées des démonstrations et des commentaires sur les résultats.

Comportement en temps long dans des populations structurées en traits et en âge

Nous présentons les résultats principaux de l'article intitulé "On the long-time behaviour of a age and trait structured population dynamics" accepté pour publication dans le journal Discrete and Continuous Dynamical System, Series B (cf. [START_REF] Roget | On the long-time behaviour of age and trait structured population dynamics[END_REF]). L'intégralité de l'article est fourni dans le Chapitre 3. Le Chapitre 4 contient des compléments. Ces travaux concernent l'étude du comportement en temps long des solutions de l'équation de sélection-mutation structurée en âge introduite dans la Section 1.2.1 et redonnée ci-dessous. Notations 2.1.1. Soit X un espace métrique. On note C b pXq (resp C b pXq) l'ensemble des fonctions continues bornées (resp. fonctions continues positives bornées). On note MpXq (resp. M pXq) l'ensemble des mesures de Radon finies (resp. finies positives), que l'on munit de la topologie de la convergence étroite (i.e topologie faible étoile du dual C b p.q I ). On note M loc pXq l'ensemble des mesures de Radon positives muni de la topologie de la convergence vague. Pour une mesure µpduq M loc pXq, on notera parfois par abus de notation µpduq µpuq et

³ X f puqµpduq ³ X f puqµpuqdu.

Une équation de sélection-mutation structurée en âge

On considère l'équation de sélection-mutation structurée en âge dont les solutions pn t q t¥0 CpR , M pS ¢ R qq vérifient au sens des mesures (cf. (3.10)) :

5 f t n t px, aq f a n t px, aq ¡ ¡ Dpx, aq c ³ S ¢ R n t py, αqdydα © n t px, aq n t px, 0q F rn t s pxq, pt, x, aq R ¢ S ¢ R (2.1) où F rn t s pxq p1 ¡ pq » R Bpx, αqn t px, αqdα p » S ¢ R Bpy, αqkpy, α, xqn t py, αqdydα.
L'existence d'une solution à l'équation (2.1) est montrée dans [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] à partir du modèle individu-centré. Plus récemment, il a été obtenu dans Cañizo et al. [START_REF] Cañizo | Measure solutions for some models in population dynamics[END_REF] par une méthode déterministe. On précise les hypothèses.

Hypothèses 2.1.2.

S Ω, Ω R d est ouvert, borné, connexe à bord lipschitzien,

B, D C b pS ¢ R q, Dpx, aq ¥ D ¡ 0, k C b pS ¢ R ¢ Sq, p s0, 1r , c ¡ 0 et il existe 0 ¡ 0 et I R avec ¥ I $ 0 tel
que pour tout x S et y Vpx, 0 q S : I supppkpx, y, .qq supppBpx, .qq. où Vpx, 0 q désigne la boule centrée en x de rayon 0 .

Remarque 2.1.3. L'hypothèse de compacité sur S est cruciale pour notre analyse.

Nous utiliserons que sa mesure de Lebesgue est finie ainsi que la boule unité de M pSq (pour la norme de variation totale) est relativement compacte pour la topologie faible-*. L'hypothèse d'une borne inférieure positive sur D assure que les individus ne vivent pas un temps infini. L'hypothèse sur k est une hypothèse "d'irréductibilité". Elle assure que les mutations permettent d'accéder à toutes les parties de l'espace du trait.

Énoncé des résultats

Nous introduisons quelques notations. Pour tout pλ, x, y, aq s¡D, Vr ¢ S 2 ¢ R , on définit : 

6 9 8 9 7 R λ px, aq exp ¡ ³ a 0 Dpx, αqdαq ¡ λa ¨, r λ pxq p1 ¡ pq ³ R Bpx, aqR λ px, aqda, K λ px, yq p ³ R Bpx,
µ λ ¦pdxq r λ ¦pxqµ λ ¦pdxq ¢» S K λ ¦py, xqµ λ ¦pdyq dx.
On remarque que si r λ ¦ 1, la mesure µ λ ¦ admet une densité continue. Si r λ ¦ 1, elle peut admettre une partie singulière non-triviale.

Nous introduisons une hypothèse de régularité supplémentaire.

Hypothèses 2.1.6. B, D W 1,V pS ¢ R q et k W 1,V pR ¢ S ¢ R q.
Remarque 2.1.7. L'hypothèse ci-dessus est une hypothèse technique permettant d'obtenir la continuité des solutions de l'équation linéaire en la donnée initiale pour la norme }.} BL comme dans [START_REF] Cañizo | Measure solutions for some models in population dynamics[END_REF]. Elle permet notamment de traiter le cas des solutions mesures comme dans [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF].

Le Théorème 2.1.8 porte sur le comportement en temps long des solutions de l'équation (2.1). 

Idées de démonstration

Nous expliquons les idées principales des démonstrations des Théorèmes 2.1.4 et 2.1.8, qui sont données au Chapitre 3 dans leur intégralité.

Un problème linéaire

L'équation (2.1) est non-linéaire. Une astuce classique (cf. Iannelli [START_REF] Iannelli | The Basic Approach to Age-Structured Population Dynamics : Models, Methods and Numerics[END_REF], Burger [START_REF] Bürger | Perturbations of positive semigroups and applications to population genetics[END_REF], Leman et al. [START_REF] Leman | Influence of a spatial structure on the long time behavior of a competitive lotka-volterra type system[END_REF]) permet de ramener l'étude de (2.1) à celle d'un problème linéaire. On pose

v t pdx, daq exp ¢» t 0 » S ¢ R n s pdy, dαqds n t pdx, daq.
Il est facile de vérifier que v est une solution mesure de l'équation linéaire 

Propriétés spectrales d'opérateurs positifs

Le problème (2.8) est relié aux travaux de Coville et al. [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF], [START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF], Beresticky et al. [6] qui portent sur l'étude spectrale d'opérateurs non-compacts et notamment de leur valeur propre principale (cf. Section 2.1.4). Nous proposons de l'étudier indépendamment de la façon suivante. Nous utilisons la dualité CpSq I MpSq en introduisant les opérateurs r λ J λ , r λ G λ : CpSq ÝÑ CpSq définis par (i) r λ ¤ ρpr λ G λ q.

(ii) r λ ρpr λ G λ q si et seulement si il existe u λ CpSq, u λ ¡ 0 tel que µ λ u λ pxqdx. Dans ce cas, ρpr λ G λ q est une valeur propre de r λ J λ de multiplicité algébrique égale à 1, associée à la fonction propre u λ .

(iii) Si LebpΣ λ q ¡ 0 ou si, LebpΣ λ q 0 et 1

r λ ¡r λ L 1 pSq, on a r λ ρpr λ G λ q. (iv) Si ρpr λ G λ q r λ , on a µ λ µ s hpxqdx avec h L 1 pSq et µ s 0, ou µ s $ 0 et supppµ s q Σ λ . (v) ρpr λ J λ q ρpr λ G λ q ρpr λ Jλ q ρpr λ Gλ q.
De plus, les mêmes résultats sont vrais si on échange J λ et G λ , Jλ et Gλ . Le Théorème 2.1.11 assure que pour tout λ ¡ ¡D, il existe pµ λ , η λ q MpSq 2 tel que 5 pr λ Jλ qµ λ ρpr λ J λ qµ λ pr λ Gλ qη λ ρpr λ J λ qη λ Puisque ρpr 0 J0 q ¡ 1 et ρpr 0 J0 q ρpr 0 J 0 q, la proposition suivante permet de conclure.

Proposition 2.1.12. Supposons que les Hypothèses 2.1.2 soient vérifiées et que ρpr 0 J0 q ¡ 1. L'application λ rλ, Vr Þ Ñ ρpr λ J λ q est continue et strictement décroissante. Il existe un unique λ ¦ rλ, Vr tel que ρpr λ ¦ J λ ¦q 1. Donnons les idées pour la preuve de la Proposition 2.1.12. Remarquons tout d'abord que la famille d'opérateurs pr λ J λ q λ¥λ est continue et décroissante au sens des opérateurs. On montre d'abord la continuité. Fixons λ 0 rλ, Vr et distinguons les cas r λ 0 ρpr λ 0 J λ 0 q et r λ 0 ρpr λ 0 J λ 0 q. Dans le premier cas, d'après le Théorème 2.1.11 (ii) et (v), le rayon spectral est une valeur propre de r λ 0 J λ 0 de multiplicité algébrique 1 associée à un vecteur propre positif. Nous pouvons conclure par des arguments classiques (cf. Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF]). Dans le second cas, nous raisonnons par l'absurde en supposant que lim inf λÑλ 0 ρpr λ J λ q lim sup λÑλ 0 ρpr λ J λ q. Le rayon du spectre essentiel vérifie ρ e pr λ J λ q r λ et la fonction λ rλ, Vr Þ Ñ r λ est continue. En utilisant la semi-continuité supérieure du rayon spectral, nous obtenons :

r λ 0 lim inf λÑλ 0
ρ e pr λ J λ q ¤ lim inf λÑλ 0 ρpr λ J λ q ρpr λ 0 J λ 0 q r λ 0 ce qui est absurde et permet de conclure pour la continuité. Pour la stricte monotonie, on se donne λ 1 ¤ λ 2 et on suppose ρpr λ 1 J λ 1 q ρpr λ 2 J λ 2 q. On montre que λ 1 λ 2 .

Pour cela on distingue les deux cas r λ 1 ρpr λ 1 J λ 1 q et r λ 1 ρpr λ 1 J λ 1 q. Dans le premier cas, on conclut en utilisant [35, Théorème 3.1] (cf. Proposition A.1.7). Dans le second cas, supposons que λ 1 λ 2 . S'il existe λ rλ 1 , λ 2 s tel que ρpr λ J λq ¡ r λ, on conclut que ρpr λ 1 J λ 1 q ¥ ρpr λ J λq ¡ ρpr λ 2 J λ 2 q par le premier cas. Sinon, on conclut que ρpr λ 1 J λ 1 q ¡ ρpr λ 2 J λ 2 q en utilisant que λ rλ, Vr Þ Ñ r λ est strictement décroissante (cf. Lemme 3.3.1 2)(iii)). On déduit que λ 1 λ 2 ce qui termine la preuve. La Proposition 2.1.12 et le Théorème 2.1.11 permettent de résoudre le Problème (2.8) et de conclure pour la Proposition 2.1.9. Celle-ci implique directement le Théorème 2.1.4. En effet, les solutions stationnaires n de l'équation (2.1) sont des solutions de l'équation (2.6) 

avec λ λ ¦ et vérifiant λ ¦ c ³ S ¢ R npdy, dαq.

Comportement en temps long

L'hypothèse n CpS, L 1 pR qq dans le Théorème 2.1.8 assure que les vecteurs propres principaux déterminés dans la Proposition 2.1.11 vérifient pN, φq CpS, L 1 pR qq¢ CpS, L V pR qq. Pour étudier le comportement en temps long des solutions de l'équation (2.4), on adapte la méthode utilisée dans Perthame [69, p 66, Section 3.7], basée sur l'invariant

» S ¢ R e ¡λ ¦ t v t px, aqφpx, aqdxda » S ¢ R v 0 px, aqφpx, aqdxda
afin d'obtenir un résulat (voir Proposition 3.3.8) de type "trou spectral" pour les solutions de l'équation (2.4) dans l'espace pondéré L 1 pφq. Les hypothèses de minoration dans le Théorème 2.1.8 permettent d'obtenir une convergence L 1 . On déduit le résultat de convergence pour les solutions mesures par la même méthode que celle employée dans [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF] basée sur la régularisation de la donnée initiale. On conclut en utilisant la relation (2.5) puis en étudiant le comportement en temps long de la masse ³ S ¢ R n t pdy, dαq des solutions pn t q t¥0 de l'équation (2.1). 

Commentaires et perspectives

Dynamiques de sélection-mutation

Dans Bonnefon et al. [START_REF] Bonnefon | Concentration phenomenon in some non-local equation[END_REF], les auteurs montrent des résultats similaires aux Théorèmes 2.1.4 et 2.1.8 pour les solutions d'une équation de sélection-mutation sans structure d'âge. Nous avons étendu leurs résultats aux populations structurées en âge. Le Théorème 2.1.8 est vrai sous l'hypothèse que la mesure stationnaire admet une densité continue et bornée. Dans le cas où la mesure stationnaire admet une partie singulière, le résultat est faux puisqu'une suite de densités continues ne peut converger vers une mesure singulière en variation totale. Dans le cas où r λ ¦ 1 et |Σ λ ¦| ¡ 1 on n'a plus unicité de la solution stationnaire, et différents comportements peuvent avoir lieu, dépendant de la condition initiale (cf. [START_REF] Bonnefon | Concentration phenomenon in some non-local equation[END_REF]). Cependant, notons que dans le cas où r λ ¦ 1 et |Σ λ ¦| 1, on a unicité de la solution stationnaire. Une question naturelle est la suivante : a-t-on stabilité globale pour une topologie plus faible. Dans la section 4.1.1, nous étudions certains aspects du cas "singulier" (r λ ¦ 1) en construisant des approximations régulières des éléments propres principaux pλ ¦ , N, φq.

Dans Calsina-Palamada [START_REF] Calsina | Steady states of a selection-mutation model for an age structured population[END_REF], les auteurs montrent l'existence de solutions stationnaires pour une dynamique de sélection-mutation avec une structure d'âge, pour un trait particulier (l'âge à la maturation) et dans le cas mutation pur (c'est à dire p 1). La question du comportement en temps long n'y est pas abordée. Notons que pour l'équation (2.1) avec p 1, il existe une unique solution stationnaire globalement stable.

En effet, dans cette situation, tous les opérateurs J λ , G λ intervenant dans l'étude du problème stationnaire sont compacts, et la théorie de Krein-Rutman est applicable. Dans la Section 4.1.2, nous étudions le comportement en temps long des solutions de l'équation (2.1) avec p 0. Dans Nordmann et al. [START_REF] Nordmann | Dynamics of concentration in a population model structured by age and a phenotypical trait[END_REF], les auteurs étudient le comportement limite des solutions de cette équation de sélection pur sous l'échelle de temps t t{ lorsque Ñ 0. Sous des hypothèses bien précises, ils montrent que le comportement limite est décrit par une famille de masses de Dirac pα t δ xt q t¥0 où la dynamique du trait px t q t¥0 est donnée par une équation différentielle ordinaire. Notre approche est différente car nous n'effectuons pas cette normalisation en temps. En l'absence de structure d'âge, ce type de problème est étudié dans Ackleh et al. [START_REF] Ackleh | Population dynamics under selection and mutation : Long-time behavior for differential equations in measure spaces[END_REF]. Nous étendons certains de leurs résultats à des populations structurées en âge.

Temps long pour des équations aux dérivées partielles de type Mckendrick-Von Foerster

Afin d'étudier le comportement en temps long des solutions de (2.4), nous avons utilisé une méthode adaptée de [69, Section 3.7] qui s'avère ici très efficace. Cependant, d'autres méthodes auraient été envisageables. L'approche spectrale (cf. Webb [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF]) permet d'obtenir le même type de résultat pour des solutions L 1 . Il s'agit alors d'étudier le spectre du semi-groupe décrivant les solutions de l'équation (2.4). Cette méthode n'est pas du tout évidente à utiliser dans notre situation. En effet, l'existence de solutions stationnaires régulière se lit assez facilement sur les éléments propres principaux (la condition r λ ¦ 1) mais pas sur le semi-groupe d'évolution. Dans la Section 4.2, nous donnons un résultat partiel sur le spectre du générateur associé aux solutions de l'équation (2.4). Une autre approche possible est celle développée plus récemment dans Bansaye et al. [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized doeblin's conditions[END_REF] et basée sur une condition de Doeblin.

Le "bd-model" pour le vieillissement : du modèle individu-centré aux inclusions différentielles évolutives 2.2.1 Le modèle individu-centré et son approximation en grande population

On définit rigoureusement le modèle dont les motivations et l'heuristique ont été données dans la Section 1.3.

A chaque instant t ¥ 0, la population est représentée par une mesure ponctuelle sur pR ¦ q 2 ¢ R :

Z K t pdx, daq 1 K N K t i1 δ px i ptq,a i ptqq pdx, daq (2.10) où N K t KxZ K
t , 1y est la taille de la population, K est l'ordre de grandeur de la taille de la population pondérant la masse des individus, x i ptq px i b ptq, x i d ptqq pR ¦ q 2 est le trait de l'individu i et a i ptq R son âge. La dynamique est donnée par un processus de Markov déterministe par morceaux qui évolue de la façon suivante :

• Un individu px, aq pR ¦ q 2 ¢ R se reproduit à taux 1 a¤x b . Le trait y py b , y d q du descendant est déterminé par les deux étapes suivantes :

-Étape 1 : si a ¤ x d , le descendant hérite du trait x px b , x d q.

Effet Lansing : si a ¡ x d , on suppose que le descendant porte le trait px b , 0q. Le modèle ci-dessus est inspiré de [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]. Il s'agit d'un modèle aléatoire décrivant une dynamique de sélection-mutation structurée en âge. Nous avons ajouté un ingrédient au modèle de [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], l'effet Lansing, qui crée de la variabilité phénotypique même en l'absence de mutation. On se place sous les hypothèses suivantes.

Hypothèses 2.2.1. On suppose que :

(i) il existe x pR ¦ q 2 , tel que Z K 0 converge en loi vers δ x n x p0, aqda lorsque K tend vers l'infini, (ii) p K ÝÑ 0 lorsque K Ñ V. Sous les Hypothèses 2.2.1, et lorsque K Ñ V, il n'y a pas d'apparition de mutant sur tout intervalle de temps r0, T s. Néammoins, à cause de l'effet Lansing, deux populations monomorphes de traits x px b , x d q et px b , 0q son présentes, et leurs taux de naissance et de mortalité sont donnés par les matrices : T ¡ 0, la suite de processus pZ K q K¥0 converge en loi dans l'espace de Skorohod D r0, T s , M ppR ¦ q 2 ¢ R q ¨vers une fonction continue pξ t q t¥0 de la forme ξ t pdx, daq δ x n 1

B x paq ¢ 1 a¤x b x d 0 1 x d a¤x b 1 a¤x b , D x paq ¢ 1 a¡x d 0 0 1 . ( 2 
x pt, aqda δ px b ,0q n 2 x pt, aqda. Le couple n x pn 1

x , n 2

x q est solution du système 

Énoncé des résultats et idées de démonstration

Les deux résultats principaux du Chapitre 5 portent sur l'étude de la dynamique adaptative (cf. Section 1.2.2) pour la dynamique microscopique (2.10). On suit la même démarche que celle utilisée dans [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] pour le modèle de sélection-mutation classique.

Comportement en temps long de la dynamique monomorphe et fitness d'invasion

On décrit les équilibres monomorphes, c'est à dire les solutions stationnaires de l'équation (2.14) puis on calcule la fonction de fitness d'invasion. On introduit d'abord l'ensemble de traits :

V tx px b , x d q R 2 : x b x d ¡ 1u, pour lesquels l'équation (2.14) admet une unique solution stationnaire n x pn 1 x , n 2 x q non triviale, comme le montre la proposition suivante. Proposition 2.2.3. Soit x V. Il existe une unique solution stationnaire non-triviale n x L 1 pR q 2 à l'équation (2.14). De plus, toute solution positive n x pt, .q dans L 1 pR q 2 de (5.4) telle que n 1

x pt, .q $ 0, converge vers n x dans L 1 pR q 2 lorsque t Ñ V.

La démonstration de la Proposition 2.2.3 est basée sur l'étude du comportement en temps long des solutions v x pt, aq de l'équation linéaire :

5 f t v x pt, aq f a v x pt, aq ¡D x paqv x pt, aq v x pt, 0q ³ R B x pαqv x pt, αqdα, pt, aq R 2 .
Celles-ci vérifient e ¡λpxqt v x pt, .q ÝÑ cpv x p0, .qqN x lorsque t Ñ V, où pλpxq, N x q sont les éléments propres principaux associés à la dynamique linéaire et cpv x p0, .qq une constante strictement positive. Le paramètre de Malthus λpxq est l'unique solution de l'équation suivante : Si U 1 0 0, le processus U 2 t est un processus de branchement sous-critique et s'éteint presque sûrement. La survie du processus U est donc équivalente à la survie du processus U 1 . On calcule sa probabilité de survie par des arguments classiques de fonctions génératrices et on obtient le résultat.

» x b x d 0 e ¡λpxqa
Nous sommes maintenant en mesure de décrire les modèles de la dynamique adaptative. On décompose l'ensemble

V U 1 H U 2 où U 1 tx V : x b x d u, U 2 tx V : x b ¡ x d u et H tx V : x b x d u. Figure 2.1 -V U 1 H U 2 .

Un Processus de substitution des traits avec structure d'âge

Le Théorème 2.2.5 montre qu'à l'échelle de temps des mutations, et sous l'hypothèse suivante de séparation des échelles de temps suivante (introduite dans Champagnat [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]) :

dV ¡ 0, logpKq 1 Kp K exppKV q, (2.16) le dynamique microscopique (2.10) est approchée par un processus de saut pur étendant le Processus de substitution des traits avec structure d'âge (cf. [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF] et Section 1.2.2) afin de prendre en compte l'effet Lansing. Théorème 2.2.5. Supposons que (2.16) soit vérifiée. Soit x V. On suppose que la suite pZ K 0 q K¥0 converge en loi vers la mesure δ x n x p0, aqda. Alors la convergence suivante 

¡ Z K t 2p K p1¡p K q , t ¥ 0 © ÝÑ KÑ V pT t ,
: V Ñ R 2 par Lϕpxq » R pϕpx hq ¡ ϕpxqqpλpx hq ¡ λpxqqn 1 x p0qµpdhq, (2.17) 
où µpdhq δ 0 pdh 2 qkph 1 qdh 1 δ 0 pdh 1 qkph 2 qdh 2

2

.

La démonstration du Théorème 2.2.5 est basée sur les idées de [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], [63, Théorème 3.1]. Les arguments principaux sont donnés dans la Section 5.4.2. A la différence de [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], à chaque instant, la population est bimorphe, constituée des individus de traits x V et les individus dont le trait px b , 0q est produit par l'effet Lansing.

Une inclusion différentielle pour la dynamique adaptative

Le second résultat concerne l'approximation du Processus de substitution des trait pXptq, t ¥ 0q de générateur inifinitésimal (2.17) sous l'hypothèse de petites mutations. Pour tout ¡ 0, on définit le processus X ptq Xp t 2 q dont le générateur L vérifie pour toute fonction ϕ : V Ñ R 2 mesurable bornée : (2.18). En utilisant un résultat classique de [START_REF] Ethier | Markov processes : characterization and convergence[END_REF] on écrit le processus pX ptq, t ¥ 0q comme une chaîne de Markov pY pkq, k ¥ 0q changée en temps.

L ϕpxq 1 » R 2 pϕpx hq ¡ ϕpxqq λpx hq ¡ λpxq n 1 x p0qµpdhq. ( 2 
On s'intéresse alors au comportement limite de la chaîne de Markov Y lorsque tend vers 0. Le Théorème 1 de [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF] assure que le comportement limite de cette chaîne de Markov (proprement renormalisée en temps) est décrit par l'ensemble des solutions de l'inclusion différentielle phq i q ¡ λpx q λpx ph ¡ uq i q ¡ λpx ¡ puq i q λpx ph ¡ uq i q ¡ λpxq λpxq ¡ λpx ¡ puq i q.

Supposons que h u, puisque λ est différentiable sur U i , on obtient que λpx phq i q ¡ λpx q ph ¡ uq i .∇λpxq puq i .∇λpxq phq i .∇λpxq, 

où

Commentaires et perspectives L'effet Lansing

En introduisant l'effet Lansing dans le modèle, nous obtenons la convergence du trait px b , x d q vers des configurations vérifiant x b x d . Ce choix de modélisation repose sur le fait que l'effet Lansing a été observé chez plusieurs espèces (cf. [START_REF] Lansing | A transmissible, cumulative, and reversible factor in aging[END_REF], [START_REF] Priest | The role of parental age effects on the evolution of aging[END_REF], [4]), dont la drosophile (cf. [START_REF] Priest | The role of parental age effects on the evolution of aging[END_REF]). Dans la Section 6, nous introduisons un modèle plus général permettant de prendre en compte deux types d'individus : selon qu'ils sont soumis ou non à l'effet Lansing. Tout d'abord, nous étudions le cas où l'effet Lansing n'agit sur aucun individu. Il s'agit alors d'un modèle de sélection-mutation classique (cf. [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]). Nous dérivons notamment l'équation canonique de la dynamique adaptative qui nous permettra d'interpréter la force de sélection âge-spécifique (cf. Section 1.1.2) comme vitesse d'évolution des traits x b et x d . Nous mélangeons ensuite les deux types d'individus afin d'étudier la sélection de l'effet Lansing. Nous verrons que sous certaines hypothèses, l'effet Lansing peut représenter un avantage sélectif et être sélectionné. La Section 6 est accompagnée de plusieurs simulations et commentaires biologiques.

Inclusions différentielles et dynamiques adaptatives

À notre connaissance, il n'y a pas de précédent dans l'utilisation des inclusions différentielles en théorie de la dynamique adaptative. Cette approche semble utile pour étudier des modèles où le gradient de fitness n'est pas bien défini ou suffisamment régulier. Nous renvoyons à Kunze [START_REF] Kunze | Non-smooth dynamical systems[END_REF] pour des aspects théoriques sur les inclusions différentielles.

Évolution et épigénétique

Comme nous l'avons évoqué en introduction, l'effet Lansing s'apparente à une mutation épigénétique. En effet, il se traduit par une modification du phénotype chez le descendant, non pas causée par une mutation génétique mais par un dérèglement dû au vieillissement. Notre choix de modélisation est discutable au sens où l'effet Lansing a un impact très fréquent (échelle de temps de l'individu) et très négatif sur l'individu. Il serait intéressant d'étudier plus généralement l'impact de mutations épigénétiques sur l'évolution Darwinienne. Un aspect important de ces modifications est qu'elles sont plus fréquentes que les mutations génétiques (cf. [START_REF] Schmitz | Transgenerational epigenetic instability is a source of novel methylation variants[END_REF]). En prenant en compte cette observation, il est montré par simulation dans [START_REF] Klironomos | How epigenetic mutations can affect genetic evolution : model and mechanism[END_REF] qu'elles peuvent avoir un impact sur l'évolution génétique. Il serait intéressant d'aborder cette question du point de vue des dynamiques adaptatives. Billiard et al. [START_REF] Billiard | Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks[END_REF] s'intéressent à la dynamique d'une population structurée par un trait soumis à la sélection et par un marqueur neutre. Sous l'hypothèse que le marqueur évolue sur une échelle de temps plus rapide que le trait, ils s'intéressent à l'impact de l'évolution du trait sur celle du marqueur (le marqueur étant supposé neutre, il n'impacte pas l'évolution du trait). Ce modèle peut être facilement adapté à notre problème. En effet, on peut de la même façon considérer une population structurée par un trait génétique et des variables épigénétiques, celles-ci évoluant sur une échelle de temps plus rapide que celle des traits génétiques. Cette fois-ci, on supposera que les variables épigénétiques ne sont pas neutres, elles impacteront l'évolution génétique de la population.

Chapitre 3

Long-time behaviour for age and trait structured population dynamics

Ce chapitre contient l'article "On the long-time behaviour of a age and trait structured population dynamics" accepté pour publication dans le journal Discrete and continuous dynamical systems-series B (cf. [START_REF] Roget | On the long-time behaviour of age and trait structured population dynamics[END_REF]). We study the long-time behaviour of a population structured by age and a phenotypic trait under a selection-mutation dynamics. By analysing spectral properties of a family of positive operators on measure spaces, we show the existence of eventually singular stationary solutions. When the stationary measures are absolutely continuous with a continuous density, we show the convergence of the dynamics to the unique equilibrium.

Preliminaries and Main Results

Introduction

Our ultimate goal is the understanding of the long-time behaviour of a population where the individuals differ by their physical age a R and some hereditary variable x S R d called trait. The population evolves as follows. An individual with trait x S and age a R has a death rate Dpx, aq cN where D is the intrinsic death rate, N is the population size and c ¡ 0 the competition rate. This individual gives birth at rate Bpx, aq. At every birth, a mutation occurs with probability p s0, 1r and the trait of the newborn y S is choosen according a distribution kpx, a, yqdy. Otherwise, the descendant inherits of the trait x S. In his thesis [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], Tran introduced an individual-based stochastic model to describe such a discrete population. The population is described by a random point measure

Z K t 1 K N K t i1 δ px i ptq,a i ptqq (3.1)
which evolves as a càdlàg Markov process with values in the set M pS ¢ R q of positive finite measures on S ¢ R and each jump corresponds to birth or death of individuals.

When the order K of the size of the population goes to infinity such that Z K 0 approximates a deterministic measure n 0 M pS ¢ R q, it is shown (see [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF]) that the process approximates the unique weak solution pn t q t¥0 CpR , M pS ¢ R qq in the sense given by (3.10) of the partial differential equation

5 f t n t px, aq f a n t px, aq ¡ ¡ Dpx, aq c ³ S ¢ R n t py, αqdydα © n t px, aq, n t px, 0q F rn t s pxq, pt, x, aq R ¢ S ¢ R , (3.2)
where for all Borel subset T of S F rn t s pTq

(3.3) p1 ¡ pq » T ¢R Bpx, αqn t pdx, dαq p » T ¢S ¢ R Bpy, αqkpy, α, xqn t pdy, dαqdx.
Recently, the well-posedness of measure solutions for a large class of partial differential equations including (3.2) has also been established in [START_REF] Cañizo | Measure solutions for some models in population dynamics[END_REF], using a deterministic method. At our knowledge, nothing has been done about its long-time behaviour. In [START_REF] Calsina | Steady states of a selection-mutation model for an age structured population[END_REF],

the stationary problem is solved in L 1 pS ¢ R q for a similar dynamics with a pure mutational kernel (p 1). The present paper is also motivated by [START_REF] Bonnefon | Concentration phenomenon in some non-local equation[END_REF]. The authors study the long-time behaviour of a selection-mutation dynamics with trait structure (and no age) and p s0, 1r. They show the existence of stationary measures which can admit dirac masses in some traits and they analyse the long-time behaviour of the solutions when the stationary measure admits a bounded density. In this paper, we extend these facts to an age and trait structured population. We show the existence of non-trivial stationary measures for Equation (3.2) (see Theorem 3.1.3) which can be singular. When these measures are absolutely continuous with a continuous density, we show that the solutions of (3.2) converge to the (unique) equilibrium (see Theorem 3.1.5). The method is based on the analysis of the linear dynamics. Indeed, the stationary states of (3.2) are eigenvectors for the direct eigenvalue problem 5 ¡f a N px, aq ¡ pDpx, aq λqN px, aq 0 N px, 0q F rNs pxq. 

give us some useful invariants and allow us to apply a method based on [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF], [START_REF] Perthame | Transport equations in biology[END_REF] leading to obtain an exponential rate of convergence for the linear dynamics to the stable distribution.

As we will see, the study of the problem (3.4) involves to understand spectral properties of a family of positive operators on the space of continuous functions on S of the form

pr Jqf pxq rpxqf pxq » S Kpy, xqf pyqdy (3.7)
where r is a continuous and positive function over S and K a continuous and nonnegative kernel over S. In [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], Coville finds a useful non-integrability criterion on the parameter r which gives the existence of eigenfunctions associated with the principal eigenvalue of the operator r J. When this criterion fails, he gives examples where there's no eigenfunction. Nonetheless, he shows in [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF] that there are always principal eigenvectors in the of Radon measures space. Other properties of the operator are studied in [START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF]. In Section 1, we give a new, shorter and unified proof of all these results (see Theorem 3.2.3). Our approach is based on duality arguments (see Proposition 3.2.7 which is adapted from a result due to Krein-Rutman [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF]) and allows us to obtain the existence of eigenvectors in a measures space. The criterion for the existence of principal eigenfunctions is also deduced. Our approach allows us to study at the same way the operator r G defined by

pr Gqf pxq rpxqf pxq » S Kpx, yqf pyqdy (3.8)
which will be used for studying the dual problem (3.5).

In Section 1.3, we state our main results on the long-time behaviour of the solutions of (3.2). In Section 2, we study spectral properties of the operators of the form r J, r G defined by (3.7), (3.8) and of their analogous operators in measure spaces. In Section 3, we apply these results to the study of the long-time behaviour of the linear dynamics. In Section 4, we deduce from the previous sections the proofs of our main results.

Notations. Let X be a metric space.

• CpXq (resp. C pXq) represents the sets of continuous functions from X to R (resp. R ). C b pXq (resp. C b pXq) represents the sets of continuous and bounded functions from X to R (resp. R ). MpXq (resp. M pXq) represents the set of finite Radon (resp. positive and finite Radon) measures on X. M loc pXq (resp M loc pXq) represents the set of Radon (resp. positive Radon) measures on X.

For any metric space Y , we denote by CpX, Y q the set of continuous functions from X to Y .

• We denote by C 1,0,1 b C 1,0,1 b pR ¢X ¢ R q (resp. C 1,0,1 c
) the set of continuous and bounded (resp. with compact support) functions from R ¢X ¢ R with continuous and bounded derivatives with respect to the first and third variables. We define similarly

C 0,1 b C 0,1 b pX ¢ R q and C 0,1 c C 0,1 c pX ¢ R q.
• For any x X and R ¦ , we denote by Vpx, q (resp. Vpx, q) the open (resp. closed) ball centred in x with radius .

