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Motivations and Contributions

Automatic data processing has become ubiquitous in current technologies, with important applications in many scientific disciplines such as medicine, biology or meteorology but also in digital tools such as text translation, targeted advertising or spam detection. It is at the heart of problems in signal processing, information theory and statistics where one aims at understanding and summarizing the essential information in the collected data. The latter are often accompanied by prior information on their structures, which can then be used to lay predictive models and algorithms. Nevertheless, these algorithms depend heavily on mathematical optimization methods and it has become crucial to have tools that remain (computationally) effective when the size of the database increases. We investigate computational simplifications in some optimization problems arising from statistical learning with a main conductive thread: the saving of calculations based on optimality certificates and the exploitation of specific regularity structures of the problems.

In this chapter, we recall the importance of optimization in learning with a focus on convex formulation, outline the contributions of the thesis and introduce notation as well as convex analysis tools used along the manuscript.

Convex Optimization in Statistical Learning

We follow a classical formalization of statistical learning tasks as in [START_REF] Hastie | The elements of statistical learning[END_REF][START_REF] Shalev-Shwartz | Understanding machine learning: From theory to algorithms[END_REF]. Let X (resp. Y) be a set of input (resp. output) vectors and X (resp. Y ) be a random variable valued in X (resp. Y). We call learning task the identification of an application h : X Þ Ñ Y that explains the relation between the input X and the output Y . Considering a loss (also called cost or deviance) function such that py, yq " 0, py, y 1 q ě 0, we want to learn a prediction function h minimizing the prediction error phpXq, Y q in expectation. For simplicity, we consider that h will be searched on a (pre-defined) parameterized family of functions H :" thp¨, βq : β P R p u that encodes the prior knowledge we have on the data. Then, the learning task can be written as the following optimization problem: min βPR p Rpβq :" Er phpX, βq, Y qs .

(1.1)

Since the expectation is taken under the joint probability distribution P X,Y of the variables X, Y which is assumed to be unknown, h cannot directly be learned that way: one should rather learn by considering a training sample that represents the observations at hand. Assuming that the observations on a given dataset tpx i , y i qu iPrns are independent and identically distributed, by the law of large numbers, the empirical law 1 n ř n i"1 δ px i ,y i q , where the δ represents Dirac masses, approximates the true distribution P X,Y if the number of observations n is sufficiently large. Hence the Empirical Risk Minimization (ERM) paradigm reads min βPR p R n pβq :" 1 n n ÿ i"1 phpx i , βq, y i q .

(1.2)

A popular instantiation of formulation (1.1), (1.2) is the fundamental tool in Statistics known as the Maximum Likelihood Estimation (MLE). We refer to [START_REF] Van Der | Asymptotic statistics[END_REF] for a comprehensive description and [START_REF] Stigler | The epic story of maximum likelihood[END_REF] for the passionated history of this method. Interestingly, the MLE for the exponential family naturally leads to convex optimization problem [START_REF] Brown | Fundamentals of statistical exponential families: with applications in statistical decision theory[END_REF].

Definition 1 (Exponential Family). Let ν be a σ-finite measure and λpθq " ş exppθyqνpdyq its Laplace transform with domain N " tθ P R n : λpθq ă `8u. For P pθq " logpλpθqq, we define p θ pyq " exp `xθ, yy ´P pθq ˘.

(1.3)

For a convex set Θ Ă N , the family of density tp θ : θ P Θu is called (standard) exponential family.

The convexity of the optimization problem derived from MLE of exponential family follows directly from the convexity of the Log-Laplace transform P , we recall the proof in Chapter 4.

Theorem 1 (Brown (1986, Theorem 1.13)). N is a convex set and P is a convex function on N . Furthermore, P is lower semi-continuous on R n and continuous on the interior of N .

In statistical inference, it is common to suppose that the distribution of the observations is parameterized by some θ 0 P Θ that is unknown. Then, the objective is to approximate and provide information on the model parameter, failing to find it exactly, from random variables distributed under this law. A classical inferential method is the MLE. For a variable y in the convex support of ν and Θ a convex subset of N , the function of the parameter Θ Q θ Þ Ñ p θ pyq is called likelihood at y. Now, assuming that the parameter θ 0 belongs to Θ and y being a random variable with distribution P θ 0 , the maximum likelihood estimator is defined as θpyq " arg max θPΘ p θ pyq " arg min θPΘ ´logpp θ pyqq " arg min θPΘ P pθq ´xθ, yy which is a convex optimization problem with a loss function pθ, yq :" P pθq ´xθ, yy. Thus, the MLE for independent and identically distributed samples y " py 1 , ¨¨¨, y n q can be expressed as θpyq P arg min θPΘ 1 n n ÿ i"1 py i , θq .

(1.4)

In a learning setting, an important example is the generalization of regression leading to the family of Generalized Linear Model (GLM) [START_REF] Mccullagh | Generalized Linear Models[END_REF] where the statistical model contains a deterministic part given by a linear combination of the covariates η " Xβ and the random part given by µ " ErY s where Y is assumed to belong to an exponential family, are linked by hpηq " µ. Depending on the distribution of the observations, we recover the Least Squares and logistic estimation as canonical examples for regression and classification tasks.

Least Squares. Given an independent and identically distributed sample y " py 1 , ¨¨¨, y n q with Gaussian law N pµ, σ 2 q i.e. p pµ,σ 2 q pyq " 1 ? 2πσ 2 exp " ´py ´µq 2 2σ 2 * " exp xpθ 1 , θ 2 q, py, y 2 qy ´P pθ 1 , θ 2 q ( where θ " pθ 1 , θ 2 q " p µ σ 2 , ´1 2σ 2 q and P pθq " ´θ2 1 4θ 2 `1 2 logp´π θ 2 q. Assuming that σ 2 (hence θ 2 ) is known, the MLE (1.4) for the Gaussian model with mean µ " Xβ reads:

β P arg min βPR p n ÿ i"1 1 2σ 2 py i ´xJ i βq 2 .
(1.5)

Logistic regression. For a binary variable y P t0, 1u that follows the Bernoulli distribution with mean µ i.e.

p µ pyq " µ y p1 ´µq 1´y " exp txθ, yy ´P pθqu , where θ " logp µ 1´µ q and P pθq " logp 1 1`e θ q. Stated in the regression setting where the deterministic part is θ " Xβ, the MLE (1.4) and given an i.i.d. sample y " py 1 , ¨¨¨, y n q of Bernoulli distribution reads:

β P arg min

βPR p n ÿ i"1
log `1 `exppx J i βq ˘´y i x J i β .

However, the ERM is not restricted to statistical models based on likelihood. Many learning paradigms provide a good predictor without assumptions on the underlying distribution over the data.

Hinge Loss minimization. In binary classification tasks, the Perceptron simply seeks a separation of the data points in two half-spaces. It can be formulated as a minimization of the following loss: β P arg min

βPR p 1 n n ÿ i"1 maxp0, 1 ´yi x J i βq .
It is included in the Support Vector Machine (SVM) paradigm (when one adds a quadratic regularization) that separates data points into two halfspaces while maximizing a margin. The later guarantees better convergence properties and allows better prediction performance on unseen data.

Tradeoffs of Large Scale Learning

To understand the generalization capabilities of statistical learning methods, it is important to analyze the different sources of error that can corrupt our predictions. These errors come mainly from the assumptions that are introduced into the learning model. More precisely, let us denote β ˚P arg min βPR p Rpβq the minimizer of the true risk (1.1) and β n P arg min βPR p R n pβq the minimizer of the empirical risk (1.2). Importantly, we have to take seriously into account the fact that "in general, optimization problems are unsolvable" [START_REF] Nesterov | Introductory lectures on convex optimization[END_REF], Chapter 1). Hence we will assume that we only have access to an approximated solution β n of the ERM (1.2) i.e. for a targeted accuracy ą 0 controlling the optimization error, the vector β n satisfies R n pβ n q ´Rn pβ n q ď . [START_REF] Bousquet | The tradeoffs of large scale learning[END_REF] highlighted the Approximation-Estimation-Optimization tradeoffs to characterize the complexity of the learning task and state that «computational complexity becomes the limiting factor when one envisions large amounts of training data». Indeed, they provided a fundamental decomposition of the mean error in large scale learning as ErRpβ n qs " E approximation `Eestimation `Eoptimization , where ' E approximation :" Rpβ ˚q is the residual error made by restricting the analysis to a family of hypothesis function H, ' E estimation :" ErRpβ n q ´Rpβ ˚qs is the error resulting from the empirical approximation of the joint distribution of the data P X,Y , ' E optimization :" ErRpβ n q ´Rpβ n qs is the (expected) optimization gap remaining when solving the ERM problem (1.2).

Before the "big data" era, the tradeoffs E approximation vs. E estimation also called Bias-Variance tradeoff was the most popular one, in particular among statisticians: small scale setting. However, when the size of the dataset increases (large scale), the scalability of the optimization algorithms for computing the parameters of statistical learning models becomes critical. Hence, given a predefined accuracy , the associated optimization problems must be efficiently addressed. To do so, one needs to explicitly exploit structures of the problems and to design specialized solvers.

Optimization Algorithms

In a large scale setting, the difficulties of solving the optimization problem (1.2) range from memory limitation, nonlinearity, non-smoothness to even non convex problems. In this case, the dimensionality can be so large that algorithms requiring evaluations of quantities relying on the full dataset become intractable. A popular trend in optimization for machine learning is to go back to simple methods developed with limited computational resources and popularized in the 50's, see [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] for a recent review. Hence, algorithms that provide cheap and fast computations with "limited" information has been privileged e.g. incremental optimization including stochastic gradient descent [START_REF] Robbins | A stochastic approximation method[END_REF], Frank-Wolfe algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF]) also referred to as conditional gradient descent, (block) coordinate descent [START_REF] Warga | Minimizing certain convex functions[END_REF], and active set methods. We first highlight the two main optimization principles that are systematically used in this manuscript namely Homotopy Continuation and Majorization-Minimization.

Homotopy Continuation Principle

Homotopy continuation methods aim at evaluating the full curve of solutions of nonlinear equations Hpx, λq " 0 for a continuous range of parameter λ P Λ (for Λ a set to be specified later). The maps Hpx, λq represent a continuous deformation of a nonlinear function F pxq whose zeros are hard to find, see [START_REF] Allgower | Numerical continuation methods: an introduction[END_REF] for a comprehensive description. It appears naturally in machine learning for improving numerical stability and preventing over-fitting. Indeed, solving the empirical risk minimization problem (1.2) is often not sufficient for finding good predictors because the problem tends to be ill conditioned in high dimensional settings. A classical approach consists in adding a regularization term that encodes additional knowledge on the problem. For instance it can be used to enforce the selection of simpler models and can be formulated as βpλq P arg min βPR p 1 n n ÿ i"1 phpx i , βq, y i q `λΩpβq ,

(1.6)

where Ω is the regularization function that penalizes complex solution and λ ą 0 controls the level of inductive bias. It is usually related to the simplicity principle of G. Ockham in the 14th century or [START_REF] Wrinch | Xlii. on certain fundamental principles of scientific inquiry[END_REF]. The regularization term balances between the minimization of the empirical risk and the structural simplicity of the model through the hyperparameter λ. Finding the optimal balance is crucial to achieve good prediction on unseen datasets: small λs lead to complex models that are likely to over fit on the training set while large λs lead to simplistic models with poor prediction power. A common approach to select a "good" parameter is to use cross validation. Essentially, this method avoids to perform training and evaluating the performance of an estimator on the same data. It was introduced in [START_REF] Larson | The shrinkage of the coefficient of multiple correlation[END_REF], see [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] for a comprehensive review. For simplicity, we consider here the simplified holdout version that consists in splitting the data tpx i , y i qu iPrns in two parts pX train , y train q and pX test , y test q, and consider Λ a discrete set of hyperparameters. Given a validation loss function L that measures the prediction error on the test set, the holdout version of cross-validation corresponds to performing the two following steps:

1. solve problem (1.6) with the training data pX train , y train q for all λ P Λ, 2. choose the λ P Λ that minimizes the validation error LphpX test , βpλq q, y test q.

A standard grid considered in the literature is λ t " λ max 10 ´δt{pT ´1q with a small δ (δ " 10 ´2 or 10 ´3), see for instance (Bühlmann and van de Geer, 2011)[2.12.1] or the glmnet package (Friedman et al., 2010b) and scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Choosing δ is challenging both from a statistical point of view (the performance tends to decrease as δ becomes close to zero, due to over-fitting) and from an optimization point of view since the computational burden tends to increase for small λ, the primal iterates being less and less sparse, and the problem to solve more and more ill-posed. It is customary to start from the largest regularizer λ 0 " λ max and then to perform iteratively the computation of βpλtq after the one of βpλ t´1 q . This leads to computing the models (generally) in the order of increasing complexity: this allows important speed-up by benefiting of warm start initialization.

Depending on the context, several regularizers Ω were introduced to enforce regularity of the estimators. Popular examples used in our experiments are:

Ridge/Tikhonov Regularization. The regularization function Ωpβq " β 2 2 {2 was introduced in [START_REF] Tikhonov | On the stability of inverse problems[END_REF] to improve the stability of inverse problems, and in statistics [START_REF] Hoerl | Application of ridge analysis to regression problems[END_REF][START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF] to reduce the mean square error of the vanilla Least Squares estimator when the design matrix is rank deficient. In machine learning, it is often viewed as a stabilizer of the learning algorithm in the sense that the prediction does not change much when the input data are slightly perturbed. As a consequence, the training error remains close to the test error and this prevents the algorithm from over-fitting (Shalev-Shwartz and Ben-David, 2014, Chapter 13.2).

While fundamental, preventing the over-fitting phenomenon is not sufficient in many applications. Often, one also needs to have a good representation of the data and to provide prediction models that are interpretable. Thus, it is crucial to be able to select the most relevant explanatory variables, which is what motivated the introduction of sparse regularization methods.

Sparse Lasso Regularization. The regularization Ωpβq " β 1 was introduced in [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] in signal processing and statistics and follows classical methods for selecting the most important explanatory variables in multiple regression [START_REF] Efroymson | Multiple regression analysis[END_REF] for stepwise regression or [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF] for selection with non-negative garrote. The 1 norm penalty has the advantage of being able to select variables in a continuous way and its convex formulation allows the use of fast iterative algorithm.

Later, several extensions were proposed, notably by [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] for the Elastic net where Ωpβq " α β 1 `p1 ´αq β 2 2 {2 interpolates between the Ridge and the Lasso, by [START_REF] Hebiri | The smooth-lasso and other l1 + l2-penalized methods[END_REF] for the Smoothed Lasso where Ωpβq " α β 1 `γ ř p j"2 pβ j ´βj´1 q 2 , or for more complex hierarchical group regularizations (Friedman et al., 2010a;[START_REF] Sprechmann | C-hilasso: A collaborative hierarchical sparse modeling framework[END_REF]. A survey providing a unified theory for convex structured sparsity-inducing norms was recently proposed in [START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF]. Note that sparsity can also be incorporated into the data fitting term. This is the case of the hinge loss which can be used as a variable selection criterion as well [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF][START_REF] Rakotomamonjy | Variable selection using svm-based criteria[END_REF].

While using regularization, the generalization performance of the ERM is then strongly related to the capabilities of tuning the regularization parameter λ. This requires the computation of full solution path in the homotopy continuation framework over a range (often a discrete set) of hyperparameters Λ. Indeed, it is usually infeasible to compute the whole path in a continuous set if no closed form solution in Equation (1.6) is available. However, for problems involving piecewise quadratic loss and piecewise linear regularizations, the solution path t βpλq , λ P Λu is continuous and piecewise linear [START_REF] Rosset | Piecewise linear regularized solution paths[END_REF]. This specific piecewise linearity allows to compute efficiently and exactly the entire solution path. This kind of property was rediscovered several times in the literature, for instance in [START_REF] Markowitz | Portfolio selection[END_REF] for portfolio selection, [START_REF] Osborne | An effective method for computing regression quantiles[END_REF] for quantile regression problems, (Osborne et al., 2000a) for Lasso, [START_REF] Efron | Least angle regression[END_REF] Lars, [START_REF] Park | L1-regularization path algorithm for generalized linear models[END_REF] for the GLM regularized with the 1 norm.

Majorization-Minimization Principle (MM)

MM is a generic and powerful technique for building iterative optimization algorithms. At each step, it simply minimizes a surrogate upper-bound of the objective function that is tight at the current estimate. Its description can be traced back at least to [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF], see also [START_REF] Hunter | A tutorial on MM algorithms[END_REF] for a synthetic review. It has also been recently used in machine learning to derive stochastic incremental algorithm [START_REF]Incremental majorization-minimization optimization with application to large-scale machine learning[END_REF].

Definition 2 (Surrogate). A function P p¨|β p0q q is said to be a surrogate of P near β p0q if the following conditions holds:

#

P pβq ď P pβ|β p0q q for all β P R p , P pβ p0q q " P pβ p0q |β p0q q .

Given an iterate β pkq , in order to solve min βPR p P pβq, the MM algorithm update is given by β pk`1q " arg min βPR p P pβ|β pkq q. It satisfies the appealing descent property P pβ pk`1q q ď P pβ pkq q for all iteration k. Many optimization algorithms used to solve machine learning problems can be written under this framework. For example, the proximal point algorithm [START_REF] Martinet | Brève communication. régularisation d'inéquations variationnelles par approximations successives[END_REF][START_REF] Parikh | Proximal algorithms[END_REF]) is an MM with the surrogate P pβ|β pkq q :" P pβq `L 2 β ´βpkq 2 for some nonnegative constant L. For simplicity, we now suppose that the data fitting term

1 n ř n
i"1 phpx i , βq, y i q is represented by f pXβq and thus the regularized ERM (1.6) reads: min βPR p P λ pβq :" f pXβq `λΩpβq .

(1.7)

We furthermore assume that f is differentiable with L f -Lipschitz continuous gradient. In this setting, a classical way to construct a surrogate function of P λ is to upper bound the first order Taylor expansion of f . Indeed, given a vector β p0q and a direction η in R p , we have

f pXpβ p0q `ηqq ď f pXβ p0q q `x∇f pXβ p0q q, Xηy `Lf 2 Xη 2 . (1.8)
Using this upper bound, we can now describe two proximal algorithms that are very useful in large scale machine learning because they can handle different regularization structures in the convex optimization problem (1.7).

Proximal Gradient Algorithm. Given an iterate β pkq , a direction η " β ´βpkq and denoting L :" L f σ max pX J Xq, where σ max pX J Xq is the largest singular value of X J X, the proximal gradient algorithm can be expressed as a MM algorithm with the surrogate based on the upper bound (1.8)

Pλ pβ|β pkq q :" f pXβ pkq q `x∇f pXβ pkq q, Xpβ ´βpkq qy `L 2 β ´βpkq 2 `λΩpβq .

Whence the next iteration is the minimizer of Pλ pβ|β pkq q i.e.

β pk`1q " arg min

βPR p λ L Ωpβq `1 2 β ´ˆβ pkq ´1 L X J ∇f pXβ pkq q ˙ 2 .
(1.9)

Thereby, the special case where there is no regularization i.e. λ or Ω equal to zero recovers the vanilla gradient descent algorithm with the iteration updates:

β pk`1q " β pkq ´1 L X J ∇f pXβ pkq q .
The proximal gradient algorithm and accelerated variants [START_REF] Nesterov | Introductory lectures on convex optimization[END_REF] have been widely used to solve linear inverse problems arising in signal/image processing; see also [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] for more descriptions and analysis.

Proximal (block) Coordinate Gradient Algorithm. It is one of the flagship algorithm for dealing with ERM with a separable regularization structure [START_REF] Friedman | Pathwise coordinate optimization[END_REF][START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF]. It owes its popularity to its low iteration cost while having a rate of convergence proportional to that of the full (proximal) gradient descent. We refer to [START_REF] Wright | Coordinate descent algorithms[END_REF] for a recent review on coordinate descent. Assuming the regularization function Ω decomposes into separable group G:

R p " b gPG R |g| and Ωpβq " ÿ gPG Ω g pβ g q ,
we can define the canonical partition associated to the group structure G of the unit matrix I p " p¨¨¨, e g , ¨¨¨q P R pˆp , for g P G and where e g P R pˆ|g| .

This allow to represent β " ř gPG e J g β g . Then given an iterate β pkq , a direction η " e J g pβ g ´βpkq g q and denoting L g :" L f σ max pX J g X g q, the proximal (block) coordinate gradient algorithm can be expressed as a MM algorithm which iteratively loops over the surrogates (1.8) for each block g Pλ pβ g |β pkq q :" f pXβ pkq q `x∇f pXβ pkq q, Xe J g pβ g ´βpkq g qy `Lg 2 β g ´βpkq g 2 `λΩ g pβ g q .

Denoting X g " Xe g , the next iteration proceeds by choosing a block g in G and minimizing the surrogate Pλ pβ g |β pkq g q i.e.

β pk`1q g " arg min βgPR |g| λ L g Ω g pβ g q `1 2 β g ´ˆβ pkq g ´1 L g X J g ∇f pXβ pkq q ˙ 2 .
(1.10)

As far as we know, of these two algorithms (1.9), (1.10), there is not one that is uniformly better than the other. However for functions with computationally cheap block coordinate derivatives such as (1.7), the Proximal (block) coordinate gradient algorithm tends to be much faster than the (full) proximal counterpart. This is especially true when smart updates of the coordinate gradient can be performed by taking benefit of favorable problem structures. In fact, one can notice that between two successive iterations, the vectors β pk`1q and β pkq differ only in their g-th block coordinates which has been selected. Hence, defining the vector E k :" Xβ pkq , one may observe that E k`1 " E k `Xg pβ pk`1q g ´βpk`1q g q. Thus, denoting nnzpX g q the number of nonzero entries in X g , the direction of descent in Equation (1.10) can be updated in OpnnzpX g qq versus Op ř gPG nnzpX g qq for the (full) proximal gradient descent. While enjoying cheaper update of the iterations, [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF] shows that coordinate descent algorithm with random selection can also have better rate of convergence than full gradient descent because its rate of convergence depends on the average of the coordinate-wise Lipschitz constant, see also [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF]. Note also that calculations of coordinate descent based algorithm can be parallelized, which has the significant advantage of being able to take advantage of current computer architectures [START_REF] Fercoq | Accelerated, parallel, and proximal coordinate descent[END_REF].

Beside the overall regularity of the functions involved, explicitly exploiting the structure of functions allows for designing faster optimization algorithms. One of the main contributions of this thesis is to propose additional speed-up by saving a considerable amount of the calculations made along the iterations. We will only consider convex optimization problems in the learning task defined in (1.6) where the hypothesis class H and the loss function are assumed to both be convex. We have seen that such a convex formulation already includes a large class of statistical learning tasks such as maximum likelihood estimation for exponential family distribution but also formulations resulting from the support vector machine paradigm.

Outline of the Contributions

The contributions of the thesis were published in machine learning conferences and journals: We present in details the results we obtained in the different chapters of the thesis as follows.

Authors: E.
Chapter 2. We consider regularized ERM problems stated as the sum of a smooth term (data fitting) and a non-smooth term (penalty on the complexity of the solution, indirectly its sparsity), or vice versa. We show how to exploit a particular structure of the solutions to ignore unimportant variables in the optimization process without false exclusion and consequently leading to faster solvers. The underlying rationale is that there is no gain in performing worthless computations involved with non-influential features or observations. This strategy called (safe) screening follows the seminal work by El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] and has rapidly led to an increasing literature in order to apply it to different instantiations of problem (1.6). We propose a unifying framework that highlights underlying structures of convex functions that are commonly exploited in previous derivations of screening rules for (separable) non-smooth regularized empirical risk minimization. Our method is based on the exploitation of first order optimality conditions and separation properties of the subdifferentials of convex functions which generalize the theoretical screening rules previously known in the literature. It applies to a large class of supervised learning tasks such as Lasso, Sparse-Group Lasso, multi-task Lasso, binary and multinomial logistic regression, support vector machine to name a few. Finally, leveraging information given by duality gap bounds, we provide theoretical results such as iteration complexity of active set identification and design new fast algorithms to discard safely more variables than previously considered safe rules, particularly for low regularization parameters. Our approach can cope with any iterative solver but are particularly well suited to (block) coordinate descent methods. We also introduce new active warm start strategies that have shown improved performance. In our numerical experiments, we report significant speed-ups compared to previously proposed safe rules on all tested datasets.

Chapter 3. We discuss approximated pathwise optimization and application in model selection. Despite the appealing property of homotopy continuation methods for providing better prediction in term of generalization performance, the selection of the optimal λ w.r.t. to validation error can be difficult even for problem such as Lasso where we can find an algorithm that computes exactly the entire solution path. Furthermore, the path following algorithm such as Lars [START_REF] Efron | Least angle regression[END_REF] or predictor-corrector based methods may suffer from numerical instabilities due to several matrix inversion and their complexity, i.e. the number of linear segments in the path, can be exponential in the dimension of the problem. For instance the worst case complexity for the Lasso is exactly p3 p `1q{2 [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF] and Op2 n q for the SVM [START_REF] Gärtner | An exponential lower bound on the complexity of regularization paths[END_REF]. In this chapter, we revisit the techniques of approximating the solution path up to predefined tolerance in a unified framework and show that its complexity is Op1{ d ? q for uniformly convex loss of order d ą 0 and Op1{ ? q for Generalized Self-Concordant functions. This includes examples such as Least Squares loss, but also the important example of logistic loss which, as far as we know, was not handled by previous works. Moreover, we clarify the link between the complexity of the approximated solution path and the regularity of the loss function considered in the reguralized ERM setting. Finally, we leverage our technique to provide refined bounds on the validation error and provide a practical algorithm for hyperparameter selection with stronger guarantee. More precisely, given the training and validation splitting data py train , X train , y val , X val q, we formulate the problem as a bi-level optimization one arg min λPrλ min ,λmaxs E v p βpλq q " Lpy val , X val βpλq q s.t. βpλq P arg min βPR p pX train β, y train q `λΩpβq .

Given a prescribed tolerance v ą 0 of the prediction error on the validation set, we show how to design a discrete grid of parameter Λ val p v q included in rλ min , λ max s such that:

min λtPΛ val p v q E v pβ pλtq q ´min λPrλ min ,λmaxs E v p βpλq q ď v .
Therefore, our contribution simply consists in a sequential exploration algorithm à la grid search while benefiting of global convergence guarantee for approximating the optimal hyperparameter at a validation error level v .

Chapter 4. The maximum likelihood estimation is a classical and important statistical learning paradigm requiring a good statistical model to be specified. For instance, a linear model with Gaussian noise requires estimation of both the position and dispersion parameters pµ, σ 2 q. If σ is known and the observations y " py 1 , ¨¨¨, y n q are independent and identically distributed the MLE leads to the classical Least Squares estimation (1.5) and the influence of σ can be discarded. However, if σ is unknown, estimating only µ is not sufficient to approximate the distribution P µ,σ 2 which leads to an incomplete model. Moreover, in high dimensional settings where the number of observations is smaller than the number of features, sparsity enforcing methods such as Lasso are very popular because they can select important variables and ease the interpretation of discriminant features. For efficiency, they rely on tuning a regularization parameter that trades data fitting versus sparsity, and should be proportional to the noise level σ [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF]). Yet, the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter µ as well as over the noise level σ. A direct formulation of the MLE reads

min βPR p ,σą0 logpσq `1 2σ 2 y ´Xβ 2
which fails to be jointly convex. Also, when y " Xβ and σ tends to 0 i.e. approaching the boundary of the parameter space, the objective function tends to ´8. This unboundedness (from below) makes both the statistical analysis and the global optimization problems difficult. We investigate different convex formulations that were considered in the literature i.e. Concomitant Lasso estimation [START_REF] Huber | Robust Statistics[END_REF][START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] as well as re-parameterization methods [START_REF] Städler | 1 -penalization for mixture regression models[END_REF]. In an optimization point of view, we illustrate numerical issues of Concomitant Lasso formulation and propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stabilities. Our proposal builds upon smoothing techniques à la [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]; [START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF] of the original problem. Leveraging screening rules and the active warm start within a homotopy continuation as developed in Chapter 2, we propose an efficient and accurate solver for joint estimation that achieves similar computational cost than the one for the Lasso. This is a significant advance over previous methods that are based on generic solvers of conic programming or iterative procedure that alternates Lasso steps and noise estimation steps.

The implementations of the algorithms proposed in this thesis are available in open source in https://github.com/EugeneNdiaye.

Background on Convex Analysis

Notation. We denote by rT s the set t1, . . . , T u for any non zero integer T . Our observation vector is y P R n and the design matrix X " rX 1 , . . . , X p s J P R nˆp has n observations rowwise. we write ¨ to denote any norm and B ¨ its associated unit ball and we write Bpθ, rq the ball with center θ and radius r (B 2 (resp. B 8 ) will denote the euclidean (resp. infinite) unit ball). Given a vector β P R p , we denote by supppβq the support of β i.e. the set of indices corresponding to non-zero coefficients. We denote ptq `" maxp0, tq and Π C p¨q the projection operator over a closed convex set C. The interior (resp. boundary) of a set C is denoted intC (resp. bdC). The soft-thresholding operator ST τ (at level τ ě 0) is defined for any x P R d by rST τ pxqs j " signpx j qp|x j | ´τ q

`.
Definitions and Basic Convexity Properties. We recall some elements of convex analysis used in the derivation and analysis of the algorithms proposed in this thesis. The notions we recall here are from (Hiriart-Urruty and Lemaréchal, 2012) and [START_REF] Rockafellar | Convex analysis[END_REF].

Let P : R q Ñ R Y t`8u be a function non identically equal to `8, its (effective) domain is the nonempty set dompP q " tz P R q : P pzq ă `8u .

The epigraph of P is defined as epiP :" tpz, rq P R q ˆR : P pzq ď ru .

(1.11)

Definition 3 (Convexity). A set C is said to be convex if αz `p1 ´αqz 1 is in C whenever z and z 1 are in C and for α in s0, 1r.

A function P : R q Þ Ñ R Y t`8u is said to be convex if for all z, z 1 P dompP q and α P p0, 1q, P pαz `p1 ´αqz 1 q ď αP pzq `p1 ´αqP pz 1 q .

We recall that a function P is convex if and only if its epigraph epiP is a convex set (which can be seen as a geometric definition of convex function).

The convex functions for optimization problems that we will encounter are assumed to be proper in the sense that they are not identically equal to `8 and do not take the value ´8. We also assume that they are closed i.e. their epigraph are closed which is equivalent to lower semi-continuity These properties are of interest because they allows to guarantee existence of minimizers (Peypouquet, 2015, Proposition 2.19).

For any convex set

C Ă R d the (convex) indicator function ι C is defined by ι C pxq " # 0, if x P C, `8, otherwise .
. Definition 4 (Subdifferential). The subdifferential of a convex function P at x is defined as BP pxq " tv P R q : P pzq ě P pxq `xv, z ´xy, @z P R q u .

(1.12)

As a slight abuse of notation, we will write BP pxq for any vector in the subdifferential of P at x.

Proposition 1. For a convex function P , the subdifferential BP pxq is a non-empty closed convex set for any x in dompP q.

Definition 5 (Strong Convexity). A function P is µ-strongly convex for µ ě 0 if @x, y P dompP q, P pxq `xBP pxq, y ´xy `µ 2 y ´x 2 ď P pyq.

(1.13) Definition 6 (Smoothness). A continuously differentiable function P is ν-smooth for ν ě 0 if @x, y P dompP q, P pyq ď P pxq `x∇P pxq, y ´xy `ν 2 y ´x 2 .

(1.14)

Let us now introduce the notion of support function and polarity following (Rockafellar, 1997, Part 3). They will be used for deriving a concise theory for screening rule in Chapter 2.

Definition 7 (Support Function). Let C be a subset of R q . The support function of C is defined as

S C : R q ÝÑ r´8, `8s : x Þ Ñ sup cPC xc, xy .
(1.15)

Proposition 2 (Polarity). A support function is closed and sublinear. Furthermore, if C is closed, convex and contains 0, then S C is a gauge i.e. a non-negative positively homogeneous convex function that vanishes at 0. We define its polar function as:

S C px ˚q :" sup x‰0 xx ˚, xy S C pxq " sup S C pxq"1 xx ˚, xy " sup S C pxqď1 xx ˚, xy . (1.16)
The function S C is also a gauge function and we have the polar inequality:

xx ˚, xy ď S C px ˚qS C pxq @x ˚P domS C , x P domS C .
(1.17)

Note that a gauge function is a norm when it is finite everywhere, symmetric and non zero except at the origin. Hence Equation (1.17) generalizes Cauchy-Schwartz and Hölder inequality.

Fenchel's Duality Theorem. We recall Fenchel duality in optimization that will be extensively use in this manuscript.

Definition 8 (Fenchel-Legendre Transform). For a function P : R q Ñ r´8, `8s, its conjugate P , is the function defined as P ˚: R q ÝÑ r´8, `8s : x ˚Þ Ñ sup xPR q xx ˚, xy ´P pxq .

(1.18)

The conjugacy operation P Þ Ñ P ˚is called the Fenchel-Legendre transform.

Theorem 2 (Fenchel Duality see Rockafellar (1997, Theorem 31.3) ´f ˚p´λθq ´λΩ ˚pX J θq loooooooooooooomoooooooooooooon D λ pθq pDualq.

(1.20)

Strong duality holds i.e. P λ p βpλq q " D λ p θpλq if and only if ´λθ pλq P Bf pX βpλq q ðñ X βpλq P Bf ˚p´λ θpλq q, (1.21)

X J θpλq P BΩp βpλq q ðñ βpλq P BΩ ˚pX J θpλq q.

(1.22)

Optimality conditions in Equation (1.21) and (1.21) are called Karush-Kuhn-Tucker (KKT) conditions.

Definition 9 (Duality Gap). For any primal/dual feasible pair of vector pβ, θq P domP λ ˆdomD λ , the duality gap is defined as the difference between the primal and dual objectives: Gap λ pβ, θq :" P λ pβq ´Dλ pθq " f pXβq `f ˚p´λθq `λpΩpβq `Ω˚p X J θqq .

For any such pβ, θq, the weak duality holds i.e. P λ pβq ě D λ pθq. This implies that P λ pβq ´Pλ p βpλq q ď Gap λ pβ, θq .

Remark 1. In this manuscript, the duality gap will be used as an optimality certificate or as a algorithmic stopping criterion for solving (1.19).

We also recall from (Hiriart-Urruty and Lemaréchal, 1993, Theorem 4.2.2, p. 83) Proposition 3. P is µ-strongly convex if and only if P ˚is 1{µ-smooth.

We introduce below the Fenchel-Young inequality and two other variants that exploit the notions of strong convexity and smoothness.

Lemma 1 (Fenchel-Young Inequalities). Let P be a convex function. For all x in dompP q, and x ˚P dompP ˚q, we have We conclude by applying the inequality at z " BP ˚px ˚q and remark that BP pzq " x ˚. The same proof holds for the upper bound (1.25).

Lemma 2. The function P is bounded from below if and only if dompP ˚q contains 0.

Proof. We have P ˚p0q " ´inf z P pzq ă `8. hence the result.

We will assume the following technical condition everywhere: both f and Ω are bounded from below i.e. both domf ˚and domΩ ˚contains the origin 0. Hence the support functions considered in this thesis simplify to gauge functions.

First Order Optimality Conditions

Proposition 4 (Fermat's Rule). (see (Bauschke and Combettes, 2011, Proposition 26.1) for a more general result) For any convex function P : R q Ñ R, we have z ‹ P arg min zPR q P pzq ðñ 0 P BP pz ‹ q .

(1.26)

Proposition 5. Let P be a convex and differentiable function, C be a closed and convex set.

z ‹ P arg min zPC P pzq if and only if x∇P pzq, z ´z‹ y ě 0, @z P C .

(1.27)

Chapter 2

Safe Screening Rules

The computational burden of solving high dimensional regularized regression problem has led to a vast literature on improving algorithmic solvers in the last two decades. With the increasing popularity of 1 -type regularization ranging from the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] to hierarchical sparse structure [START_REF] Sprechmann | C-hilasso: A collaborative hierarchical sparse modeling framework[END_REF], many algorithmic methods have emerged to solve the associated optimization problems [START_REF] Efron | Least angle regression[END_REF][START_REF] Koh | An interior-point method for large-scale l1-regularized logistic regression[END_REF]Friedman et al., 2010b;[START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]. Our main objective in this work is to propose a technique that can speed-up any iterative solver for such learning tasks by reducing the dimensionality thanks to a safe elimination of unimportant variables.

The safe rules introduced by El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] for supervised learning problems with sparse 1 regularization, is a set of rules allowing to eliminate features whose associated coefficients are guaranteed to be absent in the model parameter after solving the learning problem. It exploits the known sparsity of the solution by discarding features prior to starting a solver. The main building bloc are based on Fenchel duality and first order optimality conditions. Let us consider the example of the Lasso estimator βpλq to illustrate the method. Given a tuning parameter λ ą 0, controlling the trade-off between data fidelity and sparsity of the solutions, it is defined as any solution of the (primal) optimization problem βpλq P arg min

βPR p 1 2 y ´Xβ 2 2 `λ β 1 .
Denoting ∆ X " θ P R n : |x J j θ| ď 1, @j P rps ( the dual feasible set, a dual formulation of the Lasso reads θpλq " arg max

θP∆ X 1 2 y 2 2 ´λ2 2 θ ´y λ 2 2 .
From the Karush-Kuhn-Tucker (KKT) conditions, we have the relation

@j P rps, x J j θpλq P # tsignp βpλq j qu if βpλq j ‰ 0, r´1, 1s if βpλq j " 0.
This leads to the screening rule: @j P rps, |x J j θpλq | ă 1 ùñ βpλq j " 0. It provides a correlation based screening rule that guarantee identification of irrelevant features. Such techniques are referred to in the literature as safe rules when they screen out coefficients guaranteed to be zero in the targeted optimal solution. Zeroing those coefficients allows to focus exclusively on the non-zero ones (likely to represent signal) and helps reducing the computational burden. Similar strategies have been used as data preprocessing before application of statistical methods [START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF]. However they were not necessarily related to an optimization problem. It is worth noting that similar preprocessing steps known as facial reduction are used for accelerating the linear programming solvers [START_REF] Markowitz | The optimization of a quadratic function subject to linear constraints[END_REF][START_REF] Brearley | Analysis of mathematical programming problems prior to applying the simplex algorithm[END_REF] and conic programming [START_REF] Borwein | Facial reduction for a cone-convex programming problem[END_REF], we refer to [START_REF] Mészáros | Advanced preprocessing techniques for linear and quadratic programming[END_REF][START_REF] Drusvyatskiy | The many faces of degeneracy in conic optimization[END_REF] for recent reviews. Another application can also be found in [START_REF] Michelot | A finite algorithm for finding the projection of a point onto the canonical simplex of rn[END_REF] for projecting onto the simplex and 1 ball in [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]. A noticeable difference between these approaches and the safe rules lies in the fact that the latter remove the variables only if they can be guaranteed to be inactive at the optimum.

The safe screening rules have been improved [START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF] and extended to several statistical learning tasks for discarding non-influential observations and/or features in optimization problem including support vector machines [START_REF] Ogawa | Safe screening of non-support vectors in pathwise svm computation[END_REF][START_REF] Shibagaki | Simultaneous safe screening of features and samples in doubly sparse modeling[END_REF], logistic regression (Wang et al., 2014), constrained convex problems such as minimum enclosing ball [START_REF] Raj | Screening rules for convex problems[END_REF] etc. To improve the screening performance, we can rely on the information provided by the computations done for a previous regularization parameter as in homotopy/continuation methods. This scenario is particularly relevant in machine learning where one computes solutions over a grid of regularization parameters, so as to select the best one, e.g. by cross-validation. Another interesting strategy is the dynamic safe rules introduced by [START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF][START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF] who opened a promising venue by performing variable screening not only before the algorithm starts, but also along the iterations. It increases the number of variable eliminated as the algorithm progresses towards the optimal solution. However, the derivation of those rules strongly depends on each specific problem formulation and one can ask if there is an underlying common structure that can be exploited. This chapter contains a synthesis and a unified presentation of the (safe) screening rules introduced so far in machine learning. We show that it relies on the "subdifferential separation" which is a natural property of convex functions. We put forward the Gap Safe Rules introduced for the Lasso in (Fercoq et al., 2015) that relies on duality gap computations and show how it extents to broad class of optimization problems with the following benefits:

-Gap Safe rules are easy to insert in existing solvers, -they are proved to be safe and unify sequential and dynamic rules, -they lead to improved speed-ups in practice w.r.t. previously known safe rules.

Our contribution in the literature consists in the "Gap Safe Screening Rules" series that was published in the following machine learning review: Notation. The parameter to recover is a vector β " pβ 1 , . . . , β p q J admitting a group structure.
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A group of features is a subset g Ă rps and |g| is its cardinality. The set of groups is denoted by G and we focus only on non-overlapping groups that form a partition of the set rps. We denote by β g the vector in R |g| which is the restriction of β to the indices in g. We write rβ g s j the j-th coordinate of β g and simply β j if there is no ambiguity. We also use the notation X g P R nˆng to refer to the sub-matrix of X assembled from the columns with indices j P g and X j when the groups are a single feature, i.e. when g " tju. Similar notation are used for the observations and the group of samples will be denoted I.

