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Professeur, Télécom ParisTech Co-directeur de th �ese

Jérémie Jakubowicz
Chief Data Of�cer, Vente-privee Invité
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Chapter 1

Introduction

1.1 Theoretical context : Stochastic Approximation

In the �elds of machine learning, statistics or signal processing, many methods rely on an underlying
optimization algorithm. In modern applications of data science, it is often not possible to run these
algorithms on a single computer. Indeed, when a large amount of data has to be processed, or when
streams of data arrive online, either classical algorithms need to be simpli�ed or several computers have
to be used. These modi�cations of classical algorithms can often be formalized by the introduction
of randomness in the iterations. To see this, �rst consider the case of big data problems. Since each
iteration of classical algorithms would process the whole dataset, simpli�ed versions of these algorithms
will rather process a small randomly chosen amount of data at each iteration. Then, when this task is
tackled by a connected network of computing agents, there must be communications inside the network
to solve the problem. These communications are often required to happen randomly in the network
if it is large. Moreover, in practical settings, the agents compute and communicate only at random
instants. Finally, online learning problems need a full knowledge of the distribution of the data to be
solved completely. Since streams of data arrive online, the distribution of the data is revealed across
time to the user through random realizations. In other words, solving online learning problems requires
to be able to work in noisy environments. The algorithms used in the contexts mentioned above can be
formalized as optimization algorithms for which the function to minimize is unknown but revealed across
the iterations. The literature of stochastic optimization, which studies these algorithms and which this
thesis belongs, lies at the intersection of the mathematical optimization and the literature of stochastic
approximation. Stochastic optimization algorithms �nd numerous applications in signal processing and
machine learning [34]. Since the seminal work of Robbins and Monro [99] in 1951, stochastic optimization
algorithms are analyzed through the prism of the stochastic approximation literature. We start by brie�y
recalling the goal of stochastic approximation algorithms.

1.1.1 Robbins-Monro algorithm

The stochastic approximation literature studies algorithms that take the form

xn+1 = xn +  n+1 h(� n+1 ; xn ) (1.1)

wherexn are random vectors valued in some Euclidean spaceX, (� n ) is a sequence of random variables
(r.v) valued in a measure space� , ( n )n is a sequence of positive step sizes andh : � � X ! X is
measurable. It is often assumed that the sequence(� n ) is independent and identically distributed (i.i.d).

7



The aim of the algorithm is to �nd a zero of the expectation functionH(x) = E� 1 (h(� 1; x)) assumed
to exist, i.e an elementx 2 X such thatH(x) = 0 . Denote asZ(H) the set of zeros ofH. Under
some assumptions onh and the step sizes( n ), it is known that(xn ) converges toZ(H). The strength
of stochastic approximation algorithm (1.1) is to be able to �nd a zero ofH without evaluating the
expectationH(x). Indeed, in many applications, the computation ofH is intractable. There is a Law of
Large Number e�ect that allows to smooth the randomness. A widely studied example of Robbins-Monro
algorithm (1.1) is the stochastic gradient algorithm.

Example 1. The stochastic gradient algorithm aims at �nding a minimizer of a di�erentiable function
F : X ! R. The functionF is itself written as an expectation with respect to (w.r.t.) some r.v�

F(x) = E� (f (�; x )) ; (1.2)

wheref (�; �) is a di�erentiable. The stochastic gradient algorithm update is written

xn+1 = xn �  n+1 r f (� n+1 ; xn ) (1.3)

where the gradientr f is taken w.r.t. the second variable (x), (� n ) is a sequence of i.i.d copies of� and
( n ) is a sequence of positive step sizes. Algorithm (1.3) can be cast as an instance of (1.1) by setting
h � r f . If f (s; �) is convex, the following interchange property holdsH(x) = E� (r f (�; x )) = r F(x)
for everyx 2 X. SinceF is convex,Z (H) = arg min F. Under mild assumptions, the sequence(xn )
converges to an element inarg minF.

Two regimes that require di�erent tools can be considered to analyze stochastic approximation al-
gorithms : the case where n ! n! + 1 0 and the case where n �  > 0. Typically, in the so-called
decreasing step sizes case (�rst case), the sequence(xn ) of iterates converges almost surely (a.s.) to a
zero ofH. In the constant step size case (second case), the iterates quickly reach a small neighborhood
of the set of solutionsZ(H) in a burn-in phase, and then �uctuate around the set of zeros. The main
advantage of the decreasing step sizes case is to exhibit the a.s. convergence of the iterates. Although
the constant step size case lacks the a.s convergence in general, the use of a constant step size is often
more suitable in online learning settings.

A standard method to study evolution equations like (1.1) is the Ordinary Di�erential Equation
(ODE) method, which was introduced in the 70's by Ljung [79] and extensively studied by Kushner and
coworkers (seee.g. the book [73]). This method allows to study the dynamical behavior of stochastic
approximation algorithms and to prove their convergence. Assume thatH is a Lipschitz continuous
function overX and consider the unique di�erentiable functionx : R+ ! X such thatx0(t) = H(x(t))
(wherex0 denotes the derivative ofx) starting at some prescribed valuea 2 X : x(0) = a. The ODE
method relies on relating the iteratesxn and the functionx. More precisely,(xn ) is seen as a noisy Euler
discretization of the functionx.

1.1.2 A general framework

In this thesis, we develop a more general framework for stochastic approximation because the frame-
work (1.1) fails to cover some important applications, see Sec.1.2. Consider the following evolution
equation

xn+1 = xn + h  (� n+1 ; xn ) (1.4)

where the step size > 0 is taken constant,(� n ) is i.i.d with distribution� and h is a measurable
function indexed by . Let us assume in most generality that

E� (h (�; x )) !  ! 0 H(x) (1.5)
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whereH : X ! X is some function. IfH is a Lipschitz continuous function and the convergence (1.5)
holds uniformly forx in the compact sets ofX, then the ODE method can be applied and we are let
back to the situation of the previous paragraph. However, this kind of assumption is too restrictive in
many contexts, especially those mentioned in Sec.1.2 below. We shall focus on the case where the
convergence does not hold for everyx, is not uniform over compact sets, and above all,H is a set
valued mappinginstead of being single valued. We are therefore led to study more general stochastic
approximation algorithms.

1.2 Motivations

1.2.1 Stochastic Proximal Point algorithm

A �rst motivation for studying the general framework (1.4) comes from non smooth stochastic optimiza-
tion. Consider a convex functionG : X ! (�1 ; + 1 ] which is lower semicontinuous (lsc) and proper
(we shall writeG 2 � 0(X)). Denote@G(x) the set of all subgradients ofG at x. The subdi�erential
@G : X � X is a set valued function. Considerx 2 X. The proximity operator [87] of G at x is the
minimizer of the (strongly convex) objective function:

prox G(x) = arg min
y2 X

G(y) +
1

2
kx � yk2; (1.6)

where > 0, and the Moreau envelope [130] of G at x is the associated minimum value

G (x) = min
y2 X

G(y) +
1

2
kx � yk2: (1.7)

Moreover, the Moreau envelope is di�erentiable and its gradient is a1= -Lipschitz continuous function
that satis�es (see [12])

prox G = I �  r G (1.8)

whereI is the identity ofX. The goal of the proximal point algorithm [82] is to �nd a minimizer ofG
(equivalently a pointx such that0 2 @G(x), called hereafter a zero of@G) by iterating

xn+1 = prox  G(xn ); (1.9)

where > 0. It is known that the sequence(xn ) converges to a minimizer ofG. The proximal point
algorithm enjoys good stability properties, among which exhibiting convergence for any > 0. The main
drawback of this algorithm is that each iterate is implicitly de�ned,i.e one has to solve an optimization
problem to �nd xn+1 . This operation can often be costly. Although the proximity operator of some
classical functions has a closed form1, the proximal point algorithm is not practical in many cases.

A way to simplify the iterations is to representG(x) = E� (g(�; x )) whereg(�; �) is a convex function
and to apply the constant step stochastic proximal point algorithm [22, 121]:

xn+1 = prox g (� n +1 ;�)(xn ); (1.10)

where > 0 and(� n ) are i.i.d copies of� . This algorithm can be seen as a generalization of the splitting
algorithm of Passty [94] to in�nitely many functions. Many loss functions used in machine learning can be

1See the websitewww.proximity-operator.net

9



written as expectationsG(x) = E� (g(�; x )) for whichproxg (�; �) is easily computable whereas neitherG
nor prox G can be evaluated. A typical situation is the case where these loss functions boil down to �nite
sumsG(x) = N � 1 P N

i =1 g(i; x ) andproxg (i; �) can be easily computed butprox G is intractable. This is
e.g. the case for the classi�cation problems like Support Vector Machine (SVM) or logistic regression.
Another example comes from distributed optimization in the context where a network of computing
agents is required to minimize a "global" cost functionG = N � 1 P

i g(i; �), under the restriction that
the "local" cost functiong(i; �) is only known by the agenti . Hence, the network can only perform local
computations involving each agenti and their respective cost functiong(i; �) separately. In all these
situations, the proposed algorithm is an instance of (1.10) where� is a uniform r.v. overf 1; : : : ; Ng.

Note that (1.10) can be cast in the form (1.4) by settingh (s; x) = �r g (s; x), whereg (s; �) is
the Moreau envelope ofg(s; �). In this case,H = @G is set valued.

1.2.2 Stochastic Proximal Gradient algorithm

In optimization algorithms, proximity operators are often used to handle regularizations or constraints.
In these cases, the problem to be solved is

min
x2 X

F(x) + G(x);

whereG 2 � 0(X) is a convex function andF is assumed di�erentiable. The proximal gradient algorithm
generalizes the proximal point algorithm (1.9) and is written

xn+1 = prox  G(xn �  r F(xn )) ; (1.11)

where > 0. If r F is Lipschitz continuous (we shall say thatF is smooth), ifF is convex and if
is enough small, then it is known that(xn ) converges to a minimizer ofF + G. A �rst instance of
this algorithm is the projected gradient algorithm to solveminC F. This algorithm can be seen as an
application of (1.11) by setting G = �C, where�C the convex indicator function of the convex setC.
In this case,proxG = � C is the projector ontoC. Each iteration of this algorithm requires to evaluate
the projection� C, which is sometimes intractable. However, the setC can often be represented as an
intersection of simpler convex setsCs, i.e C =

T
s2 � Cs where projections ontoCs can be easily computed.

Another instance of the proximal gradient algorithm comes from structured problem in whichG is a
regularization term. The functionG is represented asG =

P
i g(i; �), whereprox G is hard to compute

but proxg (i; �) can be evaluated. This ise.g the case for the overlapping group lasso :G(x) =
P

i kxSi k
whereX = RN , the Si are subsets off 1; : : : ; Ng and xSi is the restriction ofx to Si . This is also the
case for the total variation regularization :G(x) =

P
f i;j g2E kx(i ) � x(j )k whereG = ( V; E) is a graph,

with V the set of nodes andE the set of edges, and wherex 2 RV . In all these examples, the proximal
gradient algorithm cannot be implemented because it involves the computation ofprox G. However, in
all these examplesG can be seen as an expectation w.r.t. some r.v.� , G(x) = E� (g(�; x )) (where the
expectation sometimes boils down to a �nite sum). In general, the stochastic proximal gradient algorithm
aims at minimizingF(x) + G(x) = E� (f (�; x )) + E� (g(�; x )) by iterating [24, 2, 3]

xn+1 = prox g (� n +1 ;�)(xn �  r f (� n+1 ; xn )) : (1.12)

This algorithm can be cast in the form (1.4) by setting

h (s; x) =
1


(proxg (s;�)(x �  r f (s; x)) � x):

Using (1.8), h (s; x) = �r f (s; x) � r g (s; x �  r f (s; x)): Moreover,H = r F + @G in this case.
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1.2.3 Stochastic Douglas Rachford algorithm

When minimizing a sum of two convex functionsF+ G, the Douglas Rachford algorithm [78] enjoys more
numerical stability than the proximal gradient algorithm at the cost of implementing a proximity operator
for F instead of a gradient. Moreover, any positive constant step size can be used in Douglas Rachford
iterations to converge to a minimizer. In order to design an algorithm that enjoys the good features of
Douglas Rachford algorithm without the iteration complexity, we are interested in the stochastic Douglas
Rachford algorithm with constant step size, in which the proximity operator ofF (resp. G) is randomized.
To this end,F andGare represented as expectations, as in Sec.1.2.2and the resulting stochastic Douglas
Rachford algorithm is also covered by our general framework (1.4).

1.2.4 Monotone operators and Stochastic Forward Backward algorithm

Maximal monotone operators are set valued functions that generalize the subdi�erentials [12, 36]. Many
optimization problems can be reformulated as �nding zeros of a monotone operator (which is not neces-
sarily a subdi�erential). In this respect, the Forward Backward (FB) algorithm is a further generalization
of the proximal gradient algorithm. The goal of this algorithm is to �nd a zero of a sum of two maximal
monotone operators.

In this thesis, we refer to an operator as a set valued functionA : X � X. The inverse operatorA� 1 is
de�ned by the relationy 2 A(x) , x 2 A� 1(y). An operatorA is said monotone ifhy � y0; x � x0i � 0
as soon asy 2 A(x) and y0 2 A(x0). Under a maximality condition [85] of A, the resolvent ofA,
J = ( I +  A)� 1 is a single valued function. In this case,A is called a maximal monotone operator
andJ is a contraction de�ned onX. Maximal monotone operators generalize subdi�erentials of convex
functions and resolvents generalize proximity operators. Indeed,A = @Gis a maximal monotone operator
if G 2 � 0(X), and its resolvent isprox G. For every > 0, the Yosida approximation ofA is de�ned by
A = 1

 (I � J ). Using (1.8), it is immediately seen thatA = r G if A = @G. The set of zeros ofA
is de�ned to beZ(A) = A� 1(0). Many problems in optimization can be reformulated as �nding a zero
of a maximal monotone operator. For example, in the subdi�erential case,Z (@G) = arg min G. Given
another maximal monotone operator which is single valuedB, the Forward Backward algorithm aims at
�nding an element inZ (A + B) by iterating

xn+1 = J (xn �  B(x)): (1.13)

If A and B are subdi�erentials, the Forward Backward algorithm boils down to the proximal gradient
algorithm. Under a so called cocoercivity assumption ofB, this algorithm is known to converge to a zero
of A + B if  is small enough.

Beyond minimization problems, saddle points problems arise naturally in optimization and machine
learning (seee.g [83]). We the saddle points problems are convex-concave, they can be reformulated as
�nding a zero of a sum of two monotone operatorsA + B [101]. In optimization, primal dual algorithms
like Douglas-Rachford [78], ADMM [62], Chambolle Pock [42] or Vu Condat [51, 124] can be seen as
(skillful) instances of the FB algorithm. This FB algorithm is applied to the convex concave saddle point
problem of �nding so called primal dual optimal points of the initial optimization problem.

In order to develop a stochastic version of these primal dual algorithms, we are interested in a
stochastic version of the Forward Backward algorithm. To this end, we consider a new tool called
a random monotone operatorA(�; �), i.e � is a r.v. andA(�; �) is a maximal monotone operator.
Measurability issues due to the fact thatA is set valued will be treated in the next chapter. DenoteJ (s; �)
the resolvent ofA(s; �) and A  (s; �) its Yosida approximation. Consider an other random monotone
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operatorB(�; �) which is single valued. The constant step stochastic FB algorithm is written

xn+1 = J (� n+1 ; xn � B (� n+1 ; xn )) : (1.14)

The aim of the stochastic FB algorithm is to �nd a zero of the so called mean operatorA(x) + B(x) =
E� (A(�; x )) + E� (B (�; x )) . Integrability issues due to the fact thatA(�; x ) is a set-valued r.v. will be
treated in the next chapter, along with the de�nition of the expectation of a set-valued r.v. We just
mention here the fact that in the subdi�erential caseA(s; x) = @g(s; x), under mild assumptions [102],
E� (A(�; x )) = @G(x) whereG(x) = E� (g(�; x )) (we shall say that the interchange property holds). The
stochastic FB (1.14) can be cast into the framework (1.4) by settingh (s; x) = � B(s; x) � A  (s; x �
B (s; x)) andH = A + B.

1.2.5 Fluid limit of parallel queues

Beyond stochastic optimization algorithms, the framework (1.4) can be used to study general Markov
chains. For example the framework (1.4) is considered in [61] to study Markov chains with discontinuous
drift. Using the notation of (1.4), this means that evenh (s; �) is discontinuous. We give an application
example that comes from queueing theory. We are interested in establishing the long-run behavior of
the number of users in a model of parallel queues. Users arrive at random instant in the queues and the
queues are served following a prioritizing rule. After scaling the problem in order to study the so called
�uid scaled process [61], the evolution of the number of users in the queues �ts our framework (1.4).

1.3 Dynamics of Robbins-Monro algorithm

To better understand the methods used in this thesis, we get back to the Robbins-Monro algorithm of
Sec.1.1.1. We provide the main arguments behind the ODE method. We shall focus on the constant
step case that will be of interest in the �rst part of this thesis. More precisely, we study the evolution
equation (1.1) with  n �  > 0.

1.3.1 Known facts related with dynamical systems

Consider a Lipschitz continuous functionH : X ! X. Then, it is well known that for everya 2 X, the
ODE x0 = H(x) with initial conditionx(0) = a admits an unique solution overR+ [73]. We denote by
�( a) this solution and abusively denote�( a)(t) = �( a; t) for everyt � 0. It is known that� satis�es
the property of being a semi�ow overX, i.e. �( �; s+ t) = �( �; t) � �( �; s) for everyt; s � 0. The essence
of the ODE method is to study the behavior of the interpolated process obtained from the iterates
(xn ) of the algorithm (1.1) as being an approximation of the ODE solution. To perform this analysis,
some important notions related to the dynamics of the semi�ow� need to be introduced. A probability
measure� over X is called an invariant measure for� if � = � �( �; t)� 1 for everyt > 0. The set of
invariant measures for� is denotedI (�) . A point x 2 X is said recurrent for� if x = lim k! + 1 �( x; t k)
for some sequencetk ! + 1 . The Birkho� center BC� of � is the closure of the set of recurrent points.
The celebrated Poincaré's recurrence theorem [53, Th. II.6.4 and Cor. II.6.5] says that the support of
any � 2 I (�) is a subset of BC� . The goal of the two next sections is to prove that the sequence of
iterates(xn ) de�ned by (1.1) with a constant step size n �  > 0 converges in probability to the set
BC� as n ! + 1 and  ! 0. Indeed, BC� is often a set of interest while looking for zeros ofH. For
example, if�( a; t) converges toZ(H) ast ! + 1 for everya 2 X, then Z(H) = BC� .
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Figure 1.1: The linearly interpolated process of the iterates with step size > 0.

1.3.2 Convergence of stochastic processes

Consider a sequence(xn ) satisfying (1.1) with a constant step size n �  > 0 starting fromx0 = a.
Consider the linearly interpolated process of the sequence of iterates (see Fig.1.1) xa; overR+ , piecewise
de�ned for everyt � 0 by

xa; (t) = xn + ( t � n )
xn+1 � xn


; t 2 [n; (n + 1)  ); n 2 N: (1.15)

As a continuous time stochastic process,xa; can be seen as a r.v. in the spaceC(R+ ; X) of continuous
functions endowed with the topology of the uniform convergence over bounded intervals. The ODE
method �rst consists in showing thatxa; �!  ! 0 �( a) in distribution inC(R+ ; X) (i.e narrowly, see [14]).
In other words, one can show that for everyT > 0, supt2 [0;T ] kxa; (t) � �( a; t)k �! 0 in probability as
 ! 0 under some prescribed assumptions.

This important result does not su�ce to characterize the long run behavior of the iteratesi.e the
caseT = + 1 . What is ultimately needed is the long-run behavior of the processxa; in terms of the
Birkho� center of the semi�ow� . A stability result is needed.
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1.3.3 Stability result

To characterize the long-run behavior ofxa; , the sequence(xn ) is viewed as a Markov chain with
transition kernelP . The advocated stability result typically ensures that the set of invariant measures
for P ;  2 (0;  0) is relatively compact for some 0 > 0. Under such a condition, the �rst result on the
narrow convergence ofxa; can be used to show that every cluster point of the invariant measures of
the Markov chain as ! 0 is an invariant measure for the semi�ow� [60]. Using Poincaré's recurrence
theorem, such cluster points are supported by the Birkho� center BC� . A reformulation of this result is
the following :

lim sup
n!1

1
n + 1

nX

k=0

P(d(xn ; BC� ) > " ) �!  ! 0 0: (1.16)

1.4 From ODE to Di�erential Inclusions

Motivated by the examples of1.2, we shall relax the classical assumptions used in the ODE method and
study the framework (1.4) whereH is allowed to be set valued. In this situation, the classical ODE is
replaced with aDi�erential Inclusion(DI): _x 2 H(x) de�ned on the set of absolutely continuous functions
over R+ , where _x denotes the derivative ofx de�ned almost everywhere. Stochastic approximation
algorithms built on DI have recently aroused an important research e�ort to which this thesis belongs [17,
80]. In this work, two kinds of DI with di�erent behaviors are of interest.

1. First, the case whereH(x) is convex compact and not empty for everyx 2 X and H is upper
semicontinuous [6] (usc) i.e for everya 2 X, and for every open setU such thatH(a) � U, there
exists a neighborhoodV of a such thatx 2 V ) H(x) � U. Assuming that for everya 2 X
there exists a solution to the DI starting ata (this holds under a linear growth assumption onH),
the solution is in general not unique and the semi�ow associated to the DI is hence set valued [6].
This kind of DI is of interest in many applications including game theory, or queueing systems.

2. Second, the case where� H is a maximal monotone operator [36]. In this case, we considered in
particular the situation where the domain ofH is strictly included inX, which is of obvious interest
for many stochastic optimization algorithms.

1.5 Contributions

1.5.1 Convergence analysis with a constant step size

We �rst focus on the analysis of constant step stochastic approximation algorithms having a DI as a
limit. We shall study the case where(h n (s; xn ))n2 N converges to the setH (s; x) asn ! + 1 if xn ! x
and  n ! 0. The functionH is represented as a set valued expectationH(x) = E� (H (�; x )) . The set
valued expectation is formally de�ned as aselection integraland generalizes the Lebesgue integral to set
valued mappings, see Chap.2. To study the dynamics of the iterates(xn ) given by (1.4) we adapt the
general approach of Sec.1.3 to DI _x 2 H(x) in the usc case and the monotone case of Sec.1.4, each
case requiring a speci�c treatment and exhibiting a speci�c convergence result.
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The upper semicontinuous case

In this case,H (s; �) is assumed to be a proper (9x 2 X; H (s; x) 6= ; ) usc operator. We denote as�( a)
the set of solutions to the DI_x 2 H(x) starting at a. We assume that�( a) is not empty, and� can
be seen as set valued �ow. Set valued analogues to classical dynamical systems results1.3.1 will be
considered. This framework is introduced in the paper [107] under the additional assumption thatX is
a compact space. In our work, we relaxed the compactness assumption, which extends the scope of the
algorithm (1.4) to e.g., proximal non convex stochastic gradient algorithm1.2.2, or queuing algorithms
such as1.2.5. DenoteI (�) the set of invariant measures for the set valued �ow� , a notion introduced
in [107]. Denotingd a distance that metricizes the topology overC(R+ ; X) of uniform convergence over
compact intervals, we �rst prove the dynamical result

sup
a2K

P(d(xa; ; �( a)) > " ) �!  ! 0 0; (1.17)

for every compact setK � X and every" > 0, whered(xa; ; �( a)) denotes the distance from the function
xa; to the set�( a). Under a stability assumption of the Markov chain(xn ) this dynamical result is used
to characterize the long-run behavior of the iterates :

lim sup
n!1

1
n + 1

nX

k=0

P(d(xn ; BC� ) > " ) �!  ! 0 0; (1.18)

where(xn ) is the process satisfying (1.4) with step size > 0. Similar results involving the empirical
meansxn = 1

n

P n
k=1 xk are obtained. Finally, stability conditions based on the so-called Pakes-Has'minskii

criterion are provided in the context of the stochastic proximal non convex gradient algorithm (under a
Šojasiewicz assumption [5, 30]) and in a model of parallel queues [61].

The monotone case

In this case,� H (s; �) is assumed to be a maximal monotone operator with domainD(s) = f x 2
X; H (s; x) 6= ;g . If D(s) = X, then H (s; �) is usc [97] and a dynamical result can be obtained
from (1.17). We shall allow the domainsD(s) to vary withs. This covers the contexts of the stochastic
proximal point algorithm1.2.1, the stochastic proximal gradient algorithm in the convex case1.2.2, the
Douglas-Rachford algorithm1.2.3 and the stochastic Forward Backward algorithm1.2.4. With a proof
that explicitly leverages the maximal monotonicity of� H (s; �) and allows the domains to be random,
we �rst show that

sup
a2K\D

P(d(xa; ; �( a)) > " ) �!  ! 0 0; (1.19)

whereD is the domain of the mean operatorH. Then, under a stability assumption of the Markov chain
(xn ), it is shown that ifH satis�es the so called demipositivity assumption (see Chap.2), then

lim sup
n!1

1
n + 1

nX

k=0

P(d(xk ; Z (H)) > " ) ��!
 ! 0

0: (1.20)

Similar results that hold whetherH is demipositive or not are obtained for the empirical means of
the iterates. Finally, practical criteria ensuring the stability of the Markov chain(xn ) are provided
in various instances of the stochastic Forward-Backward algorithm, including the stochastic proximal
gradient algorithm of Sec.1.2.2, the case whereH (s; �) is linear and monotone, etc.
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Figure 1.2: The linearly interpolated process of the iterates with step sizes n .

1.5.2 Applicative contexts using decreasing step sizes

Stochastic approximation with decreasing step sizes

The ODE method can also be used to study decreasing step sizes algorithm,i.e the evolution equa-
tion (1.1) with  n ! 0. In this case, the linearly interpolated processx of (xn ) overR+ with timeframe
 n is considered, see Fig.1.2. The general idea is to prove the almost sure convergence of the interpolated
processx to the solution of the ODEx0 = H(x). More precisely, the interpolated process is proven to be
an almost sure Asymptotic Pseudo Trajectory (APT) of the ODE, a concept introduced by Benaïm and
Hirsch in the �eld of dynamical systems [15]. It is shown thatd(x(t + �); �( x(t))) ! t ! + 1 0 a.s., where
we recall thatd metricizes the topology of the uniform convergence over compact sets and where� is
the semi�ow associated with the ODE. Then, the asymptotic convergence of the sequence of iterates
(xn ) of the algorithm (1.1) can be obtained from the APT property. This notion has been generalized
to monotone DI in [24]. More precisely, the paper [24] studies the decreasing step size analogue of the
stochastic Forward Backward algorithm (1.14)

xn+1 = J n +1 (� n+1 ; xn �  n+1 B(� n+1 ; xn )) ; (1.21)

where n ! 0. It is proven that the interpolated process of the iterates(xn ) is an almost sure APT of
the DI _x 2 H(x) whereH = � (A + B) is the mean monotone operator. Then, it is deduced that(xn )
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converges to an element ofZ (H) as n ! + 1 if � H is monotone and demipositive, and the sequence
of empirical means(xn )n converges to a solution asn ! + 1 whether� H is demipositive or not. In
this thesis, we proceed with Algorithm (1.21) in two directions. First, we apply this algorithm to solve
a general composite optimization problem under linear constrains. The functions de�ning the objective
function and the matrices de�ning the constraints are allowed to be represented as expectations, see
Sec.1.5.2below. Second, we generalize the stochastic proximal gradient algorithm with decreasing step
sizes to solve a regularized optimization problem over a large and general graph, see Sec.1.5.2below.

A fully stochastic primal dual algorithm

A �rst example comes from primal dual optimization algorithms. Consider four convex functionsF; G 2
� 0(X) andP; Q 2 � 0(Z) whereZ is an Euclidean space. Consider the following optimization problem:

min
(x;z )2 X� Z

F(x) + G(x) + P(z) + Q(z) subject to Ax + Bz = c (1.22)

whereA : X ! V andB : Z ! V are matrices with values in the Euclidean spaceV, andc 2 V is a vector.
In order to identify a minimizer of (1.22), primal dual methods typically generate a sequence of primal
estimates(xn ; zn )n2 N and a sequence of dual estimates(� n )n2 N jointly converging to a saddle point
((x; z); � ) of the Lagrangian function associated with (1.22). Under some quali�cation condition,(x; z)
is a solution of Problem (1.22) and� is a solution of a dual formulation of (1.22). The formulation (1.22)
encompasses the formulation of classical primal dual algorithms [62, 42, 51, 124]. In these algorithms,
F; P are treated explicitly (i.e through their gradient) andG; Q are treated implicitly (i.e through their
proximity operator). We shall focus on the case where all functions to be minimized are given as
statistical expectations, as well as the matrices and the vector de�ning the linear constraints. In other
words,F(x) = E� (f (�; x )) wheref (�; �) is a convex function. A similar representation is allowed forG; P
andQ. Besides,A = E(A) whereA is a random matrix. A similar representation is allowed forB andc.
These expectations are unknown but revealed across the time through i.i.d realizations. Only stochastic
(sub)gradients or stochastic proximity operators are available to the user. To solve this problem, we �rst
remark that saddle points of the Lagrangian can be seen as zeros of a sum of two well chosen maximal
monotone operators which are given as a set valued expectations. Hence, the stochastic FB algorithm
can be applied and leads to a converging algorithm. To our knowledge, the proposed algorithm is the
�rst fully stochastic primal dual algorithm. Application to distributed and asynchronous optimization will
be considered.

Online regularization over large graphs

Consider a graphG = ( V; E) whereV is the set of vertices andE is the set of edges. We �rst consider
the resolution of the following programming problem

min
x2 RV

F (x) + TV( x; G) (1.23)

whereF 2 � 0(RV ) and TV( x; G) =
P

f i;j g2E jx(i ) � x(j )j is the Total Variation regularization over
the graphG. When applying the proximal gradient algorithm to solve this problem, there exist quite
a�ordable methods to implement the proximity step in the special case where the graph is a simple path
without loops. However, when the graph is large and unstructured, the computation of the proximity
operator is more di�cult. To overcome this di�culty, we introduced an algorithm that we called "Snake"
and that consists in randomizing the proximity operator in such a way that it becomes computable. More

17



precisely, Snake selects random simple paths in the graph and performs the proximal gradient algorithm
over these simple paths. Hence, only proximity operators over simple paths are computed and Snake
take bene�ts of existing fast methods. Then, Snake is generalized to any regularization term tied to the
graph geometry for which there exists fast methods to compute the proximity operator over a simple
path. Snake is an instance of a generalization of the stochastic proximal gradient algorithm, whose
convergence is proven. Numerical experiments are conducted over large graphs.

1.6 Outline of the Thesis

The next chapter is an introduction to some important notions used in the thesis. Then, the �rst part of
the thesis studies the stochastic approximation framework (1.4) with a constant step size, mainly from
a theoretical point of view. It consists in three chapters. Chapter3 is related to Di�erential Inclusion
involving an upper semicontinuous operator, and is based on the publication [28]. In Chapter4, an
analysis of the stochastic Forward Backward algorithm is performed, based on [25, 26, 27]. In Chapter5,
the stochastic Douglas Rachford algorithm is studied and applications to structured regularization and
distributed optimization is considered. This chapter is based on the papers [89, 111] and the technical
report [110]. Applications of stochastic approximation algorithms with decreasing step size are considered
in the second part of the thesis. After recalling the main ideas behind the proof techniques in Chapter6,
we �rst consider a fully stochastic primal dual algorithm in Chapter7, based on the work [112]. Finally,
we provide an application to solve regularized problems over graphs in Chapter8 ([109, 113, 114]).
Chapter9 is devoted to a conclusion. The technical report [110] can be found in the AppendixA.
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Chapter 2

Preliminaries

2.1 General notations

If E is a topological space, the Borel� -�eld of E is denoted asB (E) and the set of probability measures
on E endowed with its Borel �eld is denotedM (E). If (� ; G; � ) is a probability space andX and
Euclidean space endowed with its Borel� -�eld, the Banach space of measurable functions' : � ! X
such thatk' kp is � -integrable (forp � 1) is denotedL p(� ; G; � ; X). The notationC(E; F ) is used to
denote the set of continuous functions fromE to the topological spaceF . The notationCb(E) stands
for the set of bounded functions inC(E; R).

We use the conventionssup; = �1 and inf ; = + 1 . Notation bxc stands for the �oor value of
x. If (E; d) is a metric space, for everyx 2 E and S � E, we de�ned(x; S) = inf f d(x; y) : y 2 Sg.
We say that a sequence(xn ; n 2 N) on E converges toS, noted xn ! n S or simplyxn ! S, if
d(xn ; S) tends to zero asn tends to in�nity. For " > 0, we de�ne the"-neighborhood of the setS as
S" := f x 2 E : d(x; S) < " g. The closure ofS is denoted bycl(S), and its complementary set by
Sc. The characteristic function ofS is the function1S : E ! f 0; 1g equal to one onS and to zero
elsewhere. IfE is an Euclidean space, the convex hull ofS is denoted byco(S).

2.2 Set valued mappings and monotone operators

Consider an Euclidean spaceX. We recall some basic facts related with set valued mappings and their
associated di�erential inclusions with emphasis on maximal monotone operators overX. These facts will
be used in the proofs without mention. For more details, the reader is referred to the treatises [40], [12],
[6], [36], or to the tutorial paper [96].

2.2.1 Basic facts on set valued mappings

Consider a set valued mapping (or operator)H : X � X, i.e., for eachx 2 X, H(x) is a subset ofX.
The domain and the graph ofH are the respective subsets ofX andX � X de�ned asdom(H) := f x 2
X : H(x) 6= ;g , andgr(H) := f (x; y) 2 X � X : y 2 H(x)g. The operatorH is proper ifdom(H) 6= ; .
Besides,H is saidupper semi continuous(usc) at a pointa 2 X if for every open setU containingH(a),
there exists� > 0, such that for everyx 2 H, kx � ak < � impliesH(x) � U. It is said usc if it is usc
at every point [6, Chap. 1.4].

An operatorA : X � X is monotone if8x; x0 2 dom(A), 8y 2 A(x); 8y0 2 A(x0), it holds that
hy � y0; x � x0i � 0. A proper monotone operatorA is said maximal if its graphgr(A) is a maximal
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gr(A) gr(A)
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Figure 2.1: Left: A monotone operator overR which is not maximal. Right: A maximal monotone
extension of the monotone operator

element in the inclusion ordering overX � X among graphs of monotone operators (see Fig.2.1).
Equivalently, the monotone operatorA is maximal if the following property holds :

8(x; y) 2 X2; 8(x0; y0) 2 gr(A); hy � y0; x � x0i � 0 =) (x; y) 2 gr(A):

This maximality condition implies thatgr(A) is a closed subset ofX � X. Denote byI the identity
operator, and byA� 1 the inverse of the operatorA, de�ned by the fact thaty 2 A(x) , x 2 A� 1(y).
Using the monotonicity ofA, one can check that8(x; y); (x0; y0) 2 gr(A); 8 > 0; kx � x0k � k (x+ y ) �
(x0+ y 0)k: In other words, ifA is a monotone operator, then the resolvent operator de�ned for every
 > 0 by J := ( I +  A)� 1 can be identi�ed with a1-Lipschitz continuous function (i.e a contraction).
It is well known thatA belongs to the setM (X) of the maximal monotone operators onX if and only
if, dom(J ) = X ([85]). If dom(A) = X, then A is usc [97]. We also know that whenA 2 M (X), the
closurecl(dom(A)) of dom(A) is convex, andlim  ! 0 J (x) = � cl(dom( A)) (x), where� S is the projector
on the closed convex setS. It holds thatA(x) is closed and convex for allx 2 dom(A). We can therefore
put A0(x) = � A(x)(0), in other words,A0(x) is the minimum norm element ofA(x). Of importance is
the so called Yosida regularization ofA for  > 0, de�ned as the single-valued operatorA = ( I � J )= .
This is a1= -Lipschitz operator onX that satis�es A (x) ! A0(x) and kA (x)k " k A0(x)k for all
x 2 dom(A). One can also check thatA (x) 2 A(J (x)) for all x 2 X.

A typical maximal monotone operator is the subdi�erential@f of a functionf 2 � 0(X), the set of
proper, convex, and lower semicontinuous (lsc) functions onX. In this case, the resolvent(I + @f)� 1

for  > 0 is the proximity operator off . The Yosida regularization of@f for  > 0 coincides with the
gradient of the so called Moreau's envelopef  (x) := min y f (y) + ky � xk2=(2 ) of f .

2.2.2 Di�erential Inclusions (DI)

We now turn to the di�erential inclusions induced by operators. First consider a set valued mapping
H : X � X anda 2 X, a solution to the Di�erential Inclusion (DI)_x(t) 2 H(x(t)) on R+ starting ata is
an absolutely continuous mappingx : R+ ! X such thatx(0) = a, and _x(t) 2 H(x(t)) , where_x denotes
the derivative ofx de�ned almost everywhere. Consider the set valued mapping� : X � C(R+ ; X),
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such that for everya 2 X, �( a) is the set of solutions to the DI starting ata. We refer to� as the
evolution system induced byH. For every subsetS � X, we de�ne�( S) =

S
x2 S �( x).

In the case whereH is usc with nonempty compact convex values and satis�es the linear growth
condition

9c > 0; 8x 2 X; supfk yk : y 2 H(x)g � c(1 + kxk) ; (2.1)

then, dom(�) = X, seee.g. [6], and moreover,�( X) is closed in the spaceC(R+ ; X) endowed with the
topology of uniform convergence over compact sets ofR+ .

Assume from now on thatH = � A 2 M (X). Then for everya 2 dom(A), �( a) contains exactly
one function, still denoted�( a) [36]. Note that in the case whereA = r F; F 2 � 0(X), the DI boils
down to the so-called gradient �ow. In the sequel, we denote�( a; t) = �( a)(t). For everyt � 0, the
map �( �; t) : dom(A) ! dom(A) is a contraction and can be uniquely extended to a contraction from
cl(dom(A)) to cl(dom(A)). Denoting�( �; t) this extension,� becomes a semi�ow oncl(dom(A)) � R+ ,
being a continuouscl(dom(A)) � R+ ! cl(dom(A)) function satisfying

�( �; 0) = I and �( x; t + s) = �(�( x; s); t) (2.2)

for eachx 2 cl(dom(A)), and t; s � 0.
The set of zerosZ(A) := f x 2 dom(A) : 0 2 A(x)g of A is a closed convex set which coincides

with the set of equilibrium pointsf x 2 cl(dom(A)) : 8t � 0; �( x; t ) = xg of � . The trajectories�( x; �)
of the semi�ow do not necessarily converge toZ(A). A counterexample is given by the linear maximal
monotone operatorA de�ned onR2 by A(y; z) = ( z; � y) whose set of zeros isZ (A) = (0 ; 0). The DI
associated toA boils down to a linear di�erential equation inR2, ( _y(t); _z(t)) = ( � z(t); y(t)) for every
t � 0. To solve this equation, consideri 2 C and denotex(t) = y(t) + iz(t) 2 C. The DI is equivalent
to _x(t) = ix(t) whose solutions can be writtenx(t) = aexp(it ); a 2 C. Finally,x does not converge to
zero ast ! + 1 in general. However, the ergodic theorem for the semi�ows generated by the elements
of M (X) states that ifZ (A) 6= ; , then for eachx 2 cl(dom(A)), the averaged function

� : cl(dom( A)) � R+ �! cl(dom(A))

(x; t ) 7�!
1
t

Z t

0
�( x; s) ds

(with �( �; 0) = �( �; 0)), converges to an element ofZ (A) ast ! 1 . The convergence of the trajectories
of the semi�ow itself to an element ofZ (A) is ensured whenA is demipositive [38]. An operator
A 2 M (X) is said demipositive if there existsw 2 Z(A) such that for every sequence((un ; vn ) 2 gr(A))
such that(un ) converges tou, and such that(vn ) is bounded,

hun � w; vn i ���!
n!1

0 ) u 2 Z(A):

Under this condition and ifZ (A) 6= ; , then for allx 2 cl(dom(A)), �( x; t ) converges ast ! 1 to an
element ofZ (A).

2.3 Random monotone operators

A sequence of elements(An )n2 N in M (X) is said to converge to an elementA 2 M (X) if for every
 > 0; x 2 X, (I +  An )� 1(x) ! (I +  A)� 1(x) as n ! + 1 . Endowed with this topology,M (X) is
a Polish space [4]. Moreover, the subset of all subdi�erentials overX is closed. A random monotone
operator is de�ned to be a random variableA from a probability space(� ; G; � ) to (M (X); B (M (X))) .
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Let F : � � X be a set valued function such thatF (s) is a closed set for eachs 2 � . The functionF
is saidmeasurableif f s : F (s) \ H 6= ;g 2 G for any setH 2 B (X). An equivalent de�nition for the
mesurability ofF requires that the domaindom(F ) := f s 2 � : F (s) 6= ;g of F belongs toG, and
that there exists a sequence of measurable functions' n : dom(F ) ! X such thatF (s) = cl f ' n (s)gn

for all s 2 dom(F ) [40, Chap. 3][65]. These functions are called measurable selections ofF . Consider
a functionA : (� ; G; � ) ! (M (X); B (M (X))) . For everys 2 � ;  > 0; x 2 X, (I + A (s)) � 1(x) is
denotedJ (s; x). There is equivalence between [4]

1. A is a random monotone operator

2. s 7! gr(A(s)) is measurable as a closed set-valued� � X � X function

3. For every > 0; x 2 X, the functions 7! J (s; x) from (� ; G) to (X; B (X)) is measurable.

Example 2 (Random subdi�erential). Consider a functiong : � � X ! (�1 ; 1 ]. The functiong is
said a convex normal integrand [125] if g(s; �) is convex, and if the set-valued mappings 7! epig(s; �) is
closed-valued and measurable, whereepi is the epigraph of a function. Then, the functions 7! @g(s; �)
is an example of random monotone operator [4].

