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Asa
Am in chains, you’re in chains too

I wear uniforms, you wear uniforms too
I’m a prisoner, you’re a prisoner too

... Mr Jailer
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Chapter 1

Motivations and Contributions

Automatic data processing has become ubiquitous in current technologies, with important
applications in many scientific disciplines such as medicine, biology or meteorology but also in
digital tools such as text translation, targeted advertising or spam detection. It is at the heart of
problems in signal processing, information theory and statistics where one aims at understanding
and summarizing the essential information in the collected data. The latter are often accompanied
by prior information on their structures, which can then be used to lay predictive models and
algorithms. Nevertheless, these algorithms depend heavily on mathematical optimization methods
and it has become crucial to have tools that remain (computationally) effective when the size of the
database increases. We investigate computational simplifications in some optimization problems
arising from statistical learning with a main conductive thread: the saving of calculations based on
optimality certificates and the exploitation of specific regularity structures of the problems.

In this chapter, we recall the importance of optimization in learning with a focus on convex for-
mulation, outline the contributions of the thesis and introduce notation as well as convex analysis
tools used along the manuscript.

1.1 Convex Optimization in Statistical Learning

We follow a classical formalization of statistical learning tasks as in (Hastie et al., 2009;
Shalev-Shwartz and Ben-David, 2014). Let X (resp. Y) be a set of input (resp. output) vec-
tors and X (resp. Y ) be a random variable valued in X (resp. Y). We call learning task the
identification of an application h : X ÞÑ Y that explains the relation between the input X and
the output Y . Considering a loss (also called cost or deviance) function ` such that `py, yq “ 0,
`py, y1q ě 0, we want to learn a prediction function h minimizing the prediction error `phpXq, Y q
in expectation. For simplicity, we consider that h will be searched on a (pre-defined) parameter-
ized family of functions H :“ thp¨, βq : β P Rpu that encodes the prior knowledge we have on
the data. Then, the learning task can be written as the following optimization problem:

min
βPRp

Rpβq :“ Er`phpX,βq, Y qs . (1.1)

Since the expectation is taken under the joint probability distribution PX,Y of the variables X,Y
which is assumed to be unknown, h cannot directly be learned that way: one should rather learn
by considering a training sample that represents the observations at hand. Assuming that the
observations on a given dataset tpxi, yiquiPrns are independent and identically distributed, by the
law of large numbers, the empirical law 1

n

řn
i“1 δpxi,yiq, where the δ represents Dirac masses,

approximates the true distribution PX,Y if the number of observations n is sufficiently large. Hence
the Empirical Risk Minimization (ERM) paradigm reads
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min
βPRp

Rnpβq :“
1

n

n
ÿ

i“1

`phpxi, βq, yiq . (1.2)

A popular instantiation of formulation (1.1), (1.2) is the fundamental tool in Statistics known as
the Maximum Likelihood Estimation (MLE). We refer to (Van der Vaart, 1998) for a comprehensive
description and (Stigler, 2007) for the passionated history of this method. Interestingly, the MLE
for the exponential family naturally leads to convex optimization problem (Brown, 1986).

Definition 1 (Exponential Family). Let ν be a σ-finite measure and λpθq “
ş

exppθyqνpdyq its
Laplace transform with domain N “ tθ P Rn : λpθq ă `8u. For P pθq “ logpλpθqq, we define

pθpyq “ exp
`

xθ, yy ´ P pθq
˘

. (1.3)

For a convex set Θ Ă N , the family of density tpθ : θ P Θu is called (standard) exponential family.

The convexity of the optimization problem derived from MLE of exponential family follows
directly from the convexity of the Log-Laplace transform P , we recall the proof in Chapter 4.

Theorem 1 (Brown (1986, Theorem 1.13)). N is a convex set and P is a convex function on N .
Furthermore, P is lower semi-continuous on Rn and continuous on the interior of N .

In statistical inference, it is common to suppose that the distribution of the observations is
parameterized by some θ0 P Θ that is unknown. Then, the objective is to approximate and provide
information on the model parameter, failing to find it exactly, from random variables distributed
under this law. A classical inferential method is the MLE. For a variable y in the convex support
of ν and Θ a convex subset ofN , the function of the parameter Θ Q θ ÞÑ pθpyq is called likelihood
at y. Now, assuming that the parameter θ0 belongs to Θ and y being a random variable with
distribution Pθ0 , the maximum likelihood estimator is defined as

θ̂pyq “ arg max
θPΘ

pθpyq “ arg min
θPΘ

´ logppθpyqq “ arg min
θPΘ

P pθq ´ xθ, yy

which is a convex optimization problem with a loss function `pθ, yq :“ P pθq ´ xθ, yy. Thus, the
MLE for independent and identically distributed samples y “ py1, ¨ ¨ ¨ , ynq can be expressed as

θ̂pyq P arg min
θPΘ

1

n

n
ÿ

i“1

`pyi, θq . (1.4)

In a learning setting, an important example is the generalization of regression leading to the
family of Generalized Linear Model (GLM) (McCullagh and Nelder, 1989) where the statistical
model contains a deterministic part given by a linear combination of the covariates η “ Xβ and
the random part given by µ “ ErY s where Y is assumed to belong to an exponential family, are
linked by hpηq “ µ. Depending on the distribution of the observations, we recover the Least
Squares and logistic estimation as canonical examples for regression and classification tasks.

Least Squares. Given an independent and identically distributed sample y “ py1, ¨ ¨ ¨ , ynq with
Gaussian law N pµ, σ2q i.e.

ppµ,σ2qpyq “
1

?
2πσ2

exp

"

´
py ´ µq2

2σ2

*

“ exp
 

xpθ1, θ2q, py, y
2qy ´ P pθ1, θ2q

(

where θ “ pθ1, θ2q “ p
µ
σ2 ,´

1
2σ2 q and P pθq “ ´ θ2

1
4θ2
` 1

2 logp´ π
θ2
q. Assuming that σ2 (hence θ2)

is known, the MLE (1.4) for the Gaussian model with mean µ “ Xβ reads:

β̂ P arg min
βPRp

n
ÿ

i“1

1

2σ2
pyi ´ x

J
i βq

2 . (1.5)
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Logistic regression. For a binary variable y P t0, 1u that follows the Bernoulli distribution with
mean µ i.e.

pµpyq “ µyp1´ µq1´y “ exp txθ, yy ´ P pθqu ,

where θ “ logp µ
1´µq and P pθq “ logp 1

1`eθ
q. Stated in the regression setting where the determin-

istic part is θ “ Xβ, the MLE (1.4) and given an i.i.d. sample y “ py1, ¨ ¨ ¨ , ynq of Bernoulli
distribution reads:

β̂ P arg min
βPRp

n
ÿ

i“1

log
`

1` exppxJi βq
˘

´ yix
J
i β .

However, the ERM is not restricted to statistical models based on likelihood. Many learning
paradigms provide a good predictor without assumptions on the underlying distribution over the
data.

Hinge Loss minimization. In binary classification tasks, the Perceptron simply seeks a separa-
tion of the data points in two half-spaces. It can be formulated as a minimization of the following
loss:

β̂ P arg min
βPRp

1

n

n
ÿ

i“1

maxp0, 1´ yix
J
i βq .

It is included in the Support Vector Machine (SVM) paradigm (when one adds a quadratic
regularization) that separates data points into two halfspaces while maximizing a margin. The
later guarantees better convergence properties and allows better prediction performance on unseen
data.

Tradeoffs of Large Scale Learning

To understand the generalization capabilities of statistical learning methods, it is important to
analyze the different sources of error that can corrupt our predictions. These errors come mainly
from the assumptions that are introduced into the learning model. More precisely, let us denote
β˚ P arg minβPRp Rpβq the minimizer of the true risk (1.1) and βn P arg minβPRp Rnpβq the
minimizer of the empirical risk (1.2). Importantly, we have to take seriously into account the fact
that ”in general, optimization problems are unsolvable” (Nesterov, 2004, Chapter 1). Hence we
will assume that we only have access to an approximated solution βεn of the ERM (1.2) i.e. for a
targeted accuracy ε ą 0 controlling the optimization error, the vector βεn satisfies

Rnpβ
ε
nq ´Rnpβnq ď ε .

Bousquet and Bottou (2008) highlighted the Approximation-Estimation-Optimization tradeoffs to
characterize the complexity of the learning task and state that «computational complexity becomes
the limiting factor when one envisions large amounts of training data». Indeed, they provided a
fundamental decomposition of the mean error in large scale learning as

ErRpβεnqs “ Eapproximation ` Eestimation ` Eoptimization ,

where

‚ Eapproximation :“ Rpβ˚q is the residual error made by restricting the analysis to a family
of hypothesis function H,

‚ Eestimation :“ ErRpβnq ´ Rpβ˚qs is the error resulting from the empirical approximation
of the joint distribution of the data PX,Y ,

‚ Eoptimization :“ ErRpβεnq ´ Rpβnqs is the (expected) optimization gap remaining when
solving the ERM problem (1.2).
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Before the "big data" era, the tradeoffs Eapproximation vs. Eestimation also called Bias-Variance
tradeoff was the most popular one, in particular among statisticians: small scale setting. However,
when the size of the dataset increases (large scale), the scalability of the optimization algorithms
for computing the parameters of statistical learning models becomes critical. Hence, given a
predefined accuracy ε, the associated optimization problems must be efficiently addressed. To do
so, one needs to explicitly exploit structures of the problems and to design specialized solvers.

Optimization Algorithms

In a large scale setting, the difficulties of solving the optimization problem (1.2) range from
memory limitation, nonlinearity, non-smoothness to even non convex problems. In this case, the
dimensionality can be so large that algorithms requiring evaluations of quantities relying on the
full dataset become intractable. A popular trend in optimization for machine learning is to go back
to simple methods developed with limited computational resources and popularized in the 50’s,
see (Bottou et al., 2016) for a recent review. Hence, algorithms that provide cheap and fast com-
putations with “limited” information has been privileged e.g. incremental optimization including
stochastic gradient descent (Robbins and Monro, 1951), Frank-Wolfe algorithm (Frank and Wolfe,
1956) also referred to as conditional gradient descent, (block) coordinate descent (Warga, 1963),
and active set methods. We first highlight the two main optimization principles that are systemat-
ically used in this manuscript namely Homotopy Continuation and Majorization-Minimization.

Homotopy Continuation Principle

Homotopy continuation methods aim at evaluating the full curve of solutions of nonlinear
equations Hpx, λq “ 0 for a continuous range of parameter λ P Λ (for Λ a set to be specified
later). The maps Hpx, λq represent a continuous deformation of a nonlinear function F pxq whose
zeros are hard to find, see (Allgower and Georg, 2012) for a comprehensive description. It ap-
pears naturally in machine learning for improving numerical stability and preventing over-fitting.
Indeed, solving the empirical risk minimization problem (1.2) is often not sufficient for finding
good predictors because the problem tends to be ill conditioned in high dimensional settings. A
classical approach consists in adding a regularization term that encodes additional knowledge on
the problem. For instance it can be used to enforce the selection of simpler models and can be
formulated as

β̂pλq P arg min
βPRp

1

n

n
ÿ

i“1

`phpxi, βq, yiq ` λΩpβq , (1.6)

where Ω is the regularization function that penalizes complex solution and λ ą 0 controls the level
of inductive bias. It is usually related to the simplicity principle of G. Ockham in the 14th century
or (Wrinch and Jeffreys, 1921). The regularization term balances between the minimization of the
empirical risk and the structural simplicity of the model through the hyperparameter λ. Finding
the optimal balance is crucial to achieve good prediction on unseen datasets: small λs lead to
complex models that are likely to over fit on the training set while large λs lead to simplistic models
with poor prediction power. A common approach to select a “good” parameter is to use cross
validation. Essentially, this method avoids to perform training and evaluating the performance
of an estimator on the same data. It was introduced in (Larson, 1931), see (Arlot and Celisse,
2010) for a comprehensive review. For simplicity, we consider here the simplified holdout version
that consists in splitting the data tpxi, yiquiPrns in two parts pXtrain, ytrainq and pXtest, ytestq, and
consider Λ a discrete set of hyperparameters. Given a validation loss function L that measures the
prediction error on the test set, the holdout version of cross-validation corresponds to performing
the two following steps:

1. solve problem (1.6) with the training data pXtrain, ytrainq for all λ P Λ,
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2. choose the λ P Λ that minimizes the validation error LphpXtest, β̂
pλqq, ytestq.

A standard grid considered in the literature is λt “ λmax10´δt{pT´1q with a small δ (δ “ 10´2

or 10´3), see for instance (Bühlmann and van de Geer, 2011)[2.12.1] or the glmnet package
(Friedman et al., 2010b) and scikit-learn (Pedregosa et al., 2011). Choosing δ is challenging
both from a statistical point of view (the performance tends to decrease as δ becomes close to zero,
due to over-fitting) and from an optimization point of view since the computational burden tends
to increase for small λ, the primal iterates being less and less sparse, and the problem to solve
more and more ill-posed. It is customary to start from the largest regularizer λ0 “ λmax and then
to perform iteratively the computation of β̂pλtq after the one of β̂pλt´1q. This leads to computing
the models (generally) in the order of increasing complexity: this allows important speed-up by
benefiting of warm start initialization.

Depending on the context, several regularizers Ω were introduced to enforce regularity of the
estimators. Popular examples used in our experiments are:

Ridge/Tikhonov Regularization. The regularization function Ωpβq “ ‖β‖2
2 {2 was introduced

in (Tikhonov, 1943) to improve the stability of inverse problems, and in statistics (Hoerl, 1962;
Hoerl and Kennard, 1970) to reduce the mean square error of the vanilla Least Squares estimator
when the design matrix is rank deficient. In machine learning, it is often viewed as a stabilizer of
the learning algorithm in the sense that the prediction does not change much when the input data
are slightly perturbed. As a consequence, the training error remains close to the test error and this
prevents the algorithm from over-fitting (Shalev-Shwartz and Ben-David, 2014, Chapter 13.2).

While fundamental, preventing the over-fitting phenomenon is not sufficient in many applica-
tions. Often, one also needs to have a good representation of the data and to provide prediction
models that are interpretable. Thus, it is crucial to be able to select the most relevant explanatory
variables, which is what motivated the introduction of sparse regularization methods.

Sparse Lasso Regularization. The regularization Ωpβq “ ‖β‖1 was introduced in (Chen and
Donoho, 1995; Tibshirani, 1996) in signal processing and statistics and follows classical methods
for selecting the most important explanatory variables in multiple regression (Efroymson, 1960)
for stepwise regression or (Breiman, 1995) for selection with non-negative garrote. The `1 norm
penalty has the advantage of being able to select variables in a continuous way and its convex
formulation allows the use of fast iterative algorithm.

Later, several extensions were proposed, notably by Zou and Hastie (2005) for the Elastic net
where Ωpβq “ α ‖β‖1`p1´αq ‖β‖

2
2 {2 interpolates between the Ridge and the Lasso, by Hebiri

and van de Geer (2011) for the Smoothed Lasso where Ωpβq “ α ‖β‖1` γ
řp
j“2pβj ´βj´1q

2, or
for more complex hierarchical group regularizations (Friedman et al., 2010a; Sprechmann et al.,
2011). A survey providing a unified theory for convex structured sparsity-inducing norms was
recently proposed in (Obozinski and Bach, 2016). Note that sparsity can also be incorporated into
the data fitting term. This is the case of the hinge loss which can be used as a variable selection
criterion as well (Guyon et al., 2002; Rakotomamonjy, 2003).

While using regularization, the generalization performance of the ERM is then strongly related
to the capabilities of tuning the regularization parameter λ. This requires the computation of
full solution path in the homotopy continuation framework over a range (often a discrete set) of
hyperparameters Λ. Indeed, it is usually infeasible to compute the whole path in a continuous set if
no closed form solution in Equation (1.6) is available. However, for problems involving piecewise
quadratic loss and piecewise linear regularizations, the solution path tβ̂pλq, λ P Λu is continuous
and piecewise linear (Rosset and Zhu, 2007). This specific piecewise linearity allows to compute
efficiently and exactly the entire solution path. This kind of property was rediscovered several
times in the literature, for instance in (Markowitz, 1952) for portfolio selection, (Osborne, 1992)
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for quantile regression problems, (Osborne et al., 2000a) for Lasso, (Efron et al., 2004) Lars, (Park
and Hastie, 2007) for the GLM regularized with the `1 norm.

Majorization-Minimization Principle (MM)

MM is a generic and powerful technique for building iterative optimization algorithms. At
each step, it simply minimizes a surrogate upper-bound of the objective function that is tight at the
current estimate. Its description can be traced back at least to (Ortega and Rheinboldt, 1970), see
also (Hunter and Lange, 2004) for a synthetic review. It has also been recently used in machine
learning to derive stochastic incremental algorithm (Mairal, 2015).

Definition 2 (Surrogate). A function P̂ p¨|βp0qq is said to be a surrogate of P near βp0q if the
following conditions holds:

#

P pβq ď P̂ pβ|βp0qq for all β P Rp,
P pβp0qq “ P̂ pβp0q|βp0qq .

Given an iterate βpkq, in order to solve minβPRp P pβq, the MM algorithm update is given
by βpk`1q “ arg minβPRp P̂ pβ|β

pkqq. It satisfies the appealing descent property P pβpk`1qq ď

P pβpkqq for all iteration k. Many optimization algorithms used to solve machine learning prob-
lems can be written under this framework. For example, the proximal point algorithm (Martinet,
1970; Parikh and Boyd, 2014) is an MM with the surrogate P̂ pβ|βpkqq :“ P pβq ` L

2 ‖β ´ β
pkq‖2

for some nonnegative constant L. For simplicity, we now suppose that the data fitting term
1
n

řn
i“1 `phpxi, βq, yiq is represented by fpXβq and thus the regularized ERM (1.6) reads:

min
βPRp

Pλpβq :“ fpXβq ` λΩpβq . (1.7)

We furthermore assume that f is differentiable with Lf -Lipschitz continuous gradient. In this
setting, a classical way to construct a surrogate function of Pλ is to upper bound the first order
Taylor expansion of f . Indeed, given a vector βp0q and a direction η in Rp, we have

fpXpβp0q ` ηqq ď fpXβp0qq ` x∇fpXβp0qq, Xηy `
Lf
2
‖Xη‖2 . (1.8)

Using this upper bound, we can now describe two proximal algorithms that are very useful in large
scale machine learning because they can handle different regularization structures in the convex
optimization problem (1.7).

Proximal Gradient Algorithm. Given an iterate βpkq, a direction η “ β ´ βpkq and denoting
L :“ LfσmaxpX

JXq, where σmaxpX
JXq is the largest singular value of XJX , the proximal

gradient algorithm can be expressed as a MM algorithm with the surrogate based on the upper
bound (1.8)

P̂λpβ|β
pkqq :“ fpXβpkqq ` x∇fpXβpkqq, Xpβ ´ βpkqqy ` L

2
‖β ´ βpkq‖2 ` λΩpβq .

Whence the next iteration is the minimizer of P̂λpβ|βpkqq i.e.

βpk`1q “ arg min
βPRp

λ

L
Ωpβq `

1

2

∥∥∥∥β ´ ˆ

βpkq ´
1

L
XJ∇fpXβpkqq

˙∥∥∥∥2

. (1.9)

Thereby, the special case where there is no regularization i.e. λ or Ω equal to zero recovers the
vanilla gradient descent algorithm with the iteration updates:

βpk`1q “ βpkq ´
1

L
XJ∇fpXβpkqq .
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The proximal gradient algorithm and accelerated variants (Nesterov, 2004) have been widely used
to solve linear inverse problems arising in signal/image processing; see also (Beck and Teboulle,
2009; Combettes and Pesquet, 2011) for more descriptions and analysis.

Proximal (block) Coordinate Gradient Algorithm. It is one of the flagship algorithm for deal-
ing with ERM with a separable regularization structure (Friedman et al., 2007; Nesterov, 2012).
It owes its popularity to its low iteration cost while having a rate of convergence proportional to
that of the full (proximal) gradient descent. We refer to (Wright, 2015) for a recent review on
coordinate descent. Assuming the regularization function Ω decomposes into separable group G:

Rp “ b
gPG

R|g| and Ωpβq “
ÿ

gPG
Ωgpβgq ,

we can define the canonical partition associated to the group structure G of the unit matrix

Ip “ p¨ ¨ ¨ , eg, ¨ ¨ ¨ q P Rpˆp, for g P G and where eg P Rpˆ|g| .

This allow to represent β “
ř

gPG e
J
g βg. Then given an iterate βpkq, a direction η “ eJg pβg´β

pkq
g q

and denoting Lg :“ LfσmaxpX
J
g Xgq, the proximal (block) coordinate gradient algorithm can be

expressed as a MM algorithm which iteratively loops over the surrogates (1.8) for each block g

P̂λpβg|β
pkqq :“ fpXβpkqq ` x∇fpXβpkqq, XeJg pβg ´ βpkqg qy `

Lg
2
‖βg ´ βpkqg ‖2 ` λΩgpβgq .

Denoting Xg “ Xeg, the next iteration proceeds by choosing a block g in G and minimizing the
surrogate P̂λpβg|β

pkq
g q i.e.

βpk`1q
g “ arg min

βgPR|g|

λ

Lg
Ωgpβgq `

1

2

∥∥∥∥βg ´ ˆ

βpkqg ´
1

Lg
XJg ∇fpXβpkqq

˙
∥∥∥∥2

. (1.10)

As far as we know, of these two algorithms (1.9), (1.10), there is not one that is uniformly better
than the other. However for functions with computationally cheap block coordinate derivatives
such as (1.7), the Proximal (block) coordinate gradient algorithm tends to be much faster than
the (full) proximal counterpart. This is especially true when smart updates of the coordinate
gradient can be performed by taking benefit of favorable problem structures. In fact, one can
notice that between two successive iterations, the vectors βpk`1q and βpkq differ only in their g-th
block coordinates which has been selected. Hence, defining the vector Ek :“ Xβpkq, one may
observe that Ek`1 “ Ek ` Xgpβ

pk`1q
g ´ β

pk`1q
g q. Thus, denoting nnzpXgq the number of non-

zero entries in Xg, the direction of descent in Equation (1.10) can be updated in OpnnzpXgqq

versus Op
ř

gPG nnzpXgqq for the (full) proximal gradient descent. While enjoying cheaper update
of the iterations, Nesterov (2012) shows that coordinate descent algorithm with random selection
can also have better rate of convergence than full gradient descent because its rate of convergence
depends on the average of the coordinate-wise Lipschitz constant, see also (Richtárik and Takáč,
2014). Note also that calculations of coordinate descent based algorithm can be parallelized, which
has the significant advantage of being able to take advantage of current computer architectures
(Fercoq and Richtárik, 2015).

Beside the overall regularity of the functions involved, explicitly exploiting the structure of
functions allows for designing faster optimization algorithms. One of the main contributions of
this thesis is to propose additional speed-up by saving a considerable amount of the calculations
made along the iterations. We will only consider convex optimization problems in the learning
task defined in (1.6) where the hypothesis class H and the loss function ` are assumed to both be
convex. We have seen that such a convex formulation already includes a large class of statistical
learning tasks such as maximum likelihood estimation for exponential family distribution but also
formulations resulting from the support vector machine paradigm.
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1.2 Outline of the Contributions

The contributions of the thesis were published in machine learning conferences and journals:

Authors: E. Ndiaye, O. Fercoq, A. Gramfort, J. Salmon.
1´ “Gap Safe Screening Rules for Sparse Multi-task and Multi-class Models”.

Advances in Neural Information Processing Systems, 811-819, 2015.

2´ “Gap Safe Screening Rules for Sparse-Group Lasso”.
Advances in Neural Information Processing Systems, 388-396, 2016.

3´ “Gap Safe Screening Rules for Sparsity Enforcing Penalties”.
The Journal of Machine Learning Research 18 (1), 4671-4703, 2017.

Authors: E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, J. Salmon.
4´ “Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression”.

Journal of Physics: Conference Series 904 (1), 012006, 2017.

Authors: E. Ndiaye, T. Le, O. Fercoq, J. Salmon, I. Takeuchi.
5´ Safe Grid Search with Optimal Complexity. Submitted, 2018.

We present in details the results we obtained in the different chapters of the thesis as follows.

Chapter 2. We consider regularized ERM problems stated as the sum of a smooth term (data fitting)
and a non-smooth term (penalty on the complexity of the solution, indirectly its spar-
sity), or vice versa. We show how to exploit a particular structure of the solutions to
ignore unimportant variables in the optimization process without false exclusion and con-
sequently leading to faster solvers. The underlying rationale is that there is no gain in
performing worthless computations involved with non-influential features or observations.
This strategy called (safe) screening follows the seminal work by El Ghaoui et al. (2012)
and has rapidly led to an increasing literature in order to apply it to different instantiations
of problem (1.6). We propose a unifying framework that highlights underlying structures
of convex functions that are commonly exploited in previous derivations of screening rules
for (separable) non-smooth regularized empirical risk minimization. Our method is based
on the exploitation of first order optimality conditions and separation properties of the
subdifferentials of convex functions which generalize the theoretical screening rules previ-
ously known in the literature. It applies to a large class of supervised learning tasks such as
Lasso, Sparse-Group Lasso, multi-task Lasso, binary and multinomial logistic regression,
support vector machine to name a few. Finally, leveraging information given by duality
gap bounds, we provide theoretical results such as iteration complexity of active set iden-
tification and design new fast algorithms to discard safely more variables than previously
considered safe rules, particularly for low regularization parameters. Our approach can
cope with any iterative solver but are particularly well suited to (block) coordinate descent
methods. We also introduce new active warm start strategies that have shown improved
performance. In our numerical experiments, we report significant speed-ups compared to
previously proposed safe rules on all tested datasets.

Chapter 3. We discuss approximated pathwise optimization and application in model selection. De-
spite the appealing property of homotopy continuation methods for providing better pre-
diction in term of generalization performance, the selection of the optimal λ w.r.t. to val-
idation error can be difficult even for problem such as Lasso where we can find an al-
gorithm that computes exactly the entire solution path. Furthermore, the path following
algorithm such as Lars (Efron et al., 2004) or predictor-corrector based methods may suffer
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from numerical instabilities due to several matrix inversion and their complexity, i.e. the
number of linear segments in the path, can be exponential in the dimension of the prob-
lem. For instance the worst case complexity for the Lasso is exactly p3p ` 1q{2 (Mairal
and Yu, 2012) and Op2nq for the SVM (Gärtner et al., 2012). In this chapter, we revisit
the techniques of approximating the solution path up to predefined tolerance in a unified
framework and show that its complexity is Op1{ d

?
εq for uniformly convex loss of order

d ą 0 and Op1{
?
εq for Generalized Self-Concordant functions. This includes examples

such as Least Squares loss, but also the important example of logistic loss which, as far
as we know, was not handled by previous works. Moreover, we clarify the link between
the complexity of the approximated solution path and the regularity of the loss function
considered in the reguralized ERM setting. Finally, we leverage our technique to provide
refined bounds on the validation error and provide a practical algorithm for hyperparameter
selection with stronger guarantee. More precisely, given the training and validation split-
ting data pytrain, Xtrain, yval, Xvalq, we formulate the problem as a bi-level optimization
one

arg min
λPrλmin,λmaxs

Evpβ̂
pλqq “ Lpyval, Xvalβ̂

pλqq

s.t. β̂pλq P arg min
βPRp

`pXtrainβ, ytrainq ` λΩpβq .

Given a prescribed tolerance εv ą 0 of the prediction error on the validation set, we show
how to design a discrete grid of parameter Λvalpεvq included in rλmin, λmaxs such that:

min
λtPΛvalpεvq

Evpβ
pλtqq ´ min

λPrλmin,λmaxs
Evpβ̂

pλqq ď εv.

Therefore, our contribution simply consists in a sequential exploration algorithm à la grid
search while benefiting of global convergence guarantee for approximating the optimal
hyperparameter at a validation error level εv.

Chapter 4. The maximum likelihood estimation is a classical and important statistical learning paradigm
requiring a good statistical model to be specified. For instance, a linear model with Gaus-
sian noise requires estimation of both the position and dispersion parameters pµ, σ2q. If
σ is known and the observations y “ py1, ¨ ¨ ¨ , ynq are independent and identically dis-
tributed the MLE leads to the classical Least Squares estimation (1.5) and the influence
of σ can be discarded. However, if σ is unknown, estimating only µ is not sufficient to
approximate the distribution Pµ,σ2 which leads to an incomplete model. Moreover, in high
dimensional settings where the number of observations is smaller than the number of fea-
tures, sparsity enforcing methods such as Lasso are very popular because they can select
important variables and ease the interpretation of discriminant features. For efficiency,
they rely on tuning a regularization parameter that trades data fitting versus sparsity, and
should be proportional to the noise level σ (Bickel et al., 2009). Yet, the latter is often un-
known in practice. A possible remedy is to jointly optimize over the regression parameter
µ as well as over the noise level σ. A direct formulation of the MLE reads

min
βPRp,σą0

logpσq `
1

2σ2
‖y ´Xβ‖2

which fails to be jointly convex. Also, when y “ Xβ and σ tends to 0 i.e. approach-
ing the boundary of the parameter space, the objective function tends to ´8. This un-
boundedness (from below) makes both the statistical analysis and the global optimization
problems difficult. We investigate different convex formulations that were considered in
the literature i.e. Concomitant Lasso estimation (Huber, 1981; Owen, 2007) as well as
re-parameterization methods (Städler et al., 2010). In an optimization point of view, we il-
lustrate numerical issues of Concomitant Lasso formulation and propose a modification we
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coined Smoothed Concomitant Lasso, aimed at increasing numerical stabilities. Our pro-
posal builds upon smoothing techniques à la Nesterov (2005); Beck and Teboulle (2012) of
the original problem. Leveraging screening rules and the active warm start within a homo-
topy continuation as developed in Chapter 2, we propose an efficient and accurate solver
for joint estimation that achieves similar computational cost than the one for the Lasso.
This is a significant advance over previous methods that are based on generic solvers of
conic programming or iterative procedure that alternates Lasso steps and noise estimation
steps.

The implementations of the algorithms proposed in this thesis are available in open source in

https://github.com/EugeneNdiaye.

1.3 Background on Convex Analysis

Notation. We denote by rT s the set t1, . . . , T u for any non zero integer T . Our observation
vector is y P Rn and the design matrix X “ rX1, . . . , Xps

J P Rnˆp has n observations row-
wise. we write ‖¨‖ to denote any norm and B‖¨‖ its associated unit ball and we write Bpθ, rq
the ball with center θ and radius r (B2 (resp. B8) will denote the euclidean (resp. infinite) unit
ball). Given a vector β P Rp, we denote by supppβq the support of β i.e. the set of indices
corresponding to non-zero coefficients. We denote ptq` “ maxp0, tq and ΠCp¨q the projection
operator over a closed convex set C. The interior (resp. boundary) of a set C is denoted intC
(resp. bdC). The soft-thresholding operator STτ (at level τ ě 0) is defined for any x P Rd by
rSTτ pxqsj “ signpxjqp|xj | ´ τq`.

Definitions and Basic Convexity Properties. We recall some elements of convex analysis used
in the derivation and analysis of the algorithms proposed in this thesis. The notions we recall here
are from (Hiriart-Urruty and Lemaréchal, 2012) and (Rockafellar, 1997).

Let P : Rq Ñ RY t`8u be a function non identically equal to `8, its (effective) domain is
the nonempty set

dompP q “ tz P Rq : P pzq ă `8u .

The epigraph of P is defined as

epiP :“ tpz, rq P Rq ˆ R : P pzq ď ru . (1.11)

Definition 3 (Convexity). A set C is said to be convex if αz ` p1 ´ αqz1 is in C whenever z and
z1 are in C and for α in s0, 1r.

A function P : Rq ÞÑ RY t`8u is said to be convex if for all z, z1 P dompP q and α P p0, 1q,

P pαz ` p1´ αqz1q ď αP pzq ` p1´ αqP pz1q .

We recall that a function P is convex if and only if its epigraph epiP is a convex set (which
can be seen as a geometric definition of convex function).

The convex functions for optimization problems that we will encounter are assumed to be
proper in the sense that they are not identically equal to `8 and do not take the value ´8.
We also assume that they are closed i.e. their epigraph are closed which is equivalent to lower
semi-continuity These properties are of interest because they allows to guarantee existence of
minimizers (Peypouquet, 2015, Proposition 2.19).

For any convex set C Ă Rd the (convex) indicator function ιC is defined by

ιCpxq “

#

0, if x P C,
`8, otherwise .

.
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Definition 4 (Subdifferential). The subdifferential of a convex function P at x is defined as

BP pxq “ tv P Rq : P pzq ě P pxq ` xv, z ´ xy,@z P Rqu . (1.12)

As a slight abuse of notation, we will write BP pxq for any vector in the subdifferential of P at x.

Proposition 1. For a convex function P , the subdifferential BP pxq is a non-empty closed convex
set for any x in dompP q.

Definition 5 (Strong Convexity). A function P is µ-strongly convex for µ ě 0 if

@x, y P dompP q, P pxq ` xBP pxq, y ´ xy `
µ

2
‖y ´ x‖2

ď P pyq. (1.13)

Definition 6 (Smoothness). A continuously differentiable function P is ν-smooth for ν ě 0 if

@x, y P dompP q, P pyq ď P pxq ` x∇P pxq, y ´ xy ` ν

2
‖y ´ x‖2 . (1.14)

Let us now introduce the notion of support function and polarity following (Rockafellar, 1997,
Part 3). They will be used for deriving a concise theory for screening rule in Chapter 2.

Definition 7 (Support Function). Let C be a subset of Rq. The support function of C is defined as

SC : Rq ÝÑ r´8,`8s : x ÞÑ sup
cPC

xc, xy . (1.15)

Proposition 2 (Polarity). A support function is closed and sublinear. Furthermore, if C is closed,
convex and contains 0, then SC is a gauge i.e. a non-negative positively homogeneous convex
function that vanishes at 0. We define its polar function as:

S˝Cpx˚q :“ sup
x‰0

xx˚, xy

SCpxq
“ sup

SCpxq“1
xx˚, xy “ sup

SCpxqď1
xx˚, xy . (1.16)

The function S˝C is also a gauge function and we have the polar inequality:

xx˚, xy ď S˝Cpx˚qSCpxq @x˚ P domS˝C , x P domSC . (1.17)

Note that a gauge function is a norm when it is finite everywhere, symmetric and non zero
except at the origin. Hence Equation (1.17) generalizes Cauchy-Schwartz and Hölder inequality.

Fenchel’s Duality Theorem. We recall Fenchel duality in optimization that will be extensively
use in this manuscript.

Definition 8 (Fenchel-Legendre Transform). For a function P : Rq Ñ r´8,`8s, its conjugate
P , is the function defined as

P ˚ : Rq ÝÑ r´8,`8s : x˚ ÞÑ sup
xPRq

xx˚, xy ´ P pxq . (1.18)

The conjugacy operation P ÞÑ P ˚ is called the Fenchel-Legendre transform.

Theorem 2 (Fenchel Duality see Rockafellar (1997, Theorem 31.3)). Let f (resp. Ω) be closed
proper and convex functions on Rn (resp. Rp), and let X a matrix in Rnˆp and λ ą 0. We define
the primal and dual optimization problem as

β̂pλq P arg min
βPRp

fpXβq ` λΩpβq
loooooooomoooooooon

Pλpβq

pPrimalq. (1.19)

θ̂pλq P arg max
θPRq

´f˚p´λθq ´ λΩ˚pXJθq
loooooooooooooomoooooooooooooon

Dλpθq

pDualq. (1.20)

Strong duality holds i.e. Pλpβ̂pλqq “ Dλpθ̂
pλq if and only if

´λθ̂pλq P BfpXβ̂pλqq ðñ Xβ̂pλq P Bf˚p´λθ̂pλqq, (1.21)

XJθ̂pλq P BΩpβ̂pλqq ðñ β̂pλq P BΩ˚pXJθ̂pλqq. (1.22)
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Optimality conditions in Equation (1.21) and (1.21) are called Karush-Kuhn-Tucker (KKT)
conditions.

Definition 9 (Duality Gap). For any primal/dual feasible pair of vector pβ, θq P domPλˆdomDλ,
the duality gap is defined as the difference between the primal and dual objectives:

Gapλpβ, θq :“ Pλpβq ´Dλpθq

“ fpXβq ` f˚p´λθq ` λpΩpβq ` Ω˚pXJθqq .

For any such pβ, θq, the weak duality holds i.e. Pλpβq ě Dλpθq. This implies that

Pλpβq ´ Pλpβ̂
pλqq ď Gapλpβ, θq .

Remark 1. In this manuscript, the duality gap will be used as an optimality certificate or as a
algorithmic stopping criterion for solving (1.19).

We also recall from (Hiriart-Urruty and Lemaréchal, 1993, Theorem 4.2.2, p. 83)

Proposition 3. P is µ-strongly convex if and only if P ˚ is 1{µ-smooth.

We introduce below the Fenchel-Young inequality and two other variants that exploit the no-
tions of strong convexity and smoothness.

Lemma 1 (Fenchel-Young Inequalities). Let P be a convex function. For all x in dompP q, and
x˚ P dompP ˚q, we have

P pxq ` P ˚px˚q ě xx˚, xy , (1.23)

with equalities if and only if x˚ P BP pxq. Moreover, if P is µ-strongly convex (resp. ν-smooth)
Inequality (1.24) (resp. Inequality (1.25)) holds:

P pxq ` P ˚px˚q ě xx˚, xy `
µ

2
‖x´ BP ˚px˚q‖2 , (1.24)

P pxq ` P ˚px˚q ď xx˚, xy `
ν

2
‖x´∇P ˚px˚q‖2 . (1.25)

Remark 2. The Inequalities (1.24), (1.25) are less common in the literature. They are refinements
of classical Fenchel-Young inequality (1.23) and will be useful in establishing some technical
inequalities.

Proof. We have from the µ-strong convexity and the equality case in Fenchel-Young inequality

P pzq ` P ˚pBP pzqq “ xBP pzq, zy

´P ˚pBP pzqq ` xBP pzq, xy `
µ

2
‖x´ z‖2

“ P pzq ` x∇P pzq, x´ zy ` µ

2
‖x´ z‖2

ď P pxq.

We conclude by applying the inequality at z “ BP ˚px˚q and remark that BP pzq “ x˚. The same
proof holds for the upper bound (1.25).

Lemma 2. The function P is bounded from below if and only if dompP ˚q contains 0.

Proof. We have P ˚p0q “ ´ infz P pzq ă `8. hence the result.

We will assume the following technical condition everywhere: both f and Ω are bounded from
below i.e. both domf˚ and domΩ˚ contains the origin 0. Hence the support functions considered
in this thesis simplify to gauge functions.
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First Order Optimality Conditions

Proposition 4 (Fermat’s Rule). (see (Bauschke and Combettes, 2011, Proposition 26.1) for a more
general result) For any convex function P : Rq Ñ R, we have

z‹ P arg min
zPRq

P pzq ðñ 0 P BP pz‹q . (1.26)

Proposition 5. Let P be a convex and differentiable function, C be a closed and convex set.

z‹ P arg min
zPC

P pzq if and only if x∇P pzq, z ´ z‹y ě 0, @z P C . (1.27)

21



22



Chapter 2

Safe Screening Rules

The computational burden of solving high dimensional regularized regression problem has led
to a vast literature on improving algorithmic solvers in the last two decades. With the increas-
ing popularity of `1-type regularization ranging from the Lasso (Tibshirani, 1996) to hierarchical
sparse structure (Sprechmann et al., 2011), many algorithmic methods have emerged to solve the
associated optimization problems (Efron et al., 2004; Koh et al., 2007; Friedman et al., 2010b;
Bach et al., 2012). Our main objective in this work is to propose a technique that can speed-up any
iterative solver for such learning tasks by reducing the dimensionality thanks to a safe elimination
of unimportant variables.

The safe rules introduced by El Ghaoui et al. (2012) for supervised learning problems with
sparse `1 regularization, is a set of rules allowing to eliminate features whose associated coeffi-
cients are guaranteed to be absent in the model parameter after solving the learning problem. It
exploits the known sparsity of the solution by discarding features prior to starting a solver. The
main building bloc are based on Fenchel duality and first order optimality conditions. Let us con-
sider the example of the Lasso estimator β̂pλq to illustrate the method. Given a tuning parameter
λ ą 0, controlling the trade-off between data fidelity and sparsity of the solutions, it is defined as
any solution of the (primal) optimization problem

β̂pλq P arg min
βPRp

1

2
‖y ´Xβ‖2

2 ` λ ‖β‖1 .

Denoting ∆X “
 

θ P Rn : |xJj θ| ď 1,@j P rps
(

the dual feasible set, a dual formulation of the
Lasso reads

θ̂pλq “ arg max
θP∆X

1

2
‖y‖2

2 ´
λ2

2

∥∥∥θ ´ y

λ

∥∥∥2

2
.

From the Karush-Kuhn-Tucker (KKT) conditions, we have the relation

@j P rps, xJj θ̂
pλq P

#

tsignpβ̂
pλq
j qu if β̂

pλq
j ‰ 0,

r´1, 1s if β̂
pλq
j “ 0.

This leads to the screening rule: @j P rps, |xJj θ̂
pλq| ă 1 ùñ β̂

pλq
j “ 0. It provides a corre-

lation based screening rule that guarantee identification of irrelevant features. Such techniques
are referred to in the literature as safe rules when they screen out coefficients guaranteed to be
zero in the targeted optimal solution. Zeroing those coefficients allows to focus exclusively on the
non-zero ones (likely to represent signal) and helps reducing the computational burden. Similar
strategies have been used as data preprocessing before application of statistical methods (Fan and
Lv, 2008). However they were not necessarily related to an optimization problem. It is worth not-
ing that similar preprocessing steps known as facial reduction are used for accelerating the linear
programming solvers (Markowitz, 1956; Brearley et al., 1975) and conic programming (Borwein
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and Wolkowicz, 1981), we refer to (Mészáros and Suhl, 2003; Drusvyatskiy and Wolkowicz, 2017)
for recent reviews. Another application can also be found in (Michelot, 1986) for projecting onto
the simplex and `1 ball in (Condat, 2016). A noticeable difference between these approaches and
the safe rules lies in the fact that the latter remove the variables only if they can be guaranteed to
be inactive at the optimum.

The safe screening rules have been improved (Xiang et al., 2011) and extended to several
statistical learning tasks for discarding non-influential observations and/or features in optimization
problem including support vector machines (Ogawa et al., 2013; Shibagaki et al., 2016), logistic
regression (Wang et al., 2014), constrained convex problems such as minimum enclosing ball (Raj
et al., 2016) etc. To improve the screening performance, we can rely on the information provided
by the computations done for a previous regularization parameter as in homotopy/continuation
methods. This scenario is particularly relevant in machine learning where one computes solutions
over a grid of regularization parameters, so as to select the best one, e.g. by cross-validation.
Another interesting strategy is the dynamic safe rules introduced by Bonnefoy et al. (2015, 2014)
who opened a promising venue by performing variable screening not only before the algorithm
starts, but also along the iterations. It increases the number of variable eliminated as the algorithm
progresses towards the optimal solution. However, the derivation of those rules strongly depends
on each specific problem formulation and one can ask if there is an underlying common structure
that can be exploited.

This chapter contains a synthesis and a unified presentation of the (safe) screening rules intro-
duced so far in machine learning. We show that it relies on the "subdifferential separation" which
is a natural property of convex functions. We put forward the Gap Safe Rules introduced for the
Lasso in (Fercoq et al., 2015) that relies on duality gap computations and show how it extents to
broad class of optimization problems with the following benefits:

— Gap Safe rules are easy to insert in existing solvers,
— they are proved to be safe and unify sequential and dynamic rules,
— they lead to improved speed-ups in practice w.r.t. previously known safe rules.

Our contribution in the literature consists in the "Gap Safe Screening Rules" series that was
published in the following machine learning review:

Authors: E. Ndiaye, O. Fercoq, A. Gramfort, J. Salmon.
‚ “Gap Safe Screening Rules for Sparse Multi-task and Multi-class Models”.

Advances in Neural Information Processing Systems, 811-819, 2015.

‚ “Gap Safe Screening Rules for Sparse-Group Lasso”.
Advances in Neural Information Processing Systems, 388-396, 2016.

‚ “Gap Safe Screening Rules for Sparsity Enforcing Penalties”.
The Journal of Machine Learning Research 18 (1), 4671-4703, 2017.

Notation. The parameter to recover is a vector β “ pβ1, . . . , βpq
J admitting a group structure.

