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Chargé de Recherche, INRIA et École polytechnique Co-directeur de thèse
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CHAPTER 1

Introduction

1.1 Context of this work

Semidefinite programming (SDP) is one of the fundamental tools of convex optimization. It
consists in minimizing a linear function over a spectrahedron, which is a set defined by a single
linear matrix inequality of the form

S := {x ∈ Rn : Q(0) + x1Q
(1) + · · · + xnQ

(n) ≽ 0} ,

where Q(0), . . . , Q(n) ∈ Rm×m is a sequence of symmetric matrices, and ≽ is the Loewner order
on symmetric matrices. By definition, A ≽ B if A − B is positive semidefinite. Because of its
expressive power, SDP has found numerous applications. For instance, SDP relaxations can
be used to obtain polynomial-time approximations for some NP-hard problems in combinato-
rial optimization, such as the Max-Cut Problem [GW95]. Another classical application of
SDP in the area of combinatorial optimization is the Lovász theta function [Lov79]—this func-
tion is computable in polynomial-time by SDP and is sandwiched between the clique number
and the chromatic number, which are both NP-hard to compute. We refer to [GM12, LR05]
for more information about applications of SDP in combinatorial optimization. SDP is also
a major tool in the area of polynomial optimization. Even though polynomial optimization
problems are not convex in general, Lasserre [Las01, Las02] and Parrilo [Par03] have shown
that a large class of these problems can be solved to arbitrary precision using a hierarchy of
SDP relaxations. More information about the use of SDP in polynomial optimization can be
found in the books [Las15, Las09b]. Thanks to its expressive power, SDP has also found appli-
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cations in control theory [BEGFB94], quantum information [Wat18, FSP18, GdLL18], formal
proofs [MC11, MAGW15], program verification [RVS16], experiment design [VBW98], signal
processing [PE10], and other domains. Some general references for SDP and its applications
include [WSV00, AL12, dK02, BPT13, BTN01, BV04].

In practice, SDPs are solved using interior point methods, which were generalized from linear
programming to SDP by Alizadeh [Ali95], and to general convex programming by Nesterov and
Nemirovski [NN94]. We refer to [dK02, Ren01, GM12] for more information on interior point
methods. Contemporary interior point solvers can solve small and medium sized SDP programs
(depending on the sparsity of the input matrices). However, a large-scale industrial optimization
problem was recently solved using SDP methods in [JM18].

There are many open questions about spectrahedra and semidefinite programming. For
instance, Nemirovski [Nem07] asked to classify the sets that arise as projections of spectrahedra.
Helton and Nie [HN09] conjectured that every convex semialgebraic sets arises in this way. The
conjecture was confirmed for several classes of sets [HN09, HV07, HN10, Las09a, GPT10, GN11,
NPS08]. In particular, it is known that the conjecture is true in dimension 2 [Sch18a]. The
conjecture has been recently disproved by Scheiderer, who showed that the cone of positive
semidefinite forms cannot be expressed as a projection of a spectrahedron, except in some
particular cases [Sch18b]. A comprehensive list of references can be found in this work.

Another open question is the generalized Lax conjecture, which asks if every hyperbolicity
cone is spectrahedral. The answer is positive for several classes of hyperbolic cones [HV07,
LPR05, PV13, AB18, Kum17]. However, some stronger versions of the conjecture are known
to be false [Brä11, AB18, BVY14]. More information can be found in the cited works.

The geometry of spectrahedra was studied, from different perspectives, in [RG95, DI10,
ORSV15, FSED18]. However, there are still many open questions in this area—for instance,
the facial structure of spectrahedra and hyperbolic cones is not well understood.

In this work, we are interested in the theoretical complexity of SDP. In the Turing machine
model of computation, approximate solutions for well-structured SDPs can be obtained by
the ellipsoid method [GLS93, Ram93] (however, this method is considered to be inefficient in
practical applications). It was only recently shown that interior point methods can achieve the
same theoretical complexity bounds on the Turing machine [dKV16] (the challenging task for
making a passage from the BSS model [BSS89, BCSS98] to the Turing machine was to propose
an interior point method in which one can control the bit-sizes of the numbers appearing during
the computation). These methods obtain only approximate solutions to SDP problems—the
exact solution of a generic SDP problem is an algebraic number, and the degree of its minimal
polynomial can be large [NRS10]. Furthermore, event to obtain approximate solutions, the
methods mentioned above require some structural assumptions on the underlying spectrahedron.
We refer to [Ram97, dKV16, LMT15] for extended discussion and to [LP18] for a class of
small degenerate SDPs that are hard for the contemporary SDP solvers. The state-of-the art
algorithms that are able to solve SDPs over arbitrary spectrahedra are based on critical point
methods [HNSED16, Nal18, HNSED18] (the feasibility of spectrahedra can also be decided by
quantifier elimination [PK97]). From the theoretical complexity perspective, Ramana [Ram97]
has shown that the semidefinite feasibility problem (given the matrices Q(0), . . . , Q(1), decide
if the associated spectrahedron is nonempty) belongs to NPR ∩ coNPR, where the subscript R
refers to the BSS model of computation. It is not known if this problem belongs to NP in the
Turing machine model. A difficulty here is that all feasible points may have entries of absolute
value doubly exponential in the size of the input. Also, the spectrahedron may be nonempty
but contain only irrational points [Sch16]. A very concrete example of these difficulties was
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given by Tarasov and Vyalyi [TV08], who showed that the problem of comparing numbers
represented by arithmetic circuits can be reduced to the semidefinite feasibility problem. A
particular case of this task is the Sum of Square Roots Problem, whose complexity is
open since (at least) 1976, see [GGJ76, Pap77, ABKPM09, EY10, JT18] for more information.
Moreover, some matrix completion problems can also be expressed as semidefinite feasibility
problems [Lau01, LV14]. Different certificates of (in)feasiblity, boundedness, and containment
of spectrahedra are discussed in [Ram97, KS13, LP18, KTT13, The17, KPT18].

There are many equivalent definitions of a symmetric positive semidefinite matrix. For in-
stance, one can define this notion by supposing that the matrix has nonnegative eigenvalues,
nonnegative principal minors, that the associated quadratic form is nonnegative, or that this
matrix admits a Cholesky decomposition. It can be shown that all of these definitions coincide
not only over the field of real numbers but also over every real closed field (this follows from
the completeness of the theory of real closed fields). In particular, the notion of a positive semi-
definite matrix is meaningful over any such field. It follows that one can study spectrahedra
and semidefinite programming in any real closed field, even if it is nonarchimedean. That is the
subject of this work. The most important example for us is the field of Puiseux series. Clas-
sically, the field of Puiseux series (which can be traced back to Newton [BK12, Chapter 8.3])
is defined as the field of formal power series with rational exponents, with the additional as-
sumption that every exponent in a given series has the same denominator. However, from the
perspective of tropical geometry, it is useful to work with a larger field of series that have real
exponents [Mar10]. For this reason, we consider the field of generalized Puiseux series proposed
in [Mar10]. This field, by a change of variable, is isomorphic to the field of generalized Dirichlet
series studied by Hardy and Riesz [HR15]. A generalized Puiseux series is a series of the form

x =
∞∑

i=1
cλi
tλi ,

where t is a formal parameter and (λi)i⩾1 is a strictly decreasing sequence of real numbers that
is either finite or unbounded. If we suppose that the coefficients cλi

∈ C \ {0} are complex,
then the set of generalized Puiseux series forms an algebraically closed field. If we suppose
that cλi

are real, then we obtain a subfield that is real closed. Moreover, it was proved by van
den Dries and Speissegger [vdDS98] that if we restrict attention to the series that have real
coefficients and are absolutely convergent (for t large enough), then this subset of generalized
Puiseux series still forms a real closed field. This is the main field considered in this thesis, and
we denote it by K. However, we note that the particular choice of the field K is made mostly for
the sake of simplicity and to make the exposition concrete. In the later parts of the thesis, we
discuss how the results obtained for K can be transferred (by quantifier elimination) to other
nonarchimedean real closed fields. For the sake of brevity, we omit the adjective “generalized”
when we talk about Puiseux series.

As discussed above, the definition of spectrahedron over Puiseux series is the same as the
definition over the reals. In other words, a spectrahedron over K is the set defined as

S := {x ∈ Kn : Q(0) + x1Q
(1) + · · · + xnQ

(n) ≽ 0} ,

where Q(0), . . . ,Q(n) ∈ Km×m is a sequence of symmetric matrices. A spectrahedron over
Puiseux series gives rise to a family of spectrahedra over the reals, obtained by replacing the
formal parameter t with some real, large value of the parameter:

S(t) := {x ∈ Rn : Q(0)(t) + x1Q
(1)(t) + · · · + xnQ

(n)(t) ≽ 0} .
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Quantifier elimination over real closed fields ensures that SDP over Puiseux series has the same
basic properties as SDP over the reals. Moreover, it means that for large values of t > 0, the
real spectrahedra S(t) inherit the properties of the nonarchimedean spectrahedron S. There
are numerous motivations to study these types of SDPs. Such nonarchimedean semidefinite
programming problems arise when considering parametric semidefinite programming problems
over the reals, or structured problems in which the entries of the matrices have different orders
of magnitudes. They are also of an intrinsic interest, since, by analogy with the situation in
linear programming [Meg89], shifting to the nonarchimedean case is expected to shed light on
the complexity of the classical problem over the reals. In particular, polyhedra over Puiseux
series encode a class of real polyhedra defined by matrices with large entries. The complexity of
solving linear programming problems over such polyhedra is a particular case of Smale’s ninth
problem [Sma98], who asked if linear programming can be solved in strongly polynomial time
in the Turing machine model and in polynomial time in the BSS model. Moreover, spectrahe-
dra over Puiseux series may provide new classes of examples of spectrahedra with unexpected
geometric properties. Our methods to study nonarchimedean spectrahedra rely on tropical
geometry.

A general question, in tropical geometry, consists in providing combinatorial characteriza-
tions of nonarchimedean amoebas, i.e., images by the nonarchimedean valuation of algebraic sets
over nonarchimedean, algebraically closed fields. This was the subject of the work of Bieri and
Groves [BG84], extending the earlier results of Bergman [Ber71]. Kapranov’s theorem [EKL06]
characterizes the images of hypersurfaces using the notion of a tropical hypersurface. A gener-
alization of this theorem to the case of algebraic varieties is known as the “fundamental theorem
of tropical algebraic geometry”—see [JMM08] for a constructive proof and some historical dis-
cussion. Tropical geometry gained a lot of attention thanks to its connection with enumerative
algebraic geometry [Mik05]. We refer to [RGST05, IMS09, MS15] for more information on these
aspects of tropical geometry.

The study of real algebraic objects using tropical tools was initiated by Viro [Vir89, Vir08],
who used combinatorial methods to construct planar curves with prescribed topology, in relation
to Hilbert’s sixteenth problem. This method was later used by Itenberg and Viro to disprove
the Ragsdale conjecture [IV96] and it was generalized to complete intersections [Stu94, Bih02].
However, in a general setting, there is no analogue of the fundamental theorem for the tropical-
ization of real algebraic varieties—we refer to the works [SW05, Ale13, Vin12] for a discussion.
The images by valuation of general semialgebraic sets were studied by Alessandrini [Ale13], who
gave a real analogue of the Bieri–Groves theorem.

Independently of the works cited above, convexity and separation in idempotent semimod-
ules was studied by numerous authors [Zim77, Hel88, SS92, LMS01, CGQ04, BH04, CGQS05].
The connection between the two fields was noted by Develin and Sturmfels [DS04], who intro-
duced the name “tropical convexity.” Develin and Yu [DY07] characterized tropical polyhedra
in terms of valuations of polyhedra over Puiseux series. The geometry of tropical polyhedra was
studied in numerous works such as [Jos05, GK07, BSS07, AGK11, AK17]. In a series of works
that is closely related to this dissertation, Allamigeon, Benchimol, Gaubert, and Joswig stud-
ied the tropicalization of polytopes defined by generic matrices, developed a tropical simplex
algorithm, and described the tropical analogue of central path [ABGJ15, ABGJ14, ABGJ18].
Yu [Yu15] tropicalized the SDP cone and showed that this tropicalization is described using only
2 × 2 minors. Akian, Gaubert, and Guterman [AGG12] proved that the problem of feasibility
of tropical polyhedra is equivalent to deciding the winner of a deterministic mean payoff game
and Grigoriev and Podolskii [GP15] showed the same result for the solvability problem of lin-
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ear tropical prevarieties. Bodirsky and Mamino [BM16] studied the relations between tropical
convexity, stochastic mean payoff games, and constrain satisfaction problems.

Two-player zero-sum repeated stochastic games were introduced by Shapley [Sha53], who
studied the existence of optimal strategies in finite time and in infinite time with discounted
payoffs. The idea of studying games with perfect information and long-term average payoff
was proposed by Gillette [Gil57]. The fact that these games have optimal stationary strategies
was proven by Liggett and Lippman [LL69]. The deterministic case of these games was also
studied by Ehrenfeucht and Mycielski [EM79]. The existence of optimal stationary strategies is
no longer true for the imperfect information games. Nevertheless, Bewley and Kohlberg [BK76]
showed that the limiting value of the imperfect information stochastic games is well defined, and
Mertens and Neyman [MN81] proved that this limit is the value of the game with a long-term
average payoff. There are many other works on the theory of zero-sum repeated games. We
refer to [MSZ15, LS15] for more information. Let us just note that one of the possible ways of
studying these games is to use the properties of the associated Shapley operator. This approach
was presented in the original paper by Shapley [Sha53] and was later extended to other classes of
games [RS01, Ney03]. This approach to stochastic mean payoff games with perfect information
was used in [AGG12] and we do the same in this work.

Independently, particular cases of stochastic mean payoff games with perfect information
were discovered in the computer science community. Parity games were introduced by Emer-
son and Jutla [EJ91] and Mostowski [Mos91]. They are equivalent to modal µ-calculus model
checking [EJS93, Jur98]. Furthermore, they were used by Friedmann [Fri11, DH17] to con-
struct a subexponential lower bound for Zadeh’s pivoting rule for the simplex algorithm (see
also [Fea10, FHZ14] for more discussion on this subject). Deterministic mean payoff games were
studied by Gurvich, Karzanov, and Khachiyan [GKK88], and simple stochastic games were in-
troduced by Condon [Con92]. The reductions studied in [Jur98, ZP96, AM09], combined with
the analysis of [Con92], show the following statements. First, parity games are polynomial-time
reducible to deterministic mean payoff games, which form a subcase of stochastic mean payoff
games. Second, stochastic mean payoff games are polynomial-time equivalent to simple sto-
chastic games and to games with discounted payoffs. Third, the associated decision problem
(given a state in a stochastic mean payoff games, decide if its value is nonnegative) belongs to
NP ∩ coNP (even to UP ∩ coUP). On the other hand, the computational problem of calculating
the value of simple stochastic games belongs to the complexity class CLS, which is a subclass of
both PPAD and PLS [DP11, EY10]. Despite all of these results, there is no known polynomial
time algorithm for any of these classes of games. Halman [Hal07] showed (generalizing the
results of [Lud95, BSV03, BV07]) that stochastic mean payoff games can be described as an
LP-type problem.1 This implies that they can be solved in strongly subexponential time in ex-
pectation, using the randomized simplex pivoting rule of Matoušek, Sharir, and Welzl [MSW96]
(see also [HZ15] for some recent improvements). It is not known if stochastic mean payoff
games can be solved in subexponential time by a deterministic algorithm (this question is open
even if we restrict attention to deterministic games). Therefore, various authors studied fixed-
parameter complexity bounds for these games. For instance, Gimbert and Horn [GH08] showed
that simple stochastic games can be solved in polynomial time when the number of random
positions is fixed and Zwick and Paterson [ZP96] gave a pseudopolynomial-time algorithm for
deterministic mean payoff games. We refer to [IJM12, CR17] for the improvements of these
results and more discussion. Moreover, Hansen, Miltersen, and Zwick [HMZ13] gave a strongly

1Strictly speaking, Halman considered only a subclass of stochastic mean payoff games, but every such game
can be reduced to Halman’s form in strongly polynomial time using the results of [AM09].
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polynomial-time algorithm for discounted games with a fixed discount factor. In contrast with
the case of more general games, a deterministic subexponential-time algorithm for parity games
was given by Jurdziński, Paterson, and Zwick [JPZ08]. In a more recent breakthrough, Calude
et al. [CJK+17] showed that parity games can be solved in quasipolynomial time. This result
has already attracted a number of follow-up works [GIJ17, JL17, FJS+17, Leh18, CDF+18].
We also refer to [Mam17, BEGM13, AGH15, ACS14, HK66, ACTDG12, vD18, Zie98, VJ00] for
further discussion and information about algorithms that can be used to solved these types of
games, and to [CJH04, DJL18, CDGO14, SWZ18, CD12] for related classes of games. However,
let us note a few papers in this domain that are closely related to our work. Boros, Elbassioni,
Gurvich, and Makino [BEGM15] used a generalization of the “pumping” algorithm, initially
introduced by Gurvich, Karzanov, and Khachiyan in the deterministic setting [GKK88], to
show that general stochastic mean payoff games can be solved in pseudopolynomial time if the
number of random positions is fixed. (We note that this does not follow from the analogous
results on simple stochastic games cited above because the reduction from general stochastic
mean payoff games to simple stochastic games adds too many random positions to the game,
see [BEGM13] for a discussion.) One of the results of this work deals with value iteration and
its complexity bounds in the stochastic setting, as an alternative to the pumping algorithms.
Value iteration for deterministic games was studied by Zwick and Paterson [ZP96]. Ibsen-Jensen
and Miltersen [IJM12] showed that modified value iteration can solve simple stochastic games
in polynomial time when the number of random positions is fixed, and Chatterjee and Ibsen-
Jensen [CIJ14] studied the complexity of value iteration for games with imperfect information.
Value iteration for 1-player games has been studied, for instance, in [Put05, ACD+17]. The
relationship between deterministic mean payoff games and linear programming over Puiseux
series was used by Allamigeon, Benchimol, Gaubert, and Joswig [ABGJ14] to show that any
semialgebraic polynomial-time pivoting rule for simplex algorithm would lead to a polynomial-
time algorithm solving deterministic mean payoff game. By similar techniques, Allamigeon,
Benchimol, and Gaubert [ABG14] showed that deterministic mean payoff games are solvable in
polynomial time on average.

1.2 Our contribution
Our work is divided into two parts. In the first part, we present structural results concerning the
tropicalizations of semialgebraic sets. In the second part, we discuss algorithmic consequences
of our approach.

In Chapter 3, we start by studying the tropicalizations of general semialgebraic sets. In the
case of (complex) algebraic varieties, a fundamental result of Bieri and Groves [BG84, EKL06]
states that if (K, val) is an algebraically closed valued field with value group equal to R and
S ⊂ (K∗)n is an algebraic variety in the torus, then val(S) ⊂ Rn is a union of polyhedra.
Alessandrini [Ale13] proved an analogue of this theorem for definable subsets of Hardy fields of
polynomially bounded o-minimal structures. His analysis implies that if (K, val) is a real closed
field with value group equal to R and convex valuation, and S ⊂ (K∗)n is a semialgebraic set,
then val(S) is a union of polyhedra. The results of Alessandrini also apply to fields with value
groups smaller than R. In Chapter 3, we give a constructive proof of this result. The proof is
based on the Denef–Pas quantifier elimination [Pas89] and applies to fields with arbitrary value
groups (not only the subgroups of R). Denef–Pas quantifier elimination also gives a transfer
principle that is used later to prove the tropical analogue of the Helton–Nie conjecture for
arbitrary real closed valued fields.
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Theorem A (Theorem 3.1). Suppose that (K, val) is a real closed field equipped with a convex
and nontrivial valuation val : K → Γ ∪ {−∞}. Let S ⊂ Kn be a semialgebraic set. Then,
the set val(S) ⊂ (Γ ∪ {−∞})n is semilinear and has closed strata. Conversely, any semilinear
subset of (Γ ∪ {−∞})n that has closed strata arises as an image by valuation of a semialgebraic
set.

Given a set S, it is sometimes possible to find a simple description of val(S). An important
result in this direction is the Kapranov theorem [EKL06, Theorem 2.1.1], which states that if
K is the field of Puiseux series with complex coefficients and S := {x ∈ (K∗)n : P (x) = 0} is
a hypersurface given by a polynomial P ∈ K[X1, . . . , Xn], then val(S) is fully described by the
formal tropicalization of the polynomial P . This statement is not true for real semialgebraic
states, even if they are described by one polynomial (in)equality. However, thanks to the
theorem above, we can give an explicit description of the images by valuation of semialgebraic
sets defined by systems of inequalities, provided that a certain regularity condition is satisfied.

Theorem B (Theorem 3.4). Let K denote the field of Puiseux series with real coefficients and
let S ⊂ Kn

>0 be a semialgebraic set defined as

S := {x ∈ Kn
>0 : P1(x) □1 0, . . . ,Pm(x) □m 0} ,

where Pi ∈ K[X1, . . . , Xn] are nonzero polynomials and □ ∈ {⩾, >}m. Let Pi := trop(Pi) for
all i and suppose that C⩾(P1, . . . , Pm) has regular support. Then

val(S) = {x ∈ Rn : ∀i, P+
i (x) ⩾ P−

i (x)} .

The theorem above is a generalization of a result of Develin and Yu [DY07] who proved
Theorem B in the case where polynomials Pi are affine. Furthermore, we note that the condition
“C⩾(P1, . . . , Pm) has regular support” is generic—it is satisfied if the coefficients of the tropical
polynomials P1, . . . , Pm lay outside of some set of measure zero.

We then turn our attention to the tropicalizations of convex semialgebraic sets defined over
Puiseux series. In Chapter 4 we introduce the notion of tropical spectrahedra, which are sets
defined as images by valuation of spectrahedra over Puiseux series. We show that a class of
tropical spectrahedra defined by Metzler matrices can be described explicitly using polynomial
inequalities of degree two in the tropical semifield. Subsequently, we use this class to give an
explicit description of generic tropical spectrahedra. It turns out that only 2 × 2 minors are
needed to describe a generic tropical spectrahedron. This extends the result of Yu [Yu15] who
tropicalized the positive semidefinite cone.

Theorem C (Theorem 4.28). Suppose that Q(0), . . . ,Q(n) ∈ Km×m are symmetric matrices,
let Q(x) := Q(0) +x1Q

(1) + · · ·+xnQ
(n) and S := {x ∈ Kn

⩾0 : Q(x) ≽ 0} be the associated spec-
trahedron. Moreover, suppose that the matrices val(Q(0)), . . . , val(Q(n)) ∈ Tm×m are generic.
Then, the set val(S) is described by tropical polynomial inequalities that are given by a tropical
variant of the 2 × 2 minors of the affine pencil Q(x).

In Chapter 5, we study general convex semialgebraic sets and give multiple equivalent char-
acterizations of their images by valuation. In particular, we show that the tropical analogue of
the Helton–Nie conjecture is true.

Théorème A (Theorem 5.5). Let S ⊂ Tn. Then, the following conditions are equivalent:
(a) S is a tropicalization of a convex semialgebraic set;
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(b) S is tropically convex and has closed semilinear strata;
(c) S is a projection of a tropical Metzler spectrahedron;
(d) there exists a projected spectrahedron S ⊂ Kn

⩾0 such that val(S) = S.

This theorem is the first place where the connection with stochastic mean payoff games plays
a role—one of the ingredients of the proof is a lemma of Zwick and Paterson [ZP96] that was
originally used to prove a reduction from discounted mean payoff games to simple stochastic
games. Using the transfer principle given by the Denef–Pas quantifier elimination, we can then
show that the classical Helton–Nie conjecture is true “up to taking the valuation.”

Theorem D (Theorem 5.2). Let K be a real closed valued field equipped with a nontrivial and
convex valuation val : K → Γ ∪ {−∞} and suppose that S ⊂ Kn is a convex semialgebraic set.
Then, there exists a projected spectrahedron S′ ⊂ Kn such that val(S) = val(S′).

In the second part of the dissertation, we study the relationship between the tropicalizations
of convex sets and stochastic mean payoff games. In Chapter 6 we present this class of games and
analyze them using Shapley operators [Sha53], Kohlberg’s theorem [Koh80], and the Collatz–
Wielandt property [Nus86]. Our presentation is based on [AGG12]. We give one new result in
this area—we generalize the tropical characterization of winning states of deterministic games
given in [AGG12] to the case of stochastic games. By combining this result with the results of
earlier chapters, we obtain the following correspondence between tropicalization of cones and
stochastic mean payoff games.

Theorem E (Theorem 6.30). Let S ⊂ Tn. Then, S is a tropicalization of a closed convex
semialgebraic cone if and only if there exists a stochastic mean payoff game such that its Shapley
operator F : Tn → Tn satisfies S = {x ∈ Tn : x ⩽ F (x)}. Moreover, the support of S is given
by the biggest winning dominion of this game. In particular, S is nontrivial if and only if the
game has at least one winning state.

As a consequence of the theorem above, the feasibility problem for any semialgebraic cone
over Puiseux series can, in theory, be reduced to solving a mean payoff game. Nevertheless,
even though our proofs are constructive, finding the appropriate game is not easy in general.
Indeed, as indicated before, while deciding the winner of a stochastic mean payoff game belongs
to the class NP ∩ coNP, there are problems of unknown complexity that can be expressed as
conic semidefinite feasibility problems. However, the tropical polynomial systems mentioned in
Theorem C can be converted to Shapley operators. This implies that generic nonarchimedean
semidefinite feasibility problems for cones over Puiseux series can be solved by a reduction to
mean payoff games. Even more, our approach can solve some semidefinite feasibility problems
that do not satisfy the genericity condition. This is proven in Chapter 7 and summarized below.

Theorem F (Theorem 7.6). Suppose that Q(1), . . . ,Q(n) ∈ Km×m are symmetric matrices, let
Q(x) := x1Q

(1) + · · · +xnQ
(n) and S := {x ∈ Kn

⩾0 : Q(x) ≽ 0}. Furthermore, suppose that the
matrices Q(k) have rational valuations, val(Q(1)), . . . , val(Q(k)) ∈ (Q∪{−∞})m×m. Then, given
only the signed valuations sval(Q(k)) of these matrices, we can construct (in polynomial-time) a
stochastic mean payoff game with the following properties. If the maximal value of the game is
strictly positive, then S is nontrivial. If the maximal value is strictly negative, then S is trivial.
Furthermore, if the maximal value is equal to 0 and the matrices val(Q(1)), . . . , val(Q(n)) are
generic, then S is nontrivial. Conversely, solving stochastic mean payoff games can be reduced
to the problem of checking the feasibility of spectrahedral cones S ⊂ Kn

⩾0 as above.
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Along the way, we show that the problem of checking the feasibility of a tropical Metzler
spectrahedron (defined only by the tropical polynomial inequalities, without the reference to
Puiseux series) is equivalent to solving stochastic mean payoff games.

Theorem G (Theorem 7.4). The problem of checking the feasibility of tropical Metzler spec-
trahedral cones is polynomial-time equivalent to the problem of solving stochastic mean payoff
games.

In the final chapter of the thesis we study the value iteration, which is a simple algorithm
that can be used to solve stochastic mean payoff games. This algorithm is based on the fact
that if F : Tn → Tn is the Shapley operator of such game, then the limit limN→∞ FN (0)/N
(where FN = F ◦ · · · ◦ F ) exists and is equal to the value vector of this game. The value
iteration algorithm computes the successive values of FN (0) and deduces the properties of the
limit out of this computation. As noted above, the feasibility problem of tropical spectrahedra
corresponds to deciding the sign of the value. The following observation provides a condition
number for this problem.

Theorem H (Theorem 8.25). Let f : Rn → Rn be monotone and additively homogeneous.
Furthermore, suppose that the equation f(u) = η + u has a solution (η, u) ∈ R × Rn. Then, we
have limN→∞ fN (0)/N = η(1, 1, . . . , 1). Moreover, suppose that η ̸= 0 and let R := inf{∥u∥H ∈
Rn : f(u) = η + u}, where ∥ · ∥H is the Hilbert seminorm. Then, for every

N ⩾ ⌈1 + R

|η|
⌉

the entries of fN (0) have the same sign and this sign if the same as the sign of η.

The assumptions of this theorem are fulfilled, for instance, if f is the Shapley operator of
a stochastic mean payoff game with constant value. In this case η is the value of the game.
However, there are other class of games for which this result may be of interest, such as the
entropy games of [ACD+16, AGGCG17]. When specified to tropical Metzler spectrahedra, the
condition number R/|η| has a geometric interpretation.

Proposition I (Proposition 8.16). Suppose that F : Tn → Tn is a Shapley operator associated
with a tropical Metzler spectrahedral cone S ⊂ Tn. Furthermore, suppose that F satisfies the
conditions of Theorem H and that η > 0. Then, there exists a tropical Metzler spectrahedral
cone S̃ ⊂ T2n such that S is the projection of S̃ and such that η/2 is the radius of the largest ball
in Hilbert seminorm that is included in S̃. Furthermore, if u ∈ Rn is such that F (u) = η + u,
then u is the projection of the center of one such ball.

In this way, the quantity |η| measures the width of the tropical Metzler spectrahedral cone,
while the quantity R measures the distance of this cone from the origin. Intuitively speak-
ing, this should be compared to the quantities that govern the complexity of the ellipsoid
method [GLS93]. The complexity of this method depends polynomially on log(R/r), where R
is the radius of a ball that contains a given convex body and r is the radius of a ball included in
this body. Thus, R measures how far the body is from the origin, while r measures how large
it is. The fact that value iteration depends polynomially on R/|η| instead of log(R/|η|) is intu-
itively justified by the fact that taking valuation already corresponds to taking the logarithm
of the input. The analogy with the ellipsoid is strengthened by the fact that value iteration
is also based on an oracle—in order to use this method, it is enough to have an oracle that
approximately evaluates f .
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We also give another application of the condition number, relating the nonarchimedean and
archimedean feasibility problems. As discussed earlier, a spectrahedron S ⊂ Kn

⩾0 over Puiseux
series can be seen as a family of real spectrahedra S(t) ⊂ Rn

⩾0 over real numbers. By a general
o-minimality argument, there exists t0 > 0 such that for all t > t0 the feasibility problems for S
and S(t) coincide (i.e., S(t) is nonempty if and only if S is nonempty). This correspondence may
potentially lead to a homotopy-type algorithm for deciding the feasibility of some spectrahedra.
To create such an algorithm, it is desirable to have bounds on the quantity t0. The next theorem
shows that t0 is not big if the associated stochastic mean payoff game is well conditioned.

Theorem J (Theorem 8.4). Suppose that symmetric tropical Metzler matrices Q(1), . . . , Q(n) ∈
Tm×m

± create a well-formed tropical linear matrix inequality and let η ∈ R denote the maximal
value o the associated stochastic mean payoff game. Let Q(1), . . . ,Q(n) ∈ Km×m be the monomial
lift of Q(1), . . . , Q(n) defied as Q

(k)
ij := δijt

|Q(k)
ij |, where δij := 1 if i = j and δij := −1 otherwise.

Then, for any
t > (2(m− 1)n)1/(2η)

the real spectrahedral cone S(t) := {x ∈ Rn
⩾0 : x1Q

(1)(t) + · · · + xnQ
(n)(t)} is nontrivial if

and only if the nonarchimedean spectrahedral cone S := {x ∈ Kn
⩾0 : x1Q

(1) + · · · + xnQ
(n)} is

nontrivial.

The main contribution of Chapter 8 is to give explicit bounds for the condition number
R/|η| in the case when f is a Shapley operator of a stochastic mean payoff game. This is based
on the following theorem that estimates the bit-size of the invariant measure of a finite Markov
chain.

Theorem K (Theorem 8.44). Suppose that P ∈ [0, 1]n×n is an irreducible stochastic matrix
with rational entries, let π ∈ ]0, 1]n be the stationary distribution of P , and let M ∈ N∗ be
the common denominator of all the entries of P . Then, the least common denominator of the
entries of π is not greater that nMmin{nr,n−1}, where nr ⩽ n is the number of rows of P which
are not deterministic (i.e., which have an entry in the open interval ]0, 1[). Moreover, the bound
nMmin{nr,n−1} is optimal.

Bounds of similar nature have already appeared in the literature concerning stochastic mean
payoff games [BEGM15, AGH18, Con92, ACS14]. However, the proofs in these works are based
on the Hadamard inequality that leads to suboptimal results. In order to achieve the optimal
bound, we replace the use of the Hadamard inequality by the combinatorial formula of Freidlin
and Wentzell [FW12]. As a corollary, we can estimate the pessimistic number of iterations
that is needed to solve a stochastic mean payoff game. This gives the following fixed-parameter
complexity result for this class of games.

Theorem L (Theorems 8.58 and 8.68). The value iteration algorithm solves constant value
games in pseudopolynomial-time and polynomial memory when the number of randomized ac-
tions is fixed. Moreover, for general games (with arbitrary value), a modification of the value
iteration can find the maximal (or minimal) value of the game, and the set of states that achieve
it, in pseudopolynomial-time and polynomial memory when the number of randomized actions
is fixed.

We note that the second part of the theorem relies on the characterization of dominions
established in Chapter 6. The only other known algorithms that achieve the complexity given
in Theorem L is the pumping algorithm studied in [BEGM15] and the variant of the ellipsoid
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algorithm given in [BEGM17]. However, value iteration is simpler, and our complexity bounds
are better than the ones obtained for the pumping and ellipsoid algorithms. When specified to
the case of tropical Metzler spectrahedra, the parametrized complexity bounds of Theorem L
give bounds that depend on the sparsity of the matrices that define this tropical spectrahedron.
This bounds are given in Section 8.5, where we also introduce an explicit class of tropical
spectrahedra that leads to constant value games. To finish, we apply value iteration to solve
random large-scale tropical semidefinite feasibility problems on this class of inputs.

1.3 Organization of the manuscript
This dissertation is organized as follows.

In Chapter 2 we discuss the preliminary notions used in the further parts of the manuscript.
More precisely, in Section 2.1 we recall the basic definitions and properties related to convex
polyhedra (such as relative interior or face) and polyhedral complexes. In Section 2.2 we give
some fundamental facts about real closed fields, semialgebraic sets, and the notion of dimen-
sion for these sets. In Section 2.3 we define the field of Puiseux series, valuation, and tropical
semifield. Section 2.4 describes the polyhedral complexes associated with (signed) tropical poly-
nomials. In Section 2.5 we recall some definitions and properties of valued fields (such as value
group, residue field, henselianity, cross-section, angular component) and state the characteriza-
tion of real closed valued fields (Theorem 2.75). In Section 2.6 we discuss the basic notions of
model theory of many-sorted structures (such as formula, interpretation, quantifier elimination,
model completeness). This is also the place where we define the notion of semilinear sets in
divisible ordered abelian groups (with or without the bottom element), and discuss the Denef–
Pas quantifier elimination and its implications for real closed valued fields (Theorems 2.115
and 2.120). To finish, in Section 2.7 we recall the notion of a finite Markov chain, stochastic
matrices, and discuss the general form of the ergodic theorem for Markov chains with payoffs
(Theorem 2.137).

Our contribution starts in Chapter 3, where we give a constructive proof of the real analogue
of the Bieri–Groves theorem (Theorem 3.1) and its application to regular tropicalizations of
semialgebraic sets (Theorem 3.4). Furthermore, in Section 3.2 we discuss the tropicalizations
of sets defined in fields with rational value group.

In Chapter 4 we study the fundamental objects of this dissertation—tropical spectrahedra.
First, in Definition 4.13 and Proposition 4.14 we introduce a subclass of tropical spectrahedra
defined by Metzler matrices. Then, we show (Theorem 4.19) that under regularity conditions, a
tropicalization of a spectrahedron defined by Metlzer matrices belongs to this class. We extend
this results to non-Metzler spectrahedra in Section 4.2 (Definition 4.21 and Theorem 4.28) and,
in Section 4.3, we show that regularity conditions are generically satisfied. In Section 4.4 we
study the tropicalization of interiors of spectrahedra.

In Chapter 5 we prove the tropical analogue of the Helton–Nie conjecture. To do so, we
first introduce the basic notions of tropical convexity (Section 5.1), describe tropically convex
semilinear sets as sublevel sets of monotone homogeneous operators (Proposition 5.34), and
describe these operators by graphs (Lemmas 5.37 and 5.38). Next, we establish a class of
graphs that encodes tropical Metzler spectrahedra (Proposition 5.40). The proof of the main
theorem of this chapter is divided into a few parts. First, we establish it for real tropical cones
(Proposition 5.44), then for the field of Puiseux series (Theorem 5.5), and finally generalize to
arbitrary real closed valued fields (Theorem 5.2 and Section 5.6).

The second part of the dissertation starts with the introduction to stochastic mean payoff
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games (Chapter 6), where we discuss the Shapley operators (Definition 6.3), Kohlberg’s theo-
rem (Theorem 6.6), Collatz–Wielandt property (Corollary 6.18), and present the proof of the
fact that these games have optimal policies (Theorem 6.1). Our contribution is given in Theo-
rem 6.16, where we characterize the nonempty strata of a tropical cone defined by the Shapley
operator using winning dominions of the associated game. In Section 6.3, we transfer all the
results to Shapley operators associated with bipartite games, which correspond more closely to
the results of Chapter 5, as shown in Lemma 6.27.

In Chapter 7 we show the equivalence between tropical semidefinite feasibility problem
and stochastic mean payoff games (Theorem 7.4 and Sections 7.1 and 7.2). We also show
the implications of this equivalence for the nonarchimedean semidefinite feasibility problem
(Theorem 7.18). The correspondence is the most direct for a particular class of problems
studied in Section 7.2.1.

In Chapter 8 we study the condition number of stochastic mean payoff games and non-
archimedean semidefinite feasibility. First, we relate the tropical feasibility problem with the
archimedean one (Theorem 8.4). Then, we give a geometric interpretation of this result (Propo-
sition 8.16). Subsequently, we move to the study of value iteration. We first study its abstract
version for general operators (Theorem 8.25) and show that is works in an oracle-based model
(Section 8.2.1). The main part of this chapter is to give estimates on the condition number. This
is done in Section 8.3 and summarized in Theorem 8.37. The main ingredient is the estimate
of stationary distribution given in Theorem 8.44. As a corollary of these results, we are able to
give fixed-parameter complexity bounds for stochastic mean payoff games. These bounds, for
different tasks, are collected in Section 8.4. The most general one is given in Theorem 8.68. In
Section 8.5 (notably Theorem 8.72 and Proposition 8.75) we specify these bounds to the case
of tropical semidefinite feasibility and present numerical results.

To finish, in Chapter 9 we discuss some open problems and possible directions of future
research.

1.4 Notation
Throughout this thesis, we use the following notation:

• if V is a vector space and v1, . . . , vk ∈ V n are vectors, then we denote by span(v1, . . . , vk)
the linear space spanned by v1, . . . , vk;

• we denote by ⟨·, ·⟩ the standard scalar product on Rn;

• N = {0, 1, . . .} denotes the set of natural numbers with zero and we put N∗ = {1, 2, . . .};

• if n ∈ N∗ is a positive natural number, then we denote [n] := {1, 2, . . . , n};

• if X is any set, x ∈ Xn is a vector with entries in X, and K ⊂ [n] is a nonempty subset,
then we denote by xK ∈ XK the subvector of x formed by the coordinates taken from K;

• if λ ∈ R is a real number and x ∈ Rn is a vector, then we denote λ+x := (λ+x1, . . . , λ+xn);

• if X is a topological space, then we always equip Xn with the product topology. If S ⊂ Xn

is any set, then we denote by int(S) the interior of S, and by clX(S) the closure of S in
this topology.



CHAPTER 2

Preliminaries

2.1 Polyhedra and polyhedral complexes
In this section, we recall the definition of a polyhedron, relative interior, and polyhedral complex.
More information can be found in [Sch87, Zie07, Grü03].

Definition 2.1. We say that a set W ⊂ Rn is a polyhedron if it is of the form

W = {x ∈ Rn : ∀i = 1, . . . , p, ⟨ai, x⟩ ⩽ bi}, (2.1)

where ai ∈ Rn and bi ∈ R for all i ∈ [p]. A polyhedron V ⊂ W is a face of W if there exists a
set I ⊂ [p] such that

V = {x ∈ W : ∀i ∈ I, ⟨ai, x⟩ = bi} .

Definition 2.2. If W ⊂ Rn is a polyhedron, then its relative interior, denoted ri(W), is the set
defined as follows. We set J ⊂ [p] as J := {j ∈ [p] : ∃x ∈ W, ⟨aj , x⟩ < bj} and we put

ri(W) := {x ∈ Rn : ∀j ∈ J, ⟨aj , x⟩ < bj , ∀j /∈ J, ⟨aj , x⟩ = bj} .

The next proposition characterizes the polyhedron in terms of its interior and relative inte-
rior. We denote by int(·) and clR(·) the interior and closure operators in the standard topology
of Rn.

Lemma 2.3. If W ⊂ Rn is a polyhedron, then clR(ri(W)) = W. In particular, if W is
nonempty, then ri(W) is nonempty. Furthermore, if int(W) ̸= ∅, then int(W) = ri(W).
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Sketch of the proof. The claim is trivial if J = ∅. Otherwise, for every j ∈ J we take take
x(j) ∈ W such that ⟨aj , x

(j)⟩ < bj . Then x = 1
|J |
∑

j∈J x
(j) ∈ ri(W). Furthermore, if y ∈ W,

then xλ := (1 −λ)x+λy ∈ ri(W) for all λ ∈ [0, 1[. Hence clR(ri(W)) = W. To prove the second
claim, note that if x ∈ int(W), then we have ⟨aj , x⟩ < bj for all j such that (aj , bj) ̸= (0, 0).
Hence int(W) ⊂ ri(W). Conversely, every point y that satisfies ⟨aj , y⟩ < bj for all j such that
(aj , bj) ̸= (0, 0) belongs to int(W) and ri(W) ⊂ int(W).

Corollary 2.4. If W,V ∈ Rn are polyhedra, then W ∪ V = clR
(
ri(W) ∪ ri(V)

)
.

Proof. We have W = clR(ri(W)) ⊂ clR
(
ri(W) ∪ ri(V)

)
and analogously for V. This proves the

inclusion ⊂. To prove the opposite inclusion, note that clR
(
ri(W)∪ri(V)

)
⊂ clR

(
W ∪V

)
= W ∪V

because polyhedra are closed.

Lemma 2.5. If W is a polyhedron and x ∈ W, then there exists a unique face V of W such
that x ∈ ri(V).

Sketch of the proof. Let I := {i ∈ [p] : ⟨ai, x⟩ < bi} and denote V := {y ∈ W : ∀i /∈ I, ⟨ai, y⟩ =
bi}. The face V satisfies the claim.

Definition 2.6. We say that a family C = {W1, . . . ,Wm} of polyhedra is a polyhedral complex
if the following three conditions are satisfied:

• the empty set belongs to C;
• for all i ∈ [m], every face of Wi also belongs to C;
• the relative interiors of different polyhedra belonging to C are pairwise disjoint.

We often refer to the polyhedra belonging to C as cells of C.

Remark 2.7. One can replace the third condition in the definition above by “for every i, j ∈ [m],
Wi ∩Wj is a face of Wi and a face of Wj .” We leave the proof of this equivalence as an exercise.

Definition 2.8. If C = {W1, . . .Wm} is a polyhedral complex, then we define its support as
the union

∪m
i=1 Wi.

Lemma 2.9. If C1 = {W1, . . . ,Wm} and C2 = {V1, . . . ,Vℓ} are two polyhedral complexes in
Rn, then C = {Wi ∩ Vk : i ∈ [m], k ∈ [ℓ]} is a polyhedral complex whose support is equal to the
intersection of the supports of C1 and C2.

Sketch of the proof. It is clear that the empty set belongs to C. Moreover, any face of the
polyhedron Wi ∩ Vk is also of such form (by the definition of face and the fact that C1, C2
are polyhedral complexes). Finally, ri(Wi ∩ Vk) = ri(W̃) ∩ ri(Ṽ), where W̃ is a face of Wi

and Ṽ is a face of Vk. Hence ri(Wi ∩ Vk) = ri(Wi′) ∩ ri(Vk′) for some i′ ∈ [m] and k′ ∈ [ℓ].
Therefore, by Lemma 2.3, if Wi ∩Vk is different than Wi′′ ∩Vk′′ , then they have disjoint relative
interiors. This shows that C is a polyhedral complex. The second claim follows from the equality∪

i∈[m],k∈[ℓ](Wi ∩ Vk) = (
∪

i∈[m] Wi) ∩ (
∪

k∈[ℓ] Vk).

2.2 Real closed fields
In this section we recall the basic definitions concerning real closed fields and semialgebraic sets.
We refer to [BPR06] for more information.
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Definition 2.10. Let K = (K,⩽) be an ordered field.1 Then, we say that K is real closed if
every positive element of K has a square root and every univariate polynomial over K of odd
degree has at least one root (in K).

Example 2.11. The field R of real numbers is a real closed field. A second example that is
important for this work is the field K of Puiseux series that we will introduce in Section 2.3.

A basic property of real closed fields is that the order is unique.

Lemma 2.12. If (K,⩽) is a real closed field, then is admits a unique total order. Even more,
we have x ⩾ y if and only if x− y is a square.

Proof. If ≽ is any total order on K, then x2 ≽ 0 for all x ∈ K. Furthermore, if y ≽ 0 is not a
square, then y is negative in the order ⩽. This means that −y ⩾ 0 and hence −y is a square
because K is real closed. Therefore, −y = z2 ≽ 0 and y = 0 = 02, which gives a contradiction.
Thus, x ≽ 0 if and only if x is a square, which implies that x ≽ y if and only if x−y is a square.
In particular, the order on K is unique.

Real closed fields share many properties with the field of real numbers. For instance, every
nonnegative element of K has a well-defined nth root.

Lemma 2.13. Suppose that x ∈ K is nonnegative, x ⩾ 0, and let n ⩾ 1 be any natural number.
Then, there exists a unique y ∈ K such that y ⩾ 0 and yn = x.

Proof. First, let us show that y is unique. If y, z ⩾ 0, yn = zn = x and y ̸= z, then we have
0 = yn − zn = (y − z)(yn−1 + yn−2z + · · · + yzn−2 + zn−1). Since y, z ⩾ 0, the second factor is
equal to 0 if and only if y = z = 0, which gives a contradiction. Hence y is unique. To show
that y exists, suppose that n is odd. Then, the polynomial P (z) := zn − x has a root y in
K. If y is negative, then (−y) is positive and thus x = yn = −(−y)n is negative, which gives
a contradiction. Therefore, the claim is true for odd values of n. If n is even, then we write
n = 2km, where k ⩾ 1 and m is odd. Let z0 ⩾ 0 be the mth root of x and let zi ⩾ 0 be the
square root of zi−1 for all i ⩾ 1. Then y = zk.

We now recall the definition of semialgebraic sets and their basic properties.

Definition 2.14. If K is a real closed field, then we say that a subset S ⊂ Kn is basic
semialgebraic if it is of the form

S = {x ∈ Kn : ∀i = 1, . . . p, Pi(x) > 0 ∧ ∀i = p+ 1, . . . , q, Pi(x) = 0} ,

where Pi ∈ K[X1, . . . , Xn] are polynomials. We say that S is semialgebraic if it is a finite union
of basic semialgebraic sets.

Any real closed field K can be equipped with the topology induced by its order. Further-
more, we can extend this topology to Kn by taking the product topology. It can be checked
that (as in the case of real numbers), this topology is the same as the topology induced by the
euclidean open balls B(x, r) ⊂ Kn,

B(x, r) := {y ∈ Kn : (y1 − x1)2 + · · · + (yn − xn)2 < r2} ,

and that the addition and multiplication are continuous for this topology. The next proposition
concerns the interiors and closures in this topology, denoted int(·) and clK(·).

1In other words, we suppose that ⩽ is a total order on K that fulfills the properties x ⩽ y =⇒ x+ z ⩽ y+ z
and x ⩾ 0, y ⩾ 0 =⇒ xy ⩾ 0 for all x, y, z ∈ K.
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Proposition 2.15 ([BPR06, Proposition 3.1]). If S ⊂ Kn is semialgebraic, then int(S) and
clK(S) are semialgebraic.

Semialgebraic sets in dimension 1 have a particularly simple structure.

Lemma 2.16. If S ⊂ K is semialgebraic, then it is a finite union of points and open intervals.

Sketch of the proof. If P ∈ K[X] is a polynomial, x1 < · · · < xp ∈ K are its roots, and we
denote x0 = −∞, xp+1 = +∞, then P (x) has constant sign on every interval ]xi, xi+1[ ([BPR06,
Theorem 2.11]). Hence, the claim is true form the sets {x ∈ K : P (x) > 0} and {x ∈ K : P (x) =
0}. Therefore, the claim is true for basic semialgebraic sets and for semialgebraic sets.

Furthermore, the class of semialgebraic sets is closed under semialgebraic transformations.

Definition 2.17. Let S ⊂ Kn be semialgebraic. We say that a function f : S → Km is
semialgebraic if its graph {(x, y) ∈ S × Km : y = f(x)} is a semialgebraic set.

Proposition 2.18 ([BPR06, Proposition 2.83]). If S ⊂ Kn is semialgebraic and f : S → Km

is a semialgebraic function, then f(S) ⊂ Km is a semialgebraic set.

The next definition and proposition gathers some basic properties of the dimension of semi-
algebraic sets.

Definition 2.19. The dimension of a semialgebraic set S ⊂ Kn, denoted dim(S) is the largest
natural number d ⩾ 0 such that there exists an injective semialgebraic function f : ]0, 1[d → S.
(With the convention that the dimension of an empty set is equal to −1.) We say that S is full
dimensional if dim(S) = n.

Proposition 2.20 ([BPR06, Section 5.3]). The dimension of a semialgebraic set S ⊂ Kn

is finite and not greater than n. Furthermore, S is full dimensional if and only if it has a
nonempty interior. If S, S′ ⊂ Kn are semialgebraic, then dim(S∪S′) = max(dim(S),dim(S′)).
Moreover, if S ⊂ S′, then dim(S) ⩽ dim(S′). If a function f : S → Km is semialgebraic, then
dim(f(S)) ⩽ dim(S). If we further suppose that f is injective, then dim(f(S)) = dim(S).

Finally, let us recall the definition of a convex set, a simplex, and characterize the dimension
of convex semialgebraic sets.

Definition 2.21. We say that a set S ⊂ Kn is convex if for every x, y ∈ S and every λ ∈ K

such that 0 ⩽ λ ⩽ 1 we have λx+ (1 − λ)y ∈ S. We say that S ⊂ Kn is a (convex) cone if for
every x, y ∈ S and every λ, µ ∈ K, λ, µ ⩾ 0 we have λx+ µy ∈ S.

Example 2.22. A polyhedron W ⊂ Rn is a convex semialgebraic set. Indeed, the fact that W
is convex follows easily from the definition. Moreover, a polyhedron W ⊂ Rn as in (2.1) can
be described as a union of 2p basic semialgebraic sets (for each inequality we choose whether
it is satisfied as an equality or not). An euclidean open ball B(x, r) ⊂ Rn is also a convex
semialgebraic set (the fact that B(x, r) is convex follows from the triangle inequality of the
euclidean norm).

Definition 2.23. If the vectors u(1), . . . , u(m) ∈ Kn are linearly independent and u(0) ∈ Kn,
then we define the associated simplex ∆(u(0), . . . , u(m)) ⊂ Kn as the set

∆(u(0), u(1), . . . , u(m)) := {λ0u
(0) +

m∑
i=1

λi(u(0) + u(i)) : ∀i, λi ⩾ 0,
m∑

i=0
λi = 1} .
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Remark 2.24. We note that a simplex is a semialgebraic set. Indeed, to see that one can consider
the set S ⊂ Kn+m+1 defined as

S :=
{

(x, λ0, . . . , λm) : ∀i, λi ⩾ 0 ∧
m∑

i=0
λi = 1 ∧ ∀k ∈ [n], xk = λ0u

(0)
k +

m∑
i=1

λi(u(0)
k + u

(i)
k )
}
.

Then, ∆(u(0), u(1), . . . , u(m)) is the projection of S onto the first n coordinates and the claim
follows from Proposition 2.18. Analogously, the affine space u(0) + span(u(1), . . . , u(m)) is a
semialgebraic set.

Lemma 2.25. If the vectors u(1), . . . , u(m) ∈ Kn are linearly independent and u(0) ∈ Kn, then
the dimension of the affine space u(0) + span(u(1), . . . , u(m)) is equal to m, and the same is true
for the dimension of the simplex ∆(u(0), u(1), . . . , u(m)).

Sketch of the proof. Let A := u(0) + span(u(1), . . . , u(m)) and ∆ := ∆(u(0), u(1), . . . , u(m)). The
function f : Km → Kn defined as

f(x1, . . . , xm) := u(0) + x1u
(1) + · · · + xmu

(m) = (1 −
m∑

i=1
xi)u(0) +

m∑
i=1

xi(u(0) + u(i))

is an injective semialgebraic function from Km to A. Hence, by Proposition 2.20, we have
dim(A) = m. Furthermore, note that f

(
]0, 1/m[m

)
is a subset of ∆. Since f is injective, using

Proposition 2.20 again we have m = dim
(
f
(
]0, 1/m[m

))
⩽ dim(∆) ⩽ dim(A) = m.

Corollary 2.26. Suppose that the set S ⊂ Kn is nonempty, semialgebraic, and convex. Then,
the dimension of S is equal to the largest dimension of a simplex contained in S. Equivalently,
is it equal to the smallest dimension of an affine space that contains S.

Sketch of the proof. Take the largest collection u(1), . . . , u(m) ∈ Kn of linearly independent
vectors such that there exists u(0) ∈ Kn satisfying ∆(u(0), u(1), . . . , u(m)) ⊂ S (we allow m = 0).
Let A denote the affine space u(0) + span(u(1), . . . , u(m)). If there exists a point x ∈ S \A, then
the vectors u(1), . . . , u(m), x − u(0) ∈ Kn are linearly independent. By convexity of S, this
implies that the simplex ∆(u(0), u(1), . . . , u(m), x− u(0)) ∈ Kn is contained in S, which gives a
contradiction. Hence S ⊂ A. Therefore, by Lemma 2.25 we have dim(S) = m. Moreover, m is
the smallest dimension of an affine space that contains S.

2.3 Puiseux series and tropical semifield
In this section, we discuss the fundamental objects of this thesis—the field of Puiseux series
and the tropical semifield. We start by briefly introducing the field of Puiseux series. More
information about this field can be found in Appendix A, where we discuss in detail the dif-
ferent fields used in tropical geometry (e.g., Puiseux series with rational exponents, generalized
Puiseux series, Hahn series, both formal and convergent), prove their basic properties, and,
following van den Dries and Speissegger [vdDS98], prove that all these fields are real closed (or
algebraically closed in the case of complex coefficients). In this work, we use the field of con-
vergent, generalized, real Puiseux series. In the context of tropical geometry, a variant of this
field without without the convergence assumption first appeared in [Mar10]. Up to a change of
variables, this field is isomorphic to the field of generalized Dirichlet series studied by Hardy
and Riesz [HR15].
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Definition 2.27. An absolutely convergent generalized real Puiseux series is a series of the form

x =
∞∑

i=1
cλi
tλi , (2.2)

where t is a formal parameter, (λi)i⩾1 is a strictly decreasing sequence of real numbers that is
either finite or unbounded, and cλi

∈ R \ {0}. Furthermore, the series (2.2) is required to be
absolutely convergent for t large enough. There is also a special, empty series, which is denoted
by 0.

Remark 2.28. For simplicity, throughout this work we refer to absolutely convergent generalized
real Puiseux series as “Puiseux series.” We denote the set of Puiseux series by K.

Definition 2.29. We denote by lc(x) the coefficient cλ1 of the leading term in the series x as
in (2.2), with the convention that lc(0) = 0. We also endow K with a linear order ⩽, which is
defined as y ⩽ x if lc(x − y) ⩾ 0. Equivalently, we have y ⩽ x if and only if y(t) ⩽ x(t) for all
sufficiently large t > 0. We denote by K⩾0 the set of nonnegative series x, i.e., the set of series
satisfying x ⩾ 0.

The Puiseux series can be added and multiplied in the natural way. Furthermore, given the
order introduced in Definition 2.29, the ring of Puiseux series forms a real closed field. This
was proven by van den Dries and Speissegger [vdDS98].

Theorem 2.30 ([vdDS98]). The set of Puiseux series K endowed with the order ⩽ forms a real
closed field.

The tropical semifield describes the algebraic structure of K under the valuation map.

Definition 2.31. The valuation of an element x ∈ K as in (2.2) is defined as the greatest
exponent λ1 occurring in the series, val(x) := λ1. Equivalently, the valuation is given by

val(x) = lim
t→+∞

logt |x(t)| ,

where logt(z) := log(z)/ log(t). We use the convention that val(0) = −∞.

Definition 2.32. The tropical semifield is a structure T = (T,⊕,⊙), where the underlying set
T is defined as T := R ∪ {−∞}, the tropical addition is defined as x ⊕ y = max(x, y), and the
tropical multiplication is defined as x⊙ y = x+ y.

Remark 2.33. We point out that −∞ is the neutral element of the tropical addition, and 0 is
the neutral element of the tropical multiplication. The word “semifield” refers to the fact that
the tropical addition does not have an inverse (but all other properties of fields are satisfied by
T). Throughout this work, we use the notation

⊕n
i=1 ai = a1 ⊕ · · · ⊕ an and a⊙n = a⊙ · · · ⊙ a

(n times).
Remark 2.34. We endow T with the standard order ⩽. Since T is totally ordered, it has a
topology defined by the order, i.e., the smallest topology such that all sets of the form ]a, b[ and
[−∞, b[ for a, b ∈ R are open. We extend this topology to Tn by taking the product topology.

In this work, we only use a few basic properties of the tropical semifield. We refer to [But10]
for more information about the algebraic properties of T.The following observation relates the
valuation over K to the tropical semifield T.
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Lemma 2.35. The valuation val : K → T satisfies the properties

val(x + y) ⩽ max(val(x), val(y)) (2.3)
val(xy) = val(x) + val(y) . (2.4)

Furthermore, for every x ⩾ y ⩾ 0 we have

val(x) ⩾ val(y) . (2.5)

Proof. The proof of the first two properties follows from the definition of addition and multi-
plication of the series. More precisely, the greatest exponent of the sum of two series cannot
be bigger that the greatest exponent of each of them, and the greatest exponent of the product
is equal to the sum of the greatest exponents of the factors. To prove the third property, note
that if val(y) > val(x), then lc(x − y) = − lc(y) < 0, which gives a contradiction with the fact
that x ⩾ y.

Remark 2.36. We point out that the equality holds in (2.3) if the leading terms of x and y do
not cancel. This is the case, for instance, if val(x) ̸= val(y) or if x,y ⩾ 0.
Remark 2.37. The properties given in Lemma 2.35 imply that the valuation is an order-
preserving morphism of semifields from K⩾0 to T.

When dealing with semialgebraic sets, it is convenient to keep track not only of the valuations
of the elements of K, but also of their signs. To this end, we introduce the set of signed tropical
numbers and signed valuation.

Definition 2.38. The set of signed tropical numbers is defined as T± := ({+1,−1} × R) ∪
{(0,−∞)}. The modulus function |·| : T± → T is defined as the projection which forgets the
first coordinate. The elements of the form (1, a) of T± are called positive tropical numbers and
are denoted by T+. Similarly, the elements of the form (−1, a) of T± are called negative tropical
numbers and are denoted by T−. By convention, we denote the positive tropical number (1, a)
by a, the negative tropical number (−1, a) by ⊖a, and the element (0,−∞) by −∞. Here, ⊖ is
a formal symbol.

Definition 2.39. We extend the definition of tropical multiplication to T± using the usual rules
for signs. In other words, for δ1, δ2 ∈ {−1, 0,+1} and a, b ∈ T such that (δ1, a), (δ2, b) ∈ T±
we define (δ1, a) ⊙ (δ2, b) := (δ1δ2, a + b). We also partially extend the tropical addition to
the elements of T± which have the same sign. In other words, if δ1 = δ2, then we define
(δ1, a) ⊕ (δ1, b) := (δ1,max{a, b}).

Example 2.40. We have (⊖3) ⊙ 7 = ⊖10, (⊖3) ⊙ (⊖7) = 10, 3 ⊕ 7 = 7, and (⊖3) ⊕ (⊖7) = ⊖7,
but (⊖3) ⊕ 7 is not defined.

Let us note that one can extend the set T± further in oder to get a semiring with a well-
defined tropical addition [AGG09], or work with hyperfields [Vir10, CC11, BB16] instead of
semifields to have a well-defined, but multivalued addition. However, the partial addition defined
above is sufficient for this work.
Remark 2.41. We point out that the tropical semiring T is isomorphic to T+ ∪ {−∞}.

Definition 2.42. We define the sign function sign : K → {−1, 0,+1} as sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0, and sign(0) = 0. We define the absolute value function |·| : K → K⩾0
as |x| = sign(x)x. Furthermore, we define the signed valuation sval : K → T± as sval(x) =
(sign(x), val(x)).
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Remark 2.43. We extend the functions val : K → T, sval : K → T±, and |·| : T± → T to vectors
and matrices by applying them coordinatewise.

2.4 Tropical polynomials
In the tropical semifield we can also define an analogue of a polynomial. In this section we
discuss this notion and the polyhedral complexes that arise as solutions to tropical polynomial
inequalities.

Definition 2.44. A (signed) tropical polynomial over the variables X1, . . . , Xn is a formal
expression of the form

P (X) =
⊕
α∈Λ

aα ⊙X⊙α1
1 ⊙ · · · ⊙X⊙αn

n , (2.6)

where Λ is a finite subset of {0, 1, 2, . . .}n, and aα ∈ T± \{−∞} for all α ∈ Λ. Since the addition
in T± is only partially defined, we cannot evaluate P (x) for all the points x ∈ Tn

±. However, if
x ∈ Tn

± is such that all of the terms aα ⊙ x⊙α1
1 ⊙ · · · ⊙ x⊙αn

n have the same sign, then we define
P (x) as the tropical sum of these terms.

Example 2.45. If P (X) = 2⊙X⊙3
1 ⊙X⊙4

2 ⊕(⊖0⊙X2), then P (1,⊖5) = 25, P (⊖1,−5) = ⊖(−5),
whereas P is not defined for (1,−5/3).

The next definition and lemma shows that a nonzero tropical polynomial divides Rn into
cells that form a polyhedral complex. The union of the boundaries of cells of this complex is
called a tropical hypersurface—we refer to [MS15, Section 3.1] for more information.

Definition 2.46. Given a tropical polynomial P as in (2.6), we say that P is nonzero if the set
Λ is nonempty. For every such tropical polynomial and every point x ∈ Rn we define the set of
maximizing multi-indices at x as

Argmax(P, x) :=
{
α ∈ Λ : ∀β ∈ Λ, |aα| + ⟨α, x⟩ ⩾ |aβ| + ⟨β, x⟩

}
,

where ⟨·, ·⟩ refers to the usual scalar product.

Lemma 2.47. If P is a nonzero tropical polynomial as in (2.6) and we fix a multi-index α ∈ Λ,
then the set

Wα := clR({x ∈ Rn : Argmax(P, x) = α})

is a polyhedron that is either empty or full dimensional. Furthermore, if L ⊂ Λ is such that
α ∈ L, then the set

WL := clR({x ∈ Rn : Argmax(P, x) = L}) (2.7)

is a (possibly empty) face of Wα. Moreover, the family {WL}L⊂Λ is a polyhedral complex whose
support is equal to Rn. (Here, clR(·) refers to the closure in Rn and we use the convention that
W∅ = ∅.)

Sketch of the proof. To prove the first statement, note that a point x ∈ Rn satisfies the equality
Argmax(P, x) = α if and only if the inequality |aα| + ⟨α, x⟩ > |aβ| + ⟨β, x⟩ is true for all
β ∈ Λ \ {α}. Therefore, if Wα is nonempty, then it contains a ball. A relative interior of a face
of Wα is obtained by fixing a subset of inequalities of the form |aα| + ⟨α, x⟩ > |aβ| + ⟨β, x⟩ and
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Figure 2.1: Tropical hypersurface.

turning them into equalities. In other words, V is a (possibly empty) face of Wα if and only if
V = clR({x ∈ Rn : Argmax(P, x) = L}) for some L ⊂ Λ such that α ∈ L. The polyhedra WL

have disjoint relative interiors, and hence the family {WL}L⊂Λ is a polyhedral complex. The
fact that its support is equal to Rn follows from the definition.

Example 2.48. Take

P (X1, X2) :=
(
2 ⊙X1

)
⊕
(
⊖(−4) ⊙X⊙2

1 )
)

⊕
(
⊖(−3) ⊙X1 ⊙X2

)
⊕
(
⊖5
)
.

The tropical hypersurface associated with P is depicted in Fig. 2.1. The associated polyhedral
complex consists of 11 nonempty polyhedra, 4 of which are full dimensional (one for every
monomial of P ).

In this work, we are interested in systems of tropical inequalities. To do so, it is convenient
to make the following definitions.

Definition 2.49. Given a tropical polynomial P as in (2.6), we set Λ+ := {α ∈ Λ : aα ∈ T+}
and Λ− := {α ∈ Λ : aα ∈ T−}. Furthermore, we define P+ :=

⊕
α∈Λ+ aα ⊙X⊙α1

1 ⊙ · · · ⊙X⊙αn
n

and P− :=
⊕

α∈Λ− |aα| ⊙X⊙α1
1 ⊙ · · · ⊙X⊙αn

n . Finally, if P is nonzero, then we set

S⩾(P ) := {x ∈ Rn : P+(x) ⩾ P−(x)}

(with the convention that P+(x) := −∞ if Λ+ = ∅ and P−(x) := −∞ if Λ− = ∅).

Remark 2.50. We point out the values P+(x), P−(x) are well defined for all x ∈ Tn. Therefore,
S⩾(P ) is also well defined.

The following definition and a lemma show the connection between polynomial inequalities
over K⩾0 and tropical polynomial inequalities.

Definition 2.51. To any polynomial

P (X) =
∑
α∈Λ

aαX
α1
1 . . . Xαn

n ∈ K[X1, . . . , Xn] (2.8)

over Puiseux series we associate a tropical polynomial defined as

trop(P ) :=
⊕
α∈Λ

sval(aα) ⊙X⊙α1
1 ⊙ · · · ⊙X⊙αn

n .
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Figure 2.2: Support of the polyhedral complex C⩾(P ).

Lemma 2.52. Let P ∈ K[X1, . . . , Xn] be a polynomial and let P := trop(P ). If x ∈ Kn
⩾0 is

such that P (x) ⩾ 0, then P+(val(x)
)
⩾ P−(val(x)

)
.

Proof. Define x = val(x) ∈ Tn
± and let

P+(X) =
∑

α∈Λ+

aαX
α1
1 . . . Xαn

n

P−(X) =
∑

α∈Λ−

|aα|Xα1
1 . . . Xαn

n .

By (2.4) and Remark 2.36, we have P+(val(x)
)

= val
(
P+(x)

)
and P−(val(x)

)
= val

(
P−(x)

)
.

Moreover, P+(x) ⩾ P−(x) and the claim follows from (2.5).

Next, we define the signed version of the polyhedral complex associated with a tropical
polynomial and show its connections to tropical polynomial inequalities.

Definition 2.53. We say that a cell WL ∈ C(P ) as in (2.7) is positive if there exists at least
one α ∈ L such that aα ∈ T+ or if WL is empty.

Lemma 2.54. Suppose that P is a nonzero tropical polynomial and let C⩾(P ) be the family of
positive cells of C(P ). Then, C⩾(P ) is a polyhedral complex whose support is equal to S⩾(P ).

Sketch of the proof. As in the proof of Lemma 2.47, if WL belongs to C⩾(P ) and V is its face,
then V = WL′ for some L ⊂ L′. This means that all faces of WL belong to C⩾(P ). Moreover,
the polyhedra in C⩾(P ) have disjoint relative interiors and so C⩾(P ) is a polyhedral complex.
To finish the proof, observe that x ∈ S⩾(P ) if and only if Argmax(P, x) ∩ Λ+ ̸= ∅.

Example 2.55. Let P (X1, X2) be as in Example 2.48. Then, the polyhedral complex C⩾(P )
consists of 6 polyhedra and its support is depicted in Fig. 2.2.

Given a system of nonzero tropical polynomials P1, . . . , Pm, we also regard the refinements
of complexes defined by P1, . . . , Pm. More precisely, we make the following definition.

Definition 2.56. If P1, . . . , Pm are nonzero tropical polynomials, then we define C(P1, . . . , Pm)
and C⩾(P1, . . . , Pm) as

C(P1, . . . , Pm) :=
{
∩m

i=1Vi : ∀i, Vi ∈ C(Pi)
}
,

C⩾(P1, . . . , Pm) :=
{
∩m

i=1Vi : ∀i, Vi ∈ C⩾(Pi)
}
.
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Lemma 2.57. The families C(P1, . . . , Pm) and C⩾(P1, . . . , Pm) are polyhedral complexes. The
support of the former is equal to Rn while the support of the latter coincides with

S⩾(P1, . . . , Pm) := {x ∈ Rn : ∀i, P+
i (x) ⩾ P−

i (x)} .

Proof. Obvious from Lemma 2.9 and the lemmas above.

Finally, in this work we often consider polyhedral complexes with regular supports. Recall
that a closed set X ⊂ Rn is called regular if X = clR(int(X)). The next lemmas show basic
properties of these complexes.

Lemma 2.58. If C is a polyhedral complex, then its support is regular if and only if every point
of the support belongs to some full-dimensional cell of C.

Proof. Let S denote the support of C. If x ∈ S belongs to some full-dimensional cell W of C,
then x ∈ W = clR(int(W)) ⊂ clR(int(S)) by Lemma 2.3. This proves the “if” direction. To
prove the opposite direction, suppose that S is regular and take any point y ∈ int(S). We will
show that y belongs to some full-dimensional cell of C. Since the polyhedra that form C are
closed (and there are finitely many of them), there exists an open ball B(y, r) ⊂ Rn such that
a cell W ∈ C has a nonempty intersection with B(y, r) if and only if y ∈ W. Let 0 < r′ < r
be such that B(y, r′) ⊂ S. If y does not belong to a full-dimensional cell, then the union of all
cells containing y is not full dimensional and it does not contain a ball (by Proposition 2.20).
In particular, B(y, r′) is not contained in this union, which gives a contradiction with the fact
that r′ < r. Hence, y belongs to some full-dimensional cell of C.

To finish the proof, take any x ∈ S. Then for every k ⩾ 1, there exists a point y(k) ∈
int(S) ∩ B(x, 1/k). By the observation above, y(k) belongs to some full-dimensional cell of
C. Therefore, up to taking a subsequence, we can suppose that all y(k) belong to the same
full-dimensional cell W ∈ C. Since W is closed, we get x ∈ W.

Lemma 2.59. Suppose that the polyhedral complex C⩾(P1, . . . , Pm) has a regular support. Then
this support, S⩾(P1, . . . , Pm), coincides with the closure of the set

S>(P1, . . . , Pm) := {x ∈ Rn : ∀i, P+
i (x) > P−

i (x)} .

Proof. If there is a tropical polynomial Pi such that P = P−
i , then both of these sets are empty

and the claim is trivially true. If there is a tropical polynomial Pi such that P = P+
i , then we can

remove this polynomial from the collection and this does not change the sets S⩾(P1, . . . , Pm)
and S>(P1, . . . , Pm). Hence, we can suppose that all the tropical polynomials P+

i , P
−
i are

nonzero. Then, the set S⩾(P1, . . . , Pm) is closed since the tropical polynomial functions P±
i are

continuous. We obviously have S>(P1, . . . , Pm) ⊂ S⩾(P1, . . . , Pm). Therefore,

clR(S>(P1, . . . , Pm)) ⊂ S⩾(P1, . . . , Pm) .

Consider now y ∈ S⩾(P1, . . . , Pm). Since this set is regular, by Lemma 2.58, y belongs to a full-
dimensional cell W of C⩾(P1, . . . , Pm). We have W = ∩1⩽i⩽mWi, where Wi is a full-dimensional
cell of C⩾(Pi). This implies that Wi = clR({x ∈ Rn : Argmax(Pi, x) = Li}) where Li is a
one element subset of Λ+(Pi). We conclude that P+

i (x) > P−
i (x) holds for all x ∈ int(Wi),

and so, int(W) ⊂ S>(P1, . . . , Pm). We have W = clR(int(W)) by Lemma 2.3 and hence
y ∈ clR(S>(P1, . . . , Pm)).
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2.5 Valued fields

In this section, we recall basic definitions and properties of valued fields. We refer to [EP05,
Chapter 2] for more information. We also use some basic notions from algebra, which can be
found in textbooks such as [AW92, Chapters 1 and 2].

Definition 2.60. A valued field is a triple (K, Γ, val), where K = (K, 0, 1,+, ·) is a field,
Γ = (Γ, 0,+,⩽) is an ordered abelian group,2 and val : K → Γ ∪ {−∞} is a surjective function
that fulfills the following three conditions:

val(x) = −∞ ⇐⇒ x = 0 ;
∀x1, x2 ∈ K, val(x1x2) = val(x1) + val(x2) ;

∀x1, x2 ∈ K, val(x1 + x2) ⩽ max(val(x1), val(x2)) .
(2.9)

The group Γ is called the value group of (K, Γ, val) and the function val is called a valuation.
The valuation is called trivial if Γ = {0}. Otherwise, it is called nontrivial. The set O := {x ∈
K : val(x) ⩽ 0} is called the valuation ring of (K, Γ, val).

The next lemmas allow us to define the notion of the residues field of (K, Γ, val).

Lemma 2.61. We have val(1) = val(−1) = 0.

Proof. We have val(1) = val(1 ·1) = val(1)+val(1) and hence val(1) = 0. Moreover, 0 = val(1) =
val((−1) · (−1)) = 2 val(−1) and therefore val(−1) = 0.

Lemma 2.62. The valuation ring O is a subring of K and M := {x ∈ K : val(x) < 0} is its
maximal ideal.

Proof. The facts that O is a subring of K and M ⊂ O is its ideal are immediate consequences
of (2.9). It remains to prove that M is maximal. To do that, note that an element x ∈ O is
invertible in O if and only if val(x) = 0. Indeed, if x ̸= 0 and x−1 ∈ K is its inverse, then
Lemma 2.61 implies that 0 = val(1) = val(xx−1) = val(x)+val(x−1). In particular, M is exactly
the set of elements of O that are not invertible in O. Hence, M is maximal.

Definition 2.63. We say that a field k is a residue field of (K, Γ, val) if there exists a surjective
ring homomorphism res : O → k whose kernel is equal to M. In this case, res is called a residue
map.

Lemma 2.64. A residue field k exists and is unique up to isomorphism. More precisely, if
π : O → O/M denotes the canonical projection from O to O/M, then k is isomorphic to O/M
and there exists a field isomorphism f : O/M → k such that res(x) = f(π(x)) for all x ∈ O.

Proof. Since the ideal M is maximal by Lemma 2.62, the quotient ring O/M is a field [AW92,
Theorem 2.18]. Moreover, the canonical projection π : O → O/M is a residue map by the
definition of O/M [AW92, Section 2.2]. Finally, if k is any residue field and res : O → k is
the associated homomorphism, then the existence of f follows from the first ring isomorphism
theorem [AW92, Theorem 2.6].

2An abelian group (Γ,⩽) is (linearly) ordered if ⩽ is a total order on Γ such that y1 ⩽ y2 =⇒ y1 +y3 ⩽ y2 +y3
for all y1, y2, y3 ∈ Γ .
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Example 2.65. Let K be the field of Puiseux series. Then (K,R, val) is a valued field. Moreover,
it is easy to check that the function res : O → R defined as

res(x) :=
{

lc(x) if val(x) = 0
0 otherwise

is a residue map. In particular, the residue field of Puiseux series is the field of real numbers R.
The notions defined above are shared by all valued fields. In this work we are interested in

real closed valued fields, which have more properties. The most important for this work are the
notions of henselianity and the existence of an angular component.

Definition 2.66. A map csec : (Γ,+) → (K∗, ·) is called a cross-section if it is a group homo-
morphism such that val ◦csec is the identity map. If k is a field, then a map ac : K → k is
called an angular component if it fulfills the following conditions:

• ac(0) = 0;
• ac is a group homomorphism from (K∗, ·) to (k∗, ·);
• the function from O to k, mapping x to ac(x) if val(x) = 0, and to 0 otherwise, is a

surjective ring homomorphism whose kernel is equal to M.

Remark 2.67. We point out that Definitions 2.63 and 2.66 are not stated in the most economical
way. For instance, one could simply define O/M to be the residue field. Moreover, the last
point of Definition 2.66 implies that k is the residue field and the mapping defined in this point
is a residue map. However, the way that we state these definitions will be used in Section 2.6 to
define the theory of real closed valued fields. In this context, Definition 2.63 has the advantage
that the properties of res are stated as first-order formulas in the language of (K, Γ,k, val, res),
while Definition 2.66 has the advantage that it does not use the notion of a residue field or a
residue map.

Not every valued field admits an angular component (see [Pas90b] for a counterexample).
Nevertheless, if it admits a cross-section, then it also has an angular component.

Proposition 2.68. If csec : Γ → K is a cross-section and k is a residue field, then the map
ac : K → k defined as ac(0) := 0 and ac(x) := res(csec(− val(x))x) for x ̸= 0 is an angular
component.

Proof. Note that csec(− val(x))x is a group homomorphism from (K∗, ·) to (O∗, ·). Indeed, for
all x ∈ K∗ we have val(csec(− val(x))x) = val(csec(− val(x))) + val(x) = − val(x) + val(x) = 0.
Moreover, it is clear that csec(− val(x))x is a homomorphism. Therefore, res(csec(− val(x))x)
is a group homomorphism from (K∗, ·) to (k∗, ·). To finish, note that if val(x) = 0, then
csec(− val(x))x = csec(0)x = x and res(csec(− val(x))x) = res(x).

Example 2.69. If K is the field of Puiseux series, then csec(y) = ty is a cross-section, and

res(csec(− val(x))x) = res(t− val(x)x) = lc(x)

is an angular component.
Every real closed valued field has a cross-section, as shown by the following lemma.

Lemma 2.70. Suppose that K is real closed. Then (K, Γ, val) admits a cross-section. (In
particular, it has an angular component.)
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Sketch of the proof. The case where the valuation is trivial is obtained by taking a cross-section
equal to 1. Therefore, we assume that the valuation is nontrivial. Observe that in this case Γ
is a divisible group.3 Indeed, if y ∈ Γ is an arbitrary element, then (by surjectivity of valuation
and Lemma 2.61) we can take x ∈ K such that x > 0 and val(x) = y. Since K is real closed,
Lemma 2.13 shows that for any natural n ⩾ 1, x has an nth root x1/n ∈ K, x1/n > 0. We
have y = val((x1/n)n) and hence y = n val(x1/n). In other words, the equation y = nz has a
solution for any y ∈ Γ and any n ⩾ 1. Moreover, this solution is unique because Γ is ordered.
Indeed, if z1, z2 are two distinct solutions and z1 > z2, then n(z1 − z2) = 0, which is impossible
by the fact that order is compatible with addition. It follows that we can regard Γ as a vector
space over Q. More precisely, for any rational number p

q ∈ Q and any y ∈ Γ , there is a unique
element z ∈ Γ such that py = qz. We denote this element z ∈ Γ as f(p

q , y). This defines a
multiplication function f : Q × Γ → Γ . One can easily check that the tuple (Γ,+, f) forms a
vector space over Q. Let {yi}i∈I be a basis of this space. For every i we fix xi ∈ K such that
xi > 0 and val(xi) = yi. Finally, for every finite subset J ⊂ I and every (αj) ∈ QJ we define

csec(
∑
j∈J

αjyj) =
∏
j∈J

x
αj

j .