Assume now thatF : � � X is measurable and that� (dom(F )) = 1 . Consider the set

S p
F := f ' 2 L p(� ; G; � ; X) : ' (s) 2 F (s) � � a.e.g: (2.3)

of L p integrable selection ofF . If S 1
F 6= ; , the functionF is said integrable. Theselection integral[86]

of F is the set Z
Fd� := cl

§Z

�
'd� : ' 2 S 1

F

ª
: (2.4)

For a random monotone operatorA : � ! M (X), sinceJ (s; x) is measurable ins and continuous in
x (being non expansive),J : � � X ! X is G 
 B (X)=B (X) measurable by Carathéodory's theorem.
DenotingA  (s; x) the image ofx by the Yosida regularization of the operatorA(s), this implies the
measurability ofA  : � � X ! X for every > 0. Moreover, denoting byD(s) the domain ofA(s),
s 7! cl(D(s)) is measurable, which implies that the functions 7! d(x; D (s)) is measurable for each
x 2 X. Denoting asA(s; x) the image ofx by the operatorA(s), the set valued functions 7! A(s; x)
is also measurable. In particular, the functions 7! A0(s; x) is measurable for eachx 2 X, where
A0(s; x) := � A(s;x)(0). The essential intersectionD of the domainsD(s) is de�ned as [67]

D :=
[

G2 G:� (G)=0

\

s2 � nG

D(s) ; (2.5)

in other words,x 2 D , � (f s : x 2 D(s)g) = 1 . Let us assume thatD 6= ; , and that the set-valued
mappingA(�; x) is integrable for eachx 2 D . For all x 2 D , we can de�ne

A(x) :=
Z

�
A(s; x) � (ds) :

We shall sometimes use the notationA(x) = E� (A(�; x )) where� is a random variable with distribution
� . One can immediately see that the operatorA : D � X so de�ned is a monotone operator.

Example 3 (Interchange property). Let g : � � X ! (�1 ; 1 ] be a convex normal integrand, and let
G(x) =

R
g(s; x)� (ds), where the integral is de�ned as the sum

Z

f s : g(s;x)2 [0;1 )g
g(s; x) � (ds) +

Z

f s : g(s;x)2 ]�1 ;0[g
g(s; x) � (ds) + I (x) ;

22



and

I (x) =
¨

+ 1 ; if � (f s : g(s; x) = 1g ) > 0;
0; otherwise;

and where the convention(+ 1 ) + ( �1 ) = + 1 is used. The functionG is a lower semi continuous
convex function ifG(x) > �1 for all x [125], which we assume. Assume also thatG is proper. Note
that this implies thatg(s; �) 2 � 0(X) for � -almost alls. We provide conditions under which the selection
integral (set to; for the values ofx for whichS 1

@g(�;x ) = ; )
R

@g(s; x)� (ds) boils down to@G(x). We
shall write that the interchange property holds since in this case,

@G(x) =
Z

@g(s; x)� (ds):

First, this will be the case if
R

jg(s; x)j � (ds) < 1 for all x 2 X. By [102, page 179], this will also be
the case if the following conditions hold:i) the set-valued mappings 7! cl domg(s; �) is constant� -a.e.,
wheredomg(s; �) is the domain ofg(s; �), ii) G(x) < 1 wheneverx 2 domg(s; �) � -a.e.,iii) there exists
x0 2 X at which G is �nite and continuous. Another case where this interchange is permitted is the
following. Letm be a positive integer, and letC1; : : : Cm be a collection of closed and convex subsets
of X. Let C = \ m

i = kCk 6= ; , and assume that the normal coneNC(x) of C at x satis�es the identity
NC(x) =

P m
k=1 NCk (x) for eachx 2 X, where the summation is the usual set summation. As is well

known, this identity holds true under a quali�cation condition of the type\ m
k=1 ri Ck 6= ; (see also [11]

for other conditions). Now, assume that� = f 1; : : : ; mg and that � is an arbitrary probability measure
putting a positive weight on eachf kg � � . Let g(s; x) be the indicator function

g(s; x) = �Cs (x) for (s; x) 2 � � X: (2.6)

Then it is obvious thatg is a convex normal integrand,G = �C, and @G(x) =
R

@g(s; x)� (ds): We can
also combine these two types of conditions: let(� ; T ; � ) be a probability space, whereT is � -complete,
and let h : � � X ! (�1 ; 1 ] be a convex normal integrand satisfying the conditionsi)� iii) above.
Consider the closed and convex setsC1; : : : ;Cm introduced above, and let� be a probability measure
on the setf 0; : : : ; mg such that� (f kg) > 0 for eachk 2 f 0; : : : ; mg. Now, set� = � � f 0; : : : ; mg,
� = � 
 � , and de�neg : � � X ! (�1 ; 1 ] as

g(s; x) =
¨

� (0)� 1h(u; x) if k = 0;
�Ck (x) otherwise;

wheres = ( u; k) 2 � � f 0; : : : ; mg. Then it is clear that

G(x) =
1

� (0)

Z

�
h(u; x)� (du) + �C(x) ;

and

@G(x) =
Z

@g(s; x)� (ds) =
1

� (0)
E� @h(�; x) +

mX

k=1

NCk (x) :
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Part I

Stochastic approximation with a
constant step size
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Chapter 3

Constant Step Stochastic
Approximations Involving Di�erential
Inclusions: Stability, Long-Run
Convergence and Applications

The purpose of this chapter is to study the constant step stochastic approximation framework (1.4) in
the case where the underlying Di�erential Inclusion is induced by an upper semicontinuous operator, see
Sec.1.4. We consider a Markov chain(xn ) whose kernel is indexed by a scaling parameter > 0, referred
to as the step size. The aim is to analyze the behavior of the Markov chain in the doubly asymptotic
regime wheren ! 1 then  ! 0. First, under mild assumptions on the so-called drift of the Markov
chain, we show that the interpolated process converges narrowly to the solutions of a DI involving an
usc set-valued map with closed and convex values. Second, we provide veri�able conditions which ensure
the stability of the iterates. Third, by putting the above results together, we establish the long run
convergence of the iterates(xn ) as  ! 0, to the Birkho� center of the DI. The ergodic behavior of
the iterates is also provided. Our �ndings are applied to the problem of nonconvex proximal stochastic
optimization and a �uid model of parallel queues.

3.1 Introduction

In this chapter, we consider a Markov chain(xn ; n 2 N) with values in an Euclidean spaceX. We assume
that the probability transition kernelP is indexed by a scaling factor , which belongs to some interval
(0;  0). The aim of the chapter is to analyze the long term behavior of the Markov chain in the regime
where is small. The map

g (x) :=
Z y � x


P (x; dy) ; (3.1)

assumed well de�ned for allx 2 X, is called thedrift or the mean �eld. The Markov chain admits the
representation

xn+1 = xn +  g  (xn ) +  U n+1 ; (3.2)

whereUn+1 is a zero-mean martingale increment noisei.e., the conditional expectation ofUn+1 given
the past samples is equal to zero. A case of interest in the chapter is given by iterative models of the
form:

xn+1 = xn +  h  (� n+1 ; xn ) ; (3.3)
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where(� n ; n 2 N� ) is a sequence of i.i.d random variables indexed by the setN� of positive integers
and de�ned on a probability space� with probability law� , and f h g 2 (0; 0 ) is a family of maps on
� � X ! X. In this case, the driftg has the form:

g (x) =
Z

h (s; x) � (ds) : (3.4)

Our results are as follows.

1. Dynamical behavior. Assume that the driftg has the form (3.4). Assume that for� -almost
all s and for every sequence(( k ; zk) 2 (0;  0) � X; k 2 N) converging to(0; z),

h k (s; zk) ! H (s; z)

whereH (s; z) is a subset ofX (the Euclidean distance betweenh k (s; zk) and the setH (s; z)
tends to zero ask ! 1 ). Denote byx (t) the continuous-time stochastic process obtained by a
piecewise linear interpolation of the sequencexn , where the pointsxn are spaced by a �xed time
step  on the positive real axis. As ! 0, and assuming thatH (s; �) is a proper and upper
semicontinuous (usc) (see Sec.2.2.1) map with closed convex values, we prove thatx converges
narrowly (in the topology of uniform convergence on compact sets) to the set of solutions of the
di�erential inclusion (DI)

_x(t) 2
Z

H (s;x(t)) � (ds) ; (3.5)

where for everyx 2 X,
R

H (s; x)� (ds) is theselection integralof H (�; x), see Sec.2.3.

2. Tightness. As the iterates are nota priori supposed to be in a compact subset ofX, we investigate
the issue of stability. We posit a veri�ablePakes-Has'minskiicondition on the Markov chain(xn ).
The condition ensures that the iterates are stable in the sense that the random occupation measures

� n :=
1

n + 1

nX

k=0

� xk (n 2 N)

(where� a stands for the Dirac measure at pointa), form a tight family of random variables on
the Polish space of probability measures equipped with the Lévy-Prokhorov distance. The same
criterion allows to establish the existence of invariant measures of the kernelsP , and the tightness
of the family of all invariant measures, for all 2 (0;  0). As a consequence of Prokhorov's
theorem, these invariant measures admit cluster points as ! 0. Under a Feller assumption on
the kernelP , we prove that every such cluster point is an invariant measure for the DI (3.5).
Here, since the �ow generated by the DI is in general set-valued, the notion of invariant measure
is borrowed from [59].

3. Long-run convergence. Using the above results, we investigate the behavior of the iterates in
the asymptotic regime wheren ! 1 and, next, ! 0. Denoting byd(a; B) the distance between
a point a 2 X and a subsetB � X, we prove that for all" > 0,

lim
 ! 0

lim sup
n!1

1
n + 1

nX

k=0

P(d(xk ; BC� ) > " ) = 0 ; (3.6)

26



where BC is the Birkho� center of the �ow� induced by the DI (3.5), and P stands for the
probability. We also characterize the ergodic behavior of these iterates. Settingxn = 1

n+1

P n
k=0 xk ,

we prove that
lim
 ! 0

lim sup
n!1

P(d(xn ; co(Lav)) > " ) = 0 ; (3.7)

whereco(Lav) is the convex hull of the limit set of the averaged �ow associated with (3.5) (see
Sec.3.4).

4. Applications. We investigate several application scenarios. First, we consider the problem of
non-convex stochastic optimization, and analyze the convergence of a constant step size proximal
stochastic gradient algorithm. The latter �nds application in the optimization of deep neural
networks [77]. We show that the interpolated process converges narrowly to a DI, which we
characterize. We also provide su�cient conditions allowing to characterize the long-run behavior
of the algorithm leading to a convergence proof of the proximal stochastic non-convex gradient
algorithm ([98]). Second, we explain that our results apply to the characterization of the �uid
limit of a system of parallel queues. The model is introduced in [8, 61]. Whereas the narrow
convergence of the interpolated process was studied in [61], less is known about the stability and
the long-run convergence of the iterates. We show how our results can be used to address this
problem.

Chapter organization. In Sec.3.2, we introduce the application examples. In Sec.3.3, we brie�y
discuss the literature. Sec.3.4 is devoted to the mathematical background and to the notations. The
main results are given in Sec.3.5. The tightness of the interpolated process as well as its narrow
convergence towards the solution set of the DI (Th.3.5.1) are proven in Sec.3.6. Turning to the
Markov chain characterization, Prop.3.5.2, who explores the relations between the cluster points of the
Markov chains invariant measures and the invariant measures of the �ow induced by the DI, is proven
in Sec.3.7. A general result describing the asymptotic behavior of a functional of the iterates with a
prescribed growth is provided by Th.3.5.3, and proven in Sec.3.8. Finally, in Sec.3.9, we show how the
results pertaining to the ergodic convergence and to the convergence of the iterates (Th.3.5.4and3.5.5
respectively) can be deduced from Th.3.5.3. Finally, Sec.3.10 is devoted to the application examples.
We prove that our hypotheses are satis�ed.

3.2 Examples

Example 4. Non-convex stochastic optimization.Consider the problem

minimizeE� (`(�; x )) + r (x) w.r.t x 2 X; (3.8)

where`(�; �) is a (possibly non-convex) di�erentiable function onX ! R indexed by a random variable
(r.v.) � , E� represents the expectation w.r.t.� , and r : X ! R is a convex function. The problem
typically arises in deep neural networks [129, 115]. In the latter case,x represents the collection of
weights of the network,� represents a random training example of the database, and`(�; x ) is a risk
function which quanti�es the inadequacy between the sample response and the network response. Here,
r (x) is a regularization term which prevents the occurence of undesired solutions. A typical regularizer
used in machine learning is the`1-normkxk1 that promotes sparsity or generalizations likekDx k1, where
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D is a matrix, that promote structured sparsity. A popular algorithm used to �nd an approximate solution
to Problem (3.8) is the proximal stochastic gradient algorithm, which reads

xn+1 = prox r (xn �  r `(� n+1 ; xn )) ; (3.9)

where(� n ; n 2 N� ) are i.i.d. copies of the r.v.� , wherer represents the gradient w.r.t. parameterx,
and where the proximity operator ofr is the mapping onX ! X de�ned by

proxr : x 7! arg min
y2 X

‚

 r (y) +
ky � xk2

2

Œ

:

The drift g has the form (3.4) whereh (�; x ) =  � 1(proxr (x �  r `(�; x )) � x) and � represents the
distribution of the r.v.� . Under adequate hypotheses, we prove that the interpolated process converges
narrowly to the solutions to the DI

_x(t) 2 �r xE� (`(�; x(t))) � @r(x(t)) ;

where@rrepresents the subdi�erential of a functionr , de�ned by

@r(x) := f u 2 X : 8y 2 X; r (y) � r (x) + hu; y � xig

at every pointx 2 X. We provide a su�cient condition under which the iterates (3.9) satisfy the
Pakes-Has'minskii criterion, which in turn, allows to characterize the long-run behavior of the iterates.

Example 5. Fluid limit of a system of parallel queues with priority.We consider a time slotted queuing
system composed ofN queues. The following model is inspired from [8, 61]. We denote byyk

n the
number of users in the queuek at time n. We assume that a random number ofAk

n+1 2 N users arrive
in the queuek at time n + 1. The queues are prioritized: the users of Queuek can only be served if all
users of Queues̀ for ` < k have been served. Whenever the queuek is non-empty and the queues`
are empty for all̀ < k , one user leaves Queuek with probability� k > 0. Starting withyk

0 2 N, we thus
have

yk
n+1 = yk

n + Ak
n+1 � B k

n+1 1f yk
n > 0; yk � 1

n = ��� = y1
n =0 g ;

whereB k
n+1 is a Bernoulli r.v. with parameter� k , and where1S denotes the indicator of an eventS, equal

to one on that set and to zero otherwise. We assume that the process((A1
n ; : : : ; AN

n ; B 1
n ; : : : ; BN

n ); n 2 N� )
is iid, and that the random variablesAk

n have �nite second moments. We denote by� k := E(Ak
n ) > 0

the arrival rate in Queuek. Given a scaling parameter > 0 which is assumed to be small, we are
interested in the�uid-scaled process, de�ned asxk

n = y k
n . This process is subject to the dynamics:

xk
n+1 = xk

n +  A k
n+1 �  B k

n+1 1f xk
n > 0; x k � 1

n = ��� = x1
n =0 g : (3.10)

The Markov chainxn = ( x1
n ; : : : ; xN

n ) admits the representation (3.2), where the driftg is de�ned on
 NN , and is such that itsk-th componentgk

 (x) is

gk
 (x) = � k � � k1f xk > 0; x k � 1= ��� = x1=0 g ; (3.11)

for everyk 2 f 1; : : : ; Ng and everyx = ( x1; : : : ; xN ) 2  NN . Introduce the vector

u k := ( � 1; � � � ; � k� 1; � k � � k ; � k+1 ; : : : ; � N )
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for all k. Let R+ := [0; + 1 ), and de�ne the set-valued map onRN
+

H(x) :=
¨

u 1 if x(1) > 0
co(u 1; : : : ; u k) if x1 = � � � = xk� 1 = 0 andxk > 0;

(3.12)

whereco is the convex hull. Clearly,g (x) 2 H(x) for everyx 2  NN . In [61, Ÿ 3.2], it is shown that the
DI _x(t) 2 H(x(t)) has a unique solution. Our results imply the narrow convergence of the interpolated
process to this solution, hence recovering a result of [61]. More importantly, if the following stability
condition

NX

k=1

� k

� k
< 1 (3.13)

holds, our approach allows to establish the tightness of the occupation measure of the iteratesxn , and
to characterize the long-run behavior of these iterates. We prove that in the long-run, the sequence
(xn ) converges to zero in the sense of (3.6). The ergodic convergence in the sense of (3.7) can be also
established with a small extra e�ort.

3.3 About the Literature

When the driftg does not depend on and is supposed to be a Lispchitz continuous map, the long term
behavior of the iteratesxn in the small step size regime has been studied in the treatises [20, 14, 73, 31, 16]
among others. In particular, narrow convergence of the interpolated process to the solution of an Ordinary
Di�erential Eq. (ODE) is established. The authors of [60] introduce a Pakes-Has'minskii criterion to
study the long-run behavior of the iterates.

The recent interest in the stochastic approximation when the ODE is replaced with a di�erential
inclusion dates back to [17], where decreasing steps were considered. A similar setting is considered
in [58]. A Markov noise was considered in the recent manuscript [128]. We also mention [59], where
the ergodic convergence is studied when the so called weak asymptotic pseudo trajectory property is
satis�ed. The case where the DI is built from maximal monotone operators is studied in [22] and [24].

Di�erential inclusions arise in many applications, which include game theory (see [17, 18], [107] and
the references therein), convex optimization [24], queuing theory or wireless communications, where
stochastic approximation algorithms with non continuous drifts are frequently used, and can be modelled
by di�erential inclusions [61].

Di�erential inclusions with a constant step were studied in [107]. The paper [107] extends previous
results of [19] to the case of a DI. The key result established in [107] is that the cluster points of the
collection of invariant measures of the Markov chain are invariant for the �ow associated with the DI.
Prop. 3.5.2of the present chapter restates this result in a more general setting and using a shorter proof,
which we believe to have its own interest. Moreover, the so-called GASP model studied by [107] does
not cover certain applications, such as the ones provided in Sec.3.2, for instance. In addition, [107]
focusses on the case where the space is compact, which circumvents the issue of stability and simpli�es
the mathematical arguments. However, in many situations, the compactness assumption does not hold,
and su�cient conditions for stability need to be formulated. Finally, we characterize the asymptotic
behavior of the iterates(xn ) (as well as their Cesarò means) in the doubly asymptotic regime where
n ! 1 then  ! 0. Such results are not present in [107].

29



3.4 Background

The spaceC(R+ ; X) is endowed with the topology of uniform convergence on compact sets which is
metrized by the distanced de�ned for everyx; y 2 C(R+ ; X) by

d(x; y) :=
X

n2 N

2� n

 

1 ^ sup
t2 [0;n]

kx(t) � y(t)k

!

; (3.14)

wherek � k denotes the Euclidean norm inX.

3.4.1 Random Probability Measures

The supportsupp(� ) of a probability measure� 2 M (X) is the smallest closed setG such that� (G) = 1 .
The setM (X) is endowed with the topology of narrow convergence: a sequence(� n )n2 N on M (X)
converges to a measure� 2 M (X) (denoted� n ) � ) if for everyf 2 Cb(X), � n (f ) ! � (f ), where
� (f ) is a shorthand for

R
f (x)� (dx). Endowed with this topology,M (X) is metrizable by the Lévy-

Prokhorov distance and is a Polish space. Moreover, for every nonnegative measurable (resp. bounded
measurable) functionf : (X; B (X)) ! (X; B (X)), � 7! � (f ) is measurable from(M (X); B (M (X)))
to (X; B (X)). A subsetG of M (X) is said tight if for every" > 0, there exists a compact subsetK of
X such that for all� 2 G, � (K ) > 1 � " . We shall often say that a family of random variable is tight
instead of saying that the family of their distributions is tight. Prokhorov's theorem gives a practical
criterion for relative compactness of probability measures :G is tight i� it is a relatively compact subset
of M (X).

We denote by� a the Dirac measure at the pointa 2 X. If X is a random variable on some
measurable space(
 ; F ) into (X; B (X)), we denote by� X : 
 ! M (X) the measurable mapping
de�ned by � X (! ) = � X (! ) . If � : (
 ; F ) ! (M (X); B (M (X))) is a random variable on the set of
probability measures, we denote byE� the probability measure de�ned by(E�)( f ) := E(�( f )) ; for
everyf 2 Cb(X).

3.4.2 Invariant Measures of Set-Valued Evolution Systems

The shift operator� : C(R+ ; X) ! C(R+ ; C(R+ ; X)) is de�ned by : for everyx 2 C(R+ ; X), �( x) :
t 7! x(t + � ). Consider a set-valued mapping� : X � C(R+ ; X). When� is single valued (i.e., for all
a 2 X, �( a) is a continuous function), a measure� 2 M (X) is called aninvariant measurefor � , or
� -invariant, if for allt > 0, � = � �( �; t)� 1, where�( a; t) denotes�( a)(t). For all t � 0, we de�ne the
projectionpt : C(R+ ; X) ! X by pt (x) = x(t).

The de�nition can be extended as follows to the case where� is set-valued.

De�nition 3.4.1. A probability measure� 2 M (X) is said invariant for� if there exists� 2
M (C(R+ ; X)) s.t.

(i) supp(� ) � cl(�( X)) ;

(ii) � is � -invariant ;

(iii) �p � 1
0 = � .
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When� is single valued, both de�nitions coincide. The above de�nition is borrowed from [59] (see
also [84]). Note that cl(�( X)) can be replaced by�( X) whenever the latter set is closed (su�cient
conditions for this have been provided above).

The limit set of a functionx 2 C(R+ ; X) is de�ned as

L x :=
\

t � 0

cl(x([t; + 1 ))) :

It coincides with the set of points of the formlimn x(tn ) for some sequencetn ! 1 . Consider now a
set valued mapping� : X � C(R+ ; X). The limit setL �( a) of a pointa 2 X for � is

L �( a) :=
[

x2 �( a)

L x ;

and L � :=
S

a2 X L �( a) . A point a is said recurrent for� if a 2 L �( a) . The Birkho� center of� is the
closure of the set of recurrent points

BC� := cl f a 2 X : a 2 L �( a)g:

The following result, established in [59] (see also [7]), is a consequence of the celebrated recurrence
theorem of Poincaré.

Proposition 3.4.1. Let � : X � C(R+ ; X). Assume that�( X) is closed. Let� 2 M (X) be an
invariant measure for� . Then, � (BC� ) = 1 .

We denote byI (�) the subset ofM (X) formed by all invariant measures for� . We de�ne

I (�) := f m 2 M (M (X)) : 8A 2 B (M (X)); I (�) � A ) m(A) = 1 g:

We de�ne the mappingav : C(R+ ; X) ! C(R+ ; X) by

av(x) : t 7!
1
t

Z t

0
x(s) ds ;

andav(x)(0) = x(0). Finally, we de�ne the average �owav(�) : X � C(R+ ; X) by av(�)( a) = f av(x) :
x 2 �( a)g for eacha 2 X.

3.5 Main Results

3.5.1 Dynamical Behavior

Choose 0 > 0. For every 2 (0;  0), we introduce a probability transition kernelP on X � B (X) !
[0; 1].

Let (� ; G; � ) be an arbitrary probability space.

Assumption (RM). There exist aG
 B (X)=B (X)-measurable maph : � � X ! X andH : � � X � X
such that:

i) For everyx 2 X, Z y � x


P (x; dy) =
Z

h (s; x)� (ds) :
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ii) For everys � -a.e. and for every converging sequence(un ;  n ) ! (u?; 0) on X � (0;  0),

h n (s; un ) ! H (s; u?) :

iii) For all s � -a.e.,H (s; �) is proper, usc, with closed convex values.

iv) For everyx 2 X, H (�; x) is � -integrable. We setH(x) :=
R

H (s; x) � (ds).

v) For everyT > 0 and every compact setK � X,

supfk x(t)k : t 2 [0; T]; x 2 �( a); a 2 K g < 1 :

where� is the evolution system induced byH.

vi) For every compact setK � X, there exists"K > 0 such that

sup
x2 K

sup
0<< 0

Z 





y � x








1+ " K

P (x; dy) < 1 ; (3.15)

sup
x2 K

sup
0<< 0

Z
kh (s; x)k1+ " K � (ds) < 1 : (3.16)

Assumptioni) implies that the drift has the form (3.1). As mentioned in the introduction, this is for
instance useful in the case of iterative Markov models such as (3.3). Assumptionv) requires implicitly
that the set of solutions�( a) is non-empty for any value ofa. It holds true if,e.g., the linear growth
condition (2.1) on H is satis�ed.

On the canonical space
 := XN equipped with the� -algebraF := B (X)
 N, we denote byX :

 ! XN the canonical process de�ned byX n (! ) = ! n for every! = ( ! k ; k 2 N) and everyn 2 N,
whereX n (! ) is then-th coordinate ofX (! ). For every� 2 M (X) and  2 (0;  0), we denote byP�;

the unique probability measure on(
 ; F ) such thatX is an homogeneous Markov chain with initial
distribution� and transition kernelP . We denote byE�; the corresponding expectation. When� = � a

for somea 2 X, we shall prefer the notationPa; to P� a ; .
For every > 0, we introduce the measurable map on(
 ; F ) ! (C(R+ ; X); B (C(R+ ; X))) , such

that for everyx = ( xn ; n 2 N) in 
 ,

X (x) : t 7! xb t
 c + ( t= � b t= c)(xb t

 c+1 � xb t
 c) :

The random variableX will be referred to as the linearlyinterpolated process. On the spaceC(R+ ; X)
endowed withB (C(R+ ; X))) , the distribution of the r.v.X is P�; X� 1

 .

Theorem 3.5.1. Suppose that Assumption (RM) is satis�ed. Then, for every compact setK � X, the
family f Pa; X� 1

 : a 2 K; 0 <  <  0g is tight. Moreover, for every" > 0,

sup
a2 K

Pa; (d(X ; �( K )) > " ) ��!
 ! 0

0;

where� is the evolution system induced byH.
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3.5.2 Convergence Analysis

For each 2 (0;  0), we denote by

I (P ) := f � 2 M (X) : � = �P  g

the set of invariant probability measures ofP . Letting P = f P ; 0 <  <  0g, we de�ne I (P) =
S

 2 (0; 0 ) I (P ). We say that a measure� 2 M (X) is a cluster point ofI (P) as  ! 0, if there exists
a sequence j ! 0 and a sequence of measures(� j ; j 2 N) s.t. � j 2 I (P j ) for all j , and � j ) � .

We de�ne
I (P ) := f m 2 M (M (X)) : supp(m) � I (P )g ;

and I (P) =
S

 2 (0; 0 ) I (P ). We say that a measurem 2 M (M (X)) is a cluster point ofI (P) as
 ! 0, if there exists a sequence j ! 0 and a sequence of measures(mj ; j 2 N) s.t. mj 2 I (P j ) for
all j , andmj ) m.

Proposition 3.5.2. Suppose that Assumption (RM) is satis�ed. Then,

i) As  ! 0, any cluster point ofI (P) is an element ofI (�) ;

ii) As  ! 0, any cluster point ofI (P) is an element ofI (�) .

In order to explore the consequences of this Prop., we introduce two supplementary assumptions.
The �rst is the so-called Pakes-Has'minskii tightness criterion, who reads as follows [60]:

Assumption (PH). There exists measurable mappingsV : X ! [0; + 1 ),  : X ! [0; + 1 ) and two
functions� : (0;  0) ! (0; + 1 ), � : (0;  0) ! R, such that

sup
 2 (0; 0 )

� ( )
� ( )

< 1 and lim
kxk! + 1

 (x) = + 1 ;

and for every 2 (0;  0),
P V � V � � ( ) + � ( ) :

We recall that a transition kernelP on X � B (X) ! [0; 1] is saidFeller if the mappingP f : x 7!
R

f (y)P(x; dy) is continuous for anyf 2 Cb(X). If P is Feller, then the set of invariant measures ofP
is a closed subset ofM (X). The following assumption ensures that for all 2 (0;  0), P is Feller.

Assumption (FL). For everys 2 � ,  2 (0;  0), the functionh (s; �) is continuous.

Theorem 3.5.3. Let Assumptions (RM), (PH) and (FL) be satis�ed. Let and V be the functions
speci�ed in (PH). Let� 2 M (X) s.t. � (V) < 1 . Let U :=

S
� 2I (�) supp(� ). Then, for all" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P�; (d(X k ; U) > " ) ��!
 ! 0

0: (3.17)

Let Y an Euclidean space andf 2 C(X; Y). Assume that there existsM � 0 and ' : Y ! R+ such
that limkak!1 ' (a)=kak = + 1 and

8a 2 X; ' (f (a)) � M (1 +  (a)) : (3.18)
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Then, the setSf := f � (f ) : � 2 I (�) and � (kf (�)k) < 1g is nonempty. For alln 2 N,  2 (0;  0),
the r.v.

Fn :=
1

n + 1

nX

k=0

f (X k)

is P�; -integrable, and satis�es for all" > 0,

lim sup
n!1

d(E�; (Fn ) ; Sf ) ��!
 ! 0

0; (3.19)

lim sup
n!1

P�; (d (Fn ; Sf ) � " ) ��!
 ! 0

0: (3.20)

Theorem 3.5.4. Let Assumptions (RM), (PH) and (FL) be satis�ed. Assume that�( X) is closed. Let
 andV be the functions speci�ed in (PH). Let� 2 M (X) s.t. � (V) < 1 . Assume that

lim
kak!1

 (a)
kak

= + 1 :

For all n 2 N, de�ne X n := 1
n+1

P n
k=0 X k : Then, for all" > 0,

lim sup
n!1

d
€
E�; (X n ) ; co(Lav(�) )

Š
��!
 ! 0

0;

lim sup
n!1

P�;
•
d

•
X n ; co(Lav(�) )

‹
� "

‹
��!
 ! 0

0;

Theorem 3.5.5. Let Assumptions (RM), (PH) and (FL) be satis�ed. Assume that�( X) is closed. Let
 andV be the functions speci�ed in (PH). Let� 2 M (X) s.t. � (V) < 1 . Then, for all" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P�; (d (X k ; BC� ) � " ) ��!
 ! 0

0:

3.6 Proof of Th. 3.5.1

The �rst lemma is a straightforward adaptation of theconvergence theorem[6, Chap. 1.4, Th. 1, pp.
60]. Hence, the proof is omitted. We denote by� T the Lebesgue measure on[0; T].

Lemma 3.6.1. Let f F� : � 2 � g be a family of mappings onX � X. Let T > 0 and for alln 2 N, let
un : [0; T] ! X, vn : � � [0; T] ! X be measurable maps w.r.tB ([0; T]) andG
 B ([0; T]) respectively.
Note for simplicityL 1 := L 1(� � [0; T]; G 
 B ([0; T]); � 
 � T ; R). Assume the following.

i) For all (�; t ) � 
 � T -a.e.,(un (t); vn (�; t )) ! n gr(F� ).

ii) (un ) converges� T -a.e. to a functionu : [0; T] ! X.

iii) For all n, vn 2 L 1 and converges weakly inL 1 to a functionv : � � [0; T] ! X.

iv) For all � � -a.e.,F� is proper upper semi continuous with closed convex values.

Then, for all(�; t ) � 
 � T -a.e.,v(�; t ) 2 F� (u(t)) .
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GivenT > 0 and0 < � � T, we denote by

wT
x (� ) := supfk x(t) � x(s)k : jt � sj � � ; (t; s) 2 [0; T]2g

the modulus of continuity on[0; T] of anyx 2 C(R+ ; X).

Lemma 3.6.2. For all n 2 N, denote byF n � F the � -�eld generated by the r.v.f X k ; 0 � k � ng.
For all  2 (0;  0), de�ne Z 

n+1 :=  � 1(X n+1 � X n ). Let K � X be compact. Letf �Pa; ; a 2 K; 0 <
 <  0g be a family of probability measures on(
 ; F ) satisfying the following uniform integrability
condition:

sup
n2 N� ;a2 K; 2 (0; 0 )

�Ea; (kZ 
n k1kZ 

n k>A ) A! + 1����! 0: (3.21)

Then, f �Pa; X� 1
 : a 2 K; 0 <  <  0g is tight. Moreover, for anyT > 0; " > 0,

sup
a2 K

�Pa;

„

max
0� n�b T

 c









nX

k=0

€
Z 

k+1 � �Ea; (Z 
k+1 jF k)

Š







> "

Ž
 ! 0
��! 0: (3.22)

Proof. We prove the �rst point. SetT > 0, let 0 < � � T, and choose0 � s � t � T s.t. t � s � � .
Let  2 (0;  0) and setn := b t

 c, m := bs
 c. For anyR > 0,

kX (t) � X (s)k � 
nX

k= m+2

kZ 
k k +  (t= � n)kZ 

n+1 k +  ((m + 1) � s= )kZ 
m+1 k

�  (t= � s= )R + 
n+1X

k= m+1

kZ 
k k1kZ 

k k>R :

Recalling thatt � s � � and using Markov inequality, we obtain

�Pa; X� 1
 (f x : wT

x (� ) > " g) � �Pa;

…


bT

 c+1
X

k=1

kZ 
k k1kZ 

k k>R > " � �R

•

� (T +  0)
supk2 N�

�Ea;
€
kZ 

k k1kZ 
k k>R

Š

" � �R
;

provided thatR� < " . ChoosingR = "=(2� ) and using the uniform integrability,

sup
a2 K; 0<< 0

�Pa; X� 1
 (f x : wT

x (� ) > " g) � ! 0��! 0:

As f �Pa; X� 1
 p� 1

0 ; 0 <  <  0; a 2 K g is obviously tight, the tightness off �Pa; X� 1
 ; a 2 K; 0 <  <  0g

follows from [29, Th. 7.3]
We prove the second point. We de�neM a;

n+1 :=
P n

k=0

€
Z 

k+1 � �Ea; (Z 
k+1 jF k)

Š
. We introduce

� a;; �
n+1 := Z 

n+1 1kZ 
n +1 k� R � �Ea;

�
Z 

n+1 1kZ 
n +1 k� R jF n

�

and we de�ne� a;;>
n+1 in a similar way, by replacing� with > in the right hand side of the above equation.

Clearly, for alla 2 K , M a;
n+1 = Sa;; �

n+1 + Sa;;>
n+1 whereSa;; �

n+1 := 
P n

k=0 � a;; �
k+1 and Sa;;>

n+1 is de�ned
similarly. Thus,

 kM a;
n+1 k � k Sa;; �

n+1 k + kSa;;>
n+1 k:
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Under�Pa; , the random processesSa;; � andSa;;> areF n -adapted martingales. De�ningq := bT
 c+1,

we obtain by Doob's martingale inequality and by the boundedness of the increments ofSa;; �
n that

�Pa;
‚

max
1� n� q

kSa;; �
n k > "

Œ

�
�Ea; (kSa;; �

q
k)

"
�

�Ea; (kSa;; �
q

k2)1=2

"
�

2
"

R
p

q ;

and the right hand side tends to zero uniformly ina 2 K as ! 0. By the same inequality,

�Pa;
‚

max
1� n� q

kSa;;>
n k > "

Œ

�
2
"

q  sup
k2 N�

�Ea;
€
kZ 

k k1kZ 
k k>R

Š
:

Choose an arbitrarily small� > 0 and selectR as large as need in order that the supremum in the right
hand side is no larger than"�= (2T + 2 0). Then the left hand side is no larger than� . Hence, the proof
is concluded.

For anyR > 0, de�ne h;R (s; x) := h (s; x)1kxk� R . Let HR(s; x) := H (s; x) if kxk < R , f 0g if
kxk > R , and X otherwise. Denote the corresponding selection integral asHR(x) =

R
HR(s; x) � (ds).

De�ne � R(x) := inf f n 2 N : kxnk > R g for all x 2 
 . We also introduce the measurable mapping
BR : 
 ! 
 , given by

BR(x) : n 7! xn1n<� R (x) + x � R (x)1n� � R (x)

for all x 2 
 and alln 2 N.

Lemma 3.6.3. Suppose that Assumption (RM) is satis�ed. Then, for every compact setK � X, the
family f Pa; B � 1

R X� 1
 ;  2 (0;  0); a 2 K g is tight. Moreover, for every" > 0,

sup
a2 K

Pa; B � 1
R [d(X ; � HR (K )) > " ] ��!

 ! 0
0:

Proof. We introduce the measurable mappingM ;R : 
 ! XN s.t. for all x 2 
 , M ;R (x)(0) := 0 and

M ;R (x)(n) := ( xn � x0) � 
n� 1X

k=0

Z
h;R (s; xk)� (ds)

for all n 2 N� . We also introduce the measurable mappingG;R : C(R+ ; X) ! C(R+ ; X) s.t. for all
x 2 C(R+ ; X),

G;R (x)( t) :=
Z t

0

Z
h;R (s;x( bu= c)) � (ds) du :

We �rst express the interpolated process in integral form. For everyx 2 XN and t � 0,

X (x)(t) = x0 +
Z t

0
 � 1(xbu

 c+1 � xbu
 c) du :

We have the decomposition

xn = x0 + 
n� 1X

k=0

Z
h;R (s; xk)� (ds) + M ;R (x)(n):

Then, interpolating,
X (x) = x0 + G;R � X (x) + X � M ;R (x) : (3.23)
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The uniform integrability condition (3.21) is satis�ed when letting�Pa; := Pa; B � 1
R . First, note that

BR(x)(n + 1) = BR(x)(n) + ( xn+1 � xn )1� R (x)>n and that � R(x) > n , k BR(x)(n)k � R ) xn =
BR(x)(n). Note also that, w.r.t(F n ), � R(X ) is a stopping time andBR(X ) is adapted. Then, using
(RM)� i),

Ea; ( � 1(BR(X )(n + 1) � BR(X )(n)) jF n ) = Ea;
‚

X n+1 � X n


1� R (X )>n jF n

Œ

= 1� R (X )>n

Z y � X n


P (X n ; dy)

= 1� R (X )>n

Z
h (s; Xn )� (ds)

= 1kB R (x)( n)k� R

Z
h (s; BR(X )(n)) � (ds)

=
Z

h;R (s; BR(X )(n)) � (ds):

Moreover,

Ea;

 





BR(X )(n + 1) � BR(X )(n)








1+ � K
!

= Ea;

 





X n+1 � X n









1+ � K

1� R (X )>n

!

= Ea;

 Z 





y � X n









1+ � K

P (X n ; dy)1� R (X )>n

!

� Ea;

 Z 





y � X n









1+ � K

P (X n ; dy)1kX n k� R

!

� sup
kxk� R

Z 





y � x








1+ � K

P (x; dy):

The condition (3.21) follows from hypothesis (3.15). Thus, Lem.3.6.2 implies that for all" > 0 and
T > 0,

sup
a2 K

�Pa;

„

max
0� n�b T

 c
kM ;R (x)(n + 1) k > "

Ž
 ! 0
��! 0:

It is easy to see that for allx 2 
 , the functionX � M ;R (x) is bounded on every compact interval
[0; T] by max0� n�b T

 c kM ;R (x)(n + 1) k. This in turns leads to:

sup
a2 K

�Pa; (kX � M ;R k1 ;T > " )
 ! 0
��! 0; (3.24)

where the notationkxk1 ;T stands for the uniform norm ofx on [0; T].
As a second consequence of Lem.3.6.2, the familyf �Pa; X� 1

 ; 0 <  <  0; a 2 K g is tight. Choose
any subsequence(an ;  n ) s.t.  n ! 0 and an 2 K . Using Prokhorov's theorem and the compactness
of K , there exists a subsequence (which we still denote by(an ;  n )) and there exist somea? 2 K and
some� 2 M (C(R+ ; X)) such thatan ! a? and �Pan ; n X� 1

 n
converges narrowly to� . By Skorokhod's

representation theorem, we introduce some r.v.z, f xn ; n 2 Ng on C(R+ ; X) with respective distributions
� and �Pan ; n X� 1

 n
, de�ned on some other probability space(
 0; F 0; P0) and such thatd(xn (! ); z(! )) ! 0

for all ! 2 
 0. By (3.23) and (3.24), the sequence of r.v.

xn � xn (0) � G n ;R (xn )

37



converges in probability to zero in(
 0; F 0; P0), asn ! 1 . One can extract a subsequence under which
this convergence holds in the almost sure sense. Therefore, there exists an event of probability one s.t.,
everywhere on this event,

z(t) = z(0) + lim
n!1

Z t

0

Z

�
h n ;R (s;xn ( nbu= nc)) � (ds) du (8t � 0) ;

where the limit is taken along the former subsequence. We now select an! s.t. the above convergence
holds, and omit the dependence on! in the sequel (otherwise stated,z andxn are treated as elements of
C(R+ ; X) and no longer as random variables). SetT > 0. As (xn ) converges uniformly on[0; T], there
exists a compact setK 0 (which depends on! ) such thatxn ( nbt= nc) 2 K 0 for all t 2 [0; T], n 2 N.
De�ne

vn (s; t) := h n ;R (s;xn ( nbt= nc)) :

By Eq. (3.16), the sequence(vn ; n 2 N) forms a bounded subset ofL 1+ " K 0 := L 1+ " K 0(� � [0; T]; G 

B ([0; T]); � 
 � T ; X). By the Banach-Alaoglu theorem, the sequence converges weakly to some mapping
v 2 L 1+ " K 0 along some subsequence. This has two consequences. First,

z(t) = z(0) +
Z t

0

Z

�
v(s; u) � (ds) du ; (8t 2 [0; T]) : (3.25)

Second, for� 
 � T -almost all(s; t), v(s; t) 2 HR(s;z(t)) . In order to prove this point, remark that, by
Assumption (RM),

vn (s; t) ! HR(s;z(t))

for almost all(s; t). This implies that the couple(xn ( nbt= nc); vn (s; t)) converges togr(HR(s; �)) and
the second point thus follows from Lem.3.6.1. By Fubini's theorem, there exists a negligible set of[0; T]
s.t. for all t outside this set,v(�; t) is an integrable selection ofHR(�; z(t)) . As H (�; x) is integrable for
everyx 2 X, the same holds forHR . Denoting byHR the selection integral ofHR and� HR the evolution
system induced byHR , Eq. (3.25) implies that z 2 � HR (K ) : We have shown that for any sequence
((an ;  n ); n 2 N) on K � (0;  0) s.t.  n ! 0, there exists a subsequence along which, for every" > 0,
Pan ; n B � 1

R (d(X n ; � HR (K )) > " ) ! 0: This proves the lemma.

