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CHAPTER 1
Introduction

1.1 Presentation of the problem

1.1.1 Congestion in mobile data networks

The development of new mobile data technologies (3G, 4G, and in a coming future 5G) offers
new possibilities for mobile data usage, owing to faster rates. As a consequence, the demand for
using the Internet with mobile phones has increased rapidly. Cisco claims in its annual report
([Cis17]) that the mobile data traffic in the world was 7, 2 × 1018 bytes per month at the end
of 2016. It grew 63 % since the end of 2015 and 1700 % since the end of 2011. Consequently,
mobile service providers (MSP) have to confront and to anticipate congestion problems in the
networks, in order to guarantee a sufficient quality of service (QoS).

Several approaches have been developed to improve the QoS, coming from different fields of
the telecommunication engineering and economics. For instance, one can refer to Bonald and
Feuillet [BF13] for some models of performance analysis to optimize the network to improve the
quality of service (QoS). One of the promising alternatives to solve such problems consists of
using efficient pricing schemes that encourages customers to shift their mobile data consumption.
In [MT06], Maillé and Tuffin describe a mechanism of auctions based on game-theoretic methods
for pricing an Internet network, see also [MT14]. In [ABEA+06], Altman et al. study how to
price different services by using a noncooperative game. These different approaches are based
on congestion games. In the present work, we are interested in how a MSP can improve the QoS
by balancing the traffic in the network. We wish to determine in which locations, and at which
time instants, it is relevant to propose price incentives, and to evaluate the influence of these
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incentives on the quality of service.
This kind of problem belongs to smart data pricing. We refer the reader to the survey of

Sen et al. [SJWHC13] and also to the collection of articles [SJWHC14]. Finding efficient pricing
schemes is a revenue management issue. The first approach consists of usage-based pricing; the
prices are fixed monthly by analyzing the use of the former months. It is possible to improve this
scheme. The MSP identifies peak hours and non-peak hours. He proposes discounts in non-peak
hours to incite the users to consume during these hours. This decreases the demand at peak
hours. The MSP balances hence the network and uses better the network capacity at non-peak
hours. This leads to time-dependent pricing. Such a scheme for mobile data is developed by Ha
et al. in [HSJW+12]. The prices are determined at different time slots and based on the usage of
the previous day to maximize the utility of the customers and the revenue of the provider. This
pricing scheme was concretely implemented by AT&T, showing the relevance of such a model.
In another approach, Tadrous et al. propose a model in which the MSP anticipates peak hours
and determines incentives for proactive downloads [TEEG13].

The latter models concern only the time aspects. One must also take into account the spatial
aspect to optimize the demand between the different locations. In [MLH14], Ma, Liu and Huang
present a model depending on time and location of the customers where the MSP proposes prices
and optimizes his profit taking into account the utility of the customers.

1.1.2 Bilevel programming for pricing problems

Similarly as in [MLH14], we assume that the MSP proposes incentives at different time and
places. Then, customers optimize their data consumption by knowing these incentives and the
MSP optimizes a measure of the QoS. In this way, we introduce a bilevel model in which the
provider proposes incentives to balance the traffic in the network and to avoid as much as
possible the congestion (high level problem), and customers optimize their own consumption for
the given incentives (low level problem).

Bilevel programming deals with nested optimization problems involving two players. A leader
announces a decision to a follower, who responds by selecting a solution of an optimization
problem whose data depend on this decision (low level problem). The optimal decision of the
leader is the solution of another optimization problem whose data depend on the follower’s
response (high level problem). When the follower’s response is not unique, one distinguishes
between optimistic and pessimistic bilevel problems, in which the leader takes into account the
best or worst possible response of the follower.

Bilevel programming problems represent an important class of pricing problems in sense that
they model a leader wanting to maximize his profit and proposing prices to some followers who
maximize themselves their own utility. Labbé et al. ([LMS98]) and Brotcorne et al. ([BLMS01])
propose a bilevel model for a taxation scheme, which is used for a toll-setting problem in a
multicommodity transportation network. Brotcorne et al. ([BLMS00]) present an application
for a freight tariff-setting problem. Larsson and Patriksson ([LP98]) present a bilevel model to
limit the traffic congestion. For energy pricing, Bard et al. ([BPS00]) propose a bilevel model
for the minimization of tax credits a government allows to biofuel producers. In telecommuni-
cations networks, Ma et al. ([MLH14]) consider a bilevel model for smart data pricing in mobile
networks, depending on the mobility of the users.

Bilevel programming is a well-studied topic in optimization. Bard ([Bar13]) and Dempe
([Dem02]) devote books to bilevel programming, presenting the main theoretical aspects, algo-
rithms and applications. In [Dem03a], Dempe wrote an annotated bibliography on methods and
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applications concerning bilevel optimization. Moreover, different surveys ([CMS07], [SMD17])
present also these aspects.

Most classes of bilevel programs are nevertheless known to be NP-hard. Jeroslow ([Jer85])
shows that even when the leader’s and the follower’s optimization problems are linear programs,
bilevel problems are generally NP-hard, and if we deal with mixed-integer programs, bilevel
problems can be ΣP

2 -hard. Several methods have been introduced to solve such problems. For
instance, if the low-level program is convex, it can be replaced by its Karush-Kuhn-Tucker
optimality conditions (see [BV04, Section 5.5.3]) and the bilevel problem is replaced by a classical
one-stage optimization problem, which is nevertheless generally non convex. If some variables
are binary or discrete, and the objective function is linear, the global bilevel problem can be
rewritten as a mixed integer program, as in Brotcorne et al. [BLMS00].

In the present work, we optimize the consumption of each customer in a large area (large
urban agglomerations) during typically one day divided in time slots of one hour, taking into
account the different types of customers and of applications that they use. Therefore, we have to
confront both with the difficulties inherent to bilevel programming and with the large number of
variables (around 107). Hence, we need to find polynomial time algorithms, or fast approximate
methods, for classes of large-scale problems. If these problems were treated directly, they would
lead to mixed integer linear or nonlinear programming formulations beyond the capacities of
current off-the-shelf solvers.

1.1.3 Tropical geometry for economic problems

The difficulty to solve bilevel problems motivates us to introduce a different approach, based on
tropical geometry. Tropical mathematics refers to the study of the max-plus semifield Rmax, that
is the set R∪{−∞} endowed with two laws ⊕ and � defined by ∀a, b ∈ Rmax, a⊕ b = max(a, b)
and a � b = a + b. The reader can refer to [BCOQ92, But10] for more details about max-
plus algebra and its application to discrete event systems, and to [IMS09, MS15] for detailed
introductions of tropical geometry.

The tropical analogue to the classical polynomial functions correspond to the convex piece-
wise linear functions with integer slopes. The set of points in which such a function is not
differentiable is called a tropical hypersurface. The epigraph of a tropical polynomial in n vari-
ables is then a n + 1-dimensional polyhedron, and the projection of the graph of a tropical
polynomial over the n first coordinates defines a polyhedral complex, which subdivides Rn in
different cells. We recall some essential notions of tropical geometry in Section 3.3.

Tropical geometry methods have been recently applied by Baldwin and Klemperer in [BK12]
to the product-mix auction (see also [BK15]). This has been further developed by Tran and Yu
[TY15]. Product-mix auctions (introduced by Klemperer [Kle10]) can be formulated as follows.
Some agents have preferences for buying a set of bundles of differentiate goods. The price of
the goods is the same for all agents. We assume that the total supply is fixed. Then, the sum
of purchases of all the agents has to be equal to the total supply. The problem is to know
whether there exists a price vector for the goods such that the sum of purchases of the different
agents is equal to the total supply, when each agent chooses his purchase by maximizing his own
preferences. Such a price is called a competitive equilibrium. In the approach of Baldwin and
Klemperer, the value of the preference maximization problem of each agent corresponds to the
evaluation of a tropical polynomial. Hence, the response of an agent to a price is represented by
a certain polyhedral complex (arrangement of tropical hypersurfaces). This approach is intuitive
since it allows one to vizualize geometrically the behavior of the agents: each cell of the complex
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corresponds to the set of prices leading to a given response. Then, we vizualize the collective
response of a group of customers by "superposing" (refining) the polyhedral complexes attached
to every agent in this group. Baldwin and Klemperer [BK12], and further Tran and Yu [TY15]
give a necessary and sufficient condition on the preference cost function of the different agents
for the existence of a competitive equilibrium. This result is related with earlier work of Danilov,
Koshevoy and Murota [DKM01], who obtained the same result for a competitive equilibrium in
Walrasian economy with discrete convexity methods.

There exist many other applications of tropical geometry to economics and game theory.
Crowell and Tran [CT16] use tropical algebra and geometry for mechanism design. It consists
for an institution in incentivizing the economic agents to reveal truthfully their preferences,
to attain an equilibrium for all agents. Recently, the Ricardian trade theory was related with
tropical algebra [Shi15], and Joswig [Jos17] describes the problem in terms of arrangement of
tropical hypersurfaces by using the Cayley trick. Briec and Horvath [BH08] study the existence
of Nash equilibria for games in which the players have B-convex utility functions. B-convexity
is an analogue of tropical convexity. In more recent work, Briec and Horvath [BHL13] study
Nash equilibrium existence for other classes of utility functions, called quasi-Leontief, which are
additive in tropical algebra. Tropical geometry is a relevant approach to study other game the-
oretical problems. For instance, Akian, Guterman and Gaubert [AGG12] show the equivalence
between zero-sum two player stochastic games and the external representation of tropical convex
sets.

1.2 Main contributions

In the present work, we study a class of bilevel problems in which the low-level problem can
be interpreted as a tropical polynomial. We use similar techniques as Baldwin, Klemperer
[BK12], Tran and Yu [TY15] to describe the response of the low-level optimizer to the high-
level decision variable as a polyhedral complex. Such an approach applies in particular to the
congestion problem in mobile data networks presented earlier. In this case, the low-level problem
corresponds to the optimization problem of the different users. Hence, the low-level dimension
(linear in the number of users) can be very large.

We provide algorithms whose time complexity is polynomial in the low-level dimension.

• We first develop a general decomposition method to study our class of bilevel problems. In
this method, the value of the bilevel problem corresponds to the minimum value of a large
number of optimization subproblems, each of this subproblem corresponding to a cell of a
polyhedral complex.

• We next show that this method leads to an algorithm for solving the different bilevel
problems. By using classical results about the combinatorics of polyhedral subdivisions,
we provide some upper bounds about the time complexity of the algorithm. We show that
this complexity is polynomial in the low-level dimension and in certain metric estimates
when the high-level dimension is fixed.

• We next introduce some subclasses in which the enumeration of the cells of a complex
polyhedral is not required. It leads to other algorithms which run in polynomial time in
both high-level and low-level dimensions.

• We finally study the congestion problem in mobile data networks, and show it belongs to
the previous subclass. We use the specific structure of this problem to propose polynomial
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time algorithms which are efficient for large values of the low-level dimension. We propose
a heuristic based on these algorithms for realistic telecom models, and validate our results
on real data provided by Orange.

In Chapter 3, we recall some classical notions for background. We present bilevel problems
and their relation with Stackelberg equilibria. We recall standard complexity results, and present
the classical methods to solve them. Next, we deal with the notions of polyhedron, polyhedral
complex and polyhedral subdivisions. We mention some definitions and study the combinatorics
of such objects, that is we recall some classical relations between the number of faces of each
dimension in polyhedra, or equivalently between the number of cells of polyhedral complexes.
In a third part, we present tropical geometry. We explain the notion of tropical polynomial
together with its associated tropical hypersurface. We recall the definition of Newton polytopes
and the bijection between the polyhedral complex defined by a tropical hypersurface and a
regular subdivision of the associated Newton polytope. We mention some results about these
subdivisions. We focus on the case of arrangement of tropical hypersurfaces, and recall a classical
result of algebraic geometry called the BKK theorem. Finally, we deal with discrete convexity
and in particular with M -convex functions. We recall the equivalence between local and global
optimality for M -convex functions. We recall also that the minimization of M -convex functions
can be done in polynomial time. We also give some examples of classical classes of M -convex
functions.

1.2.1 A tropical approach to bilevel programming

Chapter 4 is devoted to the study of a specific class of bilevel problems, which corresponds to a
real economic situation. A producer wants to sell n different goods to a customer. The price of
each good is denoted by −y ∈ Rn, where −yj (for each j ∈ [n]) is the price of good j. However,
he sells the different goods in k different bundles. We define the matrix C ∈ Mk,n(R) such
that for each i ∈ [k], j ∈ [n], cij is the quantity of good j in bundle i. Hence, the price vector
of the different bundles is −Cy ∈ Rk. We denote by x ∈ Rk the purchase of the customer,
that is xi ∈ R denotes the quantity of bundle i bought by the customer. The constraints of
the customer are linear, and we modeled them by x ∈ P, where P is a polytope of Rk. The
quantity of goods sold by the producer corresponds consequently to the vector CTx. For a fixed
price vector −y ∈ Rn, the customer maximizes his utility. He has a preference vector ρ ∈ Rk
(ρi ∈ R is a measure of the preference of the customer for buying the bundle i). He determines
his consumption x∗ ∈ Rk such that:

x∗ ∈ arg max
x∈P

〈ρ+ Cy, x〉

The producer desires to minimize his costs, depending on the quantity CTx∗ of sales and on the
proposed price. He solves:

min
y∈Rn

f(CTx∗, y)

where x∗ is the consumption of the customer. The latter corresponds to a continuous bilevel
problem. We also study a discrete bilevel problem, corresponding the case of indivisible goods.
This means that the matrix C has integer coefficients, and the consumption x of the customer
is constrained to belong to the integer points of P. In this sense, the low-level decision variable
x is discrete, and the high-level decision variable y is continuous. We deal with both optimistic
and pessimistic versions of the different bilevel problems we introduced.
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The low-level problem of this bilevel program corresponds to a tropical polynomial Q defined
by Q(y) = maxx∈CTP〈y, CTx〉 + 〈ρ, x〉. Similarly to what is done in the work of Baldwin and
Klemperer [BK12] and Tran and Yu [TY15], the response of the customer defines a polyhedral
complex S. This complex is dual to a regular subdivision S ′ of the Newton polytope ofQ, in sense
that there exists a bijection φ between the cells of S and S ′. This bijection means that for each
C ∈ S, the elements of φ(C) attains the maximum in Q(y) for each y ∈ C. This decomposition
of the response of the customers into a polyhedral complex leads us to the following result.

Theorem 1.1 (Reduction of optimistic bilevel programming to cell enumeration). Assume that
for every y ∈ Rn, the function z 7→ f(z, y) is lower semicontinuous. Then, the optimistic version
of the continuous bilevel programming problem 4.1 is equivalent to the following problem:

min
C∈S

[
inf
y∈C

min
z∈φ(C)

f(z, y)

]
.

Moreover, if the function f is jointly lower semicontinuous in (z, y), and is inf-compact over
each set φ(C)× C, then an optimistic solution exists.

A similar result for the pessimistic version can be written. However, the pessimistic solution
of a bilevel problem is not always feasible. One can guarantee approximate solutions. We say
that a feasible solution of an optimization problem is an ε-solution if the difference between the
value function at this feasible solution and the optimal value of the problem is less than or equal
to ε.

Theorem 1.2 (Reduction of pessimistic bilevel programming to cell enumeration). Suppose that
for each C ∈ S, the function f is continuous over φ(C) × C. Then, the value of the pessimistic
version of the continuous bilevel problem 4.1 is given by:

min
C∈S

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
. (1.1)

If f is additionally inf-compact, then the problem defined by (1.1) has an optimal solution, and
there exists an ε-solution of the pessimistic version of Problem 4.1.

For the discrete bilevel problem, we prove similar theorems under a total unimodularity
assumption of the matrix C and the polytope P. To conclude this chapter, we present two
generalizations of the class of studied bilevel problems. We show that some results remain for
discrete problems when the weight function of the tropical polynomial Q is any concave function,
and we study also how we can generalize the high-level function by removing the dependance
on the matrix C.

In Chapter 5, we study how the different reductions established in Theorem 1.1 and The-
orem 1.2 lead to an algorithm for solving both continuous and discrete bilevel problems. We
have first to enumerate the different cells of the polyhedral complex associated to the tropi-
cal polynomial defined by the low-level problem. Next, we have to determine the dual cells,
belonging to a regular subdivision of the associated Newton polytope. Finally, we solve an op-
timization problem associated to each cell. We show that the enumeration of the cells of such
a polyhedral complex is equivalent to the enumeration of the faces of a polyhedron. By using a
classical algorithm developed by Fukuda, Liebling and Margot [FLM97], we write an algorithm
which enumerates the cells of S and give the corresponding dual cells in S ′. The complexity of
this algorithm depends on combinatorial parameters of the polyhedral complex, such that its
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number of faces of each dimension. We next find some upper bounds to these different com-
binatorial parameters, and mention particular cases for which we find optimal upper bounds.
As a consequence, the time complexity of our algorithm depends polynomially of the dimension
of the low-level problem and of a metric estimate of the polytope CTP (typically the radius of
the polyhedral sphere), when the dimension of the high-level problem is fixed. Then, if each
subproblem is fixed-parameter tractable, meaning that it can be solved in polynomial time when
the high-level problem dimension is fixed, we prove the following result:

Theorem 1.3 (Fixed parameter tractability of bilevel problems). Assume that an ε-solution of
each subproblem can be obtained in polynomial time when the high-level dimension is fixed. Then,
an ε-solution of both continuous and discrete bilevel problems can be obtained in polynomial time
in the low-level dimension and a metric estimate of CTP, when the high-level dimension is fixed.

In Chapter 6, we deal with some particular subclasses of the problem studied in Chapter 4.
First, we show that our problem can model a situation in which the producer sells his products
to a large set of customers. The previous results make sense for this problem because the low-
level dimension is much larger than the high-level dimension, if the number of customers is
large. This problem has a particular structure in which P can be decomposed as a cartesian
product of polytopes, each one being the feasible set of one customer. The sales of the producer
are just the sum of the consumptions of all the customers, meaning that the polytope CTP is
the Minkowski sum of the polytopes corresponding to the feasible set of the customers. As a
consequence, the polyhedral complex defined by the low-level corresponds to an arrangement
of tropical hypersurfaces, each being associated to the response of a particular customer, and
the dual subdivision of the Newton polytope is a mixed subdivision. We use this structure to
improve an upper bound given in Chapter 4 by using the notion of mixed volume. Then, we
deal with another particular subclass, in which the profit of the producer does not depend on
the price. This means that the high-level function f becomes f(CTx∗). We prove the following
theorem concerning the optimistic solution of the bilevel problem.

Theorem 1.4 (Decomposition theorem for the continuous bilevel problem). Assume that f
is lower semicontinuous. Then, the optimistic version of the continuous bilevel problem 4.1 is
equivalent to:

• Find z∗ ∈ arg minz∈CTP f(z).

• Find x∗ ∈ arg maxx∈P,CT x=z〈ρ, x〉.

• Find y∗ ∈ φ−1(C′z∗), where C′z∗ is the intersection of all the cells of the dual subdivision S ′
containing z∗.

This theorem means that the optimistic value of the bilevel problem can be obtained by
solving three optimization problems, instead of taking the minimum value of a large number
of subproblems associated to the cells of a polyhedral complex. The second part is a linear
programming problem, which can be solved in polynomial time in the low-level dimension thanks
to interior point methods (see the original work of Karmarkar [Kar84] and also the article of
Renegar [Ren88]). The third part consists of finding a point in the subdifferential of a piecewise-
linear convex map at z∗. This point can be obtained by solving a dual linear program, which can
be done in polynomial time by interior point methods or by ellipsoid methods (see the article
of Grötschel, Lovasz and Schrijver [GLS81], which reformulates the original work of Khachiyan
[Kha79]). If the function f is linear or convex, then an ε-solution of the first part can also
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be obtained in polynomial time by the ellipsoid method. Hence, the global optimistic bilevel
problem can be solved in polynomial time.

Such a theorem is still valid for the discrete problem under a total unimodularity assumption.
Both second and third parts of the previous theorem are integer linear programs whose value is
equal to their continuous relaxations. They can consequently be solved in polynomial time. We
show that if f belongs to a certain class of discrete convex functions, calledM \-convex functions,
the first part can also be solved in polynomial time.

Finally, we study an economic situation corresponding to a balancing problem, in which a
producer proposes rewards to the different customers to balance his sales of the different goods.
This corresponds to both subclasses studied in this chapter, in the discrete case. We generalize
the low-level cost functions of the customers to discrete concave functions instead of linear ones.
This refers to the unimodularity theorem of Baldwin and Klemperer [BK12]. We show that we
can solve this problem in polynomial time in both low-level and high-level dimensions problem.
We recall the competitive equilibrium problem for indivisible goods introduced by Danilov,
Koshevoy and Murota [DKM01], and define a class of parametrized competitive equilibrium
problems of this type. We show that the bilevel problem we deal with can be interpreted as
a competitive equilibrium in which the profit of the producer does not depend on the price he
proposes. We also show that the bilevel solution is a limit of the competitive equilibria belonging
to the parametric class we introduced, when the parameter goes to zero.

1.2.2 An application to a congestion problem in mobile data networks

In Chapter 7, we deal with the congestion problem in mobile data networks we presented earlier.
We consider a cellular network that we divide in L cells (to avoid any confusion with the notion of
cells of a polyhedral complex, we use the term "location" instead of "cell"). We divide the day in
T time slots. A mobile service provider (MSP) proposes in advance the discount vector y, that is
y(t, l) ∈ R is the reward offered by the provider to the K different users of the network. at time t
and in location l. We model the consumption of user k ∈ [K] by a binary vector uk ∈ {0; 1}T×L,
with uk(t, l) = 1 if user k does a request at time t in location l and uk(t, l) = 0 otherwise. We
assume he wants to do a fixed number of requests Rk. We also assume he has a fixed trajectory,
meaning that uk(t, l) = 0 if the location l is not visited by user k at time t. Moreover, we assume
that he is unavailable at certain time slots. Then, there is a set Jk of couples (t, l) such that
uk(t, l) is constrained to be equal to 0. It means that the feasible set of consumptions of each
user is Fk = {uk ∈ {0; 1}T×L |

∑
t,l uk(t, l) = Rk, ∀(t, l) ∈ Jk, uk(t, l) = 0}. It corresponds

to both integer of extreme points of (n − #Jk)-dimensional hypersimplex. Each user has a
preference vector ρk ∈ RT×L which measures his utility to consume at time t and location l.
Hence, he determines his optimal consumption u∗k such that:

u∗k ∈ arg max
uk∈Fk

〈ρk + y, uk〉.

The MSP desires to balance the network, that is to minimize a measure of congestion in
the network. He determines the global consumption N =

∑
k u
∗
k. This represents the number

of active users at each time and in each place. We hence suppose that f is a concave function
depending only on N , and more precisely we consider f(N) =

∑
t,l ft,l(N(t, l)), that is f is a

sum of univariate concave functions depending on the number of active users at each time t and
in each place l. Then, the provider proposes the discounts to minimize the congestion, that is
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he solves the following maximization problem.

max
y∈RT×L

f(N),

with N =
∑

k u
∗
k and u∗k is the response of user k to the discounts announced by the Internet

service provider.
This defines a discrete bilevel programming problem, that we call the congestion problem.

More precisely, this corresponds to a particular subclass studied in Chapter 6. The high-level
function does not depend on the rewards of the provider. There is a large set of customers,
and the response of each customer to the reward is a tropical polynomial. Finally, the possible
consumptions of each customers are the integer points of an integer polytope. The decomposition
theorem 1.4, proved in Chapter 6, can be applied to the congestion problem.

Theorem 1.5 (Decomposition theorem for a congestion problem). The optimistic congestion
problem can be solved as follows:

1. Find an optimal solution N∗ to the high level problem with unknown N :

max
N∈

∑
k Fk

∑
t,l

ft,l(N(t, l)) s.t. ∀(t, l), N(t, l) ≤ NC(t, l) .

2. Find vectors (u∗1, . . . , u
∗
K) solutions of the following problem:

max
u1∈F1,...,uK∈FK∑

k uk=N∗

∑
k

〈ρk, uk〉 .

3. Find a vector y∗ such that ∀k, u∗k is a solution of the low level problem.

The results of Chapter 6 show that this problem can be solved in polynomial time. However,
to apply this model to networks with a large number of users, we have to limit the power of
K (the number of users) in the complexity of the algorithm we propose to solve this problem.
We show that the high-level problem corresponds to a minimization of an M -convex function.
To compute a minimum, we use a greedy algorithm proposed by Murota [Mur03]. It consists of
finding the minimal value and a minimizer of the function in a certain neighborhood of an initial
point. If the obtained minimal value is less than the value of the function at the initial point,
we take the minimizer as new initial point. If not, then the initial point is a global minimizer of
the function. However in our problem, we have to know if an integer point N ∈ ZT×L belongs
to
∑

k Fk or not. This problem, as well as the problem of finding an optimal discount vector y∗

when the optimal consumptions u∗k of each user are known, is a very large dimensional linear
feasibility problem, It can be solved in polynomial time. However, it is not efficient in practice
since the dimension is very large.

Nevertheless, we show that we can solve our problem more efficiently. We assume that
we know an initial point N ∈

∑
k Fk with its optimal decomposition in users consumptions

N =
∑

k u
∗
k. We consider a point N ′ of the neighborhood of N (same neighborhood as Murota’s

algorithm). We show that by solving a shortest path problem in a graph, we can decide whether
N ′ belongs to

∑
k Fk or not, and if it does, the optimal consumptions u∗k of each user and the

discount vector y∗ that the provider has to propose to have a total number of users equal to
N ′. This comes essentially from the special structure (integer points of hypersimplices) of the
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feasible set of each user. It leads to a polynomial time algorithm for solving the bilevel problem,
which can be adapted to models with a large number of users. Moreover, we study a particular
case in which we accelerate the previous algorithm by using the theory of majorization (see
Marshall and Olkin [OM79]).

Next, we deal with a more realistic telecom model, taking into account different kinds of
applications used by the customers, and different types of users depending on their contracts
with the Internet service provider. We show that in a simple case with one type of applications
and one type of user, this telecom model corresponds to the bilevel problem studied previously
in this chapter. We propose an approximate method: for each application and each type of user,
we solve the previous bilevel problem by fixing all the variables which concern other types of
applications or users, and repeat this as long as possible

We finally present the application of this model on real data from Orange and show how
price incentives can improve the QoS by balancing the number of active customers in an urban
agglomeration during one day. These results indicate that a price incentive mechanism can
effectively improve the satisfaction of the users by displacing their consumption from the most
loaded regions of the space-time domain to less loaded regions.

In Chapter 8, we present to conclude some perspectives of this work. We suggest to develop
branch-and-bound algorithms to make the method presented in Chapter 4 efficient in practice.
The idea is to avoid to explore all the cells of the polyhedral complex. Next, we come back
to our congestion problem in telecom networks and propose to add lower and upper bounds to
the set of possible discounts, to reduce the expenses of the provider. Finally, we explain why
stochastic models could also be considered for the congestion problem in mobile data networks,
to propose real-time incentives.

In Appendix A, we present another method to enumerate the faces of a polyhedron. We
compare this method to the approach developed in Chapter 5. Appendix B is devoted to a proof
of one theorem dealing with providing an upper bound to the number of apices of arrangements
of tropical hypersurfaces. Finally, in Appendix C, we provide some results concerning a variant of
the congestion problem in telecommunications presented in Chapter 8 (bounded price incentives).



CHAPITRE 2
Introduction (version française)

2.1 Présentation du problème

2.1.1 Congestion dans les réseaux de données mobiles

Le développement de nouvelles technologies (la 3G, 4G, et dans un futur proche la 5G) offre de
nouvelles possibilités pour l’usage des données mobiles, permettant d’atteindre des débits plus
élevés. Par conséquent, la demande pour l’usage d’Internet par les smartphones a rapidement
augmenté. Cisco établit dans son rapport annuel ([Cis17]) que le trafic mondial de données
mobiles s’élevait à 7, 2× 1018 octets par mois à la fin de l’année 2016. Ce trafic avait augmenté
de 63 % depuis la fin de l’année 2015 et de 1700 % depuis la fin de l’année 2011. Par conséquent,
les opérateurs de réseaux mobiles (MNO) sont confrontés à des problèmes de congestion dans les
réseaux qu’ils doivent anticiper afin de garantir une qualité de service (QoS) suffisante.

Différentes approches ont été développées pour améliorer la QoS, provenant de différents
domaines de l’économie et de l’ingéniérie des télécommunications. Par exemple, on peut se
référer à Bonald et Feuillet [BF13] pour des modèles d’analyse de performance afin d’optimiser
le réseau pour améliorer la qualité de service (QoS). Une des alternatives les plus prometteuses
pour résoudre de tels problèmes consiste à utiliser des schémas de tarifications efficaces qui
encouragent les utilisateurs à déplacer leur consommation de données mobiles. Dans [MT06],
Maillé et Tuffin décrivent un mécanisme d’enchères basé sur des méthodes issues de la théorie
des jeux pour tarifer le réseau Internet, voir aussi [MT14]. Dans [ABEA+06], Altman et al.
étudient comment tarifer différents services via un jeu noncoopératif. Ces différentes approches
sont basées sur des jeux de congestion. Dans le présent travail, nous nous intéressons à comment
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un opérateur de réseau mobile peut améliorer la qualité de service en équilibrant le trafic dans le
réseau. Nous souhaitons déterminer en quels lieux et à quels instants il est pertinent de proposer
des incitations tarifaires, ainsi qu’évaluer l’influence d’un tel schéma sur la qualité de service.

Il s’agit d’un problème de tarification intelligente des données. Le lecteur peut se référer
au survol de Sen et al. [SJWHC13], ainsi qu’à la collection d’articles [SJWHC14]. Trouver des
schémas efficaces de tarification est un problème de revenue management. Une première approche
est le pricing basé sur la consommation ; les prix sont fixés mensuellement en analysant la
consommation des mois précédents. Il est possible d’améliorer ce schéma en identifiant des heures
pleines (présentant un pic de consommation) et des heures creuses. L’opérateur propose alors des
réductions en heures creuses afin d’inciter les usagers à consommer durant ces heures là. Ainsi,
la demande aux heures pleines diminue et les pics sont réduits. L’opérateur équilibre donc le
réseau et utilise mieux sa capacité aux heures creuses. Cela amène à une tarification dépendante
du temps. Un tel schéma pour les données mobiles a été développé par Ha et al. in [HSJW+12].
Les prix sont déterminés à différents instants pour maximiser l’utilité des usagers et le revenu de
l’opérateur. Ils sont basés sur la consommation des clients le jour précédent. Ce schéma tarifaire
a été implémenté par AT&T sur des données réelles, montrant la pertinence d’un tel modèle.
Dans une autre approche, Tadrous et al. proposent un modèle dans lequel l’opérateur prévoit les
pics de consommation et incite les usagers à anticiper leurs téléchargements par des réductions
[TEEG13].