It is obvious that csec is a cross-section.

We now define the class of henselian valued fields.

Definition 2.71. Let O[x] denote the ring of polynomials over O. Analogously, let k[x] denote
the ring of polynomials over a residue field k. We extend the notion of residue map to O[x] in
the following way. Suppose that P :=

∑d
k=0 ckx

k ∈ O[x] is such a polynomial. Then, we put

res(P ) :=
d∑

k=0
res(ck)xk ∈ k[x] .

Definition 2.72. We say that a valued field if henselian if for every polynomial P ∈ O[x] and
every α ∈ k such that res(P )(α) = 0 and (res(P ))′(α) ̸= 0, there exists α ∈ K such that
P (α) = 0 and res(α) = α. (Here, (res(P ))′ ∈ k[x] denotes the formal derivative of res(P ).)

Remark 2.73. We point out that the definition above does not depend on the particular choice of
a residue field (by Lemma 2.64). Moreover, we note that there are many equivalent definitions
of henselian valued fields. We refer to [EP05, Theorem 4.1.3] for a nonexhaustive list of such
definitions.

To finish this section, we recall the notion of a convex valuation and the characterization of
real closed valued fields.

Definition 2.74. Suppose that K is an ordered field with a total order ⩽. We say that the
valuation val is convex with respect to ⩽ if it satisfies the following property: for every x1 ∈ O

and every x2 ∈ K we have the implication

0 ⩽ x2 ⩽ x1 =⇒ x2 ∈ O .

Furthermore, we recall that if K is a real closed field, it has a unique total order (Lemma 2.12).
In this case, we say that val is convex if it is convex with respect to this order.

3An abelian group Γ is divisible if the equation y = nz has a solution for every y ∈ Γ and n ∈ N∗.
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The following theorem gives a characterization of real closed valued fields.

Theorem 2.75 ([EP05, Theorem 4.3.7]). Suppose that K is an ordered field with a total order
⩽. Furthermore, suppose that (K, Γ, val) is a valued field such that its valuation is nontrivial
and convex with respect to ⩽. Then, K is real closed if and only if the following three conditions
are simultaneously satisfied:

• (K, Γ, val) is henselian;
• Γ is divisible;
• k is real closed.

Example 2.76. The field K of Puiseux series fulfills all of the properties of Theorem 2.75. In
fact, the proof that K is real closed (see [vdDS98] or Appendix A) first shows that K is henselian
and then deduces that it is real closed using Theorem 2.75.

2.6 Model theory

In this section, we recall basic notions of model theory. We refer to [Mar02, Chapter 1] and
[TZ12, Chapter 1] for more information. Model theory studies structures that consist of a
domain and distinguished constants, functions, and relations that belong to (or act upon) this
domain. For example, if Γ = (Γ, 0,+,⩽) is an ordered abelian group, then the set Γ is a
domain, 0 is a constant, + is a function, and ⩽ is a relation. The notion of a many-sorted
structure arises when we consider functions or relations acting between different domains. For
example, a valued field (K, Γ, val) consists of two domains, K and Γ ∪ {−∞}. The valuation
function val : K → Γ ∪ {−∞} acts between the domain K and the domain Γ ∪ {−∞}. The
notion of many-sorted structure is formalized in the next definition.

Definition 2.77. A (many-sorted) structure is a tuple

M =
(
(Mi)i∈I , (Ci)i∈I ,F ,R

)
,

where I is an arbitrary set, every Mi is a nonempty set (called domain), every set Ci is a
collection of Mi-constants, F is a collection of functions, and R is a collection of relations.
Furthermore, every function f ∈ F has its type. We say that f has type (i1, . . . , ip, ip+1) if

f : Mi1 × · · · ×Mip → Mip+1 .

Analogously, every relation R ∈ R has its type. We say that a relation R has type (i1, . . . , ip) if

R ⊂ Mi1 × · · · ×Mip .

Given a structure, its functions, and relations, we can build mathematical formulas that
express the properties of this structure. However, for our applications, it is important to transfer
properties between different structures. To do this, we construct formulas in a more abstract
way. Instead of fixing a structure and building formulas using this structure, we consider
formulas as strings of formal symbols. These strings can then be interpreted in a given structure.
To introduce these concepts formally, we first define the notion of language.

Definition 2.78. A language L is a tuple of sets, L = ((Ci)i∈I ,F ,R), where I is an arbitrary
set, the set Ci is called the set of constant symbols of sort i for every i ∈ I, the set F is called
the set of function symbols, and the set R is called the set of relation symbols. Each function
symbol and each relation symbol is equipped with its type, i.e., a nonempty and finite sequence
of elements of I.
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Example 2.79. We emphasize the fact that the language as defined in Definition 2.78 is a collec-
tion of purely formal symbols that, for now, do not possess any interpretation. For instance, if
we take take I = {1}, C1 = {0}, F = {+}, R = {⩽}, we obtain the language or totally ordered
groups Log = (0,+,⩽), which contains three symbols. The first symbol looks like an ellipse,
the second looks like a greek cross, and the third resembles an angle bracket with an additional
line. In Log, we suppose that + has type (1, 1, 1) and that ⩽ has type (1, 1).

As noted before, symbols can be interpreted in a given structure.

Definition 2.80. If L = ((Ci)i∈I ,F ,R) is a language and M = ((Mi)i∈I , (C̃i)i∈I , F̃ , R̃) is a
structure, then we say that M is an L-structure if there exists a tuple ξ = ((ξi)i∈I , ξ

F , ξR) of
bijections ξi : Ci → C̃i, ξF : F → F̃ , ξR : R → R̃ such that

• if f ∈ F is a function symbol of type (i1, . . . , ip, ip+1), then ξF (f) ∈ F̃ is a function of
type (i1, . . . , ip, ip+1);

• if R ∈ R is a relation symbol of type (i1, . . . , ip), then ξR(R) ∈ R̃ is a relation of type
(i1, . . . , ip).

The tuple ξ is called interpretation. By abuse of notation, we use the same letters to denote
the symbols in L and their interpretations in M.

Example 2.81. Any ordered group Γ is an Log-structure. Indeed, we can interpret the symbol
“0” as the zero of Γ , the symbol “+” as the addition, and the symbol “⩽” as the order relation.

Given a language L = ((Ci)i∈I ,F ,R), we can now define the notion of an L-formula. There
are three things that should be considered before giving the formal definition. First, we note
that the symbols in L are not sufficient to create meaningful formulas. We have to extend L
by adding symbols for variables (making sure that each domain has its own set of variables),
logic symbols (such as quantifiers, negation, or conjunction), and delimiters (e.g., parentheses
or commas). In the definitions below, we will extend L by putting

L̃ := L ∪ {(x(i)
k )i∈I,k∈N} ∪ {=} ∪ {∃} ∪ {¬} ∪ {∧} ∪ {(} ∪ {)} ∪ {,} .

As previously, one should think of the elements of L̃ as formal symbols. Second, since we work
with many-sorted structures, we have to make sure that formulas are well typed. For instance, if
we work with a valued field (K, Γ, val), then the formula val(x) = 0 makes sense if x is a variable
associated to K but it is meaningless if x is a variable associated to Γ . Third, is it useful to
keep track of the free and bound variables in a given formula. A variable is called “bound”
if it is restricted by a quantifier and it is called “free” otherwise. We point out that we use
a convention in which we disallow the variables from having both bound and free occurrences
within one formula. This does not restrict the expressive power of formulas, but makes the
presentation simpler. In the definitions below, Bvar denotes the set of bound variables of a given
formula, and Fvar denotes its set of free variables. We define the notion of formula in three
steps. Let Seq(L̃) :=

∪∞
k=1 L̃k denote the set of all finite sequences of elements of L̃.

Definition 2.82. The set of L-terms is the subset of Seq(L̃) defined by the following recurrence:
• Every constant symbol c ∈ Ci is a term. We say that c ∈ Ci has type i ∈ I, and we put

Bvar(c) := Fvar(c) := ∅.
• Every variable symbol x(i)

k is a term. We say that x
(i)
k has type i ∈ I, and we set

Bvar(x(i)
k ) := ∅, Fvar(x(i)

k ) := x
(i)
k .

• If f ∈ F is a function symbol of type (i1, . . . , ip, ip+1) ∈ Ip+1, and ϕ1, . . . , ϕp ∈ Seq(L̃)
are L-terms of types i1, . . . , ip ∈ I respectively, then the sequence f(ϕ1, . . . , ϕp) ∈ Seq(L̃)
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is a term of type ip+1 ∈ I. We set Bvar(f(ϕ1, . . . , ϕp)) := ∅ and Fvar(f(ϕ1, . . . , ϕp)) :=∪p
k=1 Fvar(ϕk).

Definition 2.83. The set of atomic L-formulas is the subset of Seq(L̃) defined by the following
recurrence:

• If ϕ, ψ ∈ Seq(L̃) are L-terms of the same type, then the sequence ϕ = ψ ∈ Seq(L̃) is an
atomic L-formula. We set Bvar(ϕ = ψ) := ∅ and Fvar(ϕ = ψ) := Fvar(ϕ) ∪ Fvar(ψ).

• If R ∈ R is a relation symbol of type (i1, . . . , ip) ∈ Ip, and ϕ1, . . . , ϕp ∈ Seq(L̃) are L-terms
of types i1, . . . , ip ∈ I respectively, then the sequence R(ϕ1, . . . , ϕp) ∈ Seq(L̃) is an atomic
L-formula. We set Bvar(R(ϕ1, . . . , ϕp)) := ∅ and Fvar(R(ϕ1, . . . , ϕp)) :=

∪p
k=1 Fvar(ϕk).

Definition 2.84. The set of L-formulas is the subset of Seq(L̃) defined by the following recur-
rence:

• Every atomic L-formula is an L-formula.
• If ϕ ∈ Seq(L̃) is an L-formula, then ¬ϕ ∈ Seq(L̃) is an L-formula. We set Bvar(¬ϕ) :=

Bvar(ϕ) and Fvar(¬ϕ) := Fvar(ϕ).
• If ϕ ∈ Seq(L̃) is an L-formula and x

(i)
k ∈ Fvar(ϕ) is a variable symbol, then the se-

quence ∃x(i)
k , ϕ ∈ Seq(L̃) is an L-formula. We set Bvar(∃x(i)

k , ϕ) := Bvar(ϕ) ∪ {x(i)
k } and

Fvar(∃x(i)
k , ϕ) := Fvar(ϕ) \ {x(i)

k }.
• If ϕ, ψ ∈ Seq(L̃) are L-formulas such that Bvar(ϕ)∩Fvar(ψ) = Fvar(ϕ)∩Bvar(ψ) = ∅, then

the sequence (ϕ∧ψ) ∈ Seq(L̃) is an L-formula. We set Bvar((ϕ∧ψ)) := Bvar(ϕ) ∪ Bvar(ψ)
and Fvar((ϕ ∧ ψ)) := Fvar(ϕ) ∪ Fvar(ψ).

A formula without free variables is called a sentence.

Remark 2.85. To make sure that the definitions above are unambiguous, one should check (at
each step of the construction) that formulas can be uniquely decomposed. For instance, if a
formula starts with the left parenthesis symbol (, then we know (by the definition) that it is of
the form (ϕ ∧ ψ), and it can be verified that ϕ and ψ are unique. Similarly, if a formula starts
with a function symbol f and does not contain the symbol =, then we know (by the definition)
that it is a term of the form f(ϕ1, . . . , ϕp) and it can be checked that ϕ1, . . . , ϕp are unique. We
refer to [End01, Section 2.3] for the details.
Remark 2.86. We note that the definition of L-formulas does not involve the symbols such as ∀,
∨, →, ↔, ̸=, which are commonly used in mathematical formulas. However, any formula that
uses these symbols can be converted to a formula that uses only the symbols from L̃. Therefore,
we will use these symbols in our examples, understanding that the string ∀x(i)

k , ψ is a shorthand
for ¬∃x(i)

k ,¬ψ, the string (ψ∨ϕ) is a shorthand for ¬(¬ψ∧¬ϕ), the string (ψ → ϕ) is a shorthand
for (¬ψ ∨ (ψ ∧ ϕ)) and so on. We will also add/skip commas and parentheses, add spaces, and
make other changes to the formulas in order to improve their readability. Furthermore, we use∨p

k=1 ϕk as a shorthand for ϕ1 ∨ · · · ∨ ϕp and
∧p

k=1 ϕk as a shorthand for ϕ1 ∧ · · · ∧ ϕp. We also
use other symbols instead of x(i)

k for variables (such as y, z and so on).
Suppose that M = ((Mi)i∈I , (C̃i)i∈I , F̃ , R̃) in an L-structure and that ϕ ∈ Seq(L̃) is a term

with a nonempty set of free variables Fvar(ϕ). Then, we can interpret this term as a function.
This is done in a natural way, by replacing every function symbol in ϕ by its interpretation in
M. Giving the formal definition is easier if we fix the values of all possible variables beforehand.
More precisely, we will fix a function

s : (x(i)
k )i∈I,k∈N →

∪
i∈I

Mi
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such that s(x(i)
k ) ∈ Mi for all pairs (i, k) ∈ I×N. The value of s(x(i)

k ) is interpreted as the value
associated to the variable symbol x(i)

k ∈ L̃.

Definition 2.87. For every i ∈ I and every term ϕ ∈ Seq(L̃) of type i ∈ I we define an element
ϕ(s) ∈ Mi by the following recurrence:

• If ϕ is a constant symbol c ∈ Ci, then ϕ(s) := ξi(c) ∈ Mi.
• If ϕ is a variable symbol x(i)

k , then ϕ(s) := s(x(i)
k ) ∈ Mi.

• If ϕ is of the form f(ϕ1, . . . , ϕp), where f is a function symbol of type (i1, . . . , ip, i), then
ϕ(s) := ξF (f)(ϕ1(s), . . . , ϕp(s)) ∈ Mi.

Given an L-formula and a variable assignment s defined as above, we can now define the
notion of the truth of a formula in a given structure.

Definition 2.88. If ϕ is an L-formula, then we define a unary relation M |= ϕ(s) by the
following recurrence:

• If ϕ is of the form ψ1 = ψ2, where ψ1, ψ2 are L-terms, then M |= ϕ(s) if and only if
ψ1(s) = ψ2(s).

• If ϕ is of the form R(ϕ1, . . . , ϕp), then M |= ϕ(s) if and only if (ϕ1(s), . . . , ϕp(s)) satisfies
ξR(R).

• If ϕ is of the form ¬ψ, then M |= ϕ(s) if and only if M ̸|= ψ(s).
• If ϕ is of the form (ψ1 ∧ ψ2), then M |= ϕ(s) if and only if M |= ψ1(s) and M |= ψ2(s).
• If ϕ is of the form ∃x(i)

k , ψ, then M |= ϕ(s) if and only if there exists x ∈ Mi such that
the function s̃ : (x(i)

k )i∈I,k∈N →
∏

(i,k)∈I×NMi,k defined as

s̃(x(j)
l ) :=

{
x if (j, l) = (i, k)
s(x(j)

l ) otherwise

satisfies M |= ψ(s̃).
If M |= ϕ(s), then we say that M satisfies ϕ(s) or that ϕ(s) is true in M.

Remark 2.89. We point out that the definitions above are unambiguous by the decomposition
mentioned in Remark 2.85.
Remark 2.90. One can show that the definitions above only depend on the function s restricted
to the set of free variables of ϕ. In particular, if ϕ has no free variables, then these definitions
do not depend on the choice of s. We often denote ϕ as ϕ(x(i1)

k1
, . . . , x

(ip)
kp

), where x(i1)
k1
, . . . , x

(ip)
kp

are the free variables of ϕ, {x(i1)
k1
, . . . , x

(ip)
kp

} = Fvar(ϕ). Then, if we fix x = (x1, . . . , xp) ∈
Mi1 ×· · ·×Mip , and ϕ is a term of type i ∈ I, the quantity ϕ(x) ∈ Mi is well defined by putting
s(x(iℓ)

kℓ
) = xℓ for all ℓ. Similarly, if ϕ is a formula, then the relation M |= ϕ(x) is well defined.

Remark 2.91. We may use a simplified notation when there is no ambiguity about the structure
that we are using. For instance, if ϕ(x1, . . . , xn) is an Log-formula and (x1. . . . , xn) ∈ Qn, then
we may write (Q,+) |= ϕ(x1. . . . , xn) instead of (Q, 0,+,⩽) |= ϕ(x1. . . . , xn). Similarly, if Γ is
an abstract ordered abelian group and (x1. . . . , xn) ∈ Γn, then we may write Γ |= ϕ(x1. . . . , xn)
instead of (Γ, 0,+,⩽) |= ϕ(x1. . . . , xn).
Example 2.92. If we fix an ordered abelian group Γ , then the Log-formula ∀x1, (x1 ⩾ 0 →
∃x2, (x2 ⩾ 0 ∧ x1 = x2 + x2)) is interpreted in Γ as “for every nonnegative element x1 ∈ Γ ,
there exist a nonnegative element x2 ∈ Γ such that x1 is equal to x2 added to x2.” Note that
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this is true if we take Γ = (Q,+), but false if we take Γ = (Z,+). Similarly, the Log-formula
∃x2, x1 = x2 + x2 has one free variable x1. If we take Γ = (Z,+), then ψ(2) is true, but ψ(1)
is false.

Throughout this work, we often use the notion of a definable set. This is the set of all
assignments of variables such that a given formula is satisfied.

Definition 2.93. For any i1, . . . , ip ∈ I, we say that a set S ⊂ Mi1 × · · · × Mip is definable if
there exist ℓ ⩾ 0, an L-formula ϕ(x(i1)

1 , . . . , x
(ip)
p , x

(ip+1)
p+1 , . . . , x

(ip+ℓ)
p+ℓ ), and a vector y ∈ Mip+1 ×

· · · ×Mip+ℓ
such that

S = {x ∈ Mi1 × · · · ×Mip : M |= ϕ(x, y)} .

Example 2.94. If we take (Z,+) as an Log-structure, then the set {(x1, x2) ∈ Z2 : x > 2y + 5}
is definable. Indeed, we take ϕ(x1, x2, x3) to be ¬(x1 ⩽ x2 + x2 + x3) and fix x3 = 5.

Example 2.95. If Γ = (Γ, 0,+ ⩽) is a nontrivial ordered abelian group, then we can equip it
with a topology defined by the order, and extend this topology to Γn (by taking the product
topology). Suppose that a set S ⊂ Γn is definable in Log. Then, its interior int(S) and
closure clΓ (S) are also definable in Log. Indeed, the closure of S is defined as the set of all
points (x1, . . . , xn) that satisfy the formula “for every a1, . . . , an, b1, . . . , bn such that a1 < x1 <
b1, . . . , an < xn < bn, there exist y1, . . . , yn such that a1 < y1 < b1, . . . , an < yn < bn and
(y1, . . . , yn) ∈ S.” Similarly, the interior of S is defined as the set of all (x1, . . . , xn) that satisfy
the formula “there exist a1, . . . , an, b1, . . . , bn such that a1 < x1 < b1, . . . , an < xn < bn and such
that for every y1, . . . , yn satisfying a1 < y1 < b1, . . . , an < yn < bn we have (y1, . . . , yn) ∈ S.”

We can now define the notions of a theory, logical consequence, completeness, and quantifier
elimination. In our context, one can think that a theory is a set of axioms.

Definition 2.96. A theory Th is a set of L-sentences. We often refer to the elements of Th as
axioms. If M is an L-structure, then we say that M is a model of Th if all sentences from Th
are true in M.

Definition 2.97. If ϕ is an L-sentence that does not necessarily belong to Th, then we say
that ϕ is a logical consequence of Th if ϕ is true in every model of Th. We say that L-formulas
ϕ(x(i1)

k1
, . . . , x

(ip)
kp

), ψ(x(i1)
k1
, . . . , x

(ip)
kp

) (with the same sets of free variables) are equivalent in Th
if the sentence ∀x(i1)

k1
, . . . , ∀x(ip)

kp
, ψ ↔ ϕ is a logical consequence of Th.

Definition 2.98. We say that a theory Th is complete if for every L-sentence ϕ, either ϕ or
¬ϕ is a logical consequence of Th.

Definition 2.99. We say that an L-formula is quantifier free if it does not contain any quantifier
symbol ∃. We say that the theory Th admits quantifier elimination if every L-formula is
equivalent in Th to a quantifier-free formula.

2.6.1 Theories with quantifier elimination

We now give five examples of theories that admit quantifier elimination and are complete. These
examples are used in the rest of this work. The first example is the theory of nontrivial divisible
ordered abelian groups.
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Definition 2.100. Let Log = (0,+,⩽) be the language of ordered groups. The theory of non-
trivial divisible ordered abelian groups, denoted Thdoag consists of the Log-sentences expressing
the axioms of ordered abelian groups (associativity of addition, commutativity of addition, zero
as the neutral element, existence of an inverse, total order axioms, compatibility of order and
addition), the axiom of nontriviality ∃y, y ̸= 0, and an infinite series of axioms defining divisi-
bility: for every n ⩾ 2, Thdoag contains a sentence ∀y1, ∃y2, y1 = y2 + y2 + · · · + y2 (where the
addition in taken n times).

The theory of of nontrivial divisible ordered abelian groups admits quantifier elimination.

Theorem 2.101 ([Mar02, Corollary 3.1.17]). The theory Thdoag of nontrivial divisible ordered
abelian groups admits quantifier elimination and is complete.

As a corollary, we see that if Γ is a nontrivial divisible ordered abelian group, then its
definable sets have a particularly simple structure. More precisely, we make the following
definition.

Definition 2.102. We say that a subset S ⊂ Γn is a basic semilinear set if it is of the form

S = {g ∈ Γn : ∀i = 1, . . . , p, fi(g) > h(i), ∀i = p+ 1, . . . , q, fi(g) = h(i)} ,

where fi ∈ Z[X1, . . . , Xn] are homogeneous linear polynomials with integer coefficients and
h(i) ∈ Γ . We say that S is semilinear if it is a finite union of basic semilinear sets.

Lemma 2.103. A set S ⊂ Γn is definable in Log if and only if it is semilinear.

Sketch of the proof. It is easy to see that every semilinear set is definable. To prove the converse,
note that a union of two semilinear sets is semilinear. Furthermore, an intersection of two basic
semilinear sets is basic semilinear. Hence, by the fact that intersection distributes over union, an
intersection of two semilinear sets is semilinear. Moreover, the complement of a basic semilinear
set is semilinear and hence the complement of any semilinear set is semilinear. Furthermore,
one can prove by induction that if ϕ is an Log-term with a nonempty set of free variables
y1, . . . , yn, then there exist m1, . . . ,mn ∈ N such that ϕ(y) = m1y1 + · · · + mnyn for any
y ∈ Γn. Hence, any set defined by an atomic Log-formula is of the form {y ∈ Γn : f(y) ⩽ h}
or {y ∈ Γn : f(y) = h}, where f ∈ Z[X1, . . . , Xn] is a homogeneous linear polynomial with
integer coefficients and h ∈ Γ . In particular, these sets are semilinear. Hence, sets defined by
negations, conjunctions, and disjunctions of atomic formulas are semilinear. Moreover, one can
prove by induction that every quantifier-free formula can be written in the form

p∨
k=1

qk∧
ℓ=1

ϕk,ℓ ,

where every ϕk,ℓ is an atomic formula or its negation. Therefore, every set defined by a
quantifier-free formula is semilinear. The claim follows from Theorem 2.101.

Example 2.104. If Γ = R, then every basic semilinear set is a relative interior of a polyhedron.
Note that the converse is not true. For example, the set {y ∈ R2 : y1 + y2 > π} is semilinear,
but {y ∈ R2 :

√
2y1 + y2 > 0} is not. If Γ = Q, then basic semilinear sets correspond precisely

to relatively open rational polyhedra.
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In this work, we use divisible ordered abelian groups which arise as value groups of nonar-
chimedean real closed fields. Since the valuation map may evaluate to −∞, we need to deal
with divisible ordered abelian groups with bottom element.

Definition 2.105. We denote by Logb := (0,−∞,+,⩽) the language of ordered groups with
bottom element. The theory of nontrivial divisible ordered abelian groups with bottom ele-
ment, denoted Thdoagb, consists of the axioms of divisible ordered abelian groups (cf. Defini-
tion 2.100),4 the nontriviality axiom ∃y, (y ̸= 0 ∧ y ̸= −∞), and the axioms that extend the
addition and order to −∞, namely ∀y, −∞ + y = −∞ and ∀y, y ⩾ −∞.

Using Theorem 2.101, we can show that Thdoagb admits quantifier elimination and is com-
plete.

Theorem 2.106. The theory Thdoagb admits quantifier elimination and is complete. Moreover,
any Logb-formula ϕ(y1, . . . , ym) with m ⩾ 1 is equivalent to a quantifier-free formula of the form∨

Σ⊂[m]

(
(∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ψΣ

)
, (2.10)

where the disjunction goes over all subsets of [m], and every ψΣ is a quantifier-free Log-formula
such that Fvar(ψΣ) ⊂ {yσ}σ∈Σ.

The proof of the above result is easy but technical. We have put it in Appendix B.1 for the
sake of completeness. As in the previous case, quantifier elimination allows us to describe the
class of definable sets. To do so, we need to observe that if Γ ∪ {−∞} is a nontrivial divisible
ordered abelian group with bottom element, then it has a natural stratification.

Definition 2.107. If x ∈ (Γ ∪ {−∞})n, then we define its support as the set of its finite
coordinates, {k ∈ [n] : xk ̸= −∞}. Given a nonempty subset K ⊂ [n], and a set S ⊂ (Γ ∪
{−∞})n, we define the stratum of S associated with K, denoted SK ⊂ ΓK , as the subset of ΓK

formed by the projection of the points x ∈ S with support K. More formally, a point y ∈ ΓK

belongs to SK if the point x ∈ (Γ ∪ {−∞})n defined as xk = yk for all k ∈ K and xk = −∞
otherwise belongs to S.

Lemma 2.108. A subset S ⊂ (Γ ∪ {−∞})n is definable in Logb if and only if all strata of S
are semilinear.

Again, the technical proof of this claim can be found in Appendix B.1. The next theory
that is used in this work is the theory of real closed fields.

Definition 2.109. The theory of real closed fields, denoted Thrcf , is a theory in the language of
ordered rings Lor := (0, 1,+, ·,⩽).5 It consists of the usual axioms of ordered fields, the axiom
∀x1, (x1 ⩾ 0 → ∃x2, x1 = x2 · x2) that governs the existence of square roots, and an infinite set
of axioms that states the fact that every polynomial of an odd degree has a root. In other words,
for every n ⩾ 1, Thrcf contains the axiom ∀x0, . . . , ∀x2n,∃y, y2n+1 +x2ny

2n + · · ·+x1y+x0 = 0.
4With one change required by the presence of −∞: the existence of an inverse should be formulated as

∀y, (y ̸= −∞ → ∃z, (z ̸= −∞ ∧ y + z = 0)). The assumption that z ̸= −∞ is not needed (by the nontriviality
axiom) but it simplifies the presentation.

5We assume that + and · have type (1, 1, 1) and that ⩽ has type (1, 1). It it clear that any ordered filed is an
Lor-structure with the natural interpretation of the symbols.
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A classical result proved by Tarski states that the theory of real closed fields admits quantifier
elimination and is complete.

Theorem 2.110 ([Mar02, Theorem 3.3.15 and Corollary 3.3.16]). The theory Thrcf of real
closed fields admits quantifier elimination and is complete.

As previously, if K is a real closed field, then quantifier elimination allows us to characterize
the class of definable sets.

Lemma 2.111. A set S ⊂ Kn is definable in Lor if and only if it is semialgebraic.

Sketch of the proof. By induction, if ϕ(x1, . . . xn) is an Lor-term with a nonempty set of free
variables, then there exists a polynomial P ∈ N[X1, . . . , Xn] with natural coefficients such that
ϕ(x) = P (x) for all x ∈ Kn. Therefore, a set definable by an atomic formula is of the form
{x ∈ Kn : P (x) = 0} or {x ∈ Kn : P (x) ⩾ 0}, where P ∈ K[X1, . . . , Xn] is a polynomial with
coefficients in K. The rest of the proof is the same as the proof of Lemma 2.103 (with the word
“semilinear” replaced by “semialgebraic”).

The final two theories used in this work concern valued fields. First, we present a quan-
tifier elimination result in henselian valued fields with angular component. This result was
obtained by Pas [Pas89, Pas90a] and based on the work of Denef [Den84, Den86]. Suppose
that (K, Γ,k, val, ac) is a valued field with a fixed residue field and an angular component.
Furthermore, we suppose that both K and k have characteristic 0. We start by defining a
three-sorted language of such fields.

Definition 2.112. We define the Denef–Pas language as LPas := (LK,LΓ ,Lk, val, ac), where
LK is the language of rings associated with K, LK := (0K, 1K,+K, ·K), Lk is the language of
rings associated with k, Lk := (0k, 1k,+k, ·k), LΓ := (0Γ ,−∞Γ ,+Γ ,⩽Γ ) denotes the language
of ordered groups with bottom element associated with Γ , and val, ac are two function symbols.6

In this way, any valued field with angular component is an LPas-structure. We now define
the associated theory.

Definition 2.113. The theory of henselian valued fields with angular component in equicharac-
teristic 0, denoted ThPas, is a theory in the Denef–Pas language LPas. It consists of the axioms
of fields (for K and k), axioms of ordered abelian groups with bottom element (for Γ ∪{−∞}),
the axioms specifying that val is a valuation (see Definition 2.60), the axioms specifying that
ac is an angular component (see Definition 2.66), and infinite sequences of axioms describing
the facts that K and k have characteristic 0, and an infinite sequence of axioms describing
henselianity (see Definition 2.72).

Remark 2.114. We point out that the axioms mentioned in the definition above can be written
as sentences in ThPas. We leave this as an exercise. The most problematic are the axioms of
henselianity. However, as noted in Remark 2.67, the definition of the residue map is already
implied in the definition of angular component, because the map res(x) defined as ac(x) if
val(x) = 0 and res(x) = 0 otherwise, is a residue map. Therefore, one can write the infinite
sequence of axioms describing henselianity using only the symbols for ac and val.

6The types of symbols are given in a natural way: we put I = {1, 2, 3}, C1 := {0K , 1K}, C2 := {0Γ ,−∞Γ },
C3 := {0k, 1k}. Then, val has type (1, 2), ac has type (1, 3), +k has type (3, 3, 3) and so on.
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Pas [Pas89] has shown that ThPas admits elimination of K-quantifiers, i.e., the quantifiers
that act on the variables associated with K. To state this theorem, we use the following
notation. If θ is a LPas-formula, then we denote it by θ(X,Y, Z), where X = (x1, . . . , xn1) (resp.
Y = (y1, . . . , yn2), Z = (z1, . . . , zn3)) is the sequence of free variables of ϕ associated with the
sort K (resp. Γ,k). We have the following theorem.

Theorem 2.115 ([Pas89]). Any LPas-formula θ(X,Y, Z) is equivalent in ThPas to a formula of
the form

m∨
i=1

(
ϕi
(
val(fi1(X)), . . . , val(fiki

(X)), Y
)

∧ ψi
(
ac(fi(ki+1)(X)), . . . , ac(fili(X)), Z

))
, (2.11)

where, for every i = 1, . . . ,m, fi1, . . . , fili ∈ Z[X] are polynomials with integer coefficients, ϕi

is an LΓ -formula, and ψi is an Lk-formula.

Remark 2.116. We point out that the original statement of this theorem given by Pas [Pas89,
Theorem 4.1] is slightly weaker. We took our formulation from [CLR06, Theorem 4.2]. Never-
theless, the proof of Pas actually proves the theorem stated above.

We use Theorem 2.115 to prove a quantifier elimination result in real closed valued fields.
Let (K, Γ,k, val, ac) be valued field such that K is real closed, val is nontrivial and convex,
and residue field and angular component are fixed. We point out that, by Theorem 2.75, k is
real closed. As previously, we start by defining the associated language and theory.

Definition 2.117. We define the language of real closed valued fields as

Lrcvf := (LK,LΓ ,Lk, val, ac) ,

where LK is the language of ordered rings associated with K, LK := (0K, 1K,+K, ·K,⩽K),
Lk is the language of ordered rings associated with k, Lk := (0k, 1k,+k, ·k,⩽k), LΓ :=
(0Γ ,−∞Γ ,+Γ ,⩽Γ ) denotes the language of ordered groups with bottom element associated
with Γ , and val, ac are two function symbols.7

Definition 2.118. The theory of real closed valued fields, denoted Thrcvf , is a theory in the
language Lrcvf . It consists of the axioms of real closed fields for K, the axioms of ordered
abelian groups with bottom element for Γ ∪ {−∞}, the axioms of ordered fields for k, the
axioms specifying that val is a nontrivial and convex valuation, and the axioms specifying that
ac is an angular component.

Remark 2.119. We point out that the axioms of Thrcvf imply that k is real closed. Indeed, the
axioms of ac imply that k is a residue field and hence it is real closed by Theorem 2.75.

Using the quantifier elimination results presented in this section, we can prove that the
theory of real closed valued fields admits quantifier elimination and is complete.

Theorem 2.120. The theory Thrcvf admits quantifier elimination and is complete. Moreover,
any Lrcvf-formula θ(X,Y, Z) is equivalent in Thrcvf to a formula of the form

m∨
i=1

(
ϕi
(
val(fi1(X)), . . . , val(fiki

(X)), Y
)

∧ ψi
(
ac(fi,ki+1(X)), . . . , ac(fili(X)), Z

))
,

where, for every i = 1, . . . ,m, fi1, . . . , fili ∈ Z[X] are polynomials with integer coefficients, ϕi

is a quantifier-free LΓ -formula, and ψi is a quantifier-free Lk-formula.
7The types of symbols are given in a natural way as in Definition 2.112.
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Sketch of the proof. Let θ(X,Y, Z) denote any Lrcvf -formula. We recall (Lemma 2.12) that the
order ⩽ in any real closed field can be defined as x1 ⩽ x2 ⇐⇒ ∃x3, x2 = x2

3 + x1. This enables
us to eliminate the symbols ⩽. More precisely, by a simple induction, θ(X,Y, Z) is equivalent
in Thrcvf to some LPas-formula θ̂(X,Y, Z). Moreover, by Theorem 2.75, (K, Γ, val) is henselian.
Furthermore, since K and k are ordered, they have characteristic zero. This enables us to
apply Theorem 2.115. As a result, θ̂(X,Y, Z) is equivalent in Thrcvf to a formula of the form
(2.11). Then, we apply Theorem 2.106 and Theorem 2.110 to eliminate the quantifiers in the
formulas ϕi and ψi. This shows the last part of the statement. In the case where θ is a sentence,
the formulas ϕi and ψi are also sentences. The completeness results in Theorem 2.106 and
Theorem 2.110 applied to each subformula ϕi and ψi allow to prove that either θ or ¬θ is a
logical consequence of Thrcvf .

Remark 2.121. We note that the proof of Theorem 2.120 is constructive, in the sense that there
exists an algorithm that, given a Lrcvf -formula, outputs an equivalent quantifier-free formula
of the form stated in Theorem 2.120. Indeed, the proof first uses the Denef–Pas quantifier
elimination to eliminate quantifiers acting over K and the algorithm to do so is given in the
proof of Pas [Pas89]. Second, we eliminate the quantifiers in the residue field k by using
quantifier elimination in real closed fields (see [BPR06, Chapter 14] for a detailed discussion
about the algorithms for this task). Third, we eliminate the quantifiers in the value group
Γ ∪ {−∞}. An algorithm for quantifier elimination in Γ is given in [FR75] and it can be easily
extended to Γ ∪ {−∞} (using the proof of Theorem 2.106).

2.6.2 Model completeness

To finish this preliminary section on model theory, we recall the notion of model completeness.
This requires to introduce the notion of L-embedding. Roughly speaking, if M,N are L-
structures, then a L-embedding is an embedding of the underlying domains that preserves the
interpretation of all the symbols of L. This is formalized by the following definition.

Definition 2.122. Let L = ((Ci)i∈I ,F ,R) and suppose that M = ((M̃i)i∈I , (C̃i)i∈I , F̃ , R̃),
N = ((M̂i)i∈I , (Ĉi)i∈I , F̂ , R̂) are two L-structures with interpretations ξ̃ =

(
(ξ̃i)i∈I , ξ̃

F , ξ̃R)
and ξ̂ =

(
(ξ̂i)i∈I , ξ̂

F , ξ̂R) respectively. Then, we say that a collection of functions (ηi)i∈I ,
ηi : M̃i → M̂i is an L-embedding if it has the following properties:

• every ηi : M̃i → M̂i is injective;
• for every c ∈ Ci we have ηi

(
ξ̃i(c)

)
= ξ̂i(c);

• if f ∈ F is a function symbol of (i1, . . . , ip, ip+1) and (x1, . . . , xp) ∈ M̃ i1 × · · · × M̃ ip , then
ηip+1

(
ξ̃F (f)(x1, . . . , xp)

)
= ξ̂F (f)

(
ηi1(x1), . . . , ηip(xp)

)
;

• if R ∈ R is a relation symbol of type (i1, . . . , ip) and (x1, . . . , xp) ∈ M̃ i1 × · · · × M̃ ip , then
(x1, . . . , xp) satisfies ξ̃R(R) if and only if (ηi1(x1), . . . , ηip(xp)) satisfies ξ̂R(R).

If there exists an L-embedding from M to N , then we say that M is a substructure of N or
that N is an extension of M. We say that the embedding (ηi)i∈I is elementary if for every
L-formula ϕ(x(i1)

k1
, . . . , x

(in)
kn

) and every (x(i1)
k1
, . . . , x

(in)
kn

) ∈ M̃i1 × · · · × M̃in we have

M |= ϕ(x(i1)
k1
, . . . , x

(in)
kn

) ⇐⇒ N |= ϕ
(
ηi1(x(i1)

k1
), . . . , ηin(x(in)

kn
)
)
.

Definition 2.123. We say that an L-theory Th is model complete if every embedding between
two models of Th is elementary.
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Proposition 2.124 ([Mar02, Proposition 3.1.14]). If an L-theory has quantifier elimination,
then it is model complete.

Example 2.125. If we consider (Z,+), (Q,+), (R,+) as Log-structures, then Z is a substructure
of Q, which in turn is a substructure of R. In both cases, the embedding is given by the
identity map. The embedding from Z to Q is not elementary. For instance, the Log-sentence
∀x, ∃y, x = y + y is not true in (Z,+) but is true in (Q,+). The embedding from Q to R
is elementary because both Q and R are models of the theory of nontrivial divisible ordered
abelian groups and this theory has quantifier elimination (Theorem 2.101).

2.7 Markov chains
In this section, we recall some basic properties of Markov chains on finite spaces, referring the
reader to [KS76, Chu67] for more information.

Definition 2.126. Suppose that V is a finite set. A matrix P ∈ [0, 1]V ×V is called stochastic
if the sum of entries of P in every row is equal to 1. Furthermore, suppose that (X0, X1, . . . ) is
a sequence of random variables with values in V . Then, we say that this sequence is a Markov
chain if the equality

Pvw = P(Xn = w | Xn−1 = v) = P(Xn = w | Xn−1 = v,Xn−2 = vn−2, . . . , X0 = v0)

holds whenever the right-hand side is well defined. In this case, the matrix P is also called the
transition matrix of a Markov chain. In this context, Pvw denotes the probability that chain
moves from state v to state w in one step. Furthermore, we say that Markov chain (X0, X1, . . . )
starts at v ∈ V if P(X0 = v) = 1.

Remark 2.127. If P is a stochastic matrix and v ∈ V , then there exists a Markov chain such
that P(X0 = v) > 0 for every v ∈ V and such that its transition matrix is equal to P (see
[Chu67, Part I, § 2, Theorem 1]). We will refer to any such chain a Markov chain associated
with P .

Definition 2.128. Given a stochastic matrix P ∈ [0, 1]V ×V , we construct a directed graph
G⃗ := (V,E) by setting E := {(v, w) ∈ V 2 : Pvw > 0}.

Remark 2.129. We point out that, by definition, every vertex of G⃗ has at least one outgoing
edge.

Definition 2.130. We say that a set C ⊂ V is strongly connected if for every pair (v, w) ∈ C2

there exist a directed path in G⃗ from v to w and from w to v. We say that a strongly connected
set C is a a strongly connected component of G⃗ if there is no edge going out of C (i.e., if there
is no edge in G⃗ that has its tail in C and head outside of C). If (X0, X1, . . . ) is a Markov chain
with transition matrix P , then a strongly connected component of G⃗ is also called a recurrent
class of this Markov chain. We say that a matrix P is irreducible if G⃗ is strongly connected.

Definition 2.131. Fix a stochastic matrix P ∈ [0, 1]V ×V , a state v ∈ V , and suppose that the
Markov chain (X0, X1, . . . ) starts at v. We say that v is recurrent if the probability that the chain
returns back to v is equal to 1. More formally, u is recurrent if P(∃n ⩾ 1, Xn = v | X0 = v) = 1.
Otherwise, we say that v is transient. A recurrent state v is absorbing if P(X1 = v | X0 = v) = 1.
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The next proposition classifies the states and describes the long-term behavior of a Markov
chain.

Proposition 2.132 ([KS76, § 2.4]). Every Markov chain has at least one recurrent class.
Moreover, a state v ∈ V is recurrent if and only if it belongs to a recurrent class. If a Markov
chain starts at a recurrent state, then it never leaves the recurrent class of this state and visits
every state of this class infinitely many times. If a Markov chain starts at a transient state,
then it reaches some recurrent class in finitely many steps and stays there forever.

We will also use the notion of a stationary distribution.

Definition 2.133. If C ⊂ V , then we say that π ∈ [0, 1]C is a stationary distribution on the set
C if πv =

∑
w∈C πwPwv for all v ∈ C and

∑
v∈C πv = 1. We say that π ∈ [0, 1]n is a stationary

distribution of the matrix P if it is a stationary distribution on C = [n].

Proposition 2.134 ([KS76, Theorem 5.1.2]). Every recurrent class of a Markov chain has a
unique stationary distribution. In particular, every irreducible stochastic matrix has a unique
stationary distribution.

Remark 2.135. We point out that a stationary distribution of a recurrent class cannot have a
zero entry. Indeed, if πv = 0, then πw = 0 for all w ∈ C such that Pwv > 0. Since recurrent
classes are strongly connected, this would imply that πv = 0 for all states in C. Therefore, the
system {

πv =
∑

w∈C πwPwv for all v ∈ C∑
v∈C πv = 1

(2.12)

has a unique solution in ]0, 1]n. Moreover, it is obvious that this is a unique solution in Rn
>0.

Since the set of solutions of (2.12) forms an affine space, this implies that (2.12) has a unique
solution in Rn.

We now introduce Markov chains with payoffs. To this end, with every state v ∈ V we
associate a payoff rv ∈ R. This quantity is interpreted as follows: there is a controller of the
chain, who receives a payoff rv as soon as the chain leaves the state v.

Definition 2.136. A (long-term) average payoff of the controller is defined as

∀v ∈ V, gv = lim
N→∞

E
1
N

N∑
p=0

rvp ,

where the expectation is taken over all trajectories v0, . . . , vN starting from v0 = v in the Markov
chain.

The next theorem characterizes the average payoff. Before that, let us introduce some
additional notation. For any state v ∈ V , let the random variable Tv := inf{s ⩾ 1: Xs = v}
denote the time of first return to v. By θv we denote the expected time of first return to v,

θv := E(Tv|X0 = v) .

Furthermore, let ξv be the expected payoff the controlled obtained before returning to v, i.e.,

ξv := E
(Tv−1∑

s=0
rXs

∣∣∣X0 = v
)
.
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Theorem 2.137. If v ∈ V is a fixed initial state, then the average payoff gv is well defined and
characterized as follows:

(i) Suppose that v is a recurrent state belonging to the recurrent class C. Let (πw)w∈C be the
stationary distribution on C. Then πv = 1/θv. Furthermore, we have

gv = ξv

θv
=
∑
w∈C

rwπw .

In particular, gv is constant for all states v belonging to C.

(ii) If v is transient and C1, . . . , Cp denote all the recurrent classes of the Markov chain, then
gv =

∑p
s=1 gvsψs, where, for all s, ψs denotes the probability that the chain starting from

v reaches the recurrent class Cs, and vs ∈ Cs is an arbitrary state of Cs.

Theorem 2.137 is well known, and can be easily derived from the analysis of Markov chains
presented in the textbook of Chung [Chu67, Part I, §6, §7, and §9]. We give the details in
Appendix B.2 for the sake of completeness.
Remark 2.138. If the transition matrix P is rational, then the stationary distributions (πv)v∈Cs

of recurrent classes and the absorption probabilities ψs are rational as well. This follows from
the fact that these quantities can be computed using elementary linear algebra. Remark 2.135
shows how to compute the stationary distributions. The formula for computing the absorption
probabilities is given in [KS76, Theorem 3.3.7].
Remark 2.139. We point out that given the transition matrix P , the average payoff g can be
computed using the algorithm presented in [Put05, Appendix A.3 and A.4]. If the payoffs re are
rational, then this algorithm can be implemented to run in strongly polynomial complexity using
the strongly polynomial version of gaussian elimination (presented, for example, in [GLS93,
Section 1.4]).
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Part I

Tropical spectrahedra





CHAPTER 3

Tropicalization of semialgebraic sets

In this section we study the class of tropical semialgebraic sets, i.e., the images by valuation of
semialgebraic sets over K. As discussed in Section 1.1, Alessandrini [Ale13] has shown, among
other results, that if S ⊂ Kn is a semialgebraic set, then the real part of its image val(S)∩Rn has
polyhedral structure, is closed, and the dimension of this set is not greater than the dimension
of S. This can be thought of as the real analogue of the Bieri–Groves theorem [BG84, EKL06].
The proof of Alessandrini is based on o-minimal models. We give a proof that avoids the recourse
to o-minimal techniques by using the Denef–Pas quantifier elimination. The main theorem of
this section is the following result.

Theorem 3.1. Let K be a real closed valued field equipped with a nontrivial and convex
valuation val : K → Γ ∪ {−∞} and suppose that S ⊂ Kn is a semialgebraic set. Then,
every stratum of val(S) ⊂ (Γ ∪ {−∞})n is semilinear and closed. Furthermore, we have
val(clK(S)) = clΓ ∪{−∞}(val(S)). In particular, the image of a closed semialgebraic set is closed
in (Γ ∪ {−∞})n. Conversely, if a set X ⊂ (Γ ∪ {−∞})n has closed and semilinear strata, then
there exists a semialgebraic set S ⊂ Kn such that val(S) = X.

Moreover, if K = K, then the dimension of every stratum of val(S) is not greater than the
dimension of S.

Let us discuss in detail the similarities and differences between this result and the results
of Alessandrini [Ale13]. The advantages of our approach are as follows. First, since we prove
the theorem using the Denef–Pas quantifier elimination, our proof is constructive (see Re-
mark 2.121). Second, the analysis of Alessandrini gives the result of Theorem 3.1 under a
supplementary hypothesis that the value group Γ is a subgroup of R, while our proof works
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for all possible value groups (fields with larger value groups are convenient, for instance, to
do symbolic perturbations, see [ABGJ14, AK17]). Third, the Denef–Pas quantifier elimination
gives us a stronger transfer principle (model completeness of real closed valued fields, Propo-
sition 2.124 and Theorem 2.120) and we later use this principle to prove the tropical analogue
of the Helton–Nie conjecture (Theorem 5.2). On the other had, the analysis of Alessandrini
interprets the images by valuation of semialgebraic sets in K as logarithmic limit sets and this
aspect is missing in our proofs. Moreover, Alessandrini’s result applies not only to the class of
semialgebraic sets, but also to sets definable in Hardy fields of polynomially-bounded o-minimal
structures. Therefore, the two approaches overlap (for instance, they give the same result for
semialgebraic sets defined over K), but neither supersedes the other.

Before proceeding, let us discuss the different notions used in the statement of Theorem 3.1.
The definition of a stratum is given in Definition 2.107. Furthermore, if K = K, then Γ = R
and hence the dimension of a stratum of val(S) is well defined using Definition 2.19 (because
every semilinear subset of Rn is also semialgebraic). Let us now focus on the different notions
of closure that are involved in the statement of Theorem 3.1. As discussed in Section 2.2, any
real closed field K is equipped with the topology induced by its order, and we can extend this
topology to Kn by taking the product topology. The same is true for any divisible ordered
abelian group Γ and its variant equipped with the bottom element Γ ∪ {−∞}. We denote by
clK(·), clΓ (·), and clΓ ∪{−∞}(·) the closure operators in the respective topologies. Theorem 3.1
uses two notions of closedness—the weaker one is the closedness of all strata, and the stronger
one is the closedness in the topology of (Γ ∪{−∞})n. The following lemma and example explain
the differences in these notions.

Lemma 3.2. If a set S ⊂ (Γ ∪ {−∞})n is closed (in the product topology of (Γ ∪ {−∞})n),
and K ⊂ [n] is nonempty, then the stratum SK ⊂ ΓK of S is closed (in the product topology of
ΓK).

Proof. Let x ∈ clΓ (SK). We want to show that x ∈ SK . To do so, consider the point x̃ ∈
(Γ ∪ {−∞})n defined as x̃k := xk for k ∈ K and x̃k := −∞ otherwise. The fact that x ∈ SK

is equivalent to x̃ ∈ S. To show that x̃ ∈ S, take any vectors a, b ∈ (Γ ∪ {−∞})n such that
ak < xk < bk for all k ∈ K and ak = −∞, bk > −∞ for all k /∈ K. By definition, there exists
a point (y1, . . . , yn) ∈ SK that satisfies a1 < y1 < b1, . . . , an < yn < bn. Let ỹ ∈ (Γ ∪ {−∞})n

be defined as ỹk := yk for k ∈ K and ỹk := −∞ otherwise. We have ỹ ∈ S. Moreover, the
point ỹ belongs to the neighborhood of x̃ defined by the inequalities ak < ỹk < bk for all k ∈ K
and −∞ = ỹk < bk otherwise. Since the choice of a, b was arbitrary, by the closedness of S we
obtain x̃ ∈ S.

Example 3.3. The converse of the lemma above is false, and the distinction between the two
notions of closedness is important for Theorem 3.1. To see this, take the set S := {(x1,x2) ∈
K2

⩾0 : x1 < x2}. Its image by valuation is equal to {(x1, x2) ∈ R2 : x1 ⩽ x2} ∪ {(x1, x2) ∈
T2 : x1 = −∞, x2 ̸= −∞}. This set has closed strata, but is not closed in the topology of T2.
However, we have clK(S) = {(x1,x2) ∈ K2

⩾0 : x1 ⩽ x2} and val(clK(S)) = {(x1, x2) ∈ T2 : x1 ⩽
x2} = val(S) ∪ {−∞} is closed in the topology of T2.

As a by-product, we also get the following result, which generalizes the proposition of Develin
and Yu [DY07, Proposition 2.9] on polyhedra to basic semialgebraic sets.

Theorem 3.4. Suppose that S ⊂ Kn
>0 is a semialgebraic set defined as

S := {x ∈ Kn
>0 : P1(x) □1 0, . . . ,Pm(x) □m 0} ,
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x1

x2

Figure 3.1: Polyhedral complex C⩾(P ).

where Pi ∈ K[X1, . . . , Xn] are nonzero polynomials and □ ∈ {⩾, >}m. Let Pi := trop(Pi) for
all i and suppose that C⩾(P1, . . . , Pm) has regular support. Then

val(S) = {x ∈ Rn : ∀i, P+
i (x) ⩾ P−

i (x)} .

Example 3.5. Take P = 0⊕(X⊙2
1 ⊙X⊙2

2 )⊕(2⊙X1⊙X2)⊕(⊖2⊙X⊙2
1 )⊕(⊖2⊙X⊙2

2 ). Then C⩾(P )
is depicted in Fig. 3.1. This support of this complex is not regular and Theorem 3.4 does not
apply. Indeed, take P (x1,x2) = 1+x2

1x
2
2 +t2x1x2 −t2x2

1 −t2x2
2. We have trop(P ) = P , but the

set val({(x1,x2) ∈ K2
>0 : P (x1,x2) ⩾ 0}) does not contain the open segment ](−1,−1), (1, 1)[.

The rest of this chapter is organized as follows. In Section 3.1 we give the proofs of The-
orems 3.1 and 3.4. In Section 3.2 we discuss in more detail the images by valuation that are
obtained if one uses the field of Puiseux series with rational exponents as the base field, instead
of K. The results of this chapter are based on the preprint [AGS16b].

3.1 Real analogue of the Bieri–Groves theorem
In this section, we prove Theorem 3.1 and Theorem 3.4. We do that in a series of lemmas. We
start by proving that val(S) has semilinear strata.

Lemma 3.6. If S ⊂ Kn is semialgebraic, then val(S) has semilinear strata.

Proof. To prove the result, we use the quantifier elimination in real closed fields (Theorem 2.120).
Let k denote a residue field of (K, Γ, val) and let ac : K → k denote an angular component
(its existence is proven in Lemma 2.70). The structure M = (K, Γ ∪ {−∞},k, val, ac) is a
model of Thrcvf . Let ϕ(x1, . . . , xn+m) be an LK-formula and b ∈ Km be a vector such that
S = {x ∈ Kn : K |= ϕ(x, b)}. Take the Lrcvf -formula θ(xn+1, . . . , xn+m, y1, . . . , yn) defined as

∃x1, . . . , ∃xn,
(
ϕ(x1, . . . , xn+m) ∧ val(x1) = y1 ∧ · · · ∧ val(xn) = yn

)
.

We obviously have
val(S) = {y ∈ (Γ ∪ {−∞})n : M |= θ(b, y)} .

By Theorem 2.120, θ is equivalent to a formula of the form
m∨

i=1

(
ϕi
(
val(fi1(X)), . . . , val(fiki

(X)), Y
)

∧ ψi
(
ac(fi(k1+1)(X)), . . . , ac(fili(X))

))
,
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where we denote X := (xn+1, . . . , xn+m), Y := (y1, . . . , yn), every ϕi is an LΓ -formula, every ψi

is an Lk-formula, and fi1, . . . , fili ∈ Z[X] are polynomials with integer coefficients. If we fix X
to be equal to b, then this formula is equivalent to a formula of the form∨

i∈I

ϕi
(
ζi1, . . . , ζiki

, Y
)
,

where I is a subset of [m] and we denote val
(
fik(b)

)
= ζik ∈ Γ ∪ {−∞}. Hence, val(S) is

definable in LΓ . By Lemma 2.108, val(S) has semilinear strata.

The next lemmas concern the closedness of val(S). We first restrict ourselves to the case of
open positive orthant of Puiseux series Kn

>0 := {x ∈ K : ∀k,xk > 0} and then we generalize the
results. Let us fix a basic semialgebraic set S ⊂ Kn

>0 defined as

S := {x ∈ Kn
>0 : ∀i = 1, . . . p,Pi(x) > 0 ∧ ∀i = p+ 1, . . . , q,Qi(x) = 0} (3.1)

for some polynomials P1, . . . ,Pp,Qp+1, . . . ,Qq ∈ K[X1, . . . , Xn]. Equivalently, we put S under
the form

S = {x ∈ Kn
>0 : ∀i = 1, . . . p,Pi(x) > 0 ∧ ∀i = p+ 1, . . . , q,Pi(x) ⩾ 0} , (3.2)

where we set Pi := −Q2
i for all i = p+ 1, . . . , q. Denote Pi := trop(Pi) for all i = 1, . . . , q.

Furthermore, given a polynomial P as in (2.8), we denote by P+ the polynomial obtained
by summing the terms aαX

α1
1 . . . Xαn

n such that aα > 0. Similarly, P− refers to the sum of the
terms −aαX

α1
1 . . . Xαn

n satisfying aα < 0. In this way, P = P+ − P−. In the next lemma, we
highlight a property of the full-dimensional cells of the complex C(P1, . . . , Pq) whose interior is
contained in val(S).

Lemma 3.7. Suppose that W is a full-dimensional cell of C(P1, . . . , Pq) such that int(W) ∩
val(S) ̸= ∅. Let w ∈ int(W), and w ∈ val−1(w) ∩ Kn

>0 be an arbitrary lift. Then w ∈ S.

Proof. Take a point z ∈ S such that z := val(z) ∈ int(W). For every i = 1, . . . , q we have
Pi(z) ⩾ 0. By Lemma 2.52 we obtain P+

i (z) ⩾ P−
i (z). Since W is a full-dimensional cell

of C(P1, . . . , Pq), we have the equality int(W) = ∩q
i=1int(Wi), where, for every i, Wi is a full-

dimensional cell of C(Pi). In particular, Argmax(Pi, z) has only one element and we have
P+

i (z) > P−
i (z). Furthermore, we have Argmax(Pi, z) = Argmax(Pi, w) for any point w ∈

int(W). This implies that P+
i (w) > P−

i (w). Therefore, if w ∈ val−1(w)∩Kn
>0 is an arbitrary lift

of w, then as in the proof of Lemma 2.52 we have val(P+
i (w)) = P+

i (w) > P−
i (w) = val(P−

i (w)).
Since P+,P− have only positive coefficients, we have P+

i (w) > P−
i (w) by (2.5) and hence

w ∈ S.

Lemma 3.8. Let A ∈ Qm×n be any matrix. Define a function fA : Kn
>0 → Km

>0 as

∀i ∈ [m],
(
fA(x)

)
i

:= xAi1
1 xAi2

2 . . .xAin
n . (3.3)

Let S ⊂ Kn
>0 be any semialgebraic set. Then fA(S) ⊂ Km

>0 is semialgebraic and we have
val(fA(S)) = A

(
val(S)

)
.

Proof. It is easy to check that the function fA is semialgebraic.Therefore, the first claim follows
from the fact that the class of semialgebraic sets is closed under semialgebraic transformations
(Proposition 2.18). The second claim follows from the identity val

(
(fA(x))i

)
= Ai

(
val(x)

)
.



3.1. Real analogue of the Bieri–Groves theorem 53

Lemma 3.9. Suppose that S ⊂ Kn
>0 is a semialgebraic set. Then val(S) ⊂ Rn is closed in the

topology of Rn. Furthermore, dim(val(S)) ⩽ dim(S).

Proof. Throughout the proof, we will use the natural properties of dimension mentioned in
Proposition 2.20. We proceed by induction over the dimension n. First, suppose that n = 1.
The claim is obvious if S = ∅. Otherwise, by Lemma 2.16, it is a finite union of points and
open intervals. Observe that the image by the valuation of an open interval in K>0 is either a
closed interval in R or a point. Moreover, the image of a point is a point. Therefore, val(S) is
closed. Moreover, if val(S) is of dimension 1, then it contains an interval. This implies that S
contains an interval and is of dimension 1. Therefore, the claim is true for n = 1.

Second, suppose that the claim holds in dimension n − 1. Observe that it is enough to
prove the claim for basic semialgebraic sets. Fix a basic semialgebraic set S ⊂ Kn

>0 as in (3.2)
and take the polyhedral complex C := C(P1, . . . , Pq). Let W̃1, . . . , W̃r denote the cells of C. By
Lemma 3.6, val(S) is a finite union of basic semilinear sets. In particular, it is a finite union
of relatively open polyhedra. In other words, we have val(S) =

∪s
j=1 ri(Ṽj), where each Ṽj is

a polyhedron and ri denotes the relative interior. For every (i, j), let Wij be the polyhedron
defined by

Wij := clR
(
ri(W̃i) ∩ ri(Ṽj)

)
.

By the definition of relative interior, we have ri(Wi,j) = ri(W̃i) ∩ ri(Ṽj). Furthermore, by Lem-
mas 2.5 and 2.57 we have

∪r
i=1 ri(W̃i) = Rn. Therefore, we have val(S) =

(∪s
j=1 ri(Ṽj)

)
∩(∪r

i=1 ri(W̃i)
)

=
∪

i,j ri(Wij) and, by Corollary 2.4, clR(val(S)) =
∪

i,j Wij . We will start by
proving that val(S) is closed. We consider an element w∗ of clR(val(S)). Let us look at two
cases.

Case I : There is a full-dimensional polyhedron Wij such that w∗ ∈ Wij . In this case, the
set (−w∗) + Wij ⊂ Rn contains an open ball,1 and this ball contains a sequence of n − 1
linearly independent rational vectors u(1), . . . , u(n−1) ∈ Qn. Take a ∈ Qn \ {0} such that
span(u(1), . . . , u(n−1)) = {w ∈ Rn : ⟨w, a⟩ = 0}. Then, H = {w ∈ Rn : ⟨a,w⟩ = ⟨a,w∗⟩} =
w∗ + span(u(1), . . . , u(n−1)) is a hyperplane that contains w∗ and we have w∗ + u(1), . . . , w∗ +
u(n−1) ∈ int(Wij). Therefore, as in the proof of Lemma 2.3, the sequence (w(h))h⩾1 defined as
w(h) := w∗ + 1

ku
(1) satisfies w(h) ∈ H ∩ int(Wij) for all h and w(h) → w∗. Take the set Y ⊂ Kn

>0
defined as

Y = S ∩
{
x ∈ Kn

>0 :
∏

k∈[n]
xak

k = t⟨a,w∗⟩
}
.

For every h define w(h) ∈ val−1(w(h)) ∩ Kn
>0 as w

(h)
k = tw

(h)
k for all k ∈ [n]. Note that every

w(h) belongs to the interior of the full-dimensional polyhedron W̃i. Consequently, w(h) belongs
to Y by Lemma 3.7. Take l ∈ [n] such that al ̸= 0 and let π : Kn

>0 → Kn−1
>0 denote the

projection that forgets the lth coordinate. Similarly, let π : Rn → Rn−1 denote the projection
that forgets the lth coordinate. By the induction hypothesis and Lemma 3.8, val(π(Y )) is a
closed subset of Rn−1 and we have val(π(Y )) = π(val(Y )). The sequence π(w(h)) converges to
π(w∗). Therefore, we have π(w∗) ∈ π(val(Y )). In other words, there exists a point w∗ ∈ Y
such that π(val(w∗)) = π(w∗). Moreover, we have val(w∗) ∈ H and w∗ ∈ H. Since al ̸= 0, this
implies that val(w∗) = w∗. Therefore w∗ ∈ val(S).

Case II : If w∗ does not belong to any full-dimensional polyhedron Wij , then we denote by
I the set of all indices (i, j) such that Wij contains w∗. We can take ρ > 0 so small that the

1Here, by (−w∗) + Wij we mean the translation of Wij by vector −w∗.
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closed Chebyshev ball B(w∗, ρ) does not intersect any polyhedron Wij with (i, j) /∈ I. Let
w(1), w(2), . . . be a convergent sequence of elements of Rn, w(h) → w∗ such that w(h) ∈ val(S)
for all h. Every polyhedron Wij such that (i, j) ∈ I is not full dimensional. Therefore, it is
contained in an affine hyperplane Hij . Let X =

∪
(i,j)∈I Hij be the union of these hyperplanes.

Observe that we have w∗ ∈ X and that val(S) ∩ B(w∗, ρ) ⊂ X. Let v ∈ Qn be any rational
vector such that v /∈

(
(−w∗) + X

)
. Note that the affine line w∗ + span(v) intersects X only

in w∗. Let A ∈ Q(n−1)×n be a rational matrix such that ker(A) = span(v) and take the
function fA : Kn

>0 → Kn−1
>0 defined as in (3.3). Let U := {x ∈ Kn

>0 : ∀l,xl ∈ [tw∗
l −ρ, tw

∗
l +ρ]}.

By Lemma 3.8, the set fA(S ∩ U) ⊂ Kn−1
>0 is semialgebraic and we have val(fA(S ∩ U)) =

A(val(S ∩ U)). Therefore, by the induction hypothesis, the set A(val(S ∩ U)) is closed. For
every w(h), let w(h) ∈ S denote any element of S such that val(w(h)) = w(h). For h large enough
we have w(h) ∈ B(w∗, ρ/2) and hence w(h) ∈ S ∩ U . Moreover, the sequence Aw(h) converges
to Aw∗. Since A(val(S ∩ U)) is closed, there is w∗ ∈ S ∩ U such that Aw∗ = A val(w∗). As
w∗ ∈ U , we have val(w∗) ∈ B(w∗, ρ). Therefore

val(w∗) ∈
(
(w∗ + span(v)) ∩B(w∗, ρ) ∩ val(S)

)
.

On the other hand, we have val(S) ∩ B(w∗, ρ) ⊂ X and (w∗ + span(v)) ∩ X = w∗. Hence
val(w∗) = w∗ and w∗ ∈ val(S).

This shows that val(S) is closed. It remains to prove that dim(val(S)) ⩽ dim(S). To do
so, it is enough to prove that dim(ri(Wij)) ⩽ dim(S) for all i, j. We consider two cases. If
dim(ri(Wij)) = n, then ri(Wij) has a nonempty interior. Therefore, there exists w ∈ int(Wij) ⊂
int(W̃i), and Lemma 3.7 shows that every lift w ∈ val−1(w) ∩ Kn

>0 belongs to S. In particular,
S contains the open set {x ∈ Kn

>0 : ∀l,xl ∈ ]1
2 t

wl , 2twl [} and hence it is full dimensional. If
dim(ri(Wij)) = m < n, then, as shown in the proof of Corollary 2.26, there exist linearly inde-
pendent vectors u(1), . . . , u(m) ∈ Rn and u(0) ∈ Rn such that ∆(u(0), u(1), . . . , u(m)) ⊂ ri(Wij) ⊂
u(0) + span(u(1), . . . , u(m)). Take any rational vector v ∈ Qn such that v /∈ span(u(1), . . . , u(m)).
Let A ∈ Q(n−1)×n be a rational matrix such that ker(A) = span(v) and take the function
fA : Kn

>0 → Kn−1
>0 defined as in (3.3). As previously, by Lemma 3.8, the set fA(S) ⊂ Kn−1

>0
is semialgebraic and we have val(fA(S)) = A(val(S)). By induction hypothesis we have
dim(S) ⩾ dim(fA(S)) ⩾ dim(val(fA(S))) = dim(A(val(S))) = maxi,j dim(A(ri(Wij))) ⩾
dim(A(ri(Wij))). Since ker(A)∩span(u(1), . . . , u(m)) = ∅, the function g : span(u(1), . . . , u(m)) →
Rn−1 defined as g(x) := Ax is injective. Hence, by Proposition 2.20, dim(A(ri(Wij))) =
dim(ri(Wij)) and dim(S) ⩾ dim(ri(Wij)).

The next lemma will be useful to study the images of closed semialgebraic sets.

Lemma 3.10. Suppose that S ⊂ Kn is a nonempty, bounded, closed, semialgebraic set. Let
K ⊂ [n] be a set of indices such that for every a ∈ K>0 the set {x ∈ S : ∀k ∈ K, xk ∈ [0,a]} is
nonempty. Then, there exists a point y ∈ S such that yk = 0 for all k ∈ K.

Proof. We prove that the statement holds for any real closed field K. Fix an Lor-formula
ψ(x1, . . . , xn+m). For every vector b ∈ Km we define the semialgebraic set Sb by

Sb
:= {x ∈ Kn : K |= ψ(x1, . . . , xn, b)} .

The statement “for all (xn+1, . . . , xn+m), if the set S(xn+1,...,xn+m) is nonempty, bounded, closed,
and the set {x ∈ S(xn+1,...,xn+m) : ∀k ∈ K, xk ∈ [0, a]} is nonempty for every a > 0, then there
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exists a point y ∈ S(xn+1,...,xn+m) such that yk = 0 for all k ∈ K” is a sentence in the language
of ordered rings Lor.2 It is true in R (because bounded and closed subsets of Rn are compact),
hence it is true in K by the completeness of real closed fields (Theorem 2.110).

The lemmas above lead to the main theorem of this section. Suppose that K is a real closed
valued field equipped with a nontrivial and convex valuation val : K → Γ ∪ {−∞}. We split
the proof into two parts.

Lemma 3.11. Suppose that S ⊂ Kn is a semialgebraic set. Then, every stratum of val(S) ⊂
(Γ ∪ {−∞})n is closed. Furthermore, we have val(clK(S)) = clΓ ∪{−∞}(val(S)). Moreover, if
K = K, then the dimension of every stratum of val(S) is not greater than the dimension of S.

Proof. We first prove the result for a semialgebraic set S ⊂ Kn
⩾0 included in the closed positive

orthant of Puiseux series. Let K ⊂ [n] be any nonempty subset and let XK ⊂ Kn be the set
defined as

XK := {x ∈ Kn : xk ̸= 0 ⇐⇒ k ∈ K}.

The sets XK and S ∩ XK are semialgebraic. Let π : Kn → KK denote the projection on
the coordinates from K. Similarly, let π : Tn → TK denote the projection on the coordinates
from K. Observe that the stratum of val(S) associated with K is equal to π(val(S ∩ XK)) =
val(π(S ∩ XK)). Moreover, the set π(S ∩ XK) is included in KK

>0. Therefore, by Lemma 3.9,
all strata of val(S) are closed and satisfy the claim about the dimension.

We will now prove the equality clT(val(S)) = val(clK(S)). Observe that we trivially have
clT(val(S)) ⊂ clT(val(clK(S))). Therefore, to prove the inclusion clT(val(S)) ⊂ val(clK(S)), it
is enough to show that val(clK(S)) is closed in Tn. Let x ∈ Tn be any point that does not
belong to val(clK(S)) and let K ⊂ [n] denote the support of x. For any M,N > 0 we denote
Ik(M,N) := [−∞,−M [ if k /∈ K and Ik(M,N) := ]xk − 1

N , xk + 1
N [ otherwise. Similarly,

we denote Ik(M,N) := [0, t−M+1] ⊂ K⩾0 for k /∈ K and Ik(M,N) := [txk− 2
N , txk+ 2

N ] ⊂ K>0
otherwise. We want to show that there is an open neighborhood of x that does not belong to
val(clK(S)). Suppose that this is not the case. Then, for any M,N > 0, the set

∏n
k=1 Ik(M,N)

contains a point from val(clK(S)). Therefore, the set S(M,N) := clK(S) ∩
∏n

k=1 Ik(M,N) ⊂ Kn
⩾0

is nonempty, on top of being closed, bounded, and semialgebraic.3 If we fix N > 0, then, by
Lemma 3.10, there is a point y(N) ∈ S(1,N) such that y(N)

k = 0 for all k /∈ K. In other words, the
set π(clK(S) ∩ XK) contains a point that belongs to

∏
k∈K [txk− 2

N , txk+ 2
N ]. Hence, the stratum

of val(clK(S)) associated with K contains a point that belongs to
∏

k∈K [xk − 2
N , xk + 2

N ]. Since
this is true for all N > 0, and the strata of val(clK(S)) are closed, we have x ∈ val(clK(S)),
which gives a contradiction.

To show the inclusion clT(val(S)) ⊃ val(clK(S)), suppose that x ∈ Tn is a point that does
not belong to clT(val(S)). We will show that x does not belong to val(clK(S)). As previously,
let K ⊂ [n] denote the support of x and, for M,N > 0, denote Ik(M,N) = [−∞,−M [ if k /∈ K
and Ik(M,N) = ]xk − 1

N , xk + 1
N [ otherwise. By the definition of x, there exist M,N > 0 such

that
∏n

k=1 Ik(M,N) does not contain any point of val(S). Let Jk := [0, t−M−1[ if k /∈ K and
Jk := ]txk− 1

2N , txk+ 1
2N [ otherwise. Since val(S) ∩

∏n
k=1 Ik(M,N) = ∅, we have S ∩

∏n
k=1 Jk =

∅. Moreover, the set
∏n

k=1 Jk is open in the subspace topology of Kn
⩾0. Therefore, we have

clK(S) ∩
∏n

k=1 Jk = ∅. Since any lift of x belongs to
∏n

k=1 Jk, we have x /∈ val(clK(S)).
Therefore, the claim of the lemma is true for every semialgebraic subset of Kn

⩾0.
2The fact that a set S(xn+1,...,xn+m) is closed can be expressed in Lor as in Example 2.95.
3The set clK(S) is semialgebraic by Proposition 2.15.
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Second, suppose that S ⊂ Kn is any semialgebraic set. Given a vector δ ∈ {+1,−1}n, we
denote by fδ : Kn → Kn the involution which maps x ∈ Kn to the vector with entries δkxk.
Since

∪
δ fδ(Kn

⩾0) = Kn, we have S =
∪

δ(S ∩ fδ(Kn
⩾0)) Moreover, note that val

(
X ∩ fδ(Kn

⩾0)
)

=
val(fδ(X ∩ fδ(Kn

⩾0))) for any X ⊂ Kn and that the set fδ(X ∩ fδ(Kn
⩾0)) in contained in Kn

⩾0.
In particular, we have the equality

val(S) =
∪
δ

val
(
fδ

(
S ∩ fδ(Kn

⩾0)
))
.

Since fδ

(
S ∩ fδ(Kn

⩾0)
)

is a semialgebraic set included in Kn
⩾0, we can apply the results of the

previous paragraph to each of these sets and take the union. Therefore, we get that every
stratum of val(S) is closed and that its dimension of not greater than the dimension of S
(by Proposition 2.20). The claim about closures follows from the observation that clK(S) =∪

δ clK(S ∩ fδ(Kn
⩾0)) and, since fδ is a homeomorphism,

val(clK(S)) =
∪
δ

val
(
fδ

(
clK
(
S ∩ fδ(Kn

⩾0)
)))

=
∪
δ

val
(

clK
(
fδ

(
S ∩ fδ(Kn

⩾0)
)))

=
∪
δ

clT
(

val
(
fδ

(
S ∩ fδ(Kn

⩾0)
)))

= clT
(∪

δ

val
(
fδ

(
S ∩ fδ(Kn

⩾0)
)))

= clT(val(S)) .

To prove the claim for an arbitrary field K we use Theorem 2.120. We fix an Lor-formula
ψ(x1, . . . , xn+m). For every vector b ∈ Km we can look at the semialgebraic set

Sb
:= {x ∈ Kn : K |= ψ(x1, . . . , xn, b)} .

The statement “for all (xn+1, . . . , xn+m), the image by valuation of the set S(xn+1,...xn+m) has
closed strata” can be written as a sentence in Lrcvf . It is true in K and hence, by the completeness
result of Theorem 2.120, it is also true in K. The same is true for the statement “for all
(xn+1, . . . , xn+m), the vector (y1, . . . , yn) belongs to clΓ ∪{−∞}(val(S(xn+1,...xn+m))) if and only if
it belongs to val(clK(S(xn+1,...xn+m))).”

The proof of the converse implication of Theorem 3.1 uses the following lemma.

Lemma 3.12. Every closed semilinear subset of Γn is a finite union of sets of the form

{g ∈ Γn : ∀i = 1, . . . , p, fi(g) ⩾ h(i)} ,

where fi ∈ Z[X1, . . . , Xn] are homogeneous linear polynomials with integer coefficients and h(i) ∈
Γ .

Proof. By definition, any semilinear subset of Γn is a finite union of sets of the form

{g ∈ Γn : ∀i = 1, . . . , p, fi(g) > h(i), ∀i = p+ 1, . . . , q, fi(g) = h(i)} , (3.4)

where fi ∈ Z[X1, . . . , Xn] are homogeneous linear polynomials with integer coefficients and
h(i) ∈ Γ . We will show that the closure of a set as in (3.4) is equal to

{g ∈ Γn : ∀i = 1, . . . , p, fi(g) ⩾ h(i), ∀i = p+ 1, . . . , q, fi(g) = h(i)} . (3.5)

Indeed, this is true for Γ = R by Lemma 2.3. Moreover, the statement “for all (h(i))q
i=1, the

closure of the set given in (3.4) is equal to the set given in (3.5)” is a sentence in Log. (The
formula that defines the closure is given in Example 2.95.) Therefore, it is true in Γ by the
completeness result of Theorem 2.106. The claim follows by taking the union.
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Lemma 3.13. If a set X ⊂ (Γ ∪ {−∞})n has closed and semilinear strata, then there exists a
semialgebraic set S ⊂ Kn such that val(S) = X. Even more, we can suppose that S is included
in the nonnegative orthant of Kn.

Proof. By Lemma 3.12, X is a finite union of sets of the form

V = {y ∈ (Γ ∪ {−∞})n : yK ̸= −∞, y[n]\K = −∞,∀i = 1, . . . , p, fi(yK) ⩾ h(i)} ,

where, for every L ⊂ [n], yL denotes the vector formed by the coordinates of y taken from L,
fi ∈ Z[XK ] are homogeneous linear polynomials with integer coefficient and variables indexed by
K, and h(i) ∈ Γ . Take any such polynomials fi and a set K ⊂ [n]. denote fi(yK) =

∑
k∈K Aikyk

where Aik ∈ Z and consider the set

Wg := {x ∈ Kn : xK > 0, x[n]\K = 0 ∧ ∀i ∈ [p],
∏

k∈K

xAik
k ⩾ g(i)} ,

where g = (g(i))i ∈ Kp. Note that Wg is a semialgebraic set. We will show that there exists
g such that val(Wg) = V. First, consider the case K = K. In this case, choosing g(i) = th

(i)

gives the claim. Indeed, it is obvious that in this case we have val(Wg) ⊂ V. Furthermore, if
y ∈ V and we take xk := tyk for all k ∈ [n] (with the convention that t−∞ = 0), then we have
x ∈ W. To finish the claim, observe that the statement “for all (h(i))p

i=1, there exist (g(i))p
i=1

such that val(Wg) = V” is a sentence in Lrcvf . Therefore, this sentence is true in any K by the
completeness result of Theorem 2.120. The claim follows by taking the union.

This finishes the proof of Theorem 3.1 and allows us to prove Theorem 3.4.

Proof of Theorem 3.1. The claim follows from Lemmas 3.6, 3.11 and 3.13.

Proof of Theorem 3.4. Denote S⩾ := {x ∈ Rn : ∀i, P+
i (x) ⩾ P−

i (x)} and suppose that x ∈ S.
We have val(x) ∈ S⩾ by Lemma 2.52. Therefore val(S) ⊂ S⩾. On the other hand, if we take
any point x such that P+

i (x) > P−
i (x) for all i, then any lift x ∈ val−1(x) ∩ Kn

>0 belongs to S
by Lemma 3.7. Hence, we have the inclusion

{x ∈ Rn : ∀i, P+
i (x) > P−

i (x)} ⊂ val(S) ⊂ {x ∈ Rn : ∀i, P+
i (x) ⩾ P−

i (x)}

and the claim follows from Lemma 2.59 and Theorem 3.1.

3.2 Puiseux series with rational exponents

In this section, we study in more detail the images by valuation of semialgebraic sets defined
over the field of Puiseux series with rational exponents. Let us start by defining this field.

Definition 3.14. We define the set of Puiseux series with rational exponents, denoted R{{t}},
in the following way. Let x =

∑∞
i=1 cλi

tλi be a Puiseux series as in (2.2). Then, x belongs to
R{{t}} if there exists N ∈ N∗ such that the sequence (λi) ⩾ 1 consists of rational numbers with
common denominator N . Moreover, the empty series 0 belongs to R{{t}}.
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One can check that R{{t}} is a subfield of K. Moreover, R{{t}} is a real closed field, and
(K, Γ,k, val, ac) = (R{{t}},Q,R, val, lc) is a model of the theory Thrcvf of real closed valued
fields (see Appendix A for an extended discussion). Many authors studying tropical geometry
use the field R{{t}}, often without the convergence assumption (or the analogues of these fields
with complex coefficients), as the base field for their investigations. This is based on historical
reasons (the history of the field R{{t}} can be traced back to Newton, see [BK12, Chapter 8.3]),
the use of R{{t}} use in the study of plane algebraic curves [BK12, Chapter 8.3], the simplicity of
definition, the fact that the field of formal Puiseux series with rational exponents and complex
coefficients is the algebraic closure of the field of Laurent series [Eis04, Corollary 13.15], and
the fact that R{{t}} is well adapted for computations [JMM08]. However, the disadvantage of
R{{t}} lies in the fact that it has a rational value group. In this way, the image by valuation of a
set defined over R{{t}} consists of only rational points, which makes the analysis somewhat less
natural (one often studies the closure of the image by valuation). For this reasons, some authors
[Mar10, EKL06] consider more general fields with real value group. We follow this convention
in our work. The next result shows that this convention is richer—the set of images under
the valuation map of semialgebraic sets defined over R{{t}} is a subset of the analogous set of
images defined over K (up to taking the closure). Therefore, by studying these images over K
we work with a larger class of sets than if we restrict our attention to R{{t}}. Furthermore, the
proposition implies that the results obtained over K can be transferred to R{{t}}. In this way,
one can use K to obtain theoretical results and R{{t}} for computations. The same result also
follows from the analysis of Alessandrini [Ale13, Theorem 4.10].