End of the proof of Th. 3.5.1.
We �rst prove the second statement. Set an arbitraryT > 0. De�ne dT (x; y) := kx � yk1 ;T . It
is su�cient to prove that for any sequence((an ;  n ); n 2 N) s.t.  n ! 0, there exists a subsequence
along whichPan ; n (dT (X n ; �( K )) > " ) ! 0. ChooseR > R 0(T), whereR0(T) := supfk x(t)k : t 2
[0; T]; x 2 � H(a); a 2 K g is �nite by Assumption (RM). It is easy to show that anyx 2 � HR (K ) must
satisfykxk1 ;T < R . Thus, whenR > R 0(T), anyx 2 � HR (K ) is such that there existsy 2 �( K ) with
dT (x; y) = 0 i.e., the restrictions ofx andy to [0; T] coincide. As a consequence of the Lem.3.6.3, each
sequence(an ;  n ) chosen as above admits a subsequence along which, for all" > 0,

Pan ; n (dT (X n � BR ; �( K )) > " ) ! 0: (3.26)

The eventdT (X � BR ; X ) > 0 implies the eventkX � BRk1 ;T � R, which in turn implies by the
triangular inequality thatdT (X � BR ; �( K )) � R � R0(T) : Therefore,

Pan ; n (dT (X n � BR ; X n ) > " ) � P(dT (X n � BR ; �( K )) � R � R0(T)) : (3.27)

By (3.26), the right hand side converges to zero. Using (3.26) again along with the triangular inequality,
it follows that Pan ; n (dT (X n ; �( K )) > " ) ! 0, which proves the second statement of the theorem.
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We prove the �rst statement (tightness). Using [29], this is equivalent to showing that for every
T > 0, and for every sequence(an ;  n ) on K � (0;  0), the sequence(Pan ; n X� 1

 n
p� 1

0 ) is tight, and for
each positive" and � , there exists� > 0 such thatlim supn Pan ; n X� 1

 n
(f x : wT

x (� ) > " g) < � . Since
Pan ; n X� 1

 n
p� 1

0 = � an , (Pan ; n X� 1
 n

p� 1
0 )n is tight.

First consider the case where n ! 0. FixingT > 0, letting R > R 0(T) and using (3.27), it holds that
for all " > 0, Pan ; n (dT (X n � BR ; X n ) > " ) ! n 0. Moreover, we showed that(Pan ; n B � 1

R X� 1
 n

) is tight.
In addition, for everyx; y 2 C(R+ ; X), it holds by the triangle inequality thatwT

x (� ) � wT
y (� )+2 dT (x; y)

for every� > 0. Thus,

Pan ; n X� 1
 n

(f x : wT
x (� ) > " g) � Pan ; n B � 1

R X� 1
 n

(f x : wT
x (� ) > "= 2g)

+ Pan ; n (dT (X n � BR ; X n ) > "= 4);

which leads to the tightness of(Pan ; n X� 1
 n

) when n ! 0.
It remains to establish the tightness whenlim inf n  n > � > 0 for some� > 0. Note that for all

 > � ,
wXT

 (x)(� ) � 2� max
k=0 :::bT=� c+1

kxkk :

There existsn0 such that for alln � n0,  n > � which implies by the union bound:

Pan ; n X� 1
 n

(f x : wT
x (� ) > " g) �

bT=� c+1X

k=0

P k
 (a; B(0; (2� )� 1" )c) ;

whereB(0; r ) � X stands for the ball or radiusr and whereP k
 stands for the iterated kernel, recursively

de�ned by

P k
 (a; �) =

Z
P (a; dy)P k� 1

 (y; �) (3.28)

and P0
 (a; �) = � a. Using (3.15), it is an easy exercise to show, by induction, that for everyk 2 N,

P k
 (a; B(0; r )c) ! 0 as r ! 1 . By letting � ! 0 in the above inequality, the tightness of(Pan ; n X� 1

 n
)

follows.

3.7 Proof of Prop. 3.5.2

To establish Prop.3.5.2� i), we consider a sequence((� n ;  n ); n 2 N) such that� n 2 I (P n ),  n ! 0,
and(� n ) is tight. We �rst show that the sequence(� n := P� n ; n X� 1

 n
; n 2 N) is tight, then we show that

every cluster point of(� n ) satis�es the conditions of Def.3.4.1.
Given" > 0, there exists a compact setK � X such that inf n � n (K ) > 1 � "=2. By Th. 3.5.1,

the family f Pa; n X� 1
 n

; a 2 K; n 2 Ng is tight. Let C be a compact set ofC(R+ ; X) such that
inf a2 K;n 2 N Pa; n X� 1

 n
(C) > 1 � "=2. By construction of the probability measureP� n ; n , it holds that

P� n ; n (�) =
R

X Pa; n (�) � n (da). Thus,

� n (C) �
Z

K
Pa; n X� 1

 n
(C) � n (da) > (1 � "=2)2 > 1 � " ;

which shows that(� n ) is tight.
Since� n = � np� 1

0 , and since the projectionp0 is continuous, it is clear that every cluster point�
of I (P) as  ! 0 can be written as� = �p � 1

0 , where� is a cluster point of a sequence(� n ). Thus,
Def. 3.4.1� (iii) is satis�ed by� and � . To establish Prop.3.5.2� i), we need to verify the conditions(i)
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and(ii) of Def.3.4.1. In the remainder of the proof, we denote with a small abuse as(n) a subsequence
along which(� n ) converges narrowly to� .

To establish the validity of Def.3.4.1� (i) , we prove that for every� > 0, � n ((� H(X)) � ) ! 1 as
n ! 1 ; the result will follow from the convergence of(� n ). Fix " > 0, and letK � X be a compact
set such thatinf n � n (K ) > 1 � " . We have

� n ((� H(X)) � ) = P� n ; n (d(X n ; �( X)) < � )

� P� n ; n (d(X n ; �( K )) < � )

�
Z

K
Pa; n (d(X n ; �( K )) < � ) � n (da)

� (1 � " ) inf
a2 K

Pa; n (d(X n ; �( K )) < � ) :

By Th. 3.5.1, the in�mum at the right hand side converges to1. Since" > 0 is arbitrary, we obtain the
result.

It remains to establish the� -invariance of� (Condition(ii) ). Equivalently, we need to show that
Z

f (x) � (dx) =
Z

f (�( x)( t)) � (dx) (3.29)

for all f 2 Cb(C(R+ ; X)) and all t > 0. We shall work on(� n ) and maken ! 1 . Write � n :=
t �  nbt= nc. Thanks to theP n �invariance of� n , �( x( nbt= nc+ �))( � n ) and�( x)(t) are equal in law
under� n (dx). Thus,

Z
f (�( x)( t)) � n (dx) =

Z
f (�( x( nbt= nc + �))( � n )) � n (dx)

=
Z

f (�( x)( � n )) � n (dx): (3.30)

Using Skorokhod's representation theorem, there exists a probability space(
 0; F 0; P0) and random
variables(�xn ; n 2 N) and �x over this probability space, with values inC(R+ ; X), such that for every
n 2 N, the distribution of�xn is � n , the distribution of�x is � andP0-a.s,

d(�xn ; �x) �! n! + 1 0;

i.e, (�xn ) converges to�x as n ! + 1 uniformly over compact sets ofR+ . Since� n ! n! + 1 0, P0-a.s,
d(�( �xn )( � n ); �x) �! n! + 1 0: Hence,

Z
f (�( x)( � n )) � n (dx) ���!

n!1

Z
f (x) � (dx) :

Recalling Eq. (3.30), we have shown that
R

f (�( x)( t)) � n (dx) ���!
n!1

R
f (�( x)( t)) � (dx). Since

Z
f (x) � n (dx) ���!

n!1

Z
f (x) � (dx);

the identity (3.29) holds true. Prop.3.5.2� i) is proven.
We now prove Prop.3.5.2� ii). Consider a sequence((mn ;  n ); n 2 N) such thatmn 2 I (P n ),

 n ! 0, and mn ) m for somem 2 M (M (X)). Since the spaceM (X) is separable, Skorokhod's
representation theorem shows that there exists a probability space(
 0; F 0; P0), a sequence of
 0 ! M (X)
random variables(� n ) with distributionsmn , and a
 0 ! M (X) random variable� with distributionm
such that� n (! ) ) �( ! ) for each! 2 
 0. Moreover, there is a probability one subset of
 0 such that
� n (! ) is a P n �invariant probability measure for alln and for every! in this set. For each of these! ,
we can construct on the space(XN; F ) a probability measureP� n (! ); n as we did in Sec.3.5.1. By the
same argument as in the proof of Prop.3.5.2� i), the sequence(P� n (! ); n X� 1

 n
; n 2 N) is tight, and any

cluster point� satis�es the conditions of Def.3.4.1with �( ! ) = �p � 1
0 . Prop. 3.5.2 is proven.
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3.8 Proof of Th. 3.5.3

3.8.1 Technical lemmas

Using Prokhorov's theorem, some compact sets ofM (X) are given by the following.

Lemma 3.8.1. Given a familyf K j ; j 2 Ng of compact sets ofX, the set

U := f � 2 M (X) : 8j 2 N; � (K j ) � 1 � 2� j g

is a compact set ofM (X).

Proof. The setU is tight hence relatively compact by Prokhorov's theorem. It is moreover closed. Indeed,
let (� n ; n 2 N) represent a sequence ofU s.t. � n ) � . Then, for allj 2 N, � (K j ) � lim supn � n (K j ) �
1 � 2� j sinceK j is closed.

A tightness criterion of probability measuresover the spaceE = M (X) i.e in the spaceM (M (X))
can be given.

For anym 2 M (M (X)), we denote bye(m) the probability measure inM (X) such that for every
f 2 Cb(X),

e(m) : f 7!
Z

� (f )m(d� ) :

Otherwise stated,e(m)(f ) = m(Tf ) whereTf : � 7! � (f ).

Lemma 3.8.2. Let X be a real random variable such thatX � 1 with probability one, andEX � 1� "
for some" � 0. Then P[X � 1 �

p
" ] � 1 �

p
" .

Proof. 1 � " � EX � EX 1X< 1�
p

" + EX 1X � 1�
p

" � (1 �
p

")(1 � P[X � 1 �
p

" ]) + P[X � 1 �
p

" ].
The result is obtained by rearranging.

Lemma 3.8.3. Let L be a family onM (M (X)). If f e(m) : m 2 Lg is tight, thenL is tight.

Proof. Let " > 0 and choose any integerk s.t. 2� k+1 � " . For all j 2 N, choose a compact setK j � X
s.t. for all m 2 L , e(m)(K j ) > 1 � 2� 2j : De�ne U as the set of measures� 2 M (X) s.t. for all j � k,
� (K j ) � 1 � 2� j . By Lem.3.8.1, U is compact. For allm 2 L , the union bound implies that

m(M (X)nU) �
1X

j = k

mf � : � (K j ) < 1 � 2� j g

By Lem.3.8.2, mf � : � (K j ) � 1� 2� j g � 1� 2� j . Therefore,m(M (X)nU) �
P 1

j = k 2� j = 2 � k+1 � " :
This proves thatL is tight.

Moreover,e : M (M (X)) ! M (X) is continuous.

Lemma 3.8.4. Let (mn ; n 2 N) be a sequence onM (M (X)), and consider�m 2 M (M (X)). If
mn ) �m, then e(mn ) ) e( �m).

Proof. For anyf 2 Cb(X), Tf 2 Cb(M (X)). Thus,mn (Tf ) ! �m(Tf ).

When a sequence(mn ; n 2 N) of M (M (X)) converges narrowly tom 2 M (M (X)), it follows from
the above proof thatmnT � 1

f ) mT � 1
f for all bounded continuousf . The purpose of the next lemma is

to extend this result to the case wheref is not necessarily bounded, but instead, satis�es some uniform
integrability condition. For any vector-valued functionf , we use the notationkf k := kf (�)k.
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Lemma 3.8.5. Let f 2 C(X; Y) whereY is an Euclidean space. De�ne byTf : M (X) ! R the
mapping s.t.Tf (� ) := � (f ) if � (kf k) < 1 and equal to zero otherwise. Let(mn ; n 2 N) be a sequence
on M (M (X)) and letm 2 M (M (X)). Assume thatmn ) m and

lim
K !1

sup
n

e(mn )(kf k1kf k>K ) = 0 : (3.31)

Then, � (kf k) < 1 for all � m-a.e. andmnT � 1
f ) mT � 1

f .

Proof. By Eq. (3.31), e(m)(kf k) < 1 . This implies that for all� m-a.e., � (kf k) < 1 . Choose
h 2 Cb(Y) s.t. h is L-Lipschitz continuous. We must prove thatmnT � 1

f (h) ! mT � 1
f (h). By the above

remark,mT � 1
f (h) =

R
h(� (f ))dm(� ), and by Eq (3.31), mnT � 1

f (h) =
R

h(� (f ))dmn (� ). Choose" > 0.
By Eq. (3.31), there existsK 0 > 0 s.t. for all K > K 0, supn e(mn )(kf k1kf k>K ) < " . For every such
K , de�ne the bounded functionf K 2 C(X; Y) by f K (x) = f (x)(1 ^ K=kf (x)k). For allK > K 0, and
for all n 2 N,

jmnT � 1
f (h) � mnT � 1

f K
(h)j �

Z
jh(� (f )) � h(� (f K )) jdmn (� )

� L
Z

� (kf � f K k)dmn (� )

� L
Z

� (kf k1kf k>K )dmn (� ) � L" :

By continuity ofTf K , it holds thatmnT � 1
f K

(h) ! mT � 1
f K

(h). Therefore, for everyK > K 0,

lim sup
n

jmnT � 1
f (h) � mT � 1

f K
(h)j � L" :

As � (kf k) < 1 for all � m-a.e., the dominated convergence theorem implies that� (f K ) ! � (f ) as
K ! 1 , m-a.e. Ash is bounded and continuous, a second application of the dominated convergence
theorem implies that

R
h(� (f K ))dm(� ) !

R
h(� (f ))dm(� ), which readsmT � 1

f K
(h) ! mT � 1

f (h). Thus,
lim supn jmnT � 1

f (h) � mT � 1
f (h)j � L" : As a consequence,mnT � 1

f (h) ! mT � 1
f (h) asn ! 1 , which

completes the proof.

3.8.2 Narrow Cluster Points of the Empirical Measures

Let P : X � B (X) ! [0; 1] be a probability transition kernel. For� 2 M (X), we denote byP�;P

the probability on(
 ; F ) such thatX is an homogeneous Markov chain with initial distribution� and
transition kernelP.

For everyn 2 N, we de�ne the measurable mapping� n : 
 ! M (X) as

� n (x) :=
1

n + 1

nX

k=0

� xk (3.32)

for all x = ( xk : k 2 N). Note that

E�;P � n =
1

n + 1

nX

k=0

�P k ;

whereE�;P � n = e(P�;P � � 1
n ), and P k stands for the iterated kernel, recursively de�ned byP k(x; �) =

R
P(x; dy)P k� 1(y; �) andP0(x; �) = � x .

We recall thatI (P) represents the subset ofM (M (X)) formed by the measures whose support is
included inI (P).
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Proposition 3.8.6. Let P : X � B (X) ! [0; 1] be a Feller probability transition kernel. Let� 2 M (X).

1. Any cluster point off E�;P � n ; n 2 Ng is an element ofI (P).

2. Any cluster point off P�;P � � 1
n ; n 2 Ng is an element ofI (P).

Proof. We omit the upper script�;P . For all f 2 Cb(X), E� n (P f ) � E� n (f ) ! 0. As P is Feller, any
cluster point� of f E� n ; n 2 Ng satis�es� (P f ) = � (f ). This proves the �rst point.

For everyf 2 Cb(X) andx 2 
 , consider the decomposition:

� n (x)(P f ) � � n (x)(f ) =
1

n + 1

n� 1X

k=0

(P f (xk) � f (xk+1 )) +
P f (xn ) � f (x0)

n + 1
:

Using thatf is bounded, Doob's martingale convergence theorem implies that the sequence

• n� 1X

k=0

k� 1(P f (X k) � f (X k+1 ))
‹

n

converges a.s. whenn tends to in�nity. By Kronecker's lemma, we deduce that

1
n + 1

n� 1X

k=0

(P f (X k) � f (X k+1 ))

tends a.s. to zero. Hence,
� n (P f ) � � n (f ) ! 0 a.s. (3.33)

Now consider a subsequence(� ' n ) which converges in distribution to some r.v.� asn tends to in�nity.
For a �xed f 2 Cb(X), the mapping� 7! (� (f ); � (P f )) on M (X) ! R2 is continuous. From the
mapping theorem,� ' n (f ) � � ' n (P f ) converges in distribution to�( f ) � �( P f ). By (3.33), it follows
that �( f ) � �( P f ) = 0 on some eventEf 2 F of probability one. Denote byC� (X) � Cb(X) the
set of continuous real-valued functions having a compact support, and letC� (X) be equipped with the
uniform normk � k1 . Introduce a dense denumerable subsetS of C� (X). On the probability-one event
E = \ f 2 SEf , it holds that for allf 2 S, �( f ) = � P(f ). The same equality can be extended to any
f 2 C� (X) by density ofS and continuity off 7! (� (f ); � (P f )) over C� (X) for every� 2 M (X).
Hence, almost everywhere onE, one has� = � P.

3.8.3 Tightness of the Empirical Measures

Proposition 3.8.7. Let P be a family of transition kernels onX. Let V : X ! [0; + 1 ),  : X !
[0; + 1 ) be measurable. Let� : P ! (0; + 1 ) and � : P ! R. Assume thatsupP 2P

� (P )
� (P ) < 1 and

 (x) ! 1 askxk ! 1 . Assume that for everyP 2 P ,

PV � V � � (P) + � (P) :

Then, the following holds.

i) The family
S

P 2P I (P) is tight. Moreover,sup� 2I (P ) � ( ) < + 1 :

ii) For every� 2 M (X) s.t. � (V) < 1 , everyP 2 P , f E�;P � n ; n 2 Ng is tight. Moreover,
supn2 N E�;P � n ( ) < 1 :
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Proof. For eachP 2 P , PV is everywhere �nite by assumption. Moreover,

nX

k=0

P k+1 V �
nX

k=0

P kV � � (P)
nX

k=0

P k  + ( n + 1) � (P) :

Using thatV � 0 and � (P) > 0,

1
n + 1

nX

k=0

P k  �
V

� (P)(n + 1)
+ c;

wherec := supP 2P � (P)=� (P) is �nite. For anyM > 0,

1
n + 1

nX

k=0

P k( ^ M ) �

 
1

n + 1

nX

k=0

P k  

!

^ M

�
‚

V
� (P)(n + 1)

+ c
Œ

^ M : (3.34)

Set � 2 I (P), and considerP 2 P such that� = �P . Inequality (3.34) implies that for everyn,

� ( ^ M ) � �
‚‚

V
� (P)(n + 1)

+ c
Œ

^ M
Œ

:

By Lebesgue's dominated convergence theorem,� ( ^ M ) � c. Letting M ! 1 yields� ( ) � c.
The tightness ofI (P) follows from the convergence of (x) to 1 as kxk ! 1 . Setting M = + 1
in (3.34), and integrating w.r.t.� , we obtain

E�;P � n ( ) �
� (V)

(n + 1) � (P)
+ c ;

which proves the second point.

Proposition 3.8.8. We posit the assumptions of Prop.3.8.7. Then,

1. The familyI (P) :=
S

P 2P I (P) is tight;

2. f P�;P � � 1
n ; n 2 Ng is tight.

Proof. For everym 2 I (P), it is easy to see thate(m) 2 I (P). Thus, f e(m) : m 2 I (P)g
is tight by Prop.3.8.7. By Lem. 3.8.3, I (P) is tight. The second point follows from the equality
E�;P � n = e(P�;P � � 1

n ) along with Prop.3.8.7and Lem.3.8.3.

3.8.4 Main Proof

By continuity ofh (s; �) for everys 2 � ,  2 (0;  0), the transition kernelP is Feller. By Prop.3.8.7
and Eq. (3.18), we havesupn E�; � n (' � f ) < 1 which, by de la Vallée-Poussin's criterion for uniform
integrability, implies

lim
K !1

sup
n

E�; � n (kf k1kf k>K ) = 0 : (3.35)

In particular, the quantityE�; � n (f ) = E�; (Fn ) is well-de�ned.
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We now prove the statement (3.19). By contradiction, assume that for some� > 0, there exists a
positive sequence j ! 0, such that for allj 2 N, lim supn!1 d(E�; j � n (f ) ; Sf ) > � : For everyj ,
there exists an increasing sequence of integers(' j

n ; n 2 N) converging to+ 1 s.t.

8n; d
€
E�; j � ' j

n
(f ) ; Sf

Š
> � : (3.36)

By Prop. 3.8.7, the sequence(E�; j � ' j
n
; n 2 N) is tight. By Prokhorov's theorem and Prop.3.8.6,

there exists� j 2 I (P j ) such that, asn tends to in�nity, E�; j � ' j
n

) � j along some subsequence.
By the uniform integrability condition (3.35), � j (kf k) < 1 and E�; j � ' j

n
(f ) ! � j (f ) as n tends to

in�nity, along the latter subsequence. By Eq. (3.36), for all j 2 N, d(� j (f ); Sf ) � � : By Prop.3.8.7,
sup� 2I (P ) � ( ) < + 1 : Since' � f � M (1 +  ), de la Vallée-Poussin's criterion again implies that

sup
� 2I (P )

� (kf k1kf k>K ) < 1 : (3.37)

Also by Prop.3.8.7, the sequence(� j ) is tight. Thus � j ) � along some subsequence, for some
measure� which, by Prop.3.5.2, is invariant for� . The uniform integrability condition (3.37) implies
that � (kf k) < 1 (hence, the setSf is non-empty) and� j (f ) ! � (f ) as j tends to in�nity, along the
above subsequence. This shows thatd(� (f ); Sf ) > � , which is absurd. The statement (3.19) holds true
(and in particular,Sf must be non-empty).

The proof of the statement (3.17) follows the same line, by replacingf with the function1U"
. We

brie�y explain how the proof adapts, without repeating all the arguments. In this case,S1U c
"

is the single-
ton f 0g, and Eq. (3.36) readsE�; j � ' j

n
(Uc

" ) > � . By the Portmanteau theorem,lim supn E�; j � ' j
n
(Uc

" ) �
� j (Uc

" ) where thelim sup is taken along some subsequence. The contradiction follows from the fact that
lim sup� j (Uc

" ) � � (Uc
" ) = 0 (where thelim sup is again taken along the relevant subsequence).

We prove the statement (3.20). Assume by contradiction that for some (other) sequence j ! 0,
lim supn!1 P�; j (d (� n (f ) ; Sf ) � " ) > � : For everyj , there exists a sequence(' j

n ; n 2 N) s.t.

8n; P�; j
€
d

€
� ' j

n
(f ) ; Sf

Š
� "

Š
> � : (3.38)

By Prop.3.8.8, (P�; j � � 1
' j

n
; n 2 N) is tight, one can extract a further subsequence (which we still denote

by (' j
n ) for simplicity) s.t. P�; j � � 1

' j
n

converges narrowly to a measuremj as n tends to in�nity, which,

by Prop.3.8.6, satis�es mj 2 I (P j ). Noting that e(P�; j � � 1
' j

n
) = E�; j � ' j

n
and recalling Eq. (3.35),

Lem. 3.8.5 implies that� 0(kf k) < 1 for all � 0 mj -a.e., andP�; j � � 1
' j

n
T � 1

f ) mj T � 1
f , where we recall

that Tf (� 0) := � 0(f ) for all � 0 s.t. � 0(kf k) < 1 . As (Sf )c
" is a closed set,

mj T � 1
f ((Sf )c

" ) � lim sup
n

P�; j � � 1
' j

n
T � 1

f ((Sf )c
" )

= lim sup
n

P�; j
€
d

€
� ' j

n
(f ) ; Sf

Š
� "

Š
> � :

By Prop. 3.8.7, (mj ) is tight, and one can extract a subsequence (still denoted by(mj )) along which
mj ) m for some measurem which, by Prop.3.5.2, belongs toI (�) . For everyj , e(mj ) 2 I (P j ). By
the uniform integrability condition (3.37), one can apply Lem.3.8.5 to the sequence(mj ). We deduce
that � 0(kf k) < 1 for all � 0 m-a.e. andmj T � 1

f ) mT � 1
f . In particular,

mT � 1
f ((Sf )c

" ) � lim sup
j

mj T � 1
f ((Sf )c

" ) > � :

Sincem 2 I (�) , it holds thatmT � 1
f ((Sf )c

" ) = 0 , hence a contradiction.
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3.9 Proofs of Th. 3.5.4 and 3.5.5

3.9.1 Proof of Th. 3.5.4

In this proof, we setL = Lav(�) to simplify the notations. It is straightforward to show that the identity
mappingf (x) = x satis�es the hypotheses of Th.3.5.3with ' =  . Hence, it is su�cient to prove that
Sf is a subset ofco(L), the closed convex hull ofL . Chooseq 2 SI and let q =

R
xd� (x) for some

� 2 I (�) admitting a �rst order moment. There exists a� -invariant measure� 2 M (C(R+ ; X)) s.t.
supp(� ) � �( X) and �p � 1

0 = � . We remark that for allt > 0,

q = � (p0) = � (pt ) = � (pt � av) ; (3.39)

where the second identity is due to the shift-invariance of� , and the last one uses Fubini's theorem. Again
by the shift-invariance of� , the familyf pt ; t > 0g is uniformly integrable w.r.t.� . By Tonelli's theorem,
supt> 0 � (kpt � avk1S) � supt> 0 � (kptk1S) for everyS 2 B (C(R+ ; X)). Hence, the familyf pt � av; t > 0g
is � -uniformly integrable as well. In particular,f pt � av; t > 0g is tight in (C(R+ ; X); B (C(R+ ; X)); � ).
By Prokhorov's theorem, there exists a sequencetn ! 1 and a measurable functiong : C(R+ ; X) ! X
such thatptn � av converges in distribution tog asn ! 1 . By uniform integrability,� (ptn � av) ! � (g).
Eq. (3.39) �nally implies that

q = � (g) :

In order to complete the proof, it is su�cient to show thatg(x) 2 L for everyx � -a.e., because
co(L) � co(L). Set " > 0 and � > 0. By the tightness of the r.v.(ptn � av; n 2 N), choose a compact
set K such that� (ptn � av)� 1(K c) � � for all n. As L "

c
is an open set, one has

�g � 1(L "
c
) � lim

n
� (ptn � av)� 1(L "

c
) � lim

n
� (ptn � av)� 1(L "

c
\ K ) + � :

Let x 2 �( X) be �xed. By contradiction, suppose that1L "
c
\ K (ptn (av(x))) does not converge to zero.

Then, ptn (av(x)) 2 L "
c

\ K for everyn along some subsequence. AsK is compact, one extract a
subsequence, still denoted bytn , s.t. ptn (av(x)) converges. The corresponding limit must belong to
the closed setL c

" , but must also belong toL by de�nition of x. This proves that1L c
" \ K (ptn � av(x)))

converges to zero for allx 2 �( X). As supp(� ) � �( X), 1L "
c
\ K (ptn � av) converges to zero� -a.s.

By the dominated convergence theorem, we obtain that�g � 1(L "
c
) � � . Letting � ! 0 we obtain that

�g � 1(L "
c
) = 0 . Hence,g(x) 2 L for all x � -a.e. The proof is complete.

3.9.2 Proof of Th. 3.5.5

Recall the de�nitionU :=
S

� 2I (�) supp(� ). By Th. 3.5.3, for all " > 0,

lim sup
n!1

E�; � n (Uc
" ) ��!

 ! 0
0;

where� n is the random measure given by (3.32). By Th. 3.4.1, supp(� ) � BC� for each� 2 I (�) .
Thus, U" � (BC� )" . Hence,lim supn E�; � n ((( BC� )" )c) ! 0 as  ! 0. This completes the proof.

3.10 Applications

In this section, we return to the Examples4 and5 of Sec.3.2.
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3.10.1 Non-Convex Optimization

Consider the algorithm (3.9) to solve problem (3.8) where` : � � X ! R, r : X ! R and � is a
random variable over a probability space(
 ; F ; P) with values in the measurable space(� ; G) and
with distribution � . Assume that̀ (s; �) is continuously di�erentiable for everys 2 � , that `(�; x) is
� -integrable for everyx 2 X and that r is a convex and lower semicontinuous function. We assume that
for every compact subsetK of X, there exists"K > 0 s.t.

sup
x2 K

Z
kr `(s; x)k1+ " K � (ds) < 1 : (3.40)

De�ne L(x) := E� (`(�; x )) . Under Condition (3.40), it is easy to check thatL is di�erentiable, and
that r L(x) =

R
r `(s; x)� (ds). From now on, we assume moreover thatr L is Lipschitz continuous.

Condition (3.40) and the Lipschitz continuity ofr L are satis�ed under the following assumption : there
exists" > 0 such thatr `(s; �) is C(s)-Lipschitz continuous for� -a.es, whereC1+ " is � -integrable and
there existsx? 2 X such thatkr `(�; x?)k1+ " is � -integrable. Note that Lipschitz conditions of this type
are usually unavoidable regarding the so-called explicit part (or forward part) of the proximal gradient
algorithm (3.9). Letting H (s; x) := �r `(s; x) � @r(x), it holds thatH (�; x) is proper,� -integrable and
usc [97], and that the corresponding selection integralH(x) :=

R
H (s; x)� (ds) is given by

H(x) = �r L(x) � @r(x) :

By [36, Th. 3.17, Remark 3.14], for everya 2 X, the DI _x(t) 2 H(x(t)) admits a unique solution on
[0; + 1 ) s.t. x(0) = a.

The iteratesxn given by (3.9) satisfy (3.3) where h (s; x) :=  � 1(proxr (x �  r `(s; x)) � x).
Moreover, the maph satis�es Assumption (RM). Recall that

h (s; x) = �r r  (x �  r `(s; x)) � r `(s; x) (3.41)

2 � @r(proxr (x �  r `(s; x))) � r `(s; x)

2 � @r(x � h  (s; x)) � r `(s; x) : (3.42)

In order to show that Assumption (RM)-ii) is satis�ed, we need some estimate onkh (s; x)k. Using
Eq. (3.41) and the fact thatr r  is  � 1-Lipschitz continuous (see Sec.2.2.1), we obtain that

kh (s; x)k � kr r  (x)k + 2kr `(s; x)k

� k @0r (x)k + 2kr `(s; x)k ; (3.43)

where@0r (x) the least norm element in@r(x) for everyx 2 X (see Sec.2.2.1). As @0r is locally bounded
and@ris usc, it follows from Eq. (3.42) that Assumption (RM)-ii) is satis�ed. The estimate (3.43) also
yields Assumption (RM)-vi). As a conclusion, Assumption (RM) is satis�ed. In particular, the statement
of Th. 3.5.1holds.

To show that Assumption (PH) is satis�ed, we �rst recall the Lojasiewicz (L) condition studied in [30].
We shall use the formulation of [72] which is a particular case of [30]. Assume thatL is di�erentiable
with a C-Lipschitz continuous gradient. We say thatL and r satisfy the (L) condition with constant
� > 0 if for everyx 2 X,

1
2

DL;r (x; C) � � [(L + r )(x) � min(L + r )]
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where

DL;r (x; C) := � 2C min
y2 X

–

hr L(x); y � xi +
C
2

ky � xk2 + r (y) � r (x)
™

:

The (L) condition helps to prove the convergence of the (deterministic) proximal gradient algorithm
applied to the (deterministic) problem of minimizing the sumL + r . We refer to [30] for practical cases
where the (L) condition is satis�ed. In our stochastic setting, we introduce the Stochastic Lojasiewicz
condition (SL). We say that̀ and r satisfy the (SL) condition if there exists� > 0 such that for every
x 2 X,

1
2

Z
D ` (s;�);r

‚

x;
1


Œ

� (ds) � � [(L + r )(x) � min(L + r )]

for all  � 1
2C . Note that (SL) is satis�ed if for everys 2 � , `(s; �) and r satisfy the (L) condition

with constant� . In the sequel, we assume that for everyx 2 X, the random variablek`(x; � )k is square
integrable and denote byW(x) its variance.

Proposition 3.10.1. Assume that the (SL) condition is satis�ed, that � 1
2C and that

� (L(x) + r (x)) � W(x) �! kxk! + 1 + 1 :

Then (PH) is satis�ed.

Proof. Using (sub)di�erential calculus, it is easy to show that for everyn 2 N,

x + h  (s; x) = arg min
y2 X

–

hr `(s; x); y � xi +
1

2
ky � xk2 + r (y) � r (x)

™

:

Sincer L is C-Lipschitz continuous, recalling that 2C
2 � 

2 � � 
4 ,

(L + r )(x + h  (s; x)) = L(x + h  (s; x)) + r (x) + r (x + h  (s; x)) � r (x)

� (L + r )(x) + hr L(x); h  (s; x)i +
1

2
kh  (s; x)k2

+
‚

C
2

�
1

2

Œ

kh  (s; x)k2 + r (x + h  (s; x)) � r (x)

� (L + r )(x) + hr `(s; x); h  (s; x)i +
1

2
kh  (s; x)k2

+ hr L(x) � r `(s; x); h  (s; x)i + r (x + h  (s; x)) � r (x)

�

4

kh (s; x)k2

� (L + r )(x) �

2

D ` (s;�);r (x; 1= ) �

4

kh (s; x)k2

�  hr `(s; x) � r L(x); h (s; x)i : (3.44)

Usingjha; bij � k ak2 + 1
4kbk2 in the last inner product, we �nally have

(L + r )(x + h  (s; x)) � (L + r )(x) �

2

D ` (s;�);r (x; 1= ) +  kr `(s; x) � r L(x)k2: (3.45)

Integrating with respect to� , we obtain
Z

(L + r )(x + h  (s; x)) � (ds) � (L + r )(x) + W (x)

� � ((L + r )(x) � min(L + r )) :

Finally, the condition (PH) is satis�ed with� ( ) =  , � ( ) = 0 , V = L + r � min L + r and = �V � W:
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Note that the assumptions of Prop.3.10.1 are satis�ed if the (SL) condition is satis�ed,L(x) +
r (x) ! kxk! + 1 + 1 and the "variance" functionW is bounded.

3.10.2 Fluid Limit of a System of Parallel Queues

Consider a positive integerN . We now apply the results of this chapter to the dynamical system described
in Example5 above. For a given > 0, the transition kernelP of the Markov chain(xn ) whose entries
are given by Eq. (3.10) is de�ned on NN � 2 NN

. This requires some small adaptations of the statements
of the main results that we keep con�ned to this paragraph for the chapter readability. The limit behavior
of the interpolated process (see Th.3.5.1) is described by the following Prop., which has an analogue
in [61]:

Proposition 3.10.2. For every compact setK � RN , the familyf Pa; X� 1
 ; a 2 K \  NN ; 0 <  <  0g

is tight. Moreover, for every" > 0,

sup
a2 K \  NN

Pa; (d(X ; � H(K )) > " ) ��!
 ! 0

0;

where the set-valued mapH is given by (3.12).

Proof. To prove this Prop., we mainly need to check that Assumption (RM) is veri�ed. We recall
that the Markov chain(xn ) given by Eq. (3.10) admits the representation (3.2), where the function
g = ( g1

 ; : : : ; gN
 ) is given by (3.11). If we seth (s; x) = g (x) (the fact that g is de�ned on NN

instead ofRN
+ is irrelevant), then for each sequence(un ;  n ) ! (u?; 0) with un 2  nNN andx? 2 RN

+ , it
holds thatg n (un ) ! H(u?). Thus, Assumption (RM)�i) is veri�ed withH (s; x) = H(x). Assumptions
(RM)� ii) to (RM)� iv) are obviously veri�ed. Since the set-valued mapH satis�es the condition (2.1),
Assumption (RM)�v) is veri�ed. Finally, the �niteness assumption (3.15) with "K = 2 follows from the
existence of second moments for theAk

n , and (3.16) is immediate. The rest of the proof follows word
for word the proof of Th.3.5.1.

The long run behavior of the iterates is provided by the following Prop.:

Proposition 3.10.3. Let � 2 M (RN
+ ) be such that� (k � k2) < 1 . For each > 0, de�ne the

probability measure�  on  NN as

�  (f i 1; i 2; : : : ; i N g) = � ( (i 1 � 1=2; i1 + 1=2] � � � � �  (iN � 1=2; iN + 1=2]) :

If Condition (3.13) is satis�ed, then for all" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P�  ; (d (X k ; 0) � " ) ��!
 ! 0

0:

To prove this Prop., we essentially show that the assumptions of Th.3.5.5are satis�ed. In the course
of the proof, we shall establish the existence of the (PH) criterion with a function having a linear
growth. With some more work, it is possible to obtain a (PH) criterion with a faster than linear growth
for  , allowing to obtain the ergodic convergence as shown in Th.3.5.4. This point will not be detailed
here.
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Proof. Considering the space NN as a metric space equipped with the discrete topology, any probability
transition kernel on NN � 2 NN

is trivially Feller. Thus, Prop.3.8.6 holds when lettingP = P and
� 2 M ( NN ). Let us check that Assumption (PH) is veri�ed if the stability condition (3.13) is satis�ed.
Let

V : RN
+ ! R+ ; x = ( x1; : : : ; xN ) 7!

• NX

k=1

xk=� k
‹ 2

:

Given1 � k; ` � N , de�ne f (x) = xkx` on  N2. Using Eq. (3.10), the i.i.d property of the process
((A1

n ; : : : ; AN
n ; B 1

n ; : : : ; BN
n ); n 2 N) and the �niteness of the second moments of theAk

n , we obtain

(P f )(x) � xkx` � x k
€
� `1f x ` > 0; x ` � 1= ��� = x1=0 g � � `

Š

� x `
€
� k1f xk > 0; x k � 1= ��� = x1=0 g � � k

Š
+  2C ;

whereC is a positive constant. Thus, whenx 2  NN ,

(P V)(x) � V(x) � 2
NX

k=1

xk=� k
NX

`=1

€
1f x ` > 0; x ` � 1= ��� = x1=0 g � � `=� `

Š
+  2C;

after modifying the constantC if necessary. Ifx 6= 0, then one and only one of the1f x ` > 0; x ` � 1= ��� = x1=0 g

is equal to one. Therefore,(P V)(x) � V(x) �  (x) +  2C, where

 (x) = 2
•
1 �

NX

`=1

� `=� `
‹ NX

k=1

xk=� k :

As a consequence, when Condition (3.13) is satis�ed, the function is coercive, and one can straight-
forwardly check that the statements of Prop.3.8.7� i) and Prop.3.8.7� ii) hold true under minor modi�-
cations, namely,

S
P 2P I (P) is tight in M (RN

+ ), sincesup� 2I (P ) � ( ) < + 1 , whereP = f P g 2 (0; 0 ) .
Moreover, for every� 2 M (RN

+ ) s.t. � (k � k2) < 1 and everyP 2 P , f E�;P � n ; n 2 Ng is tight,
sincesupn2 N E�;P � n ( ) < 1 . We can now follow the proof of Th.3.5.5. Doing so, all it remains
to show is that the Birkho� center of the �ow� H is reduced tof 0g. This follows from the fact that
when Condition (3.13) is satis�ed, all the trajectories of the �ow� H converge to zero, as shown in [61,
Ÿ 3.2].
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Chapter 4

A constant step Forward-Backward
algorithm involving random maximal
monotone operators

In this chapter, we continue the study of the stochastic approximation framework (1.4). We consider the
case of a Di�erential Inclusion induced by a maximal monotone operator, see Sec.1.4. The Forward-
Backward algorithm is a classical method to �nd a zero of a monotone operator. We study a stochastic
Forward-Backward algorithm with a constant step. At each time step, this algorithm involves an in-
dependent copy of a couple of random maximal monotone operators. As a �rst result, we show that
the interpolated process obtained from the iterates converges narrowly in the small step regime to the
solution of the DI induced by the sum of the mean operators. In order to control the long term behavior
of the iterates, a stability result is needed in addition. To this end, the sequence of the iterates is seen
as a homogeneous Feller Markov chain whose transition kernel is parameterized by the algorithm step
size. We show that the cluster points of the Markov chains invariant measures in the small step regime
are invariant for the semi�ow induced by the DI. Conclusions regarding the long run behavior of the
iterates for small steps follows from this fact. We also show that when the sum of the mean operators
is demipositive, the probabilities that the iterates are away from the set of zeros of this sum are small in
Cesàro mean. We study the ergodic behavior of these iterates as well. Finally, we consider applications
of the proposed algorithm. In particular we perform a detailed analysis of the random proximal gradient
algorithm with constant step.

4.1 Introduction

Given two maximal monotone operatorsA and B on the Euclidean spaceX, whereB is single valued,
the Forward-Backward splitting algorithm is an iterative algorithm for �nding a zero of the sum operator
A + B. It reads

xn+1 = ( I +  A)� 1(xn �  B(xn )) ; (4.1)

where is a positive step. This algorithm consists in a forward step(I �  B)(xn ) followed by a backward
step, where the resolvent(I +  A)� 1 of A, known to be single valued asA is maximal monotone, is
applied to the output of the former. WhenB satis�es a so called cocoercivity condition, and when the
step  is small enough, the convergence of the algorithm towards a zero ofA + B (provided it exists)
is a well established fact [12, Ch. 25]. In the �eld of convex optimization, this algorithm can be used
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to �nd a minimizer of the sum of two real functionsF + G on X, whereF is a convex function which
is de�ned on the wholeX and which has a Lipschitz gradient, and whereG is a convex, proper, and
lower semi continuous (lsc) function (G 2 � 0(X)). In this case, the Forward-Backward algorithm is
known as the proximal gradient algorithm, and is written asxn+1 = prox G (xn �  r F (xn )) , where
proxG := ( I + @G)� 1 is Moreau's proximity operator ofG .

