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Remerciements

Tout d’abord, je remercie mes directeurs de thèse, Pascal et Walid pour m’avoir proposé ce beau sujet et
pour m’avoir encadré pendant ces trois années. J’ai eu de la chance de tomber sur vous. On aura passé de
bons moments à parler approximation stochastique à "l’heure où on démontre les théorèmes facilement"
ou en déplacements à Troyes, Bordeaux, Nice... Merci pour votre bienveillance, votre patience et votre
aide pour ma recherche de postdoc. J’ai énormément appris à vos côtés. Je te remercie également
Jérémie, pour m’avoir permis d’effectuer cette thèse et ainsi que pour ta gentillesse et le soutien matériel
que tu m’as apporté.

Je remercie vivement Jérôme Bolte et Bruno Gaujal d’avoir accepté de rapporter cette thèse. Merci
également à Antonin Chambolle, Panayotis Mertikopoulos et Eric Moulines d’avoir accepté de faire partie
du jury. Présenter mes travaux devant vous tous est un grand honneur.

I would also like to thank Volkan Cevher and Peter Richtarik for accepting to host me at EPFL and
at KAUST.

Enfin, je te remercie Olivier Fercoq pour l’aide précieuse que tu m’as apporté.
J’ai croisé beaucoup de monde à Télécom. Alors je dédie cette thèse à mes amis et collègues de

Comelec, Achraf, Akram (see u in Jeddah), Marwa, Mohamed, Mehdi, Julien, Xavier, Alaa, Hussein,
Samet, Yvonne, Chantal, Hamidou et tous ceux que j’oublie. J’ai quitté Comelec à la suite d’une...
disons restructuration pour venir travailler à TSI (hum IDS, pardon). Aussi, je tiens à remercier l’équipe
que j’y ai trouvé. D’abord mes amis de l’ENSAE, Anna et Moussab, qui sont depuis six ans dans ma
promotion. Il sera difficile d’énumérer tout ce qu’on a partagé ici (musique, maths, business, gossip,
voyages, mariage...). Mais essentiellement, on fait ce qu’on sait faire, on monte des coups. Guillaume,
nos discussions autour de l’optimisation, du rap et du soulevé de terre m’ont beaucoup apporté. Je
te souhaite une belle carrière au sein de la franc-maçonnerie. Une spéciale pour le bureau des quatre.
Huge, my BAI, RDV au Ghana. Ceux qui doivent entrer à Télécom par la fenêtre, Pierre A. (Calgary
Yeah !) et Mathurin (Pouloulou). Et enfin Pierre L., l’homme de la situation, pour les fous rires et pour
m’avoir installé Ubuntu. Tu as changé le cours de ma thèse ;). Salutations à Mastane tah les numbers
one et Massil de Montréal Rive Sud 94230 t’entends? Dédicasse à Gabriela et Robin pour sa sagesse en
termes d’altérophilie et de ski. Big up aux anciens aussi, Nico et Mael (je veux faire de l’oseiiillleeeee),
Ray Bro (l’homme qui perd 2 fois son passeport en 1 voyage). J’en place une pour Albert aussi, merci
de m’attendre haha. Sans oublier les nouveaux qui vont poursuivre dans les sillons de l’approximation
stochastique, Anas (soit solide !) et Sholom, le thésard de nuit. Profitez bien ! Enfin, je ne peux pas
terminer ce paragraphe sans passer par la start-up (Alexandre : merci pour les conseils, Alex : préviens
moi quand tu retournes à Tahiti, ça m’intéresse, Hamid : on se fera un voyage aux US un jour, ça va être
drôle) et par les contrées plus reculées de Télécom, Tom (qui devrait devenir docteur quelques heures
après moi, normalement), Valentin et Kevin (cesse de raconter des bêtises).

Je dédie également cette thèse à la communauté scientifique que j’ai cotoyé, les profs de Télécom
(Robert, Umut, François, Ons, Joseph, Slim, Alexandre, Stéphan, Olivier), les personnes que j’ai ren-
contré en conférence (Guillaume, Gabor, ...), ceux qui sont venu squatter (Noufel, Loic), les anciens de

1



l’ENSAE (Mehdi, Alexander, Badr, Vincent, Pierre A.), d’Orsay (Henri) et Florian, qui m’a donné le goût
de la recherche. Je remercie également les profs (avec une mention spéciale pour M. Patte) qui m’ont
fait aimé cette discipline, les mathématiques.

Ces trois années m’ont aussi permis de m’initier à differents sports, tels que l’escalade avec Arnaud
ou le JJB avec–My nigga My nigga–Ams Warr Sow Pastore, Aket dit le Jardinier et tous les membres
du club, Hos !

Un grand merci à mes amis ! Du Hood à l’école en passant par la prépa et Stralmi, on a fait du
chemin ! J’ai plein de souvenirs qui me viennent en tête à cet instant. On en aura des choses à raconter
en vieillissant. Big up à la team Very Bad Trip, Rich Gang (Arnold, tu es le prochain sur la liste), Niggaz
in Paris, Revna, Prémices et les Expats. Madjer, je n’ai pas osé mettre ta citation au début, mais j’y
ai pensé fort. J’ai également une pensée pour Marcel, et ceux qui nous ont quitté. Enfin, une mention
spéciale pour mon compagnon d’infortune Sami, et le physicien fou Quentin.

Enfin je souhaite dédier cette thèse à ma famille. Ma famille au sens large, le groupe Famille et ma
belle-famille. Merci à ma belle-mère et ma belle-famille de nous soutenir au quotidien, vous êtes d’une
aide précieuse et on a de la chance de vous avoir. Je rejoins Abi et Abdullah au rang de docteur. Zaki
et Houssam, je vous souhaite toute la réussite pour la suite. Je dédie cette thèse à mes oncles Schubert
et Zaidou, mon cousin Aouad et mes nièces Naïma et Aya. Enfin, à mon frère Irfane qui m’a montré le
chemin, mon père, et ma mère qui m’a toujours soutenu et couvert pour que je puisse étudier sans me
soucier du reste. Voilà la récompense pour tes sacrifices. Finalement j’embrasse mon épouse Kawtar qui
me supporte au quotidien :). Je suis très heureux d’avoir partagé ces dernières années à tes côtés et je
garde d’excellents souvenirs de cette période riche en voyages, délires et émotions. Que cela dure ! Mais
attention : c’est fini les t-shirts à fleurs haha ! La vie nous a fait un magnifique cadeau qu’on a appelé
Imrane et que j’embrasse également. Merci de m’aider à me lever le matin.

2



Contents

1 Introduction 7

1.1 Theoretical context : Stochastic Approximation . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Robbins-Monro algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 A general framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Stochastic Proximal Point algorithm . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Stochastic Proximal Gradient algorithm . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Stochastic Douglas Rachford algorithm . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Monotone operators and Stochastic Forward Backward algorithm . . . . . . . . 11
1.2.5 Fluid limit of parallel queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Dynamics of Robbins-Monro algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Known facts related with dynamical systems . . . . . . . . . . . . . . . . . . . 12
1.3.2 Convergence of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Stability result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 From ODE to Differential Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Convergence analysis with a constant step size . . . . . . . . . . . . . . . . . . 14
1.5.2 Applicative contexts using decreasing step sizes . . . . . . . . . . . . . . . . . . 16

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 19

2.1 General notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Set valued mappings and monotone operators . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Basic facts on set valued mappings . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Differential Inclusions (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Random monotone operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I Stochastic approximation with a constant step size 24

3 Constant Step Stochastic Approximations for DI 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 About the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Random Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Invariant Measures of Set-Valued Evolution Systems . . . . . . . . . . . . . . . 30

3



3.5 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Dynamical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Proof of Th. 3.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Proof of Prop. 3.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Proof of Th. 3.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8.1 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8.2 Narrow Cluster Points of the Empirical Measures . . . . . . . . . . . . . . . . . 42
3.8.3 Tightness of the Empirical Measures . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.4 Main Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Proofs of Th. 3.5.4 and 3.5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9.1 Proof of Th. 3.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9.2 Proof of Th. 3.5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.10.1 Non-Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10.2 Fluid Limit of a System of Parallel Queues . . . . . . . . . . . . . . . . . . . . 49

4 A Stochastic Forward-Backward algorithm 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Background and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Presentation of the stochastic Forward-Backward algorithm . . . . . . . . . . . 54
4.3 Assumptions and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Proof technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Case studies - Tightness of the invariant measures . . . . . . . . . . . . . . . . . . . . 60
4.4.1 A random proximal gradient algorithm . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 The case where A(s) is affine . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 The case where the domain D is bounded . . . . . . . . . . . . . . . . . . . . 63
4.4.4 A case where Assumption 4.3.4–(a) is valid . . . . . . . . . . . . . . . . . . . . 63

4.5 Narrow convergence towards the DI solutions . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Proof of Th. 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Cluster points of the Pγ invariant measures. End of the proof of Th. 4.3.2 . . . . . . . 67
4.7 Proofs relative to Sec. 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.1 Proof of Prop. 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.2 Proof of Lem. 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.3 Proof of Prop. 4.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.4 Proof of Prop. 4.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.5 Proof of Prop. 4.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Proofs relative to Sec. 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8.1 Proof of Lem. 4.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8.2 Proof of Lem. 4.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8.3 Proof of Lem. 4.5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8.4 Proof of Lem. 4.5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4



5 Stochastic Douglas Rachford 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Main convergence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Outline of the convergence proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Application to structured regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Application to distributed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 85

II Applications using vanishing step sizes 88

6 Stochastic Approximations with decreasing steps 89

6.1 The stochastic Forward-Backward algorithm . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Almost sure convergence of the iterates . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 A Stochastic Primal Dual Algorithm 94

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Proof of Th. 7.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Application to distributed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Snake 102

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2 Outline of the approach and chapter organization . . . . . . . . . . . . . . . . . . . . . 105
8.3 A General Stochastic Proximal Gradient Algorithm . . . . . . . . . . . . . . . . . . . . 107

8.3.1 Problem and General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3.2 Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.3 Sketch of the Proof of Th. 8.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.4 The Snake Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4.2 Writing the Regularization Function as an Expectation . . . . . . . . . . . . . . 111
8.4.3 Splitting ξ into Simple Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4.4 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.5 Proximity operator over 1D-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5.1 Total Variation norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5.2 Laplacian regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.6.1 Trend Filtering on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.6.2 Graph Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.6.3 Online Laplacian solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.8 Proofs for Sec. 8.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.8.1 Proof of Lem. 8.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.8.2 Proof of Prop. 8.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Conclusion and Prospects 126

5



A Technical Report : Stochastic Douglas Rachford 127

A.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.1.1 Useful facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.3 Proof of Th. A.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.3.1 Dynamical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.3.2 Stability of the Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3.3 End of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6



Chapter 1

Introduction

1.1 Theoretical context : Stochastic Approximation

In the fields of machine learning, statistics or signal processing, many methods rely on an underlying
optimization algorithm. In modern applications of data science, it is often not possible to run these
algorithms on a single computer. Indeed, when a large amount of data has to be processed, or when
streams of data arrive online, either classical algorithms need to be simplified or several computers have
to be used. These modifications of classical algorithms can often be formalized by the introduction
of randomness in the iterations. To see this, first consider the case of big data problems. Since each
iteration of classical algorithms would process the whole dataset, simplified versions of these algorithms
will rather process a small randomly chosen amount of data at each iteration. Then, when this task is
tackled by a connected network of computing agents, there must be communications inside the network
to solve the problem. These communications are often required to happen randomly in the network
if it is large. Moreover, in practical settings, the agents compute and communicate only at random
instants. Finally, online learning problems need a full knowledge of the distribution of the data to be
solved completely. Since streams of data arrive online, the distribution of the data is revealed across
time to the user through random realizations. In other words, solving online learning problems requires
to be able to work in noisy environments. The algorithms used in the contexts mentioned above can be
formalized as optimization algorithms for which the function to minimize is unknown but revealed across
the iterations. The literature of stochastic optimization, which studies these algorithms and which this
thesis belongs, lies at the intersection of the mathematical optimization and the literature of stochastic
approximation. Stochastic optimization algorithms find numerous applications in signal processing and
machine learning [34]. Since the seminal work of Robbins and Monro [99] in 1951, stochastic optimization
algorithms are analyzed through the prism of the stochastic approximation literature. We start by briefly
recalling the goal of stochastic approximation algorithms.

1.1.1 Robbins-Monro algorithm

The stochastic approximation literature studies algorithms that take the form

xn+1 = xn + γn+1h(ξn+1, xn) (1.1)

where xn are random vectors valued in some Euclidean space X, (ξn) is a sequence of random variables
(r.v) valued in a measure space Ξ, (γn)n is a sequence of positive step sizes and h : Ξ × X → X is
measurable. It is often assumed that the sequence (ξn) is independent and identically distributed (i.i.d).
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The aim of the algorithm is to find a zero of the expectation function H(x) = Eξ1(h(ξ1, x)) assumed
to exist, i.e an element x ∈ X such that H(x) = 0. Denote as Z(H) the set of zeros of H. Under
some assumptions on h and the step sizes (γn), it is known that (xn) converges to Z(H). The strength
of stochastic approximation algorithm (1.1) is to be able to find a zero of H without evaluating the
expectation H(x). Indeed, in many applications, the computation of H is intractable. There is a Law of
Large Number effect that allows to smooth the randomness. A widely studied example of Robbins-Monro
algorithm (1.1) is the stochastic gradient algorithm.

Example 1. The stochastic gradient algorithm aims at finding a minimizer of a differentiable function
F : X→ R. The function F is itself written as an expectation with respect to (w.r.t.) some r.v ξ

F(x) = Eξ(f(ξ, x)), (1.2)

where f(ξ, ·) is a differentiable. The stochastic gradient algorithm update is written

xn+1 = xn − γn+1∇f(ξn+1, xn) (1.3)

where the gradient ∇f is taken w.r.t. the second variable (x), (ξn) is a sequence of i.i.d copies of ξ and
(γn) is a sequence of positive step sizes. Algorithm (1.3) can be cast as an instance of (1.1) by setting
h ≡ ∇f . If f(s, ·) is convex, the following interchange property holds H(x) = Eξ(∇f(ξ, x)) = ∇F(x)
for every x ∈ X. Since F is convex, Z(H) = argmin F. Under mild assumptions, the sequence (xn)
converges to an element in argmin F.

Two regimes that require different tools can be considered to analyze stochastic approximation al-
gorithms : the case where γn →n→+∞ 0 and the case where γn ≡ γ > 0. Typically, in the so-called
decreasing step sizes case (first case), the sequence (xn) of iterates converges almost surely (a.s.) to a
zero of H. In the constant step size case (second case), the iterates quickly reach a small neighborhood
of the set of solutions Z(H) in a burn-in phase, and then fluctuate around the set of zeros. The main
advantage of the decreasing step sizes case is to exhibit the a.s. convergence of the iterates. Although
the constant step size case lacks the a.s convergence in general, the use of a constant step size is often
more suitable in online learning settings.

A standard method to study evolution equations like (1.1) is the Ordinary Differential Equation
(ODE) method, which was introduced in the 70’s by Ljung [79] and extensively studied by Kushner and
coworkers (see e.g. the book [73]). This method allows to study the dynamical behavior of stochastic
approximation algorithms and to prove their convergence. Assume that H is a Lipschitz continuous
function over X and consider the unique differentiable function x : R+ → X such that x′(t) = H(x(t))
(where x′ denotes the derivative of x) starting at some prescribed value a ∈ X : x(0) = a. The ODE
method relies on relating the iterates xn and the function x. More precisely, (xn) is seen as a noisy Euler
discretization of the function x.

1.1.2 A general framework

In this thesis, we develop a more general framework for stochastic approximation because the frame-
work (1.1) fails to cover some important applications, see Sec. 1.2. Consider the following evolution
equation

xn+1 = xn + γhγ(ξn+1, xn) (1.4)

where the step size γ > 0 is taken constant, (ξn) is i.i.d with distribution µ and hγ is a measurable
function indexed by γ. Let us assume in most generality that

Eξ(hγ(ξ, x))→γ→0 H(x) (1.5)
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where H : X → X is some function. If H is a Lipschitz continuous function and the convergence (1.5)
holds uniformly for x in the compact sets of X, then the ODE method can be applied and we are let
back to the situation of the previous paragraph. However, this kind of assumption is too restrictive in
many contexts, especially those mentioned in Sec. 1.2 below. We shall focus on the case where the
convergence does not hold for every x, is not uniform over compact sets, and above all, H is a set
valued mapping instead of being single valued. We are therefore led to study more general stochastic
approximation algorithms.

1.2 Motivations

1.2.1 Stochastic Proximal Point algorithm

A first motivation for studying the general framework (1.4) comes from non smooth stochastic optimiza-
tion. Consider a convex function G : X → (−∞,+∞] which is lower semicontinuous (lsc) and proper
(we shall write G ∈ Γ0(X)). Denote ∂G(x) the set of all subgradients of G at x. The subdifferential
∂G : X ⇒ X is a set valued function. Consider x ∈ X. The proximity operator [87] of G at x is the
minimizer of the (strongly convex) objective function:

proxγG(x) = argmin
y∈X

G(y) +
1

2γ
‖x− y‖2, (1.6)

where γ > 0, and the Moreau envelope [130] of G at x is the associated minimum value

Gγ(x) = min
y∈X

G(y) +
1

2γ
‖x− y‖2. (1.7)

Moreover, the Moreau envelope is differentiable and its gradient is a 1/γ-Lipschitz continuous function
that satisfies (see [12])

proxγG = I − γ∇Gγ (1.8)

where I is the identity of X. The goal of the proximal point algorithm [82] is to find a minimizer of G
(equivalently a point x such that 0 ∈ ∂G(x), called hereafter a zero of ∂G) by iterating

xn+1 = proxγG(xn), (1.9)

where γ > 0. It is known that the sequence (xn) converges to a minimizer of G. The proximal point
algorithm enjoys good stability properties, among which exhibiting convergence for any γ > 0. The main
drawback of this algorithm is that each iterate is implicitly defined, i.e one has to solve an optimization
problem to find xn+1. This operation can often be costly. Although the proximity operator of some
classical functions has a closed form1, the proximal point algorithm is not practical in many cases.

A way to simplify the iterations is to represent G(x) = Eξ(g(ξ, x)) where g(ξ, ·) is a convex function
and to apply the constant step stochastic proximal point algorithm [22, 121]:

xn+1 = proxγg(ξn+1,·)(xn), (1.10)

where γ > 0 and (ξn) are i.i.d copies of ξ. This algorithm can be seen as a generalization of the splitting
algorithm of Passty [94] to infinitely many functions. Many loss functions used in machine learning can be

1See the website www.proximity-operator.net
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written as expectations G(x) = Eξ(g(ξ, x)) for which proxγg(ξ,·) is easily computable whereas neither G
nor proxγG can be evaluated. A typical situation is the case where these loss functions boil down to finite
sums G(x) = N−1∑N

i=1 g(i, x) and proxγg(i,·) can be easily computed but proxγG is intractable. This is
e.g. the case for the classification problems like Support Vector Machine (SVM) or logistic regression.
Another example comes from distributed optimization in the context where a network of computing
agents is required to minimize a "global" cost function G = N−1∑

i g(i, ·), under the restriction that
the "local" cost function g(i, ·) is only known by the agent i. Hence, the network can only perform local
computations involving each agent i and their respective cost function g(i, ·) separately. In all these
situations, the proposed algorithm is an instance of (1.10) where ξ is a uniform r.v. over {1, . . . , N}.

Note that (1.10) can be cast in the form (1.4) by setting hγ(s, x) = −∇gγ(s, x), where gγ(s, ·) is
the Moreau envelope of g(s, ·). In this case, H = ∂G is set valued.

1.2.2 Stochastic Proximal Gradient algorithm

In optimization algorithms, proximity operators are often used to handle regularizations or constraints.
In these cases, the problem to be solved is

min
x∈X

F(x) + G(x),

where G ∈ Γ0(X) is a convex function and F is assumed differentiable. The proximal gradient algorithm
generalizes the proximal point algorithm (1.9) and is written

xn+1 = proxγG(xn − γ∇F(xn)), (1.11)

where γ > 0. If ∇F is Lipschitz continuous (we shall say that F is smooth), if F is convex and if γ
is enough small, then it is known that (xn) converges to a minimizer of F + G. A first instance of
this algorithm is the projected gradient algorithm to solve minC F. This algorithm can be seen as an
application of (1.11) by setting G = ιC, where ιC the convex indicator function of the convex set C.
In this case, proxG = ΠC is the projector onto C. Each iteration of this algorithm requires to evaluate
the projection ΠC, which is sometimes intractable. However, the set C can often be represented as an
intersection of simpler convex sets Cs, i.e C = ⋂

s∈Ξ Cs where projections onto Cs can be easily computed.
Another instance of the proximal gradient algorithm comes from structured problem in which G is a
regularization term. The function G is represented as G =

∑
i g(i, ·), where proxγG is hard to compute

but proxγg(i,·) can be evaluated. This is e.g the case for the overlapping group lasso : G(x) =
∑

i ‖xSi
‖

where X = R
N , the Si are subsets of {1, . . . , N} and xSi

is the restriction of x to Si. This is also the
case for the total variation regularization : G(x) =

∑
{i,j}∈E ‖x(i)− x(j)‖ where G = (V,E) is a graph,

with V the set of nodes and E the set of edges, and where x ∈ R
V . In all these examples, the proximal

gradient algorithm cannot be implemented because it involves the computation of proxγG. However, in
all these examples G can be seen as an expectation w.r.t. some r.v. ξ, G(x) = Eξ(g(ξ, x)) (where the
expectation sometimes boils down to a finite sum). In general, the stochastic proximal gradient algorithm
aims at minimizing F(x) + G(x) = Eξ(f(ξ, x)) + Eξ(g(ξ, x)) by iterating [24, 2, 3]

xn+1 = proxγg(ξn+1,·)(xn − γ∇f(ξn+1, xn)). (1.12)

This algorithm can be cast in the form (1.4) by setting

hγ(s, x) =
1

γ
(proxγg(s,·)(x− γ∇f(s, x))− x).

Using (1.8), hγ(s, x) = −∇f(s, x)−∇gγ(s, x− γ∇f(s, x)). Moreover, H = ∇F+ ∂G in this case.
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1.2.3 Stochastic Douglas Rachford algorithm

When minimizing a sum of two convex functions F+G, the Douglas Rachford algorithm [78] enjoys more
numerical stability than the proximal gradient algorithm at the cost of implementing a proximity operator
for F instead of a gradient. Moreover, any positive constant step size can be used in Douglas Rachford
iterations to converge to a minimizer. In order to design an algorithm that enjoys the good features of
Douglas Rachford algorithm without the iteration complexity, we are interested in the stochastic Douglas
Rachford algorithm with constant step size, in which the proximity operator of F (resp. G) is randomized.
To this end, F and G are represented as expectations, as in Sec. 1.2.2 and the resulting stochastic Douglas
Rachford algorithm is also covered by our general framework (1.4).

1.2.4 Monotone operators and Stochastic Forward Backward algorithm

Maximal monotone operators are set valued functions that generalize the subdifferentials [12, 36]. Many
optimization problems can be reformulated as finding zeros of a monotone operator (which is not neces-
sarily a subdifferential). In this respect, the Forward Backward (FB) algorithm is a further generalization
of the proximal gradient algorithm. The goal of this algorithm is to find a zero of a sum of two maximal
monotone operators.

In this thesis, we refer to an operator as a set valued function A : X ⇒ X. The inverse operator A−1 is
defined by the relation y ∈ A(x)⇔ x ∈ A−1(y). An operator A is said monotone if 〈y − y′, x− x′〉 ≥ 0
as soon as y ∈ A(x) and y′ ∈ A(x′). Under a maximality condition [85] of A, the resolvent of A,
Jγ = (I + γA)−1 is a single valued function. In this case, A is called a maximal monotone operator
and Jγ is a contraction defined on X. Maximal monotone operators generalize subdifferentials of convex
functions and resolvents generalize proximity operators. Indeed, A = ∂G is a maximal monotone operator
if G ∈ Γ0(X), and its resolvent is proxγG. For every γ > 0, the Yosida approximation of A is defined by
Aγ = 1

γ
(I − Jγ). Using (1.8), it is immediately seen that Aγ = ∇Gγ if A = ∂G. The set of zeros of A

is defined to be Z(A) = A−1(0). Many problems in optimization can be reformulated as finding a zero
of a maximal monotone operator. For example, in the subdifferential case, Z(∂G) = argminG. Given
another maximal monotone operator which is single valued B, the Forward Backward algorithm aims at
finding an element in Z(A+ B) by iterating

xn+1 = Jγ(xn − γB(x)). (1.13)

If A and B are subdifferentials, the Forward Backward algorithm boils down to the proximal gradient
algorithm. Under a so called cocoercivity assumption of B, this algorithm is known to converge to a zero
of A+ B if γ is small enough.

Beyond minimization problems, saddle points problems arise naturally in optimization and machine
learning (see e.g [83]). We the saddle points problems are convex-concave, they can be reformulated as
finding a zero of a sum of two monotone operators A+B [101]. In optimization, primal dual algorithms
like Douglas-Rachford [78], ADMM [62], Chambolle Pock [42] or Vu Condat [51, 124] can be seen as
(skillful) instances of the FB algorithm. This FB algorithm is applied to the convex concave saddle point
problem of finding so called primal dual optimal points of the initial optimization problem.

In order to develop a stochastic version of these primal dual algorithms, we are interested in a
stochastic version of the Forward Backward algorithm. To this end, we consider a new tool called
a random monotone operator A(ξ, ·), i.e ξ is a r.v. and A(ξ, ·) is a maximal monotone operator.
Measurability issues due to the fact that A is set valued will be treated in the next chapter. Denote Jγ(s, ·)
the resolvent of A(s, ·) and Aγ(s, ·) its Yosida approximation. Consider an other random monotone
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operator B(ξ, ·) which is single valued. The constant step stochastic FB algorithm is written

xn+1 = Jγ(ξn+1, xn − γB(ξn+1, xn)). (1.14)

The aim of the stochastic FB algorithm is to find a zero of the so called mean operator A(x) + B(x) =
Eξ(A(ξ, x)) + Eξ(B(ξ, x)). Integrability issues due to the fact that A(ξ, x) is a set-valued r.v. will be
treated in the next chapter, along with the definition of the expectation of a set-valued r.v. We just
mention here the fact that in the subdifferential case A(s, x) = ∂g(s, x), under mild assumptions [102],
Eξ(A(ξ, x)) = ∂G(x) where G(x) = Eξ(g(ξ, x)) (we shall say that the interchange property holds). The
stochastic FB (1.14) can be cast into the framework (1.4) by setting hγ(s, x) = −B(s, x)− Aγ(s, x−
γB(s, x)) and H = A+ B.

1.2.5 Fluid limit of parallel queues

Beyond stochastic optimization algorithms, the framework (1.4) can be used to study general Markov
chains. For example the framework (1.4) is considered in [61] to study Markov chains with discontinuous
drift. Using the notation of (1.4), this means that even hγ(s, ·) is discontinuous. We give an application
example that comes from queueing theory. We are interested in establishing the long-run behavior of
the number of users in a model of parallel queues. Users arrive at random instant in the queues and the
queues are served following a prioritizing rule. After scaling the problem in order to study the so called
fluid scaled process [61], the evolution of the number of users in the queues fits our framework (1.4).

1.3 Dynamics of Robbins-Monro algorithm

To better understand the methods used in this thesis, we get back to the Robbins-Monro algorithm of
Sec. 1.1.1. We provide the main arguments behind the ODE method. We shall focus on the constant
step case that will be of interest in the first part of this thesis. More precisely, we study the evolution
equation (1.1) with γn ≡ γ > 0.

1.3.1 Known facts related with dynamical systems

Consider a Lipschitz continuous function H : X → X. Then, it is well known that for every a ∈ X, the
ODE x′ = H(x) with initial condition x(0) = a admits an unique solution over R+ [73]. We denote by
Φ(a) this solution and abusively denote Φ(a)(t) = Φ(a, t) for every t ≥ 0. It is known that Φ satisfies
the property of being a semiflow over X, i.e. Φ(·, s+ t) = Φ(·, t)◦Φ(·, s) for every t, s ≥ 0. The essence
of the ODE method is to study the behavior of the interpolated process obtained from the iterates
(xn) of the algorithm (1.1) as being an approximation of the ODE solution. To perform this analysis,
some important notions related to the dynamics of the semiflow Φ need to be introduced. A probability
measure π over X is called an invariant measure for Φ if π = πΦ(·, t)−1 for every t > 0. The set of
invariant measures for Φ is denoted I(Φ). A point x ∈ X is said recurrent for Φ if x = limk→+∞ Φ(x, tk)
for some sequence tk → +∞. The Birkhoff center BCΦ of Φ is the closure of the set of recurrent points.
The celebrated Poincaré’s recurrence theorem [53, Th. II.6.4 and Cor. II.6.5] says that the support of
any π ∈ I(Φ) is a subset of BCΦ. The goal of the two next sections is to prove that the sequence of
iterates (xn) defined by (1.1) with a constant step size γn ≡ γ > 0 converges in probability to the set
BCΦ as n → +∞ and γ → 0. Indeed, BCΦ is often a set of interest while looking for zeros of H. For
example, if Φ(a, t) converges to Z(H) as t→ +∞ for every a ∈ X, then Z(H) = BCΦ.
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Figure 1.1: The linearly interpolated process of the iterates with step size γ > 0.

1.3.2 Convergence of stochastic processes

Consider a sequence (xn) satisfying (1.1) with a constant step size γn ≡ γ > 0 starting from x0 = a.
Consider the linearly interpolated process of the sequence of iterates (see Fig. 1.1) xa,γ over R+, piecewise
defined for every t ≥ 0 by

xa,γ(t) = xn + (t− nγ)xn+1 − xn
γ

, t ∈ [nγ, (n+ 1)γ), n ∈ N. (1.15)

As a continuous time stochastic process, xa,γ can be seen as a r.v. in the space C(R+,X) of continuous
functions endowed with the topology of the uniform convergence over bounded intervals. The ODE
method first consists in showing that xa,γ −→γ→0 Φ(a) in distribution in C(R+,X) (i.e narrowly, see [14]).
In other words, one can show that for every T > 0, supt∈[0,T ] ‖xa,γ(t)− Φ(a, t)‖ −→ 0 in probability as
γ → 0 under some prescribed assumptions.

This important result does not suffice to characterize the long run behavior of the iterates i.e the
case T = +∞. What is ultimately needed is the long-run behavior of the process xa,γ in terms of the
Birkhoff center of the semiflow Φ. A stability result is needed.
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1.3.3 Stability result

To characterize the long-run behavior of xa,γ, the sequence (xn) is viewed as a Markov chain with
transition kernel Pγ. The advocated stability result typically ensures that the set of invariant measures
for Pγ, γ ∈ (0, γ0) is relatively compact for some γ0 > 0. Under such a condition, the first result on the
narrow convergence of xa,γ can be used to show that every cluster point of the invariant measures of
the Markov chain as γ → 0 is an invariant measure for the semiflow Φ [60]. Using Poincaré’s recurrence
theorem, such cluster points are supported by the Birkhoff center BCΦ. A reformulation of this result is
the following :

lim sup
n→∞

1

n+ 1

n∑

k=0

P(d(xn,BCΦ) > ε) −→γ→0 0. (1.16)

1.4 From ODE to Differential Inclusions

Motivated by the examples of 1.2, we shall relax the classical assumptions used in the ODE method and
study the framework (1.4) where H is allowed to be set valued. In this situation, the classical ODE is
replaced with a Differential Inclusion (DI): ẋ ∈ H(x) defined on the set of absolutely continuous functions
over R+, where ẋ denotes the derivative of x defined almost everywhere. Stochastic approximation
algorithms built on DI have recently aroused an important research effort to which this thesis belongs [17,
80]. In this work, two kinds of DI with different behaviors are of interest.

1. First, the case where H(x) is convex compact and not empty for every x ∈ X and H is upper
semicontinuous [6] (usc) i.e for every a ∈ X, and for every open set U such that H(a) ⊂ U , there
exists a neighborhood V of a such that x ∈ V ⇒ H(x) ⊂ U . Assuming that for every a ∈ X

there exists a solution to the DI starting at a (this holds under a linear growth assumption on H),
the solution is in general not unique and the semiflow associated to the DI is hence set valued [6].
This kind of DI is of interest in many applications including game theory, or queueing systems.

2. Second, the case where −H is a maximal monotone operator [36]. In this case, we considered in
particular the situation where the domain of H is strictly included in X, which is of obvious interest
for many stochastic optimization algorithms.

1.5 Contributions

1.5.1 Convergence analysis with a constant step size

We first focus on the analysis of constant step stochastic approximation algorithms having a DI as a
limit. We shall study the case where (hγn(s, xn))n∈N converges to the set H(s, x) as n→ +∞ if xn → x
and γn → 0. The function H is represented as a set valued expectation H(x) = Eξ(H(ξ, x)). The set
valued expectation is formally defined as a selection integral and generalizes the Lebesgue integral to set
valued mappings, see Chap. 2. To study the dynamics of the iterates (xn) given by (1.4) we adapt the
general approach of Sec. 1.3 to DI ẋ ∈ H(x) in the usc case and the monotone case of Sec. 1.4, each
case requiring a specific treatment and exhibiting a specific convergence result.
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The upper semicontinuous case

In this case, H(s, ·) is assumed to be a proper (∃x ∈ X, H(s, x) 6= ∅) usc operator. We denote as Φ(a)
the set of solutions to the DI ẋ ∈ H(x) starting at a. We assume that Φ(a) is not empty, and Φ can
be seen as set valued flow. Set valued analogues to classical dynamical systems results 1.3.1 will be
considered. This framework is introduced in the paper [107] under the additional assumption that X is
a compact space. In our work, we relaxed the compactness assumption, which extends the scope of the
algorithm (1.4) to e.g., proximal non convex stochastic gradient algorithm 1.2.2, or queuing algorithms
such as 1.2.5. Denote I(Φ) the set of invariant measures for the set valued flow Φ, a notion introduced
in [107]. Denoting d a distance that metricizes the topology over C(R+,X) of uniform convergence over
compact intervals, we first prove the dynamical result

sup
a∈K

P(d(xa,γ,Φ(a)) > ε) −→γ→0 0, (1.17)

for every compact set K ⊂ X and every ε > 0, where d(xa,γ,Φ(a)) denotes the distance from the function
xa,γ to the set Φ(a). Under a stability assumption of the Markov chain (xn) this dynamical result is used
to characterize the long-run behavior of the iterates :

lim sup
n→∞

1

n+ 1

n∑

k=0

P(d(xn,BCΦ) > ε) −→γ→0 0, (1.18)

where (xn) is the process satisfying (1.4) with step size γ > 0. Similar results involving the empirical
means xn = 1

n

∑n
k=1 xk are obtained. Finally, stability conditions based on the so-called Pakes-Has’minskii

criterion are provided in the context of the stochastic proximal non convex gradient algorithm (under a
Łojasiewicz assumption [5, 30]) and in a model of parallel queues [61].

The monotone case

In this case, −H(s, ·) is assumed to be a maximal monotone operator with domain D(s) = {x ∈
X, H(s, x) 6= ∅}. If D(s) = X, then H(s, ·) is usc [97] and a dynamical result can be obtained
from (1.17). We shall allow the domains D(s) to vary with s. This covers the contexts of the stochastic
proximal point algorithm 1.2.1, the stochastic proximal gradient algorithm in the convex case 1.2.2, the
Douglas-Rachford algorithm 1.2.3 and the stochastic Forward Backward algorithm 1.2.4. With a proof
that explicitly leverages the maximal monotonicity of −H(s, ·) and allows the domains to be random,
we first show that

sup
a∈K∩D

P(d(xa,γ,Φ(a)) > ε) −→γ→0 0, (1.19)

where D is the domain of the mean operator H. Then, under a stability assumption of the Markov chain
(xn), it is shown that if H satisfies the so called demipositivity assumption (see Chap. 2), then

lim sup
n→∞

1

n+ 1

n∑

k=0

P (d(xk, Z(H)) > ε) −−→
γ→0

0 . (1.20)

Similar results that hold whether H is demipositive or not are obtained for the empirical means of
the iterates. Finally, practical criteria ensuring the stability of the Markov chain (xn) are provided
in various instances of the stochastic Forward-Backward algorithm, including the stochastic proximal
gradient algorithm of Sec. 1.2.2, the case where H(s, ·) is linear and monotone, etc.
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Figure 1.2: The linearly interpolated process of the iterates with step sizes γn.

1.5.2 Applicative contexts using decreasing step sizes

Stochastic approximation with decreasing step sizes

The ODE method can also be used to study decreasing step sizes algorithm, i.e the evolution equa-
tion (1.1) with γn → 0. In this case, the linearly interpolated process x of (xn) over R+ with timeframe
γn is considered, see Fig. 1.2. The general idea is to prove the almost sure convergence of the interpolated
process x to the solution of the ODE x′ = H(x). More precisely, the interpolated process is proven to be
an almost sure Asymptotic Pseudo Trajectory (APT) of the ODE, a concept introduced by Benaïm and
Hirsch in the field of dynamical systems [15]. It is shown that d(x(t+ ·),Φ(x(t)))→t→+∞ 0 a.s., where
we recall that d metricizes the topology of the uniform convergence over compact sets and where Φ is
the semiflow associated with the ODE. Then, the asymptotic convergence of the sequence of iterates
(xn) of the algorithm (1.1) can be obtained from the APT property. This notion has been generalized
to monotone DI in [24]. More precisely, the paper [24] studies the decreasing step size analogue of the
stochastic Forward Backward algorithm (1.14)

xn+1 = Jγn+1(ξn+1, xn − γn+1B(ξn+1, xn)), (1.21)

where γn → 0. It is proven that the interpolated process of the iterates (xn) is an almost sure APT of
the DI ẋ ∈ H(x) where H = −(A + B) is the mean monotone operator. Then, it is deduced that (xn)
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converges to an element of Z(H) as n → +∞ if −H is monotone and demipositive, and the sequence
of empirical means (xn)n converges to a solution as n → +∞ whether −H is demipositive or not. In
this thesis, we proceed with Algorithm (1.21) in two directions. First, we apply this algorithm to solve
a general composite optimization problem under linear constrains. The functions defining the objective
function and the matrices defining the constraints are allowed to be represented as expectations, see
Sec. 1.5.2 below. Second, we generalize the stochastic proximal gradient algorithm with decreasing step
sizes to solve a regularized optimization problem over a large and general graph, see Sec. 1.5.2 below.

A fully stochastic primal dual algorithm

A first example comes from primal dual optimization algorithms. Consider four convex functions F,G ∈
Γ0(X) and P,Q ∈ Γ0(Z) where Z is an Euclidean space. Consider the following optimization problem:

min
(x,z)∈X×Z

F(x) + G(x) + P(z) + Q(z) subject to Ax+ Bz = c (1.22)

where A : X→ V and B : Z→ V are matrices with values in the Euclidean space V, and c ∈ V is a vector.
In order to identify a minimizer of (1.22), primal dual methods typically generate a sequence of primal
estimates (xn, zn)n∈N and a sequence of dual estimates (λn)n∈N jointly converging to a saddle point
((x, z), λ) of the Lagrangian function associated with (1.22). Under some qualification condition, (x, z)
is a solution of Problem (1.22) and λ is a solution of a dual formulation of (1.22). The formulation (1.22)
encompasses the formulation of classical primal dual algorithms [62, 42, 51, 124]. In these algorithms,
F,P are treated explicitly (i.e through their gradient) and G,Q are treated implicitly (i.e through their
proximity operator). We shall focus on the case where all functions to be minimized are given as
statistical expectations, as well as the matrices and the vector defining the linear constraints. In other
words, F(x) = Eξ(f(ξ, x)) where f(ξ, ·) is a convex function. A similar representation is allowed for G,P
and Q. Besides, A = E(A) where A is a random matrix. A similar representation is allowed for B and c.
These expectations are unknown but revealed across the time through i.i.d realizations. Only stochastic
(sub)gradients or stochastic proximity operators are available to the user. To solve this problem, we first
remark that saddle points of the Lagrangian can be seen as zeros of a sum of two well chosen maximal
monotone operators which are given as a set valued expectations. Hence, the stochastic FB algorithm
can be applied and leads to a converging algorithm. To our knowledge, the proposed algorithm is the
first fully stochastic primal dual algorithm. Application to distributed and asynchronous optimization will
be considered.

Online regularization over large graphs

Consider a graph G = (V,E) where V is the set of vertices and E is the set of edges. We first consider
the resolution of the following programming problem

min
x∈RV

F (x) + TV(x,G) (1.23)

where F ∈ Γ0(R
V ) and TV(x,G) =

∑
{i,j}∈E |x(i) − x(j)| is the Total Variation regularization over

the graph G. When applying the proximal gradient algorithm to solve this problem, there exist quite
affordable methods to implement the proximity step in the special case where the graph is a simple path
without loops. However, when the graph is large and unstructured, the computation of the proximity
operator is more difficult. To overcome this difficulty, we introduced an algorithm that we called "Snake"
and that consists in randomizing the proximity operator in such a way that it becomes computable. More
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precisely, Snake selects random simple paths in the graph and performs the proximal gradient algorithm
over these simple paths. Hence, only proximity operators over simple paths are computed and Snake
take benefits of existing fast methods. Then, Snake is generalized to any regularization term tied to the
graph geometry for which there exists fast methods to compute the proximity operator over a simple
path. Snake is an instance of a generalization of the stochastic proximal gradient algorithm, whose
convergence is proven. Numerical experiments are conducted over large graphs.

1.6 Outline of the Thesis

The next chapter is an introduction to some important notions used in the thesis. Then, the first part of
the thesis studies the stochastic approximation framework (1.4) with a constant step size, mainly from
a theoretical point of view. It consists in three chapters. Chapter 3 is related to Differential Inclusion
involving an upper semicontinuous operator, and is based on the publication [28]. In Chapter 4, an
analysis of the stochastic Forward Backward algorithm is performed, based on [25, 26, 27]. In Chapter 5,
the stochastic Douglas Rachford algorithm is studied and applications to structured regularization and
distributed optimization is considered. This chapter is based on the papers [89, 111] and the technical
report [110]. Applications of stochastic approximation algorithms with decreasing step size are considered
in the second part of the thesis. After recalling the main ideas behind the proof techniques in Chapter 6,
we first consider a fully stochastic primal dual algorithm in Chapter 7, based on the work [112]. Finally,
we provide an application to solve regularized problems over graphs in Chapter 8 ([109, 113, 114]).
Chapter 9 is devoted to a conclusion. The technical report [110] can be found in the Appendix A.
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Chapter 2

Preliminaries

2.1 General notations

If E is a topological space, the Borel σ-field of E is denoted as B(E) and the set of probability measures
on E endowed with its Borel field is denoted M(E). If (Ξ,G , µ) is a probability space and X and
Euclidean space endowed with its Borel σ-field, the Banach space of measurable functions ϕ : Ξ → X

such that ‖ϕ‖p is µ-integrable (for p ≥ 1) is denoted Lp(Ξ,G , µ;X). The notation C(E,F ) is used to
denote the set of continuous functions from E to the topological space F . The notation Cb(E) stands
for the set of bounded functions in C(E,R).

We use the conventions sup ∅ = −∞ and inf ∅ = +∞. Notation ⌊x⌋ stands for the floor value of
x. If (E, d) is a metric space, for every x ∈ E and S ⊂ E, we define d(x, S) = inf{d(x, y) : y ∈ S}.
We say that a sequence (xn, n ∈ N) on E converges to S, noted xn →n S or simply xn → S, if
d(xn, S) tends to zero as n tends to infinity. For ε > 0, we define the ε-neighborhood of the set S as
Sε := {x ∈ E : d(x, S) < ε}. The closure of S is denoted by cl(S), and its complementary set by
Sc. The characteristic function of S is the function ✶S : E → {0, 1} equal to one on S and to zero
elsewhere. If E is an Euclidean space, the convex hull of S is denoted by co(S).

2.2 Set valued mappings and monotone operators

Consider an Euclidean space X. We recall some basic facts related with set valued mappings and their
associated differential inclusions with emphasis on maximal monotone operators over X. These facts will
be used in the proofs without mention. For more details, the reader is referred to the treatises [40], [12],
[6], [36], or to the tutorial paper [96].

2.2.1 Basic facts on set valued mappings

Consider a set valued mapping (or operator) H : X ⇒ X, i.e., for each x ∈ X, H(x) is a subset of X.
The domain and the graph of H are the respective subsets of X and X× X defined as dom(H) := {x ∈
X : H(x) 6= ∅}, and gr(H) := {(x, y) ∈ X× X : y ∈ H(x)}. The operator H is proper if dom(H) 6= ∅.
Besides, H is said upper semi continuous (usc) at a point a ∈ X if for every open set U containing H(a),
there exists η > 0, such that for every x ∈ H, ‖x− a‖ < η implies H(x) ⊂ U . It is said usc if it is usc
at every point [6, Chap. 1.4].

An operator A : X ⇒ X is monotone if ∀x, x′ ∈ dom(A), ∀y ∈ A(x), ∀y′ ∈ A(x′), it holds that
〈y − y′, x − x′〉 ≥ 0. A proper monotone operator A is said maximal if its graph gr(A) is a maximal
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.

gr(A) gr(A)

.

Figure 2.1: Left: A monotone operator over R which is not maximal. Right: A maximal monotone
extension of the monotone operator

element in the inclusion ordering over X × X among graphs of monotone operators (see Fig. 2.1).
Equivalently, the monotone operator A is maximal if the following property holds :

∀(x, y) ∈ X2, ∀(x′, y′) ∈ gr(A), 〈y − y′, x− x′〉 ≥ 0 =⇒ (x, y) ∈ gr(A).

This maximality condition implies that gr(A) is a closed subset of X × X. Denote by I the identity
operator, and by A−1 the inverse of the operator A, defined by the fact that y ∈ A(x) ⇔ x ∈ A−1(y).
Using the monotonicity of A, one can check that ∀(x, y), (x′, y′) ∈ gr(A), ∀γ > 0, ‖x−x′‖ ≤ ‖(x+γy)−
(x′ + γy′)‖. In other words, if A is a monotone operator, then the resolvent operator defined for every
γ > 0 by Jγ := (I + γA)−1 can be identified with a 1-Lipschitz continuous function (i.e a contraction).
It is well known that A belongs to the set M (X) of the maximal monotone operators on X if and only
if, dom(Jγ) = X ([85]). If dom(A) = X, then A is usc [97]. We also know that when A ∈M (X), the
closure cl(dom(A)) of dom(A) is convex, and limγ→0 Jγ(x) = Πcl(dom(A))(x), where ΠS is the projector
on the closed convex set S. It holds that A(x) is closed and convex for all x ∈ dom(A). We can therefore
put A0(x) = ΠA(x)(0), in other words, A0(x) is the minimum norm element of A(x). Of importance is
the so called Yosida regularization of A for γ > 0, defined as the single-valued operator Aγ = (I−Jγ)/γ.
This is a 1/γ-Lipschitz operator on X that satisfies Aγ(x) → A0(x) and ‖Aγ(x)‖ ↑ ‖A0(x)‖ for all
x ∈ dom(A). One can also check that Aγ(x) ∈ A(Jγ(x)) for all x ∈ X.

A typical maximal monotone operator is the subdifferential ∂f of a function f ∈ Γ0(X), the set of
proper, convex, and lower semicontinuous (lsc) functions on X. In this case, the resolvent (I + γ∂f)−1

for γ > 0 is the proximity operator of γf . The Yosida regularization of ∂f for γ > 0 coincides with the
gradient of the so called Moreau’s envelope fγ(x) := miny f(y) + ‖y − x‖2/(2γ) of f .

2.2.2 Differential Inclusions (DI)

We now turn to the differential inclusions induced by operators. First consider a set valued mapping
H : X ⇒ X and a ∈ X, a solution to the Differential Inclusion (DI) ẋ(t) ∈ H(x(t)) on R+ starting at a is
an absolutely continuous mapping x : R+ → X such that x(0) = a, and ẋ(t) ∈ H(x(t)), where ẋ denotes
the derivative of x defined almost everywhere. Consider the set valued mapping Φ : X ⇒ C(R+,X),
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such that for every a ∈ X, Φ(a) is the set of solutions to the DI starting at a. We refer to Φ as the
evolution system induced by H. For every subset S ⊂ X, we define Φ(S) =

⋃
x∈S Φ(x).

In the case where H is usc with nonempty compact convex values and satisfies the linear growth
condition

∃c > 0, ∀x ∈ X, sup{‖y‖ : y ∈ H(x)} ≤ c(1 + ‖x‖) , (2.1)

then, dom(Φ) = X, see e.g. [6], and moreover, Φ(X) is closed in the space C(R+,X) endowed with the
topology of uniform convergence over compact sets of R+.

Assume from now on that H = −A ∈ M (X). Then for every a ∈ dom(A), Φ(a) contains exactly
one function, still denoted Φ(a) [36]. Note that in the case where A = ∇F, F ∈ Γ0(X), the DI boils
down to the so-called gradient flow. In the sequel, we denote Φ(a, t) = Φ(a)(t). For every t ≥ 0, the
map Φ(·, t) : dom(A) → dom(A) is a contraction and can be uniquely extended to a contraction from
cl(dom(A)) to cl(dom(A)). Denoting Φ(·, t) this extension, Φ becomes a semiflow on cl(dom(A))×R+,
being a continuous cl(dom(A))× R+ → cl(dom(A)) function satisfying

Φ(·, 0) = I and Φ(x, t+ s) = Φ(Φ(x, s), t) (2.2)

for each x ∈ cl(dom(A)), and t, s ≥ 0.
The set of zeros Z(A) := {x ∈ dom(A) : 0 ∈ A(x)} of A is a closed convex set which coincides

with the set of equilibrium points {x ∈ cl(dom(A)) : ∀t ≥ 0,Φ(x, t) = x} of Φ. The trajectories Φ(x, ·)
of the semiflow do not necessarily converge to Z(A). A counterexample is given by the linear maximal
monotone operator A defined on R

2 by A(y, z) = (z,−y) whose set of zeros is Z(A) = (0, 0). The DI
associated to A boils down to a linear differential equation in R

2, (ẏ(t), ż(t)) = (−z(t), y(t)) for every
t ≥ 0. To solve this equation, consider i ∈ C and denote x(t) = y(t) + iz(t) ∈ C. The DI is equivalent
to ẋ(t) = ix(t) whose solutions can be written x(t) = a exp(it), a ∈ C. Finally, x does not converge to
zero as t→ +∞ in general. However, the ergodic theorem for the semiflows generated by the elements
of M (X) states that if Z(A) 6= ∅, then for each x ∈ cl(dom(A)), the averaged function

Φ : cl(dom(A))× R+ −→ cl(dom(A))

(x, t) 7−→ 1

t

∫ t

0
Φ(x, s) ds

(with Φ(·, 0) = Φ(·, 0)), converges to an element of Z(A) as t→∞. The convergence of the trajectories
of the semiflow itself to an element of Z(A) is ensured when A is demipositive [38]. An operator
A ∈M (X) is said demipositive if there exists w ∈ Z(A) such that for every sequence ((un, vn) ∈ gr(A))
such that (un) converges to u, and such that (vn) is bounded,

〈un − w, vn〉 −−−→
n→∞ 0 ⇒ u ∈ Z(A).

