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Résumé

D’origine naturelle ou industrielle, les grandes catastrophes attirent périodique-
ment l’attention des médias. La conjonction entre un nombre important de vic-
times et des conséquences dramatiques pour chacune d’entre elles, rend partic-
ulièrement difficile la gestion de ces crises majeures. Si la prévention et la protec-
tion des populations peuvent en limiter l’occurrence et/ou les conséquences, il est
rarement possible d’éliminer tout risque.

Partant de ce constat, cette thèse étudie les mécanismes d’assurance qui peu-
vent être mis en place pour couvrir les risques catastrophiques. Ces mécanismes
ont pour objectif d’apporter à chaque victime assurée, une indemnité financière qui
compense, au moins partiellement, les pertes matérielles, sanitaires ou financières
subies lors de la catastrophe.

L’assurance repose sur le principe de la mutualisation des risques entre assurés.
Chaque assuré paie une prime ouvrant droit à une indemnisation de montant
supérieur à la prime, et versée uniquement en cas de perte. Afin que le montant
total des primes couvre l’intégralité des indemnités, il est nécessaire que les primes
soient prélevées avant que les assurés ne puissent savoir s’ils feront l’objet d’une
indemnisation.1

Il est donc crucial de pouvoir anticiper le nombre de victimes, ainsi que la
perte moyenne par victime, afin de calculer le montant de primes qui permettra de
financer l’intégralité des indemnités. Or, si certains risques, tels que le risque de
vol de voiture ou de mortalité naturelle, se prêtent bien à ce type de prévision, les

1Dans le cas contraire, les personnes non-victimes n’auraient aucun intérêt à s’assurer. Seules
les victimes voudraient s’assurer mais il serait alors impossible de leur verser une indemnité
supérieure au montant de leur prime.
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Résumé

risques catastrophiques sont, par nature, beaucoup moins prévisibles. Ce problème
est une menace très sérieuse pour les systèmes d’assurance. Prélever un montant
de prime trop faible conduit à l’incapacité de payer une partie des indemnités,
pourtant vitales pour les assurés. D’un autre côté, prélever un montant de prime
trop important conduit à décourager la souscription d’assurance.

L’imprévisibilité est donc un défi important pour l’assurabilité des risques
catastrophiques. Néanmoins, l’aide financière apportée aux victimes, se trouvant
parfois dans des situations de grande difficulté matérielle et financière, est loin
d’être négligeable. Il convient donc d’étudier à la fois les limites précises du mé-
canisme d’assurance traditionnel, ainsi que les mécanismes alternatifs qui peuvent
lui être adjoints pour en améliorer l’efficacité et la viabilité.

Le premier chapitre de cette thèse montre que la demande d’assurance pour
des risques de très faibles probabilités peut rester importante lorsque les assurés
font face à une perte potentielle suffisamment grande et si la prime d’assurance est
proportionnelle à la probabilité de la catastrophe. Le rôle d’instruments financiers
hybrides, mi-financiers, mi-assurantiels, pour limiter le coût de l’assurance est mis
en avant, notamment à travers l’exemple des obligations catastrophes (ou cat-
bonds). Ces contrats permettent d’emprunter des capitaux importants dont le
remboursement n’est pas exigé en cas de catastrophe (mais dont le taux d’intérêt
est supérieur à un emprunt traditionnel). Notre application au cas du nucléaire
en France révèle que, malgré des prix plus élevés pour les risques de faibles prob-
abilités, il est possible, et vraisemblablement souhaitable, d’étendre la couverture
d’assurance au-delà de ce que prévoit la loi en vigueur en France.

Le second chapitre étudie les limites de l’assurance traditionnelle dans deux
cas distincts. Dans une première partie, nous montrons que les risques non catas-
trophiques sont plus faciles à assurer lorsque leur probabilité d’occurrence est
faible. Ce résultat théorique est en accord avec des expériences contrôlées menées
en laboratoire, au cours desquelles des personnes étaient interrogées sur leur dispo-
sition à acheter de l’assurance pour des risques non catastrophiques de différentes
probabilités. Dans une deuxième partie, nous prouvons que ce résultat est in-
versé pour les risques catastrophiques, qui sont particulièrement difficiles à assurer
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lorsqu’ils sont associés à de faibles niveaux de probabilités. Ce résultat est con-
forme avec les observations réalisées sur les taux de souscriptions d’assurance contre
les risques d’inondations catastrophiques aux Etats-Unis notamment.

Dans le troisième chapitre, trois alternatives sont étudiées pour améliorer l’efficacité
de l’assurance traditionnelle face aux risques catastrophiques. Lorsqu’une commu-
nauté fait face à un risque catastrophique, difficilement prévisible, il lui est parfois
possible de transférer ce risque en contrepartie d’un paiement. Ce type de trans-
fert, qui peut prendre la forme d’un cat-bond par exemple, est très efficace en terme
de gestion du risque. Nous montrons qu’en l’absence de coûts de transaction, le
transfert permet à tous les agents de la communauté de s’assurer complètement.
En pratique, le transfert peut cependant s’avérer coûteux. Une seconde alterna-
tive consiste à ce que l’assureur s’engage à rembourser le trop-perçu de prime,
le cas échéant. Ce type de contrat, appelé contrat mutualiste, est très efficace
lorsque le transfert est impossible ou trop coûteux. Enfin, l’ajustement à la baisse
de l’indemnité en cas de catastrophe, apporte une flexibilité qui n’est utilisée en
complément du transfert et des contrats mutualistes que lorsque ces deux solutions
sont coûteuses.

Enfin, le quatrième chapitre étudie l’utilisation d’obligations catastrophes pour
assurer le risque de variations du prix des matières premières agricoles consécu-
tives à des aléas climatiques extrêmes. En émettant une obligation catastrophe,
l’entreprise qui s’approvisionne en matières premières emprunte un capital qu’elle
peut conserver en cas de catastrophe, lorsque ses coûts d’approvisionnement sont
élevés. Sur le plan théorique, elle présente deux avantages par rapport à la solution
traditionnelle, qui consiste à assurer les variations de prix par des achats sur les
marchés à terme.2 D’une part, elle permet d’acheter une couverture globale pour
plusieurs matières premières, réduisant ainsi la facture d’assurance par effet de
diversification. D’autre part, elle permet d’ajuster la couverture aux contraintes
logistiques et stratégiques particulières de l’entreprise.

2Ces marchés permettent de sécuriser à l’avance un prix pour une livraison d’une matière
première à une date future.
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Introduction

On 11 March 2011 a 9.0-magnitude earthquake shook the waters of the pacific
ocean off the eastern coast of Honshu, the main Japanese island. The tremen-
dous amounts of energy released under water raised a tsunami that unfurled over
ten kilometers inland and hit the nuclear power plant of Fukushima-Daichii. The
presence of a nuclear installation on the course of the wave combined with techno-
logical, human and organizational flaws converted the natural catastrophe into one
of the worst industrial disaster of all times. Fears of radiological contamination
lead the authorities to evacuate 150 000 people within a perimeter of 20 kilome-
ters around the plant. Among the drastic measures dictated by the emergency
of the situation, the Japanese authorities decided the construction of 30 meters
deep ice wall, hence literally freezing the grounds around the power plant, to limit
contaminated water leakages into the Pacific ocean.

It is impossible to know the extent of total damage yet. Solely for the purpose of
decontamination, indemnification and decommissioning, the Japanese government
expects a cost of 177 billion euros. Obtaining an idea of the total cost necessitates
to add many indirect costs such as loss of land value (Kawaguchi & Yukutake
(2017)), re-adaptation of the energy mix, loss in terms of image for the industrial
sector. Including these indirect costs, the Institute for Radiological Protection
and Nuclear Safety (IRSN) estimates the median cost of a major accident such
as Fukushima in France would be 430 billion euros, that is more than 20% of the
country’s annual gross domestic product.

Despite these striking figures, the Fukushima-Daiichi accident is not an isolated
event in history. Barro (2006) has revived Rietz (1988)’s idea that the many low
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Introduction

probability - high severity events such as armed conflicts, economic depressions,
or natural hazards, that have plagued the XXth century, have had significant
macroeconomic consequences. This is because they do not only affect individual
lives, threatening until the very survival of the most exposed, but also have far-
reaching consequences that affect many people at the same time.

On the very long-run, the ever increasing interconnectedness between people
plays an important role in the rise of large-scale catastrophes. Geographical prox-
imity facilitates the spread epidemics of diseases and worsens the consequences of
floods in exposed areas. Globalization makes national economies more vulnerable
to aggregate shocks and the reliance on the internet generates new forms of highly
dependent risks.

Yet and despite those risks, the secular trend is an increasing concentration
of people around the major centers of activity and an increasing degree of depen-
dence between people’s interests. Concentration, indeed has many advantages.
Innovation is facilitated by the large number of exchanges that large cities allow.
Globalization, despite its flaws and biases, has enabled many countries to grow
out of poverty and the internet now offers possibilities that were unimaginable a
few years ago. The secular trend of increasing concentration is therefore likely to
persist, with its benefits and its risks.

In addition to the increasing dependence between individual risks, the global
increase in wealth levels has lead mechanically to an increase in wealth exposed to
hazards.

Natural disasters are an important source of risk for individuals and collec-
tivities, that sometimes interacts with technological risks, as for the Fukushimai
nuclear accident. While Figure 1 highlights the global aspect of natural catastro-
phe risks, Figure 2 shows the drastic increase in losses due to natural or weather
related events (the year 2011 includes the Fukushima-Daiichi accident) over the
past decades. Both insured and non-insured losses have followed a positive trend.
It is not clear however, whether the share of insured losses increases over time. In
fact, the question of why such a large proportion of the total losses remains unin-
sured, despite the development of global, integrated financial markets, remains a
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Introduction

Figure 1: Map of natural catastrophes 2017 (2018 Munich Re, Geo Risks Research,
NatCatSERVICE. As of January 2018)

puzzle. This question is at the heart of this thesis. The four papers presented in
this work investigate the extent to which insurance can play a role in mitigating
the consequences of catastrophic risks.3

Traditional insurance is the most simple form of mutualization. It requires
all individuals in a group to contribute a fixed and known-in-advance amount of
resources used to indemnify those who are unfortunate enough to experience a
personal loss.4 An important condition for insurance to work well, is that people
face risks that are not caused by a common source. In this case, the Law of Large
Numbers guarantees that it is possible to use past information on the number of
claims to predict, with a high accuracy, the number of claims to come.5 As the

3Other mitigation strategies such as prevention, ex-post disaster management are also avail-
able. They may be substitute of complement to insurance depending on the situation (Ehrlich
& Becker (1972)). Other works, such as Goussebaile (2016) investigate the relationship between
insurance and these other mitigation strategies.

4The fact that some people receive a net indemnity while others pay a net contribution often
leads to the widespread misconception that mutualization mechanisms rely on altruism. In fact,
the solidarity that the mechanism described above creates de facto between people does not
rely on altruism. The cost that the net contributors pay should rather be interpreted as the
price of the risk reduction they benefit from themselves, independently of whether their own risk
materialized or not.

5Technically, the Law of Large Numbers guarantees that that the average loss actually in-
curred by each policyholder becomes arbitrarily close to the theoretical expected loss as the
number of people in the insurance pool increases. The information that insurance providers can
gather through past experiences about the theoretical distribution of losses is therefore useful to

3
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Figure 2: Weather related catastrophe losses 1990-2017 (2018 Munich Re, Geo Risks
Research, NatCatSERVICE. As of January 2018)

number of people in the insurance pool increases, it therefore becomes possible to
ask every person to pay an indemnity equal to the expected loss of his own risk,
which any rational, risk averse, expected utility maximizing agent would accept.
The strength of insurance lies in the fact that if losses are independent, sharing
the risk enables each agent to find a pool of other agents like him, in which the
average ex-post loss turns out to be very close from his own ex-ante expected loss.
In this case, paying the premium allows him to reduce his risk without lowering
his expected wealth.

This ideal mechanism has many limitations. Asymmetries of information, lack
of competition or/and of information are examples of market failures that increase
the cost of insurance compared to what it would be in the ideal world described
above. Yet, the mechanism of risk pooling remains interesting in many situa-
tions. Matters complicate when the losses experienced by different policyholders
are generated by a common source. The extreme case of perfect dependence be-
tween individual losses, in which either everybody is affected by a loss or nobody
is, illustrates well the issue since it then becomes impossible to use the premium of
the many unaffected policyholders to pay the claims of the few unfortunate victims.
In this extreme perfect dependence example, the only premium that guarantees

predict actual losses.
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that all claims are paid is a premium as high as the loss itself. In other words,
insurance becomes completely inefficient.

In practice, most risks lie in between this extreme and the ideal world of inde-
pendent losses. When the dependence between losses is weak, the Law of Large
Numbers remains a good approximation and insurance continues to function well.
In the case of collective catastrophes however, a common event (meteorological,
industrial, epidemiological, etc) causes the losses to affect many people simulta-
neously. Without reaching the perfect dependence case, risks that are linked by
a common causal relation are unpredictable, in the sens that the Law of Large
Numbers does not apply to them. It then becomes impossible to predict the av-
erage loss as with independent risks. Figure 3 exhibits natural disaster losses in
the Carribean countries region from 1965 to 2014. Collective losses are widely
variable from one year to another because natural disasters in the region can have
large spatial impacts. Year 2010 corresponds to the highest losses, with over 8
billion dollars in damages due to a dramatic earthquake hitting Haiti in January
and a highly active hurricane season in the Caribbean during the second part of
the year. Year 2004 corresponds to the second-highest losses, with nearly 7 bil-
lion dollars in damages also due to a highly active hurricane season which affected
many countries such as the Bahamas, the Cayman Islands, Grenada and Jamaica.

Figure 3 illustrates clearly the issue of risk correlation. If Caribbean countries
want to set-up an insurance scheme and require each country to pay its expected
loss, then the insurance scheme will come short of money to pay the claims during
the years of high losses. Increasing premium may be unacceptable for individual
countries, whose risk aversion (if any) only guarantees their willingness to purchase
insurance if the price is close to their expected loss (the price is said to be actuar-
ially fair). When the price is above the expected loss, individuals typically lower
their demand for insurance. Eventually, as the price becomes too high they stop
purchasing insurance, leaving them with the full risk of loss. Traditional insurance
then becomes useless.

In a nutshell, risk correlation makes aggregate losses unpredictable. And if
traditional insurance allows to handle very efficiently individual risks, whose ag-
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Figure 3: Natural disaster losses in the Caribbean countries (www.emdat.be)

gregate losses can be predicted, it is inoperative against unpredictable collective
risks.

The theory of risk-sharing provides interesting insights about how risks can
be optimally shared among people. In the absence of transaction costs, Borch
(1962)’s mutuality principle states that the idiosyncratic component of individual
risks, that is not correlated with the average wealth of the economy, should be
fully insured. In order to achieve this in a free market economy, Arrow (1951)
and Debreu (1959) showed that complete financial markets should exist in order
to allow people to trade their risk exposures. The existence of sufficiently many
financial instruments and sufficiently many investors allows each individual to
tailor his demand/supply to his exact need, and the equilibrium prices are such
that purely idiosyncratic risks are traded at their expected value,6 hence allowing
risk averse agents to be fully insured against their idiosyncratic risk.

6The complete market hypothesis guarantees that idiosyncratic risks can be split in small
fraction, each borne by one of the many investors. The risk per investor therefore becomes very
small when the number of investors is sufficiently large.
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Complete markets however, is a very stringent requirement since there must ex-
ist as many securities as there are possible states of the world. This would require
a number of securities much larger than the number of people in the economy,
which in practice in unthinkable.7 Malinvaud (1974) latter showed that insur-
ance contracts could significantly reduce the number of securities needed to reach
Borch’s optimality principle. In fact, one insurance contract per agent is sufficient
to reach optimality almost surely when the individual risks are independent and
the number of people is sufficiently large. Simple insurance contracts however, are
not sufficient when individual risks are inter-dependent because they do not allow
individuals to trade their exposures to the aggregate risk.

From an insurance perspective, two main solutions can be considered. The
first one is to transfer the aggregate risk to a set of agents outside of the economy,
who are therefore unaffected by the aggregate risk. If such a transfer can be done
without transaction cost, it is always optimal to do it, which settles the issue of
correlated risks. Another alternative is to allow the indemnity or the premium to
depend on the average loss. This types of mutual insurance contracts with the
possibility of default expand the span of the traded securities by allowing people
to exchange their exposures to aggregate risk. By bringing the economy closer to
completeness, it may improve overall welfare.

The theory of risk-sharing however, ignores the many transaction costs, such as
administrative and auditing costs that insurance arrangements necessarily involve.
Lack of competition may also result in prices higher than the expected loss. In
addition, the theory of risk-sharing does not distinguish mutualization (within the
economy) from transfer.8

This thesis builds on the theory of risk-sharing to investigate the effect of loss
correlation on the insurability of catastrophe risks in the presence of transaction

7The existence of a fixed cost for setting a contract could explain why only a limited number
of contracts exist in practice.

8In the theory of risk-sharing, it is possible to consider that two sets of agents face different
risks, which could capture the geographical exposure disparity between two countries or two sets
of agents, but the cost of a financial contract is always the same between two agents, be they from
the same area or not. This is an important practical limitation of the theory since international
risk transfer contracts are typically more expensive than within-country risk pooling contracts.
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costs. The four articles presented in this thesis illustrate how insurability is affected
by the characteristics of the risk considered, people’s behavior toward risk, and by
the types of contracts that can be signed in a given economy.

In a first paper, co-authored with Pierre Picard, we study how innovative risk
transfer contracts can be used to reduce the social cost of catastrophes. Alterna-
tive risk transfer markets indeed allow countries to purchase insurance against that
fraction of catastrophe risk that cannot be diversified across national agents due
to loss correlation. We therefore analyze how disaster risks within a given country
can be transferred through international financial markets. The necessity to com-
bine risk pooling with risk transfer naturally leads us to consider hybrid forms of
insurance and reinsurance contracts traded on the alternative risk transfer mar-
kets (Cummins & Barrieu (2013)) such as cat-bonds. Cat-bonds are bonds with
an embedded default option that can be triggered upon specific and pre-defined
condition (the catastrophe).

Our analysis focuses on low probability - high severity accidents such as nuclear
catastrophes. The historical frequency of nuclear accidents is 0.07% per year and
per reactor (Rangel & Lévêque (2014))9 while safety experts provide theoretical
estimates between 0.002% and 0.0000001% per year and per reactor.10 11 Since
1952 and the beginnings of civil nuclear programs, only a handful of severe nuclear
accidents have been registered. Fukushima was ranked at the highest severity level
on the International Nuclear Events Scale (INES).12 Reaching low probabilities
of occurrence for catastrophes can sometimes be achieved through investment in
prevention, such as mitigating technologies, safety standards and procedures, etc.

9In the terminology of safety specialists, an accident occurs when there is partial meltdown
of the core of a reactor.

10The length of this interval can be partly explained by an heterogeneity among reactors. More
recent reactors are built with higher safety standards, and some reactors are more exposed to
natural hazard than others.

11The disparity between the empirical frequency and the theoretical probability estimates
provided by experts is the subject of an on-going debate. See Rangel & Lévêque (2014) for more
on this subject.

12This scale, engineered by the International Atomic Energy Agency, ranges from 1 for mere
anomalies to 7 for major accidents. As of today, only Chernobyl (1986) and Fukushima (2011)
were ranked at the highest level 7. The accident of Kyshtym (1957), in Russia was ranked at
level 6 and Windscale Pile (1957) in Canada, Chalk River (1952) in Great-Britain, Three-Mile
Island (1979) in the US have been ranked at level 5.
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No matter how much we invest in prevention though, a small risk is bound to
remain. How should societies handle these low probability but high severity risks?
One intuition might be that risks below a certain probability level are unworthy of
consideration. We show that this intuition is wrong and that hybrid risk pooling
- risk transfer mechanisms can be very effective at handling low probability -
high severity risks. Finally, the theory developed in the paper is applied to the
French case. This application reveals that risk protection could be significantly
strengthened thanks to adequate combination of risk pooling and risk transfer.

In a second article, co-authored with Arnaud Goussebaïle, we study how in-
surance demand changes with the loss probability. In a first section, we show that
uncorrelated risks can be priced with a traditional rule linear in the loss proba-
bility. In this case, we find that insurance demand is actually decreasing in the
loss probability, meaning that low probability risks tend to be better insured than
higher probability risks. This finding is coherent with controlled experiments, in
which people are found to purchase more insurance for low probability events. In
a second section, we show that the presence of correlation between losses modifies
the pricing rule that an insurance provider can apply. Loss correlation indeed,
creates variability in the aggregate loss which is priced by the market if this ag-
gregate risk is systemic, which is most likely the case of catastrophe risk. As a
consequence, the insurance premium for a given risk must include a risk premium
that depends on the correlation between this risk and other risks. Because this
premium diminishes at a lower speed than the willigness to pay for insurance, in-
surance take-up can diminish when the probability becomes small enough. This
explains why low probability systemic risks are, unlike low probability unsystemic
risks, difficult to insure.

In a third article, co-authored with Arnaud Goussebaïle, we analyze how mu-
tual contracts can be combined with default, transfer contracts and traditional
insurance to handle correlated risks. Mutual contracts condition the premium pay-
ments to the aggregate loss. Under a mutual contract, policyholders pay higher
premiums when the aggregate loss is high. The possibility of default also allows
the insurance provider to lower the indemnity payment when the catastrophe oc-
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curs. This mutual and default contracts allow to share the collective risk when
it cannot be transferred. It can also be used to reduce the cost of transfer. We
obtain Borch’s mutuality principle as a corner solution, when mutual contracts
entail no transaction costs and transfers outside the economy are prohibitively
costly. In this case, all idiosyncratic risks are fully insured and the collective risk
is shared between the agents of the economy thanks to mutual contracts. The
opposite situation arises when transfers outside the economy are possible with no
transaction costs. In this case, it is optimal to transfer all the risks without using
mutual contracts, such that all agents end-up perfectly insured. We also show that
contracts with default are never used when mutual contracts are costless, that is
when it is not problematic to ask policyholder to pay a high premium on which
they obtain a dividend if the catastrophe does not materialized. In fact, default is
only used to reduce the cost of the mutual contracts. Finally, when both transfer
and mutual contracts have transaction costs, we show how mutual contracts can
be used to lower the transfer bill.

Finally, a fourth paper, co-authored with Pierre Picard, investigates how a firm
can take advantage of the positive correlation between several risk lines to gain a
better protection at an advantageous price. We propose an innovative way of insur-
ing procurement risk for companies that purchase commodities in large quantities
throughout the world. The proposed strategy consists in issuing a catastrophe
bond whose payoff depends on an index of spot prices and meteorological data.
This proposed strategy is contrasted with the traditional future purchase strat-
egy for hedging commodity price risks. First, we show that if market investors
demand a risk premium when they sell future contracts, the firm may obtain cov-
erage at a lower price by purchasing insurance contracts on its average loss, whose
volatility is reduced through home-made diversification, rather than buying sep-
arate contracts for each line of risk. Second, we argue that a well calibrated cat
bond strategy could lower basis risk. Indeed, the traditional future-based hedging
strategy provides an indemnity that is based on the spot prices of the underlying
commodities and not on the exact loss incurred by the company. In contrast, a
cat-bond approach could use firm specific information to improve the adequacy
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between the firms’s risk and the strategy’s payoff.
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Chapter 1

Optimal insurance for
catastrophic risk

Theory and application to nuclear corporate liability

This chapter is co-authored with Pierre Picard.

Abstract: We analyze the socially optimal insurance for low probability - high
severity accidents, both from theoretical and applied standpoints. Our main ob-
jective is to characterize the determinants of nuclear corporate liability insurance.
We identify individual preferences under which the willingness to pay to avoid risk
remains significant, even when the probability of a catastrophe is very small, and
we characterize the corresponding optimal asymptotic insurance coverage. We cal-
ibrate a model of nuclear risk insurance with French data, in a setting where the
risk is transferred to financial markets through catastrophe bonds. We conclude
that the current liability limit is probably inferior to the socially optimal level.

Keywords: nuclear accident, liability insurance, catastrophic risk, risk aversion.
JEL classification: D81, D86, G22, G28, Q48.
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1.1 Introduction

How should low probability - high severity disaster risks be covered by insurance
contracts? The present paper approaches this question from theoretical and ap-
plied perspectives, with the objective of analyzing the optimal insurance of nuclear
corporate liability.

In Europe, nuclear corporate liability is governed by the international conven-
tions of Paris (1960) and Brussels (1963) that set a lower bound on the liability
that governments impose on the nuclear operators within their territories. The
2004 protocol to amend the Paris Convention raised this lower bound to 700 mil-
lion euros per accident. In France, the protocol was ratified and the operator’s
liability was set at the new 700 million euros lower bound. In contrast, Germany
has defined a 2.5 billion euros liability cap for each accident on its territory1 and in
the United-States, the Price-Anderson Act provides for an overall limit higher than
10 billion dollars. Highlighting the determinants of an optimal nuclear corporate
liability is the aim pursued in what follows.

This requires a preliminary step, in which we investigate how low probability-
high severity risks can be viewed through the lens of insurance microeconomics.
To do so, we first extend the Arrow (1963a) and Pratt (1964) approximation of
the risk premium to account for the large deviations from the mean, and we show
that a high absolute risk aversion (or, equivalently, a low risk tolerance) in the
accident state may entail a significant willingness to pay to avoid risk, even if the
accident probability is very low. As an illustration, we investigate the optimal
insurance coverage of an individual who faces the risk of an accident with a very
low probability. We take the canonical models of the optimal insurance design
literature (Mossin (1968) and Raviv (1979)) to the limit case, and we analyze
the convergence of the optimal insurance coverage when the accident probability
goes to zero. Finally, we complete these theoretical foundations by considering
the risk of a large scale industrial accident, such as a nuclear catastrophe, that

1On top of the operator’s liability, the Paris convention also specifies tranches of liability
born by governments, so that total coverage available for indemnifying the victims are at least
1.5 billion euros.
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may affect the entire population of a country. Should an accident occur, the firm
has to indemnify the victims according to liability law, and it purchases insurance
to prevent any insolvency. When the accident probability goes to zero, insurance
coverage converges toward a straight deductible indemnity schedule, common to all
agents and capped by an upper limit. This extends Arrow (1963b)’s result about
the optimality of a deductible to the case of a socially optimal disaster insurance
scheme.

We subsequently study nuclear corporate liability insurance by drawing on
these theoretical foundations. There are three main building blocks in this analy-
sis: firstly, the assessment of damages that may be caused by a nuclear accident,
secondly, the modelling of risk preferences, and finally, the cost of the capital
needed to sustain the insurance coverage of a non-diversifiable risk such as the
nuclear accident risk.

With regard to the two first points, our methodology builds on a paper by
Eeckhoudt et al. (2000), who tried to evaluate the social cost of nuclear risk. Pos-
tulating a Constant Relative Risk Aversion (CRRA) utility function, they conclude
that the cost estimate is strongly sensitive to the level of risk aversion. This lack
of robustness of the CRRA specification for cost-benefit analysis in the presence of
catastrophe risk is also present in Weitzman (2009)’s dismal theorem. For our part,
we will use the more general Harmonic Absolute Risk Aversion (HARA) functions,
that have been shown to be more robust to tail risk (Millner (2013), Ikefuji et al.
(2015)).

Measuring the cost of capital leads naturally to consider the Alternative Risk
Transfer instruments, surveyed in Cummins & Barrieu (2013). We elaborate on
Lane (2000), Major & Kreps (2002), Lane et al. (2008), and Braun (2016) to
build a model of catastrophe bond pricing.2 Our model differs from existing ones
along two dimensions: it allows for realistic price estimates for low probability
risks and for a non constant marginal cost of capital. Our estimates are consistent
with previous studies, and our model’s performance compares favorably to existing

2Carayannopoulos & Perez (2015), have shown that cat bond returns feature little correlation
with other asset prices. This suggests that cat bonds could be used to secure capital at reasonable
prices, hence allowing for higher levels of coverage against catastrophes.
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models on the probability interval for which observations are available, with much
more reasonable price predictions for low probability events.

Using these three building blocks together, and considering the case of France,
allows us to evaluate the socially optimal liability insurance scheme for nuclear
risk. Our simulations suggest that the French nuclear liability law should be more
ambitious than it currently is, even after the 2004 revision of the Paris Convention.

Others before us have identified diverse consequences of low probability dis-
asters, including on asset prices (Rietz (1988), Barro (2009), Gabaix (2012) and
Farhi & Gabaix (2015)), business cycles (Barro (2006) and Gourio (2012)), miti-
gation strategies (Martin & Pindyck (2015)) and welfare (Weitzman (2009)). To
our knowledge, our paper is the first to build a model that assesses the welfare
gain of a socially optimal insurance scheme for low probability - high severity risks.
This assessment highlights the importance of two parameters: unsurprisingly the
individuals’ risk aversion, but also the cost of capital that sustains the risk transfer
mechanism. We thus share the views of Jaffee & Russell (1997b), Froot (2001a),
Niehaus (2002) and Zanjani (2002) about capital markets imperfections as signifi-
cant impediments to the insurability of catastrophic risks. Our paper extends the
scope of this literature by modeling simultaneously the demand and supply sides
of the insurance market for low probability-high severity risks.

Two other papers can be related to ours. Concerning nuclear liability, Schnei-
der & Zweifel (2004) use a survey approach to evaluate the willingness to pay for
risk reduction and they infer the welfare gain that would result from an increase in
corporate nuclear liability in Switzerland. Although their methodology is deeply
different from ours, they obtain comparable estimates of the optimal level of cov-
erage. On the use of cat-bonds in catastrophe insurance schemes, Borensztein
et al. (2017) study the welfare gain that can be reached when cat bonds allow
governments to smooth the potential cost of natural catastrophes. However they
focus on the case of a representative agent, while we will contemplate a setting
where damages affects a population and an indemnification rule has to be defined
for each inhabitant.

The paper is organized as follows. Section 2 analyzes the risk premium and
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the insurance demand for a low probability - high severity accident from the per-
spective of a risk averse individual. Section 3 characterizes the optimal corporate
liability insurance when a large scale industrial accident may affect the whole pop-
ulation of a country. On these theoretical grounds, Section 4 builds a calibrated
model of nuclear catastrophe coverage where insurance risk is transferred to fi-
nancial markets through catastrophe bonds. Section 5 concludes, Section 6 is an
appendix that contains proofs and tables.

1.2 Risk premium and insurance demand for catas-
trophic risks

1.2.1 The risk premium of low-probability and high-severity
risks

The Arrow (1963a) and Pratt (1964) approximation of the risk premium notori-
ously characterizes individual’s willingness to pay to avoid exposure to small risks.
It states that the risk premium can be approximated by half the absolute risk
aversion multiplied by the variance of the risk. This however, only holds for risks
that display small deviations around their mean. As a preliminary analysis of our
study of optimal insurance against catastrophic risks, this section characterizes
the willingness to pay to avoid low-probability high-severity risks.

Consider an expected utility risk-averse individual with a von Neumann-Morgenstern
utility function u(x) such that u′ > 0 and u′′ < 0, where x is the individual’s
wealth. Let A(x) = −u′′(x)/u′(x) and T (x) = 1/A(x) be her indices of absolute
risk aversion and of risk tolerance, respectively. He holds an initial wealth w, and
he is facing the risk of a loss L < w with probability p. Thus m(p, L) = pL and
σ2(p, L) = p(1−p)L2 are the expected loss and the variance of the loss, respectively.
The certainty equivalent C(p, L) of this lottery is defined by

u(w − C) = (1− p)u(w) + pu(w − L).
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We also denote
θ(p, L) ≡ C(p, L)−m(p, L)

σ2(p, L) ,

the normalized risk premium, that is the risk premium per unit of variance of the
risk. This will provide a metric to assess the relevance of insuring low probability
risks as we will show in Section 2.2. In particular, we will show that a necessary and
sufficient condition for insurance to remain relevant for low probability risks is that
θ(p, L) remains sufficiently large when p goes to 0. Straightforward calculations
give

C ′p(p, L) = u(w)− u(w − L)
u′(w − C) > 0,

C ′′p2(p, L) = −C ′p(p, L)2A(w − C) < 0.