Framework Moreover, we have the optimality conditions connecting primal and dual solutions:

@i P I, ´λθ pλq i P Bf i px J i βpλq q ðñ x J i βpλq P Bf i p´λ θpλq i q,
(2.3) @g P G, X J g θpλq P BΩ g p βpλq g q ðñ βpλq g P BΩ g pX J g θpλq q.

(2.4)

We propose in this chapter a synthesis and a unified presentation of the screening rules for identifying active structure in convex optimization problem (2.1) which contains a broader class of learning problems under mild conditions. We require a loss with a Lipschitz continuous gradient (which allows to construct a safe region based on the duality gap) plus a regularization that is block-wise separable (which allows to decompose the problem into independent components). We present several strategy to take a large benefit from this rule in order to speed up the execution time of any iterative algorithms, specially the proximal (block) coordinate descent.

Non-Smoothness and Active Set Identification

Now we introduce an important lemma that captures a natural property of convex functions that allows us to obtain a simple and unified presentation of the screening rules introduced recently in the literature.

Lemma 3 (Separation of Subdifferentials). Let P be a convex function and z P domP such that intBP pzq ‰ H. Then we have intBP pzq X BP pz 1 q " H for all z ‰ z 1 .

Proof. Let z 1 such that it exists g in intBP pzq X BP pz 1 q. Now g in the open set intBP pzq implies that it exists α ą 0 such that g α :" g `αpz 1 ´zq P BP pzq. Then we have P pzq ě P pz 1 q `xg, z ´z1 y ě P pzq `xg α , z 1 ´zy `xg, z ´z1 y " P pzq `α z 1 ´z 2 2 , where the first (resp. the second) inequality comes from g P BP pz 1 q (resp. g α P BP pzq). Hence z 1 " z.

By applying Lemma 3 to the problem 2.1, we obtain the results that allows to identifies parts of the optimal solutions. In the rest of this chapter, for any group g in G, β ‹ g is any vector in R |g| such that intBΩ g pβ ‹ g q is non empty.

Proposition 6 (Feature-wise Screening Rule).

For any group g in G, if X J g θpλq belongs to intBΩ g pβ ‹ g q, then βpλq g is equal to β ‹ g .

Proof. From the optimality conditions Equation (2.4), we have for all group g P G, X J g θpλq P BΩ g p βpλq g q. Then from Lemma 3 we deduce that if βpλq g ‰ β ‹ g , then X J g θpλq R intBΩ g pβ ‹ g q. Hence we conclude by contrapositive.

This relation means that the g-th group can be discarded in the problem i.e.

βpλq

g is identified to be equal to β ‹ g , whenever X J g θpλq belongs to intBΩ g pβ ‹ g q. However, since θpλq is unknown, this rule is of limited use. Fortunately, it is often possible to construct a set R ˚Ă R n , called a safe region, that contains θpλq . This observation leads to the following result.

Proposition 7 (Safe Feature-wise Screening Rule). Let R ˚be a (dual) safe region i.e. it contains the (dual) optimal solution θpλq . If X J g R ˚is included in intBΩ g pβ ‹ g q then βpλq g is equal to β ‹ g .

Similar results are also obtained when the regularity of the loss and the regularization are flipped i.e. when the loss function is considered to be the non-smooth part. Exploiting the optimality condition x J i βpλq P Bf i p´λ θpλq i q and using similar reasoning we have: Proposition 8 (Sample-wise Screening Rule). Let θ ‹ i be a vector such that intBf i pθ ‹ i q is non empty. If

x J i βpλq is in intBf i pθ ‹ i q, then ´λθ pλq i is equal to θ ‹ i .
Proposition 9 (Safe Sample-wise Screening Rule). Let θ ‹ i be a vector such that intBf i pθ ‹ i q is non empty and R be a (primal) safe region i.e. it contains the (primal) optimal solution βpλq . If

X J i R is included in intBf i pθ ‹ i q then ´λθ pλq i is equal to θ ‹ i .
Often, we will restrict the discussions on the primal formulation where the loss is smooth and the regularization is non-smooth and separable since the same properties can be recovered in the dual by symmetry.

Remark 3. The separability is required only for the non-smooth part, it helps to decompose the problem into independent groups and allows to run (proximal) coordinate descent algorithms which is known to be very efficient in large scale problems. The case where the non-smooth part us not separable, which includes important regularization functions such as total variation, overlapping Group Lasso, Sorted 1 -norm, 8 -norm etc, is not covered in this work.

Since the subdifferential BΩ g pβ ‹ g q is a closed convex set, the screening test «X J g R ˚Ă intBΩ g pβ ‹ g q»can be evaluated computationally thanks to the following lemma that allows to check whether a given point c belongs to the interiors of a closed convex set C. By applying the Lemma 4 to the (closed convex) sets C " BΩ g pβ ‹ g q and S " X J g R ˚, the screening rule can be performed by checking if max θPR ˚xX J g θ, dy ă S BΩgpβ ‹ g q pdq for all d in the unit sphere bdB which implies that βpλq g is equal to β ‹ g . By denoting

Ω gpX J g θ, β ‹ g q :" S BΩgpβ ‹ g q pX J g θq " sup d‰0 xX J g θ, dy S BΩgpβ ‹ g q pdq ,
(2.5) the computational safe screening rule can be subsumed as follow Theorem 3. Let R ˚be a (dual) closed and convex set that contains the (dual) optimal solution θpλq . For all group g in G and for any vector β ‹ g such that intBΩ g pβ ‹ g q is non empty, the screening test reads:

Screening Rules:

if Ω gpX J g θpλq , β ‹ g q ă 1 then βpλq g " β ‹ g .

(2.6)

Safe Screening Rules: if max θPR ˚Ωg pX J g θ, β ‹ g q ă 1 then βpλq g " β ‹ g .

(2.7)

In the following, we will drop the dependency in β ‹ g and simply note Ω gpX J g θq if their is no ambiguity.

The safe screening rule consists in removing the g-th group from the optimization process whenever the previous test is satisfied, since then βpλq g is guaranteed to be equal to β ‹ g . Should R ˚be small enough to screen many groups, one can observe considerable speed-ups in practice as long as the testing can be performed efficiently. Thus a natural goal is to find safe regions as narrow as possible: smaller safe regions can only increase the number of screened out variables. To have useful screening procedures one needs:

-the region R ˚should be as small as possible and contains θpλq , -the computations needed to check if X J g R ˚Ă intBΩ g pβ ‹ g q should be cheap. The later means that safe regions should be "simple" geometric objects, since otherwise, evaluating the test could lead to a computational burden limiting the benefits of screening.

Note that any time a safe rule is performed thanks to a safe region R ˚, one can associate a safe active set consisting of the features that cannot be removed yet by the safe screening test.

Safe Active Set and Converging Region

Definition 10 (Feature-wise (Safe) Active Sets). Let β ‹ g be a vector such that intBΩ g pβ ‹ g q is non empty. The set of (group) active features at β ‹ g is defined as:

A pλq :" ! g P G : X J g θpλq R intBΩ g pβ ‹ g q i.e. Ω gpX J g θpλq q ě 1 ) .

(2.8)

Moreover, if R ˚is a safe region, its corresponding set of (group) safe active features at β ‹ g is defined as

A R ˚:" " g P G : X J g R ˚Ć intBΩ g pβ ‹ g q i.e. max θPR ˚Ωg pX J g θq ě 1 * .
(2.9)

Their complements i.e. the set of non active group, will be denoted Z pλq and Z R ˚.

Let us now describe the notion of converging safe regions introduced in (Fercoq et al., 2015, Definition 1) that help to reach exact active set identification in a finite number of steps.

Definition 11 (Converging Safe Region). Let pR k q kPN be a sequence of closed convex sets containing the optimal solution θpλq . It is a converging sequence of safe regions if the diameters of the sets converge to zero. The associated safe screening rules are referred to as converging.

The following proposition asserts that after a finite number of steps, the active set is exactly identified. Such a property is sometimes referred to as finite identification of the support [START_REF] Liang | Activity identification and local linear convergence of forwardbackward-type methods[END_REF] and is summarized in the following proposition. Yet, note that the (primal) optimal support can be strictly smaller than the active set, see the case of the Lasso [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF] (where the active set is called equicorrelation set). For clarity, links between optimal support and (safe) active sets are illustrated in Figure 2.1.

Figure 2.1 -Illustration of the inclusions between several remarkable sets: supppβq Ď Apθ, rq Ď rps and suppp βpλq q Ď E λ Ď Apθ, rq Ď rps, where β, θ is a primal/dual pair.

Proposition 10 (Active Set Identification). Let pR k q kPN be a sequence of closed convex set containing θpλq for each

k in N. If R k ÝÑ t θpλq u, then A R k ÝÑ A pλq .
Proof. We proceed in two times:

First we show that max θPR k Ω gpX J g θq ÝÑ k Ω gpX J g θpλq q. Indeed, for any k P N and θ in R k we have from the sublinearity and positive homogeneity of Ω g,

Ω gpX J g θq ď Ω gpX J g θpλq q `Ωg ˜XJ g θ ´θ pλq θ ´θ pλq ¸ θ ´θ pλq .
Since θpλq in R k , then

Ω gpX J g θpλq q ď max θPR k Ω gpX J g θq ď Ω gpX J g θpλq q `sup u "1 Ω gpX J g uqdiampR k q .
(2.10)

The conclusion follows the fact R k is a converging sequence i.e. lim k diampR k q " 0.

Second, we proceed by double inclusion. First remark that A pλq " A R 8 where R 8 :" t θpλq u. So for all k P N, we have A pλq Ď A R k since (A R k q k are nested sequence of sets. Reciprocally, suppose that there exists a non active group g P G i.e. Ω gpX J g θpλq q ă 1 that remains in the active set A R k for all iterations i.e. @k P N, max θ k PR k Ω gpX J g θ k q ě 1. Since lim kÑ8 max θ k PR k Ω gpX J g θ k q " Ω gpX J g θpλq q, we obtain Ω gpX J g θpλq q ě 1 by passing to the limit. Hence, by contradiction, there exits an integer

k 0 P N such that rpszA pλq Ď A c R k for all k ě k 0 .
One can note that the rate of identification of the active set is strongly related to the rate at which the sequence of diameters diampR k q goes to zero. We show in the next section how to construct such a converging sequence that uses the information gained during the optimization process with explicit rates.

We end this section by clarifying the differences and links between the screening rule and the identification of non-smooth structure of a convex function.

Definition 12 (Kink of a Function). A point z at which BP pzq has more than one elementi.e. at which P is not differentiable -is called a kink (or corner-point) of P .

For a convex function P defined on the real line, if the subdifferential at z is not a singleton i.e. P is non differentiable at z, then its interior is a non trivial interval and so is non empty. Hence in the previous propositions one can replace "β ‹ j such that intBΩ j pβ ‹ j q is non empty" by "Ω j is non differentiable at β ‹ j ". Thus X J j θpλq P intBΩ j pβ ‹ j q implies that βpλq j is a kink of Ω j . Whence the kink of Ω j coincide with the variables screened. Nevertheless, this is not always the case when the dimension of the group is larger that one. Indeed, let us take the example of Ωpβq " β 1 ` β 2 where we have only one group rps " G. The only knowledge that β is a kink of Ω is not sufficient to decide if β " 0 since any vector β such that it exits a coordinate β j " 0 is also a kink of Ω.

Gap Safe Screening Rules: from Theory to Practice

Various shapes have been considered in practice for the safe region R. Here we consider for simplicity "sphere regions" following the terminology introduced by El Ghaoui et al. ( 2012) choosing a ball R ˚" Bpc, rq as a safe region.

Since the function Ω g is sublinear and positively homogeneous, we have:

max θPBpc,rq Ω gpX J g θq ď Ω gpX J g cq `max θPBpc,rq Ω g ˆXJ g pθ ´cq θ ´c ˙ θ ´c ď Ω gpX J g cq `r max u "1 Ω gpX J g uq .
Denoting the subordinate operator associated to Ω g, Ω gpX g q :" max u "1 Ω gpX J g uq, we obtain the Safe Sphere Test: Ω gpX J g cq `rΩ gpX g q ă 1 ùñ βpλq g " β ‹ g .

(2.11)

The associated safe active set A Bpc,rq , consisting of the features that cannot be removed yet by the test in Equation (2.11), is then given by Apc, rq :" A Bpc,rq " tg P G : Ω gpX J g cq `rΩ gpX g q ě 1u .

(2.12)

Note that it contains the true support of βpλq .

Smoothness and Dual Safe Region

Finding a Radius Theorem 4 (Gap Safe Sphere). Assuming that f i has 1{γ-Lipschitz gradient, we have

@β P R p , @θ P ∆ X , θpλq ´θ ď d 2 Gap λ pβ, θq γλ 2 . (2.13)
Whence the set R ˚" Bpθ, a 2 Gap λ pβ, θq{γλ 2 is a safe region for any β P R p and θ P ∆ X .

Proof. Remember that @i P rns, f i is differentiable with a 1{γ-Lipschitz gradient. As a consequence, @i P rns, f i is γ-strongly convex (see Proposition 3) and so the dual function D λ is γλ 2 -strongly concave:

@pθ 1 , θ 2 q P R n ˆRn , D λ pθ 2 q ď D λ pθ 1 q `x∇D λ pθ 1 q, θ 2 ´θ1 y ´γλ 2 2 θ 1 ´θ2 2 .
Specifying the previous inequality for θ 1 " θpλq , θ 2 " θ P ∆ X , one has D λ pθq ď D λ p θpλq q `x∇D λ p θpλq q, θ ´θ pλq y ´γλ 2 2 θpλq ´θ 2 .

By definition, θpλq maximizes D λ on ∆ X , so, x∇D λ p θpλq q, θ ´θ pλq y ď 0. This implies

D λ pθq ď D λ p θpλq q ´γλ 2 2 θpλq ´θ 2 .
By weak duality, we have @β P R p , D λ p θpλq q ď P λ pβq, hence @β P R p and @θ P ∆ X , D λ pθq ď P λ pβq ´γλ 2 2 θpλq ´θ 2 and the conclusion follows.

Remark 4. To build a Gap Safe region as in Equation (2.13), we only need strong convexity in the dual which is equivalent to smoothness of the loss function whereas the screening property (3), requires group separability of the non smooth regularizer. Hence our framework of Gap Safe screening rule automatically applies for a large class of problems.

Construction of (dual) Feasible Vector

To build a center for the safe sphere, we map a primal vector onto the dual space thanks to the gradient mapping ∇f p¨q. However, the obtained dual vector are not necessarily feasible for the dual problem. A generic procedure consists in rescaling it so that it belongs to the dual set because the projection on the feasible set can be hard. More precisely, we want to build θ P R n such that @i P I, ´λθ i P domf i and @g P G, X J g θ P domΩ g .

(2.14)

Given a vector z in R n , the rescaled point is denoted by Θpzq and is defined by

Θpzq :" # z, if s z ď 1 , z sz , otherwise,
where s z :" S domΩ ˚pX J zq .

(2.15)

A candidate often considered for computing a dual point is the (generalized) residual term z " ´∇f pXβq{λ. This choice is motivated by the primal-dual optimality (2.3): θpλq " ´∇f pX βpλq q{λ.

Proposition 11. If f and Ω are bounded from below, then the dual vector θ :" Θp´∇f pXβq{λq in R n satisfies the feasibility condition (2.14).

Proof. From Lemma 2 if Ω is bounded from below then domΩ ˚contains 0. Since it is also closed and convex, we have S domΩ ˚is positively homogeneous. Hence the vector θ :" Θ ˆ´∇f pXβq λ ˙" ´∇f pXβq maxpλ, S domΩ ˚pX J ∇f pXβqqq , (2.16) satisfies S domΩ ˚pX J θq ď 1 which is equivalent to X J θ in domΩ ˚. Moreover, by denoting α " λ{s P r0, 1s, we have ´λθ " α∇f pXβq " α∇f pXβq `p1 ´αq0. Since domf ˚is convex, it remains to show that it contains the vectors ∇f pXβq and 0, thus it will necessarily contains ´λθ by convex combination.

From Lemma 2, 0 P domf ˚since f is bounded from below. Moreover, the equality case in the Fenchel-Young inequality shows that f pXβq `f ˚p∇f pXβqq " x∇f pXβq, Xβy ă `8. Hence f ˚p∇f pXβqq is also finite.

Remark 5 (Faster Evaluation of the Duality Gap). By definition of the active sets Definition 10, we have @g P A R ˚, Ω gpX J g θq ě 1 while @g P Z R ˚, Ω gpX J g θq ă 1. Furthermore, for β ‹ g such that intBΩ g pβ ‹ g q is nonempty, we assume that S domΩ g " S BΩgpβ ‹ g q ": Ω g (which is true for most of the examples in this chapter). Let us denote α " maxpλ, S domΩ ˚pX J ∇f pXβqqq, then we have from the separability of Ω

S domΩ ˚pX J ∇f pXβqq " α max gPG Ω gpX J g θq " α max ˆmax gPA R ˚Ωg pX J g θq, max gPZ R ˚Ωg pX J g θq " α max gPA R ˚Ωg pX J g θq " max gPA R ˚Ωg pX J g ∇f pXβqq .
Hence in practice the evaluation of the dual gap is therefore Opnqq where q is the size of A R ˚. In other words, using a safe screening rule also speeds up the evaluation of the stopping criterion.

Complexity of Active Set Identification

Dynamic safe screening rules have practical benefits since they increase the number of screened out variables as the algorithm proceeds. In this section, it is shown that Gap Safe rules allow to have sharper and sharper dual regions along the iterations, accelerating support identification. Before this, the following proposition states that if one relies on a primal converging algorithm, then the dual sequence we propose is also converging. Note that the convergence is maintained to the same primal solution when the primal solution is non-unique.

Lemma 5 (Convergence of the Dual Points). Let β k be a current estimate of a primal solution βpλq and θ k " Θp´∇f pXβ k q{λq be the current estimate of θpλq . Then, lim kÑ`8 β k " βpλq implies lim kÑ`8 θ k " θpλq .

Proof. Let α k " maxpλ, S domΩ ˚pX J ∇f pXβ k qqq, we have:

θ k ´θ pλq 2 " ∇f pX βpλq q λ ´∇f pXβ k q α k 2 ď ˇˇˇ1 λ ´1 α k ˇˇˇ ∇f pXβ k q 2 `1 λ ∇f pX βpλq q ´∇f pXβ k q 2 .
If β k Ñ βpλq , then α k Ñ maxpλ, S domΩ ˚pX J ∇f pX βpλq qqq " maxpλ, λS domΩ ˚pX J θpλq qq " λ since ∇f pX βpλq q " ´λθ pλq thanks to the optimality condition (2.3) and since θpλq is feasible, then S domΩ ˚pX J θpλq q ď 1. Hence, both terms in the previous inequality converge to zero.

When θ k " Θp´∇f pXβ k q{λq, Lemma 5 the sequence of radius r k " p2 Gap λ pβ k , θ k q{pγλ 2 qq 1{2 converges to 0 with k by strong duality, hence the sequence Bpθ k , r k q converges to t θpλq u. Hence we deduce the following proposition.

Proposition 12. The Gap Safe Sphere is a converging safe region.

Following the results and proofs in [START_REF] Dünner | Primal-dual rates and certificates[END_REF], we present their primal/dual bound on the optimality certificates. This result is important for deriving the complexity of active set identification that is algorithmic independent. The next lemma is just a slight modification that take into account the dual rescaling. Lemma 6. Let f be ν f -smooth and Ω be µ Ω -strongly convex. We assume that the vectors θ, u are chosen as θ " ´∇f pXβq{α with α such that for all group g in G, X J g θ P domΩ g and u P BΩ ˚pX J θq. Then for any s in r0, 1s, we have:

P λ pβq ´Pλ p βpλq q ěspGap λ pβ, θq `∆α q `s2 " p1 ´sqµ Ω s β ´u 2 ´νf 2 Xpu ´βq 2  where ∆ α " `α λ ´1˘r f pXβq `f ˚p´λθqs `xXu, ´λθ ´∇f pXβqy ´αν f 2λ Xβ ´∇f ˚p´λθq 2 .
Proof. By optimality of βpλq , we have P λ pβq ´Pλ p βpλq q ě P λ pβq ´min sPr0,1s

P λ pβ `spu ´βqq for u P BΩ ˚pX J θq ě max sPr0,1s

f pXβq `λΩpβq ´f pXpβ `spu ´βqqq ´λΩpβ `spu ´βqq ě f pXβq ´f pXpβ `spu ´βqqq `λpΩpβq ´Ωpβ `spu ´βqqq @s P r0, 1s.

By applying the smoothness (resp. strong convexity) inequality of f (resp. Ω), we have

P λ pβq ´Pλ p βpλq q ě sΓ `s2 " p1 ´sqµ Ω s β ´u 2 ´νf 2 Xpu ´βq 2  ,
where Γ :" λrΩpβq ´Ωpuqs ´x∇f pXβq, Xpu ´βqy.

(2.17)

Since u P BΩ ˚pX J θq is equivalent to Ωpuq `Ω˚p X J θq " xu, X J θy and the dual vector is given by θ " ´∇f pXβq{α, then

Γ " λrΩpβq `Ω˚p X J θqs `xXu, ´λθ ´∇f pXβqy `α λ x´λθ, Xβy ě λrΩpβq `Ω˚p X J θqs `xXu, ´λθ ´∇f pXβqy `α λ pf pXβq `f ˚p´λθq ´νf 2 Xβ ´∇f ˚p´λθq 2 q ,
where the last inequality comes from the (reversed) Fenchel-Young inequality (1.25). Finally we obtain the result by simply rearranging the inequalities.

Restricting to cases where µ Ω ‰ 0 i.e. Ω strongly convex, we have domΩ ˚" R n and we can choose α " λ whence ∆ α " 0. Now choosing s " µ Ω σ X ν f `µΩ where σ X is the spectral norm of the design matrix X (see also [START_REF] Dünner | Primal-dual rates and certificates[END_REF]), then the last term vanishes. Thus

µ Ω σ X ν f `µΩ Gap λ pβ k`1 , θ k`1 q ď P λ pβ k`1 q ´Pλ p βpλq q ď Gap λ pβ k`1 , θ k`1 q . (2.18)
Assuming that we have a linearly convergent algorithm, we have for some κ ą 0:

µ Ω σ X ν f `µΩ Gap λ pβ k`1 , θ k`1 q ď p1 ´κq k pP λ pβ 0 q ´Pλ p βpλq qq . (2.19) Denoting C " σ X ν f `µΩ µ Ω
pP λ pβ 0 q ´Pλ p βpλq qq, we obtain the following bound on the radius of the Gap Safe Sphere:

d 2 Gap λ pβ k`1 , θ k`1 q γλ 2 ď d 2p1 ´κq k C γλ 2 (2.20)
Combining this with the inequality (2.10), we deduce that the identification of the active set occurs when Ω gpX J g θpλq q `Ωg pX g qdiampR k q ă 1 for all group g in Z pλq i.e.

diampR k q ă 1 ´Ωg pX J g θpλq q Ω gpX g q , @g P Z pλq .

(2.21)

Exploiting the bound on the radius of the Gap Safe Sphere, we can finally say that the identification occurs when

d 2p1 ´κq k C γλ 2 ă min gPZ pλq 1 ´Ωg pX J g θpλq q Ω gpX g q ": δ Z pλq
Proposition 13 (Complexity of the Active Set Identification). For any linearly converging primal algorithm, the active set will be identified after at most k 0 iterations where

k 0 :" $ & % 1 κ log ˆ2C f,Ω,X δ 2 Z pλq ˆPλ pβ 0 q´P λ p βpλq q γλ 2 ˙if γλ 2 δ 2 Z pλq ď 1, 0 otherwise , (2.22)
for some nonnegative constant κ and the constant C f,Ω,X :" pσ X ν f `µΩ q{µ Ω depends only on the conditioning of the optimization problem.

Algorithm 1 Pathwise Algorithm with Active Warm Start Input : X, y, , K, f ce , pλ t q tPrT ´1s for t P rT ´1s do β " β pλ t´1 q and // Get previous -solution

Get an initial (safe or not) support estimator S " Spβ pλ t´1 q q β S " Solver pX S , y, β S , , K, f ce , λ t q // Active warm start β pλtq " Solver pX, y, β, , K, f ce , λ t q // Solve over all variables

Output: `βpλtq ˘tPrT ´1s

This generalizes the existing result in activity identification in [START_REF] Liang | Activity identification and local linear convergence of forwardbackward-type methods[END_REF][START_REF] Nutini | Let's make block coordinate descent go fast: Faster greedy rules, message-passing, active-set complexity, and superlinear convergence[END_REF] for separable regularization in the sense that our result is true for any primal converging algorithm not only Forward-Backward. We can also quantify the importance of the initialization for fast convergence/fast identification of the active set. Indeed, we have a logarithmic dependence on δ Z pλq and on the initial Gap Safe radius since

2pP λ pβ 0 q ´Pλ p βpλq qq γλ 2 ď 2 Gap λ pβ 0 , θ 0 q γλ 2 .
Note that our reasoning easily adapts to other convergence regimes, it suffices to modify Equation (2.19) with the appropriate rate.

Homotopy Acceleration Strategies

When designing a supervised learning algorithm with sparsity enforcing penalties, the tuning of the parameter λ in Problem (2.1) is crucial and is usually done by cross-validation which requires evaluation over a grid of parameter values. A standard grid considered in the literature is λ t " λ max 10 ´δt{pT ´1q with a small δ, say δ " 10 ´2 or 10 ´3, see for instance [START_REF] Bühlmann | Statistics for high-dimensional data[END_REF][2.12.1], the glmnet package (Friedman et al., 2010b) or the scikit-learn package [START_REF] Pedregosa | Hyperparameter optimization with approximate gradient[END_REF]. The parameter δ has an important influence on the computational burden: computing time tends to increase for small λ, the primal iterates being less and less sparse, and the problem to solve more and more ill-posed. It is customary to start from the largest regularizer λ 0 " λ max and then to perform iteratively the computation of βpλtq after the one of βpλ t´1 q . This leads to computing the models in the order of increasing complexity: this allows important speed-up by benefiting of warm start strategies. Here we propose a simple pathwise algorithm divided in two step:

-Active Warm Start: improve solver initialization by solving the problem restricted to an initial estimation of the support based on sequential information along the regularization path. -Dynamic Gap Safe Screening: use the information gained during the iterations of the algorithm to obtain a smaller safe region therefore a greater elimination of inactive variables.

See below the details on the various strategies investigated. We summarize our strategy for solving the problem given by Equation (2.1) in Algorithm 1 and 2. The notation Solver p. . .q refers to any numerical solver that produces an approximation of the solution of Problem 2.1 and SolverUpdate p. . .q is the updating scheme of the current vector along the iterations1 . We consider solvers that can use a (primal) warm start point.

We now describe the simplest safe rule strategy, which we refer to as the static strategy.

Algorithm 2 Iterative Solver with Gap Safe Rules: Solver pX, y, β, , K, f ce , λq Input : X, y, β, , K, f ce , λ // Warm start is authorized here through β

for k P rKs do if k mod f ce " 1 then Compute a dual variable θ " ´∇f pXβq maxpλ,S domΩ ˚pX J ∇f pXβqqq Stop if Gap λ pβ, θq ď r " b 2 Gap λ pβ,θq γλ 2
// Get Gap Safe radius as in Equation (2.13)

A " g P G : Ω gpX J g θq `rΩ gpX g q ě 1 ( // Get Safe active set as in Equation (2.12) 2012) for 1 regularization, discards variables before any computation. Here, the (safe) sphere is fixed once and for all, hence the name static. The static rule reads:

β A " SolverUpdate pX A , y, β A , λq
Static sphere rule:

If Ω gpX J g θ max q `rmax Ω gpX g q ă 1, then βpλq g " β ‹ g , Center:

θ max :" ´∇f pXβ max q{λ max , Radius:

r max :" c 2 γλ 2 Gap λ pβ max , θ max q .
There is a threshold λ critic such that for any λ smaller than λ critic the test from the Static sphere rule can never be satisfied. This phenomenon appears clearly in the numerical experiments presented in Section 4.4. In simple cases a closed form for λ critic can even be provided. For instance, in the case of the Group Lasso, (El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] proposed to use r max " 1 λ ´1 λmax y 2 , and simple calculation gives: λ critic :" λ max ˆmin gPG y 2 Ω gpX g q λ max ` y 2 Ω gpX g q ´Ωg pX g ∇f pXβ max qq .

Sequential Safe Rules. Provided that the λ's are close enough along the regularization parameters, knowing an estimate of βpλ t´1 q gives a clever initialization to compute βpλtq . To initialize the solver for a new λ t , a natural choice is to set the primal variable equal to β pλ t´1 q , an approximation of βpλ t´1 q output by the solver (at a prescribed precision). This popular strategy is referred to as warm start in the literature [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. This leads to the sequential strategy to screen for a new λ t :

Sequential sphere rule:

If Ω gpX J g θ pλ t´1 q q `rt Ω gpX g q ă 1, then βpλtq g " β ‹ g , Center:

θ pλ t´1 q :" Θp´∇f pXβ pλ t´1 q q{λ t´1 q , Radius:

r t :" d 2 γλ 2 t Gap λt pβ pλ t´1 q , θ pλ t´1 q q .
Sequential screening is motivated by the idea that the duality gap growth continuously w.r.t. to the regularization parameter. The variation in the Gap Safe radius can be quantified by using the warm start bounds in Lemma 12. For simplicity, we describe it only when the dual loss f ˚is smooth and we refer to Chapter 2 for more details and extensions.

Proposition 14 (Sequential Bounds). Assuming that f ˚is ν-smooth and given a primal/dual feasible vector pβ, θq, we have: (2014) and Gap Safe strategies for the Lasso case; note that γ " 1 in this case. Here β is a primal point, θ is a dual feasible point (the feasible region ∆ X is in orange, while the respective safe balls R are in blue).

r 2 λt pβ, θq ď λ t λ t´1 r 2 λ t´1 pβ, θq `ˆ1 ´λt λ t´1 ˙2 λ 2 t ∆ t `ˆ1 ´λt λ t´1 ˙2 2ν λ 2 t λ t´1 θ 2 ,
where ∆ t :" f pXβq ´f ˚p∇f ˚p´λ t θqq can be made as small as desired.

Dynamic Safe Rules. Another road to speed up solvers using screening rules was proposed by [START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF][START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF] under the name "dynamic safe rules". For a fixed λ, it consists in performing screening along with the iterations of the optimization algorithm used to solve Problem (2.1). Let us consider a sequence pβ k q that converges to a primal solution βpλq . For creating a dual feasible point, we apply the rescaling introduced in Equation (2.15) to z " ´∇f pXβ k q{λ and the dynamic strategy can be summarized by Dynamic sphere rule:

If Ω gpX J g θ k q `rk Ω gpX g q ă 1, then βpλq g " β ‹ g , Center:

θ k :" Θp´∇f pXβ k q{λq , Radius: r k :" c 2 γλ 2 Gap λ pβ k , θ k q .
In practice the computation of the duality gap can be expensive due to the matrix vector operations needed to compute X J ∇f pXβ k q. For instance in the Lasso case, a dual gap computation requires almost as much computation as a full pass of coordinate descent over the data. Hence, it is recommended to evaluate the dynamic (safe) rule only every few passes over the data set. In all our experiments, we have set this screening frequency parameter to f ce " 10.

Dual Extrapolation. In the same way we can accelerate the convergence of an iterative algorithm by means of extrapolation of its iterates [START_REF] Scieur | Regularized nonlinear acceleration[END_REF], we can improve the estimation of θpλq by extrapolating the residual before applying the scaling in Proposition 11. This was proposed by Massias et al. (2018b) for the Lasso and have shown interesting speed up. Given a number of iterations K (default being K " 5) and ρ k " y ´Xβ k , let

ρ accel k :" # ρ k if k ď K, ř K k"1 c k ρ k`1´K if k ą K, where c " pc 1 , ¨¨¨, c K q in R K is defined as z{z J 1 K and z is a solution of U J k U k z " 1 K with U k " rρ k`1´K ´ρk´K , ¨¨¨, ρ k ´ρk´1 s in R nˆK .
Then the new dual vector is given by

θ accel k :" ρ accel k maxpλ, X J ρ accel k 8 q
.

(2.23)

See (Massias et al., 2018b) for more details and numerical experiments.

Active Warm

Start. An another variant to further reduce running time in the active warm start, recently introduced by Ndiaye et al. (2017a) for speeding-up concomitant Lasso computations. Instead of simply leveraging the previous primal solution, the active warm start strategy also makes use of the previous safe active set Apθ pλ t´1 q , r t´1 q, with r t´1 " r λ t´1 pβ pλ t´1 q , θ pλ t´1 q q. The idea is to take as a new primal warm start point, the (approximate) minimizer of P λt under the additional constraint that its support is included in the safe active set Apθ pλ t´1 q , r t´1 q i.e.

β pλ t´1 ,λtq P arg min βPR p f pXβq `λt Ωpβq s.t. supppβq Ď Apθ pλ t´1 q , r t´1 q .

(2.24)

In (2.24), we still choose β pλ t´1 q as a standard warm start initialization with the same number of inner loops and/or accuracy as in (2.1) (to avoid the multiplication of parameters to be set by the user). Note that un-safe estimators of the active set can be used as for active warm start. In practice, we can use the (un-safe) strong active set provided by the Strong rules introduced by [START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF]. This Strong Warm Start strategy is detailed below.

Application to Popular Estimators

Least Squares Lasso. For the Lasso estimator [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], the data-fitting term is the standard least square, i.e. f pXβq " }y ´Xβ} 2 2 {2 " ř n i"1 py i ´xJ i βq 2 {2 (meaning that f i pzq " py i ´zq 2 {2). The regularization term enforces sparsity at the feature level and is defined by Ωpβq " }β} 1 .

Group Lasso. For the Group Lasso estimator [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], the data-fitting term is the same f pXβq " }y ´Xβ} 2 2 {2 but the penalty considered enforces group sparsity. Hence, we consider the norm Ωpβq " Ω w pβq, often referred to as an 1 { 2 norm, defined by Ω w pβq :" ř gPG w g β g 2 where w " pw g q gPG are some weights satisfying w g ą 0 for all group g in G.

Elastic Net. For the Elastic Net estimator [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] the data fitting term is the same than for the Lasso i.e. f pXβq " }y ´Xβ} 2 2 {2 and the regularization is Ωpβq " η β 1 p1 ´ηq β 2 2 {2 interpolates between the 1 penalty and the ridge penalty. The regularizer is feature-wise separable with Ω j pβ j q " η|β j | `p1 ´ηqβ 2 j for any j in rps and

BΩ j pβ j q " # r´η, ηs if β j " 0, η β j |β j | `p1 ´ηqβ j if β j ‰ 0 Ω j pξ j q " 1 2η rp|ξ j | ´p1 ´ηqq `s2 .
1 Regularized Logistic Regression. Here, we consider the formulation given in (Bühlmann and van de Geer, 2011, Chapter 3) for the two-class logistic regression. In such a context, one observes for each i P rns a class label l i P t1, 2u. This information can be recast as y i " 1 tl i "1u (where 1 is the indicator function), and it is then customary to minimize (2.1) where

f pXβq " n ÿ i"1 `´y i x J i β `log `1 `exp `xJ i β ˘˘˘, (2.25)
with f i pzq " ´yi z `logp1 `exppzqq, and the penalty is simply the 1 norm: Ωpβq " }β} 1 . Let us introduce Nh, the (binary) negative entropy function defined by:

Nhpxq "

#

x logpxq `p1 ´xq logp1 ´xq, if x P r0, 1s , `8, otherwise .

(2.26)

We use the convention 0 logp0q " 0, and one can check that f i pz i q " Nhpz i `yi q and γ " 4.

Note that we have privileged the formulation with the label y P t0, 1u n instead of y P t`1, ´1u n in order to be consistent with the multinomial cases below. One can simply switch from one formulation to the other thanks to the mapping r y " 2y ´1.

1 { 2 Multi-task Regression. The multi-task Lasso is a regression problem where the parameters form a matrix B P R pˆq . Denoting n the number of observations for each task k P rqs, it is defined as

min BPR pˆq 1 2 Y ´XB 2 F `λ p ÿ j"1 B j,: 2 , (2.27)
where X P R nˆp and Y P R nˆq . Here we assume that the explanatory variables X are shared among the tasks however the Gap Safe rules would readily apply to the non-shared design formulation as in [START_REF] Lee | Adaptive multi-task lasso: with application to eqtl detection[END_REF] or in [START_REF] Liu | Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery[END_REF] since the loss is still smooth, cf. Remark 4.

Introducing the vec operator that vectorizes a matrix by stacking its columns to form a column vector, and the Kronecker product b of two matrices, the multi-task Lasso can be rewritten as a special case of Group Lasso. In fact, we have n class of observations c i " pi `pk ´1qnq kPrqs of size q for each i P rns (the overall number of observations is n1 " nq) and p groups g j " pj pk ´1qpq kPrqs such that |g j | " q for j P rps. The design matrix X " I q b X P R n 1 ˆp1 " R nqˆpq is a q-block diagonal matrix defined as X " diagpX, . . . , Xq, y " vecpY q and β " vecpBq, we have:

min βPR p 1 1 2 n ÿ i"1 y c i ´x J i β 2 2 `λ p ÿ j"1 β g j 2 , (2.28) i.e. f i pzq " y c i ´z 2 2 {2
. is that it can be concisely written using the matrix forms of y and β, without the need to actually construct the large matrix X 1 . This is particularly appealing for the implementation. In signal processing, this model is also referred to as the Multiple Measurement Vector (MMV) problem. It allows to jointly select the same features for multiple regression tasks, see [START_REF] Argyriou | Multi-task feature learning[END_REF][START_REF] Argyriou | Convex multi-task feature learning[END_REF][START_REF] Obozinski | Joint covariate selection and joint subspace selection for multiple classification problems[END_REF]. This estimator has been used in various applications such as prediction of the location of a protein within a cell [START_REF] Xu | Multitask learning for protein subcellular location prediction[END_REF] or in neuroscience [START_REF] Gramfort | Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods[END_REF], for instance to diagnose Alzheimer's disease [START_REF] Zhang | Alzheimer's Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer's disease[END_REF] and biological data [START_REF] Bellon | Multitask feature selection with task descriptors[END_REF][START_REF] Playe | Efficient multi-task chemogenomics for drug specificity prediction[END_REF]. multi-task Lasso, a matrix B P R pˆq is formed by q vectors encoding the hyperplanes for the linear classification. Thus the multinomial 1 { 2 regularized regression reads:

min BPR pˆq n ÿ i"1 ˜q ÿ k"1 ´Yi,k x J i B :,k `log ˜q ÿ k"1 exp `xJ i B :,k ˘¸¸`λ p ÿ j"1 B j,: 2 . (2.29)
Using a similar reformulation as in the multi-task regression, we define c i " pi `pk ´1qnq kPrqs for each i P rns and g j " pj `pk ´1qpq kPrqs for each j P rps. The 1 { 2 multinomial logistic regression can be cast into our framework as:

min βPR p 1 n ÿ i"1 f i `x J i β ˘`λ p ÿ j"1 β g j 2 ,
(2.30)

with f i : R q Ñ R such that f i pzq " ´yJ c i z `log `řq k"1 exp pz k q ˘.
Note that generalizing (2.1) to functions f i : R q Ñ R does not bear difficulties, see (Ndiaye et al., 2015). Let us introduce NH, the negative entropy function defined by

NHpxq " # ř q i"1 x i logpx i q, if x P Σ q " tx P R q `: ř q i"1 x i " 1u, `8,
otherwise.

(2.31)

We use the convention 0 logp0q " 0, and one can check that f i pzq " NHpz `Yi q and γ " 1.

Remark 6. The intercept has been neglected in our models for simplicity. The Gap Safe framework can also handle such a feature to the cost of more technical details (by adapting the results from [START_REF] Koh | An interior-point method for large-scale l1-regularized logistic regression[END_REF] for instance). However, in practice, the intercept can be handled in the present formulation by adding a constant column to the design matrix X. The intercept is then regularized. However, if the constant is set high enough, regularization is small and experiments show that it has little to no impact for high-dimensional problems. This is the strategy used in the Liblinear package by Fan et al. (2008).

Another alternative could be to handle the constant term as is performed by El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF]. For the Lasso, the bias can also be treated implicitly as follows. Define e " p1, . . . ,

1q J P R n min νPR,βPR p 1 2 y ´pXβ `νeq 2 2 `λ β 1 .
By setting to zero the derivative w.r.t. to ν of the objective function we get ν " ȳ ´Xβ where ȳ is the mean of y and X is the column-wise mean of X. Hence, we get rid of the bias term by solving

min βPR p 1 2 py ´ȳeq ´pX ´Xe J qβ 2 2 `λ β 1 .
In cases where the bias term has to be explicit, one can just iteratively perform an (un-regularized) gradient descent on the bias component.

Smoothed SVM. For the smoothed SVM (Shalev-Shwartz and Zhang, 2014), the loss is f pXβq " ř iPrns f i px J i βq where the f i is the smoothed hinge loss defined as

f i pz i q :" $ ' & ' % 0 if y i z i ą 1, 1 ´yi z i ´γ 2 if y i z i ă 1 ´γ, 1 2γ p1 ´yi z i q 2 otherwise f i pξ i q :" # γ 2 ξ 2 i `yi ξ i if y i ξ i P r´1, 0s, `8
otherwise .