Under this condition and if Z(A) 6= ∅, then for all x ∈ cl(dom(A)), Φ(x, t) converges as t → ∞ to an
element of Z(A).

2.3 Random monotone operators

A sequence of elements (An)n∈N in M (X) is said to converge to an element A ∈ M (X) if for every
γ > 0, x ∈ X, (I + γAn)

−1(x) → (I + γA)−1(x) as n → +∞. Endowed with this topology, M (X) is
a Polish space [4]. Moreover, the subset of all subdifferentials over X is closed. A random monotone
operator is defined to be a random variable A from a probability space (Ξ,G , µ) to (M (X),B(M (X))).

21



Let F : Ξ ⇒ X be a set valued function such that F (s) is a closed set for each s ∈ Ξ. The function F
is said measurable if {s : F (s) ∩H 6= ∅} ∈ G for any set H ∈ B(X). An equivalent definition for the
mesurability of F requires that the domain dom(F ) := {s ∈ Ξ : F (s) 6= ∅} of F belongs to G , and
that there exists a sequence of measurable functions ϕn : dom(F ) → X such that F (s) = cl {ϕn(s)}n
for all s ∈ dom(F ) [40, Chap. 3][65]. These functions are called measurable selections of F . Consider
a function A : (Ξ,G , µ) → (M (X),B(M (X))). For every s ∈ Ξ, γ > 0, x ∈ X, (I + γA(s))−1(x) is
denoted Jγ(s, x). There is equivalence between [4]

1. A is a random monotone operator

2. s 7→ gr(A(s)) is measurable as a closed set-valued Ξ ⇒ X× X function

3. For every γ > 0, x ∈ X, the function s 7→ Jγ(s, x) from (Ξ,G ) to (X,B(X)) is measurable.

Example 2 (Random subdifferential). Consider a function g : Ξ × X → (−∞,∞]. The function g is
said a convex normal integrand [125] if g(s, ·) is convex, and if the set-valued mapping s 7→ epi g(s, ·) is
closed-valued and measurable, where epi is the epigraph of a function. Then, the function s 7→ ∂g(s, ·)
is an example of random monotone operator [4].

Assume now that F : Ξ ⇒ X is measurable and that µ(dom(F )) = 1. Consider the set

S
p
F := {ϕ ∈ Lp(Ξ,G , µ;X) : ϕ(s) ∈ F (s) µ− a.e.} . (2.3)

of Lp integrable selection of F . If S1
F 6= ∅, the function F is said integrable. The selection integral [86]

of F is the set ∫
Fdµ := cl

ß∫
Ξ
ϕdµ : ϕ ∈ S

1
F

™
. (2.4)

For a random monotone operator A : Ξ →M (X), since Jγ(s, x) is measurable in s and continuous in
x (being non expansive), Jγ : Ξ × X → X is G ⊗B(X)/B(X) measurable by Carathéodory’s theorem.
Denoting Aγ(s, x) the image of x by the Yosida regularization of the operator A(s), this implies the
measurability of Aγ : Ξ × X → X for every γ > 0. Moreover, denoting by D(s) the domain of A(s),
s 7→ cl(D(s)) is measurable, which implies that the function s 7→ d(x,D(s)) is measurable for each
x ∈ X. Denoting as A(s, x) the image of x by the operator A(s), the set valued function s 7→ A(s, x)
is also measurable. In particular, the function s 7→ A0(s, x) is measurable for each x ∈ X, where
A0(s, x) := ΠA(s,x)(0). The essential intersection D of the domains D(s) is defined as [67]

D :=
⋃

G∈G :µ(G)=0

⋂

s∈Ξ\G
D(s) , (2.5)

in other words, x ∈ D ⇔ µ({s : x ∈ D(s)}) = 1. Let us assume that D 6= ∅, and that the set-valued
mapping A(·, x) is integrable for each x ∈ D. For all x ∈ D, we can define

A(x) :=
∫

Ξ
A(s, x)µ(ds) .

We shall sometimes use the notation A(x) = Eξ(A(ξ, x)) where ξ is a random variable with distribution
µ. One can immediately see that the operator A : D ⇒ X so defined is a monotone operator.

Example 3 (Interchange property). Let g : Ξ× X → (−∞,∞] be a convex normal integrand, and let
G(x) =

∫
g(s, x)µ(ds), where the integral is defined as the sum

∫

{s : g(s,x)∈[0,∞)}
g(s, x)µ(ds) +

∫

{s : g(s,x)∈]−∞,0[}
g(s, x)µ(ds) + I(x) ,
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and

I(x) =

®
+∞, if µ({s : g(s, x) =∞}) > 0,
0, otherwise ,

and where the convention (+∞) + (−∞) = +∞ is used. The function G is a lower semi continuous
convex function if G(x) > −∞ for all x [125], which we assume. Assume also that G is proper. Note
that this implies that g(s, ·) ∈ Γ0(X) for µ-almost all s. We provide conditions under which the selection
integral (set to ∅ for the values of x for which S

1
∂g(·,x) = ∅)

∫
∂g(s, x)µ(ds) boils down to ∂G(x). We

shall write that the interchange property holds since in this case,

∂G(x) =
∫
∂g(s, x)µ(ds).

First, this will be the case if
∫ |g(s, x)|µ(ds) < ∞ for all x ∈ X. By [102, page 179], this will also be

the case if the following conditions hold: i) the set-valued mapping s 7→ cl dom g(s, ·) is constant µ-a.e.,
where dom g(s, ·) is the domain of g(s, ·), ii) G(x) <∞ whenever x ∈ dom g(s, ·) µ-a.e., iii) there exists
x0 ∈ X at which G is finite and continuous. Another case where this interchange is permitted is the
following. Let m be a positive integer, and let C1, . . . Cm be a collection of closed and convex subsets
of X. Let C = ∩mi=kCk 6= ∅, and assume that the normal cone NC(x) of C at x satisfies the identity
NC(x) =

∑m
k=1NCk(x) for each x ∈ X, where the summation is the usual set summation. As is well

known, this identity holds true under a qualification condition of the type ∩mk=1 ri Ck 6= ∅ (see also [11]
for other conditions). Now, assume that Ξ = {1, . . . ,m} and that µ is an arbitrary probability measure
putting a positive weight on each {k} ⊂ Ξ. Let g(s, x) be the indicator function

g(s, x) = ιCs(x) for (s, x) ∈ Ξ× X. (2.6)

Then it is obvious that g is a convex normal integrand, G = ιC, and ∂G(x) =
∫
∂g(s, x)µ(ds). We can

also combine these two types of conditions: let (Σ,T , ν) be a probability space, where T is ν-complete,
and let h : Σ × X → (−∞,∞] be a convex normal integrand satisfying the conditions i)–iii) above.
Consider the closed and convex sets C1, . . . , Cm introduced above, and let α be a probability measure
on the set {0, . . . ,m} such that α({k}) > 0 for each k ∈ {0, . . . ,m}. Now, set Ξ = Σ × {0, . . . ,m},
µ = ν ⊗ α, and define g : Ξ× X→ (−∞,∞] as

g(s, x) =

®
α(0)−1h(u, x) if k = 0,
ιCk(x) otherwise,

where s = (u, k) ∈ Σ× {0, . . . ,m}. Then it is clear that

G(x) =
1

α(0)

∫

Σ
h(u, x)ν(du) + ιC(x) ,

and

∂G(x) =
∫
∂g(s, x)µ(ds) =

1

α(0)
Eν∂h(·, x) +

m∑

k=1

NCk(x) .
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Part I

Stochastic approximation with a

constant step size
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Chapter 3

Constant Step Stochastic

Approximations Involving Differential

Inclusions: Stability, Long-Run

Convergence and Applications

The purpose of this chapter is to study the constant step stochastic approximation framework (1.4) in
the case where the underlying Differential Inclusion is induced by an upper semicontinuous operator, see
Sec. 1.4. We consider a Markov chain (xn) whose kernel is indexed by a scaling parameter γ > 0, referred
to as the step size. The aim is to analyze the behavior of the Markov chain in the doubly asymptotic
regime where n → ∞ then γ → 0. First, under mild assumptions on the so-called drift of the Markov
chain, we show that the interpolated process converges narrowly to the solutions of a DI involving an
usc set-valued map with closed and convex values. Second, we provide verifiable conditions which ensure
the stability of the iterates. Third, by putting the above results together, we establish the long run
convergence of the iterates (xn) as γ → 0, to the Birkhoff center of the DI. The ergodic behavior of
the iterates is also provided. Our findings are applied to the problem of nonconvex proximal stochastic
optimization and a fluid model of parallel queues.

3.1 Introduction

In this chapter, we consider a Markov chain (xn, n ∈ N) with values in an Euclidean space X. We assume
that the probability transition kernel Pγ is indexed by a scaling factor γ, which belongs to some interval
(0, γ0). The aim of the chapter is to analyze the long term behavior of the Markov chain in the regime
where γ is small. The map

gγ(x) :=
∫
y − x
γ

Pγ(x, dy) , (3.1)

assumed well defined for all x ∈ X, is called the drift or the mean field. The Markov chain admits the
representation

xn+1 = xn + γ gγ(xn) + γ Un+1 , (3.2)

where Un+1 is a zero-mean martingale increment noise i.e., the conditional expectation of Un+1 given
the past samples is equal to zero. A case of interest in the chapter is given by iterative models of the
form:

xn+1 = xn + γ hγ(ξn+1, xn) , (3.3)
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where (ξn, n ∈ N
∗) is a sequence of i.i.d random variables indexed by the set N

∗ of positive integers
and defined on a probability space Ξ with probability law µ, and {hγ}γ∈(0,γ0) is a family of maps on
Ξ× X→ X. In this case, the drift gγ has the form:

gγ(x) =
∫
hγ(s, x)µ(ds) . (3.4)

Our results are as follows.

1. Dynamical behavior. Assume that the drift gγ has the form (3.4). Assume that for µ-almost
all s and for every sequence ((γk, zk) ∈ (0, γ0)× X, k ∈ N) converging to (0, z),

hγk(s, zk)→ H(s, z)

where H(s, z) is a subset of X (the Euclidean distance between hγk(s, zk) and the set H(s, z)
tends to zero as k → ∞). Denote by xγ(t) the continuous-time stochastic process obtained by a
piecewise linear interpolation of the sequence xn, where the points xn are spaced by a fixed time
step γ on the positive real axis. As γ → 0, and assuming that H(s, ·) is a proper and upper
semicontinuous (usc) (see Sec. 2.2.1) map with closed convex values, we prove that xγ converges
narrowly (in the topology of uniform convergence on compact sets) to the set of solutions of the
differential inclusion (DI)

ẋ(t) ∈
∫
H(s, x(t))µ(ds) , (3.5)

where for every x ∈ X,
∫
H(s, x)µ(ds) is the selection integral of H(·, x), see Sec. 2.3.

2. Tightness. As the iterates are not a priori supposed to be in a compact subset of X, we investigate
the issue of stability. We posit a verifiable Pakes-Has’minskii condition on the Markov chain (xn).
The condition ensures that the iterates are stable in the sense that the random occupation measures

Λn :=
1

n+ 1

n∑

k=0

δxk
(n ∈ N)

(where δa stands for the Dirac measure at point a), form a tight family of random variables on
the Polish space of probability measures equipped with the Lévy-Prokhorov distance. The same
criterion allows to establish the existence of invariant measures of the kernels Pγ, and the tightness
of the family of all invariant measures, for all γ ∈ (0, γ0). As a consequence of Prokhorov’s
theorem, these invariant measures admit cluster points as γ → 0. Under a Feller assumption on
the kernel Pγ, we prove that every such cluster point is an invariant measure for the DI (3.5).
Here, since the flow generated by the DI is in general set-valued, the notion of invariant measure
is borrowed from [59].

3. Long-run convergence. Using the above results, we investigate the behavior of the iterates in
the asymptotic regime where n→∞ and, next, γ → 0. Denoting by d(a,B) the distance between
a point a ∈ X and a subset B ⊂ X, we prove that for all ε > 0,

lim
γ→0

lim sup
n→∞

1

n+ 1

n∑

k=0

P (d(xk,BCΦ) > ε) = 0 , (3.6)
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where BC is the Birkhoff center of the flow Φ induced by the DI (3.5), and P stands for the
probability. We also characterize the ergodic behavior of these iterates. Setting xn = 1

n+1

∑n
k=0 xk,

we prove that
lim
γ→0

lim sup
n→∞

P (d(xn, co(Lav)) > ε) = 0 , (3.7)

where co(Lav) is the convex hull of the limit set of the averaged flow associated with (3.5) (see
Sec. 3.4).

4. Applications. We investigate several application scenarios. First, we consider the problem of
non-convex stochastic optimization, and analyze the convergence of a constant step size proximal
stochastic gradient algorithm. The latter finds application in the optimization of deep neural
networks [77]. We show that the interpolated process converges narrowly to a DI, which we
characterize. We also provide sufficient conditions allowing to characterize the long-run behavior
of the algorithm leading to a convergence proof of the proximal stochastic non-convex gradient
algorithm ([98]). Second, we explain that our results apply to the characterization of the fluid
limit of a system of parallel queues. The model is introduced in [8, 61]. Whereas the narrow
convergence of the interpolated process was studied in [61], less is known about the stability and
the long-run convergence of the iterates. We show how our results can be used to address this
problem.

Chapter organization. In Sec. 3.2, we introduce the application examples. In Sec. 3.3, we briefly
discuss the literature. Sec. 3.4 is devoted to the mathematical background and to the notations. The
main results are given in Sec. 3.5. The tightness of the interpolated process as well as its narrow
convergence towards the solution set of the DI (Th. 3.5.1) are proven in Sec. 3.6. Turning to the
Markov chain characterization, Prop. 3.5.2, who explores the relations between the cluster points of the
Markov chains invariant measures and the invariant measures of the flow induced by the DI, is proven
in Sec. 3.7. A general result describing the asymptotic behavior of a functional of the iterates with a
prescribed growth is provided by Th. 3.5.3, and proven in Sec. 3.8. Finally, in Sec. 3.9, we show how the
results pertaining to the ergodic convergence and to the convergence of the iterates (Th. 3.5.4 and 3.5.5
respectively) can be deduced from Th. 3.5.3. Finally, Sec. 3.10 is devoted to the application examples.
We prove that our hypotheses are satisfied.

3.2 Examples

Example 4. Non-convex stochastic optimization. Consider the problem

minimize Eξ(ℓ(ξ, x)) + r(x) w.r.t x ∈ X, (3.8)

where ℓ(ξ, ·) is a (possibly non-convex) differentiable function on X → R indexed by a random variable
(r.v.) ξ, Eξ represents the expectation w.r.t. ξ, and r : X → R is a convex function. The problem
typically arises in deep neural networks [129, 115]. In the latter case, x represents the collection of
weights of the network, ξ represents a random training example of the database, and ℓ(ξ, x) is a risk
function which quantifies the inadequacy between the sample response and the network response. Here,
r(x) is a regularization term which prevents the occurence of undesired solutions. A typical regularizer
used in machine learning is the ℓ1-norm ‖x‖1 that promotes sparsity or generalizations like ‖Dx‖1, where
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D is a matrix, that promote structured sparsity. A popular algorithm used to find an approximate solution
to Problem (3.8) is the proximal stochastic gradient algorithm, which reads

xn+1 = proxγr(xn − γ∇ℓ(ξn+1, xn)) , (3.9)

where (ξn, n ∈ N
∗) are i.i.d. copies of the r.v. ξ, where ∇ represents the gradient w.r.t. parameter x,

and where the proximity operator of r is the mapping on X→ X defined by

proxγr : x 7→ argmin
y∈X

Ç
γ r(y) +

‖y − x‖2
2

å
.

The drift gγ has the form (3.4) where hγ(ξ, x) = γ−1(proxγr(x− γ∇ℓ(ξ, x))− x) and µ represents the
distribution of the r.v. ξ. Under adequate hypotheses, we prove that the interpolated process converges
narrowly to the solutions to the DI

ẋ(t) ∈ −∇xEξ(ℓ(ξ, x(t)))− ∂r(x(t)) ,

where ∂r represents the subdifferential of a function r, defined by

∂r(x) := {u ∈ X : ∀y ∈ X, r(y) ≥ r(x) + 〈u, y − x〉}

at every point x ∈ X. We provide a sufficient condition under which the iterates (3.9) satisfy the
Pakes-Has’minskii criterion, which in turn, allows to characterize the long-run behavior of the iterates.

Example 5. Fluid limit of a system of parallel queues with priority. We consider a time slotted queuing
system composed of N queues. The following model is inspired from [8, 61]. We denote by ykn the
number of users in the queue k at time n. We assume that a random number of Ak

n+1 ∈ N users arrive
in the queue k at time n+ 1. The queues are prioritized: the users of Queue k can only be served if all
users of Queues ℓ for ℓ < k have been served. Whenever the queue k is non-empty and the queues ℓ
are empty for all ℓ < k, one user leaves Queue k with probability ηk > 0. Starting with yk0 ∈ N, we thus
have

ykn+1 = ykn + Ak
n+1 − Bk

n+1✶{ykn>0, yk−1
n =···=y1n=0} ,

where Bk
n+1 is a Bernoulli r.v. with parameter ηk, and where ✶S denotes the indicator of an event S, equal

to one on that set and to zero otherwise. We assume that the process ((A1
n, . . . , A

N
n , B

1
n, . . . , B

N
n ), n ∈ N

∗)
is iid, and that the random variables Ak

n have finite second moments. We denote by λk := E(Ak
n) > 0

the arrival rate in Queue k. Given a scaling parameter γ > 0 which is assumed to be small, we are
interested in the fluid-scaled process, defined as xkn = γykn. This process is subject to the dynamics:

xkn+1 = xkn + γ Ak
n+1 − γ Bk

n+1✶{xk
n>0, xk−1

n =···=x1
n=0} . (3.10)

The Markov chain xn = (x1n, . . . , x
N
n ) admits the representation (3.2), where the drift gγ is defined on

γNN , and is such that its k-th component gkγ(x) is

gkγ(x) = λk − ηk✶{xk>0, xk−1=···=x1=0} , (3.11)

for every k ∈ {1, . . . , N} and every x = (x1, . . . , xN) ∈ γNN . Introduce the vector

uk := (λ1, · · · , λk−1, λk − ηk, λk+1, . . . , λN)
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for all k. Let R+ := [0,+∞), and define the set-valued map on R
N
+

H(x) :=

®
u1 if x(1) > 0
co(u1, . . . ,uk) if x1 = · · · = xk−1 = 0 and xk > 0 ,

(3.12)

where co is the convex hull. Clearly, gγ(x) ∈ H(x) for every x ∈ γNN . In [61, § 3.2], it is shown that the
DI ẋ(t) ∈ H(x(t)) has a unique solution. Our results imply the narrow convergence of the interpolated
process to this solution, hence recovering a result of [61]. More importantly, if the following stability
condition

N∑

k=1

λk
ηk

< 1 (3.13)

holds, our approach allows to establish the tightness of the occupation measure of the iterates xn, and
to characterize the long-run behavior of these iterates. We prove that in the long-run, the sequence
(xn) converges to zero in the sense of (3.6). The ergodic convergence in the sense of (3.7) can be also
established with a small extra effort.

3.3 About the Literature

When the drift gγ does not depend on γ and is supposed to be a Lispchitz continuous map, the long term
behavior of the iterates xn in the small step size regime has been studied in the treatises [20, 14, 73, 31, 16]
among others. In particular, narrow convergence of the interpolated process to the solution of an Ordinary
Differential Eq. (ODE) is established. The authors of [60] introduce a Pakes-Has’minskii criterion to
study the long-run behavior of the iterates.

The recent interest in the stochastic approximation when the ODE is replaced with a differential
inclusion dates back to [17], where decreasing steps were considered. A similar setting is considered
in [58]. A Markov noise was considered in the recent manuscript [128]. We also mention [59], where
the ergodic convergence is studied when the so called weak asymptotic pseudo trajectory property is
satisfied. The case where the DI is built from maximal monotone operators is studied in [22] and [24].

Differential inclusions arise in many applications, which include game theory (see [17, 18], [107] and
the references therein), convex optimization [24], queuing theory or wireless communications, where
stochastic approximation algorithms with non continuous drifts are frequently used, and can be modelled
by differential inclusions [61].

Differential inclusions with a constant step were studied in [107]. The paper [107] extends previous
results of [19] to the case of a DI. The key result established in [107] is that the cluster points of the
collection of invariant measures of the Markov chain are invariant for the flow associated with the DI.
Prop. 3.5.2 of the present chapter restates this result in a more general setting and using a shorter proof,
which we believe to have its own interest. Moreover, the so-called GASP model studied by [107] does
not cover certain applications, such as the ones provided in Sec. 3.2, for instance. In addition, [107]
focusses on the case where the space is compact, which circumvents the issue of stability and simplifies
the mathematical arguments. However, in many situations, the compactness assumption does not hold,
and sufficient conditions for stability need to be formulated. Finally, we characterize the asymptotic
behavior of the iterates (xn) (as well as their Cesarò means) in the doubly asymptotic regime where
n→∞ then γ → 0. Such results are not present in [107].
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3.4 Background

The space C(R+,X) is endowed with the topology of uniform convergence on compact sets which is
metrized by the distance d defined for every x, y ∈ C(R+,X) by

d(x, y) :=
∑

n∈N
2−n

(
1 ∧ sup

t∈[0,n]
‖x(t)− y(t)‖

)
, (3.14)

where ‖ · ‖ denotes the Euclidean norm in X.

3.4.1 Random Probability Measures

The support supp(µ) of a probability measure µ ∈M(X) is the smallest closed set G such that µ(G) = 1.
The set M(X) is endowed with the topology of narrow convergence: a sequence (µn)n∈N on M(X)
converges to a measure µ ∈ M(X) (denoted µn ⇒ µ) if for every f ∈ Cb(X), µn(f) → µ(f), where
µ(f) is a shorthand for

∫
f(x)µ(dx). Endowed with this topology, M(X) is metrizable by the Lévy-

Prokhorov distance and is a Polish space. Moreover, for every nonnegative measurable (resp. bounded
measurable) function f : (X,B(X)) → (X,B(X)), µ 7→ µ(f) is measurable from (M(X),B(M(X)))
to (X,B(X)). A subset G of M(X) is said tight if for every ε > 0, there exists a compact subset K of
X such that for all µ ∈ G, µ(K) > 1 − ε. We shall often say that a family of random variable is tight
instead of saying that the family of their distributions is tight. Prokhorov’s theorem gives a practical
criterion for relative compactness of probability measures : G is tight iff it is a relatively compact subset
ofM(X).

We denote by δa the Dirac measure at the point a ∈ X. If X is a random variable on some
measurable space (Ω,F ) into (X,B(X)), we denote by δX : Ω → M(X) the measurable mapping
defined by δX(ω) = δX(ω). If Λ : (Ω,F ) → (M(X),B(M(X))) is a random variable on the set of
probability measures, we denote by EΛ the probability measure defined by (EΛ)(f) := E(Λ(f)) , for
every f ∈ Cb(X).

3.4.2 Invariant Measures of Set-Valued Evolution Systems

The shift operator Θ : C(R+,X) → C(R+, C(R+,X)) is defined by : for every x ∈ C(R+,X), Θ(x) :
t 7→ x(t + · ). Consider a set-valued mapping Φ : X ⇒ C(R+,X). When Φ is single valued (i.e., for all
a ∈ X, Φ(a) is a continuous function), a measure π ∈ M(X) is called an invariant measure for Φ, or
Φ-invariant, if for all t > 0, π = πΦ(·, t)−1, where Φ(a, t) denotes Φ(a)(t). For all t ≥ 0, we define the
projection pt : C(R+,X)→ X by pt(x) = x(t).

The definition can be extended as follows to the case where Φ is set-valued.

Definition 3.4.1. A probability measure π ∈ M(X) is said invariant for Φ if there exists υ ∈
M(C(R+,X)) s.t.

(i) supp(υ) ⊂ cl(Φ(X)) ;

(ii) υ is Θ-invariant ;

(iii) υp−1
0 = π.
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When Φ is single valued, both definitions coincide. The above definition is borrowed from [59] (see
also [84]). Note that cl(Φ(X)) can be replaced by Φ(X) whenever the latter set is closed (sufficient
conditions for this have been provided above).

The limit set of a function x ∈ C(R+,X) is defined as

Lx :=
⋂

t≥0

cl(x([t,+∞))) .

It coincides with the set of points of the form limn x(tn) for some sequence tn → ∞. Consider now a
set valued mapping Φ : X ⇒ C(R+,X). The limit set LΦ(a) of a point a ∈ X for Φ is

LΦ(a) :=
⋃

x∈Φ(a)

Lx ,

and LΦ :=
⋃

a∈X LΦ(a). A point a is said recurrent for Φ if a ∈ LΦ(a). The Birkhoff center of Φ is the
closure of the set of recurrent points

BCΦ := cl{a ∈ X : a ∈ LΦ(a)} .

The following result, established in [59] (see also [7]), is a consequence of the celebrated recurrence
theorem of Poincaré.

Proposition 3.4.1. Let Φ : X ⇒ C(R+,X). Assume that Φ(X) is closed. Let π ∈ M(X) be an
invariant measure for Φ. Then, π(BCΦ) = 1.

We denote by I(Φ) the subset ofM(X) formed by all invariant measures for Φ. We define

I (Φ) := {m ∈M(M(X)) : ∀A ∈ B(M(X)), I(Φ) ⊂ A ⇒ m(A) = 1} .

We define the mapping av : C(R+,X)→ C(R+,X) by

av(x) : t 7→ 1

t

∫ t

0
x(s) ds ,

and av(x)(0) = x(0). Finally, we define the average flow av(Φ) : X ⇒ C(R+,X) by av(Φ)(a) = {av(x) :
x ∈ Φ(a)} for each a ∈ X.

3.5 Main Results

3.5.1 Dynamical Behavior

Choose γ0 > 0. For every γ ∈ (0, γ0), we introduce a probability transition kernel Pγ on X ×B(X) →
[0, 1].

Let (Ξ,G , µ) be an arbitrary probability space.

Assumption (RM). There exist a G⊗B(X)/B(X)-measurable map hγ : Ξ×X→ X andH : Ξ×X ⇒ X

such that:

i) For every x ∈ X, ∫
y − x
γ

Pγ(x, dy) =
∫
hγ(s, x)µ(ds) .
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ii) For every s µ-a.e. and for every converging sequence (un, γn)→ (u⋆, 0) on X× (0, γ0),

hγn(s, un)→ H(s, u⋆) .

iii) For all s µ-a.e., H(s, ·) is proper, usc, with closed convex values.

iv) For every x ∈ X, H(·, x) is µ-integrable. We set H(x) :=
∫
H(s, x)µ(ds).

v) For every T > 0 and every compact set K ⊂ X,

sup{‖x(t)‖ : t ∈ [0, T ], x ∈ Φ(a), a ∈ K} <∞ .

where Φ is the evolution system induced by H.

vi) For every compact set K ⊂ X, there exists εK > 0 such that

sup
x∈K

sup
0<γ<γ0

∫ ∥∥∥∥∥
y − x
γ

∥∥∥∥∥

1+εK

Pγ(x, dy) <∞ , (3.15)

sup
x∈K

sup
0<γ<γ0

∫
‖hγ(s, x)‖1+εK µ(ds) <∞ . (3.16)

Assumption i) implies that the drift has the form (3.1). As mentioned in the introduction, this is for
instance useful in the case of iterative Markov models such as (3.3). Assumption v) requires implicitly
that the set of solutions Φ(a) is non-empty for any value of a. It holds true if, e.g., the linear growth
condition (2.1) on H is satisfied.

On the canonical space Ω := XN equipped with the σ-algebra F := B(X)⊗N, we denote by X :
Ω → XN the canonical process defined by Xn(ω) = ωn for every ω = (ωk, k ∈ N) and every n ∈ N,
where Xn(ω) is the n-th coordinate of X(ω). For every ν ∈ M(X) and γ ∈ (0, γ0), we denote by P

ν,γ

the unique probability measure on (Ω,F ) such that X is an homogeneous Markov chain with initial
distribution ν and transition kernel Pγ. We denote by E

ν,γ the corresponding expectation. When ν = δa
for some a ∈ X, we shall prefer the notation P

a,γ to P
δa,γ.

For every γ > 0, we introduce the measurable map on (Ω,F ) → (C(R+,X),B(C(R+,X))), such
that for every x = (xn, n ∈ N) in Ω,

Xγ(x) : t 7→ x⌊ t
γ
⌋ + (t/γ − ⌊t/γ⌋)(x⌊ t

γ
⌋+1 − x⌊ t

γ
⌋) .

The random variable Xγ will be referred to as the linearly interpolated process. On the space C(R+,X)
endowed with B(C(R+,X))), the distribution of the r.v. Xγ is Pν,γX−1

γ .

Theorem 3.5.1. Suppose that Assumption (RM) is satisfied. Then, for every compact set K ⊂ X, the
family {Pa,γX−1

γ : a ∈ K, 0 < γ < γ0} is tight. Moreover, for every ε > 0,

sup
a∈K

P
a,γ (d(Xγ,Φ(K)) > ε) −−→

γ→0
0 ,

where Φ is the evolution system induced by H.
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3.5.2 Convergence Analysis

For each γ ∈ (0, γ0), we denote by

I(Pγ) := {π ∈M(X) : π = πPγ}

the set of invariant probability measures of Pγ. Letting P = {Pγ, 0 < γ < γ0}, we define I(P) =⋃
γ∈(0,γ0) I(Pγ). We say that a measure ν ∈ M(X) is a cluster point of I(P) as γ → 0, if there exists

a sequence γj → 0 and a sequence of measures (πj, j ∈ N) s.t. πj ∈ I(Pγj) for all j, and πj ⇒ ν.
We define

I (Pγ) := {m ∈M(M(X)) : supp(m) ⊂ I(Pγ)} ,
and I (P) = ⋃

γ∈(0,γ0) I (Pγ). We say that a measure m ∈ M(M(X)) is a cluster point of I (P) as
γ → 0, if there exists a sequence γj → 0 and a sequence of measures (mj, j ∈ N) s.t. mj ∈ I (Pγj) for
all j, and mj ⇒ m.

Proposition 3.5.2. Suppose that Assumption (RM) is satisfied. Then,

i) As γ → 0, any cluster point of I(P) is an element of I(Φ);

ii) As γ → 0, any cluster point of I (P) is an element of I (Φ).

In order to explore the consequences of this Prop., we introduce two supplementary assumptions.
The first is the so-called Pakes-Has’minskii tightness criterion, who reads as follows [60]:

Assumption (PH). There exists measurable mappings V : X → [0,+∞), ψ : X → [0,+∞) and two
functions α : (0, γ0)→ (0,+∞), β : (0, γ0)→ R, such that

sup
γ∈(0,γ0)

β(γ)

α(γ)
<∞ and lim

‖x‖→+∞
ψ(x) = +∞ ,

and for every γ ∈ (0, γ0),
PγV ≤ V − α(γ)ψ + β(γ) .

We recall that a transition kernel P on X ×B(X) → [0, 1] is said Feller if the mapping Pf : x 7→∫
f(y)P (x, dy) is continuous for any f ∈ Cb(X). If P is Feller, then the set of invariant measures of P

is a closed subset ofM(X). The following assumption ensures that for all γ ∈ (0, γ0), Pγ is Feller.

Assumption (FL). For every s ∈ Ξ, γ ∈ (0, γ0), the function hγ(s, ·) is continuous.

Theorem 3.5.3. Let Assumptions (RM), (PH) and (FL) be satisfied. Let ψ and V be the functions
specified in (PH). Let ν ∈M(X) s.t. ν(V ) <∞. Let U :=

⋃
π∈I(Φ) supp(π). Then, for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ(d(Xk,U) > ε) −−→

γ→0
0 . (3.17)

Let Y an Euclidean space and f ∈ C(X,Y). Assume that there exists M ≥ 0 and ϕ : Y → R+ such
that lim‖a‖→∞ ϕ(a)/‖a‖ = +∞ and

∀a ∈ X, ϕ(f(a)) ≤M(1 + ψ(a)) . (3.18)
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Then, the set Sf := {π(f) : π ∈ I(Φ) and π(‖f(·)‖) < ∞} is nonempty. For all n ∈ N, γ ∈ (0, γ0),
the r.v.

Fn :=
1

n+ 1

n∑

k=0

f(Xk)

is Pν,γ-integrable, and satisfies for all ε > 0,

lim sup
n→∞

d (Eν,γ(Fn) ,Sf ) −−→
γ→0

0 , (3.19)

lim sup
n→∞

P
ν,γ (d (Fn ,Sf ) ≥ ε) −−→

γ→0
0 . (3.20)

Theorem 3.5.4. Let Assumptions (RM), (PH) and (FL) be satisfied. Assume that Φ(X) is closed. Let
ψ and V be the functions specified in (PH). Let ν ∈M(X) s.t. ν(V ) <∞. Assume that

lim
‖a‖→∞

ψ(a)

‖a‖ = +∞ .

For all n ∈ N, define Xn := 1
n+1

∑n
k=0Xk . Then, for all ε > 0,

lim sup
n→∞

d
Ä
E
ν,γ(Xn) , co(Lav(Φ))

ä
−−→
γ→0

0 ,

lim sup
n→∞

P
ν,γ
Å
d
Å
Xn , co(Lav(Φ))

ã
≥ ε
ã
−−→
γ→0

0 ,

Theorem 3.5.5. Let Assumptions (RM), (PH) and (FL) be satisfied. Assume that Φ(X) is closed. Let
ψ and V be the functions specified in (PH). Let ν ∈M(X) s.t. ν(V ) <∞. Then, for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ (d (Xk ,BCΦ) ≥ ε) −−→

γ→0
0 .

3.6 Proof of Th. 3.5.1

The first lemma is a straightforward adaptation of the convergence theorem [6, Chap. 1.4, Th. 1, pp.
60]. Hence, the proof is omitted. We denote by λT the Lebesgue measure on [0, T ].

Lemma 3.6.1. Let {Fξ : ξ ∈ Ξ} be a family of mappings on X ⇒ X. Let T > 0 and for all n ∈ N, let
un : [0, T ]→ X, vn : Ξ× [0, T ]→ X be measurable maps w.r.t B([0, T ]) and G ⊗B([0, T ]) respectively.
Note for simplicity L1 := L1(Ξ× [0, T ],G ⊗B([0, T ]), µ⊗ λT ;R). Assume the following.

i) For all (ξ, t) µ⊗ λT -a.e., (un(t), vn(ξ, t))→n gr(Fξ).

ii) (un) converges λT -a.e. to a function u : [0, T ]→ X.

iii) For all n, vn ∈ L1 and converges weakly in L1 to a function v : Ξ× [0, T ]→ X.

iv) For all ξ µ-a.e., Fξ is proper upper semi continuous with closed convex values.

Then, for all (ξ, t) µ⊗ λT -a.e., v(ξ, t) ∈ Fξ(u(t)).
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Given T > 0 and 0 < δ ≤ T , we denote by

wT
x (δ) := sup{‖x(t)− x(s)‖ : |t− s| ≤ δ, (t, s) ∈ [0, T ]2}

the modulus of continuity on [0, T ] of any x ∈ C(R+,X).

Lemma 3.6.2. For all n ∈ N, denote by Fn ⊂ F the σ-field generated by the r.v. {Xk, 0 ≤ k ≤ n}.
For all γ ∈ (0, γ0), define Zγ

n+1 := γ−1(Xn+1 − Xn). Let K ⊂ X be compact. Let {P̄a,γ, a ∈ K, 0 <
γ < γ0} be a family of probability measures on (Ω,F ) satisfying the following uniform integrability
condition:

sup
n∈N∗,a∈K,γ∈(0,γ0)

Ē
a,γ(‖Zγ

n‖✶‖Zγ
n‖>A)

A→+∞−−−−→ 0 . (3.21)

Then, {P̄a,γX−1
γ : a ∈ K, 0 < γ < γ0} is tight. Moreover, for any T > 0, ε > 0,

sup
a∈K

P̄
a,γ

Ñ
max

0≤n≤⌊T
γ
⌋
γ

∥∥∥∥∥∥

n∑

k=0

Ä
Zγ

k+1 − Ē
a,γ(Zγ

k+1|Fk)
ä∥∥∥∥∥∥ > ε

é
γ→0−−→ 0 . (3.22)

Proof. We prove the first point. Set T > 0, let 0 < δ ≤ T , and choose 0 ≤ s ≤ t ≤ T s.t. t− s ≤ δ.
Let γ ∈ (0, γ0) and set n := ⌊ t

γ
⌋, m := ⌊ s

γ
⌋. For any R > 0,

‖Xγ(t)− Xγ(s)‖ ≤ γ
n∑

k=m+2

‖Zγ
k‖+ γ(t/γ − n)‖Zγ

n+1‖+ γ((m+ 1)− s/γ)‖Zγ
m+1‖

≤ γ(t/γ − s/γ)R + γ
n+1∑

k=m+1

‖Zγ
k‖✶‖Zγ

k
‖>R .

Recalling that t− s ≤ δ and using Markov inequality, we obtain

P̄
a,γX−1

γ ({x : wT
x (δ) > ε}) ≤ P̄

a,γ

Ö
γ

⌊T
γ
⌋+1∑

k=1

‖Zγ
k‖✶‖Zγ

k
‖>R > ε− δR

è

≤ (T + γ0)
supk∈N∗ Ē

a,γ
Ä
‖Zγ

k‖✶‖Zγ
k
‖>R

ä

ε− δR ,

provided that Rδ < ε. Choosing R = ε/(2δ) and using the uniform integrability,

sup
a∈K,0<γ<γ0

P̄
a,γX−1

γ ({x : wT
x (δ) > ε}) δ→0−−→ 0 .

As {P̄a,γX−1
γ p−1

0 , 0 < γ < γ0, a ∈ K} is obviously tight, the tightness of {P̄ a,γX−1
γ , a ∈ K, 0 < γ < γ0}

follows from [29, Th. 7.3]
We prove the second point. We define Ma,γ

n+1 :=
∑n

k=0

Ä
Zγ

k+1 − Ē
a,γ(Zγ

k+1|Fk)
ä
. We introduce

ηa,γ,≤n+1 := Zγ
n+1✶‖Zγ

n+1‖≤R − Ē
a,γ
(
Zγ

n+1✶‖Zγ
n+1‖≤R|Fn

)

and we define ηa,γ,>n+1 in a similar way, by replacing ≤ with > in the right hand side of the above equation.
Clearly, for all a ∈ K, γMa,γ

n+1 = Sa,γ,≤
n+1 + Sa,γ,>

n+1 where Sa,γ,≤
n+1 := γ

∑n
k=0 η

a,γ,≤
k+1 and Sa,γ,>

n+1 is defined
similarly. Thus,

γ ‖Ma,γ
n+1‖ ≤ ‖Sa,γ,≤

n+1 ‖+ ‖Sa,γ,>
n+1 ‖.
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Under P̄a,γ, the random processes Sa,γ,≤ and Sa,γ,> are Fn-adapted martingales. Defining qγ := ⌊T
γ
⌋+1,

we obtain by Doob’s martingale inequality and by the boundedness of the increments of Sa,γ,≤
n that

P̄
a,γ

Ç
max

1≤n≤qγ
‖Sa,γ,≤

n ‖ > ε

å
≤

Ē
a,γ(‖Sa,γ,≤

qγ ‖)
ε

≤
Ē

a,γ(‖Sa,γ,≤
qγ ‖2)1/2
ε

≤ 2

ε
γR
√
qγ ,

and the right hand side tends to zero uniformly in a ∈ K as γ → 0. By the same inequality,

P̄
a,γ

Ç
max

1≤n≤qγ
‖Sa,γ,>

n ‖ > ε

å
≤ 2

ε
qγγ sup

k∈N∗
Ē
a,γ
Ä
‖Zγ

k‖✶‖Zγ
k
‖>R

ä
.

Choose an arbitrarily small δ > 0 and select R as large as need in order that the supremum in the right
hand side is no larger than εδ/(2T +2γ0). Then the left hand side is no larger than δ. Hence, the proof
is concluded.

For any R > 0, define hγ,R(s, x) := hγ(s, x)✶‖x‖≤R. Let HR(s, x) := H(s, x) if ‖x‖ < R, {0} if
‖x‖ > R, and X otherwise. Denote the corresponding selection integral as HR(x) =

∫
HR(s, x)µ(ds).

Define τR(x) := inf{n ∈ N : ‖xn‖ > R} for all x ∈ Ω. We also introduce the measurable mapping
BR : Ω→ Ω, given by

BR(x) : n 7→ xn✶n<τR(x) + xτR(x)✶n≥τR(x)

for all x ∈ Ω and all n ∈ N.

Lemma 3.6.3. Suppose that Assumption (RM) is satisfied. Then, for every compact set K ⊂ X, the
family {Pa,γB−1

R X−1
γ , γ ∈ (0, γ0), a ∈ K} is tight. Moreover, for every ε > 0,

sup
a∈K

P
a,γB−1

R [d(Xγ,ΦHR
(K)) > ε] −−→

γ→0
0 .

Proof. We introduce the measurable mapping Mγ,R : Ω→ XN s.t. for all x ∈ Ω, Mγ,R(x)(0) := 0 and

Mγ,R(x)(n) := (xn − x0)− γ
n−1∑

k=0

∫
hγ,R(s, xk)µ(ds)

for all n ∈ N
∗. We also introduce the measurable mapping Gγ,R : C(R+,X) → C(R+,X) s.t. for all

x ∈ C(R+,X),

Gγ,R(x)(t) :=
∫ t

0

∫
hγ,R(s, x(γ⌊u/γ⌋))µ(ds) du .

We first express the interpolated process in integral form. For every x ∈ XN and t ≥ 0,

Xγ(x)(t) = x0 +
∫ t

0
γ−1(x⌊u

γ
⌋+1 − x⌊u

γ
⌋) du .

We have the decomposition

xn = x0 + γ
n−1∑

k=0

∫
hγ,R(s, xk)µ(ds) +Mγ,R(x)(n).

Then, interpolating,
Xγ(x) = x0 + Gγ,R ◦ Xγ(x) + Xγ ◦Mγ,R(x) . (3.23)
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The uniform integrability condition (3.21) is satisfied when letting P̄
a,γ := P

a,γB−1
R . First, note that

BR(x)(n + 1) = BR(x)(n) + (xn+1 − xn)✶τR(x)>n and that τR(x) > n ⇔ ‖BR(x)(n)‖ ≤ R ⇒ xn =
BR(x)(n). Note also that, w.r.t (Fn), τR(X) is a stopping time and BR(X) is adapted. Then, using
(RM)–i),

E
a,γ(γ−1(BR(X)(n+ 1)− BR(X)(n))|Fn) = E

a,γ

Ç
Xn+1 −Xn

γ
✶τR(X)>n|Fn

å

= ✶τR(X)>n

∫
y −Xn

γ
Pγ(Xn, dy)

= ✶τR(X)>n

∫
hγ(s,Xn)µ(ds)

= ✶‖BR(x)(n)‖≤R

∫
hγ(s, BR(X)(n))µ(ds)

=
∫
hγ,R(s, BR(X)(n))µ(ds).

Moreover,

E
a,γ

(∥∥∥∥∥
BR(X)(n+ 1)− BR(X)(n)

γ

∥∥∥∥∥

1+ǫK
)
= E

a,γ

(∥∥∥∥∥
Xn+1 −Xn

γ

∥∥∥∥∥

1+ǫK

✶τR(X)>n

)

= E
a,γ

(∫ ∥∥∥∥∥
y −Xn

γ

∥∥∥∥∥

1+ǫK

Pγ(Xn, dy)✶τR(X)>n

)

≤ E
a,γ

(∫ ∥∥∥∥∥
y −Xn

γ

∥∥∥∥∥

1+ǫK

Pγ(Xn, dy)✶‖Xn‖≤R

)

≤ sup
‖x‖≤R

∫ ∥∥∥∥∥
y − x
γ

∥∥∥∥∥

1+ǫK

Pγ(x, dy).

The condition (3.21) follows from hypothesis (3.15). Thus, Lem. 3.6.2 implies that for all ε > 0 and
T > 0,

sup
a∈K

P̄
a,γ

Ñ
max

0≤n≤⌊T
γ
⌋
‖Mγ,R(x)(n+ 1)‖ > ε

é
γ→0−−→ 0 .

It is easy to see that for all x ∈ Ω, the function Xγ ◦Mγ,R(x) is bounded on every compact interval
[0, T ] by max0≤n≤⌊T

γ
⌋ ‖Mγ,R(x)(n+ 1)‖. This in turns leads to:

sup
a∈K

P̄
a,γ(‖Xγ ◦Mγ,R‖∞,T > ε)

γ→0−−→ 0 , (3.24)

where the notation ‖x‖∞,T stands for the uniform norm of x on [0, T ].
As a second consequence of Lem. 3.6.2, the family {P̄a,γX−1

γ , 0 < γ < γ0, a ∈ K} is tight. Choose
any subsequence (an, γn) s.t. γn → 0 and an ∈ K. Using Prokhorov’s theorem and the compactness
of K, there exists a subsequence (which we still denote by (an, γn)) and there exist some a⋆ ∈ K and
some υ ∈ M(C(R+,X)) such that an → a⋆ and P̄

an,γnX−1
γn converges narrowly to υ. By Skorokhod’s

representation theorem, we introduce some r.v. z, {xn, n ∈ N} on C(R+,X) with respective distributions
υ and P̄

an,γnX−1
γn , defined on some other probability space (Ω′,F ′,P′) and such that d(xn(ω), z(ω))→ 0

for all ω ∈ Ω′. By (3.23) and (3.24), the sequence of r.v.

xn − xn(0)− Gγn,R(xn)
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converges in probability to zero in (Ω′,F ′,P′), as n→∞. One can extract a subsequence under which
this convergence holds in the almost sure sense. Therefore, there exists an event of probability one s.t.,
everywhere on this event,

z(t) = z(0) + lim
n→∞

∫ t

0

∫

Ξ
hγn,R(s, xn(γn⌊u/γn⌋))µ(ds) du (∀t ≥ 0) ,

where the limit is taken along the former subsequence. We now select an ω s.t. the above convergence
holds, and omit the dependence on ω in the sequel (otherwise stated, z and xn are treated as elements of
C(R+,X) and no longer as random variables). Set T > 0. As (xn) converges uniformly on [0, T ], there
exists a compact set K ′ (which depends on ω) such that xn(γn⌊t/γn⌋) ∈ K ′ for all t ∈ [0, T ], n ∈ N.
Define

vn(s, t) := hγn,R(s, xn(γn⌊t/γn⌋)) .
By Eq. (3.16), the sequence (vn, n ∈ N) forms a bounded subset of L1+εK′ := L1+εK′ (Ξ × [0, T ],G ⊗
B([0, T ]), µ⊗λT ;X). By the Banach-Alaoglu theorem, the sequence converges weakly to some mapping
v ∈ L1+εK′ along some subsequence. This has two consequences. First,

z(t) = z(0) +
∫ t

0

∫

Ξ
v(s, u)µ(ds) du , (∀t ∈ [0, T ]) . (3.25)

Second, for µ⊗ λT -almost all (s, t), v(s, t) ∈ HR(s, z(t)). In order to prove this point, remark that, by
Assumption (RM),

vn(s, t)→ HR(s, z(t))

for almost all (s, t). This implies that the couple (xn(γn⌊t/γn⌋), vn(s, t)) converges to gr(HR(s, ·)) and
the second point thus follows from Lem. 3.6.1. By Fubini’s theorem, there exists a negligible set of [0, T ]
s.t. for all t outside this set, v(·, t) is an integrable selection of HR(·, z(t)). As H(·, x) is integrable for
every x ∈ X, the same holds for HR. Denoting by HR the selection integral of HR and ΦHR

the evolution
system induced by HR, Eq. (3.25) implies that z ∈ ΦHR

(K) . We have shown that for any sequence
((an, γn), n ∈ N) on K × (0, γ0) s.t. γn → 0, there exists a subsequence along which, for every ε > 0,
P
an,γnB−1

R (d(Xγn ,ΦHR
(K)) > ε)→ 0 . This proves the lemma.

End of the proof of Th. 3.5.1.

We first prove the second statement. Set an arbitrary T > 0. Define dT (x, y) := ‖x − y‖∞,T . It
is sufficient to prove that for any sequence ((an, γn), n ∈ N) s.t. γn → 0, there exists a subsequence
along which P

an,γn(dT (Xγn ,Φ(K)) > ε) → 0. Choose R > R0(T ), where R0(T ) := sup{‖x(t)‖ : t ∈
[0, T ], x ∈ ΦH(a), a ∈ K} is finite by Assumption (RM). It is easy to show that any x ∈ ΦHR

(K) must
satisfy ‖x‖∞,T < R. Thus, when R > R0(T ), any x ∈ ΦHR

(K) is such that there exists y ∈ Φ(K) with
dT (x, y) = 0 i.e., the restrictions of x and y to [0, T ] coincide. As a consequence of the Lem. 3.6.3, each
sequence (an, γn) chosen as above admits a subsequence along which, for all ε > 0,

P
an,γn(dT (Xγn ◦BR,Φ(K)) > ε)→ 0 . (3.26)

The event dT (Xγ ◦ BR,Xγ) > 0 implies the event ‖Xγ ◦ BR‖∞,T ≥ R, which in turn implies by the
triangular inequality that dT (Xγ ◦BR,Φ(K)) ≥ R−R0(T ) . Therefore,

P
an,γn(dT (Xγn ◦BR,Xγn) > ε) ≤ P(dT (Xγn ◦BR,Φ(K)) ≥ R−R0(T )) . (3.27)

By (3.26), the right hand side converges to zero. Using (3.26) again along with the triangular inequality,
it follows that Pan,γn(dT (Xγn ,Φ(K)) > ε)→ 0, which proves the second statement of the theorem.
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We prove the first statement (tightness). Using [29], this is equivalent to showing that for every
T > 0, and for every sequence (an, γn) on K × (0, γ0), the sequence (Pan,γnX−1

γn p
−1
0 ) is tight, and for

each positive ε and η, there exists δ > 0 such that lim supn P
an,γnX−1

γn ({x : wT
x (δ) > ε}) < η. Since

P
an,γnX−1

γn p
−1
0 = δan , (P

an,γnX−1
γn p

−1
0 )n is tight.

First consider the case where γn → 0. Fixing T > 0, letting R > R0(T ) and using (3.27), it holds that
for all ε > 0, Pan,γn(dT (Xγn ◦BR,Xγn) > ε)→n 0. Moreover, we showed that (Pan,γnB−1

R X−1
γn ) is tight.

In addition, for every x, y ∈ C(R+,X), it holds by the triangle inequality that wT
x (δ) ≤ wT

y (δ)+2dT (x, y)
for every δ > 0. Thus,

P
an,γnX−1

γn ({x : wT
x (δ) > ε}) ≤ P

an,γnB−1
R X−1

γn ({x : wT
x (δ) > ε/2})

+ P
an,γn(dT (Xγn ◦BR,Xγn) > ε/4),

which leads to the tightness of (Pan,γnX−1
γn ) when γn → 0.

It remains to establish the tightness when lim infn γn > η > 0 for some η > 0. Note that for all
γ > η,

wXT
γ (x)(δ) ≤ 2δ max

k=0...⌊T/η⌋+1
‖xk‖ .