Proposition 3.15. Let ϕ(x1, . . . , xn, b1, . . . , bm) be an Lor-formula (where n ⩾ 1,m ⩾ 0). Fix
a vector b = (b1, . . . , bm) ∈ R{{t}}m and consider the semialgebraic set S ⊂ R{{t}}n defined as

S := {x ∈ R{{t}}n : R{{t}} |= ϕ(x, b)} .

Let S̃ ⊂ Kn be the extension of S to Kn, i.e., the semialgebraic set defined as

S̃ := {x ∈ Kn : K |= ϕ(x, b)} .

Let S := val(S) ⊂ (Q ∪ {−∞})n and S̃ := val(S̃) ⊂ Tn be the valuations of these sets. Then,
for every nonempty set K ⊂ [n] we have the equalities

clR(SK) = S̃K and SK = S̃K ∩ QK .

Moreover, we have −∞ ∈ S if and only if −∞ ∈ S̃.

Proof. As noted above, both K1 := (R{{t}},Q,R, val, lc) and K2 := (K,R,R, val, lc) are models
of the theory Thrcvf of real closed valued fields. Moreover, K1 is a substructure of K2 (in the
language Lrcvf of real closed fields), and the embedding from K1 to K2 is given by the identity
maps R{{t}} → K, Q → R, R → R. Therefore, by the fact that Thrcvf is model complete
(Theorem 2.120 and Proposition 2.124), this embedding is elementary. Fix a nonempty set
K ⊂ [n], K = {k1, . . . , kp}.

First, we want to show that SK = S̃K ∩ Qn. To do so, let us consider the Lrcvf -formula
θ(yk1 , . . . , ykp , b) defined as

∃x1, . . . , ∃xn,
( ∧

k /∈K

xk = 0
)

∧
( ∧

i∈[p]
yki

= val(xki
)
)

∧ ϕ(x1, . . . , xn, b1, . . . , bm) .
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Fix any point w = (wk1 , . . . , wkp) ∈ QK . By model completeness, the formula θ(w, b) is true
over R{{t}} if and only if it is true over K. In other words, w ∈ SK ⇐⇒ w ∈ S̃K . Hence
SK ∩ QK = S̃K ∩ QK . Since SK ⊂ QK , we get SK = S̃K ∩ Qn. The fact that −∞ ∈ S ⇐⇒
−∞ ∈ S̃ can be proven in the same way (consider K = ∅ in the definition of θ).

To prove the other equality, recall that S̃K is closed in RK by Theorem 3.1. Since SK ⊂ S̃K ,
we have clR(SK) ⊂ S̃K . To prove the opposite inclusion, consider the Lrcvf -formula ψ(y̌, ŷ, b)
defined as

∃x1, . . . , ∃xn,
( ∧

k /∈K

xk = 0
)

∧
( ∧

i∈[p]
y̌ki

< val(xki
) < ŷki

)
∧ ϕ(x1, . . . , xn, b1, . . . , bm) .

If w = (wk1 , . . . , wkp) ∈ S̃K and w̌, ŵ ∈ QK are such that U :=
∏p

i=1(]w̌ki
, ŵki

[) is an open
neighborhood of w defined by rational intervals, w ∈ U , then the formula ψ(w̌, ŵ, b) is true over
K. By model completeness, it is also true over R{{t}}. In other words, there is a point w′ ∈ SK

that belongs to U . Since U was arbitrary, we have w ∈ clR(SK).

Remark 3.16. As an immediate corollary of Proposition 3.15 we get the following statement: if
S ⊂ Kn is a semialgebraic set defined by parameters belonging to R{{t}} and w ∈ val(S) ∩ Qn

is a rational point, then there exists a lift of w with rational exponents, w ∈ val−1(w) ∩R{{t}}n

such that w ∈ S. In this sense, one could potentially use the field R{{t}} to compute the lifts of
points belonging to val(S). However, we do not address these issues in this work—we construct
some explicit lifts of points for spectrahedra (see Example 8.76), but in our case these lifts
do not require to perform computations over R{{t}} (all computations are done in the tropical
semifield).
Remark 3.17. One can also consider the field of Puiseux series with rational exponents and
algebraic coefficients—this field is obtained by adding a hypothesis that all the coefficients (cλi

)
are algebraic numbers. This field is probably the most suited for computations. The analysis
above applies also to this field.



60 Chapter 3. Tropicalization of semialgebraic sets



CHAPTER 4

Tropical spectrahedra

In this chapter, we study the tropicalization of spectrahedra, which is the main subject of this
thesis. We have already introduced the definition of a spectrahedron in Section 1.1 and indicated
that this definition is valid over every real closed field. Let us start by giving more details on
these issues.

Definition 4.1. The Loewner order is defined in the following way. If A,B ∈ Rm×m are real
symmetric matrices, then A ≽ B if A−B is positive semidefinite.

Definition 4.2. If Q(0), . . . , Q(n) ∈ Rm×m are real symmetric matrices, then the set

S := {x ∈ Rn : Q(0) + x1Q
(1) + · · · + xnQ

(n) ≽ 0} ,

is called a spectrahedron (associated with Q(0), . . . , Q(n)).

Remark 4.3. It is immediate to check that spectrahedra are convex.
Before proceeding, we point out that the notion of a “positive semidefinite” matrix is mean-

ingful in every real closed field.

Definition 4.4. A symmetric matrix A ∈ Km×m is positive semidefinite if every principal
minor of A is nonnegative or, equivalently, if the inequality x⊺Ax ⩾ 0 is true for all x ∈ Km.

Remark 4.5. The are many equivalent definitions of positive semidefinite matrices. For instance,
a real symmetric matrix is positive semidefinite if it admits a Cholesky decomposition. This is
equivalent to the nonnegativity of its principal minors, its smallest eigenvalue, and the associated
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quadratic form (see, e.g., [Mey00, Section 7.6]). All of these properties are still equivalent for
symmetric matrices defined over arbitrary real closed fields, such as Puiseux series, by the
completeness of the theory of real closed fields (Theorem 2.110).

The definition of positive semidefinite matrices over K allows us to consider spectrahedra
over Kn and their tropicalizations. This leads to the main definition of this chapter.

Definition 4.6. A set S ⊂ Tn is said to be a tropical spectrahedron if there exists a spectrahe-
dron S ⊂ Kn

⩾0 such that S = val(S). We refer to S as the tropicalization of the spectrahedron
S, and S is said to be a lift (over the field K) of S.

Given symmetric matrices Q(0), . . . ,Q(n) ∈ Km×m and x ∈ Kn, we denote by Q(x) the
matrix pencil Q(0) +x1Q

(1) + · · · +xnQ
(n). By the definition of a positive semidefinite matrix,

the spectrahedron S = {x ∈ Kn
⩾0 : Q(x) ≽ 0} can be described by a system of polynomial

inequalities of the form detQI×I(x) ⩾ 0, where I is a nonempty subset of [m], and detQI×I(x)
corresponds to the (I × I)-minor of the matrix Q(x). Following this, we obtain that the
tropical spectrahedron S is included in the intersection of the sets {x ∈ Tn : trop(P )+(x) ⩾
trop(P )−(x)}, where P is a polynomial of the form detQI×I(x) (Lemma 2.52). In general,
this inclusion may be strict. We refer to [ABGJ15, Example 15] for an example in which S
is a polyhedron. Nevertheless, under the regularity assumption stated in Theorem 3.4, both
sets coincide. In fact, we prove that, under similar assumptions, tropical spectrahedra have a
description that is much simpler than the one provided by Theorem 3.4. This description only
involves principal tropical minors of order 2.

Our results are divided into four parts. In Section 4.1 we deal with spectrahedra defined by
Metzler matrices Q(0), . . . ,Q(n) (i.e., matrices in which the off-diagonal entries are nonpositive).
This enables us to use a lemma that is similar to Theorem 3.4 in order to give a description of
tropical spectrahedra under a regularity assumption. In Section 4.2 we switch to non-Metzler
matrices. In this case, tropical spectrahedra may not be regular, even under strong genericity
assumptions. Nevertheless, we are able to extend our previous analysis to this case and give
a description, involving only principal minors of size at most 2, of non-Metzler spectrahedra,
under a regularity assumption over some associated sets. The purpose of Section 4.3 is to
show that the regularity assumptions used in Sections 4.1 and 4.2 hold generically. Finally, in
Section 4.4 we study the images by valuation of the interiors of spectrahedra. This chapter is
based on the preprint [AGS16b].

Let us start with some introductory remarks. First, observe that in order to characterize the
class of tropical spectrahedra, it is enough to restrict ourselves to tropical spectrahedral cones,
as the image of a spectrahedron can be deduced from the image of its homogenized version.
This is formally stated in the next lemma.

Lemma 4.7. Let Q(0), . . . ,Q(n) ∈ Km×m be a sequence of symmetric matrices. Define

S := {x ∈ Kn
⩾0 : Q(0) + x1Q

(1) + · · · + xnQ
(n) ≽ 0}

and
Sh := {(x0,x) ∈ Kn+1

⩾0 : x0Q
(0) + x1Q

(1) + · · · + xnQ
(n) ≽ 0} .

Then
val(S) = π({x ∈ val(Sh) : x0 = 0}) ,

where π : Tn+1 → Tn denotes the projection that forgets the first coordinate.
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Proof. We start by proving the inclusion ⊂. Take any x ∈ val(S) and its lift x ∈ S ∩ val−1(x).
Observe that the point (1,x) belongs to Sh. Therefore, the point (0, x) belongs to val(Sh) and
x belongs to π({x ∈ val(Sh) : x0 = 0}). Conversely, let x belong to π({x ∈ val(Sh) : x0 = 0}).
Then (0, x) belongs to val(Sh). In other words, there exists a lift (z,x) ∈ Sh such that val(z) = 0
and val(x) = x. Take the point (1,x/z). This point also belongs to Sh. Moreover, x/z belongs
to S. Hence, the point x = val(x/z) belongs to val(S).

Our approach to the tropicalization of spectrahedra relies on the next elementary lemma.
This lemma is a more precise version of a result of Yu [Yu15] who showed that the set of images
by the valuation of the set of positive semidefinite matrices A over the field of Puiseux series is
determined by the inequalities val(Aii) + val(Ajj) ⩾ 2 val(Aij) for i ̸= j.

Lemma 4.8. Let A ∈ Km×m be a symmetric matrix. Suppose that A has nonnegative entries
on its diagonal and that the inequality AiiAjj ⩾ (m− 1)2A2

ij holds for all pairs (i, j) such that
i ̸= j. Then, A is positive semidefinite.

The proof of Lemma 4.8 uses a well-known result from linear algebra.

Lemma 4.9 ([BSM03, Proposition 1.8]). Suppose that a symmetric matrix A ∈ Rm×m has non-
negative entries on its diagonal and is diagonally dominant, i.e., that it satisfies the inequality
Aii ⩾

∑
j ̸=i |Aij | for all i ∈ [m]. Then, A is positive semidefinite.

Proof of Lemma 4.8. We will show that the lemma is true over any real closed field K. Consider
the case K = R. If A ∈ Rm×m is a zero matrix, then there is nothing to show. From now on we
suppose that A has at least one nonzero entry. First, let us suppose that A has positive entries
on its diagonal. In this case, let B ∈ Rm×m be the diagonal matrix defined as Bii := A

−1/2
ii for

all i. Observe that A is positive semidefinite if and only if the matrix D := BAB is positive
semidefinite. Moreover, D has ones on its diagonal and Dij = A

−1/2
ii AijA

−1/2
jj for all i ̸= j.

Hence |Dij | ⩽ 1/(m − 1) for all i ̸= j. Therefore D is diagonally dominant and hence positive
semidefinite by Lemma 4.9.

Second, if A has some zeros on its diagonal, let I = {i ∈ [m] : Aii ̸= 0}. Since the inequality
AiiAjj ⩾ (m−1)2A2

ij holds, we have Aij = 0 if either i /∈ I or j /∈ I. Let AI denote the submatrix
formed by the rows and columns with indices from I. Then A is positive semidefinite if and only
if AI is positive semidefinite. Finally, AI is positive semidefinite by the considerations from the
previous paragraph.

This shows the claim for K = R. To finish the proof, observe that for every fixed m, the
claim is a sentence in Lor. Therefore, it is true in K by the completeness result of Theorem 2.110.

Lemma 4.8 has two useful corollaries. The first one allows us to give an inner and an
outer approximation of spectrahedra using only minors of order two. Given a spectrahedron
S = {x ∈ Kn

⩾0 : Q(x) ≽ 0} we define two sets Sout, S in ⊂ Kn
⩾0 as

Sout :=
{
x ∈ Kn

⩾0 : ∀i,Qii(x) ⩾ 0 ,∀i ̸= j,Qii(x)Qjj(x) ⩾ (Qij(x))2
}
,

S in :=
{
x ∈ Kn

⩾0 : ∀i,Qii(x) ⩾ 0 ,∀i ̸= j,Qii(x)Qjj(x) ⩾ (m− 1)2(Qij(x))2
}
.

Corollary 4.10. We have S in ⊂ S ⊂ Sout.

Proof. Definition 4.4 gives S ⊂ Sout, while Lemma 4.8 shows that S in ⊂ S.
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In the sequel, in order to describe the set val(S), we will exhibit conditions that ensure that
the tropicalizations of S in and Sout coincide, i.e., val(Sout) = val(S) = val(S in).

The second corollary concern the symmetric tropical matrices that have positive semidefinite
lifts.

Corollary 4.11. Let A ∈ Tm×m
± be a symmetric matrix such that Aii ∈ T+ ∪ {−∞} for all

i and Aii ⊙ Ajj > A⊙2
ij for all i < j such that Aij ̸= −∞. Let A ∈ Km×m be any symmetric

matrix such that sval(A) = A. Then A fulfills the conditions of Lemma 4.8. (In particular, it
is positive semidefinite.)

Proof. Since Aii ∈ T+ ∪ {−∞} for all i, we have Aii ⩾ 0 for all i. Moreover, if Aij = −∞,
then AiiAjj ⩾ 0 and if Aij ̸= −∞, then val(AiiAjj) = Aii ⊙ Ajj > A⊙2

ij = val((m − 1)2A2
ij).

Therefore A fulfills the conditions of Lemma 4.8.

4.1 Tropical Metzler spectrahedra

In this section, we study the spectrahedra defined by Metzler matrices. First, we exhibit a class
of tropical spectrahedra that arise in this way (we call this class tropical Metzler spectrahedra).
Second, we show that under a genericity condition, an image of a spectrahedron defined by
Metzler matrices is a tropical Metzler spectrahedron that has a natural description in terms of
2 × 2 tropical minors.

Definition 4.12. A square matrix A ∈ Km×m is a (negated) Metzler matrix if its off-diagonal
coefficients are nonpositive. Similarly, we say that a matrix M ∈ Tm×m

± is a tropical Metzler
matrix if Mij ∈ T− ∪ {−∞} for all i ̸= j.

Let Q(1), . . . , Q(n) ∈ Tm×m
± be symmetric tropical Metzler matrices. Given i, j ∈ [m], we

refer to Qij(X) as the tropical polynomial:

Qij(X) := Q
(1)
ij ⊙X1 ⊕ · · · ⊕Q

(n)
ij ⊙Xn .

Definition 4.13. If Q(1), . . . , Q(n) ∈ Tm×m
± are symmetric tropical Metzler matrices, we define

the tropical Metzler spectrahedral cone S(Q(1), . . . , Q(n)) described by Q(1), . . . , Q(n) as the set
of points x ∈ Tn that fulfill the following two conditions:

• for all i ∈ [m], Q+
ii (x) ⩾ Q−

ii (x);
• for all i, j ∈ [m], i < j, Q+

ii (x) ⊙Q+
jj(x) ⩾ (Qij(x))⊙2.

We point out that the term Qij(x) (i ̸= j) is well defined for any x ∈ Tn thanks to the Metzler
property of the matrices Q(k). Where there is no ambiguity, we denote S(Q(1), . . . , Q(n)) by S.
Furthermore, if n ⩾ 2, then we denote by S(Q(1)|Q(2), . . . , Q(n)) the set of all points x ∈ Tn−1

such that (0, x) ∈ S(Q(1), . . . , Q(n)). The sets S(Q(1), . . . , Q(n)) and S(Q(1)|Q(2), . . . , Q(n)) are
called tropical Metzler spectrahedra.

With standard notation, the constraints defining a tropical Metzler spectrahedral cone re-
spectively read: for all i ∈ [m],

max
Q

(k)
ii ∈T+

(
Q

(k)
ii + xk

)
⩾ max

Q
(l)
ii ∈T−

(
|Q(l)

ii | + xl

)
, (4.1)
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and for all i, j ∈ [m] such that i < j,

max
Q

(k)
ii ∈T+

(
Q

(k)
ii + xk

)
+ max

Q
(k′)
jj ∈T+

(
Q

(k′)
jj + xk′

)
⩾ 2 max

l∈[n]

(
|Q(l)

ij | + xl

)
. (4.2)

The next proposition justifies the terminology introduced in Definition 4.13, and ensures that
the set S is indeed a tropical spectrahedron. To this end, we explicitly construct a spectrahedron
S ⊂ Kn

⩾0 verifying val(S) = S.

Proposition 4.14. The sets S(Q(1), . . . , Q(n)) and S(Q(1)|Q(2), . . . , Q(n)) are tropical spectra-
hedra.

Proof. By Lemma 4.7, it is enough to prove the claim for S(Q(1), . . . , Q(n)). Let us define the
matrices Q(1), . . . ,Q(n) ∈ Km×m as follows:

• if Q(k)
ij ∈ T−, then we set Q

(k)
ij := −t|Q

(k)
ij |;

• if Q(k)
ij ∈ T+ (which, under our assumptions, can happen only if i = j), then Q

(k)
ij :=

mntQ
(k)
ij ;

• if Q(k)
ij = −∞, then Q

(k)
ij := 0.

Consider the spectrahedron S := {x ∈ Kn
⩾0 : Q(x) ≽ 0}. We claim that val(S) = S.

We start with the inclusion val(Sout) ⊂ S. Let x ∈ Sout. For all i ̸= j we have Qii(x) ⩾ 0,
Qjj(x) ⩾ 0, and Qii(x)Qjj(x) ⩾ (Qij(x))2. Therefore, Q+

ii (x) ⩾ Qii(x) ⩾ 0 and Q+
jj(x) ⩾

Qjj(x) ⩾ 0. This implies that Q+
ii (x)Q+

jj(x) ⩾ Qii(x)Qjj(x) ⩾ (Qij(x))2. Moreover, we have
val(Q+

ii (x)) = Q+
ii (x), where x = val(x). Similarly, val(Q−

ii (x)) = Q−
ii (x). As Q(k) are tropical

Metzler matrices, we also have val(Qij(x)) = |Qij(x)| for i ̸= j. Since the map val is order
preserving over K⩾0, we deduce that Q+

ii (x) = val(Q+
ii (x)) ⩾ val(Q−

ii (x)) = Q−
ii (x) for all i and

Q+
ii (x) ⊙Q+

jj(x) = val(Q+
ii (x)Q+

jj(x)) ⩾ val(Qij(x)2) = (Qij(x))⊙2 for all i < j. Hence x ∈ S.
Now, let us prove the inclusion S ⊂ val(S in). Take any x ∈ S and its lift xk = txk , with

the convention that t−∞ = 0. First, as noted in the previous paragraph, we have val(Q+
ii (x)) =

Q+
ii (x) and val(Q−

ii (x)) = Q−
ii (x). We have chosen the matrices Q(k) and the point x in such a

way that
Q+

ii (x) =
∑

Q
(k)
ii ∈T+

mntQ
(k)
ii +xk ⩾ mntQ

+
ii(x) . (4.3)

Similarly, we have Q−
ii (x) =

∑
Q

(k)
ii ∈T− t

|Q(k)
ii |+xk ⩽ ntQ

−
ii(x). Since Q+

ii (x) ⩾ Q−
ii (x), we deduce

that Q−
ii (x) ⩽ 1

mQ+
ii (x), and so Qii(x) ⩾ (1 − 1

m)Q+
ii (x) ⩾ 0. Second, for all i ̸= j we have

0 ⩾ Qij(x) ⩾ −nt|Qij(x)|. Using (4.3) and the fact that Q+
ii (x)⊙Q+

jj(x) ⩾ (Qij(x))⊙2, we obtain

Qij(x)2 ⩽ n2tQ
+
ii(x)⊙Q+

jj(x) ⩽ 1
m2Q

+
ii (x)Q+

jj(x) .

Therefore, by the previous inequalities,

Qii(x)Qjj(x) − (m− 1)2Qij(x)2 ⩾
(
1 − 1

m

)2
Q+

ii (x)Q+
jj(x) − (m− 1)2Qij(x)2 ⩾ 0 .

Hence x ∈ S in. Therefore, by Corollary 4.10 we have val(S) ⊂ val(Sout) ⊂ S ⊂ val(S in) ⊂
val(S), which implies that val(S) = S.
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x1

x2

Figure 4.1: A tropical Metzler spectrahedron.

Example 4.15. If A(1), . . . , A(p) are matrices, then tdiag(A(1), . . . , A(p)) refers to the block di-
agonal matrix with blocks A(s) on the diagonal and all other entries equal to −∞. Let
Q(0), Q(1), Q(2) ∈ T9×9

± be symmetric tropical Metzler matrices defined as follows:

Q(0) := tdiag
(
8,⊖1,⊖1,

[
−∞ ⊖3
⊖3 −∞

]
,

[
2 −∞

−∞ 8

]
,

[
3 −∞

−∞ 9

])
,

Q(1) := tdiag
(
⊖0, 0,−∞,

[
0 −∞

−∞ −2

]
,

[
−∞ ⊖0
⊖0 −∞

]
,

[
0 −∞

−∞ 4

])
,

Q(2) := tdiag
(
⊖0,−∞, 0,

[
−1 −∞
−∞ −1

]
,

[
0 −∞

−∞ 4

]
,

[
−∞ ⊖0
⊖0 −∞

])
.

The tropical Metzler spectrahedron S(Q(0)|Q(1), Q(2)) is depicted in Fig. 4.1.
We now focus on the main problem of characterizing the image by the valuation of a spec-

trahedron defined by Metzler matrices. Our goal is to show that any spectrahedral cone
S := {x ∈ Kn

⩾0 : Q(x) ≽ 0} verifying sval(Q(k)) = Q(k) is mapped to the tropical Metzler
spectrahedral cone S, provided that some assumptions related to the genericity of the matrices
Q(k) and the regularity of the set S hold. We start by giving a family of inner approximations
of the set val(S).

Definition 4.16. For any λ ∈ R we denote by Sλ the set of all points x ∈ Tn verifying
• for all i ∈ [m], Q+

ii (x) ⩾ λ⊙Q−
ii (x);

• for all i, j ∈ [m], i < j, Q+
ii (x) ⊙Q+

jj(x) ⩾ (λ⊙Qij(x))⊙2.
Observe that we have S0 = S. Furthermore, we denote T =

∪
λ>0 Sλ ⊂ Tn. We use the

notation Sλ(Q(1), . . . , Q(n)) and T (Q(1), . . . , Q(n)) when we want to emphasize the dependence
on Q(1), . . . , Q(n).

Lemma 4.17. Let S = {x ∈ Kn
⩾0 : Q(x) ≽ 0} be any spectrahedral cone such that sval(Q(k)) =

Q(k). If x ∈ Sλ for some λ > 0 and x ∈ val−1(x) ∩ Kn
⩾0 is any lift of x, then x ∈ S in.

Furthermore, we have clT(T ) ⊂ val(S in).

Proof. Fix any x ∈ Sλ and take any lift x ∈ val−1(x)∩Kn
⩾0. Let A := sval(Q(x)). For any i such

that Q−
ii is nonzero we have val(Q+

ii (x)) = Q+
ii (x) ⩾ λ⊙Q−

ii (x) = λ⊙val(Q−
ii (x)) > val(Q−

ii (x)).
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Therefore Aii = sval(Qii(x)) = Q+
ii (x) ∈ T+ ∪ {−∞} for all i (even if Q−

ii is zero). Furthermore,
we have Aij = Qij(x) for any i < j. Therefore, for any i < j such that Aij ̸= −∞, we have
Aii ⊙Ajj = Q+

ii (x) ⊙Q+
jj(x) ⩾ (λ⊙Qij(x))⊙2 = (λ⊙Aij)⊙2 > A⊙2

ij . Hence, by Corollary 4.11,
we have x ∈ S in. Moreover, this shows that Sλ ⊂ val(S in) for all λ > 0. Hence T ⊂ val(S in).
Since the set S in is a closed subset Kn

⩾0, val(S in) is a closed subset of Tn by Theorem 3.1.
Therefore clT(T ) ⊂ val(S in).

We prove a result describing, under genericity assumption, the tropicalization of the spec-
trahedral cone restricted to the open positive orthant Kn

>0.

Assumption A. We suppose that for every matrix Q(k) and every pair i ̸= j such that Q(k)
ii

and Q
(k)
jj belong to T+ the inequality Q(k)

ii +Q
(k)
jj ̸= 2|Q(k)

ij | holds.

We point out that Assumption A can be interpreted in terms of the nonsingularity of some
(tropical) minors of order 2 of the matrices Q(k).
Remark 4.18. Note that every tropical Metzler spectrahedral cone can be described by matrices
that satisfy Assumption A. Indeed, if we take matrices Q(1), . . . , Q(n) such that Q(k)

ii + Q
(k)
jj =

2|Q(k)
ij |, then we can replace the entry Q

(k)
ij by −∞ and this does not change the associated

tropical Metzler spectrahedral cone.

Theorem 4.19. Let S = {x ∈ Kn
⩾0 : Q(x) ≽ 0} be a spectrahedral cone described by Metzler

matrices Q(1), . . . , Q(n) such that sval(Q(k)) = Q(k). Suppose that Assumption A holds and
that the set S(Q(1), . . . , Q(n)) ∩ Rn is regular. Then

val(S ∩ Kn
>0) = S(Q(1), . . . , Q(n)) ∩ Rn .

Proof. Let T be defined as in Lemma 4.17. The same arguments as in the proof of Proposi-
tion 4.14 show that val(Sout) ⊂ S. Therefore val(Sout ∩Kn

>0) ⊂ S ∩Rn. Then, by Corollary 4.10
and Lemma 4.17, it is enough to show that clR(T ∩ Rn) = S ∩ Rn. Observe that for all λ ∈ R,
the inequalities defining Sλ such that Q−

ij (where i ⩽ j) is the zero tropical polynomial are
trivially satisfied. Therefore, Sλ can be expressed as the set of points x ∈ Tn verifying:

• for all i ∈ [m] such that Q−
ii is nonzero, Q+

ii (x) ⩾ λ⊙Q−
ii (x);

• for all i, j ∈ [m], i < j, such that Qij (or, equivalently, Q−
ij) is nonzero, Q+

ii (x) ⊙Q+
jj(x) ⩾

(λ⊙Qij(x))⊙2.
This implies that T ∩ Rn is the set of points x ∈ Rn satisfying:

• for all i ∈ [m] such that Q−
ii is nonzero, Q+

ii (x) > Q−
ii (x);

• for all i, j ∈ [m], i < j, such that Qij (or, equivalently, Q−
ij) is nonzero, Q+

ii (x) ⊙Q+
jj(x) >

(Qij(x))⊙2.
We denote by Ξ the set of (i, j) ∈ [m] × [m] such that i ⩽ j and Q−

ij is nonzero. Since S ∩ Rn

is supposed to be regular, we propose to use Lemma 2.59, and thus, to exhibit nonzero tropical
polynomials Pij such that

S ∩ Rn = {x ∈ Rn : ∀(i, j) ∈ Ξ,P+
ij (x) ⩾ P−

ij (x)} , (4.4)
and

T ∩ Rn = {x ∈ Rn : ∀(i, j) ∈ Ξ,P+
ij (x) > P−

ij (x)} . (4.5)

In other words, we want to express the inequalities of the form Q+
ii (x) > Q−

ii (x) and Q+
ii (x) ⊙

Q+
jj(x) > (Qij(x))⊙2 as tropical polynomial inequalities in which no term appears both on
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the left- and on the right-hand side. The inequalities of the first kind already satisfy this
condition, and it suffices to set Pii := Qii for all i ∈ [m] such that (i, i) ∈ Ξ. In contrast,
we have to transform the inequalities of the second kind into equivalent contraints of the form
P+

ij (x) > P−
ij (x), where (i, j) ∈ Ξ and i < j. To this end, we use Assumption A. First, observe

that the functions (Qij(x))⊙2 and
⊕

k(Q(k)
ij ⊙ xk)⊙2 are equal. Therefore, we can replace the

inequalities Q+
ii (x) ⊙Q+

jj(x) > (Qij(x))⊙2 by Q+
ii (x) ⊙Q+

jj(x) >
⊕

k(Q(k)
ij ⊙ xk)⊙2. Now, we can

define a formal subtraction of these tropical expressions. More precisely, for every (i, j) ∈ Ξ
such that i < j, we define

Pij :=
( ⊕

k ̸=l

Q
(k)
ii , Q

(l)
jj ∈T+

(Q(k)
ii ⊙Q

(l)
jj ) ⊙ (Xk ⊙Xl)

)
⊕
( ⊕

Q
(k)
ii , Q

(k)
jj ∈T+

or |Q(k)
ij |̸=−∞

αk ⊙X⊙2
k

)
,

where αk is given by:

αk :=

Q
(k)
ii ⊙Q

(k)
jj if Q(k)

ii , Q
(k)
jj ∈ T+ and Q(k)

ii +Q
(k)
jj > 2|Q(k)

ij | ,
⊖(Q(k)

ij )⊙2 otherwise.

Recall that any inequality of the form max(x, α+y) > max(x′, β+y) is equivalent to max(x, α+
y) > x′ if α > β, and to x > max(x′, β + y) if β > α. Therefore, Assumption A ensures that
P+

ij (x) > P−
ij (x) is equivalent to Q+

ii (x) ⊙Q+
jj(x) >

⊕
k(Q(k)

ij ⊙ xk)⊙2. The same applies to the
nonstrict counterparts of these inequalities. We conclude that (4.4) and (4.5) are satisfied.

Theorem 4.20. Let S = {x ∈ Kn
⩾0 : Q(x) ≽ 0} be a spectrahedral cone described by Metzler

matrices Q(1), . . . , Q(n) such that sval(Q(k)) = Q(k). Suppose that Assumption A is fulfilled
and that every stratum of the set S(Q(1), . . . , Q(n)) is regular. Then

val(S) = S(Q(1), . . . , Q(n)) .

Proof. It it clear that val(S) and S(Q(1), . . . , Q(n)) contain the point −∞. Fix a nonempty
subset K ⊂ [n]. Observe that the stratum of val(S) associated with K is equal to val(S(K) ∩
KK

>0), where S(K) is the spectrahedral cone described by (Q(k))k∈K . Similarly, the stratum of S
associated with K is equal to S(K) ∩RK , where S(K) denotes the tropical Metzler spectrahedral
cone described by (Q(k))k∈K . Therefore, we obtain the claim by applying Theorem 4.19 to every
stratum.

4.2 Non-Metzler spectrahedra

In this section, we abandon the Metzler assumption that was imposed in the previous section.
Let Q(1), . . . , Q(n) ∈ Tm×m

± be symmetric tropical matrices.

Definition 4.21. We introduce the set S(Q(1), . . . , Q(n)) (or simply S) of points x ∈ Tn that
fulfill the following two conditions:

• for all i ∈ [m], Q+
ii (x) ⩾ Q−

ii (x);
• for all i, j ∈ [m], i < j, we have Q+

ii (x)⊙Q+
jj(x) ⩾ (Q+

ij(x)⊕Q−
ij(x))⊙2 or Q+

ij(x) = Q−
ij(x).
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If n ⩾ 2, then we denote by S(Q(1)|Q(2), . . . , Q(n)) the set of all points x ∈ Tn−1 such that
(0, x) ∈ S(Q(1), . . . , Q(n)). We point out that this generalizes Definition 4.13 to the case of
non-Metzler matrices.

We point out that we do not claim that the set S defined above is a tropical spectrahedron.
In this work we only show that this is true under some additional assumptions (which are
generically fulfilled as shown in Section 4.3). Let Q(1), . . . ,Q(n) ∈ Km×m be any symmetric
matrices such that sval(Q(k)) = Q(k), and S := {x ∈ Kn

⩾0 : Q(x) ≽ 0} be the associated
spectrahedral cone. The next lemma shows that the objects given in Definition 4.21 satisfy the
basic inclusion val(Sout) ⊂ S.

Lemma 4.22. We have the inclusion val(Sout) ⊂ S.

Proof. Take a point x ∈ Sout and denote x := val(x). For every i ∈ [m] we have Qii(x) ⩾ 0
and hence Q+

ii (x) = val(Q+
ii (x)) ⩾ val(Q−

ii (x)) = Q−
ii (x). Furthermore, for every i < j such that

val(Q+
ij(x)) ̸= val(Q−

ij(x)), we have val(Qij(x)) = Q+
ij(x) ⊕Q−

ij(x) and hence Q+
ii (x) ⊙Q+

jj(x) ⩾
val(Qii(x)) + val(Qjj(x)) ⩾ val(Qij(x)2) = (Q+

ij(x) ⊕Q−
ij(x))⊙2. On the other hand, for every

i < j such that val(Q+
ij(x)) = val(Q−

ij(x)) we have Q+
ii (x) = Q−

jj(x). In particular, x ∈ S.

To continue, we need some notation. For every subset

Σ ⊂ {(i, j) ∈ [m]2 : i < j}

we denote
Σ∁ := {(i, j) ∈ [m]2 : i < j, (i, j) /∈ Σ} .

Definition 4.23. For every Σ and every ♢ ∈ {⩽,⩾}Σ∁ we define SΣ,♢(Q(1), . . . , Q(n)) (or SΣ,♢
for short) as the set of all x ∈ Tn such that

• for all i ∈ [m], Q+
ii (x) ⩾ Q−

ii (x);
• for all i, j ∈ [m], i < j, (i, j) ∈ Σ, Q+

ii (x) ⊙Q+
jj(x) ⩾ (Q+

ij(x) ⊕Q−
ij(x))⊙2;

• for all i, j ∈ [m], i < j, (i, j) ∈ Σ∁, Q+
ij(x) ♢(i,j) Q

−
ij(x).

(With the convention that if Σ∁ = ∅, then we put ♢ = ∅ and denote the corresponding set as
SΣ,∅.)

Lemma 4.24. Every set SΣ,♢ is a tropical Metzler spectrahedral cone. More precisely, it is
described by the block diagonal matrices Q(1)

Σ,♢, . . . , Q
(n)
Σ,♢ of the form

Q
(k)
Σ,♢ :=

[
P (k) −∞
−∞ R(k)

]
, (4.6)

where P (k) ∈ Tm×m
± is the symmetric matrix defined by

P
(k)
ij :=


Q

(k)
ii if i = j ,

⊖|Q(k)
ij | if (i, j) ∈ Σ ,

−∞ if (i, j) ∈ Σ∁ .

and R(k) ∈ TΣ∁×Σ∁
± is the (tropical) diagonal matrix consisting of the coefficients Q(k)

ij if ♢(i,j)

is equal to ⩾ and ⊖Q(k)
ij otherwise, where (i, j) ranges over the set Σ∁. Furthermore, we have

the equality
S =

∪
Σ

∩
♢

SΣ,♢ , (4.7)



70 Chapter 4. Tropical spectrahedra

where the intersection goes over every ♢ ∈ {⩽,⩾}Σ∁ and the union goes over every Σ ⊂ {(i, j) ∈
[m]2 : i < j}. (As previously, if Σ∁ = ∅, then the intersection contains one element SΣ,∅.)

Proof. Obvious from Definitions 4.13 and 4.23.

In the sequel, we will use the following observation, which already appeared in the proof of
[ABGJ15, Corollary 3.6] on the tropicalization of polyhedra. We denote by conv(X) the convex
hull of the set X ⊂ Kn.

Lemma 4.25 ([ABGJ15]). Let a(1), . . . ,a(p) ∈ Kn and b ∈ Kp. Suppose that for every sign
pattern δ ∈ {+1,−1}p there is a point xδ ∈ Kn such that for all s ∈ [p] we have δs(⟨a(s),xδ⟩ −
bs) ⩾ 0. Then, there exists a point y ∈ convδ{xδ} such that for all s we have ⟨a(s),y⟩ = bs.

Proof. If p = 1, then we have two points x(1) and x(2) such that ⟨a(1),x(1)⟩ ⩾ b1 and
⟨a(1),x(2)⟩ ⩽ b1. Therefore, there exists λ such that 0 ⩽ λ ⩽ 1 and ⟨a(1),λx(1) +(1−λ)x(2)⟩ =
b1. This completes the proof for p = 1.

Suppose that the claim is true for p. We will prove it for p+ 1. Take

∆+ := {δ ∈ {+1,−1}p+1 : last entry of δ is equal to +1}

and
∆− := {δ ∈ {+1,−1}p+1 : last entry of δ is equal to −1} .

By the induction hypothesis, there exists a point x(1) ∈ convδ∈∆+{xδ} such that ⟨a(s),x(1)⟩ = bs

for all s ⩽ p. Moreover, we have ⟨a(p+1),xδ⟩ ⩾ bp+1 for all δ ∈ ∆+ and therefore ⟨a(p+1),x(1)⟩ ⩾
bp+1. Analogously, there exists a point x(2) ∈ convδ∈∆−{xδ} such that ⟨a(s),x(2)⟩ = bs for all
s ⩽ p and ⟨a(p+1),x(2)⟩ ⩽ bp+1. Therefore, there is a point y ∈ conv{x(1),x(2)} ⊂ convδ{xδ}
such that ⟨a(p+1),y⟩ = bp+1. Furthermore, since ⟨a(s),x(1)⟩ = ⟨a(s),x(2)⟩ = bs for all s ⩽ p, we
have ⟨a(s),y⟩ = bs for all s ⩽ p.

In Lemma 4.17 we showed that the set T (Q(1), . . . , Q(n)) is included in a tropical spec-
trahedron val(S) if the matrices Q(1), . . . ,Q(n) are Metzler. The following result generalizes
Lemma 4.17 to the non-Metzler case.

Lemma 4.26. For every {Σ,♢}, we denote TΣ,♢ := T (Q(1)
Σ,♢, . . . , Q

(n)
Σ,♢) ⊂ Tn, where the ma-

trices Q(k)
Σ,♢ are as in (4.6). Then, we have the inclusion∪

Σ

∩
♢

clT
(
TΣ,♢

)
⊂ val(S in) .

Proof. Fix any Σ and take x ∈
∩

♢ clT
(
TΣ,♢

)
. By Lemma 4.17, for every ♢ ∈ {⩽,⩾}Σ∁ there

exists a lift x♢ ∈ Kn
⩾0 ∩ val−1(x) such that we have the inequalities

∀i,Qii(x♢) ⩾ 0 ,
∀(i, j) ∈ Σ,Qii(x♢)Qjj(x♢) ⩾ (m− 1)2(Q+

ij(x♢) + Q−
ij(x♢))2 ,

∀(i, j) ∈ Σ∁,Qij(x♢) ♢(i,j) 0 .

Furthermore, we have (Q+
ij(x♢) + Q−

ij(x♢))2 ⩾ (Qij(x♢))2. Observe that the set

{y ∈ Kn
⩾0 : ∀i,Qii(y) ⩾ 0 ∧ ∀(i, j) ∈ Σ,Qii(y)Qjj(y) ⩾ (m− 1)2(Qij(y))2}
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is convex. Indeed, it is a spectrahedron defined by some block diagonal matrices with blocks of
size at most 2. Therefore, by Lemma 4.25, there exists a point z ∈ conv♢{x♢} such that

∀i,Qii(z) ⩾ 0 ,
∀(i, j) ∈ Σ,Qii(z)Qjj(z) ⩾ (m− 1)2(Qij(z))2 ,

∀(i, j) ∈ Σ∁,Qij(z) = 0 .

In particular, we have Qii(z)Qjj(z) ⩾ (m−1)2(Qij(z))2 for all (i, j) such that i ̸= j. Therefore
z ∈ S in. Moreover, since x♢ ∈ Kn

>0 ∩ val−1(x) for all ♢, we have z ∈ Kn
>0 ∩ val−1(x).

Lemma 4.27. If the matrices Q(1), . . . , Q(n) satisfy Assumption A, then the same is true for
the matrices Q(1)

Σ,♢, . . . , Q
(n)
Σ,♢ (where {Σ,♢} are arbitrary).

Proof. This is clear from the definition of matrices Q(1)
Σ,♢, . . . , Q

(n)
Σ,♢ given in (4.6).

Theorem 4.28. Let S = {x ∈ Kn
⩾0 : Q(x) ≽ 0} be a spectrahedral cone described by matrices

Q(1), . . . ,Q(n) such that sval(Q(k)) = Q(k). Suppose that Assumption A is fulfilled and that
every stratum of the set SΣ,♢(Q(1), . . . , Q(n)) is regular for every choice of (Σ,♢). Then

val(S) = S(Q(1), . . . , Q(n)) .

Proof. We focus on the proof of the identity val(S ∩ Kn
>0) = S(Q(1), . . . , Q(n)) ∩ Rn, as the

generalization to all strata can be obtained analogously to the proof of Theorem 4.20. Let
(Σ,♢) be fixed. Since the matrices Q(1)

Σ,♢, . . . , Q
(n)
Σ,♢ fulfill Assumption A by Lemma 4.27, the

proof of Theorem 4.19 shows the equality clR(TΣ,♢ ∩ Rn) = SΣ,♢ ∩ Rn. Therefore, by (4.7)
and Lemmas 4.22 and 4.26 we have(

val(Sout) ∩ Rn) ⊂
(
S ∩ Rn) =

∪
Σ

∩
♢

(
SΣ,♢ ∩ Rn) =

∪
Σ

∩
♢

clR
(
TΣ,♢ ∩ Rn) ⊂ val(S in ∩ Kn

>0) .

Hence val(S ∩ Kn
>0) = S ∩ Rn.

Remark 4.29. We note that if the hypotheses of Theorem 4.28 are fulfilled, then (by Lemma 4.7)
the set S(Q(1)|Q(2), . . . , Q(n)) is a tropicalization of the spectrahedron S̃ := {x ∈ Kn−1

⩾0 : Q(1) +
x2Q

(2) + · · · + xnQ
(n) ≽ 0}, val(S̃) = S(Q(1)|Q(2), . . . , Q(n)).

We finish this section with some examples.
Example 4.30. Take the matrices

Q(0) :=
[
a −∞

−∞ b

]
, Q(1) :=

[
−∞ c
c −∞

]
, Q(2) :=

[
−∞ ⊖d
⊖d −∞

]
,

where a, b, c, d ∈ R. The set S(Q(0), Q(1), Q(2)) fulfills the conditions of Theorem 4.28. Moreover,
it is the set of all points (x0, x1, x2) ∈ T3 such that

a+ b

2
+ x0 ⩾ max{c+ x1, d+ x2} or c+ x1 = d+ x2 .

The tropical spectrahedron S(Q(0)|Q(1), Q(2)) is depicted in Fig. 4.2. Note that the real part of
this tropical spectrahedron is not regular for any choice of a, b, c, d ∈ R.
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x1

x2

Figure 4.2: A nonregular tropical spectrahedron that fulfills the regularity conditions of Theo-
rem 4.28.

Example 4.31. In [Yu15], Yu characterized the image by the valuation of the positive semidefinite
cone. Let us show how this result can be derived from Theorem 4.28. Let m′ := m(m + 1)/2
and let S ⊂ Km′×m′ be the cone of positive semidefinite matrices. We will compute the image
by valuation of S orthant-by-orthant. As in the proof of Lemma 3.11, for every δ ∈ {+1,−1}m′ ,
we denote by fδ : Km′ → Km′ the involution which maps x ∈ Km′ to the vector with entries
δijxij . We want to characterize val(S ∩ fδ(Km′

⩾0)). Note that we can restrict ourselves to the
orthants such that δii = 1 for all i ∈ [m] (because every point in S fulfills the inequalities
xii ⩾ 0 for all i ∈ [m]). Moreover, we have val(S ∩ fδ(Km′

⩾0)) = val
(
fδ(S ∩ fδ(Km′

⩾0))
)

and the
set fδ(S ∩ fδ(Km′

⩾0)) is included in Km′
⩾0. More precisely, the set Sδ := fδ(S ∩ fδ(Km′

⩾0)) is a
spectrahedral cone defined as the set of all points x ∈ Km′×m′

⩾0 such that the linear pencil

Qδ(x) :=


x11 δ12x12 . . . δ1mx1m

δ12x12 x22 . . . δ2mx2m
...

... . . . ...
δ1mx1m δ2mx2m . . . xmm


is positive semidefinite. Let Q(ij) ∈ Km×m denote the matrix that has δij on the (i, j)th
and (j, i)th positions and zeros otherwise (we allow i = j). Let Q(ij) := sval(Q(ij)). It is
clear that the matrices (Q(ij))i⩽j satisfy Assumption A. Moreover, for every {Σ,♢}, the set
SΣ,♢ := SΣ,♢

(
(Q(ij))i⩽j

)
is given by

SΣ,♢ = {x ∈ Tm′×m′ : ∀(i, j) ∈ Σ, xii ⊙ xjj ⩾ x⊙2
ij ∧ ∀(i, j) ∈ Σ̃, xij = −∞} ,

where the set Σ̃ consists of the elements of Σ∁ such that ♢ij is equal to ⩽ and δij = 1 or ♢ij

is equal to ⩾ and δij = −1. This set has regular strata. Indeed, let K ⊂ [m′] be a nonempty
set, and let SΣ,♢,K denote the stratum of SΣ,♢ associated with K. If SΣ,♢,K is nonempty, then
Σ̃ ∩K = ∅. Furthermore, for every (i, j) ∈ Σ ∩K we have {(i, i), (j, j)} ⊂ K. In particular, the
set SΣ,♢,K is given by

SΣ,♢,K = {x ∈ RK : ∀(i, j) ∈ Σ ∩K,xii ⊙ xjj ⩾ x⊙2
ij } .

If we take any x ∈ SΣ,♢,K , then for every ε > 0, the point x(ε) defined as x(ε)
ii := x

(ε)
ii + ε for

all (i, i) ∈ K and x
(ε)
ij = xij for all (i, j) ∈ K, i < j, belongs to the interior of SΣ,♢,K . Hence



4.2. Non-Metzler spectrahedra 73

x ∈ clR(int(SΣ,♢,K)). Therefore, by Theorem 4.28, we obtain the equality val(Sδ) = S, where
the set S ⊂ Tm′×m′ is given by

S = {x ∈ Tm′×m′ : ∀i < j, xii ⊙ xjj ⩾ x⊙2
ij } .

This set does not depend on δ. Therefore, by taking the union over δ, we get val(S) = S.
Example 4.32. In Definition 4.13 we introduced the class of tropical Metzler spectrahedral
cones, and we have shown that these objects are, indeed, tropical spectrahedra. One can ask
if the valuation of every spectrahedral cone is in fact a tropical Metzler spectrahedral cone.
This is, however, not true. The following example shows a spectrahedral cone that fulfills the
conditions of Theorem 4.28 but whose image by valuation cannot be expressed as a tropical
Metzler spectrahedral cone. Take the matrices

Q(1) :=
[
1 0
0 0

]
, Q(2) :=

[
0 0
0 1

]
, Q(3) :=

[
0 1
1 0

]
, Q(4) :=

[
0 −1

−1 0

]
.

The associated spectrahedron is given by S := {x ∈ K4
⩾0 : x1x2 ⩾ (x3 − x4)2} and the set

S := S(sval(Q(1)), . . . , sval(Q(4))) is equal to S = {x ∈ T4 : x1 +x2 ⩾ 2 max(x3, x4) or x3 = x4}.
It is easy to check that S satisfies the conditions of Theorem 4.28. One can also verify by hand
that val(S) = S. Suppose that S is a tropical Metzler spectrahedral cone, S = S(Q(1), . . . , Q(4))
for some symmetric tropical Metzler matrices Q(1), . . . , Q(4) ∈ Tm×m. As noted in Remark 4.18,
we may suppose that Q(1), . . . , Q(4) satisfy Assumption A. Let u = (5,−3,−2, 1) ∈ R4 and
observe that the half-line {λu : λ ∈ R⩾0} is included in the boundary of S. Therefore, for every
λ, at least one of the nontrivial inequalities that describe S becomes an equality when evaluated
at λu.

First, suppose that Q+
ii (λsu) = Q−

ii (λsu) for some i and a sequence λs > 0, λs → 0. Consider
the function f : R → R defined as f(λ) := Q+

ii (λu) − Q−
ii (λu). The function f is continuous

and piecewise affine. Therefore, f(λ) = 0 on some interval λ ∈ [0, ε]. We can suppose that
ε is so small that the functions Q+

ii (λu), Q−
ii (λu) are affine on [0, ε]. In other words, we have

Q+
ii (λu) = a+ λuk and Q−

ii (λu) = b+ λul for some a, b ∈ R and k ̸= l. Since f(λ) is equal to 0
on [0, ε], we have a = b and uk = ul, which gives a contradiction with our choice of u.

Second, suppose that Q+
ii (λsu) ⊙ Q+

jj(λsu) = (Qij(λsu))⊙2 for some i, j and a sequence
λs > 0, λs → 0. As previously, the function f(λ) := Q+

ii (λu) ⊙ Q+
jj(λu) − (Qij(λu))⊙2 is

continuous and piecewise affine, there is ε > 0 such that f(λ) = 0 on [0, ε], and all the functions
Q+

ii (λu), Q+
jj(λu), (Qij(λu))⊙2 are affine on [0, ε], Q+

ii (λu) = a + λuk, Q+
jj(λu) = b + λul,

(Qij(λu))⊙2 = 2c+2λup. Since f(λ) is equal to 0 on [0, ε], we have a+b = 2c and uk +ul = 2up.
Thanks to our choice of vector u, this is possible only if k = l = p or (k, l, p) ∈ {(1, 2, 4), (2, 1, 4)}.
The first case does not occur because the matrices Q(1), . . . , Q(4) satisfy Assumption A (and we
have a = Q

(k)
ii , b = Q

(l)
jj , c = |Q(p)

ij |). Suppose that (k, l, p) = (1, 2, 4) (the case (k, l, p) = (2, 1, 4)
is analogous). Since Q+

jj(λu) = b+λu2 on [0, ε], the second vector of the standard basis ϵ2 ∈ R4

belongs to Argmax(Q+
jj , 0). We claim that ϵ2 is the only element of Argmax(Q+

jj , 0). Indeed,
suppose that ϵl′ ∈ Argmax(Q+

jj , 0) for some l′ ̸= 2. Then, we have Q(l′)
jj = b. On the other

hand, by our choice of u, we have Q(l′)
ij + λul′ > b − 3λ = b + λu2 for λ ∈ ]0, ε], which gives

a contradiction with the fact that Q+
jj(λu) = b + λu2. Hence Argmax(Q+

jj , 0) = {ϵ2}. Denote
v = (0,−1, 0, 0). By continuity, for sufficiently small ε′ > 0 we have Argmax(Q+

jj , ε
′v) = {ϵ2}.

Therefore Q+
jj(ε′v) = b − ε′. Moreover, by the choice of v, we have Q+

ii (ε′v) ⩽ Q+
ii (0) = a and
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Qij(ε′v) ⩾ 2c. Therefore (Qij(ε′v))⊙2 ⩾ 2c > a + b − ε′ ⩾ Q+
ii (ε′v) ⊙ Q+

jj(ε′v), which gives a
contradiction with the fact that ε′v ∈ S.

4.3 Genericity conditions

In this section we show that the requirements of Theorems 4.19 and 4.28 on the matrices Q(k)

and the regularity of sets are fulfilled generically. In [ABGJ15] it was shown that genericity
conditions for tropical polyhedra can be described by the means of tangent digraphs. We extend
this characterization to tropical spectrahedra. For this purpose, we work with hypergraphs
instead of graphs.

Definition 4.33. A (directed) hypergraph is a pair G⃗ := (V,E), where V is a finite set of vertices
and E is a finite set of (hyper)edges. Every edge e ∈ E is a pair (Te, he), where he ∈ V is called
the head of the edge, and Te is a multiset with elements taken from V . We call Te the multiset
of tails of e. By |Te| we denote the cardinality of Te (counting multiplicities). We do not exclude
the situation in which a head is also a tail, i.e., it is possible that he ∈ Te. If v ∈ V is a vertex
of G⃗, then by In(v) ⊂ E we denote the set of incoming edges, i.e., the set of all edges e such
that he = v. By Out(v) we denote the multiset of outgoing edges, i.e., a multiset of edges e such
that v ∈ Te. We treat Out(v) as a multiset, with the convention that e ∈ E appears p times in
Out(v) if v appears p times in Te.

Let us now define the notion of a circulation in a hypergraph.

Definition 4.34. A circulation in a hypergraph is a vector γ = (γe)e∈E such that γe ⩾ 0 for
all e ∈ E,

∑
e∈E γe = 1, and for all v ∈ V we have the equality∑

e∈In(v)
|Te|γe =

∑
e∈Out(v)

γe .

Observe that if a hypergraph G⃗ is fixed, then the set of all normalized circulations on G⃗ forms a
polyhedron. We say that a hypergraph does not admit a circulation if this polyhedron is empty.

In this section, we only consider hypergraphs such that every edge has at most two tails
(counting multiplicities). Hereafter, ϵk denotes the kth vector of the standard basis in Rn.

Definition 4.35. Given a sequence of tropical symmetric Metzler matrices Q(1), . . . , Q(n) ∈
Tm×m

± and a point x ∈ Rn, we construct a hypergraph associated with x, denoted G⃗x, as
follows:

• we put V := [n];
• for every i ∈ [m] verifying Q+

ii (x) = Q−
ii (x) ̸= −∞, and every pair ϵk ∈ Argmax(Q+

ii , x),
ϵl ∈ Argmax(Q−

ii , x), the hypergraph G⃗x contains an edge (k, l);
• for every i < j such that Q+

ii (x) ⊙ Q+
jj(x) = (Qij(x))⊙2 ̸= −∞ and every triple ϵk1 ∈

Argmax(Q+
ii , x), ϵk2 ∈ Argmax(Q+

jj , x), ϵl ∈ Argmax(Qij , x), the hypergraph G⃗x contains
an edge ({k1, k2}, l).

The next lemma shows that the regularity assumptions given in Theorem 4.19 are automat-
ically satisfied if the hypergraphs constructed in Definition 4.35 do not admit a circulation. The
proof uses Farkas’ lemma.
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Theorem 4.36 (Farkas’ lemma, [Sch87, Corollary 7.1d]). The polyhedron W = {x ∈ Rn
⩾0 : ∀i ∈

[p], ⟨ai, x⟩ = bi} is empty if and only if there exists a vector y ∈ Rp such that
∑p

i=1 biyi < 0 and∑p
i=1 aikyi ⩾ 0 for all k ∈ [n].

Lemma 4.37. Suppose that for every x ∈ Rn the hypergraph G⃗x does not admit a circulation.
Then, the matrices Q(1), . . . , Q(n) fulfill Assumption A and S(Q(1), . . . , Q(n)) ∩ Rn is regular.

Proof. To prove the first part, suppose that we have Q(k)
ii + Q

(k)
jj = 2|Q(k)

ij | for some i ̸= j and
Q

(k)
ii , Q

(k)
jj ∈ T+. Take the point x := Nϵk ∈ Rn. If N is large enough, then we have

Q+
ii (x) ⊙Q+

jj(x) = Q
(k)
ii +Q

(k)
jj + 2N = 2|Q(k)

ij | + 2N = (Qij(x))⊙2

and the hypergraph G⃗x contains the edge ({k, k}, k). This hypergraph admits a circulation (we
put γe := 1 for e = ({k, k}, k) and γe := 0 for other edges), which gives a contradiction.

We now claim that the set S ∩ Rn is regular. Let T be defined as in Definition 4.16. Let
us show that for every x ∈ S ∩ Rn there exists a vector η ∈ Rn such that x + ρη belongs to
T for ρ > 0 small enough. This is sufficient to prove the claim because T ∩ Rn is a subset of
the interior of S ∩ Rn (as shown in the proof of Theorem 4.19). Fix a point x ∈ S ∩ Rn. If
x belongs to T , then we can take η := 0. Otherwise, let G⃗x denote the hypergraph associated
with x. The polytope of circulations of this hypergraph is empty. Therefore, by Farkas’ lemma
(Theorem 4.36), there exists a vector η ∈ Rn such that for every edge e ∈ E we have∑

v∈Te

ηv > |Te|ηhe .

Take the vector x(ρ) := x+ ρη. Let us look at two cases.
First, suppose that there is i ∈ [m] such that Q+

ii (x) = Q−
ii (x) ̸= −∞. Fix any k∗ such that

ϵk∗ ∈ Argmax(Q+
ii , x) and take any l such that ϵl ∈ Argmax(Q−

ii , x). Then (k∗, l) is an edge in
G⃗x. Therefore ηk∗ > ηl. Moreover, Q(k∗)

ii +xk∗ = |Q(l)
ii |+xl and hence Q(k∗)

ii +x(ρ)
k∗ > |Q(l)

ii |+x
(ρ)
l .

Furthermore, for every l′ /∈ Argmax(Q−
ii , x) we have

Q
(k∗)
ii + xk∗ = |Q(l)

ii | + xl > |Q(l′)
ii | + xl′ .

Therefore Q(k∗)
ii + x

(ρ)
k∗ > |Q(l′)

ii | + x
(ρ)
l′ for ρ small enough. Since l, l′ were arbitrary, for every

sufficiently small ρ we have

Q+
ii (x

(ρ)) ⩾ Q
(k∗)
ii + x

(ρ)
k∗ > Q−

ii (x
(ρ)) .

The second case is analogous. If there is i < j such that Q+
ii (x)⊙Q+

jj(x) = (Qij(x))⊙2 ̸= −∞,
then we fix (k∗

1, k
∗
2) such that ϵk∗

1
∈ Argmax(Q+

ii , x), ϵk∗
2

∈ Argmax(Q+
jj , x). For every ϵl ∈

Argmax(Qij , x), ({k∗
1, k

∗
2}, l) is an edge in G⃗. Hence ηk∗

1
+ ηk∗

2
> 2ηl. Therefore Q(k∗

1)
ii +Q

(k∗
2)

jj +
x

(ρ)
k∗

1
+ x

(ρ)
k∗

2
> 2|Q(l)

ij | + 2x(ρ)
l . As before, this implies that Q+

ii (x(ρ)) ⊙ Q+
jj(x(ρ)) > (Qij(x(ρ)))⊙2

for ρ > 0 small enough. Since we supposed that x ∈ S ∩ Rn, we have x(ρ) ∈ T for ρ small
enough.
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1

2

0

Figure 4.3: The hypergraph from Example 4.38, consisting of the edges (0, 1), (0, 2), and
({1, 2}, 0).

Example 4.38. Take the matrices

Q(0) := tdiag
(
0, 0,

[
−1 0
0 −1

])
,

Q(1) := tdiag
(
⊖0,−∞, 0,−∞

)
,

Q(2) := tdiag
(
−∞,⊖0,−∞, 0

)
.

In this case, the set S(Q(0), Q(1), Q(2)) ∩ R3 = {(λ, λ, λ) : λ ∈ R} is reduced to a line. In
particular, it is not regular. The hypergraph associated with (0, 0, 0) is depicted in Fig. 4.3.
This hypergraph admits a circulation (we put γe := 1/3 for all edges).

We now want to show that the condition of Lemma 4.37 is fulfilled generically.

Lemma 4.39. There exists a set X ⊂ Td with d = nm(m+ 1)/2 that fulfills the following two
conditions. First, every stratum of X is a finite union of hyperplanes. Second, if Q(1), . . . , Q(n)

is any sequence of symmetric tropical Metzler matrices such that the vector with entries |Q(k)
ij |

(for i ⩽ j) does not belong to X, then the hypergraph G⃗x does not admit a circulation for any
x ∈ Rn.

Proof. Fix a nonempty subset D ⊂ [d], |D| = d′ and let Rd′ be the stratum of Td associated
with D. Suppose that Q(1), . . . , Q(n) are tropical Metzler matrices, that the support of the
vector |Q(k)

ij | is equal to D, and that x ∈ Rn is such that G⃗x = G⃗ admits a circulation. Fix any
such circulation γ. For every edge e = (k, l) of G⃗ we can fix ie ∈ [m] such that Q(k)

ieie
+ xk =

|Q(l)
ieie

| + xl ̸= −∞. Similarly, for every edge e = ({k1, k2}, l) of G⃗ we can fix ie < je such that
Q

(k1)
ieie

+Q
(k2)
jeje

+ xk1 + xk2 = 2|Q(l)
ieje

| + 2xl ̸= −∞. We take the sum of these equalities weighted
by γ. This gives the equality∑

k∈[n]

∑
e∈Out(k)

γeQ
(k)
ieie

+
∑

k∈[n]

∑
e∈Out(k)

γexk

=
∑
l∈[n]

∑
e∈In1(l)

γe|Q(l)
ieie

| +
∑
l∈[n]

∑
e∈In2(l)

2γe|Q(l)
ieje

| +
∑
l∈[n]

∑
e∈In(l)

|Te|γexl ,

where In1(l) denotes the set of incoming edges with tails of cardinality 1 and In2(l) denotes
the set of incoming edges with tails of cardinality 2. Since γ is a circulation, this expression
simplifies to ∑

k∈[n]

∑
e∈Out(k)

γeQ
(k)
ieie

=
∑
l∈[n]

∑
e∈In1(l)

γe|Q(l)
ieie

| +
∑
l∈[n]

∑
e∈In2(l)

2γe|Q(l)
ieje

| .
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Consider the set H of all z ∈ Rd′ such that∑
k∈[n]

∑
e∈Out(k)

γez
(k)
ieie

=
∑
l∈[n]

∑
e∈In1(l)

γez
(l)
ieie

+
∑
l∈[n]

∑
e∈In2(l)

2γez
(l)
ieje

. (4.8)

This set is a hyperplane. Indeed, suppose that the equality above is trivial (i.e., that it reduces
to 0 = 0). Take any edge e such that γe ̸= 0 and any vertex k ∈ Te. Then, the coefficient
z

(k)
ieie

appears on the left-hand side. Moreover, we have sign(Q(k)
ieie

) = 1. On the other hand, for
every coefficient z(l)

jeje
that appears on the right-hand side we have sign(Q(l)

jeje
) = −1. This gives

a contradiction.
Therefore, we can construct the stratum of X associated with D (denoted XD) as follows:

we take all possible hypergraphs that can arise in our construction (since n is fixed, we have
finitely many of them). Out of them, we choose those hypergraphs that admit a circulation. For
every such hypergraph we pick exactly one circulation γ. After that, for every possible choice
of functions e → ie, e → (ie, je),1 we take a set H defined as in (4.8). If H is equal to Rd′ , then
we ignore it. Otherwise, H is a hyperplane. We take XD to be the union of all hyperplanes
obtained in this way.

The proof of Lemma 4.39 can be easily adapted to give a genericity condition both for
Metzler and non-Metzler spectrahedra.

Theorem 4.40. There exists a set X ⊂ Td with d = nm(m+1)/2 that fulfills the following two
conditions. First, every stratum of X is a finite union of hyperplanes. Second, if Q(1), . . . , Q(n)

is any sequence of symmetric tropical matrices such that the vector with entries |Q(k)
ij | (for i ⩽ j)

does not belong to X, then the matrices Q(1), . . . , Q(n) fulfill Assumption A and for all (Σ,♢),
every stratum of SΣ,♢(Q(1), . . . , Q(n)) is regular.

Proof. As previously, we fix a nonempty set D ⊂ [d], |D| = d′, and we will present a construction
of the stratum of X associated with D, denoted XD. Take symmetric matrices (Q(k)) ∈ Tm×m

such that the sequence (|Q(k)
ij |) ∈ Td has support equal to D. Take any nonempty subset

K ⊂ [n] and let S(K) denote the set S((Q(k))k∈K). Fix a pair (Σ,♢) and take the tropical
Metzler spectrahedron S(K)

Σ,♢ . Take any x ∈ RK and a graph G⃗x associated with S(K)
Σ,♢ (note that

this graph has vertices enumerated by numbers from K). Suppose that this graph admits a
circulation γ. As previously, for every edge e = ({k1, k2}, l) of G⃗ we can take (ie, je) ∈ Σ such
that Q(k1)

ieie
+Q(k2)

jeje
+xk1 +xk2 = 2|Q(l)

ieje
|+2xl. For every edge e = (k, l) we have two possibilities:

either there exists ie ∈ [m] such that Q(k)
ieie

+ xk = |Q(l)
ieie

| + xl or there exist (ie, je) ∈ Σ∁ such
that |Q(k)

ieje
| + xk = |Q(l)

ieje
| + xl. As before, we take the sum of these equalities weighted by γ.

This gives the identity∑
k∈[n]

∑
e∈Out(k)

γe|Q(k)
ieje

| =
∑
l∈[n]

∑
e∈In1(l)

γe|Q(l)
ieje

| +
∑
l∈[n]

∑
e∈In2(l)

2γe|Q(l)
ieje

| .

As previously, the set of all z ∈ Rd′ that fulfills this equality is a hyperplane. Indeed, any
coefficient z(k)

ieje
which appears on the left-hand side does not appear on the right-hand side

(note that here we use the fact that Σ ∩Σ∁ = ∅). As before, we take all possible hypergraphs
1Note that the dependence on D lies here, as the choice of D restricts the amount of possible functions e → ie

e → (ie, je).
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(where “all possible” takes into account the fact that K can vary), one circulation for each
hypergraph, all possible functions e → (ie, je) (the amount of such functions depends on D),
and all hyperplanes that can arise in this way. The union of these hyperplanes constitutes XD.
We deduce the result from Lemma 4.37.

4.4 Valuation of interior and regions of strict feasibility
To finish this chapter, we consider the problem of characterizing the image by valuation of
the interior of a spectrahedron. As previously, let Q(1), . . . ,Q(n) ∈ Km×m be a sequence of
symmetric matrices, denote Q(x) := x1Q

(1) + · · · +xnQ
(n) and let S := {x ∈ Kn

⩾0 : Q(x) ≽ 0}
be the associated spectrahedral cone. We want to characterize the set val

(
int(S)

)
. It turns out

that the analysis done in the previous section extends to this problem if the matrices Q(k) are
Metzler, but does not solve the case of non-Metzler matrices. To partially handle this case,
we study the image by valuation of strictly feasible points of S, and show that our techniques
extend naturally to this setting. Let Q(k) := sval(Q(k)) for all k ∈ [n].

First, we suppose that the matrices Q(k) are Metzler. The following lemma extends the
claim of Lemma 4.17.

Lemma 4.41. Suppose that the matrices Q(k) are Metzler and let T be as in Definition 4.16.
Then clR(T ∩ Rn) ⊂ val

(
int(S in)

)
.

Proof. If x ∈ T ∩ Rn, then the proof of Lemma 4.17 shows that x ∈ S in for any x ∈ val−1(x) ∩
Kn

>0. In particular, the ball ]tx1 , 2tx1 [×· · ·×]txn , 2txn [ belongs to S in and hence x ∈ val
(
int(S in)

)
.

The set int(S in) is semialgebraic by Proposition 2.15 and hence clR(T ∩ Rn) ⊂ val
(
int(S in)

)
by

Theorem 3.1.

As a corollary, we characterize val
(
int(S in)

)
for matrices that satisfy the conditions of The-

orem 4.20.

Corollary 4.42. Suppose that the matrices Q(k) are Metzler and that they satisfy the conditions
of Theorem 4.19. Then

val
(
int(S in)

)
= S(Q(1), . . . , Q(n)) ∩ Rn .

Proof. We trivially have val
(
int(S)

)
⊂ val(S ∩ Kn

>0) ⊂ S(Q(1), . . . , Q(n)) ∩ Rn. Furthermore,
the proof of Theorem 4.19 shows that S(Q(1), . . . , Q(n)) ∩ Rn = clR(T ∩ Rn), and we have
clR(T ∩ Rn) ⊂ val

(
int(S)

)
by Lemma 4.41.

One may think that the claim of Corollary 4.42 extends to the case of non-Metzler matrices
if we replace the conditions of Theorem 4.19 by the analogous conditions of Theorem 4.28. The
following example shows that this is not true.
Example 4.43. Take the matrices

Q(0) :=
[
−∞ a
a −∞

]
, Q(1) :=

[
−∞ b
b −∞

]
, Q(2) :=

[
−∞ ⊖c
⊖c −∞

]
,

where a, b, c ∈ R. The set S(Q(0), Q(1), Q(2)) fulfills the conditions of Theorem 4.28. Moreover, it
is the set of all points (x0, x1, x2) ∈ T3 such that max{a+x0, b+x1} = c+x2. Nevertheless, if we



4.4. Valuation of interior and regions of strict feasibility 79

take any matrices Q(0),Q(1),Q(2) such that sval(Q(k)) = Q(k), then the associated spectrahedron
is a plane,

S = {(x0,x1,x2) ∈ K3
⩾0 : Q(0)

12 x0 + Q
(1)
12 x1 = Q

(2)
12 x2} .

This shows that Corollary 4.42 does not carry over to non-Metzler matrices. Indeed, S has
empty interior but S(Q(0), Q(1), Q(2)) ∩ Rn is nonempty.

Let us note, however, that we have the following partial extension of Lemma 4.41 to the
case of non-Metzler matrices. (This extension will be useful in Section 7.4 where we relate the
problem of deciding the feasibility to the problem of stochastic mean payoff games.)
Lemma 4.44. Let Q(1), . . . , Q(n) be any tropical symmetric matrices. Put Σ := {(i, j) ∈
[m]2 : i < j} and ♢ := ∅ and consider the set TΣ,♢ defined as in Lemma 4.26. Then, we have
clR(TΣ,♢ ∩ Rn) ⊂ val

(
int(S in)

)
.

Proof. By our choice of (Σ,♢) and Lemma 4.41, the set clR(TΣ,♢ ∩ Rn) is included in the
valuation of the interior of the set of points x ∈ Kn

⩾0 defined by the inequalities

∀i,Qii(x) ⩾ 0 ,
∀i < j,Qii(x)Qjj(x) ⩾ (m− 1)2(Q+

ij(x) + Q−
ij(x))2 .

This set is included in S in because (Q+
ij(x) + Q−

ij(x))2 ⩾ (Qij(x))2 for all x.

Remark 4.45. Let us point out why the lemma above does not extend to other choices of Σ.
Indeed, if we take a different Σ, fix x ∈ ∩♢clR(TΣ,♢ ∩ Rn), and try to repeat the proof of
Lemma 4.26, then we can construct a point z ∈ Kn

>0 that belongs to the interior of the set

{y ∈ Kn
⩾0 : ∀i,Qii(y) ⩾ 0 ∧ ∀(i, j) ∈ Σ,Qii(y)Qjj(y) ⩾ (m− 1)2(Qij(y))2} (4.9)

and satisfies Qij(z) = 0 for all (i, j) ∈ Σ∁. However, this does not imply that z belongs to the
interior of S in, as shown by Example 4.43. In this example, if we take Σ := ∅, then the set
given by (4.9) is equal to K3

⩾0, but S in is a plane (and z is a point that belongs to this plane).
This problem is avoided in cases where the weak inequalities that define (4.9) can be replaced
strict inequalities, as discussed in the sequel.

Let us switch our attention to the problem of characterizing the valuation of strictly feasible
points of a spectrahedron. To do so, let us recall that a matrix A ∈ Km×m

⩾0 is called positive
definite if it is positive semidefinite and invertible. By the completeness of the theory of real
closed fields, this is equivalent to demanding that all principal minors of A are positive, that the
inequality x⊺Ax > 0 is true for all x ̸= 0 and so on (see, e.g., [Mey00, Section 7.6]). Moreover,
let us recall the following definition.
Definition 4.46. We say that S is strictly feasible if there exists a point x ∈ Kn

>0 such that
the matrix Q(x) is positive definite.

Let S++ ⊂ Kn
>0 be the set of all strictly feasible points of S, i.e.,

S++ := {x ∈ Kn
>0 : Q(x) is positive definite} .

It is easy to check that S++ is convex. Even more, if S++ is nonempty, then it is equal to
the interior of S.Therefore, it may seem that studying val(S++) is very similar to studying
val
(
int(S)

)
. However, there are spectrahedra that cannot be strictly feasible for trivial reasons.

For instance, if there exists i ∈ [m] such that Q
(k)
ii = 0 for all k, then the set S++ is trivially

empty (because the matrix Q(x) has a zero entry on its diagonal). Therefore, it is natural to
make the following assumption.
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Assumption B. For every i ∈ [m], there exists k ∈ [n] such that Q
(k)
ii ̸= 0.

Let us point out that the matrices given in Example 4.43 do not satisfy Assumption B. In
what follows, we show that the behavior of Example 4.43 cannot be reproduced by matrices that
satisfy Assumption B. To start, we point out that the notion of diagonal dominance extends to
the case of positive definite matrices.

Lemma 4.47. Suppose that a symmetric matrix A ∈ Rm×m is strictly diagonally dominant,
i.e., satisfies the inequality Aii >

∑
j ̸=i |Aij | for all i ∈ [m]. Then A is positive definite.

Proof. Matrix A is positive semidefinite by Lemma 4.9. It is nonsingular by [Mey00, Exam-
ple 4.3.3].

As a corollary, we get the following results that can be proven as in Lemma 4.8 and Corol-
lary 4.11.

Lemma 4.48. Let A ∈ Km×m be a symmetric matrix. Suppose that A has positive entries on
its diagonal and that the inequality AiiAjj > (m − 1)2A2

ij holds for all pairs (i, j) such that
i ̸= j. Then A is positive definite.

Corollary 4.49. Let A ∈ Tm×m
± be a symmetric matrix such that Aii ∈ T+ for all i and

Aii ⊙Ajj > A⊙2
ij for all i < j. Let A ∈ Km×m be any symmetric matrix such that sval(A) = A.

Then A fulfills the conditions of Lemma 4.48. (In particular, it is positive definite.)

We will now give the analogues of Lemmas 4.17 and 4.26 for the regions of strict feasibility.
As usual, we first consider the case of Metzler matrices.

Lemma 4.50. Suppose that the matrices Q(1), . . . , Q(n) are Metzler and satisfy Assumption B.
Let T be as in Definition 4.16. If x ∈ T ∩Rn and x ∈ val−1(x)∩Kn

>0 is any lift, then x ∈ S++.
Moreover, we have clR(T ∩ Rn) ⊂ val(S++).

Proof. The proof of Lemma 4.17 shows that if x ∈ T ∩ Rn, and x ∈ val−1(x) ∩ Kn
>0 is any lift

of x, then the matrix A := sval(Q(x)) is such that Aii = Q+
ii (x) ⩾ Q−

ii (x) for all i. Moreover,
by Assumption B (and the fact that x ∈ Rn) the diagonal entries of A are finite, Aii ∈ T+ for
all i. Furthermore, the proof of Lemma 4.17 shows that Aii ⊙ Ajj > A⊙2

ij for all i < j. Hence,
by Corollary 4.49, x ∈ S++. Moreover, since S++ is semialgebraic, its image by valuation
val(S++) is closed in Rn (Theorem 3.1) and the claim follows.

In the following lemma we abandon the assumption that the matrices are Metzler.

Lemma 4.51. Suppose that the matrices Q(1), . . . , Q(n) satisfy Assumption B. Let TΣ,♢ be as
in Lemma 4.26. Then, we have the inclusion∪

Σ

∩
♢

clR
(
TΣ,♢ ∩ Rn) ⊂ val(S++) .

Proof. Fix anyΣ. By repeating the proof of Lemma 4.26 (replacing Lemma 4.17 by Lemma 4.50)
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we find a point z ∈ val(x)−1 ∩ Kn
>0 such that2

∀i,Qii(z) > 0 ,
∀(i, j) ∈ Σ,Qii(z)Qjj(z) > (m− 1)2(Qij(z))2 ,

∀(i, j) ∈ Σ∁,Qij(z) = 0 .

Hence Qii(z)Qjj(z) > (m− 1)2(Qij(z))2 for all i < j and z is strictly feasible by Lemma 4.48.

Corollary 4.52. Suppose that the matrices Q(1), . . . ,Q(n) satisfy Assumption B and the con-
ditions of Theorem 4.28. Then

val(S++) = S(Q(1), . . . , Q(n)) ∩ Rn .

Proof. The proof of Theorem 4.28 shows that val(S++) ⊂ val(S ∩ Kn
>0) = S(Q(1), . . . , Q(n)) ∩

Rn and that S(Q(1), . . . , Q(n)) ∩ Rn =
∪

Σ

∩
♢ clR

(
TΣ,♢ ∩ Rn

)
. Hence, the claim follows from

Lemma 4.51.

2This proof requires to check that the set

{y ∈ Kn
>0 : ∀i,Qii(y) > 0 ∧ ∀(i, j) ∈ Σ,Qii(y)Qjj(y) > (m− 1)2(Qij(y))2}

is convex. Note that this is true because for every (i, j) ∈ Σ the set

{y ∈ Kn
>0 : Qii(y) > 0,Qjj(y) > 0,Qii(y)Qjj(y) > (m− 1)2(Qij(y))2}

is the set of strictly feasible points of a spectrahedron defined by matrices of size 2 × 2.
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CHAPTER 5

Tropical analogue of the Helton–Nie
conjecture

As discussed in Section 1.1, an important question in semidefinite optimization consists in char-
acterizing the sets that arise as projections of spectrahedra [Nem07]. Helton and Nie [HN09]
conjectured that every convex semialgebraic set is a projected spectrahedron. The conjecture
has been recently disproved by Scheiderer [Sch18b], who showed that the cone of positive semi-
definite forms cannot be expressed as a projection of a spectrahedron, except in some particular
cases.

Theorem 5.1 ([Sch18b]). The cone of positive semidefinite forms of degree 2d in n variables
can be expressed as a projection of a spectrahedron only when 2d = 2 or n ⩽ 2 or (n, 2d) = (3, 4).

In this section we study the tropicalizations of convex semialgebraic sets and we show the
following theorem, which may be thought of as a “Helton–Nie conjecture for valuations.”

Theorem 5.2. Let K be a real closed valued field equipped with a nontrivial and convex valua-
tion val : K → Γ ∪ {−∞} and suppose that S ⊂ Kn is a convex semialgebraic set. Then, there
exists a projected spectrahedron S′ ⊂ Kn such that val(S) = val(S′).

As in Chapter 3, in order to prove Theorem 5.2 we first study the case of Puiseux series K =
K and then use model theory to generalize the result to other fields. Along the way, we obtain
a more precise characterization of sets that arise as tropicalizations of convex semialgebraic sets
over K.
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Definition 5.3. We say that a set S ⊂ Tn is a tropicalization of a convex semialgebraic set if
there exists a convex semialgebraic set S ⊂ Kn such that val(S) = S.