A group of features is a subset g Ă rps and |g| is its cardinality. The set of groups is denoted by
G and we focus only on non-overlapping groups that form a partition of the set rps. We denote
by βg the vector in R|g| which is the restriction of β to the indices in g. We write rβgsj the j-th
coordinate of βg and simply βj if there is no ambiguity. We also use the notation Xg P Rnˆng
to refer to the sub-matrix of X assembled from the columns with indices j P g and Xj when the
groups are a single feature, i.e. when g “ tju. Similar notation are used for the observations and
the group of samples will be denoted I.
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Framework. We consider optimization problem involving a smooth function plus a separable
regularization to enforce specific structure in the solution. Such a formulation often arises in statis-
tical learning in a context of empirical risk minimization with inductive bias. Popular instantiations
of this formulation are detailed in Section 2.2.4.

Under the classical Fenchel duality, we have the Primal/Dual formulation:

β̂pλq P arg min
βPRp

ÿ

iPI
fipx

J
i βq ` λ

ÿ

gPG
Ωgpβgq “: Pλpβq (Primal), (2.1)

θ̂pλq P arg max
θPRn

´
ÿ

iPI
f˚i p´λθiq ´ λ

ÿ

gPG
Ω˚g pX

J
g θq “: Dλpθq (Dual). (2.2)

Moreover, we have the optimality conditions connecting primal and dual solutions:

@i P I, ´λθ̂
pλq
i P Bfipx

J
i β̂

pλqq ðñ xJi β̂
pλq P Bf˚i p´λθ̂

pλq
i q, (2.3)

@g P G, XJg θ̂
pλq P BΩgpβ̂

pλq
g q ðñ β̂pλqg P BΩ˚g pX

J
g θ̂
pλqq. (2.4)

We propose in this chapter a synthesis and a unified presentation of the screening rules for
identifying active structure in convex optimization problem (2.1) which contains a broader class of
learning problems under mild conditions. We require a loss with a Lipschitz continuous gradient
(which allows to construct a safe region based on the duality gap) plus a regularization that is
block-wise separable (which allows to decompose the problem into independent components).
We present several strategy to take a large benefit from this rule in order to speed up the execution
time of any iterative algorithms, specially the proximal (block) coordinate descent.

2.1 Non-Smoothness and Active Set Identification

Now we introduce an important lemma that captures a natural property of convex functions
that allows us to obtain a simple and unified presentation of the screening rules introduced recently
in the literature.

Lemma 3 (Separation of Subdifferentials). Let P be a convex function and z P domP such that
intBP pzq ‰ H. Then we have intBP pzq X BP pz1q “ H for all z ‰ z1.

Proof. Let z1 such that it exists g in intBP pzq X BP pz1q. Now g in the open set intBP pzq implies
that it exists α ą 0 such that gα :“ g ` αpz1 ´ zq P BP pzq. Then we have

P pzq ě P pz1q ` xg, z ´ z1y ě P pzq ` xgα, z
1 ´ zy ` xg, z ´ z1y “ P pzq ` α

∥∥z1 ´ z∥∥2

2
,

where the first (resp. the second) inequality comes from g P BP pz1q (resp. gα P BP pzq). Hence
z1 “ z.

By applying Lemma 3 to the problem 2.1, we obtain the results that allows to identifies parts
of the optimal solutions. In the rest of this chapter, for any group g in G, β‹g is any vector in R|g|
such that intBΩgpβ

‹
g q is non empty.

Proposition 6 (Feature-wise Screening Rule).
For any group g in G, if XJg θ̂

pλq belongs to intBΩgpβ
‹
g q, then β̂pλqg is equal to β‹g .

Proof. From the optimality conditions Equation (2.4), we have for all group g P G, XJg θ̂
pλq P

BΩgpβ̂
pλq
g q. Then from Lemma 3 we deduce that if β̂pλqg ‰ β‹g , then XJg θ̂

pλq R intBΩgpβ
‹
g q. Hence

we conclude by contrapositive.
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This relation means that the g-th group can be discarded in the problem i.e. β̂pλqg is identified
to be equal to β‹g , whenever XJg θ̂

pλq belongs to intBΩgpβ
‹
g q. However, since θ̂pλq is unknown,

this rule is of limited use. Fortunately, it is often possible to construct a set R˚ Ă Rn, called a
safe region, that contains θ̂pλq. This observation leads to the following result.

Proposition 7 (Safe Feature-wise Screening Rule). Let R˚ be a (dual) safe region i.e. it contains
the (dual) optimal solution θ̂pλq. If XJg R˚ is included in intBΩgpβ

‹
g q then β̂pλqg is equal to β‹g .

Similar results are also obtained when the regularity of the loss and the regularization are
flipped i.e. when the loss function is considered to be the non-smooth part. Exploiting the opti-
mality condition xJi β̂

pλq P Bf˚i p´λθ̂
pλq
i q and using similar reasoning we have:

Proposition 8 (Sample-wise Screening Rule). Let θ‹i be a vector such that intBf˚i pθ
‹
i q is non

empty. If xJi β̂
pλq is in intBf˚i pθ

‹
i q, then ´λθ̂pλqi is equal to θ‹i .

Proposition 9 (Safe Sample-wise Screening Rule). Let θ‹i be a vector such that intBf˚i pθ
‹
i q is non

empty and R be a (primal) safe region i.e. it contains the (primal) optimal solution β̂pλq. If XJi R
is included in intBf˚i pθ

‹
i q then ´λθ̂pλqi is equal to θ‹i .

Often, we will restrict the discussions on the primal formulation where the loss is smooth and
the regularization is non-smooth and separable since the same properties can be recovered in the
dual by symmetry.

Remark 3. The separability is required only for the non-smooth part, it helps to decompose the
problem into independent groups and allows to run (proximal) coordinate descent algorithms
which is known to be very efficient in large scale problems. The case where the non-smooth
part us not separable, which includes important regularization functions such as total variation,
overlapping Group Lasso, Sorted `1-norm, `8-norm etc, is not covered in this work.

Since the subdifferential BΩgpβ
‹
g q is a closed convex set, the screening test

«XJg R˚ Ă intBΩgpβ
‹
g q»can be evaluated computationally thanks to the following lemma that

allows to check whether a given point c belongs to the interiors of a closed convex set C.

Lemma 4 (Hiriart-Urruty and Lemaréchal (2012, Theorem C-2.2.3)). Let S be a subset of Rn and
C be a nonempty closed convex set. Then we have sup

sPS
xs, dy ă SCpdq for all d in bdB if and only

if S Ă intC.

Proof. For S Ă intC, it exists ε ą 0 such that S ` εd P C for all d in the unit sphere bdB.
Hence by Definition 7 of the support function, we have SCpdq ě xs` εd, dy for all s in S. Hence
SCpdq ě supsPSxs, dy ` ε ‖d‖

2.

Reciprocally, let S Ă Rn such that supsPS xs, dy ă SCpdq for any d P bdB. Then for any
s P S, xs, dy ă SCpdq. Now Defining ε :“ inftSCpdq ´ supsPS xs, dy : d P bdBu ą 0, we have
xs, dy ` ε ď SCpdq for all d P bdB, thus taking any u such that ‖u‖ ă ε, we have

xs` u, dy “ xs, dy ` xu, dy ď xs, dy ` ε ď SCpdq

which implies s` u P C hence s P intC.

By applying the Lemma 4 to the (closed convex) sets C “ BΩgpβ
‹
g q and S “ XJg R˚, the

screening rule can be performed by checking if maxθPR˚xX
J
g θ, dy ă SBΩgpβ‹gqpdq for all d in the

unit sphere bdB which implies that β̂pλqg is equal to β‹g . By denoting

Ω˝gpX
J
g θ, β

‹
g q :“ S˝BΩgpβ‹gqpX

J
g θq “ sup

d‰0

xXJg θ, dy

SBΩgpβ‹gqpdq
, (2.5)

the computational safe screening rule can be subsumed as follow
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Theorem 3. Let R˚ be a (dual) closed and convex set that contains the (dual) optimal solution
θ̂pλq. For all group g in G and for any vector β‹g such that intBΩgpβ

‹
g q is non empty, the screening

test reads:

Screening Rules: if Ω˝gpX
J
g θ̂
pλq, β‹g q ă 1 then β̂pλqg “ β‹g . (2.6)

Safe Screening Rules: if max
θPR˚

Ω˝gpX
J
g θ, β

‹
g q ă 1 then β̂pλqg “ β‹g . (2.7)

In the following, we will drop the dependency in β‹g and simply note Ω˝gpX
J
g θq if their is no

ambiguity.

The safe screening rule consists in removing the g-th group from the optimization process
whenever the previous test is satisfied, since then β̂pλqg is guaranteed to be equal to β‹g . Should
R˚ be small enough to screen many groups, one can observe considerable speed-ups in practice
as long as the testing can be performed efficiently. Thus a natural goal is to find safe regions as
narrow as possible: smaller safe regions can only increase the number of screened out variables.
To have useful screening procedures one needs:

— the region R˚ should be as small as possible and contains θ̂pλq,
— the computations needed to check if XJg R˚ Ă intBΩgpβ

‹
g q should be cheap.

The later means that safe regions should be "simple" geometric objects, since otherwise, eval-
uating the test could lead to a computational burden limiting the benefits of screening.

Note that any time a safe rule is performed thanks to a safe region R˚, one can associate a safe
active set consisting of the features that cannot be removed yet by the safe screening test.

Safe Active Set and Converging Region

Definition 10 (Feature-wise (Safe) Active Sets). Let β‹g be a vector such that intBΩgpβ
‹
g q is non

empty. The set of (group) active features at β‹g is defined as:

Apλq :“
!

g P G : XJg θ̂
pλq R intBΩgpβ

‹
g q i.e. Ω˝gpX

J
g θ̂
pλqq ě 1

)

. (2.8)

Moreover, if R˚ is a safe region, its corresponding set of (group) safe active features at β‹g is
defined as

AR˚ :“

"

g P G : XJg R˚ Ć intBΩgpβ
‹
g q i.e. max

θPR˚
Ω˝gpX

J
g θq ě 1

*

. (2.9)

Their complements i.e. the set of non active group, will be denoted Zpλq and ZR˚ .

Let us now describe the notion of converging safe regions introduced in (Fercoq et al., 2015,
Definition 1) that help to reach exact active set identification in a finite number of steps.

Definition 11 (Converging Safe Region). Let pRkqkPN be a sequence of closed convex sets con-
taining the optimal solution θ̂pλq. It is a converging sequence of safe regions if the diameters of
the sets converge to zero. The associated safe screening rules are referred to as converging.

The following proposition asserts that after a finite number of steps, the active set is exactly
identified. Such a property is sometimes referred to as finite identification of the support (Liang
et al., 2017) and is summarized in the following proposition. Yet, note that the (primal) optimal
support can be strictly smaller than the active set, see the case of the Lasso (Tibshirani, 2013)
(where the active set is called equicorrelation set). For clarity, links between optimal support and
(safe) active sets are illustrated in Figure 2.1.
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Figure 2.1 – Illustration of the inclusions between several remarkable sets: supppβq Ď Apθ, rq Ď
rps and supppβ̂pλqq Ď Eλ Ď Apθ, rq Ď rps, where β, θ is a primal/dual pair.

Proposition 10 (Active Set Identification). Let pR˚kqkPN be a sequence of closed convex set con-
taining θ̂pλq for each k in N. If R˚k ÝÑ tθ̂pλqu, then AR˚k

ÝÑ Apλq.

Proof. We proceed in two times:

First we show that maxθPR˚k
Ω˝gpX

J
g θq ÝÑk Ω˝gpX

J
g θ̂
pλqq. Indeed, for any k P N and θ in R˚k

we have from the sublinearity and positive homogeneity of Ω˝g,

Ω˝gpX
J
g θq ď Ω˝gpX

J
g θ̂
pλqq ` Ω˝g

˜

XJg
θ ´ θ̂pλq

‖θ ´ θ̂pλq‖

¸

‖θ ´ θ̂pλq‖ .

Since θ̂pλq in R˚k , then

Ω˝gpX
J
g θ̂
pλqq ď max

θPR˚k
Ω˝gpX

J
g θq ď Ω˝gpX

J
g θ̂
pλqq ` sup

‖u‖“1
Ω˝gpX

J
g uqdiampR˚kq . (2.10)

The conclusion follows the fact R˚k is a converging sequence i.e. limk diampR˚kq “ 0.

Second, we proceed by double inclusion. First remark that Apλq “ AR˚8 where R˚8 :“

tθ̂pλqu. So for all k P N, we have Apλq Ď AR˚k
since (AR˚k

qk are nested sequence of sets.

Reciprocally, suppose that there exists a non active group g P G i.e. Ω˝gpX
J
g θ̂
pλqq ă 1 that re-

mains in the active set AR˚k
for all iterations i.e. @k P N, maxθkPR˚k

Ω˝gpX
J
g θkq ě 1. Since

limkÑ8maxθkPR˚k
Ω˝gpX

J
g θkq “ Ω˝gpX

J
g θ̂
pλqq, we obtain Ω˝gpX

J
g θ̂
pλqq ě 1 by passing to the

limit. Hence, by contradiction, there exits an integer k0 P N such that rpszApλq Ď Ac
R˚k

for all
k ě k0.

One can note that the rate of identification of the active set is strongly related to the rate at
which the sequence of diameters diampR˚kq goes to zero. We show in the next section how to
construct such a converging sequence that uses the information gained during the optimization
process with explicit rates.

We end this section by clarifying the differences and links between the screening rule and the
identification of non-smooth structure of a convex function.

Definition 12 (Kink of a Function). A point z at which BP pzq has more than one element - i.e. at
which P is not differentiable - is called a kink (or corner-point) of P .

For a convex function P defined on the real line, if the subdifferential at z is not a singleton
i.e. P is non differentiable at z, then its interior is a non trivial interval and so is non empty. Hence
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in the previous propositions one can replace "β‹j such that intBΩjpβ
‹
j q is non empty" by "Ωj is non

differentiable at β‹j ". Thus XJj θ̂
pλq P intBΩjpβ

‹
j q implies that β̂pλqj is a kink of Ωj . Whence the

kink of Ωj coincide with the variables screened. Nevertheless, this is not always the case when the
dimension of the group is larger that one. Indeed, let us take the example of Ωpβq “ ‖β‖1` ‖β‖2

where we have only one group rps “ G. The only knowledge that β is a kink of Ω is not sufficient
to decide if β “ 0 since any vector β such that it exits a coordinate βj “ 0 is also a kink of Ω.

2.2 Gap Safe Screening Rules: from Theory to Practice

Various shapes have been considered in practice for the safe region R. Here we consider
for simplicity “sphere regions” following the terminology introduced by El Ghaoui et al. (2012)
choosing a ball R˚ “ Bpc, rq as a safe region.

Since the function Ω˝g is sublinear and positively homogeneous, we have:

max
θPBpc,rq

Ω˝gpX
J
g θq ď Ω˝gpX

J
g cq ` max

θPBpc,rq
Ω˝g

ˆ

XJg
pθ ´ cq

‖θ ´ c‖

˙

‖θ ´ c‖

ď Ω˝gpX
J
g cq ` r max

‖u‖“1
Ω˝gpX

J
g uq .

Denoting the subordinate operator associated to Ω˝g, Ω˝gpXgq :“ max
‖u‖“1

Ω˝gpX
J
g uq, we obtain the

Safe Sphere Test: Ω˝gpX
J
g cq ` rΩ

˝
gpXgq ă 1 ùñ β̂pλqg “ β‹g . (2.11)

The associated safe active set ABpc,rq, consisting of the features that cannot be removed yet by
the test in Equation (2.11), is then given by

Apc, rq :“ ABpc,rq “ tg P G : Ω˝gpX
J
g cq ` rΩ

˝
gpXgq ě 1u . (2.12)

Note that it contains the true support of β̂pλq.

2.2.1 Smoothness and Dual Safe Region

Finding a Radius

Theorem 4 (Gap Safe Sphere). Assuming that fi has 1{γ-Lipschitz gradient, we have

@β P Rp,@θ P ∆X ,
∥∥∥θ̂pλq ´ θ∥∥∥ ď

d

2 Gapλpβ, θq

γλ2
. (2.13)

Whence the set R˚ “ Bpθ,
a

2 Gapλpβ, θq{γλ
2 is a safe region for any β P Rp and θ P ∆X .

Proof. Remember that @i P rns, fi is differentiable with a 1{γ-Lipschitz gradient. As a conse-
quence, @i P rns, f˚i is γ-strongly convex (see Proposition 3) and so the dual function Dλ is
γλ2-strongly concave:

@pθ1, θ2q P Rn ˆ Rn, Dλpθ2q ď Dλpθ1q ` x∇Dλpθ1q, θ2 ´ θ1y ´
γλ2

2
‖θ1 ´ θ2‖2 .

Specifying the previous inequality for θ1 “ θ̂pλq, θ2 “ θ P ∆X , one has

Dλpθq ď Dλpθ̂
pλqq ` x∇Dλpθ̂

pλqq, θ ´ θ̂pλqy ´
γλ2

2
‖θ̂pλq ´ θ‖2 .
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By definition, θ̂pλq maximizes Dλ on ∆X , so, x∇Dλpθ̂
pλqq, θ ´ θ̂pλqy ď 0. This implies

Dλpθq ď Dλpθ̂
pλqq ´

γλ2

2
‖θ̂pλq ´ θ‖2.

By weak duality, we have @β P Rp, Dλpθ̂
pλqq ď Pλpβq, hence @β P Rp and @θ P ∆X ,

Dλpθq ď Pλpβq ´
γλ2

2 ‖θ̂pλq ´ θ‖2 and the conclusion follows.

Remark 4. To build a Gap Safe region as in Equation (2.13), we only need strong convexity in
the dual which is equivalent to smoothness of the loss function whereas the screening property (3),
requires group separability of the non smooth regularizer. Hence our framework of Gap Safe
screening rule automatically applies for a large class of problems.

Construction of (dual) Feasible Vector

To build a center for the safe sphere, we map a primal vector onto the dual space thanks to the
gradient mapping ∇fp¨q. However, the obtained dual vector are not necessarily feasible for the
dual problem. A generic procedure consists in rescaling it so that it belongs to the dual set because
the projection on the feasible set can be hard. More precisely, we want to build θ P Rn such that

@i P I, ´λθi P domf˚i and @g P G, XJg θ P domΩ˚g . (2.14)

Given a vector z in Rn, the rescaled point is denoted by Θpzq and is defined by

Θpzq :“

#

z, if sz ď 1 ,
z
sz
, otherwise,

where sz :“ S˝domΩ˚pX
Jzq . (2.15)

A candidate often considered for computing a dual point is the (generalized) residual term z “
´∇fpXβq{λ. This choice is motivated by the primal-dual optimality (2.3): θ̂pλq “ ´∇fpXβ̂pλqq{λ.

Proposition 11. If f and Ω are bounded from below, then the dual vector θ :“ Θp´∇fpXβq{λq
in Rn satisfies the feasibility condition (2.14).

Proof. From Lemma 2 if Ω is bounded from below then domΩ˚ contains 0. Since it is also closed
and convex, we have S˝domΩ˚ is positively homogeneous. Hence the vector

θ :“ Θ

ˆ

´∇fpXβq
λ

˙

“
´∇fpXβq

maxpλ,S˝domΩ˚pX
J∇fpXβqqq

, (2.16)

satisfies S˝domΩ˚pX
Jθq ď 1 which is equivalent to XJθ in domΩ˚. Moreover, by denoting

α “ λ{s P r0, 1s, we have ´λθ “ α∇fpXβq “ α∇fpXβq ` p1´ αq0. Since domf˚ is convex,
it remains to show that it contains the vectors ∇fpXβq and 0, thus it will necessarily contains
´λθ by convex combination.

From Lemma 2, 0 P domf˚ since f is bounded from below. Moreover, the equality case in the
Fenchel-Young inequality shows that fpXβq ` f˚p∇fpXβqq “ x∇fpXβq, Xβy ă `8. Hence
f˚p∇fpXβqq is also finite.

Remark 5 (Faster Evaluation of the Duality Gap). By definition of the active sets Definition 10,
we have @g P AR˚ , Ω˝gpX

J
g θq ě 1 while @g P ZR˚ ,Ω

˝
gpX

J
g θq ă 1. Furthermore, for β‹g such

that intBΩgpβ
‹
g q is nonempty, we assume that S˝

domΩ˚g
“ S˝

BΩgpβ‹gq
“: Ω˝g (which is true for most

of the examples in this chapter). Let us denote α “ maxpλ,S˝domΩ˚pX
J∇fpXβqqq, then we have

from the separability of Ω

S˝domΩ˚pX
J∇fpXβqq “ αmax

gPG
Ω˝gpX

J
g θq “ αmax

ˆ

max
gPAR˚

Ω˝gpX
J
g θq, max

gPZR˚
Ω˝gpX

J
g θq

˙

“ α max
gPAR˚

Ω˝gpX
J
g θq “ max

gPAR˚
Ω˝gpX

J
g ∇fpXβqq .
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Hence in practice the evaluation of the dual gap is therefore Opnqq where q is the size of AR˚ . In
other words, using a safe screening rule also speeds up the evaluation of the stopping criterion.

2.2.2 Complexity of Active Set Identification

Dynamic safe screening rules have practical benefits since they increase the number of screened
out variables as the algorithm proceeds. In this section, it is shown that Gap Safe rules allow to
have sharper and sharper dual regions along the iterations, accelerating support identification. Be-
fore this, the following proposition states that if one relies on a primal converging algorithm, then
the dual sequence we propose is also converging. Note that the convergence is maintained to the
same primal solution when the primal solution is non-unique.

Lemma 5 (Convergence of the Dual Points). Let βk be a current estimate of a primal solution
β̂pλq and θk “ Θp´∇fpXβkq{λq be the current estimate of θ̂pλq. Then, limkÑ`8 βk “ β̂pλq

implies limkÑ`8 θk “ θ̂pλq.

Proof. Let αk “ maxpλ,S˝domΩ˚pX
J∇fpXβkqqq, we have:

∥∥∥θk ´ θ̂pλq∥∥∥
2
“

∥∥∥∥∥∇fpXβ̂pλqqλ
´

∇fpXβkq
αk

∥∥∥∥∥
2

ď

ˇ

ˇ

ˇ

ˇ

1

λ
´

1

αk

ˇ

ˇ

ˇ

ˇ

‖∇fpXβkq‖2 `
1

λ

∥∥∥∇fpXβ̂pλqq ´∇fpXβkq
∥∥∥

2
.

If βk Ñ β̂pλq, then αk Ñ maxpλ,S˝domΩ˚pX
J∇fpXβ̂pλqqqq “ maxpλ, λS˝domΩ˚pX

Jθ̂pλqqq “ λ

since ∇fpXβ̂pλqq “ ´λθ̂pλq thanks to the optimality condition (2.3) and since θ̂pλq is feasible,
then S˝domΩ˚pX

Jθ̂pλqq ď 1. Hence, both terms in the previous inequality converge to zero.

When θk “ Θp´∇fpXβkq{λq, Lemma 5 the sequence of radius rk “ p2 Gapλpβk, θkq{pγλ
2qq1{2

converges to 0 with k by strong duality, hence the sequence Bpθk, rkq converges to tθ̂pλqu. Hence
we deduce the following proposition.

Proposition 12. The Gap Safe Sphere is a converging safe region.

Following the results and proofs in (Dünner et al., 2016), we present their primal/dual bound
on the optimality certificates. This result is important for deriving the complexity of active set
identification that is algorithmic independent. The next lemma is just a slight modification that
take into account the dual rescaling.

Lemma 6. Let f be νf -smooth and Ω be µΩ-strongly convex. We assume that the vectors θ, u
are chosen as θ “ ´∇fpXβq{α with α such that for all group g in G, XJg θ P domΩ˚g and
u P BΩ˚pXJθq. Then for any s in r0, 1s, we have:

Pλpβq ´ Pλpβ̂
pλqq ěspGapλpβ, θq `∆αq ` s

2

„

p1´ sqµΩ

s
‖β ´ u‖2

´
νf
2

‖Xpu´ βq‖2



where ∆α “
`

α
λ ´ 1

˘

rfpXβq`f˚p´λθqs`xXu,´λθ´∇fpXβqy´ ανf
2λ ‖Xβ´∇f˚p´λθq‖2.

Proof. By optimality of β̂pλq, we have

Pλpβq ´ Pλpβ̂
pλqq ě Pλpβq ´ min

sPr0,1s
Pλpβ ` spu´ βqq for u P BΩ˚pXJθq

ě max
sPr0,1s

fpXβq ` λΩpβq ´ fpXpβ ` spu´ βqqq ´ λΩpβ ` spu´ βqq

ě fpXβq ´ fpXpβ ` spu´ βqqq ` λpΩpβq ´ Ωpβ ` spu´ βqqq @s P r0, 1s.
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By applying the smoothness (resp. strong convexity) inequality of f (resp. Ω), we have

Pλpβq ´ Pλpβ̂
pλqq ě sΓ` s2

„

p1´ sqµΩ

s
‖β ´ u‖2

´
νf
2

‖Xpu´ βq‖2



,

where Γ :“ λrΩpβq ´ Ωpuqs ´ x∇fpXβq, Xpu´ βqy. (2.17)

Since u P BΩ˚pXJθq is equivalent to Ωpuq ` Ω˚pXJθq “ xu,XJθy and the dual vector is given
by θ “ ´∇fpXβq{α, then

Γ “ λrΩpβq ` Ω˚pXJθqs ` xXu,´λθ ´∇fpXβqy ` α

λ
x´λθ,Xβy

ě λrΩpβq ` Ω˚pXJθqs ` xXu,´λθ ´∇fpXβqy

`
α

λ
pfpXβq ` f˚p´λθq ´

νf
2

‖Xβ ´∇f˚p´λθq‖2
q ,

where the last inequality comes from the (reversed) Fenchel-Young inequality (1.25). Finally we
obtain the result by simply rearranging the inequalities.

Restricting to cases where µΩ ‰ 0 i.e. Ω strongly convex, we have domΩ˚ “ Rn and we can
choose α “ λ whence ∆α “ 0. Now choosing s “ µΩ

σXνf`µΩ
where σX is the spectral norm of

the design matrix X (see also Dünner et al. (2016)), then the last term vanishes. Thus

µΩ

σXνf ` µΩ
Gapλpβk`1, θk`1q ď Pλpβk`1q ´ Pλpβ̂

pλqq ď Gapλpβk`1, θk`1q . (2.18)

Assuming that we have a linearly convergent algorithm, we have for some κ ą 0:

µΩ

σXνf ` µΩ
Gapλpβk`1, θk`1q ď p1´ κq

kpPλpβ0q ´ Pλpβ̂
pλqqq . (2.19)

Denoting C “ σXνf`µΩ

µΩ
pPλpβ0q ´ Pλpβ̂

pλqqq, we obtain the following bound on the radius of the
Gap Safe Sphere:

d

2 Gapλpβk`1, θk`1q

γλ2
ď

d

2p1´ κqkC

γλ2
(2.20)

Combining this with the inequality (2.10), we deduce that the identification of the active set occurs
when Ω˝gpX

J
g θ̂
pλqq ` Ω˝gpXgqdiampR˚kq ă 1 for all group g in Zpλq i.e.

diampR˚kq ă
1´ Ω˝gpX

J
g θ̂
pλqq

Ω˝gpXgq
, @g P Zpλq . (2.21)

Exploiting the bound on the radius of the Gap Safe Sphere, we can finally say that the identi-
fication occurs when

d

2p1´ κqkC

γλ2
ă min

gPZpλq

1´ Ω˝gpX
J
g θ̂
pλqq

Ω˝gpXgq
“: δZpλq

Proposition 13 (Complexity of the Active Set Identification). For any linearly converging primal
algorithm, the active set will be identified after at most k0 iterations where

k0 :“

$

&

%

1
κ log

ˆ

2Cf,Ω,X
δ2

Zpλq
ˆ

Pλpβ0q´Pλpβ̂
pλqq

γλ2

˙

if γλ2δ2
Zpλq ď 1,

0 otherwise ,
(2.22)

for some nonnegative constant κ and the constant Cf,Ω,X :“ pσXνf ` µΩq{µΩ depends only on
the conditioning of the optimization problem.
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Algorithm 1 Pathwise Algorithm with Active Warm Start
Input : X, y, ε, K, f ce, pλtqtPrT´1s

for t P rT ´ 1s do
β “ βpλt´1q and // Get previous ε-solution

Get an initial (safe or not) support estimator S “ Spβpλt´1qq

βS “ Solver pXS , y, βS , ε, K, f
ce, λtq // Active warm start

βpλtq “ Solver pX, y, β, ε, K, f ce, λtq // Solve over all variables

Output:
`

βpλtq
˘

tPrT´1s

This generalizes the existing result in activity identification in (Liang et al., 2017; Nutini et al.,
2017) for separable regularization in the sense that our result is true for any primal converging
algorithm not only Forward-Backward. We can also quantify the importance of the initialization
for fast convergence/fast identification of the active set. Indeed, we have a logarithmic dependence
on δZpλq and on the initial Gap Safe radius since

2pPλpβ0q ´ Pλpβ̂
pλqqq

γλ2
ď

2 Gapλpβ0, θ0q

γλ2
.

Note that our reasoning easily adapts to other convergence regimes, it suffices to modify Equa-
tion (2.19) with the appropriate rate.

2.2.3 Homotopy Acceleration Strategies

When designing a supervised learning algorithm with sparsity enforcing penalties, the tuning
of the parameter λ in Problem (2.1) is crucial and is usually done by cross-validation which re-
quires evaluation over a grid of parameter values. A standard grid considered in the literature is
λt “ λmax10´δt{pT´1q with a small δ, say δ “ 10´2 or 10´3, see for instance (Bühlmann and van
de Geer, 2011)[2.12.1], the glmnet package (Friedman et al., 2010b) or the scikit-learn
package (Pedregosa, 2016). The parameter δ has an important influence on the computational bur-
den: computing time tends to increase for small λ, the primal iterates being less and less sparse,
and the problem to solve more and more ill-posed. It is customary to start from the largest regular-
izer λ0 “ λmax and then to perform iteratively the computation of β̂pλtq after the one of β̂pλt´1q.
This leads to computing the models in the order of increasing complexity: this allows important
speed-up by benefiting of warm start strategies. Here we propose a simple pathwise algorithm
divided in two step:

— Active Warm Start: improve solver initialization by solving the problem restricted to an
initial estimation of the support based on sequential information along the regularization
path.

— Dynamic Gap Safe Screening: use the information gained during the iterations of the al-
gorithm to obtain a smaller safe region therefore a greater elimination of inactive variables.

See below the details on the various strategies investigated. We summarize our strategy for
solving the problem given by Equation (2.1) in Algorithm 1 and 2. The notation Solver p. . .q
refers to any numerical solver that produces an approximation of the solution of Problem 2.1 and
SolverUpdate p. . .q is the updating scheme of the current vector along the iterations 1. We consider
solvers that can use a (primal) warm start point.

We now describe the simplest safe rule strategy, which we refer to as the static strategy.

1. For our experiments we have focused on (block) coordinate descent solvers
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Algorithm 2 Iterative Solver with Gap Safe Rules: Solver pX, y, β, ε, K, f ce, λq

Input : X, y, β, ε, K, f ce, λ // Warm start is authorized here through β

for k P rKs do
if k mod f ce “ 1 then

Compute a dual variable θ “ ´∇fpXβq
maxpλ,S˝

domΩ˚
pXJ∇fpXβqqq

Stop if Gapλpβ, θq ď ε

r “
b

2 Gapλpβ,θq
γλ2 // Get Gap Safe radius as in Equation (2.13)

A “
 

g P G : Ω˝gpX
J
g θq ` rΩ

˝
gpXgq ě 1

(

// Get Safe active set as in

Equation (2.12)
βA “ SolverUpdate pXA, y, βA, λq // Solve on current Safe active set

Output: βpλq

Static Safe Rules. The first static safe rule, introduced by El Ghaoui et al. (2012) for `1 regu-
larization, discards variables before any computation. Here, the (safe) sphere is fixed once and for
all, hence the name static. The static rule reads:

Static sphere rule: If Ω˝gpX
J
g θmaxq ` rmaxΩ˝gpXgq ă 1, then β̂pλqg “ β‹g ,

Center: θmax :“ ´∇fpXβmaxq{λmax ,

Radius: rmax :“

c

2

γλ2
Gapλpβmax, θmaxq .

There is a threshold λcritic such that for any λ smaller than λcritic the test from the Static sphere
rule can never be satisfied. This phenomenon appears clearly in the numerical experiments pre-
sented in Section 4.4. In simple cases a closed form for λcritic can even be provided. For instance,
in the case of the Group Lasso, (El Ghaoui et al., 2012) proposed to use rmax “

∣∣∣ 1
λ ´

1
λmax

∣∣∣ ‖y‖2,
and simple calculation gives:

λcritic :“ λmax ˆmin
gPG

‖y‖2 Ω˝gpXgq

λmax ` ‖y‖2 Ω˝gpXgq ´ Ω˝gpXg∇fpXβmaxqq
.

Sequential Safe Rules. Provided that the λ’s are close enough along the regularization parame-
ters, knowing an estimate of β̂pλt´1q gives a clever initialization to compute β̂pλtq. To initialize the
solver for a new λt, a natural choice is to set the primal variable equal to βpλt´1q, an approximation
of β̂pλt´1q output by the solver (at a prescribed precision). This popular strategy is referred to as
warm start in the literature (Friedman et al., 2007). This leads to the sequential strategy to screen
for a new λt:

Sequential sphere rule: If Ω˝gpX
J
g θ
pλt´1qq ` rtΩ

˝
gpXgq ă 1, then β̂pλtqg “ β‹g ,

Center: θpλt´1q :“ Θp´∇fpXβpλt´1qq{λt´1q ,

Radius: rt :“

d

2

γλ2
t

Gapλtpβ
pλt´1q, θpλt´1qq .

Sequential screening is motivated by the idea that the duality gap growth continuously w.r.t. to
the regularization parameter. The variation in the Gap Safe radius can be quantified by using the
warm start bounds in Lemma 12. For simplicity, we describe it only when the dual loss f˚ is
smooth and we refer to Chapter 2 for more details and extensions.

Proposition 14 (Sequential Bounds). Assuming that f˚ is ν-smooth and given a primal/dual fea-
sible vector pβ, θq, we have:

r2
λtpβ, θq ď

λt
λt´1

r2
λt´1

pβ, θq `

ˆ

1´
λt
λt´1

˙

2

λ2
t

∆t `

ˆ

1´
λt
λt´1

˙2 2ν

λ2
t

‖λt´1θ‖2 ,
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(a) Bonnefoy et al. (2014) safe region (b) Gap Safe region

Figure 2.2 – Illustration of safe region differences between Bonnefoy et al. (2014) and Gap Safe
strategies for the Lasso case; note that γ “ 1 in this case. Here β is a primal point, θ is a dual
feasible point (the feasible region ∆X is in orange, while the respective safe balls R are in blue).

where ∆t :“ fpXβq ´ f˚p∇f˚p´λtθqq can be made as small as desired.

Dynamic Safe Rules. Another road to speed up solvers using screening rules was proposed by
Bonnefoy et al. (2014, 2015) under the name “dynamic safe rules”. For a fixed λ, it consists in
performing screening along with the iterations of the optimization algorithm used to solve Prob-
lem (2.1). Let us consider a sequence pβkq that converges to a primal solution β̂pλq. For creating
a dual feasible point, we apply the rescaling introduced in Equation (2.15) to z “ ´∇fpXβkq{λ
and the dynamic strategy can be summarized by

Dynamic sphere rule: If Ω˝gpX
J
g θkq ` rkΩ

˝
gpXgq ă 1, then β̂pλqg “ β‹g ,

Center: θk :“ Θp´∇fpXβkq{λq ,

Radius: rk :“

c

2

γλ2
Gapλpβk, θkq .

In practice the computation of the duality gap can be expensive due to the matrix vector oper-
ations needed to compute XJ∇fpXβkq. For instance in the Lasso case, a dual gap computation
requires almost as much computation as a full pass of coordinate descent over the data. Hence, it
is recommended to evaluate the dynamic (safe) rule only every few passes over the data set. In all
our experiments, we have set this screening frequency parameter to f ce “ 10.

Dual Extrapolation. In the same way we can accelerate the convergence of an iterative algo-
rithm by means of extrapolation of its iterates (Scieur et al., 2016), we can improve the estimation
of θ̂pλq by extrapolating the residual before applying the scaling in Proposition 11. This was pro-
posed by Massias et al. (2018b) for the Lasso and have shown interesting speed up. Given a
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number of iterations K (default being K “ 5) and ρk “ y ´Xβk, let

ρaccel
k :“

#

ρk if k ď K,
řK
k“1 ckρk`1´K if k ą K,

where c “ pc1, ¨ ¨ ¨ , cKq in RK is defined as z{zJ1K and z is a solution of UJk Ukz “ 1K with
Uk “ rρk`1´K ´ ρk´K , ¨ ¨ ¨ , ρk ´ ρk´1s in RnˆK . Then the new dual vector is given by

θaccel
k :“

ρaccel
k

maxpλ, ‖XJρaccel
k ‖8q

. (2.23)

See (Massias et al., 2018b) for more details and numerical experiments.

Active Warm Start. An another variant to further reduce running time in the active warm start,
recently introduced by Ndiaye et al. (2017a) for speeding-up concomitant Lasso computations.
Instead of simply leveraging the previous primal solution, the active warm start strategy also
makes use of the previous safe active set Apθpλt´1q, rt´1q, with rt´1 “ rλt´1pβ

pλt´1q, θpλt´1qq.
The idea is to take as a new primal warm start point, the (approximate) minimizer of Pλt under
the additional constraint that its support is included in the safe active set Apθpλt´1q, rt´1q i.e.

βpλt´1,λtq P arg min
βPRp

fpXβq ` λtΩpβq s.t. supppβq Ď Apθpλt´1q, rt´1q . (2.24)

In (2.24), we still choose βpλt´1q as a standard warm start initialization with the same number
of inner loops and/or accuracy as in (2.1) (to avoid the multiplication of parameters to be set by
the user). Note that un-safe estimators of the active set can be used as for active warm start. In
practice, we can use the (un-safe) strong active set provided by the Strong rules introduced by
Tibshirani et al. (2012). This Strong Warm Start strategy is detailed below.

2.2.4 Application to Popular Estimators

Least Squares Lasso. For the Lasso estimator (Tibshirani, 1996), the data-fitting term is the
standard least square, i.e. fpXβq “ }y ´Xβ}22{2 “

řn
i“1pyi ´ xJi βq

2{2 (meaning that fipzq “
pyi ´ zq2{2). The regularization term enforces sparsity at the feature level and is defined by
Ωpβq “ }β}1.

Group Lasso. For the Group Lasso estimator (Yuan and Lin, 2006), the data-fitting term is the
same fpXβq “ }y ´ Xβ}22{2 but the penalty considered enforces group sparsity. Hence, we
consider the norm Ωpβq “ Ωwpβq, often referred to as an `1{`2 norm, defined by Ωwpβq :“
ř

gPG wg ‖βg‖2 where w “ pwgqgPG are some weights satisfying wg ą 0 for all group g in G.

Elastic Net. For the Elastic Net estimator (Zou and Hastie, 2005) the data fitting term is the
same than for the Lasso i.e. fpXβq “ }y ´ Xβ}22{2 and the regularization is Ωpβq “ η ‖β‖1 `

p1 ´ ηq ‖β‖2
2 {2 interpolates between the `1 penalty and the ridge penalty. The regularizer is

feature-wise separable with Ωjpβjq “ η|βj | ` p1´ ηqβ
2
j for any j in rps and

BΩjpβjq “

#

r´η, ηs if βj “ 0,

η
βj
|βj |

` p1´ ηqβj if βj ‰ 0

Ω˚j pξjq “
1

2η
rp|ξj | ´ p1´ ηqq`s

2 .
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`1 Regularized Logistic Regression. Here, we consider the formulation given in (Bühlmann
and van de Geer, 2011, Chapter 3) for the two-class logistic regression. In such a context, one
observes for each i P rns a class label li P t1, 2u. This information can be recast as yi “ 1tli“1u

(where 1 is the indicator function), and it is then customary to minimize (2.1) where

fpXβq “
n
ÿ

i“1

`

´yix
J
i β ` log

`

1` exp
`

xJi β
˘˘˘

, (2.25)

with fipzq “ ´yiz ` logp1` exppzqq, and the penalty is simply the `1 norm: Ωpβq “ }β}1. Let
us introduce Nh, the (binary) negative entropy function defined by:

Nhpxq “

#

x logpxq ` p1´ xq logp1´ xq, if x P r0, 1s ,
`8, otherwise .

(2.26)

We use the convention 0 logp0q “ 0, and one can check that f˚i pziq “ Nhpzi ` yiq and γ “ 4.
Note that we have privileged the formulation with the label y P t0, 1un instead of y P t`1,´1un

in order to be consistent with the multinomial cases below. One can simply switch from one
formulation to the other thanks to the mapping ry “ 2y ´ 1.

`1{`2 Multi-task Regression. The multi-task Lasso is a regression problem where the parame-
ters form a matrix B P Rpˆq. Denoting n the number of observations for each task k P rqs, it is
defined as

min
BPRpˆq

1

2
‖Y ´XB‖2

F ` λ

p
ÿ

j“1

‖Bj,:‖2 , (2.27)

where X P Rnˆp and Y P Rnˆq. Here we assume that the explanatory variables X are shared
among the tasks however the Gap Safe rules would readily apply to the non-shared design formu-
lation as in (Lee et al., 2010) or in (Liu et al., 2009) since the loss is still smooth, cf. Remark 4.

Introducing the vec operator that vectorizes a matrix by stacking its columns to form a column
vector, and the Kronecker product b of two matrices, the multi-task Lasso can be rewritten as a
special case of Group Lasso. In fact, we have n class of observations ci “ pi` pk ´ 1qnqkPrqs of
size q for each i P rns (the overall number of observations is n1 “ nq) and p groups gj “ pj `
pk ´ 1qpqkPrqs such that |gj | “ q for j P rps. The design matrix X̃ “ Iq bX P Rn1ˆp1 “ Rnqˆpq

is a q-block diagonal matrix defined as X̃ “ diagpX, . . . ,Xq, y “ vecpY q and β “ vecpBq, we
have:

min
βPRp1

1

2

n
ÿ

i“1

∥∥yci ´ x̃Ji β∥∥2

2
` λ

p
ÿ

j“1

∥∥βgj∥∥2
, (2.28)

i.e. fipzq “ ‖yci ´ z‖2
2{2. is that it can be concisely written using the matrix forms of y and β,

without the need to actually construct the large matrix X 1. This is particularly appealing for the
implementation. In signal processing, this model is also referred to as the Multiple Measurement
Vector (MMV) problem. It allows to jointly select the same features for multiple regression tasks,
see (Argyriou et al., 2006, 2008; Obozinski et al., 2010). This estimator has been used in various
applications such as prediction of the location of a protein within a cell (Xu et al., 2011) or in
neuroscience (Gramfort et al., 2012), for instance to diagnose Alzheimer’s disease (Zhang et al.,
2012) and biological data (Bellon et al., 2016; Playe et al., 2018).

`1{`2 Multinomial Logistic Regression. We adapt the formulation given in (Bühlmann and van
de Geer, 2011, Chapter 3) for the multinomial regression. In such a context, one observes for
each i P rns a class label li P rqs. This information can be recast into a matrix Y P Rnˆq filled
by 0’s and 1’s: Yi,k “ 1tli“ku (where 1 is the indicator function). In the same spirit as for the
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multi-task Lasso, a matrix B P Rpˆq is formed by q vectors encoding the hyperplanes for the
linear classification. Thus the multinomial `1{`2 regularized regression reads:

min
BPRpˆq

n
ÿ

i“1

˜

q
ÿ

k“1

´Yi,kx
J
i B:,k ` log

˜

q
ÿ

k“1

exp
`

xJi B:,k

˘

¸¸

` λ

p
ÿ

j“1

‖Bj,:‖2 . (2.29)

Using a similar reformulation as in the multi-task regression, we define ci “ pi ` pk ´ 1qnqkPrqs
for each i P rns and gj “ pj ` pk ´ 1qpqkPrqs for each j P rps. The `1{`2 multinomial logistic
regression can be cast into our framework as:

min
βPRp1

n
ÿ

i“1

fi
`

x̃Ji β
˘

` λ

p
ÿ

j“1

∥∥βgj∥∥2
, (2.30)

with fi : Rq Ñ R such that fipzq “ ´yJciz ` log
`
řq
k“1 exp pzkq

˘

. Note that generalizing (2.1)
to functions fi : Rq Ñ R does not bear difficulties, see (Ndiaye et al., 2015). Let us introduce
NH, the negative entropy function defined by

NHpxq “

#

řq
i“1 xi logpxiq, if x P Σq “ tx P Rq` :

řq
i“1 xi “ 1u,

`8, otherwise.
(2.31)

We use the convention 0 logp0q “ 0, and one can check that f˚i pzq “ NHpz ` Yiq and γ “ 1.