There exists n0 such that for all n ≥ n0, γn > η which implies by the union bound:

P
an,γnX−1

γn ({x : wT
x (δ) > ε}) ≤

⌊T/η⌋+1∑

k=0

P k
γ (a,B(0, (2δ)−1ε)c) ,

where B(0, r) ⊂ X stands for the ball or radius r and where P k
γ stands for the iterated kernel, recursively

defined by

P k
γ (a, ·) =

∫
Pγ(a, dy)P

k−1
γ (y, ·) (3.28)

and P 0
γ (a, ·) = δa. Using (3.15), it is an easy exercise to show, by induction, that for every k ∈ N,

P k
γ (a,B(0, r)c)→ 0 as r →∞. By letting δ → 0 in the above inequality, the tightness of (Pan,γnX−1

γn )
follows.

3.7 Proof of Prop. 3.5.2

To establish Prop. 3.5.2–i), we consider a sequence ((πn, γn), n ∈ N) such that πn ∈ I(Pγn), γn → 0,
and (πn) is tight. We first show that the sequence (υn := P

πn,γnX−1
γn , n ∈ N) is tight, then we show that

every cluster point of (υn) satisfies the conditions of Def. 3.4.1.
Given ε > 0, there exists a compact set K ⊂ X such that infn πn(K) > 1 − ε/2. By Th. 3.5.1,

the family {Pa,γnX−1
γn , a ∈ K,n ∈ N} is tight. Let C be a compact set of C(R+,X) such that

infa∈K,n∈N P
a,γnX−1

γn (C) > 1 − ε/2. By construction of the probability measure P
πn,γn , it holds that

P
πn,γn(·) = ∫

X P
a,γn(·) πn(da). Thus,

υn(C) ≥
∫

K
P
a,γnX−1

γn (C) πn(da) > (1− ε/2)2 > 1− ε ,

which shows that (υn) is tight.
Since πn = υnp

−1
0 , and since the projection p0 is continuous, it is clear that every cluster point π

of I(P) as γ → 0 can be written as π = υp−1
0 , where υ is a cluster point of a sequence (υn). Thus,

Def. 3.4.1–(iii) is satisfied by π and υ. To establish Prop. 3.5.2–i), we need to verify the conditions (i)
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and (ii) of Def. 3.4.1. In the remainder of the proof, we denote with a small abuse as (n) a subsequence
along which (υn) converges narrowly to υ.

To establish the validity of Def. 3.4.1–(i), we prove that for every η > 0, υn((ΦH(X))η) → 1 as
n → ∞; the result will follow from the convergence of (υn). Fix ε > 0, and let K ⊂ X be a compact
set such that infn πn(K) > 1− ε. We have

υn((ΦH(X))η) = P
πn,γn(d(Xγn ,Φ(X)) < η)

≥ P
πn,γn(d(Xγn ,Φ(K)) < η)

≥
∫

K
P
a,γn(d(Xγn ,Φ(K)) < η) πn(da)

≥ (1− ε) inf
a∈K

P
a,γn(d(Xγn ,Φ(K)) < η) .

By Th. 3.5.1, the infimum at the right hand side converges to 1. Since ε > 0 is arbitrary, we obtain the
result.

It remains to establish the Θ-invariance of υ (Condition (ii)). Equivalently, we need to show that
∫
f(x) υ(dx) =

∫
f(Θ(x)(t)) υ(dx) (3.29)

for all f ∈ Cb(C(R+,X)) and all t > 0. We shall work on (υn) and make n → ∞. Write ηn :=
t− γn⌊t/γn⌋. Thanks to the Pγn–invariance of πn, Θ(x(γn⌊t/γn⌋+ ·))(ηn) and Θ(x)(t) are equal in law
under υn(dx). Thus,

∫
f(Θ(x)(t)) υn(dx) =

∫
f(Θ(x(γn⌊t/γn⌋+ ·))(ηn)) υn(dx)

=
∫
f(Θ(x)(ηn)) υn(dx). (3.30)

Using Skorokhod’s representation theorem, there exists a probability space (Ω′,F ′,P′) and random
variables (x̄n, n ∈ N) and x̄ over this probability space, with values in C(R+,X), such that for every
n ∈ N, the distribution of x̄n is υn, the distribution of x̄ is υ and P

′-a.s,

d(x̄n, x̄) −→n→+∞ 0,

i.e, (x̄n) converges to x̄ as n → +∞ uniformly over compact sets of R+. Since ηn →n→+∞ 0, P′-a.s,
d(Θ(x̄n)(ηn), x̄) −→n→+∞ 0. Hence,

∫
f(Θ(x)(ηn)) υn(dx) −−−→

n→∞

∫
f(x) υ(dx) .

Recalling Eq. (3.30), we have shown that
∫
f(Θ(x)(t)) υn(dx) −−−→

n→∞
∫
f(Θ(x)(t)) υ(dx). Since

∫
f(x) υn(dx) −−−→

n→∞

∫
f(x) υ(dx),

the identity (3.29) holds true. Prop. 3.5.2–i) is proven.
We now prove Prop. 3.5.2–ii). Consider a sequence ((mn, γn), n ∈ N) such that mn ∈ I (Pγn),

γn → 0, and mn ⇒ m for some m ∈ M(M(X)). Since the space M(X) is separable, Skorokhod’s
representation theorem shows that there exists a probability space (Ω′,F ′,P′), a sequence of Ω′ →M(X)
random variables (Λn) with distributions mn, and a Ω′ →M(X) random variable Λ with distribution m

such that Λn(ω) ⇒ Λ(ω) for each ω ∈ Ω′. Moreover, there is a probability one subset of Ω′ such that
Λn(ω) is a Pγn–invariant probability measure for all n and for every ω in this set. For each of these ω,
we can construct on the space (XN,F ) a probability measure P

Λn(ω),γn as we did in Sec. 3.5.1. By the
same argument as in the proof of Prop. 3.5.2–i), the sequence (PΛn(ω),γnX−1

γn , n ∈ N) is tight, and any
cluster point υ satisfies the conditions of Def. 3.4.1 with Λ(ω) = υp−1

0 . Prop. 3.5.2 is proven.
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3.8 Proof of Th. 3.5.3

3.8.1 Technical lemmas

Using Prokhorov’s theorem, some compact sets ofM(X) are given by the following.

Lemma 3.8.1. Given a family {Kj, j ∈ N} of compact sets of X, the set

U := {µ ∈M(X) : ∀j ∈ N, µ(Kj) ≥ 1− 2−j}

is a compact set ofM(X).

Proof. The set U is tight hence relatively compact by Prokhorov’s theorem. It is moreover closed. Indeed,
let (µn, n ∈ N) represent a sequence of U s.t. µn ⇒ µ. Then, for all j ∈ N, µ(Kj) ≥ lim supn µn(Kj) ≥
1− 2−j since Kj is closed.

A tightness criterion of probability measures over the space E =M(X) i.e in the spaceM(M(X))
can be given.

For any m ∈ M(M(X)), we denote by e(m) the probability measure in M(X) such that for every
f ∈ Cb(X),

e(m) : f 7→
∫
µ(f)m(dµ) .

Otherwise stated, e(m)(f) = m(Tf ) where Tf : µ 7→ µ(f).

Lemma 3.8.2. Let X be a real random variable such that X ≤ 1 with probability one, and EX ≥ 1−ε
for some ε ≥ 0. Then P[X ≥ 1−√ε] ≥ 1−√ε.
Proof. 1− ε ≤ EX ≤ EX✶X<1−√

ε +EX✶X≥1−√
ε ≤ (1−√ε)(1−P[X ≥ 1−√ε]) +P[X ≥ 1−√ε].

The result is obtained by rearranging.

Lemma 3.8.3. Let L be a family onM(M(X)). If {e(m) : m ∈ L} is tight, then L is tight.

Proof. Let ε > 0 and choose any integer k s.t. 2−k+1 ≤ ε. For all j ∈ N, choose a compact set Kj ⊂ X

s.t. for all m ∈ L, e(m)(Kj) > 1− 2−2j . Define U as the set of measures ν ∈M(X) s.t. for all j ≥ k,
ν(Kj) ≥ 1− 2−j. By Lem. 3.8.1, U is compact. For all m ∈ L, the union bound implies that

m(M(X)\U) ≤
∞∑

j=k

m{ν : ν(Kj) < 1− 2−j}

By Lem. 3.8.2, m{ν : ν(Kj) ≥ 1− 2−j} ≥ 1− 2−j. Therefore, m(M(X)\U) ≤ ∑∞
j=k 2

−j = 2−k+1 ≤ ε .
This proves that L is tight.

Moreover, e :M(M(X))→M(X) is continuous.

Lemma 3.8.4. Let (mn, n ∈ N) be a sequence on M(M(X)), and consider m̄ ∈ M(M(X)). If
mn ⇒ m̄, then e(mn)⇒ e(m̄).

Proof. For any f ∈ Cb(X), Tf ∈ Cb(M(X)). Thus, mn(Tf )→ m̄(Tf ).
When a sequence (mn, n ∈ N) ofM(M(X)) converges narrowly to m ∈M(M(X)), it follows from

the above proof that mnT −1
f ⇒ mT −1

f for all bounded continuous f . The purpose of the next lemma is
to extend this result to the case where f is not necessarily bounded, but instead, satisfies some uniform
integrability condition. For any vector-valued function f , we use the notation ‖f‖ := ‖f(·)‖.
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Lemma 3.8.5. Let f ∈ C(X,Y) where Y is an Euclidean space. Define by Tf : M(X) → R the
mapping s.t. Tf (ν) := ν(f) if ν(‖f‖) <∞ and equal to zero otherwise. Let (mn, n ∈ N) be a sequence
onM(M(X)) and let m ∈M(M(X)). Assume that mn ⇒ m and

lim
K→∞

sup
n
e(mn)(‖f‖✶‖f‖>K) = 0 . (3.31)

Then, ν(‖f‖) <∞ for all ν m-a.e. and mnT −1
f ⇒ mT −1

f .

Proof. By Eq. (3.31), e(m)(‖f‖) < ∞. This implies that for all ν m-a.e., ν(‖f‖) < ∞. Choose
h ∈ Cb(Y) s.t. h is L-Lipschitz continuous. We must prove that mnT −1

f (h)→ mT −1
f (h). By the above

remark, mT −1
f (h) =

∫
h(ν(f))dm(ν), and by Eq (3.31), mnT −1

f (h) =
∫
h(ν(f))dmn(ν). Choose ε > 0.

By Eq. (3.31), there exists K0 > 0 s.t. for all K > K0, supn e(mn)(‖f‖✶‖f‖>K) < ε. For every such
K, define the bounded function fK ∈ C(X,Y) by fK(x) = f(x)(1 ∧K/‖f(x)‖). For all K > K0, and
for all n ∈ N,

|mnT −1
f (h)−mnT −1

fK
(h)| ≤

∫
|h(ν(f))− h(ν(fK))|dmn(ν)

≤ L
∫
ν(‖f − fK‖)dmn(ν)

≤ L
∫
ν(‖f‖✶‖f‖>K)dmn(ν) ≤ Lε .

By continuity of TfK , it holds that mnT −1
fK

(h)→ mT −1
fK

(h). Therefore, for every K > K0,

lim sup
n
|mnT −1

f (h)−mT −1
fK

(h)| ≤ Lε .

As ν(‖f‖) < ∞ for all ν m-a.e., the dominated convergence theorem implies that ν(fK) → ν(f) as
K → ∞, m-a.e. As h is bounded and continuous, a second application of the dominated convergence
theorem implies that

∫
h(ν(fK))dm(ν) → ∫

h(ν(f))dm(ν), which reads mT −1
fK

(h) → mT −1
f (h). Thus,

lim supn |mnT −1
f (h) − mT −1

f (h)| ≤ Lε . As a consequence, mnT −1
f (h) → mT −1

f (h) as n → ∞, which
completes the proof.

3.8.2 Narrow Cluster Points of the Empirical Measures

Let P : X × B(X) → [0, 1] be a probability transition kernel. For ν ∈ M(X), we denote by P
ν,P

the probability on (Ω,F ) such that X is an homogeneous Markov chain with initial distribution ν and
transition kernel P .

For every n ∈ N, we define the measurable mapping Λn : Ω→M(X) as

Λn(x) :=
1

n+ 1

n∑

k=0

δxk
(3.32)

for all x = (xk : k ∈ N). Note that

E
ν,PΛn =

1

n+ 1

n∑

k=0

νP k ,

where E
ν,PΛn = e(Pν,PΛ−1

n ), and P k stands for the iterated kernel, recursively defined by P k(x, ·) =∫
P (x, dy)P k−1(y, ·) and P 0(x, ·) = δx.

We recall that I (P ) represents the subset of M(M(X)) formed by the measures whose support is
included in I(P ).
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Proposition 3.8.6. Let P : X×B(X)→ [0, 1] be a Feller probability transition kernel. Let ν ∈M(X).

1. Any cluster point of {Eν,PΛn , n ∈ N} is an element of I(P ).

2. Any cluster point of {Pν,PΛ−1
n , n ∈ N} is an element of I (P ).

Proof. We omit the upper script ν,P . For all f ∈ Cb(X), EΛn(Pf)− EΛn(f)→ 0. As P is Feller, any
cluster point π of {EΛn , n ∈ N} satisfies π(Pf) = π(f). This proves the first point.

For every f ∈ Cb(X) and x ∈ Ω, consider the decomposition:

Λn(x)(Pf)− Λn(x)(f) =
1

n+ 1

n−1∑

k=0

(Pf(xk)− f(xk+1)) +
Pf(xn)− f(x0)

n+ 1
.

Using that f is bounded, Doob’s martingale convergence theorem implies that the sequence

Ån−1∑

k=0

k−1(Pf(Xk)− f(Xk+1))
ã
n

converges a.s. when n tends to infinity. By Kronecker’s lemma, we deduce that

1

n+ 1

n−1∑

k=0

(Pf(Xk)− f(Xk+1))

tends a.s. to zero. Hence,
Λn(Pf)− Λn(f)→ 0 a.s. (3.33)

Now consider a subsequence (Λϕn
) which converges in distribution to some r.v. Λ as n tends to infinity.

For a fixed f ∈ Cb(X), the mapping ν 7→ (ν(f), ν(Pf)) on M(X) → R
2 is continuous. From the

mapping theorem, Λϕn
(f)− Λϕn

(Pf) converges in distribution to Λ(f)− Λ(Pf). By (3.33), it follows
that Λ(f) − Λ(Pf) = 0 on some event Ef ∈ F of probability one. Denote by Cκ(X) ⊂ Cb(X) the
set of continuous real-valued functions having a compact support, and let Cκ(X) be equipped with the
uniform norm ‖ · ‖∞. Introduce a dense denumerable subset S of Cκ(X). On the probability-one event
E = ∩f∈SEf , it holds that for all f ∈ S, Λ(f) = ΛP (f). The same equality can be extended to any
f ∈ Cκ(X) by density of S and continuity of f 7→ (ν(f), ν(Pf)) over Cκ(X) for every ν ∈ M(X).
Hence, almost everywhere on E , one has Λ = ΛP .

3.8.3 Tightness of the Empirical Measures

Proposition 3.8.7. Let P be a family of transition kernels on X. Let V : X → [0,+∞), ψ : X →
[0,+∞) be measurable. Let α : P → (0,+∞) and β : P → R. Assume that supP∈P

β(P )
α(P )

< ∞ and
ψ(x)→∞ as ‖x‖ → ∞. Assume that for every P ∈ P ,

PV ≤ V − α(P )ψ + β(P ) .

Then, the following holds.

i) The family
⋃

P∈P I(P ) is tight. Moreover, supπ∈I(P) π(ψ) < +∞ .

ii) For every ν ∈ M(X) s.t. ν(V ) < ∞, every P ∈ P , {Eν,PΛn , n ∈ N} is tight. Moreover,
supn∈N E

ν,PΛn(ψ) <∞ .
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Proof. For each P ∈ P , PV is everywhere finite by assumption. Moreover,

n∑

k=0

P k+1V ≤
n∑

k=0

P kV − α(P )
n∑

k=0

P kψ + (n+ 1)β(P ) .

Using that V ≥ 0 and α(P ) > 0,

1

n+ 1

n∑

k=0

P kψ ≤ V

α(P )(n+ 1)
+ c ,

where c := supP∈P β(P )/α(P ) is finite. For any M > 0,

1

n+ 1

n∑

k=0

P k(ψ ∧M) ≤
(

1

n+ 1

n∑

k=0

P kψ

)
∧M

≤
Ç

V

α(P )(n+ 1)
+ c

å
∧M . (3.34)

Set π ∈ I(P), and consider P ∈ P such that π = πP . Inequality (3.34) implies that for every n,

π(ψ ∧M) ≤ π

ÇÇ
V

α(P )(n+ 1)
+ c

å
∧M

å
.

By Lebesgue’s dominated convergence theorem, π(ψ ∧M) ≤ c. Letting M → ∞ yields π(ψ) ≤ c.
The tightness of I(P) follows from the convergence of ψ(x) to ∞ as ‖x‖ → ∞. Setting M = +∞
in (3.34), and integrating w.r.t. ν, we obtain

E
ν,PΛn(ψ) ≤

ν(V )

(n+ 1)α(P )
+ c ,

which proves the second point.

Proposition 3.8.8. We posit the assumptions of Prop. 3.8.7. Then,

1. The family I (P) := ⋃
P∈P I (P ) is tight;

2. {Pν,PΛ−1
n , n ∈ N} is tight.

Proof. For every m ∈ I (P), it is easy to see that e(m) ∈ I(P). Thus, {e(m) : m ∈ I (P)}
is tight by Prop. 3.8.7. By Lem. 3.8.3, I (P) is tight. The second point follows from the equality
E
ν,PΛn = e(Pν,PΛ−1

n ) along with Prop. 3.8.7 and Lem. 3.8.3.

3.8.4 Main Proof

By continuity of hγ(s, ·) for every s ∈ Ξ, γ ∈ (0, γ0), the transition kernel Pγ is Feller. By Prop. 3.8.7
and Eq. (3.18), we have supn E

ν,γΛn(ϕ ◦ f) <∞ which, by de la Vallée-Poussin’s criterion for uniform
integrability, implies

lim
K→∞

sup
n

E
ν,γΛn(‖f‖✶‖f‖>K) = 0 . (3.35)

In particular, the quantity E
ν,γΛn(f) = E

ν,γ(Fn) is well-defined.
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We now prove the statement (3.19). By contradiction, assume that for some δ > 0, there exists a
positive sequence γj → 0, such that for all j ∈ N, lim supn→∞ d (Eν,γjΛn(f) ,Sf ) > δ . For every j,
there exists an increasing sequence of integers (ϕj

n, n ∈ N) converging to +∞ s.t.

∀n, d
Ä
E
ν,γjΛϕj

n
(f) ,Sf

ä
> δ . (3.36)

By Prop. 3.8.7, the sequence (Eν,γjΛϕj
n
, n ∈ N) is tight. By Prokhorov’s theorem and Prop. 3.8.6,

there exists πj ∈ I(Pγj) such that, as n tends to infinity, E
ν,γjΛϕj

n
⇒ πj along some subsequence.

By the uniform integrability condition (3.35), πj(‖f‖) < ∞ and E
ν,γjΛϕj

n
(f) → πj(f) as n tends to

infinity, along the latter subsequence. By Eq. (3.36), for all j ∈ N, d(πj(f),Sf ) ≥ δ . By Prop. 3.8.7,
supπ∈I(P) π(ψ) < +∞ . Since ϕ ◦ f ≤M(1 + ψ), de la Vallée-Poussin’s criterion again implies that

sup
π∈I(P)

π(‖f‖✶‖f‖>K) <∞ . (3.37)

Also by Prop. 3.8.7, the sequence (πj) is tight. Thus πj ⇒ π along some subsequence, for some
measure π which, by Prop. 3.5.2, is invariant for Φ. The uniform integrability condition (3.37) implies
that π(‖f‖) <∞ (hence, the set Sf is non-empty) and πj(f)→ π(f) as j tends to infinity, along the
above subsequence. This shows that d(π(f),Sf ) > δ, which is absurd. The statement (3.19) holds true
(and in particular, Sf must be non-empty).

The proof of the statement (3.17) follows the same line, by replacing f with the function ✶Uε
. We

briefly explain how the proof adapts, without repeating all the arguments. In this case, S✶Uc
ε

is the single-
ton {0}, and Eq. (3.36) reads Eν,γjΛϕj

n
(U c

ε ) > δ. By the Portmanteau theorem, lim supn E
ν,γjΛϕj

n
(U c

ε ) ≤
πj(U c

ε ) where the lim sup is taken along some subsequence. The contradiction follows from the fact that
lim sup πj(U c

ε ) ≤ π(U c
ε ) = 0 (where the lim sup is again taken along the relevant subsequence).

We prove the statement (3.20). Assume by contradiction that for some (other) sequence γj → 0,
lim supn→∞ P

ν,γj (d (Λn(f) ,Sf ) ≥ ε) > δ . For every j, there exists a sequence (ϕj
n, n ∈ N) s.t.

∀n, Pν,γj
Ä
d
Ä
Λϕj

n
(f) ,Sf

ä
≥ ε
ä
> δ . (3.38)

By Prop. 3.8.8, (Pν,γjΛ−1

ϕj
n
, n ∈ N) is tight, one can extract a further subsequence (which we still denote

by (ϕj
n) for simplicity) s.t. P

ν,γjΛ−1

ϕj
n

converges narrowly to a measure mj as n tends to infinity, which,

by Prop. 3.8.6, satisfies mj ∈ I (Pγj). Noting that e(Pν,γjΛ−1

ϕj
n
) = E

ν,γjΛϕj
n

and recalling Eq. (3.35),

Lem. 3.8.5 implies that ν ′(‖f‖) < ∞ for all ν ′ mj-a.e., and P
ν,γjΛ−1

ϕj
n
T −1
f ⇒ mjT −1

f , where we recall

that Tf (ν ′) := ν ′(f) for all ν ′ s.t. ν ′(‖f‖) <∞. As (Sf )cε is a closed set,

mjT −1
f ((Sf )cε) ≥ lim sup

n
P
ν,γjΛ−1

ϕj
n
T −1
f ((Sf )cε)

= lim sup
n

P
ν,γj
Ä
d
Ä
Λϕj

n
(f) ,Sf

ä
≥ ε
ä
> δ .

By Prop. 3.8.7, (mj) is tight, and one can extract a subsequence (still denoted by (mj)) along which
mj ⇒ m for some measure m which, by Prop. 3.5.2, belongs to I (Φ). For every j, e(mj) ∈ I(Pγj). By
the uniform integrability condition (3.37), one can apply Lem. 3.8.5 to the sequence (mj). We deduce
that ν ′(‖f‖) <∞ for all ν ′ m-a.e. and mjT −1

f ⇒ mT −1
f . In particular,

mT −1
f ((Sf )cε) ≥ lim sup

j
mjT −1

f ((Sf )cε) > δ .

Since m ∈ I (Φ), it holds that mT −1
f ((Sf )cε) = 0, hence a contradiction.
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3.9 Proofs of Th. 3.5.4 and 3.5.5

3.9.1 Proof of Th. 3.5.4

In this proof, we set L = Lav(Φ) to simplify the notations. It is straightforward to show that the identity
mapping f(x) = x satisfies the hypotheses of Th. 3.5.3 with ϕ = ψ. Hence, it is sufficient to prove that
Sf is a subset of co(L), the closed convex hull of L. Choose q ∈ SI and let q =

∫
xdπ(x) for some

π ∈ I(Φ) admitting a first order moment. There exists a Θ-invariant measure υ ∈ M(C(R+,X)) s.t.
supp(υ) ⊂ Φ(X) and υp−1

0 = π. We remark that for all t > 0,

q = υ(p0) = υ(pt) = υ(pt ◦ av) , (3.39)

where the second identity is due to the shift-invariance of υ, and the last one uses Fubini’s theorem. Again
by the shift-invariance of υ, the family {pt, t > 0} is uniformly integrable w.r.t. υ. By Tonelli’s theorem,
supt>0 υ(‖pt◦av ‖✶S) ≤ supt>0 υ(‖pt‖✶S) for every S ∈ B(C(R+,X)). Hence, the family {pt◦av, t > 0}
is υ-uniformly integrable as well. In particular, {pt ◦ av, t > 0} is tight in (C(R+,X),B(C(R+,X)), υ).
By Prokhorov’s theorem, there exists a sequence tn →∞ and a measurable function g : C(R+,X)→ X

such that ptn ◦av converges in distribution to g as n→∞. By uniform integrability, υ(ptn ◦av)→ υ(g).
Eq. (3.39) finally implies that

q = υ(g) .

In order to complete the proof, it is sufficient to show that g(x) ∈ L for every x υ-a.e., because
co(L) ⊂ co(L). Set ε > 0 and δ > 0. By the tightness of the r.v. (ptn ◦ av, n ∈ N), choose a compact
set K such that υ(ptn ◦ av)−1(Kc) ≤ δ for all n. As Lε

c
is an open set, one has

υg−1(Lε
c
) ≤ lim

n
υ(ptn ◦ av)−1(Lε

c
) ≤ lim

n
υ(ptn ◦ av)−1(Lε

c ∩K) + δ .

Let x ∈ Φ(X) be fixed. By contradiction, suppose that ✶Lε
c∩K(ptn(av(x))) does not converge to zero.

Then, ptn(av(x)) ∈ Lε
c ∩ K for every n along some subsequence. As K is compact, one extract a

subsequence, still denoted by tn, s.t. ptn(av(x)) converges. The corresponding limit must belong to
the closed set Lc

ε, but must also belong to L by definition of x. This proves that ✶Lc
ε∩K(ptn ◦ av(x)))

converges to zero for all x ∈ Φ(X). As supp(υ) ⊂ Φ(X), ✶Lε
c∩K(ptn ◦ av) converges to zero υ-a.s.

By the dominated convergence theorem, we obtain that υg−1(Lε
c
) ≤ δ. Letting δ → 0 we obtain that

υg−1(Lε
c
) = 0. Hence, g(x) ∈ L for all x υ-a.e. The proof is complete.

3.9.2 Proof of Th. 3.5.5

Recall the definition U :=
⋃

π∈I(Φ) supp(π). By Th. 3.5.3, for all ε > 0,

lim sup
n→∞

E
ν,γΛn(U c

ε ) −−→γ→0
0,

where Λn is the random measure given by (3.32). By Th. 3.4.1, supp(π) ⊂ BCΦ for each π ∈ I(Φ).
Thus, Uε ⊂ (BCΦ)ε. Hence, lim supn E

ν,γΛn(((BCΦ)ε)
c)→ 0 as γ → 0. This completes the proof.

3.10 Applications

In this section, we return to the Examples 4 and 5 of Sec. 3.2.
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3.10.1 Non-Convex Optimization

Consider the algorithm (3.9) to solve problem (3.8) where ℓ : Ξ × X → R, r : X → R and ξ is a
random variable over a probability space (Ω,F ,P) with values in the measurable space (Ξ,G ) and
with distribution µ. Assume that ℓ(s, ·) is continuously differentiable for every s ∈ Ξ, that ℓ(·, x) is
µ-integrable for every x ∈ X and that r is a convex and lower semicontinuous function. We assume that
for every compact subset K of X, there exists εK > 0 s.t.

sup
x∈K

∫
‖∇ℓ(s, x)‖1+εKµ(ds) <∞ . (3.40)

Define L(x) := Eξ(ℓ(ξ, x)). Under Condition (3.40), it is easy to check that L is differentiable, and
that ∇L(x) = ∫ ∇ℓ(s, x)µ(ds). From now on, we assume moreover that ∇L is Lipschitz continuous.
Condition (3.40) and the Lipschitz continuity of ∇L are satisfied under the following assumption : there
exists ε > 0 such that ∇ℓ(s, ·) is C(s)-Lipschitz continuous for µ-a.e s, where C1+ε is µ-integrable and
there exists x⋆ ∈ X such that ‖∇ℓ(·, x⋆)‖1+ε is µ-integrable. Note that Lipschitz conditions of this type
are usually unavoidable regarding the so-called explicit part (or forward part) of the proximal gradient
algorithm (3.9). Letting H(s, x) := −∇ℓ(s, x)− ∂r(x), it holds that H(·, x) is proper, µ-integrable and
usc [97], and that the corresponding selection integral H(x) :=

∫
H(s, x)µ(ds) is given by

H(x) = −∇L(x)− ∂r(x) .

By [36, Th. 3.17, Remark 3.14], for every a ∈ X, the DI ẋ(t) ∈ H(x(t)) admits a unique solution on
[0,+∞) s.t. x(0) = a.

The iterates xn given by (3.9) satisfy (3.3) where hγ(s, x) := γ−1(proxγr(x − γ∇ℓ(s, x)) − x).
Moreover, the map hγ satisfies Assumption (RM). Recall that

hγ(s, x) = −∇rγ(x− γ∇ℓ(s, x))−∇ℓ(s, x) (3.41)

∈ −∂r(proxγr(x− γ∇ℓ(s, x)))−∇ℓ(s, x)
∈ −∂r(x− γhγ(s, x))−∇ℓ(s, x) . (3.42)

In order to show that Assumption (RM)-ii) is satisfied, we need some estimate on ‖hγ(s, x)‖. Using
Eq. (3.41) and the fact that ∇rγ is γ−1-Lipschitz continuous (see Sec. 2.2.1), we obtain that

‖hγ(s, x)‖ ≤ ‖∇rγ(x)‖+ 2‖∇ℓ(s, x)‖
≤ ‖∂0r(x)‖+ 2‖∇ℓ(s, x)‖ , (3.43)

where ∂0r(x) the least norm element in ∂r(x) for every x ∈ X (see Sec. 2.2.1). As ∂0r is locally bounded
and ∂r is usc, it follows from Eq. (3.42) that Assumption (RM)-ii) is satisfied. The estimate (3.43) also
yields Assumption (RM)-vi). As a conclusion, Assumption (RM) is satisfied. In particular, the statement
of Th. 3.5.1 holds.

To show that Assumption (PH) is satisfied, we first recall the Lojasiewicz (L) condition studied in [30].
We shall use the formulation of [72] which is a particular case of [30]. Assume that L is differentiable
with a C-Lipschitz continuous gradient. We say that L and r satisfy the (L) condition with constant
β > 0 if for every x ∈ X,

1

2
DL,r(x, C) ≥ β [(L+ r)(x)−min(L+ r)]
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where

DL,r(x, C) := −2Cmin
y∈X

ñ
〈∇L(x), y − x〉+ C

2
‖y − x‖2 + r(y)− r(x)

ô
.

The (L) condition helps to prove the convergence of the (deterministic) proximal gradient algorithm
applied to the (deterministic) problem of minimizing the sum L+ r. We refer to [30] for practical cases
where the (L) condition is satisfied. In our stochastic setting, we introduce the Stochastic Lojasiewicz
condition (SL). We say that ℓ and r satisfy the (SL) condition if there exists β > 0 such that for every
x ∈ X,

1

2

∫
Dℓ(s,·),r

Ç
x,

1

γ

å
µ(ds) ≥ β [(L+ r)(x)−min(L+ r)]

for all γ ≤ 1
2C

. Note that (SL) is satisfied if for every s ∈ Ξ, ℓ(s, ·) and r satisfy the (L) condition
with constant β. In the sequel, we assume that for every x ∈ X, the random variable ‖ℓ(x, ξ)‖ is square
integrable and denote by W (x) its variance.

Proposition 3.10.1. Assume that the (SL) condition is satisfied, that γ ≤ 1
2C

and that

β(L(x) + r(x))−W (x) −→‖x‖→+∞ +∞.
Then (PH) is satisfied.

Proof. Using (sub)differential calculus, it is easy to show that for every n ∈ N,

x+ γhγ(s, x) = argmin
y∈X

ñ
〈∇ℓ(s, x), y − x〉+ 1

2γ
‖y − x‖2 + r(y)− r(x)

ô
.

Since ∇L is C-Lipschitz continuous, recalling that γ2C
2
− γ

2
≤ −γ

4
,

(L+ r)(x+ γhγ(s, x)) = L(x+ γhγ(s, x)) + r(x) + r(x+ γhγ(s, x))− r(x)

≤ (L+ r)(x) + 〈∇L(x), γhγ(s, x)〉+
1

2γ
‖γhγ(s, x)‖2

+

Ç
C

2
− 1

2γ

å
‖γhγ(s, x)‖2 + r(x+ γhγ(s, x))− r(x)

≤ (L+ r)(x) + 〈∇ℓ(s, x), γhγ(s, x)〉+
1

2γ
‖γhγ(s, x)‖2

+ 〈∇L(x)−∇ℓ(s, x), γhγ(s, x)〉+ r(x+ γhγ(s, x))− r(x)
− γ

4
‖hγ(s, x)‖2

≤ (L+ r)(x)− γ

2
Dℓ(s,·),r(x, 1/γ)−

γ

4
‖hγ(s, x)‖2

− γ〈∇ℓ(s, x)−∇L(x), hγ(s, x)〉. (3.44)

Using |〈a, b〉| ≤ ‖a‖2 + 1
4
‖b‖2 in the last inner product, we finally have

(L+ r)(x+ γhγ(s, x)) ≤ (L+ r)(x)− γ

2
Dℓ(s,·),r(x, 1/γ) + γ‖∇ℓ(s, x)−∇L(x)‖2. (3.45)

Integrating with respect to µ, we obtain
∫
(L+ r)(x+ γhγ(s, x))µ(ds) ≤ (L+ r)(x) + γW (x)

− γβ ((L+ r)(x)−min(L+ r)) .

Finally, the condition (PH) is satisfied with α(γ) = γ, β(γ) = 0, V = L+r−minL+r and ψ = βV −W.
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Note that the assumptions of Prop. 3.10.1 are satisfied if the (SL) condition is satisfied, L(x) +
r(x)→‖x‖→+∞ +∞ and the "variance" function W is bounded.

3.10.2 Fluid Limit of a System of Parallel Queues

Consider a positive integer N . We now apply the results of this chapter to the dynamical system described
in Example 5 above. For a given γ > 0, the transition kernel Pγ of the Markov chain (xn) whose entries
are given by Eq. (3.10) is defined on γNN×2γNN

. This requires some small adaptations of the statements
of the main results that we keep confined to this paragraph for the chapter readability. The limit behavior
of the interpolated process (see Th. 3.5.1) is described by the following Prop., which has an analogue
in [61]:

Proposition 3.10.2. For every compact set K ⊂ R
N , the family {Pa,γX−1

γ , a ∈ K ∩γNN , 0 < γ < γ0}
is tight. Moreover, for every ε > 0,

sup
a∈K∩γNN

P
a,γ (d(Xγ,ΦH(K)) > ε) −−→

γ→0
0 ,

where the set-valued map H is given by (3.12).

Proof. To prove this Prop., we mainly need to check that Assumption (RM) is verified. We recall
that the Markov chain (xn) given by Eq. (3.10) admits the representation (3.2), where the function
gγ = (g1γ, . . . , g

N
γ ) is given by (3.11). If we set hγ(s, x) = gγ(x) (the fact that gγ is defined on γNN

instead of RN
+ is irrelevant), then for each sequence (un, γn)→ (u⋆, 0) with un ∈ γnNN and x⋆ ∈ R

N
+ , it

holds that gγn(un)→ H(u⋆). Thus, Assumption (RM)–i) is verified with H(s, x) = H(x). Assumptions
(RM)–ii) to (RM)–iv) are obviously verified. Since the set-valued map H satisfies the condition (2.1),
Assumption (RM)–v) is verified. Finally, the finiteness assumption (3.15) with εK = 2 follows from the
existence of second moments for the Ak

n, and (3.16) is immediate. The rest of the proof follows word
for word the proof of Th. 3.5.1.

The long run behavior of the iterates is provided by the following Prop.:

Proposition 3.10.3. Let ν ∈ M(RN
+ ) be such that ν(‖ · ‖2) < ∞. For each γ > 0, define the

probability measure νγ on γNN as

νγ({γi1, γi2, . . . , γiN}) = ν(γ(i1 − 1/2, i1 + 1/2]× · · · × γ(iN − 1/2, iN + 1/2]) .

If Condition (3.13) is satisfied, then for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
νγ ,γ (d (Xk , 0) ≥ ε) −−→

γ→0
0 .

To prove this Prop., we essentially show that the assumptions of Th. 3.5.5 are satisfied. In the course
of the proof, we shall establish the existence of the (PH) criterion with a function ψ having a linear
growth. With some more work, it is possible to obtain a (PH) criterion with a faster than linear growth
for ψ, allowing to obtain the ergodic convergence as shown in Th. 3.5.4. This point will not be detailed
here.
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Proof. Considering the space γNN as a metric space equipped with the discrete topology, any probability
transition kernel on γNN × 2γN

N

is trivially Feller. Thus, Prop. 3.8.6 holds when letting P = Pγ and
ν ∈M(γNN). Let us check that Assumption (PH) is verified if the stability condition (3.13) is satisfied.
Let

V : RN
+ → R+, x = (x1, . . . , xN) 7→

Å N∑

k=1

xk/ηk
ã2
.

Given 1 ≤ k, ℓ ≤ N , define f(x) = xkxℓ on γN2. Using Eq. (3.10), the i.i.d property of the process
((A1

n, . . . , A
N
n , B

1
n, . . . , B

N
n ), n ∈ N) and the finiteness of the second moments of the Ak

n, we obtain

(Pγf)(x) ≤ xkxℓ − γxk
Ä
ηℓ✶{xℓ>0, xℓ−1=···=x1=0} − λℓ

ä

− γxℓ
Ä
ηk✶{xk>0, xk−1=···=x1=0} − λk

ä
+ γ2C ,

where C is a positive constant. Thus, when x ∈ γNN ,

(PγV )(x) ≤ V (x)− 2γ
N∑

k=1

xk/ηk
N∑

ℓ=1

Ä
✶{xℓ>0, xℓ−1=···=x1=0} − λℓ/ηℓ

ä
+ γ2C,

after modifying the constant C if necessary. If x 6= 0, then one and only one of the ✶{xℓ>0, xℓ−1=···=x1=0}
is equal to one. Therefore, (PγV )(x) ≤ V (x)− γψ(x) + γ2C, where

ψ(x) = 2
Å
1−

N∑

ℓ=1

λℓ/ηℓ
ã N∑

k=1

xk/ηk .

As a consequence, when Condition (3.13) is satisfied, the function ψ is coercive, and one can straight-
forwardly check that the statements of Prop. 3.8.7–i) and Prop. 3.8.7–ii) hold true under minor modifi-
cations, namely,

⋃
P∈P I(P ) is tight in M(RN

+ ), since supπ∈I(P) π(ψ) < +∞, where P = {Pγ}γ∈(0,γ0).
Moreover, for every ν ∈ M(RN

+ ) s.t. ν(‖ · ‖2) < ∞ and every P ∈ P , {Eν,PΛn , n ∈ N} is tight,
since supn∈N E

ν,PΛn(ψ) < ∞. We can now follow the proof of Th. 3.5.5. Doing so, all it remains
to show is that the Birkhoff center of the flow ΦH is reduced to {0}. This follows from the fact that
when Condition (3.13) is satisfied, all the trajectories of the flow ΦH converge to zero, as shown in [61,
§ 3.2].
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Chapter 4

A constant step Forward-Backward

algorithm involving random maximal

monotone operators

In this chapter, we continue the study of the stochastic approximation framework (1.4). We consider the
case of a Differential Inclusion induced by a maximal monotone operator, see Sec. 1.4. The Forward-
Backward algorithm is a classical method to find a zero of a monotone operator. We study a stochastic
Forward-Backward algorithm with a constant step. At each time step, this algorithm involves an in-
dependent copy of a couple of random maximal monotone operators. As a first result, we show that
the interpolated process obtained from the iterates converges narrowly in the small step regime to the
solution of the DI induced by the sum of the mean operators. In order to control the long term behavior
of the iterates, a stability result is needed in addition. To this end, the sequence of the iterates is seen
as a homogeneous Feller Markov chain whose transition kernel is parameterized by the algorithm step
size. We show that the cluster points of the Markov chains invariant measures in the small step regime
are invariant for the semiflow induced by the DI. Conclusions regarding the long run behavior of the
iterates for small steps follows from this fact. We also show that when the sum of the mean operators
is demipositive, the probabilities that the iterates are away from the set of zeros of this sum are small in
Cesàro mean. We study the ergodic behavior of these iterates as well. Finally, we consider applications
of the proposed algorithm. In particular we perform a detailed analysis of the random proximal gradient
algorithm with constant step.

4.1 Introduction

Given two maximal monotone operators A and B on the Euclidean space X, where B is single valued,
the Forward-Backward splitting algorithm is an iterative algorithm for finding a zero of the sum operator
A+ B. It reads

xn+1 = (I + γA)−1(xn − γB(xn)) , (4.1)

where γ is a positive step. This algorithm consists in a forward step (I−γB)(xn) followed by a backward
step, where the resolvent (I + γA)−1 of A, known to be single valued as A is maximal monotone, is
applied to the output of the former. When B satisfies a so called cocoercivity condition, and when the
step γ is small enough, the convergence of the algorithm towards a zero of A + B (provided it exists)
is a well established fact [12, Ch. 25]. In the field of convex optimization, this algorithm can be used
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to find a minimizer of the sum of two real functions F + G on X, where F is a convex function which
is defined on the whole X and which has a Lipschitz gradient, and where G is a convex, proper, and
lower semi continuous (lsc) function (G ∈ Γ0(X)). In this case, the Forward-Backward algorithm is
known as the proximal gradient algorithm, and is written as xn+1 = proxγG(xn − γ∇F (xn)), where
proxγG := (I + γ∂G)−1 is Moreau’s proximity operator of γG.

In this chapter, we are interested in the situation where the operators A and B are replaced with
random maximal monotone operators. Consider two random monotone operators (see Sec. 2.3) A,B :
Ξ→M (X) defined on a probability space (Ξ,G , µ), and let (ξn)n∈N be a sequence of independent and
identically distributed (i.i.d) random variables from some probability space to (Ξ,G ) with the probability
distribution µ. Assuming that for every s ∈ Ξ, B(s) is a single-valued operator defined on the whole X,
we examine the stochastic version of the Forward-Backward algorithm

xn+1 = (I + γA(ξn+1))
−1(I − γB(ξn+1))xn , γ > 0 . (4.2)

Our aim is to study the dynamical behavior of this algorithm in the limit of the small steps γ, where the
effect of the noise due to the ξn will be smoothened.

To give an application example for this algorithm, let us consider again the minimization problem of
the sum F +G, and let us assume that these functions are unknown to the observer (or difficult to com-
pute), and are written as F (x) = Eξ1f(ξ1, x) and G(x) = Eξ1g(ξ1, x). When the functions f and g are
known with f(ξ1, ·) being convex differentiable, and g(ξ1, ·) ∈ Γ0(X), and when an i.i.d sequence (ξn) is
available, we can approximatively solve the minimization problem of F +G by resorting to the stochastic
proximal gradient algorithm xn+1 = proxγg(ξn+1,·)(xn − γ∇xf(ξn+1, xn)). Similar algorithms has been
studied in [24, 106] with the additional assumption that the step size γ vanishes as n tends to infinity.
The main asset of such vanishing step size algorithms is that the iterates (with or without averaging)
converge almost surely as the iteration index goes to infinity. This chapter focuses on the case where
the step size γ is fixed w.r.t. n. As we shall see below, convergence holds in a weaker sense in this case.
Loosely speaking, the iterates fluctuate in a small neighborhood of the set of sought solutions, but do
not converge in an almost sure sense as n→∞. Yet, constant step size algorithms have raised a great
deal of attention in the signal processing and machine learning literature ([55]). First, they are known to
reach a neighborhood of the solution in a fewer number of iterations than the decreasing step algorithms.
Second, they are in practice able to adapt to non stationary or slowly changing environments, and thus
track a possible changing set of solutions. This is particularly helpful in adaptive signal processing for
instance.

In order to study the dynamical behavior of (4.2), we introduce the operators defined for every x ∈ X

by

A(x) =
∫
A(s)(x)µ(ds) and B(x) =

∫
B(s)(x)µ(ds) ,

where the first integral is a selection integral (see Sec. 2.3, Eq. (2.4)). Assuming that the monotone
operator A+ B is maximal, we consider a in the domain of A+ B, and the DI (see Sec. 2.2.2)

®
ẋ(t) ∈ −(A+ B)(x(t))
x(0) = a.

(4.3)

Let xa,γ(t) be the continuous random process obtained by assuming that the iterates xn are distant apart
by the time step γ, and by interpolating linearly these iterates. Then, the first step of the approach
undertaken in this chapter is to show that xa,γ shadows the solution of the DI for small γ, in the sense
that it converges narrowly to this solution as γ → 0 in the topology of convergence on the compact sets
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of R+. The same idea is behind the so-called ODE method which is frequently used in the stochastic
approximation literature (see [14, 73] or Sec. 1.3).

The compact convergence alone is not enough to control the long term behavior of the iterates. A
stability result is needed. To that end, the second step of the approach is to view the sequence (xn)
as a homogeneous Feller Markov chain whose transition kernel is parameterized by γ. In this context,
the aim is to show that the set of invariant measures for this kernel is non empty, and that the family
of invariant measures obtained for all γ belonging to some interval (0, γ0] is tight. We shall obtain a
general tightness criterion which will be made more explicit in a number of situations of interest involving
random maximal monotone operators.

The narrow convergence of xa,γ, together with the tightness of the Markov chain invariant measures,
lead to the invariance of the small γ cluster points of these invariant measures with respect to the
semiflow induced by the DI (4.3) (see [64, 60, 16] for similar contexts). Using these results, it becomes
possible to characterize the long run behavior of the iterates (xn). In particular, the proximity of these
iterates to the set of zeros Z(A + B) of A + B is of obvious interest. First, we show that when the
operator A+B is demipositive [38], the probabilities that the iterates are away from Z(A+B) are small
in Cesàro mean. Whether A + B is demipositive or not, we can also characterize the ergodic behavior
of the algorithm, showing that when γ is small, the partial sums n−1∑n

1 xk stay close to Z(A+B) with
a high probability.

Stochastic approximations with differential inclusions were considered in [17] and in [58] from the
dynamical systems viewpoint. The case where the DI is defined by a maximal monotone operator was
studied in [22], [24], and [106]. Instances of the random proximal gradient algorithm were treated in
e.g., [2] or [104]. All these references dealt with the decreasing step case, which requires quite different
tools from the constant step case. This case is considered in [48] (see also [47]), which relies on a
Robbins-Siegmund like approach requiring summability assumptions on the random errors. The constant
step case is also dealt with in [107] and in Chap. 3 for generic differential inclusions. In the present work,
we follow the line of reasoning of Chap. 3, noting that the case where the DI is defined by a maximal
monotone operator has many specificities. For instance, a maximal monotone operator is not upper semi
continuous in general, as it was assumed for the differential inclusions studied in [107] and Chap. 3.
Another difference lies in the fact that we consider here the case where the domains of the operators
A(s) can be different. Finally, to be more practical, the tightness criterion for the Markov chain invariant
measures requires a quite specific treatment in the context of the maximal monotone operators.

We close this paragraph by mentioning [21], where one of the studied stochastic proximal gradient
algorithms can be cast in the general framework of (4.2).

Chapter organization. Sec. 4.2 introduces the main algorithm. Sec. 4.3 provides our assumptions
and states our main result about the long run behavior of the iterates. A brief sketch of the proof is also
provided for convenience, the detailed arguments being postponed to the end of the chapter. Sec. 4.4
provides some illustrations of our results in particular cases. The monotone operators involved are
assumed to be subdifferentials, hence covering the context of numerical optimization. Our assumptions
are discussed at length in this scenario. The case when the monotone operators are linear maps is
addressed as well. Sec. 4.5 analyzes the dynamical behavior of the iterates. It is shown that the
piecewise linear interpolation of the iterates converges narrowly, uniformly on compact sets, to a solution
of the DI. The result, which has its own interest, is the first key argument to establish the main theorem
of Sec. 4.3. The second argument is provided in Sec. 4.6, where we characterize the cluster points
of the invariant measures (indexed by the step size) of the Markov chain formed by the iterates. The
Appendices 4.7 and 4.8 are devoted to the proofs relative to Sec. 4.4 and 4.5 respectively.
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4.2 Background and problem statement

Consider A ∈ M (X) and the semiflow Φ : cl(dom(A)) × R+ → cl(dom(A)) associated to A (see Sec.
2.2.2).

We recall some of the most important notions related with the dynamical behavior of the semiflow
Φ. Denote as M(X) the space of probability measures on X equipped with its Borel σ-field B(X). An
element π ∈ M(X) is called an invariant measure for Φ if π = πΦ(·, t)−1 for every t > 0. The set of
invariant measures for Φ will be denoted I(Φ). The limit set of the trajectory Φ(x, ·) of the semiflow Φ
starting at x is the set

LΦ(x,·) :=
⋂

t≥0

cl (Φ(x, [t,∞)))

of the limits of the convergent subsequences (Φ(x, tk))k as tk → ∞. A point x ∈ cl(domA) is said
recurrent if x ∈ LΦ(x,·). The Birkhoff center BCΦ of Φ is

BCΦ := cl {x ∈ cl(domA) : x ∈ LΦ(x,·)} ,

i.e., the closure of the set of recurrent points of Φ. The celebrated Poincaré’s recurrence theorem [53,
Th. II.6.4 and Cor. II.6.5] says that the support of any π ∈ I(Φ) is a subset of BCΦ.

Proposition 4.2.1. Assume that Z(A) 6= ∅, and let π ∈ I(Φ). If A is demipositive, then supp(π) ⊂
Z(A). If π has a first moment, then, whether A is demipositive or not,

∫
x π(dx) ∈ Z(A) .

Proof. When A is demipositive, Φ(x, t) converges to an element of Z(A) as t → +∞ hence Z(A)
coincides straightforwardly with BCΦ, and the first inclusion follows from Poincaré’s recurrence theorem.

To show the second result, we start by proving that {Φ(·, t) : t > 0} is uniformly integrable as a
family of random variables in (X,B(X), π). Let ε > 0. Since the family {Φ(·, t) : t ≥ 0} is identically
distributed, it is uniformly integrable, thus, there exists ηε > 0 such that supt

∫
S ‖Φ(x, t)‖ π(dx) ≤ ε for

all S ∈ B(X) satisfying π(S) ≤ ηε. By Tonelli’s theorem,

sup
t>0

∫

S
‖Φ(x, t)‖ π(dx) ≤ sup

t>0

1

t

∫ t

0

∫

S
‖Φ(x, s)‖ π(dx)ds ≤ ε ,

which shows that, indeed, {Φ(·, t) : t > 0} is uniformly integrable [91, Prop. II-5-2]. By the ergodic
theorem for semiflows generated by elements of M (X) (see Sec. 2.2.2), there exists a measurable function
f : cl(domA)→ Z(A) such that Φ(·, t)→ f as t→∞. Since

∫
x π(dx) =

∫
Φ(x, t) π(dx) for all t ≥ 0 ,

we can make t→∞ and use the uniform integrability of {Φ(·, t) : t > 0} to obtain that
∫ ‖f‖ dπ <∞,

and
∫
x π(dx) =

∫
f(x) π(dx). The result follows from the closed convexity of Z(A).