Ces différents modèles ne traitent que d’aspects temporels. Cependant, nous devons prendre
en compte la mobilité des usagers pour optimiser la demande entre les différents lieux. Dans
[MLH14], Ma, Liu et Huang présentent un modèle dépendant du temps et des positions des
usagers dans lequel l’opérateur propose des prix et maximise son profit ainsi que l’utilité des
clients.

2.1.2 La programmation bi-niveau appliquée à la tarification

De la même manière que dans [MLH14], nous supposons que l’opérateur propose des incitations
tarifaires en divers pas de temps et divers lieux. Ainsi, les clients optimisent leur consommation
de données en connaissant ces incitations et l’opérateur optimise une mesure de la qualité de
service. En ce sens, nous introduisons un modèle bi-niveau dans lequel l’opérateur propose des
réductions destinées à équilibrer le trafic dans le réseau et d’éviter la congestion autant que
possible (problème de niveau haut). Les clients optimisent leur propre consommation pour des
réductions données (problème de niveau bas).

La programmation bi-niveau se réfère à l’étude de problèmes d’optimisation "emboîtés"
impliquant deux joueurs. Un meneur annonce sa décision au suiveur, qui répond en choisissant
une solution d’un problème d’optimisation dont les données dépendent de la décision du meneur
(problème de niveau bas). La décision optimale du meneur est la solution d’un autre problème
d’optimisation dont les données dépendent de la réponse du suiveur (problème de niveau haut).
Lorsque la réponse du suiveur n’est pas unique, on distingue les problèmes bi-niveau optimistes
et pessimistes, dans lesquels le meneur considère respectivement la meilleure et la pire réponse
possible du suiveur.

Les problèmes de programmation bi-niveau représentent une classe importante des problèmes
de pricing car ils modélisent un meneur cherchant à maximiser son profit et proposant des prix
à certains suiveurs qui maximisent eux-mêmes leur utilité. Labbé et al. ([LMS98]), ainsi que
Brotcorne et al. ([BLMS01]), proposent un modèle bi-niveau pour un schéma de taxation dans
les réseaux de transports multicommodité afin de prévoir où installer des péages. Brotcorne et
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al. ([BLMS00]) présentent une application de ce schéma pour la tarification du fret. Larsson et
Patriksson ([LP98]) proposent un modèle bi-niveau pour limiter la congestion du trafic. Dans
l’énergie, Bard et al. ([BPS00]) proposent un modèle bi-niveau pour la minimisation des crédits
d’impôts qu’un gouvernement peut allouer aux producteurs de biocarburants. Dans les réseaux
de télécommunications, Ma et al. ([MLH14]) considèrent un modèle bi-niveau pour la tarification
intelligente des données dans les réseaux mobiles, dépendant de la mobilité des usagers.

La programmation bi-niveau est un domaine bien étudié en optimisation. Bard ([Bar13]) et
Dempe ([Dem02]) ont dédié des livres à ce domaine, présentant les principaux aspects théoriques,
des algorithmes de résolution et des applications. Dans [Dem03a], Dempe a écrit une bibliogra-
phie annotée des méthodes et applications de l’optimisation bi-niveau. De plus, differents survols
([CMS07], [SMD17]) présentent également ces aspects.

La plupart des classes de problèmes bi-niveau sont néanmois NP-difficiles. Jeroslow ([Jer85]) a
montré que même lorsque les problèmes du meneur et du suiveur sont des programmes linéaires,
les problèmes bi-niveau sont généralement NP-durs, et s’il s’agit de programmes linéaires en
variables mixtes, les problèmes bi-niveau peuvent être ΣP

2 -difficiles. Plusieurs méthodes ont été
introduites pour résoudre de tels problèmes. Par exemple, si le problème de niveau bas est
convexe, il peut être remplacé par ses conditions d’optimalité de Karush-Kuhn-Tucker (voir
[BV04, Section 5.5.3]) et le problème bi-niveau devient un problème d’optimisation classsique
à un niveau qui n’est cependant pas convexe de manière générale. Si certaines variables sont
binaires ou discrètes, et que la fonction objectif du meneur est linéaire, le problème bi-niveau
global peut être réécrit comme un problème en variables mixtes, comme le font Brotcorne et
al. [BLMS00].

Dans ce travail, nous optimisons la consommation de chaque client dans une large zone
(grandes agglomérations urbaines) pendant une journée divisée en intervalles d’une heure, en
prenant en considération les différents types de clients et les différentes applications qu’ils uti-
lisent. Nous avons ainsi à affronter à la fois les difficultés inhérentes à la programmation bi-niveau
et le très grand nombre de variables (environ 107). Ainsi, nous avons besoin de trouver des al-
gorithmes pour résoudre exactement ou de manière approximative des classes de problèmes
bi-niveau en grande dimension en temps polynomial. Si nous traitions directement cette classe
de problèmes par des méthodes usuelles, cela mènerait à des réformulations en variables mixtes,
linéaires ou non, des problèmes bi-niveau qui ne sont pas traitables par les solveurs actuellement
sur le marché.

2.1.3 Géométrie tropicale appliquée à l’économie

La difficulté à résoudre de tels problèmes bi-niveau nous incite à introduire une approche dif-
férente basées sur la géométrie tropicale. Les mathématiques tropicales désignent l’étude du
semi-corps max-plus Rmax, c’est-à-dire l’ensemble R ∪ {−∞} muni de deux lois ⊕ et � définies
par ∀a, b ∈ Rmax, a⊕b = max(a, b) et a�b = a+b. Le lecteur peut se référer à [BCOQ92, But10]
pour plus de détails sur l’algèbre max-plus et ses applications à l’étude des systèmes à événe-
ments discrets, ainsi qu’à [IMS09, MS15] pour une introduction plus détaillée à la géométrie
tropicale.

Les fonctions polynomiales classiques ont pour analogue tropical les fonctions convexes, af-
fines par morceaux à pentes entières. L’ensemble des points en laquelle une telle fonction n’est
pas différentiable est appelé une hypersurface tropicale. L’épigraphe d’un polynôme tropical en n
variables est un polyèdre en dimension n+ 1, et la projection du graphe d’un polynôme tropical
sur les n premières coordonnées définit un complexe polyèdral qui subdivise Rn en différentes
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cellules. Nous rappelons certaines notions essentielles de géométrie tropicale en Section 3.3.
La géométrie tropicale a récemment été appliquée par Baldwin et Klemperer dans [BK12]

à des enchères pour l’assortiment de produits (see also [BK15]). Cela a ensuite été développé
par Tran et Yu [TY15]. Un tel problème d’enchères (introduit par Klemperer [Kle10]) peut
être formulé de la manière suivante. Différents agents économiques ont des préférences pour
acheter un certain ensemble de biens. Le prix des biens est le même pour tous les agents. Nous
supposons que la demande totale est fixée. Ainsi, la somme des achats des agents doit être
égale à la demande totale. Le problème est de savoir s’il existe un vecteur de prix pour les
différents biens tel que la somme des achats des différents agents est égale à la demande totale,
lorsque chaque agent détermine ses achats en maximisant son utilité. Un tel prix est appelé
un équilibre compétitif. Dans l’approche de Baldwin et Klemperer, la valeur du problème de
maximisation de l’utilité de chaque agent correspond à l’évaluation d’un polynôme tropical.
Ainsi, la réponse des agents à un certain prix est representée par un certain complexe polyèdral
(arrangement d’hypersurfaces tropicales). Cette approche est intuitive puisqu’elle permet de
visualiser géométriquement le comportement des différents agents : chaque cellule du complexe
correspond à un ensemble de prix menant à une réponse donnée. Ainsi, il est possible de visualiser
la réponse collective d’un groupe de clients en "superposant" les complexes polyédraux associés
à chaque agent du groupe. Baldwin et Klemperer [BK12], puis Tran et Yu [TY15] ont donné
une condition nécessaire et suffisante sur la fonction d’utilité des différents agents pour garantir
l’existence d’un équilibre compétitif. Ce résultat est relié à un travail plus ancien de Danilov,
Koshevoy et Murota [DKM01], qui obtinrent le même résultat pour un équilibre compétitif en
économie Walrasienne grâce à des méthodes de convexité discrète.

Il existe beaucoup d’autres applications de la géométrie tropicale à l’économie et à la théorie
des jeux. Crowell et Tran [CT16] ont utilisé l’algèbre et la géométrie tropicales pour les méca-
nismes d’incitation. Cela consiste pour une institution à inciter les agents économiques à révéler
en toute confiance leurs préférences, afin d’obtenir un équilibre entre tous les agents. Plus ré-
cemment, la théorie ricardienne du commerce a été reliée à l’algèbre tropicale [Shi15], et Joswig
[Jos17] décrivit le problème en termes d’arrangements d’hypersurfaces tropicales en utilisant
l’astuce de Cayley. Briec et Horvath [BH08] ont étudié l’existence d’équilibres de Nash de jeux
dans lesquels les joueurs ont des fonctions d’utilité B-convexes. La B-convexité est un analogue
de la convexité tropicale. Dans un travail plus récent, Briec et Horvath [BHL13] ont étudié l’exis-
tence d’un équilibre de Nash pour d’autres classes de fonctions d’utilité, appelées quasi-Leontief,
qui sont additives pour l’algèbre tropicale. La géométrie tropicale est une approche pertinente
pour l’étude d’autres problèmes issus de la théorie des jeux. Par exemple, Akian, Guterman et
Gaubert [AGG12] ont montré l’équivalence entre jeux stochastiques à deux joueurs et à somme
nulle et la représentation externe des ensembles tropicalement convexes.

2.2 Principales contributions

Dans cette thèse, nous étudions une classe de problèmes bi-niveau dans laquelle le problème
de niveau bas peut être interprété comme un polynôme tropical. Nous utilisons des techniques
semblables à celles de Baldwin, Klemperer [BK12], Tran et Yu [TY15] pour décrire la réponse du
suiveur à la décision du meneur en termes de complexe polyédral. Une telle approche s’applique
en particulier au problème de congestion dans les réseaux mobiles présenté précédemment. Dans
ce cas, le problème de niveau bas correspond au problème d’optimisation des différents usagers.
Ainsi, la dimension du niveau bas (linéaire en le nombre d’usagers) peut être très élevée.
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Nous proposons des algorithmes dont la complexité en temps est polynomiale en la dimension
du problème de niveau bas.

• Nous développons d’abord une méthode de decomposition pour étudier une classe générale
de problèmes bi-niveaux. Dans cette méthode, la valeur du problème bi-niveau correspond
au minimum d’un grand nombre de valeurs de sous-problèmes d’optimisation, chaque sous-
problème étant associé à une cellule d’un certain complexe polyédral.

• Nous montrons ensuite que cette méthode mène à un algorithme pour résoudre les différents
problèmes bi-niveaux étudiés. En utilisant des résultats classiques sur la combinatoire
des subdivisions polyédrales, nous proposons des bornes supérieures sur la complexité
temporelle de cet algorithme. Nous montrons que cette complexité est polynomiale en la
dimension du problème bas et en une certaine estimation métrique lorsque la dimension
du problème haut est fixée.

• Nous introduisons également plusieurs sous-classes de problèmes dans lesquelles l’énuméra-
tion de toutes les cellules du complexe polyédral n’est pas nécessaire. Cela mène à d’autres
algorithmes dont la complexité est polynomiale en les dimensions des deux problèmes (de
niveau haut et de niveau bas).

• Nous étudions enfin le problème de congestion dans les réseaux de données mobiles, et
montrons qu’il appartient à la sous-classe précédente. Nous utilisons la structure spécifique
de ce problème pour proposer des algorithmes polynomiaux efficaces lorsque la dimension
du problème de niveau bas est très élevée. Nous proposons également une heuristique basée
sur ces algorithmes pour des modèles réalistes dans les télécommunications, et validons nos
résultats sur des données réelles apportées par Orange.

Dans le Chapitre 3, nous rappelons des notions préliminaires essentielles pour la suite de la
thèse. Nous présentons les problèmes bi-niveaux et leurs liens avec les équilibres de Stackelberg.
Nous rappelons des résultats standards de complexité, et présentons les méthodes classiques pour
les résoudre. Ensuite, nous traitons des notions de polyèdre, complexe polyédral et subdivision
polyédrale. Nous mentionnons les définitions et étudions la combinatoire de tels objets, rappelant
en particulier des relations classiques entre le nombre de faces de chaque dimension d’un poly-
èdre, ou de manière équivalente entre les nombres de cellules de chaque dimension d’un complexe
polyédral. Dans une troisième partie, nous présentons la géométrie tropicale. Nous expliquons la
notion de polynôme tropical et d’hypersurface tropicale. Nous rappelons la définition du polytope
de Newton et la bijection usuelle entre un complexe polyédral défini par une hypersurface tropi-
cale et une subdivision régulière du polytope de Newton associé. Nous mentionnons également
certains résultats au sujet de ces subdivisions. Nous étudions le cas d’arrangements d’hypersur-
faces tropicales, et rappelons le théorème de Bernstein-Khovanskii-Kushnirenko (BKK), résultat
classique de géométrie algébrique. Enfin, nous exposons des notions élémentaires de convexité
discrète, et en particulier la notion de fonctions M -convexes. Nous rappelons l’équivalence entre
optimalité locale et globale pour les fonctionsM -convexes, qui amène à la minimisation de telles
fonctions en temps polynomial. Nous donnons également des exemples classiques de classes de
fonctions M -convexes.

2.2.1 Une approche tropicale de la programmation bi-niveau

Le Chapitre 4 est dédié à l’étude d’une classe spécifique de problèmes bi-niveaux, qui corres-
pondent à la situation économique suivante. Un producteur désire vendre n biens distincts à
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un client. Le prix des biens correspond au vecteur −y ∈ Rn, où −yj (pour tout j ∈ [n]) est
le prix du bien j. Cependant, le producteur vend ses différents biens en k lots distincts. Nous
définissons la matrice C ∈ Mk,n(R) telle que pour tous i ∈ [k], j ∈ [n], cij est la quantité du
bien j se trouvant dans le lot i. Ainsi, le vecteur de prix des différents lots est −Cy ∈ Rk. Nous
désignons par x ∈ Rk l’achat du client, (xi ∈ R est la quantité du lot i achetée par le client).
Les contraintes du clients sont linéaires, modélisées par x ∈ P, où P est un polytope de Rk. La
quantité de biens vendus par le producteur correspond ainsi au vecteur CTx. Pour un vecteur
de prix −y ∈ Rn fixé, le client maximise son utilité. Il possède un vecteur "de préférences"
ρ ∈ Rk (ρi ∈ R est une mesure de la préférence du client à acheter le lot i). Il détermine ainsi sa
consommation x∗ ∈ Rk telle que :

x∗ ∈ arg max
x∈P

〈ρ+ Cy, x〉.

Le producteur souhaite minimiser ses coûts, dépendant de la quantité CTx∗ vendue et du prix
−y proposé. Il résout donc :

min
y∈Rn

f(CTx∗, y)

où x∗ est la consommation optimale du client. Ce dernier problème est un problème bi-niveau
continu. Nous étudions également un problème bi-niveau discret, correspondant au cas de biens
indivisibles. Cela signifie que la matrice C est à coefficients entiers, et que la consommation x
du client est contrainte d’appartenir à l’ensemble des points entiers du polytope P. La variable
de décision de niveau bas x est alors discrète, tandis que la variable de décision de niveau haut
y est continue. Pour les différents problèmes bi-niveaux introduits, nous traitons à la fois les
versions optimistes et pessimistes des problèmes.

Le problème de niveau bas de ce programme bi-niveau correspond au polynôme tropical Q
défini par Q(y) = maxx∈CTP〈y, CTx〉+〈ρ, x〉. De manière semblable à ce qui est fait par Baldwin
et Klemperer [BK12] puis par Tran et Yu [TY15], la réponse du client définit un complexe
polyédral S. Ce complexe est dual d’une subdivision régulière S ′ du polytope de Newton de Q,
en sens qu’il existe une bijection φ entre les cellules de S et celles de S ′. Cette bijection signifie
que pour chaque cellule C ∈ S, les éléments de φ(C) réalisent le maximum dans Q(y) pour chaque
y ∈ C. Cette décomposition de la réponse du client en un complexe polyédral nous amène au
résultat suivant.

Théorème 2.1 (Réduction du problème bi-niveau continu optimiste à l’énumération de cellules).
Supposons que pour tout y ∈ Rn, la fonction z 7→ f(z, y) est semi-continue inférieurement. Alors
la version optimiste du problème bi-niveau continu 4.1 est équivalente au problème suivant :

min
C∈S

[
inf
y∈C

min
z∈φ(C)

f(z, y)

]
.

De plus, si la fonction f est conjointement semi-continue inférieurement en (z, y) et est inf-
compacte sur chaque ensemble φ(C)× C, alors la solution optimiste existe.

Un résultat similaire pour le cas pessimiste peut être établi. Cependant, la solution pessimiste
d’un problème bi-niveau n’est pas toujours réalisable. On peut néanmoins garantir l’existence de
solutions approchées. Une solution réalisable d’un problème d’optimisation est appelée ε-solution
du problème si la différence entre la fonction valeur en cette solution et la valeur optimale du
problème est inférieure ou égale à ε.
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Théorème 2.2 (Réduction du problème bi-niveau continu pessimiste à l’énumération de cel-
lules). Supposons que pour chaque C ∈ S, la fonction f est continue sur φ(C)×C. Alors la valeur
du cas pessimiste du problème bi-niveau continu 4.1 est donnée par :

min
C∈S

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
. (2.1)

Si f est de plus inf-compacte, alors le problème défini par (2.1) admet une solution optimale, et
il existe une ε-solution de la version pessimiste du problème 4.1.

Pour le problème discret, nous établissons et prouvons des résultats similaires sous des hypo-
thèses de totale unimodularité de la matrice C et du polytope P. Pour conclure ce chapitre, nous
présentons deux généralisations de la classe de problèmes bi-niveaux étudiée. Nous montrons que
certains résultats sont encore valables dans le cas discret lorsque les coefficients du polynôme tro-
pical Q sont définis par n’importe quelle fonction concave, et nous étudions également comment
généraliser la fonction de niveau haut en supprimant sa dépendance en la matrice C.

Dans le Chapitre 5, nous étudions comment les diverses réductions établies dans le Théo-
rème 2.1 et le Théorème 1.2 amènent à un algorithme pour résoudre à la fois le problème continu
et le problème discret. Nous devons dans un premier temps énumérer les cellules d’un complexe
polyédral associé à un polynôme tropical défini à partir du problème de niveau bas. Dans un
deuxième temps, nous devons déterminer les cellules duales appartenant à une subdivision régu-
lière du polytope de Newton associé. Enfin, nous résolvons un problème d’optimisation associé
à chaque cellule. Nous montrons que l’énumération des cellules d’un tel complexe polyédral est
équivalente à l’énumération des faces d’un polyèdre. En utilisant un algorithme classique dé-
veloppé par Fukuda, Liebling et Margot [FLM97], nous écrivons un algorithme énumérant les
cellules de S et donnant les cellules duales de S ′ correspondantes. La complexité d’un tel algo-
rithme dépend de paramètres combinatoires du complexe polyédral tel que le nombre de faces
de chaque dimension. Nous déterminons ensuite des bornes supérieures de ces paramètres et
nous nous intéressons à des cas particuliers pour lesquels on peut trouver les meilleures bornes
supérieures possibles. Par conséquent, la complexité temporelle de notre algorithme dépend de
manière polynomiale de la dimension du problème de niveau bas et d’une estimation métrique du
polytope CTP (typiquement le rayon de la sphère polyédrale), lorsque la dimension du problème
de niveau haut est fixée. Ainsi, si chaque sous-problème est soluble à paramètre fixé, c’est-à-dire
pouvant être résolu en temps polynomial lorsque la dimension du problème de niveau haut est
fixée, nous prouvons le résultat suivant :

Théorème 2.3 (Résolution à paramètre fixé des problèmes bi-niveaux). Supposons qu’une ε-
solution de chaque sous-problème peut être obtenue en temps polynomial lorsque la dimension du
problème haut est fixée. Alors une ε-solution des problèmes bi-niveaux continu et discret étudiés
peut être obtenue en temps polynomial en la dimension du niveau bas et une estimation métrique
de CTP lorsque la dimension du problème haut est fixée.

Dans le Chapitre 6, nous traitons de certaines sous-classes particulières du problème étudié
dans le Chapitre 4. Tout d’abord, nous montrons que notre problème peut modéliser la situation
économique dans laquelle le producteur vend ses produits à un ensemble de clients. Les résultats
précédents font sens pour ce problème car la dimension du niveau bas est bien plus grande que
celle du niveau haut pour un grand nombre de clients. Ce problème a une structure particu-
lière dans laquelle P peut être décomposé en un produit cartésien de polytopes, chacun étant
l’ensemble réalisable d’un client. Les ventes du producteur sont alors simplement la somme des
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consommations de chaque client, ce qui signifie que le polytope CTP est la somme de Minkowski
de polytopes correspondant aux ensembles réalisables des différents clients. Ainsi, le complexe
polyédral défini par le problème de niveau bas correspond à un arrangement d’hypersurfaces
tropicales, chacune étant associée à la réponse d’un client. La subdivision duale du polytope de
Newton est alors une subdivision mixte. Nous utilisons cette structure pour améliorer une borne
supérieure donnée dans le Chapitre 4 grâce à la notion de volume mixte. Nous traitons ensuite
d’une autre sous-classe particulière dans laquelle le profit du producteur ne dépend pas du prix.
Cela signifie que la fonction f de niveau haut devient f(CTx∗). Nous prouvons le théorème
suivant à propos de la solution optimiste du problème bi-niveau dans ce cas.

Théorème 2.4 (Théorème de décomposition pour le problème bi-niveau continu). Suppo-
sons que f est semi-continue inférieurement. Alors la version optimiste du problème bi-niveau
continu 4.1 est équivalente à :

• Trouver z∗ ∈ arg minz∈CTP f(z).

• Trouver x∗ ∈ arg maxx∈P,CT x=z〈ρ, x〉.

• Trouver y∗ ∈ φ−1(C′z∗), où C′z∗ est l’intersection de toutes les cellules de la subdivision
duale S ′ contenant z∗.

Ce théorème signifie que la valeur optimiste du problème bi-niveau peut être obtenue en
résolvant trois problèmes d’optimisation au lieu de considérer la valeur minimale d’un large
nombre de sous-problèmes. La deuxième partie est un problème de programmation linéaire ; il
peut donc être résolu en temps polynomial en la dimension du niveau bas grâce à des méthodes
de points intérieurs (voir le travail original de Karmarkar [Kar84] et également l’article de Re-
negar [Ren88]). La troisième partie consiste à trouver un point dans le sous-différentiel d’une
application convexe affine par morceaux au point z∗. Cela peut être obtenu en résolvant un
programme linéaire dual, également par des méthodes de points intérieurs ou par la méthode
des ellipsoïdes (voir l’article de Grötschel, Lovasz et Schrijver [GLS81] qui reformule le travail
original de Khachiyan [Kha79]). Si la fonction f est linéaire ou convexe, alors une ε-solution
de la première partie peut également être obtenue en temps polynomial par la méthode des
ellipsoïdes. Ainsi, le problème bi-niveau continu peut être résolu en temps polynomial.

Ce théorème est encore valable dans le cas discret sous des hypothèses de totale unimodula-
rité. Dans ce cas, les deuxième et troisième parties du précédent théorème sont des programmes
linéaires en nombres entiers dont la valeur est égale à celle de leur relaxation continue. Ils
peuvent donc être résolus en temps polynomial. Nous montrons que si f appartient à une cer-
taine classes de fonctions convexes discrètes appelées fonctions M \-convexes, la première partie
peut également être résolue en temps polynomial.

Nous étudions finalement une situation économique correspondant à un problème d’équili-
brage, dans lequel un producteur propose des réductions à ses différents clients pour équilibrer
ses ventes entre les différents biens. Cela correspond au cas discret des deux sous-classes de pro-
blèmes étudiés dans ce chapitre. Nous généralisons les fonctions coûts des clients au niveau bas à
n’importe quelle fonction M \-concave. Ceci est en relation avec le théorème d’unimodularité de
Baldwin et Klemperer [BK12]. Nous montrons que nous pouvons résoudre ce problème en temps
polynomial en les dimensions de niveau haut et bas. Après avoir rappelé le problème d’équilibres
compétitifs pour des biens indivisibles introduit par Danilov, Koshevoy et Murota [DKM01],
nous définissons une classe paramétrée d’équilibres compétitifs de ce type. Nous montrons que
le problème bi-niveau que nous traitons peut être interprété comme un équilibre compétitif dans
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lequel le profit du producteur ne dépend pas du prix qu’il propose. Nous montrons également
que la solution de ce problème est une limite d’équilibres compétitifs appartenant à la classe
paramétrée que nous avons introduite lorsque le paramètre tend vers zéro.

2.2.2 Une application à un problème de congestion dans les réseaux de données
mobiles

Dans le Chapitre 7, nous étudions le problème de congestion dans les réseaux de données mobiles
précédemment présenté. Nous considérons un réseau cellulaire que nous divisons en L cellules.
Nous divisons un jour en T intervalles de temps. Un opérateur de réseau mobile propose en
avance un vecteur de réductions y, où y(t, l) ∈ R est la récompense offerte par l’opérateur aux K
différents utilisateurs du réseau au temps t dans la cellule l. Nous modélisons la consommation
de l’utilisateur k ∈ [K] par un vecteur binaire uk ∈ {0; 1}T×L, où uk(t, l) = 1 si l’utilisateur k
effectue une requête au temps t et au lieu l et uk(t, l) = 0 sinon. Nous supposons que l’utilisateur
souhaite faire un nombre fixe de requêtes Rk. Nous supposons également qu’il a également une
trajectoire fixée ce qui signifie que uk(t, l) = 0 si le lieu l ne se trouve pas sur la trajectoire
de l’utilisateur k au temps t. Par ailleurs, nous supposons que l’utilisateur est indisponible à
certains intervalles de temps. Ainsi, il existe un ensemble Jk de couples (t, l) tels que uk(t, l) est
contraint d’être égal à 0. Cela signifie que l’ensemble des consommations de l’utilisateur k est
Fk = {uk ∈ {0; 1}T×L |

∑
t,l uk(t, l) = Rk, ∀(t, l) ∈ Jk, uk(t, l) = 0}. Cela correspond à la fois

aux points entiers et aux points extrêmes d’un hypersimplexe de dimension (n−#Jk). Chaque
utilisateur a un vecteur de préférence ρk ∈ RT×L qui mesure sa propension à consommer au
temps t et au lieu l. Ainsi, il détermine sa consommation optimale u∗k telle que :

u∗k ∈ arg max
uk∈Fk

〈ρk + y, uk〉.

L’opérateur désire équilibrer le réseau, ce qui peut se modéliser par le fait de minimiser
une mesure de congestion du réseau. Il calcule la charge globale du réseau N =

∑
k u
∗
k. Cela

représente le nombre de clients actifs à chaque pas de temps et en chaque lieu. Nous supposons de
plus que f est une fonction concave ne dépendant que de N , et nous considérons plus précisément
f(N) =

∑
t,l ft,l(N(t, l)) (f est la somme de fonctions concaves en une variable dépendant du

nombre de clients actifs dans le réseau au temps t et au lieu l). Ainsi, l’opérateur propose les
réductions de sorte à minimiser la congestion et résout le problème de maximisation suivant :

max
y∈RT×L

f(N),

avec N =
∑

k u
∗
k et u∗k est la réponse de l’utilisateur k aux réductions annoncées par l’opérateur.

Cela définit un problème bi-niveau discret que nous appelons problème de congestion. Cela
correspond plus précisément au problème de congestion étudié au Chapitre 6. La fonction de
niveau haut ne dépend pas des réductions annoncées par l’opérateur. Nous considérons un grand
nombre de clients, et la réponse de chaque client aux réductions est un polynôme tropical.
Finalement, les consommations possibles de chaque client sont les points entiers d’un polytope
entier. Le théorème de décomposition 2.4, prouvé dans le Chapitre 6, peut être appliqué au
problème de congestion dans les réseaux mobiles.

Théorème 2.5 (Théorème de décomposition pour un problème de congestion). Le cas optimiste
du problème de congestion peut être résolu en :
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1. trouvant une solution optiamle N∗ du problème suivant d’inconnue N :

max
N∈

∑
k Fk

∑
t,l

ft,l(N(t, l)) s.t. ∀(t, l), N(t, l) ≤ NC(t, l) .

2. trouvant des vecteurs (u∗1, . . . , u
∗
K) solutions du problème suivant :

max
u1∈F1,...,uK∈FK∑

k uk=N∗

∑
k

〈ρk, uk〉 .

3. trouvant un vecteur y∗ tel que ∀k, u∗k est une solution du problème de niveau bas.

Les résultats du Chapitre 6 montrent que ce problème peut être résolu en temps polyno-
mial. Cependant, pour appliquer ce modèle à des réseaux avec un grand nombre d’utilisateurs,
nous devons limiter l’exposant du paramètre K (nombre d’utilisateurs) dans la complexité de
l’algorithme que nous proposons pour résoudre ce problème. Nous montrons que le problème de
niveau haut correspond à la minimisation d’une fonction M -convexe. Nous obtenons un mini-
miseur à l’aide d’un algorithme glouton proposé par Murota [Mur03]. Cela consiste à trouver la
valeur minimale et un minimiseur de la fonction dans un certain voisinage d’un point initial. Si
la valeur minimale obtenue est inférieure ou égale à la valeur de la fonction au point initial, nous
prenons le minimiseur comme nouveau point initial. Dans le cas contraire, le point initial est un
minimiseur global de la fonction. Cependant dans notre cas, nous devons déterminer si un point
initial N ∈ ZT×L appartient ou non à

∑
k Fk. Ce problème, ainsi que celui consistant à obte-

nir un vecteur de réductions optimales y∗ lorsque les consommations u∗k de chaque utilisateur
sont connus, est un problème de faisabilité linéaire en grande dimension, qui peut être résolu en
temps polynomial. Cette résolution n’est cependant pas efficace en pratique car la dimension du
problème est trop grande.