Remark 6. The intercept has been neglected in our models for simplicity. The Gap Safe framework
can also handle such a feature to the cost of more technical details (by adapting the results from
(Koh et al., 2007) for instance). However, in practice, the intercept can be handled in the present
formulation by adding a constant column to the design matrixX . The intercept is then regularized.
However, if the constant is set high enough, regularization is small and experiments show that it
has little to no impact for high-dimensional problems. This is the strategy used in the Liblinear
package by Fan et al. (2008).

Another alternative could be to handle the constant term as is performed by El Ghaoui et al.
(2012). For the Lasso, the bias can also be treated implicitly as follows. Define e “ p1, . . . , 1qJ P
Rn

min
νPR,βPRp

1

2
‖y ´ pXβ ` νeq‖2

2 ` λ ‖β‖1 .

By setting to zero the derivative w.r.t. to ν of the objective function we get ν “ ȳ´ X̄β where ȳ is
the mean of y and X̄ is the column-wise mean of X . Hence, we get rid of the bias term by solving

min
βPRp

1

2

∥∥py ´ ȳeq ´ pX ´ X̄eJqβ∥∥2

2
` λ ‖β‖1 .

In cases where the bias term has to be explicit, one can just iteratively perform an (un-regularized)
gradient descent on the bias component.

Smoothed SVM. For the smoothed SVM (Shalev-Shwartz and Zhang, 2014), the loss is fpXβq “
ř

iPrns fipx
J
i βq where the fi is the smoothed hinge loss defined as

fipziq :“

$

’

&

’

%

0 if yizi ą 1,

1´ yizi ´
γ
2 if yizi ă 1´ γ,

1
2γ p1´ yiziq

2 otherwise

f˚i pξiq :“

#

γ
2 ξ

2
i ` yiξi if yiξi P r´1, 0s,

`8 otherwise
.
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(a) Lasso dual ball BΩD for ΩDpθq “
}θ}8.

(b) Group Lasso dual ball BΩD for
ΩDpθq “ maxp

a

θ2
1 ` θ

2
2, |θ3|q.

(c) Sparse-Group Lasso dual ball
BΩD “

 

θ : @g P G, }STτ pθgq}2 ď
p1´ τqwg

(

.

Figure 2.3 – Lasso, Group Lasso and Sparse-Group Lasso dual unit balls: BΩD “ tθ : ΩDpθq ď
1u. For the illustration, the group structure is chosen such that G “ tt1, 2u, t3uu, i.e. g1 “

t1, 2u, g2 “ t3u, n “ p “ 3, wg1 “ wg2 “ 1 and τ “ 1{2.

which can be combined with ridge regularization. Note that in this case the dual loss is non
smooth and the regularization is smooth. When combined with Elastic net regularization, it leads
to a doubly sparse model with feature-wise and sample-wise sparsity. Simultaneous screening rule
for this case was introduced in (Shibagaki et al., 2016). The subdifferential of the dual loss splits
in two part:

case yi “ 1 :

Bf˚i p´ξiq “

$

’

&

’

%

r1,8r if ξi “ 0

s8, 1´ γs if ξi “ 1

´γx` 1 if ξi Ps0, 1r

case yi “ ´1 :

Bf˚i p´ξiq “

$

’

&

’

%

r8,´1r if ξi “ 0

s ´ 1` γ,8s if ξi “ 1

´γx´ 1 if ξi Ps0, 1r

Similar results also holds for the vanilla SVM as well as smoothed ε-insensitive loss function.
Screening rule for this function is used in (Sangnier et al., 2017).

Sparse-Group Lasso. In the Sparse-Group Lasso case, we also have for β P Rp, fpXβq “
}y ´Xβ}22{2 and the regularization Ωpβq “ Ωτ,wpβq is defined by

Ωpβq :“ τ}β}1 ` p1´ τq
ÿ

gPG
wg ‖βg‖2 ,

for τ P r0, 1s, w “ pwgqgPG with wg ě 0 for all g P G. Note that we recover the Lasso if τ “ 1,
and the Group Lasso if τ “ 0; the case where wg “ 0 for some g P G together with τ “ 0 is
excluded (Ω is not a norm in such a case). This estimator was introduced by Simon et al. (2013) to
enforce sparsity both at the feature and at the group level, and was used in different applications
such as brain imaging in (Gramfort et al., 2013) or in genomics in (Peng et al., 2010). Other
hierarchical norms have also been proposed in (Sprechmann et al., 2010) or (Jenatton et al., 2011)
and could be handled in our framework modulo additional technical details.

For the Sparse-Group Lasso, the geometry of the dual feasible set ∆X is more complex
(cf. Figure 2.3 for a comparison w.r.t. Lasso and Group Lasso). As a consequence, additional
geometrical insights are needed to derive efficient safe rules, especially to compute the dual norm
required by Equation (2.15) and the computation of the safe screening rules given in (3). We now
introduce the ε-norm (denoted ‖¨‖ε) as it has a connection with the Sparse-Group Lasso norm Ω.
The ε-norm was first proposed by Burdakov (1988) for other purposes, see also (Burdakov and
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Merkulov, 2001). For any ε P r0, 1s and any x P Rd, ‖x‖ε is defined as the unique nonnegative
solution ν of the following equation (for ε “ 0, we define ‖x‖ε“0 :“ ‖x‖8):

d
ÿ

i“1

p|xi| ´ p1´ εqνq
2
` “ pενq

2. (2.32)

Using soft-thresholding, this is equivalent to solve in ν the equation ‖STp1´εqνpxq‖2 “ εν. More-
over, its dual norm is given by; see (Burdakov and Merkulov, 2001, Equation (42)):

‖ξ‖Dε “ ε‖ξ‖D2 ` p1´ εq‖ξ‖D8 “ ε‖ξ‖2 ` p1´ εq‖ξ‖1 . (2.33)

This allows to express the Sparse-Group Lasso norm Ωτ,w using the dual ε-norm. We now de-
rive an explicit formulation for the dual norm of the Sparse-Group Lasso, originally proposed
in (Ndiaye et al., 2016, Prop. 4). The proofs are recalled in the appendix Section 2.6.

Proposition 15 (Properties of Sparse-Group Lasso). For all groups g in G, let us introduce

εg :“
p1´ τqwg

τ ` p1´ τqwg
.

Then, the Sparse-Group Lasso norm satisfies the following properties for any β and ξ in Rp,

Ωpβq “
ÿ

gPG
pτ ` p1´ τqwgq}βg}

D
εg

Ω˝pξq “ ΩDpξq “ max
gPG

‖ξg‖εg
τ ` p1´ τqwg

.

Ω˚pξq “ ιB
ΩD
pξq “

ÿ

gPG
ιB

ˆ

STτ pξgq

p1´ τqwg

˙

BΩpβq “ tξ P Rp : @g P G, ξg P τB‖¨‖1pβgq ` p1´ τqwgB‖¨‖2pβgqu .

Remark 7. The dual formulation (2.2) for the Sparse-Group Lasso is a constrained optimization
where the dual feasible set can be characterized as

∆X “
 

θ P Rn : @g P G, ‖XJg θ‖εg ď τ ` p1´ τqwg
(

“
 

θ P Rn : @g P G, ‖STτ

`

XJg θ
˘

‖2 ď p1´ τqwg
(

.

The first (resp. second) expression corresponds to (Fenchel) conjugation (resp. polar) duality.

The Sparse-Group Lasso benefits from two levels of screening: the safe rules can detect both
group-wise zeros and coordinate-wise zeros in the remaining groups: for any group g in G and
any safe sphere Bpθ, rq, Equation (3) and the sub-differential of the Sparse-Group Lasso norm in
Proposition 15 give

Group level safe screening rule: max
θPBpc,rq

‖XJg θ‖εg
τ ` p1´ τqwg

ă 1 ñ β̂pλqg “ 0 .

Feature level safe screening rule: @j P g, max
θPBpc,rq

|XJj θ| ă τ ñ β̂
pλq
j “ 0 .

Proof. For β‹g “ 0, we have BΩgpβ
‹
g q “ BΩDg

and Ω˝g “ ΩD
g . Then, using the expression of

the dual norm of the Sparse-Group Lasso in Proposition 15, the group-wise screening test (2.6)
consists in testing whether ‖XJg θ̂pλq‖εg ă τ ` p1´ τqwg.

For β‹g ‰ 0, we have BΩgpβ
‹
g q “ τB ‖¨‖1 pβ

‹
g q`p1´τqwg

!

β‹g
‖β‹g‖2

)

. Hence for j P g such that

β‹j “ 0, we have BΩjpβ
‹
j q “ τB8 and the feature-wise screening test consists in |XJj θ̂

pλq| ă τ .
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(a) Bpξc, r̃q X τB8 ‰ H;
ξc P τ intB8

(b) Bpξc, r̃q Ă τB8 (c) Bpξc, r̃q X τB8 “ H;
ξc R τ intB8

Noting that ‖STτ pxq‖2 “ p1 ´ τqwg ðñ ‖x‖εg “ τ ` p1 ´ τqwg, the group level safe
screening rule can be rewritten as

max
θPBpθ,rq

∥∥STτ pX
J
g θq

∥∥
2
ă p1´ τqwg ùñ β̂pλqg “ 0 .

The advantage of this formulation is that one can easily derive a tight upper-bound of the
non-convex optimization problem in the left hand side of the preceding test. Indeed, we have
STτ pxq “ x ´ ΠτB8pxq which brings us finally into a geometric problem easier to solve. We
recall from (Ndiaye et al., 2016, Prop. 1) that for any center θ P ∆X , any group g P G and any
j P g, we have the following upper-bound

Proposition 16.
max

θPBpθ,rq
|XJj θ| ď |X

J
j θ| ` r ‖Xj‖2 ,

max
θPBpθ,rq

∥∥STτ pX
J
g θq

∥∥
2
ď Tg :“

#∥∥STτ pX
J
g θq

∥∥
2
` r ‖Xg‖2 , if

∥∥XJg θ∥∥8 ą τ,

p
∥∥XJg θ∥∥8 ` r ‖Xg‖2 ´ τq`, otherwise.

Proof. |XJj θ| ď |rX
J
g pθ ´ θcqsj | ` |X

J
j θc| ď r‖Xj‖` |XJj θc| as soon as θ P Bpθc, rq.

Since θ P Bpθc, rq implies that XJg θ P BpXJg θc, r‖Xg‖q, we have
maxθPBpθc,rq‖STτ pX

J
g θq‖ ď maxξPBpξc,r̃q‖STτ pξq‖ where ξc “ XJg θc and r̃ “ r‖Xj‖. From

now, we just have to show how to compute maxξPBpξc,r̃q‖STτ pξq‖.

In the case where ξc P intpτB8q, if ‖ξc‖8 ` r̃ ď τ p i.e. Bpξc, r̃q Ă τB8q, we have
ΠτB8pξq “ ξ and thus, maxξPBpξc,r̃q‖STτ pξq‖ “ maxξPBpξc,r̃q‖ξ ´ΠτB8pξq‖ “ 0.

Otherwise if ξc P intpτB8q and ‖ξc‖8 ` r̃ ą τ , for any vector ξ P BBpξc, r̃q X pτB8qc and
any vector ξ̃ P BτB8 X rξ, ξcs, ‖ξ ´ΠτB8pξq‖ ď ‖ξ ´ ξ̃‖ “ r̃ ´ ‖ξ̃ ´ ξc‖. Hence

max
ξPBpξc,r̃q

‖ξ ´ΠτB8pξq‖ ď max
ξPBBpξc,r̃qXpτB8qc

ξ̃PBτB8Xrξ,ξcs

r̃ ´
∥∥∥ξ̃ ´ ξc∥∥∥

ď r̃ ´ min
ξPBτB8

‖ξ ´ ξc‖ “ r̃ ´ τ ` ‖ξc‖8 .

This upper bound is attained. Indeed, maxθPBpξc,r̃q‖ξ ´ ΠτB8pξq‖ “ r̃ ´ ‖ΠτB8pξ̂q ´ ξc‖ “
r̃ ´ τ ` ‖ξc‖8 where ξ̂ is a vector in BBpξc, r̃q such that ΠτB8pξ̂q “ ξc ` ej‹pτ ´ ‖ξc‖8q and
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j‹ P arg maxjPrps |pξcqj |.

If ξc R intτB8, since the projection operator on a convex set is a contraction, we have

@ξ P BBpξc, r̃q, ‖ξ ´ΠτB8pξq‖ ď ‖ξ ´ΠτB8pξcq‖
ď ‖ξc ´ΠτB8pξcq‖` ‖ξ ´ ξc‖
“ ‖ξc ´ΠτB8pξcq‖` r̃.

Moreover, it is straightforward to see that the vector ξ̃ :“ γ̃ξc ` p1 ´ γ̃qΠτB8pξcq where
γ̃ “ 1` r̃

‖ξc‖`‖ΠτB8 pξcq‖
belongs to BBpξc, r̃q; it verifies ΠτB8pξcq “ ΠτB8pξ̃q and it attains this

bound.

From the bounds in Proposition 16, we derive the two level of safe screening rule:

Proposition 17 (Safe Screening rule for the Sparse-Group Lasso).

Group level screening: @g P G, if Tg ă p1´ τqwg, then β̂pλqg “ 0.

Feature level screening: @g P G,@j P g, if |XJj θ| ` r ‖Xj‖2 ă τ, then β̂pλqj “ 0.

In the same spirit than Proposition 10, for any safe region R, i.e. a set containing θ̂pλq, we
define two levels of active sets, one for the group level and one for the feature level:

AgppRq :“ tg P G, max
θPR

∥∥STτ pX
J
g θq

∥∥
2
ě p1´ τqwgu ,

AftpRq :“
ď

gPAgppRq
tj P g : max

θPR
|XJj θ| ě τu .

If one considers sequence of converging regions, then the next proposition (see (Ndiaye et al.,
2016, Prop. 3)) states that we can identify in finite time the optimal active sets defined as follows:

Egp :“
!

g P G : ‖STτ pX
J
g θ̂
pλqq‖2 “ p1´ τqwg

)

, Eft :“
ď

gPEgp

!

j P g : |XJj θ̂
pλq| ě τ

)

.

Proposition 18. Let pRkqkPN be a sequence of safe regions whose diameters converge to 0. Then,
lim
kÑ8

AgppRkq “ Egp and lim
kÑ8

AftpRkq “ Eft.

2.3 Computation of Support Function

The support functions inevitably intervene in the formulation of the screening rules Theorem 3
and in the rescaling procedure Proposition 11 to obtain a dual feasible vector. Their evaluations
need to be performed multiple times during the algorithm and they must be computed efficiently.
Fortunately, closed form expressions are available in many cases.

Given an interval ra, bs on the real line, we have Sra,bspcq “ maxpxa, cy, xb, cyq. Although
simple, this covers a large number of examples. Indeed, when we consider feature-wise convex
separable function P pzq “

ř

jPrps Pjpzjq, its subdifferential is a cartesian product of intervals
BP pzq “ ΠjPrpsBPjpzjq since for all j, BPjp¨q is a convex set on the real line. Hence it covers for
instance the `1 regularization and the Elastic Net.

As we saw in the Section 1.3, a classical example of support function is the norm. It constitutes
an important example since it is widely used as sparsity inducing penalties in machine learning.

For the Lasso,

Ωpβq “ }β}1 and Ω˝pξq “ ΩDpξq “ max
jPrps

|ξj | .
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Algorithm 3 Computation of Λpx, α,Rq.

Input:
x “ px1, . . . , xdq

J
P Rd, α P r0, 1s, R ě 0

Output: Λpx, α,Rq

if α “ 0 and R “ 0 then
Λpx, α,Rq “ 8

else if α “ 0 and R ‰ 0 then
Λpx, α,Rq “ ‖x‖{R

else if R “ 0 then
Λpx, α,Rq “ ‖x‖8{α

else
Get I :“

!

i P rds : |xi| ą
α‖x‖8
α`R

)

nI :“ CardpIq
Sort xp1q ě xp2q ě ¨ ¨ ¨ ě xpnI q

S0 “ 0, S
p2q
0 “ 0, a0 “ 0

for k P r1, nI ´ 1s do
Sk “ Sk´1 ` xpkq; S

p2q
k “ S

p2q
k´1 ` x

2
pkq

ak`1 “
S
p2q
k

x2
pk`1q

´ 2 Sk
xpk`1q

` k ` 1

if R
2

α2 P rak, ak`1r then
j0 “ k ` 1
break

if α2j0 ´R
2
“ 0 then

Λpx, α,Rq “
S2
j0

2αSj0
else

Λpx, α,Rq “
αSj0´

c

α2S2
j0
´S

p2q
j0
pα2j0´R2q

α2j0´R2

For the Group Lasso,

Ωwpβq :“
ÿ

gPG
wg ‖βg‖2 and Ω˝wpξq “ ΩD

w pξq “ max
gPG

‖ξg‖2

wg
.

For the Sparse-Group Lasso,

Ωpβq :“ τ}β}1 ` p1´ τq
ÿ

gPG
wg ‖βg‖2 and Ω˝pξq “ ΩDpξq “ max

gPG

‖ξg‖εg
τ ` p1´ τqwg

.

The following proposition shows how to compute exactly the dual norm of the Sparse-Group
Lasso and the ε-norm. This is turned into an efficient procedure in Algorithm 3 (see the Section 2.6
for details and proofs).

Proposition 19. For α P r0, 1s, R ě 0 and x P Rd, the equation
řd
i“1 STναpxiq

2 “ pνRq2 has
a unique solution ν :“ Λpx, α,Rq P R`, that can be computed in Opd log dq operations in the
worst case. With nI “ Card ti P rds : |xi| ą α‖x‖8{pα`Rqu, the complexity of Algorithm 3 is
nI ` nI logpnIq, which is comparable to the ambient dimension d.

We can explicit the critical parameter λmax for the Sparse-Group Lasso that is

λmax “ max
gPG

ΛpXJg y, 1´ εg, εgq

τ ` p1´ τqwg
“ ΩDpXJyq, (2.34)

and get a dual feasible point (2.15), since

ΩDpXJρq “ max
gPG

ΛpXJg ρ, 1´ εg, εgq

τ ` p1´ τqwg
.

2.4 Others Safe Regions and Alternative Acceleration Strategies

Previously we have restricted the discussion on the Gap Safe Sphere, here we show there is
several others ways to build safe region.
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The Seminal Safe Regions. The first Safe Screening rules introduced by El Ghaoui et al. (2012)
can be generalized to Problem (2.1) as follows. Take θ̂pλ0q the optimal solution of the dual prob-
lem (2.2) with a regularization parameter λ0. Since θ̂pλq is optimal for problem (2.2) one obtains
θ̂pλq P tθ : Dλpθq ě Dλpθ̂

pλ0qqu. This set was proposed as a safe region by El Ghaoui et al. (2012).
In the regression case (where fipzq “ pyi´zq2{2), it is straightforward to see that it corresponds to
the safe sphere R˚1 :“ Bpy{λ, ‖y{λ´ θ̂pλ0q‖2q. Note that, θ̂pλ0q can be replaced by any dual feasi-
ble vector in the definition of R˚1 . In particular, one can use a rescaling gradient mapping in Equa-
tion (2.15). Using another first order optimality condition namely Proposition 5 on the dual prob-

Figure 2.4 – Illustration of safe region in blue proposed in (El Ghaoui et al., 2012). The dual
feasible set is represented in orange.

lem, we have θ̂pλ0q is optimal at λ0 if and only if x∇Dλ0pθ̂
pλ0qq, pθ ´ θ̂pλ0qqy ď 0 for all θ in ∆X .

Since θ̂pλq is feasible, we deduce that θ̂pλq P tθ P ∆X : x∇Dλ0pθ̂
pλ0qq, pθ ´ θ̂pλ0qqy ď 0u “: R˚2 .

Finally, intersecting the two safe region above allows to obtain a smaller set R˚ :“ R˚1 XR˚2

R˚ “
!

θ P ∆X : Dλpθq ě Dλpθ̂
pλ0qq, x∇Dλ0pθ̂

pλ0qq, pθ ´ θ̂pλ0qqy ď 0
)

. (2.35)

While interesting, this last safe region depends on the exact solution θ̂pλ0q which is unknown in
practice and a direct replacement with an approximated solution can leads to unsafe rules.

Projection Based Rules for the Quadratic Loss. A refined sphere rule can be obtained in the re-
gression case by exploiting geometric information in the dual space. Let g‹ P arg maxgPG ΩD

g pX
J
g py´

Xβqq (note that if λ ď ΩDpXJpy ´Xβqq, then ΩD
g‹pX

J
g‹py ´Xβqq “ α), and let us define

V‹ :“ tθ P Rn : ΩD
g‹pX

J
g‹θq ď 1u and H‹ :“ tθ P Rn : ΩD

g‹pX
J
g‹θq “ 1u .

Note that for any g P G, we have ΩD
g pX

J
g θ̂
pλqq ď 1, hence θ̂pλq P V‹. Defining θ “ py ´Xβq{α

in ∆X , we assume that the dual norm is differentiable at XJg‹θ. Let η :“ Xg‹∇ΩD
g‹pX

J
g‹θq be the

vector normal to V‹ at θ, θ1 P ∆X is any dual feasible vector and define

θc :“ ΠH‹

´y

λ

¯

“
y

λ
´
x
y
λ , ηy ´ 1

‖η‖2
2

η and rθ1 :“

c∥∥∥y
λ
´ θ1

∥∥∥2

2
´

∥∥∥y
λ
´ θc

∥∥∥2

2
.
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Figure 2.5 – Illustration of the projection based safe region in blue proposed in (Bonnefoy et al.,
2014, 2015). The center c of the ball is the projection of y{λ onto the halfspace containing the
dual feasible set.

Proof. We set H´‹ the negative half-space induced by the hyperplane H‹. Since θ̂pλ,Ωq P V‹ Ă H´‹
and B

`

y
λ , ‖

y
λ ´ θ

1‖
˘

is a safe region, then θ̂pλ,Ωq P H´‹ X B
`

y
λ , ‖

y
λ ´ θ

1‖
˘

. Moreover, for any
θ P H´‹ X B

`

y
λ , ‖

y
λ ´ θ

1‖
˘

, we have:∥∥∥y
λ
´ θ1

∥∥∥2
ě

∥∥∥y
λ
´ θ

∥∥∥2
“

∥∥∥´y
λ
´ θc

¯

` pθc ´ θq
∥∥∥2

“

∥∥∥y
λ
´ θc

∥∥∥2
` ‖θc ´ θ‖2

` 2
Ay

λ
´ θc, θc ´ θ

E

.

Since θc “ ΠH´‹ p
y
λq and H´‹ is convex, then xθc ´ y

λ , θc ´ θy ď 0. Thus

∥∥∥y
λ
´ θ1

∥∥∥2
ě

∥∥∥y
λ
´ θc

∥∥∥2
` ‖θc ´ θ‖2 , hence ‖θ ´ θc‖ ď

c∥∥∥y
λ
´ θ1

∥∥∥2
´

∥∥∥y
λ
´ θc

∥∥∥2
“: rθ1 .

Which show that H´‹ X B
`

y
λ , ‖

y
λ ´ θ

1‖
˘

Ă Bpθc, rθ1q. Hence the result.

The special case where β “ 0 and θ “ y{λmax corresponds to the original ST3 introduced in
Xiang et al. (2011) for the Lasso. A further improvement can be obtained by choosing dynamically
θ “ θk along the iterations of an algorithm, this strategy corresponding to DST3 introduced in
Bonnefoy et al. (2014, 2015) for the Lasso and Group Lasso and in Ndiaye et al. (2016) for the
Sparse-Group Lasso. Now we can choose sequentially β “ β̂pλt´1q or dynamically β “ βk which
lead to a center θc that is closer to the dual optimal solution.

Dual Polytope Projection. In the regression case, Wang et al. (2015) explore other geometric
properties of the dual solution. Their method is based on the non-expansiveness of projection
operators. Indeed, for θ̂pλq (resp. θ̂pλ0qq) being optimal dual solution of (2.2) with parameter λ
(resp. λ0), one has: ‖θ̂pλq ´ θ̂pλ0q‖2 “ ‖Π∆py{λq ´ Π∆py{λ0q‖2 ď ‖y{λ ´ y{λ0‖2 and hence
θ̂pλq P Bpθ̂pλ0q, ‖y{λ´ y{λ0‖2q. The authors also proved an enhanced version of this safe region
by using the firm non-expansiveness of the projection operator. Assume that λt´1 ă λt, then the
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Figure 2.6 – Illustration of the region in blue obtained by dual polytope projection proposed in
(Wang et al., 2015). Note that this set is unsafe due to approximation error of θ̂pλ0q. However it
can be used as strong active set.

dual optimal solution of the group-Lasso with parameter λt, satisfies (see illustration in Figure 2.5)

θ̂pλtq P B
ˆ

θ̂pλt´1q `
1

2
vKpλt´1, λtq,

1

2

∥∥vKpλt´1, λtq
∥∥

2

˙

,

where vKpλt´1, λtq “
y

λt
´ θ̂pλt´1q ´ αrθ̂pλt´1qsp

y

λt´1
´ θ̂pλt´1qq

αrθ̂pλt´1qs :“ arg min
αPR`

∥∥∥∥ yλt ´ θ̂pλt´1q ´ αp
y

λt´1
´ θ̂pλt´1qq

∥∥∥∥
2

“
x

y
λt´1

´ θ̂pλt´1q, yλt ´ θ̂
pλt´1qy

‖ y
λt´1

´ θ̂pλt´1q‖2
2

.

Note that the rule proposed by Wang et al. (2015), as pointed out by Bonnefoy et al. (2015),
relies on the exact knowledge of a dual optimal solution for a previously solved Lasso problem.
This is impossible to obtain in practice and even if it is possible to find accurate solutions, the
search for high accuracy may hinder the benefits of the screening when it was not actually needed.
Using inaccurate solutions may lead to discarding variables that should have been active and so
the screened optimization algorithm will not converge to a solution of the original problem. We
illustrate this issue on Figure 2.7. Knowing an approximation β to the optimal primal point,
returned by the optimization algorithm at the previous regularization parameter λt´1, we need to
choose an approximation θ to the optimal dual point to run EDPP.

— If we choose to approximate the dual optimal point by θ “ 1
λt´1

py´Xβq (blue curve with
diamonds), then the result is catastrophic. Indeed, at λ1, β “ 0 is a valid ε-solution for
ε “ 10´1.5 and the screening rule tries to perform a division by 0 when computing αrθs.

— If we choose to approximate the dual optimal point by 1
maxpλt´1,‖XJpy´Xβq‖8q

py ´Xβq,
we have a better behavior (purple curve with triangles) but we may still have an algorithm
which does not converge to an ε-solution. Here, for the 13th Lasso problem a variable is
erroneously removed and the problem can only be solved to accuracy 0.03515 ą 10´1.5 «

0.03162. This may look like a small issue but when the stopping criterion is based on the
duality gap, this causes the algorithm to continue until the maximum number of iterations
is reached.
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Figure 2.7 – EDPP is not safe. We run GAP SAFE and two interpretations of EDPP (described in
the main text) to solve the Lasso path on the dataset defined byX and y above with target accuracy
10´1.5. For each Lasso problem, we plot the final duality gap returned by the optimization solver.

We propose in the appendix a solution for taking into account the approximation error.

Remark 8. The preceding spheres are mainly based on the fact that θ̂pλq “ Π∆py{λq which is
limited to the regression case. Thus, those methods are not appropriate for more general data
fitting term which greatly reduces the scope of such rules.

Remark 9. The radius of the regions above do not converge to zero even in the dynamic case
(DST3), and the (fixed) center of the preceding sphere can be far from θ̂pλq when λ gets small.
Thus, those regions are not converging and are irrelevant for dynamic screening.

Safe Screening with Variational Inequalities. As for the initial safe region proposed in (El
Ghaoui et al., 2012), Liu et al. (2014) exploits the optimality condition in Proposition 5 succes-
sively at parameter λ0 and λ reads:

x∇Dλ0pθ̂
pλ0qq, pθ ´ θ̂pλ0qqy ď 0, @θ P ∆X , (2.36)

x∇Dλpθ̂
pλqq, pθ ´ θ̂pλqqy ď 0, @θ P ∆X . (2.37)

Then setting θ “ θ̂pλq in Equation (2.36) and θ “ θ̂pλ0q in Equation (2.37) we have that θ̂pλq

belongs to R˚sasvi where

R˚sasvi :“
!

θ P ∆X : x∇Dλpθq, pθ̂
pλ0q ´ θqy ď 0, x∇Dλ0pθ̂

pλ0qq, pθ ´ θ̂pλ0qqy ď 0
)

. (2.38)

Note that the optimality condition in Proposition 5 states that θ̂pλq is optimal at parameter λ if
and only if Equation (2.37) holds if and only if Dλpθ̂

pλqq ě Dλpθq for all θ in ∆X , we find that
the region R˚sasvi coincides with the one in Equation (2.35) already proposed in (El Ghaoui et al.,
2012).

Approximate Dictionaries. Matrix multiplications often dominate calculation costs in iterative
algorithms. Hence by replacing the design matrix X by an (more structured) approximation X̃
which is easier to manipulate, Dantas and Gribonval (2017, 2018) have proposed an extension of
the safe screening techniques. We describe it in our framework. Assuming that X “ X̃ ` E,
where E “ rε1, ¨ ¨ ¨ , εps is a known approximation error, one have from the sublinearity of both
Ω˝g and S˝domΩ˚ :

Ω˝gppXg ` εgq
Jθq ` rΩ˝gpXgq ď Ω˝gpX̃

J
g θq ` Ω˝gpε

J
g θq ` rΩ

˝
gpXgq “: Tg ,

S˝domΩ˚pX
J∇fpX̃βqq ď S˝domΩ˚pX̃

J∇fpX̃βqq ` S˝domΩ˚pE
J∇fpX̃βqq “: s̃ .
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Hence, a safe elimination of the g-th variable can be done using only the approximated matrix X̃
if Tg ă 1 and a dual feasible vector can be computed as θ̃ “ ´∇fpX̃βq{maxpλ, s̃q P ∆X .

Note that when both the number of observations and features are large, performing a screening
rule can be expensive. In this case, the extension to approximate dictionaries seems more scalable
since one can set X̃ as a subsampling of X as it is usual in stochastic optimization. However, if
the approximation error is not known exactly, it could be challenging to keep the safety and we
are not aware of any such rules.

Gradient Based Region. In Section 2.2.1, we presented the Gap sphere region by exploiting
the regularity of the loss function. An important point was that its radius goes to zero when the
algorithm converges and it is a function of the duality gap. This later can be used as an optimality
certificates. Similarly, we can build another safe region based on the gradient. We consider the
setting where we want to solve

min
βPRp

Pλpβq “ fpβq ` λΩpβq ,

and suppose that f is ν-smooth and Ω is non smooth. Given L ě ν{2 and an iterate βp0q in Rp,
we define the proximal step and the composite gradient direction as

βL :“ arg min
βPRp

λΩpβq `
L

2
‖β ´ pβp0q ´ 1

L
∇fpβp0qqq‖2 ,

gLpβq :“ Lpβp0q ´ βLq .

Proposition 20 (Gradient Safe Sphere Nesterov (2007, Lemma 2)). Let Pλ be µ-strongly convex
and L ě ν{2, then we have

‖β̂pλq ´ βL‖ ď
1

µ

´

1`
ν

L

¯

‖gLpβq‖˚ . (2.39)

Similar safe region have been used recently in (Yoshida et al., 2018) for deriving screening
rules for some metric learning problems.

Strong Rules. The Strong rules were introduced in (Tibshirani et al., 2012) as a heuristic exten-
sion of the safe rules. It consists in relaxing the safe properties to discard features more aggres-
sively, and can be formalized as follows. Assume that the gradient of the data fitting term ∇F
is group-wise non-expansive w.r.t. the dual norm Ω˝gp¨q along the regularization path i.e. that for
any g P G, any λ ą 0, λ1 ą 0, Ω˝g

`

∇gF pβ̂
pλqq ´ ∇gF pβ̂

pλ1qq
˘

ď |λ ´ λ1|. When choosing two
regularization parameters such that λ ă λ1 one has:

λΩ˝g

´

XJg θ̂
pλq

¯

“ Ω˝g

´

∇gF pβ̂
pλqq

¯

ď Ω˝g

´

∇gF pβ̂
pλ1qq

¯

` Ω˝g

´

∇gF pβ̂
pλqq ´∇gF pβ̂

pλ1qq

¯

ď Ω˝g

´

∇gF pβ̂
pλ1qq

¯

` |λ´ λ1|

“ λ1Ω˝g

´

XJg θ̂
pλ1q

¯

` λ1 ´ λ .

Combining this with the screening rule (3), one obtains:

Ω˝g

´

XJg θ̂
pλ1q

¯

ă
2λ´ λ1

λ1
ùñ Ω˝g

´

XJg θ̂
pλq

¯

ă 1 ùñ β̂pλqg “ 0. (2.40)

The set of variables not eliminated is called the strong active set and is defined as:

ST Gpθ̂pλ1q, λ, λ1q :“

"

g P G : Ω˝g

´

XJg θ̂
pλ1q

¯

ě
2λ´ λ1

λ1

*

. (2.41)
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Note that Strong rules are un-safe because the non-expansiveness condition on the (gradient of
the) data fitting term is usually not satisfied without stronger assumptions on the design matrix X;
see discussion in (Tibshirani et al., 2012, Section 3). It requires the exact knowledge of θ̂pλ

1q which
is not available in practice. Using such rules, the authors advised to check the KKT condition 2 a
posteriori, to avoid removing wrongly some features. To overcome this limitation, we propose to
use the strong active set ST Gpθ̂pλt´1q, λt, λt´1q defined by Equation (2.41) for an active warm start
strategy. We compare below this strategy with the one using Apθt´1, rt´1q in Equation (2.24) as
initial active set. A similar strategy is also used in the “big lasso” package by Zeng and Breheny
(2017) as a hybrid screening strategy that “alleviates the computational burden of KKT post-
convergence checking for the strong rules by not checking features that can be safely eliminated”.
However, our warm start strategy (active or strong) does not require post-processing steps.

Correlation Based Rule. Previous works in statistics have proposed various model-based screen-
ing methods to select important variables. Those methods discard variables with small correlation
between the features and response variables. For instance Sure Independence Screening (SIS)
by Fan and Lv (2008) reads: for a chosen critical threshold γ (such that the number of selected
variables is smaller than a prescribed proportion of the features),

If Ω˝gpX
J
g yq ă γ then remove Xg from the problem.

It is a marginal oriented variable selection method and it is worth noting that SIS can be recast as
a static sphere test in linear regression scenarios:

If Ω˝gpX
J
g yq ă γ “ λ

`

1´ rΩ˝gpXgq
˘

then β̂pλqg “ 0 premove Xgq.

Other refinements can also be found in the literature such as iterative screening (ISIS) (Fan
and Lv, 2008), that bears some similarities with dynamic sphere safe tests.

Working Set. To avoid having too conservative rules of elimination, similar to strong rules,
working set algorithms are strategies that relax the safe rules. Considering constrained convex
optimization problem, Johnson and Guestrin (2015) introduced Blitz, a meta algorithm based on
the duality gap for sequentially prioritizing relevant constraints. We describe their rules in the
case of the lasso and its dual where we seek to maximizes ‖y‖2

2 {2´ ‖λθ ´ y‖2
2 {2 for θ such that

‖XJj θ‖8 ď 1 for all j in rps. Given a primal/dual feasible vector pβ, θq, Blitz construct a working
set by selecting only the features that satisfies:

|XJj θ| ` ‖Xj‖2

c

2

λ2
p1´ δq3 Gapλpβ, θq ď 1 for some δ P r0, 1q . (2.43)

Note that for δ “ 0, the working set rule (2.43) coincides with the gap safe sphere test. These
rules therefore take a symmetrical strategy to ours by introducing a factor p1 ´ δq3 in order to
aggressively eliminate more variables and optimizing onto a nested sequence of small constraint
sets. Similar methods was later adopted in (Massias et al., 2017) and generalized in (Johnson and
Guestrin, 2016).

2.
The post-processing for the Lasso adds back variables violating the approximated KKT conditions

KKTε :

#

|XJj θ| ď 1` ε, if βj “ 0,

|XJj θ ´ signpβjq| ď ε, if βj ‰ 0.
(2.42)

One can show that Gapλpβ, θq ď p1´ λ{αq
2 ‖y ´Xβ‖2

{2`λε ‖β‖1 where α “ maxpλ,
∥∥XJpy ´Xβq∥∥

8
q.

Hence choosing ε “ ε1{Pλpβq ´ p1´ λ{αq
2 imply an ε1-duality gap.
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(a) Fraction of the variables that are active. Each line cor-
responds to a fixed number of iterations for which the algo-
rithm is run.

(b) Dense grid with 100 values of λ.

(c) Coarse grid with 10 values of λ.

Figure 2.8 – Lasso on the Leukemia (dense data with n “ 72 observations and p “ 7129 features).
Computation times needed to solve the Lasso regression path to desired accuracy for a grid of λ
from λmax to λmax{103.

2.5 Numerical Experiments

In this section we present results obtained with the Gap Safe rules on various data sets. Imple-
mentation has been done in Python and Cython (Behnel et al., 2011) for low level critical parts. A
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coordinate descent algorithm is used with a scaled dual gap stopping criterion i.e. we normalize the
targeted accuracy ε (in the stopping criterion) in order to have a running time that is independent
from the data scaling, i.e. ε Ð ε‖y‖2

2 for the regression cases and ε Ð εminpn1, n2q{n where ni
is the number of observations in the class i, for the logistic cases.

Note that in the Lasso case, to compare our method with the un-safe strong rules by Tibshirani
et al. (2012) and with the sequential screening rule such as the eddp+ by Wang et al. (2015),
we have added an approximated KKT post-processing step. We do this following Footnote 2,
since they require the previous (exact) dual optimal solution which is not available in practice.
The same limit holds true for the TLFre approach of Wang and Ye (2014) addressing the Sparse-
Group Lasso formulation, as well as for the method explored by Lee and Xing (2014) to handle
overlapping groups and slores by Wang et al. (2014) for the binary logistic regression. We have
compared our method to various known safe screening rules (El Ghaoui et al., 2012; Xiang et al.,
2011; Bonnefoy et al., 2014). For the Sparse-Group Lasso, such rules did not exist, so we have
proposed natural extensions (Ndiaye et al., 2016) thanks to exact computation of the dual norm in
Proposition 15. For the Lasso estimator, we have also compared our implementation with the Blitz
algorithm (Johnson and Guestrin, 2015) which combines Gap Safe screening rules, Prox-Newton
coordinate descent and an active set strategy.

(a) Dense grid with 100 values of λ.

(b) Sparse grid with 10 values of λ.

Figure 2.9 – Lasso on financial data E2006-log1p (sparse data with n “ 16087 observations and
p “ 1668737 features). Computation times needed to solve the Lasso regression path to desired
accuracy for a grid of λ from λmax to λmax{20.
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`1 Lasso Regression. We have evaluated the computing time for the Gap Safe rules with and
without active warm start, and compared with the static rule El Ghaoui et al. (2012) and the re-
fined dynamic rule DST3 by Xiang et al. (2011), as well as Bonnefoy et al. (2015). We used the
classic dense data set Leukemia, and the large sparse financial data set E2006-log1p available from
LIBSVM We have normalized the column of X and standardized y to have zero mean and unit
variance. The experiments on Figure 2.8(a) focuses on the Leukemia data set. The screening per-
formance for a fixed number of iterations, from 2 to 29, is investigated for each λ. It demonstrates
that increasing the number of iterations benefits to the dynamic screening rule. Also, the closer
the estimate is from the global minimum, the better the screening. This is inline with the results in
running time in the benchmark on Figure 2.8(b). Note that the dynamic Gap Safe rule is the only
rule that significantly improves the running time of the Lasso. Results presented in the financial
data set in Figure 2.9 are inline with the results on Leukemia. We observe that the Blitz algorithm
(Johnson and Guestrin, 2015), also achieves a significant speed-up with gains in the same order of
magnitude than our dynamic Gap Safe implementation combined with active or strong warm start.
One advantage of our approach though, is the simplicity to insert it in any iterative algorithm as
shown in Algorithm 1 and 2.

To demonstrate the limitations of the strong rules, we report in Figure 2.8(c) results with a
coarse grid with only 10 values of λ from λmax to λmax{103 such that 2λt ă λt´1. The strong
rules become then useless since the screening test (2.40) selects all variables, i.e.
ST Gpθ̂pλt´1q, λt, λt´1q “ G. Overall, the greater the gap between grid points, the lower the
benefits of (active) warm start. In the experiment in Figure 2.9(b), we have stopped the grid at
λmax{20 leading to a sparse solution with 1562 active variables. We obtain an important speed-
up for both coarse and dense grids demonstrating the consistent efficiency of the active warm
start strategy specially in a sparse regime. Finally, with an extremely coarse grid, we therefore
recommend the active warm start with the previous safe active set (which performance is only
affected through the initialization point) rather than the strong active set (cf. Figure 2.8(c)).

`1 Binary Logistic Regression. Results on the Leukemia data set for standard logistic regression
are reported in Figure 2.10. We compare the dynamic strategy of Gap Safe to the sequential
strategy. Results demonstrate the clear benefit of the dynamic rule in terms of high number of
screened out variables. This is reflected in the graph of running times, which shows that dynamic
Gap Safe rule with strong warm start can yield up to a 30ˆ speed-up compared to sequential rule
and even more compared to an absence of screening (up to 50ˆ speed-up).

`1{`2 Multi-task Regression. To demonstrate the benefit of the Gap Safe screening rules for a
multi-task Lasso problem we have considered neuroimaging data. Electroencephalography (EEG)
and magnetoencephalography (MEG) are brain imaging modalities that allow to identify active
brain regions. The problem to solve is a multi-task regression problem with squared loss where
every task corresponds to a time instant. Using a multi-task Lasso one can constrain the recovered
sources to be identical during a short time interval (Gramfort et al., 2012). This corresponds to
a temporal stationary assumption. In this experiment we used a joint MEG/EEG data with 301
MEG and 59 EEG sensors leading to n “ 360. The number of possible sources is p “ 22, 494
and the number of time instants is q “ 20. With a 1 kHz sampling rate it is equivalent to say that
the sources stay the same for 20 ms.

Results are presented in Figure 2.11. The Gap Safe rule is compared with the dynamic safe
rule from Bonnefoy et al. (2015). Figure 2.11(a) shows the fraction of active variables. It demon-
strates that the Gap Safe rule screens out much more variables than the competitors. Thanks to
its converging nature, the more iterations are performed the more variables are screened out. On
Figure 2.11(b), the computation time confirms the effective speed-up. We significantly improves
the computation time for duality gap tolerances from 10´2 to 10´8, especially when accurate
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(a) Fraction of the variables that are active. Each line cor-
responds to a fixed number of iterations for which the algo-
rithm is run.

(b) Computation times needed to solve the logistic regression path to desired accuracy with 100 values of λ from λmax

to λmax{103.

Figure 2.10 – `1 regularized binary logistic regression on the Leukemia (dense data with n “ 72
observations and p “ 7129 features). Sequential and full dynamic screening Gap Safe rules are
compared.

estimates are required, e.g. for feature selection.

Sparse-Group Lasso Regression.
— Synthetic dataset: We use a common framework (Tibshirani et al., 2012; Wang and Ye,

2014) based on the model y “ Xβ ` 0.01ε where ε „ N p0, Idnq, X P Rnˆp follows
a multivariate normal distribution such that @pi, jq P rps2, corrpXi, Xjq “ ρ|i´j|. We fix
n “ 100 and break randomly p “ 10000 in 1000 groups of size 10 and select γ1 groups to
be active and the others are set to zero. In each selected groups, γ2 coordinates are drawn
with rβgsj “ signpξq ˆ U for U is uniform in r0.5, 10sq, ξ uniform in r´1, 1s.

— Real dataset: NCEP/NCAR Reanalysis 1 Kalnay et al. (1996):
which contains monthly means of climate data measurements spread across the globe in
a grid of 2.5˝ ˆ 2.5˝ resolutions (longitude and latitude 144 ˆ 73) from 1948{1{1 to
2015{10{31. Each grid point constitutes a group of 7 predictive variables (Air Tempera-
ture, Precipitable water, Relative humidity, Pressure, Sea Level Pressure, Horizontal Wind
Speed and Vertical Wind Speed) whose concatenation across time constitutes our design
matrix X P R814ˆ73577. Such data have therefore a natural group structure, with seven
features per group. As target variable y P R814, we use the values of Air Temperature in
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(a) Fraction of active variables as a function of λ and the
number of iterations K. The Gap Safe strategy has a much
longer range of λ with (red) small active sets.

(b) Computation time to reach convergence using different screening strategies. We have run the algorithm with 100
values of λ from λmax to λmax{103.