4.2.1 Presentation of the stochastic Forward-Backward algorithm

Consider two random monotone operators A,B : (Ξ,G , µ)→M (X) such that for every s ∈ Ξ, B(s) is
single-valued and continuous over X. Denoting B(s, x) the image of x by the operator B(s), recall that
s 7→ B(s, x) is measurable. By Carathéodory’s theorem, B is G ⊗B(X)-measurable seen as a function
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defined on Ξ×X. Assuming that B(·, x) is µ-integrable for every x ∈ X, we set B(x) := ∫
B(s, x)µ(ds).

Note that domB = X. Denote A(s, x) the image of x by the operator A(s), and D the essential
intersection of the domains D(s) = dom(A(s)) (see Eq. (2.5)). Assuming that D 6= ∅ and that A(·, x)
is integrable (see Sec. 2.3) for every x ∈ D, we denote the selection integral A(x) := ∫

A(s, x)µ(ds).
Let (ξn) be an i.i.d. sequence of random variables from a probability space (Ω,F ,P) to (Ξ,G ) with

the distribution µ. Let x0 be a X-valued random variable with probability law ν, and assume that x0 and
(ξn) are independent. Starting from x0, our purpose is to study the behavior of the iterates

xn+1 = Jγ(ξn+1, xn − γB(ξn+1, xn)), n ∈ N , (4.4)

for a given γ > 0, where we recall the notation Jγ(s, ·) := (I + γA(s))−1(·) for every s ∈ Ξ.
In the deterministic case where the functions A(s, ·) and B(s, ·) are replaced with deterministic

maximal monotone operators A(·) and B(·), with B still being assumed single-valued with dom(B) = X,
the algorithm coincides with the well-known Forward-Backward algorithm (4.1). Assuming that B is
so-called cocoercive and that γ is not too large, the iterates given by (4.1) are known to converge to
an element of Z(A+ B), provided this set is not empty [12, Th. 25.8]. In the stochastic case who is of
interest here, this convergence does not hold in general. Nonetheless, we shall show below that in the
long run, the probability that the iterates or their empirical means stay away of Z(A+B) is small when
γ is close to zero.

4.3 Assumptions and main results

We first observe that the process (xn) described by Eq. (4.4) is a homogeneous Markov chain whose
transition kernel Pγ is defined by the identity

Pγ(x, f) =
∫
f(Jγ(s, x− γB(s, x)))µ(ds) , (4.5)

valid for each measurable and positive function f . The kernel Pγ and the initial measure ν determine
completely the probability distribution of the process (xn), seen as a (Ω,F ) → (XN,B(X)⊗N) random
variable. We shall denote this probability distribution on (XN,B(X)⊗N) as P

ν,γ. We denote by E
ν,γ

the corresponding expectation. When ν = δa for some a ∈ X, we shall prefer the notations P
a,γ and

E
a,γ to P

δa,γ and E
δa,γ. From now on, (xn) will denote the canonical process on the canonical space

(XN,B(X)⊗N).
We denote as Fn the sub-σ-field of F generated by the family {x0, {ξγk : 1 ≤ k ≤ n}}, and we

write En[·] = E[· |Fn] for n ∈ N.
In the remainder of the chapter, C will always denote a positive constant that does not depend on the

time n nor on γ. This constant may change from a line of calculation to another. In all our derivations,
γ will lie in the interval (0, γ0] where γ0 is a fixed constant which is chosen as small as needed.

4.3.1 Assumptions

Assumption 4.3.1. For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K∩D

∫
‖A0(s, x)‖1+ε µ(ds) <∞.

Assumption 4.3.2. The monotone operator A is maximal.
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Assumption 4.3.3. For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K

∫
‖B(s, x)‖1+ε µ(ds) <∞ .

The next assumption will mainly lead to the tightness of the invariant measures mentioned in the
introduction.

We know that a point x⋆ is an element of Z(A+B) if there exists ϕ ∈ S
1
A(·,x⋆)

such that
∫
ϕ(s)µ(ds)+∫

B(s, x⋆)µ(ds) = 0. When B(·, x⋆) ∈ L2(Ξ,G , µ;X), and when the above function ϕ can be chosen
in L2(Ξ,G , µ;X), we say that such a zero admits a L2 representation (ϕ,B). In this case, we define

ψγ(x) :=
∫ ß
〈Aγ(s, x− γB(s, x))− ϕ(s), Jγ(s, x− γB(s, x))− x⋆〉

+ 〈B(s, x)− B(s, x⋆), x− x⋆〉
™
µ(ds)

+ γ
∫
‖Aγ(s, x− γB(s, x))‖2µ(ds)− 6γ

∫
‖B(s, x)− B(s, x⋆)‖2µ(ds) , (4.6)

where

Aγ(s, x) :=
x− Jγ(s, x)

γ

is the Yosida regularization of A(s, x) for γ > 0.

Assumption 4.3.4. There exists x⋆ ∈ Z(A + B) admitting a L2 representation (ϕ,B). The function
Ψ(x) := infγ∈(0,γ0] ψγ(x) satisfies one of the following properties:

(a) lim inf
‖x‖→∞

Ψ(x)

‖x‖ > 0.

(b)
Ψ(x)

‖x‖ −−−−→‖x‖→∞
∞.

(c) lim inf
‖x‖→∞

Ψ(x)

‖x‖2 > 0.

Let us comment these assumptions.
Assumptions 4.3.1 and 4.3.3 are moment assumptions on A0(s, x) and B(s, x) that are usually easy

to check. Assumption 4.3.1 implies that for every x ∈ D, A0( . , x) is integrable. Therefore, A( . , x) is
integrable. This implies that the domain of the selection integral A coincides with D.

Conditions where Assumption 4.3.2 are satisfied can be found in [36, Chap. II.6] in the case where µ
has a finite support, and in [24, Prop. 3.1] in other cases. When A(s) is the subdifferential of a function
g(s, ·) belonging to Γ0(X), the maximality of A is established if we can exchange the expectation of
g(ξ1, x) w.r.t. ξ1 with the subdifferentiation w.r.t. x, in which case A would be equal to ∂G, where
G(x) =

∫
g(s, x)µ(ds). This problem is dealt with in [125] (see also Sec. 4.4.1 below).

The first role of Assumption 4.3.4 is to ensure the tightness of the invariant measures of the kernels
Pγ, as mentioned in the introduction. Beyond the tightness, this assumption controls the asymptotic
behavior of functionals of the iterates with a prescribed growth condition at infinity. Assumption 4.3.4
will be specified and commented at length in Sec. 4.4.

Regarding the domains of the operators A(s), two cases will be considered, according to whether
these domains vary with s or not. We shall name these two cases the “common domain” case and the
“different domains” case respectively. In the common domain case, our assumption is therefore:
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Assumption 4.3.5 (Common domain case). The set-valued function s 7→ D(s) is µ-almost everywhere
constant.

In the common domain case, Assumptions 4.3.1–4.3.4 will be sufficient to state our results, whereas
in the different domains case, three supplementary assumptions will be needed:

Assumption 4.3.6 (Different domains case). ∀x ∈ X,
∫
d(x,D(s))2 µ(ds) ≥ Cd(x)2, where d(·) is

the distance function to D.

Assumption 4.3.7 (Different domains case). For every compact set K ⊂ X, there exists ε > 0 such
that

sup
γ∈(0,γ0],x∈K

1

γ1+ε

∫
‖Jγ(s, x)− Πcl(D(s))(x)‖1+ε µ(ds) <∞ .

Assumption 4.3.8 (Different domains case). For all γ ∈ (0, γ0] and all x ∈ X,

∫ Ç‖Jγ(s, x)− Πcl(D(s))(x)‖
γ

+ ‖B(s, x)‖
å
µ(ds) ≤ C(1 + ψγ(x)) .

Assumption 4.3.6 is rather mild, and is studied e.g in [90]. This assumption is easy to illustrate in the
case where µ is a finite sum of Dirac measures. Following [11], we say that a finite collection of closed
and convex subsets {C1, . . . , Cm} over X is linearly regular if there exists κ > 0 such that for every x,

max
i=1...m

d(x, Ci) ≥ κd(x, C), where C =
m⋂

i=1

Ci ,

and where implicitly C 6= ∅. Sufficient conditions for a collection of sets to satisfy the above condition
can be found in [11] and the references therein. In the general case, Assumption 4.3.6 is studied in [90]

We know that when γ → 0, Jγ(s, x) converges to Πcl(D(s))(x) for each (s, x). Assumptions 4.3.7
and 4.3.8 add controls on the convergence rate. The instantiations of these assumptions in the case of
the stochastic proximal gradient algorithm will be provided in Sec. 4.4.1 below.

4.3.2 Main result

Lemma 4.3.1. Let Assumptions 4.3.2 and 4.3.3 hold true. Then, the monotone operator A + B is
maximal.

Proof. Assumption 4.3.3 implies that the monotone operator B is continuous on X. Therefore, B is
maximal [36, Prop. 2.4]. The maximality of A + B follows, since A is maximal by Assumption 4.3.2,
and B has a full domain [36, Cor. 2.7].

Note that dom(A+B) = D. In the remainder of the chapter, we denote as Φ : cl(D)×R+ → cl(D)
the semiflow produced by the DI ẋ(t) ∈ −(A+B)(x(t)). Recall that I(Φ) is the set of invariant measures
for the semiflow Φ.

We also write

x̄n :=
1

n+ 1

n∑

k=0

xk .

We now state our main theorem.

57



Theorem 4.3.2. Let Assumptions 4.3.1, 4.3.2, 4.3.3, and 4.3.4–(a) be satisfied. Moreover, assume
that either Assumption 4.3.5 or Assumptions 4.3.6–4.3.8 are satisfied.

Then, I(Φ) 6= ∅. Let ν ∈ M(X) be with a finite second moment, and let U :=
⋃

π∈I(Φ) supp(π).
Then, for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ(d(xk,U) > ε) −−→

γ→0
0 . (4.7)

In particular, if the operator A+ B is demipositive, then

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ (d(xk, Z(A+ B)) > ε) −−→

γ→0
0 . (4.8)

Moreover, the set {π ∈ I(Φ) : π(Ψ) <∞} is not empty. Let Y an Euclidean space, and let f : X→ Y

be continuous. Assume that there exists M ≥ 0 and ϕ : Y → R+ such that lim‖a‖→∞ ϕ(a)/‖a‖ = ∞,
and

∀a ∈ X, ϕ(f(a)) ≤M(1 + Ψ(a)) .

Then, for all n ∈ N, γ ∈ (0, γ0], the r.v.

Fn :=
1

n+ 1

n∑

k=0

f(xk)

is P-integrable, and satisfies for all ε > 0,

lim sup
n→∞

P
ν,γ (d (Fn,Sf ) ≥ ε) −−→

γ→0
0 , (4.9)

lim sup
n→∞

d (Eν,γ(Fn),Sf ) −−→
γ→0

0 . (4.10)

where Sf := {π(f) : π ∈ I(Φ)}. In particular, if f(x) = x, and if Assumption 4.3.4–(b) is satisfied,
then

lim sup
n→∞

P
ν,γ (d (x̄n, Z(A+ B)) ≥ ε) −−→

γ→0
0 , (4.11)

lim sup
n→∞

d (Eν,γ(x̄n), Z(A+ B)) −−→
γ→0

0 . (4.12)

By Lem. 4.3.1 and Prop. 4.2.1, the convergences (4.8), (4.11), and (4.12) are the consequences of
(4.7), (4.9), and (4.10) respectively. We need to prove the latter.

4.3.3 Proof technique

We first observe that the Markov kernels Pγ are Feller, i.e., they take the set Cb(X) of the real, continuous,
and bounded functions on X to Cb(X). Indeed, for each f ∈ Cb(X), Eq. (4.5) shows that Pγ(·, f) ∈ Cb(X)
by the continuity of Jγ(s, ·) and B(s, ·), and by dominated convergence.

For each γ > 0, we denote as

I(Pγ) := {π ∈M(X) : π = πPγ}
the set of invariant probability measures of Pγ. Define the family of kernels P := {Pγ}γ∈(0,γ0], and let

I(P) :=
⋃

γ∈(0,γ0]
I(Pγ)

be the set of distributions π such that π = πPγ for at least one Pγ with γ ∈ (0, γ0].
The following proposition, which is valid for Feller Markov kernels, has been proven in Chap. 3.
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Proposition 4.3.3. Let V : X → [0,+∞) and Q : X → [0,+∞) be measurable. Assume that
Q(x)→∞ as ‖x‖ → ∞. Assume that for each γ ∈ (0, γ0],

Pγ(x, V ) ≤ V (x)− α(γ)Q(x) + β(γ) , (4.13)

where α : (0, γ0]→ (0,+∞) and β : (0, γ0]→ R satisfy supγ∈(0,γ0]
β(γ)
α(γ)

<∞. Then, the family I(P) is
tight. Moreover, supπ∈I(P) π(Q) <∞.

Assume moreover that, as γ → 0, any cluster point of I(P) is an element of I(Φ). In particular,
{π ∈ I(Φ) : π(Q) < ∞} is not empty. Let ν ∈ M(X) s.t. ν(V ) < ∞. Let U :=

⋃
π∈I(Φ) supp(π).

Then, for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ(d(xk,U) > ε) −−→

γ→0
0 .

Let Y an Euclidean space and f : X → Y be continuous. Assume that there exists M ≥ 0 and
ϕ : Y → R+ such that lim‖a‖→∞ ϕ(a)/‖a‖ =∞ and

∀a ∈ X, ϕ(f(a)) ≤M(1 +Q(a)) .

Then, for all n ∈ N, γ ∈ (0, γ0], the r.v.

Fn :=
1

n+ 1

n∑

k=0

f(xk)

is Pν,γ-integrable, and satisfies for all ε > 0,

lim sup
n→∞

d (Eν,γ(Fn) ,Sf ) −−→
γ→0

0 , and lim sup
n→∞

P
ν,γ (d (Fn ,Sf ) ≥ ε) −−→

γ→0
0 ,

where Sf := {π(f) : π ∈ I(Φ)}.

Proof. Assume that Eq. (4.13) holds. By Prop. 3.8.7, I(P) is tight and supπ∈I(P) π(Q) < ∞, which
proves the first point. Assume moreover that, as γ → 0, any cluster point of I(P) is an element of
I(Φ). By the tightness of I(P) and the Prokhorov theorem, such a cluster point π exists, and satisfies
π(Q) <∞ by the first point just shown. The rest of the proof follows Sec. 3.8.4 word-for-word.

In order to prove Th. 4.3.2, it is enough to show that the assumptions of Prop. 4.3.3 are satisfied.
Namely, we need to establish (4.13) and to show that the cluster points of I(P) as γ → 0 are elements
of I(Φ).

In Sec. 4.5, we show that the linearly interpolated process constructed from the sequence (xn)
converges narrowly as γ → 0 to a DI solution in the topology of uniform convergence on compact
sets. The main result of this section is Th. 4.5.1, which has its own interest. To prove this theorem,
we establish the tightness of the linearly interpolated process (Lem. 4.5.3), then we show that the limit
points coincide with the DI solution (Lem. 4.5.4–4.5.6). In Sec. 4.6, we start by establishing the inequality
(4.13), which is shown in Lem. 4.6.1 with Q(x) = Ψ(x). Using the tightness of I(P) in conjunction
with Th. 4.5.1, Lem 4.6.2 shows that the cluster points of I(P) are elements of I(Φ). In the different
domains case, this lemma requires that the invariant measures of Pγ put most of their weights in a
thickening of the domain D of order γ. This fact is established by Lem. 4.6.3.
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4.4 Case studies - Tightness of the invariant measures

Before proving the main results, we first address three important cases: the case of the random proximal
gradient algorithm, the case where A(s) is an affine monotone operator and B(s) = 0, and the case
where D is bounded. The main problem is to ensure that one of the cases of Assumption 4.3.4 is verified.
We close the section with a general condition ensuring that Assumption 4.3.4–(a) is verified. The proofs
are postponed to Appendix 4.7.

4.4.1 A random proximal gradient algorithm

Let (Σ,A , ζ) be a probability space, where A is ζ-complete. Let h : Σ × X → (−∞,∞] a convex
normal integrand (see Sec. 2.3). To simplify the presentation, we furthermore assume that h is finite
everywhere, noting that the results can be extended to the case where h can take the value ∞. Recall
that s 7→ ∂h(s, ·) is a random monotone operator (in all the following, the subdifferential or the gradient
of a function in (s, x) will be meant to be taken w.r.t. x). Assume that

∫ |h(s, x)|ζ(ds) < ∞ for all
x ∈ X, and consider the convex function H(x) :=

∫
h(s, x) ζ(ds) defined on X. By e.g., [102, page 179],

∂H(x) =
∫
∂h(s, x) ζ(ds).

Let f : Σ × X → R be such that f(·, x) is A -measurable for all x ∈ X, and f(s, ·) is convex
and continuously differentiable for all s ∈ Σ. Moreover, assume that

∫ |f(s, x)| ζ(ds) < ∞ for all
x ∈ X, and define the function F (x) :=

∫
f(s, x) ζ(ds) on X. This function is differentiable with

∇F (x) = ∫ ∇f(s, x) ζ(ds).
Finally, given m ∈ N

∗, let {C1, . . . , Cm} be a collection of closed and convex subsets of X. We assume
that

⋂m
i=1 ri(Ci) 6= ∅, where ri is the relative interior of a set.

Our purpose is to approximatively solve the optimization problem

min
x∈C

F (x) +H(x), C :=
m⋂

i=1

Ci (4.14)

whether the minimum is attained. Let (un) be an iid sequence on Σ with the probability measure ζ. Let
(In) be an iid sequence on {0, 1, . . . ,m} with the probability measure α such that α(k) = P(I1 = k) > 0
for each k. Assume that (In) and (un) are independent. In order to solve the problem (4.14), we consider
the iterates

xn+1 =

{
proxα(0)−1γh(un+1,·)(xn − γ∇f(un+1, xn)) if In+1 = 0,
ΠCIn+1

(xn − γ∇f(un+1, xn)) otherwise,
(4.15)

for γ > 0. This problem can be cast in the general framework of the stochastic proximal gradient
algorithm presented in the introduction. On the space Ξ := Σ × {0, . . . ,m}, define the iid random
variables ξn := (un, In) with the measure µ := ζ ⊗ α. Denoting as ιS the indicator function of the set
S, let g : Ξ× X→ (−∞,∞] be defined as

g(s, x) :=

®
α(0)−1h(u, x) if i = 0,
ιCi(x) otherwise,

where s = (u, i). Then, Problem (4.14) is equivalent to minimizing the sum F (x) +G(x), where

G(x) :=
∫
g(s, x)µ(ds) =

m∑

k=1

ιCk(x) +H(x) .
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It is furthermore clear that the algorithm (4.15) is the instance of the general algorithm (4.4) that
corresponds to A(s) = ∂g(s, ·) and B(s) = ∇f(u, ·) for s = (u, i). With our assumptions, the
qualification conditions hold, and the three sets argmin(F +G), Z(∂G+∇F ), and Z(A+B) coincide.

Before going further, we recall some well known facts regarding the coercive functions belonging
to Γ0(X). A function q ∈ Γ0(X) is said coercive if lim‖x‖→∞ q(x) = ∞. It is said supercoercive if
lim‖x‖→∞ q(x)/‖x‖ =∞. The three following conditions are equivalent: i) q is coercive, ii) there exists
a ∈ R such that the level set lev≤a q is non empty and compact, iii) lim inf‖x‖→∞ q(x)/‖x‖ > 0 (see
e.g., [12, Prop. 11.11 and 11.12] and [32, Prop. 1.1.5]).

The main result of this paragraph is the following:

Proposition 4.4.1. Let the following hypotheses hold true:

H1 There exists x⋆ ∈ Z(∂G+∇F ) admitting a L2 representation (ϕ((u, i)),∇f(u, x⋆)).

H2 There exists c > 0 s.t. for every x ∈ X,
∫
〈∇f(s, x)−∇f(s, x⋆), x− x⋆〉 ζ(ds) ≥ c

∫
‖f(s, x)− f(s, x⋆)‖2 ζ(ds).

H3 The function F +G satisfies one of the following properties:

(a) F +G is coercive.

(b) F +G is supercoercive.

Then, Assumption 4.3.4–(a) (resp., Assumption 4.3.4–(b)) holds true if Hypothesis H3–(a) (resp.,
Hypothesis H3–(b)) holds true.

Let us comment these hypotheses. A light condition ensuring the truth of Hypothesis H1 is provided
by the following lemma.

Lemma 4.4.2. Assume that there exists x⋆ ∈ Z(∂G + ∇F ) satisfying the two following conditions:∫ ‖∇f(u, x⋆)‖2 ζ(du) <∞, and there exists an open neighborhood N of x⋆ such that
∫
h(u, x)2 ζ(du) <

∞ for all x ∈ N . Then, Hypothesis H1 is verified.

We now turn to Hypothesis H2. When studying the deterministic Forward-Backward algorithm (4.1),
it is standard to assume that B is cocoercive, in other words, that there exists a constant L > 0 such
that 〈B(x)− B(y), x− y〉 ≥ L‖B(x)− B(y)‖2 [12, Th. 25.8]. A classical case where this is satisfied is
the case where B is the gradient of a convex differentiable function having a 1/L-Lipschitz continuous
gradient, as is shown by the Baillon-Haddad Th. [12, Cor. 18.16]. In our case, if we assume that there
exists a nonnegative measurable function β(s) such that ‖∇f(s, x)−∇f(s, x′)‖ ≤ β(s)‖x− x′‖, then
by the Baillon-Haddad theorem,

〈∇f(s, x)−∇f(s, x′), x− x′〉 ≥ 1

β(s)
‖∇f(s, x)−∇f(s, x′)‖2 .

Thus, one obvious case where Hypothesis H2 is satisfied is the case where β(s) is bounded.
Using proposition 4.4.1, we can now obtain the following corollary to Th. 4.3.2.

Corollary 4.4.3. Let Hypotheses H1–H3 hold true. Assume in addition the following hypotheses:
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C1 For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K∩C

∫
‖∂0h(u, x)‖1+ε ζ(du) <∞,

where ∂0h(u, ·) is the least norm element of ∂h(u, ·).
C2 For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K

∫
‖∇f(u, x)‖1+ε ζ(du) <∞ .

C3 The sets C1, . . . , Cm are linearly regular.

C4 For all γ ∈ (0, γ0] and all x ∈ X,
∫
(‖∇hγ(u, x)‖+ ‖∇f(u, x)‖) ζ(du) ≤ C(1 + |F (x) +Hγ(x)|) ,

where hγ(u, ·) is the Moreau envelope of h(u, ·).
Then, for each probability measure ν having a finite second moment,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ (d(xk, argmin(F +G)) > ε) −−→

γ→0
0 .

Moreover, if Hypothesis H3–(b) is satisfied, then

lim sup
n→∞

P
ν,γ (d (x̄n, argmin(F +G)) ≥ ε) −−→

γ→0
0, and

lim sup
n→∞

d (Eν,γ(x̄n), argmin(F +G)) −−→
γ→0

0 .

Proof. With the hypotheses H1–H3 and C1–C4, one can check that the assumptions 4.3.1–4.3.8 are
verified. Note that ∂G +∇F is a demipositive operator, being the subdifferential of a Γ0(X) function
having a minimizer [38]. The results of the corollary follow from those of Th. 4.3.2.

4.4.2 The case where A(s) is affine

In all the remainder of this section, we shall focus on the validity of Assumption 4.3.4. We assume that
B = 0, and that

A(s, x) = H(s)x+ d(s),

where H : Ξ → L (X) where L (X) is the space of linear operator over X and d : Ξ → X are two
G -measurable functions. It is easily seen that the affine operator A(s) is monotone if and only if
H(s) + H(s)⋆ is a positive semidefinite operator (we shall write H(s) + H(s)⋆ ≥ 0), a condition that
we shall assume in this subsection. Moreover, assuming that

∫
(‖H(s)‖2 + ‖d(s)‖2)µ(ds) <∞,

the operator

A(x) =
Å∫

H(s)µ(ds)
ã
x+

∫
d(s)µ(ds) := Hx+ d

exists and is a maximal monotone operator with the domain X. When d belongs to the image of H ,
Z(A) 6= ∅, and every x⋆ ∈ Z(A) has a unique L2 representation (ϕ(s) = H(s)x⋆ + d(s), 0). We have
the following proposition:

Proposition 4.4.4. If H + H
T > 0, then H is invertible, Z(A) = {x⋆} with x⋆ = −H−1

d, and
Assumption 4.3.4–(c) is verified.
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4.4.3 The case where the domain D is bounded

Proposition 4.4.5. Let the following hypotheses hold true:

H1 The domain D is bounded.

H2 There exists a constant C > 0 such that

∀x ∈ X,
∫
d(s, x)2 µ(ds) ≥ Cd(x)2.

H3 There exists x⋆ ∈ Z(A+ B) admitting a L2 representation.

H4 There exists c > 0 s.t. for every x ∈ X, For all γ small enough,
∫
〈B(s, x)− B(s, x⋆), x− x⋆〉µ(ds) ≥ c

∫
‖B(s, x)− B(s, x⋆)‖2 µ(ds) .

Then, Assumption 4.3.4–(c) is satisfied.

4.4.4 A case where Assumption 4.3.4–(a) is valid

We close this section by providing a general condition that guarantees the validity of Assumption 4.3.4–
(a). For simplicity, we focus on the case where B(s) = 0, noting that the result can be easily extended
to the case where B(s) 6= 0 when a cocoercivity hypothesis of the type of Prop. 4.4.5–H4 is satisfied.

We denote by S(ρ, d) the sphere of X with center ρ and radius d. We also denote by intS the
interior of a set S.

Proposition 4.4.6. Assume that B(s) = 0, and that there exists x⋆ ∈ Z(A) ∩ intD admitting a L2

representation ϕ ∈ S
2
A(·,x⋆)

. Assume that there exists a set Σ ∈ G such that D ⊂ ∩s∈ΣD(s), µ(Σ) > 0,
and such that for all s ∈ Σ, there exists δ(s) > 0 satisfying S(ϕ(s), δ(s)) ⊂ intD, and

∀x ∈ S(ϕ(s), δ(s)), inf
y∈A(s,x)

〈y − ϕ(s), x− x⋆〉 > 0.

Then, Assumption 4.3.4–(a) is satisfied.

Note that the inf in the statement of this proposition is attained, as is revealed by the proof.

4.5 Narrow convergence towards the DI solutions

4.5.1 Main result

The set C(R+,X) of continuous functions from R+ to X is equipped with the topology of uniform
convergence on the compact intervals, who is known to be compatible with the distance d defined as

d(x, y) :=
∑

n∈N∗

2−n

(
1 ∧ sup

t∈[0,n]
‖x(t)− y(t)‖

)
.

For every γ > 0, we introduce the measurable map Xγ : (XN,B(X)⊗N) → (C(R+,X),B(C(R+,X))),
defined for every x = (xn : n ∈ N) in XN as

Xγ(x) : t 7→ x⌊ t
γ
⌋ + (t/γ − ⌊t/γ⌋)(x⌊ t

γ
⌋+1 − x⌊ t

γ
⌋) .
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This map will be referred to as the linearly interpolated process. When x = (xn) is the process with the
probability measure P

ν,γ defined above, the distribution of the r.v. Xγ is P
ν,γX−1

γ . If S is a subset of X
and ε > 0, we denote by Sε := {a ∈ X : d(a, S) < ε} the ε-neighborhood of S. The aim of the present
section is to establish the following result:

Theorem 4.5.1. Let Assumptions 4.3.1–4.3.3 hold true. Let either Assumption 4.3.5 or Assump-
tions 4.3.6-4.3.7 hold true. Then, for every η > 0, for every compact set K ⊂ X s.t. K ∩ D 6= ∅,

∀M ≥ 0, sup
a∈K∩DγM

P
a,γ
Ä
d(Xγ,Φ(Πcl(D)(a), ·)) > η

ä
−−→
γ→0

0. (4.16)

Using the Yosida regularization Aγ(s, x) of A(s, x), the iterates (4.4) can be rewritten as x0 = a ∈
DγM and

xn+1 = xn − γB(ξn+1, xn)− γAγ(ξn+1, xn − γB(ξn+1, xn)). (4.17)

Setting hγ(s, x) := −B(s, x) − Aγ(s, x − γB(s, x)), the iterates (4.4) can be cast into the same form
as the one studied in Chap. 3 (i.e Eq. 1.4). The following result, which we state here mainly for the ease
of the reading, is a straightforward consequence of Th. 3.5.1, Chap. 3.

Proposition 4.5.2. Let Assumptions 4.3.1–4.3.3 hold true. Assume moreover that for every s ∈ Ξ,
D(s) = X. Then, Eq. (4.16) holds true.

Proof. It is sufficient to check that the mapping hγ satisfies the Assumption (RM) of Th. 3.5.1, Chap. 3.
Assumption i) is satisfied by definition of hγ. As D(·) is a constant equal to X, the operator A(s, ·)
is upper semi continuous as a set-valued operator [97]. Thus, H(s, ·) := −A(s, ·) − B(s, ·) is proper,
upper semi continuous with closed convex values, and µ-integrable. Hence, the assumptions iv) and iii)
are satisfied. Assumption v) is satisfied by the natural properties of the semiflow induced by the maximal
monotone map A+B, whereas Assumption vi) directly follows from the present Assumptions 4.3.1 and
4.3.3 and the definition of hγ. One should finally verify Assumption ii), which states that for every
converging sequence (un, γn) → (u⋆, 0), hγn(s, un) → H(s, u⋆), for every s ∈ Ξ. To this end, it is
sufficient to prove that

Aγn(s, un − γnB(s, un))→ A(s, u⋆) . (4.18)

Choose ε > 0. As A(s, ·) is upper semi continuous, there exists η > 0 s.t. ∀u, ‖u − u⋆‖ < η
implies A(s, u) ⊂ A(s, u⋆)ε. Let vn := Jγn(s, un − γB(s, un)). By the triangular inequality and the
non-expansiveness of Jγn ,

‖vn − u⋆‖ ≤ ‖un − u⋆‖+ γn‖B(s, un)‖+ ‖Jγn(u⋆)− u⋆‖ ,

where it is clear that each of the three terms in the right hand side tends to zero. Thus, there existsN ∈ N

s.t. ∀n ≥ N , ‖vn − u⋆‖ ≤ η, which in turn implies A(s, vn) ⊂ A(s, u⋆)ε. As Aγn(s, un − γnB(s, un)) ∈
A(s, vn), the convergence (4.18) is established.

4.5.2 Proof of Th. 4.5.1

In the sequel, we prove Th. 4.5.1 under the set of Assumptions 4.3.6-4.3.7. The proof in the common
domain case i.e., when Assumption 4.3.5 holds, is somewhat easier and follows from the same arguments.

In order to prove Th. 4.5.1, we just have to weaken the assumptions of Prop. 4.5.2: for a given s ∈ Ξ,
the domain D(s) is not necessarily equal to X and the monotone operator A(s, . ) is not necessarily upper
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semi continuous. Up to these changes, the proof is similar to the proof of Th. 3.5.1, Chap. 3, and the
modifications are in fact confined to specific steps of the proof.

Choose a compact set K ⊂ X s.t. K ∩ cl(D) 6= ∅. Choose R > 0 s.t. K is contained in the ball of
radius R. For every x = (xn : n ∈ N) in XN, define τR(x) := inf{n ∈ N : xn > R} and introduce the
measurable mapping BR : XN → XN, given by

BR(x) : n 7→ xn✶n<τR(x) + xτR(x)✶n≥τR(x) .

Consider the image measure P̄
a,γ := P

a,γB−1
R , which corresponds to the law of the truncated process

BR(x). The crux of the proof consists in showing that for every η > 0 and every M > 0,

sup
a∈K∩DγM

P̄
a,γ
Ä
d(Xγ,Φ(Πcl(D)(a), ·)) > η

ä
−−→
γ→0

0. (4.19)

Eq. (4.19) is the counterpart of Lem. 3.6.3. Once it has been proven, the conclusion follows verbatim
from Sec. 3.6, End of the proof. Our aim is thus to establish Eq. (4.19). The proof follows the same
steps as the proof of Lem. 3.6.3 up to some confined changes. Here, the steps of the proof which do not
need any modification are recalled rather briefly (we refer the reader to Chap. 3 for the details). On the
other hand, the parts which require an adaptation are explicitly stated as lemmas, whose detailed proofs
are provided in Appendix 4.8.

Define hγ,R(s, a) := hγ(s, a)✶‖a‖≤R. First, we recall the following decomposition, established in
Chap. 3:

Xγ = Π0 + Gγ,R ◦ Xγ + Xγ ◦Mγ,R , (4.20)

P̄
a,γ almost surely, where Π0 : X

N → C(R+,X), Gγ,R : C(R+,X)→ C(R+,X) and Mγ,R : XN → XN are
the mappings respectively defined by

Π0(x) : t 7→ x0

Mγ,R(x) : n 7→ (xn − x0)− γ
n−1∑

k=0

∫
hγ,R(s, xk)µ(ds)

Gγ,R(x) : t 7→
∫ t

0

∫
hγ,R(s, x(γ⌊u/γ⌋))µ(ds)du ,

for every x = (xn : n ∈ N) and every x ∈ C(R+,X) .

Lemma 4.5.3. For all γ ∈ (0, γ0] and all x ∈ XN, define Zγ
n+1(x) := γ−1(xn+1 − xn). There exists

ε > 0 such that:

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ē
a,γ

(Ç
‖Zγ

n‖+
d(xn)

γ
✶‖xn‖≤R

å1+ε)
< +∞ (4.21)

Using Lem. 3.6.2, the uniform integrability condition (4.21) implies1 that {P̄a,γX−1
γ : a ∈ K∩DγM , γ ∈

(0, γ0]} is tight, and for any T > 0,

sup
a∈K∩DγM

P̄
a,γ(‖Xγ ◦Mγ,R‖∞,T > ε)

γ→0−−→ 0 , (4.22)

where the notation ‖x‖∞,T stands for the uniform norm of x on [0, T ].

1Lem. 3.6.2 of Chap. 3 was actually shown with condition [a ∈ K] instead of [a ∈ K ∩ DγM ], but the proof can be
easily adapted to the latter case.
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Lemma 4.5.4. For an arbitrary sequence (an, γn) such that an ∈ K∩DγnM and γn → 0, there exists a
subsequence (still denoted as (an, γn)) such that (an, γn)→ (a∗, 0) for some a∗ ∈ K ∩ cl(D), and there
exists r.v. z and (xn : n ∈ N) defined on some probability space (Ω′,F ′,P′) into C(R+,X) s.t. xn has
the distribution P̄

an,γnX−1
γn and xn(ω)→ z(ω) for all ω ∈ Ω′. Moreover, defining

un(t) := xn(γn⌊t/γn⌋) ,

the sequence (an, γn) and (xn) can be chosen in such a way that the following holds P
′-a.e.

sup
n

∫ T

0

Ç
d(un(t))

γn
✶‖un(t)‖≤R

å1+ ε
2

dt < +∞ (∀T > 0) , (4.23)

where ε > 0 is the constant introduced in Lem. 4.5.3.

From now on, the proof of the convergence 4.19 will use the maximal monotonicity of the operators,
hence the proof will differ from the proof of 3.6.3. Define

vn(s, t) := −B(s, un(t))✶‖un(t)‖≤R

wn(s, t) := −Aγn(s, un(t)− γnB(s, un(t)))✶‖un(t)‖≤R .

Then, vn(s, t)+wn(s, t) = hγn,R(s, un(t)). Thanks to the convergence (4.22) and Lem. 4.5.4, Eq. (4.20)
becomes : P

′-a.e.,

z(t) = z(0) + lim
n→∞

∫ t

0

∫

Ξ
vn(s, u) + wn(s, u)µ(ds) du (∀t ≥ 0) . (4.24)

We now select an ω ∈ Ω′ s.t. the events (4.23) and (4.24) are realized, and omit the dependence in ω in
the sequel. Otherwise stated, un, vn and wn are handled from now on as deterministic functions, and no
longer as random variables. The aim of the next lemmas is to analyze the integrand vn(s, u) +wn(s, u).

Consider some T > 0 and let λT represent the Lebesgue measure on the interval [0, T ]. To simplify
notations, we set L1+ε

X := L1+ε(Ξ× [0, T ],G ⊗B([0, T ]), µ⊗ λT ;X).

Lemma 4.5.5. The sequences (vn)n and (wn)n are bounded in L1+ε/2
X .

The sequence of mappings ((s, t) 7→ (vn(s, t), wn(s, t)))n is bounded in L1+ε/2
X×X and therefore admits

a weak cluster point in that space. We denote by (v, w) such a cluster point, where v, w : Ξ×[0, T ]→ X.
Let HR(s, x) := −A(s, x) − B(s, x) if ‖x‖ < R, HR(s, x) := X if ‖x‖ = R and HR(s, x) = {0} if
‖x‖ > R. Denote the corresponding selection integral as HR(x) =

∫
HR(s, x)µ(ds).

Lemma 4.5.6. For every (s, t) µ⊗ λT -a.e., (z(t), (v + w)(s, t)) ∈ gr(HR(s, ·)).

By Lem. 4.5.6 and Fubini’s theorem, there is a λT -negligible set s.t. for every t outside this set,
v(·, t) + w(·, t) is an integrable selection of HR(·, z(t)). Moreover, as (v, w) is a weak cluster point of
(vn, wn) in L1+ε/2

X×X , it holds that

z(t) = z(0) +
∫ t

0

∫

Ξ
v(s, u) + w(s, u)µ(ds) du , (∀t ∈ [0, T ]) .

By the above equality, z is a solution to the DI ẋ ∈ HR(x) with initial condition z(0) = a∗. Denoting by
ΦR(a

∗) the set of such solutions, this reads z ∈ ΦR(a
∗). As a∗ ∈ K∩ cl(D), one has z ∈ ΦR(K∩ cl(D))

where we use the notation ΦR(S) := ∪a∈SΦR(a) for every set S ⊂ X. Extending the notation d(x, S) :=
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infy∈S d(x, y), we obtain that d(xn,ΦR(K ∩ cl(D))) → 0. Thus, for every η > 0, we have shown that
P̄
an,γn(d(Xγn ,ΦR(K ∩ cl(D))) > η)→ 0 as n→∞. We have thus proven the following result:

∀η > 0, lim
γ→0

sup
a∈K∩DγM

P̄
a,γ(d(Xγ,ΦR(K ∩ cl(D))) > η) = 0 .

Letting T > 0 and choosing R > sup{‖Φ(a, t)‖ : t ∈ [0, T ], a ∈ K ∩ cl(D)} (the latter quantity being
finite, see e.g. [36]), it is easy to show that any solution to the DI ẋ ∈ HR(x) with initial condition
a ∈ K ∩ cl(D) coincides with Φ(a, . ) on [0, T ]. By the same arguments as in [28, Sec. 4 - End of the
proof], Th. 4.5.1 follows.

4.6 Cluster points of the Pγ invariant measures. End of the

proof of Th. 4.3.2

Lemma 4.6.1. Assume that there exists x⋆ ∈ Z(A+ B) that admits a L2 representation. Then,

Pγ(x, ‖ · −x⋆‖2) ≤ ‖x− x⋆‖2 − 0.5γψγ(x) + γ2C,

where ψγ is the function defined in (4.6).

Proof. By assumption, there exists a L2 representation (ϕ,B) of x⋆. By expanding

‖xn+1 − x⋆‖2 = ‖xn − x⋆‖2 + 2〈xn+1 − xn, xn − x⋆〉+ ‖xn+1 − xn‖2 ,

and by using (4.17), we obtain

‖xn+1 − x⋆‖2 = ‖xn − x⋆‖2 − 2γ〈Aγ(ξn+1, xn − γB(ξn+1, xn)) + B(ξn+1, xn), xn − x⋆〉
+ γ2‖Aγ(ξn+1, xn − γB(ξn+1, xn)) + B(ξn+1, xn)‖2. (4.25)

Write x = xn, Aγ = Aγ(ξn+1, xn−γB(ξn+1, xn)), Jγ = Jγ(ξn+1, xn−γB(ξn+1, xn)), B = B(ξn+1, xn),
B⋆ = (ξn+1, x⋆), and ϕ = ϕ(ξn+1) for conciseness. We write

〈Aγ, x− x⋆〉 = 〈Aγ − ϕ, Jγ − x⋆〉+ 〈Aγ − ϕ, x− γB − Jγ〉+ γ〈Aγ − ϕ,B〉
+ 〈ϕ, x− x⋆〉

= 〈Aγ − ϕ, Jγ − x⋆〉+ γ‖Aγ‖2 − γ〈Aγ, ϕ〉+ γ〈Aγ − ϕ,B〉+ 〈ϕ, x− x⋆〉.

We also write 〈B, x− x⋆〉 = 〈B −B⋆, x− x⋆〉+ 〈B⋆, x− x⋆〉 and γ2‖Aγ +B‖2 = γ2(‖Aγ‖2 + ‖B‖2 +
2〈Aγ, B〉). Plugging these identities at the right hand side of (4.25), we obtain

‖xn+1 − x⋆‖2 = ‖x− x⋆‖2 − 2γ {〈Aγ − ϕ, Jγ − x⋆〉+ 〈B − B⋆, x− x⋆〉} − γ2‖Aγ‖2
+ 2γ2〈Aγ, ϕ〉+ 2γ2〈ϕ,B〉+ γ2‖B‖2 − 2γ〈ϕ+B⋆, x− x⋆〉
≤ ‖x− x⋆‖2 − 2γ {〈Aγ − ϕ, Jγ − x⋆〉+ 〈B − B⋆, x− x⋆〉} − (γ2/2)‖Aγ‖2
+ (3γ2/2)‖B‖2 + 4γ2‖ϕ‖2 − 2γ〈ϕ+B⋆, x− x⋆〉
≤ ‖x− x⋆‖2 − 2γ {〈Aγ − ϕ, Jγ − x⋆〉+ 〈B − B⋆, x− x⋆〉} − (γ2/2)‖Aγ‖2
+ 3γ2‖B − B⋆‖2 + 3γ2‖B⋆‖2 + 4γ2‖ϕ‖2 − 2γ〈ϕ+B⋆, x− x⋆〉

where the first inequality is due to the fact that 2〈a, b〉 ≤ ‖a‖2/2+2‖b‖2 and the second to the triangle
inequality. Observe that the term between the braces at the right hand side of the last inequality is
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nonnegative thanks to the monotonicity of A(s, ·) and B(s, ·). Taking the conditional expectation En

at each side, the contribution of the last inner product at the right hand side disappears, and we obtain

Pγ(x, ‖ · −x⋆‖2) ≤ ‖x− x⋆‖2 − 0.5γψγ(x) + 4γ2
∫
‖ϕ(s)‖2µ(ds) + 3γ2

∫
‖B(s, x⋆)‖2µ(ds)

where ψγ is the function defined in (4.6).

Given k ∈ N, we denote by P k
γ the kernel Pγ iterated k times. The iterated kernel is defined

recursively as P 0
γ (x, dy) = δx(dy), and

P k
γ (x, S) =

∫
P k−1
γ (y, S)Pγ(x, dy)

for each S ∈ B(X).

Lemma 4.6.2. Let the assumptions of the statement of Th. 4.5.1 hold true. Assume that for all ε > 0,
there exists M > 0 such that

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π((DMγ)
c) ≤ ε. (4.26)

Then, as γ → 0, any cluster point of I(P) is an element of I(Φ).

Note that in the common domain case, (4.26) is trivially satisfied, since the supports of all the
invariant measures are included in cl(D).

Proof. Choose two sequences (γi) and (πi) such that γi → 0, πi ∈ I(Pγi) for all i ∈ N, and πi converges
narrowly to some π ∈M(X) as i→∞.

Let f be a real, bounded, and Lipschitz function on X with Lipschitz coefficient L. By definition,
πi(f) = πi(P

k
γi
f) for all k ∈ N. Set t > 0, and let ki = ⌊t/γi⌋. We have

|πif − πi(f ◦ Φ(Πcl(D)(·), t))| =
∣∣∣∣
∫
(P ki

γi
(a, f)− f(Φ(Πcl(D)(a), t)))πi(da)

∣∣∣∣

≤
∫ ∣∣∣P ki

γi
(a, f)− f(Φ(Πcl(D)(a), kiγi))

∣∣∣ πi(da)

+
∫ ∣∣∣f(Φ(Πcl(D)(a), kiγi))− f(Φ(Πcl(D)(a), t))

∣∣∣ πi(da)

≤
∫
E

a,γi
∣∣∣f(xki)− f(Φ(Πcl(D)(a), kiγi))

∣∣∣ πi(da)

+
∫ ∣∣∣f(Φ(Πcl(D)(a), kiγi))− f(Φ(Πcl(D)(a), t))

∣∣∣ πi(da)

:= Ui + Vi .

By the boundedness and the Lispchitz-continuity of f ,

Ui ≤
∫

E
a,γi
î
2‖f‖∞ ∧ L‖xki − Φ(Πcl(D)(a), kiγi)‖

ó
πi(da) .

Fixing an arbitrarily small ε > 0, it holds by (4.26) that πi((DMγi)
c) ≤ ε/2 for a large enough M . By

the tightness of (πi), we can choose a compact K ⊂ X s.t. for all i, πi(Kc) ≤ ε/2. With these choices,
we obtain

Ui ≤ sup
a∈K∩DMγi

E
a,γi
î
2‖f‖∞ ∧ L‖xki − Φ(Πcl(D)(a), kiγi)‖

ó
+ 2‖f‖∞ ε .
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Denoting as (·)[0,t] the restriction of a function to the interval [0, t], and observing that

‖xki − Φ(Πcl(D)(a), kiγi)‖ ≤ ‖(Xγ(x)− Φ(Πcl(D)(a), ·))[0,t]‖∞,

we can now apply Th. 4.5.1 to obtain

sup
a∈K∩DMγi

E
a,γi
î
2‖f‖∞ ∧ L‖xki − Φ(Πcl(D)(a), kiγi)‖

ó
−−−→
i→∞

0 .

As ε is arbitrary, we obtain that Ui →i 0. Turning to Vi, fix an arbitrary ε > 0, and choose a compact
K ⊂ X such that πi(Kc) ≤ ε for all i. We have

Vi ≤ sup
a∈K

∣∣∣f(Φ(Πcl(D)(a), kiγi))− f(Φ(Πcl(D)(a), t))
∣∣∣+ 2‖f‖∞ε .

By the uniform continuity of the function f ◦ Φ(Πcl(D)(·), ·) on the compact K × [0, t], and by the
convergence kiγi ↑ t, we obtain that lim supi Vi ≤ 2‖f‖∞ε. As ε is arbitrary, Vi →i 0. In conclusion,
πif −πi(f ◦Φ(Πcl(D)(·), t))→i 0. Moreover, πif −πi(f ◦Φ(Πcl(D)(·), t))→i πf −π(f ◦Φ(Πcl(D)(·), t))
since f(·) − f ◦ Φ(Πcl(D)(·), t)) is bounded continuous. Thus, πf = π(f ◦ Φ(Πcl(D)(·), t)). Since πi
converges narrowly to π, we obtain that for all η > 0, π(cl(Dη)

c) ≤ lim infi πi(cl(Dη)
c) = 0 by choosing

ε arbitrarily small in (4.26) and making γi → 0. Thus, supp(π) ⊂ cl(D), and we obtain in conclusion
that πf = π(f ◦ Φ(·, t)) for an arbitrary real, bounded, and Lipschitz continuous function f . Thus,
π ∈ I(Φ).

To establish (4.26) in the different domains case, we need the following lemma.

Lemma 4.6.3. Let Assumptions 4.3.6, 4.3.8, and 4.3.4–(a) hold true. Then, for all ε > 0, there exists
M > 0 such that

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π((DMγ)
c) ≤ ε.

Proof. We start by writing

d(xn+1) ≤ ‖xn+1 − Πcl(D)(xn)‖ ≤ ‖xn+1 − Πcl(D(ξn+1))(xn)‖+ ‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖.

On the one hand, we have by Assumption 4.3.8 and the nonexpansiveness of the resolvent that

E
a,γ
n ‖xn+1 − Πcl(D(ξn+1))(xn)‖ ≤ E

a,γ
n ‖Jγ(ξn+1, xn)− Πcl(D(ξn+1))(xn)‖+ γEa,γ

n ‖B(ξn+1, xn)‖
≤ Cγ(1 + ψγ(xn)) ,

on the other hand, since

‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖2 ≤ d(xn)
2 − d(xn, D(ξn+1))

2 (see (4.28)),

we can make use of Assumption 4.3.6 to obtain

E
a,γ
n ‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖ ≤ (Ea,γ

n ‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖2)1/2 ≤ ρd(xn) ,

where ρ ∈ [0, 1). We therefore obtain that

E
a,γ
n d(xn+1) ≤ ρd(xn) + Cγ(1 + ψγ(xn)).
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By iterating, we end up with the inequality

P n+1
γ (a,d) ≤ ρn+1

d(a) + Cγ
n∑

k=0

ρn−k(1 + P k
γ (a, ψγ)). (4.27)

From Assumption 4.3.4–(a) and Lem. 4.6.1, the inequality (4.13) in the statement of Prop. 4.3.3 is
satisfied with V (x) = ‖x − x⋆‖2, Q(x) = Ψ(x), α(γ) = γ/2, and β(γ) = Cγ2. By the first part of
this proposition, supγ∈(0,γ0] supπ∈I(Pγ) π(Ψ) <∞. In particular, noting that d(x) ≤ ‖x‖+ ‖Πcl(D)(0)‖,
we obtain that supγ∈(0,γ0] supπ∈I(Pγ) π(d) < ∞. Moreover, with a small adaptation of the proof of
Prop. 3.8.7 in Chap. 3 to the inequality of Lem. 4.6.1, we can show the slightly stronger result that
supγ∈(0,γ0] supπ∈I(Pγ) π(ψγ) <∞. Let γ ∈ (0, γ0] and π ∈ I(Pγ). We can integrate w.r.t π in (4.27) to
obtain

π(d) ≤ ρn+1π(d) + Cγ
n∑

k=0

ρn−k(1 + π(ψγ)).

Using Markov’s inequality, we have for all n ∈ N,

π((DMγ)
c) ≤ π(d)

Mγ
≤ ρn+1

Mγ
π(d) +

C

M

n∑

k=0

ρn−k(1 + π(ψγ)) ≤
ρn+1C

Mγ
+
C

M
.

By making n → ∞, we obtain that π((DMγ)
c) ≤ C/M , and the proof is concluded by taking M as

large as required.

Th. 4.3.2: proofs of the convergences (4.7), (4.9), and (4.10)

We need to check that the assumptions of Prop. 4.3.3 are satisfied. Lem. 4.6.1 shows that the in-
equality (4.13) is satisfied with V (x) = ‖x − x⋆‖2, Q(x) = Ψ(x), α(γ) = γ/2, and β(γ) = Cγ2, and
Assumption 4.3.4–(a) ensures that Ψ(x) −−−−→

‖x‖→∞
∞ as required.

When the assumptions of Th. 4.5.1, are satisfied, Lem. 4.6.2 shows with the help of Lem. 4.6.3 when
needed that any cluster point of I(P) belongs to I(Φ). The required convergences follow at once from
Prop. 4.3.3. Th. 4.3.2 is proven.