Thus, C(p, L) is increasing and concave with respect to p, and of course we have
C(0, L) = 0.

Put informally, the risk (p, L) may be considered catastrophic for the individual
if C(p, L) is non-negligible although p is very small. Risk aversion implies that
C(p, L) > pL. L’Hôpital’s rule allows us to write the limit ratio of certainty
equivalent to expected loss as

lim
p→0

C(p, L)
pL

=
C ′p(0, L)

L
,

which is proportional to C ′p(0, L) for L given. Using l’Hôpital’s rule again gives

θ(0, L) ≡ lim
p−→0

θ(p, L) =
C ′p(0, L)− L

L2 . (1.1)

Thus, analyzing the determinants of θ(0, L) is an intermediate step to understand-
ing why C ′p(0, L) may be large and thus why C(p, L) may be significant although
p is very small.

We know from the Arrow-Pratt approximation that the risk premium of low-
severity risks per unit of variance is proportional to the index of absolute risk
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aversion. Indeed, we have

lim
L−→0

θ(p, L) = A(w)
2 for all p ∈ (0, 1),

which of course also holds when p goes to 0, that is

lim
L−→0

θ(0, L) = A(w)
2 .

When L is large, it is intuitive that the size of the risk premium depends on function
A(x) not only in the neighborhood of x = w, but over the whole interval [w−L,L].
Proposition 1 and its corollaries confirm this intuition. Proposition 1 provides an
exact formula for θ(0, L) which is a weighted average of A(x) exp{

∫ w
x A(t)dt}/2

when x is in [w − L,w]. Corollary 1.1 directly deduces a lower bound for θ(0, L),
and Corollary 1.2 considers the case where L = w and the index of relative risk
aversion R(x) is larger or equal to one.3 In this case, the lower bound of θ(0, L) is
the (non-weighted) average of A(x) when x ∈ [0, w].

Proposition 1 For all L > 0, we have

θ(0, L) = 1
2

∫ w

w−L
[k(x)A(x) exp{

∫ w

x
A(t)dt}]dx

where k(x) = 2[x− (w − L)]/L2 and
∫ w

w−L
k(x)dx = 1.

Corollary 1.1 For all L > 0, we have

θ(0, L) > 1
2

∫ w

w−L
k(x)A(x)dx.

3Most empirical studies usually lead to values of R(x) that are larger (and sometimes much
larger) than one, and thus the assumption made in Corollary 1.2 does not seem to be, in practice,
very restrictive.
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Corollary 1.2 If L = w, R(x) ≡ xA(x) ≥ 1 for all x and u(0) ∈ R then

θ(0, L) > 1
2w

∫ w

0
A(x)dx.

With the DARA case in mind, Proposition 1 and its corollaries suggest that
θ(0, L) may be large if A(x) is large when x goes to w − L.

Symmetrically, Proposition 2 shows that, under non-increasing absolute risk
aversion, the normalized risk premium θ(p, L) may be large when p is close to zero
only if A(w− L) is very large, that is, only when the individual’s risk tolerance is
very small in the accident state.

Proposition 2 Assume R(x) ≡ xA(x) ≤ γ for all x ∈ [w − L,w]. Then, under
non-increasing absolute risk aversion, we have

θ(0, L) < (γ + 1)A(w − L)
2 ,

and
C(p, L) < pL

[
1 + (γ + 1)A(w − L)

2 L

]
.

Proposition 2 provides upper bounds for the normalized risk premium θ(0, L)
and for the certainty equivalent C(p, L) when the individual displays non-increasing
risk aversion. γ is an upper bound for the index of relative risk aversion R(x)
when x is in the interval [w − L,w]. The upper bound of θ(0, L) is proportional
to A(w− L), which is the index of absolute risk aversion in the loss state. Conse-
quently, C(p, L) may be non-negligible when p is very small, say as a proportion of
loss L, only if A(w − L) is large. On the contrary, assume A(w − L) = A(w), i.e.,
the index of absolute risk aversion remains constant in [w − L,w]. In that case,
we would have R(x) < R(w) for all x < w, and thus γ = R(w), which implies

C(p, L) < pL

[
1 + R(w)

2 + R(w)2

2

]
.
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Assuming R(w) = 2 or 3 would give C(p, L) < 4pL or C(p, L) < 7pL, respec-
tively. Thus, if p is very small, then C(p, L)/L is very small.4

Thus, under non-increasing absolute risk aversion, we may conclude that the
risk premium of low-probability high-severity accidents may be non-negligible (and
thus that the coverage of such a risk is a relevant issue) if and only if the risk
tolerance is very low in such catastrophic cases.

CRRA preferences are an instance of such a case with T (x) = x/γ, where γ is
the index of relative risk aversion. We then have T (x) −→ 0 and A(x) −→∞ when
x −→ 0. However, CRRA preferences are not very satisfactory from a theoretical
standpoint, since the utility is not defined when wealth is nil. This corresponds to
discontinuous preferences in which any lottery with zero probability for the zero
wealth state is preferred to any lottery with a positive probability for this state.
If preferences are of the HARA type, then risk tolerance is a linear function of
wealth, and we may write T (x) = η + x/γ, with 0 < η < 1 and γ > 0. In such a
case, we have A′(x) < 0, A(0) = η and R(x) > 1. In particular, the individual’s
absolute risk aversion index is decreasing but upper bounded. A straightforward
calculation then gives

1
2w

∫ w

0
A(x)dx = γ

2w ln
(

1 + w

γη

)
,

and thus, Corollary 1.2 shows that for all M > 0, we have θ(0, L) > M if

η <
w

γ[exp(2wM/γ)− 1] .

The right-hand side of the previous inequality is positive, decreasing in M and
increasing in γ. Thus, θ(0, L) is arbitrarily large if η = T (0) is small enough
and/or if 1/γ = T ′(x) is small enough.

4For the sake of numerical illustration, consider the case of a large scale nuclear disaster that
may occur with probability p = 10−5, with total losses of $100b evenly spread among 1 million
inhabitants (think of people living in the neighborhood of the nuclear plant). In the case of
an accident, each inhabitant would suffer a loss L = $100, 000, with expected loss pL equal to
$1, and risk premium equal to $4 or $7, which would be negligible, say as a proportion of their
annual electricity expenses. Postulating larger but still realistic values of the index of relative
risk aversion would not substantially affect this conclusion.
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1.2.2 Insurance demand for catastrophic risks

We now assume that the individual can purchase insurance for a low-probability
high-severity risk (p, L). Insurance contracts specify the indemnity I in the case
of an accident, i.e., when the individual suffers a loss L, and the premium P to be
paid to the insurer, proportional to the expected indemnity P = (1 + λ)pI, where
λ > 0 is the loading factor. Assuming p(1 + λ) < 1 rules out the trivial cases in
which the policyholder chooses no coverage.

The policyholder therefore faces the lottery (w1, w2), with corresponding prob-
abilities 1−p and p, where w1 and w2 denote respectively the wealth in the no-loss
and loss states, with w1 = w−P and w2 = w−P −L+I. The full coverage lottery
(w−P,w−P ) is preferred to the no coverage lottery (w,w−L) if and only if the
willingness to pay C(p, L) is higher than the price of full coverage P = (1 + λ)pL,
that is

C(p, L) ≥ (1 + λ)pL.

Rearranging the terms of the inequality and applying l’Hôpital rule with p → 0
gives

C ′p(0, L)− L
L

≡ θ(0, L)L ≥ λ.

Hence the following Lemma.

Lemma 1 θ(0, L)L ≥ λ is a necessary and sufficient condition for the agent to
prefer full insurance to no insurance when the loss probability tends to zero.

Lemma 1 illustrates the importance of the normalized risk premium θ(0, L) an-
alyzed in the previous section. For insurance to remain attractive despite the
vanishingly low probability of accident, the normalized risk premium has to be
larger than the loading λ divided by the loss. A direct consequence of Lemma 1
is that θ(0, L)L ≥ λ is a sufficient condition for the optimal insurance cover to
remain positive as p goes to zero.5

5Indeed, if the individual prefers full coverage to no coverage, extending his opportunity set
does not make him switch to zero coverage. It is easy to check that the optimal limit cover
(denoted I∗ below) is positive when λ < [u′(w − L) − u′(w)]/u′(w) and that this condition is
implied by θ(0, L)L ≥ λ.
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Combining Corollary 1.1 and Lemma 1 provides a statistic that can be used to
assess whether insurance remains valuable for low probability events.

Corollary 2.1 Assume R(x) is non decreasing. If limx→0R(x) ≥ λ, then for L
large enough, the individual prefers full insurance to no insurance (and therefore
the optimal cover is positive) when p goes to zero.

We now derive the optimal insurance coverage for a low probability accident. In
the (w1, w2) plan represented in Figure 2.2, the set of feasible lotteries is delimited
by the straight line that represents the equation

[1− p(1 + λ)]w1 + (1 + λ)pw2 = w − (1 + λ)pL, (1.2)

and
w2 − w1 + L ≥ 0, (1.3)

represents the sign condition I ≥ 0. The optimal lottery maximizes the individual’s
expected utility

(1− p)u(w1) + pu(w2),

in the set of feasible lotteries. It is such that the marginal rate of substitution
−dw2/dw1|Eu=ct. = (1− p)u′(w1)/pu′(w2) is equal to the slope (in absolute value)
of the feasible lotteries lines, that is

(1− p)(1 + λ)u′(w1) = [1− (1 + λ)p]u′(w2). (1.4)

Figure 2.2 shows the locus of optimal lotteries in the (w1, w2) plane when p

changes. Point A represents the situation with no insurance, and point B represents
the optimal lottery when p goes to zero.

Let w1(p, L), w2(p, L) denote the optimal state-contingent wealth levels when
I > 0, that is, when λ is not too large. Let us also denote

w∗1(L) ≡ lim
p−→0

w1(p, L) = w,

w∗2(L) ≡ lim
p−→0

w2(p, L),
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Figure 1.1: Comparative statics in the space of lotteries

Each thick black point represents an optimal lottery for a given probability, from p high in point
A to p close to zero in point B. The optimal lottery moves closer to the 45 degree line, that
represents full insurance, as the probability p becomes smaller. The calibration is w = 10000,
L = 5000, u(x) = −x

−3

3 .

with
u′(w∗2(L)) = (1 + λ)u′(w), (1.5)

which implies w∗2(L) < w = w∗1(L). Thus, when p goes to 0, the optimal insurance
contract (P, I) goes to a limit (P ∗, I∗), with P ∗ = 0 and I∗ = w∗2(L)+L−w∗1(L) <
L. When p is positive but close to 0, we still have I < L and P = (1 + λ)pI '
(1 + λ)pI∗. Since w∗2(L) = w − L+ I∗, (1.5) gives

u′(w − L+ I∗) = (1 + λ)u′(w),
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or
I∗ = u′−1((1 + λ)u′(w))− w + L,

and thus I∗ is decreasing with λ.
We may characterize the effect of a change in L and/or w on optimal insurance

coverage. An increase dL > 0 for w given induces an equivalent increase dI∗ = dL.
A simultaneous increase dw = dL > 0 induces an increase dI∗ > 0 in coverage,
while an increase in wealth with unchanged loss dw > 0, dL = 0 entails a decrease
in optimal coverage dI∗ < 0 under DARA references, i.e. when A′ < 0. Of course,
there is nothing astonishing here. These are standard comparative statics results,
which are extended to the asymptotic characterization of catastrophic risk optimal
insurance. They are summarized in Proposition 3.

Proposition 3 When p goes to 0, the optimal insurance coverage I goes to a
limit I∗, and when p is close to 0, coverage I and premium P are close to I∗

and (1 + λ)pI∗, respectively. I∗ is lower than L, and is decreasing with λ. A
simultaneous uniform increase in L and w induces an increase in I and P . Under
DARA, an increase in w with L unchanged induces a decrease in I and P .

1.3 Optimal catastrophic risk coverage for a pop-
ulation

1.3.1 Catastrophic risk with corporate liability insurance

With the case of nuclear accident risk in mind, we now consider a population of
individuals who face the risk of a catastrophic event (called "the accident") caused
by a firm. Such an accident may affect the individuals differently, according to their
risk exposure and also to their good or bad luck. The population is represented
by a continuum of individuals with unit mass. It is composed of n groups or types
indexed by i = 1, ..., n, and a proportion αi of the population belongs to group
i, with α1 + α2 + ... + αn = 1. In the case of a nuclear accident caused by a
given reactor, the groups correspond to various locations that may be more or
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less distant from the nuclear power plant. The accident occurs with probability
π. In the case of an accident, a proportion qi ∈ [0, 1] of type i individuals suffers
damage, with financial damage x̃i for each individual in this subgroup of victims.
x̃i is a random variable, whose realization is denoted xi, and which is distributed
over the interval [0, xi] with c.d.f. Fi(xi) and density fi(xi) = F ′i (xi). The random
variables x̃i are independently distributed among type i individuals. Thus, we
assume that in group i the victims are randomly drawn with probability qi, and
the law of large numbers guarantees that the proportion of affected individuals is
equal to qi, while victim’s losses are independently distributed. The total cost of
an accident is equal to

n∑
i=1

αiqi

[∫ xi

0
xifi(xi)dxi

]
=

n∑
i=1

αiqiEx̃i.

Under our assumptions, this total cost is given, but the distribution of loss between
members of each group is random. This provides a simple correlation structure
of losses. There is one single accident risk, which is thus non-diversifiable. In
the case of an accident, the losses per individual are equal to qiEx̃i in each group
i = 1, ..., n, and thus aggregate losses per individuals L̃ are equal to ∑n

i=1 αiqiEx̃i

with probability π, and L̃ = 0 with probability 1−π. Hence, L̃ has expected value
E(L̃) = π

∑n
i=1 αiqiEx̃i and standard deviation σ(L̃) =

√
π(1− π)∑n

i=1 αiqiEx̃i,
and its coefficient of variation is CV (L̃) = σ(L̃)/E(L̃) =

√
(1− π)/π. CV (L̃) goes

to infinity when π goes to zero, which reflects the high volatility of the accident
risk when its probability is small.

Each type i individual is covered by an insurance contract that specifies an
indemnity Ii(xi) ≥ 0 for all xi in [0, xi]. This insurance coverage is taken out
by the firm at price P . With the nuclear liability law in mind, we assume that
the firm has to indemnify the victims according to the legal rule Ii(xi) and also
- in order to prevent any bankruptcy risk - that it has to purchase insurance to
cover its liability. Thus, Ii(xi) is at the same time the payment by the firm to
type i individuals and the transfer from the insurer to the firm. The firm pays
a premium P per individual, and this premium is passed on to the prices of the
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firm’s product (say, on to the consumers’ electricity bills). We assume that all
consumers purchase the same quantity of the firm’s products, and thus it is as if
the insurance premium were paid by the individuals themselves.

Assume that the insurer allocates an amount of capital per individual K in
order to pay indemnities, should an accident occur. The usual mutualization
mechanism cannot be effective in the case of a low probability - high severity risk,
and some alternative risk transfer is required. A simple approach (at least from a
conceptual standpoint) consists in the insurer issuing a cat bond with par value K.
The cat bond will pay some return (a spread above the risk-free rate of return),
and will be reimbursed to investors only if no accident occurs. Otherwise, the cat
bond will default, and its proceeds will be used to cover the claims for victims’
compensation.6

We know from the law of large numbers that the average indemnity paid to
type i victims in the case of an accident is

∫ xi

0
Ii(xi)fi(xi)dxi,

and thus the total indemnity payment can be financed if

K = (1 + λ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)fi(xi)dxi,

where λ is a loading factor that represents the claim handling costs that the insurer
faces beyond the indemnification costs. This cost of capital is covered by the
premiums raised by the insurer, so we have

P = c(π,K)

6In practice, a Special Purpose Vehicle (SPV) is created by the sponsor (here, the firm) as a
legal entity able to host the cat bond. This SPV acts as an insurer or reinsurer with respect to
the sponsor. It issues the bond, delivered to the investors in exchange for the principal payment,
which entitles them to a regular coupon. Upon the occurrence of a contractually defined event,
called the trigger, the bond defaults and the sponsor gets to keep the principal. Cat bonds are
used by insurers and reinsurers to hedge against large losses among their portfolios of insured
people, and by large corporations to cover catastrophic events.
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with capital cost c(π,K) twice continuously differentiable, c′K > 0, c→ c(0, K) ≥ 0
and c′K → 0 when π → 0, c′π > 0, c′′K2 ≥ 0 and c′′πK ≥ 1.7

Let w1 and w2i(xi) be the wealth of a type i individual if he is not affected
by an accident (which occurs with probability 1 − πqi), and if he is affected with
loss xi (which occurs with probability πqi and conditional loss density fi(xi)),
respectively. We have

w1 = w − P,

w2i(xi) = w − P − xi + Ii(xi).

All individuals have the same initial wealth w and the same risk preferences rep-
resented by utility function u, with u′ > 0, u′′ < 0.

Let Ci be the certainty equivalent loss of type i individuals. The set of feasible
allocations {w1, w21(x1), ..., w2n(xn), C1, ..., Cn, K} is defined by

u(w − Ci) = (1− πqi)u(w1) + πqi

∫ x̄i

0
u(w2i(xi))fi(xi)dxi, (1.6)

w2i(xi)− w1 + xi ≥ 0 for all i = 1, ..., n, (1.7)

K = (1 + λ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)f(xi)dxi, (1.8)

w1 = w − c(π,K). (1.9)

Equation (1.6) defines Ci and equation (1.7) is a sign constraint for the in-
surance coverage. (1.8) defines the capital required to pay indemnities, and (1.9)
follows from w1 = w − P and P = c(π,K).

7If capital is levied through a cat bond, then c(π,K)/K is the spread over LIBOR, i.e.
the compensation per euro required by investors for running the risk of losing their capital
with probability π. Under a zero risk-free interest rate, a risk neutral investor would require
c(π,K) = πK to accept this risk. Note that we may have c(0,K) > 0 if levying capital K
induces fixed costs. See Section 4 for further developments.
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1.3.2 Optimal contract

We consider a utilitarian regulator that designs the risk coverage mechanism in
order to minimize the social cost of an accident, which is the weighted sum of
certainty equivalent to individuals’ losses. The corresponding optimization pro-
gram is also a way of characterizing the Pareto optimal allocations when ex-ante
transfers between groups are possible.8 This may be written as minimizing

n∑
i=1

αiCi,

with respect to {w1, w21(x1), ..., w2n(xn);C1, C2, ..., Cn, K}, subject to conditions
(1.6),(1.7), (1.8) and (1.9). Proposition 4 characterizes the optimal solution of
this problem when π goes to 0 and K > 0.

Proposition 4 When π goes to zero with K > 0, all the optimal indemnity
schedules Ii(xi) converge toward a common straight deductible indemnity sched-
ule I∗(xi) = max (xi − d∗, 0) and K converges toward K∗ defined by

u′(w − d∗) = (1 + λ)u′(w − c∗0)c′′πK(0, K∗),

K∗ = (1 + λ)
n∑
i=1

αiqi

[∫ xi

d∗
(xi − d∗)fi(xi)dxi

]
,

where c∗0 = c(0, K∗).

Proposition 4 shows that the optimal indemnity schedule for small π involves
full coverage of the victims above a straight deductible d∗ (the same for all indi-
viduals whatever their type). This amounts to saying that the victims should be
ranked in order of priority on the basis of their losses: the victims with loss xi
should receive an indemnity only if the victims with loss x′i larger than xi receive
at least x′i − xi. This simple characterization of optimal indemnification will be
used in the simulation conducted in Section 1.4. As in the simple model of Section
2.1, we may derive comparative statics properties for the asymptotic deductible d∗.

8See Proposition 5 in the appendix for details.
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In particular, it is increasing in λ and, under DARA preferences, it is increasing
in wealth.

More importantly, Proposition 4 shows how d∗ and K∗ are affected by the cost
of capital. If the investors were risk neutral, we would have c(π,K) = πK, i.e.
the cost of capital would just be equal to the risk premium that compensates for
the expected loss due to the default. We would have c′′πK(π,K) = 1 and, in such
a case, the cost of capital would not affect the optimal indemnity schedule.

However, as we will see in more detail in Section 1.4 with the example of the
cat bond market for low-probability triggers, because of the aversion of investors
towards risk, or for other reasons, it is much more realistic to keep the cost of
capital in a more general form c(π,K). In that case the cost of capital does affect
the optimal indemnity schedule as highlighted in Proposition 4.9

The optimality of straight deductible contracts was first established by Arrow
(1963b)10 in a different perspective. While Arrow studied individual insurance
decisions, we are concerned with the design of a socially optimal insurance scheme,
where an entire population is exposed to a common source of risk and the cost of
insurance is uniformly spread among inhabitants. This implies that there is cross-
subsidization from the less exposed to the more exposed individuals. In Arrow
(1963b), both the optimal price and deductible depend on the risk profile of a
particular agent. In contrast, Proposition 4 indicates that all indemnity schedules
converge toward a single coverage rule, characterized by d∗, K∗, and the associated
premium P ∗ = c∗0. The fact that the deductible does not depend on type i is true

9Note that c′′π,K(0,K∗) = limπ→0 (1− π)c′K(π,K∗)/π from L’hôpital’s rule. Then, Proposi-
tion 4 yields, for π small enough

πu′(w − d∗)
(1− π)u′(w − c∗0) ≈ (1 + λ)c′K(π,K∗).

The left-hand side of this equality is the individual’s marginal rate of substitution between the
states where he receives an indemnity after an accident and where no accident occurs, respectively.
The right-hand side is the marginal cost of capital needed to sustain the insurance coverage,
inflated by the loading factor λ. Hence, the first condition in Proposition 4 may be interpreted
as the equality between marginal willingness to pay and marginal cost of coverage. The second
equation is just a rewriting of equation (1.8) for the indemnity schedule I∗(xi).

10This result has been generalized in many directions. Gollier & Schlesinger (1996) for ex-
ample, demonstrate that a deductible second-degree stochastically dominates any other feasible
insurance policy. For more on the robustness of Arrow’s optimality result, see Gollier (2013).
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only asymptotically when π −→ 0. Otherwise, the optimal indemnity schedule
would involve type-dependent deductibles di, with Ii(xi) = max{xi − di, 0}. This
is because lower deductibles would allow the regulator to transfer wealth from
more to less risky types (say from the groups with qi high to the groups with qi
low if the conditional distribution of losses Fi(xi) is the same for all groups). For
low probability risks, this compensatory effect vanishes as π goes to 0.

1.4 The nuclear corporate liability case

1.4.1 The cost of capital

Financial innovations have been developed during the two last decades in order to
transfer large scale catastrophic risks to financial markets.11 Focusing attention
on the cat bond market, we may write c(π,K) = s(π,K)K, where s(π,K) denotes
the spread over LIBOR for a cat bond.

The empirical literature has developed a number of cat bond pricing models,
of which we present four examples in Appendix 1.6.7. However, these models
suffer from a lack of theoretical foundations and they predict unrealistically high
spreads for cat bonds with very low probability triggers.12 We therefore develop
in Appendix 1.6.2 a simple one factor cat bond pricing model with the following
features. The representative investor is assumed to be risk averse. In addition
to the compensation for his expected loss, he therefore demands a premium for
the systemic component of the risk that is correlated with his own wealth. He
also requires a compensation for the underwriting and verification costs induced
by the cat bond transaction. Our predictions for low probability cat bonds will
therefore lie between two extremes. Spreads will be lower than those predicted by
the existing models, presented in Appendix 1.6.7, but higher than those predicted
in a model with risk neutral investors and no fixed cost. Our pricing equation is

11See Cummins & Barrieu (2013).
12In these models, either c∗0 = c(0,K) is prohibitively large or c′′πK(0,K) = +∞, which makes

risk coverage unattractive when π is very small.
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as follows

s = π(1 + µ)E(x̃) + ηκ(1 + µ)π[E(x̃2)− π(Ex̃)2]K + D

K
, (1.10)

where x̃ is the fraction of the cat bond’s capital lost by investors when the cat
bond defaults, and η and κ respectively reflect the representative investor’s degree
of risk aversion and the exposure of his own wealth to the catastrophe. Finally,
µ is a loading that covers the verification costs that the investor incurs when the
cat bond defaults. While the first term of equation (1.10) is the spread that would
be required by a risk neutral investor, the second term reflects a risk premium.
Finally, D is a fixed underwriting cost independent of the size K or probability π
of a capital loss.

Based on this model, we estimate the following regression

si = β0πiE(x̃i) + β1πi[E(x̃i2)− π(Ex̃i)2]Ki + β2(1 +∑
i γiXi)

Ki

+ εi, (1.11)

by using information from the Artemis database on cat bond transactions.13 si

denotes the spread over LIBOR of cat bond i = 1, ..., n. If m€Ki is issued through
cat bond i, the corresponding cost of capital incurred by the issuer is ci = siKi.
The spread of cat bonds is explained by the expected loss per €, πi, conditional
expected loss E(x̃i), conditional expected loss squared,14 capital issued Ki, and a
vector of observable controls Xi, such as year of issuance and zone of peril covered
that may affect the fixed underwriting cost.

The Artemis database contains more than two-hundred issues, some of which
are divided into several tranches, characterized by different levels of risk, and
therefore by different spreads. We restrict our analysis to 185 of the most recent
tranches, spanning an interval of six years (2011-2017), for which we have com-
plete information, including the nature of perils, types of trigger, probability of a

13http://www.artemis.bm/
14We only possess information on the expected value of the random variable x̃. We therefore

compute E(x̃i2) by making the assumption that x̃i is uniformly distributed over an interval [ai, 1].
We then calibrate ai to match the expected value of the uniform distribution with its empirical
counterpart E(x̃i).
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capital loss, expected loss,15 spreads, and identity of sponsors. Relevant controls
also include the year of issuance, the area of the peril covered, and the type of
trigger. Appendix 1.6.5 and 1.6.7 show that the cat bonds in our data set have
characteristics similar to those used in a recent study by Braun (2015).

Table 1.1 gives the main OLS estimates of this regression.16 All parameters

Table 1.1: OLS estimates for model 1.11

β0 β1 β2
Estimates 1.4693∗∗∗ 0.0027∗∗ 0.5129
t-statistics (10.5472) (2.1438) (0.9366)

R2 0.7794

are positive and consistent with theory. The first parameter β0 is estimated to be
1.4693, which indicates the presence of a loading around forty-seven percent. The
second parameter β1, that identifies the representative investor’s risk aversion, is
statistically significant at a 5% level. The second term of the regression will play an
important role, due to the large values taken by K, the cat bond’s capital. Finally,
the third parameter β2, that captures the cat bond’s fixed cost D, is estimated at
0.5129, which implies a fixed cost of €512,900. For a 100 million euros cat bond,
this corresponds to a spread of 0.51% due to the fixed underwriting costs, a much
more reasonable estimate than the 2.64% predicted by the standard linear model
of Lane et al. (2008).17

Compared with alternative models, ours features three main differences. First,
unlike competing models, we allow for a cost of capital c = s(π,K)K which is
non-linear in K, giving rise to increasing marginal cost of capital. Secondly, when
multiplied by K the positive intercept of our regression is a fixed cost (i.e., a
component of the capital cost independent from π and K) that can be interpreted
as an underwriting cost, absent from other models. The third difference lies in that
our model satisfies condition c′K → 0 when π → 0. Violation of this condition in
most competing models comes from the positive intercept in the spread equation

15The probability of a capital loss and the distribution of losses are evaluated by modeling
companies independent from the sponsor and the investor.

16The full table, along with alternative specifications is reported in Appendix 1.6.6.
17See Appendix 1.6.8.
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(or from a very concave relationship between the spread and the loss probability)
which has no theoretical foundation. Appendix (1.6.8) compares our model with
competing models in the literature. Overall, goodness of fit is comparable to that
of competing models.

In the model of section 1.3, we have assumed x̃ = 1, which, for our cat bond,18

gives
c(π,K) = β0πK + β1π(1− π)K2 + β2, (1.12)

and in particular
c′′Kπ(0, K) = β0 + 2β1K,

which is an ingredient of the formula provided in Proposition 4.

1.4.2 Individual lotteries

As in Eeckhoudt et al. (2000), we make use of the aggregate information on costs
and probabilities drawn from Probabilistic Safety Assessment (PSA) studies19 to
construct individual lotteries. We consider the risk associated with one major
accident on the French territory.20 The 58 French nuclear reactors are gathered
into 19 power plants. Based on Eeckhoudt et al. (2000), we assume that 2 million
people live around each power plant. Therefore 38 million people are located near
a power plant (less than 100km) and 28 million people live further away. We
index these two groups by i = 1, 2, with shares in the population α1 = 38/66 and

18For simplicity, we have designed a simple cat bond that defaults entirely in case of a catas-
trophe. In addition, the cat bond we are interested in belongs by design to the reference group
of our econometrics specification, which is why the dummy controls do not appear in equation
(1.12).

19The Probabilistic Safety Assessment (PSA) studies assess the odds and the stakes of a major
accident along several dimensions: sanitary, environmental, economic, etc. They deliver prob-
ability and cost estimates for various accident scenarios, presented in Dreicer et al. (1995) and
Markandya (1994). Additional studies from international agencies, such as the French Insti-
tute for Radioprotection and Nuclear Safety (IRSN (2013)) and the Nuclear Energy Agency
(NEA (2000)), also develop the methodology for estimating the costs associated with the various
accident scenarios predicted by PSA studies.

20We use ST21 as a benchmark for the number of direct victims in our baseline scenario. The
PSA studies referenced in the previous footnote provide the technical background on which ST21
relies.
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α2 = 28/66, respectively. We let π denote the probability that a major nuclear
accident affects the territory. Most PSA studies provide very low estimates ranging
from 10−4 to 10−9 per year and per reactor. We will use in our computation
π = 58 ∗ 10−5,21 but since we approximate the optimal level of capital by its limit
value, this calibration does not affect our results about the optimal coverage and
deductible K∗, d∗, but it does affect the premium P .

For any individual, the potential direct consequences of a nuclear accident may
include financial losses, severe disease and death, and it is these losses that may be
subject to compensation under corporate liability law. Other losses are supposed
to be evenly spread over the whole population. When an accident occurs, an
individual of group 1 has a probability 1/19 of living nearby the damaged power
plant (< 100 km),22 in which case he can die, or suffer a severe disease, or a
financial loss if he lives in the plume of radioactivity. With probability 18/19, he
lives away from the damaged power plant (≥ 100 km), similar to a person from
group 2, and can die or suffer a severe disease. The direct financial losses are
incurred only by people in group 1, and may result from the impossibility to stay
in a contaminated area.

We use figures similar to Eeckhoudt et al. (2000) to calibrate our baseline
scenario. The number of direct victims in the baseline scenario (scenario 1) is
summarized in Table 1.2.