In this chapter, we are interested in the situation where the operatorsA and B are replaced with
random maximal monotone operators. Consider two random monotone operators (see Sec.2.3) A; B :
� ! M (X) de�ned on a probability space(� ; G; � ), and let(� n )n2 N be a sequence of independent and
identically distributed (i.i.d) random variables from some probability space to(� ; G) with the probability
distribution� . Assuming that for everys 2 � , B (s) is a single-valued operator de�ned on the wholeX,
we examine the stochastic version of the Forward-Backward algorithm

xn+1 = ( I + A (� n+1 )) � 1(I � B (� n+1 ))xn ;  > 0: (4.2)

Our aim is to study the dynamical behavior of this algorithm in the limit of the small steps , where the
e�ect of the noise due to the� n will be smoothened.

To give an application example for this algorithm, let us consider again the minimization problem of
the sumF + G, and let us assume that these functions are unknown to the observer (or di�cult to com-
pute), and are written asF (x) = E� 1 f (� 1; x) andG(x) = E� 1 g(� 1; x). When the functionsf andg are
known withf (� 1; �) being convex di�erentiable, andg(� 1; �) 2 � 0(X), and when an i.i.d sequence(� n ) is
available, we can approximatively solve the minimization problem ofF + G by resorting to the stochastic
proximal gradient algorithmxn+1 = prox g (� n +1 ;�)(xn �  r x f (� n+1 ; xn )) . Similar algorithms has been
studied in [24, 106] with the additional assumption that the step size vanishes asn tends to in�nity.
The main asset of such vanishing step size algorithms is that the iterates (with or without averaging)
converge almost surely as the iteration index goes to in�nity. This chapter focuses on the case where
the step size is �xed w.r.t. n. As we shall see below, convergence holds in a weaker sense in this case.
Loosely speaking, the iterates �uctuate in a small neighborhood of the set of sought solutions, but do
not converge in an almost sure sense asn ! 1 . Yet, constant step size algorithms have raised a great
deal of attention in the signal processing and machine learning literature ([55]). First, they are known to
reach a neighborhood of the solution in a fewer number of iterations than the decreasing step algorithms.
Second, they are in practice able to adapt to non stationary or slowly changing environments, and thus
track a possible changing set of solutions. This is particularly helpful in adaptive signal processing for
instance.

In order to study the dynamical behavior of (4.2), we introduce the operators de�ned for everyx 2 X
by

A(x) =
Z

A(s)(x) � (ds) and B(x) =
Z

B(s)(x) � (ds) ;

where the �rst integral is a selection integral (see Sec.2.3, Eq. (2.4)). Assuming that the monotone
operatorA + B is maximal, we considera in the domain ofA + B, and the DI (see Sec.2.2.2)

¨
_x(t) 2 � (A + B)(x(t))
x(0) = a:

(4.3)

Let xa; (t) be the continuous random process obtained by assuming that the iteratesxn are distant apart
by the time step , and by interpolating linearly these iterates. Then, the �rst step of the approach
undertaken in this chapter is to show thatxa; shadows the solution of the DI for small , in the sense
that it converges narrowly to this solution as ! 0 in the topology of convergence on the compact sets
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of R+ . The same idea is behind the so-called ODE method which is frequently used in the stochastic
approximation literature (see [14, 73] or Sec.1.3).

The compact convergence alone is not enough to control the long term behavior of the iterates. A
stability result is needed. To that end, the second step of the approach is to view the sequence(xn )
as a homogeneous Feller Markov chain whose transition kernel is parameterized by . In this context,
the aim is to show that the set of invariant measures for this kernel is non empty, and that the family
of invariant measures obtained for all belonging to some interval(0;  0] is tight. We shall obtain a
general tightness criterion which will be made more explicit in a number of situations of interest involving
random maximal monotone operators.

The narrow convergence ofxa; , together with the tightness of the Markov chain invariant measures,
lead to the invariance of the small cluster points of these invariant measures with respect to the
semi�ow induced by the DI (4.3) (see [64, 60, 16] for similar contexts). Using these results, it becomes
possible to characterize the long run behavior of the iterates(xn ). In particular, the proximity of these
iterates to the set of zerosZ(A + B) of A + B is of obvious interest. First, we show that when the
operatorA + B is demipositive[38], the probabilities that the iterates are away fromZ(A + B) are small
in Cesàro mean. WhetherA + B is demipositive or not, we can also characterize the ergodic behavior
of the algorithm, showing that when is small, the partial sumsn� 1 P n

1 xk stay close toZ(A + B) with
a high probability.

Stochastic approximations with di�erential inclusions were considered in [17] and in [58] from the
dynamical systems viewpoint. The case where the DI is de�ned by a maximal monotone operator was
studied in [22], [24], and [106]. Instances of the random proximal gradient algorithm were treated in
e.g., [2] or [104]. All these references dealt with the decreasing step case, which requires quite di�erent
tools from the constant step case. This case is considered in [48] (see also [47]), which relies on a
Robbins-Siegmund like approach requiring summability assumptions on the random errors. The constant
step case is also dealt with in [107] and in Chap.3 for generic di�erential inclusions. In the present work,
we follow the line of reasoning of Chap.3, noting that the case where the DI is de�ned by a maximal
monotone operator has many speci�cities. For instance, a maximal monotone operator is not upper semi
continuous in general, as it was assumed for the di�erential inclusions studied in [107] and Chap.3.
Another di�erence lies in the fact that we consider here the case where the domains of the operators
A(s) can be di�erent. Finally, to be more practical, the tightness criterion for the Markov chain invariant
measures requires a quite speci�c treatment in the context of the maximal monotone operators.

We close this paragraph by mentioning [21], where one of the studied stochastic proximal gradient
algorithms can be cast in the general framework of (4.2).

Chapter organization. Sec. 4.2 introduces the main algorithm. Sec.4.3 provides our assumptions
and states our main result about the long run behavior of the iterates. A brief sketch of the proof is also
provided for convenience, the detailed arguments being postponed to the end of the chapter. Sec.4.4
provides some illustrations of our results in particular cases. The monotone operators involved are
assumed to be subdi�erentials, hence covering the context of numerical optimization. Our assumptions
are discussed at length in this scenario. The case when the monotone operators are linear maps is
addressed as well. Sec.4.5 analyzes the dynamical behavior of the iterates. It is shown that the
piecewise linear interpolation of the iterates converges narrowly, uniformly on compact sets, to a solution
of the DI. The result, which has its own interest, is the �rst key argument to establish the main theorem
of Sec.4.3. The second argument is provided in Sec.4.6, where we characterize the cluster points
of the invariant measures (indexed by the step size) of the Markov chain formed by the iterates. The
Appendices4.7 and4.8 are devoted to the proofs relative to Sec.4.4 and4.5 respectively.
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4.2 Background and problem statement

ConsiderA 2 M (X) and the semi�ow� : cl(dom( A)) � R+ ! cl(dom(A)) associated toA (see Sec.
2.2.2).

We recall some of the most important notions related with the dynamical behavior of the semi�ow
� . Denote asM (X) the space of probability measures onX equipped with its Borel� -�eld B (X). An
element� 2 M (X) is called an invariant measure for� if � = � �( �; t)� 1 for everyt > 0. The set of
invariant measures for� will be denotedI (�) . The limit set of the trajectory�( x; �) of the semi�ow�
starting at x is the set

L �( x; �) :=
\

t � 0

cl (�( x; [t; 1 )))

of the limits of the convergent subsequences(�( x; t k))k as tk ! 1 . A point x 2 cl(domA) is said
recurrent ifx 2 L �( x; �) . The Birkho� center BC� of � is

BC� := cl f x 2 cl(domA) : x 2 L �( x; �)g;

i.e., the closure of the set of recurrent points of� . The celebrated Poincaré's recurrence theorem [53,
Th. II.6.4 and Cor. II.6.5] says that the support of any� 2 I (�) is a subset of BC� .

Proposition 4.2.1. Assume thatZ (A) 6= ; , and let � 2 I (�) . If A is demipositive, thensupp(� ) �
Z (A). If � has a �rst moment, then, whetherA is demipositive or not,

Z
x � (dx) 2 Z(A) :

Proof. When A is demipositive,�( x; t ) converges to an element ofZ (A) as t ! + 1 henceZ(A)
coincides straightforwardly with BC� , and the �rst inclusion follows from Poincaré's recurrence theorem.

To show the second result, we start by proving thatf �( �; t) : t > 0g is uniformly integrable as a
family of random variables in(X; B (X); � ). Let " > 0. Since the familyf �( �; t) : t � 0g is identically
distributed, it is uniformly integrable, thus, there exists� " > 0 such thatsupt

R
S k�( x; t )k � (dx) � " for

all S 2 B (X) satisfying� (S) � � " . By Tonelli's theorem,

sup
t> 0

Z

S
k�( x; t )k � (dx) � sup

t> 0

1
t

Z t

0

Z

S
k�( x; s)k � (dx)ds � " ;

which shows that, indeed,f �( �; t) : t > 0g is uniformly integrable [91, Prop. II-5-2]. By the ergodic
theorem for semi�ows generated by elements ofM (X) (see Sec.2.2.2), there exists a measurable function
f : cl(domA) ! Z (A) such that�( �; t) ! f as t ! 1 . Since

Z
x � (dx) =

Z
�( x; t ) � (dx) for all t � 0;

we can maket ! 1 and use the uniform integrability off �( �; t) : t > 0g to obtain that
R

kf k d� < 1 ,
and

R
x � (dx) =

R
f (x) � (dx). The result follows from the closed convexity ofZ (A).

4.2.1 Presentation of the stochastic Forward-Backward algorithm

Consider two random monotone operatorsA; B : (� ; G; � ) ! M (X) such that for everys 2 � , B (s) is
single-valued and continuous overX. DenotingB(s; x) the image ofx by the operatorB(s), recall that
s 7! B(s; x) is measurable. By Carathéodory's theorem,B is G 
 B (X)-measurable seen as a function
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de�ned on� � X. Assuming thatB(�; x) is � -integrable for everyx 2 X, we setB(x) :=
R

B(s; x)� (ds).
Note that domB = X. DenoteA(s; x) the image ofx by the operatorA(s), and D the essential
intersection of the domainsD(s) = dom( A(s)) (see Eq. (2.5)). Assuming thatD 6= ; and that A(�; x)
is integrable (see Sec.2.3) for everyx 2 D , we denote the selection integralA (x) :=

R
A(s; x)� (ds).

Let (� n ) be an i.i.d. sequence of random variables from a probability space(
 ; F ; P) to (� ; G) with
the distribution� . Let x0 be aX-valued random variable with probability law� , and assume thatx0 and
(� n ) are independent. Starting fromx0, our purpose is to study the behavior of the iterates

xn+1 = J (� n+1 ; xn � B (� n+1 ; xn )) ; n 2 N ; (4.4)

for a given > 0, where we recall the notationJ (s; �) := ( I + A (s)) � 1(�) for everys 2 � .
In the deterministic case where the functionsA(s; �) and B(s; �) are replaced with deterministic

maximal monotone operatorsA(�) andB(�), with B still being assumed single-valued withdom(B) = X,
the algorithm coincides with the well-known Forward-Backward algorithm (4.1). Assuming thatB is
so-called cocoercive and that is not too large, the iterates given by (4.1) are known to converge to
an element ofZ (A + B), provided this set is not empty [12, Th. 25.8]. In the stochastic case who is of
interest here, this convergence does not hold in general. Nonetheless, we shall show below that in the
long run, the probability that the iterates or their empirical means stay away ofZ (A + B) is small when
 is close to zero.

4.3 Assumptions and main results

We �rst observe that the process(xn ) described by Eq. (4.4) is a homogeneous Markov chain whose
transition kernelP is de�ned by the identity

P (x; f ) =
Z

f (J (s; x � B (s; x))) � (ds) ; (4.5)

valid for each measurable and positive functionf . The kernelP and the initial measure� determine
completely the probability distribution of the process(xn ), seen as a(
 ; F ) ! (XN; B (X)
 N) random
variable. We shall denote this probability distribution on(XN; B (X)
 N) as P�; . We denote byE�;

the corresponding expectation. When� = � a for somea 2 X, we shall prefer the notationsPa; and
Ea; to P� a ; and E� a ; . From now on,(xn ) will denote the canonical process on the canonical space
(XN; B (X)
 N).

We denote asF n the sub-� -�eld of F generated by the familyf x0; f � 
k : 1 � k � ngg, and we

write En [�] = E[� j F n ] for n 2 N.
In the remainder of the chapter,C will always denote a positive constant that does not depend on the

time n nor on . This constant may change from a line of calculation to another. In all our derivations,
 will lie in the interval(0;  0] where 0 is a �xed constant which is chosen as small as needed.

4.3.1 Assumptions

Assumption 4.3.1. For every compact setK � X, there exists" > 0 such that

sup
x2K\D

Z
kA0(s; x)k1+ " � (ds) < 1 :

Assumption 4.3.2. The monotone operatorA is maximal.
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Assumption 4.3.3. For every compact setK � X, there exists" > 0 such that

sup
x2K

Z
kB(s; x)k1+ " � (ds) < 1 :

The next assumption will mainly lead to the tightness of the invariant measures mentioned in the
introduction.

We know that a pointx? is an element ofZ (A+ B) if there exists' 2 S 1
A(�;x? ) such that

R
' (s) � (ds)+

R
B(s; x?) � (ds) = 0 . WhenB(�; x?) 2 L 2(� ; G; � ; X), and when the above function' can be chosen

in L 2(� ; G; � ; X), we say that such a zero admits aL 2 representation('; B ). In this case, we de�ne

  (x) :=
Z §

hA  (s; x � B (s; x)) � ' (s); J (s; x � B (s; x)) � x?i

+ hB(s; x) � B (s; x?); x � x?i
ª

� (ds)

+ 
Z

kA  (s; x � B (s; x))k2� (ds) � 6
Z

kB(s; x) � B (s; x?)k2� (ds) ; (4.6)

where

A  (s; x) :=
x � J (s; x)



is the Yosida regularization ofA(s; x) for  > 0.

Assumption 4.3.4. There existsx? 2 Z(A + B) admitting aL 2 representation('; B ). The function
	( x) := inf  2 (0; 0 ]   (x) satis�es one of the following properties:

(a) lim inf
kxk!1

	( x)
kxk

> 0.

(b)
	( x)
kxk

����!
kxk!1

1 .

(c) lim inf
kxk!1

	( x)
kxk2

> 0.

Let us comment these assumptions.
Assumptions4.3.1and4.3.3are moment assumptions onA0(s; x) andB(s; x) that are usually easy

to check. Assumption4.3.1 implies that for everyx 2 D , A0( : ; x) is integrable. Therefore,A( : ; x) is
integrable. This implies that the domain of the selection integralA coincides withD.

Conditions where Assumption4.3.2are satis�ed can be found in [36, Chap. II.6] in the case where�
has a �nite support, and in [24, Prop. 3.1] in other cases. WhenA(s) is the subdi�erential of a function
g(s; �) belonging to� 0(X), the maximality ofA is established if we can exchange the expectation of
g(� 1; x) w.r.t. � 1 with the subdi�erentiation w.r.t.x, in which caseA would be equal to@G, where
G(x) =

R
g(s; x) � (ds). This problem is dealt with in [125] (see also Sec.4.4.1below).

The �rst role of Assumption4.3.4 is to ensure the tightness of the invariant measures of the kernels
P , as mentioned in the introduction. Beyond the tightness, this assumption controls the asymptotic
behavior of functionals of the iterates with a prescribed growth condition at in�nity. Assumption4.3.4
will be speci�ed and commented at length in Sec.4.4.

Regarding the domains of the operatorsA(s), two cases will be considered, according to whether
these domains vary withs or not. We shall name these two cases the �common domain� case and the
�di�erent domains� case respectively. In the common domain case, our assumption is therefore:
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Assumption 4.3.5 (Common domain case). The set-valued functions 7! D(s) is � -almost everywhere
constant.

In the common domain case, Assumptions4.3.1� 4.3.4will be su�cient to state our results, whereas
in the di�erent domains case, three supplementary assumptions will be needed:

Assumption 4.3.6 (Di�erent domains case). 8x 2 X;
Z

d(x; D (s))2 � (ds) � Cd(x)2, whered(�) is

the distance function toD.

Assumption 4.3.7 (Di�erent domains case). For every compact setK � X, there exists" > 0 such
that

sup
 2 (0; 0 ];x2K

1
 1+ "

Z
kJ (s; x) � � cl(D (s)) (x)k1+ " � (ds) < 1 :

Assumption 4.3.8 (Di�erent domains case). For all  2 (0;  0] and allx 2 X,

Z ‚
kJ (s; x) � � cl(D (s)) (x)k


+ kB(s; x)k

Œ

� (ds) � C(1 +   (x)) :

Assumption4.3.6is rather mild, and is studiede.g in [90]. This assumption is easy to illustrate in the
case where� is a �nite sum of Dirac measures. Following [11], we say that a �nite collection of closed
and convex subsetsfC1; : : : ;Cmg overX is linearly regularif there exists� > 0 such that for everyx,

max
i =1 :::m

d(x; Ci ) � �d (x; C); whereC =
m\

i =1

Ci ;

and where implicitlyC 6= ; . Su�cient conditions for a collection of sets to satisfy the above condition
can be found in [11] and the references therein. In the general case, Assumption4.3.6 is studied in [90]

We know that when ! 0, J (s; x) converges to� cl(D (s)) (x) for each(s; x). Assumptions4.3.7
and 4.3.8add controls on the convergence rate. The instantiations of these assumptions in the case of
the stochastic proximal gradient algorithm will be provided in Sec.4.4.1below.

4.3.2 Main result

Lemma 4.3.1. Let Assumptions4.3.2 and 4.3.3 hold true. Then, the monotone operatorA + B is
maximal.

Proof. Assumption4.3.3 implies that the monotone operatorB is continuous onX. Therefore,B is
maximal [36, Prop. 2.4]. The maximality ofA + B follows, sinceA is maximal by Assumption4.3.2,
andB has a full domain [36, Cor. 2.7].

Note that dom(A + B) = D. In the remainder of the chapter, we denote as� : cl( D) � R+ ! cl(D)
the semi�ow produced by the DI_x(t) 2 � (A + B)(x(t)) . Recall thatI (�) is the set of invariant measures
for the semi�ow� .

We also write

�xn :=
1

n + 1

nX

k=0

xk :

We now state our main theorem.
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Theorem 4.3.2. Let Assumptions4.3.1, 4.3.2, 4.3.3, and 4.3.4� (a) be satis�ed. Moreover, assume
that either Assumption4.3.5or Assumptions4.3.6� 4.3.8are satis�ed.

Then, I (�) 6= ; . Let � 2 M (X) be with a �nite second moment, and letU :=
S

� 2I (�) supp(� ).
Then, for all" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P�; (d(xk ; U) > " ) ��!
 ! 0

0: (4.7)

In particular, if the operatorA + B is demipositive, then

lim sup
n!1

1
n + 1

nX

k=0

P�; (d(xk ; Z (A + B)) > " ) ��!
 ! 0

0: (4.8)

Moreover, the setf � 2 I (�) : � (	) < 1g is not empty. LetY an Euclidean space, and letf : X ! Y
be continuous. Assume that there existsM � 0 and ' : Y ! R+ such thatlimkak!1 ' (a)=kak = 1 ,
and

8a 2 X; ' (f (a)) � M (1 + 	( a)) :

Then, for alln 2 N,  2 (0;  0], the r.v.

Fn :=
1

n + 1

nX

k=0

f (xk)

is P-integrable, and satis�es for all" > 0,

lim sup
n!1

P�; (d (Fn ; Sf ) � " ) ��!
 ! 0

0; (4.9)

lim sup
n!1

d(E�; (Fn ); Sf ) ��!
 ! 0

0: (4.10)

whereSf := f � (f ) : � 2 I (�) g. In particular, iff (x) = x, and if Assumption4.3.4� (b) is satis�ed,
then

lim sup
n!1

P�; (d (�xn ; Z (A + B)) � " ) ��!
 ! 0

0; (4.11)

lim sup
n!1

d(E�; (�xn ); Z (A + B)) ��!
 ! 0

0: (4.12)

By Lem.4.3.1 and Prop.4.2.1, the convergences (4.8), (4.11), and (4.12) are the consequences of
(4.7), (4.9), and (4.10) respectively. We need to prove the latter.

4.3.3 Proof technique

We �rst observe that the Markov kernelsP are Feller,i.e., they take the setCb(X) of the real, continuous,
and bounded functions onX to Cb(X). Indeed, for eachf 2 Cb(X), Eq. (4.5) shows thatP (�; f ) 2 Cb(X)
by the continuity ofJ (s; �) andB(s; �), and by dominated convergence.

For each > 0, we denote as

I (P ) := f � 2 M (X) : � = �P  g

the set of invariant probability measures ofP . De�ne the family of kernelsP := f P g 2 (0; 0 ], and let

I (P) :=
[

 2 (0; 0 ]

I (P )

be the set of distributions� such that� = �P  for at least oneP with  2 (0;  0].
The following proposition, which is valid for Feller Markov kernels, has been proven in Chap.3.
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Proposition 4.3.3. Let V : X ! [0; + 1 ) and Q : X ! [0; + 1 ) be measurable. Assume that
Q(x) ! 1 askxk ! 1 . Assume that for each 2 (0;  0],

P (x; V ) � V(x) � � ( )Q(x) + � ( ) ; (4.13)

where� : (0;  0] ! (0; + 1 ) and � : (0;  0] ! R satisfysup 2 (0; 0 ]
� ( )
� ( ) < 1 . Then, the familyI (P) is

tight. Moreover,sup� 2I (P ) � (Q) < 1 .
Assume moreover that, as ! 0, any cluster point ofI (P) is an element ofI (�) . In particular,

f � 2 I (�) : � (Q) < 1g is not empty. Let� 2 M (X) s.t. � (V) < 1 . Let U :=
S

� 2I (�) supp(� ).
Then, for all" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P�; (d(xk ; U) > " ) ��!
 ! 0

0:

Let Y an Euclidean space andf : X ! Y be continuous. Assume that there existsM � 0 and
' : Y ! R+ such thatlimkak!1 ' (a)=kak = 1 and

8a 2 X; ' (f (a)) � M (1 + Q(a)) :

Then, for alln 2 N,  2 (0;  0], the r.v.

Fn :=
1

n + 1

nX

k=0

f (xk)

is P�; -integrable, and satis�es for all" > 0,

lim sup
n!1

d(E�; (Fn ) ; Sf ) ��!
 ! 0

0; and lim sup
n!1

P�; (d (Fn ; Sf ) � " ) ��!
 ! 0

0;

whereSf := f � (f ) : � 2 I (�) g.

Proof. Assume that Eq. (4.13) holds. By Prop.3.8.7, I (P) is tight andsup� 2I (P ) � (Q) < 1 , which
proves the �rst point. Assume moreover that, as ! 0, any cluster point ofI (P) is an element of
I (�) . By the tightness ofI (P) and the Prokhorov theorem, such a cluster point� exists, and satis�es
� (Q) < 1 by the �rst point just shown. The rest of the proof follows Sec.3.8.4word-for-word.

In order to prove Th.4.3.2, it is enough to show that the assumptions of Prop.4.3.3 are satis�ed.
Namely, we need to establish (4.13) and to show that the cluster points ofI (P) as ! 0 are elements
of I (�) .

In Sec.4.5, we show that the linearly interpolated process constructed from the sequence(xn )
converges narrowly as ! 0 to a DI solution in the topology of uniform convergence on compact
sets. The main result of this section is Th.4.5.1, which has its own interest. To prove this theorem,
we establish the tightness of the linearly interpolated process (Lem.4.5.3), then we show that the limit
points coincide with the DI solution (Lem.4.5.4� 4.5.6). In Sec.4.6, we start by establishing the inequality
(4.13), which is shown in Lem.4.6.1 with Q(x) = 	( x). Using the tightness ofI (P) in conjunction
with Th. 4.5.1, Lem4.6.2shows that the cluster points ofI (P) are elements ofI (�) . In the di�erent
domains case, this lemma requires that the invariant measures ofP put most of their weights in a
thickening of the domainD of order . This fact is established by Lem.4.6.3.
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4.4 Case studies - Tightness of the invariant measures

Before proving the main results, we �rst address three important cases: the case of the random proximal
gradient algorithm, the case whereA(s) is an a�ne monotone operator andB(s) = 0 , and the case
whereD is bounded. The main problem is to ensure that one of the cases of Assumption4.3.4is veri�ed.
We close the section with a general condition ensuring that Assumption4.3.4� (a) is veri�ed. The proofs
are postponed to Appendix4.7.

4.4.1 A random proximal gradient algorithm

Let (� ; A ; � ) be a probability space, whereA is � -complete. Leth : � � X ! (�1 ; 1 ] a convex
normal integrand (see Sec.2.3). To simplify the presentation, we furthermore assume thath is �nite
everywhere, noting that the results can be extended to the case whereh can take the value1 . Recall
that s 7! @h(s; �) is a random monotone operator (in all the following, the subdi�erential or the gradient
of a function in(s; x) will be meant to be taken w.r.t.x). Assume that

R
jh(s; x)j� (ds) < 1 for all

x 2 X, and consider the convex functionH (x) :=
R

h(s; x) � (ds) de�ned onX. By e.g., [102, page 179],
@H(x) =

R
@h(s; x) � (ds).

Let f : � � X ! R be such thatf (�; x) is A -measurable for allx 2 X, and f (s; �) is convex
and continuously di�erentiable for alls 2 � . Moreover, assume that

R
jf (s; x)j � (ds) < 1 for all

x 2 X, and de�ne the functionF (x) :=
R

f (s; x) � (ds) on X. This function is di�erentiable with
r F (x) =

R
r f (s; x) � (ds).

Finally, givenm 2 N� , let fC1; : : : ;Cmg be a collection of closed and convex subsets ofX. We assume
that

T m
i =1 ri( Ci ) 6= ; , whereri is the relative interior of a set.

Our purpose is to approximatively solve the optimization problem

min
x2C

F (x) + H (x); C :=
m\

i =1

Ci (4.14)

whether the minimum is attained. Let(un ) be an iid sequence on� with the probability measure� . Let
(I n ) be an iid sequence onf 0; 1; : : : ; mg with the probability measure� such that� (k) = P(I 1 = k) > 0
for eachk. Assume that(I n ) and(un ) are independent. In order to solve the problem (4.14), we consider
the iterates

xn+1 =

(
prox� (0) � 1 h (un +1 ;�)(xn �  r f (un+1 ; xn )) if I n+1 = 0;
� CI n +1

(xn �  r f (un+1 ; xn )) otherwise; (4.15)

for  > 0. This problem can be cast in the general framework of the stochastic proximal gradient
algorithm presented in the introduction. On the space� := � � f 0; : : : ; mg, de�ne the iid random
variables� n := ( un ; I n ) with the measure� := � 
 � . Denoting as�S the indicator function of the set
S, let g : � � X ! (�1 ; 1 ] be de�ned as

g(s; x) :=
¨

� (0)� 1h(u; x) if i = 0;
�Ci (x) otherwise;

wheres = ( u; i ). Then, Problem (4.14) is equivalent to minimizing the sumF (x) + G(x), where

G(x) :=
Z

g(s; x) � (ds) =
mX

k=1

�Ck (x) + H (x) :
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It is furthermore clear that the algorithm (4.15) is the instance of the general algorithm (4.4) that
corresponds toA(s) = @g(s; �) and B(s) = r f (u; �) for s = ( u; i ). With our assumptions, the
quali�cation conditions hold, and the three setsarg min(F + G), Z (@G+ r F ), andZ(A + B) coincide.

Before going further, we recall some well known facts regarding the coercive functions belonging
to � 0(X). A function q 2 � 0(X) is said coercive iflimkxk!1 q(x) = 1 . It is said supercoercive if
limkxk!1 q(x)=kxk = 1 . The three following conditions are equivalent: i)q is coercive, ii) there exists
a 2 R such that the level setlev� a q is non empty and compact, iii)lim inf kxk!1 q(x)=kxk > 0 (see
e.g., [12, Prop. 11.11 and 11.12] and [32, Prop. 1.1.5]).

The main result of this paragraph is the following:

Proposition 4.4.1. Let the following hypotheses hold true:

H1 There existsx? 2 Z(@G+ r F ) admitting aL 2 representation(' ((u; i )) ; r f (u; x?)) .

H2 There existsc > 0 s.t. for everyx 2 X,
Z

hr f (s; x) � r f (s; x?); x � x?i � (ds) � c
Z

kf (s; x) � f (s; x?)k2 � (ds):

H3 The functionF + G satis�es one of the following properties:

(a) F + G is coercive.

(b) F + G is supercoercive.

Then, Assumption4.3.4� (a) (resp., Assumption4.3.4� (b)) holds true if HypothesisH3� (a) (resp.,
HypothesisH3� (b)) holds true.

Let us comment these hypotheses. A light condition ensuring the truth of HypothesisH1 is provided
by the following lemma.

Lemma 4.4.2. Assume that there existsx? 2 Z(@G+ r F ) satisfying the two following conditions:
R

kr f (u; x?)k2 � (du) < 1 , and there exists an open neighborhoodN of x? such that
R

h(u; x)2 � (du) <
1 for all x 2 N . Then, HypothesisH1 is veri�ed.

We now turn to HypothesisH2. When studying the deterministic Forward-Backward algorithm (4.1),
it is standard to assume thatB is cocoercive, in other words, that there exists a constantL > 0 such
that hB(x) � B(y); x � yi � LkB(x) � B(y)k2 [12, Th. 25.8]. A classical case where this is satis�ed is
the case whereB is the gradient of a convex di�erentiable function having a1=L-Lipschitz continuous
gradient, as is shown by the Baillon-Haddad Th. [12, Cor. 18.16]. In our case, if we assume that there
exists a nonnegative measurable function� (s) such thatkr f (s; x) � r f (s; x0)k � � (s)kx � x0k, then
by the Baillon-Haddad theorem,

hr f (s; x) � r f (s; x0); x � x0i �
1

� (s)
kr f (s; x) � r f (s; x0)k2 :

Thus, one obvious case where HypothesisH2 is satis�ed is the case where� (s) is bounded.
Using proposition4.4.1, we can now obtain the following corollary to Th.4.3.2.

Corollary 4.4.3. Let HypothesesH1� H3 hold true. Assume in addition the following hypotheses:
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C1 For every compact setK � X, there exists" > 0 such that

sup
x2K\C

Z
k@0h(u; x)k1+ " � (du) < 1 ;

where@0h(u; �) is the least norm element of@h(u; �).

C2 For every compact setK � X, there exists" > 0 such that

sup
x2K

Z
kr f (u; x)k1+ " � (du) < 1 :

C3 The setsC1; : : : ;Cm are linearly regular.

C4 For all 2 (0;  0] and allx 2 X,
Z

(kr h (u; x)k + kr f (u; x)k) � (du) � C(1 + jF (x) + H  (x)j) ;

whereh (u; �) is the Moreau envelope ofh(u; �).

Then, for each probability measure� having a �nite second moment,

lim sup
n!1

1
n + 1

nX

k=0

P�; (d(xk ; arg min(F + G)) > " ) ��!
 ! 0

0:

Moreover, if HypothesisH3� (b) is satis�ed, then

lim sup
n!1

P�; (d (�xn ; arg min(F + G)) � " ) ��!
 ! 0

0; and

lim sup
n!1

d(E�; (�xn ); arg min(F + G)) ��!
 ! 0

0:

Proof. With the hypothesesH1� H3 and C1� C4, one can check that the assumptions4.3.1� 4.3.8 are
veri�ed. Note that @G+ r F is a demipositive operator, being the subdi�erential of a� 0(X) function
having a minimizer [38]. The results of the corollary follow from those of Th.4.3.2.

4.4.2 The case where A(s) is a�ne

In all the remainder of this section, we shall focus on the validity of Assumption4.3.4. We assume that
B = 0, and that

A(s; x) = H (s)x + d(s);

whereH : � ! L (X) whereL (X) is the space of linear operator overX and d : � ! X are two
G-measurable functions. It is easily seen that the a�ne operatorA(s) is monotone if and only if
H (s) + H (s)? is a positive semide�nite operator (we shall writeH (s) + H (s)? � 0), a condition that
we shall assume in this subsection. Moreover, assuming that

Z
(kH (s)k2 + kd(s)k2) � (ds) < 1 ;

the operator

A (x) =
• Z

H (s) � (ds)
‹
x +

Z
d(s) � (ds) := H x + d

exists and is a maximal monotone operator with the domainX. Whend belongs to the image ofH ,
Z (A) 6= ; , and everyx? 2 Z(A) has a uniqueL 2 representation(' (s) = H (s)x? + d(s); 0). We have
the following proposition:

Proposition 4.4.4. If H + H T > 0, then H is invertible,Z (A ) = f x?g with x? = � H � 1d, and
Assumption4.3.4� (c) is veri�ed.
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4.4.3 The case where the domain D is bounded

Proposition 4.4.5. Let the following hypotheses hold true:

H1 The domainD is bounded.

H2 There exists a constantC > 0 such that

8x 2 X;
Z

d(s; x)2 � (ds) � Cd(x)2:

H3 There existsx? 2 Z(A + B) admitting aL 2 representation.

H4 There existsc > 0 s.t. for everyx 2 X, For all  small enough,
Z

hB(s; x) � B (s; x?); x � x?i � (ds) � c
Z

kB(s; x) � B (s; x?)k2 � (ds) :

Then, Assumption4.3.4� (c) is satis�ed.

4.4.4 A case where Assumption 4.3.4 � (a) is valid

We close this section by providing a general condition that guarantees the validity of Assumption4.3.4�
(a). For simplicity, we focus on the case whereB(s) = 0 , noting that the result can be easily extended
to the case whereB(s) 6= 0 when a cocoercivity hypothesis of the type of Prop.4.4.5� H4 is satis�ed.

We denote byS(�; d ) the sphere ofX with center � and radiusd. We also denote byint S the
interior of a setS.

Proposition 4.4.6. Assume thatB(s) = 0 , and that there existsx? 2 Z(A) \ int D admitting aL 2

representation' 2 S 2
A(�;x? ) . Assume that there exists a set� 2 G such thatD � \ s2 � D(s), � (�) > 0,

and such that for alls 2 � , there exists� (s) > 0 satisfyingS(' (s); � (s)) � int D, and

8x 2 S(' (s); � (s)) ; inf
y2 A(s;x)

hy � ' (s); x � x?i > 0:

Then, Assumption4.3.4� (a) is satis�ed.

Note that theinf in the statement of this proposition is attained, as is revealed by the proof.

4.5 Narrow convergence towards the DI solutions

4.5.1 Main result

The set C(R+ ; X) of continuous functions fromR+ to X is equipped with the topology of uniform
convergence on the compact intervals, who is known to be compatible with the distanced de�ned as

d(x; y) :=
X

n2 N�

2� n

 

1 ^ sup
t2 [0;n]

kx(t) � y(t)k

!

:

For every > 0, we introduce the measurable mapX : (XN; B (X)
 N) ! (C(R+ ; X); B (C(R+ ; X))) ,
de�ned for everyx = ( xn : n 2 N) in XN as

X (x) : t 7! xb t
 c + ( t= � b t= c)(xb t

 c+1 � xb t
 c) :
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This map will be referred to as the linearly interpolated process. Whenx = ( xn ) is the process with the
probability measureP�; de�ned above, the distribution of the r.v.X is P�; X� 1

 . If S is a subset ofX
and" > 0, we denote byS" := f a 2 X : d(a; S) < " g the "-neighborhood ofS. The aim of the present
section is to establish the following result:

Theorem 4.5.1. Let Assumptions4.3.1� 4.3.3 hold true. Let either Assumption4.3.5 or Assump-
tions 4.3.6-4.3.7hold true. Then, for every� > 0, for every compact setK � X s.t. K \ D 6= ; ,

8M � 0; sup
a2K\D M

Pa;
€
d(X ; �(� cl(D)(a); �)) > �

Š
��!
 ! 0

0: (4.16)

Using the Yosida regularizationA  (s; x) of A(s; x), the iterates (4.4) can be rewritten asx0 = a 2
DM and

xn+1 = xn � B (� n+1 ; xn ) � A  (� n+1 ; xn � B (� n+1 ; xn )) : (4.17)

Setting h (s; x) := � B (s; x) � A  (s; x � B (s; x)), the iterates (4.4) can be cast into the same form
as the one studied in Chap.3 (i.e Eq.1.4). The following result, which we state here mainly for the ease
of the reading, is a straightforward consequence of Th.3.5.1, Chap.3.

Proposition 4.5.2. Let Assumptions4.3.1� 4.3.3 hold true. Assume moreover that for everys 2 � ,
D(s) = X. Then, Eq. (4.16) holds true.

Proof. It is su�cient to check that the mappingh satis�es the Assumption (RM) of Th.3.5.1, Chap.3.
Assumptioni) is satis�ed by de�nition ofh . As D(�) is a constant equal toX, the operatorA(s; �)
is upper semi continuous as a set-valued operator [97]. Thus, H (s; �) := � A(s; �) � B (s; �) is proper,
upper semi continuous with closed convex values, and� -integrable. Hence, the assumptionsiv) and iii)
are satis�ed. Assumptionv) is satis�ed by the natural properties of the semi�ow induced by the maximal
monotone mapA + B, whereas Assumptionvi) directly follows from the present Assumptions4.3.1and
4.3.3 and the de�nition ofh . One should �nally verify Assumptionii), which states that for every
converging sequence(un ;  n ) ! (u?; 0), h n (s; un ) ! H (s; u?), for everys 2 � . To this end, it is
su�cient to prove that

A  n (s; un �  nB(s; un )) ! A(s; u?) : (4.18)

Choose" > 0. As A(s; �) is upper semi continuous, there exists� > 0 s.t. 8u, ku � u?k < �
impliesA(s; u) � A(s; u?)" . Let vn := J n (s; un � B (s; un )) . By the triangular inequality and the
non-expansiveness ofJ n ,

kvn � u?k � k un � u?k +  nkB(s; un )k + kJ n (u?) � u?k ;

where it is clear that each of the three terms in the right hand side tends to zero. Thus, there existsN 2 N
s.t. 8n � N , kvn � u?k � � , which in turn impliesA(s; vn ) � A(s; u?)" . As A  n (s; un �  nB(s; un )) 2
A(s; vn ), the convergence (4.18) is established.

4.5.2 Proof of Th. 4.5.1

In the sequel, we prove Th.4.5.1 under the set of Assumptions4.3.6-4.3.7. The proof in the common
domain casei.e., when Assumption4.3.5holds, is somewhat easier and follows from the same arguments.

In order to prove Th.4.5.1, we just have to weaken the assumptions of Prop.4.5.2: for a givens 2 � ,
the domainD(s) is not necessarily equal toX and the monotone operatorA(s; : ) is not necessarily upper
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semi continuous. Up to these changes, the proof is similar to the proof of Th.3.5.1, Chap.3, and the
modi�cations are in fact con�ned to speci�c steps of the proof.

Choose a compact setK � X s.t. K \ cl(D) 6= ; . ChooseR > 0 s.t. K is contained in the ball of
radiusR. For everyx = ( xn : n 2 N) in XN, de�ne � R(x) := inf f n 2 N : xn > R g and introduce the
measurable mappingBR : XN ! XN, given by

BR(x) : n 7! xn1n<� R (x) + x � R (x)1n� � R (x) :

Consider the image measure�Pa; := Pa; B � 1
R , which corresponds to the law of thetruncated process

BR(x). The crux of the proof consists in showing that for every� > 0 and everyM > 0,

sup
a2K\D M

�Pa;
€
d(X ; �(� cl(D)(a); �)) > �

Š
��!
 ! 0

0: (4.19)

Eq. (4.19) is the counterpart of Lem.3.6.3. Once it has been proven, the conclusion follows verbatim
from Sec.3.6, End of the proof. Our aim is thus to establish Eq. (4.19). The proof follows the same
steps as the proof of Lem.3.6.3up to some con�ned changes. Here, the steps of the proof which do not
need any modi�cation are recalled rather brie�y (we refer the reader to Chap.3 for the details). On the
other hand, the parts which require an adaptation are explicitly stated as lemmas, whose detailed proofs
are provided in Appendix4.8.

De�ne h;R (s; a) := h (s; a)1kak� R . First, we recall the following decomposition, established in
Chap.3:

X = � 0 + G;R � X + X � M ;R ; (4.20)

�Pa; almost surely, where� 0 : XN ! C(R+ ; X), G;R : C(R+ ; X) ! C(R+ ; X) andM ;R : XN ! XN are
the mappings respectively de�ned by

� 0(x) : t 7! x0

M ;R (x) : n 7! (xn � x0) � 
n� 1X

k=0

Z
h;R (s; xk)� (ds)

G;R (x) : t 7!
Z t

0

Z
h;R (s;x( bu= c)) � (ds)du ;

for everyx = ( xn : n 2 N) and everyx 2 C(R+ ; X) .

Lemma 4.5.3. For all  2 (0;  0] and all x 2 XN, de�ne Z 
n+1 (x) :=  � 1(xn+1 � xn ). There exists

" > 0 such that:

sup
n2 N;a2K\D M ; 2 (0; 0 ]

�Ea;

 ‚

kZ 
n k +

d(xn )


1kxn k� R

Œ1+ " !

< + 1 (4.21)

Using Lem.3.6.2, the uniform integrability condition (4.21) implies1 that f �Pa; X� 1
 : a 2 K\D M ;  2

(0;  0]g is tight, and for anyT > 0,

sup
a2K\D M

�Pa; (kX � M ;R k1 ;T > " )
 ! 0
��! 0; (4.22)

where the notationkxk1 ;T stands for the uniform norm ofx on [0; T].

1Lem. 3.6.2 of Chap.3 was actually shown with condition[a 2 K ] instead of[a 2 K \ D M ], but the proof can be
easily adapted to the latter case.
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Lemma 4.5.4. For an arbitrary sequence(an ;  n ) such thatan 2 K \ D  n M and n ! 0, there exists a
subsequence (still denoted as(an ;  n )) such that(an ;  n ) ! (a� ; 0) for somea� 2 K \ cl(D), and there
exists r.v.z and (xn : n 2 N) de�ned on some probability space(
 0; F 0; P0) into C(R+ ; X) s.t. xn has
the distribution�Pan ; n X� 1

 n
andxn (! ) ! z(! ) for all ! 2 
 0. Moreover, de�ning

un (t) := xn ( nbt= nc) ;

the sequence(an ;  n ) and (xn ) can be chosen in such a way that the following holdsP0-a.e.

sup
n

Z T

0

‚
d(un (t))

 n
1kun (t )k� R

Œ1+ "
2

dt < + 1 (8T > 0) ; (4.23)

where" > 0 is the constant introduced in Lem.4.5.3.