(a) Lasso dual ball B Ω D for Ω D pθq " }θ}8.

(b) Group Lasso dual ball B Ω D for

Ω D pθq " maxp a θ 2 1 `θ2 2 , |θ3|q.
(c) Sparse-Group Lasso dual ball B Ω D " θ : @g P G, }STτ pθgq}2 ď p1 ´τ qwg ( .

Figure 2.3 -Lasso, Group Lasso and Sparse-Group Lasso dual unit balls: B Ω D " tθ : Ω D pθq ď 1u. For the illustration, the group structure is chosen such that G " tt1, 2u, t3uu, i.e. g 1 " t1, 2u, g 2 " t3u, n " p " 3, w g 1 " w g 2 " 1 and τ " 1{2.

which can be combined with ridge regularization. Note that in this case the dual loss is non smooth and the regularization is smooth. When combined with Elastic net regularization, it leads to a doubly sparse model with feature-wise and sample-wise sparsity. Simultaneous screening rule for this case was introduced in [START_REF] Shibagaki | Simultaneous safe screening of features and samples in doubly sparse modeling[END_REF]. The subdifferential of the dual loss splits in two part: case y i " 1 :

Bf i p´ξ i q " $ ' & ' % r1, 8r if ξ i " 0 s8, 1 ´γs if ξ i " 1 ´γx `1 if ξ i Ps0, 1r
case y i " ´1 :

Bf i p´ξ i q " $ ' & ' % r8, ´1r if ξ i " 0 s ´1 `γ, 8s if ξ i " 1 ´γx ´1 if ξ i Ps0, 1r
Similar results also holds for the vanilla SVM as well as smoothed -insensitive loss function.

Screening rule for this function is used in [START_REF] Sangnier | Data sparse nonparametric regression with εinsensitive losses[END_REF].

Sparse-Group Lasso. In the Sparse-Group Lasso case, we also have for β P R p , f pXβq " }y ´Xβ} 2 2 {2 and the regularization Ωpβq " Ω τ,w pβq is defined by

Ωpβq :" τ }β} 1 `p1 ´τ q ÿ gPG w g β g 2 ,
for τ P r0, 1s, w " pw g q gPG with w g ě 0 for all g P G. Note that we recover the Lasso if τ " 1, and the Group Lasso if τ " 0; the case where w g " 0 for some g P G together with τ " 0 is excluded (Ω is not a norm in such a case). This estimator was introduced by [START_REF] Simon | A sparse-group lasso[END_REF] to enforce sparsity both at the feature and at the group level, and was used in different applications such as brain imaging in [START_REF] Gramfort | Time-frequency mixed-norm estimates: Sparse m/eeg imaging with non-stationary source activations[END_REF] or in genomics in [START_REF] Peng | Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer[END_REF]. Other hierarchical norms have also been proposed in [START_REF] Sprechmann | Collaborative hierarchical sparse modeling[END_REF] or [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF] and could be handled in our framework modulo additional technical details.

For the Sparse-Group Lasso, the geometry of the dual feasible set ∆ X is more complex (cf. Figure 2.3 for a comparison w.r.t. Lasso and Group Lasso). As a consequence, additional geometrical insights are needed to derive efficient safe rules, especially to compute the dual norm required by Equation (2.15) and the computation of the safe screening rules given in (3). We now introduce the -norm (denoted ¨ ) as it has a connection with the Sparse-Group Lasso norm Ω. The -norm was first proposed by [START_REF] Burdakov | A new vector norm for nonlinear curve fitting and some other optimization problems[END_REF] for other purposes, see also [START_REF] Burdakov | On a new norm for data fitting and optimization problems[END_REF]. For any P r0, 1s and any x P R d , x is defined as the unique nonnegative solution ν of the following equation (for " 0, we define x "0 :" x 8 ):

d ÿ i"1 p|x i | ´p1 ´ qνq 2 `" p νq 2 .
(2.32)

Using soft-thresholding, this is equivalent to solve in ν the equation ST p1´ qν pxq 2 " ν. Moreover, its dual norm is given by; see (Burdakov and Merkulov, 2001, Equation (42)): (2.33) This allows to express the Sparse-Group Lasso norm Ω τ,w using the dual -norm. We now derive an explicit formulation for the dual norm of the Sparse-Group Lasso, originally proposed in (Ndiaye et al., 2016, Prop. 4). The proofs are recalled in the appendix Section 2.6.

ξ D " ξ D 2 `p1 ´ q ξ D 8 " ξ 2 `p1 ´ q ξ 1 .
Proposition 15 (Properties of Sparse-Group Lasso). For all groups g in G, let us introduce g :" p1 ´τ qw g τ `p1 ´τ qw g .

Then, the Sparse-Group Lasso norm satisfies the following properties for any β and ξ in R p , Ωpβq "

ÿ gPG pτ `p1 ´τ qw g q}β g } D g Ω ˝pξq " Ω D pξq " max gPG ξ g g τ `p1 ´τ qw g . Ω ˚pξq " ι B Ω D pξq " ÿ gPG ι B ˆST τ pξ g q p1 ´τ qw g ḂΩpβq " tξ P R p : @g P G, ξ g P τ B ¨ 1 pβ g q `p1 ´τ qw g B ¨ 2 pβ g qu .
Remark 7. The dual formulation (2.2) for the Sparse-Group Lasso is a constrained optimization where the dual feasible set can be characterized as

∆ X " θ P R n : @g P G, X J g θ g ď τ `p1 ´τ qw g ( " θ P R n : @g P G, ST τ `XJ g θ ˘ 2 ď p1 ´τ qw g ( .
The first (resp. second) expression corresponds to (Fenchel) conjugation (resp. polar) duality.

The Sparse-Group Lasso benefits from two levels of screening: the safe rules can detect both group-wise zeros and coordinate-wise zeros in the remaining groups: for any group g in G and any safe sphere Bpθ, rq, Equation (3) and the sub-differential of the Sparse-Group Lasso norm in Proposition 15 give Group level safe screening rule: max θPBpc,rq

X J g θ g τ `p1 ´τ qw g ă 1 ñ βpλq g " 0 .
Feature level safe screening rule: @j P g, max θPBpc,rq

|X J j θ| ă τ ñ βpλq j " 0 .
Proof. For β ‹ g " 0, we have BΩ g pβ ‹ g q " B Ω D g and Ω g " Ω D g . Then, using the expression of the dual norm of the Sparse-Group Lasso in Proposition 15, the group-wise screening test (2.6) consists in testing whether X J g θpλq g ă τ `p1 ´τ qw g .

For

β ‹ g ‰ 0, we have BΩ g pβ ‹ g q " τ B ¨ 1 pβ ‹ g q `p1 ´τ qw g ! β ‹ g β ‹ g 2
)

. Hence for j P g such that β ‹ j " 0, we have BΩ j pβ ‹ j q " τ B 8 and the feature-wise screening test consists in

|X J j θpλq | ă τ . (a) Bpξc, rq X τ B8 ‰ H; ξc P τ intB8 (b) Bpξc, rq Ă τ B8 (c) Bpξc, rq X τ B8 " H; ξc R τ intB8
Noting that ST τ pxq 2 " p1 ´τ qw g ðñ x g " τ `p1 ´τ qw g , the group level safe screening rule can be rewritten as max θPBpθ,rq ST τ pX J g θq 2 ă p1 ´τ qw g ùñ βpλq g " 0 .

The advantage of this formulation is that one can easily derive a tight upper-bound of the non-convex optimization problem in the left hand side of the preceding test. Indeed, we have ST τ pxq " x ´ΠτB8 pxq which brings us finally into a geometric problem easier to solve. We recall from (Ndiaye et al., 2016, Prop. 1) that for any center θ P ∆ X , any group g P G and any j P g, we have the following upper-bound Proposition 16. max θPBpθ,rq

|X J j θ| ď |X J j θ| `r X j 2 , max θPBpθ,rq ST τ pX J g θq 2 ď T g :" # ST τ pX J g θq 2 `r X g 2 , if X J g θ 8 ą τ, p X J g θ 8 `r X g 2 ´τ q `, otherwise. Proof. |X J j θ| ď |rX J g pθ ´θc qs j | `|X J j θ c | ď r X j `|X J j θ c |
as soon as θ P Bpθ c , rq. Since θ P Bpθ c , rq implies that X J g θ P BpX J g θ c , r X g q, we have max θPBpθc,rq ST τ pX J g θq ď max ξPBpξc,rq ST τ pξq where ξ c " X J g θ c and r " r X j . From now, we just have to show how to compute max ξPBpξc,rq ST τ pξq .

In the case where ξ c P intpτ B 8 q, if ξ c 8 `r ď τ p i.e. Bpξ c , rq Ă τ B 8 q, we have Π τ B8 pξq " ξ and thus, max ξPBpξc,rq ST τ pξq " max ξPBpξc,rq ξ ´ΠτB8 pξq " 0.

Otherwise if ξ c P intpτ B 8 q and ξ c 8 `r ą τ , for any vector ξ P BBpξ c , rq X pτ B 8 q c and any vector ξ P Bτ B 8 X rξ, ξ c s, ξ ´ΠτB8 pξq ď ξ ´ξ " r ´ ξ ´ξc . Hence This upper bound is attained. Indeed, max θPBpξc,rq ξ ´ΠτB8 pξq " r ´ Π τ B8 p ξq ´ξc " r ´τ ` ξ c 8 where ξ is a vector in BBpξ c , rq such that Π τ B8 p ξq " ξ c `ej ‹ pτ ´ ξ c 8 q and j ‹ P arg max jPrps |pξ c q j |.

If ξ c R intτ B 8 , since the projection operator on a convex set is a contraction, we have @ξ P BBpξ c , rq, ξ ´ΠτB8 pξq ď ξ ´ΠτB8 pξ c q ď ξ c ´ΠτB8 pξ c q ` ξ ´ξc " ξ c ´ΠτB8 pξ c q `r.

Moreover, it is straightforward to see that the vector ξ :" γξ c `p1 ´γqΠ τ B8 pξ c q where γ " 1 `r ξc ` Π τ B8 pξcq belongs to BBpξ c , rq; it verifies Π τ B8 pξ c q " Π τ B8 p ξq and it attains this bound.

From the bounds in Proposition 16, we derive the two level of safe screening rule:

Proposition 17 (Safe Screening rule for the Sparse-Group Lasso).

Group level screening:

@g P G, if T g ă p1 ´τ qw g , then βpλq g " 0. Feature level screening: @g P G, @j P g, if |X J j θ| `r X j 2 ă τ, then βpλq j " 0.

In the same spirit than Proposition 10, for any safe region R, i.e. a set containing θpλq , we define two levels of active sets, one for the group level and one for the feature level:

A gp pRq :" tg P G, max θPR ST τ pX J g θq 2 ě p1 ´τ qw g u , A ft pRq :" ď gPAgppRq tj P g : max θPR |X J j θ| ě τ u .
If one considers sequence of converging regions, then the next proposition (see (Ndiaye et al., 2016, Prop. 3)) states that we can identify in finite time the optimal active sets defined as follows:

E gp :" ! g P G : ST τ pX J g θpλq q 2 " p1 ´τ qw g ) , E ft :" ď gPEgp ! j P g : |X J j θpλq | ě τ ) .
Proposition 18. Let pR k q kPN be a sequence of safe regions whose diameters converge to 0. Then, lim kÑ8 A gp pR k q " E gp and lim kÑ8 A ft pR k q " E ft .

Computation of Support Function

The support functions inevitably intervene in the formulation of the screening rules Theorem 3 and in the rescaling procedure Proposition 11 to obtain a dual feasible vector. Their evaluations need to be performed multiple times during the algorithm and they must be computed efficiently. Fortunately, closed form expressions are available in many cases.

Given an interval ra, bs on the real line, we have S ra,bs pcq " maxpxa, cy, xb, cyq. Although simple, this covers a large number of examples. Indeed, when we consider feature-wise convex separable function P pzq " ř jPrps P j pz j q, its subdifferential is a cartesian product of intervals BP pzq " Π jPrps BP j pz j q since for all j, BP j p¨q is a convex set on the real line. Hence it covers for instance the 1 regularization and the Elastic Net.

As we saw in the Section 1.3, a classical example of support function is the norm. It constitutes an important example since it is widely used as sparsity inducing penalties in machine learning.

For the Lasso, Ωpβq " }β} 1 and Ω ˝pξq " Ω D pξq " max jPrps |ξ j | .

Algorithm 3 Computation of Λpx, α, Rq.

Input:

x " px1, . . . , x d q J P R d , α P r0, 1s, R ě 0 Output: Λpx, α, Rq if α " 0 and R " 0 then Λpx, α, Rq " 8 else if α " 0 and R ‰ 0 then Λpx, α, Rq " x {R else if R " 0 then Λpx, α, Rq " x 8{α else Get I :"

! i P rds : |xi| ą α x 8 α`R ) nI :" CardpIq Sort x p1q ě x p2q ě ¨¨¨ě x pn I q S0 " 0, S p2q 0 " 0, a0 " 0 for k P r1, nI ´1s do S k " S k´1 `xpkq ; S p2q k " S p2q k´1 `x2 pkq a k`1 " S p2q k x 2 pk`1q ´2 S k x pk`1q `k `1 if R 2 α 2 P ra k , a k`1 r then j0 " k `1 break if α 2 j0 ´R2 " 0 then Λpx, α, Rq " S 2 j 0 2αS j 0 else Λpx, α, Rq " αS j 0 ´cα 2 S 2 j 0 ´Sp2q j 0 pα 2 j 0 ´R2 q α 2 j 0 ´R2
For the Group Lasso, Ω w pβq :"

ÿ gPG w g β g 2 and Ω wpξq " Ω D w pξq " max gPG ξ g 2 w g .
For the Sparse-Group Lasso, Ωpβq :" τ }β} 1 `p1 ´τ q ÿ gPG w g β g 2 and Ω ˝pξq " Ω D pξq " max gPG ξ g g τ `p1 ´τ qw g .

The following proposition shows how to compute exactly the dual norm of the Sparse-Group Lasso and the -norm. This is turned into an efficient procedure in Algorithm 3 (see the Section 2.6 for details and proofs).

Proposition 19. For α P r0, 1s, R ě 0 and x P R d , the equation ř d i"1 ST να px i q 2 " pνRq 2 has a unique solution ν :" Λpx, α, Rq P R `, that can be computed in Opd log dq operations in the worst case. With n I " Card ti P rds : |x i | ą α x 8 {pα `Rqu, the complexity of Algorithm 3 is n I `nI logpn I q, which is comparable to the ambient dimension d.

We can explicit the critical parameter λ max for the Sparse-Group Lasso that is

λ max " max gPG ΛpX J g y, 1 ´ g , g q τ `p1 ´τ qw g " Ω D pX J yq, (2.34)
and get a dual feasible point (2.15), since

Ω D pX J ρq " max gPG ΛpX J g ρ, 1
´ g , g q τ `p1 ´τ qw g .

Others Safe Regions and Alternative Acceleration Strategies

Previously we have restricted the discussion on the Gap Safe Sphere, here we show there is several others ways to build safe region.

The Seminal Safe Regions. The first Safe Screening rules introduced by El Ghaoui et al. ( 2012) can be generalized to Problem (2.1) as follows. Take θpλ 0 q the optimal solution of the dual problem (2.2) with a regularization parameter λ 0 . Since θpλq is optimal for problem (2.2) one obtains θpλq P tθ : D λ pθq ě D λ p θpλ 0 q qu. This set was proposed as a safe region by El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF].

In the regression case (where f i pzq " py i ´zq 2 {2), it is straightforward to see that it corresponds to the safe sphere R 1 :" Bpy{λ, y{λ ´θ pλ 0 q 2 q. Note that, θpλ 0 q can be replaced by any dual feasible vector in the definition of R 1 . In particular, one can use a rescaling gradient mapping in Equation (2.15). Using another first order optimality condition namely Proposition 5 on the dual prob-Figure 2.4 -Illustration of safe region in blue proposed in [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF]. The dual feasible set is represented in orange. lem, we have θpλ 0 q is optimal at λ 0 if and only if x∇D λ 0 p θpλ 0 q q, pθ ´θ pλ 0 q qy ď 0 for all θ in ∆ X . Since θpλq is feasible, we deduce that θpλq P tθ P ∆ X : x∇D λ 0 p θpλ 0 q q, pθ ´θ pλ 0 q qy ď 0u ": R 2 . Finally, intersecting the two safe region above allows to obtain a smaller set R

˚:" R 1 X R 2 R
˚" ! θ P ∆ X : D λ pθq ě D λ p θpλ 0 q q, x∇D λ 0 p θpλ 0 q q, pθ ´θ pλ 0 q qy ď 0

) .

(2.35)

While interesting, this last safe region depends on the exact solution θpλ 0 q which is unknown in practice and a direct replacement with an approximated solution can leads to unsafe rules.

Projection Based Rules for the Quadratic Loss. A refined sphere rule can be obtained in the regression case by exploiting geometric information in the dual space. Let g ‹ P arg max gPG Ω D g pX J g pyX βqq (note that if λ ď Ω D pX J py ´Xβqq, then Ω D g‹ pX J g‹ py ´Xβqq " α), and let us define

V ‹ :" tθ P R n : Ω D g‹ pX J g‹ θq ď 1u and H ‹ :" tθ P R n : Ω D g‹ pX J g‹ θq " 1u .
Note that for any g P G, we have Ω D g pX J g θpλq q ď 1, hence θpλq P V ‹ . Defining θ " py ´Xβq{α in ∆ X , we assume that the dual norm is differentiable at X J g‹ θ. Let η :" X g‹ ∇Ω D g‹ pX J g‹ θq be the vector normal to V ‹ at θ, θ 1 P ∆ X is any dual feasible vector and define

θ c :" Π H‹ ´y λ ¯" y λ ´x y λ , ηy ´1 η 2 2 η and r θ 1 :" c y λ ´θ1 2 2 ´ y λ ´θc 2 2 .
Figure 2.5 -Illustration of the projection based safe region in blue proposed in [START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF][START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF]. The center c of the ball is the projection of y{λ onto the halfspace containing the dual feasible set.

Proof. We set H ‹ the negative half-space induced by the hyperplane H ‹ . Since θpλ,Ωq P V ‹ Ă H ‹ and B `y λ , y λ ´θ1 ˘is a safe region, then θpλ,Ωq P H ‹ X B `y λ , y λ ´θ1 ˘. Moreover, for any θ P H ‹ X B `y λ , y λ ´θ1 ˘, we have:

y λ ´θ1 2 ě y λ ´θ 2 " ´y λ ´θc ¯`pθ c ´θq 2 " y λ ´θc 2 ` θ c ´θ 2 `2 A y λ ´θc , θ c ´θE .
Since θ c " Π H ‹ p y λ q and H ‹ is convex, then xθ c ´y λ , θ c ´θy ď 0. Thus

y λ ´θ1 2 ě y λ ´θc 2 ` θ c ´θ 2 , hence θ ´θc ď c y λ ´θ1 2 ´ y λ ´θc 2 ": r θ 1 .
Which show that H ‹ X B `y λ , y λ ´θ1 ˘Ă Bpθ c , r θ 1 q. Hence the result.

The special case where β " 0 and θ " y{λ max corresponds to the original ST3 introduced in Xiang et al. ( 2011) for the Lasso. A further improvement can be obtained by choosing dynamically θ " θ k along the iterations of an algorithm, this strategy corresponding to DST3 introduced in [START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF][START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF] for the Lasso and Group Lasso and in [START_REF] Ndiaye | GAP safe screening rules for Sparse-Group Lasso[END_REF] for the Sparse-Group Lasso. Now we can choose sequentially β " βpλ t´1 q or dynamically β " β k which lead to a center θ c that is closer to the dual optimal solution.

Dual Polytope Projection. In the regression case, [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF] explore other geometric properties of the dual solution. Their method is based on the non-expansiveness of projection operators. Indeed, for θpλq (resp. θpλ 0 q q) being optimal dual solution of (2.2) with parameter λ (resp. λ 0 ), one has: θpλq ´θ pλ 0 q 2 " Π ∆ py{λq ´Π∆ py{λ 0 q 2 ď y{λ ´y{λ 0 2 and hence θpλq P Bp θpλ 0 q , y{λ ´y{λ 0 2 q. The authors also proved an enhanced version of this safe region by using the firm non-expansiveness of the projection operator. Assume that λ t´1 ă λ t , then the Figure 2.6 -Illustration of the region in blue obtained by dual polytope projection proposed in [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF]. Note that this set is unsafe due to approximation error of θpλ 0 q . However it can be used as strong active set. dual optimal solution of the group-Lasso with parameter λ t , satisfies (see illustration in Figure 2.5)

θpλtq P B ˆθ pλ t´1 q `1 2 v K pλ t´1 , λ t q, 1 2 v K pλ t´1 , λ t q 2 ˙,
where v K pλ t´1 , λ t q " y λ t ´θ pλ t´1 q ´αr θpλ t´1 q sp y λ t´1 ´θ pλ t´1 q q αr θpλ t´1 q s :" arg min αPR ` y λ t ´θ pλ t´1 q ´αp y λ t´1 ´θ pλ t´1 q q 2 " x y λ t´1 ´θ pλ t´1 q , y λt ´θ pλ t´1 q y y λ t´1 ´θ pλ t´1 q 2 2 .

Note that the rule proposed by [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF], as pointed out by [START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF], relies on the exact knowledge of a dual optimal solution for a previously solved Lasso problem. This is impossible to obtain in practice and even if it is possible to find accurate solutions, the search for high accuracy may hinder the benefits of the screening when it was not actually needed. Using inaccurate solutions may lead to discarding variables that should have been active and so the screened optimization algorithm will not converge to a solution of the original problem. We illustrate this issue on Figure 2.7. Knowing an approximation β to the optimal primal point, returned by the optimization algorithm at the previous regularization parameter λ t´1 , we need to choose an approximation θ to the optimal dual point to run EDPP.

-If we choose to approximate the dual optimal point by θ " 1 λ t´1 py ´Xβq (blue curve with diamonds), then the result is catastrophic. Indeed, at λ 1 , β " 0 is a valid -solution for " 10 ´1.5 and the screening rule tries to perform a division by 0 when computing αrθs.

-If we choose to approximate the dual optimal point by 1 maxpλ t´1 , X J py´Xβq 8 q py ´Xβq, we have a better behavior (purple curve with triangles) but we may still have an algorithm which does not converge to an -solution. Here, for the 13 th Lasso problem a variable is erroneously removed and the problem can only be solved to accuracy 0.03515 ą 10 ´1.5 « 0.03162. This may look like a small issue but when the stopping criterion is based on the duality gap, this causes the algorithm to continue until the maximum number of iterations is reached. Figure 2.7 -EDPP is not safe. We run GAP SAFE and two interpretations of EDPP (described in the main text) to solve the Lasso path on the dataset defined by X and y above with target accuracy 10 ´1.5 . For each Lasso problem, we plot the final duality gap returned by the optimization solver.

We propose in the appendix a solution for taking into account the approximation error.

Remark 8. The preceding spheres are mainly based on the fact that θpλq " Π ∆ py{λq which is limited to the regression case. Thus, those methods are not appropriate for more general data fitting term which greatly reduces the scope of such rules.

Remark 9. The radius of the regions above do not converge to zero even in the dynamic case (DST3), and the (fixed) center of the preceding sphere can be far from θpλq when λ gets small. Thus, those regions are not converging and are irrelevant for dynamic screening.

Safe Screening with Variational Inequalities. As for the initial safe region proposed in (El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF], [START_REF] Liu | Safe screening with variational inequalities and its application to lasso[END_REF] exploits the optimality condition in Proposition 5 successively at parameter λ 0 and λ reads:

x∇D λ 0 p θpλ 0 q q, pθ ´θ pλ 0 q qy ď 0, @θ P ∆ X , (2.36)

x∇D λ p θpλq q, pθ ´θ pλq qy ď 0, @θ P ∆ X .

(2.37)

Then setting θ " θpλq in Equation (2.36) and θ " θpλ 0 q in Equation (2.37) we have that θpλq belongs to R sasvi where R sasvi :" ! θ P ∆ X : x∇D λ pθq, p θpλ 0 q ´θqy ď 0, x∇D λ 0 p θpλ 0 q q, pθ ´θ pλ 0 q qy ď 0

) . (2.38)

Note that the optimality condition in Proposition 5 states that θpλq is optimal at parameter λ if and only if Equation (2.37) holds if and only if D λ p θpλq q ě D λ pθq for all θ in ∆ X , we find that the region R sasvi coincides with the one in Equation (2.35) already proposed in (El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF].

Approximate Dictionaries. Matrix multiplications often dominate calculation costs in iterative algorithms. Hence by replacing the design matrix X by an (more structured) approximation X which is easier to manipulate, Dantas andGribonval (2017, 2018) have proposed an extension of the safe screening techniques. We describe it in our framework. Assuming that X " X `E, where E " rε 1 , ¨¨¨, ε p s is a known approximation error, one have from the sublinearity of both Ω g and S domΩ ˚:

Ω gppX g `εg q J θq `rΩ gpX g q ď Ω gp XJ g θq `Ωg pε J g θq `rΩ gpX g q ": T g , S domΩ ˚pX J ∇f p Xβqq ď S domΩ ˚p XJ ∇f p Xβqq `Sd omΩ ˚pE J ∇f p Xβqq ": s .

Hence, a safe elimination of the g-th variable can be done using only the approximated matrix X if T g ă 1 and a dual feasible vector can be computed as θ " ´∇f p Xβq{ maxpλ, sq P ∆ X .

Note that when both the number of observations and features are large, performing a screening rule can be expensive. In this case, the extension to approximate dictionaries seems more scalable since one can set X as a subsampling of X as it is usual in stochastic optimization. However, if the approximation error is not known exactly, it could be challenging to keep the safety and we are not aware of any such rules.

Gradient Based Region. In Section 2.2.1, we presented the Gap sphere region by exploiting the regularity of the loss function. An important point was that its radius goes to zero when the algorithm converges and it is a function of the duality gap. This later can be used as an optimality certificates. Similarly, we can build another safe region based on the gradient. We consider the setting where we want to solve min βPR p P λ pβq " f pβq `λΩpβq , and suppose that f is ν-smooth and Ω is non smooth. Given L ě ν{2 and an iterate β p0q in R p , we define the proximal step and the composite gradient direction as

β L :" arg min βPR p λΩpβq `L 2 β ´pβ p0q ´1 L ∇f pβ p0q qq 2 , g L pβq :" Lpβ p0q ´βL q .
Proposition 20 (Gradient Safe Sphere Nesterov (2007, Lemma 2)). Let P λ be µ-strongly convex and L ě ν{2, then we have

βpλq ´βL ď 1 µ ´1 `ν L ¯ g L pβq ˚.
(2.39) Similar safe region have been used recently in [START_REF] Yoshida | Safe triplet screening for distance metric learning[END_REF] for deriving screening rules for some metric learning problems.

Strong Rules. The Strong rules were introduced in [START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF] as a heuristic extension of the safe rules. It consists in relaxing the safe properties to discard features more aggressively, and can be formalized as follows. Assume that the gradient of the data fitting term ∇F is group-wise non-expansive w.r.t. the dual norm Ω gp¨q along the regularization path i.e. that for any g P G, any λ ą 0, λ 1 ą 0, Ω g`∇ g F p βpλq q ´∇g F p βpλ 1 q q ˘ď |λ ´λ1 |. When choosing two regularization parameters such that λ ă λ 1 one has:

λΩ g ´XJ g θpλq ¯" Ω g ´∇g F p βpλq q ¯ď Ω g ´∇g F p βpλ 1 q q ¯`Ω g ´∇g F p βpλq q ´∇g F p βpλ 1 q q ď Ω g ´∇g F p βpλ 1 q q ¯`|λ ´λ1 | " λ 1 Ω g ´XJ g θpλ 1 q ¯`λ 1 ´λ .
Combining this with the screening rule (3), one obtains:

Ω g ´XJ g θpλ 1 q ¯ă 2λ ´λ1 λ 1 ùñ Ω g ´XJ g θpλq ¯ă 1 ùñ βpλq g " 0.
(2.40)

The set of variables not eliminated is called the strong active set and is defined as:

ST Gp θpλ 1 q , λ, λ 1 q :"

" g P G : Ω g ´XJ g θpλ 1 q ¯ě 2λ ´λ1 λ 1 * .
(2.41)

Note that Strong rules are un-safe because the non-expansiveness condition on the (gradient of the) data fitting term is usually not satisfied without stronger assumptions on the design matrix X; see discussion in (Tibshirani et al., 2012, Section 3). It requires the exact knowledge of θpλ 1 q which is not available in practice. Using such rules, the authors advised to check the KKT condition 2 a posteriori, to avoid removing wrongly some features. To overcome this limitation, we propose to use the strong active set ST Gp θpλ t´1 q , λ t , λ t´1 q defined by Equation (2.41) for an active warm start strategy. We compare below this strategy with the one using Apθ t´1 , r t´1 q in Equation (2.24) as initial active set. A similar strategy is also used in the "big lasso" package by [START_REF] Zeng | The biglasso package: A memory-and computation-efficient solver for lasso model fitting with big data in R[END_REF] as a hybrid screening strategy that "alleviates the computational burden of KKT postconvergence checking for the strong rules by not checking features that can be safely eliminated". However, our warm start strategy (active or strong) does not require post-processing steps.

Correlation Based Rule. Previous works in statistics have proposed various model-based screening methods to select important variables. Those methods discard variables with small correlation between the features and response variables. For instance Sure Independence Screening (SIS) by [START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF] reads: for a chosen critical threshold γ (such that the number of selected variables is smaller than a prescribed proportion of the features),

If Ω gpX J g yq ă γ then remove X g from the problem.

It is a marginal oriented variable selection method and it is worth noting that SIS can be recast as a static sphere test in linear regression scenarios:

If Ω gpX J g yq ă γ " λ `1 ´rΩ gpX g q ˘then βpλq g " 0 premove X g q.

Other refinements can also be found in the literature such as iterative screening (ISIS) [START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF], that bears some similarities with dynamic sphere safe tests.

Working Set. To avoid having too conservative rules of elimination, similar to strong rules, working set algorithms are strategies that relax the safe rules. Considering constrained convex optimization problem, [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF] introduced Blitz, a meta algorithm based on the duality gap for sequentially prioritizing relevant constraints. We describe their rules in the case of the lasso and its dual where we seek to maximizes y 2 2 {2 ´ λθ ´y 2 2 {2 for θ such that X J j θ 8 ď 1 for all j in rps. Given a primal/dual feasible vector pβ, θq, Blitz construct a working set by selecting only the features that satisfies:

|X J j θ| ` X j 2 c 2 λ 2 p1 ´δq 3 Gap λ pβ, θq ď 1 for some δ P r0, 1q . (2.43)
Note that for δ " 0, the working set rule (2.43) coincides with the gap safe sphere test. These rules therefore take a symmetrical strategy to ours by introducing a factor p1 ´δq 3 in order to aggressively eliminate more variables and optimizing onto a nested sequence of small constraint sets. Similar methods was later adopted in [START_REF] Massias | From safe screening rules to working sets for faster lasso-type solvers[END_REF] and generalized in [START_REF] Johnson | Unified methods for exploiting piecewise linear structure in convex optimization[END_REF].

2.

The post-processing for the Lasso adds back variables violating the approximated KKT conditions KKT :

# |X J j θ| ď 1 ` , if βj " 0, |X J j θ ´signpβjq| ď , if βj ‰ 0.
(2.42)

One can show that Gap λ pβ, θq ď p1 ´λ{αq 2 y ´Xβ 2 {2 `λ β 1 where α " maxpλ, X J py ´Xβq 8 q. Hence choosing " 1 {P λ pβq ´p1 ´λ{αq 2 imply an 1 -duality gap. Computation times needed to solve the Lasso regression path to desired accuracy for a grid of λ from λ max to λ max {10 3 .

Numerical Experiments

In this section we present results obtained with the Gap Safe rules on various data sets. Implementation has been done in Python and Cython [START_REF] Behnel | Cython: The best of both worlds[END_REF] for low level critical parts. A coordinate descent algorithm is used with a scaled dual gap stopping criterion i.e. we normalize the targeted accuracy (in the stopping criterion) in order to have a running time that is independent from the data scaling, i.e. Ð y 2 2 for the regression cases and Ð minpn 1 , n 2 q{n where n i is the number of observations in the class i, for the logistic cases.

Note that in the Lasso case, to compare our method with the un-safe strong rules by [START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF] and with the sequential screening rule such as the eddp+ by [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF], we have added an approximated KKT post-processing step. We do this following Footnote 2, since they require the previous (exact) dual optimal solution which is not available in practice. The same limit holds true for the TLFre approach of Wang and Ye (2014) addressing the Sparse-Group Lasso formulation, as well as for the method explored by [START_REF] Lee | Screening rules for overlapping group lasso[END_REF] to handle overlapping groups and slores by Wang et al. (2014) for the binary logistic regression. We have compared our method to various known safe screening rules (El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF][START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF][START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF]. For the Sparse-Group Lasso, such rules did not exist, so we have proposed natural extensions [START_REF] Ndiaye | GAP safe screening rules for Sparse-Group Lasso[END_REF] thanks to exact computation of the dual norm in Proposition 15. For the Lasso estimator, we have also compared our implementation with the Blitz algorithm [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF] which combines Gap Safe screening rules, Prox-Newton coordinate descent and an active set strategy. Figure 2.9 -Lasso on financial data E2006-log1p (sparse data with n " 16087 observations and p " 1668737 features). Computation times needed to solve the Lasso regression path to desired accuracy for a grid of λ from λ max to λ max {20.

1 Lasso Regression. We have evaluated the computing time for the Gap Safe rules with and without active warm start, and compared with the static rule El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] and the refined dynamic rule DST3 by [START_REF] Xiang | Learning sparse representations of high dimensional data on large scale dictionaries[END_REF], as well as [START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF]. We used the classic dense data set Leukemia, and the large sparse financial data set E2006-log1p available from LIBSVM We have normalized the column of X and standardized y to have zero mean and unit variance. The experiments on Figure 2.8(a) focuses on the Leukemia data set. The screening performance for a fixed number of iterations, from 2 to 2 9 , is investigated for each λ. It demonstrates that increasing the number of iterations benefits to the dynamic screening rule. Also, the closer the estimate is from the global minimum, the better the screening. This is inline with the results in running time in the benchmark on Figure 2.8(b). Note that the dynamic Gap Safe rule is the only rule that significantly improves the running time of the Lasso. Results presented in the financial data set in Figure 2.9 are inline with the results on Leukemia. We observe that the Blitz algorithm [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF], also achieves a significant speed-up with gains in the same order of magnitude than our dynamic Gap Safe implementation combined with active or strong warm start. One advantage of our approach though, is the simplicity to insert it in any iterative algorithm as shown in Algorithm 1 and 2.

To demonstrate the limitations of the strong rules, we report in Figure 2.8(c) results with a coarse grid with only 10 values of λ from λ max to λ max {10 3 such that 2λ t ă λ t´1 . The strong rules become then useless since the screening test (2.40) selects all variables, i.e. ST Gp θpλ t´1 q , λ t , λ t´1 q " G. Overall, the greater the gap between grid points, the lower the benefits of (active) warm start. In the experiment in Figure 2.9(b), we have stopped the grid at λ max {20 leading to a sparse solution with 1562 active variables. We obtain an important speedup for both coarse and dense grids demonstrating the consistent efficiency of the active warm start strategy specially in a sparse regime. Finally, with an extremely coarse grid, we therefore recommend the active warm start with the previous safe active set (which performance is only affected through the initialization point) rather than the strong active set (cf. Figure 2.8(c)).

1 Binary Logistic Regression. Results on the Leukemia data set for standard logistic regression are reported in Figure 2.10. We compare the dynamic strategy of Gap Safe to the sequential strategy. Results demonstrate the clear benefit of the dynamic rule in terms of high number of screened out variables. This is reflected in the graph of running times, which shows that dynamic Gap Safe rule with strong warm start can yield up to a 30ˆspeed-up compared to sequential rule and even more compared to an absence of screening (up to 50ˆspeed-up).

1 { 2 Multi-task Regression. To demonstrate the benefit of the Gap Safe screening rules for a multi-task Lasso problem we have considered neuroimaging data. Electroencephalography (EEG) and magnetoencephalography (MEG) are brain imaging modalities that allow to identify active brain regions. The problem to solve is a multi-task regression problem with squared loss where every task corresponds to a time instant. Using a multi-task Lasso one can constrain the recovered sources to be identical during a short time interval [START_REF] Gramfort | Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods[END_REF]. This corresponds to a temporal stationary assumption. In this experiment we used a joint MEG/EEG data with 301 MEG and 59 EEG sensors leading to n " 360. The number of possible sources is p " 22, 494 and the number of time instants is q " 20. With a 1 kHz sampling rate it is equivalent to say that the sources stay the same for 20 ms.

Results are presented in Figure 2.11. The Gap Safe rule is compared with the dynamic safe rule from [START_REF] Bonnefoy | Dynamic screening: Accelerating firstorder algorithms for the lasso and group-lasso[END_REF]. Figure 2.11(a) shows the fraction of active variables. It demonstrates that the Gap Safe rule screens out much more variables than the competitors. Thanks to its converging nature, the more iterations are performed the more variables are screened out. On Figure 2.11(b), the computation time confirms the effective speed-up. We significantly improves the computation time for duality gap tolerances from 10 ´2 to 10 ´8, especially when accurate Sparse-Group Lasso Regression.

-Synthetic dataset: We use a common framework [START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF]Wang and Ye, 2014) based on the model y " Xβ `0.01ε where ε " N p0, Id n q, X P R nˆp follows a multivariate normal distribution such that @pi, jq P rps 2 , corrpX i , X j q " ρ |i´j| . We fix n " 100 and break randomly p " 10000 in 1000 groups of size 10 and select γ 1 groups to be active and the others are set to zero. In each selected groups, γ 2 coordinates are drawn with rβ g s j " signpξq ˆU for U is uniform in r0.5, 10sq, ξ uniform in r´1, 1s.

- a neighborhood of Dakar. For preprocessing, we remove the seasonality (we center the data month by month) and the trend (we remove the linear trend obtained by least squares) present in the data set. We then standardize the data so that each feature has a variance of one. This preprocessing is usually done in climate analysis to prevent some bias in the regression estimates. Similar data have been used in the past by [START_REF] Chatterjee | Sparse group lasso: Consistency and climate applications[END_REF], demonstrating that the Sparse-Group Lasso estimator is well suited for prediction in such climatology applications. Indeed, thanks to the sparsity structure, the estimates delineate via their support some predictive regions at the group level, as well as predictive feature (c) Time to reach convergence as a function of increasing prescribed accuracy, using various screening strategies and a logarithmic grid from λmax to λmax{10 2.5 .

Figure 2.15 -Sparse-Group Lasso experiments on climate data NCEP/NCAR Reanalysis 1 (dense data with n " 814 observations and p " 73577 features) with τ " 0.4 chosen by cross-validation.

via coordinate-wise screening.

We choose the parameter τ in the set t0, 0.1, . . . , 0.9, 1u by splitting in half the observations, and run a training-test validation procedure. For each value of τ , we require a duality gap of 10 ´8 on the training set and pick the best one in term of prediction accuracy on the test set. Since the prediction error degrades increasingly for λ ď λ max {10 ´2.5 , we fix δ " 2.5. We have fixed the weight! w g " 1 since all groups have the same size. The computational time benchmark is presented in Figure 2.15(c). Here also, we observe a significant gain by using a dynamic Gap Safe screening rule, which is further improved by the active warm start.

Conclusion

We have proposed a unified presentation of the Gap Safe screening rules for accelerating algorithms solving supervised learning problems under sparsity constraints. The proposed approach applies to many popular estimators that boil down to convex optimization problems where the data fitting term has a Lipschitz gradient and the regularization term is a separable sparsity enforcing function. We have shown that our methodology is more flexible than previously known safe rules as it conveniently unifies both regression and classification settings. The efficiency of the Gap Safe rules along with the new active/strong warm start strategies was demonstrated on multiple experiments using real high dimensional data set, suggesting that Gap Safe screening rules are always helpful to speed-up solvers targeting sparse regularization.

Appendix

Proposition 21 (Dual Norm for Separable Norm). Le Ω be separable norm Ωpβq " ř gPG Ω g pβ g q, its dual norm can be expressed as Ω D pξq " max gPG Ω D g pξ g q where Ω D g is the dual norm of Ω g .

Proof. The definition of the dual norm reads Ω D pξq " max β:Ωpβqď1

β J ξ.
Then

Ω D pξq " sup β:Ωpβqď1 xβ, ξy " sup β inf µą0 xβ, ÿ gPG ξ g y ´µ ˜ÿ gPG Ω g pβ g q ´1" inf µą0 # ÿ gPG sup βg rxβ g , ξ g y ´µΩ g pβ g qs `µ+ " inf µą0 # ÿ gPG µΩ g ˆξg µ ˙`µ + " inf µą0 # ÿ gPG ι B Ω D g ˆξg µ ˙`µ + " inf µą0 " max gPG ι B Ω D g ˆξg µ ˙`µ * " max gPG inf µą0 " Ω g ˆξg µ ˙`µ * " max gPG inf µą0 sup βg xβ g , ξ g µ y ´Ωg pβ g q `µ
" max gPG inf µą0 sup ug xu g , ξ g y ´µpΩ g pu g q ´1q p with µu g " β g q " max gPG sup ug:Ωgpugqď1

xu g , ξ g y " max

gPG Ω D g pξ g q.