Nous montrons néanmoins qu’il est possible de résoudre ce problème plus efficacement. Nous
supposons la connaissance d’un point initial N ∈

∑
k Fk, ainsi que de sa décomposition optimale

en consommations d’utilisateurs N =
∑

k u
∗
k. Soit N

′ un point du voisinage N (même voisinage
que dans l’algorithme de murota). Nous montrons que nous pouvons décider si N ′ appartient ou
non

∑
k Fk, et si oui, déterminer les consommations optimales u∗k de chaque utilisateur ainsi que

le vecteur de réductions optimales y∗ que l’opérateur doit proposer en résolvant un problème de
plus court chemin dans un graphe. Cela provient principalement de la structure spécifique de
l’ensemble réalisable de chaque utilisateur (points entiers d’hypersimplexes). Cela amène à un
algorithme en temps polynomial pour résoudre le problème bi-niveau qui peut être adapté à des
réseaux présentant un grand nombre de clients. Nous étudions de plus un cas particulier dans
lequel nous accélérons l’algorithme précédent grâce à la théorie de la majorisation (voir Marshall
et Olkin [OM79]).

Ensuite, nous nous intéressons à un modèle plus réaliste, prenant en compte les différentes
applications utilisées par les utilisateurs et segmentant les clients suivant leur type de contrat.
Nous montrons que le cas simple d’un type d’application et un type de clients correspond au
problème bi-niveau étudié dans ce chapitre. Dans le cas général, nous proposons une solution
approchée : pour chaque application et chaque type d’usager, nous résolvons le problème bi-
niveau précédent en fixant toutes les variables concernant les autres applications et autres types
de clients, et nous répétons cette procédure aussi longtemps que possible.

Nous présentons finalement une application de ce modèle à des données réelles fournies par
Orange et montrons comment des incitations tarifaires peuvent améliorer la qualité de service en
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équilibrant à travers le réseau le nombre de clients actifs dans une agglomération urbaine pendant
un jour. Ces résultats indiquent qu’un mécanisme d’incitations tarifaires peut effectivement
améliorer la satisfaction des utilisateurs en déplaçant leur consommation des régions et des
heures les plus chargées à des lieux et instants moins congestionnés.

Pour conclure, nous présentons dans le Chapitre 8 certaines perspectives de ce travail. Nous
suggérons de développer des algorithmes de séparation et évaluation pour rendre efficace prati-
quement la méthode exposée dans le Chapitre 4. L’idée est d’éviter d’explorer toutes les cellules
d’un complexe polyédral. Ensuite, nous revenons au problème de congestion dans les réseaux
mobiles et proposons d’ajouter des contraintes de bornes sur les réductions afin de réduire les
dépenses de l’opérateur. Enfin, nous expliquons en quoi des modèles stochastiques pourraient
être étudiés afin de proposer des incitations en temps réel.

Dans l’Annexe A, nous présentons une autre méthode pour énumérer les faces d’un polyèdre
et la comparons à l’approche développée dans le Chapitre 5. L’Annexe B est consacrée à la
preuve d’un théorème donnant une borne supérieure sur le nombre d’appexes d’un arrangement
d’hypersurfaces tropicales. Enfin, nous mentionnons dan l’Annexe C quelques résultats à pro-
pos d’une variante du problème de congestion présenté dans le Chapitre 8 (cas des incitations
tarifaires bornées).
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CHAPTER 3
Preliminaries

In this chapter, we present different classical notions and results that we will use in the next
chapters.

First, we introduce bilevel programming and Stackelberg equilibria. We present classical
results of complexity and the standard methods to solve bilevel problems. Next, we recall the
notions of polyhedral complexes and subdivisions and mention some results about combinatorics
of polyhedra and subdivisions. In Section 3.3, we introduce tropical geometry and standard
notions relative to tropical polynomials. Finally, in Section 3.4, we recall the classical results
about a certain class of discrete convex functions.

3.1 Bilevel programming

Bilevel programming problems correspond to a class of optimization problems. This notion was
introduced by von Stackelberg in game theory [VS34], more precisely to explain duopolies with
assymetric information between the two players. Consider a game with two players X and Y .
We denote by X the set of possible strategies of X and by Y the set of possible strategies
of Y . We suppose that the two players have perfect information, but that they do not play
simultaneously.

One player, Y called the leader, decides one strategy y ∈ Y and announces it to the other
one. The other player (X in our case), called the follower, chooses his strategy in order to
maximize his utility. When the leader announces a strategy y, we assume that the strategies
x ∈ X of the follower have to satisfy a constraint of the form g(x, y) ≤ 0. His utility is of the
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form f(x, y). Hence, he chooses his optimal strategy x∗ in the set X ∗y defined by:

X ∗y := arg max
x∈X , g(x,y)≤0

f(x, y).

Similarly, when the response of the follower is x∗, we assume that the strategy of the leader
has to satisfy a constraint of the form G(x∗, y) ≤ 0. Hence, he determines his strategy y∗ ∈ Y
by solving the following problem:

“ min ”
y∈Y

F (x∗, y) s.t. G(x∗, y) ≤ 0, x∗ ∈ X ∗y

The latter expression is unambiguous when x∗ is uniquely determined from y. If not, the problem
of the leader is not well-defined. We explain further that two interpretations are possible (called
optimistic and pessimistic).

Such a problem is consequently called a bilevel programming problem, because it contains
two "levels" of optimization. The high-level problem corresponds to the optimization problem
solved by the leader. Since the leader Y plays first, he knows that when he chooses a strategy
y ∈ Y, the response x∗ of X belongs to X ∗y , that is the response x∗ of the follower is an optimal
solution of the optimization problem solved by the follower, called the low-level problem.

The bilevel problem is feasible if each player can always choose a strategy. This means that
for each strategy y ∈ Y announced by the leader, there exists a feasible strategy for the follower,
that is {x ∈ X , g(x, y) ≤ 0} 6= ∅. It also means that there exists a strategy y ∈ Y of the
leader such that, for each possible response x∗ of the follower, y belongs to the feasible set of
the high-level problem, that is G(x∗, y) ≤ 0. Hence, a bilevel problem is feasible if:

∀y ∈ Y, ∃x ∈ X , g(x, y) ≤ 0

∃y ∈ Y, ∀x∗ ∈ X ∗y , G(x∗, y) ≤ 0.

We recall that the high-level problem is not well-defined if the strategy of the follower x∗ is
not uniquely determined by the strategy y of the leader. In fact, the strategy of the follower
x∗ can be any value in X ∗y , and this choice is not controlled by the leader. However, if for each
y ∈ Y, the set X ∗y is reduced to a single point, then the leader knows precisely the response
of the follower to each strategy y ∈ Y, and can determine precisely his optimal strategy y∗ by
solving a well-posed optimization problem.

If X ∗y is not reduced to a single point, the leader can consider two cases. First, the leader
assumes that the follower chooses the best strategy for the leader, that is he takes

x∗ ∈ arg min
x∈X ∗y

{F (x, y) + χG(x,y)≤0(y)},

where for x ∈ X ∗y , χG(x,y)≤0(y) = 0 if G(x, y) ≤ 0 and χG(x,y)≤0(y) = +∞ otherwise. In
particular, the follower chooses always a feasible strategy for the leader. Hence, the leader can
determine his optimal strategy y∗ by solving an optimization problem, called the optimistic
bilevel problem:

min
y∈Y

F (x∗, y) s.t. G(x∗, y) ≤ 0

and x∗ ∈ arg minx∈X ∗y {F (x, y) +χG(x,y)≤0(y)}. The optimistic bilevel problem can be rewritten
as an optimization problem over both variables y and x∗. It is equivalent to:

min
y∈Y, x∗∈X

F (x∗, y) + χG(x∗,y)≤0(y) s.t. x∗ ∈ X ∗y . (3.1)
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Second, the leader assumes that the follower chooses the worst strategy for the leader (see
[WTKR13]), that is he takes

x∗ ∈ arg max
x∈X ∗y

{F (x, y) + χG(x,y)≤0(y)}.

In particular, the follower chooses always an unfeasible strategy for the leader if possible. The
leader can also determine his optimal strategy y∗ by solving an optimization problem, called the
pessimistic bilevel problem:

min
y∈Y

F (x∗, y) s.t. G(x∗, y) ≤ 0

and x∗ ∈ arg maxx∈X ∗y {F (x, y) + χG(x,y)≤0(y)}. The pessimistic bilevel is in fact a "min-max"
problem. It is equivalent to:

min
y∈Y

max
x∗∈X

F (x∗, y) + χG(x∗,y)≤0(y) s.t. x∗ ∈ X ∗y . (3.2)

The existence of a feasible optimistic and pessimistic solution is studied [Dem02, Ch.4].
Owing to the "min-max" formulation of a pessimistic bilevel problem, the existence of a pes-
simistic solution is not guaranteed, even both high-level and low-level functions are continuous
and defined on compact sets.

Example 3.1. Let y ∈ [−1, 1] be the decision variable of the leader. The low-level problem is
formulated as:

x∗ ∈ arg max
x∈[0,1]

xy.

The high-level problem is:
“ min ”
y∈[−1,1]

x∗y − y + x∗.

The response set X ∗y of the leader depends on y. We have:

X ∗y = {0} if y < 0, X ∗y = {1} if y > 0, X ∗y = [0, 1] if y = 0.

If the leader chooses y < 0, the high-level value is then equal to −y. If he chooses y > 0, the
high-level value is equal to 1. If he chooses y = 0, then the high-level function can take any
value between 0 and 1, depending on the choice of the follower.

Consequently, the optimistic bilevel problem can be formulated as infy∈[−1,1] Fopt(y), with
Fopt defined by:

Fopt(y) = −y for y < 0, Fopt(0) = 0 Fopt(y) = 1 for y > 0.

The optimistic value is then 0 and is attained in y = 0, x∗ = 0.
Moreover, the pessimistic bilevel problem can be formulated as infy∈[−1,1] Fpes(y), with Fpes

defined by:
Fpes(y) = −y for y < 0, Fpes(0) = 1 Fopt(y) = 1 for y > 0.

The pessimistic value is then 0, but is not attained. However, for every ε > 0, we have Fpes(−ε) =
ε. This means that an approximate pessimistic solution can be obtained.



36 Chapter 3. Preliminaries

Bilevel programming is a well-studied topic in optimization. Bard ([Bar13]) and Dempe
([Dem02]) devote books to bilevel programming, presenting the main theoretical aspects, algo-
rithms and applications. In [Dem03a], Dempe gives a large list of references on methods and
applications concerning bilevel optimization. Moreover, different surveys ([CMS07], [SMD17])
present also these aspects. It appears that bilevel programming problems are well-adapted to
model pricing problems. Labbé et al. ([LMS98]) and Brotcorne et al. ([BLMS01]) propose a
bilevel model for a taxation scheme, which is used for a toll-setting problem in a multicommod-
ity transportation network. Brotcorne et al. ([BLMS00]) present an application for a freight
tariff-setting problem. Larsson and Patriksson ([LP98]) present a bilevel model to limit the
traffic congestion. Bard et al. ([BPS00]) develop an application to energy pricing: they propose
a bilevel model for the minimization of tax credits a government allows to biofuel producers.
In telecommunications networks, Ma et al. ([MLH14]) consider a bilevel model for smart data
pricing in mobile networks, depending on the mobility of the users.

Bilevel programming problems model a large number of real applications. However, they are
generally hard to solve, even in the simple case of linear functions and constraints. Jeroslow
([Jer85]) presents a polynomial hierarchy for multi-level linear games. This is based on the
classical polynomial-time hierarchy (see [Sto76]) about the time complexity of decision problems.
Jeroslow applied these results in the case of two players, that is for optimistic bilevel programs.
He proves that to decide whether a rational number is the optimal value of a linear bilevel
problem in binary variables is ΣP

2 -hard, whereas the same problem for linear bilevel problems in
continuous variables is NP-hard. He also mentions that deciding whether the value of a linear
bilevel problem is less or equal to a certain number v is an NP-complete problem. The NP-
hardness of bilevel linear programs is also proved by Ben Ayed ([BAB90]) and Bard ([Bar91]).
Their proofs are simpler and do not use the polynomial hierarchy, but a reduction of classical
NP-hard problems.

Different classical approaches exist to develop algorithms for solving bilevel programs (see
[CMS07] and [SMD17] for surveys). The most classical one consists in replacing the low-level
problem by its associated Karush-Kuhn-Tucker (KKT) conditions (see [DZ12]). This only applies
when the KKT conditions are necessary and sufficient for the optimality of the low-level solution.
To simplify, we suppose that X = Rk, Y = Rn and g : (x, y) ∈ Rk × Rn 7→ g(x, y) ∈ Rp. We
assume that for each y ∈ Rn, the function x 7→ f(x, y) is concave, and that the function
x 7→ gj(x, y) is convex for each j ∈ [p]. We also assume that the Slater condition is satisfied,
that is for each y ∈ Rn, there exists x ∈ Rk such that gj(x, y) < 0 for every j ∈ [p]. Hence, for
fixed y, the low-level problem is equivalent to the following one:

max
x∈Rk

min
λ≥0

[
f(x, y)− λT g(x, y)

]
.

Consequently, a point x∗ is an optimal solution of the low-level problem (or equivalently x∗ ∈ X ∗y )
if and only if the KKT conditions are satisfied, that is there exists λ∗ ∈ Rp such that:

∂xf(x∗, y)−
p∑
j=1

(λ∗j )∂xgj(x
∗, y) = 0

∀j ∈ [p] , gj(x
∗, y) ≤ 0

λ∗ ≥ 0

∀j ∈ [p] , λjgj(x
∗, y) = 0.

This allows us to reformulate the optimistic bilevel program as a one-level optimization
problem in variables y, x∗ and λ∗, and the pessimistic bilevel problem as a "min-max" problem.
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However, the complementarity slackness conditions λjgj(x∗, y) = 0 are generally non-convex.
Some branch-and-bound algorithms can be used to treat this difficulty [CMS07, Section 3.3].

For a linear-linear bilevel problem (all the objective functions and constraints are linear),
combinatorial approaches exist ([MS05]). The bilevel problem is reformulated in a one-level
problem in mixed variables and can be solved with branch-and-bound algorithms.

3.2 Polyhedra, polyhedral complexes and subdivisions

Polyhedra and subdivisions Tropical geometry is related with polyhedral geometry. The dimen-
sion of a polyhedron ∆ of Rn is defined as the minimum of the dimensions of the subspaces of
Rn which contain ∆. A 0-dimensional polyhedron is a point, a 1-dimensional polyhedral is a
segment, a 2-dimensional polyhedron is a polygon, . . . . A polyhedron is full-dimensional if and
only if its volume is non-zero. The subpolyhedra of ∆ are the faces of ∆. A n− 1-dimensional
face of a polyhedron is called a facet, a 1-dimensional face an edge, and a 0-dimensional facet is
a vertex.

A subdivision of a polyhedron ∆ ∈ Rn is a collection S of polyhedra, called cells of the
subdivision, such that:

1. For all cells C1 and C2 ∈ S, C1 ⊂ C2 if and only if C1 is a face of C2.

2. For all cells C1, C2 ∈ S, then, either C1 ∩ C2 = ∅ or C1 ∩ C2 is a common face of C1 and C2.

3. The elements of S cover ∆, that is
⋃
C∈S C = ∆.

The notion of subdivision can be extended to convex sets (see[PRr04, Def.1]). Notice that the
intersection of two cells of a subdivision is either empty or defines another cell of the subdivision.
A subdivision containing only simplices is called a triangulation. A subdivision obtained as a
projection over the n first coordinates of the faces of a polyhedron of Rn+1 is called regular.
More details about triangulations and subdivisions can be found in [DLRS10].

Faces of a simplex and of a simplicial complex In this paragraph, we introduce some elements
about the combinatorics of simplices and simplicial complexes, as defined in [DLRS10], ch.2.6.
Let K be a n-dimensional simplicial complex. We denote by f(K) its f -vector, that is for all
i ∈ {−1, . . . , n}, fi(K) is the number of i-dimensional faces of K.

The h-vector of K is h(K) = (h0(K), . . . , hn+1(K)) with:

∀0 ≤ i ≤ n+ 1, hi(K) =
i∑

j=0

(−1)i−j
(
n+ 1− j
i− j

)
fj−1(K)

Then, we have:

∀0 ≤ i ≤ n+ 1, fj−1(K) =

j∑
i=0

(
n+ 1− i
j − i

)
hi(K)

We denote by ∂K the boundary of K. We next assume that K corresponds topologically to a
simplicial n-ball and that ∂K corresponds to a simplicial n−1-sphere. We can also define the f -
vector f(∂K), with fi(∂K) equal to the number of i-dimensional faces of ∂K for −1 ≤ i ≤ n−1,
and the h-vector h(∂K) as h(∂K) = (h0(∂K), . . . , hn(∂K)) with:

∀0 ≤ i ≤ n, hi(∂K) =

i∑
j=0

(−1)i−j
(
n− j
i− j

)
fj−1(∂K)
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The Euler characteristic of K, denoted by χ(K), is defined by:

χ(K) =

n∑
i=0

(−1)ifi(K).

Similarly, we define χ(∂K) =
∑n−1

i=0 (−1)ifi(∂K).

Lemma 3.2 ([DLRS10], Lemma 2.6.6). Let K be a n-ball of boundary ∂K. Then, χ(K) = 1
and χ(∂K) = 1 + (−1)n−1

Generally, bn+1
2 c relations can be written between the entries of the h-vector of K and of

∂K. Those relations, which are well-known for the h-vector of a simplicial sphere and called
Dehn-Sommerville relations, can be written for ∂K.

Lemma 3.3 ([DLRS10], Lemma 2.6.9, Dehn-Sommerville equations). Let ∂K be a (n − 1)-
sphere. Then, the h-vector of ∂K is symmetric, that is ∀0 ≤ i ≤ n, hi(∂K) = hn−i(∂K).

We can write relations other relations between the entries of the h-vector of a simplicial ball
K and the entries of the h-vector of its boundary.

Theorem 3.4 ([DLRS10], Th.2.6.10). Let K be a n-ball of boundary ∂K. Then, the h-vectors
of K and ∂K satisfy the following equalities:

∀0 ≤ i ≤ n, hi(∂K) =

i∑
j=0

[hj(K)− hn+1−j(K)]

3.3 Tropical geometry

In this section, we present some classical notions about tropical geometry. see [IMS09], [MS15]
and [PR00] for background.

Tropical polynomials We consider the max-plus semifield R ∪ {−∞} with the laws ⊕ and �
defined by:

a⊕ b = max(a, b) a� b = a+ b (3.3)

We denote by a�b = a× b the tropical exponentiation (for example a�2 = a⊗ a = a + a =
2×a). By analogy with the classical polynomial functions, we can define the tropical polynomial
functions on Rn by:

P (x) =

p⊕
i=1

ci � x
�ai1
1 � · · · � x�ainn = max

1≤i≤p

[
ci + 〈x, ai〉

]
with ci ∈ R and ai ∈ Nn for 1 ≤ i ≤ p. Each function x 7→ ci + 〈x, ai〉 is called a tropical
monomial, the vector ai is the vector of exponents of the tropical monomial, the real ci is the
coefficient, whereas the quantity

∑n
j=1 a

i
j is called the degree of the monomial. A monomial

x 7→ ci + 〈ai, x〉 is said essential for P if there exists x ∈ Rn such that:

ci + 〈x, ai〉 > max
j∈[p], j 6=i

[
cj + 〈x, aj〉

]
.
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Consequently, if a monomial is not essential, it can be removed in the definition of function P . In
the following, we assume that all the monomials of P are essential. A monomial x 7→ ci + 〈ai, x〉
is said maximal for P in x if P (x) = x 7→ ci + 〈ai, x〉. The tropical polynomial functions are
precisely the convex piecewise linear functions with integer slopes.

We can extend the notion of tropical polynomial to the case of negative exponents, meaning
that ai ∈ Zn instead of ai ∈ Nn; which is the tropical analogue to classical Laurent polynomials.
The notion of tropical polynomial can also be extended to real exponents, that is ai ∈ Rn, which
is the tropical analogue to posynomials. In the follwing, we use the term "tropical polynomial"
to refer to tropical posynomials.

The graph gph(P ) of P is defined by:

gph(P ) = {(x, xn+1) ∈ Rn × R | xn+1 = P (x)}

It defines a n-dimensional subset of Rn+1. Let us denote by epi(P ) the epigraph of P , that is
epi(P ) = {(x, xn+1) ∈ Rn×R | xn+1 ≥ P (x)}. By definition of P , we have epi(P ) = {(x, xn+1) ∈
Rn × R | ∀1 ≤ i ≤ p, xn+1 ≥ ci + 〈x, ai〉}. Then, the epigraph of a tropical polynomial is a
polyhedron.

Tropical hypersurfaces We define the tropical hypersurface T (P ) associated to the tropical poly-
nomial P as the set of points where P is non-differentiable. It corresponds to the set of points
in which the maximum is "attained" at least twice (see Figure 3.1).

x1

x2

Figure 3.1: Tropical hypersurface associated to the tropical polynomial max(x1, x2, 0). It cor-
responds to the union of three rays: {x ∈ R2 | x1 = x2 ≥ 0}, {x ∈ R2 | x1 = 0 ≥ x2} and
{x ∈ R2 | x2 = 0 ≥ x1}.

Hence, a tropical hypersurface T (P ) consists in the union of (n− 1)-dimensional polyhedra
in Rn.

Moreover, the tropical hypersurface T (P ) defines a subdivision of Rn. This subdivision is
regular, because it is defined as the projections of the faces of epi(P ) over the n first entries.

For every face F of epi(P ), we define the polyhedron C(F ) by:

C(F ) = {x ∈ Rn | (x, P (x)) ∈ F}.

Hence, for every face F of epi(Q), C(F ) is the projection of F over the n first entries. We define
S as:

S = {C(F ) | F face of epi(P )}.
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Proposition 3.5. S is a subdivision of Rn.

Proof. Let x ∈ Rn. Then, (x, P (x)) belongs to a face F of epi(P ). So, x ∈ C(F ). Consequently,⋃
C∈S C = Rn.
Let C1, C2 be two elements of S. There exists two faces F1, F2 of epi(P ) such that C1 = C(F1)

and C2 = C(F2). We have C1 ⊂ C2 if and only if F1 ⊂ F2, meaning that F1 is a face of F2, which
is equivalent to C1 is a face of C2. Finally, if C1 ∩ C2 6= ∅, then C1 ∩ C2 = C(F1 ∩ F2) ∈ S.

Let A ⊂ [p] := {1 . . . p} be a non-empty subset of [p]. We define the face FA of epi(P ) by:

∀i ∈ A, xn+1 = ci + 〈x, ai〉
∀i /∈ A, xn+1 ≥ ci + 〈x, ai〉 ≥ cj + 〈x, aj〉.

We define the polyhedron CA = {x ∈ Rn | (x, P (x)) ∈ FA. Then, CA is defined by the following
equalities and inequalities:

∀i, j ∈ A, ci + 〈x, ai〉 = cj + 〈x, aj〉
∀i ∈ A,∀j /∈ A, ci + 〈x, ai〉 ≥ cj + 〈x, aj〉.

This means that CA is the set of points x ∈ Rn for which each monomial x 7→ ci + 〈x, ai〉 for
i ∈ A is maximal for P in x. Notice that {FA | A ∈ [p]\{∅}} is exactly the set of faces of epi(P ),
since every face F of epi(P ) can be written F = FA for some non-empty subset A ∈ [p]. Hence,
S =

⋃
A∈[p]\{∅} CA. This means that the map A ∈ [p] \ {∅} 7→ CA ∈ S is surjective. However,

this map is not injective. For instance, let P : x ∈ R2 7→ P (x) = max(x1,−x1, x2,−x2). The
set of x ∈ R2 in which the monomials x1, −x1 and x2 are maximal is the polyhedron defined by
x1 = −x1 = x2 ≥ −x2. It corresponds to the singleton {(0, 0)}, and the monomial −x2 is also
maximal at this point. For each element C ∈ S, we can define the subset A(C) of the monomials
which are maximal for P in every x ∈ C. Hence, we have:

A(C) =
⋃
{A ∈ [p] \ {∅} | C = CA}.

Proposition 3.6. Let x ∈ Rn and C a cell of S such that x ∈ C and C 6= {x}. If x ∈ ri(C), then
A(C) is exactly the set of maximal monomials for P in x, where ri denotes the relative interior.

Proof. Let x ∈ ri(C). Then:

∀i ∈ A(C), P (x) = ci + 〈x, ai〉,
∀i /∈ A(C), P (x) ≥ ci + 〈x, ai〉.

Let i ∈ A(C). Assume that there exists j /∈ A(C) such that P (x) = cj + 〈x, aj〉. Because
j /∈ A(C), the function y 7→ cj − ci + 〈x, aj − ai〉 is not constant over C. Because x ∈ ri(C), there
exists x+ and x− in ri(C) such that:

ci + 〈x+, ai〉 > cj + 〈x+, aj〉,
ci + 〈x−, ai〉 < cj + 〈x−, aj〉, .

Consequently, x− /∈ C.
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A point x such that {x} is a 0-dimensional cell of the subdivision S is called an apex. Note
that the full-dimensional cells are the set of points in which one and only one tropical monomial
is maximal, whereas the other cells are included in T (P ). For example, the tropical line of
Figure 3.1 defines a polyhedral complex with three maximal cells (the polyhedra {x ∈ R2 | x1 ≥
x2, x1 ≥ 0}, {x ∈ R2 | x2 ≥ x1, x2 ≥ 0} and {x ∈ R2 | 0 ≥ x1, 0 ≥ x2}), three 1-dimensional
cells (the three rays defining the hypersurface), and one 0-dimensional cell (the point {(0, 0)}
corresponding to the case x1 = x2 = 0 in which the three monomials are maximal).

Newton polytope The Newton polytope of the polynomial P is the polyhedron New(P ) ⊂ Rn
defined as:

New(P ) = Conv(ai, 1 ≤ i ≤ p),
that is the convex hull of the p degree vectors ai (see Figure 3.2).

(0, 1)

(1, 0)(0, 0)

Figure 3.2: Newton polytope associated to the tropical polynomial max(x1, x2, 0). The vertices
of this polytope are in one-to-one correspondence with the maximal cells of the subdivision
defined by the tropical line.

The following construction, which takes the coefficients ci into account, and not only the
exponents, is also standard. The extended Newton polytope New(P ) of the polynomial P is the
polyhedron defined by:

New(P ) = Conv((ai, r) ∈ Zn × R, r ≤ ci)

Notice that the polyhedron New(P ) is included in Rn+1 and is not a polytope, because it is
unbounded. Its vertices are included in the p points (ai, ci) ∈ Zn × R. We observe that the
union of bounded faces of New(P ) corresponds to the set:

{(a, c(a)) | a ∈ New(P )},

where c(a) is defined by:

c = max
λ1,...,λp≥0∑p
i=1 λi=1∑p
i=1 λia

i=a

p∑
i=1

λici}.

The union of bounded faces of New(P ) corresponds to the graph of the concave function c, and
New(P ) is the hypograph of c. For every bounded face F ′ of New(P ), we define the polytope
C′(F ′) by:

C′(F ′) = {a ∈ New(P ) | (a, c(a)) ∈ F ′}.
Hence, for every bounded face F ′ of New(P ), C′(F ′) is the projection of F ′ over the n first
entries. We define S ′ as:

S ′ = {C′(F ′) | F ′ bounded face of New(P )}.
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Proposition 3.7. S ′ is a subdivision of New(P ).

Proof. Similar as Proposition 3.5.

Relation between both subdivisions In fact, there exists a one-to-one correspondence between
both subdivisions S and S ′. For each C ∈ S, we define φ(C) by:

φ(C) = Conv(ai | i ∈ A(C)) = Conv(A(C)).

Theorem 3.8 ([PR00], Theorem 1). 1. The map φ is a bijection between the subdivisions S
and S ′.

2. If C is a k-dimensional cell of S, then φ(C) is a n − k-dimensional polyhedron of the
subdivision S ′.

3. For two cells C1 and C2 ∈ S, C1 is a face of C2 if and only if φ(C2) is a face of φ(C1).

The one-to-one correspondence between S and S ′ is illustrated on Figure 3.3.

(0, 1)

(1, 0)(0, 0)

Figure 3.3: One-to-one correspondence between the tropical hypersurface assoicated to the poly-
nomial max(x1, x2, 0) (in black) and the Newton polytope of this polynomial (in blue). The ver-
tices of this polytope are in one-to-one correspondence with the maximal cells of the subdivision
defined by the tropical line.

For every C′ ∈ S ′, the polyhedron φ−1(C′) is:

φ−1(C′) = {x ∈ Rn | P (x) = ci + 〈x, ai〉 for every ai vertex of C′}.

We formulate some properties verified by S and S ′.

Proposition 3.9. Let C1, C2 be two cells of S, and C′1, C′2 be two cells of S ′.

1. If C1 ⊂ C2, then φ(C2) ⊂ φ(C1).

2. If C′1 ⊂ C′2, then φ−1(C′2) ⊂ φ−1(C′1).

3. φ(C1 ∩ C2) = Conv(φ(C1) ∪ φ(C2)).

Proof. The two first statements are direct consequences of Theorem 3.8 because C1 ⊂ C2 means
that C1 is a face of C2, and C′1 ⊂ C′2 means that C′1 is a face of C′2. C1 ∩ C2 corresponds to the
points x ∈ Rn for which the monomials ci + 〈x, ai〉, i ∈ A(C1) ∪ A(C2) are maximal. Hence:

φ(C1 ∩ C2) = Conv(ai | i ∈ A(C1) ∪ A(C2)) = Conv(φ(C1) ∪ φ(C2)).



3.3. Tropical geometry 43

For a point x ∈ Rn, we define the minimal cell of x as the smallest cell of S containing x,
that is Cx =

⋂
{C ∈ S | x ∈ C}. According to Proposition 3.5, Cx is still a cell of S and a face of

all cells containing x. Moreover, φ(Cx) =
⋃
{C′ ∈ S ′ | x ∈ φ−1(C′)}.

Proposition 3.10. Let x be a point of Rn and C a cell of S such that x ∈ C and C /∈ {x}. Then
C = Cx if and only if x ∈ ri(C), where ri denotes the relative interior.

Proof. Take C ∈ S and x ∈ C. If x /∈ ri(C), then there exists a face F of C such that x ∈ F .
According to Proposition 3.5, F is still a cell of S and Cx ⊂ F ( C. Conversely, if Cx 6= C, then
Cx is a face of C according to Proposition 3.5. Hence, x belongs to a face of C, and x /∈ ri(C).

Proposition 3.11. Let x ∈ Rn, the set of maximal monomials for P in x is exactly A(Cx).

Proof. Let x ∈ Rn. If Cx = {x}, then ACx is the set of monomials which are maximal for every
element of Cx, that is the set of maximal monomials in x. If not, x ∈ ri(Cx) by Proposition 3.10.
We conclude by Proposition 3.6.