Table 1.2: Repartition of losses in scenario 1

Distance Population Financial loss Death Severe disease
< 100 km 2 million 10,000 500 1,000
≥ 100 km 64 million 0 3,000 6,000

We assume that each person in the most exposed group (i.e., individuals from
group 1, living within 100 km of a power plant) can potentially be in 6 distinct
states (3 health states × 2 financial states) s1 = 1, ..., 6. Other individuals never
incur the direct financial loss, so they can only be in three different health states

21We neglect the possibility that accidents may occur simultaneously in several power plants.
22For simplicity, we assume that the 19 power plants have the same number of reactors. This

approximation has very little impact on our results.
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s2 = 1, ..., 3. The lotteries associated with the baseline scenario are summarized
in Tables 1.3 and 1.4. The initial wealth w is calibrated in euros, as the sum of
the asset value currently held, plus the expected discounted future wealth of the
average French citizen, which yields w = 875, 310 euros.23

People from group 1 die in states s1 = 1 and 2. They also suffer a financial loss
in state s1 = 1 (and not in state s1 = 2). The worst possible case is represented
by the loss of a fraction 1 − ω of total wealth, where ω can be interpreted as a
bequest parameter. We choose the parameter ω so as to match the value of a
statistical life (VSL) recommended for cost-benefit analysis with a HARA utility
function.24 In particular, our baseline calibration with ω = 10% implies Values
of a Statistical Life between 3 and 4 million euros, consistent with the estimates
provided in Viscusi & Aldy (2003) meta-analysis and with Quinet et al. (2014),
which sets the standard for cost-benefit analysis in France.25

People in state s1 = 3 do not die but they face the combined consequences of a
severe disease and financial losses. In states s1 = 4 and s1 = 5, they suffer either
the severe disease or the financial shock, respectively, while in state s1 = 6 they do
not incur direct losses. Table 1.3 presents these loss levels and the corresponding
probability conditional on the occurrence of a nuclear accident.26

Concerning group 2, individuals die in state s2 = 1, suffer a severe disease in
state s2 = 2 and face no direct loss in state s2 = 3.

To these direct consequences, subject to compensation under corporate liability
law, one must add more diffuse economic costs that are qualified as indirect costs
in Schneider (1998) and subsequent studies. They are difficult to quantify and at-
tribute to a given individual. Examples of such costs are: the loss of attractiveness
of an impacted territory, loss in terms of image for the industrial sector, etc.27 For

23The details of this calibration are presented in Appendix 1.6.4.
24The HARA utility function does not display a divergent index of absolute risk aversion when

ω goes to zero, except in the limit CRRA case. See equation 2.7 below.
25Appendix 1.6.9 shows the robustness of our analysis to a change in the parameter ω.
26The state probabilities in Tables 1.3 and 1.4 are also conditional on belonging to group 1

and 2, respectively.
27Here we do not discuss the effect of the catastrophe on growth, as the literature has not

reached a consensus on the growth effect of disasters. For example, Gignoux & Menéndez (2016)
find a positive effect for the case of an earthquake in India, while Strobl (2012) finds a negative
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Table 1.3: Lotteries for type i = 1

State Description of direct losses Direct loss Total loss Probability
s1 = 1 Death + financial loss 787,780 787,780 7.8947e-08
s1 = 2 Death 717,780 719,220 5.7513e-05
s1 = 3 Disease + financial loss 330,000 331,440 1.3158e-07
s1 = 4 Disease 260,000 261,440 1.1500e-04
s1 = 5 Financial loss 70,000 71,440 2.6297e-04
s1 = 6 No direct loss 0 1,440 9.996e-01

simplicity, we assume that these costs are evenly shared by all individuals in the
economy28 and we keep the total cost of the accident fixed at 100 billion euros. In
group i = 1, agents in state s1 = 6 only face the indirect loss from the accident.
Total losses are obtained by adding direct and indirect losses.

Alternative scenarios (scenario 2,3,4 and 5) are generated by multiplying the
number of direct victims considered in Table 1.2 by 2,3,4 and 5, respectively, while
reducing the value of indirect losses so as to keep the total cost fixed at 100 billion
euros. Total direct losses range from 5 billion euros in scenario 1 to approximately
25 billion euros in scenario 5. Total indirect losses therefore vary between 75 and
95 billion euros. In tune with the more recent studies on nuclear risk (Rabl &
Rabl (2013)), we consider scenario 3 as the central scenario and baseline scenario
1 as a lower bound on the consequences of a large-scale accident. Because we
assume that indirect losses are mutualized, they only marginally affect the optimal
coverage level. Hence, as far as corporate liability is concerned, the assumption
that total cost is 100 billion euros is innocuous.29

effect for the case of hurricanes in the Caribbean.
28We could also treat these indirect costs as uninsurable background risks. Under the risk

vulnerability assumption, these background risks would increase the degree of risk aversion to
insurable risks.

29In particular, assuming a total cost of 50 or 200 billion euros would not significantly modify
our results.
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Table 1.4: Lotteries for type i = 2

State Description of direct losses Direct loss Total loss Probability
s2 = 1 Death 717,780 719,220 4.6875e-05
s2 = 2 Disease 260,000 261,440 9.3750e-05
s2 = 3 No direct loss 0 1,440 9.999e-01

1.4.3 Optimal coverage

We postulate a harmonic absolute risk aversion (HARA) utility function

u(x) = ζ
(
η + x

γ

)1−γ
,

whose domain is such that η + (x/γ) > 0, and with the condition ζ(1− γ)/γ > 0,
that guarantees that u(x) is increasing and concave. With affine risk tolerance
T (x) = 1/A(x) = η + x/γ, the coefficient of relative risk aversion is

R(x) = x
(
η + x

γ

)−1
. (1.13)

The HARA class nests the constant relative risk aversion (CRRA) case when η = 0,
and the constant absolute risk aversion (CARA) case when γ → +∞. Except for
the CARA and CRRA limit cases, HARA functions satisfy decreasing absolute risk
aversion and increasing relative risk aversion. Studies on individual data, such as
Levy (1994) and Szpiro (1986), have isolated a plausible range between 1 and 5
for the index of relative risk aversion. We therefore perform simulations over this
plausible range of values.

The optimal values of the deductible and capital are deduced from Proposition
4 and Section (1.4.1). They are reported in Table 1.5 for a level of relative risk
aversion R := R(w) = 2, which is our baseline assumption.30 Since the relative risk
aversion has two degrees of freedom in the HARA case, we let R := R(w−L(s1)),
where L(s1) is the loss incurred in state s1 by group 1 individuals, vary across
columns.31 The scenario considered varies across lines.

30A wider set of assumptions, with an index of relative risk aversion R varying from 1 to 5, is
considered in Appendix 1.6.9.

31In other words, R and R denote the index of relative risk aversion, in the no accident state
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Table 1.5: Optimal cover (in ebillion), Welfare gain, Annual premium (in
emillions), Deductible (in ehundreds of thousands), R = 2

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.6982 0.0562 0.7636 0.0791
2 0.9829 0.0825 1.1204 0.1213
3 1.1693 0.0972 1.3740 0.1472
4 1.3060 0.1056 1.5726 0.1637
5 1.4125 0.1030 1.7360 0.1742
R 1 2

Scenario Premium Deductible Premium Deductible
1 1.8759 5.6588 2.0825 5.5150
2 2.8731 6.1122 3.4459 5.9612
3 3.6640 6.3355 4.6588 6.1855
4 4.3138 6.4742 5.7502 6.3278
5 4.8604 6.5708 6.7409 6.4286

Optimal levels of coverage (in billion euros) and their associated welfare gains
are read from the top panel of Table 1.5. Annual premiums (in millions of euros)
and deductibles (in hundreds of thousands of euros) are read from the bottom
panel. If we consider a central set of assumptions with scenario 3, R = 2 and
R = 2 (i.e. the CRRA case), we find an optimal level of coverage K∗ equal to
e1.3740 billion, an associated welfare gain of 14.72%, a deductible of e618, 550
per inhabitant, and an annual premium of e4.6588 million (just below 7 cents
per person). This yields a spread s = 4.6588/1374.0 = 0.39% that is one order
of magnitude above the spread that a risk neutral investor would require in the
absence of underwriting costs. In principle, these fixed underwriting costs can be
an issue for the insurability of low probability events, but in our setting they are
divided among a large number of agents and therefore have a small impact on each
agent.

Table 1.5 highlights the dependence of the coverage and annual premium on
the catastrophe scenario. When R = 1 and R = 2, multiplying the number of
people in each category of loss by 5 (i.e. comparing scenario 1 and 5) induces an

and in the worst case state, respectively.
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increase in cover by a factor 2.02 and 2.27, respectively. The fact that coverage
increases at a slower pace than direct losses is an intuitive result that is due to the
increasing marginal cost of capital.

The deductible varies between e551, 500 and e657, 080 in Table 1.5. This
represents more than half of the individual’s wealth, which implies that only people
in the worst states (s1 = 1, 2 for group 1 and s2 = 1 for group 2) are indemnified.
Table 1.5 also confirms the intuition that deductibles should decrease with risk
aversion, but the effect is quantitatively limited. Finally, the deductible increases
with the severity of the loss scenario, which reflects our previous remark on the
effect of increasing marginal cost of capital on optimal coverage. As more capital is
needed to compensate the victims with the largest losses, it is optimal to increase
the deductible in order to avoid a sharp increase in premiums.

The welfare gain is computed as the reduction in the loss certainty equivalent
induced by the cover in comparison with the case without any compensation.32

The welfare gain is therefore estimated at least at 14.72% under scenario 3 with
R = 2 and R = 2. This means that the average monetary equivalent cost of the
nuclear risk is lowered by 14.72% thanks to the indemnity schedule when K∗ =
e1.3740 billion. Of course, welfare gains for group 2, taken separately, would
be higher. Higher values for the coefficients of relative risk aversion, or a more
pessimistic loss scenario would lead to much higher values of K∗ and substantially
higher welfare gains.

Note finally that in scenario 3, K∗ is substantially higher than the lower bound
of nuclear operator’s liability adopted in 2004 through the revision of the Paris
convention, which is e700 million for each accident. Only scenario 1 under the
assumption R = 1 and R = 2 yields an optimal liability slightly lower than e700
million, while all other cases considered here deliver higher values. The fact that
several other European countries33 have set nuclear corporate liability at higher

32Since group 1 and group 2 do not face the same risk exposure, this reduction differs from one
group to the other. The figure presented in Table 1.5 is an average of these two gains weighted
by group size.

33Countries have their own legislation, in line with international conventions. For instance, in
Germany, the nuclear corporate liability is set at e2.5 billion for each accident. This could be
rationalized in our model with scenarios more severe than our scenario 5, or with higher levels
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levels is coherent with such a conclusion.

1.5 Conclusion

The purpose of this paper was to analyze the insurability of low-probability high-
severity events, simultaneously from the individual’s standpoint and from a public
policy perspective.

We have shown that the risk premium of such catastrophic events can remain
large when the accident probability is close to zero, if the index of absolute risk
aversion is sufficiently large (or equivalently if risk tolerance is sufficiently low) in
the accident state. In addition, the optimal indemnity converges to a positive limit
that reflects both the individual’s attitude toward risk and the cost of insurance.
In the case of an industrial catastrophe that may affect the whole population
of a country, the asymptotic indemnity schedule is characterized by a straight
deductible, common to all individuals.

Based on these results, we have analyzed the features of an optimal insurance
scheme that covers the nuclear coporate liability, in which the risk is transferred
to financial markets through cat bonds. Using recent cat bond data and safety
studies on nuclear reactors allows us to compute the optimal level of coverage. Our
results, calibrated with French data, suggest that the nuclear liability law could be
more ambitious than it currently is, unlike in other countries, such as Germany,
where this liability has been extended far beyond the requirements of international
conventions.

The ratification of the 2004 Protocol in France was made difficult by the large
induced capital costs, but also by the insurers’ reluctance to extend the validity
of health-related claims to thirty years. Added to the conservative position of the
nuclear industry, this explains why the corporate nuclear liability has not been
extended further.

Our analysis presents a certain number of limits that we shall now discuss.

of risk aversion, such as the ones considered in Appendix 1.6.9. Note that the Paris convention
also specifies tranches of liability born by governments, so that total liability toward the victims
are at least e1.5 billion.
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First, we implicitly assume that market insurance is the only tool available to deal
with catastrophic risk. In practice, individuals and societies have other means
at their disposal. The effect of self-insurance -a reduction in the size of the loss-
and self-protection -a reduction in the loss probability- were studied in a seminal
paper by Ehrlich & Becker (1972). Because market insurance and self-insurance are
perfect complements, our theoretical results would apply directly to self-insurance.
On the other hand, Ehrlich and Becker have shown that self-protection and market
insurance, can be complements. The complex analysis of the interaction between
self-insurance, self protection and market insurance for catastrophic risk is not
addressed in our model and is left for further research.

Our conclusions should also be put in the broader context of how law - be it
in the common law or civil law traditions - define corporate liability, and how the
liability regime affects the role of insurance.34 Based on the international conven-
tions on nuclear tort law, we have assumed that liability is strict. As opposed to
a negligence rule, strict liability dictates that a nuclear operator must indemnify
victims in case of accident, whether or not he was negligent. This strict liability
avoids time-consuming litigation about who the liable entity is, hence facilitating
a prompt indemnification of victims. Another approach would consist in adopting
the negligence rule, according to which the operator of the nuclear installation
is held liable for accident losses only if it exercised a level of care lower than a
level specified by courts, hence without liability cost for a firm that complied with
safety regulation. The main drawbacks of the negligence rule when applied to
corporate nuclear liability are related to the difficulties for courts to establish that
the nuclear operator did not exercise due care levels. This weakens the incentives
for risk prevention and, furthermore, it opens the door to legal actions that create
obstacles to the rapid compensation of victims. If, after an accident, the court
considers that the operator has not been negligent and should be exonerated from
liability, then the negligence rule shifts the compensation of victims from corporate
liability insurance onto the government’s budget. The cost of public fund would
then be a key ingredient of the optimal liability level.

34For more on the impact of tort law on incentives, see Shavell (2009) and Cooter & Ulen
(2008).
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The upper limit that some countries grant to nuclear operators can be seen as
a compensation for the heavy burden that strict liability imposes on the nuclear
operators. In any case, it generates the necessity for states to provide coverage on
the upper layers of risk. The 2004 revision of the Paris Convention indeed requires
governments to provide for at least an additional e800 million in coverage but in
practice, the damages not covered by liability law are also incurred by governments
and individuals.

In a dynamic model with uninsurable risk, prudent agents save to constitute
a buffer stock, used in case of loss. If market insurance is sold at actuarially
fair prices, expected utility maximizing agents should purchase full insurance and
make no precautionary savings. However, positive insurance loadings may lower
the demand for market insurance, substituted with precautionary savings. Gollier
(2003) showed, with a calibrated example, that the demand for market insurance
may become quite low whenever assets enable agents to transfer wealth across
periods. However, his example only discusses the case of small losses. The strategy
of substituting market insurance with precautionary savings would not be feasible
at the level of individual agents who risk up to their lives. It could more realistically
be set up at the level of a state who would face a choice between a funded and a
pay-as-you-go system, in which it simply borrows when a catastrophe occurs. Both
strategies would entail benefits comparable to the insurance scheme proposed in
our paper but would involve a cost of public fund. In this regard, Borensztein
et al. (2017) show that cat bonds may yield substantial gains to governments, for
they lower their risk of default in case of catastrophe. This suggests that funding
the coverage of catastrophic risks through cat bonds, and transferring losses to
future periods through credit markets should not be seen as substitutes: they are
complements.
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1.6 Appendix

1.6.1 Complement to section 1.3.1

Let us assume that the government can redistribute wealth between groups through
ex ante lump sum transfers. We denote ti the net transfer paid to each individual
of group i, the government budget constraint being written as

n∑
i=1

αiti = 0.

Now we have

w1 = w − P + ti,

w2i(xi) = w − P − xi + Ii(xi) + ti.

and the certainty equivalent loss incurred by type i individuals is still denoted by
Ci, with

u(w − Ci + ti) = (1− πqi)u(w1 + ti)

+πqi
∫ xi

0
u(w2i(xi) + ti)f(xi)dxi. (1.14)

An allocation is written asA ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K},
and A is feasible if (1.7), (1.8),(1.9) and (1.14) are satisfied.

Definition 1 A is Pareto-optimal if it is feasible and if there does not exist an-
other feasible allocation Â={ŵ1, ŵ21(x1), ..., ŵ2n(xn), Ĉ1, ..., Ĉn, t̂1, ..., t̂n, K̂} such
that Ĉi − t̂i ≤ Ci − ti for all i = 1, ..., n, with Ĉi0 − t̂i0 < Ci0 − ti0 for at least one
group i0.

Proposition 5 A ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K} is a Pareto-
optimal allocation if and only if it minimizes ∑n

i=1 αiCi in the set of feasible allo-
cations.
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1.6.2 A cat bond pricing model

This section presents the cat bond pricing model. The cat bond is issued at t = 0.
Part of its capital is used at time t = 0 to pay the underwriting costs and the
remainder constitutes the principal. At time t = 1 the principal K is returned
to the investor if the accident did not occur. In the opposite case, the cat bond
defaults and the sponsor uses a fraction x̃ of the capital to indemnify the victims.
The remaining portion of capital is returned to the investors. From the standpoint
of the investor, the cat bond ’s payoff is therefore

q̃ =
 (1 +R)K − (1 + µ)x̃K with probability π,

(1 +R)K with probability 1− π.

In compensation for the option to default on the principal, the investors require
a coupon of rate R = r + s, where r denotes the risk free rate and s denotes the
spread. We let D/(1 + r) be the value of the underwriting costs (i.e. D is the
corresponding value at time t = 1), and µ is a loading that covers the verification
costs.

Let CE be the certainty equivalent of the cat bond payoff q̃ to investors at
time t = 1. Following the Consumption Capital Asset Pricing Model, we write

CE = Eq̃ − ηcov(z̃, q̃),

where z̃ denotes the wealth of the representative investor at t = 1, and η reflects
his risk aversion. There are two states: with probability π, the accident occurs,
the cat bond defaults and investors suffer a loss (1 +µ)x̃K; with probability 1−π,
the accident does not occur and the principal is returned to the investor. In both
cases, the coupon RK is paid to the investor.35 We assume that the representative

35Hence we assume that default affects the repayment of the capital to the investor first. The
coupon payment is affected only when the loss x̃ is very large and 1− (1+µ)x̃ becomes negative.
This assumption is made for simplicity, but of course other definitions of cat bonds are possible.
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investor bears a fraction κ of the underlying loss.36 We therefore write

z̃ =
 w − κKx̃ with probability π,

w with probability 1− π.

Thus

Eq̃ = [R + 1− π(1 + µ)E(x̃)]K,

cov(z̃, q̃) = (1 + µ)κπ[E(x̃2)− π(Ex̃)2]K2.

and

CE = [R + 1− π(1 + µ)E(x̃)]K − η(1 + µ)κπ[E(x̃2)− π(Ex̃)2]K2.

Purchasing the cat bond is analogous to making an investment K with addi-
tional cost D/(1 + r) at t = 0 and random payoff q̃, with certainty equivalent CE,
at t = 1. Thus, in the absence of arbitrage, we have

K + D

1 + r
= CE

1 + r
,

which may be rewritten as

K(1 + r) = [R + 1− π(1 + µ)E(x̃)]K − η(1 + µ)κπ[E(x̃2)− π(Ex̃)2]K2 −D.

Let s = R− r be the spread over the risk-free rate. We obtain

s = π(1 + µ)E(x̃) + ηκ(1 + µ)π[E(x̃2)− π(Ex̃)2]K + D

K
. (1.15)

In order to estimate this equation on our data set, we assume each x̃i is uniformly
distributed in an interval [ai, 1]. This enables us to find E(x̃i2) which, in turn, leads
to the regression performed in section 1.4.1.37 We only have one loss scenario in

36We do not restrict κ and will estimate it from the data. From a theoretical perspective, the
precise value of κ depends on the identity of the representative investor. If the representative
investor is not exposed to the underlying risk transferred by the cat bond, we should have κ ≡ 0.

37The Artemis data base provides πi and Ex̃i for each cat bond i in the sample. We deduce
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our numerical analysis. Hence, the cat bond must completely default in case of
accident, which implies that E(x̃) = 1 for our cat bond. The cost of capital
c(π,K) ≡ s(π,K)K is therefore

c(π,K) = π(1 + µ)K + ηκ(1 + µ)π(1− π)K2 +D,

which is coherent with the assumptions used to derive Proposition 4.

1.6.3 Proofs

Proof of Proposition 1

From equation (1.2.1), we have

C ′p(0, L) = u(w)− u(w − L)
u′(w) =

∫ w

w−L

u′(x)
u′(w)dx.

Since
u′(x) = u′(w)−

∫ w

x
u′′(t)dt,

for all x ∈ [w − L,w], we may write

C ′p(0, L) = L−
∫ w

w−L

[∫ w

x

u′′(t)
u′(w)dt

]
dx

= L+
∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx,

and thus

θ(0, L) = 1
L2

∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx.

Integrating by parts gives

θ(0, L) = 1
2

∫ w

w−L
k(x)A(x) u

′(x)
u′(w)dx, (1.16)

E(x̃i)2.
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where k(x) = 2[x− (w − L)]/L2, with
∫ w

w−L
k(x)dx = 1.

In addition, we have
u′(x) = u′(w) exp{

∫ w

x
A(x)dx},

which completes the proof.

Proof of Corollary 1.2

When L = w, we have

θ(0, L) > 1
w

∫ w

0

xu′(x)
wu′(w)A(x)dx,

from Proposition 1. Furthermore, we have

d[xu′(x)]
dx

= xu′′(x) + u′(x)

= −u′(x)[R(x)− 1],

and thus
d[xu′(x)]

dx
≤ 0 if R(x) ≥ 1.

We deduce
θ(0, L) > 1

w

∫ w

0
A(x)dx if R(x) ≥ 1.

Proof of Proposition 2

Using A′ ≤ 0 in equation (1.16) allows us to write

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
[x− (w − L)]u′(x)dx
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Using R(x) ≤ γ and u′′(x) < 0 yields

d

dx
[(x− (w − L))u′(x)] = u′(x)

[
1−R(x)− u′′(x)

u′(x) (w − L)
]

≥ u′(x)[1−R(x)]

≥ u′(x)(1− γ)

≥ u′(w)(1− γ),

for all x ∈ [w − L,w]. Hence, we have

[
x− (w − L)

]
u′(x) + (w − x)u′(w)(1− γ) ≤ [w − (w − L)]u′(w)[

x− (w − L)
]
u′(x) ≤ Lu′(w) + (w − x)u′(w)(γ − 1)

= u′(w)[L+ (w − x)(γ − 1)],

for all x ∈ [w − L,w]. Consequently,

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
{u′(w)[L+ (w − x)(γ − 1)]} dx

= A(w − L)
L2

[
L2(γ + 1)

2

]

= A(w − L)(γ + 1)
2 .

Using C ′′p < 0 and C(0, L) = 0 allows us to write

C(p, L) < C ′(0, L)p

= pL+ θ(0, L)pL2

≤ pL

[
1 + A(w − L)(γ + 1)L

2

]
.

Proof of Corollary 2.1
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Combining Lemma (1) with Corollary (1), shows that

λ ≤ L

2

∫ w

w−L

k(x)
x

R(x)dx

is a sufficient condition insurance take-up to be positive.
If R(x) is non decreasing, then

L

2

∫ w

w−L

k(x)
x

R(x)dx ≥ LR(w − L)
2

∫ w

w−L

k(x)
x

dx

= R(w − L)
L

∫ w

w−L

x− (w − L)
x

dx

= R(w − L)[1− (w − L
L

) ln w

w − L
]

≡ Ψ(L) L ∈ [0, w].

Noticing that limL→w ψ(L) = limx→0R(x) provides the result.

Proof of Proposition 4

The planner’s program is to minimize ∑i αiCi under constraints (1.6), (1.7),
(1.8) and (1.9). The Kuhn-Tucker multipliers associated with each set of con-
straints are respectively γi, φi(xi), η and ρ. The optimality conditions are

αi − γiu′(w − Ci) = 0 (1.17)

γiπqiu
′(w2i(xi))fi(xi)− η(1 + λ)αiqifi(xi) + φi(xi) = 0, (1.18)

u′(w1)
n∑
i=1

(1− πqi)γi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi − ρ+ η(1 + λ)

n∑
i=1

αiqi = 0, (1.19)

−η + ρc′K(π,K) = 0, (1.20)

φi(xi) ≥ 0 and φi(xi) = 0 if w2i(xi)− w1 + xi > 0 ∀i. (1.21)

Let xi be such that w2i(xi)− w1 + xi > 0. Thus, we have φi(xi) = 0 from
(1.21), and (1.18) gives

πγiu
′(w2i(xi)) = η(1 + λ)αi. (1.22)
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(1.17) and (1.22) yield

u′(w2i(xi)) = η

π
(1 + λ)u′(w − Ci). (1.23)

Hence, if there exist x0
i , x

1
i ∈ [0, x̄i] such that w2i(x0

i ) − w1 + x0
i > 0 and

w2i(x1
i )− w1 + x1

i > 0, then we must have

u′(w2i(x0
i )) = u′(w2i(x1

i )),

which implies
w2i(x0

i ) = w2i(x1
i ).

Consequently, w2i(xi) is constant over the set of xi for which w2i(xi)−w1 +xi > 0,
and we can write

w2i(xi) = w1 − di,

with di < xi for all xi in this set, and from 1.23 we have

u′(w1 − di) = η

π
(1 + λ)u′(w − Ci). (1.24)

Now let xi be such that w2i(xi)− w1 + xi = 0. Using (1.17), (1.18) and (1.21)
allows us to write

u′(w2i(xi)) = u′(w1 − xi) ≤
η

π
(1 + λ)u′(w − Ci).

Using (1.23), and u′′ < 0 we deduce xi ≤ di. Thus, we have established that there
exists di such that

w2i(xi) = w1 − di if xi > di, (1.25)

w2i(xi) = w1 − xi if xi ≤ di. (1.26)

Let K → K∗ when π → 0 and c∗0 ≡ limπ→0 c(π,K∗). When π → 0, we have
w1 −→ w − c∗0 and Ci −→ c∗0 from (1.9) and (1.6) respectively. (1.24) then gives
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di −→ d∗ ∀i with

u′(w − d∗) = (1 + λ)u′(w − c∗0) lim
π→0

η

π
. (1.27)

Using (1.17), (1.19), (1.20) and ∑n
i=1 αi = 1 imply

lim
π→0

[
1− η

c′K(π,K∗) + η(1 + λ)
n∑
i=1

αiqi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi

]
= 0. (1.28)

Suppose that η does not go to zero when π does. In such a case, we would have
η/c′K(π,K∗) −→ +∞ when π −→ 0 since c′K(π,K∗) −→ 0, and thus

lim
π→0

[η[ 1
c′K(π,K∗) − (1 + λ)

n∑
i=1

αiqi]] = +∞.

Since φi(xi) ≥ 0 ∀i, this is in contradiction with (1.28). Thus, we have

lim
π−→0

[
1− η

c′K(π,K∗) −
n∑
i=1

∫ x̄i

0
φi(xi)dxi

]
= 0. (1.29)

If di ≤ 0, we have w2i(xi)− w1 + xi > 0 and φi(xi) = 0 ∀xi > 0. Hence
∫ x̄i

0
φi(xi) = 0.

If di > 0, we have φi(xi) = 0 for xi > di, and thus (1.17), (1.18) and (1.26) give

∫ x̄i

0
φi(xi)dxi =

∫ di

0
φi(xi)dxi (1.30)

= −παiqi
∫ di

0
[ u
′(w − xi)
u′(w − Ci)

− η

π
(1 + λ)]fi(xi)dxi. (1.31)

Using the fact that η −→ 0 when π −→ 0 gives

lim
π→0

∫ x̄i

0
φi(xi)dxi = 0,
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and from (1.29) we derive
lim
π→0

η

c′K(π,K∗) = 1.

Using (1.27) together with L’hôpital’s rule, we finally deduce

u′(w − d∗) = (1 + λ)u′(w − c∗0)c′′πK(0, K∗)

> u′(w),

where the last inequality derives from λ > 0 and c
′′
πK(0, K∗) ≥ 1. Using u′′ < 0

gives d∗ > 0. Since Ii(xi) = w2i(xi) + xi − w1, we deduce that Ii(xi) −→ I∗(xi) =
max (xi − d∗, 0) when π −→ 0.

Proof of Proposition 5

Assume that A minimizes ∑n
i=1 αiCi in the set of feasible allocations, and

suppose that it is not Pareto-optimal, then there exists a feasible allocation Â and
a group i0 such that Ĉi− t̂i ≤ Ci−ti for all i and Ĉi0− t̂i0 < Ci0−ti0 . Consequently,

n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (1.32)

Since A and Â are feasible, we have

n∑
i=1

αiti =
n∑
i=1

αit̂i = 0, (1.33)

and thus (1.32) and (1.33) give

n∑
i=1

αiĈi <
n∑
i=1

αiCi,

which contradicts the fact that A minimizes ∑n
i=1 αiCi in the set of feasible allo-

cations.

Conversely, assume that A is a Pareto-optimal allocation, and suppose that it
does not minimize ∑n

i=1 αiCi in the set of feasible allocations. Thus there exists a
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feasible allocation Â such that ∑n
i=1 αiĈi <

∑n
i=1 αiCi, and thus

n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (1.34)

Let us choose t̂i such that

t̂i = Ĉi + ti − Ci

for all i 6= ii0 , which does not contradict the feasibility of Â if we choose

t̂i0 = −
∑

i 6=i0
t̂i. (1.35)

We have
Ĉi − t̂i = Ci − ti for all i 6= i0. (1.36)

Furthermore, (1.34),(1.35) and (1.36) give

Ĉi0 − t̂i0 < Ci0 − ti0 . (1.37)

(1.36) and (1.37) contradict the fact that A is Pareto-optimal.

1.6.4 Calibration of initial wealth and losses

INSEE, the French national statistical agency, provides an average estimated Gross
National Product per capita of 32,227 euros38 and an average age of 39.2 year old39.
The French National Institute on Demographics (INED) provides an estimated life
expectancy of 73.2 for the average 39.240 years old citizen. Lifetime wealth is ob-
tained as the annual GDP per capita discounted at a 2% rate on a 34 year horizon.
This yields an expected discounted future wealth of 805,310 euros. INSEE also
provides an estimated average of 70,000 euros of current assets, which will be the
financial loss that victims may incur. We therefore consider that initial wealth is

38http://www.bdm.insee.fr
39http://www.insee.fr/
40http://www.ined.fr/
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875,310 euros.

Group 1

The worst case scenario is a fatal outcome that occurs in states s1 = 1 and 2.
As in Eeckhoudt et al. (2000) we assume that when this worst state materializes,
the individual (in practice, her heir) is only able to retain a fraction, equal to
ω = 10% of her initial wealth, that can be interpreted as a bequest parameter. In
state s1 = 2, the agent dies but does not suffer the financial loss. Direct losses in
these catastrophic states are therefore equal to 875, 310(1− ω) = 787, 780 in state
s1 = 1 and 875, 310(1 − ω) − 70, 000 = 717, 780 in state s1 = 2. In state s1 = 3,
the agent suffers a severe health loss due to exposure to radioactivity, as well as
a direct financial loss of all her financial assets. The cost of health treatment and
the health induced reduction in future income is estimated in Eeckhoudt et al.
(2000) at 260,000 euros. The direct loss in this state is therefore equal to 330,000
euros. In state s1 = 4, the agent faces the 260, 000 euros health loss and in state
s1 = 5, he faces the 70,000 euros financial loss.

Total losses are obtained by adding to the direct losses the indirect cost of the
accident, assumed to be mutualized between all the agents who did not die. In the
baseline scenario, the indirect loss is 1,440 euros per inhabitant.

Group 2

Agents in group 2 die in state s2 = 1, face a severe disease in state s2 = 2 and a
financial loss in state s2 = 3. Their direct losses are therefore calibrated at 717,780
and 260,000 euros.