Preliminaries

We first give the main assumptions on the model. Then we recall some facts about topology of measure spaces and we conclude by giving some words about the wellposedness of the dynamics (3.1) and (3.2).

Assumptions 3.1.1. S Ω, Ω R d is open, bounded, connected with Lipschitz boundary, (A1) B, D C b pS ¢ R q, Dpx, aq ¥ D ¡ 0, k C b pS ¢ R ¢ Sq, (A2) p s0, 1r , c ¡ 0 (A3)
and there exists 0 ¡ 0 and I R with ¥ I $ 0 such that for all x S and y Vpx, 0 q S : I supppkpx, y, .qq supppBpx, .qq.

(A4)

Measure theory. We recall some classical definitions and facts about topology on measures spaces. The Jordan decomposition theorem ensures that for any µ MpS ¢ R q, there is µ , µ ¡ M pS ¢ R q mutually singular, such that µ µ ¡ µ ¡ . The total variation measure is defined by |µ| µ µ ¡ and the Total Variation norm by }µ} TV |µ|pS ¢ R q.

The Bounded Lipschitz norm is defined for any µ MpS ¢ R q by }µ} BL sup

4 § § § § » S ¢ R f pxqµpdxq § § § § : f W 1,V pS ¢ R q, }f} 1,V ¤ 1 B .
where W 1,V pS ¢ R q is the set of bounded Lipschitz functions from S ¢ R to R and }f} 1,V }f} V Lippf q where Lippf q is the Lipschitz constant of f . We recall (see [START_REF] Villani | Topics in optimal transportation[END_REF]) that for any sequence

µ n M pS ¢ R q and µ M pS ¢ R q, }µ n ¡ µ} BL Ñ nÑV 0 if
and only if for all continuous and bounded function

f from S ¢ R to R, lim nÑV » S ¢ R f pxqµ n pdxq » S ¢ R f pxqµpdxq,
i.e that µ n Ñ µ weakly ¦ in pC b pS ¢ R qq I . We denote by CpR , M pS ¢ R qq the space of continuous maps from R to M pS ¢ R q with respect to the Bounded Lipschitz norm.

Well-posedness. We precise the link between the stochastic process (3.1) and the partial differential equation (3.2). We denote xµ, f y ³ S ¢ R f px, aqµpdx, daq. Let us consider a sequence pZ K 0 q K¥0 of M pS ¢ R q valued random variables of the form

Z K 0 1 K N K t i1 δ px i ,a i q .
For each K N ¦ , let pZ K t q t¥0 be defined as the càdlàg measure-valued process started

at Z K 0 with infinitesimal generator L K given, for any f C 0,1 b and µ M pS ¢ R q by L K F f pµq » S ¢ R f a f px, aqF I pxµ, f yqµpdx, daq (3.9) K » S ¢ R 4 pFpxµ δ px,0q K , f yq ¡ F pxµ, f yqqp1 ¡ pqBpx, aq ¢» S pFpxµ δ py,0q K , f yq ¡ F pxµ, f yqqBpx, aqpkpx, a, yqdy pFpxµ ¡ δ px,aq K , f yq ¡ F pxµ, f yqq pDpx, aq cxµ, 1yq B µpdx, daq
where F f pµq : F pxµ, f yq (we note that the set of functions of the form F f is sufficient to characterise the infinitesimal generator, as it is proved in [START_REF] Dawson | Measure-valued markov processes[END_REF]). The following proposition allows to obtain the solutions of (3.2) as a large population limit of the stochastic process Z K . We refer to [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] for the proof.

Proposition 3.1.2. Assume Assumptions 3.1.1 and that Z K 0 converges in law to n 0 M pS ¢ R q as K Ñ V. Then, the sequence of processes pZ K q K¥0 converges in law (on finite time interval) to the unique weak solution pn t q t¥0 CpR , M pS ¢ R qq of (3.2) which satisfies for all f C 1,0,1 b and t R ,

» S ¢ R f pt, x, aqn t pdx, daq » S ¢ R f p0, x, aqn 0 pdx, daq » t 0 » S ¢ R pf s f ps, x, aq f a f ps, x, aq ¡ pDpx, aq cn s pS ¢ R qq f ps, x, aq G rfps, .qs px, aqq n s pdx, daqds (3.10)
where G has been defined in (3.6).

Main Results

Let us introduce some notations. For any pλ, x, y, aq s¡D, Vr ¢ S 2 ¢ R , we define :

6 9 8 9 7 R λ px, aq exp ¡ ³ a 0 Dpx, αqdαq ¡ λa ¨, r λ pxq p1 ¡ pq ³ R Bpx, aqR λ px, aqda, K λ px, yq p ³ R Bpx, aqkpx, a, yqR λ px, aqda. (3.11)
For any λ s¡D, Vr, we define the linear operator rλ Jλ : MpSq Ñ MpSq by

pr λ Jλ qµ r λ pxqµ ¢» S K λ py, xqµpdyq dx (3.12)
and we denote by ρpr λ Jλ q its spectral radius. We now give the main results of the paper. The first one shows the existence of stationary states for the dynamics (3.10), under some assumption on the spectral radius of the operators introduced above (similarly as in [START_REF] Calsina | Steady states of a selection-mutation model for an age structured population[END_REF]). This assumption is related to the supercriticality of the associated linear dynamics.

Theorem 3.1.3. Assume Assumptions 3.1.1 and ρpr 0 J0 q ¡ 1. There exists a non-zero solution n M pS ¢ R q of :

df C 0,1 b , » S ¢ R ¢ f a f ¡ ¢ D c » S ¢ R n f G rfs px, aqnpdx, daq 0, (3.13)
which is given by npx, aq µ λ ¦pdxqR λ ¦px, aqda where λ ¦ ¡ 0 is solution of the equation ρpr λ ¦ Jλ ¦q 1 and µ λ ¦ M pSq is an eigenvector of rλ ¦ Jλ ¦ associated with the eigenvalue ρpr λ ¦ Jλ ¦q 1.

Let us now introduce an additional regularity assumption which allows us to obtain the continuity of the solutions with respect to the initial conditions (see Lemma 3.3.10).

Assumptions 3.1.4. B, D W 1,V pS ¢ R q and k W 1,V pR ¢ S ¢ R q.
We now focus on the case where there exists a stationary measure n which admits a continuous density (we keep the same notation n for the density).

Theorem 3.1.5. Assume Assumptions 3.1.1, 3.1.4. Assume that ρpr 0 J0 q ¡ 1 and that there exists a solution n CpS, L 1 pR qq of (3.13). Assume that there exist B, k ¡ 0 such that B ¥ B and k ¥ k. Let pn t q t¥0 CpR , M pS ¢ R qq be the solution of (3.10) started at n 0 M pS ¢ R qzt0u. Then we have lim tÑV }n t ¡ n} TV 0 and n is the unique stationary measure. Remark 3.1.6. Let us give a sufficient condition to obtain n CpS, L 1 pR qq. By Theorem 3.1.3 the trait marginal µ λ ¦pdxq of n is an eigenvector of rλ ¦ Jλ ¦ associated with the eigenvalue ρpr λ ¦ Jλ ¦q 1. By Lemma 3.3.2 (iii) and (ii), we obtain that if LebpΣ λ ¦q ¡ 0 or if LebpΣ λ ¦q 0 and 1 r λ ¦¡r λ ¦ L 1 pSq the measure µ λ ¦pdxq is absolutely continuous with a continuous density, and that n CpS, L 1 pR qq.

Remark 3.1.7. If n admits a non-trivial singular part, Theorem 1.5 is false since any L 1 pS ¢ R q-solution of (3.10) can't converge to a singular measure in total variation norm.

Spectral Properties of some Positive Operators

Position of the Problem and Results

Let us consider a subset S of R d which satisfies Assumption (A1). We analyse the spectral properties of the operators r J, r G : CpSq Ñ CpSq defined respectively by (3.7), (3.8) and of their analogous operators on measure spaces r J, r G : MpSq Ñ MpSq defined similarly by

pr Jqµ rpxqµ ¢» S Kpy, xqµpdyq dx, pr Gqµ rpxqµ ¢» S Kpx, yqµpdyq dx. Assumptions 3.2.1. r CpSq is positive, (A5) K CpS ¢ Sq is non-negative, (A6) h 0 , c 0 ¡ 0, inf xS ¢ inf yVpx, 0 qS Kpx, yq ¡ c 0 . (A7) Remark 3.2.2. Assume Assumption (A7), then we have inf xS ¢ inf yVpx, 0 qS Kpy, xq ¡ c 0 . (3.14)
Indeed, let x S and y Vpx, 0 q S. Then x Vpy, 0 q and Kpy, xq ¡ c 0 .

The following result deals with the spectral properties of the operators introduced above. We denote by ρpr Jq the spectral radius of the operator r J (and similarly for r G). The reader can refer to Appendix A for terminology and recalls about spectral theory. The following theorem is proved in Section 2.2. Theorem 3.2.3. Assume Assumptions 3.2.1. There exists µ M pSq such that ρpr Gqµ pr Jqµ which satisfies µpAq ¡ 0 for any Borel subset A of S such that LebpAq ¡ 0 (Leb denotes the Lebesgue measure on S). Moreover, let us denote r sup xS rpxq and Σ tx S : rpxq ru. Then we have :

(i) r ¤ ρpr Gq.

(ii) r ρpr Gq if and only if there exists u CpSq, u ¡ 0 such that µ upxqdx.

In this case, ρpr Gq is an eigenvalue of r J with algebraic multiplicity equals to one, associated with the eigenfunction u.

(iii) If LebpΣq ¡ 0 or if, LebpΣq 0 and 1 r¡r L 1 pSq, we have r ρpr Gq. (iv) If ρpr Gq r, we have µ µ s hpxqdx with h L 1 pSq and either µ s 0, or µ s $ 0 and supppµ s q Σ. (v) ρpr Jq ρpr Gq ρpr Jq ρpr Gq.

Moreover, the same results are true exchanging J and G, J and G.

Démonstration. See Section 2.2. Remark 3.2.4. In [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF], Coville studies some spectral properties of the operators introduced above. To do so, he introduces the generalised principal eigenvalue λ p pr Jq suptλ R |hϕ CpSq, ϕ ¡ 0 such that pr Jqϕ λϕ ¤ 0u which generalises the Perron-Frobenius eigenvalue for irreducible matrices with nonnegative coefficients. The point (iii) is similar to the criterion obtained (in a more general setting) in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. The point (iv) is contained in the results of [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF]. The point (v) is new. It is crucial for the proof of Propositions 3.3.5 and 3.3.6.

Proof of Theorem 3.2.3

The proof of Theorem 3.2.3 is given at the end of this section. We start by proving a lemma in which some well known facts about the operators introduced previously are recalled. We give a proof for the convenience of the reader. We denote by ρ e pr Jq the essential spectral radius of r J (see Appendix A). Lemma 3.2.5. Assume Assumptions 3.2.1.

(i) The operators r J and r G are positive and irreducible on CpSq.

(ii) The operators J and G are compact on CpSq.

(iii) r ρ e pr Jq ρ e pr Gq.

Démonstration. (i) : Since r is positive and K is non-negative, r J and r G are positive endomorphisms of CpSq. To prove irreducibility, it suffices to prove that there is m N ¦ such that for all f C pSq and x S, pr Jq m f pxq ¡ 0 (see Definition A.1.6 and Lemma A.2.3). Since the set S is compact, there exist n N ¦ and pB i q n i1 a family of balls with radius 0 {4 such that S n i1 B i . Let f C pSq be non-zero and let I be an open subset of S such that f is positive on I. For all x S we have pr

Jq n f pxq ¥ » I dx 1 f px 1 qKpx 1 , x 2 q » S dx 2 . . . » S dx n Kpx n , xq ¥ C » IB i 1 S dx 1 Kpx 1 , x 2 q » B i 2 S dx 2 . . . » B in S dx n Kpx n , xq
where C ¡ 0 and pi 1 , . . . , i n q 1, n n satisfies : 

B i 1 I has non-empty interior ; for any k 1, n ¡ 1 , u B i k S, v B i k 1 S,
¤ C M sup zS » S Kpy, zqdy.
Then the set tJfpxq, f M u is bounded and so relatively compact in R. We check the equi-continuity condition. Let ¡ 0, since K is uniformly continuous on S ¢ S, there

exists δ ¡ 0 such that if }x 1 ¡ x 2 } }y 1 ¡ y 2 } δ, we have |Kpx 1 , y 1 q ¡ Kpx 2 , y 2 q| C M LebpSq . Let y S such that }x ¡ y} δ. For all f M , we have |Jfpyq ¡ Jf pxq| § § § § » S f pzqpKpz, yq ¡ Kpz, xqqdz § § § § ¤ C M » S |Kpz, yq ¡ Kpz, xq|dz
which allows us to conclude for the compactness. The proof is similar for G.

(iii) : Let us note from Lemma A.2.4 that the essential spectrum of r is trpxq, x Su.

Moreover J is compact. We deduce that ρ e pr Jq ρ e prq and that r ρ e pr Jq. The proof is similar for ρ e pr Gq.

The following lemma makes a duality link between the operators introduced above. It is crucial for the proof of Theorem 3.2.3. Lemma 3.2.6. Assume Assumptions 3.2.1. We have

pr Jq I r G pr Gq I r J (3.15)
where pr Jq I is the adjoint operator of r J and pr Gq I is defined similarly. Démonstration. Let f CpSq and µ MpSq, (i) Let T be a positive endomorphism of CpSq. The spectral radius ρpT q is an eigenvalue of T I associated with an eigenvector which belongs to M pSq. (ii) Let T be an irreducible endomorphism of CpSq. Then the spectral radius ρpT q is the only possible eigenvalue of T associated with a non-negative eigenvector.

Moreover, if ρpT q is a pole of the resolvent, it is an eigenvalue of T with algebraic multiplicity equals to one.

We give now a technical lemma. Lemma 3.2.8. Assume Assumptions 3.2.1. Let x 0 Σ tx S : rpxq ru. There exists a family pr j q j¥0 of C pSq which satisfy for all j ¥ 0 :

(i) For all x S, r j pxq ¥ r j 1 pxq, (ii) r j px 0 q r j r and LebpΣ j q ¡ 0, where Σ j tx S : r j pxq r j u, (iii) }r j ¡ r} V Ñ jÑV 0.

Démonstration. Let x 0 Σ be fixed. For all ¡ 0 sufficiently small, we define the closed set A Vpx 0 , q c Vpx 0 , {2q ¨ S and a map g CpA q by g pxq rpxq if

x Vpx 0 , q c and g pxq r if x Vpx 0 , {2q. By Tietze Theorem, we extend g in a continuous function h on S such that }h } V }g } V We introduce r CpSq defined by r pxq maxph pxq, rpxqq. It is straightforward to check that : 1) lim Ñ0 }r ¡ r} V 0 ; LebpΣ q ¡ 0 ; 3) r pxq ¥ rpxq and sup xS r pxq r. We conclude by proving that we can extract a decreasing subsequence of the family r which converges uniformly to r.

To do so, we fix 0 ¡ small and we define a sequence p k q k¥0 by k 1 k 2 . We check that the sequence pr k q k¥0 is decreasing.

Indeed, let k ¥ 0. If x Vpx 0 , k 1 {2q, then x Vpx 0 , k {4q and r k 1 pxq h k 1 pxq r h k pxq r k pxq. If x A c k 1 we have k 1 {2 }x ¡ x 0 } k 1 k {2. So we have r k 1 pxq ¤ r h k pxq r k pxq. Finally, if x Vpx 0 , k 1 q c , r k 1 pxq rpxq ¤ r k pxq. So we have proved that for all x S, r k 1 pxq ¤ r k pxq.
Let us now prove Theorem 3.2.3.

Proof of Theorem 3.2.3. By Lemma 3.2.6 and Proposition 3.2.7 (i) applied to the endomorphism r G, there exists a non-zero measure µ M pSq such that for all Borel and bounded functions f : S Ñ R,

» S f pxq ¢» S Kpy, xqµpdyq dx » S f pxqprpxq ¡ ρpr Gqqµpdxq 0. (3.16)
Assume that there exists a largest Borel subset A of S, A $ S such that LebpAq ¡ 0 and µpAq 0. Choosing f 1 A in (3.16), we deduce that for all x A, » S Kpy, xqµpdyq 0.

(3.17) Let x 0 A be such that Vpx 0 , 0 q S A. By Assumption (A7) and (3.17) we obtain 0 ¥ » Vpx 0 , 0 qS Kpy, x 0 qµpdyq ¥ c 0 µpVpx 0 , 0 q Sq and µpA pVpx 0 , 0 q Sqq 0 which is absurd by definition of A. Since µpSq ¡ 0, we conclude that for all Borel subset A of S such that Leb(A) ¡ 0, we have µpAq ¡ 0. and we deduce that for all x S, pr Jqupxq ρpr Gqupxq. Assume that there exists x 0 S such that upx 0 q 0. Then we have

c 0 » Vpx 0 , 0 qS upyqdy ¤ » S
Kpy, x 0 qupyqdy 0 which is absurd by the first statement we proved. Then, u is positive on S. Since ρpr Gq is an eigenvalue of r J associated with a positive eigenfunction, Proposition 3.2.7 (ii) gives that ρpr Gq ρpr Jq. We deduce that ρpr Jq ¡ r ρ e pr Jq. It comes from Proposition A.1.4 in Appendix that ρpr Jq is a pole of the resolvent. Since r J is irreducible (see Lemma 3.2.5 (i)), it comes from Proposition 3.2.7 (ii) that the algebraic multiplicity of ρpr Jq is equals to one. Conversely, assume now that there exists u C pSq such that µ upxqdx. Then since for all x S Since LebpΣq ¡ 0, we know that µpΣq ¡ 0. Since we have inf xS ³ S Kpy, xqµpdyq ¡ 0, we deduce that r ρpr Gq. Assume now that LebpΣq 0 and 1 r¡r L 1 pSq. Here, our calculations are inspired by [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. Let

A : µpSq inf xS ³ S Kpy, xqµpdyq ¡ 0 and B ¡ A. There exists F a closed subset of Σ c such that B » F 1 r ¡ rpxq dx V. Then, the map r0, Vr Þ Ñ ³ F 1
r¡rpxq dx is continuous and strictly decreasing. So, there exists 0 ¡ 0 such that

A » F 1 r ¡ rpxq 0 dx. Choosing f pxq 1 F pxq 1 ρpr Gq¡rpxq in (3.16), we have » F 1 ρpr Gq ¡ rpxq ¢» S Kpy, xqµpdyq dx » F µpdxq ¤ µpSq and » F 1 ρpr Gq ¡ r r ¡ rpxq dx ¤ A. Since the map r0, Vq Þ Ñ ³ F 1
r¡rpxq dx is strictly decreasing, it comes that 0 ρpr Gq ¡ r and r ρpr Gq. (iv) : Assume that ρpr Gq r. Let µ µ s hpxqdx be the Lebesgue decomposition of the measure µ with h L 1 pSq and µ s the singular part of the measure µ, i.e there exists E a measurable subset of S such that LebpSq Leb(E) and µ s pE c q µ s pSq. It comes from (3.16) 

with f 1 E c that » S µ s pdxqprpxq ¡ ρpr Gqq » E c
µ s pdxqprpxq ¡ ρpr Gqq 0. Assume that µ s $ 0, then we deduce that the support of the measure µ s is a subset of Σ. (v) : Assume first that 1 r¡r L 1 pSq and LebpΣq 0, or LebpΣq ¡ 0. By (iii) we get that r ρpr Gq. By (ii), we deduce that there exists u CpSq, u ¡ 0 such that pr Jqu ρpr Gqu. By Proposition 3.2.7 (ii), we have ρpr Jq ρpr Gq. Assume now that 1 r¡r L 1 pSq. Let x 0 Σ. By Lemma 3.2.8, there is a sequence pr j q j¥0 of C pSq which satisfies : 1) }r j ¡ r} V Ñ 0 ; 2) LebpΣ j q ¡ 0 and r j r (Σ j tx S : r j pxq r j u) ; 3) for all x S, r j 1 pxq ¤ r j pxq. By the first part of the proof of (v), we deduce that ρpr j Jq ρpr j Gq and we conclude that ρpr Jq ρpr Gq taking the limit j Ñ V, using the monotonicity (see Proposition A.1.7 (i) in Appendix A) and the upper semi-continuity of the spectral radius (see Lemma A.1.8 in Appendix A). The others equalities are proved arguing that pr Jq I r G and pr Gq I r J.

The Linear Dynamics

In this section, we apply the results of the previous section to analyse the long-time behaviour of the solutions pv t q t¥0 CpR , M pS ¢ R qq of the linear equation :

5 f t v t px, aq f a v t px, aq ¡Dpx, aqv t px, aq, pt, x, aq R ¢ S ¢ R , v t px, 0q F rv t s pxq, v 0 M pS ¢ R q. (3.18)
The well posedness of solutions pv t q t¥0 CpR , M pS ¢ R qq is proved in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] using the microscopic approach, and in [START_REF] Cañizo | Measure solutions for some models in population dynamics[END_REF] using a deterministic method. We start by proving that Assumptions 3.1.1 imply Assumptions 3.2.1 for r λ and K λ defined in (3.11). 1) For all λ s¡D, Vr, the maps r λ and K λ are well-defined, continuous, respectively positive and non-negative. There exist 0 , c 0 ¡ 0 such that

inf xS ¢ inf yVpx, 0 qS K λ px, yq ¡ c 0 .
2) Moreover we have : So, r λ and K λ are well-defined. Moreover, r λ and K λ are continuous by dominated convergence theorem and respectively positive and non-negative by Assumptions 3.1.1. The second part of the assertion is a consequence of assumption 3.1.1.

(i) For all ¡D λ 1 λ 2 and px, yq S ¢ S, r λ 1 pxq ¡ r λ 2 pxq and K λ 1 px, yq ¥ K λ 2 px, yq. (ii) For all λ 0 ¡ ¡D, lim λÑλ 0 }r λ ¡ r λ 0 } V 0 and lim λÑλ 0 }K λ ¡ K λ 0 } V 0 (iii) For all λ ¡ ¡D, let us denote
2) (i) : Let λ ¡ ¡D and x S. By derivation under the integral,

f λ r λ pxq ¡p1 ¡ pq » R aBpx, aq exp ¢ ¡ » a 0 Dpx, αqdα ¡ λa da 0.
The proof is similar for K λ .

(ii) : Let λ 0 ¡ ¡D and α s¡D, λ 0 r. For all x S and λ ¡ α, we have

|r λ pxq ¡ r λ 0 pxq| ¤ » V 0 Bpx, aq|e ¡pλ Dqa ¡ e ¡pλ 0 Dqa |da ¤ |λ ¡ λ 0 |}B} V » V 0 ae ¡pα Dqa da
where we used that |e ¡x ¡ e ¡y | ¤ |x ¡ y| if x, y ¥ 0, and which allow us to conclude.

The proof is similar for K λ .

(iii) : Let λ 0 ¡ ¡D and let pλ j q be a sequence such that λ j Ñ λ 0 . Let px j q S such that r λ j r λ j px j q and let denote x ¦ S a limit point of px j q. Using (ii), we obtain that r λ j Ñ r λ 0 px ¦ q r λ 0 . We conclude by proving the strict monotonicity. Let ¡D λ 1 λ 2 . For all x S we have r λ 2 pxq r λ 1 pxq, and so r λ 2 pxq r λ 1 . Since S is compact and r λ 2 is continuous, we get that r λ 2 r λ 1 .

For any λ s¡D, Vr ρpr λ G λ qµ λ pr λ Jλ qµ λ which satisfies µ λ pAq ¡ 0 for all A Borel subset of S such that LebpAq ¡ 0. Moreover, let us denote r λ sup xS r λ pxq and Σ λ tx S : r λ pxq r λ u. Then we have :

(i) r λ ¤ ρpr λ G λ q.

(ii) r λ ρpr λ G λ q if and only if there exists u λ CpSq, u λ ¡ 0 such that µ λ u λ pxqdx. In this case, ρpr λ G λ q is an eigenvalue of r λ J λ with algebraic multiplicity equals to one, associated with the eigenfunction u.

(iii) If LebpΣ λ q ¡ 0 or if, LebpΣ λ q 0 and 1 r λ ¡r λ L 1 pSq, we have r λ ρpr λ G λ q. (iv) If ρpr λ G λ q r λ , we have µ λ µ s hpxqdx with h L 1 pSq and either µ s 0, or µ s $ 0 and supppµ s q Σ. (v) ρpr λ J λ q ρpr λ G λ q ρpr λ Jλ q ρpr λ Gλ q.

Moreover, the same results are true exchanging J λ and G λ , Jλ and Gλ .

Démonstration. The proof of this theorem is a direct consequence of Theorem 3.2.3.

The following assumption allows us to characterise the Malthusian parameter associated with the linear dynamics. Proof of Proposition 3.3.4. First, remark that by Lemma 3.3.2 (v), we have for any λ rλ, Vr, ρpr λ Jλ q ρpr λ J λ q. We divide the proof in three steps.

Step 1 : the map λ rλ, Vr Þ ÝÑ ρpr λ J λ q is non-increasing. Let λ ¤ λ 1 ¤ λ 2 . By Lemma 3.3.1 2)(i), we get that for all f C pSq, pr λ 2 J λ 2 qfpxq ¤ pr λ 1 J λ 1 qfpxq.

(3.21) By Proposition A.1.7 (i) in Appendix, the spectral radius is monotone on the set of positive operators, we conclude that ρpr λ 2 J λ 2 q ¤ ρpr λ 1 J λ 1 q.

Step 2 : The map λ rλ, Vr Þ ÝÑ ρpr λ J λ q is continuous. Let λ 0 ¥ λ. We consider the two possible cases. First, we assume that r λ 0 ρpr λ 0 J λ 0 q. We deduce by Lemma 3.3.2 (ii) that : ρpr λ 0 J λ 0 q is an eigenvalue of r λ 0 J λ 0 with algebraic multiplicity equals to one. On the other hand, for all λ ¥ λ and f CpSq, we have

}pr λ J λ qf ¡ pr λ 0 J λ 0 qf} V ¤ p}r λ ¡ r λ 0 } V LebpSq}K λ ¡ K λ 0 } V q}f} V . (3.22)
Therefore, we deduce from Proposition A.1.5 that : (a) there is δ ¡ 0 such that if |λ¡λ 0 | δ, there exists an eigenvalue κ λ of r λ J λ with algebraic multiplicity equals to one ; (b) P λ ÝÑ P as λ Ñ λ 0 for the operator norm where P , P λ represent respectively the projector on the null space of ρpr λ 0 J λ 0 qI ¡ r λ 0 J λ 0 and κ λ I ¡ r λ J λ . Let u be a positive eigenfunction of r λ 0 J λ 0 associated with ρpr λ 0 J λ 0 q. By (b), we have P λ u Ñ P u u when λ Ñ λ 0 . In particular, we deduce that there is 0 δ I δ such that if |λ ¡ λ 0 | δ I , P λ u is a positive eigenfunction of r λ J λ associated with κ λ . Hence, Proposition A.2.2 (i) gives that if |λ ¡ λ 0 | δ I , ρpr λ J λ q κ λ . In order to conclude, let pλ j q be a sequence of rλ, Vr which converges to λ 0 . Since the function λ rλ, Vr Ñ ρpr λ J λ q is bounded, there exists ρ ¦ r0, Vr and a subsequence always denoted pλ j q such that ρpr λ j J λ j q Ñ ρ ¦ . We check that ρ ¦ ρpr λ 0 J λ 0 q.

Let u be a positive eigenfunction of r λ 0 J λ 0 . For all j sufficiently large, we have pr λ j J λ j qP λ j u ρpr λ j J λ j qP λ j u. By (3.22) and (b), and taking the limit j Ñ V, we deduce that pr λ 0 J λ 0 qu ρ ¦ u. So, u is a positive eigenfunction associated with the eigenvalue ρ ¦ , it comes from Proposition A.2.2 (i) that ρ ¦ ρpr λ 0 J λ 0 q. Consider now the case where r λ 0 ρpr λ 0 J λ 0 q. Assume that the map λ rλ, Vr Þ ÝÑ ρpr λ J λ q is not continuous at λ 0 . So we have lim inf λÑλ 0 ρpr λ J λ q lim sup λÑλ 0 ρpr λ 0 J λ 0 q.

Since the spectral radius is upper semi-continuous (see Lemma A.1.8 in Appendix A), we deduce that

r λ 0 lim inf λÑλ 0 ρ e pr λ J λ q ¤ lim inf λÑλ 0 ρpr λ J λ q ρpr λ 0 J λ 0 q r λ 0
which is absurd and that concludes the proof of the continuity.

Step 3 : strong monotonicity. Let λ ¤ λ 1 ¤ λ 2 . By the first part of this proof, we have ρpr λ 1 J λ 1 q ¥ ρpr λ 2 J λ 2 q. Assume that ρpr λ 1 J λ 1 q ρpr λ 2 J λ 2 q. We show that necessarily λ 1 λ 2 . As before, we distinguish two cases. First we consider the case where ρpr λ 1 J λ 1 q ¡ r λ 1 . Since r λ 1 J λ 1 is irreducible and ρpr λ 1 J λ 1 q is a pole of the resolvent of r λ 1 J λ 1 , we deduce by Proposition A.1.7 (ii) that r λ 1 J λ 1 r λ 2 J λ 2 and so λ 1 λ 2 . We now consider the second case ρpr λ 1 J λ 1 q r λ 1 . Assume that

λ 1 λ 2 .
If there exists λ rλ 1 , λ 2 s such that ρpr λ J λq ¡ r λ we conclude that ρpr λ 1 J λ 1 q ¥ ρpr λ J λq ¡ ρpr λ 2 J λ 2 q by the previous part of the proof. Otherwise, we conclude that ρpr λ 1 J λ 1 q ¡ ρpr λ 2 J λ 2 q arguing that λ rλ, Vr Þ Ñ r λ is decreasing (see Lemma 3.3.1 2)(iii)). We deduce that λ 1 λ 2 . Since ρpr λ J λ q ¡ ρ e pr λ J λ q r λ , Assumption 3.3.3 gives that ρpr λ J λ q ¡ 1 and we conclude by the intermediate value theorem.

The two following theorems give the existence of principal real eigenelements associated with the linear dynamics. 

(i) Let λ rλ, Vr . A non-zero measure N M pS ¢ R q is a solution of df C 0,1 b , » S ¢ R pf a f ¡ pD λqf G rfsq px, aqN pdx, daq 0 (3.23)
if and only if N pdx, daq µ λ pdxqR λ px, aqda, where µ λ M pSq is non-zero and satisfies pr λ Jλ qµ λ µ λ . (ii) The largest λ rλ, Vr such that there exists a non-zero measure N M pS ¢ R q which satisfies (3.23) is the unique solution of ρpr λ Jλ q 1. Proof of Proposition 3.3.5. (i) : Let λ rλ, Vr and let N M pS ¢ R q be a nontrivial solution of (3.23). We decompose N as N pdx, daq νpdxqupx, daq. where ν M pSq and upx, daq be an associated transition measure. We extend these quantities to the whole set of the following way. Let ν M pR d q defined for all Borel subset A of R d by νpAq νpA Sq ; let ũpx, daq defined by ũpx, daq 0 if x S and ũpx, Aq upx, A R q if x S and A is a Borel subset of R. We define Ñ pdx, daq νpdxqũpx, daq M pR d ¢ Rq. We extend continuously the functions B, D and k to the whole sets Reciprocally, it is easy to check that such a measure is solution of (3.23).

R d ¢ R, R d ¢ R and R d ¢ R d ¢ R
f a Ṽ . Let f C V c pR d ¢ Rq, » R d ¢ R f a f px, aq Ṽ pdx, daq » S ¢ R ¢ f a f R λ ¡ f D λ R λ px, aqN pdx, daq ¡ » S ¢ R G f R λ & px, aqN pdx, daq ¡ » R d f px
(ii) : Let λ rλ, Vr and assume that there exists a non-zero N M pS ¢ R q which satisfies (3.23). By (i), we deduce that there is µ M pSq such that N µpdxqR λ px, aq and which satisfies pr λ Jλ qµ µ. We deduce that 1 ¤ ρpr λ Jλ q. Moreover, if ρpr λ Jλ q 1 there exists ν M pSq such that pr λ Jλ qν ν by Lemma 3.3.2. That concludes the proof. (i) Let λ rλ, Vr. A non-zero measure ψ M loc pS ¢ R q such that ψpdx, daq ϕpdxqmpx, aqda, mpx, .q L V pR q, ϕpdxq M pSq is a solution of 

df C 0,1 c , » S ¢ R pf a f pD λqf qpx, aqψpdx, daq (3.27) » S ¢ R f px, aq G rψs pdx, daq ¡ » S mpx,
¢ p1 ¡ pqη λ pdxq » V a Bpx, αqR λ px, αqdα p » S η λ pdyq » V a Bpx, αqR λ px, αqkpx, α, yqdα ,
where η λ M pSq is non-zero and satisfies pr λ Gλ qη λ η λ . (ii) The largest λ rλ, Vr such that there exists a non-zero ψ M loc pS ¢ R q which satisfies (3.27) is the unique solution of ρpr λ Jλ q 1.