For a point a ∈ New(P ), we can also define the minimal cell of a as the smallest cell C′a in
S ′ containing a, that is C′a =

⋂
{C′ ∈ S ′ | a ∈ C′}.

Lemma 3.12. Consider x ∈ Rn and a ∈ New(P ). Let Cx be the minimal cell of x in S, and C′a
be the minimal cell of a in S ′. Then a ∈ φ(Cx) if and only if x ∈ φ−1(C′a).

Proof. Suppose that a ∈ φ(Cx). By definition of C′a, C′a ⊂ φ(Cx). By application of Proposi-
tion 3.9, we have Cx ⊂ φ−1(C′a), and then x ∈ φ−1(C′a). The converse proof is the same by
application of Proposition 3.9.

Arrangement of tropical hypersurfaces and mixed subdivisions An arrangement of tropical hyper-
surfaces is a collection of tropical hypersurfaces. Consider k tropical polynomials P1, . . . , Pk
and their associated tropical hypersurfaces T (P1), . . . , T (Pk). The arrangement of these tropi-
cal hypersurfaces is the tropical hypersurface associated to the product of tropical polynomials,
that is T (P1) ∪ · · · ∪ T (Pk) = T (P1 � · · · � Pk). The Newton polytope New(P1 � · · · � Pk)
corresponds to the Minkowski sum of the Newton polytopes of each polynomial New(Pi), that
is New(P1 � · · · � Pk) = New(P1) + · · ·+ New(Pk).

Let ∆1, . . . ,∆k be k polyhedra. A subdivision S of
∑k

i=1 ∆i is called mixed if there exists for
every i ∈ [k] a subdivision Si of ∆i such that the cells of S are the Minkowski sum of cells of Si.
A property of arrangements of tropical hypersurfaces is that the subdivision of New(P1�· · ·�Pk)
which is dual to the tropical hypersurface T (P1 � · · · � Pk) is mixed.

Cayley trick to study mixed subdivisions The Cayley trick is a classical algebraic geometry result.
The polyhedral version of this trick was introduced by Sturmfels [Stu94]. Consider k polytopes
∆1, . . . ,∆k ⊂ Rn, and let us denote by (ei)1≤i≤k the canonical basis of Rk. Let us build k
polytopes ∆i × {ei} ⊂ Rn × Rk for i ∈ [k]. The vector ei can be considered as a label of each
polytope. The Cayley polytope C(∆1, . . . ,∆k) is defined as the convex hull of the k polytopes
∆i×{ei} for i ∈ [k]. The Cayley polytope is related with the mixed subdivisions of the Minkowski
sum ∆1 + · · ·+ ∆k according to the following result, known as Cayley trick:

Theorem 3.13 (Cayley trick [Stu94] [HRS00]). There exists a bijection between the set of
regular subdivisions of the Cayley polytope C(∆1, . . . ,∆k) and the set of mixed subdivisions of
the Minkowski sum ∆1 + · · ·+ ∆k.
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Mixed volumes and BKK theorem Consider again k tropical polynomials P1, . . . , Pk and the
associated subdvision of the Newton polytope New(P1 � · · · � Pk). According to Theorem 3.8,
the full-dimensional polyhedra of this subdivision correspond to the vertices of the tropical
hypersurface associated to P1� · · · �Pk. These vertices correspond to the apices of the tropical
hypersurfaces T (Pi) or to intersection points of the different hypersurfaces. The number of
intersection points between the different hypersurfaces is related to the notion of mixed volume.

Consider k polyhedra ∆1, . . . ,∆k in Rn and k nonnegative real numbers t1, . . . , tk. The
volume of the polyhedron t1∆1 + · · ·+ tk∆k is a polynomial in the different variable t1, . . . , tk.
We have:

Vol(t1∆1 + · · ·+ tk∆k) =
∑

(i1,...,in)∈[k]n

ti1 . . . tinV(∆i1 , . . . ,∆in)

Each coefficient V(∆i1 , . . . ,∆in) is called the mixed volume of the n polyhedra ∆i1 , . . . ,∆in .
This coefficient is non-negative and satisfies the Alexandrov-Fenchel inequality:

V(∆i1 ,∆i2 ,∆i3 . . . ,∆in) ≥
√

V(∆i1 ,∆i1 ,∆i3 . . . ,∆in)V(∆i2 ,∆i2 ,∆i3 . . . ,∆in)

We shall use the following lemma, which can be deduced from the latter inequality:

Lemma 3.14. The mixed volume V(∆i1 , . . . ,∆in) satisfies:

V(∆i1 , . . . ,∆in) ≥

 n∏
j=1

Vol(∆ij )

1/n

.

Proof. More generally, we prove by induction over p the following inequality:

∀1 ≤ p ≤ n, V(∆i1 , . . . ,∆in) ≥

 p∏
j=1

V(∆ij , . . . ,∆ij ,∆ip+1 , . . . ,∆in)

1/p

.

The case p = 1 is obvious, whereas the case p = 2 corresponds to the classical Alexandrov-
Fenchel inequality. Suppose the result holds for p ∈ [n]. Let j ∈ [p]. For 0 ≤ k ≤ p + 1, we
define Wk(∆ij ) by:

Wk(∆ij ) = V(∆ij , . . . ,∆ij︸ ︷︷ ︸
p+1−k

,∆ip+1 , . . . ,∆ip+1︸ ︷︷ ︸
k

,∆ip+2 , . . . ,∆in).

The induction hypothesis can be rewritten as V(∆i1 , . . . ,∆in) ≥
(∏p

j=1W1(∆ij )
)1/p

. By the
Alexandrov-Fenchel inequality, we have for 1 ≤ k ≤ p the inequality

Wk(∆ij )
2 ≥Wk−1(∆ij

)Wk+1(∆ij ) ,

showing that the sequence
(

Wk(∆ij
)

Wk−1(∆ij
)

)
is nonincreasing. Then:

(
W1(∆ij )

W0(∆ij )

)p+1

≥
p+1∏
k=1

Wk(∆ij )

Wk−1(∆ij )
=
Wp+1(∆ij )

W0(∆ij )
,
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that is W1(∆ij )
p+1 ≥W0(∆ij )

pWp+1(∆ij ). Notice that

Wp+1(∆ij ) = V(∆ip+1 , . . . ,∆ip+1 , . . . ,∆in) := W0(∆ip+1)

does not depend on j. Consequently:

V(∆i1 , . . . ,∆in) ≥

 p∏
j=1

W1(∆ij )

1/p

≥

p+1∏
j=1

W0(∆ij )
p
p+1

1/p

=

p+1∏
j=1

W0(∆ij )

1/p+1

,

which proves the result.

Corollary 3.15. Let ∆i1 , . . . ,∆in be n full-dimensional polytopes. Then V(∆i1 , . . . ,∆in) is
strictly positive.

Proof. If ∆i1 , . . . ,∆in are full-dimensional, then for every j ∈ [n], Vol(∆ij ) > 0. Then, by
Lemma 3.14,

V(∆i1 , . . . ,∆in) ≥

 n∏
j=1

Vol(∆ij )

1/n

> 0.

Bernstein ([Ber75]) established a relation between the zeros of Laurent polynomials, that
is between the intersection of the hypersurfaces defined by these polynomials, and the mixed
volume of the Newton polytopes associated to these polynomials. This result known as Bern-
stein–Khovanskii–Kushnirenko theorem was adapted to tropical polynomials by Sturmfels (see
[Stu02], Section 9.1).

Theorem 3.16 (BKK,[Ber75], [Stu02]). Let P1, . . . , Pn be n tropical Laurent polynomials in Rn
and T (P1), . . . , T (Pn) the associated tropical hypersurfaces. The number of intersection points
of the n tropical hypersurfaces in general position is n!V(New(P1), . . . ,New(Pn)).

A corollary of this result is the Bézout theorem for the tropical analogue of classical polyno-
mials.

Corollary 3.17 (Tropical Analogue of Bézout Theorem,[Stu02]). Let P1, . . . , Pn be n tropical
polynomials (with nonnegative integer exponents) in Rn of degrees respectively equal to d1, . . . , dn,
and T (P1), . . . , T (Pn) the associated tropical hypersurfaces. If T (P1), . . . , T (Pn) are in general
position, then the number of intersection points of the n tropical hypersurfaces is bounded by the
product of degrees d1 . . . dn.

This result is an application of Theorem 3.16. Each polynomial Pi has a degree equal to
di, and nonnegative exponents; this means that its Newton polynomial New(Pi) is included in
di∆, where ∆ denotes the classical simplex of Rn : ∆ = {x ∈ (R+)n |

∑n
i=1 xi ≤ 1}. We have

V(∆, . . . ,∆) = Vol(∆) = 1
n! . Consequently:

n!V(New(P1), . . . ,New(Pn)) ≤ n!V(d1∆, . . . , dn∆) = n!d1 . . . dnV(∆, . . . ,∆) = d1 . . . dn.
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3.4 Discrete convexity

In this section, we recall some elements of discrete convexity. Discrete convexity aims to define
some analogues of classical properties of convex sets or convex functions to discrete sets or
functions defined over Zn. This is related to the notions of matroids and submodularity. The role
of matroids and subdmodularity in discrete optimization was explained by Edmonds [Edm70].
Different works state then a relation between submodularity, matroids and a discrete analogue
to the notion of convexity (see the introduction of Murota [Mur03], ch.1.1).

In the 1990s, Murota defines some classes of discrete sets and discrete functions with "good"
properties of convexity. We focus here on a special one, called M -convex functions, and recall
the elementary properties given and proved by Murota, as in his book [Mur03]. A more general
theory of discrete convexity was further presented by Danilov and Koshevoy [DK04]. We also
recall in this section the notion of laminar sets and laminar functions as exposed in [DK04].

Here, ei denotes a vector of Zn with the i-th coordinate equal to 1 and the other ones equal
to 0. We denote by χA the convex characteristic function of a set A, that is χA(x) = 0 if x ∈ A
and χA(x) = +∞ otherwise.

M -convex functions We introduce first the class of M -convex functions and M -convex sets.

Definition 3.18. Let f : Zn → R. The domain of the function f , denoted by dom f is:

dom f = {x ∈ Zn | −∞ < f(x) < +∞}.

Definition 3.19. A function f : Zn 7→ R is M -convex if for all x, y ∈ dom f and for all i such
that xi > yi, there exists j such that xj < yj verifiying the inequality:

f(x) + f(y) ≥ f(x− ei + ej) + f(y + ei − ej)

The most important property of M -convex functions is that local optimality and global
optimality in sense that:

Theorem 3.20 ([Mur03], th. 6.26). Consider f a M -convex function and x ∈ dom f . Then:

∀y ∈ dom f, f(x) ≤ f(y)⇔ ∀i, j, f(x) ≤ f(x− ei + ej)

This theorem leads to write a greedy algorithm to minimize a M -convex function (see
[Mur03], Section.10.1).

Algorithm 1 Murota’s algorithm to minimize a M -convex function f .

1. Find x ∈ dom f ;

2. Find i, j ∈ arg mink,l∈[n] f(x− ek + el);

3. If f(x− ei + ej) ≥ f(x) then stop (x is a global minimizer of g);

4. Else x := x− ei + ej and go back to Step 2;

By adding a priority rule in Step 2 of Algorithm 1 in the case where arg mink,l∈[n] f(x−ek+el)
is not reduced to a single point, a global minimizer of f is obtained by Algorithm 1in pseudo-
polynomial time.
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Proposition 3.21 ([Mur03], Prop.10.2). Assume that dom f is bounded. Let F be the number
of arithmetic operations needed to evaluate f and K1 = max(||x− y||1 | x, y ∈ dom f). Then, if
a vector in dom f is given, Algorithm 1 finds a global minimizer of f in O(Fn2K1) time.

However, the minimization of a M -convex function can be achieved in polynomial time.

Proposition 3.22 ([Mur03], Prop.10.4). Assume that dom f is bounded. Let F be the number
of arithmetic operations needed to evaluate f and K∞ = max(||x− y||∞ | x, y ∈ dom f). Then,
if a vector in dom f is given, a global minimizer of f can be found in O(Fn3 log2(K∞/n)) time.

M -convex sets and generalized polymatroids

Definition 3.23. A set A ⊂ Zn is said to be M -convex if χA is a M -convex function, that is
for all x, y ∈ A and for all i with xi > yi, there exists j with xj < yj such that x− ei + ej ∈ A
and y + ei − ej ∈ A.

One of the consequences of this definition is the following property: consider A a M -convex
set, there exists r ∈ Z such that A ⊂ {x ∈ Zn|

∑n
i=1 xi = r}. Thanks to this property, we can

define another class of discrete convex sets:

Definition 3.24. A set A ⊂ Zn is said to be M \-convex if there exists r ∈ Z such that the set
B = {(x, r −

∑n
i=1 xi)|x ∈ A} ⊂ Zn+1 is M -convex.

The notion ofM \-convex sets is directly connected to the notion of generalized polymatroids.
Consider I a subset of [n]. We introduce the notation x(I) :=

∑
i∈I xi.

Definition 3.25 ([Mur03], Section 4.7, eq. (4.36), (4.37)). A polytope P ⊂ Rn is said to be a
generalized polymatroid (or g-polymatroid) if it can be written as :

P = {x ∈ Rn | ∀I ⊂ [n] , a(I) ≤ x(I) ≤ b(I)}

where:

• a : P([n])→ R ∪ {−∞} is supermodular,

• b : P([n])→ R ∪ {+∞} is submodular,

• ∀I, J ⊂ [n] , b(I)− b(I \ J) ≥ a(J)− a(J \ I).

The M \-convex sets correspond to the integer points of the integer generalized polymatroids
([Mur03], Section 4.7.).

Different properties about M -convex and M \-convex sets can be found in [Mur03], ch.4. We
mention the following one.

Proposition 3.26 ([Mur03],th.4.23.). Let (Ai)1≤i≤k be a family of M -convex sets (resp. M \-
convex sets) of Zn. Then,

∑k
i=1Ai is M -convex (resp. M \-convex).

Finally, we introduce the notion of M \ function by analogy with the notion of M \-convex
set.

Definition 3.27. A function f : Zn 7→ R is M \-convex if ∀x, y ∈ dom f and for all i such that
xi > yi, either:

f(x) + f(y) ≥ f(x− ei) + f(y + ei)

or there exists j such that xj < yj verifiying the inequality:

f(x) + f(y) ≥ f(x− ei + ej) + f(y + ei − ej)
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This definition is inherited from the definition of a M -convex function. In fact, let f be a
M -convex function defined over dom f ⊂ Zn+1. The domain of f is a M -convex set. Then,
{(x1, . . . , xn) | x ∈ dom f} is a M \-convex set of Zn. Consider r ∈ Z such that dom f ⊂
{x ∈ Zn+1 |

∑n+1
i=1 xi = r}. Let us define the function fr : Zn 7→ R by fr(x1, . . . , xn) =

f(x1, . . . , xn, r−
∑n

i=1 xi). The property for f to beM -convex gives exactly for fr the condition
stated in Definition 3.27.

M2-convex and M \
2-convex functions The class of M -convex functions is not stable under ad-

dition but under infimal convolution. However, the sum of two M -convex functions have some
interesting properties.

Definition 3.28. A function f : Zn → R is said M2-convex if there exists two M -convex
functions f1 and f2 such that f = f1 + f2.

A function f : Zn → R is said M \
2-convex if there exists two M \-convex functions f1 and f2

such that f = f1 + f2.

Global optimality is still equivalent to local optimality in the following sense:

Theorem 3.29 ([Mur03], th. 8.33). Consider f1, f2 two M -convex functions and a point x ∈
dom f1 ∩ dom f2. We have:

∀y ∈ Zn, f1(x) + f2(x) ≤ f1(y) + f2(y)

if and only if
p∑

k=1

[f1(x+ eik − ejk)− f1(x)] +

p∑
k=1

[
f2(x+ eik+1

− ejk)− f2(x)
]
≥ 0

for any i1, . . . , ip, j1, . . . , jp ⊂ [n] with {i1, . . . , ip} ∩ {j1, . . . , jp} = ∅, where ip+1 = i1 by conven-
tion.

This theorem comes from the interpretation of the minimization of the sum of two M -
convex functions as a M -convex submodular flow problem (see [Mur03, Note 9.31]). Therefore,
it leads to a polynomial algorithm for the minimization of the sum of two M -convex functions.
Nevertheless, it is not applicable for the sum of more or equal than three M -convex functions.

Laminar functions

Definition 3.30. A family (A1, ..., Ak) of subsets of [n] is said to be laminar if:

∀i, j ∈ [k] , Ai ⊂ Aj or Aj ⊂ Ai or Ai ∩Aj = ∅

A function f is laminar if it is of the form:

∀x ∈ Zn, f(x) =
k∑
i=1

fi

∑
j∈Ai

xj


If all the functions fi are convex, the function f is laminar convex.
Example: Consider n = 4. The family ({1, 2}, {3}, {1, 2, 4}) is laminar because {1, 2}∪{3} =

∅, {3} ∪ {1, 2, 4} = ∅ and {1, 2} ⊂ {1, 2, 4}. For all convex functions f1, f2, f3, the function f
defined on Z4 by f(x) = f1(x1 + x2) + f2(x3) + f3(x1 + x2 + x4) is laminar convex.

The notion of laminarity is interesting owing to the following theorem:
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Theorem 3.31 ([Mur03], note 6.11). A laminar convex function is M \-convex.

Note that the family ({i}ni=1) is laminar, so a separable convex function is laminar convex.

Definition 3.32. A function f is called quasi-separable if it can be written:

∀x ∈ Zn, f(x) = f0

(
n∑
i=1

xi

)
+

n∑
i=1

fi(xi)

A quasi-separable function is a laminar function based on the family (A0, . . . , An) where
A0 = {1, . . . , n} and for all 1 ≤ i ≤ n, Ai = {i}. A separable function is a particular case of a
quasi-separable function with f0 = 0.

In order to study the sum of two discrete convex functions, the notion of quasi-separability
is interesting because of the following theorem:

Proposition 3.33. Consider f : Zn → R a quasi-separable convex function and g : Zn → R a
laminar convex function. Then, f + g is laminar convex.

Proof. If f is quasi-separable convex and g laminar convex, then there exist a family (B1, . . . , Bp)
of subsets of [n] and real univariate convex functions f0, . . . , fn and g1, . . . , gp such that ∀x ∈ Zn,
f(x) = f0 (

∑n
i=1 xi)+

∑n
i=1 fi(xi) and g(x) =

∑p
k=1 gk

(∑
l∈Bk xl

)
. Let A = (A0, . . . , An) be the

family defined by A0 = {1, . . . , n} and for every i ∈ [n], Ai = {i}. Consequently, f+g is laminar
if the concatenation of A and B is laminar (with A0 = {1, . . . , n} and for all 1 ≤ i ≤ n, Ai = {i}).
For all 1 ≤ l ≤ p, Bl is a subset of [n] = A0, then Bl ⊂ A0. For all 1 ≤ i ≤ n, we have either
i ∈ Bl and then Ai ⊂ Bl, or i /∈ Bl and then Ai ∩Bl = ∅. Hence, the concatenation of A and B
is a laminar family.

Theorem 3.34. Consider f : Zn → R a quasi-separable convex function and g : Zn → R a
M \-convex function. Then, f + g is M \-convex.

Proof. If f is quasi-separable, then there exists real univariate functions f0, . . . , fn such that
∀x ∈ Zn, f(x) = f0 (

∑n
i=1 xi) +

∑n
i=1 fi(xi). Then, for all x ∈ Zn and all indices i, j, we have:

f(x− ei) = f(x) + fi(xi − 1)− fi(xi) + f0(

n∑
k=1

xk − 1)− f0(

n∑
k=1

xk)

f(x+ ei) = f(x) + fi(xi + 1)− fi(xi) + f0(

n∑
k=1

xk + 1)− f0(

n∑
k=1

xk)

f(x− ei + ej) = f(x) + fi(xi − 1)− fi(xi) + fj(xj + 1)− fj(xj)

Consider x, y ∈ Zn and an index i such that xi > yi. If g(x) + g(y) ≥ g(x− ei) + g(y+ ei), then:

f(x− ei) + g(x− ei) + f(y + ei) + g(y + ei) ≤ [f(x) + g(x) + f(y) + g(y)]

+ [fi(xi − 1) + fi(yi + 1)− fi(xi)− fi(yi)]

+
[
f0(

n∑
k=1

xk − 1) + f0(
n∑
k=1

yk + 1)

− f0(
n∑
k=1

xk) + f0(
n∑
k=1

yk)
]

≤ f(x) + g(x) + f(y) + g(y)
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because fi and f0 are convex. Otherwise, there exists j such that xj < yj and g(x) + g(y) ≥
g(x− ei + ej) + g(y + ei − ej). Then:

f(x− ei + ej) + g(x− ei + ej) + f(y + ei − ej) + g(y + ei − ej)
≤ [f(x) + g(x) + f(y) + g(y)]

+ [fi(xi − 1) + fi(yi + 1)− fi(xi)− fi(yi)]
+ [fj(xj + 1) + fj(yj − 1)− fj(xj)− fj(yj)]
≤ f(x) + g(x) + f(y) + g(y)

because fi and fj are convex.

In order to solve problems of minimization of sums of M -convex or M \-convex functions,
quasi-separability is a very important property.



Part I

Tropical approach to bilevel
programming





CHAPTER 4
Tropical representation of bilevel

programs

In this Chapter, we study a specific class of bilevel problems, modeling pricing problems in
economics, in which the low-level problem can be interpreted as a tropical polynomial. We are
interested in the case in which the low-level problem has a large dimension, whereas the dimen-
sion of the high-level one can be small. Hence, classical methods for solving bilevel problems
relying on the Karush-Kuhn-Tucker conditions lead to large-scale non-convex optimization. We
use the specific structure of this class of bilevel problems to propose a method to solve them. We
find the solution of the bilevel problem by taking the minimal value of optimization subproblems.
Each subproblem is associated to a different cell of the polyhedral complex associated to the
tropical hypersurface defined by the low-level problem. We also prove that this method leads to
a polynomial algorithm when the dimension of the high-level problem is fixed. To conclude, we
generalize the results to other classes of bilevel problems.

4.1 A special class of bilevel problems

Bilevel programming refers to the study of optimization problems in which the constraint set
contains another optimization problem (see Chapter 3, Section 3.1 for background). Bilevel
programming problems are particularly well adapted to model pricing problems in economics.

In this chapter, we will study bilevel programming problems of the form:
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Problem 4.1 (Continuous problem).

“ min ”
y∈Rn

f(CTx∗, y) (4.1)

where the follower chooses x∗ as a solution of:

max
x∈P

〈ρ+ Cy, x〉 (4.2)

where P is a polytope of Rk, C ∈Mk,n(Z) and ρ ∈ Rk,

and:

Problem 4.2 (Discrete problem).

“ min ”
y∈Rn

f(CTx∗, y) (4.3)

where the follower chooses x∗ as a solution of:

max
x∈I(P)

〈ρ+ Cy, x〉 (4.4)

where I(P) is the set of integer points of P, that is I(P) = P ∩ Zk.

We assume for the latter problem that P satisfies the following assumption.

Assumption A. The polytope P considered in Problem 4.2 is an integer polytope, that is the
extreme points of P are integer.

We do not assume anything concerning the function f for the moment. In particular, f can
take the +∞ value, encoding some constraints of the high-level problem.

This class of bilevel programming problems corresponds to the following economic situation.
Consider a producer which wants to sell n different goods. He has a decision vector y ∈ Rn such
that the price of each good is −yi for i ∈ [n]. The producer proposes k different bundles of these
different goods. The quantity he sells is modeled by a vector x = (x1, . . . , xk) ∈ Rk, where xj
is the quantity of bundle j he sells. We can constrain the set of possible vectors x to belong to
a polytope P. If we consider indivisible goods, then the vector x is also constrained to be an
integer point, that is to belong to the set of integer points of a polytope I(P) = P∩Zk. Because
of couplings between the different goods in each bundle, the vector of prices of the different
bundles is −Cy ∈ Rk, with C ∈ Mk,n(R). It means also that the quantity of each good sold
by the producer is CTx. The producer sells the bundles to a customer, who has preferences for
buying the different bundles. The measure of these preference is a vector ρ ∈ Rk, meaning that
when the price is −y, the utility vector of the customer becomes ρ+ Cy. Hence, he determines
his optimal consumption x∗ by maximizing his utility 〈ρ+Cy, x〉 subject to x ∈ P (or x ∈ I(P)
for indivisible goods) . The costs of the producer can be considered as a function f depending
on his decision vector y and on the quantity of goods he sold CTx∗ and chooses the vector y to
minimize his costs.

Sometimes, when the feasible set of the low-level is discrete, it can be viewed as a set of
extreme points of a polytope. We will also study this other combinatorial problem, that is the
following bilevel programming problem:
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Problem 4.3 (Extreme points bilevel problem).

“ min ”
y∈Rn

f(CTx∗, y) (4.5)

where the follower takes x∗ as a solution of:

max
x∈E(P)

〈ρ+ Cy, x〉 (4.6)

where E(P) is the set of extreme points of P.

The low-level values of Problem 4.3 and Problem 4.1 are equal, since the maximum of a linear
function over a polytope is the maximal value of this function evaluated in the vertices of this
polytope. When Assumption A is satisfied, the extreme points of P are integer, and the low-level
value of Problem 4.2 is also equal to the low-level value of Problem 4.3. However, the sets of
solutions of these low-level problems are different. Consequently, Problem 4.1, Problem 4.3 and
Problem 4.2 are not equivalent.

Bilevel programming problems are generally NP-hard, even when the high-level and low-level
problems are linear programs ([Jer85]).

Different classical approaches exist to develop algorithms for solving bilevel programs (see
[CMS07] and [SMD17] for surveys). The most classical ones consist in replacing the low-level
problem by its associated Karush-Kuhn-Tucker conditions when it is convex. It reduces the
global bilevel problem to an one-level programming problem. However, the complementary
slackness constraint introduces a non-convexity. For a linear-linear bilevel problem (all the
objective functions and constraints are linear), combinatorial approaches have been developed
([MS05]). The bilevel problem is reformulated in a one-level problem in mixed variables and
can be solved with branch-and-bound algorithms. However, in view of the NP-hardness of the
problem, we cannot expect an universal efficient method to solve bilevel programming problems.

In the different bilevel problems 4.1 (continuous), 4.2 (discrete) and 4.3 (with extreme points),
the low-level problem defines a tropical polynomial in the decision variable of the "leader" (see
Chapter 3, Section 3.1 for background). Tropical algebra refers to the study of the max-plus
semifield R∪{−∞} with the laws ⊕ and � corresponding respectively to the maximal value and
to the classical addition, that is a⊕b = max(a, b) and a�b = a+b. A tropical polynomial, which
is the tropical analogue of a classical polynomial, corresponds to a convex and piecewise-linear
function with integer slopes.

We present in Section 4.2 the interpretation of the low-level problem in terms of tropical
polynomial. This interpretation comes essentially from the discreteness of the feasible sets of
the low-level problems in Problem 4.2 and 4.3. For Problem 4.1(continuous bilevel problem),
this interpretation is possible because maximizing a linear function over a polytope is equivalent
to maximize it over the set of extreme points of this polytope, which is discrete. It is hence
possible to study continuous as well as discrete linear optimization problems for the low-level
problem with the point of view of tropical geometry.

We mention the following economic situation which is a particular case of the situation
studied in this chapter. A producer sells n goods to a set of q customers. He proposes a price
−yi for good i. Each customer j (for j ∈ [q]) has a consumption vector xj ∈ Rn, where xj(i)
denotes the quantity of good i that customer j buys. The consumption xj is constrained to
belong to a polytope Pj , or to the integer points of Pj if the goods are indivisible. Customer
j has also a preference vector ρj ∈ Rn for buying the different goods. Hence, each customer j
maximizes his utility 〈ρj + y, xj〉 with the constraint xj ∈ Pj (or xj ∈ Pj ∩ Zn). Denoting by
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xj∗ the optimal consumption of customer j, the producer wants to minimize his costs, modeled
by a function f depending on his decision vector y and on the global solds z =

∑q
j=1 x

j∗. This
leads to the following bilevel problems:

Problem 4.4.

“ min ”
y∈Rn

f(

q∑
j=1

xj∗, y) (4.7)

with for all j ∈ [q], xj∗ solution of:

max
xj∈Pj

〈ρj + y, xj〉 (4.8)

and:

Problem 4.5.

“ min ”
y∈Rn

f(

q∑
j=1

xj∗, y) (4.9)

with x∗ solution of:
max

xj∈Pj∩Zn
〈ρj + y, xj〉 (4.10)

In fact, Problems 4.4 and 4.5 are a particular case of the continuous bilevel problems 4.1 and
discrete bilevel problem 4.2, where k = qn, P is a polytope of Rk defined by P = P1 × · · · × Pq
and:

C =

 In
. . .
In

 and ρ =

 ρ1

. . .
ρq


We are especially interested in the case n� k, meaning that the number of bundles is much

larger than the number of goods, or that the producer sells his different goods to a large number
of customers. This hypothesis means that we are concerned with an algorithm whose complexity
is not large in k, especially polynomial in k, despite the studied problems are NP-hard.

One of the most classical method for solving Problem 4.1 consists in replacing the low-level
problem by its KKT conditions. Suppose that P = {x ∈ Rk | Ax ≤ b} 6= ∅, with b ∈ Rp and
A ∈ Mp,k(R). Then, the low-level of Problem 4.1 is maxx∈Rk, Ax≤b〈ρ + Cy, x〉. The associated
Lagrangian is the function (x, λ) ∈ Rk×Rp+ 7→ 〈ρ+Cy, x〉−λT (Ax− b). Hence, a point x∗ ∈ P
is an optimal solution of the low-level problem of Problem 4.1 if and only if there exists λ ∈ Rp+
such that the following KKT conditions are satisfied:

ρ+ Cy −ATλ = 0

λ ≥ 0

λT (Ax∗ − b) = 0.

Proposition 4.6. The optimistic version of Problem 4.1 is equivalent to:

min
y∈Rn, x∗∈Rk

{
f(CTx∗, y) | ∃λ ∈ Rp+, ρ+ Cy −ATλ = 0, λT (Ax∗ − b) = 0

}
.

The pessimistic version of Problem 4.1 is equivalent to:

min
y∈Rn

max
x∗∈Rk

{
f(CTx∗, y) | ∃λ ∈ Rp+, ρ+ Cy −ATλ = 0, λT (Ax∗ − b) = 0

}
.
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Proof. It comes straightforwardly from the characterizations of the optimistic (3.1) and pes-
simistic (3.2) versions of a bilevel programming problem and from replacing the optimality of
the low-level problem by its KKT conditions.