Proposition 22 (Properties of Sparse-Group Lasso). For all groups g in G, let us introduce g :" p1 ´τ qw g τ `p1 ´τ qw g .

Then, the Sparse-Group Lasso norm satisfies the following properties for any β and ξ in R p , Ωpβq "

ÿ gPG pτ `p1 ´τ qw g q}β g } D g Ω ˝pξq " Ω D pξq " max gPG ξ g g τ `p1 ´τ qw g . Ω ˚pξq " ι B Ω D pξq " ÿ gPG ι B ˆST τ pξ g q p1 ´τ qw g
ḂΩpβq " tξ P R p : @g P G, ξ g P τ B ¨ 1 pβ g q `p1 ´τ qw g B ¨ 2 pβ g qu .

Proof. For all β in R p , we have

Ωpβq " τ β 1 `p1 ´τ q ÿ gPG w g β g " ÿ gPG `τ β g 1 `p1 ´τ qw g β g " ÿ gPG pτ `p1 ´τ qw g q " τ τ `p1 ´τ qw g β g 1 `p1 ´τ qw g τ `p1 ´τ qw g β g  " ÿ gPG pτ `p1 ´τ qw g q β g D g .
The Proposition 21 and the separability of Ω yields u 1 J g ξ g τ `p1 ´τ qw g " max gPG ξ g g τ `p1 ´τ qw g .

Ω D pξq
We recall the proof of Wang and Ye (2014) for the expression of the Fenchel transform of Ω. First let us write Ωpβq " Ω 1 pβq `Ω2 pβq, where Ω 1 pβq " τ β 1 and Ω 2 pβq " p1 ´τ q ř gPG w g β g 2 . Since Ω 1 and Ω 2 are continuous everywhere, we have (see [START_REF] Hiriart-Urruty | A note on the Legendre-Fenchel transform of convex composite functions[END_REF], Theorem 1)):

Ω ˚pξq " pΩ 1 `Ω2 q ˚pξq " min a`b"ξ rΩ 1 paq `Ω2 pbqs " min a rΩ 1 paq `Ω2 pξ ´aqs ,
which is also the inf-convolution (see (Bauschke and Combettes, 2011, Chapter 12)) of these two norms. Using the Fenchel conjugate of the 1 norm (Ω 1 " ι τ B8 ) and of the 2 norm (Ω 2 " ι B ), we have

Ω ˚pξq " ÿ gPG min ag ι τ B8 pa g q `ιB ˆξg ´ag p1 ´τ qw g ˙" ÿ gPG ι B ˆξg ´ΠτB8 pξ g q p1 ´τ qw g ˙.
Hence the indicator of the unit dual ball is ι B Ω D pξq " ř gPG ι p1´τ qwgB pξ g ´ΠτB8 pξ g qq and using ST τ pξ g q " ξ g ´ΠτB8 , we have:

B Ω D " ξ P R p : Ω D pξq ď 1 ( " ξ P R p : @g P G, ST τ pξ g q ď p1 ´τ qw g ( .
Two Level of Active Set Convergence for Sparse-Group Lasso Proposition 23. Let pR k q kPN be a sequence of safe regions whose diameters converge to 0. Then, lim kÑ8 A gp pR k q " E gp and lim kÑ8 A ft pR k q " E ft .

Proof. We proceed by double inclusion. First let us prove that Dk 0 s.t. @k ě k 0 , A gp pR k q Ă E gp . Indeed, since the diameter of R k converges to zero, for any ą 0 there exist k 0 P N, @k ě k 0 , @θ P R k , θ ´θ pλ,Ωq ď . The triangle inequality implies that

@g R E gp , ST τ pX J g θq ď ST τ pX J g θq ´ST τ pX J g θpλ,Ωq q ` ST τ pX J g θpλ,Ωq q .
Since the soft-thresholding operator is 1-Lipschitz, we have:

ST τ pX J g θq ď X g pθ ´θ pλ,Ωq q ` ST τ pX J g θpλ,Ωq q ď X g ` ST τ pX J g θpλ,Ωq q ,
as soon as k ě k 0 . Moreover, @g R E gp ,

ST τ pX J g θq ď max gREgp ST τ pX J g θq ď max gREgp X g `max gREgp ST τ pX J g θpλ,Ωq q .
It suffices to choose such that max gREgp X g `max gREgp ST τ pX J g θpλ,Ωq q ă p1 ´τ qw g , that is to say ă p1´τ qwg´max gREgp STτ pX J g θpλ,Ωq q max gREgp Xg

, to remove the group g. Then for any k ě k 0 , E c gp " tg P G : S τ pX J g θpλq q ă p1 ´τ qw g u Ă A gp pR k q c , the set of variables removed by our screening rule. This proves the first inclusion. Now we show that @k P N, A gp pR k q Ą E gp . Indeed, for all g ‹ P E gp , ST τ pX T g ‹ θpλ,Ωq q " p1 ´τ qw g ‹ . Since for all k in N, θpλ,Ωq P R k then max θPR k ST τ pX J g θq ě ST τ pX T g ‹ θpλ,Ωq q " p1´τ qw g ‹ hence the second inclusion holds. We have shown that @k ě k 0 , A gp pR k q " E gp and so A ft pR k q Ă Ť gPEgp tj P g : max θPR k |X J j θ| ě τ u. Moreover, the same reasoning yields @g P G, tj P g : max θPR k |X J j θ| ě τ u Ă tj P g :

|X J j θpλ,Ωq | ě τ u. Hence @k ě k 0 , A ft pR k q Ă A ft .
The reciprocal inclusion is straightforward.

Exact Computation of the Dual Norm of Sparse-Group Lasso Proposition 24. For α P r0, 1s, R ě 0 and x P R d , the equation ř d i"1 ST να px i q 2 " pνRq 2 has a unique solution ν :" Λpx, α, Rq P R `, that can be computed in Opd log dq operations in the worst case. With n I " Card ti P rds : |x i | ą α x 8 {pα `Rqu, the complexity of Algorithm 3 is n I `nI logpn I q, which is comparable to the ambient dimension d.

Proof. Dividing by ν 2 , which is positive as soon as x ‰ 0, we get that ř d j"1 ST να px j q 2 " pνRq 2 is equivalent to

ř d j"1 ST α px j {νq 2 " R 2 . Note that ř d j"1 ST α px j {νq 2 " ř d j"
1 ST α p|x j |{νq 2 so without loss of generality we assume x P R d `.

The case α " 0 and R " 0 corresponds to the situation where all x j are equal to zero or we impose ν equals to infinity. So we avoid this trivial case.

If α " 0 and R ‰ 0, ν " x {R. Indeed,

d ÿ j"1 ST 0 px j {νq 2 " R 2 ðñ d ÿ j"1 px j {νq 2 " R 2 ðñ x 2 2 ν 2 " R 2 hence the result.
If α ‰ 0 and R " 0, we have :

d ÿ j"1 ST α ´xj ν
¯2 " 0 ðñ @j P rds, ´xj ν ´α¯`" 0 ðñ @j P rds,

x j ν ď α ðñ ν ě max jPrds x j α .
So we choose the smallest ν i.e. ν " x 8 {α. In all the above cases, the computation is done in Opdq.

Otherwise α ‰ 0 and R ‰ 0. The function ν Þ Ñ ř d j"1 ST α px j {νq 2 is a non-increasing continuous function with limit `8 (resp. 0) when ν Ñ 0 (resp. ν Ñ `8). Hence, there is a unique solution to ř d j"1 ST α px j {νq 2 " R 2 . We denote by x p1q , . . . , x pdq the coordinates of x ordered in decreasing order (with the convention x p0q " `8 and x pd`1q " 0). Note that ř d j"1 ST α px j {νq 2 " ř d j"1 ST α px pjq {νq 2 . Then, there exists an index j 0 P rps such that

R 2 P « d ÿ j"0 ST α ˆα x pjq x pj 0 q ˙2 , d ÿ j"0 ST α ˆα x pjq x pj 0 `1q
˙2¸.

(2.44)

For such a j 0 , one can check that ν P px pj 0 `1q {α, x pj 0 q {αs. The definition of the soft-thresholding operator yields

ST α px j {νq 2 " # px j {ν ´αq 2 if x j ě να, 0 if x j ă να.
(2.45)

It can be simplified thanks to x j ě x pj 0 q ñ x j ě να and x j ď x pj 0 `1q ñ x j ă να. Hence, R 2 " ř j 0 j"1 px pjq {ν ´αq 2 " ř j 0 j"1 px pjq {νq 2 `α2 ř j 0 j"1 1 ´2α ř j 0 j"1 x pjq {ν so solving ř p j"1 ST α px pjq {νq 2 " R 2 is equivalent to solve on R pα

2 j 0 ´R2 qν 2 ´˜2α j 0 ÿ j"1
x pjq ¸ν `j0 ÿ j"1

x 2 pjq " 0.

(2.46)

If pα 2 j 0 ´R2 q " 0, then ν " ř j 0 j"1 x 2 pjq {p2α ř j 0 j"1 x pjq q. Otherwise ν is the unique solution lying in px pj 0 `1q {α, x pj 0 q {αs of the quadratic equation stated in Eq. (2.46).

In the worst case, to compute Λpx, α, Rq, one needs to sort a vector of size d, what can be done in Opd logpdqq operations, and finding j 0 thanks to (2.44) requires Opd 2 q if we apply a naive algorithm.

In the following, we show that one can easily reduce the complexity to Opd logpdqq in the worst case. For all j in rds, ST α ´α x j

x j 0

¯" 0 as soon as x j ď x j 0 . This implies that (2.44) is equivalent to

R 2 P « j 0 ´1 ÿ j"0 ST α ˆα x pjq x pj 0 q ˙2 , j 0 ÿ j"0 ST α ˆα x pjq x pj 0 `1q
˙2¸.

(2.47) Denoting S j 0 :" ř j 0 j"1 x pjq and S p2q j 0 :" ř j 0 j"1 x 2 pjq , a direct calculation show that (2.47) can be rewritten as

R 2 P α 2 « S p2q j 0 ´1
x 2 pj 0 q ´2 S j 0

´1

x pj 0 q `j0 , S p2q j 0

x 2 pj 0 `1q ´2 S j 0 x pj 0 `1q `j0 `1¸.

(2.48)

Finally, solving ř p j"1 ST α px pjq {νq 2 " R 2 is equivalent to finding the solution of the equation pα 2 j 0 ´R2 qν 2 ´p2αS j 0 qν `Sp2q j 0 " 0 lying in px pj 0 `1q {α, x pj 0 q {αs. Hence,

Λpx, α, Rq " αS j 0 ´bα 2 S 2 j 0 ´Sp2q j 0 pα 2 j 0 ´R2 q α 2 j 0 ´R2 ": ν 1 (2.49) or Λpx, α, Rq " αS j 0 `bα 2 S 2 j 0 ´Sp2q j 0 pα 2 j 0 ´R2 q α 2 j 0 ´R2 ": ν 2 .
(2.50)

-If α 2 j 0 ´R2 ă 0, then ν 2 ă 0 and so it cannot be a solution since Λpx, α, Rq must be positive.

-Otherwise, we have

ν 2 ě αS j 0 α 2 j 0 ´R2 " 1 αpj 0 ´R2 α 2 q j 0 ÿ j"1 x pjq ą 1 αj 0 j 0 ÿ j"1 x pjq ě x pj 0 q α ,
where the second inequality results from the fact that j 0 ą j 0 ´R2 {α 2 . And again ν 2 cannot be a solution since Λpx, α, Rq belongs to px pj 0 `1q {α, x pj 0 q {αs.

Hence, in all cases, the solution is given by ν 1 . Moreover, we can significantly reduce the cost of the sorting. Indeed, for all ν, we have

ST αν pxq ě ST αν pxq 8 " max jPrds p|x j | ´ναq `.
Hence, ST αν pxq ´νR ě x 8 ´να ´νR ą 0 if and only if ν ă x 8 {pα `Rq. Combining this with Equation (2.45), we take into account only the coordinates which have an absolute value greater than α x 8 {pα `Rq. Indeed, by contrapositive, if ν is a solution then ν ě x 8 {α `R hence x j ă α x 8 {α `R ñ x j ă να

(2.45)

ñ ST α px j {νq " 0.

Finally, computing Λpx, α, Rq can be done by applying Algorithm 3. Note that this algorithm is similar to (Burdakov and Merkulov, 2001, Algorithm 4).

Properties of the -norm

We describe, for completeness, some properties of the -norm. The following material is inspired by [START_REF] Burdakov | On a new norm for data fitting and optimization problems[END_REF].

Lemma 7. For all ξ P R d , the -decomposition reads: ξ " ξ `ξ1´ , where ξ :" ST p1´ q ξ pξq and ξ 1´ :" ξ ´ξ . Moreover, ξ " ξ and ξ 1´

8 " p1 ´ q ξ . Hence, the following decomposition holds for the -norm: ξ " ξ ` ξ 1´ 8 .

Proof. ξ " ST p1´ q ξ pξq " ξ by definition of the -norm ξ . Moreover,

ξ 1´ " d ÿ i"1 rξ i ´signpξ i qp|ξ i | ´p1 ´ q ξ q `s " d ÿ i"1 signpξ i q r|ξ i | ´p|ξ i | ´p1
´ q ξ q `s .

Thus, using the symbol a _ b to represent maxpa, bq, one has

ξ 1´ 8 " max iPrds |signpξ i q r|ξ i | ´p|ξ i | ´p1
´ q ξ q `s| " max

iPrds |ξ i |ďp1´ q ξ ||ξ i | ´p|ξ i | ´p1 ´ q ξ q `| _ max iPrds |ξ i |ąp1´ q ξ ||ξ i | ´p|ξ i | ´p1 ´ q ξ q `| " max iPrds |ξ i |ďp1´ q ξ |ξ i | _ p1 ´ q ξ " p1 ´ q ξ .
Lemma 8. Define the sets

U p ξ q :" tu P R d : u ď ξ u , V p ξ q :" tv P R d : v 8 ď p1
´ q ξ u , we have ξ p1´ q " arg min uPU p ξ q ξ"u`v v 8 and ξ " arg min

vPV p ξ q ξ"u`v u .
Proof.

' Existence and uniqueness of the solutions

It is clear that arg min 

uPU p ξ q ξ"u`v v 8 "
ST p1´ q ξ pξq ST p1´ q ξ pξq " ξ ξ " ξ ξ hence the result: ∇ ¨ pξq " ξ ξ D .

EDPP is not safe

In the two last sections, we present a study on the EDDP method [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF], a screening rule that relies on the dual optimal point obtained for the previous λ in the path. Note that the same conclusion would hold true for generalization of the sequential approach given in (Wang et al., 2014), as well as for any other screening rule that needs exact dual solution at one step. In the remainder we consider λ 0 " λ max and a non-increasing sequence of T ´1 tuning parameters pλ t q tPrT ´1s in p0, λ max q. In practice, we choose the common grid [START_REF] Bühlmann | Statistics for high-dimensional data[END_REF][2.12.1]): λ t " λ 0 10 ´δt{pT ´1q . [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF] proposed a sequential screening rule based on properties of the projection onto a convex set. Their rule is based on the exact knowledge of the true optimal solution for the previous parameter. Such a rule can be used to compute θpλ 1 q since θpλ 0 q " y{λ 0 p" y{λ max q is known. However for t ą 1, θpλtq is only known approximately and the rules introduced in [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF] are not safe anymore: some active groups may be wrongly disregarded if one does not use the exact value of θpλtq .

We first recall the property they proved we propose to modify their rule in order to make it safe in all cases.

Proposition 25 ((Wang et al., 2015, Theorem 19)). Assume that λ t´1 ă λ max , then the dual optimal solution of the group-Lasso with parameter λ t , satisfies

θpλtq P B `θ pλ t´1 q `1 2 v K pλ t´1 , λ t q, 1 2 v K pλ t´1 , λ t q 2 ˘(2.51)
where v K pλ t´1 , λ t q " y λ t ´θ pλ t´1 q ´αr θpλ t´1 q sp y λ t´1

´θ pλ t´1 q q and αr θpλ t´1 q s :" arg min αPR ` y λ t ´θ pλ t´1 q ´αp y λ t´1 ´θ pλ t´1 q q 2 " x y λ t´1 ´θ pλ t´1 q , y λt ´θ pλ t´1 q y y λ t´1 ´θ pλ t´1 q 2 2 .

(2.52)

Making EDDP screening rule safe

The simpler screening rule

In the present paper, we give computable guarantees on the distance between the current dual feasible point and the solution of the problem. We show here how we can combine our result with Wang et al. 's in order to make their screening rule work even with approximate solutions to the previous Lasso problem.

For simplicity, we first consider the initial version of Wang et al. 's sphere test:

θpλtq P B `θ pλ t´1 q , v K pλ t´1 , λ t q 2 ˘,
(2.53) proved in (Wang et al., 2015, Theorem 7). As we do not know θpλ t´1 q , we cannot readily use this ball. However, we can modify it to make it a safe screening rules as follows:

Proposition 26. Assume that λ t´1 ă λ max , θ P ∆ X is a dual feasible point and r λ t´1 ą 0 is a radius satisfying θpλ t´1 q P Bpθ, r λ t´1 q, then θpλtq P B ´θ, 

r
P ď θ 1 PBpθ,r λ t´1 q B ´θ1 , min αPR ` v t pθ 1 q ´αv t´1 pθ 1 q 2 ¯.
Let us denote H " max θ 1 PBpθ,r λ t´1 q min αPR ` v t pθ 1 q ´αv t´1 pθ 1 q 2 , then θpλtq P Bpθ, r λ t´1 `Hq. We now need to upper bound H. A simple choice is to take α to be αrθs defined in Eq. (2.56) The motivation for such a choice is because it is optimal when r λ t´1 " 0. This provides the following bound on H: H ď max θ 1 PBpθ,r λ t´1 q v t pθ 1 q ´αrθsv t´1 pθ 1 q 2 , " v t pθq ´αrθsv t´1 pθq `rλ t´1 pαrθs ´1q v t pθq ´αrθsv t´1 pθq v t pθq ´αrθsv t´1 pθq 2 , ď r λ t´1 |αrθs ´1| ` v t pθq ´αrθs.v t´1 pθq .

(2.57)

Hence, after some simplifications:

θpλtq P B ´θ, r λ t´1 p1 `|1 ´αrθs|q ` v t pθq ´αrθsv t´1 pθq 2 ¯.
Remark 10. In the case that y{λ t´1 ď y{λ t´1 ´θ ď 1 then with the definition of αrθs and the Cauchy-Schwartz inequality one has that 1 `|αrθs ´1| ď λ t´1 λt . This means that the multiplicative ratio in front of r λ t´1 is λ t´1 {λ t . In (Fercoq et al., 2015, Proposition 3), the bound obtained would only lead to the smaller ratio: a λ t´1 {λ t .

Remark 11. From the proof of Theorem 7 in [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF], it holds that for λ ă λ max then θpλq ď y λ ô θpλq P B ˆ0, y λ ˙.

(2.58)

The complete screening rule (EDDP+)

Let us now consider the EDDP+ screening rule [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF] relying on the property (2.51): θpλtq P B `θ pλ t´1 q `1 2 v K pλ t´1 , λ t q, 1 2 v K pλ t´1 , λ t q 2 ˘. Using the same technique as for Proposition 26, we can strengthen our previous proposition with the following result.

Proposition 27. Assume that λ t´1 ă λ max , θ P ∆ X is a dual feasible point and r λ t´1 ą 0 is a radius satisfying θpλ t´1 q P Bpθ, r λ t´1 q. Define αrθs as in (2.56),

r λt " |1 ´αrθs| `1 `αrθs 2 r λ t´1 `1 2 v t pθq ´αrθsv t´1 pθq 2 ` y λt ´y λ t´1 2 r λ t´1 2 v t´1 pθq 2 2 ´3 v t´1 pθq 2 `2r λ t´1 ānd v K pθ, λ t´1 , λ t q " v t pθq ´αrθsv t´1 pθq.
(2.59)

Then θpλtq P B ´θ `1 2 v K pθ, λ t´1 , λ t q, r λt ¯.
Proof. As before, we do not know exactly θpλ t´1 q but we know that denoting v K pθ 1 , λ t´1 , λ t q " v t pθ 1 q ´αrθ 1 sv t´1 pθ 1 q (2.60) with

αrθ 1 s " ˆxv t´1 pθ 1 q, v t pθ 1 qy v t´1 pθ 1 q 2 2 ˙`, (2.61) 
we have

θpλtq P ď θ 1 PBpθ,r λ t´1 q B ´θ1 `1 2 v K pθ 1 , λ t´1 , λ t q, 1 2 v K pθ 1 , λ t´1 , λ t q 2 ¯.
Our goal is to find a ball centered at θ `1 2 v K pθ, λ t´1 , λ t q that contains all these balls, thus containing θpλtq . First, reminding (2.57)

v K pθ 1 , λ t´1 , λ t q 2 " min αPR ` v t pθ 1 q ´αv t´1 pθ 1 q 2 ď max θ 1 PBpθ,r λ t´1 q min αPR ` v t pθ 1 q ´αv t´1 pθ 1 q 2 ď r λ t´1 |1 ´αrθs| ` v t pθq ´αrθsv t´1 pθq 2 .
We continue as

θ 1 `1 2 v K pθ 1 ,λ t´1 , λ t q ´θ ´1 2 v K pθ, λ t´1 , λ t q
" pθ 1 ´θq `1 2 ´vt pθ 1 q ´αrθ 1 sv t´1 pθ 1 q ´y λ t `θ `αrθsv t´1 pθq " 1 2 ´θ1 ´θ ´pαrθ 1 s ´αrθsqv t´1 pθ 1 q `αrθspθ 1 ´θq ¯.

Taking the norm on both sides of the previous display,

θ 1 `1 2 v K pθ 1 , λ t´1 , λ t q ´θ ´1 2 v K pθ, λ t´1 , λ t q 2 ď 1 `αrθs 2 θ 1 ´θ 2 `|αrθ 1 s ´αrθs| 2 v t´1 pθ 1 q 2 .
Now, reminding that x Þ Ñ pxq `is a 1-Lipschitz function, and denoting Γ " |αrθ 1 s ´αrθs|, we have:

Γ ď xv t´1 pθ 1 q, v t pθ 1 qy v t´1 pθ 1 q 2 2 ´xv t´1 pθq, v t pθqy v t´1 pθq 2 2 " xv t´1 pθ 1 q, y λt ´y λ t´1 y v t´1 pθ 1 q 2 2 `1 ´xv t´1 pθq, y λt ´y λ t´1 y v t´1 pθq 2 2 ´1 " x v t´1 pθq 2 2 v t´1 pθ 1 q ´ v t´1 pθ 1 q 2 2 v t´1 pθq, y λt ´y λ t´1 y v t´1 pθ 1 q 2 2 v t´1 pθq 2 2 ď y λt ´y λ t´1 2 v t´1 pθ 1 q 2 2 v t´1 pθq 2 2 ´ v t´1 pθ 1 q 2 v t´1 pθq 2 2 ´ v t´1 pθ 1 q 2 2 ` θ ´θ1 2 v t´1 pθ 1 q 2 2 ď y λt ´y λ t´1 2 v t´1 pθ 1 q 2 v t´1 pθq 2 2 ´2 y λ t´1 ´θ1 `θ 2 2 θ ´θ1 2 ` θ ´θ1 2 v t´1 pθ 1 q 2 ď y λt ´y λ t´1 2 θ ´θ1 2 v t´1 pθ 1 q 2 v t´1 pθq 2 2 ´2 v t´1 pθq 2 ` θ ´θ1 2 ` v t´1 pθq 2 ` θ ´θ1 2 ¯. (2.62)
where the second inequality comes from the triangle inequality and the Cauchy-Schwartz Inequality, and the third is obtained by factorizing the difference of squares. Plugging this in the former, we get:

θ 1 `1 2 v K pθ 1 ,λ t´1 , λ t q ´θ ´1 2 v K pθ, λ t´1 , λ t q 2 ď 1 `αrθs 2 θ 1 ´θ 2 ` y λt ´y λ t´1 2 θ ´θ1 2 2 v t´1 pθq 2 2 ´3 v t´1 pθq 2 `2 θ ´θ1 2 ¯.
One could check that there exists θ 1 P Bpθ, r λ t´1 q satisfying θpλtq P B `θ1 `1 2 v K pθ 1 , λ t´1 , λ t q, 1 2 v K pθ 1 , λ t´1 , λ t q 2 ȃnd so combining the last inequality with (2.62)

θpλtq ´θ ´1 2 v K pθ, λ t´1 , λ t q 2 ď θpλtq ´θ1 ´1 2 v K pθ 1 , λ t´1 , λ t q 2 ` θ 1 `1 2 v K pθ 1 , λ t´1 , λ t q ´θ ´1 2 v K pθ, λ t´1 , λ t q 2 ď |1 ´αrθs| `1 `αrθs 2 r λ t´1 `1 2 v t pθq ´αrθsv t´1 pθq 2 ` y λt ´y λ t´1 2 r λ t´1 2 v t´1 pθq 2 2 ´3 v t´1 pθq 2 `2r λ t´1 67
Chapter 3

Pathwise Optimization and Hyperparameter Selection

Various machine learning problems are formulated as a minimization of an empirical loss function f , regularized by a term Ω whose calibration and complexity is controlled by a non negative hyperparameter λ. The (optimal) choice of regularization parameter λ is crucial since it directly influences the generalization performance of the estimator, i.e. its score on unseen data set. One of the most popular method in such a context is cross-validation (CV), see [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] for a detailed review. For simplicity, we investigate here the holdout version that consists in splitting the data in two parts: on the first part (training set) the method is trained for a pre-defined collection of candidates Λ T :" tλ 0 , . . . , λ T ´1u, and on the second part (validation set), the best parameter is selected.

For a piecewise quadratic loss f and a piecewise linear regularization Ω (e.g. for the Lasso estimator), Osborne et al. (2000b); [START_REF] Rosset | Piecewise linear regularized solution paths[END_REF] show that the set of solutions follows a piecewise linear curve w.r.t. to the parameter λ. There are several algorithms that can generate the full path -by maintaining optimality conditions when the regularization parameter changes -this is what LARS is performing for Lasso [START_REF] Efron | Least angle regression[END_REF], but similar approaches exist for SVM [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF] or for generalized linear models [START_REF] Park | L1-regularization path algorithm for generalized linear models[END_REF]. Unfortunately, these methods have some drawbacks that can be critical in many situations:

-they have a worst case complexity, i.e. the number of linear segments, that is exponential in the dimension p of the problem [START_REF] Gärtner | An exponential lower bound on the complexity of regularization paths[END_REF] leading to unpractical algorithms. Even in favorable case, a complexity that is linear in p can be expensive to compute when p is large. -they suffer from numerical instabilities due to multiple and expensive inversion of illconditioned matrix. As a result, these algorithms may fail before exploring the entire path, a crucial issue whenever the regularization decreases. -they lack flexibility when it comes to incorporating different statistical learning tasks because they usually rely on specific algebra to handle the structure of the regularization and loss functions. As far as we know, they apply to a limited number of cases and we are not aware of a general framework that bypasses these problems. -they do not benefited of early stopping. As shown in [START_REF] Bousquet | The tradeoffs of large scale learning[END_REF], it is not necessary to optimize below the statistical error to enjoy good generalization property. By nature, exact regularization path algorithms must maintain the optimality conditions when the hyperparameter changes, which is demanding in computational time.

To overcome these issues, an approximation of the solution path up to accuracy ą 0 was proposed. An optimal complexity was proven to be Op1{ q by [START_REF] Giesen | Approximating parameterized convex optimization problems[END_REF] in a fairly general setting. A noticeable contribution was proposed by [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF], that come up with an algorithm whose complexity is Op1{ ? q for the Lasso case. The later result was then Lasso Logistic regr.

f i pzq py i ´zq 2 {2 logp1 `ez q ´yi z f i puq ppu ´yi q 2 ´y2 i q{2 Nhpu `yi q V f ˚,x puq u 2 2 {2 w 4 p u 2 x { u 2 q u 2
x Table 3.1 -w 4 pτ q :" p1´τ q logp1´τ q`τ τ 2

and Nhpxq :" x logpxq `p1 ´xq logp1 ´xq for x P r0, 1s.

extended by [START_REF] Giesen | Approximating concavely parameterized optimization problems[END_REF] to objective function that has a quadratic lower bound while providing a lower and upper bound of order Op1{ ? q. Unfortunately, these assumptions fail to hold for a large class of problems, including logistic regression or Huber loss for instances.

Following such ideas, [START_REF] Shibagaki | Regularization path of cross-validation error lower bounds[END_REF] have proposed, for classification problems, to approximate the regularization path on the hold-out cross-validation error. Indeed, the later is a more natural criterion to monitor when one aims at selecting a hyperparameter guaranteed to achieve the best validation error. The main idea is to construct an upper and lower bound on the validation error as simple functions of the regularization parameter. Hence by sequentially varying the parameters, one can estimate a range of parameter for which the validation error is smaller than an accuracy v ą 0 (where v stands for validation).

In this chapter, we revisit the approximation of the solution and validation path in a unified framework, under general regularity assumptions that are commonly satisfied in machine learning. We encompass both classification and regression problems and provide a complexity analysis along with optimality guarantees. We discuss the relationship between the regularity of the loss function and the complexity of the approximation path. We prove that its complexity is Op1{ d ? q for uniformly convex loss of order d ą 0 i.e. uniformly convex with modulus µ ¨ d {d (for µ ą 0) (see Bauschke and Combettes (2011, Definition 10.5)) and Op1{ ? q for the logistic loss thanks to a refined measure of its curvature throughout its Generalized Self-Concordant properties [START_REF] Sun | Generalized self-concordant functions: A recipe for newton-type methods[END_REF]. Finally, we provide an algorithm with global convergence property for selecting a hyperparameter with a validation error v -close to the best possible hyperparameter on a given range.

The contents of this chapter are based on a collaboration that led to the technical report Authors: E. Ndiaye, T. Le, O. Fercoq, J. Salmon, I. Takeuchi.

' Safe Grid Search with Optimal Complexity. To be submitted, 2018.

Notation. Given a proper, closed and convex function f : R n Ñ R Y t`8u, If f is twice continuously differentiable with positive definite Hessian ∇ 2 f pxq at any x P R n , we denote It includes many supervised learning problems such as generalized linear models including Least Squares and logistic regressions for instances. For simplicity, we focus only on these two canonical examples where the loss functions are written as an empirical risk f pXβq " ř iPrns f i px J i βq recalled in Table 3.1. The penalty term is often used to incorporate prior knowledge by enforcing a certain regularity on the solutions. For instance, choosing a Ridge penalty [START_REF] Hoerl | Application of ridge analysis to regression problems[END_REF] Ωp¨q " ¨ 2 2 {2 improves the stability of the resolution of inverse problems while Ωp¨q " ¨ 1 imposes sparsity at the feature level, a motivation that led to the Lasso estimator [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. We refer to [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF] for more evolved penalties enforcing structured sparsity.

z x :" z ∇ 2 f pxq " a x∇ 2 f pxqz,
In practice, obtaining the exact solution βpλq of Problem (3.1) is unpractical and one needs to rely on an approximation at a prescribed precision.

Definition 13 ( -solution). For any tolerance ě 0, a primal vector β is called -solution at parameter λ if its error for the objective value is smaller than , i.e. E λ pβq :" P λ pβq ´Pλ p βpλq q ď .

(3.2)

We recall the notion of approximate path, following the terminology from [START_REF] Giesen | Approximating concavely parameterized optimization problems[END_REF]:

Definition 14 ( -path). A set P Ă R p is called an -path for the parameter range rλ min , λ max s if it contains an -approximation β pλ, q for any parameter λ, i.e.

@λ P rλ min , λ max s, D β pλq P P s.t. E λ pβ pλ, q q ď . (3.3)

We call path complexity for Problem (3.1) the cardinality of the smallest -path: T :" min |P |.

Evaluating the approximation error (3.2) is often infeasible since it requires the unknown (exact) solution βpλq (see the discussion on optimization complexity in Nesterov (2004, Chapter 1)). Fortunately, when f is a convex function, one can often rely on the notion of duality gap to measure the quality of an estimate. First, we recall the classical Fenchel duality (Rockafellar, 1997, Chapter 31) (3.4)

Definition 15 (Duality Gap). For any primal/dual feasible pair of vector pβ, θq P R p ˆRn , the duality gap is defined as the difference between the primal and dual objectives:

Gap λ pβ, θq :" f pXβq `f ˚p´λθq `λpΩpβq `Ω˚p X J θqq .

By weak duality, for any primal/dual feasible vector pβ, θq, we have P λ pβq ě D λ pθq. Hence, E λ pβq ď Gap λ pβ, θq explaining the interest of the duality gap as an optimality certificate or as a stopping criterion for solving (3.1).

Duality Gap based Approximation Path

In this section, we introduce our framework and show how to efficiently compute an -path in Definition 14 for Problem (3.1).

Definition 16. Given a real valued function f defined on R n and x in dompf q, let U f,x p¨q and V f,x p¨q be non negative functions that vanish at 0. We say that f is U f,x -convex (resp. V f,x -smooth) at x when Inequality (3.5) (resp. (3.6)) is satisfied for any z in dompf q U f,x pz ´xq ď f pzq ´f pxq ´x∇f pxq, z ´xy , (3.5) V f,x pz ´xq ě f pzq ´f pxq ´x∇f pxq, z ´xy .

(3.6)

This framework is inspired from the widely used notion of µ-strong-convexity (resp. νsmoothness), cf. [START_REF] Nesterov | Introductory lectures on convex optimization[END_REF], where U f,x pz ´xq " µ z ´x 2 2 {2 (resp. ν z ´x 2 2 {2). Moreover, it is flexible enough to encompass:

Uniform Convexity (resp. Uniform Smoothness) [START_REF] Azé | Uniformly convex and uniformly smooth convex functions[END_REF]:

U f,x pz ´xq " Up z ´x q , (3.7) V f,x pz ´xq " Vp z ´x q , (3.8)
where Up¨q and Vp¨q are increasing mappings from r0, `8q to r0, `8s that vanish at 0 and are independent of any x. Examples of such functions are Uptq " µ d t d and Vptq " ν d t d where d, µ and ν are positive constants. The case d " 2 corresponds to the classical definition of strong convexity and smoothness; in general they are called Uniformly Convex of order d, see [START_REF] Juditski | Primal-dual subgradient methods for minimizing uniformly convex functions[END_REF] or (Bauschke and Combettes, 2011, Ch. 10.2 and 18.5) for further details. Also note that the norm ¨ can be replaced by any positively homogeneous function that vanishes at zero. Such functions U f , V f are known as gauge like functions (Rockafellar, 1997, Chapter 15).

Generalized Self-Concordant functions.

Definition 17 [START_REF] Sun | Generalized self-concordant functions: A recipe for newton-type methods[END_REF]). A three time differentiable convex function f is called pM f , νq-generalized self-concordant of order ν ě 2 and M f ě 0 if for any x P Dompf q and any u, v P R p ,

ˇˇx∇ 3 f pxqrvsu, uy ˇˇď M f u 2 x v ν´2 x v 3´ν 2 .
(3.9)

Proposition 28 (Prop. 10 Sun and Tran-Dinh ( 2017)). If pM f , νq-generalized self concordant, then w ν p´d ν px, zqq z ´x 2 x ď f pzq ´f pxq ´x∇f pxq, z ´xy ď w ν pd ν px, zqq z ´x 2

x where the right-hand side inequality holds if d ν px, zq ă 1 for the case ν ą 2 and where

d ν px, zq :" # M f z ´x 2 if ν " 2, `ν 2 ´1˘M f z ´x 3´ν 2 z ´x ν´2 x if ν ą 2,
and

w ν pτ q :" $ ' ' ' ' & ' ' ' ' % e τ ´τ ´1 τ 2 if ν " 2, ´τ ´logp1´τ q τ 2 if ν " 3, p1´τ q logp1´τ q`τ τ 2 if ν " 4, ´ν´2 4´ν ¯1 τ " ν´2 2p3´νqτ ´p1 ´τ q 2p3´νq 2´ν
´1¯´1ı otherwise.

In this case, the previous proposition show that

U f,x pz ´xq " w ν p´d ν px, zqq z ´x 2 x , V f,x pz ´xq " w ν pd ν px, zqq z ´x 2 x ,
where the second holds if d ν px, yq ă 1 for the case ν ą 2. This class of functions includes many important examples widely used in machine learning such as logistic and quadratic loss.

In the proposed algorithm, the dual loss intervenes strongly and the dual of the logistic loss is Generalized Self-Concordant with M f ˚" 1, ν " 4 while for quadratic loss, M f ˚" 0 and we can take any ν ą 0. We refer to [START_REF] Sun | Generalized self-concordant functions: A recipe for newton-type methods[END_REF] for more details.

To simplify the notation, we will drop the subscript x in U f,x and simply write U f ; the meaning shall be clear depending on the context.

Bounding the Gap of the Homotopic Initialization

In the context of homotopy continuation recalled in Chapter 1, we solve problem (3.1) with different values of λ prefixed in a grid of hyperparameter. In this section, we provide fine bounds on the duality gap that control the optimization error when moving from one parameter to another.

Suppose we have at our disposal a primal/dual pair of vector pβ pλtq , θ pλtq q computed as outputs of an optimization algorithm at regularization parameter λ t ą 0 and t an integer, we denote Gap t :" Gap λt pβ pλtq , θ pλtq q, ∆ t :" f pXβ pλtq q ´f p∇f ˚pz t qq (3.10) for z t :" ´λt θ pλtq and for any function φ : R n Ñ r0, `8s that vanishes at 0, Q t,φ pρq :" Gap t `ρ ¨p∆ t ´Gap t q `φp´ρ ¨zt q .

(3.11)

In the following lemma, we propose to bound the duality gap by simply transferring the inequalities obtained from the regularity of the loss function f . It aims at controlling the growth of the duality gap w.r.t. the parameter λ.

Lemma 12 (Bounding the Warm Start Error). We assume that ´λθ pλtq P dompf ˚q and X J θ pλtq P dompΩ ˚q. If f ˚is V f ˚-smooth (resp. U f ˚-convex), then, for ρ " 1 ´λ{λ t , the right (resp. left) hand side of Inequality (3.12) holds true

Q t,U f ˚pρq ď Gap λ pβ pλtq , θ pλtq q ď Q t,V f ˚pρq .
(3.12)

Proof. For simplicity, we denote Gap λt λ :" Gap λ pβ pλtq , θ pλtq q and Γ t :" Ωpβ pλtq q `Ω˚p X J θ pλtq q .

By Definition 15 of the duality gap at parameter λ t , we have 1 λ t rGap t ´f pXβ pλtq q ´f ˚p´λ t θ pλtq qs " Γ t .

(3.13) Hence using Equality (3.13) in the definition of Gap λt λ , we have:

Gap λt λ " f pXβ pλtq q `f ˚p´λθ pλtq q `λΓ t (3.13) " λ λ t Gap t `ˆ1 ´λ λ t ˙rf pXβ pλtq q `f ˚p´λ t θ pλtq qs `f ˚p´λθ pλtq q ´f ˚p´λ t θ pλtq q.

Let us write the proof for the upper bound (the proof for the lower bound is similar). We apply the smoothness inequality (3.44) to the function f ˚p¨q with z " ´λθ pλtq and x " z t :" ´λt θ pλtq to obtain

Gap λt λ ď λ λ t Gap t `ˆ1 ´λ λ t ˙∆t `Vf ˚,zt p´λθ pλtq `λt θ pλtq q ,
where we have used the equality case in the Fenchel-Young inequality (3.42) to get:

∆ t " f pXβ pλtq q `f ˚p´λ t θ pλtq q `x∇f ˚pz t q, ´zt y " f pXβ pλtq q ´f p∇f ˚pz t qq .

The function φ -chosen as V f ˚(resp. U f ˚) for the upper bound (resp. lower bound)essentially captures the regularity needed to approximate the duality gap at parameter λ when using previous primal/dual vector pβ pλtq , θ pλtq q. Note also that in the case where the function satisfies both inequalities, the tightness of the bound can be related to the conditioning number K f ˚" U f ˚{V f ˚of the dual loss f ˚. Hence we have an equality for the least-squares example Interpretation: In the Lasso example the inequalities (3.12) are tight and can be rewritten as

(U f ˚" V f ˚" ¨ 2 {2).
Gap λ pβ pλtq , θ pλtq q " λ λ t Gap t `ˆ1 ´λ λ t ˙∆t ` z t 2 2 2 ˆ1 ´λ λ t ˙2 . (3.14)
Then the result in Lemma 12 can be seen as a decomposition of the initialization error into optimization and approximation error. In fact, the two first terms involve Gap t and ∆ t that correspond to the optimization error at parameter λ t and the last term accounts for the price to pay when approximating λ t by λ.