Definition 5.4. We say that a tropical Metzler spectrahedron S ⊂ Tn is real if it is included
in Rn.

Our characterization of tropicalizations of convex semialgebraic sets is given in the next
result.

Theorem 5.5. Fix a set S ⊂ Tn. Then, the following conditions are equivalent:
(a) S is a tropicalization of a convex semialgebraic set;
(b) S is tropically convex and has closed semilinear strata;
(c) S is tropically convex and every stratum of S is a projection of a real tropical Metzler

spectrahedron;
(d) S is a projection of a tropical Metzler spectrahedron;
(e) there exists a projected spectrahedron S ⊂ Kn

⩾0 such that val(S) = S.

The rest of this chapter is organized as follows. In Section 5.1 we recall some basic notions
of tropical convexity. Then, in Sections 5.2 and 5.3 we study real tropical cones and show that
these objects can be described by monotone homogeneous operators and by graphs. Then, we
show Theorems 5.2 and 5.5. This is done is three steps. First, we prove a simpler variant of
Theorem 5.5 for real tropical cones (Section 5.4), then we prove both theorems for Puiseux
series (Section 5.5), and finally we extend the result to more general fields (Section 5.6). This
chapter is based on the article [AGS19].

Before starting, let us point out that the result of Scheiderer generalizes to all real closed
fields. In other words, the Helton–Nie conjecture is false over every such field.

Corollary 5.6 (of [Sch18b, Corollary 4.25]). Let K be a real closed field. Then, the cone of
positive semidefinite forms of degree 2d in n variables over K can be expressed as a projection
of a spectrahedron over K only when 2d = 2 or n ⩽ 2 or (n, 2d) = (3, 4).

Proof. Fix the integers d, m, n, and p. The statement “the cone of positive semidefinite forms
of degree 2d in n variables over K is the projection of a spectrahedron in Kp associated with
matrices of size m×m” is a sentence in the language of ordered rings Lor. Since the theory of
real closed fields is complete (Theorem 2.110), this sentence is true over R if and only if it is
true over K.

5.1 Tropical convexity
In this section, we recall some basic facts about convexity in the usual and tropical sense. The
convex hull of a set X ⊂ Kn, denoted conv(X), can be defined as the smallest (inclusionwise)
convex set that contains X. This set is characterized by Carathéodory’s theorem.

Theorem 5.7 (Carathéodory’s theorem, [Sch87, Corollary 7.1j]). If X ⊂ Kn, then we have the
equality

conv(X) =
{n+1∑

k=1
λkx

(k) ∈ Kn : ∀k, x(k) ∈ X ∧ ∀k, λ ⩾ 0 ∧
n+1∑
k=1

λk = 1
}
.



5.1. Tropical convexity 85

Remark 5.8. We point out that the proof of Theorem 5.7 given in [Sch87, Corollary 7.1j] is valid
over every ordered field.

As a corollary, we obtain that the class of semialgebraic sets is closed under taking convex
hulls.

Lemma 5.9. If S ⊂ Kn is a semialgebraic set, then conv(S) is also semialgebraic.

Proof. By Theorem 5.7, conv(S) is definable in Lor. Hence, it is semialgebraic by Lemma 2.111.

Let us now move to tropical convexity, referring the reader to [CGQ04, DS04] for more
information.

Definition 5.10. We say that a set X ⊂ Tn is tropically convex if for every x, y ∈ X and every
λ, µ ∈ T such that λ⊕ µ = 0 the point (λ⊙ x) ⊕ (µ⊙ y) belongs to X. We say that X ⊂ Tn is
a tropical (convex) cone if (λ⊙ x) ⊕ (µ⊙ y) ∈ X for all λ, µ ∈ T.

Remark 5.11. The quantity (λ⊙x) ⊕ (µ⊙ y) for λ⊕µ = 0 corresponds to the tropical analogue
of a convex combination of x and y. Indeed, the scalars λ and µ are implicitly “nonnegative” in
the tropical sense, as they are greater than or equal to the tropical zero element −∞. Besides,
their tropical sum equals the tropical unit 0.
Example 5.12. Any tropical Metzler spectrahedral cone is a tropical cone. Indeed, if we use the
notation as in Definition 4.13, then for all x, y ∈ Tn, λ, µ ∈ T, and all i, j ∈ [m] such that i ⩽ j
we have Q−

ij

(
(λ⊙x)⊕ (µ⊙y)

)
= (λ⊙Q−

ij(x))⊕ (µ⊙Q−
ij(y)) and the same is true for Q+

ii . Hence,
if x, y ∈ S(Q(1), . . . , Q(n)), then

Q+
ii

(
(λ⊙ x) ⊕ (µ⊙ y)

)
= (λ⊙Q+

ii (x)) ⊕ (µ⊙Q+
ii (y))

⩾ (λ⊙Q−
ii (x)) ⊕ (µ⊙Q−

ii (y)) = Q−
ii

(
(λ⊙ x) ⊕ (µ⊙ y)

)
for all i ∈ [m] and

Q+
ii

(
(λ⊙ x) ⊕ (µ⊙ y)

)
⊙Q+

jj

(
(λ⊙ x) ⊕ (µ⊙ y)

)
=
(
(λ⊙Q+

ii (x)) ⊕ (µ⊙Q+
ii (y))

)
⊙
(
(λ⊙Q+

jj(x)) ⊕ (µ⊙Q+
jj(y))

)
⩾
(
λ⊙2 ⊙Q+

ii (x) ⊙Q+
jj(x)

)
⊕
(
µ⊙2 ⊙Q+

ii (y) ⊙Q+
jj(y)

)
⩾ (λ⊙Qij(x))⊙2 ⊕ (µ⊙Qij(x))⊙2

=
((
λ⊙Qij(x)

)
⊕
(
µ⊙Qij(x)

))⊙2

=
(
Q−

ij

(
(λ⊙ x) ⊕ (µ⊙ y)

))⊙2

for all i < j. A more abstract proof of the same fact can be done using Lemma 5.18 below
combined with Proposition 4.14.

Definition 5.13. For any set X ⊂ Tn we can define its tropical convex hull, denoted tconv(X),
as the smallest (inclusionwise) tropically convex set that contains X.

Remark 5.14. The tropical convex hull is well defined because the intersection of any number
of tropically convex sets is tropically convex.
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Figure 5.1: Tropical convex hull of three points.

Carathéodory’s theorem is still true in the tropical setting:

Theorem 5.15 ([Hel88], [BH04], [DS04]). If X ⊂ Tn, then we have the equality

tconv(X) =
{n+1⊕

k=1
(λk ⊙ x(k)) : ∀k, x(k) ∈ X ∧

n+1⊕
k=1

λk = 0
}
.

Sketch of the proof. For every p ⩾ 1 we denote

Yp =
{ p⊕

k=1
(λk ⊙ x(k)) : ∀k, x(k) ∈ X ∧

p⊕
k=1

λk = 0
}
.

An easy induction shows that Yp ⊂ tconv(X) for all p ⩾ 0. Moreover, the set
∪∞

p=1 Yp is
tropically convex and hence tconv(X) =

∪∞
p=1 Yp. Suppose that y ∈ Yp for some p ⩾ 1. For

every coordinate l ∈ [n] we can find k(l) ∈ [p] such that yl = λk(l) ⊙ x
k(l)
l . Moreover, there

exists k∗ ∈ [p] such that λk∗ = 0. Hence y =
(⊕p

l=1(λk(l) ⊙ xk(l))
)

⊕ x(k∗), which implies that
y ∈ Yn+1.

Example 5.16. Figure 5.1 depicts a tropical convex hull of three points: (1, 5), (3, 2), and (8, 7).
Note that the point (4, 4) can be written as (4, 4) =

(
(−4) ⊙ (8, 7)

)
⊕
(
(−1) ⊙ (1, 5)

)
⊕ (3, 2).

We also need the following lemma.

Lemma 5.17. Suppose that sets X,Y ⊂ Tn are tropically convex. Then, we have the equality

tconv(X ∪ Y ) = {(λ⊙ x) ⊕ (µ⊙ y) ∈ Tn : x ∈ X, y ∈ Y, λ⊕ µ = 0} .

Sketch of the proof. The inclusion ⊃ follows immediately from the definition of tropical convex
hull. The other inclusion holds because the set on the right-hand side contains X and Y and is
tropically convex.

A relation between the convexity in K and the tropical convexity is shown in the next two
lemmas.

Lemma 5.18. If X ⊂ Kn is a convex set, then val(X) is tropically convex.
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Proof. Let x, y ∈ val(X) and take any λ, µ ∈ T such that λ⊕µ = 0. Without loss of generality,
suppose that λ = 0. Take any points x ∈ X ∩ val−1(x) and y ∈ X ∩ val−1(y). Let us look at
two cases. If µ < 0, then for any real positive constant c, we have 1 − ctµ > 0, and so the point
z = (1 − ctµ)x+ ctµy belongs to X. Hence, if we choose c such that c ̸= − lc(xk)/ lc(yk) for all
k ∈ [n] satisfying yk ̸= 0, then val(z) = (λ⊙x) ⊕ (µ⊙ y). If µ = 0, then we take a real constant
c ∈ ]0, 1[ such that for all k ∈ [n] satisfying yk ̸= 0 we have c/(1 − c) ̸= − lc(xk)/ lc(yk). Then,
the point z = (1 − c)x + cy belongs to X and we have val(z) = (λ⊙ x) ⊕ (µ⊙ y).

The next lemma shows that a tighter relation holds for sets included in the nonnegative
orthant of K.

Lemma 5.19. If X ⊂ Kn
⩾0 is any set, then we have val(conv(X)) = tconv(val(X)).

Proof. We start by proving the inclusion ⊂. Take a point y ∈ conv(X). By Theorem 5.7,
there exist λ1, . . . ,λn+1 ⩾ 0 and x(1), . . . ,x(n+1) ∈ X such that y = λ1x

(1) + · · · +λn+1x
(n+1).

Hence, using the fact that X ⊂ Kn
⩾0, we have

val(y) =
(
val(λ1) ⊙ val(x1)

)
⊕ · · · ⊕

(
val(λn+1) ⊙ val(xn+1)

)
.

Furthermore, we have
∑n+1

k=1 λk = 1 and hence
⊕n+1

k=1 val(λk) = 0. Therefore, val(y) ∈ tconv(X)
by Theorem 5.15. Conversely, take any point y ∈ tconv(X). By Theorem 5.15, we can find
λ1, . . . , λn+1 ∈ T,

⊕n+1
k=1 λk = 0 and x(1), . . . , x(n+1) ∈ X such that y = (λ1 ⊙ x(1)) ⊕ . . . (λn+1 ⊙

x(n+1)). We define λk := tλk/(
∑n+1

l=1 t
λl). Observe that for all k, val(λk) = λk because the

term
∑n+1

l=1 t
λl has valuation

⊕n+1
l=1 λl = 0. Moreover, we have λk ⩾ 0 and

∑n+1
k=1 λk = 1. Take

any points x(1), . . . ,x(n+1) ∈ X such that val(x(k)) = x(k) for all k ∈ [n + 1]. The point
y = λ1x1 + · · · + λn+1xn+1 belongs to conv(X) and verifies val(y) = y.

Example 5.20. The assumption that X lies in the nonnegative orthant cannot be omitted. To
see this, take X = {−1, 1} ⊂ K. We have val(X) = {0} = tconv(val(X)), but val(conv(X)) =
val([−1, 1]) = [−∞, 0].

The last two lemmas, together with Theorem 3.1, allow us to give our first characterization
of tropicalizations of convex semialgebraic sets.

Proposition 5.21. A set S ⊂ Tn is a tropicalization of a convex semialgebraic set if and only
if S is tropically convex and every stratum of S is a closed semilinear set.

Proof. The “only if” part follows from Theorem 3.1 and Lemma 5.18. To prove the oppo-
site implication, suppose that S is tropically convex and has closed semilinear strata. Then,
Lemma 3.13 shows that there exists a semialgebraic set S ⊂ Kn

⩾0 included in the nonnegative
orthant of Kn and such that val(S) = S. The set conv(S) is semialgebraic by Lemma 5.9 and
satisfies val(conv(S)) = tconv(S) = S by Lemma 5.19.

Remark 5.22. The considerations of this section extend to the case of tropicalization of convex
cones. Indeed, if X ⊂ Tn is any set, the we can define its tropical conic hull, tcone(X) as the
smallest tropical cone that contains X. In this case, the tropical Carathéodory theorem states
that we have the equality

tcone(X) =
{ n⊕

k=1
(λk ⊙ x(k)) : ∀k, x(k) ∈ X,λk ∈ T

}
.
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The analogues of the other propositions stated above are also true for cones. If X ⊂ Kn is a
convex cone, then val(X) is a tropical cone. Indeed, if we take x, y ∈ val(X), λ, µ ∈ T, and
x,y ∈ X such that val(x) = x, val(y) = y, then there is c > 0 such that z := tλx + ctµy ∈ X
and val(z) = (λ ⊙ x) ⊕ (µ ⊙ y) (we choose c such that c ̸= − lc(xk)/ lc(yk) for all k ∈ [n]
satisfying yk ̸= 0). Moreover, if X ⊂ Kn

⩾0 is any set included in the nonnegative orthant and
cone(·) denotes the conic hull in Kn, then we have val(cone(X)) = tcone(val(X)). The proof
of this fact is done as in Lemma 5.19, replacing the Carathéodory’s theorem by its analogue
for cones [Sch87, Corollary 7.1i]. In particular, by repeating the proof of Proposition 5.21, we
get that a set S ⊂ Tn is a tropicalization of a convex semialgebraic cone if and only if S is a
tropical cone that has closed semilinear strata.

5.2 Real tropical cones as sublevel sets of dynamic programming
operators

As a first step towards the proof of the tropical Helton–Nie conjecture, we study the case of real
tropical cones. We will show that semilinear real tropical cones are characterized as sublevel sets
of semilinear, monotone, homogeneous operators. The next definitions and lemmas introduce
these class of cones and operators and their basic properties.

Definition 5.23. We say that a set X ⊂ Rn is a real tropical cone if for every x, y ∈ X and
every λ, µ ∈ R we have (λ⊙ x) ⊕ (µ⊙ y) ∈ X.

Remark 5.24. We point out that a real tropical cone is nothing but the main stratum of a
tropical cone as defined in Section 5.1. Indeed, if Y is a tropical cone, then Y ∩ Rn is a real
tropical cone, whereas if X is a real tropical cone, then X ∪ {−∞} is a tropical cone.

Definition 5.25. We say that a function F : Rn → Rm is piecewise affine if there exists a set
of full-dimensional polyhedra W(1), . . . ,W(p) ⊂ Rn satisfying

∪p
s=1 W(s) = Rn and such that

the restriction of F to W(s) is affine, i.e., F|W(s)(x) = A(s)x+ b(s) for some matrix A(s) ∈ Rm×n

and vector b(s) ∈ Rm. We shall say that the family (W(s), A(s), b(s))s is a piecewise description
of the function F .

Remark 5.26. We point out that our definition implies that piecewise affine functions are con-
tinuous (because the polyhedra W(1), . . . ,W(p) are closed).

The following minimax representation result was proved by Ovchinnikov [Ovc02]. In the
sequel, we use the notation F (x) = (F1(x), . . . , Fm(x)).

Theorem 5.27 ([Ovc02]). Suppose that the function F : Rn → Rm is piecewise affine, and let
(W(s), A(s), b(s))s∈[p] be a piecewise description of F . Then, for every k ∈ [m] there exists a
number 2p ⩾Mk ⩾ 1 and a family {Ski}i∈[Mk] of subsets of [p] such that for all x ∈ Rn we have

Fk(x) = min
i∈[Mk]

max
s∈Ski

(A(s)
k x+ b

(s)
k ) .

Definition 5.28. We say that a function F : Rn → Rm is semilinear if its graph {(x, y) ∈
Rn×m : y = F (x)} is a semilinear set.

The next lemma shows that continuous semilinear functions are piecewise affine.
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Lemma 5.29. Suppose that the continuous function F : Rn → Rm is semilinear. Then, it is
piecewise affine. Moreover, it admits a piecewise description (W(s), A(s), b(s))s∈[p] such that the
polyhedra W(s) are semilinear, and the matrices A(s) are rational.

Proof. Since F is continuous and semilinear, the graph of F is a closed semilinear set. Therefore,
by Lemma 3.12, it is a finite union of semilinear polyhedra. Let {(x, y) : Bx+ Cy ⩾ d}, where
B ∈ Qp×n, C ∈ Qp×m, d ∈ Rp be one of these polyhedra. If we fix x, then, by the definition
of a graph, the polyhedron consisting of all y such that Cy ⩾ d − Bx reduces to a point y.
Thus, if J ⊂ [p] denotes the maximal set such that CJy = dJ −BJx, then this system of affine
equalities has a unique solution. Hence, there exists a set I ⊂ J , |I| = m such that the matrix
CI ∈ Qm×m is invertible and satisfies y = C−1

I (dI −BIx) = C−1
I dI − C−1

I BIx. In other words,
the graph of F is a finite union of polyhedra of the form

W = {(x, y) : Bx+ Cy ⩾ d, y = C−1
I dI − C−1

I BIx} ,

where CI is an invertible submatrix of C. As a result, if π : Rn+m → Rn denotes the projection
on the first n coordinates, and x ∈ π(W) is any point, then we have F (x) = C−1

I dI −C−1
I BIx. By

eliminating the polyhedra π(W) that are not full dimensional,1 we obtain a piecewise description
of F satisfying the expected requirements.

Definition 5.30. We say that a selfmap F : Rn → Rn is monotone if F (x) ⩽ F (y) as soon as
x ⩽ y, where ⩽ denotes the coordinatewise partial order over Rn. Such a function is said to be
(additively) homogeneous if F (λ + x) = λ + F (x) for all λ ∈ R and x ∈ Rn. Here, if z ∈ Rn,
then λ+ z stands for the vector with entries λ+ zk.

The following observation is well known [CT80].

Lemma 5.31. Every monotone homogeneous operator is nonexpansive in the supremum norm.

Proof. Observe that x ⩽ ∥x − y∥∞ + y. Therefore, we get F (x) ⩽ F (∥x − y∥∞ + y) = ∥x −
y∥∞ + F (y). Analogously, F (y) ⩽ ∥x− y∥∞ + F (x) and ∥F (x) − F (y)∥∞ ⩽ ∥x− y∥∞.

Kolokoltsov showed that every monotone homogeneous operator F has a minimax represen-
tation as a dynamic programming operator of a zero-sum game [Kol92]. When F is semilinear,
the following lemma and its corollary show that we have a finite representation of the same
nature.

Lemma 5.32. Suppose that F : Rn → Rn is piecewise affine, monotone, homogeneous and let
(W(s), A(s), b(s))s∈[p] be any piecewise description of F . Then, every matrix A(s) is stochastic.

Proof. Take any x ∈ int(Ws). Let y be the sum of the columns of A(s). Since F is homogeneous,
for any ρ > 0 small enough we have F (ρ+ x) = A(s)x+ b(s) + ρy = ρ+ F (x). In other words,
the sum of every line of A(s) is equal to 1. Let ϵk denote the kth vector of standard basis in Rn.
Since F is monotone, for ρ > 0 small enough we have F (x+ρϵk) = A(s)x+b(s) +ρA(s)ϵk ⩾ F (x).
In other words, the matrix A(s) has nonnegative entries in its kth column. Since k was arbitrary,
A(s) is stochastic.

1The fact that a projection of a polyhedron is also a polyhedron follows from the Fourier–Motzkin elimination,
see [Sch87, Section 12.2].
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Figure 5.2: A real tropical cone from Example 5.35 (for x3 = 0).

Corollary 5.33. If F : Rn → Rn is semilinear, monotone, and homogeneous, then it can be
written in the form

∀k, Fk(x) = min
i∈[Mk]

max
s∈Ski

(A(s)
k x+ b

(s)
k ) , (5.1)

where A(1), . . . , A(p) ∈ Qn×n is a sequence of stochastic matrices, b(s) ∈ Rn for all s ∈ [n],
Mk ⩾ 1 for all k ∈ [n], and Ski is a subset of [p] for every k ∈ [n] and i ∈ [Mk].

Proof. Lemma 5.31 shows that F is continuous. Let (W(s), A(s), b(s))s∈[p] a piecewise description
of F as provided by Lemma 5.29. In particular, every matrix A(s) is rational. Furthermore, it
is stochastic by Lemma 5.32. Therefore, the claim follows from Theorem 5.27.

We now characterize the class of closed, semilinear, real tropical cones. In this context,
“closed” means “closed in the standard topology of Rn.”

Proposition 5.34. A set S ⊂ Rn is a closed, semilinear, real tropical cone if and only if there
exists a semilinear, monotone, homogeneous operator F : Rn → Rn such that S = {x ∈ Rn : x ⩽
F (x)}.

Proof. To prove the first implication, we consider two cases. If S is empty, then we take
F (x) = x − (1, . . . , 1). Otherwise, we define F by Fk(x) := sup{yk : y ∈ S , y ⩽ x} for all
k ∈ [n]. We claim that every supremum is attained. Indeed, the set {y ∈ S : y ⩽ x} is
nonempty (take an arbitrary z ∈ S, and consider y := λ + z for λ ∈ R small enough), closed,
and bounded by x. Hence Fk(x) := max{yk : y ∈ S , y ⩽ x} for all k ∈ [n]. Observe that,
since S is semilinear, the graph of the operator F is definable in the language Log. Therefore,
F is semilinear by Lemma 2.103. Besides, F is obviously monotone. It is also homogeneous
because if y ∈ S, then λ + y = (λ ⊙ y) ⊕ (λ ⊙ y) ∈ S for all λ ∈ R. Moreover, the inclusion
S ⊂ {x ∈ Rn : x ⩽ F (x)} is straightforward. To prove the inverse inclusion, let x ∈ Rn be such
that x ⩽ F (x) and let y(k) ∈ S be a point attaining the maximum in Fk(x). Then, the point
y := y(1) ⊕ · · · ⊕ y(n) is an element of S smaller than or equal to x. Hence F (x) = y ⩽ x. Since
we supposed that x ⩽ F (x), we have x = y ∈ S.

Conversely, fix a semilinear, monotone, homogeneous operator F and take the set S = {x ∈
Rn : x ⩽ F (x)}. This set is is definable in Log and hence semilinear. Moreover, S is closed
because F is continuous. To prove that this is a real tropical cone, fix a pair λ, µ ∈ R and
x, y ∈ S. Since F is monotone and homogeneous, we have F (max{λ+ x, µ+ y}) ⩾ F (λ+ x) =
λ+F (x) ⩾ λ+x and similarly F (max{λ+x, µ+y}) ⩾ µ+y. Hence max{λ+x, µ+y} ∈ S.
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Example 5.35. We illustrate our results on the following example. Take n = 3, p = 2, Mk = 1,
Sk,1 = {1, 2} for all k ∈ {1, 2, 3},

A(1) =

 0 0 1
1/4 0 3/4
1 0 0

 b(1) =

 4
5/2
−2

 ,
A(2) =

0 1/3 2/3
0 0 1
0 1 0

 b(2) =

14/3
1

−2

 .
Then, the operator F : R3 → R3 is given by

F1(x) = max
{
x3 + 4, 1

3
x2 + 2

3
x3 + 14

3

}
,

F2(x) = max
{1

4
x1 + 3

4
x3 + 5

2
, x3 + 1

}
,

F3(x) = max{x1 − 2, x2 − 2} .

The real tropical cone {x ∈ R3 : x ⩽ F (x)} is depicted in Fig. 5.2.

5.3 Description of real tropical cones by directed graphs
We now describe how semilinear, monotone, homogeneous operators can be encoded by directed
graphs. To this end we take a directed graph G⃗ := (V,E), where the set of vertices is divided
into Max vertices, Min vertices, and Random vertices, i.e., V := VMin ⊎ VRand ⊎ VMax, where
the symbol ⊎ denotes the disjoint union of sets. We suppose that the sets of Max vertices and
Min vertices are nonempty. If v ∈ V is a vertex of G⃗, then by In(v) := {(w, v) : (w, v) ∈ E} we
denote the set of its incoming edges, and by Out(v) := {(v, w) : (v, w) ∈ E} we denote the set
of its outgoing edges. We suppose that the every vertex has at least one outgoing edge. If v is a
Min vertex or a Max vertex and e ∈ Out(v) is its outgoing edge, then we equip this edge with a
real number re. Furthermore, if v is a Random vertex, then we equip its set of outgoing edges
with a rational probability distribution. More precisely, every edge e ∈ Out(v) is equipped with
a strictly positive rational number qe ∈ Q, qe > 0, and we suppose that

∑
e∈Out(v) qe = 1. We

also make the following assumption.

Assumption C. (i) Every path between any two Min vertices contains at least one Max
vertex;

(ii) Every path between any two Max vertices contains at least one Min vertex;

(iii) From every Random vertex, there is a path to a Min or a Max vertex.

We now construct a semilinear, monotone, homogeneous operator from such a graph. We
construct a stochastic matrix P ∈ [0, 1]V

2
with transition probabilities pvv := 1 for all v ∈

VMax ⊎ VMin, pvw := q(v,w) if v ∈ VRand and (v, w) ∈ Out(v), and pvw := 0 otherwise. In
other words, if we consider a Markov chain with P as its transition matrix, then every state
of VMax ⊎ VMin is absorbing, and a trajectory of the Markov chain visits the states of VRand by
picking at random, for each vertex v ∈ VRand, one edge in Out(v) according to the probability
law given by q(v,·), until it reaches a state of VMax ⊎VMin. In this way, after leaving a Min vertex,
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the trajectory reaches a Max vertex, and vice versa. If e is an edge and v is a Max or Min
vertex, then we denote by pe

v the conditional probability to reach the absorbing state v starting
from the head of e. For the sake of simplicity, we assume that VMin = [n] and VMax = [m].

Definition 5.36. The operator encoded by G⃗ is the function F : Rn → Rn defined as

∀v ∈ [n], (F (x))v := min
e∈Out(v)

(
re +

∑
w∈[m]

pe
w max

e′∈Out(w)

(
re′ +

∑
u∈[n]

pe′
u xu

))
. (5.2)

Lemma 5.37. The operator encoded by G⃗ is semilinear, monotone, and homogeneous.

Proof. Let F be the operator encoded by G⃗. Note that every pe
v is rational since we have assumed

that the qe are in Q (see Remark 2.138). This means that the graph of F is definable in Log
and hence F is semilinear (by Lemma 2.103). Moreover, F is obviously monotone. We already
observed that the Max and Min vertices are absorbing states in the Markov chain constructed
from G⃗. Besides, Assumption C (iii) still holds in the subgraph obtained by removing the edges
going out of the Max and Min vertices. As a consequence, the Max and Min vertices are the
only recurrent classes in the Markov chain. Let v be a Min vertex, and e ∈ Out(v). We claim
that if u ∈ [n] is a Min state, then pe

u = 0. Indeed, by Assumption C (i), any path from the
head of e to u in G⃗ contains a Max vertex. As a consequence, there is no path from the head
of e to u in the subgraph in which we have removed the edges going out of the Max and Min
vertices. We deduce that for every Min vertex v and edge e ∈ Out(v), we have

∑
w∈[m] p

e
w = 1.

Analogously, we can show that for all Max vertices w and edge e′ ∈ Out(w),
∑

u∈[n] p
e′
u = 1. We

deduce that the operator F is homogeneous.

In the following lemma, we show that any semilinear, monotone, homogeneous operator is
encoded by some directed graph:

Lemma 5.38. Let F : Rn → Rn be a semilinear, monotone, homogeneous operator. Then,
there exists a directed graph G⃗ satisfying Assumption C such that F is encoded by G⃗.

Proof. The idea is to identify the representation (5.1) to a special case of (5.2), in which the
probabilities pe

w with e ∈ Out(v) and v ∈ VMin take only the values 0 and 1. Formally, let
A(1), . . . , A(p) ∈ Qn×n and b(1), . . . , b(p) ∈ Rn such that Corollary 5.33 holds. We build G⃗ as the
graph in which the set of Min vertices is [n], the set of Max vertices is ⊎k[Mk], and the set of
Random vertices is ⊎k∈[n], i∈[Mk]Ski. Let k be a Min vertex. We add an edge (k, i) for every
i ∈ [Mk], with r(k,i) := 0. Moreover, for every i ∈ [Mk], we add an edge (i, s) for each s ∈ Ski,
with r(i,s) := b

(s)
k . Finally, if i ∈ [Mk] and s ∈ Ski, we add an edge (s, l) with q(s,l) := A

(s)
kl

for every l ∈ [n] such that A(s)
kl > 0. The requirements of Assumption C are straightforwardly

satisfied.

Example 5.39. The graph presented in Fig. 5.3 encodes the operator from Example 5.35.
The following proposition characterizes the semilinear, monotone, homogeneous operators

associated with tropical Metzler spectrahedral cones.

Proposition 5.40. Suppose that the graph G⃗ fulfills Assumption C and has the following prop-
erties:

• every Random vertex has exactly two outgoing edges, the heads of these edges are different,
and the probability distribution associated with these edges is equal to (1/2, 1/2);
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Figure 5.3: Graph that encodes the operator from Example 5.35. Min vertices are depicted by
circles, Max vertices are depicted by squares, Random vertices are depicted by diamonds. We
put re = 0 for every edge e ∈ E that has no label.

• every edge outgoing from a Random vertex has a Max vertex as its head.
Let F : Rn → Rn denote the semilinear monotone homogeneous operator encoded by G⃗. We
extend F to a function F : Tn → Tn by applying (5.2) to all points of Tn.2 Then, the set
{x ∈ Tn : x ⩽ F (x)} is a tropical Metzler spectrahedral cone.

Proof. Consider the Markov chain introduced before Definition 5.36, take a Min vertex v ∈ [n]
and an outgoing edge e ∈ Out(v). Under the assumptions over the graph G⃗, the absorbing
states reachable from the head of e form a set {we, w

′
e} ⊂ [m] of cardinality at most 2 (we use

the convention we = w′
e if there is only one such absorbing state). Moreover, if we ̸= w′

e, then
pe

we
= pe

w′
e

= 1/2. Furthermore, observe that if w ∈ [m] is a Max vertex and e′ ∈ Out(w) is an
outgoing edge, then our assumptions imply that the head of e′ is a Min vertex. We denote it
by ue′ . With this notation, we have:

(F (x))v = min
e∈Out(v)

(
re + 1

2
(

max
e′∈Out(we)

(re′ + xue′ ) + max
e′∈Out(w′

e)
(re′ + xue′ )

))
(5.3)

for all v ∈ [n]. Out of this data we construct symmetric Metzler matricesQ(1), . . . , Q(n) ∈ Tm×m
± .

If a Min vertex v ∈ [n] has an outgoing edge e ∈ Out(v) such that we ̸= w′
e, then we define

Q
(v)
wew′

e
= Q

(v)
w′

ewe
:= ⊖ max

{
−re′ : e′ ∈ Out(v) ∧ {we′ , w′

e′} = {we, w
′
e}
}
.

The diagonal coefficients Q(v)
ww of the matrices Q(v) are defined as follows:

• if e = (v, w) is an edge, but (w, v) is not, then we set Q(v)
ww := ⊖(−re);

• if e = (w, v) is an edge, but (v, w) is not, then we set Q(v)
ww := re;

• if both e = (v, w) and e′ = (w, v) are edges, then we set Q(v)
ww to ⊖(−re) if −re > re′ , and

to re′ if re′ ⩾ −re.
2We use the convention that −∞ · x = −∞ for all x > 0 and −∞ · 0 = 0.
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Finally, all the other entries of the matrices Q(v) are set to −∞. Let S = S(Q(1), . . . , Q(n))
denote the associated tropical Metzler spectrahedral cone. We want to show that S = {x ∈
Tn : x ⩽ F (x)}. Note that we have the equivalence

∀v ∈ [n], xv ⩽ (F (x))v ⇐⇒

∀v, ∀e ∈ Out(v), xv − re ⩽ 1
2
(

max
e′∈Out(we)

(re′ + xue′ ) + max
e′∈Out(w′

e)
(re′ + xue′ )

)
.

The last set of inequalities is equivalent to

∀{w,w′}, max
{{v,e} : e∈Out(v),{w,w′}={we,w′

e}}
(xv − re)

⩽ 1
2
(

max
e′∈Out(w)

(re′ + xue′ ) + max
e′∈Out(w′)

(re′ + xue′ )
)
.

We want to show that the last set of constraints describes S. To do this, recall that an inequality
of the form max(x, α+ y) ⩾ max(x′, β + y) is equivalent to max(x, α+ y) ⩾ x′ if α ⩾ β, and to
x ⩾ max(x′, β + y) if β > α. Therefore, for every w ∈ [m] we have the equivalence

max
{{v,e} : e∈Out(v),w=we}

(xv − re) ⩽ max
e′∈Out(w)

(re′ + xue′ ) ⇐⇒

max
Q

(v)
ww∈T−

(xv + |Q(v)
ww|) ⩽ max

Q
(u)
ww∈T+

(Q(u)
ww + xu) .

(5.4)

Moreover, note that if x ∈ Tn verifies (5.4), then we have the equality

max
Q

(u)
ww∈T+

(Q(u)
ww + xu) = max

e′∈Out(w)
(re′ + xue′ ) . (5.5)

Indeed, if we have max
Q

(u)
ww∈T+

(Q(u)
ww + xu) < re′ + xue′ for some e′ ∈ Out(w), then by the

construction e = (ue′ , w) is an edge and we have (−re) > re′ . This implies that Q(ue′ )
ww = ⊖(−re).

In particular, max
Q

(v)
ww∈T−

(xv + |Q(v)
ww|) > re′ + xue′ , which gives a contradiction with (5.4).

Furthermore, observe that for any w ̸= w′ we have the equality

max
{{v,e} : e∈Out(v),{w,w′}={we,w′

e}}
(xv − re) = max

Q
(v)
ww′ ∈T−

(xv + |Q(v)
ww′ |) . (5.6)

Suppose that x ∈ S. Then, x verifies (5.4) for all w ∈ [m]. Moreover, by (5.5) and (5.6), for
any w ̸= w′ we have

max
{{v,e} : e∈Out(v),{w,w′}={we,w′

e}}
(xv − re) = max

Q
(v)
ww′ ∈T−

(xv + |Q(v)
ww′ |)

⩽ 1
2
(

max
Q

(u)
ww∈T+

(Q(u)
ww + xu) + max

Q
(u)
w′w′ ∈T+

(Q(u)
w′w′ + xu)

)
= 1

2
(

max
e′∈Out(w)

(re′ + xue′ ) + max
e′∈Out(w′)

(re′ + xue′ )
)
.

(5.7)

Thus x ⩽ F (x). Conversely, if x ⩽ F (x), then x also verifies (5.4) for all w ∈ [m], and the same
argument as in (5.7) shows that x ∈ S.
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Figure 5.4: Lowering the degree. Random vertices are depicted by diamonds.
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Figure 5.5: The construct of Zwick and Paterson.

5.4 Tropical Helton–Nie conjecture for real tropical cones

In this section, we want to show that every real tropical cone associated with a graph G⃗ is a
projection of a tropical Metzler spectrahedron. The idea of the proof is to take an arbitrary
graph G⃗ and transform it (by adding auxiliary states) into a graph G⃗′ that fulfills the conditions
of Proposition 5.40. Furthermore, our construction needs to preserve the projection. A key
ingredient is the following construction, which was used by Zwick and Paterson [ZP96] to show
the reduction from discounted games to simple stochastic games.

Lemma 5.41 ([ZP96]). One can transform any graph G⃗ as defined in Section 5.3 into a graph
G⃗′ such that

• every Random vertex of G⃗′ has exactly two outgoing edges and the probability distribution
associated with these edges is equal to (1/2, 1/2);

• G⃗ and G⃗′ encode the same operator.

Let us present the construction of Zwick and Paterson for the sake of completeness.

Proof. Fix a Random vertex v belonging to G⃗. If this vertex has only one outgoing edge e, then
we can delete v by joining all incoming edges In(v) with the head of e.
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If v has at least three outgoing edges, then we enumerate the outgoing edges Out(v) by
{e1, . . . , ed}, d ⩾ 3. Let us recall that the vertex v is equipped with a probability distribution
(qes)d

s=1. We now perform the transformation presented on Fig. 5.4. We replace the vertex v
by a pair of vertices (w, u) such that all incoming edges of v are connected to w and w has two
outgoing edges: one going to the head of e1 with probability qe1 and the other going to u with
probability 1 − qe1 . Finally, u has d− 1 outgoing edges, the head of the sth outgoing edge is the
head of es (for s ⩾ 2), and the associated probability is equal to qes/(1 − qe1). We repeat this
transformation until we reach a graph in which all Random vertices have exactly two outgoing
edges.

If v has exactly two outgoing edges, then we denote the heads of these edges by w and u,
and the associated probability distribution by (q, 1 − q), where q = a/b, a, b ∈ N∗ and a < b.
If q ̸= 1/2, then we take r ⩾ 1 such that 2r ⩽ b < 2r+1. We write a and b − a in binary,
a =

∑r
s=0 cs2s and b− a =

∑r
s=0 ds2s for cs, ds ∈ {0, 1}. We now replace the outgoing edges of

vertex v by the construct presented on Fig. 5.5. In this construction, every Random node has
exactly two outgoing edges and the associated probability distribution is equal to (1/2, 1/2).
Furthermore, for any s, if cs = 1, then head of es is w and if cs = 0, then the head of es is v.
Similarly, if ds = 1, then head of e′

s is u and if ds = 0, then the head of e′
s is v. Suppose that

the Markov chain starts at v. Then, with probability

cr

4
+ cr−1

8
+ · · · + c0

2r+2 = a

2r+2

the Markov chain goes to w without coming back to v. Similarly, with probability (b− a)/2r+2

the Markov chain moves to u without coming back to v. Therefore, the probability that the
Markov chain finally reaches w is equal to

a

2r+2
(
1 + (1 − b

2r+2 ) + (1 − b

2r+2 )2 + . . .
)

= a

b

and the probability that it finally reaches u is equal to (b− a)/b. We repeat this procedure for
every Random vertex of our graph.

To finish the proof, observe that the operations described above do not affect the associated
semilinear, monotone, homogeneous operator because this operator is defined by absorption
probabilities which remain unchanged throughout the construction.

We now describe how to transform a graph given in Lemma 5.41 into a graph that verifies
the conditions of Proposition 5.40. More precisely, we transform the graph G⃗ (which has n Min
vertices) into a graph G⃗′ (which has n′ Min vertices, where n′ ⩾ n) in such a way that the
real tropical cone {x ∈ Rn : x ⩽ F (x)} associated with G⃗ is a projection of the real tropical
cone {x ∈ Rn′ : x ⩽ F ′(x)} associated with G⃗′. The main difficulty here is that the operators
arising from tropical Metzler spectrahedra have a special structure in which there edges connect
Random vertices directly to Max vertices and Max vertices to Min vertices. By comparison,
the Zwick–Paterson construction (Lemma 5.41) leads to a graph with consecutive sequences of
Random nodes and it does not exclude the edges that connect Max vertices to Random vertices.
We shall see, however, that the latter situation can be reduced from the former one by applying,
as a basic ingredient, two transformations, the validity of which is expressed in Lemmas 5.42
and 5.43.

The first transformation that we execute is presented in Fig. 5.6. It is defined as follows.
Suppose that we are given a graph G⃗ and we denote VMin = [n] and VMax = [m]. Furthermore,
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Figure 5.6: First transformation of a graph. Min vertices are presented by circles, Max vertices
are presented by squares.

let EMax ⊂ E denote the set of all edges that have a Max vertex as their tail. For every Max
vertex w ∈ [m] and an outgoing edge e ∈ Out(w), we insert a Min vertex between w and the
head of e, as illustrated in Fig. 5.6. In a similar way, for every Min vertex v ∈ [n] and incoming
edge e ∈ In(v), we insert a Max vertex between the tail of e and v. We denote the transformed
graph by G⃗′. Observe that this graph fulfills Assumption C. We refer to the Min vertices in
G⃗′ as follows: the vertices that were present in G⃗ are denoted by [n], whereas the added Min
vertices are denoted by e ∈ EMax.

Lemma 5.42. Let F : Rn → Rn denote the operator associated with G⃗ and let G⃗′ denote the
graph obtained from G⃗ by the first transformation above. Let F ′ : Rn+|EMax| → Rn+|EMax| de-
note the operator associated with G⃗′. Then, the real tropical cone {x ∈ Rn : x ⩽ F (x)} is the
projection of the real tropical cone {(x, x′) ∈ Rn × R|EMax| : (x, x′) ⩽ F ′(x, x′)}.

Proof. Denote the operator F as

∀v ∈ [n], (F (x))v = min
e∈Out(v)

(
re +

∑
w∈[m]

pe
w max

e′∈Out(w)

(
re′ +

∑
u∈[n]

pe′
u xu

))
.

Observe that for every v ∈ [n] we have

(F ′(x, x′))v = min
e∈Out(v)

(
re +

∑
w∈[m]

pe
w max

e′∈Out(w)

(
re′ + xe′

))
.

Furthermore, for every e ∈ EMax we have

(F ′(x, x′))e =
∑

v∈[n]
pe

vxv .

Therefore, if x ⩽ F (x) and for every e ∈ EMax we set xe =
∑

v∈[n] p
e
vxv, then for every v ∈ [n] we

have xv ⩽ (F (x))v = (F ′(x, x′))v and for every e ∈ EMax we have xe = (F ′(x, x′))e. Conversely,
if (x, x′) ⩽ F ′(x, x′), then we have xv ⩽ (F ′(x, x′))v ⩽ (F (x))v for every v ∈ [n].

The second transformation is given as follows. As previously, we are given a graph G⃗ and
we denote VMin = [n] and VMax = [m]. Furthermore, let EMax ⊂ E denote the set of all edges
that have a Max vertex as their tail. Moreover, we suppose that G⃗ is such that every edge
e ∈ EMax has a Min vertex as its head. Let e∗ ∈ E be a fixed edge in G⃗ that connects two
Random vertices. We add a Max vertex m+ 1 and a Min vertex n+ 1 onto e∗ as presented on
Fig. 5.7. We denote the transformed graph by G⃗′. Since every edge e ∈ EMax has a Min vertex
as its head, every path that joins a Max vertex with a Min vertex has length 1. In particular,
e∗ does not belong to any such path. Hence, the transformed graph G⃗′ fulfills Assumption C.



98 Chapter 5. Tropical analogue of the Helton–Nie conjecture
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Figure 5.7: Second transformation of a graph.

Lemma 5.43. Let F : Rn → Rn denote the operator associated with G⃗ and let G⃗′ denote the
graph obtained from G⃗ by the second transformation above. Let F ′ : Rn+1 → Rn+1 denote the
operator associated with G⃗′. Then, the real tropical cone {x ∈ Rn : x ⩽ F (x)} is a projection of
the real tropical cone {(x, xn+1) ∈ Rn+1 : (x, xn+1) ⩽ F ′(x, xn+1)}.

Proof. Denote the operator F as

∀v ∈ [n], (F (x))v = min
e∈Out(v)

(
re +

∑
w∈[m]

pe
w max

e′∈Out(w)

(
re′ + xue′

))
,

where ue′ denotes the head of edge e′ (by our assumptions, ue′ is a Min vertex, ue′ ∈ [n]). Let us
introduce the following notation. For every e ∈ E, we denote by pe

e∗ the conditional probability
that the Markov chain reaches the head of e∗ from the head of e. Moreover, for every Max
vertex w and every edge e ∈ E, we denote by pe

w† the conditional probability that the Markov
chain reaches w from the head of e without passing by the head of e∗. Thus, for every Max
vertex w and every e ∈ E we have pe

w = pe
e∗p

e∗
w + pe

w†. Therefore, for any xn+1 ∈ R we have

(F ′(x, xn+1))n+1 =
∑

w∈[m]
pe∗

w max
e′∈Out(w)

(
re′ + xue′

)
= (F ′(x, 0))n+1

and
(F (x))v = min

e∈Out(v)

(
re +

∑
w∈[m]

(pe
e∗pe∗

w + pe
w†) max

e′∈Out(w)

(
re′ + xue′

))
= min

e∈Out(v)

(
re + pe

e∗(F ′(x, 0))n+1 +
∑

w∈[m]
pe

w† max
e′∈Out(w)

(
re′ + xue′

))
.

Furthermore, for every v ∈ [n] we have

(F ′(x, xn+1))v = min
e∈Out(v)

(
re + pe

e∗xn+1 +
∑

w∈[m]
pe

w† max
e′∈Out(w)

(
re′ + xue′

))
.

Therefore, if x ⩽ F (x) and we set xn+1 = (F ′(x, 0))n+1, then (x, xn+1) ⩽ F ′(x, xn+1). Con-
versely, if (x, xn+1) ⩽ F ′(x, xn+1), then xn+1 ⩽ (F ′(x, 0))n+1 and hence xv ⩽ (F (x))v for all
v ∈ [n].

As a corollary, we may now show that the tropical analogue of the Helton–Nie conjecture is
true for real tropical cones.

Proposition 5.44. Every closed, semilinear, real tropical cone is a projection of a real tropical
Metzler spectrahedron.

Proof. Take any closed, semilinear, real tropical cone S ⊂ Rn. By Proposition 5.34, we can write
it as S = {x ∈ Rn : x ⩽ F (x)}, where F : Rn → Rn is a semilinear, monotone, homogeneous
operator. Let G⃗ denote the graph associated with F (as given by Lemma 5.38). By Lemma 5.41
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we may suppose that the probabilities associated with Random vertices in G⃗ are equal to 1/2.
We perform the first transformation on the graph G⃗ and denote the transformed graph by G⃗1.
We then perform the second transformation on every edge in G⃗1 that joins two Random vertices.
We denote the transformed graph by G⃗′ and the associated operator as F ′ : Rn+n′ → Rn+n′ . By
Lemmas 5.42 and 5.43, the real tropical cone {x ∈ Rn : x ⩽ F (x)} is the projection of the real
tropical cone {(x, x′) ∈ Rn × Rn′ : (x, x′) ⩽ F ′(x, x′)}. Furthermore, G⃗′ fulfills the conditions of
Proposition 5.40. Therefore, the set S′ = {(x, x′) ∈ Tn × Tn′ : (x, x′) ⩽ F ′(x, x′)} is a tropical
Metzler spectrahedral cone. Finally, we take the set

S′′ = {(x, x′, y) ∈ Tn × Tn′ × Tn+n′ : (x, x′) ⩽ F ′(x, x′) ∧ (x, x′) + y ⩾ 0}

= {(x, x′, y) ∈ Rn × Rn′ × Rn+n′ : (x, x′) ⩽ F ′(x, x′) ∧ (x, x′) + y ⩾ 0} .

The set S′′ is a real tropical Metzler spectrahedron because a constraint of the form xv +yv ⩾ 0
can be encoded by adding a 2 × 2 block [

xv ⊖0
⊖0 yv

]

to the matrices that describe S′. Moreover, S is a projection of S′′. Indeed, if (x, x′) is a real
vector such that (x, x′) ⩽ F ′(x, x′), then there exists y ∈ Rn+n′ such that (x, x′) + y ⩾ 0.

Example 5.45. Take the graph from Fig. 5.3 and consider the Random vertex that has Min
vertices 2 and 3 as its neighbors. Figure 5.8 presents the outcome of the procedure described
in the lemmas above when applied to this vertex.

5.5 Tropical Helton–Nie conjecture for Puiseux series

We now generalize Proposition 5.44 to tropically convex sets in Tn. In order to study this case,
we use the notion of homogenization of a convex set. There are many possible homogenizations
of a given set and we need to use three of them.

Definition 5.46. If S is a tropically convex set with only finite points (i.e., S ⊂ Rn), then we
define its real homogenization as

Srh := {(x0, x0 + x) ∈ Rn+1 : x ∈ S} .

If S ⊂ Tn is a tropically convex set, then we define its homogenization as

Sh := {(x0, x0 + x) ∈ Tn+1 : x ∈ S} .

If S(Q(0)|Q(1), . . . , Q(n)) ⊂ Tn is a tropical Metzler spectrahedron, then we define its formal
homogenization Sfh ⊂ Tn+1 as the tropical Metzler spectrahedral cone

Sfh := S(Q(0), Q(1), . . . , Q(n)) .

Lemma 5.47. If S ⊂ Tn is tropically convex, then its homogenization is a tropical cone.
Moreover, if S is included in Rn, then its real homogenization if a real tropical cone.
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Figure 5.8: The transformation of Lemmas 5.41 to 5.43 applied to one Random vertex from the
graph presented in Fig. 5.3. Top left: the initial graph. Top right: the graph after the application
of Lemma 5.41. Bottom left: the graph after the application of Lemma 5.42. Bottom right: the
graph after the application of Lemma 5.43.

Proof. Suppose that S ⊂ Tn is tropically convex, take its homogenization Sh, two points
(x0, x0 +x), (y0, y0 +y) ∈ Srh (such that x, y ∈ S and x0, y0 ∈ T) and λ, µ ∈ T. Without loss of
generality we may suppose that λ+x0 ⩾ µ+y0. Let z :=

(
λ⊙(x0, x0 +x)

)
⊕
(
µ⊙(y0, y0 +y)

)
. If

µ+y0 = −∞, then z = (λ+x0, λ+x0 +x) ∈ Sh. Otherwise, we denote η := µ+y0 −λ−x0 ⩽ 0
and we have

z =
(
λ+ x0, λ+ x0 +

(
x⊕ (η ⊙ y)

))
∈ Sh .

The proof for the real homogenization is analogous.

Example 5.48. The three notions of homogenization given in Definition 5.46 are different. In-
deed, if we take the set S := {x ∈ T : x ⩾ 0}, then its real homogenization if equal to
Srh = {(x, y) ∈ R2 : y ⩾ x}, while its homogenization is equal to Sh = Srh ∪ {−∞}. More-
over, S = S(Q(0)|Q(1)) is a tropical Metzler spectrahedron defined by the matrices Q(0) = ⊖0,
Q(1) = 0. Then, its formal homogenization is equal to Sfh = {(x, y) ∈ T2 : y ⩾ x}.

Lemma 5.49. Every closed, semilinear, tropically convex set in Rn is a projection of a real
tropical Metzler spectrahedron.

Proof. Take any closed, semilinear, tropically convex set S ⊂ Rn and consider its real homog-
enization Srh. This set is a real tropical cone in Rn+1 by Lemma 5.47. Moreover, it is closed
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and definable in Log. This implies that it is semilinear by Lemma 2.103. By Proposition 5.44,
Srh is a projection of a real tropical Metzler spectrahedron S1 ⊂ R × Rn × Rn′ . Consider the
set

S2 = {(x0, x, y) ∈ R × Rn × Rn′ : (x0, x, y) ∈ S1 ∧ x0 = 0} .

The set S2 is a tropical Metzler spectrahedron because the constraint x0 = 0 can be encoded
by adding a 2 × 2 block [

⊖0 ⊕ x0 −∞
−∞ 0 ⊕ (⊖x0)

]
to the matrices that describe S1. Furthermore, S is its projection. Indeed, if x ∈ S, then
(0, x) ∈ Srh and there exists y ∈ Rn′ such that (0, x, y) ∈ S1. Conversely, if (0, x, y) ∈ S1, then
(0, x) ∈ Srh and hence x ∈ S.

We now want to extend the result of Lemma 5.49 to tropically convex sets in Tn. In
order to do this, we proceed stratum-by-stratum. This requires to show that a tropical convex
hull of finitely many projected tropical Metzler spectrahedra is a projected tropical Metzler
spectrahedron. In the classical case of real spectrahedra, it is known that a convex hull of
finitely many projected spectrahedra is a projected spectrahedron. This fact has a very short
proof presented in [NS09]. The proof in the tropical case is exactly the same (we only change
the classical notation to the tropical one). Let us present this proof for the sake of completeness.

Lemma 5.50. A tropically convex set S ⊂ Tn is a projected tropical Metzler spectrahedron if
and only if its homogenization is a projected tropical Metzler spectrahedron.

Proof. First, suppose that Sh is a projection of a tropical Metzler spectrahedron S1 ⊂ T×Tn ×
Tn′ . Consider the set

S2 = {(x0, x, y) ∈ T × Tn × Tn′ : (x0, x, y) ∈ S1 ∧ x0 = 0} .

As in the proof of Lemma 5.49, the set S2 is a tropical Metzler spectrahedron and S is its
projection. Conversely, suppose that S is a projection of a tropical Metzler spectrahedron
S1 ⊂ Tn × Tn′ . Consider its formal homogenization Sfh

1 ⊂ T1+n+n′ and take the set

S2 = {(x0, x, y, z) ∈ T × Tn × Tn′ × Tn : (x0, x, y) ∈ Sfh
1 ∧ ∀k ∈ [n], x0 + zk ⩾ 2xk} .

The set S2 is a tropical Metzler spectrahedron because a constraint of the form x0 + zk ⩾ 2xk

can be encoded by adding a 2 × 2 block [
x0 ⊖xk

⊖xk zk

]

to the matrices that describe S1. We will show that Sh is a projection of S2. To see this,
take any point (x0, x0 + x) ∈ Sh, where x ∈ S and x0 ∈ T. If x0 = −∞, then −∞ ∈
Sh belongs to the projection of S2. Otherwise, take y such that (x, y) ∈ S1 and observe
that we have (x0, x0 + x, x0 + y) ∈ Sfh

1 . Since x0 ∈ R, if we take zk large enough, then
(x0, x0 + x, x0 + y, z) ∈ S2. This shows that Sh is included in the projection of S2. Conversely,
suppose that (x0, x, y, z) ∈ S2. If x0 = −∞, then x = −∞ and hence (x0, x) ∈ Sh. If
x0 ̸= −∞, then we have (0,−x0 +x,−x0 +y,−x0 + z) ∈ S2. Hence (0,−x0 +x,−x0 +y) ∈ Sfh

1 ,
(−x0 + x,−x0 + y) ∈ S1, and −x0 + x ∈ S. Therefore (x0, x) ∈ Sh.
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Lemma 5.51. Suppose that S1,S2 ⊂ Tn are projected tropical Metzler spectrahedra. Then
tconv(S1 ∪ S2) is a projected tropical Metzler spectrahedron.

Proof. Let S = tconv(S1 ∪ S2) and consider

Sh
1 ⊕ Sh

2 := {x ∈ Tn+1 : ∃(u,w) ∈ Sh
1 × Sh

2 , x = u⊕ w} .

First, we will show that we have the identity Sh = Sh
1 ⊕ Sh

2 . Indeed, since S1 ⊂ S, we have
Sh

1 ⊂ Sh. Similarly, Sh
2 ⊂ Sh. Therefore, we have Sh

1 ⊕ Sh
2 ⊂ Sh. Conversely, take a point

z ∈ Sh. By Lemma 5.17, we can write z as

z =
(
z0, z0 ⊙

(
(λ⊙ x) ⊕ (µ⊙ y)

))
∈ Sh ,

where λ⊕ µ = 0, x ∈ S1, and y ∈ S2. Then z = x̃⊕ ỹ, where

x̃ := (λ⊙ z0, (λ⊙ z0) ⊙ x) ∈ Sh
1 ,

ỹ := (µ⊙ z0, (µ⊙ z0) ⊙ y) ∈ Sh
2 .

Hence Sh = Sh
1 ⊕Sh

2 . Since S1,S2 are projected tropical Metzler spectrahedra, the same is true
for Sh

1 ,S
h
2 by Lemma 5.50. Let Sh

1 be a projection of S1 ⊂ Tn+1+n1 and Sh
2 be a projection

of S2 ⊂ Tn+1+n2 . Then, the set Sh
1 × Sh

2 is a projection of the set S1 × S2. Moreover, the
set S1 × S2 is a tropical Metzler spectrahedron (described by block-diagonal matrices such that
the first block is given by the matrices that describe S1 and the second block is given by the
matrices that describe S2). Therefore, the set

S3 := {(u, u′, w, w′, x) : T(n+1)+n1+(n+1)+n2+(n+1) : (u, u′, w, w′) ∈ S1 × S2, x = u⊕ w}

is a tropical Metzler spectrahedron (because a constraint of the form xk = uk ⊕ wk can be
encoded by adding a 2 × 2 block to the matrices that describe S1 × S2). Moreover, Sh

1 ⊕Sh
2 is a

projection of S3. Since Sh = Sh
1 ⊕ Sh

2 , the set S is a projected tropical Metzler spectrahedron
by Lemma 5.50.

We are now ready to present the proof of Theorem 5.5.

Proof of Theorem 5.5. The equivalence between Theorem 5.5 (a) and Theorem 5.5 (b) is given
in Proposition 5.21. The implication from Theorem 5.5 (b) to Theorem 5.5 (c) follows from
Lemma 5.49. We now prove the implication from Theorem 5.5 (c) to Theorem 5.5 (d). Let
S ⊂ Tn be as in Theorem 5.5 (c). If S is empty, then it is a tropical Metzler spectrahedron
defined by a single inequality −∞ ⩾ 0. Otherwise, let K ⊂ [n] be any nonempty set such
that the stratum SK ⊂ RK is nonempty. The set SK is a projection of a real tropical Metzler
spectrahedron SK ⊂ RK × Rn′ . For any x ∈ Tn we denote by xK ∈ TK the subvector formed
by the coordinates of x with indices in K. Furthermore, let XK ⊂ Tn denote the set

XK := {x ∈ Tn : xk ̸= −∞ ⇐⇒ k ∈ K} .

The set S ∩XK is a projection of a tropical Metzler spectrahedron defined as

S̃K = {(x, y) ∈ Tn × Tn′ : (xK , y) ∈ SK ∧ ∀k /∈ K, −∞ ⩾ xk} .

Moreover, for K = ∅, let us denote X∅ = −∞. Note that the intersection S∩X∅ is either empty
or is equal to −∞, and that −∞ is a tropical Metzler spectrahedron (defined by the inequalities
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−∞ ⩾ xk for all k ∈ [n]). Hence, we have S = ∪K⊂[n] S ∩ XK = tconv(∪K⊂[n]S ∩ XK).
Therefore, the claim follows from Lemma 5.51. To prove the implication Theorem 5.5 (d)
to Theorem 5.5 (e), let S ⊂ Tn be a projection of a tropical Metzler spectrahedron S ⊂
Tn × Tn′ . By Proposition 4.14, there is a spectrahedron S ⊂ Kn+n′

⩾0 such that val(S) = S.
Let π : Kn+n′ → Kn, π : Tn+n′ → Tn denote the projections on the first n coordinates. Then
val(π(S)) = π(val(S)) = π(S) = S. The implication Theorem 5.5 (e) to Theorem 5.5 (a)
follows trivially from the fact that projected spectrahedra are semialgebraic (Proposition 2.18)
and convex.

5.6 Extension to general fields
In this section we partially extend Theorem 5.5 to general real closed valued fields and prove
Theorem 5.2. We want to do so using a model-theoretic argument. However, this requires to
control the size of the spectrahedra constructed in the proof of Theorem 5.5. As a consequence,
the proof is rather technical. We start by presenting a more effective version of Proposition 5.34.
This variant allows us to give a uniform bounds on the complexity of describing the pieces
involved in the piecewise description of the operator F . To formalize this uniformity, we fix
rational matrices B(1), . . . , B(q), B(s) ∈ Qms×n and, for every real vector c = (c(1), . . . , c(q)),
c(s) ∈ Rms , consider the set Sc ⊂ Rn defined as Sc :=

∪q
s=1{x ∈ Rn : B(s)x ⩽ c(s)}.

Lemma 5.52. There exists a number N ⩾ 1 that depends on B(1), . . . , B(q), but not on c,
such that if Sc is a nonempty real tropical cone, then the operator F : Rn → Rn, Fk(x) :=
max{yk : y ∈ Sc , y ⩽ x} defined in the proof of Proposition 5.34 has a piecewise description
(W(s), A(s), b(s))s∈[p] such that p ⩽ N , the matrices A(s) are rational and stochastic, and the
common denominator of all the numbers A(s)

kl is not greater than N .

Proof. Fix c such that Sc is a nonempty real tropical cone. We will show how to construct the
piecewise description of the operator F that has the desired properties. Given x ∈ Rn we denote
by Q(x) ⊂ [q] the set of all s ∈ [q] such that the polyhedron {y ∈ Rn : B(s)y ⩽ c(s), y ⩽ x} is
nonempty. Since Sc is a nonempty real tropical cone, the the set Q(x) is never empty (take an
arbitrary z ∈ Sc and consider λ+ z for λ ∈ R small enough). Therefore, by the strong duality
of linear programming ([Sch87, Corollary 7.1g]) we have

Fk(x) = max
s∈Q(x)

max{yk : B(s)y ⩽ c(s), y ⩽ x} (5.8)

= max
s∈Q(x)

min{z⊺c(s) + w⊺x : (B(s))⊺z + w = ϵk, z ⩾ 0, w ⩾ 0} , (5.9)

where ϵk denotes the kth vector of the standard basis. The polyhedron W(s)
k := {(z, w) ∈

Rms × Rn : (B(s))⊺z + w = ϵk, z ⩾ 0, w ⩾ 0} is pointed, and hence the minimum in (5.9) is
attained in some vertex of this polyhedron and these vertices are rational ([Sch87, Chapter 8]).
Let V (s)

k denote the set of vertices of W(s)
k . Therefore, we have

Fk(x) = max
s∈Q(x)

min
(z,w)∈V

(s)
k

{z⊺c(s) + w⊺x} . (5.10)

Moreover, by Farkas’ lemma (Theorem 4.36), the polyhedron {y ∈ Rn : B(s)y ⩽ c(s), y ⩽ x}
is nonempty if and only if for all (z, w) such that (B(s))⊺z + w = 0, z ⩾ 0, w ⩾ 0, we have
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z⊺c(s) +w⊺x ⩾ 0. As previously, if U (s) consists of precisely one rational representative of every
extreme ray of the polyhedral cone {(z, w) ∈ Rms × Rn : (B(s))⊺z + w = 0, z ⩾ 0, w ⩾ 0}, then
{y ∈ Rn : B(s)y ⩽ c(s), y ⩽ x} is nonempty if and only if z⊺c(s)+w⊺x ⩾ 0 for all (z, w) ∈ U (s). Let
U denote the disjoint union of U (1), . . . , U (q). For every possible choice ♢ ∈ {<,>,=}U we define
W̃♢ := {x ∈ Rn : ∀s ∈ [q], ∀(z, w) ∈ U (s), z⊺c(s) +w⊺x ♢(s,z,w) 0}. Note that Q(x) is constant on
each W̃♢. By fixing the terms achieving the maximum and minimum in (5.10) we subdivide the
sets W̃♢ into smaller sets, W̃♢ =

∪N♢
j=1 W̃♢

j such that every W̃♢
j is an intersection of half-spaces

(both open and closed) and F is affine on W̃♢
j . Since F is continuous (by Lemma 5.31), we can

then restrict ourselves to these sets W̃♢
j that are full dimensional, and this gives the piecewise

description of F . To see that F has the expected property, note that the definition of U (s) does
not depend on c. Therefore, the number of sets W̃♢ does not depend on c. Furthermore, the
definition of V (s)

k also does not depend on c. Hence, the numbers N♢ are bounded by a quantity
that does not depend on c. Moreover, by (5.10), the matrices A(s) are of the form A

(s)
k = w⊺.

Hence, the common denominator of the numbers A(s)
kl is bounded by a quantity that does not

depend on c. The fact that A(s) must be stochastic follows from Lemma 5.32.

Theorem 5.2 follows from Lemma 5.52 by a careful examination of the proofs presented in
Section 5.4. We split the proof into a series of lemmas. The first lemma is a uniform version of
Proposition 5.44.

Lemma 5.53. There exists a number N ⩾ 1 that depends on B(1), . . . , B(q), but not on c, such
that if Sc is a real tropical cone, then it is a projection of a real tropical Metzler spectrahedron
S(Q(0)|Q(1), . . . , Q(n′)), Q(k) ∈ Tm×m

± , satisfying n′ ⩽ N and m ⩽ N .

Proof. Suppose that Sc is a real tropical cone. We will examine all the steps involved in the
proof of Proposition 5.44. By Lemma 5.52 and the proof of Proposition 5.34, there exists N1 ⩾ 1
independent of c such that we have Sc = {x ∈ Rn : x ⩽ F (x)}, where the operator F : Rn → Rn

is semilinear, monotone, homogeneous, and has a piecewise description (W(s), A(s), b(s))s∈[p]
satisfying p ⩽ N1. Moreover, the matrices A(s) are stochastic, rational, and the common
denominator of all the numbers A(s)

kl is not greater than N1. By Theorem 5.27, the operator
F can be written as ∀k, Fk(x) = mini∈[Mk] maxs∈Ski

(A(s)
k x+ b

(s)
k ), where 1 ⩽ Mk ⩽ 2N1 for all

k ⩾ 1 and every set Ski is a subset of [p].
Given the operator F , the proof of Lemma 5.38 constructs a directed graph G⃗ satisfying

Assumption C. By the construction presented in the proof of Lemma 5.38, the vertices, edges,
and probability distributions of G⃗ depend on (n, (Mk)k, (Ski)ki, (A(s))s), but not on (b(s))s∈[p].
The vector (b(s))s∈[p] is used only to define the weights re associated with the edges of the graph.
Subsequently, the proof of Proposition 5.44 proceeds by applying Lemmas 5.41 to 5.43 to the
graph G⃗ and transforming it into a graph G⃗′. Let n′′ denote the number of Min vertices of G⃗′

and m′ denote the number of Max vertices of G⃗′. By the constructions given in Lemmas 5.41
to 5.43, the numbers n′′,m′ do not depend on the weights re associated with the edges of G⃗.
Hence, they do not depend on (b(s))s∈[p]. Given G⃗′, we apply Proposition 5.40 to construct some
symmetric tropical matrices Q̃(1), . . . , Q̃(n′′) such that Q̃(k) ∈ Tm′×m′

± . As a final step, the proof
of Proposition 5.44 transforms these matrices into matrices Q(0), Q(1), . . . , Q(n′) ∈ Tm×m

± by
adding some additional variables and 2 × 2 blocks to the matrices Q̃(1), . . . , Q̃(n′′). However, the
number of these additional variables and blocks depends only on n and n′′. As a consequence,
the numbers n′,m depend on (n, (Mk)k, (Ski)ki, (A(s))s), but not on (b(s))s∈[p].
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Since the number of possible tuples ((Mk)k, (Ski)ki, (A(s))s) is finite and bounded by a quan-
tity that depends only on n,N1 (not on c), the numbers n′,m are also bounded by a quantity
that does not depend on c.

The claim of the previous lemma can be extended to tropically convex sets using the proof
of Lemma 5.49.

Lemma 5.54. There exists a number N ⩾ 1 that depends on B(1), . . . , B(q), but not on c, such
that if Sc is tropically convex, then it is a projection of a real tropical Metzler spectrahedron
S(Q(0)|Q(1), . . . , Q(n′)), Q(k) ∈ Tm×m

± , satisfying n′ ⩽ N and m ⩽ N .

Proof. Let e = (1, 1, . . . , 1). For every s ∈ [q] we denote B̃(s) = [−B(s)e|B(s)] ∈ Qms×(n+1).
Then, the real homogenization of Sc is given by

Srh
c =

q∪
s=1

{(x0, x) ∈ Rn+1 : B̃(s)(x0, x)⊺ ⩽ c(s)} . (5.11)

Indeed, if we take any x0 ∈ R and x ∈ Sc such that B(s)x ⩽ c(s), then B̃(s)(x0, x0 + x)⊺ =
−x0B

(s)e+B(s)(x0+x) = B(s)x ⩽ c(s). Conversely, if (x0, x) is such that B̃(s)(x0, x)⊺ ⩽ c(s), and
we denote y = −x0 +x, then B(s)y = −x0B

(s)e+B(s)x = B̃(s)(x0, x)⊺ ⩽ c(s) and y ∈ Sc. Given
Sc, the proof of Lemma 5.49 considers its real homogenization Srh

c , describes it as a projection
of a real tropical Metzler spectrahedron S(Q̃(0)|Q̃(1), . . . , Q̃(n′)), and adds a 2 × 2 block to the
matrices Q̃(0), Q̃(1), . . . , Q̃(n′). Therefore, the claim follows from Lemma 5.53 and (5.11).

The next lemma is a more precise version of Lemma 5.51.

Lemma 5.55. Suppose that S1 ⊂ Tn is a projection of a tropical Metzler spectrahedron S1 =
S(Q̃(0)|Q̃(1), . . . , Q̃(n1)), Q̃(k) ∈ Tm1×m1

± and that S2 ⊂ Tn is a projection of a tropical Metzler
spectrahedron S2 = S(Q̂(0)|Q̂(1), . . . , Q̂(n2)), Q̂(k) ∈ Tm2×m2

± . Then, there exists a number N
that depends only on (n, n1,m1, n2,m2) such that tconv(S1 ∪ S2) is a projection of a tropical
Metzler spectrahedron S(Q(0)|Q(1), . . . , Q(n′)), Q(k) ∈ Tm′×m′

± satisfying n′,m′ ⩽ N .

Proof. The proof follows from an examination of the construction given in Lemma 5.51. More
precisely, the construction is as follows. The first step is to consider the homogenizations
Sh

1 ,S
h
2 and describe them as projections of tropical Metzler spectrahedra S̃1, S̃2. The matrices

that describe S̃1, S̃2 are constructed using Lemma 5.50, by taking the formal homogenizations
Sfh

1 ,Sfh
2 and adding variables and 2 × 2 blocks to the matrices that describe these formal

homogenizations. The number of these variables and blocks depends only on (n, n1, n2). Then,
the construction presented in Lemma 5.51 considers the set S̃1 × S̃2, which is a tropical Metzler
spectrahedron described by block diagonal matrices obtained by stacking the matrices that
describe S̃1, S̃2. Afterwards, the construction adds some 2 × 2 blocks to the matrices that
describe S̃1×S̃2 and the number of these blocks depends only on (n, n1, n2). This gives a tropical
Metzler spectrahedron S̃3 such that the homogenization of tconv(S1 ∪ S2) is its projection.
Finally, the other part of Lemma 5.50 is used: we add a 2 × 2 block to the matrices that
describe S̃3 and find the matrices Q(0), Q(1), . . . , Q(n′). Hence, the numbers n′,m′ depend only
on (n, n1,m1, n2,m2).

We are now ready to give a stratified version of Lemma 5.54 and prove Theorem 5.2. Suppose
that (fK,i)K⊂[n],i∈[qK ] is a collection of homogeneous polynomials with integer coefficients, fK,i ∈
Z[XK ], where XK = (xk1 , . . . , xkℓ

) for K = {k1, . . . , kℓ}, and we use the convention that f∅,i is
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the zero polynomial. Given a real vector c = (c(K,i))K,i, c(K,i) ∈ R we denote by Sc ⊂ Tn the
set ∪

K∈[n]

∪
i∈[qK ]

{x ∈ Tn : ∀k /∈ K,xk = −∞ ∧ ∀k ∈ K,xk ̸= −∞ ∧ fK,i(xK) ⩽ c(K,i)} . (5.12)

Lemma 5.56. There exists a number N ⩾ 1 that depends on (fK,i)K⊂[n],i∈[qK ], but not on c,
such that if Sc is tropically convex, then it is a projection of a tropical Metzler spectrahedron
S(Q(0)|Q(1), . . . , Q(n′)), Q(k) ∈ Tm×m

± , satisfying n′ ⩽ N and m ⩽ N .

Proof. The claim follows from the previous lemmas by analyzing the proof of Theorem 5.5.
Denote Sc = S and take any K ⊂ [n]. If K is nonempty, then the stratum of S associated with
K, denoted SK , is tropically convex and given by

SK =
∪

i∈[qK ]
{x ∈ TK : fK,i(x) ⩽ c(K,i)} .

Therefore, by Lemma 5.54, there exists NK (independent on c) and such that SK is a projection
of a real tropical Metzler spectrahedron SK ⊂ RnK , nK ⩽ NK , described by matrices of size
mK ⩽ NK . Moreover, as noted in the proof of Theorem 5.5, the set

S̃K =
∪

i∈[qK ]
{x ∈ Tn : ∀k /∈ K,xk = −∞ ∧ ∀k ∈ K,xk ̸= −∞ ∧ fK,i(xK) ⩽ c(K,i)}

is a projection of a tropical Metzler spectrahedron S̃K . This spectrahedron is constructed by
adding variables and 1 × 1 blocks to the matrices that describe SK , and the number of these
blocks and variables does not depend on c. Similarly, the set S∅ is either empty or reduced to
−∞ and thus it is a tropical Metzler spectrahedron. We conclude by applying Lemma 5.55 to
tconv(

∪
S̃K).

Proof of Theorem 5.2. Suppose that S ⊂ Kn is convex and semialgebraic. Fix a Lor-formula
ψ and a vector a ∈ Kn such that S = {x ∈ Kn : K |= ϕ(x, a)}. Then, by Theorem 3.1, the
set val(S) has closed semilinear strata. In particular, by Lemma 3.12, there exists a collection
(fK,i)K⊂[n],i∈[qK ] and a vector c = (c(K,i))K,i, c(K,i) ∈ Γ such that val(S) is of the form given
in (5.12), val(S) = Sc (we note that this form is also correct for K = ∅ because Γ is nontrivial).
For every b ∈ Km we denote Sb

:= {x ∈ Kn : K |= ϕ(x, b)}. If we fix N ⩾ 1, then the
statement “for all b, c such that Sb is convex and val(Sb) = Sc there exist symmetric matrices
Q(0), . . . , Q(n′), Q(k) ∈ Km′×m′ such that n′,m′ ⩽ N , n′ ⩾ n, and Sb has the same image by
valuation as the projection of the spectrahedron associated with Q(0), . . . , Q(n′)” is a sentence in
Lrcvf . This sentence is true if K = K and N is large enough. Indeed, in this case we can apply
Lemma 5.56 to Sc to describe it as a projection of a tropical Metzler spectrahedron and lift
this spectrahedron into K by Proposition 4.14. This spectrahedron fulfills the claim (as noted
in the proof of Theorem 5.5). Therefore, if we fix N such that the sentence above in true over
K, then the completeness result of Theorem 2.120 shows that this sentence is true in K.
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CHAPTER 6

Introduction to stochastic mean payoff
games

In this chapter we introduce the notion of stochastic mean payoff games and we show that these
games can be analyzed using monotone homogeneous operators (called Shapley operators).
Our presentation follows [AGG12]. The reference [AGG12] considered only deterministic mean
payoff games, but numerous proofs of [AGG12] extend immediately to the case of stochastic
mean payoff games. However, we add our two contributions. First, in Theorem 6.16 we show
that the supports of tropical cones defined as sublevels sets of Shapley operators correspond
to winning dominions of the underlying game (which is a nontrivial extension of the analogous
result of [AGG12]). Second, in Theorem 6.30 we combine the analysis of this chapter with
the previous one, showing the structural equivalence between tropicalizations of closed convex
semialgebraic cones and stochastic mean payoff games. The chapter is organized as follows. In
Section 6.1 we define the notion of a stochastic mean payoff game and the associated Shapley
operator. We also show how Kohlberg’s theorem [Koh80] can be used to prove that these games
have optimal policies. In Section 6.2 we study the dominions and show a simple version of the
Collatz–Wielandt property of [Nus86, AGG12]. In Section 6.3 we specify the analysis to the
case of bipartite games and give the relationship with the results of the previous chapter. A
simplified version of the results presented here is included in the paper [AGS18].
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6.1 Optimal policies and Shapley operators
A stochastic mean payoff game involves two players, Max and Min, who control disjoint sets of
states. The states owned by Player Max and Player Min are respectively denoted as VMax := [m]
and VMin := [n]. The space of states of the games is a disjoint union of VMax and VMin,
V := VMax ⊎VMin. We will use the symbols i, j to refer to states of Player Max, and k, l to states
of Player Min. Every state k ∈ [n] of Player Min is equipped with a finite and nonempty set A(k)

(called the set of actions). Similarly, every state i ∈ [m] of Player Max is equipped with a finite
and nonempty set B(i). Every action a ∈

⊎
k A

(k) is equipped with a probability distribution pa
k

over V , pa
k = (pa

kv)v∈V ∈ [0, 1]V ,
∑

v∈V p
a
kv = 1 and a real number ra ∈ R. Likewise, every action

b ∈
⊎

iB
(i) is equipped with a probability distribution pb

i = (pb
iv)v∈V ∈ [0, 1]V ,

∑
v∈V p

b
iv = 1

over V and a real number rb ∈ R. Both players alternatively move a pawn over these states
by the rules described as follows. When the pawn is on a state k ∈ [n], Player Min chooses an
action a ∈ A(k). Then, Player Min moves the pawn to state v ∈ V with probability pa

kv and
pays ra to Player Max. Similarly, once the pawn is on a state i ∈ [m], Player Max picks an
action b ∈ B(i). Then, Player Max moves the pawn to the state v ∈ V with probability pb

iv and
Player Min pays him rb.

A policy for Player Min is a function σ : [n] →
⊎

k A
(k) mapping every state k ∈ [n] to an

action σ(k) in A(k). Analogously, a policy for Player Max is a function τ : [m] →
⊎

iB
(i) such

that τ(i) ∈ B(i) for all i ∈ [m]. Suppose that the game starts from a state v∗. When players
play according to a couple (σ, τ) of policies, the movement of the pawn is described by a Markov
chain on the space V . The average payoff of Player Max in the long-term is then defined as the
average payoff of the controller in this Markov chain, see Definition 2.136. In other words, the
payoff of Player Max is given by

gv∗(σ, τ) = lim
N→∞

Eσ,τ

( 1
N

N∑
p=1

rξ(vp)
)
, (6.1)

where the expectation Eσ,τ is taken over all the trajectories v1, . . . , vN starting from v1 = v∗

in the Markov chain, and the function ξ is defined as ξ(k) := σ(k) for k ∈ [n] and ξ(i) := τ(i)
for i ∈ [m]. This payoff is well defined by Theorem 2.137. The goal of Player Max is to find a
policy that maximizes his average payoff, while Player Min aims at minimizing this quantity.
The main theorem of stochastic mean payoff games ensures that this game has a well-defined
optimal policies. This was shown by Liggett and Lippman [LL69].

Theorem 6.1 ([LL69]). There exists a pair of policies (σ, τ) and a unique vector χ ∈ RV such
that for all initial states v ∈ V , the following two conditions are satisfied:

• for each policy σ of Player Min, χv ⩽ gv(σ, τ);
• for each policy τ of Player Max, χv ⩾ gv(σ, τ).

The vector χ called the value of the game, while the policies (σ, τ) are called optimal. We note
that we have χv = gv(σ, τ) for all v ∈ V .