The one-level reformulations given by Proposition 4.6 are in dimension n+ k + p which can
be very large. Moreover, because of the complementary slackness condition, these problems are
non-linear and non-convex. Hence, they are difficult to solve.

In [DF14], Dempe and Franke study the optimistic version of a bilevel programming problem
corresponding to Problem 4.1 with n = k, C = In, ρ = 0 and f(CTx∗, y) = aT1 x

∗+aT2 y+χy∈∆(y),
where ∆ is a polyhedron. They propose an algorithm providing a global optimal solution to the
studied bilevel problem. However, no complexity bound is provided for such an algorithm.

We further study in Section 4.3 some generalizations. First, we extend the discrete problem
4.2 to concave low-level objective functions. We then study a generalization of the high-level
problem in which the matrix C not appears.

4.2 A tropical approach for the bilevel problem

4.2.1 Low-level problem as a tropical polynomial

The structure of the low-level problem in Problems 4.1, 4.2 and 4.3 can be studied thanks
to tropical geometry. Baldwin and Klemperer ([BK12]), and Yu and Tran ([TY15]), already
proposed an approach based on tropical geometry to solve economic problems, more precisely
auction problems. Here, we use tropical geometry to obtain a combinatorial approach of the
bilevel programming problem, and to identify cases solvable in polynomial time.

Let us consider first the continuous bilevel Problem 4.1. The value of the low-level problem
corresponds to the evaluation of a tropical polynomial of the variable Cy ∈ Rk. As in Section 3.3,
we call tropical polynomial a convex piecewise linear function. We do not require that the slopes
are integer vectors. Let P be the tropical polynomial in k variables defined by:

∀u ∈ Rk, P (u) =
⊕

x∈E(P)

〈ρ, x〉 � u�x = max
x∈E(P)

[〈u, x〉+ 〈ρ, x〉] ,

where E(P) is the set of extreme points of P. Because P is a polytope, the set E(P) of these
extreme points is finite, and the previous definition of P corresponds to a tropical polynomial.
Then, we have:

max
x∈P
〈ρ+ Cy, x〉 = max

x∈E(P)
〈ρ+ Cy, x〉 = P (Cy), (4.11)

meaning that the low-level value of Problem 4.1 is the evaluation of the tropical polynomial P
at point Cy. Moreover, we can write:

max
x∈P
〈ρ+ Cy, x〉 = max

x∈P

[
〈y, CTx〉+ 〈ρ, x〉

]
= max

z∈Rn
[〈y, z〉+ ϕ(z)] , (4.12)

where the function ϕ is defined on Rn by:

ϕ(z) = max
x∈P, z=CT x

〈ρ, x〉.

The value ϕ(z) is finite if and only if z ∈ CTP, that is the polyhedron CTP is the domain of
the function ϕ.
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Lemma 4.7. The function ϕ is polyhedral concave, meaning that the hypograph of ϕ is a convex
polyhedron.

Proof. For every y ∈ Rn, we have:

P (Cy) = max
x∈E(P)

〈y, CTx〉+ 〈ρ, x〉.

Then, the function y 7→ P (Cy) is polyhedral convex. Because for every y ∈ Rn, we have
P (Cy) = maxz∈Rn [〈y, z〉+ ϕ(z)], the function −ϕ is the Legendre-Fenchel transform of y 7→
P (Cy). Hence, it is a polyhedral convex function [Roc70, Th. 19.2].

The value of the low-level problem of Problem 4.1 corresponds also to the evaluation of
another tropical polynomial Q. Let Q be the tropical polynomial in n variables in the variable
y ∈ Rn defined by:

Q(y) =
⊕

z∈CT E(P)

ϕ(z)� y�z = max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] .

The function Q is a tropical polynomial function since the set CTE(P) is finite. For every
y ∈ Rn, we have:

Q(y) = max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] = max
x∈E(P)

〈ρ+ Cy, x〉 = P (Cy), (4.13)

meaning that Q(y) is the low-level value of Problem 4.1. In particular, we have Q∗ = −ϕ, where
Q∗ denotes the conjugate function of Q.

In the case n ≤ k, and overall in the case n � k, to study Q instead of P is equivalent to
study the low-level problem in a "small" dimension space (Rn) instead of a "large" dimension
one (Rk). It is even possible to draw the tropical hypersurface associated to Q in some examples
(see Example 4.11 further).

The different monomials y 7→ 〈y, z〉 + ϕ(z) for z ∈ CTE(P) are not essential for Q. We
denote by V (Q) the subset of essential monomials for Q, that is:

V (Q) = {z ∈ CTE(P) | ∃y ∈ Rn, 〈y, z〉+ ϕ(z) > max
z′∈CT E(P)\{z}

〈y, z′〉+ ϕ(z′).

The epigraph of Q is the (n+ 1)-dimensional polyhedron defined by the following inequalities:

epi(Q) = {(y, yn+1) ∈ Rn × R | ∀z ∈ V (Q), yn+1 ≥ 〈y, z〉+ ϕ(z)}.

Lemma 4.8. The function ϕ is the concave closure of its restriction to V (Q).

Proof. The function ϕ is polyhedral and concave according to Lemma 4.7. Moreover, −ϕ = Q∗,
where Q∗ is the Legendre-Fenchel transform of Q. This statement comes from the equality:

∀y ∈ Rn, Q(y) = max
z∈Rn

[〈y, z〉+ ϕ(z)] .

By definition of V (Q), we have for every y ∈ Rn:

Q(y) = max
z∈V (Q)

[〈y, z〉+ ϕ(z)] = max
z∈Rn

[
〈y, z〉+ ϕ(z)− χV (Q)(z)

]
,

where χV (Q) is the convex characteristic function of V (Q), that is χV (Q)(z) = 0 if z ∈ V (Q) and
χV (Q)(z) = +∞ otherwise. Then, we have Q = (−ϕ + χV (Q))

∗, that is −ϕ = (−ϕ + χV (Q))
∗∗.

Since the convex closure of a function is equal to its biconjuguate, we deduce the statement of
the lemma.
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Corollary 4.9. The Newton polytope of Q is New(Q) = CTP.

Proof. By Lemma 4.8, the function ϕ is the concave closure of ϕ− χV (Q). Hence, ϕ(z) is finite
if and only if z belongs the convex hull of V (Q), that is New(Q). We conclude by the definition
of ϕ.

The extended Newton polytope of Q is:

New(Q) = Conv((z, r) ∈ V (Q)× R | r ≤ ϕ(z)).

Since ϕ is the concave closure of ϕ − χV (Q), the extended Newton polytope of Q is also
Conv((z, r) ∈ CTP × R | r ≤ ϕ(z)).

Lemma 4.10. For every cell C′ ∈ S ′, the restriction of ϕ to C′ is affine.

Proof. By definition of S ′, a cell C′ ∈ S ′ is a projection of a bounded face F ′ of New(Q). By
definition of New(Q), we have:

F ′ = {(z, ϕ(z)) | z ∈ C′}.

Then, φ is affine over C′.

As explained in Section 3.3, the tropical polynomial Q defines a regular subdivision S of Rn,
which is the collection of the projection of the faces of epi(Q) over the n first entries. For each
C ∈ S, there exists a non-empty subset A of V (Q) such that C = CA, where CA is the set of
vectors y ∈ Rn which satisfy:

∀z, z′ ∈ A, 〈y, z〉+ ϕ(z) = 〈y, z′〉+ ϕ(z′),

∀z ∈ A, ∀z′ ∈ CTE(P) \ A, 〈y, z〉+ ϕ(z) ≥ 〈y, z′〉+ ϕ(z′).

We define the subset A(C) of V (Q) by:

A(C) =
⋃
{A | C = CA}.

Moreover, the subdivision S is dual to a regular subdivsion S ′ of CTP, which is the collection
of the projection of the bounded faces of New(Q) over the n first entries. For each C ∈ S, there
exists a non-empty subset A of V (Q) such that C is the set of vectors z ∈ CTP which satisfy:

C′ = Conv(z | z ∈ A).

There exists a bijection φ between S and S ′ (Theorem 3.8). The map φ is defined over S by:

∀C ∈ S, φ(C) = Conv(z | z ∈ A(C)) = Conv(A(C)).

Conversely, for each C′ ∈ S ′, the polyhedron φ−1(C′) is the set of vectors y ∈ Rn such that :

∀z, z′ ∈ A(φ−1(C′)), 〈y, z〉+ ϕ(z) = 〈y, z′〉+ ϕ(z′),

∀z ∈ A(φ−1(C′)),∀z′ ∈ CTE(P) \ A(φ−1(C′)), 〈y, z〉+ ϕ(z) ≥ 〈y, z′〉+ ϕ(z′),

where A(φ−1(C′)) is the set of vertices of C′. For every y ∈ Rn, we define the minimal cell Cy in
S as the intersection of all cells of S containing y, that is:

Cy =
⋂
{C ∈ S | y ∈ C}.
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Similarly, we define for every z ∈ CTP the minimal cell C′z in S ′ as the intersection of all cells
of S containing y, that is:

C′z =
⋂
{C′ ∈ S ′ | z ∈ C′}.

Finally, we consider the partition of S and S ′ obtained by grouping the polyhedra according to
their dimension. Thus, for 0 ≤ d ≤ n, we define Sd as:

Sd = {C ∈ S | C is a d-dimensional polyhedron},

and S ′d as:
S ′d = {C′ ∈ S ′ | C′ is a d-dimensional polyhedron}.

According to Theorem 3.8, φ defines a bijection between Sd and S ′n−d for every d ∈ [n].

Example 4.11. Let us take n = 2 and k = 4. We define the polytope P by P = {x ∈ R4 | ∀i, 0 ≤
xi ≤ 1 and x1 + x3 ≤ 1}. We consider ρ ∈ R4 and C ∈M4,2(Z) defined by:

ρ =


−2
−1
0
1

 et C =


1 0
0 1
1 0
0 1


So, we have CTE(P) = {(0, 0); (1, 0); (0, 1); (1, 1); (0, 2); (1, 2)}, that is New(Q) = CTP = [0, 1]×
[0, 2]. Consequently, the tropical polynomial Q is defined by Q(y) = max(0, y1, y2 + 1, y1 + y2 +
1, 2y2, y1 + 2y2). We can draw in R2 the tropical hypersurface associated to Q (see Figure 4.1).
As we are in dimension 2, the hypersurface is actually a (tropical) curve.

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 2) (1, 2)

y1

y2

Figure 4.1: Tropical hypersurface T (Q) associated to the polynomial Q. It subdivides R2 in
different cells. The degree of the monomial which attains the maximum in Q is mentioned in
each full-dimensional cell.

We observe that all the monomials 〈y, z〉+ ϕ(z) for z ∈ CTE(P) are essential. The tropical
hypersurface T (Q) subdivides Rn in different cells. This defines the subdivision S. We can also
draw the dual subdivision S ′ of the Newton polytope (see Fig. 4.2).
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(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

Figure 4.2: Dual subdivision S ′ of the Newton polytope New(Q) = [0, 1]× [0, 2].

Then, we can enumerate the cells of S together with the cells of S ′. The map φ defines a
bijection between the d-dimensional cells of S and the (2− d)-dimensional cells of S ′. Each cell
C′ ∈ S ′ can be written C′ = φ(C), where C ∈ S. φ(C) is the convex hull of the points z ∈ CTE(P)
such that the monomial 〈y, z〉 + ϕ(z) is maximal for every y ∈ C. We list in Table 4.1 all the
cells of S and their dual cells φ(C).

C φ(C)

C ∈ S2 ⇔ φ(C) ∈ S ′0

{(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≤ −1} {(0, 0)}
{(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≤ −1} {(1, 0)}
{(y1, y2) ∈ R2 | y1 ≤ 0, −1 ≤ y2 ≤ 1} {(0, 1)}
{(y1, y2) ∈ R2 | y1 ≥ 0, −1 ≤ y2 ≤ 1} {(1, 1)}
{(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≥ 1} {(0, 2)}
{(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥ 1} {(1, 2)}

C ∈ S1 ⇔ φ(C) ∈ S ′1

{(y1, y2) | y1 = 0, y2 ≤ −1} Conv((0, 0), (1, 0))
{(y1, y2) | y1 ≤ 0, y2 = −1} Conv((0, 0), (0, 1))
{(y1, y2) | y1 ≥ 0, y2 = −1} Conv((1, 0), (1, 1))
{(y1, y2) | y1 = 0, −1 ≤ y2 ≤ 1} Conv((0, 1), (1, 1))
{(y1, y2) | y1 ≤ 0, y2 = 1} Conv((0, 1), (0, 2))
{(y1, y2) | y1 ≥ 0, y2 = 1} Conv((1, 1), (1, 2))
{(y1, y2) | y1 = 0, y2 ≥ 1} Conv((0, 2), (1, 2))

C ∈ S0 ⇔ φ(C) ∈ S ′2
{(0,−1)} Conv((0, 0), (0, 1), (1, 0), (1, 1))
{(0, 1)} Conv((0, 1), (1, 1), (0, 2), (1, 2))

Table 4.1: List of cells of S and of dual cells of S ′, classed by their dimensions.
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4.2.2 Tropical interpretation of Problem 4.1

In this section, we study Problem 4.1 (continuous bilevel problem). We show that the tropical
approach presented in Section 4.2.1 leads to a reduction of both optimistic and pessimistic
versions of Problem 4.1 into a collection of optimization subproblems. Each subproblem is
associated to a cell of the subdivision S induced by the tropical polynomial Q.

First, we characterize the set of possible solutions of the low-level stage of Problem 4.1
(continuous bilevel problem).

Proposition 4.12. For all z∗ ∈ CTP, there exists a vector y ∈ Rn such that z∗ is a solution of
maxz∈CTP [〈y, z〉+ ϕ(z)],

Proof. By Lemma 4.7, the function ϕ is polyhedral concave. Then, the condition:

z∗ ∈ arg max
z∈CTP

[〈y, z〉+ ϕ(z)]

is equivalent to y ∈ ∂(−ϕ)(z∗) where ∂ denotes the subdifferential of a convex function. More-
over, ∂(−ϕ)(z∗) 6= ∅ if and only if (−ϕ)(z∗) < +∞ ([Roc70, Th. 23.10]). Because the domain of
the function −ϕ is the polyhedron CTP, we deduce that for all z∗ ∈ CTP, there exists a vector
y ∈ Rn such that y ∈ ∂(−ϕ)(z∗).

Lemma 4.13. The continuous bilevel programming problem 4.1 is equivalent to:

“ min ”
y∈Rn

f(z∗, y)

with z∗ solution of maxz∈CTP [〈y, z〉+ ϕ(z)].

Proof. We have the following equality:

max
x∈P
〈ρ+ Cy, x〉 = max

x∈P
〈y, CTx〉+ 〈ρ, x〉 = max

z∈CTP

[
〈y, z〉+ max

x∈P, CT x=z
〈ρ, x〉

]
(4.14)

= max
z∈CTP

[〈y, z〉+ ϕ(z)] (4.15)

Then, x∗ ∈ arg maxx∈P〈ρ + Cy, x〉 implies that CTx∗ ∈ arg maxz∈CTP [〈y, z〉+ ϕ(z)]. Con-
versely, if z∗ ∈ arg maxz∈CTP [〈y, z〉+ ϕ(z)], then for all z ∈ CTP, we have 〈y, z∗〉 + ϕ(z∗) ≥
〈y, z〉 + ϕ(z). Consider x∗ ∈ P such that z∗ = CTx∗ and ϕ(z∗) = 〈ρ, x∗〉. Then for all x ∈ P,
we have:

〈ρ+ Cy, x〉 = 〈y, CTx〉+ 〈ρ, x〉 ≤ 〈y, CTx〉+ ϕ(CTx) ≤ 〈y, z∗〉+ ϕ(z∗) = 〈ρ+ Cy, x∗〉.

Then, x∗ ∈ arg maxx∈P〈ρ+ Cy, x〉. Consequently, the two conditions

z∗ ∈ arg max
z∈CTP

[〈y, z〉+ ϕ(z)]

and
z∗ = CTx∗ with x∗ ∈ arg max

x∈P
〈ρ+ Cy, x〉

are equivalent. The result follows straightforwardly.
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The tropical interpretation of the low-level problem leads to a new approach for solving
Problem 4.1 (the continuous bilevel problem). The cells of the subdivision S ′ of the Newton
polytope of the tropical polynomial defined by the low-level problem correspond exactly to the
possible values of the solutions of the low-level problem, i.e, to the "combinatorial type” of
the response of the follower. For every y ∈ Rn, we recall that Cy = ∩{C ∈ S | y ∈ C}. By
Proposition 3.11, the non-empty subset A(Cy) of V (Q) is the set of maximal monomials for Q
in y. By definition of the map φ, we have:

φ(Cy) = Conv(A(Cy)).

Lemma 4.14. Consider a vector y ∈ Rn. Then:

z∗ ∈ arg max
z∈CTP

[〈y, z〉+ ϕ(z)]⇔ z∗ ∈ φ(Cy).

Proof. Let y be a vector of Rn. The set of maximal monomials for Q in y is A(Cy).
Let z∗ ∈ φ(Cy). Then, there exist z1, . . . , zq ∈ A(Cy) and nonnegative reals λ1, . . . , λq such

that
∑q

i=1 λi = 1 and
∑q

i=1 λizi = z∗. We have for every i ∈ [q], Q(y) = 〈y, zi〉 + ϕ(zi) since
each zi belongs to A(Cy). φ(Cy) is a cell of S ′, as the image by φ of a cell of S. Then, ϕ is affine
over φ(Cy) according to Lemma 4.10. Consequently:

〈y, z∗〉+ ϕ(z∗) =

q∑
i=1

λi [〈y, zi〉+ ϕ(zi)〉] = Q(y),

and z∗ ∈ arg maxz∈CTP [〈y, z〉+ ϕ(z)].
Conversely, if z∗ ∈ arg maxz∈CTP〈y, z〉 + ϕ(z), then 〈y, z∗〉 + ϕ(z∗) = Q(y). Consider the

minimal cell C′z∗ ∈ S ′ of z∗ (it is the intersection of all the cells of S ′ containing z∗). We denote
by z1, . . . , zq the extreme points of C′z∗ . Then, z1, . . . , zq ∈ V (Q). There exist nonnegative reals
λ1, . . . , λq with

∑q
i=1 λi = 1 such that z∗ =

∑q
i=1 λizi. Because C′z∗ ∈ S ′, the function ϕ is affine

over C′z∗ . Then:

Q(y) = 〈y, z∗〉+ ϕ(z∗) =

q∑
i=1

λi [〈y, zi〉+ ϕ(zi)〉] .

By definition of Q, we have for every i ∈ [q], Q(y) ≥ 〈y, zi〉 + ϕ(zi). Then, for every i ∈ [q],
Q(y) = 〈y, zi〉 + ϕ(zi). Consequently, zi ∈ A(Cy) for every i ∈ [q] and z∗ ∈ Conv(A(Cy)) =
φ(Cy).

Lemma 4.14 gives a characterization of the low-level problem using the subdivision induced
by the tropical polynomial Q.

It leads to the following statement.

Corollary 4.15. 1. Assume that for every y ∈ Rn, the function z 7→ f(z, y) is lower semi-
continuous. Then, the optimistic version of the continuous bilevel programming problem 4.1
is equivalent to the following problem:

inf
y∈Rn

min
z∗∈φ(Cy)

f(z∗, y).

2. Assume that for every y ∈ Rn, the function z 7→ f(z, y) is upper semicontinuous. Then,
the pessimistic version of the continuous bilevel programming problem 4.1 is equivalent to
the following problem:

inf
y∈Rn

max
z∈φ(Cy)

f(z, y).
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Proof. The optimistic version of the continuous problem 4.1 is equivalent to:

inf
y∈Rn

inf
z∈φ(Cy)

f(z, y),

by using the characterization of an optimistic bilevel programming problem (3.1, see Section 3.1)
and by applying Lemma 4.13. If the function z 7→ f(z, y) is lower semicontinuous for every y, a
minimum is attained in infz∈φ(Cy) f(z, y) since φ(Cy) is compact (it is included in CTP which is
a bounded polyhedron of Rn). The proof holds also for the pessimistic case by replacing "lower
semicontinuous" by "upper semicontinous".

Corollary 4.15 provides a reformulation of the bilevel programming problem 4.1 by charac-
terizing the set of feasible z∗ for each y ∈ Rn. We can also be concerned by the set of feasible y
for each possible value of z∗.

Corollary 4.16. The optimistic version of the continuous bilevel programming problem 4.1 is
equivalent to the following problem:

inf
z∗∈CTP

inf
y∈φ−1(C′

z∗ )
f(z∗, y)

.

Proof. According to Proposition 4.12, the set of possibles z∗ is equal to CTP. Lemma 4.14
states that for each y ∈ Rn, the feasible set of values of z∗ is equal to φ(Cy). However, z∗ ∈
φ(Cy)⇔ y ∈ φ−1(C′z∗) according to Lemma 3.12.

For the pessimistic version, the order of the minimization over y and the maximization over
z∗ cannot be generally changed without any additional assumption.

Corollary 4.15 gives a characterization of the bilevel programming problem 4.1 using the
tropical algebraic structure of the low-level problems. This characterization enables to obtain
the value of the optimistic and pessimistic versions of Problem 4.1 together with their optimal
solutions. The following result goes further and gives a method to solve the optimistic version
of Problem 4.1 by solving an optimization subproblem over each cell of S. It is a key result of
this chapter, as it reduces the optimistic bilevel problem to the enumeration of the cells of the
tropical hypersurface S. Then, for each cell, an auxiliary minimization problem must be solved.
The latter problem is generally tractable: the feasible set, of the form C × φ(C), is convex, and
in many applications, the function f will be convex.

We recall that a function f is inf-compact over φ(C)×C means that for every r ∈ R, the set
{(z, y) ∈ φ(C)× C | f(z, y) ≤ r} is compact.

Theorem 4.17 (Reduction of optimistic bilevel programming to cell enumeration). Assume
that for every y ∈ Rn, the function z 7→ f(z, y) is lower semicontinuous. Then, the optimistic
version of the continuous bilevel programming problem 4.1 is equivalent to the following problem:

min
C∈S

[
inf
y∈C

min
z∗∈φ(C)

f(z∗, y)

]
.

Moreover, if the function f is jointly lower semicontinuous in (z, y), and is inf-compact over
each set φ(C)× C, then an optimistic solution exists.
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Proof. According to Corollary4.15, the optimistic version of the continuous bilevel problem 4.1
is equivalent to infy∈Rn minz∗∈φ(Cy) f(z∗, y).

To conclude, we have to show the following equality:⋃
C∈S
{(z∗, y) | y ∈ C, z∗ ∈ φ(C)} = {(z∗, y) | y ∈ Rn, z∗ ∈ φ(Cy)}.

Consider (z′, y′) such that z′ ∈ φ(Cy′). Then, y′ ∈ Cy′ , and because Cy′ ∈ S, we deduce
(z∗, y) ∈

⋃
C∈S{(z∗, y) | y ∈ C, z∗ ∈ φ(C)}. Consider now C′ ∈ S and (z′, y′) such that y′ ∈ C′

and z′ ∈ φ(C′). Because Cy′ ⊂ C′, we have φ(C′) ⊂ φ(Cy′), so that (z′, y′) ∈ {(z∗, y) | z∗ ∈ φ(Cy)}.
If f is lower semicontinuous and inf-compact, then the minimum of f is attained over each

closed set φ(C)× C.

To have a similar result as Theorem 4.17 for the pessimistic version of Problem 4.1 (contin-
uous bilevel problem), we have to compare the pessimistic problem with:

min
C∈S

[
min
y∈C

max
z∗∈φ(C)

f(z∗, y)

]
according to the characterization (3.2) of the pessimistic version of a bilevel programming prob-
lem. As discussed in Example 3.1 in Section 3.1, the pessimistic value of a bilevel program-
ming problem can not be attained, even if this value is finite than −∞ and if the high-level
and low-level functions are continuous. However, assume that the function f is continuous.
Then, for every y ∈ Rn and each C ∈ S, the maximum is attained in supz∈φ(C) f(z, y) since
f(,̇y) is upper semicontinuous and φ(C) is compact. Morover, for every z ∈ CTP, the func-
tion y 7→ maxz∈φ(C) f(z, y) is lower semicontinuous, as a supremum of lower semicontinuous
functions. and defined over a compact set. Hence, if f is additionally inf-compact, the min-
imum is attained in infy∈C maxz∗∈φ(C) f(z∗, y). Hence, if this function is bounded from be-
low, the minimum is also attained. Because S has a finite number of cells, the problem
minC∈S

[
miny∈C maxz∗∈φ(C) f(z∗, y)

]
is well-defined, and if the minimum value is finite, there

exist z∗ and y that attain the minimum value.
Although we do not have a strict equivalence between both problems, we can write an

approximation result. Consider an optimization problem minx∈X F (x). We denote by F ∗ the
optimal value, that is F ∗ = infx∈X F (x). For ε > 0, we say that xε is an ε-optimal solution of
the optimization problem if xε ∈ X and F (xε) ≤ F ∗ + ε.

Theorem 4.18 (Reduction of pessimistic bilevel programming to cell enumeration). Suppose
that for each C ∈ S, the function f is continuous over φ(C)×C. Then, the value of the pessimistic
version of the continuous bilevel problem 4.1 is given by:

min
C∈S

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
. (4.16)

If f is additionally inf-compact, then the problem defined by (4.16) has an optimal solution, and
there exists an ε-solution of the pessimistic version of Problem 4.1.

Proof. If f is continuous, then in particular for every y ∈ Rn, the maximum of the function
z 7→ f(z, y) over every compact set is attained. According to Corollary 4.15, the pessimistic
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version of the continuous bilevel problem 4.1 is equivalent to infy∈Rn maxz∗∈φ(Cy) f(z, y). We
can write Rn = ∪C∈SC. Then, we have to prove the following equality:

min
C∈S

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
= min
C∈S

[
inf
y∈C

max
z∈φ(Cy)

f(z, y)

]
. (4.17)

Let C ∈ S and y ∈ S. Then Cy ⊂ C and φ(C) ⊂ φ(Cy) by Proposition 3.9. Then, for every
y ∈ Rn:

max
z∈φ(C)

f(z, y) ≤ max
z∈φ(Cy)

f(z, y).

Moreover, if y ∈ ri(C), then Cy = C and:

max
z∈φ(C)

f(z, y) = max
z∈φ(Cy)

f(z, y)

We denote by F1 and F2 the following functions:

∀y ∈ C, F1(y) = max
z∈φ(C)

f(z, y)

∀y ∈ C, F2(y) = max
z∈φ(Cy)

f(z, y) .

Then, F1(y) ≤ F2(y) for y ∈ C with F1(y) = F2(y) if y ∈ ri(C). If f is continuous, then
F1 is continuous over C. Then, for every sequence (yn)n∈N with yn ∈ ri(C) and such that
limn→+∞ yn = y, we have:

F1(y) = lim
n→+∞

F1(yn) = lim
n→+∞

F2(yn) ≥ lsc(F2 |C)(y),

where lsc(F2 |C) is the lower semicontinuous closure of the function F2 restricted to C, defined
by:

lsc(F2 |C)(y) = lim inf
z→y, z∈C

F2(z).

Then, since C is closed:

inf
y∈C

F2(y) ≥ inf
y∈C

F1(y) ≥ inf
y∈C

lsc(F2)(y) = inf
y∈C

F2(y).

Equation (4.17) comes straightforwardly.
Moreover, if f is inf-compact, then the minimum is attained in infy∈C F1(y) since F1 is lower

semicontinuous over C. Then, the problem defined by (4.16) has an optimal solution. Consider
(z∗, y∗) an optimal solution of the problem defined by (4.16). Then, there exists C∗ ∈ S such
that:

f(z∗, y∗) = max
z∈φ(C∗)

f(z, y∗) , f(z∗, y∗) = min
y∈C∗

max
z∈φ(C)

f(z, y) ,

f(z∗, y∗) = min
C∈S

[
min
y∈C

max
z∈φ(C)

f(z, y)

]
.

If Cy∗ = C∗, then (z∗, y∗) is also an optimal solution of the pessimistic version of Problem 4.1.
If Cy∗ 6= C∗, then y∗ /∈ ri(C∗). Then, y∗ belongs to a face of C∗. We define the function F ∗1 over
C∗ by:

∀y ∈ C∗, F ∗1 (y) = max
z∈φ(C∗)

f(z, y).



4.2. A tropical approach for the bilevel problem 67

The function F ∗1 is continuous over C∗, since f is continuous. Then, for each ε > 0, there exists
a point yε in the relative interior of C∗ such that F ∗1 (yε) ≤ F ∗1 (y∗)+ε. The maximum is attained
in the definition of F ∗1 , then we consider zε such that:

zε ∈ arg max
z∈φ(C∗)

f(z, yε).

Because yε belongs to ri(C∗), we have Cyε = C∗ and zε ∈ φ(Cyε). Hence, (zε, yε) is a feasible
solution of the pessimistic version of Problem 4.1. We recall that:

f(z∗, y∗) = min
C∈S

[
min
y∈C

max
z∈φ(C)

f(z, y)

]
= inf

y∈Rn
max
z∈φ(Cy)

f(z, y).

Then, we have:

f(z∗, y∗) = inf
y∈Rn

max
z∈φ(Cy)

f(z, y) ≤ max
z∈φ(Cyε )

f(z, yε) = max
z∈φ(C∗)

f(z, yε) = F ∗1 (yε) = f(zε, yε)

≤ F ∗1 (y∗) + ε = f(z∗, y∗) + ε.

Then (zε, yε) is an ε-solution of the pessimistic version of the continuous bilevel problem 4.1.

Notice that Theorem 4.18 provides also a method for obtaining an ε-solution of the pessimistic
version of the continuous problem 4.1.

According to Theorem 4.17 and Theorem 4.18, the different versions of the bilevel program-
ming problem 4.1 can be solved by solving different subproblems on each cell of the subdivision
S. Because of the bijection between S and a subdivision S ′ of the Newton polytope of Q, we
have the following result:

Because of the bijection between S and the dual subdivision S ′ of the Newton polytope of
Q, we have the following result, in which we now reduce the bilevel programming problem to
the enumeration of cells of the dual subdvision.

Corollary 4.19 (Reduction of bilevel programming to dual cell enumeration).

1. Assume that for every y ∈ Rn, the function z ∈ CTP 7→ f(z, y) is lower semicontinu-
ous. Then, the optimistic version of the continuous bilevel programming problem 4.1 is
equivalent to the following problem:

min
C′∈S′

[
inf

y∈φ−1(C′)
min
z∈C′

f(z, y)

]
.