Adaptive Grid for a Fixed Precision. From Lemma 12, we have Gap λ pβ pλtq , θ pλtq q ď as soon as Q t,V f ˚pρq ď where ρ " 1 ´λ{λ t varies with λ. Then, we proceed by choosing (at each grid point λ t ), ρ t as the largest ρ such that the upper bound in (3.12) remains below the error . Hence, we obtain the following proposition that allows to track the regularization path for an arbitrary precision ą 0 on the training set by mean of the duality gap; see Algorithm 4.

Proposition 29 (Grid to Achieve Prescribed Precision). Assume we have solved Problem (3.1) for parameter λ t up to precision Gap t ă , then Gap λ pβ pλtq , θ pλtq q ď for all λ P λ t ˆ"1 ´ρ t p q, 1 `ρr t p q ı , where ρ t p q (resp. ρ r t p q) is the largest non-negative ρ s.t. Q t,V f ˚pρq ď (resp. Q t,V f ˚p´ρq ď ).

We will often drop the dependencies in for simplicity.

Adaptive Precision for a Fixed Grid. Conversely, given a grid of T points Λ T :" tλ 0 , . . . , λ T ´1u (we assume a decreasing order: λ t`1 ă λ t ), we define the error of the approximation path for a given range rλ min , λ max s by using a piece-wise constant approximation of the duality gap Gap λ pβ pλtq , θ pλtq q over the grid:

Λ T :" sup λPrλ min ,λmaxs min λtPΛ T Gap λ pβ pλtq , θ pλtq q . (3.15)
This error is difficult to evaluate in practice so we rely on the tight upper bound based on inequalities in Lemma 12 that are easier to compute and for which closed-form are often available.

Proposition 30 (Precision for a Given Grid). For any grid of points Λ T , the approximation error of the objective path is bounded as follows: Λ T ď max tPrT s Q t,V f ˚p1 ´λ‹ t {λ t q where for all t P rT ´1s, λ ‹ t is the largest λ P rλ t`1 , λ t s such that Q t,V f ˚p1 ´λ{λ t q ě Q t`1,V f ˚p1 ´λ{λ t`1 q.

Proof. From the upper bound Gap λ pβ pλtq , θ pλtq q ď Q t,V f ˚p1 ´λ{λ t q for all λ and λ t , and since rλ min , λ max s " Y tPr0:T ´1s rλ t`1 , λ t s we have

Λt ď max tPr0:T ´1s sup λPrλ t`1 ,λts min λtPΛ T Q t,V f ˚p1 ´λ{λ t q ď max tPr0:T ´1s sup λPrλ t`1 ,λts min t 1 Ptt`1,tu Q t 1 ,V f ˚p1 ´λ{λ t 1 q .
where the last inequality holds since tλ t`1 , λ t u is a subset of Λ T . Let us define @λ P rλ t`1 , λ t s, ψ t pλq :" mintQ t`1,V f ˚p1 ´λ{λ t`1 q, Q t,V f ˚p1 ´λ{λ t qu .

For Q t`1,V f ˚p1 ´λ{λ t`1 q (resp. Q t,V f ˚p1 ´λ{λ t q) that is monotonically increasing w.r.t. λ (resp. decreasing) the sup λPrλ t`1 ,λts ψ t pλq is reached at the largest λ such that

Q t,V f ˚p1 ´λ{λ t q ě Q t`1,V f ˚p1 ´λ{λ t`1 q .
Finding the Step Sizes ρ. Following Proposition 29, finding the solution of equations of the form Q t,V f ˚pρq " is of high interest to obtain an -path. This can be done efficiently at high machine precision by various numerical solvers since this problem is one dimensional. Explicit solution are often available, for instance when f ˚p¨q is ν 2 ¨ 2 -smooth, the step size is given by the solution of the quadratic inequality Q t,V f ˚pρq ď .

Proposition 31 (Quadratic Approximation Step). Given a primal/dual vector pβ pλtq , θ pλtq q, the left and right quadratic step sizes defined in Proposition 29 have the closed-form expressions:

ρ t p q " b 2νR 2 t δ t `δ 2 t ´δ t νR 2 t and ρ r t p q " b 2νR 2 t δ t `δ 2 t `δ t νR 2 t
where δ t " ´Gap t , δt " ∆ t ´Gap t , R t " z t and ν " ν f ˚is the smoothness constant of the dual loss f ˚p¨q.

As in [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF][START_REF] Giesen | Approximating concavely parameterized optimization problems[END_REF], we recover as a special case the quadratic step size already known for the Lasso where the loss function is the quadratic loss y ´¨ 2 {2. In this case, ν " 1 and denoting N 8 :" X J py ´Xβ pλtq q 8 , a direct calculation with the dual vector (3.16) reads:

z t :" ´λt θ pλtq " λ t maxpλ t , N 8 q py ´Xβ pλtq q , ∆ t :" f pXβ pλtq q ´f p∇f ˚pz t qq " 1 2 y ´Xβ pλtq 2 2 ˆ˜1 ´ˆλ t maxpλ t , N 8 q ˙2¸.
Construction of a Feasible Vector. Given a primal vector β pλtq , one can obtain a dual feasible vector by using a projected gradient mapping on the domain of the dual problem. Nevertheless, this operation can be expensive or impractical in which case we simply propose a rescaling of the gradient of the loss function i.e. θ pλtq " ´α∇f pXβ pλtq q, with α s.t. X J θ pλtq P dompΩ ˚q. Often, there is a simple expression for finding such a scaling factor α. Following the generic construction in Chapter 2, we choose θ pλtq :" ´∇f pXβ pλtq q maxpλ t , S dompΩ ˚qpX J ∇f pXβ pλtq qq .

(3.16)

This choice of dual point guarantees that the duality gap Gap λt pβ pλtq , θ pλtq q will converge to 0 when β pλtq converges to a solution βpλtq of (3.1). For any converging algorithm, one can make ∆ t arbitrarily small; for instance when Ωp¨q " ¨ is a norm, ∆ t " 0 as soon as λ t ě X J ∇f pXβ pλtq q ˚. The scaling is not needed if there is no constraint in the dual; for instance in the Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] where Ωpβq " η β 1 `p1 ´ηq β 2 2 {2 for η ě 0, we can choose ´λt θ pλtq i " ∇f i px J i β pλtq q for any primal candidate β pλtq , and thus ∆ t " 0. Note that, at optimality, ´λt θpλtq i " ∇f i px J i βpλtq q for all i P rns, so ∇f ˚p´λ t θpλtq q " X βpλtq and ∆ t " 0.

Sampling Strategies Adaptive Unilateral

For sparse regression methods, it is customary to start from the largest regularizer λ 0 " λ max and then to iteratively compute βpλ t`1 q after having computed βpλtq . This is popular as it generally leads to computing the models in the order of increasing complexity: this allows important speedups by benefiting of warm start strategies [START_REF] Friedman | Pathwise coordinate optimization[END_REF] provided that the parameters λ's are close enough from one another. This leads to the first strategy that we call Unilateral that consists in computing a new λ using only ρ t in Proposition 29. This strategy is illustrated in Section 3.1.2 for approximating the solution path of the Lasso. It has the advantage of combining simplicity and generality in the sense that it adapts simultaneously to both uniformly convex and generalized self-concordant function. Upper bound on the duality gap 2 Approximation path for the Lasso Figure 3.1 -Illustration of -path for the Lasso at accuracy " 10 ´2. This corresponds to the adaptive unilateral sampling where at each step t, the primal objective is optimized up to accuracy Gap t " o " {2 to satisfy the hypotheses of Proposition 29.

Adaptive Bilateral

Often, we can make a larger step by combining the information given by the left and right step sizes. Indeed let us assume that we explore the parameter range from λ max to λ min . Starting from a parameter λ t , we define the next step, given by Proposition 29, λ t :" λ t p1 ´ρ t q. Then it exists λ t 1 ď λ t such that λ r t 1 :" λ t 1 p1 `ρr t 1 q " λ t . Thus a larger step can be done by using

λ t 1 " λ t ˆ1´ρ t 1`ρ r t 1
instead of λ t . However ρ r t 1 depends on the (approximated) solution β pλ t 1 q that we do not know before optimizing the problem at parameter λ t 1 when computing sequentially the grid points in decreasing order i.e. λ t 1 ď λ t . We overcome this issue by (upper) bounding all the constant in Q t 1 ,V f ˚pρq that depend on the solution β pλ t 1 q , by constants involving only information available when once β pλtq has been approximated. For it, we need the following technical lemma, valid on the class of uniformly convex functions, that provides suitable bounds for deriving Bilateral (and later Uniform) approximation paths.

We first define the following quantities

r R t :" V f ´1 ˆf pXβ pλtq q `2 o ρ t p q ˙,
(3.17)

r ∆ t :" r R t ˆU´1 f p o q . (3.18)
The next lemma shows how the terms ∆ t and z t can be directly bounded by quantity independent of t. Note that using the dual vector in Equation (3.16), we have z t " ´λt θ pλtq ď ∇f pXβ pλtq q .

Lemma 13. Assuming f is U f -uniformly convex, we have ∇f pXβ pλ t 1 q q ď r R t and ∆ t 1 ď r ∆ t .

Proof. given in the supplementary material.

Combining Lemma 13 and Lemma 12, we obtain

Gap λ pβ pλ t 1 q , θ pλ t 1 q q ď Q t 1 ,V f ˚pρq ď r Q t,V f ˚pρq (3.19)
where ρ " 1 ´λ{λ t 1 and the mapping ρ Þ Ñ r Q t,V f ˚pρq is independent of the approximated solution pβ pλ t 1 q , θ pλ t 1 q q at parameter λ t 1 and is defined as

r Q t,V f ˚pρq :" o `ρ ¨p r ∆ t ´ o q `Vf ˚´|ρ| ¨r R t ¯.
Hence we obtain the following approximation path with larger intermediate step:

ρ pbq t p q " ρ t p q `ρ r t p q 1 `ρ r t p q , (3.20)
where ρ t p q is defined in Proposition 29 and ρr t p q is the largest non negative ρ such that r Q t,V f ˚pρq ď .

Proposition 32 (Bilateral Approximation Path). Assume that f is U f -uniformly convex and V funiformly smooth and let 0 ă o ă and Gap λt pβ pλtq , θ pλtq q ď o for all t. Define the grid Λ pbq :" tλ 0 , . . . , λ T ´1u by λ 0 " λ max , λ t`1 " λ t ˆp1 ´ρpbq t p qq .

Then the solution set tβ pλtq : λ t P Λ pbq u is an -path for problem (3.1).

Uniform Unilateral and Bilateral

Given the initial information from the primal/dual vectors pβ pλmaxq , θ pλmaxq q at parameter λ max " λ 0 , we can build a uniform grid that guarantee an -approximation before solving any optimization problem. Indeed, by using the same reasoning, we can build Q unif p¨q such that for ρ " 1 ´λ{λ t , we have Gap λ pβ pλtq , θ pλtq q ď Q unif pρq :" r Q 0,V f ˚pρq.

We denote the uniform step as follow ρ unif p q :" # ρ unif p q for Unilateral path ρ unif p q`ρ r unif p q 1`ρ r unif p q

for Bilateral path.

(3.21)

Proposition 33 (Uniform Approximation Path). Assume that f is U f -uniformly convex and V funiformly smooth and let 0 ă o ă and Gap λt pβ pλtq , θ pλtq q ď o , for all t. Define the grid Λ punifq " tλ 0 , . . . , λ T ´1u by λ 0 " λ max , λ t`1 " λ t p1 ´ρunif p qq .

Then the solution set tβ pλtq : λ t P Λ punifq u is an -path for problem (3.1) with at most T grid points where

T " Z logpλ max {λ min q logp1 ´ρunif p qq ^`2 .

Remark 12. Since the uniform grid depends only on the initially known value β λmax at λ 0 " λ max , it can be computed before solving the optimization problem at any parameter. This allows the valuable advantage of parallelizing the computations over the grid of parameters.

Concerns about Previous Methods

Previous algorithms for maintaining an -approximation of the solution along the regularization path that have been considered in the literature to help the calibration of the hyperparameters [START_REF] Clarkson | Coresets, sparse greedy approximation, and the frank-wolfe algorithm[END_REF][START_REF] Giesen | Approximating parameterized convex optimization problems[END_REF] have the quality of being able to apply to a very large number of problems. Indeed, they have been developed under restrictive assumptions in which they are optimal with a complexity of Op1{ q. Nevertheless, data fitting functions arising in machine learning have sometimes nicer regularities that must be exploited upstream to obtain more scalable algorithms. This is all the more striking in the Lasso example where a better complexity was obtained in [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF] and at that time, it was the only algorithm to enjoy complexity in Op1{ ? q. But, what is so special about the Lasso and what can be said about others formulations?

First, we would like to emphasize the fact that without specific assumptions on the parameter, the -path complexity can be arbitrarily large even for "simple" functions. Indeed, let us consider the function

r0, 1s ˆR Q pλ, βq Þ Ñ P λ pβq " d a |β ´λ| ´λd (3.22)
which is minimal at βpλq " λ and we have P λ p βpλq q " ´λd . Hence for any β, the interval I β " tλ P r0, 1s : E λ pβq " d a |β ´λ| ď u has a length 2 d independent of β. Hence this function has an -path complexity of 1{p2 d q which gives an exponential lower bound for approximation path. Fortunately the complexity can be simplified if we assume more structure, [START_REF] Giesen | Approximating concavely parameterized optimization problems[END_REF] proposed to consider functions such that:

#

β Þ Ñ P λ pβq are bounded from below for any λ in an interval I, λ Þ Ñ P ¨pβq is concave for any β in some set D.

(3.23)

Within this framework, they show a lower bound of the -path complexity in Op1{ ? q and also an structural upper bound in Op1{ ? q showing the tightness of their bounds and analysis. They also propose a generic algorithm capable to compute an -path that achieves this complexity building on a polynomial lower bound of the objective function.

We can notice two major concerns: the lower bound may be too pessimistic for the framework (3.23) (see Section 3.1.4) and we can find important machine learning examples where a reasonable polynomial lower bound on the objective function is hardly available. For instance, let us consider the 1 regularized logistic regression, in this case, the dual loss f ˚is not smooth since the loss function f is not strongly convex. However, one can overcome this issue by restricting on any compact set as in [START_REF] Dünner | Primal-dual rates and certificates[END_REF]. Let us consider the one dimensional toy example where β P R, X " Id and y " ´1, f pXβq " logp1 `exppβqq. We have, ∇ 2 f pβq " exppβq{p1 `exppβqq 2 . Then for Problem (3.1), since P λ p βpλq q ď P λ p0q, we have | βpλq | P r0, logp2q{λs and the smoothness constant of the dual can be estimated as ν f ˚" p1 `expplogp2q{λqq 2 at each step. This unfortunately leads to an infeasible algorithm with tiny step size since for λ " λ max {10 we already have ν f ˚« expp100q in Proposition 31. Moreover, note that the dual function is not polynomial thus algorithm previously proposed in [START_REF] Giesen | Approximating concavely parameterized optimization problems[END_REF] do not handle the logistic regression case. Yet, as we will see in the next paragraph, we can efficiently build an -path with Op1{ ? q complexity thanks to Generalized Self-Concordance bounds.

Complexity Analysis and Link with the Regularity of the Loss

Lower bounds. From our analysis, the lower bound on the duality gap in Lemma 12 tells us how close the proposed step in Proposition 29 is from the best possible step one can achieve for smooth loss functions. Indeed, at the optimal solution, we have Gap t " ∆ t " 0. Thus the largest possible step -starting at λ t and moving in decreasing order -is given by the smallest λ between λ min and λ t such that U f ˚´´λ t θpλtq ˆp1 ´λ λt q ¯ą . Hence, any algorithm for computing -path for U f ˚-uniformly convex dual loss, have a complexity of order Op1{U ´1 f ˚p qq. Our framework has the noticeable advantage to naturally adapt to the regularity of the loss function and do not require specific algebra for each function as it was done previously in the literature.

Upper bounds. We denote T the cardinality of the grid returned by Algorithm 4. Let pρ t q tPr0:T ´1s be the set of step size needed to cover the interval rλ min , λ max s. Using ρ t " 1 ´λt`1 λt , we have

log ˆλmax λ min ˙" log ˜T ´1 ź t"0 λ t λ t`1 ¸" T ´1 ÿ t"0 log ˆ1 1 ´ρt ˙.
Hence, denoting ρ min p q " min tPr0:T ´1s ρ t , we have

T ˆρmin p q ď log ˆλmax λ min ˙. (3.24)
Moreover, to simplify our analysis we will suppose that at each step λ t , we have solved the optimization problem with two measures of accuracy Gap t ď o and ∆ t ď o for o ă . Also, we assume that we explore the parameter range in decreasing order. Then we recall from Lemma 12 that Gap λ pβ pλtq , θ pλtq q ď Q t,V f ˚pρq which is smaller than as soon as V f ˚,zt p´z t ¨ρq ď ´ o . Since ρ min p q " min tPr0:T ´1s ρ t " min tPr0:T ´1s suptρ : Q t,V f ˚pρq ď u, then

ρ min p q ě min tPr0:T ´1s suptρ : V f ˚,zt p´z t ¨ρq ď ´ o u . (3.25)
Hence the complexity of the path is bounded as follows.

Proposition 34 (Complexity for Uniformly Convex Functions). If f and f ˚are uniformly convex and uniformly smooth, then

T ď log ˆλmax λ min ˙ˆV f ´1 ´f pXβ pλ 0 q q `2 o ρ 0 p q V´1 f ˚p ´ o q .
Proof. In the uniformly convex case, V f ˚,zt p´z t ¨ρq " V f ˚pρ z t q, hence we can deduce from Equation (3.24) and (3.25) that

T ď 1 ρ min p q ˆlog `λmax λ min ˘ď log `λmax λ min ˘ˆmax tPr0:N ´1s z t V ´1 f ˚p ´ o q
, so we just need to uniformly bound z s . This bound follows from (3.17) and (3.16).

Note that the initial step size ρ 0 p q ď V ´1 f ˚p ´ o q{ z 0 . Hence for loss function f such that V f ˚p¨q " ν f ˚ ¨ d {d, the complexity of the -path corresponds to T P Op1{ d ? q.

For Generalized Self-Concordant functions, we show explicitly the complexity only for the logistic regression.

Proposition 35 (Complexity for Logistic Regression). If f pzq "

ř n i"1 logp1 `ez i q ´yi z i , then there exists B f ˚,λ 0 ą 0 and B 1 f ˚,λ 0 ą 0 such that

T ď log ˆλmax λ min ˙max ˜Bf ˚,λ 0 ? ´ o , 1 B 1 f ˚,λ 0 ¸.
Proof. We recall that f ˚is generalized self-concordant with ν " 4. The function w ν p¨q is increasing and w ν p0q " 1{2, hence there exists a positive constant a ν such that w ν pτ q ď 1 for τ P r0, a ν s (in fact a ν " 1 for the logistic regression). Thus, provided ρd ν pz t q ď a ν , we can derive the bound V f ˚p´z t ˆρq ď ρ 2 z t 2 zt . Like in the uniformly convex case, in order to get the complexity of the -path, we also need a uniform bound on z t zt .

By taking (3.5) on f ˚with x Ð z t and z Ð 0, we obtain

U f ˚,zt p´z t q ď f ˚p0q ´f ˚pz t q ´x∇f ˚pz t q, ´zt y " f p∇f ˚pz t qq " f pXβ pλtq q ´∆t ď f pXβ pλtq q ` o ď f pXβ pλ 0 q q `2 o ρ 0 p q ` o
where we have used the equality case of Fenchel-Young inequality and f ˚p0q " ´inf f " 0.

Since ∇ 2 f ˚pzq " diagph 1 pz 1 q, ¨¨¨, h n pz n qq where h i pz i q " 1{pz i p1 ´zi qq for all i P rns, we have z 2 z "

ř n i"1 z 2 i h i pz i q.
Whence we deduce that z 2 Ñ 0 ñ z z Ñ 0. This gives that if z z Ñ `8, then z 2 must be lower bounded. Then, as

U f ˚,z p´zq " w 4 ´´ z 2 z z 2 ¯ z 2 z Ñ
`8 when z z Ñ 8, we conclude that z t zt must be upper bounded by a quantity depending only on f ˚and on f pXβ pλ 0 q q `2 o ρ 0 ` o . Let us denote this bound B f ˚,λ 0 . Likewise, we can show that d ν pz t q is upper bounded by a constant B 1 f ˚,λ 0 . 

Validation Path and Approximation of the Best Hyperparameter

Considering the validation data pX 1 , y 1 q and loss L, we define the validation error of the estimate β as E v pβq " Lpy 1 , X 1 βq .

(3.26)

The objective is to solve the bi-level optimization problem arg min λPrλ min ,λmaxs E v p βpλq q " Lpy 1 , X 1 βpλq q s.t. βpλq P arg min

βPR p f pXβq `λΩpβq .
Recent works address this problem, by using gradient-based algorithms see for instance (Pedregosa, 2016), have shown promising results in computational time and scalability w.r.t. multiple hyperparameters. However, they require assumptions such as smoothness of the validation function E v and Non-singular Hessian of the inner optimization problem at optimal values which are difficult/impossible to check in practice since they rely on the exact knowledge of the optimal solutions and fail to hold for root mean square error and indicator loss. Moreover, they can only guarantee convergence to stationary point.

Here we show that with a safe and simple exploration of the parameter space, our algorithm has a global convergence property. Indeed, for any fixed tolerance v , Algorithm 4 returns a solution with a validation error no larger than v to the smallest possible error.

The following conditions, on the validation loss and on the inner optimization objective, are (3.28)

The assumption on the loss function is verified for norms (regression case) and indicator function (classification). Indeed, for any norm Lpa, bq " a ´b , we have from the triangle inequality ˇˇ a ´b ´ a ´c ˇˇď b ´c . For the indicator function, since

|1 abă0 ´1acă0 | ď 1 bcă0 , we have ˇˇ1 n ř n i"1 1 a i b i ă0 ´1 n ř n i"1 1 a i c i ă0 ˇˇď 1 n ř n i"1 1 b i c i ă0 .
Definition 18. Given a primal solution βpλq at the regularization parameter parameter λ, we define the gap on the validation error between two parameter λ and λ t as ∆E v pλ t , λq :" ˇˇE v p βpλq q ´Ev pβ pλtq q ˇˇ. (3.29)

Suppose we have fixed a tolerance v on the gap on validation error i.e. ∆E v pλ t , λq ď v . Based on Inequality (3.27) in assumption (A1), if there is a region R λ that contains the optimal solution βpλq at parameter λ, then we have

∆E v pλ t , λq ď LpX 1 βpλq , X 1 β pλtq q ď max βPR λ LpX 1 β, X 1 β pλtq q.
A simple strategy consists in choosing R λ as a ball. Indeed, under the assumption (A2), we have Lemma 14 (Gap Safe Region). Assuming that P λ pβq is µ-strongly convex, the primal optimal solution βpλq belongs to the euclidean ball Bpβ pλtq , r λ,µ q where r λ,µ :" r λ,µ pβ pλtq , θ pλtq q " c 2 µ Gap λ pβ pλtq , θ pλtq q .

(3.30) Such a ball based on the duality gap radius was recently used to accelerate sparse optimization algorithm by iteratively identifying, with guarantee, the sparsity structure of the optimal solutions. Such strategy are known in machine learning as safe screening rules (El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF]Fercoq et al., 2015;[START_REF] Shibagaki | Simultaneous safe screening of features and samples in doubly sparse modeling[END_REF]Ndiaye et al., 2017b).

Since the radius of the ball depends explicitly on the duality gap, we can sequentially track a range of parameters for which the gap on the validation error remains below a prescribed tolerance by controlling the optimization error measured with the duality gap. Hence we define

ξp v , µ, X 1 q :" $ ' & ' % µ 2 ˆ´ v X 1 ¯2 (regression case), µ 2 ˆˆx 1J ptn v u`1q β pλ t q x 1 ptn v u`1q
˙2 (classification case).

Proposition 36 (Grid for a prescribed validation error). Suppose that we have solved problem (3.1) for a parameter λ t up to accuracy Gap λt pβ pλtq , θ pλtq q ď ξp v , µ, X 1 q, then we have ∆E v pλ t , λq ď v for all λ P λ t ˆ"1 ´ρ t pξp v , µ, X 1 qq, 1 `ρr t pξp v , µ, X 1 qq ı where ρ t p q and ρ r t p q for ą 0 are defined in Proposition 29.

Remark 13 (Stopping condition for the training step). Considering the current regularization parameter λ " λ t , we have ∆E v pλ t , λ t q " ˇˇE v p βpλtq q ´Ev pβ pλtq q ˇˇď v provided that duality gap satisfies Gap λt pβ pλtq , θ pλtq q ď ξp v , µ, X 1 q. This gives us a stopping criterion for solving problems on the training set relative to the desired accuracy v on the validation set pX 1 , y 1 q.

Proof. In case where the loss function is a norm, we have:

max βPBpβ pλ t q ,rq
LpX 1 β, X 1 β pλtq q " max βPBpβ pλ t q ,rq X 1 pβ ´βpλtq q ď r λ,µ X 1 where r λ,µ is defined in Equation (3.30). Hence by using the bounds on the duality gap in Lemma 12, we can ensure ∆E v pλ t , λq ď v for all ρ "

1 ´λ{λ t such that Q t,V f ˚pρq ď µ 2 v 2 X 1 2 .
For the indicator loss function, using the inequality ´2ab ď pa ´bq 2 ´b2 for a " x 1 J i β and b " x 1 J i β pλ 0 q and |x 1 J i pβ ´βpλ 0 q q| ď r x 1 i for all β P Bpβ pλ 0 q , rq we have:

´2px 1 J i βqpx 1 J i β pλ 0 q q ď pr x 1 i q 2 ´px 1 J i β pλ 0 q q 2 .
Hence we obtain the following upper bound max βPBpβ pλ 0 q ,rq LpX 1 β, X 1 β pλ 0 q q " max

βPBpβ pλ 0 q ,rq 1 n n ÿ i"1 1 px 1J i β pλ 0 q qpx 1J i βqă0 ď 1 n n ÿ i"1 1 |x 1J i β pλ 0 q |ďr x 1 i .
By using the bound on the duality gap, we can ensure ∆E v pλ 0 , λq ď v for all λ such that:

# $ & % i P rns : ξ i :" µ 2 ˜x1 J i β pλ 0 q x i ¸2 ď Q t,V f ˚p1 ´λ{λ t q , .
-

ď tn v u.
By denoting `ξpiq ˘iPrns the (increasing) ordered sequence, we need the inequality to be true for at most the tn v u first values i.e. we choose λ such that:

Q t,V f ˚ˆ1 ´λ λ t ˙ă µ 2 ˜x1 J ptn v u`1q β pλ 0 q x 1 ptn v u`1q
¸2 .

The Algorithm 5 outputs a discrete set of parameters Λ val such that tβ pλtq for λ t P Λ val u is an v -approximation path for the validation objective function. As a direct consequence, for all λ in rλ min , λ max s, it exists λ t P Λ val outputted by Algorithm 5, such that

E v pβ pλtq q ´ v ď E v p βpλq q.
By taking successively, the minimum over all λ t in the grid on the left hand side, and the minimum over all λ in the parameter range on the right hand side, we obtain Corollary 1. If the set tβ pλtq for λ t P Λ val u is an v -path for the validation function, then .5 -Selecting the optimal hyperparameter for 1 Elastic Net regression at different accuracy v and for Diabetes data set with n " 442 observations and p " 10. We illustrate the parameter selected by our algorithm at different precision levels. The color map ranges from yellow (low precision) to dark red (high precision)

min λtPΛ val E v pβ pλtq q ´min λPrλ min ,λmaxs E v p βpλq q ď v . ( 3 

Support Path for Sparse Regularization

In Chapter 2, we have provided a general framework for identifying active structure in convex optimization problems and have introduced the Gap Safe Rules which allows to eliminate more Selected Parameters wrt v Figure 3.6 -Selecting the optimal hyperparameter for 1 Elastic Net regression at different accuracy v for Synthetic data set n " 500 observations and p " 5000. We illustrate the parameter selected by our algorithm at different precision levels. The color map ranges from yellow (low precision) to dark red (high precision)

variables than previous methods. In this section, we study how to follow the variations of the active set w.r.t. to the regularization parameter λ. For simplicity, we restrict the discussions to the case where Ω is the 1 norm. Extensions to the general case taking into account the svm or other hierarchical penalties should not pose difficulties.

Following the results in Section 2.2.3, the sequential screening rule for 1 norm reads @j P rps :

|X J j θ pλtq | ` X j r t ă 1 ùñ βpλq j " 0 . (3.32)
where r t is the Gap Safe Sphere radius sequentially defined by

r t :" c 2 γλ 2 Gap λ pβ pλtq , θ pλtq q .
We recall from Definition 10, that the active sets for 1 norm are given by Âpλtq :"

! j P rps : |X J j θpλtq | ě 1 ) , ( 3 

.33)

A pλtq :"

! j P rps : |X J j θ pλtq | ` X j r t ě 1
) .

(3.34)

Leveraging our bounds on the duality gap Lemma 12, we can lower and upper bound the sequential gap screening radius as

d 2 γλ 2 Q t,U f ˚ˆ1 ´λ λ t ˙ď c 2 γλ 2 Gap λ pβ pλtq , θ pλtq q ď d 2 γλ 2 Q t,V f ˚ˆ1 ´λ λ t ˙. (3.35)
This allows to explicitly control the size of the active set with the sparsity inducing parameter λ. Indeed, for a non active feature j i.e. j P Āpλtq , the bound (3.35) guarantee that it remains non active at regularization parameter λ i.e. j P Āpλq for all λ in rλ j,in t , λ t s where

λ j,in t " inf # λ ď λ t : |X J j θ pλtq | ` X j d 2 γλ 2 Q t,V f ˚ˆ1 ´λ λ t ˙ă 1 + . (3.36)
Similarly, if j P A pλtq , then j P A pλq for all λ in rλ j,out t , λ t s where .37) This allows to mimic the Lars algorithm [START_REF] Efron | Least angle regression[END_REF] and check when ' a variable in the active set A pλtq should leave A pλtq and enters in the zero set:

λ j,out t " inf # λ ď λ t : |X J j θ pλtq | ` X j d 2 γλ 2 Q t,U f ˚ˆ1 ´λ λ t ˙ě 1 + . ( 3 
λ out t " min jPA pλ t q λ j,out t , (3.38)
' a variable in the non active set Āpλtq should leave Āpλtq and becomes active:

λ in t " min jP Āpλ t q λ j,out t . (3.39)
Hence, given at step t, the next moment where the active set changes is given by

λ t`1 " mintλ in t , λ out t u . (3.40)
Remark 14. So given A pλtq of size s t , we can find a smaller parameter λ t`1 with a prescribed size of the active set s t`1 " |A pλ t`1 q |. Indeed, we have to choose s t`1 ´st new variable by sorting (in decreasing order) the λ pjq,in t

. If one variable from the active set becomes non active, we select s t`1 ´st `1 instead, and we reiterate.

In the following we show that the variables stay in the safe active set forever once they hit it. Thus, the size of the sequential safe active set is constant between two kink.

Lemma 15. For the Lasso problem, the mapping λ Þ ÝÑ #A pλtq is piecewise decreasing.

Proof. Since for any λ t , Gap λ p βpλtq , θpλtq q " Q t,V f ˚´1 ´λ λt ¯" 1 2 y ´X βpλtq 2 ´1 ´λ λt ¯2, if j P A pλtq , then the next step when j leaves the active set is given by

λ j,out t " inf $ & % λ ď λ t : |X J j θpλtq | ` X j d 2 λ 2 1 2 y ´X βpλtq 2 ˆ1 ´λ λ t ˙2 ě 1 , . - , " inf # λ ď λ t : 1 λ ˆ1 ´λ λ t ˙ě 1 ´|X J j θpλtq | X j y ´X βpλtq + " 0.
For the lasso, the joining time of a non active feature j is explicitly given by

λ j,in t " inf $ & % λ ď λ t : |X J j θppλtqq | ` X j d 2 λ 2 1 2 y ´X βpλtq 2 ˆ1 ´λ λ t ˙2 ă 1 , . - , " inf # λ ď λ t : 1 λ ˆ1 ´λ λ t ˙ă 1 ´|X J j θppλtqq | X j y ´X βpλtq + , " λ t y ´X βpλtq y ´X βpλtq `λt 1´|X J j θppλ t qq | X j
.

Hence from λ t , the next time the active set changes corresponds to the next joining time given by λ t`1 " min jP Āpλ t q λ j,in t . This means that we can compute a safe support path for the Lasso since for any λ P rλ t`1 , λ t s, we have suppp βpλq q Ă A pλtq .

Iteration Complexity of Pathwise Optimization

When solving the primal problem (3.1) at a given parameter λ t , we denote β pλtq k the vector obtained after k iterations and θ pλtq k its associated dual vector.

Lemma 16. Assume that Ω is strongly convex and that we use a linearly convergent algorithm initialized with β pλ t´1 q and let θ pλ t´1 q be its associated dual feasible pair. For some κ ą 0, it holds C f,Ω,X Gap λt pβ pλtq k`1 , θ pλtq k`1 q ď p1 ´κq k Gap λt pβ pλ t´1 q , θ pλ t´1 q q .

Proof. From Equation (2.19), we have

C f,Ω,X Gap λt pβ pλtq k`1 , θ pλtq k`1 q ď p1 ´κq k rP λt pβ pλtq 0 q ´Pλt p βpλq qs ď p1 ´κq k Gap λt pβ pλtq 0 , θ pλtq 0 q .
Hence the conclusion since β pλ t´1 q , θ pλ t´1 q are used as initialization.

Using the bound on the warm start initialization error Lemma 12 and Lemma 16, we deduce

C f,Ω,X Gap λt pβ pλtq k`1 , θ pλtq k`1 q ď p1 ´κq k " λ t λ t´1 Gap t´1 `Vf ˚ˆ´z t p1 ´λt λ t´1 q ˙
where Gap t´1 " Gap λ t´1 pβ pλ t´1 q , θ pλ t´1 q q. Denoting W pρ, δq :" p1 ´ρqδ `Vf ˚p´z t ρq, we have Gap λt pβ pλtq k`1 , θ pλtq k`1 q ď as soon as k ě 1 κ log ˜Cf,Ω,X

W p λ t λ t´1
,Gap t´1 q ¸which means that the iteration complexity at time t can be controlled by the optimization precision at time t ´1 and the ratio between λ t and λ t´1 .

Proposition 37. Assume that Ω is strongly convex and that we use a linearly convergent algorithm initialized with β pλ t´1 q as a warm start initialization at parameter λ t . Then the duality gap at the last step Gap λ T pβ pλ T q k`1 , θ pλ T q k`1 q is smaller than after at most K iterations where

K ď T ÿ t"1 1 κ t log ˜Cf,Ω,X ˆW p λt λ t´1 , Gap t´1 q Gap t ¸, (3.41) 
with W pρ, δq :" p1 ´ρqδ `Vf ˚p´z t ρq and C f,Ω,X :" pσ X ν f `µΩ q{µ Ω for some κ t ą 0.

Numerical Experiments

To illustrate the behavior of our method, we compare the computational times and number of grid point needed to achieve a prescribed error on the duality gap for any regularization parameter λ on a given range rλ min , λ max s. More precisely, given the default grid, commonly used in sklearn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] and glmnet (Friedman et al., 2010b) i.e. λ t " λ max 10 ´δt{pT ´1q (δ " 3 in our experiments), we report the times and numbers of grid point needed to achieve a smaller approximation error (measured thanks to Proposition 30) than the default grid.

Our experiments were conducted with the real and synthetic databases {Diabetes, Leukemia, synthetic (make_regression)} available in sklearn and the climate data NCEP/NCAR Reanalysis [START_REF] Kalnay | The NCEP/NCAR 40-year reanalysis project[END_REF].

Results in Figure 3.4 show that we build a smaller grid thanks to the greater steps we take in each iteration. This often results in a significant gain in computational time. The convergence of our algorithm is illustrated numerically in Figure 3.5 and Figure 3.6 for different value of validation error v .

Conclusion and Perspectives

We have introduced a general framework of approximation of the regularization paths by exploiting the optimality certificates provided by the duality gap. Our approach allows to manage a larger class of learning problem and extends easily to the approximation of the validation path for both classification and regression. Consequently, we have proposed a hyperparameter selection algorithm with a guarantee of global convergence towards the best hyperparameter of the empirical risk on the validation data.

Although providing strong optimality properties, improvements in the overall computation time can be obtained. In fact, the algorithms we have introduced are based on a sequential exploration of the hyperparameter space, which forces us to launch optimization algorithms on parameters that are not necessarily promising. To avoid this issue, we plan to mix our strategy with bandit like algorithm (Li et al., 2016a) that dynamically allows more computational resources to most promising hyperparameter. This can lead to a significant speed up while preserving our guarantees. Note also that our error bounds depends on the duality gap which has to be small when using such a dynamic strategy. In this case, we can rely on the extrapolation of the residual in (Massias et al., 2018b) to accelerate the convergence of the duality gap toward zero. Hence given a grid of parameter, our guess is that we will be able to screen-out faster irrelevant hyperparameters in terms of prediction performance.

Lemma 20. Let β pλtq (resp. β pλ t 1 q ) be an -solution at parameter λ t (resp. λ t 1 ), then we have

ˆ1

´λt 1 λ t ˙´f pXβ pλ t 1 q q ´f pXβ pλtq q ¯ď Gap t 1 `λt 1 λ t Gap t .

where Gap s :" Gap λs pβ pλsq , θ pλsq q for s P tt, t 1 u. Hence the mapping λ Þ Ñ f pX βpλq q is nonincreasing.

Proof. Since βpλq is optimal at parameter λ, we have:

f pXβ pλq q `λΩpβ pλq q ´ ď f pX βpλq q `λΩp βpλq q ď f pXβ pλtq q `λΩpβ pλtq q .

Moreover, f pXβ pλtq q `λΩpβ pλtq q " λ λ t ´f pXβ pλtq q `λt Ωpβ pλtq q ¯`ˆ1 ´λ λ t ˙f pXβ pλtq q ď λ λ t ´f pX βpλtq q `λt Ωp βpλtq q ` ¯`ˆ1 ´λ λ t ˙f pXβ pλtq q ď λ λ t ´f pXβ pλq q `λt Ωpβ pλq q ` ¯`ˆ1 ´λ λ t ˙f pXβ pλtq q .

The last inequality comes from the optimality of βpλtq at parameter λ t . Hence

f pXβ pλq q `λΩpβ pλq q ´ ď λ λ t ´f pXβ pλq q `λt Ωpβ pλq q ` ¯`ˆ1 ´λ λ t ˙f pXβ pλtq q.
At optimality, " 0 and we can deduce that ´1 ´λ λt ¯f pX βpλq q ď ´1 ´λ λt ¯f pX βpλtq q, hence the second result.

We can furthermore bound the norm of the gradient of the loss when the parameter λ varies. A direct application of Lemma 19 and Lemma 20 yields: Lemma 21. Assume that f is ν f -smooth and let β pλ t 1 q (resp. β pλtq ) be an -solution at parameter λ t 1 (resp. λ t ). Then for δ pλ t 1 , λ t q :" λt`λ t 1 λt´λ t 1 , we have V f p´∇f pXβ pλ t 1 q qq ď f pXβ pλtq q `δ pλ t 1 , λ t q.

(3.47)

At optimality " 0 and so δ pλ t 1 , λ t q " 0 and we have

V f p´∇f pX βpλ t 1 q qq ď f pX βpλtq q. (3.48) Lemma 22. Assuming f is U f -uniformly convex, we have ∇f pXβ pλtq q ď r R t and ∆ t 1 ď r ∆ t .
Proof. Since f is convex, we have ∆ t :" f pXβ pλtq q ´f p∇f ˚p´λ t θ pλtq qq ď ´x∇f pXβ pλtq q, ∇f ˚p´λ t θ pλtq q ´Xβ pλtq y ď ∇f pXβ pλtq q ˚ ∇f ˚p´λ t θ pλtq q ´Xβ pλtq ď ∇f pXβ pλtq q ˆU´1 f pGap λt pβ pλtq , θ pλtq qq where the two last inequalities comes from Holder inequality and Lemma 18.