From now on, the proof of the convergence4.19will use the maximal monotonicity of the operators,
hence the proof will di�er from the proof of3.6.3. De�ne

vn (s; t) := � B (s; un (t))1kun (t )k� R

wn (s; t) := � A  n (s; un (t) �  nB(s; un (t))) 1kun (t )k� R :

Then,vn (s; t)+ wn (s; t) = h n ;R (s; un (t)) . Thanks to the convergence (4.22) and Lem.4.5.4, Eq. (4.20)
becomes :P0-a.e.,

z(t) = z(0) + lim
n!1

Z t

0

Z

�
vn (s; u) + wn (s; u) � (ds) du (8t � 0) : (4.24)

We now select an! 2 
 0 s.t. the events (4.23) and (4.24) are realized, and omit the dependence in! in
the sequel. Otherwise stated,un ; vn andwn are handled from now on as deterministic functions, and no
longer as random variables. The aim of the next lemmas is to analyze the integrandvn (s; u) + wn (s; u).

Consider someT > 0 and let � T represent the Lebesgue measure on the interval[0; T]. To simplify
notations, we setL 1+ "

X := L 1+ " (� � [0; T]; G 
 B ([0; T]); � 
 � T ; X).

Lemma 4.5.5. The sequences(vn )n and(wn )n are bounded inL 1+ "=2
X .

The sequence of mappings((s; t) 7! (vn (s; t); wn (s; t))) n is bounded inL 1+ "=2
X� X and therefore admits

a weak cluster point in that space. We denote by(v; w) such a cluster point, wherev; w : � � [0; T] ! X.
Let HR(s; x) := � A(s; x) � B (s; x) if kxk < R , HR(s; x) := X if kxk = R and HR(s; x) = f 0g if
kxk > R . Denote the corresponding selection integral asHR(x) =

R
HR(s; x) � (ds).

Lemma 4.5.6. For every(s; t) � 
 � T -a.e.,(z(t); (v + w)(s; t)) 2 gr(HR(s; �)) .

By Lem.4.5.6 and Fubini's theorem, there is a� T -negligible set s.t. for everyt outside this set,
v(�; t) + w(�; t) is an integrable selection ofHR(�; z(t)) . Moreover, as(v; w) is a weak cluster point of
(vn ; wn ) in L 1+ "=2

X� X , it holds that

z(t) = z(0) +
Z t

0

Z

�
v(s; u) + w(s; u) � (ds) du ; (8t 2 [0; T]) :

By the above equality,z is a solution to the DI_x 2 HR(x) with initial conditionz(0) = a� . Denoting by
� R(a� ) the set of such solutions, this readsz 2 � R(a� ). As a� 2 K \ cl(D), one hasz 2 � R(K \ cl(D))
where we use the notation� R(S) := [ a2 S� R(a) for every setS � X. Extending the notationd(x; S) :=
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inf y2 S d(x; y), we obtain thatd(xn ; � R(K \ cl(D))) ! 0. Thus, for every� > 0, we have shown that
�Pan ; n (d(X  n ; � R(K \ cl(D))) > � ) ! 0 asn ! 1 . We have thus proven the following result:

8� > 0; lim
 ! 0

sup
a2K\D M

�Pa; (d(X  ; � R(K \ cl(D))) > � ) = 0 :

Letting T > 0 and choosingR > supfk �( a; t)k : t 2 [0; T]; a 2 K \ cl(D)g (the latter quantity being
�nite, see e.g. [36]), it is easy to show that any solution to the DI_x 2 HR(x) with initial condition
a 2 K \ cl(D) coincides with�( a; : ) on [0; T]. By the same arguments as in [28, Sec. 4 - End of the
proof], Th. 4.5.1 follows.

4.6 Cluster points of the P invariant measures. End of the
proof of Th. 4.3.2

Lemma 4.6.1. Assume that there existsx? 2 Z(A + B) that admits aL 2 representation. Then,

P (x; k � � x?k2) � k x � x?k2 � 0:5  (x) +  2C;

where  is the function de�ned in (4.6).

Proof. By assumption, there exists aL 2 representation('; B ) of x?. By expanding

kxn+1 � x?k2 = kxn � x?k2 + 2hxn+1 � xn ; xn � x?i + kxn+1 � xnk2 ;

and by using (4.17), we obtain

kxn+1 � x?k2 = kxn � x?k2 � 2 hA  (� n+1 ; xn � B (� n+1 ; xn )) + B(� n+1 ; xn ); xn � x?i

+  2kA  (� n+1 ; xn � B (� n+1 ; xn )) + B(� n+1 ; xn )k2: (4.25)

Write x = xn , A  = A  (� n+1 ; xn � B (� n+1 ; xn )) , J = J (� n+1 ; xn � B (� n+1 ; xn )) , B = B(� n+1 ; xn ),
B? = ( � n+1 ; x?), and ' = ' (� n+1 ) for conciseness. We write

hA  ; x � x?i = hA  � '; J  � x?i + hA  � '; x � B � J i +  hA  � '; B i

+ h'; x � x?i

= hA  � '; J  � x?i +  kA  k2 �  hA  ; ' i +  hA  � '; B i + h'; x � x?i :

We also writehB; x � x?i = hB � B?; x � x?i + hB?; x � x?i and  2kA  + Bk2 =  2(kA  k2 + kBk2 +
2hA  ; B i ). Plugging these identities at the right hand side of (4.25), we obtain

kxn+1 � x?k2 = kx � x?k2 � 2 fhA  � '; J  � x?i + hB � B?; x � x?ig �  2kA  k2

+ 2 2hA  ; ' i + 2  2h'; B i +  2kBk2 � 2 h' + B?; x � x?i

� k x � x?k2 � 2 fhA  � '; J  � x?i + hB � B?; x � x?ig � ( 2=2)kA  k2

+ (3  2=2)kBk2 + 4 2k' k2 � 2 h' + B?; x � x?i

� k x � x?k2 � 2 fhA  � '; J  � x?i + hB � B?; x � x?ig � ( 2=2)kA  k2

+ 3 2kB � B?k2 + 3 2kB?k2 + 4 2k' k2 � 2 h' + B?; x � x?i

where the �rst inequality is due to the fact that2ha; bi � k ak2=2 + 2kbk2 and the second to the triangle
inequality. Observe that the term between the braces at the right hand side of the last inequality is
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nonnegative thanks to the monotonicity ofA(s; �) and B(s; �). Taking the conditional expectationEn

at each side, the contribution of the last inner product at the right hand side disappears, and we obtain

P (x; k � � x?k2) � k x � x?k2 � 0:5  (x) + 4  2
Z

k' (s)k2� (ds) + 3  2
Z

kB(s; x?)k2� (ds)

where  is the function de�ned in (4.6).

Givenk 2 N, we denote byP k
 the kernelP iterated k times. The iterated kernel is de�ned

recursively asP0
 (x; dy) = � x (dy), and

P k
 (x; S) =

Z
P k� 1

 (y; S) P (x; dy)

for eachS 2 B (X).

Lemma 4.6.2. Let the assumptions of the statement of Th.4.5.1hold true. Assume that for all" > 0,
there existsM > 0 such that

sup
 2 (0; 0 ]

sup
� 2I (P )

� ((DM )c) � ": (4.26)

Then, as ! 0, any cluster point ofI (P) is an element ofI (�) .

Note that in the common domain case, (4.26) is trivially satis�ed, since the supports of all the
invariant measures are included incl(D).

Proof. Choose two sequences( i ) and(� i ) such that i ! 0, � i 2 I (P i ) for all i 2 N, and� i converges
narrowly to some� 2 M (X) as i ! 1 .

Let f be a real, bounded, and Lipschitz function onX with Lipschitz coe�cient L. By de�nition,
� i (f ) = � i (P k

 i
f ) for all k 2 N. Set t > 0, and letki = bt= i c. We have

j� i f � � i (f � �(� cl(D)(�); t)) j =
�
�
�
�

Z
(P k i

 i
(a; f ) � f (�(� cl(D)(a); t))) � i (da)

�
�
�
�

�
Z �

�
�P k i

 i
(a; f ) � f (�(� cl(D)(a); ki  i ))

�
�
� � i (da)

+
Z �

�
�f (�(� cl(D)(a); ki  i )) � f (�(� cl(D)(a); t))

�
�
� � i (da)

�
Z

Ea; i
�
�
�f (xk i ) � f (�(� cl(D)(a); ki  i ))

�
�
� � i (da)

+
Z �

�
�f (�(� cl(D)(a); ki  i )) � f (�(� cl(D)(a); t))

�
�
� � i (da)

:= Ui + Vi :

By the boundedness and the Lispchitz-continuity off ,

Ui �
Z

Ea; i
”
2kf k1 ^ Lkxk i � �(� cl(D)(a); ki  i )k

—
� i (da) :

Fixing an arbitrarily small" > 0, it holds by (4.26) that � i ((DM i )
c) � "=2 for a large enoughM . By

the tightness of(� i ), we can choose a compactK � X s.t. for all i , � i (K c) � "=2. With these choices,
we obtain

Ui � sup
a2K\D M i

Ea; i
”
2kf k1 ^ Lkxk i � �(� cl(D)(a); ki  i )k

—
+ 2kf k1 " :
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Denoting as(�)[0;t ] the restriction of a function to the interval[0; t], and observing that

kxk i � �(� cl(D)(a); ki  i )k � k (X (x) � �(� cl(D)(a); �)) [0;t ]k1 ;

we can now apply Th.4.5.1 to obtain

sup
a2K\D M i

Ea; i
”
2kf k1 ^ Lkxk i � �(� cl(D)(a); ki  i )k

—
���!
i !1

0:

As " is arbitrary, we obtain thatUi ! i 0. Turning to Vi , �x an arbitrary " > 0, and choose a compact
K � X such that� i (K c) � " for all i . We have

Vi � sup
a2K

�
�
�f (�(� cl(D)(a); ki  i )) � f (�(� cl(D)(a); t))

�
�
� + 2kf k1 " :

By the uniform continuity of the functionf � �(� cl(D)(�); �) on the compactK � [0; t], and by the
convergenceki  i " t, we obtain thatlim supi Vi � 2kf k1 " . As " is arbitrary,Vi ! i 0. In conclusion,
� i f � � i (f � �(� cl(D)(�); t)) ! i 0. Moreover,� i f � � i (f � �(� cl(D)(�); t)) ! i �f � � (f � �(� cl(D)(�); t))
sincef (�) � f � �(� cl(D)(�); t)) is bounded continuous. Thus,�f = � (f � �(� cl(D)(�); t)) . Since� i

converges narrowly to� , we obtain that for all� > 0, � (cl(D� )c) � lim inf i � i (cl(D� )c) = 0 by choosing
" arbitrarily small in (4.26) and making i ! 0. Thus, supp(� ) � cl(D), and we obtain in conclusion
that �f = � (f � �( �; t)) for an arbitrary real, bounded, and Lipschitz continuous functionf . Thus,
� 2 I (�) .

To establish (4.26) in the di�erent domains case, we need the following lemma.

Lemma 4.6.3. Let Assumptions4.3.6, 4.3.8, and4.3.4� (a) hold true. Then, for all" > 0, there exists
M > 0 such that

sup
 2 (0; 0 ]

sup
� 2I (P )

� ((DM )c) � ":

Proof. We start by writing

d(xn+1 ) � k xn+1 � � cl(D)(xn )k � k xn+1 � � cl(D (� n +1 )) (xn )k + k� cl(D (� n +1 )) (xn ) � � cl(D)(xn )k:

On the one hand, we have by Assumption4.3.8and the nonexpansiveness of the resolvent that

Ea;
n kxn+1 � � cl(D (� n +1 )) (xn )k � Ea;

n kJ (� n+1 ; xn ) � � cl(D (� n +1 )) (xn )k +  Ea;
n kB(� n+1 ; xn )k

� C (1 +   (xn )) ;

on the other hand, since

k� cl(D (� n +1 )) (xn ) � � cl(D)(xn )k2 � d(xn )2 � d(xn ; D(� n+1 ))2 (see (4.28));

we can make use of Assumption4.3.6 to obtain

Ea;
n k� cl(D (� n +1 )) (xn ) � � cl(D)(xn )k � (Ea;

n k� cl(D (� n +1 )) (xn ) � � cl(D)(xn )k2)1=2 � � d(xn ) ;

where� 2 [0; 1). We therefore obtain that

Ea;
n d(xn+1 ) � � d(xn ) + C (1 +   (xn )) :
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By iterating, we end up with the inequality

Pn+1
 (a;d) � � n+1 d(a) + C

nX

k=0

� n� k(1 + P k
 (a;   )) : (4.27)

From Assumption4.3.4� (a) and Lem.4.6.1, the inequality (4.13) in the statement of Prop.4.3.3 is
satis�ed with V(x) = kx � x?k2, Q(x) = 	( x), � ( ) = = 2, and � ( ) = C 2. By the �rst part of
this proposition,sup 2 (0; 0 ] sup� 2I (P ) � (	) < 1 . In particular, noting thatd(x) � k xk + k� cl(D)(0)k,
we obtain thatsup 2 (0; 0 ] sup� 2I (P ) � (d) < 1 . Moreover, with a small adaptation of the proof of
Prop. 3.8.7 in Chap.3 to the inequality of Lem.4.6.1, we can show the slightly stronger result that
sup 2 (0; 0 ] sup� 2I (P ) � (  ) < 1 . Let  2 (0;  0] and� 2 I (P ). We can integrate w.r.t� in (4.27) to
obtain

� (d) � � n+1 � (d) + C
nX

k=0

� n� k(1 + � (  )) :

Using Markov's inequality, we have for alln 2 N,

� ((DM )c) �
� (d)
M

�
� n+1

M
� (d) +

C
M

nX

k=0

� n� k(1 + � (  )) �
� n+1 C
M

+
C
M

:

By makingn ! 1 , we obtain that� ((DM )c) � C=M, and the proof is concluded by takingM as
large as required.

Th. 4.3.2 : proofs of the convergences (4.7), (4.9), and (4.10)

We need to check that the assumptions of Prop.4.3.3 are satis�ed. Lem.4.6.1 shows that the in-
equality (4.13) is satis�ed withV(x) = kx � x?k2, Q(x) = 	( x), � ( ) = = 2, and � ( ) = C 2, and
Assumption4.3.4� (a) ensures that	( x) ����!

kxk!1
1 as required.

When the assumptions of Th.4.5.1, are satis�ed, Lem.4.6.2shows with the help of Lem.4.6.3when
needed that any cluster point ofI (P) belongs toI (�) . The required convergences follow at once from
Prop. 4.3.3. Th. 4.3.2 is proven.

4.7 Proofs relative to Sec. 4.4

4.7.1 Proof of Prop. 4.4.1

It is well known that the coercivity or the supercoercivity of a functionq 2 � 0(X) can be characterized
through the study of the recession functionq1 of q, which is the function in� 0(X) whose epigraph is
the recession cone of the epigraph ofq [101, Ÿ8], [76, Ÿ 6.8]. We recall the following fact.

Lemma 4.7.1. The functionq 2 � 0(X) is coercive if and only if0 is the only solution of the inequality
q1 (x) � 0. It is supercoercive if and only ifq1 = � f 0g.

Proof. By [76, Prop. 6.8.4],lev� 0 q1 is the recession cone of any level setlev� a q which is not empty
[101, Th. 8.6]. Thus,q is coercive if and only iflev� 0 q1 is the recession cone of a nonempty compact
set, hence equal tof 0g. The second point follows from [10, Prop. 2.16].

Lemma 4.7.2. For each > 0, q1 = ( q )1 .
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Proof. By [76, Th. 6.8.5], the Legendre-Fenchel transform(q1 )� of q1 satis�es(q1 )� = �cl dom q� . Since
q = q� ((2 )� 1k � k2) where� is the in�mal convolution operator,(q )� = q� + ( = 2)k � k2. Therefore,
domq� = dom(q )� , which implies that(q1 )� = (( q )1 )� , and the result follows.

Lemma 4.7.3 ([66, Th. II.2.1]). Assume thatq : � � X ! (�1 ; 1 ] is a normal integrand such that
q(s; �) 2 � 0(X) for almost everys. Assume thatQ(x) :=

R
q(s; x) � (ds) belongs to� 0(X). Then,

Q1 (x) =
R

q1 (s; x) � (ds), whereq1 (s; �) is the recession function ofq(s; �).

We now enter the proof of Prop.4.4.1. Denote byg (s; �) the Moreau envelope of the mapping
g(s; �) de�ned above.

Lemma 4.7.4. Let HypothesisH1 hold true. Then, for all > 0, the mapping

G : x 7!
Z

g (s; x) � (ds) ;

is well de�ned onX ! R, and is convex (hence continuous) onX. Moreover,G " G as # 0.

Proof. Sincex? 2 domG from HypothesisH1, it holds from the de�nition of the functiong that
R

jg(s; x?)j � (ds) < 1 . Moreover, noting that' (s) 2 @g(s; x?), the inequalityg(s; x) � h ' (s); x �
x?i + g(s; x?) holds. Thus,

g (s; x) = inf
w

•
g(s; w) +

1
2

kw � xk2
‹

� inf
w

•
h' (s); w � x?i + g(s; x?) +

1
2

kw � xk2
‹

= h' (s); x � x?i + g(s; x?) �

2

k' (s)k2:

Writing x = x+ � x � wherex+ = x _ 0, this inequality shows thatg (�; x?)� is integrable. Moreover,
since the Moreau envelope satis�esg (s; x) � g(s; x), we obtain thatg (�; x?)+ � g(�; x?)+ � j g(�; x?)j
who is also integrable. Therefore,jg (�; x?)j is integrable. For other values ofx, we have

g (s; x) = g (s; x?) +
Z 1

0
hx � x?; r g (s; x? + t(x � x?)) � r g (s; x?)i dt + hx � x?; r g (s; x?)i ;

wherer g (s; x) is the gradient ofg (s; x) w.r.t. x. Using the well know properties of the Yosida
regularization (see Sec.2.2.1), we obtain

jg (s; x)j � j g (s; x?)j +
kx � x?k2

2
+ kx � x?k k' (s)k2:

Consequently,g (�; x) is integrable, thus,G (x) is de�ned for allx 2 X. The convexity and hence the
continuity ofG follow trivially from the convexity ofg (s; �).

Since the integrandg (s; x) increases as decreases, so is the case ofG (x). If x 2 dom(G),
it holds that jg(�; x)j is integrable. On the one hand,g (s; x)+ � j g(s; x)j, and on the other hand,
g (s; x)� � k ' (s)kkx � x?k + jg(s; x?)j + k' (s)k2 for  � 2. By the dominated convergence,G (x) !
G(x) as  ! 0. If x 62domG, then

R
g (s; x)+ � (ds) ! 1 as  ! 0 by monotone convergence, and

R
g (s; x)� � (ds) remains bound. Thus,G (x) ! 1 .

Lemma 4.7.5. Let HypothesesH1 andH2 hold true. Then, for all small enough,

G (x) + F (x) � G (x?) � F (x?) � 2  (x) + C;

where  is given by (4.6).
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Proof. By the convexity ofg (s; �) and f (s; �), we have

g (s; x �  r f (s; x)) � g (s; x?) � hr g (s; x �  r f (s; x)); x �  r f (s; x) � x?i ; and

f (s; x) � f (s; x?) � hr f (s; x?); x � x?i � hr f (s; x) � r f (s; x?); x � x?i :

Write g = g (s; x �  r f (s; x)), r f = r f (s; x), prox = prox g (s;�)(x �  r f (s; x)), ' = ' (s), and
r f ? = r f (s; x?). From these two inequalities, we obtain

g (s; x �  r f (s; x)) � g (s; x?) + f (s; x) � f (s; x?) � h ' (s) + r f (s; x?); x � x?i

� hr g ; x �  r f � x? + prox  � prox i + hr f � r f ?; x � x?i � h '; x � x? + prox  � prox i

= hr g � '; prox � x?i + hr f � r f ?; x � x?i +  kr g k2 �  h'; r g + r f i :

Again, by the convexity ofg (s; �), we have

g (s; x �  r f (s; x)) � g (s; x) �  hr g (s; x); r f (s; x)i :

Thus, we obtain

g (s; x) � g (s; x?) + f (s; x) � f (s; x?) � h ' (s) + r f (s; x?); x � x?i

� hr g � '; prox � x?i + hr f � r f ?; x � x?i +  kr g k2 �  h'; r g + r f i +  hr g (s; x); r f i :

We now bound the sum of the last two terms at the right hand side. By the � 1-Lipschitz continuity
of the Yosida regularization,jhr g (s; x) � r g ; r f ij � kr f k2. Using in addition the inequalities
jha; bij � k ak2=2 + kbk2=2 andkr f k2 � 2kr f ?k2 + 2kr f � r f ?k2, we obtain

 hr g (s; x); r f i �  h'; r g + r f i =  hr g (s; x) � r g ; r f i +  hr g ; r f i �  h'; r g + r f i

� 2 kr f k2 +  kr g k2 +  k' k2

� 4 kr f � r f ?k2 + 4 kr f ?k2 +  kr g k2 +  k' k2:

Thus,

g (s; x) � g (s; x?) + f (s; x) � f (s; x?) � h ' (s) + r f (s; x?); x � x?i

� 2
€
hr g � '; prox � x?i + hr f � r f ?; x � x?i +  kr g k2 � 6 kr f � r f ?k2

Š

+ 16 kr f � r f ?k2 � hr f � r f ?; x � x?i +  k' k2 + 4 kr f ?k2 :

Taking the integral with respect to� (ds) at both sides, the contribution of the inner producth' +
r f ?; x � x?i vanishes. Recalling (4.6), we obtain

G (x) + F (x) � G (x?) � F (x?)

� 2  (x) �
Z

(hr f � r f ?; x � x?i � 16 kr f � r f ?k2) d� + 
Z

(k' k2 + 4kr f ?k2) d� :

Using HypothesisH2, we obtain the desired result.

End of the proof of Prop. 4.4.1. Let  0 > 0 be such that Lem.4.7.5holds true for all 2 (0;  0].
Denoting asq(s; �)1 the recession function ofq(s; �), we have

(G 0 + F )1 (a)
=

Z
((g 0 (s; �))1 + f (s; �)1 ) � (ds)

(b)
=

Z
(g(s; �)1 + f (s; �)1 ) � (ds)

(c)
= ( G + F )1 ;

where the equalities (a) and (c) are due to Lem.4.7.3, and (b) is due to Lem.4.7.2. Thus, by Lem.4.7.1,
F + G is coercive (resp. supercoercive) if and only ifF + G 0 is coercive (resp. supercoercive). Con-
sequently, sinceG increases as decreases by Lem.4.7.4, the hypothesesH1, H2, andH3� (a) (resp.,
H1, H2, H3� (b)) imply Assumption4.3.4� (a) (resp. Assumption4.3.4� (b)). Prop. 4.4.1 is proven.
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4.7.2 Proof of Lem. 4.4.2

We �rst recall that @G(�) =
R

@g(s; �) � (ds), where

@g(s; �) =
¨

� (0)� 1@h(u; �) if i = 0;
@�Ci otherwise;

for s = ( u; i ) 2 � . Let  be an arbitrary measurable� ! X function such that (u) 2 @h(u; x?) for
� -almost allu 2 � (such functions are calledmeasurable selectionsof the set-valued function@h(�; x?)).
For eachd 2 X, it holds by the convexity ofh(u; �) that

h(u; x? + d) � h(u; x?) + h (u); di ; and

h(u; x? � d) � h(u; x?) � h  (u); di ;

for � -almost allu 2 � . Equivalently,

h(u; x?) � h(u; x? � d) � h  (u); di � h(u; x? + d) � h(u; x?):

Thus, if kdk is small enough but otherwised is arbitrary, we get from the second assumption of the
statement thath (u); di is � -square-integrable. Thus,

R
k (u)k2 � (du) < 1 (see [66, Th. II.4.2] for a

similar argument). Now, writings = ( u; i ) 2 � , every measurable selection� of @g(�; x?) is of the form

� (s) =
¨

� (0)� 1 (u) if i = 0;
� i otherwise;

where is a measurable selection of@h(�; x?), and � i is an element of@�Ci (x?). By what precedes, it is
immediate that

R
k� k2d� < 1 . By assumption, there exists a measurable selection' of @g(�; x?) such

that
R
(' (s)+ r f (u; x?)) � (ds) = 0 . Using the �rst assumption, we get that the couple(' (s); r f (u; x?))

is aL 2 representation ofx?.

4.7.3 Proof of Prop. 4.4.4

The assertions aboutZ (A) are straightforward. A small calculation shows that

J (s; x) = ( I + H (s)) � 1(x � d (s)); and

A  (s; x) = A(s; J (s; x)) = ( I + H (s)) � 1(H (s)x + d(s)):

Using these expressions, we obtain

  (x) =
Z §

hA(s; J (s; x)) � H (s)x? � d(s); J (s; x) � x?i +  kA(s; J (s; x))k2
ª

� (ds)

=
Z §

(J (s; x) � x?)T H (s) + H T (s)
2

(J (s; x) � x?) +  kA(s; J (s; x))k2
ª

� (ds):

Since(I + H (s)) � 1 andH (s)(I + H (s)) � 1 are respectively the resolvent and the Yosida regular-
ization of the linear, monotone and maximal operatorH (s), it holds that k(I + H (s)) � 1k � 1, and
kH (s)(I + H (s)) � 1k � 1.

Denoting ask � kS the semi norm associated with any semide�nite nonnegative matrixS, we write

  (x) �
Z

kJ (s; x) � x?k2
(H (s)+ H T (s)) =2 � (ds)

=
Z 



 (I + H (s)) � 1

•
(x � x?) �  (H (s)x? + d(s))

‹ 




2

(H (s)+ H T (s)) =2
� (ds):
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Using the inequalityka � bk2 � 0:5kak2 � k bk2, we obtain that  (x) � 0:5W (x) � U , with

W (x) =
Z 


 (I + H (s)) � 1(x � x?)





2

(H (s)+ H T (s)) =2
� (ds); and

U =  2
Z 


 (I + H (s)) � 1(H (s)x? + d(s))





2

(H (s)+ H T (s)) =2
� (ds)

= 
Z

kH (s)x? + d(s))k2
I  (s) � (ds):

with

I  (s) = ( I + H (s)) � T H (s) + H T (s)
2

(I + H (s)) � 1:

From the inequalities shown above, we have



 I  (s)




 � 1:

Therefore,
0 � U � 

Z
kH (s)x? + d(s)k2 � (ds) � C:

Turning to W (x), it holds that

W (x) = ( x � x?)T
• Z

I  (s) � (ds)
‹
(x � x?);

SincekI  (s)k �


 H (s)+ H T (s)

2



 and I  (s) !  ! 0 (H (s) + H T (s))=2, it holds by dominated convergence

that
R

I  (s) � (ds) !  ! 0 H + H T . If H + H T > 0, then there exists 0 > 0 such that

inf
 2 (0; 0 ]

� min

• Z
I  (s) � (ds)

‹
> 0;

where� min is the smallest eigenvalue. Thus, Assumption4.3.4� (c) is veri�ed.

4.7.4 Proof of Prop. 4.4.5

SinceA  (s; �) is 1= -Lipschitz, kA  (s; x � B (s; x))k � k A  (s; x)k � k B(s; x)k � k A  (s; x)k �
kB(s; x) � B (s; x?)k � k B(s; x?)k. Therefore,

  (x)

�
Z §

hB(s; x) � B (s; x?); x � x?i � 6 kB(s; x) � B (s; x?)k2 +  kA  (s; x � B (s; x))k2
ª

� (ds)

�
Z §

hB(s; x) � B (s; x?); x � x?i � 8 kB(s; x) � B (s; x?)k2 + ( = 2)kA  (s; x)k2

� 2 kB(s; x?)k2
ª

� (ds)

�

2

Z
kA  (s; x)k2 � (ds) � C

for  small enough, by HypothesisH4. We now have


Z

kA  (s; x)k2 � (ds) =
1


Z
kx � J (s; x)k2 � (ds) �

1


Z
d(s; x)2 � (ds) �

C


d(x)2

thanks to HypothesisH2. The result follows from the boundedness ofD.
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4.7.5 Proof of Prop. 4.4.6

To prove this proposition, we start with the following result.

Lemma 4.7.6. Let A 2 M (X) be such that

9(x � ; y� ) 2 gr(A); 9� > 0; S(x � ; � ) � int(dom A); and8x 2 S(x � ; � ); inf
y2 A(x)

hy � y� ; x � x � i > 0:

Then, assuming thatdomA is unbounded,

lim inf
x2 dom A;kxk!1

inf y2 A(x)hy � y� ; x � x � i
kxk

> 0:

Proof. Given a vectoru 2 X, de�ne the function

f u(� ) = inf
y2 A(x � + �u )

hy � y� ; ui

for all � � 0 such thatx � + �u 2 domA. For all � 1 > � 2 in domf u, and ally1 2 A(x � + � 1u) and
y2 2 A(x � + � 2u), we have

hy1 � y� ; ui � h y2 � y� ; ui = hy1 � y2; ui =
1

� 1 � � 2
hy1 � y2; x� + � 1u � (x � + � 2u)i � 0:

Passing to the in�ma, we obtain thatf u(� 1) � f u(� 2), in other words,f u is non decreasing.
For all x 2 domA such thatkx � x � k � � , we have by settingu = � (x � x � )=kx � x � k

inf
y2 A(x)

hy � y� ; x � x � i =
kx � x � k

�
f u(� � 1kx � x � k) �

kx � x � k
�

f u(1):

For anyu 2 S(0; � ), it holds by assumption thatf u(1) = inf y2 A(x � + u)hy � y� ; ui is positive. We shall
show thatf u(1) is lower semicontinuous (lsc) as a function ofu on the sphereS(0; � ). Since this sphere
is compact,f u(1) attains its in�mum onS(0; � ), and the lemma will be proven.

It is well-known thatA is locally bounded near any point in the interior if its domain [36, Prop. 2.9]
[12, Ÿ21.4]. Thus, by the closedeness ofgr(A), the inf in the expression off u(1) is attained. Let
un ! u, and writef un (1) = hyn � y� ; un i . By the maximality ofA, we obtain that for any accumulation
point y of (yn ) (who exists by the local boundedness), it holds that(u; y) 2 gr(A). Consequently,
lim inf n f un (1) � f u(1), in other words,f u(1) is lsc.

We now prove Prop.4.4.6. Let us write

f (; s; x ) =
hA  (s; x) � ' (s); J (s; x) � x?i

kxk
+

kx � J (s; x)k2

 kxk
; and

g(s; x) = inf
 2 (0;1]

f (; s; x ):

Note that   (x)=kxk =
R

f (; s; x ) � (ds). We shall show thatlim inf kxk!1 g(s; x) > 0 for all s 2 � .
Assume the contrary, namely, that there exists 2 � and kxkk ! 1 such thatg(s; xk) ! 0. In these
conditions, there exists a sequence( k) in (0; 1] such thatf ( k ; s; xk) ! 0. By inspecting the second
term in the expression off ( k ; s; xk), we obtain thatkJ k (s; xk)k=kxkk ! 1. Rewriting the �rst term
as

kJ k (s; xk)k
kxkk

hA  k (s; xk) � ' (s); J k (s; xk) � x?i
kJ k (s; xk)k

;
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and recalling thatA  k (s; xk) 2 A(s; J k (s; xk)) , Lem.4.7.6shows that thelim inf of this term is positive,
which raises a contradiction.

Note that

inf
 2 (0;1]

  (x)
kxk

�
Z

g(s; x) � (ds):

Using Fatou's lemma, we obtain Assumption4.3.4� (a).

4.8 Proofs relative to Sec. 4.5

4.8.1 Proof of Lem. 4.5.3

Let " be the smallest of the three constants (also named") in Assumptions4.3.1, 4.3.3 and 4.3.7
respectively whereK = B(R). For everya;  , the following holds for�Pa; -almost allx = ( xn : n 2 N):

d(xn+1 )1kxn +1 k� R = d(xn+1 )1kxn +1 k� R(1kxn k� R + 1kxn k>R ) = d(xn+1 )1kxn +1 k� R1kxn k� R

� d(xn+1 )1kxn k� R

= kxn+1 � � D (xn+1 )k1kxn k� R

� k xn+1 � � D (xn )k1kxn k� R :

Using the notation�Ea;
n = �Ea; ( : jx0; : : : ; xn ), we thus obtain:

�Ea;
n (d(xn+1 )1+ " 1kxn +1 k� R) �

Z
kJ (s; xn � B (s; xn )) � � D (xn )k1+ " 1kxn k� R d� (s) :

By the convexity ofk � k1+ " , for all � 2 (0; 1),

kx + yk1+ " =
1

� 1+ "




 �x + (1 � � )

�
1 � �

y





1+ "
� � � " kxk1+ " + (1 � � )� " kyk1+ " :

Therefore, by setting�  (s; a) := kJ (s; a � B (s; a)) � � D (s)(a)k,

�Ea;
n (d(xn+1 )1+ " 1kxn +1 k� R) � � � "

Z
�  (s; xn )1+ " 1kxn k� R d� (s)

+ (1 � � )� "
Z

k� D (s)(xn ) � � D (xn )k1+ " 1kxn k� R d� (s) :

Note that for everys 2 � , a 2 X,

k�  (s; a)k � k J (s; a) � � D (s)(a)k +  kB(s; a)k :

Hence, by Assumptions4.3.7and4.3.3, there exists a deterministic constantC > 0 s.t.

sup
n

Z
�  (s; xn )1+ " 1kxn k� R d� (s) � C 1+ " :

Moreover, since� cl(D (s)) is a �rmly non expansive operator [12, Chap. 4], it holds that for allu 2 cl(D),
and for� -almost alls,

k� cl(D (s)) (xn ) � uk2 � k xn � uk2 � k � cl(D (s)) (xn ) � xnk2:
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Taking u = � cl(D)(xn ), we obtain that

k� cl(D (s)) (xn ) � � cl(D)(xn )k2 � d(xn )2 � d(xn ; D(s))2: (4.28)

Making use of Assumption4.3.6, and assuming without loss of generality that" � 1, we obtain

Z
k� cl(D (s)) (xn ) � � cl(D)(xn )k1+ " d� (s) �

• Z
k� cl(D (s)) (xn ) � � cl(D)(xn )k2 d� (s)

‹ (1+ " )=2

� � 0d(xn )1+ " ;

for some� 0 2 [0; 1). Choosing� close enough to zero, we obtain that there exists� 2 [0; 1) such that

�Ea;
n

‚
d(xn+1 )1+ "

 1+ "
1kxn +1 k� R

Œ

� �
d(xn )1+ "

 1+ "
1kxn k� R + C:

Taking the expectation at both sides, iterating, and using the fact thatd(x0) = d(a) < M , we obtain
that

sup
n2 N;a2K\D M ; 2 (0; 0 ]

�Ea;

 ‚
d(xn )



Œ1+ "

1kxn k� R

!

< + 1 : (4.29)

SinceA  (s; �) is  � 1-Lipschitz continuous,kA  (s; x � B (s; x))k � k A  (s; x)k + kB(s; x)k. Moreover,
choosing measurably~x 2 D in such a way thatkx � ~xk � 2d(x), we obtainkA  (s; x)k � k A0(s; ~x)k +
2d(x)

 . Therefore, there existsR0 depending only onR andD s.t.

kA  (s; x)k1kxk� R � k A0(s; ~x)k1k~xk� R0 + 2
d(x)


1kxk� R :

Thus,

�Ea;
n (kZ 

n+1 k1+ " ) =
Z

kh;R (s; xn )k1+ " d� (s)

=
Z

kB(s; xn ) + A  (s; xn � B (s; xn ))k1+ " 1kxn k� R d� (s)

�
Z ‚

2kB(s; xn )k + kA0(s; ~xn )k + 2
d(xn )



Œ1+ "

1kxn k� R0 d� (s) : (4.30)

By Assumption4.3.3,
R

kB(s; xn )k1+ " 1kxn k� R d� (s) � C where the constantC depends only on" and
R. By Assumption4.3.1, we also have

R
kA0(s; xn )k1+ " 1kxn k� R d� (s) � C for some (other) constant

C. The third term is controlled by Eq. (4.29). Taking expectations, the bound (4.21) is established.

4.8.2 Proof of Lem. 4.5.4

The �rst point can be obtained by straightforward application of Prokhorov and Skorokhod's theorems.
However, to verify the second point, we need to construct the sequences more carefully. Choose" > 0
as in Lem.4.5.3. We de�ne the processY  : XN ! RN s.t. for everyn 2 N,

Y 
n (x) :=

n� 1X

k=0

d(xk)1+ "=2

 "=2
1kxk k� R ;
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and we denote by(X ; Y  ) : XN ! (X � R)N the process given by(X; Y  )n (x) := ( xn ; Y 
n (x)). We

de�ne for everyn, ~Z 
n+1 :=  � 1((X; Y  )n+1 � (X; Y  )n ). By Lem.4.5.3, it is easily seen that

sup
n2 N;a2K\D M ; 2 (0; 0 ]

�Ea;
€
k ~Z 

n k1k ~Z 
n k>A

Š A! + 1����! 0:

We now apply Lem.3.6.2, only replacingX byX� R and�Pa; by �Pa; (X; Y  )� 1. By this lemma, the family
f �Pa; (X; Y  )� 1X

� 1
 : a 2 K \ D M ;  2 (0;  0]g is tight, whereX

� 1
 : (X � R)N ! C(R+ ; X � R) is the

piecewise linear interpolated process, de�ned in the same way asX only substitutingX� R with X in the
de�nition. By Prokhorov's theorem, one can choose the subsequence(an ;  n ) s.t. �Pan ; n (X; Y  n )� 1X

� 1
 n

converges narrowly to some probability measure� on X � R. By Skorokhod's theorem, we can de�ne a
stochastic process((xn ; yn ) : n 2 N) on some probability space(
 0; F 0; P0) into C(R+ ; X � R), whose
distribution for a �xedn coincides with�Pan ; n (X; Y  n )� 1X

� 1
 n

, and s.t. for every! 2 
 0, (xn (! ); yn (! )) !
(z(! ); w(! )) , where(z; w) is a r.v. de�ned on the same space. In particular, the �rst marginal distribution
of �Pan ; n (X; Y  n )� 1X

� 1
 n

coincides with�Pan ; n X� 1
 n

. Thus, the �rst point is proven.
For every 2 (0;  0], introduce the mapping

�  : C(R+ ; X) ! C(R+ ; R)

x 7!
‚

t 7!
Z t

0
( � 1d(x( bu= c))) 1+ "=21kx( bu= c)k� Rdu

Œ

:

We denote byX� 1
 : RN ! C(R+ ; R) the piecewise linear interpolated process, de�ned in the same way

asX only substitutingR with X in the de�nition. It is straightforward to show thatX � Y  n = �  � X .
For everyn, by de�nition of the couple(xn ; yn ), the distribution underP0 of the r.v. �  n (xn ) � yn is equal
to the distribution of�  n � X n � X n

� Y  n under�Pan ; n . Therefore,P0-a.e. and for everyn, yn = �  n (xn ).
This implies that,P0-a.e.,�  n (xn ) converges (uniformly on compact set) tow. On that event, this implies
that for everyT � 0, �  n (xn )(T) ! w(T), which is �nite. Hence,supn �  n (xn )(T) < 1 on that event,
which proves the second point.

4.8.3 Proof of Lem. 4.5.5

De�ne ca := supx2 B (R)\D
R

kA0(s; x)k1+ "=2d� (s) and cb := supx2 B (R)
R

kB(s; x)k1+ "=2d� (s) (these
constants being �nite by Assumptions4.3.1 and 4.3.3). By the same derivations as those leading to
Eq. (4.30), we obtain

Z
kvn (s; t)k1+ "=2d� (s) � cb

Z
kwn (s; t)k1+ "=2d� (s) � C

 
d(un (t))1+ "=2

 1+ "=2
1kun (t )k� R + ca + cb

!

:

The proof is concluded by applying Lem.4.5.4.