1.6.5 Descriptive statistics

Table 1.6 provides the summary statistics for the main variables. At 6.38%, the
average spread is lower than in Braun (2016) who finds an average of 8.18% for
the period 1997-2012. Average expected loss is very close to Braun (2016) (2.35%
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Table 1.6: Descriptive statistics for the 185 cat bonds

Variable Mean Median S.D. Max Min
Spread 0.0638 0.0525 0.0392 0.2000 0.0175
Expected loss 0.0235 0.0160 0.0232 0.1306 0.0001
Size (€million) 134.86 108.8984 113.6927 1128.8 17.9453

versus 2.08%) and the average value of capital issued (size) is higher in our data
set (134.86 €million versus 97.34 €million), perhaps due to our inability to observe
small private transactions.

1.6.6 OLS Estimates

Table 1.7 provides the estimates of regression (1.11) for our fully specified model,
by excluding the fixed cost and/or the risk premium among the explanatory vari-
ables. Our preferred specification, used to compute the cost of capital in the
main text, is given in the three first columns. Expected loss, Risk premium and
Size, respectively represent the terms πiE(x̃)i, πi[E(x̃i2) − π(Ex̃i)2]Ki, and K−1

i .
2017, Europe and Indemnity are the reference groups for the times dummies, the
geographical area covered, and the trigger types, respectively. The coefficient es-
timates of Expected loss and Risk premium are positive and significant across the
four specifications. Concerning the control variables, 2012 was a period of high
prices, followed by a decline from 2013 to 2016. The geographical dummies point
at the fact that cat bonds covering perils in the US are more expensive than in
other countries. This is in accordance with Braun (2015). Table 1.7 also shows
that parametric triggers have a lower spread than indemnity triggers, which may
be explained by the lower moral hazard entailed by parametric triggers. Finally,
the variables RMS, EQECAT and MILL (Milliman) represent three of the four
risk modelers that were in charge of the deal. The reference group was taken to
be the risk modeler AIR.

The four regressions highlight the important role played by the risk premium
term. We report, in the penultimate line of each table, the optimal level of coverage
under scenario 3 and assumption R = R = 2. Without the risk premium term,
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the marginal cost of capital would be constant, hence the higher levels of coverage
reporter at the bottom of columns 8 and 11. On the other hand, the fixed cost
term does not play a quantitatively important role. It is indeed divided among a
large number of people, and therefore represents only a few cents per person. The
last lines of each table report the premium paid under the same set of assumptions.
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1.6.7 Comparison with alternative data set

This section compares our data set with Braun (2016)’s. In order to do so, we
compare the four cat bond pricing models estimated in Braun (2016), on a sample
of 466 cat bond tranches covering a period from 1997 to 2012 (Table 1.8), with
the same models estimated on our data set (Table 1.9). The first model specifies
spreads as a linear function of expected loss

si = α̂ + β̂πiE(x̃)i. (1.38)

The second model has spread as a polynomial of the natural logarithm of the
expected loss

si = α̂ + β̂ ln πiE(x̃)i + γ̂[ln πiE(x̃)i]2. (1.39)

The third model is from Lane (2000) and specifies

si = πiE(x̃)i + α̂πβ̂i E(x̃)γ̂i . (1.40)

Finally, Major & Kreps (2002) model posits

si = α̂(πiE(x̃)i)β̂. (1.41)

For comparison purposes, spreads are converted into basis points and expected
losses are expressed in percentage points. Tables 1.8 and 1.9 display very similar
estimates. All variables are significant, except γ̂ estimated in Lane (2000) model,
both with our own and Braun (2016) data sets.

1.6.8 Comparison with alternative models

This section compares our model to alternative models reviewed inBraun (2016).
These models mostly aim at reflecting the practice of commercial reinsurers con-
cerned by the comparative costs of various risk transfer instruments. In particular,
Major & Kreps (2002) consider simultaneously the pricing of reinsurance and cat
bond tranches. Models (1.38), (1.39), (1.40) and (1.41) are estimated on our data
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base (Table 1.11) and compared to our preferred specification (Table 1.7). To
allow for a fair comparison, we augment models (1.38), (1.39), (1.40) and (1.41)
with the same controls as in our preferred specification.

Table 1.10 summarizes our preferred specification to the alternative models
in terms of adjusted R2, sum of the squared residuals (s2), Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). The four measures
yield the same ordering. Our preferred specification performs slightly below models
(1.38), (1.39) but significantly higher than models (1.40) and (1.41).
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Table 1.10: Model comparisons

Measure Preferred L. in EL P. in Ln(EL) Lane Major/Kreps
AdjustedR2 0.7794 0.8391 0.8146 0.5613 0.7244
s2(×10−04) 3.3951 2.4764 2.8531 1188 927
AIC(×10−04) 3.7051 2.6894 3.1137 1296 1007
BIC(×10−04) 4.9811 3.5532 4.1860 1743 1330

1.6.9 Robustness analysis

Finally, Tables 1.12 to 1.21 summarize the robustness of our numerical results of
section 1.4. Each table presents either optimal coverage or welfare gain for a given
set of hypotheses. The cost of handling claims is set to λ = 0.3, which is viewed as
a reasonable estimate in the literature. However, changes in this parameter have
a very limited impact on the simulation results. The scenarios that are considered
vary across lines. All results are expressed in euros. Within each table, we fix
R and let R vary through the columns. From left to right, we therefore increase
the agent’s risk aversion. For each level of R we provide two tables. The first
delivers our estimates for the optimal level of coverage and the second computes
the welfare gain relative to the no-coverage situation.

The most sensitive parameter is usually the subsistence level ω. Our results
indicate that, while the optimal coverage is robust to changes in ω, the estimated
welfare gains are quite sensitive. As expected, optimal coverage increases with the
severity of the scenario under consideration and with the degree of risk aversion.
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Optimal coverage and welfare gains with ω = 0.90

Table 1.12: Coverage, R = 1

R 1
Scenario Cover Welfare

1 0.2865 0.0102
2 0.3538 0.0131
3 0.3883 0.0144
4 0.4097 0.0151
5 0.4244 0.0154

Table 1.13: Coverage, R = 2

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.6982 0.0562 0.7636 0.0791
2 0.9829 0.0825 1.1204 0.1213
3 1.1693 0.0972 1.3740 0.1472
4 1.3060 0.1056 1.5726 0.1637
5 1.4125 0.1103 1.7360 0.1742

Table 1.14: Coverage, R = 3

R 1 2 3
Scenario Cover Welfare Cover Welfare Cover Welfare

1 1.0323 0.1481 1.1132 0.2319 1.1407 0.2822
2 1.5700 0.2213 1.7583 0.3419 1.8239 0.4077
3 1.9657 0.2615 2.2658 0.4022 2.3724 0.4744
4 2.2824 0.2842 2.6944 0.4373 2.8434 0.5130
5 2.5472 0.2967 3.0697 0.4583 3.2615 0.5364
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Chapter 1. Optimal insurance for catastrophic risk

Optimal coverage and welfare gains with ω = 0.975

Table 1.17: Coverage, R = 1

R 1
Scenario Cover Welfare

1 0.4132 0.0204
2 0.5504 0.0288
3 0.6342 0.0336
4 0.6930 0.0366
5 0.7192 0.0384

Table 1.18: Coverage, R = 2

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.9278 0.1436 0.9469 0.1661
2 1.4136 0.2203 1.4569 0.2545
3 1.7824 0.2668 1.8509 0.3081
4 2.0868 0.2962 2.1807 0.3424
5 2.3484 0.3153 2.4677 0.3651

Table 1.19: Coverage, R = 3

R 1 2 3
Scenario Cover Welfare Cover Welfare Cover Welfare

1 1.3251 0.4429 1.3471 0.5303 1.3544 0.5669
2 2.1618 0.5841 2.2156 0.6691 2.2337 0.7024
3 2.8528 0.6484 2.9418 0.7284 2.9718 0.7594
4 3.4589 0.6823 3.5852 0.7594 3.6277 0.7891
5 4.0068 0.7014 4.1716 0.7769 4.2272 0.8062
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Chapter 2

On the insurability of
low-probability risks

This chapter is co-authored with Arnaud Goussebaïle.

Abstract: Why are catastrophic events so difficult to insure? Their extreme
severity advocates for a wide-spread use of insurance, yet they are typically ex-
cluded from US homeowner policies. It is also puzzling to notice that some low-
probability risks such as damages from lightnings are covered under all US home-
owner policies whereas others, such as earthquakes and floods are not. Our model
explains this puzzle by showing that the effect of aggregate uncertainty, a well-
known threat to insurability, is amplified when the individual loss probability is
small. Even in a simple expected utility framework, low-probability risks with
aggregate uncertainty, such as earthquakes and floods, therefore display lower in-
surance take-up rates than low-probability risks without aggregate uncertainty
such as lightning strikes.

Keywords: low-probability risks, catastrophic risks, insurance, capital cost.
JEL classification: D86, G22, G28, Q54.
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Chapter 2. On the insurability of low-probability risks

2.1 Introduction

Why are catastrophic events so difficult to insure? Natural and man-made catas-
trophes such as earthquakes, floods, nuclear accidents and terrorists attacks have
severe consequences at the individual level, affect large numbers of people at the
same time, but have small individual probabilities of occurrence. The extreme
severity of these risks advocates for a wide-spread use of prevention and insurance.
Yet, they are typically excluded from US homeowner policies.1 Private insurance
markets are often non-existant and, even when specific contracts, benefiting from
public subsidies, are available, relatively few people purchase them.2

It is also puzzling to notice that some low-probability risks such as damages
from lightnings are efficiently handled by the insurance sector and covered under
standard US homeowner policies whereas others, such as earthquakes and floods
are not, despite comparable probability levels (Table 2.1). Our model explains
this puzzle by showing how the low probability and systemic aspects of these risk
combine to deter insurance take-up.

Earthquake Flood Hurricane
0.001-0.013 0.014 0.045

Lightning strike Death at 45 yo Airplane crash
0.0056 0.0032447 10−6

Table 2.1: Systemic low probability risks such as earthquakes, floods and hur-
ricanes tend not to be insured while non-systemic low probability risks such as
lightning strikes, death at 45 years old or airplanes crashes feature higher take-up
rates.

We begin by examining the case without aggregate uncertainty. In this frame-
work, we show that low-probability risks are actually easier to insure than high-
probability risks. It is known since Mossin (1968) that expected utility maximizing
agents optimally purchase partial coverage when insurance is sold above actuari-
ally fair price. In this case, a decrease in the loss probability has two effects on

1http://www.iii.org/article/which-disasters-are-covered-by-homeowners-insurance
2Kunreuther (1973), Kousky & Kunreuther (2014) and Grislain-Letrémy (2015) document

low take-up rates for catastrophe insurance while Cole et al. (2014) and Mobarak & Rosenzweig
(2013) try to explain low rates in the micro-insurance industry.
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the demand for coverage. On the one hand, the cost of providing insurance dimin-
ishes, which translates into lower premiums for policyholders. On the other hand,
the likelihood of receiving the indemnity declines as well. Our contribution in
this framework is to show that the cost-reduction effect dominates the likelihood-
reduction effect under risk aversion. As the loss probability declines, the ratio of
willingness to pay to cost of coverage always increases. In a population heteroge-
neous in wealth or preferences, take-up rates are therefore predicted to increase as
the loss probability decreases.8 In addition, we show that given the opportunity
to do so, people optimally choose higher levels of coverage for low-probability risks
if their index of absolute risk aversion does not decrease too fast with wealth.

These results are in line with Laury et al. (2009), who experiment in the lab-
oratory the effect of a change in the loss probability. A previous experiment by
McClelland et al. (1993) also found a decreasing mean ratio of willingness to pay
to expected indemnity, indicating that people tend to be willing to pay higher
loadings for low-probability risks than for high-probability risks.

These observations, however, are at odds with the low take-up rates for disaster
risks. Our explanation is that the risks for which underinsurance is most prevalent
display substantial aggregate uncertainty. Natural and man-made catastrophes
feature geographically correlated individual losses which translates into aggregate
loss uncertainty, even within very large pools of policyholders. In order to remain
solvent, the insurance provider must either raise prohibitively high levels of premi-
ums or more realistically, it must have access to capital to fill the gap between the
premiums raised and the amount of claims due in case of catastrophe. The cost
of allocating this capital to a specific line of business9 depends on a risk premium
that emerges only for systemic risks. Because this premium decreases at a lower
pace than willigness to pay for insurance, it results in low take-up rates for low
probability risks.

Several literatures have attempted to explain the low take-up rates for disaster
coverage. Kunreuther & Slovic (1978), Hertwig et al. (2004) and Kunreuther et al.

8With the exception of the pathological case of Giffen behaviors which, to our knowledge have
never been observed in an insurance market.

9See Zanjani (2002) and Froot (2001a).
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(2001) rely on departures from the expected utility paradigm, arguing that low-
probabilities are more difficult to process than high probabilities. In the expected
utility framework, Kunreuther et al. (2001) show that search costs may generate
a probability threshold below which coverage is not purchased while Coate (1995)
shows how government relief can crowd-out the demand for insurance. Raschky
et al. (2013), Kousky et al. (2013) and Grislain-Letrémy (2015) find empirical
support for this hypothesis in various countries. Finally, in the context of micro-
insurance Cole et al. (2014) suggests that learning is an important determinant of
the demand for insurance.

Overall, much less attention has been devoted to the supply side of the market.
Kunreuther et al. (1995) explain that ambiguity may provide a rationale for high
disaster insurance premiums. In the context of micro-insurance markets, Mobarak
& Rosenzweig (2013) argue that basis risk can explain low take-up rates.

Our contribution to the literature is twofold. First, we provide a simple, yet
general framework, that nests an alternative explanation to the observed low take-
up rates for disaster risks.10 Second, we explain this apparently puzzling obser-
vation that some low-probability events are well insured while others are not. It
is in fact the combination of aggregate loss uncertainty with low-probability that
makes earthquakes, floods and terrorism risks difficult to insure.

In addition, our model for systemic risk predicts that for a given systemic
insurance line, say flooding, people with lower probabilities of loss purchase less
insurance than people with higher loss probability, even-though a risk-based pricing
approach is used. This prediction is common with that of the adverse selection
literature (Akerlof (1970)) but its underpinning is of a very different nature.

2.2 Insuring non systemic low-probability risks

In this section, we show that in the baseline insurance framework with independent
losses, low-probability events are in fact more likely to be insured than higher

10Jaffee & Russell (1997b) discuss the problem of capital allocation cost but provide no for-
mal model while Kousky & Cooke (2012) have a simulated model, calibrated to analyze flood
insurance coverage in Broward County, Florida.
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probability events. The intuition behind this result is that individual’s willingness
to pay is concave in the probability, while the cheapest feasible contract is linear.
Therefore, if a risk is insurable somewhere over the parameter space, there is a
probability threshold below which it is insurable and above which it is not.

We consider risk-averse agents with a twice continuously differentiable and
concave utility function u(x) and initial wealth w. A(x) = −u′′(x)

u′(x) denotes the
Arrow-Pratt index of absolute risk aversion.

The insurance provider can be private or public. It is represented by a risk-
neutral agents that sells an amount of coverage τ ∈ [0, L] at a premium α. Fol-
lowing Raviv (1979) we assume that, in addition to the payment of the indemnity
τ , the insurance provider faces a cost c(τ) with

c(0) = 0, c′(0) = b > 0, c′(τ) > 0 and c′′(τ) ≥ 0,

which represents the various expenses associated with the payment of an indemnity
τ to all affected agents. It can be interpreted as an administrative cost, as a
cost of expertise, or more broadly as a dead-weight loss, resulting either from an
asymmetry of information between the insurance company and the policy holder,
or by imperfect competition. The actuarial and insurance literatures often make
the simplifying assumption that the marginal cost c′(τ) is equal to a constant λ
called the loading factor. In this case, the dead-weight cost is simply a fraction of
the indemnity. We call loading the ratio α/pτ premium to expected indemnity. If
c′(τ) = λ, the loading is 1 + λ and we have c′′(τ) = 0, which is indeed a particular
case of our model.

A necessary condition for the insurance to provide such a contract is that its
expected profit is positive. This motivates the following definition

Definition 2 A contract is called feasible if and only if the insurance provider can
realize at least a zero expected profit.

In the absence of aggregate loss uncertainty, a contract is therefore feasible if and
only if

α ≥ pτ + pc(τ).
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The first notion of insurability that we develop is the following

Definition 3 A risk is strongly insurable at a level τ if and only if individuals are
willing to purchase the proposed level of coverage τ of some feasible contract.

In order to know whether a risk is strongly insurable or not, it is sufficient to
verify that individuals are willing to purchase the zero expected profit contract,
for which the insurer breaks even. If they reject the zero expected profit feasible
contract, agents will also reject all the other more expansive contracts, and if they
accept the zero expected profit feasible contract, then the risk is insurable. In the
remaining of the paper, we use the word contract to mean zero expected profit
contract.

Independently of the supply side constraints, the highest price C(p, τ) that an
individual would pay for a level of coverage τ is given by

pu(w − L+ τ − C) + (1− p)u(w − C) = pu(w − L) + (1− p)u(w). (2.1)

First notice that C(0, τ) = 0 and C(1, τ) = τ . The willingness to pay for the
coverage of a a zero probability event is zero and the willingness to pay for the
coverage of a sure event is just the coverage itself. Total differentiation of (2.1)
gives

C ′p(p, τ) = u(w)− u(w − L)− [u(w − C)− u(w − L+ τ − C)]
pu′(w − L+ τ − C) + (1− p)u′(w − C) ≥ 0 ∀τ ≤ L,

and

C ′′pp(p, τ) = − 2C ′p
u′(w − L+ τ − C)− u′(w − C)

pu′(w − L+ τ − C) + (1− p)u′(w − C)

+ (C ′p)2pu
′′(w − L+ τ − C) + (1− p)u′′(w − C)

pu′(w − L+ τ − C) + (1− p)u′(w − C) ≤ 0 ∀τ ≤ L,

where C ′p and C ′′p represent the first and second order partial derivative with respect
to p. The agent’s willingness to pay C is therefore increasing and concave in the
probability of loss p. Figure 2.1a represents the agent’s willingness to pay and the
cost of coverage as a function of the loss probability p for the case c(τ) = 0. When
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0 p1

C(p, τ)

pτ

(a) Actuarially fair coverage

0 p1

C(p, τ)
p(c(τ) + τ)

•

p∗

pτ

(b) Non-actuarially fair coverage

coverage is sold at an actuarially fair price, the agent is always willing to purchase
it. The surplus she derives from the transaction however, may vary with the loss
probability.

Figure 2.1b represents the case where coverage is available at a cost higher than
the actuarially fair price. For values of p lower than a threshold p∗, willingness to
pay is above the price of coverage. An insurance market should therefore emerge
in this case. For values of p higher than p∗, willingness to pay is below the price
of the zero expected profit contract, resulting in the absence of any market.

Proposition 6 In the absence of aggregate loss uncertainty, a risk is strongly
insurable at level τ if and only if the individual probability of loss p is below a
threshold p∗, where p∗ is such that

C(p∗, τ) = p∗τ + p∗c(τ).

For a given level of coverage, low-probability events are therefore more likely to be
covered than high-probability events.

Laury et al. (2009) investigate in an experiment how insurance purchase deci-
sions evolve with p. They observe that the fraction of their sample that purchases
full-coverage decreases with the probability of loss p, given a constant expected
loss and loading. Proposition (6) confirms that this should indeed be the case but
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delivers an even stronger prediction: the fraction of a population that purchases
coverage should increase as p decreases even when the loss L is fixed.

To see this, assume that the population is heterogeneous in wealth and pref-
erences. An agent i endowed with wealth wi and utility function ui purchases a
feasible contract providing coverage τ if and only if

Ci(p, τ) ≥ pτ + pc(τ) (2.2)

Each individual therefore has a probability threshold p∗i above which she stops
purchasing insurance. The distribution of wealth and preferences generates a dis-
tribution G over the thresholds p∗i . The fraction of the population that purchases
insurance is P(p∗i ≥ p) = 1−G(p∗i ), which is decreasing in p.

An insurance contract providing a level of coverage τ is therefore more likely to
be purchased when the probability of loss p is smaller. In this sense, low-probability
events are more insurable than higher-probability events. However, the exogeneity
of the level of coverage τ may appear as a limit to this analysis. If people have
control over the level of coverage, the decision is not a take-it-or-leave-it problem
anymore.

With this idea in mind, we propose the following notion of insurability:

Definition 4 A risk is weakly insurable if and only if individuals are willing to
purchase a positive amount of coverage of some feasible contract.

This notion of insurability is weaker in the sense that a strongly insurable risk is
necessarily weakly insurable. If a person agrees to purchase a level of coverage τ
rather than no insurance when the loss probability is p, she would never optimally
choose τ = 0. However, she may select a level of coverage lower than τ to reduce
the cost of insurance.

With endogenous coverage, the agent solves

max pu(w − L+ τ − α) + (1− p)u(w − α)

s.t. α = pτ + pc(τ)

τ ≥ 0. (2.3)
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The first order condition of this problem is

[1− (1 + c′(τ))p)]u′(w1) = (1− p)(1 + c′(τ))u′(w2), (2.4)

in which w1 = w − L + τ − pτ − pc(τ) and w2 = w − pτ − pc(τ) are the levels of
wealth in the loss and no-loss states. It is easy to check that c′(τ) > 0 implies that
the agent chooses partial coverage, so that τ < L at any interior solution.

Individuals purchase a positive amount of coverage if and only if

(1− p)(1 + b)u′(w) < [1− (1 + b)p]u′(w − L). (2.5)

Re-arranging the terms of (2.5) yields the following Proposition.

Proposition 7 In the absence of aggregate loss uncertainty, a risk is weakly in-
surable if and only if its probability p is such that

p <
1

1 + b
− b

1 + b

u′(w)
u′(w − L)− u′(w) . (2.6)

For a given p, an event is uninsurable when the marginal cost of coverage b = c′(0)
is too high or the size of the loss L is not sufficiently large to generate a significant
difference between marginal utility in the loss state u′(w−L) and marginal utility
in the no-loss state u′(w). Proposition (7) stresses once more that, in the absence
of aggregate loss uncertainty, low-probability events are easier to insure than high-
probability events.

In addition, Proposition 8 and its corollary give conditions under which a
strictly positive optimal coverage increases when the probability p decreases.

When the loss probability diminishes, two effects interact. On the one hand, the
risk of experiencing the loss L diminishes, lowering the incentive to pay the dead-
weight cost c(τ). When p diminishes, a higher level of risk aversion is therefore
required to justify the purchase of coverage. On the other hand, the dead-weight
marginal cost pc′(τ) diminishes, making insurance more attractive at the margin.
The total effect on optimal coverage cannot be signed for any utility function, but
the following proposition and corollary enables to identify some interesting and
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realistic cases.

Proposition 8 In the absence of aggregate loss uncertainty, the optimal coverage
τ of a weakly insurable risk is strictly decreasing in p if and only if

A(w1)− A(w2) < c′(τ)
[τ + c(τ)](1− p)[1− (1 + c′(τ))p]

at the optimum.

Proof The proof is given in Appendix 2.5.1

The left-hand side of the inequality is positive when A(w1) ≥ A(w2), while the
right-hand side is positive when 1−(1+c′(τ))p > 0, which is a necessary condition
for an interior solution. Since w1 < w2, the condition is trivially satisfied for any
increasing or constant absolute risk aversion functions (IARA or CARA). For the
class of decreasing absolute risk aversion (DARA), the condition puts an upper
bound on the variation of risk aversion between the loss and the no-loss state.

The empirical literature most often fails to reject DARA as a realistic hypothe-
sis such as in Guiso & Paiella (2008) and Levy (1994). In addition, Rabin (2000)’s
calibration theorem, showing that aversion to small-stake gambles implies rejection
of gambles that people take in their lives, can be interpreted as a rejection of the
CARA (and even more of the IARA) hypothesis. We would therefore like to know
whether classical utility functions, satisfying the DARA property, also feature an
optimal coverage decreasing in the probability p. This is the purpose of Corol-
lary 8.1 that deals with the case of Harmonic Absolute Risk Aversion (HARA)
functions. We define a HARA utility function as in Gollier (2004)

u(x) = ζ
(
η + x

γ

)1−γ
,

whose domain is such that η + x
γ
> 0 and the condition ζ 1−γ

γ
> 0 guarantees

that the function is indeed increasing and concave. The coefficient of absolute risk
aversion is

A(x) =
(
η + x

γ

)−1
. (2.7)
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Except for the limit case γ → +∞, the HARA functions satisfy the DARA prop-
erty when γ > 0, which makes them appealing with respect to the literature
discussed previously.

Corollary 8.1 If a risk-averse agent has preferences represented by a HARA util-
ity function with γ ≥ 1, then the optimal coverage τ of a weakly insurable risk is
strictly decreasing in p in the absence of aggregate loss uncertainty.

Proof The proof is given in Appendix 2.5.2

The HARA class nests two of the most widely used classes of utility functions.
The Constant Absolute Risk Aversion (CARA) is obtained when γ → +∞. Solving
the differential equation (2.7) yields the specification of this function

u(x) = −η exp (−1
η
x).

The second class of functions within the HARA class is the set of Constant Relative
Risk Aversion (CRRA) which is obtained for η = 0. Solving (2.7) in this case yields

u(x) = x1−γ

1− γ . (2.8)

If people’s preferences can be represented by a CARA or by a CRRA utility func-
tion with γ ≥ 1, then their optimal coverage is always a decreasing function of p.
For the CRRA case, Szpiro (1986) and Barsky et al. (1997) find values of relative
risk aversion respectively between 1.2 and 1.8 for the first and 4.17 for the second.
According to Gollier (2004) (p.69), the “range of acceptable values of relative risk
aversion [is] [1, 4]”. A complete survey of the literature on risk preferences elicita-
tion would reveal some estimates below one, such as Chetty (2006), but overall our
(sufficient but not necessary) condition γ ≥ 1 seems a very plausible assumption.

Finally, Louaas & Picard (2014) have shown the following proposition

Proposition 9 In the absence of aggregate loss uncertainty and if u′(w − L) >
(1 + b)u′(w), the optimal coverage converges toward a positive limit τ defined as

u′(w − L+ τ) = (1 + c′(τ))u′(w).
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It may sound surprising that the agent is willing to pay a positive loading factor
for a risk whose probability tends to zero, but the pricing rule α = pτ + pc(τ)
implies that the premium tends to zero with the probability. The agent therefore
receives an indemnity with an infinitesimal probability whose price also becomes
infinitesimal.

Figure 2.2: w = 10000, L = 5000, u(x) = x−3

3

Figure 2.2 gives an illustration of the previous results in the (w1, w2) space.
Point A represents the optimal lottery at the highest probability p for which the
insured chooses a positive amount of coverage. The thick curve represents the
locus of optimal lotteries as p diminishes and Point B is the limit optimal lottery
when p→ 0. In agreement with Proposition 8, the optimal lottery gets closer from
the 45 degree line as p decreases, until it (almost) reaches point B when p→ 0.

Our theoretical results indicate that under reasonable assumption on individ-
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ual’s preferences, low-probability events should be more insured than higher prob-
ability events. Gollier (1997) shows that the deductible chosen by a risk averse
agent is decreasing in p when p is sufficiently small and the agent’s utility function
features IARA, which is equivalent11 to purchase more insurance when the prob-
ability is very small. Our results are more general since they apply everywhere
on the domain of p where the agent purchases a positive amount of coverage. In
addition, we are able to accommodate some of the more realistic DARA utility
functions.

Low-probability and high-stake risks are characterized by a large potential loss
L. In order to compare insurance choice for these risks to choices concerning
more traditional risks, it may be useful to fix the expected loss, as in Laury et al.
(2009), so that the loss increases as its probability diminishes. In this case and
independently of any assumption on individual’s preferences, agents purchase more
coverage as the probability of loss decreases.

Proposition 10 In the absence of aggregate loss uncertainty, and if the expected
loss pL remains constant, the optimal coverage is a decreasing function of the
probability p for any risk averse individual.

Proof The proof is given in Appendix 2.5.3

The requirement that expected loss be fixed makes it easier for the condition of
proposition (8) to hold. Indeed as p diminishes, the loss becomes larger, providing
agents with additional incentives to purchase insurance. This in turn reduces the
gap between wealth in the non loss state w1 and wealth in the loss state w2.

This section has shown that in the absence of aggregate loss uncertainty, low-
probability risks are easier to insure than high-probability risks. This may explain
why typical homeowners insurance cover perils as unlikely as lightening strikes.
In contrast, low-probability correlated risks such as earthquakes, flooding, wind-
storms, nuclear hazards and acts of wars are typically excluded from homeowner
policies. The next section provides an explanation as to why low-probability cor-
related risks are also difficult to insure.

11In a model where agents only face two states: loss or no loss, deductible and partial coverage
are strictly equivalent.

81



Chapter 2. On the insurability of low-probability risks

2.3 Insuring systemic low-probability risks

We now consider different risks, potentially correlated with each other. Each policy
covers the risk of loss xi = LiXi, for all i = 1, ..., n, where Xi is a Bernoulli random
variable taking value 1 with probability pi and 0 with probability 1 − pi. Li is a
parameter that reflects the intensity of the loss.

As an example, assume that the insurance provider is a firm which insures n
people against a risk of flood. The n policyholders face a risk that has a common
source and which is systemic if the flood is important. But the probabilities pi and
intensities Li can be different, depending on how far they live from the river bed.

We call σ2
i = pi(1 − pi), the variance of the Bernoulli variable Xi and σij the

covariance between risks Xi and Xj. The dependence between these individual
risks is captured by the pairwise coefficients of correlation ρij = cov(Xi, Xj)/(σiσj)
for all j 6= i. Each policyholder can purchase a coverage τi, provided by the
insurance when xi = Li. In addition to the indemnity, the insurance provider
faces a deadweight cost c(τi) per policy. As a consequence, the cost per policy
faced by the insurance provider is

Ii(xi) =
 τi + c(τi) with probability pi

0 with probability 1− pi

Because insurability depends on the indemnity costs Ii(xi) faced by the in-
surer, it is useful to write the moments of these costs given the exogeneously given
moments of the risks i.

Lemma 2 Let µi and χ2
i be the expected value and variance of the indemnity cost

Ii(xi), and χij and δij be the covariances and correlations between Ii(xi) and Ij(xj),
where j 6= i. Then

µi = pi(τi + c(τi)),

χ2
i = pi(1− pi)(τi + c(τi))2,

χij = ρij(τi + c(τi))(τj + c(τj))
√
pi(1− pi)

√
pj(1− pj),

δij = ρij.
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Proof The proof is provided in Appendix 2.5.4

The presence of correlation between the individual loss Bernoulli variables Xi

translates into a positive correlation between the indemnity costs Ii(xi) faced by
the insurer.

To cover the total indemnity costs, the insurance provider purchases n contracts
that each deliver a payoff

y = 1
n

n∑
i=1

Ii(xi),

equal to the average loss per policy. These n contracts can be secured under the
form of equity contracts (the owners of the insurance provider are directly liable
for the payment of y), by the purchase of reinsurance or alternative risk transfer
contracts.12 The expected value of each of these contracts is the population average
expected indemnity cost

E(y) = 1
n

n∑
i=1

µi,

and the variance is
V(y) = 1

n2 [
n∑
i=1

χ2
i +

n∑
i=1

∑
j 6=i

χij]. (2.9)

Equation (2.9) can also be written

V(y) = 1
n
χ̄2 + n− 1

n
χ̄c, (2.10)

where χ̄2 = 1/n∑n
i=1 χ

2 is the population average variance and

χ̄c = 1
n

n∑
i=1

1
n− 1

n∑
j 6=i

χij,

is the population average covariance between losses. If we consider χ̄ and χ̄c to be
12This paper abstracts from the possibility of default, examined in Charpentier & Le Maux

(2014a) for example. Since default is not allowed from the counter-parties of the insurance
providers, the solvency requirement do not lead to an immobilization of capital that would add
an extra cost. In practice, regulatory agencies often require insurance companies to immobilize
capital to secure their liability toward policyholders. For example, they may require the firms to
hold a level of capital k such that the probability of default remains below a probability η. This
requirement imposes an opportunity cost on the capital k = F−1

y (1− η)−α that is immobilized.
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fixed, equation (2.10) shows that the average loss y’s variance tends to 0 when the
number of policyholders n tends to +∞ if and only if χ̄c = 0, that is if and only
if the average correlation between two losses is zero.