2. Assume that for every C′ ∈ S ′, the function f is continuous over C′ × φ(C′). Then, the
pessimistic value of Problem 4.1 is the optimal value of the following problem:

min
C′∈S′

[
inf

y∈φ−1(C′)
max
z∈C′

f(z, y)

]

Proof. The function φ defines a bijection between the cells of S and those of S ′. So, it is possible
to enumerate the cells of S ′ instead of those of S, and the result comes straightforwardly from
Theorems 4.17 and 4.18.
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It follows from Theorem 4.17 that the bilevel programming problem can be decomposed in
many subproblems, each subproblem corresponding to a cell of S. We next show that when f
is concave in the variable y, it suffices to enumerate the vertices of S, i.e., the zero-dimensional
cells, to solve the optimistic problem:

Corollary 4.20 (Reduction of optimistic bilevel programming to vertex enumeration). Assume
that for every y ∈ Rn, the function z ∈ CTP 7→ f(z, y) is lower semicontinuous. Suppose also
that for every z ∈ CTP, the function y 7→ f(z, y) is concave in y. Then, the optimistic version
of the bilevel programming problem 4.1 is equivalent to the following problem:

min
C∈S0

[
min

y∈C, z∈φ(C)
f(z, y)

]
Proof. The optimistic version of Problem 4.1 is equivalent to:

min
C∈S

[
inf
y∈C

min
z∈φ(C)

f(z, y)

]
according to Theorem 4.17. Consider a cell C of S \S0, that is C is not reduced to a single point.
Then, if f is concave in y for every z, we have:

inf
y∈C

min
z∈φ(C)

f(z, y) = min
y∈E(C), z∈φ(C)

f(z, y) .

Each point of E(C) is a face of C, then for each y ∈ E(C), {y} ∈ S0. Moreover, {y} ⊂ C, then
φ(C) ⊂ φ({y}). Hence,

inf
y∈C

min
z∈φ(C)

f(z, y) ≥ min
y∈E(C)

min
z∈φ({y})

f(z, y) ≥ min
C∈S0

[
min

y∈C, z∈φ(C)
f(z, y)

]
.

.

We next show that when f is concave in z (resp. convex), it suffices to enumerate the n-
dimensional cells of S, i.e., the vertices of the dual subdivision S ′, to solve the optimistic (resp.
pessimistic) problem:

Corollary 4.21 (Reduction of optimistic bilevel programming to vertex enumeration of the
dual subdivision). Assume that for every y ∈ Rn, the function z ∈ CTP 7→ f(z, y) is lower
semicontinuous and concave. Then, the optimistic version of the continuous bilevel programming
problem 4.1 is equivalent to the following problem:

min
C∈Sn

[
inf
y∈C

min
z∈φ(C)

f(z, y)

]
Proof. The optimistic version of Problem 4.1 is equivalent to:

min
C∈S

[
inf
y∈C

min
z∈φ(C)

f(z, y)

]
according to Theorem 4.17. Consider a cell C of S \ Sn, that is φ(C) is not reduced to a single
point. Since f in concave in z for every y, we have:

inf
y∈C

min
z∈φ(C)

f(z, y) = inf
y∈C

min
z∈E(φ(C))

f(z, y) .
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Each point of E(φ(C)) is a face of φ(C), then for every z ∈ E(φ(C)), {z} ∈ S ′0. Moreover
{z} ⊂ φ(C), then C ⊂ φ−1({z}). We have φ−1({z}) ∈ Sn. Hence:

inf
y∈C

min
z∈φ(C)

f(z, y) ≥ min
z∈E(φ(C))

inf
y∈φ−1({z})

f(z, y) ≥ min
C′∈S′0

[
min
z∈C′

inf
y∈φ(C′)

f(z, y)

]
= min
C∈Sn

[
inf
y∈C

min
z∈φ(C)

f(z, y)

]
.

Corollary 4.22 (Reduction of pessimistic bilevel programming to vertex enumeration of the dual
subdivision). Assume that for every C ∈ S, the function f is continuous over φ(C)×C. Suppose
additionally that for every y ∈ Rn, the function z 7→ f(z, y) is convex. Then, the pessimistic
version of the continuous bilevel programming problem 4.1 is equivalent to the following problem:

min
C∈Sn

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
Proof. The optimistic version of Problem 4.1 is equivalent to:

min
C∈S

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
according to Theorem 4.18 when f is continuous over φ(C)×C. Consider a cell C of S \Sn, that
is φ(C) is not reduced to a single point. Since f in convex in z for every y, we have:

inf
y∈C

max
z∈φ(C)

f(z, y) = inf
y∈C

max
z∈E(φ(C))

f(z, y) .

Let y ∈ C. Then, there exists z∗ ∈ E(φ(C)) such that f(z∗, y) = maxz∈φ(C) f(z, y). Each point
of E(φ(C)) is a face of φ(C). Since z∗ ∈ E(φ(C)), {z∗} ∈ S ′0. Moreover {z∗} ⊂ φ(C), then
C ⊂ φ−1({z∗}). We have φ−1({z}) ∈ Sn. Hence:

max
z∈φ(C)

f(z, y) = f(z∗, y) ≥ inf
y∈φ−1({z∗})

f(z∗, y) ≥ min
C∈Sn

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
.

Then:
min
C∈S

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
≥ min
C∈Sn

[
inf
y∈C

max
z∈φ(C)

f(z, y)

]
.

4.2.3 Tropical interpretation of Problem 4.2

In this section, we consider the Problem 4.2 (discrete bilevel problem) in which the low-level
problem becomes maxx∈I(P)〈ρ + Cy, x〉, i.e., we consider a linear low-lever problem in integer
variables. We recall that I(P) = P ∩ Zk. We can write, similarly as in Section 4.2.2:

max
x∈I(P)

〈ρ+ Cy, x〉 = max
z∈CT I(P)

[〈y, z〉+ ϕI(z)] , (4.18)

where ϕI is defined over CTI(P) by:

ϕI(z) = max
x∈I(P), z=CT x

〈ρ, x〉.
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Consequently, the value of the low-level problem is an evaluation of a tropical polynomial QI
defined by:

QI(y) =
⊕

z∈CT I(P)

[
ϕI(z)� y�z

]
= max

z∈CT I(P)
[ϕI(z) + 〈y, z〉] .

Lemma 4.23. The bilevel programming problem 4.2 (discrete bilevel problem) is equivalent to:

“ min ”
y∈Rn

f(z∗, y),

with z∗ solution of maxz∈CT I(P) [〈y, z〉+ ϕ(z)].

Proof. By using Equation (4.18), the proof is similar to the proof of Lemma 4.13 .

We have to characterize the vectors z∗ ∈ CTI(P) which are optimal solutions of the low-level
problem for at least one vector y ∈ Rn. We have to add some hypotheses about the matrix C
and the polytope P.

Definition 4.24. A real matrix A is said totally unimodular if the determinants of all its square
submatrices are equal to 0 or are in {±1}.

Note that in particular, all the coefficients of the matrix are in {−1; 0; 1}. The following
result about totally unimodular matrices is frequently used in combinatorial optimization.

Theorem 4.25 (Th. 19.1 and Coro. 19.1 of [Sch98]). Let A be a totally unimodular matrix, b a
vector with integer entries, and c a vector of Rn. Then:

inf
x∈Rn, Ax≤b

cTx = inf
x∈Zn, Ax≤b

cTx

The same conclusion holds if {x ∈ Rn, Ax ≤ b} is replaced by a polyhedron defined by
equality and inequality constraints, i.e., by a polyhedron of the form {x ∈ Rn, Ax ≤ b,Dx =
h} where

(
A
D

)
is totally unimodular, and h is also a vector with integer entries. Indeed, an

equality constraint can be represented by a conjunction of two inequality constraints, and so this
generalized statement is an immediate consequence of the one of Theorem 4.25. The following
results is also an immediate corollary of Theorem 4.25.

Corollary 4.26. Let A be a totally unimodular matrix, b a vector with integer entries and c a
vector of Rn. Then:

arg min
x∈Zn,Ax≤b

cTx =

(
arg min
x∈Rn,Ax≤b

cTx

)
∩ Zn.

Moreover, the totally unimodular matrices define integer polyhedra.

Theorem 4.27 (Hoffman and Kruskal’s theorem, Coro. 19.2a of [Sch98]). Let A be an integral
matrix. Then A is totally unimodular if and only if for every integral vector b, the polyhedron
{x ∈ Rn | Ax ≤ b} is integral.

We now consider the polyhedron P = {x ∈ Rk | Ax ≤ b}. Being interested in P being an
integer polytope, we suppose b is an integer vector. In the rest of this subsection, we also make
the following assumption:

Assumption B. The polytope P is an integer polytope. The entries of the matrix C are integer.
Moreover CTI(P) = CTP ∩ Zn.
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Lemma 4.28. If [C AT ] is totally unimodular, then Assumption B is satisfied.

Proof. If [C AT ] is totally unimodular, then both matrices C and A are totally unimodular.
Then, the entries of C are integer and the polytope P is an integer polytope as a consequence
of Theorem 4.27. Since C has integer entries, CTI(P) ⊂ CTP ∩Zn. Let z∗ ∈ CTP ∩Zn. Then,
the polytope {x ∈ Rk | x ∈ P, CTx = z∗} is non-empty. If [C AT ] is totally unimodular, then
this polyhedron is an integer polytope. In particular, it contains an integer point, meaning that
z∗ ∈ CTI(P).

Proposition 4.29. Assume that the matrix [C AT ] is totally unimodular. Then, we have ϕI =
ϕ.

Proof. If [C AT ] is totally unimodular (in particular, Assumption B is satisfied), then for every
z ∈ CTI(P), we have:

ϕI(z) = max
Ax≤b, CT x=z

x∈Zk

〈ρ, x〉 = max
Ax≤b, CT x=z

〈ρ, x〉 = ϕ(z),

according to Theorem 4.25, or rather, from its extension to the case of polyhedra defined by
equality and inequality constraints.

Lemma 4.30. Under Assumption B, the tropical polynomial QI appearing in Problem 4.2 (dis-
crete bilevel problem) is equal to the tropical polynomial Q appearing in the continuous bilevel
problem 4.1, that is:

max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] = max
z∈CT I(P)

[〈y, z〉+ ϕI(z)] . (4.19)

Proof. Let y ∈ Rn. The polytope P is integer. Consequently, we have E(P) ⊂ I(P) ⊂ P and
so:

max
x∈E(P)

〈ρ+ Cy, x〉 = max
x∈I(P)

〈ρ+ Cy, x〉 = max
x∈P
〈ρ+ Cy, x〉,

by using Equation 4.11. Then:

QI(y) = max
x∈I(P)

〈ρ+ Cy, x〉 = max
x∈E(P)

〈ρ+ Cy, x〉 = max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] = Q(y) , (4.20)

where the first equality follows from (4.18), and the last equality follows from (4.13).

To be precise, Lemma 4.30 proves that both functions QI and Q are equal. By definition,
the monomials of both polynomials are different, meaning that QI and Q are distinct when they
are considered as formal polynomials.

It is now possible to characterize the low-level optimal responses in Problem 4.2(discrete
bilevel problem) in terms of integer points of cells of S ′.

Lemma 4.31. Consider a vector y ∈ Rn. Then, under Assumption B:

z∗ ∈ arg max
z∈CT I(P)

[〈y, z〉+ ϕ(z)]⇔ z∗ ∈ φ(Cy) ∩ Zn
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Proof. According to Lemma 4.14, it suffices to show:

arg max
z∈CT I(P)

[〈y, z〉+ ϕ(z)] = arg max
z∈CTP

[〈y, z〉+ ϕ(z)] ∩ Zn (4.21)

Consider z∗ ∈ arg maxz∈CT I(P) [〈y, z〉+ ϕ(z)]. We have z∗ ∈ Zn. Moreover, P is an integer
polytope. Then, CTE(P) ⊂ CTI(P). So

∀z ∈ CTE(P), 〈y, z∗〉+ ϕ(z∗) ≥ 〈y, z〉+ ϕ(z).

As a consequence of (4.12) and (4.13), maxz∈CT E(P) 〈y, z〉 + ϕ(z) = maxz∈CTP 〈y, z〉 + ϕ(z),
and so

z∗ ∈ arg max
z∈CTP

[〈y, z〉+ ϕ(z)] ∩ Zn .

Consider now z∗ ∈ arg maxz∈CTP [〈y, z〉+ ϕ(z)] ∩ Zn. We just have to show that z∗ ∈
CTI(P). This comes directly from Assumption B.

Corollary 4.32. Under Assumption B, the optimistic version of Problem 4.2 (discrete bilevel
problem) is equivalent to:

inf
y∈Rn

min
z∗∈φ(Cy)∩Zn

f(z∗, y),

whereas the pessimistic one is equivalent to:

inf
y∈Rn

max
z∗∈φ(Cy)∩Zn

f(z∗, y).

Proof. It comes directly from Lemma 4.31 together with the characterizations of the optimistic
( 3.1) and pessimistic ( 3.2) solutions of a bilevel programming problem.

Corollary 4.33. Under Assumption B, the optimistic version of the bilevel programming prob-
lem 4.2 is equivalent to the following problem:

min
z∗∈CTP∩Zn

inf
y∈φ−1(C′

z∗ )
f(z∗, y)

Proof. According to Lemma 4.30, the low-level of Problem 4.2 is described by the same tropical
polynomial Q as the low-level of Problem 4.1. Hence, according to Proposition 4.12, the set of
possibles z∗ when y describes Rn is equal to CTP∩Zn. Lemma 4.31 states that for each y ∈ Rn,
the feasible set of values of z∗ is equal to φ(Cy) ∩ Zn. However, z∗ ∈ φ(Cy) ⇔ y ∈ φ−1(C′z∗)
according to Lemma 3.12.

We can now write the corresponding version for the discrete bilevel problem 4.2 of Theo-
rem 4.17.

Theorem 4.34 (Reduction of discrete optimistic bilevel programming to cell enumeration).
Under Assumption B, the optimistic version of the discrete bilevel programming problem 4.2 is
equivalent to the following problem:

min
C∈S

[
inf
y∈C

min
z∗∈φ(C)∩Zn

f(z∗, y)

]
.

If f is inf-compact and lower semicontinuous in y, then an optimistic solution exists.
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Proof. Under Assumption B, according to Corollary 4.32 and by noticing that Rn =
⋃
C∈S C,

the optimistic version of Problem 4.2 is equivalent to:

min
C∈S

[
inf
y∈C

min
z∈φ(Cy)∩Zn

f(z, y)

]
.

Hence, it suffices to prove that
⋃
C∈S{(z, y) | y ∈ C, z ∈ φ(C) ∩ Zn} = {(z, y) | z ∈ φ(Cy)}. The

proof is the same as for Theorem 4.17. If f is inf-compact and lower semicontinuous in y, then
for every C ∈ S the minimum is attained in infy∈C maxz∈φ(C)∩Zn f(z, y). The minimum is always
attained in infz∈φ(Cy)∩Zn f(z, y) since φ(Cy) ∩ Zn is a discrete finite set.

As for Problem 4.1, a similar result exists for the pessimistic version of Problem 4.2.

Theorem 4.35 (Reduction of discrete pessimistic bilevel programming to cell enumeration).
Suppose that for each z ∈ CTP ∩Zn, the function y 7→ f(z, y) is continuous over Rn. Then, the
value of the pessimistic version of Problem 4.2 (discrete bilevel problem) is given by:

min
C∈S

[
inf
y∈C

max
z∗∈φ(C)∩Zn

f(z∗, y)

]
. (4.22)

Moreover, if an optimal solution of 4.22, then for each ε > 0, there exists an ε-solution of the
pessimistic version of Problem 4.2.

Proof. The proof is the same as for Theorem 4.18. Since φ(C) ∩ Zn is discrete and finite for
every C ∈ S, the continuity of f in z is not required.

Using again the bijection between S and S ′, we arrive at the following corollary:

Corollary 4.36 (Reduction of discrete bilevel programming to dual cell enumeration).

1. Under Assumption B, the optimistic version of the discrete bilevel programming problem 4.2
is equivalent to the following problem:

min
C′∈S′

[
inf

y∈φ−1(C′)
min

z∈C′∩Zn
f(z, y)

]
.

2. Assume that for every C′ ∈ S ′ and every z ∈ φ(C′) ∩ Zn, the function y 7→ f(z, y) is
continuous over C′. Then, the pessimistic value of Problem 4.2 is the optimal value of the
following problem:

min
C′∈S′

[
inf

y∈φ−1(C′)
max

z∈C′∩Zn
f(z, y)

]
Proof. As in the proof of Corollary 4.19, this result comes straightforwarly from the bijection
between the cells of S and those of S ′, and from the results of Theorem 4.34 and 4.35.

4.2.4 Tropical interpretation of Problem 4.3

In this section, we consider Problem 4.3(extreme points bilevel problem), in which the low-level
problem becomes maxx∈E(P)〈ρ+ Cy, x〉. According to Equation 4.13, we can write:

max
x∈E(P)

〈ρ+ Cy, x〉 = max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] = Q(y).
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Lemma 4.37. The bilevel programming problem 4.3 is equivalent to:

“ min ”
y∈Rn

f(z∗, y),

with z∗ solution of maxz∈CT E(P) [〈y, z〉+ ϕ(z)].

Proof. By using (4.13), the proof is similar to the proof of Lemma 4.13.

Then, as in Section 4.2.2, the value of the low-level problem of Problem 4.3 is an evaluation
of the tropical polynomial Q. It means that we can have the same tropical interpretation as
in the previous subsections for solving Problem 4.3 (extreme points bilevel problem). Since
the low-level of Problem 4.3 is a maximization of a linear function over a finite set, it has a
discrete structure. This means that we can apply the tropical approach for solving a discrete
bilevel problem without any additionally assumption (in Section 4.2.3, we made Assumption B
to apply this approach).

Although the low-level values of both bilevel problems 4.1 (continuous bilevel problem) and
4.3 (extreme points bilevel problem) are equal, both problems are not equivalent. The set of the
low-level solutions of both problems are different, according to the following result.

Lemma 4.38. Consider a vector y ∈ Rn. Then:

z∗ ∈ arg max
z∈CT E(P)

[〈y, z〉+ ϕ(z)]⇔ z∗ ∈ φ(Cy) ∩ CTE(P).

Proof. According to Proposition 4.12, it suffices to show:

arg max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] =

(
arg max
z∈CTP

[〈y, z〉+ ϕ(z)]

)
∩ CTE(P).

It comes directly from (4.13).

Corollary 4.39. The optimistic version of Problem 4.3 is equivalent to:

inf
y∈Rn

min
z∗∈φ(Cy)∩CT E(P)

f(z∗, y),

whereas the pessimistic one is equivalent to:

inf
y∈Rn

max
z∗∈φ(Cy)∩CT E(P)

f(z∗, y).

Proof. Same proof as Corollary 4.32 by replacing φ(Cy) ∩ Zn by φ(Cy) ∩ CTE(P).

Corollary 4.40. The optimistic version of the bilevel programming problem 4.3 is equivalent to
the following problem:

inf
z∗∈CT E(P)

inf
y∈φ−1(C′

z∗ )
f(z∗, y).

Proof. Same proof as Corollary 4.33 by replacing CTP ∩ Zn by CTE(P).

We can now state the corresponding version for Problem 4.3 of Theorem 4.17.
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Theorem 4.41 (Reduction of optimistic bilevel programming with extreme points to cell enu-
meration). The optimistic version of Problem 4.3 (extreme points bilevel problem) is equivalent
to the following problem:

min
C∈S

[
inf
y∈C

min
z∗∈φ(C)∩CT E(P)

f(z∗, y)

]
.

If f is inf-compact and lower semicontinuous in y, then an optimistic solution exists.

Proof. Same proof as Theorem 4.34 by replacing φ(C) ∩ Zn by φ(C) ∩ CTE(P).

We can also write an equivalent of Theorem 4.18 for the pessimistic version of Problem 4.3.

Theorem 4.42 (Reduction of pessimistic bilevel programming with extreme points to cell enu-
meration). Suppose that for each z ∈ CTE(P), the function y 7→ f(z, y) is continuous over Rn.
Then, the value of the pessimistic version of Problem 4.1(extreme points bilevel problem) is given
by:

min
C∈S

[
inf
y∈C

max
z∗∈φ(C)∩CT E(P)

f(z∗, y)

]
. (4.23)

Moreover, if an optimal solution of 4.23, then for each ε > 0, a ε-solution of the pessimistic
version of Problem 4.3 exists.

Proof. Same proof as Theorem 4.35 by replacing φ(C) ∩ Zn by φ(C) ∩ CTE(P).

Corollary 4.43 (Reduction of bilevel programming with extreme points to dual cell enumera-
tion).

1. The optimistic version of Problem 4.3(extreme points bilevel problem) is equivalent to the
following problem:

min
C′∈S′

[
inf

y∈φ−1(C′)
min

z∈C′∩CT E(P)
f(z, y)

]
.

2. Assume that for every C′ ∈ S ′ and every z ∈ φ(C′) ∩ CTE(P), the function y 7→ f(z, y) is
continuous over C′. Then, the pessimistic value of Problem 4.3 is the optimal value of the
following problem:

min
C′∈S′

[
inf

y∈φ−1(C′)
max

z∈C′∩CT E(P)
f(z, y)

]
Proof. Same proof as Corollary 4.36 by replacing C′ ∩ Zn by C′ ∩ CTE(P).

4.2.5 An example

We consider again the example introduced in Section 4.1, that is n = 2, k = 4, P defined by
P = {x ∈ R4 | ∀i, 0 ≤ xi ≤ 1 and x1 + x3 ≤ 1}, and the vector ρ and the matrix C defined by:

ρ =


−2
−1
0
1

 et C =


1 0
0 1
1 0
0 1


The tropical polynomial Q defined by the low-level problem is Q(y) = max(0, y1, y2 + 1, y1 +

y2 + 1, 2y2, y1 + 2y2). Its associated tropical hypersurface is drawn on Figure 4.1. Hence, the
subdivision S contains 15 cells:
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• 6 two-dimensional cells corresponding to the areas in which each monomial is maximal.
The image by the application φ of each of this cell is the corresponding exponent of
the monomial. For example, the cell C = {(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≤ −1} verifies
φ(C) = {(0, 0)}.

• 7 one-dimensional cells corresponding to the border between two two-dimensional cells.
The image by φ of the border is the convex hull of the image by φ of the two two-
dimensional cells. For example, the cell C = {(y1, y2) ∈ R2 | y1 ≤ 0, y2 = −1} verifies
φ(C) = Conv((0, 0), (0, 1)).

• 2 zero-dimensional cells corresponding to the apices of the tropical hypersurface. They
are the intersection points of the different one-dimensional cells. For example, the cell
C = {(0,−1)} verifies φ(C) = [0, 1]2.

Here, we define the high-level function f by f(z∗, y) = (z∗1)2 + 〈y, z∗〉. We apply The-
orem 4.17 to solve Problem 4.1. For each cell C ∈ S, we have to solve the optimistic version
miny∈C, z∗∈φ(C) f(z∗, y) and the pessimistic version miny∈C maxz∗∈φ(C) f(z∗, y) of the bilevel prob-
lem.

C φ(C) Optimistic case Pessimistic case
{(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≤ −1} {(0, 0)} 0 0
{(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≤ −1} {(1, 0)} 1 1
{(y1, y2) ∈ R2 | y1 ≤ 0, −1 ≤ y2 ≤ 1} {(0, 1)} -1 -1
{(y1, y2) ∈ R2 | y1 ≥ 0, −1 ≤ y2 ≤ 1} {(1, 1)} 0 0
{(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≥ 1} {(0, 2)} 2 2
{(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥ 1} {(1, 2)} 3 3
{(y1, y2) | y1 = 0, y2 ≤ −1} [0, 1]× {0} 0 0
{(y1, y2) | y1 ≤ 0, y2 = −1} {0} × [0, 1] -1 0
{(y1, y2) | y1 ≥ 0, y2 = −1} {1} × [0, 1] 0 1
{(y1, y2) | y1 = 0, −1 ≤ y2 ≤ 1} [0, 1]× {1} -1 0
{(y1, y2) | y1 ≤ 0, y2 = 1} {0} × [1, 2] 1 2
{(y1, y2) | y1 ≥ 0, y2 = 1} {1} × [1, 2] 2 3
{(y1, y2) | y1 = 0, y2 ≥ 1} [0, 1]× {2} 2 3

{(0,−1)} [0, 1]2 -1 1
{(0, 1)} [0, 1]× [1, 2] 1 3

Table 4.2: List of cells of S and of dual cells of S ′, with the solution of each subproblem in the
optimistic and pessimistic case of the continuous bilevel problem 4.1.

We notice that the function f is not inf-compact over every φ(C) × C. For instance for the
cell

C = {(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≤ −1},

we have φ(C) = {(0, 0)} and f(z, y) = 0 for every (z, y)×φ(C)×C. In fact, we have the following
property. For each C ∈ S, there exists a compact set K ⊂ S such that:

inf
y∈C

min
z∈φ(C)

f(z, y) = min
y∈K, z∈φ(C)

f(z, y),
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which guarantees that the minimum is attained.
We conclude that both optimistic and pessimistic versions have the same solution −1. An

optimistic solution is for instance z∗ = (0, 1) and y∗ = (−1,−1). However, a pessimistic solution
does not exist. In fact, the pessimistic value −1 is the optimal solution of the problem:

min
y1≤0, −1≤y2≤1

max
z=(0,1)

(z1)2 + y1z1 + y2z2 = min
y1≤0, −1≤y2≤1

y2.

It is attained for every y1 ≤ 0 and y2 = −1. However, take y = (y1,−1) with y1 < 0. Then, the
minimal cell Cy = {(y′1, y′2) ∈ R2 | y′1 ≤ 0, y′2 ≤ −1}. Thus, φ(Cy) = {0} × [0, 1]. Consequently,
in the pessimistic case, the follower chooses the optimal solution z∗ such that:

f(z∗, y) = max
z∈φ(Cy)

f(z, y) = max
0≤z2≤1

−z2 = 0.

However, consider for each ε > 0 the point yε = (−1,−1 + ε). In this case φ(Cyε) = {(0, 1)}.
Then, maxz∈φ(Cyε ) f(z, yε) = (yε)2, and the pessimistic value is then equal to −1 + ε. An
ε-solution is z∗ = (0, 1) and y∗ = (−1,−1 + ε).

Moreover, we have:

[
C AT

]
=


1 0 1 0 0 0 −1 0 0 0 1
0 1 0 1 0 0 0 −1 0 0 0
1 0 0 0 1 0 0 0 −1 0 1
0 1 0 0 0 1 0 0 0 −1 0


It is not difficult to see that this matrix is totally unimodular. This can be seen either by a
routine verification, or by applying an elementary lemma of Poincaré showing that if a matrix
has entries in {0,±1} with at most one elements of a given sign on every column, this matrix
is totally unimodular. Poincaré’s lemma can be applied to the matrix obtained by changing the
sign of all the entries in the third and fourth row of the matrix above, noting that this change
of sign does not alter total unimodularity. Consequently, Assumption B is true. Hence, we can
solve Problem 4.2 by applying Theorem 4.34.

We only have to consider for each subproblem the integer points of φ(C). We easily check
that both optimistic and pessimistic versions of Problem 4.2 have also the same solution −1.

4.3 Generalization of the tropical approach

To conclude with this chapter, we study if it is possible to generalize the results of Section 4.2
to more general classes of bilevel programming problems.

4.3.1 Generalization of the low-level problem

We show in Lemma 4.23 that the low-level part of the discrete bilevel problem 4.2 corresponds
to:

max
z∈CTP∩Zn

〈y, z〉+ ϕI(z),

where the function ϕ is defined by:

ϕI(z) = max
x∈I(P), z=CT x

〈ρ, x〉.
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ϕI is a piecewise-linear concave function defined over CTP. CTP ∩Zn is a finite set because
CTP is bounded. Hence, the low level of the discrete problem 4.2 defines a tropical polynomial,
as we already show. The reason why the low level defines a tropical polynomial is that it consists
in a maximization of tropical monomials over a finite set. No additional assumption has to be
done over the coefficients of the monomials.

This means that we can generalize the discrete bilevel problem 4.2 of problems of the following
form:

Problem 4.44 (General discrete bilevel problem).

“ min ”
y∈Rn

f(z∗, y) (4.24)

with z∗ solution of:
max

z∈CTP∩Zn
〈y, z〉+ ϕ̃(z), (4.25)

where ϕ̃ is any concave function over CTP.

Let ϕ̃I be the restriction to CTI(P) of ϕ̃. Then, the function:

y 7→ max
z∈CT I(P)

[〈y, z〉+ ϕ̃I(z)]

defines a tropical polynomial. Then, under Assumption B, we can apply the same approach as
in Section 4.2.3 for the general discrete problem 4.44. The same results are valid if we assume
B.

We also generalize bilevel problem 4.3 (extreme points bilevel problem) to problems of the
following form:

Problem 4.45 (General version of the extreme points bilevel problem).

“ min ”
y∈Rn

f(z∗, y) (4.26)

with z∗ solution of:
max

z∈CT E(P)
〈y, z〉+ ϕ̃(z). (4.27)

where ϕ̃ is any concave function over CTP.

Let ϕ̃E be the restriction to CTE(P) of ϕ̃. Then, the function:

y 7→ max
z∈CT E(P)

[〈y, z〉+ ϕ̃E(z)]

defines also a tropical polynomial. Then, we can apply the same approach as in Section 4.2.4
for the general bilevel problem 4.45. The same results are valid.

Finally, this generalization cannot be applied to the continuous bilevel problem 4.1. Assume
that the function ϕ defined by (4.12) is any concave function. The low-level problem of 4.1
consists in a maximization over a polytope. Then, the number of monomials is infinite, and it
does not define generally a tropical polynomial. We need the piecewise-linearity of ϕ to introduce
the tropical structure.
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4.3.2 Generalization of the high-level problem

On the contrary of the low-level of Problem 4.1(continuous bilevel problem), the high level is
quite general because we consider general functions f . However, we assumed that f depends on
CTx∗ and y, where x∗ ∈ arg maxx∈P〈ρ+ Cy, x〉. In particular, the matrix C appears twice. A
generalization of the continuous problem 4.1 is the following problem.

Problem 4.46.
“ min ”
y∈Rn

h(x∗, y) (4.28)

with x∗ solution of:
max
x∈P
〈ρ+ Cy, x〉 (4.29)

In fact, we can reduce the general bilevel problem 4.46 to the continuous bilevel problem 4.1,
according to the following theorem:

Theorem 4.47. 1. The optimistic version of Problem 4.46 is equivalent to Problem 4.1 with:

f(z∗, y) = inf
x∈P

CT x=z∗
ϕ(z∗)=〈ρ,x〉

h(x, y),

where ϕ(z∗) = maxx∈P, CT x=z∗〈ρ, x〉.