The first condition in Theorem 6.1 states that, by playing according to the policy τ , Player
Max is certain to get an average payoff greater than or equal to the value χv associated with
the initial state. Symmetrically, Player Min is ensured to limit her average loss to the quantity
χv by following the policy σ.
Example 6.2. Consider the game is depicted in Fig. 6.1. The states of Player Min are depicted
by circles. The states of Player Max are depicted by squares. Moreover, all probabilities in
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Figure 6.1: Stochastic mean payoff game considered in Example 6.2.

this example belong to {0, 1/2, 1}. More precisely, edges represent the actions of players. Edges
without full dots represent deterministic actions and full dots indicate actions where a coin
toss is made. The corresponding payments received by Player Max are indicated on the edges.
Observe that both players in this game have only two policies: at state 2 Player Max can
choose the move that goes to 1 or the one that goes to 3 , whereas at state 3 Player Min can
choose the move

{
1 , 3

}
or the move

{
2 , 3

}
. Both players in this example game have only

two policies: at state 2 Player Max can choose the action that goes to 1 or the action that
goes to 3 , whereas at state 3 Player Min can choose the action that goes to

{
1 , 3

}
or the

action that goes to
{

2 , 3
}
. Suppose that Player Max chooses the action that goes to 1 and

that Player Min chooses the action that goes to
{

1 , 3
}
. The Markov chain obtained in this

way has the transition matrix of form

P =
[

0 Y
Z 0

]
,

where Y describes the probabilities of transition from circle states to square states, and Z
describes the probabilities of transition from square states to circle states, i.e.,

Y =


1 2 3

1 1/2 1/2 0
2 0 1 0
3 1/2 0 1/2

 , Z =


1 2 3

1 0 0 1
2 1 0 0
3 0 1 0

 .
This chain has only one recurrent class and all states belong to this class. Moreover, it is

easy to verify that
π = 1

10
(2, 1, 2, 2, 2, 1) ∈ RVMin × RVMax

is the stationary distribution of this chain. Therefore, by Theorem 2.137, the payoff of Player
Max is equal to

g
({

1 , 3
}
, { 1 }

)
= 1

10
(−6

4
+ 2 − 2 + 9

4
) = 3

40
for every initial state. Similarly, if Player Max chooses the action that goes to 1 and Player
Min chooses the action that goes to

{
2 , 3

}
, then the transition matrix of the induced Markov

chain has the form P ′ =
[ 0 Y ′

W 0
]
, where

Y ′ =


1 2 3

1 1/2 1/2 0
2 0 1 0
3 0 1/2 1/2
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and Z is the same as previously. In this case the chain also has only one recurrent class and
every state belongs to this class. Furthermore,

π′ = 1
14

(4, 1, 2, 2, 4, 1) ∈ RVMin × RVMax

is the stationary distribution of this chain. Hence the payoff of Player Max is equal to

g
({

2 , 3
}
, { 1 }

)
= 1

14
(2 − 4 + 9

4
) = 1

56

for every initial state. In both cases, the payoff of Player Max is positive. Therefore, if Player
Max chooses the action that goes to 1 , then he is guaranteed to obtain a nonnegative payoff.
One can check, by doing the same calculations for the remaining policies, that

({
2 , 3

}
, { 1 }

)
is the unique couple of optimal policies in this game and the value of the game is equal to
χ = 1

56(1, 1, 1, 1, 1, 1).
In this section we prove Theorem 6.1 using the associated Shapley operator. This proof

was given in [AGG12] in the case of deterministic mean payoff games (i.e., when all probability
distributions are reduced to vectors in {0, 1}V ). However, the proof in the stochastic case is the
same as the one given in [AGG12], and we reproduce it here for the sake of completeness.

Definition 6.3. Given a stochastic mean payoff game, we define its Shapley operator T : TV →
TV as

∀v ∈ V, (T (x))v :=
{

mina∈A(v)(ra +
∑

w∈V p
a
vwxw) if v ∈ VMin

maxb∈B(v)(rb +
∑

w∈V p
b
vwxw) if v ∈ VMax ,

(6.2)

where we use the convention that −∞ · 0 = 0 and −∞ · x = −∞ for all x > 0.

The basic properties of Shapley operators are summarized in the next lemma.

Lemma 6.4. The Shapley operator T is monotone and homogeneous. Furthermore, it preserves
RV (i.e., if x ∈ RV , then T (x) ∈ RV ) and its restriction T|RV : RV → RV is piecewise affine.

Proof. The facts that T is monotone, homogeneous, and preserves RV follow immediately from
the definition. Its restriction to RV is piecewise affine because it is defined as a coordinatewise
minimum or maximum of affine functions.

Our proof of Theorem 6.1 is based on the notion of invariant half-line and the following
result of Kohlberg [Koh80].

Definition 6.5. Given a function f : Rn → Rn, we say that a pair (u, η) ∈ Rn × Rn is an
invariant half-line of f if there exists γ0 ⩾ 0 such that the equality f(u+γη) = u+(γ+1)η holds
for all γ ⩾ γ0. Given a function f : Tn → Tn that preserves Rn, we say that (u, η) ∈ Rn ×Rn is
an invariant half-line of f if it is an invariant half-line of f|Rn : Rn → Rn.

Theorem 6.6 ([Koh80]). Suppose that function f : Rn → Rn is piecewise affine and nonexpan-
sive in any norm. Then, it admits and invariant half-line. Furthermore, if (u1, η1) and (u2, η2)
are invariant half-lines, then η1 = η2.

Later on, we will need a more precise formulation of Kohlberg’s theorem. Therefore, we
present its proof in Appendix B.3.
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Corollary 6.7. Suppose that f : Rn → Rn is a monotone, homogeneous, and piecewise affine
function. Then, it admits and invariant half-line (u, η, γ0). Furthermore, if x ∈ Rn is any point,
then we have the equality

lim
N→∞

1
N
fN (x) = η ,

where fN = f ◦ f ◦ · · · ◦ f (N times). In particular, this limit exists.

Proof. The function f is nonexpansive in the supremum norm by Lemma 5.31. As a conse-
quence, it admits an invariant half-line by Theorem 6.6. In particular, for every x ∈ Rn we
have

∥fN (x) −Nη − u− γ0η∥∞ = ∥fN (x) − fN (u+ γ0η)∥∞ ⩽ ∥x− u− γ0η∥∞

and limN→∞
1
N f

N (x) = η.

In order to prove Theorem 6.1, we introduce the following notation. If σ is a policy of Player
Min, then we denote by T σ the Shapley operator of a game in which Player Min uses σ (i.e., a
game in which every state k ∈ [n] controlled by Player Min is equipped with exactly one action
and this action is σ(k)). Analogously, if τ is a policy of Player Max, then we denote by T τ the
Shapley operator of a game in which Player Max uses τ . Furthermore, we denote by T σ,τ the
Shapley operator of a game in which Player Min uses σ and Player Max uses τ . In an explicit
way, these operators are given by

∀v ∈ V, (T σ(x))v :=
{
rσ(v) +

∑
w∈V p

σ(v)
vw xw if v ∈ VMin

maxb∈B(v)(rb +
∑

w∈V p
b
vwxw) if v ∈ VMax ,

∀v ∈ V, (T τ (x))v :=
{

mina∈A(v)(ra +
∑

w∈V p
a
vwxw) if v ∈ VMin

rτ(v) +
∑

w∈V p
τ(v)
vw xw if v ∈ VMax ,

∀v ∈ V, (T σ,τ (x))v :=

rσ(v) +
∑

w∈V p
σ(v)
vw xw if v ∈ VMin

rτ(v) +
∑

w∈V p
τ(v)
vw xw if v ∈ VMax .

The properties of these operators are given in the next lemmas.

Lemma 6.8. If we fix x ∈ RV , then the set {T σ(x) : σ is a policy of Player Min} ⊂ RV has a
well defined minimum in the partial order given by y ⩽ z ⇐⇒ ∀v ∈ V, yv ⩽ zv. Moreover, this
minimum is equal to T (x). Analogously, the set {T τ (x) : τ is a policy of Player Max} ⊂ RV

has a well defined maximum in this partial order and this maximum is equal to T (x).

Proof. By definition we have (T σ(x))v ⩾ (T (x))v for all v ∈ V . Furthermore, for every state
k ∈ [n] we can take an action a∗ ∈ A(k) that satisfies ra∗ +

∑
w∈V p

a∗
vwxw = mina∈A(k)(ra +∑

w∈V p
a
vwxw) and define σ∗(k) := a∗. The policy σ∗ satisfies (T σ∗(x))v = (T (x))v for all v ∈ V .

The other case is analogous.

Lemma 6.9. If Player Min uses a policy σ and Player Max uses a policy τ , then the expected
total payoff of Player Max after the N th move of the pawn is equal to (T σ,τ )N (0).

Proof. We prove the claim by induction. Let gN ∈ RV denote the expected payoff of Player
Max after the Nth move of the pawn. We want to show that gN = (T σ,τ )N (0) for all N ⩾ 1.
The case N = 1 is trivial. Moreover, observe that for all N ⩾ 2, gN satisfies the recurrence

∀v ∈ V, gN
v =

rσ(v) +
∑

w∈V p
σ(v)
vw gN−1

w if v ∈ VMin

rτ(v) +
∑

w∈V p
τ(v)
vw gN−1

w if v ∈ VMax .
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Moreover, for every v ∈ V we have

(
(T σ,τ )N (0)

)
v

=
(
T
(
(T σ,τ )N−1(0)

))
v

=

rσ(v) +
∑

w∈V p
σ(v)
vw

(
(T σ,τ )N−1(0)

)
w

if v ∈ VMin

rτ(v) +
∑

w∈V p
τ(v)
vw

(
(T σ,τ )N−1(0)

)
w

if v ∈ VMax .

Hence gN = (T σ,τ )N (0) for all N ⩾ 1.

Lemma 6.10. Suppose that (u, η) is an invariant half-line of T . Then, there exists a couple of
policies (σ, τ) such that (u, η) is also an invariant half-line of the operators T σ and T τ .

Proof. By Lemma 6.8, for every sufficiently large ℓ ⩾ 0, there exists a policy σℓ such that
T σℓ(u+ ℓη) = T (u+ ℓη) = u+ (ℓ+ 1)η. Let σ be a policy such that σ = σℓ for infinitely many
values of ℓ that belong to natural numbers. In this way we have T σ(u+ ℓη) = u+ (ℓ+ 1)η for
infinitely many natural numbers ℓ. Since the function T σ

|RV is piecewise affine, the same is true
for the function of one variable ℓ 7→ T σ(u+ ℓη). Hence, we have T σ(u+ ℓη) = u+ (ℓ+ 1)η for
every sufficiently large ℓ. The construction of τ is analogous.

We can now present the proof of Theorem 6.1.

Proof of Theorem 6.1. By Lemma 6.4 and Corollary 6.7, T admits an invariant half-line (u, η).
Let (σ, τ) be a couple of policies that satisfy the claim of Lemma 6.10. Suppose that τ is any
policy of Player Max. By Lemma 6.9 and Corollary 6.7, for all v ∈ V we have

g(σ, τ)v = lim
N→∞

((
T σ,τ

)N (0)
)

v

N
⩽ lim

N→∞

((
T σ
)N (0)

)
v

N
= ηv .

Analogously, if σ is any policy of Player Min, then for all v ∈ V we have g(σ, τ)v ⩾ ηv. Hence,
the policies (σ, τ) are optimal.

Remark 6.11. The proof above shows that if (u, η) is an invariant half-line of T , then η is the
value of the game, χ = η.

6.2 Sublevel sets, dominions, and the Collatz–Wielandt property

In this section we analyze the sublevel sets S := {x ∈ TV : x ⩽ T (x)}, where T is a Shapley
operator. Since Shapley operators are monotone and homogeneous, the set S is a tropical cone
(this can be proven as in Proposition 5.34). Furthermore, observe that S always contains the
point −∞. We are interested in characterizing the situations in which this cone is nontrivial,
i.e., contains a point different than −∞. This was done for deterministic games in [AGG12,
Theorem 3.2] and we extend this result to stochastic games. This requires to introduce the
definition of a dominion.

Definition 6.12. We say that a set W ⊂ V is a dominion (for Player Max) if the following
two conditions are satisfied:

(i) Player Min cannot leave W . In other words, for every state k ∈ VMin ∩W and every action
a ∈ A(k) we have

∑
v∈W pa

kv = 1.
(ii) Player Max can ensure that the game stays in W provided that it starts in W . In other

words, for every state i ∈ VMax∩W there exists an action b ∈ B(i) such that
∑

v∈W pb
iv = 1.
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Figure 6.2: A mean payoff games illustrating the notion of dominions.

If W ⊂ V is a dominion, then we defined a game induced by W in the following way. The space
of states of the induced game is equal to W , the actions of Player Min are the same as her
actions in the original game, and the set of actions of Player Max consist of these actions that
fulfill the condition of Item (ii). The value of the induced game is called an induced value. If the
induced value is nonnegative for every state belonging to W , then we say that this dominion is
winning (for Player Max).

We note that the dominions are extensively used in the deterministic subexponential algo-
rithm for parity games of [JPZ08] (however, the authors of [JPZ08] use the term “dominion”
for what we call a winning dominion). Moreover, dominions are related to ergodicity conditions
of stochastic games. This was studied in [BEGM15] for the class of games considered here and,
in a more general setting of games with infinite action spaces, in [AGH15].

Lemma 6.13. Let χ ∈ RV denote the value of a stochastic mean payoff game. If W ⊂ V is
a dominion, and χ̃ ∈ RW denotes the value of the game induced by W , then χ̃v ⩽ χv for all
v ∈ W .

Proof. Let τ be an optimal policy of Player Max in the induced game. Take any policy τ∗ of
Player Max in the original game that agrees with τ on W , i.e., satisfies τ∗(v) = τ(v) for every
v ∈ W . Let σ be any policy of Player Min in the original game. By the definition of dominion,
if the Markov chain induced by (σ, τ∗) starts in a state belonging to W , then it never leaves
W . In particular, the choice of τ∗ guarantees an expected payoff of at least χ̃ to Player Max,
g(σ, τ∗)v ⩾ χ̃v for every v ∈ W . Hence, by the definition of value, we have χv ⩾ χ̃v for all
v ∈ V .

Lemma 6.14. Let χ ∈ RV denote the value of a stochastic mean payoff game, and let W ⊂ V
denote the set of all states with the maximal value, v ∈ W ⇐⇒ χv = maxw∈V χw. Then, the
set W is a dominion. Moreover, the induced value of every state in this dominion is the same
as in the original game, i.e., it is equal to maxw∈V χw.

Proof. Let T : TV → TV denote the Shapley operator associated with the game and let (u, χ)
be an invariant half-line of T (such a half-line exists by Remark 6.11). Moreover, denote
χ∗ = maxv∈V χv. Suppose that k ∈ W ∩ VMin and let a ∈ A(k) be any action. Then, for large
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γ ⩾ 0 we have

uk + (γ + 1)χ∗ = (T (u+ γχ))k ⩽ ra +
∑
v∈V

pa
kv(uv + γχv) = ra +

∑
v∈V

pa
kvuv + γ

∑
v∈V

pa
kvχv . (6.3)

Observe that if
∑

v∈W pa
kv < 1, then

∑
v∈V p

a
kvχv < χ∗, which gives a contradiction with (6.3)

for sufficiently large γ. Hence
∑

v∈W pa
kv = 1. Similarly, let i ∈ W ∩ VMax and let B̃(i) ⊂ B(i)

denote the set of actions of Player Max at state i such that b ∈ B̃(i) ⇐⇒
∑

v∈W pb
iv = 1.

Observe that if b /∈ B̃(i), then
∑

v∈V p
b
ivχv < χ∗ and the inequality

ui + (γ + 1)χ∗ = (T (u+ γχ))i ⩾ rb +
∑
v∈V

pb
iv(uv + γχv)

is strict for sufficiently large γ. Therefore, the set B̃(i) is nonempty and

ui+(γ+1)χ∗ = (T (u+γχ))i = max
b∈B(i)

(
rb+

∑
v∈V

pb
iv(uv+γχv)

)
= max

b∈B̃(i)

(
rb+

∑
v∈V

pb
iv(uv+γχv)

)
(6.4)

for sufficiently large γ. Thus, W is a dominion. Moreover, if T̃ : TW → TW denotes the Shapley
operator of the induced game, then (6.4) shows that (uW , χW ) is an invariant half-line of T̃ and
the claim follows from Remark 6.11.

Example 6.15. Consider the game presented in Fig. 6.2. The states 1 , 2 , and 3 have positive
values. The minimal (inclusionwise) dominions are given by { 1 , 1 }, { 3 , 2 }, { 4 , 3 }, and
{ 2 , 3 , 4 , 2 , 3 }. Note that the value of the game induced by { 1 , 1 } is negative. On the
other hand, 3 has the greatest value and the game induced by { 3 , 2 } has the same value
as 3 . The state 1 has positive value, but it does not belong to any winning dominion.
This highlights the difference between deterministic and stochastic mean payoff games—in the
deterministic case, the set of all states with nonnegative values forms a winning dominion.

The following theorem characterizes the feasibility of the set S.

Theorem 6.16. Let λ ∈ R be a real number and consider the set Sλ := {x ∈ TV : λ+x ⩽ T (x)}.
If K ⊂ V is a nonempty subset, then the stratum of Sλ associated with K is nonempty if and
only if K is a dominion and every state of this dominion has an induced value that is not smaller
than λ.

The proof requires the following observation.

Lemma 6.17. Suppose that λ + x ⩽ T (x) for some x ∈ RV and λ ∈ R. Then, the value of
every state of the game is not smaller than λ.

Proof. Since T is monotone and homogeneous, we have TN (x) ⩾ Nλ+ x for all N ⩾ 1 and the
claim follows from Corollary 6.7 and Remark 6.11.

Proof of Theorem 6.16. Fix a nonempty subset K ⊂ V and let x ∈ Sλ be a point with support
equal to K. We will show that K is a dominion. To see that, let k ∈ K be a state controlled by
Player Min. If there exists an action a ∈ A(k) such that

∑
v∈K pa

kv < 1, then λ+xk ⩽ (T (x))k ⩽
ra +

∑
v∈V p

a
kvxv = −∞, which gives a contradiction. Similarly, if i ∈ K is a state controlled by

Player Max and we have
∑

v∈W pb
iv < 1 for every action b ∈ B(i), then λ+ xi ⩽ (T (x))i = −∞,

which gives a contradiction. Hence K is a dominion. Furthermore, let T̃ : TK → TK denote
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the Shapley operator of the induced game. Observe that (T̃ (xK))v = (T (x))v ⩾ λ + xv for all
v ∈ K. Therefore, by Lemma 6.17, the induced value of every state in K is not smaller than λ.

To prove the opposite implication, suppose that K ⊂ V is a dominion such that every state
of this dominion has an induced value that is not smaller than λ. Let T̃ : TK → TK be the
Shapley operator of the induced game, and let (u, η) be an invariant half-line of T̃ . Take any
γ ⩾ 0 such that T̃ (u + γη) = u + (γ + 1)η ⩾ λ + u + γη and consider the point x := u + γη.
Let x̃ ∈ TV be defined as x̃v := xv if v ∈ K and x̃v := −∞ otherwise. Observe that for every
v ∈ K we have λ + x̃v = λ + xv ⩽ (T̃ (x))v = (T (x̃))v. Moreover, for every v /∈ K we have
λ+ x̃v = −∞ ⩽ (T (x̃))v.

As a corollary, we obtain the following property.

Corollary 6.18 (Collatz–Wielandt property). Let T be a Shapley operator of a stochastic mean
payoff game and χ ∈ RV be its value. Then, we have the equalities

max
v∈V

χv = max{λ ∈ R : ∃x ∈ TV , x ̸= −∞, λ+ x ⩽ T (x)} ,

min
v∈V

χv = max{λ ∈ R : ∃x ∈ RV , λ+ x ⩽ T (x)} .

Proof. Note that V is trivially a dominion. Therefore, by Theorem 6.16, the set {x ∈ RV : λ+
x ⩽ T (x)} is nonempty if and only if λ ⩽ minv∈V χv. This shows the second equality. To show
the first equality, observe that maxv∈V χv ⩾ sup{λ ∈ R : ∃x ∈ TV , x ̸= −∞, λ + x ⩽ T (x)}.
Indeed, if x ∈ TV \ {−∞} is such that λ+x ⩽ T (x), then Theorem 6.16 shows that the support
of x is a dominion and the induced value of every state of this dominion is not smaller than λ.
Since the induced value is not greater than the value in the original game (by Lemma 6.13),
this means that every state in the support of x has a value not smaller than λ. Conversely,
let W ⊂ V denote the set of all vertices with the maximal value and let λ∗ = maxv∈V χv.
By Lemma 6.14 and Theorem 6.16, there exists a point x ∈ TV with support W such that
λ∗ + x ⩽ T (x). This shows the first equality.

Remark 6.19. The results of this section can be easily dualized by considering the dominions
of Player Min instead of Player Max and by replacing the inequalities λ + x ⩽ T (x) with
λ+ x ⩾ T (x).1 In particular, the Collatz–Wielandt property gives the equalities

max
v∈V

χv = min{λ ∈ R : ∃x ∈ RV , λ+ x ⩾ T (x)} ,

min
v∈V

χv = min{λ ∈ R : ∃x ∈ (R ∪ {+∞})V , x ̸= +∞, λ+ x ⩾ T (x)} .

6.3 Bipartite games, their operators, and graphs
We now specify the notions introduced in the previous section to the case of bipartite games and
their operators. This is useful because bipartite games correspond to the operators considered
in Chapter 5.

Definition 6.20. We say that a stochastic mean payoff game is bipartite if none of the players
controls the pawn for two moves in a row. More formally, a game is bipartite if

∑
i∈VMax

pa
ki = 1

1One should also consider the Shapley operator as a function T : (R ∪ {+∞})V → (R ∪ {+∞})V .
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for every state k ∈ VMin and every action a ∈ A(k) and
∑

k∈VMin
pb

ik = 1 for every state i ∈ VMax
and every action b ∈ B(i). If a game is bipartite, then we define its bipartite Shapley operator
F : TVMin → TVMin as

∀k ∈ VMin, (F (x))k := min
a∈A(k)

(
ra +

∑
i∈VMax

pa
ki max

b∈B(i)

(
rb +

∑
l∈VMin

pb
ilxl

))
. (6.5)

Lemma 6.21. A bipartite Shapley operator F : TVMin → TVMin is monotone, homogeneous, and
preserves RVMin. Moreover, its restriction F|RVMin is piecewise affine.

Sketch of the proof. The fact that F is monotone, homogeneous, and preserves RVMin follows
from its definition. Moreover, its restriction F|RVMin is piecewise affine because a coordinatewise
minimum/maximum of piecewise affine functions is piecewise affine.

Lemma 6.22. Suppose that a stochastic mean payoff game is bipartite, let T : TV → TV be
its Shapley operator and F : TVMin → TVMin be its bipartite Shapley operator. Then, for every
x ∈ TV , every k ∈ VMin, and every N ⩾ 1 we have (FN (xVMin))k = (T 2N (x))k. Moreover,
if (u, χ) is an invariant half-line of T , then (uVMin , 2χVMin) is an invariant half-line of F . In
particular, for every x ∈ RVMin and every k ∈ VMin we have limN→∞

1
2N (FN (x))k = χk.

Proof. First, by the definition of Shapley operator and the fact that the game is bipartite, we
have

∀k ∈ VMin, (T 2(x))k = min
a∈A(k)

(
ra +

∑
i∈VMax

pa
ki(T (x))i

)
= min

a∈A(k)

(
ra +

∑
i∈VMax

pa
ki max

b∈B(i)

(
rb +

∑
l∈VMin

pb
ilxl

))
= (F (xVMin))k .

This proves the first claim for N = 1. The claim for other N follows by induction from the fact
that

(T 2N (x))k =
(
T 2(T 2N−2(x)

))
k

=
(
F
((
T 2N−2(x)

)
VMin

))
k

=
(
F
(
FN−1(xVMin)

))
k

= (FN (xVMin))k .

Second, if (u, η) is an invariant half-line of T , then for γ ⩾ 0 large enough and every k ∈ VMin
we have

(F (uVMin + 2γηVMin))k = (T 2(u+ 2γη))k = uk + (γ + 1)(2ηk)

and (uVMin , 2χVMin) is an invariant half-line of F . The rest of the claim follows from Corollary 6.7
and Remark 6.11.

Definition 6.23. If the game is bipartite and W ⊂ VMin is a subset of states controlled by
Player Min, then we denote by V (W ) ⊂ V the set of vertices that are reachable from W in at
most one step, i.e., V (W ) := W ∪ {i ∈ VMax : ∃k ∈ W,∃a ∈ A(k), pa

ki > 0}.

Proposition 6.24. If λ ∈ R is a real parameter and W ⊂ VMin, then the set {x ∈ TVMin : λ+x ⩽
F (x)} has a nonempty stratum associated with W if and only if V (W ) is a dominion and every
state of this dominion has an induced value that is not smaller than 1

2λ.
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Proof. Suppose that V (W ) is a dominion such that its induced value is not smaller than 1
2λ for

all states in V (W ). Then, by Theorem 6.16, there exists a point x ∈ TV with support V (W )
such that 1

2λ+ x ⩽ T (x). In particular, for every k ∈ VMin we have

λ+ xk ⩽ 1
2
λ+ min

a∈A(k)
(ra +

∑
i∈VMax

pa
kixi) = min

a∈A(k)

(
ra +

∑
i∈VMax

pa
ki(

1
2
λ+ xi)

)
⩽ min

a∈A(k)

(
ra +

∑
i∈VMax

pa
ki max

b∈B(i)

(
rb +

∑
l∈VMin

pb
ilxl

))
= (F (xVMin))k .

Hence, xVMin satisfies λ+xVMin ⩽ F (xVMin) and the support of xVMin is equal to W . Conversely,
suppose that x ∈ TVMin is a point with support W and such that λ+ x ⩽ F (x). Define a point
x̃ ∈ TV as

x̃v :=


1
2λ+ xv if v ∈ W

maxb∈B(v)(rb +
∑

k∈VMin
pb

vkxk) if v ∈ V (W ) ∩ VMax

−∞ otherwise .

Observe that for every k ∈ W we have

1
2
λ+ x̃k = λ+ xk ⩽ min

a∈A(k)

(
ra +

∑
i∈VMax

pa
ki max

b∈B(i)

(
rb +

∑
l∈VMin

pb
ilxl

))
= min

a∈A(k)

(
ra +

∑
i∈V (W )∩VMax

pa
ki max

b∈B(i)

(
rb +

∑
l∈VMin

pb
ilxl

))
= min

a∈A(k)
(ra +

∑
i∈VMax

pa
kix̃i) = (T (x̃))v .

Furthermore, for every i ∈ V (W ) ∩ VMax we have

1
2
λ+ x̃i = max

b∈B(i)

(
rb +

∑
k∈VMin

pb
ik(1

2
λ+ xk)

)
= max

b∈B(i)
(rb +

∑
k∈VMin

pb
ikx̃k) = (T (x̃))i .

Hence 1
2λ+ x̃ ⩽ T (x). By Theorem 6.16, the support of x̃ is a dominion. Moreover, the support

of x̃ contains W and is included in V (W ). Note that every dominion that contains W must
also contain V (W ). Hence, the support of x̃ is equal to V (W ) and the claim follows from
Theorem 6.16.

Corollary 6.25. We have the equalities

2 max
v∈VMin

χv = 2 max
v∈V

χv = max{λ ∈ R : ∃x ∈ TVMin , x ̸= −∞, λ+ x ⩽ F (x)} ,

2 min
v∈VMin

χv = 2 min
v∈V

χv = max{λ ∈ R : ∃x ∈ RVMin , λ+ x ⩽ F (x)} .

The proof of Corollary 6.25 is similar to the proof of Corollary 6.18, but requires a simple
lemma.

Lemma 6.26. If a stochastic mean payoff game is bipartite, then W := V (VMin) is a dominion
and all states in the game induced by W have the same value as in the original game.



120 Chapter 6. Introduction to stochastic mean payoff games

Proof. The fact that W is a dominion follows from the definition. To prove the rest of the claim,
let T : TV → TV denote the Shapley operator of the original game and T̃ : TW → TW denote
the Shapley operator of the induced game. Observe that if a state i ∈ VMax belongs to W , then
all actions of Player Max are preserved in the induced game. In particular, if (u, η) ∈ RV ×RV

is an invariant half-line of T , then (uW , ηW ) ∈ RW × RW is an invariant half-line of T̃ . This
implies, by Remark 6.11, that all states in the game induced by W have the same value as in
the original game.

Sketch of the proof of Corollary 6.25. Let us start by showing the equalities maxv∈VMin χv =
maxv∈V χv and minv∈VMin χv = minv∈V χv. To do so, recall (from Theorem 6.1) that if (σ, τ) is
a couple of optimal policies, then we have the equality g(σ, τ) = χ. Hence, by Theorem 2.137,
the maximal and minimal value of the game are achieved in some recurrent classes of the
Markov chain induced by fixing (σ, τ). Since the game is bipartite, this classes contain states
controlled by both players. The rest of the proof is similar to the proof of Corollary 6.18.
First, note that W := V (VMin) is a dominion by Lemma 6.26. Hence, applying Proposition 6.24
to W gives the second equality. To prove the first equality, note that we have the inequality
2 maxv∈V ⩾ sup{λ ∈ R : ∃x ∈ TVMin , x ̸= −∞, λ + x ⩽ F (x)} by Lemma 6.13 and Proposi-
tion 6.24. Conversely, if W̃ ⊂ V denotes the set of all states with maximal value, then (by
Lemma 6.14) W̃ is a dominion such that every state in the induced game has value maxv∈V χv.
By applying Lemma 6.26 to the game induced by W̃ we see that W := V (VMin ∩ W̃ ) is a do-
minion and that every state in this dominion has induced value maxv∈V χv. The claim follows
from Proposition 6.24.

Let us now explain how to connect the bipartite games and their Shapley operators with
the graphs and operators discussed in Section 5.3. Given a bipartite stochastic mean payoff
game, we can represent it using a directed graph G⃗ with Min, Max, and Random vertices. The
sets of Min and Max vertices of G⃗ are given by VMin and VMax respectively. The set of Random
vertices of G⃗ is created as follows. For every nondeterministic action a ∈ A(k) of player Min,2
we create a vertex va ∈ VRand. We add the edge (k, va) to G⃗. Moreover, we add the edges (va, i)
for every i ∈ VMax such that pa

ki > 0. Furthermore, we put (pa
ki)i as the probability distribution

associated with va. We do an analogous operation for every nondeterministic action of Player
Max. Then, for every deterministic action a ∈ A(k) of Player Min we take i ∈ VMax such that
pa

ki = 1 and add the edge (k, i) to G⃗. This edge is equipped with the payoff

rki := min
{a∈A(k), pa

ki
=1}

ra .

This definition of the payoff comes from the fact that, a priori, there may be more than one
deterministic action of Player Min at state k that leads to the state i. (However, these actions
are redundant in the sense that it is always profitable for Player Min to choose such an action
with the minimal payoff ra.) We do an analogous operation for every deterministic action of
Player Max. The following lemma connects the bipartite Shapley operators with the operators
considered in Section 5.3.

Lemma 6.27. Given a bipartite stochastic mean payoff game with rational probabilities, let G⃗
be its graph as constructed above. Then, G⃗ fulfills Assumption C. Furthermore, the operator
encoded by G⃗ (as given in Definition 5.36) is equal to the bipartite Shapley operator of the game
(restricted to Rn).

2By a nondeterministic action, we mean an action whose outcome is randomized, i.e., such that the associated
probability distribution has an entry in the open interval ]0, 1[. Otherwise, we say that an action is deterministic.
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Proof. The claim follows immediately from the definitions.

Conversely, given a graph G⃗ as in (5.2), and its operator F : Rn → Rn of the form considered
in (5.2), we can constructed a bipartite stochastic mean payoff game with F as its Shapley
operator. This is done as follows (we use the same notation as in (5.2)). We put VMin := [n] and
VMax := [m]. Then, for every state v ∈ [n] of Player Min and every outgoing edge e ∈ Out(v),
we equip this state with an action a := e, whose associated probability distribution is equal
to (pe

w)w∈[m] and payoff is equal to re. Similarly, for every state w ∈ [m] of Player Max and
every outgoing edge e′ ∈ Out(w) we equip this state with an action b := e′ whose associated
probability distribution is equal to (pe′

v )v∈[n] and payoff is equal to re′ . Since we suppose that
every vertex of G⃗ has at least one outgoing edge, the resulting game is well defined (i.e., every
state is equipped with at least one action). If F̃ : Tn → Tn denotes the Shapley operator of
this game, then by definition we have F̃|Rn = F . Therefore, the Shapley operator of the game
is an extension of F from Rn to Tn. Combining this observation with the results of previous
chapter, we can characterize the tropicalizations of closed convex semialgebraic sets in terms of
Shapley operators of stochastic mean payoff games. Before doing so, let us define the notion of
a support of a tropically convex set.

Definition 6.28. If S ⊂ Tn is a tropically convex set, then we define its support as the largest
set K ⊂ [n] such that the stratum SK is nonempty (with the convention that if S is empty,
then its support is equal to ∅).

Remark 6.29. We note that the support is well defined and unique. Indeed, if x, y ∈ S are two
points, then z := x⊕ y belongs to S by tropical convexity and the support of z is equal to the
union of the supports of x and y. Hence, the support of S is the union of all supports of points
in S.

Theorem 6.30. Fix a set S ⊂ Tn. Then, the following conditions are equivalent:
(a) S is a tropicalization of a closed convex semialgebraic cone;
(b) S is a tropical cone that has semilinear strata and is closed in the topology of Tn;
(c) there exists a bipartite stochastic mean payoff game such that its Shapley operator F : Tn →

Tn satisfies S = {x ∈ Tn : x ⩽ F (x)}.

Remark 6.31. If we are given a game whose Shapley operator satisfies S = {x ∈ Tn : x ⩽ F (x)},
then (by Proposition 6.24) the support of S is equal to the largest set K ⊂ [n] such that V (K)
is a winning dominion. Equivalently, this support is equal to W ∩ VMin, where W is the largest
winning dominion of the game. Moreover, by Corollary 6.25, S is nonempty if and only if this
game has at least one winning state.

Proof of Theorem 6.30. We start by proving the implication from Theorem 6.30 (a) to Theo-
rem 6.30 (b). If S ⊂ Kn is a closed convex semialgebraic cone, then val(S) is a tropical cone
that has semilinear strata (by the considerations of Remark 5.22). Furthermore, val(S) is closed
in the topology of Tn by Theorem 3.1. To prove the converse implication, let S be a tropical
cone that has semilinear strata and is closed in the topology of Tn. Remark 5.22 shows that S
is a tropicalization of some convex semialgebraic cone S ⊂ Kn. By the continuity of addition
and multiplication in K, the set clK(S) is also a convex cone. Since S is closed in the topology
of Tn, Theorem 3.1 shows that S = val

(
clK(S)

)
. Thanks to the equivalence between Shapley

operators and operators considered in Section 5.3 as discussed above, the equivalence between
Theorem 6.30 (b) and Theorem 6.30 (c) is a variant of Proposition 5.34 (in which we replace Rn
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by Tn). Hence, the proof is similar to the proof of Proposition 5.34. To prove the implication
from Theorem 6.30 (c) to Theorem 6.30 (b), let S := {x ∈ Tn : x ⩽ F (x)} for some Shapley
operator F . Then, S is a tropical cone (this can be proven as in Proposition 5.34). Furthermore,
S is definable in Logb and hence it has semilinear strata (by Lemma 2.108). To see that it is
closed in the topology of Tn, note that the functions

T2 ∋ (a, b) → a+ b ∈ T, T2 ∋ (a, b) → max{a, b} ∈ T,
T2 ∋ (a, b) → min{a, b} ∈ T, T ∋ a → x · a ∈ T (for x ⩾ 0)

are continuous. Hence, F : Tn → Tn is a continuous function and S is closed in the topology
of Tn. In remains to prove the implication from Theorem 6.30 (b) to Theorem 6.30 (c). If S is
trivial, S = −∞, then F (x) := (x1−1, . . . , xn−1) is an operator of a stochastic mean payoff game
and satisfies the claim. Otherwise, let K denote the support of S. Moreover, the set SK ⊂ RK

is a closed semilinear real tropical cone and hence, by Proposition 5.34, there exists a semilinear
monotone homogeneous operator F̃ : RK → RK such that SK = {x ∈ RK : x ⩽ F̃ (x)}. By
Lemma 5.38, F̃ is encoded by a graph and, by the remarks above, there is a bipartite stochastic
mean payoff game whose Shapley operator is an extension of F̃ from RK to TK . Moreover, the
set of states of Player Min in this game is equal to K. We will also denote this extension by
F̃ : TK → TK . We claim that we have the equality

S = {x ∈ Tn : xK ⩽ F̃ (xK) ∧ x[n]\K = −∞} . (6.6)

Indeed, by the definition of K, there exists a point y ∈ S such that yk ̸= 0 for all k ∈ K
and yk = −∞ otherwise. This point also belongs to the right-hand side of (6.6). To prove
the inclusion ⊂, take any point x ∈ S. Observe that if λ ∈ R is any real constant, then
x(λ) := x⊕ (λ⊙ y) belongs to S, and its support is equal to K. Therefore, x(λ) belongs to the
right-hand side of (6.6). Hence, by the continuity of F̃ (and taking λ → −∞), we get that x
belongs to the right-hand side of (6.6). Conversely, if x belongs to the right-hand side of (6.6),
then x(λ) := x ⊕ (λ ⊙ y) satisfies x(λ)

K ⩽ F̃ (x(λ)
K ) (because the set {z ∈ TK : z ⩽ F̃ (z)} is a

tropical cone) and its support is equal to K. Therefore, it belongs to S. Since S is closed in
the topology of Tn, we get the inclusion ⊃. Given the equality (6.6), we define F : Tn → Tn by

(F (x))k :=
{

(F̃ (xK))k if k ∈ K ,

xk − 1 otherwise

and we have S = {x ∈ Tn : x ⩽ F (x)}. Moreover, it is easy to see that F is a Shapley operator
of a stochastic mean payoff game. We take the game associated with F̃ and for every k ∈ [n]\K
we add k to the set of states controlled by Player Min. Moreover, we add a state k′ to the states
of Player Max. The state k is equipped with one action ak which is deterministic, pak

kk′ := 1,
and has payoff rak

:= −1. Similarly, the state k′ is equipped with one action bk′ which is
deterministic, pbk′

k′k := 1, and has payoff rbk′ := 0.

Remark 6.32. The claim of Theorem 6.30 and Remark 6.31 states that, in theory, one could
solve an arbitrary conic feasibility problem over K by reducing it to a stochastic mean payoff
game. However, even though the proof of Theorem 6.30 can be made effective (by the Denef–Pas
quantifier elimination, the construction from the proof of Lemma 5.52, and turning the proof of
Theorem 5.27 into an algorithm), this construction is far from being polynomial-time. In the
next chapter, we present a class of semidefinite feasibility problems for which we can construct
the corresponding game in polynomial-time.
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Remark 6.33. In the above, we have seen that a semilinear monotone homogeneous operator
F : Rn → Rn can be extended to a continuous operator on Tn. It can be shown that such
extension is well defined and unique even if we omit the assumption that F is semilinear,
see [BNS03].
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CHAPTER 7

Equivalence between tropical
semidefinite feasibility and stochastic

mean payoff games

In this chapter we consider the algorithmic problems of solving stochastic mean payoff games
and deciding the feasibility of a tropical Metzler spectrahedron and we want to show that
these two problems are polynomial-time equivalent. Moreover, we give an application of this
theorem to nonarchimedean semidefinite feasibility problem, showing that a large class of these
problems can be solved by a reduction to stochastic mean payoff games. In the chapter, we
will use some basic notions of complexity theory (such as polynomial-time reduction). We refer
to the book [AB09] for the necessary background. Let us first define the algorithmic problems
that we consider.

Definition 7.1. Suppose that we are given a stochastic mean payoff game in which all prob-
abilities and payoffs are rational. Then, the Stochastic Mean Payoff Game Problem
(Smpg) refers to the task of finding a pair of optimal strategies and the value of the game.

Remark 7.2. It is clear that we can equivalently suppose that all payoffs in the problem above
are integer. Indeed, if we multiply all the payoffs by their common denominator, then the
optimal policies do not change, and the value is multiplied by this denominator. Therefore, in
later chapters we will often suppose that stochastic mean payoff games have integer payoffs.

Definition 7.3. Suppose that we are given symmetric tropical Metzler matricesQ(1), . . . , Q(n) ∈
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(Q∪{−∞})m×m. Then, the Tropical Metzler Semidefinite Feasibility Problem (Tms-
dfp) refers to the task of deciding if the tropical Metzler spectrahedral cone S(Q(1), . . . , Q(n))
is nontrivial, i.e., contains a point different than −∞.

The main result of this chapter consists of the following two theorems. The first one shows
the equivalence between the problem of stochastic mean payoff games and deciding the feasibility
of tropical Metzler spectrahedral cones.
Theorem 7.4. The problems Smpg and Tmsdfp are polynomial-time equivalent. Furthermore,
if either of these problems can be solved in pseudopolynomial time, then both of them can be
solved in polynomial time.

Then second theorem is an application of our results to nonarchimedean semidefinite pro-
gramming and shows that solving generic nonarchimedean semidefinite feasibility problems for
cones can be reduced to solving stochastic mean payoff games. Let us recall the following
definition.
Definition 7.5. Let Q(1), . . . ,Q(n) ∈ Km×m be a sequence of symmetric matrices and let
S := {x ∈ Kn

⩾0 : x1Q
(1) + · · · +xnQ

(n) ≽ 0} be the associated spectrahedron. We say that S is
nontrivial if is contains a point different than 0. We say that S is strictly feasible if there exists
a point x ∈ Kn

>0 such that the matrix Q(x) := x1Q
(1) + · · · + xnQ

(n) is positive definite.
Theorem 7.6. Suppose that the matrices Q(k) have rational valuations, i.e., val(Q(k)) ∈
(Q ∪ {−∞})m×m. Then, given only the signed valuations sval(Q(k)) of these matrices, we
can construct (in polynomial-time) two stochastic mean payoff games, one called the “feasibility
game” and the second called the “strict feasibility game.” If χ denotes the maximal value of the
feasibility game and χ denotes the minimal value of the strict feasibility game, then the following
is true:

• if χ < 0, then S is trivial;
• if χ > 0, then S is nontrivial;
• if χ < 0, then S has empty interior;
• if χ > 0, then S has nonempty interior;
• if χ > 0 and the matrices Q(k) satisfy Assumption B, then S is strictly feasible.

Furthermore, if the matrices Q(1), . . . ,Q(n) satisfy the conditions of Theorem 4.28, then S is
nontrivial if and only if χ ⩾ 0. If these matrices also satisfy Assumption B, then S is strictly
feasible if and only if χ ⩾ 0.

This chapter is organized as follows. In Section 7.1 we show how stochastic mean payoff
games can be reduced to Tmsdfp. In Section 7.2 we show the converse reduction. This is the
most direct for a special class of matrices that induce a well-formed linear matrix inequalities.
This special case is discussed in Section 7.2.1, where we also give a simplified version of Theo-
rem 7.6 that is adapted to this case. The remainder of the chapter is devoted to extending our
results from this special case to general non-Metzler matrices and to proving Theorem 7.6. This
extension is quite technical and requires preprocessing procedures explained in Section 7.2.2
and Section 7.3. The chapter is based on the paper [AGS18].

7.1 From stochastic mean payoff games to tropical spectrahedra
In this section, we reduce the problem of solving stochastic mean payoff games to the problem
of deciding the feasibility of tropical Metzler spectrahedra. To do so, we need to define the class
of stopping simple stochastic games.
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Definition 7.7. We say that a stochastic mean payoff game is a stopping simple stochastic
game if it satisfies the following properties:

• All probabilities of the game belong to the set {0, 1/2, 1}.
• There are two special states k0, k1 ∈ VMin such that Player Min has only one action

available at each of this states, A(k0) = {a0}, A(k1) = {a1}, this action is a loop, pa0
k0,k0

=
pa1

k1k1
= 1, and the respective payoffs are equal to 0 and 1, ra0 = 0, ra1 = 1.

• For every couple of policies (σ, τ) the Markov chain induced by (σ, τ) has only two recurrent
classes: one equal to {k0} and the other equal to {k1}.

We refer to the states {k0, k1} as sinks.

Remark 7.8. If (σ, τ) is a pair of policies in a stopping simple stochastic game, then Theo-
rem 2.137 shows that (g(σ, τ))v is equal to the probability that the Markov chain induced by
(σ, τ) and starting from v is reaches k1. Therefore, we can suppose that all payoffs other that
ra1 are equal to zero (this does not change the expected average payoff).

The following reduction was proven by Andersson and Miltersen [AM09].

Theorem 7.9 ([AM09]). The problem of solving stochastic mean payoff games is polynomial-
time equivalent to the problem of finding values of stopping simple stochastic games.

Remark 7.10. We point out that the Theorem 7.9 is stated in [AM09] without the word “stop-
ping,” but this is what the authors actually show.

Our reduction of stochastic mean payoff games to the feasibility of tropical spectrahedra
builds upon Theorem 7.9. As a first step, we want to show that the problem of computing the
value can be reduced to the problem of deciding if the value is greater than 1/2. This requires
the following lemmas.

Lemma 7.11 ([Con92, Lemma 2]). If χ ∈ [0, 1]V denotes the value of a stochastic mean payoff
game, then every coordinate χv is a rational number with a denominator not greater than 4|V |−1.

Lemma 7.12. Fix a rational number α ∈ [0, 1]. Then, the problem of deciding if a given state
of a stopping simple stochastic game has value at least α is polynomial-time reducible to the
problem of deciding if a given state in a stopping simple stochastic game has a value at least
1/2. (Here, “polynomial-time” means polynomial in the size of the game and the number of bits
needed to encode α.)

Proof. Suppose that we are given a stopping stochastic game, a fixed state v ∈ V , and a fixed
rational number α ∈ [0, 1]. We want to decide if χv ⩾ α. If α > 1

2 , then we modify the game
as follows: we change the action a1 is such a way that when the sink with payoff 1 is reached,
the game does not start to loop, but instead moves with probability 1 − 1

2α to the sink with
payoff 0 and with probability 1

2α to the (newly created) sink with payoff 1. Denote the value
of the modified game by χ̃. We have χ̃v = 1

2αχv and hence χ̃v ⩾ 1/2 ⇐⇒ χv ⩾ α. Note that
the modified game does not fulfill the conditions of Definition 7.7 because it has probability
distributions different than {0, 1/2, 1}. Nevertheless, we may apply the construction of Zwick
and Paterson (see Fig. 5.5 and the proof of Lemma 5.41) to the modified action a1 and obtain
(in polynomial-time) a stopping simple stochastic game that has χ̃v as the value at state v. The
case 0 ⩽ α < 1/2 is analogous—we modify the action a0 in such a way that when the sink with
payoff 0 is reached, the game does not start to loop, but instead moves with probability 1−2α

2−2α

to the sink with payoff 1 and with probability 1
2−2α to the (newly created) sink with payoff 0.

We have χ̃v = χv + 1−2α
2−2α(1 − χv) and hence χ̃v ⩾ 1/2 ⇐⇒ χv ⩾ α. To finish, we apply the

construct of Zwick and Paterson as in the previous case.
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Given the lemmas above, the reduction of computation problem to the decision problem
follows from the rational search technique, see, e.g., [KM03, For07].

Lemma 7.13. The problem of solving stochastic mean payoff games is polynomial-time equiva-
lent to the problem of deciding if a given state in a stopping simple stochastic game has a value
at least 1/2.

Proof. By Theorem 7.9, the problem of solving stochastic mean payoff games is reducible in
polynomial time to the problem of finding value of a stopping simple stochastic game. This
is trivially reducible to the problem of finding the value of one state. Given a state v ∈ V
of a stopping simple stochastic game, Lemma 7.11 shows that χv is a rational number in the
interval [0, 1] with denominator not greater than 4|V |−1. Observe that if a

b ,
c
d ∈ [0, 1] are different

rational numbers with denominators bounded by 4|V |−1, then they differ by at least

|a
b

− c

d
| = |ad− bc

bd
| ⩾ 1

16|V |−1 >
1

16|V | . (7.1)

Let ℓ ∈ {0, 1, . . . , 16|V | − 1} be a number such that χv ∈ [ ℓ
16|V | ,

ℓ+1
16|V | ]. Note that ℓ can be found

by a binary search asking O(|V |) queries of the form “is χv ⩾ m
16|V | ?” for m ∈ {1, . . . , 16|V | −1}.

Therefore, by Lemma 7.12, the task of finding ℓ is reducible in polynomial time to the task
of deciding if a given state in a stopping simple stochastic game has a value at least 1/2.
Moreover, given ℓ, (7.1) shows that χv is the unique rational number in the interval [ ℓ

16|V | ,
ℓ+1

16|V | ]
with denominator not greater than 4|V |−1. Therefore, the exact value of χv can be found in
O(|V |) time using the algorithms presented in [KM03, Lemma 5] or [For07].

In the next lemma, we change the class of games, transforming stopping simple stochastic
games into ergodic games. Let us give the necessary definition.

Definition 7.14. We say that a stochastic mean payoff game is a constant value game if the
value of the game does not depend on the initial state, i.e., χ = ρ(1, 1, . . . , 1) ∈ RV for some
ρ ∈ R. We say that a game in ergodic if it is a constant value game and it remains a constant
value game even if one changes the payoffs associated with actions in an arbitrary way.

Remark 7.15. Different authors use the term “ergodic game” in defferent senses. For instance
[CIJ14] define the game to be ergodic if the Markov chain induced by any pair of policies (σ, τ)
is irreducible (i.e., has only one recurrent class and every state belongs to this class). This
corresponds to the ergodicity condition used in the policy iteration algorithm of Hoffman and
Karp [HK66]. One could also define a game to be ergodic if the Markov chain induced by
any pair of policies (σ, τ) has only one final class (skipping the requirement that every state is
recurrent). In fact, this is the class of games that appears in Lemma 7.16 below. It is trivial to
see that these two definitions are more restrictive than Definition 7.14. In the other direction,
the authors of [BEGM15] use the term “ergodic game” for a constant value game and the term
“ergodic graph” for what we call an ergodic game. Definition 7.14 appears in [AGH15] and is
motivated by the fact that it has many equivalent characterizations that generalize the algebraic
characterizations of ergodicity for Markov chains.

Lemma 7.16. The problem of solving stochastic mean payoff games is polynomial-time reducible
to the problem of deciding if the value of a bipartite ergodic stochastic mean payoff game is
nonnegative.
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Figure 7.1: Transformation of stopping simple stochastic games, Lemma 7.16 Step IV.

Even more, the above is true if we further restrict the class of bipartite ergodic games by
supposing that every probability in the game belongs to the set {0, 1/2, 1}, that every payoff of
the game belongs to the set {−1, 0, 1}, and that Player Max has only deterministic actions (i.e.,
pb

ik ∈ {0, 1} for every action b of Player Max and every pair of states i ∈ VMax, k ∈ VMin).

Proof. By Lemma 7.13, it is enough to provide the reduction for the problem of deciding if a
value of a state in a stopping simple stochastic game is at least 1/2. To do so, take a stopping
simple stochastic game, fix a state v ∈ V and let χv denote its value. We modify the game
using the following steps.

Step I : Let k0 denote the sink with payoff 0. We change the payoff in this sink from 0 to
−1. Note that, if (σ, τ) is any pair of policies, and g̃(σ, τ) denotes the expected average payoff of
Player Max, in the modified game, then we have g̃(σ, τ) = g(σ, τ) − (1 − g(σ, τ)) = 2g(σ, τ) − 1.
In particular, if χ̃ denotes the value of the modified game, then we have χ̃ = 2χ − 1 and
χv ⩾ 1/2 ⇐⇒ χ̃v ⩾ 0.

Step II : We take the game obtained in the previous step and transform it in such a way
that Player Max does not have any nondeterministic actions. More precisely, if b ∈ B(i) is an
action of Player Max such that pb

iv = 1/2 for some v ∈ V , then we add a new state kb controlled
by Player Min to the game and change the action b to b′ by putting pb′

ikb
:= 1. Furthermore, we

equip the state kb with exactly one action A(kb) = {a} and we put pa
kbv := pb

iv for all v ∈ V . We
repeat this operation for every action of Player Max.

Step III : We take the game obtained in the previous step and transform it into a bipartite
game. This is done in the following way. If a ∈ A(k) is an action of Player Min such that pa

kl > 0
for some l ∈ VMin, then we add a new state ia of Player Max to the game and modify the action
a into â by putting pâ

kia
:= pa

kl, pâ
kl := 0, and pâ

kv := pa
kv for all other vertices. Moreover, we put

râ := ra. Furthermore, we equip the state ia with exactly one action B(ia) = {b} and this action
is such that pb

ial := 1 and rb := 0. We repeat this operation for every action of Player Min and
we do an analogous operation for every action of Player Max.

Step IV : We take the game obtained in the previous step and we perform the construction
presented in Fig. 7.1.More precisely, if (n − 1,m − 1) ∈ VMin × VMax denotes the recurrent
class with payoff −1/2 and (n,m) denotes the recurrent class with payoff 1/2, then we do the
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following operation. We add two states, n+ 1 (controlled by Player Min) and m+ 1 (controlled
by Player Max). At n+ 1, Player Min has only one possible action: to go to m+ 1; after this
action Player Min pays 0 to Player Max. Moreover, at m + 1 Player Max also has only one
action: to go to v; after this action Player Max receives 0 from Player Min. Finally, at m − 1
(resp. m) Player Max has only one possible action: to go to n+ 1; after this action he receives
0 from Player Min.

Take the game obtained by applying the steps above and let χ̌ denote the value of the
modified game. We want to show that this game is ergodic. To see that this is the case, let
(σ̌, τ̌) denote a pair of policies in the modified game. Observe that, since the original game is a
stopping simple stochastic game, the Markov chain induced by (σ̌, τ̌) reaches v independently
of the initial state of the chain. Hence, v is recurrent in this chain and its recurrent class is the
only recurrent class of the chain. In particular, by Theorem 2.137, the average payoff ǧ(σ̌, τ̌)
does not depend on the initial state and this is true for every choice of the payoffs. Hence, the
game is ergodic. Denote χ̌ = ρ(1, 1, . . . , 1). Moreover, note that every state that we added to
the game has only one action (and every state that was present in the original game has the
same number of actions in the modified game). Therefore, there is a natural bijection between
the policies of players in the original game and their policies in the modified game. If (σ, τ) is a
pair of policies in the original game that corresponds to (σ̌, τ̌), then Theorem 2.137 shows that
(ǧ(σ̌, τ̌))v = (g̃(σ, τ))v/θv, where θv is the expected time of first return to v. In particular, a
policy τ̌ guarantees a nonnegative payoff to Player Max for the initial state v if and only if τ
does the same thing. Hence ρ ⩾ 0 ⇐⇒ χ̃v ⩾ 0.

Proposition 7.17. The problem of solving stochastic mean payoff games is polynomial-time
reducible to Tmsdfp.

Proof. By Lemma 7.16, it is enough to provide a reduction from the problem of deciding if a
bipartite ergodic game has a nonnegative value. Fix such a game and suppose that it has all the
properties mentioned in Lemma 7.16. Then, its graph G⃗ (as defined in Definition 5.36) fulfills
the conditions of Proposition 5.40. Therefore, by Proposition 5.40, the set S := {x ∈ TVMin : x ⩽
F (x)} is a tropical Metzler spectrahedron, S = S(Q(1), . . . , Q(|VMin|)), Q(k) ∈ T|VMax|×|VMax|

± and
the proof of Proposition 5.40 gives a polynomial-time construction of the matrices Q(k).

Furthermore, Corollary 6.25 gives the equalities

2ρ = max{λ ∈ R : ∃x ∈ TVMin , x ̸= −∞, λ+ x ⩽ F (x)}
= max{λ ∈ R : ∃x ∈ RVMin , λ+ x ⩽ F (x)} ,

where ρ(1, 1, . . . , 1) is the value of the game. Hence, we have the equivalence

S is nontrivial ⇐⇒ S contains a real point ⇐⇒ ρ ⩾ 0 .

7.2 From tropical spectrahedra to stochastic mean payoff games

In this section, we show that the feasibility of tropical spectrahedra can be reduced to the
problem of solving stochastic mean payoff games. More precisely, we will show the following
theorem whose formulation is very close to the formulation of Theorem 7.6. We define the sets
Sλ(Q(1), . . . , Q(n)) as in Definition 4.16.
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Theorem 7.18. Suppose that Q(1), . . . , Q(n) ∈ Tm×m
± is a sequence of symmetric tropical Met-

zler matrices such that |Q(k)| ∈ (Q ∪ {−∞})m×m for all k. Denote

λ := sup{λ ∈ R : Sλ(Q(1), . . . , Q(n)) is nontrivial} ,
λ := sup{λ ∈ R : Sλ(Q(1), . . . , Q(n)) contains a real point} .

If any of these supremums is finite, then it is attained. Moreover, we can construct, in polynomial-
time, two stochastic mean payoff games: a “feasibility game” and a “strict feasibility game.” If
χ denotes the maximal value of the feasibility game and χ denotes the minimal value of the
strict feasibility game, then we have

χ =


λ/2 if λ is finite
1 if λ = +∞
−1 if λ = −∞

and χ =


λ/2 if λ > −∞
1 if λ = +∞
−1 if λ = −∞ .

The proof is based on the following construction. Consider a tropical Metzler spectrahedron
S := S(Q(1), . . . , Q(n)) associated with the matrices Q(1), . . . , Q(n) ∈ Tm×m

± . We construct a
bipartite stochastic mean payoff game consisting of m states of Player Max and n states of
Player Min, VMax := [m], VMin := [n]. For each state k ∈ [n] of Player Min, the set A(k) of
actions available to Player Min is created as follows:

• For every i ∈ [m] such that Q(k)
ii ∈ T− we add an action a := (k, i) to A(k). That action

is deterministic and goes to i, i.e., pa
ki := 1. Moreover, the associated payoff is given by

ra := −|Q(k)
ii |.

• For every i, j ∈ [m] such that i < j and Q
(k)
ij ∈ T− we add an action a := (k, i, j) to A(k).

This action is stochastic and we set pa
ki := pa

kj := 1/2. The associated payoff is given by
ra := −|Q(k)

ij |.

Similarly, for every state i ∈ [m] of Player Max, and every k ∈ [n] such that Q(k)
ii ∈ T+, we add

a deterministic action b := (i, k), pb
ik := 1 to B(i). This action has payoff rb := Q

(k)
ii .

Recall that in the games which we consider, every state has to be equipped with at least
one action, i.e., the sets A(k) and B(i) must be nonempty. In consequence, our construction is
valid provided that the following assumptions on the matrices Q(k) is satisfied:

Assumption D. For all i ∈ [m], there exists k ∈ [n] such that the diagonal coefficient Q(k)
ii

belongs to T+.

Assumption E. For all k ∈ [n], the matrix Q(k) has at least one coefficient in T−.

Definition 7.19. We say that a sequence Q(1), . . . , Q(n) ∈ Tm×m
± of symmetric tropical Metzler

matrices defines a well-fomed linear matrix inequality if it satisfies Assumptions D and E.

In order to facilitate the reading of this section, we divide our discussion into two parts.
First, we will assume that the matrices define a well-formed linear matrix inequality and analyze
the games that are obtained by the construction above. In the second and more technical part,
we show how these two assumption can be ensured by a suitable preprocessing.
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Figure 7.2: The tropical spectrahedron of Example 7.22.

7.2.1 Games obtained from well-formed linear matrix inequalities

In this subsection, we assume that the matrices Q(1), . . . , Q(n) ∈ Tm×m
± define a well-formed

linear matrix inequality. Let F : Tn → Tn denote the bipartite Shapley operator of the game
constructed from Q(1), . . . , Q(n) ∈ Tm×m

± . The next lemma gives the equivalence between sub-
level sets of F and the sets Sλ := Sλ(Q(1), . . . , Q(n)) introduced in Definition 4.16.

Lemma 7.20. For every λ ∈ R we have Sλ = {x ∈ Tn : λ+ x ⩽ F (x)}.

Proof. By definition, for all k ∈ [n] we have

(F (x))k = min
Q

(k)
ij ∈T−

(
−|Q(k)

ij | + 1
2
(

max
Q

(l)
ii ∈T+

(Q(l)
ii + xl) + max

Q
(l)
jj ∈T+

(Q(l)
jj + xl)

))
. (7.2)

Hence, a vector x ∈ Tn satisfies λ+ x ⩽ F (x) if and only if for all i, j ∈ [m],

2
(
λ+ max

Q
(k)
ij ∈T−

(
|Q(k)

ij | + xk

))
⩽ max

Q
(l)
ii ∈T+

(
Q

(l)
ii + xl

)
+ max

Q
(l)
jj ∈T+

(
Q

(l)
jj + xl

)
.

By distinguishing whether i and j are equal in these inequalities, and recalling that Q(k)
ij is in

T− ∪ {−∞} for all k ∈ [n] when i ̸= j, we recover the constraints that describe Sλ.

The following theorem is an immediate corollary of Lemma 7.20 and Corollary 6.25.

Theorem 7.21. The set Sλ is nontrivial if and only if λ ⩾ 2 maxk∈[n] χk, where χ is the value
of the game associated with Q(1), . . . , Q(n). Similarly, the set Sλ ∩ Rn is nonempty if and only
if λ ⩾ 2 mink∈[n] χk. In particular, the tropical spectrahedron S is nontrivial if and only if the
associated stochastic game has at least one state with nonnegative value and it contains a real
point if and only if all states have nonnegative values.

Example 7.22. Consider the matrices

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 , Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 , Q(3) :=

 t 0 −t3/4

0 t−5/4 −1
−t3/4 −1 0

 .
The matrices (Q(1), Q(2), Q(3)) :=

(
val(Q(1)), val(Q(2)), val(Q(3))

)
satisfy Assumptions D and E.

Furthermore, the game constructed out of these matrices is exactly the game from Example 6.2.
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The associated tropical Metzler spectrahedron S is defined by the constraints

max
(
−1 + x1,−5/4 + x3

)
⩾ x2 ,

max
(
x1 + x3,−1/4 + 2x3

)
⩾ 2x1 ,

x2 ⩾ −7/4 + x3 ,

max
(
5/4 + x1 + x2, 1 + x2 + x3

)
⩾ 2x3 .

This tropical spectrahedron is depicted in Fig. 7.2.
As a corollary, we get a simplified version of Theorem 7.6.

Theorem 7.23. Let Q(1), . . . ,Q(n) be as in Theorem 7.6. Furthermore, suppose that the ma-
trices Q(k) := sval(Q(n)) are Metzler and define a well-form linear matrix inequality. Then, the
game constructed from the matrices Q(1), . . . , Q(n) is, at the same time, both a feasibility game
and a strict feasibility game as announced in Theorem 7.6.

Proof. Let χ be the maximal value of the game constructed from Q(1), . . . , Q(n), and χ be its
minimal value. If χ > 0, then by Theorem 7.21, there exists λ > 0 such that Sλ is nontrivial.
By Lemma 4.17, if x ∈ Sλ, then any lift x ∈ val−1(x) ∩ Kn

⩾0 belongs to S. Hence, S is
nontrivial. Similarly, if χ > 0, then there exists λ > 0 such that Sλ ∩ Rn is nonempty. Then,
by Lemma 4.41 any lift of any point x ∈ Sλ ∩ Rn belongs to the interior of S. Moreover, if
the matrices Q(1), . . . ,Q(n) satisfy Assumption B, then by Lemma 4.50, any point x ∈ Kn

⩾0
such that val(x) = x is a strictly feasible point of S. If the matrices Q(1), . . . ,Q(n) satisfy the
conditions of Theorem 4.28 and χ = 0, then S0 is nontrivial by Theorem 7.21 and S is nontrivial
by Theorem 4.28. If these conditions are satisfied and χ = 0, then S0 ∩ Rn is nonempty by
Theorem 7.21 and S has a nonempty interior by Corollary 4.42. If the matrices Q(1), . . . ,Q(n)

additionally satisfy Assumption B, then S has a strictly feasible point by Corollary 4.52. If
χ < 0, then S0 is trivial by Theorem 7.21 and S is trivial by Lemma 4.22. Finally, if χ < 0,
then S0 ∩ Rn. By Lemma 4.22 we have val(S ∩ Kn

>0) ⊂ S0 ∩ Rn and hence S ∩ Kn
>0 is empty.

In particular, S has an empty interior.

Remark 7.24. We note that the proof above gives a slightly stronger property that the one
announced in Theorem 7.6— it shows that if the matrices Q(1), . . . ,Q(n) satisfy the conditions
of Theorem 4.28 and χ = 0, then S has a nonempty interior. This does not carry over to
non-Metzler case as discussed in Section 4.4.
Remark 7.25. Thanks to the analysis above, one could solve not only generic feasibility prob-
lems for cones, but also for non-conic spectrahedra. Indeed, if we suppose that the matri-
ces Q(1), . . . ,Q(n) satisfy the conditions of Theorem 4.28, then this theorem combined with
Lemma 7.20 and Proposition 6.24 shows that S contains a point x ∈ S such that x1 ̸= 0 if and
only if the state 1 ∈ VMin belongs to some winning dominion of the associated game. This can
be checked by solving a series of stochastic mean payoff games. However, the generalization
of this observation to matrices that do not fulfill Assumptions D and E is quite involved and
requires to use some of the estimates that are obtained in Chapter 8. For the sake of simplicity,
we do not develop all of the details of this extension in this dissertation, and we focus only on
the conic case.

7.2.2 Preprocessing
We now turn to our discussion of Assumptions D and E. Even though these two assumptions
have a similar interpretation in terms of games (the first one states that Player Max always
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has an action and the second states that Player Min always has an action), their impact on our
results is quite different, and so we discuss them separately.Assumption D can be made without
loss of generality, up to an easy preprocessing.

Lemma 7.26. There is a polynomial-time algorithm that takes symmetric tropical Metzler
matrices Q(1), . . . , Q(n) ∈ Tm×m

± as an input and outputs a set K ⊂ [n] and a sequence of
symmetric Metzler matrices (R(k))k∈K , R(k) ∈ Tp×p

± with p ⩽ m. The matrices (R(k))k∈K

satisfy Assumption D and are such that

Sλ(Q(1), . . . , Q(n)) = {x ∈ Tn : ∀l /∈ K,xl = −∞ ∧ xK ∈ Sλ

(
(R(k))k∈K

)
}

for all λ ∈ R. (With the convention that Sλ(Q(1), . . . , Q(n)) is trivial if K = ∅.)

Proof. Fix λ ∈ R and matrices Q(1), . . . , Q(n) ∈ Tm×m
± . Suppose that Assumption D is not

satisfied and fix i ∈ [m] such that no diagonal coefficient Q(k)
ii is in T+. We distinguish three

cases:

• If the set L of indices l ∈ [n] such that Q(l)
ii ∈ T− is nonempty, the relation Q+

ii (x) ⩾
λ⊙Q−

ii (x) enforces that xl = −∞ for all x ∈ Sλ and l ∈ L. Therefore, we have

Sλ(Q(1), . . . , Q(n)) = {x ∈ Tn : ∀l ∈ L, xl = −∞ ∧ x[n]\L ∈ Sλ

(
(Q(k))[n]\L

)
} . (7.3)

(If L = [n], then Sλ is trivial.)

• If the aforementioned set L is empty, then let L̃ be the set of indices l ∈ [n] such that
Q(l) contains an entry different than −∞ on its ith row, namely Q

(l)
ij ∈ T− with i < j.

Then, the relation Q+
ii (x) ⊙ Q+

jj(x) ⩾ (λ ⊙ Qij(x))⊙2 enforces xl = −∞ for any x ∈ Sλ.
Therefore, we get the equality as in (7.3), with L replaced by L̃. (If L̃ = [n], then Sλ is
trivial).

• If both L and L̃ are empty, then the ith row and column of the matrices Q(k) are all
identically equal to −∞. Hence, we can remove all these rows and columns, and obtain
matrices of order m − 1 over the variables x1, . . . , xn that describe the same set Sλ. (If
m = 1, then Sλ = Tn and we can replace the matrices Q(k) by R(k) := 0.)

The observations above lead to the polynomial-time algorithm described in the claim. Indeed,
given the matrices Q(1), . . . , Q(n) that do not satisfy Assumption D, we can repeatedly apply
the reductions above till we find the claimed matrices (R(k))k∈K or decide that Sλ is trivial.
Furthermore, we point out that these reductions do not depend on λ ∈ R.

The importance of Assumption E depends on the question that one wants to answer. If we
are only interested in knowing whether Sλ is trivial, then this assumption is insignificant, as
observed in the next lemma.

Lemma 7.27. Suppose that the matrices Q(1), . . . , Q(n) ∈ Tm×m
± do not satisfy Assumption E.

Then, the set Sλ(Q(1), . . . , Q(n)) is nontrivial for all λ ∈ R.

Proof. Suppose that Q(l) has no coefficient in T−. Then, this matrix is diagonal (because it is
a Metzler matrix). Therefore, the point x ∈ Tn defined as xl := 0 and xk := −∞ for k ̸= l
belongs to Sλ for all λ ∈ R.
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On the other hand, it will be also interesting to decide if Sλ contains a real point, i.e., if
Sλ ∩ Rn is nonempty. In this case, Assumption E is no longer trivial.

Lemma 7.28. There is a polynomial-time algorithm that takes symmetric tropical Metzler
matrices Q(1), . . . , Q(n) ∈ Tm×m

± as an input and either decides that Sλ(Q(1), . . . , Q(n)) ∩ Rn is
nonempty for all λ ∈ R or outputs a set K ⊂ [n] and a sequence of symmetric Metzler matrices
(R(k))k∈K , R(k) ∈ Tp×p

± with p ⩽ m satisfying Assumptions D and E. These set and matrices are
such that Sλ(Q(1), . . . , Q(n)) ∩ Rn is nonempty if and only if Sλ

(
(R(k))k∈K

)
∩ RK is nonempty.

(With the convention that if K = ∅, then Sλ(Q(1), . . . , Q(n)) ∩ Rn is empty.)

Proof. First, if the matrices Q(1), . . . , Q(n) ∈ Tm×m
± do not satisfy Assumption D, then we can

apply the algorithm of Lemma 7.26. This algorithm either decides that Sλ(Q(1), . . . , Q(n))∩Rn is
empty for all λ ∈ R or outputs a sequence of matrices that satisfy Assumption D and describes
the same family (Sλ)λ. From now on we assume that Q(1), . . . , Q(n) satisfy Assumption D.
As previously, suppose Q(l) has no coefficient in T− and observe that this matrix is diagonal
(because it is a Metzler matrix). Moreover, note that we have n ⩾ 2 because Assumption D
is satisfied. Let I ⊂ [m] denote the set of indices such that i ∈ I if Q(l)

ii ∈ T+ (i.e., i ∈ I

if Q(l)
ii is finite). If I = [m], then the point defined as xk := 0 for k ̸= l and xl := M ∈ R

belongs to Sλ(Q(1), . . . , Q(n)) for M large enough. If I ⊊ [m], then we remove all the rows and
columns indexed by I from from all the matrices Q(k). Denote the new sequence of matrices by
Q̃(1), . . . , Q̃(n). We claim that Sλ(Q(1), . . . , Q(n)) contains a real point if and only if Sλ

(
(Q̃(k))k ̸=l

)
does. Let x̃ ∈ Rn−1 be any point and let x ∈ Rn be a point defined as xk := x̃k for k ̸= l and
xl := M for some M ∈ R. Observe that for every i ∈ [m] \ I we have

max
Q̃

(k)
ii ∈T+

(Q̃(k)
ii + x̃k) = max

Q
(k)
ii ∈T+

(Q(k)
ii + xk) and max

Q
(k′)
ii ∈T−

(Q(k′)
ii + xk) = max

Q̃
(k′)
ii ∈T−

(Q̃(k′)
ii + x̃k′) .

Similarly, for every {i, j} ⊂ [m] \ I, i ̸= j we have

max
Q̃

(k)
ij ∈T−

(|Q̃(k)
ij | + x̃k) = max

Q̃
(k)
ij ∈T−

(|Q(k)
ij | + xk) .

Thus, if x belongs to Sλ(Q(1), . . . , Q(n)), then x̃ belongs to Sλ

(
(Q̃(k))k ̸=l

)
. Conversely, suppose

that x̃ belongs to Sλ

(
(Q̃(k))k ̸=l

)
. If i ∈ I, then for sufficiently large M ∈ R we have

max
Q

(k)
ii ∈T+

(Q(k)
ii + xk) = (Q(l)

ii +M) ⊕ max
Q

(k)
ii ∈T+,k ̸=l

(Q(k)
ii + x̃k)

⩾ λ+ max
Q

(k′)
ii ∈T−,k ̸=l

(Q(k′)
ii + x̃k) = λ+ max

Q
(k′)
ii ∈T−

(Q(k′)
ii + xk) .

Similarly, if i ∈ I, j ̸= i, then max
Q

(k)
jj ∈T+

(Q(k)
jj + xk) is a real number by Assumption D and

we can assume that max
Q

(k)
jj ∈T+

(Q(k)
jj + xk) > c for some c ∈ R and all M ⩾ 0. Therefore, for

sufficiently large M ⩾ 0 we have

max
Q

(k)
ii ∈T+

(Q(k)
ii + xk) + max

Q
(k)
jj ∈T+

(Q(k)
jj + xk) ⩾ (Q(l)

ii +M) ⊕ max
Q

(k)
ii ∈T+,k ̸=l

(Q(k)
ii + x̃k) + c

⩾ 2λ+ max
Q̃

(k)
ij ∈T−,k ̸=l

(|Q(k)
ij | + x̃k) = 2λ+ max

Q̃
(k)
ij ∈T−

(|Q(k)
ij | + xk) .
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Hence x ∈ Sλ(Q(1), . . . , Q(n)) ∩Rn. As previously, the observations above lead to a polynomial-
time algorithm. Indeed, we can repeatedly apply the construction above until we decide that
Sλ(Q(1), . . . , Q(n)) ∩ Rn is (non)empty for all λ, or we construct the matrices (R(k))k∈K that
satisfy the claim. Moreover, these reductions do not depend on the value of λ ∈ R.

The considerations of this section allow us to prove Theorems 7.4 and 7.18.

Proof of Theorem 7.4. Proposition 7.17 gives a reduction from Smpg to Tmsdfp. Conversely,
Lemmas 7.26 and 7.27 and Theorem 7.21 give a reduction from Tmsdfp to Smpg. Moreover,
Theorem 7.9 shows that a pseudopolynomial-time algorithm for Smpg would give a polynomial-
time algorithm for Smpg. This implies that it would also give a polynomial time algorithm for
Tmsdfp. Conversely, the proof of Proposition 7.17 reduces Smpg to Tmsdfp restricted to ma-
trices that have entries in {0,⊖0,±1,⊖(±1),−∞}. Hence, a pseudopolynomial-time algorithm
for Tmsdfp would give a polynomial-time algorithm that solves Smpg.

Proof of Theorem 7.18. Let us first prove the claim for λ. We take the matrices Q(1), . . . , Q(n)

and apply the preprocessing of Lemma 7.26 to them. If this preprocessing detects that the set
Sλ(Q(1), . . . , Q(n)) is trivial for all λ (i.e., that λ = −∞), then we can take the feasibility game
to be any game having value equal to −1 (e.g., a game on two states in which every player
has only one action and all payoffs are equal to −1). Otherwise, we can replace the matrices
Q(1), . . . , Q(n) by the matrices (R(k))k given by Lemma 7.26 and this does not change the value of
λ. Hence, from now on we can assume that Q(1), . . . , Q(n) satisfy Assumption D. If Q(1), . . . , Q(n)

do not satisfy Assumption E, then Lemma 7.27 shows that λ = +∞. As previously, we can
take the feasibility game to be any game having all payoffs equal to 1. Otherwise, the matrices
Q(1), . . . , Q(n) satisfy both assumptions. Then, the construction presented at the beginning of
Section 7.2 gives the demanded feasibility game. Indeed, if χ denotes the maximal value of this
game, then Lemma 7.20 and Corollary 6.25 shows that λ = 2χ. The proof for λ is analogous,
using the preprocessing of Lemma 7.28 instead of Lemmas 7.26 and 7.27.

7.3 Extension to non-Metzler matrices

In the previous sections, we dealt only with a particular variant of tropical semidefinite feasibility
problem—we assumed that the matrices are Metzler and that we are interested in solving a conic
problem. In this section, we abandon these assumption. The following proposition shows that
the problems for non-Metzler matrices can be reduced to the corresponding problems with
Metzler matrices. Since we want to use this proposition to show Theorem 7.6, we need the
following notation. We let Q(1), . . . , Q(n) ∈ Tm×m

± be symmetric tropical matrices and we
denote by P (1), . . . , P (n) ∈ Tm×m

± the matrices defined as

P
(k)
ij :=

Q
(k)
ij if i = j

⊖|Q(k)
ij | if i ̸= j .

(We note that P (k) = Q
(k)
Σ,♢, where Σ := {(i, j) ∈ [m]2 : i < j} and ♢ := ∅ if we use the notation

introduced in Definition 4.23 and (4.6).) Furthermore, let Ŝλ := Sλ(P (1), . . . , P (n)) for all λ ∈ R.
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Proposition 7.29. We can construct (in polynomial-time) symmetric tropical Metzler matrices
Q̃(1), . . . , Q̃(n′), Q̃(k) ∈ Tm′×m′

± such that the set S is nontrivial if and only if S(Q̃(1), . . . , Q̃(n′))
is nontrivial. Similarly, the set S contains a real point if and only if S(Q̃(1), . . . , Q̃(n′)) contains
a real point. Even more, if λ > 0 and the set Sλ(Q̃(1), . . . , Q̃(n′)) is nontrivial, then Ŝλ is
nontrivial, and if Sλ(Q̃(1), . . . , Q̃(n′)) contains a real point, then Ŝλ contains a real point.
Proof. Let I ⊂ [m]2, denote the set of pairs (i, j) ∈ [m] × [m], i < j such that the tropical
polynomial Qij(x) is nonzero (i.e., the set of pairs (i, j) such that at least one k ∈ [n] satisfies
Q

(k)
ij ̸= −∞). Denote n′ := |I| and I = {(i1, j1), . . . , (in′ , jn′)}. For every such pair we introduce

a variable yij , and we consider the set S̃λ of points (x, y) ∈ Tn+n′ that fulfill the following
conditions:

• for all i ∈ [m], Q+
ii (x) ⩾ λ⊙Q−

ii (x);
• for all (i, j) ∈ I, i < j, yij ⊕Q+

ij(x) ⩾ λ⊙Q−
ij(x);

• for all (i, j) ∈ I, i < j, yij ⊕Q−
ij(x) ⩾ λ⊙Q+

ij(x);
• for all (i, j) ∈ I, i < j, Q+

ii (x) ⊙Q+
jj(x) ⩾ (λ⊙ yij)⊙2.

Observe that the set S̃λ can be described as S̃λ = Sλ

(
(R(k))k∈[n], (T (k))k∈[n′]

)
, where the matrices

(R(k))k∈[n], (T (k))k∈[n′] ∈ Tm′×m′
± , m′ := m+ 2n′ are defined as follows. For k ∈ [n] we set R(k)

to be the diagonal matrix

R(k) := tdiag
(
(Q(k)

ii )i∈[m], (Q
(k)
iljl

)l∈[n′], (⊖Q
(k)
iljl

)l∈[n′]
)
.

Then, for every k ∈ [n′] we define the matrix T (k) as

T
(k)
ij :=


⊖0 if {i, j} = {ik, jk} ,
0 if i = j = m+ k or i = j = m+ n′ + k

−∞ otherwise .

To prove the first part of the claim, suppose that S is nontrivial and take a point x ∈ S \{−∞}.
For every (i, j) ∈ I such that Q−

ij(x) = Q+
ij(x) ̸= −∞ we put yij := Q−

ij(x). For every remaining
(i, j) ∈ I we have Q+

ii (x) ⊙ Q+
jj(x) ⩾ (Q+

ij(x) ⊕ Q−
ij(x))⊙2 and we put yij := Q+

ij(x) ⊕ Q−
ij(x).

It is clear that we have (x, y) ∈ S̃0. Even more, if x ∈ Rn, then Q+
ij(x) ⊕ Q−

ij(x) ̸= −∞ by
the definition of I and our construction gives a point (x, y) ∈ S̃0 ∩ Rn+n′ . Conversely, let
(x, y) ∈ S̃0 \ {−∞}. Note that in this case we have x ̸= −∞ by the definition of S̃0. For
every (i, j) ∈ I we consider two cases. If yij ⩾ Q−

ij(x), then we have yij ⩾ Q+
ij(x) and hence

Q+
ii (x) ⊙ Q+

jj(x) ⩾ y⊙2
ij ⩾ (Q+

ij(x) ⊕ Q−
ij(x))⊙2. If yij < Q−

ij(x), then we have Q+
ij(x) ⩾ Q−

ij(x)
and Q−

ij(x) ⩾ Q+
ij(x). Hence Q+

ij(x) = Q−
ij(x). Therefore x ∈ S \ {−∞}.