Assume that the market value of the random payoff y can be assessed with the
one factor model

Py = Ey − Acov(y, wI) (2.11)

where wI and A are the representative investor’s wealth and index of absolute
risk aversion.13 Market completeness pre-supposes that all investor’s idiosyncratic
risks have been eliminated from the economy thanks to adequate contracting on
the financial markets. As a consequence only systemic risks give rise to a risk
premium. The covariance term of equation (2.11) captures the idea that an asset
whose payoff is negatively correlated with the investor’s wealth offers consumption
insurance, for which investors are willing to pay a risk premium.

We assume that the representative investor’s14 wealth is

w0 −
1
n

n∑
i=1

aixi, (2.12)

where the positive weights ai capture the dependance between the representative
investor wealth and policyholder i’s loss.15 Positive ai may reflect uninsurable
spillovers from the source of aggregate risk to the investor’s assets. Such spillovers,
particularly likely to occur in the case of catastrophes, include the many indirect
costs such as the loss of attractiveness of the affected territory. ai = 0 for all i
means no spillovers, while ai = a for all i means that the representative investor

13This expression characterizes the market equilibrium if markets are complete (see Gollier
(2004)). It is an exact expression if investors have quadratic utility functions, or CARA utility
functions when returns are normally distributed. With any other specification, it remains a good
approximation if the risk y is sufficiently small compared to the representative investor’s wealth.

14Since Mankiw & Zeldes (1991), an entire strand of literature has documented and attempted
to explain the limited financial market participation puzzle. According to Grinblatt et al. (2011),
only 50 % of U.S. households own some stocks. Guiso et al. (2008) shows that this shares falls
to 31.5 % in U.K., 26 % in France, and only 8 % in Italy. In order to account for this important
fact, we consider here that the investors and policyholders are potentially different agents.

15This formulation can be obtained by assuming that each of the m investors have a wealth
wj = w0j−1/n

∑n
i=1 aijxi. In this case, the average wealth is 1/m

∑m
j=1 wj = w0+1/n

∑n
i=1 aixi,

where ai = 1/m
∑m
j=1 aij is the average dependence parameter of policyholder i.
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is himself exposed to the average loss.
Equation (2.11) then re-writes

Py = 1
n

n∑
i=1

µi + A

n2 (
n∑
i=1

n∑
j=1

ajcov(Ii(xi), xj)).

Using the expressions of the expected value and variance of the indemnity cost
(2.9), we obtain a total cost

nPy =
n∑
i=1

µi + A

n
(
n∑
i=1

n∑
j=1

aj(τi + c(τi))Ljρijσiσj).

Since the “purchase” of n securities paying each the payoff y perfectly matches the
total indemnity cost, the no-profit condition

α− nPy = 0

defines the smallest total premiums raised α, that makes insurance sustainable.
This total cost is split among policyholders in such a way that each policy pays
for its own marginal contribution to the total cost of the insurance scheme, which
in our case corresponds to

αi = µi + A

n
(τi + c(τi))(aiLiσ2

i +
∑
j 6=i

ajLjρijσiσj). (2.13)

Importantly, our assumption reflects the actuarial practice of risk based pricing, in
which no cross-subsidization takes place. The premium paid by agent i contains
a risk premium only if it is correlated with the representative investor’s wealth,
either directly (ai > 0), or indirectly through its correlation with other systemic
risks (ρij > 0 and aj > 0). The risk premium comprises a term related to the
variance of the individual loss σ2

i and a sum of terms related to the covariance
between risk i and the other risks. In a sufficiently large pool, the impact of risk
i’s own variance on the premium can be neglected and only the covariance terms
matter. In a large pool, the insurance for risk i therefore features a risk premium
if it is correlated with other systemic risks. Indeed, risks uncorrelated with the

85



Chapter 2. On the insurability of low-probability risks

investor’s wealth do not give rise to a risk premium in equilibrium. In addition, a
pool of risks correlated with the investor’s wealth but uncorrelated with each other
can be diversified within the pool, hence eliminating the volatility of the average
loss that is transferred to the market investors.

Lemma 3 For given risk exposure of the insurance provider (pi, Li, ρij, ai)ij, the
loading factor λ(pi) = αi/piτi − 1 of a risk i is a decreasing function of the loss
probability pi and

lim
pi→0

λ(pi) = +∞

iff ∑
j 6=i ajLjρij

√
pj(1− pj) > 0.

Proof The proof is given in Appendix 2.5.5.

Taking the risk exposure of the insurance provider as given, low probability
risks have a higher loading αi/piτi and the very low probability risks have ar-
bitrarily high loadings, despite the fact that prices are set to reflect individual
exposures. This is due to the fact that the covariance, reflected in the insurance
premium, decreases at a lower pace than the probability pi. As a consequence

Proposition 11 Assume that the insurance provider has a risk exposure (pi, Li, ρij, ai)ij,
then for all lines i, there is a threshold p∗i below which risk i becomes uninsurable.

Corollary 11.1 Assume that the insurance provider has a risk exposure (pi, Li, ρij, ai)ij =
(pi, L, ρ, a) for all i, j, then there exists a threshold p∗ such that the lines with prob-
ability pj < p∗ are not insurable.

Proof The proof is given in Appendix 2.5.6

Proposition 11 shows that if we fix the exposure of the insurance provider, then
there exist a level of probability below which an agent i stops purchasing insur-
ance. This threshold p∗i depends on how systemic the risk considered is (ai), how
correlated with other policyholder’s risk it is (ρij), and how severe the loss Li is.
Assuming that all other characteristics but the loss probabilities pi are identical
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across policyholders, yields a common threshold p∗, below which agents do not
purchase insurance. Due to the high loading that they face, policyholders who
have a low probability of loss are less likely to purchase insurance.

In the example where a single firm insures n policyholders heterogeneously
exposed to a risk of flooding, this means that take-up should decrease as one
considers areas away from the river bed, which is the source of the common risk.

Propositions (11) and its corollary (11.1) show how correlation is a threat to
the insurability of the lower probability risks, despite the fact that policies are
priced to reflect individual exposure. Perhaps surprisingly, it is not the fact that
a risk is systemic that makes it uninsurable. Instead, the fact of being correlated
with other systemic risks generates a risk premium that remains high even when
the loss probability becomes very small. As a consequence, the loading becomes
very high and deters potential buyers from purchasing insurance.

2.4 Conclusion

In this paper, we show that the low insurance take-up rates for low-probability
risks can be explained by the presence of aggregate uncertainty. Low probability
risks without aggregate uncertainty, are easy to insure because people’s willingness
to pay, expressed in terms of loading, decreases with the loss-probability. On the
contrary, low-probability risks with aggregate uncertainty can be very difficult to
insure as the cost of providing coverage, expressed in terms of loading, explodes as
the loss probability becomes small. This may explain why risks such as lightnings
are covered under US homeowner policies, while earthquakes, floods and nuclear
accidents are typically excluded.

Indeed most insurance companies propose coverage on several lines of risk.
As we have showed, the risks with the lowest probabilities also have the highest
loading factors if they are systemic and correlated with each other. Under these
circumstances, they are also more difficult to insure.

This fact may explain how entities such as the National Flood Insurance Pro-
gram or the Californian Earthquake Authority can mitigate this issue by insuring
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a single line of risk. However, some heterogeneity of exposure is bound to remain
since not all policyholders live at an equal distance from the source of risk. As a
consequence, we should observe the take-up rates diminish as we consider areas
further away from the source of the risk considered, even with these mono-line
insurance providers. Testing this empirical prediction is an interesting venue for
further research.
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2.5 Proofs

2.5.1 Proposition 8

We consider the case of an interior solution. From the first order condition (2.4),
we obtain

dτ

dp
= (1 + c′(τ))[u′(w1)− u′(w2)]

(1− p)p(1 + c′(τ))2u′′(w2) + [1− (1 + c′(τ))p]2u′′(w1)− c′′(τ)[pu′(w1) + (1− p)u′(w2)]

+
[τ + c(τ)]

(
[1− (1 + c′(τ))p]u′′(w1)− (1− p)(1 + c′(τ))u′′(w2)

)
(1− p)p(1 + c′(τ))2u′′(w2) + [1− (1 + c′(τ))p]2u′′(w1)− c′′(τ)[pu′(w1) + (1− p)u′(w2)] .

Since u is concave and c convex we have

dτ
dp
< 0

⇔

u′(w1) + τ+c(τ)
1+c′(τ)(1− (1 + c′(τ))p)u′′(w1) > u′(w2) + τ+c(τ)

1+c′(τ)(1− p)(1 + c′(τ))u′′(w2)

⇔ (2.14)

u′(w1)[1− τ+c(τ)
1+c′(τ)(1− (1 + c′(τ))p)A(w1)] > u′(w2)[1− τ+c(τ)

1+c′(τ)(1− p)(1 + c′(τ))A(w2)].

Using the first order condition (2.4), this last inequality holds if and only if

1− τ + c(τ)
1 + c′(τ)(1−(1+c′(τ))p)A(w1) > 1− (1 + c′(τ))p

(1− p)(1 + c′(τ)) [1− τ + c(τ)
1 + c′(τ)(1−p)(1+c′(τ))A(w2)].

which can be written as

c′(τ)
(1− p)(1 + c′(τ)) >

τ + c(τ)
1 + c′(τ) [A(w1)− A(w2)][1− (1 + c′(τ))p].
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2.5.2 Corollary 8.1

Since u() is a concave function and τ < L we know that u′(w1) > u′(w2). A
sufficient condition for inequality (2.14) to be satisfied is

1− [1− (1 + c′(τ))p] τ + c(τ)
1 + c′(τ)A(w1) > 1− (1− p)(1 + c′(τ)) τ + c(τ)

1 + c′(τ)A(w2)

This can also be written as

(1− p)(1 + c′(τ))A(w2) > [1− (1 + c′(τ))p]A(w1)

Using the expression 2.7 of the coefficient of relative risk aversion for a HARA
function, we obtain

(1− p)(1 + c′(τ))
1− (1 + c′(τ))p >

η + w2
γ

η + w1
γ

(2.15)

At an interior solution, the first order condition (2.4) yields

(1− p)(1 + c′(τ))
1− (1 + c′(τ))p =

(η + w2
γ

η + w1
γ

)γ

So for any γ > 1, this implies that (2.15) is verified and optimal coverage is indeed
decreasing in p.

2.5.3 Proposition 10

Assume that L is now a function of p such that a change in p is compensated by
a change in L that maintain pL constant, i.e.

L′(p) = −L
p

(2.16)
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Let τ ∗, w∗1 and w∗2 be the optimal values of coverage, loss state wealth and no-loss
state wealth. The first order condition now writes

[1−(1+c′(τ ∗))p]u′(w+τ ∗−pτ ∗−pc(τ ∗)−L(p)) = (1−p)(1+c′(τ ∗))u′(w−pτ ∗−pc(τ ∗))
(2.17)

Proceeding as in the proof of Proposition 8, we find the necessary and sufficient
condition for dτ∗

dp
< 0

c′(τ ∗)
(1− p)[1− (1 + c′(τ ∗))p] > [τ ∗ + c(τ ∗)][A(w∗1)− A(w∗2)] + A(w∗1)L′(p) (2.18)

Using equation 2.16

[τ ∗ + c(τ ∗)][A(w∗1) − A(w∗2)] + A(w∗1)L′(p) = [τ ∗ + c(τ ∗)][A(w∗1)− A(w∗2)]− A(w∗1)L
p

= [τ ∗ + c(τ ∗)]
(
A(w∗1)− A(w∗2)− A(w∗1) L

[τ ∗ + c(τ ∗)]p
)

= [τ ∗ + c(τ ∗)]A(w∗1)[τ ∗ + c(τ ∗)]p− A(w∗2)[τ ∗ + c(τ ∗)]p− A(w∗1)L
[τ ∗ + c(τ ∗)]p

= [τ ∗ + c(τ ∗)]A(w∗1){[τ ∗ + c(τ ∗)]p− L} − A(w∗2)
[τ ∗ + c(τ ∗)]p . (2.19)

At any interior solution, the left-hand side of 2.17 must be positive. Therefore, it
must be the case that

p(1 + c′(τ ∗)) < 1.

By convexity of c(τ), we have

p(1 + c′(τ)) < p(1 + c′(τ ∗)) < 1 ∀τ < τ ∗.

Hence
∫ τ∗

0
p(1 + c′(τ))dτ <

∫ τ∗

0
dτ .
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Or equivalently, using c(0) = 0

p(τ ∗ + c(τ ∗)) < τ ∗ < L.

Therefore
A(w∗1)

(
[τ ∗ + c(τ ∗)]p− L

)
< 0,

which, from 2.19 implies

[τ ∗ + c(τ ∗)][A(w∗1)− A(w∗2)] + A(w∗1)L′(p) < 0.

The necessary and sufficient condition 2.18 is therefore always satisfied.

2.5.4 Lemma 2

Ii(xi) = Xi(τi + c(τi)) implies

cov(Ii(xi), Ij(xj)) = (τi + c(τi))(τj + c(τj))cov(Xi, Xj), (2.20)

and, by definition, ρij = cov(Xi, Xj)/(
√
pi(1− pi)

√
pj(1− pj)). As a consequence,

the covariance between two indemnity costs Ii(xi) and Ij(xj) is

cov(Ii(xi), Ij(xj)) = ρij(τi + c(τi))(τj + c(τj))
√
pi(1− pi)

√
pj(1− pj). (2.21)

The coefficient of correlation between two indemnity costs can therefore be written

δij = ρij.

2.5.5 Lemma 3

Equation (2.13) with σi =
√
pi(1− pi) yields

αi = µi + A

n
ai(τi + c(τi))[Liσ2

i +
∑
j 6=i

Ljρij
√
pi(1− pi)

√
pi(1− pi)].
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Dividing by piτi gives

αi/piτi = 1 + c(τi)
τi

+ A

n
ai(τi + c(τi))[

Li(1− pi)
τi

+
√

1− pi
pi

∑
j 6=i

ρijLj
√
pj(1− pj)].

2.5.6 Proposition 11.1

Line i is insurable (in the strong sense) if and only if

[1− (1 + b)pi(1 + λ(pi))]u′(w − Li) > (1− pi)(1 + b)(1 + λ(pi))u′(w),

Notice that
lim
pi→0

pi(1 + λ(pi)) = 0,

which implies

lim
pi→0

[1− (1 + b)pi(1 + λ(pi))]u′(w − Li) = u′(w − Li).

Also
lim
pi→0

λ(pi) = +∞

implies that
lim
pi→0

(1− pi)(1 + b)(1 + λ(pi)) = +∞.

Therefore, there exist a threshold p∗i such that pi < p∗i implies

[1− (1 + b)pi(1 + λ(pi))]u′(w − Li) < (1− pi)(1 + b)(1 + λ(pi))u′(w),

and τ = 0 at optimum. p∗i is defined by

[1− (1 + b)pi(1 + λ(pi))]u′(w − Lj) = (1− pi)(1 + b)(1 + λ(pi))u′(w).
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Chapter 3

Pooling natural disaster risks in a
community

This chapter is co-authored with Arnaud Goussebaïle.

Abstract: We analyze the design of contracts when individual risks are corre-
lated across risk-averse agents in a community. The community is equipped with
a public insurer which supplies insurance contracts to its members and has access
to costly reinsurance outside the community. Without transaction costs inside the
community, risk-averse agents fully insure against their individual risk and share
collective risk by getting some dividend in normal states. With premiums raised
ex-ante and generating an opportunity cost, they only partially insure against their
individual risk, getting a lower indemnity in catastrophic states than in normal
states, and potentially get some dividend in normal states. We illustrate the emer-
gence of the latter contracts for the community of the Caribbean countries exposed
to natural disaster risks.

Keywords: individual risk, collective risk, insurance, mutual insurance.
JEL classification: D86, G22, G28, Q54.
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3.1 Introduction

The Caribbean countries are located in a region of the world widely exposed to
large natural disaster risks, such as earthquakes, hurricanes and flooding events.
Even though aggregate damages are usually lower than 1 billion dollars per year
in this region, the hurricane season in 2004 affected many countries with more
than 6 billion dollars of aggregate losses and a large earthquake in January 2010
caused in Haiti more than 8 billion dollars of damages.1 In this context, the non-
for-profit Caribbean Catastrophe Risk Insurance Facility (CCRIF) is designed to
supply insurance contracts to the Caribbean countries (CCRIF SPC (2014)). To
deal with the high collective risks due to the spatial correlation of losses, the
CCRIF purchases reinsurance outside the community. As reinsurance companies
or other investors on financial markets supply reinsurance contracts2 above fair
prices (Jaffee & Russell (1997a), Cummins (2006) and Froot (2001b)), the CCRIF
only partially reinsures the collective risks and supplies to its members insurance
contracts which are mutual in the sense that they depend on collective losses. The
indemnities for given individual losses are lower when collective losses are high
than when collective losses are low. Moreover, dividends are given to the insureds
when collective losses are low.3 The CCRIF, created in 2007, is one example
of such facilities that have emerged in different regions of the world exposed to
natural disasters in the last twenty years. The Florida Hurricane Catastrophe Fund
(FHCF) and the California Earthquake Authority (CEA) respectively created in
1993 and 1996 are other examples (Kousky (2010) and Kunreuther & Michel-
Kerjan (2009)).

The present paper analyzes the optimal design of insurance contracts by a
pooling insurance facility when the collective risks are not negligible and reinsur-

1Information on natural disaster losses in the Caribbean countries can be found on the EM-
DAT International Disaster Database (http://www.emdat.be/).

2Investors on financial markets supply insurance-linked securities such as cat-bonds, which
are similar for insurers to standard reinsurance contracts supplied by reinsurance companies.
However, insurance-linked securities have emerged in the nineties because financial markets have
larger financial capacities to supply contracts for very large risks.

3Dividends are given through premium discounts after a year with low collective losses.
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ance is above fair prices. We consider a community of identical risk-averse agents
(representing for instance the Caribbean countries). Each agent faces two indi-
vidual states: she can either suffer a loss or not. At the collective level, there
are two states of nature, the normal one and the catastrophic one, respectively
characterized by low and high fraction of the agents affected.4 We consider a non-
for-profit pooling insurance facility for the community (representing for instance
the CCRIF for the Caribbean countries). The insurance facility supplies mutual
insurance contracts to the agents in the community. For one contract, it charges
a premium and pays an indemnity to the insured if affected. The indemnity level
in the normal state may differ from the indemnity level in the catastrophic state.
The insurance contract may also include a dividend if the normal state occurs.
Besides, the insurance facility has access to reinsurance outside the community.
We analyze the characteristics of the optimal insurance and reinsurance contracts
for the community, when reinsurance is above fair prices.

Without any transaction costs inside the community, the optimal insurance
contract consists in full coverage for individual losses in both the normal state and
the catastrophic state. Moreover, it includes a strictly positive dividend in the
normal state because reinsurance is above fair prices. The higher the cost of rein-
surance, the higher the premium and the dividend because the insurer substitutes
reinsurance by a higher reserve from the agents to pay the high total indemnities
of the catastrophic state. However, requiring high amount of premiums ex-ante5

can generate an opportunity cost for the agents in the community. Indeed, this
capital cannot be used for other purpose (i.e consumption or investment) which
thus may require the agents to borrow more costly external capital. In this case, it
is Pareto improving to implement a contract with a lower indemnity for individual
loss in the catastrophic state than in the normal state. Moreover, the optimal
contract still has full coverage and dividend in the normal state if and only if the

4We consider only two individual states to keep the model tractable. At the collective level,
we consider two and only two states of nature respectively to model collective risks and to keep
the model tractable.

5Premiums are required ex-ante to pay reinsurance premiums and to secure a reserve which
avoids participation default. Moreover, raising the premiums ex-ante enables to transfer indem-
nities quickly to affected agents.
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marginal opportunity cost is low enough relative to the marginal reinsurance cost.

The economics literature has already addressed the question of optimal in-
surance contract when there are collective risks in a community. Doherty &
Schlesinger (1990), Hau (1999), Cummins & Mahul (2004) and Mahul & Wright
(2004, 2007) consider the case where the indemnity level in normal states increases
with the premium level but the indemnity level in catastrophic states is null what-
ever the premium level. In this case, the optimal contract consists in partial
coverage for individual losses in normal states in order to preserve their welfare
level in catastrophic states. However, these papers do not address the issue of the
insurer financial capacity which would explain why indemnities cannot be paid in
catastrophic states.6 Charpentier & Le Maux (2014b) focuses on the issue by con-
sidering an insurer with an exogenously given amount of reserve besides premiums.
In this case, the indemnity level increases with the premium level in normal states
and in catastrophic states because raised premiums increase the financial capacity.
However, the optimal insurance contract consists in full coverage for individual
losses in normal states but not in catastrophic states because of insurer limited
reserve. Relative to Charpentier & Le Maux (2014b), we relax the assumption of
partially exogenous financial capacity by introducing reinsurance outside the com-
munity. Moreover, we allow a better participation of the insureds in the reserve by
introducing dividends in the contracts, which gives more flexibility in the design
of contracts for risk sharing. Indeed, as explained by Borch (1962) and Marshall
(1974), in a community where agents are exposed to individual risks with collective
components, it is Pareto optimal to eliminate individual risks and to share collec-
tive risks (mutuality principle). Malinvaud (1973) and Cass et al. (1996) show
that a mutual contract with dividend supplied by the insurance company enables
to reach the mutuality principle. Penalva-Zuasti (2001) and Penalva-Zuasti (2008)
show that it is also reached with agents purchasing a standard contract from the
insurance company and investing in the insurance company through stock market.

6This contingency can be seen as contractual or as a "default risk" with right perception by
insureds and no cost of default. In the quoted theoretical papers, "default risk" is used in this
sense.
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When reinsurance outside a community is costly, Doherty & Dionne (1993) and
Doherty & Schlesinger (2002) show that the optimal contract consists in the full
elimination of individual risks in each state of nature, plus partial coverage of the
collective risks. Relative to Doherty & Dionne (1993) and Doherty & Schlesinger
(2002), we analyze how the cost of reinsurance and the correlation between indi-
vidual risks affect the optimal contract. Moreover, we introduce and analyze the
impact of the opportunity cost of capital potentially generated by raising premiums
ex-ante.

The first contribution of the present paper is to develop a simple and tractable
model to analyze the optimal design of insurance contracts by a pooling insurance
facility to manage individual and collective risks. The second contribution is to
study the impact of reinsurance costs and risk correlation on the optimal insurance
contract further than previous works. The third contribution is to consider the
opportunity cost of capital potentially generated by raising premiums ex-ante. The
paper is organized as follows. Section 2 presents the example of the Caribbean
countries and their insurance facility. Section 3 sets up the model of a community
with individual and collective risks and the insurance and reinsurance contracts.
Section 4 provides an analysis of the optimal insurance and reinsurance contracts.
Section 5 concludes.

3.2 Caribbean countries and natural disasters in-
surance

The Caribbean countries are located in a region of the world exposed to important
natural disaster risks. Figure 3.17 exhibits natural disaster losses in this region in
the last fifty years. Collective losses are widely variable from one year to another
because natural disasters in the region can have large spatial impacts. Year 2010
corresponds to the highest losses with a large earthquake affecting Haiti in Jan-
uary with more than 8 billion dollars of damages. Year 2004 corresponds to the

7EMDAT International Disaster Database (http://www.emdat.be/)
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second highest losses with a particularly dramatic hurricane season affecting many
countries such as the Bahamas, the Cayman Islands, Grenada and Jamaica.

Figure 3.1: Natural disaster losses in the Caribbean countries.

In this context, the Caribbean Catastrophe Risk Insurance Facility (CCRIF)
is a non-for-profit multi-country insurance pool. Created in 2007, it currently
offers disaster-relief insurance policies covering public losses of sixteen Caribbean
countries, protecting them against earthquake, hurricane and excess rainfall losses.
Its effectiveness during the five first years of existence has conducted the program to
be extended to Central American countries, starting from 2016. The facility aims
at pooling the risks faced by its members and reduce the cost the members would
individually face if they directly insured on the reinsurance market. The annual
reports of the CCRIF are publicly available8 and provide useful information about
the catastrophe insurance contracts proposed to the sixteen members. The CCRIF
reports a stable number of 29 or 30 sold policies each year since its inception.9 The
collective risk faced by the CCRIF has remained rather stable as well. Figure 3.2a
displays the cumulative density function of the aggregation of the risks covered by

8http://www.ccrif.org/content/publications/reports/annual
9The CCRIF can sell more than one policy per country per year because insurance policies

for the different types of natural disasters are separated.

100



Chapter 3. Pooling natural disaster risks in a community

the CCRIF and reported in its annual reports since year 2007-2008. The darker
lines represent the cumulative distribution of this aggregate risk faced by the pool
in the earlier periods of its existence.10 Using the cumulative distribution functions
with the information about the structure of the reinsurance scheme bought by the
CCRIF, we can compute an estimated loading factor paid by the organization as :
λR = αR

E(L)−1, where αR is the premium paid by the CCRIF to reinsurers and E(L)
is the expected loss reinsured. Figure 3.2b displays its evolution through the years
and shows that the CCRIF faces a significant loading factor on reinsurance, which
clearly explains why it only partially reinsures the collective risk. The figure shows
that reinsurers increased their prices a lot in 2010, following the large earthquake
affecting Haiti.

(a) Aggregate risks faced by the CCRIF (b) Reinsurance loading factor

Figure 3.2: Aggregate risks resulting from risk pooling by the CCRIF and esti-
mated reinsurance loading factor faced by the CCRIF.

As the CCRIF only partially reinsures the collective risk, it supplies to its
members insurance contracts which are mutual in the sense that they depend
on collective losses. In addition to the regular insurance premiums, the facility
requires its members to pay an up-front participation fee. Audited financial state-

10Insured losses in figure 3.2a are much lower than total losses due to natural disasters in figure
3.1. This is due to the fact that the CCRIF covers only public losses which represent only a
small fraction of the total losses incurred in a country when a natural disaster occurs. It is also
due to the fact that the Caribbean countries purchase from the CCRIF only partial insurance
for natural disaster risks.
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ments report that "it is Management’s intent that participation fee deposits are
available to fund losses in the event that funds from retained earnings, reinsurers
and the Donor Trust are insufficient. If deposits are used to fund losses, it is also
Management’s intent that any subsequent earnings generated by the Group will
be used to reinstate the deposits to their original carrying value". Figure 3.3 shows
that the total amount of premiums was effectively much higher the first year than
the following years. It has not been necessary to raise high premiums the follow-
ing years because no extremely large claims had to be paid during these years. In
terms of claims to be paid, the worth year is 2010, during which the CRIFF had to
transfer a bit less than 8 million dollars to Haiti for the large earthquake affecting
the country. The yearly insurance contract is similar to a contract with a high
premium requested at the beginning of the year in exchange for an indemnity if the
insured is affected during the year and a dividend at the end of the year if collective
losses are not too catastrophic. In the present case, the dividend is given through
a premium discount at the beginning of the following year. Besides, the CCRIF
acknowledges the possibility of lowered indemnities in catastrophic states: "The
CCRIF can currently survive a series of loss events with a less than 1 in 10,000
chance of occurring in any given year. Due to planned premium reductions, the
safety level drops somewhat through the course of our 10-year forward modeling.
However, the lowest projected survivability for the CCRIF in the 10-year modeled
period is about 1 in 3000 chance of claims exceeding capacity in any one year." In
other words, the CCRIF acknowledges to supply contracts such that the indemnity
for one individual loss level is lower in highly catastrophic states than in the other
states of nature.
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Figure 3.3: Premiums raised and claims paid by the CCRIF.

3.3 The model

3.3.1 The community of agents

We consider a community of N agents identical in terms of preferences, initial
wealth and exposure to risk.11 The preferences of the representative agent satisfy
the von Neumann-Morgenstern axioms, with u(.) the corresponding utility function
which is strictly increasing, globally concave and twice continuously differentiable.
The representative agent has an initial wealth w and is exposed to a potential loss
l. The individual risks can generate a significant collective risk either because N is
not large enough or because individual risks are correlated. To model the collective
risks, we consider two states of nature, one catastrophic and one normal. Ex-ante,
the representative agent knows that with a probability p (such that 0 < p < 1), a
catastrophe occurs and the fraction of agents enduring a loss of size l is qc. In the
normal state, the fraction of agents enduring the same loss l is qn < qc.12 In this

11Heterogeneity of individuals raises questions related to asymmetric information that are out
of the scope of our analysis.

12As pointed out by Malinvaud (1973) and Cass et al. (1996), considering two different in-
dividual loss levels in the normal and catastrophic states could be considered as two different
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template, the individual probability of enduring a loss l is qc in the catastrophic
state and qn in the normal state, and the unconditional individual probability of
enduring a loss l is: q = (1−p)qn+pqc. The individual random wealth without risk
sharing scheme is characterized in figure 3.4. Besides, the collective random wealth
of the N agents is characterized in figure 3.5. With N large, the coefficient δ of
correlation between individual risks is well approximated by: δ = p(1−p)

q(1−q) (qc − qn)2

(proof in appendix 3.6.1). The higher the difference between the fraction qc of
affected agents in the catastrophic state and the fraction qn of affected agents in
the normal state, the higher the risk correlation between agents.13 Finally, qn and
qc can be expressed as functions of the individual probability q of being affected,
the correlation δ between individual risks and the probability p of catastrophe:
qn = q − p( q(1−q)

p(1−p)δ)
0.5 and qc = q + (1− p)( q(1−q)

p(1−p)δ)
0.5.

1− p normal state

p
catastrophic state

1− qn w not affected

qn w − l affected

1− qc w not affected

qc w − l affected

Figure 3.4: individual random wealth of the representative agent

1− p Nw − qnNl

p Nw − qcNl

Figure 3.5: collective random wealth of the N agents

In this template, average individual loss depends on the state of nature, its value
is qnl in the normal state and qcl in the catastrophic state. Thus, the expected value

risks.
13The fully correlated case (δ = 1) is characterized by qn = 0, qc = 1 and 0 < p < 1, in which

everyone endures a loss or no one. The no-correlated case (δ = 0) would correspond to qn = qc,
p = 1 or p = 0, in which there is only one collective state.

104



Chapter 3. Pooling natural disaster risks in a community

of the average individual loss is ql and its variance is q(1−q)δl2 (proof in appendix
3.6.1). The higher the individual probability q of being affected, the higher the
expected average loss. The more correlated the individual risks, the more volatile
the average loss.14 Figure 3.6 illustrates for two different sets of parameters the
cumulative distribution functions for the individual loss (thick bars) and for the
average individual loss (thin bars). The spread between qn and qc is smaller in 3.6a
than in 3.6b, while in both cases p = 0.2 and q = 0.3. The individual probability
of being affected q is similar for the two sets of parameters, whereas the correlation
across individual risks δ is smaller in 3.6a than in 3.6b, which makes a difference
for risk sharing mechanism as detailed in the paper.

loss0 qnl qcl l

probability

0

1− q
1− p

1

(a) p = 0.20, qn = 0.25, qc = 0.50,
q = 0.3, δ = 0.048

loss0 qnl qcl l

probability

0

1− q
1− p

1

(b) p = 0.20, qn = 0.20, qc = 0.70,
q = 0.3, δ = 0.190

Figure 3.6: Cumulative distribution functions for individual loss (thick bars) and
average individual loss (thin bars) for two different sets of parameters in 3.6a and
3.6b.