Proof of Proposition 3.3.6. The proof is very similar to the previous proof.

(i) : Let λ rλ, Vr and let ψ M loc pS ¢ R q such that ψ ϕpdxqmpx, aqda with mpx, .q L V pR q and ϕ M pSq, be a non-trivial solution of (3.27). As in the previous proof, we extend all the quantities to the whole set

R d ¢ R. We denote Ũ 1 S ¢ R px, aq Rλ px, aq ψ M loc pR d ¢ Rq
and we compute the partial distributional derivative f a Ũ . We denote ηpdxq ϕpdxqmpx, 0q.

Let g C V c pR d ¢ Rq, we have » R d ¢ R f a gpx, aq Ũ pdx, daq » S ¢ R pf a pgR λ q pD λqpgR λ qq px, aqψpdx, daq ¡ » S ¢ R gpx, aq Rλ px, aq G rψs pdx, daq » S gpx, 0qηpdxq. 52 We deduce that f a Ũ ηδ 0 ¡ Rλ G rψs ¨1S ¢ R and Ũ ¢ ηpdxq ¡ » a 0 R λ px, αq G rψs pdx, dαq 1 S ¢ R px, aqda.
It comes that

ψ 1 R λ px, aq ¢ ηpdxq ¡ » a 0 R λ px, αq G rψs pdx, daq . (3.28)
Since ψ M loc pS ¢ R q with ψ ϕpdxqmpx, aqda and mpx, .q L V pR q, we have necessarily 

» V 0 R λ px
ψ da R λ px, aq ¢ p1 ¡ pqηpdxq » V a Bpx, αqR λ px, αqdα p » S ηpdyq » V a Bpx, αqR λ px, αqkpx, α, yqdα .
Conversely, it is easy to check that such a measure is a solution of (3.27). The proof of (ii) is similar as in the previous proof, since by Lemma 3.3.2, ρpr λ Jλ q ρpr λ Gλ q.

We deduce a corollary which concerns the "regular" case. 

³ S ¢ R N 1 and
³ S ¢ R N φ 1 allow us to fix N and φ. Assume now that there exists pλ, N I , φ I q such that λ $ λ ¦ and which satisfies (3.31) and (3.32). By Theorems 3.3.5 and 3.3.6, it comes that λ λ ¦ . We deduce that ρpr λ J λ q ¡ 1. Moreover N I px, 0q, φ I px, 0q C pSq are eigenfunctions of r λ J λ and r λ G λ associated with the eigenvalue 1, which is absurd by Proposition 3.2.7 (ii).

We are now able to describe the long-time behaviour of the solutions of the linear equation (3.18). Proposition 3.3.8. Assume Assumptions 3.1.1, 3.1.4, 3.3.3 and that r λ ¦ 1. Assume that there exists η ¡ 0 such that for all a R and px, yq S 2 pBpy, aqkpy, x, aqφpx, 0q ¥ ηφpy, aq.

(

Let pv t q t¥0 CpR , M pS ¢ R qq be the solution of (3.18) started at v 0 M pS ¢ R q.

Then we have

» S ¢ R φpx, aq|e ¡λ ¦ t v t ¡ m 0 N |pdx, daq ¤ e ¡ηLebpSqt » S ¢ R φpx, aq|v 0 ¡ m 0 N |pdx, daq (3.34)
where m 0 ³ S ¢ R φpx, aqv 0 pdx, daq.

The idea of the proof is similar as in [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF]. We show the spectral gap property for initial regular data, and then deduce it for measure initial data, using the two following Lemmas. The assumption (3.33) is similar as in [69, Theorem 3.5]. For any measure µ MpS ¢ R q, let µ µ a pxqdx µ s pdxq be its Lebesgue decomposition. We define xµy

» S ¢ R 1 |µ a pxq| 2 dx µ s pS ¢ R q.
We use the following (semi-)continuity properties. The point (i) is well-known. See [START_REF] Kristensen | Relaxation of signed integral functionals in bv[END_REF]Theorem 5] for (ii).

Lemma 3.3.9. Let µ n , µ MpS ¢ R q such that µ n Ñ nÑV µ weakly ¦ in pC b pS ¢ R qq I . Then for all f C b pS ¢ R q, (i) lim inf nÑV » S ¢ R f px, aq|µ n |pdx, daq ¥ » S ¢ R f px, aq|µ|pdx, daq. (ii) If moreover xµ n y Ñ nÑV xµy, then lim nÑV » S ¢ R f px, aq|µ n |pdx, daq » S ¢ R f px, aq|µ|pdx, daq.
The following lemma is proved in [ 

¡ 0 such that for all v 1 0 , v 2 0 M pS ¢ R q and t ¥ 0 : }v 1 t ¡ v 2 t } BL ¤ e Ct }v 1 0 ¡ v 2 0 } BL
where v 1 , v 2 are the solutions of (3.18) started at v 1 0 , v 2 0 .

We now give the proof of Proposition 3.3.8.

Proof of Proposition 3.3.8. It suffices to prove the result for regular initial data, and then conclude by regularising the initial measure. To analyse the regular case, we follow the ideas of [START_REF] Perthame | Transport equations in biology[END_REF]. So, let pv t q t¥0 be the solution of (3.18) started at v 0 L 1 pS ¢ R qC 0,1 b . First, by choosing φ as test function in (3.10), we obtain the following invariance : and we conclude by Gronwall's Lemma. Now consider the case v 0 M pS ¢ R q. There is a family of non-negative functions

» S ¢ R e ¡λ ¦ t v t px, aqφpx, aqdxda » S ¢ R v 0 px
v 0 C 0,1 b L 1 pS ¢ R q such that }v 0 ¡ v 0 } BL Ñ Ñ0 0 and xv 0 y Ñ Ñ0 xv 0 y. By Lemma 3.3.10, it comes that for each t R , }v t ¡ v t } BL Ñ Ñ0 0.
Similarly as in [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF], we conclude by using Lemma 3.3.9. By the previous part of the proof we deduce that (4.6) is satisfied fo v t . By applying Lemma 3.3.9 (i) with µ e ¡λ ¦ t v t ¡m 0 N which satisfies µ Ñ e ¡λ ¦ t v t ¡m 0 N weakly* as Ñ 0 ; and Lemma 3.3.9 (ii) with µ 0 v 0 ¡m 0 N which satisfies µ 0 Ñ v 0 ¡m 0 N weakly* and xµ 0 y Ñ xv 0 ¡m 0 N y as Ñ 0, we conclude by taking the lim inf in the left side of (4.6) and the limit Ñ 0 in the right side of (4.6).

Let us prove that the Malthusian parameter also plays a main role for the stochastic underlying dynamics. For each K N ¦ , let pY K t q t¥0 be the process with infinitesimal generator B K defined, for any f C 0,1 b and µ M pS ¢ R q by

B K F f pµq » S ¢ R f a f px, aqF I pxµ, f yqµpdx, daq (3.38) K » S ¢ R 4 pFpxµ δ px,0q K , f yq ¡ F pxµ, f yqqp1 ¡ pqBpx, aq ¢» S pFpxµ δ py,0q K , f yq ¡ F pxµ, f yqqBpx, aqpkpx, a, yqdy pFpxµ ¡ δ px,aq K , f yq ¡ F pxµ, f yqqDpx, aq B µpdx, daq
where F f pµq : F pxµ, f yq. The following result is similar as one proved in [START_REF] Jagers | Population-size-dependent and age-dependent branching processes[END_REF] for age structured dynamics.

Proposition 3.3.11. Assume that λ ¦ ¡ 0 and there exists C ¡ 0 such that for all px, aq S ¢ R G φ 2 $ px, aq Dpx, aqφ 2 px, aq ¤ Cφpx, aq. 2 and almost surely to a non degenerate limit

(3.39) (i) Let K N ¦ . The process V K defined by V K t : e ¡λ ¦ t xY K t , φy is a square inte- grable martingale which satisfies E xV K y V $ V. The process V K converges in L
V K V . (ii) Assume that sup KN ¦ E xY K 0 , 1y 2 $ V and that Y K 0 converges in law to v 0 M pS ¢ R q as K Ñ V. For all ¡ 0, lim KÑV P ¢ sup t¥0 |V K t ¡ xv 0 , φy| ¡ 0.
Démonstration. (i) : Using a classical semimartingale decomposition for the process Y K proved in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], the process V K is a square integrable martingale with quadratic variation

xV K y t 1 K » t 0 e ¡2λ ¦ s xY K s , G φ 2 $
Dφ 2 yds.

Taking the expectation, we deduce from (3.39) that

E xV K y t $ ¤ C K » t 0 e ¡λ ¦ s E e ¡λ ¦ s xY K s , φy % ds.
Since e ¡λ ¦ t xY K t , φy is a martingale, we deduce that

E xV K y t $ ¤ CE xY K 0 , φy $ K » t 0 e ¡λ ¦ s ds. 57 Therefore E xV K y V $ O ¢ 1 K , ( 3.40) 
which proves (i).

(ii) : Let ¡ 0. We have

P ¢ sup t¥0 |xV K t , φy ¡ xv 0 , φy| ¡ ¤ P ¢ sup t¥0 |M K t | ¡ P |V K 0 ¡ xv 0 , φy| ¡ ẅhere M K t is a martingale started at 0 which satisfies E xM K y V $ O 1 K ¨.
By Doob's inequality, we deduce that

P ¢ sup t¥0 |M K t | ¡ ¤ 2 2 sup t¥0 E |M K t | 2 $ 2 2 E
xM K y V $ and we conclude using (3.40).

As in [START_REF] Bonnefon | Concentration phenomenon in some non-local equation[END_REF], we can give a concrete example in which the eigenmeasure is singular. One can note that this phenomenon appears only if p 1. If p 1, we obtain that r λ 0 : the operator r λ J λ J λ is compact and the eigenelements are continuous functions.

An example of a non regular stable distribution. Let S R d which satisfies (A1). Let Bpx, aq Bpxq such that 

Proof of the Main Results

We can now give the proof of our main results stated in Section 1.

Proof of Theorem 3.1.3. It is obvious that stationary states n M pS ¢ R q are eigenmeasures of the linear operator. Indeed, they are solutions of (3.23) with λ c

³ S ¢ R n.
Since ρpr 0 J0 q ¡ 1 we deduce by monotony that λ ¦ ¡ 0 and we can choose an eigenvector n µ λ ¦R λ ¦ which satisfies c

³ S ¢ R n λ ¦ .
Proof of Theorem 3.1.5. The idea is to transform the solution of the non-linear equation to those of the linear equation. Indeed, let pn t q t¥0 CpR , M pS ¢ R qq be the solution of (3.10) and let us denote ρptq 

³ S ¢ R n t pdx
¡ λ ¦ .
Using (3.42) we deduce that Dptq Ñ 0 as t Ñ V and that ρptq Ñ λ ¦ c as t Ñ V (using a similar method as in [START_REF] Leman | Influence of a spatial structure on the long time behavior of a competitive lotka-volterra type system[END_REF]) that ends the proof.

Discussion

Summary of our results and related literature

We studied the long-time behaviour of an age structured selection-mutation population dynamics. The crowding effect only affects the mortality rate of individuals. This is logistical and does not depend on the trait of the affected individual. The renewal term is linear and non-local. The probability of mutation satisfies p s0, 1r. These assumptions are similar to those in [START_REF] Bonnefon | Concentration phenomenon in some non-local equation[END_REF]. Indeed, we extended results of [START_REF] Bonnefon | Concentration phenomenon in some non-local equation[END_REF] to an age-structured population. In terms of age-structured models, [START_REF] Calsina | Steady states of a selection-mutation model for an age structured population[END_REF] shows the existence of stationary states in a function space for a selection mutation dynamics with age structure, in the pure mutation case. In [START_REF] Nordmann | Dynamics of concentration in a population model structured by age and a phenotypical trait[END_REF], the authors study issues of concentration in a model similar to ours. In particular, in the pure selection case (p 0), they show the convergence of dynamics on traits maximizing fitness. By considering the case p s0, 1r, our results complement them. We showed the existence of eventually singular stationary solutions. When the stationary measure admits a continuous and bounded density, we obtained global stability (in total variation distance) of measure solutions of (3.2). From an application perspective, our assumptions seem difficult to justify. The mortality rate assumption allows us to reduce the study of the non-linear equation to that of the linear problem and to apply a trick similar as in [START_REF] Bürger | Perturbations of positive semigroups and applications to population genetics[END_REF], [START_REF] Metz | The dynamics of physiologically structured populations[END_REF], [START_REF] Iannelli | The Basic Approach to Age-Structured Population Dynamics : Models, Methods and Numerics[END_REF]. Linear dynamics is studied using arguments similar to those developed in [START_REF] Perthame | Transport equations in biology[END_REF] for the age-structured case. We show the existence of principal eigenmeasures for the direct and dual eigenvalue problems. The analysis of the eigenvalue problem is based on a duality approach for studying spectral properties of some non-local operators [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF].

Extension to more general models

In [START_REF] Ackleh | Population dynamics under selection and mutation : Long-time behavior for differential equations in measure spaces[END_REF], the authors study a differential equation on measures space describing a very general selection mutation dynamics (without age structure). They consider very general birth rates and death rates. Crowding effects affect per capita birth rate, and the effect on per capita mortality depends on trait of affected individual. The authors show boundedness and persistence results for the solutions. Mortality rates of the same type are considered in [START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF] for a pure selection model. It was noted that there is not, in general, a single steady state. The approach we use in this article does not allow us to obtain similar results in these very general frameworks. Concerning the renewal term, it could be interesting to consider one of the form

F rn t s pdxq » S ¢ R
Bpy, aqγpy, a, dxqn t pdy, daq.

Note that in this paper, we considered the particularly case γpy, a, dxq p1¡pqδ y pdxq pkpy, a, xqdx. Let's try to apply the same method to the more general renewal condition. We have to solve the direct eigenvalue problem 5 ¡f a N px, aq ¡ Dpx, aqN px, aq λN px, aq N px, 0q ³ S ¢ R Bpy, αqγpy, a, dxqN py, αq.

Following the same ideas as in Section 3, we obtain that the problem is reduced to studying the properties of the operators F λ : MpSq Ñ MpSq defined by

F λ rµs pdxq » S K λ pdx, yqµpdyq.
Arguing that F λ pG λ q I where G λ : CpSq Ñ CpSq is defined by

G λ rfs pxq » S K λ pdy, xqf pyq
we obtain that ρpG λ q ρpF λ q is an eigenvalue of F λ associated with a positive eigenmeasure. Then we have to study continuity and monotonicity properties of the map λ Ñ ρpG λ q. It does not seem possible to deduce such properties in the general case. It should then be considered on a case-by-case basis. Indeed, when stationary states admits a non-trivial singular part, the topology induced by total variation distance is stronger to obtain global stability of solutions. In the pure selection case (p 0), it has been shown in [START_REF] Nordmann | Dynamics of concentration in a population model structured by age and a phenotypical trait[END_REF] that the trait distribution converges toward Dirac measures. In the case p s0, 1r, similar arguments can't be used and the problem stays open. Dans toute la suite, on se donne une famille de fonctions pB , D q ¡0 vérifiant les Hypothèses 4.1.1. On note r λ G λ , r λ J λ : CpSq Ñ CpSq les opérateurs définis par pr λ J λ qfpxq r λ pxqfpxq

r λ ¡ r λ L 1 pSq (4.1) où r λ pxq ³ R B px, aq exp ¡ ³ a 0 D px, αqdα ¡ λa ¨da. (ii) On a maxp}B ¡ B} V , }D ¡ D} V q ÝÑ Ñ0 0.
³ S K λ py, xqf pyqdy et pr λ G λ qfpxq r λ pxqfpxq ³ S K λ px, yqf pyqdy où K λ py, xq ³ R B py, aqkpy, a, xq exp ¡ ³ a 0 D py, αqdα ¡ λa ¨da.
En nous plaçant sous les Hypothèses 4.1.1, nous construisons une approximation régulière pλ , N , φ q des éléments propres principaux pλ ¦ , N, φq (cf. Pour tout λ rλ, Vr, le rayon spectral ρpr λ J λ q (resp. ρpr λ G λ q) est l'unique nombre réel tel qu'il existe une mesure µ λ M pSq (resp. ν λ M pSq) non triviale vérifiant pr Jqµ λ ρpr λ J λ qµ λ (resp. pr Gqν λ ρpr λ G λ qν λ ). Démonstration. Soit ρ R et µ M pSq non-nulle tels que pr Jqµ ρµ. On distingue deux cas. Si r λ ρ, on obtient facilement que µ λ f λ pxqdx où f λ C pSq est un vecteur propre de r λ J λ associé à la valeur propre ρ. En utilisant la Proposition A.2.2, on conclut que ρ ρpr λ J λ q. On considère maintenant le cas où r λ ρ. Comme ρ est une valeur propre positive de rλ Jλ , on a ρ ¤ ρpr λ Jλ q ρpr λ J λ q. Supposons que ρ ρpr λ J λ q. Comme ρ r λ ρpr λ J λ q, on déduit par le Lemme 3.3.2 que ρpr λ J λ q est une valeur propre de r λ J λ . Supposons 1 r λ ¡r λ L 1 pSq, en utilisant des arguments similaires à ceux utilisés dans la démonstration du Théorème 3.2.3 (iii), on en déduit que r λ ρ ce qui est absurde. On a donc nécessairement 1 r λ ¡r λ L 1 pSq. On définit l'opérateur K : CpSq Ñ CpSq en posant

K rfs pxq » S f pyq K λ py, xq r λ ¡ r λ pyq dy.
L'opérateur K est compact, on note γ son rayon spectral. En utilisant que µ est un vecteur propre associé à la valeur propre ρ on déduit que γ ¤ 1. Par ailleurs, le fait que ρpr λ J λ q soit une valeur propre de r λ J λ implique que γ ¡ 1 ce qui mène à la contradiction et conclut la démonstration.

On en déduit le résultat d'unicité pour la valeur propre λ ¦ . 

λ ¡ ¡D I on a }r λ ¡ r λ } V Ñ 0 et }K λ ¡ K λ } V Ñ 0 lorsque Ñ 0. Démonstration. On a |r λ pxq ¡ r λ pxq| § § § § » R exp ¢ ¡ » a 0 D px, αqdα ¡ λa pB px, aq ¡ Bpx, aqqda » R Bpx, aqe ¡pλ D I qa ¢ exp ¢ ¡ » a 0 pD px, αq ¡ D I qdα ¡ exp ¢ ¡ » a 0 pDpx, αq ¡ D I qdα da § § § § ¤ }B ¡ B} V » R exp p¡pD I λqaq da }B} V }D ¡ D} V » R
ae ¡pλ D I qa da où on a utilisé dans la dernière inégalité que pour tout x, y ¥ 0, |e ¡x ¡ e ¡y | ¤ |x ¡ y|.

La démonstration pour K λ est similaire.

On en déduit la convergence uniforme sur tout compact des rayons spectraux. 

sup λI |ρpr λ J λ q ¡ ρpr λ J λ q| ÝÑ Ñ0 0.
Démonstration. On montre la convergence simple puis on conclut par le Théorème de Dini. Soit λ ¡ ¡D I . Pour tout f CpSq, on a

|pr λ J λ qfpxq ¡ pr λ J λ qfpxq| ¤ }r λ ¡ r λ } V }f} V LebpSq}K λ ¡ K λ } V }f} V .
En utilisant le Lemme 4.1.5, on déduit de l'inégalité précédente la convergence r λ J λ ÝÑ r λ J λ lorsque Ñ 0 pour la norme d'opérateur. On procède alors comme dans la démonstration du Théorème 3.3.4. Si r λ ρpr λ J λ q, le rayon spectral est une valeur propre de multiplicité algébrique égale à 1 associée à un vecteur propre positif et on conclut que ρpr λ J λ q ÝÑ ρpr λ J λ q lorsque Ñ 0 par les même arguments (classiques) que dans la démonstration de la Proposition 3.3.4. Si r λ ρpr λ J λ q, on raisonne par l'absurde. Supposons que lim inf Ñ0 ρpr λ J λ q lim sup Ñ0 ρpr λ J λ q. En utilisant la semi-continuité supérieure du rayon spectral, on obtient :

r λ lim inf Ñ0 ρ e pr λ J λ q ¤ lim inf

Ñ0

ρpr λ J λ q ρpr λ J λ q r λ , ce qui est absurde. Si lim inf Ñ0 ρpr λ J λ q lim sup Ñ0 ρpr λ J λ q et lim sup Ñ0 ρpr λ J λ q ρpr λ J λ q, on obtient comme précédemment que r λ r λ ce qui est absurde et permet de conclure. D'après la Proposition 3.3.4, pour tout ¡ 0, l'application λ s¡D I , Vr Þ Ñ ρpr λ J λ q est strictement décroissante et l'application λ sD I , Vr Þ Ñ ρpr λ J λ q est continue.

On conclut la démonstration en appliquant le Théorème de Dini.

En utilisant le lemme précédent, on déduit que pour suffisamment petit, la dynamique approximante admet des éléments propres réguliers. Lemme 4.1.7. Supposons que les Hypothèses 3.1.1 et 4.1.1 soient vérifiées. On suppose que ρpr λ J λ q ¡ 1. Soit λ I s¡D I , λr. Il existe 1 ¡ 0 tel que pour tout s0, 1 r, il existe un unique pλ , N , φ q rλ I , Vr ¢ CpS, L 1 pR qq ¢ CpS, L V pR qq solution de

5 ¡f a N px, aq ¡ D px, aqN px, aq λ N px, aq N px, 0q F rN s pxq, ³ S ¢ R N py, αqdydα 1. 5 f a φ px, aq ¡ D px, aq G rφ s px, aq λ φ px, aq ³ S ¢ R N
py, αqφ py, αqdydα 1, où λ rλ I , Vr est l'unique solution de ρpr λ J λ q 1 (on rappelle que ρpr λ J λ q ρpr λ J λ q, cf. Théorème 3. (i) On a λ ÝÑ λ ¦ lorsque Ñ 0. (ii) La famille pN q est relativement compacte dans M pS ¢ R q pour la topologie de la convergence étroite, les valeurs d'adhérence sont les mesures N M pS ¢ R q solutions de (3.23) avec λ λ ¦ et vérifiant

³ S ¢ R N pdx, daq 1.
(iii) On suppose de plus que 1

1 ¡ r λ ¦ L 2 pSq.
Alors on a inf s0, 1 r,xS

φ px, 0q ¡ 0.
De plus, la famille pφ q est relativement compacte dans M loc pS ¢ R q pour la topologie de la convergence vague, les valeurs d'adhérence sont les solutions nontriviales de (3.5) avec λ λ ¦ . Démonstration. (i),(ii) : On montre tout d'abord que la famille pλ q est bornée. Soit s0, 1 r. Pour tout λ ¡ ¡D I , la norme d'opérateur }r λ J λ } vérifie

}r λ J λ } ¤ }r λ } V } » S K λ py, .qdy} V ¤ ¢ p1 ¡ pq sup 0 1 }B } V p sup 0 1 }B } V }k} V » R e ¡pD I λqa da.
Le terme à droite de l'inégalité ci-dessus ne dépend pas de . C'est une fonction décroissante en λ qui tend vers 0. Le rayon spectral étant borné par la norme d'opérateur, on conclut que la famille pλ q est bornée. La fonction N est de la forme N px, aq f pxqR λ px, aq avec f C pSq. D'une part, on a : R λ px, aq ¤ exp p¡pD I λ I qaq L 1 pR q (4.2) où λ I s¡D I , λr est choisi comme dans le lemme 4.1.7. D'autre part, on obtient par un calcul facile qu'il existe c ¡ 0 tel que pour tout x S et s0, 1 r, on a ³ R R λ px, aqda ¥ c. On obtient donc que :

» S f pxqdx ¤ 1 c » S ¢ R N px, aqdxda 1 c . ( 4.3) 
On déduit de (4.2) et (4.3) que la famille pN q est relativement compacte pour la topologie de la convergence étroite. Soit pλ, N q rλ I , Vr ¢ M pS ¢ R q une valeur d'adhérence de la suite pλ , N q. Elle vérifie

³ S ¢ R N pdx, daq 1. Soit f C 0,1 b , on a » S ¢ R
pf a f px, aq ¡ pD px, aq λ qfpx, aq G rfs px, aqq N px, aqdxda 0.

En passant à la limite Ñ 0 dans l'égalité ci-dessus (le long d'une sous-suite), on obtient que pλ, N q est solution de (3.23). D'après la Proposition 4.1.4 on a λ λ ¦ . Les points (i) et (ii) sont démontrés.

(iii) : On rappelle que φ CpS, L V pR qq vérifie

φ px, aq 1 R λ px, aq p1 ¡ pqφ px, 0q » V a B px, αqR λ px, αqdα p » S φ py, 0q » V a B px, αqkpx, α, yqR λ px, αqdαdy principal de r λ G λ vérifiant ³ S g 1. On a donc 1 » S ¢ R φ N α p1 ¡ pq » S g pxqN px, 0q » R » V a B px, αqR λ px, αqdαdadx p » S N px, 0q » S g pyq » R » V a B px, αqkpx, α, yqR λ px, αqdαdadydx & On déduit facilement l'existence d'une constante C 1 ¡ 0 telle que 1 ¤ C 1 α » S g pxqN px, 0qdx » S N px, 0qdx » S g pxqdx & .
On montre que le terme entre crochets ci-dessus est borné par une constante indépendante de . On a g pxq 

J λ q ¡ 1 et qu'il existe B, k ¡ 0 tels que B ¥ B et k ¥ k. On suppose que r λ ¦ 1 et 1 1 ¡ r λ ¦ L 2 pSq. Enfin, on suppose que v 0 C c pS ¢ R q vérifie v 0 Ñ Ñ0 v 0 C c pS ¢ R q uniformément. Soit pt q R vérifiant t ¡¡ 1 1 ¡ r λ , Ñ 0.
Notons pλ , N , φ q une sous-suite convergeant vers un triplet d'éléments propres principaux pλ ¦ , N, φq. Alors, on a au sens de la convergence étroite des mesures :

e ¡λ t v t ÝÑ Ñ0 m 0 N où m 0 ³ S ¢ R v 0 px, aqφpdx, daq.
Démonstration. Soit v une solution de (4.4). On considère une sous suite pλ , N , φ q convergeant vers les éléments propres principaux pλ ¦ , N, φq. On construit une suite pη q vérifiant l'inégalité (4.5). Tout d'abord, d'après la Proposition 4.1.8 (iii), on a inf ¡0,xS φ px, 0q ¡ 0. On montre ensuite qu'il existe une constante

C 1 ¡ 0 telle que }φ } V ¤ C 1 1 ¡ r λ . En effet, on a φ px, aq 1 R λ px, aq ¢ p1 ¡ pqφ px, 0q » V a B px, αqR λ px, αqdα p » S φ py, 0q » V a B px, αqkpx, α, yqR λ px, αqdα . On a par ailleurs 1 R λ px, aq » V a R λ px, αqdα » V a exp ¢ ¡ » α a D px, uqdu ¡ λ pα ¡ aq dα ¤ » V 0 exp p¡pD I λ qαq dα ¤ » V 0 exp p¡pD I λ I qαq dα.
On en déduit qu'il existe une constante C 1 ¡ 0 telle que φ px, aq ¤ C 2 φ px, 0q puis on conclut en remarquant que φ px, 0q ¤ 1 1¡r λ pxq ³ S K λ px, yqφ py, 0qdy et qu'il existe une constante C 3 ¡ 0 telle que φ px, 0q ¤ C 3 1¡r λ . Enfin, puisque B ¥ B et que }B ¡ B} V Ñ 0 lorsque Ñ 0, il existe B I ¡ 0 tel que pour suffisamment petit, B ¥ B I . Finalement, la suite définie par η pB I Ckp1 ¡ r λ q vérifie (4.5). De (4.6), on déduit que

» S ¢ R |e ¡λ t v t ¡ m 0 N | ÝÑ Ñ0 0. Soit f C b pS ¢ R q, on a | » S ¢ R f e ¡λ t v t ¡ » S ¢ R f m 0 N | ¤ }f} V » S ¢ R |e ¡λ t v t ¡ m 0 N | | » S ¢ R f m 0 N ¡ » S ¢ R f m 0 N | Comme on suppose v 0 C c pS ¢ R q, on a m 0 Ñ m 0 lorsque Ñ 0 où m 0 » S ¢ R v 0 px, aqφpdx, daq,
ce qui permet de conclure.

Le cas p 0 (absence de mutations)

Nous nous intéressons au comportement en temps long des solutions pn t q t¥0 CpR , M pS ¢ R qq de (3.2) dans le cas p 0 ou "sélection pur", qui vérifient :

5 f t n t px, aq f a n t px, aq ¡ ¡ Dpx, aq c ³ S ¢ R n t py, αqdydα © n t px, aq n t px, 0q ³ R Bpx, αqn t px, αqdα, pt, x, aq R ¢S ¢ R . (4.7)
Dans Nordmann et al. [START_REF] Nordmann | Dynamics of concentration in a population model structured by age and a phenotypical trait[END_REF], les auteurs étudient le comportement limite des solutions de l'équation (4.7) sous l'échelle de temps t t{ lorsque Ñ 0. Sous des hypothèses bien précises, ils montrent que le comportement limite est décrit par une famille de masses de Dirac pα t δ xt q t¥0 où la dynamique du trait px t q t¥0 est donnée par une équation différentielle ordinaire. Notre approche est différente puisque nous n'effectuons pas cette renormalisation temporelle. Le résultat principal de cette section est le Théorème 4.1.13. Il étend les résultats de [1, Section 4] à des populations structurées en âge. Nous montrons que la distribution des traits concentre sur des masses de Dirac en des traits maximisant la fitness.

Pour tout x S, on définit λpxq comme l'unique solution de l'équation r λpxq pxq 1. On note λ ¦ sup xS λpxq et Σ tx S : λpxq λ ¦ u. On se place sous les hypothèses suivantes.

Hypothèses 4.1.12. Supposons que : Alors, la famille pn t q t¥0 M pS ¢ R q est relativement compacte pour la topologie de la convergence étroite. Les valeurs d'adhérences sont les mesures n vérifiant npdx, daq µpdxqspx, aqda, c

(i) λ ¦ ¡ 0, (ii) Pour tout ouvert U vérifiant Σ U S, on a n 0 pU ¢ R q ¡ 0, et n 0 pdx, daq νpdxqu 0 px, daq, (iii) Pour tout x Σ c , il existe αpxq ¡ 0 tel que νpty S : λpyq ¥ αpxq ¡ λpxquq ¡ 0.
» S ¢ R npdx, daq λ ¦ avec supppµq Σ et spx, aq spx, 0q exp ¢ ¡ » a 0 Dpx, αqdα ¡ λ ¦ a .
La démonstration du Théorème 4.1.13 est fondée sur les lemmes suivants. L'idée principale est de séparer l'étude du comportement en long de la distribution des traits de celle des âges. Il nous semble qu'il s'agit d'une approche similaire à celle utilisée dans [START_REF] Nordmann | Dynamics of concentration in a population model structured by age and a phenotypical trait[END_REF]. 

f t ũt f a ũt ¡ ¡ Dpx, aq c ³ S ¢ R n t © ũt ũt px, 0q ³ R Bpx, aqũ t px, αqdα. On pose v t px, daq exp ¡ ³ t 0 ³ S ¢ R n s © ũt px, daq qui vérifie 5 f t v t f a v t ¡Dv t v t px, 0q ³ R Bpx, αqv t px, dαq.
On a donc (cf. [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF], [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized doeblin's conditions[END_REF]) 

e ¡λpxqt v t px, .q ÝÑ tÑ V cN x (4.
ρ t ¢ f t s t f a s t s t pD c » S ¢ R n t pdy, dαqq ¡s t f t ρ t .
Comme ρ t pSq Ñ λ ¦ {c lorsque t Ñ V et puisque le long d'une sous-suite, on a ρ t Ñ ρ M pSq avec supppρq Σ, on déduit que pour tout x Σ supppρq, s t px, .q Ñ spx, .q dans L 1 pR q où spx, .q est solution de 5 f a spx, aq pDpx, aq λ ¦ q spx, aq 0, ³ R spx, aqda 1.

ce qui permet de conclure. (4.12) Notons que le système (4.12) est une simple réécriture de l'équation (4.7) pour une condition initiale vérifiant ν δ x δ y . Ainsi, Si l'on suppose que λpxq ¡ λpyq et λpxq ¡ 0, les Hypothèses (4.1.12) (i),(iii) sont satisfaites et le Théorème 4.1.13 assure que pu t px, .q, u t py, .qq converge vers l'état stationnaire pupx, .q, 0q lorsque t Ñ V. Ce résultat est utile pour étudier la phase d'invasion d'un mutant sous les hypothèses de la dynamique adaptative (cf. Section 1.2.2).

Application à un système compétitif bimorphe

Un résultat spectral

Dans cette partie, nous montrons un résultat sur le spectre ponctuel du générateur du semi-groupe associé aux solutions de l'équation linéaire (3.18). Il s'agit d'une application directe de la formulation variationnelle pour la valeur propre principale des opérateurs r λ J λ (cf. Remarque 3.2.4 et [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]). Pour tout λ rλ, Vr on pose : λ p pr λ J λ q suptµ R |hϕ CpSq, ϕ ¡ 0 tel que pr λ J λ qϕ µϕ ¤ 0u.