Figure 2.11 – Experiments on MEG/EEG brain imaging data set (dense data with n “ 360 obser-
vations, p “ 22494 features and q “ 20 time instants).

Figure 2.12 – Experiments on a synthetic dataset (ρ “ 0.5, γ1 “ 10, γ2 “ 4, τ “ 0.2).
(a) Proportion of active variables, i.e. variables not safely eliminated, as a function of parameters
pλtq and the number of iterationsK. More red, means more variables eliminated and better screen-
ing. (b) Time to reach convergence w.r.t the accuracy on the duality gap, using various screening
strategies.
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Figure 2.13 – Experiments on NCEP/NCAR Reanalysis 1 pn “ 814, p “ 73577q: prediction error
for the Sparse-Group Lasso path with 100 values of λ and 11 values of τ (best : τ‹ “ 0.4).

Figure 2.14 – Experiments on NCEP/NCAR Reanalysis 1 pn “ 814, p “ 73577q: Active groups
to predict Air Temperature in a neighborhood of Dakar (in blue). Cross validation was run over
100 values for λ’s and 11 for τ ’s. At each location, the highest absolute value among the seven
coefficients is displayed.

a neighborhood of Dakar. For preprocessing, we remove the seasonality (we center the
data month by month) and the trend (we remove the linear trend obtained by least squares)
present in the data set. We then standardize the data so that each feature has a variance
of one. This preprocessing is usually done in climate analysis to prevent some bias in the
regression estimates. Similar data have been used in the past by Chatterjee et al. (2012),
demonstrating that the Sparse-Group Lasso estimator is well suited for prediction in such
climatology applications. Indeed, thanks to the sparsity structure, the estimates delineate
via their support some predictive regions at the group level, as well as predictive feature
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(a) Proportion of active coordinate-wise variables as a func-
tion of parameters pλtq and the number of iterations K.

(b) Proportion of active group variables as a function of pa-
rameters pλtq and the number of iterations K.

(c) Time to reach convergence as a function of increasing prescribed accuracy, using various screening strategies and a
logarithmic grid from λmax to λmax{102.5.

Figure 2.15 – Sparse-Group Lasso experiments on climate data NCEP/NCAR Reanalysis 1 (dense
data with n “ 814 observations and p “ 73577 features) with τ “ 0.4 chosen by cross-validation.

via coordinate-wise screening.
We choose the parameter τ in the set t0, 0.1, . . . , 0.9, 1u by splitting in half the obser-
vations, and run a training-test validation procedure. For each value of τ , we require a
duality gap of 10´8 on the training set and pick the best one in term of prediction accuracy
on the test set. Since the prediction error degrades increasingly for λ ď λmax{10´2.5, we
fix δ “ 2.5. We have fixed the weight! wg “ 1 since all groups have the same size. The
computational time benchmark is presented in Figure 2.15(c). Here also, we observe a
significant gain by using a dynamic Gap Safe screening rule, which is further improved by
the active warm start.
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Conclusion

We have proposed a unified presentation of the Gap Safe screening rules for accelerating al-
gorithms solving supervised learning problems under sparsity constraints. The proposed approach
applies to many popular estimators that boil down to convex optimization problems where the data
fitting term has a Lipschitz gradient and the regularization term is a separable sparsity enforcing
function. We have shown that our methodology is more flexible than previously known safe rules
as it conveniently unifies both regression and classification settings. The efficiency of the Gap
Safe rules along with the new active/strong warm start strategies was demonstrated on multiple
experiments using real high dimensional data set, suggesting that Gap Safe screening rules are
always helpful to speed-up solvers targeting sparse regularization.
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2.6 Appendix

Proposition 21 (Dual Norm for Separable Norm). Le Ω be separable norm Ωpβq “
ř

gPG Ωgpβgq,
its dual norm can be expressed as ΩDpξq “ maxgPG ΩD

g pξgq where ΩD
g is the dual norm of Ωg.

Proof. The definition of the dual norm reads ΩDpξq “ max
β:Ωpβqď1

βJξ. Then

ΩDpξq “ sup
β:Ωpβqď1

xβ, ξy “ sup
β

inf
µą0
xβ,

ÿ

gPG
ξgy ´ µ

˜

ÿ

gPG
Ωgpβgq ´ 1

¸

“ inf
µą0

#

ÿ

gPG
sup
βg

rxβg, ξgy ´ µΩgpβgqs ` µ

+

“ inf
µą0

#

ÿ

gPG
µΩ˚g

ˆ

ξg
µ

˙

` µ

+

“ inf
µą0

#

ÿ

gPG
ιB

ΩDg

ˆ

ξg
µ

˙

` µ

+

“ inf
µą0

"

max
gPG

ιB
ΩDg

ˆ

ξg
µ

˙

` µ

*

“ max
gPG

inf
µą0

"

Ω˚g

ˆ

ξg
µ

˙

` µ

*

“ max
gPG

inf
µą0

sup
βg

xβg,
ξg
µ
y ´ Ωgpβgq ` µ

“ max
gPG

inf
µą0

sup
ug
xug, ξgy ´ µpΩgpugq ´ 1q p with µug “ βgq

“ max
gPG

sup
ug :Ωgpugqď1

xug, ξgy “ max
gPG

ΩD
g pξgq.

Proposition 22 (Properties of Sparse-Group Lasso). For all groups g in G, let us introduce

εg :“
p1´ τqwg

τ ` p1´ τqwg
.

Then, the Sparse-Group Lasso norm satisfies the following properties for any β and ξ in Rp,

Ωpβq “
ÿ

gPG
pτ ` p1´ τqwgq}βg}

D
εg

Ω˝pξq “ ΩDpξq “ max
gPG

‖ξg‖εg
τ ` p1´ τqwg

.

Ω˚pξq “ ιB
ΩD
pξq “

ÿ

gPG
ιB

ˆ

STτ pξgq

p1´ τqwg

˙

BΩpβq “ tξ P Rp : @g P G, ξg P τB‖¨‖1pβgq ` p1´ τqwgB‖¨‖2pβgqu .

Proof. For all β in Rp, we have

Ωpβq “ τ ‖β‖1 ` p1´ τq
ÿ

gPG
wg ‖βg‖ “

ÿ

gPG

`

τ ‖βg‖1 ` p1´ τqwg ‖βg‖
˘

“
ÿ

gPG
pτ ` p1´ τqwgq

„

τ

τ ` p1´ τqwg
‖βg‖1 `

p1´ τqwg
τ ` p1´ τqwg

‖βg‖


“
ÿ

gPG
pτ ` p1´ τqwgq ‖βg‖Dεg .
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The Proposition 21 and the separability of Ω yields

ΩDpξq “ max
gPG

ΩD
g pξgq “ max

gPG
sup

ug :Ωgpugqď1
xug, ξgy

“ max
gPG

sup
ug
xug, ξgy s.t. pτ ` p1´ τqwgq ‖ug‖Dεg ď 1

“ max
gPG

sup
ug :Ωgpugqď1

xug, ξgy “ max
gPG

sup
u1g :‖u1g‖Dεgď1

u1Jg ξg

τ ` p1´ τqwg
“ max

gPG

‖ξg‖εg
τ ` p1´ τqwg

.

We recall the proof of Wang and Ye (2014) for the expression of the Fenchel transform of Ω. First
let us write Ωpβq “ Ω1pβq`Ω2pβq, where Ω1pβq “ τ‖β‖1 and Ω2pβq “ p1´ τq

ř

gPG wg‖βg‖2.
Since Ω1 and Ω2 are continuous everywhere, we have (see (Hiriart-Urruty, 2006, Theorem 1)):

Ω˚pξq “ pΩ1 ` Ω2q
˚pξq “ min

a`b“ξ
rΩ˚1paq ` Ω˚2pbqs “ min

a
rΩ˚1paq ` Ω˚2pξ ´ aqs ,

which is also the inf-convolution (see (Bauschke and Combettes, 2011, Chapter 12)) of these two
norms. Using the Fenchel conjugate of the `1 norm (Ω˚1 “ ιτB8) and of the `2 norm (Ω˚2 “ ιB),
we have

Ω˚pξq “
ÿ

gPG
min
ag

ιτB8pagq ` ιB

ˆ

ξg ´ ag
p1´ τqwg

˙

“
ÿ

gPG
ιB

ˆ

ξg ´ΠτB8pξgq

p1´ τqwg

˙

.

Hence the indicator of the unit dual ball is ιB
ΩD
pξq “

ř

gPG ιp1´τqwgB pξg ´ΠτB8pξgqq and
using STτ pξgq “ ξg ´ΠτB8 , we have:

BΩD “
 

ξ P Rp : ΩDpξq ď 1
(

“
 

ξ P Rp : @g P G, ‖STτ pξgq‖ ď p1´ τqwg
(

.

Two Level of Active Set Convergence for Sparse-Group Lasso

Proposition 23. Let pRkqkPN be a sequence of safe regions whose diameters converge to 0. Then,
lim
kÑ8

AgppRkq “ Egp and lim
kÑ8

AftpRkq “ Eft.

Proof. We proceed by double inclusion. First let us prove that Dk0 s.t. @k ě k0,AgppRkq Ă Egp.
Indeed, since the diameter of Rk converges to zero, for any ε ą 0 there exist k0 P N,@k ě
k0,@θ P Rk, ‖θ ´ θ̂pλ,Ωq‖ ď ε. The triangle inequality implies that

@g R Egp, ‖STτ pX
J
g θq‖ ď ‖STτ pX

J
g θq ´ STτ pX

J
g θ̂
pλ,Ωqq‖` ‖STτ pX

J
g θ̂
pλ,Ωqq‖.

Since the soft-thresholding operator is 1-Lipschitz, we have:∥∥STτ pX
J
g θq

∥∥ ď ∥∥∥Xgpθ ´ θ̂
pλ,Ωqq

∥∥∥` ∥∥∥STτ pX
J
g θ̂
pλ,Ωqq

∥∥∥ ď ε ‖Xg‖`
∥∥∥STτ pX

J
g θ̂
pλ,Ωqq

∥∥∥ ,
as soon as k ě k0. Moreover, @g R Egp,∥∥STτ pX

J
g θq

∥∥ ď max
gREgp

∥∥STτ pX
J
g θq

∥∥ ď εmax
gREgp

‖Xg‖`max
gREgp

∥∥∥STτ pX
J
g θ̂
pλ,Ωqq

∥∥∥ .
It suffices to choose ε such that

εmax
gREgp

‖Xg‖`max
gREgp

∥∥∥STτ pX
J
g θ̂
pλ,Ωqq

∥∥∥ ă p1´ τqwg,
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that is to say ε ă
p1´τqwg´maxgREgp‖STτ pXJg θ̂

pλ,Ωqq‖
maxgREgp‖Xg‖

, to remove the group g. Then for any k ě k0,

Ecgp “ tg P G : ‖Sτ pXJg θ̂pλqq‖ ă p1 ´ τqwgu Ă AgppRkq
c, the set of variables removed by our

screening rule. This proves the first inclusion.

Now we show that @k P N,AgppRkq Ą Egp. Indeed, for all g‹ P Egp, ‖STτ pX
T
g‹ θ̂

pλ,Ωqq‖ “
p1 ´ τqwg‹ . Since for all k in N, θ̂pλ,Ωq P Rk then max

θPRk

‖STτ pX
J
g θq‖ ě ‖STτ pX

T
g‹ θ̂

pλ,Ωqq‖ “

p1´τqwg‹ hence the second inclusion holds. We have shown that @k ě k0, AgppRkq “ Egp and so
AftpRkq Ă

Ť

gPEgp
tj P g : maxθPRk

|XJj θ| ě τu. Moreover, the same reasoning yields @g P G,

tj P g : maxθPRk
|XJj θ| ě τu Ă tj P g : |XJj θ̂

pλ,Ωq| ě τu. Hence @k ě k0,AftpRkq Ă Aft.
The reciprocal inclusion is straightforward.

Exact Computation of the Dual Norm of Sparse-Group Lasso

Proposition 24. For α P r0, 1s, R ě 0 and x P Rd, the equation
řd
i“1 STναpxiq

2 “ pνRq2 has
a unique solution ν :“ Λpx, α,Rq P R`, that can be computed in Opd log dq operations in the
worst case. With nI “ Card ti P rds : |xi| ą α‖x‖8{pα`Rqu, the complexity of Algorithm 3 is
nI ` nI logpnIq, which is comparable to the ambient dimension d.

Proof. Dividing by ν2, which is positive as soon as x ‰ 0, we get that
řd
j“1 STναpxjq

2 “ pνRq2

is equivalent to
řd
j“1 STαpxj{νq

2 “ R2. Note that
řd
j“1 STαpxj{νq

2 “
řd
j“1 STαp|xj |{νq

2 so
without loss of generality we assume x P Rd`.

The case α “ 0 and R “ 0 corresponds to the situation where all xj are equal to zero or we
impose ν equals to infinity. So we avoid this trivial case.

If α “ 0 and R ‰ 0, ν “ ‖x‖{R. Indeed,

d
ÿ

j“1

ST0pxj{νq
2 “ R2 ðñ

d
ÿ

j“1

pxj{νq
2 “ R2 ðñ

‖x‖2
2

ν2
“ R2 hence the result.

If α ‰ 0 and R “ 0, we have :

d
ÿ

j“1

STα

´xj
ν

¯2
“ 0 ðñ @j P rds,

´xj
ν
´ α

¯

`
“ 0

ðñ @j P rds,
xj
ν
ď α

ðñ ν ě
maxjPrds xj

α
.

So we choose the smallest ν i.e. ν “ ‖x‖8{α. In all the above cases, the computation is done in
Opdq.

Otherwise α ‰ 0 and R ‰ 0. The function ν ÞÑ
řd
j“1 STαpxj{νq

2 is a non-increasing
continuous function with limit `8 (resp. 0) when ν Ñ 0 (resp. ν Ñ `8). Hence, there is a
unique solution to

řd
j“1 STαpxj{νq

2 “ R2.

We denote by xp1q, . . . , xpdq the coordinates of x ordered in decreasing order (with the con-
vention xp0q “ `8 and xpd`1q “ 0). Note that

řd
j“1 STαpxj{νq

2 “
řd
j“1 STαpxpjq{νq

2. Then,
there exists an index j0 P rps such that

R2 P

«

d
ÿ

j“0

STα

ˆ

α
xpjq

xpj0q

˙2

,
d
ÿ

j“0

STα

ˆ

α
xpjq

xpj0`1q

˙2
¸

. (2.44)
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For such a j0, one can check that ν P pxpj0`1q{α, xpj0q{αs. The definition of the soft-thresholding
operator yields

STαpxj{νq
2 “

#

pxj{ν ´ αq
2 if xj ě να,

0 if xj ă να.
(2.45)

It can be simplified thanks to xj ě xpj0q ñ xj ě να and xj ď xpj0`1q ñ xj ă να.
Hence, R2 “

řj0
j“1pxpjq{ν ´ αq2 “

řj0
j“1pxpjq{νq

2 ` α2
řj0
j“1 1 ´ 2α

řj0
j“1 xpjq{ν so solving

řp
j“1 STαpxpjq{νq

2 “ R2 is equivalent to solve on R`

pα2j0 ´R
2qν2 ´

˜

2α

j0
ÿ

j“1

xpjq

¸

ν `

j0
ÿ

j“1

x2
pjq “ 0. (2.46)

If pα2j0´R
2q “ 0, then ν “

řj0
j“1 x

2
pjq{p2α

řj0
j“1 xpjqq. Otherwise ν is the unique solution lying

in pxpj0`1q{α, xpj0q{αs of the quadratic equation stated in Eq. (2.46).

In the worst case, to compute Λpx, α,Rq, one needs to sort a vector of size d, what can be
done in Opd logpdqq operations, and finding j0 thanks to (2.44) requires Opd2q if we apply a naive
algorithm.

In the following, we show that one can easily reduce the complexity to Opd logpdqq in the
worst case.

For all j in rds, STα

´

α
xj
xj0

¯

“ 0 as soon as xj ď xj0 . This implies that (2.44) is equivalent
to

R2 P

«

j0´1
ÿ

j“0

STα

ˆ

α
xpjq

xpj0q

˙2

,

j0
ÿ

j“0

STα

ˆ

α
xpjq

xpj0`1q

˙2
¸

. (2.47)

Denoting Sj0 :“
řj0
j“1 xpjq and Sp2qj0 :“

řj0
j“1 x

2
pjq, a direct calculation show that (2.47) can be

rewritten as

R2 P α2

«

S
p2q
j0´1

x2
pj0q

´ 2
Sj0´1

xpj0q
` j0,

S
p2q
j0

x2
pj0`1q

´ 2
Sj0

xpj0`1q
` j0 ` 1

¸

. (2.48)

Finally, solving
řp
j“1 STαpxpjq{νq

2 “ R2 is equivalent to finding the solution of the equation

pα2j0 ´R
2qν2 ´ p2αSj0qν ` S

p2q
j0
“ 0 lying in pxpj0`1q{α, xpj0q{αs. Hence,

Λpx, α,Rq “
αSj0 ´

b

α2S2
j0
´ S

p2q
j0
pα2j0 ´R2q

α2j0 ´R2
“: ν1 (2.49)

or

Λpx, α,Rq “
αSj0 `

b

α2S2
j0
´ S

p2q
j0
pα2j0 ´R2q

α2j0 ´R2
“: ν2. (2.50)

— If α2j0 ´ R2 ă 0, then ν2 ă 0 and so it cannot be a solution since Λpx, α,Rq must be
positive.

— Otherwise, we have

ν2 ě
αSj0

α2j0 ´R2
“

1

αpj0 ´
R2

α2 q

j0
ÿ

j“1

xpjq ą
1

αj0

j0
ÿ

j“1

xpjq ě
xpj0q

α
,

where the second inequality results from the fact that j0 ą j0 ´ R2{α2. And again ν2

cannot be a solution since Λpx, α,Rq belongs to pxpj0`1q{α, xpj0q{αs.
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Hence, in all cases, the solution is given by ν1.

Moreover, we can significantly reduce the cost of the sorting. Indeed, for all ν, we have

‖STανpxq‖ ě ‖STανpxq‖8 “ max
jPrds

p|xj | ´ ναq`.

Hence, ‖STανpxq‖´ νR ě ‖x‖8´ να´ νR ą 0 if and only if ν ă ‖x‖8{pα`Rq. Combining
this with Equation (2.45), we take into account only the coordinates which have an absolute value
greater than α‖x‖8{pα`Rq. Indeed, by contrapositive, if ν is a solution then ν ě ‖x‖8{α`R
hence xj ă α‖x‖8{α`Rñ xj ă να

(2.45)
ñ STαpxj{νq “ 0.

Finally, computing Λpx, α,Rq can be done by applying Algorithm 3. Note that this algorithm
is similar to (Burdakov and Merkulov, 2001, Algorithm 4).

Properties of the ε-norm

We describe, for completeness, some properties of the ε-norm. The following material is
inspired by Burdakov and Merkulov (2001).

Lemma 7. For all ξ P Rd, the ε-decomposition reads: ξ “ ξε` ξ1´ε, where ξε :“ STp1´εq‖ξ‖εpξq

and ξ1´ε :“ ξ ´ ξε. Moreover, ‖ξε‖ “ ε ‖ξ‖ε and
∥∥ξ1´ε

∥∥
8
“ p1´ εq ‖ξ‖ε . Hence, the following

decomposition holds for the ε-norm: ‖ξ‖ε “ ‖ξε‖`
∥∥ξ1´ε

∥∥
8
.

Proof. ‖ξε‖ “ ‖STp1´εq‖ξ‖εpξq‖ “ ε‖ξ‖ε by definition of the ε-norm ‖ξ‖ε. Moreover,

ξ1´ε “

d
ÿ

i“1

rξi ´ signpξiqp|ξi| ´ p1´ εq ‖ξ‖εq`s “
d
ÿ

i“1

signpξiq r|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`s .

Thus, using the symbol a_ b to represent maxpa, bq, one has∥∥ξ1´ε
∥∥
8
“max

iPrds
|signpξiq r|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`s|

“ max
iPrds

|ξi|ďp1´εq‖ξ‖ε

||ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`| _ max
iPrds

|ξi|ąp1´εq‖ξ‖ε

||ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`|

“ max
iPrds

|ξi|ďp1´εq‖ξ‖ε

|ξi| _ p1´ εq ‖ξ‖ε “ p1´ εq ‖ξ‖ε .

Lemma 8. Define the sets

Up‖ξ‖εq :“ tu P Rd : ‖u‖ ď ε‖ξ‖εu ,
V p‖ξ‖εq :“ tv P Rd : ‖v‖8 ď p1´ εq‖ξ‖εu ,

we have
ξp1´εq “ arg min

uPUp‖ξ‖εq
ξ“u`v

‖v‖8 and ξε “ arg min
vPV p‖ξ‖εq
ξ“u`v

‖u‖ .

Proof.
‚ Existence and uniqueness of the solutions

It is clear that
arg min
uPUp‖ξ‖εq
ξ“u`v

‖v‖8 “ arg min
ξ´Up‖ξ‖εq

‖v‖8,
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and
arg min
vPV p‖ξ‖εq
ξ“u`v

‖u‖ “ arg min
ξ´V p‖ξ‖εq

‖u‖.

Thus, these two problems have unique solution because we minimize strict convex functions onto
convex sets.

‚ Uniqueness of the ε-decomposition

From Lemma 7 we have ξ “ ξε ` ξ1´ε where ‖ξε‖ “ ε‖ξ‖ε and ‖ξ1´ε‖8 “ p1 ´ εq‖ξ‖ε.
Hence ξε P Up‖ξ‖εq and ξ1´ε P V p‖ξ‖εq. Now it suffices to show that this ε-decomposition is
unique.

Suppose ξ ‰ 0 (the uniqueness is trivial otherwise) and v P V p‖ξ‖εq. We show that for any
u P Rd such that ξ “ u` v, v ‰ ξ1´ε implies u R Up‖ξ‖εq.

‖u‖2
“ ‖ξ ´ v‖2

“
∥∥ξε ` pξ1´ε ´ vq

∥∥2
“ ‖ξε‖2

` 2xξε, ξ1´ε ´ vy `
∥∥ξ1´ε ´ v

∥∥2
,

hence ‖u‖2 ą ε2‖ξ‖2
ε ` 2xξε, ξ1´ε ´ vy because ‖ξε‖ “ ε‖ξ‖ε and ‖ξ1´ε ´ v‖ ą 0 (v ‰ ξ1´ε).

Moreover,

xξε, ξ1´ε ´ vy “
d
ÿ

i“1

rsignpξiqp|ξi| ´ p1´ εq ‖ξ‖εq`s rsignpξiqp|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`q ´ vis

“

d
ÿ

i“1

rp|ξi| ´ p1´ εq ‖ξ‖εq`s rp|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`q ´ vi signpξiqs

ě
ÿ

i“1
|ξi|ąp1´εq‖ξ‖ε

r|ξi| ´ p1´ εq ‖ξ‖εs rp1´ εq ‖ξ‖ε ´ vi signpξiqs ě 0.

The last inequality hold because v P V p‖ξ‖εq i.e. @i P rds, vi ď p1 ´ εq‖ξ‖ε. Finally,
‖u‖2 ą ε2‖ξ‖2

ε hence the result.

Lemma 9.
 

ξ P Rd : ‖ξ‖ε ď ν
(

“
 

u` v : u, v P Rd, ‖u‖ ď εν, ‖v‖8 ď p1´ εqν
(

.

Proof. Thanks to Lemma 7, we have ξ “ ξε ` ξ1´ε, ‖ξε‖ “ ε‖ξ‖ε and ‖ξ1´ε‖8 “ p1 ´ εq‖ξ‖ε.
Hence, ‖ξ‖ε ď ν implies ‖ξε‖ ď εν and ‖ξ1´ε‖8 ď p1´ εqν.

Suppose ξ “ u` v such that ‖u‖ ď εν and ‖v‖8 ď p1´ εqν. From the ε-decomposition, we
have ‖ξ‖ε “ ‖ξε‖` ‖ξ1´ε‖8. Moreover, ‖ξε‖ ď ‖u‖ and ‖ξ1´ε‖8 ď ‖v‖8 thanks to Lemma 8.
Hence ‖ξε‖ ď ‖u‖` ‖v‖8 ď εν ` p1´ εqν “ ν.

Lemma 10 (Dual norm of the ε-norm). Let ξ P Rd, then ‖ξ‖Dε “ ε‖ξ‖` p1´ εq‖ξ‖1.

Proof.

‖ξ‖Dε :“ max
‖x‖εď1

ξJx “ max
‖u‖ďε

‖v‖8ď1´ε

ξJpu` vq thanks to Lemma 9

“ ε max
‖u‖ď1

ξJu` p1´ εq max
‖v‖8ď1

ξJv “ ε ‖ξ‖D ` p1´ εq ‖ξ‖D8 .

Lemma 11. Let ξ P Rdzt0u. Then ∇‖¨‖εpξq “ ξε

‖ξε‖Dε
.
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Proof. Let us define h : Rˆ Rd ÞÑ R by hpν, ξq “ ‖STp1´εqνpξq‖´ εν. Then we have

Bh

Bν
pν, ξq “

STp1´εqνpξq
J∥∥STp1´εqνpξq
∥∥ BSTp1´εqνpξq

Bν
´ ε “ ´

STp1´εqνpξq
J∥∥STp1´εqνpξq
∥∥p1´ εq signpξq ´ ε

“ ´

∥∥STp1´εqνpξq
∥∥

1∥∥STp1´εqνpξq
∥∥ p1´ εq ´ ε “ ´p1´ εq

∥∥STp1´εqνpξq
∥∥

1
` ε

∥∥STp1´εqνpξq
∥∥∥∥STp1´εqνpξq

∥∥
“ ´

∥∥STp1´εqνpξq
∥∥D
ε∥∥STp1´εqνpξq
∥∥ (thanks to Lemma 10).

By definition of the ε-norm, hp‖ξ‖ε, ξq “ 0. Since Bh
Bν p‖ξ‖ε, ξq “ ´

‖ξε‖Dε
ε‖ξ‖ε ‰ 0, we obtain by

applying the Implicit Function Theorem

∇‖¨‖ε pξq ˆ
Bh

Bν
p‖ξ‖ε , ξq `

Bh

Bξ
p‖ξ‖ε , ξq “ 0 hence ∇‖¨‖ε pξq “ ´

Bh
Bξ p‖ξ‖ε , ξq
Bh
Bν p‖ξ‖ε , ξq

.

Moreover, Bh
Bξ p‖ξ‖ε, ξq “

STp1´εq‖ξ‖ε pξq

‖STp1´εq‖ξ‖ε pξq‖
“

ξε

‖ξε‖ “
ξε

ε‖ξ‖ε hence the result: ∇‖¨‖εpξq “ ξε

‖ξε‖Dε
.

EDPP is not safe

In the two last sections, we present a study on the EDDP method (Wang et al., 2015), a screen-
ing rule that relies on the dual optimal point obtained for the previous λ in the path. Note that
the same conclusion would hold true for generalization of the sequential approach given in (Wang
et al., 2014), as well as for any other screening rule that needs exact dual solution at one step. In
the remainder we consider λ0 “ λmax and a non-increasing sequence of T ´ 1 tuning parameters
pλtqtPrT´1s in p0, λmaxq. In practice, we choose the common grid (Bühlmann and van de Geer,
2011)[2.12.1]): λt “ λ010´δt{pT´1q. Wang et al. (2015) proposed a sequential screening rule
based on properties of the projection onto a convex set. Their rule is based on the exact knowledge
of the true optimal solution for the previous parameter. Such a rule can be used to compute θ̂pλ1q

since θ̂pλ0q “ y{λ0 p“ y{λmaxq is known. However for t ą 1, θ̂pλtq is only known approximately
and the rules introduced in (Wang et al., 2015) are not safe anymore: some active groups may be
wrongly disregarded if one does not use the exact value of θ̂pλtq.

We first recall the property they proved we propose to modify their rule in order to make it
safe in all cases.

Proposition 25 ((Wang et al., 2015, Theorem 19)). Assume that λt´1 ă λmax, then the dual
optimal solution of the group-Lasso with parameter λt, satisfies

θ̂pλtq P B
`

θ̂pλt´1q `
1

2
vKpλt´1, λtq,

1

2

∥∥vKpλt´1, λtq
∥∥

2

˘

(2.51)

where

vKpλt´1, λtq “
y

λt
´ θ̂pλt´1q ´ αrθ̂pλt´1qsp

y

λt´1
´ θ̂pλt´1qq

and

αrθ̂pλt´1qs :“ arg min
αPR`

∥∥∥∥ yλt ´ θ̂pλt´1q ´ αp
y

λt´1
´ θ̂pλt´1qq

∥∥∥∥
2

“
x

y
λt´1

´ θ̂pλt´1q, yλt ´ θ̂
pλt´1qy

‖ y
λt´1

´ θ̂pλt´1q‖2
2

. (2.52)
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Making EDDP screening rule safe

The simpler screening rule

In the present paper, we give computable guarantees on the distance between the current dual
feasible point and the solution of the problem. We show here how we can combine our result with
Wang et al. ’s in order to make their screening rule work even with approximate solutions to the
previous Lasso problem.

For simplicity, we first consider the initial version of Wang et al. ’s sphere test:

θ̂pλtq P B
`

θ̂pλt´1q,
∥∥vKpλt´1, λtq

∥∥
2

˘

, (2.53)

proved in (Wang et al., 2015, Theorem 7). As we do not know θ̂pλt´1q, we cannot readily use this
ball. However, we can modify it to make it a safe screening rules as follows:

Proposition 26. Assume that λt´1 ă λmax, θ P ∆X is a dual feasible point and rλt´1 ą 0 is a
radius satisfying θ̂pλt´1q P Bpθ, rλt´1q, then

θ̂pλtq P B
´

θ, rλt´1p1` |1´ αrθs|q ` ‖vtpθq ´ αrθsvt´1pθq‖2

¯

, (2.54)

where

vtpθq :“
y

λt
´ θ (2.55)

αrθs :“ arg min
αPR`

‖vtpθq ´ αvt´1pθq‖2 “

ˆ

xvt´1pθq, vtpθqy

‖vt´1pθq‖2
2

˙

`

. (2.56)

Proof. Start first by noting that (2.53) implies

θ̂pλtq P
ď

θ1PBpθ,rλt´1
q

B
´

θ1, min
αPR`

∥∥vtpθ1q ´ αvt´1pθ
1q
∥∥

2

¯

.

Let us denote
H “ max

θ1PBpθ,rλt´1
q

min
αPR`

∥∥vtpθ1q ´ αvt´1pθ
1q
∥∥

2
,

then θ̂pλtq P Bpθ, rλt´1 ` Hq. We now need to upper bound H . A simple choice is to take α
to be αrθs defined in Eq. (2.56) The motivation for such a choice is because it is optimal when
rλt´1 “ 0. This provides the following bound on H:

H ď max
θ1PBpθ,rλt´1

q

∥∥vtpθ1q ´ αrθsvt´1pθ
1q
∥∥

2
,

“

∥∥∥∥vtpθq ´ αrθsvt´1pθq ` rλt´1pαrθs ´ 1q
vtpθq ´ αrθsvt´1pθq

‖vtpθq ´ αrθsvt´1pθq‖

∥∥∥∥
2

,

ď rλt´1 |αrθs ´ 1| ` ‖vtpθq ´ αrθs.vt´1pθq‖ . (2.57)

Hence, after some simplifications:

θ̂pλtq P B
´

θ, rλt´1p1` |1´ αrθs|q ` ‖vtpθq ´ αrθsvt´1pθq‖2

¯

.

Remark 10. In the case that ‖y{λt´1‖ ď ‖y{λt´1 ´ θ‖ ď 1 then with the definition of αrθs
and the Cauchy-Schwartz inequality one has that 1 ` |αrθs ´ 1| ď λt´1

λt
. This means that the

multiplicative ratio in front of rλt´1 is λt´1{λt. In (Fercoq et al., 2015, Proposition 3), the bound
obtained would only lead to the smaller ratio:

a

λt´1{λt.

Remark 11. From the proof of Theorem 7 in Wang et al. (2015), it holds that for λ ă λmax then∥∥∥θ̂pλq∥∥∥ ď ‖y‖
λ
ô θ̂pλq P B

ˆ

0,
‖y‖
λ

˙

. (2.58)
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The complete screening rule (EDDP+)

Let us now consider the EDDP+ screening rule Wang et al. (2015) relying on the property
(2.51): θ̂pλtq P B

`

θ̂pλt´1q ` 1
2v
Kpλt´1, λtq,

1
2

∥∥vKpλt´1, λtq
∥∥

2

˘

. Using the same technique as for
Proposition 26, we can strengthen our previous proposition with the following result.

Proposition 27. Assume that λt´1 ă λmax, θ P ∆X is a dual feasible point and rλt´1 ą 0 is a
radius satisfying θ̂pλt´1q P Bpθ, rλt´1q. Define αrθs as in (2.56),

rλt “
|1´ αrθs|` 1` αrθs

2
rλt´1 `

1

2
‖vtpθq ´ αrθsvt´1pθq‖2

`

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
rλt´1

2‖vt´1pθq‖2
2

´

3 ‖vt´1pθq‖2 ` 2rλt´1

¯

and
vKpθ, λt´1, λtq “ vtpθq ´ αrθsvt´1pθq. (2.59)

Then θ̂pλtq P B
´

θ ` 1
2v
Kpθ, λt´1, λtq, rλt

¯

.

Proof. As before, we do not know exactly θ̂pλt´1q but we know that denoting

vKpθ1, λt´1, λtq “ vtpθ
1q ´ αrθ1svt´1pθ

1q (2.60)

with

αrθ1s “

ˆ

xvt´1pθ
1q, vtpθ

1qy

‖vt´1pθ1q‖2
2

˙

`

, (2.61)

we have

θ̂pλtq P
ď

θ1PBpθ,rλt´1
q

B
´

θ1 `
1

2
vKpθ1, λt´1, λtq,

1

2

∥∥vKpθ1, λt´1, λtq
∥∥

2

¯

.

Our goal is to find a ball centered at θ ` 1
2v
Kpθ, λt´1, λtq that contains all these balls, thus con-

taining θ̂pλtq. First, reminding (2.57)∥∥vKpθ1, λt´1, λtq
∥∥

2
“ min

αPR`

∥∥vtpθ1q ´ αvt´1pθ
1q
∥∥

2

ď max
θ1PBpθ,rλt´1

q
min
αPR`

∥∥vtpθ1q ´ αvt´1pθ
1q
∥∥

2

ď rλt´1 |1´ αrθs|` ‖vtpθq ´ αrθsvt´1pθq‖2 .

We continue as

θ1 `
1

2
vKpθ1,λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

“ pθ1 ´ θq `
1

2

´

vtpθ
1q ´ αrθ1svt´1pθ

1q ´
y

λt
` θ ` αrθsvt´1pθq

¯

“
1

2

´

θ1 ´ θ ´ pαrθ1s ´ αrθsqvt´1pθ
1q ` αrθspθ1 ´ θq

¯

.

Taking the norm on both sides of the previous display,∥∥∥∥θ1 ` 1

2
vKpθ1, λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

∥∥∥∥
2

ď
1` αrθs

2

∥∥θ1 ´ θ∥∥
2

`
|αrθ1s ´ αrθs|

2

∥∥vt´1pθ
1q
∥∥

2
.
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Now, reminding that x ÞÑ pxq` is a 1-Lipschitz function, and denoting Γ “ |αrθ1s ´ αrθs|, we
have:

Γ ď

∣∣∣∣xvt´1pθ
1q, vtpθ

1qy

‖vt´1pθ1q‖2
2

´
xvt´1pθq, vtpθqy

‖vt´1pθq‖2
2

∣∣∣∣
“

∣∣∣∣∣xvt´1pθ
1q, yλt ´

y
λt´1

y

‖vt´1pθ1q‖2
2

` 1´
xvt´1pθq,

y
λt
´

y
λt´1

y

‖vt´1pθq‖2
2

´ 1

∣∣∣∣∣
“

∣∣∣∣∣x‖vt´1pθq‖2
2vt´1pθ

1q ´ ‖vt´1pθ
1q‖2

2vt´1pθq,
y
λt
´

y
λt´1

y

‖vt´1pθ1q‖2
2‖vt´1pθq‖2

2

∣∣∣∣∣
ď

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2

‖vt´1pθ1q‖2
2‖vt´1pθq‖2

2

´

‖vt´1pθ
1q‖2

∣∣‖vt´1pθq‖2
2 ´ ‖vt´1pθ

1q‖2
2

∣∣` ∥∥θ ´ θ1∥∥
2
‖vt´1pθ

1q‖2
2

¯

ď

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2

‖vt´1pθ1q‖2‖vt´1pθq‖2
2

´

2‖ y

λt´1
´
θ1 ` θ

2
‖2‖θ ´ θ1‖2 `

∥∥θ ´ θ1∥∥
2
‖vt´1pθ

1q‖2

¯

ď

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
‖θ ´ θ1‖2

‖vt´1pθ1q‖2‖vt´1pθq‖2
2

´

2‖vt´1pθq‖2 `
∥∥θ ´ θ1∥∥

2
` ‖vt´1pθq‖2 `

∥∥θ ´ θ1∥∥
2

¯

. (2.62)

where the second inequality comes from the triangle inequality and the Cauchy-Schwartz Inequal-
ity, and the third is obtained by factorizing the difference of squares. Plugging this in the former,
we get:∥∥∥θ1 ` 1

2
vKpθ1,λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

∥∥∥
2

ď
1` αrθs

2

∥∥θ1 ´ θ∥∥
2
`

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
‖θ ´ θ1‖2

2‖vt´1pθq‖2
2

´

3 ‖vt´1pθq‖2 ` 2
∥∥θ ´ θ1∥∥

2

¯

.

One could check that there exists θ1 P Bpθ, rλt´1q satisfying

θ̂pλtq P B
`

θ1 `
1

2
vKpθ1, λt´1, λtq,

1

2

∥∥vKpθ1, λt´1, λtq
∥∥

2

˘

and so combining the last inequality with (2.62)

∥∥∥∥θ̂pλtq ´ θ ´ 1

2
vKpθ, λt´1, λtq

∥∥∥∥
2

ď

∥∥∥∥θ̂pλtq ´ θ1 ´ 1

2
vKpθ1, λt´1, λtq

∥∥∥∥
2

`

∥∥∥θ1 ` 1

2
vKpθ1, λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

∥∥∥
2

ď
|1´ αrθs|` 1` αrθs

2
rλt´1 `

1

2
‖vtpθq ´ αrθsvt´1pθq‖2

`

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
rλt´1

2‖vt´1pθq‖2
2

´

3 ‖vt´1pθq‖2 ` 2rλt´1

¯
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Chapter 3

Pathwise Optimization and
Hyperparameter Selection

Various machine learning problems are formulated as a minimization of an empirical loss
function f , regularized by a term Ω whose calibration and complexity is controlled by a non
negative hyperparameter λ. The (optimal) choice of regularization parameter λ is crucial since it
directly influences the generalization performance of the estimator, i.e. its score on unseen data
set. One of the most popular method in such a context is cross-validation (CV), see (Arlot and
Celisse, 2010) for a detailed review. For simplicity, we investigate here the holdout version that
consists in splitting the data in two parts: on the first part (training set) the method is trained for
a pre-defined collection of candidates ΛT :“ tλ0, . . . , λT´1u, and on the second part (validation
set), the best parameter is selected.

For a piecewise quadratic loss f and a piecewise linear regularization Ω (e.g. for the Lasso
estimator), Osborne et al. (2000b); Rosset and Zhu (2007) show that the set of solutions follows
a piecewise linear curve w.r.t. to the parameter λ. There are several algorithms that can generate
the full path — by maintaining optimality conditions when the regularization parameter changes
— this is what LARS is performing for Lasso (Efron et al., 2004), but similar approaches exist for
SVM (Hastie et al., 2004) or for generalized linear models (Park and Hastie, 2007). Unfortunately,
these methods have some drawbacks that can be critical in many situations:

— they have a worst case complexity, i.e. the number of linear segments, that is exponential
in the dimension p of the problem (Gärtner et al., 2012) leading to unpractical algorithms.
Even in favorable case, a complexity that is linear in p can be expensive to compute when
p is large.

— they suffer from numerical instabilities due to multiple and expensive inversion of ill-
conditioned matrix. As a result, these algorithms may fail before exploring the entire path,
a crucial issue whenever the regularization decreases.

— they lack flexibility when it comes to incorporating different statistical learning tasks be-
cause they usually rely on specific algebra to handle the structure of the regularization and
loss functions. As far as we know, they apply to a limited number of cases and we are not
aware of a general framework that bypasses these problems.

— they do not benefited of early stopping. As shown in (Bousquet and Bottou, 2008), it is not
necessary to optimize below the statistical error to enjoy good generalization property. By
nature, exact regularization path algorithms must maintain the optimality conditions when
the hyperparameter changes, which is demanding in computational time.

To overcome these issues, an approximation of the solution path up to accuracy ε ą 0 was
proposed. An optimal complexity was proven to be Op1{εq by Giesen et al. (2010) in a fairly
general setting. A noticeable contribution was proposed by Mairal and Yu (2012), that come up
with an algorithm whose complexity is Op1{

?
εq for the Lasso case. The later result was then
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Lasso Logistic regr.
fipzq pyi ´ zq

2{2 logp1` ezq ´ yiz

f˚i puq ppu´ yiq
2 ´ y2

i q{2 Nhpu` yiq

Vf˚,xpuq ‖u‖2
2{2 w4p‖u‖2

x{‖u‖2q‖u‖2
x

Table 3.1 – w4pτq :“ p1´τq logp1´τq`τ
τ2 and Nhpxq :“ x logpxq ` p1´ xq logp1´ xq for x P r0, 1s.

extended by (Giesen et al., 2012) to objective function that has a quadratic lower bound while
providing a lower and upper bound of order Op1{

?
εq. Unfortunately, these assumptions fail to

hold for a large class of problems, including logistic regression or Huber loss for instances.

Following such ideas, (Shibagaki et al., 2015) have proposed, for classification problems, to
approximate the regularization path on the hold-out cross-validation error. Indeed, the later is
a more natural criterion to monitor when one aims at selecting a hyperparameter guaranteed to
achieve the best validation error. The main idea is to construct an upper and lower bound on the
validation error as simple functions of the regularization parameter. Hence by sequentially varying
the parameters, one can estimate a range of parameter for which the validation error is smaller than
an accuracy εv ą 0 (where v stands for validation).

In this chapter, we revisit the approximation of the solution and validation path in a unified
framework, under general regularity assumptions that are commonly satisfied in machine learning.
We encompass both classification and regression problems and provide a complexity analysis
along with optimality guarantees. We discuss the relationship between the regularity of the loss
function and the complexity of the approximation path. We prove that its complexity is Op1{ d

?
εq

for uniformly convex loss of order d ą 0 i.e. uniformly convex with modulus µ ‖¨‖d {d (for µ ą 0)
(see Bauschke and Combettes (2011, Definition 10.5)) and Op1{

?
εq for the logistic loss thanks

to a refined measure of its curvature throughout its Generalized Self-Concordant properties (Sun
and Tran-Dinh, 2017). Finally, we provide an algorithm with global convergence property for
selecting a hyperparameter with a validation error εv-close to the best possible hyperparameter on
a given range.

The contents of this chapter are based on a collaboration that led to the technical report

Authors: E. Ndiaye, T. Le, O. Fercoq, J. Salmon, I. Takeuchi.
‚ Safe Grid Search with Optimal Complexity. To be submitted, 2018.

Notation. Given a proper, closed and convex function f : Rn Ñ R Y t`8u, If f is twice
continuously differentiable with positive definite Hessian ∇2fpxq at any x P Rn, we denote

‖z‖x :“ ‖z‖∇2fpxq “
a

x∇2fpxqz, zy .

Problem Setup. Let us consider the class of convex optimization problems of the form

β̂pλq P arg min
βPRp

fpXβq ` λΩpβq
loooooooomoooooooon

Pλpβq

pPrimalq. (3.1)

It includes many supervised learning problems such as generalized linear models including Least
Squares and logistic regressions for instances. For simplicity, we focus only on these two canonical
examples where the loss functions are written as an empirical risk fpXβq “

ř

iPrns fipx
J
i βq

recalled in Table 3.1. The penalty term is often used to incorporate prior knowledge by enforcing
a certain regularity on the solutions. For instance, choosing a Ridge penalty (Hoerl, 1962) Ωp¨q “
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‖¨‖2
2 {2 improves the stability of the resolution of inverse problems while Ωp¨q “ ‖¨‖1 imposes

sparsity at the feature level, a motivation that led to the Lasso estimator (Tibshirani, 1996). We
refer to (Bach et al., 2012) for more evolved penalties enforcing structured sparsity.

In practice, obtaining the exact solution β̂pλq of Problem (3.1) is unpractical and one needs to
rely on an approximation at a prescribed precision.