4.7 Proofs relative to Sec. 4.4

4.7.1 Proof of Prop. 4.4.1

It is well known that the coercivity or the supercoercivity of a function q ∈ Γ0(X) can be characterized
through the study of the recession function q∞ of q, which is the function in Γ0(X) whose epigraph is
the recession cone of the epigraph of q [101, §8], [76, § 6.8]. We recall the following fact.

Lemma 4.7.1. The function q ∈ Γ0(X) is coercive if and only if 0 is the only solution of the inequality
q∞(x) ≤ 0. It is supercoercive if and only if q∞ = ι{0}.

Proof. By [76, Prop. 6.8.4], lev≤0 q
∞ is the recession cone of any level set lev≤a q which is not empty

[101, Th. 8.6]. Thus, q is coercive if and only if lev≤0 q
∞ is the recession cone of a nonempty compact

set, hence equal to {0}. The second point follows from [10, Prop. 2.16].

Lemma 4.7.2. For each γ > 0, q∞ = (qγ)
∞.
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Proof. By [76, Th. 6.8.5], the Legendre-Fenchel transform (q∞)∗ of q∞ satisfies (q∞)∗ = ιcl dom q∗ . Since
qγ = q� ((2γ)−1‖ · ‖2) where � is the infimal convolution operator, (qγ)∗ = q∗+(γ/2)‖ · ‖2. Therefore,
dom q∗ = dom(qγ)

∗, which implies that (q∞)∗ = ((qγ)
∞)∗, and the result follows.

Lemma 4.7.3 ([66, Th. II.2.1]). Assume that q : Ξ × X → (−∞,∞] is a normal integrand such that
q(s, ·) ∈ Γ0(X) for almost every s. Assume that Q(x) :=

∫
q(s, x)µ(ds) belongs to Γ0(X). Then,

Q∞(x) =
∫
q∞(s, x)µ(ds), where q∞(s, ·) is the recession function of q(s, ·).

We now enter the proof of Prop. 4.4.1. Denote by gγ(s, ·) the Moreau envelope of the mapping
g(s, ·) defined above.

Lemma 4.7.4. Let Hypothesis H1 hold true. Then, for all γ > 0, the mapping

Gγ : x 7→
∫
gγ(s, x)µ(ds) ,

is well defined on X→ R, and is convex (hence continuous) on X. Moreover, Gγ ↑ G as γ ↓ 0.
Proof. Since x⋆ ∈ domG from Hypothesis H1, it holds from the definition of the function g that∫ |g(s, x⋆)|µ(ds) < ∞. Moreover, noting that ϕ(s) ∈ ∂g(s, x⋆), the inequality g(s, x) ≥ 〈ϕ(s), x −
x⋆〉+ g(s, x⋆) holds. Thus,

gγ(s, x) = inf
w

Å
g(s, w) +

1

2γ
‖w − x‖2

ã
≥ inf

w

Å
〈ϕ(s), w − x⋆〉+ g(s, x⋆) +

1

2γ
‖w − x‖2

ã

= 〈ϕ(s), x− x⋆〉+ g(s, x⋆)−
γ

2
‖ϕ(s)‖2.

Writing x = x+ − x− where x+ = x ∨ 0, this inequality shows that gγ(·, x⋆)− is integrable. Moreover,
since the Moreau envelope satisfies gγ(s, x) ≤ g(s, x), we obtain that gγ(·, x⋆)+ ≤ g(·, x⋆)+ ≤ |g(·, x⋆)|
who is also integrable. Therefore, |gγ(·, x⋆)| is integrable. For other values of x, we have

gγ(s, x) = gγ(s, x⋆) +
∫ 1

0
〈x− x⋆,∇gγ(s, x⋆ + t(x− x⋆))−∇gγ(s, x⋆)〉 dt+ 〈x− x⋆,∇gγ(s, x⋆)〉,

where ∇gγ(s, x) is the gradient of gγ(s, x) w.r.t. x. Using the well know properties of the Yosida
regularization (see Sec. 2.2.1), we obtain

|gγ(s, x)| ≤ |gγ(s, x⋆)|+
‖x− x⋆‖2

2γ
+ ‖x− x⋆‖ ‖ϕ(s)‖2.

Consequently, gγ(·, x) is integrable, thus, Gγ(x) is defined for all x ∈ X. The convexity and hence the
continuity of Gγ follow trivially from the convexity of gγ(s, ·).

Since the integrand gγ(s, x) increases as γ decreases, so is the case of Gγ(x). If x ∈ dom(G),
it holds that |g(·, x)| is integrable. On the one hand, gγ(s, x)+ ≤ |g(s, x)|, and on the other hand,
gγ(s, x)

− ≤ ‖ϕ(s)‖‖x−x⋆‖+ |g(s, x⋆)|+ ‖ϕ(s)‖2 for γ ≤ 2. By the dominated convergence, Gγ(x)→
G(x) as γ → 0. If x 6∈ domG, then

∫
gγ(s, x)

+µ(ds) → ∞ as γ → 0 by monotone convergence, and∫
gγ(s, x)

−µ(ds) remains bound. Thus, Gγ(x)→∞.

Lemma 4.7.5. Let Hypotheses H1 and H2 hold true. Then, for all γ small enough,

Gγ(x) + F (x)−Gγ(x⋆)− F (x⋆) ≤ 2ψγ(x) + γC,

where ψγ is given by (4.6).
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Proof. By the convexity of gγ(s, ·) and f(s, ·), we have

gγ(s, x− γ∇f(s, x))− gγ(s, x⋆) ≤ 〈∇gγ(s, x− γ∇f(s, x)), x− γ∇f(s, x)− x⋆〉, and

f(s, x)− f(s, x⋆)− 〈∇f(s, x⋆), x− x⋆〉 ≤ 〈∇f(s, x)−∇f(s, x⋆), x− x⋆〉.
Write gγ = gγ(s, x − γ∇f(s, x)), ∇f = ∇f(s, x), proxγ = proxγg(s,·)(x − γ∇f(s, x)), ϕ = ϕ(s), and
∇f⋆ = ∇f(s, x⋆). From these two inequalities, we obtain

gγ(s, x− γ∇f(s, x))− gγ(s, x⋆) + f(s, x)− f(s, x⋆)− 〈ϕ(s) +∇f(s, x⋆), x− x⋆〉
≤ 〈∇gγ, x− γ∇f − x⋆ + proxγ − proxγ〉+ 〈∇f −∇f⋆, x− x⋆〉 − 〈ϕ, x− x⋆ + proxγ − proxγ〉
= 〈∇gγ − ϕ, proxγ −x⋆〉+ 〈∇f −∇f⋆, x− x⋆〉+ γ‖∇gγ‖2 − γ〈ϕ,∇gγ +∇f〉.

Again, by the convexity of gγ(s, ·), we have

gγ(s, x− γ∇f(s, x)) ≥ gγ(s, x)− γ〈∇gγ(s, x),∇f(s, x)〉.
Thus, we obtain

gγ(s, x)− gγ(s, x⋆) + f(s, x)− f(s, x⋆)− 〈ϕ(s) +∇f(s, x⋆), x− x⋆〉
≤ 〈∇gγ − ϕ, proxγ −x⋆〉+ 〈∇f −∇f⋆, x− x⋆〉+ γ‖∇gγ‖2 − γ〈ϕ,∇gγ +∇f〉+ γ〈∇gγ(s, x),∇f〉.

We now bound the sum of the last two terms at the right hand side. By the γ−1-Lipschitz continuity
of the Yosida regularization, |〈∇gγ(s, x) − ∇gγ,∇f〉| ≤ ‖∇f‖2. Using in addition the inequalities
|〈a, b〉| ≤ ‖a‖2/2 + ‖b‖2/2 and ‖∇f‖2 ≤ 2‖∇f⋆‖2 + 2‖∇f −∇f⋆‖2, we obtain

γ〈∇gγ(s, x),∇f〉 − γ〈ϕ,∇gγ +∇f〉 = γ〈∇gγ(s, x)−∇gγ,∇f〉+ γ〈∇gγ,∇f〉 − γ〈ϕ,∇gγ +∇f〉
≤ 2γ‖∇f‖2 + γ‖∇gγ‖2 + γ‖ϕ‖2
≤ 4γ‖∇f −∇f⋆‖2 + 4γ‖∇f⋆‖2 + γ‖∇gγ‖2 + γ‖ϕ‖2.

Thus,

gγ(s, x)− gγ(s, x⋆) + f(s, x)− f(s, x⋆)− 〈ϕ(s) +∇f(s, x⋆), x− x⋆〉
≤ 2

Ä
〈∇gγ − ϕ, proxγ −x⋆〉+ 〈∇f −∇f⋆, x− x⋆〉+ γ‖∇gγ‖2 − 6γ‖∇f −∇f⋆‖2

ä

+ 16γ‖∇f −∇f⋆‖2 − 〈∇f −∇f⋆, x− x⋆〉+ γ‖ϕ‖2 + 4γ‖∇f⋆‖2 .
Taking the integral with respect to µ(ds) at both sides, the contribution of the inner product 〈ϕ +
∇f⋆, x− x⋆〉 vanishes. Recalling (4.6), we obtain

Gγ(x) + F (x)−Gγ(x⋆)− F (x⋆)
≤ 2ψγ(x)−

∫
(〈∇f −∇f⋆, x− x⋆〉 − 16γ‖∇f −∇f⋆‖2) dµ+ γ

∫
(‖ϕ‖2 + 4‖∇f⋆‖2) dµ .

Using Hypothesis H2, we obtain the desired result.

End of the proof of Prop. 4.4.1. Let γ0 > 0 be such that Lem. 4.7.5 holds true for all γ ∈ (0, γ0].
Denoting as q(s, ·)∞ the recession function of q(s, ·), we have

(Gγ0 + F )∞
(a)
=
∫

((gγ0(s, ·))∞ + f(s, ·)∞) µ(ds)
(b)
=
∫

(g(s, ·)∞ + f(s, ·)∞) µ(ds)
(c)
= (G+ F )∞ ,

where the equalities (a) and (c) are due to Lem. 4.7.3, and (b) is due to Lem. 4.7.2. Thus, by Lem. 4.7.1,
F + G is coercive (resp. supercoercive) if and only if F + Gγ0 is coercive (resp. supercoercive). Con-
sequently, since Gγ increases as γ decreases by Lem. 4.7.4, the hypotheses H1, H2, and H3–(a) (resp.,
H1, H2, H3–(b)) imply Assumption 4.3.4–(a) (resp. Assumption 4.3.4–(b)). Prop. 4.4.1 is proven.

72



4.7.2 Proof of Lem. 4.4.2

We first recall that ∂G(·) = ∫
∂g(s, ·)µ(ds), where

∂g(s, ·) =
®
α(0)−1∂h(u, ·) if i = 0,
∂ιCi otherwise,

for s = (u, i) ∈ Ξ. Let ψ be an arbitrary measurable Σ → X function such that ψ(u) ∈ ∂h(u, x⋆) for
ζ-almost all u ∈ Σ (such functions are called measurable selections of the set-valued function ∂h(·, x⋆)).
For each d ∈ X, it holds by the convexity of h(u, ·) that

h(u, x⋆ + d) ≥ h(u, x⋆) + 〈ψ(u), d〉, and

h(u, x⋆ − d) ≥ h(u, x⋆)− 〈ψ(u), d〉,
for ζ-almost all u ∈ Σ. Equivalently,

h(u, x⋆)− h(u, x⋆ − d) ≤ 〈ψ(u), d〉 ≤ h(u, x⋆ + d)− h(u, x⋆).
Thus, if ‖d‖ is small enough but otherwise d is arbitrary, we get from the second assumption of the
statement that 〈ψ(u), d〉 is ζ-square-integrable. Thus,

∫ ‖ψ(u)‖2 ζ(du) < ∞ (see [66, Th. II.4.2] for a
similar argument). Now, writing s = (u, i) ∈ Ξ, every measurable selection φ of ∂g(·, x⋆) is of the form

φ(s) =

®
α(0)−1ψ(u) if i = 0,
θi otherwise,

where ψ is a measurable selection of ∂h(·, x⋆), and θi is an element of ∂ιCi(x⋆). By what precedes, it is
immediate that

∫ ‖φ‖2dµ <∞. By assumption, there exists a measurable selection ϕ of ∂g(·, x⋆) such
that

∫
(ϕ(s)+∇f(u, x⋆))µ(ds) = 0. Using the first assumption, we get that the couple (ϕ(s),∇f(u, x⋆))

is a L2 representation of x⋆.

4.7.3 Proof of Prop. 4.4.4

The assertions about Z(A) are straightforward. A small calculation shows that

Jγ(s, x) = (I + γH(s))−1(x− γd(s)), and

Aγ(s, x) = A(s, Jγ(s, x)) = (I + γH(s))−1(H(s)x+ d(s)).

Using these expressions, we obtain

ψγ(x) =
∫ ß
〈A(s, Jγ(s, x))−H(s)x⋆ − d(s), Jγ(s, x)− x⋆〉+ γ‖A(s, Jγ(s, x))‖2

™
µ(ds)

=
∫ ß

(Jγ(s, x)− x⋆)T
H(s) +HT (s)

2
(Jγ(s, x)− x⋆) + γ‖A(s, Jγ(s, x))‖2

™
µ(ds).

Since (I + γH(s))−1 and H(s)(I + γH(s))−1 are respectively the resolvent and the Yosida regular-
ization of the linear, monotone and maximal operator H(s), it holds that ‖(I + γH(s))−1‖ ≤ 1, and
‖γH(s)(I + γH(s))−1‖ ≤ 1.

Denoting as ‖ · ‖S the semi norm associated with any semidefinite nonnegative matrix S, we write

ψγ(x) ≥
∫
‖Jγ(s, x)− x⋆‖2(H(s)+HT (s))/2 µ(ds)

=
∫ ∥∥∥∥(I + γH(s))−1

Å
(x− x⋆)− γ(H(s)x⋆ + d(s))

ã∥∥∥∥
2

(H(s)+HT (s))/2
µ(ds).
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Using the inequality ‖a− b‖2 ≥ 0.5‖a‖2 − ‖b‖2, we obtain that ψγ(x) ≥ 0.5Wγ(x)− Uγ, with

Wγ(x) =
∫ ∥∥∥(I + γH(s))−1(x− x⋆)

∥∥∥
2

(H(s)+HT (s))/2
µ(ds), and

Uγ = γ2
∫ ∥∥∥(I + γH(s))−1(H(s)x⋆ + d(s))

∥∥∥
2

(H(s)+HT (s))/2
µ(ds)

= γ
∫
‖H(s)x⋆ + d(s))‖2γIγ(s) µ(ds).

with

Iγ(s) = (I + γH(s))−TH(s) +HT (s)

2
(I + γH(s))−1.

From the inequalities shown above, we have
∥∥∥∥γIγ(s)

∥∥∥∥ ≤ 1.

Therefore,

0 ≤ Uγ ≤ γ
∫
‖H(s)x⋆ + d(s)‖2 µ(ds) ≤ γC.

Turning to Wγ(x), it holds that

Wγ(x) = (x− x⋆)T
Å∫

Iγ(s)µ(ds)
ã
(x− x⋆),

Since ‖Iγ(s)‖ ≤
∥∥∥H(s)+HT (s)

2

∥∥∥ and Iγ(s) →γ→0 (H(s) +HT (s))/2, it holds by dominated convergence

that
∫
Iγ(s)µ(ds)→γ→0 H +H

T . If H +H
T > 0, then there exists γ0 > 0 such that

inf
γ∈(0,γ0]

λmin

Å∫
Iγ(s)µ(ds)

ã
> 0,

where λmin is the smallest eigenvalue. Thus, Assumption 4.3.4–(c) is verified.

4.7.4 Proof of Prop. 4.4.5

Since Aγ(s, ·) is 1/γ-Lipschitz, ‖Aγ(s, x − γB(s, x))‖ ≥ ‖Aγ(s, x)‖ − ‖B(s, x)‖ ≥ ‖Aγ(s, x)‖ −
‖B(s, x)− B(s, x⋆)‖ − ‖B(s, x⋆)‖. Therefore,

ψγ(x)

≥
∫ ß
〈B(s, x)− B(s, x⋆), x− x⋆〉 − 6γ‖B(s, x)− B(s, x⋆)‖2 + γ‖Aγ(s, x− γB(s, x))‖2

™
µ(ds)

≥
∫ ß
〈B(s, x)− B(s, x⋆), x− x⋆〉 − 8γ‖B(s, x)− B(s, x⋆)‖2 + (γ/2)‖Aγ(s, x)‖2

− 2γ‖B(s, x⋆)‖2
™
µ(ds)

≥ γ

2

∫
‖Aγ(s, x)‖2 µ(ds)− γC

for γ small enough, by Hypothesis H4. We now have

γ
∫
‖Aγ(s, x)‖2 µ(ds) =

1

γ

∫
‖x− Jγ(s, x)‖2 µ(ds) ≥

1

γ

∫
d(s, x)2 µ(ds) ≥ C

γ
d(x)2

thanks to Hypothesis H2. The result follows from the boundedness of D.
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4.7.5 Proof of Prop. 4.4.6

To prove this proposition, we start with the following result.

Lemma 4.7.6. Let A ∈M (X) be such that

∃(x∗, y∗) ∈ gr(A), ∃δ > 0, S(x∗, δ) ⊂ int(domA), and ∀x ∈ S(x∗, δ), inf
y∈A(x)

〈y − y∗, x− x∗〉 > 0.

Then, assuming that domA is unbounded,

lim inf
x∈domA,‖x‖→∞

infy∈A(x)〈y − y∗, x− x∗〉
‖x‖ > 0.

Proof. Given a vector u ∈ X, define the function

fu(λ) = inf
y∈A(x∗+λu)

〈y − y∗, u〉

for all λ ≥ 0 such that x∗ + λu ∈ domA. For all λ1 > λ2 in dom fu, and all y1 ∈ A(x∗ + λ1u) and
y2 ∈ A(x∗ + λ2u), we have

〈y1 − y∗, u〉 − 〈y2 − y∗, u〉 = 〈y1 − y2, u〉 =
1

λ1 − λ2
〈y1 − y2, x∗ + λ1u− (x∗ + λ2u)〉 ≥ 0.

Passing to the infima, we obtain that fu(λ1) ≥ fu(λ2), in other words, fu is non decreasing.
For all x ∈ domA such that ‖x− x∗‖ ≥ δ, we have by setting u = δ(x− x∗)/‖x− x∗‖

inf
y∈A(x)

〈y − y∗, x− x∗〉 =
‖x− x∗‖

δ
fu(δ

−1‖x− x∗‖) ≥
‖x− x∗‖

δ
fu(1).

For any u ∈ S(0, δ), it holds by assumption that fu(1) = infy∈A(x∗+u)〈y − y∗, u〉 is positive. We shall
show that fu(1) is lower semicontinuous (lsc) as a function of u on the sphere S(0, δ). Since this sphere
is compact, fu(1) attains its infimum on S(0, δ), and the lemma will be proven.

It is well-known that A is locally bounded near any point in the interior if its domain [36, Prop. 2.9]
[12, §21.4]. Thus, by the closedeness of gr(A), the inf in the expression of fu(1) is attained. Let
un → u, and write fun

(1) = 〈yn− y∗, un〉. By the maximality of A, we obtain that for any accumulation
point y of (yn) (who exists by the local boundedness), it holds that (u, y) ∈ gr(A). Consequently,
lim infn fun

(1) ≥ fu(1), in other words, fu(1) is lsc.

We now prove Prop. 4.4.6. Let us write

f(γ, s, x) =
〈Aγ(s, x)− ϕ(s), Jγ(s, x)− x⋆〉

‖x‖ +
‖x− Jγ(s, x)‖2

γ‖x‖ , and

g(s, x) = inf
γ∈(0,1]

f(γ, s, x).

Note that ψγ(x)/‖x‖ =
∫
f(γ, s, x)µ(ds). We shall show that lim inf‖x‖→∞ g(s, x) > 0 for all s ∈ Σ.

Assume the contrary, namely, that there exist s ∈ Σ and ‖xk‖ → ∞ such that g(s, xk) → 0. In these
conditions, there exists a sequence (γk) in (0, 1] such that f(γk, s, xk) → 0. By inspecting the second
term in the expression of f(γk, s, xk), we obtain that ‖Jγk(s, xk)‖/‖xk‖ → 1. Rewriting the first term
as

‖Jγk(s, xk)‖
‖xk‖

〈Aγk(s, xk)− ϕ(s), Jγk(s, xk)− x⋆〉
‖Jγk(s, xk)‖

,
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and recalling that Aγk(s, xk) ∈ A(s, Jγk(s, xk)), Lem. 4.7.6 shows that the lim inf of this term is positive,
which raises a contradiction.

Note that

inf
γ∈(0,1]

ψγ(x)

‖x‖ ≥
∫
g(s, x)µ(ds).

Using Fatou’s lemma, we obtain Assumption 4.3.4–(a).

4.8 Proofs relative to Sec. 4.5

4.8.1 Proof of Lem. 4.5.3

Let ε be the smallest of the three constants (also named ε) in Assumptions 4.3.1, 4.3.3 and 4.3.7
respectively where K = B(R). For every a, γ, the following holds for P̄a,γ-almost all x = (xn : n ∈ N):

d(xn+1)✶‖xn+1‖≤R = d(xn+1)✶‖xn+1‖≤R(✶‖xn‖≤R + ✶‖xn‖>R) = d(xn+1)✶‖xn+1‖≤R✶‖xn‖≤R

≤ d(xn+1)✶‖xn‖≤R

= ‖xn+1 − ΠD(xn+1)‖✶‖xn‖≤R

≤ ‖xn+1 − ΠD(xn)‖✶‖xn‖≤R .

Using the notation Ē
a,γ
n = Ē

a,γ( . |x0, . . . , xn), we thus obtain:

Ē
a,γ
n (d(xn+1)

1+ε
✶‖xn+1‖≤R) ≤

∫
‖Jγ(s, xn − γB(s, xn))− ΠD(xn)‖1+ε

✶‖xn‖≤R dµ(s) .

By the convexity of ‖ · ‖1+ε, for all α ∈ (0, 1),

‖x+ y‖1+ε =
1

α1+ε

∥∥∥∥αx+ (1− α) α

1− αy
∥∥∥∥
1+ε

≤ α−ε‖x‖1+ε + (1− α)−ε‖y‖1+ε .

Therefore, by setting δγ(s, a) := ‖Jγ(s, a− γB(s, a))− ΠD(s)(a)‖,

Ē
a,γ
n (d(xn+1)

1+ε
✶‖xn+1‖≤R) ≤ α−ε

∫
δγ(s, xn)

1+ε
✶‖xn‖≤R dµ(s)

+ (1− α)−ε
∫
‖ΠD(s)(xn)− ΠD(xn)‖1+ε

✶‖xn‖≤R dµ(s) .

Note that for every s ∈ Ξ, a ∈ X,

‖δγ(s, a)‖ ≤ ‖Jγ(s, a)− ΠD(s)(a)‖+ γ‖B(s, a)‖ .

Hence, by Assumptions 4.3.7 and 4.3.3, there exists a deterministic constant C > 0 s.t.

sup
n

∫
δγ(s, xn)

1+ε
✶‖xn‖≤R dµ(s) ≤ Cγ1+ε .

Moreover, since Πcl(D(s)) is a firmly non expansive operator [12, Chap. 4], it holds that for all u ∈ cl(D),
and for µ-almost all s,

‖Πcl(D(s))(xn)− u‖2 ≤ ‖xn − u‖2 − ‖Πcl(D(s))(xn)− xn‖2.
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Taking u = Πcl(D)(xn), we obtain that

‖Πcl(D(s))(xn)− Πcl(D)(xn)‖2 ≤ d(xn)
2 − d(xn, D(s))2. (4.28)

Making use of Assumption 4.3.6, and assuming without loss of generality that ε ≤ 1, we obtain

∫
‖Πcl(D(s))(xn)− Πcl(D)(xn)‖1+ε dµ(s) ≤

Å∫
‖Πcl(D(s))(xn)− Πcl(D)(xn)‖2 dµ(s)

ã(1+ε)/2

≤ α′
d(xn)

1+ε ,

for some α′ ∈ [0, 1). Choosing α close enough to zero, we obtain that there exists ρ ∈ [0, 1) such that

Ē
a,γ
n

Ç
d(xn+1)

1+ε

γ1+ε
✶‖xn+1‖≤R

å
≤ ρ

d(xn)
1+ε

γ1+ε
✶‖xn‖≤R + C.

Taking the expectation at both sides, iterating, and using the fact that d(x0) = d(a) < Mγ, we obtain
that

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ē
a,γ

(Ç
d(xn)

γ

å1+ε

✶‖xn‖≤R

)
< +∞ . (4.29)

Since Aγ(s, ·) is γ−1-Lipschitz continuous, ‖Aγ(s, x− γB(s, x))‖ ≤ ‖Aγ(s, x)‖+ ‖B(s, x)‖. Moreover,
choosing measurably x̃ ∈ D in such a way that ‖x− x̃‖ ≤ 2d(x), we obtain ‖Aγ(s, x)‖ ≤ ‖A0(s, x̃)‖+
2d(x)

γ
. Therefore, there exists R′ depending only on R and D s.t.

‖Aγ(s, x)‖✶‖x‖≤R ≤ ‖A0(s, x̃)‖✶‖x̃‖≤R′ + 2
d(x)

γ
✶‖x‖≤R .

Thus,

Ē
a,γ
n (‖Zγ

n+1‖1+ε) =
∫
‖hγ,R(s, xn)‖1+εdµ(s)

=
∫
‖B(s, xn) + Aγ(s, xn − γB(s, xn))‖1+ε

✶‖xn‖≤R dµ(s)

≤
∫ Ç

2‖B(s, xn)‖+ ‖A0(s, x̃n)‖+ 2
d(xn)

γ

å1+ε

✶‖xn‖≤R′ dµ(s) . (4.30)

By Assumption 4.3.3,
∫ ‖B(s, xn)‖1+ε

✶‖xn‖≤R dµ(s) ≤ C where the constant C depends only on ε and
R. By Assumption 4.3.1, we also have

∫ ‖A0(s, xn)‖1+ε
✶‖xn‖≤R dµ(s) ≤ C for some (other) constant

C. The third term is controlled by Eq. (4.29). Taking expectations, the bound (4.21) is established.

4.8.2 Proof of Lem. 4.5.4

The first point can be obtained by straightforward application of Prokhorov and Skorokhod’s theorems.
However, to verify the second point, we need to construct the sequences more carefully. Choose ε > 0
as in Lem. 4.5.3. We define the process Y γ : XN → R

N s.t. for every n ∈ N,

Y γ
n (x) :=

n−1∑

k=0

d(xk)
1+ε/2

γε/2
✶‖xk‖≤R ,
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and we denote by (X, Y γ) : XN → (X × R)N the process given by (X, Y γ)n(x) := (xn, Y
γ
n (x)). We

define for every n, Z̃γ
n+1 := γ−1((X, Y γ)n+1 − (X, Y γ)n). By Lem. 4.5.3, it is easily seen that

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ē
a,γ
Ä
‖Z̃γ

n‖✶‖Z̃γ
n‖>A

ä A→+∞−−−−→ 0 .

We now apply Lem. 3.6.2, only replacing X by X×R and P̄
a,γ by P̄a,γ(X, Y γ)−1. By this lemma, the family

{P̄a,γ(X, Y γ)−1X
−1

γ : a ∈ K ∩DγM , γ ∈ (0, γ0]} is tight, where X
−1

γ : (X×R)N → C(R+,X×R) is the
piecewise linear interpolated process, defined in the same way as Xγ only substituting X×R with X in the

definition. By Prokhorov’s theorem, one can choose the subsequence (an, γn) s.t. P̄an,γn(X, Y γn)−1X
−1

γn

converges narrowly to some probability measure Υ on X×R. By Skorokhod’s theorem, we can define a
stochastic process ((xn, yn) : n ∈ N) on some probability space (Ω′,F ′,P′) into C(R+,X × R), whose
distribution for a fixed n coincides with P̄

an,γn(X, Y γn)−1X
−1

γn , and s.t. for every ω ∈ Ω′, (xn(ω), yn(ω))→
(z(ω),w(ω)), where (z,w) is a r.v. defined on the same space. In particular, the first marginal distribution
of P̄an,γn(X, Y γn)−1X

−1

γn coincides with P̄
an,γnX−1

γn . Thus, the first point is proven.
For every γ ∈ (0, γ0], introduce the mapping

Γγ : C(R+,X) → C(R+,R)

x 7→
Ç
t 7→

∫ t

0
(γ−1

d(x(γ⌊u/γ⌋)))1+ε/2
✶‖x(γ⌊u/γ⌋)‖≤Rdu

å
.

We denote by X−1
γ : RN → C(R+,R) the piecewise linear interpolated process, defined in the same way

as Xγ only substituting R with X in the definition. It is straightforward to show that Xγ ◦Y γn = Γγ ◦Xγ.
For every n, by definition of the couple (xn, yn), the distribution under P′ of the r.v. Γγn(xn)−yn is equal
to the distribution of Γγn◦Xγn−Xγn◦Y γn under P̄an,γn . Therefore, P′-a.e. and for every n, yn = Γγn(xn).
This implies that, P′-a.e., Γγn(xn) converges (uniformly on compact set) to w. On that event, this implies
that for every T ≥ 0, Γγn(xn)(T )→ w(T ), which is finite. Hence, supn Γγn(xn)(T ) <∞ on that event,
which proves the second point.

4.8.3 Proof of Lem. 4.5.5

Define ca := supx∈B(R)∩D
∫ ‖A0(s, x)‖1+ε/2dµ(s) and cb := supx∈B(R)

∫ ‖B(s, x)‖1+ε/2dµ(s) (these
constants being finite by Assumptions 4.3.1 and 4.3.3). By the same derivations as those leading to
Eq. (4.30), we obtain

∫
‖vn(s, t)‖1+ε/2dµ(s) ≤ cb

∫
‖wn(s, t)‖1+ε/2dµ(s) ≤ C

(
d(un(t))

1+ε/2

γ1+ε/2
✶‖un(t)‖≤R + ca + cb

)
.

The proof is concluded by applying Lem. 4.5.4.

4.8.4 Proof of Lem. 4.5.6

The sequence ((vn, wn, ‖wn(·, ·)‖, ‖vn(·, ·)‖)) converges weakly to (v, w, ṽ, w̃) in L1+ε/2
X2×R2 along some

subsequence (n.b.: compactness and sequential compactness are the same notions in the weak topology
of L1+ε/2

X2×R2). We still denote by ((vn, wn, ‖vn‖, ‖wn‖)) this subsequence. By Mazur’s theorem, there
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exists a function J : N→ N and a sequence of sets of weights {αk,n : n ∈ N, k = n . . . , J(n) : αk,n ≥
0,
∑J(n)

k=n αk,n = 1} such that the sequence of functions

(v̄n, w̄n, v̂n, ŵn) : (s, t) 7→
J(n)∑

k=n

αk,n(vk(s, t), wk(s, t), ‖vk(s, t)‖, ‖wk(s, t)‖)

converges strongly to (v, w, ṽ, w̃) in that space, as n → ∞. Taking a further subsequence (which we
still denote by (v̄n, w̄n, v̂n, ŵn)) we obtain the µ⊗λT -almost everywhere convergence of (v̄n, w̄n, v̂n, ŵn)
to (v, w, ṽ, w̃). Consider a negligible set N ∈ G ⊗B([0, T ]) such that for all (s, t) /∈ N ,

(v̄n(s, t), w̄n(s, t), v̂n(s, t), ŵn(s, t))→ (v(s, t), w(s, t), ṽ(s, t), w̃(s, t))

and ṽ(s, t), w̃(s, t) are finite. We shall prove that for every (s, t) /∈ N , (z(t), (v + w)(s, t)) ∈
gr(HR(s, ·)). First consider the case where ‖z(t)‖ > R. Since un(t) → z(t), there exists a posi-
tive integer n0 such that for every n ≥ n0, ‖un(t)‖ > R. Hence, vn(s, t) and wn(s, t) are equal
to zero for every n ≥ n0 and similarly for v̄n(s, t) and w̄n(s, t). For every (s, t) /∈ N such that
‖z(t)‖ > R, (v + w)(s, t) = 0 and (z(t), (v + w)(s, t)) ∈ gr(HR(s, ·)). Then, if ‖z(t)‖ = R,
(z(t), (v+w)(s, t)) ∈ gr(HR(s, ·)) obviously. Finally, assume that ‖z(t)‖ < R. In this case the condition
(z(t), (v + w)(s, t)) ∈ gr(HR(s, . )) is equivalent to:

(z(t),−(v + w)(s, t)) ∈ gr(A(s, ·) + B(s, ·)) . (4.31)

Besides, there exists a positive integer n0 such that for every n ≥ n0, ‖un(t)‖ < R. To show Eq. (4.31),
consider p ∈ D(s), qa ∈ A(s, p) and qb ∈ B(s, p). Decompose:

〈qb + v̄n(s, t) + qa + w̄n(s, t), p− z(t)〉 = An +Bn + Cn , (4.32)

where

An =
J(n)∑

k=n

αk,n〈qa + wk(s, t), p− Jγk(s, uk(t)− γkB(s, uk(t)))〉

Bn =
J(n)∑

k=n

αk,n〈qb + vk(s, t), p− uk(t)〉

Cn =
J(n)∑

k=n

αk,n〈qa + wk(s, t), Jγk(s, uk(t)− γkB(s, uk(t)))− uk(t)〉 .

The left hand side of (4.32) converges to 〈qa + w(s, t), p − z(t)〉 + 〈qb + v(s, t), p − z(t)〉. The terms
An and Bn are nonnegative by monotonicity of A(s, ·) and B(s, ·) for every n ≥ n0. Moreover,

Cn =
J(n)∑

k=n

αk,n〈qa + wk(s, t), Jγk(s, uk(t)− γkB(s, uk(t)))− uk(t)〉

=
J(n)∑

k=n

αk,n〈qa + wk(s, t), Jγk(s, uk(t)− γkB(s, uk(t)))− (uk(t)− γkB(s, uk(t)))〉

+
J(n)∑

k=n

αk,n〈qa + wk(s, t),−γkB(s, uk(t))〉

=
J(n)∑

k=n

αk,nγk〈qa + wk(s, t), wk(s, t) + vk(s, t)〉.

We conclude that Cn → 0 and 〈qa +w(s, t) + qb + v(s, t), p− z(t)〉 ≥ 0. As A(s, ·) +B(s, ·) ∈M (X),
this implies that Eq. (4.31) holds.
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Chapter 5

A Constant Step Stochastic

Douglas-Rachford Algorithm with

Application to Non Separable

Regularizations

The Douglas Rachford algorithm is a classical algorithm to solve a composite optimization problem. It
involves the computation of the proximity operators of the two functions separately and enjoys more
numerical stability than the proximal gradient algorithm. In this chapter, we bring the tools from the
previous chapter to study a stochastic version of the constant step Douglas Rachford algorithm. In this
algorithm, a random realization of both functions is used at each iteration to perform a Douglas Rachford
step. Application to structured regularizations and distributed optimization is provided. Theoretical
results are supported by the technical report in Appendix A.

5.1 Introduction

Many applications in the fields of machine learning [35] and signal processing [44] require the solution
of the programming problem

min
x∈X

F (x) +G(x) (5.1)

where X is an Euclidean space, F, G ∈ Γ0(X). In these contexts, F often represents a cost function and
G a regularization term. The Douglas-Rachford algorithm is one of the most popular approach towards
solving Problem (5.1). Given γ > 0, the algorithm is written

yn+1 = proxγF (xn)

zn+1 = proxγG(2yn+1 − xn)
xn+1 = xn + zn+1 − yn+1. (5.2)

Assuming that a standard qualification condition holds and that the set of solutions argminF + G
of (5.1) is not empty, the sequence (yn)n converges to an element in argminF + G as n → +∞
([78, 56]).

In this chapter, we study the case where F and G are integral functionals of the form

F (x) = Eξ(f(ξ, x)), G(x) = Eξ(g(ξ, x))
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where ξ is a random variable (r.v) from some probability space (Ω,F ,P) to a measurable space (Ξ,G),
with distribution µ, and where f, g : Ξ×X→ (−∞,+∞] are normal convex integrand. In this context,
the stochastic Douglas Rachford algorithm aims to solve Problem (5.1) by iterating

yn+1 = proxγf(ξn+1,·)(xn)

zn+1 = proxγg(ξn+1,·)(2yn+1 − xn)
xn+1 = xn + zn+1 − yn+1 , (5.3)

where (ξn)n is a sequence of i.i.d copies of the random variable ξ and γ > 0 is the constant step size.
Compared to the "deterministic" Douglas Rachford algorithm (5.2), the stochastic Douglas Rachford
algorithm (5.3) is an online method. The constant step size used make it implementable in adaptive
signal processing or online machine learning contexts. In this algorithm, the function F (resp. G) is
replaced at each iteration n by a random realization f(ξn, ·) (resp. g(ξn, ·)). It can be implemented in the
case where F (resp. G) cannot be computed in its closed form or in the case where the computation of
its proximity operator is demanding. Compared to other online optimization algorithm like the stochastic
subgradient algorithm, the algorithm (5.3) benefits from the numerical stability of stochastic proximal
methods [108, 122].

Stochastic version of the Douglas Rachford algorithm have been considered in [44, 116]. These papers
consider the case where G is deterministic, i.e is not written as an expectation and F is written as an
expectation that reduces to a sum. The algorithms [105, 49] are generalizations of a partially stochastic
Douglas Rachford algorithm where G is deterministic. The convergence of these algorithms is obtained
under a summability assumption of the noise over the iterations.

In this chapter we provide theoretical basis for the algorithm (5.3) and convergence results based
on the technical report [110]. We also provide applications to optimization problems regularized by the
overlapping group lasso and we provide an application to a target tracking problem involving distributed
optimization (based on [89]).

Chapter organization. The next section 5.2 is devoted to the statement of the main convergence
result. In Sec. 5.3, an outline of the proof of the result in Sec. 5.2 is provided. Finally, the algorithm (5.3)
is implemented to solve a regularized problem (resp. a distributed optimization problem) in Sec. 5.4 (resp.
Sec. 5.5).

From now on, we shall state explicitly the dependence of the iterates of the algorithm in the step size
and the starting point. Namely, we shall denote (xν,γn )n the sequence (xn)n generated by the stochastic
Douglas Rachford algorithm (5.3) with step γ, such that the distribution of xν,γ0 over X is ν. If ν = δa,
where δa is the Dirac measure at the point a ∈ X, we shall prefer the notation xa,γn .

5.2 Main convergence theorem

For every s ∈ Ξ, the domain of g(s, ·) is denoted D(s) and D is their µ-essential intersection (see
Sec. 2.3).

Consider the following assumptions.

Assumption 5.2.1. For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K∩D

∫
‖∂0g(s, x)‖1+ε µ(ds) <∞.
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Assumption 5.2.2. For µ-a.e s ∈ Ξ, f(s, ·) is differentiable. Moreover, there exists ε > 0, x0 ∈ X such
that ∫

‖∇f(s, x0)‖1+ε µ(ds) <∞ .

Assumption 5.2.3. There exists L > 0 such that ∇f(s, ·) is µ-a.e, a L-Lipschitz continuous function.

Assumption 5.2.4. ∀x ∈ X,
∫
d(x,D(s))2 µ(ds) ≥ Cd(x)2, where d(·) is the distance function to D.

Assumption 5.2.5. For every compact set K ⊂ X, there exists ε, C, γ0 > 0 such that for all γ ∈ (0, γ0]
and all x ∈ K,

1

γ1+ε

∫
‖ proxγg(s,·)(x)− Πcl(D(s))(x)‖1+ε µ(ds) < C .

Assumption 5.2.6. There exists x⋆ ∈ argminF + G and ϕ ∈ S
2
∂g(·,x⋆)

(see Sec. 2.3) such that
∇f(·, x⋆) ∈ L2(Ξ,X) and

∫ ∇f(s, x⋆)µ(ds) +
∫
ϕ(s)µ(ds) = 0.

Assumption 5.2.7. The function F +G satisfies one of the following properties:

(a) F +G is coercive i.e F (x) +G(x) −→‖x‖→+∞ +∞

(b) F +G is supercoercive i.e F (x)+G(x)
‖x‖ −→‖x‖→+∞ +∞.

Assumption 5.2.8. There exists γ0 > 0, such that for all γ ∈ (0, γ0] and all x ∈ X,

∫
‖∇fγ(s, x)‖+

1

γ
‖ proxγg(s,·)(x)− Πcl(D(s))(x)‖µ(ds)

≤ C(1 + |F γ(x) +Gγ(x)|) .

where fγ(s, ·) is the Moreau envelope of f(s, ·).

Theorem 5.2.1. Let Assumptions 5.2.1– 5.2.8 hold true. Then, for each probability measure ν over X
having a finite second moment, for any ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P (d(xν,γk , argmin(F +G)) > ε) −−→
γ→0

0 .

Moreover, if Assumption 5.2.7–(b) holds true, then

lim sup
n→∞

P (d (x̄ν,γn , argmin(F +G)) ≥ ε) −−→
γ→0

0, and

lim sup
n→∞

d (E(x̄ν,γn ), argmin(F +G)) −−→
γ→0

0 .

where x̄ν,γn = 1
n

∑n
k=1 x

ν,γ
k .

Loosely speaking, the theorem states that, with high probability, the iterates (xν,γn )n stay close to the
set of solutions argminF + G as n → ∞ and γ → 0. This theorem is reminiscent of Corollary 4.4.3.
Moreover, Assumptions 5.2.1– 5.2.8 are reminiscent of Assumptions C1– C4 of Chap. 4. Note that
Assumption 5.2.1 combined with Assumption 5.2.3 implies that for every compact set K ⊂ X, there
exists ε > 0 such that

sup
x∈K

∫
‖∇f(s, x)‖1+ε µ(ds) <∞ .
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Since f(s, ·), g(s, ·) ∈ Γ0(X), and f(s, ·) is differentiable, [103]

∂(F +G)(x) = ∇F (x) + ∂G(x) = Eξ(∇f(ξ, x)) + Eξ(∂g(ξ, x)),

where the set E(∂g(ξ, x)) is defined by its selection integral, see Eq. 2.4. Therefore, using Fermat’s
rule, if x ∈ argminF + G, then there exists ϕ ∈ L1(Ξ,X), such that ϕ(s) ∈ ∂g(s, x) µ-a.s, and∫ ∇f(s, x)µ(ds) + ∫

ϕ(s)µ(ds) = 0. We refer to (∇f(·, x), ϕ) as a representation of the solution x.
Assumption 5.2.6 ensures the existence of x⋆ ∈ argminF + G with a representation ∇f(·, x), ϕ ∈
L2(Ξ,X).

5.3 Outline of the convergence proof

This section is devoted to sketching the proof of the convergence of the stochastic Douglas Rachford
algorithm. The approach follows the same steps as Chap. 4 and is detailed in the Technical Report [110].
The first step of the proof is to study the dynamical behavior of the iterates (xa,γn )n where a ∈ D.
Consider the continuous time stochastic process xa,γ obtained by linearly interpolating with time interval
γ the iterates (xa,γn ):

xa,γ(t) = xa,γn + (t− nγ)x
a,γ
n+1 − xa,γn

γ
, (5.4)

for all t ≥ 0 such that nγ ≤ t < (n + 1)γ, for all n ∈ N. Let Assumptions 5.2.1–5.2.5 1 hold true.
Consider the set C(R+,X) of continuous functions from R+ to X equipped with the topology of uniform
convergence on the compact intervals. It is shown that the continuous time stochastic process xa,γ

converges weakly over R+ (i.e in distribution in C(R+,X)) as γ → 0. Moreover, the limit is proven to
be the unique absolutely continuous function x over R+ satisfying x(0) = a and for almost every t ≥ 0,
the Differential Inclusion (DI),

ẋ(t) ∈ −(∇F + ∂G)(x(t)), (5.5)

(see Sec. 2.2.2). The semiflow associated with the DI is denoted Φ. The weak convergence of (xa,γ) to
x is not enough to study the long term behavior of the iterates (xa,γn )n. The second step of the proof is
to prove a stability result for the Feller Markov chain (xa,γn )n. Denote by Pγ its transition kernel. The
deterministic counterpart of this step of the proof is the so-called Fejér monotonicity of the sequence
(xn) of the algorithm (5.2). Even if some work has been done [24, 48] to generalize the latter Fejér
monotonicity to the stochastic setting, there is no immediate way to adapt it to our framework. As an
alternative, we assume Hypotheses 5.2.3-5.2.6, and prove the existence of positive numbers α,C and γ0,
such that for every γ ∈ (0, γ0],

En‖xa,γn+1 − x⋆‖2 ≤‖xa,γn − x⋆‖2 (5.6)

− αγ(F γ +Gγ)(xa,γn ) + γC.

In this inequality, En denotes the conditional expectation with respect to the sigma-algebra σ(xγ0 , . . . , x
γ
n)

and
F γ(x) =

∫
fγ(s, x)µ(ds), Gγ(x) =

∫
gγ(s, x)µ(ds).

Since γ 7→ F γ(x) + Gγ(x) is decreasing (see Sec. A or Chap. 4, End of the proof of Prop. 4.4.1),
the function F γ + Gγ in Eq. (5.6) can be replaced by F γ0 + Gγ0 . Besides, the coercivity of F + G

1In the case where the domains are common, i.e s 7→ D(s) is µ-a.s constant, the moment Assumptions 5.2.1 and 5.2.2
are sufficient to state the dynamical behavior result. See Sec. 5.5 for an applicative context where the domains D(s) are
distinct.
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(Assumption 5.2.7) implies the coercivity of F γ0 + Gγ0 (see Sec. A or Chap. 4, End of the proof of
Prop. 4.4.1). Therefore, assuming 5.2.3–5.2.7 and setting Ψ = F γ0 +Gγ0 , there exist positive numbers
α, C and γ0, such that for every γ ∈ (0, γ0],

En‖xa,γn+1 − x⋆‖2 ≤ ‖xa,γn − x⋆‖2 − αγΨ(xa,γn ) + γC. (5.7)

Equation (5.7) can alternatively be seen as a tightness result. This is the purpose of Chap. 3,
Sec. 3.8.3. It implies that the set Iγ of invariant measures of the Markov kernel Pγ is not empty for
every γ ∈ (0, γ0], and that the set

Inv = ∪γ∈(0,γ0]Iγ (5.8)

is tight.
It remains to characterize the cluster points of Inv as γ → 0. To that end, the dynamical behavior

result and the stability result are combined. Let Assumptions 5.2.1– 5.2.8 hold true. 2 Then, the set
Inv is tight, and, as γ → 0, every cluster point of Inv is an invariant measure for the semiflow Φ. The
Theorem 5.2.1 is a consequence of this fact.

5.4 Application to structured regularization

In this section is provided an application of the stochastic Douglas Rachford (5.3) algorithm to solve a reg-
ularized optimization problem. The code is available at the address https://github.com/adil-salim/
Stochastic-DR. Consider problem (5.1), where F is a cost function that is written as an expectation,
and G is a regularization term. Towards solving (5.1), many approaches involve the computation of the
proximity operator of the regularization term G. In the case where G is a structured regularization term,
its proximity operator is often difficult to compute. We shall concentrate on the case where G is an
overlapping group regularization. In this case, the computation of the proximity operator of G is known
to be a bottleneck [132]. We shall apply the algorithm (5.3) to overcome this difficulty.

Consider X = R
N , N ∈ N

⋆, and g ∈ N
⋆. Consider g subsets of {1, . . . , N}, S1, . . . , Sg, possibly

overlapping. Set G(x) =
∑g

j=1 ‖xSj
‖, where xSj

denotes the restriction of x to the set of index Sj

and ‖ · ‖ denotes the Euclidean norm. Set F (x) = E(ξ,η)(h(η〈x, ξ〉)) where h denotes the hinge loss
h(z) = max(0, 1−z) and (ξ, η) is a r.v defined on some probability space with values in X×{−1,+1}. In
this case, the problem (5.1) is also called the SVM classification problem, regularized by the overlapping
group lasso. It is assumed that the user is provided with i.i.d copies ((ξn, ηn))n of the r.v (ξ, η) online.

To solve this problem, we implement a stochastic Douglas Rachford strategy. To that end, the
regularization G is rewritten G(x) = EJ(g‖xSJ

‖) where J is an uniform r.v over {1, . . . , g}. At each
iteration n of the stochastic Douglas Rachford algorithm, the user is provided with the realization (ξn, ηn)
and sample a group Jn uniformly in {1, . . . , g}. Then, a Douglas Rachford step is done, involving the
computation of the proximity operators of the functions gn : x 7→ ‖xSJn

‖ and fn : x 7→ h(ηn〈x, ξn〉).
This strategy is compared with a partially stochastic Douglas Rachford algorithm, deterministic in the

regularization G, where the fast subroutine Fog-Lasso [132] is used to compute the proximity operator
of the regularization G. At each iteration n, the user is provided with (ξn, ηn). Then, a Douglas
Rachford step is done, involving the computation of the proximity operators of the functions G and
fn : x 7→ h(ηn〈x, ξn〉). Figure 5.1 demonstrates the advantage of treating the regularization term in a
stochastic way.