Le lemme suivant est une application directe de [37, Théorème 3.1] et du Théorème 3.2.3.

Lemme 4.2.1. Supposons que les Hypothèses 3.1.1 soient vérifiées. Pour tout λ rλ, Vr, on a λ p pr λ J λ q ρpr λ J λ q.

On introduit le générateur du semi-groupe associé aux solutions pv t q t¥0 CpR , CpS, L 1 pR qqq de l'équation linéaire 3.18, défini par 

Ageing's sensitivity to natural selection has long been discussed because of its apparent negative effect on individual's fitness. Thanks to the recently described (Smurf) 2-phase model of ageing we were allowed to propose a fresh angle for modeling the evolution of ageing. Indeed, by coupling a dramatic loss of fertility with a high-risk of impending death -amongst other multiple so-called hallmarks of ageing -the Smurf phenotype allowed us to consider ageing as a couples of sharp transitions. The bd model

we describe here is a simple life-history trait model where each asexual and haploid individual is described by its fertility period x b and survival period x d . We show that, thanks to the Lansing effect, x b and x d converge during evolution to configurations x b ¡x d 0.

This guarantees that a certain proportion of the population maintains the Lansing effect which in turn, confers higher evolvability to individuals. To do so, we build an individual-based stochastic model which describes the age and trait distribution dynamics of such a finite population. Then we rigorously derive the adaptive dynamics models, which describe the trait dynamics at the evolutionary timescale. First, we extend the Trait substitution sequence with age structure to take into account the Lansing effect. Finally, we study the limiting behaviour of this jump process when mutations are small. We show that the limiting behaviour is described by a differential inclusion whose solutions xptq px b ptq, x d ptqq reach in finite time the diagonal tx b x d u and then stay on it. This differential inclusion is a natural way to extend the canonical equation of adaptive dynamics in order to take into account the lack of regularity of the invasion fitness function on the diagonal tx b x d u.

Introduction

Ageing is commonly defined as an age-dependant increase of the probability to die after the maturation phase (Kirkwood and Austad [START_REF] Kirkwood | Why do we age ?[END_REF]). It affects a broad range of organisms in various ways ranging from negligible senescence to fast post-reproductive death (reviewed in [START_REF] Jones | Diversity of ageing across the tree of life[END_REF]). In the recent years, a new 2-phases model of ageing proposed by Tricoire and Rera [START_REF] Tricoire | A new, discontinuous 2 phases of aging model : lessons from drosophila melanogaster[END_REF] described the ageing process not as being continuous but as made of at least 2 consecutive phases separated by a dramatic transition. This transition, dubbed "Smurf transition", was first described in drosophila ( [START_REF] Rera | Modulation of longevity and tissue homeostasis by the drosophila pgc-1 homolog[END_REF], [START_REF] Rera | Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in drosophila[END_REF]). In short, this transition occurs in every individuals prior to death and is marked by a series of associated phenotypes encompassing high-risk of impending death, increased intestinal permeability, loss of energy stores, reduced fertility (c.f [START_REF] Rera | The smurf transition : new insights on ageing from end-of-life studies in animal models[END_REF]). It was later shown to be evolutionarily conserved in Caenorhabditis elegans and Danio rerio (c.f [START_REF] Dambroise | Two phases of aging separated by the smurf transition as a public path to death[END_REF]). Such broad evolutionary conservation of a physiological marker of physiological age raises the question of an active selection of the underlying mechanisms throughout evolution. Since the beginning of ageing studies, the question of its ability to appear through evolution has been raised. In fact, since the Darwinian theory of evolution stipulates that species arise and develop thanks to the natural selection of small, inherited variations that increase the individual's ability to compete, survive, and reproduce (c.f [START_REF] Darwin | The origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life[END_REF]), many suggested that ageing -and more precisely senescence -could not be actively and directly selected thanks to evolution (c.f [START_REF] Fabian | The evolution of aging[END_REF]). One of the first to publicly address the question of the evolution of ageing was August Weismann who proposed in 1881 that the life expectancy was programmed by "the needs of the species" (c.f [START_REF] Weismann | The origin of the markings of caterpillars[END_REF]). Numerous theoretical works have been developed about ageing for the past 60 years in order to recenter the selection of an ageing process on the individuals more than the population. Here we will focus our attention on the capability of a trait such as ageing to be selected through evolution. The concept of evolvability comes from the EvoDevo community. It "is an abstract, robust, dispositional property of populations, which captures the joint causal influence of their internal features upon the outcomes of evolution" (c.f [START_REF] Brown | What evolvability really is[END_REF]). In other terms, it is "the capacity to generate heritable selectable phenotypic variation" (c.f [START_REF] Kirschner | Evolvability[END_REF]). It is an interesting concept as it allows for a character that has no direct effect on fitness to be under strong selection simply for its ability to birth the genetic-phenotypic variation that is the support of evolution. If the only fitness -as an individual reproductive success or its average contribution to the gene pool of the next generation -were at play in the evolution process, the best adapted individuals would have infinite fertility as well as longevity. Nevertheless, this situation is never observed mainly because organisms adapted to constant variations of environmental conditions and physical limitations of resources availability. Thus, an active form mechanism for the elimination of these fitness-excessive individuals would represent a selective advantage in an environment where scarcity is the rule. The Lansing effect is a good candidate for such a mechanism. It is the effect through which the "progeny of old parents do not live as long as those of young parents" in rotifers (c.f [START_REF] Lansing | A transmissible, cumulative, and reversible factor in aging[END_REF], [START_REF] Lansing | A nongenic factor in the longevity of rotifers[END_REF]). More recently, it has been shown that older drosophila females and in some extent males tend to produce shorter lived offspring (c.f [START_REF] Priest | The role of parental age effects on the evolution of aging[END_REF]), zebra finch males give birth to offspring with shorter telomere lengths and reduced lifespans (c.f [START_REF] Noguera | Experimental demonstration that offspring fathered by old males have shorter telomeres and reduced lifespans[END_REF]) and finally in humans, "Older father's children have lower evolutionary fitness across four centuries and in four populations" (c.f [4]). In the present article, we decided to approach the problem of ageing selection and evolution by using an extremely simplified version of a living organism. It is an haploid and asexual organism carrying only two "genes", x b that defines the duration of its ability to reproduce and x d that defines the duration of its ability to maintain its integritystay alive (see Figure 5.1). We will further discuss the properties of this simple model in the next part. Although quite simple, it allows the modeling of all types of observed ageing modes from negligible senescence to sudden post-reproductive death through post-reproductive "menopause-like" survival. The main result of the present article is that a pro-senescence program can be selected through Darwinian mechanisms thanks to the Lansing effect. Indeed, our main mathematical result (see Theorem 5.4.17) shows that evolution drives the trait px b , x d q towards configurations x b x d . It means that the individuals can enjoy all their reproductive capacity, and then are quickly removed from the population. Moreover, this theorem shows that after reaching the configurations x b x d , the traits x b and x d continue to increase with decreasing speed, while maintaining x b x d . This decrease in the speed of evolution is a consequence of the fitness gradients being decreasing functions of the traits (see Remark 5.4.4) and is related to the well-known fact that the strength of selection decreases with age (c.f [START_REF] Haldane | New paths in genetics[END_REF], [START_REF] Medawar | An unsolved problem of biology[END_REF], [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF]). We built an individual based stochastic model inspired by Tran [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF]. It describes an asexual and haploid population with a continuous age and a continuous life-history trait structure. In this model, the life-history trait of every individual is thus a couple of positive numbers px b , x d q R 2 . An individual with trait px b , x d q reproduces at rate one as long as it is younger than x b and cannot die as long as it is younger than x d (see Figure 5.1). This model leads to three typical configurations (see Figure 5.2). From one generation to the next, variation is generated by genetic mutations. In addition, natural selection occurs through mortality due to competition for resources thanks to a logistic equation defining the maximum load of the medium. Finally, we model the epigenetic effect of senescence through the Lansing Effect. It introduces a source of phenotypic variation at a much faster time-scale than genetic mutations. In that aim, we assume that an individual that reproduces after age x d transmits to his descendant a shorter life expectancy (see Section 2 for details). Therefore, only individuals with trait x d x b are affected (see Figure 5.2 (c)). That creates an adaptive trade-off which impacts the phenotypic evolution of the population.

The purpose of this paper is to study the long-term evolution of the trait x px b , x d q and to determine wether it concentrates on x b ¡ x d 0. To do so, we are inspired by the theory of adaptive dynamics [START_REF] Metz | How should we define 'fitness' for general ecological scenarios ?[END_REF], [START_REF] Metz | Adaptive dynamics : a geometrical study of the consequences of nearly faithful reproduction[END_REF], [START_REF] Dieckmann | The dynamical theory of coevolution : a derivation from stochastic ecological processes[END_REF]. Adaptive dynamics theory studies the phenotypic eco-evolution of large populations under the assumption that genetic mutations are rare and have small effects. A central tool in that theory is the concept of invasion fitness. The invasion fitness is a function 1 ¡ zpy, xq unformally defined as the probability that an individual with trait y survives in a resident population with trait x. In section 4, we prove that the invasion fitness satisfies the simple relation 1 ¡ zpy, xq maxpλpyq ¡ λpxq, 0q where λpxq is the Malthusian parameter, describing the adaptive value associated with the trait x (see Section 3.1 (5.9) for the definition). This allows us to introduce the Trait Substitution Sequence process (TSS) which is a pure jump process describing the successive invasions of successfull mutants in monomorphic populations at the demographic equilibrium. The TSS has been heuristically introduced in [START_REF] Metz | Adaptive dynamics : a geometrical study of the consequences of nearly faithful reproduction[END_REF], [START_REF] Dieckmann | The dynamical theory of coevolution : a derivation from stochastic ecological processes[END_REF] for population structured in traits. In [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], it has been rigorously derived from an individual based model and generalised in [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], to age-structured populations. Our case differs from [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF] by mainly two reasons : the additional Lansing effect and the specific form of the mutation kernel which is not absolutely continuous with respect to Lebesgue measure on R 2 (as assumed in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]). In the usual case, the TSS is approximated by the solution of the Canonical equation of adaptive dynamics when the size of mutation is small and in a longer time-scale (cf. [START_REF] Champagnat | The canonical equation of adaptive dynamics : a mathematical view[END_REF], [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF], [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]). This limiting theorem requires the Lipschitz regularity of the fitness gradient. In our case this assumption is not satisfied. Nonetheless, we prove that the limiting behaviour of the TSS when mutation are small is captured by a differential inclusion, using an approach developed in [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF]. A differential inclusion is an extension of ordinary differential equation to set-valued time-derivatives, which extends Cauchy-Lipschitz theory to non regular gradient cases. In our case, the gradient is smooth except on the diagonal tx b x d u.

Therefore, we prove that the solutions are well-defined until they attain the diagonal (in finite time). Then they stay on this line and evolve with different speeds. The drift of the differential inclusion depends on the derivatives of the Malthusian parameter with respect to the trait variable. These derivatives are expressed as functions of the stable age distribution and reproductive value as in [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF], [START_REF] Caswell | Reproductive value, the stable stage distribution, and the sensitivity of the population growth rate to changes in vital rates[END_REF] (see Remark 5.4.4).

In section 2, we present the individual based model. Thanks to simulations, we show what was suggested by observations. The trait distribution of the population stabilises on the diagonal x b ¡ x d 0.

In Section 3, we study the deterministic approximations of the stochastic dynamics under the assumption of large population and rare mutations. These approximations are non-linear systems of partial differential equations similar to the Gurtin-McCamy Equation [START_REF] Gurtin | Non-linear age-dependent population dynamics[END_REF]. We study their long-time behaviour and give some results of convergence to the stationary states. In section 4, we state and prove the main mathematical results of this paper concerning the approximation by the TSS and the canonical inclusion of adaptive dynamics. (Theorem 5.4.13 and Theorem 5.4.17).

A stochastic model for the evolution of lifehistory traits

At each time t ¥ 0, the population is described by a point measure on pR ¦ q 2 ¢ R

Z K t pdx, daq 1 K N K t i1
δ px i ptq,a i ptqq pdx, daq

(5.1)
where N K t KxZ K t , 1y is the population size, K is the order of the population size and weights each individual, x i ptq px i b ptq, x i d ptqq pR ¦ q 2 is the trait of the individual i and a i ptq R is its age. The dynamics is defined as a piecewise deterministic Markov process which jumps as follows :

• An individual px, aq pR ¦ q 2 ¢ R reproduces at rate 1 a¤x b . The trait of the newborn y py b , y d q is determined by the following two-steps mechanism (see Numerical simulation. The pictures in Figure 5.4 represent a simulation of the trait marginals dynamics of the process Z K t pdx, daq. We consider a monomorphic initial population with trait x p1.2, 1.6q and N K 0 10000. We consider a competition rate η 0.0005, a probability of mutation p K 0.05 and a variance of mutations σ 0.05. At time t 0, the population is monomorphic with trait px b , x d q p1.2, 1.6q. We observe that before that the trait x b reaches the value of 1.5, the trait x d doesn't evolve, there 

Python code for numerical simulations

We give the Python script for the numerical simulations of the individual based model described above. The algorithm is based on a classical acceptation/reject method (see [START_REF] Champagnat | Unifying evolutionary dynamics : from individual stochastic processes to macroscopic models[END_REF], [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]) 

#

Monomorphic and bimorphic deterministic dynamics

In this section, we study a deterministic approximation of the process Z K when K goes to infinity. We also assume that p K goes to zero : it means that almost no mutation occurs on a time interval r0, T s. Nonetheless, some phenotypic variation is created by Lansing Effect. Since our model is density-dependent, the deterministic approximation is a system of classical non-linear partial differential equations similar as the Gurtin MacCamy Equation [START_REF] Gurtin | Non-linear age-dependent population dynamics[END_REF]. In the monomorphic case, we show that the dynamics converges to the unique non-trivial equilibrium. In the bimorphic case, we show the convergence to a monomorphic equilibrium. Note that a monomorphic population with trait x is composed of two subpopulations with traits px b , x d q and px b , 0q. 

Monomorphic dynamics

Let x px b , x d q pR ¦ q 2 be a phenotypic trait. We consider a monomorphic initial sequence pZ K 0 q K such that Z K 0 converges as K Ñ V to the measure δ x n x p0, aqda which describes a monomorphic population with trait x. Then, as in [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF], we can prove that the sequence of processes pZ K q K converges in probability on any finite time interval to the weak solution pn x pt, .q, t ¥ 0q ppn 1 x pt, .q, n 2 x pt, .qq, t ¥ 0q CpR , L 1 pR q 2 q of the following system of partial differential equations

5 f t n x pt, aq f a n x pt, aq ¡ pD x paq η}n x pt, .q} 1 Iq n x pt, aq n x pt, 0q ³ R B x pαqn x pt, αqdα (5.4)
where the densities n 1

x pt, .q and n 2 x pt, .q describe the population distributions with trait px b , x d q and px b , 0q respectively ;

}n x pt, .q} 1 it1,2u » R |n i x pt, αq|dα
is the total population size and

B x paq ¢ 1 a¤x b x d 0 1 x d a¤x b 1 a¤x b , D x paq ¢ 1 a¡x d 0 0 1 (5.5)
are the birth and death interactions. Equation (5.4) can be interpreted as a selectionmutation equation with discrete trait space and age structure. We refer to [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF] for the well-posedness theory of L 1 pR q 2 solutions of Equation (5.4).

We introduce the set of viable traits V tx px b , x d q pR ¦ q 2 : x b x d ¡ 1u.

(5.6)

We show that for any trait x V, there exists a unique non-trivial and globally stable stationary state of (5.4).

Proposition 5.3.2. Assume that x V. There exists a unique non-trivial stationary solution n x L 1 pR q 2 to Equation (5.4). Moreover, any L 1 pR q 2 non negative solution n x pt, .q of (5.4) such that n 1 x pt, .q $ 0 converges to n x in L 1 pR q 2 as t Ñ V.

Remark 5.3.3. In Proposition 5.3.6 below, we will give a more explicit expression for the stationary state n x .

The proof of Proposition 5.3.2 is based on the study of the associated linear dynamics. We introduce the linear operator

A : DpAq L 1 pR q 2 Ñ L 1 pR q 2 u Þ Ñ ¡u I ¡ D x paqu (5.7)
where DpAq tu L 1 pR q 2 : u abs. cont., u I L 1 pR q 2 , up0q ³ R B x pαqupαqdαu. It is well known that A is the infinitesimal generator of a strongly continuous semigroup of linear operators [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF]Proposition 3.7] which describes the solutions of the linear system of McKendrick Von-Foerster Equation

5 f t v x pt, aq f a v x pt, aq ¡D x paqv x pt, aq v x pt, 0q ³ R B x pαqv x pt, αqdα.
(5.8)

In [START_REF] Clément | Analysis and calibration of a linear model for structured cell populations with unidirectional motion : Application to the morphogenesis of ovarian follicles[END_REF], a similar linear model is studied. The "entropy method" introduced in [START_REF] Perthame | Transport equations in biology[END_REF] allows the authors to prove the convergence of the normalised solutions to some stable distribution in some weighted L 1 -space. We need stronger convergence in order to study the long-time behaviour of the masses of the solutions of (5.4). Since the birth matrix B x is not irreducible and the parameters B x and D x are not smooth, we cannot apply Theorems 4.9 and 4.11 in [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF]. Nonetheless, we easily extend them to our reducible and non-smooth setting.

We define the Malthusian parameter λpxq associated with some trait x as the unique solution of the equation

» x b x d 0 e ¡λpxqa da 1.
(5.9) Proposition 5.3.4 justifies this definition and shows that λpxq is the asymptotic growth rate of the dynamics defined by (5.8). Its proof is postponed to Appendix.

Let us define for all z C the 2 ¢ 2 matrix

Fpzq » R B x paq exp ¢ ¡ » a 0 pD x pαq zIqdα da.
(5.10) (Note that it is well-defined since B x has compact support).

Proposition 5.3.4. Assume that x V. Then the linear operator A admits a unique couple of simple principal eigenelements pλpxq, N x q R ¦ ¢DpAq where the stable age distribution N x satisfies N 1

x paq e ¡pλpxqa pa¡x d q0q , N 2 x paq rFpλpxqqs 21 1 ¡ rFpλpxqqs 22 e ¡p1 λpxqqa .

Moreover, for any non-negative solution v x pt, aq of (5.8) in L 1 pR q 2 , there exists a positive constant cpv x p0, .qq such that e ¡λpxqt v x pt, .q Ñ cpv x p0, .qqN x in L 1 pR q 2 as t Ñ V.

Let us now give a lemma which will be used to study the long-time behaviour of the masses of the solutions of (5.4) and whose proof is postponed to Appendix. (5.12)

We conclude this section by proving Proposition 5.3.2.

Proof of Proposition 5.3.2. We prove the first assertion. Let x V and let λpxq be the principal eigenvalue of A given by Proposition 5.3.4. Let n x be the (unique) principal eigenvector of A which satisfies η }n x } 1 λpxq. It is obvious that n x is a non-trivial stationary state of (5.4). Reciprocally, let n be a stationary state of (5.4). Then we have necessarily λpxq η }n} 1 and that n is an eigenvector of A associated with the eigenvalue λpxq that allows us to conclude. We now study the long-time behaviour of the solutions. Let us define

v x pt, aq exp ¢ η » t 0 }n x ps, .q} 1 ds n x pt, aq.
It is straightforward to prove that v x is a solution of the linear equation (5.8). By Proposition 5.3.4 we have e ¡λpxqt v x pt, .q Ñ cpv x p0, .qqN x in L 1 pR q 2 as t Ñ V. We deduce that for i t1, 2u and denoting ρ i x ptq }n i x pt, .q} 1 ,

n i x pt, .q ρ i x ptq e ¡λpxqt v i x pt, .q ³ R e ¡λpxqt v i x pt, αqdα Ñ N i x ³ R N i x pαqdα (5.13) 
in L 1 pR q as t Ñ V. We now study the behaviour of the masses ρ x ptq. By deriving under the integral, we obtain that for i t1,

2u dρ i x ptq dt 2 j1 » R prB x pαqs ij ¡ rD x pαqs ij qn j x pt, αqdα ¡ ηρ i x ptq}ρ x ptq} 1 2 j1 ρ j x ptq » R prB x pαqs ij ¡ rD x pαqs ij q n j x pt, αq ρ j xptq dα ¡ ηρ i x ptq}ρ x ptq} 1 .
Hence we obtain by (5.13) that dρ x ptq dt pA Aptqqρ x ptq ¡ η}ρ x ptq} 1 ρ x ptq where A pa ij q and for pi, jq t1, 2u 2 ,

a ij » R prB x pαqs ij ¡ rD x pαqs ij q N j x pαq ³ R N j x dα, (5.14) 
and Aptq is a continuous function decreasing to zero as t tends to infinity. Since a 11 λpxq ¡ 0, a 21 ¥ 0, a 12 0 and a 22 0, Lemma 5.3.5 allows us to conclude that ρ x ptq converges to ρ x , which is defined as the unique solution of the equation Aρ x ¡η}ρ x } 1 ρ x 0. We easily solve this system and we obtain that ρ x satisfies ρ 1

x λpxq η 1 1

a 21 λpxq¡a 22 , ρ 2 x a 21 λpxq ¡ a 22 ρ 1 x . ( 5.15) 
We conclude this section by writing more explicit formulas for the stationary state n x . Proposition 5.3.6. Let x V then we have

n 1 x paq ρ 1 x N 1 x paq ³ R N 1 x pαqdα , n 2 x paq ρ 2 x N 2 x paq ³ R N 2 x pαqdα where ρ 1 x λpxq η 1 1 a 21 λpxq¡a 22 , ρ 2 x a 21 λpxq ¡ a 22 ρ 1 x ,
N x is defined in Proposition 5.3.4 and a ij are defined in (5.14).

Démonstration. It is a direct consequence of (5.13) and (5.15).

Interprétation biologique 1. Equation (5.4) describes the dynamics of a large monomorphic population with trait x. Proposition 5.3.2 shows that the age distribution of the population stabilizes around the equilibrium n x pn 1

x , n 2

x q. The equilibria n 1

x and n 2

x describe the age equilibria of the population with trait px b , x d q and px b , 0q respectively. We observe that if x b x d , then a 21 0 ρ 2

x and Proposition 5.3.6 leads to the equilibrium n x pn 1 x , 0q.

Bimorphic dynamics

Let x px b , x d q and y py b , y d q be two viable traits. We consider a bimorphic initial sequence pZ K 0 q K weakly converging to δ x n x p0, aqda δ y n y p0, aqda as K tends to infinity. Using similar arguments as in [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF], we can prove that the sequence of processes pZ K q K converges in probability, on any finite time interval, to the solution ppn x pt, .q, n y pt, .qq, t ¥ 0q L 1 pR q 4 of the following system of non-linear partial differential equations 6 9 9 9 9 8 9 9 9 9 7 f t n x pt, aq f a n x pt, aq ¡ pD x paq ηp}n x pt, .q} 1 }n y pt, .q} 1 qIq n x pt, aq n x pt, 0q ³ R B x pαqn x pt, αqdα f t n y pt, aq f a n y pt, aq ¡ pD y paq ηp}n x pt, .q} 1 }n y pt, .q} 1 qIq n y pt, aq n y pt, 0q ³ R B y pαqn y pt, αqdα.

(5.16) Equations (5.16) describe the dynamics of two monomorphic populations with traits x and y interacting by competition. We prove the following proposition. Proposition 5.3.7. Let x, y V such that x b x d y b y d . Then any L 1 pR q 4solution pn x pt, .q, n y pt, .qq of (5.16) satisfying n 1 y pt, .q $ 0 converges to p0, n y q in L 1 pR q 4 as t Ñ V. Démonstration. Let x, y V such that x b x d y b y d . Then by (5.9), we have that λpxq λpyq. For u tx, yu we define v u pt, aq exp ¢ η » t 0 p}n x ps, .q} 1 }n y ps, .q} 1 qds n u pt, aq.

The functions v x and v y are solutions of the linear systems (5.8). We deduce from Proposition 5.3.4 that e ¡λpuqt v u pt, .q Ñ cpv u p0, .qqN u in L 1 pR q 2 as t Ñ V, for a positive constant cpv u p0, .qq. Hence, we obtain that e ¡λpxqt ³ R v 1

x pt, αqdα converges to a positive limit. Since λpyq ¡ λpxq it comes that e ¡λpyqt ³ R v 1

x pt, αqdα converges to 0 as t Ñ V. We deduce that

ρ 1 y ptq ρ 1 x ptq e ¡λpyqt ³ R v 1 y pt, αqdα e ¡λpyqt ³ R v 1 x pt, αqdα Ñ V.
Since ρ 1 y ptq is bounded we deduce that ρ 1

x ptq Ñ 0 and similarly that ρ 2 x ptq Ñ 0. Then the population with trait x becomes extinct. Using similar arguments as in the previous proof we obtain that n y pt, .q Ñ n y in L 1 pR q 2 which allows us to conclude.

Interprétation biologique 2. Equation (5.16) describes a competition dynamics between two large monomorphic populations with trait x and y. Proposition 5.3.7 shows that if x b x d y b y d , then the population with trait y invades and becomes fixed while the population with trait x becomes extinct. That gives us an invasion-implies-fixation criterion.

Adaptive dynamics analysis

In this section, we study the model that we introduced in Section 2 under the different scaling of the adaptive dynamics. We generalise the Trait substitution sequence with age structure (cf. [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]) to take into account the Lansing Effect. Then we study the behaviour of the TSS on a large time-scale when mutations are small. We show that the limiting behaviour of the TSS is described by a differential inclusion which generalises the canonical equation of adaptive dynamics (cf. [START_REF] Dieckmann | The dynamical theory of coevolution : a derivation from stochastic ecological processes[END_REF], [START_REF] Champagnat | The canonical equation of adaptive dynamics : a mathematical view[END_REF], [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF]) to non regular fitness functions. We first state some properties of the demographic parameters and introduce the invasion fitness function.

Malthusian parameter and invasion fitness

Let us introduce the following sets :

U 1 tx V : x b x d u, U 2 tx V : x d x b u and H tx V : x b x d u. Figure 5.5 -Picture of V U 1 H U 2 .

Malthusian parameter

We now give some properties of the Malthusian parameter λpxq defined in (5.9). Proposition 5.4.1.

(i) For all x V, 0 ¤ λpxq 1. (ii) The map x V Þ Ñ λpxq is continuous. It is differentiable on U 1 U 2 and satisfies dx U 1 , ∇λpxq ¢ e ¡λpxqx b

Gpxq

, 0

(5.17)

dx U 2 , ∇λpxq ¢ 0, e ¡λpxqx d

Gpxq

where Gpxq

³ x b x d 0 ae ¡λpxqa da. (iii) We have sup xU 1 U 2 }∇λpxq} V.
Moreover, for all i t1, 2u, the fitness gradient ∇λ is Lipschitz on U i .

Remark 5.4.2. Note that the Malthusian parameter λpxq is not differentiable on the diagonal H, which can be easily obtained by computing left and right partial derivatives on H. Assume that λpxq ¥ 1. Then we obtain that 1

³ x b x d 0 e ¡λpxqa da ¤ 1 ¡ e ¡x b x d which is absurd.
(ii) We prove the continuity. Let x V and let px n q be a sequence of V such that x n Ñ x. By (i), λ is bounded and we can extract a subsequence (still denoted px n q n by simplicity) such that λpx n q Ñ λ ¦ . We deduce that 1 

pλ, xq R ¢U i Þ Ñ » x b x d 0 e ¡λa da ¡ 1. We deduce that λ is differentiable over U 1 U 2 and that di t1, 2u, dx U i , ∇λpxq ¢ e ¡λpxqpx b x d q Gpxq i . (iii) It is straightforward to check that for all x V, e ¡λpxqpx b x d q Gpxq ¤ 1 ³ 1
0 ae ¡a da which allows us to obtain that sup xU 1 U 2 }∇λpxq} V. Moreover, the gradient ∇λ is obviously differentiable on U i . Since G is bounded below by ³ 1 0 ae ¡a da, we deduce that ∇λ has bounded derivatives on U i and that ∇λ is Lipschitz on U i . Remark 5.4.4. Formulae (5.17) describe the sensitivity of the Malthusian parameter to small variations of the trait x as well as the strength of selection at ages x b and x d for a population with Lansing effect. The quantity Gpxq can be interpreted as the mean generation time associated with the trait x. Moreover (5.17 

di t1, 2u, dx U i , ∇λpxq ¢ N 1 x px b x d q Gpxq i (5.18)
where N 1

x is the stable age distribution. In [START_REF] Caswell | Reproductive value, the stable stage distribution, and the sensitivity of the population growth rate to changes in vital rates[END_REF], Caswell obtains similar formulae for derivatives of the Malthusian parameter with respect to some little perturbations on the intensity of birth or death at some given age while our formulae are obtained considering a small perturbation on the duration of the reproduction phase (not on the intensity).

The following proposition recalls a simple link between the Malthusian parameter and the stationary state of the monomorphic partial differential equation (5.4). Proposition 5.4.5.

(i) For all x V, we have λpxq η }n x } 1 . (ii) The map x V Þ Ñ n x p0q is continuous and bounded.

Démonstration. (i) has been proved at the beginning of the proof of Proposition 5.3.2. (ii) By (i) we have

λpxq η n 1 x p0qu 1 pxq n 2 x p0qu 2 pxq ¨(5.19)
where

u 1 pxq » V 0 exp ¢ ¡ » a 0 1 α¡x d dα ¡ λpxqa da ; u 2 pxq » V 0 exp p¡p1 λpxqqaq da.
Moreover n x p0q is a solution of n x p0q Fpλpxqq n x p0q

(5.20

)
where F is defined in (5.10). From (5.19) and (5.20) we obtain by simple computation that

n 1 x p0q λpxq η 1 u 1 pxq u 2 pxq rFpλpxqqs 21 1¡rFpλpxqqs 22
which is a continuous function of x. Boundedness is obvious arguing that n 1

x p0q ¤ }n x } 1 .

Invasion fitness

We extend the definition of the invasion fitness for age-structured populations introduced in [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]Section 3] to take into account the Lansing effect. Definition 5.4.6. For all y R ¦ and x V, the invasion fitness 1 ¡zpy, xq is defined as the survival probability of a bi-type age structured branching process with birth rates and death rates defined in (5.5), respectively equal to B y paq and D y paq η }n x }I.

The next proposition gives a precise and precious relation between the invasion fitness and the Malthusian parameter. Proposition 5.4.7. Let y R ¦ and x V, then the invasion fitness satisfies 1 ¡ zpy, xq maxpλpyq ¡ λpxq, 0q.

(5.21)

Démonstration. Let Z t pdaq pZ 1 t pdaq, Z 2 t pdaqq be an age-structured branching process with birth rates B y paq and death rates D y paq η }n x }I D y paq λpxqI. The process Z t becomes extinct if and only if the process Z 1 t becomes extinct. Indeed, if Z 1 0 0, the process Z 2 t evolves as a sub-critical branching process. The process Z 1 t is an age structured branching process with birth rates and death rates respectively We have obtained that the equation z F pzq is equivalent to By definition of the Malthusian parameter, for all u tx, yu we have

z ¡ 1 pz ¡ 1q
» u b u d 0 e ¡λpuqa da 1.
From this definition, we easily deduce the following equivalences :

maxpλpyq ¡ λpxq, 0q ¡ 0 ðñ λpyq ¡ λpxq ¡ 0 ðñ » x b x d 0 e ¡λpyqa da 1 ðñ x b x d y b y d ,
which conclude the proof.

Trait Substitution Sequence with age structure

We first generalise the definition of the Trait Substitution Sequence (TSS) with age structure defined in [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF] to take into account the Lansing Effect. Definition 5.4.10. We define the measure valued process pT t pdx, daq, t ¥ 0q by T t pdx, daq δ Xptq pdxqn 1 Xptq paqda δ pX b ptq,0q pdxqn 2 Xptq paqda where pXptq, t ¥ 0q ppX b ptq, X d ptqq, t ¥ 0q is defined as the pure jump Markov process on V with infinitesimal generator L defined for all measurable and bounded function

ϕ : V Ñ R and x V by Lϕpxq » pR q 2 pϕpx hq ¡ ϕpxqqpλpx hq ¡ λpxqq n 1 x p0q µpdhq (5.23)
where

µpdhq kph b qdh b δ 0 pdh d q δ 0 pdh b q kph d qdh d 2 ,
k being defined in (5.3).

The process X will be called the Trait Substitution Sequence.

Remark 5.4.11. The process pT t , t ¥ 0q describes the evolution of the phenotypic structure of the population at the mutational time-scale. At each time, and because of the Lansing effect, the population is composed of two sub-populations at each time t : the first one corresponds to viable individuals with trait Xptq pX b ptq, X d ptqq

V whose age distribution is given by n 1

Xptq paqda ; and the second one is composed of individuals generated by the Lansing effect, with trait pX b ptq, 0q and age distribution n 2 Xptq paqda. Remark 5.4.12. Figure 5.6 describes the behaviour of the process pXptq, t ¥ 0q. Any trait x H is an absorbing state for the process X. Indeed, by Proposition 5.4.9, for all ϕ : V Ñ R measurable and bounded, for all x H, Lϕpxq 0.