Definition 13 (ε-solution). For any tolerance ε ě 0, a primal vector β is called ε-solution at
parameter λ if its error for the objective value is smaller than ε, i.e.

Eλpβq :“ Pλpβq ´ Pλpβ̂
pλqq ď ε . (3.2)

We recall the notion of approximate path, following the terminology from (Giesen et al., 2012):

Definition 14 (ε-path). A set Pε Ă Rp is called an ε-path for the parameter range rλmin, λmaxs if
it contains an ε-approximation βpλ,εq for any parameter λ, i.e.

@λ P rλmin, λmaxs, Dβ
pλq P Pε s.t. Eλpβpλ,εqq ď ε. (3.3)

We call path complexity for Problem (3.1) the cardinality of the smallest ε-path: Tε :“ min |Pε|.

Evaluating the approximation error (3.2) is often infeasible since it requires the unknown (ex-
act) solution β̂pλq (see the discussion on optimization complexity in Nesterov (2004, Chapter 1)).
Fortunately, when f is a convex function, one can often rely on the notion of duality gap to mea-
sure the quality of an estimate. First, we recall the classical Fenchel duality (Rockafellar, 1997,
Chapter 31) recalled in Theorem 2

θ̂pλq P arg max
θPRn

´f˚p´λθq ´ λΩ˚pXJθq
loooooooooooooomoooooooooooooon

Dλpθq

pDualq. (3.4)

Definition 15 (Duality Gap). For any primal/dual feasible pair of vector pβ, θq P Rp ˆ Rn, the
duality gap is defined as the difference between the primal and dual objectives:

Gapλpβ, θq :“ fpXβq ` f˚p´λθq ` λpΩpβq ` Ω˚pXJθqq .

By weak duality, for any primal/dual feasible vector pβ, θq, we have Pλpβq ě Dλpθq. Hence,
Eλpβq ď Gapλpβ, θq explaining the interest of the duality gap as an optimality certificate or as a
stopping criterion for solving (3.1).

3.1 Duality Gap based Approximation Path

In this section, we introduce our framework and show how to efficiently compute an ε-path in
Definition 14 for Problem (3.1).

Definition 16. Given a real valued function f defined on Rn and x in dompfq, let Uf,xp¨q and
Vf,xp¨q be non negative functions that vanish at 0. We say that f is Uf,x-convex (resp. Vf,x-smooth)
at x when Inequality (3.5) (resp. (3.6)) is satisfied for any z in dompfq

Uf,xpz ´ xq ď fpzq ´ fpxq ´ x∇fpxq, z ´ xy , (3.5)

Vf,xpz ´ xq ě fpzq ´ fpxq ´ x∇fpxq, z ´ xy . (3.6)

This framework is inspired from the widely used notion of µ-strong-convexity (resp. ν-
smoothness), cf. (Nesterov, 2004), where Uf,xpz ´ xq “ µ ‖z ´ x‖2

2 {2 (resp. ν ‖z ´ x‖2
2 {2).

Moreover, it is flexible enough to encompass:
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Uniform Convexity (resp. Uniform Smoothness) (Azé and Penot, 1995):

Uf,xpz ´ xq “ Up‖z ´ x‖q , (3.7)

Vf,xpz ´ xq “ Vp‖z ´ x‖q , (3.8)

where Up¨q and Vp¨q are increasing mappings from r0,`8q to r0,`8s that vanish at 0 and
are independent of any x. Examples of such functions are Uptq “ µ

d t
d and Vptq “ ν

d t
d where d,

µ and ν are positive constants. The case d “ 2 corresponds to the classical definition of strong
convexity and smoothness; in general they are called Uniformly Convex of order d, see (Juditski
and Nesterov, 2014) or (Bauschke and Combettes, 2011, Ch. 10.2 and 18.5) for further details.
Also note that the norm ‖¨‖ can be replaced by any positively homogeneous function that vanishes
at zero. Such functions Uf ,Vf are known as gauge like functions (Rockafellar, 1997, Chapter 15).

Generalized Self-Concordant functions.

Definition 17 (Sun and Tran-Dinh (2017)). A three time differentiable convex function f is called
pMf , νq-generalized self-concordant of order ν ě 2 and Mf ě 0 if for any x P Dompfq and any
u, v P Rp,

ˇ

ˇx∇3fpxqrvsu, uy
ˇ

ˇ ďMf ‖u‖2
x ‖v‖

ν´2
x ‖v‖3´ν

2 . (3.9)

Proposition 28 (Prop. 10 Sun and Tran-Dinh (2017)). If pMf , νq-generalized self concordant,
then

wνp´dνpx, zqq ‖z ´ x‖2
x ď fpzq ´ fpxq ´ x∇fpxq, z ´ xy ď wνpdνpx, zqq ‖z ´ x‖2

x

where the right-hand side inequality holds if dνpx, zq ă 1 for the case ν ą 2 and where

dνpx, zq :“

#

Mf ‖z ´ x‖2 if ν “ 2,
`

ν
2 ´ 1

˘

Mf ‖z ´ x‖3´ν
2 ‖z ´ x‖ν´2

x if ν ą 2,

and

wνpτq :“

$

’

’

’

’

&

’

’

’

’

%

eτ´τ´1
τ2 if ν “ 2,

´τ´logp1´τq
τ2 if ν “ 3,

p1´τq logp1´τq`τ
τ2 if ν “ 4,

´

ν´2
4´ν

¯

1
τ

”

ν´2
2p3´νqτ

´

p1´ τq
2p3´νq

2´ν ´ 1
¯

´ 1
ı

otherwise.

In this case, the previous proposition show that

Uf,xpz ´ xq “ wνp´dνpx, zqq ‖z ´ x‖2
x ,

Vf,xpz ´ xq “ wνpdνpx, zqq ‖z ´ x‖2
x ,

where the second holds if dνpx, yq ă 1 for the case ν ą 2. This class of functions includes
many important examples widely used in machine learning such as logistic and quadratic loss.
In the proposed algorithm, the dual loss intervenes strongly and the dual of the logistic loss is
Generalized Self-Concordant with Mf˚ “ 1, ν “ 4 while for quadratic loss, Mf˚ “ 0 and we
can take any ν ą 0. We refer to (Sun and Tran-Dinh, 2017) for more details.

To simplify the notation, we will drop the subscript x in Uf,x and simply write Uf ; the meaning
shall be clear depending on the context.

3.1.1 Bounding the Gap of the Homotopic Initialization

In the context of homotopy continuation recalled in Chapter 1, we solve problem (3.1) with
different values of λ prefixed in a grid of hyperparameter. In this section, we provide fine bounds
on the duality gap that control the optimization error when moving from one parameter to another.
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Suppose we have at our disposal a primal/dual pair of vector pβpλtq, θpλtqq computed as outputs
of an optimization algorithm at regularization parameter λt ą 0 and t an integer, we denote

Gapt :“ Gapλtpβ
pλtq, θpλtqq, ∆t :“ fpXβpλtqq ´ fp∇f˚pztqq (3.10)

for zt :“ ´λtθ
pλtq and for any function φ : Rn Ñ r0,`8s that vanishes at 0,

Qt,φpρq :“ Gapt`ρ ¨ p∆t ´Gaptq ` φp´ρ ¨ ztq . (3.11)

In the following lemma, we propose to bound the duality gap by simply transferring the in-
equalities obtained from the regularity of the loss function f . It aims at controlling the growth of
the duality gap w.r.t. the parameter λ.

Lemma 12 (Bounding the Warm Start Error). We assume that´λθpλtq P dompf˚q andXJθpλtq P
dompΩ˚q. If f˚ is Vf˚-smooth (resp. Uf˚-convex), then, for ρ “ 1 ´ λ{λt, the right (resp. left)
hand side of Inequality (3.12) holds true

Qt,Uf˚ pρq ď Gapλpβ
pλtq, θpλtqq ď Qt,Vf˚ pρq . (3.12)

Proof. For simplicity, we denote

Gapλtλ :“ Gapλpβ
pλtq, θpλtqq and Γt :“ Ωpβpλtqq ` Ω˚pXJθpλtqq .

By Definition 15 of the duality gap at parameter λt, we have

1

λt
rGapt´fpXβ

pλtqq ´ f˚p´λtθ
pλtqqs “ Γt . (3.13)

Hence using Equality (3.13) in the definition of Gapλtλ , we have:

Gapλtλ “ fpXβpλtqq ` f˚p´λθpλtqq ` λΓt

(3.13)
“

λ

λt
Gapt`

ˆ

1´
λ

λt

˙

rfpXβpλtqq ` f˚p´λtθ
pλtqqs ` f˚p´λθpλtqq ´ f˚p´λtθ

pλtqq.

Let us write the proof for the upper bound (the proof for the lower bound is similar). We apply the
smoothness inequality (3.44) to the function f˚p¨q with z “ ´λθpλtq and x “ zt :“ ´λtθ

pλtq to
obtain

Gapλtλ ď
λ

λt
Gapt`

ˆ

1´
λ

λt

˙

∆t ` Vf˚,ztp´λθpλtq ` λtθpλtqq ,

where we have used the equality case in the Fenchel-Young inequality (3.42) to get:

∆t “ fpXβpλtqq ` f˚p´λtθ
pλtqq ` x∇f˚pztq,´zty “ fpXβpλtqq ´ fp∇f˚pztqq .

The function φ — chosen as Vf˚ (resp. Uf˚) for the upper bound (resp. lower bound) —
essentially captures the regularity needed to approximate the duality gap at parameter λ when
using previous primal/dual vector pβpλtq, θpλtqq. Note also that in the case where the function
satisfies both inequalities, the tightness of the bound can be related to the conditioning number
Kf˚ “ Uf˚{Vf˚ of the dual loss f˚. Hence we have an equality for the least-squares example
(Uf˚ ” Vf˚ ” ‖¨‖2

{2).
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Algorithm 4 εp-Path on Training Set: Training_path
Input: f,Ω, εp, rλmin, λmaxs

Initialize t “ 0, λ0 “ λmax, Λ “ tλmaxu.
repeat

Solve Problem (3.1) for λ “ λt up to accuracy εo ă εp
Compute ρ`t “ maxtρ s.t. Qt,Vf˚ pρq ď εpu

Set λt`1 “ λt ˆ p1´ ρ
`
tq

Λ Ð ΛY tλt`1u and tÐ t` 1
until λt`1 ď λmin

Return: tβpλtq : λt P Λu

Interpretation: In the Lasso example the inequalities (3.12) are tight and can be rewritten as

Gapλpβ
pλtq, θpλtqq “

λ

λt
Gapt`

ˆ

1´
λ

λt

˙

∆t `
‖zt‖2

2

2

ˆ

1´
λ

λt

˙2

. (3.14)

Then the result in Lemma 12 can be seen as a decomposition of the initialization error into opti-
mization and approximation error. In fact, the two first terms involve Gapt and ∆t that correspond
to the optimization error at parameter λt and the last term accounts for the price to pay when
approximating λt by λ.

Adaptive Grid for a Fixed Precision. From Lemma 12, we have Gapλpβ
pλtq, θpλtqq ď ε as

soon as Qt,Vf˚ pρq ď ε where ρ “ 1 ´ λ{λt varies with λ. Then, we proceed by choosing (at
each grid point λt), ρt as the largest ρ such that the upper bound in (3.12) remains below the error
ε. Hence, we obtain the following proposition that allows to track the regularization path for an
arbitrary precision ε ą 0 on the training set by mean of the duality gap; see Algorithm 4.

Proposition 29 (Grid to Achieve Prescribed Precision). Assume we have solved Problem (3.1) for
parameter λt up to precision Gapt ă ε, then Gapλpβ

pλtq, θpλtqq ď ε for all

λ P λt ˆ
”

1´ ρ`tpεq, 1` ρrt pεq
ı

,

where ρ`tpεq (resp. ρrt pεq) is the largest non-negative ρ s.t. Qt,Vf˚ pρq ď ε (resp. Qt,Vf˚ p´ρq ď ε).

We will often drop the dependencies in ε for simplicity.

Adaptive Precision for a Fixed Grid. Conversely, given a grid of T points ΛT :“ tλ0, . . . , λT´1u

(we assume a decreasing order: λt`1 ă λt), we define the error of the approximation path
for a given range rλmin, λmaxs by using a piece-wise constant approximation of the duality gap
Gapλpβ

pλtq, θpλtqq over the grid:

εΛT :“ sup
λPrλmin,λmaxs

min
λtPΛT

Gapλpβ
pλtq, θpλtqq . (3.15)

This error is difficult to evaluate in practice so we rely on the tight upper bound based on inequal-
ities in Lemma 12 that are easier to compute and for which closed-form are often available.

Proposition 30 (Precision for a Given Grid). For any grid of points ΛT , the approximation error
of the objective path is bounded as follows: εΛT ď maxtPrT sQt,Vf˚ p1 ´ λ‹t {λtq where for all
t P rT ´ 1s, λ‹t is the largest λ P rλt`1, λts such that Qt,Vf˚ p1´ λ{λtq ě Qt`1,Vf˚ p1´ λ{λt`1q.
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Proof. From the upper bound Gapλpβ
pλtq, θpλtqq ď Qt,Vf˚ p1´ λ{λtq for all λ and λt, and since

rλmin, λmaxs “ YtPr0:T´1srλt`1, λts we have

εΛt ď max
tPr0:T´1s

sup
λPrλt`1,λts

min
λtPΛT

Qt,Vf˚ p1´ λ{λtq

ď max
tPr0:T´1s

sup
λPrλt`1,λts

min
t1Ptt`1,tu

Qt1,Vf˚ p1´ λ{λt1q .

where the last inequality holds since tλt`1, λtu is a subset of ΛT . Let us define

@λ P rλt`1, λts, ψtpλq :“ mintQt`1,Vf˚ p1´ λ{λt`1q, Qt,Vf˚ p1´ λ{λtqu .

ForQt`1,Vf˚ p1´λ{λt`1q (resp. Qt,Vf˚ p1´λ{λtq) that is monotonically increasing w.r.t. λ (resp.
decreasing) the supλPrλt`1,λts ψtpλq is reached at the largest λ such that

Qt,Vf˚ p1´ λ{λtq ě Qt`1,Vf˚ p1´ λ{λt`1q .

Finding the Step Sizes ρ. Following Proposition 29, finding the solution of equations of the
form Qt,Vf˚ pρq “ ε is of high interest to obtain an ε-path. This can be done efficiently at high
machine precision by various numerical solvers since this problem is one dimensional. Explicit
solution are often available, for instance when f˚p¨q is ν

2 ‖¨‖2-smooth, the step size is given by the
solution of the quadratic inequality Qt,Vf˚ pρq ď ε.

Proposition 31 (Quadratic Approximation Step). Given a primal/dual vector pβpλtq, θpλtqq, the
left and right quadratic step sizes defined in Proposition 29 have the closed-form expressions:

ρ`tpεq “

b

2νR2
t δt ` δ̃

2
t ´ δ̃t

νR2
t

and ρrt pεq “

b

2νR2
t δt ` δ̃

2
t ` δ̃t

νR2
t

where δt “ ε´Gapt, δ̃t “ ∆t ´Gapt, Rt “ ‖zt‖ and ν “ νf˚ is the smoothness constant of the
dual loss f˚p¨q.

As in (Mairal and Yu, 2012; Giesen et al., 2012), we recover as a special case the quadratic
step size already known for the Lasso where the loss function is the quadratic loss ‖y ´ ¨‖2

{2. In
this case, ν “ 1 and denoting N8 :“ ‖XJpy ´ Xβpλtqq‖8, a direct calculation with the dual
vector (3.16) reads:

zt :“ ´λtθ
pλtq “

λt
maxpλt, N8q

py ´Xβpλtqq ,

∆t :“ fpXβpλtqq ´ fp∇f˚pztqq “
1

2

∥∥∥y ´Xβpλtq∥∥∥2

2
ˆ

˜

1´

ˆ

λt
maxpλt, N8q

˙2
¸

.

Construction of a Feasible Vector. Given a primal vector βpλtq, one can obtain a dual feasible
vector by using a projected gradient mapping on the domain of the dual problem. Nevertheless,
this operation can be expensive or impractical in which case we simply propose a rescaling of the
gradient of the loss function i.e. θpλtq “ ´α∇fpXβpλtqq, with α s.t. XJθpλtq P dompΩ˚q. Often,
there is a simple expression for finding such a scaling factor α. Following the generic construction
in Chapter 2, we choose

θpλtq :“
´∇fpXβpλtqq

maxpλt,S˝dompΩ˚qpX
J∇fpXβpλtqqq

. (3.16)
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This choice of dual point guarantees that the duality gap Gapλtpβ
pλtq, θpλtqq will converge to

0 when βpλtq converges to a solution β̂pλtq of (3.1). For any converging algorithm, one can
make ∆t arbitrarily small; for instance when Ωp¨q “ ‖¨‖ is a norm, ∆t “ 0 as soon as λt ě
‖XJ∇fpXβpλtqq‖˚. The scaling is not needed if there is no constraint in the dual; for instance in
the Elastic Net (Zou and Hastie, 2005) where Ωpβq “ η ‖β‖1`p1´ ηq ‖β‖

2
2 {2 for η ě 0, we can

choose ´λtθ
pλtq
i “ ∇fipxJi βpλtqq for any primal candidate βpλtq, and thus ∆t “ 0. Note that, at

optimality, ´λtθ̂
pλtq
i “ ∇fipxJi β̂pλtqq for all i P rns, so ∇f˚p´λtθ̂pλtqq “ Xβ̂pλtq and ∆t “ 0.

3.1.2 Sampling Strategies

Adaptive Unilateral

For sparse regression methods, it is customary to start from the largest regularizer λ0 “ λmax

and then to iteratively compute β̂pλt`1q after having computed β̂pλtq. This is popular as it generally
leads to computing the models in the order of increasing complexity: this allows important speed-
ups by benefiting of warm start strategies (Friedman et al., 2007) provided that the parameters
λ’s are close enough from one another. This leads to the first strategy that we call Unilateral
that consists in computing a new λ using only ρ`t in Proposition 29. This strategy is illustrated in
Section 3.1.2 for approximating the solution path of the Lasso. It has the advantage of combining
simplicity and generality in the sense that it adapts simultaneously to both uniformly convex and
generalized self-concordant function.

λmin λmax

Regularization parameters λ

10-2
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Approximation path for the Lasso

Figure 3.1 – Illustration of ε-path for the Lasso at accuracy ε “ 10´2. This corresponds to the
adaptive unilateral sampling where at each step t, the primal objective is optimized up to accuracy
Gapt “ εo “ ε{2 to satisfy the hypotheses of Proposition 29.
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Adaptive Bilateral

Often, we can make a larger step by combining the information given by the left and right
step sizes. Indeed let us assume that we explore the parameter range from λmax to λmin. Starting
from a parameter λt, we define the next step, given by Proposition 29, λ`t :“ λtp1 ´ ρ`tq. Then it
exists λt1 ď λ`t such that λrt1 :“ λt1p1` ρrt1q “ λ`t . Thus a larger step can be done by using λt1 “

λtˆ
1´ρ`t
1`ρr

t1
instead of λ`t . However ρrt1 depends on the (approximated) solution βpλt1 q that we do not

know before optimizing the problem at parameter λt1 when computing sequentially the grid points
in decreasing order i.e. λt1 ď λt. We overcome this issue by (upper) bounding all the constant in
Qt1,Vf˚ pρq that depend on the solution βpλt1 q, by constants involving only information available
when once βpλtq has been approximated. For it, we need the following technical lemma, valid on
the class of uniformly convex functions, that provides suitable bounds for deriving Bilateral (and
later Uniform) approximation paths.

We first define the following quantities

rRt :“ V˚f
´1

ˆ

fpXβpλtqq `
2εo

ρ`tpεq

˙

, (3.17)

r∆t :“ rRt ˆ U´1
f pεoq . (3.18)

The next lemma shows how the terms ∆t and ‖zt‖ can be directly bounded by quantity inde-
pendent of t. Note that using the dual vector in Equation (3.16), we have

‖zt‖ “ ‖´λtθpλtq‖ ď ‖∇fpXβpλtqq‖ .

Lemma 13. Assuming f is Uf -uniformly convex, we have

‖∇fpXβpλt1 qq‖ ď rRt and ∆t1 ď
r∆t .

Proof. given in the supplementary material.

Combining Lemma 13 and Lemma 12, we obtain

Gapλpβ
pλt1 q, θpλt1 qq ď Qt1,Vf˚ pρq ď

rQt,Vf˚ pρq (3.19)

where ρ “ 1´λ{λt1 and the mapping ρ ÞÑ rQt,Vf˚ pρq is independent of the approximated solution
pβpλt1 q, θpλt1 qq at parameter λt1 and is defined as

rQt,Vf˚ pρq :“ εo ` ρ ¨ pr∆t ´ εoq ` Vf˚
´

|ρ| ¨ rRt

¯

.

Hence we obtain the following approximation path with larger intermediate step:

ρ
pbq
t pεq “

ρ`tpεq ` ρ̃
r
t pεq

1` ρ̃rt pεq
, (3.20)

where ρ`tpεq is defined in Proposition 29 and ρ̃rt pεq is the largest non negative ρ such that
rQt,Vf˚ pρq ď ε.

Proposition 32 (Bilateral Approximation Path). Assume that f is Uf -uniformly convex and Vf -
uniformly smooth and let 0 ă εo ă ε and Gapλtpβ

pλtq, θpλtqq ď εo for all t. Define the grid
Λpbq :“ tλ0, . . . , λT´1u by

λ0 “ λmax, λt`1 “ λt ˆ p1´ ρ
pbq
t pεqq .

Then the solution set tβpλtq : λt P Λpbqu is an ε-path for problem (3.1).
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Uniform Unilateral and Bilateral

Given the initial information from the primal/dual vectors pβpλmaxq, θpλmaxqq at parameter
λmax “ λ0, we can build a uniform grid that guarantee an ε-approximation before solving any
optimization problem. Indeed, by using the same reasoning, we can build Qunifp¨q such that for
ρ “ 1´ λ{λt, we have Gapλpβ

pλtq, θpλtqq ď Qunifpρq :“ rQ0,Vf˚ pρq.

We denote the uniform step as follow

ρunifpεq :“

#

ρ`unifpεq for Unilateral path
ρ`unifpεq`ρ̃

r
unifpεq

1`ρ̃runifpεq
for Bilateral path.

(3.21)

Proposition 33 (Uniform Approximation Path). Assume that f is Uf -uniformly convex and Vf -
uniformly smooth and let 0 ă εo ă ε and Gapλtpβ

pλtq, θpλtqq ď εo, for all t. Define the grid
Λpunifq “ tλ0, . . . , λT´1u by

λ0 “ λmax, λt`1 “ λtp1´ ρunifpεqq .

Then the solution set tβpλtq : λt P Λpunifqu is an ε-path for problem (3.1) with at most Tε grid
points where

Tε “

Z

logpλmax{λminq

logp1´ ρunifpεqq

^

` 2 .

Remark 12. Since the uniform grid depends only on the initially known value βλmax at λ0 “ λmax,
it can be computed before solving the optimization problem at any parameter. This allows the
valuable advantage of parallelizing the computations over the grid of parameters.

3.1.3 Concerns about Previous Methods

Previous algorithms for maintaining an ε-approximation of the solution along the regulariza-
tion path that have been considered in the literature to help the calibration of the hyperparameters
(Clarkson, 2010; Giesen et al., 2010) have the quality of being able to apply to a very large num-
ber of problems. Indeed, they have been developed under restrictive assumptions in which they
are optimal with a complexity of Op1{εq. Nevertheless, data fitting functions arising in machine
learning have sometimes nicer regularities that must be exploited upstream to obtain more scalable
algorithms. This is all the more striking in the Lasso example where a better complexity was ob-
tained in (Mairal and Yu, 2012) and at that time, it was the only algorithm to enjoy complexity in
Op1{

?
εq. But, what is so special about the Lasso and what can be said about others formulations?

First, we would like to emphasize the fact that without specific assumptions on the parameter,
the ε-path complexity can be arbitrarily large even for "simple" functions. Indeed, let us consider
the function

r0, 1s ˆ R Q pλ, βq ÞÑ Pλpβq “
d
a

|β ´ λ| ´ λd (3.22)

which is minimal at β̂pλq “ λ and we have Pλpβ̂pλqq “ ´λd. Hence for any β, the interval
Iβ “ tλ P r0, 1s : Eλpβq “ d

a

|β ´ λ| ď εu has a length 2εd independent of β. Hence this function
has an ε-path complexity of 1{p2εdq which gives an exponential lower bound for approximation
path. Fortunately the complexity can be simplified if we assume more structure, (Giesen et al.,
2012) proposed to consider functions such that:

#

β ÞÑ Pλpβq are bounded from below for any λ in an interval I,
λ ÞÑ P¨pβq is concave for any β in some set D.

(3.23)

Within this framework, they show a lower bound of the ε-path complexity in Op1{
?
εq and also an

structural upper bound in Op1{
?
εq showing the tightness of their bounds and analysis. They also
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Algorithm 5 εv-Path for Validation Set
Input: f,Ω, εv, rλmin, λmaxs

Compute εp “ ξpεv, µ,X
1q according to Proposition 36

Set Λval “ Training_path pf,Ω, εp, rλmin, λmaxsq

Return: Λval

propose a generic algorithm capable to compute an ε-path that achieves this complexity building
on a polynomial lower bound of the objective function.

We can notice two major concerns: the lower bound may be too pessimistic for the frame-
work (3.23) (see Section 3.1.4) and we can find important machine learning examples where a
reasonable polynomial lower bound on the objective function is hardly available. For instance, let
us consider the `1 regularized logistic regression, in this case, the dual loss f˚ is not smooth
since the loss function f is not strongly convex. However, one can overcome this issue by
restricting on any compact set as in (Dünner et al., 2016). Let us consider the one dimen-
sional toy example where β P R, X “ Id and y “ ´1, fpXβq “ logp1 ` exppβqq. We
have, ∇2fpβq “ exppβq{p1 ` exppβqq2. Then for Problem (3.1), since Pλpβ̂pλqq ď Pλp0q,
we have |β̂pλq| P r0, logp2q{λs and the smoothness constant of the dual can be estimated as
νf˚ “ p1 ` expplogp2q{λqq2 at each step. This unfortunately leads to an infeasible algorithm
with tiny step size since for λ “ λmax{10 we already have νf˚ « expp100q in Proposition 31.
Moreover, note that the dual function is not polynomial thus algorithm previously proposed in
(Giesen et al., 2012) do not handle the logistic regression case. Yet, as we will see in the next
paragraph, we can efficiently build an ε-path with Op1{

?
εq complexity thanks to Generalized

Self-Concordance bounds.

3.1.4 Complexity Analysis and Link with the Regularity of the Loss

Lower bounds. From our analysis, the lower bound on the duality gap in Lemma 12 tells us
how close the proposed step in Proposition 29 is from the best possible step one can achieve for
smooth loss functions. Indeed, at the optimal solution, we have Gapt “ ∆t “ 0. Thus the
largest possible step — starting at λt and moving in decreasing order — is given by the smallest
λ between λmin and λt such that Uf˚

´

´λtθ̂
pλtq ˆ p1´ λ

λt
q

¯

ą ε. Hence, any algorithm for

computing ε-path for Uf˚-uniformly convex dual loss, have a complexity of order Op1{U´1
f˚ pεqq.

Our framework has the noticeable advantage to naturally adapt to the regularity of the loss
function and do not require specific algebra for each function as it was done previously in the
literature.

Upper bounds. We denote Tε the cardinality of the grid returned by Algorithm 4. Let pρtqtPr0:Tε´1s

be the set of step size needed to cover the interval rλmin, λmaxs. Using ρt “ 1´ λt`1

λt
, we have

log

ˆ

λmax

λmin

˙

“ log

˜

Tε´1
ź

t“0

λt
λt`1

¸

“

Tε´1
ÿ

t“0

log

ˆ

1

1´ ρt

˙

.

Hence, denoting ρminpεq “ mintPr0:Tε´1s ρt, we have

Tε ˆ ρminpεq ď log

ˆ

λmax

λmin

˙

. (3.24)

Moreover, to simplify our analysis we will suppose that at each step λt, we have solved the opti-
mization problem with two measures of accuracy Gapt ď εo and ∆t ď εo for εo ă ε. Also, we
assume that we explore the parameter range in decreasing order. Then we recall from Lemma 12
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that Gapλpβ
pλtq, θpλtqq ď Qt,Vf˚ pρq which is smaller than ε as soon as Vf˚,ztp´zt ¨ ρq ď ε´ εo.

Since ρminpεq “ mintPr0:Tε´1s ρt “ mintPr0:Tε´1s suptρ : Qt,Vf˚ pρq ď εu, then

ρminpεq ě min
tPr0:Tε´1s

suptρ : Vf˚,ztp´zt ¨ ρq ď ε´ εou . (3.25)

Hence the complexity of the path is bounded as follows.

Proposition 34 (Complexity for Uniformly Convex Functions). If f and f˚ are uniformly convex
and uniformly smooth, then

Tε ď log

ˆ

λmax

λmin

˙

ˆ

V˚f
´1

´

fpXβpλ0qq ` 2εo
ρ`0pεq

¯

V´1
f˚ pε´ εoq

.

Proof. In the uniformly convex case, Vf˚,ztp´zt ¨ ρq “ Vf˚pρ ‖zt‖q, hence we can deduce from
Equation (3.24) and (3.25) that

Tε ď
1

ρminpεq
ˆ log

`λmax

λmin

˘

ď log
`λmax

λmin

˘

ˆ
maxtPr0:Nε´1s ‖zt‖

V´1
f˚ pε´ εoq

,

so we just need to uniformly bound ‖zs‖. This bound follows from (3.17) and (3.16).

Note that the initial step size ρ`0pεq ď V´1
f˚ pε´ εoq{ ‖z0‖. Hence for loss function f such that

Vf˚p¨q “ νf˚ ‖¨‖d {d, the complexity of the ε-path corresponds to Tε P Op1{ d
?
εq.

For Generalized Self-Concordant functions, we show explicitly the complexity only for the
logistic regression.

Proposition 35 (Complexity for Logistic Regression). If fpzq “
řn
i“1 logp1 ` eziq ´ yizi, then

there exists Bf˚,λ0 ą 0 and B1f˚,λ0
ą 0 such that

Tε ď log

ˆ

λmax

λmin

˙

max

˜

Bf˚,λ0?
ε´ εo

,
1

B1f˚,λ0

¸

.

Proof. We recall that f˚ is generalized self-concordant with ν “ 4. The function wνp¨q is increas-
ing and wνp0q “ 1{2, hence there exists a positive constant aν such that wνpτq ď 1 for τ P r0, aνs
(in fact aν “ 1 for the logistic regression). Thus, provided ρdνpztq ď aν , we can derive the bound
Vf˚p´zt ˆ ρq ď ρ2 ‖zt‖2

zt
.

Like in the uniformly convex case, in order to get the complexity of the ε-path, we also need a
uniform bound on ‖zt‖zt .

By taking (3.5) on f˚ with xÐ zt and z Ð 0, we obtain

Uf˚,ztp´ztq ď f˚p0q ´ f˚pztq ´ x∇f˚pztq,´zty “ fp∇f˚pztqq “ fpXβpλtqq ´∆t

ď fpXβpλtqq ` εo ď fpXβpλ0qq `
2εo

ρ`0pεq
` εo

where we have used the equality case of Fenchel-Young inequality and f˚p0q “ ´ inf f “ 0.

Since ∇2f˚pzq “ diagph1pz1q, ¨ ¨ ¨ , hnpznqq where hipziq “ 1{pzip1´ziqq for all i P rns, we
have ‖z‖2

z “
řn
i“1 z

2
i hipziq. Whence we deduce that ‖z‖2 Ñ 0 ñ ‖z‖z Ñ 0. This gives that if

‖z‖z Ñ `8, then ‖z‖2 must be lower bounded. Then, as Uf˚,zp´zq “ w4

´

´
‖z‖2

z
‖z‖2

¯

‖z‖2
z Ñ `8

when ‖z‖z Ñ 8, we conclude that ‖zt‖zt must be upper bounded by a quantity depending only
on f˚ and on fpXβpλ0qq ` 2εo

ρ`0
` εo. Let us denote this bound Bf˚,λ0 . Likewise, we can show

that dνpztq is upper bounded by a constant B1f˚,λ0
.
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Figure 3.2 – `1 least-squares regression on climate data set NCEP/NCAR Reanalysis with n “ 814
observations and p “ 73577.

3.2 Validation Path and Approximation of the Best Hyperparameter

Considering the validation data pX 1, y1q and loss L, we define the validation error of the esti-
mate β as

Evpβq “ Lpy1, X 1βq . (3.26)

The objective is to solve the bi-level optimization problem

arg min
λPrλmin,λmaxs

Evpβ̂
pλqq “ Lpy1, X 1β̂pλqq

s.t. β̂pλq P arg min
βPRp

fpXβq ` λΩpβq .

Recent works address this problem, by using gradient-based algorithms see for instance (Pe-
dregosa, 2016), have shown promising results in computational time and scalability w.r.t. mul-
tiple hyperparameters. However, they require assumptions such as smoothness of the validation
function Ev and Non-singular Hessian of the inner optimization problem at optimal values which
are difficult/impossible to check in practice since they rely on the exact knowledge of the optimal
solutions and fail to hold for root mean square error and indicator loss. Moreover, they can only
guarantee convergence to stationary point.

Here we show that with a safe and simple exploration of the parameter space, our algorithm has
a global convergence property. Indeed, for any fixed tolerance εv, Algorithm 4 returns a solution
with a validation error no larger than εv to the smallest possible error.

The following conditions, on the validation loss and on the inner optimization objective, are
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Figure 3.3 – `1 logistic regression on leukemia data set with n “ 72 observations and p “ 7129
features.

Figure 3.4 – Computation of the approximation path at the same error than the default grid.

assumed through the section:

(A1): |Lpa, bq ´ Lpa, cq| ď Lpb, cq, (3.27)

(A2): β ÞÑ Pλpβq is µ-strongly convex. (3.28)

The assumption on the loss function is verified for norms (regression case) and indicator func-
tion (classification). Indeed, for any norm Lpa, bq “ ‖a´ b‖, we have from the triangle inequality
ˇ

ˇ ‖a´ b‖ ´ ‖a´ c‖
ˇ

ˇ ď ‖b´ c‖ . For the indicator function, since |1abă0 ´ 1acă0| ď 1bcă0, we
have

ˇ

ˇ

1
n

řn
i“1 1aibiă0 ´

1
n

řn
i“1 1aiciă0

ˇ

ˇ ď 1
n

řn
i“1 1biciă0.

Definition 18. Given a primal solution β̂pλq at the regularization parameter parameter λ, we
define the gap on the validation error between two parameter λ and λt as

∆Evpλt, λq :“
ˇ

ˇEvpβ̂
pλqq ´ Evpβ

pλtqq
ˇ

ˇ. (3.29)

Suppose we have fixed a tolerance εv on the gap on validation error i.e. ∆Evpλt, λq ď εv.
Based on Inequality (3.27) in assumption (A1), if there is a region Rλ that contains the optimal
solution β̂pλq at parameter λ, then we have

∆Evpλt, λq ď LpX 1β̂pλq, X 1βpλtqq ď max
βPRλ

LpX 1β,X 1βpλtqq.

A simple strategy consists in choosing Rλ as a ball. Indeed, under the assumption (A2), we
have
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Lemma 14 (Gap Safe Region). Assuming that Pλpβq is µ-strongly convex, the primal optimal
solution β̂pλq belongs to the euclidean ball Bpβpλtq, rλ,µq where

rλ,µ :“ rλ,µpβ
pλtq, θpλtqq “

c

2

µ
Gapλpβ

pλtq, θpλtqq . (3.30)

Such a ball based on the duality gap radius was recently used to accelerate sparse optimization
algorithm by iteratively identifying, with guarantee, the sparsity structure of the optimal solutions.
Such strategy are known in machine learning as safe screening rules (El Ghaoui et al., 2012;
Fercoq et al., 2015; Shibagaki et al., 2016; Ndiaye et al., 2017b).

Since the radius of the ball depends explicitly on the duality gap, we can sequentially track a
range of parameters for which the gap on the validation error remains below a prescribed tolerance
by controlling the optimization error measured with the duality gap. Hence we define

ξpεv, µ,X
1q :“

$

’

&

’

%

µ
2 ˆ

´

εv
‖X 1‖

¯2
(regression case),

µ
2 ˆ

ˆ

x1Jptnεvu`1qβ
pλtq

‖x1ptnεvu`1q‖

˙2

(classification case).

Proposition 36 (Grid for a prescribed validation error). Suppose that we have solved problem (3.1)
for a parameter λt up to accuracy Gapλtpβ

pλtq, θpλtqq ď ξpεv, µ,X
1q, then we have ∆Evpλt, λq ď

εv for all

λ P λt ˆ
”

1´ ρ`tpξpεv, µ,X
1qq, 1` ρrt pξpεv, µ,X

1qq

ı

where ρ`tpεq and ρrt pεq for ε ą 0 are defined in Proposition 29.

Remark 13 (Stopping condition for the training step). Considering the current regularization
parameter λ “ λt, we have ∆Evpλt, λtq “

ˇ

ˇEvpβ̂
pλtqq ´ Evpβ

pλtqq
ˇ

ˇ ď εv provided that duality
gap satisfies Gapλtpβ

pλtq, θpλtqq ď ξpεv, µ,X
1q. This gives us a stopping criterion for solving

problems on the training set relative to the desired accuracy εv on the validation set pX 1, y1q.

Proof. In case where the loss function is a norm, we have:

max
βPBpβpλtq,rq

LpX 1β,X 1βpλtqq “ max
βPBpβpλtq,rq

‖X 1pβ ´ βpλtqq‖ ď rλ,µ‖X 1‖

where rλ,µ is defined in Equation (3.30). Hence by using the bounds on the duality gap in
Lemma 12, we can ensure ∆Evpλt, λq ď εv for all ρ “ 1´ λ{λt such that Qt,Vf˚ pρq ď

µε2v
2‖X 1‖2 .

For the indicator loss function, using the inequality ´2ab ď pa ´ bq2 ´ b2 for a “ x1Ji β and
b “ x1Ji β

pλ0q and |x1Ji pβ ´ β
pλ0qq| ď r‖x1i‖ for all β P Bpβpλ0q, rq we have:

´2px1
J

i βqpx
1J

i β
pλ0qq ď pr‖x1i‖q2 ´ px1Ji βpλ0qq2.

Hence we obtain the following upper bound

max
βPBpβpλ0q,rq

LpX 1β,X 1βpλ0qq “ max
βPBpβpλ0q,rq

1

n

n
ÿ

i“1

1
px1Ji β

pλ0qqpx1Ji βqă0 ď
1

n

n
ÿ

i“1

1
|x1Ji β

pλ0q|ďr‖x1i‖.

By using the bound on the duality gap, we can ensure ∆Evpλ0, λq ď εv for all λ such that:

#

$

&

%

i P rns : ξi :“
µ

2

˜

x1Ji β
pλ0q

‖xi‖

¸2

ď Qt,Vf˚ p1´ λ{λtq

,

.

-

ď tnεvu.
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By denoting
`

ξpiq
˘

iPrns
the (increasing) ordered sequence, we need the inequality to be true for at

most the tnεvu first values i.e. we choose λ such that:

Qt,Vf˚

ˆ

1´
λ

λt

˙

ă
µ

2

˜

x1Jptnεvu`1qβ
pλ0q∥∥x1ptnεvu`1q

∥∥
¸2

.

The Algorithm 5 outputs a discrete set of parameters Λval such that tβpλtq for λt P Λvalu is an
εv-approximation path for the validation objective function. As a direct consequence, for all λ in
rλmin, λmaxs, it exists λt P Λval outputted by Algorithm 5, such that

Evpβ
pλtqq ´ εv ď Evpβ̂

pλqq.

By taking successively, the minimum over all λt in the grid on the left hand side, and the minimum
over all λ in the parameter range on the right hand side, we obtain

Corollary 1. If the set tβpλtq for λt P Λvalu is an εv-path for the validation function, then

min
λtPΛval

Evpβ
pλtqq ´ min

λPrλmin,λmaxs
Evpβ̂

pλqq ď εv. (3.31)
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Figure 3.5 – Selecting the optimal hyperparameter for `1 Elastic Net regression at different ac-
curacy εv and for Diabetes data set with n “ 442 observations and p “ 10. We illustrate the
parameter selected by our algorithm at different precision levels. The color map ranges from
yellow (low precision) to dark red (high precision)

3.3 Support Path for Sparse Regularization

In Chapter 2, we have provided a general framework for identifying active structure in convex
optimization problems and have introduced the Gap Safe Rules which allows to eliminate more
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Figure 3.6 – Selecting the optimal hyperparameter for `1 Elastic Net regression at different accu-
racy εv for Synthetic data set n “ 500 observations and p “ 5000. We illustrate the parameter
selected by our algorithm at different precision levels. The color map ranges from yellow (low
precision) to dark red (high precision)

variables than previous methods. In this section, we study how to follow the variations of the
active set w.r.t. to the regularization parameter λ. For simplicity, we restrict the discussions to the
case where Ω is the `1 norm. Extensions to the general case taking into account the svm or other
hierarchical penalties should not pose difficulties.

Following the results in Section 2.2.3, the sequential screening rule for `1 norm reads

@j P rps : |XJj θ
pλtq| ` ‖Xj‖ rt ă 1 ùñ β̂

pλq
j “ 0 . (3.32)

where rt is the Gap Safe Sphere radius sequentially defined by

rt :“

c

2

γλ2
Gapλpβ

pλtq, θpλtqq .

We recall from Definition 10, that the active sets for `1 norm are given by

Âpλtq :“
!

j P rps : |XJj θ̂
pλtq| ě 1

)

, (3.33)

Apλtq :“
!

j P rps : |XJj θ
pλtq| ` ‖Xj‖ rt ě 1

)

. (3.34)

Leveraging our bounds on the duality gap Lemma 12, we can lower and upper bound the
sequential gap screening radius as

d

2

γλ2
Qt,Uf˚

ˆ

1´
λ

λt

˙

ď

c

2

γλ2
Gapλpβ

pλtq, θpλtqq ď

d

2

γλ2
Qt,Vf˚

ˆ

1´
λ

λt

˙

. (3.35)
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This allows to explicitly control the size of the active set with the sparsity inducing parameter λ.
Indeed, for a non active feature j i.e. j P Āpλtq, the bound (3.35) guarantee that it remains non
active at regularization parameter λ i.e. j P Āpλq for all λ in rλj,int , λts where

λj,int “ inf

#

λ ď λt : |XJj θ
pλtq| ` ‖Xj‖

d

2

γλ2
Qt,Vf˚

ˆ

1´
λ

λt

˙

ă 1

+

. (3.36)

Similarly, if j P Apλtq, then j P Apλq for all λ in rλj,out
t , λts where

λj,out
t “ inf

#

λ ď λt : |XJj θ
pλtq| ` ‖Xj‖

d

2

γλ2
Qt,Uf˚

ˆ

1´
λ

λt

˙

ě 1

+

. (3.37)

This allows to mimic the Lars algorithm (Efron et al., 2004) and check when
‚ a variable in the active set Apλtq should leave Apλtq and enters in the zero set:

λout
t “ min

jPApλtq
λj,out
t , (3.38)

‚ a variable in the non active set Āpλtq should leave Āpλtq and becomes active:

λin
t “ min

jPĀpλtq
λj,out
t . (3.39)

Hence, given at step t, the next moment where the active set changes is given by

λt`1 “ mintλin
t , λ

out
t u . (3.40)

Remark 14. So given Apλtq of size st, we can find a smaller parameter λt`1 with a prescribed
size of the active set st`1 “ |Apλt`1q|. Indeed, we have to choose st`1´st new variable by sorting
(in decreasing order) the λpjq,int . If one variable from the active set becomes non active, we select
st`1 ´ st ` 1 instead, and we reiterate.

In the following we show that the variables stay in the safe active set forever once they hit it.
Thus, the size of the sequential safe active set is constant between two kink.

Lemma 15. For the Lasso problem, the mapping λ ÞÝÑ #Apλtq is piecewise decreasing.

Proof. Since for any λt, Gapλpβ̂
pλtq, θ̂pλtqq “ Qt,Vf˚

´

1´ λ
λt

¯

“ 1
2‖y ´ Xβ̂pλtq‖2

´

1´ λ
λt

¯2
,

if j P Apλtq, then the next step when j leaves the active set is given by

λj,out
t “ inf

$

&

%

λ ď λt : |XJj θ̂
pλtq| ` ‖Xj‖

d

2

λ2

1

2
‖y ´Xβ̂pλtq‖2

ˆ

1´
λ

λt

˙2

ě 1

,

.

