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Abstract

Résumé

Gri�th fut l'un des pionniers de la mécanique de la rupture, et le premier à concevoir

un lien entre la propagation d'une �ssure et la création d'une énergie de surface. Il a su voir

la croissance d'une �ssure comme le résultat d'une compétition entre la restitution d'énergie

de déformation et la création d'une énergie de surface au cours d'un incrément de longueur

de �ssure. Depuis ce temps, l'intérêt pour la modélisation de la nucléation et la propagation

des �ssures n'a fait que croître. En 1998, Francfort et Marigo ont proposé une approche

variationnelle de la rupture, dans laquelle l'évolution de l'endommagement ou d'une �ssure

est régie par un principe de minimisation d'énergie. Dans le cadre de matériaux fragiles, avec

un comportement adoucissant, ils ont construit des modèles d'endommagement qui reposent

sur trois grands principes : l'irréversibilité, la stabilité et le bilan d'énergie. Ils ont régularisé

ces modèles en ajoutant à l'énergie un terme contenant un gradient spatial d'endommagement

pondéré par un paramètre appelé longueur caractéristique ou longueur interne. Au cours des

dernières années, ces modèles, parfois appelés modèles à champs de phase, ont été largement

utilisés pour modéliser la rupture fragile et ductile, depuis l'initiation de l'endommagement

jusqu'à la propagation d'une �ssure. Ils ont été enrichis par l'apport de couplages avec de

la plasticité, de la température ou de la dynamique. Cependant, la majorité des études

disponibles dans la littérature ne concerne que le cadre des petites déformations, et très peu

d'études poussées ont été menées a�n d'étudier leur pertinence dans un contexte de grandes

déformations. Le but de ce travail est par conséquent d'étudier ces modèles dans un contexte

de grandes déformations, tant d'un point de vue analytique que numérique.

Dans la première partie de ce travail, nous établissons des solutions analytiques d'évolution,

homogène et localisée, de l'endommagement, pour des matériaux visqueux, en petites et en

grandes déformations. Les calculs se font dans un cadre uni-dimensionnel, sur une barre

soumise à un déplacement à l'une de ses extrémités. En petites déformations, les modèles

rhéologiques de Maxwell et Poynting-Thomson sont étudiés, et en grandes déformations, les

modèles de Maxwell et Zener sont choisis. Une étude sur l'évolution de l'endommagement

dans un cas purement hyperélastique est aussi menée. En grandes déformations, les calculs

se font dans la con�guration de référence. L'énergie dissipée par l'endommagement est écrite

sous la même forme que dans le cas d'un matériau élastique linéaire. Dans le cas d'une barre

hyperélastique, lorsque l'endommagement atteint sa valeur maximale, la barre est considérée

comme cassée, et par conséquent l'énergie hyperélastique est nulle. L'énergie de rupture

pour un matériau hyperélastique est donc la même que pour un matériau linéaire élastique.

Ceci permet de comparer les résultats analytiques et numériques. Dans le cas des matéri-

aux visqueux, que ce soit en petites ou en grandes déformations, les études analytiques ont

mené aux mêmes résultats. Il s'avère que pour le modèle de Maxwell, qui est un modèle de

�uide, il existe une vitesse de déformation seuil en-dessous de laquelle un matériau ne peut

s'endommager. Pour le modèle de Poynting-Thomson, qui représente le comportement d'un

solide, une telle condition quant au développement de l'endommagement homogène n'existe
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pas : quelle que soit la vitesse de déformation imposée, la barre peut toujours s'endommager.

En revanche, les développements ont montré qu'il existe tout de même une condition sur la

valeur de la vitesse de déformation pour que l'endommagement se localise sur la barre.

A cette première partie analytique succède naturellement une partie numérique qui dé-

taille l'implémentation des modèles d'endommagement à gradient dans des codes éléments

�nis en grandes déformations : la librairie FEniCS a été utilisée, notamment pour e�ectuer

des tests en 1D et 2D. Le code académique MEF++ a quant à lui été utilisé pour des sim-

ulations de taille plus conséquentes, en 2D et 3D. De même qu'en petites déformations, une

stratégie de minimisation alternée est adoptée pour résoudre successivement les problèmes

d'endommagement et de déplacement. Le comportement hyperélastique du matériau est

modélisé par une loi de Mooney-Rivlin quasi-incompressible. Une méthode mixte pénalisée

en déplacement-pression est utilisée : la pression est discrétisée avec des champs scalaires

constants par éléments, tandis que le déplacement est discrétisé avec des champs linéaires

ou quadratiques, selon la complexité des cas étudiés. De nombreux tests sont e�ectués, sur

diverses géométries en 2D et 3D. Cela a permis de mettre en évidence la capacité des mod-

èles à initier de l'endommagement en grandes déformations dans des structures parfaitement

saines, pour des matériaux quasi-incompressibles.

Les modèles d'endommagement utilisés pour la seconde partie ne sont cependant capables

d'initier de l'endommagement que dans les zones ou la déformation est importante, c'est-à-

dire dans les zones de forte contrainte déviatorique. Il a toutefois été montré que certains

matériaux polymères, quasi-incompressibles, s'endommagent dans les zones de forte pression

hydrostatique. Par conséquent, la recherche et l'étude d'un modèle d'endommagement ca-

pable d'initier de l'endommagement dans les zones de forte pression, pour des matériaux

quasi-incompressibles lorsqu'ils sont sains, fait l'objet d'une troisième partie. Une nouvelle

dépendance à l'endommagement est introduite dans le coe�cient de compressibilité. Des

développements analytiques en 1D et 2D permettent de véri�er l'implémentation de ces nou-

veaux modèles.

En�n, la croissance brusque de cavités dans un matériau hyperélastique, appelée phénomène

de cavitation, est étudiée, ainsi que son interaction avec l'endommagement. Dans un pre-

mier temps, nous considérons la cavitation comme une simple bifurcation hyperélastique

d'un matériau néo-Hookéen compressible isotrope. Nous étudions le cas d'une sphère pleine

soumise à une élongation, et déterminons l'expression analytique de l'élongation critique

pour laquelle un trou fait son apparition. Dans un second temps, nous montrons qu'il y a

une compétition entre la cavitation et l'endommagement, et qu'en fonction de la valeur du

ratio des élongations critiques respectives pour chaque phénomène, deux types de rupture

apparaissent.
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Abstract

Gradient damage models, also known as phase-�eld models, are now widely used to model

brittle and ductile fracture, from the onset of damage to the propagation of a crack in various

materials. Yet, they have been mainly studied in the framework of small deformation, and

very few studies aims at proving their relevance in a �nite deformation framework. This

would be more helpful for the tire industry that deals with very large deformation problems,

and has to gain insight into the prediction of the initiation of damage in its structures.

The �rst part of this work places emphasis on �nding analytical solutions to unidimen-

sional problems of damaging viscous materials in small and large deformation. In all the

cases, the evolution of damage is studied, both in the homogeneous and localised cases. Hav-

ing such solutions gives a suitable basis to implement these models and validate the numerical

results.

A numerical part naturally follows the �rst one, that details the speci�cities of the nu-

merical implementation of these non local models in large deformation. In order to solve the

displacement and damage problems, the strategy of alternate minimisation (or staggered algo-

rithm) is used. When solved on the reference con�guration, the damage problem is the same

as in small deformation, and consists in a bound constraint minimisation. The displacement

problem is non linear, and a mixed �nite element method is used to solve a displacement-

pressure problem. A quasi-incompressible Mooney-Rivlin law is used to model the behaviour

of the hyperelastic material. Various tests in 2D and 3D are performed to show that gra-

dient damage models are perfectly able to initiate damage in sound, quasi-incompressible

structures, in large deformation.

In the simulations depicted above, it should be noted that the damage laws combined to

the hyperelastic potential results in an initiation of damage that takes place in zones of high

deformation, or in other words, in zones of high deviatoric stress. However, in some polymer

materials, that are known to be quasi-incompressible, it has been shown that the initiation of

damage can take place in zones of high hydrostatic pressure. This is why an important aspect

of the work consists in establishing a damage law such that the material be incompressible

when there is no damage, and the pressure play a role in the damage criterion. Such a model

is exposed in the third part.

Finally, the last part focuses on the cavitation phenomenon, that can be understood as

the sudden growth of a cavity. We �rst study it as a purely hyperelastic bifurcation, in order

to get the analytical value of the critical elongation for which cavitation occurs, in the case

of a compressible isotropic Neo-Hookean material submitted to a radial displacement. We

show that there is a competition between the cavitation phenomenon and the damage, and

that depending on the ratio of the critical elongation for damage and the critical elongation

for cavitation, di�erent rupture patterns can appear.
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CHAPTER I

INTRODUCTION

Contents

I.1 History of damage models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Construction of damage gradient models . . . . . . . . . . . . . . . . . . 3

I.2.1 Non regularised models . . . . . . . . . . . . . . . . . . . . . . . . 4

I.2.2 Regularised model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.2.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . 11

I.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I.4 Project background and organization of the work . . . . . . . . . . . . . . 15

In this introduction, we will �rst recall the history of damage models, with an overview of

non local models and a highlight on the gradient damage models. It will be followed by the

construction of these gradient damage models that will be used in this manuscript. Finally,

we will describe the contexts -both scienti�c and industrial, in which this work has taken

form.

I.1 History of damage models

While rupture mechanics aims at the description of a macroscopic crack that goes through

a structure whose material is sound, damage mechanics aims at describing the phenomenon

that lead to the apparition of a macroscopic crack. The state of damage characterises the

state of a material between the perfectly sound material �exempt of any micro defects such as

micro cracks or micro cavities, and the existence of a crack at a mesoscale. In the framework of

1
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continuum mechanics, damage models use an internal variable to describe the deterioration of

the material via the quanti�cation of defects present in the material. At the macroscale, this

deterioration can be observed through its e�ects on macroscopic properties of the material: it

can decrease the elasticity modulus, the yield stress (when coupled to plasticity), the density,

etc.

An homogenisation operation is introduced in order to quantify the presence of micro

defects in the material and to de�ne an average of the stress and strain �elds. Let us consider

a solid in which a damaged representative volume element (RVE) was isolated, and whose

sound section is noted δS and damaged section δSD. The damage variable is de�ned by

D(−→n ) = max

(
δSD
δS

)
(I.1)

and it corresponds to the density of micro cracks in the RVE of normal −→n . For isotropic

damage, the distribution of defects is uniform in all directions, and the value of D(−→n ) does

not depend on the orientation −→n . Thus, the variable D is enough to characterise the state

of damage. D = 0 corresponds to the non damaged state, while D = 1 corresponds to the

rupture of the element. An e�ective stress has therefore to be introduced, that is de�ned as

the stress related to the surface that can actually resist to the e�orts

σ̃ = σ
S

S̃
or σ̃ =

σ

1−D
. (I.2)

Many phenomenological damage laws have been introduced in the past. One of the �rst

was Kachanov's visco-plastic damage law, introduced in 1958 [31], in which he introduced a

macroscopic damage variable to describe the creep. His pioneering work was soon followed

and the theory of continuum damage mechanics (CDM) thoroughly developed in the last

decades. It is well described in the book of Lemaitre [37] or Lemaitre and Desmorat [39].

Nowadays, many damage laws exist in the literature, and can be classi�ed into two main

families: the local and non local damage laws. Local damage laws state that the damage at

one point of the structure does not depend on the damage on the surrounding points. These

models have been proven to be unsuitable to model the damage evolution of a structure,

for various reasons. First, one can show that it is possible, using these models, to break a

structure, i.e. reach a damage value that is maximum, without any cost of energy. Indeed, the

damage band can be taken as thin as one wants, and when it reduces to zero, the dissipated

energy which is the integral of the dissipated density energy over the domain also reduces to

zero. This a a �rst reason that demonstrates that local models do not work well. Moreover,

it has been shown that they induce a very strong dependency to the mesh: the damage band

width is equal to the mesh element size. Finally, demonstrations of the instability of the

solutions of the damage evolution have also been made. Thus, there are physical, numerical

and mathematical arguments that caution us not to use local damage models.

To alleviate all these faults, non local damage models have been introduced. A review of

these models can be read in [8]. There are two main schools regarding the formulation of the

2
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(a) Sharp crack (b) Regularisation with `/2 (c) Regularisation with `

Figure I.1: Regularisation of a sharp crack: the sharp interface is replaced by a smeared zone

whose width depends on the internal length `.

non locality of the damage. The �rst deals with the study of non local models of integral type.

In these models, the constitutive law of a material at a given point contains terms that average

a state variable, or a thermodynamic potential on a given vicinity of the considered point.

The second group introduces gradient terms of state variables or thermodynamic forces. The

common point of these two di�erent approaches lies in the introduction of a characteristic

length � or internal length, that controls the width of the damaged zone. We will focus

mainly on the non local damage models of gradient type, called "gradient damage models",

and sometimes referred to in the literature as "phase �eld models". The introduction of a

spatial gradient of the damage variable regularises the displacement discontinuity: the sharp

interface of the crack which induces a jump of the displacement across the two lips of the

crack is now replaced by a smeared zone of �nite width where the damage is continuous,

as can be seen on Figure I.1. The localisation of damage is also penalised: if the damage

localises over a very thin band, the gradient is therefore very high and the dissipated energy

can not be zero any more. The construction of these gradient damage models, introduced in

1998 by Francfort and Marigo [18] is the object of the next part.

I.2 Construction of damage gradient models

This section is an introduction to the variational approach to fracture where we show, based

on [45], how the damage evolution problem can be written with a variational formulation.

There exists plethora of literature on this subject, the reader can refer to [9], [10], [18], [19],

[46],[53], [54],[55].

Following the paper of [45], we will �rst expose the construction of local damage models

based on thermodynamic principles, and after showing that they do not work well, a non local

term of dissipated energy will be introduced in the strain work. Notations will be introduced

along the presentation, but a table that summarises all the notations can be found in I.3.

For this general presentation, we will work in the framework of small deformation, for

isotropic and linear elastic materials. We will also make the assumption that apart from the

3
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damage, there is no other source of dissipation of energy.

I.2.1 Non regularised models

First, we construct local damage models: after determining the principal ingredients of a

damage model, the evolution law can be written using thermodynamic arguments. We show

that the problem can be formulated under a weak form, and we establish the three principles

on which the study of regularized models relies.

I.2.1.a Modelling ingredients

To construct a damage model, three elements are necessary:

i) A damage parameter: here, it is a scalar (we are working with isotropic materials)

variable, α, that takes its values in an interval [0, αM [. The value zero corresponds to a

perfectly sound material while the value αM , which can be �nite or in�nite, depending

on the model, corresponds to the �nal stage of damage in the structure.

ii) The dependency of the stress-strain relation to the damage parameter: for a �xed value

of α, the material has a linear elastic behaviour. It progressively loses rigidity when

α grows: its elasticity is characterised by the relation α 7→ E(α) between the sti�ness

tensor and the damage parameter.

iii) An evolution law of α.

I.2.1.b Evolution law of α

In the case of materials that are time independent, the evolution laws are governed by thresh-

old laws and can be written with Kuhn-tucker conditions that involve a function of the damage

α and the linearised deformation tensor ε, φ : MN
s × R+ 7→ R that is written, in the case of

damage 
α̇ ≥ 0

φ(ε, α) ≤ 0

α̇φ(ε, α) = 0

(I.3)

where α̇ is the time derivative of the damage.

In I.3, the �rst inequality is called the irreversibility condition. It states that the damage

can only grow or stay constant. By no means can it decrease, which can be understood as

the fact that once a material is damaged, it cannot heal. The second inequality introduces a

damage criterion, characteristic of threshold laws. The last equation of I.3, called consistency

condition, allows for the growing of damage only if the damage criterion is reached.
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The admissible strain (and respectively, stress) domains are de�ned by

R(α) = {ε | φ(ε, α) ≤ 0} (I.4)

and

R∗(α) = {σ | φ(S(α)σ, α) ≤ 0} , (I.5)

where S(α) = E(α)−1 is the compliance tensor. The boundary of the admissible strain domain

is de�ned by

∂R(α) = {ε | φ(ε, α) = 0} . (I.6)

The Drucker-Iliushin postulate

W =

∮
C

σ·dε ≥ 0 (I.7)

which states that energy has to be supplied to the material so that it can do a cycle of

deformation C (the strain work has to be positive over a cycle), implies that the evolution

law of α has necessarily to be standard. For the demonstration, the reader can refer to [52].

Writing

ψ(ε, α) =
1

2
E(α)ε·ε (I.8)

the elastic energy for a given α, with E the elasticity tensor, we recover the standard law

− 1

2
E′(α)ε·ε ≤ k(α), (I.9)

where k(α) = −∂ψ
∂α

(ε, α) for ε ∈ ∂R(α).

Remark ([18]): in the following work, we will consider that k is a constant. Its value is

determined via a variable change, and its dimension is the one of a pressure that corresponds

to the stress of the �rst apparition of damage during a traction test.

I.2.1.c Softening and hardening behaviours

Strain space

In the strain space, the evolution law (I.9) is written

ε·ε ≤ 2k

−E′(α)
. (I.10)

When R(α) is increasing with α, we speak of strain positive yielding. This is equivalent to

the increase of −1/E′(α), which is also the convexity of E′′(α) > 0. Conversely, the negative

strain yielding corresponds to the diminishing of the admissible strain domain when the

damage is growing, which can be written E′′(α) < 0.
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Stress space

In the stress space, the evolution law (I.9) is

1

2
S′(α)σ·σ ≤ k. (I.11)

We call it hardening when R∗(α) increases with α, i.e. when S′′(α) < 0. We call it softening

when the admissible stress domain decreases with the increase of α, so when S′′(α) > 0. One

interesting property is that hardening implies positive strain yielding.

Examples

There exists two main families of models of damage laws,

E(α) = (1− α)pE0, α ∈ [0, 1], (I.12)

and

E(α) =
E0

(1 + α)q
, α ∈ [0,∞), (I.13)

where p, q ∈ N. A study of the sign of the second derivative of (I.13) leads to the following

result: if 0 < q < 1, the models are hardening, if q > 1, they are softening damage models.

I.2.1.d Energy construction and stability

We write

W =

∫ t1

t0

σ(t)·ε̇(t)dt (I.14)

the strain work. It is a state function (see [18]) that depends only on ε and α: the work

supplied to transform the material from a sound state (α = 0) to a state of strain and damage

(ε, α) is independent of the path of deformation. Therefore we can write the strain work as

W (ε, α) =
1

2
E(α)ε·ε+ kα, (I.15)

in which we can observe the elastic energy density 1
2
E(α)ε·ε and the dissipated energy density

kα. We have shown that the strain energy density is the sum of the elastic energy density

and the dissipated energy density.

Let us note that with this form of energy, the second thermodynamic principle, under the

Clausius-Duhem inequality, is automatically ful�lled (see [53]).

The study of stable states of a system under a given loading is one way to select the solu-

tions of an evolution problem. The stable states are usually considered as the local minima

of the potential of a system. Yet, due to the irreversible nature of the damage, this de�nition

has to be slightly adjusted.
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De�nition ([18]). An admissible state of strain and damage of a brittle structure submitted

to a given loading is stable if and only if there exists a vicinity of admissible stable states in

which all other accessible state has a lesser potential energy.

This de�nition uses the notion of accessible state: even if there exists states of lesser potential

energy, if the damage is also lesser, the structure will not go to it because the damage can

only grow.

Remark. A position is stable only if it is an equilibrium position. Moreover, among the

equilibrium positions, those whose second derivative is positive are stable, those whose sec-

ond derivative is negative are unstable.

For a controlled deformation, the state (ε, α) is stable if W (ε, α + h) ≥ W (ε, α) for h ≥ 0

small enough. The development up to the second order of this expression gives

W (ε, α + h) = W (ε, α) + h

(
1

2
E′(α) + w′(α)

)
+
h2

2

1

2
E′(α)ε·ε+ o(‖h‖)2. (I.16)

The �rst order gives the damage criterion while the second order developement gives the

positive strain yielding.

I.2.1.e Variational formulation of the evolution problem

Now that all the preliminary notions have been introduced, we seek to solve a quasi-static

evolution problem. Its consists in �nding for each time t the displacement and damage �elds

ut and αt that ful�l under the strong form the mechanical equilibrium and the yield system

of Kuhn-Tucker

i) Equilibrium: div(σ) = 0

ii) Boundary conditions

iii) Behaviour law

iv) Evolution law of α

− irreversibility: α̇ ≥ 0

− damage criterion: − 1

2
E′(α)ε·ε ≤ w′(α)

− consistency condition: α̇

(
1

2
E′(α)ε·ε+ w′(α)

)
= 0



(I.17)

To begin with, we write the total energy of the structure for a given state (ut, αt), at a given

time t

Et(ut, αt) =

∫
Ω

W (ε(u(x)), α(x))dx−
∫
∂FΩ

Ft(x)·u(x)ds−
∫

Ω

ft(x)·u(x)dx, (I.18)
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where Ω is the reference domain of dimension N , with u = Ut the imposed displacement on

∂DΩ, Ft is the imposed force on ∂FΩ, and ft are the volume forces.

It can be shown (see [53]) or [52]) that the strong formulation (I.17) of the evolution

problem is equivalent to the weak formulation (I.19) of this problem

i) Admissibility of displacements: ut = Ut on ∂DΩ

ii) Initial condition: α(t = 0) = α0

iii) Irreversibility: α̇ ≥ 0

iv) Stability condition:

E ′t (ut, αt)(v, β) ≥ 0, ∀v ∈ C0, ∀β ∈ Dt
v) Energy balance:

d

dt
(Et(ut, αt)) =

∫
∂DΩ

σtnu̇tds−
∫
∂FΩ

Ḟt·utds−
∫

Ω

ḟt·utdx



(I.19)

where C0 is the set of admissible displacements �elds at time t de�ned by

C0 =
{
v ∈ H1(Ω) | v = 0 on ∂DΩ

}
, (I.20)

and Dt is the set of admissible damage �elds at time t de�ned as follows

Dt =
{
β ∈ H1(Ω) | 0 ≤ αt ≤ β ≤ 1

}
. (I.21)

I.2.2 Regularised model

In the previous section, we have shown how local damage models can be constructed, and

how the evolution problem of a structure under a given loading can be written as a variational

problem. Yet we will now see that these local models are not satisfactory and that another

ingredient has to be added to the modelling.

I.2.2.a Why a regularisation?

The study of the solutions of an evolution problem, in the case of imposed displacements as

well as imposed forces, has shown that these latter are all unstable [52], [18]. Moreover, local

damage models exhibit strong dependency of the numerical solutions to the mesh that can

lead to in�nite localisation of the damage. Since the width of the damage band is controlled

by the mesh element size, if the mesh is in�nitely re�ned, the damage zone surface tends to

be null, and the dissipated energy tends to zero. We see clearly that breaking a structure

without any cost of energy is not physically acceptable, as is the fact that the localisation of

damage be a process driven by the mesh size.

To remedy these problems, Francfort and Marigo introduced a regularisation of the dam-

age solution. The idea consists in penalising the localisation of the damage so that if localises

on a very thin band, it has to cost it a lot of energy. Practically speaking, a term containing

8
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a spatial gradient of damage is introduced in the energy density, so that the damage at one

point of the structure depends also of the damage on the points surrounding it, and the

damage model becomes a non local damage model.

The previous approach where we developed the construction of the local (or non regu-

larised) models will now reveal itself very powerful for the construction of non local models.

Indeed, the evolution problem and the stability of the states will be formulated in the same

way, the only di�erence lying in the expression of the energy. We will use the three previ-

ously established principles of irreversibility, stability and energy balance to obtain the new

evolution problem.

I.2.2.b Irreversibility, stability, energy balance

Terms of spatial gradient of α are introduced in the energy, and by taking into account the

objectivity principle that applies to α, and the hypothesis of isotropy of the material, we

�nally obtain the expression of the strain energy density for a gradient damage model

W (ε, α,∇α) =
1

2
E(α)ε·ε+ w(α) +

1

2
w1`

2∇α·∇α, (I.22)

where ` is a characteristic length of the material, also called internal length. w(α) is the

dissipated energy density during a homogeneous process of damage.

The �rst order stability condition (I.19).iv written with the energy (I.22) gives on one

hand the equilibrium equation div(σ) = 0, and on the other hand the local damage criterion

after integrating by part

w′(α) +
1

2
E′(α)ε·ε− w1`

2∆α ≥ 0 in Ω, (I.23)

as well as boundary conditions on α

∂α

∂n
≥ 0 on ∂Ω. (I.24)

The di�erence in the damage criterion between a local and a non local damage models holds

to the presence of a Laplacian of α in the damage criterion when the model is regularised.

The energy balance (I.19).v enables to �nd the consistency conditions in the bulk and on

the boundaries

(w′(α) +
1

2
E′(α)ε·ε− w1`

2∆α)α̇ = 0 in Ω (I.25)

∂α

∂n
α̇ = 0 on ∂Ω. (I.26)

I.2.2.c Localisation on a 1D bar

Since the introduction of a term with a spacial gradient of α in the energy aims at regularising

the localisation of damage, an interesting study is the one of a 1D bar submitted to traction,
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on which the damage localises. This approach is general, and can (and will) be applied to

other similar problems of damage localisation.

Let us consider a bar of length L, on which a crack develops at a point X0. The damaged

zone is considered of size 2d, and the damage is localised on the interval (X0 − d,X0 + d).

We want to determine the expression of the damage on this zone, as well as the dissipated

energy of the broken bar. The dissipated energy w(α) is from now on written

w(α) = w1α. (I.27)

The method consists in writing the damage criterion

0 = w′(α)− σ2

E0(1− α)3
− w1`

2α′′, (I.28)

to integrate it

C = w1α−
σ2

2E0(1− α)2
− 1

2
w1`

2α′2 (I.29)

where C is a constant determined with α = 0 in (I.29)

C = − σ2

2E0

.

Damage pro�les are thus given by

± dx =
w1` dα√

2w1α +
σ2

E0

(1− 1

(1− α)2
)

, (I.30)

and when a crack has appeared in X0, σ = 0, and the damage pro�le is

`
√

2α = ±(x− (X0 ± d)). (I.31)

d is such that α(X0) = 1 and is

d = `
√

2. (I.32)

An illustration is shown on Figure I.2: when ` decreases, the pro�le becomes thinner and

tends to a sharp crack.

The dissipated energy to create a crack is the integral over the bar of the dissipated energy

through the damage process and the elastic energy. When a crack has appeared (σ = 0), the

elastic energy is null, and the rupture energy, de�ned as the integral over the domain of the

dissipated energy, is

Gc =

∫ X0+d

X0−d

(
σ2
cα(x)

E0

+
1

2
w1`

2α′(x)2

)
dx. (I.33)

where the critical stress σc is the stress for which damage �rst develops, and is σc =
√
w1E0.
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Figure I.2: Damage pro�le on a broken 1D bar for di�erent internal lengths.

When σ = 0, (I.29) shows that the two contributions of (I.33) are equal. Moreover,

because of the symmetry of the damage pro�le, the integral can be performed on a demi-

pro�le only

Gc = 2

∫ X0+d

X0

w1`
2α′(x)2dx (I.34)

and using (I.30), we get the expression of the rupture energy with respect to the internal

length and the critical stress

Gc =
4
√

2

3
σc`. (I.35)

I.2.2.d Strength of the model

The construction of the models brought out that they do not need any evolution law to be

postulated, nor any ad hoc criteria that are sometimes used (Rankine, Mazars, etc). They

are able to initiate and propagate a crack without the presence of any defect. There is no

need of an a priori known crack path, and for this reason, they go much further into the

modelling of rupture than the Gri�th theory which can only predict whether a crack will

propagate or not.

I.2.3 Numerical implementation

All along this work, analytical results will be compared to numerical results. This is why

we chose to introduce now the method used to solve a quasi-static evolution problem of a

damaging structure under loading. The time span (0, T ) over which the loading is applied is

discretized and a time step is written ∆t. The total energy of the structure is the integral
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over the domain of the elastic energy and the dissipated energy, minus the external work

E (u, α) =
1

2

∫
Ω

E(α)ε(u)·ε(u)dx+Gccw

∫
Ω

(
w(α)

`
+ `∇α·∇α

)
dx− (Ext.Work) (I.36)

where
1

cw
= 4

∫ 1

0

√
w(α)dα is a adimensionalisation parameter. In the numerical experiments,

the dissipated energy is written in terms of Gc and w(α) = α, so that the link between this

model and a fracture model like Gri�th is more clear.

The numerical problem consists in minimising the total energy (I.36) with respect to both

its variables u and α

min
u,α

(
E (u, α) =

∫
Ω

(
(1− α)2 + kres

2
E0ε(u)·ε(u) +Gc

3

8

(α
`

+ `∇α·∇α
))

dx

)
(I.37)

This energy is not convex with respect to the pair (u, α), nevertheless, it is convex with

respect to u and α separately. This is why a strategy of alternate minimisation, also called

staggered algorithm, is chosen: at each time step, the displacement problem is solved, using

a �xed value of the damage, then the damage problem is solved using the previous value of

the displacement, and until there is a convergence on α. The algorithm is written as follows

• Initialization at time ti: (uold, αold) = (ui−1, αi−1)

• Repeat until ‖αnew − αold‖∞ < tol

1. Calculate, with u(x) = tiε0 on ∂DΩ

unew = argmin
u

E (u, αold)

2. Calculate, under the constraint αi−1 ≤ α ≤ 1 in Ω

αnew = argmin
α

E (unew, α)

• Update: (ui, αi) = (unew, αnew)

The numerical parameters and their in�uence on the results will be investigated, in par-

ticular in Chapter III.