To prove the second part of the claim, let (x, y) ∈ S̃λ \{−∞} for some λ > 0. As previously,
this implies that x ̸= −∞. Furthermore, we have two cases. If yij < Q−

ij(x), then Q+
ij(x) ⩾

λ⊙Q−
ij(x) > Q−

ij(x) and Q−
ij(x) ⩾ λ⊙Q+

ij(x) ⩾ Q+
ij(x), which is impossible. Hence yij ⩾ Q−

ij(x).
This implies that yij ⩾ λ ⊙ Q+

ij(x) ⩾ Q+
ij(x) and thus Q+

ii (x) ⊙ Q+
jj(x) ⩾ (λ ⊙ yij)⊙2 ⩾

(
λ ⊙

(Q+
ij(x) ⊕Q−

ij(x))
)⊙2. In particular, we have x ∈ Ŝλ.

7.4 Nonarchimedean semidefinite feasibility problems

In this section we prove Theorem 7.6. To do so, let Q(1), . . . ,Q(n) ∈ Km×m be symmetric
matrices that satisfy the conditions of Theorem 7.6. Let S := {x ∈ Kn

⩾0 : x1Q
(1)+· · ·+xnQ

(n) ≽
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0} be the associated spectrahedron, and denoteQ(k) := sval(Q(k)). We let S := S(Q(1), . . . , Q(n))
and, for all λ ∈ R, define Ŝλ as in Section 7.3. The proof of Theorem 7.6 is based on the results
presented in Section 4.2.

Proof of Theorem 7.6. In the proof we use the notation introduced above. First, we construct
the Metzler matrices (Q̃(k))k as given by Proposition 7.29. Then, Theorem 7.18 gives a feasibility
game and a strict feasibility game associated with Q̃(k). We will show that these games satisfy
the claim. To see this, let

λ := sup{λ ∈ R : Sλ

(
(Q̃(k))k

)
is nontrivial} ,

λ := sup{λ ∈ R : Sλ

(
(Q̃(k))k

)
contains a real point} .

If λ < 0, then S
(
(Q̃(k))k

)
is trivial. Hence S(Q(1), . . . , Q(n)) is trivial by Proposition 7.29 and

S is trivial because val(S) ⊂ S by Lemma 4.22. Similarly, if λ < 0, then S
(
(Q̃(k))k

)
does not

contain a real point. Therefore, by Proposition 7.29, the set S(Q(1), . . . , Q(n)) does not contain
a real point, and S has empty interior because val(S∩Kn

>0) ⊂ S ∩Rn by Lemma 4.22. To prove
the claims for the remaining inequalities, let Σ := {(i, j) ∈ [m]2 : i < j} and ♢ := ∅. If λ > 0,
then Proposition 7.29 shows that Ŝλ is nontrivial for some λ > 0. Hence, the set TΣ,♢ ⊂ Tn

(as defined in Lemma 4.26) is nontrivial. Moreover, by Lemma 4.26, we have TΣ,♢ ⊂ val(S)
and hence S is nontrivial. Furthermore, if λ > 0, then the same reasoning shows that Ŝλ

contains a real point and that TΣ,♢ contains a real point. Hence, S has a nonempty interior
by Lemma 4.44. Furthermore, if the matrices Q(1), . . . ,Q(n) satisfy Assumption B, then S is
strictly feasible by Lemma 4.51.

If the matrices Q(1), . . . ,Q(n) satisfy the conditions of Theorem 4.28, then this theorem gives
the equality val(S) = S. Therefore, S is nontrivial if and only if S is nontrivial. By Propo-
sition 7.29, this is equivalent to λ ⩾ 0. Furthermore, if these matrices satisfy Assumption B,
then Corollary 4.52 shows that S is strictly feasible if and only if S contains a real point. By
Proposition 7.29, this is equivalent to λ ⩾ 0.



CHAPTER 8

Condition number of stochastic mean
payoff games

In the final chapter of this work, we study the notion of a condition number of stochastic mean
payoff games and nonarchimedean semidefinite programming. We do that from different per-
spectives. First, in Section 8.1, we study the relation between nonarchimedean and archimedean
problems. More precisely, we replace the formal parameter t involved in the definition of the
Puiseux series by a large real number and investigate how large this number should be in or-
der to obtain an archimedean problem that behaves in the same way as the nonarchimedean
one. In turns out that this parameter decreases as the value of the associated stochastic mean
payoff game increases. Then, in Section 8.1.1, we give a geometric description of this behavior,
interpreting the maximal value of the game as a radius of a Hilbert ball included in a trop-
ical cone. Subsequently, in Section 8.2, we move to study the value iteration and define the
condition number of this algorithm. The analysis of Section 8.2 is valid for abstract monotone
and homogeneous operators. The main technical result of this chapter is given in Section 8.3,
where we estimate the condition number of stochastic mean payoff games. In Section 8.4 we
use these estimates to show that value iteration can solve constant value stochastic mean payoff
games in pseudopolynomial time when the number of randomized actions is fixed. In Section 8.5
we specify these complexity bounds to the task of checking the feasibility of tropical Metzler
spectrahedral cones and we present numerical results.
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8.1 Archimedean feasibility problems
In this section, we relate the tropical feasibility problem with the archimedean feasibility prob-
lem. For simplicity of exposition, we consider the case of conic spectrahedra. As in the pre-
vious sections, we suppose that Q(1), . . . ,Q(n) ∈ Km×m are symmetric Metzler matrices, set
Q(x) := x1Q

(1) + · · · + xnQ
(n), and consider the spectrahedron S := {x ∈ Kn

⩾0 : Q(x) ≽ 0}.
For any fixed value of the parameter t ∈ R, we also consider the real spectrahedron S(t) ⊂ Rn

⩾0
described by Q(1)(t), . . . ,Q(n)(t) in the same way. We want to study the feasibility problem of
S(t) as t goes to infinity.

First, we point out that for sufficiently large t, S(t) ⊂ R⩾0 is feasible if and only if S ⊂ K⩾0
is feasible. This is an immediate corollary of the following general statement.

Proposition 8.1. Let ϕ(x1, . . . , xn) be any Lor-formula. Then, for every x1, . . . ,xn ∈ K there
exists T > 0 such that for all t ⩾ T the formula ϕ(x1, . . . ,xn) is true in K if and only if
ϕ(x1(t), . . . ,xn(t)) is true in R. In particular, the formula ϕ(x1(t), . . . ,xn(t)) is either true (in
R) for all sufficiently large t or false for all sufficiently large t.

Sketch of the proof. First, suppose that ϕ is atomic. As observed in the proof of Lemma 2.111,
Lor-terms are interpreted as polynomials with natural coefficients. In other words, after fixing
the variables x1, . . . ,xn, the expression ϕ(x1, . . . ,xn) is of the form c = 0 or c ⩾ 0 for some
c ∈ K. Furthermore, for all t > 0 such that x1(t), . . . ,xn(t) are absolutely convergent, the
expression ϕ(x1(t), . . . ,xn(t)) is, respectively, of the form c(t) = 0 or c(t) ⩾ 0 with the same
c ∈ K. Hence, the claim follows from the definition of order in K. Since the claim is true for
atomic formulas, it follows that it is also true for negated atomic formulas, their conjunctions,
and disjunctions. Therefore, the claim is true for all quantifier-free formulas. To finish, if ϕ is an
arbitrary formula, then quantifier elimination in real closed fields (Theorem 2.110) shows that
there exists a quantifier-free Lor-formula ψ such that ϕ(x1, . . . ,xn) is true in K if and only if
ψ(x1, . . . ,xn) is true in K and ϕ(x1(t), . . . ,xn(t)) is true in R if and only if ψ(x1(t), . . . ,xn(t))
is true in R (for all t > 0 such that x1(t), . . . ,xn(t) are absolutely convergent).

Corollary 8.2. The set S ⊂ Kn
⩾0 is nontrivial (res. trivial) if and only if S(t) ⊂ R⩾0 is

nontrivial (resp. trivial) for all sufficiently large t > 0.

Sketch of the proof. Let y(k)
ij be a variable symbol for all k ∈ [n] and i, j ∈ [m], i ⩽ j. Then,

the statement “there exist x1 ⩾ 0, . . . , xn ⩾ 0, (x1, . . . , xn) ̸= 0 such that the matrix
x1y

(1)
11 + · · · + xny

(n)
11 . . . x1y

(1)
1m + · · · + xny

(n)
1m

... . . . ...
x1y

(1)
1m + · · · + xny

(n)
1m . . . x1y

(1)
mm + · · · + xny

(n)
mm


is positive semidefinite” is an Lor-formula and the claim follows from Proposition 8.1 by putting
y

(k)
ij := Q

(k)
ij .

The aim of this section is to give a bound on the size of the parameter t that satisfies
the conclusions of Corollary 8.2. We denote sval(Q(k)) = Q(k) for all k. We also introduce a
threshold T > 1 such that for all t ⩾ T , every series Q

(k)
ij (t) is absolutely convergent, and the

signs of Q(k)
ij (t) and Q

(k)
ij are the same. For any t ⩾ T , we define

δ(t) := max
Q

(k)
ij ̸=−∞

∣∣|Q(k)
ij | − logt |Q(k)

ij (t)|
∣∣ .
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We have the following observation.

Lemma 8.3. For all k ∈ [n] and i, j ∈ [m] we have t|Q
(k)
ij |−δ(t) ⩽ |Q(k)

ij (t)| ⩽ t|Q
(k)
ij |+δ(t) (with

the convention that t−∞ = 0). Furthermore, limt→∞ δ(t) = 0.

Proof. The second claim follows from the definition of valuation. To prove the first one, note that
δ(t) ⩾ |Q(k)

ij |− logt |Q(k)
ij (t)| and δ(t) ⩾ −|Q(k)

ij |+logt |Q(k)
ij (t)|, which implies that |Q(k)

ij |−δ(t) ⩽
logt |Q(k)

ij (t)| ⩽ |Q(k)
ij | + δ(t). Since t > 1, we obtain the claim.

We are now ready to state the main result of this section. As in the previous chapters, we
state the result in terms of the sets Sλ introduced in Definition 4.16.

Theorem 8.4. Let m ⩾ 2, and let

λ := sup{λ ∈ R : Sλ(Q(1), . . . , Q(n)) is nontrivial} .

Furthermore, suppose that λ is finite and nonzero. Take any t ⩾ T > 1 such that 2δ(t) < |λ|
and

t > (2(m− 1)n)1/(|λ|−2δ(t)) .

Then, the spectrahedron S(t) is nontrivial if and only if λ is positive. Even more, if λ = +∞,
then S(t) is nontrivial for all t ⩾ T and if λ = −∞, then S(t) is trivial for all t ⩾ T .

Proof. Suppose that λ > 0. Hence, for every 0 < λ < λ there is a point x ∈ Tn, x ̸= −∞ such
that

∀(i, j) ∈ [m]2, λ+Q−
ij(x) ⩽ 1

2
Q+

ii (x) + 1
2
Q+

jj(x) .

Thus, we have t2λt2Q−
ij(x) ⩽ tQ

+
ii(x)tQ

+
jj(x). Take the point x = (tx1 , . . . , txn), where t−∞ = 0. By

Lemma 8.3 we have

∀(i, j) ∈ [m]2, Q−
ij(t)(x) ⩽

∑
Q

(k)
ij ∈T−

t|Q
(k)
ij |+δ(t)+xk ⩽ ntQ

−
ij(x)+δ(t)

and
∀i ∈ [m], Q+

ii (t)(x) ⩾
∑

Q
(k)
ii ∈T+

tQ
(k)
ii −δ(t)+xk ⩾ tQ

+
ii(x)−δ(t).

Therefore, for all i ∈ [m] we have

Q+
ii (t)(x) ⩾ tQ

+
ii(x)−δ(t) ⩾ tλ+Q−

ii(x)−δ(t) ⩾ tλ−2δ(t)

n
Q−

ii (t) .

By our definition of t, we can choose λ < λ that satisfies t ⩾ (2n)1/(λ−2δ(t)). Thus, we have
Q+

ii (t)(x) ⩾ 2Q−
ii (t) and hence Qii(x) ⩾ 1

2Q
+
ii (x). Therefore, for any i < j we have

Qii(x)Qjj(x) ⩾ 1
4
Q+

ii (x)Q+
jj(x) ⩾ 1

4
tQ

+
ii(x)+Q+

jj(x)−2δ(t)

⩾ 1
4
t2|Qij(x)|+2λ−2δ(t) ⩾ t2λ−4δ(t)

4n2 (Qij(x))2 .

Moreover, by augmenting λ < λ if necessary, we can suppose that t ⩾ (2(m − 1)n)1/(λ−2δ(t)).
Hence, we have (Qii(t)(x))(Qjj(t)(x)) ⩾ (m − 1)2(Qij(t)(x))2 for all i < j and the point x



142 Chapter 8. Condition number of stochastic mean payoff games

belongs to S(t) by Lemma 4.8 (as noted in the proof of this lemma, it holds over any real closed
field).

Conversely, suppose that λ is negative, but S(t) is nontrivial. Take any nonzero point
x ∈ S(t) and a point x ∈ Tn defined as xk = logt(xk) for all k ∈ [n] (where logt(0) = −∞).
Since λ is negative, for every λ < λ < 0 there is a pair (i, j) ∈ [m]2 such that

λ+Q−
ij(x) > 1

2
Q+

ii (x) + 1
2
Q+

jj(x) .

Hence t2λt2Q−
ij(x) > tQ

+
ii(x)tQ

+
jj(x). Similarly to the previous case, observe that we have

Q−
ij(t)(x) ⩾

∑
Q

(k)
ij ∈T−

tQ
(k)−δ(t)
ij +xk ⩾ tQ

−
ij(x)−δ(t)

and
Q+

ii (t)(x) ⩽
∑

Q
(k)
ii ∈T+

tQ
(k)
ii +δ(t)+xk ⩽ ntQ

+
ii(x)+δ(t) .

Therefore, we have

t2λ+2δ(t)(Q−
ij(t)(x))2 > tQ

+
ii(x)tQ

+
jj(x) ⩾ t−2δ(t)

n2 (Q+
ii (t)(x))(Q+

jj(t)(x)) .

Thus, if we take λ such that λ + 2δ(t) < 0 and t ⩾ n1/|λ+2δ(t)|, then we have (Q−
ij(t)(x))2 >

(Q+
ii (t)(x))(Q+

jj(t)(x)), which gives a contradiction.

Remark 8.5. It is easy to see from the proof that if the matrices Q(k) are diagonal (which holds,
in particular, if m = 1), then the term 2(m − 1) is not needed, and the bound for t takes the
form t > n1/(|λ|−2δ(t)).
Remark 8.6. We recall that if the matrices Q(1), . . . , Q(n) define a well-formed linear matrix
inequality, then λ is equal to 2χ, where χ is the value of the associated stochastic mean payoff
game (see Section 7.2.1).

In the light of Theorem 8.4, the number 1/λ can be thought of as a condition number of
the nonarchimedean problem—the smaller it is, the smaller is the value of the parameter t
that turns the problem into a nonarchimedean one. In the next section, we give a geometric
interpretation of this value.

8.1.1 Geometric interpretation of the condition number

In this section, we give a geometric interpretation of the number λ. More precisely, we relate
this number to with the radius of the largest ball (in the Hilbert seminorm) contained in a
certain tropical Metzler spectrahedral cone in dimension 2n. We start with the definition of the
Hilbert seminorm and the balls in this seminorm.

Definition 8.7. We define the Hilbert seminorm of a vector x ∈ Rn as ∥x∥H := t(x) − b(x),
where t(x) := maxk∈[n] xk and b(x) := mink∈[n] xk.

Lemma 8.8. Hilbert seminorm is, indeed, a seminorm. More precisely, it satisfies the condi-
tions ∥x∥H ⩾ 0, ∥λx∥H = |λ|x, and ∥x+ y∥H ⩽ ∥x∥H + ∥y∥H for all x, y ∈ Rn and λ ∈ R.
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x1

x2

Figure 8.1: Hilbert ball (for x0 = 0).

x1

x2

Figure 8.2: Tropical spectrahedron and its max-
imal inner Hilbert ball (for x0 = 0).

Proof. The first two conditions are trivially satisfied. The prove the third one, note that for all
k, l ∈ [n] we have

|xk + yk − xl − yl| ⩽ |xk − xl| + |yk − yl| .

Hence,

∥x+ y∥H = max
k,l∈[n]

|xk + yk − xl − yl| ⩽ max
k,l∈[n]

|xk − xl| + max
k,l∈[n]

|yk − yl| = ∥x∥H + ∥y∥H .

Remark 8.9. We point out that ∥ · ∥H is not a norm, because it does not satisfy the condition
∥x∥H = 0 ⇐⇒ x = 0. Indeed, we have ∥x∥H = 0 if and only if x has equal coordinates,
x = λ(1, 1, . . . , 1).

Definition 8.10. If x ∈ Rn and r ∈ R⩾0, then we define the Hilbert ball centered at x with
radius r, denoted BH(x, r), as

BH(x, r) := {y ∈ Rn : ∥x− y∥H ⩽ r} .

If x ∈ Tn is a point with nonempty support K ⊂ [n], then we extend this definition by putting

BH(x, r) := {y ∈ Tn : the support of y is equal to K and ∥xK − yK∥H ⩽ r} .

Since ∥ · ∥H is invariant by adding a the same constant to all coordinates, Hilbert balls are
unbounded.

Example 8.11. Figure 8.1 depicts a Hilbert ball (its center is marked by a dot). Figure 8.2
depicts the tropical Metzler spectrahedral cone from Example 4.15 and the largest Hilbert ball
that is included inside this cone. This example also shows that such ball is not unique (because
one can slide the center of the ball in the direction of the top right corner).

In the next proposition we show that Hilbert balls are tropical cones. This proposition is
well known, as it is a particular application of the tropical spectral theory, see e.g. [BCOQ92,
Chapter 3.7], [Ser07]. We present a self-contained proof for the sake of completeness.



144 Chapter 8. Condition number of stochastic mean payoff games

Proposition 8.12. The set BH(x, r)∪{−∞} is a tropical cone. Moreover, we have the equality

BH(x, r) ∪ {−∞} = {
⊕

k∈[n]
λk ⊙ (rϵk + x) : λ1, . . . , λn ∈ T} , (8.1)

where ϵk denotes the kth vector of the standard basis in Rn.

Proof. Let K ⊂ [n] denote the support of x. To prove that BH(x, r) ∪ {−∞} is a tropical cone,
we first show that BH(x, r) ∪ {−∞} is equal to the set of all y ∈ Tn that satisfy the following
system of inequalities:

∀k, l ∈ K, k ̸= l, r + yk ⩾ (xk − xl) + yl

∀k /∈ K, yk ⩾ −∞
∀k /∈ K, −∞ ⩾ yk .

(8.2)

Indeed, y = −∞ satisfies this system. Moreover, if y ∈ BH(x, r), then yk = −∞ for all
k /∈ K. Furthermore, for all k, l ∈ K we have |xk − yk − xl + yl| ⩽ r, which implies that
(xk −xl)+yl ⩽ r+yk. Conversely, if y ∈ Tn satisfies the system above, then it is either equal to
−∞, or its support is equal to K. Indeed, its support cannot be greater than K by the last two
sets of inequalities. Moreover, if the support of y is nonempty but smaller than K, then there are
two coordinates k, l ∈ K such that yk = −∞ and yl ̸= −∞, which gives a contradiction with the
first inequality in (8.2). If support of y is equal to K, then the inequality r+ yk ⩾ (xk −xl) + yl

implies xk − yk − xl + yl ⩽ r and, by exchanging k and l, |xk − yk − xl + yl| ⩽ r. Thus

∥xK − yK∥H = max
k,l∈K

|xk − yk − xl + yl| ⩽ r

and y ∈ BH(x, r). Hence, the system of inequalities (8.2) describes BH(x, r)∪{−∞}. Moreover,
it is immediate to check that each of these inequalities defines a tropical cone. Hence, BH(x, r)∪
{−∞} is also a tropical cone.

To prove the second part of the claim, fix l ∈ [n] and consider the point y(l) := rϵl +x. Note
that the support of y coincides with K. Furthermore, for all k′, l′ ∈ K we have

|xk′ − y
(l)
k′ − xl′ + y

(l)
l′ | =

{
r if k′ ̸= l′ and l ∈ {k′, l′}
0 otherwise .

Hence ∥xK − y
(l)
K ∥H = maxk′,l′∈K |xk′ − y

(l)
k′ − xl′ + y

(l)
l′ | ⩽ r and y(l) ∈ BH(x, r). Therefore,

using the fact that BH(x, r) ∪ {−∞} is a tropical cone, we have

{
⊕

k∈[n]
λk ⊙ (rϵk + x) : λ1, . . . , λn ∈ T} ⊂ BH(x, r) ∪ {−∞} .

To prove the opposite inclusion, take y ∈ BH(x, r) and let λl := yl − xl − r for all l ∈ K and
λl := −∞ otherwise. Then, for any l ∈ K the vector λl ⊙ (rϵl + x) is given by

(
λl ⊙ (rϵl + x)

)
k

=


yk if k = l

yl − xl + xk − r if k ̸= l, k ∈ K

−∞ if k /∈ K .

By (8.2) we have yk ⩾ maxl∈K(yl−xl+xk−r) for all k ∈ K. Hence y =
⊕

k∈[n] λk⊙(rϵk+x).
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Figure 8.3: The largest inner Hilbert ball of the tropical spectrahedron from Example 7.22.

We can now interpret the quantity λ is terms of the Hilbert balls included inside a spectra-
hedron. As before, let Q(1), . . . , Q(n) ∈ Tm×m be a sequence of symmetric Metzler matrices and
let

λ := sup{λ ∈ R : Sλ(Q(1), . . . , Q(n)) is nontrivial} .

Lemma 8.13. Suppose that λ ⩾ 0. Then, for every λ ∈ R such that 0 ⩽ λ ⩽ λ, the set
S(Q(1), . . . , Q(n)) contains a Hilbert ball of radius λ.

Proof. Let S := S(Q(1), . . . , Q(n)) and let x ∈ Tn \ {−∞} be a point that belongs to the set
Sλ(Q(1), . . . , Q(n)) (we recall that if λ is finite, then such a point exists even for λ = λ, see
Theorem 7.18). Therefore, for every i ∈ [m] we have Q+

ii (x) ⩾ λ ⊙ Q−
ii (x) and for every pair

i, j ∈ [m], i < j we have Q+
ii (x) ⊙Q+

jj(x) ⩾ (λ⊙Qij(x))⊙2. Fix k ∈ [n] and consider the point
y := λϵk + x. By the definition of y, for every i, j ∈ [m], i ⩽ j we have Q−

ij(y) ⩽ λ⊙Q−
ij(x) and

Q+
ii (y) ⩾ Q+

ii (x). Hence y ∈ S. Since the choice of k was arbitrary and S is a tropical cone (as
proved in Example 5.12), Proposition 8.12 shows that BH(x, λ) ⊂ S.

The next example shows that the converse of Lemma 8.13 is, in general, false.
Example 8.14. Consider the tropical Metzler spectrahedral cone S from Example 7.22. As noted
in Example 6.2, the associated game has constant value and this value is given by χ = 1/56.
Hence, by Theorem 7.21 we have λ = 1/28. However, the largest Hilbert ball contained in S
has radius 1/20, as depicted in Fig. 8.3. The ball is centered at (−1/20,−11/10, 0).

Even though the converse of Lemma 8.13 does not hold in general, it it true if the entries
of the matrices Q(1), . . . , Q(n) have a special sign pattern.

Assumption F. For every k ∈ [n] and every pair i, j ∈ [m] such that i < j and |Q(k)
ij | is finite,

we have Q(k)
ii = Q

(k)
jj = −∞.

Lemma 8.15. Suppose that the matrices Q(1), . . . , Q(n) satisfy Assumption F. Then, the set
S(Q(1), . . . , Q(n)) contains a Hilbert ball of radius λ ∈ R⩾0 if and only if Sλ(Q(1), . . . , Q(n)) is
nontrivial.

Proof. The “if” part of the claim follows from Lemma 8.13. To prove the opposite inclu-
sion, denote S := S(Q(1), . . . , Q(n)) and suppose that BH(x, λ) ⊂ S. We will show that x ∈
Sλ(Q(1), . . . , Q(n)). To do so, first take any i ∈ [m] and consider the inequality Q+

ii (x) ⩾ Q−
ii (x).

Take k ∈ [n] such that Q−
ii (x) = Q

(k)
ii + xk and consider the point y := λϵk + x. By our
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choice of k we have Q+
ii (y) = Q+

ii (x) and Q−
ii (y) = λ ⊙ Q−

ii (x). Since y ∈ BH(x, λ), we
have y ∈ S and hence Q+

ii (x) ⩾ λ ⊙ Q−
ii (x). Similarly, for all i, j ∈ [m], i < j we con-

sider the inequality Q+
ii (x) ⊙ Q+

jj(x) ⩾ (Qij(x))⊙2. If Qij(x) = −∞, then we trivially have
Q+

ii (x)⊙Q+
jj(x) ⩾ (λ⊙Qij(x))⊙2. Otherwise, we take k ∈ [n] such that Qij(x) = Q

(k)
ij +xk ̸= −∞

and set y := λϵk + x. By Assumption F, we have Q+
ii (y) = Q+

ii (x), Q+
jj(y) = Q+

jj(x), and
Qij(y) = λ ⊙ Qij(x). As previously, this gives Q+

ii (x) ⊙ Q+
jj(x) ⩾ (λ ⊙ Qij(x))⊙2. Hence

x ∈ Sλ(Q(1), . . . , Q(n)).

Given Lemma 8.15, we can now take arbitrary symmetric Metzler matrices Q(1), . . . , Q(n)

and construct another tropical Metzler spectrahedral cone such that λ corresponds to the radius
of its largest Hilbert ball. To do so, we define the matrices Q̃(1), . . . , Q̃(2n) ∈ T(m+n)×(m+n)

± as

Q̃
(k)
ij :=



Q
(k)
ij if i, j ⩽ m, k ⩽ n, and Q

(k)
ij ∈ T− ,

Q
(k−n)
ij if i = j ⩽ m, k > n, and Q

(k−n)
ij ∈ T+ ,

0 if i = j = m+ k and k ⩽ n ,

⊖0 if i = j = m+ k − n and k > n ,

−∞ otherwise .

In this way, the set Sλ(Q̃(1), . . . , Q̃(2n)) is described by the constraints

∀i ⩽ m, Q+
ii (xn+1, . . . , x2n) ⩾ λ⊙Q−

ii (x1, . . . , xn) ,
∀k ⩽ n, xk ⩾ λ⊙ xn+k

∀i, j ∈ [m], i < j, Q+
ii (xn+1, . . . , x2n) ⊙Q+

jj(xn+1, . . . , x2n) ⩾ (λ⊙Q−
ij(x1, . . . , xn))⊙2 .

(8.3)

Furthermore, the matrices Q̃(1), . . . , Q̃(2n) satisfy Assumption F.

Proposition 8.16. The set S(Q(1), . . . , Q(n)) is a projection of S(Q̃(1), . . . , Q̃(2n)) on the first
n coordinates. Furthermore, for any λ > 0, the set Sλ(Q(1), . . . , Q(n)) is nontrivial if and only
if S(Q̃(1), . . . , Q̃(2n)) contains a Hilbert ball of radius λ/2.

Proof. Denote S := S(Q(1), . . . , Q(n)) and S̃ := S(Q̃(1), . . . , Q̃(2n)). To prove that S is the
projection of S̃, note that for every i ∈ [m] we have Q+

ii (x1, . . . , xn) ⩾ Q+
ii (xn+1, . . . , x2n). Hence,

S is included in the projection of S̃. Moreover, for any (x1, . . . , xn) ∈ S we can define xn+k := xk

for all k ∈ [n] and the point (x1, . . . , x2n) belongs to S̃. This proves the first claim. To prove
the second one, suppose that Sλ := Sλ(Q(1), . . . , Q(n)) is nontrivial, take a point x ∈ Sλ \ {−∞}
and define xn+k := −λ

2 + xk for all k ∈ [n]. Then Q+
ii (xn+1, . . . , x2n) = −λ

2 + Q+
ii (x1, . . . , xn)

for all i ∈ [m]. Hence, (x1, . . . , x2n) belongs to Sλ/2(Q̃(1), . . . , Q̃(2n)) and S̃ contains a Hilbert
ball of radius λ/2 by Lemma 8.15. Conversely, if S̃ contains a Hilbert ball of radius λ/2, then
Sλ/2(Q̃(1), . . . , Q̃(2n)) is nontrivial by Lemma 8.15 and the fact that the matrices Q̃(1), . . . , Q̃(2n)

satisfy Assumption F. Take a point x ∈ T2n\{−∞} that belongs to Sλ/2(Q̃(1), . . . , Q̃(2n)). Then,
we have Q+

ii (x1, . . . , xn) ⩾ λ
2 +Q+

ii (xn+1, . . . , x2n) and (x1, . . . , xn) belongs to Sλ.

Remark 8.17. The proof shows that every point in Sλ(Q̃(1), . . . , Q̃(2n)) \ {−∞} is the projection
of the center of some Hilbert ball of radius λ/2 contained in S(Q̃(1), . . . , Q̃(2n)).
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8.2 Value iteration for constant value games
In the previous sections we showed a link between nonarchimedean semidefinite feasibility prob-
lems and stochastic mean payoff games. We now want to propose an algorithm that solves a class
of these problems and analyze its complexity. Suppose that we are given a stochastic mean pay-
off game. Corollary 6.7 shows that the value of this game is equal to the limit limn→∞ TN (0)/N ,
where T is the Shapley operator of the game. We want to turn this observation into a simple
iterative algorithm that computes the value and propose a condition number for this algorithm.

Throughout this section, we will further suppose that the game has a constant value (i.e.,
such that its value does not depend on the initial state). In this case, we may consider this
value to be a scalar (instead of a vector as discussed in Section 6.1) and denote it by η ∈ R.
Furthermore, the invariant half-line of a Shapley operator of such game has a simple form. More
precisely, Corollary 6.7 shows that there exists u ∈ Rn such that T (u) = η+ u. In other words,
T has an additive eigenvalue.

Let us motivate the fact that we restrict ourselves to constant value games. First, by
Lemma 7.16, this smaller class already captures the of complexity of general stochastic mean
payoff games. However, the reduction from general games to ergodic games destroys a lot of the
properties of these games, and it often a nontrivial task to extend an algorithm that works in the
ergodic case to the general games (see [ACTDG12, BEGM15] for two such examples). In this
way, supposing that the game is ergodic can significantly simplify the analysis. Furthermore,
the remarks in the previous paragraph show that Shapley operators of constant value games
belong to a wider class of functions—monotone and homogenous operators that have an additive
eigenvalue. Operators of this type arise also in other classes of games, such as the entropy
games of [ACD+16, AGGCG17] (and the operators arising in these games are not piecewise-
affine). Therefore, to cover these classes of games, in this section we consider a general operator
f : Rn → Rn that fulfills the following assumption.

Assumption G. We suppose that f : Rn → Rn is monotone and (additively) homogeneous.
Furthermore, we suppose that f has an additive eigenvalue, i.e., that there exists a couple
(η, u) ∈ R × Rn such that f(u) = η + u.

As previously, we refer to the vector u as a bias vector of f . The following lemma is an
improved version of Corollary 6.7.

Lemma 8.18. For every N ⩾ 1 we have

∥f
N (0)
N

− η∥∞ ⩽ ∥u∥H
N

.

Proof. We have u− b(u) ⩾ 0 ⩾ u− t(u). Hence, for every N ⩾ 1 we have

−b(u) + fN (u) ⩾ fN (0) ⩾ −t(u) + fN (u) .

Since fN (u) = Nη + u, we get u − b(u) ⩾ fN (0) − Nη ⩾ u − t(u). Thus ∥fN (0) − Nη∥∞ ⩽
∥u∥H.

Remark 8.19. Since f is nonexpansive in the supremum norm (Lemma 5.31), we have ∥fN (x)
N −

fN (0)
N ∥∞ ⩽ ∥x∥∞

N for all x ∈ Rn and N ⩾ 1 and the result of Lemma 8.18 implies that
limN→∞ fN (x)/N = η.
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In order to create algorithms, it is useful to consider the sequences t
(
fN (0)

)
and b

(
fN (0)

)
.

This requires the following definition.

Definition 8.20. We say that a sequence (an)n⩾1 of real numbers is subadditive if an+m ⩽
an + am for all n,m ⩾ 1. Similarly, we say that (an)n⩾1 is superadditive if an+m ⩾ an + am for
all n,m ⩾ 1.

Lemma 8.21. The sequence
(
t
(
fN (0)

))
N

is subadditive and the sequence
(
b
(
fN (0)

))
N

is
superadditive.

Proof. We prove the claim for t
(
fN (0)

)
(the other part is analogous). Since f is monotone and

homogeneous, we have

fN+M (0) = fN(fM (0)
)
⩽ fN

(
t
(
fM (0)

))
= fN (0) + t(fM (0)) ⩽ t(fN (0)) + t(fM (0)) .

The following lemma is a basic property of subadditive sequences.

Lemma 8.22 (Fekete’s lemma, [Sch03, Theorem 2.2]). If the sequence (an)n⩾1 is subadditive,
then

inf
n⩾1

an

n
= lim

n→∞
an

n
.

In particular, the limit on the right-hand side exists (it may be equal to −∞). Similarly, if
(an)n⩾1 is superadditive, then supn⩾1

an
n = limn→∞

an
n .

As a corollary, we get the following result.

Corollary 8.23. For every N ⩾ 1 we have the inequality

η − ∥u∥H
N

⩽ b
(
fN (0)

)
N

⩽ η ⩽ t
(
fN (0)

)
N

⩽ η + ∥u∥H
N

.

Proof. The inequality
t
(
fN (0)

)
N

⩽ η + ∥u∥H
N

follows from Lemma 8.18. In particular, we have

η ⩾ lim sup
N→∞

t
(
fN (0)

)
N

⩾ lim inf
N→∞

t
(
fN (0)

)
N

⩾ lim inf
N→∞

(
fN (0)

)
1

N
= η .

Hence limN→∞ t
(
fN (0)

)
/N = η. Therefore, Lemmas 8.21 and 8.22 show that t

(
fN (0)

)
/N ⩾ η

for all N . The proof of the remaining inequalities is analogous.

Remark 8.24. It is shown in [GG04, Theorem 8] that a stronger statement holds—namely,
there exist fixed coordinates k, l ∈ [n] such that (fN (0))k/N ⩾ η ⩾ (fN (0))l/N for all N ⩾ 1.
However, we do not need this property for our purposes.

In the next corollary we denote by R the infimum of the Hilbert seminorm of bias vectors
of f , i.e.,

R := inf{∥u∥H : f(u) = η + u} .

The following theorem estimates the complexity of a value iteration algorithm.
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Theorem 8.25. For every N ⩾ 1, if b
(
fN (0)

)
> 0, then η > 0. Similarly, if t

(
fN (0)

)
< 0, then

η < 0. Even more, if η ̸= 0, then one of these two possibilities arises for some N ⩽ ⌈1 +R/|η|⌉.
In particular, if η is a rational number with denominator D and we have b

(
fN (0)

)
⩽ 0 ⩽

t
(
fN (0)

)
for all N ⩽ ⌈1 +DR⌉, then η = 0.

Proof. The first part is obvious from Corollary 8.23. To prove the second one, suppose that η ̸= 0
and let u ∈ Rn be a bias vector such that ∥u∥H ⩽ R+ 1

2 |η|. Furthermore, let N = ⌈1 +R/|η|⌉.
Then N > ∥u∥H/|η|. Therefore, for η > 0 Corollary 8.23 shows that

b
(
fN (0)

)
N

⩾ η − ∥u∥H
N

> 0 .

Similarly, if η < 0, then t
(
fN (0)

)
< 0. If η is rational and has denominator D, then we have

either η = 0 or |η| ⩾ 1/D and the last claim follows.

In the light of Theorem 8.25, the quantities R/|η| and DR may be thought of as natural
condition numbers of the problem of finding the sign of a value. The first bound is more precise
whenever η ̸= 0. However, it is infinite when η = 0. On the other hand, we are able to
give bounds on the number DR for the class of stochastic mean payoff games. As a result, this
condition number can be used to develop an algorithm that solves stochastic mean payoff games
even if their value is equal to 0. These estimates are given in Section 8.3. Before that, let us
point out that a simple extension of the algorithm above can not only compute the sign of the
value, but also produce a certificate that justifies its correctness.

Lemma 8.26 ([GG04, Lemma 2]). Suppose that we are given N ⩾ 1 such that b
(
fN (0)

)
/N ⩾ λ

and define
û := 0 ⊕

(
−λ+ f(0)

)
⊕ · · · ⊕

(
−(N − 1)λ+ fN−1(0)

)
.

Then λ+ û ⩽ f(û).

Proof. Since f is order preserving, we have f(x⊕ y) ⩾ f(x) ⊕ f(y) and thus

f(û) ⩾ f(0) ⊕
(
−λ+ f2(0)

)
⊕ · · · ⊕

(
−(N − 1)λ+ fN (0)

)
.

Moreover, we have b
(
fN (0)

)
/N ⩾ λ and hence

f(û) ⩾ λ+
((

−λ+ f(0)
)

⊕
(
−2λ+ f2(0)

)
⊕ · · · ⊕

(
−(N − 1)λ+ fN−1(0)

)
⊕ 0

)
.

In other words, f(û) ⩾ λ+ û.

Remark 8.27. We point out that, as in Lemma 6.17, if λ + û ⩽ f(û), then Nλ + û ⩽ fN (û),
and η ⩾ λ by Remark 8.19. In particular, û certifies that the value η is not smaller than λ.

Remark 8.28. The result of Lemma 8.26 can be easily dualized. If t
(
fN (0)

)
/N ⩽ λ, then we

define
ǔ := min

{
0,
(
−λ+ f(0)

)
, . . . ,

(
−(N − 1)λ+ fN−1(0)

)}
,

and we get λ+ ǔ ⩾ f(ǔ). This point certifies that the value of η is not greater than λ.
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1: procedure ValueIteration(f)
2: ▷ we suppose that the value is nonzero, η ̸= 0
3: ν := 0 ∈ Rn, x := 0 ∈ Rn, y := 0 ∈ Rn

4: while True do
5: ν := f(ν)
6: if b(ν) > 0 then
7: return η > 0 and x ⩽ f(x)
8: end
9: if t(ν) < 0 then

10: return η < 0 and y ⩾ f(y)
11: end
12: x := max{x, ν}
13: y := min{y, ν}
14: ▷ operations max and min are taken entrywise
15: done
16: end

Figure 8.4: Procedure that computes the sign of the value in exact arithmetic.

The results of this section can be summarized by the algorithm ValueIteration given
in Fig. 8.4. In the model of computation in which the function f can be evaluated exactly,
Theorem 8.25 and Lemma 8.26 show that this algorithm is correct and stops after at most
⌈1 +R/|η|⌉ iterations of the loop. In the next section we study a more realistic situation where
one cannot (or does not want to) evaluate f exactly. Furthermore, we give a variant of the
algorithm in which one computes a more precise approximation of η.

8.2.1 Oracle-based approximation algorithms

In this section we study the complexity of approximating the value η using an oracle that
approximates f . There are two motivations to use oracles in order to approximate f . Firstly,
one may be interested in studying operators f that cannot be evaluated exactly on a Turing
machine (such as the operators associated with the entropy games). Secondly, even if the
operator f can be evaluated exactly (as is the case of the Shapley operators of stochastic mean
payoff games), using an approximation oracle may significantly reduce the amount of memory
needed in the execution of the algorithm. Indeed, while a naive implementation of value iteration
for the Shapley operators may require exponential memory, we will show in Section 8.4 that the
use of a simple approximation oracle results in an algorithm that requires only a polynomial
amount of memory. Throughout this section, we will suppose that an upper bound on R is
known beforehand. In other words, we will denote by Rub ∈ N∗ any positive natural number
that satisfies Rub ⩾ R. Our results are based on the following lemma.

Lemma 8.29. Let δ ⩾ 0 and suppose that we are given a function f̃ : Rn → Rn such that
∥f̃(x) − f(x)∥∞ ⩽ δ for all x ∈ Rn. Then, for every N ⩾ 1 we have the inequality

∥ f̃
N (0)
N

− fN (0)
N

∥∞ ⩽ δ .
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Moreover, we also have

|
t
(
f̃N (0)

)
N

−
t
(
fN (0)

)
N

| ⩽ δ and |
b
(
f̃N (0)

)
N

−
b
(
fN (0)

)
N

| ⩽ δ .

Proof. By induction and the fact that f is nonexpansive in the supremum norm (Lemma 5.31),
we have

∥f̃
(
f̃N−1(0)

)
− f

(
fN−1(0)

)
∥∞

⩽ ∥f̃
(
f̃N−1(0)

)
− f

(
f̃N−1(0)

)
∥∞ + ∥f

(
f̃N−1(0)

)
− f

(
fN−1(0)

)
∥∞

⩽ δ + ∥f̃N−1(0) − fN−1(0)∥∞ ⩽ Nδ .

To prove the second part of the claim, let k, l ∈ [n] be such that t
(
f̃N (0)

)
=
(
f̃N (0)

)
k
,

t
(
fN (0)

)
=
(
fN (0)

)
l
. Then

t
(
f̃N (0)

)
⩽ Nδ +

(
fN (0)

)
k
⩽ Nδ + t

(
fN (0)

)
and

t
(
fN (0)

)
⩽ Nδ +

(
f̃N (0)

)
l
⩽ Nδ + t

(
f̃N (0)

)
.

The proof of the last inequality is analogous.

Definition 8.30. We denote by Oracle(f, x,K) an algorithm that, given K ∈ N∗ and x ∈ Qn,
outputs a rational vector y ∈ Qn such that the denominator of every coordinate yk is equal to
K and ∥f(x) − y∥∞ ⩽ 1/K.

Remark 8.31. We point out that the oracle given above gives rise to a function f̃ : Rn → Rn

defined as

f̃(x) :=
{

Oracle(f, x,K) if x ∈ Qn

f(x) otherwise .

The function f̃ satisfies ∥f(x) − f̃(x)∥∞ ⩽ 1/K for all x ∈ Rn and we use this function in the
proofs below.

We now present value iteration algorithms that can decide the sign of the value η up to a
given precision. Our first algorithm is ValueSign presented in Fig. 8.5. It decides the sign but
does not produce a certificate that justifies its claim. A modification, ValueSignCertified
that produces such a certificate is given in Fig. 8.6. However, in order to produce the certificate
the algorithm ValueSignCertified requires a much more accurate oracle that ValueSign.

Lemma 8.32. The procedures ValueSign and ValueSignCertified are correct. Moreover,
if |η| ⩾ 1/K, then they finish in at most ⌈1 + 2R/|η|⌉ iterations of the loop.

Proof. First, let us prove that both procedures correctly recognize the sign of η. Let ε > 0 and
let u ∈ Rn be a bias of f such that ∥u∥H ⩽ R + ε. For both procedures, by Corollary 8.23
and Lemma 8.29, for all N ⩾ 1 we have

− 1
4K

+
b
(
f̃N (0)

)
N

⩽ η ⩽ t
(
f̃N (0)

)
N

+ 1
4K

.
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1: procedure ValueSign(f,K)
2: ν := 0 ∈ Rn

3: for i = 1, 2, . . . , 2KRub do
4: ν := Oracle(f, ν, 4K)
5: if b(ν) ⩾ 1

2K then
6: the value is positive, η > 0
7: end
8: if t(ν) ⩽ − 1

2K then
9: the value is negative, η < 0

10: end
11: done
12: the value η belongs to the interval [− 1

K ,
1
K ]

13: end

Figure 8.5: Procedure that computes the sign of the value.

1: procedure ValueSignCertified(f,K)
2: ν := 0 ∈ Rn, x := 0 ∈ Rn, y := 0 ∈ Rn

3: λ := 1
3K , µ := − 1

3K
4: for i = 1, 2, . . . , 2KRub do
5: ν := Oracle(f, ν, 12K2Rub)
6: if b(ν) ⩾ 1

2K then
7: the value η is positive and we have 1

6K + x ⩽ f(x)
8: end
9: if t(ν) ⩽ − 1

2K then
10: the value η is negative and we have − 1

6K + y ⩾ f(y)
11: end
12: x := max{x,−(i− 1)λ+ ν}
13: y := min{y,−(i− 1)µ+ ν}
14: ▷ operations max and min are taken entrywise
15: done
16: the value η belongs to the interval [− 1

K ,
1
K ]

17: end

Figure 8.6: Procedure that computes the sign of the value and certifies its claim.
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This proves that the stopping conditions inside the loop provide correct information about the
sign of η. Moreover, if the algorithm terminates after N = 2KRub iterations of the loop, then
we have

η ⩽ b
(
f̃N (0)

)
N

+ ∥u∥H
N

+ 1
4K

⩽ ∥u∥H
N

+ 1
2K

⩽ R+ ε

2KR
+ 1

2K
= 1
K

+ ε

2KR
.

Since the choice of ε > 0 is arbitrary, we have η ⩽ 1/K. Similarly, η ⩾ −1/K.
Second, suppose that |η| ⩾ 1/K. If η > 0, then for N = ⌈1 + 2R/|η|⌉ we have

b
(
f̃N (0)

)
N

⩾ η − ∥u∥H
N

− 1
4K

⩾ 1
2
η − 1

4K
− εη

2R
⩾ 1

4K
− εη

2R
.

Since ε is arbitrary, we obtain the claim. The case η < 0 is analogous.
It remains to prove that the vectors x, y constructed by ValueSignCertified have the

desired properties. To do so, let δ := (12K2Rub)−1 and suppose that b
(
f̃N (0)

)
/N ⩾ 1

2K for
some N ⩽ 2KRub. Then, we have

b
(
fN (0)

)
N

⩾ 1
2K

− δ ⩾ λ+ δ

because 1
2K − λ = 1

6K ⩾ 2δ = 1
6K2Rub

. Moreover, by Lemma 8.29 we have

x = 0 ⊕
(
−λ+ f̃(0)

)
⊕ · · · ⊕

(
−(N − 1)λ+ f̃N−1(0)

)
⩾ 0 ⊕

(
−(λ+ δ) + f(0)

)
⊕ · · · ⊕

(
−(N − 1)(λ+ δ) + fN−1(0)

)
.

Let x̂ denote the vector given by the last expression. Then, Lemma 8.26 shows that λ+ δ+ x̂ ⩽
f(x̂). Since f is monotone, we also have f(x̂) ⩽ f(x). Moreover, x̂ ⩾ −(N − 1)δ + x and
therefore λ− (N − 2)δ + x ⩽ f(x). To finish, note that

λ−Nδ ⩾ 1
3K

− 1
6K

= 1
6K

.

The proof of the case t
(
f̃N (0)

)
/N ⩽ − 1

2K is analogous.

Our next algorithm, ApproximateValue, computes the approximation of η up to a given
precision. Then, once an approximation of η is known, it certifies that the approximation is
correct. Contrary to the previous algorithms, ApproximateValue has to perform a fixed
number of iterations, independent of the value of η.

Lemma 8.33. The procedure ApproximateValue is correct.

Proof. The proof is similar to the proof of Lemma 8.32. Let δ := (8K2Rub)−1 and N := 2KRub.
By Lemma 8.29 we have

η ⩾ b
(
fN (0)

)
N

⩾ b
(
f̃N (0)

)
N

− δ = b(ν)
2KRub

− 1
8K2Rub

= a− 2KRub
16K3R2

ub
= λ+ δ .

Hence, as in the proof of Lemma 8.32, we have λ− (N −2)δ+x ⩽ f(x). Furthermore, if u ∈ Rn

is a bias vector such that ∥u∥H ⩽ R+ ε, then Corollary 8.23 and Lemma 8.29 imply that

η ⩽ b
(
f̃N (0)

)
N

+ ∥u∥H
N

+ δ ⩽ λ+ 3δ + R

N
+ ε

N
⩽ λ+ 3δ + 1

2K
+ ε

2KR
.
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1: procedure ApproximateValue(f,K)
2: ν := 0 ∈ Rn

3: for i = 1, 2, . . . , 2KRub do
4: ν := Oracle(f, ν, 8K2Rub)
5: done
6: ▷ we denote b(ν) = a

8K2Rub
and t(ν) = b

8K2Rub
, a, b ∈ Z

7: the value η belongs to the interval [a−2KRub
16K3R2

ub
,

a+2KRub+8K2R2
ub

16K3R2
ub

]

8: λ := a−4KRub
16K3R2

ub
, µ := b+4KRub

16K3R2
ub

9: ν := 0 ∈ Rn

10: x := 0 ∈ Rn, y := 0 ∈ Rn

11: for i = 1, 2, . . . , 2KRub do
12: x := max{x,−(i− 1)λ+ ν}
13: y := min{y,−(i− 1)µ+ ν}
14: ▷ operations max and min are taken entrywise
15: ν := Oracle(f, ν, 8K2Rub)
16: done
17: we have η − 1

K + x ⩽ f(x) and η + 1
K + y ⩾ f(y)

18: end

Figure 8.7: Approximating the value.

Since ε > 0 is arbitrary, we have η ⩽ λ+ 3δ + 1
2K = a+2KRub+8K2R2

ub
16K3R2

ub
. Moreover, note that

η − 1
K

⩽ λ+ 3δ − 1
2K

= λ+ 3δ − 2Nδ ⩽ λ− (N − 2)δ .

Therefore η − 1
K + x ⩽ f(x). The proof of the fact that η + 1

K + y ⩾ f(y) is analogous.

Remark 8.34. We point out that the length of the interval returned by ApproximateValue is
not greater than 3

4K . Furthermore, if one only wants to compute the approximation of η, then
the second loop of the algorithm can be omitted.
Remark 8.35. The same reasoning shows that η belongs to the interval

[b− 2KRub − 8K2R2
ub

16K3R2
ub

,
b+ 2KRub
16K3R2

ub
] .

In particular, we have b− 2KRub − 8K2R2
ub ⩽ a+ 2KRub + 8K2R2

ub, which is equivalent to

t(ν) − b(ν) ⩽ 2Rub + 1
2K

.

Hence t(ν) − b(ν) < 2Rub + 1. We will use this property later to check if a given stochastic
mean payoff game has constant value.

8.3 Estimates of condition number
In this section we give an estimate for the condition number DR for the class of operators that
arise in the study of stochastic mean payoff games. More precisely, we will suppose that the
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function f : Rn → Rn is semilinear on top of being monotone and homogeneous. Let us recall
that if f is semilinear, monotone, homogeneous, then its affine pieces are of the form Ax + b,
where A is a stochastic matrix (Lemma 5.32). We use the following definition.

Definition 8.36. If A ∈ Qn×n is a stochastic matrix, then we say that the kth row (Akl)l∈[n]
of A is nondeterministic if it contains an entry different than 0 or 1, ∃l∗, Akl∗ ∈ ]0, 1[. We say
that two rows (Akl)l∈[n], (Ak′l)l∈[n] of A are nonidentical if they differ by at least one entry,
∃l∗, Akl∗ ̸= Ak′l∗ .

The following theorem estimates the condition number DR.

Theorem 8.37. Suppose that f : Rn → Rn is a piecewise affine, monotone, and homoge-
neous operator. Let (W(s), A(s), b(s))s∈[p] be a piecewise description of f . Furthermore, sup-
pose that f satisfies Assumption G and that the matrices (A(s))s∈[p] and vectors (b(s))s∈[p] are
rational, A(s) ∈ Qn×n, b(s) ∈ Qn. Let M denote a common denominator of all the num-
bers (A(s)

kl )s,k,l. Similarly, let L denote a common denominator of all the numbers (b(s)
k )s,k

and let W := maxs,k |b(s)
k |. Furthermore, let nr ∈ N be such that every matrix A(s) has at

most nr nondeterministic rows. Then, the value η is rational and its denominator D satisfies
D ⩽ nLMmin{nr,n−1} and we have R ⩽ 10n2WMmin{nr,n−1}. Even more, if ñr ∈ N is such
that every matrix A(s) has at most ñr pairwise nonidentical nondeterministic rows, then we also
have D ⩽ 2nLM ñr and R ⩽ 40n2WM ñr .

Before giving the proof of Theorem 8.37, let us discuss its implications for the stochastic
mean payoff games.
Example 8.38. Suppose that we are given a stochastic mean payoff game that with n states
controlled by Player Min and m states controlled by Player Max. Moreover, suppose that the
game has rational probabilities pa

kv, p
b
iv ∈ Q and integer payoffs ra, rb ∈ Z. Finally, suppose

that the game is a constant value game. Let M denote the least common denominator of all
the numbers (pa

kv, p
b
iv), and let W denote the maximal absolute value of payoffs (|ra|, |rb|). Let

us say that a state of the game is nondeterministic if there is an action associated with this
state is nondeterministic (i.e., is such that the associated probability distribution has an entry
in ]0, 1[). Let us consider a few possible situations.

1. Take f to be the Shapley operator T|Rn+m : Rn+m → Rn+m (as defined in Definition 6.3).
Note that a piecewise description (W(s), A(s), b(s))s∈[p] of T can be obtained by fixing the terms
that achieve min and max in (6.2). Moreover, in this description the vectors b(s) are integer, and
M is a common denominator of the entries of matrices A(s). Since η is the value of the game (by
Remark 6.11), we get from Theorem 8.37 that this value is rational and that its denominator
is bounded by Dub := (n+m)Mmin{s,n+m−1}, where s is the number of nondeterministic states
of the game. Furthermore, we have R ⩽ Rub, where Rub := 10(n+m)2WMmin{s,n+m−1}.

2. Suppose that the game is bipartite and take f to be the bipartite Shapley operator
F|Rn : Rn → Rn as defined in Definition 6.20. Similarly to the previous situation, we have that
η is twice as big as the value of the game (by Lemma 6.22) and that a piecewise description
(W(s), A(s), b(s))s∈[p] of F can be obtained by fixing the terms that achieve min and max in (6.5).
However, in this description we multiply the probabilities by the probabilities, and probabilities
by the payoffs. Hence, M2 is a common denominator of the entries of matrices A(s) and M is
a common denominator of the entries of vectors b(s). Moreover, the absolute value of numbers
(b(s)

k ) is bounded by 2W . In particular, we get from Theorem 8.37 that the denominator of η is
not greater than Dub := nM2n−1 and that R is bounded by Rub := 20n2WM2n−2.
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3. Suppose, as above, that the game is bipartite, but Player Max has only deterministic
actions (as in the case of games obtained from tropical Metzler matrices discussed in Section 7.2).
In this case M is a common denominator of the entries of matrices A(s) and the entries of b(s).
The bounds become D ⩽ Dub := nMmin{s+1,n} and R ⩽ Rub := 20n2WMmin{s,n−1}, where s is
the number of nondeterministic states of Player Min.

4. The situation is slightly different if we suppose that the game is bipartite, but Player
Min has only deterministic actions (because of the asymmetry between Players Min and Max
in Definition 6.20). In this case, the vectors b(s) are integer. Moreover, we can measure the
degree of randomness of the game by letting s to be the number of nonidentical distributions
(pb

i·)b,i associated with the actions of Player Max. Then, we use the last part of Theorem 8.37
to obtain the bounds D ⩽ Dub := 2nMmin{s,n−1} and R ⩽ Rub := 80n2WMmin{s,n−1}.

We now want to present the proof of Theorem 8.37. The following proposition allows us to
reduce the case of general semilinear operators to the case of affine operators.

Proposition 8.39. Let f be as in Theorem 8.37. Then, there exist s ∈ [p], ũ ∈ Rn, and γ ⩾ 0
such that b(s) +A(s)ũ = η + ũ and such that u := γη + ũ is a bias of f . Furthermore, ũ has the
property that π⊺ũ = 0 for every stationary distribution π ∈ [0, 1]n of A(s).

The proof of Proposition 8.39 follows from the proof of Kohlberg’s theorem. Therefore,
we present in Appendix B.3 where we discuss Kohlberg’s theorem in more detail. From now
on, we focus on the case of affine operators f . We let f(x) := r + Px, where P ∈ [0, 1]n×n

is a stochastic matrix, we suppose that f satisfies the conditions of Theorem 8.37. As in this
theorem, we denote by M a common denominator of all the numbers (Pkl), we use L to denote
a common denominator of the numbers (rk), and we put W := maxk |rk|.

The following lemma shows that η is rational and relates its denominator D with a stationary
distribution of the Markov chain associated with P .

Lemma 8.40. We have the equality

η =
∑
k∈C

rkπk ,

where C is any recurrent class of a Markov chain associated with P , and (πk)k∈C is the sta-
tionary distribution of this class. In particular, η is rational and its denominator D is at most
L times greater than the least common denominator of the numbers (πk)k∈C .

Proof. Define π̃ ∈ Rn as π̃k = πk for k ∈ C and π̃ = 0 otherwise. Then π̃⊺P = π̃ by the
definition of a recurrent class. Moreover, we have r+Pu = η+ u. Hence π̃⊺(r+Pu) = η+ π̃⊺u
and

∑
k∈C rkπk = π̃⊺r = η.

Lemma 8.40 reduces the problem of estimating D into the problem of estimating the least
common denominator of a stationary distribution of a Markov chain with rational transition
matrix. Since stationary distributions can be computing using linear algebra (Remark 2.135),
one may bound this common denominator using Hadamard’s inequality. Such estimations were
done, e.g., in [BEGM15, AGH18]. However, these estimates are not optimal. An improved
bound can be obtained using the combinatorial formula of Freidlin and Wentzell, see [FW12,
Chapter 6, Lemma 3.1] or [Cat99, Lemma 3.2]. This formula requires the following definition.

Definition 8.41. Suppose that P ∈ [0, 1]n×n is a stochastic matrix and let G⃗ := ([n], E) be the
associated graph (given by Definition 2.128). We say that a subgraph H⃗ := ([n], E′), E′ ⊂ E is
an arborescence rooted at k ∈ [n] if is fulfills the following conditions:
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• for every l ∈ [n], l ̸= k, there is a directed path from l to k in H⃗;
• for every l ∈ [n], l ̸= k, there is exactly one edge of the form (l, l′) ∈ E that belongs to E′;
• the set E′ does not contain any edge of the form (k, l).

In other words, an arborescence is a tree in which every edge is directed towards k. We point
out that an arborescence has exactly n− 1 edges.

Definition 8.42. If H⃗ := ([n], E′), E′ ⊂ E, E′ ̸= ∅ is a subgraph of G⃗, then we define its weight
as

p(H⃗) :=
∏

(k,l)∈E′

Pkl .

We can now present the formula of Freidlin and Wentzell.

Lemma 8.43 ([FW12, Chapter 6, Lemma 3.1]). Suppose that P is irreducible and let A⃗k denote
the set of all arborescences rooted at k. Then, the unique stationary distribution of this matrix
is given by

∀k ∈ [n], πk =
∑

H⃗∈A⃗k
p(H⃗)∑

l∈[n]
∑

H⃗∈A⃗l
p(H⃗)

.

This formula allows us to give an estimate on the denominator D.

Theorem 8.44. If (πk)k∈C is the stationary distribution of the Markov chain associated with
P , then the numbers (πk)k∈C are rational and their common denominator is not greater than
nMmin{nr,n−1}, where nr is the number of nondeterministic rows of P . In particular, we have
D ⩽ nLMmin{nr,n−1}.

Proof. The second part follows from the first by Lemma 8.40. To prove the first part, note that,
up to passing to a submatrix induced by the recurrent class, it is enough to prove the claim in
the case where the matrix P is irreducible. In this case, denote Pkl = akl

bkl
, where akl, bkl ∈ N

and

bkl :=
{

1 if the kth row of P is deterministic ,
M otherwise .

Furthermore, let G⃗ := ([n], E) be the associated graph. For any arborescence H⃗ = ([n], E′),
E′ ⊂ E we define

p̃(H⃗) :=
∏

(k,l)∈E′

bkl

and we put Z := lcm{p̃(H⃗) : H⃗ is an arborescence} (where lcm denotes the least common mul-
tiple). By Lemma 8.43, the stationary distribution is given by

∀k ∈ [n], πk =
Z
∑

H⃗∈A⃗k
p(H⃗)

Z
∑

l∈[n]
∑

H⃗∈A⃗l
p(H⃗)

. (8.4)

Note that, by the definition of Z, the expression in (8.4) is a quotient of two natural numbers.
In other words, the least common denominator of (πk)k∈[n] is not greater than

Z
∑
l∈[n]

∑
H⃗∈A⃗l

p(H⃗) .
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Furthermore, observe that for any l ∈ [n] we have∑
H⃗∈A⃗l

p(H⃗) ⩽
∏
k′ ̸=l

( ∑
l′∈[n]

Pk′l′

)
= 1 .

Hence, the least common denominator of (πk)k∈[n] is not greater than nZ. To finish the proof,
note that Z divides both Mn−1 and Mnr .

Remark 8.45. As noted above, it is useful to compare our bound with the bounds obtained
by Hadamard’s inequality. Using this technique, [BEGM15, Lemma 6] gives a bound (nr +
1)n(2M)nr+3 for the least common denominator of (πk)k∈[n], which is worse than the bound
presented above. Moreover, it can be shown that our bound is optimal in the sense that for
every n ⩾ 2 and every 1 > ε > 0 we can find M and a Markov chain such that the least common
denominator of (πk)k∈[n] is greater than (1 − ε)nMmin{nr,n−1}.
Remark 8.46. Bounds of similar nature, but concerning the probabilities of absorption instead of
stationary distribution, were studied in the context of simple stochastic games [Con92, ACS14]
(we have used these bounds in Lemma 7.11). As in case considered above, these bounds are
obtained by Hadamard’s inequality and are suboptimal. We note that it is possible to extend the
formula of Freidlin and Wentzell in order to obtain a similar formula for absorption probabilities,
and this gives the optimal bounds. However, this result is not needed in this dissertation.

We now want to estimate the second part of our condition number, namely the estimate R
of Hilbert seminorm of bias vectors. This requires the following definition and a lemma from
the theory of Markov chains. Hereafter, I denotes the identity matrix (the dimension of this
matrix is always clear from the context).

Definition 8.47. Given a Markov chain on a space V , we say that a nonempty subset of sets
U ⊂ V is open if the chain starting at any state v ∈ U can go to V \U with nonzero probability,
i.e.,

∀v ∈ U, P(∃s,Xs /∈ U | X0 = v) > 0 .

Lemma 8.48. Let U ⊂ [n] denote any open set of a Markov chain associated with the stochastic
matrix P . Let P̃ ∈ [0, 1]U×U be the submatrix of P formed by the rows and columns of P indexed
by U . Then, the matrix (I−P̃ ) is invertible and (I−P̃ )−1 has nonnegative entries. Furthermore,
every entry of the matrix (I−P̃ )−1 is not greater than Mnr(U), where nr(U) denotes the number
of nondeterministic rows of P with indexes in U .

Remark 8.49. Since the estimate above is similar to the one of Theorem 8.44, one may wonder if
it is possible to obtain it using arborescences. This is indeed possible, by replacing the formula
of Lemma 8.43 by a more general statement of [Cat99, Lemma 3.1]. However, the probabilistic
proof given below is slightly shorter.

Proof of Lemma 8.48. The fact that (I − P̃ ) is invertible follows from [KS76, Theorem 3.5.4].
Even more, the entries of the matrix (I − P̃ )−1 have the following probabilistic interpretation.
Denote C := [n]\U and let (X0, X1, . . . ) be a Markov chain with transition matrix P . We denote
by T := inf{m ⩾ 1: Xm ∈ C} the first (nontrivial) time the chain visits C. Furthermore, for
every pair v, w ∈ U we denote by

ζvw := E
(T −1∑

m=0
1{Xm=w}

∣∣∣X0 = v
)
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the expected number of visits in w before reaching C provided that the Markov chain starts at
v. Then, it is shown in [KS76, Theorem 3.5.4] that (I − P̃ )−1

vw = ζvw for every pair v, w ∈ U . In
particular, the entries of (I− P̃ )−1 are nonnegative. Furthermore, let qvw denote the probability
that a chain starting at v reaches w before going back to v and before reaching C,

qvw := P(∃s < T, X1 ̸= v,X2 ̸= v, . . . , Xs−1 ̸= v,Xs = w | X0 = v) .

Note that under this notation qvv is the probability that Markov chain starting at v comes back
to v before reaching C. Then, we have

ζvw =
∞∑

s=1
P(

T −1∑
m=0

1{Xm=w} ⩾ s | X0 = v) =
∞∑

s=1
qvwq

s−1
ww ⩽

∞∑
s=1

qs−1
ww = 1

1 − qww
.

Furthermore, since 1 − qww is the probability that Markov chain starting at w reaches C before
it comes back to w, we can bound it from below as follows. Let G⃗ be the graph associated with
P and let (k0, k1, . . . , ks) be the shortest directed path in this graph that starts from k0 = w
and ends in C, ks ∈ C. (Such a path exists because U is open.) Since this is the shortest path,
every state on this path is different. Moreover, note that we have Pkiki+1 ⩾ 1/M for every
i ∈ {0, . . . , s − 1}. Even more, if the state ki is deterministic, then Pkiki+1 = 1. In particular,
we have

1 − qww ⩾ P(X1 = k1, . . . , Xs = ks | X0 = w) =
s−1∏
i=0

Pkiki+1 ⩾ 1
Mnr(U) .

Hence ζvw ⩽Mnr(U).

We can now use Lemma 8.48 to bound R. We start with the case where the matrix P is
irreducible.

Lemma 8.50. Suppose that P is irreducible and let u ∈ Rn be any bias vector of f . Then
∥u∥H ⩽ 4nWMmin{nr,n−1}.

Proof. If n = 1, then any scalar is a bias vector and its Hilbert seminorm is equal to 0. Let n ⩾ 2
and note that a vector u ∈ Rn is a bias of f if and only if r + Pu = η + u, which is equivalent
to (I − P )u = η − r, where I is the identity matrix. Moreover, since P is irreducible, P has
a unique stationary distribution by Proposition 2.134. Hence, by Remark 2.135, the kernel of
(I − P )⊺ has dimension 1. Since this matrix is square, the kernel of (I − P ) also has dimension
1. In particular, the set of bias vectors of f forms an affine space of dimension one. Let u be
a fixed bias vector. Note that (1, 1, . . . , 1) is an eigenvector of P and hence the set of all bias
vectors is a line of the form {λ + u : λ ∈ R}. In particular, we have t(λ + u) = λ + t(u) and
b(λ+u) = λ+ b(u), which implies that the Hilbert seminorm does not depend on the choice of
bias vector. Therefore, we can take a bias u such that un = 0. Let ũ, r̃ denote the vectors u, r
with the nth coordinate removed and let P̃ denote the matrix P with the nth row and column
removed. We have (I− P̃ )ũ = η− r̃. Moreover, by Lemma 8.40, we have the inequality |η| ⩽W .
Furthermore, note that [n− 1] ⊂ [n] is open because P is irreducible. Hence, by Lemma 8.48,

∥ũ∥∞ = ∥(I − P̃ )−1(η − r̃)∥∞ ⩽ 2W∥(I − P̃ )−1e∥∞

⩽ 2(n− 1)WMnr([n−1]) ⩽ 2nWMmin{nr,n−1} .

Moreover, for any k, l ∈ [n] we have |uk − ul| ⩽ |uk − un| + |un − ul| = |uk| + |ul| ⩽ 2∥ũ∥∞ and
the claim follows.
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In order to extend the result of Lemma 8.50 to matrices that are not irreducible, we use the
fact that f admits a special bias vector that is orthogonal to every stationary distribution of P
(Proposition 8.39).

Lemma 8.51. If P ∈ Qn×n is any stochastic matrix (not necessarily irreducible) and let u
be a bias vector of f that is orthogonal to every stationary distribution of P . Then ∥u∥H ⩽
10n2WMmin{nr,n−1}.

Proof. If n = 1, then ∥u∥H = 0 and the claim is trivial. Suppose that n ⩾ 2, let C ⊂ [n] be
any recurrent class of a Markov chain associated with P and let π̃ ∈ ]0, 1]C be its stationary
distribution. Moreover, let r̃, ũ ∈ RC denote the vectors r, u restricted to coordinates indexed
by C and let P̃ ∈ [0, 1]C×C be the submatrix of P formed by the rows and columns indexed
by C. By the definition of recurrent class we have r̃ + P̃ ũ = η + ũ. Hence, by Lemma 8.50,
∥ũ∥H ⩽ 4|C|WMmin{nr(C),|C|−1}, where nr(C) denotes the number of nondeterministic rows of
P with indexes in C. Furthermore, as already observed in the proof of Lemma 8.40, if we define
π ∈ [0, 1]n as πk := π̃k for k ∈ C and πk := 0 otherwise, then π is a stationary distribution of
P . In particular, we have π⊺u = 0 and hence π̃⊺ũ = 0. Hence, for every k ∈ C we have

|uk| = |
∑
l∈C

πluk| = |
∑
l∈C

πl(uk − ul)| ⩽ ∥ũ∥H ⩽ 4|C|WMmin{nr(C),|C|−1} . (8.5)

We now want to bound |uk| for a transient state k ∈ [n]. To do this, let U ⊂ [n] be the set of all
transient states, and suppose that this set is nonempty. Let Ũ := [n] \ U denote the set of all
recurrent states. Let r̂, û ∈ RU denote the vectors r, u restricted to the coordinates indexed by
U and let P̂ ∈ [0, 1]U×U denote the submatrix of P formed by the rows and columns indexed
by U . Furthermore, we denote by u ∈ RŨ the vector u restricted to coordinates indexed by Ũ
and by P ∈ [0, 1]U×Ũ the (rectangular) submatrix of P formed by the rows indexed by U and
columns indexed by Ũ . Moreover, note that U is open. We have r̂ + P̂ û+ Pu = η + û. Hence,
by Lemma 8.48 and (8.5), and the fact that |η| ⩽W (Lemma 8.40) we have

∥û∥∞ = ∥(I − P̂ )−1(η − r̂ − Pu)∥∞ ⩽ (2W + ∥u∥∞)∥(I − P̂ )−1e∥∞

⩽ (2W + 4|Ũ |WMmin{nr(Ũ),|Ũ |−1})|U |Mnr(U)

⩽ (2n+ 4n2)WMmin{nr,n−1} ⩽ 5n2WMmin{nr,n−1} .

The claim follows from the inequality ∥u∥H ⩽ 2∥u∥∞.

The next lemma extends these estimates to the case where we fix the number of nonidentical
nondeterministic rows.

Lemma 8.52. Let ñr denote the number of pairwise nonidentical nondeterministic rows of P .
Then, we have D ⩽ 2nLM ñr . Moreover, if u is a bias of f that is orthogonal to every stationary
distribution of P , then ∥u∥H ⩽ 40n2WM ñr .

Proof. Let ñ denote the number of pairwise nonidentical rows of P . Up to permuting the rows
of P and the coordinates of r, we can assume that the first ñ rows of P consist of all the
pairwise nonidentical rows. Moreover, for every row k ∈ [n], let σ(k) ∈ [ñ] denote the index
such that Pkl = Pσ(k)l for all l ∈ [n]. Observe that for all k ∈ [n] we have the equalities
η+uk = (r+Pu)k = rk +(Pu)k = rk +(Pu)σ(k) and η+uσ(k) = (r+Pu)σ(k) = rσ(k) +(Pu)σ(k)
Hence

uk − rk = uσ(k) − rσ(k) (8.6)
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for all k ∈ [n]. We now define a matrix P̃ ∈ [0, 1](n+ñ)×(n+ñ) and a vector r̃ ∈ Rn+ñ as

P̃ :=



0 ϵσ(1)
...

...
0 ϵσ(n)

P1,1 . . . P1,n 0
...

...
Pñ,1 . . . Pñ,n 0


and r̃ :=



r1
...
rn

0
...
0


.

where ϵl ∈ Rñ denotes the lth vector of the standard basis in Rñ. Furthermore, let f̃(x) := r̃+P̃ x
and define a vector ũ ∈ Rn+ñ as ũk := uk for all k ⩽ n and ũn+k := 1

2η + uk − rk for all k ⩽ ñ.
By (8.6) we have

r̃ + P̃ ũ =



r1 + ũn+σ(1)
...

rn + ũn+σ(n)
(Pu)1

...
(Pu)ñ


=



1
2η + u1

...
1
2η + un

η + u1 − r1
...

η + un − rn


= 1

2
η + ũ .

In particular, f̃ satisfies Assumption G. Hence, by Theorem 8.44, the denominator D of η can
be estimated by

D ⩽ (n+ ñ)LM ñr ⩽ 2nLMmin{ñr,n−1} .

To prove the second estimate, let π̃ ∈ [0, 1]n+ñ be a stationary distribution of P̃ . Therefore, for
all l ⩽ n we have

π̃l =
ñ∑

k=1
Pklπ̃n+k

and for all l ⩽ ñ we have
π̃n+l =

∑
{k∈[n] : σ(k)=l}

π̃k .

In particular,
∑ñ

l=1 π̃n+l =
∑n

k=1 π̃k and thus
∑ñ

l=1 π̃n+l =
∑n

k=1 π̃k = 1/2. Define π ∈ [0, 1]n as
πk := 2π̃k for all k ∈ [n]. Then, the coordinates of the vector π sum to one and we have

πl =
ñ∑

k=1

∑
{k′∈[n] : σ(k′)=k}

Pklπk′ =
n∑

k=1
Pklπk .

Hence, π is a stationary distribution of P . As a result, using (8.6) and the fact that π⊺r = η
(as noted in the proof of Lemma 8.40), we have

π̃⊺ũ = 1
2
π⊺u+

ñ∑
l=1

π̃n+lũn+l = 1
2

ñ∑
l=1

∑
{k∈[n] : σ(k)=l}

πk(1
2
η + ul − rl)

= 1
4
η + 1

2

ñ∑
l=1

∑
{k∈[n] : σ(k)=l}

πk(uk − rk) = 1
4
η + 1

2

n∑
k=1

πk(uk − rk) = −1
4
η .
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Therefore, the vector û ∈ Rn+ñ defined as û := 1
4η+ ũ is a bias of f that is orthogonal to every

stationary distribution of P̃ . Moreover, we have ∥u∥H ⩽ ∥ũ∥H = ∥û∥H. Hence, by Lemma 8.51
we have the inequality

∥u∥H ⩽ 10(n+ ñ)2WM ñr ⩽ 40n2WM ñr .

We are now ready to present the proof of Theorem 8.37.

Proof of Theorem 8.37. Let s ∈ [p], ũ ∈ Rn, γ ⩾ 0 be the triple given by Proposition 8.39
and let f̃(x) := b(s) + A(s)x. Then, by Proposition 8.39 we have f̃(ũ) = η + ũ. Hence, by
Lemma 8.40 and Theorem 8.44 the value of η is rational and its denominator is bounded by
D ⩽ nLMmin{nr,n−1}. Furthermore, since ũ is orthogonal to every stationary distribution of
A(s), Lemma 8.51 shows that ∥ũ∥H ⩽ 10n2WMmin{nr,n−1}. Moreover, if u := γη + ũ, then
t(u) = γη + t(ũ) and b(u) = γη + b(ũ). Hence ∥u∥H = ∥ũ∥H. Furthermore, u is a bias of f
by Proposition 8.39 and the first claim follows. The second claim is proven in the same way,
replacing Theorem 8.44 and Lemma 8.51 by Lemma 8.52.

8.4 Parametrized complexity bounds
for stochastic mean payoff games

In this section, we combine the analysis of value iteration done in Section 8.2 with the estimates
obtained in Section 8.3. As a result, we show that value iteration solves the constant value
games in pseudopolynomial time when the number of nondeterministic actions is fixed. We also
extend this result to the task of finding the set of states with maximal (or minimal) value in a
general stochastic mean payoff game.

We use the notation introduced in Example 8.38. More precisely, we suppose that we are
given a stochastic mean payoff game that with n states controlled by Player Min and m states
controlled by Player Max. Moreover, we suppose that the game has rational probabilities
pa

kv, p
b
iv ∈ Q and integer payoffs ra, rb ∈ Z. Let M denote the least common denominator of

all the numbers (pa
kv, p

b
iv), and let W denote the maximal absolute value of payoffs (|ra|, |rb|).

Furthermore, let s denote the number of nondeterministic states of the game, χ ∈ Rn+m denote
its value, and act ∈ N∗ denote the total number of actions. We put

Dub := (n+m)Mmin{s,n+m−1} ,

Rub := 10(n+m)2WMmin{s,n+m−1} .

Finally, let T : Tn → Tn be the Shapley operator of this game as defined in Definition 6.3.
We recall that the restriction f(x) := T|Rn+m(x) : Rn+m → Rn+m is a semilinear, monotone,
homogeneous operator. Before proceeding, let us observe that f preserves Qn and hence the
values fN (0) can be computed explicitly in the Turing machine model of computation. How-
ever, as noted in the previous sections, it is still desirable to use approximations of f , as they
greatly reduce the amount of memory needed by the algorithms presented in Section 8.2. The
algorithm that approximates f is very simple—we first compute the value of f(x) exactly and
then approximate the result using integer division. This is presented in Fig. 8.8.

Lemma 8.53. The procedure Oracle presented in Fig. 8.8 is correct (i.e., satisfies the prop-
erties of Definition 8.30).
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1: procedure Oracle(f, x,K)
2: ν := f(x) ∈ Qn

3: ▷ for all k ∈ [n] we denote νk = ak/bk, where ak, bk ∈ Z and bk > 0
4: for k = 1, 2, . . . , n do
5: find pk, rk ∈ N, rk < bk such that K|ak| = pkbk + rk

6: done
7: return the vector ( sign(a1)p1

K , . . . , sign(an)pn

K )
8: end

Figure 8.8: Approximation oracle for operators that preserve Qn and can be computed explicitly.

Proof. To prove the claim, observe that for every k ∈ [n] we have

|ak

bk
− sign(ak)pk

K
| = | |ak|

bk
− pk

K
| = | |ak|K − pkbk

bkK
| = | rk

bkK
| < 1

K
.

We will also need the following lemma that gives a separation bound between maximal and
minimal value of a stochastic mean payoff game.

Lemma 8.54. Let χ := maxk χk and χ := mink χk denote the maximal and minimal value of
the game. Then, these numbers are rational and have denominators bounded by Dub.

Proof. Let (σ, τ) denote a couple of optimal policies and consider the Markov chain induced by
fixing these policies. Then, by Theorem 2.137, this chain contains two recurrent classes C1, C2
such that χ =

∑
w∈C1 rξ(w)π

(1)
w and χ =

∑
w∈C2 rξ(w)π

(2)
w , where the function ξ is defined as

ξ(k) := σ(k) for k ∈ [n] and ξ(i) := τ(i) for i ∈ [m]. Moreover, Theorem 8.44 shows that the
common denominator of (π(1)

w )w∈C1 is not greater than Dub. The same is true for (π(2)
w )w∈C2 .

8.4.1 Solving constant value games
Our first results concern the complexity of solving constant value games. Suppose that the
game introduced above has constant value and denote χ = η(1, 1, . . . , 1). Then, the following
lemma summarizes the conclusions of the previous sections.

Lemma 8.55. There exists a bias vector u ∈ Rn+m such that T (u) = η+ u. Furthermore, η is
a rational number with denominator not greater than Dub. Moreover, we have Rub ⩾ R, where
R := inf{∥u∥H : T (u) = η + u}.

Proof. The existence of bias follows from Corollary 6.7 and the fact that χ = η(1, 1, . . . , 1).
Indeed, Corollary 6.7 shows that there exist ũ ∈ Rn+m and γ ⩾ 0 such that T (γη + ũ) =
(γ + 1)η + ũ. Hence, by putting u := γη + ũ we get T (u) = η + u. The remaining claims follow
from Theorem 8.37, as explained in Example 8.38.