2. The pessimistic version of Problem 4.46 is equivalent to Problem 4.1 with:

f(z∗, y) = sup
x∈P

CT x=z∗
ϕ(z∗)=〈ρ,x〉

h(x, y).

Proof. Let z∗ ∈ CTP. According to Proposition 4.12, there exists y ∈ Rn such that z∗ ∈
arg maxz∈CTP〈y, z〉 + ϕ(z). Let x∗ ∈ P. If ϕ(CTx∗) > 〈ρ, x∗〉, then there exists x ∈ P such
that CTx∗ = CTx and ϕ(CTx∗) = 〈ρ, x〉. Then, for all y ∈ Rn:

〈ρ+ Cy, x∗〉 < 〈ρ, x〉+ 〈y, CTx∗〉 = 〈ρ+ Cy, x〉.

If ϕ(CTx∗) = 〈ρ, x∗〉, then there exists y ∈ Rn such that for each z ∈ CTP, 〈y, CTx∗〉 +
ϕ(CTx∗) ≥ 〈y, z〉 + ϕ(z), that is for all x ∈ P, 〈ρ + Cy, x∗〉 ≥ 〈ρ + Cy, x〉. Consequently, a
point x∗ ∈ P is such that there exists y ∈ Rn with x∗ ∈ arg maxx∈P〈ρ + Cy, x〉 if and only if
ϕ(CTx∗) = 〈ρ, x∗〉. Moreover, for a fixed y ∈ Rn, the set of optimal solutions z∗ of the low-level
problem:

max
z∈CTP

[〈y, z〉+ ϕ(z)]

is φ(Cy) according to Lemma 4.14.
Hence, the optimistic version of the general continuous problem 4.46 is equivalent to:

inf
y∈Rn

inf
x∗∈P

CT x∗∈φ(Cy)

ϕ(CT x∗)=〈ρ,x∗〉

h(x∗, y),

and the pessimistic version of Problem 4.46 is equivalent to:

inf
y∈Rn

sup
x∗∈P

CT x∗∈φ(Cy)

ϕ(CT x∗)=〈ρ,x∗〉

h(x∗, y),
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according to Corollary 4.15. The statement of the theorem comes directly from these equiva-
lences.

We notice that the value of the low-level problem of Problem 4.46 corresponds to the value
of a tropical polynomial. We recall the tropical polynomial P defined by:

∀u ∈ Rk, P (u) = max
x∈E(P)

[〈u, x〉+ 〈ρ, x〉] .

Then, the low-level value of the general continuous problem 4.46 is:

max
x∈P
〈ρ+ Cy, x〉 = max

x∈E(P)
〈ρ+ Cy, x〉 = P (Cy),

as stated in Equation 4.11. The Newton polytope New(P ) of P is equal to P. The coefficients
of the different monomials are defined by a linear function. Then, the graph of the function
x ∈ P 7→ 〈ρ, x〉 is a k-dimensional polyhedron in Rk+1, meaning that the extended Newton
polytope of P contains only one bounded n-dimensional face. Hence, the subdivision S ′ of
New(P ) is:

S ′ = {C′ ∈ S ′ | C′ is a face of P}.
Consider the bijection φ between the subdivision S associated to the tropical hypersurface T (P )
and the subdivision S ′ of New(P ) (see Section 3.3). Then, for every C′ ∈ S ′, φ−1(C′) is defined
by:

φ−1(C′) = {u ∈ Rk | ∀x′ ∈ E(C′), 〈ρ+ u, x′〉 = max
x∈E(P)

〈ρ+ u, x〉}.

It means that the cells of the subdvision S associated to the tropical hypersurface T (P ) corre-
spond to the normal fan of P in each of this face.

The tropical approach can be applied to the general problem 4.46 by using the tropical
polynomial P . Problem 4.46 can be rewritten as follows:

“ min ”
u∈Rk

[
inf

y∈Rn,u=Cy
h(x∗, y)

]
,

with x∗ ∈ arg maxx∈P〈ρ + Cy, x〉. By defining g(x∗, u) = infy∈Rn,u=Cy h(x∗, y), the high-level
problem of 4.46 becomes:

“ min ”
u∈Rk

[g(x∗, u)] .

Then, we can apply the results of Section 4.2.2 to Problem 4.46, by considering the tropical
polynomial P and the subdivision S and S ′ associated to P . We have in particular the following
result.

Proposition 4.48. Assume that the function h is continuous over P×Rn . Then, the optimistic
version of the general bilevel programming problem 4.46 is equivalent to the following problem:

min
C′∈S′

[
inf

y∈Rn,Cy∈φ−1(C′)
min
z∈C′

f(z, y)

]
.

Proof. Let g(x, u) = infy∈Rn,u=Cy h(x, y). If h is continuous over P × Rn, then g is continuous
over P × Rk. Then, by Corollary 4.19, the optimistic version of Problem 4.46 is equivalent to:

min
C′∈S′

[
inf
x∈C′

inf
u∈φ−1(C′)

g(x, u)

]
.

We deduce the statement of the proposition.



CHAPTER 5
Cell enumeration applied to bilevel
programming: general complexity

results

In this chapter, we deal with the class of bilevel programming problems introduced in Chapter 4.
Here, n denotes the dimension of the high-level problem, whereas k denotes the dimension of the
low-level problem. For the different problems of this class (continuous, discrete, extreme points
problems), we established that the low-level defines a tropical polynomial Q in n variables. This
tropical polynomial defines a subdivision S. There exists a bijection φ between the cells of S
and the cells of another subdivision C′, which is a regular subdivision of New(Q) = CTP, where
C ∈Mk,n(R) and P is a polytope of Rk defined by:

P = {x ∈ Rk | Ax ≤ b}, (5.1)

where b ∈ Rp and A ∈Mp,k(R).
The tropical approach leads to a reduction of the problems to a series of optimization sub-

problems. Each of these subproblems is associated to a cell C of the subdivision S.
The aim of this chapter is to use this reduction to propose an algorithm which returns an

optimal solution of the different bilevel problems and to estimate its complexity. In the rest of
this chapter, we denote by:

• (BP) : one of the bilevel problem among the optimistic and pessimistic version of the
continuous problem 4.1, the discrete problem 4.2 and the extreme points problem 4.3.
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• Th. (BP): the theorem of Section 4.2 establishing the reduction of (BP) into a series
of optimization subproblems. According to the nature of (BP), Th. (BP) is one of the
following theorems: 4.17, 4.18, 4.34, 4.35, 4.41 and 4.42.

• (SPC): the kind of subproblems to solve for solving (BP) according to Th. (BP). We recall
them for each type of bilevel problem (BP) in Chapter 5.

Optimistic version Pessimistic version
Problem 4.1 miny∈C, z∗∈φ(C) f(z∗, y) miny∈C maxz∗∈φ(C) f(z∗, y)

Problem 4.2 miny∈C, z∗∈φ(C)∩Zn f(z∗, y) miny∈C maxz∗∈φ(C)∩Zn f(z∗, y)

Problem 4.3 miny∈C, z∗∈φ(C)∩CT E(P) f(z∗, y) miny∈C maxz∗∈φ(C)∩CT E(P) f(z∗, y)

Table 5.1: The different subproblems (SPC) to solve.

For the rest of this chapter, we consider that we study the bilevel problem (BP) together
with the following assumption:

Assumption C. The high-level function of Problem (BP) is such that Th. (BP) guarantees
the existence of an optimal solution to (BP) if (BP) is an optimistic bilevel problem, or of an
ε-solution (for every ε > 0) to (BP) if (BP) is a pessimistic bilevel problem.

According to the different type of problem (BP), Assumption C is satisfied for instance if f
is inf-compact, lower semicontinuous in z . . . (see precisely the corresponding theorem Th. (BP)
to have the precise assumptions).

To explain the idea, we consider for instance (BP) as the optimistic version of the continuous
bilevel problem 4.1. Here, Th. (BP) is Theorem 4.17. We established in Theorem 4.17 that this
problem is equivalent to:

min
C∈S

[
inf
y∈C

inf
z∈φ(C)

f(z, y)

]
.

Under Assumption C, an optimal solution exists. Assumption C is true if f is jointly lower
semicontinuous and inf-compact. The subproblem (SPC) is the following one:

inf
y∈C

inf
z∈φ(C)

f(z, y),

where C is a polyhedron defined by a set of inequalities, and φ(C) is a polytope defined as
the convex hull of its vertices. For instance, if f is convex in y and z∗, then each subproblem
of the optimistic version of Problem 4.1 can be solved thanks to classical convex optimization
techniques (gradient algorithm, Newton or interior point methods, . . . ).

Intuitively, the sketch of the algorithm is the following. In order to define each subproblem,
we need first to compute the cells of the subdivision S and the dual cells in S ′. We will refer to
this task as cell enumeration, being understood that we are interested in listing effectively all
the cells, not just counting them. By definition of S, the cells are the projection of the faces of
the epigraph epi(Q) of Q. So, we have equivalently to enumerate the faces of epi(Q). We use
an algorithm proposed by Fukuda, Liebling and Margot [FLM97]. These faces are defined by
a set of inequalities. Then, we determine the dual cell φ(C). By definition of the bijection φ
given in Section 3.3, the dual cell φ(C) is given by the set of its vertices. We assume that it is
"easy" to solve each subproblem when the different cells C and their dual cells φ(C) are defined
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respectively by a list of inequalities and by the convex hull of their vertices. We can consequently
solve each subproblem. We obtain the optimal solution and the optimal value. Finally, we keep
the minimal optimal value, and the corresponding optimal solution.

Algorithm 2 Sketch of the algorithm to solve the bilevel problem (BP)

1. Determine a definition of epi(Q) by a list of inequalities.

2. Enumerate the faces of epi(Q). Deduce the cells C of S and the dual cells φ(C).

3. Solve each subproblem.

4. Deduce the optimal value of the bilevel problem.

As in Chapter 4, we are interested in the case in which the dimension of the high-level
problem n is much smaller than the dimension of the low-level problem k. Consequently, we want
to answer to the following question: is there an implementation of the approach of Algorithm 2
such that its complexity depends polynomially of the low-level dimension k, when all other
parameters are fixed ?

Intuitively, if each subproblem is "easy" to solve, the complexity of such an algorithm depends
on the total number of subproblems, that is the total number of cells of S. It depends also on the
number of operations needed to enumerate all the cells of S. The enumeration of the cells of S is
developed in Section 5.1.2. The complexity of the algorithm of Fukuda et al. [FLM97] depends on
the total number of cells in S and on the number of inequalities needed to define the polyhedron
epi(Q). Finally, it depends on the number of operations needed to obtain these inequalities.
We also show in Section 5.1.2 that these inequalities can be obtained in polynomial time in the
low-level dimension when the high-level dimension is fixed under the following assumption, that
we make for the rest of this chapter.

Assumption D. The polytope P is an integer polytope of Rk and the matrix C has integer
entries. If (BP) is the optimistic or pessimistic version of the discrete bilevel problem 4.2, then
we assume additionally that the matrix [C AT ] is totally unimodular.

In a second time, we estimate the number of cells of S. This is the topic of Section 5.2. In
the general case, we provide an upper bound over the total number of faces in S. This upper
bound requires Assumption D. Moreover, we focus on a particular case in which the Newton
polytope of Q, that is CTP, is a simplex. By duality, the number of cells of S is equal to the
number of cells of the dual subdivision S ′ of CTP. We show that when the high-level dimension
n is small (n ≤ 4), it is possible to find a better upper bound of the total number of cells of S ′
which is attained for a particular subdivision, called edgewise subdivision, of S ′.

In Section 5.3, we use these upper bounds to estimate the total complexity of Algorithm 2.
We prove in particular the main result of this chapter.

Theorem 5.1 (Fixed parameter tractability of the bilevel problem (BP)). Assume that an
ε-solution of each subproblem (SPC) can be obtained in polynomial time when the high-level
dimension is fixed. Then, Algorithm 2 returns an ε-solution of (BP) in polynomial time in the
low-level dimension and in a metric estimate of CTP, when the high-level dimension is fixed.

This theorem is proved for each possible bilevel problem (BP). The complexity bounds are
in fact different for each problem, but they have the property stated in Theorem 5.1.

Finally, in Section 5.4, we discuss the results proven is this chapter.
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5.1 Enumerating the cells

5.1.1 Determining the epigraph

In this section, we recall that we study the bilevel problem (BP), which satisfies Assumption C.
We recall also that we make Assumption D. Hence, the low-level problem of (BP) defines a
tropical polynomial Q, which is defined by:

∀y ∈ Rn, Q(y) = max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] ,

where ϕ is defined by:
∀z ∈ CTP, ϕ(z) = max

x∈P, CT x=z
〈ρ, x〉. (5.2)

We refer the reader to Section 4.2.1 for the introduction of the different notations.
The epigraph epi(Q) of Q is then an unbounded polyhedron of Rn+1 defined by a list of

inequalities:

epi(Q) = {(y, yn+1) ∈ Rn × R | ∀z ∈ CTE(P), yn+1 ≥ 〈y, z〉+ ϕ(z)}.

The projection of the faces of epi(Q) over the n first entries defines a regular subdivision S.
Our first aim is to determine the inequalities defining epi(Q). It suffices to know the points

of CTE(P). However, P ⊂ Rk, where k is the low-level dimension of (BP). Then, the number of
vertices of P can be exponential in k. Since we deal with bilevel problems with a large low-level
dimension, we have to avoid to enumerate directly the vertices of P.

Since Assumption D is satisfied, we have E(P) ∈ Zk and CTE(P) ∈ Zn. Then, the following
inclusion chain holds:

CTE(P) ⊂ CTP ∩ Zn ⊂ CTP. (5.3)

Moreover, by using Equations (4.11), (4.13), and (4.14), we have for every y ∈ Rn:

Q(y) = max
z∈CT E(P)

[〈y, z〉+ ϕ(z)] = max
x∈E(P)

〈ρ+ Cy, x〉 = max
x∈P
〈ρ+ Cy, x〉

= max
z∈CTP

[〈y, z〉+ ϕ(z)] .

Then, it follows:
Q(y) = max

z∈CTP∩Zn
[〈y, z〉+ ϕ(z)] . (5.4)

Consequently, the polyhedron epi(Q) is described by the following inequalities:

epi(Q) = {(y, yn+1) ∈ Rn × R | ∀z ∈ CTP ∩ Zn, yn+1 ≥ 〈y, z〉+ ϕ(z)}.

We denote by nZ the number of integer points in CTP, that is:

nZ = #
(
CTP ∩ Zn

)
.

To estimate the number nZ of integer points in CTP, we have the following result.

Proposition 5.2. Let R be a strictly positive real defined by:

R = k‖C‖∞max
j∈[k]

(| min
x∈P

xj |, | |max
x∈P

xj |). (5.5)

Then, CTP ∩ [−R,R]n.
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Proof. Let z ∈ CTE(P). Then, there exists x ∈ E(P) such that z = CTx. For every i ∈ [n], we
have:

zi =
k∑
j=1

cjixj .

For every j ∈ [k], we define mj = minx∈P xj and Mj = maxx∈P xj . Then, for every j ∈ [k], we
have mj ≤ xj ≤Mj . Then, for every i ∈ [n]:

|zi| ≤
k∑
j=1

|cji||xj | ≤ k‖C‖∞max
j∈[k]

(|mj |, |Mj |).

Corollary 5.3. The number nZ of integer points in CTP ∩ Zn satisfies:

nZ ≤ (2R+ 1)n.

Proof. It comes directly from Proposition 5.2 since the number of integer points in [−R,R]n is
equal to (2R+ 1)n.

Finally, we have to calculate ϕ(z) for every z ∈ CTP ∩ Zn. Let z ∈ [−R,R]n ∩ Zn. By
Equation 5.2, if z /∈ CTP, then we have ϕ(z) = −∞. To evaluate ϕ(z) for every z ∈ [−R,R]n,
we solve a linear program in dimension k defined by p inequalities and n equalities. By replacing
CTx = z by CTx ≤ z and CTx ≥ z, we can formulate this linear program with p+2n inequality
constraints. For the rest of this chapter, we denote by LP(m,n,L) the time needed to solve a
linear program in dimension n with m inequality constraints, when the input size of the linear
program is coded by L bits. A large class of algorithms exist to solve such a problem, like the
simplex algorithm, interior point methods . . . . In particular, the interior point methods (see
[Kar84, Ren88]) provide a polynomial time algorithm for solving a linear program. Renegar
[Ren88] proved LP(m,n,L) = O((m+ n)3.5L).

Proposition 5.4. The set of points:

{(z, ϕ(z)) | z ∈ CTP ∩ Zn},

can be obtained in O((2R)n LP(p+ 2n, k, L)) time, where L is the input size.

Proof. We need to solve (2R + 1)n linear programs in dimension k with p + 2n inequality
constraints to decide whether z ∈ [−R,R]n belongs to CTP ∩ Zn or not, and if it does, to
calculate the value ϕ(z).

Consequently, it is possible to obtain a description of epi(Q) by a list of inequalities in
polynomial time in the dimension of the low-level problem.

5.1.2 Algorithm for enumerating the cells of S

In this section, we show how to obtain all the cells of S, or equivalently, all the faces of the
polyhedron epi(Q) defined by:

epi(Q) = {(y, yn+1) ∈ Rn × R | ∀z ∈ CTP ∩ Zn, yn+1 ≥ 〈y, z〉+ ϕ(z)}.
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It is a (n+ 1)-dimensional polyhedron defined by nZ inequalities.
In [HJP13], Herrmann, Joswig and Pfetsch study the different existing algorithms to enu-

merate the faces of an unbounded polyhedron. Two types of algorithm exist. The first type
consists in enumerating directly the faces of a polyhedron given by a set of inequalities. Such
an algorithm was developed by Fukuda, Liebling and Margot in [FLM97]. Assume that the
polyhedron is {x ∈ Rn | Ax ≤ b}, where b ∈ Qm and A is a m× n matrix with rational entries.
The different inequalities give a list of possible facets of the polytope. One defines possible faces
as intersections of these facets, and a linear program is solved to know whether such a face
exists or not. The algorithm returns all the faces of the polyhedron in O(mLP(m,n,L)f) time,
where L is the input size and f the total number of faces of the polyhedron. We can then apply
directly this algorithm to enumerate all the faces of epi(Q).

Theorem 5.5 (Corollary of Th. 3.1 of [FLM97]). The faces of the polyhedron epi(Q) can be
enumerated in O(nZ LP(nZ, n + 1, L)f) time, where L is the input size and f the total number
of faces of epi(Q).

This approach needs to solve a large number of linear programs. The second type of al-
gorithms is applied only on bounded polyhedron. In [FR94], Fukuda and Rosta propose an
algorithm to enumerate all the faces of a polytope when its vertex-facet incidence matrix is
given. The rows of such a matrix represent the vertices of the polytope, whereas the columns
represent the facets. Then, UvF = 1 if the vertex v belongs to F , and UvF = 0 otherwise. That
needs to know all the facets and all the vertices of the polytope, and the vertices belonging to
each facet. If we consider a polytope of Rn with fn facets and f0 vertices, and denoting by f the
total number of faces of the polytope, the algorithm runs in O(min(fn, f0)nf2). If the polytope
is simple and if a good orientation of the graph induced by the polytope is provided, the algo-
rithm can be accelerated to O(nf). In [KP02], Kaibel and Pfetsch propose another algorithm
which improves the complexity bound of Fukuda and Rosta. With a given vertex-facet incidence
matrix, the algorithm generates the face lattice of the polytope in O(min(fn, f0)αf), where α
is the number of ones in the incidence matrix. The complexity can also be improved for simple
polytopes in O(nαf) with no special orientation provided.

When a polyhedron is given by a list of inequalities, meaning that we know its facets, we
need first to enumerate its vertices. In [AF92], Avis and Fukuda propose an algorithm based on
reverse search (see [AF96]) to solve the following problem: given a m×n matrix A and a vector
b ∈ Rm, what are the vertices of the polyhedron {x ∈ Rn | Ax ≤ b}. The general time complexity
of the proposed algorithm is O(m2n

(
m
n

)
). However, if the polyhedron {x ∈ Rn | Ax ≤ b} is

non-degenerate, that is each vertex is defined by exactly n equalities, the algorithm is output
sensitive and the complexity is O(m2nv), where v is the number of vertices of the polyhedron.
This already leads to a considerable improvement since McMullen’s upper bound theorem shows
that v is of order

(
m
n/2

)
. Moreover, if the polyhedron is simple (that is each facet has exactly n

vertices), the algorithm can be accelerated to O(mnv) time.
When a polyhedron is unbounded, its vertices can be enumerated by the algorithm proposed

by Avis and Fukuda. However, to use the algorithm proposed by Kaibel and Pfetsch to enumerate
the faces, we need to bound the polyhedron, by introducing one or several additional facets. Such
an approach is proposed in Appendix A.

The second type of algorithms need to bound the polyhedron epi(Q). However, they do not
need to solve a linear program. In particular if epi(Q) is simple, the bound gives by Avis and
Fukuda algortihm is much better than in the general case, and to apply this type of algorithms
can be relevant. Moreover, it depends on the number of inequalities : for a polyhedron defined
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by a very few number of inequalities, the time complexity of the algorithm proposed by Fukuda
et al. [FLM97] is small.

5.2 Counting the number of cells

In Section 5.1.2, we present an algorithm to enumerate all the cells of the subdivision S. Theo-
rem 5.5 proves that the complexity of this algorithm depends on combinatorial characteristics of
the polyhedra epi(Q) like the number of nZ of inequalties which define epi(Q), or the total num-
ber of faces f of epi(Q). Moreover, the complexity of Algorithm 2 depends also on the number
of subproblems of type (SPC) to solve (BP). The number of subproblems to solve corresponds
to the total number of faces of the polyhedron epi(Q).

In this section, we try to identify these different numbers, or to give a tighter upper bound
of these numbers. These numbers can depend on the polytope P, on the matrix C and on the
dimensions of the problem n and k. The question is to know if this number can be a polynomial
in certain of these parameters. The aim is to obtain a fixed-parameter tractability result, that
is to prove that solving the bilevel programming problems (BP) can be done in polynomial time
in certain parameters when the other ones are fixed.

We define f(S) ∈ Nn+1 as the f -vector of S (as defined in Section 3.2), that is f(S) =
(f0(S), . . . , fn(S)) with for each 0 ≤ d ≤ n, fd(S) is the number of d-dimensional cells in S.
Similarly, we denote by f(S ′) the f -vector of S ′. We recall that for each 0 ≤ d ≤ n, we have
fd(S) = fn−d(S ′), as a direct consequence of Theorem 3.8. Finally, as in Section 5.1.2, we denote
by nZ = #(CTP ∩ Zn) the number of integer points in CTP.

The different monomials of the tropical polynomial Q correspond to exponents in CTE(P).
It means that the number of full-dimensional cells in S (or equivalently of zero-dimensional cells
in S ′) is bounded by the number of points in CTE(P). We recall that CTE(P) ⊂ Zn because C
has only integer coefficients and P is an integer polytope.

In the next paragraph, we study the general case and find some upper bounds about the
different coordinates of the f -vectors of S and P(Q) and about the number nZ. We next study
the particular case CTP ⊂ ∆d, where ∆d denotes the d-simplex (∆d = {z ∈ Rn+ |

∑n
i=1 zi ≤ d).

We give for small values of n (n ≤ 4) the maximal number of cells of a subdivision of ∆d. It
leads to more precise upper bounds in this case.

5.2.1 General upper bounds

Without any additional assumption, we can find some upper bounds about the numbers fd(S)
for each 0 ≤ d ≤ n and about nZ.

We recall first the next result.

Proposition 5.6. fn(S) ≤ nZ.

Proof. We have fn(S) = f0(S ′). Because P is assumed to be an integer polytope and C has
integer coefficients, we have CTE(P) ⊂ CTP ∩ Zn. Moreover, the 0-dimensional cells of S ′
correspond to points which are in CTE(P).

We observe that S ′ defines a polyhedral complex with boundary equal to the Newton polytope
of Q. The full-dimensional cells of S ′ are polyhedra with vertices included in CTE(P) ⊂ Zn. We
have the following result concerning polyhedra with integer vertices.
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Lemma 5.7. Let ∆ be a polyhedron of Rn with vertices included in Zn. Then, the volume of ∆
is such that n! Vol(∆) ∈ N.

Proof. Let ∆ be a polyhedron of Rn. If the number of vertices of ∆ is less or equal than n, then
∆ is included in an affine hyperplane of Rn and Vol(∆) = 0.

If the number of vertices of ∆ is exactly n+1, then it is a simplex. Denote by v0, . . . , vn ∈ Zn
its vertices. Then:

Vol(∆) =
1

n!
|det(v1 − v0, . . . , vn − v0)|

The matrix (v1 − v0, . . . , vn − v0) has only integer coefficients, so its determinant is an integer
and n! Vol(∆) ∈ N.

If the number of vertices of ∆ is bigger or equal than n + 2, then ∆ can be triangulated
in full-dimensional simplices T1, . . . , Tr because all polytopes have triangulations ([DLRS10],
prop. 2.2.4). We have ∀i ∈ [r] , n! Vol(Ti) ∈ N and n! Vol(∆) = n!

∑r
i=1 Vol(Ti) ∈ N.

Lemma 5.7 gives an upper bound about the number of 0-dimensional cells in S.

Proposition 5.8. The number f0(S) of 0-dimensional cells in S is such that:

f0(S) ≤ n! Vol(CTP)

Proof. We have f0(S) = fn(S ′). The n-dimensional cells in S ′ subdivide the polytope CTP.
Then, Vol(CTP) =

∑
C′n∈S′n Vol(C′n). Consider a cell C′n ∈ S ′n. It is a polyhedron with in-

teger vertices. By Lemma 5.7, we have n! Vol(C′n) ∈ N. Because C′n is full-dimensional,
then Vol(C′n) > 0. So n! Vol(C′n) ≥ 1. Moreover, n! Vol(CTP) ∈ N by Lemma 5.7. So,
n! Vol(CTP) ≥

∑
C′n∈S′n 1 = fn(S ′) = f0(S).

Moreover, it is also possible to deduce from Lemma 5.7 an upper bound about the number
of integer points in CTP, We recall first a classical lower bound theorem about simplicial balls.

Theorem 5.9 ([DLRS10], Th. 2.6.1.). Let K be a d-dimensional simplicial ball with N vertices.
Then fd(K) ≥ N − d.

Proposition 5.10. The number nZ of integer points in CTP is such that:

nZ ≤ n+ n! Vol(CTP)

Proof. Suppose that there are nZ integer points in CTP. Then, any triangulation of the point
configuration defined by these nZ integer points contains at least nZ−n full-dimensional simplices
by Theorem 5.9. All of these simplices have integer vertices. So, by Lemma 5.7, the volume of
each of these simplices is bigger or equal than 1

n! . So:

Vol(CTP) ≥ nZ − n
n!

The result comes straightforwardly.

Corollary 5.11. fn(S) ≤ n+ n! Vol(CTP)

Proof. This follows readily from Proposition 5.6 and Proposition 5.10.

It is also possible to obtain an upper bound about the total number of cells.
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Theorem 5.12. The total number
∑n

d=0 fd(S) of cells of S is such that:

n∑
d=0

fd(S) ≤ n!(2n+1 − 1) Vol(CTP)

Proof. We have
∑n

d=0 fd(S) =
∑n

d=0 fd(S ′). Hence, #S is bounded by the total number of faces
of a polytopal complex defining a subdivision of CTP. Consider a subdivision of CTP such that
the total number of faces of this subdivision is maximal. This subdivision is a triangulation. In
fact, if one of the full-dimensional cells of this subdivision is not a simplex, it can be triangu-
lated ([DLRS10], prop. 2.2.4). Then, this triangulation defines a new subdivision which more
faces than the previous one. The maximal number of simplices in a triangulation of CTP is
n! Vol(CTP), according to Proposition 5.8.

Moreover, a simplex is defined by n+1 vertices, and the convex hull of d+1 of these vertices is
a d-dimensional cell of the simplex. Hence, the number of d-dimensional cells of a simplex in Rn
is
(
n+1
d+1

)
. Hence, the total number of faces of a simplex is

∑n
d=0

(
n+1
d+1

)
= 2n+1−1. Consequently:

n∑
d=0

fd(S ′) ≤ (2n+1 − 1)fn(S ′),

which leads to the statement of the proof by Proposition 5.10.

5.2.2 Specific upper bounds for the simplex

In this section, we consider that CTP is a simplex ∆d, that is:

CTP = ∆d = {z ∈ Rn+ |
n∑
i=1

zi ≤ d}.

Proposition 5.2 show that CTP is included in a hypercube. Let z ∈ CTP. Instead of obtaining
inequalities over each coordinate zi, it is also possible to adapt the proof of Proposition 5.2 to
obtain an inequality over

∑n
i=1 zi.

The full-dimensional cells in S correspond to integer points of CTP. The number of full-
dimensional cells in S is consequently less than the number of integer points in ∆d, which is
characterized by the following lemma:

Lemma 5.13. The number of integer points in ∆d is #(∆d ∩ Zn) =
(
n+d
n

)
. Hence, the number

of cells in Sn is such that #Sn ≤
(
n+d
n

)
.

Proof. Consider z ∈ ∆d ∩ Zn, and define ẑ ∈ Zn+1 such that ∀i ∈ [n] , ẑi = zi and ẑn+1 =
d −

∑n
i=1 zi. The application z 7→ ẑ defines clearly a bijection between ∆d ∩ Zn and the set of

integer points of the simplex {ẑ ∈ Zn+1 | z ≥ 0,
∑n+1

i=1 ẑi = d}. The number of points in ∆d∩Zn
is equal to the number of integer points of this simplex, which corresponds to the number of
partitions of an integer d in n + 1 parts. There exists a bijection between the set of partitions
of an integer d in n + 1 parts and the hypersimplex {x ∈ {0; 1}n+d |

∑n+d
i=1 xi = n}, defined in

the following way. To each partition (q1, . . . , qn+1) of d, we associate the vector x ∈ {0, 1}n+d

such that for all j ∈ [n], xq1+···+qj+j = 1, the other coordinates of x being equal to 0. It is
clearly well-defined because

∑n+1
i=1 qi = d, then for all j ∈ [n], 1 ≤ q1 + · · · + qj + j ≤ d + n.