I.3 Notations

We give in this section the notations that will be used throughout this thesis.

• Vectors are written in italic letters, like u, second order tensors are in boldface letters,

like σ, and fourth order tensors are written in capital upright letters, like E.
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• In a uni-dimensional framework, all vectorial and tensorial quantities are written in

italic, to show that they are scalar in that situation. For an example, u, σ, E, etc.

• Vectors components are written with indices, like ui, and second order tensors compo-

nents are written with two indices, like σij.

• The Einstein summation convention is adopted.

• The inner product between two vectors or two tensors of same order is written with a

dot, and stands for u·v = uivi or σ·ε = σijεij.

• The euclidean norm of a vector or a second order tensor is denoted ‖.‖, as ‖u‖ =
√
u·u,

or ‖σ‖ =
√
σ·σ.

• The dot stands for the time derivative, as in α̇ = ∂α/∂t.

• For a function of one variable, the prime stands for the derivative of the function with

respect to its variable, as in w′(α) = dw/dα.

• For a functional, the prime stands for the Gâteaux derivative of the functional at a

given point in an admissible direction, as in E ′(α)(β).

• tr stands for the trace operator, div stands for the divergence in the actual con�gu-

ration (that is also the reference con�guration in small deformation), and Div for the

divergence in the reference con�guration.

Table I.1 gives the main notations and symbols used in the following chapters.

Damage model

α Scalar damage variable

∇α Spatial gradient of damage

w(α) Dissipated energy density

` Internal length

σc Critical stress

Gc Rupture energy

d Length of half the size of the localisation

Material constants

Table I.1: Notations
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A Young modulus

ν Poisson coe�cient

µ First Lamé coe�cient

κ Compressibility coe�cient

E 4th order tensor of sti�ness

S 4th order tensor of compliance

C Neo-Hookean model coe�cient

C10, C01 Mooney-Rivlin model coe�cients

Kinematic

I Identity tensor

ε Tensor of in�nitesimal deformation

σ Cauchy stress tensor

σD Deviatoric part of σ

p Hydrostatic pressure

F Gradient deformation tensor

C Right Cauchy-Green deformation tensor

B Left Cauchy-Green deformation tensor

E Green-Lagrange deformation tensor

Π First Piola-Kirchho� stress tensor

S Second Piola-Kirchho� stress tensor

τ Kirchho� stress tensor

J Determinant of F

I1, I2 First and second invariants of C

Ī1, Ī2 Reduced �rst and second invariants of C

Various

N Space dimension, 1 ≤ N ≤ 3

ψ Elastic energy density

W Strain work density

Table I.1: Notations
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E Total energy of the system

Ω, Ω0 Domain in the actual - reference con�guration

∂Ω Boundaries of the domain

∆t Time step

Ct, Dt, Xt Admissible strain, damage, viscous strain, domains

Chapter II

ε0 Loading speed

εv Viscous deformation tensor

εe Elastic deformation tensor

Av Rigidity of the second elastic spring in the PT model

η Viscosity coe�cient

F e Elastic part of the gradient deformation tensor

F v Viscous part of the gradient deformation tensor

C0, Ci, Ct Initial, intermediary, actual con�gurations

Table I.1: Notations

I.4 Project background and organization of the work

In the past years, gradient damage models � or phase �eld models, have been developed in

many frameworks, and coupled with many phenomenons. They were coupled with tempera-

ture, which lead to the simulations of thermal shocks seen in [11], or with plasticity to model

ductile fracture in [1] and more recently in [58]. Usually studied with a quasi-static loading,

they are now also adapted to dynamic fragmentation, by calculating the displacement with

the elastodynamics equation, see for example [41]. Recent work of [2] show that they are

also relevant to model fatigue, provided that a dissipation potential which explicitly depends

on the strain history be introduced, that enables the dissipated energy to decrease when the

accumulated strain increases.

Although gradient damage models have been widely studied in many contexts in small

deformation, their study has never been extended to large deformation. Indeed, the modelling

of crack nucleation and propagation for rubbery material is not a subject that has been

widely investigated in the past years. Yet, it is essential to understand these mechanisms

because many materials of such a nature undergo loadings and solicitations that can lead to
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Chapter I � Introduction

fracture. This is the case for the industry of tires that would greatly bene�t from a better

understanding of these phenomena. Using the J-integral method, industrials are able to

predict for what load a pre-existing crack will propagate, but for the most part, they are still

unable to predict the initiation of damage in a sound structure, i.e. where and when the

damage will begin. This work has therefore emerged from such a context, and aims at having

a better understanding of the initiation of rupture in large deformation, while adapting the

gradient damage models to the framework of large deformation.

In that perspective, the results are decomposed into four parts. In Chapter II, analytical

solutions for three problems are constructed. Because of the viscous e�ects in polymers, two

rheological models are investigated, in small and large deformation. This leads to the study

of damaging viscoelastic materials, of hyperelastic materials and hyper-viscoelastic materials.

Chapter III exposes the implementation of the gradient damage models in large deformation

in an academic �nite element code [16]: a recall is made of the method used to solve the

displacement problem in �nite strain, and numerical results are shown. The damage laws used

in this chapter are such that the hydrostatic pressure does not play any role in the initiation

of damage for an incompressible material. Therefore, Chapter IV presents a new damage law

that overcomes this weakness. Both analytical and numerical results are exposed. Finally,

Chapter V introduces the cavitation phenomenon, a famous damage process in polymers.

It is �rst investigated as a purely hyperelastic bifurcation, then the competition that takes

place between the cavitation and the damage is studied.
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

In this chapter, we are mainly concerned with one dimensional studies, for viscous material

in small and large deformation. Thus, we will �rst develop the behaviour of a viscous damag-

ing bar in small deformation, then we will abandon the hypothesis of linearised deformation

to study a hyperelastic bar, which will �nally lead us to the analysis of a hyper-viscoelastic

bar under loading.

II.1 Damage and viscoelasticity

II.1.1 Energy density, �rst order stability and energy balance in 3D

The three principles (irreversibility, �rst order stability and energy balance) that govern

the evolution law of α, and were established in I.2.1.e remain valid if any other source of

dissipation is added (plasticity, temperature). The di�erence lies in the total energy that

now has to take into account the viscous dissipation.

II.1.1.a Rheological models and energy density

The connection between stress and strain for a viscoelastic material can be set through the

use of rheological models. In the following, we will focus on the Maxwell and the Poynting-

Thomson model, shown respectively on Figures II.12a and II.10b. The Maxwell model is

the association in series of an elastic spring and a viscous dashpot, which, in the Poynting

model, is replaced by a Kelvin-Voigt element. Note that in small deformation, Zener and

Poynting-Thomson have similar responses, and thus are equivalent.

The energy density associated to these models is hence the sum of the elastic energy of

the springs and the dissipated energy in the dashpot. The total deformation is decomposed

as the sum of an elastic and an inelastic (viscous) energy. The time derivative of the viscous

(a) Maxwell model (b) Poynting-Thomson model

Figure II.1: Rheological models
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II.1 � Damage and viscoelasticity

deformation ε̇v that appears in the viscous dissipation potential is discretized, and we get

ψ(ε, εv) =
1

2
A(ε− εv)·(ε− εv) +

1

2
Avε

v·εv +
∆t

n
η

(
‖ εv − εvi−1‖

∆t

)n
(II.1)

where n is an integer that models the non linear behaviour of the spring. We will use n = 2

in order to work with linear viscoelastic laws. η characterises the viscous time scale, and has

the dimension of a stress multiplied by a time.

Adding the dependency of the material parameters to the damage parameter such that

A,Av and η are functions of α and writing the strain work as the sum of the elastic potentials,

the viscous dissipation potential, and the dissipated energy during the damage process, we

obtain the total energy of the structure at time t

Et(u, ε
v, α) =

∫
Ω

1

2
A(α)(ε(u)− εv)·(ε(u)− εv) +

1

2
Av(α)εv·εv

+
∆t

n
η(α)

(
‖ εv − εvi−1‖

∆t

)n
+ w(α) +

1

2
w1`

2∇α·∇α.
(II.2)

II.1.1.b First order stability

Using the �rst order stability principle (I.19) and thus deriving (II.2) in the admissible di-

rection (v, ξv, β) ∈ C0×X×Dt gives

Et(u, ε
v, α)(v, ξv, β) =

∫
Ω

{
1

2
A′(α)(ε(u)− εv)·(ε(u)− εv)β +

1

2
A′v(α)εv·εvβ + w′(α)β

+w1`
2∇α·∇β +

∆t

2
η′(α)

(
‖ εv − εvi−1‖

∆t

)2

β

+A(α)(ε(u)− εv)·ε(v)− A(α)(ε(u)− εv)·ξv + Av(α)εv·ξv

+η(α)

(
‖εv − εvi−1‖

∆t

)
‖ξv‖

}
dx ≥ 0 ∀(v, ξv, β) ∈ C0×X×Dt,

(II.3)

with the admissible spaces de�ned as follows

C0 =
{
v ∈ H1(Ω) | v = 0 on ∂DΩ

}
, (II.4)

Dt =
{
β ∈ H1(Ω) | 0 ≤ αt ≤ β ≤ 1

}
, (II.5)

and

X =
{
ξv ∈ L2(Ω)

}
. (II.6)

Taking v = 0 and ξv = 0 gives∫
Ω

β

(
1

2
A′(α)(ε(u)− εv)·(ε(u)− εv) +

1

2
A′v(α)εv·εv + w′(α)− w1`

2∆α

+
∆t

2
η′(α)

(‖ εv − εvi−1‖
∆t

)2
)

dx+

∫
∂Ω

∂α

∂n
βds ≥ 0 ∀β ∈ Dt,

(II.7)
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

and we obtain the local damage criterion by taking ∆t→ 0

1

2
A′(α)(ε(u)− εv)·(ε(u)− εv) +

1

2
A′v(α)εv·εv + w′(α)− w1`

2∆α ≥ 0 in Ω, (II.8)

as well as boundary conditions on α

∂α

∂n
≥ 0 on ∂Ω. (II.9)

β = 0 and ξv = 0 gives the equilibrium

div(σ) = 0 in Ω. (II.10)

β = 0 and v = 0 gives

(−σ + Av(α)εv)·ξv + η(α)

(‖εv − εvi−1‖
∆t

)
‖ξv‖ ≥ 0 ∀ξv ∈ X (II.11)

re written

(−σ + Av(α)εv)· ξ
v

‖ξv‖
+ η(α)

‖εv − εvi−1‖
∆t

≥ 0 ∀ξv ∈ X . (II.12)

For ξv = − −σ + Av(α)εv

‖ − σ + Av(α)εv‖
, we have ‖ξv‖ = 1 and injecting it in (II.12) gives

η(α)
‖εv − εvi−1‖

∆t
≥ ‖ − σ + Av(α)εv‖. (II.13)

II.1.1.c Energy balance

In the con�guration free of stresses on the edges, the energy balance states

dE

dt
=

∫
∂DΩ

σtnu̇tds, (II.14)

where
dE

dt
= E ′(ε(ut), ε

v
t , αt)(ε(u̇t), ε̇

v
t , α̇t). (II.15)

We develop this expression

dE

dt
=

∫
Ω

{
1

2
A′(αt)(ε(ut)− εvt )·(ε(u)− εv)α̇t +

1

2
A′v(αt)ε

v
t ·εvt α̇t + w′(α)α̇t + w1`

2∇α.∇α̇t

+
∆t

2
η′(αt)

(
‖ εvt − εvt−1‖

∆t

)2

α̇t + A(αt)(ε(ut)− εv)·ε(u̇t)

−A(αt)(ε(ut)− εvt )·ε̇v + Av(αt)ε
v·ε̇v + η(αt)

(
‖εvt − εvt−1‖

∆t

)
‖ε̇v‖

}
dx ≥ 0.

(II.16)
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II.1 � Damage and viscoelasticity

Since the stress-strain law is

σt = A(αt)(ε(ut)− εvt ), (II.17)

(II.16) becomes

dE

dt
=

∫
Ω

α̇t

(
1

2
A′(αt)(ε(ut)− εvt )·(ε(u)− εv) +

1

2
A′v(α)εvt ·εvt + w′(α)− w1`

2∆α

+
∆t

2
η′(α)

(
‖ εvt − εvt−1‖

∆t

))
dx+

∫
∂Ω

∂α

∂n
α̇ds−

∫
Ω

div(σt)u̇tdx+

∫
∂DΩ

σtnu̇tds

+

∫
Ω

{
(−σt + Av(αt)ε

v) ·ε̇v + η(αt)

(
‖εvt − εvt−1‖

∆t

)
‖ε̇v‖

}
dx.

(II.18)

Using (II.14), (II.18) simpli�es into∫
Ω

α̇t

(
1

2
A′(αt)(ε(ut)− εvt )·(ε(ut)− εvt ) +

1

2
A′v(α)εvt ·εvt + w′(αt)− w1`

2∆αt

+
∆t

2
η′(αt)

(
‖ εvt − εvt−1‖

∆t

))
dx+

∫
∂Ω

∂α

∂n
α̇ds−

∫
Ω

div(σt)u̇tdx

+

∫
Ω

{
(−σt + Av(αt)ε

v
t ) ·ε̇v + η(αt)

(
‖εvt − εvt−1‖

∆t

)
‖ε̇v‖

}
dx = 0.

(II.19)

From (II.10), we have the equilibrium equation

div(σ) = 0, (II.20)

that leads to

−
∫

Ω

div(σt)u̇tdx = 0. (II.21)

There remains, making ∆t goes to 0∫
Ω

α̇t

(
1

2
A′(αt)(ε(ut)− εvt )·(ε(ut)− εvt ) +

1

2
A′v(α)εvt ·εvt + w′(αt)− w1`

2∆αt

)
dx

+

∫
∂Ω

∂α

∂n
α̇ds+

∫
Ω

((−σt + Av(αt)ε
v
t ) ·ε̇v + η(αt)‖ε̇v‖‖ε̇v‖) dx = 0.

(II.22)

From the local damage criterion (II.8) and the irreversibility condition that enforces α̇ ≥ 0,

we have∫
Ω

α̇t

(
1

2
A′(αt)(ε(ut)− εvt )·(ε(ut)− εvt ) +

1

2
A′v(α)εvt ·εvt + w′(αt)− w1`

2∆αt

)
dx ≥ 0.

(II.23)

It follows from (II.9) and the irreversibility condition that∫
∂Ω

∂α

∂n
α̇ds ≥ 0. (II.24)
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We now have to study the sign of∫
Ω

((−σt + Av(αt)ε
v
t ) ·ε̇v + η(αt)‖ε̇v‖‖ε̇v‖) dx. (II.25)

Let us suppose that

(−σt + Av(αt)ε
v
t )·ε̇v + η(αt)‖ε̇v‖‖ε̇v‖ < 0. (II.26)

From (II.13), we would have

‖ − σt + Av(αt)ε
v
t ‖.‖ε̇v‖+ (−σt + Av(αt)ε

v
t )·ε̇v < 0, (II.27)

which means

1 +
(−σt + Av(αt)ε

v
t )·ε̇v

‖ − σt + Av(αt)εvt ‖.‖ε̇v‖
< 0. (II.28)

‖.‖ being taken as an euclidean norm, this is impossible, hence the expression

(−σt + Av(αt)ε
v
t )·ε̇v + η(αt)‖ε̇v‖‖ε̇v‖ ≥ 0. (II.29)

The left-hand side of the equation (II.22) is composed only of positive or null terms, conse-

quently there are necessarily null at the local level. This gives consistency conditions on the

boundaries
∂α

∂n
α̇ = 0 on ∂Ω, (II.30)

and in the bulk

α̇t

(
1

2
A′(αt)(ε(ut)− εvt )·(ε(ut)− εvt ) +

1

2
A′v(α)εvt ·εvt + w′(αt)− w1`

2∆αt

)
= 0 in Ω,

(II.31)

and also the expression

(−σt + Av(αt)ε
v
t )·ε̇v + η(αt)‖ε̇v‖‖ε̇v‖ = 0. (II.32)

With the Cauchy-Schwartz inequality we have

− (−σt + Av(αt)ε
v
t )·ε̇v ≤ ‖ − σt + Av(αt)ε

v
t ‖‖ε̇v‖, (II.33)

which becomes using (II.32)

η(αt)‖ε̇v‖‖ε̇v‖ ≤ ‖ − σt + Av(αt)ε
v
t ‖‖ε̇v‖. (II.34)

Moreover, with (II.13), we get

‖ − σt + Av(αt)ε
v
t ‖ ≤ η(αt)‖ε̇v‖ ≤ ‖ − σt + Av(αt)ε

v
t ‖ (II.35)

and there is an equality in (II.35) to ensure (II.32). Equality in Cauchy-Schwartz is equiva-

lent to the collinearity of ε̇v and (−σt + Av(αt)ε
v
t ).

Finally, we have the equality

‖ε̇v‖ =
‖ − σt + Av(αt)ε

v
t ‖

η(αt)
(II.36)

which is the 3D evolution law of εv,that can be quali�ed as optimal because it requires both

the �rst order stability and the energy balance to be established.
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II.1 � Damage and viscoelasticity

Figure II.2: 1D traction test with imposed displacement with constant loading speed ε0.

II.1.2 Homogeneous damage

Let us consider a bar of length L such that the displacement in x(0) = 0 and x(L) = ε0tL.

The damage �eld is chosen as a local �eld, which means that the damage in the bar is

independent of the position x on which it is evaluated. We consequently have

α′t(x) = 0, ∀x ∈ (0, L), (II.37)

which leads to homogeneous �elds of deformation

u′t(x) = ε0t, ut(x) = ε0tx. (II.38)

The damage law used for the rigidities of the springs is a softening one

A(α) = A0(1− α)2 (II.39)

Av(α) = Av0(1− α)2, (II.40)

and the dissipated energy density is chosen as linear

w(α) = w1α. (II.41)

The equations (II.8), (II.9), (II.10) and (II.36) obtained in II.1.1 give us the local damage

criterion and boundary conditions on α

1

2
A′(α)(ε(u)− εv)2 +

1

2
A′v(α)(εv)2 + w′(α)− w1`

2α′′ ≥ 0 in Ω (II.42)

∂α

∂n
≥ 0 on ∂Ω (II.43)

as well as the equilibrium equation σ′(x) = 0, x ∈ (0, L) and the viscous evolution law of the

material

ε̇v =
σ − Av(α)εv

η
. (II.44)
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Figure II.3: Normalized stress response of a viscoelastic material submitted to a �xed speed

loading. Both models have the same instantaneous elastic response, but only the Poynting-

Thomson model has a deferred elastic response.

II.1.2.a Viscoelastic phase

In what follows, the study of the homogeneous damaging states is split into two parts: the

�rst addresses the purely viscoelastic phase during which there is no damage occurring, while

the second allows for damage to grow since the damage criterion is reached. By deriving with

respect to time the expression

σ = A0(ε− εv) (II.45)

and injecting (II.44), we obtain the normalized equation

η

A0 + Av0
σ̇ + σ =

A0η

A0 + Av0
ε̇+

A0Av0
A0 + Av0

ε, (II.46)

where ε = tε0, ε̇ = ε0, and with the initial condition σ(0) = 0. Rewritting this equation

τεσ̇ + σ = A∞(ε+ τσε̇) and using the initial condition, we obtain

σ(t) = e
−
t

τε ε̇

τεA∞(1− e
t

τε ) + A∞(t+ τσ)e

t

τε − A∞τσ

 , (II.47)

where τε =
η

A0 + Av0
, A∞ =

A0Av0
A0 + Av0

and τσ =
η

Av0
.

For the Maxwell model (Av0 = 0), the stress in a bar submitted to a traction test with a

constant speed loading ε0 is

σ(t) = A0τ0ε0

(
1− exp

(
−t
τ0

))
, (II.48)

where τ0 = η/A0 is the characteristic time of the Maxwell model. This solution is visible

on Figure II.3: the initial slope is A0ε0, there is therefore an instantaneous elastic response,
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II.1 � Damage and viscoelasticity

then when t→ +∞, the stress goes to a �xed limit ηε0.

In the case of the Poynting-Thomson model, there is an identical instantaneous elastic

response, in which the secondary spring does not play any role, but there is also a deferred

elastic response of module A∞ that does not exist in the Maxwell model. When t → +∞,

σ(t) tends to an oblique asymptote of expression

A∞ε+ A∞(τσ − τε)ε̇, (II.49)

as shown on Figure II.3.

We now seek to determine whether there exists a time te at which the damage criterion

is reached. To this end, we study, with respect to time,the damage criterion (II.42) written

in stress, at α = 0. We have

f(t) = −1

2
S ′(α)σ2 + w′(α)− 1

2
S ′v(α)(εv)2, (II.50)

where S(α) = A(α)−1, Sv(α) = Av(α)−1, and w(α) = w1α. We look for te such that f(te) = 0.

For the Maxwell model, (II.50) can be written

f(t) = w1 −
σ(t)2

A0

, (II.51)

where σ(t) is given by (II.48). But σ is bounded by the value ηε0. Consequently, there exists

a time te for which the damage criterion is reached if the following condition holds

ε0 >

√
w1A0

η
. (II.52)

This can be seen on Figure II.4 where the damage criterion is plotted with respect to time

for di�erent loading speed. There exists a threshold to the loading speed, dependent on

the model parameters, below which the material will never su�er any damage, whatever the

time during which the traction is applied. The viscosity coe�cient η has an in�uence on

this threshold: if it is close to zero, the applied loading speed has to be in�nite so that the

material can be damaged. The physical interpretation is easy: no speed deformation, as big

as it could be, can damage a perfect �uid. Conversely, when the viscosity of the material is

large, a small deformation speed can be enough to damage it.

For the Poynting-Thomson model, we have

f(t) = w1 −
σ(t)2

A0

− Av0(εv)2, (II.53)
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Figure II.4: Maxwell model. The damage criterion tends to a �nite limit when time goes to

in�nity. If the speed loading is smaller than the threshold value (II.52), the damage criterion

can never be reached.

where σ(t) is given by (II.47). The fundamental di�erence between the two rheological mod-

els, that is, the presence or not of a deferred elastic phase in the stress response of the

material, triggers a di�erent evolution of the damage criteria. In the Poynting-Thomson

model, since the stress goes to in�nity when t → +∞ (because it is an elastic phase), we

see immediately that the damage criterion (II.53) goes to −∞. Since f(0) = w1 > 0, there

always exists a time te such that the damage criterion is reached, whatever the value of the

loading speed.

These results can also be interpreted using the properties of the models ([15] or [38]). The

Maxwell model is sometimes referred to as the viscoelastic �uid model, because if a constant

solicitation is applied, there is no possibility of equilibrium: for an example, during a creep

test when a stress is applied on a non limited time, an elastic response is observed, that

keeps growing. In this way, the material whose behaviour is modelled by a Maxwell model

exhibits a typical property of Newtonian �uids, that is its capacity to deform inde�nitely

under a �nite stress. On the contrary, the Kelvin-Voigt model which composes the Poynting-

Thomson model is called viscoelastic solid, because the presence of an elastic phase in the end

of a creep test makes it behaves nearly like a solid. The Poynting-Thomson model shows the

same behaviour at in�nity, and is therefore called standard linear model or three parameters

model.

II.1.2.b Damaging phase

Critical stress and damaging time

In the case of the Maxwell model, the critical stress is

σc =
√
w1A0. (II.54)

26



II.1 � Damage and viscoelasticity

We can see that σc does not depend on the viscosity coe�cient neither on the loading speed,

and is the same value as the one of a linear elastic material. The time at which damage

begins is

te = −τ0 ln

(
1− σc

ηε0

)
, (II.55)

and in this case, it depends on all the parameters of the model. The higher the loading speed,

the quickest the material begins to damage. When the material is nearly �uid, te goes to

in�nity. Since II.52 has to be respected, te is always positive.

For the Poynting-Thomson model, it is more di�cult to determine the critical stress

because of the term in εv in the damage criterion. Let us note

p =
Av0
A0

. (II.56)

We write (II.42) with respect to stress, and we replace the expression of εv by

(
ε− σ

A0(1− α)2

)
in order to obtain σ as a function of α, t, and the parameters of the model

σ =
1

1 + p

[
εAv0(1− α)2 +

√
w1(1− α)3(A0 + Av0)− ε2A0Av0(1− α)4

]
(II.57)

The critical stress is obtained with α = 0 in (II.57)

σc =
1

1 + p

[
εeAv0 +

√
w1(A0 + Av0)− ε2

eA0Av0

]
, (II.58)

where εe = teε0.

Moreover, to be able to determine the time te from which the material begins to be

damaged, the equality in the damage criterion (II.42) with α = 0 written in stress has to be

solved, which leads to

0 = w1 −
σ(te)

2

A0

− Av0
(
teε0 −

σ(te)

A0

)2

(II.59)

where σ(te) is the value of (II.47) for t = te. The numerical solution is plotted on Figure II.5a,

where the total deformation at time te is teε0. This equation does not admit any analytical

solution, therefore it is not possible to express σc with respect to the models parameters.

Yet, we can still analyse some of its properties, in particular its values in the limiting cases

of the loading speed. When ε0 goes to zero, the critical stress goes to Av0/(A0 + Av0) and

the two rigidities of the springs matter. This is not the case when ε0 goes to +∞, since σc
goes to the value of the critical stress in the Maxwell case. This means that only the main

spring plays a role in this value, and this can be explained by the fact that if the loading

speed is large, only the instantaneous elastic response has the su�cient time to intervene.
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

(a) Total deformation and viscous deforma-

tion.

(b) Critical stress.

Figure II.5: Poynting-Thomson model. Values of the total and viscous deformation, and

stress when the damage criterion is reached, with respect to the loading speed.

With the assumption that εe is monotonous with respect to ε0, we can deduce that σc is also

monotonous: it is consequently growing and bounded.

All this can be seen on Figure II.5b. Indeed, it shows clearly that the critical stress has

two phases of evolution depending on the loading speed: in the �rst, it grows quickly, and

can be approximated with a linear function of ε0. Using (II.49) enables us to describe the

behaviour of σc for large values of te, i.e. small values of ε0. In this case, the critical stress

can be approximated by the expression

σc ≈
√
w1A0

√
p

1 + p
+

η

(1 + p)2
ε0. (II.60)

During the second phase, the critical stress becomes constant.

On Figure II.5a the evolution of the total deformation and the viscous deformation at time

te is plotted with respect to the loading speed ε0: when a traction with a slow speed loading

is applied, the viscous deformation is quite big, and the viscous behaviour is predominant

on the elastic behaviour. On the contrary, when the loading speed is high, the material gets

damaged very quickly and the elastic deformation is important.

To summarize, we can again observe a di�erence with the Maxwell model: in the latter,

the related critical stress is constant, whereas for the Poynting-Thomson model it depends

on the loading speed. We can notice that σc takes only �nite values because of a natural

equilibrium between the critical values: when a very quick loading speed is applied on the

bar, although the critical stress should go to in�nity, it does not take an in�nite value because

the damaging time te goes to zero.
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II.1 � Damage and viscoelasticity

Evolution law of α

From now on, let us consider that the damage criterion has been reached, and let us look

for the evolution law of the damage and the stress. Taking into account (II.39), the time

derivative of (II.45) is

σ̇ = A0

[
−2α̇(1− α)(ε− εv) + (1− α)2(ε̇− ε̇v)

]
. (II.61)

For the Maxwell model, the damage criterion written with respect to stress in which we inject

the damage law (II.39) gives the expression of α and α̇ with respect to the stress and the

model parameters. Injecting this expression in (II.61), we get the di�erential equation that

govern the stress during the damaging phase and the initial condition σ̇(t) = −3A0

(
σ(t)

σc

) 4
3
(
ε̇− σ(t)

η

)
σ(0) = σc.

(II.62)

Writing t̃ =
3A0η

1
3 ε

4
3
0

σ
4
3
c

t, and σ̃ =
σ

ηε0

, we get the normalized and adimensionalized di�erential

equation of σ̃ that governs the softening phase
dσ̃

dt̃
= −σ̃

4
3 (1− σ̃)

σ̃(0) = σ̃c.
(II.63)

This autonomous di�erential equation admits two stationary solutions, σ̃ : t̃ 7→ 0 and

σ̃ : t̃ 7→ 1. For initial conditions σ̃(0) ∈]0, 1[, ˙̃σ < 0 so the function σ̃ : t̃ 7→ σ̃(t) is strictly

decreasing on [0,+∞[ and is bounded by 0. For initial conditions strictly superior to 1, the

function is strictly increasing and goes to +∞. Figure II.6a shows solutions of (II.63) for

di�erent initial conditions in ]0, 1[.

In order that the material be damaged, the material parameters have to follow the con-

dition (II.52). This means that we always have σ̃(0) < 1, and the solution of the di�erential

equation can only be a decreasing function of time that goes to zero.

On Figure II.6b, the stress response of a damaging viscoelastic material is plotted, for

di�erent values of σc. When σc is small, the time te is also small, and we see that on the

value of σc depends the shape of the softening phase. When the critical stress gets close to

the value ηε0, a stress plateau appears, and the closest to this value, the largest the plateau.

When σc = ηε0, we go back to the purely viscoelastic solution.

The Poynting-Thomson model is dealt with slightly di�erently, because the di�erential

equation established is the one which governs the evolution of α rather than the one of σ.

We introduce the notation

r =
√
w1(1− α)3(A0 + Av0)− ε2A0Av0(1− α)4. (II.64)
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

(a) Solution of the adimensionalized equa-

tion (II.63).