We can also easily obtain the following guarantee on the affine interpolation Proposition 38. Considering primal dual pairs `βpλsq , θ pλsq ˘such that Gap λs pβ pλsq , θ pλsq q ď o for i P tt, t 1 u. For any α P r0, 1s, we define λ :" p1 ´αqλ t `αλ t 1 , β pλq :" p1 ´αqβ pλtq `αβ pλ t 1 q and θ pλq :" p1 ´αqθ pλtq `αθ pλ t 1 q . For any ě o , α :"

λ´λ t 1 λt´λ t 1 and λ t 1 P λ t ˆ" 1 1`ρ , 1 ı we have
Gap λ pβ pλq , θ pλq q ď where ρ "

a 2ν maxpR t , R t 1 qp ´ o q `p∆ t ´ o q 2 ´p∆ t ´ o q ν maxpR t , R t 1 q . (3.49)
Proof. From the convexity of the duality gap, we have:

Gap λ pβ pλq , θ pλq q ď p1 ´αq Gap λ pβ pλtq , θ pλtq q `α Gap λ pβ pλ t 1 q , θ pλ t 1 q q ď p1 ´αq

« λ λ t Gap λt pβ pλtq , θ pλtq q `∆t ˆ1 ´λ λ t ˙`R t ˆ1 ´λ λ t ˙2ff `α « λ λ t 1 Gap λ t 1 pβ pλ t 1 q , θ pλ t 1 q q `R t 1 ˆ1 ´λ λ t 1 ˙``R t 1 ˆ1 ´λ λ t 1 ˙2ff . Since λ t ě λ ě λ t 1 , we have λ λt ď λt λ t 1 , 1 ´λ λt ď 1 ´λt 1 λt and 1 ´λ λ t 1 ď 1 ´λt 1 λt . Hence Gap λ pβ pλq , θ pλq q ďp1 ´αq « λ t λ t 1 o `∆t ˆ1 ´λt 1 λ t ˙`R t ˆ1 ´λt 1 λ t ˙2ff `α « λ t λ t 1 o `Rt 1 ˆ1 ´λt 1 λ t ˙2ff " λ t λ t 1 o `ˆ1 ´λt 1 λ t ˙2 rp1 ´αqR t `αR t 1 s `α∆ t ˆ1 ´λt 1 λ t ˙.
Using a uniform bound independent of α P r0, 1s, we have:

Gap λ pβ pλq , θ pλq q ď λ t λ t 1 o `maxpR t , R t 1 q ˆ1 ´λt 1 λ t ˙2 `∆t ˆ1 ´λt 1 λ t ˙.
Since λ t 1 ď λ t , we have p1´λ t 1 {λ t q 2 ď p1´λ t {λ t 1 q 2 and p1´λ t 1 {λ t q ď ´p1´λ t {λ t 1 q. So we can simplify the bound as Gap λ pβ pλq , θ pλq q ď as soon as pλ t {λ t 1 q o `maxpR t , R t 1 q p1 ´λt {λ t 1 q 2 ∆t p1 ´λt {λ t 1 q ď . Hence we obtain the result by solving the quadratic inequality in x " p1 ´λt {λ t 1 q ď 0.

Chapter 4

Join Optimization for Concomitant Location-Scale Estimations

In the context of high dimensional regression where the number of features is greater than the number of observations, standard least squares need some regularization to both avoid overfitting and ease the interpretation of discriminant features. The Lasso [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] use the 1 norm as a sparsity inducing regularization and is one of the most popular methods for variable selection. It is defined as

βpλq L P arg min βPR p 1 2n y ´Xβ 2 2 `λ β 1 . (4.1)
Though this estimator is well understood theoretically, the choice of the tuning parameter λ still raises critical questions in practice as well as in theory. The statistical guarantees of the Lasso (Bühlmann and van de Geer, 2011, Chapter 6) rely on choosing the tuning parameter proportional to the noise level. Indeed, under the linear model y " Xβ ‹ `σ‹ ε where ε " N p0, 1q and denoting S ‹ " supppβ ‹ q, s ‹ the cardinality of S ‹ and assuming that it exists a (compatibility) constant φ ‹ ą 0 such that 1 n Xβ 2 2 ě φ‹ s‹ β S‹ 2 1 for all β satisfying β ´S‹ 1 ď 3 β S‹ 1 , we have (with high probability):

λ « σ ‹ a n log p implies 1 n X βpλq L ´Xβ ‹ 2 2 ď σ 2 ‹ φ ‹ s ‹ log p n . (4.2)
Unfortunately, the quantity σ ‹ is usually unknown to practitioners. Beside, the noise level is of practical interest since it is also required in the computation of model selection criterion depending on the likelihood such as AIC (Akaike, 1974), BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF], SURE [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF] or in the construction of confidence sets.

A way to estimate both the regression coefficients and the noise level is to estimate them simultaneously e.g. by computing the maximum likelihood at y which leads to the loss function

pβ, σq Ñ logpσq `1 2σ 2 y ´Xβ 2 .
Unfortunately, it fails to be jointly convex. Also, when y " Xβ and σ tends to zero i.e. approaching the boundary of the parameter space, the objective function tends to ´8 making the statistical analysis and the global optimization problem difficult.

In this chapter, we first recall three different strategies used in the literature to alleviate the dependence on the unknown noise σ ‹ of the underlying statistical model.

Perspective transformation. A way to perform such a joint estimation with a convex formulation was proposed in the robust statistic theory [START_REF] Huber | Robust estimation of a location parameter[END_REF] popularized in [START_REF] Huber | Robust Statistics[END_REF] particularly in the context of location-scale estimation and [START_REF] Huber | Numerical solution of robust regression problems[END_REF] proposed an alternating minimization to get the corresponding estimators. It relies on the joint convexity of the perspective of a convex function where the noise level plays the role of a dilation parameter. Later, [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] extended it to handle sparsity inducing penalty in high dimensional setting. It was then thoroughly analyzed in [START_REF] Sun | Scaled sparse linear regression[END_REF], under the name Scaled-Lasso. In this chapter, we coin all these estimators "Concomitant" following the terminology proposed by Huber.

Pivotal estimator. While investigating estimator pivotal w.r.t. the noise level, [START_REF] Belloni | Square-root lasso: Pivotal recovery of sparse signals via conic programming[END_REF] proposed to solve the following convex program: modify the standard Lasso by removing the square in the data fitting term. Thus, they termed their estimator the Square-root Lasso; see also [START_REF] Chrétien | Sparse recovery with unknown variance: a lasso-type approach[END_REF]. Under a standard design assumption it is proved that the Squareroot Lasso reaches optimal rates (4.2) for sparse regression, with the additional benefit that the regularization parameter is independent of the noise level. A second approach leading to this very formulation, was proposed by [START_REF] Xu | Robust regression and lasso[END_REF] to account for adversarial corruption in the design matrix. Interestingly their robust construction led exactly to the Square-root Lasso formulation.

Re-parameterization. An important remark is that the maximization of the likelihood over the canonical parameters of a distribution from the exponential family is a convex problem. Hence, we can recover a jointly convex formulation through a change of variable. This strategy was used by [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] for estimating the parameter of Mixture Regression Models and also recently in [START_REF] Yu | Estimating the error variance in a high-dimensional linear model[END_REF] under the name of Natural Lasso. Interestingly, the perspective formulation above was mentioned in [START_REF] Antoniadis | Comments on: 1 -penalization for mixture regression models[END_REF], in a response to [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] providing another convex alternative for joint estimation.

Among the solutions to compute the Concomitant Lasso, two roads have been pursued so far. On the one hand, considering the Scaled-Lasso formulation, (Sun andZhang, 2010, 2012) have proposed an iterative procedure that alternates Lasso steps and noise estimation steps, the later leading to rescaling the tuning parameter iteratively. On the other hand, considering the Squareroot Lasso formulation, [START_REF] Belloni | Square-root lasso: Pivotal recovery of sparse signals via conic programming[END_REF] have leaned on second order cone programming solvers, e.g. TFOCS [START_REF] Becker | Templates for convex cone problems with applications to sparse signal recovery[END_REF]. Despite the appealing properties listed above, among which the superiority of the theoretical results is the most striking, no consensus for an efficient solver has yet emerged for the Concomitant Lasso.

Our contribution aims at providing a more numerically stable formulation, called the Smoothed Concomitant Lasso. This variant also allows to obtain a fast solver: we first adapt a coordinate descent algorithm to the smooth version of the original problem, see [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF]). Then, we apply the safe rules strategies and the active warm start developed in Chapter 2. This leads to important acceleration in practice both on real and simulated data. Overall, our method presents the same computational cost as for the Lasso, but enjoys the nice features mentioned earlier in terms of statistical properties and is less sensitive to the smoothing parameter. The Concomitant Lasso also has a matrix formulation more suitable to multivariate settings (van de Geer and Stucky, 2016) and a smooth version (Massias et al., 2018a) allows for similar computational gains.

The contents of this chapter are based on our published paper

Authors: E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, J. Salmon.

' "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". Journal of Physics: Conference Series 904 (1), 012006, 2017.

Notation. For a set S Ă rps, we denote by P X,S " X S `XJ S X S ˘`X J S the projection operator onto SpantX j : j P Su, where A `represents the Moore-Penrose pseudo-inverse. We note trpXq the trace of matrix X and p Σ " X J X{n the normalized Gram matrix of X.

Concomitant Lasso

Let us first introduce the Concomitant Lasso estimator following the formulation proposed in (Huber, 1981, Chapter 7).

min βPR p ,σą0 1 n n ÿ i"1 " ρ ˆyi ´xJ i β σ ˙`a  σ , (4.3) 
where ρ is convex and vanishes at 0, a ą 0. Interestingly, the objective function in formulation (4.3) is jointly convex in β and σ (see Proposition 39 below). A simple choice is the quadratic loss ρpzq " z 2 {2. For robustness purpose, (Huber, 1981, Eq. (7.14)) suggested the function ρ to be chosen so that it balances between the 2 2 loss for small error and the 1 loss for large error i.e. ρ " H s where s is a non negative scale and H s originally defined in [START_REF] Huber | Robust estimation of a location parameter[END_REF] as

H s pzq " # z 2 2 if |z| ď s, s|z| ´s2 2 if |z| ą s . (4.4)
A similar point of view can be taken when it comes to defining a regularization function allowing at the same time to have the robustness of Ridge 2 2 but also the sparsity of the Lasso 1 . As a result, we can consider a reversed version of Huber's function, called Berhu

B t pzq " # |z| if |z| ď t, z 2 2t `t 2 if |z| ą t .
(4.5)

Taking into account the dependence in the scale estimates as in (4.3), [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] propose the following concomitant estimator of location and scale as a robust hybrid of Lasso and Ridge regression:

min pβ,σ,τ qPR p ˆR``ˆR``n σ 2 `n ÿ i"1 H s ˆyi ´Xi,: β σ ˙σ `nλ ˜pτ 2 `p ÿ j"1 B t ˆβj τ ˙τ ¸. (4.6)
For s large enough, H s becomes | ¨|2 {2, and for t large enough B t yields | ¨|. In such a case, the optimization over the variable τ disappears from the formulation since | ¨| is 1-homogeneous.

This new estimator simultaneously brings together many desirable properties namely robustness to outliers, the ability to select the most relevant explanatory variables while being equivariant w.r.t. shift and scale transformation. However, there are still important challenges to overcome as suggested by Owen's conclusion:

«It remains to investigate the accuracy of the method for prediction and coefficient estimation. There is also a need for an automatic means of choosing λ. Both of these tasks must however wait on the development of faster algorithms for computing the hybrid traces. » For the sake of simplicity, we will first consider the case where H s (resp. B t ) reduce to the 2 2 loss (resp. 1 regularization). We call Concomitant Lasso [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF][START_REF] Antoniadis | Comments on: 1 -penalization for mixture regression models[END_REF] the solution of the following optimization problem: Definition 19. For λ ą 0, the Concomitant Lasso estimator βpλq is defined as a solution of the primal optimization problem p βpλq , p σ pλq q P arg min

βPR p ,σą0 y ´Xβ 2 2nσ `σ 2 `λ β 1 looooooooooooooomooooooooooooooon P λ pβ,σq . 
(4.7)

The statistical analysis was performed in [START_REF] Sun | Scaled sparse linear regression[END_REF] where this estimator was called Scaled Lasso. Here we take an optimization point of view and propose a faster algorithm for solving (4.7).

Link with the Perspective of Convex Function. Given a convex function f : R n Ñ RYt`8u as the function persp f : R ˆRn Ñ R Y t`8u such that

persp f pσ, rq " # σf `r σ ˘, if σ ą 0, `8, if σ ď 0. (4.8) Proposition 39. If f is convex, then persp f : R ˆRn Ñ R Y t`8u is also (jointly) convex.
Proof. It suffices to show that epi persp f (see Equation (1.11)) is a convex set. By definition, we have epi persp f " tpσ, r, tq P R `ˆR n ˆR : persp f pσ, rq ď tu

" ! pσ, r, tq P R `ˆR n ˆR : f ´r σ ¯ď r σ ) " σ ˆp1, r 1 , t 1 q P R `ˆpR n ˆRq : f pr 1 q ď t 1 ( " R `ˆepif.
Whence epi persp f is a Cartesian product of convex sets.

Taking f prq " 1 2n r 2 2 `1 2 , we have 1 2nσ y ´Xβ 2 `σ 2 " persp ˚f pσ, y ´Xβq whence the convexity of problem (4.7) comes from Proposition 39. However, the Concomitant Lasso estimator is ill-defined. Indeed, the set over which we optimize is not closed and the optimization problem may have no solution. Also, the perspective is not lower semi-continuous in general. However, lower semi-continuity is a very desirable property; together with the fact that the function is infinite at infinity, which guarantees the existence of minimizers (Peypouquet, 2015, Proposition 2.19). We circumvent this difficulty by considering instead the Fenchel biconjugate of the objective function which is always lower semi-continuous (Bauschke and Combettes, 2011, proposition 13.32). One can show (Bauschke and Combettes, 2011, Example 13.8) that the Fenchel conjugate of persp f is

persp f pν, θq " # 0, if ν `f ˚pθq ď 0, `8, otherwise.
and

persp ˚f pσ, rq " $ ' ' & ' ' % σf ˚˚`r σ ˘, if σ ą 0, sup θPdomf ˚xθ, ry, if σ " 0, `8,
otherwise.

In our case, f prq " 1 2n r 2 2 `1 2 and so f ˚˚" f and domf ˚" R n . Hence, we get

persp ˚f pσ, rq " $ ' & ' % 1 2nσ r 2 2 `σ 2 , if σ ą 0, 0, if σ " 0 and r " 0, `8, otherwise. 
Taking this lower semi-continuous function leads to a well defined Concomitant Lasso estimator thanks to the following formulation p βpλq , p σ pλq q P arg min βPR p ,σPR persp ˚f pσ, y ´Xβq `λ β 1 .

(4.9)

The only difference with the original one is that we take p σ pλq " 0 if y ´X βpλq " 0. The actual objective function accepts σ " 0 as soon as y " Xβ. In the rest of this chapter, we will write (4.7) instead of the minimization of the biconjugate (4.9) as a slight abuse of notation. We refer to [START_REF] Combettes | Perspective functions: Properties, constructions, and examples[END_REF] for a recent analysis of perspective functions.

Different Approaches and Points of View

As mentioned in the introduction, different independent approaches have led to equivalent formulations of the Concomitant Lasso. Among those we know, there is: Link with the Square-root Lasso. Independently, another approach to overcome dependency of the Lasso estimator (4.1) was investigated in [START_REF] Belloni | Square-root lasso: Pivotal recovery of sparse signals via conic programming[END_REF] through the Square-root Lasso formulation:

βpλq ? Lasso P arg min

βPR p 1 ? n y ´Xβ 2 `λ β 1 . (4.10)
They show that the estimator βpλq ? Lasso is pivotal w.r.t. to the standard deviation σ ‹ and does not require its estimate. Interestingly, this estimator is strongly related to the Concomitant Lasso. Recalling a basic relation in optimization (Hiriart-Urruty and Lemaréchal, 2012, Chapter 0): the decoupling also called transitivity of infima.

Proposition 40 (Decoupling of infima). Let P be a real valued function defined on Z " Z 1 ˆZ2 . The couple of vector pz ‹ 1 , z ‹ 2 q minimizes P over Z if and only if z ‹ 2 minimizes P pz ‹ 1 , ¨q over Z 2 and z ‹ 1 minimizes the function P :

z 1 Þ Ñ inf z 2 P pz 1 , z 2 q over Z 1 . Whence inf pz 1 ,z 2 qPZ P pz 1 , z 2 q " inf z 1 PZ 1 inf z 2 PZ 2 P pz 1 , z 2 q " inf z 2 PZ 2 inf z 1 PZ 1 P pz 1 , z 2 q . (4.11) Applying Proposition 40, the map σ Þ Ñ 1 2nσ y ´Xβ 2 2 `σ 2 is minimized by σpβq " y´Xβ 2 ? n
, whence min βPR p ,σě0 P λ pβ, σq " min βPR p 1 2nσpβq y ´Xβ 2 2 `σpβq 2 `λ β 1 . Then we conclude that ´β pλq ? Lasso , σpλq ? Lasso ¯with σpλq ? Lasso " 1 ? n y ´X βpλq ? Lasso 2 , is a solution of the Concomitant Lasso (4.7) for all λ ą 0. This shows that the Concomitant Lasso is a variational formulation of the Square-root Lasso.

Connection with the Lasso Path. The Lasso estimator (4.1) and the Concomitant Lasso (4.7) are strongly related, they share the same solution path up to rescaling of the regularization parameter. Indeed, by denoting temporarily p βpλq CL , p σ pλq CL q a solution of (4.7) and applying the Fermat's rule, we have:

X J py ´X βpλσq L q P nλσ signp βpλσq L q, @σ ą 0, X J py ´X βpλq CL q P nλp σ pλq CL signp βpλq CL q .
Hence p βpλp σ pλq CL q L , p σ pλq CL q is optimal for problem (4.7). It also gives the connection between the solution path βpλp σ pλq CL q L " βpλq CL . This relation was exploited in [START_REF] Sun | Scaled sparse linear regression[END_REF] in order to compute solutions of the Concomitant Lasso by alternating minimization (see Section 4.6) which turn out to be very efficient if one has access to the full Lasso path (by using for instance Lars homotopy algorithm [START_REF] Efron | Least angle regression[END_REF]). However, as shown in [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF][START_REF] Gärtner | An exponential lower bound on the complexity of regularization paths[END_REF], the complexity of the full regularization path can be exponential in number of features p.

Robustness to Disturbance of the Features. Studying the robustness properties of the Lasso in the presence of a design matrix corrupted with a bounded disturbance, [START_REF] Xu | Robust regression and lasso[END_REF] have shown the following result.

Proposition 41 (Xu et al. (2010, Theorem 1)). Given the uncertainty set U :" tpδ 1 , ¨¨¨, δ p q : δ j 2 ď λ, @j P rpsu, the set of minimizers of the Square-root Lasso coincides with the minimizers of the following robust optimization problem

min βPR p max ∆XPU y ´pX `∆Xqβ 2 .
(4.12) Thus, we have an explicit connection between the Square-root Lasso which is pivotal w.r.t. to the noise level and a robust optimization problem whose solutions ensure protection against disturbances of the matrix of features. This property is therefore transmitted naturally to the Lasso estimators along the entire path of regularization. Therefore, the addition of parsimonious regularization can be re-interpreted as the exclusion of variables contaminated by a malicious disturbance. This highlight a fundamental correspondence between robustness and sparsity.

Critical Parameters for the Concomitant Lasso

Since it is difficult to get the right regularization parameter in advance, a principled way to tune Lasso-type programs is to perform a cross-validation procedure over a pre-set finite grid of parameters. This leads to a data-driven choice of regularizer requiring the computation of many estimators, one for each λ value. Usually, a geometrical grid λ t " λ L max 10 ´δpt´1q{pT ´1q , t P rT s is used, for instance it is the default grid in scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] and glmnet [START_REF] Friedman | Pathwise coordinate optimization[END_REF], with δ " 3. For the Concomitant Lasso, we now show that this method presents some numerical drawbacks. Let us first investigate the Fenchel dual formulation and the solutions for extreme values of λ.

Proposition 42. Denoting ∆ X,λ " θ P R n : X J θ 8 ď 1, λ ? n θ ď 1 ( , the dual formulation of the Concomitant Lasso reads θpλq P arg max (4.13)

For an optimal primal vector βpλq , p σ pλq " y ´X βpλq { ? n. Moreover, the Fermat's rule reads y " nλp σ pλq θpλq `X βpλq , (4.14)

X J py ´X βpλq q P nλp σ pλq B ¨ 1 p βpλq q.

(4.15)

As for the Lasso, the null vector is optimal for the Concomitant Lasso problem as soon as the regularization parameter becomes too large, as detailed in the next proposition.

Proposition 43. We have βpλq " 0 for all λ ě λ max :" X J y 8 y ?

n .

Proof. The Fermat's rule states: p0, p σ pλq q P arg min βPR p ,σą0 P λ pβ, σq ðñ 0 P t´X J yu np σ pλq `λB 8 ðñ 1 np σ pλq X J y 8 ď λ.

Thus, the critical parameter is given by λ max " X J y 8 {pnp σ pλq q, so the result follows noticing that when βpλq " 0 one has p σ pλq " y { ? n ą 0 (remind that we assumed y ‰ 0, since otherwise p0, 0q would be a solution for any λ).

However, for the Concomitant Lasso, there is another extreme. Indeed, there exists a critical parameter λ min such that the Concomitant Lasso is equivalent to the Basis Pursuit [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] for all λ ď λ min and gives an estimate p σ pλq " 0. We recall that the Basis Pursuit and its dual are given by βBP P arg min Proposition 44. For any λ ď λ min :" 1{p θBP ? nq, p βBP , 0q is optimal for P λ and θBP is optimal for D λ .

Proof. By strong duality in the Basis Pursuit problem βBP 1 " xy, θBP y. Now, p βBP , 0q is admissible for P λ (see formulation (4.9)) and θBP is admissible for D λ as soon as λ ď λ min :" 1{p θBP ? nq. One can check for λ ď λ min that P λ p βBP , 0q " λ βBP 1 " λxy, θBP y " D λ p θBP q.

We conclude that p βBP , 0q is optimal for the primal and θBP is optimal for the dual.

We can guarantee the existence of minimizers to the Concomitant Lasso, even if p σ pλq " 0, but the problem becomes more and more ill-conditioned for smaller and smaller p σ pλq . The previous proposition shows that for too small λ's, a Basis Pursuit solution will always be found, though numerically this might be challenging to get. Indeed, when λ approaches λ min , a coordinate descent algorithm (similar to the one described in Algorithm 6) encounters trouble to perform dual gap computations. This is because we estimate the dual variable by a ratio having both denominator and numerator of the order of σ, which is problematic when σ Ñ 0, see Eq. (4.27).

A solution could be to pre-compute λ min to prevent the user from requesting computation involving λ's too close from the critical value. Nevertheless, solving the Basis Pursuit problem first, to obtain λ min , is not realistic. For instance, the split Bregman algorithm [START_REF] Goldstein | The split Bregman method for L1-regularized problems[END_REF] involves a sequence of Lasso problems to solve. In homotopy approaches (i.e. when computing a path of λ's) that we consider, the most difficult problem to solve are the one associated with λ close to 0. Hence attacking the problem by first solving the hardest case will slow down the whole process, as one would not benefit from warm start computations.

To avoid these issues, we propose a slight modification of the objective function by adding a constraint on σ. We refer to this method as the Smoothed Concomitant Lasso following the terminology introduced by [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF], see also [START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF] for more on smoothing in optimization.

Smoothed Concomitant Lasso

We now introduce our Smoothed Concomitant Lasso, by adding a noise level limit σ 0 , aimed at avoiding numerical instabilities for too small λ values.

Definition 20. For λ ą 0 and σ 0 ą 0, the Smoothed Concomitant Lasso estimator p β pλ,σ 0 q and its associated noise level estimate p σ pλ,σ 0 q are defined as solutions of the primal optimization problem p p β pλ,σ 0 q , p σ pλ,σ 0 q q P arg min βPR p ,σPR y ´Xβ 2 2nσ `σ 2 `λ β 1 `ιrσ 0 ,`8r pσq looooooooooooooooooooooooomooooooooooooooooooooooooon P λ,σ 0 pβ,σq .

(4.17)

Remark 16. Another simple smoothing consists in adding a term of the form 0 {p2nσq for 0 ą 0 which leads to

min βPR p ,σą0 y ´Xβ 2 2 ` 0 2nσ `σ 2 `λ β 1 " min βPR p b y ´Xβ 2 2 ` 0 `λ β 1 .
However the obtained estimator will not satisfies the scale equivariance property, though leading to a twice continuously differentiable objective, allowing second order approaches such as proximal newton algorithm (Lee et al., 2014).

In the same way that we have expressed the link between Concomitant Lasso and Square-root Lasso, we find that the Smoothed Concomitant Lasso is a variational formulation of the (shifted) Huber criterion applied to 2 . For σ 0 ą 0, let H σ 0 be the function of u P R define as To solve non-smooth optimization problems, algorithms based on first order information like the subgradient method have convergence rates in Op1{ 2 q which is considered to be slow for large scale problems. An adequate way to improve the rate is to finely exploit the structure of the functions involved and to solve a smooth representation of the problem while maintaining optimality guarantees on the initial problem. This strategy has been used successfully in [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] and leads to an improved rate of Op1{ q for "max"-type functions. Here we recall the smoothing techniques following the unified presentation in [START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF].

H σ 0 puq " # u 2 2σ 0 `σ0 2 if |u| ď σ 0 ,
A key idea is that a proper, closed and convex function P is 1{ν-smooth if and only if its conjugate P ˚is ν-strongly convex (see Proposition 3). Hence to find a smooth approximation of a non-smooth function P , it suffices to add a strongly convex regularization on its conjugates.

For a proper, closed and convex function P , we recall that the Fenchel conjugation is an involution i.e.

P pzq " P ˚˚pzq :" sup Under the lighting of this smoothing tools, similarly to the connection between Square-root Lasso and Concomitant Lasso, we have the connection between a Smoothed Square-root Lasso and the Smoothed Concomitant Lasso.

Smoothing of the Euclidean Norm.

For P pzq " z 2 , wpzq " z 2 2 {2 and µ " σ 0 ? n, we have P σ 0 pzq " H σ 0 ? n p z 2 q ´σ0

? n 2 . Whence the smoothed counterpart of the Square-root Lasso reads:

min βPR p H σ 0 ? n p y ´Xβ 2 q ´σ0 ? n 2 `λ β 1 .
Remark 17 (Smoothing of the 1 norm). For P pzq " ř n i"1 |z i |, wpzq " z 2 2 {2 and µ " σ 0 , we have P σ 0 pzq " ř n i"1 H σ 0 py i ´xJ i βq ´σ0 n 2 . Whence the smoothed counterpart of the Least Absolute Deviation (LAD) with Lasso penalty reads: [START_REF] Huber | Robust estimation of a location parameter[END_REF] 

min βPR p n ÿ i"1 H σ 0 py i ´xJ i βq ´σ0 n 2 `λ β 1 .
Note that, without the 1 penalty term, this leads to the re-weighted iterative least squares algorithm to compute the LAD regression [START_REF] Schlossmacher | An iterative technique for absolute deviations curve fitting[END_REF][START_REF] Lange | Optimization transfer using surrogate objective functions[END_REF], see also the variational surrogate in [START_REF]Incremental majorization-minimization optimization with application to large-scale machine learning[END_REF].

The above smoothing techniques improve the conditioning of non-smooth convex optimization problems and make it possible to use algorithms with better convergences speeds. This, combining with the high performance of (proximal) coordinate descent algorithms [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF] allows us to tackle efficiently large scale problems.

Concurrently to our work, (Li et al., 2016b) adopted the smoothing of the euclidean norm point of view combined with an Iterative Soft-thresholding algorithms. However, their strategy has two noticeable drawbacks:

-Due to full gradient update, each iteration of their algorithm is expensive and it may take a large amount of time to converge in large scale setting. -If the smoothing parameter σ 0 is small, their algorithm will make a tiny gradient step which further slows down the progression towards the optimum.

Taking the variational point of view along with a coordinate descent algorithm, safe removal of inactive variables and a new active warm start method in a homotopy continuation framework, we present a faster algorithm with less dependence on the smoothing parameter for solving concomitant estimation problem.

Critical parameter of the Smoothed Concomitant Lasso

Proposition 46. The dual formulation of the Smoothed Concomitant Lasso reads p θ pλ,σ 0 q " arg max

θP∆ X,λ xy, λθy `σ0 ˆ1 2 ´λ2 n 2 θ 2 loooooooooooooooooomoooooooooooooooooon D λ,σ 0 pθq , (4.21) 
for ∆ X,λ " θ P R n : X J θ 8 ď 1, θ ď 1{pλ ? nq ( . Associated to an optimal primal vector p β pλ,σ 0 q , we must have p σ pλ,σ 0 q " σ 0 _ p y ´X p β pλ,σ 0 q { ? nq.

We also have the link-equation between primal and dual solutions:

nλp σ pλ,σ 0 q p θ pλ,σ 0 q `X p β pλ,σ 0 q " y, (4.22)

X J py ´X p β pλ,σ 0 q q P nλp σ pλ,σ 0 q B ¨ 1 p p β pλ,σ 0 q q. (4.23)

Remark 18. The dual problem (4.21) also reads p θ pλ,σ 0 q " arg max

θP∆ X,λ 1 2 y σ 0 n 2 2 ´λ2 2 θ ´y λσ 0 n 2 2 " Π ∆ X,λ ˆy λσ 0 n ˙.
Since ∆ X,λ is convex and closed, the solution p θ pλ,σ 0 q is unique.

A similar reasoning to Proposition 43 gives the following critical parameter.

Proposition 47. We have p β pλ,σ 0 q " 0, for all λ ě λ max :"

X J y 8 npσ 0 _p y { ?

nqq .

Contrarily to the Concomitant Lasso, the parameter corresponding to zero estimates of the noise for the Smoothed Concomitant Lasso is λ min " 0. Indeed, fromRemark 16 we know that p θ pλ,σ 0 q belongs to the boundary of the feasible set hence it is non zero. This combined with the link equation (4.22) and p σ pλ,σ 0 q ě σ 0 ą 0, we have y " X p β pλ,σ 0 q if and only if λ " 0.

Choice of the Smoothing Parameter

In practice, the choice of σ 0 can be motivated as follows:

-Suppose we have prior information on the minimal noise level expected in the data. Then we can set σ 0 as this bound. Indeed, if p σ pλ,σ 0 q ą σ 0 , then the constraint σ ě σ 0 is not active and the optimal solution to Problem (4.17) is equal to the optimal solution to Problem (4.7). The Smoothed Concomitant Lasso estimator will only be different from the Concomitant Lasso estimator when the prediction given by the Concomitant Lasso violates the a priori information.

-Without prior information we can consider a given accuracy , and set σ 0 " . Then, the theory of smoothing [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF] tells us that any {2solution to Problem (4.17) is an -solution to Problem (4.7). Thus we obtain the same solutions, but as an additional benefit we have a control on the conditioning of the problem.

-If departing slightly from the Concomitant Lasso estimator is not too big of an issue, one can also use an arbitrary proportion of the initial estimation of the noise variance i.e. σ 0 " y { ? n ˆ10 ´α. This was our choice in practice, and we have set α " 2. Indeed, taking a large enough value for σ 0 leads to less numerical issues.

Duality gap and link with the Lasso

From the optimality condition in (4.14) and (4.15), one can remark that if p β pλ,σ 0 q is a solution of the Smoothed Concomitant Lasso, then it is also a solution of the Lasso with regularization parameter λp σ pλ,σ 0 q . The following proposition estimates the quality (in term of duality gap) of a primal-dual vector in the Lasso path compared to Concomitant Lasso path. We recall the Lasso problem and its dual:

βλ L P arg min βPR p 1 2n y ´Xβ 2 `λ β 1 loooooooooooooomoooooooooooooon P L λ pβq , θλ L " arg max θPR n : X J θ 8 ď1 1 2n y 2 ´1 2n y ´λnθ 2 looooooooooooooomooooooooooooooon D L λ pθq
.

Hence, defining the duality gap of the Lasso G L λ pβ, θq " P L λ pβq ´DL λ pθq, and the duality gap of the Smoothed Concomitant Lasso G λ,σ 0 pβ, θ, σq " P λ,σ 0 pβ, σq ´Dλ,σ 0 pθq, we have Proposition 48. @β P R p , θ P ∆ X,λ , σ ě σ 0 , G L σλ pβ, θq ď σG λ,σ 0 pβ, σ, θq.

Proof. Since σ ´σ0 ě 0 and λ ? n θ ď 1, we have

σλ 2 n 2 θ 2 " σ ´σ0 2 λ 2 n θ 2 `σ0 λ 2 n 2 θ 2 ď σ ´σ0 2 `σ0 λ 2 n 2 θ 2 . G L σλ pβ, θq " P L σλ pβq ´DL σλ pθq " 1 2n y ´Xβ 2 `σλ β 1 ´1 2n y 2 `1 2n y ´σλnθ 2 " 1 2n y ´Xβ 2 `σλ β 1 ´σλxy, θy `σ2 λ 2 n 2 θ 2 ď σ ˆ1 2nσ y ´Xβ 2 `λ β 1 ´λxy, θy `σ 2 ´σ0 p 1 2 ´λ2 n 2 θ 2 q "
σ pP λ,σ 0 pβ, σq ´Dλ,σ 0 pθqq " σG λ,σ 0 pβ, θq.

Hence, as @λ, p σ pλq ď y { ? n, if the duality gap for the Smoothed Concomitant Lasso is small, so is the duality gap for the Lasso with the corresponding regularization parameter.

Extension to Multi-Task Lasso

The strategies adopted so far to obtain pivotal estimator w.r.t. to the noise level can be extended to matrix formulation with observations Y " XB ‹ `Σ‹ E where E is a standard multivariate Gaussian noise, by considering the matrix formulation with the trace norm as a loss function [START_REF] Van De Geer | χ2-confidence sets in high-dimensional regression[END_REF] min

BPR pˆq Y ´XB ˚`λΩpBq . (4.24)
Following the variational Formulation for the trace norm [START_REF] Argyriou | Convex multi-task feature learning[END_REF], (Bach et al., 2012, Chapter 5.2), (van de Geer and Stucky, 2016, lemma 1) we have

B ˚" 1 2 inf Σą0 trpB J Σ ´1B `Σq ,
which implies that the optimization problem (4.24) is equivalent to the Concomitant estimation min BPR pˆq ,Σą0

1 2 trppY ´XBq J Σ ´1pY ´XBq `Σq `λΩpBq .

Similarly to the Smoothed Concomitant Lasso, the non-smoothness in the loss may causes several numerical issues in the optimization process. Instead, a regularized version of the trace norm was considered in (Massias et al., 2018a) min

BPR pˆq ,ΣľΣ 0 1 2 trppY ´XBq J Σ ´1pY ´XBq `Σq `λΩpBq .
A connection with a perspective transform can also be considered if we rely on the framework for perspective of matrix convex function in [START_REF] Effros | A matrix convexity approach to some celebrated quantum inequalities[END_REF][START_REF] Ebadian | Perspectives of matrix convex functions[END_REF].

Faster Algorithm for Concomitant Lasso Safe Screening Rules

In order to achieve greater computational efficiency, we propose new safe screening rules (using the terminology introduced in the seminal work El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF]) for our problem and we compare their performance. The principle underlying safe screening rules is as follows: one can discard inactive features from the optimization problem, thanks to the sub-differential inclusion (4.15) and to a safe region R such that p θ pλ,σ 0 q P R:

max θPR |X J j θ| ă 1 ñ |X J j p θ pλ,σ 0 q | ă 1 ñ p β pλ,σ 0 q j " 0. (4.25)
Since the dual objective of the Smoothed Concomitant Lasso is λ 2 σ 0 n-strongly concave, we can provide a dynamic and converging SAFE sphere region R, following the methodology introduced in (Ndiaye et al., 2015).

Proposition 49 (Gap Safe rule). For all pβ, σ, θq P R p ˆR`ˆ∆X,λ , then for r " b 2G λ,σ 0 pβ, σ, θq{pλ 2 σ 0 nq, we have p θ pλ,σ 0 q P Bpθ, rq. Thus, we have the following safe sphere screening rule

|X J j θ| `r X j ă 1 ùñ p β pλ,σ 0 q j " 0. (4.26)
Another test, valid when σ 0 " 0, can be derived if we assume upper/lower bounds: to eliminate feature j, it is enough to check whether max θ t|X J j θ| : λ ? n θ ď 1, η ď D λ pθq ď ηu ă 1.

In our implementation, we use the primal and the dual objective as a natural bound on the problem since η " D λ pθ k q ď D λ p p θ pλ,σ 0 q q ď P λ,σ 0 pβ k , σ k q " η.

Proposition 50 (Bound Safe rule). Assume that, for a given λ ą 0, we have an upper bound η P p0, `8s, and a lower bound η P p0, `8s over the Smoothed Concomitant Lasso problem (4.17).

Denote by x j " X j { X j and y 1 " y{ y two unit vectors, and by γ " pη ´σ0 {2q ? n{ y and γ " η? n{ y . Then if one of the three following conditions is met

-|X J j y 1 | ą γ and γ|X J j y 1 | `a1 ´γ2 b 1 ´pX J j y 1 q 2 ă λ ? n{ X j , -γ ď |X J j y 1 | ď γ and 1 ă λ ? n{ X j , -|X J j y 1 | ă γ and γ|X J j y 1 | `b1 ´γ2 b 1 ´pX J j y 1 q 2 ă λ ? n{ X j ,
the j-th feature can be discarded i.e. p β pλ,σ 0 q j " 0.

(

Figure 4.1 -Screening out the jth feature X j . The gray region is the intersection between the ball tθ P R n : θ ď 1u and the set tθ P R n : γ ď θ J y 1 ď γu, for the three possible regimes. The point θ displayed above is the one achieving maxt|θ J X j | : θ ď 1, γ ď y 1 J θ ď γu, where X j is any feature we aim at screening out.

First, note that there are two privileged directions in the optimization problem at stake: X j and y. Then, we can see that the dual feasible set is constrained to be inside the Euclidean unit ball, and by strong duality we know that γ ď θ J y 1 ď γ. Hence, to screen out X j , we aim at solving maxt|θ J x| : θ ď 1, γ ď y 1 J θ ď γu, for any x " X j (not yet dis-activated by a previous safe screening). As we can see on Figure 4.1, there are three regimes depending on the position of X j relative to the bound constraints. Technical details of the derivation can be found in Section 4.6.

Smoothed Concomitant Lasso algorithm (SC)

We first present the inner loop of our main algorithm, i.e. the implementation of coordinate descent for the Smoothed Concomitant Lasso. In Algorithm 6, we denote by A the active set, i.e. the set of coordinates that we have not screened out. For safe screening rules, this set is guaranteed to contain the support of the optimal solution. We now present in Algorithm 7, the fast solver we proposed for the Smoothed Concomitant Lasso, relying on the three following key features: coordinate descent, Gap Safe screening rules and improved warm start propositions. 

Coordinate Descent

The algorithm we consider to compute the Smoothed Concomitant Lasso is coordinate descent, an efficient way to solve Lasso-type problem (even for multiple values of parameters) [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. Previous attempts mainly focused on iteratively alternating Lasso steps along with noise level estimation [START_REF] Sun | Scaled sparse linear regression[END_REF] 1 , or conic programming [START_REF] Becker | Templates for convex cone problems with applications to sparse signal recovery[END_REF]. In (Li et al., 2016b), written concurrently to this work, the authors consider ISTA, a first order method using full gradient information at each iteration.

Here we provide a simple and efficient coordinate descent approach, cf. Algorithm 6. Our primal objective P λ,σ 0 can be written as the sum of a convex differentiable function f pβ, σq " y ´Xβ 2 {p2nσq `σ{2 and of a separable function gpβ, σq " λ β 1 `ιrσ 0 ,`8r pσq. Moreover, for σ ě σ 0 ą 0, the gradient of f is Lipschitz continuous. Hence, we know that the coordinate descent method converges to a minimizer of our problem [START_REF] Yun | On the iteration complexity of cyclic coordinate gradient descent methods[END_REF]. We choose to update the variable σ every other iteration because this can be done at a negligible cost.

Remark 19 (Larger (Coordinate) Gradient Step). For σ 0 ď σ, the function f pr, σq " r 2 2 {p2σqσ {2, involved in the variational formulation, is p1{σq-Lipschitz continuous gradient. The Huber criterion (smoothed variant of the loss of the Square-root Lasso) H σ 0 is p1{σ 0 q-Lipschitz continuous gradient. A (coordinate) gradient based algorithm directly launched on this loss function will be slowed down when σ 0 is (too) small. However, it will always make larger step in the variational formulation with f pr, σq than the Huber loss H σ 0 specially when σ is much larger than σ 0 . Hence the algorithm (7) enjoys the local smoothness and then is less sensitive to the parameter σ 0 .

Our stopping criterion is based on the duality gap defined by G λ,σ 0 pβ, σ, θq " P λ,σ 0 pβ, σq Dλ,σ 0 pθq. This requires the computation of a dual feasible point, that, provided a primal vector β, can be obtained as follows θ " y ´Xβ λnσ 0 _ X J py ´Xβq 8 _ λ ? n y ´Xβ .

(4.27)

This choice of dual point is motivated by the following convergence result.

Proposition 51. Let pβ k q kPN be a sequence that converges to p β pλ,σ 0 q . Then pθ k q kPN built thanks to (4.27) converges to p θ pλ,σ 0 q . Hence the sequence of dual gap pG λ,σ 0 pβ k , σ k , θ k qq kPN converges to zero.

Active warm start

In Algorithm 7, the first occurrence of CD4SCL is a warming step aimed at improving the current primal point at a low cost. For Gap Safe, we disable it by setting K 0 " 0. For the experiments with the Active warm start, we have set K 0 " K " 5000 and 0 " . Concerning the parameter f ce it governs how often we perform the dual gap evaluation. Due to the complexity of this step, we do not recommend to do this step every pass over the features, but rather compute this quantity less often, every f ce passes. In practice we have fixed its value to f ce " 10 for all our experiments.