4.8.4 Proof of Lem. 4.5.6

The sequence((vn ; wn ; kwn (�; �)k; kvn (�; �)k)) converges weakly to(v; w; ~v; ~w) in L 1+ "=2
X2 � R2 along some

subsequence (n.b.: compactness and sequential compactness are the same notions in the weak topology
of L 1+ "=2

X2 � R2 ). We still denote by((vn ; wn ; kvnk; kwnk)) this subsequence. By Mazur's theorem, there
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exists a functionJ : N ! N and a sequence of sets of weightsf � k;n : n 2 N; k = n : : : ; J (n) : � k;n �
0;

P J (n)
k= n � k;n = 1g such that the sequence of functions

(�vn ; �wn ; v̂n ; ŵn ) : (s; t) 7!
J (n)X

k= n

� k;n (vk(s; t); wk(s; t); kvk(s; t)k; kwk(s; t)k)

converges strongly to(v; w; ~v; ~w) in that space, asn ! 1 . Taking a further subsequence (which we
still denote by(�vn ; �wn ; v̂n ; ŵn )) we obtain the� 
 � T -almost everywhere convergence of(�vn ; �wn ; v̂n ; ŵn )
to (v; w; ~v; ~w). Consider a negligible setN 2 G 
 B ([0; T]) such that for all(s; t) =2 N ,

(�vn (s; t); �wn (s; t); v̂n (s; t); ŵn (s; t)) ! (v(s; t); w(s; t); ~v(s; t); ~w(s; t))

and ~v(s; t); ~w(s; t) are �nite. We shall prove that for every(s; t) =2 N , (z(t); (v + w)(s; t)) 2
gr(HR(s; �)) . First consider the case wherekz(t)k > R . Sinceun (t) ! z(t), there exists a posi-
tive integern0 such that for everyn � n0, kun (t)k > R . Hence,vn (s; t) and wn (s; t) are equal
to zero for everyn � n0 and similarly for �vn (s; t) and �wn (s; t). For every(s; t) =2 N such that
kz(t)k > R , (v + w)(s; t) = 0 and (z(t); (v + w)(s; t)) 2 gr(HR(s; �)) . Then, if kz(t)k = R,
(z(t); (v+ w)(s; t)) 2 gr(HR(s; �)) obviously. Finally, assume thatkz(t)k < R . In this case the condition
(z(t); (v + w)(s; t)) 2 gr(HR(s; : )) is equivalent to:

(z(t); � (v + w)(s; t)) 2 gr(A(s; �) + B(s; �)) : (4.31)

Besides, there exists a positive integern0 such that for everyn � n0, kun (t)k < R . To show Eq. (4.31),
considerp 2 D(s), qa 2 A(s; p) andqb 2 B(s; p). Decompose:

hqb + �vn (s; t) + qa + �wn (s; t); p � z(t)i = An + Bn + Cn ; (4.32)

where

An =
J (n)X

k= n

� k;n hqa + wk(s; t); p � J k (s; uk(t) �  kB(s; uk(t))) i

Bn =
J (n)X

k= n

� k;n hqb + vk(s; t); p � uk(t)i

Cn =
J (n)X

k= n

� k;n hqa + wk(s; t); J k (s; uk(t) �  kB(s; uk(t))) � uk(t)i :

The left hand side of (4.32) converges tohqa + w(s; t); p � z(t)i + hqb + v(s; t); p � z(t)i . The terms
An andBn are nonnegative by monotonicity ofA(s; �) andB(s; �) for everyn � n0. Moreover,

Cn =
J (n)X

k= n

� k;n hqa + wk(s; t); J k (s; uk(t) �  kB(s; uk(t))) � uk(t)i

=
J (n)X

k= n

� k;n hqa + wk(s; t); J k (s; uk(t) �  kB(s; uk(t))) � (uk(t) �  kB(s; uk(t))) i

+
J (n)X

k= n

� k;n hqa + wk(s; t); �  kB(s; uk(t)) i

=
J (n)X

k= n

� k;n  khqa + wk(s; t); wk(s; t) + vk(s; t)i :

We conclude thatCn ! 0 andhqa + w(s; t) + qb + v(s; t); p � z(t)i � 0. As A(s; �) + B(s; �) 2 M (X),
this implies that Eq. (4.31) holds.
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Chapter 5

A Constant Step Stochastic
Douglas-Rachford Algorithm with
Application to Non Separable
Regularizations

The Douglas Rachford algorithm is a classical algorithm to solve a composite optimization problem. It
involves the computation of the proximity operators of the two functions separately and enjoys more
numerical stability than the proximal gradient algorithm. In this chapter, we bring the tools from the
previous chapter to study a stochastic version of the constant step Douglas Rachford algorithm. In this
algorithm, a random realization of both functions is used at each iteration to perform a Douglas Rachford
step. Application to structured regularizations and distributed optimization is provided. Theoretical
results are supported by the technical report in AppendixA.

5.1 Introduction

Many applications in the �elds of machine learning [35] and signal processing [44] require the solution
of the programming problem

min
x2 X

F (x) + G(x) (5.1)

whereX is an Euclidean space,F; G 2 � 0(X). In these contexts,F often represents a cost function and
G a regularization term. The Douglas-Rachford algorithm is one of the most popular approach towards
solving Problem (5.1). Given > 0, the algorithm is written

yn+1 = prox F (xn )

zn+1 = prox G (2yn+1 � xn )

xn+1 = xn + zn+1 � yn+1 : (5.2)

Assuming that a standard quali�cation condition holds and that the set of solutionsarg minF + G
of (5.1) is not empty, the sequence(yn )n converges to an element inarg minF + G as n ! + 1
([78, 56]).

In this chapter, we study the case whereF andG are integral functionals of the form

F (x) = E� (f (�; x )) ; G(x) = E� (g(�; x ))
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where� is a random variable (r.v) from some probability space(
 ; F ; P) to a measurable space(� ; G),
with distribution� , and wheref; g : � � X ! (�1 ; + 1 ] are normal convex integrand. In this context,
the stochastic Douglas Rachford algorithm aims to solve Problem (5.1) by iterating

yn+1 = prox f (� n +1 ;�)(xn )

zn+1 = prox g (� n +1 ;�)(2yn+1 � xn )

xn+1 = xn + zn+1 � yn+1 ; (5.3)

where(� n )n is a sequence of i.i.d copies of the random variable� and  > 0 is the constant step size.
Compared to the "deterministic" Douglas Rachford algorithm (5.2), the stochastic Douglas Rachford
algorithm (5.3) is an online method. The constant step size used make it implementable in adaptive
signal processing or online machine learning contexts. In this algorithm, the functionF (resp. G) is
replaced at each iterationn by a random realizationf (� n ; �) (resp. g(� n ; �)). It can be implemented in the
case whereF (resp. G) cannot be computed in its closed form or in the case where the computation of
its proximity operator is demanding. Compared to other online optimization algorithm like the stochastic
subgradient algorithm, the algorithm (5.3) bene�ts from the numerical stability of stochastic proximal
methods [108, 122].

Stochastic version of the Douglas Rachford algorithm have been considered in [44, 116]. These papers
consider the case whereG is deterministic,i.e is not written as an expectation andF is written as an
expectation that reduces to a sum. The algorithms [105, 49] are generalizations of a partially stochastic
Douglas Rachford algorithm whereG is deterministic. The convergence of these algorithms is obtained
under a summability assumption of the noise over the iterations.

In this chapter we provide theoretical basis for the algorithm (5.3) and convergence results based
on the technical report [110]. We also provide applications to optimization problems regularized by the
overlapping group lasso and we provide an application to a target tracking problem involving distributed
optimization (based on [89]).

Chapter organization. The next section5.2 is devoted to the statement of the main convergence
result. In Sec.5.3, an outline of the proof of the result in Sec.5.2 is provided. Finally, the algorithm (5.3)
is implemented to solve a regularized problem (resp. a distributed optimization problem) in Sec.5.4(resp.
Sec.5.5).

From now on, we shall state explicitly the dependence of the iterates of the algorithm in the step size
and the starting point. Namely, we shall denote(x �;

n )n the sequence(xn )n generated by the stochastic
Douglas Rachford algorithm (5.3) with step  , such that the distribution ofx �;

0 overX is � . If � = � a,
where� a is the Dirac measure at the pointa 2 X, we shall prefer the notationxa;

n .

5.2 Main convergence theorem

For everys 2 � , the domain ofg(s; �) is denotedD(s) and D is their � -essential intersection (see
Sec.2.3).

Consider the following assumptions.

Assumption 5.2.1. For every compact setK � X, there exists" > 0 such that

sup
x2K\D

Z
k@0g(s; x)k1+ " � (ds) < 1 :
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Assumption 5.2.2. For � -a.es 2 � , f (s; �) is di�erentiable. Moreover, there exists" > 0; x0 2 X such
that Z

kr f (s; x0)k1+ " � (ds) < 1 :

Assumption 5.2.3. There existsL > 0 such thatr f (s; �) is � -a.e, aL-Lipschitz continuous function.

Assumption 5.2.4. 8x 2 X;
Z

d(x; D (s))2 � (ds) � Cd(x)2, whered(�) is the distance function toD.

Assumption 5.2.5. For every compact setK � X, there exists"; C;  0 > 0 such that for all 2 (0;  0]
and allx 2 K ,

1
 1+ "

Z
k proxg (s;�)(x) � � cl(D (s)) (x)k1+ " � (ds) < C :

Assumption 5.2.6. There existsx? 2 arg minF + G and ' 2 S 2
@g(�;x? ) (see Sec.2.3) such that

r f (�; x?) 2 L 2(� ; X) and
R

r f (s; x?) � (ds) +
R

' (s) � (ds) = 0 .

Assumption 5.2.7. The functionF + G satis�es one of the following properties:

(a) F + G is coercivei.e F (x) + G(x) �! kxk! + 1 + 1

(b) F + G is supercoercivei.e F (x)+ G(x)
kxk �! kxk! + 1 + 1 .

Assumption 5.2.8. There exists 0 > 0, such that for all 2 (0;  0] and allx 2 X,
Z

kr f  (s; x)k +
1


k proxg (s;�)(x) � � cl(D (s)) (x)k� (ds)

� C(1 + jF  (x) + G (x)j) :

wheref  (s; �) is the Moreau envelope off (s; �).

Theorem 5.2.1. Let Assumptions5.2.1� 5.2.8hold true. Then, for each probability measure� overX
having a �nite second moment, for any" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P(d(x �;
k ; arg min(F + G)) > " ) ��!

 ! 0
0:

Moreover, if Assumption5.2.7� (b) holds true, then

lim sup
n!1

P(d(�x �;
n ; arg min(F + G)) � " ) ��!

 ! 0
0; and

lim sup
n!1

d(E(�x �;
n ); arg min(F + G)) ��!

 ! 0
0:

where�x �;
n = 1

n

P n
k=1 x �;

k .

Loosely speaking, the theorem states that, with high probability, the iterates(x �;
n )n stay close to the

set of solutionsarg minF + G as n ! 1 and  ! 0. This theorem is reminiscent of Corollary4.4.3.
Moreover, Assumptions5.2.1� 5.2.8 are reminiscent of AssumptionsC1� C4 of Chap.4. Note that
Assumption5.2.1 combined with Assumption5.2.3 implies that for every compact setK � X, there
exists" > 0 such that

sup
x2K

Z
kr f (s; x)k1+ " � (ds) < 1 :

82



Sincef (s; �); g(s; �) 2 � 0(X), and f (s; �) is di�erentiable, [103]

@(F + G)(x) = r F (x) + @G(x) = E� (r f (�; x )) + E� (@g(�; x )) ;

where the setE(@g(�; x )) is de�ned by its selection integral, see Eq.2.4. Therefore, using Fermat's
rule, if x 2 arg minF + G, then there exists' 2 L 1(� ; X), such that ' (s) 2 @g(s; x) � -a.s, and
R

r f (s; x) � (ds) +
R

' (s) � (ds) = 0 . We refer to(r f (�; x); ' ) as arepresentationof the solutionx.
Assumption5.2.6 ensures the existence ofx? 2 arg minF + G with a representationr f (�; x); ' 2
L 2(� ; X).

5.3 Outline of the convergence proof

This section is devoted to sketching the proof of the convergence of the stochastic Douglas Rachford
algorithm. The approach follows the same steps as Chap.4 and is detailed in the Technical Report [110].
The �rst step of the proof is to study the dynamical behavior of the iterates(xa;

n )n wherea 2 D .
Consider the continuous time stochastic processxa; obtained by linearly interpolating with time interval
 the iterates(xa;

n ):

xa; (t) = xa;
n + ( t � n )

xa;
n+1 � xa;

n


; (5.4)

for all t � 0 such thatn � t < (n + 1)  , for all n 2 N. Let Assumptions5.2.1� 5.2.5 1 hold true.
Consider the setC(R+ ; X) of continuous functions fromR+ to X equipped with the topology of uniform
convergence on the compact intervals. It is shown that the continuous time stochastic processxa;

converges weakly overR+ (i.e in distribution inC(R+ ; X)) as  ! 0. Moreover, the limit is proven to
be the unique absolutely continuous functionx overR+ satisfyingx(0) = a and for almost everyt � 0,
the Di�erential Inclusion (DI),

_x(t) 2 � (r F + @G)(x(t)) ; (5.5)

(see Sec.2.2.2). The semi�ow associated with the DI is denoted� . The weak convergence of(xa; ) to
x is not enough to study the long term behavior of the iterates(xa;

n )n . The second step of the proof is
to prove a stability result for the Feller Markov chain(xa;

n )n . Denote byP its transition kernel. The
deterministic counterpart of this step of the proof is the so-calledFejér monotonicityof the sequence
(xn ) of the algorithm (5.2). Even if some work has been done [24, 48] to generalize the latter Fejér
monotonicity to the stochastic setting, there is no immediate way to adapt it to our framework. As an
alternative, we assume Hypotheses5.2.3-5.2.6, and prove the existence of positive numbers�; C and 0,
such that for every 2 (0;  0],

Enkxa;
n+1 � x?k2 �k xa;

n � x?k2 (5.6)

� � (F  + G )(xa;
n ) + C:

In this inequality,En denotes the conditional expectation with respect to the sigma-algebra� (x 
0; : : : ; x

n )
and

F  (x) =
Z

f  (s; x) � (ds); G (x) =
Z

g (s; x) � (ds):

Since 7! F  (x) + G (x) is decreasing (see Sec.A or Chap.4, End of the proof of Prop.4.4.1),
the functionF  + G in Eq. (5.6) can be replaced byF  0 + G 0 . Besides, the coercivity ofF + G

1In the case where the domains are common,i.e s 7! D (s) is � -a.s constant, the moment Assumptions5.2.1and 5.2.2
are su�cient to state the dynamical behavior result. See Sec.5.5 for an applicative context where the domainsD(s) are
distinct.
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(Assumption5.2.7) implies the coercivity ofF  0 + G 0 (see Sec.A or Chap.4, End of the proof of
Prop. 4.4.1). Therefore, assuming5.2.3� 5.2.7and setting	 = F  0 + G 0 , there exist positive numbers
� ; C and  0, such that for every 2 (0;  0],

Enkxa;
n+1 � x?k2 � k xa;

n � x?k2 � � 	( xa;
n ) + C: (5.7)

Equation (5.7) can alternatively be seen as a tightness result. This is the purpose of Chap.3,
Sec.3.8.3. It implies that the setI  of invariant measures of the Markov kernelP is not empty for
every 2 (0;  0], and that the set

Inv = [  2 (0; 0 ]I  (5.8)

is tight.
It remains to characterize the cluster points of Inv as ! 0. To that end, the dynamical behavior

result and the stability result are combined. Let Assumptions5.2.1� 5.2.8 hold true. 2 Then, the set
Inv is tight, and, as ! 0, every cluster point of Inv is an invariant measure for the semi�ow� . The
Theorem5.2.1 is a consequence of this fact.

5.4 Application to structured regularization

In this section is provided an application of the stochastic Douglas Rachford (5.3) algorithm to solve a reg-
ularized optimization problem. The code is available at the addresshttps://github.com/adil-salim/
Stochastic-DR . Consider problem (5.1), whereF is a cost function that is written as an expectation,
andG is a regularization term. Towards solving (5.1), many approaches involve the computation of the
proximity operator of the regularization termG. In the case whereG is a structured regularization term,
its proximity operator is often di�cult to compute. We shall concentrate on the case whereG is an
overlapping group regularization. In this case, the computation of the proximity operator ofG is known
to be a bottleneck [132]. We shall apply the algorithm (5.3) to overcome this di�culty.

ConsiderX = RN , N 2 N?, and g 2 N?. Considerg subsets off 1; : : : ; Ng, S1; : : : ; Sg, possibly
overlapping. SetG(x) =

P g
j =1 kxSj k, wherexSj denotes the restriction ofx to the set of indexSj

and k � k denotes the Euclidean norm. SetF (x) = E(�;� )(h(� hx; � i )) whereh denotes the hinge loss
h(z) = max(0 ; 1� z) and(�; � ) is a r.v de�ned on some probability space with values inX�f� 1; +1g. In
this case, the problem (5.1) is also called the SVM classi�cation problem, regularized by the overlapping
group lasso. It is assumed that the user is provided with i.i.d copies(( � n ; � n ))n of the r.v (�; � ) online.

To solve this problem, we implement a stochastic Douglas Rachford strategy. To that end, the
regularizationG is rewrittenG(x) = EJ (gkxSJ k) whereJ is an uniform r.v overf 1; : : : ; gg. At each
iterationn of the stochastic Douglas Rachford algorithm, the user is provided with the realization(� n ; � n )
and sample a groupJn uniformly inf 1; : : : ; gg. Then, a Douglas Rachford step is done, involving the
computation of the proximity operators of the functionsgn : x 7! k xSJ n

k and f n : x 7! h(� nhx; � n i ).
This strategy is compared with a partially stochastic Douglas Rachford algorithm, deterministic in the

regularizationG, where the fast subroutine Fog-Lasso [132] is used to compute the proximity operator
of the regularizationG. At each iterationn, the user is provided with(� n ; � n ). Then, a Douglas
Rachford step is done, involving the computation of the proximity operators of the functionsG and
f n : x 7! h(� nhx; � n i ). Figure5.1 demonstrates the advantage of treating the regularization term in a
stochastic way.

In Fig. 5.1 "Stochastic D-R" denotes the stochastic Douglas Rachford algorithm and "Partially
stochastic D-R" denotes the partially stochastic Douglas Rachford where the subroutine FoG-Lasso [132]

2Assumptions5.2.4, 5.2.5 and 5.2.8 are not needed if the domainsD(s) are commoni.e if s 7! D (s) is constant.
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Figure 5.1: Left: The objective functionF + G as a function of time in seconds for each algorithm.
Right: Histogram of the Initialization and the last iterates of the Stochastic D-R (S. D-R) and the
partially stochastic D-R (Part. S. D-R).

is used at each iteration to compute the true proximity operator of the regularizationG. Fig. 5.1 also
shows the appearance of the �rst and the last iterates. Even if a best performing procedure [132] is used
to computeproxG , we observe on Fig.5.1 that Stochastic D-R takes advantage of being a stochastic
method. This advantage is known to be twofold ([34]). First, the iteration complexity of Stochastic
D-R is moderate becauseproxG is never computed. Then, Stochastic D-R is faster than its partially
deterministic counterpart which uses Fog-Lasso [132] as a subroutine, especially in the �rst iterations
of the algorithms. Moreover, Stochastic D-R seems to perform globally better. This is because every
proximity operators in Stochastic D-R can be e�ciently computed ([12]). Contrary to the proximity
operator ofG [132], the proximity operator ofgn is easily computable. The proximity operator off n is
easily computable as well.3

5.5 Application to distributed optimization

We now consider an application of the stochastic Douglas Rachford algorithm to a distributed opti-
mization problem. More precisely, a slowly moving underwater target has to be located. To this end,
M transmitters andN receivers are spatially distributed. We consider the case of a two-dimensional
space, although the sequel can be easily extended to a three-dimensional space. If the receivers process
the measurements they receive at the same time and at each time step, we shall say that the receivers
operate synchronously. For more �exibility, we shall assume that the receivers only process the mea-
surements at random instants,i.e operate asynchronously. Networks of sensors often work under this
additional restriction. The processing takes the form of a computation (of a proximity operator w.r.t
the measurements they receive) and/or a communication of the estimated position of the target by a
receiver to another receiver. More precisely, assume thatN = 1. It can be shown that the position
(x(t); y(t)) 2 R2 of the target at timet can be estimated by solving an optimization problem of the form

min
(x;y )2 R2

kA(t)(x; y)T � b(t)k2 (5.9)

3Even ifh(x) = log(1 + exp( � x)) (logistic regression), the proximity operator off n is easily computable, see [44].
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whereA(t) andb(t) encode the positions of the receiver and the transmitters, as well as the measurements
of the receiver at timet. If several receivers are used,i.e N > 1, consider a connected graphG = ( V; E)
where the setV = f 1; : : : ; Ng of vertices is the set of receivers andE is the set of edges. Receivers are
allowed to communicate along the edges ofE. In this case, the network of receivers has to solve at each
instant t the following problem to estimate the position of the target:

min
(x;y )2 R2

X

i 2 V

kA i (t)(x; y)T � bi (t)k2: (5.10)

This problem need to be solved asynchronously and can be seen as a consensus problem : at each instant
a receiver will update its estimation of the position of the target and share it with a neighbor inG.
Indeed, Problem (5.10) is equivalent to

min
(x1 ;y1 );:::;(xN ;yN )2 R2

X

i 2 V

kA i (t)(x i ; yi )T � bi (t)k2 +
X

f i;j g2E

�S((x i ; yi ); (x j ; yj )) (5.11)

whereS = f (z; z0) 2 R2 � R2; z = z0g. For everyv 2 V and everye 2 E consider the convex functions
g((v; e); �) : (R2)N ! (�1 ; + 1 ] de�ned by g((v; e); ((x1; y1); : : : ; (xN ; yN ))) = �S((x i ; yi ); (x j ; yj ))
wheree = f i; j g and f ((v; e); �) : (R2)N ! (�1 ; + 1 ) de�ned byf ((v; e); ((x1; y1); : : : ; (xN ; yN ))) =
kAv(t)(xv; yv)T � bv(t)k2. Finally, consider a r.v� = ( � (1); � (2)) where� (1) has a uniform distribution
overV and � (2) has a uniform distribution overE. Problem (5.11) is equivalent to �nding a minimizer
of E� (f (�; �)+ g(�; �)) for which we apply stochastic Douglas Rachford algorithm (5.3). At each iteration
of this algorithm, a randomly chosen receiver update its estimated value of the position of the target
by computing a proximity operator w.r.t. its measurements. Then, two randomly chosen neighbors
share their estimated value. Namely, they compute the mean of their values and update their values
with the mean. The resulting algorithm is asynchronous and distributed. Moreover, it could be easily
made adaptive : if the measurements are corrupted by a zero-mean noise, the proposed algorithm still
converges because it is an instance of stochastic Douglas Rachford (5.3).

In our numerical simulation, we considered two transmitters and six receivers, whose positions in 2D
Cartesian coordinates are:t1 = [0; 0], t2 = [2000; 2000], r1 = [ � 1000; � 1000], r2 = [1500; � 1000],
r3 = [ � 1000; 1000], r4 = [1500; 1000], r5 = [1500; 2500], and r t = [2500; 1500], respectively. The
receivers form nodes of the connected graphG with edges

E = ff 1; 2g; f 1; 3g; f 2; 4g; f 3; 4g; f 4; 5g; f 4; 6gg:

The initial position of the target is[500; 500]. The target is moving according to a spiral. We show the
tracking ability of the proposed asynchronous adaptive distributed algorithm. This algorithm is compared
to its synchronous analogue (which can also be cast as an instance of stochastic Douglas Rachford (5.3)).
Figure5.2 shows the true track of the target, and the tracks estimated by the two algorithms. Between
two sample points of the true track (i.e. between two blue star markers on blue curve), we allowed
50 iterations for both the algorithms, and it is su�cient to track continuously the target with good
accuracies. In spite of using only two nodes in estimation at each iteration, the asynchronous algorithm,
after certain initial lag, performs almost similar to the synchronous one that involved all six nodes at
each iteration.
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Figure 5.2: Numerical simulation results on tracking slowly moving target.
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Part II

Applications using vanishing step sizes
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Chapter 6

Introduction to Stochastic
Approximations with a decreasing step
size involving Maximal Monotone
Operators

In the �rst part of this thesis, we introduced the constant step stochastic approximation framework (1.4)
for two kinds of underlying DI. We �rst studied the DI induced by an usc operator. Then, by considering
�rst the model of the stochastic Forward Backward and then the model of the stochastic Douglas
Rachford, we studied DI induced by a monotone operator.

In the second part of this thesis, we are interested in decreasing step sizes stochastic approximation al-
gorithms. More precisely, we are motivated by applications of the stochastic Forward Backward algorithm
with vanishing step sizes. The paper [24] performs a theoretical study of the stochastic Forward Back-
ward (FB) algorithm. The authors brought tools from dynamical systems and stochastic approximation
to prove the almost sure convergence of the iterates of the stochastic FB algorithm.

In this chapter, we recall the main results and the proof technique of [24]. Although the results
of [24] are prior to this thesis, this chapter is the entry point for our applications, which will be studied
in the two next chapters.

Chapter organization. In the next section, the stochastic Forward Backward algorithm with decreas-
ing step is presented. Then, the main convergence result of this algorithm is stated in Sec.6.2. Finally,
a sketch of the convergence proof is provided in Sec.6.3.

6.1 The stochastic Forward-Backward algorithm

Consider two random monotone operatorsA; B : (� ; G; � ) ! M (X) such that for everys 2 � ,
dom(B(s)) = X. DenotingA(s; x) the image ofx by the operatorA(s), recall that s 7! A(s; x) is
measurable, and similarly forB . Consider a functionb : � � X ! X such thatb is G 
 B (X)-measurable
and for everyx 2 X, b(s; x) 2 B(s; x) for � -a.e. s 2 � . A possible choice forb(s; x) is B0(s; x), the least
norm element inB(s; x). Assume moreover thatb(�; x) is � -integrable for allx. Under this hypothesis,
b(�; x) 2 S 1

B (�;x ) and B(�; x) is � -integrable for everyx 2 X, we setB(x) :=
R

B(s; x)� (ds); where a
selection integral is used (see Eq. (2.4)). Note that domB = X. DenoteD the essential intersection of
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the domainsD(s) = dom( A(s)) (see Eq. (2.5)). Assuming thatD 6= ; and that A(�; x) is integrable
for everyx 2 D , we denote the selection integralA (x) :=

R
A(s; x)� (ds).

Let (� n ) be an i.i.d. sequence of random variables from a probability space(
 ; F ; P) to (� ; G) with
the distribution� . Let x0 be anX-valued random variable with probability distribution� , and assume
that x0 and(� n ) are independent. Starting fromx0, our purpose is to study the behavior of the iterates

xn+1 = J n +1 (� n+1 ; xn �  n+1 b(� n+1 ; xn )) ; n 2 N ; (6.1)

for a given sequence of positive step size( n ) 2 `2 n `1, where we recall the notationJ (s; �) :=
(I + A (s)) � 1(�) for everys 2 � .

In the deterministic case where the functionsA(s; �) and B(s; �) are replaced with deterministic
maximal monotone operatorsA(�) and B(�), with B assumed single-valued and the step size n � 
assumed to be constant, the algorithm coincides with the well-known Forward-Backward algorithm. If
B is cocoercive, and > 0 not too large, the Forward-Backward algorithm converges to an element
of Z (A + B), provided this set is not empty [12, Th. 25.8]. In the stochastic case who is of interest
here, the sequence( n ) has to converge to zero in order to make the stochastic Forward Backward (6.1)
converging to an element ofZ (A + B).

6.2 Almost sure convergence of the iterates

In this section, we present the main convergence result of the stochastic Forward Backward algorithm
with decreasing step size (6.1).

For everyx? 2 Z(A + B), de�ne the set of2p-integrable representations of the zerox?:

R 2p(x?) =
§

(';  ) 2 S 2p
A(�;x? ) � S 2p

B (�;x? ) :
Z

'd� +
Z

 d� = 0
ª

: (6.2)

Consider the following assumptions.

Assumption 6.2.1. The sequence of positive step sizes satis�es( n ) 2 `2 n `1 and  n +1
 n

! 0.

Assumption 6.2.2. The monotone operatorA is maximal.

Assumption 6.2.3. There exists an integerp � 1 andx? 2 Z(A + B) such thatR 2p(x?) 6= ; .

Assumption 6.2.4. For everyx? 2 Z(A + B), R 2(x?) 6= ; .

Assumption 6.2.5. For any compact setK of X, there exists" 2 (0; 1] such that

sup
x2K\D

Z
kA0(s; x)k1+ " � (ds) < 1 :

Moreover, there existsx0 2 D such that
Z

kA0(s; x0)k1+1 =" � (ds) < 1 :

Assumption 6.2.6. There existsC > 0 such that for anyx 2 X,
Z

d(x; D (s))2� (ds) � Cd(x)2

whered(�) is the distance function toD.
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Assumption 6.2.7. There existsC > 0 such that for anyx 2 X and any > 0,

1
 4

Z
kJ (s; x) � � cl(D (s)) (x)k4� (ds) � C(1 + kxk2p)

where the integerp is speci�ed in Assumption6.2.3

Assumption 6.2.8. There existsM : � ! R+ such that M 2p is � -integrable, and for allx 2 X,
kb(s; x)k � M (s)(1 + kxk). Moreover, there exists a constantC > 0 such that

R
kb(s; x)k4� (ds) �

C(1 + kxk2p).

Theorem 6.2.1 ([24]). Assume that Assumptions6.2.1� 6.2.8hold. Then, there exists a random variable
X ? such thatP(X ? 2 Z(A + B)) = 1 and such that the sequence of empirical means(�xn )n converges
a.s. toX ?. Moreover, ifA + B is demipositive, thenxn ! n! + 1 X ? a.s.

6.3 General Approach

In this section, we present the general approach used to prove the convergence of the stochastic Forward
Backward (6.1) with decreasing step size. The approach relies on related the iterates of (6.1) with the DI
associated to the monotone operatorA + B (see Sec.2.2.2). More precisely, let us endow the probability
space(
 ; F ; P) with the �ltration (F n ) de�ned asF n = � (� 1; : : : ; � n ), and we writeEn = E[� j F n ].
In particular,E0 = E.

The principle of the proof of convergence of the algorithm (6.1) is the following. Givena 2 X,
consider the Di�erential Inclusion (DI) associated with the monotone operatorA + B (see Sec.2.2.2)

¨
_z(t) 2 � (A + B)(z(t))
z(0) = a :

(6.3)

SinceB is maximal ([24, Prop. 3.1]),domB = X and A is maximal (6.2.2), A + B is maximal ([12,
Corollary 24.4]). Denote� the semi�ow with (6.3). Let us introduce the following functionI from XN to
the space ofC(R+ ; X). For x = ( xn ) 2 XN, the functionx = I(x) is the continuous interpolated process
obtained fromx as

x(t) = xn +
xn+1 � xn

 n+1
(t � � n ) (6.4)

for t 2 [� n ; � n+1 ), where� n =
P n

k=1  k . Consider the interpolated functionx = I((xn )) where(xn ) is the
sequence satisfying (6.1). The paper [24] proves the two following facts:

� The sequence(kxn � x?k) is almost surely convergent for eachx? 2 Z(A + B),

� The processx(t) is an almost sure Asymptotic Pseudo Trajectory (APT) of the semi�ow� see
Chap.1 or [15]. Namely, for eachT > 0,

sup
u2 [0;T ]

kx(t + u) � �(� cl(D)(x(t)) ; u)k a.s.���!
t !1

0: (6.5)

Taken together, these two results lead to the a.s. convergence of the empirical means

�xn =
P n

k=1  kxk

� n

to some r.v.X ? supported by the setZ (A + B), as is shown by [24, Cor. 3.2]. Moreover, ifA + B is
demipositive (for example ifA + B = @G; G2 � 0(X)), then xn also converges toX ?.

The following proposition can be found in [22, Prop. 1] or [24, Prop. 6.1]:
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Proposition 6.3.1. Let Assumptions6.2.1and6.2.4hold true. Then the following facts hold true:

1. For eachx? 2 Z(A + B), the sequence(kxn � x?k) converges almost surely.

2. The sequence(xn ) is bounded almost surely and inL 2(
 ; F ; P; X).

3. E
”P 1

n=1  2
n+1

R
kA  n +1 (s; xn �  n+1 b(s; xn ))k2� (ds)

—
< 1 .

It remains to establish the almost sure APT. We just provide here the main arguments of this part
of the proof, since it can be found in [24].

Let us write

xn+1 = xn �  n+1 b(� n+1 ; xn ) �  n+1 A  n +1 (� n+1 ; xn �  n+1 b(� n+1 ; xn )) ; (6.6)

and let us also de�ne the function

h (s; x) = � b(s; x) � A  (s; x � b (s; x)) (6.7)

Using Assumptions6.2.5and6.2.8,
R

kh (s; x)k� (ds) < 1 and we de�ne:

H  (x) =
Z

h (s; x)� (ds) :

Note that xn+1 = xn +  n+1 h n +1 (� n+1 ; xn ). De�ning the (F n ) martingale

M n =
nX

k=1

xk � Ek� 1[xk ]

it is clear thatxn+1 = xn +  n+1 H  n +1 (xn ) + ( M n+1 � M n ). Let us rewrite this equation in a form
involving the continuous processx = I((xn )) . De�ning M = I((M n )) , and writing

r (t) = max f k � 0 : � k � tg; t � 0;

we obtain

x(� n + t) � x(� n ) = �
Z t

0
H  r ( � n + u )+1

(xr (� n + u)) du

+ M(� n + t) � M(� n ) : (6.8)

The �rst argument of the proof of the almost sure APT is a compactness argument on the sequence
of continuous processes(x(� n + �))n .

Speci�cally, we show that on aP-probability one set, this sequence is equicontinuous and bounded. By
Ascoli's theorem, this sequence admits accumulation points in the topology of the uniform convergence
on the compacts ofR+ . As a second step, we show that these accumulation points are solutions to the
di�erential inclusion (6.3), which is in fact a reformulation of the almost sure APT property (6.5).

Since

E[kxn+1 � Enxn+1 k2] =  2
nE[kb(� n+1 ; xn ) �

Z
b(s; xn )� (ds)

+ A  n +1 (� n+1 ; xn �  n+1 b(� n+1 ; xn )) �
Z

A  n +1 (s; xn �  n+1 b(s; xn )) � (ds)k2]

� 4 2
n+1 E[

Z
kb(s; xn )k2� (ds) +

Z
kA  n +1 (s; xn �  n+1 b(s; xn ))k2� (ds)] ;
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we obtain by Prop.6.3.1 that supn E[kM nk2] < 1 . Thus, the martingaleM n converges almost surely,
which implies that the sequence of stochastic processes(M(� n + �) � M(� n ))n converges almost surely
to zero, uniformly onR+ .

Using Assumptions6.2.5, 6.2.8 and the fact that the sequence(xn ) is almost surely bounded by
Prop. 6.3.1, it is easily seen that

sup
n

kH  n +1 (xn )k < 1 a.s.;

provided thatD(s) = X (we shall call this context the full domain case) for� -a.e. s 2 � . The case
whereD 6= X introduces more technicalities in this part of the proof, that we have chosen to omit.
Inspecting (6.8), we thus obtain that the sequence(x(� n + �))n is equicontinuous and bounded with
probability one.

In order to characterize its cluster points, chooseT > 0, and consider an elementary event on the
probability one set where(x(� n + �))n is equicontinuous and bounded. With a small notational abuse,
let (n) be a subsequence along which(x(� n + �))n converges on[0; T] to some continuous functionz(t).
This function then is written as

z(t) � z(0)= � lim
n!1

Z t

0
du

Z

�
� (ds) h r ( � n + u )+1

(s; xr (� n + u)):

Using Assumptions6.2.5, 6.2.8and the fact that the sequence(xn ) is bounded by Prop.6.3.1 it is easy
to see that there exists" > 0 such that

sup
n

Z
kh n +1 (s; xn )k1+ " � (ds) < 1 :

As a consequence, the sequence of functions(h r ( � n + u )+1
(s; xr (� n + u)))n in the parameters(s; u) is bounded

in the Banach spaceL 1+ " (d� 
 du) wheredu is the Lebesgue measure on[0; T]. Since the unit ball of
L 1+ " (d� 
 du) is weakly compact in this space by the Banach-Alaoglu theorem, since this space is re�exive,
we can extract a subsequence (still denoted as(n)) such thath r ( � n + u )+1

(s; xr (� n + u)) converges weakly in
L 1+ " (d� 
 du), asn ! 1 , to a functionQ(s; u). The remainder of the proof consists in showing that
Q can be written asQ(s; u) = a(s; u) + � (s; u) wherea(s; u) 2 A(s;z(u)) and � (s; u) 2 B(s;z(u))
for d� 
 du-almost all(s; u). Indeed, once this result is established, it becomes clear thatz(t) is an
absolutely continuous function whose derivative satis�es almost everywhere the inclusion (6.3). We just
provide here the main argument of this part of the proof. Let us focus on the sequence of functions of
(s; u) 2 � � [0; T] de�ned by

A  r ( � n + u )+1
(s; xr (� n + u) �  r (� n + u)+1 b(s; xr (� n + u)))

and indexed byn. This sequence is bounded inL 1+ " (d� 
 du) on a probability one set, as a function of
(s; u), for the same reasons as those explained above for(h r ( � n + u )+1

(s; xr (� n + u)))n . We need to show that
any weak limit pointa(s; u) of this sequence satis�esa(s; u) 2 A(s;z(u)) for d� 
 du-almost all(s; u).
Using the fact thatx(� n + �) ! z(�) almost surely, along with the inequalityhA  (s; x) � w; J (s; x) � vi �
0, valid for allx; v 2 X andw 2 A(s; v), we show thatha(s; u) � w; z(u) � vi � 0 for d� 
 du-almost all
(s; u). Sincev 2 X andw 2 A(s; v) are arbitrary, we get thata(s; u) 2 A(s;z(u)) using the maximality
of the monotone operatorA(s). The APT property is shown.
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Chapter 7

A Primal Dual Algorithm for Stochastic
Composite Optimization under
Stochastic Linear Constraints

In this chapter, we propose a new stochastic primal-dual algorithm for solving a composite optimization
problem under linear constraints. We assume that all the functions to be minimized are given as statistical
expectations, as well as the matrices and the vector de�ning the linear constraints. These expectations
are unknown but revealed across the time through i.i.d realizations of a random variable. The proposed
algorithm can be seen as a stochastic Forward Backward to �nd a zero of the sum of two monotone
operators. The two monotone operators are given as selection integrals and are not subdi�erentials in
general. We prove that the sequence of empirical means of the iterates converges to a saddle point
of the Lagrangian function. The proposed algorithm is tested experimentally to solve a decentralized
optimization problem over a real-life graph of computing agents.

7.1 Introduction

Many applications in machine learning, statistics or signal processing require the solution of the following
optimization problem. Given three Euclidean spacesX; Z, andV, �nd a point (x; z) 2 X � Z such that

F(x) + G(x) + P(z) + Q(z) is minimum on f (x; z) 2 X � Z; Ax + Bz = cg; (7.1)

whereF; G; P; Q are convex functions such thatF and P have a full domain,A belongs to the set
L (X; V) of X ! V linear operators,B 2 L (Z; V), andc is a vector inV. In order to solve Problem (7.1),
primal-dual methods typically generate a sequence of primal estimates(xn ; zn )n2 N and a sequence of
dual estimates(� n )n2 N jointly converging to a saddle point of the Lagrangian function. For every saddle
point of the Lagrangian function(x; z; � ), (x; z) is a solution of the primal problem (7.1) and � is a
solution of a dual problem of (7.1). Conversely, assume that the following quali�cation condition

c 2 ri ( A domG+ B domQ)

holds true, whereri is the relative interior of a set [12]. Then, there exists a saddle point of the
Lagrangian function and for every solution(x; z) of (7.1) and every dual solution� , (x; z; � ) is a saddle
point of the Lagrangian. There is a rich literature on such algorithms which cannot be exhaustively
listed [62, 42, 51, 124].
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In this chapter, it is assumed that the quantities that enter the minimization problem are likely to be
unavailable or di�cult to compute numerically. More precisely, it is assumed that the functionsF; G; P and
Q are de�ned as expectations of random functions w.r.t a probability measure� . Namely, these functions
take the formsF(x) = E� (f (�; x )) , G(x) = E� (g(�; x )) , P(z) = E� (p(�; z )) , and Q(z) = E� (q(�; z ))
wheref; g; p; q are normal convex integrands and� is some random variable with distribution� . In
addition, it is assumed that the operatorsA and B are written asA = E� A(� ) and B = E� B(� ), where
A and B are measurable functions with values inL (X; V) and L (Z; V) respectively. Finallyc takes the
form c = E� c(� ). As an extreme case,noneof these expectations are available to the observer. What is
given to this observer are the functionsf , g, p, q, A, B , andc, and a sequence of i.i.d random vectors
(� n ) with the probability distribution� . A new stochastic primal dual algorithm based on this data is
proposed to solve Problem (7.1).

The convergence proof for this algorithm relies on Th.6.2.1of Chap.6. The algorithm is built around
an instantiation of the stochastic Forward-Backward algorithm involving random monotone operators
that was introduced in [24] (see also Chap.6). Existing methods typically allow to handle subproblems
of Problem (7.1) in which some quantities used to de�ne (7.1) are assumed to be available or set
equal to zero [92, 104, 105, 133, 131, 48, 49, 122]. In particular, the new algorithm generalizes the
stochastic gradient algorithm (in the case where onlyF is non zero), the stochastic proximal point
algorithm [95, 122, 22] (only G is non zero), and the stochastic proximal gradient algorithm [2, 3, 27, 49]
(only F + G is non zero).

With [131], the proposed algorithm is one of the �rst methods that allow to tackle stochastic con-
straints online. While [131] is focused on convex and compact constraints, this chapter consider the
case of unbounded linear constraints. Handling stochastic constraints online is suitable in various �elds
of machine learning like Neyman-Pearson classi�cation or online portfolio optimization. For example, in
online Markowitz portfolio optimization ([37]) one has to solve the minimization problem

min
x2 Rd

E� (hx; � i 2) s.t. x 2 � and hx; E� (� )i = r; (7.2)

where� is a random vector inRd, r > 0 and� is the simplex ofRd. Authors usually assumeE� (� ) to be
known or estimated [95, 133]. The new primal dual algorithm is also an alternative to e�cient methods
([1]) in huge scale convex optimization

min
x2 X

F(x) + G(x) + Q(Ax) (7.3)

where the functionsF; G and Q are intractable and matrix vector operations involvingA are also in-
tractable. In many cases,F and G are cost functions andQ(Ax) a structured regularization term that
must be handled by splittingQ andA. Finally, in distributed optimization, in the context where a network
of computing agents is required to minimize a cost function, the proposed algorithm allows to design a
fully asynchronous and adaptive algorithm in which, at each iteration, only one randomly chosen agent
becomes active.

Chapter organization. The chapter is organized as follow. The next section is devoted to rigorously
state the main problem and the main algorithm. In Sec.7.3 the convergence proof of the algorithm is
given. Application to distributed optimization is discussed in Sec.7.4.
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7.2 Problem description

Any space of linear operators between two Euclidean space is endowed with the operator normk � k and
the resulting Borel �eld, and can be identi�ed with a space of matrices.

Let f : � � X ! (�1 ; 1 ] be a normal convex integrand, and assume that
R

jf (s; x)j � (ds) < 1 for
all x 2 X. Consider the convex functionF(x) de�ned onX as the Lebesgue integralF(x) = E� f (�; x ).
The interchange property holds :@F(x) =

R
@f(s; x)� (ds) (see Ex.3 of Chap.2).