(b) Adimensionalized stress softening for

di�erent σc.

Figure II.6: Maxwell model. Homogeneous damage evolution: damaging phase (left) and

viscoelastic followed by damaging phase (right). When the value of σc gets close to ηε0, a

stress plateau appears.

Deriving with respect to time (II.57) and injecting the expression of σ̇ in the expression of the

derivative of the stress/strain relation (II.61) gives a non autonomous di�erential equation

that governs the evolution of α

α̇ =

Av0
1 + p

ε0

(
−(1− α)2 +

εA0(1− α)4

r

)
+ A0(1− α)2

(
ε0 −

r

η

)
1

1 + p

(
−2(1− α)εAv0 +

−3w1(1− α)2(A0 + Av0) + 4(1− α)3ε2A0Av0
2r

+
2(εAv0(1− α)2 + r)

1− α

) ,
(II.65)

where r is given by (II.64), ε = tε0, and p =
Av0
A0

.

Similarly as for the Maxwell model, we normalize and adimensionalize the equation (II.65)

in order to be able to study it more easily. We write

w1 =
η2ε2

0

A0(1 + p)
k̃, (II.66)

and

t =
η

A0(1 + p)
t̃. (II.67)

Therefore

σ =
ηε0

1 + p
σ̃, (II.68)

where

σ̃ =
p

1 + p
t̃(1− α)2 + r̃, (II.69)
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II.1 � Damage and viscoelasticity

(a) (b)

Figure II.7: Poynting-Thomson model. Homogeneous damage evolution and stress evolution

for two di�erent values of σc: on the left, σc is ten times higher than σc on the right.

and

r̃ =

√
k̃(1− α)3 − p

(1 + p)2
t̃2(1− α)4. (II.70)

Inserting these variable changes in (II.65), we get

dα

dt̃
=

2

1 + p

σ̃ − (1 + p)r̃2

k̃
. (II.71)

Unlike the Maxwell model, this equation cannot be studied analytically. We can yet notice

that if σ̃ − (1 + p)r̃2 ≤ 0 when t = te, α̇ will not be positive. Since this phenomenon is not

physically acceptable because it violates the irreversibility condition, we suppose that there

are some temporal discontinuities in the evolution of α.

Finally, we can see that this equation is not autonomous, i.e. that its solutions will de-

pend on the time te at which the initial condition is �xed. We will thus not observe stationary

solutions as were seen with the Maxwell model. Indeed, since for large time the material is

again following an elastic evolution, the stress grows linearly.

The equation (II.65) can be solved numerically, as can be (II.71) with the initial condition

α(te) = 0, and we can deduce σ(t) with (II.57). On Figure II.7 we plot the damage and stress

evolution for two di�erent values of σc: in the �rst case, the critical value of the stress is

10 times the value of the second case, and we can see that this di�erence induces di�erent

responses over the time.

II.1.3 Damage localisation

In this section, we no longer assume a homogeneous �eld of damage. From now on, the

spatial derivative of α will not be null any more. The previous calculations have to be done
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

Figure II.8: Damage pro�les for Maxwell and Poynting-Thsomson model. The width of the

damage pro�le is greater for the Poynting-Thomson model.

again, assuming this time that the damage localises on the bar. The di�erences induced by

the use of the two rheological models will be highlighted, in the expressions of the damage

pro�les as well as in the expression of the dissipated energy.

Let us consider the bar of length L on which a traction with constant loading speed ε0 is

applied on one end. Let us assume that the damage localises on a �nite interval of the bar,

centered in X0, and of width 2d.

II.1.3.a Damage pro�les

Maxwell model

For the Maxwell model, we write the damage criterion (II.42) with respect to stress on the

interval (X0 − d,X0 + d)

0 = − σ2

A0(1− α)3
+ w1 − w1`

2α′′. (II.72)

We see in this formulation that when the damage criterion is written in the stress space, the

viscosity does not play any role: thus, the damage criterion is the same as in linear elasticity.

Consequently, the damage pro�les are the same as in elasticity, and the width of the damage

band 2d is also the same. The only di�erence lies in the evolution of the stress since one is

linear (Hooke's law), and the other is not due to the viscosity. Note that a particularity of

the Maxwell model imposes that the loading speed be greater than a threshold value so that

the localisation can arise.
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II.1 � Damage and viscoelasticity

Poynting-Thomson model

As was done for the Maxwell model, we write the local damage criterion (II.42) with respect

to the stress on (X0 − d,X0 + d)

0 = −1

2
S ′(α)σ2 +

1

2
A′v(α)(εv)2 + w′(α)− w1`

2α′′. (II.73)

In the case of the Poynting-Thomson model, this criterion has an additional term which

involves the viscous deformation εv. At this point, we make the assumption that the damage

localises suddenly at time tloc, so that the viscous deformation does not have time to localise,

and keeps the value it had just before the localisation happened. The value of the viscous

deformation at time tloc can be numerically computed with the formula

εv(tloc) = exp

(
−
∫ tloc

0

Av0
η

(1− α(t))2 dt

)[∫ tloc

0

σ(s)

η
exp

(∫ s

0

Av0
η

(1− α(t))2 dt

)
ds

]
.

(II.74)

The damage pro�le around X0 is given by the solution of the di�erential equation

0 = −1

2
S ′(α)σ2 +

1

2
A′v(α)(εv)2 + w′(α)− w1`

2α′′, (II.75)

also written

0 = − σ2

A0(1− α)3
− Av0(1− α)(εv)2 + w1 − w1`

2α′′. (II.76)

When the bar is broken, σ = 0, and we have

0 = −Av0(1− α)εv
2

+ w1 − w1`
2α′′ (II.77)

that is rewritten

α′′ − ω2α = K, (II.78)

where ω2 =
Av0ε

v2

w1`2
and K =

−Av0εv
2

+ w1

w1`2
.

At the ends of the localisation, the boundary conditions are as follows{
α(X0 ± d) = α0

α′(X0 ± d) = 0.
(II.79)

Then the solution of (II.78) is such that

α(x) = −K
ω2

+ C1 exp(xω) + C2 exp(−xω), (II.80)

with C1 and C2 two constants determined with the boundary conditions. In the end, we haveα(x) =
K

ω2
+

(
α0 +

K

ω2

)
cosh

[
ω(x−X0 − d

x−X0

| x−X0 |
)

]
on (X0 − d,X0 + d)

α(x) = α0 on (0, 1) \ (X0 − d,X0 + d)

(II.81)
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

(a) Poynting-Thomson model. Damage pro-

�les for di�erent values of viscous deforma-

tion at time te: r = εv/
√
w1/Ev0.

(b) Evolution of the damage width band d

with respect to the viscous deformation at

time te

Figure II.9: Poynting-Thomson model. Damage width band and localisations for di�erent

values of εv, without a homogeneous damaging phase. The closer to the value
√
w1/Ev0 the

viscous deformation is, the wider is the damage pro�le.

The constant d is such that α(X0) = 1, and

d =
1

ω
argch

(
K + ω2

K + α0ω2

)
(II.82)

with the condition

(εv(tloc))
2(1− α0) ≤ w1

Ev0
(II.83)

where tloc is the time when the damage localises. We have seen previously that the value of

εv(te) depends on the loading speed. The condition (II.83) is therefore a condition on ε0, and

we �nd the same type as conditions as was found for the Maxwell model. Both Maxwell and

Poynting-Thomson models imply a condition on the loading speed: there exists a threshold

below which the damage cannot develop (Maxwell) or localise (Poynting-Thomson). This

phenomenon does not exist in linear elasticity.

As shown with equation (II.82), the value of the damage width band depends on the value

of εv when the damage localises. Deriving the expression εv 7→ d(εv) with respect to εv shows

that d(εv) is strictly growing: when εv increases, and therefore ε0 decreases, d becomes wider,

as shown on Figure II.9. The limit of d(εv) when εv goes to
√
w1/Av0 is +∞: the damage

width band has to be in�nite so that the damage can reach the value 1 in the centre, and

the bar can break. To circumvent this problem, the value of α0 has to be big enough.

We can notice, using l'Hôpital's rule, that when εv → 0, the function εv 7→ d(εv) goes to√
2`, which is the value of the damage half width band in small deformation.
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II.1 � Damage and viscoelasticity

Whatever the value of εv that enables the damage to localise, the damage width band

with the Poynting-Thomson model is always greater than the one with the Maxwell model.

When εv goes to 0, the damage pro�le goes to the damage pro�le of the Maxwell model.

II.1.3.b Rupture energy

The rupture energy is the integral over the damage band of the dissipated energy when a

crack has appeared. For the Maxwell model, the damage width band 2d is the same as for

linear elastic material. Moreover, when a crack has developed in the bar, there remains only

the dissipated energy, and the viscous energy as well as the elastic energy do not play any

role. Consequently, the rupture energy Gc is the same for a Maxwell material or a linear

elastic material.

For the Poynting-Thomson model, we have seen previously that the damage width band

takes values that are always superior to the values of the Maxwell model. Since the rupture

energy is the integral over the damaged region of the damage dissipated energy, it can only

be greater or equal to the dissipated energy obtained with the Maxwell model.

II.1.4 Numerical implementation

The last part of this study of damaging viscoelastic materials in 1D consists in the numerical

implementation of the models. The FEniCS library is used, as well as the usual strategy of

alternate minimization. A bar of length L is discretized in N elements, a time span (0, T )

is also discretized. The spaces in which the three unknowns live are chosen such that the

damage α and the displacement u are Lagrange functions of order 1, and the viscous strain

εv is a discontinuous function on the elements.

The alternate minimization has to take into account the introduction of a new variable, εv,

and so for each time step, three problems are successively solved, as shown in the algorithm

below.

• Initialization at time ti
(uold, αold, ε

v
old) = (ui−1, αi−1, ε

v
i−1)

• Repeat until ‖αnew − αold‖ < tol

1. εvnew = arg min
εv

E (uold, αold, ε
v)

2. unew = arg min
u

E (u, αold, ε
v
new)

3. αnew = arg min
α

E (unew, α, ε
v
new)

• Update (ui, αi, ε
v
i ) = (unew, αnew, ε

v
new)
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

(a) Maxwell model (b) Poynting-Thomson model

Figure II.10: Evolution of homogeneous damage for both viscoelastic models. The numerical

and theoretical results match perfectly.

Figure II.11: Poynting-Thomson model. Superposition of analytical and numerical solutions

for the localisation of damage. In this case, the homogeneous damaging phase is negligible.

Homogeneous response

The homogeneous response of the two rheological models are tested. For this, a su�ciently

large internal length has to be chosen, in order to ensure a homogeneous �eld of damage

on the bar. There are no boundary conditions on α. The responses are plotted on Figure

II.10, and we can see that the analytical and numerical solutions match perfectly, for both

the viscoelastic phase and the damaging phase. After reaching a critical value of stress, the

stress decreases until it reaches zero and the bar is broken.

Localised response

Once the results have been checked in the case of homogeneous �elds, we study the locali-

sation of damage. In the case of the Maxwell model, the damage pro�les match perfectly,
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II.1 � Damage and viscoelasticity

(a) Evolution of stress with respect to time.

Comparison of analytical and numerical re-

sults.

(b) Evolution of elastic and dissipated ener-

gies with respect to time.

Figure II.12: Poynting-Thomson model. A homogeneous damaging phase is followed by a

localisation of damage.

providing that the loading speed is great enough to trigger damage in the bar. In the case

of the Poynting-Thomson model, it is a little more tricky: indeed, the breaking of the bar

happens in three phases. There is �rst a phase of viscoelastic deformation, followed by a

phase of homogeneous damage on the bar, until the damage suddenly localises. Due to this

homogeneous phase of damage, the boundary conditions on α (Dirichlet boundary conditions

of zero damage) that are usually set in order to ensure the localisation on the bar have to

be disabled. But because of this, due to numerical considerations, the damage localises on

the boundaries and only half a damage pro�le is obtained. To compensate for this, periodic

boundary conditions are used on the damage variable, so that even if half a damage pro�le

grows on the boundaries, the other half will grow on the other boundary.

Figure II.11 shows a case when the homogeneous phase of damage is very fast, and thus

the damage α0 is negligible compared to the damage pro�le. The numerical simulation has

been performed using the following parameters: ε0 = 2.5, w1 = 3.75, A0 = 10, Av0 = 2,

η = 3. The analytical solution has been plotted using the formula (II.81) and the parameters

d = 0.207, α0 = 0.0016, εv = 0.401. In this case, the analytical expression of the damage

pro�le after rupture corresponds well to the numerical solution.

A second case is when the homogeneous phase that precedes the localisation of damage

is not negligible. To obtain such a long phase, the loading speed has to be taken very low.

Figure II.12 shows the evolution of the stress and the energies with respect to time in such

a situation. The parameters that were used are the following: ε0 = 0.0088, w1 = 3.75,

A0 = 10, Av0 = 2, η = 3. The viscoelastic phase matches the analytical calculations, and

the homogeneous phase is also the same as the one calculated analytically. But we can see

that at some point, the homogeneous phase becomes unstable and the localisation appears.
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(a) Comparison of analytical and numerical

damage pro�les.

(b) Development of the damage pro�le for

di�erent time steps.

Figure II.13: Poyting-Thomson model. A homogeneous damaging phase is followed by a

localisation of damage.

Unlike the previous case shown on Figure II.11 where the damage width band is 40%

of the bar, for the same internal length, but a di�erent loading speed, the damage width

band in this case is of 60% (Figure II.13a). As was established analytically, the damage

support depends on the loading speed. Not only is the damage width band larger, but the

localisation arises in a very di�erent way. In a purely elastic case, with the models used here,

the localisation of damage is a brutal process: at some given load, the damage suddenly

localises, which causes the energy to jump. In this case, as can be seen on Figure II.13b, the

localisation of damage is nearly a continuous process, and there is a small energy jump when

the bar becomes fully broken (Figure II.12b).

Due to this non brutal localisation, the assumption whereby the viscous deformation does

not have time to localise on the bar when the damage localises is no valid any more. This is

why on Figure II.13a the analytical results are plotted using a value of εv found by parameter

�tting. Despite this, the numerical and analytical results match well in this case.

II.2 Damage and hyperelasticity

In this part, we use the framework of large deformation to have a �rst view of the relevance of

the gradient damage models in large deformation. The notations will be introduce as we go

along the calculations, but we still give the main notations now. The gradient deformation

tensor is written F . The Green-Lagrange deformation is written E. Depending on the need,

di�erent stress tensors are used. The second Piola-Kirchho� stress is written S, the �rst

Piola-Kirchho� stress Π, the Kirchho� stress τ , and the Cauchy stress σ.
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II.2.1 Unidimensional hyperelastic potential

Construction in dimension 3

In large deformation, the most elementary hyperelastic model is the one of Saint-Venant

Kirchho� which consists in writing the elastic energy in terms of Green-Lagrange deformation

instead of the linearised deformation tensor. Yet, this simple model induces drawbacks, for

physical as well as numerical reasons. This is why we will use the model of Ciarlet-Geymonat

[12], which is an extension of this Saint-Venant Kirchho� model, but enables to overcome its

faults.

The construction of this law lays on several criteria: it has to be polyconvex to ensure

the existence of minimizers ([6]), to reduce to small deformation

ψ(F ) =
λ

2
(trE)2 + µtr(E2) +O(‖E‖3), (II.84)

to prevent the reduction of a volume to zero without any cost of energy

ψ(F )→ +∞ when det(F )→ 0+, (II.85)

and to be coercive

ψ(F ) ≥ (‖F ‖+ ‖cofF ‖+ detF ) (II.86)

where ‖cofF ‖ = tr(cofF T ·F ) =
1

2

[
(trF T ·F )2 − tr(F T ·F )2

]
. Starting from a general ex-

pression of a law that follows the previous conditions (II.84), (II.85), (II.86)

ψ(F ) = a‖F ‖2 + b‖cofF ‖2 + c(detF )2 − d ln(detF )2 + e, (II.87)

with a, b, c, d and e real constants, the development of this expression leads to the 3D

formulation of the Ciarlet-Geymonat potential

ψ(E) = (
λ

2
+ µ)tr(E) +

λ

2

[
tr2(E)− tr(E2)

]
+ 8c det(E)− λ+ 2µ

4
ln det(1 + 2E), (II.88)

where λ and µ are the Lamé coe�cients, and c a material constant strictly positive, following

the condition c =
1

4
(Γ′(1) + Γ′′(1)), Γ′(1) ∈

]
−λ

2
− µ,−µ

[
and Γ′′(1) ∈

]
λ

2
+ µ, λ+ µ

[
.

Reduction to dimension 1

Since (II.88) was constructed for 3D speci�cally, we have to go back to (II.87) and write it

in 1D

ψ(F ) = (a+ c)F 2 − d lnF 2 + e. (II.89)

We develop lnF 2 up to the second order with F 2 = 1 + 2E

lnF 2 = 2E − (2E)2

2
+O(|E|3). (II.90)
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Condition (II.84) gives

(a+ c)(1 + 2E)− d(2E − 2E2) + e =
A

2
E2, (II.91)

and we get by identi�cation

a+ c = d = −e =
A

4
. (II.92)

In 1D, the hyperelastic potential reduces to

ψ(F ) =
A

2

(
E − 1

2
ln(1 + 2E)

)
, (II.93)

For small deformation, the development of ln(1 + 2E) = 2 ln(1 + u′) around 0 gives an

approximation of the energy density that matches the Hooke's law

ψ(F ) =
A

2
u′2, (II.94)

while for large deformation, u′ � u′2 and ln(1 + u′)� u′2, give a quadratic potential

ψ(F ) =
A

2

u′2

2
. (II.95)

The second Piola-Kirchho� stress is

S =
A

2

2E

1 + 2E
, (II.96)

In 3D, the Cauchy stress is linked to the second Piola-Kirchho� stress S by the relation

σ =
1

J
F TSF (II.97)

and so, in 1D, with a Ciarlet-Geymonat potential, we have

σ =
A

2

√
1 + 2E

1 + 2E
2E (II.98)

also written

σ =
A

2
(1 + u′)− A

2

1

1 + u′
. (II.99)

II.2.2 Homogeneous damage evolution in a 1D hyperelastic bar

Keeping the relation between the damage and the rigidity as previously de�ned A(α) =

A0(1−α)2, we can write the total energy of the system. Note that since we are now working

in the framework of large deformation, we have to chose in which con�guration we want to

work, i.e. in the reference (initial) or the deformed (actual) con�guration. We will come
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II.2 � Damage and hyperelasticity

back to it later, but let us chose to work in the reference con�guration C0 for now. The total

energy of the system is

E (u, α) =

∫
Ω0

(
A(α)

2
(u′ +

u′2

2
)− A(α)

4
ln(1 + u′)2 + w(α) +

1

2
w1`

2(α′)2

)
dX, (II.100)

that is derived in the admissible directions (v, β) ∈ C0×Dt

E ′(u, α)(v, β) =

∫
Ω0

(
A(α)

2
(1 + u′)v′ − A(α)

2

v′

1 + u′

)
dX

+

∫
Ω0

(
A′(α)

2
(u′ +

u′2

2
)β − A′(α)

2
ln(1 + u′)β + w′(α)β + w1`

2α′β′
)

dX.

(II.101)

Using the �rst stability criterion, and taking β = 0, we get∫
Ω0

(
A(α)

2
(1 + u′)v′ − A(α)

2

v′

1 + u′

)
dX = 0 ∀v ∈ C0, (II.102)

and after integrating by part we obtain the equilibrium equation

Π′(X) = 0, X ∈ (0, L). (II.103)

v = 0 gives the damage criterion for a hyperelastic material of Ciarlet-Geymonat

A′(α)

2

(
u′ +

u′2

2
− ln(1 + u′)

)
+ w′(α)− w1`

2α′′ ≥ 0, (II.104)

that is rewritten

A′(α)

2

(
E − 1

2
ln(1 + 2E)

)
+ w′(α)− w1`

2α′′ ≥ 0. (II.105)

We write this damage criterion with respect to time for α = 0, with u′ = tε0

f(t) = −A0

2

(
tε0 +

(tε0)2

2
− ln(1 + tε0)

)
+ w1. (II.106)

We have

f ′(t) = −A0

2

(
tε2

0(2 + tε0)

1 + tε0

)
≤ 0, t ≥ 0. (II.107)

Since f(t) is a decreasing function of time, the damage criterion is always reached. Because

of the presence of the logarithm, it is not possible to determine the expression of te nor σc.

Now we study the homogeneous damaging phase of the material. We write the damage

criterion (II.105) in the case of the equality, and we deduce the expression of α with respect

to the Green-Lagrange deformation.

α = 1− w1

A0

2

(
E − 1

2
ln(1 + 2E)

) (II.108)
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

(a) Stress evolution: a hyperelastic phase is

followed by a softening phase after the crit-

ical stress value has been reached.

(b) Damage evolution: it is null during the

hyperelastic phase, and begins to grow at

time tc and tends to the value one.

Figure II.14: Poynting-Thomson model. Homogeneous damage evolution.

We inject this expression in the one of the Cauchy stress

σ =
A0(1− α)2

2

2E√
1 + 2E

(II.109)

and we plot an example of softening behaviour on Figure II.14. Figure II.14a shows the stress

evolution with a hyperelastic phase followed by a softening one, while Figure II.14b shows

the evolution of the damage: during the hyperelastic phase, the damage is zero, and after the

critical stress has been reached, the damage grows until it reaches the value one for which

the material is considered broken.

II.2.3 Localised damage evolution in a 1D hyperelastic bar

As previously seen, let us now consider a bar damaged on a �nite interval [X0 − d,X0 + d].

The damage criterion reads

a′(α)ψ0(F ) + w′(α)− w1`
2α′′ = 0. (II.110)

Multiplying by α′ and adding and substracting a(α)ψ′0(F ) gives

α′a′(α)ψ0(F ) + a(α)ψ′0(F )− a(α)ψ′0(F ) + α′w′(α)− w1`
2α′α′′ = 0, (II.111)

rewritten

d

dx
(a(α)ψ0(F ))− a(α)

∂ψ0(F )

∂F

∂F

∂x
+

d

dx
(w(α))− d

dx

(
w1`

2

2
α′2
)

= 0. (II.112)
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II.2 � Damage and hyperelasticity

Since the �rst Piola-Kirchho� tensor is equal to Π =
∂ψ(F )

∂F
= a(α)

∂ψ0(F )

∂F
, (II.112) can be

integered with respect to the space variable X, and leads to

a(α)ψ0(F )− ΠF + w(α)− w1`
2

2
α′2 = ct = ψ0(F0)− ΠF0 (II.113)

The constant is determined using the fact that the expression is valid for any α, and thus for

α = 0

a(α)ψ0(F )− ΠF + w(α)− w1`
2

2
α′2 = ψ0(F0)− ΠF0, (II.114)

which is equivalent to

a(α)ψ0(F )− ΠF − ψ0(F0) + ΠF0 + w(α)− w1`
2

2
(α′)2 = 0. (II.115)

In the case that we are studying, we remind that the hyperelastic potential is

ψ(F ) =
A(α)

2

(
1

2
(F 2 − 1)− ln(F )

)
(II.116)

and consequently

Π =
A(α)

2

(
F − 1

F

)
(II.117)

which can be inverted to get the expression of F with respect to Π

F =
Π

A(α)
+

√
Π2 + A(α)2

A(α)
. (II.118)

To solve (II.115), let us introduce H(Π, α) such that

`2α′2 =
2

w1

H(Π, α), (II.119)

and

H(Π, α) = a(α)ψ0(F )− ΠF − ψ0(F0) + ΠF0 + w(α). (II.120)

When the bar is not fully broken (αmax < 1), the damage is maximum in X0, then the spatial

derivative of α is null, and H(αmax,Π) = 0. Numerically, we can inject (II.117), (II.118) in

which α is equal to αmax in (II.120) and look for the value of Π that makes H the closest to

zero. Once the value is found, it is injected in the equation (II.119) that is solved numerically

and gives the damage pro�le α(X) on the bar. These pro�les are plotted on Figure II.15a

for di�erent values of αmax.

When the bar is broken, i.e. αmax = 0, the damage criterion reduces to the one obtained

with small deformation, because at that point, only the dissipated energy plays a role, and is

chosen the same in small and large deformation. In our models, there is no di�erence in the
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Chapter II � Unidimensional study of gradient damage models for viscoelastic materials

(a) Localisation of damage on the bar during

the snap-back, for large deformation.

(b) Comparison of snap-backs for small and

large deformation: second Piola-Kirchho�

stress Π with respect to the loading u(L).

Figure II.15: Snap-back

damage pro�le and the dissipated energy for an elastic material and a hyperelastic material.

Yet, the evolution of the stress is di�erent, because of the non linearities in large deformation.

One way to put forward this di�erence consists in looking at the snap-backs for both small

and large deformation.

In order to plot the snap-back, the value of the displacement at the extremity of the bar

which is submitted to loading has to be determined. Since, for a given αmax, Π and α(x) are

known on (0, L), F is known too. In 1D, F = 1 + u′(X), and by integrating on the bar, we

get

u(L) = u(0) +

∫ L

0

(F (X)− 1)dX. (II.121)

The snap-backs are plotted on Figure II.15b. The area of a snap-back shall give the dissipated

energy. In our case, the numerical results give the theoretical value of Gc with less than 1%

of error.

II.3 Damage and hyper-viscoelasticity

In large deformation, the additive decomposition of the deformation tensor is not valid any

more. We turn to the multiplicative decomposition of the gradient transformation tensor F

([57])

F = F e·F v (II.122)

where F e is the elastic part of the tensor, and F v the viscous part. This means that for each

point, this gradient is decomposed as the contribution of an elastic (reversible) part, and a
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II.3 � Damage and hyper-viscoelasticity

Figure II.16: Introduction of an intermediate state between the reference and the �nal con-

�guration, free of stress.

viscous part. A relaxed con�guration Ci is de�ned, such that the material is free of stress in

that con�guration. The viscous transformation is the passage from the initial state C0 to the

intermediary state Ci. An illustration of this decomposition is shown on Figure II.16.

The gradient of speeds is de�ned as follows

L = Ḟ ·F−1 =
[
Ḟ
e·F v + F e·Ḟ v

]
(F v)−1·(F e)−1, (II.123)

and is rewritten

L = Le +Lv (II.124)

with

Le = Ḟ
e·F e−1

(II.125)

Lv = F e·Ḟ v·(F v)−1·(F e)−1 (II.126)

We then de�ne the viscous Green-Lagrange deformation tensors on the initial con�guration

C0

Ev =
1

2
(F vT ·F v − I) (II.127)

and the tensor of elastic deformation Ē
e
that is by de�nition de�ned on the intermediate

con�guration Ci

Ē
e

=
1

2

(
(F e)T ·F e − I

)
(II.128)

Since the partition of deformation is valid only on a same con�guration, the total strain can

be de�ned as the sum of an elastic part and a viscous part only if a transport is done

E = F vT ·Ēe·F v +Ev. (II.129)

To overcome some di�culties, the behaviour law can be written on the intermediate con�g-

uration Ci. The second Piola-Kirchho� stress tensor in the relaxed con�guration is

S̄ =
∂ψ

∂Ē
e , (II.130)
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and is related to the Kirchho� stress in the actual con�guration Ct by

τ = F e·S̄·(F e)T . (II.131)

Pulling back in the initial con�guration C0 gives the �rst Piola-Kirchho� stress that is used

for the equilibrium equations

Π = τ ·F−T . (II.132)

The viscous dissipation used for the viscoelastic behaviour is

Φ = 2η‖(L−Le)sym‖2. (II.133)

II.3.1 Maxwell model

The approach in this part will essentially be the same as the one followed in II.1, except

that we will �rst deal with the Maxwell rheological model (c.f. Figure II.1) made of a spring

connected in series with a dashpot.

II.3.1.a Energy

The hyperelastic potential is again chosen as the 1D Ciarlet-Geymonat potential, expressed

this time with respect to the elastic deformation because it is the elastic energy that corre-

sponds to the energy of the spring of rigidity A

ψ(Ee) =
A

2

[
Ee − 1

2
ln(1 + 2Ee)

]
. (II.134)

If we work in the relaxed con�guration, that is, the stress free con�guration, we use (II.130)

in 1D and have

S̄ =
A

2

(
2Ee

1 + 2Ee

)
, (II.135)

so the Kirchho� stress in the actual con�guration is

τ =
A

2
2Ee, (II.136)

and the �rst Piola-Kirchho� stress is

Π =
A

2

(F e)2 − 1

F
. (II.137)

The same damage laws as previously are used: the dissipated energy during a homogeneous

process of damage is chosen as a linear function of α

w(α) = w1α (II.138)

and the localised energy is
1

2
w1`

2(α′)2. (II.139)
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II.3 � Damage and hyper-viscoelasticity

The total energy of the structure in the reference con�guration, after discretization, is there-

fore

E (u, F v, α) =

∫
Ω0

A(α)

2

[
1

2

(
F 2

(F v)2
− 1

)
− 1

2
ln

(
F 2

(F v)2

)]
+ w(α) +

1

2
w1`

2(α′)2 + 2η
∆t

2

(
F v − F v

i−1

∆tF v
i−1

)2

dX.