In Fig. 5.1 "Stochastic D-R" denotes the stochastic Douglas Rachford algorithm and "Partially
stochastic D-R" denotes the partially stochastic Douglas Rachford where the subroutine FoG-Lasso [132]

2Assumptions 5.2.4, 5.2.5 and 5.2.8 are not needed if the domains D(s) are common i.e if s 7→ D(s) is constant.
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Figure 5.1: Left: The objective function F + G as a function of time in seconds for each algorithm.
Right: Histogram of the Initialization and the last iterates of the Stochastic D-R (S. D-R) and the
partially stochastic D-R (Part. S. D-R).

is used at each iteration to compute the true proximity operator of the regularization G. Fig. 5.1 also
shows the appearance of the first and the last iterates. Even if a best performing procedure [132] is used
to compute proxγG, we observe on Fig. 5.1 that Stochastic D-R takes advantage of being a stochastic
method. This advantage is known to be twofold ([34]). First, the iteration complexity of Stochastic
D-R is moderate because proxγG is never computed. Then, Stochastic D-R is faster than its partially
deterministic counterpart which uses Fog-Lasso [132] as a subroutine, especially in the first iterations
of the algorithms. Moreover, Stochastic D-R seems to perform globally better. This is because every
proximity operators in Stochastic D-R can be efficiently computed ([12]). Contrary to the proximity
operator of G [132], the proximity operator of gn is easily computable. The proximity operator of fn is
easily computable as well.3

5.5 Application to distributed optimization

We now consider an application of the stochastic Douglas Rachford algorithm to a distributed opti-
mization problem. More precisely, a slowly moving underwater target has to be located. To this end,
M transmitters and N receivers are spatially distributed. We consider the case of a two-dimensional
space, although the sequel can be easily extended to a three-dimensional space. If the receivers process
the measurements they receive at the same time and at each time step, we shall say that the receivers
operate synchronously. For more flexibility, we shall assume that the receivers only process the mea-
surements at random instants, i.e operate asynchronously. Networks of sensors often work under this
additional restriction. The processing takes the form of a computation (of a proximity operator w.r.t
the measurements they receive) and/or a communication of the estimated position of the target by a
receiver to another receiver. More precisely, assume that N = 1. It can be shown that the position
(x(t), y(t)) ∈ R

2 of the target at time t can be estimated by solving an optimization problem of the form

min
(x,y)∈R2

‖A(t)(x, y)T − b(t)‖2 (5.9)

3Even if h(x) = log(1 + exp(−x)) (logistic regression), the proximity operator of fn is easily computable, see [44].
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where A(t) and b(t) encode the positions of the receiver and the transmitters, as well as the measurements
of the receiver at time t. If several receivers are used, i.e N > 1, consider a connected graph G = (V, E)
where the set V = {1, . . . , N} of vertices is the set of receivers and E is the set of edges. Receivers are
allowed to communicate along the edges of E. In this case, the network of receivers has to solve at each
instant t the following problem to estimate the position of the target:

min
(x,y)∈R2

∑

i∈V
‖Ai(t)(x, y)

T − bi(t)‖2. (5.10)

This problem need to be solved asynchronously and can be seen as a consensus problem : at each instant
a receiver will update its estimation of the position of the target and share it with a neighbor in G.
Indeed, Problem (5.10) is equivalent to

min
(x1,y1),...,(xN ,yN )∈R2

∑

i∈V
‖Ai(t)(xi, yi)

T − bi(t)‖2 +
∑

{i,j}∈E
ιS((xi, yi), (xj, yj)) (5.11)

where S = {(z, z′) ∈ R
2×R

2, z = z′}. For every v ∈ V and every e ∈ E consider the convex functions
g((v, e), ·) : (R2)N → (−∞,+∞] defined by g((v, e), ((x1, y1), . . . , (xN , yN))) = ιS((xi, yi), (xj, yj))
where e = {i, j} and f((v, e), ·) : (R2)N → (−∞,+∞) defined by f((v, e), ((x1, y1), . . . , (xN , yN))) =
‖Av(t)(xv, yv)

T − bv(t)‖2. Finally, consider a r.v ξ = (ξ(1), ξ(2)) where ξ(1) has a uniform distribution
over V and ξ(2) has a uniform distribution over E. Problem (5.11) is equivalent to finding a minimizer
of Eξ(f(ξ, ·)+g(ξ, ·)) for which we apply stochastic Douglas Rachford algorithm (5.3). At each iteration
of this algorithm, a randomly chosen receiver update its estimated value of the position of the target
by computing a proximity operator w.r.t. its measurements. Then, two randomly chosen neighbors
share their estimated value. Namely, they compute the mean of their values and update their values
with the mean. The resulting algorithm is asynchronous and distributed. Moreover, it could be easily
made adaptive : if the measurements are corrupted by a zero-mean noise, the proposed algorithm still
converges because it is an instance of stochastic Douglas Rachford (5.3).

In our numerical simulation, we considered two transmitters and six receivers, whose positions in 2D
Cartesian coordinates are: t1 = [0, 0], t2 = [2000, 2000], r1 = [−1000,−1000], r2 = [1500,−1000],
r3 = [−1000, 1000], r4 = [1500, 1000], r5 = [1500, 2500], and rt = [2500, 1500], respectively. The
receivers form nodes of the connected graph G with edges

E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}}.

The initial position of the target is [500, 500]. The target is moving according to a spiral. We show the
tracking ability of the proposed asynchronous adaptive distributed algorithm. This algorithm is compared
to its synchronous analogue (which can also be cast as an instance of stochastic Douglas Rachford (5.3)).
Figure 5.2 shows the true track of the target, and the tracks estimated by the two algorithms. Between
two sample points of the true track (i.e. between two blue star markers on blue curve), we allowed
50 iterations for both the algorithms, and it is sufficient to track continuously the target with good
accuracies. In spite of using only two nodes in estimation at each iteration, the asynchronous algorithm,
after certain initial lag, performs almost similar to the synchronous one that involved all six nodes at
each iteration.
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Figure 5.2: Numerical simulation results on tracking slowly moving target.
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Part II

Applications using vanishing step sizes
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Chapter 6

Introduction to Stochastic

Approximations with a decreasing step

size involving Maximal Monotone

Operators

In the first part of this thesis, we introduced the constant step stochastic approximation framework (1.4)
for two kinds of underlying DI. We first studied the DI induced by an usc operator. Then, by considering
first the model of the stochastic Forward Backward and then the model of the stochastic Douglas
Rachford, we studied DI induced by a monotone operator.

In the second part of this thesis, we are interested in decreasing step sizes stochastic approximation al-
gorithms. More precisely, we are motivated by applications of the stochastic Forward Backward algorithm
with vanishing step sizes. The paper [24] performs a theoretical study of the stochastic Forward Back-
ward (FB) algorithm. The authors brought tools from dynamical systems and stochastic approximation
to prove the almost sure convergence of the iterates of the stochastic FB algorithm.

In this chapter, we recall the main results and the proof technique of [24]. Although the results
of [24] are prior to this thesis, this chapter is the entry point for our applications, which will be studied
in the two next chapters.

Chapter organization. In the next section, the stochastic Forward Backward algorithm with decreas-
ing step is presented. Then, the main convergence result of this algorithm is stated in Sec. 6.2. Finally,
a sketch of the convergence proof is provided in Sec. 6.3.

6.1 The stochastic Forward-Backward algorithm

Consider two random monotone operators A,B : (Ξ,G , µ) → M (X) such that for every s ∈ Ξ,
dom(B(s)) = X. Denoting A(s, x) the image of x by the operator A(s), recall that s 7→ A(s, x) is
measurable, and similarly for B. Consider a function b : Ξ×X→ X such that b is G ⊗B(X)-measurable
and for every x ∈ X, b(s, x) ∈ B(s, x) for µ-a.e. s ∈ Ξ. A possible choice for b(s, x) is B0(s, x), the least
norm element in B(s, x). Assume moreover that b(·, x) is µ-integrable for all x. Under this hypothesis,
b(·, x) ∈ S

1
B(·,x) and B(·, x) is µ-integrable for every x ∈ X, we set B(x) := ∫

B(s, x)µ(ds), where a
selection integral is used (see Eq. (2.4)). Note that domB = X. Denote D the essential intersection of
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the domains D(s) = dom(A(s)) (see Eq. (2.5)). Assuming that D 6= ∅ and that A(·, x) is integrable
for every x ∈ D, we denote the selection integral A(x) := ∫

A(s, x)µ(ds).
Let (ξn) be an i.i.d. sequence of random variables from a probability space (Ω,F ,P) to (Ξ,G ) with

the distribution µ. Let x0 be an X-valued random variable with probability distribution ν, and assume
that x0 and (ξn) are independent. Starting from x0, our purpose is to study the behavior of the iterates

xn+1 = Jγn+1(ξn+1, xn − γn+1b(ξn+1, xn)), n ∈ N , (6.1)

for a given sequence of positive step size (γn) ∈ ℓ2 \ ℓ1, where we recall the notation Jγ(s, ·) :=
(I + γA(s))−1(·) for every s ∈ Ξ.

In the deterministic case where the functions A(s, ·) and B(s, ·) are replaced with deterministic
maximal monotone operators A(·) and B(·), with B assumed single-valued and the step size γn ≡ γ
assumed to be constant, the algorithm coincides with the well-known Forward-Backward algorithm. If
B is cocoercive, and γ > 0 not too large, the Forward-Backward algorithm converges to an element
of Z(A + B), provided this set is not empty [12, Th. 25.8]. In the stochastic case who is of interest
here, the sequence (γn) has to converge to zero in order to make the stochastic Forward Backward (6.1)
converging to an element of Z(A+ B).

6.2 Almost sure convergence of the iterates

In this section, we present the main convergence result of the stochastic Forward Backward algorithm
with decreasing step size (6.1).

For every x⋆ ∈ Z(A+ B), define the set of 2p-integrable representations of the zero x⋆:

R2p(x⋆) =
ß
(ϕ, ψ) ∈ S

2p
A(·,x⋆)

×S
2p
B(·,x⋆)

:
∫
ϕdµ+

∫
ψdµ = 0

™
. (6.2)

Consider the following assumptions.

Assumption 6.2.1. The sequence of positive step sizes satisfies (γn) ∈ ℓ2 \ ℓ1 and γn+1

γn
→ 0.

Assumption 6.2.2. The monotone operator A is maximal.

Assumption 6.2.3. There exists an integer p ≥ 1 and x⋆ ∈ Z(A+ B) such that R2p(x⋆) 6= ∅.
Assumption 6.2.4. For every x⋆ ∈ Z(A+ B), R2(x⋆) 6= ∅.
Assumption 6.2.5. For any compact set K of X, there exists ε ∈ (0, 1] such that

sup
x∈K∩D

∫
‖A0(s, x)‖1+εµ(ds) <∞.

Moreover, there exists x0 ∈ D such that
∫
‖A0(s, x0)‖1+1/εµ(ds) <∞.

Assumption 6.2.6. There exists C > 0 such that for any x ∈ X,
∫
d(x,D(s))2µ(ds) ≥ Cd(x)2

where d(·) is the distance function to D.
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Assumption 6.2.7. There exists C > 0 such that for any x ∈ X and any γ > 0,

1

γ4

∫
‖Jγ(s, x)− Πcl(D(s))(x)‖4µ(ds) ≤ C(1 + ‖x‖2p)

where the integer p is specified in Assumption 6.2.3

Assumption 6.2.8. There exists M : Ξ → R+ such that M2p is µ-integrable, and for all x ∈ X,
‖b(s, x)‖ ≤ M(s)(1 + ‖x‖). Moreover, there exists a constant C > 0 such that

∫ ‖b(s, x)‖4µ(ds) ≤
C(1 + ‖x‖2p).
Theorem 6.2.1 ([24]). Assume that Assumptions 6.2.1–6.2.8 hold. Then, there exists a random variable
X⋆ such that P(X⋆ ∈ Z(A + B)) = 1 and such that the sequence of empirical means (x̄n)n converges
a.s. to X⋆. Moreover, if A+ B is demipositive, then xn →n→+∞ X⋆ a.s.

6.3 General Approach

In this section, we present the general approach used to prove the convergence of the stochastic Forward
Backward (6.1) with decreasing step size. The approach relies on related the iterates of (6.1) with the DI
associated to the monotone operator A+B (see Sec. 2.2.2). More precisely, let us endow the probability
space (Ω,F ,P) with the filtration (Fn) defined as Fn = σ(ξ1, . . . , ξn), and we write En = E[· |Fn].
In particular, E0 = E.

The principle of the proof of convergence of the algorithm (6.1) is the following. Given a ∈ X,
consider the Differential Inclusion (DI) associated with the monotone operator A+ B (see Sec. 2.2.2)

®
ż(t) ∈ −(A+ B)(z(t))
z(0) = a .

(6.3)

Since B is maximal ([24, Prop. 3.1]), domB = X and A is maximal (6.2.2), A + B is maximal ([12,
Corollary 24.4]). Denote Φ the semiflow with (6.3). Let us introduce the following function I from XN to
the space of C(R+,X). For x = (xn) ∈ XN, the function x = I(x) is the continuous interpolated process
obtained from x as

x(t) = xn +
xn+1 − xn
γn+1

(t− τn) (6.4)

for t ∈ [τn, τn+1), where τn =
∑n

k=1 γk. Consider the interpolated function x = I((xn)) where (xn) is the
sequence satisfying (6.1). The paper [24] proves the two following facts:

• The sequence (‖xn − x⋆‖) is almost surely convergent for each x⋆ ∈ Z(A+ B),
• The process x(t) is an almost sure Asymptotic Pseudo Trajectory (APT) of the semiflow Φ see

Chap. 1 or [15]. Namely, for each T > 0,

sup
u∈[0,T ]

‖x(t+ u)− Φ(Πcl(D)(x(t)), u)‖ a.s.−−−→
t→∞

0. (6.5)

Taken together, these two results lead to the a.s. convergence of the empirical means

x̄n =

∑n
k=1 γkxk
τn

to some r.v. X⋆ supported by the set Z(A + B), as is shown by [24, Cor. 3.2]. Moreover, if A + B is
demipositive (for example if A+ B = ∂G,G ∈ Γ0(X)), then xn also converges to X⋆.

The following proposition can be found in [22, Prop. 1] or [24, Prop. 6.1]:
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Proposition 6.3.1. Let Assumptions 6.2.1 and 6.2.4 hold true. Then the following facts hold true:

1. For each x⋆ ∈ Z(A+ B), the sequence (‖xn − x⋆‖) converges almost surely.

2. The sequence (xn) is bounded almost surely and in L2(Ω,F ,P;X).

3. E
î∑∞

n=1 γ
2
n+1

∫ ‖Aγn+1(s, xn − γn+1b(s, xn))‖2µ(ds)
ó
<∞.

It remains to establish the almost sure APT. We just provide here the main arguments of this part
of the proof, since it can be found in [24].

Let us write

xn+1 = xn − γn+1b(ξn+1, xn)− γn+1Aγn+1(ξn+1, xn − γn+1b(ξn+1, xn)), (6.6)

and let us also define the function

hγ(s, x) = −b(s, x)− Aγ(s, x− γb(s, x)) (6.7)

Using Assumptions 6.2.5 and 6.2.8,
∫ ‖hγ(s, x)‖µ(ds) <∞ and we define:

Hγ(x) =
∫
hγ(s, x)µ(ds) .

Note that xn+1 = xn + γn+1hγn+1(ξn+1, xn). Defining the (Fn) martingale

Mn =
n∑

k=1

xk − Ek−1[xk]

it is clear that xn+1 = xn + γn+1Hγn+1(xn) + (Mn+1 −Mn). Let us rewrite this equation in a form
involving the continuous process x = I((xn)). Defining M = I((Mn)), and writing

r(t) = max{k ≥ 0 : τk ≤ t}, t ≥ 0,

we obtain

x(τn + t)− x(τn) = −
∫ t

0
Hγr(τn+u)+1

(xr(τn+u)) du

+M(τn + t)−M(τn) . (6.8)

The first argument of the proof of the almost sure APT is a compactness argument on the sequence
of continuous processes (x(τn + ·))n.

Specifically, we show that on a P-probability one set, this sequence is equicontinuous and bounded. By
Ascoli’s theorem, this sequence admits accumulation points in the topology of the uniform convergence
on the compacts of R+. As a second step, we show that these accumulation points are solutions to the
differential inclusion (6.3), which is in fact a reformulation of the almost sure APT property (6.5).

Since

E[‖xn+1 − Enxn+1‖2] = γ2nE[‖b(ξn+1, xn)−
∫
b(s, xn)µ(ds)

+ Aγn+1(ξn+1, xn − γn+1b(ξn+1, xn))−
∫
Aγn+1(s, xn − γn+1b(s, xn))µ(ds)‖2]

≤ 4γ2n+1E[
∫
‖b(s, xn)‖2µ(ds) +

∫
‖Aγn+1(s, xn − γn+1b(s, xn))‖2µ(ds)] ,
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we obtain by Prop. 6.3.1 that supn E[‖Mn‖2] < ∞. Thus, the martingale Mn converges almost surely,
which implies that the sequence of stochastic processes (M(τn + ·) −M(τn))n converges almost surely
to zero, uniformly on R+.

Using Assumptions 6.2.5, 6.2.8 and the fact that the sequence (xn) is almost surely bounded by
Prop. 6.3.1, it is easily seen that

sup
n
‖Hγn+1(xn)‖ <∞ a.s. ,

provided that D(s) = X (we shall call this context the full domain case) for µ-a.e. s ∈ Ξ. The case
where D 6= X introduces more technicalities in this part of the proof, that we have chosen to omit.
Inspecting (6.8), we thus obtain that the sequence (x(τn + ·))n is equicontinuous and bounded with
probability one.

In order to characterize its cluster points, choose T > 0, and consider an elementary event on the
probability one set where (x(τn + ·))n is equicontinuous and bounded. With a small notational abuse,
let (n) be a subsequence along which (x(τn + ·))n converges on [0, T ] to some continuous function z(t).
This function then is written as

z(t)− z(0)=− lim
n→∞

∫ t

0
du
∫

Ξ
µ(ds)hγr(τn+u)+1

(s, xr(τn+u)).

Using Assumptions 6.2.5, 6.2.8 and the fact that the sequence (xn) is bounded by Prop. 6.3.1 it is easy
to see that there exists ε > 0 such that

sup
n

∫
‖hγn+1(s, xn)‖1+εµ(ds) <∞.

As a consequence, the sequence of functions (hγr(τn+u)+1
(s, xr(τn+u)))n in the parameters (s, u) is bounded

in the Banach space L1+ε(dµ⊗ du) where du is the Lebesgue measure on [0, T ]. Since the unit ball of
L1+ε(dµ⊗du) is weakly compact in this space by the Banach-Alaoglu theorem, since this space is reflexive,
we can extract a subsequence (still denoted as (n)) such that hγr(τn+u)+1

(s, xr(τn+u)) converges weakly in
L1+ε(dµ⊗ du), as n→∞, to a function Q(s, u). The remainder of the proof consists in showing that
Q can be written as Q(s, u) = a(s, u) + β(s, u) where a(s, u) ∈ A(s, z(u)) and β(s, u) ∈ B(s, z(u))
for dµ ⊗ du-almost all (s, u). Indeed, once this result is established, it becomes clear that z(t) is an
absolutely continuous function whose derivative satisfies almost everywhere the inclusion (6.3). We just
provide here the main argument of this part of the proof. Let us focus on the sequence of functions of
(s, u) ∈ Ξ× [0, T ] defined by

Aγr(τn+u)+1
(s, xr(τn+u) − γr(τn+u)+1b(s, xr(τn+u)))

and indexed by n. This sequence is bounded in L1+ε(dµ⊗ du) on a probability one set, as a function of
(s, u), for the same reasons as those explained above for (hγr(τn+u)+1

(s, xr(τn+u)))n. We need to show that
any weak limit point a(s, u) of this sequence satisfies a(s, u) ∈ A(s, z(u)) for dµ⊗ du-almost all (s, u).
Using the fact that x(τn+·)→ z(·) almost surely, along with the inequality 〈Aγ(s, x)−w, Jγ(s, x)−v〉 ≥
0, valid for all x, v ∈ X and w ∈ A(s, v), we show that 〈a(s, u)−w, z(u)−v〉 ≥ 0 for dµ⊗du-almost all
(s, u). Since v ∈ X and w ∈ A(s, v) are arbitrary, we get that a(s, u) ∈ A(s, z(u)) using the maximality
of the monotone operator A(s). The APT property is shown.
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Chapter 7

A Primal Dual Algorithm for Stochastic

Composite Optimization under

Stochastic Linear Constraints

In this chapter, we propose a new stochastic primal-dual algorithm for solving a composite optimization
problem under linear constraints. We assume that all the functions to be minimized are given as statistical
expectations, as well as the matrices and the vector defining the linear constraints. These expectations
are unknown but revealed across the time through i.i.d realizations of a random variable. The proposed
algorithm can be seen as a stochastic Forward Backward to find a zero of the sum of two monotone
operators. The two monotone operators are given as selection integrals and are not subdifferentials in
general. We prove that the sequence of empirical means of the iterates converges to a saddle point
of the Lagrangian function. The proposed algorithm is tested experimentally to solve a decentralized
optimization problem over a real-life graph of computing agents.

7.1 Introduction

Many applications in machine learning, statistics or signal processing require the solution of the following
optimization problem. Given three Euclidean spaces X,Z, and V, find a point (x, z) ∈ X× Z such that

F(x) + G(x) + P(z) + Q(z) is minimum on {(x, z) ∈ X× Z, Ax+ Bz = c}, (7.1)

where F,G,P,Q are convex functions such that F and P have a full domain, A belongs to the set
L(X,V) of X→ V linear operators, B ∈ L(Z,V), and c is a vector in V. In order to solve Problem (7.1),
primal-dual methods typically generate a sequence of primal estimates (xn, zn)n∈N and a sequence of
dual estimates (λn)n∈N jointly converging to a saddle point of the Lagrangian function. For every saddle
point of the Lagrangian function (x, z, λ), (x, z) is a solution of the primal problem (7.1) and λ is a
solution of a dual problem of (7.1). Conversely, assume that the following qualification condition

c ∈ ri (A domG+ B domQ)

holds true, where ri is the relative interior of a set [12]. Then, there exists a saddle point of the
Lagrangian function and for every solution (x, z) of (7.1) and every dual solution λ, (x, z, λ) is a saddle
point of the Lagrangian. There is a rich literature on such algorithms which cannot be exhaustively
listed [62, 42, 51, 124].
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In this chapter, it is assumed that the quantities that enter the minimization problem are likely to be
unavailable or difficult to compute numerically. More precisely, it is assumed that the functions F,G,P and
Q are defined as expectations of random functions w.r.t a probability measure µ. Namely, these functions
take the forms F(x) = Eξ(f(ξ, x)), G(x) = Eξ(g(ξ, x)), P(z) = Eξ(p(ξ, z)), and Q(z) = Eξ(q(ξ, z))
where f, g, p, q are normal convex integrands and ξ is some random variable with distribution µ. In
addition, it is assumed that the operators A and B are written as A = EξA(ξ) and B = EξB(ξ), where
A and B are measurable functions with values in L(X,V) and L(Z,V) respectively. Finally c takes the
form c = Eξc(ξ). As an extreme case, none of these expectations are available to the observer. What is
given to this observer are the functions f , g, p, q, A, B, and c, and a sequence of i.i.d random vectors
(ξn) with the probability distribution µ. A new stochastic primal dual algorithm based on this data is
proposed to solve Problem (7.1).

The convergence proof for this algorithm relies on Th. 6.2.1 of Chap. 6. The algorithm is built around
an instantiation of the stochastic Forward-Backward algorithm involving random monotone operators
that was introduced in [24] (see also Chap. 6). Existing methods typically allow to handle subproblems
of Problem (7.1) in which some quantities used to define (7.1) are assumed to be available or set
equal to zero [92, 104, 105, 133, 131, 48, 49, 122]. In particular, the new algorithm generalizes the
stochastic gradient algorithm (in the case where only F is non zero), the stochastic proximal point
algorithm [95, 122, 22] (only G is non zero), and the stochastic proximal gradient algorithm [2, 3, 27, 49]
(only F+ G is non zero).

With [131], the proposed algorithm is one of the first methods that allow to tackle stochastic con-
straints online. While [131] is focused on convex and compact constraints, this chapter consider the
case of unbounded linear constraints. Handling stochastic constraints online is suitable in various fields
of machine learning like Neyman-Pearson classification or online portfolio optimization. For example, in
online Markowitz portfolio optimization ([37]) one has to solve the minimization problem

min
x∈Rd

Eξ(〈x, ξ〉2) s.t. x ∈ ∆ and 〈x,Eξ(ξ)〉 = r, (7.2)

where ξ is a random vector in R
d, r > 0 and ∆ is the simplex of Rd. Authors usually assume Eξ(ξ) to be

known or estimated [95, 133]. The new primal dual algorithm is also an alternative to efficient methods
([1]) in huge scale convex optimization

min
x∈X

F(x) + G(x) + Q(Ax) (7.3)

where the functions F,G and Q are intractable and matrix vector operations involving A are also in-
tractable. In many cases, F and G are cost functions and Q(Ax) a structured regularization term that
must be handled by splitting Q and A. Finally, in distributed optimization, in the context where a network
of computing agents is required to minimize a cost function, the proposed algorithm allows to design a
fully asynchronous and adaptive algorithm in which, at each iteration, only one randomly chosen agent
becomes active.

Chapter organization. The chapter is organized as follow. The next section is devoted to rigorously
state the main problem and the main algorithm. In Sec. 7.3 the convergence proof of the algorithm is
given. Application to distributed optimization is discussed in Sec. 7.4.
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7.2 Problem description

Any space of linear operators between two Euclidean space is endowed with the operator norm ‖ · ‖ and
the resulting Borel field, and can be identified with a space of matrices.

Let f : Ξ×X→ (−∞,∞] be a normal convex integrand, and assume that
∫ |f(s, x)|µ(ds) <∞ for

all x ∈ X. Consider the convex function F(x) defined on X as the Lebesgue integral F(x) = Eξf(ξ, x).
The interchange property holds : ∂F(x) =

∫
∂f(s, x)µ(ds) (see Ex. 3 of Chap. 2).

Let g : Ξ × X → (−∞,∞] be a normal convex integrand, and let G(x) = Eξg(ξ, x), where the
integral is defined as the sum

∫

{s : g(s,x)∈[0,∞)}
g(s, x)µ(ds) +

∫

{s : g(s,x)∈]−∞,0[}
g(s, x)µ(ds) + I(x) ,

and

I(x) =

®
+∞, if µ({s : g(s, x) =∞}) > 0,
0, otherwise ,

and where the convention (+∞) + (−∞) = +∞ is used. Assume G(x) > −∞ for all x [125], and
assume that G is proper. We shall assume that the interchange property holds for g (see Ex. 3 of Chap. 2
for sufficient conditions).

To proceed with our problem statement, we introduce two normal convex integrands p, q : Ξ× Z→
(−∞,∞] and assume that the function p (resp. q) has verbatim the same properties as f (resp. g), after
replacing the space X with Z. We also write P(x) = Eξp(ξ, x) and Q(x) = Eξq(ξ, x).

Finally, let A : Ξ → L(X,V) and B : Ξ → L(Z,V) be operator-valued random variables, and let
c : Ξ → V be a vector-valued random variable. Let us assume that ‖A(·)‖, ‖B(·)‖, and ‖c(·)‖ are
µ-integrable, and let us introduce the Lebesgue integrals A = EξA(ξ), B = EξB(ξ), and c = Eξc(ξ).

Having introduced these functions, our purpose is to find a solution (x, z) ∈ X×Z of Problem (7.1),
where the set of such points is assumed non empty. To solve this problem, the observer is given the
functions f, g, p, q, A,B, and c, and a sequence of i.i.d random variables (ξn)n∈N from a probability space
(Ω,F ,P) to (Ξ,G ) with the probability distribution µ.

We shall denote as ∇̃f(s, x) a measurable subgradient of f(s, ·) at x. More precisely, ∇̃f : (Ξ ×
X,G ⊗ B(X)) → (X,B(X)) is a measurable function such that for each x ∈ X, ∇̃f(·, x) ∈ S

1
∂f(·,x)

(recall that this set is non empty). A possible choice for ∇̃f(s, x) is ∂0f(s, x) (see [24, §2.3 and §3.1]
for the measurability issues). The notation ∇̃p(s, x) will have a similar meaning.

Turning back to Problem (7.1), our purpose will be to find a saddle point of the Lagrangian
((x, z), λ) 7→ F(x) + G(x) + P(z) + Q(z) + 〈λ,Ax + Bz − c〉. Denoting as Z ⊂ X × Z × V the
set of these saddle points, an element ((x, z), λ) of Z is characterized by the inclusions





0 ∈ ∂F(x) + ∂G(x) + ATλ,
0 ∈ ∂P(z) + ∂Q(z) + BTλ,
0 = −Ax− Bz + c .

(7.4)

The algorithm proposed here consists in the following iterations applied to the random vector
(xn, zn, λn) ∈ X× Z× V. Given a sequence of positive weights (γn)n∈N, set

The convergence of this algorithm is stated by the following theorem.

Theorem 7.2.1. Consider the Problem (7.1), and let the following assumptions hold true.

1. The step size sequence satisfies (γn) ∈ ℓ2 \ ℓ1, and γn+1/γn → 1 as n→∞.
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Algorithm 1 The Main Algorithm

xn+1 = proxγn+1g(ξn+1,·)
Ä
xn − γn+1(∇̃f(ξn+1, xn) + A(ξn+1)

Tλn)
ä
,

zn+1 = proxγn+1q(ξn+1,·)
Ä
zn − γn+1(∇̃p(ξn+1, zn) + B(ξn+1)

Tλn)
ä
,

λn+1 = λn + γn+1 (A(ξn+1)xn +B(ξn+1)zn − c(ξn+1)) .

2. There exists an integer m ≥ 2 that satisfies the following conditions:

• The functions A(·), B(·) and c(·) are in L2m(µ).

• There exists a point (x⋆, z⋆, λ⋆) ∈ Z, and four functions ϕf ∈ S
2m
∂f(·,x⋆)

, ϕg ∈ S
2m
∂g(·,x⋆)

,
ϕp ∈ S

2m
∂p(·,z⋆), and ϕq ∈ S

2m
∂q(·,z⋆), for which

∫
ϕfdµ+

∫
ϕgdµ+ ATλ⋆ = 0, and

∫
ϕpdµ+

∫
ϕqdµ+ BTλ⋆ = 0. (7.5)

The last assumption is verified for m = 1 and for each point (x⋆, z⋆, λ⋆) ∈ Z.

3. For any compact set K of dom ∂G, there exist ε ∈ (0, 1] and x0 ∈ dom ∂G such that

sup
x∈K

∫
‖∂0g(s, x)‖1+εµ(ds) < +∞, and

∫
‖∂0g(s, x0)‖1+1/εµ(ds) < +∞.

4. Writing D∂g(s) = dom ∂g(s, ·), there exists C > 0 such that for all x ∈ X,
∫

dist(x,D∂g(s))
2µ(ds) ≥ C dist(x, dom ∂G)2.

5. There exists C > 0 such that for any x ∈ X and any γ > 0,
∫
‖ proxγg(s,·)(x)− Πcl(D∂g(s))(s, x)‖4µ(ds) ≤ Cγ4(1 + ‖x‖2m),

where m is the integer provided by Assumption 2.

Assumptions similar to 3–5 are made on the function q.

6. There exists a measurable Ξ → R+ function β such that β2m is µ-integrable, where m is the
integer provided by Assumption 2, and such that for all x ∈ X,

‖∇̃f(s, x)‖ ≤ β(s)(1 + ‖x‖).

Moreover, there exists a constant C > 0 such that
∫ ‖∇̃f(s, x)‖4µ(ds) ≤ C(1 + ‖x‖2m).

A similar assumption is made on the function p.

Consider the sequence of iterates (xn, zn, λn) produced by the algorithm 1, and define the averaged
estimates

x̄n =

∑n
k=1 γkxk∑n
k=1 γk

, z̄n =

∑n
k=1 γkzk∑n
k=1 γk

, and λ̄n =

∑n
k=1 γkλk∑n
k=1 γk

.

Then, the sequence (x̄n, z̄n, λ̄n) converges almost surely (a.s.) to a random variable (X,Z,Λ) supported
by Z.
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Let us now discuss our assumptions. Assumption 1 is standard in the decreasing step case. As-
sumption 2 is a moment assumption that is generally easy to check. Note that this assumption requires
the set of saddle points Z to be non empty. Notice the relation between Equations (7.5) and the first
two inclusions in (7.4). Focusing on the first inclusion, there exist a ∈ ∂F (x⋆) =

∫
∂f(s, x⋆)µ(ds) and

b ∈ ∂G(x⋆) =
∫
∂g(s, z⋆)µ(ds) such that 0 = a+ b+ ATλ⋆. Then, Assumption 2 states that there are

two measurable selections ϕf and ϕg of ∂f(·, x⋆) and ∂g(·, z⋆) respectively which are both in L2m(µ) and
which satisfy a = Eµϕf and b = Eµϕg. Not also that the larger is m, and the weaker is Assumption 5.

Assumption 3 is relatively weak and easy to check. This assumption on the functions g and q is much
weaker than Assumption 6, which assumes that the growth of ∇̃f(s, ·) and ∇̃p(s, ·) is not faster than
linear. This is due to the fact that g and q enter the algorithm 1 through the proximity operator while the
functions f and p are used explicitly in this algorithm. This use of the functions f and p is reminiscent
of the well-known Robbins-Monro algorithm (see, e.g. [54]), where a linear growth is needed to ensure
the algorithm stability. Note that Assumption 6 is satisfied under the more restrictive assumption that
∇f(s, ·) is L-Lipschitz continuous without any bounded gradient assumption.

Assumption 4 is quite weak, and is studied e.g in [90], see also Assumption (4.3.6) of Chap. 4. Let
us finally discuss Assumption 5. As γ → 0, it is known that proxγg(s,·)(x) converges to Πg(s, x) for
every (s, x). Assumption 5 provides a control on the convergence rate. This assumption holds under the
sufficient condition that for µ-almost every s and for every x ∈ dom ∂g(s, ·),

‖∂0g(s, x)‖ ≤ β(s)(1 + ‖x‖m/2) ,

where β is a positive random variable with a finite fourth moment [22].

7.3 Proof of Th. 7.2.1

We now enter the proof of Th. 7.2.1. Let us set Y = X×Z×V, and endow this Euclidean space with the
standard inner product. By writing (x, z, λ) ∈ Y, it will be understood that x ∈ X, z ∈ Z, and λ ∈ V.

For each s ∈ Ξ, define the set-valued operator M(s) on Y as

M(s, (x, z, λ)) =



∂g(s, x)
∂q(s, z)
c(s)


 ,

where M(s, (x, y, λ)) is the image of (x, y, λ) by M(s). Fixing s ∈ Ξ, the operator M(s, (x, z, λ))
coincides with the subdifferential of the normal convex integrand g(s, x) + q(s, z) + c(s)λ with respect
to (x, z, λ). Thus, the map s 7→ M(s) is a random monotone operator over Y. Let us also define the
operator M ′(s) as

M ′(s, (x, z, λ)) =



∂f(s, x) + A(s)Tλ
∂p(s, z) + B(s)Tλ
−A(s)x− B(s)z


 .

We can write M ′(s) =M ′
1(s) +M ′

2(s), where

M ′
1(s, (x, y, λ)) =



∂f(s, x)
∂p(s, z)

0


 ,
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and M ′
2(s) is the linear skew-symmetric operator that can be written in a block-wise matrix form in Y as

M ′
2(s) =




0 0 A(s)T

0 0 B(s)T

−A(s) −B(s) 0


 .

For each s ∈ Ξ, both these operators belong to M (Y), and domM ′
2(s) = Y. Thus, M(s) ∈ M (Y)

by [12, Cor. 24.4]. Moreover, since both M ′
1 and M ′

2 are measurable, M ′ is also a random monotone
operator over Y.

Now, since the interchange property holds for f, g, p, and q, we see that the operators M(x) =∫
M(s, x)µ(ds) and M′ =

∫
M ′(s, x)µ(ds) (where the selection integral (2.4) is used) satisfy

M(x, z, λ) =



∂G(x)
∂Q(z)

c


 , and M′(x, z, λ) =



∂F(x) + ATλ
∂P(z) + BTλ
−Ax− Bz


 .

For the same reasons as for the operators M(s) and M ′(s), it holds that M, M′, and M+M′ belong to
M (Y). Moreover, recalling the system of inclusions (7.4), we also obtain that Z = Z(M+M′).

Defining the function

b(s, (x, z, λ)) =



∇̃f(s, x) + A(s)Tλ

∇̃p(s, z) + B(s)Tλ
−A(s)x− B(s)z




(obviously, b(s, (x, z, λ)) ∈M ′(s, (x, z, λ)) µ-a.e.), let us consider the following version of the Forward-
Backward algorithm

(xn+1, zn+1, λn+1) = (I + γn+1M(ξn+1, ·))−1 ((xn, zn, λn)− γn+1b(ξn+1, (xn, zn, λn))) .

One can easily check that this is exactly Algorithm 1. On the other hand, this algorithm is an instance of
the random Forward-Backward algorithm studied in [24] (see Chap. 6). By checking the assumptions of
Th. 6.2.1 of Chap. 6 one sees that they are verified under the assumptions of Th. 7.2.1. This completes
the proof.

Remark 1. The convergence stated by Th. 7.2.1 concerns the averaged sequence (x̄n, z̄n, λ̄n). One
can ask whether the sequence (xn, zn, λn) itself converges to Z. This question is answered positively
by Th. 6.2.1 of Chap. 6 in the case where the operator M + M′ is demipositive. Unfortunately, the
demipositivity of M + M′ is not always guaranteed: take X = V = R and Z = {0}, and assume that
F = G = 0, A = I, and c = 0. Then, M+M′ is a linear operator which can be represented by the 2× 2

matrix
ñ
0 1
−1 0

ô
. This operator is not demipositive, being a −π/2 rotation (see, e.g., [96] or Sec. 2.2.2).

Remark 2. In the deterministic setting, with a constant step size, applying the Forward Backward
algorithm to the monotone operators M′ and M doesn’t lead to a converging algorithm in general
because M′ lack the so-called cocoercivity property [12]. This property is not needed if a decreasing step
size is used (see [96, 24] or Sec. 6.2).

7.4 Application to distributed optimization

In this section, Algorithm 1 is illustrated in the context of distributed optimization.
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Consider an integer N > 0 and a connected graph G = (V, E) where V = {1, · · · , N} is the set of
nodes and E is the set of edges. At each node i ∈ V is located the agent i and two local cost functions
Li, Ri ∈ Γ0(R) (the space R can be easily replaced by any Euclidean space) only known by the agent i.
The aim of the network of agents is to solve

min
x∈R

∑

i∈V
Li(x) +

∑

i∈V
Ri(x) (7.6)

distributively. Moreover, it is assumed that Li is unknown but revealed through i.i.d realizations of
a random variable θ(i) with distribution ν(i) over a space Θ, i.e Li(x) = E(ℓi(θ(i), x)). A similar
assumption is made on Ri : Ri(x) = E(ri(θ(i), x)).

Consider an arbitrary orientation of the edges of E and denote by Ê the resulting set of oriented
edges. Denote by A : RV → R

Ê the incidence matrix of the graph G defined for every x ∈ R
V , and

every e = (e(1), e(2)) ∈ Ê by Ax(e) = x(e(1))− x(e(2)). Problem (7.6) is equivalent to Problem (7.1)
with X = R

V , P,Q,B, c set equal to zero, F(x) =
∑

i∈V Li(x(i)) and G(x) =
∑

i∈V Ri(x(i)).
To apply Algorithm 1 to Problem (7.6), we consider V × ΘV as the probability space Ξ. The

random matrix A is defined by : for every i, j ∈ V, θ ∈ ΘV the column j of A(i, θ) is N times the
column j of A if i = j and is zero else. If µ is the probability distribution over V × ΘV defined by
µ = U ⊗ ν(1) ⊗ · · · ⊗ ν(N) where U is the uniform distribution over V , it is easy to check that∫
Adµ = A. Moreover, f : ((i, θ), x) 7→ Nℓi((i, θ(i)), x(i)) and g : ((i, θ, x) 7→ Nri((i, θ(i)), x(i)) are

normal convex integrands over (V × ΘV ) × R
V and it is easy to check that

∫
f(·, x)dµ = F(x) and∫

g(·, x)dµ = G(x). Thanks to the stochastic handling of the constraints, applying Algorithm 1 leads to
a distributed and asynchronous algorithm: at each iteration, only one random chosen agent i becomes
active and process its local data θ(i). Its work is decomposed in two parts : first, the agent i does a
computation involving its local variable x(i) and then it sends a message to its neighbors in G, which
is not instantaneously processed by the neighbors. The message is sent through the dual variables and
is stored by the neighbors, waiting for the next time the neighbors will wake up. Another version of the
algorithm in which i sends a message to a random subset of its neighborhood can also be casted in our
framework. Moreover, Algorithm 1 leads to an adaptive algorithm since Li and Ri are revealed across
time. Applying the method [131] to the same problem also leads to an algorithm with these properties.
The two algorithms are compared in Fig. 7.1 in the context of distributed median (resp. mean) estimation
over the Facebook graph (see [74], 4039 nodes and 88234 edges).

In these contexts, each agent i ∈ V is associated with a real value Yi (which is unknown but revealed
across time through i.i.d realizations in the case of mean computation). The network aims to infer the
median (resp. mean) value distributively. In our framework, this corresponds to the case where ℓi ≡ 0,
ri(θ, x) = |x− Yi| (resp. ri(θ, x) = |x− Yi|2 + xθ where ν is a zero mean probability measure).

Fig. 7.1 shows that both methods are converging, and Algorithm 1 performs slightly better. Indeed, if
M is the number of edges, the algorithm [131] uses N +2M optimization variables whereas our method
uses N + M variables. However, both methods are asynchronous and require a bounded amount of
memory (see e.g. [23]). Finally, our method exhibits less fluctuations. The general framework (7.1)
allows to treat the cost function ri through its proximity operator, leading to a more stable algorithm
(see [122, 108]).
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Figure 7.1: First: Distributed median computation. Second: Distributed mean computation. The relative
quadratic error at iteration n is defined by ‖xn − x⋆‖2/‖x⋆‖2 where x⋆ ∈ R

V such that x⋆(i) = m for
every i ∈ V and m is the solution of Problem (7.6). The algorithm OCOSC is the method introduced
in [131].
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Chapter 8

Snake: a Stochastic Proximal Gradient

Algorithm for Regularized Problems over

Large Graphs

In this chapter, we study a regularized optimization problem over a large unstructured graph, where
the regularization term is tied to the graph geometry. Typical regularization examples include the Total
Variation and the Laplacian regularizations over the graph. When the graph is a simple path without
loops, efficient off-the-shelf algorithms can be used. However, when the graph is large and unstructured,
such algorithms cannot be used directly. It has been already seen at the end of Chap. 5 that stochastic
proximal methods can be successfully applied to regularized problems involving structured regularizations
like the overlapping group lasso. This kind of problems are solved by randomizing the proximity operator
of the regularization. In this chapter, we propose an algorithm referred to as “Snake” to solve such
regularized problems over general graphs. The algorithm consists in properly selecting random simple
paths in the graph and performing the proximal gradient algorithm over these simple paths. This algorithm
is an instance of a new general stochastic proximal gradient algorithm, whose convergence is proven.
Applications to trend filtering and graph inpainting are provided among others and numerical experiments
are conducted over large graphs.

8.1 Introduction

Many applications in the fields of machine learning [57, 134], signal and image restoration [41], or trend
filtering [120, 127, 93, 69, 75, 119] require the solution of the following optimization problem. On an
undirected graph G = (V, E) with no self loops, where V = {1, . . . , N} represents a set of N nodes
(N ∈ N

∗) and E is the set of edges, find

min
x∈RV

F (x) +R(x, φ), (8.1)

where F is a convex and differentiable function on R
V representing a data fitting term, and the function

x 7→ R(x, φ) represents a regularization term of the form

R(x, φ) =
∑

{i,j}∈E
φ{i,j}(x(i), x(j)) ,

where φ = (φe)e∈E is a family of convex and symmetric R
2 → R functions. The regularization term

R(x, φ) will be called a φ-regularization in the sequel. These φ-regularizations often promote the sparsity
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or the smoothness of the solution. For instance, when φe(x, x
′) = we|x − x′| where w = (we)e∈E is a

vector of positive weights, the function R(·, φ) coincides with the weighted Total Variation (TV) norm.
This kind of regularization is often used in programming problems over a graph which are intended to
recover a piecewise constant signal across adjacent nodes [93, 127, 69, 75, 119, 9, 13, 43]. Another
example is the Laplacian regularization φe(x, x

′) = (x − x′)2, or its normalized version obtained by
rescaling x and x′ by the degrees of each node in e respectively. Laplacian regularization tends to
smoothen the solution in accordance with the graph geometry [57, 134].

The proximal gradient algorithm is one of the most popular approaches towards solving Problem (8.1).
This algorithm produces the sequence of iterates

xn+1 = proxγR(·,φ)(xn − γ∇F (xn)) , (8.2)

where γ > 0 is a fixed step. When F,G ∈ Γ0(R
V ) and F is smooth, the sequence (xn) converges to a

minimizer of (8.1), assuming this minimizer exists and that γ is enough small.
Implementing the proximal gradient algorithm requires the computation of the proximity operator

applied to R(·, φ) at each iteration. When N is large, this computation is in general affordable only
when the graph exhibits a simple structure. For instance, when R(·, φ) is the TV norm, the so-called
taut-string algorithm is an efficient algorithm for computing the proximity operator when the graph is
one-dimensional (1D) [50] (see Fig. 8.1) or when it is a two-dimensional (2D) regular grid [9]. Similar
observations can be made for the Laplacian regularization [45], where, e.g., the discrete cosine transform
can be implemented. When the graph is large and unstructured, these algorithms cannot be used, and
the computation of the proximity operator is more difficult ([127, 117]).

This problem is addressed in this chapter. Towards obtaining a simple algorithm, we first express
the functions F (·) and R(·, φ) as the expectations of functions defined on the set of random walks
in the graph, paving the way for a randomized version of the proximal gradient algorithm. Stochastic
online algorithms in the spirit of this algorithm are often considered as simple and reliable procedures for
solving high dimensional machine learning problems, including in the situations where the randomness
is not inherent to these problems [33, 34]. One specificity of the algorithm developed here lies in that
it reconciles two requirements: on the one hand, the random versions of R(·, φ) should be defined on
simple paths, i.e., on walks without loops (see Fig. 8.1), in a way to make benefit of the power of the
existing fast algorithms for computing the proximity operator. Owing to the existence of a procedure
for selecting these simple paths, we term our algorithm as the “Snake” algorithm. On the other hand,
the expectations of the functions handled by the optimization algorithm coincide with F (·) and R(·, φ)
respectively (up to a multiplicative constant), in such a way that the algorithm does not introduce any
bias on the estimates.

There often exists efficient methods to compute the proximity operator of φ-regularization over 1D-
graphs. The algorithm Snake randomly selects simple paths in a general graph in order to apply the
latter 1D efficient methods over a general graph.

Actually, the algorithm Snake will be an instance of a new general stochastic approximation algorithm
that we develop in this chapter. In some aspects, this general stochastic approximation algorithm is itself
a generalization of the random Forward-Backward algorithm studied in [24].

Before presenting our approach, we provide an overview of the literature dealing with our problem.
First consider the case where R(·, φ) coincides with the TV norm. As said above, fast methods exist
when the graph has a simple structure. We refer the reader to [9] for an overview of iterative solvers
of Problem (8.1) in these cases. In [71], the author introduces a dynamical programming method to
compute the proximity operator on a 1D-graph with a complexity of order O(N). Still in the 1D case,
Condat [50] revisited recently an algorithm that is due to Mammen and Van De Geer [81] referred to
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Figure 8.1: Left: General graph on which is colored the simple path 3-1-0-6-7. Right: 1D-graph.

as the taut-string algorithm. The complexity of this algorithm is O(N2) in the worst-case scenario, and
O(N) in the most realistic cases. The taut-string algorithm is linked to a total variation regularized
problem in [52]. This algorithm is generalized to 2D-grids, weighted TV norms and ℓp TV norms by
Barbero and Sra in [9]. To generalize to 2D-grids, the TV regularization can be written as a sum of two
terms on which one can apply 1D methods, according to [46] and [70]. Over general graphs, there is
no immediate way to generalize the taut string method. The problem of computing the TV-proximity
operator over a general graph is addressed in [127].

The authors of [127] suggest to solve the problem using a projected Newton algorithm applied to
the dual problem. It is observed that, empirically, this methods performs better than other concurrent
approaches. As a matter of fact, this statement holds when the graph has a moderate size. As far as large
graphs are concerned, the iteration complexity of the projected Newton method can be a bottleneck. To
address this problem, the authors of [13] and [63] propose to solve the problem distributively over the
nodes using the Alternating Direction Method of Multipliers (ADMM).

In [119] the authors propose to compute a decomposition of the graph in 1D-graphs and then solve
Problem (8.1) by means of the TV-proximity operators over these 1D-graphs. Although the decompo-
sition of the graph is fast in many applications, the algorithm [119] relies on an offline decomposition
of the whole graph that needs a global knowledge of the graph topology. The Snake algorithm ob-
tains this decomposition online. In [75], the authors propose a working set strategy to compute the
TV-proximity operator. At each iteration, the graph is cut in two well-chosen subgraphs and a reduced
problem of (8.1) is deduced from this cut. The reduced problem is then solved efficiently. This method
has shown speed-ups when G is an image (i.e a two dimensional grid). Although the decomposition of
the graph is not done during the preprocessing time, the algorithm [75] still needs a global knowledge
of the graph topology during the iterations. On the contrary, the Snake algorithm only needs a local
knowledge. Finally, in [93], the authors propose to replace the computation of the TV-proximity operator
over the graph G by the computation of the TV-proximity operator over a well chosen 1D-subgraph of
G. This produces an approximation of the solution whereas the Snake algorithm is proven to converge
to the exact solution.

In the case where R(·, φ) is the Laplacian regularization, the computation of the proximity operator
of R reduces to the resolution of a linear system (L + αI)x = b where L is the Laplacian matrix of
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the graph G and I the identity matrix. On an 1D-graph, the latter resolution can be done efficiently
and relies on an explicit diagonalization of L ([45]) by means of the discrete cosine transform, which
take O(N log(N)) operations. Over general graphs, the problem of computing the proximity operator of
the Laplacian regularization is introduced in [134]. There exist fast algorithms to solve it due to [118].
They are based on recursively preconditioning the conjugate gradient method using graph theoretical
results [117]. Nevertheless, the preconditioning phase which may be demanding over very large graphs.
Compared to [117], our online method Snake requires no preprocessing step.

8.2 Outline of the approach and chapter organization

The starting point of our approach is a new stochastic optimization algorithm that has its own interest.
This algorithm will be presented succinctly here, and more rigorously in Sec. 8.3 below. Given an integer
L > 0, let ξ = (ξ1, . . . , ξL) be a random vector where the ξi are valued in some measurable space.
Consider the problem

min
x

L∑

i=1

Eξ

î
fi(ξ

i, x) + gi(ξ
i, x)
ó

(8.3)

where fi, gi are normal convex integrands, and fi(ξi, ·) are assumed to be differentiable. Given γ > 0,
define the operator Tγ,i(s, x) = proxγgi(s,·)(x−γ∇fi(s, x)). Given a sequence (ξn) of independent copies
of ξ, and a sequence of positive steps (γn) ∈ ℓ2 \ ℓ1, we consider the algorithm

xn+1 = Tγn+1(ξn+1, xn) , (8.4)

where
Tγ((s

1, . . . , sL), ·) = Tγ,L(s
L, ·) ◦ · · · ◦ Tγ,1(s

1, ·)
and where ◦ stands for the composition of functions: f ◦ g(x) = f(g(x)). In other words, an iteration
of this algorithm consists in the composition of L random proximal gradient iterations. The case where
L = 1 was treated in [24] (see also Chap. 6).

Assuming that the set of minimizers of the problem is non empty, Th. 8.3.1 below states that the
sequence (xn) converges almost surely to a (possibly random) point of this set. A sketch of the proof of
this theorem can be found in Sec. 8.3.3. It follows the same canvas as the approach of [24] or Chap. 6,
with the difference that we are now dealing with possibly different functions (fi, gi) and non-independent
noises ξi for i ∈ {1, . . . , L}.

We now want to exploit this stochastic algorithm to develop a simple procedure leading to a solution
of Problem (8.1). This will be done in Sec. 8.4 and will lead to the Snake algorithm. The first step is to
express the function R(·, φ) as the expectation of a function with respect to a finite random walk. Given
an integer M > 0 and a finite walk s = (v0, v1, . . . , vM) of length M on the graph G, where vi ∈ V and
{vi, vi+1} ∈ E, write

R(x, φs) =
M∑

i=1

φ{vi−1,vi}(x(vi−1), x(vi)) .