Algorithm 7 Coordinate Descent for the Smoothed Concomitant Lasso with the Active warm start screening Input : X, y, , 0 , K, K 0 , f ce , pλ t q tPrT ´1s , σ 0 λ 0 " λ max " X J y 8 {p y ? nq, β λ 0 " 0, σ λ 0 " y { ? n A Ð rps for t P rT ´1s do β, σ Ð β λ t´1 , σ λ t´1 (previous -solution)

// Get previous -solution β, σ, _ Ð CD4SCLpX A , y, 0 , K 0 , f ce , λ t , σ 0 , β, σq // Active warm start step β, σ, A Ð CD4SCLpX , y, , K , f ce , λ t , σ 0 , β, σq // Standard loop β λt , σ λt Ð β, σ Output: pβ λt q tPrT ´1s , pσ λt q tPrT ´1s

Re-parameterization of Exponential Family

By studying finite mixture of regressions model in a context where the number of covariates are larger than the sample size, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] proposed to use a 1 -penalized maximum likelihood estimator in order to obtain a join estimation of the mean parameter and noise level. Unfortunately, a direct formulation leads to the following non-convex optimization problem

min βPR p ,σ 2 logpσq `1 2nσ 2 y ´Xβ 2 2 `λ β 1 .
Moreover, the corresponding estimators fail to be equivariant under scaling of the responses vector y. To overcome the aforementioned drawbacks, they propose a scaling of the regularization parameter with σ to achieves equivariance and an adequate re-parameterization to obtain convexity.

Scaled Regularization. As the estimator of the noise is indirectly affected by the amount of regularization λ, it is beneficial to take it into account as follows

min βPR p ,σ 2 logpσq `1 2nσ 2 y ´Xβ 2 2 `λ β 1 σ . (4.28)
It is now easy to see that the obtained estimator is equivariant under scaling of y but the optimization problem still non jointly convex (indeed it is not convex in σ).

Convex Re-parameterization. By simply taking the change of variable This convexity obtained by a simple change of variable is strongly related to the fact that Maximum Likelihood Estimator (MLE) with a distribution for the exponential family naturally leads to convex optimization problem. We recall from [START_REF] Brown | Fundamentals of statistical exponential families: with applications in statistical decision theory[END_REF] the classical definition and convexity properties of exponential model.

θ j " β j σ , ρ " 1 σ , ( 4 
Definition 22 (Exponential Family). Let ν be a σ-finite measure and λpθq " ş e θy νpdyq its Laplace transform and N :" tθ : λpθq ă `8u. For P pθq " logpλpθqq, we define p θ pyq " exppxθ, yy ´P pθqq .

(4.31)

The family of density tp θ : θ P Θ Ă N u is called (standard) exponential family.

Proposition 52. N is a convex set and P is a convex function on N . Furthermore, P is lower semi-continuous on R d and continuous on the interior of N .

Proof. Let α P r0, 1s, we have:

λpαθ 1 `p1 ´αqθ 2 q " ż e pαθ 1 `p1´αqθ 2 qy νpdyq " ż ´eθ 1 y ¯α ´eθ 2 y ¯1´α νpdyq ď ˆż e θ 1 y νpdyq ˙α ˆż e θ 2 y νpdyq ˙1´α by Holder's inequality

" λpθ 1 q α λpθ 2 q 1´α .
Then θ 1 and θ 2 belong to N implies αθ 1 `p1 ´αqθ 2 also belongs to N . Thus N is a convex set and the convexity of P follows:

P pαθ 1 `p1 ´αqθ 2 q " logpλpαθ 1 `p1 ´αqθ 2 qq ď α logpλpθ 1 qq `p1 ´αq logpλpθ 2 qq " αP pθ 1 q `p1 ´αqP pθ 2 q.

Hence for a random variable y with gaussian distribution N pµ, σ 2 q, we have p pµ,σ 2 q pyq " 1 ? 2πσ 2 exp " ´py ´µq 2 2σ 2 * " exp xpθ 1 , θ 2 q, py, y 2 qy ´P pθ 1 , θ 2 q ( (4.32) where θ " pθ 1 , θ 2 q " ˆµ σ 2 , ´1 2σ 2 ˙and P pθq " ´θ2

1 4θ 2 `1 2 log ˆ´π θ 2 ˙. (4.33)
Hence considering a regression setting where µ " Xβ, and considering the change of variable

φ j " β j σ 2 , ρ " 1 σ 2 , (4.34)
the 1 -penalized MLE in (4.32) leads to the Natural Lasso proposed in [START_REF] Yu | Estimating the error variance in a high-dimensional linear model[END_REF])

min φPR p ,ρą0 ´1 2 logpρq `ρ y 2 2 2n ´1 n y J Xφ ` Xφ 2 2 2nρ `λ φ 1 . (4.35)
The obtained estimator is jointly convex but fail to be equivariant. Written in a factorized form, we see better the similarity with the estimator proposed by [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] shows the benefit one can obtain thanks to the safe screening rules introduced above. The Bound safe rule on the Smoothed Concomitant Lasso problem does not show significant acceleration w.r.t. the Gap Safe rule. Indeed, the Gap Safe rule greatly benefits from the convergence of the dual vector, leading to smaller and smaller safe sphere as the iterations proceeds (Fercoq et al., 2015;Ndiaye et al., 2015). Another nice feature for the Gap Safe rules relies on a new warm start strategy when computing the full grid pλ t q tPT . For a new λ, one first performs the optimization over the safe active set (i.e. the non discarded variables) from the previous λ. This active warm start strategy improves the warm start by providing a better primal vector. It helps achieving solutions with great precision at lower cost (up to 8ˆspeed-up on the Leukemia dataset). The synthetic datasets are generated with the settings (n " 100, p " 500, ρ " 0.6, snr " 5, s " 0.9, 50 replications) As noted earlier in [START_REF] Fan | Variance estimation using refitted cross-validation in ultrahigh dimensional regression[END_REF], spurious correlations can strongly affect sparse regression and usually lead to large biases. This makes the standard deviation estimation very challenging and affects the cross-validation estimator based on the Lasso as they usually underestimate the standard deviation. The phenomenon is amplified when one uses least squares refitting on the cross-validated Lasso, as noticed in [START_REF] Reid | A study of error variance estimation in lasso regression[END_REF]. Here we show an example where refitting cross-validation degrades the estimation. Results are presented as boxplots in Figure 4.3(a) (see Section 4.6 for additional settings).

Performance of Standard Deviation Estimators

In our experiments, we observe that SC and SZ are very efficient in high sparsity settings with low correlations, correcting for the positive bias of the estimator estimator from (Städler et al., 2010) (SBvG). In [START_REF] Reid | A study of error variance estimation in lasso regression[END_REF], it was also argued that the cross-validation estimator based on Lasso is more stable and performs better when the sparsity decreases and when the snr increases. We would like to emphasize that this is not the case when one performs a cross-validation procedure on the Concomitant Lasso. Here, we show that the latter achieves performances of the same order than the Lasso. It is worth noting that our method is consistently good over the whole experiments we conducted especially when applying least squares refitting.

Another appealing good property of the Smoothed Concomitant Lasso compared to the Lasso is the invariance of the optimal λ opt :" arg min λPpλtq tPrT s X p β pλ,σ 0 q ´Xβ ‹ 2 w.r.t. different levels of noise. We show on Figure 4.4(a) a kernel density plot of its distribution on synthetic data with different values of σ. A similar experiment was performed in (Li et al., 2016b) leading to the same conclusion with an optimal λ chosen by a train/test procedure. 

Conclusion and Perspectives

We have explored the joint estimation of the coefficients and noise level for 1 regularized regression. We have corrected some numerical drawbacks of the Concomitant Lasso estimator by proposing a slightly smoother formulation, leading to the Smoothed Concomitant Lasso. A fast algorithm, relying both on coordinate descent and on safe screening rules with improved warm start was investigated, and it was shown to achieve the same numerical efficiency than for the Lasso while also estimating the noise level. It could be interesting in future research to extend our work to more general data-fitting terms [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] and to combine sketching techniques as in [START_REF] Pham | Robust sketching for multiple square-root LASSO problems[END_REF].

The linear model considered in this chapter is a special case of the Generalized Linear Model [START_REF] Mccullagh | Generalized Linear Models[END_REF] which turn out to be a special case of Dispersion Model [START_REF] Jorgensen | The theory of dispersion models[END_REF]. In this later case, one assume that the observation y has a probability distribution of the form ppy, µ, σ 2 q " apy, σ 2 q exp ˆ´ py, µq σ 2

˙,

where respectively µ and σ 2 ą 0 are position and dispersion parameters, a is a nonnegative function and a loss function. It allows for a general joint modeling of the mean and dispersion parameter. A future work could be to extent our approach and propose faster algorithm for learning such a model while associated with a variable selection regularizer [START_REF] Antoniadis | Joint estimation and variable selection for mean and dispersion in proper dispersion models[END_REF].

Recently, [START_REF] Combettes | Perspective maximum likelihood-type estimation via proximal decomposition[END_REF] have proposed a general framework for representing convex M -estimators with concomitant scale as perspective functions and show that they can be solved with proximal splitting algorithms. It should be interesting to study the coordinate descent (with variational formulation) counterpart of such algorithms.

(a) (n " 100, p " 200, ρ " 0, snr " 10, s " 0.8) (b) (n " 100, p " 200, ρ " 0.2, snr " 10, s " 0.8) (c) (n " 100, p " 200, ρ " 0.6, snr " 5, s " 0.8) (d) (n " 100, p " 200, ρ " 0.8, snr " 10, s " 0.8) This function is not lower semi-continuous in general. However, lower semi-continuity is a very desirable property. Together with the fact that the function is infinite at infinity, this guarantees the existence of minimizers (Peypouquet, 2015, Theorem 2.19). Hence we consider instead its biconjugate, which is always lower semi-continuous (Bauschke and Combettes, 2011, Theorem 13.32) As ν has no influence on the value of the objective, we can choose it as small as we want and so the only requirement on θ is that it should belong to the domain of f ˚. We get persp ˚f pr, 0q " sup θPdomf ˚xθ, ry

Third case: σ ă 0. If σ ă 0, we can let ν go to ´8 in the formula of persp ˚f pr, σq which leads to persp ˚f pr, σq " `8.

Dual of the Smoothed Concomitant Lasso

Proposition 54. For λ ą 0 and σ 0 ą 0, the Smoothed Concomitant Lasso estimator p β pλ,σ 0 q and its associated noise level estimate p σ pλ,σ 0 q are defined as solutions of the primal optimization problem p p β pλ,σ 0 q , p σ pλ,σ 0 q q P arg min

βPR p ,σěσ 0 1 2nσ y ´Xβ 2 `σ 2 `λ β 1 , (4.38) With ∆ X,λ " θ P R n : X J θ 8 ď 1, θ ď 1{pλ ? nq ( 
, the dual formulation of the Smoothed Concomitant Lasso reads p θ pλ,σ 0 q " arg max

θP∆ X,λ xy, λθy `σ0 ˆ1 2 ´λ2 n 2 θ 2 loooooooooooooooooomoooooooooooooooooon D λ,σ 0 pθq . (4.39)
For an optimal primal vector p β pλ,σ 0 q , we must have p σ pλ,σ 0 q " σ 0 _ p y ´X p β pλ,σ 0 q { ? nq. We also have the link-equation between primal and dual solutions: y " nλp σ pλ,σ 0 q p θ pλ,σ 0 q `X p β pλ,σ 0 q .

Proof.

min βPR p ,σěσ 0 1 2nσ y ´Xβ 2 `σ 2 `λ β 1 " min βPR p ,zPR n ,σěσ 0 1 2nσ y ´z 2 `σ 2 `λ β 1 s.t. z " Xβ " min βPR p ,zPR n ,σěσ 0 max θPR n 1 2nσ y ´z 2 `σ 2 `λ β 1 `λθ J pz ´Xβq loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon Lpβ,σ,θ,zq " max θPR n min σěσ 0 σ 2 ´max zPR n " x´λθ, zy ´1 2nσ y ´z 2 * ´λ max βPR p xX J θ, βy ´ β 1 " max θPR n min σěσ 0 σ 2 ´λ2 nσ 2 θ 2 `xλθ, yy ´ιB8 pX J θq.
The fourth line is true because the Slater's condition is met, hence we can permute min and max thanks to strong duality. Finally we obtain the dual problem since

min σěσ 0 σ ˆ1 2 ´λ2 n 2 θ 2 ˙" # σ 0 ´1 2 ´λ2 n 2 θ 2 ¯, if 1 2 ´λ2 n 2 θ 2 ě 0, ´8, otherwise.
Let us use the same Lagragian notation as above, and denote ´p β pλ,σ 0 q , p σ pλ,σ 0 q , p θ pλ,σ 0 q , ẑpλ,σ 0 q ¯P arg min βPR p ,zPR n ,σěσ 0 max θPR n Lpβ, σ, θ, zq.

The primal-dual link equation follows directly from the Fermat's rule:

BLp p β pλ,σ 0 q , p σ pλ,σ 0 q , ¨, ẑpλ,σ 0 q q Bθ p p θ pλ,σ 0 q q " ẑpλ,σ 0 q ´X p β pλ,σ 0 q " 0, BLp p β pλ,σ 0 q , p σ pλ,σ 0 q , p θ pλ,σ 0 q , ¨q Bz pẑ pλ,σ 0 q q " ´1 np σ pλ,σ 0 q py ´ẑ pλ,σ 0 q q `λp θ pλ,σ 0 q " 0.

Convergence of the Dual Vectors

Proposition 55. Let pβ k q kPN be a sequence that converges to p β pλ,σ 0 q . Then pθ k q kPN built from θ k " py ´Xβ k q{ppλnσ 0 q _ X J py ´Xβ k q 8 _ pλ ? n y ´Xβ k qq converges to p θ pλ,σ 0 q . Hence the sequence of dual gap pG λ,σ 0 pβ k , σ k , θ k qq kPN converges to zero.

Proof. Let α k " pλnσ 0 q _ p X J py ´Xβ k q 8 q _ pλ ? n y ´Xβ k q, then we have:

θ k ´p θ pλ,σ 0 q " 1 α k py ´Xβ k q ´1 λnp σ pλ,σ 0 q py ´X p β pλ,σ 0 q q " ˆ1 α k ´1 λnp σ pλ,σ 0 q ˙py ´Xβ k q ´pX p β pλ,σ 0 q ´Xβ k q λnp σ pλ,σ 0 q ď ˇˇˇ1 α k ´1 λnp σ pλ,σ 0 q ˇˇˇ y ´Xβ k ` X p β pλ,σ 0 q ´Xβ k λ .

If β k Ñ p β pλ,σ 0 q , then the second term in the last display converges to zero, and for the first term, we show below that α k Ñ α :" pλnσ 0 q _ p X J py ´X p β pλ,σ 0 q q 8 q _ pλ ? n y ´X p β pλ,σ 0 q q. Recall that from Fermat's rule, we have y ´X p β pλ,σ 0 q " λnp σ pλ,σ 0 q p θ pλ,σ 0 q and X J py ´X p β pλ,σ 0 q q P λnp σ pλ,σ 0 q B ¨ 1 p p β pλ,σ 0 q q, leading to one of the three following situations:

-if p σ pλ,σ 0 q ą σ 0 , then X J py ´X p β pλ,σ 0 q q 8 ď λnp σ pλ,σ 0 q " λ ? n y ´X p β pλ,σ 0 q " α.

-If p σ pλ,σ 0 q " σ 0 and p β pλ,σ 0 q ‰ 0, we have X J py ´X p β pλ,σ 0 q q " λnp σ pλ,σ 0 q v where v P B ¨ 1 p p β pλ,σ 0 q q. Since p β pλ,σ 0 q ‰ 0, there exists a coordinate j such that p β pλ,σ 0 q j ‰ 0 and so |v j | " 1 which implies that v 8 " 1. Hence X J py ´X p β pλ,σ 0 q q 8 " λnp σ pλ,σ 0 q . Moreover, y ´X p β pλ,σ 0 q " λnp σ pλ,σ 0 q p θ pλ,σ 0 q ď λnp σ pλ,σ 0 q {pλ ? nq since p θ pλ,σ 0 q P ∆ X,λ . Hence, λ ? n y ´X p β pλ,σ 0 q ď λnp σ pλ,σ 0 q " X J py ´X p β pλ,σ 0 q q 8 " α.

-If p σ pλ,σ 0 q " σ 0 and p β pλ,σ 0 q " 0, then y " λnσ 0 p θ pλ,σ 0 q , λ ? n y ď λnσ 0 since p θ pλ,σ 0 q P ∆ X,λ , and X J y 8 ď λnσ 0 . Hence α " λnσ 0 . Finally, we have shown that in all cases, pα k q kPN converges to α " λnp σ pλ,σ 0 q , so the first term also converges to zero.

Safe Screening Rules

Proposition 56. For all pβ, σ, θq P R p ˆR`ˆ∆X,λ , then for r " d 2G λ,σ 0 pβ, σ, θq λ 2 σ 0 n , we have p θ pλ,σ 0 q P Bpθ, rq. Thus, we have the following safe sphere screening rule |X J j θ| `r X j ă 1 ùñ p β pλ,σ 0 q j " 0. (4.40)

Proof. The proof follows (Ndiaye et al., 2015). We give it for the sake of completeness. By weak duality, for all β P R p , D λ,σ 0 pθq ď P λ,σ 0 pβ, σq. Then, note that the dual objective function of the Smoothed Concomitant Lasso is λ 2 σ 0 n-strongly concave. This implies that: @pθ, θ 1 q P ∆ X,λ ˆ∆X,λ , D λ,σ 0 pθq ď D λ,σ 0 pθ 1 q `∇D λ,σ 0 pθ 1 q J pθ ´θ1 q ´λ2 σ 0 n 2 θ ´θ1 2 .

Moreover, since p θ pλ,σ 0 q maximizes the concave function D λ,σ 0 , the following inequality holds true:

@ θ P ∆ X,λ , ∇D λ p p θ pλ,σ 0 q q J pθ ´p θ pλ,σ 0 q q ď 0.

Hence, we have for all θ P ∆ X,λ and β P R p :

λ 2 σ 0 n 2 θ ´p θ pλ,σ 0 q 2 ď D λ,σ 0 p p θ pλ,σ 0 q q ´Dλ,σ 0 pθq ď P λ pβ, σq ´Dλ,σ 0 pθq " G λ,σ 0 pβ, σ, θq.

Furthermore, max θPBpθ,rq

|X J j θ| ď |X J j θ|`max θPBpθ,rq |X J j p θ´θq| ď |X J j θ|` X j max θPBpθ,rq θ ´θ " |X J j θ|`r X j .
Hence max θPBpθ,rq |X J j θ| " |X J j θ| `r X j since the vector θ :" θ `Xj r X j is feasible and attains the bound.

In this section we derive the Bound Safe screening rules of Proposition 50. First, we need two technical lemmas.

Lemma 23. Let y 1 and x be two unit vectors, and consider 0 ď γ ď γ ď 1. The optimal value of maxtθ J x :

θ ď 1, γ ď y 1J θ ď γu, is given by $ ' ' ' & ' ' ' % γx J y 1 `a1 ´γ2 b 1 ´px J y 1 q 2 , if x J y 1 ą γ, 1, if γ ď x J y 1 ď γ, γx J y 1 `b1 ´γ2 b 1 ´px J y 1 q 2 , if x J y 1 ă γ.
Proof. First remark that x and y are two privileged directions in the optimization problem at stake. Indeed, if θ has a nonzero component in a direction orthogonal to both x and y 1 , then, because of the constraint θ " 1, this reduces the freedom in Spanpx, y 1 q while giving no progress in the objective and the linear constraints. Hence, from now on we can restrict ourselves to the plane Spanpx, yq.

We denote by =pw, zq P R{2πZ the directed angle between unitary vectors w and z. We recall that cosp=pw, zqq " w J z, so we can narrow down our analysis to the three following cases:

1. Assume that x J y 1 ą γ. Then the optimal θ is such that (see Figure (4.1).(a)) θ " 1, θ J y 1 " γ and x is "between" θ and y 1 , which implies that sinp=pθ, y 1 qq sinp=py 1 , xqq ă 0. Hence, θ J x " cosp=pθ, xqq " cos `=pθ, y 1 q `=py 1 , xq " cos `=pθ, y 1 q ˘cos `=py 1 , xq ˘´sin `=pθ, y 1 q ˘sin `=py 1 , xq " θ J y 1 .y 1 J x ` sinp=pθ, y 1 qq sinp=py 1 , xqq

" γy 1 J x `a1 ´γ2 b 1 ´py 1J xq 2 .
Chapitre 5

Abrégé des Contributions de la Thèse

Le traitement automatique des données est devenu omniprésent dans les technologies actuelles. Il a d'importantes applications dans de nombreuses disciplines scientifiques telles que la médecine, la biologie ou la météorologie mais aussi dans des outils numériques tels que la traduction de texte, la publicité ciblée ou la détection de spam. Il s'inscrit au coeur des problématiques de traitement du signal, de théorie de l'information et des statistiques où l'on cherche à comprendre et résumer les informations essentielles dans les données collectées. Ces dernières sont souvent accompagnées par des informations à priori sur leurs structures, qui peuvent ensuite être utilisées pour établir des modèles et algorithmes prédictifs. Cependant, ces algorithmes dépendent fortement des méthodes d'optimisation mathématique et il est devenu crucial d'avoir des outils qui restent efficaces lorsque la taille des bases de données augmente. Nous étudions des méthodes de réduction de complexité dans certains problèmes d'optimisation découlant de l'apprentissage statistique avec un principal fil conducteur :économiser du temps de calcul en exploitant des certificats optimalité et des structures de régularité spécifiques aux problèmes.

Dans ce chapitre, nous résumons les contributions de la thèse en présentant les principales idées et résultats développés dans ce manuscrit.

Optimization Convexe en Apprentissage Statistique

Nous suivons une formalisation classique des tâches d'apprentissage statistique comme dans [START_REF] Hastie | The elements of statistical learning[END_REF][START_REF] Shalev-Shwartz | Understanding machine learning: From theory to algorithms[END_REF]. Soit X (resp. Y) un ensemble de vecteurs d'entrée (resp. sortie) et X (resp. Y ) une variable aléatoire évaluée dans X (resp. Y). Nous appelons tâche d'apprentissage l'identification d'une application h : X Þ Ñ Y qui explique la relation entre l'entrée X et la sortie Y .

Considérant une fonction de perte telle que py, yq " 0, py, y 1 q ě 0, nous voulons apprendre une fonction de prédiction h minimisant l'erreur de prédiction phpXq, Y q en moyenne. Pour simplifier, nous considérons que h sera recherché sur une famille de fonctions paramétrée (prédéfinie) H :" thp¨, βq : β P R p u qui code les connaissances à priori que nous avons sur les données. Ensuite, la tâche d'apprentissage peut être écrite sous la forme du problème d'optimisation suivant : min βPR p Rpβq :" Er phpX, βq, Y qs .

(5.1) Puisque l'espérance est prise sous la distribution de probabilité conjointe P X,Y des variables X, Y qui est supposé être inconnu, h ne peut pas être appris directement de cette manière. On devrait plutôt apprendre en considérant un échantillon de données. Nous supposons que les observations sur notre ensemble de données tpx i , y i qu iPrns sont indépendantes et identiquement distri-buées. De ce fait, par la loi des grands nombres, la loi empirique 1 n ř n i"1 δ px i ,y i q , où δ représente les masses de Dirac, approximent la vraie distribution P X,Y si le nombre d'observations n est suffisamment grand. D'où le paradigme Minimisation du Risque Empirique (MRE) :

min βPR p R n pβq :" 1 n n ÿ i"1 phpx i , βq, y i q .
(5.2)

Une instanciation populaire des formulations (5.1), (5.2) est l'outil fondamental en Statistique, connu sous le nom de Estimation du Maximum de Vraisemblance (EMV). Nous nous référons à (Van der Vaart, 1998) pour une description complète et [START_REF] Stigler | The epic story of maximum likelihood[END_REF] pour l'histoire passionnée de cette méthode. Fait intéressant, le EMV de la famille exponentielle conduit naturellement à un problème d'optimisation convexe [START_REF] Brown | Fundamentals of statistical exponential families: with applications in statistical decision theory[END_REF].

Definition 23 (Famille Exponentielle). Soit ν une mesure σ-finie et λpθq " ş exppθyqνpdyq sa transformée de Laplace de domaine N " tθ P R n : λpθq ă `8u. Pour P pθq " logpλpθqq, soit p θ pyq " exp `xθ, yy ´P pθq ˘.

(5.3)

Soit Θ un sous-ensemble convexe de N , la famille de densité tp θ : θ P Θu est appelé famille exponentielle (standard).

La convexité du problème d'optimisation de EMV d'une famille exponentielle découle de la convexité de la transformée de Log-Laplace P , nous rappelons la preuve dans le Chapitre 4.

Theorem 5 (Brown (1986, Theorem 1.13)). L'ensemble N est convexe et P est convexe sur N . De plus, P est semi-continue inférieurement sur R n et continue sur l'intérieur de N .

En inférence statistique, il est courant de supposer que la distribution des observations est paramétrée par un certain θ 0 P Θ inconnu. L'objectif est d'approximer et de fournir des informations sur le paramètre du modèle, à défaut de le trouver exactement, à partir de variables aléatoires distribuées sous cette loi. Une méthode inférentielle classique est le EMV. Pour une variable y dans le support convexe de ν et Θ un sous-ensemble convexe de N , la fonction Θ Q θ Þ Ñ p θ pyq s'appelle vraisemblance au point y. En supposant que le paramètre θ 0 appartient à Θ et que y est une variable aléatoire de loi P θ 0 , l'estimateur du maximum de vraisemblance est défini par θpyq " arg max θPΘ p θ pyq " arg min θPΘ ´logpp θ pyqq " arg min θPΘ P pθq ´xθ, yy which is a convex optimization problem with a loss function pθ, yq :" P pθq ´xθ, yy. Ainsi, l'EMV pour des observations indépendantes et identiquement distribuées y " py 1 , ¨¨¨, y n q s'écrit

θpyq P arg min θPΘ 1 n n ÿ i"1 py i , θq .
(5.4) Dans un contexte d'apprentissage, un exemple important est la généralisation de la régression conduisant à la famille de Modèle Linéaire Généralisé (MLG) [START_REF] Mccullagh | Generalized Linear Models[END_REF] où le modèle statistique contient une partie déterministe donnée par une combinaison linéaire des covariables η " Xβ et la partie aléatoire donnée par µ " ErY s où Y est supposée appartenir à une famille exponentielle, sont liées par hpηq " µ. Selon la distribution supposée des observations, nous obtenons l'estimateur des moindres carrés et la regression logistique comme exemples canoniques pour les tâches de régression et de classification.

Moindre Carrés. Soit un échantillon d'observations y " py 1 , ¨¨¨, y n q indépendantes et de même loi gaussienne N pµ, σ 2 q, i.e. p pµ,σ 2 q pyq " 1 ? 2πσ 2 exp " ´py ´µq 2 2σ 2 * " exp xpθ 1 , θ 2 q, py, y 2 qy ´P pθ 1 , θ 2 q ( où θ " pθ 1 , θ 2 q " p µ σ 2 , ´1 2σ 2 q et P pθq " ´θ2 1 4θ 2 `1 2 logp´π θ 2 q. En supposant que σ 2 (donc θ 2 ) est connu, l'EMV (5.4) pour un modèle gaussien de moyenne µ " Xβ est donné par :

β P arg min βPR p n ÿ i"1 1 2σ 2 py i ´xJ i βq 2 .
(5.5)

Régression Logistique. Soit une variable binaire y P t0, 1u suivant une loi de Bernoulli de paramètre µ i.e.

p µ pyq " µ y p1 ´µq 1´y " exp txθ, yy ´P pθqu , où θ " logp µ 1´µ q et P pθq " logp 1 1`e θ q. Dans un contexte de regression où la partie deterministe est θ " Xβ, l'EMV (5.4) pour un échantillon de variables indépendant et identiquement distribuée y " py 1 , ¨¨¨, y n q, est donné par :

β P arg min βPR p n ÿ i"1 log `1 `exppx J i βq ˘´y i x J i β .
Cependant, le cadre de la minimisation du risque empirique n'est pas limitée aux modèles statistiques d'estimation basée sur la vraisemblance. D'autres paradigmes d'apprentissage, comme le perceptron et les machines à vecteur support, fournissent un bon prédicteur sans hypothèses sur la distribution sous-jacente des données. Dans de nombreux cas, il s'avère trés difficile de résoudre le problème de minimisation du risque empirique. La plus part du temps, il n'existe pas de formulation explite des solutions. Et en toute généralité, nous ne savons pas résoudre exactement les problèmes d'optimisation ! Voir (Nesterov, 2004, Chapitre 1). Nous allons donc nous contenté d'approximation à un certain niveau de précision . Dans une configuration à grande échelle, la dimensionnalité dans les problème d'optimisation (5.2) peut être si importante que les algorithmes nécessitant une évaluation des quantités reposant sur le jeu de données complet deviennent impraticables. Une tendance populaire dans l'optimisation pour l'apprentissage statistique est de revenir à des méthodes simples développées avec des ressources de calcul limitées et popularisées dans les 50 (voir [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] pour une revue récente). Par conséquent, les algorithmes qui fournissent des calculs rapides et peu coûteux avec des informations limitées ont été privilégiés. Nous pouvons citer par exemple l'optimisation incrémentale incluant la descente stochastique du gradient [START_REF] Robbins | A stochastic approximation method[END_REF], l'algorithme Frank-Wolfe [START_REF] Frank | An algorithm for quadratic programming[END_REF], la descente par bloc de coordonnée [START_REF] Warga | Minimizing certain convex functions[END_REF] et les méthodes d'ensemble actives.

Régularisation Structurée et Choix d'Hyperparamètre

L'ajout d'un terme de régularisation apparaît naturellement en apprentissage statistique pour améliorer la stabilité numérique et éviter des phénomènes de sur-apprentissage. En effet, résoudre le problème de minimisation du risque empirique (5.2) n'est souvent pas suffisant pour trouver de bons prédicteurs, car le problème a tendance à être mal conditionné dans des contextes de grandes dimensions. Cette régularisation encode une connaissance supplémentaire sur la structure des données. Par exemple, il peut être utilisé pour imposer le choix de modèles plus simples et peut être formulé comme suit : βpλq P arg min βPR p 1 n n ÿ i"1 phpx i , βq, y i q `λΩpβq ,

(5.6)

où Ω est la fonction de régularisation qui pénalise les solutions complexes et λ ą 0 contrôle le niveau de biais inductif. Il est généralement lié au principe de simplicité de G. Ockham (14ème siècle) ou [START_REF] Wrinch | Xlii. on certain fundamental principles of scientific inquiry[END_REF]. Le terme de régularisation équilibre la minimisation du risque empirique et la simplicité structurelle du modèle à travers l'hyperparamètre λ. Il est essentiel de trouver l'équilibre optimal pour obtenir une bonne prédiction sur des ensembles de données inédits :les petits λ conduisent à des modèles complexes qui risquent de sur-apprendre sur les données d'entrainement tandis que les grands λ conduisent à des modèles simplistes avec une puissance de prédiction médiocre. Une approche courante pour sélectionner un "bon" paramètre consiste à utiliser la validation croisée. Essentiellement, cette méthode évite d'entrainer et d'évaluer la performance d'un estimateur sur les mêmes données. Il a été introduit dans [START_REF] Larson | The shrinkage of the coefficient of multiple correlation[END_REF] ; voir [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] pour une description plus compl te. Pour simplifier, nous traitons ici la version simplifiée qui consiste à scinder les données tpx i , y i qu iPrns en deux parties pX train , y train q et pX test , y test q et considérons Λ comme un ensemble d'hyperparamètres discret. Avec une fonction de perte de validation L qui mesure l'erreur de prédiction sur l'ensemble de tests, la validation croisée correspond à la réalisation des deux étapes suivantes :

1. résoudre le problème (1.6) avec les données pX train , y train q pour tout λ P Λ, 2. choisir le λ P Λ qui minimise l'erreur de validation LphpX test , βpλq q, y test q.

Une grille standard considérée dans la littérature est λ t " λ max 10 ´δt{pT ´1q avec un petit δ (δ " 10 ´2 ou 10 ´3), voir par exemple [START_REF] Bühlmann | Statistics for high-dimensional data[END_REF] [2.12.1] ou le paquet glmnet (Friedman et al., 2010b) et scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Choisir δ est un défi du point de vue statistique (les performances ont tendance à diminuer à mesure que δ devient proche de zéro, en raison du surapprentissage) et du point de vue de l'optimisation, la complexité de calcul tend à augmenter pour les petits λ, les itérés dans le primal étant denses et le problème à résoudre de plus en plus mal posé. Il est de coutume de commencer par un assez grand paramètre de régularisation λ 0 " λ max puis d'effectuer séquentiellement le calcul de βpλtq après celui de βpλ t´1 q . Souvent, elle conduit à calculer les modèles dans l'ordre croissant de complexité : cela permet une accélération importante en profitant de l'initialisation du démarrage à chaud.

Selon le contexte, plusieurs fonctions de régularisation Ω ont été introduites pour prendre en compte la régularité à priori des estimateurs. Les exemples utilisés dans nos expériences sont : Régularisation Ridge ou de Tikhonov. La fonction de régularisation Ωpβq " β 2 2 {2 a été introduite dans [START_REF] Tikhonov | On the stability of inverse problems[END_REF] pour améliorer la stabilité des problèmes inverses, et en Statistiques [START_REF] Hoerl | Application of ridge analysis to regression problems[END_REF][START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF] pour réduire l'erreur quadratique moyenne de l'estimateur de moindres carrés classique lorsque la matrice de design est de rang déficient. En l'apprentissage statistique, il est souvent considéré comme un stabilisateur de l'algorithme d'apprentissage, en ce sens que la prédiction ne change pas beaucoup lorsque les données d'entrée sont légèrement perturbées. Par conséquent, l'erreur d'apprentissage reste proche de l'erreur de test, ce qui empêche l'algorithme de surapprendre sur les données d'entrainement (Shalev-Shwartz and Ben-David, 2014, Chapitre 13.2).

Bien que fondamental, la prévention du phénomène de surapprentissage n'est pas suffisante dans de nombreuses applications. Souvent, il faut également avoir une bonne représentation des données et fournir des modèles de prédiction interprétables. Il est donc crucial de pouvoir sélectionner les variables explicatives les plus pertinentes, ce qui a motivé l'introduction de méthodes de régularisation parcimonieuse.

Régularisation Parcimonieuse de Type Lasso. La régularisation Ωpβq " β 1 a été introduite dans [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] en traitement du signal et en Statistiques. Elle suit les méthodes classiques de sélection variables explicatives dans la régression multiple [START_REF] Efroymson | Multiple regression analysis[END_REF] pour la régression adapdative ou [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF] pour la sélection avec la non-négative garrote. La pénalité 1 norm a l'avantage de pouvoir sélectionner des variables de manière continue et sa formulation convexe permet d'utiliser un algorithme itératif rapide.

Plus tard, plusieurs extensions ont été proposées, notamment par [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] pour la régularisation Elastic Net Ωpβq " α β 1 `p1 ´αq β 2 2 {2 qui fait une interpolation entre le Ridge et le Lasso, par Hebiri and van de Geer (2011) pour le Lasso lissé où Ωpβq " α β 1 γ ř p j"2 pβ j ´βj´1 q 2 , ou pour des régularisations de groupe hiérarchiques plus complexes (Friedman et al., 2010a;[START_REF] Sprechmann | C-hilasso: A collaborative hierarchical sparse modeling framework[END_REF]. Une enquête fournissant une théorie unifiée pour les normes induisant une faible densité structurée convexe a récemment été proposée dans [START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF]. Notez que la parcimonie peut également être incorporée dans le terme d'ajustement au données. C'est le cas de la perte charnière (hinge loss) qui, d'ailleurs peut également être utilisée comme critère de sélection des variables [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF][START_REF] Rakotomamonjy | Variable selection using svm-based criteria[END_REF].

En utilisant de telle régularisation, la performance en généralisation, des estimateurs obtenus en minimisant le risque empirique, est alors fortement liée aux capacités de réglage du paramètre de régularisation λ. Cela nécessite souvent le calcul du chemin complet des solutions dans le cadre des méthodes d'homotopie sur une plage (souvent un ensemble discret) d'hyperparamètres Λ. En effet, il est généralement impossible de calculer le chemin complet dans un ensemble continu si on a pas accés aux solutions exacte dans l'Equation (5.6). Cependant, pour les problèmes impliquant une perte quadratique par morceaux et des régularisations linéaires par morceaux, le chemin des solutions t βpλq , λ P Λu est continu et linéaire par morceaux [START_REF] Rosset | Piecewise linear regularized solution paths[END_REF]. Cette linéarité par morceaux et très spécifique et permet de calculer exactement la totalité du chemin de la solution. Ce type de propriété a été redécouvert plusieurs fois dans la littérature. Par exemple, dans [START_REF] Markowitz | Portfolio selection[END_REF] pour la sélection de portefeuille, [START_REF] Osborne | An effective method for computing regression quantiles[END_REF] pour les problèmes de régression quantile, (Osborne et al., 2000a) pour Lasso, [START_REF] Efron | Least angle regression[END_REF][START_REF] Park | L1-regularization path algorithm for generalized linear models[END_REF] pour le modèle linéaire géneralisé avec une régularisation avec la norme 1 .

Outre la régularité générale des fonctions en jeu, l'exploitation explicite de la structure des fonctions permet de concevoir des algorithmes d'optimisation plus rapides. L'une des principales contributions de cette thèse est de proposer des accélérations supplémentaires en économisant une quantité considérable de calculs effectués le long des itérations. Ici, nous ne considérerons que les problèmes d'optimisation convexe i.e. les fonctions dans (5.6) où la classe d'hypothèses H et la fonction de perte sont supposées être toutes deux convexes. Nous avons vu qu'une telle formulation convexe inclut déjà une grande classe de tâches d'apprentissage statistique telles que l'estimation du maximum de vraisemblance pour la famille des distribution exponentielle, mais également des formulations résultant du paradigme des machine à vecteurs de support (SVM).

Chapitre 2. Règle Sûre de Criblage de Variables.

Nous considérons les problèmes de minimisation du risque empirique régularisés comme étant la somme d'un terme lisse (ajustement aux données) et d'un terme non lisse (pénalité sur la complexité de la solution, indirectement sa parcimonie), ou inversement. Utilisant la dualité de Fenchel, nous travaillons avec les formulations primaux/duaux suivantes : βpλq P arg min βPR p ÿ iPI f i px J i βq `λ ÿ gPG Ω g pβ g q ": P λ pβq (Primal), (5.7)

θpλq P arg max θPR n ´ÿ iPI f i p´λθ i q ´λ ÿ gPG Ω g pX J g θq ": D λ pθq (Dual).

(5.8)

De plus, nous avons les conditions d'optimalité reliant les solutions primale et duale : @i P I, ´λθ pλq i P Bf i px J i βpλq q ðñ x J i βpλq P Bf i p´λ θpλq i q, (5.9) @g P G, X J g θpλq P BΩ g p βpλq g q ðñ βpλq g P BΩ g pX J g θpλq q.

(5.10)

Nous montrons comment exploiter une structure particulière des solutions (leur parcimonie) pour ignorer des variables sans importance lors du processus d'optimisation. Nous garantissons de ne pas les exclure à tord et par conséquent nous accélérons la résolution des problèmes 5.7 et 5.8. La raison sous-jacente est qu'il n'y a aucun avantage à effectuer des calculs sans valeur impliquant des caractéristiques ou des observations non influentes. Cette stratégie dite de criblage sûre suit le travail fondateur de El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] et a rapidement conduit à une littérature de plus en plus florissante afin de l'appliquer à différentes instanciations du problème (1.6). Nous proposons ici, un cadre unificateur qui met en évidence les structures sous-jacentes des fonctions convexes qui sont souvent implicitement exploitées pour établir ces règles de filtrage cans la formulation de la minimisation du risque empirique régularisée séparable et non différentiable. Notre méthode repose sur l'exploitation de conditions d'optimalité de premier ordre et des propriétés de séparation des sous-différentiels de fonctions convexes. Ainsi, nous généralisons les règles de criblage de variables précédemment connues dans la littérature. Il s'applique à une grande classe de tâches d'apprentissage supervisées telles que Lasso, Sparse-Group Lasso, Lasso multitâche, régression logistique binaire et multinomiale, machine à vecteurs de support (SVM), pour en nommer quelques-unes. Nous présentons brièvement une règle générale d'indentification des groupes de variables ainsi que la construction des régions de sécurité permettant de garantir que l'on élimine que des variables non influentes. Theorem 6. Soit R ˚un ensemble (dual) fermé et convexe qui contient la solution (duale) optimale θpλq . Pour tout groupe g de variable dans G, pour tout vecteur β ‹ g tel que intBΩ g pβ ‹ g q est non vide, nous obtenons les règles d'identification suivantes :

Règle de Criblage :

Si Ω gpX J g θpλq , β ‹ g q ă 1 alors βpλq g " β ‹ g .