(II.140)

II.3.1.b First order stability

The derivative of (II.140) at point u in the admissible direction v, keeping in mind that in

1D, F (u) = 1 + u′, gives the equilibrium in the reference con�guration

Div(Π) = 0, X ∈ Ω0. (II.141)

The derivative of (II.140) at point α in the admissible direction β gives the damage criterion

A′(α)

2

[
1

2

(
F 2

(F v)2
− 1

)
− 1

2
ln

(
F 2

(F v)2

)]
+ w′(α)− w1`

2α′′ ≥ 0 in Ω0 (II.142)

as well as boundary conditions
∂α

∂n
≥ 0 on ∂Ω0. (II.143)

Finally, the derivative of (II.140) at point F v in the direction ξv ∈ X gives∫
Ω0

[
∂ψ

∂F v
ξv + 2η∆tLv

ξv

∆tF v
i−1

]
dX = 0 ∀ξv, (II.144)

and using the chain rule on the term
∂ψ

∂F v
gives

∫
Ω0

[
−S̄ (F e)2

F v
+ 2ηLv

1

F v
i−1

]
ξvdX = 0 ∀ξv. (II.145)

Taking ∆t→ 0, we �nd the evolution law for the hyper-viscoelastic material

Lv =
τ

2η
. (II.146)

II.3.1.c Hyper-viscoelastic phase

In the same way as in II.1, we begin with the study of a phase during which no damage is

occurring. Combining (II.146) with (II.136) gives

τ̇ =

(
τ +

A0

2

)[
2Ḟ

F
− τ

η

]
. (II.147)
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Setting
2Ḟ

F
= ε0, with ε0 a constant that can be identi�ed as the speed loading, comes to

imposing a deformation such that

F (t) = exp(tε0/2). (II.148)

Since the Kirchho� stress τ used in the viscoelastic law is usually related to the true strain

εtrue = ln(F ), this leads to

εtrue =
tε0

2
. (II.149)

We now denote Σ = τ +
A0

2
, the equation (II.147) becomes

Σ̇ = −Σ2

η
+

(
A0

2η
+ ε0

)
Σ, (II.150)

Bernouilli equation whose solution is

Σ =

A0

2
+ ηε0

1 +
2ε0η

A0

exp
(
−t(ε0 + A0

2η
)
) . (II.151)

Hence the Kirchho� stress is

τ =

A0ηε0

[
exp

(
t

(
A0

2η
+ ε0

))
− 1

]
A0exp

(
t

(
A0

2η
+ ε0

))
+ 2ηε0

, (II.152)

which is a growing function of time, and gives the Maxwell limit ηε0 when t goes to in�nity.

II.3.1.d Homogeneous damage

The damage criterion (II.142) does not enable us to exhibit an analytical value of the time

te at which damage begins to grow. Yet, written as a function of time f(t) for α = 0

f(t) = w1 − A0[Ee(t)− 1

2
ln(1 + 2Ee(t))], (II.153)

we can see, by using (II.136) and the fact that the elastic deformation tends to
ηε0

A0

when t

goes to in�nity, that the limit of f when t goes to in�nity can be written as a function of the

speed loading

g(ε0) = w1 − A0

[
ηε0

A0

+
1

2
ln

(
1 + 2

ηε0

A0

)]
. (II.154)

g is a decreasing function of ε0, g(0) = w1 > 0 and g tends to minus in�nity when the speed

loading is large. Thus, there exists a speed εc0 for which the damage criterion is reached. We
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can notice that this is exactly the same argument as the one that was one in small defor-

mation in II.1.2.a, and this threshold speed value is therefore a particularity of the Maxwell

rheological model, for both small and large deformation frameworks.

To compute the evolution of the damage during a traction test, we set the di�erential

equation in terms of F e. On one hand, we have from the damage criterion

1− α =
2w1

A0 [(F e)2 − 1− ln((F e)2)]
(II.155)

and on the other hand we have from the viscous evolution law

τ = Lv2η = 2η

(
Ḟ

F
− Ḟ e

F e

)
. (II.156)

Using the relation τ = A0(1− α)2Ee, we get

A0(1− α)2 1

2
((F e)2 − 1) = η

(
ε0 − 2

Ḟ e

F e

)
(II.157)

that leads to

Ḟ e =
F e

2η

[
ηε0 −

A0

2
(1− α)2((F e)2 − 1)

]
(II.158)

in which we inject (II.155). We solve this equation numerically with the initial condition

F e(0) = 1, we deduce the expression of α and of τ . An example is plotted on Figure II.17:

on Figure II.17a, the evolution of the Kirchho� stress is shown with respect to the time. On

Figure II.17b, the evolution of the damage can be seen: it is �rst null then grows steadily

until it reached the value 1. We remind that in order for a viscous material following a

Maxwell law to damage, a condition on ε0 has to hold: it should be such that the value of

the critical stress be lesser than the limit value of the stress ηε0.

II.3.1.e Damage localisation

We consider now a damage �eld which is not homogeneous on the bar any more. We invert

the expression

Π =
A(α)

2

(F e)2 − 1

F
(II.159)

in order to have the expression of F e with respect to the stress Π, that we inject in the

damage criterion, and we obtain

A′(α)

2

[
F Π

A(α)
− 1

2
ln

(
1 + 2

F Π

A(α)

)]
+ w1 − w1`

2α′′ = 0 (II.160)

When the bar is broken, Π is null on the bar, and the damage pro�le of the broken bar

reduces to the expression

A0`
2α′′ = w1 (II.161)

which is the same as in small deformation, for a linear elastic material and a Maxwell vis-

coelastic material.
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(a) Stress evolution. (b) Damage evolution.

Figure II.17: Homogeneous evolution of the Kirchho� stress τ and the damage during a

traction test for a Maxwell hyper-viscoelastic model.

II.3.1.f Numerical implementation

The numerical implementation of the one dimensional damaging hyper-viscoelasticity is a

combination of the implementation of the visco-elasticity and of the 1D hyperelasticity. We

have to solve successively three problems, of displacement, viscosity and damage, and we use

again the strategy of alternate minimization. The damage problem is the same as previously

seen, and the viscous and displacement problems are non linear problems.

We compare the numerical results of the Maxwell model with the analytical ones: at the

same time, it enables to check the implementation of the hyperelastic problem seen in II.2 and

the Maxwell hyper-viscoelastic problem. The homogeneous damage evolution is computed:

a large enough internal length has to be chosen. The comparison of the analytical results

and the numerical results is shown on Figure II.18. The two curves match nearly perfectly.

Indeed, the time step has to be very small in order that the numerical results converge to

the analytical ones.

II.3.2 Zener model

In the case of the Zener model, the elastic potential is the sum of two potentials: one is written

with respect to the total deformation, to take into account the energy of the main spring, and

the other is written with respect to the elastic deformation. Unlike small deformation, where

the Zener and Poynting-Thomson model exhibit the same viscoelastic responses, there is a

di�erence in the responses of these two models in large deformation. We use here the Zener

model because it is a particular case of the generalized Maxwell model (with one branch)

commonly used to model viscoelastic behaviours. The elastic potentials are again those of

Ciarlet-Geymonat in 1D. We note A the rigidity of the main spring, and Ae the rigidity of
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Figure II.18: Homogeneous damage evolution for a Maxwell hyper-viscoelastic model. Com-

parison of the analytical results obtained with MATLAB and of the numerical results obtained

with FEniCS.

the spring in the Maxwell branch. The total hyperelastic potential is

ψ =
A

2

(
E − 1

2
ln(1 + 2E)

)
+
Ae

2

(
Ee − 1

2
ln(1 + 2Ee)

)
(II.162)

Consequently, the �rst Piola-Kirchho� stress is

Π =
AeEe + AE

F
. (II.163)

The total energy of the material is

E (u, F v, α) =

∫
Ω0

Ae(α)

2

[
1

2

(
F 2

(F v)2
− 1

)
− 1

2
ln

(
F 2

(F v)2

)]
+
A(α)

2

[
1

2
(F 2 − 1)− 1

2
ln(F 2)

]
+ w(α) +

1

2
w1`

2(α′)2 + 2η
∆t

2

(
F v − F v

i−1

∆tF v
i−1

)2

dX.

(II.164)

The Gâteaux derivative at point α in the direction β ∈ Dt gives the damage criterion in the

bulk

A′(α)

2

(
E(u)− 1

2
ln(1 + 2E(u))

)
+
Ae ′(α)

2

(
Ee − 1

2
ln(1 + 2Ee)

)
+w′(α)−w1`

2α′′ ≥ 0 in Ω0

(II.165)

and boundary conditions
∂α

∂n
≥ 0 on Ω0. (II.166)

The Gâteaux derivative of the total energy (II.164) at point u in the direction v ∈ C0 gives

the equilibrium in the bulk

Div(Π) = 0 in Ω0. (II.167)
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Figure II.19: Stress response with respect to time of a hyper-viscoelastic Zener material, with

A = 1, Ae = 10 and η = 0.5. Obtained with the numerical solving of the di�erential equation

(II.169).

Finally, the Gâteaux derivative of (II.164) at point F v in the direction ξv ∈ X gives the

viscous evolution law

Lv =
1

2η

(
τ − A

2
(F 2 − 1)

)
(II.168)

Combining (II.168) with (II.163) and Lv = Ḟ v/F v gives the di�erential equation that rules

the viscous evolution

τ̇ = (A+ Ae + 2τ)
Ḟ

F
− 1

2η

(
A+ Ae + 2τ − AF 2

)(
τ − A

2
(F 2 − 1)

)
(II.169)

and can be solved numerically, as shown on Figure II.19. In this case, the deformation

associated to the stress τ is again such that F (t) = exp(tε0/2).

When damage is added to the viscous evolution law, the equations become quite large

and can only be studied numerically. The implementation follows the same method as for the

Maxwell model. Since the results cannot be compared to analytical ones, there is no point in

showing them here. It has been checked that the dissipated energy takes the desired value.

II.3.3 Conclusion

To conclude this part, we insist on two main points. First, the study of a 1D hyperelastic

damaging bar has shown that the damage pro�le for a broken bar in the reference con�gura-

tion is identical to the one obtained in small deformation, thus making the critical energies

also identical. The di�erence is seen in the way the snap-back occurs, because the evolution of

the stress for di�erent values of maximum damage is di�erent in small and large deformation.

Secondly, the analytical study of viscoelastic material, modelled by the Maxwell and

Poynting-Thomson models, in small and large deformation, has revealed interesting proper-

ties. It turns out that for the Maxwell model, there is a threshold in the strain rate (related
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to the material parameters) below which homogeneous damage cannot occur. Though for the

Poynting-Thomson model, such a threshold for homogeneous damage does not exist, there is

yet a condition on the strain rate, this time allowing for the localisation of damage. When

the strain rate is close to the critical value, we observe a temporal regularization of the jump

in the energies: damage occurs as a quasi-continuous process that grows �rst homogeneously,

then localising on the bar. We can imagine that such a regularisation could happen for more

strain rate values, if more branches with di�erent relaxation times were added in the model,

that would become a generalised Maxwell model.
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This chapter deals with the numerical implementation of the gradient damage models in

an academic �nite element code in dimensions 2 and 3, and its application to standard tests.

We will see that the use of these damage models is perfectly relevant in the framework of

large deformation to model the initiation of cracks in sound material, but that numerical

trouble inherent to the computation of large displacements have to be somehow overcome.
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One of the �rst mention of the implementation and the use of the gradient damage

models in large deformation can be found in the work of Del Piero, Lancioni and March in

[13], in 2007. They reformulate the minimization problem in the context of �nite elasticity,

and perform numerical simulations in 2D with a compressible Neo-Hookean hyperelastic

potential. Their work was followed by Miehe and Schänzel in 2014, in [50],when they used

the so-called phase-�eld models to model the behaviour of rubbery polymers in a framework of

rate-independent crack propagation. At the same time, Hesch and Weinberg [26] also worked

with the phase-�eld models in �nite deformation. In 2015, Henao, Mora-Corral and Xu used

the gradient damage models to model the fracture in non linear elasticity in [24]. Their

approach is more mathematical, and relies on the introduction of a non linear polyconvex

energy. We can also cite the recent contributions of Kumar, Francfort and Lopez-Pamies in

[33] where simulations with quasi-incompressible materials are performed, and Hesch and al.

in [27].

III.1 Numerical implementation

The code that was used to carry out more heavy simulations is an academic �nite element

code resulting from the MEF++ project [16] of the GIREF research group. It was created

in 1996 by the researchers of the GIREF team of the university of Laval in Quebec, in

Canada. Since then, it has developed considerably, launching a parallelized version in 2003.

Many problems of fundamental and applied research are solved, including optimisation, mesh

adaptation in 2D and 3D, �uid (incompressible Navier-Stockes) and solid mechanics problems.

In particular, it is able to solve problems of very large deformation in solid mechanics, and

this is the reason it has been chosen.

III.1.1 Recall: displacement problem in large deformation

This section serves as a reminder of the necessary techniques needed in order to solve a

non linear displacement problem in large deformation. First, a quick review of the existing

hyperelastic laws is done, followed by a recall of the �nite element method used in the

resolution of a �nite strain problem.

III.1.1.a Choice of the hyperelastic law

First, note that all the hyperelastic laws proposed here are isotropic, since in large deforma-

tion, anisotropy has to be treated by adding terms in the hyperelastic potential, and this is

out of the scope of this work.

The choice of the hyperelastic potential is wide, and many laws have been created to

reproduce the behaviour of elastomers under various types of solicitation (uni-axial, bi-axial,

etc.) for large or very large deformation. A review of available models that have proven

to be well representative of the behaviour of elastomers can be found in [44]. Figure III.1
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Figure III.1: Comparison between three hyperelastic laws (Mooney, Arruda-Boyce and Hart-

Smith) and experimental results of Treloar, for a traction test. Nominal stress with respect

to the elongation. Figure from [38].

shows the behaviour of the Mooney, Arruda-Boyce and Hart-Smith models, compared with

the experimental results of Treloar for a uni-axial tension test. We can see that some models

are better at predicting the behaviour of the material at large strains than others. For an

example, the Mooney model is not able to render the hardening of a polymer that happens

for elongations superior to 5.

Globally, hyperelastic models can be classi�ed into two groups: the �rst are issued from

physical considerations, while the second are issued from mathematical developments. The

8-chain model of Arruda and Boyce [5] introduced in 1993 belongs to the �rst family: it is

based on the macromolecular structure of the rubber, and captures well the behaviour of

rubber for uni-axial and bi-axial extension, uni-axial compression, plane strain compression

and pure shear. More recently, the micro sphere model of Miehe, Göktepe and Lulei [48]

was able to describe the elastic response of rubbery polymers at large strains from a micro-

mechanically based network model. We can also cite the variational network-based model of

Alicandro, Cicalese and Gloria [3], further studied in [22] by Gloria, Le Tallec and Vidrascu,

or the tube model of Heinrich and Kaliske [23].

In the category of models issued from mathematical developments, we can cite the gener-

alized Rivlin model, also called polynomial hyperelastic model, which is written as a function

of the reduced two �rst invariants of right Cauchy-Green tensor C

ψ =
N∑

p,q=0

Cpq(Ī1 − 3)p(Ī2 − 3)q +
M∑
m=1

Dm(J − 1)2m. (III.1)

The Cpq parameters, where "p" is the power of the I1-dependence of the strain energy density,

and "p" is the power of the I2-dependence of the strain energy density, are material constants

related to the isochoric response of the material. TheDm are material constants related to the

volumetric response. The number of terms in the expansion is determined by the application's

accuracy requirements.
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In the case N = 1 and M = 1, the Mooney-Rivlin material is obtained, that is written in

3 dimension

ψ = C10(Ī1 − 3) + C01(Ī2 − 3) +D(J − 1)2. (III.2)

This is the potential we will work with in the following numerical tests. If the coe�cient

D which is equal to κ/2, κ the bulk modulus, is taken su�ciently large with respect to the

coe�cients C10 and C01, the material is quasi-incompressible.

This Mooney-Rivlin law is polyconvex ([6]), which ensures the existence of at least one so-

lution. The potential is decomposed additively into two parts resulting from purely isochoric

deformation and volumetric deformation. Physically, it is motivated by the premise that

the dilation and the deviatoric responses of rubber-like materials are sustained by di�erent

mechanisms. To obtained this decomposition, the deformation gradient tensor is decomposed

as follows

F = J1/3F̄ (III.3)

and we can see that the determinant of F̄ = 1, so that F̄ is the gradient deformation tensor

associated to a volume preserving deformation. The hyperelastic potential of a Mooney-Rivlin

law in 3D is therefore decomposed into an isochoric part and a volumetric part

ψ = w(Ī1, Ī2) + U(J), (III.4)

where

w(Ī1, Ī2) = C10(Ī1 − 3) + C01(Ī2 − 3) (III.5)

and

U(J) =
κ

2
(J − 1)2. (III.6)

I1 and I2 are called reduced invariants: Ī1 = J−2/3I1 and Ī2 = J−4/3I2, with I1 = trC and

I2 =
1

2
((trC)2 − tr(C)2).

III.1.1.b Variational formulations

This part is a recall of the way an inelastic problem can be solved numerically. It is essentially

based on the �nite element course of Fortin and Garon [17] from the university of Laval, and

enables to understand the philosophy of the �nite element code we have been working on.

The displacement �eld that has to be found is the solution of the equilibrium equation that

can be written in the reference or the actual con�guration. The choice of the con�guration

on which we will be working will be explained later, for now, let us just write the equilibrium

equations in the initial con�guration C0. We consider here only Dirichlet and Neumann

boundary conditions, applied on respectively ∂DΩ and ∂NΩ. The system that has to be

solved on the reference con�guration is therefore the following one{
−∇·Π = f0 in Ω0

Π·N = h0 on ∂NΩ0

(III.7)
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where f0 are the body force in the reference con�guration, and the second equation accounts

for Neumann conditions. Such a formulation is called a total Lagrangian formulation. We can

notice that in this formulation, the �rst Piola-Kirchho� tensor plays the role of the Cauchy

tensor σ in the deformed con�guration. The variational formulation of this problem on the

reference con�guration C0 is∫
Ω0

Π·Div(w) dX =

∫
∂NΩ0

h0wdS +

∫
Ω0

f0w dX. (III.8)

In most cases of large deformation, the material is nearly or totally incompressible, that

is, its variation of volume is close to zero which gives detF ' 1. The formulation in pure

displacement becomes unsuitable to compute the correct �eld of displacement. To overcome

this problem, a mixed formulation is used: a second variable, named pressure, is introduced,

and the pair (u, p) has to be found. The pressure is de�ned as follows

p = −1

3
tr(σ), (III.9)

and

p = −κ(J − 1). (III.10)

for the Money-Rivlin law (III.4).

A decomposition of the second Piola-Kirchho� stress tensor is introduced

S = S′ − pJC−1 (III.11)

with S′ the derivative of the isochoric part of (III.4)

S′ = 2

(
∂w

∂Ī1

∂Ī1

∂C
+
∂w

∂Ī2

∂Ī2

∂C

)
(III.12)

Finally, the variational formulation of a mixed problem in large displacements is
∫

Ω0

S′·(F TDiv(w)) dX −
∫

Ω0

pJF−T ·Div(w) dX =

∫
∂NΩ

h0w dS +

∫
Ω0

f0w dX∫
Ω0

(J − 1)q dX +

∫
Ω0

1

κ
pq dX = 0.

(III.13)

This formulation is non linear and has to be linearised. Because of this non linearity, the

Newton method is often used to solve this problem (see e.g. Le Tallec [34]). We write

R1((u, p), w) =

∫
Ω0

S′·(F TDiv(w)) dX−
∫

Ω0

pJF−T ·Div(w) dX−
∫
∂NΩ

h0w dS−
∫

Ω0

f0w dX

(III.14)

and

R2((u, p), q) =

∫
Ω0

(J − 1)q dX +

∫
Ω0

1

κ
pq dX. (III.15)
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Starting from an approximation (u0, p0) of the displacement and the pressure, we look for a

correction (δu, δp) such that {
R1((u0 + δu, p+ δp), w) = 0

R2((u0 + δu, p+ δp), q) = 0
(III.16)

and this system has to be linearised with respect to both the variables u and p.
∂R1((u0, p0), w)

∂u
δu−

∫
Ω0

δpJF
−T (u0)·Div(w)dX = −R1((u0, p0), w)

−
∫

Ω0

qJF−T (u0)·Div(δu)dX −
∫

Ω0

1

κ
δpqdX = −R2((u0, p0), q)

(III.17)

In order to decrease the size of the non linear systems that has to be solved, a common

technique is the penalisation technique. Within speci�c conditions, it enables to eliminate

the variable p from the system. This method is very e�cient when the pressure is discretized

with discontinuous polynomials from one element to another. Most frequent cases are the

linear or continuous approximations by element.

On a element K, the linearised formulation (III.17) becomes, under matricial formAK BKT

BK MK

δKu
δKp

 = −

RK
1

RK
2

 (III.18)

where the elementary matrices are directly de�ned by (III.17). When p is discontinuous on

the elements, the matrix MK is of dimension 1 by 1 and is vol/κ. Consequently we have

δKp =
−κ

vol(K)

(∫
K

J(F−T (u0)·∇Xδu)dX +

∫
K

(J − 1)dX − pK

κ
vol(K)

)
. (III.19)

We exposed brie�y in this part how the displacement problem is solved in the code used for

the simulations.

III.1.2 Damage problem

The damage problem is the same as was seen in the �rst chapter, except that it has now

to be de�ned in higher dimensions. The dissipated energy density is again the sum of a

dissipated energy during a homogeneous process of damage and a dissipated energy during

the localisation of damage

s(α,∇α) = w(α) +
1

2
w1`

2∇α·∇α (III.20)

with

w(α) = w1α. (III.21)
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The dissipated energy on the structure is therefore

S (α,∇α) =

∫
Ω0

(
w(α) +

1

2
w1`

2∇α·∇α
)

dX. (III.22)

At that point, a question that arises is: is this energy on the reference con�guration su�cient

to render the rupture in large deformation? Following the analysis of [25], if we add a term

equivalent to a surface energy accounting for the stretching of the surfaces of the body,

including the cracks, it does not make a considerable di�erence in the numerical results. We

will consequently make the choice of working in the reference con�guration with a dissipated

energy which is the same as in small deformation. With this de�nition, the rupture energy

Gc that is usually de�ned will have a meaning only in the reference con�guration.

In order to use the damage models, we have to set the dependency of the stress-strain law

to the damage parameter α. In 1D, for both small and large deformation, we have seen that

it was chosen such that the material rigidity would depend on α via a decreasing function of

α. In higher dimensions, in large deformation, we chose to put this dependency directly in

front of the hyperelastic potential, as was done e.g. in [32]

ψ(F , α) = a(α)ψ0(F ) (III.23)

where a(α) is a quadratic function of α

a(α) = (1− α)2. (III.24)

For a Mooney-Rivlin hyperelastic potential for an example, it takes the form

ψ(F , α) = C10(1− α)2(Ī1 − 3) + C01(1− α)2(Ī2 − 3) +
κ0(1− α)2

2
(J − 1)2. (III.25)

With the formula (III.25), we can see that when the damage reaches the value 1, both the

isochoric part and the volumetric part become zero: the two material coe�cients of the law

are null, as is the compressibility coe�cient. For the latter, this means that in the zone where

the material is damaged, it becomes compressible.

Note that written in that way, our models do not make any di�erence between tension

and compression in the way rupture occurs. In 2009, Amor, Marigo and Maurini [4] proposed

a volumetric-deviatoric split model so that only the tension would play a role in the fracture

of the structure. In 2010, Miehe, Hofacker and Welschinger [49] introduced a spectral model

that separates tension and compression. In our case, compression tests will not be performed,

and this is why no special decomposition is used.

We now brie�y detail the variational formulation of the damage problem. The total energy

of the structure in the reference con�guration is

E (u, α) =

∫
Ω0

(
(1− α)2ψ0(F , α) + w1α +

1

2
w1`

2∇α·∇α
)

dX. (III.26)
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The variational formulation for a test function β is∫
Ω0

(
−2(1− α)ψ0(F , α)β + w1β + w1`

2∇α·∇β
)

dX. (III.27)

Moreover, since the problems are solved in correction, that is, the variable is decomposed as

the sum of a previously calculated value and a correction that has to be found

α = α0 + δα, (III.28)

we inject this expression in the variational formulation and we get∫
Ω0

(
(w1 − 2ψ0)β + 2ψ0α0β + w1`

2∇α0·∇β + 2ψ0δαβ + w1`
2∇(δα)·∇β

)
dX. (III.29)

The terms that contribute to the elementary matrix are

2ψ0δαβ + w1`
2∇(δα)·∇β, (III.30)

and the ones that are in the residue are

(w1 − 2ψ0)β + 2ψ0α0β + w1`
2∇α0·∇β (III.31)

because α0 is already known.

Contrary to the library FEniCS that automatically computes the gradient and the Hessian

of the objective energy (the energy to be minimised), with MEF++ we have to give the terms

that will construct the vector gradient and the Hessian matrix. We see that the gradient

vector can be directly assembled from the residue, and the Hessian matrix from the matrix.

To solve the damage problem, a non linear bound constrained solver has to be used. The

TAO optimization software library (contained in the PETSc libraries) is chosen. For each

time step, the lower bound has to be updated so that it corresponds to the value of the

damage found in the previous time step.

One of the advantages of such a choice of the damage laws ((III.23) and (III.24)) is that

the objective function that has to be minimised is a quadratic function of α, the gradient

is linear, and the Hessian is constant. Hence, numerical methods conceived for this type of

minimisation can be used. We use a GPCG method (gradient projected conjugate gradient

algorithm), that is a conjugate-gradient based method for bound-constrained minimization.

It assumes that the objective function is quadratic and convex, therefore, it evaluates the

objective function, the gradient, and the Hessian only once.

III.1.3 Remark: implementation with the FEniCS library

In the chapter II, all the 1D numerical examples were done with the library FEniCS. Yet,

gradient damage models were also implemented in higher dimensions in the library. Using the

demonstration of hyperelasticity available with the open source library, and adding damage,

62



III.2 � 2D simulations

the implementation does not require many e�orts, and this is why it is not detailed here: it

still consists in a loop during which the displacement problem and the damage problem are

solved successively. Yet, in order to be able to withstand very large displacements, a �nite

element code has to be very robust, and speci�c methods to help the convergence of the non

linear solver have to be used. Moreover, solving a non linear problem is quite slow, compared

to a linear problem, and it the use of parallel solving becomes highly recommended. Most

of non linear solvers available in FEniCS do not work in parallel, and the ones that do, are

not very robust for this type of problems. For all these, reasons, the academic code MEF++

was usually preferred over the FEniCS library.

III.2 2D simulations

The code allows the user to set conditions of plain strain in order to perform 2D simulations.

It is also possible to use axi-symmetric conditions. In this case, we �rst make sure that the

axial symmetry is lost before we use this hypothesis. In this section, though, we will focus

on a 2D plate submitted to uni-axial traction, that can be seen as a simple extension of the

1D bar under traction studied in II.2.3.

III.2.1 General considerations

Relation between the critical stress and the internal length

An elongation λ is applied on the right boundary of a 2D plate, and the normal displacement

on the left is blocked. For a purely incompressible material, the gradient deformation tensor

under conditions of plain strain is

F =


λ 0 0

0
1

λ
0

0 0 1

 (III.32)

where the elongation λ is equal to 1+u′. The damage criterion of an incompressible Mooney-

Rivlin material is

C ′10(α)(I1 − 3) + C ′01(α)(I2 − 3) + w′(α) = 0 (III.33)

where I1 = λ2
1 + λ2

2 + λ2
3 and I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1.

Thus we have

C10(λ2 +
1

λ2
− 2) + C01(λ2 +

1

λ2
− 2) =

w1

2
, (III.34)

and the critical stress is

λc =

√
C +
√
C2 − 4

2
, with C = 2 +

w1

2(C10 + C01)
. (III.35)
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Figure III.2: Comparison of the relation be-

tween the critical displacement Uc and the

internal length ` for small and large defor-

mation.

Figure III.3: Comparison between the slopes

of the linear �tting of the curves Uc = f(`)

for two di�erent values of Gc, with respect to

the ratio of the Mooney-Rivlin coe�cients.

To compare with small deformation, we write the elastic energy with the Lamé coe�cients

ψ(ε) =
λ

2
(trε)2 + µtr(ε2) (III.36)

which reduces to

ψ(ε) = µtr(ε2) (III.37)

for incompressible materials, with the condition div(u) = 0. Finally, the damage criterion is

4µ0(λ− 1)2 − w1 = 0 (III.38)

with the relation µ = 2(C10 + C01). Since λ − 1 = u, and w1 = Gc/(cw`) in the numerical

simulations, it is easy to see that the critical load Uc is the inverse of a square function of

the internal length

Uc =

√
Gc

4µ0cw`
. (III.39)

At equivalent deformation, the stress with a Hooke's law is higher than for a hyperelastic

material. So the critical stress is reached for lowest values of displacement in small defor-

mation. Moreover, Figure III.2 shows that the relation between the internal length and the

critical displacement are not the same in small and large deformation. In small deformation,

we have seen that the critical displacement uc is a function of 1/`0.5. A linear approximation

of the logarithmic curve of Uc with respect to ` in large deformation obtained with (III.34)

shows that Uc is a function of 1/`0.6.

In large deformation, Figure III.3 shows that for small values of Gc, i.e. for small values of

critical displacement, the relation between the critical displacement and the internal length
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Figure III.4: Relation between the internal

length ` and the critical displacement for two

di�erent bulk modulus, and comparison with

the theoretical values.

Figure III.5: Critical displacement with re-

spect to the compressibility of the mate-

rial: the critical displacement tends to a

�xed value when the material becomes quasi-

incompressible.

does not depend strongly on the ratio between the two Mooney-Rivlin coe�cients. For larger

values of Gc, this dependency increases, but nonetheless stays very small. The approximation

Uc ∼ 1/`0.6 is therefore valid for any parameters of the model.