-

,

“ inf

#

λ ď λt :
1

λ

ˆ

1´
λ

λt

˙

ě
1´ |XJj θ̂

pλtq|

‖Xj‖ ‖y ´Xβ̂pλtq‖

+

“ 0.

For the lasso, the joining time of a non active feature j is explicitly given by

λj,int “ inf

$

&

%

λ ď λt : |XJj θ̂
ppλtqq| ` ‖Xj‖

d

2

λ2

1

2
‖y ´Xβ̂pλtq‖2

ˆ

1´
λ

λt

˙2

ă 1

,

.

-

,

“ inf

#

λ ď λt :
1

λ

ˆ

1´
λ

λt

˙

ă
1´ |XJj θ̂

ppλtqq|

‖Xj‖ ‖y ´Xβ̂pλtq‖

+

,

“
λt‖y ´Xβ̂pλtq‖

‖y ´Xβ̂pλtq‖` λt
1´|XJj θ̂

ppλtqq|

‖Xj‖

.
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Hence from λt, the next time the active set changes corresponds to the next joining time given by
λt`1 “ minjPĀpλtq λ

j,in
t . This means that we can compute a safe support path for the Lasso since

for any λ P rλt`1, λts, we have supppβ̂pλqq Ă Apλtq.

3.4 Iteration Complexity of Pathwise Optimization

When solving the primal problem (3.1) at a given parameter λt, we denote βpλtqk the vector
obtained after k iterations and θpλtqk its associated dual vector.

Lemma 16. Assume that Ω is strongly convex and that we use a linearly convergent algorithm
initialized with βpλt´1q and let θpλt´1q be its associated dual feasible pair. For some κ ą 0, it
holds

Cf,Ω,X Gapλtpβ
pλtq
k`1, θ

pλtq
k`1q ď p1´ κq

k Gapλtpβ
pλt´1q, θpλt´1qq .

Proof. From Equation (2.19), we have

Cf,Ω,X Gapλtpβ
pλtq
k`1, θ

pλtq
k`1q ď p1´ κq

krPλtpβ
pλtq
0 q ´ Pλtpβ̂

pλqqs

ď p1´ κqk Gapλtpβ
pλtq
0 , θ

pλtq
0 q .

Hence the conclusion since βpλt´1q, θpλt´1q are used as initialization.

Using the bound on the warm start initialization error Lemma 12 and Lemma 16, we deduce

Cf,Ω,X Gapλtpβ
pλtq
k`1, θ

pλtq
k`1q ď p1´ κq

k

„

λt
λt´1

Gapt´1`Vf˚
ˆ

´ztp1´
λt
λt´1

q

˙

where Gapt´1 “ Gapλt´1
pβpλt´1q, θpλt´1qq. Denoting W pρ, δq :“ p1´ρqδ`Vf˚p´ztρq, we

have Gapλtpβ
pλtq
k`1, θ

pλtq
k`1q ď ε as soon as k ě 1

κ log

˜

Cf,Ω,X
W p

λt
λt´1

,Gapt´1q

ε

¸

which means that

the iteration complexity at time t can be controlled by the optimization precision at time t´ 1 and
the ratio between λt and λt´1.

Proposition 37. Assume that Ω is strongly convex and that we use a linearly convergent algorithm
initialized with βpλt´1q as a warm start initialization at parameter λt. Then the duality gap at the
last step GapλT pβ

pλT q
k`1 , θ

pλT q
k`1 q is smaller than ε after at most Kε iterations where

Kε ď

T
ÿ

t“1

1

κt
log

˜

Cf,Ω,X ˆ
W p λt

λt´1
,Gapt´1q

Gapt

¸

, (3.41)

with W pρ, δq :“ p1´ ρqδ ` Vf˚p´ztρq and Cf,Ω,X :“ pσXνf ` µΩq{µΩ for some κt ą 0.

3.5 Numerical Experiments

To illustrate the behavior of our method, we compare the computational times and number
of grid point needed to achieve a prescribed error ε on the duality gap for any regularization
parameter λ on a given range rλmin, λmaxs. More precisely, given the default grid, commonly
used in sklearn (Pedregosa et al., 2011) and glmnet (Friedman et al., 2010b) i.e. λt “
λmax10´δt{pT´1q (δ “ 3 in our experiments), we report the times and numbers of grid point needed
to achieve a smaller approximation error (measured thanks to Proposition 30) than the default grid.
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Our experiments were conducted with the real and synthetic databases {Diabetes, Leukemia, syn-
thetic (make_regression)} available in sklearn and the climate data NCEP/NCAR Reanalysis
(Kalnay et al., 1996).

Results in Figure 3.4 show that we build a smaller grid thanks to the greater steps we take in
each iteration. This often results in a significant gain in computational time. The convergence
of our algorithm is illustrated numerically in Figure 3.5 and Figure 3.6 for different value of
validation error εv.

Conclusion and Perspectives

We have introduced a general framework of approximation of the regularization paths by ex-
ploiting the optimality certificates provided by the duality gap. Our approach allows to manage a
larger class of learning problem and extends easily to the approximation of the validation path for
both classification and regression. Consequently, we have proposed a hyperparameter selection al-
gorithm with a guarantee of global convergence towards the best hyperparameter of the empirical
risk on the validation data.

Although providing strong optimality properties, improvements in the overall computation
time can be obtained. In fact, the algorithms we have introduced are based on a sequential explo-
ration of the hyperparameter space, which forces us to launch optimization algorithms on parame-
ters that are not necessarily promising. To avoid this issue, we plan to mix our strategy with bandit
like algorithm (Li et al., 2016a) that dynamically allows more computational resources to most
promising hyperparameter. This can lead to a significant speed up while preserving our guaran-
tees. Note also that our error bounds depends on the duality gap which has to be small when using
such a dynamic strategy. In this case, we can rely on the extrapolation of the residual in (Massias
et al., 2018b) to accelerate the convergence of the duality gap toward zero. Hence given a grid
of parameter, our guess is that we will be able to screen-out faster irrelevant hyperparameters in
terms of prediction performance.

88



3.6 Appendix

Proofs for Bounds on the Duality Gap

Lemma 17 (Fenchel-Young inequalities). Let f be a continuously differentiable function. For all
x, x˚, we have

fpxq ` f˚px˚q ě xx˚, xy, (3.42)

with equalities if and only if x˚ “ ∇fpxq (or equivalently x “ ∇f˚px˚q). Moreover, if f is
Uf,x-convex (resp. Vf,x-smooth) Inequality (3.43) (resp. Inequality (3.44)) holds true:

fpxq ` f˚px˚q ě xx˚, xy ` Uf,xpx´∇f˚px˚qq, (3.43)

fpxq ` f˚px˚q ď xx˚, xy ` Vf,xpx´∇f˚px˚qq. (3.44)

Proof. We have from the Uf,x-convexity and the equality fpzq ` f˚p∇fpzqq “ x∇fpzq, zy

´f˚p∇fpzqq ` x∇fpzq, xy ` Uf,xpx´ zq “ fpzq ` x∇fpzq, x´ zy ` Uf,xpx´ zq ď fpxq.

We conclude by applying the inequality at z “ ∇f˚px˚q and remark that ∇fpzq “ x˚. The same
proof holds for the upper bound (3.44).

Applying Fenchel-Young Inequalities (3.43) and (3.44) give the following bounds.

Lemma 18. We assume that ´λθ P Dompf˚q and XJθ P DompΩ˚q. Then, the Inequality (3.45)
(resp. (3.45)) provided that f is Uf -convex (resp. Vf -smooth).

λrΩpβ, θq ` Uf pXβ ´∇f˚p´λθqq ď Gapλpβ, θq (3.45)

λrΩpβ, θq ` Vf pXβ ´∇f˚p´λθqq ě Gapλpβ, θq (3.46)

where rΩpβ, θq “ Ωpβq ` Ω˚pXJθq ` xβ,´XJθy.

Proof. We apply the Fenchel-Young inequality (3.43) to obtain

Gapλpβ, θq “ fpXβq ` f˚p´λθq ` λpΩpβq ` Ω˚pXJθqq

ě xXβ,´λθy ` Uf pXβ ´∇f˚p´λθqq ` λpΩpβq ` Ω˚pXJθqq

“ Uf pXβ ´∇f˚p´λθqq ` λ
`

Ωpβq ` Ω˚pXJθq ` xβ,´XJθy
˘

.

The same technique applies for the upper bound with the Fenchel-Young inequality (3.44)

Remark 15. From the Fenchel-Young inequality (3.42), we have Ωpβq ` Ω˚pXJθq ě xβ,XJθy,
so the lower bound is always non negative.

Lemma 19. For x P Dompfq, if f is Vf,x-smooth, then writing V˚f,x “ pVf,xq˚ for the Fenchel-
Legendre transform, one has

V˚f,xp´∇fpxqq ď fpxq ´ inf
z
fpzq.

Proof. From the smoothness of f , we have

inf
z
fpzq ď inf

z
pfpxq ` x∇fpxq, z ´ xy ` Vf,xpz ´ xqq “ fpxq ´ pVf,xq˚p´∇fpxqq.
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Lemma 20. Let βpλtq (resp. βpλt1 q) be an ε-solution at parameter λt (resp. λt1), then we have
ˆ

1´
λt1

λt

˙

´

fpXβpλt1 qq ´ fpXβpλtqq
¯

ď Gapt1 `
λt1

λt
Gapt .

where Gaps :“ Gapλspβ
pλsq, θpλsqq for s P tt, t1u. Hence the mapping λ ÞÑ fpXβ̂pλqq is non-

increasing.

Proof. Since β̂pλq is optimal at parameter λ, we have:

fpXβpλqq ` λΩpβpλqq ´ ε ď fpXβ̂pλqq ` λΩpβ̂pλqq ď fpXβpλtqq ` λΩpβpλtqq .

Moreover,

fpXβpλtqq ` λΩpβpλtqq “
λ

λt

´

fpXβpλtqq ` λtΩpβ
pλtqq

¯

`

ˆ

1´
λ

λt

˙

fpXβpλtqq

ď
λ

λt

´

fpXβ̂pλtqq ` λtΩpβ̂
pλtqq ` ε

¯

`

ˆ

1´
λ

λt

˙

fpXβpλtqq

ď
λ

λt

´

fpXβpλqq ` λtΩpβ
pλqq ` ε

¯

`

ˆ

1´
λ

λt

˙

fpXβpλtqq .

The last inequality comes from the optimality of β̂pλtq at parameter λt. Hence

fpXβpλqq ` λΩpβpλqq ´ ε ď
λ

λt

´

fpXβpλqq ` λtΩpβ
pλqq ` ε

¯

`

ˆ

1´
λ

λt

˙

fpXβpλtqq.

At optimality, ε “ 0 and we can deduce that
´

1´ λ
λt

¯

fpXβ̂pλqq ď
´

1´ λ
λt

¯

fpXβ̂pλtqq, hence
the second result.

We can furthermore bound the norm of the gradient of the loss when the parameter λ varies.
A direct application of Lemma 19 and Lemma 20 yields:

Lemma 21. Assume that f is νf -smooth and let βpλt1 q (resp. βpλtq) be an ε-solution at parameter
λt1 (resp. λt). Then for δεpλt1 , λtq :“

λt`λt1
λt´λt1

ε, we have

V˚f p´∇fpXβpλt1 qqq ď fpXβpλtqq ` δεpλt1 , λtq. (3.47)

At optimality ε “ 0 and so δεpλt1 , λtq “ 0 and we have

V˚f p´∇fpXβ̂pλt1 qqq ď fpXβ̂pλtqq. (3.48)

Lemma 22. Assuming f is Uf -uniformly convex, we have ‖∇fpXβpλtqq‖ ď rRt and ∆t1 ď
r∆t.

Proof. Since f is convex, we have

∆t :“ fpXβpλtqq ´ fp∇f˚p´λtθpλtqqq ď ´x∇fpXβpλtqq,∇f˚p´λtθpλtqq ´Xβpλtqy
ď ‖∇fpXβpλtqq‖˚‖∇f˚p´λtθpλtqq ´Xβpλtq‖
ď ‖∇fpXβpλtqq‖ˆ U´1

f pGapλtpβ
pλtq, θpλtqqq

where the two last inequalities comes from Holder inequality and Lemma 18.

We can also easily obtain the following guarantee on the affine interpolation
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Proposition 38. Considering primal dual pairs
`

βpλsq, θpλsq
˘

such that Gapλspβ
pλsq, θpλsqq ď εo

for i P tt, t1u. For any α P r0, 1s, we define λ :“ p1´αqλt`αλt1 , βpλq :“ p1´αqβpλtq`αβpλt1 q

and θpλq :“ p1´ αqθpλtq ` αθpλt1 q. For any ε ě εo, α :“
λ´λt1
λt´λt1

and λt1 P λt ˆ
”

1
1`ρ , 1

ı

we have

Gapλpβ
pλq, θpλqq ď ε where

ρ “

a

2νmaxpRt, Rt1qpε´ εoq ` p∆t ´ εoq2 ´ p∆t ´ εoq

νmaxpRt, Rt1q
. (3.49)

Proof. From the convexity of the duality gap, we have:

Gapλpβ
pλq, θpλqq ď p1´ αqGapλpβ

pλtq, θpλtqq ` αGapλpβ
pλt1 q, θpλt1 qq

ď p1´ αq

«

λ

λt
Gapλtpβ

pλtq, θpλtqq `∆t

ˆ

1´
λ

λt

˙

`Rt

ˆ

1´
λ

λt

˙2
ff

` α

«

λ

λt1
Gapλt1 pβ

pλt1 q, θpλt1 qq ` R̃t1

ˆ

1´
λ

λt1

˙

`

`Rt1

ˆ

1´
λ

λt1

˙2
ff

.

Since λt ě λ ě λt1 , we have λ
λt
ď λt

λt1
, 1´ λ

λt
ď 1´

λt1
λt

and 1´ λ
λt1
ď 1´

λt1
λt

. Hence

Gapλpβ
pλq, θpλqq ďp1´ αq

«

λt
λt1
εo `∆t

ˆ

1´
λt1

λt

˙

`Rt

ˆ

1´
λt1

λt

˙2
ff

` α

«

λt
λt1
εo `Rt1

ˆ

1´
λt1

λt

˙2
ff

“
λt
λt1
εo `

ˆ

1´
λt1

λt

˙2

rp1´ αqRt ` αRt1s ` α∆t

ˆ

1´
λt1

λt

˙

.

Using a uniform bound independent of α P r0, 1s, we have:

Gapλpβ
pλq, θpλqq ď

λt
λt1
εo `maxpRt, Rt1q

ˆ

1´
λt1

λt

˙2

`∆t

ˆ

1´
λt1

λt

˙

.

Since λt1 ď λt, we have p1´λt1{λtq2 ď p1´λt{λt1q2 and p1´λt1{λtq ď ´p1´λt{λt1q. So we can
simplify the bound as Gapλpβ

pλq, θpλqq ď ε as soon as pλt{λt1qεo`maxpRt, Rt1q p1´ λt{λt1q
2
´

∆t p1´ λt{λt1q ď ε. Hence we obtain the result by solving the quadratic inequality in x “
p1´ λt{λt1q ď 0.
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Chapter 4

Join Optimization for Concomitant
Location-Scale Estimations

In the context of high dimensional regression where the number of features is greater than
the number of observations, standard least squares need some regularization to both avoid over-
fitting and ease the interpretation of discriminant features. The Lasso (Chen and Donoho, 1995;
Tibshirani, 1996) use the `1 norm as a sparsity inducing regularization and is one of the most
popular methods for variable selection. It is defined as

β̂
pλq
L P arg min

βPRp

1

2n
‖y ´Xβ‖2

2 ` λ ‖β‖1 . (4.1)

Though this estimator is well understood theoretically, the choice of the tuning parameter λ still
raises critical questions in practice as well as in theory. The statistical guarantees of the Lasso
(Bühlmann and van de Geer, 2011, Chapter 6) rely on choosing the tuning parameter proportional
to the noise level. Indeed, under the linear model y “ Xβ‹ ` σ‹ε where ε „ N p0, 1q and
denoting S‹ “ supppβ‹q, s‹ the cardinality of S‹ and assuming that it exists a (compatibility)
constant φ‹ ą 0 such that 1

n ‖Xβ‖
2
2 ě

φ‹
s‹

‖βS‹‖
2
1 for all β satisfying ‖β´S‹‖1 ď 3 ‖βS‹‖1, we

have (with high probability):

λ « σ‹
a

n log p implies
1

n
‖Xβ̂pλqL ´Xβ‹‖2

2 ď
σ2
‹

φ‹

s‹ log p

n
. (4.2)

Unfortunately, the quantity σ‹ is usually unknown to practitioners. Beside, the noise level is of
practical interest since it is also required in the computation of model selection criterion depending
on the likelihood such as AIC (Akaike, 1974), BIC (Schwarz, 1978), SURE (Stein, 1981) or in the
construction of confidence sets.

A way to estimate both the regression coefficients and the noise level is to estimate them
simultaneously e.g. by computing the maximum likelihood at y which leads to the loss function

pβ, σq Ñ logpσq `
1

2σ2
‖y ´Xβ‖2 .

Unfortunately, it fails to be jointly convex. Also, when y “ Xβ and σ tends to zero i.e. approach-
ing the boundary of the parameter space, the objective function tends to´8making the statistical
analysis and the global optimization problem difficult.

In this chapter, we first recall three different strategies used in the literature to alleviate the
dependence on the unknown noise σ‹ of the underlying statistical model.

Perspective transformation. A way to perform such a joint estimation with a convex for-
mulation was proposed in the robust statistic theory (Huber, 1964) popularized in (Huber, 1981)
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particularly in the context of location-scale estimation and (Huber and Dutter, 1974) proposed an
alternating minimization to get the corresponding estimators. It relies on the joint convexity of the
perspective of a convex function where the noise level plays the role of a dilation parameter. Later,
Owen (2007) extended it to handle sparsity inducing penalty in high dimensional setting. It was
then thoroughly analyzed in (Sun and Zhang, 2012), under the name Scaled-Lasso. In this chapter,
we coin all these estimators "Concomitant" following the terminology proposed by Huber.

Pivotal estimator. While investigating estimator pivotal w.r.t. the noise level, (Belloni et al.,
2011) proposed to solve the following convex program: modify the standard Lasso by removing
the square in the data fitting term. Thus, they termed their estimator the Square-root Lasso; see
also (Chrétien and Darses, 2011). Under a standard design assumption it is proved that the Square-
root Lasso reaches optimal rates (4.2) for sparse regression, with the additional benefit that the
regularization parameter is independent of the noise level. A second approach leading to this very
formulation, was proposed by Xu et al. (2010) to account for adversarial corruption in the design
matrix. Interestingly their robust construction led exactly to the Square-root Lasso formulation.

Re-parameterization. An important remark is that the maximization of the likelihood over
the canonical parameters of a distribution from the exponential family is a convex problem. Hence,
we can recover a jointly convex formulation through a change of variable. This strategy was
used by Städler et al. (2010) for estimating the parameter of Mixture Regression Models and also
recently in (Yu and Bien, 2017) under the name of Natural Lasso. Interestingly, the perspective
formulation above was mentioned in (Antoniadis, 2010), in a response to Städler et al. (2010)
providing another convex alternative for joint estimation.

Among the solutions to compute the Concomitant Lasso, two roads have been pursued so far.
On the one hand, considering the Scaled-Lasso formulation, (Sun and Zhang, 2010, 2012) have
proposed an iterative procedure that alternates Lasso steps and noise estimation steps, the later
leading to rescaling the tuning parameter iteratively. On the other hand, considering the Square-
root Lasso formulation, Belloni et al. (2011) have leaned on second order cone programming
solvers, e.g. TFOCS (Becker et al., 2011). Despite the appealing properties listed above, among
which the superiority of the theoretical results is the most striking, no consensus for an efficient
solver has yet emerged for the Concomitant Lasso.

Our contribution aims at providing a more numerically stable formulation, called the Smoothed
Concomitant Lasso. This variant also allows to obtain a fast solver: we first adapt a coordinate
descent algorithm to the smooth version of the original problem, see (Nesterov, 2005; Beck and
Teboulle, 2012)). Then, we apply the safe rules strategies and the active warm start developed
in Chapter 2. This leads to important acceleration in practice both on real and simulated data.
Overall, our method presents the same computational cost as for the Lasso, but enjoys the nice
features mentioned earlier in terms of statistical properties and is less sensitive to the smoothing
parameter. The Concomitant Lasso also has a matrix formulation more suitable to multivariate
settings (van de Geer and Stucky, 2016) and a smooth version (Massias et al., 2018a) allows for
similar computational gains.

The contents of this chapter are based on our published paper

Authors: E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, J. Salmon.
‚ “Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression”.

Journal of Physics: Conference Series 904 (1), 012006, 2017.

Notation. For a set S Ă rps, we denote by PX,S “ XS

`

XJSXS

˘`
XJS the projection operator

onto SpantXj : j P Su, where A` represents the Moore-Penrose pseudo-inverse. We note trpXq

the trace of matrix X and pΣ “ XJX{n the normalized Gram matrix of X .
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4.1 Concomitant Lasso

Let us first introduce the Concomitant Lasso estimator following the formulation proposed
in (Huber, 1981, Chapter 7).

min
βPRp,σą0

1

n

n
ÿ

i“1

„

ρ

ˆ

yi ´ x
J
i β

σ

˙

` a



σ , (4.3)

where ρ is convex and vanishes at 0, a ą 0. Interestingly, the objective function in formula-
tion (4.3) is jointly convex in β and σ (see Proposition 39 below). A simple choice is the quadratic
loss ρpzq “ z2{2. For robustness purpose, (Huber, 1981, Eq. (7.14)) suggested the function ρ
to be chosen so that it balances between the `22 loss for small error and the `1 loss for large error
i.e. ρ “ Hs where s is a non negative scale and Hs originally defined in (Huber, 1964) as

Hspzq “

#

z2

2 if |z| ď s,

s|z| ´ s2

2 if |z| ą s .
(4.4)

A similar point of view can be taken when it comes to defining a regularization function allowing
at the same time to have the robustness of Ridge `22 but also the sparsity of the Lasso `1. As a
result, we can consider a reversed version of Huber’s function, called Berhu

Btpzq “

#

|z| if |z| ď t,
z2

2t `
t
2 if |z| ą t .

(4.5)

Taking into account the dependence in the scale estimates as in (4.3), (Owen, 2007) propose the
following concomitant estimator of location and scale as a robust hybrid of Lasso and Ridge re-
gression:

min
pβ,σ,τqPRpˆR``ˆR``

nσ

2
`

n
ÿ

i“1

Hs

ˆ

yi ´Xi,:β

σ

˙

σ ` nλ

˜

pτ

2
`

p
ÿ

j“1

Bt
ˆ

βj
τ

˙

τ

¸

. (4.6)

For s large enough, Hs becomes | ¨ |2{2, and for t large enough Bt yields | ¨ |. In such a case, the
optimization over the variable τ disappears from the formulation since | ¨ | is 1-homogeneous.

This new estimator simultaneously brings together many desirable properties namely robust-
ness to outliers, the ability to select the most relevant explanatory variables while being equivariant
w.r.t. shift and scale transformation. However, there are still important challenges to overcome as
suggested by Owen’s conclusion:

«It remains to investigate the accuracy of the method for prediction and coefficient
estimation. There is also a need for an automatic means of choosing λ. Both of these
tasks must however wait on the development of faster algorithms for computing the
hybrid traces. »

For the sake of simplicity, we will first consider the case where Hs (resp. Bt) reduce to the `22 loss
(resp. `1 regularization). We call Concomitant Lasso (Owen, 2007; Antoniadis, 2010) the solution
of the following optimization problem:

Definition 19. For λ ą 0, the Concomitant Lasso estimator β̂pλq is defined as a solution of the
primal optimization problem

pβ̂pλq, pσpλqq P arg min
βPRp,σą0

‖y ´Xβ‖2

2nσ
`
σ

2
` λ ‖β‖1

looooooooooooooomooooooooooooooon

Pλpβ,σq

. (4.7)

The statistical analysis was performed in (Sun and Zhang, 2012) where this estimator was
called Scaled Lasso. Here we take an optimization point of view and propose a faster algorithm
for solving (4.7).
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Link with the Perspective of Convex Function. Given a convex function f : Rn Ñ RYt`8u
as the function perspf : Rˆ Rn Ñ RY t`8u such that

perspf pσ, rq “

#

σf
`

r
σ

˘

, if σ ą 0,

`8, if σ ď 0.
(4.8)

Proposition 39. If f is convex, then perspf : Rˆ Rn Ñ RY t`8u is also (jointly) convex.

Proof. It suffices to show that epi perspf (see Equation (1.11)) is a convex set. By definition, we
have

epi perspf “ tpσ, r, tq P R`˚ ˆ Rn ˆ R : perspf pσ, rq ď tu

“

!

pσ, r, tq P R`˚ ˆ Rn ˆ R : f
´ r

σ

¯

ď
r

σ

)

“
 

σ ˆ p1, r1, t1q P R`˚ ˆ pRn ˆ Rq : fpr1q ď t1
(

“ R`˚ ˆ epif.

Whence epi perspf is a Cartesian product of convex sets.

Taking fprq “ 1
2n‖r‖

2
2`

1
2 , we have 1

2nσ ‖y ´Xβ‖
2
` σ

2 “ persp˚˚f pσ, y´Xβq whence the
convexity of problem (4.7) comes from Proposition 39.

However, the Concomitant Lasso estimator is ill-defined. Indeed, the set over which we op-
timize is not closed and the optimization problem may have no solution. Also, the perspective is
not lower semi-continuous in general. However, lower semi-continuity is a very desirable prop-
erty; together with the fact that the function is infinite at infinity, which guarantees the existence
of minimizers (Peypouquet, 2015, Proposition 2.19). We circumvent this difficulty by considering
instead the Fenchel biconjugate of the objective function which is always lower semi-continuous
(Bauschke and Combettes, 2011, proposition 13.32). One can show (Bauschke and Combettes,
2011, Example 13.8) that the Fenchel conjugate of perspf is

persp˚f pν, θq “

#

0, if ν ` f˚pθq ď 0,

`8, otherwise.

and

persp˚˚f pσ, rq “

$

’

’

&

’

’

%

σf˚˚
`

r
σ

˘

, if σ ą 0,

sup
θPdomf˚

xθ, ry, if σ “ 0,

`8, otherwise.

In our case, fprq “ 1
2n‖r‖

2
2 `

1
2 and so f˚˚ “ f and domf˚ “ Rn. Hence, we get

persp˚˚f pσ, rq “

$

’

&

’

%

1
2nσ ‖r‖

2
2 `

σ
2 , if σ ą 0,

0, if σ “ 0 and r “ 0,

`8, otherwise.

Taking this lower semi-continuous function leads to a well defined Concomitant Lasso estimator
thanks to the following formulation

pβ̂pλq, pσpλqq P arg min
βPRp,σPR

persp˚˚f pσ, y ´Xβq ` λ ‖β‖1 . (4.9)

The only difference with the original one is that we take pσpλq “ 0 if y ´Xβ̂pλq “ 0. The actual
objective function accepts σ “ 0 as soon as y “ Xβ. In the rest of this chapter, we will write
(4.7) instead of the minimization of the biconjugate (4.9) as a slight abuse of notation. We refer to
(Combettes, 2016) for a recent analysis of perspective functions.
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4.1.1 Different Approaches and Points of View

As mentioned in the introduction, different independent approaches have led to equivalent
formulations of the Concomitant Lasso. Among those we know, there is:

Link with the Square-root Lasso. Independently, another approach to overcome dependency of
the Lasso estimator (4.1) was investigated in (Belloni et al., 2011) through the Square-root Lasso
formulation:

β̂
pλq
?

Lasso
P arg min

βPRp

1
?
n
‖y ´Xβ‖2 ` λ ‖β‖1 . (4.10)

They show that the estimator β̂pλq?
Lasso

is pivotal w.r.t. to the standard deviation σ‹ and does not
require its estimate. Interestingly, this estimator is strongly related to the Concomitant Lasso.
Recalling a basic relation in optimization (Hiriart-Urruty and Lemaréchal, 2012, Chapter 0): the
decoupling also called transitivity of infima.

Proposition 40 (Decoupling of infima). Let P be a real valued function defined on Z “ Z1ˆZ2.
The couple of vector pz‹1 , z

‹
2q minimizes P over Z if and only if z‹2 minimizes P pz‹1 , ¨q over Z2 and

z‹1 minimizes the function P̃ : z1 ÞÑ infz2 P pz1, z2q over Z1. Whence

inf
pz1,z2qPZ

P pz1, z2q “ inf
z1PZ1

inf
z2PZ2

P pz1, z2q “ inf
z2PZ2

inf
z1PZ1

P pz1, z2q . (4.11)

Applying Proposition 40, the map σ ÞÑ 1
2nσ ‖y ´Xβ‖

2
2`

σ
2 is minimized by σpβq “ ‖y´Xβ‖2?

n
,

whence minβPRp,σě0 Pλpβ, σq “ minβPRp
1

2nσpβq ‖y ´Xβ‖
2
2`

σpβq
2 `λ ‖β‖1 . Then we conclude

that
´

β̂
pλq
?

Lasso
, σ̂
pλq
?

Lasso

¯

with σ̂pλq?
Lasso

“ 1?
n
‖y ´ Xβ̂

pλq
?

Lasso
‖2, is a solution of the Concomitant

Lasso (4.7) for all λ ą 0. This shows that the Concomitant Lasso is a variational formulation of
the Square-root Lasso.

Connection with the Lasso Path. The Lasso estimator (4.1) and the Concomitant Lasso (4.7)
are strongly related, they share the same solution path up to rescaling of the regularization param-
eter. Indeed, by denoting temporarily pβ̂pλqCL, pσ

pλq
CL q a solution of (4.7) and applying the Fermat’s

rule, we have:

XJpy ´Xβ̂
pλσq
L q P nλσ signpβ̂

pλσq
L q, @σ ą 0,

XJpy ´Xβ̂
pλq
CL q P nλpσ

pλq
CL signpβ̂

pλq
CL q .

Hence pβ̂pλpσ
pλq
CL q

L , pσ
pλq
CL q is optimal for problem (4.7). It also gives the connection between the

solution path β̂pλpσ
pλq
CL q

L “ β̂
pλq
CL. This relation was exploited in (Sun and Zhang, 2012) in order to

compute solutions of the Concomitant Lasso by alternating minimization (see Section 4.6) which
turn out to be very efficient if one has access to the full Lasso path (by using for instance Lars
homotopy algorithm (Efron et al., 2004)). However, as shown in (Mairal and Yu, 2012; Gärtner
et al., 2012), the complexity of the full regularization path can be exponential in number of features
p.

Robustness to Disturbance of the Features. Studying the robustness properties of the Lasso
in the presence of a design matrix corrupted with a bounded disturbance, (Xu et al., 2010) have
shown the following result.
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Proposition 41 (Xu et al. (2010, Theorem 1)). Given the uncertainty set U :“ tpδ1, ¨ ¨ ¨ , δpq :
‖δj‖2 ď λ,@j P rpsu, the set of minimizers of the Square-root Lasso coincides with the minimizers
of the following robust optimization problem

min
βPRp

max
∆XPU

‖y ´ pX `∆Xqβ‖2 . (4.12)

Thus, we have an explicit connection between the Square-root Lasso which is pivotal w.r.t. to
the noise level and a robust optimization problem whose solutions ensure protection against dis-
turbances of the matrix of features. This property is therefore transmitted naturally to the Lasso
estimators along the entire path of regularization. Therefore, the addition of parsimonious regular-
ization can be re-interpreted as the exclusion of variables contaminated by a malicious disturbance.
This highlight a fundamental correspondence between robustness and sparsity.

4.1.2 Critical Parameters for the Concomitant Lasso

Since it is difficult to get the right regularization parameter in advance, a principled way to
tune Lasso-type programs is to perform a cross-validation procedure over a pre-set finite grid of
parameters. This leads to a data-driven choice of regularizer requiring the computation of many
estimators, one for each λ value. Usually, a geometrical grid λt “ λL

max10´δpt´1q{pT´1q, t P rT s is
used, for instance it is the default grid in scikit-learn (Pedregosa et al., 2011) and glmnet
(Friedman et al., 2007), with δ “ 3. For the Concomitant Lasso, we now show that this method
presents some numerical drawbacks. Let us first investigate the Fenchel dual formulation and the
solutions for extreme values of λ.

Proposition 42. Denoting ∆X,λ “
 

θ P Rn : ‖XJθ‖8 ď 1, λ
?
n‖θ‖ ď 1

(

, the dual formulation
of the Concomitant Lasso reads

θ̂pλq P arg max
θP∆X,λ

xy, λθy
loomoon

Dλpθq

. (4.13)

For an optimal primal vector β̂pλq, pσpλq “ ‖y ´Xβ̂pλq‖{
?
n. Moreover, the Fermat’s rule reads

y “ nλpσpλqθ̂pλq `Xβ̂pλq, (4.14)

XJpy ´Xβ̂pλqq P nλpσpλqB ‖¨‖1 pβ̂
pλqq. (4.15)

As for the Lasso, the null vector is optimal for the Concomitant Lasso problem as soon as the
regularization parameter becomes too large, as detailed in the next proposition.

Proposition 43. We have β̂pλq “ 0 for all λ ě λmax :“ ‖XJy‖8
‖y‖
?
n
.

Proof. The Fermat’s rule states:

p0, pσpλqq P arg min
βPRp,σą0

Pλpβ, σq ðñ 0 P
t´XJyu

npσpλq
` λB8 ðñ

1

npσpλq

∥∥XJy∥∥
8
ď λ.

Thus, the critical parameter is given by λmax “ ‖XJy‖8{pnpσpλqq, so the result follows noticing
that when β̂pλq “ 0 one has pσpλq “ ‖y‖{

?
n ą 0 (remind that we assumed y ‰ 0, since otherwise

p0, 0q would be a solution for any λ).

However, for the Concomitant Lasso, there is another extreme. Indeed, there exists a critical
parameter λmin such that the Concomitant Lasso is equivalent to the Basis Pursuit (Chen and
Donoho, 1995) for all λ ď λmin and gives an estimate pσpλq “ 0. We recall that the Basis Pursuit
and its dual are given by

β̂BP P arg min
βPRp:y“Xβ

‖β‖1 , θ̂BP P arg max
θPRn:‖XJθ‖8ď1

xy, θy. (4.16)
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Proposition 44. For any λ ď λmin :“ 1{p‖θ̂BP‖
?
nq, pβ̂BP, 0q is optimal for Pλ and θ̂BP is

optimal for Dλ.

Proof. By strong duality in the Basis Pursuit problem ‖β̂BP‖1 “ xy, θ̂BPy. Now, pβ̂BP, 0q is
admissible for Pλ (see formulation (4.9)) and θ̂BP is admissible for Dλ as soon as λ ď λmin :“
1{p‖θ̂BP‖

?
nq. One can check for λ ď λmin that

Pλpβ̂
BP, 0q “ λ‖β̂BP‖1 “ λxy, θ̂BPy “ Dλpθ̂

BPq.

We conclude that pβ̂BP, 0q is optimal for the primal and θ̂BP is optimal for the dual.

We can guarantee the existence of minimizers to the Concomitant Lasso, even if pσpλq “ 0, but
the problem becomes more and more ill-conditioned for smaller and smaller pσpλq. The previous
proposition shows that for too small λ’s, a Basis Pursuit solution will always be found, though
numerically this might be challenging to get. Indeed, when λ approaches λmin, a coordinate
descent algorithm (similar to the one described in Algorithm 6) encounters trouble to perform
dual gap computations. This is because we estimate the dual variable by a ratio having both
denominator and numerator of the order of σ, which is problematic when σ Ñ 0, see Eq. (4.27).

A solution could be to pre-compute λmin to prevent the user from requesting computation
involving λ’s too close from the critical value. Nevertheless, solving the Basis Pursuit problem
first, to obtain λmin, is not realistic. For instance, the split Bregman algorithm (Goldstein and
Osher, 2009) involves a sequence of Lasso problems to solve. In homotopy approaches (i.e. when
computing a path of λ’s) that we consider, the most difficult problem to solve are the one associated
with λ close to 0. Hence attacking the problem by first solving the hardest case will slow down
the whole process, as one would not benefit from warm start computations.

To avoid these issues, we propose a slight modification of the objective function by adding a
constraint on σ. We refer to this method as the Smoothed Concomitant Lasso following the termi-
nology introduced by Nesterov (2005), see also (Beck and Teboulle, 2012) for more on smoothing
in optimization.

4.1.3 Smoothed Concomitant Lasso

We now introduce our Smoothed Concomitant Lasso, by adding a noise level limit σ0, aimed
at avoiding numerical instabilities for too small λ values.

Definition 20. For λ ą 0 and σ0 ą 0, the Smoothed Concomitant Lasso estimator pβpλ,σ0q and its
associated noise level estimate pσpλ,σ0q are defined as solutions of the primal optimization problem

ppβpλ,σ0q, pσpλ,σ0qq P arg min
βPRp,σPR

‖y ´Xβ‖2

2nσ
`
σ

2
` λ ‖β‖1 ` ιrσ0,`8rpσq

looooooooooooooooooooooooomooooooooooooooooooooooooon

Pλ,σ0
pβ,σq

. (4.17)

Remark 16. Another simple smoothing consists in adding a term of the form ε0{p2nσq for ε0 ą 0
which leads to

min
βPRp,σą0

‖y ´Xβ‖2
2 ` ε0

2nσ
`
σ

2
` λ ‖β‖1 “ min

βPRp

b

‖y ´Xβ‖2
2 ` ε0 ` λ ‖β‖1 .

However the obtained estimator will not satisfies the scale equivariance property, though lead-
ing to a twice continuously differentiable objective, allowing second order approaches such as
proximal newton algorithm (Lee et al., 2014).
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In the same way that we have expressed the link between Concomitant Lasso and Square-root
Lasso, we find that the Smoothed Concomitant Lasso is a variational formulation of the (shifted)
Huber criterion applied to `2. For σ0 ą 0, let Hσ0 be the function of u P R define as

Hσ0puq “

#

u2

2σ0
` σ0

2 if |u| ď σ0,

|u| otherwise.
(4.18)

4.1.4 Detour on Smoothing Techniques for Non-smooth Optimization

To solve non-smooth optimization problems, algorithms based on first order information like
the subgradient method have convergence rates in Op1{ε2q which is considered to be slow for
large scale problems. An adequate way to improve the rate is to finely exploit the structure of
the functions involved and to solve a smooth representation of the problem while maintaining
optimality guarantees on the initial problem. This strategy has been used successfully in (Nesterov,
2005) and leads to an improved rate of Op1{εq for "max"-type functions. Here we recall the
smoothing techniques following the unified presentation in (Beck and Teboulle, 2012).

A key idea is that a proper, closed and convex function P is 1{ν-smooth if and only if its
conjugate P ˚ is ν-strongly convex (see Proposition 3). Hence to find a smooth approximation of
a non-smooth function P , it suffices to add a strongly convex regularization on its conjugates.

For a proper, closed and convex function P , we recall that the Fenchel conjugation is an
involution i.e.

P pzq “ P ˚˚pzq :“ sup
z˚PRd

txz˚, zy ´ P ˚pz˚qu .

Definition 21 (Inf-conv Smoothing). Let P be a proper, closed and convex function, ν ą 0 and
let w be a differentiable convex function with 1{ν-Lipschitz continuous gradient. For any µ ą 0,
we define P ˚µ pz

˚q :“ P ˚pz˚q ` µw˚pz˚q. Its conjugate Pµpzq :“ supz˚PRdtxz
˚, zy ´P ˚µ pz

˚qu is
called (inf-conv) µ-smooth approximation of P .

Proposition 45 (Beck and Teboulle (2012, Theorem 4.1)). The function Pµ defined inDefinition 21
is proper, closed, convex and differentiable with 1{pνµq-Lipschitz continuous gradient. Moreover,

Pµpzq “ P ˚˚µ pzq “ pP
˚ ` pµwq˚q˚pzq “ pP ˝ wµqpzq , (4.19)

where wµp¨q :“ µwp ¨µq is the dilation of w. Whence

Pµpzq :“ inf
uPRd

"

P puq ` µw

ˆ

z ´ u

µ

˙*

. (4.20)

Under the lighting of this smoothing tools, similarly to the connection between Square-root
Lasso and Concomitant Lasso, we have the connection between a Smoothed Square-root Lasso
and the Smoothed Concomitant Lasso.

Smoothing of the Euclidean Norm. For P pzq “ ‖z‖2, wpzq “ ‖z‖2
2 {2 and µ “ σ0

?
n,

we have Pσ0pzq “ Hσ0
?
np‖z‖2q ´

σ0
?
n

2 . Whence the smoothed counterpart of the Square-root
Lasso reads:

min
βPRp

Hσ0
?
np‖y ´Xβ‖2q ´

σ0
?
n

2
` λ ‖β‖1 .

Remark 17 (Smoothing of the `1 norm). For P pzq “
řn
i“1 |zi|, wpzq “ ‖z‖2

2 {2 and µ “ σ0,
we have Pσ0pzq “

řn
i“1Hσ0pyi ´ xJi βq ´

σ0n
2 . Whence the smoothed counterpart of the Least

Absolute Deviation (LAD) with Lasso penalty reads: (Huber, 1964)

min
βPRp

n
ÿ

i“1

Hσ0pyi ´ x
J
i βq ´

σ0n

2
` λ ‖β‖1 .
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Note that, without the `1 penalty term, this leads to the re-weighted iterative least squares al-
gorithm to compute the LAD regression (Schlossmacher, 1973; Lange et al., 2000), see also the
variational surrogate in (Mairal, 2015).

The above smoothing techniques improve the conditioning of non-smooth convex optimization
problems and make it possible to use algorithms with better convergences speeds. This, combining
with the high performance of (proximal) coordinate descent algorithms (Nesterov, 2012) allows
us to tackle efficiently large scale problems.

Concurrently to our work, (Li et al., 2016b) adopted the smoothing of the euclidean norm point
of view combined with an Iterative Soft-thresholding algorithms. However, their strategy has two
noticeable drawbacks:

— Due to full gradient update, each iteration of their algorithm is expensive and it may take
a large amount of time to converge in large scale setting.

— If the smoothing parameter σ0 is small, their algorithm will make a tiny gradient step which
further slows down the progression towards the optimum.

Taking the variational point of view along with a coordinate descent algorithm, safe removal
of inactive variables and a new active warm start method in a homotopy continuation framework,
we present a faster algorithm with less dependence on the smoothing parameter for solving con-
comitant estimation problem.

Critical parameter of the Smoothed Concomitant Lasso

Proposition 46. The dual formulation of the Smoothed Concomitant Lasso reads

pθpλ,σ0q “ arg max
θP∆X,λ

xy, λθy ` σ0

ˆ

1

2
´
λ2n

2
‖θ‖2

˙

loooooooooooooooooomoooooooooooooooooon

Dλ,σ0
pθq

, (4.21)

for ∆X,λ “
 

θ P Rn : ‖XJθ‖8 ď 1, ‖θ‖ ď 1{pλ
?
nq
(

. Associated to an optimal primal vector
pβpλ,σ0q, we must have pσpλ,σ0q “ σ0 _ p‖y ´X pβpλ,σ0q‖{

?
nq.

We also have the link-equation between primal and dual solutions:

nλpσpλ,σ0q
pθpλ,σ0q `X pβpλ,σ0q “ y, (4.22)

XJpy ´X pβpλ,σ0qq P nλpσpλ,σ0qB‖¨‖1ppβ
pλ,σ0qq. (4.23)

Remark 18. The dual problem (4.21) also reads

pθpλ,σ0q “ arg max
θP∆X,λ

1

2

∥∥∥∥ y

σ0n

∥∥∥∥2

2

´
λ2

2

∥∥∥∥θ ´ y

λσ0n

∥∥∥∥2

2

“ Π∆X,λ

ˆ

y

λσ0n

˙

.

Since ∆X,λ is convex and closed, the solution pθpλ,σ0q is unique.

A similar reasoning to Proposition 43 gives the following critical parameter.

Proposition 47. We have pβpλ,σ0q “ 0, for all λ ě λmax :“ ‖XJy‖8
npσ0_p‖y‖{

?
nqq
.

Contrarily to the Concomitant Lasso, the parameter corresponding to zero estimates of the
noise for the Smoothed Concomitant Lasso is λmin “ 0. Indeed, fromRemark 16 we know that
pθpλ,σ0q belongs to the boundary of the feasible set hence it is non zero. This combined with the
link equation (4.22) and pσpλ,σ0q ě σ0 ą 0, we have y “ X pβpλ,σ0q if and only if λ “ 0.
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Choice of the Smoothing Parameter

In practice, the choice of σ0 can be motivated as follows:
— Suppose we have prior information on the minimal noise level expected in the data. Then

we can set σ0 as this bound. Indeed, if pσpλ,σ0q ą σ0, then the constraint σ ě σ0 is not
active and the optimal solution to Problem (4.17) is equal to the optimal solution to Prob-
lem (4.7). The Smoothed Concomitant Lasso estimator will only be different from the
Concomitant Lasso estimator when the prediction given by the Concomitant Lasso vio-
lates the a priori information.