By definition of the measure µpdhq the process evolves horizontally or vertically (which means that the two traits x b and x d do not mutate simultaneously). By Proposition 5.4.9, we deduce easily that the process evolves from the left to the right on U 1 and from bottom to top on U 2 . Since the jump rates are continuous and tend to zero on H, the process slows down as it approaches H. We now explain the heuristics, rigorously proved in [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], which allow to obtain the TSS from the individual based model defined in Section 2.1. The main ideas have been introduced in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], for a population without age-structure. They are based on the timescale separation assumption on mutation probability p K : as

K Ñ V dV ¡ 0, expp¡KV q opp K q, p K o ¢ 1 K logpKq , ( 5.24) 
which allows to separate the effect of the natural selection and the appearance of new mutants. Let x V and consider a sequence pZ K 0 q K converging to δ x n 1 x p0, aqda as K Ñ V.

1) Monomorphic approximation. For large K, the process Z K t stays close to the measure δ x n 1 x pt, .q δ px b ,0q n 2

x pt, .q where n x pt, .q pn 1 x pt, .q, n 2 x pt, .qq satisfies the partial differential equation (5.4). By Proposition 5.3.2, the dynamics n x pt, .q converges to n x pn 1

x , n 2

x q as t tends to infinity and hence reaches a given neighbourhood of n x in finite time. By using large deviation results [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF], we obtain with probability tending to one as K tends to infinity that the process Z K t stays in this neighbourhood of δ x n 1

x δ px b ,0q n 2

x during a time e CK for some C ¡ 0. The left-hand side in Assumption (5.24) ensures that the next mutation appears before the process leaves this neighbourhood.

2) Appearance of a mutant. We deduce that the monomorphic population with trait x creates a mutant with trait :

(i) y px b h b , x d q or y px b , x d h d q at a rate approximatively equal to 2Kp K p1¡ p K qn 1 x p0q ; (ii) y px b h b , x d h d q at a rate approximatively equal to Kp 2 K n 1 x p0q ; (iii) y px b , h d q or y px b h b , 0q at at rate approximatively equal to 2Kp K p1 ¡ p K qn 2 x p0q ; (iv) y px b h b , h d q at rate approximatively equal to Kp 2 K n 2 x p0q.
where the variables h b and h d are chosen independently with distribution k.

Since p 2 K opp K p1¡p K q, the cases (ii) and (iv) cannot be observed on the mutation time-scale t{2Kp1 ¡ p K q.

3) Effect of the natural selection. In cases (i) and (iii), the mutant population dynamics is approximated by a bi-type age structured branching process with birth rates B y and death rates D y η}n x } 1 I. By Proposition 5.4.7, the mutant population survives with probability maxpλpyq ¡ λpxq, 0q.

Let us detail the two different cases.

• Case (i). With probability 1{2, the trait of the mutant is y px b h b , x d q. By Proposition 5.4.7, we deduce that the mutant can survive if and only if

λpx b h b , x d q ¡ λpxq ðñ h b ¡ 0 and x U 1 .
(5.25) With probability 1{2, y px b , x d h d q and can survive if and only if λpx b , x d h d q ¡ λpxq ðñ h d ¡ 0 and x U 2 .

(5.26)

• Case (iii) (Lansing effect). The mutant has the trait y px b , h d q or y px b h b , 0q. By (5.3), we have y y d 1 which implies that λpyq 0 and then maxpλpyq ¡ λpxq, 0q 0. In this case, the mutant population becomes extinct.

We deduce that the mutant can only survive (with positive probability) in case (i). The birth rate of such a mutant (on the time-scale t{2p K p1 ¡ p K q) is given by the intensity measure on R n 1

x p0qµpdhq

that leads to the right hand side in (5.23). The probability that such a mutant survives and reaches a size of order K equals maxpλpyq ¡ λpxq, 0q.

Moreover (5.25) and (5.26) imply that maxpλpx hq ¡ λpxq, 0qµpdhq pλpx hq ¡ λpxqq1 R 2 phqµpdhq that allows to obtain the left hand side of (5.23).

If the mutant population becomes extinct, the resident population stays close to its equilibrium n x .

If the mutant population survives, then it reaches a size of order K with a probability that tends to one and the population dynamics is approximated by the solution pn x pt, .q, n y pt, .qq of the bimorphic system of partial differential equations (5.16). In this case we have necessarily λpyq ¡ λpxq. By Proposition 5.3.7, the deterministic dynamics pn x pt, .q, n y pt, .qq reaches a neighbourhood of p0, n y q. By using branching processes approximations and arguments introduced in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], we can deduce that the resident population with trait x becomes extinct. One can prove as in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] that this competition phase has a duration of order logpKq.

The right hand side of Assumption (5.24) ensures that the three steps of invasion are completed before the next mutation occurs.The Markov property allows to reiterate the same reasoning for the next mutation occurence. In summary, the following theorem holds.

Theorem 5.4.13. The following convergence holds in the sense of finite dimensional marginals :

¡ Z K t 2Kp K p1¡p K q , t ¥ 0 © ÝÑ pT t , t ¥ 0q, as K Ñ V,
where the process T is defined in Definition 5.4.10.

A canonical inclusion for adaptive dynamics

In this section, we assume in addition that mutations are small. We study the behaviour of the process X defined in (5.23) when the mutation size scale equals ¡ 0 and the time is rescaled by 1{ 2 . To this aim, we define the rescaled trait substitution sequence process X and study the limiting behaviour of the process X as Ñ 0. In the usual cases (smooth fitness functions) the canonical equation introduced by Dieckmann-Law can be derived as limit of X as Ñ 0 (cf. [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF]). As observed in Section 4.1, the fitness function λpxq does not satisfy these regularity assumptions. To overpass this difficulty, we use the approach developed in [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF] based on differential inclusions. We prove in Theorem 5.4.17 that the set of limit points of the family X is characterised as the set of solutions of a differential inclusion.

Definition 5.4.14. The rescaled TSS process pX ptq, t ¥ 0q is defined as a pure jump Markov process with infinitesimal generator L defined for all measurable and bounded function ϕ : V Ñ R and x V by

L ϕpxq 1 2 » pR q 2 pϕpx hq ¡ ϕpxqqpλpx hq ¡ λpxqqn 1 x p0qµpdhq
(5.27)

Remark 5.4.15. The process X shows a dynamics similar to the process X. The jump rates are of order 1{ and the jump sizes are of order .

We first introduce the set-valued map F : V Ñ PpR 2 q defined for any x V by di t1, 2u, dx U i , F pxq pfpx,

1qq i dx H, F pxq 4 1 2 ¢ f px, uq f px, uq , u r0, 1s B , ( 5.28) 
where for all px, uq V ¢ r0, 1s,

f px, uq ¢» u 0 h 2 kphqdh » 1 u hukphqdh e ¡λpxqpx b x d q Gpxq n 1
x p0q 2 ;

(5.29

)
and G is defined in Proposition 5.4.1.

This set-valued map F somehow generalises the classical fitness gradient. It is represented by a picture in Figure 5.7. Let us explain the ideas leading to this function. Let us consider a compact subset K of U i . Since the Malthusian parameter λ is differentiable on U i , the following approximation holds : for all h R , uniformly for x K, we have λpx phq i q ¡ λpxq phq i .∇λpxq, (5.30) which leads to the definition of F on U i . We analyse the case x H for which the approximation (5.30) is not true. Indeed, let x H and let u r0, 1s and let us consider a sequence x x ¡ puq i , we have λpx phq i q ¡ λpx q λpx ph ¡ uq i q ¡ λpx ¡ puq i q λpx ph ¡ uq i q ¡ λpxq λpxq ¡ λpx ¡ puq i q

Assume h u, since λ is differentiable on U i we obtain when tends to 0 that λpx phq i q ¡ λpx q ph ¡ uq i .∇λpxq puq i .∇λpxq phq i .∇λpxq, where ∇λpxq is defined as the limit of ∇λpyq, y Ñ x, y U i . That leads to the first integral in (5.29). If h ¡ u, we obtain that λpx ph ¡ uq i q ¡ λpxq 0 and λpx phq i q ¡ λpx q puq i .∇λpxq ¤ phq i .∇λpxq, which leads to the second integral in (5.29). The inequality above means that when the process evolves near the diagonal H the adaptation slows down. We now introduce the differential inclusion associated with F that generalises the classical canonical equation for adaptive dynamics. For any T ¡ 0 and x 0 V, we denote by S F pT, x 0 q the set of solutions of the differential inclusion The following theorem characterises the limit of the process X as the solution of the differential inclusion (5.31).

Theorem 5.4.17. Let x 0 V. Assume that X p0q Ñ x 0 in probability as Ñ 0. For all T, δ ¡ 0, lim

Ñ0 P £ inf xS F pT,x 0 q sup tr0,T s |X ptq ¡ xptq| ¡ δ 0.
Remark 5.4.18. Theorem 5.4.17 justifies our complete study. Let pxptq, t r0, T sq be a solution of (5.31). On each U i , it satisfies dxptq dt pfpxptq, 1qq i , xptq U i . The map x U i Þ Ñ pfpx, 1qq i is Lipschitz and bounded below by a positive constant.

Hence, unicity holds on U i for (5.31) and any solution reaches in finite time the diagonal H. On H, the solution satisfies dxptq dt F pxptqq, xptq H. Since for all x H, F pxq H, we deduce that any solution stays in H. The proof of Theorem 5.4.17 is based on [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF]Theorem 1] Démonstration. Let i t1, 2u. Let K be a compact subset of U i . Let δ ¡ 0. We fix 0 ¡ 0 such that for all x K, 0 and h r0, 1s, we have x phq i U i . The map λ is differentiable on U i . Hence, for all px, , hq K ¢ r0, 0 s ¢ r0, 1s, there exists θ rx, x phq i s such that λpx phq i q ¡ λpxq phq i .∇λpθq. Let x K, we have

τ g pxq ¡ pfpx, 1qq i n 1 x p0q 2 § § § § » R r∇λpθqs i h 2 kphqdh ¡ r∇λpxqs i » R h 2 kphqdh § § § § ¤ sup xV n 1 x p0q 2 » R | r∇λpθqs i ¡ r∇λpxqs i |h 2 kphqdh.
By Proposition 5.4.1, the map ∇λ is Lipschitz on U i with some Lipschitz constant C. We deduce that τ g pxq ¡ pfpx, 1qq i

¤ sup xV n 1 x p0qC 2 » R h 3 kphqdh.
We obtain that τ g { converges uniformly on all compact subsets of U i and we conclude that for all x U i , Hpxq pfpx, 1qq i . Let x H. We first show that

4 acc Ñ0 τ g px q : x Ñ x B ¤ it1,2u
tpfpx, uqq i : u r0, 1su .

(5.32)

We prove the inclusion from right to left. Let i t1, 2u, let u r0, 1s, we define the sequence x x ¡ puq i . We have

τ g px q ¢» R λpx ¡ puq i phq i q ¡ λpx ¡ puq i q kphqphq i dh n 1 x p0q 2 ¢» u 0 λpx ¡ puq i phq i q ¡ λpx ¡ puq i q kphqphq i dh » 1 u λpx ¡ puq i phq i q ¡ λpx ¡ puq i q kphqphq i dh n 1 x p0q 2 .
For all h r0, us, we have rx ¡ puq i , x ¡ pu ¡ hq i s U i . So we can find θ rx ¡ puq i , x ¡ pu ¡ hq i s such that λpx ¡ pu ¡ hq i q ¡ λpx ¡ puq i q phq i .∇λpθq. By Proposition 5.4.1 (ii), we deduce that

» u 0 λpx ¡ puq i phq i q ¡ λpx ¡ puq i q kphqphq i dh Ñ e ¡λpxqpx b x d q Gpxq » u 0 ph 2 q i kphqdh
as tends to zero. For all h ru, 1s we have λpx ph¡uq i q λpxq. We deduce similarly that

» 1 u λpx ¡ puq i phq i q ¡ λpx ¡ puq i q kphqphq i dh Ñ e ¡λpxqpx b x d q Gpxq » 1 u phq i u kphqdh
as tends to zero. We conclude the proof of the first inclusion arguing that n 1

x p0q Ñ n 1

x p0q as tends to zero. We prove the inclusion from left to right. Let x V. If x H then we have g pxq 0.

(5.33)

If x U i , for some i t1, 2u, then we have

τ g pxq n 1 x p0q 2 » 1 0 λpx phq i q ¡ λpxq kphqphq i dh
Moreover for all , h there exists θ rx, x phq 1 s such that λpx phq i q¡λpxq ¤ fλpθq fx i h.

We deduce that

τ g pxq & i ¤ n 1 x p0q 2 » 1 0 fλpθq fx i h 2 kphqdh (5.34)
From (5.33) and (5.34), we deduce easily the second inclusion in (5.32). We conclude that conv 4 acc Ñ0 τ g px q : x Ñ x B conv 2 it1,2u tpfpx, uqq i : u r0, 1su @ Hpxq.

In Lemma 5.4.22, we prove that differential inclusions associated with H and F have identical solutions. Before, we give a technical lemma. Assume that m F pxq. Then we have αf px, uq $ p1 ¡ αqf px, vq.

Démonstration. We prove the lemma by contradiction. Assume that αf px, uq p1 ¡ αqf px, vq. Then we obtain that m 1 2 £ 2f px,uqfpx,vq f px,uq f px,vq 2f px,uqfpx,vq f px,uq f px,vq . We assume without loss of generality that f px, uq ¤ f px, vq. Then we obtain that 0 ¤ 2f px,uqfpx,vq f px,uq f px,vq ¤ f px, vq. Finally we remark that the map s Þ Ñ f px, sq is a bijection from r0, 1s to r0, f px, 1qs. Hence there exists w r0, 1s such that f px, wq 2f px,uqfpx,vq f px,uq f px,vq that allows us to obtain the contradiction. Démonstration. For all x V, we have F pxq Hpxq. We deduce that if pxptq, t r0, T sq is a solution of (5.35) then it is a solution of (5.36). Assume conversely that there exists a solution pxptq, t r0, T sq of (5.36) which is not a solution of (5.35). We deduce that there exists t 0 r0, T s such that x is differentiable at t 0 , dxpt 0 q{dt Hpxpt 0 qq and dxpt 0 q{dt F pxpt 0 qq. Then we have xpt 0 q H and dxpt 0 q{dt F pxpt 0 qq.

We now deduce the contradiction. By Lemma 5.4.21, we obtain that dx b pt 0 q dt $ dx d pt 0 q dt . Without loss of generality, we may assume that dx b pt 0 q dt dx d pt 0 q dt . Since x b pt 0 q x d pt 0 q, there exists an interval st 0 , t 1 r such that for all s st 0 , t 1 r, xpsq U 1 . Assume that for all s st 0 , t 1 r such that x is differentiable at s, we have dx d psq dt 0.

(5.37)

The solution x of the differential inclusion (5.36) is absolutely continuous. Hence for all s st 0 , t 1 r, x d psq x d pt 0 q x b pt 0 q. Since xpsq U 1 , we obtain that x b psq x b pt 0 q.

It is absurd since x b is non-decreasing and hence it contradicts (5.37). So, there exists s 0 st 0 , t 1 r such that xps 0 q U 1 , x is differentiable at s 0 and satisfies dx d ps 0 q dt ¡ 0.

However, x is a solution of (5.36) that leads to the final contradiction.

We now give the proof of Theorem 5.4.17. It is a direct consequence of [36, Theorem 1] recalled in Appendix A.3. (5.38)

We conclude by using similar arguments as in the proof of [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF]Theorem 4]. Since Λ is a Poisson process with parameter τ { , we obtain that for all δ ¡ 0,

P ¢ sup t¤T |Λ ptq ¡ tτ | ¥ τ δ ¤ T τ δ . ( 5.39) 
We have P inf xS F pT,x 0 q sup t¤T |X ptq ¡ xptq| ¡ δ

P ¢ inf xS F pT,x 0 q sup t¤T |Y pΛ ptqq ¡ xptq| ¡ δ ¤ P ¢ inf xS F pT,x 0 q sup t¤T 4 |Y pΛ ptqq ¡ x ¢ Λ ptq τ | |x ¢ Λ ptq τ ¡ xptq| B ¡ δ . (5.40)
Let x S F pT, x 0 q be a solution of the differential inclusion (5.31). For almost all t r0, T s, we have dxptq{dt F pxptqq. Since sup xV suptF pxqu V, we deduce that there exists C T ¡ 0 such that for all y S F pT, x 0 q, for all s, t r0, T s, |yptq¡ypsq| ¤ C T |t¡s|.
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We deduce that (5.40) is less than

P ¢ inf xS F pT,x 0 q 4 sup t¤T |Y pΛ ptqq ¡ x ¢ Λ ptq τ | B C T sup t¤T | Λ ptq τ ¡ t| ¡ δ ¤ P ¢ inf xS F pT,x 0 q sup t¤T |Y pΛ ptqq ¡ x ¢ Λ ptq τ | ¡ δ P ¢ C T sup t¤T | Λ ptq τ ¡ t| ¡ δ
and we conclude by using (5.38) and (5.39).

Discussion

In the present article, we studied the genotypic/phenotypic evolution of a population with a trait structure describing a simple class of life-histories. We built a stochastic individual-based model in a framework that is continuous for time, age and trait. The trait is a pair of parameters px b , x d q characterising the age at end-of-reproduction x b and the age at transition to a non-zero mortality risk x d . The model sees two origins of phenotypic variation. First, the genetic mutations that are supposed to be rare and do modify the traits symmetrically -equal probability to increase or decrease the face value of the parameter. Second, we model the Lansing effect which can be considered as an epigenetic mutation affecting the progeny of an "old" individual. It is acting on a much faster time-scale -one generation -than genetic mutations and has only a negative effect on the life expectancy of the progeny. We must admit that we have chosen here to model the Lansing effect by an extremely strong effect on the descendant. Indeed, it acts at each generation and degrades dramatically the life-expectancy of the descendant. Although, it would be interesting to later study more generally and realistically the impact of epigenetic modifications on the genetic evolution, we chose this strong effect here to accelerate evolution. Some aspects of this question have been studied in [START_REF] Klironomos | How epigenetic mutations can affect genetic evolution : model and mechanism[END_REF]. It is based on the fact that epigenetic modifications are more frequent than genetic mutations [START_REF] Schmitz | Transgenerational epigenetic instability is a source of novel methylation variants[END_REF]. We think it would be interesting to develop adaptive dynamics theory using this new framework. Nevertheless, multiple experimental data do support the existence of a Lansing effect in a broad range of organisms. We studied the long term evolution of the trait using adaptive dynamics theory and wrote the TSS process associated to the microscopic model. The main mathematical result of the present work concerns the behaviour of the TSS when mutations are small. We show in Theorem 5.4.17 that the behaviour of the TSS towards the limit is characterised by a differential inclusion whose solutions are not unique on the diagonal H tx b x d u. This differential inclusion allows to generalize the canonical equation in order to consider the non-smooth fitness gradient. The proof is based on [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF]. Thanks to this approach, we show that the evolution of our model, whatever its initial configuration, leads to the apparition and maintenance of configurations px b , x d q satisfying x b ¡ x d 0.

To our knowledge, differential inclusions have never been used before in the adaptive dynamics theory. In [START_REF] Champagnat | The canonical equation of adaptive dynamics : a mathematical view[END_REF], [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF], [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], the fitness gradient is assumed to be a Lipschitz function, which ensures the uniqueness of the solutions. Our approach seems to be very useful for generalizing the canonical equation to situations where the fitness gradient is neither Lipschitz nor continuous. The drift associated with the differential inclusion depends on the fitness gradient which satisfies (see Proposition 5.4.1)

di t1, 2u, dx U i , ∇λpxq ¢ e ¡λpxqpx b x d q Gpxq i (5.41)
where λpxq is the Malthusian parameter and Gpxq the mean generation time associated with the trait x. Hence the fitness gradient ∇λpxq describes the evolution's speed of the trait x. It can be related to the seminal work of Hamilton [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF] on the moulding of senescence. In this article, Hamilton states that senescence is inevitable because the strength of selection decreases with age. To show it, he defines the strength of selection at some given age a 0 as the sensitivity of the Malthusian parameter with respect to some little perturbation on the birth or death intensities at age a 0 . He concluded arguing that these quantities decrease to zero as a 0 tends to infinity. Similarly, formula (5.41) describes the sensitivity of the Malthusian parameter with respect to some perturbation on the duration of the reproduction or the survival phase at ages x b and x d . Then, they can be interpreted as the strength of selection at ages x b and x d and describe the speed of evolution of the traits x b and x d in the canonical inclusion (5.31).

The present article studies a case of bd-model with a strong Lansing effect and constant competition applied to asexual and haploid individuals in order to validate mathematically the favored convergence of x b and x d observed in the numerical exploration. Further characterisation of this model is in progress, in order to better understand the influence of its different parameters on the evolution of px b , x d q.

To conclude, our initial motivation for developing the bd-model was an attempt to understand whether a phenomenon leading to a dramatic decrease of an individual's fitness could be selected through evolution with simple and no explicitely constraining trade-offs. Indeed, in the past years, Rera and collaborators have identified and characterized a dramatic transition preceding death in drosophila (see [START_REF] Rera | Modulation of longevity and tissue homeostasis by the drosophila pgc-1 homolog[END_REF], [START_REF] Rera | Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in drosophila[END_REF]) as well as other organisms (see [START_REF] Rera | The smurf transition : new insights on ageing from end-of-life studies in animal models[END_REF], [START_REF] Dambroise | Two phases of aging separated by the smurf transition as a public path to death[END_REF]). We show here that, in conditions of uniform competition -i.e. environmental limitation equally affecting all genotypes -a mechanism coupling the end of reproductive capabilities and organismal homeostasis can and will be selected thanks to evolution. Thus, at least these two characteristics of senescent organisms can directly be selected through evolution. In regards to the biological interpretation of our model, our thesis is that individuals with a senescence mechanism associated with the Lansing effect tend to produce more genetic variants -i.e. individuals -than those without senescence. Hence, these individuals could show a higher evolvability. This question is investigated in a on going work. This result is reminiscent of [START_REF] Tully | The evolution of postreproductive life span as an insurance against indeterminacy[END_REF] that proposed a new selective mechanism for post-reproductive life span. It relies on the hypothesis that it can evolve as an insurance against indeterminacy ; a longer life expectancy reducing the risk of dying by chance before the cessation of reproductive activity. Here, the maintenance of individuals with Lansing effect is the counterpart of individuals with post-reproductive survival in our model where we observe a convergence of x b and x d . As discussed in [START_REF] Kirkwood | Cytogerontology since 1881 : a reappraisal of august weismann and a review of modern progress[END_REF], one of August Weismann's concepts that persisted without changes throughout his life is a conviction that "life is endowed with a fixed duration, not because it is contrary to its nature to be unlimited, but because unlimited existence of individuals would be a luxury without any corresponding advantage" (see [START_REF] Weismann | Essays upon heredity and kindred biological problems[END_REF]). To our knowledge, broadly evolutionarily conserved manifestation of such a mechanism has been described in vivo in the past years as the Smurf phenotype. La Section 6.4 est indépendante des précédentes. Nous introduisons un nouvel ingrédient au modèle de sélection-mutation classique en supposant que le taux de mutation est lui aussi soumis à des mutations. Il s'agit d'une perspective de travail que nous pouvons placer dans le cadre de travaux sur l'évolution des taux de mutations [START_REF] Kimura | On the evolutionary adjustment of spontaneous mutation rates[END_REF], [START_REF] Drake | A constant rate of spontaneous mutation in dna-based microbes[END_REF], [START_REF] André | The evolution of mutation rate in finite asexual populations[END_REF], [START_REF] Lynch | Evolution of the mutation rate[END_REF].

Un modèle plus général

A tout instant t ¥ 0 la population est représentée par une mesure ponctuelle 

H K t pdx, da, dmq 1 K N K t i1 δ px i ptq,a i ptq,m i ptqq M pR 2 ¢ R ¢t0, 1uq. où x i ptq px i b ptq, x i d ptqq R 2 est

Le "bd-model" sans effet Lansing

Dans cette partie, nous étudions le modèle sans effet Lansing. La dynamique est donc décrite par le processus pH K t q t¥0 pour une condition initiale vérifiant

H K 0 1 m0 H K 0 .
À tout instant t R , on a H K t 1 m0 H K t . Il s'agit d'une dynamique de sélectionmutation structurée en âge similaire à celles étudiées dans [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]. En nous basant sur la méthode utilisée dans [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], nous étudions la dynamique du trait sous les hypothèses de la dynamique adaptative. Nous calculons les équilibres monomorphes (cf. Proposition 6.2.7) puis la fitness d'invasion. Comme pour le modèle avec effet Lansing, nous obtenons une relation simple entre la fitness d'invasion et le paramètre de Malthus (cf. Proposition 6.2.8). Nous verrons qu'à la différence du modèle avec effet Lansing, la fonction de fitness d'invasion vérifie des propriétés de régularité suffisantes pour pouvoir décrire le comportement limite en petites mutations du Processus de substitution des traits par les trajectoires (uniques) de l'équation canonique des dynamiques adaptatives (cf. Proposition 6.2.11). Nous présentons des simulations de cette équation où l'on observe que le trait px b , x b q se concentre sur des configurations px b , x d q vérifiant x b ¡x d γ ¡ 0. Nous énonçons une conjecture sur le comportement en temps long de l'écart x b ¡x d (cf. Conjecture 6.2.13). Nous montrons ensuite un résultat intermédiaire (cf. Proposition 6.2.15).

Paramètre de Malthus

Nous introduisons le paramètre de Malthus associé à un trait x R 2 . Pour cela, on détermine les solutions p λpxq, Ñx , φx q des problèmes aux valeurs propres direct et dual : Ceci fait l'objet de la proposition suivante. Proposition 6.2.1. Pour tout x pR ¦ q 2 , il existe un unique triplet p λpxq, Ñx , φx q R ¢L 1 pR q¢L V pR q solution de (6.2), (6.3). Le paramètre de Malthus λpxq est solution de l'équation Nous donnons des propriétés de régularité du paramètre de Malthus. Nous montrons que le gradient du paramètre de Malthus s'exprime simplement en fonction de la distribution stable des âges Ñx , du potentiel reproducteur φx et du temps moyen de génération Gpxq. x d e ¡p1 λpxqqa da

Proposition 6.2.3. L'application

x pR ¦ q 2 Þ Ñ λpxq est de classe C 1 et on a f λpxq fx d Ñx px d q φx px d q Gpxq , f λpxq fx b Ñx px b q Gpxq (6.5) avec Gpxq ³ x b 0 a exp ¡pa ¡ x d q ¡ λpxqa ¨da. Démonstration. On note U 1 tx R 2 : x b x d u, U 2 tx R 2 : x b ¡ x d u et H tx R 2 : x b x d u. Pour tout x U 1 ,

Gpxq

Ñx px d q φx px d q

Gpxq

On déduit que λ admet des dérivées partielles continues sur pR ¦ q 2 ce qui permet de conclure.

Remarque 6.2.4. Dans le cas "avec effet Lansing", nous avions observé que le paramètre de Malthus λpxq n'était pas différentiable sur la diagonale. En absence d'effet

Lansing, le paramètre de Malthus λpxq est différentiable sur pR ¦ q 2 , ce qui simplifiera notamment l'étude de la dynamique adaptative. Remarque 6.2.5. Les formules (6.5) décrivent la sensibilité du paramètre de Malthus à une perturbation du trait x b ou x d . On retrouve les formules de [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF], [START_REF] Caswell | Reproductive value, the stable stage distribution, and the sensitivity of the population growth rate to changes in vital rates[END_REF] décrivant la force de sélection âge-spécifique.

Étude de la dynamique adaptative

Équilibres monomorphes

Soit x R 2 . On détermine tout d'abord les équilibres monomorphes associés à une population de trait x. La dynamique monomorphe est décrite par la solution pn x pt, .q, t ¥ 0q CpR , L 1 pR qq de l'équation aux dérivées partielles suivante :

5 f t n x pt, aq f a n x pt, aq ¡ 1 a¡x d η ³ R n x pt, αqdα © n x pt, aq n x pt, 0q ³ x b 0 n x pt, αqdα, pt, aq R 2 .
(6.6) Il s'agit de l'équation de Gurtin MacCamy (cf. [START_REF] Gurtin | Non-linear age-dependent population dynamics[END_REF]). On introduit l'ensemble de traits

Ṽ tx R 2 : x b ¡ x d ¡ logpx d q si x b ¡ x d ; x b ¡ 1 si x b ¤ x d u
pour lesquels l'équation (6.6) admet une solution stationnaire non-triviale, comme le montre la Proposition 6.2.7 ci-dessous. Nous donnons d'abord un lemme. Lemme 6.2.6. On a : Proposition 6.2.7. Pour tout x Ṽ, il existe un unique équilibre globalement stable n x L 1 pR q à l'équation (6.6), c'est à dire solution de

Ṽ tx R 2 : λpxq ¡ 0u, et pour tout x Ṽ, λpxq ¤ 1. De plus, l'application x Ṽ Þ Ñ ∇ λpxq est lipschitzienne. Démonstration. Pour tout x R 2 , on définit Rpxq ³ x b 0 exp ¡ ³ a 0 1 α¡x d dα ¨da. Soit x U 1 , alors on a Rpxq x b et Rpxq ¡ 1 si et seulement si x b ¡ 1. Soit x U 2 , on a Rpxq x d 1 ¡ e x d ¡x b et on déduit que Rpxq ¡ 1 si et seulement si x b ¡ x d ¡ logpx d q. On conclut pour la première assertion en remarquant que l'application λ Þ Ñ ³ x b 0 exp ¡ ³ a 0 1 α¡x d dα ¡ λa ¨da est
5 ¡f a n x paq ¡ ¡ Dpx, aq c ³ R n x © n x paq 0 n x p0q ³ V 0 Bpx, αqn x pαqdα, (6.7) qui vérifie c ³ R n x paqda λpxq.
Démonstration. La démonstration de l'existence est immédiate en intégrant la première équation dans (6.7) et en utilisant que (cf. Lemme 6.2.6) : Ṽ tx R 2 : λpxq ¡ 0u.

Le comportement en temps long des solutions de l'équation 6.7 est étudié dans [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF]Section 5.4].

Fitness d'invasion

Nous calculons la fitness d'invasion 1 ¡ zpy, xq d'un mutant de trait y dans une population résidente de trait x en suivant la définition donnée dans [63, Théorème 3.4] :

1 ¡ zpy, xq est définie comme la probabilité d'extinction d'un processus de branchement structuré en âge de taux de naissance Bpy, .q et de taux de mort Dpy, .q c ³ R n x paqda.

La proposition suivante se démontre de manière similaire à la Proposition 5.4.7. Proposition 6.2.8. Soit y pR 2 q ¦ et x Ṽ, la fitness d'invasion vérifie 1 ¡ zpy, xq maxp λpyq ¡ λpxq, 0q.

Nous sommes en mesure de définir le Processus de substitution des traits. On énonce l'analogue du Théorème 5.4.13 pour le cas sans effet Lansing. Proposition 6.2.9. Soit x Ṽ. Soit pH K 0 q K une suite de mesures aléatoires telle que H K 0 converge en loi vers une mesure déterministe de la forme δ x n 0

x paqda lorsque K Ñ V.

Alors la convergence suivante a lieu au sens des marginales fini-dimensionnelles : 

pH K t 2p K p1¡p K q , t ¥ 0q ÝÑ
x Ṽ § § § § λpx phq i q ¡ λpxqq ¡ h f λpxq fx i § § § § ÝÑ Ñ0 0, ce qui permet d'obtenir que }L ϕ ¡ Lϕ} V Ñ Ñ0 0 et de conclure par des arguments classiques.
Remarque 6.2.12. On observe que l'équation (6.9) fait intervenir le gradient du paramètre de Malthus ∇ λpxq qui vérifie

∇ λpxq 1 Gpxq ¢ Ñx px b q φx px d q Ñx px d q .
On retrouve les formules présentées en introduction (cf. Section 1.1.2) décrivant la force de sélection aux âges x b et x d . Ainsi, notre modèle permet de donner un sens dynamique à cette notion de force de sélection âge spécifique en tant que vitesse d'évolution des traits x b et x d sous les hypothèses de la dynamique adaptative.