Let g : � � X ! (�1 ; 1 ] be a normal convex integrand, and letG(x) = E� g(�; x ), where the
integral is de�ned as the sum

Z

f s : g(s;x)2 [0;1 )g
g(s; x) � (ds) +

Z

f s : g(s;x)2 ]�1 ;0[g
g(s; x) � (ds) + I (x) ;

and

I (x) =
¨

+ 1 ; if � (f s : g(s; x) = 1g ) > 0;
0; otherwise;

and where the convention(+ 1 ) + ( �1 ) = + 1 is used. AssumeG(x) > �1 for all x [125], and
assume thatG is proper. We shall assume that the interchange property holds forg (see Ex.3 of Chap.2
for su�cient conditions).

To proceed with our problem statement, we introduce two normal convex integrandsp; q : � � Z !
(�1 ; 1 ] and assume that the functionp (resp.q) has verbatim the same properties asf (resp.g), after
replacing the spaceX with Z. We also writeP(x) = E� p(�; x ) andQ(x) = E� q(�; x ).

Finally, letA : � ! L (X; V) and B : � ! L (Z; V) be operator-valued random variables, and let
c : � ! V be a vector-valued random variable. Let us assume thatkA(�)k, kB(�)k, and kc(�)k are
� -integrable, and let us introduce the Lebesgue integralsA = E� A(� ), B = E� B(� ), andc = E� c(� ).

Having introduced these functions, our purpose is to �nd a solution(x; z) 2 X � Z of Problem (7.1),
where the set of such points is assumed non empty. To solve this problem, the observer is given the
functionsf; g; p; q; A; B, andc, and a sequence of i.i.d random variables(� n )n2 N from a probability space
(
 ; F ; P) to (� ; G) with the probability distribution� .

We shall denote asfr f (s; x) a measurable subgradient off (s; �) at x. More precisely,fr f : (� �
X; G 
 B (X)) ! (X; B (X)) is a measurable function such that for eachx 2 X, fr f (�; x) 2 S 1

@f(�;x )

(recall that this set is non empty). A possible choice forfr f (s; x) is @0f (s; x) (see [24, Ÿ2.3 and Ÿ3.1]
for the measurability issues). The notationfr p(s; x) will have a similar meaning.

Turning back to Problem (7.1), our purpose will be to �nd a saddle point of the Lagrangian
((x; z); � ) 7! F(x) + G(x) + P(z) + Q(z) + h�; Ax + Bz � ci . Denoting asZ � X � Z � V the
set of these saddle points, an element((x; z); � ) of Z is characterized by the inclusions

8
><

>:

0 2 @F(x) + @G(x) + AT �;
0 2 @P(z) + @Q(z) + BT �;
0 = � Ax � Bz + c:

(7.4)

The algorithm proposed here consists in the following iterations applied to the random vector
(xn ; zn ; � n ) 2 X � Z � V. Given a sequence of positive weights( n )n2 N, set

The convergence of this algorithm is stated by the following theorem.

Theorem 7.2.1. Consider the Problem (7.1), and let the following assumptions hold true.

1. The step size sequence satis�es( n ) 2 `2 n `1, and  n+1 = n ! 1 asn ! 1 .
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Algorithm 1 The Main Algorithm

xn+1 = prox  n +1 g(� n +1 ;�)

€
xn �  n+1 (fr f (� n+1 ; xn ) + A(� n+1 )T � n )

Š
;

zn+1 = prox  n +1 q(� n +1 ;�)

€
zn �  n+1 (fr p(� n+1 ; zn ) + B(� n+1 )T � n )

Š
;

� n+1 = � n +  n+1 (A(� n+1 )xn + B(� n+1 )zn � c(� n+1 )) :

2. There exists an integerm � 2 that satis�es the following conditions:

� The functionsA(�), B (�) andc(�) are inL 2m (� ).

� There exists a point(x?; z?; � ?) 2 Z , and four functions' f 2 S 2m
@f(�;x? ) , ' g 2 S 2m

@g(�;x? ) ,
' p 2 S 2m

@p(�;z? ) , and ' q 2 S 2m
@q(�;z? ) , for which

Z
' f d� +

Z
' gd� + AT � ? = 0; and

Z
' pd� +

Z
' qd� + BT � ? = 0: (7.5)

The last assumption is veri�ed form = 1 and for each point(x?; z?; � ?) 2 Z .

3. For any compact setK of dom@G, there exist" 2 (0; 1] andx0 2 dom@G such that

sup
x2K

Z
k@0g(s; x)k1+ " � (ds) < + 1 ; and

Z
k@0g(s; x0)k1+1 =" � (ds) < + 1 :

4. Writing D@g(s) = dom @g(s; �), there existsC > 0 such that for allx 2 X,
Z

dist(x; D @g(s))2� (ds) � C dist(x; dom@G)2:

5. There existsC > 0 such that for anyx 2 X and any > 0,
Z

k proxg (s;�)(x) � � cl(D @g(s)) (s; x)k4� (ds) � C 4(1 + kxk2m );

wherem is the integer provided by Assumption2.

Assumptions similar to3� 5 are made on the functionq.

6. There exists a measurable� ! R+ function � such that � 2m is � -integrable, wherem is the
integer provided by Assumption2, and such that for allx 2 X,

kfr f (s; x)k � � (s)(1 + kxk):

Moreover, there exists a constantC > 0 such that
R

kfr f (s; x)k4� (ds) � C(1 + kxk2m ).
A similar assumption is made on the functionp.

Consider the sequence of iterates(xn ; zn ; � n ) produced by the algorithm1, and de�ne the averaged
estimates

�xn =
P n

k=1  kxk
P n

k=1  k
; �zn =

P n
k=1  kzk

P n
k=1  k

; and �� n =
P n

k=1  k � k
P n

k=1  k
:

Then, the sequence(�xn ; �zn ; �� n ) converges almost surely (a.s.) to a random variable(X; Z; �) supported
by Z .
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Let us now discuss our assumptions. Assumption1 is standard in the decreasing step case. As-
sumption2 is a moment assumption that is generally easy to check. Note that this assumption requires
the set of saddle pointsZ to be non empty. Notice the relation between Equations (7.5) and the �rst
two inclusions in (7.4). Focusing on the �rst inclusion, there exista 2 @F(x?) =

R
@f(s; x?)� (ds) and

b 2 @G(x?) =
R

@g(s; z?)� (ds) such that0 = a + b+ AT � ?. Then, Assumption2 states that there are
two measurable selections' f and' g of @f(�; x?) and@g(�; z?) respectively which are both inL 2m (� ) and
which satisfya = E� ' f andb= E� ' g. Not also that the larger ism, and the weaker is Assumption5.

Assumption3 is relatively weak and easy to check. This assumption on the functionsg andq is much
weaker than Assumption6, which assumes that the growth offr f (s; �) and fr p(s; �) is not faster than
linear. This is due to the fact thatg andq enter the algorithm1 through the proximity operator while the
functionsf andp are used explicitly in this algorithm. This use of the functionsf andp is reminiscent
of the well-known Robbins-Monro algorithm (see,e.g. [54]), where a linear growth is needed to ensure
the algorithm stability. Note that Assumption6 is satis�ed under the more restrictive assumption that
r f (s; �) is L-Lipschitz continuous without any bounded gradient assumption.

Assumption4 is quite weak, and is studiede.g in [90], see also Assumption (4.3.6) of Chap.4. Let
us �nally discuss Assumption5. As  ! 0, it is known thatproxg (s;�)(x) converges to� g(s; x) for
every(s; x). Assumption5 provides a control on the convergence rate. This assumption holds under the
su�cient condition that for � -almost everys and for everyx 2 dom@g(s; �),

k@0g(s; x)k � � (s)(1 + kxkm=2) ;

where� is a positive random variable with a �nite fourth moment [22].

7.3 Proof of Th. 7.2.1

We now enter the proof of Th.7.2.1. Let us setY = X� Z� V, and endow this Euclidean space with the
standard inner product. By writing(x; z; � ) 2 Y, it will be understood thatx 2 X, z 2 Z, and � 2 V.

For eachs 2 � , de�ne the set-valued operatorM (s) on Y as

M (s; (x; z; � )) =

2

6
4

@g(s; x)
@q(s; z)

c(s)

3

7
5 ;

whereM (s; (x; y; � )) is the image of(x; y; � ) by M (s). Fixing s 2 � , the operatorM (s; (x; z; � ))
coincides with the subdi�erential of the normal convex integrandg(s; x) + q(s; z) + c(s)� with respect
to (x; z; � ). Thus, the maps 7! M (s) is a random monotone operator overY. Let us also de�ne the
operatorM 0(s) as

M 0(s; (x; z; � )) =

2

6
4

@f(s; x) + A(s)T �
@p(s; z) + B(s)T �
� A(s)x � B (s)z

3

7
5 :

We can writeM 0(s) = M 0
1(s) + M 0

2(s), where

M 0
1(s; (x; y; � )) =

2

6
4

@f(s; x)
@p(s; z)

0

3

7
5 ;
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andM 0
2(s) is the linear skew-symmetric operator that can be written in a block-wise matrix form inY as

M 0
2(s) =

2

6
4

0 0 A(s)T

0 0 B(s)T

� A(s) � B (s) 0

3

7
5 :

For eachs 2 � , both these operators belong toM (Y), and domM 0
2(s) = Y. Thus, M (s) 2 M (Y)

by [12, Cor. 24.4]. Moreover, since bothM 0
1 and M 0

2 are measurable,M 0 is also a random monotone
operator overY.

Now, since the interchange property holds forf ; g; p, and q, we see that the operatorsM(x) =
R

M (s; x)� (ds) andM0 =
R

M 0(s; x)� (ds) (where the selection integral (2.4) is used) satisfy

M(x; z; � ) =

2

6
4

@G(x)
@Q(z)

c

3

7
5 ; andM0(x; z; � ) =

2

6
4

@F(x) + AT �
@P(z) + BT �
� Ax � Bz

3

7
5 :

For the same reasons as for the operatorsM (s) andM 0(s), it holds thatM, M0, andM + M0 belong to
M (Y). Moreover, recalling the system of inclusions (7.4), we also obtain thatZ = Z(M + M0).

De�ning the function

b(s; (x; z; � )) =

2

6
4

fr f (s; x) + A(s)T �
fr p(s; z) + B(s)T �
� A(s)x � B (s)z

3

7
5

(obviously,b(s; (x; z; � )) 2 M 0(s; (x; z; � )) � -a.e.), let us consider the following version of the Forward-
Backward algorithm

(xn+1 ; zn+1 ; � n+1 ) = ( I +  n+1 M (� n+1 ; �)) � 1 ((xn ; zn ; � n ) �  n+1 b(� n+1 ; (xn ; zn ; � n ))) :

One can easily check that this is exactly Algorithm1. On the other hand, this algorithm is an instance of
the random Forward-Backward algorithm studied in [24] (see Chap.6). By checking the assumptions of
Th. 6.2.1of Chap.6 one sees that they are veri�ed under the assumptions of Th.7.2.1. This completes
the proof.

Remark 1. The convergence stated by Th.7.2.1 concerns the averaged sequence(�xn ; �zn ; �� n ). One
can ask whether the sequence(xn ; zn ; � n ) itself converges toZ . This question is answered positively
by Th. 6.2.1 of Chap.6 in the case where the operatorM + M0 is demipositive. Unfortunately, the
demipositivity ofM + M0 is not always guaranteed: takeX = V = R and Z = f 0g, and assume that
F = G = 0, A = I , andc = 0. Then,M + M0 is a linear operator which can be represented by the2 � 2

matrix
–

0 1
� 1 0

™

. This operator is not demipositive, being a� �= 2 rotation (see,e.g., [96] or Sec.2.2.2).

Remark 2. In the deterministic setting, with a constant step size, applying the Forward Backward
algorithm to the monotone operatorsM0 and M doesn't lead to a converging algorithm in general
becauseM0 lack the so-called cocoercivity property [12]. This property is not needed if a decreasing step
size is used (see [96, 24] or Sec.6.2).

7.4 Application to distributed optimization

In this section, Algorithm1 is illustrated in the context of distributed optimization.
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Consider an integerN > 0 and a connected graphG = ( V; E) whereV = f 1; � � � ; N g is the set of
nodes andE is the set of edges. At each nodei 2 V is located the agenti and two local cost functions
L i ; Ri 2 � 0(R) (the spaceR can be easily replaced by any Euclidean space) only known by the agenti .
The aim of the network of agents is to solve

min
x2 R

X

i 2 V

L i (x) +
X

i 2 V

Ri (x) (7.6)

distributively. Moreover, it is assumed thatL i is unknown but revealed through i.i.d realizations of
a random variable� (i ) with distribution � (i ) over a space� , i.e L i (x) = E(` i (� (i ); x)) . A similar
assumption is made onRi : Ri (x) = E(r i (� (i ); x)) .

Consider an arbitrary orientation of the edges ofE and denote byÊ the resulting set of oriented
edges. Denote byA : RV ! RÊ the incidence matrix of the graphG de�ned for everyx 2 RV , and
everye = ( e(1); e(2)) 2 Ê by Ax(e) = x(e(1)) � x(e(2)). Problem (7.6) is equivalent to Problem (7.1)
with X = RV , P; Q; B; c set equal to zero,F(x) =

P
i 2 V L i (x(i )) andG(x) =

P
i 2 V Ri (x(i )) .

To apply Algorithm1 to Problem (7.6), we considerV � � V as the probability space� . The
random matrixA is de�ned by : for everyi; j 2 V; � 2 � V the columnj of A(i; � ) is N times the
columnj of A if i = j and is zero else. If� is the probability distribution overV � � V de�ned by
� = U 
 � (1) 
 � � � 
 � (N ) whereU is the uniform distribution overV, it is easy to check that
R

Ad� = A. Moreover,f : (( i; � ); x) 7! N` i (( i; � (i )) ; x(i )) and g : (( i; �; x ) 7! Nr i (( i; � (i )) ; x(i )) are
normal convex integrands over(V � � V ) � RV and it is easy to check that

R
f (�; x)d� = F(x) and

R
g(�; x)d� = G(x). Thanks to the stochastic handling of the constraints, applying Algorithm1 leads to

a distributed and asynchronous algorithm: at each iteration, only one random chosen agenti becomes
active and process its local data� (i ). Its work is decomposed in two parts : �rst, the agenti does a
computation involving its local variablex(i ) and then it sends a message to its neighbors inG, which
is not instantaneously processed by the neighbors. The message is sent through the dual variables and
is stored by the neighbors, waiting for the next time the neighbors will wake up. Another version of the
algorithm in whichi sends a message to a random subset of its neighborhood can also be casted in our
framework. Moreover, Algorithm1 leads to an adaptive algorithm sinceL i and Ri are revealed across
time. Applying the method [131] to the same problem also leads to an algorithm with these properties.
The two algorithms are compared in Fig.7.1 in the context of distributed median (resp. mean) estimation
over the Facebook graph (see [74], 4039 nodes and 88234 edges).

In these contexts, each agenti 2 V is associated with a real valueYi (which is unknown but revealed
across time through i.i.d realizations in the case of mean computation). The network aims to infer the
median (resp. mean) value distributively. In our framework, this corresponds to the case where` i � 0,
r i (�; x ) = jx � Yi j (resp. r i (�; x ) = jx � Yi j2 + x� where� is a zero mean probability measure).

Fig. 7.1shows that both methods are converging, and Algorithm1 performs slightly better. Indeed, if
M is the number of edges, the algorithm [131] usesN + 2M optimization variables whereas our method
usesN + M variables. However, both methods are asynchronous and require a bounded amount of
memory (seee.g. [23]). Finally, our method exhibits less �uctuations. The general framework (7.1)
allows to treat the cost functionr i through its proximity operator, leading to a more stable algorithm
(see [122, 108]).
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Figure 7.1: First: Distributed median computation. Second: Distributed mean computation. The relative
quadratic error at iterationn is de�ned bykxn � x?k2=kx?k2 wherex? 2 RV such thatx?(i ) = m for
everyi 2 V and m is the solution of Problem (7.6). The algorithm OCOSC is the method introduced
in [131].
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Chapter 8

Snake: a Stochastic Proximal Gradient
Algorithm for Regularized Problems over
Large Graphs

In this chapter, we study a regularized optimization problem over a large unstructured graph, where
the regularization term is tied to the graph geometry. Typical regularization examples include the Total
Variation and the Laplacian regularizations over the graph. When the graph is a simple path without
loops, e�cient o�-the-shelf algorithms can be used. However, when the graph is large and unstructured,
such algorithms cannot be used directly. It has been already seen at the end of Chap.5 that stochastic
proximal methods can be successfully applied to regularized problems involving structured regularizations
like the overlapping group lasso. This kind of problems are solved by randomizing the proximity operator
of the regularization. In this chapter, we propose an algorithm referred to as �Snake� to solve such
regularized problems over general graphs. The algorithm consists in properly selecting random simple
paths in the graph and performing the proximal gradient algorithm over these simple paths. This algorithm
is an instance of a new general stochastic proximal gradient algorithm, whose convergence is proven.
Applications to trend �ltering and graph inpainting are provided among others and numerical experiments
are conducted over large graphs.

8.1 Introduction

Many applications in the �elds of machine learning [57, 134], signal and image restoration [41], or trend
�ltering [120, 127, 93, 69, 75, 119] require the solution of the following optimization problem. On an
undirected graphG = ( V; E) with no self loops, whereV = f 1; : : : ; Ng represents a set ofN nodes
(N 2 N� ) and E is the set of edges, �nd

min
x2 RV

F (x) + R(x; � ); (8.1)

whereF is a convex and di�erentiable function onRV representing a data �tting term, and the function
x 7! R(x; � ) represents a regularization term of the form

R(x; � ) =
X

f i;j g2E

� f i;j g(x(i ); x(j )) ;

where� = ( � e)e2 E is a family of convex and symmetricR2 ! R functions. The regularization term
R(x; � ) will be called a� -regularization in the sequel. These� -regularizations often promote the sparsity
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or the smoothness of the solution. For instance, when� e(x; x0) = wejx � x0j wherew = ( we)e2 E is a
vector of positive weights, the functionR(�; � ) coincides with the weighted Total Variation (TV) norm.
This kind of regularization is often used in programming problems over a graph which are intended to
recover a piecewise constant signal across adjacent nodes [93, 127, 69, 75, 119, 9, 13, 43]. Another
example is the Laplacian regularization� e(x; x0) = ( x � x0)2; or its normalized version obtained by
rescalingx and x0 by the degrees of each node ine respectively. Laplacian regularization tends to
smoothen the solution in accordance with the graph geometry [57, 134].

The proximal gradient algorithm is one of the most popular approaches towards solving Problem (8.1).
This algorithm produces the sequence of iterates

xn+1 = prox R (�;� )(xn �  r F (xn )) ; (8.2)

where > 0 is a �xed step. WhenF; G 2 � 0(RV ) and F is smooth, the sequence(xn ) converges to a
minimizer of (8.1), assuming this minimizer exists and that is enough small.

Implementing the proximal gradient algorithm requires the computation of the proximity operator
applied toR(�; � ) at each iteration. WhenN is large, this computation is in general a�ordable only
when the graph exhibits a simple structure. For instance, whenR(�; � ) is the TV norm, the so-called
taut-string algorithm is an e�cient algorithm for computing the proximity operator when the graph is
one-dimensional (1D) [50] (see Fig.8.1) or when it is a two-dimensional (2D) regular grid [9]. Similar
observations can be made for the Laplacian regularization [45], where,e.g., the discrete cosine transform
can be implemented. When the graph is large and unstructured, these algorithms cannot be used, and
the computation of the proximity operator is more di�cult ([127, 117]).

This problem is addressed in this chapter. Towards obtaining a simple algorithm, we �rst express
the functionsF (�) and R(�; � ) as the expectations of functions de�ned on the set of random walks
in the graph, paving the way for arandomizedversion of the proximal gradient algorithm. Stochastic
online algorithms in the spirit of this algorithm are often considered as simple and reliable procedures for
solving high dimensional machine learning problems, including in the situations where the randomness
is not inherent to these problems [33, 34]. One speci�city of the algorithm developed here lies in that
it reconciles two requirements: on the one hand, the random versions ofR(�; � ) should be de�ned on
simple paths, i.e., on walks without loops (see Fig.8.1), in a way to make bene�t of the power of the
existing fast algorithms for computing the proximity operator. Owing to the existence of a procedure
for selecting these simple paths, we term our algorithm as the �Snake� algorithm. On the other hand,
the expectations of the functions handled by the optimization algorithm coincide withF (�) and R(�; � )
respectively (up to a multiplicative constant), in such a way that the algorithm does not introduce any
bias on the estimates.

There often exists e�cient methods to compute the proximity operator of� -regularization over 1D-
graphs. The algorithm Snake randomly selects simple paths in a general graph in order to apply the
latter 1D e�cient methods over a general graph.

Actually, the algorithm Snake will be an instance of a new general stochastic approximation algorithm
that we develop in this chapter. In some aspects, this general stochastic approximation algorithm is itself
a generalization of the random Forward-Backward algorithm studied in [24].

Before presenting our approach, we provide an overview of the literature dealing with our problem.
First consider the case whereR(�; � ) coincides with the TV norm. As said above, fast methods exist
when the graph has a simple structure. We refer the reader to [9] for an overview of iterative solvers
of Problem (8.1) in these cases. In [71], the author introduces a dynamical programming method to
compute the proximity operator on a 1D-graph with a complexity of orderO(N ). Still in the 1D case,
Condat [50] revisited recently an algorithm that is due to Mammen and Van De Geer [81] referred to
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Figure 8.1: Left: General graph on which is colored the simple path 3-1-0-6-7. Right: 1D-graph.

as the taut-string algorithm. The complexity of this algorithm isO(N 2) in the worst-case scenario, and
O(N ) in the most realistic cases. The taut-string algorithm is linked to a total variation regularized
problem in [52]. This algorithm is generalized to 2D-grids, weighted TV norms and`p TV norms by
Barbero and Sra in [9]. To generalize to 2D-grids, the TV regularization can be written as a sum of two
terms on which one can apply 1D methods, according to [46] and [70]. Over general graphs, there is
no immediate way to generalize the taut string method. The problem of computing the TV-proximity
operator over a general graph is addressed in [127].

The authors of [127] suggest to solve the problem using a projected Newton algorithm applied to
the dual problem. It is observed that, empirically, this methods performs better than other concurrent
approaches. As a matter of fact, this statement holds when the graph has a moderate size. As far as large
graphs are concerned, the iteration complexity of the projected Newton method can be a bottleneck. To
address this problem, the authors of [13] and [63] propose to solve the problem distributively over the
nodes using the Alternating Direction Method of Multipliers (ADMM).

In [119] the authors propose to compute a decomposition of the graph in 1D-graphs and then solve
Problem (8.1) by means of the TV-proximity operators over these 1D-graphs. Although the decompo-
sition of the graph is fast in many applications, the algorithm [119] relies on an o�ine decomposition
of the whole graph that needs a global knowledge of the graph topology. The Snake algorithm ob-
tains this decomposition online. In [75], the authors propose a working set strategy to compute the
TV-proximity operator. At each iteration, the graph is cut in two well-chosen subgraphs and a reduced
problem of (8.1) is deduced from this cut. The reduced problem is then solved e�ciently. This method
has shown speed-ups whenG is an image (i.e a two dimensional grid). Although the decomposition of
the graph is not done during the preprocessing time, the algorithm [75] still needs a global knowledge
of the graph topology during the iterations. On the contrary, the Snake algorithm only needs a local
knowledge. Finally, in [93], the authors propose to replace the computation of the TV-proximity operator
over the graphG by the computation of the TV-proximity operator over a well chosen 1D-subgraph of
G. This produces an approximation of the solution whereas the Snake algorithm is proven to converge
to the exact solution.

In the case whereR(�; � ) is the Laplacian regularization, the computation of the proximity operator
of R reduces to the resolution of a linear system(L + �I )x = b whereL is the Laplacian matrix of
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the graphG and I the identity matrix. On an 1D-graph, the latter resolution can be done e�ciently
and relies on an explicit diagonalization ofL ([45]) by means of the discrete cosine transform, which
takeO(N log(N )) operations. Over general graphs, the problem of computing the proximity operator of
the Laplacian regularization is introduced in [134]. There exist fast algorithms to solve it due to [118].
They are based on recursively preconditioning the conjugate gradient method using graph theoretical
results [117]. Nevertheless, the preconditioning phase which may be demanding over very large graphs.
Compared to [117], our online method Snake requires no preprocessing step.

8.2 Outline of the approach and chapter organization

The starting point of our approach is a new stochastic optimization algorithm that has its own interest.
This algorithm will be presented succinctly here, and more rigorously in Sec.8.3 below. Given an integer
L > 0, let � = ( � 1; : : : ; � L ) be a random vector where the� i are valued in some measurable space.
Consider the problem

min
x

LX

i =1

E�

”
f i (� i ; x) + gi (� i ; x)

—
(8.3)

wheref i ; gi are normal convex integrands, andf i (� i ; �) are assumed to be di�erentiable. Given > 0,
de�ne the operatorT ;i (s; x) = prox g i (s;�)(x �  r f i (s; x)). Given a sequence(� n ) of independent copies
of � , and a sequence of positive steps( n ) 2 `2 n `1, we consider the algorithm

xn+1 = T  n +1 (� n+1 ; xn ) ; (8.4)

where
T  ((s1; : : : ; sL ); �) = T ;L (sL ; �) � � � � � T ; 1(s1; �)

and where� stands for the composition of functions:f � g(x) = f (g(x)). In other words, an iteration
of this algorithm consists in the composition ofL random proximal gradient iterations. The case where
L = 1 was treated in [24] (see also Chap.6).

Assuming that the set of minimizers of the problem is non empty, Th.8.3.1 below states that the
sequence(xn ) converges almost surely to a (possibly random) point of this set. A sketch of the proof of
this theorem can be found in Sec.8.3.3. It follows the same canvas as the approach of [24] or Chap.6,
with the di�erence that we are now dealing with possibly di�erent functions(f i ; gi ) and non-independent
noises� i for i 2 f 1; : : : ; Lg.

We now want to exploit this stochastic algorithm to develop a simple procedure leading to a solution
of Problem (8.1). This will be done in Sec.8.4 and will lead to the Snake algorithm. The �rst step is to
express the functionR(�; � ) as the expectation of a function with respect to a �nite random walk. Given
an integerM > 0 and a �nite walks = ( v0; v1; : : : ; vM ) of lengthM on the graphG, wherevi 2 V and
f vi ; vi +1 g 2 E, write

R(x; � s) =
MX

i =1

� f vi � 1 ;vi g(x(vi � 1); x(vi )) :

Now, pick a node at random with a probability proportional to the degree (i.e., the number of neighbors)
of this node. Once this node has been chosen, pick another one at random uniformly among the neighbors
of the �rst node. Repeat the process of choosing neighborsM times, and denote as� 2 V M +1 the
random walk thus obtained. With this construction, we get that1

jE j R(x; � ) = 1
M E� [R(x; � � )] using some

elementary Markov chain formalism (see Prop.8.4.1below).
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In these conditions, a �rst attempt of the use of Algorithm (8.4) is to consider Problem (8.1) as
an instance of Problem (8.3) with L = 1, f 1(� ; x) = 1

jE j F (x), and g1(�; x ) = 1
M R(x; � � ). Given an

independent sequence(� n ) of walks having the same distribution as the random vector� and a sequence
( n ) of steps in`2 n `1, Algorithm 8.4 boils down to the stochastic version of the proximal gradient
algorithm

xn+1 = prox  n +1
1

M R(�;� � n +1 )(xn �  n+1
1

jE j
r F (xn )) : (8.5)

By Th. 8.3.1(or by [24]), the iteratesxn converge almost surely to a solution of Problem (8.1).
However, although simpler than the deterministic algorithm (8.2), this algorithm is still di�cult to

implement for many regularization functions. As said in the introduction, the walk� is often required to
be a simple path. Obviously, the walk generation mechanism described above does not prevent� from
having repeated nodes. A �rst way to circumvent this problem would be to generate� as a loop-erased
walk on the graph. Unfortunately, the evaluation of the corresponding distribution is notoriously di�cult.
The generalization of Prop.8.4.1 to loop-erased walks is far from being immediate.

As an alternative, we identify the walk� with the concatenation of at mostM simple paths of
maximal length that we denote as� 1; : : : ; � M , these random variables being valued in the space of all
walks inG of length at mostM :

� = ( � 1; � 2; : : : ; � M ) :

Here, in the most frequent case where the number of simple paths is strictly less thanM , the last� i 's are
conventionally set to a trivial walk,i.e., a walk with one node and no edge. We also denote as`(� i ) the
length of the simple path� i , i.e., the number of edges in� i . We now chooseL = M , and fori = 1; : : : ; L,
we setf i (� i ; x) = ` (� i )

L jE j F (x) and gi (� i ; x) = 1
L R(x; � � i ) if `(� i ) > 0, and f i (� i ; x) = gi (� i ; x) = 0

otherwise. With this construction, we show in Sec.8.4 that 1
jE j (F (x) + R(x; � )) =

P L
i =1 E� [f i (� i ; x) +

gi (� i ; x)] and that the functionsf i andgi ful�ll the general assumptions required for the Algorithm (8.4)
to converge to a solution of Problem (8.1). In summary, at each iteration, we pick up a random walk of
lengthL according to the procedure described above, split it into simple paths of maximal length, and
then we successively apply the proximal gradient algorithm to these simple paths.

Chapter organization. The next section introduces the generalized stochastic proximal gradient algo-
rithm. Then, in Sec.8.4, this algorithm is applied to� -regularized problems to obtain the Snake algorithm.
The Snake algorithm relies on the computation of the proximity operator of the� -regularization over
1D-graphs. Section8.5gives examples of� -regularizations for which the latter computation can be done
e�ciently (TV regularization and Laplacian regularization). Finally, we simulate the Snake algorithm in
several application contexts. First, we study the so called graph trend �ltering [127]. Then, we consider
the graph inpainting problem [43, 57, 134] and the resolution of Laplacian systems [117]. These contexts
are the purpose of Sec.8.6. Finally, a conclusion and some future research directions are provided in
Sec.8.7.
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8.3 A General Stochastic Proximal Gradient Algorithm

8.3.1 Problem and General Algorithm

In this section, we consider the general problem

min
x2 X

LX

i =1

E
”
f i (� i ; x) + gi (� i ; x)

—
(8.6)

whereL is a positive integer, the� i : 
 ! � are random variables (r.v.), and the functionsf i : � � X ! R
andgi : � � X ! R satisfy the following assumption:

Assumption 8.3.1. The following holds for alli 2 f 1; : : : ; Lg:

1. The f i andgi are normal convex integrands.

2. For everyx 2 X, E[jf i (� i ; x)j] < 1 andE[jgi (� i ; x)j] < 1 .

3. The functionf i (� i ; �) is a.s. di�erentiable. We denote asr f i (� i ; �) its gradient w.r.t. the �rst
variable.

Remark 3. In this chapter, we assume that the functionsgi (� i ; �) have a.s. a full domain. This
assumption can be relaxed with some e�ort, along the ideas developed in [24].

Let � be the random vector� = ( � 1; : : : ; � L ) with values in� L and let(� n : n 2 N� ) be a sequence
of i.i.d. copies of� , de�ned on the same probability space(
 ; F ; P). For all n 2 N� ; � n = ( � 1

n ; : : : ; � L
n ).

Finally, let ( n ) be a positive sequence. Our aim is to analyze the convergence of the iterates(xn )
recursively de�ned by:

xn+1 = T  n +1 (� n+1 ; xn ) ; (8.7)

as well as the intermediate variables�x i
n+1 (i = 0; : : : ; L) de�ned by �x0

n+1 = xn , and

�x i
n+1 = T  n +1 ;i (� i

n+1 ; �x i � 1
n+1 ) ; i = 1; : : : ; L : (8.8)

In particular,xn+1 = xL
n+1 = T n +1 ;L (� L

n+1 ; �xL � 1
n+1 ).

In the special case where the functionsgi , are all constant with respect to their �rst variable (the
algorithm is deterministic) and the functionsf i are equal to zero, the above iterations were studied by
Passty in [94]. In the special case whereL = 1, the algorithm boils down to the stochastic proximal
gradient algorithm, whose detailed convergence analysis can be found in [24] (see also Chap.6, [22], and
[126] as an earlier work). In this case, the iterates take the simpler form

xn+1 = prox  n +1 g1 (� n +1 ;�)(xn �  n+1 r f 1(� n+1 ; xn )) ; (8.9)

and converge a.s. to a minimizer of the functionx 7! E� [f 1(x; � ) + g1(x ;� )] under the convenient
hypotheses.

It is worth noting that the present algorithm (8.7) cannot be written as an instance of (8.9). Indeed,
the operatorT  is a composition ofL (random) operators, whereas the stochastic forward backward
algorithm (8.9) has a simpler structure. This composition raises technical di�culties that need to be
speci�cally addressed. Among these di�culties is the dependency of the intermediate variables.
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8.3.2 Almost sure convergence

We make the following assumptions.

Assumption 8.3.2. The positive sequence( n ) satis�es the conditions
X

 n = + 1 and
X

 2
n < 1 ;

(i.e., ( n ) 2 `2 n `1). Moreover,  n +1
 n

! 1.

Assumption 8.3.3. The following holds for alli 2 f 1; : : : ; Lg:

1. There exists a measurable mapK i : � ! R+ s.t. the following holdsP-a.e.: for allx; y in X,

kr f i (� i ; x) � r f i (� i ; y)k � K i (� i )kx � yk :

2. For all� > 0, E[K i (� i )� ] < 1 .

We denote byZ the set of minimizers of Problem (8.6). Thanks to Assumption8.3.1, the quali�cation
conditions hold, ensuring that a pointx? belongs toZ if and only if

0 2
LX

i =1

r E[f i (� i ; x?)] + @E[gi (� i ; x?)] :

The (sub)di�erential and the expectation operators can be interchanged [102], and the above optimality
condition also reads

0 2
LX

i =1

E[r f i (� i ; x?)] + E[@gi (� i ; x?)] ; (8.10)

whereE[@gi (� i ; x?)] is the selection integral of the random set@gi (x?; � i ) (see (2.4)). Therefore, the
optimality condition (8.10) means that there existL integrable mappings' 1; : : : ; ' L satisfying a.s.
' i (� i ) 2 @gi (� i ; x?) and s.t.

0 =
LX

i =1

E[r f i (� i ; x?)] + E[' i (� i )] : (8.11)

Recalling (6.2), we say that the family(r f i (� i ; x?); ' i (� i )) i =1 ;:::;L is arepresentationof the minimizerx?.
In addition, if for some� � 1 and everyi = 1; : : : ; L, E[kr f i (� i ; x?)k� ] < 1 and E[k' (� i )k� ] < 1 ,
we say that the minimizerx? admits a� -integrable representation.

Assumption 8.3.4. 1. The setZ is not empty.

2. For everyx? 2 Z , there exists" > 0 s.t. x? admits a(2 + ")-integrable representation, which is
denoted(r f i (� i ; x?); ' i (� i )) i =1 ;:::;L .

We denote by@0gi (� i ; x) the least norm element in@gi (� i ; x).

Assumption 8.3.5. For every compact setK � X, there exists� > 0 such that for alli = 1; : : : ; L,

sup
x2K

E[k@0gi (x; � i )k1+ � ] < 1 :

We can now state the main result of this section, which will be proven in Sec.8.3.3.

Theorem 8.3.1. Let Assumptions8.3.1� 8.3.5 hold true. There exists a r.v.X ? s.t. P(X ? 2 Z ) = 1
and s.t. (xn ) converges a.s. toX ? asn ! 1 . Moreover, for everyi = 0; : : : ; L � 1, �x i

n converges a.s.
to X ?.
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8.3.3 Sketch of the Proof of Th. 8.3.1

We start with some notations. We endow the probability space(
 ; F ; P) with the �ltration (F n )
de�ned asF n = � (� 1; : : : ; � n ), and we writeEn = E[� j F n ]. In particular,E0 = E. We also de�ne
Gi (x) = E� [gi (� i ; x)] andFi (x) = E� [f i (� i ; x)] for everyx 2 X. We denote by� i and � the probability
distributions of� i and � respectively. Finally,C and � will refer to positive constants whose values can
change from an equation to another. The constant� can be chosen arbitrarily small.

In [24] or Chap.6, the caseL = 1 is studied (Algorithm (8.9)). Here we shall reproduce the main
steps of the approach of [24] or Chap.6, only treating in detail the speci�cities of the caseL > 1. Note
also that the formalism of random monotone operators is not needed here.

Givena 2 X, consider the Di�erential Inclusion (DI) associated with
P L

i =1 r Fi + @Gi :

¨
_z(t) 2 �

P L
i =1 (r Fi (z(t)) + @Gi (z(t)))

z(0) = a :
(8.12)

and denote� the associated semi�ow (see2.2.2). Consider the interpolated functionx = I((xn ))
(see (6.4)) where(xn ) is given by (8.7). We shall prove the two following facts:

� The sequence(kxn � x?k) is almost surely convergent for eachx? 2 Z (Prop. 8.3.3);

� The processx(t) is an almost sure Asymptotic Pseudo Trajectory (APT) of the semi-�ow� ,
see (6.5). Namely, for eachT > 0,

sup
u2 [0;T ]

kx(t + u) � �( x(t); u)k a.s.���!
t !1

0; (8.13)

Taken together, these two results lead to the a.s. convergence of(xn ) to some r.v.X ? supported by the
set Z , as is shown by [24, Cor. 3.2]. The convergence of the(�x i

n )n stated by Th.8.3.1will be shown in
the course of the proof.

Denotingg the Moreau envelope of the convex functiong, the mappingT ;i can be rewritten as

T ;i (s; x) = x �  r f i (s; x) �  r g
i (s; x �  r f i (s; x)) (8.14)

The following lemma is proven in Appendix8.8.1.

Lemma 8.3.2. For i = 1; : : : ; L, let

�x i = ( T;i (si ; �) � � � � � T; 1(s1; �))( x):

Then, with Assumption8.3.3, there exists a measurable map� : � L ! R+ s.t. E� [� (� )� ] < 1 for all
� � 1 and s.t. for all�s = ( s1; : : : ; sL ) 2 � L ,

kr f i (si ; �x i � 1)k � � (�s)
iX

k=1

kr f k(sk ; x)k + kr g
k (sk ; x)k

kr g
i (si ; �x i � 1 �  r f i (si ; �x i � 1))k

� � (�s)
iX

k=1

kr f k(sk ; x)k + kr g
k (sk ; x)k:
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Recall that we are studying the iterations�x i
n+1 = T  n +1 ;i (� i

n+1 ; �x i � 1
n+1 ), for i = 1; : : : ; L, n 2 N� , with

�x0
n+1 = xn andxn+1 = �xL

n+1 . In this section and in Appendix8.8, we shall write for conciseness, for any
x? 2 Z ,

r g
i = r g n +1

i (� i
n+1 ; �x i � 1

n+1 �  n+1 r f i (� i
n+1 ; �x i � 1

n+1 )) ;

proxg i
= prox g i (� i

n +1 ;�)(�x
i � 1
n+1 �  n+1 r f i (� i

n+1 ; �x i � 1
n+1 )) ;

r f i = r f i (� i
n+1 ; �x i � 1

n+1 );

r f ?
i = r f i (� i

n+1 ; x?) wherex? 2 Z ;

' i = ' i (� i
n+1 ); (see Assumption8.3.4) and

 =  n+1 :

The following proposition is analogous to Prop.1 of Chap.6:

Proposition 8.3.3. Let Assumptions8.3.2� 8.3.4hold true. Then the following facts hold true:

1. For eachx? 2 Z , the sequence(kxn � x?k) converges almost surely.

2. E
”P L

i =1
P 1

n=1  2(kr g
i k2 + kr f i k2)

—
< 1 .

3. For eachi , �x i
n+1 � xn ! 0 almost surely.

This proposition is shown in Appendix8.8.2.
The proof of the APT property follows the same lines as in Sec.6.3, using the following de�nition of

the functionh:

h ((s1; : : : ; sL ); x) = �
LX

i =1

”
r f i (si ; �x i � 1) + r g

i (si ; �x i � 1 �  r f i (si ; �x i � 1))
—

;

where we recall the notation�x i = ( T;i (si ; �) � � � � � T; 1(s1; �))( x). Note that

xn+1 = xn +  n+1 h n +1 (� n+1 ; xn ):

Also note that since every functionsf i and gi are assumed to take �nite values, it is su�cient to prove
the APT property in the so-called full domain case, see Sec.6.3.

8.4 The Snake Algorithm

8.4.1 Notations

Let ` � 1 be an integer. We refer to a walk of length` over the graphG as a sequences = ( v0; v1; : : : ; v` )
in V `+1 such that for everyi = 1; : : : ; `, the pair f vi � 1; vi g is an edge of the graph. A walk of length
zero is a single vertex.

We shall often identifys with the graphG(s) whose vertices and edges are respectively given by the
setsV(s) = f v0; : : : ; v`g andE(s) = ff v0; v1g; : : : ; f v` � 1; v`gg.

Let L � 1: We denote by� the set of all walks overG with length� L: This is a �nite set. LetG
be the set of all subsets of� : We consider the measurable space(� ; G):
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Let s = ( v0; v1; : : : ; v` ) 2 � with 0 < ` � L: We abusively denote by� s the family of functions
(� f vi � 1 ;vi g) i =1 ;:::;` : We refer to the� s� regularization ofx as the� s� regularization on the graphs of the
restriction ofx to s that is

R(x; � s) =
X̀

i =1

� f vi � 1 ;vi g(x(vi � 1); x(vi )) :

Besides,R(x; � s) is de�ned to be0 if s is a single vertex (that is̀ = 0).
We say that a walk is asimple pathif there is no repeated nodei.e, all elements ins are di�erent or if

s is a single vertex. Throughout this chapter, we assume that whens is a simple path, the computation
of proxR(�;� s ) can be done easily.

8.4.2 Writing the Regularization Function as an Expectation

One key idea of this chapter is to write the functionR(x; � ) as an expectation in order to use a stochastic
approximation algorithm, as described in Sec.8.3.

Denote bydeg(v) the degree of the nodev 2 V, i.e., the number of neighbors ofv in G. Let � be
the probability measure onV de�ned as

� (v) =
deg(v)
2jE j

; v 2 V :

De�ne the probability transition kernelP on V 2 as P(v; w) = 1f v;wg2E =deg(v) if deg(v) > 0, and
P(v; w) = 1v= w otherwise, where1 is the indicator function.