3.3.2 Insurance and reinsurance contracts

We consider that the community is equipped with a pooling insurance facility, also
called the insurer. The insurer faces two states of nature, the normal one and the

14Cummins (2006) and Cummins & Trainar (2009) have more insights on the relation between
the risk correlation and the average loss volatility.
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catastrophic one, in which it respectively has a fraction qn and a fraction qc of
its insureds that have to be indemnified. A standard-type insurance contract is
a couple (α, τ). In this case, α is the premium paid by the agent and τ ≥ 0 is
the indemnity received by the agent if the latter endures a loss l. A mutual-type
insurance contract is a quadruple (α, τ, ε, π). In this case, α is the premium paid
by the agent, τ ≥ 0 is the indemnity received by the agent in the normal state if
the latter endures a loss l, τ − ε ≥ 0 is the indemnity received by the agent in the
catastrophic state if the latter endures a loss l and π ≥ 0 is the dividend received by
the agent in the normal state. This contract is called mutual-type contract because
each agent shares a fraction of the collective risk of the community. Indeed, ε and
π make the insurance contract directly depend on the collective losses, contrary
to the standard contract. The standard contract is a specific case of the mutual
contract with ε = 0 and π = 0.15 Besides, we consider that the contract can
generate an opportunity cost for the insured. When premiums are raised ex-ante
while indemnities and dividends are given ex-post, the secured capital cannot be
used for other purpose (i.e. consumption or investment). Thus, the agents may
have to raise more costly external capital instead of using this capital, which
generates an opportunity cost for the agents. The higher the required premium
α, the higher should be the marginal opportunity cost because the costlier should
be the marginal external capital. We denote λl(α) the opportunity cost function
which is increasing and convex relative to the premium α. The agent wealth profile
with a mutual-type contract is represented in figure 3.7.

The insurer has to manage the collective risks generated by the aggregation of
the insured individual risks. It can purchase reinsurance outside the community,
to be able to pay the higher total claims of the catastrophic state. Purchasing a
reinsurance contract, with an indemnity τR ≥ 0 in the catastrophic state occuring
with a probability p, costs (1+λR)pτR, in which λR ≥ 0 is the reinsurance loading

15The mutual contract defined here is in the spirit of the contracts supplied by the CCRIF to
the Caribbean countries. The premium α corresponds to the regular premium plus the up-front
participation fee in the contracts supplied by the CCRIF. The dividend π corresponds to the
premium discount of the following year if losses are not too catastrophic. The indemnity gap ε
between normal state and catastrophic state is also acknowledged by the CCRIF.
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1− p

p

1− qn w1 = w − α− λl(α) + π

qn w2 = w − α− λl(α)− l + τ + π

1− qc w3 = w − α− λl(α)

qc w4 = w − α− λl(α)− l + τ − ε

Figure 3.7: agent wealth profile with an insurance contract

factor.16 For reinsurance to be relevant, we need to have (1+λR)p < 1.17 With the
insurance contracts supplied to the agents and the reinsurance contract purchased
outside the community, the insurer wealth profile is detailed in figure 3.8.

1− p Nα−Nqnτ − (1 + λR)pτR −Nπ

p Nα−Nqc(τ − ε)− (1 + λR)pτR + τR

Figure 3.8: insurer profit profile

3.4 Optimal insurance and reinsurance

The optimal insurance and reinsurance contracts for the community consist in
maximizing the expected utility of the representative agent under the budget con-
straints.

3.4.1 Budget constraints

The mutual insurance facility cannot pay claims unless it has secured the funds
either through raised premiums or purchased reinsurance. With the budget con-
straints in both the normal state and the catastrophic state (budget expressions in

16λ corresponds to frictional costs with reinsurers or investors, as detailed in Froot (2001b).
17If (1+λR)p ≥ 1, purchasing reinsurance would have no sense for the CCRIF because it would

lose money in both the normal state and the catastrophic state with the reinsurance contract.
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figure 3.8), the optimal insurance and reinsurance contracts are thus the solution
of the following maximization problem:

max
α,τ,ε,π,τR

E(u(w̃))

s.t. Nα−Nqnτ − (1 + λR)pτR −Nπ ≥ 0

Nα−Nqc(τ − ε)− (1 + λR)pτR + τR ≥ 0

τ ≥ 0, τ − ε ≥ 0, π ≥ 0, τR ≥ 0.

(3.1)

Because utility is increasing with wealth, the budget constraints are binding in the
two states of nature, the catastrophic one and the normal one. The subtraction
of the two binding budget constraints gives the purchased reinsurance indemnity
τR:

τR = Nqc(τ − ε)−Nqnτ −Nπ ≥ 0. (3.2)

The insurance facility has to purchase a reinsurance indemnity in order to cover
the difference between the amount due in the catastrophic state (Nqc(τ − ε)) and
the amount due in the normal state (Nqnτ +Nπ). With (3.2), the binding budget
constraints give the required premium:

α =
(

1 + p(qc − qn)
q

λR
)
qτ +

(
1− p

1− pλ
R

)
(1− p)π −

(
1 + λR

)
pqcε, (3.3)

which simplifies, if reinsurance is binding (τR = 0), to:

α = qc(τ − ε). (3.4)

To be able to pay indemnities and dividends, the insurance facility requires the
premium (3.3) (if τR > 0) or (3.4) (if τR = 0) for the contract (α, τ, ε, π). If it is
not valuable to purchase reinsurance, the insurance facility has to raise premiums
(3.4) in order to be able to pay all the indemnities in the catastrophic state. If it
is valuable to purchase reinsurance, the insurance facility has to pass on the cost
of reinsurance to insureds, which explains the loading factor p(qc−qn)

q
λR in front of

τ in (3.3). As shown by (3.2), allowing a dividend in the normal state (π > 0) or
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a lower indemnity in the catastrophic state (ε > 0) enables to lower the purchase
of reinsurance. With a dividend in the normal state (π > 0), the premium is
affected in two opposite directions. The first channel is straightforward: a higher
dividend implies a higher premium. The second channel is due to the fact that the
insurer has to purchase less reinsurance thanks to the reserve from the insureds
and appears through λR in the coefficient in front of π in (3.3). Note that the
factor in front of π in (3.3) is globally positive because (1 + λR)p < 1. With a
lower indemnity in the catastrophic state (ε > 0), the premium is reduced through
two channels. The first channel is straightforward: a lower indemnity implies a
lower premium. The second channel is due to the fact that the insurer has to
purchase less reinsurance and appears through λR in the coefficient in front of ε
in (3.3). If the agents in the community can have direct access to reinsurance
with the same loading factor λR, it is valuable to insure through the insurance
facility because: 1 + p(qc−qn)

q
λR < 1 + λR, thanks to partial diversification done

by the insurance facility. This is true with standard insurance contracts and thus
also true with mutual contracts. The higher the cost of reinsurance, the more
valuable the facility. The lower the correlation between participants, the more
efficient the pooling and thus the more valuable the facility. This could explain
why the Caribbean countries would like to extend their facility to South American
Countries in 2016. However, we have assumed that there are no management costs
for the insurance facility. If there are, the pooling insurance facility is valuable
if the cost of implementing the facility generates a loading factor λi such that:
1 + λi + p(qc−qn)

q
λR < 1 + λR. In the case of the Caribbean countries, extending

the insurance facility to South American Countries will be valuable if it does not
add too much management costs.
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3.4.2 Insurance and reinsurance contracts

With the binding budget constraints, the maximization problem (3.1) for the op-
timal contracts boils down to:18

max
τ,ε,π

E(u(w̃))

s.t. α =
(

1 + p(qc − qn)
q

λR
)
qτ +

(
1− p

1− pλ
R

)
(1− p)π −

(
1 + λR

)
pqcε

τ ≥ 0, π ≥ 0, (qc − qn)τ − π − qcε ≥ 0.
(3.5)

Note that, with standard insurance contracts (π = 0 and ε = 0), the maximization
problem (3.5) corresponds to the standard Mossin problem, in which the optimal
coverage level is obtained by the marginal tradeoff between the aversion to risk
and the cost due to reinsurance (p(qc−qn)

q
λR).

Without opportunity cost (λl(α) = 0)

We first consider the case in which raising premiums ex-ante does not generate
an opportunity cost for the insured (λl(α) = 0). The first order conditions of
(3.5) are derived in appendix 3.6.2. If it is valuable to purchase reinsurance (i.e.
τR

N
= (qc− qn)τ −π− qcε ≥ 0 is not binding), the optimal contract has indemnities

τ and τ − ε and dividend π such that:

u′(w2)
u′(w1) = u′(w − α− l + τ + π)

u′(w − α + π) = 1, (3.6)

u′(w4)
u′(w3) = u′(w − α− l + τ − ε)

u′(w − α) = 1, (3.7)

u′(w3)
u′(w1) = u′(w − α)

u′(w − α + π) = 1 + λR

1− p
1−pλ

R
. (3.8)

18The last inequality constraint in (3.5) corresponds to τR ≥ 0. The inequality constraint
τ − ε ≥ 0 is not written because it is necessarily verified with the other inequality constraints.
Indeed, we have at least as much money for indemnities in the catastrophic state as the amount
of money for indemnities and dividends in the normal state.
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If it is not valuable to purchase reinsurance (i.e. τR

N
= (qc − qn)τ − π − qcε ≥ 0 is

binding), the optimal contract has indemnities τ and τ − ε plus dividend π such
that:

u′(w2)
u′(w1) = u′(w − α− l + τ + π)

u′(w − α + π) = 1, (3.9)

u′(w4)
u′(w3) = u′(w − α− l + τ − ε)

u′(w − α) = 1, (3.10)

π = (qc − qn)τ − qcε. (3.11)

Whether reinsurance is purchased or not, the optimal insurance contract is such
that: w1 = w2 and w3 = w4 (thanks to (3.6) and (3.7) or (3.9) and (3.10)), which
means that τ = l and ε = 0. Besides, when λR = 0, (3.8) tells that π = 0, (3.3)
gives α = ql and (3.2) gives τR = N(qc − qn)l. When 0 < λR < λR

∗, (3.8) tells
that π > 0, (3.3) gives α = (q + p(qc − qn)λR)l + (1 − p − pλR)π and (3.2) gives
τR = N(qc − qn)l − Nπ > 0. λR

∗ is determined with (3.8) and the additional
constraint τR

N
= (qc − qn)l − π = 0, which tells that π = (qc − qn)l and α = qcl.

When λR∗ ≤ λR, (3.11) tells that π = (qc−qn)l, (3.4) gives α = qcl and reinsurance
is not purchased τR = 0.

Proposition 12 The optimal insurance and reinsurance contracts are such that:

(i) when λR = 0: τ = l, ε = 0, π = 0, α = ql, τR = N(qc − qn)l;

(ii) when 0 < λR < λR
∗: τ = l, ε = 0, π > 0, α = (q + p(qc − qn)λR)l + (1− p−

pλR)π, τR = N(qc − qn)l −Nπ > 0;

(iii) when λR∗ ≤ λR: τ = l, ε = 0, π = (qc − qn)l, α = qcl, τR = 0;

in which λR∗ is such that u′(w−qcl)
u′(w−qnl) = 1+λR∗

1− p
1−pλ

R∗ .

Proposition 12 states that the optimal insurance contract has full coverage for
a given individual loss in both normal and catastrophic states (τ = l and ε = 0)
whatever the cost of reinsurance (λR). The optimal contract eliminates individual
risks, which is in line with Borch mutuality principle. Besides, proposition 12 states
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that the optimal contract has dividend (π > 0) in the normal state if and only if
reinsurance is supplied above fair prices (λR > 0). If reinsurance is fair (λR = 0),
the insurance facility fully reinsures the collective risk (τR = N(qc− qn)l) and the
optimal insurance contract is standard, i.e. without any dividend in the normal
state (π = 0). If reinsurance is not fair (λR > 0), a mutual contract (i.e. with
π > 0) is better than a standard contract because it enables the risk-averse agent
to bear a part of the collective risk contrary to the standard contract, which is
valuable because reinsurance is costly. If reinsurance is excessively above fair prices
(λR∗ ≤ λR), the insurance facility does not purchase reinsurance (τR = 0) and the
optimal insurance contract is with dividend in the normal state corresponding
to the indemnity difference between the catastrophic state and the normal state
(π = (qc− qn)l). If reinsurance is reasonably above fair prices (0 < λR < λR

∗), the
insurance facility partially reinsures the collective risk (τR > 0) and the optimal
insurance contract is with dividend in the normal state (π > 0).

Proposition 13 With 0 < λR < λR
∗ (and a CARA utility function19), we have

for the optimal insurance and reinsurance contracts: dπ
dλR

> 0, dα
dλR

> 0, dτR

dλR
< 0.

Proposition 13 is proved in appendix 3.6.2. It states that the higher the reinsur-
ance cost (i.e. λR), the lower the reinsurance purchase and the higher the premium
and the dividend in the normal state. Indeed, to be able to cover individual losses
in the catastrophic state when reinsurance purchase is decreased, the insurance
facility has to increase the reserve financed by the insureds through higher premi-
ums. Moreover, it has higher dividends to give to the insureds if the catastrophic
state does not occur. In the extreme case where λR reaches λR∗, reinsurance is

19The coefficient of absolute risk aversion of a utility function u(.) is by definition A(.) =
−u

′′(.)
u′(.) . We consider here a utility function with a constant absolute risk aversion A (also called

CARA utility function). If the utility function is not CARA, there is an additional wealth effect.
However, as long as this effect is of secondary order, it does not change the results. Note that
if this effect was not of secondary order, it would have been observed that insurance can be a
Giffen good (i.e. a higher premium leading to a higher purchase of insurance). To our knowledge,
empirical analysis on the purchase of natural disaster insurance have not observed such behaviors.
For instance, Browne & Hoyt (2000) and Grace et al. (2004) observe that when insurance price
increases, the demand for insurance decreases.
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not purchased (τR = 0) and the premium and the dividend respectively reach the
highest levels α = qcl and π = (qc − qn)l.

Proposition 14 We have for the optimal insurance and reinsurance contracts:

(i) when λR = 0: dπ
dδ

= 0, dα
dδ

= 0, dτR

dδ
> 0;

(ii) when 0 < λR < λR
∗ (with a CARA utility function): dπ

dδ
= 0, dα

dδ
> 0,

dτR

dδ
> 0;

(iii) when λR∗ ≤ λR: dπ
dδ
> 0, dα

dδ
> 0, dτR

dδ
= 0.

Proposition 14 is obtained thanks to proposition 12, recalling that qn = q −
p( q(1−q)

p(1−p)δ)
0.5 and qc = q + (1 − p)( q(1−q)

p(1−p)δ)
0.5 ((i) and (iii) are obvious and (ii) is

proved in appendix 3.6.2). Firstly, it states that the insurance contract is affected
by a change of correlation δ if and only if reinsurance is not fair (λR > 0). If rein-
surance is fair, only the average probability q and the loss l affects the insurance
contract because the collective risk is fully reinsured without any cost. If reinsur-
ance is not fair, the higher the correlation δ, the larger the collective risk and the
more expensive its coverage. If reinsurance is not too costly (0 < λR < λR

∗), an
increase of δ is managed by an increase of reinsurance purchase to be able to cover
the higher total indemnities in the catastrophic state and the insurance facility has
to translate the cost of reinsurance to insureds through higher premiums. If rein-
surance is too costly (λR∗ ≤ λR), an increase of δ is managed by an increase of the
reserve through higher premiums and the insurance facility has higher dividends
to distribute if the catastrophe does not occur. In both cases, higher correlation δ
leads to higher premiums.

To sum up, the premium α increases from ql to qcl when λR increases from 0
to high values and it also increases when risk correlation δ increases. Thus, with
costly reinsurance and significant risk correlation, the required premiums can reach
high levels for insureds if the individual loss l is significant. In this case, which
is relevant for natural disaster risks, raising such levels of premiums ex-ante can
generate an opportunity cost for insureds, which are considered in the following
section.
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With opportunity cost (λl(α) ≥ 0)

We now consider the case in which raising premiums ex-ante generate an oppor-
tunity cost for the insureds (λl(α) ≥ 0). As explained in section 3.3.2, we assume
that the opportunity cost function λl(.) is increasing and convex relative to the
premium α. We analyze how the marginal opportunity cost λl′(α) affects the op-
timal insurance and reinsurance contracts. We consider λR ≤ λR

∗, which means
that purchasing some reinsurance is valuable. The first order conditions of (3.5)
are derived in appendix 3.6.3. If it is valuable to have dividend in the normal state
π ≥ 0, the optimal contract has indemnities τ and τ − ε and dividend π such that:

u′(w2)
u′(w1) = u′(w − α− λl(α)− l + τ + π)

u′(w − α− λl(α) + π) = 1, (3.12)

u′(w4)
u′(w3) = u′(w − α− λl(α)− l + τ − ε)

u′(w − α− λl(α)) = (1 + λl
′(α))(1 + λR)

(1 + λl′(α))(1 + λR)− λl′(α)
p(1−qc)

, (3.13)

u′(w3)
u′(w1) = u′(w − α− λl(α))

u′(w − α− λl(α) + π) =
(1 + λl

′(α))(1 + λR)− λl
′(α)

p(1−qc)

(1 + λl′(α))(1− p
1−pλ

R)
. (3.14)

If it is not valuable to have dividend in the normal state (i.e. π ≥ 0 is binding),
the optimal contract has indemnities τ and τ − ε and dividend π such that:

π = 0, (3.15)

u′(w2)
u′(w1) = u′(w − α− λl(α)− l + τ)

u′(w − α− λl(α)) =
(1 + λl

′(α))(1− p
1−pλ

R)

(1 + λl′(α))(1− p(qc−qn)
1−q λR)− λl′(α)

1−q

,

(3.16)
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u′(w4)
u′(w3) = u′(w − α− λl(α)− l + τ − ε)

u′(w − α− λl(α)) = (1 + λl
′(α))(1 + λR)

(1 + λl′(α))(1− p(qc−qn)
1−q λR)− λl′(α)

1−q

.

(3.17)

Proposition 15 The optimal insurance and reinsurance contracts are such that:

(i) when 0 < λl
′(α) < λl

∗: τ = l, ε > 0, π > 0, α = (q + p(qc − qn)λR)l + (1 −
p− pλR)π − (1 + λR)pqcε, τR = N(qc − qn)l −Nπ −Nqcε > 0;

(ii) when λl′(α) = λl
∗: τ = l, ε > 0, π = 0, α = (q+p(qc−qn)λR)l−(1+λR)pqcε,

τR = N(qc − qn)l −Nqcε > 0;

(iii) when λl′(α) > λl
∗: τ < l, ε > 0, π = 0, α = (q+p(qc−qn)λR)τ−(1+λR)pqcε,

τR = N(qc − qn)τ −Nqcε > 0;

in which λl∗ = p(1−qc)
1−p−p(1−qc)λRλ

R.

Proposition 15 is derived from the first order conditions of (3.5) written above
plus (3.2), (3.3) and (3.4).20 Firstly, it states that the optimal insurance contract
has lower coverage for a given individual loss in the catastrophic state than in the
normal state (ε > 0) when increasing the premium α generates an opportunity
cost (λl′(α) > 0). In this case, it is not valuable to cover fully individual losses
in the catastrophic state, which means that the optimal contract does not fully
eliminate individual risks and does not fulfill the Borch mutuality principle. This
is a second-best insurance contract when insurance premiums have to be raised
ex-ante and generate an opportunity cost. Besides, relative to the case without an
opportunity cost, proposition 15 states that the optimal contract may not always
have dividend in the normal state. If the marginal opportunity cost is too high
relative to the reinsurance cost (λl′(α) ≥ p(1−qc)

1−p−p(1−qc)λRλ
R), it is not valuable to

have dividend in the normal state, which means that it is more valuable to spend
all the premiums to reinsure rather than to keep some reserves which would be

20λl
∗ is obtained with (3.14) equal to 1. Besides, λl′(α) > p(1−qc)

1−p−p(1−qc)λRλ
R tells that (3.16)

is strictly greater than 1 and τ < l.
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given back through dividends in the normal state. In this case, it is even valuable
to lower the indemnity in the normal state relative to full coverage (τ < l) to
increase reinsurance and the indemnity in the catastrophic state. We consider in
the following a constant marginal opportunity cost λl′(α) = λl.

Proposition 16 With 0 < λl < λl
∗ (and a CARA utility function), we have

for the optimal insurance and reinsurance contracts: dε
dλl

> 0, dπ
dλl

< 0, dα
dλl

< 0,
dτR

dλl
> 0.

Proposition 16 is proved in appendix 3.6.3. It states that an increase of the
marginal opportunity cost (λl) leads to a decrease of the premium to limit the
opportunity cost for the insured. Thus, it leads to a decrease of the indemnity in
the catastrophic state and a decrease of the dividend in the normal state. However,
to limit the indemnity decrease in the catastrophic state, reinsurance purchase is
increased in this case.

Proposition 17 With 0 < λl < λl
∗ (and a CARA utility function), we have for

the optimal insurance and reinsurance contracts: dε
dδ
> 0, dπ

dδ
< 0, dα

dδ
ambiguous

and dτR

dδ
> 0.

Proposition 17 is proved in appendix 3.6.3. It states that an increase of the
correlation δ leads to an increase of reinsurance purchase because the collective
risk increases with δ. On the one hand, the premium has to increase because
reinsurance is costly. On the other hand, increasing the premium generates an
additional opportunity cost. That is why the indemnity in the catastrophic state
and the dividend in the normal state are lowered and finally the variation of the
premium is ambiguous.

3.5 Conclusion

In the present paper, we have built a simple model to analyze the type of insur-
ance contracts that emerge when risks are correlated across risk-averse agents in
a community. For the sake of realism, we have considered that the community
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simultaneously chooses the type of contract sold to its members and the level of
reinsurance it purchases, given that reinsurance is available at a cost higher than
fair price. In this scheme, the insurer of the community supplies mutual contracts
which are contingent on the state of nature. Without transaction costs in the
community, risk-averse agents fully insure against their individual risk and share
collective risk by getting some dividend in normal states of nature. Our model
highlights the tradeoff between reinsurance and mutual types contracts. If rein-
surance is costly, the promise of dividends in normal states enables the community
to raise high premiums that are used as reserves to better indemnify in catas-
trophic states. With premiums raised ex-ante and generating an opportunity cost,
risk-averse agents only partially insure against their individual risk, getting a lower
indemnity in catastrophic states than in normal states, and get some dividend in
normal states if the marginal cost of the reserve is low relative to the marginal
cost of reinsurance. This analysis helps to understand the limits that risk correla-
tion, costly reinsurance and costly reserve represent for risk sharing and how the
contracts in a community can be improved through higher flexibility. Indeed, con-
tracts with contingent indemnity and dividend enable to share better individual
risks and collective risks. We have illustrated these mechanisms with the exam-
ple of the Caribbean Catastrophe Risk Insurance Facility (CCRIF) that combines
reinsurance and mutual contracts with indemnity and dividend contingent on the
collective state.

3.6 Appendix

3.6.1 Risk correlation

With the loss represented by the random variable x̃i for individual i and the
probability q = (1− p)qn + pqc of having a loss l, we have:

x̃i =
 −l with probability q

0 with probability 1− q
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In the normal state, the probability that individual i is affected is qn. Besides, in
the normal state, if individual i is affected, agent j is affected with a probability
qnN−1
N

, which is well approximated by qn when N is large. In the catastrophic
state, this is similar with qc instead of qn. Thus, when N is large, we have with a
good approximation:

x̃ix̃j =
 l2 with probability (1− p)q2

n + pq2
c

0 with probability 1− (1− p)q2
n − pq2

c

The correlation between individual risks is:

δ = COV (x̃i, x̃j)
(V AR(x̃i)V AR(x̃j))0.5 .

We have:

COV(x̃i, x̃j) = E(x̃ix̃j)− E(x̃i)E(x̃j)

= l2((1− p)q2
n + pq2

c )− (−lq)2

= l2((1− p)q2
n + pq2

c − q2),

VAR(x̃i) = E((x̃i)2)− E(x̃i)2

= l2q − (−lq)2

= l2q(1− q).

Then, when N is large, the coefficient of correlation is with a good approximation:

δ = (1− p)q2
n + pq2

c − q2

q(1− q)

= p(1− p)
q(1− q) (qc − qn)2.

With the average individual loss represented by the random variable X̃, we
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have:

X̃ =
 qcl with probability p

qnl with probability 1− p

This can also be written as X̃ = q̃l where:

q̃ =
 qc with probability p

qn with probability 1− p

Hence, the variance of the average individual loss is: Var(X̃) = Var(q̃)l2, with:

q̃2 =
 q2

c with probability p

q2
n with probability 1− p

Var(q̃) = E(q̃2)− (E(q̃))2

= (1− p)q2
n + pq2

c − q2.

The variance of the average individual loss is then:

Var(X̃) = δq(1− q)l2.

3.6.2 Without opportunity cost (λl(α) = 0)

Derivation of the FOC of (3.5)

If the inequality constraints are not strictly binding in (3.5), the first
order conditions of (3.5) relative to τ , ε and π are respectively:

−(1 + p(qc − qn)
q

λR)qE(u′(w̃)) + (1− p)qnu′(w2) + pqcu
′(w4) = 0, (3.18)

(1 + λR)pqcE(u′(w̃))− pqcu′(w4) = 0, (3.19)
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−(1− p

1− pλ
R)(1−p)E(u′(w̃))+(1−p)(1−qn)u′(w1)+(1−p)qnu′(w2) = 0. (3.20)

Firstly, (3.19) gives:
u′(w4) = (1 + λR)E(u′(w̃)). (3.21)

Secondly, with q = (1− p)qn + pqc, the combination of (3.18) and (3.19) gives:

u′(w2) = (1− p

1− pλ
R)E(u′(w̃)). (3.22)

Thirdly, (3.20) gives with the latter equation:

u′(w1) = (1− p

1− pλ
R)E(u′(w̃)). (3.23)

Fourthly, with (3.21), (3.22), (3.23) and the definition of E(u′(w̃)), we get:

u′(w3) = (1 + λR)E(u′(w̃)). (3.24)

If the inequality constraints are not strictly binding in (3.5) except
(qc − qn)τ − π − qcε ≥ 0, we have then π = (qc − qn)τ − qcε and (3.5) boils
down to:

max
τ,ε

E(u(w̃))

s.t. α = qc(τ − ε)

π = (qc − qn)τ − qcε.

(3.25)

The first order conditions of (3.25) relative to τ and ε are respectively:

−qcE(u′(w̃))+(qc−qn)(1−p)((1−qn)u′(w1)+qnu′(w2))+(1−p)qnu′(w2)+pqcu′(w4) = 0,
(3.26)

qcE(u′(w̃))− qc(1− p)((1− qn)u′(w1) + qnu
′(w2))− pqcu′(w4) = 0. (3.27)
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Firstly, the sum of (3.26) and (3.27) gives:

u′(w2) = u′(w1). (3.28)

Secondly, (3.27) gives with the latter equation:

u′(w4) = u′(w3). (3.29)

Comparative statics

We consider a CARA utility function u(.), i.e. with A = −u′′(.)
u′(.) > 0 constant.

With 0 < λR < λR
∗, (3.8) gives:

(1− p

1− pλ
R)u′′(w3)dw3 −

p

1− pu
′(w3)dλR = (1 + λR)u′′(w1)dw1 + u′(w1)dλR.

(3.30)
With (3.8), (3.30) can be rewritten:

−A(dw3 − dw1) = ( p

1− p− pλR + 1
1 + λR

)dλR, (3.31)

which finally gives with π = w1 − w3:

dπ

dλR
= 1
A(1− p− pλR)(1 + λR) . (3.32)

dπ
dλR

> 0 because (1 + λR)p < 1. Besides, α = (q + p(qc − qn)λR)l+ (1− p− pλR)π
and τR = N(qc − qn)l −Nπ > 0 respectively give with (3.32):

dα

dλR
= p((qc − qn)l − π) + 1

A(1 + λR) , (3.33)

dτR

dλR
= − N

A(1− p− pλR)(1 + λR) . (3.34)

dα
dλR

> 0 because τR

N
= (qc − qn)l − π > 0. dτR

dλR
< 0 because (1 + λR)p < 1.
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With 0 < λR < λR
∗, (3.8) gives similarly:

dπ

dδ
= 0. (3.35)

Besides, α = (q+ p(qc− qn)λR)l+ (1− p− pλR)π and τR = N(qc− qn)l−Nπ > 0
respectively give with (3.35):

dα

dδ
= p

d(qc − qn)
dδ

λRl, (3.36)

dτR

dδ
= N

d(qc − qn)
dδ

l. (3.37)

Because d(qc−qn)
dδ

> 0, dα
dδ
> 0 and dτR

dδ
> 0.

3.6.3 With opportunity cost (λl(α) ≥ 0)

Derivation of the FOC of (3.5)

If the inequality constraints are not strictly binding in (3.5), the first
order conditions of (3.5) relative to τ , ε and π are respectively:

−(1+λl′(α))(1+ p(qc − qn)
q

λR)qE(u′(w̃))+(1−p)qnu′(w2)+pqcu′(w4) = 0, (3.38)

(1 + λl
′(α))(1 + λR)pqcE(u′(w̃))− pqcu′(w4) = 0, (3.39)

−(1+λl′(α))(1− p

1− pλ
R)(1−p)E(u′(w̃))+(1−p)(1−qn)u′(w1)+(1−p)qnu′(w2) = 0.

(3.40)
Firstly, (3.39) gives:

u′(w4) = (1 + λl
′(α))(1 + λR)E(u′(w̃)). (3.41)
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Secondly, with q = (1− p)qn + pqc, the combination of (3.38) and (3.39) gives:

u′(w2) = (1 + λl
′(α))(1− p

1− pλ
R)E(u′(w̃)). (3.42)

Thirdly, (3.40) gives with the latter equation:

u′(w1) = (1 + λl
′(α))(1− p

1− pλ
R)E(u′(w̃)). (3.43)

Fourthly, with (3.41), (3.42), (3.43) and the definition of E(u′(w̃)), we get:

u′(w3) =
(

(1 + λl
′(α))(1 + λR)− λl

′(α)
p(1− qc)

)
E(u′(w̃)). (3.44)

If the inequality constraints are not strictly binding in (3.5) except
π ≥ 0, we have π = 0 (which states u′(w1) = u′(w3)) and the first order conditions
of (3.5) relative to τ and ε are respectively:

−(1+λl′(α))(1+ p(qc − qn)
q

λR)qE(u′(w̃))+(1−p)qnu′(w2)+pqcu′(w4) = 0, (3.45)

(1 + λl
′(α))(1 + λR)pqcE(u′(w̃))− pqcu′(w4) = 0. (3.46)

Firstly, (3.46) gives:

u′(w4) = (1 + λl
′(α))(1 + λR)E(u′(w̃)). (3.47)

Secondly, with q = (1− p)qn + pqc, the combination of (3.45) and (3.46) gives:

u′(w2) = (1 + λl
′(α))(1− p

1− pλ
R)E(u′(w̃)). (3.48)

Thirdly, with (3.47), (3.48) and the definition of E(u′(w̃)), we get:

u′(w1) = u′(w3) =
(

(1 + λl
′(α))(1− p(qc − qn)

1− q λR)− λl
′(α)

1− q

)
E(u′(w̃)). (3.49)
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Comparative statics

We consider a CARA utility function function u(.), i.e. with A = −u′′(.)
u′(.) > 0

constant.

With 0 < λl < λl
∗, (3.13) gives:

(1− λl

p(1− qc)(1 + λR)(1 + λl))u′′(w4)dw4−
1

(1+λl)2

p(1− qc)(1 + λR)u
′(w4)dλl = u′′(w3)dw3.