On observe que lorsque t tend vers l'infini, ∇ λpxptqq Ñ 0, ce qui signifie que la vitesse Conjecture 6.2.13. Soit x Ṽ et soit pxptq, t ¥ 0q une solution de l'équation canonique (6.9) issue de x. Alors la convergence suivante est vérifiée : 

x b ptq ¡ x d ptq ÝÑ tÑ V logp3q 
V 0 exp ¡ ³ a
0 Dpxptq, αqdα ¡ λpxptqqa ¨da et λpxptqq ¥ λpx 0 q. On en déduit qu'il existe une constante C 1 px 0 q ¡ 0 telle que dx b ptq{dt ¡ C 1 px 0 q et donc que lim inf tÑ V px b ptq ¡ x d ptqq ¥ 0. On montre maintenant la borne supérieure. Soit t ¥ 0 tel que x b ptq ¡ x d ptq ¡ logp3q. On a alors : (6.12)

Par ailleurs on vérifie facilement qu'il existe une constante C 2 px 0 q ¡ 0 telle que :

dx b ptq dt ¤ C 2 px 0 qe ¡ λpxptqqx b ptq ¤ C 2 px 0 qe ¡ λpx 0 qx b ptq , ( 6.13) 
où l'on a utilisé que pour tout t ¥ 0, λpxptqq ¥ λpx 0 q. Soit u la solution de duptq{dt C 2 px 0 qe ¡ λpx 0 qu vérifiant up0q x 0 . On vérifie facilement qu'il existe une constante C 3 px 0 q ¡ 0 telle que uptq ¤ C 3 px 0 q logptq{ λpx 0 q. En utilisant l'inégalité (6.13), on obtient que x b ptq ¤ C 3 px 0 q logptq{ λpx 0 q. En injectant dans (6.12), on obtient qu'il existe une constante C 4 px 0 q ¡ 0 telle que sur tt R : x b ptq ¡ x d ptq ¡ logp3qu, on ait : dpx b ptq ¡ x d ptqq dt ¤ C 4 px 0 q t α p3e ¡px b ptq¡x d ptqq ¡ 1q. (6.14) Soit v la solution de dvptq dt C 4 px 0 q t α p3e ¡vptq ¡ 1q vérifiant vp0q x 0 b ¡ x 0 d . On vérifie facilement qu'il existe C 5 px 0 q ¡ 0 tel que vptq log ¢ e C 5 px 0 q C 4 px 0 q pα¡1qt α¡1 3 .

On conclut comme précédemment en utilisant (6.14) Remarque 6.2.16. La Proposition 6.2.15 répond en partie au problème soulevé dans l'introduction (cf. Section 1.3). En effet, elle montre que pour une condition initiale xp0q x 0 , les traits se concentrent sur des configurations vérifiant Ainsi, si ce dernier terme ne tend pas trop vite vers 0 lorsque t Ñ V, on s'attend à ce que x b ptq ¡ x d ptq Ñ logp3q{2 lorsque t Ñ V.

x b ¡ x d 0, logp3 e

Sur la sélection de l'effet Lansing

L'effet Lansing décrit le phénomène suivant lequel "la descendance de parents vieux vit moins longtemps que celle de parent jeune". Il s'agit d'un méchanisme non-génétique, transmissible et réversible décrit pour la première fois dans [START_REF] Lansing | A transmissible, cumulative, and reversible factor in aging[END_REF] chez les rotifères, puis chez l'espèce Drosophila melanogaster dans [START_REF] Priest | The role of parental age effects on the evolution of aging[END_REF]. Plus récemment, cet effet a été observé dans la nature chez l'espèce Passer domesticus (cf. [START_REF] Schroeder | Reduced fitness in progeny from old parents in a natural population[END_REF]). Dans [START_REF] Noguera | Experimental demonstration that offspring fathered by old males have shorter telomeres and reduced lifespans[END_REF], il est montré que sa présence chez l'espèce Taeniopygia guttata (diamant mandarion ou zebra finch) est associée à un raccourcissement des télomères chez les descendants de vieux mâles. Dans [START_REF] Priest | The role of parental age effects on the evolution of aging[END_REF], les auteurs montrent que l'effet Lansing pourrait jouer un rôle dans l'évolution de la sénescence. En effet, la théorie de l'accumulation de mutation (cf. [START_REF] Medawar | An unsolved problem of biology[END_REF]) explique le vieillissement par des accumulations de mutations délétères agissant aux âges avancés. La force de sélection étant décroissante avec l'âge, ces mutations ne sont pas éliminées et provoquent le vieillissement. L'effet Lansing a tendance à faire décroître plus rapidement la force de sélection et donc à faciliter cette accumulation de mutations délétères. À notre connaissance il n'y a pas aujourd'hui d'explication adaptative de la présence d'effet Lansing. Il serait intéressant de comprendre dans quelle mesure l'effet Lansing peut représenter un intérêt adaptatif, et ainsi être présent chez certaines sinon toutes les espèces. Rappelons notre modélisation de l'effet Lansing. Nous avons supposé qu'un individu de trait px b , x d q avec x d x b se reproduisant après l'âge x d transmettait à son descendant le trait xd 0. Ainsi la force de sélection aux âges a sx d , x b s est nulle car la descendance d'un individu se reproduisant à ces âges n'est pas viable. Cependant, nous allons montrer que la force de sélection à l'âge x d est plus importante que chez des individus sans effet Lansing. Cette observation nous pousse à émettre l'hypothèse suivante : malgré le fait que l'effet Lansing ait un effet négatif sur les fitness individuelles, il peut agir comme un accélérateur de l'évolution.

Approche numérique.

Afin de tester cette hypothèse, nous procédons de la façon suivante. Nous mettons en compétition deux populations monomorphes de tailles égales : l'une avec effet Lansing et l'autre sans. De plus, nous supposons que les deux populations sont monomorphes de traits x 0 et x0 vérifiant λpx 0 q λpx 0 q (on rappelle que λpx 0 q et λpx 0 q désignent les paramètres de Malthus respectivement associés aux individus avec et sans effet Lansing et sont définis respectivement par (5.9) et (6.4)), c'est-à-dire qu'elles possèdent la même fitness. En calculant numériquement les paramètres de Malthus on peut vérifier que si x 0 p1.5, 1.3q et x0 p1.5, 0.82q on a λpx 0 q λpx 0 q 0.42. En résumé, nous considérons une donnée initiale H K 0 vérifiant » S ¢ R ¢t0,1u 

Justification théorique

Nous proposons une explication théorique pour ces observations en nous basant sur les gradients de fitness, c'est à dire les dérivées du paramètre de Malthus par rapport à la variable de trait. Nous calculons les fonctions x d r1, 1.5s Þ Ñ λpp1.5, x d qq r0, 0.6s, x d r1, 1.5s Þ Ñ λpp1.5, x d qq r0, 0.6s (qui sont des bijections), puis les fonctions x d r1, 1.5s Þ Ñ fλp1.5, x d q{fx d , x d r1, 1.5s Þ Ñ f λp1.5, x d q{fx d . On peut ainsi représenter sur la Figure 6.3 les dérivées partielles de la fitness par rapport à la variable x d en fonction de la fitness : λ r0, 0, 6s Þ Ñ fλp1.5, x d q{fx d et λ r0, 0, 6s Þ Ñ f λp1.5, x d q{fx d . On observe que pour tout x et x tels que λpxq λpxq, on a fλpxq{fx d f λpxq{fx d . À fonctions de fitness égales, la force de sélection est plus importante chez la population avec effet Lansing. Cette population va donc évoluer plus rapidement, atteindre des fitness plus élevées et ainsi pouvoir envahir la population. A notre connaissance, cet aspect conférant à l'effet Lansing un intérêt adaptatif n'a pas été abordé dans la littérature. Notons tout de même l'article [START_REF] Klironomos | How epigenetic mutations can affect genetic evolution : model and mechanism[END_REF] où les auteurs s'intéressent à l'impact des modifications épigénétiques sur l'évolution phénotypique des populations. Ils montrent que l'interaction entre les mutations épigénétiques et mutations génétiques, les premières agissant sur des échelles de temps plus courtes que les secondes, peut affecter l'adaptation et l'évolution des populations.

Code Python pour les simulations

Nous donnons ci-dessous le code Python pour les simulations de la Figure 6.3. Il s'agit d'une légère modification du code présenté en Section 5.2 afin de prendre en compte les deux types d'individus (avec ou sans effet Lansing). # s a i s i e p a r a m e t r e s i n t e n s i t e _ c o m p e t i t i o n = 0 . 0 0 5 p_mut = 1 . 0 var_mut = 0 . 0 5 nombre_saut = 200000 t a i l l e _ p o p u l a t i o n = 1000 #d i s t r i b u t i o n i n i t i a l e d e s t r a i t s t r a i t = numpy . o n e s ( ( t a i l l e _ p o p u l a t i o n , 2 ) ) f o r k i n r a n g e ( i n t ( l e n ( t r a i t [ : , 0 ] ) / 2 ) ) : t r a i t [ k , : ] = tirage_pop_uniform ( ) # p o p u l a t i o n avec l a n s i n g f o r k i n r a n g e ( i n t ( l e n ( t r a i t [ : , 0 ] ) / 2 ) , l e n ( t r a i t [ : , 0 ] ) ) : t r a i t [ k , : ] = tirage_pop_uniform ( ) #p o p u l a t i o n s a n s l a n s i n g #m a t r i c e de l a p o p u l a t i o n # m a t r i c e pop temps = x [START_REF] Ackleh | Population dynamics under selection and mutation : Long-time behavior for differential equations in measure spaces[END_REF] # i n s t a n t du s a u t n = l e n ( p [ ( p [ : , 3 ] == 0 ) , 0 ] ) p r i n t c s e l s e : break r e t u r n p # r e n v o i e l ' e t a t de l a pop a l ' i n s t a n t " temps " e t " temps "

Un modèle avec probabilité de mutation mutable

Avec l'hérédité des caractères et la sélection naturelle, les mutations constituent l'un des ingrédients de l'évolution. Une question naturelle est alors la suivante : à quelles fréquences les mutations apparaissent chez les individus ? Pourquoi observe-ton des taux de mutation élevés chez certaines espèce et faibles chez d'autres ? Cette variabilité observée suggère que les taux de mutations peuvent être eux aussi soumis aux différentes forces de l'évolution. De nombreux travaux ont été développés sur le sujet [START_REF] Kimura | On the evolutionary adjustment of spontaneous mutation rates[END_REF], [START_REF] Drake | A constant rate of spontaneous mutation in dna-based microbes[END_REF], [START_REF] André | The evolution of mutation rate in finite asexual populations[END_REF], [START_REF] Lynch | Evolution of the mutation rate[END_REF]. Ils montrent notamment que chez de nombreuses espèces, les taux de mutations ont tendance à se stabiliser sur de faibles valeurs. Nous proposons un modèle simple permettant d'étudier ce type de question. On considère le couple px, pq où x est le trait phénotypique et p la probabilité de mutation comme un trait soumis aux mutations. Un individu de trait x px, pq et d'âge a se reproduit à taux Bpx, aq. Avec probabilité p, une mutation apparaît et modifie le trait x suivant une distribution kpx, yqdy où y py, qq sur S ¢ r0, 1s. Ainsi, on peut décrire la dynamique macroscopique de la population par une densité n t px, aq qui évolue suivant l'équation aux dérivées partielles : Ces opérateurs diffèrent de ceux étudiées dans le Chapitre 3. En effet les quantités p1 ¡ pqr λ pxq et qK λ py, xq s'annulent respectivement en p 1 et q 0. Ceci implique notamment que l'équation 6.15 admet des solutions stationnaires de la forme npdx, daq µpdxqR λ ¦px, aqda où λ ¦ vérifie r λ ¦ 1 et le support de la mesure µ est inclus dans l'ensemble tpx, 0q S ¢ r0, 1s : r λ ¦pxq r λ ¦u.

Nous présentons maintenant des simulations du modèle bd (cf. Chapitre 5) en introduisant des mutations sur le taux de mutation p. Par ailleurs nous conditionnons la distribution des mutations afin que le trait px b , x d q reste dans le cube r0, 2s ¢ r0, 2s. La fitness (i.e le paramètre de Malthus) admet alors un maximum en le trait p2, 2q.

Nous observons sur les simulations présentées dans la Figure 6.4 que la distribution du trait px b , x d q atteint rapidement des valeurs proche du trait optimal p2, 2q. Dans un premier temps, la probabilité de mutation fluctue autour de grandes valeurs puis décroit vers 0. Cette décroissance entraîne une concentration plus forte sur le trait optimal p2, 2q. Donnons un argument heuristique pour ces observations. Dans un premier temps, il peut être avantageux pour un individu peu adapté (c'est à dire avec une fitness faible), d'avoir un taux de mutation élevé, permettant ainsi de générer des mutants, potentiellement mieux adapté. Une fois que la population a atteint des fitness élevées, il n'y a plus d'intérêt adaptatif a générer des mutants et le taux de mutation diminue. Cette diminution entrainant une concentration plus forte autour des traits optimaux. x p0q.

We conclude for the convergence by using arguments similar to proof of [87, Theorem 4.9 p187].

B.2 Proof of Lemma 5.3.5

Démonstration. Equation (5.11) has the form du{dt f pt, uq with f pt, uq Ñ gpuq as t Ñ V. So (5.11) is called an asymptotically autonomous differential equation (see [START_REF] Markus | Asymptotically autonomous differential systems[END_REF], [START_REF] Thieme | Asymptotically autonomous differential equations in the plane[END_REF]) with the limit equation dyptq dt M yptq ¡ η}yptq} 1 yptq.

(B.6)

We first show that any solution yptq of (B.6) started at yp0q R ¦ ¢ R converges to a stationary state. In [START_REF] Ackleh | Comparison between stochastic and deterministic selectionmutation models[END_REF], the proof is given when M is irreducible. We give a slightly different proof. Let z be defined in (5.12). It is straightforward to prove that z is the eigenvector of M associated with the simple eigenvalue m 11 , which satisfy the condition

B.3 Differential inclusions

In this appendix, we recall the results of [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF] which concern the approximation of Markov chains by differential inclusions.

Let ¡ 0 be a scale parameter. Let pY pkq, k Nq be a Markov chain with values in R d . The drift of the Markov chain Y is defined by g pxq E rY pk 1q ¡ Y pkq|Y pkq xs . Let pγ q ¡0 be such that lim Ñ0 γ 0 and let us denote f pxq g pxq γ .

One can write the evolution of the Markov chain as a stochastic approximation algorithm with constant step size γ Y pk 1q Y pkq γ pf pY pkqq U pk 1qq

where U is a martingale difference sequence with respect to the filtration associated with the process Y . Let us define F pxq conv ¡3 acc Ñ0 f px q for all x such that lim Ñ0 x x A© where convpAq denotes the convex hull of the set A and acc Ñ0 f px q denotes the set of accumulation points of the sequence f px q as Ñ 0. Let us denote by S F pT, x 0 q the set of solutions pxptq, t r0, T sq of the differential inclusion (i) For all t r0, T s, xptq x 0 ³ t 0 ϕpsqds, (ii) For almost every t r0, T s, ϕptq F pxptqq.

In particular (i) is equivalent to saying that x is absolutely continuous. (i) and (ii) imply that x is differentiable at almost every t r0, T s with dxptq{dt F pxptqq.

We define the continuous process Y ptq as the piecewise interpolation of Y whose time has been accelerated by 1{γ : for all k N, Y pkγ q Y pkq and Y is linear on rkγ , pk 1qγ s. We have the following theorem proved in [START_REF] Gast | Markov chains with discontinuous drifts have differential inclusion limits[END_REF]Theorem 1].
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  Dpαqdα ¡ λa ¨da 1 (cf.[START_REF] Sharpe | L. a problem in age-distribution[END_REF]), la fonction N paq W exp est la distribution stable des âges et la fonctionφpaq W 1 N paq » V a BpαqN pαqdαest appelée potentiel reproducteur. Depuis les premiers travaux sur le sujet, le paramètre de Malthus est utilisé comme mesure de la fitness d'une histoire de vie pB, Dq.

63 ,

 63 Théorème 3.4]) 1 ¡ zpy, xq ¡ 0 ðñ λpyq ¡ λpxq où pour tout u S le paramètre de Malthus λpuq est l'unique solution de l'équation de

Figure 1 . 1 -

 11 Figure 1.1 -Transition Smurf chez l'espèce Drosophila Melanogaster rhabiditis elegans et Danio rerio (cf. Dambroise et al. [26]), suggérant ainsi qu'elle ait pu être évolutivement conservée en tant que marqueur d'un âge physiologique avancé. À partir de ces différentes observations, Rera et al. proposent une nouvelle vision du vieillissement, discontinue, composé de deux phases séparées par une transition "Smurf" (cf. Tricoire-Rera [83]).

  Avant l'âge x b , l'individu se reproduit à intensité 1 puis ne se reproduit plus. Il ne meurt pas avant l'âge x d puis son taux de mortalité est égal à 1. Nous identifions le phénotype Smurf aux configurations px b , x d q vérifiant x b x d avec x d légèrement inférieur à x b (cf.

  Figure 1.2 -Les trois types de configurations. paq 'Too young to die' ; pbq 'Now useless' ; pcq 'Menopause' population d'individus structurée par le trait px b , x d q évoluant suivant la dynamique de sélection-mutation décrite en Section 1.2.1. On peut s'attendre à ce que les traits x b et x d aient tendance à augmenter chez les individus, maximisant ainsi la reproduction et minimisant la mortalité. On peut également s'attendre à ce que cette augmentation soit de moins en moins rapide, si l'on prend en compte le principe selon lequel la force de sélection décroît avec l'âge (cf. Section 1.1.2). Cependant il ne semble pas évident que l'écart x b ¡ x d se stabilise autour d'une grandeur légèrement positive.

Figure 2 .

 2 Figure 2.2 -(a) : Representation de H. (b) : Representation de F .

Figure 2 . 3 -

 23 Figure 2.3 -Cette figure représente 10 simulations du processus pX ptq, t ¥ 0q pour 0.001, X p0q p2, 1.5q. (a) : On représente X d ptq en fonction de X b ptq. (b) : pX b ptq, t ¥ 0q. (c) : pX d ptq, t ¥ 0q. Sur (b) et (c) on peut observer qu'avant d'atteindre la diagonale H la dynamique est unique. Sur H, le processus évolue à une vitesse dans F pxq pour tout x H.
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 34 The solutions of the dual problem f a φpx, aq ¡ pDpx, aq λqφpx, aq G rφs px, aq 0, (3.5) where G rφs px, aq Bpx, aq ¢ p1 ¡ pqφpx, 0q p » S φpy, 0qkpx, a, yqdy , (

  where we used Fubini's Theorem. The proof is similar for pr Gq I . The next result is easily adapted from [76, Appendix §2.2.6] (it was originally introduced by Krein-Rutman[START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF]) and[START_REF] Schaefer | Graduate texts in mathematics[END_REF] Appendix §3.3.3]. Combined with Lemma 3.2.6, it is the main tool for the proof of Theorem 3.2.3. Proposition 3.2.7.

S

  (i) : By Lemma 3.2.5 (iii), we have ρ e pr Gq ρ e prq r. It comes that r ¤ ρpr Gq. (ii) : Assume that r ρpr Gq. Let f CpSq. Then the map x S Þ ÝÑ f pxq ρpr Gq¡rpxq is continuous and bounded. We get » ρpr Gq ¡ rpxq pρpr Gq ¡ rpxqqµpdxq » Kpy, xqµpdyq ρpr Gq ¡ rpxq dx. So we have µ upxqdx with upxq ³ S Kpy, xqµpdyq ρpr Gq ¡ rpxq a continuous, non-negative function on S. Therefore, for all f CpSq »

upxq 1 ρpr

 1 Gq ¡ rpxq » S Kpy, xqupyqdy we deduce that r ρpr Gq. (iii) : Assume first that LebpΣq ¡ 0. Choosing f 1 Σ in (3.16) and by the definition of Σ, we get that » Σ ¢» S Kpy, xqµpdyq dx pρpr Gq ¡ rqµpΣq.

Lemma 3 . 3 . 1 .

 331 Assume Assumptions 3.1.1.

R

  r λ : sup xS r λ pxq. Then the map λ s¡D, Vr Þ ÝÑ r λ is continuous and (strictly) decreasing. Proof of Lemma 3.3.1. 1) : Let λ ¡ ¡D, we have » exp p¡Da ¡ λaq da V.

Assumptions 3 . 3 . 3 .

 333 There is λ ¡ ¡D such that ρpr λ Jλ q ¡ 1. Proposition 3.3.4. Assume Assumptions 3.1.1 and 3.3.3. The map λ rλ, Vr Þ ÝÑ ρpr λ Jλ q is continuous and (strictly) decreasing. There exists a unique λ ¦ rλ, Vr such that ρpr λ ¦ Jλ ¦q 1.

Proposition 3 . 3 . 5 .

 335 Assume Assumptions 3.1.1 and 3.3.3.

Proposition 3 . 3 . 6 .

 336 Assume Assumptions 3.1.1 and 3.3.3.

f

  a φpx, aq ¡ Dpx, aqφpx, aq G rφs px, aq λ ¦ φpx, aq, φ ¥ 0. Nous rappelons que pour tout λ ¡ ¡D, r λ est défini en (3.11) et r λ sup xS r λ pxq. Si r λ ¦ 1, d'après le Corollaire 3.3.7 on a pN, φq CpS, L 1 pR qq ¢ CpS, L V pR qq et la Proposition 3.3.8 assure la convergence des solutions normalisées de l'équation linéaire (3.18) vers la distribution stable N dans l'espace L 1 pφq. Nous abordons le cas "singulier", i.e le cas où r λ ¦ 1. Nous supposerons (cf. Hypothèses 4.1.1) qu'il est toujours possible de se ramener au cas régulier par approximation (cf. Remarque 4.1.2).Hypothèses 4.1.1. Il existe pB , D q ¡0 dans C b pS ¢ R q, il existe D I s¡λ, Ds tels que pour tout ¡ 0, (i) On a D ¡ D I et pour tout λ ¡ ¡D I , 1

Remarque 4 . 1 . 2 .

 412 En dimension d 1 ou d 2, les Hypothèses 4.1.1 sont toujours vérifiées. Comme cela est noté dans [23], le critère de non-intégrabilité (4.1) est satisfait si la fonction r λ est suffisamment régulière. On peut donc toujours régulariser B et D de sorte que le critère (4.1) soit vérifié.

  Lemme 4.1.7 et Proposition 4.1.8). Le résultat principal de cette partie est le Théorème 4.1.11 donné ciaprès. Il montre que la dynamique linéaire associée aux paramètres B , D , proprement normalisée en temps, converge vers la distribution stable N . Tout d'abord, nous utilisons un résultat récent de [37] afin de montrer un résultat d'unicité pour la valeur propre λ ¦ . Le lemme 4.1.3 concerne l'unicité de la valeur propre principale pour les opérateurs rλ Jλ et rλ Gλ et est démontré dans [37] sous des hypothèses légèrement diffèrentes des notres. Nous en donnons donc une démonstration.

Lemme 4 . 1 . 3 .

 413 [START_REF] Griette | Singular measure traveling waves in an epidemiological model with continuous phenotypes[END_REF] Théorème 3.1] Supposons que les Hypothèses 2.1.2 soient vérifiées.

Proposition 4 . 1 . 4 .Lemme 4 . 1 . 5 .

 414415 Supposons que les Hypothèses 3.1.1 soient vérifiées. Soit λ ¦ rλ, Vr l'unique solution de l'équation ρpr λ ¦ J λ ¦q 1. Alors le nombre réel λ ¦ est l'unique élément de rλ, Vr tel qu'il existe :(i) N M pS ¢ R q solution de (3.23). (ii) φ M loc pS ¢ R q solution de (3.27) Démonstration. (i) : Soit λ rλ, Vr et N solution de (3.23). D'après la Proposition 3.3.5, on a N µ λ pdxqR λ px, aqda où µ λ M pSq vérifie pr λ Jλ qµ λ µ λ . D'après le Lemme 4.1.3, on a nécessairement 1 ρpr λ J λ q ce qui permet de conclure en utilisant la Proposition 3.3.4. (ii) : La démonstration est la même que celle de (i). Nous donnons un premier lemme pour l'approximation des éléments propres. Supposons que les Hypothèses 3.1.1 et 4.1.1 soient vérifiées. Pour tout

Lemme 4 . 1 . 6 .

 416 Supposons que les Hypothèses 3.1.1 et 4.1.1 soient vérifiées. Pour tout intervalle compact I de s¡D I , Vr, on a :

Proposition 4 . 1 . 8 .

 418 2.3). Démonstration. Soit λ I s¡D I , λr. Comme λ I λ, on déduit de la décroissance stricte du rayon spectral (cf. Proposition 3.3.4) que ρpr λ I J λ Iq ¡ 1. D'après le Lemme 4.1.6, on a également ρpr λ I J λ Iq ÝÑ ρpr λ I J λ Iq lorsque Ñ 0. Il existe donc 1 ¡ 0 tel que pour tout s0, 1 r, on a ρpr λ I J λ Iq ¡ 1. D'après les Hyptohèses 4.1.1, on a r λ 1 et on peut donc conclure en appliquant la Proposition 3.3.4 et le Corollaire 3.3.7. On déduit le résultat d'approximation pour les éléments propres principaux. Supposons que les Hypothèses 3.1.1 et 4.1.1 soient vérifiées.

Remarque 4 . 1 . 9 .

 419 La condition 1 1¡r λ ¦ L 2 pSq permet d'obtenir, à partir de la relation ³ S ¢ R N φ 1 que inf s0, 1 r,xS φ px, 0q ¡ 0. En particulier cela implique la nontrivialité des valeurs d'adhérence de la suite pφ q .

Théorème 4 . 1 . 13 .

 4113 Supposons que les Hypothèses (3.1.1) et (4.1.12) soient vérifiées.

Lemme

  

5 A

 5 : DpAq ÝÑ CpS, L 1 pR qq u Þ Ñ ¡f a upx, aq ¡ Dpx, aqupx, aq.

(4. 13 )où

 13 DpAq tu CpS, L 1 pR qq : upx, 0q F rus pxq, u CpS, W
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Figure 5 . 1 -

 51 Figure 5.1 -Life-history associated with the trait x px b , x d q.

Figure 5 . 2 -

 52 Figure 5.2 -Three typical configurations of the model. paq 'Too young to die' : it corresponds to configurations px b , x d q which satisfies x d x b ; pbq 'Now useless' : it corresponds to configurations px b , x d q which satisfy x b x d ; pcq 'Menopause' : it corresponds to configurations px b , x d q which satisfies x d ¡ x b .
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 52121 Figure 5.3 below for an illustration) : -Step 1 : If a ¤ x d , the offspring inherits of the trait x px b , x d q.Lansing Effect : if a ¡ x d , we assume that the offspring carries the trait px b , 0q. Let us denote by x the trait defined as x x if a ¤ x d and x px b , 0q if a ¡ x d . Let us observe that x b stays unchanged and that only individuals with configurations x d

Figure 5 . 3 -

 53 Figure 5.3 -Picture of the reproduction and mutation mechanism. (a) : the individual reproduces before age x d , there is no Lansing Effect. (b) : the individual reproduces after age x d , the Lansing Effect acts.

Figure 5 . 4 -

 54 Figure 5.4 -Simulation of the individual based model (see the script in Appendix A.4) . (a) : Dynamics of the trait x b as a function of time. (b) : Dynamics of the trait x d as a function of time. (c) : Dynamics of x b ¡ x d as a function of time. (d) : Population size as a function of time. Parameters : N K 0 10000 individuals with trait p1.2, 1.6q, η 0.0005, p 0.05, σ 0.05.
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 1 population_0 = numpy . z e r o s ( ( l e n ( t r a i t [ : , 0 ] ) , 8 ) , o r d e r ='C' , dtype=numpy . f l o a t 3 2 ) population_0 [ : , 0 : 2 ] = t r a i t population_0 [ : , 2 ] = 1 population_0 [ : , 3 : 5 ] = 0 f o r l i n r a n g e ( l e n ( population_0 [ : , 0 ] ) ) : population_0 [ l , 5 ] = l +1 #b i r t h r a t e s d e f b ( x , a ) : i f a <= x [ 0 i n t e n s i t y by i n d i v i d u a l ( f o r t h e a c c e p t a t i o n / r e j e c t method ) intmax = 2 . 0 + c o m p e t i t i o n #Lansing e f f e c t d e f l a n s i n g _ e f f e c t ( x , u ) : i f x [ 1 ] > 0 : i f u < x [ 1 ] : r = x e l s e : r = [ x [ 0 ] , 0 ] e l s e : r = x r e t u r n r #mutation k e r n e l d e f dm( x ) : g = random . g a u s s ( 0 , var_mut ) w h i l e x + g < 0 : g = random . g a u s s ( 0 , var_mut ) r e t u r n x + g #f u n c t i o n s f o r a c c e p t a t i o n / r e j e c t method d e f a c c e p t a t i o n _ r e j e t _ c l o n e ( t , a , n ) : r e t u r n b ( t , a ) * (1 ¡(p_mut * p_mut+2 * p_mut * (1¡p_mut) ) ) / ( intmax * n ) d e f acceptation_rejet_mutant_1 ( t , a , n ) : r e t u r n a c c e p t a t i o n _ r e j e t _ c l o n e ( t , a , n ) +(b ( t , a ) * 2 * p_mut * (1¡p_mut) ) / ( intmax * n ) d e f acceptation_rejet_mutant_2 ( t , a , n ) : r e t u r n acceptation_rejet_mutant_1 ( t , a , n ) + ( b ( t , a ) * p_mut * p_mut) / ( intmax * n ) d e f a c c e p t a t i o n _ r e j e t _ m o r t ( t , a , n ) : r e t u r n acceptation_rejet_mutant_2 ( t , a , n ) + ( d ( t , a ) + ( n¡1) * i n t e n s i t e _ c o m p e t i t i o n ) / ( intmax * n ) #t r a n s i t i o n o f t h e p r o c e s s : i t i s based on a c l a s s i c a l a c c e p t a t i o n / r e j e c t method d e f t r a n s i t i o n ( p , time ) : #i n i t i a l i s a t i o n f o r a c c e p t a t i o n / r e j e c t method v i v = p [ ( p [ : , 2 ] == 1 ) , : ] #l i v i n g i n d i v i d u a l s n = l e n ( v i v [ : , 0 ] ) #p o p u l a t i o n s i z e jump_time = random . e x p o v a r i a t e ( 1 ) / ( intmax * n * n ) #jump time u = random . uniform ( 0 , 1 ) #uniform law on ( 0 , 1 ) i n d = random . r a n d i n t ( 0 , n¡1) #random s a m p l i n g o f one i n d i v i d u a l w = time ¡ v i v [ ind , 3 ] + jump_time #age o f t h i s i n d i v i d u a l #a c c e p t a t i o n / r e j e c t method w h i l e u > a c c e p t a t i o n _ r e j e t _ m o r t ( v i v [ ind , : 2 ] , w, n ) : jump_time += ( random . e x p o v a r i a t e ( 1 ) / ( intmax * n * n ) ) u = random . uniform ( 0 , 1 ) i n d = random . r a n d i n t ( 0 , n¡1) w = time ¡ v i v [ ind , 3 ] + jump_time #when a c c e p t e d s = v i v [ ind , : ] a1 = a c c e p t a t i o n _ r e j e t _ c l o n e ( s [ : 2 ] , w, n ) a2 = acceptation_rejet_mutant_1 ( s [ : 2 ] , w, n ) a3 = acceptation_rejet_mutant_2 ( s [ : 2 ] , w, n ) Lansing e f f e c t s [ : 2 ] = l a n s i n g _ e f f e c t ( s [ : 2 ] , w) #i f c l o n a l b i r t h i f u <= a1 : c1 = [ 1 , time + jump_time , 0 . 0 , p [ ¡1 , 5]+1 , s [ 5 ] , a ] p = numpy . v s t a c k ( ( p , numpy . append ( numpy . a r r a y ( s [ : 2 ] ) , numpy . a r r a y ( c1 ) ) ) )#i f b i r t h with mutation ( 1 t r a i t ) e l i f a1 < u <= a2 :x1 = i n t ( numpy . random . r a n d i n t ( 1 , 3 , 1 ) ) z1 = [ [ dm( s [ 0 ] ) , s [ 1 ] ] , [ s [ 0 ] , dm( s [ 1 ] ) ] ]c2 = [ 1 , time + jump_time , 0 . 0 , p [ ¡1 , 5]+1 , s [ 5 ] , a ] p = numpy . v s t a c k ( ( p , numpy . append ( numpy . a r r a y ( z1 [ x1 ¡1]) , numpy . a r r a y ( c2 ) ) ) ) #i f b i r t h with mutation ( 2 t r a i t s ) e l i f a2 < u <= a3 : c3 = [ 1 , time + jump_time , 0 . 0 , p [ ¡1 , 5]+1 , s [ 5 ] , a ] p = numpy . v s t a c k ( ( p , numpy . append ( numpy . a r r a y ( [ dm( s [ 0 ] ) , dm( s [ 1 ] ) ] ) , numpy . a r r a y ( c3 ) ) ) ) #i f death e l s e : p [ ( p [ : , 5 ] == s [ 5 ] ) , 2 ] = 0 p [ ( p [ : , 5 ] == s [ 5 ] ) , 4 ] = time + jump_time time += jump_time r e t u r n p , time #f o r s i m u l a t i n g one t r a j e c t o r y o f t h e p r o c e s s o f number_of_jumps jumps d e f t r a j e c t o i r e ( p ) : p o p u l a t i o n _ s i z e = sum ( p [ : , 2 ] ) time = 0 f o r c s i n r a n g e ( 0 , number_of_jumps ) : i f p o p u l a t i o n _ s i z e >= 1 : x = t r a n s i t i o n ( p , time ) p = x [ 0 ] time = x [ 1 ] p o p u l a t i o n _ s i z e = sum ( p [ : , 2 ] ) p r i n t c s e l s e : break p [ ( p [ : , 4 ] == 0 ) , 4 ] = time r e t u r n p , time

Notations 5 . 3 . 1 .