Simulations were performed on 2D plates, for di�erent values of Gc so that the critical

displacement would be either small or large. Various internal lengths were also tested, and

the results displayed on Figure III.4 show a very good agreement between the theoretical

and numerical values. The bulk modulus being chosen much greater than the Monney-Rivlin

coe�cients, the material is quasi-incompressible, and there is no signi�cant di�erence in the

values of the critical loads for κ = 100 and κ = 1000. The results are also quasi identical

when a quadratic function of u is used, or when a structured mesh is used.

On Figure III.5, the critical displacement is plotted with respect to the compressibility

κ: the more incompressible the material is, the sooner it breaks, and when the value of κ is

big enough, a constant critical stress is obtained. Here, the theoretical critical displacement

for a purely incompressible material is 0.4383, and there is 0.08% of error with the numerical

results.

Boundary conditions on the displacement

For simplicity, the boundary conditions on the displacement are called Dirichlet conditions

when the displacement is imposed. They are in fact conditions of Robin type with penalisation

values so that the results are the same as for Dirichlet conditions.

65



Chapter III � Numerical study of damage gradient models for large deformation

Convergence in the alternate minimisation

One of the di�culties that may arise during the computation of a test, is that the convergence

in the alternate minimisation is too fast, i.e. that the damage grows and reaches its maximum

value too quickly. This triggers convergence problems of the displacement problem, because

it is as if a substantial loading was imposed all of a sudden on the structure. In this situation,

the non linear solver has troubles converging to the solution.

To prevent a growing of the damage that is too fast, we used mainly two techniques.

The �rst consists in calculating the di�erence in two successive maximum values of α in

the alternate minimisation: if this di�erence is larger than a given threshold, the damage

vector is replaced by a combination of its previous value weighted by a chosen parameter.

The second way to reduce the convergence of the damage problem is to multiply the Hessian

matrix (which is a constant) by a scalar so that the convergence is slowed down. An example

is given in Figure III.6 where a comparison is made on two plates submitted to traction with

the same material and numerical parameters, except that in one case, the Hessian matrix is

multiplied by 2. Figure III.6a shows that if the Hessian matrix is untouched, the damage

reaches a value close to 1 very quickly, and the calculation (depending on the tolerance)

can be made in 20 iterations. If the Hessian matrix is multiplied by 2, the convergence is

smoother, and it takes more iterations to converge on α, which is exactly the aim of this

method. Figure III.6b illustrates these explanations: at a given time step of the alternate

minimisation (here, the 20th), the damage pro�le found with an untouched Hessian matrix is

much more advanced (in terms of �nal result) than the one found if the Hessian is multiplied

by 2. In the end of the alternate minimisation, the damage pro�les are quasi identical. We

could argue that since more iterations are required to converge in the alternate minimisation

when the Hessian is multiplied, this is in fact a loss of time. Yet, since the displacement

problem converges much more easily when the damage does not grow too quickly, there is no

loss of time, and it even accelerates the convergence. In this particular case, the calculations

with the natural Hessian took 168 seconds while the calculations with a doubled Hessian took

164 seconds.

Residual sti�ness

The numerical parameter kres ensures that the problem remains elliptic and solvable when

the damage becomes close to one. In large deformation, it becomes essential in order to help

the convergence of the non linear solver of the displacement problem. In our simulations,

its value is usually 1e − 03, which could be thought rather large. Yet, tests were done, and

showed that this value does not have an in�uence either on the rupture energy value or the

maximum value of α, as can be seen in Table III.1.
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III.2 � 2D simulations

(a) Maximum value of damage with respect

to the numbre of iterations in the alternate

minimisation.

(b) Comparison of the damage pro�les at the

twentieth time step of the alternate minimi-

sation.

Figure III.6: Comparison of the evolution of damage during the alternate minimization when

the Hessian matrix is multiplied by 1 or 2. Case of a 2D plate under uni-axial tension with

a ratio `/L = 0.16.

kres 1e− 3 1e− 04 1e− 05 1e− 06

Gc 1.022 1.027 1.027 1.027

αmax 0.970 0.973 0.973 0.973

Table III.1: 2D plate under uni-axial traction. Rupture energy and maximum value of damage

for di�erent values of kres.
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L H C10 C01 κ ` Gc kell tol h

1.0 0.1 10 5 100 0.10 50 1e-3 1e-4 0.01

Table III.2: Geometrical, material and numerical parameters for a 2D plate submitted to

traction.

III.2.2 Particular case of a 2D plate under uni-axial traction

Data settings

We show now one example of a 2D plate submitted to uni-axial traction. The two components

of the displacement on its left end are blocked, and the x component of the displacement is

imposed as a growing function of time while the y component is also blocked. The geometric

parameters are summarized in Table III.2: the length of the plate is 1, its height is 0.1.

The displacement is chosen as linear, the pressure is constant on each element, and a

penalised formulation is used to solve the displacement-pressure problem. A Mooney-Rivlin

law is used, and the compressibility coe�cient κ is ten times greater than the �rst coe�-

cient of the Mooney-Rivlin law C10. This ratio could be chosen higher to ensure a higher

incompressibility, but the results in terms of fracture would not be very di�erent, and the

calculation would be much more tricky. This is why we chose such values, so that the quasi-

incompressible behaviour of the material would still be taken into account, but not to the

detriment of the computational cost and numerical simplicity.

The damage problem is the same as previously de�ned: the hyperelastic potential is

multiplied by a function of α, so that it is null when α reaches the value 1. The internal

length is one tenth of the length of the plate, and the mesh size is ten times smaller than

the internal length. The residual sti�ness is chosen large enough to help the convergence of

results, and the alternate minimisation should stop when a tolerance of 1e-4 on α is reached.

Results

A quasi-static test is performed, and since the plate is plain, without any micro defects that

would trigger stress concentration, it breaks suddenly when the critical stress is reached.

This can be seen on Figure III.7 which shows the evolution of the energies during the test.

During the hyperelastic phase, the dissipated energy is zero because there no damage in the

structure, and the total energy is equal to the elastic energy. When the plate breaks, there is

a sudden drop of the elastic energy that goes close to zero while the dissipated energy jumps

the its value Gc. At the end of the test, the total energy is 11.70, the elastic energy is 0.86

and the dissipated energy is 10.84. Because of the normalisation of the damage problem, this

energy should be equal to 10 and we have an error of approximately 8.4%

The damage is well localised on the broken plate, and simulations with other meshes

have shown that it is mesh independent. Figure III.8 shows the damage in the reference
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Figure III.7: Evolution of the energies during a traction test on a 2D plate. After a purely

hyperelastic phase with no dissipated energy, the plate suddenly breaks and the energy jumps.

con�guration on the plate, and on a lineout in order to extract the damage pro�le.

When the plate is broken, the deformation is not uniform any more. Before it breaks,

if the deformation in the plate is of the order of 200%, when it is broken, the deformation

concentrates on the zone where α is close to 1, on a very few mesh elements. On this

elements, the deformation is therefore very large, it can go up to 2000%. This demonstrates

the necessity of having a very robust �nite element code, designed for very large deformation.

The displacement in the reference con�guration can be seen on Figure III.9. It is clearly

separated in two parts, so that the deformation is concentrated in the middle of the sample,

where the damage is close to its maximum value 1. Figure III.10 shows the displacement

in the deformed con�guration, at the beginning of the alternate minimisation, and at the

end. Due to the constraint of quasi-incompressibility, the middle zone that is tremendously

stretched has to be very thin, and we can see that the mesh elements su�er a huge deformation

in this zone.
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(a) Damage on the plate in the reference con�gura-

tion.

(b) Damage pro�le obtained from an

x-line.

Figure III.8: Damage pro�le of the broken 2D plate. The damage is well localised in the

middle of the sample.

(a) Displacement on the plate in the reference con-

�guration. (b) Displacement on a x-line.

Figure III.9: Displacement pro�les in the broken 2D plate. The displacement is separated in

two phases with the deformation concentrated in the middle of the plate.
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(a) u(L)/L = 0.43

(b) u(L)/L = 0.59

Figure III.10: Displacement in the deformed con�guration of a 2D plate under uni-axial

traction, at the beginning and the end of the alternate minimisation.

III.3 3D simulations

Data settings

After the veri�cation of the implementation of the gradient damage models in a 2D setting,

a 3D example is tested. The chosen geometry is a hourglass-shaped specimen, as can be

seen on Figure III.11: its length is 0.7, its radius in the ends 0.3 and in the middle 0.12.

The curve is obtained using an example of a 2D axi-symmetric stenosis following a cosine

function ([59]). The geometry and the mesh are generated in 3D by the software GMSH. An

algorithm of 3D optimization of the mesh elements is used in order to ensure a good quality

of the elements. The mesh is made of tetrahedral elements, randomly generated, and it is

re�ned in the strangle part of the sample, so that the biggest elements are of size 0.021 and

the smallest 0.017. All these geometrical parameters can are written in the Table III.3. In

the end, the structure is composed of 162000 elements, and the mesh can be seen in Figure

III.11b.

The problem consists of a specimen submitted to uni-axial traction: the left extremity is

clamped using Dirichlet boundary conditions on the three components of the displacement,

a growing x displacement is imposed on the right extremity and the two other components

of the displacement are blocked. Dirichlet boundary conditions of zero damage are imposed

on the two extremities of the sample, because we expect it to damage in its middle part.

The displacement �eld is taken as linear, and the pressure is constant by element so that

a penalised formulation can be used. The damage is linear. Because of the very large strains

in the damaged zones, and of the supplementary di�culty induced by the third dimension,

it is essential to use a linear search to optimize the convergence of the non linear solver. A
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(a) Geometry. (b) Mesh.

Figure III.11: Hourglass-shaped specimen: 3D geometry and mesh generated with GMSH.

L R r C10 C01 κ ` Gc kell tol h

0.7 0.3 0.12 10 5 70 0.15 10 1e-4 1e-5 0.017 -> 0.021

Table III.3: Geometrical, material and numerical parameters for a 3D hourglass-shaped spec-

imen submitted to traction.

condition of non distortion of the mesh is also imposed, so that if a mesh element becomes

too deformed, the correction is diminished.

The main parameters used for this simulation are summarised in the table III.3. The

ratio of the compressibility coe�cient and the �rst coe�cient of the Mooney-Rivlin law is 7.

Because of the di�culties in performing simulations with damage in large deformation, it is

complicated to use high compressibility coe�cients.

Results

Because of the geometry of the specimen, there is a stress concentration on the borders of

its strangle part, and this is therefore the zone where the damage occurs �rst. Figure III.12

shows the evolution of the damage on the middle plane of the sample, for three di�erent

loadings: when damage �rst occurs, it is only on the boundaries, and the middle part is

sound. Then the damage progressively di�uses towards the center while it increases, and

after some time, it is uniform on the slice.

The evolution of the energies during the test also show the continuous evolution of damage.

Figure III.13 shows that there is no jump of the total energy: after a purely hyperelastic phase,

damage begins to grow which makes the elastic energy decrease. At the end of the test, when

the damage has reached the value one in its middle part, the elastic energy is close to zero

and the total energy is nearly the dissipated energy.

Figure III.14 shows the damage and the displacement at the end of the test, in the
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(a) u(L)/L = 0.29 (b) u(L)/L = 0.36 (c) u(L)/L = 0.59

Figure III.12: Slice in the middle plane of the hourglass-shaped specimen submitted to traction.

The damage initiates on the borders then grows slowly and di�uses toward the center, until

it becomes homogeneous in the plane.

Figure III.13: Evolution of the energies during a traction test on a 3D hourglass-shaped

specimen. After a purely hyperelastic phase with no dissipated energy, damage begins to

develop progressively in the structure making the elastic energy decrease. When the damage

is very high (>0.95), the total energy is mainly made of the dissipated energy.

73



Chapter III � Numerical study of damage gradient models for large deformation

(a) Damage. (b) Displacement.

Figure III.14: Hourglass-shaped specimen submitted to traction. Damage and displacement

in the reference con�guration.

reference con�guration. The damage is localised in the strangle part of the sample, and the

displacement is clearly separated in two parts: three is no deformation on the left and right

side of the sample, only the broken zone is concerned. The deformation is therefore very

important in this zone, and this usually triggers problems for the numerical computation of

the displacement �eld.

Finally, Figure III.15 shows successive states of the displacement �eld of the sample in

the deformed con�guration. As damage develops, the extremities of the sample relax and the

deformation concentrates in the middle part. This zone is very deformed, and the mesh is

distorted. Due to the robust code, the displacement problem is able to converge, even with

very deteriorated elements.
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(a) u(L) = 0

(b) u(L) = 0.15

(c) u(L) = 0.3

(d) u(L) = 0.4

(e) u(L) = 0.5

(f) u(L) = 0.62

Figure III.15: Hourglass-shaped specimen submitted to traction. Displacement in the de-

formed con�guration for growing loading.
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III.4 Conclusion

The gradient damage models are perfectly able to model the rupture of sound, quasi-incompressible

structures in large deformations. The results obtained are qualitatively good, and for the

most part are similar to the ones that can be obtained when performed in small deformation.

The numerical di�culties associated to the computation of damage lies more in the non linear

nature of the displacement problem than in the damage problem itself.

Indeed, one drawback of the Lagrangian methods to solve problems of large deformation is

the appearance of very deformed elements of the mesh during the loading. These elements can

lead to numerical instabilities or convergence problems. One solution is the mesh adaptivity

that enables to optimise the quality of the mesh if necessary. Moreover, if the quality of the

mesh in the sensitive regions is improved, it usually leads to a better precision of the results.

[40] gives an example of the use of this technique in a �nite element code.

Besides this mesh adaptivity, another, or complementary solution, lies in the continuation

process (see for an example the implementation of such a technique in [36]). Numerical

continuation methods are very e�cient to improve the convergence, especially around the

bifurcation points and limit points, and reduce the computational costs.

Many techniques exist in the industrial world to render the damage problem more easy

to solve once the crack has been initiated. The strength of the damage gradient models is

more in their ability to initiate damage in perfectly sound structures without the need to

introduce arti�cial defects. When the damage has reached a great enough value - su�cient

to think that the structure will break where it is damaged, it is justi�ed to contemplate using

another technique to deal with the broken or quasi-broken material, like the X-FEm method

for an example.
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It has been noticed, see e.g. in the analysis of Poulain and al. [35], that for some

polymers, damage initiates in zones of high hydrostatic pressure, and not in zones of high
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strain. Yet, the damage laws used in Chapter III are not suitable to model this kind of

rupture for incompressible materials. Kumar, Francfort and Lopez-Pamies [33] were the �rst

to address this fault of the gradient damage models. To remedy it, they add an external

driving force, in the damage criterion, that is proportional to the pressure. In doing so, they

are perfectly able to initiate damage in zones of high pressure, but do not stay within the

con�ne of a variational setting of the damage problem. Their work is hence at the origin

of the developments below, and while we aim at the same result, i.e. damage initiation in

zones of high pressure, the method used are di�erent, since we chose to stay in a variational

setting.

Therefore, this chapter aims, in a variational setting, at �nding damage laws that ful�l

the two following conditions:

• When α = 0, the material has to be incompressible

• The hydrostatic pressure has to intervene in the damage criterion, so that depending

on the damage parameters, damage can initiate either where the hydrostatic pressure

is maximum, or where the deviatoric stress is maximum.

The reasoning will be done in small deformation for the sake of clarity, but can easily be

extended to large deformation.

IV.1 Motivations

IV.1.1 Take micro defects into account

Let us consider a full disk made of an incompressible material, submitted to a pressure on

its boundary. To preserve its volume, there cannot be any deformation of the disk, and the

deformation energy is therefore zero. Without any deformation energy, the critical energy for

rupture can not be reached, and the material does not damage, even if the pressure inside is

very high.

Let us now consider a disk, with a hole in its center of radius a, such that the displacement

imposed on its boundary is a function of a loading parameter t: u = t
a

r
. The deformation is

εr = −t a
r2

and εθ = t
a

r2
. The radial stress is

σr = −p+ 2µεr (IV.1)

and the hoop stress is

σθ = −p+ 2µεθ. (IV.2)

The equilibrium equation gives

− dp

dr
+ 4µt

a

r3
− 4µt

a

r3
= 0, (IV.3)
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and therefore p is a constant

p = −2µ
t

a
. (IV.4)

The energy of this structure is the integral over the domain of the elastic energy

E =

∫ ∞
a

µε·ε 2πr dr, (IV.5)

and �nally

E =
πa2p2

2µ
. (IV.6)

Thus, in the case of a disk with a hole of radius a in its center, the surface of the defect πa2

plays a role in the expression of the energy.

Let us now consider that the structure can be damaged, and let us write the strain energy

density as the sum of the elastic energy and the dissipated energy

W (ε, α) = µ(α)ε·ε+ w(α). (IV.7)

The damage criterion is

µ′(α)ε·ε+ w′(α) ≥ 0. (IV.8)

Since ε·ε = 2t2a2/r4, it can be written with respect to the pressure using (IV.4)

µ′(α)

2µ(α)2
p2a

4

r4
+ w′(α) ≥ 0. (IV.9)

When the damage initiates in r = a, the damage criterion written in α = 0 gives

µ′(0)

2µ(0)2
p2 + w′(0) = 0. (IV.10)

This expression shows that the damage models usually used are able to detect the presence

of micro defects, and initiate damage around it, though they are not able to initiate damage

when there is no defect in an incompressible material, for which the deformation energy is null.

To illustrate the calculations, Figure IV.1 shows how a defect can a�ect the initiation

of damage and the rupture pattern of a material. The simulations are performed for a

compressible material of Poisson coe�cient ν = 0.3, in order to be able to apply a radial

displacement on the boundary of the disk. Dirichlet boundary conditions of no damage are

applied on the borders of the disk.

For a full disk, a three-branch crack suddenly appears (for more information on the shape

of the cracks, see [47]). For a disk with a defect whose size is small compared to the internal

length, the defect does not a�ect the �nal rupture pattern. Yet, it changes the initiation of

damage, because as small as the defect be, it triggers stress concentration on its edges, and

therefore the critical stress is reached in this region, and axi-symmetric damage develops on

the edges of the defect. If the defect and the internal length are of comparable sizes, we can

see that the rupture pattern is a�ected by the presence of the defect.
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(a) No micro-hole. (b) Micro-hole of radius

ri = 0.01.

(c) Micro-hole of radius

ri = 0.05.

Figure IV.1: Rupture of a compressible disk of radius re = 1 under radial loading. The

internal length is ` = 0.1. When the defect is small compared to the internal length, it does

not a�ect the rupture pattern.

IV.1.2 Properties of the desired model

Purely incompressible material

In a purely incompressible case, the strain tensor reduces to its deviatoric part ε = εD. For

a local evolution of damage, the strain energy density is

W (ε, α) = µ(α)ε·ε+ w(α), (IV.11)

and the damage criterion

µ′(α)ε·ε+ w′(α) ≥ 0 (IV.12)

can be re-written with respect to the deviatoric stress σD = σ + pI

µ′(α)

(2µ(α))2
σD·σD + w′(α) ≥ 0. (IV.13)

The expression (IV.16) shows that the damage criterion brings out only the deviatoric part

of the stress, and that the hydrostatic pressure does not play any part in the initiation of

damage. Hence, with this formulation, whatever the value of the pressure, the damage will

only initiate where the deformations are the highest.

Penalisation of the incompressibility

In numerical experiments, a very widespread way to deal with the incompressibility of a

material is to write the elastic potential under a penalised form

ψ(ε) = µεD·εD +
κ

2
(trε)2, (IV.14)
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where the compressibility coe�cient κ is a penalisation coe�cient that has to be great enough

to ensure that, due to minimisation reasons, the part in tr(ε) stay small enough. Writing the

damage criterion with the laws used in the chapter III

µ(α) = µ0(1− α)2, κ(α) = κ0(1− α)2 (IV.15)

gives
µ′(α)

(2µ(α))2
σD·σD +

κ′(α)

2

p2

κ(α)2
+ w′(α) ≥ 0. (IV.16)

and with α = 0
σD·σD

2µ0

+
p2

κ0

= w1. (IV.17)

We can see that it is precisely with high values of κ0, that the hydrostatic pressure is elimi-

nated from the damage criterion, and the damage laws previously used are not able to model

the initiation of damage due to hydrostatic pressure in quasi-incompressible materials.

To overcome this problem, we change the dependency of the compressibility coe�cient to

the damage, and write it this way

κ(α) =
κe

α + η
, (IV.18)

where η is a numerical parameter that ensures the quasi-incompressibility of the material

κ0 =
κe
η
, (IV.19)

such that κ0 is still a penalisation coe�cient.

This damage law meets well the �rst expectation displayed in the introduction of this

chapter, namely an incompressible behaviour of the material when α = 0. In order to check

whether the hydrostatic pressure plays a role in the damage criterion with such a model, we

write the strain energy density, derived with respect to α, and written for α = 0

− σ
D·σD

2µ0

− p2

2κe
+ w′(α) = 0. (IV.20)

Unlike the coe�cient κ0, κe is not a penalisation coe�cient, and can take any value in the

range (0,∞). Depending on the ratio between µ0 and κe, it is now possible to initiate damage

in zones of pressure.

IV.2 Inextensible 1D bar

Such a model can be studied in a unidimensional framework. An inextensible bar of length

L is submitted to an imposed displacement U . Its energy is such that there cannot be a

deformation if there is no damage

ψ(ε, α) =


0 if α = 0 and ε = 0

+∞ if α = 0 and ε 6= 0

1

2
E(α)ε2 if α > 0

(IV.21)
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and the rigidity is a function of α, so that it is in�nite when α = 0

E(α) =
k

2

(
1

D(α)
− 1

)
if α > 0, (IV.22)

where

D(α) = 1− (1− α)2. (IV.23)

The local dissipated energy of damage is also written with respect to D(α)

w(α) =
σ2
c

k
D(α). (IV.24)

IV.2.1 Analytical study

IV.2.1.a Homogeneous response

First of all, we study the case of homogeneous states of damage, i.e. when the damage is

uniform on the bar. In that case, the deformation is also uniform: ε = U/L. The damage

criterion is therefore

− 1

2
E ′(α)ε2 = w′(α), (IV.25)

and can be re-written with respect to D

− dE

dD
ε2 = 2

dw

dD
(IV.26)

so that

ε2 = −2

dw

dD
dE

dD

= 2
σ2
c

k

D2

k

2

. (IV.27)

Finally, we have the expression of the deformation with respect to D

ε = εcD, εc =
2σc
k
. (IV.28)

We inject this expression in the expression of the stress

σ = E(α)ε =
k

2

(
1

D
− 1

)
ε =

k

2

(εc
ε
− 1
)
ε, (IV.29)

and we �nally have

σ = σc

(
1− ε

εc

)
. (IV.30)

We can see that if a displacement is imposed on an inextensible bar, it damages as soon as

the load is applied. For a null deformation, the stress has the value of the critical stress σc,

and the stress reaches zero when the imposed displacement is εcL. This behaviour can be

seen on Figure IV.2.
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Figure IV.2: Homogeneous and localised responses of an inextensible bar of length L under

traction with an imposed displacement U .

IV.2.1.b Localised response

Damage pro�le

The total energy is

E (u, α) =

∫ L

0

(
ψ(u′, α) + w(α) + w1`

2(α′)2
)

dx. (IV.31)

The damage criterion written in the stress space with S(α) = 1/E(α) is therefore

1

2
S ′(α)σ2 +

2σ2
c

k
`2α′′ = w′(α), (IV.32)

that can be integrated over the bar

1

2
S(α)σ2 +

σ2
c `

2

k
(α′)2 = w(α). (IV.33)

We multiply by k and introduce D

σ2
c `

2(α′)2 = σ2
cD(α)− k

2

2

k

D(α)

1−D(α)
σ2 =

D(α)

1−D(α)

[
σ2
c (1−D(α))− σ2

]
(IV.34)

and

`2(α′)2 =
D(α)

1−D(α)
(Dσ −D(α)) (IV.35)

where Dσ = 1− σ2

σ2
c

. Finally, using the chain rule

α′ =
dα

dx
=

dα

dD

dD

dx
= D′

1

2(1− α)
=

D′

2
√

1−D
(IV.36)
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we inject (IV.36) in (IV.35) and obtain the di�erential equation that governs the evolution

of D

`2D′2 = 4D(Dσ −D). (IV.37)

The solution of this equation is

D(x) = Dσ cos2

(
(x− x0)

`

)
, (IV.38)

and the damage pro�le of α on the bar is

α(x) = 1−
√

1−D(α(x)). (IV.39)

An example is plotted on Figure IV.3, for di�erent values of stress in (0, 1).

Displacement

The displacement can be calculated as the integral over the bar of the deformation ε = Sσ

U =

∫ L

0

Sσdx =

∫ L

0

σ
2

k

D

1−D
dx (IV.40)

In order to integrate with respect to D, we replace dx by
dx

dD
dD, with

dD

dx
= 2Dσ cos

(
(x− x0)

`

)
sin

(
(x− x0)

`

)
1

`

=
2

`

√
D2
σ cos2

(
(x− x0)

`

)
sin2

(
(x− x0)

`

)

=
2

`

√
DDσ sin2

(
(x− x0)

`

)
=

2

`

√
D(Dσ −D)

(IV.41)

U becomes

U = 2

∫ Dσ

0

σ

k
`

D

1−D
dD√

D(Dσ −D)
, (IV.42)

and after changing θ = D/Dσ

U = 2
σ

k
`

∫ 1

0

√
θ

1− θ
Dσ

1− θDσ

dθ. (IV.43)

Finally, this gives

U = 2
σ

k
`π

(
−1 +

1√
1−Dσ

)
=

2

k
`π

−σ +

√
σ2

1−Dσ

 =
2

k
`π(σc − σ). (IV.44)
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IV.2 � Inextensible 1D bar

Figure IV.3: Damage pro�les for di�erent

values of stress of an inextensible bar.

Figure IV.4: Mixed response for di�erent

values of stress of an inextensible bar.

Writing with εc = 2
σc
k
, we have

U = π`εc

(
1− σ

σc

)
, (IV.45)

and σ = 0 when U = π`εc. The comparison between the homogeneous and localised responses

of σ with respect to U are shown on Figure IV.2. Because of the condition π` < L, σ always

decreases faster when the damage localises than when it is homogeneous. Besides, we can

see that with the chosen models (IV.21), (IV.22), (IV.24) and (IV.23), the localised response

does not have a snap-back: the localisation of damage is a continuous process during the

loading.

IV.2.1.c Mixed response

Damage pro�le

Depending on the choice of the parameters, it can happen that the bar damages in two phases:

a �rst phase during which damage develops homogeneously, and a second phase during which

damage localises. The problem is now to �nd the expression of the damage on the bar, such

that

α(x) =

{
α0 on Ω \ Id

α(x) on Id.
(IV.46)

The damage criterion (IV.32) is integrated over the domain, and gives

− σ2
c

k
`2(α′)2 = w(α)− w(α0)− 1

2
(S(α)− S(α0))σ2), (IV.47)

which is

− σ2
c

k
`2(α′)2 =

σ2
c

k
(D −D0)− 1

k

(
1

1−D
− 1

1−D0

)
σ2. (IV.48)
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We note Dσ = 1− σ2

σ2
c

1

1−D0

, and (IV.48) becomes

− σ2
c

k
`2(α′)2 =

σ2
c

k

D −D0

1−D
(Dσ −D). (IV.49)

Injecting (IV.36) gives

`2D′2 = 4(D −D0)(Dσ −D), (IV.50)

and deriving it leads to

`2D′′ + 4D = 2Dσ + 2D0 (IV.51)

whose solution is

D(x) =
Dσ +D0

2
+ C1 cos

(
2x

`

)
+ C2 sin

(
2x

`

)
. (IV.52)

With the conditions D(x0 ± d) = D0, D
′(x0 ± d) = 0 , and d such that D(x0) = 1, we have

D(x) =


D0 if |x− x0| ≥

π`

2

Dσ cos2

(
x− x0

`

)
+D0 sin2

(
x− x0

`

)
if |x− x0| <

π`

2

(IV.53)

and an example with α0 = 0.2 can be seen on Figure IV.4.

Displacement

The displacement associated to a mixed state of damage is the integral over the bar of the

deformation. The bar can be decomposed into two parts: one on which the damage is

homogeneous, and the other on which the damage is localised. The latter is of size π`. As

was done in the localised case, the integration is made with respect to D

U =

∫ L

0

Sσdx = S0σ(L− π`) + 2

∫ Dσ

D0

σ
2

k

D

1−D
`dD

2
√

(D −D0)(Dσ −D)

= εcL
D0

1−D0

σ

σc
+

2σ`

k(1−D0)

∫ Dσ

D0

√
D −D0

Dσ −D
dD

1−D
.