We refer to a Markov chain (indexed byN) over V with initial distribution� and transition kernel
P as an in�nite random walk overG: Let (vk)k2 N be an in�nite random walk overG de�ned on the
canonical probability space(
 ; F ; P); with 
 = V N: The �rst node v0 of this walk is randomly chosen
in V according to the distribution�: The other nodes are drawn recursively according to the conditional
probabilityP(vk+1 = w j vk) = P(vk ; w). In other words, conditionally tovk , the nodevk+1 is drawn
uniformly from the neighborhood ofvk . Setting an integerL � 1, we de�ne the random variable� from
(vk)k2 N as� = ( v0; v1; : : : ; vL ):

Proposition 8.4.1. For everyx 2 RV ,

1
jE j

R(x; � ) =
1
L

E� [R(x; � � )] : (8.15)

Proof. It is straightforward to show that� is an invariant measure of the Markov chain(vk)k2 N. Moreover,
P(vk = w; vk� 1 = v) = � (v)P(v; w) = 1f v;wg2E =(2jE j), leading to the identity

E
”
� f vk � 1 ;vk g(x(vk� 1); x(vk))

—
=

1
jE j

R(x; � ) ;

which completes the proof by summing and using the symmetry of� e; 8e 2 E.

This proposition shows that Problem (8.1) is written equivalently

min
x2 RV

1
jE j

F (x) + E[
1
L

R(x; � � )]: (8.16)
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Hence, applying the stochastic proximal gradient algorithm to solve (8.16) leads to a new algorithm to
solve (8.1), which was mentioned in Sec.8.2, Eq. (8.5):

xn+1 = prox  n +1
1
L R(�;� � n +1 )(xn �  n+1

1
jE j

r F (xn )) : (8.17)

Although the iteration complexity is reduced in (8.17) compared to (8.2), the computation of the
proximity operator of the� -regularization over the random subgraph� n+1 in the algorithm (8.17) can
be di�cult to implement. This is due to the possible presence of loops in the random walk� . As an
alternative, we split� into several simple paths. We will then replace the proximity operator over� by the
series of the proximity operators over the simple paths induced by� , which are e�ciently computable.

8.4.3 Splitting � into Simple Paths

Let (vk)k2 N be an in�nite random walk on(
 ; F ; P). We recursively de�ne a sequence of stopping time
(� i ) i 2 N as� 0 = 1 and for alli � 0,

� i +1 = min f k � � i : vk 2 f v� i � 1; : : : ; vk� 1gg

if the above set is nonempty, and� i +1 = + 1 otherwise. We now de�ne the stopping timest i for all
i 2 N ast i = min( � i ; L + 1) : Finally, for alli 2 N� we can consider the random variable� i on (
 ; F ; P)
with values in(� ; G) de�ned by

� i = ( vt i � 1 � 1; vt i � 1 ; : : : ; vt i � 1):

We denote byN the smallest integern such thattn = L + 1. We denote bỳ (� i ) the length of the
simple path� i :

Example 6. Given a graph with verticesV = f a; b; c; : : : ; zg and a given edge set that is not useful
to describe here, consider! 2 
 and the walk� (! ) = ( c; a; e; g; a; f; a; b; h) with lengthL = 8. Then,
t0(! ) = 1 , t1(! ) = 4 , t2(! ) = 6 , t3(! ) = t4(! ) = : : : = 9; and � (! ) can be decomposed into
N (! ) = 3 simple paths and we have� 1(! ) = ( c; a; e; g), � 2(! ) = ( g; a; f ), � 3(! ) = ( f; a; b; h) and
� 4(! ) = : : : = � 8(! ) = ( h): Their respective lengths are`(� 1(! )) = 3 , `(� 2(! )) = 2 , `(� 3(! )) = 3 and
`(� i (! )) = 0 for all i = 4; : : : ; 8. We identify� (! ) with (� 1(! ); : : : ; � 8(! )) :

It is worth noting that, by construction,� i is a simple path. Moreover, the following statements hold:

� We have1 � N � L a.s.

� These three events are equivalent for alli : { � i is a single vertex}, {̀(� i ) = 0 } and { i � N + 1}

� The last element of� N is a.s.vL

�
P L

i =1 `(� i ) = L a.s.

In the sequel, we identify the random vector(� 1; : : : ; � L ) with the random variable� = ( v0; : : : ; vL ):
As a result,� is seen as a r.v with values in� L :

Our notations are summarized in Table8.1. For everyi = 1; : : : ; L, de�ne the functionsf i ; gi on
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Table 8.1: Useful Notations

G = ( V; E) Graph with no self-loop
s walk onG

(vi ) in�nite random walk
� = ( � 1; : : : ; � L ) random walk of lengthL

� i random simple path
`(� i ) length of� i

R(x; � ) � � regularization ofx on G
R(x; � s) � � regularization ofx along the walks

RV � � in such a way that

f i (� i ; x) =
`(� i )
L jE j

F (x) (8.18)

gi (� i ; x) =
1
L

R(x; � � i ) : (8.19)

Note that wheni > N (! ) then f i (� i (! ); x) = gi (� i (! ); x) = 0 .

Proposition 8.4.2. For everyx 2 RV , we have

1
jE j

(F (x) + R(x; � )) =
LX

i =1

E
”
f i (� i ; x) + gi (� i ; x)

—
: (8.20)

Proof. For every! 2 
 and everyx 2 RV ,

1
L

R(x; � � (! )) =
1
L

N (! )X

i =1

R(x; � � i (! )) =
LX

i =1

gi (� i (! ); x) :

Integrating, and using Prop.8.4.1, it follows that
P L

i =1 E[gi (� i ; x)] = 1
jE j R(x; � ). Moreover, we have

P L
i =1 f i (� i (! ); x) = 1

jE j F (x). This completes the proof.

8.4.4 Main Algorithm

Prop. 8.4.2 suggests that minimizers of Problem (8.1) can be found by minimizing the right-hand side
of (8.20). This can be achieved by means of the stochastic approximation algorithm provided in Sec.8.3.
The corresponding iterations (8.7) read asxn+1 = T  n +1 (� n+1 ; xn ) where(� n ) are i.i.d copies of� . For
everyi = 1; : : : ; L � 1, the intermediate variable�x i

n+1 given by Eq. (8.8) satis�es

�x i
n+1 = prox  n gi (� i

n +1 ;�)(�x
i � 1
n �  n r f i (� i

n+1 ; �x i � 1
n )) :

Theorem 8.4.3. Let Assumption8.3.2hold true. Assume that the convex functionF is di�erentiable
and thatr F is Lipschitz continuous. Assume that Problem (8.1) admits a minimizer. Then, there exists
a r.v. X ? s.t. X ?(! ) is a minimizer of (8.1) for all ! P-a.e., and s.t. the sequence(xn ) de�ned above
converges a.s. toX ? asn ! 1 . Moreover, for everyi = 0; : : : ; L � 1, �x i

n converges a.s. toX ?.
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Table 8.2: Proposed Snake algorithm.

procedure Snake (x0; L)
z  x0

e  Rnd_oriented_edge
n  0
`  L
while stopping criterion is not metdo

c; e Simple_path (e; `)
z  Prox1D (z �  n

Length (c)
L jE j r F (z); c; 1

L  n )
`  ` � Length (c)
if ` = 0 then

e  Rnd_oriented_edge
`  L
n  n + 1 . x n is z at this step

end if
end while
return z

end procedure

Table 8.3:Simple_path procedure.

procedure Simple_path (e; `)
c  e
w  Uniform_Neib (e[� 1])
while w =2 c andLength (c)< ` do

c  [c; w]
w  Uniform_Neib (w)

end while
return c;[c[� 1]; w]

end procedure

Proof. It is su�cient to verify that the mappingsf i , gi de�ned by (8.18) and (8.19) respectively ful�ll
Assumptions8.3.1� 8.3.5of Th. 8.3.1. Then, Th.8.3.1gives the conclusion. Assumptions8.3.1and8.3.3
are trivially satis�ed. It remains to show, for every minimizerx?, the existence of a(2+ ")-representation,
for some" > 0. Any suchx? satis�es Eq. (8.11) where(r f i (� i ; x?); ' i (� i )) i =1 ;:::;L is a representation of
the minimizerx?. By de�nition of f i andgi , it is straightforward to show that there exists a deterministic
constantC? depending only onx? and the graphG, such thatkr f i (� i ; x?)k < C ? and k' i (� i )k < C ?.
This proves Assumption8.3.4. Assumption8.3.5can be easily checked by the same arguments.

Consider the general� -regularized problem (8.1), and assume that an e�cient procedure to compute
the proximity operator of the� -regularization over an 1D-graph is available. The sequence(xn ) is
generated by the algorithmSnake (applied with the latter 1D e�cient procedure) and is summarized
in Table 8.2. Recall the de�nition of the probability� on V and the transition kernelP on V 2: The
procedure presented in this table calls the following subroutines.

� If c is a �nite walk, c[� 1] is the last element ofc and Length (c) is its length as a walk that is

114



jcj � 1:

� The procedureRnd_Oriented_Edge returns a tuple of two nodes randomly chosen(v; w)
wherev � � andw � P(v; �):

� For everyx 2 RV , every simple paths and every� > 0, Prox1D (x; s; � ) is any procedure that
returns the quantityprox�R (�;� s )(x) :

� The procedureUniform_Neib (v) returns a random vertex drawn uniformly amongst the neigh-
bors of the vertexv that is with distributionP(v; �).

� The procedureSimple_path (e; `), described in Table8.3, generates the �rst steps of a random
walk onG with transition kernelP initialized at the vertexe[� 1], and prefaced by the �rst node
in e. It represents the� i 's of the previous section. The random walk is stopped when one node is
repeated, or until the maximum number of samples` + 1 is reached. The procedure produces two
outputs, the walk and the oriented edgec;(c[� 1]; w). In the case where the procedure stopped
due to a repeated node,c represents the simple path obtained by stopping the walk before the �rst
repetition occurs, whilew is the vertex which has been repeated (referred to as the pivot node). In
the case where no vertex is repeated, it means that the procedure stopped because the maximum
length was achieved. In that case,c represents the last simple path generated, and the algorithm
doesn't use the pivot nodew.

Remark 4. Although Snake converges for every value of the hyperparameterL, a natural question is
the in�uence ofL on the behavior of the algorithm. In the case whereR( � ; � ) is the TV regularization,
[50] notes that, empirically, the taut-string algorithm used to compute the proximity operator has a
complexity of orderO(L). The same holds for the Laplacian regularization. Hence, parameterL controls
the complexity of every iteration. On the other hand, in the reformulation of Problem (8.1) into the
stochastic form (8.15), the random variablejE jR(x; � � )=L is an unbiased estimate ofR(x; � ). By the
ergodic theorem, the largerL, the more accurate is the approximation. Hence, there is a trade-o�
between complexity of an iteration and precision of the algorithm. This trade-o� is standard in the
machine learning literature. It often appears while sampling mini-batches in order to apply the stochastic
gradient algorithm to minimize a �nite sum (see [33, 34]). The choice ofL is somehow similar to the
problem of the choice of the length of the mini-batches in this context.

Providing a theoretical rule that would optimally select the value ofL is a di�cult task that is beyond
the scope of this chapter. Nevertheless, in Sec.8.6, we provide a detailed analysis of the in�uence ofL
on the numerical performance of the algorithm.

8.5 Proximity operator over 1D-graphs

We now provide some special cases of� -regularizations, for which the computation of the proximity
operator over 1D-graphs is easily tractable. Speci�cally, we address the case of the total variation
regularization and the Laplacian regularization which are particular cases of� -regularizations.

8.5.1 Total Variation norm

In the case where� f i;j g(x; x0) = wf i;j gjx � x0j; R(x; � ) reduces to the weighted TV regularization

R(x; � ) =
X

f i;j g2E

wf i;j gjx(i ) � x(j )j
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and in the case where� f i;j g(x; x0) = jx � x0j; R(x; � ) reduces to the its unweighted version

R(x; � ) =
X

f i;j g2E

jx(i ) � x(j )j :

As mentioned above, there exists a fast method, the taut string algorithm, to compute the proximity
operator of these� � regularizations over a 1D-graph ([9, 50]).

8.5.2 Laplacian regularization

In the case where� f i;j g(x; x0) = wf i;j g(x � x0)2; R(x; � ) reduces to the Laplacian regularization that is

R(x; � ) =
X

f i;j g2E

wf i;j g(x(i ) � x(j ))2:

Its unweighted version is
R(x; � ) =

X

f i;j g2E

(x(i ) � x(j ))2:

In the case where� f i;j g(x; x0) = wf i;j g(x=
È

deg(i ) � x0=
È

deg(j ))2;

R(x; � ) =
X

f i;j g2E

wf i;j g

„
x(i )

È
deg(i )

�
x0(i )

È
deg(j )

Ž 2

is the normalized Laplacian regularization.
We now explain one method to compute the proximity operator of the unweighted Laplacian reg-

ularization over an 1D-graph. The computation of the proximity operator of the normalized Laplacian
regularization can be done similarly. The computation of the proximity operator of the weighted Laplacian
regularization over an 1D-graph is as fast as the computation of the proximity operator of the unweighted
Laplacian regularization over an 1D-graph, using for example Thomas' algorithm.

The proximity operator of a pointy 2 R`+1 is obtained as a solution to a quadratic programming
problem of the form:

min
x2 R` +1

1
2

kx � yk2 + �
X̀

k=1

(x(k � 1) � x(k))2 ;

where� > 0 is a scaling parameter. Writing the �rst order conditions, the solutionx satis�es

(I + 2� L )x = y (8.21)

whereL is the Laplacian matrix of the 1D-graph with` + 1 nodes andI is the identity matrix inR`+1 .
Using [45], L can be diagonalized explicitly. In particular,I + 2� L has eigenvalues

1 + 4�
‚

1 � cos
‚

�k
` + 1

ŒŒ

;

and eigenvectorsek 2 R`+1

ek(j ) =
1

2(` + 1)
cos

‚

�
kj

` + 1
� �

k
2(` + 1)

Œ

;

for 0 � k < n . Hence,x = C � � � 1Cy, where� gathers the eigenvalues ofI + 2� L and the operatorsC
andC � are the discrete cosine transform operator and the inverse discrete cosine transform respectively.
Therefore,x can be found inO(` log(`)) operations.
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8.6 Examples

We now give some practical instances of Problem (8.1) by particularizingF and the � -regularization
in (8.1). The � -regularizations considered in this section will be among the� -regularizations mentioned
in Sec.8.5. We also provide some simulations to compare our method to existing algorithms. The code
is available at the addresshttps://github.com/adil-salim/Snake .

8.6.1 Trend Filtering on Graphs

Consider a vectory 2 RV . The Graph Trend Filtering (GTF) estimate onV with parameterk set to
one (see [127] for the de�nition of the parameter) is de�ned in [127] by

ŷ = arg min
x2 RV

1
2

kx � yk2 + �
X

f i;j g2E

jx(i ) � x(j )j; (8.22)

where� > 0 is a scaling parameter. In the GTF context, the vectory represents a sample of noisy data
over the graphG and the GTF estimate represents a denoised version ofy. When G is an 1D or a
2D-graph, the GTF boils down to a well known context [120, 41]. WhenG is a general graph, the GTF
estimate is studied in [127] and [69]. The estimatêy is obtained as the solution of a TV-regularized risk
minimization withF (x) = 1

2kx � yk2 wherey is �xed. We address the problem of computing the GTF
estimate on two real life graphs from [74] and one sampled graph. The �rst one is the Facebook graph
which is a network of 4039 nodes and 88234 edges extracted from the Facebook social network. The
second one is the Orkut graph with 3072441 nodes and 117185083 edges. Orkut was also an on-line social
network. The third graph is sampled according to a Stochastic Block Model (SBM). Namely we generate
a graph of 4000 nodes with four well-separated clusters of 1000 nodes (also called �communities�) as
depicted in Fig.8.2. Then we draw independentlyN 2 Bernoulli r.v.E(i; j ), encoding the edges of the
graph (an edge between nodesi and j is present i� E(i; j ) = 1 ), such thatP[E(i; j ) = 1] = P(ci ; cj )
whereci denotes the community of the nodei and where

8
<

:
P(c; c0) = 0 :1 if c = c0

P(c; c0) = 0 :005otherwise.

This model is called the stochastic block model for the matrixP [68]. It amounts to a blockwise
Erdös-Rényi model with parameters depending only on the blocks. It leads to 81117 edges.

We assume that every node is provided with an unknown value inR (the set of all these values
being referred to as thesignal in the sequel). In our example, the valuey(i ) at nodei is generated as
y(i ) = l(ci ) + �� i wherel is a mapping from the communities to a set of levels (in Fig.8.2, l(i ) is an
integer in[0; 255]), and � denotes a standard Gaussian white noise with� > 0 as its standard deviation.
In Fig. 8.2, we represent an example of the signaly (left �gure) along with the �initial� valuesl(ci )
represented in grayscale at every node.

Over the two real life graphs, the vectory is sampled according to a standard Gaussian distribution
of dimensionjV j. The parameter� is set such thatE[1

2kx � yk2] = E[�
P

f i;j g2E jx(i ) � x(j )j] if x; y
are two independent r.v with standardized Gaussian distribution. The initial guessx0 is set equal to
y. The step size n is set equal tojV j=(10n) for the two real life graphs andjV j=(5n) for the SBM
realization graph. We ran the Snake algorithm for di�erent values ofL, except over the Orkut graph
whereL = jV j. The dual problem of (8.22) is quadratic with a box constraint. The Snake algorithm is
compared to the well-known projected gradient (PG) algorithm for the dual problem. To solve the dual
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Figure 8.2: The signal is the grayscale of the node. The graph is sampled according to a SBM. Left:
Noised signal over the nodes. Right: Sought signal.

problem of (8.22), we use L-BFGS-B [39] as suggested in [127]. Note that, while running on the Orkut
graph, the algorithm L-BFGS-B leads to a memory error from the solver [39] in SciPy (using one thread
of a 2800 MHz CPU and 256GB RAM).

Fig. 8.3 shows the objective function as a function of time for each algorithm.
In the case of the TV regularization, we observe that Snake takes advantage of being an online

method, which is known to be twofold ([33, 34]). First, the iteration complexity is controlled even
over large general graphs: the complexity of the computation of the proximity operator is empirically
linear [50]. On the contrary, the projected gradient algorithm involves a matrix-vector product with
complexityO(jE j). Hence,e.g the projected gradient algorithm has an iteration complexity of at least
O(jE j). The iteration complexity of Snake can be set to be moderate in order to frequently get iterates
while running the algorithm. Then, Snake is faster than L-BFGS-B and the projected gradient algorithms
for the dual problem in the �rst iterations of the algorithms.

Moreover, for the TV regularization, Snake seems to perform globally better than L-BFGS-B and the
projected gradient. This is because Snake is a proximal method where the proximity operator is e�ciently
computed ([12]).

The parameterL seems to have a minor in�uence on the performance of the algorithm since, in
Fig. 8.3 the curves corresponding to di�erent values ofL are closely superposed.

Over the three graphs, the valueL = O(jV j) is a good value, if not the best value to use the Snake
algorithm. One can show that, while sampling the �rst steps of the in�nite random walk overG from
the node, sayv, the expected time of return to the random nodev is jV j. Hence, the valueL = jV j
allows Snake to signi�cantly explore the graph during one iteration.
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Figure 8.3: The algorithm Snake for the TV regularization is applied to di�erent graphs, with di�erent
values of the parameterL.

8.6.2 Graph Inpainting

The problem of graph inpainting has been studied in [43, 57, 134] and can be expressed as follows.
Consider a vectory 2 RV , a subsetO � V. Let �O be its complementary inV. The harmonic energy
minimization problem is de�ned in [134] by

min
x2 RV

X

f i;j g2E

(x(i ) � x(j ))2

subject to x(i ) = y(i ); 8i 2 O:

This problem is interpreted as follows. The signaly 2 RV is partially observed over the nodes and the
aim is to recovery over the non observed nodes. The subsetO � V is the set of the observed nodes
and �O the set of unobserved nodes. An example is shown in Fig.8.4.

Denote byG �O = ( �O; E �O) the subgraph ofG induced by�O. Namely, �O is the set of vertices, and
the setE �O is formed by the edgesf i; j g 2 E s.t. i 2 �O and j 2 �O. The harmonic energy minimization
is equivalent to the following Laplacian regularized problem over the graphG �O:

min
x2 R �O

F (x) +
X

f i;j g2 E �O
i<j

(x(i ) � x(j ))2

(8.23)
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Figure 8.4: Left: Partially observed data (unobserved nodes are black, data is the color of nodes). Right:
Fully observed data (the color is observed for all nodes).

where
F (x) =

X

i 2 �O;j 2 O
f i;j g2 E

(x(i ) � y(j ))2 :

The signaly is sampled according to a standardized Gaussian distribution of dimensionjV j. We compared
the Snake algorithm to existing algorithm over the Orkut graph. The setV is divided in two parts of
equal size to de�neO and �O. The initial guess is set equal to zero over the set of unobserved nodes�O,
and to the restriction ofy to O over the set of observed nodesO. We compare our algorithm with the
conjugate gradient.

Fig. 8.5 represents the objective function
P

f i;j g2E (x(i ) � x(j ))2 as a function of time. Over the
Facebook graph, the parameterL is set equal tojV j=10. The step size n are set equal tojV j=(10n).
Over the Orkut graph,L is set equal tojV j=50. The step size are set equal tojV j=(5

p
n) on the range

displayed in Fig.8.5. Even if the sequence(jV j=(5
p

n))n2 N does not satis�es the Assumption8.3.2, it is
a standard trick in stochastic approximation to take a slowly decreasing step size in the �rst iterations of
the algorithm ([88]). It allows the iterates to be quickly close to the set of solutions without converging
to the set of solutions. Then, one can continue the iterations using a sequence of step size satisfying
Assumption8.3.2 to make the algorithm converging. There is a trade-o� between speed and precision
while choosing the step-size. Snake turns out to be faster in the �rst iterations. Moreover, as an
online method, it allows the user to control the iteration complexity of the algorithm. Since a discrete
cosine transform is used, the complexity of the computation of the proximity operator isO(L log(L)).
In contrast, the iteration complexity of the conjugate gradient algorithm can be a bottleneck (at least
O(jE j)) as far as very large graphs are concerned.

Besides, Snake for the Laplacian regularization does not perform globally better than the conjugate
gradient. This is because the conjugate gradient is designed to fully take advantage of the quadratic
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Figure 8.5: Left: Snake applied to the Laplacian regularization over the Facebook Graph. Right: Snake
applied to the Laplacian regularization over the Orkut Graph.

structure. On the contrary, Snake is not speci�c to quadratic problems.

8.6.3 Online Laplacian solver

Let L the Laplacian of a graphG = ( V; E). The resolution of the equationLx = b, whereb is a zero
mean vector, has numerous applications ([123, 117]). This equation can be solved by minimizing the
Laplacian regularized problem

min
x2 RV

� b� x +
1
2

x � Lx:

In our experiment, the vectorbis randomly chosen using a standardized Gaussian distribution of dimension
jV j. We compare our algorithm with the conjugate gradient over the Orkut graph.

Figure 8.6: Snake applied to the resolution of a Laplacian system over the Orkut graph

Fig. 8.6 represents the quantitykLxn � bk as a function of time, wherexn is the iterate provided
either by Snake or by the conjugate gradient method. The parameterL is set equal tojV j. The step
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size n are set equal tojV j=(2n). Snake appears to be more stable than the conjugate gradient method,
and has a better performance at start up.

8.7 Conclusion

A fast regularized optimization algorithm over large unstructured graphs was introduced in this chapter.
This algorithm is a variant of the proximal gradient algorithm that operates on randomly chosen simple
paths. It belongs to the family of stochastic approximation algorithms with a decreasing step size. One
future research direction consists in a �ne convergence analysis of this algorithm, hopefully leading to a
provably optimal choice of the total walk lengthL. Another research direction concerns the constant step
analogue of the described algorithm, whose transient behavior could be interesting in many applicative
contexts in the �elds of statistics and learning.

8.8 Proofs for Sec. 8.3.3

8.8.1 Proof of Lem. 8.3.2

We start by writingkr f i (si ; �x i � 1)k � kr f i (si ; �x i � 2)k + K i (si )k�x i � 1 � �x i � 2k, whereK i (si ) is provided
by Assumption8.3.3. Using the identity�x i � 1 = T ;i � 1(�x i � 2), whereT ;i is given by (8.14), and recalling
that r g

i (si ; �) is  � 1-Lipschitz, we get

kr f i (si ; �x i � 1)k � kr f i (si ; �x i � 2)k + K i (si )(2kr f i � 1(si � 1; �x i � 2)k + kr g
i � 1(si � 1; �x i � 2)k):

Similarly,

kr g
i (si ; �x i � 1 �  r f i (si ; �x i � 1))k �

kr f i (si ; �x i � 1)k + 2kr f i � 1(si � 1; �x i � 2)k + kr g
i (si ; �x i � 2)k + kr g

i � 1(si � 1; �x i � 2)k:

Iterating down to�x0 = x, we get the result since for everyi , since all the moments ofK i (� i ) are �nite.

8.8.2 Proof of Prop. 8.3.3

Let x? be an arbitrary element ofZ . Let i 2 f 1; : : : ; Lg. We start by writing

k�x i
n+1 � x?k2 = k�x i

n+1 � �x i � 1
n+1 k2 + k�x i � 1

n+1 � x?k2 + 2h�x i
n+1 � �x i � 1

n+1 ; �x i � 1
n+1 � x?i

= k�x i � 1
n+1 � x?k2 +  2kr f i + r g

i k2 � 2 hr f ?
i + ' i ; �x i � 1

n+1 � x?i

� 2 hr f i � r f ?
i ; �x i � 1

n+1 � x?i � 2 hr g
i � ' i ; �x i � 1

n+1 � x?i

= k�x i � 1
n+1 � x?k2 + A1 + A2 + A3 + A4:

Most of the proof consists in bounding theA i 's. We shall repeatedly use Young's inequalityjha; bij �
� kak2 + Ckbk2, where� > 0 is a constant chosen as small as desired, andC > 0 is �xed accordingly.
Starting withA1, we have

A1 �  2(1 + � )kr g
i k2 + C 2kr f i k2:

We haveA3 � 0 by the convexity off L . We can write

A4 = � 2 hr g
i � ' i ; proxg i

� x?i � 2 hr g
i � ' i ; �x i � 1

n+1 �  r f i � proxg i
i � 2 hr g

i � ' i ;  r f i i
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By monotonicity of@gi , the �rst term at the right hand side is� 0. Since�x i � 1
n+1 �  r f i � proxg i

=  r g
i .

Thus,

A4 � � 2 2kr g
i k2 + 2 2h' i ; r g

i + r f i i � 2 2hr g
i ; r f i i

� � (2 � � ) 2kr g
i k2 + C 2kr f i k2 + C 2k' i k2

As regardsA2, we have

A4 = � 2 hr f ?
i + ' i ; xn � x?i � 2 hr f ?

i + ' i ; �x i � 1
n+1 � xn i :

Gathering these inequalities, we get

k�x i
n+1 � x?k2 � k �x i � 1

n+1 � x?k2 � (1 � � ) 2kr g
i k2 + C 2kr f i k2 + C 2k' i k2

� 2 hr f ?
i + ' i ; xn � x?i � 2 hr f ?

i + ' i ; �x i � 1
n+1 � xn i :

Iterating overi , we get

k�x i
n+1 � x?k2 � k xn � x?k2 � (1 � � ) 2

iX

k=1

kr g
k k2 + C 2

iX

k=1

kr f kk2 + C 2
iX

k=1

k' kk2

� 2
iX

k=1

hr f ?
k + ' k ; xn � x?i � 2

iX

k=1

hr f ?
k + ' k ; �xk� 1

n+1 � xn i :

The summand in the last term can be written as

� 2 hr f ?
k + ' k ; �xk� 1

n+1 � xn i = � 2
k� 1X

`=1

hr f ?
k + ' k ; �x`

n+1 � �x` � 1
n+1 i

= � 2 2
k� 1X

`=1

hr f ?
k + ' k ; r f ` + r g

` i

�  2Ckr f ?
k k2 +  2Ck' kk2 +  2C

k� 1X

`=1

kr f `k2 +  2�
k� 1X

`=1

kr g
` k2:

where we usedjha; bij � � kak2 + Ckbk2 as above. Therefore, for alli = 1; : : : ; L;

k�x i
n+1 � x?k2 � k xn � x?k2 � (1 � � ) 2

iX

k=1

kr g
k k2 + C 2

iX

k=1

kr f kk2

+ C 2
iX

k=1

kr f ?
k k2 + C 2

iX

k=1

k' kk2 � 2 h
iX

k=1

r f ?
k + ' k ; xn � x?i : (8.24)

Consider the casei = L. Using Assumption8.3.4,

En

”
k�xL

n+1 � x?k2
—

� k xn � x?k2 � (1 � � ) 2En

"
LX

k=1

kr g
k k2

#

+ C 2
LX

k=1

En [kr f kk2] � 2 En

"

h
LX

k=1

r f ?
k + ' k ; xn � x?i

#

+ C 2:
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The last term at the right hand side is zero since

En

"

h
LX

k=1

r f ?
k + ' k ; xn � x?i

#

= hE

"
LX

k=1

r f ?
k + ' k

#

; xn � x?i = 0

by de�nition of r f ?
k and ' k . Besides, using Assumption8.3.3, for all k we have

En [kr f kk2] � CEn [kr f ?
k k2] + CEn [K 2

k (� k
n+1 )k�xk� 1

n+1 � x?k2]:

Then,

En [kxn+1 � x?k2] � k xn � x?k2 � (1 � � ) 2En

"
LX

k=1

kr g
k k2

#

+ C 2
LX

k=1

En

”
K 2

k (� k
n+1 )k�xk� 1

n+1 � x?k2
—

+ C 2: (8.25)

We shall prove by induction that for all r.vPk which is a monomial expression of the r.v

K 2
k (� k

n+1 ); : : : ; K 2
L (� L

n+1 );

there existsC > 0 such that

En

”
Pkk�xk� 1

n+1 � x?k2
—

� C(1 + kxn � x?k2); (8.26)

for all k = 1; : : : ; L: Note that such a r.vPk is independent ofF n , non-negative and for all� > 0,
E[P �

k ] < 1 by Assumption8.3.3. Using Assumption8.3.3, the induction hypothesis8.26 is satis�ed if
k = 1. Assume that it holds true until the stepk � 1 for somek � L. Using8.24and Assumption8.3.3,

En

”
Pkk�xk� 1

n+1 � x?k2
—

� Ckxn � x?k2

+ C 2En

"

Pk

k� 1X

`=1

kr f `k2

#

+ C 2En

"

Pk

k� 1X

`=1

k' `k2 + kr f ?
` k2

#

� 2 EnPkh
k� 1X

`=1

r f ?
` + ' ` ; xn � x?i : (8.27)

The last term at the right hand side can be bounded as

� 2 EnPkh
k� 1X

`=1

r f ?
` + ' ` ; xn � x?i

� Ckxn � x?k2 + CEn

"

Pk

k� 1X

`=1

kr f ?
` k2 + k' `k2

#

� Ckxn � x?k2 + C (8.28)

using Hölder inequality and Assumption8.3.4. For all ` = 1; : : : ; k � 1,

En [Pkkr f `k2] � CEn [Pkkr f ?
` k2] + CEn

”
PkK 2

` (� `
n+1 )k�x` � 1

n+1 � x?k2
—

� C(1 + kxn � x?k2) (8.29)
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where we used Hölder inequality and Assumption8.3.4 for the �rst term at the right hand side and the
induction hypothesis (8.26) at the step` with the r.v P` := PkK 2

` (� `
n+1 ) for the second term.

Plugging (8.28) and (8.29) into (8.27) and using again Hölder inequality and Assumption8.3.4
we �nd that (8.26) holds true at the stepk. Hence (8.26) holds true for allk = 1; : : : ; L. Finally,
plugging (8.26) into (8.25) with Pk = K 2

k (� k
n+1 ) for all k = 1; : : : ; L we get

En [kxn+1 � x?k2] � (1 + C 2)kxn � x?k2 � (1 � � ) 2En

"
LX

k=1

kr g
k k2

#

+ C 2:

By the Robbins-Siegmund lemma [100], used along with( n ) 2 `2, we get that(kxn � x?k) converges
almost surely, showing the �rst point.

By taking the expectations at both sides of this inequality, we also obtain that(Ekxn � x?k2)
converges,supn Ekxn � x?k2 < 1 , andE

P
n  2

n+1
P L

i =1 kr g
i k2 < 1 . As supn Ekxn � x?k2 < 1 , we

have by Assumption8.3.3 that supn Ekr f 1k2 < 1 . Using Lem.8.3.2and iterating, we easily get that
E

P
n  2

n+1
P L

i =1 kr f i k2 < 1 for all i .
Sincek�x1

n+1 � xnk �  kr f 1k +  kr g
1k, we get that

P
n Ek�x1

n+1 � xnk2 < 1 . By Borel-Cantelli's
lemma, we get that�x1

n+1 � xn ! 0 almost surely. The almost sure convergence of�x i
n+1 � xn to zero is

shown similarly, and the proof of Prop.8.3.3 is concluded.
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Chapter 9

Conclusion and Prospects

In this thesis, we �rst generalized the Ordinary Di�erential Equation method to Di�erential Inclusions
for constant step size stochastic approximation. Two kinds of DI are considered : DI involving an
upper semicontinous operator and DI built upon a maximal monotone operator with possibly empty
values. For each DI, several discretization schemes are considered. These schemes include the explicit
implicit Euler scheme (Forward Backward algorithm) and a Douglas Rachford method. As randomness
is involved in every stage of the discretization, we brought tools from probability theory to study the
resulting algorithms. First, the dynamical behavior of the iterates is studied using weak convergence of
stochastic processes techniques. This result is not enough to study the long-run behavior of the methods.
Studying the sequence of iterates as a Markov chain, we provided a stability criterion that allowed to
state the asymptotic behavior of the algorithm. We �nally showed that this criterion is satis�ed in many
use cases, including the stochastic proximal gradient algorithm. In the second part of this thesis, we
designed and applied generalizations of the stochastic proximal gradient algorithm to solve two kinds
of problems. We �rst considered the saddle point problem of �nding primal dual optimal points of
a stochastic optimization problem. The optimization problem is linearly constrained by matrices that
are also written as expectations. Then, we proposed an algorithm to address regularized optimization
problems over large and general graphs. The regularization term is tied to the graph geometry and our
proximal method allows to handle it stochastically.

In this thesis, we chose to tackle general problems using general compactness techniques that give
asymptotic results. Non asymptotic bounds could be obtain for particular subproblems. Such bounds
has already be obtained from a dynamical system point of view for several algorithms, including Langevin
algorithm or FISTA. The underlying (stochastic) di�erential equation can often be cast in the framework
of Hamiltonian dynamics. Another direction of research is the adaptation of the tools used in this thesis
to study optimization in measure spaces. Such problems arise in machine learning and can be at the
core of sampling methods. Finally, many algorithms in the �elds of control or reinforcement learning
can be seen as stochastic approximation algorithm, with a more general assumption on the noise (i.e a
case where the sequence of random variables is not i.i.d). The algorithms studied in this thesis could be
analyzed under these more general assumptions.
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Appendix A

Technical Report : Stochastic Douglas
Rachford

Notations

A.1 Statement of the Problem

Consider� a random variable de�ned on some probability space(
 ; F ; P) into an arbitrary measurable
space(� ; G) with distribution � . Let f; g : � � X ! (�1 ; + 1 ] two normal convex integrands and
assume thatf (�; x ) is integrable. We de�neF andG by

F (x) = E� (f (�; x ))

G(x) = E� (g(�; x )) :

Denote by(� n )n an i.i.d sequence of copies of� . In the sequel, we use the notationf n := f (� n ; �) and
gn := g(� n ; �). The adaptive Douglas-Rachford algorithm is given by

un+1 = prox ;f n +1
(xn )

zn+1 = prox ;g n +1
(2un+1 � xn )

xn+1 = xn + zn+1 � un+1 :

We denote byD(s) the domain ofg(s; �), and by D the set de�ned by the relationx 2 D ()
x 2 D(� ) a.s. We denote byd(x) = d(x; D). We also denoteF  (x) =

R
f  (s; x)� (ds) and

G (x) =
R

g (s; x)� (ds). We assume thatf (�; �) has a.s a full domain (equal toX) and is continuously
di�erentiable. Under these assumptions,Z (@(G+ F )) = Z(@G+ r F ) = Z(E(@g(�; �)) + E(r f (�; �))) ,
see Chap.2.

A.1.1 Useful facts

We �rst observe that the process(xn ) described by Eq. (4.4) is a homogeneous Markov chain with
transition kernel denoted byP . The kernelP and the initial measure� determine completely the
probability distribution of the process(xn ), seen as a(
 ; F ) ! (XN; B (X)
 N) random variable. We
shall denote this probability distribution on(XN; B (X)
 N) asP�; . We denote byE�; the corresponding
expectation. When� = � a for somea 2 X, we shall prefer the notationsPa; and Ea; to P� a ; and
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E� a ; . From nom on,(xn ) will denote the canonical process on the canonical space(XN; B (X)
 N). We
denote byF n the sub-� -�eld of F generated by the familyf x0; f � 

k : 1 � k � ngg, and we write
En [�] = E[� j F n ] for n 2 N. In the remainder of the paper,C will always denote a positive constant
that does not depend on the timen nor on  . This constant may change from a line of calculation
to another. In all our derivations, will lie in the interval(0;  0] where 0 is a �xed constant which is
chosen as small as needed. Then, we observe that the Markov kernelsP are Feller,i.e., they take the
set Cb(X) of the real, continuous, and bounded functions onX to Cb(X). Indeed, for eachf 2 Cb(X),
Eq. (4.5) shows thatP (�; f ) 2 Cb(X) by the continuity ofproxg (s;�) andproxf (s;�) , and by dominated
convergence. For each > 0, we denote as

I (P ) := f � 2 M (X) : � = �P  g

the set of invariant probability measures ofP . De�ne the family of kernelsP := f P g 2 (0; 0 ], and let

I (P) :=
[

 2 (0; 0 ]

I (P )

be the set of distributions� such that� = �P  for at least oneP with  2 (0;  0].
Finally, we shall often refer to the Di�erential Inclusion (DI)

¨
_x(t) 2 � (@F+ @G)(x(t))
x(0) = x0:

(A.1)

and to the associated semi�ow� .

A.2 Theorem

H1 There existsx? 2 Z(@G+ r F ) admitting aL 2(� ) representation(';  ) i.e 9';  2 L 2(� ), such
that ' (s) 2 @g(s; x?) � -a.s,  (s) = r f (s; x?) � -a.s andE(' (� ) +  (� )) = 0 .

H2 There existsL > 0 s.t. r f (s; �) is a.sL-Lipschitz continuous.

H3 The functionF + G satis�es one of the following properties:

(a) F + G is coercive.

(b) F + G is supercoercive.

H4 For every compact setK � X, there exists" > 0 such that

sup
x2K\D

Z
k@0g(s; x)k1+ " � (ds) < 1 ;

H5 For every compact setK � X, there exists" > 0 such that

sup
x2K

Z
kr f (s; x)k1+ " � (ds) < 1 :

H6 For all 2 (0;  0] and allx 2 X,
Z ‚

kr f  (s; x)k +
1


k proxg (s;�)(x) � � cl(D (s)) (x)k
Œ

� (ds) � C(1 + jF  (x) + G (x)j) :
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H7 8x 2 X;
Z

d(x; D (s))2 � (ds) � Cd(x)2.

H8 For every compact setK � X, there exists" > 0 such that

sup
 2 (0; 0 ];x2K

1
 1+ "

Z
k proxg (s;�)(x) � � cl(D (s)) (x)k1+ " � (ds) < 1 :

Theorem A.2.1. Let HypothesesH1� H8 hold true. Then, for each probability measure� having a
�nite second moment, for any" > 0,

lim sup
n!1

1
n + 1

nX

k=0

P�; (d(xk ; arg min(F + G)) > " ) ��!
 ! 0

0:

Moreover, if HypothesisH3� (b) is satis�ed, then

lim sup
n!1

P�; (d (�xn ; arg min(F + G)) � " ) ��!
 ! 0

0; and

lim sup
n!1

d(E�; (�xn ); arg min(F + G)) ��!
 ! 0

0:

where�xn = 1
n

P n
k=1 xk .

A.3 Proof of Th. A.2.1

In this section, we study the iterations given by the adaptive Douglas Rachford algorithm. Let 0 > 0,
a 2 X and (� n )n2 N be an i.i.d sequence of random variables from(
 ; F ; P) to (� ; G) with distribution
�: The adaptive Douglas Rachford algorithm with step size > 0 writesx0 = a and for alln 2 N;

xn+1 = xn �  r f  (� n+1 ; xn ) �  r g (� n+1 ; xn � 2 r f  (� n+1 ; xn )) : (A.2)

De�ne
h (s; x) := �r f  (s; x) � r g (s; x � 2 r f  (s; x)):

The algorithm (A.2) can be rewritten as

xn+1 = xn + h  (� n+1 ; xn ): (A.3)

In Sec.A.3.1, we show that the linearly interpolated process constructed from the sequence(xn ) with
time frame converges narrowly as ! 0 to the DI solution in the topology of uniform convergence
on compact sets. The main result of this section is Th.A.3.1, which has its own interest. To prove this
theorem, we establish the tightness of the linearly interpolated process (Lem.A.3.2), then we show that
the limit points coincide with the DI solution (Lem.A.3.3� A.3.5). In Sec.A.3.2, we start by establishing
the inequality (A.15), which implies the tightness of the set of invariant measuresI (P) in LemA.3.7.
Then, we show that the cluster points ofI (P) are invariant measures for the �ow induced by the DI
(Lem A.3.9). In the di�erent domains case, this lemma requires that the invariant measures ofP put
most of their weights in a thickening of the domainD of order . This fact is established by Lem.A.3.8.
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