— Without prior information we can consider a given accuracy ε, and set σ0 “ ε. Then,
the theory of smoothing (Nesterov, 2005; Beck and Teboulle, 2012) tells us that any ε{2-
solution to Problem (4.17) is an ε-solution to Problem (4.7). Thus we obtain the same
solutions, but as an additional benefit we have a control on the conditioning of the problem.

— If departing slightly from the Concomitant Lasso estimator is not too big of an issue,
one can also use an arbitrary proportion of the initial estimation of the noise variance
i.e. σ0 “ ‖y‖{

?
n ˆ 10´α. This was our choice in practice, and we have set α “ 2.

Indeed, taking a large enough value for σ0 leads to less numerical issues.

Duality gap and link with the Lasso

From the optimality condition in (4.14) and (4.15), one can remark that if pβpλ,σ0q is a solution
of the Smoothed Concomitant Lasso, then it is also a solution of the Lasso with regularization
parameter λpσpλ,σ0q. The following proposition estimates the quality (in term of duality gap) of a
primal-dual vector in the Lasso path compared to Concomitant Lasso path. We recall the Lasso
problem and its dual:

β̂λL P arg min
βPRp

1

2n
‖y ´Xβ‖2

` λ ‖β‖1
loooooooooooooomoooooooooooooon

PL
λ pβq

,

θ̂λL “ arg max
θPRn:‖XJθ‖8ď1

1

2n
‖y‖2

´
1

2n
‖y ´ λnθ‖2

looooooooooooooomooooooooooooooon

DL
λpθq

.

Hence, defining the duality gap of the Lasso GL
λpβ, θq “ PL

λ pβq ´DL
λpθq, and the duality gap of

the Smoothed Concomitant Lasso Gλ,σ0pβ, θ, σq “ Pλ,σ0pβ, σq ´Dλ,σ0pθq, we have

Proposition 48. @β P Rp, θ P ∆X,λ, σ ě σ0, G
L
σλpβ, θq ď σGλ,σ0pβ, σ, θq.

Proof. Since σ ´ σ0 ě 0 and λ
?
n‖θ‖ ď 1, we have

σλ2n

2
‖θ‖2 “

σ ´ σ0

2
λ2n‖θ‖2 `

σ0λ
2n

2
‖θ‖2 ď

σ ´ σ0

2
`
σ0λ

2n

2
‖θ‖2.

GL
σλpβ, θq “ PL

σλpβq ´D
L
σλpθq

“
1

2n
‖y ´Xβ‖2 ` σλ‖β‖1 ´

1

2n
‖y‖2

`
1

2n
‖y ´ σλnθ‖2

“
1

2n
‖y ´Xβ‖2 ` σλ‖β‖1 ´ σλxy, θy `

σ2λ2n

2
‖θ‖2

ď σ

ˆ

1

2nσ
‖y ´Xβ‖2 ` λ‖β‖1 ´ λxy, θy `

σ

2
´ σ0p

1

2
´
λ2n

2
‖θ‖2

q

˙

“ σ pPλ,σ0pβ, σq ´Dλ,σ0pθqq “ σGλ,σ0pβ, θq.
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Hence, as @λ, pσpλq ď ‖y‖{
?
n, if the duality gap for the Smoothed Concomitant Lasso is

small, so is the duality gap for the Lasso with the corresponding regularization parameter.

Extension to Multi-Task Lasso

The strategies adopted so far to obtain pivotal estimator w.r.t. to the noise level can be extended
to matrix formulation with observations Y “ XB‹ ` Σ‹E where E is a standard multivariate
Gaussian noise, by considering the matrix formulation with the trace norm as a loss function (van
de Geer and Stucky, 2016)

min
BPRpˆq

‖Y ´XB‖˚ ` λΩpBq . (4.24)

Following the variational Formulation for the trace norm (Argyriou et al., 2008), (Bach et al.,
2012, Chapter 5.2), (van de Geer and Stucky, 2016, lemma 1) we have

‖B‖˚ “
1

2
inf
Σą0

trpBJΣ´1B` Σq ,

which implies that the optimization problem (4.24) is equivalent to the Concomitant estimation

min
BPRpˆq ,Σą0

1

2
trppY ´XBqJΣ´1pY ´XBq ` Σq ` λΩpBq .

Similarly to the Smoothed Concomitant Lasso, the non-smoothness in the loss may causes several
numerical issues in the optimization process. Instead, a regularized version of the trace norm was
considered in (Massias et al., 2018a)

min
BPRpˆq ,ΣľΣ0

1

2
trppY ´XBqJΣ´1pY ´XBq ` Σq ` λΩpBq .

A connection with a perspective transform can also be considered if we rely on the framework for
perspective of matrix convex function in (Effros, 2009; Ebadian et al., 2011).

4.2 Faster Algorithm for Concomitant Lasso

Safe Screening Rules

In order to achieve greater computational efficiency, we propose new safe screening rules
(using the terminology introduced in the seminal work El Ghaoui et al. (2012)) for our problem
and we compare their performance. The principle underlying safe screening rules is as follows:
one can discard inactive features from the optimization problem, thanks to the sub-differential
inclusion (4.15) and to a safe region R such that pθpλ,σ0q P R:

max
θPR

|XJj θ| ă 1 ñ |XJj
pθpλ,σ0q| ă 1 ñ pβ

pλ,σ0q

j “0. (4.25)

Since the dual objective of the Smoothed Concomitant Lasso is λ2σ0n-strongly concave, we
can provide a dynamic and converging SAFE sphere region R, following the methodology intro-
duced in (Ndiaye et al., 2015).

Proposition 49 (Gap Safe rule). For all pβ, σ, θq P Rp ˆ R` ˆ∆X,λ, then for

r “
b

2Gλ,σ0pβ, σ, θq{pλ
2σ0nq,

we have pθpλ,σ0q P Bpθ, rq. Thus, we have the following safe sphere screening rule

|XJj θ| ` r ‖Xj‖ ă 1 ùñ pβ
pλ,σ0q

j “ 0. (4.26)
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Another test, valid when σ0 “ 0, can be derived if we assume upper/lower bounds: to eliminate
feature j, it is enough to check whether

max
θ
t|XJj θ| : λ

?
n‖θ‖ ď 1, η ď Dλpθq ď η̄u ă 1.

In our implementation, we use the primal and the dual objective as a natural bound on the
problem since η “ Dλpθkq ď Dλp

pθpλ,σ0qq ď Pλ,σ0pβk, σkq “ η.

Proposition 50 (Bound Safe rule). Assume that, for a given λ ą 0, we have an upper bound η̄ P
p0,`8s, and a lower bound η P p0,`8s over the Smoothed Concomitant Lasso problem (4.17).
Denote by xj “ Xj{‖Xj‖ and y1 “ y{‖y‖ two unit vectors, and by γ “ pη ´ σ0{2q

?
n{‖y‖ and

γ “ η̄
?
n{‖y‖. Then if one of the three following conditions is met

— |XJj y
1| ą γ and γ|XJj y

1| `
a

1´ γ2
b

1´ pXJj y
1q2 ă λ

?
n{‖Xj‖,

— γ ď |XJj y
1| ď γ and 1 ă λ

?
n{‖Xj‖,

— |XJj y
1| ă γ and γ|XJj y

1| `

b

1´ γ2
b

1´ pXJj y
1q2 ă λ

?
n{‖Xj‖,

the j-th feature can be discarded i.e. pβpλ,σ0q

j “ 0.

(a) (b) (c)

Figure 4.1 – Screening out the jth feature Xj . The gray region is the intersection between the ball
tθ P Rn : ‖θ‖ ď 1u and the set tθ P Rn : γ ď θJy1 ď γu, for the three possible regimes. The
point θ displayed above is the one achieving maxt|θJXj | : ‖θ‖ ď 1, γ ď y1Jθ ď γu, where
Xj is any feature we aim at screening out.

First, note that there are two privileged directions in the optimization problem at stake: Xj and
y. Then, we can see that the dual feasible set is constrained to be inside the Euclidean unit ball,
and by strong duality we know that γ ď θJy1 ď γ. Hence, to screen out Xj , we aim at solving

maxt|θJx| : ‖θ‖ ď 1, γ ď y1
J
θ ď γu,

for any x “ Xj (not yet dis-activated by a previous safe screening). As we can see on Figure 4.1,
there are three regimes depending on the position ofXj relative to the bound constraints. Technical
details of the derivation can be found in Section 4.6.

Smoothed Concomitant Lasso algorithm (SC)

We first present the inner loop of our main algorithm, i.e. the implementation of coordinate
descent for the Smoothed Concomitant Lasso. In Algorithm 6, we denote by A the active set,
i.e. the set of coordinates that we have not screened out. For safe screening rules, this set is
guaranteed to contain the support of the optimal solution.

We now present in Algorithm 7, the fast solver we proposed for the Smoothed Concomitant
Lasso, relying on the three following key features: coordinate descent, Gap Safe screening rules
and improved warm start propositions.
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Algorithm 6 CD4SCL – Coordinate Descent for the Smoothed Concomitant Lasso with Gap Safe
screening
Input : X, y, ε,K, f cep“ 10q, λ, σ0, β, σ
AÐ rps
for k P rKs do

if k mod f ce “ 1 then
Compute θ thanks to (4.27)
if Gλ,σ0pβ, σ, θq “ Pλt,σ0pβ, σq ´Dλt,σ0pθq ď ε. then // Stopping criterion

break
Update A thanks to Proposition 49 // Screening test

for j P A do // Loop over coordinates

βj Ð ST nσλt
‖xj‖2

ˆ

βj ´
xJj pXβ´yq

‖xj‖2

˙

// Soft-thresholding step

σ Ð σ0 _
‖y´Xβ‖
?
n

// Noise estimation step

Output: β, σ, A

Coordinate Descent

The algorithm we consider to compute the Smoothed Concomitant Lasso is coordinate descent,
an efficient way to solve Lasso-type problem (even for multiple values of parameters) (Friedman
et al., 2007). Previous attempts mainly focused on iteratively alternating Lasso steps along with
noise level estimation (Sun and Zhang, 2012) 1, or conic programming (Becker et al., 2011). In (Li
et al., 2016b), written concurrently to this work, the authors consider ISTA, a first order method
using full gradient information at each iteration.

Here we provide a simple and efficient coordinate descent approach, cf. Algorithm 6. Our
primal objective Pλ,σ0 can be written as the sum of a convex differentiable function fpβ, σq “
‖y´Xβ‖2{p2nσq ` σ{2 and of a separable function gpβ, σq “ λ‖β‖1 ` ιrσ0,`8rpσq. Moreover,
for σ ě σ0 ą 0, the gradient of f is Lipschitz continuous. Hence, we know that the coordinate
descent method converges to a minimizer of our problem (Yun, 2014). We choose to update the
variable σ every other iteration because this can be done at a negligible cost.

Remark 19 (Larger (Coordinate) Gradient Step). For σ0 ď σ, the function fpr, σq “ ‖r‖2
2 {p2σq`

σ{2, involved in the variational formulation, is p1{σq-Lipschitz continuous gradient. The Huber
criterion (smoothed variant of the loss of the Square-root Lasso) Hσ0 is p1{σ0q-Lipschitz continu-
ous gradient. A (coordinate) gradient based algorithm directly launched on this loss function will
be slowed down when σ0 is (too) small. However, it will always make larger step in the variational
formulation with fpr, σq than the Huber loss Hσ0 specially when σ is much larger than σ0. Hence
the algorithm (7) enjoys the local smoothness and then is less sensitive to the parameter σ0.

Our stopping criterion is based on the duality gap defined by Gλ,σ0pβ, σ, θq “ Pλ,σ0pβ, σq ´
Dλ,σ0pθq. This requires the computation of a dual feasible point, that, provided a primal vector β,
can be obtained as follows

θ “
y ´Xβ

λnσ0 _ ‖XJpy ´Xβq‖8 _ λ
?
n ‖y ´Xβ‖

. (4.27)

This choice of dual point is motivated by the following convergence result.

Proposition 51. Let pβkqkPN be a sequence that converges to pβpλ,σ0q. Then pθkqkPN built thanks
to (4.27) converges to pθpλ,σ0q. Hence the sequence of dual gap pGλ,σ0pβk, σk, θkqqkPN converges
to zero.

1. a description of their algorithm is given in Section 4.6 for completeness
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Active warm start

In Algorithm 7, the first occurrence of CD4SCL is a warming step aimed at improving the
current primal point at a low cost. For Gap Safe, we disable it by setting K0 “ 0. For the
experiments with the Active warm start, we have set K0 “ K “ 5000 and ε0 “ ε.

Concerning the parameter f ce it governs how often we perform the dual gap evaluation. Due
to the complexity of this step, we do not recommend to do this step every pass over the features,
but rather compute this quantity less often, every f ce passes. In practice we have fixed its value to
f ce “ 10 for all our experiments.

Algorithm 7 Coordinate Descent for the Smoothed Concomitant Lasso with the Active warm start
screening
Input : X, y, ε, ε0,K,K0, f

ce, pλtqtPrT´1s, σ0

λ0 “ λmax “ ‖XJy‖8{p‖y‖
?
nq, βλ0 “ 0, σλ0 “ ‖y‖{

?
n

AÐ rps
for t P rT ´ 1s do

β, σ Ð βλt´1 , σλt´1 (previous ε-solution) // Get previous ε-solution

β, σ, _ Ð CD4SCLpXA, y, ε0,K0, f
ce, λt, σ0, β, σq // Active warm start step

β, σ,AÐ CD4SCLpX , y, ε ,K , f ce, λt, σ0, β, σq // Standard loop

βλt , σλt Ð β, σ
Output: pβλtqtPrT´1s, pσλtqtPrT´1s

4.3 Re-parameterization of Exponential Family

By studying finite mixture of regressions model in a context where the number of covariates
are larger than the sample size, Städler et al. (2010) proposed to use a `1-penalized maximum
likelihood estimator in order to obtain a join estimation of the mean parameter and noise level.
Unfortunately, a direct formulation leads to the following non-convex optimization problem

min
βPRp,σ2

logpσq `
1

2nσ2
‖y ´Xβ‖2

2 ` λ ‖β‖1 .

Moreover, the corresponding estimators fail to be equivariant under scaling of the responses vector
y. To overcome the aforementioned drawbacks, they propose a scaling of the regularization pa-
rameter with σ to achieves equivariance and an adequate re-parameterization to obtain convexity.

Scaled Regularization. As the estimator of the noise is indirectly affected by the amount of
regularization λ, it is beneficial to take it into account as follows

min
βPRp,σ2

logpσq `
1

2nσ2
‖y ´Xβ‖2

2 ` λ
‖β‖1

σ
. (4.28)

It is now easy to see that the obtained estimator is equivariant under scaling of y but the optimiza-
tion problem still non jointly convex (indeed it is not convex in σ).

Convex Re-parameterization. By simply taking the change of variable

θj “
βj
σ
, ρ “

1

σ
, (4.29)

the formulation (4.28) reads

min
φ,ρą0

´ logpρq `
1

2n
‖ρy ´Xφ‖2

2 ` λ ‖φ‖1 (4.30)
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which is jointly convex but it worth noting that it does not preserve the equivariance at all.

This convexity obtained by a simple change of variable is strongly related to the fact that
Maximum Likelihood Estimator (MLE) with a distribution for the exponential family naturally
leads to convex optimization problem. We recall from (Brown, 1986) the classical definition and
convexity properties of exponential model.

Definition 22 (Exponential Family). Let ν be a σ-finite measure and λpθq “
ş

eθyνpdyq its
Laplace transform and N :“ tθ : λpθq ă `8u. For P pθq “ logpλpθqq, we define

pθpyq “ exppxθ, yy ´ P pθqq . (4.31)

The family of density tpθ : θ P Θ Ă Nu is called (standard) exponential family.

Proposition 52. N is a convex set and P is a convex function on N . Furthermore, P is lower
semi-continuous on Rd and continuous on the interior of N .

Proof. Let α P r0, 1s, we have:

λpαθ1 ` p1´ αqθ2q “

ż

epαθ1`p1´αqθ2qyνpdyq “

ż

´

eθ1y
¯α ´

eθ2y
¯1´α

νpdyq

ď

ˆ
ż

eθ1yνpdyq

˙αˆż

eθ2yνpdyq

˙1´α

by Holder’s inequality

“ λpθ1q
αλpθ2q

1´α.

Then θ1 and θ2 belong to N implies αθ1 ` p1´ αqθ2 also belongs to N . Thus N is a convex set
and the convexity of P follows:

P pαθ1 ` p1´ αqθ2q “ logpλpαθ1 ` p1´ αqθ2qq ď α logpλpθ1qq ` p1´ αq logpλpθ2qq

“ αP pθ1q ` p1´ αqP pθ2q.

Hence for a random variable y with gaussian distribution N pµ, σ2q, we have

ppµ,σ2qpyq “
1

?
2πσ2

exp

"

´
py ´ µq2

2σ2

*

“ exp
 

xpθ1, θ2q, py, y
2qy ´ P pθ1, θ2q

(

(4.32)

where

θ “ pθ1, θ2q “

ˆ

µ

σ2
,´

1

2σ2

˙

and P pθq “ ´
θ2

1

4θ2
`

1

2
log

ˆ

´
π

θ2

˙

. (4.33)

Hence considering a regression setting where µ “ Xβ, and considering the change of variable

φj “
βj
σ2
, ρ “

1

σ2
, (4.34)

the `1-penalized MLE in (4.32) leads to the Natural Lasso proposed in (Yu and Bien, 2017)

min
φPRp,ρą0

´
1

2
logpρq ` ρ

‖y‖2
2

2n
´

1

n
yJXφ`

‖Xφ‖2
2

2nρ
` λ ‖φ‖1 . (4.35)

The obtained estimator is jointly convex but fail to be equivariant. Written in a factorized
form, we see better the similarity with the estimator proposed by Städler et al. (2010):

min
φ,ρą0

´ logp
?
ρq `

1

2n

∥∥∥∥?ρy ´X φ
?
ρ

∥∥∥∥2

2

` λ ‖φ‖1 . (4.36)
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σ̂OR σ̂M´CV σ̂M´LS σ̂i pσD2

‖y´PX,S‹y‖?
n´|S‹|

‖y´Xβ̂λcvM ‖
b

n´|Ŝ
λcv
M |

‖y´P
X,ŜM

y‖
?
n´|ŜM|

‖ypi
1q´P

Xpi
1q,Ŝi

ypi
1q‖

?
n{2´|Ŝi|

`

1`
pxm2

1
pn`1qxm2

˘

‖y‖2

n
´

xm1‖XJy‖2?
npn`1qxm2

Table 4.1 – The estimator β̂M are obtained by a method M and M ´ LS is its least square
refitting. We note Sd “ tj P rps, βdj ‰ 0u, Di “ pypiq, XpiqqiPr2s is a split in two parts of
the observations, and Ŝi the support selected after a cross-validation on the part Di. The RCV
estimator is σ̂RCV “ ppσ̂2

1 ` σ̂
2
2q{2q

1{2, and pm1 “ trppΣq{p and pm2 “ trppΣ2q{p´ ptrppΣqq2{ppnq.

To obtain an equivariant estimator, (Yu and Bien, 2017) use a perspective function of the squared
`1 norm as a penalty term and propose the Organic Lasso

min
φ,ρą0

´ logp
?
ρq `

1

2n

∥∥∥∥?ρy ´X φ
?
ρ

∥∥∥∥2

2

` λ

∥∥∥∥ φ
?
ρ

∥∥∥∥2

1

(4.37)

Furthermore, they show that the estimator obtained with the Organic Lasso formulation is a mini-
mizer of the `21 penalized least square

min
βPRp

1

n
‖y ´Xβ‖2

` λ ‖β‖2
1 .

Remark 20 (Homogeneity and Equivariance). The functions ρ and Ω are positively homogeneous
with the same degree d if and only of for any t P R, we have

min
βPRp

`pty ´Xptβqq ` λΩptβq “ |t|d min
βPRp

`py ´Xβq ` λΩpβq .

Whence the Square-root Lasso and Organic Lasso are equivariant under scaling transformation
of the observations y and the Lasso is not. Basically, any couple of loss and regularizer p`,Ωq
with same degree of homogeneity will produce an equivariant estimator.

Extension to Multivariate Setting

The re-parameterization procedure also works in matrix setting with Multivariate Gaussian
Distribution where the density is expressed as

pµ,Σpyq “
1

p2πqd{2 detpΣq1{2
exp

ˆ

´
py ´ µqJΣ´1px´ µq

2

˙

“ exp

"

xpΣ´1µ,´
1

2
Σ´1q, py, yyJqy ´ P

ˆ

Σ´1µ,´
1

2
Σ´1

˙*

,

where

P

ˆ

Σ´1µ,´
1

2
Σ´1

˙

“ ´
1

4
xp´

1

2
Σ´1q´1Σ´1µ,Σ´1µy `

1

2
log

˜

p´πqd

detp´1
2Σ´1q

¸

.

In this case, the canonical parameter is Θ “ pΘ1,Θ2q “ pΣ´1µ,´1
2Σ´1q and the cumulant

function P pΘq is convex. Hence following the same route as (Yu and Bien, 2017), a multivariate
Natural (and Organic) Lasso can be obtained.

4.4 Numerical Experiments

We compare the estimation performance and computation times of standard deviation estima-
tors which are presently the state-of-the-art in high dimensional settings. We refer to (Reid et al.,
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2013) for a recent comparison. In our simulations we use the common setup: y “ Xβ‹ ` σε
where ε „ N p0, Idnq and X P Rnˆp follows a multivariate normal distribution with covariance
Σ “ pρ|i´j|qi,jPrps. We define β‹ “ αβ where the coordinates of β are drawn from a stan-
dard Laplace distribution and we randomly set s% of them to zero. The scalar α is chosen in
order to satisfy a prescribed signal to noise ratio denoted snr: α “

a

snrˆ σ2{βJΣβ. We note
S‹ “ tj P rps, β‹j ‰ 0u.

The procedures we have compared are summarized in Table 4.1. Namely, our reference is the
oracle estimator (OR) σ̂OR, the cross-validated estimator (CV) σ̂M´CV whith a parameter λcv
chosen by 5-fold cross-validation, the least-square refitting estimator (LS) σ̂M´LS , the refitted
cross-validation (RCV) σ̂RCV and pσD2 the estimator introduced in (Dicker, 2014).

We run all the following algorithms over the non-increasing sequence λt “ λmax10´δ
t´1
T´1 for

t in rT swith the default value δ “ 2 and T “ 100. The regularization grid for the joint estimations
(Scaled-Lasso, with solver from (Sun and Zhang, 2012) (SZ), Smoothed Concomitant Lasso (SC),
Square-root Lasso (Belloni et al., 2011) (SQRT-Lasso) and the estimator introduced in (Städler
et al., 2010) (SBvG)) begins at λmax given in Proposition 47. We set Smoothed Concomitant
Lasso with the default value σ0 “ ‖y‖{

?
nˆ 10´2. As explained in Section 4.1.3 this choice im-

proves numerical efficiency at the cost of departing slightly from the Concomitant Lasso estimator
in the low noise regime. The grid for the Lasso (L) estimators begins with λL

max “ ‖XJy‖8{n.
The Lasso with the universal parameter λ “

a

2 logppq{n is denoted (L_U) and SZ refers to Con-
comitant Lasso with the quantile regularization described in (Sun and Zhang, 2013) in Fig. 4.3(a).

For each method, 50 replications are computed from the model aforementioned.

(a) Times to run simulations using synthetic dataset. (b) Time to reach convergence using Leukemia dataset.

Figure 4.2 – Comparisons of the computational times using different estimation method (time pre-
sented relative to the mean time of the Lasso). (b): speed up using screening rules for the Smoothed
Concomitant Lasso w.r.t. to duality gap and for pλtqtPr100s. The dimensions of Leukemia dataset
are pn “ 72, p “ 7129q.

Computational Performance

Figure 4.2(a) presents on the Leukemia dataset the computation times observed for the differ-
ent CV methods. The Smoothed Concomitant Lasso is based on the coordinate descent algorithm
described in Algorithm 7, written in Python and Cython to generate low level C code, offering high
performance. When a Lasso solver is needed, we have used the one from scikit-learn, that
is coded similarly. For SZ_CV, computations are quite heavy as one uses the alternating algorithm
proposed in (Sun and Zhang, 2012). Depending on the regularization parameter (for instance when
one approaches λmin) the SZ_CV method is quite intractable and the algorithm faces the numer-
ical issues mentioned earlier. The generic solver used for SBvG and SQRT-Lasso, is the CVXPY
package (Diamond and Boyd, 2016), explaining why these methods are two orders of magnitude
slower than a Lasso. This is in contrast to our solver that reaches similar computing time w.r.t.
an efficient Lasso solver, with the additional benefit of jointly estimating the coefficients and the
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standard deviation of the noise.

Figure 4.2(b) shows the benefit one can obtain thanks to the safe screening rules introduced
above. The Bound safe rule on the Smoothed Concomitant Lasso problem does not show signif-
icant acceleration w.r.t. the Gap Safe rule. Indeed, the Gap Safe rule greatly benefits from the
convergence of the dual vector, leading to smaller and smaller safe sphere as the iterations pro-
ceeds (Fercoq et al., 2015; Ndiaye et al., 2015). Another nice feature for the Gap Safe rules relies
on a new warm start strategy when computing the full grid pλtqtPT . For a new λ, one first per-
forms the optimization over the safe active set (i.e. the non discarded variables) from the previous
λ. This active warm start strategy improves the warm start by providing a better primal vector. It
helps achieving solutions with great precision at lower cost (up to 8ˆ speed-up on the Leukemia
dataset).

Performance of Standard Deviation Estimators

(a) Estimated performance using synthetic dataset.

Figure 4.3 – Comparison of quality of different estimators of the noise σ normalized to 1. The
synthetic datasets are generated with the settings (n “ 100, p “ 500, ρ “ 0.6, snr “ 5, s “ 0.9,
50 replications)

As noted earlier in (Fan et al., 2012), spurious correlations can strongly affect sparse regression
and usually lead to large biases. This makes the standard deviation estimation very challenging
and affects the cross-validation estimator based on the Lasso as they usually underestimate the
standard deviation. The phenomenon is amplified when one uses least squares refitting on the
cross-validated Lasso, as noticed in (Reid et al., 2013). Here we show an example where refitting
cross-validation degrades the estimation. Results are presented as boxplots in Figure 4.3(a) (see
Section 4.6 for additional settings).

In our experiments, we observe that SC and SZ are very efficient in high sparsity settings with
low correlations, correcting for the positive bias of the estimator estimator from (Städler et al.,
2010) (SBvG). In (Reid et al., 2013), it was also argued that the cross-validation estimator based
on Lasso is more stable and performs better when the sparsity decreases and when the snr in-
creases. We would like to emphasize that this is not the case when one performs a cross-validation
procedure on the Concomitant Lasso. Here, we show that the latter achieves performances of the
same order than the Lasso. It is worth noting that our method is consistently good over the whole
experiments we conducted especially when applying least squares refitting.

Another appealing good property of the Smoothed Concomitant Lasso compared to the Lasso
is the invariance of the optimal λopt :“ arg minλPpλtqtPrT s‖X pβpλ,σ0q ´ Xβ‹‖2 w.r.t. different
levels of noise. We show on Figure 4.4(a) a kernel density plot of its distribution on synthetic data
with different values of σ. A similar experiment was performed in (Li et al., 2016b) leading to the
same conclusion with an optimal λ chosen by a train/test procedure.
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(a) Estimated distribution of the optimal λopt.

Figure 4.4 – Comparisons of the distribution of optimal regularizer λopt under different levels of
noise.

4.5 Conclusion and Perspectives

We have explored the joint estimation of the coefficients and noise level for `1 regularized
regression. We have corrected some numerical drawbacks of the Concomitant Lasso estimator by
proposing a slightly smoother formulation, leading to the Smoothed Concomitant Lasso. A fast
algorithm, relying both on coordinate descent and on safe screening rules with improved warm
start was investigated, and it was shown to achieve the same numerical efficiency than for the
Lasso while also estimating the noise level. It could be interesting in future research to extend our
work to more general data-fitting terms (Owen, 2007) and to combine sketching techniques as in
(Pham and Ghaoui, 2015).

The linear model considered in this chapter is a special case of the Generalized Linear Model
(McCullagh and Nelder, 1989) which turn out to be a special case of Dispersion Model (Jorgensen,
1997). In this later case, one assume that the observation y has a probability distribution of the
form

ppy, µ, σ2q “ apy, σ2q exp

ˆ

´
`py, µq

σ2

˙

,

where respectively µ and σ2 ą 0 are position and dispersion parameters, a is a nonnegative
function and ` a loss function. It allows for a general joint modeling of the mean and dispersion
parameter. A future work could be to extent our approach and propose faster algorithm for learning
such a model while associated with a variable selection regularizer (Antoniadis et al., 2016).

Recently, Combettes and Müller (2018) have proposed a general framework for representing
convex M -estimators with concomitant scale as perspective functions and show that they can be
solved with proximal splitting algorithms. It should be interesting to study the coordinate descent
(with variational formulation) counterpart of such algorithms.
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4.6 Appendix

Scaled-Lasso Algorithm (SZ)

We describe in Algorithm 8 the algorithm proposed by Sun and Zhang (2012) to compute the
Scaled-Lasso and refer to it as SZ.

In our experiments we have used with the default parameters of the associated R packages
scalreg-package, and a choice of λ’s following the quantile oriented method described in
(Sun and Zhang, 2013).

Note that contrary to our approach the stopping criterion is only based on checking the absence
of consecutive increments on the noise level, whereas we consider dual gap evaluations as a more
principled way.

Concerning the Lasso steps, as for other Lasso computations in our experiments, we have
used the Lasso solver from scikit-learn with a dual gap tolerance of 10´4 and the other
parameters set to their default values.

Algorithm 8 Scaled-Lasso algorithm (Sun and Zhang, 2012) for a fixed λ value
Input : X, y, εp“ 10´4q,K “ 100, λ, σoldp“ 5q, σnewp“ 0.1q
k “ 0
while |σold ´ σnew| ą ε and k ă K do
k Ð k ` 1
σold “ σnew

λL Ð λσold

β Ð arg min
βPRp

1

2n
‖y ´Xβ‖2

` λL ‖β‖1 // Lasso step with parameter λL

σnew “ ‖y ´Xβ‖ {
?
n // Noise estimation step

Output: pβ, σnewq

Additional Experiments

In this section, we present some extensive benchmarks with synthetic datasets with less sparse
signal than in Section 4.4. The main observation, presented in Fig. 4.5, is that Smoothed Concomi-
tant Lasso with cross-validation is stable w.r.t. various settings and provides similar performance
to other Lasso variants investigated.

For each setting, we compare the mean running time for 50 simulations. The results are
displayed in Figure 4.6. The computational time of our algorithm is in the same order of magnitude
as the computational time for the Lasso.

Perspective of a Convex Function

The concomitant scale estimator introduced by Huber (1981, Ch. 7.7 and 7.8) (see also (Owen,
2007; Antoniadis, 2010)), is related to the perspective of a function defined for a convex function
f : Rn Ñ RY t`8u as the function perspf : Rn ˆ RÑ RY t`8u such that

perspf pr, σq “

#

σf
`

r
σ

˘

, if σ ą 0,

`8, if σ ď 0.
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(a) (n “ 100, p “ 200, ρ “ 0, snr “ 10, s “ 0.8)

(b) (n “ 100, p “ 200, ρ “ 0.2, snr “ 10, s “ 0.8)

(c) (n “ 100, p “ 200, ρ “ 0.6, snr “ 5, s “ 0.8)

(d) (n “ 100, p “ 200, ρ “ 0.8, snr “ 10, s “ 0.8)

Figure 4.5 – Estimated performance on synthetic dataset for different parameters.
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(a) (n “ 100, p “ 200, ρ “ 0, snr “ 10, s “ 0.8) (b) (n “ 100, p “ 200, ρ “ 0.2, snr “ 10, s “ 0.8)

(c) (n “ 100, p “ 200, ρ “ 0.6, snr “ 5, s “ 0.8) (d) (n “ 100, p “ 200, ρ “ 0.8, snr “ 10, s “ 0.8)

Figure 4.6 – Computational time for 50 simulations on synthetic dataset.

This function is not lower semi-continuous in general. However, lower semi-continuity is a very
desirable property. Together with the fact that the function is infinite at infinity, this guarantees
the existence of minimizers (Peypouquet, 2015, Theorem 2.19). Hence we consider instead its
biconjugate, which is always lower semi-continuous (Bauschke and Combettes, 2011, Theorem
13.32). One can show (Bauschke and Combettes, 2011, Example 13.8) that the Fenchel conjugate
of perspf is

persp˚f pθ, νq “

#

0, if ν ` f˚pθq ď 0,

`8, otherwise.

Hence a direct calculation shows that

Proposition 53.

persp˚˚f pr, σq “

$

’

’

&

’

’

%

σf˚˚
`

r
σ

˘

, if σ ą 0,

sup
θPdomf˚

xθ, ry, if σ “ 0,

`8, otherwise.

Proof. Let us define g “ persp˚f for simplicity.

First case: σ ą 0.

persp˚˚f pr, σq “ sup
θPRn,νPR

xθ, ry ` σν ´ gpθ, νq “ sup
θPRn,νPR

txθ, ry ` σν : ν ` f˚pθq ď 0u

As σ ą 0, for a given β, one should take ν the largest possible, hence ν “ ´f˚pθq.

persp˚˚f pr, σq “ sup
θPRn

xθ, ry ´ σf˚pθq “ σ sup
θPRn

xθ, r{σy ´ f˚pθq “ σf˚˚pr{σq
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Second case: σ “ 0.

persp˚˚f pr, 0q “ sup
θPRn,νPR

xθ, ry ´ gpθ, νq “ sup
θPRn,νPR

txθ, ry : ν ` f˚pθq ď 0u.

As ν has no influence on the value of the objective, we can choose it as small as we want and so
the only requirement on θ is that it should belong to the domain of f˚. We get

persp˚˚f pr, 0q “ sup
θPdomf˚

xθ, ry

Third case: σ ă 0. If σ ă 0, we can let ν go to ´8 in the formula of persp˚˚f pr, σq which leads
to persp˚˚f pr, σq “ `8.

Dual of the Smoothed Concomitant Lasso

Proposition 54. For λ ą 0 and σ0 ą 0, the Smoothed Concomitant Lasso estimator pβpλ,σ0q

and its associated noise level estimate pσpλ,σ0q are defined as solutions of the primal optimization
problem

ppβpλ,σ0q, pσpλ,σ0qq P arg min
βPRp,σěσ0

1

2nσ
‖y ´Xβ‖2

`
σ

2
` λ ‖β‖1 , (4.38)

With ∆X,λ “
 

θ P Rn : ‖XJθ‖8 ď 1, ‖θ‖ ď 1{pλ
?
nq
(

, the dual formulation of the Smoothed
Concomitant Lasso reads

pθpλ,σ0q “ arg max
θP∆X,λ

xy, λθy ` σ0

ˆ

1

2
´
λ2n

2
‖θ‖2

˙

loooooooooooooooooomoooooooooooooooooon

Dλ,σ0
pθq

. (4.39)

For an optimal primal vector pβpλ,σ0q, we must have pσpλ,σ0q “ σ0 _ p‖y ´ X pβpλ,σ0q‖{
?
nq. We

also have the link-equation between primal and dual solutions: y “ nλpσpλ,σ0qpθpλ,σ0q`X pβpλ,σ0q.

Proof.

min
βPRp,σěσ0

1

2nσ
‖y ´Xβ‖2

`
σ

2
` λ ‖β‖1

“ min
βPRp,zPRn,σěσ0

1

2nσ
‖y ´ z‖2

`
σ

2
` λ ‖β‖1 s.t. z “ Xβ

“ min
βPRp,zPRn,σěσ0

max
θPRn

1

2nσ
‖y ´ z‖2

`
σ

2
` λ ‖β‖1 ` λθ

Jpz ´Xβq
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Lpβ,σ,θ,zq

“max
θPRn

min
σěσ0

σ

2
´max

zPRn

"

x´λθ, zy ´
1

2nσ
‖y ´ z‖2

*

´ λmax
βPRp

xXJθ, βy ´ ‖β‖1

“max
θPRn

min
σěσ0

σ

2
´
λ2nσ

2
‖θ‖2

` xλθ, yy ´ ιB8pX
Jθq.

The fourth line is true because the Slater’s condition is met, hence we can permute min and
max thanks to strong duality. Finally we obtain the dual problem since

min
σěσ0

σ

ˆ

1

2
´
λ2n

2
‖θ‖2

˙

“

#

σ0

´

1
2 ´

λ2n
2 ‖θ‖2

¯

, if 1
2 ´

λ2n
2 ‖θ‖2

ě 0,

´8, otherwise.
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Let us use the same Lagragian notation as above, and denote
´

pβpλ,σ0q, pσpλ,σ0q, pθpλ,σ0q, ẑpλ,σ0q
¯

P arg min
βPRp,zPRn,σěσ0

max
θPRn

Lpβ, σ, θ, zq.

The primal-dual link equation follows directly from the Fermat’s rule:

BLppβpλ,σ0q, pσpλ,σ0q, ¨, ẑpλ,σ0qq

Bθ
ppθpλ,σ0qq “ ẑpλ,σ0q ´X pβpλ,σ0q “ 0,

BLppβpλ,σ0q, pσpλ,σ0q, pθpλ,σ0q, ¨q

Bz
pẑpλ,σ0qq “ ´

1

npσpλ,σ0q
py ´ ẑpλ,σ0qq ` λpθpλ,σ0q “ 0.

Convergence of the Dual Vectors

Proposition 55. Let pβkqkPN be a sequence that converges to pβpλ,σ0q. Then pθkqkPN built from
θk “ py ´Xβkq{ppλnσ0q_‖XJpy´Xβkq‖8_pλ

?
n‖y´Xβk‖qq converges to pθpλ,σ0q. Hence

the sequence of dual gap pGλ,σ0pβk, σk, θkqqkPN converges to zero.

Proof. Let αk “ pλnσ0q _ p‖XJpy ´Xβkq‖8q _ pλ
?
n‖y ´Xβk‖q, then we have:∥∥∥θk ´ pθpλ,σ0q

∥∥∥ “ ∥∥∥∥ 1

αk
py ´Xβkq ´

1

λnpσpλ,σ0q
py ´X pβpλ,σ0qq

∥∥∥∥
“

∥∥∥∥∥
ˆ

1

αk
´

1

λnpσpλ,σ0q

˙

py ´Xβkq ´
pX pβpλ,σ0q ´Xβkq

λnpσpλ,σ0q

∥∥∥∥∥
ď

ˇ

ˇ

ˇ

ˇ

1

αk
´

1

λnpσpλ,σ0q

ˇ

ˇ

ˇ

ˇ

‖y ´Xβk‖`

∥∥∥∥∥X pβpλ,σ0q ´Xβk
λ

∥∥∥∥∥ .
If βk Ñ pβpλ,σ0q, then the second term in the last display converges to zero, and for the first term,
we show below that αk Ñ α :“ pλnσ0q _ p‖XJpy ´ X pβpλ,σ0qq‖8q _ pλ

?
n‖y ´ X pβpλ,σ0q‖q.

Recall that from Fermat’s rule, we have y´X pβpλ,σ0q “ λnpσpλ,σ0qpθpλ,σ0q andXJpy´X pβpλ,σ0qq P

λnpσpλ,σ0qB‖¨‖1ppβ
pλ,σ0qq, leading to one of the three following situations:

— if pσpλ,σ0q ą σ0, then ‖XJpy ´X pβpλ,σ0qq‖8 ď λnpσpλ,σ0q “ λ
?
n‖y ´X pβpλ,σ0q‖ “ α.

— If pσpλ,σ0q “ σ0 and pβpλ,σ0q ‰ 0, we have XJpy ´ X pβpλ,σ0qq “ λnpσpλ,σ0qv̂ where v̂ P
B‖¨‖1ppβ

pλ,σ0qq. Since pβpλ,σ0q ‰ 0, there exists a coordinate j such that pβpλ,σ0q

j ‰ 0 and so

|v̂j | “ 1 which implies that ‖v̂‖8 “ 1. Hence ‖XJpy´X pβpλ,σ0qq‖8 “ λnpσpλ,σ0q. More-
over, ‖y ´ X pβpλ,σ0q‖ “ λnpσpλ,σ0q‖pθpλ,σ0q‖ ď λnpσpλ,σ0q{pλ

?
nq since pθpλ,σ0q P ∆X,λ.

Hence, λ
?
n‖y ´X pβpλ,σ0q‖ ď λnpσpλ,σ0q “ ‖XJpy ´X pβpλ,σ0qq‖8 “ α.

— If pσpλ,σ0q “ σ0 and pβpλ,σ0q “ 0, then y “ λnσ0
pθpλ,σ0q, λ

?
n‖y‖ ď λnσ0 since pθpλ,σ0q P

∆X,λ, and ‖XJy‖8 ď λnσ0. Hence α “ λnσ0.
Finally, we have shown that in all cases, pαkqkPN converges to α “ λnpσpλ,σ0q, so the first
term also converges to zero.

Safe Screening Rules

Proposition 56. For all pβ, σ, θq P Rp ˆ R` ˆ∆X,λ, then for

r “

d

2Gλ,σ0pβ, σ, θq

λ2σ0n
,
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we have pθpλ,σ0q P Bpθ, rq. Thus, we have the following safe sphere screening rule

|XJj θ| ` r ‖Xj‖ ă 1 ùñ pβ
pλ,σ0q

j “ 0. (4.40)

Proof. The proof follows (Ndiaye et al., 2015). We give it for the sake of completeness. By weak
duality, for all β P Rp, Dλ,σ0pθq ď Pλ,σ0pβ, σq. Then, note that the dual objective function of the
Smoothed Concomitant Lasso is λ2σ0n-strongly concave. This implies that:

@pθ, θ1q P ∆X,λ ˆ∆X,λ, Dλ,σ0pθq ď Dλ,σ0pθ
1q `∇Dλ,σ0pθ

1qJpθ ´ θ1q ´
λ2σ0n

2

∥∥θ ´ θ1∥∥2
.

Moreover, since pθpλ,σ0q maximizes the concave function Dλ,σ0 , the following inequality holds
true:

@ θ P ∆X,λ, ∇Dλp
pθpλ,σ0qqJpθ ´ pθpλ,σ0qq ď 0.

Hence, we have for all θ P ∆X,λ and β P Rp:

λ2σ0n

2

∥∥∥θ ´ pθpλ,σ0q
∥∥∥2
ď Dλ,σ0p

pθpλ,σ0qq ´Dλ,σ0pθq

ď Pλpβ, σq ´Dλ,σ0pθq “ Gλ,σ0pβ, σ, θq.

Furthermore,

max
θ̄PBpθ,rq

|XJj θ̄| ď |X
J
j θ|` max

θ̄PBpθ,rq
|XJj pθ̄´θq| ď |X

J
j θ|`‖Xj‖ max

θ̄PBpθ,rq

∥∥θ̄ ´ θ∥∥ “ |XJj θ|`r ‖Xj‖ .

Hence max
θ̄PBpθ,rq

|XJj θ̄| “ |X
J
j θ| ` r ‖Xj‖ since the vector ¯̄θ :“ θ`Xj

r
‖Xj‖ is feasible and attains

the bound.

In this section we derive the Bound Safe screening rules of Proposition 50. First, we need two
technical lemmas.

Lemma 23. Let y1 and x be two unit vectors, and consider 0 ď γ ď γ ď 1. The optimal value of

maxtθJx : ‖θ‖ ď 1, γ ď y1Jθ ď γu,

is given by
$

’

’

’

&

’

’

’

%

γxJy1 `
a

1´ γ2
b

1´ pxJy1q2, if xJy1 ą γ,

1, if γ ď xJy1 ď γ,

γxJy1 `
b

1´ γ2

b

1´ pxJy1q2, if xJy1 ă γ.

Proof. First remark that x and y are two privileged directions in the optimization problem at stake.
Indeed, if θ has a nonzero component in a direction orthogonal to both x and y1, then, because of
the constraint ‖θ‖ “ 1, this reduces the freedom in Spanpx, y1q while giving no progress in the
objective and the linear constraints. Hence, from now on we can restrict ourselves to the plane
Spanpx, yq.