(IV.54)

Finally,

U = εcL
D0

1−D0

σ

σc
+ εcπ`

(
1− σ

(1−D0)σc

)
. (IV.55)

IV.2.1.d Energies

After �nding the analytical expression of the damage evolution, for homogeneous, localised

and mixed responses, we now want to determine the energies evolution.
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IV.2 � Inextensible 1D bar

Homogeneous solution

In the case of the homogeneous solution, the energy is the integral over the bar of the sum

of the elastic energy density and the dissipated energy density w(α), and can be expressed

with respect to the loading U , and the critical constants of the material

E (u,D) =
1

2
S(D)σ2L+

σ2
c

k
DL =

1

2
σU +

1

2
σcεc

U

εc
= σcU −

1

2

σcU
2

εcL
. (IV.56)

Localised solution

For the localised solution, the energy is the integral over the bar of the elastic energy den-

sity, and the dissipated energy densities (local and non local). The dissipated energies are

expressed with respect to the variable D, and the non local term had to be calculated. We

have

D = D̂(α) = 1− (1− α)2, (IV.57)

therefore

`2∇α·∇α = `2∇D·∇D
D̂′(α)2

= `2∇D·∇D
4(1−D)

. (IV.58)

The energy is

E (u,D) =

∫ L

0

(
1

2
σu′ +

σ2
c

k
D +

σ2
c

4k

`2

1−D
D′2
)

dx =
1

2
σU +

σ2
c

k

∫ L

0

(
D +

`2D′2

4(1−D)

)
dx

(IV.59)

We inject (IV.37) that comes from the integration of the damage criterion in the non local

case

E (u,D) =
1

2
σU +

σ2
c

k

∫ L

0

(
D +

D(Dσ −D)

1−D

)
dx, (IV.60)

and we use again (IV.41)

E (u,D) =
1

2
σU +

σ2
c

k

∫ Dσ

0

(√
D

Dσ −D
+

√
D(Dσ −D)

1−D

)
dD. (IV.61)

We have ∫ Dσ

0

√
D

Dσ −D
dD =

Dσπ

2
, (IV.62)

and∫ Dσ

0

√
D(Dσ −D)

1−D
dD =

π

2

(
2− 2

√
1−Dσ −Dσ

)
=
π

2

(
2− 2

σ

σc
− 1 +

σ2

σ2
c

)
=
π

2

(
1− σ

σc

)2

.

(IV.63)

Finally,

E (u,D) = σcU −
1

2

σcU
2

π`εc
. (IV.64)
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k ` Gc cw σc εc η tol

10 0.15 0.1 2.22 1.73 0.163 1e-3 1e-4

Table IV.1: Mechanical and numerical parameters of a FEniCS simulation of an inextensible

bar under traction.

Figure IV.5: Comparison of the analytical and numerical mixed localised response of an

inextensible bar under traction. The parameters of this simulation are given in Table IV.1.

IV.2.2 Numerical implementation

The numerical implementation of the above problem was done in the FEniCS library. The

standard code for variational fracture in small deformation was used. We had to adapt the

expression of the dissipated energy and the elastic energy to our case. Numerically, it is

not possible to give an elastic energy that would be in�nite when there is no damage. We

introduced a parameter, η, that had to be small enough to ensure that the rigidity would be

large enough when α = 0

E(α) =
k

2

(
1

D(α + η)
− 1

)
. (IV.65)

To be able to observe mixed responses, we used periodic boundary conditions on the damage.

We �rst checked that the homogeneous response was the same as the analytical one, by

using an internal length much greater than the length of the bar L. We then compared the

numerical results of the localised and mixed responses with the analytical expressions. Figure

IV.5 shows the perfect corroboration of the analytical and numerical results, for a mixed case

(which consequently also validates the purely localised case).

Depending on the value of εcπ`, the solution can be unstable, and a snap-back can appear.

This is the case with the choice of parameters shown in Table IV.2: the internal length is

very small, ant the critical deformation εc also. On Figure IV.8, the energies are plotted: we

see that the damage develops homogeneously for most of the loading, and that at a given
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IV.2 � Inextensible 1D bar

Figure IV.6: Stress evolution of an inex-

tensible bar under traction with an imposed

displacement. The parameters used for this

simulation are displayed in Table IV.1.

Figure IV.7: Energies evolution of an inex-

tensible bar under traction with an imposed

displacement. The parameters used for this

simulation are displayed in Table IV.1.

k ` Gc cw σc εc η tol

10 0.015 0.1 2.22 1.73 0.052 1e-3 1e-4

Table IV.2: Mechanical and numerical parameters of a FEniCS simulation of an inextensible

bar under traction.

critical displacement, the bar suddenly breaks, which results in a jump of the energies.
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

Figure IV.8: Energies evolution of an inextensible bar under traction with an imposed dis-

placement. The parameters used for this simulation are displayed in Table IV.2.

IV.3 Extension to higher dimensions

The generalisation of the behaviour of an inextensible bar in higher dimensions is the incom-

pressible behaviour of any structure of dimension N > 1.

IV.3.1 Numerical implementation

Displacement-pressure problem

It is well known that a pure displacement formulation is not adequate to solve an incompress-

ible problem. As was explained in Chapter III, a mixed formulation has to be used. Since

we are now working in small deformation, with the FEniCS library, it has to be re-written

in this speci�c situation, and has to be able to deal with pure 2D formulations. We will call

N the dimension of the space, that can be either 2 or 3. Again, we note p the hydrostatic

pressure such that

p = −trσ

N
. (IV.66)

Hooke's law gives

trσ = tr [λ(∇·u)I + 2µε(u)]

= (Nλ+ 2µ)(∇ · u)
(IV.67)

so

p = −Nλ+ 2µ

N
∇·u. (IV.68)

Since

λ = −2µ

3
+ κ, (IV.69)
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IV.3 � Extension to higher dimensions

p is therefore

p = −
(

2µ(3−N)

3N
+ κ

)
∇·u. (IV.70)

We introduce σD the deviatoric part of the stress , such that

σD = σ − trσ

N
I (IV.71)

σD = 2µε− 2µ

N
(∇·u)I. (IV.72)

σ can be re-written with respect to u et p

σ = 2µε− 2µ

N
(∇·u)I − pI. (IV.73)

The equilibrium problem in dimension N takes the form of a system of two equations
−∇·

[
2µε− 2µ

N
(∇·u)I − pI

]
= r

− 1

2µ(3−N)

3N
+ κ

p−∇·u = 0.
(IV.74)

With the FEniCS library, a mixed formulation can be used by creating a mixed space, and

the variational formulation has to be given as a left-hand side and a right-hand side member.

In our case, with (v, q) the test functions associated to (u, p), in dimension 2, the left-hand

side of the variational formulation is

lhs = 2µ(α)ε(u)ε(v)− µ(α)div(u)div(v)− p div(v)− q div(u)− 1

κ(α) +
µ(α)

3

p q (IV.75)

ant the right-hand side is

rhs = f v, (IV.76)

with f the internal forces.

Damage problem

The damage problem is given as an energy and its derivatives. The elastic potential

ψ(ε) =
1

2
σ·ε (IV.77)

associated to the displacement-pressure formulation can be written with respect to p, ∇ · u,
or both p and ∇ · u

ψ(ε) = µε·ε− µ

N
(∇·u)2 − κ

2
(∇·u)2 (IV.78)
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

When the dependency of the damage is added to the energy (IV.78), we �nd the damage

criterion (IV.20) by deriving with respect to α. Yet, a mixed formulation is used in order not

to use the quantity ∇·u which is close to zero when incompressibility is ensured, and leads

to numerical imprecision when it is multiplied by the penalisation coe�cient κ. Numerically,

we want to be able to give the energy under the form (IV.78) in order to have the correct

damage criterion, but without using ∇·u. The adopted solution consists in introducing the

pressure, multiplied by κ which does not depend on α

ψ(ε, α) = µ(α)ε·ε− µ(α)

N
(∇·u)2 − κ(α)

2

 1

2µ(3−N)

3N
+ κ


2

p2. (IV.79)

With this expression, the energy gives the damage criterion, and numerical troubles are

avoided thanks to the introduction of the pressure. The gradient and Hessian of the damage

problem are automatically computed from the total energy.

IV.3.2 2D plate under uni-axial traction

IV.3.2.a Analytical developments

Matched asymptotic expansion

In order to validate the variational formulation established, we need to perform simulations

for con�gurations whose analytical solution is known. Let us consider the case of a 2D plate

whose height H is small compared to its length L. In other words, we parametrize it so

that its ratio L/H is equal to a small parameter ε. Its coordinates are given as x1 and x2

coordinates. We set

y1 =
x1

ε
, (IV.80)

and develop the displacement (u1, u2) and the pressure p around ε.
uε1(x) = u0

1(y1, x2) +εu1
1(y1, x2) +ε2u2

1(y1, x2) + ...

uε2(x) =
1

ε
u−1

2 (y1, x2) +u0
2(y1, x2) +εu1

2(y1, x2) + ...

pε(x) =
1

ε3
p−3(y1, x2) +

1

ε2
p−2(y1, x2) +

1

ε
p−1(y1, x2) + ...

(IV.81)

We de�ne

sε = 2µe(uε) (IV.82)

with e(uε) the deformation. After writing the incompressibility condition

div(uε) = 0, (IV.83)

and the equilibrium equation

div(2µe(uε)) +∇pε = 0, (IV.84)
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we �nd the expressions of u0
1, u

1
1, u

2
1, u

−1
2 , u0

2, u
1
2, p

−3, p−2, and p−1 with respect to y1 and

x2, and with undetermined constants.

A similar development in the vicinity of x2 = +1 gives the expression of the displace-

ment and the pressure. The two asymptotic expansions are matched, and �nally give the

expressions of the displacement and the pressure in the plate. The pressure is

pε(x) =
3

2
µU

(
1− x2

2

ε3
+
x2

1

ε3
+
C2

ε2
+
C1

ε

)
, (IV.85)

with C1 and C2 two undetermined constants.

Using the expression of the displacement, we can obtain the expression of the norm of

the deviatoric stress, de�ned by

J ε(x) =
√

(sε11)2 + (sε22)2 + 2(sε12)2 (IV.86)

and such that

J ε(x) = 3
√

2µ
U

ε2

√
x2

2

x2
1

ε2
+ ε2

(
1− x2

1

ε2

)2

. (IV.87)

Using the expressions (IV.85) and (IV.87), we can deduce that the pressure reaches its max-

imum in x2 = 0 and x1 = ±ε, and the norm of the deviatoric stress reaches its maximum in

x2 = ±1 and x1 = ±ε.

Damage initiation

In the case when there is damage, the strain work is

W (ε, α,∇α) = µ(α)εD·εD +
κ(α)

2
(trε)2 + w(α) + w1`

2∇α·∇α. (IV.88)

The damage criterion is

µ′(α)εD·εD +
κ′(α)

2
(trε)2 + w′(α)− 2w1`

2∆α ≥ 0, (IV.89)

that can be written in stress space and becomes

µ′(α)
σD·σD

4µ(α)2
+
κ′(α)

2

(
p

κ(α)

)2

+ w′(α)− 2w1`
2∆α ≥ 0. (IV.90)

The damage criterion for the initiation of damage is obtained for α = 0

µ′(0)

4µ(0)2
σD·σD +

κ′(0)

2κ(0)2
p2 + w′(0) = 0. (IV.91)

Using the following standard damage laws
w(α) = w1α

µ(α) = µ0(1− α)2

κ(α) = κe
(1− α)2

α

(IV.92)
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gives the damage criterion for the initiation of damage

σD·σD

2µ0

+
p2

2κe
= w1, (IV.93)

that can be written
σD·σD

2τ 2
c

+
p2

2p2
c

= 1 (IV.94)

with τc =
√
µ0w1 and pc =

√
κew1.

Since we know from (IV.87) and (IV.85) that the pressure and the square norm of the

deviatoric stress are maximum on the lines x1 = ±ε, we calculate the damage criterion (IV.94)

on x1 = ±ε, and we �nally obtain its expression as a function C(x2)

C(x2) = x4
2 + x2

2

(
8ε2

κe
µ0

− 2

)
+ 1− 8

9

w1ε
6p

U2µ0

= 0. (IV.95)

The derivative of (IV.95) with respect to x2 is null in x2 = 0 and x2 =
√

1− 4ε2κe/µ0, and

the criterion is maximum for x2 = 0

C(0) = 1− 8

9

w1ε
6κe

U2µ2
0

. (IV.96)

In addition, the criterion evaluated in x2 = ±1 gives

C(±1) = 1 + 8ε2
κe
µ0

− 2 + 1− 8

9

w1ε
6κe

U2µ2
0

. (IV.97)

From (IV.96) and (IV.97), we can deduce that depending on the sign of the quantity 1 +

8ε2
κe
µ0

− 2, the damage criterion can be reached in x2 = 0 or x2 = ±1. We therefore have a

relation between the ratio of κe and µ0 and the elongation of the plate that determines where

damage initiates in the plate: if
κe
µ0

>
1

8ε2
, (IV.98)

damage initiates in x2 = ±1, otherwise it initiates in x2 = 0.

IV.3.2.b Numerical application

Test without damage

Using the implementation described in IV.3.1, we verify that the analytical and numerical

results are in agreement. First, a linear elastic calculation is made, using the parameters given

in Table IV.3. The parameter ε is 0.1: smaller values have been tested, for which the analytical

developments should be more precise, but in the meantime, they lead to numerical imprecision

because they trigger very high values of the pressure. The chosen value is therefore a good

compromise between the analytical and numerical precision.
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L H ε h µ0 η

2.0 0.2 0.1 0.003 1.0 1e-4

Table IV.3: Parameters of a FEniCS simulation of a 2D plate, in linear elasticity only (no

damage). h is the cell size.

Figure IV.9: Comparison between the numerical and the analytical results of the pressure

squared for a plate submitted to traction. The analytical expression of the pressure is given

by (IV.85). Numerical tests are performed with ε = 0.1 and µ0 = 1.0.

The results are displayed on Figure IV.9 and show the pressure squared for the numerical

(top) and analytical (bottom) calculations. A visible di�erence lies in the minimum value of

p2: while it is 0 for the analytical results, it is of the order e-04 for the numerical results,

which is due to the numerical imprecision. The analytical expressions do not render the stress

concentration that can be observed in the angles of the sample, as can be seen more easily on

Figures IV.10, which displays lineouts of the pressure p on the lines x1 = ε and x1 = 0. On

the line x1 = 0, the analytical and numerical results are very close, and on the line x1 = ε,

they di�er only on the extremities, where the numerical results exhibit a stress concentration.

Globally, the tests performed validate both the numerical implementation and the analytical

developments.

Analytical and numerical damage criterion

In this part, we compare the analytical and numerical values of the damage criterion, and

study how the repartition of the pressure and the deviatoric stress in�uence the initiation

of damage. On Figure IV.11a, the expression of (σ·σ)/µ0 + p2/κe is plotted, for di�erent

values of κe, using ε = 0.1. The results are in agreement with the condition (IV.98): if

κe/µ0 ≥ (8ε2)−1, damage initiates in x2 = ±1, where the deviatoric stress is the highest.

If κe/µ0 = (8ε2)−1, the damage criterion is reached both in x2 = ±1 and x2 = 0, and if
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) Pressure p on the line x1 = ε. (b) Pressure p on the line x1 = 0.

Figure IV.10: Comparison between the numerical and the analytical results of the pressure

on respectively the lines x1 = ε and x1 = 0 for a plate submitted to traction. The analytical

expression of the pressure is given by (IV.85). Numerical tests are performed with ε = 0.1

and µ0 = 1.0.

L H ε ` h µ0 η

1.0 0.1 0.1 H/10=0.01 0.004 1.0 κe/1000

Table IV.4: Parameters of a FEniCS simulation of a damaging 2D plate submitted to uni-

axial traction.

κe/µ0 ≤ (8ε2)−1, damage initiates in the middle (x2 = 0), where the pressure is the highest.

Yet, we have seen on Figure IV.10a, that the numerical results show a stress concentration

in the edges, that do not appear in the analytical expression. Therefore, we can expect the

numerical damage criterion to be slightly di�erent than the analytical one. On Figure IV.11b,

a comparison is made between the analytical and numerical damage criterion, in the case

κe/µ0 = 1.0 and ε = 0.1. We can see that indeed, the damage criterion is not maximum in

the same zones: because of the numerical stress concentration on x2 = ±1, the criterion is

reached in the edges, while the analytical developments foresee a damage initiation in the

middle.

Tests with damage

Numerical simulations with damage are performed for various values of κe. The parameters

used for these simulations are listed in Table IV.4. We keep the value of 0.1 for ε. The

quasi-incompressibility of the material is ensured by the �xed value of κ0 = κ/η = 1000:

since κe varies for the needs of the tests, the numerical parameter η is also changed to keep a

�xed ratio of the compressibility coe�cient κ0. The internal length is one tenth of the height

of the rectangle, and the mesh size is h = `/2.5. The mesh is not re�ned more, because of
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(a) Three di�erent values of κe are tested

to make the ratio κe/µ0 vary. If κe/µ0 =

12.5 = 1/(8ε2), the damage criterion is

maximum in the middle and on the edges.

(b) Comparison between the analytical and

numerical value of the damage criterion,

for κe/µ0 = 1.0. The analytical results

show that the damage criterion is reached

in the middle, while the numerical results

show that it is reached on the edges.

Figure IV.11: Damage criterion for the 2D plate under traction on the line x1 = ε, for

ε = 0.1, µ0 = 1.0.

Figure IV.12: Comparison of the analytical prevision of the initiation of damage (blue), and

the numerical results (damage initiation and rupture). The tests are performed for di�erent

values of κe/µ0.
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) Initiation of damage in the four corners. U = 0.007.

(b) Rupture in two corners. U = 0.0072.

Figure IV.13: Damage and rupture of a 2D plate submitted to uni-axial traction. κe = /µ0 =

20.

the cost of the simulations that is already quite high. No boundary conditions of damage are

applied.

As was explained above, the initiation of damage can occur either in x2 = ±1 or x2 = 0,

always on the lines x1 = ±ε. We have seen that due to the numerical stress concentration,

damage may occur in x2 = ±1 when the theoretical development predicts it to occur in

x2 = 0. The results displayed on Figure IV.12 show that this is the case: in the simulations

(yellow), damage initiates on the edges, for relatively small values of κe (i.e. values such

that κe/µ0 < 1/8ε2). Yet, an interesting phenomenon then takes place: for this values of κe,

while damage initiates in the corners, the rupture �when αmax is very close to 1, occurs in

the middle (red).

Although the analytical damage criterion only gives us the place where damage �rst ini-

tiates, and not the place where rupture occurs, we can observe on Figure IV.12 that the

numerical results as for the place where rupture occurs, are closer to the analytical calcu-

lations for damage initiation than the numerical results for the initiation. Eventually, the

numerical stress concentration that triggers a di�erent initiation of damage, disappears when

damage grows.

An example of a simulation performed with the parameters given in Table IV.4, and with

κe/µ0 = 20 can be seen on Figure IV.13: in this situation, damage initiates in the four

corners, and rupture occurs in two of the corners. The process of rupture is brutal: damage

jumps from 0.29 to 1.0 from one time step to another. The rupture pattern is not always

similar to the one of Figure IV.13b. In some cases, two cracks appear on the corners of the

same line x1 = ±ε.
Figure IV.14 shows the results obtained with κe/µ0 = 17. In this case, damage �rst

begins in the corners of the plate, but the rupture occurs in the middle of the sample. Again,

rupture is brutal: damage jumps from 0.3 to 1.0. In all the situations when rupture occurs
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Figure IV.14: Damage and rupture of a 2D plate submitted to uni-axial traction. κe = /µ0 =

17, U = 0.0072.

in the middle of the edges, there is always only one crack, either on top or on the bottom of

the plate.

Finally, an example with a ratio κe/µ0 = 1.0 is shown on Figure IV.15. The damage

is taken for six growing time steps, and the scale changes on each image. We can see that

damage �rst begins in the middle of the rectangle, where the pressure is high. It then widens,

and after some time steps, four distinct spots of damage appear (Figure IV.15c). Finally, two

of these four spots continue to develop, and lead to rupture on opposite sides of the rectangle

(Figures IV.15d to IV.15f).

IV.3.3 Test inducing bi-axiality

IV.3.3.a Geometry

After validation of the mixed implementation with damage, tests that would enhance the role

of the pressure had to be performed. We had to �nd simple geometries such that the loading

would trigger pressure development, as well as deviatoric stresses, but not in the same zones

of the sample. We chose to work on the geometry displayed on Figure IV.16: it is made of

a rectangle of length L and height H, minus two half circles of diameter D = H. On the

green boundary, a null displacement on the two components is imposed, while a growing x

displacement is imposed on the red opposite boundary. The top and bottom edges are free

of stress. Dirichlet boundary conditions of null damage are imposed on the green and red

boundaries.

With such a geometry, zones of high pressure and high deviatoric stresses appear in

di�erent zones, as can be observed on Figure IV.17. The pressure is very high near the poles

of the half-circles and has a conic shape, while the deviatoric part of the stress is high in the

middle and on four borders, which could be seen as an x-shape.

The boundary conditions on α are such that there is no damage on the boundaries, and

consequently we can expect that when the damage should initiate in zones of high deviatoric

stresses, it would then develops in the middle of the sample, and not and the edges. This

choice is based on the fact that we want to observe damage initiation and rupture in the

bulk, and not on the boundaries, that would rather correspond to delamination.

Thus, the values of the pressure and the deviatoric stress that are of interest are situated

on the x-line of y = 0. Figure IV.18a shows a lineout of theses quantities and it is very
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) U = 0.0018.

(b) U = 0.0028.

(c) U = 0.0034.

(d) U = 0.0046.

(e) U = 0.0058.

(f) U = 0.007.

Figure IV.15: Damage and rupture of a 2D plate submitted to uni-axial traction. κe = /µ0 =

1.0. In order to improve visibility, the scale is changed between each image.

clear that the pressure reaches its maximum on the edges, and the deviatoric part in the

middle. The damage criterion (IV.20) is a combination of these quantities divided by µ0 and

κe. Therefore, the damage will always be reached either on the edges or in the middle, as

is shown on Figure IV.18b where the criterion is plotted for di�erent ratios of κe/µ0. There

is a special case when the damage criterion is very �at, and we can expect the damage to

initiate in any zone of the line.
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Figure IV.16: Geometry of a 2D sample

(a) Pressure squared. (b) Square norm of σD.

Figure IV.17: Repartition of the hydrostatic pressure and the deviatoric stress on a sample

at a given time step.
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) Lineout of the pressure squared (blue)

and the square norm of the deviatoric stress

(yellow).

(b) Lineout of the damage criterion (IV.20)

for three ratios of κe/µ0.

Figure IV.18: Lineout on y = 0 of Figure IV.17 at a given time step.

IV.3.3.b Results

After performing simulations in linear elasticity in order to be able to predict where the

damage would initiate, simulations with damage were done. The geometry was chosen such

that L = 0.6, H = 0.5 and e = L −H = 0.1. The ratio e/D was then of 0.2. The internal

length was chosen as one tenth of the gap between the half circles, and the mesh size was

one fourth of the internal length. µ0 was �xed to the value 3.3, and the coe�cient κe was

taken in a range of order ten. The parameter η that ensures quasi-incompressibility was 1e-3:

when trying to �gure out the best value for η, we noticed that too small values (of order

1-4,5, etc) lead to numerical imprecision. All these parameters are listed in Table IV.5. In

order to bring out the main features of the new damage model that we proposed for κ(α),

we investigated the in�uence of various parameters on the damage initiation and the rupture

patterns.

In�uence of Gc

Since we are working in linear elasticity, the ratio of the maximum value of the pressure on

the deviatoric stress is constant with respect to the loading. Consequently, for a �xed value

of κe and µ0, the damage initiation and the rupture pattern are the same in the reference

con�guration, whatever the load at which damage and rupture occur. In small deformation,

Gc does not play any role on the zone where damage initiates, and we are free to chose small

values of Gc to perform our simulations.
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IV.3 � Extension to higher dimensions

L H e/D ` h µ0 κe η tol

0.6 0.5 0.2 e/10 `/4 3.3 ? 1e-3 1e-4

Table IV.5: Parameters of a FEniCS simulation of a specimen IV.16 under uni-axial traction.

The value of κe changes in order to study its in�uence over the results.

In�uence of `

Another material parameter that has to be investigated is the internal length and its in�uence

on the damage initiation and rupture. ` controls the width of the damage band, but if its

value stays small enough regarding the gap between the two half circles, it does not have any

signi�cant in�uence on the results, except that it does change the time for which damage

and rupture occur.

In�uence of κe

Now that we are free to chose any value of Gc and ` without risking to interfere with the

results, we can study the new parameter that was introduced with the model, κe. We use the

parameters listed in Table IV.5, and all are �xed except κe. First, we studied its in�uence

on the critical elongations for which damage and rupture occur. This elongation in the gap

is de�ned as

λg =
e+ Ut
e

(IV.99)

where Ut is the imposed displacement on the right boundary (see IV.16). The results are

displayed on Figure IV.19, and show several trends. First, when κe increases, the elongation

for which damage begins to initiate increases. This is consistent with the damage criterion

and the linear elastic study that was made and showed that the maximum value of the

pressure was always greater that the one of the deviatoric stress: when κe increases, the

in�uence of the pressure in the damage criterion decreases, and the deviatoric part has to be

greater, hence the bigger elongation.

If this trend is easily understandable, this is not the case for the evolution of the critical

elongation for rupture: Figure IV.19 shows indeed that the critical elongation �rst decreases

when κe increases, and after reaching a minimum, it increases. It seems natural that it

could indeed not decrease forever since the critical elongation for rupture has to be greater

that the critical elongation for rupture. The minimum is reached for a value κe/µ0 = 1.5

and corresponds to the value for which damage begins to develop in the zone of deviatoric

stress. This curve can therefore be decomposed in two phases: for κe/µ0 < 1.5, the damage

and the rupture happen in zones of high pressure, while for κe/µ0 ≥ 1.5, the damage and

rupture happen in zones of deviatoric stress. Figure IV.20 gives some more hints about the

phenomenon that takes place: for rupture due to deviatoric stress, there are only one or two

time steps between the moment when damage initiates and a crack appears, and we have a
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

Figure IV.19: Elongation of the gap for

which damage initiates (purple) and frac-

ture occurs (green), for di�erent ratios of

κe/µ0.

Figure IV.20: Di�erence between the elon-

gation of the gap for which rupture occurs

and damage initiates, for di�erent ratios of

κe/µ0.

typical case of brittle fracture. On the contrary, when rupture happens in zones of pressure,

the rupture is not sudden, and the damage develops progressively. The smaller κe is, the

more the pressure plays a role in the initiation of damage, and the less the rupture can be

quali�ed of "brittle". These curves enabled us to see that for incompressible materials, two

mechanisms of damage exist that lead to two di�erent types of rupture: one is brittle fracture

while the other is the fracture triggered by high hydrostatic pressures. The latter is usually

referred to in the literature as "hydrostatic damage".

To bolster the explanations above, we plotted on Figure IV.21 the di�erence between two

successive values of the maximum damage, when 1 is reached. The curve can be decomposed

in three distinct parts: in yellow, the points that correspond to brittle fracture (from on

time step to the other, damage jumps from 0 to 1), in red, the points that correspond to

hydrostatic damage, and in yellow, points for which we will have an explanation later. For

the hydrostatic and brittle fracture, the results match the ones of the curves IV.19 and IV.20:

the more time it takes for damage to go from zero to one, the less there is a jump when a

crack appears.

In order to illustrate the in�uence of the coe�cient κe over the initiation of damage and

the rupture, we go back to the values used on Figure IV.18b and perform simulations to verify

that our predictions were accurate. This �gure shows that for a ratio κe/µ0 = 1, damage ini-

tiates in zones of high hydrostatic pressure, for κe/µ0 = 1.5, damage can initiate at any point

on the line y = 0 and for κe/µ0 = 2.5, damage initiates in zones of high deviatoric stress. The

results of the simulation are displayed on Figures IV.22, IV.23, and IV.24 respectively, and

the initiation of damage meets perfectly well our expectancies. As for the rupture pattern,

it is in adequacy with the initiation: a crack appears where the damage initiated. On these

�gures, the damage scale changes between the initiation of damage and the rupture (left and
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IV.3 � Extension to higher dimensions

Figure IV.21: Di�erence of the values of the maximum damage between the time step for

which αmax = 1 and its previous time step. For an example, in yellow, points for which the

di�erence is 1, that means that from one time step to another, damage suddenly went from

0 to 1, and the rupture process is essentially due to the deviatoric part of the stress. On the

contrary, in red, points for which damage grew very smoothly, accounting for the pressure.

right). The irreversibility constraint is applied, and there is no healing in this situation. On

Figure IV.22, we observe the development of two spots of damage near the poles of the half

circles, followed by a loss of symmetry when rupture occurs which is likely due to minimi-

sation reasons: one crack rather than two minimise better the energy of the sample. The

case shown on Figure IV.23 is a perfect example of the pressure and the deviator having an

in�uence over the initiation of damage. In that situation, we are not able to predict where

the sample will break (near the poles or in the middle), and only experiments or numerical

tests can show the outcome of the test.

There is a situation that deserves a closer eye on it, that happens for small values of κe -

respectively to µ0. In the case where κe = µ0, we have seen in the damage criterion and on

Figure IV.18b that the damage initiates in the zones of high pressure. So there is no reason

a priori to chose values of κe such that κe/µ0 < 1, unless we want to enhance the role of the

pressure. In that case, we have observed that the damage does indeed initiate in the zones of

high pressure, but that after some time steps, it also develops in the middle of the sample to

�nally generate a crack in the middle of the sample. These steps can be seen on Figure IV.25.

To conclude this study on the parameter κe, we �rst recall that this parameter has been

introduced for the needs of a model that would allow the pressure to play a role in the

initiation of damage. This parameter does not, in any case, control the incompressible be-

haviour of the material, since this task is devoted to the η parameter that keeps a �xed ratio

κ0 = κe/η. The only role of κe appears in the damage criterion, and it controls the in�uence
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) Initiation near the poles. (b) Rupture near the poles.

Figure IV.22: κe/µ0 = 1.0.