(3.50)
With (3.13), (3.50) can be rewritten:

−A(dw4 − dw3) = 1
p(1− qc)(1 + λR)(1 + λl)2 − λl(1 + λl)dλ

l, (3.51)

which finally gives with ε = w3 − w4:

dε

dλl
= 1
A(p(1− qc)(1 + λR)(1 + λl)2 − λl(1 + λl)) . (3.52)

Similarly, (3.14) gives:

dπ

dλl
= − 1

A(p(1− qc)(1 + λR)(1 + λl)2 − λl(1 + λl)) . (3.53)

Besides, α = (q + p(qc − qn)λR)l + (1 − p − pλR)π − (1 + λR)pqcε and τR =
N(qc − qn)l −Nπ −Nqcε > 0 respectively give with (3.52) and (3.53):

dα

dλl
= −(1− p(1− qc)(1 + λR)) dε

dλl
, (3.54)

dτR

dλl
= N(1− qc)

dε

dλl
. (3.55)

Note that λl < p(1−qc)
1−p−p(1−qc)λRλ

R and (1 +λR)p < 1 give: p(1− qc)(1 +λR)(1 +λl)−
λl > 0, which tells the sign of the four latter equations.
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With 0 < λl < λl
∗, (3.13) and (3.14) give similarly:

dε

dqc
= λl

A(p(1− qc)2(1 + λR)(1 + λl)− λl(1− qc))
, (3.56)

dπ

dqc
= − λl

A(p(1− qc)2(1 + λR)(1 + λl)− λl(1− qc))
. (3.57)

Note that λl < p(1−qc)
1−p−p(1−qc)λRλ

R and (1 +λR)p < 1 give: p(1− qc)(1 +λR)(1 +λl)−
λl > 0. Thus, dε

dqc
> 0 and dπ

dqc
< 0. Because dε

dqn
= 0 and dπ

dqn
= 0, we thus have:

dε
dδ
> 0 and dπ

dδ
< 0. Besides, α = (q+p(qc−qn)λR)l+(1−p−pλR)π− (1+λR)pqcε

and τR = N(qc − qn)l −Nπ −Nqcε > 0 respectively give with (3.56) and (3.57):

dα

dδ
= p

d(qc − qn)
dδ

λRl −
(

(1− p(1− qc)(1 + λR)) dε
dqc

+ (1 + λR)pε
)
dqc
dδ
, (3.58)

dτR

dδ
=
(
N(l − ε) +N(1− qc)

dε

dqc

)
dqc
dδ
−Nldqn

dδ
. (3.59)

Thus, dα
dδ

is ambiguous and dτR

dδ
> 0.
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Chapter 4

Securitizing the supply chain risk

This chapter is co-authored with Pierre Picard.

Abstract: This paper analyzes optimal insurance strategies of a firm facing
several risks when the insurance tools at his disposal feature basis risk. Our aim
is to characterize the optimal hedging strategy of a company who seeks to secure
its supply chain procurement risk. In opposition with the current practice in risk
management departments, we highlight the benefit of adopting an approach that
bundles the various risk lines under a single insurance policy. We argue that such
a policy could take the form of a catastrophe bond issued by the company. Com-
pared to a traditional hedging strategy (via future contracts), catastrophe bonds
combine the advantages of risk bundling and of lower basis risk.

Keywords: supply chain, catastrophic risks, insurance, catastrophe bonds.
JEL classification: G32, G22, G23, Q14.
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4.1 Introduction

Supply chain events are a major source of risk for many large firms. When im-
portant volumes are exchanged among actors of the supply chain, even minor
glitches or prices changes may have dramatic effects on production possibilities.
In addition to the important contagion effects (Hertzel et al. (2008)), consequences
for individual firms along the supply chain can be severe. Hendricks & Singhal
(2005b) find that supply chain disruptions are associated with an abnormal return
of almost -40% on a three year period starting one year before the disruption. In
a second paper Hendricks & Singhal (2005a) also show that measures of operating
performance, such as operating income, return on sales, and return on assets, are
significantly and negatively affected by supply chain glitches.

Through their network of stores, large retail firms’, such as Carrefour, Walmart,
Sainsbury’s,... core activity consists in purchasing and carrying goods where they
are the most needed. Consequently, food procurement is an important component
of their activity. When adverse events affect their suppliers’ sale prices, these firms
may either pay a higher price and maintain the relationship with the concerned
suppliers or reorganize their supply chain. In both cases, substantial costs are
to be expected and it is unlikely that they would be able to pass all the cost
increase on to its customers. Procurement price risk therefore directly affects their
profitability.

Traditional methods for handling price risk include financial hedging, through
the purchase of financial instruments, such as futures and other options, and oper-
ational hedging (Cudahy et al. (2008), Johnson (2001)), that consists in purchasing
“opportunities to delay and adjust investments and operating decisions over time
in response to resolution of uncertainty” (Triantis (2000)). The complementarity
between financial and operational hedging is an interesting subject studied in Dong
& Tomlin (2012) but it is not what we discuss in the present paper. Instead, we
focus on financial hedging.1

1In its 2015 annual report, Sainsbury’s (2015) declares using forward contracts and options
to hedge against currency risks (pp 117-123). Forward contracts also protect Sainsbury’s own
consumption of gas, electricity and fuel. No information is provided about procurement risk.
Given the strategic role played by procurement, it is likely that Sainsbury’s uses a combination
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Purchases of future contracts are a conventional hedging strategy. In order to
secure its procurement cost at date t+h, the firm buys at date t futures maturing
at date t + h, hence securing the cost of its supplies. The aim of this paper is
to show that this strategy is dominated by a bundled strategy without basis risk.
Concretely, such a strategy could take the form of a catastrophe bond (henceforth
cat-bond) issued by the firm to hedge the risk of large price surges.

Traded on Alternative Risk Transfer (ART) markets cat-bonds provide very
flexible ways to insure risks and to tailor coverage to firm’s special needs. They
enable cedent companies to transfer a given risk to financial market investors by
conditioning the repayment of the principal to the non-occurence of a pre-defined
adverse event. In exchange, the cedent company offers a compensation that reflects
the risk taken by investors. These market investors therefore act as the insurer of
the cedent.

With more than 25 billion dollars of outstanding capital2, the cat-bond market
has been able to attract investors by offering spreads that feature little correlation
with traditional asset returns, hence enabling portfolio managers to reach further
diversification.

The hedging strategy based on the emission of a cat-bond may be more effective
than the traditional future strategy currently followed by most firms for at least
two reasons. Firstly, in-house diversification may lower the cost of insurance if
the risk lines are sufficiently diversifiable among each other (i.e., they feature
little correlations.) Secondly, hedging strategies based on future purchases are
likely to feature significant amounts of basis risk. Indeed, future contracts are not
available for all commodities purchased by a particular firm. Futures exchanged
on the London market place for example, reflect the evolution of the average
transaction price, without necessarily reflecting the specifics of the firm’s logistic
and strategic constraints. Futures should therefore be considered as indices, that
imperfectly hedge the actual procurement risk. Cat-bonds, in contrast, allow for
basis risk mitigation. While indemnity triggers directly condition the indemnity on
the actual loss incurred by the cedent, parametric triggers condition the indemnity
of financial and operational hedging.

2http : //www.artemis.bm/
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on the level of an index, designed to replicate as closely as possible the actual loss of
the firm. A minimal parametric trigger includes the market spot prices, that define
the future strategy’s payoff. Adding other variables to the index of a parametric
trigger can therefore only reduce the basis risk of a cat-bond strategy compared
to a future based strategy.

On the other hand, cat-bonds, and in particular cat-bonds with indemnity
triggers (without basis risk) are costly. The theory of future pricing does not
provide a clear indication as to whether future prices are above or below expected
spot prices and two main theories compete to explain future prices : the theory of
storage and the risk premium theory.

The theory of storage relies on an absence of arbitrage argument by which
the net present values of holding a future must be equal to that of storing the
commodity. This theory can only apply to the extent that the commodity is
storable, which may be a reasonable assumption when considering a 12-months
ahead hedging strategy for grains. It predicts that future prices may be slightly
above (contango) or below (backwardation) the expected spot price, depending
on the aggregate level of stored commodity. When aggregate inventory levels are
high, there is little gain for a particular firm to store the product itself. In these
periods, future prices tend to be high (contango). In contrast, when aggregate
inventory levels are low, firms are willing to pay a premium (the convienience
yield) to physically hold the commodity, which tends to lower the price of futures
(backwardation). According to this theory, we may therefore expect high future
prices in harvest seasons, when stocks of grains are replenished and lower future
prices in-between.

The theory of the risk premium emphasizes the risk-return trade-off of futures
contracts. As any other asset, futures should deliver a risk premium to the extent
that their payoff is correlated with the market’s payoff (positive betas). Never-
theless, empirical tests of the risk premium theory do not seem to reject the null
hypothesis of a zero risk premium.

In any case, it is clear that the loading associated with future contract is likely
to be lower than that associated with a cat-bond. As a consequence, the three
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benefits of our proposed hedging strategy (in-house diversification and lower basis
risk) must be traded-off against the cost of issuing a cat-bond, which is the purpose
of this paper.

The article is organized as follows. Section 4.2 highlights the gains of a bundled
hedging (cat-bond) strategy over a line-by-line (future) strategy in the absence of
basis risk. We show that the gain from a bundled strategy must be higher than
that of a line-by-line strategy and we quantify this gain using four series of crop
prices : maize, wheat, rice and soy, traded on the London stock market between
2001 and 2017. Our computations suggests that the cost of procurement risk
could be lowered by a fraction comprised between 5 and 14 percent annually using
a cat-bond rather than futures.

Section 4.3 then takes on the issue of basis risk. A discussion of the uni-variate
case precedes the derivation of the optimal hedging behavior when the firm faces
several risk lines. The gain from a hedging strategy with futures is compared with
that of our proposed cat-bond strategy with an indemnity trigger (that is without
basis risk). Taking basis risk into account therefore reduces the efficiency of the
future based strategy. we find that our proposed cat-bond hedging strategy could
lower the certainty equivalent by a figure comprised between 10 and 35 percent,
compared to a future based approach.
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4.2 Risk pooling in the absence of basis risk

We begin our investigation by ignoring basis risk to focus on the gain from bundling
several risk lines together. Indeed, the risk that results from bundling all the
product-specific price risks can be characterized as lower than that resulting from
the non-aggregated sum of all price risks. This diversification effect exists as soon
as the product-specific risks are not perfectly correlated, a technical condition that
is highly likely to be met.

To see this argument, suppose a firm has n procurement lines. Its unit produc-
tion cost, ∑n

i=1 αixi, is the sum of the input prices xi weighted by quantities αi,
where∑n

i=1 αi = 1. For simplicity, we assume that the firm faces a technology with
complementary factors and constant return to scale, which is why the coefficients
αi remain fixed when the relative input prices change.

4.2.1 Line-by-line insurance

If the firm decides to insure all procurement lines separately, it receives n indem-
nities Ii(xi), each covering the price variation of a single unit of input in a single
line. Typically, Ii(xi) can be a payment that increases linearly when the price is
above a deductible, but the current analysis does not depend on the form of the
indemnity schedule. The firm therefore receives a total indemnity

q
n∑
i=1

αiIi(xi),

where q is the exogeneously chosen quantity of output produced by the firm. Final
wealth is

wsf = w(q)− q[
n∑
i=1

αi(xi − Ii(xi))]− Ps,

where w(q) is an arbitrary production function and Ps is the price of the insurance
contracts. A simple model used by most reinsurers to price contracts is

Pi = q(1 + λ)χi + c

2q
2ξ2
i , (4.1)
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where χi and ξi are the expected value and standard deviation of the line specific
indemnity schedule Ii(xi).3 λ is a loading that takes into account the various
expenses associated with claim handling and payment. The parameter c reflects
the degree of risk aversion of the insurer. Under this pricing assumption, the cost
of covering separately the n procurement lines is therefore Ps = P1 + ...+Pn, where
Pi is the price of the line-specific indemnity i given by equation (4.1), hence

Ps = q(1 + λ)
n∑
i=1

αiχi + c

2q
2

n∑
i=1

αiξ
2
i . (4.2)

4.2.2 Bundled insurance

The firm can also choose to insure all procurement risks at once with one bundled
policy I(x1, ...xn) that pays an indemnity depending simultaneously on all its input
prices. The firm’s final wealth is in this case

wbf = w(q)− q[
n∑
i=1

αixi − I(x1, ..., xn)]− Pb,

In order to compare the price of the separate policies with that of the bundled
policy, we set

I(x1, ..., xn) =
n∑
i=1

αiIi(xi), (4.3)

so that final wealth under the bundled policy is identical to that under the line-
by-line policy. The price of the bundled strategy is given by equations 4.1 and 4.3

Pb = q(1 + λ)
n∑
i=1

αiχi + c

2q
2[

n∑
i=1

α2
i ξ

2
i +

n∑
i=1

∑
j 6=i

αiαjρijξiξj], (4.4)

where ρij is the coefficient of correlation between indemnities Ii(xi) and Ij(xj).
The gain obtained by bundling the risks instead of purchasing separate policies for

3We keep the traditional notations µi and σ2
i for the expected value and variance of the

underlying risks xi’s.
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each procurement line is therefore

Ps − Pb = c

2q
2[

n∑
i=1

αiξ
2
i −

n∑
i=1

α2
i ξ

2
i −

n∑
i=1

∑
j 6=i

αiαjρijξiξj], (4.5)

which is always positive.

Proposition 18 If the reinsurer is risk averse (c > 0) and not all prices are
perfectly correlated (∃ ρij < 1), then for any indemnity schedules Ii(xi)i=1,...,n,
the bundled policy is cheaper than the line-by-line policy.

The gain between the two strategies increases with the degree of risk aversion c
of the reinsurer and decreases with the pairwise correlation coefficient ρij.

Proof The proof is given in Appendix 4.6.1.

This gain comes from the variance reduction that the firm is able to operate
before transferring the risk. Provided with the form of a contract and with the
share of each procurement line in a firm’s business, it is possible to re-express
equation (4.5) as a function of the characteristics of the underlying risks xi, which
is more customary but less general. If we consider, as an example, a case of full
insurance (Ii(xi) = xi for all i = 1, ..., n), we may write χi = µi and ξi = σi, where
µi and σi are the expected values and variances of the underlying risks xi. Further
assuming equal weights αi = 1/n, a symmetric variance covariance structure with
σi = σ for all procurement lines i = 1, ...n and ρij = ρ for all pairs i 6= j yields a
simple expression for equation (4.5) to compute the gain from pooling risks as

Ps − Pb = c

2q
2σ2[1− 1

n
(1 + (n− 1)ρ)].

When the coefficient of correlation ρ = 1 or when n = 1, there is no gain from
pooling : Ps − Pb = 0. The gain from pooling decreases with ρ. As correlation
diminishes, more diversification across lines takes place, hence inducing a decrease
in the indemnity premium required by a risk averse insurer. The gain from pooling
increases in the number of lines pooled n, in the variance σ2 of the line specific
risks, in the insurer’s risk aversion c, and in the quantity q.
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4.2.3 Optimal linear contract

We now turn to the question of the optimal contract. Assume that the firm can
insure a quantity θi of each line of risk i = 1, ..., n. That is, it chooses the weights
θi of the indemnification rule

I(x1, ..., xn) =
n∑
i=1

αiθixi.

Let us denote ψi = θiαi, or in vector form ψ = θ · α, where ψ, θ and α are n × 1
column vectors and · is the Hadamard element-wise product. Then, the indemnity
can be written as I(x) = ψ′x and the agent’s final wealth is

wf = w(q) + q(ψ − α)′x− P.

With mean-variance preferences, the objective function is

V (θ) = w(q) + q(ψ − α)′µ− P − κ

2 q
2(ψ − α)′Σ(ψ − α). (4.6)

Full insurance is characterized by ψ = α, µ is the n× 1 mean vector and Σ is the
matrix that collects the variances and covariances of the n risk lines. Finally the
parameter κ captures the firm’s degree of risk aversion.

Line-by-line pricing

We first consider the case where the price of the insurance policy is calculated on
a line-by-line basis. This is the case if the firm uses futures to insure its various
risk lines. We assume that future markets are well arbitraged and that the law
of one price holds on each market. We further assume that the price of a future
contract, delivering the payoff x at maturity is given by equation (4.1), where
χi = θiµi is the expected payoff of the future contract, that is the expected spot
price at maturity multiplied by the amount of future purchased and ξi = θ2

i σ
2
i is
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the strategy payoff’s variance. Equation (4.2) be written as

Ps = q(1 + λ)
n∑
i=1

αiθiµi + c

2q
2

n∑
i=1

αiθ
2
i σ

2
i .

or, in matrix form

Ps = q(1 + λ)ψ′µ+ c

2q
2ψ′Σ̂(ψ · /α), (4.7)

where ·/ is the element-by-element division operator and Σ̂ is a matrix of size
n×n constructed by deleting all non-diagonal elements of the variance-covariance
matrix Σ.

The case λ = c = 0 corresponds to a case where futures are sold exactly at
the expected spot price on all markets, while λ > 0 and c > 0 reflect potential
transaction costs and risk premiums, respectively. From the standpoint of the
firm, insurance is sold above actuarially fair prices as soon as λ > 0 or c > 0. In
this case, it is excluded that we obtain ψ = α as an optimum.

Differentiating the objective function (4.6) with P = Ps yields the first order
condition

−λµ− cqΣ̂(ψ · /α) = −κqΣ(ψ − α).

Denoting α∗ = (1/α1, ..., 1/αn)′, we can write

Σ̂(ψ · /α) = Σ̂α∗ψ,

to factor out the vector of co-insurance rates ψ. This yields the solution

ψ = κ(cΣ̂α∗ + κΣ)−1Σα− λ(cΣ̂α∗ + κΣ)−1µ. (4.8)

Now recalling that ψ = θ · α provides the formula for the optimal co-insurance
rates

θ = κ(cΣ̂α∗ + κΣ)−1Σ1n×1 − λ(cΣ̂α∗ + κΣ)−1µ · /α,

where 1n×1 is a n × 1 vector of ones. Remark that when λ = c = 0, we indeed
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obtain full insurance θ = 1n×1. Also remark that the optimal co-insurance formula
(4.8) considerably simplifies when c = 0, in which case we obtain

ψ = α− λ

κ
Σ−1µ.

This section showed how futures can be used as a hedge against procurement
price risk. The next section considers the case of a supply chain cat-bond.

Pooled insurance

One important difference between the future strategy discussed above and the cat-
bond strategy proposed here is the in-house diversification that the latter allows.
If the firm contracts on a set of risk lines rather than on a line-by-line basis, the
volatility of the risk that it transfers to its counterpart is reduced, hence lowering
the cost of insurance, as shown in Proposition 18. We now turn to the question of
how to optimally design the insurance policy of a bundled insurance device such
as our proposed cat-bond.

The matrix form of (4.4) gives the price of the bundled policy as

P = (1 + λ)qψ′µ+ c

2q
2ψ′Σψ (4.9)

Differentiating (4.6) and (4.9) with respect to ψ yields a first order condition,
equating marginal gain to marginal cost

µ− qκΣ(ψ − α) = (1 + λ)µ+ cqΣψ.

This gives
ψ = κ

κ+ c
α− λ

q(κ+ c)Σ−1µ. (4.10)

Now recalling that ψ = θ · α provides the formula for the optimal co-insurance
rates

θ = κ

κ+ c
1n×1 −

λ

q(κ+ c)Σ−1µ · /α. (4.11)

Equation (4.11) characterizes the optimal co-insurance rates under the bundled
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policy. This formula comprises two terms. The first term [κ/(κ + c)]1n×1 is the
solution when the loading factor λ is null. It is proportional to the relative risk
aversion of the firm and of the insurer and it is simply the vector 1n×1 when
c = 0, i.e. the insurer has no risk aversion. The second term λ

q(κ+c)Σ
−1µ · /α is

proportional to the loading cost λµ · /α. For a given line i, λiµi/αi reflects the
loading cost adjusted for the relative importance of the line. The lower αi, the less
important line i is in the firm’s business and therefore the lower the co-insurance
rate θi. In addition, a correction is made for the variance of the risk through the
inverse of the variance-covariance matrix Σ.

In order to see how this adjustment term plays, let us consider a situation with
two goods. Inverting the variance-covariance matrix

Σ =
 σ2

1 σ12

σ12 σ2
2


yields the solution

θi = κ

κ+ c
− λ

qαi(κ+ c)(1− ρ2)σ2
i

(
µi − ρµj

σi
σj

)
. (4.12)

First notice that when ρ = 0, the two risk lines are optimally insured independently
of each other, which is not surprising since in this case there is no substitutability
across lines that the policyholder can leverage to lower his insurance bill. Other-
wised, an increase in the expected loss µj or a decrease of the variance σ2

j leads
to an increase in the co-insurance rate on line i θi as soon as ρ > 0, due to the
substitution across lines.

In fact, Equation (4.12) shows two effects of an increase in the correlation
coefficient ρ. In the denominator of the right-hand side term, ρ has an adverse
effect on θi because correlation makes it more costly to achieve a given level of
insurance. Realizing it, the agent lowers its demand for insurance, as he would in
response of an increase in the loading factor λ. In the second term of (4.12), ρ has
a positive impact on θi because the agent may exploit the correlation to substitute
across lines. If ρ > 0 and µj is sufficiently high with respect to µi, the firm will
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substitute insurance on line j with insurance on line i. In fact, ρ can be seen as
a measure of the cost of insurance as well as a measure of substitutability across
lines. The polar case ρ = 1 indicates perfect substitutability but absence of gain
from pooling.

4.2.4 The welfare effect of bundling : empirical investiga-
tion

This section uses four times series to evaluate the potential gains derived from
pooling risks together instead of having a line-by-line hedging strategy. The time
series used span 16 years of monthly information from 2001 to 2017 on the UK
market for maize, wheat, rice and soy crops. All prices are converted in UK pound
per tonne. For simplicity, spot prices are proxied with one-month future prices.

Figures (4.1a), (4.1b), (4.1c) and (4.1d) show the evolution of the crop prices
over time. Prices seem highly correlated and the four time series feature two
peaks, corresponding to the inflationary periods of 2008 and 2012-2013. Table
(4.1) shows the historical price averages. Soybean is the most expensive crop,
followed by maize, wheat and rice. Table (4.2) displays the variance covariance
matrix of the crop returns. All crops have positive pairwise correlation coefficients
and Soybean and Maize returns are the most correlated lines.

Maize Wheat Rice Soy
µ 450.64 192.33 23.85 1379.59
σ 218.28 43.26 7.24 453.10

Table 4.1: Input prices mean and std dev. Jan 2001 - Sept 2017

Maize Wheat Rice Soy
1.0000 0.36740 0.47758 0.70626

1.0000 0.31280 0.38215
1.0000 0.46251

1.0000

Table 4.2: Correlation Jan 2001 - Sept 2017
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Assessing the welfare gains from a bundling strategy requires to estimate the
joint distribution of future crop prices. In order to do so, we assume that log-
returns are jointly normally distributed

rt,t+1 ∼ N (µr,Σr),

where rt,t+1 = ln xt+1 − ln xt is a 4 × 1 vector that contains the crop returns. µr
is the 4× 1 expected value vector and Σr is the 4× 4 variance-covariance matrix.
From the normality of log-returns, it follows that the h period ahead price follows
a log-normal distribution

xt,t+h ∼ LN (µt,t+h,Σt,t+h),

with mean
µt,t+h = xt · exp[h(µr + diag(Σr)/2)],

and variance-covariance matrix

Σt,t+h = µt,t+hµ
′
t,t+h · (exp(hΣr)− 1n×n).

The joint distribution of crop prices, enable to estimate the certainty equivalent
of the firm’s procurement risk

CEt,t+h(θt) = q[α ·(1n×1−θt)]′µt,t+h+ κ

2 q
2[α ·(1n×1−θt)]′Σt,t+h[α ·(1−θt)], (4.13)

and the net gain of a policy θt

Gt,t+h = CEt,t+h(0)− CEt,t+h(θt)− Pθt ,

for various insurance strategies θt, where Pθt is the price of the policy associated
with the strategy θt. In particular, the optimal insurance strategy with bundling is
estimated with the rule (4.11) replacing Σ and µ by µt,t+h and Σt,t+h. The welfare
gain from bundling is then obtained by comparing the net gain under bundling to
the net gain under a line-by-line strategy with rule (4.8).
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The exercise requires a set of calibrating assumptions summarized in Table
(4.3).

κ 0.0005 h 12
c 0.002 q 200
λ 0.3 αi 0.25

Table 4.3: Calibration

Figures (4.2a) and (4.2b) represent the certainty equivalent and the cost of full
coverage (respectively) for a 12 month ahead risk at each time period (a month).
On the left panel, the certainty equivalent follows closely the crop prices, for higher
current prices produce higher expected prices and higher variances. On the right
panel, the lower curve represents the cost of full coverage under a bundled strategy
while the higher curve represents the cost of full coverage under a line-by-line
strategy such as the future strategy. The lower cost of a bundled strategy is a
direct consequence of Proposition 18.

Figures (4.3a), (4.3b), (4.3c) and (4.3d) contrast the optimal strategies under
bundling (red) to the optimal strategies under a line-by-line strategy (black). The
insurance demand on rice and wheat is much lower under the bundled scheme
than under the line-by-line approach. These two crops are the ones with the
smallest mean prices. As a consequence, their forecasted volatility is also lower
than that of the two other crops. Since the line-by-line strategy puts a high price
on volatility, the firm’s demand for these highly volatile crops is substituted with
demand on the less volatile crops. This substitution can take place because of the
positive correlation between these two cheaper insurance lines and the more costly
insurance on maize and soy.

Under the line-by-line scheme, soy is very little insured due to its high volatil-
ity. The insurance on soy is substituted with insurance on maize, a crop highly
correlated with soy. Demand for maize is important despite its high price due to
this substitution effect.

Finally, Figure (4.4a) shows the reduction in the certainty equivalent that the
bundled strategy allows, comprised between 25 and 55 percent. Figure (4.4b)
shows the difference between the welfare gain from a bundled strategy and that
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from the line-by-line strategy, which can be interpreted as the gain from bundling
the four risk lines. Due to our assumption on the stationary of returns, the gain
from bundling is low when prices are low and increases as prices increase. Accord-
ing to our calculations, bundling could have yielded significant gains, up to a 14
percent reduction in the certainty equivalent during the 2008 price soar.
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Figure 4.1: Crop prices 2001-2017
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Figure 4.2: Cost of risk and of full insurance
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Figure 4.3: Co-insurance rates line-by-line (blue) and bundled (red) strategy
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Figure 4.4: Gain from bundling
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4.3 Insurance in the presence of basis risk

We have established so far that a bundled strategy is always superior to a line-
by-line strategy. The next step toward our goal is therefore to compare a cat-
bond strategy to a future strategy. We have highlighted one drawback of the
future strategy compared to a cat-bond strategy : the future strategy cannot be
bundled. Each future is typically sold by a given market investor. If futures are
sold at actuarially fair prices (i.e. at the expected spot price of their corresponding
maturity) then no cost reduction can be expected from bundling. However, in the
presence of a risk premium, a future strategy would fail to exploit the gains from
in-house diversification.

The theory of future pricing does not provide a clear indication as weather
future prices are above or below expected spot prices. However, it is clear that
the loading associated with future contracts is likely to be significantly lower than
that associated with a cat-bonds. Nevertheless, cat-bonds allow for a better match
between the indemnity and the actual loss of the company, that is for less basis
risk. The next sections aim at analyzing the trade-off between cost and basis risk
in order to clarify the relative merits of the cat-bond and future hedging strategies.

4.3.1 Accepting basis risk - The univariate case

We begin by considering a simple univariate insurance decision problem, where the
firm wants to insure a risk x. In this univariate setting, the next sections compare
the relative merits of a direct insurance scheme (such as an indemnity cat-bond),
where the indemnity is based on the actual loss, hence eliminating basis risk, and
those of an indirect insurance scheme (such as a purchase of future contracts),
where the payoff is imperfectly correlated with the actual loss x.

Direct vs index insurance

A contract insuring directly the variable x entails a loading λ due for example
to the high cost of setting up the contract (moral hazard,4 monitoring costs, risk

4See Appendix 4.6.3.
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modeling, placement, lack of competition among cat-bond investors, etc) On the
other hand, the firm can purchase an index insurance, that delivers a payoff y,
imperfectly correlated with the loss x. In our case, a future delivering the spot
price at maturity can be regarded as an index insurance against procurement risk.
For simplicity, we assume that the index insurance on y entails no loading (that is,
the future is sold at the expected spot price.) We begin by discussing the case of
direct insurance, where the index y is not available and the firm can only contract
on x. The firm’s final wealth in this case, is

w(q)− qx+ qθxx− P d,

with P d = q(1 + λ)θxµx. Differentiating the firm’s mean-variance utility function

V (θx) = w(q)− qµx + qθxµx − P d − κ

2 [q2(θx − α)2σ2
x],

with respect to θx ≥ 05 gives the optimal insurance contract

θ∗x = 1− λµx
qκσ2

x

. (4.14)

The firm chooses a level of coverage that is lower than its exposure due to the
presence of a loading cost λµx. The higher the risk variance σ2

x or the level of risk-
aversion κ, the closer from full coverage the optimal rule (4.14) is. The indirect
utility function is

V (θ∗x) = w(q)− (1 + λ)qµx + λ2µ2
x

2κσ2
x

. (4.15)

The first two terms represent the firm’s wealth if it had purchased full direct
insurance. The ability to choose partial insurance gives rise to the third term,
which improves the firm’s welfare.

We may now compare the direct insurance scheme to the future hedging strat-
egy, where the firm pays a price P i to receive the spot price y at the contract

5The constraint θx ≥ 0 prevents the firm from receiving a fixed payment (1 + λ)θxµx higher
than the expected value of the variable indemnity θxx provided in exchange, which would be
inconsistent with the interpretation of λ as a transaction cost.
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maturity. The final wealth of the firm in this case is

w(q)− qx+ qθyy − P i,

with P i = qθyµy is actuarially fair. The firm’s mean-variance utility function is

V (θy) = w(q) − qµx + qθyµy − P i

− κ

2 q
2[θ2

yσ
2
y + σ2

x − 2θycov(x, y)],

and the optimal contract is
θ∗y = cov(x, y)

σ2
y

. (4.16)

The optimal insurance rate θy is equal to the slope coefficient’s OLS estimate of
a simple bivariate regression of x on y. When this coefficient is equal to one, the
future contract y is a perfect substitute for direct insurance. Since we assumed
that future are sold at actuarially fair prices, the firm’s optimal strategy is full
insurance θ∗y = 1 when cov(x, y)/σ2

y = 1. The firm may want to buy a negative
amount of insurance on the index y if it is negatively correlated with its loss x.
For simplicity, we assume that the constraint θy ≥ 0 prevents such behavior.6

The indirect utility function with the future hedging strategy is

V (θ∗y) = w(q)− qµx −
κ

2 q
2σ2

x(1− ρ2), (4.17)

where ρ = cov(x, y)/σxσy. When ρ = 0 or ρ = 1, the indirect utility is just equal
to the utility without any insurance and with full insurance, respectively. The first
two terms of equation (4.17) represent the firm’s wealth if it takes full insurance
at an actuarially fair price. The last term represents the cost of basis risk. When

6Buying a negative amount of insurance θy < 0 would amount for the firm to paying an
indemnity when the index is high (and therefore when the loss is low by equation 4.16) in
exchange for a fixed payment P i. This financial contract is rather atypical in an insurance-
policyholder relationship, where the policyholder tends to pay a fixed premium and the insurer
a variable indemnity. Since we have assumed that futures are available at an actuarially fair
price, the possibility, evoked in footnote 5, for the firm to sell insurance at a price higher than
the expected indemnity is absent here. However, we impose the constraints θx ≥ 0 and θy ≥ 0
for simplicity of exposition.
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ρ < 1, even a situation of full index insurance θ∗y = 1 leaves some risk to the firm.
Indeed, cov(x, y)/σ2

y = 1 implies full index insurance, as shown in equation (4.16),
and is equivalent to ρ = σy/σx. But the correlation coefficient can be smaller than
one if the variance of the index is smaller than the variance of the actual loss. In
this case, purchasing a quantity θy = 1 of futures fails to deliver full insurance.