Now, pick a node at random with a probability proportional to the degree (i.e., the number of neighbors)
of this node. Once this node has been chosen, pick another one at random uniformly among the neighbors
of the first node. Repeat the process of choosing neighbors M times, and denote as ξ ∈ V M+1 the
random walk thus obtained. With this construction, we get that 1

|E|R(x, φ) =
1
M
Eξ[R(x, φξ)] using some

elementary Markov chain formalism (see Prop. 8.4.1 below).
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In these conditions, a first attempt of the use of Algorithm (8.4) is to consider Problem (8.1) as
an instance of Problem (8.3) with L = 1, f1(ξ, x) = 1

|E|F (x), and g1(ξ, x) = 1
M
R(x, φξ). Given an

independent sequence (ξn) of walks having the same distribution as the random vector ξ and a sequence
(γn) of steps in ℓ2 \ ℓ1, Algorithm 8.4 boils down to the stochastic version of the proximal gradient
algorithm

xn+1 = proxγn+1
1
M

R(·,φξn+1
)(xn − γn+1

1

|E|∇F (xn)) . (8.5)

By Th. 8.3.1 (or by [24]), the iterates xn converge almost surely to a solution of Problem (8.1).
However, although simpler than the deterministic algorithm (8.2), this algorithm is still difficult to

implement for many regularization functions. As said in the introduction, the walk ξ is often required to
be a simple path. Obviously, the walk generation mechanism described above does not prevent ξ from
having repeated nodes. A first way to circumvent this problem would be to generate ξ as a loop-erased
walk on the graph. Unfortunately, the evaluation of the corresponding distribution is notoriously difficult.
The generalization of Prop. 8.4.1 to loop-erased walks is far from being immediate.

As an alternative, we identify the walk ξ with the concatenation of at most M simple paths of
maximal length that we denote as ξ1, . . . , ξM , these random variables being valued in the space of all
walks in G of length at most M :

ξ = (ξ1, ξ2, . . . , ξM) .

Here, in the most frequent case where the number of simple paths is strictly less than M , the last ξi’s are
conventionally set to a trivial walk, i.e., a walk with one node and no edge. We also denote as ℓ(ξi) the
length of the simple path ξi, i.e., the number of edges in ξi. We now choose L =M , and for i = 1, . . . , L,
we set fi(ξi, x) = ℓ(ξi)

L|E|F (x) and gi(ξ
i, x) = 1

L
R(x, φξi) if ℓ(ξi) > 0, and fi(ξ

i, x) = gi(ξ
i, x) = 0

otherwise. With this construction, we show in Sec. 8.4 that 1
|E|(F (x) + R(x, φ)) =

∑L
i=1 Eξ[fi(ξ

i, x) +

gi(ξ
i, x)] and that the functions fi and gi fulfill the general assumptions required for the Algorithm (8.4)

to converge to a solution of Problem (8.1). In summary, at each iteration, we pick up a random walk of
length L according to the procedure described above, split it into simple paths of maximal length, and
then we successively apply the proximal gradient algorithm to these simple paths.

Chapter organization. The next section introduces the generalized stochastic proximal gradient algo-
rithm. Then, in Sec. 8.4, this algorithm is applied to φ-regularized problems to obtain the Snake algorithm.
The Snake algorithm relies on the computation of the proximity operator of the φ-regularization over
1D-graphs. Section 8.5 gives examples of φ-regularizations for which the latter computation can be done
efficiently (TV regularization and Laplacian regularization). Finally, we simulate the Snake algorithm in
several application contexts. First, we study the so called graph trend filtering [127]. Then, we consider
the graph inpainting problem [43, 57, 134] and the resolution of Laplacian systems [117]. These contexts
are the purpose of Sec. 8.6. Finally, a conclusion and some future research directions are provided in
Sec. 8.7.
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8.3 A General Stochastic Proximal Gradient Algorithm

8.3.1 Problem and General Algorithm

In this section, we consider the general problem

min
x∈X

L∑

i=1

E
î
fi(ξ

i, x) + gi(ξ
i, x)
ó

(8.6)

where L is a positive integer, the ξi : Ω→ Ξ are random variables (r.v.), and the functions fi : Ξ×X→ R

and gi : Ξ× X→ R satisfy the following assumption:

Assumption 8.3.1. The following holds for all i ∈ {1, . . . , L}:

1. The fi and gi are normal convex integrands.

2. For every x ∈ X, E[|fi(ξi, x)|] <∞ and E[|gi(ξi, x)|] <∞.

3. The function fi(ξ
i, ·) is a.s. differentiable. We denote as ∇fi(ξi, ·) its gradient w.r.t. the first

variable.

Remark 3. In this chapter, we assume that the functions gi(ξi, ·) have a.s. a full domain. This
assumption can be relaxed with some effort, along the ideas developed in [24].

Let ξ be the random vector ξ = (ξ1, . . . , ξL) with values in ΞL and let (ξn : n ∈ N
∗) be a sequence

of i.i.d. copies of ξ, defined on the same probability space (Ω,F ,P). For all n ∈ N
∗, ξn = (ξ1n, . . . , ξ

L
n ).

Finally, let (γn) be a positive sequence. Our aim is to analyze the convergence of the iterates (xn)
recursively defined by:

xn+1 = Tγn+1(ξn+1, xn) , (8.7)

as well as the intermediate variables x̄in+1 (i = 0, . . . , L) defined by x̄0n+1 = xn, and

x̄in+1 = Tγn+1,i(ξ
i
n+1, x̄

i−1
n+1) , i = 1, . . . , L . (8.8)

In particular, xn+1 = xLn+1 = Tγn+1,L(ξ
L
n+1, x̄

L−1
n+1).

In the special case where the functions gi, are all constant with respect to their first variable (the
algorithm is deterministic) and the functions fi are equal to zero, the above iterations were studied by
Passty in [94]. In the special case where L = 1, the algorithm boils down to the stochastic proximal
gradient algorithm, whose detailed convergence analysis can be found in [24] (see also Chap. 6, [22], and
[126] as an earlier work). In this case, the iterates take the simpler form

xn+1 = proxγn+1g1(ξn+1,·)(xn − γn+1∇f1(ξn+1, xn)) , (8.9)

and converge a.s. to a minimizer of the function x 7→ Eξ[f1(x, ξ) + g1(x,ξ)] under the convenient
hypotheses.

It is worth noting that the present algorithm (8.7) cannot be written as an instance of (8.9). Indeed,
the operator Tγ is a composition of L (random) operators, whereas the stochastic forward backward
algorithm (8.9) has a simpler structure. This composition raises technical difficulties that need to be
specifically addressed. Among these difficulties is the dependency of the intermediate variables.
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8.3.2 Almost sure convergence

We make the following assumptions.

Assumption 8.3.2. The positive sequence (γn) satisfies the conditions
∑

γn = +∞ and
∑

γ2n <∞ ,

(i.e., (γn) ∈ ℓ2 \ ℓ1). Moreover, γn+1

γn
→ 1.

Assumption 8.3.3. The following holds for all i ∈ {1, . . . , L}:
1. There exists a measurable map Ki : Ξ→ R+ s.t. the following holds P-a.e.: for all x, y in X,

‖∇fi(ξi, x)−∇fi(ξi, y)‖ ≤ Ki(ξ
i)‖x− y‖ .

2. For all α > 0, E[Ki(ξ
i)α] <∞.

We denote by Z the set of minimizers of Problem (8.6). Thanks to Assumption 8.3.1, the qualification
conditions hold, ensuring that a point x⋆ belongs to Z if and only if

0 ∈
L∑

i=1

∇E[fi(ξi, x⋆)] + ∂E[gi(ξ
i, x⋆)] .

The (sub)differential and the expectation operators can be interchanged [102], and the above optimality
condition also reads

0 ∈
L∑

i=1

E[∇fi(ξi, x⋆)] + E[∂gi(ξ
i, x⋆)] , (8.10)

where E[∂gi(ξ
i, x⋆)] is the selection integral of the random set ∂gi(x⋆, ξi) (see (2.4)). Therefore, the

optimality condition (8.10) means that there exist L integrable mappings ϕ1, . . . , ϕL satisfying a.s.
ϕi(ξ

i) ∈ ∂gi(ξi, x⋆) and s.t.

0 =
L∑

i=1

E[∇fi(ξi, x⋆)] + E[ϕi(ξ
i)] . (8.11)

Recalling (6.2), we say that the family (∇fi(ξi, x⋆), ϕi(ξ
i))i=1,...,L is a representation of the minimizer x⋆.

In addition, if for some α ≥ 1 and every i = 1, . . . , L, E[‖∇fi(ξi, x⋆)‖α] < ∞ and E[‖ϕ(ξi)‖α] < ∞,
we say that the minimizer x⋆ admits a α-integrable representation.

Assumption 8.3.4. 1. The set Z is not empty.

2. For every x⋆ ∈ Z, there exists ε > 0 s.t. x⋆ admits a (2 + ε)-integrable representation, which is
denoted (∇fi(ξi, x⋆), ϕi(ξ

i))i=1,...,L.

We denote by ∂0gi(ξi, x) the least norm element in ∂gi(ξi, x).

Assumption 8.3.5. For every compact set K ⊂ X, there exists η > 0 such that for all i = 1, . . . , L,

sup
x∈K

E[‖∂0gi(x, ξi)‖1+η] <∞ .

We can now state the main result of this section, which will be proven in Sec. 8.3.3.

Theorem 8.3.1. Let Assumptions 8.3.1–8.3.5 hold true. There exists a r.v. X⋆ s.t. P(X⋆ ∈ Z) = 1
and s.t. (xn) converges a.s. to X⋆ as n→∞. Moreover, for every i = 0, . . . , L− 1, x̄in converges a.s.
to X⋆.
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8.3.3 Sketch of the Proof of Th. 8.3.1

We start with some notations. We endow the probability space (Ω,F ,P) with the filtration (Fn)
defined as Fn = σ(ξ1, . . . , ξn), and we write En = E[· |Fn]. In particular, E0 = E. We also define
Gi(x) = Eξ[gi(ξ

i, x)] and Fi(x) = Eξ[fi(ξ
i, x)] for every x ∈ X. We denote by µi and µ the probability

distributions of ξi and ξ respectively. Finally, C and η will refer to positive constants whose values can
change from an equation to another. The constant η can be chosen arbitrarily small.

In [24] or Chap. 6, the case L = 1 is studied (Algorithm (8.9)). Here we shall reproduce the main
steps of the approach of [24] or Chap. 6, only treating in detail the specificities of the case L > 1. Note
also that the formalism of random monotone operators is not needed here.

Given a ∈ X, consider the Differential Inclusion (DI) associated with
∑L

i=1∇Fi + ∂Gi:

®
ż(t) ∈ −∑L

i=1(∇Fi(z(t)) + ∂Gi(z(t)))
z(0) = a .

(8.12)

and denote Φ the associated semiflow (see 2.2.2). Consider the interpolated function x = I((xn))
(see (6.4)) where (xn) is given by (8.7). We shall prove the two following facts:

• The sequence (‖xn − x⋆‖) is almost surely convergent for each x⋆ ∈ Z (Prop. 8.3.3);

• The process x(t) is an almost sure Asymptotic Pseudo Trajectory (APT) of the semi-flow Φ,
see (6.5). Namely, for each T > 0,

sup
u∈[0,T ]

‖x(t+ u)− Φ(x(t), u)‖ a.s.−−−→
t→∞

0, (8.13)

Taken together, these two results lead to the a.s. convergence of (xn) to some r.v. X⋆ supported by the
set Z, as is shown by [24, Cor. 3.2]. The convergence of the (x̄in)n stated by Th. 8.3.1 will be shown in
the course of the proof.

Denoting gγ the Moreau envelope of the convex function g, the mapping Tγ,i can be rewritten as

Tγ,i(s, x) = x− γ∇fi(s, x)− γ∇gγi (s, x− γ∇fi(s, x)) (8.14)

The following lemma is proven in Appendix 8.8.1.

Lemma 8.3.2. For i = 1, . . . , L, let

x̄i = (Tγ,i(s
i, ·) ◦ · · · ◦ Tγ,1(s1, ·))(x).

Then, with Assumption 8.3.3, there exists a measurable map κ : ΞL → R+ s.t. Eξ[κ(ξ)
α] < ∞ for all

α ≥ 1 and s.t. for all s̄ = (s1, . . . , sL) ∈ ΞL,

‖∇fi(si, x̄i−1)‖ ≤ κ(s̄)
i∑

k=1

‖∇fk(sk, x)‖+ ‖∇gγk(sk, x)‖

‖∇gγi (si, x̄i−1 − γ∇fi(si, x̄i−1))‖

≤ κ(s̄)
i∑

k=1

‖∇fk(sk, x)‖+ ‖∇gγk(sk, x)‖.
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Recall that we are studying the iterations x̄in+1 = Tγn+1,i(ξ
i
n+1, x̄

i−1
n+1), for i = 1, . . . , L, n ∈ N

∗, with
x̄0n+1 = xn and xn+1 = x̄Ln+1. In this section and in Appendix 8.8, we shall write for conciseness, for any
x⋆ ∈ Z,

∇gγi = ∇gγn+1

i (ξin+1, x̄
i−1
n+1 − γn+1∇fi(ξin+1, x̄

i−1
n+1)),

proxγgi = proxγgi(ξin+1,·)(x̄
i−1
n+1 − γn+1∇fi(ξin+1, x̄

i−1
n+1)),

∇fi = ∇fi(ξin+1, x̄
i−1
n+1),

∇f ⋆
i = ∇fi(ξin+1, x⋆) where x⋆ ∈ Z,
ϕi = ϕi(ξ

i
n+1), (see Assumption 8.3.4) and

γ = γn+1.

The following proposition is analogous to Prop. 1 of Chap. 6:

Proposition 8.3.3. Let Assumptions 8.3.2–8.3.4 hold true. Then the following facts hold true:

1. For each x⋆ ∈ Z, the sequence (‖xn − x⋆‖) converges almost surely.

2. E
î∑L

i=1

∑∞
n=1 γ

2(‖∇gγi ‖2 + ‖∇fi‖2)
ó
<∞.

3. For each i, x̄in+1 − xn → 0 almost surely.

This proposition is shown in Appendix 8.8.2.
The proof of the APT property follows the same lines as in Sec. 6.3, using the following definition of

the function h:

hγ((s
1, . . . , sL), x) = −

L∑

i=1

î
∇fi(si, x̄i−1) +∇gγi (si, x̄i−1 − γ∇fi(si, x̄i−1))

ó
,

where we recall the notation x̄i = (Tγ,i(s
i, ·) ◦ · · · ◦ Tγ,1(s1, ·))(x). Note that

xn+1 = xn + γn+1hγn+1(ξn+1, xn).

Also note that since every functions fi and gi are assumed to take finite values, it is sufficient to prove
the APT property in the so-called full domain case, see Sec. 6.3.

8.4 The Snake Algorithm

8.4.1 Notations

Let ℓ ≥ 1 be an integer. We refer to a walk of length ℓ over the graph G as a sequence s = (v0, v1, . . . , vℓ)
in V ℓ+1 such that for every i = 1, . . . , ℓ, the pair {vi−1, vi} is an edge of the graph. A walk of length
zero is a single vertex.

We shall often identify s with the graph G(s) whose vertices and edges are respectively given by the
sets V(s) = {v0, . . . , vℓ} and E(s) = {{v0, v1}, . . . , {vℓ−1, vℓ}}.

Let L ≥ 1. We denote by Ξ the set of all walks over G with length ≤ L. This is a finite set. Let G

be the set of all subsets of Ξ. We consider the measurable space (Ξ,G ).
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Let s = (v0, v1, . . . , vℓ) ∈ Ξ with 0 < ℓ ≤ L. We abusively denote by φs the family of functions
(φ{vi−1,vi})i=1,...,ℓ. We refer to the φs−regularization of x as the φs−regularization on the graph s of the
restriction of x to s that is

R(x, φs) =
ℓ∑

i=1

φ{vi−1,vi}(x(vi−1), x(vi)) .

Besides, R(x, φs) is defined to be 0 if s is a single vertex (that is ℓ = 0).
We say that a walk is a simple path if there is no repeated node i.e, all elements in s are different or if

s is a single vertex. Throughout this chapter, we assume that when s is a simple path, the computation
of proxR(·,φs) can be done easily.

8.4.2 Writing the Regularization Function as an Expectation

One key idea of this chapter is to write the function R(x, φ) as an expectation in order to use a stochastic
approximation algorithm, as described in Sec. 8.3.

Denote by deg(v) the degree of the node v ∈ V , i.e., the number of neighbors of v in G. Let π be
the probability measure on V defined as

π(v) =
deg(v)

2|E| , v ∈ V .

Define the probability transition kernel P on V 2 as P (v, w) = ✶{v,w}∈E/ deg(v) if deg(v) > 0, and
P (v, w) = ✶v=w otherwise, where ✶ is the indicator function.

We refer to a Markov chain (indexed by N) over V with initial distribution π and transition kernel
P as an infinite random walk over G. Let (vk)k∈N be an infinite random walk over G defined on the
canonical probability space (Ω,F ,P), with Ω = V N. The first node v0 of this walk is randomly chosen
in V according to the distribution π. The other nodes are drawn recursively according to the conditional
probability P(vk+1 = w | vk) = P (vk, w). In other words, conditionally to vk, the node vk+1 is drawn
uniformly from the neighborhood of vk. Setting an integer L ≥ 1, we define the random variable ξ from
(vk)k∈N as ξ = (v0, v1, . . . , vL).

Proposition 8.4.1. For every x ∈ R
V ,

1

|E|R(x, φ) =
1

L
Eξ[R(x, φξ)] . (8.15)

Proof. It is straightforward to show that π is an invariant measure of the Markov chain (vk)k∈N. Moreover,
P(vk = w, vk−1 = v) = π(v)P (v, w) = ✶{v,w}∈E/(2|E|), leading to the identity

E
î
φ{vk−1,vk}(x(vk−1), x(vk))

ó
=

1

|E|R(x, φ) ,

which completes the proof by summing and using the symmetry of φe, ∀e ∈ E.

This proposition shows that Problem (8.1) is written equivalently

min
x∈RV

1

|E|F (x) + E[
1

L
R(x, φξ)]. (8.16)
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Hence, applying the stochastic proximal gradient algorithm to solve (8.16) leads to a new algorithm to
solve (8.1), which was mentioned in Sec. 8.2, Eq. (8.5):

xn+1 = proxγn+1
1
L
R(·,φξn+1

)(xn − γn+1
1

|E|∇F (xn)) . (8.17)

Although the iteration complexity is reduced in (8.17) compared to (8.2), the computation of the
proximity operator of the φ-regularization over the random subgraph ξn+1 in the algorithm (8.17) can
be difficult to implement. This is due to the possible presence of loops in the random walk ξ. As an
alternative, we split ξ into several simple paths. We will then replace the proximity operator over ξ by the
series of the proximity operators over the simple paths induced by ξ, which are efficiently computable.

8.4.3 Splitting ξ into Simple Paths

Let (vk)k∈N be an infinite random walk on (Ω,F ,P). We recursively define a sequence of stopping time
(τi)i∈N as τ0 = 1 and for all i ≥ 0,

τi+1 = min{k ≥ τi : vk ∈ {vτi−1, . . . , vk−1}}

if the above set is nonempty, and τi+1 = +∞ otherwise. We now define the stopping times ti for all
i ∈ N as ti = min(τi, L+ 1). Finally, for all i ∈ N

∗ we can consider the random variable ξi on (Ω,F ,P)
with values in (Ξ,G ) defined by

ξi = (vti−1−1, vti−1
, . . . , vti−1).

We denote by N the smallest integer n such that tn = L + 1. We denote by ℓ(ξi) the length of the
simple path ξi.

Example 6. Given a graph with vertices V = {a, b, c, . . . , z} and a given edge set that is not useful
to describe here, consider ω ∈ Ω and the walk ξ(ω) = (c, a, e, g, a, f, a, b, h) with length L = 8. Then,
t0(ω) = 1, t1(ω) = 4, t2(ω) = 6, t3(ω) = t4(ω) = . . . = 9, and ξ(ω) can be decomposed into
N(ω) = 3 simple paths and we have ξ1(ω) = (c, a, e, g), ξ2(ω) = (g, a, f), ξ3(ω) = (f, a, b, h) and
ξ4(ω) = . . . = ξ8(ω) = (h). Their respective lengths are ℓ(ξ1(ω)) = 3, ℓ(ξ2(ω)) = 2, ℓ(ξ3(ω)) = 3 and
ℓ(ξi(ω)) = 0 for all i = 4, . . . , 8. We identify ξ(ω) with (ξ1(ω), . . . , ξ8(ω)).

It is worth noting that, by construction, ξi is a simple path. Moreover, the following statements hold:

• We have 1 ≤ N ≤ L a.s.

• These three events are equivalent for all i: {ξi is a single vertex}, {ℓ(ξi) = 0} and {i ≥ N + 1}

• The last element of ξN is a.s. vL

• ∑L
i=1 ℓ(ξ

i) = L a.s.

In the sequel, we identify the random vector (ξ1, . . . , ξL) with the random variable ξ = (v0, . . . , vL).
As a result, ξ is seen as a r.v with values in ΞL.

Our notations are summarized in Table 8.1. For every i = 1, . . . , L, define the functions fi, gi on
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Table 8.1: Useful Notations

G = (V, E) Graph with no self-loop
s walk on G

(vi) infinite random walk
ξ = (ξ1, . . . , ξL) random walk of length L

ξi random simple path
ℓ(ξi) length of ξi

R(x, φ) φ−regularization of x on G
R(x, φs) φ−regularization of x along the walk s

R
V × Ξ in such a way that

fi(ξ
i, x) =

ℓ(ξi)

L|E|F (x) (8.18)

gi(ξ
i, x) =

1

L
R(x, φξi) . (8.19)

Note that when i > N(ω) then fi(ξi(ω), x) = gi(ξ
i(ω), x) = 0.

Proposition 8.4.2. For every x ∈ R
V , we have

1

|E|(F (x) +R(x, φ)) =
L∑

i=1

E
î
fi(ξ

i, x) + gi(ξ
i, x)
ó
. (8.20)

Proof. For every ω ∈ Ω and every x ∈ R
V ,

1

L
R(x, φξ(ω)) =

1

L

N(ω)∑

i=1

R(x, φξi(ω)) =
L∑

i=1

gi(ξ
i(ω), x) .

Integrating, and using Prop. 8.4.1, it follows that
∑L

i=1 E[gi(ξ
i, x)] = 1

|E|R(x, φ). Moreover, we have
∑L

i=1 fi(ξ
i(ω), x) = 1

|E|F (x). This completes the proof.

8.4.4 Main Algorithm

Prop. 8.4.2 suggests that minimizers of Problem (8.1) can be found by minimizing the right-hand side
of (8.20). This can be achieved by means of the stochastic approximation algorithm provided in Sec. 8.3.
The corresponding iterations (8.7) read as xn+1 = Tγn+1(ξn+1, xn) where (ξn) are i.i.d copies of ξ. For
every i = 1, . . . , L− 1, the intermediate variable x̄in+1 given by Eq. (8.8) satisfies

x̄in+1 = proxγngi(ξin+1,·)(x̄
i−1
n − γn∇fi(ξin+1, x̄

i−1
n )) .

Theorem 8.4.3. Let Assumption 8.3.2 hold true. Assume that the convex function F is differentiable
and that ∇F is Lipschitz continuous. Assume that Problem (8.1) admits a minimizer. Then, there exists
a r.v. X⋆ s.t. X⋆(ω) is a minimizer of (8.1) for all ω P-a.e., and s.t. the sequence (xn) defined above
converges a.s. to X⋆ as n→∞. Moreover, for every i = 0, . . . , L− 1, x̄in converges a.s. to X⋆.
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Table 8.2: Proposed Snake algorithm.

procedure Snake(x0, L)
z ← x0
e←Rnd_oriented_edge

n← 0
ℓ← L
while stopping criterion is not met do

c, e← Simple_path(e, ℓ)

z ← Prox1D(z − γnLength(c)
L|E| ∇F (z), c, 1

L
γn)

ℓ← ℓ− Length(c)
if ℓ = 0 then

e← Rnd_oriented_edge

ℓ← L
n← n+ 1 ⊲ xn is z at this step

end if

end while

return z
end procedure

Table 8.3: Simple_path procedure.

procedure Simple_path(e, ℓ)
c← e
w ← Uniform_Neib(e[−1])
while w /∈ c and Length(c)< ℓ do

c← [c, w]
w ← Uniform_Neib(w)

end while

return c, [c[−1], w]
end procedure

Proof. It is sufficient to verify that the mappings fi, gi defined by (8.18) and (8.19) respectively fulfill
Assumptions 8.3.1–8.3.5 of Th. 8.3.1. Then, Th. 8.3.1 gives the conclusion. Assumptions 8.3.1 and 8.3.3
are trivially satisfied. It remains to show, for every minimizer x⋆, the existence of a (2+ε)-representation,
for some ε > 0. Any such x⋆ satisfies Eq. (8.11) where (∇fi(ξi, x⋆), ϕi(ξ

i))i=1,...,L is a representation of
the minimizer x⋆. By definition of fi and gi, it is straightforward to show that there exists a deterministic
constant C⋆ depending only on x⋆ and the graph G, such that ‖∇fi(ξi, x⋆)‖ < C⋆ and ‖ϕi(ξ

i)‖ < C⋆.
This proves Assumption 8.3.4. Assumption 8.3.5 can be easily checked by the same arguments.

Consider the general φ-regularized problem (8.1), and assume that an efficient procedure to compute
the proximity operator of the φ-regularization over an 1D-graph is available. The sequence (xn) is
generated by the algorithm Snake (applied with the latter 1D efficient procedure) and is summarized
in Table 8.2. Recall the definition of the probability π on V and the transition kernel P on V 2. The
procedure presented in this table calls the following subroutines.

• If c is a finite walk, c[−1] is the last element of c and Length(c) is its length as a walk that is
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|c| − 1.

• The procedure Rnd_Oriented_Edge returns a tuple of two nodes randomly chosen (v, w)
where v ∼ π and w ∼ P (v, ·).

• For every x ∈ R
V , every simple path s and every α > 0, Prox1D(x, s, α) is any procedure that

returns the quantity proxαR(·,φs)(x) .

• The procedure Uniform_Neib(v) returns a random vertex drawn uniformly amongst the neigh-
bors of the vertex v that is with distribution P (v, ·).

• The procedure Simple_path(e, ℓ), described in Table 8.3, generates the first steps of a random
walk on G with transition kernel P initialized at the vertex e[−1], and prefaced by the first node
in e. It represents the ξi’s of the previous section. The random walk is stopped when one node is
repeated, or until the maximum number of samples ℓ+ 1 is reached. The procedure produces two
outputs, the walk and the oriented edge c, (c[−1], w). In the case where the procedure stopped
due to a repeated node, c represents the simple path obtained by stopping the walk before the first
repetition occurs, while w is the vertex which has been repeated (referred to as the pivot node). In
the case where no vertex is repeated, it means that the procedure stopped because the maximum
length was achieved. In that case, c represents the last simple path generated, and the algorithm
doesn’t use the pivot node w.

Remark 4. Although Snake converges for every value of the hyperparameter L, a natural question is
the influence of L on the behavior of the algorithm. In the case where R( · , φ) is the TV regularization,
[50] notes that, empirically, the taut-string algorithm used to compute the proximity operator has a
complexity of order O(L). The same holds for the Laplacian regularization. Hence, parameter L controls
the complexity of every iteration. On the other hand, in the reformulation of Problem (8.1) into the
stochastic form (8.15), the random variable |E|R(x, φξ)/L is an unbiased estimate of R(x, φ). By the
ergodic theorem, the larger L, the more accurate is the approximation. Hence, there is a trade-off
between complexity of an iteration and precision of the algorithm. This trade-off is standard in the
machine learning literature. It often appears while sampling mini-batches in order to apply the stochastic
gradient algorithm to minimize a finite sum (see [33, 34]). The choice of L is somehow similar to the
problem of the choice of the length of the mini-batches in this context.

Providing a theoretical rule that would optimally select the value of L is a difficult task that is beyond
the scope of this chapter. Nevertheless, in Sec. 8.6, we provide a detailed analysis of the influence of L
on the numerical performance of the algorithm.

8.5 Proximity operator over 1D-graphs

We now provide some special cases of φ-regularizations, for which the computation of the proximity
operator over 1D-graphs is easily tractable. Specifically, we address the case of the total variation
regularization and the Laplacian regularization which are particular cases of φ-regularizations.

8.5.1 Total Variation norm

In the case where φ{i,j}(x, x
′) = w{i,j}|x− x′|, R(x, φ) reduces to the weighted TV regularization

R(x, φ) =
∑

{i,j}∈E
w{i,j}|x(i)− x(j)|
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and in the case where φ{i,j}(x, x
′) = |x− x′|, R(x, φ) reduces to the its unweighted version

R(x, φ) =
∑

{i,j}∈E
|x(i)− x(j)| .

As mentioned above, there exists a fast method, the taut string algorithm, to compute the proximity
operator of these φ−regularizations over a 1D-graph ([9, 50]).

8.5.2 Laplacian regularization

In the case where φ{i,j}(x, x
′) = w{i,j}(x− x′)2, R(x, φ) reduces to the Laplacian regularization that is

R(x, φ) =
∑

{i,j}∈E
w{i,j}(x(i)− x(j))2.

Its unweighted version is
R(x, φ) =

∑

{i,j}∈E
(x(i)− x(j))2.

In the case where φ{i,j}(x, x
′) = w{i,j}(x/

»
deg(i)− x′/

»
deg(j))2,

R(x, φ) =
∑

{i,j}∈E
w{i,j}

Ñ
x(i)»
deg(i)

− x′(i)»
deg(j)

é2

is the normalized Laplacian regularization.
We now explain one method to compute the proximity operator of the unweighted Laplacian reg-

ularization over an 1D-graph. The computation of the proximity operator of the normalized Laplacian
regularization can be done similarly. The computation of the proximity operator of the weighted Laplacian
regularization over an 1D-graph is as fast as the computation of the proximity operator of the unweighted
Laplacian regularization over an 1D-graph, using for example Thomas’ algorithm.

The proximity operator of a point y ∈ R
ℓ+1 is obtained as a solution to a quadratic programming

problem of the form:

min
x∈Rℓ+1

1

2
‖x− y‖2 + λ

ℓ∑

k=1

(x(k − 1)− x(k))2 ,

where λ > 0 is a scaling parameter. Writing the first order conditions, the solution x satisfies

(I + 2λL)x = y (8.21)

where L is the Laplacian matrix of the 1D-graph with ℓ+ 1 nodes and I is the identity matrix in R
ℓ+1.

Using [45], L can be diagonalized explicitly. In particular, I + 2λL has eigenvalues

1 + 4λ

Ç
1− cos

Ç
πk

ℓ+ 1

åå
,

and eigenvectors ek ∈ R
ℓ+1

ek(j) =
1

2(ℓ+ 1)
cos

Ç
π
kj

ℓ+ 1
− π k

2(ℓ+ 1)

å
,

for 0 ≤ k < n. Hence, x = C∗Λ−1Cy, where Λ gathers the eigenvalues of I +2λL and the operators C
and C∗ are the discrete cosine transform operator and the inverse discrete cosine transform respectively.
Therefore, x can be found in O(ℓ log(ℓ)) operations.
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8.6 Examples

We now give some practical instances of Problem (8.1) by particularizing F and the φ-regularization
in (8.1). The φ-regularizations considered in this section will be among the φ-regularizations mentioned
in Sec. 8.5. We also provide some simulations to compare our method to existing algorithms. The code
is available at the address https://github.com/adil-salim/Snake.

8.6.1 Trend Filtering on Graphs

Consider a vector y ∈ R
V . The Graph Trend Filtering (GTF) estimate on V with parameter k set to

one (see [127] for the definition of the parameter) is defined in [127] by

ŷ = arg min
x∈RV

1

2
‖x− y‖2 + λ

∑

{i,j}∈E
|x(i)− x(j)|, (8.22)

where λ > 0 is a scaling parameter. In the GTF context, the vector y represents a sample of noisy data
over the graph G and the GTF estimate represents a denoised version of y. When G is an 1D or a
2D-graph, the GTF boils down to a well known context [120, 41]. When G is a general graph, the GTF
estimate is studied in [127] and [69]. The estimate ŷ is obtained as the solution of a TV-regularized risk
minimization with F (x) = 1

2
‖x− y‖2 where y is fixed. We address the problem of computing the GTF

estimate on two real life graphs from [74] and one sampled graph. The first one is the Facebook graph
which is a network of 4039 nodes and 88234 edges extracted from the Facebook social network. The
second one is the Orkut graph with 3072441 nodes and 117185083 edges. Orkut was also an on-line social
network. The third graph is sampled according to a Stochastic Block Model (SBM). Namely we generate
a graph of 4000 nodes with four well-separated clusters of 1000 nodes (also called “communities”) as
depicted in Fig. 8.2. Then we draw independently N2 Bernoulli r.v. E(i, j), encoding the edges of the
graph (an edge between nodes i and j is present iff E(i, j) = 1), such that P[E(i, j) = 1] = P (ci, cj)
where ci denotes the community of the node i and where




P (c, c′) = 0.1 if c = c′

P (c, c′) = 0.005 otherwise.

This model is called the stochastic block model for the matrix P [68]. It amounts to a blockwise
Erdös-Rényi model with parameters depending only on the blocks. It leads to 81117 edges.

We assume that every node is provided with an unknown value in R (the set of all these values
being referred to as the signal in the sequel). In our example, the value y(i) at node i is generated as
y(i) = l(ci) + σǫi where l is a mapping from the communities to a set of levels (in Fig. 8.2, l(i) is an
integer in [0, 255]), and ǫ denotes a standard Gaussian white noise with σ > 0 as its standard deviation.
In Fig. 8.2, we represent an example of the signal y (left figure) along with the “initial” values l(ci)
represented in grayscale at every node.

Over the two real life graphs, the vector y is sampled according to a standard Gaussian distribution
of dimension |V |. The parameter λ is set such that E[1

2
‖x − y‖2] = E[λ

∑
{i,j}∈E |x(i) − x(j)|] if x, y

are two independent r.v with standardized Gaussian distribution. The initial guess x0 is set equal to
y. The step size γn is set equal to |V |/(10n) for the two real life graphs and |V |/(5n) for the SBM
realization graph. We ran the Snake algorithm for different values of L, except over the Orkut graph
where L = |V |. The dual problem of (8.22) is quadratic with a box constraint. The Snake algorithm is
compared to the well-known projected gradient (PG) algorithm for the dual problem. To solve the dual
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Figure 8.2: The signal is the grayscale of the node. The graph is sampled according to a SBM. Left:
Noised signal over the nodes. Right: Sought signal.

problem of (8.22), we use L-BFGS-B [39] as suggested in [127]. Note that, while running on the Orkut
graph, the algorithm L-BFGS-B leads to a memory error from the solver [39] in SciPy (using one thread
of a 2800 MHz CPU and 256GB RAM).

Fig. 8.3 shows the objective function as a function of time for each algorithm.
In the case of the TV regularization, we observe that Snake takes advantage of being an online

method, which is known to be twofold ([33, 34]). First, the iteration complexity is controlled even
over large general graphs: the complexity of the computation of the proximity operator is empirically
linear [50]. On the contrary, the projected gradient algorithm involves a matrix-vector product with
complexity O(|E|). Hence, e.g the projected gradient algorithm has an iteration complexity of at least
O(|E|). The iteration complexity of Snake can be set to be moderate in order to frequently get iterates
while running the algorithm. Then, Snake is faster than L-BFGS-B and the projected gradient algorithms
for the dual problem in the first iterations of the algorithms.

Moreover, for the TV regularization, Snake seems to perform globally better than L-BFGS-B and the
projected gradient. This is because Snake is a proximal method where the proximity operator is efficiently
computed ([12]).

The parameter L seems to have a minor influence on the performance of the algorithm since, in
Fig. 8.3 the curves corresponding to different values of L are closely superposed.

Over the three graphs, the value L = O(|V |) is a good value, if not the best value to use the Snake
algorithm. One can show that, while sampling the first steps of the infinite random walk over G from
the node, say v, the expected time of return to the random node v is |V |. Hence, the value L = |V |
allows Snake to significantly explore the graph during one iteration.

118



Figure 8.3: The algorithm Snake for the TV regularization is applied to different graphs, with different
values of the parameter L.

8.6.2 Graph Inpainting

The problem of graph inpainting has been studied in [43, 57, 134] and can be expressed as follows.
Consider a vector y ∈ R

V , a subset O ⊂ V . Let Ō be its complementary in V . The harmonic energy
minimization problem is defined in [134] by

min
x∈RV

∑

{i,j}∈E
(x(i)− x(j))2

subject to x(i) = y(i), ∀i ∈ O.
This problem is interpreted as follows. The signal y ∈ R

V is partially observed over the nodes and the
aim is to recover y over the non observed nodes. The subset O ⊂ V is the set of the observed nodes
and Ō the set of unobserved nodes. An example is shown in Fig. 8.4.

Denote by GŌ = (Ō, EŌ) the subgraph of G induced by Ō. Namely, Ō is the set of vertices, and
the set EŌ is formed by the edges {i, j} ∈ E s.t. i ∈ Ō and j ∈ Ō. The harmonic energy minimization
is equivalent to the following Laplacian regularized problem over the graph GŌ:

min
x∈RŌ

F (x) +
∑

{i,j}∈E
Ō

i<j

(x(i)− x(j))2
(8.23)
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Figure 8.4: Left: Partially observed data (unobserved nodes are black, data is the color of nodes). Right:
Fully observed data (the color is observed for all nodes).

where
F (x) =

∑

i∈Ō,j∈O
{i,j}∈E

(x(i)− y(j))2 .

The signal y is sampled according to a standardized Gaussian distribution of dimension |V |. We compared
the Snake algorithm to existing algorithm over the Orkut graph. The set V is divided in two parts of
equal size to define O and Ō. The initial guess is set equal to zero over the set of unobserved nodes Ō,
and to the restriction of y to O over the set of observed nodes O. We compare our algorithm with the
conjugate gradient.

Fig. 8.5 represents the objective function
∑

{i,j}∈E(x(i) − x(j))2 as a function of time. Over the
Facebook graph, the parameter L is set equal to |V |/10. The step size γn are set equal to |V |/(10n).
Over the Orkut graph, L is set equal to |V |/50. The step size are set equal to |V |/(5√n) on the range
displayed in Fig. 8.5. Even if the sequence (|V |/(5√n))n∈N does not satisfies the Assumption 8.3.2, it is
a standard trick in stochastic approximation to take a slowly decreasing step size in the first iterations of
the algorithm ([88]). It allows the iterates to be quickly close to the set of solutions without converging
to the set of solutions. Then, one can continue the iterations using a sequence of step size satisfying
Assumption 8.3.2 to make the algorithm converging. There is a trade-off between speed and precision
while choosing the step-size. Snake turns out to be faster in the first iterations. Moreover, as an
online method, it allows the user to control the iteration complexity of the algorithm. Since a discrete
cosine transform is used, the complexity of the computation of the proximity operator is O(L log(L)).
In contrast, the iteration complexity of the conjugate gradient algorithm can be a bottleneck (at least
O(|E|)) as far as very large graphs are concerned.

Besides, Snake for the Laplacian regularization does not perform globally better than the conjugate
gradient. This is because the conjugate gradient is designed to fully take advantage of the quadratic
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Figure 8.5: Left: Snake applied to the Laplacian regularization over the Facebook Graph. Right: Snake
applied to the Laplacian regularization over the Orkut Graph.

structure. On the contrary, Snake is not specific to quadratic problems.

8.6.3 Online Laplacian solver

Let L the Laplacian of a graph G = (V, E). The resolution of the equation Lx = b, where b is a zero
mean vector, has numerous applications ([123, 117]). This equation can be solved by minimizing the
Laplacian regularized problem

min
x∈RV

−b∗x+ 1

2
x∗Lx.

In our experiment, the vector b is randomly chosen using a standardized Gaussian distribution of dimension
|V |. We compare our algorithm with the conjugate gradient over the Orkut graph.

Figure 8.6: Snake applied to the resolution of a Laplacian system over the Orkut graph

Fig. 8.6 represents the quantity ‖Lxn − b‖ as a function of time, where xn is the iterate provided
either by Snake or by the conjugate gradient method. The parameter L is set equal to |V |. The step
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size γn are set equal to |V |/(2n). Snake appears to be more stable than the conjugate gradient method,
and has a better performance at start up.

8.7 Conclusion

A fast regularized optimization algorithm over large unstructured graphs was introduced in this chapter.
This algorithm is a variant of the proximal gradient algorithm that operates on randomly chosen simple
paths. It belongs to the family of stochastic approximation algorithms with a decreasing step size. One
future research direction consists in a fine convergence analysis of this algorithm, hopefully leading to a
provably optimal choice of the total walk length L. Another research direction concerns the constant step
analogue of the described algorithm, whose transient behavior could be interesting in many applicative
contexts in the fields of statistics and learning.

8.8 Proofs for Sec. 8.3.3

8.8.1 Proof of Lem. 8.3.2

We start by writing ‖∇fi(si, x̄i−1)‖ ≤ ‖∇fi(si, x̄i−2)‖+Ki(s
i)‖x̄i−1 − x̄i−2‖, where Ki(s

i) is provided
by Assumption 8.3.3. Using the identity x̄i−1 = Tγ,i−1(x̄

i−2), where Tγ,i is given by (8.14), and recalling
that ∇gγi (si, ·) is γ−1-Lipschitz, we get

‖∇fi(si, x̄i−1)‖ ≤ ‖∇fi(si, x̄i−2)‖+ γKi(s
i)(2‖∇fi−1(s

i−1, x̄i−2)‖+ ‖∇gγi−1(s
i−1, x̄i−2)‖).

Similarly,

‖∇gγi (si, x̄i−1 − γ∇fi(si, x̄i−1))‖ ≤
‖∇fi(si, x̄i−1)‖+ 2‖∇fi−1(s

i−1, x̄i−2)‖+ ‖∇gγi (si, x̄i−2)‖+ ‖∇gγi−1(s
i−1, x̄i−2)‖.

Iterating down to x̄0 = x, we get the result since for every i, since all the moments of Ki(ξ
i) are finite.

8.8.2 Proof of Prop. 8.3.3

Let x⋆ be an arbitrary element of Z. Let i ∈ {1, . . . , L}. We start by writing

‖x̄in+1 − x⋆‖2 = ‖x̄in+1 − x̄i−1
n+1‖2 + ‖x̄i−1

n+1 − x⋆‖2 + 2〈x̄in+1 − x̄i−1
n+1, x̄

i−1
n+1 − x⋆〉

= ‖x̄i−1
n+1 − x⋆‖2 + γ2‖∇fi +∇gγi ‖2 − 2γ〈∇f ⋆

i + ϕi, x̄
i−1
n+1 − x⋆〉

− 2γ〈∇fi −∇f ⋆
i , x̄

i−1
n+1 − x⋆〉 − 2γ〈∇gγi − ϕi, x̄

i−1
n+1 − x⋆〉

= ‖x̄i−1
n+1 − x⋆‖2 + A1 + A2 + A3 + A4.

Most of the proof consists in bounding the Ai’s. We shall repeatedly use Young’s inequality |〈a, b〉| ≤
η‖a‖2 + C‖b‖2, where η > 0 is a constant chosen as small as desired, and C > 0 is fixed accordingly.
Starting with A1, we have

A1 ≤ γ2(1 + η)‖∇gγi ‖2 + Cγ2‖∇fi‖2.
We have A3 ≤ 0 by the convexity of fL. We can write

A4 = −2γ〈∇gγi − ϕi, proxγgi −x⋆〉 − 2γ〈∇gγi − ϕi, x̄
i−1
n+1 − γ∇fi − proxγgi〉 − 2γ〈∇gγi − ϕi, γ∇fi〉
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By monotonicity of ∂gi, the first term at the right hand side is ≤ 0. Since x̄i−1
n+1−γ∇fi−proxγgi = γ∇gγi .

Thus,

A4 ≤ −2γ2‖∇gγi ‖2 + 2γ2〈ϕi,∇gγi +∇fi〉 − 2γ2〈∇gγi ,∇fi〉
≤ −(2− η)γ2‖∇gγi ‖2 + Cγ2‖∇fi‖2 + Cγ2‖ϕi‖2

As regards A2, we have

A4 = −2γ〈∇f ⋆
i + ϕi, xn − x⋆〉 − 2γ〈∇f ⋆

i + ϕi, x̄
i−1
n+1 − xn〉.

Gathering these inequalities, we get

‖x̄in+1 − x⋆‖2 ≤ ‖x̄i−1
n+1 − x⋆‖2 − (1− η)γ2‖∇gγi ‖2 + Cγ2‖∇fi‖2 + Cγ2‖ϕi‖2

− 2γ〈∇f ⋆
i + ϕi, xn − x⋆〉 − 2γ〈∇f ⋆

i + ϕi, x̄
i−1
n+1 − xn〉.

Iterating over i, we get

‖x̄in+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 − (1− η)γ2
i∑

k=1

‖∇gγk‖2 + Cγ2
i∑

k=1

‖∇fk‖2 + Cγ2
i∑

k=1

‖ϕk‖2

− 2γ
i∑

k=1

〈∇f ⋆
k + ϕk, xn − x⋆〉 − 2γ

i∑

k=1

〈∇f ⋆
k + ϕk, x̄

k−1
n+1 − xn〉.

The summand in the last term can be written as

−2γ〈∇f ⋆
k + ϕk, x̄

k−1
n+1 − xn〉 =− 2γ

k−1∑

ℓ=1

〈∇f ⋆
k + ϕk, x̄

ℓ
n+1 − x̄ℓ−1

n+1〉

=− 2γ2
k−1∑

ℓ=1

〈∇f ⋆
k + ϕk,∇fℓ +∇gγℓ 〉

≤γ2C‖∇f ⋆
k‖2 + γ2C‖ϕk‖2 + γ2C

k−1∑

ℓ=1

‖∇fℓ‖2 + γ2η
k−1∑

ℓ=1

‖∇gγℓ ‖2.

where we used |〈a, b〉| ≤ η‖a‖2 + C‖b‖2 as above. Therefore, for all i = 1, . . . , L,

‖x̄in+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 − (1− η)γ2
i∑

k=1

‖∇gγk‖2 + Cγ2
i∑

k=1

‖∇fk‖2

+ Cγ2
i∑

k=1

‖∇f ⋆
k‖2 + Cγ2

i∑

k=1

‖ϕk‖2 − 2γ〈
i∑

k=1

∇f ⋆
k + ϕk, xn − x⋆〉. (8.24)

Consider the case i = L. Using Assumption 8.3.4,

En

î
‖x̄Ln+1 − x⋆‖2

ó
≤ ‖xn − x⋆‖2 − (1− η)γ2En

[
L∑

k=1

‖∇gγk‖2
]

+ Cγ2
L∑

k=1

En[‖∇fk‖2]− 2γEn

[
〈

L∑

k=1

∇f ⋆
k + ϕk, xn − x⋆〉

]
+ Cγ2.
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The last term at the right hand side is zero since

En

[
〈

L∑

k=1

∇f ⋆
k + ϕk, xn − x⋆〉

]
= 〈E

[
L∑

k=1

∇f ⋆
k + ϕk

]
, xn − x⋆〉 = 0

by definition of ∇f ⋆
k and ϕk. Besides, using Assumption 8.3.3, for all k we have

En[‖∇fk‖2] ≤ CEn[‖∇f ⋆
k‖2] + CEn[K

2
k(ξ

k
n+1)‖x̄k−1

n+1 − x⋆‖2].

Then,

En[‖xn+1 − x⋆‖2] ≤ ‖xn − x⋆‖2 − (1− η)γ2En

[
L∑

k=1

‖∇gγk‖2
]

+ Cγ2
L∑

k=1

En

î
K2

k(ξ
k
n+1)‖x̄k−1

n+1 − x⋆‖2
ó
+ Cγ2. (8.25)

We shall prove by induction that for all r.v Pk which is a monomial expression of the r.v

K2
k(ξ

k
n+1), . . . , K

2
L(ξ

L
n+1),

there exists C > 0 such that

En

î
Pk‖x̄k−1

n+1 − x⋆‖2
ó
≤ C(1 + ‖xn − x⋆‖2), (8.26)

for all k = 1, . . . , L. Note that such a r.v Pk is independent of Fn, non-negative and for all α > 0,
E[Pα

k ] < ∞ by Assumption 8.3.3. Using Assumption 8.3.3, the induction hypothesis 8.26 is satisfied if
k = 1. Assume that it holds true until the step k−1 for some k ≤ L. Using 8.24 and Assumption 8.3.3,

En

î
Pk‖x̄k−1

n+1 − x⋆‖2
ó
≤ C‖xn − x⋆‖2

+ Cγ2En

[
Pk

k−1∑

ℓ=1

‖∇fℓ‖2
]

+ Cγ2En

[
Pk

k−1∑

ℓ=1

‖ϕℓ‖2 + ‖∇f ⋆
ℓ ‖2

]

− 2γEnPk〈
k−1∑

ℓ=1

∇f ⋆
ℓ + ϕℓ, xn − x⋆〉. (8.27)

The last term at the right hand side can be bounded as

− 2γEnPk〈
k−1∑

ℓ=1

∇f ⋆
ℓ + ϕℓ, xn − x⋆〉

≤C‖xn − x⋆‖2 + CEn

[
Pk

k−1∑

ℓ=1

‖∇f ⋆
ℓ ‖2 + ‖ϕℓ‖2

]

≤C‖xn − x⋆‖2 + C (8.28)

using Hölder inequality and Assumption 8.3.4. For all ℓ = 1, . . . , k − 1,

En[Pk‖∇fℓ‖2] ≤ CEn[Pk‖∇f ⋆
ℓ ‖2] + CEn

î
PkK

2
ℓ (ξ

ℓ
n+1)‖x̄ℓ−1

n+1 − x⋆‖2
ó

≤ C(1 + ‖xn − x⋆‖2) (8.29)
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where we used Hölder inequality and Assumption 8.3.4 for the first term at the right hand side and the
induction hypothesis (8.26) at the step ℓ with the r.v Pℓ := PkK

2
ℓ (ξ

ℓ
n+1) for the second term.

Plugging (8.28) and (8.29) into (8.27) and using again Hölder inequality and Assumption 8.3.4
we find that (8.26) holds true at the step k. Hence (8.26) holds true for all k = 1, . . . , L. Finally,
plugging (8.26) into (8.25) with Pk = K2

k(ξ
k
n+1) for all k = 1, . . . , L we get

En[‖xn+1 − x⋆‖2] ≤ (1 + Cγ2)‖xn − x⋆‖2 − (1− η)γ2En

[
L∑

k=1

‖∇gγk‖2
]
+ Cγ2.

By the Robbins-Siegmund lemma [100], used along with (γn) ∈ ℓ2, we get that (‖xn − x⋆‖) converges
almost surely, showing the first point.

By taking the expectations at both sides of this inequality, we also obtain that (E‖xn − x⋆‖2)
converges, supn E‖xn − x⋆‖2 <∞, and E

∑
n γ

2
n+1

∑L
i=1 ‖∇gγi ‖2 <∞. As supn E‖xn − x⋆‖2 <∞, we

have by Assumption 8.3.3 that supn E‖∇f1‖2 <∞. Using Lem. 8.3.2 and iterating, we easily get that
E
∑

n γ
2
n+1

∑L
i=1 ‖∇fi‖2 <∞ for all i.