(5.11)

Règle de Criblage Sûre : Si max θPR ˚Ωg pX J g θ, β ‹ g q ă 1 alors βpλq g " β ‹ g .

(5.12)

Le terme Ω gpX J g θ, β ‹ g q quantifie une distance entre le vecteur X J g θ et la frontière de l'ensemble BΩ g pβ ‹ g q. Les règles de criblage permettent donc d'identifier les groupes de vecteur qui ne saturent pas les certificats d'optimalité. Dans le cas du Lasso, les coordonnées du vecteur éliminées correspondent aux emplacements j où la solution optimale βpλq j est nulle. Ainsi, en se focalisant que sur les coordonnées non nulles, nous réduisons la dimensionnalité du problème et économisons des calculs. (5.13)

De ce fait, la boule R ˚:" Bpθ, a 2 Gap λ pβ, θq{γλ 2 q est une region de sécurité i.e. contient la solution dual optimal θpλq quelque soit β P domP λ et θ P domD λ . Nous proposons de construire un vecteur dual en mettant à l'echelle l'image de l'application du gradient θ :" ´∇f pXβq maxpλ, S domΩ ˚pX J ∇f pXβqqq P domD λ .

(5.14)

En exploitant les informations fournies par les bornes dépendantes du saut de dualité, nous fournissons des résultats théoriques, tels que la complexité en itération de l'identification des ensembles actifs (optimaux), et concevons de nouveaux algorithmes rapides pour éliminer en toute sécurité davantage de variables que les règles qui ont été considérées auparavant, notamment pour les paramètres de régularisation de faible intensité. Notre approche peut s'adapter à n'importe quel algorithm itératif, mais convient particulièrement bien aux méthodes de descente par blocs de coordonnées. Nous introduisons également de nouvelles stratégies de démarrage à chaud qui ont montré nette amélioration des performances. Dans toutes nos expériences numériques, nous rapportons des accélérations significatives par rapport aux règles de criblage proposées précédemment dans la litterature sur tous les jeux de données testés.

Chapitre 3. Optimisation Globale par Calcul du Chemin Complet de Régularisation et Sélection Optimale d'Hyperparamètre.

Nous discutons de l'optimisation par approximation de chemin et de son application dans la sélection de modèle. Malgré la propriété intéressante des méthodes d'homotopie pour fournir une meilleure prédiction en termes de performances en généralisation, la sélection de l'intensité optimale de régularisation λ pour l'erreur de validation est parfois difficile, même pour un problème tel que Lasso, dans lequel nous pouvons trouver un algorithme qui calcule exactement la solution entière. Les algorithmes de calcul du chemin exact tel que le Lars [START_REF] Efron | Least angle regression[END_REF] ou les méthodes basées sur un prédicteur-correcteur peuvent souffrir d'instabilités numériques dues à plusieurs inversions de matrice et à leur complexité, c'est-à-dire le nombre de segments linéaires dans le chemin, pouvant être exponentielle en la dimension du problème. Par exemple, la complexité pire cas pour le Lasso est exactement p3 p `1q{2 [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF] et Op2 n q pour le SVM [START_REF] Gärtner | An exponential lower bound on the complexity of regularization paths[END_REF]. Ces complexités pire cas montrent que même si ces algorithmes peuvent être très efficaces et fournissent des solutions exactes (ou de très grande précision), ils peuvent être totalement impraticables en grande dimension. Dans ce chapitre, nous revenons sur les techniques d'approximation du chemin de regularisation pour une tolérance prédéfinie , dans un cadre unifié et nous montrons que sa complexité est de Op1{ d ? q pour les fonctions uniformément convexes d'ordre d ą 0 et Op1{ ? q pour les fonctions auto-concordantes généralisées. Cela inclut des exemples tels que la perte quadratique qui intervient dans l'estimateur des moindres carrés, mais aussi l'important exemple de perte logistique qui, à notre connaissance, n'a pas été efficacement traité par les travaux antérieurs. De plus, nous clarifions le lien entre la complexité de l'approximation du chemin de regularisation et la régularité de la fonction de perte considérée dans le cadre de la minimisation du risque empirique réguralisée. Enfin, nous tirons parti de notre technique pour exposer des bornes plus précises sur l'erreur de validation et fournissons un algorithme pratique pour la sélection d'hyperparamètre avec de plus forte garantie. Plus précisément, étant donné le fractionnement des données d'apprentissage et de validation py train , X train , y val , X val q, nous formulons le problème du choix d'hyperparamètre comme une optimisation à deux niveaux arg min λPrλ min ,λmaxs E v p βpλq q " Lpy val , X val βpλq q s.t. βpλq P arg min βPR p pX train β, y train q `λΩpβq .

Pour une tolérance prescrite v ą 0 de l'erreur de prédiction sur les données de validation, nous montrons comment concevoir une grille discrète du paramètre Λ val p v q incluse dans le segment rλ min , λ max s tels que : min λtPΛ val p v q E v pβ pλtq q ´min λPrλ min ,λmaxs E v p βpλq q ď v .

Par conséquent, notre approche consiste simplement en un algorithme d'exploration séquentielle sur une grille de paramètre. Elle fournit un schema numérique garantissant une convergence globale pour approximer l'hyperparamètre optimal à un niveau d'erreur de validation v quelconque. Elle s'applique à une grande classe de tâches d'apprentissage statistique. Nous illustrons par des experiences numériques l'utilisation de notre algorithme en pratique sur des problèmes de regression et de classification. Pour trouver un bon compromis entre minimisation du risque et introduction d'un biais d'apprentissage, les algorithmes d'homotopie offrent la possibilité de tracer la courbe des solutions en fonction du paramètre de régularisation. Toutefois, ils présentent des instabilités numériques dues à plusieurs inversions de matrice, et sont souvent coûteux en grande dimension. Aussi, ils ont des complexités exponentielles en la dimension du modèle dans des cas défavorables. En autorisant des solutions approchées, une approximation de la courbe des solutions permet de contourner les inconvénients susmentionnés. Nous revisitons les techniques d'approximation des chemins de régularisation pour une tolérance prédéfinie, et nous analysons leur complexité en fonction de la régularité des fonctions de perte en jeu. Il s'ensuit une proposition d'algorithmes optimaux ainsi que diverses stratégies d'exploration de l'espace des paramètres. Ceci permet de proposer une méthode de calibration de la régularisation avec une garantie de convergence globale pour la minimisation du risque empirique sur les données de validation.

Le Lasso, un des estimateurs parcimonieux les plus célèbres et les plus étudiés, repose sur une théorie statistique qui suggère de choisir la régularisation en fonction de la variance des observations. Ceci est difficilement utilisable en pratique car la variance du modèle est une quantité souvent inconnue. Dans de tels cas, il est possible d'optimiser conjointement les coefficients de régression et le niveau de bruit. Ces estimations concomitantes, apparues dans la littérature sous les noms de Scaled Lasso, Square-Root Lasso, fournissent des résultats théoriques aussi satisfaisants que celui du Lasso tout en étant indépendants de la variance réelle. Bien que présentant des avancées théoriques et pratiques importantes, ces méthodes sont numériquement instables et les algorithmes actuellement disponibles sont coûteux en temps de calcul. Nous illustrons ces difficultés et nous proposons à la fois des modifications basées sur des techniques de lissage pour accroître la stabilité numérique de ces estimateurs, ainsi qu'un algorithme plus efficace pour les obtenir. Massive and automatic data processing requires the development of techniques able to filter the most important information. Among these methods, those with sparse structures have been shown to improve the statistical and computational efficiency of estimators in a context of large dimension. They can often be expressed as a solution of regularized empirical risk minimization, and generally lead to non differentiable optimization problems in the form of a sum of a smooth term, measuring the quality of the fit, and a non-smooth term, penalizing complex solutions.

Although it has considerable advantages, such a way of including prior information, unfortunately introduces many numerical difficulties, both for solving the underlying optimization problem and to calibrate the level of regularization. Solving these issues has been at the heart of this thesis.

A recently introduced technique, called "Screening Rules", proposes to ignore some variables during the optimization process by benefiting from the expected sparsity of the solutions. These elimination rules are said to be safe when the procedure guarantees that no variable is wrongly rejected. In this work, we propose a unified framework for identifying important structures in these convex optimization problems and we introduce the "Gap Safe Screening Rules". They allows to obtain significant gains in computational time thanks to the dimensionality reduction induced by this method. In addition, they can be easily inserted into iterative algorithms and apply to a large number of problems.

To find a good compromise between minimizing risk and introducing a learning bias, (exact) homotopy continuation algorithms offer the possibility of tracking the curve of the solutions as a function of the regularization parameters. However, they exhibit numerical instabilities due to several matrix inversions and are often expensive in large dimension. Another weakness is that a worst-case analysis shows that they have exact complexities that are exponential in the dimension of the model parameter. Allowing approximated solutions makes possible to circumvent the aforementioned drawbacks by approximating the curve of the solutions. In this thesis, we revisit the approximation techniques of the regularization paths given a predefined tolerance and we propose an in-depth analysis of their complexity w.r.t. the regularity of the loss functions involved. Hence, we propose optimal algorithms as well as various strategies for exploring the parameters space. We also provide a calibration method (for the regularization parameter) that enjoys global convergence guarantees for the minimization of the empirical risk on the validation data.

Among sparse regularization methods, the Lasso is one of the most celebrated and studied. Its statistical theory suggests choosing the level of regularization according to the amount of variance in the observations, which is difficult to use in practice because the variance of the model is often an unknown quantity. In such case, it is possible to jointly optimize the regression parameter as well as the level of noise. These concomitant estimates, appeared in the literature under the names of Scaled Lasso or Square-Root Lasso, and provide theoretical results as sharp as that of the Lasso while being independent of the actual noise level of the observations. Although presenting important advances, these methods are numerically unstable and the currently available algorithms are expensive in computation time. We illustrate these difficulties and we propose modifications based on smoothing techniques to increase stability of these estimators as well as to introduce a faster algorithm.
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  Figure2.2 -Illustration of safe region differences between[START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF] and Gap Safe strategies for the Lasso case; note that γ " 1 in this case. Here β is a primal point, θ is a dual feasible point (the feasible region ∆ X is in orange, while the respective safe balls R are in blue).
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  (a) Fraction of the variables that are active. Each line corresponds to a fixed number of iterations for which the algorithm is run. (b) Dense grid with 100 values of λ. (c) Coarse grid with 10 values of λ.

Figure 2

 2 Figure2.8 -Lasso on the Leukemia (dense data with n " 72 observations and p " 7129 features). Computation times needed to solve the Lasso regression path to desired accuracy for a grid of λ from λ max to λ max {10 3 .

  (a) Dense grid with 100 values of λ. (b) Sparse grid with 10 values of λ.

  (a) Fraction of the variables that are active. Each line corresponds to a fixed number of iterations for which the algorithm is run. (b) Computation times needed to solve the logistic regression path to desired accuracy with 100 values of λ from λmax to λmax{10 3 .
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 2 Figure 2.10 -1 regularized binary logistic regression on the Leukemia (dense data with n " 72 observations and p " 7129 features). Sequential and full dynamic screening Gap Safe rules are compared.

  (a) Fraction of active variables as a function of λ and the number of iterations K. The Gap Safe strategy has a much longer range of λ with (red) small active sets. (b) Computation time to reach convergence using different screening strategies. We have run the algorithm with 100 values of λ from λmax to λmax{10 3 .
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 2 Figure 2.11 -Experiments on MEG/EEG brain imaging data set (dense data with n " 360 observations, p " 22494 features and q " 20 time instants).
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 2 Figure2.12 -Experiments on a synthetic dataset (ρ " 0.5, γ 1 " 10, γ 2 " 4, τ " 0.2). (a) Proportion of active variables, i.e. variables not safely eliminated, as a function of parameters pλ t q and the number of iterations K. More red, means more variables eliminated and better screening. (b) Time to reach convergence w.r.t the accuracy on the duality gap, using various screening strategies.
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 2 Figure 2.13 -Experiments on NCEP/NCAR Reanalysis 1 pn " 814, p " 73577q: prediction error for the Sparse-Group Lasso path with 100 values of λ and 11 values of τ (best : τ ‹ " 0.4).
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 2 Figure 2.14 -Experiments on NCEP/NCAR Reanalysis 1 pn " 814, p " 73577q: Active groups to predict Air Temperature in a neighborhood of Dakar (in blue). Cross validation was run over 100 values for λ's and 11 for τ 's. At each location, the highest absolute value among the seven coefficients is displayed.

  (a) Proportion of active coordinate-wise variables as a function of parameters pλtq and the number of iterations K. (b) Proportion of active group variables as a function of parameters pλtq and the number of iterations K.

  zy . Problem Setup. Let us consider the class of convex optimization problems of the form βpλq P arg min

  recalled in Theorem 2 θpλq P arg max θPR n ´f ˚p´λθq ´λΩ ˚pX J θq loooooooooooooomoooooooooooooon D λ pθq pDualq.
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 3 Figure 3.2 -1 least-squares regression on climate data set NCEP/NCAR Reanalysis with n " 814 observations and p " 73577.
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 3 Figure 3.3 -1 logistic regression on leukemia data set with n " 72 observations and p " 7129 features.
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 34 Figure 3.4 -Computation of the approximation path at the same error than the default grid.

  Figure3.5 -Selecting the optimal hyperparameter for 1 Elastic Net regression at different accuracy v and for Diabetes data set with n " 442 observations and p " 10. We illustrate the parameter selected by our algorithm at different precision levels. The color map ranges from yellow (low precision) to dark red (high precision)

  βPR p :y"Xβ β 1 , θBP P arg max θPR n : X J θ 8 ď1 xy, θy. (4.16)

  on Smoothing Techniques for Non-smooth Optimization

Figure

  Figure4.2(b) shows the benefit one can obtain thanks to the safe screening rules introduced above. The Bound safe rule on the Smoothed Concomitant Lasso problem does not show significant acceleration w.r.t. the Gap Safe rule. Indeed, the Gap Safe rule greatly benefits from the convergence of the dual vector, leading to smaller and smaller safe sphere as the iterations proceeds(Fercoq et al., 2015; Ndiaye et al., 2015). Another nice feature for the Gap Safe rules relies on a new warm start strategy when computing the full grid pλ t q tPT . For a new λ, one first performs the optimization over the safe active set (i.e. the non discarded variables) from the previous λ. This active warm start strategy improves the warm start by providing a better primal vector. It helps achieving solutions with great precision at lower cost (up to 8ˆspeed-up on the Leukemia dataset).

  (a) Estimated performance using synthetic dataset.
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 43 Figure 4.3 -Comparison of quality of different estimators of the noise σ normalized to 1.The synthetic datasets are generated with the settings (n " 100, p " 500, ρ " 0.6, snr " 5, s " 0.9, 50 replications)

  (a) Estimated distribution of the optimal λopt.
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 44 Figure 4.4 -Comparisons of the distribution of optimal regularizer λ opt under different levels of noise.
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 45 Figure 4.5 -Estimated performance on synthetic dataset for different parameters.

  Figure 4.6 -Computational time for 50 simulations on synthetic dataset.
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 7 Construction d'une Région de Sécurité dans le Dual). Nous supposons que f i admet un gradient 1{γ-Lipschitz. Pour tout β P domP λ et θ P domD λ , le saut de dualité est défini par Gap λ pβ, θq :" P λ pβq ´Dλ pθq. Nous avons θpλq ´θ ď d 2 Gap λ pβ, θq γλ 2 .
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  . We consider optimization problem involving a smooth function plus a separable regularization to enforce specific structure in the solution. Such a formulation often arises in statistical learning in a context of empirical risk minimization with inductive bias. Popular instantiations of this formulation are detailed in Section 2.2.4.

	Under the classical Fenchel duality, we have the Primal/Dual formulation:
	βpλq P arg min βPR p	iPI ÿ	f i px J i βq	gPG `λ ÿ	Ω g pβ g q ": P λ pβq	(Primal),	(2.1)
	θpλq P arg max θPR n	´ÿ iPI	f i p´λθ i q	gPG ´λ ÿ	Ω g pX J g θq ": D λ pθq	(Dual).	(2.2)

Ă intC, it exists ą 0 such that S ` d P C for all d in the unit sphere bdB. Hence by Definition 7 of the support function, we have S C pdq ě xs ` d, dy for all s in S. Hence S C pdq ě sup sPS xs, dy ` d 2 . Reciprocally

  , let S Ă R n such that sup sPS xs, dy ă S C pdq for any d P bdB. Then for any s P S, xs, dy ă S C pdq. Now Defining :" inftS C pdq ´sup sPS xs, dy : d P bdBu ą 0, we have xs, dy ` ď S C pdq for all d P bdB, thus taking any u such that u ă , we have xs `u, dy " xs, dy `xu, dy ď xs, dy ` ď S C pdq which implies s `u P C hence s P intC.

	Lemma 4 (Hiriart-Urruty and Lemaréchal (2012, Theorem C-2.2.3)). Let S be a subset of R n and
	C be a nonempty closed convex set. Then we have sup	xs, dy ă S C pdq for all d in bdB if and only
	sPS	
	if S Ă intC.	
	Proof. For S	

  Real dataset: NCEP/NCAR Reanalysis 1[START_REF] Kalnay | The NCEP/NCAR 40-year reanalysis project[END_REF]: which contains monthly means of climate data measurements spread across the globe in a grid of 2.5 ˝ˆ2.5 ˝resolutions (longitude and latitude 144 ˆ73) from 1948{1{1 to 2015{10{31. Each grid point constitutes a group of 7 predictive variables (Air Tempera-

ture, Precipitable water, Relative humidity, Pressure, Sea Level Pressure, Horizontal Wind Speed and Vertical Wind Speed) whose concatenation across time constitutes our design matrix X P R 814ˆ73577 . Such data have therefore a natural group structure, with seven features per group. As target variable y P R 814 , we use the values of Air Temperature in

  " max , ξ g y s.t. pτ `p1 ´τ qw g q u g D

	gPG	Ω D g pξ g q " max gPG	ug:Ωgpugqď1 sup xu g , ξ g y
	" max			g ď 1
	" max gPG	sup ug:Ωgpugqď1 xu g , ξ g y " max gPG	sup u 1 g : u 1 g D g ď1

gPG sup ug xu g

  Let us define h : R ˆRd Þ Ñ R by hpν, ξq " ST p1´ qν pξq ´ ν. Then we have

	Bh Bν	pν, ξq "	ST p1´ qν pξq J ST p1´ qν pξq	BST p1´ qν pξq Bν	´ "	´ST p1´ qν pξq J ST p1´ qν pξq	p1 ´ q signpξq ´
		" ´	ST p1´ qν pξq 1 ST p1´ qν pξq	p1 ´ q ´ "	´p1 ´ q ST p1´ qν pξq 1 ` ST p1´ qν pξq ST p1´ qν pξq
		" ´	ST p1´ qν pξq ST p1´ qν pξq	D	(thanks to Lemma 10).
	By definition of the -norm, hp ξ , ξq " 0. Since Bh Bν p ξ , ξq " ´ ξ D ξ	‰ 0, we obtain by
	applying the Implicit Function Theorem
		∇ ¨ pξq	ˆBh Bν	p ξ , ξq	`Bh Bξ	p ξ , ξq " 0 hence ∇ ¨ pξq "	´Bh Bξ p ξ , ξq Bh Bν p ξ , ξq	.
	Moreover, Bh Bξ p ξ , ξq "		

arg min ξ´U p ξ q v 8 , Proof.

  λ t´1 p1 `|1 ´αrθs|q ` v t pθq ´αrθsv t´1 pθq 2 ¯,

						(2.54)
	where				
	v t pθq :"	y λ t	´θ			(2.55)
	αrθs :" arg min αPR `	v t pθq ´αv t´1 pθq 2 "	ˆxv t´1 pθq, v t pθqy 2 v t´1 pθq 2	˙`.	(2.56)
	Proof. Start first by noting that (2.53) implies	
	θpλtq				

  Algorithm 4 p -Path on Training Set: Training_path Input: f, Ω, p , rλ min , λ max s Initialize t " 0, λ 0 " λ max , Λ " tλ max u. repeat Solve Problem (3.1) for λ " λ t up to accuracy o ă p Compute ρ t " maxtρ s.t. Q t,V f ˚pρq ď p u Set λ t`1 " λ t ˆp1 ´ρ t q Λ Ð Λ Y tλ t`1 u and t Ð t `1 until λ t`1 ď λ min Return: tβ pλtq : λ t P Λu

  Algorithm 5 v -Path for Validation Set Input: f, Ω, v , rλ min , λ max s Compute p " ξp v , µ, X 1 q according to Proposition 36 Set Λ val " Training_path pf, Ω, p , rλ min , λ max sq Return: Λ val

z

  ˚PR d txz ˚, zy ´P ˚pz ˚qu .Definition 21 (Inf-conv Smoothing). Let P be a proper, closed and convex function, ν ą 0 and let w be a differentiable convex function with 1{ν-Lipschitz continuous gradient. For any µ ą 0, we define P μ pz ˚q :" P ˚pz ˚q `µw ˚pz ˚q. Its conjugate P µ pzq :" sup z ˚PR d txz ˚, zy ´P μ pz ˚qu is called (inf-conv) µ-smooth approximation of P .

	Proposition 45 (Beck and Teboulle (2012, Theorem 4.1)). The function P µ defined inDefinition 21
	is proper, closed, convex and differentiable with 1{pνµq-Lipschitz continuous gradient. Moreover,
	P µ pzq " P ˚μ pzq " pP ˚`pµwq ˚q˚p zq " pP ˝wµ qpzq ,	(4.19)
	where w µ p¨q :" µwp μ q is the dilation of w. Whence				
	P µ pzq :" inf uPR d	" P puq `µw	ˆz	´u µ	˙* .	(4.20)

  Algorithm 6 CD4SCL -Coordinate Descent for the Smoothed Concomitant Lasso with Gap Safe screening Input : X, y, , K, f ce p" 10q, λ, σ 0 , β, σ A Ð rps for k P rKs do if k mod f ce " 1 then Compute θ thanks to (4.27) if G λ,σ 0 pβ, σ, θq " P λt,σ 0 pβ, σq ´Dλt,σ 0 pθq ď . then

			// Stopping criterion
	break	
	Update A thanks to Proposition 49	// Screening test
	for j P A do		// Loop over coordinates
	β j Ð ST nσλ t x j 2 ˆβj	´xJ j pXβ´yq x j 2 ˙// Soft-thresholding step
	σ Ð σ 0 _ y´Xβ ? n		// Noise estimation step
	Output: β, σ, A	

  :

	standard deviation of the noise.							
	min φ,ρą0	´logp	? ρq	`1 2n	? ρy	´X φ ? ρ	2 2	`λ φ 1 .	(4.36)

  . One can show(Bauschke and Combettes, 2011, Example 13.8) that the Fenchel conjugate of persp f is Let us define g " persp f for simplicity.

	persp f pθ, νq "	#	0, `8, otherwise. if ν `f ˚pθq ď 0,
	Hence a direct calculation shows that	
	Proposition 53.		
			$ ' ' σf	˚˚`r σ ˘,	if σ ą 0,
	persp ˚f pr, σq "	& ' θPdomf sup	˚xθ, ry, if σ " 0,
			'
			% `8,	otherwise.
	Proof. First case: σ ą 0.		
	persp ˚f pr, σq " sup	xθ, ry `σν ´gpθ, νq " sup
	θPR n ,νPR		θPR n ,νPR

txθ, ry `σν : ν `f ˚pθq ď 0u

As σ ą 0, for a given β, one should take ν the largest possible, hence ν " ´f ˚pθq. persp ˚f pr, σq " sup θPR n xθ, ry ´σf ˚pθq " σ sup θPR n xθ, r{σy ´f ˚pθq " σf ˚˚pr{σq Second case: σ " 0. persp ˚f pr, 0q " sup θPR n ,νPR xθ, ry ´gpθ, νq " sup θPR n ,νPR txθ, ry : ν `f ˚pθq ď 0u.

  Titre : Algorithmes d'Optimisation Sûrs pour la Sélection de Variables et le Réglage d'Hyperparamètre.Mots Clefs : Optimisation Convexe, Parcimonie Structurée, Élimination Sûre de Variables, Ensemble Actif, Chemin de Régularisation, Estimation de Variance. Le traitement massif et automatique des données requiert le développement de techniques de filtration des informations les plus importantes. Parmi ces méthodes, celles présentant des structures parcimonieuses se sont révélées idoines pour améliorer l'efficacité statistique et computationnelle des estimateurs, dans un contexte de grande dimension. Elles s'expriment souvent comme solution de la minimisation du risque empirique régularisé s'écrivant comme une somme d'un terme lisse qui mesure la qualité de l'ajustement aux données, et d'un terme non lisse qui pénalise les solutions complexes. Cependant, une telle manière d'inclure des informations a priori introduit de nombreuses difficultés numériques pour résoudre le problème d'optimisation sous-jacent et pour calibrer le niveau de régularisation. Ces problématiques ont été au coeur des questions que nous avons abordées dans cette thèse.Une technique récente, appelée «Screening Rules», propose d'ignorer certaines variables pendant le processus d'optimisation en tirant bénéfice de la parcimonie attendue des solutions. Ces règles d'élimination sont dites sûres lorsqu'elles garantissent de ne pas rejeter les variables à tort. Nous proposons un cadre unifié pour identifier les structures importantes dans ces problèmes d'optimisation convexe, et introduisons les règles «Gap Safe Screening Rules». Elles permettent d'obtenir des gains considérables en temps de calcul grâce à la réduction de la dimension induite par cette méthode. De plus, elles s'incorporent facilement aux algorithmes itératifs et s'appliquent à un plus grand nombre de problèmes que les méthodes précédentes.

	Résumé :

  Title : Safe Optimization Algorithms for Variable Selection and Hyperparameter Tuning Keys words : Convex Optimization, Structured Sparsity, Safe Screening Rules, Active set Regularization Path, Variance Estimation

	Abstract :

For our experiments we have focused on (block) coordinate descent solvers

{

Multinomial Logistic Regression. We adapt the formulation given in(Bühlmann and van de Geer, 2011, Chapter 

3) for the multinomial regression. In such a context, one observes for each i P rns a class label l i P rqs. This information can be recast into a matrix Y P R nˆq filled by 0's and 1's: Y i,k " 1 tl i "ku (where 1 is the indicator function). In the same spirit as for the

a description of their algorithm is given in Section 4.6 for completeness

and arg min vPV p ξ q ξ"u`v u " arg min ξ´V p ξ q u . Thus, these two problems have unique solution because we minimize strict convex functions onto convex sets.

' Uniqueness of the -decomposition

From Lemma 7 we have ξ " ξ `ξ1´ where ξ " ξ and ξ 1´

8 " p1 ´ q ξ . Hence ξ P U p ξ q and ξ 1´ P V p ξ q. Now it suffices to show that this -decomposition is unique.

Suppose ξ ‰ 0 (the uniqueness is trivial otherwise) and v P V p ξ q. We show that for any

hence u 2 ą 2 ξ 2 `2xξ , ξ 1´ ´vy because ξ " ξ and ξ 1´ ´v ą 0 (v ‰ ξ 1´ ). Moreover, xξ , ξ 1´ ´vy "

´ q ξ q `s rsignpξ i qp|ξ i | ´p|ξ i | ´p1 ´ q ξ q `q ´vi s "

´ q ξ q `s rp|ξ i | ´p|ξ i | ´p1 ´ q ξ q `q ´vi signpξ i qs ě ÿ i"1

´ q ξ s rp1 ´ q ξ ´vi signpξ i qs ě 0.

The last inequality hold because v P V p ξ q i.e. @i P rds, v i ď p1 ´ q ξ . Finally, u 2 ą 2 ξ 2 hence the result.

Lemma 9. ξ P R d : ξ ď ν ( " u `v : u, v P R d , u ď ν, v 8 ď p1 ´ qν ( .

Proof. Thanks to Lemma 7, we have ξ " ξ `ξ1´ , ξ " ξ and ξ 1´ 8 " p1 ´ q ξ . Hence, ξ ď ν implies ξ ď ν and ξ 1´ 8 ď p1 ´ qν.

Suppose ξ " u `v such that u ď ν and v 8 ď p1 ´ qν. From the -decomposition, we have ξ " ξ ` ξ 1´ 8 . Moreover, ξ ď u and ξ 1´ 8 ď v 8 thanks to Lemma 8. Hence ξ ď u ` v 8 ď ν `p1 ´ qν " ν.

Lemma 10 (Dual norm of the -norm).

Lemma 11. Let ξ P R d zt0u. Then ∇ ¨ pξq " ξ ξ D . (3.44)

Appendix

Proof. We have from the U f,x -convexity and the equality f pzq `f ˚p∇f pzqq " x∇f pzq, zy ´f ˚p∇f pzqq `x∇f pzq, xy `Uf,x px ´zq " f pzq `x∇f pzq, x ´zy `Uf,x px ´zq ď f pxq.

We conclude by applying the inequality at z " ∇f ˚px ˚q and remark that ∇f pzq " x ˚. The same proof holds for the upper bound (3.44).

Applying Fenchel-Young Inequalities (3.43) and (3.44) give the following bounds.

Lemma 18. We assume that ´λθ P Dompf ˚q and X J θ P DompΩ ˚q. Then, the Inequality (3.45) The same technique applies for the upper bound with the Fenchel-Young inequality (3.44)

Remark 15. From the Fenchel-Young inequality (3.42), we have Ωpβq `Ω˚p X J θq ě xβ, X J θy, so the lower bound is always non negative.

Lemma 19. For x P Dompf q, if f is V f,x -smooth, then writing V f,x " pV f,x q ˚for the Fenchel-Legendre transform, one has

Proof. From the smoothness of f , we have inf z f pzq ď inf z pf pxq `x∇f pxq, z ´xy `Vf,x pz ´xqq " f pxq ´pV f,x q ˚p´∇f pxqq.

Table 4.1 -The estimator βM are obtained by a method M and M ´LS is its least square refitting. We note S d " tj P rps, β d j ‰ 0u, D i " py piq , X piq q iPr2s is a split in two parts of the observations, and Ŝi the support selected after a cross-validation on the part D i . The RCV estimator is σRCV " ppσ 2 1 `σ 2 2 q{2q 1{2 , and p m 1 " trp p Σq{p and p m 2 " trp p Σ 2 q{p ´ptrp p Σqq 2 {ppnq.

To obtain an equivariant estimator, [START_REF] Yu | Estimating the error variance in a high-dimensional linear model[END_REF] use a perspective function of the squared 1 norm as a penalty term and propose the Organic Lasso

Furthermore, they show that the estimator obtained with the Organic Lasso formulation is a minimizer of the 2 1 penalized least square

Remark 20 (Homogeneity and Equivariance). The functions ρ and Ω are positively homogeneous with the same degree d if and only of for any t P R, we have min βPR p pty ´Xptβqq `λΩptβq " |t| d min βPR p py ´Xβq `λΩpβq .

Whence the Square-root Lasso and Organic Lasso are equivariant under scaling transformation of the observations y and the Lasso is not. Basically, any couple of loss and regularizer p , Ωq with same degree of homogeneity will produce an equivariant estimator.

Extension to Multivariate Setting

The re-parameterization procedure also works in matrix setting with Multivariate Gaussian Distribution where the density is expressed as

, where

In this case, the canonical parameter is Θ " pΘ 1 , Θ 2 q " pΣ ´1µ, ´1 2 Σ ´1q and the cumulant function P pΘq is convex. Hence following the same route as [START_REF] Yu | Estimating the error variance in a high-dimensional linear model[END_REF], a multivariate Natural (and Organic) Lasso can be obtained.

Numerical Experiments

We compare the estimation performance and computation times of standard deviation estimators which are presently the state-of-the-art in high dimensional settings. We refer to [START_REF] Reid | A study of error variance estimation in lasso regression[END_REF] for a recent comparison. In our simulations we use the common setup: y " Xβ ‹ `σε where ε " N p0, Id n q and X P R nˆp follows a multivariate normal distribution with covariance Σ " pρ |i´j| q i,jPrps . We define β ‹ " αβ where the coordinates of β are drawn from a standard Laplace distribution and we randomly set s% of them to zero. The scalar α is chosen in order to satisfy a prescribed signal to noise ratio denoted snr: α " a snr ˆσ2 {β J Σβ. We note S ‹ " tj P rps, β ‹ j ‰ 0u. The procedures we have compared are summarized in Table 4.1. Namely, our reference is the oracle estimator (OR) σOR , the cross-validated estimator (CV) σM´CV whith a parameter λ cv chosen by 5-fold cross-validation, the least-square refitting estimator (LS) σM´LS , the refitted cross-validation (RCV) σRCV and p σ D2 the estimator introduced in [START_REF] Dicker | Variance estimation in high-dimensional linear models[END_REF].

We run all the following algorithms over the non-increasing sequence λ t " λ max 10 ´δ t´1

T ´1 for t in rT s with the default value δ " 2 and T " 100. The regularization grid for the joint estimations (Scaled-Lasso, with solver from (Sun and Zhang, 2012) (SZ), Smoothed Concomitant Lasso (SC), Square-root Lasso [START_REF] Belloni | Square-root lasso: Pivotal recovery of sparse signals via conic programming[END_REF] (SQRT-Lasso) and the estimator introduced in [START_REF] Städler | 1 -penalization for mixture regression models[END_REF]) (SBvG)) begins at λ max given in Proposition 47. We set Smoothed Concomitant Lasso with the default value σ 0 " y { ? n ˆ10 ´2. As explained in Section 4.1.3 this choice improves numerical efficiency at the cost of departing slightly from the Concomitant Lasso estimator in the low noise regime. The grid for the Lasso (L) estimators begins with λ L max " X J y 8 {n. The Lasso with the universal parameter λ " a 2 logppq{n is denoted (L_U) and SZ refers to Concomitant Lasso with the quantile regularization described in [START_REF] Sun | Sparse matrix inversion with scaled lasso[END_REF] in Fig. 4.3(a).

For each method, 50 replications are computed from the model aforementioned. Figure 4.2 -Comparisons of the computational times using different estimation method (time presented relative to the mean time of the Lasso). (b): speed up using screening rules for the Smoothed Concomitant Lasso w.r.t. to duality gap and for pλ t q tPr100s . The dimensions of Leukemia dataset are pn " 72, p " 7129q.

Computational Performance

Figure 4.2(a) presents on the Leukemia dataset the computation times observed for the different CV methods. The Smoothed Concomitant Lasso is based on the coordinate descent algorithm described in Algorithm 7, written in Python and Cython to generate low level C code, offering high performance. When a Lasso solver is needed, we have used the one from scikit-learn, that is coded similarly. For SZ_CV, computations are quite heavy as one uses the alternating algorithm proposed in [START_REF] Sun | Scaled sparse linear regression[END_REF]. Depending on the regularization parameter (for instance when one approaches λ min ) the SZ_CV method is quite intractable and the algorithm faces the numerical issues mentioned earlier. The generic solver used for SBvG and SQRT-Lasso, is the CVXPY package [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF], explaining why these methods are two orders of magnitude slower than a Lasso. This is in contrast to our solver that reaches similar computing time w.r.t. an efficient Lasso solver, with the additional benefit of jointly estimating the coefficients and the

Appendix

Scaled-Lasso Algorithm (SZ)

We describe in Algorithm 8 the algorithm proposed by [START_REF] Sun | Scaled sparse linear regression[END_REF] to compute the Scaled-Lasso and refer to it as SZ.

In our experiments we have used with the default parameters of the associated R packages scalreg-package, and a choice of λ's following the quantile oriented method described in [START_REF] Sun | Sparse matrix inversion with scaled lasso[END_REF].

Note that contrary to our approach the stopping criterion is only based on checking the absence of consecutive increments on the noise level, whereas we consider dual gap evaluations as a more principled way.

Concerning the Lasso steps, as for other Lasso computations in our experiments, we have used the Lasso solver from scikit-learn with a dual gap tolerance of 10 ´4 and the other parameters set to their default values.

Algorithm 8 Scaled-Lasso algorithm [START_REF] Sun | Scaled sparse linear regression[END_REF] for a fixed λ value Input : X, y, p" 10 ´4q, K " 100, λ, σ old p" 5q, σ new p" 0.1q k " 0 while |σ old ´σnew | ą and 

Additional Experiments

In this section, we present some extensive benchmarks with synthetic datasets with less sparse signal than in Section 4.4. The main observation, presented in Fig. 4.5, is that Smoothed Concomitant Lasso with cross-validation is stable w.r.t. various settings and provides similar performance to other Lasso variants investigated.

For each setting, we compare the mean running time for 50 simulations. The results are displayed in Figure 4.6. The computational time of our algorithm is in the same order of magnitude as the computational time for the Lasso.

Perspective of a Convex Function

The concomitant scale estimator introduced by Huber (1981, Ch. 7.7 and 7.8) (see also [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF][START_REF] Antoniadis | Comments on: 1 -penalization for mixture regression models[END_REF]), is related to the perspective of a function defined for a convex function f : R n Ñ R Y t`8u as the function persp f : R n ˆR Ñ R Y t`8u such that

2. Assume that γ ď x J y 1 ď γ, then θ " x is admissible, and the maximum is 1 (see Figure (4.1).(b)).

3. Assume that ´1 ď x J y 1 ă γ (see Figure (4.1).(c)), then the optimal θ is such that θ " 1, θ J y 1 " γ and θ is "between" x and y 1 , which implies that sinp=pθ, y 1 qq sinp=py 1 , xqq ă 0. Hence, elementary trigonometry gives

Lemma 24. Let y 1 and x be two unit vectors, and consider 0 ď γ ď γ ď 1. The optimal value of

Proof. We need to compute

We apply Lemma 23 with x Ð x and x Ð ´x. We get five cases and for each the value is a maximum between two choices. In fact, one of the two choices is always dominated by the other one. We just present one case for conciseness.

Suppose that x J y 1 ą γ (and thus ´xJ y 1 ă γ since γ ě 0). Then the optimal θ satisfies

We now remark the equivalence

This function is decreasing in x J y 1 so

Thus, the second term in the maximum is never selected and we can simplify the expression. The other cases can be handled similarly.

Proposition 57. Assume that, for a given λ ą 0, we have an upper bound η P p0, `8s, and a lower bound η P p0, `8s over the Smoothed Concomitant Lasso problem (4.17). Denote by x j " X j { X j and y 1 " y{ y two unit vectors, and by γ " pη ´σ0 {2q ? n{ y and γ " η ? n{ y . Then if one of the three following conditions is met -|x J j y 1 | ą γ and γ|x J j y 1 | `a1 ´γ2 b 1 ´px J j y 1 q 2 ă λ ? n{ X j .

γ ď |x J j y 1 | ď γ and 1 ă λ ? n{ X j .

-|x J j y 1 | ă γ and γ|x J j y 1 | `b1 ´γ2 b 1 ´px J j y 1 q 2 ă λ ? n{ X j .

then the j-th feature can be discarded i.e. p β pλ,σ 0 q j " 0.

Proof. If η ď D λ p p θ pλ,σ 0 q qy ď η and maxt|X J j θ| : λ ? n θ ď 1, η ď D λ pθqy ď ηu ă 1, (4.41) then the j-th feature can be discarded (see Eq. (4.25)).

For the standard Concomitant Lasso formulation, D λ pθq " xy, λθy and Lemma 24 can be directly applied to get a safe screening rule from (4.41). To treat the Smoothed Concomitant Lasso (4.17), we check that if η ď D λ,σ 0 pθq ď η then η ´σ0 {2 ď xy, λθy ď η. Denoting by x 1 j " X j { X j and y 1 " y{ y two unit vectors, and by γ " pη ´σ0 {2q ? n{ y and γ " η ? n{ y , the test (4.42) now reads

Lemma 24 concludes the proof. Une telle formulation n'aboutit malheuresement pas à un problème conjointement convexe. En outre, lorsque y " Xβ et σ tend vers 0 c'est-à-dire à l'approche des frontière de l'espace des paramètres, la fonction objective tend vers ´8. Le fait qu'elle ne soit pas bornée inférieurement complique à la fois l'analyse statistique et l'optimisation globale. Nous étudions différentes formulations convexes qui ont été considérées dans la littérature, à savoir [START_REF] Huber | Robust Statistics[END_REF][START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] ainsi que des méthodes de re-paramétrage [START_REF] Städler | 1 -penalization for mixture regression models[END_REF]. Du point de vue de l'optimisation, nous illustrons les problèmes numériques de la formulation du Lasso concomitant et proposons une modification lisse que nous avons dénommé Smoothed Concomitant Lasso, visant à augmenter les stabilités numériques. Notre proposition s'appuie sur les techniques de lissage à la [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]; Beck and Teboulle (2012) du problème initial. En utilisant les règles de criblage sûres sur des chemins de régularisation et le démarrage à chaud développés dans les chapitres précédants, nous proposons une implementation efficace et précise pour une estimation conjointe. Nous évaluons un coût de calcul similaire à celui du Lasso. Il s'agit d'une avancée significative par rapport aux méthodes précédentes basées sur des solveurs génériques de programmation conique ou de procédure itérative alternant les étapes de Lasso et les étapes d'estimation de bruit.

Pour assurer une reproductibilité de nos expériences numériques, les implémentations des algorithmes proposés dans cette thèse ainsi que leurs codes sources sont disponibles dans la page https://github.com/EugeneNdiaye.