 531 We define I

Lemma 5 . 3 . 5 .¢ m 11 0 m 21 m 22 ,¢D 1 1 m 21 m

 535221121 Let pm 11 , m 12 , m 22 q R ¦ ¢ R ¢ R ¦ ¡ . Let D 11 ptq, D 12 ptq, D 22 ptq be continuous functions from R to R which tend to zero as t Ñ V. Let us denote M Dptq 11 ptq 0 D 21 ptq D 22 ptq . Then any solution pzptq, t ¥ 0q of the equation dzptq dt pM Dptqqzptq ¡ η}zptq} 1 zptq (5.11) started at zp0q R ¦ ¢ R converges to a vector z which satisfies z 1 m 11 η 11 ¡m 22 , z 2 m 21 m 11 ¡ m 22 z 1 .

Notations 5 . 4 . 3 ..

 543 For all h R we define phq 1 Démonstration. (i) Since x b x d ¡ 1 we obtain from the definition (5.9) that λpxq ¡ 0.

³ x n b x n d 0 e ¡λpx n qa da Ñ ³ x b x d 0 e

 00 ¡λ ¦ a da 1 which allows us to conclude. Differentiability properties are a direct consequence of the Implicit Function Theorem. For each i t1, 2u we apply implicit function Theorem to the map

  ) andProposition 5.3.4 yield 

rB y paqs 11 1 » y b y d 0 λpxqe pz¡1¡λpxqqa da e pz¡1qpy b y d q » y d y b y d λpxqe ¡λpxqa da e pz¡1qpy b y d q p1 λpxqq » V y d e ¡pa¡y d q¡λpxqa da 1 ¡» y b y d 0 e

 1010 a¤y b y d and rD y paqs 11 λpxq 1 a¡y d λpxq. We deduce that zpy, xq equals the smallest solution of the equation z F pzq where F pzq » R e pz¡1q ³ a 0 rBypαqs 11 dα rD y paqs 11 λpxq ¨e¡ ³ a 0 prDypαqs 11 λpxqqdα da e pz¡1¡λpxqqpy b y d q pz ¡ 1q » y b y d 0 e pz¡1¡λpxqqa da e pz¡1qy b y d pe ¡λpxqpy b y dq ¡ e ¡λpxqy d q e pz¡1qpy b y d q e pz¡1qpy b y d q e ¡λpxqy d 1 pz ¡ 1q pz¡1¡λpxqqa da.

» y b y d 0 eRemark 5 . 4 . 8 .Proposition 5 . 4 . 9 .

 0548549 pz¡1¡λpxqqa da.(5.22) If λpyq ¡ λpxq, Equation (5.22) admits two solutions z 1 and z λpxq ¡λpyq 1 1.If λpyq λpxq, Equation (5.22) admits a unique solution z 1. That allows us to conclude the proof. It is interesting to note that in our model, the invasion fitness (which is a concept from adaptive dynamics theory) and the Malthusian parameter are connected thanks to a simple relation.The following proposition characterises the set of traits y which can invade some given trait x. For all x V, y R 2 , 1 ¡ zpy, xq ¡ 0 ðñ λpyq ¡ λpxq ðñ x b x d y b y d . Démonstration. The first equivalence is obvious seeing Proposition 5.4.7.

Figure 5 . 6 -

 56 Figure 5.6 -(a) : This picture represents a trajectory of the TSS process. (b) : This picture represents the drift associated with the TSS process.
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 57 Figure 5.7 -Representation of the set-valued map F .

5 dxptqdtF( 5 . 31 ) 5 . 4 . 16 .

 55315416 pxptqq, t r0, T s xp0q x 0 . Remark A solution of the differential inclusion (5.31) is an absolutely continuous function x : r0, T s Ñ V which satisfies, for almost all t r0, T s, dxptq dt F pxptqq.

Figure 5 .

 5 Figure 5.8 illustrates Theorem 5.4.17.We represent some trajectories of the process pX ptq, t ¥ 0q started at X p0q p2, 1.5q for 0.001.

Figure 5 . 8 -

 58 Figure 5.8 -We represent 10 simulations of the process pX ptq, t ¥ 0q for 0.001, X p0q p2, 1.5q. (a) : We represent X d ptq as a function of X b ptq. (b) : pX b ptq, t ¥ 0q.(c) : pX d ptq, t ¥ 0q. We observe on (b) and (c) that before reaching the diagonal H the dynamics is unique. On H, the process evolves with speed in F pxq for x H.

:

  pu, v, αq r0, 1s 3 B where f px, uq e ¡λpxqpx b x d q

Lemma 5 . 4 . 21 .

 5421 Let x H. Let pu, v, αq r0, 1s 3 and let

Lemma 5 . 4 . 22 .

 5422 Any solution of 5 dxptq dt F pxptqq, t r0, T s xp0q x 0 . (5.35) is a solution of

5 dxptqdt

 5 Hpxptqq, t r0, T s xp0q x 0 .

Figure 5 .

 5 Figure 5.9 -(a) : Representation of H. (b) : Representation of F .
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 55 Ñx paq ¡ 1 a¡x d Ñx paq λpxq Ñx paq Ñx p0q ³ x b Ñx pαqdα, Ñx paq ¥ 0, Ñx p0q 1, (6.2) a φx paq ¡ 1 a¡x d φx paq 1 a¤x b φx p0q λpxq φx paq φx paq ¥ 0, φx p0q 1. (6.3)

» x b 0 eaRemarque 6 . 2 . 2 .

 0622 ¡pa¡x d q ¡ λpxqa da 1.(6.4) La distribution stable des âges Ñx et le potentiel reproducteur φx vérifient Ñx paq exp ¡pa ¡ x d q ¡ λpxqa ¨, φx paq 1 a¤x b Ñx pαqdα.Démonstration. Il suffit de résoudre les équations (6.2) et(6.3). Ceci est fait dans[START_REF] Perthame | Transport equations in biology[END_REF] par exemple. Le paramètre de Malthus λpxq décrit la fitness darwinienne associée au trait x. On rappelle que λpxq désigne le paramètre de Malthus avec effet Lansing (cf. Chapitre 5). Notons que si x b x d on a λpxq λpxq. Si x d x b , on a clairement λpxq ¡ λpxq. Sans effet Lansing, les individus se reproduisant après l'âge x d participent à la croissance de la population. On peut observer que la distribution stable Ñx vérifie e λpxqa Ñx paq 1 pour tout a x d . En effet, les individus ne meurent pas avant l'âge x d . Le potentiel reproducteur φx paq décrit la quantité de reproduction potentielle d'un individu de trait x après l'âge a. Si a ¡ x b , l'individu ne se reproduit plus, on a φx paq 0.

x b x d e ¡p1 λpxqqa da 1 DGpxqÑx px b q Gpxq f λpxq fx d e x d ³ x b

 1 le paramètre de Malthus λpxq vérifie » x b 0 e ¡ λpxqa da 1. D'après le théorème des fonctions implicites, on adx U 1 , f λpxq fx b e ¡ λpxqx b Gpxq Ñx px b q Gpxq , f λpxq fx d 0 Ñx px d q φx px d q Gpxq .Pour tout x U 2 , le paramètre de Malthus λpxq vérifie » x d 0 e ¡ λpxqa da e x d » 'après le théorème des fonctions implicites, on a dx U 2 , f λpxq fx b e x d ¡x b e ¡ λpxqx b

1 » x b 0 e

 10 strictement décroissante. Montrons que λ est bornée supérieurement par 1. Supposons qu'il existe x Ṽ tel que λpxq ¡ 1. On en déduit que ¡pa¡x d q ¡ λpxqa da » x b 0 e ¡a da 1 ¡ e ¡x b , ce qui est absurde et permet de conclure. La seconde assertion se démontre en remarquant que l'application x Ṽ Þ Ñ ∇ λpxq est différentiable sur U 1 U 2 et admet des dérivées partielles bornées.

  d'évolution des traits x b et x d tend vers 0. Au bout d'un certain temps, il n'y a plus vraiment d'avantage sélectif à vivre plus longtemps ou à se reproduire plus longtemps. Par ailleurs, notons que le gradient de fitness est inversement proportionnel au temps moyen de génération Gpxq. Nous retrouvons ainsi le fait qu'il est avantageux de posséder des temps de génération faibles, favorisant ainsi la vitesse d'évolution vers des traits plus adaptés. Notre objectif premier est de montrer l'apparition du phénotype Smurf (cf. Section 1.3) correspondant à des individus dont le trait px b , x d q vérifie x b x d , x b ¡ x d . Nous répondons partiellement à cette question en analysant le comportement de l'écart x b ptq¡ x d ptq où xptq désigne la solution de l'équation canonique (6.9). La figure 6.2.2 représente
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 61 Figure 6.1 -Les courbes noires représentent différentes trajectoires du Processus de substitution des traits, pour différentes conditions initiales et une taille de mutation de l'ordre de 0.001. La courbe rouge représente la diagonale H.
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 1 dpx b ptq ¡ x d ptqq dt 1 Gpxptqq £ e ¡ λpxptqqx b ptq e ¡px b ptq¡x d ptqq ¡ » x b ptq x d ptq e ¡ λpxptqqa e ¡pa¡x d ptqq da 1 Gpxptqq ¢ e ¡ λpxptqqx b ptq e ¡px b ptq¡x d ptqq ¡ e x d ptq 1 λpxptqq ¡ e ¡p1 λpxptqqqx d ptq ¡ e ¡p1 λpxptqqqx b ptq © 1 p1 λpxptqqq Gpxptqq ¡ p2 λpxptqqqe ¡ λpxptqqx b ptq e ¡px b ptq¡x d ptqq ¡ e ¡ λpxptqqx d ptq © e ¡ λpxptqqx d ptq p1 λpxptqqq Gpxptqq ¡ p2 λpxptqqqe ¡p1 λpxptqqqpx b ptq¡x d ptqq ¡ (6.11) ¤ e ¡ λpxptqqx d ptq p1 λpxptqqq Gpxptqq 3e ¡px b ptq¡x d ptqq ¡ 1 ¨. Comme x b ptq¡x d ptq ¡ logp3q, on a 3e ¡px b ptq¡x d ptqq ¡1 0. Par ailleurs, d'après le Lemme 6.2.6, on a λpxptqq 1 et G est clairement bornée supérieurement. On en déduit que : dpx b ptq ¡ x d ptqq dt ¤ e ¡x b ptq 2 sup G 3e ¡px b ptq¡x d ptqq ¡ 1 ¨.

Remarque 6 . 2 . 17 .

 6217 Nous expliquons maintenant les raisons pour lesquelles nous conjecturons la convergence x b ptq ¡ x d ptq Ñ logp3q 2 . Notons que comme λpxptqq Ñ 1 lorsque t Ñ V, le terme de droite dans (6.11) se comporte comme ¡ p2 λpxptqqqe ¡p1 λpxptqqqpx b ptq¡x d ptqq ¡ 1 © 3e ¡2px b ptq¡x d ptqq ¡ 1 Le terme de gauche se comporte lui comme e ¡ λpxptqqx d ptq p1 λpxptqqq Gpxptqq e ¡x d ptq 2 sup G.
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 62 Figure 6.2 -On représente les tailles des deux sous-populations (avec et sans effet Lansing) en fonction du temps, pour différentes probabilités de mutations. Chaque courbe est une moyenne sur 20 simulations pour une population initiale de taille 10000. Courbe noire : population avec effet Lansing et trait initial x p1.5, 1.3q, λpxq 0.42. Courbe grise : population sans effet Lansing et trait initial x p1.5, 0.82q, λpxq 0.42. (a) : p K 0 σ 0.05 . (b) : p K 0.5, σ 0.05. (c) : p K 1, σ 0.008.
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 63 Figure 6.3 -Courbe pointillée (sans effet Lansing) : représentation de l'application λ r0, 0, 6s Þ Ñ f λp1.5, x d q{fx d . Courbe pleine (avec effet Lansing) : représentation de l'application λ r0, 0, 6s Þ Ñ fλp1.5, x d q{fx d .
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 6 .15) où c ¡ 0 est l'intensité de compétition et Dpx, aq le taux de mortalité intrinsèque. Cette équation est similaire à celle étudiée dans le Chapitre 3. Cependant, le fait que la probabilité de mutation ne soit pas fixée modifie le comportement des solutions. Donnons les idées. L'étude du problème stationnaire se ramène à celui d'une famille d'opérateurs r λ J λ qui vérifient pr λ J λ qfpxq p1 ¡ pqr λ pxqfpxq » S ¢r0,1s qK λ py, xqf pyqdy.

Figure 6 . 4 - 3 )(B. 5 ) where rFpzqs 11 ³ x b x d 0 e ¡za da and rFpzqs 22 ³ x b 0 e 1 x 2 x p0q rFpλpxqqs 21 1 ¡ rFpλpxqqs 22 N 1

 643511022012221 Figure 6.4 -On représente l'évolution de la distribution des trait px b , x d , pq pour une population initiale de taille N 0 1000 et dont les traits des individus sont uniformément distribués sur r1, 2s ¢ r1, 2s ¢ r0, 1s. (a) : dynamique du trait x b . (b) : dynamique du trait x d . (c) : dynamique de la probabilité de mutation p.

5 dxptq

 5 dt F pxptqq, t r0, T s xp0q x 0 .(B.7)Let us recall the definition of a solution of (B.7).Definition B.3.1. A mapx : r0, T s Þ Ñ R d is a solution of (B.7) if there exists a map ϕ : r0, T s Þ Ñ R d such that :
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  aqkpx, a, yqR λ px, aqda, (2.2) et on note r λ sup xS r λ pxq. Pour tout λ s¡D, Vr, on définit l'opérateur linéaire rλ Jλ : MpSq Ñ MpSq par pr λ Jλ qµ r λ pxqµ

	¢»		
	K λ py, xqµpdyq	dx	(2.3)
	S		
	et on note ρpr λ		

Jλ q son rayon spectral. Le Théorème 2.1.4 montre l'existence de solutions stationnaires à l'équation (2.1). Théorème 2.1.4. Supposons que les Hypothèses 2.1.2 soient vérifiées et que ρpr 0 J0 q ¡ 1. Il existe une mesure stationnaire positive n M pS ¢ R q à l'équation (2.1), qui vérifie npdx, daq µ λ ¦pdxqR λ ¦px, aqda, λ ¦ c » S ¢ R npdy, dαq, où λ ¦ ¡ 0 est solution de l'équation ρpr λ ¦ Jλ ¦q 1 et µ λ ¦ M pSq est un vecteur propre de rλ ¦ Jλ ¦ associée à la valeur propre ρpr λ ¦ Jλ ¦q 1. Remarque 2.1.5. La mesure µ λ ¦ vérifie donc

Théorème 2.1.8.

  Supposons que les Hypothèses 2.1.2, 2.1.6 soient vérifiées et que ρpr 0 J0 q ¡ 1. On suppose qu'il existe une solution stationnaire n CpS, L 1 pR qq à l'équation (2.1). et qu'il existe B, k ¡ 0 tels que B ¥ B et k ¥ k. Soit pn t q t¥0 CpR , M pS ¢ R qq une solution de (3.10) vérifiant n 0 M pS ¢ R qzt0u. Alors on a lim tÑV }n t ¡ n} TV 0 et n est l'unique mesure stationnaire.

  f t v t px, aq f a v t px, aq ¡Dpx, aqv t px, aq v t px, 0q F rv t s pxq, pt, x, aq R ¢ S ¢ R . Supposons que les Hypothèses 2.1.2 soient vérifiées et que ρpr 0 J0 q ¡ 1. Il existe pλ, N, φq R ¢M pS ¢ R q¢M loc pS ¢ R q avec N et φ non-nulles, vérifiant au sens des mesures : Dpx, aqN px, aq λN px, aq N px, 0q F rNs pxq, Donnons les idées de la démonstration de la Proposition 2.1.9. En intégrant les équations (2.6) et (2.7), on obtient que les solutions pN, φq de (2.6) et (2.7) sont absolument continues en la variable d'âge puis que les conditions de bord pNpx, 0q, φpx, 0qq M pSq 2 vérifient

	Proposition 2.1.9. (2.6)
	5 f a φpx, aq ¡ Dpx, aqφpx, aq G rφs px, aq λφpx, aq φpx, aq ¥ 0.	(2.7)
	où G rφs px, aq p1 ¡ pqBpx, aqφpx, 0q pBpx, aq		
					(2.4)
	On remarque ensuite que pour tout λ R			
	n t pdx, daq			
	¢»		
	tÑ V	S ¢ R	v 0 φ	N px, aq,
	et donc à l'étude des problème aux valeurs propres direct et dual associés à l'équation
	linéaire. On montre la proposition suivante.			

5 ³ S ¢ R n t pdy, dαq e ¡λt v t pdx, daq e ¡λt ³ S ¢ R v t pdy, dαq . (2.5) L'équation (2.4) est une équation de type McKendrick-Von Foerster (cf. équation (1.1)) avec une structure en trait. Le problème se ramène à trouver un triplet pλ, N, φq vérifiant e ¡λt v t px, aq 5 ¡f a N px, aq ¡ ³ S φpy, 0qkpx, a, yqdy. 5 N px, 0q r λ pxqNpx, 0q ³ S K λ py, xqN py, 0qdy φpx, 0q r λ pxqφpx, 0q ³ S K λ px, yqφpy, 0qdy. Le problème se ramène donc à trouver un triplet pλ, µ λ , η λ q R ¢M pSq ¢ M pSq vérifiant : 5 pr λ Jλ qµ λ µ λ pr λ Gλ qη λ η λ , (2.8) où rλ Jλ est défini en (2.3) et rλ Gλ : MpSq Ñ MpSq est défini par pr λ Gλ qηpdxq r λ pxqηpdxq » S K λ px, yqηpdyq.

  Théorème 2.1.10. [76, Appendice 2.2.6] Soit T un opérateur positif de CpSq. Le rayon spectral ρpT q est une valeur propre de T I associée à une mesure propre positive. En remarquant que pr λ J λ q I rλ Gλ et pr λ G λ q I rλ Jλ , on déduit du Théorème 2.1.10 le résultat suivant. Supposons que les Hypothèses 2.1.2 soient vérifiées. Pour tout λ ¡ ¡D, il existe µ λ M pSq tel que ρpr λ G λ qµ λ pr λ Jλ qµ λ qui vérifie µ λ pAq ¡ 0 pour tout sous-ensemble borélien A de S tel que LebpAq ¡ 0. Notons Σ λ tx S : r λ pxq r λ u. Nous avons alors :

	Théorème 2.1.11.	
	5 pr λ J λ qfpxq r λ pxqfpxq pr λ G λ qfpxq r λ pxqfpxq	³ ³ S K λ py, xqf pyqdy

S K λ px, yqf pyqdy, puis en utilisant le Théorème 2.1.10 directement adapté de Krein-Rutman

[START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF] 

(voir [76, Appendice 2.2.6]).

Opérateurs positifs non-compacts

  Les démonstrations des Théorèmes 2.1.4 et 2.1.8 reposent sur l'étude des propriétés spectrales d'opérateurs non-compacts de la forme r J : CpSq Ñ CpSq où pr Jqf pxq rpxqf pxq »

S

Kpy, xqf pyqdy.

Dans

[START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]

, Coville montre que si 1 r¡r L 1 pSq alors la valeur propre principale définie par λ p pr Jq suptλ R |hϕ CpSq, ϕ ¡ 0 tel que pr Jqϕ λϕ ¤ 0u (2.9) est une valeur propre de r J associée à une fonction propre positive. Dans

[START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF]

, il montre que si le critère n'est pas vérifié, on peut toujours trouver une mesure propre associée. L'utilisation du Théorème 2.1.10 nous a permis "d'unifier" les démonstrations de ces résultats dans le Théorème 2.1.11. Nous avons d'abord montré l'existence d'une mesure propre, ce qui nous a permis de retrouver le critère d'existence de fonctions propres principales. Notre approche s'est avérée efficace pour étudier les questions relatives à la dualité. Elle nous a notamment permis d'obtenir facilement le point (v) du Théorème 2.1.11, résultat nouveau. Dans la Section 4.2, nous donnons une application directe de la formulation (2.9) pour la valeur propre principale.

  Une mutation apparaît sur chaque trait x b and xd indépendamment avec probabilité p K s0, 1r. Si le trait x b mute, le trait y b du nouveau-né est y b x b h b où h b R est choisi suivant une mesure de probabilité kpx b , h b qdh b ; si le trait xd mute, le trait y d du nouveau-né est y d xd h d où h d R est choisi suivant la probabilité kp xd , h d qdh d , où le noyau k est défini pour tout u R et v R par

	σ 2 kpu, vq 1 rmaxp0,u¡1q,u 1s pu vqe ¡ v 2 ³ σ 2 dz R 1 rmaxp0,u¡1q,u 1s pu zqe ¡ z 2	(2.11)
	où σ 2 ¡ 0. Notons que pour u ¡ 1,		
	σ 2 kpu, vq kpvq 1 r¡1,1s pvqe ¡ v 2 ³ σ 2 dz R 1 r¡1,1s pzqe ¡ z 2	.	(2.12)
	• Un individu de trait px, aq a un taux de mortalité 1 a¡x d ηN K t , avec η ¡ 0.
	Chaque individu est soumis à la même pression de compétition η de la part de
	chaque individu dans la population, quelle que soit la valeur de son trait.	
	• Entre les sauts, les individus vieillissent à vitesse 1 : un individu d'âge a au temps
	t aura un âge a s au temps t s.		

Notons x le trait défini par x x si a ¤ x d et x px b , 0q si a ¡ x d . On observe que le trait x b n'est pas modifié et que seuls les individus vérifiant x d x b sont concernés par le second type px b , 0q.

-Étape 2 : Mutations génétiques.

  n x pt, aq f a n x pt, aq ¡ pD x paq η}n x pt, .q} 1 Iq n x pt, aq n x pt, 0q

	³	R B x pαqn x pt, αqdα, pt, aq R 2	(2.14)
	où les densités n 1 x pt, .q et n 2 x pt, .q décrivent respectivement les densités de nombre des populations de traits px b , x d q, px b , 0q et
		}n x pt, .q} 1	it1,2u	»	|n i x pt, αq|dα
				R
	est la taille de la population.		
	L'équation (2.14) est un système d'équation de type Gurtin McCamy (cf. [38]).

5 f t

un processus de branchement bi-type de taux de naissance B y et de taux de mort D y η}n x } 1 . La proposition suivante montre que la fonction de fitness d'invasion et le paramètre de Malthus sont reliés par une simple relation. Proposition 2.2.4. Pour tout x V et y R 2 , on a 1 ¡zpy, xq maxpλpyq ¡λpxq, 0q.

  Le processus U 1 est un processus de branchement structuré en âge de taux de naissance 1 a¤x b x d et de taux de mort 1 a¡x d .

	da 1.	(2.15)
	On calcule la fonction de fitness d'invasion 1 ¡ zpy, xq, définie comme la probabilité de
	survie d'La Proposition 2.2.4 se montre de la façon suivante. Soit U t pU 1 t , U 2 t q un pro-
	cessus de branchement bi-type comme ci-dessus.	

  t ¥ 0q a lieu au sens des marginales fini-dimensionnelles. On a T t pdx, daq δ Xptq n 1 Xptq paqda où pXptq, t ¥ 0q est un processus de saut pur à valeurs dans V de générateur infinitésimal L, défini pour toute fonction mesurable bornée ϕ

	Xptq paqda
	δ pX b ptq,0q n 2

Notations 2.2.6. Pour tout h R, on note phq 1

  

	Théorème 2.2.7. Supposons que la suite pX p0qq ¡0 converge en loi vers x 0 V. Pour tout T, δ ¡ 0, £
	lim Ñ0	P	inf xS F pT,x 0 q	sup tr0,T s	|X ptq ¡ xptq| ¡ δ	0,
	où S F pT, x 0 q désigne l'ensemble des solutions de l'inclusion différentielle
					5	dxptq dt F pxptqq, t r0, T s xp0q x 0 .	(2.21)
	La démonstration du Théorème 2.2.7 est donnée en intégralité dans la Section 5.4.3.
	Nous en présentons les éléments principaux.
	.18) Éléments de démonstration du Théorème 2.2.7. Soit pX ptq, t ¥ 0q le processus de gé-
	nérateur infinitésimal								
	Dans les travaux précédents sur le comportement limite du Processus de substitution
	des traits en petites mutations (cf. [19],[63]), on suppose que la fonction de fitness d'in-
	vasion admet un gradient lipschitzien. Ainsi, on obtient la convergence des générateurs
	L vers le générateur d'une équation différentielle ordinaire. Cette hypothèse de régu-
	larité est mise en défaut dans notre situation car le paramètre de Malthus λ n'est pas
	différentiable sur la diagonale H. Nous utilisons une méthode introduite dans Gast-
	Gaujal [36] qui étend les résultats classiques d'approximation des chaînes de Markov
	par des équations différentielles ordinaires (cf. Ethier-Kurtz [32]) à des situations pa-
	thologiques, où l'on ne dispose pas de suffisamment de régularité sur le drift de la chaîne
	de Markov. Le comportement limite n'est pas nécessairement unique et décrit par une
	équation différentielle ordinaire mais par un ensemble de trajectoires, solutions d'une
	inclusion différentielle (cf. Section B.3 pour des rappels sur les inclusions différentielles).
	Le Théorème 2.2.7 montre que le comportement limite du processus X lorsque tend
	vers zéro est décrit par l'ensemble des solutions d'une inclusion différentielle.
										¢	h 0	et phq 2	¢	0 h
	On définit la fonction à valeurs ensemble F : V ÝÑ PpR 2 q en posant :
	di t1, 2u, dx U i , F pxq pfpx, 1qq i dx H, F pxq 4 1 2 ¢ f px, uq f px, uq	, u r0, 1s	B	,	(2.19)
	où pour tout px, uq V ¢ r0, 1s et en notant Gpxq	³ x b 0 ae ¡λpxqa da,
	f px, uq	¢» u 0	h 2 kphqdh	» 1 u	hukphqdh	e ¡λpxqpx b x d q Gpxq	n 1 x p0q 2	.	(2.20)

Il est facile de vérifier que le drift g pxq E pY p1q ¡ Y p0q|Y xq vérifie di t1, 2u, dx U i , g pxq n 1 x p0q

  

	5 xp0q x 0 , dxptq dt Hpxptqq, t r0, T s	(2.22)
	où la fonction H à valeurs ensemble est définie comme l'enveloppe convexe des points
	d'accumulation du drift, c'est à dire :		
	Hpxq conv	¢4 acc Ñ0	g pxq : x Ñ x
		2τ	R »	λpx	phq i q ¡ λpxq kphqphq i dh
	dx H, g pxq 0.		
	Si la famille pg q convergeait uniformément vers une fonction lipschitzienne, l'ensemble
	Hpxq serait alors réduit à un élément et le comportement limite décrit par une équation
	différentielle ordinaire. Comme nous allons le voir, ce n'est pas le cas. Ci-dessous nous
	utilisons notamment que par (2.15), la fonction λ ne dépend que de x b x d . Soit x H and soit u r0, 1s. On définit la suite x x ¡ puq i . Nous avons
	λpx			

B

.

Remarque 2.2.9. Revenons aux motivations biologiques décrites dans la Section 1.3. Nous voulions montrer que sous l'hypothèse d'effet Lansing, la distribution du trait px b , x d q se concentrait sur les configurations vérifiant x b x d . Le Théorème 2.2.7 donne une réponse. Soit pxptq, t r0, T sq une solution de (2.21). Sur chaque U i , on a

  ∇λpxq est définie comme la limite ∇λpyq, y Ñ x, y U i . Ceci mène à la première intégrale dans(2.23). Si h ¡ u, on obtient que λpx ph ¡ uq i q ¡ λpxq 0 et On conclut la démonstration du Théorème 2.2.7 en montrant que les inclusions différentielles associées aux fonctions F et H admettent les mêmes solutions. En effet, si x U i , on a Hpxq F pxq. De plus sur chaque ouvert U i la fonction F est lipschitzienne et la théorie de Cauchy Lipschitz s'applique. Par ailleurs on peut montrer qu'une solution pxptq, t r0, T sq de l'inclusion différentielle issue de xp0q H vérifie à tout temps t ¥ 0 Hpxptqq H. On déduit ainsi que si x est solution

		λpx	phq i q ¡ λpx q puq i .∇λpxq ¤ phq i .∇λpxq,	
	ce qui mène à la deuxième intégrale dans (2.23). On obtient ainsi le lemme suivant.
	Lemme 2.2.8. La fonction à valeurs ensemble H vérifie			
		di t1, 2u, dx U i , Hpxq tpfpx, 1qq i u dx H, Hpxq 4¢ p1 ¡ αqf px, vq αf px, uq	: pu, v, αq r0, 1s 3	B
	où	f px, uq e ¡λpxqpx b x d q Gpxq	n 1 x p0q 2	¢» u 0	h 2 kphqdh	» 1 u	uhkphqdh	.	(2.23)
		La fonction H est représentée en Figure 2.2.2 (a). La fonction F définie par (2.19)
	est représentée en Figure 2.2.2 (b). de l'inclusion différentielle (2.22), alors x est solution de l'inclusion différentielle (2.21)
	ce qui permet de conclure.						
			dxptq dt pfpxptq, 1qq i , xptq U i .		
	L'application x U i Þ Ñ pfpx, 1qq i est Lipschitzienne et bornée inférieurement par une
	constante strictement positive. Ainsi, on a l'unicité sur U i pour (2.21) et toute solution
	atteint en temps fini la diagonale H. Sur H, la solution vérifie	
			dxptq dt F pxptqq, xptq H.			
	Comme pour tout x H, F pxq H, la solution reste dans H.	
		La Figure 2.2.2 illustre le Théorème 2.2.7.				

  we define the operators rλ Jλ , rλ Gλ : MpSq Ñ MpSq by pr λ Jλ qµ r λ pxqµ

	¢»		
	K λ py, xqµpdyq	dx,	(3.19)
	S		

pr λ Gλ qµ r λ pxqµ ¢» S K λ px, yqµpdyq dx (3.

20) and r λ J λ , r λ G λ : CpSq Ñ CpSq similarly as (3.7) and (3.8). By Lemma 3.3.1, we deduce that Theorem 3.2.3 is satisfied for r λ and K λ . We recall the conclusions in the following lemma. Lemma 3.3.2. Assume Assumptions 3.1.1. For all λ ¡ ¡D, there exists µ λ M pSq such that

  respectively and we denote by B, D and k their extensions. We defineṼ 1 S ¢ R px, aq Rλ px, aq Ñ M loc pR d ¢ Rqwhere Rλ px, aq CpR d ¢ Rq is defined similarly as R λ px, aq. Now we compute the distributional partial derivatives

  , 0qp P pxqνpdxq 1 S pxq Qpxqdxq

	where we introduced
	5	P pxq p1 ¡ pq

³ R Bpx, aqũpx, daq Qpxq p ³ R d ¢ R Bpy, aq kpy, a, xqũpy, daqνpdyq.

It comes that f a Ṽ p P ν 1 S Qdxqδ 0 pdaq. Since the primitives of the zero distribution are constant functions, we deduce that there exists a distribution T D I pR d q such that Ṽ pdx, daq p P ν 1 S Qdxq1 R paqda T pxq.

Since the support of Ṽ is a subset of S ¢ R , we get that T 0 and finally N pdx, daq pPpxqνpdxq QpxqdxqR λ px, aqda

(3.24) 

where P : P| S and Q : Q| S . By

(3.24)

, we obtain :

P pxqνpdxq pPpxqνpdxq Qpxqdxqr λ pxq,

(3.25)

and Qpxqdx Jλ pPν Qdyqpdxq. (3.26) Denoting µ : P pxqνpdxq Qpxqdx, we get by (3.25) and (3.26) that µ pr λ Jλ qµ.

Finally, it comes by (3.24) that N pdx, daq µpdxqR λ px, aqda.

  , αq G rψs pdx, dαq ηpdxq

	(3.29)
	which is equivalent to
	r λ pxqηpdxq dx

» S ηpdyqK λ px, yq ηpdxq. (3.30) By (3.30) we get that pr λ Gλ qη η and using (3.28), (3.29), (3.30), it comes that

  Proof ofCorollary 3.3.7. Let λ ¦ ¥ λ be the unique solution of ρpr λ ¦ J λ ¦q 1 (see Proposition 3.3.4). Since r λ ¦ 1 we deduce by Lemma 3.3.2 (ii) that 1 is a simple eigenvalue of the operators r λ ¦ J λ ¦ and r λ ¦ G λ ¦. Let pN, φq CpS, L 1 pR qq ¢ CpS, L V pR qq be a solution of (3.31) and (3.32) with λ λ ¦ . We have N px, 0q, φpx, 0q C pSq and we deduce by Theorem 3.2.3 (ii) that N px, 0q and φpx, 0q are positive eigenfunctions of r λ ¦ J λ ¦ and r λ ¦ G λ ¦ associated with the eigenvalue one. Since this eigenvalue is simple, the conditions

	³	S ¢ R N φ 1.	(3.32)

Corollary 3.3.7. Assume Assumptions 3.1.1, 3.3.3 and that r λ ¦ 1. There exists a unique pλ ¦ , N, φq rλ, Vr ¢ CpS, L 1 pR qq ¢ CpS, L V pR qq such that 5 ¡f a N px, aq ¡ pDpx, aq λ ¦ qNpx, aq 0, px, aq S ¢ R , N px, 0q F rNs pxq, ³ S ¢ R N 1, (3.31) 5 f a φpx, aq ¡ pDpx, aq λ ¦ qφpx, aq G rφs px, aq 0, px, aq S ¢ R ,

  14, Theorem 2.4].