(a) Initiation near the poles and in the

middle.

(b) Rupture in the middle.

Figure IV.23: κe/µ0 = 1.5.

(a) Initiation in the middle. (b) Rupture in the middle.

Figure IV.24: κe/µ0 = 2.5.
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(a) λg = 1.30. (b) λg = 1.43. (c) λg = 1.84.

(d) λg = 2.10. (e) λg = 2.20. (f) λg = 2.30.

Figure IV.25: Case with κe/µ0 = 1/3. The damage initiates in the zones of high hydrostatic

pressure, develops progressively towards the zone of high deviatoric stress, and a crack �nally

appears in the middle of the specimen.

of the pressure in it. Its physical meaning is hardly justi�able, because it is not a priori a

physical parameter of a material. Thus, it has to be calibrated so that simulations concord

with experiments, and this is the aim of the next section.

IV.4 Comparison with experiments

In 1984, Gent and Park [21] produced experiments to show two failures phenomena of elas-

tomers, the cavitation and the debonding. The used specimens containing one or two rigid

inclusions and observed the formation of cavities near the poles of the inclusions. This fa-

mous experiment has been revisited very recently by Poulain, Lefèvre, Lopez-Pamies and

Ravi-Chandar in [56]. In their work, they use various PDMS elastomer samples containing

two rigid inclusions, and they study the nucleation of cavities and their transition to cracks

when a quasi-static load is applied. In this section, we will compare our numerical simulations

to their results for a PDMS composition of 45:1 which does not exhibit strong hardening in
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) Geometry: the length and height of the

plate are �xed. The ratio e/(2r) can be var-

ied. The displacement Ut is applied on the

right inclusion.

(b) Mesh: the zone between the two inclu-

sions is re�ned, and the size of the mesh ele-

ments is determined from the size of the in-

ternal length.

Figure IV.26: Geometry, boundary conditions and mesh of a 2D plate with rigid inclusions.

L H e D = 2r ` h µ0 κe η tol

0.8 0.4 0.063 0.3 e/10 `/4 3.3 3.3 1e-3 1e-4

Table IV.6: FEniCS simulation of a specimen IV.26 under uni-axial traction.

uni-axial tension for stretches below 4. The ratio of the gap between the two inclusions and

the diameter of the beads was 0.210.

We will restrict our comparison to the initiation of damage and the transition to cracks.

Healing is out of the scope of this work because the irreversibility condition of the damage

evolution precisely prevents this kind of phenomenon, and more complex theories are required

to treat it. It was done recently by Kumar, Francfort and Lopez-Pamies in [33].

To be the closest to the real conditions of the experiment, we use a 2D geometry shown

on Figure IV.26 made of a rectangle of dimension L ×H containing two circles of diameter

D = r. The gap between the two circles is e, and the mesh in this zone is re�ned. The

geometrical, mechanical and numerical parameters of the "matrix" are listed in Table IV.6.

The inclusions are also made of an elastic material whose rigidity is one hundred times the

one of the matrix. The ratio e/D is equal to 0.21 in order to have the same as in the

experiment we want to compare with. In the experiments of [56], the beads are directly

glued into metallic grips to facilitate the hold of the specimen in the test machine clamps.

We therefore applied boundary conditions on the rigid inclusions, and not on the left and

right boundaries of the specimen. In addition, this enables us to quantify very precisely the

elongation in the gap between the two inclusions.

In the experiments of both Gent and Park, and Poulain, Lefèvre, Lopez-Pamies and Ravi-

Chandar, the nucleation of damage happens at the poles of the inclusions, and not between

them. This information enables us to chose κe such that the pressure will be preferred over

the deviatoric stress in the initiation of damage. This is why in Table IV.6, κe = µ0.
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A quasi-static test is performed, and the results for successive time steps are shown on

Figure IV.27. Two spots of damage �rst develop symmetrically at the poles of the inclusions

(Figures IV.27a and IV.27b), and the maximum value of the damage is around 1.5e-01. At

this stage, the spots of damage already have di�erent shapes when seen in the reference

con�guration or the deformed con�guration. In a second phase (Figures IV.27c and IV.27d),

one spot continues growing while the second stops growing, and the maximum value of the

damage in the bigger spot is now around 3.7e-01. The smaller spot of damage does not

decrease or heal, because the irreversibility condition is enforced. The image could yet give

this impression because the damage scale is changed between two time steps. In the last

images (Figures IV.27e and IV.27f), damage in the right spot reaches the value 1, and a

crack has appeared in the reference con�guration. In the deformed con�guration, the crack

has a conical shape. In the following time steps that are not displayed here, the crack grows

until the specimen is broken into two pieces.

The comparison between the experimental results and the numerical tests can be done

with Figure IV.27f and Figure IV.28. We cannot expect the results to be quantitatively the

same because in one case, polymers are used, and in the other case, a linear elastic material

is used. Yet, qualitatively, we can see that they are very close: in the deformed con�guration,

both exhibit a cone-shape cavity whose base is along the pole of one inclusion. This cone-

shape cavity is in fact a crack when seen in the reference con�guration. We can deduce that

to obtain the same results, we need to nucleate a vertical crack near the pole of the inclusions.

In the experiments of [56], a second cone-shaped cavity appears after the �rst one during

the loading. In our simulations, we do not observe such a behaviour: after a crack has

appeared near one of the poles, it grows catastrophically and leads to rupture. There are many

explanations to this phenomenon, one of them is that the sample used in the experiments

may not be perfectly symmetric, or the matrix not entirely homogeneous.
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Chapter IV � Damage initiation in zones of high hydrostatic pressure

(a) Reference con�guration � λg = 1.83. (b) Deformed con�guration � λg = 1.83.

(c) Reference con�guration � λg = 1.90. (d) Deformed con�guration � λg = 1.90.

(e) Reference con�guration � λg = 1.92. (f) Deformed con�guration � λg = 1.92.

Figure IV.27: Rupture of a linear elastic specimen with two rigid inclusions under traction.

Damage in the initial and actual con�gurations for di�erent loading states.
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IV.5 � Large deformation

Figure IV.28: Image from the experiments of [56], taken during the traction test on a PDMS

matrix containing two rigid beads. The image shows the nucleation of a cone-shaped hole, for

an elongation of the gap between the beads of λg = 2.92. Later in the experiment, a second

cone-shaped cavity forms on the pole of the left bead, that grows catastrophically while the

�rst one heals, and leads to the rupture of the specimen.

IV.5 Large deformation

These experiments were also carried out in large deformation, with the MEF++ [16] code

already used in the Chapter III. In this code, the variational formulation of the problem

has to be decomposed into pieces called "formulation terms". With the new damage law

for κ(α), the displacement problem is not changed, but the variational formulation of the

damage problem is slightly di�erent.

The volumetric term in the hyperelastic potential is now

U(J, α) =
κe

2(α + η)
(J − 1)2 (IV.100)

whose derivative at point α in an admissible direction β is

U ′(J, α)(J, β) = − κe
2(α + η)2

β(J − 1)2. (IV.101)

Replacing (J − 1) by p/κ(α) eliminates the coe�cient η and �nally gives

U ′(J, α)(J, β) = − p2

2κe
β (IV.102)

which is a formulation term very easy to implement. As for the isochoric part of the Mooney-

Rivlin hyperelastic energy, if we write for α = 0

ψ0 = ψiso0 + U0(J) = C10(Ī1 − 3) + C01(Ī2 − 3) +
κ0

2
(J − 1)2, (IV.103)

we can express ψiso0 with respect to ψ0 and p

C10(Ī1 − 3) + C01(Ī2 − 3) = ψ0 −
p2

2κ0

. (IV.104)
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L H e/D ` h κ0 κe C10 C01 kell tol

0.6 0.5 0.2 0.02 `/4 100 3.3 1.32 0.33 1e-3 1e-4

Table IV.7: Parameters of a 2D simulation carried out in large deformation on a U-shaped

geometry IV.16.

Keeping in mind that the relation between the two coe�cients C10 and C01 of the Mooney-

Rivlin law and the Lamé coe�cient is µ: µ = 2(C10 + C01), we use parameters that are

equivalent to the ones used in small deformation.

We use once more the geometry IV.16, with the material and numerical parameters listed

in Table IV.7. κe is taken such that the ratio κe/(2(C10 + C01)) = 1. The in�uence of the

parameters of the models having already been treated in the framework of small deformation,

it is not useful to do it again, and this is why we chose to show only one example of a typical

result in large deformation on Figure IV.29. The results are shown in the reference and

deformed con�guration, and are similar to those obtained in small deformation. The spots

of damage and the crack in the reference con�guration become cone-shaped in the deformed

con�guration. We can notice that this cone is sharper than the one in IV.27f obtained in

small deformation, and corresponds better to the cavity shown on Figure IV.28.

Remark: tests were also performed with the geometry of a 2D plate containing rigid inclu-

sions (see Figure IV.26a) submitted to uni-axial traction. The results are very similar to the

ones displayed on Figure IV.29, and especially the crack in the deformed con�guration that

exhibits the same sharp cone shape.

112



IV.5 � Large deformation

(a) Reference con�guration � λg = 2.3. (b) Reference con�guration � λg = 2.4.

(c) Deformed con�guration � λg = 2.3. (d) Deformed con�guration � λg = 2.4.

Figure IV.29: Rupture of a U-shaped specimen in large deformation under traction. Damage

in the initial and actual con�gurations, for two successive time steps.
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IV.6 Conclusion

In this chapter, a new, simple model has been introduced to remedy to the absence of the

hydrostatic pressure in the initiation of damage. This model relies on the calibration of

a parameter, called κe, whose value determines which one of the deviatoric stress, or the

hydrostatic pressure, contributes to the onset of damage. In this model, although they do

not follow the same law, both the shear constant and the compressibility coe�cient depend

on the same damage variable, α. Yet, some research on the damage and rupture of polymers

have shown that the cavitation damage and the damage due to the deviatoric part of stress

are two distinct phenomena, and that one do not a�ect the other. Let us cite for an example

Dorfmann, Füller and Ogden in [14] who conducted experimental studies on this topic, and

noticed that "the shear modulus is likewise unchanged by cavitation".

An idea to continue this work could be to separate these two damage phenomena, and to

introduce two di�erent damage variables, as is seen in the �eld of composite materials, where

di�erent damage variables are introduced to model the matrix damage, the delamination and

the �bres damage. In that case, a material subjected to a pure hydrostatic loading would only

have its compressibility coe�cient diminished by damage, while a material under uni-axial

loading would su�er damage only in its shear coe�cient.
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In this chapter, we investigate a very famous damage process in elastomers: the cavitation

phenomenon, that is an inherently non linear phenomenon that cannot be modelled with

linear elasticity. After a recall of the works done is this area by the pioneers Gent and Lindley,

and the followers, we analyse the hyperelastic bifurcation of a sphere made of a compressible

isotropic Neo-Hookean material submitted to a radial displacement on its boundaries. The

classical study of the second derivative of the total energy is done, to be able to obtain the

expression of the critical load at which cavitation may occur. We then study the coupling of

the damage and the cavitation phenomenon that are considered as two di�erent processes,

even if they might lead to the same results in some cases. A 2D numerical study completes

this analytical investigation and enforces the results obtained.
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Chapter V � Cavitation phenomenon

V.1 Motivations and state of the art

Among the many numerical simulations that were performed in order to verify that the

gradient damage models are relevant in large deformation, one was inspired from Henao

and its study of void nucleation [25] [60]. Starting from his work, we tried to perform the

same kind of tests, with slightly di�erent damage functions, and by taking into account the

irreversibility of the damage process during a quasi-static loading. Some simulations showed

promising results, and brought out the void nucleation.

We begin this chapter by a recall of the main results that can be found in the literature,

in chronological order.

1958: Gent and Lindley [20]

In their paper of 1958, Gent and Lindley conducted experiments on natural rubber to observe

its internal rupture, and measure the pressure for which internal �aws appeared. They

proposed a criterion for the onset of cavitation, by considering an "extremely small cavity,

su�ciently small for the region around it to be treated as an in�nitely thick spherical shell".

They used an incompressible Neo-Hookean potential of the form ψ = C(I1−3), and gave the

relation between the traction acting at in�nity Pm and the elongation of the inner surface λ

Pm = C

(
5− 4

λ
− 1

λ4

)
. (V.1)

This expression predicts a limiting value of Pm at which λ becomes in�nite, thereby making

the cavity become in�nitely large. According to this criterion, the theoretical critical pressure

acting at in�nity is Pcrit = 5C = 5µ/2, and it is found to be in good agreement with their

experiments.

1982: Ball [7]

Most of the theoretical developments on the cavitation phenomenon was provided by Ball

in its paper [7]. He studied a class of bifurcation problems for the equations of non linear

elasticity, both for the incompressible and compressible cases, and for radial boundary dis-

placement or traction problems. Unlike Gent and Lindley that considered a in�nite domain

containing a cavity of �nite size, Ball considered a full unit sphere in which a cavity devel-

ops. In order to carry out its analysis, Ball made several restrictive assumptions, notably on

the hyperelastic potentials, that prevent them to be very representative of the hyperelastic

behaviours observed in reality. In the case of incompressible Neo-Hookean potentials, the

bifurcation analysis of Ball leads to the same critical value of Gent and Lindley, because, as

noted by Ball, "an in�nitesimal hole in a �nite piece of material behaves like a �nite hole in

an in�nite expanse of material".
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1968-1992: Horgan and co.

For incompressible material, the constraint of no volume change gives radial deformations of

the form

rn = Rn + An (V.2)

where A ≥ 0 is a constant that has to be determined. If A = 0, the sphere (or disk) remains

solid in the reference con�guration, if A > 0, a cavity of radius A has formed in the center

of the body, and it is assumed to be traction free.

Although the results of Ball for incompressibility are quite complete, they are less ex-

tended for compressibility. Indeed, in contrast to incompressible material, it is not possible,

in general, to determine analytical solutions that describe cavitation for compressible mate-

rial, because the non linear di�erential equation of equilibrium has to be solved.

For compressible material, however, explicit analytical solutions describing cavitation have

been provided by Horgan and Abeyaratne in the case of Blatz-Ko material, see [29]. Besides,

in [28], Horgan also gave an explicit solution for a so-called compressible generalised Varga

material of the form

r3(R) = k1(R3 − A3) + A3λ3 (V.3)

where λ is the applied elongation, and k1 is a constant related to the critical elongation.

Horgan and Polignone also made a review on cavitation [30] in 1995, presenting the results

in cases of compressibility or incompressibility, isotropy or anisotropy, for various hyperelastic

potentials. For compressible materials, non radially symmetric solutions have been studied,

as well as solutions in elastodynamics. For incompressible materials, they cite the works done

with �nite strain plasticity, elastodynamics, or rate dependence.

Lopez-Pamies and co.

The works presented above are all relatively old, and a new contribution was brought by

Lopez-Pamies and co. in the years 2010. Among their many contributions (e.g. [43] or

[51]), we will cite [42], where Lopez-Pamies studied the onset of cavitation for compressible,

isotropic hyperelastic solids subjected to non symmetric loading conditions. He worked on

a specimen containing a cylindrical inhomogeneity much smaller than the specimen, and

restricted its attention to in-plane pure stretch loadings so that the problem is essentially a

2D one. He established a closed-form criterion for the onset of damage that is written with

respect to the stored-energy function φ(λ1, λ2), with λ1 and λ2 the two principal elongations

∂φ

∂λ1

(λ1, λ2)− ∂φ

∂λ2

(λ1, λ2)

λ1 − λ2

= 0 (V.4)
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V.2 Hyperelastic bifurcation

In this section, the cavitation phenomenon is studied as a bifurcation problem. After estab-

lishing the equilibrium equation, and a trivial solution that satis�es it, the stability of the

solution is studied. The choice of a compressible Neo-Hookean material results from the fact

that it has been shown numerically (see [42]), that although incompressible Neo-Hookean

material subjected to hydrostatic pressure do not exhibit cavitation (see [7]), compressible

do. Moreover, the Neo-Hookean potential is the simplest hyperelastic potential that can

pretend to model the hyperelastic behaviour of a material, but to our knowledge, no exact

analytical solutions regarding the onset of cavitation have been found up to now.

V.2.1 Equilibrium equation

Let us consider a sphere of made of an isotropic compressible Neo-Hookean material whose

hyperelastic potential is decomposed into an isochoric and a volumetric part

ψ = C(Ī1 − 3) +D(J − 1)2 (V.5)

where D = κ/2, with κ the compressibility coe�cient, Ī1 = J−2/3I1 is the �rst reduced

invariant of the left Cauchy-Green tensor B = F ·F T . We note R the radius in the reference

con�guration, such that Ri ≤ R ≤ Re and r the radius in the deformed con�guration. This

sphere is submitted to an elongation λ on its boundary, such that there exists a function f

such that

f(R) = r. (V.6)

For spherical problems, the deformation tensor

F =


∂f

∂R
0 0

0
f

R
0

0 0
f

R

 , (V.7)

and the dilatation tensor is

B =



(
∂f

∂R

)2

0 0

0

(
f

R

)2

0

0 0

(
f

R

)2


, (V.8)

that leads to the expressions of the invariants

J = det(F ) =
∂f

∂R

(
f

R

)2

(V.9)
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I1 = tr(B) =

(
∂f

∂R

)2

+ 2

(
f

R

)2

(V.10)

I3 = det(B) =

(
∂f

∂R

)2(
f

R

)4

. (V.11)

In the compressible case, the Cauchy stress σ is

Jσ = 2CJ−2/3

(
B − 1

3
I1I

)
+ 2D J(J − 1)I. (V.12)

The radial component of the equilibrium equation in spherical coordinates in the actual

con�guration is
∂σrr
∂r

+ 2
σrr − σθθ

r
= 0, (V.13)

with σrr the radial stress, and σθθ the hoop stress. By injecting into the equilibrium equation

(V.13), we obtain a di�erential equation that governs the evolution of f

f ′′(R)

[
A

(
f(R)

R

)2

+
8C

3J5/3
f ′(R)

]
=− 2

f(R)

R3
(f ′(R)R− f(R))

(
Af ′(R)− 4C

3J5/3

)
− 2

f ′(R)

f(R)
(σrr − σθθ)

(V.14)

with

A = −σrr
J
− 4C

3J8/3

(
B11 −

I1

3

)
+

2D

J
(2J − 1). (V.15)

By injecting (V.12) into (V.14), we get

A =
−6C

J8/3

(
B11 −

I1

3

)
+ 2D (V.16)

and (V.12) gives

σrr − σθθ = 2CJ−5/3(B11 −B22). (V.17)

This equation can be solved numerically. The problem is a boundary problem with the

following conditions 
f ′′(R) = g(f ′(R), f(R), R)

f(Re) = re

σrr(Ri) = 0.

(V.18)

The second equation of the above system stands for the imposed displacement, and thus re
is known. The third equation of (V.18) requires the use of a shooting method in order to

�nd the value of ri = f(Ri) such that the radial interior stress is null. In order to be able to

numerically observe a bifurcation, a micro-hole is introduced into the sphere, whose internal

radius Ri is of the order of one percent of the external radius Re.
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Chapter V � Cavitation phenomenon

Figure V.1: Axi-symmetric equilibrium solution of a Neo-Hookean sphere with a micro-hole

submitted to a radial displacement on its boundary. Volume fraction of cavity with respect to

the imposed displacement. Both the �nite element library FEniCS and the MATLAB function

bvp4c are able to render the bifurcation of the solution.

The MATLAB bvp4c function for boundary value problems is used to solve this equation,

and the solution is shown on Figure V.1 by blue dots: we plot the volume fraction of cavity

de�ned by

vf =

(
ri
re

)3

(V.19)

with respect to the imposed displacement on the external radius u(Re). We can see clearly

that the curve can be decomposed into two phases: during the �rst one, the volume fraction

of cavity stays close to zero, which means that the micro-hole introduced in the middle of

the sphere does not grow. This regime corresponds to the one of small deformation. But

after a given load is exceeded, the volume fraction of cavity increases signi�cantly, and the

micro-hole cannot be considered of negligible size any more.

This solution obtained with MATLAB is also compared to the one obtained with �nite

element in the FEniCS library, for an axi-symmetric problem (yellow line on Figure V.1).

We can see that also in this case, the bifurcation of the solution appears clearly. In addition,

the results of MATLAB and FEniCS are very close, and the results are therefore validated.

On Figure V.2, results for two di�erent initial internal radii Ri are plotted. They are

obtained with FEniCS, and show that the smallest the micro-hole in the sphere is, the more

we tend towards a purely bifurcated solution. Figure V.2b, that displays the radial stress in

Re σrr(Re), shows that cavitation has an in�uence on the value of the radial stress: the stress

grows until it reaches a critical value, and then decreases as the micro-hole develops.
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V.2 � Hyperelastic bifurcation

(a) Volume fraction of hole with respect to

the displacement in Re.

(b) Radial stress on the hole with respect

to the displacement in Re.

Figure V.2: Bifurcation of the solution for a sphere submitted to a radial elongation, for two

di�erent values of internal radius Ri = 2%Re or Ri = 0.2%Re. The smallest the hole, the

more pronounced is the bifurcation.

V.2.2 Stability of the equilibrium equation

Figure V.1 has shown that numerical calculations are able to render the cavitation phe-

nomenon, and we now want to determine analytically the expression of the bifurcation, using

the standard approach of the loss of ellipticity of the solution. We work in dimension N that

can be either 2 or 3. The Neo-Hookean hyperelastic potential is therefore

ψ = C(J−2/NI1 −N) +D(J − 1)2. (V.20)

V.2.2.a Second derivative of the total energy

To be able to calculate the second derivative of the energy functional, we need the following

directional derivatives, at a point u in an admissible direction v

F ′(u)(v) = ∇v, (V.21)

J ′(u)(v) = J tr(F−1·∇v), (V.22)

I ′1(u)(v) = 2tr(F T ·∇v), (V.23)

Ī1
′
(u)(v) = − 2

N
Ī1tr(F−1·∇v) + 2J−2/Ntr(F T ·∇v), (V.24)

and

(F−1)′(u)(v) = −F−1·∇v·F−1. (V.25)

Without any external forces, the potential energy of the structure is the integral over the

reference domain of the hyperelastic potential (V.20)

E (u) =

∫
Ω0

(
C(Ī1 −N) +D(J − 1)2

)
dX. (V.26)
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with Ī1 = J−2/NI1. Its derivative at point u in the direction v is

E ′(u)(v) =

∫
Ω0

{
2C

[
− 1

N
Ī1tr(F−1·∇v) + J−2/Ntr(F T ·∇v)

]
+ 2D(J2 − J)tr(F−1·∇v)

}
dX,

(V.27)

rewritten, by using tr(A·B) = A:B for two second order tensors A and B where : is the

double contracted product

E ′(u)(v) =

∫
Ω0

{
2C

(
J−2/NF ·F T − 1

N
Ī1I

)
+ 2D(J2 − J)I

}
·F−T : ∇v dX. (V.28)

The expression in the brackets of (V.28) is the expression of the Kirchho� stress tensor

τ = Jσ with σ the Cauchy stress for a Neo-Hookean material given in (V.12). Applying the

divergence formula, and using the relation Π = JσF−T , we �nd the equilibrium equation in

the reference con�guration

Div Π = 0 on Ω0. (V.29)

The second derivative of (V.26) gives

E ′′(u)(v)(v) =

∫
Ω0

(
4

N2
C Ī1 + 2D(2J2 − J)

)(
tr(F−1·∇v)

)2

− 8

N
C J−2/Ntr(F−1·∇v) tr(F T ·∇v)(

2

N
C Ī1 − 2D(J2 − J)

)
tr(F−1·∇v·F−1 ·∇v)

2C J−2/Ntr(∇v·∇vT ).

(V.30)

V.2.2.b Stability of the solution f0 for Ri = 0

In the case of a full domain (Ri = 0), a solution of the equilibrium problem is

f0(R) = r = λR, R ∈ (0, Re) (V.31)

where λ = f(Re)/Re is the imposed elongation. This is known as the trivial solution for a

pure dilatation problem. Starting from that solution, we seek the elongation λ such that the

second derivative of the energy E is not positive any more, for any admissible radial �eld v.

This gives the elongation for which the trivial solution is not stable any more. The gradient

of a given kinematically admissible v �eld is

∇v =

[
diag

(
∂v

∂R
,
v

R
, ...

)]
(V.32)

where diag stands for a diagonal matrix. We have therefore, for axi-symmetric coordinates

(
tr(F−1·∇v)

)2
=

(
v′

f ′
+ (N − 1)

v

f

)2

, (V.33)
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tr(F−1·∇v) tr(F T ·∇v) =

(
v′

f ′
+ (N − 1)

v

f

)(
f ′v′ + (N − 1)

f

R

v

R

)
, (V.34)

tr(F−1·∇v·F−1 ·∇v) =

(
v′

f ′

)2

+ (N − 1)

(
v

f

)2

, (V.35)

and

tr(∇v·∇vT ) = (v′)2 + (N − 1)
( v
R

)2

. (V.36)

With the trivial solution (V.31), the invariants are written with respect to the elongation λ

J = λN , (V.37)

I1 = N λ2, (V.38)

Ī1 = N. (V.39)

We note 

a =
4

N2
C Ī1 + 2D(2J2 − J)

b = − 8

N
C J−2/N

c =
2

N
C Ī1 − 2D(J2 − J)

d = 2C J−2/N .

(V.40)

so that the second derivative of the energy is written

E ′′(u)(v)(v) =

∫
Ω0

a
(
tr(F−1·∇v)

)2
+ b tr(F−1·∇v) tr(F T ·∇v)

+c tr(F−1·∇v·F−1 ·∇v) + d tr(∇v·∇vT ).

(V.41)

a, b, c and d are functions of λ, after injecting (V.31)



a =
4

N
C + 2DλN(2λN − 1)

b = − 8

N

C

λ2

c = 2C − 2DλN(λN − 1)

d =
2C

λ2
.

(V.42)
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The second derivative of the potential energy is now the integral over one dimension of

E ′′λ (u0)(v)(v) = 2π(N − 1)

∫ Re

0

aRN−1

(
(v′)2

(f ′0)2
+ (N − 1)2 v

2

f 2
0

+ 2(N − 1)
vv′

f0f ′0

)
+ bRN−1

(
(v′)2 + (N − 1)2 v

2

R2
+ 2vv′

(
f0

f ′0R
2

+
f ′0
f0

))
+ cRN−1

((
v′

f ′0

)2

+ (N − 1)

(
v

f0

)2
)

+ dRN−1

(
(v′)2 + (N − 1)

v2

R2

)
.

(V.43)

with u0 = f0(R)−R. It can be written

E ′′λ (u0)(v)(v) = 2π(N − 1)

∫ Re

Ri

(
RN−3v2Q11 + v′2RN−1Q22 + 2vv′RN−2Q12

)
dR (V.44)

where 

Q11 = (N − 1)2a
R2

f 2
0

+ (N − 1)2b+ (N − 1)c
R2

f 2
0

+ (N − 1)d

Q22 =
a

(f ′0)2
+ b+

c

(f ′0)2
+ d

Q12 = (N − 1)a
R

f0f ′0
+ bR

(
f0

f ′0R
2

+
f ′0
f0

) (V.45)

that simpli�es when injecting (V.31)
Q11 =

(N − 1)2a

λ2
+ (N − 1)2b+

(N − 1)c

λ2
+ (N − 1)d

Q22 =
a

λ2
+ b+

c

λ2
+ d

Q12 =
(N − 1)a

λ2
+ 2b.

(V.46)

Under matricial form, (V.44) is

E ′′λ (u0)(v)(v) = 2π(N − 1)

∫ Re

Ri

 R(N−3)/2 v

R(N−1)/2 v′

T  Q11 Q12

Q21 Q22

 R(N−3)/2 v

R(N−1)/2 v′

 dR,

(V.47)

in which

Qλ =

 Q11 Q12

Q21 Q22

 (V.48)

contains only terms that depend on λ. The determinant of Qλ shows that there exists a λc
such that

det(Qλc) = 0 (V.49)
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Figure V.3: Comparison of the values of the critical elongation for which cavitation occurs

when calculated from an instability criterion with a full sphere (analytical solution (V.50)) and

calculated via the numerical simulation of a sphere with a micro-hole submitted to traction.

and the matrix Qµ is not positive de�nite for µ > λc. The solution of (V.49) is

λc =

N

√√
8C+D
D

+ 1

N
√

2
. (V.50)

Thus, for an elongation λ > λc, the trivial solution of dilation becomes unstable for a com-

pressible Neo-Hookean material. We have determined an exact analytical solution of the crit-

ical load for which cavitation occurs in compressible Neo-Hookean materials. Remarkably,

this solution happens to be quite simple, much more than what could have been augured.

The analytical expression of the critical load for cavitation in the case of a full sphere is

compared with the numerical results obtained with FEniCS for a sphere with a micro-hole,

and the results are displayed on Figure V.3. They match quite well, and prove that if the

micro-hole is small enough, the solution tends to the solution of a full sphere that undergoes

cavitation. In addition, it illustrates well the formula (V.50) that shows that if D becomes

large in front of C, that is if the material becomes incompressible, λc tends to the value 1:

for a full, incompressible sphere, if a displacement is imposed, the solution is instantaneously

unstable.

V.3 Damage and cavitation

After studying the hyperelastic phenomenon of cavitation, we now want to see what changes

can be brought by the addition of damage in the behaviour of the material.
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V.3.1 Comparison of critical loads

We have established the expression of the critical load for cavitation, and want to compare

with the critical load for damage. The material constants are now functions of the damage,

and the hyperelastic potential is

ψ = C0(1− α)2(J−2/NI1 −N) +D0(1− α)2(J − 1)2. (V.51)

with C0 and D0 the initial shear modulus and compressibility coe�cient respectively.