Therefore, it may be optimal for the firm to purchase more than full index
insurance (θy > 1), even if the index is perfectly correlated with the loss. For
example, if ρ = 1 the optimal rate of insurance is θx = σx/σy > 1 if σx > σy.
Indeed, the variance of the index being smaller than the variance of the loss, a
full index insurance θx = 1 would not provide full insurance. In this case, the
firm generates additional variance in its indemnity by purchasing more than full
insurance.

Rearranging equations (4.15) and (4.17), the gain from using index insurance
rather than direct insurance is

V (θ∗y)− V (θ∗x) = κ

2 q
2σ2

x[ρ2 − (1− λµx
κqσ2

x

)2],

which is positive if and only if

ρ ≥ 1− λµx
2κqσ2

x

.

The firm prefers the index insurance if the index is sufficiently correlated with
the loss, or if the cost of direct insurance λµx is high relative to the cost κqσ2

x of
retaining the risk. Notice that if direct insurance entails no loading cost (λ = 0),
only a perfectly correlated index would make the firm indifferent between index
insurance and direct insurance.

Combining index and direct insurance

We now study the case where the firm has access to both the index insurance and
to direct insurance. The firm’s final wealth in this case writes

w − q[x− θxx− θyy]− P,
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where θx and θy are the coinsurance rates on the variables x and y, respectively.
The relevant loss for the firm is x but it can purchase insurance both on x and y.
The price of the contract is

P = q[(1 + λ)θxµx + θyµy],

and the firm’s objective function writes

V (θx, θy) = w(q) − q[µx − θxµx − θyµy]− P

− κ

2 q
2[(1− θx)2σ2

x + θ2
yσ

2
y − 2(1− θx)θycov(x, y)].

Optimizing with respect to the coinsurance rates θx ≥ 0 and θy ≥ 0 yields the first
order conditions

−λµx − qκ[(1− θx)σ2
x + θycov(x, y)] ≤ 0 (4.18)

−κθyσ2
y − κ(1− θx)cov(x, y) ≤ 0 (4.19)

At an interior solution, the quantities of insurance purchased are

θ∗x = 1− λµx
qκσ2

x(1− ρ2) (4.20)

θ∗y = ρ

1− ρ2
λµx

qκσxσy
(4.21)

Compared to the solution without index insurance, described by equation
(4.14), the quantity of direct insurance purchased given by equation (4.20), con-
tains an additional factor 1/(1−ρ2) that reflects the substitution of direct insurance
with index insurance when the latter instrument is sufficiently correlated with the
true loss. The corner solution θ∗x = 0 is obtained when

ρ2 > 1− λµx
qκσ2

x

. (4.22)

Inequality (4.22) gives the condition under which it is preferable to insure x
only indirectly through the correlated variable y, when both direct and index
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insurance are available. It is always the case if ρ = 1, i.e. the two variables are
perfectly correlated, because in this case y is a perfect proxy for x and does not
entail a deadweight cost. The right hand side of (4.22) is increasing in λµx, which
is the cost of insuring directly x, and decreasing in the firm’s risk aversion κ, in
the variance of the risk σ2

x and in the size q of the risk.
Equation (4.21) indicates that the firm always wants to purchase a positive

amount of index insurance, as soon as the index is positively correlated with the
loss. The corner solution θ∗y = 0 can therefore only be obtained when ρ ≤ 0. θ∗y is
increasing in the correlation coefficient ρ, in the cost of direct insurance λµx and
decreasing in the index of risk aversion κ and standard deviations σx and σy.

Table 4.4 summarizes the results of Section 4.3.1. The parameter space can be
divided into three disjoint subsets. When the correlation coefficient ρ between the
index and the true loss is small, the firm prefers direct insurance to index insurance.
If both instruments are available, it chooses to combine both instruments in its
optimal mix. For intermediate values of ρ, the firm prefers the index instruments
but would keep mixing if possible. Finally, when ρ is sufficiently large, the firm
prefers the index and would choose not to purchase direct insurance, even when it
is possible to combine both instruments.

0 ≤ ρ < 1− λµ

qκσ2
x

1− λµ

qκσ2
x
≤ ρ < [1− λµ

qκσ2
x

](1/2) [1− λµ

qκσ2
x

](1/2) < ρ ≤ 1

direct vs index direct � index index � direct index � direct
direct and index θ∗x > 0, θ∗y > 0 θ∗x > 0, θ∗y > 0 θ∗x = 0, θ∗y > 0

Table 4.4: Summary

The bottom line is that when the cost of insuring directly a variable is too high
the firm can be willing to accept some basis risk. A correlated variable, or more
realistically a set of variables as we will see in the next section, can be defined as
an index on which the indemnity payment is conditioned.

4.3.2 The case of multiple risk lines with basis risk

We now return to the case of multiple risk lines. The policyholder is the firm
who seeks to secure its supply cost. It uses a quantity of input q composed of n
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categories, each representing a fraction αi of q. The input is transformed into an
output w(q). Procurement prices are random variables collected in a vector x, with
mean µx and variance covariance matrix Σx. In order to secure its procurement
cost, the firm can purchase a quantity θ of index insurance delivering a payoff
q(α · θ)′y at price P , where y is a n × 1 vector of indemnity payoffs, imperfectly
correlated with the actual losses x. If the firm uses futures as a hedging strategy,
the vector y represents the spot price of the commodity underlying the future
contract. Because spot prices on a given market do not reflect perfectly the actual
loss of the firm, such a strategy exposes the firm to basis risk. In contrast, an
indemnity cat-bond’s payoff depends directly on the actual loss incurred by the
firm, hence eliminating basis risk. In our framework, this translate into the equality
x = y between the index and the loss.

The final wealth of the policyholder writes

wf = w(q) + q(ψ′y − α′x)− P,

with ψ = θ · α. With mean-variance preferences, the objective function is

V (ψ) = w(q) + q[ψ′µy − α′µx]− P (4.23)

− q2κ

2{ψ
′Σyψ + α′Σxα− 2α′Cov(x, y)ψ}. (4.24)

where κ captures the firm’s degree of risk aversion. Let us assume again that
P = (1 + λ)qψ′µy + (c/2)q2ψ′Σyψ. Differentiating with respect to ψ yields the
optimal hedging strategy

ψ = κ

κ+ c
Σ−1
y Cov(x, y)α− λ

q(κ+ c)Σ−1
y µy. (4.25)

If future prices are considered equal to expected spot prices, then P = µy and the
optimal hedging strategy simplifies to

ψ = Σ−1
y Cov(x, y)α.
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4.3.3 The gains from a supply chain cat-bond : empirical
investigation

This section compares the gain that the firm derives from using a future hedging
strategy to that from using an indemnity cat-bond. The first strategy consists in
purchasing at date t a quantity θt of futures, delivering the commodity at date
t + h. At date t + h, the commodity is sold at spot price yt+h while the firm
must purchase its own input at price xt+h. Assessing the effectiveness of the
future hedging strategy requires to estimate the relationship between spot and
procurement prices.

Co-integration often requires to estimate models on returns rather than prices.
Also, let us assume that market price returns are normally distributed

ry,t ∼ N (µr,Σr),

with mean µr and variance Σr, and that, at each period the relationship between
the price returns ry,t = (ry1 , ..., ryn)′t and the procurement price returns rx,t =
(rx1 , ..., rxn)′t can be captured through the linear model

rx,t − µr = βr(ry,t − µr) + εx,t, (4.26)

where εx,t ∼ N (0,Σε). Consequently, rx,t is normally distributed with mean µr and
variance β′rΣrβr + Σε. Equation (4.26) can be interpreted as follows. The firm’s
specific risk, represented by the excess return rx,t − µr is broken into a market
price component, ry,t−µr and an idiosyncratic component εx,t. The parameter βr
can be understood as the sensitivity of the firm to the market price volatility.

In our set-up, low values of βr characterize a situation in which the firm’s
exposure to market risk is limited, for example because it has the operational
capacity to restructure efficiently its supply chain in response to shocks on the
market for commodities. In contrast, high values of βr characterizes rigidities in
the supply chain.

From this specification, we can derive the procurement and spot price charac-
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teristics as in Section 4.2.4. The mean and variance-covariance matrix of the spot
prices are

µyt+h = yt · exp[h(µr + diag(Σr)/2)], Σy
t+h = µyt+h(µ

y
t+h)′ · (exp(hΣr)− 1n×n).

The mean and variance-covariance matrix of the procurement prices are

µxt+h = xt·exp[h(µr+diag(β′rΣrβ+Σε)/2)] Σx
t+h = µxt+h(µxt+h)′·(exp(h(β′rΣrβ+Σε))−1n×n).

Also remark that cov(rx,t, ry,t) = βrΣr, which enables to write the cross-covariance
matrix

covt,t+h(xt+h, yt+h) = µyt+h(µxt+h)′ · (exp(h(βrΣr))− 1n×n).

The optimal co-insurance rates in the presence of basis risk can then be as-
sessed with equation (4.25), replacing µy, Σy and cov(x, y) by their empirical
counterparts µyt+h, Σy

t+h and covt,t+h(xt+h, yt+h). As in Section 4.2.4, the welfare
gain from a given policy is measured by the reduction in the certainty equivalent
that it yields. In particular, we will compare the certainty equivalent when a fu-
ture bundle is used (presence of basis risk but low cost) to the certainty equivalent
when an indemnity cat-bond is used (no basis risk but high costs).

Because we do not possess the procurement price times series, we randomly
generate a time series

r̃x,t − µr = βr(ry,t − µr) + εx,t, (4.27)

where εx,t is drawn from a multivariate normal distribution with mean zero and
variance covariance matrix

Σ̂ε ≡ σε


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We will let the coefficient σε vary to represent the degree of basis risk, σε = 0
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indicating the absence of basis risk. Also, we assume that

βr ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Table 4.5 provides the calibration that we use here. The only change compared
to Section 4.2.4 is the presence of two additional costs cf < c and λf < λ, that
define the pricing of the future strategies, and the parameter σε that characterizes
the amount of basis risk associated with the future strategy.

κ 0.0005 h 12
c 0.002 q 200
λ 0.3 αi 0.25
cf 0.002
λf 0.05

Table 4.5: Calibration

Figure 4.5 shows the net relative gain of using a cat-bond rather than a future
strategy, computed as

CEcat−bond
t,t+h − CEfuture

t,t+h

CEno insurance
t,t+h

.

It is therefore positive (negative) when the cat-bond is more (less) advantageous
than the future strategy. Unsurprisingly, when σε = 0 (no basis risk), the gain
from using a cat-bond strategy is inferior to that of using a future bundle strategy.
In the absence of basis risk, the future strategy allows for an additional 3 to 8
percent welfare improvment due to its lower cost.

More interestingly, let us consider the case σε = 0.005. For comparison pur-
poses, table 4.6 reports the variance-covariance matrix Σr of the spot price time
series. σε = 0.005 is of the same order of magnitude than the variance of all four
time series.

The series of procurement prices hence created are depicted in Figures 4.6a
4.6b 4.6c and 4.6d. The red lines represent the actual spot prices while the blue
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Maize Wheat Rice Soy
0.009463773 0.002629818 0.004219454 0.006346193

0.005413991 0.002090242 0.002597261
0.008248088 0.003879821

0.008531711

Table 4.6: Variance-covariance matrix Σr

lines represent the simulated procurement prices. The two peaks of the spot price
time series correspond to the 2008 and 2012-2013 world food price crisis.

Figures 4.7a, 4.7b, 4.7c and 4.7d report the optimal co-insurance rates under the
future strategy (in black) and the cat-bond strategy (in red). Optimal insurance
on rice and wheat is much lower under the future strategy than under the cat-
bond strategy, as in Section 4.2.4. In addition, the demand for future insurance
on the soy crop is much higher than it was in Section 4.2.4. This can be explained
by the evolution of the soy procurement price series. Figure 4.6d shows that the
procurement price for soy is above the spot price, with the exception of the period
2005-2008, which means that the firm faces more risk on the soy line than in
Section 4.2.4, where the risk incurred by the firm was simply the spot price. Put
differently, more future-based insurance is needed when procurement prices are
high because the spot price becomes a less efficient hedge. The period 2005-2008,
on the other hand, corresponds a lower demand for future-based insurance as the
procurement price becomes lower than the spot price. Cat-bond insurance demand
is unaffected by this dynamics of procurement prices since there is no basis risk.

Finally, Figures 4.8a and 4.8b display the gain from the cat-bond (expressed
as the percentage decrease in the certainty equivalent) relative to no insurance
and to the future-based strategy, respectively. The cat-bond yields a reduction in
the certainty equivalent comprised between 25 and 55 percent, equal to the gain
calculated in Section (4.2.4). However, the gain of a cat-bond relative to the future
strategy is much higher and comprised between 8 and 35 percent. This suggests
that the basis risk introduced in this section is sufficient to provide the cat-bond
strategy with a quantitatively important advantage despite its higher price.
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Figure 4.6: Crop spot (blue) and procurement (red) prices
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Figure 4.7: Co-insurance rates for cat-bond (red) and future (blue) strategies
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Figure 4.8: Gains from the cat-bond strategy
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4.4 Reducing basis risk with climate indices

We have shown so far that cat-bonds with indemnity triggers could constitute a
better hedging strategy than the purchase of future contracts even-though indem-
nity triggers are relatively expansive compared to futures. In fact, they are also
more expansive than other types of triggers that cat-bonds can support. Consid-
ering alternative types of triggers could therefore lower the cost of our proposed
cat-bond strategy. In this section, we consider the case of a parametric trigger.
Parametric triggers rely on indices that aim at replicating the loss as closely as
possible. The main difference with indemnity triggers is that parametric triggers
do not depend on the actual loss of the policyholder. Because the index is ob-
served by both the insured and the insurer, parametric triggers mitigate the cost
of asymmetric information.

4.4.1 The univariate case

In order to illustrate the benefit of a parametric trigger, we begin by investigating
the univariate case. As in earlier sections, the firms seeks to insure a risk x. In
order to do so, it has access to futures, that provide a payoff y1 at maturity.
In addition, the indemnity can be made conditional on a climate index y2. The
indemnity has a form

I(y1, y2) = q(θ1y1 + θ2y2).

For simplicity, we assume here that parametrically triggered cat-bond are sold at
actuarially fair prices and that y1 and y2 are independent random variables. In
this case, the price of the insurance policy is P = q(θ1µ1 + θ2µ2), where µ1 and µ2

are the expected values of y1 and y2. The firm’s objective function is

V (θ) = w(q) − qx+ qθ1y1 + qθ2y2 − P

− κ

2 q
2{σ2

x + θ1σ
2
y1 + θ2σ

2
y2 − 2(θ1Cov(x, y1) + θ2Cov(x, y2))}.
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And at an interior solution, the optimum is characterized by

θ1 = Cov(x, y1)
σy1

,

θ2 = Cov(x, y2)
σy2

.

The optimal co-insurance rates are equal to the OLS estimates of the regressions
of the loss variable x on the index variables y1 (the spot price) and y2 (the me-
teorological index). Also, the indirect objective function of the firm can now be
written

V (θ∗) = w(q)− qµx −
κ

2 q
2σ2

x[1− ρ2
1 − ρ2

2],

where ρ1 and ρ2 are the correlation coefficients between y1 and x, and y2 and x,
respectively. The addition of a climate index in the trigger of the cat-bond, in
addition to the spot prices, therefore reduces basis risk. In practice, the extent to
which the addition of a new variable in the index reduces basis risk depends on
how it is correlated with the loss x, but also on how it is correlated with variables
already present in the index. The more correlated with the actual loss a new
variable is, the more it reduces basis risk. In contrast, the less correlated with
other index variables a new variable is, the more information it brings about the
actual loss, and therefore the lower the resulting level of basis risk.

4.4.2 The multivariate case

We now turn to the more realistic multivariate case. Let y be a k × 1 vector of
predictors, containing information about the n×1 vector x of procurement prices.
The firm can choose the k × 1 vector θ of co-insurance rates on each of these
predictors. If only spot prices are considered as predictor variable, the strategy is
equivalent to a purchase of futures. More generally, the vector θ can be interpreted
as the vector of weights that define the trigger of the cat-bond. The price of the
insurance scheme is P = (1+λ)qθ′µy+c/2q2θ′Σyθ and the firm’s objective function
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writes

V (θ) = w(q) + qθ′µy − qα′µx − P

− κ

2 q
2{θ′Σyθ + α′Σxα− 2θ′Cov(x, y)α},

where Cov(x, y) is now a k×n matrix that contains the covariance terms between
the price variables in x and the index variables in y. The first order condition

−λµy + κqCov(x, y)α = q(c+ κ)Σyθ,

provides the optimal weights of the parametric trigger index

θ∗ = κ

c+ κ
Σ−1
y Cov(x, y)α− λ

q(c+ κ)Σ−1
y µy.

This formula is almost identical to the optimal co-insurance rule in the case
of a future hedging strategy, studied in Section 4.3. The only difference is that
it allows for additional predictors to enter the indemnity rule, hence defining an
index whose aim is to lower basis risk.
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4.5 Conclusion

This paper constitutes a first attempt at quantifying the potential gains to be
expected from a supply chain cat-bond strategy. Despite its high cost, a cat-bond
would combine the advantages of lower basis risk (in particular with an indem-
nity trigger), and of bundling the risk, hence lowering the price and improving
the efficiency of the hedging strategy. Our simulations suggest significant welfare
gains, measured by a reduction in procurement risk certainty equivalent, between
8 and 55 percent. This estimates however, necessitate to be confronted to those
obtained with real procurement data. In addition, other types of triggers could be
implemented and tested in our model. If indemnity triggers feature the advantage
of very low basis risk, they are expensive. Well designed parametric triggers could
be used to lower the cat-bond emission costs without increasing too much the basis
risk. Meteorological indices reflecting the weather conditions in the precise loca-
tions where the firm’s suppliers grow their crops could help improve the prediction
of loss, compared to a simple spot price measure.
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4.6 Appendix

4.6.1 Proof of Proposition 18

Proof The gain from pooling is positive if

n∑
i=1

αiξ
2
i ≥

n∑
i=1

α2
i ξ

2
i +

n∑
i=1

∑
j 6=i

αiαjρijξiξj.

Equivalently,
n∑
i=1

αiξ
2
i (1− αi) ≥

n∑
i=1

∑
j 6=i

αiαjρijξiξj.

Since ρij ≤ 1 ∀ i, j, it is sufficient to show that

n∑
i=1

αiξ
2
i (1− αi) ≥

n∑
i=1

∑
j 6=i

αiαjξiξj. (4.28)

First remark that
n∑
i=1

∑
j 6=i

αiαjξiξj = 2
n∑
i=1

αi
∑
j>i

αjξiξj.

Also, ∑n
i=1 αi = 1 implies that

n∑
i=1

αiξ
2
i (1− αi) =

n∑
i=1

αiξ
2
i (
∑
j 6=i

αj).

Inequality 4.28 therefore becomes

n∑
i=1

αiξ
2
i (
∑
j 6=i

αj)− 2
n∑
i=1

αi
∑
j>i

αjξiξj ≥ 0.

Now, using the simple change in notations

n∑
i=1

αiξ
2
i (
∑
j 6=i

αj) =
n∑
i=1

αi
∑
j>i

(ξ2
i + ξ2

j ),

gives
n∑
i=1

αi
n∑
i=1

αi
∑
j>i

(ξ2
i + ξ2

j − 2ξiξj) ≥ 0,
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or
n∑
i=1

αi
∑
j>i

αj(ξi − ξj)2 ≥ 0,

which is always true.

4.6.2 The case of a corner solution

We consider here the case of pooled insurance. Imposing the constraint θ ≥ 0
gives rise to the possibility of corner solutions. Since the co-insurance rates θi are
(imperfect) substitutes, a corner solution on one line may impact the insurance
take-up on the other lines. In order to investigate these effects, we denote γ
the vector of Lagrange multipliers associated with the n constraints θ ≥ 0. The
Lagrangian of the optimization program writes

L = V (ψ) + γ′ψ.

The first order condition V ′(θ) + γ = 0 is

γ + qµ− q2κΣ(ψ − α) = (1 + λ)qµ+ cq2Σψ,

which yields a solution for ψ

ψ = κ

κ+ c
α− λ

q(κ+ c)Σ−1µ+ 1
q2(c+ κ)Σ−1γ. (4.29)

The Karush-Kuhn-Tucker (KKT) condition implies that the last term is positive if
and only if at least one of the positivity constraint is binding. In such case, all the
co-insurance rates whose constraint is slack are affected. To make things concrete,
take the two lines example discussed previously. The adjustment term Σ−1µ that
arise when at least one constraint binds writes

Σ−1γ = (1− ρ2)

 γ1
σ2

1
− ργ2
σ1σ2

− ργ1
σ1σ2

γ2
σ2

2

 .
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Assume that ψ2 ≥ 0 binds while ψ1 is an interior solution, then the KKT condition
implies that γ1 = 0 and γ2 > 0, in which case the co-insurance rate ψ1 has an
adjustment term

− ργ2

σ1σ2
.

Adjustment is therefore downward when losses 1 and 2 are positively correlated.
The intuition behind this result is that the binding constraint prevents the agent
from selling insurance on the more expensive line to finance higher insurance pur-
chases on the cheaper line. In the case of negatively correlated losses, the adjust-
ment is upward. In the absence of a positivity constraint indeed, selling the most
expensive line is actually used to purchased less insurance on the other line.

4.6.3 The example of moral hazard

This section provides micro foundations for the presence of a positive loading factor
that we assumed in the direct insurance scheme of the previous section. A reason
as to why such a cost may arise is moral hazard. In a nutshell, the problem of
moral hazard can be summarized as follows. Agents who purchase insurance fail
to internalize the positive externalities of their mitigating action, which leads to
an under-provision of effort to mitigate.

We consider here a continuum of identical agents of mass 1, insured by a
single company. Each agent i can change the distribution of the risk dF (x, ei) by
applying an effort at cost c(ei), characterized by c(0) = 0, c′ > 0 and c′′ > 0. We
call µx(ei) =

∫ x̄
0 xdF (x, ei) the expected value of the loss conditional on effort level

e being exercised. This effort is not observable, hence non contractible.
We study the set of contracts such that the insurance company breaks even in

expected value, that is
Pi = θi

∫ 1

0
µx(ei)di.

The price is adjusted depending on agent i’s demand for insurance but it cannot
be adjusted to the risk that agent i brings to the pool of policyholders because ei
is not observable. Instead, the price paid by agent i depends on the loss averaged
across the pool of policyholders. Since each agent only represents an infinitesimal
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fraction of the population, the effect of its own effort on price is zero:

dP

dei
= 0.

Since all agents are similar, we obtain θi = θ and µx(ei) = µx(e) ∀ i. We
therefore drop the subscript i from now on and obtain

P = θµx(e).

The agent’s final wealth is

wf = w − x+ θx− P − c(e).

Using the mean-variance representation, the objective function writes

V m = w − (1− θ)µx(e)− θµx(e)−
κ

2 (1− θ)2σ2
x

The first order conditions give

θ∗ = 1

(1− θ∗)µ′(e)− c′(e∗) = 0,

which implies e∗ = 0. Conditionally on the effort level, insurance is actuarially
fair, which induces the agents to purchase full insurance, a situation in which there
is incentive to provide mitigating efforts. As a result, the price paid in equilibrium
P = µ(0) is the highest price possible if effort has any effect on the expected loss.
The indirect utility function is therefore

V m = w − µ(0). (4.30)

The agent is perfectly insured but pays a high cost for its insurance. To circumvent
this problem, the insurance company may try to induce a certain level of effort
from agents either by providing partial insurance, or by spending resources to
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extract information about the level of effort.7 An alternative route is to insure
a risk that is correlated with the agent’s actual loss and independant from the
agents’ actions, that is index insurance.

As in the previous sections, an index y is available with mean µy and variance
σ2
y. This time, the price at which insurance is available

P = θµy

does not depend on the policyholder’s effort. The objective function of the agent
is now

V i = w − µx(e) + θµy − P −
κ

2 [σ2
x + θ2σ2

y − 2θρσxσy]

The optimal break-even contracts are characterized by

θ∗ = ρ
σx
σy

−µ′(e∗) = c′(e∗).

The optimal rate of insurance depends on the correlation and variance ratio be-
tween the index and the actual loss and the optimal level of effort is here unaffected
by the presence of insurance.8 The agent fully internalizes the outcome of its effort
which contributes to reducing its average loss, independently of the level of cover-
age provided by the index insurance contract. The optimal coverage under index
insurance is therefore characterized by a first best level of effort. The quality of
the index instrument on the other hand, depends on its correlation with the actual
loss. The indirect utility under the index insurance scheme is

V i = w − µ(e∗)− c(e∗)− κ

2σ
2
x(1− ρ2). (4.31)

7It is not clear why the insurance would want to do that. In a competitive insurance sector, or
if the insurance company provides a public service, the only relevant contracts are the break-even
contracts.

8This separation between the insurance and effort decision may not be robust to changes of
utility functions. Under prudence, the level of risk in the variable x, and therefore the level of
effort exerted by the agent would affect the insurance decision. In particular, an increase in effort
which translates into a risk reduction on x would command a lower optimal insurance rate.
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ρ2 captures the quality of the index instrument and only when ρ = 1 can full
insurance be obtained.

We now compare direct insurance in the presence of moral hazard with index
insurance. For the sake of simplicity, we assume that the function µ(e) = µ(0)−ae
is linear in e. We obtain that index insurance is preferred to direct insurance if
V i > V m, that is from (4.30) and (4.31) if

ac′−1(a)− c(c′−1(a)) > κ

2σ
2
x(1− ρ2),

that is if the gain from implementing the first best effort level is higher than the
loss that results from the imperfect index instrument. Considering a power cost
function c(e) = eφ/φ simplifies the condition further to

1− 1
φ
>
κ

2σ
2
x(1− ρ2).

Index insurance dominates direct insurance under moral hazard when the cost of
effort is sufficiently high. When the cost of effort is low agents exert a high level
of effort despite the fact that part of the benefit accrue to other agents. The
problem of under-provision of effort is therefore mitigated compared to a situation
with high costs where agents have little incentives to provide effort for themselves.
Under this set of assumptions, it is also possible to characterize more precisely the
optimal level of effort as

e∗ = a
1

φ−1 .

The strength of index insurance is that it separates effort from insurance decisions,
hence forcing agents to internalize fully the consequences of their effort choices.
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This thesis addresses several aspects of the insurability of catastrophic risks. In
a first chapter, we focus on very low probability events and we show how hybrid
financial instruments can be used to extend the domain of insurable risks. Our
application to the case of nuclear accidents using cat-bonds data in France shows
that despite the higher price of reinsurance for low probability events, it is possible
to insure more than is currently provided for by the French law. The second chap-
ter takes on the issue of why insurance is more costly for low probability events.
We show that because catastrophic risks have a systemic component, they give
rise to a risk premium in equilibrium which decreases at a lower pace than the
willigness to pay for insurance. We use this finding to explain why systemic low
probability catastrophes are hard to insure. The third chapter investigates the role
of mutual and participating contracts to improve insurability. Such contracts im-
prove welfare by expanding the span of the financial market instruments available
when individual losses are correlated. Finally, the fourth chapter investigates an
innovative solution for firms that try to insure their procurement risk. The firm
could issue a cat-bond with an index reflecting its losses. Such a solution would
yield the advantage of risk-pooling, to lower the price of insurance. In addition,
it could lower basis risk compared to more traditional hedging strategies such as
future purchases, that imperfectly reflect the firm’s exposure.

One central theme of this work is to show how financial innovations can be
used to improve the insurability of catastrophic risks. An important limitation of
our work is that we do not take into account the costs that this increasing financial
complexity would yield. The global financial crisis of 2007 has indeed shown very
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clearly the risks associated with a lack of regulation of the financial industries. By
failing to monitor the imperfectly internalized risks undertaken by systemic banks
and insurance companies, our economies have actually endured a highly corre-
lated and uninsured risk, that materialized with the failure of AIG, the willingness
to save systemic institutions and the resulting European sovereign debt crisis in
2010. Without even considering the conflicting interests between the financial in-
stitutions that trade financial instruments and the population as a whole, tailoring
the adequate incentive structures and/or monitoring the non internalized risks is
in fact a costly activity, to which funds must be devoted. In practice therefore, the
development of new financial instruments and markets should be accompanied by
a parallel development in regulators’ means and expertise if it is to truly reduce
systemic risk.

Another related limitation is that we did not consider alternative protection
mechanisms against catastrophes. If insurance and other mitigation strategies
can sometimes be complements, some situations must lead to prefer prevention
or protection to insurance. In particular, when it comes to physical or medical
damages, it seems natural to think that, at a given price, avoiding the loss should
be systematically preferred to an ex-post indemnity. In our first chapter on the
insurance of nuclear accident, we have implicitly assumed that all adequate preven-
tion and protection measures were already taken. In practice, the french nuclear
safety authority (ASN) is in charge of defining and monitoring these measures.
The insurance scheme we propose therefore aims at handling the residual risk. It
should not be seen as a substitute for the preventive and protective actions that are
necessary to reduce the probability and/or the consequences of the risk ex-ante.
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Titre: Assurabilité des risques catastrophiques

Mots clés: Catastrophes, risques, assurance

Résumé: Cette thèse étudie l'assurabilité des

risques catastrophiques. Le premier chapitre

s'intéresse aux risques de très faibles prob-

abilités. Nous montrons comment des in-

struments �nanciers hybrides, tels que les

obligations catastrophes, peuvent être utilisés

pour améliorer l'assurabilité des risques catas-

trophiques. Une application au cas du risque

nucléaire français est développée. Le second

chapitre s'attaque à la question du prix de la

réassurance des risques de faibles probabilités.

Les risques catastrophiques donnent lieu à une

prime de risque dont le montant décroit avec la

probabilité de la catastrophe moins rapidement

que la disposition à payer d'un assuré typique.

Cela explique pourquoi les risques systémiques

de faibles probabilités sont di�ciles à assurer.

Le troisième chapitre étudie le rôle des contrats

mutuels et participatifs. De tels contrats per-

mettent aux assurés d'ajuster au mieux leur de-

mande d'assurance, en prenant en compte la di-

mension systémique des risques auxquels ils sont

exposés. En�n, le quatrième chapitre étudie

l'utilisation d'obligations catastrophes pour as-

surer le risque de variations extrêmes du prix des

matières premières agricoles. En émettant une

obligation catastrophe, l'entreprise emprunte un

capital qu'elle peut conserver lorsque ses coûts

d'approvisionnement sont élevés. Cette solution

est évaluée qualitativement et quantitativement.

Title: Insurability of catastrophic risk

Keywords: Disasters, risks, insurance

Abstract: This thesis addresses several as-

pects of the insurability of catastrophic risks.

In a �rst chapter, we focus on very low proba-

bility events and we show how hybrid �nancial

instruments can be used to extend the domain

of insurable risks. We develop an application to

the case of nuclear risk in France. The second

chapter takes on the issue of why reinsurance

is costly for low probability events. We show

that catastrophic risks give rise to a risk pre-

mium in equilibrium which decreases at a lower

pace than the willingness to pay for insurance.

We use this �nding to explain why systemic low

probability catastrophes are hard to insure. The

third chapter investigates the role of mutual and

participating contracts to improve insurability.

Such contracts are necessary for people to ad-

just their demand for insurance when individual

losses are correlated. Finally, the fourth chap-

ter investigates the use of cat-bonds to hedge

the risk of extreme agricultural supplies price

variations. By issuing a cat-bond, the hedging

�rm borrows a capital that can be retained in

case of catastrophic price surge. Such a solu-

tion would combine several advantages that are

assessed both qualitatively and quantitatively.
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