As a corollary, we get the following theorem about the complexity of determining the sign of
η. In the following, we refer to the addition, multiplication, comparison (of rational numbers),
and integer division as arithmetic operations.

Theorem 8.56. Suppose that η ̸= 0. Then, the sign of η can be found in O
(
(1+ R

|η|)act(n+m)
)

arithmetic operations. Moreover, every number that appears during these operations can be
represented using O

(
(n+m) log

(
(n+m)MW

))
bits of memory.
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Proof. Since η ̸= 0, we have W ̸= 0. By Lemma 8.55, if η ̸= 0, then η ⩾ 1/Dub. Hence,
we can put K := Dub + 1 and use the procedure ValueSignCertified(T,K) with the oracle
Oracle(T, x, 12K2Rub) given in Fig. 8.8. By Lemmas 8.32 and 8.55, the procedure finishes after
at most ⌈1+2R/|η|⌉ ⩽ 2(1+R/|η|) iterations of the loop and correctly decides the sign of η. Each
iteration of the loop consists of one call to the oracle and O(n+m) arithmetic operations. Each
call to the oracle consists of an evaluation of T and O(n+m) arithmetic operations. Finally, each
evaluation of T consists of O(act(n+m)) arithmetic operations (for every action we do O(n+m)
multiplications of the form pa

kwxw or pb
iwxw). This proves the first claim. To prove the second

claim, note that every rational number that appears during the execution of the algorithm,
outside the calls for oracle, may be represented as fraction with a denominator equal to 12K2Rub.
Furthermore, note that −W (1, 1, . . . , 1) ⩽ T (0) ⩽ W (1, 1, . . . , 1). Since T is monotone and
homogeneous, this implies that −NW (1, 1, . . . , 1) ⩽ TN (0) ⩽ NW (1, 1, . . . , 1) for every N ⩾ 1.
Since N ⩽ 2KRub, by Lemma 8.29 we have ∥ν∥∞ ⩽ 2KRubW + 2KRub(12K2Rub)−1 for every
vector ν that appears during the execution of the algorithm. Moreover, the coordinates of ν
have denominator 12K2Rub, and hence every numerator of every coordinate of ν has an absolute
value not greater than 24K3R2

ubW + 2KRub = O(K3R2
ubW ). This also implies that the vectors

−(i − 1)λ + ν, −(i − 1)µ + ν that appear in the definitions of x and y have numerators with
absolute values bounded by O(K3R2

ubW ) and the same is true for coordinates of vectors x, y.
To bound the that appear during the call to the oracle, note that during the evaluation of
T (ν), every rational number may be represented as a fraction with denominator 12K2MRub.
In particular, every numerator of every number that appears during this evaluation is bounded
by O(MK3R2

ubW ). This also implies that the numbers appearing in the integer division used in
the oracle are bounded by O(MK5R3

ubW ). Hence, all these numbers can be represented using
O(log(MKRubW )) = O(log(MDubRubW )) = O

(
(n+m) log

(
(n+m)MW

))
bits of memory.

Remark 8.57. We point out that in order to execute the algorithm we need to store O
(
act(n+m)

)
numbers. Therefore, the algorithm can be implemented to run in polynomial memory. Moreover,
the algorithm given above produces a certificate that justifies its claim.

The next theorem shows that stochastic mean payoff games with constant value can be
solved in pseudopolynomial time for every fixed number of nondeterministic states.

Theorem 8.58. The value and a couple of optimal policies of a stochastic mean payoff game
with constant value can be found in O

(
act(n + m)5WM3 min{s,n+m−1}) arithmetic operations.

Moreover, every number that appears during these operations can be represented using O
(
(n+

m) log
(
(n+m)MW

))
bits of memory.

Proof. We let K := 2D2
ub and we use the procedure ApproximateValue(T,K) with the oracle

Oracle(T, x, 8K2Rub) given in Fig. 8.8. By repeating the proof of Theorem 8.56, we see that
this procedure requires O(KRubact(n + m)) = O(act(n + m)5WM3 min{s,n+m−1}) arithmetic
operations and that every number used in the computations can be represented using the claimed
amount of memory. Moreover, this procedure outputs an interval of the form

[a− 2KRub
16K3R2

ub
,
a+ 2KRub + 8K2R2

ub
16K3R2

ub
]

that contains η. Furthermore, as in the proof of Theorem 8.56, |a| is bounded by O(K3R2
ubW ).

Since the interval has length smaller than 1/K < 1/D2
ub (as noted in Remark 8.34) and the
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denominator of η is not greater than Dub (by Lemma 8.55), we conclude that η is the rational
number with the smallest denominator that belongs to this interval (as discussed in the proof
of Lemma 7.13). Therefore, the exact value of η can be found in O

(
log(KRubW )

)
= O

(
(n +

m) log
(
(n + m)WM

))
complexity using the rational search technique, see [KM03, Lemma 5]

or [For07]. To find an optimal policy for Player Max, we take the vector x ∈ Qn+m returned
by ApproximateValue(T,K) and such that η − 1

K + x ⩽ T (x). For every state w ∈ [m]
controlled by Player Max, we find an action τ(w) that realizes the maximum in (T (x))w =
maxb∈B(w)(rb +

∑
v∈[n]⊎[m] p

b
wvxv). This defines a policy τ . Moreover, by definition, if T τ denote

the Shapley operator of the game obtained by fixing τ , then we have η− 1
K +x ⩽ T (x) = T τ (x).

Let χ̃ ∈ Rn+m denote the value of the game obtained by fixing τ . Then, Corollary 6.18
shows that minv χ̃v ⩾ η − 1

K . Moreover, we have χ̃v ⩽ η for all states v ∈ [n] ⊎ [m]. Hence
η − 1

K ⩽ minv χ̃v ⩽ η. By Lemma 8.54, minv χ̃v is a rational number with denominator not
greater than Dub. Moreover, the interval [η − 1

K , η] has length smaller than 1/D2
ub. Hence,

it contains at most one rational number with denominator bounded by Dub and minv χ̃v = η.
Since χ̃v ⩽ η for all v ∈ [n] ⊎ [m], we have χ̃v = η for all states and τ is an optimal policy for
Player Max. Moreover, we note that the construction of τ requires one evaluation of T (i.e., it
is cheaper that one call to the oracle). The construction of an optimal policy for Player Min is
analogous.

Remark 8.59. As previously, in order to execute the algorithm we need to store O
(
act(n+m)

)
numbers. Therefore, the algorithm can be implemented to run in polynomial memory.
Remark 8.60. If the game is bipartite and one uses a bipartite Shapley operator F : TVMin →
TVMin to describe it, then the analysis of Theorems 8.56 and 8.58 extends to this case. Indeed,
if the value of the game is constant and given by χ = η(1, 1, . . . , 1), then Lemmas 6.22 and 8.55
show that there exists a vector u ∈ RVMin such that F (u) = 2η+u. This enables us to repeat the
analysis above, takingDub, Rub as in Example 8.38. Moreover, slightly better complexity bounds
can be achieved when the cost of evaluating the Shapley operator is smaller than O

(
act(n+m)

)
.

For instance, a general bipartite Shapley operator can be evaluated in O
(
aMax

ct n + aMin
ct m

)
arithmetic operations, where aMax

ct , aMax
ct are the numbers of actions of Player Max and Min

respectively. If Player Max has only deterministic actions, then this cost drops to O
(
aMax

ct +
aMin

ct m
)
. Additionally, if the probabilities associated with actions belong to {0, 1/2, 1} (as in the

case of games that arise from tropical Metzler spectrahedra), then this cost drops to O(act). It
is therefore convenient to denote by ceval the cost of evaluating the operator.1 Then, for η ̸= 0,
finding the sign of the value of the game can be done in O

(
(1 + R

|η|)ceval
)

arithmetic operations,
while solving a constant value game can be done in O

(
D2

ubRubceval
)

arithmetic operations.
Furthermore, the numbers that arise in the algorithm can be stored using O(log(MDubRubW ))
bits of memory.
Remark 8.61. It is interesting to compare the bounds obtained above with the bounds given
by [BEGM15], where the same problem is solved using the pumping algorithm. The model of
the game used in [BEGM15] is slightly different than ours—in this model, a nondeterministic
action is represented by a state with only one action. This allows to represent the game as
a graph, whose set of edges E correspond to the different possible transitions occurring in
the game. In this model, the complexity of solving games with constant value is given by
O(|V |4|E|WM3 min{s,|V |−1}), where V denotes the set of all states of the game, and s ⩽ |V |

1We suppose that evaluating the operator is more expensive than the rounding procedures given in Fig. 8.8.
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denotes the number of states where a nondeterministic action takes place. This is better than the
bounds obtained in [BEGM15]. Indeed, even if we take into account that the accuracy parameter
used in [BEGM15] can be improved by the estimates presented in Section 8.3, the complexity
bound presented in [BEGM15] is worse, as it is given by O

(
|V |2|E|W (s2s|V |3M4s + logW )

)
.

We also note that in [BEGM17] the same authors gave another algorithm to solve this problem.
The algorithm presented in [BEGM17] is based on a variant of the ellipsoid method an its
complexity bounds are not given explicitly.

8.4.2 Finding the states with maximal value

In this section, we consider games that may not have a constant value. We show that a modifica-
tion of the algorithms presented before can decide if a game has constant value or not and, in the
latter case, find the states that have the maximal (or minimal) value. In order to do so, we need
to prove an analogue of Corollary 8.23 for games that do not have a constant value. This requires
to use the specific properties of Shapley operators given in Section 6.2. We let χ := maxw χw

and χ := minw χw. Moreover, even though we do not suppose that the value is constant, we
still use the quantities Dub := (n + m)Mmin{s,n+m−1}, Rub := 10(n + m)2WMmin{s,n+m−1} in
our complexity bounds. Our method is based on the next lemma.

Lemma 8.62. Let W ⊂ [n] ⊎ [m] denote the set of all states of the game with maximal value.
Then, for every N ⩾ 1 and w ∈ W we have

(TN (0))w

N
⩾ χ− Rub

N
.

Similarly, if W ′ ⊂ [n] ⊎ [m] denotes the set of all states of the game with minimal value, then
for all N ⩾ 1 and w′ ∈ W ′ we have

(TN (0))w′

N
⩽ χ+ Rub

N
.

Proof. Let W ⊂ [n] ⊎ [m] denote the set of all states of the game with maximal value. As
shown in Lemma 6.14, W is a dominion (for Player Max), and the game induced by W is a
constant value game with value equal to χ. Let T̃ : TW → TW denote the Shapley operator of
the induced game. Then, Lemma 8.55 shows that for every ε > 0 there exists a bias vector
ũ ∈ RW of T̃ , T̃ (ũ) = χ + ũ, such that ∥ũ∥H ⩽ Rub + ε. Let u ∈ Rn+m be a vector defined as
uw := ũw for every w ∈ W and uw := −∞ otherwise. As in the proof of Theorem 6.16, observe
that for all w ∈ W we have χ+ uw = (T̃ (ũ))w = (T (u))w (because W is a dominion for Player
Max) and χ + uw = −∞ ⩽ (T (u))w for w /∈ W . Hence χ + u ⩽ T (u). Furthermore, we have
0 ⩾ −t(u) + u. Hence

TN (0) ⩾ −t(u) + TN (u) ⩾ Nχ− t(u) + u

for all N ⩾ 1. Hence, for every state w ∈ W we have

(TN (0))w

N
⩾ χ+ −t(u) + uw

N
⩾ χ− ∥ũ∥H

N
⩾ χ− Rub

N
− ε

N
.

Since ε > 0 was arbitrary, we obtain the claim. The proof of the other inequality is analogous.2
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1: procedure ConstantValue(f,K)
2: ν := 0 ∈ Rn

3: for i = 1, 2, . . . , 2KRub do
4: ν := Oracle(f, ν, 8K2Rub)
5: done
6: if t(ν) − b(ν) < 2Rub + 1 then
7: ConstVal := True
8: ▷ the game has constant value
9: else

10: ConstVal := False
11: ▷ any state w such that νw = b(ν) satisfies χw < χ
12: ▷ any state w′ such that νw′ = t(ν) satisfies χw > χ
13: end
14: return (ConstVal, w, w′), where νw = b(ν), νw′ = t(ν)
15: end

Figure 8.9: Procedure that checks if a stochastic mean payoff game has constant value.

Thanks to Lemma 8.62, we can now give a procedure that checks if a game has constant
value. This is given in the procedure ConstantValue presented in Fig. 8.9.

Lemma 8.63. If we put f := T and K := 3D2
ub, then the procedure ConstantValue(f,K) is

correct.

Proof. Let N := 2KRub, δ := (8K2Rub)−1, and take the vector ν obtained at the end of the
loop. If the game has constant value, then Remark 8.35 shows that t(ν) − b(ν) < 2Rub + 1.
Conversely, if χ ̸= χ, then by Lemma 8.54 we have χ−χ ⩾ 1/D2

ub. Furthermore, by Lemmas 8.29
and 8.62, we have

t(ν)
N

⩾ t(fN (0))
N

− δ ⩾ χ− Rub
N

− δ .

Similarly, b(ν) ⩽ Nχ+Rub +Nδ. Therefore

t(ν) − b(ν) ⩾ N(χ− χ) − 2Rub − 2Nδ

⩾ 2KRub
D2

ub
− 2Rub − 1

4K
> 4Rub − 1 ⩾ 2Rub + 1 .

Hence, the procedure correctly decides if the game has constant value. Moreover, if w is such
that νw = t(ν), then by Lemma 8.29 we have

(fN (0))w

N
⩾ νw

N
− δ = t(ν)

N
− δ ⩾ χ− Rub

N
− 2δ

⩾ χ+ 1
D2

ub
− Rub

N
− 2δ = χ+ 1

D2
ub

− 1
6D2

ub
− 1

36D2
ubRub

> χ+ 1
6D2

ub
= χ+ Rub

N
.

Hence χw > χ by Lemma 8.62. The proof for w′ such that νw′ = b(ν) is analogous.
2The proof requires to dualize the notion of a dominion, as discussed in Remark 6.19.
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1: procedure Extend(Z)
2: ▷ Z ⊂ VMin ⊎ VMax is a nonempty subset of states of a stochastic mean payoff game
3: while True do
4: if exists k ∈ VMin \ Z, a ∈ A(k), z ∈ Z such that pa

kz > 0 then
5: Z := Z ∪ {k}
6: else
7: if exists i ∈ VMax \ Z such that for all b ∈ B(i) there is zb ∈ Z with pb

izb
> 0 then

8: Z := Z ∪ {i}
9: else

10: return Z
11: end
12: end
13: done
14: end

Figure 8.10: Procedure that extends the set laying outside some dominion.

Remark 8.64. It is immediate to see that the complexity of the procedure above is the same as
the complexity of ApproximateValue described in Theorem 8.58. Indeed, it makes O(KRub)
calls to the Oracle(f, ν, 8K2Rub) and every such call uses O

(
act(n+m)

)
) arithmetic operations.

If the game does not have a constant value, then ConstantValue outputs a state that
does not attain the maximal value. We now want to show how to find all such states. To this
end we introduce the procedure Extend that may be used to enlarge the set of states that do
not attain the maximal value. The following lemma explains the behavior of this procedure.
We denote by V := VMin ⊎ VMax the set of states of a stochastic mean payoff game.

Lemma 8.65. Procedure Extend has the following properties. If W ⊂ V is a dominion (for
Player Max) and Z ∩W = ∅, then Extend(Z) ∩W = ∅. Furthermore, the set V \ Extend(Z)
is a dominion.

Proof. To prove the first claim, suppose that Z ∩W = ∅. If k ∈ VMin ∩W is a state belonging
to W then, by definition, Player Min cannot leave W , i.e.,

∑
w∈W pa

kw = 1 for every action
a ∈ A(k). In particular, k does not satisfy the condition of the first conditional statement of
Extend. Likewise, if i ∈ VMax ∩W is a state belonging W , then Player Max has a possibility
to stay in W , i.e., there is an action b ∈ B(i) such that

∑
w∈W pb

iw = 1. In particular, i does
not satisfy the condition of the second conditional statement of Extend. Hence, we have
Extend(Z) ∩ W = ∅. To prove the second statement, let W̃ := V \ Extend(Z). Note that
the procedure Extend stops only when both of its conditional statements are not satisfied.
Therefore, for every state k ∈ VMin ∩ W̃ and every action a ∈ A(k) we have

∑
w̃∈W̃ pa

kw̃ = 1.
Moreover, for every state i ∈ VMax ∩ W̃ there is an action b ∈ B(i) such that

∑
w̃∈W̃ pb

iw = 1.
Hence, W̃ is a dominion.

Remark 8.66. We point out that Extend can be implemented to work in O
(
act(n + m)2)

complexity. Indeed, checking if either of the conditional statements is satisfied can be done by
listing all the actions and, for every action, checking if the states to which this action may lead
belong to Z. Furthermore, the procedure stops after at most n+m of these verifications.
Remark 8.67. A more abstract, but equivalent, way of thinking about the procedure Extend
is the following. Given Z, we define a vector u ∈ Tn+m as uw := −∞ for w ∈ Z and uw = 0



8.4. Parametrized complexity bounds for stochastic mean payoff games 169

1: procedure TopClass(T )
2: ▷ V is the set of states of the game with operator T
3: while True do
4: (ConstVal, z, z′) := ConstantValue(T, 3D2

ub)
5: if ConstVal = True then
6: return V ▷ V is the set of states that have the maximal value
7: end
8: V := V \ Extend(z)
9: let T̃ denote the Shapley operator of the game induced by V

10: T := T̃
11: done
12: end

Figure 8.11: Procedure that finds the set of states with maximal value.

otherwise. We compute T (u) and, if there is a state w /∈ Z such that (T (u))w = −∞, then we
add w to Z.

Having the procedure Extend, we can now obtain an algorithm that finds the set of states
having the maximal value. This is done by procedure TopClass presented in Fig. 8.11.

Theorem 8.68. The procedure TopClass is correct and it finds the set of states with maximal
value of a stochastic mean payoff game. Moreover, it performs O

(
act(n+m)6WM3 min{s,n+m−1})

arithmetic operations and every number that appears during these operations can be represented
using O

(
(n+m) log

(
(n+m)MW

))
bits of memory.

Proof. Let W denote the set of all states with the maximal value. By Lemma 8.63, the procedure
ConstantValue(T, 3D2

ub) correctly decides if the game has constant value and, if not, it
outputs a state z ∈ V such that z /∈ W . Furthermore, by Lemma 6.14, W is a dominion.
Hence, by Lemma 8.65, the set Ṽ := V \ Extend(z) is a dominion and W ⊂ Ṽ . Furthermore,
note that the game induced by Ṽ has the same set of states with the maximal value as the
original game. Indeed, by Lemma 6.13, the value of every state in the game induced by Ṽ
is not greater than the value of the same state in the original game. Moreover, W is still
a dominion in the game induced by Ṽ , and the game induced by W does not change when
passing from the original game to the game induced by Ṽ . Hence, by Lemma 6.14, the value
of every state in W is the same in all of these three games. Therefore, the problem of finding
W reduces to the problem of finding the states with maximal value in the game induced by Ṽ .
This shows that TopClass is correct. To show the complexity bound, note that the calls for
ConstantValue are the most expensive operations in TopClass because a call for Extend
and reducing the game can be done in O

(
act(n + m)2) complexity. Moreover, as noted in

Remark 8.64, ConstantValue(T, 3D2
ub) has the same asymptotic complexity as the problem

of solving a stochastic mean payoff game presented in Theorem 8.58. Finally, TopClass does
at most n+m calls to ConstantValue(T, 3D2

ub), hence the claimed bound.

Remark 8.69. Given the procedure TopClass, one can easily find the maximal value of the
game. Indeed, it is enough to first use TopClass to determine the set of states with maximal
value, then restrict the game to this set of states (using the fact that this set is a dominion)
and solve the remaining game by Theorem 8.58. The most expensive operation is TopClass,
hence the asymptotic complexity of finding the maximal value is the same as the complexity
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of TopClass indicated above. Furthermore, one can dualize the procedure Extend to the
dominions of Player Min. This leads to the procedure BottomClass that finds the minimal
value and set of states that attain this value in the same complexity as TopClass.

Remark 8.70. In [BEGM15], it is shown that given an oracle solving TopClass, and another
oracle that solves deterministic mean payoff games, one can solve arbitrary stochastic mean
payoff games with pseudopolynomial number of calls to these oracles provided that the number
of nondeterministic actions of the game is fixed. The authors of [BEGM15] present an oracle
solving TopClass that is based on the pumping algorithm. Our analysis shows that this oracle
can be replaced by an oracle based on value iteration.

Remark 8.71. As in the previous section (Remark 8.60), the results presented here extend to
the case of bipartite games described by bipartite Shapley operators. Indeed, if F : TV → TV

is such an operator, and the quantities Dub, Rub are chosen accordingly to Example 8.38, then
for any N ⩾ 0 and any state k ∈ VMin with maximal value χ we have

(FN (0))k

N
⩾ 2χ− Rub

N
.

Similarly, for any state l ∈ VMin with minimal value χ we have

(FN (0))l

N
⩽ 2χ− Rub

N
.

The proof of these inequalities proceeds in the same way as the proof Lemma 8.62. More
precisely, if W is the set of states of game with maximal value, then W̃ := V (W ∩ VMin) is a
dominion and every state in the game induced by W̃ has value χ.3 Therefore, if F̃ : TW ∩VMin →
TW ∩VMin is the bipartite Shapley operator of the induced game, then Lemmas 6.22 and 8.55
show that there is a bias vector ũ ∈ RW ∩VMin such that F̃ (ũ) = 2χ+ ũ. Hence, for every ε > 0
we can take a bias vector ũ such that ∥ũ∥H ⩽ Rub + ε. As in the proof of Lemma 8.62, we
define u ∈ VMin as uk := ũk if k ∈ W ∩ VMin and uk = −∞ otherwise, and we observe that
2χ + u ⩽ F (u). This gives the desired inequality. Furthermore, by applying Theorem 8.37 to
F̃ we get that the denominator of 2χ is bounded by Dub and, similarly, the denominator of
2χ is bounded by Dub. Hence, we can use the procedure ConstantValue for F to decide if
the game has constant value. We can also easily adapt the procedure Extend to F (e.g., by
using the observation given in Remark 8.67). As a result, we can find the maximal (or minimal)
value of the game and all the states controlled by Player Min that attain it in O(nD2

ubRubceval)
arithmetic operations, where ceval and Dub, Rub are as in Remark 8.60, and all the numbers that
occur during these operations can be represented using O(log(MDubRubW )) bits of memory.

8.5 Application to nonarchimedean semidefinite programming

Let us now apply the complexity results of the previous section to the problem of tropical
Metzler semidefinite feasibility Tmsdfp considered in Chapter 7. For simplicity, we will apply
our results to the case of matrices that define a well-formed linear matrix inequality. This gives
the following theorem.

3This observation already appeared in the proof of Corollary 6.25.
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Theorem 8.72. Suppose that we are given symmetric tropical Metzler matrices Q(1), . . . , Q(n) ∈
Tm×m

± such that |Q(k)| ∈ (Q ∪ {−∞})m×m for all k ∈ [n]. Furthermore, suppose that these
matrices define a well-formed linear matrix inequality. Let L denote the common denominator
of all the finite entries of |Q(k)|k∈[n] and let W denote the maximal absolute value of the entries
of |Q(k)|k∈[n]. Furthermore, let Sλ := Sλ(Q(1), . . . , Q(n)) be as in Definition 4.16. Then, the
highest value of λ ∈ R such that Sλ is nontrivial (resp. contains a real point) can be found in

O(8sn6m2LW )

arithmetic operations, where s ⩽ n is the number of matrices Q(k) that are not (tropically)
diagonal, i.e., have a finite off-diagonal entry. Moreover, another algorithms solves the same
problem in

O(8min{s′,m−1}nm7LW )

arithmetic operations, where s′ denotes the number of pairs (i, j) with i < j such that the tropical
polynomial Qij is nonzero (i.e., the pairs such that |Q(k)

ij | is finite for at least one k ∈ [n]).

Proof. Let us start by showing the first algorithm. By Theorem 7.21, the problem of finding the
valued of λ reduces to the problem of finding the maximal and minimal value of a stochastic mean
payoff game. Furthermore, the game is constructed as given in Section 7.2, and its bipartite
Shapley operator F : Tn → Tn is given in (7.2). The payoffs of this game correspond to the finite
entries of |Q(k)|k∈[n]. Therefore, if we multiply these payoffs by L, then the maximal and minimal
value of the game is multiplied by L, and we obtain a game with integer payoffs as considered in
the earlier sections. Let W̃ := LW denote the maximal absolute value of a payoff in this game.
Therefore, as noted in Remark 8.71 the task of finding the maximal (or minimal) value of the
game can be solved in O(nD2

ubRubceval) arithmetic operations. In order to make this quantities
explicit, first note (as in Remark 8.60) that evaluating the operator F of the form (7.2) can
be done in O(nm2) arithmetic operations. Moreover, since the common denominator of every
probability of this game is equal to 2, as in Example 8.38 we obtain from Theorem 8.37 that
Dub = O(n2min{s+1,n}) = O(n2s) and Rub = O(n2W̃2min{nr,n−1}) = O(n2W̃2s), where s is the
number of deterministic states of Player Min. Moreover, note that a state k ∈ [n] is deterministic
if and only if the matrix Q(k) is (tropically) diagonal. This gives the first complexity bound. To
obtain the second bound, note that the game can be reversed in the following way. We multiply
all the payoffs by (−1) and we exchange the roles of Players Min and Max (so that Player Min
in the original game becomes Player Max in the reversed game and vice versa). As a result, the
value vector of the game gets multiplied by −1. Moreover, the game is still bipartite, and its
bipartite Shapley operator F̃ : Tm → Tm is given by

∀i ∈ [m], (F̃ (y))i := min
Q

(k)
ii ∈T+

(
−Q(k)

ii + max
Q

(k)
i′j′ ∈T−

(|Q(k)
i′j′ | + 1

2
yi′ + 1

2
yj′)

)
.

This operator can also can be evaluated in ceval = O(nm2) arithmetic operations. Furthermore,
using the last part of Example 8.38, we obtain that the bounds for this operator read D′

ub =
O(m2min{s′,m−1}) and R′

ub = O(m2W̃2min{s′,m−1}), where s′ is the number of nonidentical
probability distributions of the game, which correspond to the number of pairs (i, j) with i < j

such that |Q(k)
ij | is finite for at least one k ∈ [n].
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8.5.1 A class of ergodic problems
In this section, we present a class of tropical Metzler semidefinite feasibility problems that gives
rise to ergodic games. As a result, we obtain a class of feasibility problems that can be solved
in a complexity depending on the condition number of the problem. We suppose that we are
given tropical Metzler matrices Q(1), . . . , Q(n) ∈ Tm×m

± that fulfill the following assumption.

Assumption H. We have Q(k)
ii ∈ T+ and Q

(k)
ij ∈ T− for all k ∈ [n] and i, j ∈ [m], i ̸= j.

In other words, the matrices Q(k) do not have −∞ entries, they have only tropically positive
entries on the diagonals, and only tropically negative off-diagonal entries.

We note that if m ⩾ 2, then Assumption H implies Assumptions D and E.
Remark 8.73. The assumption that all diagonal entries of Q(k) are positive can be relaxed—it
is enough to suppose that at least one entry is positive (and none of them is equal to −∞).
However, the class of matrices that satisfy Assumption H has an interesting symmetry shown
in our experimental results presented in Section 8.5.2.

Lemma 8.74. Suppose that m ⩾ 2 and that the matrices Q(1), . . . , Q(n) ∈ Tm×m
± satisfy As-

sumption H. Then, the associated stochastic mean payoff game is ergodic.

Proof. As noted above, the matrices Q(1), . . . , Q(n) satisfy Assumptions D and E. By construc-
tion, the associated stochastic mean game has n states controlled by Player Min, VMin := [n],
andm states controlled by Player Max, VMax := [m]. Furthermore, at every state k ∈ [n], Player
Min has m(m− 1)/2 actions of the form a = (k, i, j) with i, j ∈ [m], i ̸= j. Moreover, for every
such action, the associated probability distribution is given by pa

ki = pa
kj = 1/2 and the payoff is

given by ra = −|Q(k)
ij |. Similarly, at every state i ∈ [m], Player Max has n deterministic actions

of the form b = (i, k), pb
ik = 1, and the associated payoff is given by Q

(k)
ii . Hence, to prove

that this game is ergodic, it is enough to prove that it has a constant value for all choices of
the matrices Q(1), . . . , Q(n). Suppose that this is not the case and let χ, χ denote, respectively,
the minimal and maximal value of this game, χ ̸= χ. Let (σ, τ) denote a couple of optimal
policies in this game. By Theorem 2.137, the Markov chain induced by (σ, τ) has two recurrent
classes C1, C2 such that every state belonging to C1 has value χ and every state belonging to
C2 has value χ. Since the game is bipartite, C1 contains a state i ∈ [m] controlled by Player
Max and C2 contains a state k ∈ [n] controlled by Player Min. Moreover, by construction,
Player Max has an action b = (i, k). Let τ̃ denote the modification of τ defined as follows. We
put τ̃(j) := τ(j) for every j ∈ [m] such that j ̸= i and τ̃(i) := k. Consider the Markov chain
induced by (σ, τ̃). Note that C2 is a recurrent class of this chain (because i /∈ C2). Moreover, if
this chain starts at i, then it reaches C2 is one step. Therefore, by Theorem 2.137, the average
payoff (g(σ, τ̃))i of Player Max in the game starting from i is equal to χ. In particular, we have
χ = (g(σ, τ̃))i > χ = (g(σ, τ))i, which gives a contradiction with the fact that σ is an optimal
policy of Player Min.

As a corollary, we get the following complexity result about solving tropical Metzler semi-
definite feasibility problems.

Proposition 8.75. Suppose that the symmetric tropical Metzler matrices Q(1), . . . , Q(n) ∈
Tm×m

± are such that |Q(k)| ∈ (Q ∪ {−∞})m×m for all k ∈ [n]. Furthermore, suppose that
m ⩾ 2 and that the matrices satisfy Assumption H. Let

λ := sup{λ ∈ R : Sλ(Q(1), . . . , Q(n)) is nontrivial}
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Figure 8.12: Phase transition between feasibility and infeasibility of spectrahedra. For each
(n,m), the color scheme reports the ratio of feasible instances among 10 samples.

and let F : Tn → Tn denote the Shapley operator of the associated stochastic mean payoff game.
If λ ̸= 0, then the problem of finding the sign of λ can be solved in

O
(
(1 + R

|λ|
)nm2)

arithmetic operations, where R = inf{∥u∥H : F (u) = λ+ u}.

Proof. By Lemma 8.74, the stochastic mean payoff game associated with Q(1), . . . , Q(n) is er-
godic. Denote this value by χ. Then, by Lemmas 6.22 and 8.55 there is a vector u ∈ Rn such
that F (u) = 2χ + u. Moreover, we have λ = 2χ by Theorem 7.21. As in the proof of Theo-
rem 8.72, we observe that the cost of evaluating F is bounded by O(nm2). Hence, the claim
follows from Remark 8.60.

8.5.2 Experimental results
To finish, we present some numerical results for solving the class of tropical Metzler semidefinite
problems defined by matrices that satisfy Assumption H. We chose all the |Q(k)

ij |, for i ⩽ j, to
be independent random variables uniformly distributed on [0, 1]. We created a simple floating
point implementation of the procedure ValueIteration(F ) given in Fig. 8.4, replacing the
termination criterion b(ν) > 0 or t(ν) < 0 by b(ν) > ε and t(ν) < −ε, where the precision was
chosen as ε := 10−8 (the performance was similar for ε = 10−6 or ε = 10−10). Even though we
have not used the rounding techniques established in Section 8.2.1, our algorithm performs well
on random instances. Furthermore, the validity of the floating point certificate of (in)feasibility
provided by our program can be checked a posteriori by computing one evaluation of the operator
F is exact arithmetic. We report in Table 8.1 experimental results for different values of (n,m).
Our experiments were obtained using a C program, distributed as [AGS16a]. This program
was compiled under Linux with gcc -O3, and executed on a single core of an Intel(R) i7-4600U
CPU at 2.10 GHz with 16 GB RAM. We report the average execution time over 10 samples for
every value of (n,m). The number of iterations did not exceed 731 on this benchmark, and, for
most (n,m), it was limited to a few units. Furthermore, we observed that random instances
exhibit experimentally a phase transition, as shown in Fig. 8.12: for a given (n,m), the system
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(n,m) (50, 10) (50, 40) (50, 50) (50, 100) (50, 1000)
time 0.000065 0.000049 0.000077 0.000279 0.026802

(n,m) (100, 10) (100, 15) (100, 80) (100, 100) (100, 1000)
time 0.000025 0.000270 0.000366 0.000656 0.053944

(n,m) (1000, 10) (1000, 50) (1000, 100) (1000, 200) (1000, 500)
time 0.000233 0.073544 0.015305 0.027762 0.148714

(n,m) (2000, 10) (2000, 70) (2000, 100) (10000, 150) (10000, 400)
time 0.000487 1.852221 0.087536 19.919844 2.309174

Table 8.1: Execution time (in sec.) of Procedure ValueIteration on random instances.

is either feasible with overwhelming probability, or infeasible with overwhelming probability,
unless (n,m) lies in a tiny region of the parameter space. Value iteration quickly decides
feasibility, except in regions close to the phase transition. This explains why the execution time
does not increase monotonically with (n,m) in our experiments (we included both easy and
hard values of (n,m)).
Example 8.76. When applied to applied to the matrices given in Example 7.22, our program
terminates in 20 iterations. It returns a vector having floating point entries

(1.05612 . . . , 0.0204082 . . . , 1.12755 . . . ) .

When converted into a vector with rational entries, it reads

x :=
(
1107425 × 2−20, 42799 × 2−21, 4729289 × 2−22

)
.

We have checked using exact precision arithmetic over rationals (provided by the GNU multi-
ple precision arithmetic library, https://gmplib.org/) that this vector lies in the interior of
the tropical spectrahedron shown in Fig. 7.2, i.e., xk < (F (x))k for k ∈ {1, 2, 3}. Following
Lemma 4.50, the vector x := (tv1 , tv2 , tv3) is such that Q(x) is positive definite.

https://gmplib.org/


CHAPTER 9

Perspectives

To finish this dissertation, let us discuss some open problems and possible directions for future
research.

Tropicalization of convex semialgebraic sets The first open problem arising from of this
thesis is to give a complete characterization of all tropical spectrahedra. In this work, we
introduced the class of tropical Metzler spectrahedra, and used it to characterize all generic
tropical spectrahedra (Chapter 4). However, we do not know if every tropical spectrahedron
(even nongeneric one) can be represented as a set of the form studied in Section 4.2. A complete
characterization is known for the subclass of tropical polyhedra. However, it relies on the tropical
Minkowski–Weyl theorem [GK07, BSS07] and it does not carry over to spectrahedra.

Furthermore, we note that our variant of the tropical Helton–Nie conjecture (Chapter 5) is
based on the simplest possible tropicalization—looking at the image of Puiseux series by their
ordinary valuations. It is possible that more sophisticated tropicalizations, capturing also the
sign, or higher order approximations of Puiseux series (spaces of jets) may be exploited in order
to obtain a better understanding of projected spectrahedra or to construct counterexamples to
the Helton–Nie conjecture.

A natural extension of this thesis would be to study the tropicalization of hyperbolicity
cones. As indicated in Section 1.1, hyperbolicity cones generalize the spectrahedral cones (in
the sense that every full-dimensional spectrahedral cone is a hyperbolicity cone [Ren06]). The
generalized Lax conjecture asks if the converse is true, i.e., if every hyperbolicity cone is a
spectrahedron. Helton and Vinnikov [HV07] proved that this conjecture is true in dimension
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n = 3 (see also [LPR05, PV13]). Furthermore, the conjecture is true for some special classes
of hyperbolic cones [AB18, Kum17]. On the other hand, some stronger versions of this conjec-
ture are known to be false. A counterexample to one such generalization was constructed by
Brändén [Brä11], and more counterexamples were given in [BVY14, AB18]. One could try to
tropicalize the hyperbolicity cones over Puiseux series in order to get more insight into their
structure. An important ingredient would be to study the Netwon polytopes of hyperbolic
polynomials. Some properties of these polytopes have already been used in the aforementioned
works (see, e.g., [Brä11]), but this study was limited to the case of stable hyperbolic polynomi-
als. This approach to hyperbolicity cones could also shed some light on the structure of tropical
spectrahedra. A drawback of the techniques that we used to study the tropicalization of spec-
trahedra is that they do not give much insight into the algebraic structure of the boundaries of
spectrahedra. This boundary occurs more naturally when one considers a hyperbolicity cone
and its defining polynomial.

A more abstract question can be asked about the tropicalizations of arbitrary convex semial-
gebraic sets. More precisely, we do not know if there is an analogue of the tropical basis theorem
for convex semialgebraic sets. The tropical basis theorem (see, e.g., [MS15, Section 3.2]) states
that if S ⊂ (K∗)n is an algebraic variety (over the field of Puiseux series with complex coef-
ficients) defined by some ideal I, then there exists a finite collection of polynomials belonging
to I such that val(S) is the intersection of the tropical hypersurfaces associated with these
polynomials. A natural extension to semialgebraic sets would be to replace the ideal with the
cone of polynomials that are nonnegative on a given set. We do not know if one can choose a
finite collection of these polynomials and describe the tropicalization of a semialgebraic set us-
ing only this collection (even if we assume that the semialgebraic set under question is convex).
If one restricts attention to convex sets, and is allowed to choose infinite collections, then the
answer is positive by the hyperplane separation theorem. More precisely, we have the following
proposition.

Proposition 9.1. Suppose that S ⊂ Kn
>0 is a convex semialgebraic set. Let P denote the set

of all affine polynomials P ∈ K[X1, . . . , Xn] that are nonnegative on S. Then

val(S) =
∩

P∈P
{x ∈ Rn : trop(P )+(x) ⩾ trop(P )−(x)} .

However, it is obvious that the collection on the right-hand side has to be infinite in gen-
eral (otherwise, it would describe a tropical polyhedron). Therefore, in order to find a finite
collection, one has to add polynomials of higher degrees to P.

Realizability of oriented matroids by tropical matrices Another idea would be to study the
combinatorial types of polyhedra using tropical geometry. It has been shown in [ABGJ15] that,
under a genericity assumption, the combinatorial type of a nonarchimedean polyhedron can be
deduced from the valuation of its defining matrix. It is not known which types of polyhedra
arise in this way. If this class of polyhedra is much smaller that the class of all polyhedra, then
one may hope to improve the algorithms for solving deterministic mean payoff games using
the correspondence with linear programming over the Puiseux series [ABGJ15, ABGJ14]. On
the other hand, if this class of polyhedra is not easier to handle than the general case, then
one may obtain a tighter connection between Smale’s ninth problem [Sma98] and mean payoff
games than the one presented in [ABGJ14]. A particular question that can be asked about
such polyhedra is whether they satisfy the polynomial Hirsch conjecture (see [San12] for more
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information about this conjecture). As a first step towards the study of these polyhedra, one can
study the realizable uniform oriented matroids that arise from generic signed tropical matrices.
Currently, we have the following proposition.

Proposition 9.2. All uniform oriented matroids of rank 3 with at most 7 elements are realizable
by generic signed tropical matrices.

We note that there are only 11 oriented matroids of rank 3 with 7 elements. We have
proven this proposition by enumerating them by hand—a more systematic approach is needed
to handle the larger cases (there are 135 uniform matroids of rank 3 with 8 elements).

Homotopy methods for feasibility problems In Chapter 7, we have shown that generic non-
archimedean semidefinite feasibility problems are solvable using combinatorial algorithms for
stochastic mean payoff games. Moreover, as discussed in Section 8.1, a spectrahedron over
Puiseux series is in fact a one-parameter family of real spectrahedra, and the nonarchimedean
problem corresponds to the study of the limiting behavior of this family. Since we understand
the limiting behavior of this problem, it is natural to ask what happens along the way (as the
formal parameter increases), i.e, how the semidefinite feasibility problem degenerates into a
combinatorial problem. This could lead to a “homotopy-like” method for solving some class of
real feasibility problems (such a method would first solve a combinatorial problem and then try
to decrease the value of the parameter). This problem may be interesting even in the case of lin-
ear programming, giving more insight into the combinatorial structure of polyhedra mentioned
in the previous paragraph.

Value iteration In Chapter 8, we studied value iteration and its condition number. There are a
few directions in which this results can be extended. First, as already noted in Section 8.2, our
analysis presented in that section applies to Shapley operators of other classes of games, such as
the entropy games of [ACD+16, AGGCG17]. One may study the complexity bounds that can
be obtained for this class of games using our approach. Second, as discussed in Remark 8.70,
Boros et al. [BEGM15] gave an algorithm that can solve general stochastic mean payoff games
in pseudopolynomial time when the number of randomized actions is fixes. However, this
algorithm is quite complicated. One can ask if there is a simpler algorithm that obtains the
same complexity bounds—for instance, if one can modify value iteration in a way that gives such
a general algorithm. (A naive extension of value iteration does not have the desired properties
by the counterexample presented in [BEGM13].) Third, the value iteration algorithm that we
presented here converges to the value of the game at rate 1/N . By analogy with the accelerated
gradient descent, one can ask if there exists an accelerated value iteration that converges at
rate 1/N2. Such acceleration would only slightly improve the asymptotic complexity bounds,
but it may be interesting to study because we do not have information-theoretic lower bounds
for the rate of convergence of such an algorithm. Finally, in Section 8.5.2 we have seen that
value iteration is fast on random instances. Nevertheless, the behavior of such instances is
not well understood from the theoretical perspective. For instance, it is an open question
to formally prove that random instances of stochastic mean payoff games are well conditioned.
Furthermore, it is clear from Fig. 8.12 that the random instances studied in Section 8.5.2 exhibit
a phase transition. It would be interesting to prove this statement formally and explain the
shape of the boundary between the two regions visible in Fig. 8.12.
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Games with nonarchimedean payoffs and/or probabilities One could also try to study the
stochastic mean payoff games using nonarchimedean perspective. More precisely, one can re-
place the numerical data associated with such a game (i.e., the payoffs and/or probabilities)
by Puiseux series. The idea of considering nonarchimedean payoffs is already present in the
literature. Indeed, parity games can be interpreted as deterministic mean payoff games with
nonarchimedean payoffs [Jur98]. However, parity games form a very special subclass of games
with nonarchimedean payoffs. The payoffs in these games have the property that any two pay-
offs with the same valuation are equal. As mentioned in Section 1.1, after the breakthrough
of Calude et al. [CJK+17], we now have a few different algorithms that solve parity games
in quasipolynomial time (see [CJK+17, JL17, Leh18, FJS+17]). It is natural to ask if the
quasipolynomial-time result can be extended to a wider class of games with nonarchimedean
payoffs. Furthermore, the algorithm of Calude et al. relies on the fact that, given a play of a
parity game, the winner of this play can be decided by an algorithm that uses only polyloga-
rithmic memory. It would also be interesting to obtain a negative result in this direction, i.e.,
to show that deciding a winner of a more general game cannot be done using so little memory.

The games with nonarchimedean probabilities have not yet been considered. The simplest
idea in this direction is to consider the class of games without payoffs (reachability games)
with nonarchimedean probabilities, and such that one is given only the valuations of the input
probabilities. The aim would be to compute the valuation of the probability of winning this
game. It can be proved that this is a meaningful model, i.e., that the valuation of the probability
of winning is determined by the valuations of input probabilities (this uses an extension of
the Freidlin–Wentzell formula discussed in Section 8.3 to the case of absorption probabilities).
Furthermore, a 0-player variant of this game (a game obtained if the strategies of both players are
fixed) is solvable in polynomial time. This case is already nontrivial—it turns out that solving
the 0-player case reduces to the Optimal Arborescence Problem [Edm67, Kar71] with an
additional constraint on the existence of some directed path in the arborescence. Fortunately,
the techniques used to solve the usual optimal arborescence problem extend to this case. It is
an open question to obtain a complexity result for the 1-player case of these games.
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volume 13 of Adv. Soviet Math., pages 87–101. AMS, Providence, RI, 1992.

[KPT18] K. Kellner, M. P. Pfetsch, and T. Theobald. Irreducible infeasible subsystems of
semidefinite systems. arXiv:1804.01327, 2018.

[KS76] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Undergrad. Texts Math.
Springer, New York, 1976.

http://arxiv.org/abs/1804.01327


Bibliography 189

[KS13] I. Klep and M. Schweighofer. An exact duality theory for semidefinite program-
ming based on sums of squares. Math. Oper. Res., 38(3):569–590, 2013.

[KTT13] K. Kellner, T. Theobald, and C. Trabandt. Containment problems for polytopes
and spectrahedra. SIAM J. Optim., 23(2):1000–1020, 2013.

[Kum17] M. Kummer. Determinantal representations and Bézoutians. Math. Z., 285(1–
2):445–459, 2017.

[Las01] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM J. Optim., 11(3):796–817, 2001.

[Las02] J. B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear
0-1 programs. SIAM J. Optim., 12(3):756–769, 2002.

[Las09a] J. B. Lasserre. Convex sets with semidefinite representation. Math. Program.,
120(2):457–477, 2009.

[Las09b] J. B. Lasserre. Moments, Positive Polynomials and Their Applications. Ser. Op-
tim. Appl. Imperial College Press, 2009.

[Las15] J. B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization.
Cambridge Texts Appl. Math. Cambridge University Press, Cambridge, 2015.

[Lau01] M. Laurent. Polynomial instances of the positive semidefinite and euclidean dis-
tance matrix completion problems. SIAM J. Matrix Anal. Appl., 22(3):874–894,
2001.

[Leh18] M. K. Lehtinen. A modal µ perspective on solving parity games in quasi-
polynomial time. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 639–648. ACM, 2018.

[LL69] T. M. Liggett and S. A. Lippman. Stochastic games with perfect information and
time average payoff. SIAM Rev., 11(4):604–607, 1969.

[LMS01] G. L. Litvinov, V. P. Maslov, and G. B. Shpiz. Idempotent functional analysis:
An algebraic approach. Mathematical Notes, 69(5–6):696–729, 2001.

[LMT15] B. F. Lourenço, M. Muramatsu, and T. Tsuchiya. Solving SDP completely with
an interior point oracle. arXiv:1507.08065, 2015.

[Lov79] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory,
25:1–7, 1979.

[LP18] M. Liu and G. Pataki. Exact duals and short certificates of infeasibility and weak
infeasibility in conic linear programming. Math. Program., 167(2):435–480, 2018.

[LPR05] A. S. Lewis, P. A. Parrilo, and M. V. Ramana. The Lax conjecture is true. Proc.
Amer. Math. Soc., 133(9):2495–2499, 2005.

[LR05] M. Laurent and F. Rendl. Semidefinite programming and integer programming.
In K. Aardal, G. L. Nemhauser, and R. Weismantel, editors, Discrete Optimiza-
tion, volume 12 of Handbooks Oper. Res. Management Sci., pages 393–514. North
Holland, 2005.

http://arxiv.org/abs/1507.08065


190 Bibliography

[LS15] R. Laraki and S. Sorin. Advances in zero-sum dynamic games. In H. P. Young
and S. Zamir, editors, Handbook of Game Theory with Economic Applications,
volume 4, pages 27–93. North Holland, 2015.

[Lud95] W. Ludwig. A subexponential randomized algorithm for the simple stochastic
game problem. Inform. and Comput., 117(1):151–155, 1995.

[LV14] M. Laurent and A. Varvitsiotis. Positive semidefinite matrix completion, universal
rigidity and the Strong Arnold Property. Linear Algebra Appl., 452:292–317, 2014.

[LW93] R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput. J.,
36(5):450–462, 1993.

[MAGW15] V. Magron, X. Allamigeon, S. Gaubert, and B. Werner. Certification of real
inequalities: templates and sums of squares. Math. Program., 151(2):477–506,
2015.

[Mam17] M. Mamino. Strategy recovery for stochastic mean payoff games. Theoret. Comput.
Sci., 675:101–104, 2017.

[Mar02] D. Marker. Model Theory: An Introduction, volume 217 of Grad. Texts in Math.
Springer, New York, 2002.

[Mar10] T. Markwig. A field of generalized Puiseux series for tropical geometry. Rend.
Sem. Mat. Univ. Politec. Torino, 68(1):79–92, 2010.

[MC11] D. Monniaux and P. Corbineau. On the generation of Positivstellensatz witnesses
in degenerate cases. In Proceedings of the 2nd International Conference on Inter-
active Theorem Proving (ITP), pages 249–264. ACM, 2011.

[Meg89] N. Megiddo. On the complexity of linear programming. In T. F. Bewley, editor,
Advances in economic theory, volume 12 of Econom. Soc. Monogr., pages 225–268.
Cambridge University Press, Cambridge, 1989.

[Mey00] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia,
PA, 2000.

[Mik05] G. Mikhalkin. Enumerative tropical algebraic geometry in R2. J. Amer. Math.
Soc., 18:313–377, 2005.

[MN81] J.-F. Mertens and A. Neyman. Stochastic games. Internat. J. Game Theory,
10(2):53–66, 1981.

[Mos91] A. W. Mostowski. Games with forbidden positions, 1991. Technical report 78.

[MS15] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry, volume 161 of
Grad. Stud. Math. AMS, Providence, RI, 2015.

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear pro-
gramming. Algorithmica, 16(4–5):498–516, 1996.

[MSZ15] J.-F. Mertens, S. Sorin, and S. Zamir. Repeated games, volume 55 of Econom.
Soc. Monogr. Cambridge University Press, Cambridge, 2015.



Bibliography 191

[Nal18] S. Naldi. Solving rank-constrained semidefinite programs in exact arithmetic. J.
Symbolic Comput., 85:206–223, 2018.

[Nem07] A. Nemirovski. Advances in convex optimization: conic programming. In Pro-
ceedings of the International Congress of Mathematicians (ICM) 2006, volume I,
pages 413–444. European Mathematical Society, 2007.

[Ney03] A. Neyman. Stochastic games and nonexpansive maps. In A. Neyman and S. Sorin,
editors, Stochastic Games and Applications, volume 570 of NATO Science Series
C, pages 397–415. Kluwer Academic Publishers, 2003.

[NN94] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex
programming, volume 13 of Studies in Applied and Numerical Mathematics. SIAM,
Philadelphia, PA, 1994.

[NPS08] J. Nie, P. Parrilo, and B. Sturmfels. Semidefinite representation of the k-ellipse.
In A. Dickenstein, F.-O. Schreyer, and A. J. Sommese, editors, Algorithms in Al-
gebraic Geometry, volume 146 of IMA Vol. Math. Appl., pages 117–132. Springer,
New York, 2008.

[NRS10] J. Nie, K. Ranestad, and B. Sturmfels. The algebraic degree of semidefinite pro-
gramming. Math. Program., 122(2):379–405, 2010.

[NS09] T. Netzer and R. Sinn. A note on the convex hull of finitely many projections of
spectrahedra. arXiv:0908.3386, 2009.

[Nus86] R. D. Nussbaum. Convexity and log convexity for the spectral radius. Linear
Algebra Appl., 73:59–122, 1986.

[ORSV15] J. C. Ottem, K. Ranestad, B. Sturmfels, and C. Vinzant. Quartic spectrahedra.
Math. Program., 151(2):585–612, 2015.

[Ovc02] S. Ovchinnikov. Max-min representations of piecewise linear functions. Beitr.
Algebra Geom., 43(1):297–302, 2002.

[Pap77] C. H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoret. Comput. Sci., 4(3):237–244, 1977.

[Par03] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Math. Program., 96(2):293–320, 2003.

[Pas89] J. Pas. Uniform p-adic cell decomposition and local zeta functions. J. Reine
Angew. Math., 399:137–172, 1989.

[Pas90a] J. Pas. Cell decomposition and local zeta functions in a tower of unramified
extensions of a p-adic field. Proc. London Math. Soc., 60(3):37–67, 1990.

[Pas90b] J. Pas. On the angular component map modulo P . J. Symb. Log., 55(3):1125–1129,
1990.

[PE10] D. P. Palomar and Y. C. Eldar, editors. Convex Optimization in Signal Processing
and Communications. Cambridge University Press, Cambridge, 2010.

http://arxiv.org/abs/0908.3386


192 Bibliography

[PK97] L. Porkolab and L. Khachiyan. On the complexity of semidefinite programs. J.
Global Optim., 10(4):351–365, 1997.

[Put05] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Ser. Probab. Stat. Wiley, Hoboken, NJ, 2005.

[PV13] D. Plaumann and C. Vinzant. Determinantal representations of hyperbolic plane
curves: an elementary approach. J. Symbolic Comput., 57:48–60, 2013.

[Ram93] M. V. Ramana. An Algorithmic Analysis of Multiquadratic and Semidefinite Pro-
gramming Problems. PhD thesis, John Hopkins University, Baltimore, MD, 1993.

[Ram97] M. V. Ramana. An exact duality theory for semidefinite programming and its
complexity implications. Math. Program., 77(1):129–162, 1997.

[Ren01] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimiza-
tion, volume 3 of MOS-SIAM Ser. Optim. SIAM, Philadelphia, PA, 2001.

[Ren06] J. Renegar. Hyperbolic programs, and their derivative relaxations. Found. Com-
put. Math., 6(1):59–79, 2006.

[RG95] M. Ramana and A. J. Goldman. Some geometric results in semidefinite program-
ming. J. Global Optim., 7(1):33–50, 1995.

[RGST05] J. Richter-Gebert, B. Sturmfels, and T. Theobald. First steps in tropical geom-
etry. In G. L. Litvinov and V. P. Maslov, editors, Idempotent Mathematics and
Mathematical Physics, volume 377 of Contemp. Math., pages 289–317. AMS, 2005.

[RS01] D. Rosenberg and S. Sorin. An operator approach to zero-sum repeated games.
Israel J. Math., 121(1):221–246, 2001.

[RVS16] P. Roux, Y.-L. Voronin, and S. Sankaranarayanan. Validating numerical semidef-
inite programming solvers for polynomial invariants. In Proceedings of the 23rd
International Static Analysis Symposium (SAS), volume 9837 of Lecture Notes in
Comput. Sci., pages 424–446. Springer, 2016.

[San12] F. Santos. A counterexample to the Hirsch conjecture. Ann. of Math., 176(1):383–
412, 2012.

[Sch87] A. Schrijver. Theory of linear and integer programming. Wiley-Intersci. Ser. Dis-
crete Math. Optim. Wiley, New York, 1987.

[Sch03] A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency, volume 24 of
Algorithms Combin. Springer, Berlin, 2003.

[Sch16] C. Scheiderer. Sums of squares of polynomials with rational coefficients. J. Eur.
Math. Soc., 18(7):1495–1513, 2016.

[Sch18a] C. Scheiderer. Semidefinite representation for convex hulls of real algebraic curves.
SIAM J. Appl. Algebra Geom., 2(1):1–25, 2018.

[Sch18b] C. Scheiderer. Spectrahedral shadows. SIAM J. Appl. Algebra Geom., 2(1):26–44,
2018.



Bibliography 193

[Ser07] S. Sergeev. Max-plus definite matrix closures and their eigenspaces. Linear Algebra
Appl., 421(2):182–201, 2007.

[Sha53] L. S. Shapley. Stochastic games. Proc. Natl. Acad. Sci. USA, 39(10):1095–1100,
1953.

[Sma98] S. Smale. Mathematical problems for the next century. Math. Intelligencer,
20(2):7–15, 1998.
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APPENDIX A

Fields of convergent power series

In this appendix, we discuss different fields of convergent power series such as the Puiseux series
and Hahn series. We also present the proof of van den Dries and Speissegger [vdDS98], who
showed that different fields of generalized power series are real closed (or algebraically closed in
the case of complex coefficients).

A.1 Basic definitions

Before presenting the definitions Puiseux and Hahn series, let us recall the definition of a well-
ordered set.

Definition A.1. A set Γ ⊂ R is well ordered if every nonempty subset of Γ has a maximal
element (in the usual order of the reals).

Lemma A.2. If Γ is well ordered, then it is finite or countable.

Sketch of the proof. Suppose that Γ is well ordered. For each γ ∈ Γ that is not the smallest
element of Γ , let γ ∈ Γ denote the maximal element of the set Γ ∩ ]γ,−∞[. Then, the interval
]γ, γ[ contains a rational number. This gives an injection from Γ to the rational numbers.

Definition A.3. We say that Γ ⊂ R has no limit points if, for any a, b ∈ R, a < b, the set
[a, b] ∩ Γ is either empty or finite.
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Lemma A.4. Suppose that a set Γ ⊂ R has a maximal element and has no limit points. Then,
this set is well ordered and can be written as Γ = {γ0, γ1, . . .}, where the sequence (γ0, γ1, . . . )
is strictly decreasing and either finite or unbounded.

Sketch of the proof. Suppose that Γ is infinite. Since Γ has a maximal element and has no limit
points, any strictly increasing sequence (γ0, γ1, . . . ) of elements of Γ is finite. In particular, Γ
is well ordered. Let γ0 denote the maximal element of Γ . The set Γ \ {γ0} has a maximal
element. Denote it by γ1. By repeating this procedure, we obtain an infinite strictly decreasing
sequence (γ0, γ1, . . . ) of elements in Γ . Since Γ has no limit points, the sequence (γ0, γ1, . . . ) is
unbounded and we have the equality Γ = {γ0, γ1, . . .}.

Definition A.5. Consider a formal series

x =
∑
γ∈Γ

cγt
γ (A.1)

where t is a formal parameter, the coefficients cγ are nonzero and real, cγ ∈ R \ {0}, and the
set Γ ⊂ R has a maximal element. Then, such a series is called:

• a Puiseux series if Γ is a subset of rational numbers, Γ ⊂ Q, and every element of Γ has
the same denominator;

• a generalized Puiseux series if Γ has no limit points;
• a Hahn series if Γ is well ordered.

By definition and Lemma A.4, the set of Hahn series contains the set of generalized Puiseux
series, and the set of generalized Puiseux series contains the set of Puiseux series.

The ring of Hahn series is defined as the set of all Hahn series together with special empty
series 0, equipped with the natural definition of addition and multiplication (i.e., we define
the multiplication of two series by their Cauchy product). We analogously define the rings of
Puiseux series and generalized Puiseux series. It can be checked that these three objects are,
indeed, rings.

Definition A.6. Suppose that x =
∑

γ∈Γ1 cγt
γ and y =

∑
γ∈Γ2 dγt

γ are Hahn series. We define
their sum as follows. For every γ ∈ R we define fγ ∈ R as fγ := cγ + dγ with the convention
that cγ = 0 if γ /∈ Γ1 and dγ = 0 if γ /∈ Γ2. We take Γ+ := {γ ∈ R : fγ ̸= 0} and we put
x+ y :=

∑
γ∈Γ+ fγt

γ . Furthermore, we define the product of x and y in the following way. For
every γ ∈ R we define

gγ :=
∑

γ1∈Γ1,γ2∈Γ2
γ1+γ2=γ

cγ1dγ2 ,

with the convention that an empty sum is equal to 0. We take Γ× := {γ ∈ R : gγ ̸= 0} and we
put xy :=

∑
γ∈Γ× gγt

γ .

Lemma A.7. The addition and multiplication of Hahn series (resp. Puiseux series, generalized
Puiseux series) is well defined.

Lemma A.8. The set of Hahn series (resp. Puiseux series, generalized Puiseux series) forms
a commutative ring with unity.

We leave the proof of this lemmas as a (tedious but easy) exercise.1

1For instance, proving this lemmas requires to check that the sums in the definition of gγ are finite, that the
sets of exponents Γ+, Γ× are well ordered, that the sum/product of two (generalized) Puiseux series is again a
(generalized) Puiseux series and so on.
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Remark A.9. One can consider a slightly more general situation that the one presented in
Definition A.5. More precisely, one can assume that the coefficients cγ as in (A.1) belong to
some fixed real closed subfield of R (such as the field of algebraic numbers). Furthermore, for
generalized Puiseux series and Hahn series, one can also assume that the sets of exponents Γ
belong to some fixed nontrivial divisible ordered abelian subgroup of (R,+) (such as the group of
rational numbers or the group of algebraic numbers). All the proofs presented in this appendix
are valid in this more general situation.

Definition A.10. If x is a Hahn series as in (A.1), and t ∈ R>0 is a positive number, then we
define

∥x∥t :=
∑
γ∈Γ

|cγ |tγ . (A.2)

We say that a Hahn series x is (absolutely) convergent if ∥x∥t < +∞ for all t large enough.

Remark A.11. We recall that (see, e.g., [Bro96, Section 2.5]), since Γ is at most countable by
Lemma A.2, the sum from (A.2) does not depend on the order of summation and is either finite
or equal to +∞. Furthermore, for any t satisfying ∥x∥t < +∞, the series x evaluated at t is
convergent (i.e., the sum from (A.1) evaluated at t is well defined, finite, and does not depend on
the order of summation). We denote by x(t) ∈ R the value of this series. (With the convention
that if x = 0, then x(t) = 0 for all t > 0.) We note that this evaluation is compatible with the
ring structure on K, i.e., that we have (x + y)(t) = x(t) + y(t) and (xy)(t) = x(t)y(t) for all
x,y ∈ K and t such that ∥x∥t < +∞, ∥y∥t < +∞.

The following lemma shows that the set of absolutely convergent Hahn series is closed by
addition and multiplication.

Lemma A.12. Suppose that x,y are Hahn series and that t ∈ R>0 is a positive number such
that ∥x∥t, ∥y∥t < +∞. Then, we have ∥x + y∥t ⩽ ∥x∥t + ∥y∥t and ∥xy∥t ⩽ ∥x∥t∥y∥t.

Proof. The first part follows immediately from the triangle inequality. To prove the second one,
denote x =

∑
γ1∈Γ1 cγ1t

γ1 , y =
∑

γ2∈Γ2 dγ2t
γ2 . Then

∥xy∥t ⩽
∑
γ∈R

∑
γ1∈Γ1,γ2∈Γ2

γ1+γ2=γ

|cγ1dγ2 |tγ1+γ2 =
∑

γ1∈Γ1

∑
γ2∈Γ2

|cγ1dγ2 |tγ1+γ2 = ∥x∥t∥y∥t ,

by the triangle inequality and the fact that the sums of nonnegative numbers can be arbitrarily
rearranged (see [Bro96, Theorem 2.55]).

Corollary A.13. The set of absolutely convergent Hahn series (resp. Puiseux series, general-
ized Puiseux series) forms a commutative ring with unity.

Proof. This is an immediate consequence of Lemmas A.8 and A.12.

In the rest of this appendix, K denotes any of the rings mentioned in Corollary A.13.
Before proving that these rings are fields, let us recall the basic definitions related to the valued
structure of K.

Definition A.14. If x ∈ K is a series as in (A.1), then the maximal element of Γ is called the
valuation of x and is denoted by val(x). Furthermore, the coefficient cval(x) is called the leading
coefficient of x and is denoted by lc(x). The residue of x, denoted res(x), is defined as

res(x) :=
{

lc(x) if val(x) = 0
0 otherwise .
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(With the convention that val(0) = −∞, lc(0) = res(0) = 0.)

Lemma A.15. For all x,y ∈ K, the valuation map satisfies the relations

val(x + y) ⩽ max(val(x), val(y))
val(xy) = val(x) + val(y) .

(A.3)

Proof. Immediate from the definition of addition and multiplication in K.

Definition A.16. We say that O = {x ∈ K : val(x) ⩽ 0} is a valuation ring of K.

Lemma A.17. The valuation ring O is a subring of K.

Proof. By (A.3), O is closed under addition and multiplication.

The aim of this appendix is to prove that the rings of convergent series mentioned in Corol-
lary A.13 are, in fact, real closed fields. The fact that the ring of convergent Puiseux series is
a real closed field is classical, and the proof can be found in [BK12, Section 8.3]. An analogous
statement for generalized Puiseux series and Hahn series was proven by van den Dries and
Speissegger [vdDS98]. In the rest of this appendix, we present the proof given in [vdDS98]. We
start by proving that K is a field that can be equipped with a natural order.

A.2 Structure of ordered field
The proof that K is a field requires a simple lemma.

Lemma A.18. Suppose that x ∈ K is such that val(x) < 0. Then, the function t 7→ ∥x∥t is
nonincreasing and converges to 0.

Proof. The fact that ∥x∥t is nonincreasing follows immediately from its definition and the fact
that val(x) < 0. Moreover, since x ∈ K, there exists t0 > 0 such that ∥x∥t < +∞ for all t > t0.
If we denote δ = val(x), then for every t > t0 we have ∥x∥2t ⩽ 2δ∥x∥t and the claim follows.

Lemma A.19. The ring K is a field.

Proof. Our proof follows [vdDS98, Lemma 4.7 and Corollary 5.6]. Let x =
∑

γ∈Γ cγt
γ be a

nonzero element of K. We want to show that x in invertible. If |Γ | = 1, then the claim
is trivial. Otherwise, we may suppose (by multiplying by an element of the form ctγ) that
x is of the form x = 1 − x̃, where val(x̃) is strictly smaller than zero, val(x̃) = γ0 < 0.
Denote x̃ =

∑
γ∈Γ ′ cγt

γ . For all n ⩾ 0 denote yn =
∑n

k=0 x̃
k =

∑
γ∈Γn

c
(n)
γ tγ . Observe that

val(x̃k) = kγ0. Therefore, if we let Γ̃n = Γn ∩ [nγ0, 0], then we have the inclusion Γ̃0 ⊂ Γ̃1 ⊂ . . .

and Γ̃m ∩ [nγ0, 0] = Γ̃n for all m ⩾ n. Even more, if γ ∈ Γ̃n for some n, then c
(m)
γ = c

(n)
γ for all

m ⩾ n. Let Γ =
∪∞

k=0 Γ̃k and note that Γ ∩ [nγ0, 0] =
∪∞

k=0(Γ̃k ∩ [nγ0, 0]) = Γ̃n for all n ⩾ 0.
For every γ ∈ Γ , let nγ denote the smallest number such that γ ∈ Γ̃nγ . Consider the series y

defined as y =
∑

γ∈Γ c
(nγ)
γ tγ . We want to show that the series y belongs to K. To do so, we

have to check that Γ is a correct set of exponents, and that y is absolutely convergent.
First, we show that Γ is well ordered. Let Γ̂ be a nonempty subset of Γ , let γ̂ be the

supremum of Γ̂ , and γ̂i → γ̂ be a strictly increasing sequence of elements of Γ that converges
to γ̂. Take a number n such that γ ∈ ]nγ0, 0]. Then, for i large enough, the sequence γ̂i belongs
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to Γ ∩ [nγ0, 0] = Γ̃n. Since Γ̃n is well ordered, the sequence γ̂i is finite and γ̂ ∈ Γ̂ . Therefore Γ
is well ordered.

Second, we observe that if Γ ′ has no limit points, then the same is true for all Γ̃n. This
implies that every Γ̃n is finite. In this case, for any a, b ∈ R, a < b we can find n such that
[a, b] ∩ Γ ⊂ [nγ0, 0] ∩ Γ = Γ̃n and hence Γ has no limit points.

Third, we observe that if Γ ′ consists of rational numbers with the same denominator M ,
then the same is true for all Γ̃n and hence for Γ .

To prove that y is absolutely convergent, we take t0 > 0 such that ∥x̃∥t < 1 for all t > t0
(such t0 exists by Lemma A.18). Then, by Lemma A.12, for all n ⩾ 0 we have

∑
γ∈Γ̃n

|c(n)
γ |tγ ⩽

∑
γ∈Γn

|c(n)
γ |tγ = ∥

n∑
k=0

x̃k∥t ⩽
n∑

k=0
∥x̃∥k

t .

Furthermore, by definition we have ∥y∥t =
∑

γ∈Γ |c(nγ)
γ |tγ . Any finite subset of Γ belongs to

some Γ̃n. Therefore, any finite partial sum of
∑

γ∈Γ |c(nγ)
γ |tγ is bounded from above by a sum

of the form
∑

γ∈Γ̃n
|c(n)

γ |tγ . Hence, for all t > t0 we have

∥y∥t ⩽ sup
n

∑
γ∈Γ̃n

|c(n)
γ |tγ ⩽

∞∑
k=0

∥x̃∥k
t < +∞

and y is absolutely convergent.
To finish the proof, we want to show that xy = 1. Note that val(y) = 0 and that we have

n0 = 0, c(0)
0 = 1. Hence xy is of the form xy = 1 +

∑
γ∈Γ̌ čγt

γ . Suppose that Γ̌ is nonempty
and denote its maximal element by γ̌0 < 0. Then xy = 1 + čγ̌0t

γ̌0 + (terms of smaller order),
where čγ̌0 ̸= 0. Take n such that γ̌0 > nγ0. By the definition of y, the series x(

∑n
k=0 x̃

k) is also
of the form x(

∑n
k=0 x̃

k) = 1 + čγ̌0 + (terms of smaller order). However, we have x(
∑n

k=0 x̃
k) =

(1 − x̃)(
∑n

k=0 x̃
k) = 1 − x̃n+1 and the highest exponent of the series x̃n+1 is equal to (n+ 1)γ0.

This gives a contradiction and hence xy = 1.

We can now equip K with an order.

Definition A.20. We say that an element x of K is nonnegative, what we denote by x ⩾ 0,
if lc(x) ⩾ 0. We extend this relation to arbitrary pairs x,y of series by defining x ⩾ y ⇐⇒
(x − y) ⩾ 0.

Lemma A.21. The field (K,⩾) is ordered.

Proof. To prove the first part, we start by proving that ⩾ is a total order. To this end,
observe that the relations x ⩾ y and y ⩾ x imply that lc(x − y) ⩾ 0 and lc(y − x) ⩾ 0.
Since lc(x − y) = − lc(y − x), we get lc(x − y) = 0 and x = y. Hence ⩾ is antisymmetric.
Furthermore, if x ⩾ y and y ⩾ z, then lc(x − y) ⩾ 0 and lc(y − z) ⩾ 0. This implies that
lc(x−y+y−z) ⩾ 0 and x ⩾ z. Hence ⩾ is transitive. Moreover, it is clear that ⩾ is total. To
prove that ⩾ is compatible with the field operations, take x,y, z ∈ K and suppose that x ⩾ y.
Then, we have lc(x − y) ⩾ 0. Hence lc(x + z − y − z) ⩾ 0 and x + z ⩾ y + z. Furthermore, if
x ⩾ 0 and y ⩾ 0, then lc(xy) = lc(x) lc(y) ⩾ 0 and hence (K,⩾) is an ordered field.

The second natural definition of order over K is to say that x ⩾ y if x(t) ⩾ y(t) for all t large
enough. Similarly, another natural definition of valuation is to put val(x) := limt→∞ logt |x(t)|.
These definitions are equivalent to the previous ones. The proof requires an auxiliary lemma.
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Lemma A.22. Suppose that val(x) = 0. Then x(t) converges to lc(x) as t goes to infinity.

Proof. Denote x = c + x̃, where val(x̃) < 0. We have |x(t) − c| = |x̃(t)| ⩽ ∥x̃∥t and the right
hand side converges to zero by Lemma A.18.

Lemma A.23. For all x,y ∈ K we have x ⩾ y if and only if x(t) ⩾ y(t) for all sufficiently
large t. Furthermore, for every x ∈ K we have val(x) = limt→∞ logt |x(t)| (with the convention
that logt(0) = −∞).

Proof. To prove the first claim, note that it is enough to suppose that y = 0. If x = 0,
then the claim is trivial. Otherwise, by Lemma A.22, the function t− val(x)x(t) converges to
lc(x) ̸= 0. Hence lc(x) ⩾ 0 if and only if x(t) ⩾ 0 for all t sufficiently large. The second
claim is also trivial for x = 0. Otherwise, since t− val(x)|x(t)| converges to |lc(x)|, we have that
logt(t− val(x)|x(t)|) = − val(x) + logt |x(t)| converges to 0.

To finish this section, we show that the valuation is convex with respect to the order on K.

Lemma A.24. The valuation val is convex with respect to the order ⩾. In other words, if
y ∈ O, x ⩽ y, and −x ⩽ y, then x ∈ O.

Proof. Suppose that val(x) > 0. Then val(x) > val(y) and hence 0 ⩽ lc(y − x) = − lc(x).
Similarly 0 ⩽ lc(y+x) = lc(x). Therefore lc(x) = 0 and x = 0, which gives a contradiction.

A.3 Theorem of division, henselianity, and real closedness
We are now ready to present the proof of the main result of this appendix—the fact that
K is real closed. As noted before, our proof follows [vdDS98]. The outline of the proof is as
follows. First, we note that there exists a characterization of real closed valued fields, see [EP05,
Theorem 4.3.7]. This characterization reduces the problem of proving that K is real closed to
the problem of proving that it is henselian. The approach of van den Dries and Speisseger is
to deduce henselianity from an appropriate division theorem in the ring of power series O[[x]].
Such division theorems are related to the Weierstrass preparation. Furthermore, it is important
to note that there are proofs of Weierstrass division theorem that are well adapted to handle
the questions of convergence, see [Car66].

Definition A.25. We denote by O[[x]] the ring of power series over O. More formally, this
ring consists of elements of the form

∞∑
k=0

ckx
k, (A.4)

where ck ∈ O and x is a formal variable (with the natural definition of addition and multipli-
cation). We say that a power series has order d if d is the smallest number such that cd ̸= 0.
We analogously define the ring of power series over R and the order of such a series. We denote
this ring by R[[x]]. Moreover, we denote by O[x] and R[x] the rings of polynomials over O and
R respectively, and we use the convention that zero polynomial has degree −∞.

We point out that we have the following lemma.

Lemma A.26. An element F =
∑∞

k=0 ckx
k ∈ O[[x]] is invertible in O[[x]] if and only if

val(c0) = 0.
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Sketch of the proof. Our proof follows [Bou03, Chapter IV, § 4.4, Proposition 6]. If F is invert-
ible in O, then c0 is invertible in O, and hence val(c0) = 0. Conversely, if val(c0) = 0, then c0
is invertible in K by Lemma A.19, and val(c−1

0 ) = 0. Write F = c0(1 +
∑∞

k=1 c
−1
0 ckx

k) and
consider the series G = −

∑∞
k=1 c

−1
0 ckx

k ∈ O[[x]]. For every n ⩾ 0 define Gn =
∑n

ℓ=0 G
ℓ =∑∞

k=0 c
(n)
k xk and observe that for every m ⩾ n the first n coefficients of Gn and Gm are

the same. We take G∞ =
∑∞

k=0 c
(k)
k xk ∈ O[[x]]. Observe that for all n ⩾ 0 the nth coeffi-

cient of c−1
0 FG∞ is the same as the nth coefficient of c−1

0 F (
∑n

ℓ=0 G
ℓ). Furthermore, we have

c−1
0 F (

∑n
ℓ=0 G

ℓ) = (1 − G)(
∑n

ℓ=0 G
ℓ) = 1 − Gn+1 and hence c−1

0 FG∞ = 1.

We now extend the definition of residue to elements of O[[x]].

Definition A.27. Let F ∈ O[[x]] be a power series over O as in (A.4). We define the residue
of F as

res(F ) =
∞∑

k=0
res(ck)xk ∈ R[[x]] .

The next theorem is the main technical result of this section. We note that the statement
presented in [vdDS98] is more general—we only present a particular case that is sufficient for our
purposes. We also point out that our formulation is exactly the Weierstrass division theorem
over the ring O and that the proof below can be seen as an adaptation of the proof of the
Weierstrass division presented in [Car66].

Theorem A.28 (Theorem of division). Fix a series F ∈ O[[x]] and let d denote the order of
res(F ). Then, for any A ∈ O[[x]], there exists a unique Q ∈ O[[x]] such that A − FQ = R is
a polynomial over O of degree strictly smaller than d.

Before giving the proof of the theorem, we will prove its special case. This case can be
thought of as an algorithm of long division of power series over O.

Lemma A.29. Suppose that F ∈ O[[x]] is of the form F = xd − H, where every coefficient of
the series H has a strictly negative valuation. Then, there exists a series Q ∈ O[[x]] such that
A − FQ = R is a polynomial over O of degree strictly smaller than d. Furthermore, if there
exists δ < 0 such that every coefficient of the series H has a valuation smaller than δ, then Q
is unique.

Proof. Our proof follows [vdDS98, Theorems 4.17 and 5.10] and [Car66]. To prove the first
part, we define sequences An,Qn,Rn ∈ O[[x]] by the following recurrence. We put A0 = A.
Furthermore, if An =

∑∞
k=0 a

(n)
k xk, then we put Rn =

∑d−1
k=0 a

(n)
k xk, Qn =

∑∞
k=d a

(n)
k xk−d, and

An+1 = An − QnF − Rn = QnH. Denote H =
∑∞

k=0 hkx
k, let δk = max{val(hℓ) : ℓ ⩽ k} < 0

and observe that

a
(n+1)
k =

k∑
p=0

a(n)
p hk−p (A.5)

for all n, k ⩾ 0. Hence, by a straightforward induction, val(a(n)
k ) ⩽ nδk for all n, k ⩾ 0. For any

fixed k ⩾ 0 we define a
(∞)
k =

∑
γ∈Γk

a
(∞)
k,γ t

γ as follows. We denote a
(n)
k =

∑
γ∈Γk,n

a
(n)
k,γt

γ , take
Γk =

∪∞
n=0 Γk,n, and for all γ ∈ Γk define

a
(∞)
k,γ =

∞∑
ℓ=0

a
(ℓ)
k,γ =

⌊γ/|δk|⌋∑
ℓ=0

a
(ℓ)
k,γ
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(where a(ℓ)
k,γ = 0 if γ /∈ Γk,ℓ). We will show that a

(∞)
k is an element of O. To do that, we have

to check that Γk is a correct set of exponents and that a
(∞)
k is absolutely convergent.

First, we show that Γk is well ordered. Let Γ̂ be a nonempty subset of Γk, let γ̂ ⩽ 0 be the
supremum of Γ̂ , and γ̂i → γ̂ be a strictly increasing sequence of elements of Γk that converges
to γ̂. Take a number n such that γ ∈ ]nδk, 0]. Then, for i large enough, the sequence γ̂i belongs
to
∪n−1

ℓ=0 Γk,ℓ. Hence, we can extract from γ̂i an infinite subsequence that belongs to some Γk,ℓ.
Since Γk,ℓ is well ordered, this subsequence is finite and γ̂ ∈ Γ̂ . Therefore Γk is well ordered.

Second, if K is the field of generalized Puiseux series, then Γk,ℓ has no limit points for all
ℓ ⩾ 0. In this case, for any a, b ∈ R, a < b we can find n such that [a, b] ∩ Γk ⊂ [nδk, 0] ∩ Γk ⊂∪n

ℓ=0 Γk,ℓ and hence Γk has no limit points.
Third, if K is the field of Puiseux series and M ∈ N is the common denominator of all

exponents of the series {a(0)
0 , . . . ,a

(0)
k ,h0, . . . ,hk}, then (A.5) shows that the same is true for

all a(n)
p where n ⩾ 0 and p ∈ {0, . . . , k}. Hence, this is also true for a

(∞)
k .

To show that a(∞)
k is absolutely convergent, let t0 > 0 be such that ∥hp∥t <

1
2k and ∥a(0)

p ∥t <
+∞ for all p ∈ {0, . . . , k} and t > t0 (such t0 exists by Lemma A.18). Furthermore, denote
sk(t) = max{∥a(0)

p ∥t : p ⩽ k}. By Lemma A.12 and a straightforward induction using (A.5), for
all n ⩾ 0 and t > t0 we have

max{∥a(n)
p ∥t : p ⩽ k} ⩽ (1

2
)nsk(t) .