In the case of a full domain, we write the total energy as a functional that depends on

the damage α and the displacement u

E (u, α) =

∫
Ω0

(
ψ(u, α) + w(α) +

1

2
w1`

2∇α·∇α
)

dX. (V.52)

In spherical coordinates, it becomes

E (R,α) = 2π(N − 1)

∫ Re

0

[
ψ(u, α) + w(α) +

1

2
w1`

2(α′)2

]
RN−1dR. (V.53)

The Gâteaux derivative at point α in the direction β gives

E ′(R,α)(R, β) = 2π(N − 1)

∫ Re

0

[
∂ψ(u, α)

∂α
β + w′(α)β + w1`

2α′β′
]
RN−1dR. (V.54)

After integrating by part, the derivative becomes

E ′(R,α)(R, β) = 2π(N − 1)

∫ Re

0

[
∂ψ(u, α)

∂α
+ w′(α)− w1`

2α′′
]
βRN−1dR. (V.55)

Using the �rst order stability condition gives the damage criterion

∂ψ(u, α)

∂α

∣∣∣∣
α=0

+ w′(0) = 0. (V.56)

In spherical coordinates, with the potential (V.20), Ī1 = N so the isochoric part of the

potential is null, and the damage criterion is a function of the compressibility coe�cient D0

and the w1 only

− 2D0(λN − 1)2 + w1 = 0, (V.57)

that gives

λe =

[
1 +

(
w1

2D0

)1/2
]1/N

. (V.58)

To recapitulate, the critical elongation for cavitation is a function of the ratio of the

material parameters C0/D0, while the critical elongation for damage is a function of the ratio

of the compressibility coe�cient D0 and the constant of �rst damage w1. Thus, for a given
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Figure V.4: Comparison of the critical loads of the damage λe and the cavitation λc. For a

�xed value of ν, λc/λe depends on the value of Gc.

value of the Poisson coe�cient, depending on the value of w1, the critical elongation for

cavitation λc can be smaller or greater than the critical elongation for damage λe. This is

illustrated by Figure V.4 that shows two domains, depending on the values of Gc = w1`/cw
(with ` the internal length and cw a constant) and ν. For small values of ν, that is to say,

for materials that are very compressible, they are likely to initiate damage before cavitation:

on Figure, for an example, for ν = 0.1 and Gc = 0.7, λc > λe. Conversely, for materials with

a high Poisson ratio, i.e. quasi-incompressible materials, they are likely to cavitate before

they initiate damage.

V.3.2 2D numerical tests

Results have shown that the rupture pattern of a disk is not axi-symmetric. Therefore it would

make no sense to do a one dimensional study of the competition between the damage and the

cavitation phenomenon. Numerical tests were consequently performed with MEF++ in 3D,

with plain strain conditions. These conditions lead to di�erent results than those obtained

in the previous section, where we worked with spheres (3D) or disks (2D), thereby making

the comparison between analytical and numerical results di�cult.

A compressible full disk made of a Mooney-Rivlin material was submitted to traction on

its boundary. No micro-hole was introduced, because the aim was precisely to observe how

the rupture is a�ected by the cavitation, without introducing arti�cial defects. Boundary

conditions of no damage were imposed. Di�erent sets of parameters were used, to study the

in�uence of the internal length, the value of w1, or the value of κ0.

The results displayed were obtained using the parameter given in Table V.1. The internal

length was chosen small enough with respect to the radius of the disk `/R = 0.05 so that the

localisation of the damage would be ensured. Two di�erent values of Gc are used: if Gc is

small, damage initiates sooner that if Gc is large. The idea was to play over the ratio of the
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R C10 C01 κ ` Gc kell tol h

1.0 10 5 0.1 0.05 1 or 50 1e-6 1e-4 0.3 `

Table V.1: Geometrical, material and numerical parameters for a 2D disk made of a Mooney-

Rivlin material, submitted to traction.

critical elongations for damage and cavitation.

(a) Reference con�guration. (b) Deformed con�guration.

Figure V.5: Rupture pattern of a disk submitted to an elongation. Parameters of Table V.1

with Gc = 1.0. Reference and deformed con�guration.

Figure V.5 shows the results for Gc = 1.0: the rupture pattern is displayed in the reference

and deformed con�gurations. It is cross shaped, with a 90◦angle between each one of its four

branches. The rupture pattern V.5a is characteristic of the ones that are obtained in linear

elasticity. There is yet a damper on these results: all the simulations carried out in small

deformation for the same problem (under under radial displacement) have shown rupture

patterns with branches that make a 120◦angle. It has proven to be in keeping with the

conjecture of Mumford and Shah. Yet, this 4-branches rupture pattern has been found in

the simulations of [47], therefore it can be considered as typical of small deformation.

For a larger value of Gc, the rupture pattern V.6 is very di�erent from what has been

observed in this thesis. We have shown in the section II.2 that the rupture pro�le in the

reference con�guration is sharp, and is the same as in small deformation. Yet, here, we can

see that the rupture pro�le is not sharp, since a large circular zone, that could be quali�ed as

a hole, has a damage close to the value 1. This rupture pattern can be observed only in large

deformation, and has to be triggered by the non linearities of the displacement problem. The
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V.3 � Damage and cavitation

Figure V.6: Rupture pattern of a disk submitted to an elongation. Parameters of Table V.1

with Gc = 50.0. Reference con�guration.

next time steps of the calculation are not shown here, but a crack eventually propagates from

this hole, leading to the rupture of the disk.

By using two di�erent values of Gc, we have shown that two di�erent rupture pattern can

appear. This corroborates well the results of the section V.3 where we have shown that for a

�xed value of the compressibility coe�cient, the critical elongation for damage can be higher

(or smaller) than the critical elongation for damage, depending on the value of Gc. In other

words, in the simulations, the value of Gc controls the moment when damage occurs: if the

value is small enough, the rupture pattern is typical of small deformation, while if it is big

enough, the rupture pattern is very di�erent.

These results are very new, and to our knowledge, do not exist in the literature about

gradient damage models in �nite strain. It can be noticed that simulations carried out with

the compressible Neo-Hookean and Mooney-Rivlin potentials have led to the same rupture

patterns, i.e. hole-shaped cracks. Moreover, in these cases, the value of the residual energy kell
has been chosen small enough to ensure its non in�uence over the results. One of the question

that arise is: should these results considered as representative of the rupture behaviour of a

hyperelastic solid under bi-axial loading? Or should the formulation of the damage problem

be adapted to avoid such rupture patterns? For an example, it could be imagined that

the dissipated energy for damage be di�erent in large deformation, to take into account the

stretching of the surfaces.
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Chapter V � Cavitation phenomenon

V.4 Conclusion

This chapter was an exploration of the cavitation phenomenon, and in particular, of its inter-

action with damage. Due to the complexity of the topic, many questions stay unanswered.

Although an analytical value for the critical elongation for cavitation, for a compressible

Neo-Hookean material, has been found, the analytical expression of the bifurcated branch

has not been established. The developments around the critical elongation that were tried

did not lead to any usable expression.

Regarding the numerical simulations, some results could be enriched, using more realistic

laws and parameters, provided that an adequate �nite element method is used. In [60], Xu

and Henao used a �nite element method, based on non conforming Crouzeix-Raviart elements,

that prevents the degeneration of the mesh when numerical computation of cavitation in non

linear elasticity is performed. This could be one lead to follow in the future.
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CONCLUSION

Gradient damage models have proven to be excellent at describing the initiation and prop-

agation of cracks, in small deformation, for many situations (with temperature, plasticity,

etc). By using both analytical and numerical approaches, this work has shown that they

are also very relevant in large deformation, especially for the initiation of damage. In this

conclusion, we recall the main results, and give some leads that could be followed to deepen

the study.

Analytically, it has been established in Chapter II that in the reference con�guration,

the damage pro�le of a broken material is the same as for a linear elastic material, even if

the snap-backs are di�erent. Moreover, the one dimensional study of viscoelastic materials

(in both small and large deformation), has revealed interesting properties, also visible in

the numerical applications. Among them, there exists critical values of speed loading such

that the localisation of the damage has necessarily to be following a homogeneous phase of

damage. Yet, in order to deal with more realistic materials, more complicated models, such

as the generalised Maxwell model, should be studied. Such studies means that it can only

be done numerically, because the equations become far more complicated as the number

of viscoelastic branches is increased. In a 3D �nite deformation code, the in�uence of the

viscosity over the initiation and propagation of cracks would certainly give interesting results.

Numerically, gradient damage models are very e�cient to model the initiation of damage

in sound (without the introduction of micro-defects), quasi-incompressible materials. By

introducing a new dependency on damage of the compressibility coe�cient of the type

κ(α) =
(1− α)2κe

α
, (V.59)

and using a dependency on damage law of (1 − α)2 in front of the shear coe�cient, it has

been shown that the damage can initiate either in zones of large strain or of high pressure,

depending on the value of the parameter κe. This parameter does not have a physical mean-

ing, it is calibrated by comparing with experiments. The simulations have been confronted
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Conclusion

to experimental results performed on specimen containing rigid inclusions, and have shown

a very good agreement.

Numerical experiments performed on 2D disks have also shown that gradient damage

models are able to reproduce the cavitation phenomenon, without needing to introduce any

arti�cial micro-defects. Because of the complexity of the equations in non linear elasticity,

analytical studies could not go very far. Nevertheless, we have been able to obtain the critical

elongation at which cavitation of a sphere (N = 3) or a disk (N = 2) occurs, for an isotropic,

compressible, Neo-Hookean material submitted to an elongation

λc =

N

√√
8C+D
D

+ 1

N
√

2
. (V.60)

with C the shear modulus and D the compressibility coe�cient. One lead to further the

numerical study of the cavitation damage could be to use the function of κ (V.59) in the case

of an incompressible disk. Some tests were performed in small deformation in that situation,

that were not displayed in this thesis because they would have been redundant. In large

deformation nonetheless, it would be interesting to see how it combines with the cavitation.

In a nutshell, gradient damage models are very good at modelling brittle fracture (Chapter

III), or hydrostatic damage (Chapter IV), or cavitation (Chapter V), in large deformation.

132



BIBLIOGRAPHY

[1] Roberto Alessi, Jean-Jacques Marigo, and Stefano Vidoli. Gradient damage models

coupled with plasticity and nucleation of cohesive cracks. Archive for Rational Mechanics

and Analysis, 214(2):575�615, 2014. (Cited on page 15.)

[2] Roberto Alessi, Stefano Vidoli, and Laura De Lorenzis. A phenomenological approach to

fatigue with a variational phase-�eld model: The one-dimensional case. 12 2017. (Cited

on page 15.)

[3] Roberto Alicandro, Marco Cicalese, and Antoine Gloria. Mathematical derivation of a

rubber-like stored energy functional. Comptes Rendus Mathematique, 345(8):479 � 482,

2007. (Cited on page 57.)

[4] Hanen Amor, Jean-Jacques Marigo, and Corrado Maurini. Regularized formulation of

the variational brittle fracture with unilateral contact: Numerical experiments. Journal

of the Mechanics and Physics of Solids, 57(8):1209 � 1229, 2009. (Cited on page 61.)

[5] Ellen M. Arruda and Mary C. Boyce. A three-dimensional constitutive model for the

large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics

of Solids, 41(2):389 � 412, 1993. (Cited on page 57.)

[6] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity.

Archive for Rational Mechanics and Analysis, 63(4):337�403, 12 1976. (Cited on pages 39

and 58.)

[7] John M. Ball. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity.

Philosophical Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 306(1496):557�611, 1982. (Cited on pages 116 and 118.)

133



BIBLIOGRAPHY

[8] Zden¥k P. Baz�ant and Milan Jirásek. Nonlocal integral formulations of plasticity and

damage: Survey of progress. Journal of Engineering Mechanics, 128(11):1119�1149,

2002. (Cited on page 2.)

[9] Blaise Bourdin, Gilles A. Francfort, and Jean-Jacques Marigo. Numerical experiments in

revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4):797�826,

2000. (Cited on page 3.)

[10] Blaise Bourdin, Gilles A. Francfort, and Jean-Jacques Marigo. The variational approach

to fracture, volume 91. Springer Verlag (Germany), 2008. (Cited on page 3.)

[11] Blaise Bourdin, Jean-Jacques Marigo, Corrado Maurini, and Paul Sicsic. Morphogenesis

and propagation of complex cracks induced by thermal shocks. Physical Review Letters,

112:014301, Jan 2014. (Cited on page 15.)

[12] Patrick Ciarlet and Giuseppe Geymonat. Sur les lois de comportement en élasticité

non linéaire compressible. CR Acad. Sci. Paris Sér. II, 295:423�426, 1982. (Cited on

page 39.)

[13] G. Del Piero, G. Lancioni, and R. March. A variational model for fracture mechanics:

Numerical experiments. Journal of Mechanics Physics of Solids, 55:2513�2537, Decem-

ber 2007. (Cited on page 56.)

[14] A. Dorfmann, K.N.G. Fuller, and R. W. Ogden. Shear, compressive and dilatational

response of rubberlike solids subject to cavitation damage. International Journal of

Solids and Structures, 39(7):1845�1861, April 2002. (Cited on page 114.)

[15] Wilhelm Flügge. Viscoelasticity. Number 67-10742. Blaisdell Publishing Company, 1967.

(Cited on page 26.)

[16] André Fortin and Michel Fortin. Projet mef++. (Cited on pages 16, 56, and 111.)

[17] André Fortin and André Garon. Les éléments �nis : de la théorie à la pratique. 2018.

(Cited on page 58.)

[18] Gilles A. Francfort and Jean-Jacques Marigo. Revisiting brittle fracture as an energy

minimization problem. Journal of the Mechanics and Physics of Solids, 46(8):1319 �

1342, 1998. (Cited on pages 3, 5, 6, 7, and 8.)

[19] Gilles A. Francfort and Jean-Jacques Marigo. Etude d'une classe de modèles

d'endommagement à gradient. Technical report, 1999. (Cited on page 3.)

[20] Alan N. Gent and P. B. Lindley. Internal rupture of bonded rubber cylinders in tension.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, 249(1257):195�205, 1959. (Cited on page 116.)

134



BIBLIOGRAPHY

[21] Alan N. Gent and Byoungkyeu Park. Failure processes in elastomers at or near a rigid

spherical inclusion. Journal of Materials Science, 19(6):1947�1956, Jun 1984. (Cited on

page 107.)

[22] Antoine Gloria, Patrick Le Tallec, and Marina Vidrascu. Foundation, analysis, and

numerical investigation of a variational network-based model for rubber. Continuum

Mechanics and Thermodynamics, 26(1):1�31, 2014. cited By 4. (Cited on page 57.)

[23] Gert Heinrich and Michael Kaliske. Theoretical and numerical formulation of a molec-

ular based constitutive tube-model of rubber elasticity. Computational and Theoretical

Polymer Science, 7(3):227 � 241, 1997. (Cited on page 57.)

[24] Duvan Henao, Carlos Mora-Corral, and Xianmin Xu. γ-convergence approximation

of fracture and cavitation in nonlinear elasticity. Archive for Rational Mechanics and

Analysis, 216(3):813�879, 2015. (Cited on page 56.)

[25] Duvan Henao, Carlos Mora-Corral, and Xianmin Xu. A numerical study of void coales-

cence and fracture in nonlinear elasticity. Computer Methods in Applied Mechanics and

Engineering, 303, 01 2016. (Cited on pages 61 and 116.)

[26] C. Hesch and K. Weinberg. Thermodynamically consistent algorithms for a �nite-

deformation phase-�eld approach to fracture. International Journal for Numerical Meth-

ods in Engineering, 99(12):906�924, 2014. (Cited on page 56.)

[27] Cristian Hesch, A.J. Gil, R. Ortigosa, M. Dittmann, C. Bilgen, P. Betsch, M. Franke,

A. Janz, and K. Weinberg. A framework for polyconvex large strain phase-�eld methods

to fracture. Computer Methods in Applied Mechanics and Engineering, 317:649 � 683,

2017. (Cited on page 56.)

[28] Cornelius O. Horgan. Void nucleation and growth for compressible non-linearly elastic

materials: An example. International Journal of Solids and Structures, 29(3):279 � 291,

1992. (Cited on page 117.)

[29] Cornelius. O. Horgan and R. Abeyaratne. A bifurcation problem for a compressible

nonlinearly elastic medium: growth of a micro-void. Journal of Elasticity, 16(2):189�

200, Jun 1986. (Cited on page 117.)

[30] Cornelius O. Horgan and Debra A. Polignone. Cavitation in nonlinearly elastic solids:

A review. Applied Mechanics Reviews, 48, 08 1995. (Cited on page 117.)

[31] Lazar M. Kachanov. Rupture time under creep conditions. Izvestiya Akademii Nauk

SSSR, 8:26�31, 1958. (Cited on page 2.)

135



BIBLIOGRAPHY

[32] Michael Kaliske, Lutz Nasdala, and Heinrich Rothert. On damage modelling for elastic

and viscoelastic materials at large strain. Computers & Structures, 79(22):2133 � 2141,

2001. (Cited on page 61.)

[33] Aditya Kumar, Gilles A. Francfort, and Oscar Lopez-Pamies. Fracture and healing of

elastomers: A phase-transition theory and numerical implementation. Journal of the

Mechanics and Physics of Solids, 112:523 � 551, 2018. (Cited on pages 56, 78, and 108.)

[34] Patrick Le Tallec. Modélisation et Calcul des Milieux Continus. Les Editions de l'Ecole

Polytechnique, 2009. (Cited on page 59.)

[35] Victor Lefèvre, K. Ravi-Chandar, and Oscar Lopez-Pamies. Cavitation in rubber:

an elastic instability or a fracture phenomenon? International Journal of Fracture,

192(1):1�23, Mar 2015. (Cited on page 77.)

[36] Sophie Léger, Jean Deteix, and André Fortin. A Moore-Penrose continuation method

based on a Schur complement approach for nonlinear �nite element bifurcation problems.

Computers and Structures, 152:173 � 184, 2015. (Cited on page 76.)

[37] Jean Lemaitre. A Course on Damage Mechanics. Springer-Verlag Berlin Heidelberg,

1992. (Cited on page 2.)

[38] Jean Lemaître, Jean-Louis Chaboche, Ahmed Benallal, and Rodrigues Desmorat. Mé-

canique des matériaux solides. Dunod, 3ème edition, 2009. (Cited on pages 26 and 57.)

[39] Jean Lemaitre and Rodrigue Desmorat. Engineering Damage Mechanics. Springer-

Verlag Berlin Heidelberg, 2005. (Cited on page 2.)

[40] Sophie Léger, André Fortin, Cristian Tibirna, and Michel Fortin. An updated la-

grangian method with error estimation and adaptive remeshing for very large deforma-

tion elasticity problems. International Journal for Numerical Methods in Engineering,

100(13):1006�1030, 2014. (Cited on page 76.)

[41] Tianyi Li, Jean-Jacques Marigo, Daniel Guilbaud, and Seguei Potapov. Gradient damage

modeling of brittle fracture in an explicit dynamics context. International Journal for

Numerical Methods in Engineering, 108(11):1381�1405, 2016. (Cited on page 15.)

[42] Oscar Lopez-Pamies. Onset of cavitation in compressible, isotropic, hyperelastic solids.

Journal of Elasticity, 94(2):115, Nov 2008. (Cited on pages 117 and 118.)

[43] Oscar Lopez-Pamies, Martin Idiart, and Toshio Nakamura. Cavitation in elastomeric

solids: I�A defect-growth theory. Journal of the Mechanics and Physics of Solids,

59:1464�1487, 08 2011. (Cited on page 117.)

136



BIBLIOGRAPHY

[44] Gilles Marckmann and Erwan Verron. Comparison of Hyperelastic Models for Rubber-

Like Materials. Rubber Chemistry and Technology, 79(5):835�858, 2006. (Cited on

page 56.)

[45] Jean-Jacques Marigo. L'endommagement et la Rupture : hier, aujourd'hui et demain.

Lecture, March 2000. (Cited on page 3.)

[46] Jean-Jacques Marigo and Kim Pham. Construction and analysis of localized responses

for gradient damage models in a 1d setting. Vietnam Journal of Mechanics, 31(3-4):233�

246, 2009. (Cited on page 3.)

[47] Corrado Maurini, B Bourdin, Georges Gauthier, and Véronique Lazarus. Crack pat-

terns obtained by unidirectional drying of a colloidal suspension in a capillary tube:

Experiments and numerical simulations using a two-dimensional variational approach.

International Journal of Fracture, 184, 11 2013. (Cited on pages 79 and 128.)

[48] Christian Miehe, Serdar Göktepe, and Frank Lulei. A micro-macro approach to rubber-

like materials�Part I: the non-a�ne micro-sphere model of rubber elasticity. Journal

of the Mechanics and Physics of Solids, 52(11):2617 � 2660, 2004. (Cited on page 57.)

[49] Christian Miehe, Martina Hofacker, and Fabian Welschinger. A phase �eld model for

rate-independent crack propagation: Robust algorithmic implementation based on op-

erator splits. Computer Methods in Applied Mechanics and Engineering, 199(45):2765 �

2778, 2010. (Cited on page 61.)

[50] Christian Miehe and Lisa-Marie Schänzel. Phase �eld modeling of fracture in rubbery

polymers. Part I: Finite elasticity coupled with brittle failure. Journal of the Mechanics

and Physics of Solids, 65:93 � 113, 2014. (Cited on page 56.)

[51] Toshio Nakamura and Oscar Lopez-Pamies. A �nite element approach to study cavita-

tion instabilities in nonlinear elastic solids under general loading conditions. Interna-

tional Journal of Non-Linear Mechanics, 47:331�340, 03 2012. (Cited on page 117.)

[52] Kim Pham. Construction and analysis of gradient damage models. PhD thesis, Université

Pierre et Marie Curie - Paris VI, 2010. (Cited on pages 5 and 8.)

[53] Kim Pham and Jean-Jacques Marigo. Approche variationnelle de l'endommagement :

I. Les concepts fondamentaux. C. R. Mecanique, 2010. (Cited on pages 3, 6, and 8.)

[54] Kim Pham and Jean-Jacques Marigo. Approche variationnelle de l'endommagement :

II. Les modèles à gradient. Comptes Rendus Mécanique, 338(4):199 � 206, 2010. (Cited

on page 3.)

137



BIBLIOGRAPHY

[55] Kim Pham and Jean-Jacques Marigo. From the onset of damage to rupture: construction

of responses with damage localization for a general class of gradient damage models.

Continuum Mechanics and Thermodynamics, 25(2-4):147�171, 2013. (Cited on page 3.)

[56] Xavier Poulain, Victor Lefèvre, Oscar Lopez-Pamies, and Krishnaswamy Ravi-Chandar.

Damage in elastomers: nucleation and growth of cavities, micro-cracks, and macro-

cracks. International Journal of Fracture, 205(1):1�21, May 2017. (Cited on pages 107,

108, 109, and 111.)

[57] François Sidoro�. Un modèle viscoélastique non linéaire avec con�guration intermédiaire.

Journal de Mécanique, 13:679�713, 12 1974. (Cited on page 44.)

[58] Erwan Tanne. Variational phase-�eld models from brittle to ductile fracture: nucleation

and propagation. PhD thesis, Université Paris-Saclay, 2017. (Cited on page 15.)

[59] Sonu S. Varguese, Steven H. Frankel, and Paul F. Fischer. Direct numerical simulation

of stenotic �ows. part 1. steady �ow. Journal of Fluid Mechanics, 582:253�280, 2007.

(Cited on page 71.)

[60] Xianmin Xu and Duvan Henao. An e�cient numerical method for cavitation in nonlinear

elasticity. Mathematical Models and Methods in Applied Sciences, 21(08):1733�1760,

2011. (Cited on pages 116 and 130.)

138



Titre : Modèles d’endommagement à gradient en grandes déformations

Mots clés : endommagement, rupture, cavitation, hyperélasticité, pression, viscoélasticité

Résumé : Les modèles d’endommagement à gradient, aussi
dénommés modèles à champs de phases, sont désormais large-
ment utilisés pour modéliser la rupture fragile et ductile, depuis l’ini-
tiation de l’endommagement jusqu’à la propagation d’une fissure.
Cependant, la majorité des études disponibles dans la littérature
ne concerne que le cadre des petites déformations, et très peu
d’études poussées ont été menées afin d’étudier leur pertinence
dans un contexte de grandes déformations. Ce serait pourtant d’un
intérêt primordial, notamment pour l’industrie pneumatique, qui de-
viendrait alors capable de prédire plus précisément l’initiation de
l’endommagement dans ses structures.
Dans la première partie de ce travail, nous établissons des solu-
tions analytiques d’évolution de l’endommagement (homogène et
localisée) pour des matériaux visqueux, en petites et en grandes
déformations. En petites déformations, les modèles rhéologiques
de Maxwell et Poynting-Thomson sont étudiés, et en grandes
déformations, les modèles de Maxwell et Zener sont choisis. Une
étude sur l’évolution de l’endommagement dans un cas purement
hyperélastique est aussi menée.
A cette première partie analytique succède une partie numérique,
qui détaille l’implémentation des modèles d’endommagement à
gradient dans des codes éléments finis en grandes déformations.
De même qu’en petites déformations, une stratégie de minimisation
alternée est adoptée pour résoudre successivement les problèmes
d’endommagement et de déplacement. Le matériau suit une loi

de Mooney-Rivlin quasi-incompressible, et une méthode mixte en
déplacement-pression est utilisée. Des tests en 2D et 3D sont ef-
fectués, qui mettent en évidence la capacité des modèles à initier
de l’endommagement en grandes déformations.
Les modèles d’endommagement utilisés pour la seconde partie ne
sont cependant capables d’initier de l’endommagement que dans
les zones où la déformation est importante, c’est-à-dire dans les
zones de forte contrainte déviatorique. Il a toutefois été montré
que certains matériaux polymères, quasi-incompressibles, s’en-
dommagent dans les zones de forte pression hydrostatique. Par
conséquent, la recherche et l’étude d’un modèle d’endommage-
ment capable d’initier de l’endommagement dans les zones de forte
pression, pour des matériaux quasi-incompressibles lorsqu’ils sont
sains, fait l’objet d’une troisième partie.
Enfin, la croissance brusque de cavités dans un matériau hy-
perélastique, appelée phénomène de cavitation, est étudiée, ainsi
que son interaction avec l’endommagement. Dans un premier
temps, nous considérons la cavitation comme une simple bifur-
cation hyperélastique d’un matériau néo-hookéen compressible
isotrope, et déterminons l’expression analytique de l’élongation cri-
tique pour laquelle la cavitation fait son apparition. Dans un second
temps, nous montrons qu’il y a une compétition entre la cavitation
et l’endommagement, et qu’en fonction de la valeur du ratio des
élongations critiques respectives pour chaque phénomène, deux
types de rupture apparaissent.

Title : Gradient damage models in large deformation

Keywords : damage, rupture, cavitation, hyperelasticity, pressure, viscoelasticity

Abstract : Gradient damage models, also known as phase-field
models, are now widely used to model brittle and ductile fracture,
from the onset of damage to the propagation of a crack in various
materials. Yet, they have been mainly studied in the framework of
small deformation, and very few studies aims at proving their rele-
vance in a finite deformation framework. This would be more helpful
for the tyre industry that deals with very large deformation problems,
and has to gain insight into the prediction of the initiation of damage
in its structures.
The first part of this work places emphasis on finding analytical so-
lutions to unidimensional problems of damaging viscous materials
in small and large deformation. In all the cases, the evolution of
damage is studied, both in the homogeneous and localised cases.
Having such solutions gives a suitable basis to implement these
models and validate the numerical results.
A numerical part naturally follows the first one, that details the speci-
ficities of the numerical implementation of these non local models
in large deformation. In order to solve the displacement and dam-
age problems, the strategy of alternate minimisation (or staggered
algorithm) is used. When solved on the reference configuration, the
damage problem is the same as in small deformation, and consists
in a bound constraint minimisation. The displacement problem is
non linear, and a mixed finite element method is used to solve a
displacement-pressure problem. A quasi-incompressible Mooney-

Rivlin law is used to model the behaviour of the hyperelastic mate-
rial. Various tests in 2D and 3D are performed to show that gradi-
ent damage models are perfectly able to initiate damage in sound,
quasi-incompressible structures, in large deformation.
In the simulations depicted above, it should be noted that the dam-
age laws combined to the hyperelastic potential results in an initia-
tion of damage that takes place in zones of high deformation, or in
other words, in zones of high deviatoric stress. However, in some
polymer materials, that are known to be quasi-incompressible, it
has been shown that the initiation of damage can take place in
zones of high hydrostatic pressure. This is why an important as-
pect of the work consists in establishing a damage law such that
the material be incompressible when there is no damage, and the
pressure play a role in the damage criterion. Such a model is ex-
posed in the third part.
Finally, the last part focuses on the cavitation phenomenon, that can
be understood as the sudden growth of a cavity. We first study it as
a purely hyperelastic bifurcation, in order to get the analytical value
of the critical elongation for which cavitation occurs, in the case of
a compressible isotropic Neo-Hookean material submitted to a ra-
dial displacement. We show that there is a competition between the
cavitation phenomenon and the damage, and that depending on the
ratio of the critical elongation for damage and the critical elongation
for cavitation, different rupture patterns can appear.
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