Since ‖x̄1n+1 − xn‖ ≤ γ‖∇f1‖+ γ‖∇gγ1‖, we get that
∑

n E‖x̄1n+1 − xn‖2 <∞. By Borel-Cantelli’s
lemma, we get that x̄1n+1 − xn → 0 almost surely. The almost sure convergence of x̄in+1 − xn to zero is
shown similarly, and the proof of Prop. 8.3.3 is concluded.
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Chapter 9

Conclusion and Prospects

In this thesis, we first generalized the Ordinary Differential Equation method to Differential Inclusions
for constant step size stochastic approximation. Two kinds of DI are considered : DI involving an
upper semicontinous operator and DI built upon a maximal monotone operator with possibly empty
values. For each DI, several discretization schemes are considered. These schemes include the explicit
implicit Euler scheme (Forward Backward algorithm) and a Douglas Rachford method. As randomness
is involved in every stage of the discretization, we brought tools from probability theory to study the
resulting algorithms. First, the dynamical behavior of the iterates is studied using weak convergence of
stochastic processes techniques. This result is not enough to study the long-run behavior of the methods.
Studying the sequence of iterates as a Markov chain, we provided a stability criterion that allowed to
state the asymptotic behavior of the algorithm. We finally showed that this criterion is satisfied in many
use cases, including the stochastic proximal gradient algorithm. In the second part of this thesis, we
designed and applied generalizations of the stochastic proximal gradient algorithm to solve two kinds
of problems. We first considered the saddle point problem of finding primal dual optimal points of
a stochastic optimization problem. The optimization problem is linearly constrained by matrices that
are also written as expectations. Then, we proposed an algorithm to address regularized optimization
problems over large and general graphs. The regularization term is tied to the graph geometry and our
proximal method allows to handle it stochastically.

In this thesis, we chose to tackle general problems using general compactness techniques that give
asymptotic results. Non asymptotic bounds could be obtain for particular subproblems. Such bounds
has already be obtained from a dynamical system point of view for several algorithms, including Langevin
algorithm or FISTA. The underlying (stochastic) differential equation can often be cast in the framework
of Hamiltonian dynamics. Another direction of research is the adaptation of the tools used in this thesis
to study optimization in measure spaces. Such problems arise in machine learning and can be at the
core of sampling methods. Finally, many algorithms in the fields of control or reinforcement learning
can be seen as stochastic approximation algorithm, with a more general assumption on the noise (i.e a
case where the sequence of random variables is not i.i.d). The algorithms studied in this thesis could be
analyzed under these more general assumptions.
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Appendix A

Technical Report : Stochastic Douglas

Rachford

Notations

A.1 Statement of the Problem

Consider ξ a random variable defined on some probability space (Ω,F ,P) into an arbitrary measurable
space (Ξ,G) with distribution µ. Let f, g : Ξ × X → (−∞,+∞] two normal convex integrands and
assume that f(ξ, x) is integrable. We define F and G by

F (x) = Eξ(f(ξ, x))

G(x) = Eξ(g(ξ, x)) .

Denote by (ξn)n an i.i.d sequence of copies of ξ. In the sequel, we use the notation fn := f(ξn, ·) and
gn := g(ξn, ·). The adaptive Douglas-Rachford algorithm is given by

un+1 = proxγ,fn+1
(xn)

zn+1 = proxγ,gn+1
(2un+1 − xn)

xn+1 = xn + zn+1 − un+1 .

We denote by D(s) the domain of g(s, ·), and by D the set defined by the relation x ∈ D ⇐⇒
x ∈ D(ξ) a.s. We denote by d(x) = d(x,D). We also denote F γ(x) =

∫
fγ(s, x)µ(ds) and

Gγ(x) =
∫
gγ(s, x)µ(ds). We assume that f(ξ, ·) has a.s a full domain (equal to X) and is continuously

differentiable. Under these assumptions, Z(∂(G+F )) = Z(∂G+∇F ) = Z(E(∂g(ξ, ·))+E(∇f(ξ, ·))),
see Chap. 2.

A.1.1 Useful facts

We first observe that the process (xn) described by Eq. (4.4) is a homogeneous Markov chain with
transition kernel denoted by Pγ. The kernel Pγ and the initial measure ν determine completely the
probability distribution of the process (xn), seen as a (Ω,F ) → (XN,B(X)⊗N) random variable. We
shall denote this probability distribution on (XN,B(X)⊗N) as Pν,γ. We denote by E

ν,γ the corresponding
expectation. When ν = δa for some a ∈ X, we shall prefer the notations P

a,γ and E
a,γ to P

δa,γ and
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E
δa,γ. From nom on, (xn) will denote the canonical process on the canonical space (XN,B(X)⊗N). We

denote by Fn the sub-σ-field of F generated by the family {x0, {ξγk : 1 ≤ k ≤ n}}, and we write
En[·] = E[· |Fn] for n ∈ N. In the remainder of the paper, C will always denote a positive constant
that does not depend on the time n nor on γ. This constant may change from a line of calculation
to another. In all our derivations, γ will lie in the interval (0, γ0] where γ0 is a fixed constant which is
chosen as small as needed. Then, we observe that the Markov kernels Pγ are Feller, i.e., they take the
set Cb(X) of the real, continuous, and bounded functions on X to Cb(X). Indeed, for each f ∈ Cb(X),
Eq. (4.5) shows that Pγ(·, f) ∈ Cb(X) by the continuity of proxγg(s,·) and proxγf(s,·), and by dominated
convergence. For each γ > 0, we denote as

I(Pγ) := {π ∈M(X) : π = πPγ}

the set of invariant probability measures of Pγ. Define the family of kernels P := {Pγ}γ∈(0,γ0], and let

I(P) :=
⋃

γ∈(0,γ0]
I(Pγ)

be the set of distributions π such that π = πPγ for at least one Pγ with γ ∈ (0, γ0].
Finally, we shall often refer to the Differential Inclusion (DI)

®
ẋ(t) ∈ −(∂F + ∂G)(x(t))
x(0) = x0.

(A.1)

and to the associated semiflow Φ.

A.2 Theorem

H1 There exists x⋆ ∈ Z(∂G+∇F ) admitting a L2(µ) representation (ϕ, ψ) i.e ∃ϕ, ψ ∈ L2(µ), such
that ϕ(s) ∈ ∂g(s, x⋆) µ-a.s, ψ(s) = ∇f(s, x⋆) µ-a.s and E(ϕ(ξ) + ψ(ξ)) = 0.

H2 There exists L > 0 s.t. ∇f(s, ·) is a.s L-Lipschitz continuous.

H3 The function F +G satisfies one of the following properties:

(a) F +G is coercive.

(b) F +G is supercoercive.

H4 For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K∩D

∫
‖∂0g(s, x)‖1+ε µ(ds) <∞,

H5 For every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K

∫
‖∇f(s, x)‖1+ε µ(ds) <∞ .

H6 For all γ ∈ (0, γ0] and all x ∈ X,
∫ Ç
‖∇fγ(s, x)‖+

1

γ
‖ proxγg(s,·)(x)− Πcl(D(s))(x)‖

å
µ(ds) ≤ C(1 + |F γ(x) +Gγ(x)|) .
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H7 ∀x ∈ X,
∫
d(x,D(s))2 µ(ds) ≥ Cd(x)2.

H8 For every compact set K ⊂ X, there exists ε > 0 such that

sup
γ∈(0,γ0],x∈K

1

γ1+ε

∫
‖ proxγg(s,·)(x)− Πcl(D(s))(x)‖1+ε µ(ds) <∞ .

Theorem A.2.1. Let Hypotheses H1–H8 hold true. Then, for each probability measure ν having a
finite second moment, for any ε > 0,

lim sup
n→∞

1

n+ 1

n∑

k=0

P
ν,γ (d(xk, argmin(F +G)) > ε) −−→

γ→0
0 .

Moreover, if Hypothesis H3–(b) is satisfied, then

lim sup
n→∞

P
ν,γ (d (x̄n, argmin(F +G)) ≥ ε) −−→

γ→0
0, and

lim sup
n→∞

d (Eν,γ(x̄n), argmin(F +G)) −−→
γ→0

0 .

where x̄n = 1
n

∑n
k=1 xk.

A.3 Proof of Th. A.2.1

In this section, we study the iterations given by the adaptive Douglas Rachford algorithm. Let γ0 > 0,
a ∈ X and (ξn)n∈N be an i.i.d sequence of random variables from (Ω,F ,P) to (Ξ,G) with distribution
µ. The adaptive Douglas Rachford algorithm with step size γ > 0 writes x0 = a and for all n ∈ N,

xn+1 = xn − γ∇fγ(ξn+1, xn)− γ∇gγ(ξn+1, xn − 2γ∇fγ(ξn+1, xn)). (A.2)

Define
hγ(s, x) := −∇fγ(s, x)−∇gγ(s, x− 2γ∇fγ(s, x)).

The algorithm (A.2) can be rewritten as

xn+1 = xn + γhγ(ξn+1, xn). (A.3)

In Sec. A.3.1, we show that the linearly interpolated process constructed from the sequence (xn) with
time frame γ converges narrowly as γ → 0 to the DI solution in the topology of uniform convergence
on compact sets. The main result of this section is Th. A.3.1, which has its own interest. To prove this
theorem, we establish the tightness of the linearly interpolated process (Lem. A.3.2), then we show that
the limit points coincide with the DI solution (Lem. A.3.3–A.3.5). In Sec. A.3.2, we start by establishing
the inequality (A.15), which implies the tightness of the set of invariant measures I(P) in Lem A.3.7.
Then, we show that the cluster points of I(P) are invariant measures for the flow induced by the DI
(Lem A.3.9). In the different domains case, this lemma requires that the invariant measures of Pγ put
most of their weights in a thickening of the domain D of order γ. This fact is established by Lem. A.3.8.
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A.3.1 Dynamical behavior

For every γ > 0, we introduce the linearly interpolated process

Xγ : (XN,B(X)⊗N)→ (C(R+,X),B(C(R+,X)))

defined for every x = (xn : n ∈ N) in XN as

Xγ(x) : t 7→ x⌊ t
γ
⌋ + (t/γ − ⌊t/γ⌋)(x⌊ t

γ
⌋+1 − x⌊ t

γ
⌋) .

This map will be referred to as the linearly interpolated process. When x = (xn) is the process with
the probability measure P

ν,γ defined above, the distribution of the r.v. Xγ is Pν,γX−1
γ . The set C(R+,X)

of continuous functions from R+ to X is equipped with the topology of uniform convergence on the
compact intervals, who is known to be compatible with the distance d defined as

d(x, y) :=
∑

n∈N∗

2−n

(
1 ∧ sup

t∈[0,n]
‖x(t)− y(t)‖

)
.

If S is a subset of X and ε > 0, we denote by Sε := {a ∈ X : d(a, S) < ε} the ε-neighborhood of S.
The aim of the beginning section is to establish the following result:

Theorem A.3.1. Let Assumptions H4, H5, H7 and H8 hold true. Then, for every η > 0, for every
compact set K ⊂ X s.t. K ∩ D 6= ∅,

∀M ≥ 0, sup
a∈K∩DγM

P
a,γ
Ä
d(Xγ,Φ(Πcl(D)(a), ·)) > η

ä
−−→
γ→0

0. (A.4)

Choose a compact set K ⊂ X s.t. K ∩ cl(D) 6= ∅. Choose R > 0 s.t. K is contained in the ball of
radius R. For every x = (xn : n ∈ N) in XN, define τR(x) := inf{n ∈ N : xn > R} and introduce the
measurable mapping BR : XN → XN, given by

BR(x) : n 7→ xn✶n<τR(x) + xτR(x)✶n≥τR(x) .

Consider the image measure P̄
a,γ := P

a,γB−1
R , which corresponds to the law of the truncated process

BR(x) and denote by Ē
a,γ the corresponding mathematical expectation. The crux of the proof consists

in showing that for every η > 0 and every M > 0,

sup
a∈K∩DγM

P̄
a,γ
Ä
d(Xγ,Φ(Πcl(D)(a), ·)) > η

ä
−−→
γ→0

0. (A.5)

Eq. (A.5) is the counterpart of Th. 3.5.1. Once it has been proven, the conclusion follows verbatim from
the End of the proof of Th. 3.5.1, Chap. 3. Our aim is thus to establish Eq. (A.5). The proof follows the
same steps as the proof of Th. 3.5.1 up to some confined changes. Here, the steps of the proof which
do not need any modification are recalled rather briefly (we refer the reader to Chap. 3 for the details).
On the other hand, the parts which require an adaptation are explicitly stated as lemmas, whose detailed
proofs are provided.

Define hγ,R(s, x) := hγ(s, x)✶‖x‖≤R. First, we recall the following decomposition, established in
Chap. 3:

Xγ = Π0 + Gγ,R ◦ Xγ + Xγ ◦Mγ,R ,

130



P̄
a,γ almost surely, where Π0 : X

N → C(R+,X), Gγ,R : C(R+,X)→ C(R+,X) and Mγ,R : XN → XN are
the mappings respectively defined by

Π0(x) : t 7→ x0

Mγ,R(x) : n 7→ (xn − x0)− γ
n−1∑

k=0

∫
hγ,R(s, xk)µ(ds)

Gγ,R(x) : t 7→
∫ t

0

∫
hγ,R(s, x(γ⌊u/γ⌋))µ(ds)du ,

for every x = (xn : n ∈ N) and every x ∈ C(R+,X) .

Lemma A.3.2. For all γ ∈ (0, γ0] and all x ∈ XN, define Zγ
n+1(x) := γ−1(xn+1 − xn). There exists

ε > 0 such that:

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ē
a,γ

(Ç
‖Zγ

n‖+
d(xn)

γ
✶‖xn‖≤R

å1+ε)
< +∞

Proof. Let ε be the smallest of the three constants (also named ε) in Assumptions H4, H5 and H8
respectively where K is the ball of center 0 and radius R. For every a, γ, the following holds for P̄a,γ-
almost all x = (xn : n ∈ N):

d(xn+1)✶‖xn+1‖≤R = d(xn+1)✶‖xn+1‖≤R(✶‖xn‖≤R + ✶‖xn‖>R) = d(xn+1)✶‖xn+1‖≤R✶‖xn‖≤R

≤ d(xn+1)✶‖xn‖≤R

= ‖xn+1 − ΠD(xn+1)‖✶‖xn‖≤R

≤ ‖xn+1 − ΠD(xn)‖✶‖xn‖≤R .

Using the notation E
a,γ
n = Ē

a,γ( . |x0, . . . , xn), we thus obtain:

E
a,γ
n (d(xn+1)

1+ε
✶‖xn+1‖≤R) ≤

∫
‖xn + γhγ(s, xn)− ΠD(xn)‖1+ε

✶‖xn‖≤R dµ(s) .

By the convexity of ‖ · ‖1+ε, for all α ∈ (0, 1),

‖x+ y‖1+ε =
1

α1+ε

∥∥∥∥αx+ (1− α) α

1− αy
∥∥∥∥
1+ε

≤ α−ε‖x‖1+ε + (1− α)−ε‖y‖1+ε .

Therefore, by setting δγ(s, x) := ‖x+ γhγ(s, x)− ΠD(s)(x)‖,

E
a,γ
n (d(xn+1)

1+ε
✶‖xn+1‖≤R) ≤ α−ε

∫
δγ(s, xn)

1+ε
✶‖xn‖≤R dµ(s)

+ (1− α)−ε
∫
‖ΠD(s)(xn)− ΠD(xn)‖1+ε

✶‖xn‖≤R dµ(s) .

Note that for every s ∈ Ξ, x ∈ X,

δγ(s, x) = ‖ proxγg(s,·)(x− 2γ∇fγ(s, x)) + γ∇fγ(s, x)− ΠD(s)(x) + proxγg(s,·)(x)− proxγg(s,·)(x)‖

Hence,
δγ(s, x) ≤ 3γ‖∇fγ(s, x)‖+ ‖ proxγg(·,s)(x)− ΠD(s)(x)‖
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And, by Assumptions H4 and H5, there exists a deterministic constant C > 0 s.t.

sup
n

∫
δγ(s, xn)

1+ε
✶‖xn‖≤R dµ(s) ≤ Cγ1+ε .

Moreover, since Πcl(D(s)) is a firmly non expansive operator [12, Chap. 4], it holds that for all u ∈ cl(D),
and for µ-almost all s,

‖Πcl(D(s))(xn)− u‖2 ≤ ‖xn − u‖2 − ‖Πcl(D(s))(xn)− xn‖2.
Taking u = Πcl(D)(xn), we obtain that

‖Πcl(D(s))(xn)− Πcl(D)(xn)‖2 ≤ d(xn)
2 − d(xn, D(s))2. (A.6)

Making use of Assumption H7, and assuming without loss of generality that ε ≤ 1, we obtain
∫
‖Πcl(D(s))(xn)− Πcl(D)(xn)‖1+ε dµ(s) ≤

Å∫
‖Πcl(D(s))(xn)− Πcl(D)(xn)‖2 dµ(s)

ã(1+ε)/2

≤ α′
d(xn)

1+ε ,

for some α′ ∈ [0, 1). Choosing α close enough to zero, we obtain that there exists ρ ∈ [0, 1) such that

E
a,γ
n

Ç
d(xn+1)

1+ε

γ1+ε
✶‖xn+1‖≤R

å
≤ ρ

d(xn)
1+ε

γ1+ε
✶‖xn‖≤R + C.

Taking the expectation at both sides, iterating, and using the fact that d(x0) = d(a) < Mγ, we obtain
that

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ē
a,γ

(Ç
d(xn)

γ

å1+ε

✶‖xn‖≤R

)
< +∞ . (A.7)

Since ∇gγ(s, ·) is γ−1-Lipschitz continuous, ‖hγ(s, x)‖ ≤ ‖∇gγ(s, x)‖ + 3‖∇fγ(s, x)‖. Moreover,
choosing measurably x̃ ∈ D in such a way that ‖x−x̃‖ ≤ 2d(x), we obtain ‖∇gγ(s, x)‖ ≤ ‖∂g0(x̃, s)‖+
2d(x)

γ
. Therefore, there exists R′ depending only on R and D s.t.

‖∇gγ(s, x)‖✶‖x‖≤R ≤ ‖∂0g(s, x̃)‖✶‖x̃‖≤R′ + 2
d(x)

γ
✶‖x‖≤R .

In the following, C is a positive constant that can change from a line to another. Choosing ε > 0 enough
small and using Assumption H4, H5 and Eq. (A.7), we have

Ē
a,γ
n (‖Zγ

n+1‖1+ε) =
∫
‖hγ(s, xn)‖1+ε

✶‖xn‖≤R dµ(s)

≤
∫

(‖∇gγ(s, xn)‖+ 3‖∇fγ(s, xn)‖)1+ε
✶‖xn‖≤R dµ(s)

≤C
∫
‖∇gγ(s, xn)‖1+ε

✶‖xn‖≤R + ‖∇fγ(s, xn)‖1+ε
✶‖xn‖≤R dµ(s)

≤C
∫
‖∂0g(s, x̃n)‖1+ε

✶‖x̃n‖≤R′ dµ(s) + C
∫
‖∇fγ(s, xn)‖1+ε

✶‖xn‖≤R dµ(s)

+C
d(xn)

γ

1+ε

✶‖xn‖≤R

≤C + C
d(xn)

γ

1+ε

✶‖xn‖≤R . (A.8)

Taking expectations, the bound (3.21) is established.

132



Using Lem. 3.6.2, the uniform integrability condition (3.21) implies1 that {P̄a,γX−1
γ : a ∈ K∩DγM , γ ∈

(0, γ0]} is tight, and for any T > 0,

sup
a∈K∩DγM

P̄
a,γ(‖Xγ ◦Mγ,R‖∞,T > ε)

γ→0−−→ 0 , (A.9)

where the notation ‖x‖∞,T stands for the uniform norm of x on [0, T ].

Lemma A.3.3. For an arbitrary sequence (an, γn) such that an ∈ K∩DγnM and γn → 0, there exists a
subsequence (still denoted as (an, γn)) such that (an, γn)→ (a∗, 0) for some a∗ ∈ K ∩ cl(D), and there
exist r.v. z and (xn : n ∈ N) defined on some probability space (Ω′,F ′,P′) into C(R+,X) s.t. xn has
the distribution P̄

an,γnX−1
γn and xn(ω)→ z(ω) for all ω ∈ Ω′. Moreover, defining

un(t) := xn(γn⌊t/γn⌋) ,

the sequence (an, γn) and (xn) can be chosen in such a way that the following holds P
′-a.e.

sup
n

∫ T

0

Ç
d(un(t))

γn
✶‖un(t)‖≤R

å1+ ε
2

dt < +∞ (∀T > 0) , (A.10)

where ε > 0 is the constant introduced in Lem. A.3.2.

Proof. The first point can be obtained by straightforward application of Prokhorov and Skorokhod’s
theorems. However, to verify the second point, we need to construct the sequences more carefully.
Choose ε > 0 as in Lem. A.3.2. We define the process Y γ : XN → R

N s.t. for every n ∈ N,

Y γ
n (x) :=

n−1∑

k=0

d(xk)
1+ε/2

γε/2
✶‖xk‖≤R ,

and we denote by (X, Y γ) : XN → (X × R)N the process given by (X, Y γ)n(x) := (xn, Y
γ
n (x)). We

define for every n, Z̃γ
n+1 := γ−1((X, Y γ)n+1 − (X, Y γ)n). By Lem. A.3.2, it is easily seen that

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ē
a,γ
Ä
‖Z̃γ

n‖✶‖Z̃γ
n‖>A

ä A→+∞−−−−→ 0 .

We now apply Lem. 3.6.2, only replacing X by X×R and P̄
a,γ by P̄a,γ(X, Y γ)−1. By this lemma, the family

{P̄a,γ(X, Y γ)−1X
−1

γ : a ∈ K ∩DγM , γ ∈ (0, γ0]} is tight, where X
−1

γ : (X×R)N → C(R+,X×R) is the
piecewise linear interpolated process, defined in the same way as Xγ only substituting X×R with X in the

definition. By Prokhorov’s theorem, one can choose the subsequence (an, γn) s.t. P̄an,γn(X, Y γn)−1X
−1

γn

converges narrowly to some probability measure Υ on X×R. By Skorokhod’s theorem, we can define a
stochastic process ((xn, yn) : n ∈ N) on some probability space (Ω′,F ′,P′) into C(R+,X × R), whose
distribution for a fixed n coincides with P̄

an,γn(X, Y γn)−1X
−1

γn , and s.t. for every ω ∈ Ω′, (xn(ω), yn(ω))→
(z(ω),w(ω)), where (z,w) is a r.v. defined on the same space. In particular, the first marginal distribution
of P̄an,γn(X, Y γn)−1X

−1

γn coincides with P̄
an,γnX−1

γn . Thus, the first point is proven.
For every γ ∈ (0, γ0], introduce the mapping

Γγ : C(R+,X) → C(R+,R)

x 7→
Ç
t 7→

∫ t

0
(γ−1

d(x(γ⌊u/γ⌋)))1+ε/2
✶‖x(γ⌊u/γ⌋)‖≤Rdu

å
.

1Lem. 3.6.2 was actually shown with condition [a ∈ K] instead of [a ∈ K ∩DγM ], but the proof can be easily adapted
to the latter case.
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We denote by X−1
γ : RN → C(R+,R) the piecewise linear interpolated process, defined in the same way

as Xγ only substituting X with R in the definition. It is straightforward to show that Xγ ◦Y γn = Γγ ◦Xγ.
For every n, by definition of the couple (xn, yn), the distribution under P′ of the r.v. Γγn(xn)−yn is equal
to the distribution of Γγn◦Xγn−Xγn◦Y γn under P̄an,γn . Therefore, P′-a.e. and for every n, yn = Γγn(xn).
This implies that, P′-a.e., Γγn(xn) converges (uniformly on compact set) to w. On that event, this implies
that for every T ≥ 0, Γγn(xn)(T )→ w(T ), which is finite. Hence, supn Γγn(xn)(T ) <∞ on that event,
which proves the second point.

Define
vn(s, t) := −∇fγn(s, un(t))✶‖un(t)‖≤R .

and
wn(s, t) := −∇gγn(s, un(t)− 2γ∇fγn(s, un(t)))✶‖un(t)‖≤R .

Thanks to the convergence (A.9), the following holds P′-a.e.:

z(t) = z(0) + lim
n→∞

∫ t

0

∫

Ξ
vn(s, u) + wn(s, u)µ(ds) du (∀t ≥ 0) . (A.11)

We now select an ω ∈ Ω′ s.t. the events (A.10) and (A.11) are all realized, and omit the dependence in ω
in the sequel. Otherwise stated, un, vn and wn are handled from now on as deterministic functions, and
no longer as random variables. The aim of the next lemmas is to analyze the integrand vn(s, u)+wn(s, u).
Consider some T > 0 and let λT represent the Lebesgue measure on the interval [0, T ]. To simplify
notations, we set L1+ε

X := L1+ε(Ξ× [0, T ],G ⊗B([0, T ]), µ⊗ λT ;X).

Lemma A.3.4. The sequences (vn : n ∈ N), (wn : n ∈ N) form bounded subsets of L1+ε/2
X .

Proof. By the same derivations as those leading to Eq. (A.8), there exists C > 0 such that

∫ Ä
‖vn(s, t)‖1+ε/2 + ‖wn(s, t)‖1+ε/2

ä
dµ(s) ≤ C + C

d(un(t))
1+ε/2

γ1+ε/2
✶‖un(t)‖≤R .

The proof is concluded by applying Lem. A.3.3.

The sequence of mappings ((s, t) 7→ (vn(s, t), wn(s, t))) is bounded in L1+ε/2
X2 and therefore admits

a weak cluster point in that space. We denote by (v, w) such a cluster point, where v : Ξ× [0, T ]→ X

and w : Ξ × [0, T ] → X. Let HR(s, x) := ∇f(s, x) + ∂g(s, x)) if ‖x‖ < R, {0} if ‖a‖ > R, and
HR(s, x) := X otherwise. Denote the corresponding selection integral as HR(a) =

∫
HR(s, a)µ(ds).

Lemma A.3.5. For every (s, t) µ⊗ λT -a.e., (z(t), (v + w)(s, t)) ∈ gr(HR(s, . )).

Proof. To simplify notations, we now omit the dependence in (s, t) in the sequel and write un := un(t),
vn := vn(s, t), wn := wn(s, t), hγ := hγ(s, ·), ∂g := ∂g(s, ·), ∇f := ∇f(s, ·), γ := γn, proxγf :=
proxγf(s,·), ∇fγ := ∇fγ(s, ·), z := z(t). Moreover, we write flproxγg(x) := proxγg(s,·)(x − 2γ∇fγ(s, x))
and ∇̃gγ := ∇gγ(s, x− 2γ∇fγ(s, x)), for all x ∈ X.

There exists a subsequence of (γn) that is decreasing and such that dn := supt∈[0,T ] ‖un(t) − z(t)‖
is decreasing to zero. We still denote by (γn) such a subsequence. The sequence

((vn, wn, ‖vn‖, ‖wn‖))n
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converges weakly to (v, w, ṽ, w̃) in L1+ε/2
X2×R2 along some subsequence (n.b.: compactness and sequential

compactness are the same notions in the weak topology of L1+ε/2
X×R

). We still denote this subsequence
by ((vn, wn, ‖vn‖, ‖wn‖))n. By Mazur’s theorem, there exists a function J : N → N and a sequence of
sets of weights {αk,n : n ∈ N, k = n . . . , J(n) : αk,n ≥ 0,

∑J(n)
k=n αk,n = 1} such that the sequence of

functions

(v̄n, w̄n, ṽn, w̃n) : (s, t) 7→
J(n)∑

k=n

αk,n(vk(s, t), wk(s, t), ‖vk(s, t)‖, ‖wk(s, t)‖)

converges strongly to (v, w, ṽ, w̃) in that space, as n→∞. Taking a further subsequence (which we still
denote by (v̄n, w̄n, ṽn, w̃n)) we obtain the µ⊗ λT -almost everywhere convergence of (v̄n, w̄n, ṽn, w̃n) to
(v̄, w̄, ṽ, w̃). Consider a negligible set N ∈ G⊗B([0, T ]) such that for all (s, t) /∈ N , (v̄n, w̄n, ṽn, w̃n)→
(v, w, ṽ, w̃) and ṽ, w̃ are finite.

If ‖z(t)‖ = R, obviously (z(t), (v + w)(s, t)) ∈ gr(HR(·, s)). If ‖z(t)‖ > R, then, (v + w)(s, t) = 0
since ‖un(t)‖ > R for n enough large. We just need to consider the case where ‖z(t)‖ < R. Besides,
the condition (z(t), (v + w)(s, t)) ∈ gr(HR(·, s)) is equivalent to:

(z(t),−(v + w)(s, t)) ∈ gr(∂(f(·, s) + g(·, s))) = gr(∇f(·, s) + ∂g(·, s)) . (A.12)

To show Eq. (A.12), consider an arbitrary (p, q) ∈ gr(∇f(·, s) + ∂g(·, s)). There exists (qf , qg) ∈ X2

such that q = qf + qg, (p, qf ) ∈ gr(∇f(·, s)) and (p, qg) ∈ gr(∂g(·, s)).
Recall that −hγ(x) = ∇fγ(x)+∇gγ(x− 2γ∇fγ(x)). We start by decomposing 〈x− p,−hγ(x)− q〉

for any x ∈ X. On the one hand,

〈x+ γhγ(x)− p,−hγ(x)− q〉 = −γ〈hγ(x), q〉 − γ‖hγ(x)‖2 + 〈x− p,−hγ(x)− q〉

On the other hand,

〈x− γ∇fγ(x)− γ∇̃gγ(x)− p,∇fγ(x) + ∇̃gγ(x)− (qf + qg)〉
=〈proxγf (x)− γ∇̃gγ(x)− p,∇fγ(x)− qf〉+ 〈flproxγg(x) + γ∇fγ(x)− p, ∇̃gγ(x)− qg〉
=〈proxγf (x)− p,∇fγ(x)− qf〉+ 〈flproxγg(x)− p, ∇̃gγ(x)− qg〉
− γ〈∇̃gγ(x),∇fγ(x)− qf〉+ γ〈∇fγ(x), ∇̃gγ(x)− qg〉

=〈proxγf (x)− p,∇fγ(x)− qf〉+ 〈flproxγg(x)− p, ∇̃gγ(x)− qg〉
+ γ〈∇̃gγ(x), qf〉 − γ〈∇fγ(x), qg〉.

Using the monotonicity of ∇f and ∂g, we finally have

0 ≤〈x− p,−hγ(x)− q〉
− γ〈∇̃gγ(x), qf〉+ γ〈∇fγ(x), qg〉 − γ〈hγ(x), q〉. (A.13)

As ‖z‖ < R, it holds that ‖un‖ < R for every n large enough. Thus, −vn = ∇fγn(un) and −wn =

135



∇gγn(un − 2γn∇fγn(un)). Using (A.13) with un instead of x and γn instead of γ, we have

0 ≤
J(n)∑

k=n

αk,n (〈z − p,−(vk + wk)− q〉+ 〈uk − z,−(vk + wk)− q〉)

+
J(n)∑

k=n

αk,nγk (〈wk, qf〉 − 〈vk, qg〉 − 〈hγk(uk), q〉)

≤〈z − p,−(v̄n + w̄n)− q〉+
J(n)∑

k=n

αk,ndk (‖vk‖+ ‖wk‖+ ‖q‖)

+
J(n)∑

k=n

αk,nγk (‖wk‖‖qf‖+ ‖vk‖‖qg‖+ ‖vk‖‖q‖+ ‖wk‖‖q‖)

≤〈z − p,−(v̄n + w̄n)− q〉+ dn (ṽn + w̃n + ‖q‖)
+ γn (w̃n‖qf‖+ ṽn‖qg‖+ ṽn‖q‖+ w̃n‖q‖) . (A.14)

Letting n→ +∞, since (vn) and (wn) are a.e bounded sequences in X, we conclude that 〈z− p,−(v +
w)− q〉 ≥ 0 a.e. As ∇f + ∂g ∈M , this implies that (z, (v + w)) ∈ ∇f + ∂g a.e.

By Lem. A.3.5 and Fubini’s theorem, there is a λT -negligible set s.t. for every t outside this set,
v(·, t) is an integrable selection of HR(·, z(t)). Moreover, as v is a weak cluster point of vn in L1+ε/2

X , it
holds that

z(t) = z(0) +
∫ t

0

∫

Ξ
v(s, u) + w(s, u)µ(ds) du , (∀t ∈ [0, T ]) .

By the above equality, z is a solution to the DI ẋ ∈ HR(x) with initial condition z(0) = a∗. Denoting by
ΦR(a

∗) the set of such solutions, this reads z ∈ ΦR(a
∗). As a∗ ∈ K∩ cl(D), one has z ∈ ΦR(K∩ cl(D))

where we use the notation ΦR(S) := ∪a∈SΦR(a) for every set S ⊂ X. Extending the notation d(x, S) :=
infy∈S d(x, y), we obtain that d(xn,ΦR(K ∩ cl(D))) → 0. Thus, for every η > 0, we have shown that
P̄
an,γn(d(Xγn ,ΦR(K ∩ cl(D))) > η)→ 0 as n→∞. We have thus proven the following result:

∀η > 0, lim
γ→0

sup
a∈K∩DγM

P̄
a,γ(d(Xγ,ΦR(K ∩ cl(D))) > η) = 0 .

Let T > 0 and R > sup{‖Φ(a, t)‖ : t ∈ [0, T ], a ∈ K ∩ cl(D)} (the latter quantity being finite, see
e.g. [36]). Consider any solution x to the DI ẋ ∈ HR(x) with initial condition a ∈ K ∩ cl(D). Consider
the set F = {t ∈ [0, T ], x(t) = Φ(a, t)}. Then, 0 ∈ F . Let t̄ = supF and assume that t̄ < T . Since
F is closed, t̄ ∈ F and we have ‖x(t̄)‖ < R, hence there exists ε > 0 such that ‖x(t)‖ < R for all
t ∈ [t̄, t̄ + ε]. Then, x and Φ(a, ·) are solutions to the DI ẋ ∈ H(x) over [t̄, t̄ + ε] and x(t̄) = Φ(a, t̄),
therefore x(t) = Φ(a, t) for all t ∈ [t̄, t̄ + ε]. Hence, t̄ + ε ∈ F . Finally, t̄ = T and F = [0, T ]. By the
same arguments as in [28, Section 4 - End of the proof], Th. A.3.1 follows.

A.3.2 Stability of the Markov chain

Theorem A.3.6. Assume hypotheses H1 and H2. Let x⋆ ∈ Z(∂G +∇F ) that admits a L2 represen-
tation. Then, there exists α,C > 0 such that

E
γ,a
n ‖xn+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 − αγ(F γ(xn) +Gγ(xn)) + γ2C. (A.15)

for γ enough close to 0.
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Proof. To simplify notations, we now omit the dependence in (s, t) in the sequel and write un := un(t),
vn := vn(s, t), wn := wn(s, t), hγ := hγ(s, ·), ∂g := ∂g(s, ·), ∇f := ∇f(s, ·), γ := γn, proxγf :=
proxγf(s,·), ∇fγ := ∇fγ(s, ·), z := z(t). Moreover, we write flproxγg(x) := proxγg(s,·)(x − 2γ∇fγ(s, x))
and ∇̃gγ := ∇gγ(s, x− 2γ∇fγ(s, x)), for all x ∈ X.

By assumption, there exists a L2 representation (ϕ, ψ) of x⋆. We write

〈∇fγ(x), x− x⋆〉 = 〈∇fγ(x)− ψ, x− x⋆〉+ 〈ψ, x− x⋆〉
= 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉+ 〈∇fγ(x)− ψ, γ∇fγ(x)〉
+ 〈ψ, x− x⋆〉

= 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉 − γ〈ψ,∇fγ(x)〉
+ 〈ϕ, x− x⋆〉+ γ‖∇fγ(x)‖2.

We also write

〈∇̃gγ(x), x− x⋆〉 = 〈∇̃gγ(x)− ϕ, x− x⋆〉+ 〈ϕ, x− x⋆〉
= 〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉+ 〈∇̃gγ(x)− ϕ, x−flproxγg(x)− 2γ∇fγ(x)〉
+ 〈ϕ, x− x⋆〉+ 〈∇̃gγ(x)− ϕ, 2γ∇fγ(x)〉

= 〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉 − γ〈ϕ, ∇̃gγ(x)〉
+ 2γ〈∇̃gγ(x),∇fγ(x)〉+ 〈ϕ, x− x⋆〉+ γ‖∇̃gγ(x)‖2 − 2γ〈ϕ,∇fγ(x)〉.

Hence,

〈∇fγ(x) + ∇̃gγ(x), x− x∗〉
=〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉+ 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉
+ γ‖∇̃gγ(x) +∇fγ(x)‖2 − γ

¶
〈ϕ+ ψ,∇fγ(x)〉+ 〈ϕ, ∇̃gγ(x) +∇fγ(x)〉

©

+ 〈ϕ+ ψ, x− x⋆〉 (A.16)

By expanding

‖xn+1 − x⋆‖2 = ‖xn − x⋆‖2 + 2〈xn+1 − xn, xn − x⋆〉+ ‖xn+1 − xn‖2 ,

we obtain

‖xn+1 − x⋆‖2 = ‖xn − x⋆‖2 − 2γ〈∇̃gγ(xn), xn − x⋆〉 − 2γ〈∇fγ(xn), xn − x⋆〉
+ γ2‖∇̃gγ(xn) +∇fγ(xn)‖2. (A.17)

Using (A.16), we obtain

‖xn+1 − x⋆‖2 = ‖xn − x⋆‖2

− 2γ
¶
〈∇̃gγ(xn)− ϕ,flproxγg(xn)− x⋆〉+ 〈∇fγ(xn)− ψ, proxγf (xn)− x⋆〉

©

− γ2‖∇̃gγ(xn) +∇fγ(xn)‖2 + 2γ2
¶
〈ϕ+ ψ,∇fγ(xn)〉+ 〈ϕ, ∇̃gγ(xn) +∇fγ(xn)〉

©

− 2γ〈ϕ+ ψ, xn − x⋆〉
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where we used ‖a+ b‖2 = ‖a‖2 + ‖b‖2 + 2〈a, b〉. Then, since 2〈a, b〉 ≤ ‖a‖2/2 + 2‖b‖2,

‖xn+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 (A.18)

− 2γ
¶
〈∇̃gγ(xn)− ϕ,flproxγg(xn)− x⋆〉+ 〈∇fγ(xn)− ψ, proxγf (xn)− x⋆〉

©

− γ2/2‖∇̃gγ(xn) +∇fγ(xn)‖2 + γ2/2‖∇fγ(xn)‖2
+ 2γ2‖ϕ‖2 + 2γ2‖ϕ+ ψ‖2 − 2γ〈ϕ+ ψ, xn − x⋆〉.

Observe that the term between the braces at the right hand side of the last inequality is nonnegative
thanks to the monotonicity of ∇f(·, s) and ∂g(·, s).

Let x ∈ X. By the convexity of gγ and fγ, we have

gγ(x− 2γ∇fγ(x))− gγ(x⋆) ≤ 〈∇̃gγ(x), x− 2γ∇fγ(x)− x⋆〉 (A.19)

and
fγ(x)− fγ(x⋆) ≤ 〈∇fγ(x), x− x⋆〉. (A.20)

Using the 1/γ-Lipschitz continuity of ∇gγ we have

gγ(x)− gγ(x− 2γ∇fγ(x)) ≤ 〈∇̃gγ(x), 2γ∇fγ(x)〉+ 2γ‖∇fγ(x)‖2. (A.21)

Summing the inequalities (A.19), (A.20) and (A.21) we obtain

fγ(x)− fγ(x∗) + gγ(x)− gγ(x∗) ≤ 〈∇fγ(x) + ∇̃gγ(x), x− x∗〉+ 2γ‖∇fγ(x)‖2 (A.22)

Using (A.16),

fγ(x)− fγ(x∗) + gγ(x)− gγ(x∗)
≤ 2γ‖∇fγ(x)‖2

+ 〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉+ 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉
+ γ‖∇̃gγ(x) +∇fγ(x)‖2 − γ

¶
〈ϕ+ ψ,∇fγ(x)〉+ 〈ϕ, ∇̃gγ(x) +∇fγ(x)〉

©

+ 〈ϕ+ ψ, x− x⋆〉

≤ 3

2
γ‖∇fγ(x)‖2

+ 〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉+ 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉
+

3

2
γ‖∇̃gγ(x) +∇fγ(x)‖2 + 〈ϕ+ ψ, x− x⋆〉+

γ

2
‖ϕ‖2 + γ

2
‖ϕ+ ψ‖2

≤ − 3

2
γ‖∇fγ(x)‖2 + 3

¶
γ‖∇fγ(x)‖2 − 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉

©

+ 6
¶
〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉+ 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉

©

+
3

2
γ‖∇̃gγ(x) +∇fγ(x)‖2 + 〈ϕ+ ψ, x− x⋆〉+

γ

2
‖ϕ‖2 + γ

2
‖ϕ+ ψ‖2,

since 〈∇̃gγ(x)−ϕ,flproxγg(x)−x⋆〉 and 〈∇fγ(x)−ψ, proxγf (x)−x⋆〉 are nonnegative. Using ψ = ∇f(x⋆),
∇fγ(x) = ∇f(proxγf (x)) and Assumption H2, there exists by Baillon-Haddad theorem c > 0 such that
c‖∇fγ(x)− ψ‖2 ≤ 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉. Then,

−〈∇fγ(x)− ψ, proxγf (x)− x⋆〉 ≤ −c‖∇fγ(x)− ψ‖2 ≤ −c/2‖∇fγ(x)‖2 + c‖ψ‖2.
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If γ < c/2 we finally have

fγ(x)− fγ(x∗) + gγ(x)− gγ(x∗)

≤− 3

2
γ‖∇fγ(x)‖2 + 3c‖ψ‖2

+ 6
¶
〈∇̃gγ(x)− ϕ,flproxγg(x)− x⋆〉+ 〈∇fγ(x)− ψ, proxγf (x)− x⋆〉

©

+
3

2
γ‖∇̃gγ(x) +∇fγ(x)‖2 + 〈ϕ+ ψ, x− x⋆〉+

γ

2
‖ϕ‖2 + γ

2
‖ϕ+ ψ‖2.

Using A.18, there exists α,C,C ′ > 0 such that

‖xn+1 − x⋆‖2 ≤ ‖xn − x⋆‖2
− αγ {fγ(xn) + gγ(xn)− fγ(x⋆)− gγ(x⋆)}
+ Cγ2

¶
‖ϕ‖2 + ‖ψ‖2 + ‖ϕ+ ψ‖2

©
+ C ′γ〈ϕ+ ψ, xn − x⋆〉.

Taking the conditional expectation, the last inner product vanishes, and we get the result.

Lemma A.3.7. If Eq (A.15) hold, then the set of measures I(P) is tight.

Proof. The following inequalities hold F γ0(x)+Gγ0(x) ≤ F γ(x)+Gγ(x) ≤ F γ′
(x)+Gγ′

(x) ≤ F (x)+
G(x) for all 0 ≤ γ′ ≤ γ ≤ γ0. Moreover H3 ⇐⇒ F γ0 +Gγ0coercive ⇐⇒ F γ0 +Gγ0 coercive (see End
of the proof of Prop. 4.4.1, Chap. 4). Hence, condition (PH) in Chap. 3 is satisfied. The conclusion
follows from Prop. 3.8.7.

Lemma A.3.8. Let Assumptions H7, H6, and H3 hold true. Then, for all ε > 0, there exists M > 0
such that

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π((DMγ)
c) ≤ ε.

Proof. We start by writing

d(xn+1) ≤ ‖xn+1 − Πcl(D)(xn)‖ ≤ ‖xn+1 − Πcl(D(ξn+1))(xn)‖+ ‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖.

On the one hand, we have by Assumption H6 and the nonexpansiveness of the resolvent that

E
a,γ
n ‖xn+1 − Πcl(D(ξn+1))(xn)‖ ≤ E

a,γ
n ‖ proxγg(·,ξn+1)(xn)− Πcl(D(ξn+1))(xn)‖+ γEa,γ

n ‖∇fγ(ξn+1, xn)‖
≤ Cγ(1 + F γ(xn) +Gγ(xn)) ,

On the other hand, since

‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖2 ≤ d(xn)
2 − d(xn, D(ξn+1))

2 (see (A.6)),

we can make use of Assumption H7 to obtain

E
a,γ
n ‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖ ≤ (Ea,γ

n ‖Πcl(D(ξn+1))(xn)− Πcl(D)(xn)‖2)1/2 ≤ ρd(xn) ,

where ρ ∈ [0, 1). We therefore obtain that E
a,γ
n d(xn+1) ≤ ρd(xn) + Cγ(1 + F γ(xn) + Gγ(xn)). By

iterating, we end up with the inequality

E
a,γ(d(xn+1)) ≤ ρn+1

d(a) + Cγ
n∑

k=0

ρn−k(1 + E
a,γ(F γ(xk) +Gγ(xk))). (A.23)
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From Th. A.3.6 we have

E
γ,a
n ‖xn+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 − αγ(F γ(xn) +Gγ(xn)) + γ2C. (A.24)

for all γ ∈ (0, γ0]. Using Prop. 3.8.7, it implies

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π(F γ0 +Gγ0) <∞.

Recall that q ∈ Γ0(X) is coercive if and only if lim inf‖x‖→+∞ q(x)/‖x‖ > 0 ([12, Prop. 11.11 and
11.12]). Noting that d(x) ≤ ‖x‖ + ‖Πcl(D)(0)‖, we obtain that supγ∈(0,γ0] supπ∈I(Pγ) π(d) < ∞ using
Assumption H3. Moreover, with a small adaptation of the proof of Prop. 3.8.7 to the case of Lem. A.3.6,
we can show the slightly stronger result that supγ∈(0,γ0] supπ∈I(Pγ) π(F

γ + Gγ) < ∞. Let γ ∈ (0, γ0]
and π ∈ I(Pγ). We can integrate w.r.t π in A.23 to obtain

π(d) ≤ ρn+1π(d) + Cγ
n∑

k=0

ρn−k(1 + π(F γ +Gγ)).

Using Markov’s inequality, we have for every n ∈ N,

π((DMγ)
c) ≤ π(d)

Mγ
≤ ρn+1

Mγ
π(d) +

C

M

n∑

k=0

ρn−k(1 + π(F γ +Gγ)) ≤ ρn+1C

Mγ
+
C

M
.

By making n → ∞, we obtain that π((DMγ)
c) ≤ C/M , and the proof is concluded by taking M as

large as required.

Lemma A.3.9. Let the assumptions of the statement of Th. A.3.1 hold true. Assume that for all ε > 0,
there exists M > 0 such that

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π((DMγ)
c) ≤ ε. (A.25)

Then, as γ → 0, any cluster point of I(P) is an element of I(Φ).

Proof. The proof is verbatim the same that the proof of Lem. 4.6.2.

A.3.3 End of the proof

Assume H1-H6. By Lem. A.3.7,
⋃

γ∈(0,γ0] I(Pγ) is tight and by Lem. A.3.8 and Lem. A.3.9 any cluster
point of I(P) is an element of I(Φ) as γ → 0. The rest of the proof follows word-for-word from
Sec. 3.8.4.
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[124] B. C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.
Appl. Math., 38(3):667–681, 2013.

[125] D. W. Walkup and R. J.-B. Wets. Stochastic programs with recourse. II: On the continuity of the
objective. SIAM J. Appl. Math., 17:98–103, 1969.

[126] M. Wang and D. P. Bertsekas. Incremental constraint projection methods for variational inequali-
ties. Math. Program., 150(2, Ser. A):321–363, 2015.

[127] Y.-X. Wang, J. Sharpnack, A. Smola, and R. J Tibshirani. Trend filtering on graphs. J. Mach.
Learn. Res., 17(105):1–41, 2016.

[128] V. G Yaji and S. Bhatnagar. Stochastic recursive inclusions with non-additive iterate-dependent
markov noise. Stochastics, 90(3):330–363, 2018.

[129] J. Yoon and S. J. Hwang. Combined group and exclusive sparsity for deep neural networks. In
ICML, pages 3958–3966, 2017.

148



[130] K. Yosida. Functional analysis, berlin, 1965. Google Scholar, page 126, 1967.

[131] H. Yu, M. Neely, and X. Wei. Online convex optimization with stochastic constraints. In NIPS,
pages 1427–1437, 2017.

[132] L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. In NIPS, pages 352–360,
2011.
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Résumé : Cette thèse porte essentiellement sur

l’étude d’algorithmes d’optimisation. Les problèmes

de programmation intervenant en apprentissage au-

tomatique ou en traitement du signal sont dans

beaucoup de cas composites, c’est-à-dire qu’ils

sont contraints ou régularisés par des termes non

lisses. Les méthodes proximales sont une classe

d’algorithmes très efficaces pour résoudre de tels

problèmes. Cependant, dans les applications mo-

dernes de sciences des données, les fonctions

à minimiser se représentent souvent comme une

espérance mathématique, difficile ou impossible à

évaluer. C’est le cas dans les problèmes d’appren-

tissage en ligne, dans les problèmes mettant en

jeu un grand nombre de données ou dans les

problèmes de calcul distribué. Pour résoudre ceux-ci,

nous étudions dans cette thèse des méthodes proxi-

males stochastiques, qui adaptent les algorithmes

proximaux aux cas de fonctions écrites comme une

espérance. Les méthodes proximales stochastiques

sont d’abord étudiées à pas constant, en utilisant

des techniques d’approximation stochastique. Plus

précisément, la méthode de l’Equation Differentielle

Ordinaire est adaptée au cas d’inclusions differen-

tielles. Afin d’établir le comportement asymptotique

des algorithmes, la stabilité des suites d’itérés (vues

comme des chaines de Markov) est étudiée. En-

suite, des généralisations de l’algorithme du gra-

dient proximal stochastique à pas décroissant sont

mises au point pour resoudre des problèmes compo-

sites. Toutes les grandeurs qui permettent de décrire

les problèmes à résoudre s’écrivent comme une

espérance. Cela inclut un algorithme primal dual pour

des problèmes régularisés et linéairement contraints

ainsi qu’un algorithme d’optimisation sur les grands

graphes.
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Abstract : This thesis mainly studies optimization

algorithms. Programming problems arising in signal

processing and machine learning are composite in

many cases, i.e they exhibit constraints and non

smooth regularization terms. Proximal methods are

known to be efficient to solve such problems. Howe-

ver, in modern applications of data sciences, func-

tions to be minimized are often represented as sta-

tistical expectations, whose evaluation is intractable.

This cover the case of online learning, big data pro-

blems and distributed computation problems. To solve

this problems, we study in this thesis proximal sto-

chastic methods, that generalize proximal algorithms

to the case of cost functions written as expectations.

Stochastic proximal methods are firstly studied with

a constant step size, using stochastic approximation

techniques. More precisely, the Ordinary Differential

Equation method is adapted to the case of differen-

tial inclusions. In order to study the asymptotic beha-

vior of the algorithms, the stability of the sequences

of iterates (seen as Markov chains) is studied. Then,

generalizations of the stochastic proximal gradient al-

gorithm with decreasing step sizes are designed to

solve composite problems. Every quantities used to

define the optimization problem are written as expec-

tations. This include a primal dual algorithm to solve

regularized and linearly constrained problems and an

optimization over large graphs algorithm.
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