We denote by =pw, zq P R{2πZ the directed angle between unitary vectorsw and z. We recall
that cosp=pw, zqq “ wJz, so we can narrow down our analysis to the three following cases:

1. Assume that xJy1 ą γ. Then the optimal θ is such that (see Figure (4.1).(a)) ‖θ‖ “ 1,
θJy1 “ γ and x is “between” θ and y1, which implies that sinp=pθ, y1qq sinp=py1, xqq ă 0.
Hence,

θJx “ cosp=pθ, xqq “ cos
`

=pθ, y1q `=py1, xq
˘

“ cos
`

=pθ, y1q
˘

cos
`

=py1, xq
˘

´ sin
`

=pθ, y1q
˘

sin
`

=py1, xq
˘

“ θJy1.y1
J
x`

∣∣sinp=pθ, y1qq sinp=py1, xqq
∣∣

“ γy1
J
x`

a

1´ γ2
b

1´ py1Jxq2.
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2. Assume that γ ď xJy1 ď γ, then θ “ x is admissible, and the maximum is 1 (see
Figure (4.1).(b)).

3. Assume that´1 ď xJy1 ă γ (see Figure (4.1).(c)), then the optimal θ is such that ‖θ‖ “ 1,
θJy1 “ γ and θ is “between” x and y1, which implies that sinp=pθ, y1qq sinp=py1, xqq ă 0.
Hence, elementary trigonometry gives

θJx “ cos
`

=pθ, y1q `=py1, xq
˘

“ γxJy1 `
b

1´ γ2

b

1´ pxJy1q2.

Lemma 24. Let y1 and x be two unit vectors, and consider 0 ď γ ď γ ď 1. The optimal value of

maxt|θJx| : ‖θ‖ ď 1, γ ď y1
J
θ ď γu,

is given by
$

’

’

&

’

’

%

γ|xJy1| `
a

1´ γ2
b

1´ pxJy1q2, if |xJy1| ą γ,

1, if γ ď |xJy1| ď γ,

γ|xJy1| `
b

1´ γ2

b

1´ pxJy1q2, if |xJy1| ă γ.

Proof. We need to compute

maxt|θJx| : ‖θ‖ ď 1, γ ď y1Jθ ď γu.

We apply Lemma 23 with x Ð x and x Ð ´x. We get five cases and for each the value is a
maximum between two choices. In fact, one of the two choices is always dominated by the other
one. We just present one case for conciseness.

Suppose that xJy1 ą γ (and thus ´xJy1 ă γ since γ ě 0). Then the optimal θ satisfies

∣∣θJx∣∣ “ ˆ

γxJy1 `
a

1´ γ2
b

1´ pxJy1q2
˙

_

ˆ

´γxJy1 `
b

1´ γ2

b

1´ pxJy1q2
˙

.

We now remark the equivalence

´ γxJy1 `
b

1´ γ2

b

1´ pxJy1q2 ď γxJy1 `
a

1´ γ2
b

1´ pxJy1q2

ô

´b

1´ γ2 ´
a

1´ γ2
¯

b

1´ pxJy1q2 ´ pγ ` γqxJy1 ď 0.

This function is decreasing in xJy1 so
´b

1´ γ2 ´
a

1´ γ2
¯

b

1´ pxJy1q2 ´ pγ ` γqxJy1

ď

´b

1´ γ2 ´
a

1´ γ2
¯

a

1´ γ2 ´ pγ ` γqγ

“

b

1´ γ2
a

1´ γ2 ´ 1` γ2 ´ γ2 ´ γγ ď 0.

Thus, the second term in the maximum is never selected and we can simplify the expression. The
other cases can be handled similarly.

Proposition 57. Assume that, for a given λ ą 0, we have an upper bound η P p0,`8s, and a
lower bound η P p0,`8s over the Smoothed Concomitant Lasso problem (4.17). Denote by xj “
Xj{‖Xj‖ and y1 “ y{‖y‖ two unit vectors, and by γ “ pη ´ σ0{2q

?
n{‖y‖ and γ “ η

?
n{‖y‖.

Then if one of the three following conditions is met
— |xJj y

1| ą γ and γ|xJj y
1| `

a

1´ γ2
b

1´ pxJj y
1q2 ă λ

?
n{‖Xj‖.

118



— γ ď |xJj y
1| ď γ and 1 ă λ

?
n{‖Xj‖.

— |xJj y
1| ă γ and γ|xJj y

1| `

b

1´ γ2
b

1´ pxJj y
1q2 ă λ

?
n{‖Xj‖.

then the j-th feature can be discarded i.e. pβpλ,σ0q

j “ 0.

Proof. If η ď Dλp
pθpλ,σ0qqy ď η and

maxt|XJj θ| : λ
?
n ‖θ‖ ď 1, η ď Dλpθqy ď ηu ă 1, (4.41)

then the j-th feature can be discarded (see Eq. (4.25)).

For the standard Concomitant Lasso formulation, Dλpθq “ xy, λθy and Lemma 24 can be
directly applied to get a safe screening rule from (4.41). To treat the Smoothed Concomitant
Lasso (4.17), we check that if η ď Dλ,σ0pθq ď η then η´ σ0{2 ď xy, λθy ď η. Thus, we obtain a
new screening test

maxt|XJj θ| : λ
?
n ‖θ‖ ď 1, η ´ σ0{2 ď xy, λθy ď ηu ă 1. (4.42)

To leverage Lemma 24 we reformulate the test as

max

"ˇ

ˇ

ˇ

ˇ

λ
?
n

‖Xj‖
XJj θ

ˇ

ˇ

ˇ

ˇ

:
?
nλ ‖θ‖ ď 1,

pη ´ σ0{2q
?
n

‖y‖
ď

B

y

‖y‖
,
?
nλθ

F

ď
η
?
n

‖y‖

*

ă

?
nλ

‖Xj‖
.

Denoting by x1j “ Xj{‖Xj‖ and y1 “ y{‖y‖ two unit vectors, and by γ “ pη ´ σ0{2q
?
n{‖y‖

and γ “ η
?
n{‖y‖, the test (4.42) now reads

max
 ˇ

ˇθJx1j
ˇ

ˇ : ‖θ‖ ď 1, γ ď
@

y1, θ
D

ď γ
(

ă

?
nλ

‖Xj‖
.

Lemma 24 concludes the proof.
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Chapitre 5

Abrégé des Contributions de la Thèse

Le traitement automatique des données est devenu omniprésent dans les technologies actuelles.
Il a d’importantes applications dans de nombreuses disciplines scientifiques telles que la médecine,
la biologie ou la météorologie mais aussi dans des outils numériques tels que la traduction de texte,
la publicité ciblée ou la détection de spam. Il s’inscrit au coeur des problématiques de traitement du
signal, de théorie de l’information et des statistiques où l’on cherche à comprendre et résumer les
informations essentielles dans les données collectées. Ces dernières sont souvent accompagnées
par des informations à priori sur leurs structures, qui peuvent ensuite être utilisées pour établir des
modèles et algorithmes prédictifs. Cependant, ces algorithmes dépendent fortement des méthodes
d’optimisation mathématique et il est devenu crucial d’avoir des outils qui restent efficaces lorsque
la taille des bases de données augmente. Nous étudions des méthodes de réduction de complexité
dans certains problèmes d’optimisation découlant de l’apprentissage statistique avec un princi-
pal fil conducteur :économiser du temps de calcul en exploitant des certificats optimalité et des
structures de régularité spécifiques aux problèmes.

Dans ce chapitre, nous résumons les contributions de la thèse en présentant les principales
idées et résultats développés dans ce manuscrit.

5.1 Optimization Convexe en Apprentissage Statistique

Nous suivons une formalisation classique des tâches d’apprentissage statistique comme dans
(Hastie et al., 2009; Shalev-Shwartz and Ben-David, 2014). Soit X (resp. Y) un ensemble de
vecteurs d’entrée (resp. sortie) et X (resp. Y ) une variable aléatoire évaluée dans X (resp. Y).
Nous appelons tâche d’apprentissage l’identification d’une application h : X ÞÑ Y qui explique
la relation entre l’entrée X et la sortie Y .

Considérant une fonction de perte ` telle que `py, yq “ 0, `py, y1q ě 0, nous voulons ap-
prendre une fonction de prédiction h minimisant l’erreur de prédiction `phpXq, Y q en moyenne.
Pour simplifier, nous considérons que h sera recherché sur une famille de fonctions paramétrée
(prédéfinie) H :“ thp¨, βq : β P Rpu qui code les connaissances à priori que nous avons sur les
données. Ensuite, la tâche d’apprentissage peut être écrite sous la forme du problème d’optimisa-
tion suivant :

min
βPRp

Rpβq :“ Er`phpX,βq, Y qs . (5.1)

Puisque l’espérance est prise sous la distribution de probabilité conjointe PX,Y des variables
X,Y qui est supposé être inconnu, h ne peut pas être appris directement de cette manière. On
devrait plutôt apprendre en considérant un échantillon de données. Nous supposons que les obser-
vations sur notre ensemble de données tpxi, yiquiPrns sont indépendantes et identiquement distri-
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buées. De ce fait, par la loi des grands nombres, la loi empirique 1
n

řn
i“1 δpxi,yiq, où δ représente

les masses de Dirac, approximent la vraie distribution PX,Y si le nombre d’observations n est
suffisamment grand. D’où le paradigme Minimisation du Risque Empirique (MRE) :

min
βPRp

Rnpβq :“
1

n

n
ÿ

i“1

`phpxi, βq, yiq . (5.2)

Une instanciation populaire des formulations (5.1), (5.2) est l’outil fondamental en Statistique,
connu sous le nom de Estimation du Maximum de Vraisemblance (EMV). Nous nous référons à
(Van der Vaart, 1998) pour une description complète et (Stigler, 2007) pour l’histoire passionnée
de cette méthode. Fait intéressant, le EMV de la famille exponentielle conduit naturellement à un
problème d’optimisation convexe (Brown, 1986).

Definition 23 (Famille Exponentielle). Soit ν une mesure σ-finie et λpθq “
ş

exppθyqνpdyq sa
transformée de Laplace de domaine N “ tθ P Rn : λpθq ă `8u. Pour P pθq “ logpλpθqq, soit

pθpyq “ exp
`

xθ, yy ´ P pθq
˘

. (5.3)

Soit Θ un sous-ensemble convexe de N , la famille de densité tpθ : θ P Θu est appelé famille
exponentielle (standard).

La convexité du problème d’optimisation de EMV d’une famille exponentielle découle de la
convexité de la transformée de Log-Laplace P , nous rappelons la preuve dans le Chapitre 4.

Theorem 5 (Brown (1986, Theorem 1.13)). L’ensemble N est convexe et P est convexe sur N .
De plus, P est semi-continue inférieurement sur Rn et continue sur l’intérieur de N .

En inférence statistique, il est courant de supposer que la distribution des observations est pa-
ramétrée par un certain θ0 P Θ inconnu. L’objectif est d’approximer et de fournir des informations
sur le paramètre du modèle, à défaut de le trouver exactement, à partir de variables aléatoires dis-
tribuées sous cette loi. Une méthode inférentielle classique est le EMV. Pour une variable y dans
le support convexe de ν et Θ un sous-ensemble convexe de N , la fonction Θ Q θ ÞÑ pθpyq s’ap-
pelle vraisemblance au point y. En supposant que le paramètre θ0 appartient à Θ et que y est une
variable aléatoire de loi Pθ0 , l’estimateur du maximum de vraisemblance est défini par

θ̂pyq “ arg max
θPΘ

pθpyq “ arg min
θPΘ

´ logppθpyqq “ arg min
θPΘ

P pθq ´ xθ, yy

which is a convex optimization problem with a loss function `pθ, yq :“ P pθq ´ xθ, yy. Ainsi,
l’EMV pour des observations indépendantes et identiquement distribuées y “ py1, ¨ ¨ ¨ , ynq s’écrit

θ̂pyq P arg min
θPΘ

1

n

n
ÿ

i“1

`pyi, θq . (5.4)

Dans un contexte d’apprentissage, un exemple important est la généralisation de la régression
conduisant à la famille de Modèle Linéaire Généralisé (MLG) (McCullagh and Nelder, 1989) où
le modèle statistique contient une partie déterministe donnée par une combinaison linéaire des
covariables η “ Xβ et la partie aléatoire donnée par µ “ ErY s où Y est supposée appartenir à
une famille exponentielle, sont liées par hpηq “ µ. Selon la distribution supposée des observa-
tions, nous obtenons l’estimateur des moindres carrés et la regression logistique comme exemples
canoniques pour les tâches de régression et de classification.
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Moindre Carrés. Soit un échantillon d’observations y “ py1, ¨ ¨ ¨ , ynq indépendantes et de
même loi gaussienne N pµ, σ2q, i.e.

ppµ,σ2qpyq “
1

?
2πσ2

exp

"

´
py ´ µq2

2σ2

*

“ exp
 

xpθ1, θ2q, py, y
2qy ´ P pθ1, θ2q

(

où θ “ pθ1, θ2q “ p
µ
σ2 ,´

1
2σ2 q et P pθq “ ´ θ2

1
4θ2
` 1

2 logp´ π
θ2
q. En supposant que σ2 (donc θ2)

est connu, l’EMV (5.4) pour un modèle gaussien de moyenne µ “ Xβ est donné par :

β̂ P arg min
βPRp

n
ÿ

i“1

1

2σ2
pyi ´ x

J
i βq

2 . (5.5)

Régression Logistique. Soit une variable binaire y P t0, 1u suivant une loi de Bernoulli de
paramètre µ i.e.

pµpyq “ µyp1´ µq1´y “ exp txθ, yy ´ P pθqu ,

où θ “ logp µ
1´µq et P pθq “ logp 1

1`eθ
q. Dans un contexte de regression où la partie deterministe

est θ “ Xβ, l’EMV (5.4) pour un échantillon de variables indépendant et identiquement distribuée
y “ py1, ¨ ¨ ¨ , ynq, est donné par :

β̂ P arg min
βPRp

n
ÿ

i“1

log
`

1` exppxJi βq
˘

´ yix
J
i β .

Cependant, le cadre de la minimisation du risque empirique n’est pas limitée aux modèles
statistiques d’estimation basée sur la vraisemblance. D’autres paradigmes d’apprentissage, comme
le perceptron et les machines à vecteur support, fournissent un bon prédicteur sans hypothèses sur
la distribution sous-jacente des données.

Dans de nombreux cas, il s’avère trés difficile de résoudre le problème de minimisation du
risque empirique. La plus part du temps, il n’existe pas de formulation explite des solutions. Et en
toute généralité, nous ne savons pas résoudre exactement les problèmes d’optimisation ! Voir (Nes-
terov, 2004, Chapitre 1). Nous allons donc nous contenté d’approximation à un certain niveau de
précision ε. Dans une configuration à grande échelle, la dimensionnalité dans les problème d’opti-
misation (5.2) peut être si importante que les algorithmes nécessitant une évaluation des quantités
reposant sur le jeu de données complet deviennent impraticables. Une tendance populaire dans
l’optimisation pour l’apprentissage statistique est de revenir à des méthodes simples développées
avec des ressources de calcul limitées et popularisées dans les 50 (voir (Bottou et al., 2016) pour
une revue récente). Par conséquent, les algorithmes qui fournissent des calculs rapides et peu
coûteux avec des informations limitées ont été privilégiés. Nous pouvons citer par exemple l’opti-
misation incrémentale incluant la descente stochastique du gradient (Robbins and Monro, 1951),
l’algorithme Frank-Wolfe (Frank and Wolfe, 1956), la descente par bloc de coordonnée (Warga,
1963) et les méthodes d’ensemble actives.

5.2 Régularisation Structurée et Choix d’Hyperparamètre

L’ajout d’un terme de régularisation apparaît naturellement en apprentissage statistique pour
améliorer la stabilité numérique et éviter des phénomènes de sur-apprentissage. En effet, résoudre
le problème de minimisation du risque empirique (5.2) n’est souvent pas suffisant pour trouver
de bons prédicteurs, car le problème a tendance à être mal conditionné dans des contextes de
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grandes dimensions. Cette régularisation encode une connaissance supplémentaire sur la structure
des données. Par exemple, il peut être utilisé pour imposer le choix de modèles plus simples et
peut être formulé comme suit :

β̂pλq P arg min
βPRp

1

n

n
ÿ

i“1

`phpxi, βq, yiq ` λΩpβq , (5.6)

où Ω est la fonction de régularisation qui pénalise les solutions complexes et λ ą 0 contrôle le
niveau de biais inductif. Il est généralement lié au principe de simplicité de G. Ockham (14ème
siècle) ou (Wrinch and Jeffreys, 1921). Le terme de régularisation équilibre la minimisation du
risque empirique et la simplicité structurelle du modèle à travers l’hyperparamètre λ. Il est es-
sentiel de trouver l’équilibre optimal pour obtenir une bonne prédiction sur des ensembles de
données inédits :les petits λ conduisent à des modèles complexes qui risquent de sur-apprendre
sur les données d’entrainement tandis que les grands λ conduisent à des modèles simplistes avec
une puissance de prédiction médiocre. Une approche courante pour sélectionner un "bon" para-
mètre consiste à utiliser la validation croisée. Essentiellement, cette méthode évite d’entrainer et
d’évaluer la performance d’un estimateur sur les mêmes données. Il a été introduit dans (Larson,
1931) ; voir (Arlot and Celisse, 2010) pour une description plus complt̀e. Pour simplifier, nous
traitons ici la version simplifiée qui consiste à scinder les données tpxi, yiquiPrns en deux parties
pXtrain, ytrainq et pXtest, ytestq et considérons Λ comme un ensemble d’hyperparamètres discret.
Avec une fonction de perte de validation L qui mesure l’erreur de prédiction sur l’ensemble de
tests, la validation croisée correspond à la réalisation des deux étapes suivantes :

1. résoudre le problème (1.6) avec les données pXtrain, ytrainq pour tout λ P Λ,

2. choisir le λ P Λ qui minimise l’erreur de validation LphpXtest, β̂
pλqq, ytestq.

Une grille standard considérée dans la littérature est λt “ λmax10´δt{pT´1q avec un petit δ
(δ “ 10´2 ou 10´3), voir par exemple (Bühlmann and van de Geer, 2011) [2.12.1] ou le paquet
glmnet (Friedman et al., 2010b) et scikit-learn (Pedregosa et al., 2011). Choisir δ est un
défi du point de vue statistique (les performances ont tendance à diminuer à mesure que δ devient
proche de zéro, en raison du surapprentissage) et du point de vue de l’optimisation, la complexité
de calcul tend à augmenter pour les petits λ, les itérés dans le primal étant denses et le problème à
résoudre de plus en plus mal posé. Il est de coutume de commencer par un assez grand paramètre
de régularisation λ0 “ λmax puis d’effectuer séquentiellement le calcul de β̂pλtq après celui de
β̂pλt´1q. Souvent, elle conduit à calculer les modèles dans l’ordre croissant de complexité : cela
permet une accélération importante en profitant de l’initialisation du démarrage à chaud.

Selon le contexte, plusieurs fonctions de régularisation Ω ont été introduites pour prendre en
compte la régularité à priori des estimateurs. Les exemples utilisés dans nos expériences sont :

Régularisation Ridge ou de Tikhonov. La fonction de régularisation Ωpβq “ ‖β‖2
2 {2 a été

introduite dans (Tikhonov, 1943) pour améliorer la stabilité des problèmes inverses, et en Sta-
tistiques (Hoerl, 1962; Hoerl and Kennard, 1970) pour réduire l’erreur quadratique moyenne de
l’estimateur de moindres carrés classique lorsque la matrice de design est de rang déficient. En
l’apprentissage statistique, il est souvent considéré comme un stabilisateur de l’algorithme d’ap-
prentissage, en ce sens que la prédiction ne change pas beaucoup lorsque les données d’entrée sont
légèrement perturbées. Par conséquent, l’erreur d’apprentissage reste proche de l’erreur de test, ce
qui empêche l’algorithme de surapprendre sur les données d’entrainement (Shalev-Shwartz and
Ben-David, 2014, Chapitre 13.2).

Bien que fondamental, la prévention du phénomène de surapprentissage n’est pas suffisante
dans de nombreuses applications. Souvent, il faut également avoir une bonne représentation des
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données et fournir des modèles de prédiction interprétables. Il est donc crucial de pouvoir sélec-
tionner les variables explicatives les plus pertinentes, ce qui a motivé l’introduction de méthodes
de régularisation parcimonieuse.

Régularisation Parcimonieuse de Type Lasso. La régularisation Ωpβq “ ‖β‖1 a été introduite
dans (Chen and Donoho, 1995; Tibshirani, 1996) en traitement du signal et en Statistiques. Elle suit
les méthodes classiques de sélection variables explicatives dans la régression multiple (Efroymson,
1960) pour la régression adapdative ou (Breiman, 1995) pour la sélection avec la non-négative
garrote. La pénalité `1 norm a l’avantage de pouvoir sélectionner des variables de manière continue
et sa formulation convexe permet d’utiliser un algorithme itératif rapide.

Plus tard, plusieurs extensions ont été proposées, notamment par Zou and Hastie (2005) pour
la régularisation Elastic Net Ωpβq “ α ‖β‖1 ` p1´ αq ‖β‖2

2 {2 qui fait une interpolation entre le
Ridge et le Lasso, par Hebiri and van de Geer (2011) pour le Lasso lissé où Ωpβq “ α ‖β‖1 `

γ
řp
j“2pβj ´ βj´1q

2, ou pour des régularisations de groupe hiérarchiques plus complexes (Fried-
man et al., 2010a; Sprechmann et al., 2011). Une enquête fournissant une théorie unifiée pour les
normes induisant une faible densité structurée convexe a récemment été proposée dans (Obozinski
and Bach, 2016). Notez que la parcimonie peut également être incorporée dans le terme d’ajuste-
ment au données. C’est le cas de la perte charnière (hinge loss) qui, d’ailleurs peut également être
utilisée comme critère de sélection des variables (Guyon et al., 2002; Rakotomamonjy, 2003).

En utilisant de telle régularisation, la performance en généralisation, des estimateurs obtenus
en minimisant le risque empirique, est alors fortement liée aux capacités de réglage du paramètre
de régularisation λ. Cela nécessite souvent le calcul du chemin complet des solutions dans le cadre
des méthodes d’homotopie sur une plage (souvent un ensemble discret) d’hyperparamètres Λ. En
effet, il est généralement impossible de calculer le chemin complet dans un ensemble continu si
on a pas accés aux solutions exacte dans l’Equation (5.6). Cependant, pour les problèmes impli-
quant une perte quadratique par morceaux et des régularisations linéaires par morceaux, le chemin
des solutions tβ̂pλq, λ P Λu est continu et linéaire par morceaux (Rosset and Zhu, 2007). Cette
linéarité par morceaux et très spécifique et permet de calculer exactement la totalité du chemin de
la solution. Ce type de propriété a été redécouvert plusieurs fois dans la littérature. Par exemple,
dans (Markowitz, 1952) pour la sélection de portefeuille, (Osborne, 1992) pour les problèmes de
régression quantile, (Osborne et al., 2000a) pour Lasso, (Efron et al., 2004; Park and Hastie, 2007)
pour le modèle linéaire géneralisé avec une régularisation avec la norme `1.

Outre la régularité générale des fonctions en jeu, l’exploitation explicite de la structure des
fonctions permet de concevoir des algorithmes d’optimisation plus rapides. L’une des principales
contributions de cette thèse est de proposer des accélérations supplémentaires en économisant une
quantité considérable de calculs effectués le long des itérations. Ici, nous ne considérerons que
les problèmes d’optimisation convexe i.e. les fonctions dans (5.6) où la classe d’hypothèses H
et la fonction de perte ` sont supposées être toutes deux convexes. Nous avons vu qu’une telle
formulation convexe inclut déjà une grande classe de tâches d’apprentissage statistique telles que
l’estimation du maximum de vraisemblance pour la famille des distribution exponentielle, mais
également des formulations résultant du paradigme des machine à vecteurs de support (SVM).

125



5.3 Publications et Résumé des Chapitres

Publications. Les contributions de la thèse ont fait l’objet de publications et de présentations
dans des conférences et journaux d’apprentissage statistique :

Auteurs : E. Ndiaye, O. Fercoq, A. Gramfort, J. Salmon.
1´ “Gap Safe Screening Rules for Sparse Multi-task and Multi-class Models”.

Advances in Neural Information Processing Systems, 811-819, 2015.

2´ “Gap Safe Screening Rules for Sparse-Group Lasso”.
Advances in Neural Information Processing Systems, 388-396, 2016.

3´ “Gap Safe Screening Rules for Sparsity Enforcing Penalties”.
The Journal of Machine Learning Research 18 (1), 4671-4703, 2017.

Auteurs : E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, J. Salmon.
4´ “Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression”.

Journal of Physics : Conference Series 904 (1), 012006, 2017.

Auteurs : E. Ndiaye, T. Le, O. Fercoq, J. Salmon, I. Takeuchi.
5´ Safe Grid Search with Optimal Complexity. Soumis dans une revue, 2018.

Nous présentons les résultats obtenus dans les différents chapitres de la thèse comme suit.

Notations. La variable d’optimisation est un vecteur β “ pβ1, . . . , βpq
J admettant une structure

de groupe. Un groupe de fonctionnalités est un sous-ensemble g Ă rps et |g| est sa cardinalité.
L’ensemble de groupes est noté G et nous nous concentrons uniquement sur les groupes ne se
chevauchant pas qui forment une partition de l’ensemble rps. Nous désignons par βg le vecteur
dans R|g|, qui est la restriction de β aux indices de g. Nous utilisons également la notation Xg P

Rnˆng pour désigner la sous-matrice de X assemblée à partir des colonnes d’indices j P et Xj

lorsque les groupes une seule fonctionnalité, i.e. quand g “ tju. Des notations similaires sont
utilisées pour les observations et le groupe d’échantillons sera noté I.
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Chapitre 2. Règle Sûre de Criblage de Variables.

Nous considérons les problèmes de minimisation du risque empirique régularisés comme
étant la somme d’un terme lisse (ajustement aux données) et d’un terme non lisse (pénalité
sur la complexité de la solution, indirectement sa parcimonie), ou inversement. Utilisant la
dualité de Fenchel, nous travaillons avec les formulations primaux/duaux suivantes :

β̂pλq P arg min
βPRp

ÿ

iPI
fipx

J
i βq ` λ

ÿ

gPG
Ωgpβgq “: Pλpβq (Primal), (5.7)

θ̂pλq P arg max
θPRn

´
ÿ

iPI
f˚i p´λθiq ´ λ

ÿ

gPG
Ω˚g pX

J
g θq “: Dλpθq (Dual). (5.8)

De plus, nous avons les conditions d’optimalité reliant les solutions primale et duale :

@i P I, ´λθ̂
pλq
i P Bfipx

J
i β̂

pλqq ðñ xJi β̂
pλq P Bf˚i p´λθ̂

pλq
i q, (5.9)

@g P G, XJg θ̂
pλq P BΩgpβ̂

pλq
g q ðñ β̂pλqg P BΩ˚g pX

J
g θ̂
pλqq. (5.10)

Nous montrons comment exploiter une structure particulière des solutions (leur parcimo-
nie) pour ignorer des variables sans importance lors du processus d’optimisation. Nous
garantissons de ne pas les exclure à tord et par conséquent nous accélérons la résolution
des problèmes 5.7 et 5.8. La raison sous-jacente est qu’il n’y a aucun avantage à effectuer
des calculs sans valeur impliquant des caractéristiques ou des observations non influentes.
Cette stratégie dite de criblage sûre suit le travail fondateur de El Ghaoui et al. (2012)
et a rapidement conduit à une littérature de plus en plus florissante afin de l’appliquer à
différentes instanciations du problème (1.6).
Nous proposons ici, un cadre unificateur qui met en évidence les structures sous-jacentes
des fonctions convexes qui sont souvent implicitement exploitées pour établir ces règles de
filtrage cans la formulation de la minimisation du risque empirique régularisée séparable et
non différentiable. Notre méthode repose sur l’exploitation de conditions d’optimalité de
premier ordre et des propriétés de séparation des sous-différentiels de fonctions convexes.
Ainsi, nous généralisons les règles de criblage de variables précédemment connues dans
la littérature. Il s’applique à une grande classe de tâches d’apprentissage supervisées telles
que Lasso, Sparse-Group Lasso, Lasso multitâche, régression logistique binaire et multi-
nomiale, machine à vecteurs de support (SVM), pour en nommer quelques-unes.
Nous présentons brièvement une règle générale d’indentification des groupes de variables
ainsi que la construction des régions de sécurité permettant de garantir que l’on élimine
que des variables non influentes.
Theorem 6. Soit R˚ un ensemble (dual) fermé et convexe qui contient la solution (duale)
optimale θ̂pλq. Pour tout groupe g de variable dans G, pour tout vecteur β‹g tel que intBΩgpβ

‹
g q

est non vide, nous obtenons les règles d’identification suivantes :

Règle de Criblage : Si Ω˝gpX
J
g θ̂
pλq, β‹g q ă 1 alors β̂pλqg “ β‹g . (5.11)

Règle de Criblage Sûre : Si max
θPR˚

Ω˝gpX
J
g θ, β

‹
g q ă 1 alors β̂pλqg “ β‹g . (5.12)

Le terme Ω˝gpX
J
g θ, β

‹
g q quantifie une distance entre le vecteur XJg θ et la frontière de l’en-

semble BΩgpβ
‹
g q. Les règles de criblage permettent donc d’identifier les groupes de vecteur

qui ne saturent pas les certificats d’optimalité. Dans le cas du Lasso, les coordonnées du
vecteur éliminées correspondent aux emplacements j où la solution optimale β̂pλqj est nulle.
Ainsi, en se focalisant que sur les coordonnées non nulles, nous réduisons la dimensionna-
lité du problème et économisons des calculs.
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Theorem 7 (Construction d’une Région de Sécurité dans le Dual). Nous supposons que fi
admet un gradient 1{γ-Lipschitz. Pour tout β P domPλ et θ P domDλ, le saut de dualité
est défini par Gapλpβ, θq :“ Pλpβq ´Dλpθq. Nous avons

∥∥∥θ̂pλq ´ θ∥∥∥ ď
d

2 Gapλpβ, θq

γλ2
. (5.13)

De ce fait, la boule R˚ :“ Bpθ,
a

2 Gapλpβ, θq{γλ
2q est une region de sécurité i.e. contient

la solution dual optimal θ̂pλq quelque soit β P domPλ et θ P domDλ. Nous proposons de
construire un vecteur dual en mettant à l’echelle l’image de l’application du gradient

θ :“
´∇fpXβq

maxpλ,S˝domΩ˚pX
J∇fpXβqqq

P domDλ . (5.14)

En exploitant les informations fournies par les bornes dépendantes du saut de dualité, nous
fournissons des résultats théoriques, tels que la complexité en itération de l’identifica-
tion des ensembles actifs (optimaux), et concevons de nouveaux algorithmes rapides pour
éliminer en toute sécurité davantage de variables que les règles qui ont été considérées
auparavant, notamment pour les paramètres de régularisation de faible intensité. Notre ap-
proche peut s’adapter à n’importe quel algorithm itératif, mais convient particulièrement
bien aux méthodes de descente par blocs de coordonnées. Nous introduisons également
de nouvelles stratégies de démarrage à chaud qui ont montré nette amélioration des per-
formances. Dans toutes nos expériences numériques, nous rapportons des accélérations
significatives par rapport aux règles de criblage proposées précédemment dans la littera-
ture sur tous les jeux de données testés.
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Chapitre 3. Optimisation Globale par Calcul du Chemin Complet de Régularisation et Sélection
Optimale d’Hyperparamètre.

Nous discutons de l’optimisation par approximation de chemin et de son application dans
la sélection de modèle. Malgré la propriété intéressante des méthodes d’homotopie pour
fournir une meilleure prédiction en termes de performances en généralisation, la sélection
de l’intensité optimale de régularisation λ pour l’erreur de validation est parfois difficile,
même pour un problème tel que Lasso, dans lequel nous pouvons trouver un algorithme qui
calcule exactement la solution entière. Les algorithmes de calcul du chemin exact tel que
le Lars (Efron et al., 2004) ou les méthodes basées sur un prédicteur-correcteur peuvent
souffrir d’instabilités numériques dues à plusieurs inversions de matrice et à leur com-
plexité, c’est-à-dire le nombre de segments linéaires dans le chemin, pouvant être expo-
nentielle en la dimension du problème. Par exemple, la complexité pire cas pour le Lasso
est exactement p3p ` 1q{2 (Mairal and Yu, 2012) et Op2nq pour le SVM (Gärtner et al.,
2012). Ces complexités pire cas montrent que même si ces algorithmes peuvent être très
efficaces et fournissent des solutions exactes (ou de très grande précision), ils peuvent être
totalement impraticables en grande dimension.
Dans ce chapitre, nous revenons sur les techniques d’approximation du chemin de regu-
larisation pour une tolérance prédéfinie ε, dans un cadre unifié et nous montrons que sa
complexité est de Op1{ d

?
εq pour les fonctions uniformément convexes d’ordre d ą 0 et

Op1{
?
εq pour les fonctions auto-concordantes généralisées. Cela inclut des exemples tels

que la perte quadratique qui intervient dans l’estimateur des moindres carrés, mais aussi
l’important exemple de perte logistique qui, à notre connaissance, n’a pas été efficacement
traité par les travaux antérieurs. De plus, nous clarifions le lien entre la complexité de l’ap-
proximation du chemin de regularisation et la régularité de la fonction de perte considérée
dans le cadre de la minimisation du risque empirique réguralisée.
Enfin, nous tirons parti de notre technique pour exposer des bornes plus précises sur l’er-
reur de validation et fournissons un algorithme pratique pour la sélection d’hyperparamètre
avec de plus forte garantie. Plus précisément, étant donné le fractionnement des données
d’apprentissage et de validation pytrain, Xtrain, yval, Xvalq, nous formulons le problème du
choix d’hyperparamètre comme une optimisation à deux niveaux

arg min
λPrλmin,λmaxs

Evpβ̂
pλqq “ Lpyval, Xvalβ̂

pλqq

s.t. β̂pλq P arg min
βPRp

`pXtrainβ, ytrainq ` λΩpβq .

Pour une tolérance prescrite εv ą 0 de l’erreur de prédiction sur les données de validation,
nous montrons comment concevoir une grille discrète du paramètre Λvalpεvq incluse dans
le segment rλmin, λmaxs tels que :

min
λtPΛvalpεvq

Evpβ
pλtqq ´ min

λPrλmin,λmaxs
Evpβ̂

pλqq ď εv.

Par conséquent, notre approche consiste simplement en un algorithme d’exploration sé-
quentielle sur une grille de paramètre. Elle fournit un schema numérique garantissant une
convergence globale pour approximer l’hyperparamètre optimal à un niveau d’erreur de va-
lidation εv quelconque. Elle s’applique à une grande classe de tâches d’apprentissage sta-
tistique. Nous illustrons par des experiences numériques l’utilisation de notre algorithme
en pratique sur des problèmes de regression et de classification.
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Chapitre 4. Optimisation Jointe pour l’Estimation Jointe de Paramètre de Localisation et d’Echèlle.

L’Estimation du Maximum de Vraisemblance (EMV) est un paradigme d’apprentissage
statistique classique et important, qui nécessite la spécification d’un bon modèle statis-
tique. Par exemple, un modèle linéaire avec du bruit gaussien nécessite l’estimation des
paramètres de position et de dispersion pµ, σ2q. Si σ est connu et que les observations
y “ py1, ¨ ¨ ¨ , ynq sont indépendantes et distribuées de manière identique, l’EMV conduit
à l’estimation classique des moindres carrés (5.5) où l’influence de σ peut être ignoré dans
la résolution du problème d’optimisatio. Cependant, si σ est inconnu, l’estimation seul de
µ n’est pas suffisante pour caractériser la distribution Pµ,σ2 . Ce qui conduit à un modèle
incomplet.
De plus, dans un contexte de grandes dimensions où le nombre d’observations est (très)
inférieur au nombre de variable caractéristiques, les méthodes d’estimation fournissant des
solutions parcimonieuses, telle que le Lasso, sont très populaires car elles permettent de
sélectionner des variables importantes et facilitent l’interprétation des variables discrimi-
nantes.
Pour plus d’efficacité, ils s’appuient sur un paramètre de régularisation qui permet de cali-
brer l’ajustement aux données contre la parcimonie et doit être proportionnel au niveau de
bruit σ (Bickel et al., 2009). Pourtant, ce dernier est souvent inconnu dans la pratique.
Une solution possible consiste à optimiser conjointement le paramètre de régression µ ainsi
que le niveau de bruit σ. Une formulation directe de l’EMV dans le cas gaussien donne

min
βPRp,σą0

logpσq `
1

2σ2
‖y ´Xβ‖2 .

Une telle formulation n’aboutit malheuresement pas à un problème conjointement convexe.
En outre, lorsque y “ Xβ et σ tend vers 0 c’est-à-dire à l’approche des frontière de l’es-
pace des paramètres, la fonction objective tend vers ´8. Le fait qu’elle ne soit pas bornée
inférieurement complique à la fois l’analyse statistique et l’optimisation globale.
Nous étudions différentes formulations convexes qui ont été considérées dans la littéra-
ture, à savoir (Huber, 1981; Owen, 2007) ainsi que des méthodes de re-paramétrage (Städ-
ler et al., 2010). Du point de vue de l’optimisation, nous illustrons les problèmes numé-
riques de la formulation du Lasso concomitant et proposons une modification lisse que
nous avons dénommé Smoothed Concomitant Lasso, visant à augmenter les stabilités nu-
mériques. Notre proposition s’appuie sur les techniques de lissage à la Nesterov (2005);
Beck and Teboulle (2012) du problème initial. En utilisant les règles de criblage sûres
sur des chemins de régularisation et le démarrage à chaud développés dans les chapitres
précédants, nous proposons une implementation efficace et précise pour une estimation
conjointe. Nous évaluons un coÃ»t de calcul similaire à celui du Lasso. Il s’agit d’une
avancée significative par rapport aux méthodes précédentes basées sur des solveurs géné-
riques de programmation conique ou de procédure itérative alternant les étapes de Lasso
et les étapes d’estimation de bruit.

Pour assurer une reproductibilité de nos expériences numériques, les implémentations des al-
gorithmes proposés dans cette thèse ainsi que leurs codes sources sont disponibles dans la page

https://github.com/EugeneNdiaye.
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Titre : Algorithmes d’Optimisation Sûrs pour la Sélection de Variables et le Réglage d’Hyperpa-
ramètre.

Mots Clefs : Optimisation Convexe, Parcimonie Structurée, Élimination Sûre de Variables, En-
semble Actif, Chemin de Régularisation, Estimation de Variance.

Résumé :
Le traitement massif et automatique des données requiert le développement de techniques
de filtration des informations les plus importantes. Parmi ces méthodes, celles présentant des
structures parcimonieuses se sont révélées idoines pour améliorer l’efficacité statistique et
computationnelle des estimateurs, dans un contexte de grande dimension. Elles s’expriment
souvent comme solution de la minimisation du risque empirique régularisé s’écrivant comme une
somme d’un terme lisse qui mesure la qualité de l’ajustement aux données, et d’un terme non lisse
qui pénalise les solutions complexes. Cependant, une telle manière d’inclure des informations a
priori introduit de nombreuses difficultés numériques pour résoudre le problème d’optimisation
sous-jacent et pour calibrer le niveau de régularisation. Ces problématiques ont été au coeur des
questions que nous avons abordées dans cette thèse.

Une technique récente, appelée «Screening Rules», propose d’ignorer certaines variables pendant
le processus d’optimisation en tirant bénéfice de la parcimonie attendue des solutions. Ces règles
d’élimination sont dites sûres lorsqu’elles garantissent de ne pas rejeter les variables à tort.
Nous proposons un cadre unifié pour identifier les structures importantes dans ces problèmes
d’optimisation convexe, et introduisons les règles «Gap Safe Screening Rules». Elles permettent
d’obtenir des gains considérables en temps de calcul grâce à la réduction de la dimension induite
par cette méthode. De plus, elles s’incorporent facilement aux algorithmes itératifs et s’appliquent
à un plus grand nombre de problèmes que les méthodes précédentes.

Pour trouver un bon compromis entre minimisation du risque et introduction d’un biais d’appren-
tissage, les algorithmes d’homotopie offrent la possibilité de tracer la courbe des solutions en
fonction du paramètre de régularisation. Toutefois, ils présentent des instabilités numériques dues
à plusieurs inversions de matrice, et sont souvent coûteux en grande dimension. Aussi, ils ont des
complexités exponentielles en la dimension du modèle dans des cas défavorables. En autorisant
des solutions approchées, une approximation de la courbe des solutions permet de contourner
les inconvénients susmentionnés. Nous revisitons les techniques d’approximation des chemins
de régularisation pour une tolérance prédéfinie, et nous analysons leur complexité en fonction
de la régularité des fonctions de perte en jeu. Il s’ensuit une proposition d’algorithmes optimaux
ainsi que diverses stratégies d’exploration de l’espace des paramètres. Ceci permet de proposer
une méthode de calibration de la régularisation avec une garantie de convergence globale pour la
minimisation du risque empirique sur les données de validation.

Le Lasso, un des estimateurs parcimonieux les plus célèbres et les plus étudiés, repose sur une
théorie statistique qui suggère de choisir la régularisation en fonction de la variance des obser-
vations. Ceci est difficilement utilisable en pratique car la variance du modèle est une quantité
souvent inconnue. Dans de tels cas, il est possible d’optimiser conjointement les coefficients de
régression et le niveau de bruit. Ces estimations concomitantes, apparues dans la littérature sous
les noms de Scaled Lasso, Square-Root Lasso, fournissent des résultats théoriques aussi satisfai-
sants que celui du Lasso tout en étant indépendants de la variance réelle. Bien que présentant des
avancées théoriques et pratiques importantes, ces méthodes sont numériquement instables et les
algorithmes actuellement disponibles sont coûteux en temps de calcul. Nous illustrons ces dif-
ficultés et nous proposons à la fois des modifications basées sur des techniques de lissage pour
accroître la stabilité numérique de ces estimateurs, ainsi qu’un algorithme plus efficace pour les
obtenir.
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Title : Safe Optimization Algorithms for Variable Selection and Hyperparameter Tuning

Keys words : Convex Optimization, Structured Sparsity, Safe Screening Rules, Active set Regu-
larization Path, Variance Estimation

Abstract :
Massive and automatic data processing requires the development of techniques able to filter
the most important information. Among these methods, those with sparse structures have been
shown to improve the statistical and computational efficiency of estimators in a context of large
dimension. They can often be expressed as a solution of regularized empirical risk minimization,
and generally lead to non differentiable optimization problems in the form of a sum of a smooth
term, measuring the quality of the fit, and a non-smooth term, penalizing complex solutions.
Although it has considerable advantages, such a way of including prior information, unfortunately
introduces many numerical difficulties, both for solving the underlying optimization problem and
to calibrate the level of regularization. Solving these issues has been at the heart of this thesis.

A recently introduced technique, called "Screening Rules", proposes to ignore some variables
during the optimization process by benefiting from the expected sparsity of the solutions. These
elimination rules are said to be safe when the procedure guarantees that no variable is wrongly
rejected. In this work, we propose a unified framework for identifying important structures in
these convex optimization problems and we introduce the "Gap Safe Screening Rules". They
allows to obtain significant gains in computational time thanks to the dimensionality reduction
induced by this method. In addition, they can be easily inserted into iterative algorithms and apply
to a large number of problems.

To find a good compromise between minimizing risk and introducing a learning bias, (exact)
homotopy continuation algorithms offer the possibility of tracking the curve of the solutions as
a function of the regularization parameters. However, they exhibit numerical instabilities due to
several matrix inversions and are often expensive in large dimension. Another weakness is that a
worst-case analysis shows that they have exact complexities that are exponential in the dimension
of the model parameter. Allowing approximated solutions makes possible to circumvent the
aforementioned drawbacks by approximating the curve of the solutions. In this thesis, we revisit
the approximation techniques of the regularization paths given a predefined tolerance and we
propose an in-depth analysis of their complexity w.r.t. the regularity of the loss functions involved.
Hence, we propose optimal algorithms as well as various strategies for exploring the parameters
space. We also provide a calibration method (for the regularization parameter) that enjoys global
convergence guarantees for the minimization of the empirical risk on the validation data.

Among sparse regularization methods, the Lasso is one of the most celebrated and studied. Its
statistical theory suggests choosing the level of regularization according to the amount of variance
in the observations, which is difficult to use in practice because the variance of the model is often
an unknown quantity. In such case, it is possible to jointly optimize the regression parameter as
well as the level of noise. These concomitant estimates, appeared in the literature under the names
of Scaled Lasso or Square-Root Lasso, and provide theoretical results as sharp as that of the
Lasso while being independent of the actual noise level of the observations. Although presenting
important advances, these methods are numerically unstable and the currently available algorithms
are expensive in computation time. We illustrate these difficulties and we propose modifications
based on smoothing techniques to increase stability of these estimators as well as to introduce a
faster algorithm.
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