In particular, for any such t we have

∑
γ∈Γk

|a(∞)
k,γ |tγ ⩽

∑
γ∈Γk

⌊γ/|δk|⌋∑
ℓ=0

|a(ℓ)
k,γ |tγ ⩽

∞∑
ℓ=0

∑
γ∈Γk

|a(ℓ)
k,γ |tγ =

∞∑
ℓ=0

∥a(ℓ)
k ∥t < +∞ .

Hence a
(∞)
k is absolutely convergent and a

(∞)
k ∈ O. Denote Q∞ =

∑∞
k=d a

(∞)
k xk−d and R∞ =∑d−1

k=0 a
(∞)
k xk. We want to show that A = FQ∞ + R∞. Note that for every n ⩾ 0 we have

A − An+1 = A0 − An+1 = (A0 − A1) + · · · + (An − An+1) = F (
n∑

ℓ=0
Qn) + (

n∑
ℓ=0

Rℓ) .

Hence A = An+1 + F (
∑n

ℓ=0 Qn) + (
∑n

ℓ=0 Rℓ). By definition, for every fixed k ⩾ 0, the kth
coefficients of the series An+1 + F (

∑n
ℓ=0 Qn) + (

∑n
ℓ=0 Rℓ) and FQ∞ + R∞ have the same

expansion up to order nδk and the claim follows.
To show the second claim, suppose that there are two elements Q1,Q2 ∈ O[[x]] such that

A − (xd − H)Q1 = R1 and A − (xd − H)Q2 = R2 are polynomials of degree smaller than d.
If we denote Q = Q1 − Q2 and R = R2 − R1, then R is also a polynomial of degree smaller
than d and we have

R = (A − (xd − H)Q2) − (A − (xd − H)Q1) = (xd − H)(Q1 − Q2) = (xd − H)Q .

We want to show that Q = 0. Suppose that Q =
∑∞

k=0 qkx
k, denote as previously H =∑∞

k=0 hkx
k and let δ < 0 be such that val(hℓ) < δ < 0 for all ℓ ⩾ 0. Furthermore, suppose that

the inequality val(qk) ⩽ nδk holds for some n ⩾ 0 and all k ⩾ 0 (it trivially holds for n = 0).
For any ℓ ⩾ 0, the (d+ ℓ)th coefficient of R is equal to zero and hence

qℓ −
d+ℓ∑
k=0

qkhd+ℓ−k = 0 .
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Note that the valuation of
∑d+ℓ

k=0 qkhd+ℓ−k is not greater than (n+ 1)δ. Therefore, the same is
true for qℓ. As a result, we have val(qℓ) = −∞ for all ℓ ⩾ 0 and Q = 0.

Theorem A.28 follows from the previous lemma.

Proof of Theorem A.28. As previously, our proof follows [vdDS98, Theorems 4.17 and 5.10] and
[Car66]. Denote F =

∑∞
k=0 ckx

k and G =
∑∞

k=0 ck+dx
k. Since res(F ) has order d, the series

G is invertible in O[[x]] by Lemma A.26. Hence, if we denote H = G−1(−
∑d−1

k=0 ckx
k), then

F = G(xd − H). Furthermore, note that there exists δ < 0 such that all coefficients of H
have valuation not greater than δ (because this is true for the coefficients of

∑d−1
k=0 ckx

k and
G−1 ∈ O[[x]]). Therefore, we can apply Lemma A.29 to F = xd − H. Hence, there exists a
unique series Q ∈ O[[x]] such that A−FQ is a polynomial of degree smaller than d. By taking
Q = G−1Q we have A − FQ = A − GFG−1Q = A − FQ. The uniqueness of Q follows from
the uniqueness of Q. Indeed, if Q1,Q2 ∈ O[[x]] are two different series that satisfy the claim
for F , then GQ1, GQ2 ∈ O[[x]] are two different series that satisfy the claim for F .

Corollary A.30. Fix a series F ∈ O[[x]] and let d denote the order of res(F ). Then, there
exists a unique pair Q ∈ O[[x]],P ∈ O[x] such that Q is invertible, P is a monic polynomial of
degree d, and F = QP .

Proof. Our proof follows [vdDS98, Theorem 4.17]. By Theorem A.28, there exists a unique Q
such that xd − FQ = R is a polynomial of degree smaller than d. Hence FQ = P , where
P is a monic polynomial of degree d. We will show that Q is invertible. To do so, write
F =

∑∞
k=0 ckx

k and Q =
∑∞

k=0 qkx
k. We have

q0cd +
d−1∑
k=0

qd−kck = 1 .

Since res(F ) has order d, we have val(ck) < 0 for all k ∈ {0, 1, . . . , d − 1}. In particular,
val(

∑d−1
k=0 qd−kck) < 0. This implies that 0 = val(q0cd) = val(q0) and Q is invertible by

Lemma A.26. Thus F = Q−1P . Conversely, if F = Q−1P , then xd − FQ is a polynomial of
degree smaller than d. Therefore, by Theorem A.28, Q is unique.

Corollary A.31. The field K is henselian. In other words, if F ∈ O[x] is a polynomial and
α ∈ R is such that res(F )(α) = 0 and (res(F ))′(α) ̸= 0, then there exists α ∈ O such that
F (α) = 0 and res(α) = α.

Proof. Denote F =
∑d

k=0 ckx
k and consider the polynomial F (x) = F (α+ x). We have

F (x) =
d∑

k=0
ck(α+ x)k =

d∑
k=0

k∑
ℓ=0

(
k

ℓ

)
αk−ℓckx

ℓ =
d∑

ℓ=0

( d∑
k=ℓ

(
k

ℓ

)
αk−ℓck

)
xℓ .

Note that for ℓ = 0 the constant coefficient of F is equal to
∑d

k=0 ckα
k. Since res(F )(α) = 0, we

have val(
∑d

k=0 ckα
k) < 0. Furthermore, for ℓ = 1, the linear term of F is equal to

∑d
k=1 ckkα

k−1.
Since (res(F ))′(α) ̸= 0, we have val(

∑d
k=1 ckkα

k−1) = 0. In particular, res(F ) is of order 1.
Therefore, we can use Corollary A.30 to decompose it into F = Q(x − α), where Q ∈ O[[x]]
is an invertible series and α ∈ O is a constant. We want to show that Q is a polynomial. To
do so, denote F =

∑d
k=0 ckx

k and Q =
∑∞

k=0 qkx
k. We have c0 = −αq0. Moreover, since Q

is invertible, we have val(q0) = 0 (by Lemma A.26). Hence val(α) = val(c0) < 0. Furthermore,
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note that for every ℓ ⩾ 1 we have αqd+ℓ = qd+ℓ−1. In particular, val(qd+ℓ) = val(qd) − ℓ val(α).
Since Q ∈ O[[x]] and val(α) < 0, this is possible only if qd = 0. Therefore, Q is a polynomial
of degree at most d − 1 and hence F (α) = 0. To finish, observe that we have F (α + α) = 0
and res(α+ α) = α.

Corollary A.32. The field K is real closed.

Proof. By Corollary A.31 and Lemma A.24 the field K is an ordered henselian valued field
equipped with a nontrivial and convex valuation. Furthermore, its value group is divisible and
its residue field is real closed. Hence, K is real closed by [EP05, Theorem 4.3.7].

Remark A.33. We note that if a field K is real closed, then its extension K(
√

−1) is algebraically
closed [BPR06, Theorem 2.11]. It is easy to see that if K is any of the fields considered here
(Puiseux series, generalized Puiseux series, Hahn series etc. with real coefficients), then K(

√
−1)

is isomorphic to the analogous field with complex coefficients. Therefore, all such fields are
algebraically closed.



APPENDIX B

Additional proofs

B.1 Model theory
In this section, we give proofs of Theorem 2.106 and Lemma 2.108. We start by the following
technical lemmas.

Lemma B.1. Suppose that M = (M, 0,−∞,+,⩽) is a model of Thdoagb. Then 0 ̸= −∞ and
if x, y ∈ M are such that x+ y = −∞, then either x or y is equal to −∞.

Proof. Suppose that 0 = −∞. Then x = x + 0 = x + (−∞) = −∞ for all x ∈ M , which is
a contradiction with the nontriviality axiom. Furthermore, if x + y = −∞ and y ̸= −∞, then
there exists z ̸= −∞ such that x = x+ 0 = x+ y + z = −∞ + z = −∞.

Lemma B.2. Suppose that M = (M, 0,−∞,+,⩽) is a model of Thdoagb. Then M̂ = (M \
{−∞}, 0,+,⩽) is a model of Thdoag. Moreover, if ϕ(y1, . . . , ym) is a quantifier-free Log-formula
and y ∈ (M \ {−∞})m, then M |= ϕ(y) if and only if M̂ |= ϕ(y).

Proof. We note that the addition in M \ {−∞} is well defined by Lemma B.1. This lemma also
shows that 0 ∈ M \ {−∞}. Therefore, M̂ is an Log-structure. It is immediate to see that it
verifies all the axioms of Thdoag. The second claim follows from induction. First, if ψ(y1, . . . , yn)
is an Log-term and y ∈ (M \ {−∞})n, then ψ(y) is an element of M \ {−∞}. Moreover, this
is the same element if we treat ψ as an Log-term over M̂ or if we treat it as an Logb-term
over M. (This follows by induction from Definition 2.87.) Therefore, the claim is true for
atomic formulas or their negations. As noted in the proof of Lemma 2.103, every quantifier-free
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formula arises as a conjunction and disjunction of atomic formulas or its negations, and the
claim follows.

We now give the proof of Theorem 2.106.

Proof of Theorem 2.106. Suppose that ϕ is an Logb-formula and let m = |Fvar(ϕ)|. We will
show that there exists an Logb-formula that is quantifier free and equivalent to ϕ in Thdoagb.
Furthermore, if m ⩾ 1, then this formula will have the form described in the claim, while if
m = 0, then this formula will be denoted by ψ∅ and will be of the form 0 = 0 or 0 ̸= 0. This shows
both quantifier elimination and completeness. Throughout the proof, M = (M, 0,−∞,+,⩽)
denotes any model of Thdoagb.

To begin, observe that if ψ(y1, . . . , yn) is an Logb-term and y ∈ Mn, then ψ(y) evaluates to
−∞ in one of the two cases: if ψ contains a symbol −∞ or if at least one coordinate of y is
equal to −∞. Otherwise, ψ(y) evaluates to a quantity in M \ {−∞}. This can be proven by
an immediate induction using Lemma B.1. Therefore, if ϕ is atomic, then we can construct the
desired formula by the following case-by-case analysis:

• If ϕ is of the form ψ1 = ψ2 for two Logb-terms, then we have the following subcases:

– If both ψ1 and ψ2 contain the symbol −∞, then we set ψΣ to be 0 = 0 for all Σ.

– If ψ1 contains the symbol −∞, but ψ2 does not, then we set ψΣ to 0 ̸= 0 if Fvar(ψ2) ⊂
Σ and to 0 = 0 otherwise.

– If neither ψ1 nor ψ2 contains the symbol −∞, then we set ψΣ to be of the form
ψ1 = ψ2 if Fvar(ϕ) = Σ, of the form 0 = 0 if Fvar(ψ1) \Σ ̸= ∅ and Fvar(ψ2) \Σ ̸= ∅,
and of the form 0 ̸= 0 otherwise.

• If ϕ is of the form ψ1 ⩽ ψ2 for two Logb-terms, then we have the following subcases:

– If ψ1 contains the symbol −∞, then we set ψΣ to be 0 = 0 for all Σ.

– If ψ2 contains the symbol −∞, but ψ1 does not, then we set ψΣ to be 0 ̸= 0 if
Fvar(ψ1) ⊂ Σ, and to 0 = 0 otherwise.

– If neither ψ1 nor ψ2 contains the symbol −∞, then we set ψΣ to be of the form
ψ1 = ψ2 if Fvar(ϕ) = Σ, of the form 0 = 0 if Fvar(ψ1) \Σ ̸= ∅, and of the form 0 ̸= 0
otherwise.

We continue the proof by induction. If ϕ is of the form ¬ψ and ψ has no free variables, then
the claim is trivial from induction hypothesis. Otherwise, ψ(y1, . . . , ym) is of the form∨

Σ⊂[m]

(
(∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ψΣ

)
.

Then ¬ψ is equivalent in Thdoagb to∨
Σ⊂[m]

(
(∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ¬ψΣ

)
.

Indeed, if we fix y ∈ Mm, then there exists exactly one set Σ ⊂ [m] that satisfies ((∀σ ∈
Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞)), namely Σ = {σ ∈ [m] : yσ ̸= −∞}. Hence ψ(y) is true

in M if and only if ψΣ(y) is true in M. Therefore, by negating all ψΣ we negate ψ. If ϕ is an
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Logb-formula of the form (ϕ1 ∧ϕ2), then, by induction hypothesis (and adding some disjunctions
if necessary), we can assume that ϕk are of the form∨

Σ⊂[m]

(
(∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ψk,Σ

)
for k ∈ {1, 2}. The same argument as above shows that ϕ is equivalent in Thdoagb to∨

Σ⊂[m]

(
(∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ (ψ1,Σ ∧ ψ2,Σ)

)
.

Finally, if ϕ is of the form ∃ym+1, ψ, where ψ has m+ 1 free variables y1, . . . , ym, ym+1, then by
induction hypothesis we can assume that ϕ is of the form

∃ym+1,
∨

Σ⊂[m+1]

(
(∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ψΣ

)
.

We divide the sets Σ ⊂ [m + 1] into two groups. First, if ym+1 /∈ Fvar(ψΣ), then we define
ψ̂Σ as ψΣ . Second, if Σ is such that ym+1 ∈ Fvar(ψΣ), then we use Theorem 2.101 to find
a quantifier-free Log-formula ψ̂Σ that is equivalent in Thdoag to the formula ∃ym+1, ψΣ . In
both cases, the formulas ∃ym+1, ((∀σ ∈ Σ, yσ ̸= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ψΣ) and

(∀σ ∈ ([m] ∩ Σ), yσ ̸= −∞
)

∧ (∀σ ∈ ([m] \ Σ), yσ = −∞) ∧ ψ̂Σ are equivalent in Thdoagb.1
Indeed, this is trivial in the first case. In the second case, the fact that ym+1 ∈ Fvar(ψΣ) implies,
by induction hypothesis, that m+ 1 ∈ Σ. Therefore, the claim follows from Lemma B.2. Thus,
ϕ is equivalent in Thdoagb to∨

Σ⊂[m+1]

(
(∀σ ∈ ([m] ∩Σ), yσ ̸= −∞

)
∧ (∀σ ∈ ([m] \Σ), yσ = −∞) ∧ ψ̂Σ

)
,

that can be rewritten as∨
Ξ⊂[m]

(
(∀σ ∈ Ξ, yσ ̸= −∞

)
∧ (∀σ /∈ Ξ, yσ = −∞) ∧ (ψ̂Ξ ∨ ψ̂Ξ∪{m+1})

)
.

We now present the proof of Lemma 2.108.

Proof of Lemma 2.108. Let M̂ = (Γ, 0,+,⩽) denote the Log-structure of Γ . If all strata of S
are semilinear, then, by Lemma 2.103, for every stratum K = {k1, . . . , kp} ⊂ [n] there exists
an Log-formula ψK(xk1 , . . . , xkp , y

(K)
1 , . . . , y

(K)
ℓK

) and a vector y(K) ∈ Γ ℓK such that SK = {x ∈
ΓK : M̂ |= ψK(x, y(K))}. Therefore, S can be written down as an union of the sets of the form

{x ∈ (Γ∪{−∞})n : ∀k ∈ K,xk ̸= −∞ ∧ ∀k /∈ K,xk = −∞ ∧ M̂ |= ψK((xk)k∈K , y
(K))} (B.1)

(and, possibly, the point (−∞, . . . ,−∞)). Let M = (Γ∪{−∞}, 0,−∞,⩽) be the Logb-structure
of Γ ∪ {−∞}. Then, by Lemma B.2, the set (B.1) can be rewritten as

{x ∈ (Γ ∪ {−∞})n : ∀k ∈ K,xk ̸= −∞ ∧ ∀k /∈ K,xk = −∞ ∧ M |= ψK((xk)k∈K , y
(K))}

1With the convention that we replace (∀σ ∈ ([m] ∩Σ), yσ ̸= −∞
)

∧ (∀σ ∈ ([m] \Σ), yσ = −∞) ∧ ψ̂Σ by ψ̂Σ

if m = 0.
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and {x ∈ (Γ ∪ {−∞})n : M |= ψ̃K(x, y(K))}, where ψ̃K is defined as

(∀k ∈ K,xk ̸= −∞) ∧ (∀k /∈ K,xk = −∞) ∧ ψK .

This means that S is definable in Logb. To prove the opposite implication, note that if S is defin-
able in Logb, then, by Theorem 2.106, there exists ℓ ⩾ 0, a formula ϕ(x1, . . . , xn, xn+1, . . . , xn+ℓ)
of the form ∨

Σ⊂[n+ℓ]

(
(∀σ ∈ Σ, xσ ̸= −∞

)
∧ (∀σ /∈ Σ, xσ = −∞) ∧ ψΣ

)
,

and a vector y ∈ (Γ ∪ {−∞})ℓ such that S = {x ∈ (Γ ∪ {−∞})n : M |= ϕ(x, y)}. Let
L = {l ∈ {n+ 1, . . . , n+ ℓ} : yl ̸= −∞} denote the support of y, take a nonempty set K ⊂ [n],
and consider the formula ϕK given by

(∀σ ∈ (K ∪ L), xσ ̸= −∞
)

∧ (∀σ /∈ (K ∪ L), xσ = −∞) ∧ ψΣ .

Note that, by Lemma B.2, we have

{x ∈ (Γ ∪ {−∞})n : ∀k ∈ K,xk ̸= −∞ ∧ ∀k /∈ K,xk = −∞ ∧ M |= ϕ(x, y)}
= {x ∈ (Γ ∪ {−∞})n : ∀k ∈ K,xk ̸= −∞ ∧ ∀k /∈ K,xk = −∞ ∧ M |= ϕK(x, y)}
= {x ∈ (Γ ∪ {−∞})n : ∀k ∈ K,xk ̸= −∞ ∧ ∀k /∈ K,xk = −∞ ∧ M̂ |= ϕK((xk)k∈K , (yl)l∈L)} .

Therefore, the stratum SK is definable in Log as SK = {x ∈ ΓK : M̂ |= ϕK((xk)k∈K , (yl)l∈L)}.
By Lemma 2.103, SK is semilinear.

B.2 Ergodic theorem for Markov chains with rewards

In this section we give the proof of Theorem 2.137 based on the analysis given in the textbook of
Chung [Chu67]. We use the same notation as in Section 2.7. Let µuw denote the probability that
the Markov chain starting from u ∈ V will reach w ∈ V at least once, µuw = P(∃s ⩾ 1, Xs =
w|X0 = u). By definition, the state u is recurrent if µuu = 1, and it is transient otherwise. By
ζuw we denote the expected number of visits in w before returning to u, i.e.,

ζuw = E
(Tu−1∑

s=0
1{Xs=w}

∣∣∣X0 = u
)
.

The following theorem describes the ergodic behavior of any finite (or countable) Markov
chain.

Theorem B.3 ([Chu67, Part I, §6, Theorem 4 and its Corollary]). The Cesaro limit

lim
N→∞

1
N

N∑
s=0

P s

is well defined (we will denote it by M). Moreover, the entries of M are given as follows: if w
is a transient state, then Muw = 0 for all u. If w is recurrent, then Muw = µuw

θw
for all u.
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Remark B.4. Note that the theorem above does not state that θw < ∞ if the state w is recurrent.
(We work under the convention that a

+∞ = 0 for all finite a.) Nevertheless, if the chain is finite,
then we have θw < ∞ for all recurrent states w, and this can be deduced as a corollary of the
theorem above, as discussed below.

Observe that M is a stochastic matrix (as a limit of stochastic matrices). Moreover, we have
MP = PM = M . This leads to the following corollary.

Corollary B.5. If C ⊂ V is a recurrent class, then Muw = 1
θw

for all u,w ∈ C. Furthermore,
(πu)u∈C defined as πu = 1

θu
is the unique stationary distribution on C. In particular, if u ∈ V

is a recurrent state, then θu < ∞.

Proof. Let first claim follows immediately from Theorem B.3. We will prove that (πu)u∈C is
a stationary distribution on C. Let PC denote the square submatrix of P formed by the rows
and columns of P with indices in C. We define MC analogously. The first claim implies that
MC has identical rows. Since C is a recurrent class, we have Puw′ = 0 for all u ∈ C,w′ /∈ C.
Hence, for all s we have [P s]C = [PC ]s. Therefore MC = limN→∞

1
N

∑N
s=0 P

s
C . Hence, MC

is stochastic. In other words, every row of MC is a probability distribution on C and, since
MCPC = MC , this distribution is a stationary distribution on C. Since C is a recurrent class,
stationary distribution on C has only strictly positive values. Hence we have θu < ∞. The fact
that the stationary distribution is unique follows from [Chu67, Part I, §7, Theorem 1].

The next theorem characterizes the relationship between entries of M and the values ζuw.

Theorem B.6. If (u,w) belong to the same recurrent class, then 0 < ζuw < ∞. Moreover,
if (f, g, h, u, w) are (not necessarily distinct) states belonging to the same recurrent class, then
Mfg/Mhu = ζwg/ζwu.

Proof. The fact that 0 < ζuw < ∞ follows from [Chu67, Part I, §9, Theorem 2 and 3]. Moreover,
by Corollary B.5 we have Muw = 1

θw
> 0. Hence the claim follows from [Chu67, Part I, §9,

Theorem 5 and remarks that precede it].

Corollary B.7. If (u,w) belong to the same recurrent class, then

Muw = 1
θw

= ζuw

θu
.

Proof. By Theorems B.3 and B.6 we have θu/θw = Mww/Muu = ζuw/ζuu. By definition ζuu = 1
and hence θu/θw = ζuw.

Proof of Theorem 2.137. Fix u ∈ V . Observe that for all N ⩾ 1 we have

E
( N∑

s=0
rXs

∣∣∣X0 = u
)

= [r + Pr + · · · + PNr]u .

Therefore gu = [Mr]u. In particular, gu is well defined.
Let us suppose that the initial state u is recurrent and denote its recurrent class by C. In

this case, Corollary B.5 and Theorem B.3 imply that gu =
∑

w∈C rwπw, where (πw)w∈C is the
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stationary distribution on C. Moreover, Corollary B.7 gives the identity

gu = 1
θu

∑
w∈C

ζuwrw

= 1
θu

E
(∑

w∈C

Tu−1∑
s=0

rw1{Xs=w}

∣∣∣X0 = u
)

= 1
θu

E
(Tu−1∑

s=0

∑
w∈V

rw1{Xs=w}

∣∣∣X0 = u
)

= 1
θu

E
(Tu−1∑

s=0
rXs

∣∣∣X0 = u
)

= ξu

θu
.

Now, suppose that the initial state u is transient. Let C1, . . . , Cp denote the recurrent classes
in our Markov chain. In this case, Theorem B.3 gives the identity

gu =
p∑

s=1

∑
w∈Cs

ψs

θw
rw =

p∑
s=1

ψsgus .
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B.3 Kohlberg’s theorem

In this appendix, we give a proof of the Kohlberg’s theorem (Theorem 6.6) and Proposition 8.39.
The original proof presented in [Koh80] uses Farkas’ lemma in the ordered field of rational
functions. We present a more abstract variant of this proof, replacing Farkas’ lemma by a
variant of quantifier elimination in ordered fields. It is easy to see that the theory of ordered
fields (without the assumption of real closedness) does not admit quantifier elimination in the
sense considered in Section 2.6. Indeed, this theory is not model complete, because the statement
∃x, 2 = x · x is true in R but false in Q. However, there exists a weaker variant of quantifier
elimination, called linear quantifier elimination (see, e.g, [Wei88, LW93, ER92]), that is true
over ordered fields. This requires to introduce the definition of a linear formula in the language
Lor. This requires to make a slight adaptation of the construction of formulas presented in
Section 2.6.

Definition B.8. Let I ⊂ N. The set of I-linear terms of Lor is constructed in the following
way:

• constant symbols 0 and 1 are an I-linear terms;
• every variable symbol xk is an I-linear term;
• if ϕ, ψ are I-linear terms, then ϕ+ ψ is an I-linear term;
• if ϕ, ψ are I-linear terms and the free variables of ψ do not contain a symbol from {xi}i∈I ,

Fvar(ψ) ∩ {xi}i∈I = ∅, then ϕ · ψ is an I-linear term.

In other words, an I-linear term is a polynomial of the form P (x) = P0(x) +
∑

i∈I Pi(x)xi,
where the polynomials P0(x), Pi(x) have natural coefficients and do not depend on the variables
from {xi}i∈I .

Definition B.9. The set of I-linear formulas of Lor is constructed from the I-linear terms in
the same way as the set of Lor-formulas is constructed from Lor-terms (see Section 2.6). An
Lor-formula ϕ is linear if it is linear with respect to its bound variables, i.e., if it is I-linear,
where {xi}i∈I = Bvar(ϕ).

The following result is the linear quantifier elimination.

Theorem B.10 ([Wei88, LW93, ER92]). If ϕ(x1, . . . , xp) is a linear Lor-formula, then there
exists a quantifier-free Lor-formula ψ(x1, . . . , xp) such that ϕ is equivalent to ψ in the theory of
ordered fields.

Moreover, given the quantifier elimination result above, as a corollary we obtain a model
completeness result.

Corollary B.11 ([ER92, Corollary 2]). Suppose that K1,K2 are ordered fields and that K1 is
a substructure of K2 with an embedding η : K1 → K2. Moreover, suppose that ϕ(x1, . . . , xp) is
a linear Lor-formula. Then, for any x1, . . . , xp ∈ K1 we have K1 |= ϕ(x1, . . . , xp) if and only if
K2 |= ϕ(η(x1), . . . , η(xp)).

We will apply Corollary B.11 to the field of Laurent series. Let us recall the definition of
this field.

Definition B.12. We define the set of Laurent series, denoted R{t}, in the following way. Let
x =

∑∞
i=1 cλi

tλi be a Puiseux series as in (2.2). Then, x belongs to R{t} if the sequence (λi) ⩾ 1
consists of integer numbers. Moreover, the empty series 0 belongs to R{t}.
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One can easily adapt the proof of Lemma A.19 to show that R{t} is a subfield of K, and
the embedding is given by the identity map. We can now prove Kohlberg’s theorem. To this
end, fix a piecewise-affine function f : Rn → Rn and let (W(s), A(s), b(s))s∈[p] be its piecewise
description. Furthermore, for all s ∈ [p], let C(s) ∈ Rms×n, d(s) ∈ Rms be such that W(s) = {x ∈
Rn : C(s)x ⩽ d(s)}.

Theorem B.13 ([Koh80]). Suppose that f : Rn → Rn is piecewise affine and nonexpansive
in any norm. Then, there exist u, η ∈ Rn, s ∈ [p], and γ0 ⩾ 0 such that (A(s) − I)η = 0,
(A(s) − I)u = η − b(s), and f(u + γη) = u + (γ + 1)η for all γ ⩾ γ0. Furthermore, for every
π ∈ Rn such that π⊺A(s) = π we have π⊺u = 0.

Remark B.14. We note that the theorem above immediately implies the claims of Theorem 6.6
and Proposition 8.39.

Proof of Theorem B.13. Let ∥ · ∥ denote any norm for which f is nonexpansive. Then, for any
fixed 0 < α < 0, the function g : Rn → Rn defined as g(x) := f(αx) is a contraction in ∥ · ∥
and hence it has a unique fixed point. Consider the statement “for every α ∈ ]0, 1[, there exist
s ∈ [p] and x such that αA(s)x + bs = x and αC(s)x ⩽ d(s).” This statement is true in R and,
by the model completeness of real closed fields (Theorem 2.110 and Proposition 2.124), it is
true in K. In particular, this statement is true in K for α := 1 − t−1. Moreover, after fixing
α, the statement becomes linear. More precisely, if we consider

(
α̃, (Ã(s), b̃(s), C̃(s), d̃(s))s∈[p]

)
to be variables (without fixing their value), then the Lor-formula “there exist s ∈ [p] and x
such that α̃Ã(s)x + b̃s = x and α̃C̃(s)x ⩽ d̃(s)” is linear. Since this formula is true in K
after fixing

(
α̃, (Ã(s), b̃(s), C̃(s), d̃(s))s∈[p]

)
=
(
1−t−1, (A(s), b(s), C(s), d(s))s∈[p]

)
, by Corollary B.11,

it is true in R{t}. In other words, there exists a vector x ∈ R{t}n and s ∈ [p] such that
(1 − t−1)A(s)x + b(s) = x and (1 − t−1)C(s)x ⩽ d(s).

First, we will show that val(xk) ⩽ 1 for all k ∈ [n]. By Proposition 8.1, there exists t0 > 0
such that (1−t−1)A(s)x(t)+b(s) = x(t) and (1−t−1)C(s)x(t) ⩽ d(s) for all t > t0. In particular,
for all such t we have

f
(
(1 − t−1)x(t)

)
= (1 − t−1)A(s)x(t) + b(s) = x(t) . (B.2)

Moreover, since f is nonexpansive, we have

∥f(0) − x(t)∥ = ∥f(0) − f
(
(1 − t−1)x(t)

)
∥ ⩽ ∥(1 − t−1)x(t)∥ = (1 − t−1)∥x(t)∥ .

Hence ∥x(t)∥ ⩽ (1− t−1)∥x(t)∥+∥f(0)∥ and ∥x(t)∥ ⩽ t∥f(0)∥ for all t > t0. By the equivalence
of norms in Rn, there exists a constant c > 0 such that |xk(t)| ⩽ ct∥f(0)∥∞ for all k ∈ [n]. In
particular, we have logt |xk(t)| ⩽ 1 + logt(c∥f(0)∥∞) and hence val(xk) ⩽ 1.

Second, denote xk = c
(k)
1 t+c(k)

0 +c(k)
−1t

−1 + . . . for every k ∈ [n], where we allow c
(k)
i = 0. We

put η := (c(1)
1 , . . . , c

(n)
1 ) and u := (c(1)

0 , . . . , c
(n)
0 ). We will show that (η, u) satisfy the claim. By

comparing the first two terms in the series development of the equality (1− t−1)A(s)x+b(s) = x
we get A(s)η = η and A(s)u−A(s)η + b(s) = u, as claimed. Furthermore, if π ∈ Rn is such that
π⊺A(s) = π, then (1 − t−1)π⊺x + π⊺b(s) = π⊺x. Hence π⊺b(s) = t−1π⊺x. In particular, we have
π⊺u = 0. It remains to prove that there exists γ0 ⩾ 0 such that f(u+ γη) = u+ (γ + 1)η for all
γ ⩾ γ0. By the fact that f is nonexpansive, and the equivalence of norms in Rn, there exists a
constant c′ > 0 such that for all t > t0 we have

∥f
(
(1 − t−1)x(t)

)
− f(tη + (u− η))∥ ⩽ ∥(1 − t−1)x(t) − tη − u+ η∥

⩽ c′ ∑
k∈[n]

|(1 − t−1)xk(t) − tηk − uk + ηk| . (B.3)
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Since val
(
(1 − t−1)xk(t) − tηk − uk + ηk

)
< 0, the last expression in (B.3) goes to 0 as t goes to

+∞ (by the triangle inequality and Lemma A.18). In a similar way, the expression

∥
(
(1 − t−1)A(s)x(t) + b(s))−

(
A(s)(tη + u− η) + b(s))∥

= ∥(1 − t−1)A(s)x(t) − tη − u+ b(s)∥ = ∥x(t) − tη − u∥

goes to zero as t goes to +∞. Therefore, by (B.2), the function g(t) : R>0 → Rn

g(t) := f(tη + (u− η)) −A(s)(tη + (u− η)
)

+ b(s)

satisfies limt→+∞ ∥g(t)∥ = 0. Moreover, note that the points tη + (u − η) lie on the same
half-line. Since f is piecewise affine, for sufficiently large t, these points belong to the same
polyhedron of the piecewise description of f . Thus, g(t) is affine for t large enough. Hence,
by limt→+∞ ∥g(t)∥ = 0, the function g(t) is equal to 0 for t large enough and we the claim
follows.
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ANNEXE C

Résumé en français

C.1 Contexte et motivations
La programmation semi-définie est un outil fondamental d’optimisation convexe. Elle revient à
optimiser une fonction linéaire sur un spectraèdre, qui est un ensemble défini par une inégalité
matricielle linéaire

S := {x ∈ Rn : Q(0) + x1Q
(1) + · · · + xnQ

(n) ≽ 0} ,

où Q(0), . . . , Q(n) ∈ Rm×m est une suite des matrices symétriques et ≽ est l’ordre de Loew-
ner sur l’espace des matrices symétriques. Par définition, A ≽ B si et seulement si A − B
est semi-définie positive. À cause de sa puissance expressive, la programmation semi-définie
a trouvé des applications nombreuses. Par exemple, les relaxations semi-définies sont utilisées
pour obtenir des approximations polynomiales aux problèmes NP-difficiles d’optimisation com-
binatoire, tels que le problème de Max-Cut [GW95]. La fonction thêta de Lovász [Lov79]
est une autre application classique de la programmation semi-définie dans le domaine d’opti-
misation combinatoire. On peut calculer cette fonction en temps polynomial en résolvant un
programme semi-défini. De plus, elle est comprise entre le nombre de cliques et le nombre
chromatique, qui sont NP-difficiles à calculer. Nous renvoyons à [GM12, LR05] pour plus d’in-
formations sur les applications de la programmation semi-définie à l’optimisation combinatoire.
La programmation semi-définie est aussi importante dans la domaine d’optimisation polyno-
miale. Même si les problèmes d’optimisation polynomiale ne sont pas convexes en général, Las-
serre [Las01, Las02] et Parrilo [Par03] ont montré qu’une grande partie de ces problèmes peut
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être résolue avec une précision arbitraire en utilisant une hiérarchie de programmes semi-définis.
On trouve plus d’informations sur les applications de la programmation semi-définie en optimi-
sation polynomiale dans les livres [Las15, Las09b]. Grâce à sa puissance expressive, la program-
mation semi-définie a des applications dans la théorie du contrôle [BEGFB94], en information
quantique [Wat18, FSP18, GdLL18], en preuve formelle [MC11, MAGW15], en vérification de
programmes [RVS16], pour les plans d’expérience [VBW98], en traitement du signal [PE10] et
dans d’autres domaines. Nous renvoyons à [WSV00, AL12, dK02, BPT13, BTN01, BV04] pour
plus d’informations sur la programmation semi-définie et ses applications.

En pratique, on résout des programmes semi-définis en utilisant des méthodes de points inté-
rieurs. Ces méthodes ont été généralisées de la programmation linéaire à la programmation semi-
définie par Alizadeh [Ali95] et à la programmation convexe par Nesterov et Nemirovski [NN94].
Nous renvoyons à [dK02, Ren01, GM12] pour plus d’informations sur les méthodes de points
intérieurs.

Il y a beaucoup des questions ouvertes sur les spectraèdres et la programmation semi-définie.
Par exemple, Nemirovski [Nem07] a demandé de caractériser les spectraèdres projetés. Helton et
Nie [HN09] ont conjecturé que tout ensemble semi-algébrique convexe est une projection d’un
spectraèdre. La conjecture a été confirmée pour plusieurs classes d’ensembles [HN09, HV07,
HN10, Las09a, GPT10, GN11, NPS08]. De plus, on sait qu’elle est vraie en dimension 2 [Sch18a].
Cependant, la conjecture à été récemment réfutée par Scheiderer, qui a montré que le cône des
formes semi-définies positives n’est pas une projection d’un spectraèdre, sauf pour quelques cas
particuliers [Sch18b]. Son article contient une liste exhaustive de références.

La conjecture généralisée de Lax est une autre question ouverte. Elle demande si tout
cône d’hyperbolicité est un spectraèdre. La réponse est positive pour plusieurs classes de ces
cônes [HV07, LPR05, PV13, AB18, Kum17]. Néanmoins, quelques généralisations de la conjec-
ture sont fausses [Brä11, AB18, BVY14]. Nous renvoyons aux travaux cités pour plus d’infor-
mations.

La géométrie des spectraèdres a été étudié, sous des perspectives différentes, dans [RG95,
DI10, ORSV15, FSED18]. Cependant, il y a plusieurs questions ouvertes dans cette domaine.
Par exemple, on ne comprend pas bien la structure faciale des spectraèdres et des cônes d’hy-
perbolicité.

Dans cette thèse, nous nous intéressons à la complexité théorique de la programmation semi-
définie. Dans le modèle de machine du Turing, on peut obtenir des solutions approchées aux
programmes semi-définis bien structurés en utilisant l’algorithme de l’ellipsoïde [GLS93, Ram93]
(cependant, cette méthode n’est pas efficace en pratique). Le même résultat pour les méthodes
de points intérieurs a été montré très récemment [dKV16]. Ces deux méthodes fournissent uni-
quement des solutions approchées. Une solution exacte au programme semi-défini est un nombre
algébrique et le degré de son polynôme minimal peut être élevé [NRS10]. De plus, les méthodes
mentionnées ci-dessus dépendent d’hypothèses supplémentaires sur la structure d’un spectraèdre
sous-jacent. Nous renvoyons à [Ram97, dKV16, LMT15] pour plus d’informations et à [LP18]
pour une classe de programmes semi-définis de petite taille qui sont difficiles pour les logiciels
contemporains. Les méthodes de pointe qui sont capables de résoudre les programmes semi-
définis généraux sont fondées sur les méthodes de points critiques [HNSED16, Nal18, HNSED18]
(en outre, on peut décider de la vacuité d’un spectraèdre par l’elimination des quantifica-
teurs [PK97]). De point de vue théorique, Ramana [Ram97] a montré que le problème de la va-
cuité semi-définie (étant données des matrices Q(0), . . . , Q(1), decider si le spectraèdre associé est
non vide) appartient à la classe NPR ∩coNPR, où l’indice R dénote le modèle de calcul BSS. On
ne sait pas si ce problème appartient au NP dans le modèle de machine de Turing. La difficulté de
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ce problème est liée au fait que tout point inclus dans un spectraèdre peut avoir des coordonnées
de taille doublement exponentielle par rapport à la taille des données. En outre, il est possible
qu’un spectraèdre soit non vide sans contenir des points rationnels [Sch16]. Encore plus concrète-
ment, Tarasov et Vyalyi [TV08] ont montré que le problème de comparaison des nombres définis
par des circuits arithmétiques se réduit au problème de la vacuité semi-définie. Ce problème est
plus difficile que le problème Sum of Square Roots. La complexité de ce dernier problème est
ouverte depuis (au moins) 1976, cf. [GGJ76, Pap77, ABKPM09, EY10, JT18] pour plus d’infor-
mations. En outre, certains problèmes de complétion de matrices se réduisent au problème de la
vacuité semi-définie [Lau01, LV14]. Différents certificats de (non-)vacuité, du caractère borné, et
d’inclusion de spectraèdres ont été étudiés dans [Ram97, KS13, LP18, KTT13, The17, KPT18].

Il y a plusieurs caractérisations équivalentes du fait qu’une matrice symétrique est semi-
définie positive. Par exemple, on peut définir cette notion en supposant que les valeurs propres
d’une matrice sont positives, que ses mineurs principaux sont positifs, que la forme quadratique
associée à cette matrice est positive ou par le fait que cette matrice admet une décomposition
de Cholesky. On peut montrer que ces définitions sont équivalentes dans tout corps réel clos (et
pas seulement dans le corps de nombres réels). Cela est une conséquence de la complétude de
la théorie des corps réels clos. En particulier, la notion d’une matrice semi-définie positive est
valable dans tout corps réel clos. Par conséquent, on peut étudier les spectraèdres et la program-
mation semi-définie dans chaque corps réel clos, même si ce corps est non-archimédien. C’est
l’objet de cette thèse. L’exemple le plus important pour nous est le corps des séries de Puiseux.
Classiquement, le corps des séries de Puiseux (qui avait été déjà considéré par Newton [BK12,
Chapter 8.3]) est défini comme un corps des séries formelles ayant des exposants rationnelles et
telles que chaque exposant dans une série fixée a le même dénominateur. Néanmoins, du point
de vue de la géométrie tropicale, il est utile de considérer un corps encore plus grand, composé
de séries ayant des exposants réels [Mar10]. Pour cette raison, nous considérons ici le corps des
séries de Puiseux généralisées qui a été proposé dans [Mar10]. Ce corps, a un changement de
variable près, est identique au corps des séries de Dirichlet généralisées qui a été étudiée par
Hardy et Riesz [HR15]. Une série de Puiseux généralisée est une série de la forme

x =
∞∑

i=1
cλi
tλi ,

où t est un paramètre formel et (λi)i⩾1 est une suite strictement décroissante et soit finie
soit non bornée. Si nous supposons que les coefficients cλi

∈ C \ {0} sont complexes, alors
l’ensemble des séries de Puiseux généralisées est un corps algébriquement clos. Si nous supposons
que cλi

sont réels, nous obtenons un sous-corps qui est réel clos. De plus, van den Dries et
Speissegger [vdDS98] ont montré que l’ensemble de séries absolument convergentes (pour t
suffisamment grand) est un corps réel clos aussi. Ce corps est le corps principal considéré dans
cette thèse. Nous le notons par K. Cependant, on remarque qu’on a choisi K pour des raisons de
simplicité et pour rendre la présentation plus concrète. Dans les chapitres ultérieurs de la thèse,
nous montrerons que les résultats que nous obtenons pour K peuvent être transférés (par une
élimination des quantificateurs) aux autres corps réels clos non-archimédiens. Pour la brièveté,
nous omettons l’adjectif “généralisées” quand nous discutons les séries de Puiseux.

D’après la discussion ci-dessus, la définition d’un spectraèdre dans les séries de Puiseux est
la même que la définition dans les nombres réels. Autrement dit, un spectraèdre dans K est un
ensemble défini par

S := {x ∈ Kn : Q(0) + x1Q
(1) + · · · + xnQ

(n) ≽ 0} ,
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où Q(0), . . . ,Q(n) ∈ Km×m est une suite de matrices symétriques. Un spectraèdre dans les séries
de Puiseux fournit une famille des spectraèdres réels, obtenus en remplaçant le paramètre formel
t par une valeur réelle et grande :

S(t) := {x ∈ Rn : Q(0)(t) + x1Q
(1)(t) + · · · + xnQ

(n)(t) ≽ 0} .

L’élimination des quantificateurs dans les corps réels clos assure que la programmation semi-
définie dans les séries de Puiseux a les mêmes propriétés fondamentales que la programmation
semi-définie dans les nombres réels. De plus, elle implique que, pour t suffisamment grand, les
spectraèdres réels S(t) héritent les propriétés du spectraèdre non-archimédien S. Il y a plu-
sieurs motivations pour étudier ces types des programmes semi-définis. On peut obtenir ces
programmes en considérant des programmes paramétriques dans les réels ou des programmes
structurés ayant des entrées d’ordres de grandeur différents. Ils ont aussi leur propre intérêt car,
par l’analogie avec la programmation linéaire [Meg89], on présume que le cas non-archimédien
peut nous aider à comprendre la complexité du problème dans les nombres réels. En particulier,
les polyèdres sur les séries de Puiseux encodent une classe de polyèdres réels définis par des
matrices à grands coefficients. La complexité des programmes linéaires définis par ces matrices
est un cas particulier du neuvième problème de Smale [Sma98], qui demande si on peut résoudre
la programmation linéaire en temps fortement polynomial dans le modèle de machine de Tu-
ring et en temps polynomial dans le modèle BSS. En plus, les spectraèdres dans les séries de
Puiseux peuvent fournir de nouvelles classes d’exemples des spectraèdres ayant des propriétés
géométriques inattendues. Nos méthodes d’étudier les spectraèdres non-archimédiens sont basés
sur la géométrie tropicale.

Une question générale en géométrie tropicale consiste à fournir des caractérisations com-
binatoires des amibes non-archimédiennes, définies comme des images par la valuation non-
archimédienne des ensembles algébriques dans les corps non-archimédiens algébriquement clos.
C’était le sujet du travail de Bieri et Groves [BG84] qui ont généralisé les résultats précédents
obtenus par Bergman [Ber71]. Le théorème de Kapranov [EKL06] donne une caractérisation des
images des hypersurfaces en utilisant la notion d’une hypersurface tropicale. La généralisation
de ce théorème au cas des variétés algébriques est connue sous le nom de “théorème fondamental
de la géométrie tropicale”. Une démonstration constructive de ce théorème et une discussion his-
torique se trouvent dans [JMM08]. La géométrie tropicale a attiré beaucoup d’attention à cause
de ses liens avec la géométrie algébrique énumérative [Mik05]. On trouve plus d’informations
sur ces aspects de la géométrie tropicale dans [RGST05, IMS09, MS15].

L’étude des objets provenant de la géométrie algébrique réel en utilisant des outils tropicaux
a été initié par Viro [Vir89, Vir08], qui a utilisé des méthodes combinatoires pour construire des
courbes planaires avec la topologie prescrite, en relation avec le seizième problème d’Hilbert.
Ultérieurement, cette méthode a été utilisée par Itenberg et Viro pour construire un contre-
exemple à la conjecture de Ragsdale [IV96]. De plus, elle a été généralisée au cas des intersections
completes [Stu94, Bih02]. Cependant, en toute généralité, il n’y a pas d’analogue du théorème
fondamental pour les tropicalisations des variétés réelles. Nous renvoyons à [SW05, Ale13, Vin12]
pour une discussion. Les images par valuation des ensembles semi-algébriques ont été étudiées
par Alessandrini [Ale13], qui a montré un analogue réel du théorème de Bieri et Groves.

Indépendamment des travaux cités ci-dessus, la convexité et séparation dans les semi-
modules idempotents ont été étudiées par plusieurs auteurs [Zim77, Hel88, SS92, LMS01,
CGQ04, BH04, CGQS05]. Le lien entre ces deux domaines a été observé par Develin et Sturm-
fels [DS04], qui ont introduit le terme “convexité tropicale”. Develin et Yu [DY07] ont caractérisé
des polyèdres tropicaux comme des images par valuation des polyèdres dans les séries de Pui-
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seux. La géométrie des polyèdres tropicaux à été étudié dans plusieurs travaux, par exemple
[Jos05, GK07, BSS07, AGK11, AK17]. Dans une série d’articles étroitement liés à cette thèse,
Allamigeon, Benchimol, Gaubert et Joswig ont étudié la tropicalisation des polytopes définis
par des matrices génériques, développé l’algorithme du simplexe tropical et décrit l’équivalent
tropical du chemin central [ABGJ15, ABGJ14, ABGJ18]. Yu [Yu15] a tropicalisé le cône des
matrices semi-définies positives et montré que cette tropicalisation est donnée en utilisant uni-
quement des mineurs de taille 2. Akian, Gaubert et Guterman [AGG12] ont montré que le
problème de la vacuité pour les polyèdres tropicaux est équivalent au problème des jeux déter-
ministes à paiement moyen. Grigoriev et Podolskii [GP15] ont montré le même résultat pour le
problème de pré-variétés tropicales linéaires. Bodirsky et Mamino [BM16] ont étudié les liens
entre la convexité tropicale, les jeux stochastiques à paiement moyen et les problèmes de la
satisfiabilité des contraintes.

Les jeux répétés à somme nulle ont été introduits par Shapley [Sha53], qui a étudié l’existence
des stratégies optimales en temps fini et infini avec des paiements escomptés. Gillette [Gil57] a
proposé d’étudier les jeux à information parfaite et paiement moyen. Liggett et Lippman [LL69]
ont montré que ces jeux possèdent des stratégies optimales stationnaires. Le cas déterministe
de ces jeux a été étudié par Ehrenfeucht et Mycielski [EM79]. L’existence de stratégies station-
naires optimales n’est plus vraie pour les jeux à information imparfaite. Néanmoins, Bewley et
Kohlberg [BK76] ont montré que la valeur limite des jeux stochastiques à information imparfaite
est bien définie et Mertens et Neyman [MN81] ont montré que cette limite est la valeur du jeu
avec un paiement moyen. Il existe de nombreux autres travaux sur la théorie des jeux répétés à
somme nulle. Nous nous référons à [MSZ15, LS15] pour plus d’information. Lune des manières
possibles détudier ces jeux est dutiliser les propriétés de lopérateur de Shapley associé. Cette
approche a été présentée dans l’article original par Shapley [Sha53] et a ensuite été étendue à
d’autres classes de jeux [RS01, Ney03]. De plus, cette approche a été utilisée dans [AGG12] et
nous faisons la même chose dans cette thèse.

Indépendamment, des cas particuliers de jeux stochastiques à information parfaite et paie-
ment moyen ont été découverts dans la communauté informatique. Les jeux de parité ont été
introduits par Emerson et Jutla [EJ91] et Mostowski [Mos91]. Ils sont équivalents à la vérifica-
tion de modèle dans la logique du µ-calcul modal [EJS93, Jur98]. De plus, ils ont été utilisés
par Friedmann [Fri11, DH17] pour construire une borne inférieure sous-exponentielle pour la
règle de pivotage de Zadeh pour l’algorithme du simplexe (voir aussi [Fea10, FHZ14]). Les jeux
à paiement moyen déterministes ont été étudiés par Gurvich, Karzanov et Khachiyan [GKK88]
et les jeux stochastiques simples ont été introduits par Condon [Con92]. Les réductions étu-
diées dans [Jur98, ZP96, AM09] et l’analyse de [Con92] donnent les faits suivants. Première-
ment, les jeux de parité sont réductibles en temps polynomial à des jeux à paiement moyen
déterministes, qui forment un sous-ensemble de jeux à paiement moyen stochastiques. Deuxiè-
mement, les jeux à paiement moyen stochastiques sont équivalents en temps polynomial à des
jeux stochastiques simples et à des jeux à paiement escompté. Troisièmement, le problème de
décision associé (étant donné létat dans un jeu, décider si sa valeur est positive) appartient
à NP ∩ coNP (même à UP ∩ coUP). D’un autre coté, le problème de calcul de la valeur de
jeux stochastiques simples appartient à la classe de complexité CLS, qui est une sous-classe
de PPAD et PLS [DP11, EY10]. Malgré tous ces résultats, il n’existe aucun algorithme poly-
nomial connu pour ces classes de jeux. Halman [Hal07] a montré (en généralisant les résultats
de [Lud95, BSV03, BV07]) que les jeux à paiement moyen stochastiques peuvent être décrits
comme un problème de type LP1. Cela implique quils peuvent être résolus en temps fortement

1Halman considérait uniquement une sous-classe des jeux à paiement moyen stochastiques, mais chaque jeu
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sous-exponentiel en espérance, en utilisant la règle randomisée de pivotage proposée par Ma-
toušek, Sharir et Welzl [MSW96] (voir aussi [HZ15] pour des améliorations récentes). On ne sait
pas si les jeux à paiement moyen stochastiques peuvent être résolus en temps sous-exponentiel
par un algorithme déterministe (cette question est ouverte même si nous limitons l’attention
aux jeux déterministes). Par conséquent, divers auteurs ont étudié la complexité paramétrée de
ces jeux. Par exemple, Gimbert et Horn [GH08] ont montré que des jeux stochastiques simples
peuvent être résolus en temps polynomial lorsque le nombre de positions aléatoires est fixé.
Zwick et Paterson [ZP96] ont donné un algorithme pseudo-polynomial pour les jeux à paie-
ment moyen déterministes. Nous nous référons à [IJM12, CR17] pour les améliorations de ces
résultats et plus d’informations. De plus, Hansen, Miltersen et Zwick [HMZ13] ont fourni un
algorithme fortement polynomial pour les jeux à paiement escompté et taux d’escompte fixé.
Jurdziński, Paterson et Zwick [JPZ08] ont fourni un algorithme déterministe sous-exponentiel
pour les jeux de parité. Dans une découverte plus récente, Calude et al. [CJK+17] ont montré
que les jeux de parité peuvent être résolus en temps quasi-polynomial. Ce résultat a déjà fourni
de nombreux travaux de suivi [GIJ17, JL17, FJS+17, Leh18, CDF+18]. Nous renvoyons égale-
ment à [Mam17, BEGM13, AGH15, ACS14, HK66, ACTDG12, vD18, Zie98, VJ00] pour plus
d’informations sur ces jeux et leurs algorithmes et à [CJH04, DJL18, CDGO14, SWZ18, CD12]
pour les classes de jeux associées. Cependant, notons quelques articles dans ce domaine qui sont
étroitement liés à nos travaux. Boros, Elbassioni, Gurvich et Makino [BEGM15] ont utilisé une
généralisation de l’algorithme du “pompage”, initialement introduit par Gurvich, Karzanov et
Khachiyan [GKK88] dans le cas déterministe, pour montrer que les jeux à paiement moyen sto-
chastiques peuvent être résolus en temps pseudo-polynomial si le nombre de positions aléatoires
est fixé. (Nous notons que cela ne découle pas des résultats analogues obtenus pour les jeux sto-
chastiques simples cités plus haut, car la réduction des jeux stochastiques généraux à des jeux
stochastiques simples ajoute trop de positions aléatoires au jeu, voir [BEGM13] pour une discus-
sion détaillée.) Dans cette thèse, nous proposons d’utiliser l’itération sur les valeurs comme une
alternative aux algorithmes de pompage et nous analysons ses bornes de complexité. L’itération
sur les valeurs a été étudiée par Zwick et Paterson [ZP96] pour les jeux déterministes. Ibsen-
Jensen et Miltersen [IJM12] ont montré que l’itération sur les valeurs modifiée peut résoudre
des jeux stochastiques simples en temps polynomial lorsque le nombre de positions aléatoires
est fixe. Chatterjee et Ibsen-Jensen [CIJ14] ont étudié la complexité de l’itération sur les valeurs
pour les jeux à informations imparfaite. L’itération sur les valeurs pour les jeux à un joueur a
été également étudiée, par exemple dans [Put05, ACD+17]. Allamigeon, Benchimol, Gaubert
et Joswig [ABGJ14] ont utilisé la relation entre les jeux à paiement moyen déterministes et la
programmation linéaire dans les séries de Puiseux pour montrer qu’une règle de pivotage polyno-
miale et semi-algébrique pour un algorithme du simplexe fournissait un algorithme polynomial
pour les jeux à paiement moyen déterministes. Par des techniques similaires, Allamigeon, Ben-
chimol et Gaubert [ABG14] ont montré que les jeux à paiement moyen déterministes peuvent
être résolus en temps polynomial en moyenne.

C.2 Contributions

La thèse est divisée en deux parties. Dans la première partie, nous présentons des résultats struc-
turels concernant les tropicalisations des ensembles semi-algébriques. Dans la seconde partie,

de ce type peut être réduit à la forme de Halman dans un temps fortement polynomial en utilisant les résultats
de [AM09].
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nous discutons des conséquences algorithmiques de notre approche.
Dans le Chapitre 3, nous commençons par étudier les tropicalisations des ensembles semi-

algébriques généraux. Dans le cas de variétés algébriques (complexes), un résultat fondamental
de Bieri et Groves [BG84, EKL06] montre que si (K, val) est un corps valué algébriquement
clos dont le groupe de valeur est égal à R et S ⊂ (K∗)n est une variété algébrique dans le tore,
alors val(S) ⊂ Rn est une union de polyèdres. Alessandrini [Ale13] a montré un analogue de ce
théorème pour les sous-ensembles définissables de corps de Hardy des structures o-minimales à
croissance polynomiale. Son analyse implique que si (K, val) est un corps réel clos avec la valua-
tion convexe dont le groupe de valeur est égal à R et S ⊂ (K∗)n est un ensemble semi-algébrique,
alors val(S) est une union de polyèdres. Les résultats d’Alessandrini s’appliquent également aux
corps avec des groupes de valeurs contenus dans R. Dans le Chapitre 3, nous donnons une preuve
constructive de ce résultat. La preuve est basée sur l’élimination des quantificateurs de Denef
et Pas [Pas89] et s’applique aux corps avec des groupes de valeurs arbitraires (pas uniquement
les sous-groupes de R). L’élimination des quantificateurs de Denef et Pas donne également un
principe de transfert qui est utilisé plus tard pour prouver l’analogue tropical de la conjecture
de Helton et Nie pour les corps valués réel clos avec des groupes de valeurs arbitraires.

Théorème B (Theorem 3.1). Supposons que (K, val) soit un corp valué réel clos dont la
valuation val : K → Γ ∪ {−∞} est convexe et non triviale. Soit S ⊂ Kn un ensemble semi-
algébrique. Alors, l’ensemble val(S) ⊂ (Γ ∪{−∞})n est semi-linéaire et ses strates sont fermées.
Réciproquement, tout sous-ensemble semi-linéaire de (Γ ∪ {−∞})n qui a des strates fermées est
une image par valuation d’un ensemble semi-algébrique.

Étant donné un ensemble S, il est parfois possible de trouver une description simple de val(S).
Un résultat important dans cette direction est le théorème de Kapranov [EKL06, Theorem 2.1.1],
qui montre que si K est le corps des séries de Puiseux avec des coefficients complexes et
S := {x ∈ (K∗)n : P (x) = 0} est une hypersurface donnée par un polynôme P ∈ K[X1, . . . , Xn],
alors val(S) est entièrement décrit par la tropicalisation formelle du polynôme P . Cette affir-
mation n’est pas vraie pour les ensembles semi-algébriques réels, même s’ils sont décrits par
une (in)égalité polynomiale. Cependant, grâce au théorème mentionné ci-dessus, nous pouvons
donner une description explicite des images par valuation des ensembles semi-algébriques défi-
nis par des systèmes d’inégalités, sous l’hypothèse qu’une certaine condition de régularité soit
satisfaite.

Théorème C (Theorem 3.4). Soit K le corps des séries de Puiseux avec des coefficients réels
et soit S ⊂ Kn

>0 un ensemble semi-algébrique défini par

S := {x ∈ Kn
>0 : P1(x) □1 0, . . . ,Pm(x) □m 0} ,

où Pi ∈ K[X1, . . . , Xn] sont des polynômes non-nuls et □ ∈ {⩾, >}m. Soit Pi := trop(Pi) pour
tout i et supposons que C⩾(P1, . . . , Pm) ait un support régulier. Alors

val(S) = {x ∈ Rn : ∀i, P+
i (x) ⩾ P−

i (x)} .

Le théorème ci-dessus est une généralisation d’un résultat de Develin et Yu [DY07] qui ont
montré le Théorème C dans le cas où les polynômes Pi sont affines. De plus, nous notons que
la condition “C⩾(P1, . . . , Pm) a un support régulier” est générique – elle est satisfaite si les
coefficients des polynômes tropicaux P1, . . . , Pm se trouvent en dehors d’un ensemble de mesure
nulle.
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Ensuite, nous analysons les tropicalisations d’ensembles semi-algébriques convexes définis
dans les séries de Puiseux. Dans le Chapitre 4, nous introduisons la notion des spectraèdres
tropicaux – des ensembles définis comme des images par valuation des spectraèdres dans les séries
de Puiseux. Nous montrons qu’une classe de spectraèdres tropicaux définis par les matrices de
Metzler peut être décrite explicitement à l’aide d’inégalités polynomiales de degré deux dans le
demi-corps tropical. Puis, nous utilisons cette classe pour décrire explicitement les spectraèdres
tropicaux génériques. Il se trouve que les mineurs de taille 2 × 2 suffisent pour décrire un
spectraèdre tropical générique. Ceci étend le résultat de Yu [Yu15] qui a tropicalisé le cône
semi-défini positif.

Théorème D (Theorem 4.28). Supposons que Q(0), . . . ,Q(n) ∈ Km×m soient des matrices
symétriques. Soit Q(x) := Q(0) +x1Q

(1) + · · ·+xnQ
(n) et notons S := {x ∈ Kn

⩾0 : Q(x) ≽ 0} le
spectraèdre associé. De plus, supposons que les matrices val(Q(0)), . . . , val(Q(n)) ∈ Tm×m soient
génériques. Alors, l’ensemble val(S) est décrit par des inégalités polynomiales tropicales données
par une variante tropicale des mineurs du faisceau affine Q(x) de taille 2 × 2.

Dans le Chapitre 5, nous étudions les ensembles semi-algébriques convexes généraux et nous
donnons de multiples caractérisations équivalentes de leurs images par valuation. En particulier,
nous montrons que l’analogue tropical de la conjecture de Helton et Nie est vrai.

Théorème E (Theorem 5.5). Soit S ⊂ Tn. Alors les conditions suivantes sont équivalentes :
(a) S est une tropicalisation d’un ensemble semi-algébrique convexe ;
(b) S est tropicalement convexe et a des strates semi-linéaires fermées ;
(c) S est une projection dun spectraèdre tropical de Metzler ;
(d) il existe un spectraèdre projeté S ⊂ Kn

⩾0 tel que val(S) = S.

Ce théorème est le premier endroit où la connexion avec les jeux à paiement moyen sto-
chastiques joue un rôle. L’un des ingrédients de la démonstration est un lemme de Zwick et
Paterson [ZP96] qui était à l’origine utilisé pour montrer une reduction des jeux à paiement
escompté à des jeux stochastiques simples. En utilisant le principe de transfert donné par l’élimi-
nation des quantificateurs de Denef et Pas, on peut ensuite montrer que la conjecture classique
de Helton et Nie est vraie “à valuation près”.

Théorème F (Theorem 5.2). Soit K un corps valué réel clos dont la valuation val : K →
Γ ∪{−∞} est convexe et non triviale. Supposons que S ⊂ Kn soit un ensemble semi-algébrique
convexe. Alors, il existe un spectraèdre projeté S′ ⊂ Kn tel que val(S) = val(S′).

Dans la seconde partie de la thèse, nous étudions la relation entre les tropicalisations d’en-
sembles convexes et les jeux à paiement moyen stochastiques. Dans le Chapitre 6, nous présen-
tons cette classe de jeux et l’analysons à l’aide des opérateurs de Shapley [Sha53], du théorème
de Kohlberg [Koh80] et de la propriété de Collatz et Wielandt [Nus86]. Notre présentation est
basée sur [AGG12]. Nous donnons un nouveau résultat dans ce domaine – nous généralisons la
caractérisation tropicale des états gagnants de jeux déterministes fourni dans [AGG12] au cas
des jeux stochastiques. En combinant ce résultat avec les résultats des chapitres précédents, nous
obtenons la correspondance suivante entre la tropicalisation des cônes et les jeux à paiement
moyen stochastiques.

Théorème G (Theorem 6.30). Soit S ⊂ Tn. Alors, S est une tropicalisation d’un cône semi-
algébrique convexe fermé si et seulement si il existe un jeu à paiement moyen stochastique tel
que son opérateur de Shapley F : Tn → Tn satisfait S = {x ∈ Tn : x ⩽ F (x)}. De plus, le
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support de S est donné par le plus grand dominion gagnant de ce jeu. En particulier, S n’est
pas trivial si et seulement si le jeu a au moins un état gagnant.

En conséquence du théorème ci-dessus, le problème de vacuité d’un cône semi-algébrique
dans les séries de Puiseux peut, en théorie, être réduit à la résolution d’un jeu à paiement
moyen. Néanmoins, même si nos démonstrations sont constructives, il ne pas facile de trouver
un jeu adapté en général. En effet, comme indiqué précédemment, bien que les jeux à paie-
ment moyen stochastiques appartiennent à la classe NP ∩ coNP, il existe des problèmes d’une
complexité inconnue qui peuvent être réduits aux problèmes de vacuité semi-définie conique.
Cependant, les systèmes polynomiaux tropicaux mentionnés dans le Théorème D peuvent être
convertis en opérateurs de Shapley. Cela implique que les problèmes de vacuité semi-définie
non-archimédienne pour les cônes génériques dans les séries de Puiseux peuvent être résolus
par une réduction à des jeux à paiement moyen. De plus, notre approche peut résoudre certains
problèmes de vacuité semi-définie qui ne satisfont pas la condition de généricité. Ceci est montré
dans le Chapitre 7 et résumé ci-dessous.

Théorème H (Theorem 7.6). Supposons que Q(1), . . . ,Q(n) ∈ Km×m soient des matrices sy-
métriques. Soit Q(x) := x1Q

(1) + · · · + xnQ
(n) et S := {x ∈ Kn

⩾0 : Q(x) ≽ 0}. De plus,
supposons que les matrices Q(k) aient des valuations rationnelles, val(Q(1)), . . . , val(Q(k)) ∈
(Q ∪ {−∞})m×m. Alors, étant donné seulement les valuations signées sval(Q(k)) de ces ma-
trices, nous pouvons construire (en temps polynomial) un jeu à paiement moyen stochastique
qui a les propriétés suivantes. Si la valeur maximale du jeu est strictement positive, alors S
n’est pas trivial. Si la valeur maximale est strictement négative, alors S est trivial. De plus,
si la valeur maximale est égale à 0 et que les matrices val(Q(1)), . . . , val(Q(n)) sont génériques,
alors S n’est pas trivial. Réciproquement, la résolution des jeux à paiement moyens stochastiques
peut être réduite au problème de la vacuité des cônes spectraèdrales S ⊂ Kn

⩾0 décrits ci-dessus.

En plus, nous montrons que le problème de la vacuité dun spectraèdre tropical de Metz-
ler (défini uniquement par les inégalités polynomiales tropicales, sans référence aux séries de
Puiseux) est équivalent à la résolution de jeux à paiement moyen stochastiques.

Théorème I (Theorem 7.4). Le problème de la vacuité dun spectraèdre tropical de Metzler
est équivalent en temps polynomial au problème de la résolution de jeux à paiement moyen
stochastiques.

Dans le dernier chapitre de la thèse, nous étudions l’itération sur les valeurs, qui est un
algorithme simple qui peut être utilisé pour résoudre des jeux à paiement moyens stochastiques.
Cet algorithme est basé sur le fait que si F : Tn → Tn est l’opérateur de Shapley d’un jeu, alors
la limite limN→∞ FN (0)/N (où FN = F ◦ · · · ◦F ) existe et est égale au vecteur de valeur de ce
jeu. L’algorithme d’itération sur les valeurs calcule les valeurs successives de FN (0) et en déduit
les propriétés de la limite. Comme indiqué ci-dessus, le problème de la vacuité des spectraèdres
tropicaux correspond à la détermination du signe de la valeur. L’observation suivante fournit
un nombre de conditionnement pour ce problème.

Théorème J (Theorem 8.25). Soit f : Rn → Rn une fonction monotone et additivement ho-
mogène. De plus, supposons que l’équation f(u) = η + u ait une solution (η, u) ∈ R × Rn.
Alors, nous avons limN→∞ fN (0)/N = η(1, 1, . . . , 1). De plus, supposons que η ≠ 0 et notons
R := inf{∥u∥H ∈ Rn : f(u) = η + u}, où ∥ · ∥H est la semi-norme d’Hilbert. Alors, pour tout

N ⩾ ⌈1 + R

|η|
⌉



224 Chapitre C. Résumé en français

les entrées de fN (0) ont le même signe et ce signe est identique au signe de η.

Les hypothèses de ce théorème sont satisfaites, par exemple, si f est l’opérateur de Shapley
d’un jeu à paiement moyen stochastique à valeur constante. Dans ce cas, η est la valeur du
jeu. Cependant, il existe d’autres classes de jeux pour lesquels ce résultat peut être intéressant,
telles que les jeux d’entropie de [ACD+16, AGGCG17]. Le nombre de conditionnement possède
une interprétation géométrique.

Proposition K (Proposition 8.16). Supposons que F : Tn → Tn soit un opérateur de Shapley
associé à un cône spectraèdrale tropical de Metzler S ⊂ Tn. De plus, supposons que F satisfasse
les conditions du Théorème J et que η > 0. Alors, il existe un cône spectraèdrale tropical de
Metzler S̃ ⊂ T2n tel que S est la projection de S̃ et que η/2 est le rayon d’une boule la plus
grosse (dans la semi-norme d’Hilbert) inclus dans S̃. De plus, si u ∈ Rn est tel que F (u) = η+u,
alors u est la projection du centre d’une telle boule.

De cette manière, la quantité |η| mesure la largeur du cône spectraèdrale tropical de Metzler,
tandis que la quantité R mesure la distance de ce cône à l’origine. Intuitivement, cela devrait
être comparé aux quantités qui déterminent la complexité de la méthode d’ellipsoïde [GLS93].
La complexité de cette méthode dépend de façon polynomiale de log(R/r), où R est le rayon
dune boule contenant un corps convexe donné et r est le rayon d’une boule incluse dans ce corps.
Ainsi, R mesure la distance qui sépare le corps de l’origine, tandis que r mesure sa taille. Le fait
que l’itération sur les valeurs dépende de manière polynomiale de R/|η| au lieu de log(R/|η|) est
intuitivement justifié par le fait que la valuation applique le logarithme aux données initiales.
L’analogie avec l’ellipsoïde est renforcée par le fait que l’itération sur des valeurs est basée sur un
oracle – pour utiliser cette méthode, il suffit d’avoir un oracle qui évalue f approximativement.

Nous donnons également une autre application du nombre de conditionnement, reliant les
problèmes de vacuité archimédiens et non-archimédiens. Comme discuté précédemment, un
spectraèdre S ⊂ Kn

⩾0 dans les séries de Puiseux peut être vu comme une famille de spectraèdres
réels. Par un argument d’o-minimalité, il existe t0 > 0 tel que pour tout t > t0 les problèmes
de vacuité pour S et S(t) coïncident (c’est-à-dire, S(t) est non vide si et seulement si S est
non vide). Cette correspondance peut potentiellement conduire à un algorithme de type homo-
topique pour décider de la vacuité de certains spectraèdres. Pour créer un tel algorithme, il est
souhaitable d’avoir des bornes sur la quantité t0. Le théorème suivant montre que t0 n’est pas
grand si le jeu à paiement moyen stochastique associé est bien conditionné.

Théorème L (Theorem 8.4). Supposons que Q(1), . . . , Q(n) ∈ Tm×m
± soient les matrices symé-

triques tropicales de Metzler qui créent une inégalité matricielle linéaire tropicale bien formée.
Notons η ∈ R la valeur maximale du jeu associé. Soit Q(1), . . . ,Q(n) ∈ Km×m un soulèvement
monomial de Q(1), . . . , Q(n) défini par Q

(k)
ij := δijt

|Q(k)
ij |, où δij := 1 si i = j et δij := −1 sinon.

Alors, pour tout
t > (2(m− 1)n)1/(2η)

le cône spectraèdrale réel S(t) := {x ∈ Rn
⩾0 : x1Q

(1)(t) + · · · + xnQ
(n)(t)} est non triviale si et

seulement si le cône spectraèdrale non-archimédien S := {x ∈ Kn
⩾0 : x1Q

(1) + · · · + xnQ
(n)} est

non triviale.

La contribution principale du Chapitre 8 consiste à donner des bornes explicites pour le
nombre de conditionnement R/|η| dans le cas où f est un opérateur de Shapley d’un jeu à
paiement moyen stochastique. Ceci est basé sur le théorème suivant qui estime la taille en bits
de la mesure invariante d’une chaîne de Markov finie.
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Théorème M (Theorem 8.44). Supposons que P ∈ [0, 1]n×n soit une matrice stochastique
irréductible avec des entrées rationnelles et notons π ∈ ]0, 1]n la distribution stationnaire de
P . Soit M ∈ N∗ le dénominateur commun de toutes les entrées de P . Alors, le plus petit
dénominateur commun des entrées de π n’est pas supérieur à nMmin{nr,n−1}, où nr ⩽ n est
le nombre de lignes de P qui ne sont pas déterministes (c’est-à-dire qui ont une entrée dans
l’intervalle ouvert ]0, 1[). De plus, la borne nMmin{nr,n−1} est optimale.

Des bornes similaires ont déjà été montrées dans la littérature concernant les jeux à paiement
moyen stochastiques [BEGM15, AGH18, Con92, ACS14]. Cependant, les démonstrations dans
ces travaux sont basées sur l’inégalité de Hadamard qui conduit à des résultats sous-optimaux.
Pour obtenir la borne optimale, nous remplaçons l’inégalité de Hadamard par la formule com-
binatoire de Freidlin et Wentzell [FW12]. Comme corollaire, nous estimons le nombre maximal
ditérations nécessaires pour résoudre un jeu à paiement moyen stochastique. Cela donne un
résultat de complexité paramétrée pour cette classe de jeux.

Théorème N (Theorem 8.58 et Theorem 8.68). L’algorithme d’itération sur les valeurs ré-
sout les jeux à valeur constante en temps pseudo-polynomial et mémoire polynomiale lorsque le
nombre d’actions aléatoires est fixé. De plus, pour les jeux généraux (avec une valeur arbitraire),
une modification de l’itération sur les valeurs peut trouver la valeur maximale (ou minimale)
du jeu, ainsi que l’ensemble des états qui l’atteignent, en temps pseudo-polynomial et mémoire
polynomiale lorsque le nombre d’actions aléatoires est fixé.

Nous notons que la seconde partie du théorème utilise la caractérisation des dominions ga-
gnants établis dans le Chapitre 6. On connait seulement deux autres algorithmes qui atteignent
la complexité donnée dans le Théorème N : l’algorithme de pompage étudié dans [BEGM15]
et une variante de l’algorithme d’ellipsoïde donnée dans [BEGM17]. Cependant, l’itération sur
les valeurs est plus simple et nos bornes de complexité sont meilleures que celles obtenues pour
les algorithmes de pompage et d’ellipsoïde. Si on spécifie nos bornes pour le cas des spectra-
èdres tropicaux de Metzler, nous obtenons des bornes qui dépendent de la densité des matrices
définissant ce spectraèdre tropical. Ces bornes sont données dans la Section 8.5, où nous intro-
duisons également une classe explicite de spectraèdres tropicaux qui fournit des jeux à valeur
constante. Enfin, nous expérimentons notre approche à la résolution de programmes semi-définis
non-archimédiens aléatoires de grande taille sur cette classe d’entrées.
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Résumé : La programmation semi-définie est un outil fondamental
d’optimisation convexe et polynomiale. Elle revient à optimiser une
fonction linéaire sur un spectraèdre (un ensemble défini par des
inégalités matricielles linéaires). En particulier, la programmation
semi-définie est une généralisation de la programmation linéaire.
Nous étudions l’analogue non-archimédien de la programmation
semi-définie, en remplaçant le corps des nombres réels par le
corps des séries de Puiseux. Notre approche est fondée sur des
méthodes issues de la géométrie tropicale et, en particulier, sur
l’étude de la tropicalisation des spectraèdres.
En première partie de la thèse, nous analysons les images par la
valuation des ensembles semi-algébriques généraux définis dans
le corps des séries de Puiseux. Nous montrons que ces images
ont une structure polyédrale, ce qui fournit un analogue réel du
théorème de Bieri et Groves. Ensuite, nous introduisons la notion
de spectraèdres tropicaux et nous montrons que, sous une hy-
pothèse de généricité, ces objets sont décrits par des systèmes
d’inégalités polynomiales de degré 2 sur le semi-corps tropical.
Cela généralise un résultat de Yu sur la tropicalisation du cône des
matrices positives.
Une question importante relative à la programmation semi-définie
sur les réels consiste à caractériser des projections de spec-
traèdres. Dans ce cadre, Helton et Nie ont conjecturé que tout en-
semble semi-algébrique convexe est la projection d’un spectraèdre.
La conjecture a été réfutée par Scheiderer. Néanmoins, nous mon-
trons qu’elle est vraie “à valuation près”: dans le corps réel clos
des séries de Puiseux, les ensembles semi-algébriques convexes
et les spectraèdres projetés ont exactement les mêmes images par

la valuation non-archimédienne.
En seconde partie de la thèse, nous étudions des questions algo-
rithmiques liées à la programmation semi-définie. Le problème al-
gorithmique de base consiste à décider si un spectraèdre est vide.
On ne sait pas si ce problème appartient à NP dans le modèle de la
machine de Turing, et les algorithmes fondés sur la décomposition
cylindrique algébrique ou la méthode de points critiques consti-
tuent l’état de l’art dans ce domaine. Nous montrons que, dans
le cadre non-archimédien, les spectraèdres tropicaux génériques
sont décrits par des opérateurs de Shapley associés aux jeux à
paiement moyen stochastiques. Cela donne une méthode pour
résoudre des problèmes de réalisabilité en programmation semi-
définie non-archimédienne en utilisant les algorithmes combina-
toires conçus pour les jeux stochastiques.
Dans les chapitres finaux de la thèse, nous établissons des
bornes de complexité pour l’algorithme d’itération sur les valeurs
qui exploitent la correspondance entre les jeux stochastiques et
la convexité tropicale. Nous montrons que le nombre d’itérations
est contrôlé par un nombre de conditionnement relié au diamètre
intérieur du spectraèdre tropical associé. Nous fournissons des
bornes supérieures générales sur le nombre de conditionnement.
Pour cela, nous établissons des bornes optimales sur la taille
en bits des mesures invariantes de chaı̂nes de Markov. Comme
corollaire, notre estimation montre que l’itération sur la valeur
résout les jeux ergodiques à paiement moyen en temps pseudo-
polynomial si le nombre de positions aléatoires est fixé. Enfin,
nous expérimentons notre approche à la résolution de programmes
semi-définis non-archimédiens aléatoires de grande taille.
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Abstract: Semidefinite programming (SDP) is a fundamental tool
in convex and polynomial optimization. It consists in minimizing
the linear functions over the spectrahedra (sets defined by linear
matrix inequalities). In particular, SDP is a generalization of linear
programming.
The purpose of this thesis is to study the nonarchimedean analogue
of SDP, replacing the field of real numbers by the field of Puiseux
series. Our methods rely on tropical geometry and, in particular, on
the study of tropicalization of spectrahedra.
In the first part of the thesis, we analyze the images by valuation
of general semialgebraic sets defined over the Puiseux series. We
show that these images have a polyhedral structure, giving the real
analogue of the Bieri–Groves theorem. Subsequently, we introduce
the notion of tropical spectrahedra and show that, under genericity
conditions, these objects can be described explicitly by systems of
polynomial inequalities of degree 2 in the tropical semifield. This
generalizes the result of Yu on the tropicalization of the SDP cone.
One of the most important questions about real SDPs is to charac-
terize the sets that arise as projections of spectrahedra. In this con-
text, Helton and Nie conjectured that every semialgebraic convex
set is a projected spectrahedron. This conjecture was disproved
by Scheiderer. However, we show that the conjecture is true “up
to taking the valuation”: over a real closed nonarchimedean field
of Puiseux series, the convex semialgebraic sets and the projec-
tions of spectrahedra have precisely the same images by the nonar-

chimedean valuation.
In the second part of the thesis, we study the algorithmic questions
related to SDP. The basic computational problem associated with
SDP over real numbers is to decide whether a spectrahedron is
nonempty. It is unknown whether this problem belongs to NP in
the Turing machine model, and the state-of-the-art algorithms that
certify the (in)feasibility of spectrahedra are based on cylindrical
decomposition or the critical points method. We show that, in the
nonarchimedean setting, generic tropical spectrahedra can be de-
scribed by Shapley operators associated with stochastic mean pay-
off games. This provides a tool to solve nonarchimedean semidef-
inite feasibility problems using combinatorial algorithms designed
for stochastic games.
In the final chapters of the thesis, we provide new complexity
bounds for the value iteration algorithm, exploiting the correspon-
dence between stochastic games and tropical convexity. We show
that the number of iterations needed to solve a game is controlled
by a condition number, which is related to the inner radius of the as-
sociated tropical spectrahedron. We provide general upper bounds
on the condition number. To this end, we establish optimal bounds
on the bit-length of stationary distributions of Markov chains. As a
corollary, our estimates show that value iteration can solve ergodic
mean payoff games in pseudopolynomial time, provided that the
number of random positions of the game is fixed. Finally, we apply
our approach to large scale random nonarchimedean SDPs.
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