	Lemma 3.3.10. Assume Assumptions 3.1.1, 3.1.4. There is a constant C

  , aqφpx, aqdxda(3.35) where λ ¦ , φ are defined in Corollary 3.3.7. We now define h t px, aq : e ¡λ ¦ t v t px, aq ¡ m 0 N px, aq where m 0 aqφpx, aqq f a ph t px, aqφpx, aqq ¡h t px, aqG rφs px, aq h t px, 0qφpx, 0q φpx, 0qF rh t s pxq. |h t px, aq|G rφs px, aqdxda.

	Integrating the first equation in (3.36) over S ¢ R , we obtain
	d dt	» S ¢ R	|h t px, aq|φpx, aqdxda » S φpx, 0q|F rh t s pxq|dx ¡	» S ¢ R	(3.37)
	From the equation (3.37), and using the invariant (3.35), we deduce that
			d dt	» S ¢ R »	|h t px, aq|φpx, aqdxda |p1 ¡ pqφpx, 0q » Bpx, aqh t px, aqda
					S	R
				¡	»	¢ p1 ¡ pq
					S
	it comes that		
	d	»		
	dt			
	Using a regularisation method used in [69, Proposition 6.3], we deduce that

» S ¢ R v 0 px, aqφpx, aqdxda. It is straightforward to verify that 5 f t ph t px, » S ¢ R ppBpy, aqkpy, x, aqφpx, 0q ¡ ηφpy, aqqh t py, aqdady|dx » R φpx, 0qBpx, aq|h t px, aq|da p » S ¢ R Bpx, aqkpx, y, aqφpy, 0q|h t px, aq|dyda dx Since we assume that for any a R , px, yq S 2 pBpy, aqkpy, x, aqφpx, 0q ¥ ηφpy, aq, S ¢ R |h t px, aq|φpx, aqdxda ¤ ¡η LebpSq » S ¢ R |h t px, aq|φpx, aqdxda

  Let p 0 s0, 1r such that pp 0 {p1 ¡ p 0 qqB Bpxq dx 1 which is absurd. So, η s $ 0. The proof is similar for µ s .

			³	S	1 B¡Bpxq dx	1. Let
	We get that almost everywhere on S		
	vpxq p Bpxq λ D	1 1 ¡ r λ pxq ¤ p Bpxq λ D	1 r λ ¡ r λ pxq p 1 ¡ p	Bpxq B ¡ Bpxq
	and we deduce that	1 ¤ p 1 ¡ p B		

1 

B¡B L 1 pSq. Let Dpx, aq D R ¦ and kpx, y, aq 1. Proposition 3.3.12. λ ¥ λ, µ λ µ s upxqdx M pSq and η λ η s vpxqdx M pSq be such that µ λ pr λ Jλ qµ λ and η λ pr λ Gλ qη λ . Then for all p s0, p 0 r, µ s $ 0 and η s $ 0. Démonstration. Let p s0, p 0 r and λ ¥ λ. First remark that we have r λ pxq p1¡pq Bpxq λ D and K λ px, yq p Bpxq λ D . Assume there exists a non negative function v L 1 pSq with ³ S vpyqdy 1 such that pr λ Gλ qv v. We have almost everywhere on S, r λ pxqvpxq » S K λ px, yqvpyqdy vpxq. » S 1 B ¡

  , daq. It is straightforward to check that v t pdx, daq exp v t px, aq f a v t px, aq ¡Dpx, aqv t px, aq v t px, 0q F rv t s pxq, v 0 n 0 . Let pλ ¦ , N, φq be the eigenelements given by Corollary 3.3.7. By the assumptions of the cρ 2 ptq ρptq pDptq λ ¦ q ¡ cρ 2 ptq

	with					
	Dptq	» S ¢ R	n t pdx, daq ρptq	¢ p1 ¡ pqBpx, aq pBpx, aq	S »	kpx, a, yqdy ¡ Dpx, aq
							¢ c	» t	ρpsqds	n t pdx, daq
							0
	is a weak solution of the linear equation
	theorem we obtain that		
				φpx, aq ¥ p1 ¡ pq inf xS φpx, 0qB λ ¦ }D} V	: φ ¡ 0
	and that				
				pBpx, aqkpx, a, yqφpx, 0q φpx, aq	¥ pBkφ }φ} V	: (3.41)
	and that		n t pdx, daq ρptq	e ¡λ ¦ t v t px, aq e ¡λ ¦ t ³ S ¢ R v t	TV ÝÑ tÑV	N px, aqdxda.	(3.42)
	We now study the long-time behaviour of ρptq. Choosing f 1 in (3.10) it comes that
	dρ dt ptq	» S ¢ R	n t pdx, daq	¢ p1 ¡ pqBpx, aq pBpx, aq	S »	kpx, a, yqdy ¡ Dpx, aq

5 f t η ¡ 0.

We deduce that φ satisfies (3.33) and by applying Proposition 3.3.8 that lim tÑV }e ¡λ ¦ t v t ¡ m 0 N } TV 0, ¡

  pv t q t¥0 CpR , M pS ¢ R qq une solution de l'équation linéaire 5 f t v t px, aq f a v t px, aq ¡D px, aqv t px, aq v t px, 0q F rv t s pxq.On suppose que ρpr λ J λ q ¡ 1. Soit s0, 1 r. Supposons qu'il existe η ¡ 0 tel que pour tout a R et px, yq S 2 , px, aq|e ¡λ t v t ¡ m 0 N |pdx, daq R φ px, aqv 0 pdx, daq.

	Alors on a pour tout t ¥ 0, »					
	où m 0	S ¢ R ³	¤ e ¡η LebpSqt	»	S ¢ R	φ px, aq|v 0 ¡ m 0 N |pdx, daq	(4.6)
	Démonstration. Il s'agit d'une conséquence directe du Lemme 4.1.7 et de la Proposition
	3.3.8.						
	On donne le résultat principal de cette section.
			1¡r λ pxq 1	³		
			³	S K λ ¦py, x ¦ qηpdyq 0. D'après le Lemme 3.3.2, on a
	η 0. Comme 1					
								(4.4)
	La proposition suivante est une conséquence immédiate de la Proposition 3.3.8. Elle
	concerne le comportement en temps long de l'approximation.
	Proposition 4.1.10. Supposons que les Hypothèses 3.1.1, 3.1.4 et 4.1.1 soient vérifiées.
								(4.5)

S K λ px, yqg pyqdy. Comme 1 1¡r λ ¦ L 1 pSq et K λ ¦ est bornée, on déduit que la famille ³ S g ¨ est bornée. De la même façon on a N px, 0q 1 1¡r λ pxq ³ S K λ py, xqN py, 0qdy. En utilisant que ³ S ¢ R N 1 on déduit que ³ S N px, 0qdx ¨ est bornée. Enfin, on a g pxqN px, 0q 1 p1 ¡ r λ pxqq 2 » S K λ py, xqN py, 0qdy » S K λ py, xqg pyqdy. et la condition 1 1¡r λ ¦ L 2 pSq assure que la famille ³ S g pxqN px, 0qdx ¨ est bornée. On déduit qu'il existe une constante C 2 ¡ 0 telle que α ¡ C 2 . On conclut en montrant que inf s0, 1 r,xS g pxq ¡ 0. Il est clair que la famille g est relativement compacte dans M pSq. Soit η M pSq une valeur d'adhérence. Elle vérifie ηpdxq r λ ¦pxqηpdxq ³ S K λ ¦px, yqηpdyq. Supposons qu'il existe une suite px q dans S telle que g px q Ñ 0 lorsque Ñ 0. Comme g px q ¥ ³ S K λ py, x qg pyqdy, on déduit en extrayant une soussuite convergente x Ñ x ¦ que ³ g Ñ ³ S η on a la contradiction ce qui permet de conclure. Soit pB py, aqkpy, a, xqφ px, 0q ¥ η φ py, aq. φ S ¢ Théorème 4.1.11. Supposons que les Hypothèses 3.1.1, 3.1.4 et 4.1.1 soient vérifiées. On suppose que ρpr λ

  R n t pdx, daq. Alors, ρ t CpR , M pSqq est solution de l'équation de sélection asymptotiquement autonome : f t ρ t pdxq ρ t pdxq pλpxq D t pxq ¡ cρ t pSqq , Démonstration. On écrit n t pdx, daq νpdxqu t px, daq où pour tout x supppνq, la fonction u t px, .q est solution de 5 f t u t px, aq f a u t px, aq ¡ pDpx, aq cρ t pSqq u t px, aq u t px, 0q Dpx, αqqu t px, αqdα ¡ cα t pxqρ t pSq αq ¡ Dpx, αqq u t px, αq α t pxq dα ¡ cρ t pSq Supposons que les Hypothèses (3.1.1) et (4.1.12) soient vérifiées. Alors, la famille pρ t q t¥0 est relativement compacte dans M pSq. Les valeurs d'adhérence ρpdxq sont des mesures dont le support est inclus dans Σ et qui vérifient ρpSq λ ¦ Il existe une constante C ¡ 0 telle que dρtpSq dt ¤ ρ t pSq pλ ¦ C ¡ cρ t pSqq. On déduit que la famille pρ t pSqq t¥0 est bornée et donc que la famille pρ t q t¥0 est relativement compacte. Soit ρpdxq M pSq une valeur d'adhérence. Soit f CpSq dont le support est inclus dans Σ c . On écrit ρ t pdxq νpdxqu t pxq où pour tout x supppνq on a f t u t pxq u t pxq pλpxq D t pxq ¡ cρ t pSqq. On montre que pour tout x Σ c , u t pxq ÝÑ 0 lorsque t Ñ V. Pour cela on utilise que u t pxq

				³	R Bpx, αqu t px, αqdα.
	On pose α t pxq	³	R u t px, αqdα. On a
	f t α t pxq	» R pBpx, αq ¡ α t pxq ¢»
	On peut vérifier que
	4.1.14. Supposons que les Hypothèses (3.1.1) et (4.1.12) soient vérifiées. On pose ρ t pdxq ³
				(4.8)

où D vérifie sup xS |D t pxq| Ñ tÑ V 0. R pBpx, ³ R pBpx, αq ¡ Dpx, αqq

utpx,αq αtpxq dα ÝÑ λpxq lorsque t Ñ V, uniformément sur S ce qui permet de conclure. L'équation (4.8) est une équation de sélection asymptotiquement autonome. Dans [1], les auteurs s'intéressent au comportement en temps long de l'équation autonome associée (D t pxq 0). Nous montrons ici des résultats similaires aux leurs pour l'équation (4.8). Lemme 4.1.15. c . Démonstration. ³ R ũt px, daq où ũt px, daq est solution de 5

  [START_REF] Browder | On the spectral theory of elliptic differential operators[END_REF] en variation totale, où c ¡ 0 et N x est un vecteur propre principal associé à l'opérateur R v t py, daqνpdyq . D'après l'Hypothèse 4.1.12 (iii), il existe αpxq ¡ 0 tel que νpU x q ¡ 0 où U x ty : λpyq ¥ αpxq ¡ λpxqu. On en déduit que En utilisant (4.9) et en appliquant le lemme de Fatou dans le terme de droite de l'inégalité ci-dessus, il vient que e ¡λpxqt ³ S ¢ R v t py, daqνpdyq ÝÑ V lorsque t Ñ V. La famille pρ t pSqq t¥0 étant bornée, cela entraine que u t pxq Ñ 0 lorsque t Ñ V. Finale-V 0 ce qui conclut la démonstration pour le support de ρpdxq. L'égalité ρpSq λ ¦ Démonstration du Théorème 4.1.13. Pour tout t ¥ 0, il existe s t px, daq une mesure de probabilité de transition telle que n t pdx, daq ρ t pdxqs t px, daq. On a formellement (on doit pouvoir donner un sens rigoureux à l'égalité suivante en utilisant par exemple la dérivation faible des mesures) : f t n t ρ t f t s t s t f t ρ t

	linéaire. On écrit	ũt px, daq ³ S ¢ R n t	e ¡λpxqt v t px, daq e ¡λpxqt ³
	e ¡λpxqt	» S ¢ R	v t py, daqνpdyq ¥ e pαpxq¡λpxqqt	Ux¢R »	e ¡λpyqt v t py, daqνpdyq
	ment on a		»	f pxqρ t pdxq	»
			S		
						c se montre
	en utilisant des arguments similaires à ceux de [1, Section 4].
	La démonstration du Théorème 4.1.13 n'est pas encore complète. Nous en donnons
	les heuristiques.			
						(4.10)
	On a par ailleurs			
						(4.11)
	Il vient en combinant (4.10) et (4.11) que :

S ¢ S f pxqu t pxqνpdxq Ñ tÑ f t n t ¡ρ t f a s t ¡ pD c » n t pdy, dαqqρ t s t .

  Nous pouvons appliquer le résultat précédent à l'étude d'un système d'équations aux dérivées partielles décrivant une compétition entre deux populations de traits x, y S. Les solutions pu t px, aq, u t py, aqq vérifient pout tout pt, aq R ¢ S ¢ R : u t py, aq f t u t py, aq ¡

	6 9 9 9 9 9 8 9 9 9 9 9 7	5 f t u t px, aq f t u t px, aq ¡ u t px, 0q ³ R Bpx, αqu t px, αqdα. ¡ Dpx, aq c ¡ Dpx, aq c u t py, 0q ³ R Bpy, αqu t py, αqdα.	³ ³ R pu t py, αq u t px, αqqdα R pu t px, αq u t py, αqqdα © ©	u t px, aq u t py, aq

5 f t

  Supposons que les Hypothèses 3.1.1 soient vérifiées. Soit λ ¦ rλ, Vr défini comme l'unique solution de ρpr λ ¦ J λ ¦q 1. Alors, dz σ P pAqztλ ¦ u, Repzq λ ¦ . Démonstration. Soit z σ P pAq, il existe u DpAq (complexe) tel que Au zu. On déduit que pour tout x S, |upx, 0q| |r z pxqupx, 0q

					»	K z py, xqupy, 0qdy|
		¤ |r z pxq||upx, 0q|	S »	|K z py, xq||upy, 0q|dy,
						S		
	où							
	|r z pxq|	§ § § § » R	Bpx, aq exp	¢ ¡	» a 0	Dpx, αqdα ¡ za	da	§ § § §
		¤ r Repzq pxq.					

1,1 pR qqu est le domaine de définition. On note σ P pAq le spectre ponctuel de l'opérateur A. Proposition 4.2.2. De la même façon on a |K z py, xq| ¤ K Re py, xq et on déduit que |upx, 0q| ¤ r Repzq pxq|upx, 0q| » S K Repzq py, xq|upy, 0q|dy. Le Lemme 4.2.1 entraine que 1 ρpr Repzq J Repzq q. Puisque ρpr λ ¦ J λ ¦q 1 nous déduisons de la stricte monotonie du rayon spectral (cf. Proposition 3.3.4) que Repzq λ ¦ .

  recalled in Appendix. We start by writing the process X as a time-changed Markov chain. We first re-write the generator L as follows Poisson process with intensity τ { . Then the processes X and Y pΛ q have the same law.Then we are led to study the Markov chain pY pkq, k ¥ 0q. We first define the drift of the Markov chain Y by g pxq E rY p1q ¡ Y p0q|Y p0q xs . denotes the smallest convex set which contains A and acc Ñ0 τ g px q{ is the set of accumulation points of the sequence τ g px q{ as tends to zero. The set-valued map H satisfies di t1, 2u, dx U i , Hpxq tpfpx, 1qq i u dx H, Hpxq

	Lemma 5.4.20.				
	L ϕpxq	»	R 2 pϕpx hq ¡ ϕpxqq n 1 x p0q k px, dhq
	where k px, dhq				
	λpx hq ¡ λpxq µ pdhq		¢» pR q 2	¢ 1 ¡ λpx gq ¡ λpxq	µ pdgq	δ 0 pdhq
	and µ is the image measure of µ by the map h Þ Ñ h. The following lemma is proved
	in [32, Ch. 4, S. 2, p. 163].				
	Lemma 5.4.19 ([32]). Let τ sup xV n 1 x p0q. Let pY pkq, k ¥ 0q be a Markov chain
	with jump law				
	k px, dhq n 1 x p0q τ	k px, dhq	¢ 1 ¡ n 1 x p0q τ	δ 0 pdhq
	and Λ be a A simple calculation gives us				
	di t1, 2u, dx U i , g pxq n 1 x p0q 2τ	R »	λpx	phq i q ¡ λpxq kphqphq i dh
	dx H, g pxq 0.	
	Then, we write the Markov chain Y as a stochastic approximation algorithm
	Y pk 1q Y pkq	τ	U pkq g pY pkqq
	where U is a martingale difference sequence. Assumptions of Theorem B.3.2 are clearly
	satisfied. In order to apply it, we compute the following set-valued map
	dx V, Hpxq conv	4 acc Ñ0	τ g px q : x Ñ x

B

where convpAq

  le trait de l'individu i, a i ptq R son âge et m i ptq t0, 1u un marqueur décrivant si l'effet Lansing agit ou non chez l'individu i. La dynamique est définie comme un processus de Markov déterministe par morceaux qui évolue de la façon suivante :• Un individu px, a, mq pR ¦ q 2 ¢ R se reproduit à taux Bpx,aq 1 a¤x b . L'âge du descendant est 0 et il hérite du marqueur m du parent. Le trait y py b , y d q K s0, 1r. Si le trait x b mute, le trait y b du descendant est y b x b h b où h b R est distribué suivant la probabilité kpx b , h b qdh b ; si le trait xd mute, le trait y d du nouveau-né est y d xd h d où h d R est choisi distribué suivant kp xd , h d qdh d , où le noyau k est défini pour tout u R et v R par kpu, vq 1 r0, Vr pu vqe ¡ v 2 Un individu px, a, mq a un taux de mortalité Dpx, aq ηN K t avec Dpx, aq 1 a¡x d et η ¡ 0. Chaque individu est soumis à la même pression de compétition η de n'importe quel autre individu de la population et quelle que soit la valeur de son trait. • Entre les sauts, les individus vieillissent à vitesse 1 : un individu d'âge a au temps t a l'âge a s au temps t s. et l'effet Lansing agit chez tous les individus. Il s'agit du modèle étudié dans le Chapitre 5. L'intérêt d'introduire ce marqueur est de pouvoir considérer des populations mélangeant les deux types d'individus : avec et sans effet Lansing.

	σ 2 R 1 r0, Vr pu zqe ¡ z 2 σ 2 dz 0 1 m0 H K 0 , alors pour tout temps (6.1) t . Cela signifie que l'effet Lansing n'agit pas. Il s'agit d'un ³ t 1 m0 H K où σ 2 ¡ 0. t ¥ 0, on a H K modèle de type sélection-mutation avec structure d'âge similaire à ceux étudiés dans [81]. Si la condition initiale vérifie H K 0 1 m1 H K 0 , alors pour tout temps t ¥ 0, on a • Remarque 6.1.1. Si la condition initiale vérifie H K H K t 1 m1 H K

du nouveau-né est déterminé par les deux étapes suivantes :

-Étape 1 : Si m 0, le descendant hérite du trait du parent x px b , x d q. Si m 1 et si a ¤ x d , le descendant hérite du trait du parent x px b , x d q. Effet Lansing : Si m 1 et a ¡ x d , on suppose que le descendant porte le trait px b , 0q. Notons x le trait défini par x x si a ¤ x d et x px b , 0q si a ¡ x d . On peut voir que x b reste inchangé et seuls les individus avec m 1 et x d x b sont concernés par le second type px b , 0q. -Étape 2 : Mutations génétiques. Une mutation apparaît sur chaque trait x b et xd indépendamment avec probabilité p t

  pH t , t ¥ 0q avec H t pdx, daq δ Xt n Xt paqda où pX t , t ¥ 0q est un processus de saut pur issu de X 0 x et dont la loi est définie par le générateur L, défini pour tout fonction mesurable bornée ϕ : Ṽ Ñ R 2 et x Ṽ par :Lϕpxq Soit T ¡ 0. On suppose que X p0q converge en loi vers x 0 Ṽ. Alors la suite de processus pX q ¡0 converge en loi dans Dpr0, T s , Ṽq vers la solution pxptq, t ¥ 0q de l'équation différentielle ordinaire Démonstration. Tout d'abord, notons que l'application x Ṽ Þ Ñ ∇λpxq nxp0q 2 ³ R h 2 kpx, hqdh est lipschitzienne. Ainsi le Théorème de Cauchy-Lipschitz s'applique : on a existence et unicité des solutions pxptq, t ¥ 0q Ṽ de (6.9). Notons L le générateur associé à l'équation canonique, défini pour toute fonction ϕ : V Ñ R 2 de classe C 1 par q ¡ ϕpxq λpx phq i q ¡ λpxq n x p0q

	Lϕpxq	∇ϕpxq.∇ λpxq $ n x p0q 2	» R	h 2 kpx, hqdh,
	et L le générateur infinitésimal du processus X donné par
	2 i1	»		
	L ϕpxq				2	kpx, hqdh.
		dxptq dt ∇ λpxptqq n xptq p0q 2	» R	h 2 kpxptq, hqdh	(6.9)
	issue de xp0q x 0 .			

» R 2 pϕpx hq ¡ ϕpxqqp λpx hq ¡ λpxqqn x p0qµpx, dhq,

(6.8) 

où µpx, dhq δ 0 pdh 2 qkpx,h 1 qdh 1 δ 0 pdh 1 qkpx,h 2 qdh 2 2 . Remarque 6.2.10. On notera que le processus défini par le générateur (6.8) diffère légèrement du Processus de substitution des traits étudié dans

[START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF] 

car les deux composantes x b et x d n'évoluent pas en même temps. On s'intéresse au comportement du Processus de substitution des traits sous les hypothèses de petites mutations. Pour tout ¡ 0 on définit X ptq Xp t 2 q. A la différence du cas "avec effet Lansing" (cf. Chapitre 5), le paramètre de Malthus λ est ici suffisamment régulier (gradient lipschitzien) pour que le comportement limite du processus X lorsque Ñ 0 soit décrit par la trajectoire (unique) d'une équation différentielle ordinaire. Proposition 6.2.11. R ϕpx phq i D'après le Lemme 6.2.6, l'application x Ṽ Þ Ñ ∇ λpxq est lipschitzienne et on déduit que : sup

  2. Ce résultat que nous devons encore démontrer serait assez innatendu. En effet, nous n'avons imposé aucun trade-off entre les deux traits x b et x d .Nous donnons maintenant une proposition allant dans le sens de la conjecture 6.2.13. Nous donnons ensuite une remarque justifiant son énoncé. Soit x 0 Ṽ. Soit pxptq, t ¥ 0q la solution de (6.9) issue de x 0 . Alors, il existe c 1 , c 2 ¡ 0 tels que :0 ¤ lim inf tÑ V px b ptq ¡ x d ptqq ¤ lim sup tÑ V px b ptq ¡ x d ptqq ¤ logp3 e c 1 c 2 pα¡1qt α¡1 qoù α 1 λpxq ¡ 1. Démonstration. Soit pxptq, t ¥ 0q une solution de (6.9) issue de xp0q x 0 Ṽ. On montre que lim inf tÑ V px b ptq ¡ x d ptqq ¥ 0. Soit t ¥ 0 tel que xptq U 1 , i.e tel que x b ptq x d ptq. On a dx b ptq{dt 0 et dx b ptq dt n xptq p0q

	Remarque 6.2.14. Proposition 6.2.15. 2 où n xptq p0q λpxptqq{c ³	Ñ px b ptqq Gpxptqq	» R	kpxptq, hqh 2 dh,	(6.10)

  Nous supposons que seul le trait x d mute (le trait x b est fixé). Le résultat des simulations est donné dans la Figure6.3. Lorsqu'il n'y a pas de mutation (p K 0), on observe que les deux populations coexistent, ce qui est consistant puisque les deux sont supposées avoir la même fitness. Plus la probabilité de mutation est grande, plus l'effet Lansing 123 est sélectionné. Ceci conforte donc la thèse selon laquelle l'effet Lansing permettrait aux populations de s'adapter plus rapidement.

	1 xx 0 ,m1 H K 0 pdx, da, dmq	» S ¢ R ¢t0,1u	1 xx 0 ,m0 H K 0 pdx, da, dmq 5000.

  5 f t n t px, aq f a n t px, aq ¡ ¢ R n t py, αqdydα © n t px, 0q p1 ¡ pq Bpx, αqn t px, αqdα ³ S ¢r0,1s¢S qBpy, αqkpy, xqn t py, αqdydα

	¡ Dpx, aq c	³

S

³ V 0

Nous présentons les résultats principaux de la prépublication intitulée "The bd model of ageing : from individual based dynamics to evolutive differential inclusions" écrite en collaboration avec Sylvie Méléard et Michael Rera. L'intégralité de l'article est fournie dans le chapitre 5. Le chapitre 6 contient des compléments et travaux en cours.

f t p|h t |px, aqφpx, aqq f a p|h t |px, aqφpx, aqq ¡|h t |px, aqG rφs px, aq |h t px, 0q|φpx, 0q φpx, 0q|F rh t s pxq|. (3.36)

¡f a N px, aq ¡ Dpx, aqN px, aq λ ¦ N px, aq N px, 0q F rNs pxq, N ¥ 0,

& où φ p., 0q est un vecteur propre principal de r λ G λ fixé par la condition ³ S ¢ R φ N 1. On déduit qu'il existe α ¡ 0 tel que φ px, 0q α g pxq où g est le vecteur propre
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Remerciements

Annexe A Operator Theory

In this appendix, we recall some well-known results about spectral theory for bounded linear operators on Banach space and positive operators.

A.1 Resolvent and spectrum

Let pX, }.}q be a complex Banach space. We denote by BpXq the set of all bounded linear maps from X to X. Let T BpXq. We denote by }T} op sup }x}1 }Tpxq} the operator norm of T . Definition A.1.1. Let T BpXq.

(i) The resolvent set of T is RpT q tz C : pzI ¡Tq ¡1 BpXqu. For all z RpT q, the linear map R T pzq pzI ¡ T q ¡1 is called resolvent of T at point z. (ii) The spectrum of T is σpT q CzRpT q and the spectral radius of T is ρpT q supt|z| : z σpT qu. (iii) The essential spectrum of T is the set σ e pTq of z σpT q which satisfy at least one of the following condition : (1) the range of zI ¡T is not closed ; (2) z is not isolated in σpT q ; (3) n¥1 kerppzI ¡ T q n q is infinite dimensional. The essential spectral radius of T is ρ e pTq supt|z| : z σ e pTqu Remark A.1.2. There are different definition of the essential spectrum in the literature, which are not equivalent. The definition we choose has been introduced by Browder [START_REF] Browder | On the spectral theory of elliptic differential operators[END_REF].

Definition A.1.3. Let z 0 be a pole of the resolvent. Let

be the Laurent expansion of R T near z 0 where a k are linear operators on X and a ¡m $ 0. The integer m is the order of the pole z 0 . Then P pTq : a ¡1 is the projector onto the space kerppzI ¡ T q m q. The dimension of kerppzI ¡ T q m q is called algebraic multiplicity of z 0 .

The following characterisation of the essential spectrum is very useful. It is proved in [START_REF] Browder | On the spectral theory of elliptic differential operators[END_REF]Lemma 17].

Proposition A.1.4. Let T BpXq and z σpT q. Then, z σ e pTq if and only if for some m N ¦ , z is a pole of the resolvent of order m such that kerppzI ¡ T q m q is finite dimensional.

The following result is adapted from Kato [46, Ch.IV §4. Thm 3.16].

Proposition A.1.5. Let T BpXq and z 0 σpT qzσ e pTq. We denote by α T pz 0 q the algebraic multiplicity of z 0 . Let ¡ 0. There is δ ¡ 0 such that if }T ¡ S} op δ, the two following assertions are satisfied :

(a) There is z σpSqzσ e pSq such that α S pzq α T pz 0 q. (b) }PpTq ¡ P pSq} op .

A.1.1 Ordered Banach space

Let pX, }.}q be a real Banach space. Let C X be a positive cone. We denote always BpXq for the set of bounded linear maps on X. Definition A.1.6. Let T BpXq.

(i) The operator T is positive if T pCq C.

(ii) The operator T is irreducible if T is positive and for some scalar z ¡ ρpT q and for each non-zero u C, the element ° V k1 z ¡n T n puq is quasi interior to C (see [START_REF] Schaefer | Graduate texts in mathematics[END_REF] for the definition of quasi interior point).

(iii) Let T, S BpXq be positive. We denote T ¤ S if the bounded linear map S ¡T is positive.

The following proposition gives some monotonicity properties of the spectral radius. The point (i) is proved in [START_REF] Burlando | Monotonicity of spectral radius for positive operators on ordered banach spaces[END_REF]Theorem 1.1]. The point (ii) is proved in [START_REF] Gao | Extensions of Perron-Frobenius theory[END_REF]Theorem 3.9]. Proposition A.1.7. Let S, T BpXq be positive such that S ¤ T . We have (i) ρpSq ¤ ρpT q ; (ii) Assume moreover that ρpT q is a pole of the resolvent of T . Then we have either T S or ρpSq ρpT q.

We deduce a result of upper-semi continuity of the spectral radius. It is classical.

Lemma A.1.8. Let T BpXq be positive and let pT k q k¥0 be a non-increasing sequence of BpXq such that }T k ¡ T } V Ñ 0 when k Ñ V. Then ρpT k q Ñ kÑV ρpT q.

Démonstration. By Proposition A.1.7 (i), the sequence ρpT k q is non-increasing and is bounded below by ρpT q. Then, it converges to a limit ρ ¦ ¥ ρpT q. Assume that ρ ¦ ¡ ρpT q.

Since the spectral radius is an element of the spectrum, we deduce that for all k N the operator ρpT k qI ¡T k is singular (e.g pρpT k qI ¡T k q ¡1 is not bounded). Moreover, the set of singular operators being closed, we deduce, taking the limit k Ñ V that ρ ¦ I ¡ T is singular which is absurd since ρ ¦ ¡ ρpT q.

A.2 The space pCpSq, }.} V q

Let S be a compact subset of R d . We now give some results on the Banach space pCpSq, }.} V q where CpSq denotes the set of continuous functions from S to R and }.} V denotes the uniform norm. We denote by C pSq the cone of non-negative functions on S. We recall that the space of (signed) Radon measure MpSq is the topological dual (the space of continuous linear form) of CpSq and that the set of positive Radon measure M pSq is the dual cone of C pSq. For any T BpCpSqq, we denote by T I BpMpSqq his adjoint. The next result is easily adapted from [76, Appendix §2.2.6] (it was originally introduced by Krein-Rutman [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF]). It is a generalisation of Perron-Frobenius Theorem for positive matrices to the infinite-dimensional framework.

Proposition A.2.1. Let T BpCpSqq such that T ¥ 0. Then ρpT q is an eigenvalue of T I associated with a positive eigenmeasure µ M pSq.

The following result is proved in [START_REF] Schaefer | Graduate texts in mathematics[END_REF]Appendix §3.3.3]. It precises the analogy with the Perron-Frobenius theory.

Proposition A.2.2. Let T BpCpSqq such that T is irreducible. Then we have :

(i) The spectral radius ρpT q is the only possible eigenvalue associated with a nonnegative eigenfunction.

(ii) Assume moreover that ρpT q is a pole of the resolvent. Then, ρpT q is a pole of order one with algebraic multiplicity equals to one.

We give a lemma which characterises the quasi interior points (see [START_REF] Schaefer | Graduate texts in mathematics[END_REF] We deduce that the ω-limit set of any solution of (B.6) is a subset of ∆ tz R 2 : z 1 z 1 z 2 z 2 u. We conclude by proving that any solution starting from ∆ converges to z.

Let us consider such a solution (always denoted by yptq). We have

Since the ω-limit set is an invariant subset, we deduce that dy 2 ptq dt y 2 ptqpm 11 ¡ η}yptq} 1 q, that }yptq} 1 Ñ m 11 {η and yptq Ñ z as t Ñ V. In order to conclude about the solutions of (5.11) we use [80, Theorem 1.2] arguing that z is an asymptotically stable equilibrium of (B.6) and that for any yp0q R ¦ , the ω-limit set of any solution yptq of (5.11) started at yp0q is not a subset of t0u ¢ R . The first claim is easily proved by showing that the Jacobian matrix has negative eigenvalues. For the second claim, let us assume it is not satisfied. Then y 1 ptq Ñ 0 as t Ñ V. We introduce P py 1 , y 2 q y 1 pm 11 ¡ ¡ ηpy 1 y 2 qq Q py 1 , y 2 q y 2 pm 22 ¡ ηpy 1 y 2 qq pm 12 qy 1 and

We deduce that there exists t 1 such that for any t ¥ t 1 , dy 2 ptq dt 0 on B and y 1 ptq . We deduce that there exists t 2 such that for all t ¥ t 2 , y 1 ptq y 2 ptq ¤ m 11 ¡ η . So for all t ¥ t 2 , dy 1 ptq dt ¥ 0 which is absurd.

Theorem B.3.2. Assume that :

• There exists a constant c ¡ 0 such that for all y R d , }f pyq} ¤ cp1 }y}q.

• U is a martingale difference sequence which is uniformly integrable.

If Y p0q tends to x 0 in probability as tends to zero, then inf yS F pT,x 0 q sup tr0,T s }Y ptq ¡ xptq} ÝÑ 0 in probability as tends to zero.