Moreover,
∑n+d

i=1 xi = n. This application defines a bijection. Consider x ∈ {0, 1}n+d with
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exactly n ones. Denote by j1, . . . , jn the indices of x such that xj = 1. Then, the preimage of x
by this application is (q1, . . . , qn+1) with:

q1 = j1 − 1, ∀i ∈ {2, . . . , n}, qi = ji − ji−1 − 1, qn+1 = d−
n∑
i=1

qi

It is well-defined because
∑n

i=1 qi = jn− n ≤ d. Consequently, the number of points in ∆d ∩Zn
is equal to the number of points in {0, 1}n+d with exactly n ones, that is

(
n+d
n

)
. Consequently:

#Sn = #CTE(P) ≤ #(∆d ∩ Zn) =

(
n+ d

n

)

We have now to try to find a more precise upper bound to the number of cells in S (which
is equal to the number of cells of S ′) than the bound given in Theorem 5.12. The question
is to find a subdivision of CTP, such that all cells of this subdivision has vertices in CTE(P),
and with the maximal possible number of cells. Because CTP ⊂ ∆d and CTE(P) ⊂ Zn, we
try to find a subdivision of ∆d, in which all cells have integer vertices, and with the maximal
possible number of cells. Such a subdivision defines a polyhedral complex with boundary equal
to ∆d. For any subdivision S(∆d) of ∆d, we denote by f(S(∆d)) = (f0(S(∆d)), . . . , fn(S(∆d)))
its f -vector, that is fj(S(∆d)) is the number of j-dimensional cells in S(∆d). Then, we search
a subdivision Smax(∆d) such that for all subdivsion S(∆d), we have:

n∑
i=0

fi(Smax(∆d)) ≥
n∑
i=0

fi(S(∆d))

We already observed in the proof of Theorem 5.12 that Smax(∆d) is a triangulation. More-
over, consider a subdivision S(∆d) of ∆d. It follows from Lemma 5.13, that f0(S(∆d)) ≤

(
n+d
n

)
.

It also follows from the proof of Proposition 5.8 that fn(S(∆d)) ≤ n! Vol(∆d) = dn.
We define a particular subdivision of ∆d, which is called an edgewise subdivision and denoted

by Eds(∆d).
This subdivision is introduced in [EG00]. An example is shown on Figure 5.1.

(0, 0) (1, 0) (2, 0) (3, 0)

(2, 1)

(1, 2)

(0, 3)

(0, 2)

(0, 1)

Figure 5.1: An edgewise subdivision of ∆3 in dimension 2

The 0-dimensional cells of this subdivision are the integer points of ∆d. Then, f0(Eds(∆d)) =(
n+d
n

)
.

Moreover, the number of n-dimensional cells in Eds(∆d) is given by the following result.
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Lemma 5.14 ([EG00], Volume Lemma). Each n-dimensional cell in Eds(∆d) has a volume
equal to 1

n! , and fn(Eds(∆d)) = dn.

In [EG00], the precise value of the number of j-dimensional cells of Eds(∆d) is given:

Lemma 5.15 ([EG00]). The number of j-dimensional cells in Eds(∆d) is

fj(Eds(∆d)) =

j∑
i=0

(−1)i
(
j

i

)(
n+ (j + 1− i)d

n

)
.

Notice that for the case j = 0, we find again the result of Lemma 5.13.
We can now establish the main theorem of this paragraph:

Theorem 5.16. Suppose n ≤ 4. Then, Eds(∆d) maximizes the total number of faces of a
subdivision of ∆d, that is for all subdivisions S(∆d) of ∆d, we have:

n∑
i=0

fi(Eds(∆d)) ≥
n∑
i=0

fi(S(∆d))

Proof. Take a subdivision S(∆d) of ∆d. Without loss of generality, we suppose that S(∆d) is
a triangulation (if it is not, it is always possible to triangulate it to obtain a triangulation with
striclty more faces that S(∆d), as we remarked above). We already know by Proposition 5.8
and Corollary 5.14 that fn(S(∆d)) ≤ dn = fn(Eds(∆d)) . Moreover, f0(S(∆d)) ≤

(
n+d
n

)
=

f0(Eds(∆d)) by Lemma 5.13. Denote by ∂S(∆d) (resp. ∂Eds(∆d)) the boundary of S(∆d)
(resp. Eds(∆d)). Each n − 1-dimensional cell of S(∆d) inside ∆d is common to two different
n-dimensional cells of S(∆d), whereas each n − 1-dimensional cell of ∂S(∆d) belongs only to
one n-dimensional cell of S(∆d). Intuitively, we may think of an n − 1-dimensional cell of ∆d

as a “wall” separating “rooms” constituted by n-dimensional cells: a wall separates precisely two
rooms if the wall is inside ∆d, whereas if the wall lies at the boundary of ∆d, one of these two
rooms is absent.

Because each n-dimensional cell of S(∆d) is a simplex, it has exaclty n+1 faces of dimension
n − 1. Then, exploiting the previous observation, and counting n − 1-dimensional cells in two
different ways, we arrive at the following equality:

2
(
fn−1(S(∆d))− fn−1(∂S(∆d))

)
+ fn−1(∂S(∆d)) = (n+ 1)fn(S(∆d))

that is:
fn−1(S(∆d)) =

1

2
((n+ 1)fn(S(∆d)) + fn−1(∂S(∆d))) (5.6)

The boundary of ∆d consists of n + 1 faces, which are n + 1 simplices of dimension n − 1. By
applying Proposition 5.8 and Corollary 5.14 in dimension n− 1, we deduce:

fn−1(∂S(∆d)) ≤ (n+ 1)dn−1 = fn−1(∂Eds(∆d))

Then, fn−1(S(∆d)) ≤ fn−1(Eds(∆d)) = 1
2(n+ 1)dn−1(d+ 1).

Suppose now that n = 2. Then, according to Lemma 3.2, we have:

f1(S(∆d)) = −1 + f0(S(∆d)) + f2(S(∆d)) ≤ −1 + f0(Eds(∆d)) + f2(Eds(∆d)) = f1(Eds(∆d))
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Suppose n = 3. Then, according to Lemma 3.2, we have:

f1(S(∆d)) + f3(S(∆d)) = −1 + f0(S(∆d)) + f2(S(∆d))

≤ −1 + f0(Eds(∆d)) + f2(Eds(∆d)) = f1(Eds(∆d)) + f3(Eds(∆d))

Suppose now n = 4. According to Lemma 3.2, we have χ(S(∆d)) = 1. According to
Theorem 3.4, we have h1(∂S(∆d))−h0(∂S(∆d)) = h1(S(∆d))−h4(S(∆d)). Then, by definition
of the h-vectors, and by using f−1(S(∆d)) = f−1(∂S(∆d)) = 1, we can write:

− 5 + f0(∂S(∆d)) = −10− 3f0(S(∆d)) + 3f1(S(∆d))− 2f2(S(∆d)) + f3(S(∆d)) (5.7)

Combining equation 5.7 and the equaltiy 3χ(S(∆d)) = 3, we obtain:

8 + f0(∂S(∆d)) = f2(S(∆d))− 2f3(S(∆d)) + 3f4(S(∆d)) (5.8)

Equation 5.6 gives 2f3(S(∆d)) = f3(∂S(∆d)) + 5f4(S(∆d)). Then:

f2(S(∆d)) = 8 + f0(∂S(∆d)) + f3(∂S(∆d)) + 2f4(S(∆d))

Because f0(∂S(∆d)), f3(∂S(∆d)) and f4(S(∆d)) are maximal when S(∆d) = Eds(∆d), then
f2(S(∆d)) ≤ f2(Eds(∆d)). By using χ(S(∆d)) = χ(Eds(∆d)) = 1, we obtain f1(S(∆d)) +
f3(S(∆d)) ≤ f1(Eds(∆d)) + f3(Eds(∆d)), and then we conclude:

4∑
i=0

fi(S(∆d)) ≤
4∑
i=0

fi(Eds(∆d)).

Corollary 5.17. If n ≤ 4, then the number #S of cells in S verifies:

#S ≤
n∑
j=0

j∑
i=0

(−1)i
(
j

i

)(
n+ (j + 1− i)d

n

)
Proof. The number of cells of S is equal to the number of cells in S ′, which is less than the
number of cells in the elementary subdivision of ∆d. We conclude by Lemma 5.15.

Notice that each term
(
n+(j+1−i)d

n

)
is a polynomial in d of degree n. More precisely, the

bound of #S given in Corollary 5.17 is a polynomial in d of degree n and with coefficients
depending only on n.

5.3 Fixed-parameter tractability

These different results lead to the main theorem of this part. We recall that we study a bilevel
programming problem (BP) among the optimistic and pessimistic versions of Problem 4.1, 4.2
and 4.3. According to the corresponding theorem Th. (BP), an optimal solution of the bilevel
problem (BP) can be obtained by solving a series of optimization subproblems of the type (SPC)
given in Table 5.

To solve (BP), we have to be able to solve the subproblems (SPC) for every C ∈ S. These
subproblems consist in minimizing or maximizing a function over a cartesian product of poly-
hedra. The first one, corresponding to the cells C ∈ S, is defined by a list of inequalities. The
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second one, corresponding to the dual cell φ(C) ∈ S ′, is defined as the convex hull of its vertices.
In order to show that the different versions of the different bilevel problems can be solved in
polynomial time in the low-level dimension k when the dimension n is fixed, we have to assume
that we can obtain an approximate solution for each subproblem (SPC) in polynomial time for
fixed n. We say that one of the studied bilevel problem satisfies Assumption E if:

Assumption E. Provided the polyhedron C defined by a list of inequalities and the polytope
φ(C) defined as the convex hull of its vertices, there exists an oracle finding an ε-solution of
(SPC) for every ε > 0 in T (n, k, p, L, ε) time, where L is the input size and T is a polynomial in
k, p L, |log(ε)| when n is fixed.

Assumption E concerns large classes of bilevel programming problems: Problem 4.1 together
with f linear in both optimistic and pessimistic versions, f convex in the optimistic case and f
convex in y, concave in z∗ in the pessimistic one, Problem 4.2 with f convex in y for each z∗ . . .

We can now write the main results of this Section, showing that the complexities of the
different optimization problems is polynomial in the low-level dimension and in the input size,
when n is fixed, and precise the complexities in each case.

Theorem 5.18 (Fixed parameter tractability for (BP)). Algorithm 2 is correct. If the bilevel
problem (BP) satisfies Assumption E, then an ε-solution of (BP) can be obtained for every ε > 0
in:

O((2R)n (LP(p+ 2n, k, Llow) +Rn LP(Rn, n+ 1, Llow)2n!)T (n, k, p, Lhigh, ε)),

time, where Llow and Lhigh are respectively the input sizes of the low-level and high-level problem
of (BP).

Proof. Let ε > 0. According to theorem Th. (BP), an ε-solution of (BP) can be obtained by
solving:

min
C∈S

val (SPC),

where val (SPC) is the optimal value of the subproblem (SPC). Then, Algorithm 2 is correct and
returns an ε-solution of (BP).

The polyhedron epi(Q) can be obtained by a list of inequalities in O((2R)n LP(p+ 2n, k, L))
time according to Proposition 5.4. Then, the faces of epi(Q) (and by projection the cells of S)
can be obtained by the algorithm proposed by Fukuda et al. [FLM97] in O(Rn LP(Rn, n+1, L)f)
time according to Theorem 5.5, where f is the total number of faces of epi(Q). By Theorem 5.12,
we have:

f ≤ (2n+1 − 1)n! Vol(CTP).

Moreover, by Proposition 5.2, we have:

Vol(CTP) ≤ Rn.

The faces of epi(Q) being obtained as intersection of the facets of epi(Q), the cells of S are
defined by a list of inequalities, meaning that the vertices of the dual cells are obtained direclty.
Finally, an ε-solution of each subproblem can be obtained in T (n, k, p, L, ε) time.

Theorem 5.18 shows consequently that if we can "easily" solve each subproblem, the bilevel
problem (BP) can be solved in polynomial time in the low-level dimension and in a metric
estimate of CTP, when the high-level dimension n is fixed.

If (BP) is the optimistic version of the discrete problem, the complexity bound can be
improved, with a weaker assumption than Assumption E.
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Assumption F. Provided a point z ∈ CTP ∩ Zn and the polytope φ−1(C′z) defined by a list of
inequalities, there exists an oracle finding an ε-solution, for every ε > 0, of:

min
y∈φ−1(C′z)

f(z, y)

in U(n, k, p, L, ε) time, where L is the input size and T is a polynomial in k, p L, |log(ε)| when
n is fixed.

Theorem 5.19. If the optimistic Problem 4.2 satisfies Assumptions B and F, then for every
ε ≥ 0, an ε-solution of the optimistic Problem 4.2 can be obtained in O(RnU(n, k, p, Lhigh, ε))
time, where Lhigh is the input size of the high-level problem.

Proof. According to Corollary 4.33, the optimistic version of Problem 4.2 is equivalent to:

min
z∈CTP∩Zn, y∈φ−1(C′z)

f(z, y).

By Proposition 5.4, all the points z of CTP ∩ Zn together with ϕ(z) can be obtained in
O((2R)n LP(p + 2n, k, Llow) time. A point y belongs to φ−1(C′z) if and only if z belongs to
φ(Cy) by Lemma 3.12. This condition is equivalent to Q(y) = 〈y, z〉+ ϕ(z). Then, y belongs to
φ−1(C′z) if and only if y belongs to the polyhedron defined by the following inequalities:

∀z′ ∈ CTP ∩ Zn, 〈y, z〉+ ϕ(z) ≥ 〈y, z′〉+ ϕ(z′).

Then, we can define φ−1(C′z) by a list of inequalities. The number of inequalities is less or equal
than Rn, then it is polynomial in R when n is fixed. By Assumption F, each problem:

min
y∈φ−1(C′z)

f(z, y)

can be solved in U(n, k, p, Lhigh, ε) time.

The complexity bounds given by Theorem 5.18 and Theorem 5.19 depend polynomially on
the dimension of the low-level problem (k being the number of variables, p being the number
of constraints) and of a metric estimate R. In some particular cases, for instance if the entries
of C are in {0;±1} and the discrete problem deals with binary variables (that is P ⊂ [0, 1]n),
the value of R given by Proposition 5.4 is equal to k, meaning that our complexity bounds are
polynomial in the low-level dimension when the high-level dimension is fixed.

5.4 Discussion of the results

We discuss some aspects of the results presented in this chapter. To better understand the
complexity bounds obtained in Section 5.3, we consider an example. Assume that C is totally
unimodular and than P ⊂ [0, 1]n. Then, by Proposition 5.2, we have CTP = [−k, k]n. The
complexity of Algorithm 2 is then:

O((2k)n (LP(p+ 2n, k, Llow) + 2n!kn LP(kn, n+ 1, Llow))T (n, k, p, Lhigh, ε)),

by Theorem 5.18. By using interior point methods, we have LP(m,n,L) = O((m + n)3.5L)
according to Renegar [Ren88]. To simplify, we assume that the number p of constraints of the
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low-level problem is very small, that is p � k. Consider n = 3. Then, the time needed to
enumerate all the cells of S:

O(8k3
(
(k + 6)3.5Llow + 12k3(k3 + 4)3.5Llow

)
).

It is polynomial for fixed k. However, the complexity is in O(k16.5). We mention nevertheless
that this worst-case complexity is not attained in practice.

The complexity bounds have the following form. Let Tepi be the time needed to determine
the facets of epi(Q), TF be the time needed to enumerate all the faces of epi(Q) by the algorithm
proposed by Fukuda et al. , and Tsp be the time needed to solve each subproblem. Theorem 5.18
shows that, for ε ≥ 0, an ε-solution of Problem (BP) is obtained in O((Tepi + TF )Tsp) time.

We have Tepi = O(nZ LP(p + 2n, k, Llow). By Corollary 5.3, we have nZ ≤ (2R + 1)n.
However, by Proposition 5.10, we have nZ ≤ n + n! Vol(CTP). Then, we have another upper
bound for the number of integer points, which can be better than (2R + 1)n in certain cases.
However, we mention also that CTP is a compact set, with strictly positive volume. This means
that we can also find r > 0 such that [−r, r]n ⊂ CTP, if 0 ∈ CTP. Consequently, we have the
lower bound nZ ≥ (2r)n. Intuitively, if the high-level dimension n is large, the number nZ is
exponential in n and the time Tepi can be very large.

Then, we have TF = O(nZf LP(nZ, n + 1, Llow)), where f is the number of faces of epi(Q).
We already mentioned that there exists other types of algorithms to enumerate the faces of
epi(Q). Such an algorithm needs to compactify first epi(Q) by adding one or more facets. We
obtain consequently a polytope P(Q). Then, we enumerate the vertices of P(Q) (by using for
instance the Avis and Fukuda algorithm [AF92]) in order to build the vertex-facet incidence
matrix of P(Q). In a third time, we enumerate all the faces of P(Q) (by using for instance
the Kaibel and Pfetsch algorithm [KP02]) and finally we obtain the faces of epi(Q). This other
kind of algorithm, presented in Appendix A, can be more efficient when P(Q) is simple, or
when CTP is simple. Herrmann, Joswig and Pfetsch mention in [HJP13, Section 3.3] that for
bounded polyhedra, an algorithm using the vertex-facet incidence matrix is better in practice.
The complexities of both methods are different and do not depend on the same parameters (the
number of vertices of P(Q) appears in the complexity of Kaibel and Pfetsch algorithm). Hence,
to decide whether an algorithm is more efficient than the other one depends on the nature of
P(Q) (large or small number of facets, of vertices . . . ).

Moreover, the time complexity TF depends on the number f of faces of epi(Q) and of the
number nZ of integer points of CTP. We give in Section 5.2 a general upper bound for nZ, f :

nZ ≤ n+ n! Vol(CTP), f ≤ (2n+1 − 1)n! Vol(CTP)

Consider the example of Section 4.2.5. We have n = 2 and CTP = [0, 1] × [0, 2], that is
n! Vol(CTP) = 8. We can write the values of the combinatorial parameters and the upper
bound.

Exact value Upper bound
nZ 6 10
f 15 56

We see that even in very small dimensions, with very small polytopes, the upper bound can be
far from the exact value. We compare also with the case CTP = ∆d presented in Section 5.2.
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We have the following upper bounds when n ≤ 4:

nZ ≤
(
n+ d

n

)
f ≤

n∑
j=0

j∑
i=0

(−1)i
(
j

i

)(
n+ (j + 1− i)d

n

)

In this case, n! Vol(CTP) = dn. As an example, we compare the upper bounds on nZ and f
given in this case for n = 3 and d = 10 with the general upper bounds.

Upper bound for the case CTP = ∆d General upper bound
nZ 286 1003
f 4971 15000

We observe that we gain a factor 3 over the upper bounds. It means that in practice, the
upper bounds given by the different results of Section 5.2 are often far from the real values, that
is Algorithm 2 converges in practice much faster than the announced complexity.

Finally, we focus on Tsp. The number of time needed to find an ε-solution of a certain
optimization problem depends on the structure of the problem. Consider Problem 4.1 with a
linear function f . Then, each subproblem consists in minimizing a linear function over C×φ(C),
where C is an n-dimensional polyhedron defined by a list of inequalities, and φ(C) is an n-
dimensional polyhedron defined as the convex hull of its vertices. Hence, if φ(C) has v vertices,
we need v variables to describe the polyhedron. Using methods like interior point methods
(see [Kar84], [Ren88]), it is possible to solve each subproblem in polynomial time in n+ v.



CHAPTER 6
Structured classes of bilevel

problems

In Chapter 4, we introduced a specific class of bilevel programming problems, modelling an
economic problem. The value of the low-level component of these bilevel problems can be
described by a polynomial in the tropical algebra. We introduced a specific method for solving
this class of bilevel problems, based on the enumeration of the cells of the polyhedral complex
defined by the tropical hypersurface associated to the low-level problem. In Chapter 5, we
proposed an algorithm for enumerating the different cells, and so for solving the problem. We
gave also some complexity results, showing that the bilevel programming problem under study
can be solved in polynomial time in the dimension of the low level problem and in certain metric
estimates, when the high-level dimension is fixed.

Here, we will focus on some specific classes of bilevel problems. First, we study Problems 4.4
and 4.5 introduced in Chapter 4, which model a situation with a large number of customers,
and which correspond to a specific version of Problem 4.1 and 4.2. We show in this case that
the low-level problem corresponds to the product of tropical polynomials, each polynomial being
associated to one customer. Hence, we shall see that the tropical hypersurface representing the
customer’s response is in fact an arrangement of elementary tropical hypersurfaces describing
individual responses. It is hence possible to improve some bounds given in Section 5.2 for this
special class of problems.

Next, we study another bilevel problem corresponding to a balancing problem in pricing.
The aim of the producer is only to avoid the peaks of consumptions, and the high-level function
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to optimize does not depend on the price. Under this assumption, the enumeration method
presented in Chapter 4 leads to a decomposition method in which only two optimization problems
have to be solved. It leads to polynomial time algorithms, based on results of discrete convexity.

Finally, we study a balancing problem with a large number of customers. The bilevel problem
belongs to the classes studied in this chapter. We establish a comparison with a competitive
equilibrium problem for indivisible goods defined by Danilov et al. [DKM01]. We prove that
the congestion problem can also be viewed as a limit of competitive equilibria. Because the
congestion problem is easier to solve than the competitive equilibrium problem, this result
enables to compute certain competitive equilibria.

6.1 Arrangement of tropical hypersurfaces

6.1.1 Bilevel problem with separable low-levels

In this section, we study the following economic situation, described in Section 4.1. A producer
sells n goods to a set of q customers. He proposes a price −yi for good i. Each customer j
(for j ∈ [q]) has a consumption vector xj ∈ Rn, where xj(i) denotes the quantity of good i
that customer j buys. The consumption xj is constrained to belong to a polytope Pj , or to the
integer points of Pj if the goods are indivisible. Customer j has also a preference vector ρj ∈ Rn
for buying the different goods. Hence, each customer j maximizes his utility 〈ρj + y, xj〉 with
the constraint xj ∈ Pj (or xj ∈ Pj ∩Zn). Denoting by xj∗ the optimal consumption of customer
j, the producer wants to minimize his costs, modeled by a function f depending on his decision
vector y and on the global solds z =

∑q
j=1 x

j∗. This leads to Problems 4.4 and 4.5, that we
recall below

Problem 6.1.

“ min ”
y∈Rn

f(

q∑
j=1

xj∗, y) (6.1)

with for all j ∈ [q], xj∗ solution of:

max
xj∈Pj

〈ρj + y, xj〉 (6.2)

and:

Problem 6.2.

“ min ”
y∈Rn

f(

q∑
j=1

xj∗, y) (6.3)

with for all j ∈ [q], xj∗ solution of:

max
xj∈Pj∩Zn

〈ρj + y, xj〉 (6.4)

As mentioned in Section 4.1, Problems 6.1 and 6.2 are just a particular case of Problems 4.1
and 4.2 respectively. In fact, assume that k = qn, P = P1 × · · · × Pq with for each j ∈ [q], Pj
is a polytope of Rn, and:

C =

 In
. . .
In

 and ρ =

 ρ1

. . .
ρq

 .
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Then, by decomposing xT =
[
xT1 . . . x

T
q

]
, with for each j ∈ [q], xj ∈ Pj , the low-level problem

of Problem 4.1 becomes:

max
x∈P
〈ρ+ Cy, x〉 = max

∀j,xj∈Pj

q∑
j=1

〈ρj + y, xj〉 =

q∑
j=1

max
xj∈Pj

〈ρj + y, xj〉

It corresponds exactly to the low-level of Problem 6.1. The result remains for the integral
problems.

As in Section 4.1, we study the version in which the low-level variable belongs to the extreme
points of a polytope, that is:

Problem 6.3.

“ min ”
y∈Rn

f(

q∑
j=1

xj∗, y) (6.5)

with for all j ∈ [q], xj∗ solution of:

max
xj∈E(Pj)

〈ρj + y, xj〉 (6.6)

Consequently, we have CTP =
∑q

j=1 Pj , CTP ∩ Zn =
(∑q

j=1 Pj
)
∩ Zn and CTE(P) =∑q

j=1 E(Pj).
According to Lemma 4.13, Problem 6.1 is equivalent to:

“ min ”
y∈Rn

f(z∗, y)

subject to z∗ =
∑q

j=1 x
∗
j and ∀j ∈ [q], x∗j solution of maxxj∈Pj 〈ρj + y, xj〉. The same result is

obtained respectively for Problem 6.2 under Assumption B and for Problem 6.3, by replacing
Pj in the low-level problem respectively by Pj ∩ Zn and E(Pj).

The tropical hypersurface defined by the low-level problem corresponds to the arrange-
ment of the tropical hypersurfaces associated to the tropical polynomial Qj where Qj(y) =
maxxj∈E(Pj)〈ρj + y, xj〉. This corresponds to the situation described by Baldwin and Klemperer
[BK12] and further by Yu and Tran [TY15]. We assume here for comparison that the set of
possible consumptions of each customer is E(Pj). For each vector y, the optimal response of
customer j corresponds to a cell of the polyhedral complex Sj defined by the tropical hypersur-
face T (Qj). Each full-dimensional cell corresponds to one possible response in E(Pj). To study
jointly the responses of q different customers, we draw the arrangement of hypersurfaces T (Qj)
for j ∈ [q].

Example 6.4. We consider an example in which n = 2 and q = 2. We assume that customer 1
is characterized by ρT1 = [0 0] and E(P1) = {(1, 0); (0, 1); (0, 0)}, whereas customer 2 is charac-
terized by ρT2 = [1 1] and E(P2) = {(1, 1); (1, 0); (0, 1); (0, 0)}. Then, the tropical polynomials
associated to each customers are:

Q1(y) = max(y1, y2, 0),

Q2(y) = max(y1 + y2 + 2, y1 + 1, y2 + 1, 0).

We can then draw the arrangement of tropical hypersurfaces associated to both polynomials Q1

and Q2, together with the optimal response of each customer in the full-dimensional cells of the
polyhedral complex (see Figure 6.1).
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(0, 0) + (0, 0)

(0, 1) + (0, 0)

(1, 1) + (0, 1)(0, 1) + (0, 1)

(1, 1) + (0, 0)

(1, 0) + (0, 0)

(1, 1) + (1, 0)

(1, 0) + (1, 0)

y1

y2

Figure 6.1: Arrangement of tropical hypersurfaces: the blue one is T (Q1) and the red one is
T (Q2). The arrangement corresponds to the tropical hypersurface associated to Q = Q1 �Q2.
In each cell, we can determine the global low-level response with its decomposition into each
customers.

The arrangement of tropical hypersurfaces T (Q1) and T (Q2) corresponds to the hypersurface
associated to Q = Q1 �Q2. We have:

Q(y) = max(y1, y2, 0) + max(y1 + y2 + 2, y1 + 1, y2 + 1, 0)

= max(2y1 + y2 + 2, y1 + 2y2 + 2, 2y1 + 1, 2y2 + 1, y1 + y2 + 2, y1 + 1, y2 + 1, 0).

Yu and Tran [TY15] exploit the duality between the polyhedral complex S associated to
T (Q) and a subdivision S ′ of the Newton polytope New(Q). As explained in Section 3.3, the
subdivision S ′ is a mixed subdivision of New(Q). We recall that New(Q) = New(Q1)+New(Q2).
The subdivision S ′ is obtained as a Minkowski sum of two subdivisions S ′1 and S ′2 of respectively
New(Q1) and New(Q2), where S ′1 and S ′2 are the dual subdivisions of the polyhedral complexes
S1 and S2 associated to Q1 and Q2.

Yu and Tran study the existence of a competitive equilibrium, which is a different prob-
lem from ours. However, the question can be formulated as follows with our notations. For
z∗ ∈

∑
j(E(Pj)), is it possible to find y such that z∗ =

∑
j x

j∗ and for every j, xj∗ ∈
arg maxxj∈E(Pj)〈ρ

j + y, xj〉 ? Lemma 3.1. of [TY15] proves that such a y exists if and only
if {z∗} is a zero-dimensional cell of S ′.
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+ =

Figure 6.2: The subdivisions of the Newton polytope associated to Q1 (blue one), Q2 (red one)
and Q (black one). The polytope New(Q) is equal to New(Q1) + New(Q2)

6.1.2 Number of apices of a tropical hypersurface

We next show that the structure of arrangements of tropical hypersurfaces helps us to improve
the bounds over the combinatorial parameters of S obtained in Section 5.2. This leads to a better
complexity of Algorithms 8 and 7. Let S be the polyhedral complex associated to the tropical
polynomial Q = �jQj =

∑
j Qj . Let f(S) be the f -vector of S. The number f0(S) corresponds

to the number of 0-dimensional cells in S, that is the number of apices of the arrangement of
tropical hypersurfaces T (Qj) for j ∈ [q].

We first show the following result about the number of apices of the arrangement of k tropical
hypersurfaces in dimension n.

Let P be a tropical polynomial of n variables. According to Proposition 3.5, a tropical
hypersurface T (P ) in Rn, associated to a tropical polynomial P , defines a subdivision S of Rn.
Suppose that:

P (x) = max
1≤i≤p

ci + 〈x, ai〉.

Let C be a cell of S. There exists a non-empty subset of [p], denoted by A(C) such that C is the
set of vectors x ∈ Rn satisfying the following inequalities:

∀i, j ∈ A(C), ci + 〈x, ai〉 = cj + 〈x, aj〉
∀i ∈ A(C),∀j /∈ A(C), ci + 〈x, ai〉 ≥ cj + 〈x, aj〉,

where the inequalities are strict for the points x ∈ ri(C). Then, the points of C are characterized
by r equalities, meaning that r + 1 monomials are maximal in every point of S, with r + 1 =
#A(C).

Consider now the arrangement of k tropical polynomials P1, . . . , Pk. An apex of this ar-
rangement is a 0-dimensional polyhedron. Hence, it is defined by at least n linearly independent
equalities. This apex is an intersection of cells of each tropical hypersurface associated to each
polynomial Pi. Let x be such an apex. Then:

{x} =

k⋂
i=1

Ci,

where each Ci is a cell of the subdivision Si associated to the tropical hypersurface T (Pi). Each
Ci is defined by ri equalities, where ri + 1 = A(Ci). This means that

∑k
i=1 ri ≥ n.

Consequently, for every apex x of T (P ), there exists a partition (q1, . . . , qk) of n (that is
(q1, . . . , qk) ∈ Nk with

∑k
i=1 qi = n), such that for every Pi, qi + 1 monomials are maximal for
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Pi in x. Notice that in every x ∈ Rn, at least one monomial is maximal for P in x. We have
qi ≤ pi for every i, and the partition is unique if and only if

∑k
i=1 ri = n.

Theorem 6.5. Let P1, . . . Pk be k tropical polynomials in Rn, with tropical hypersurfaces denoted
by T (P1), . . . , T (Pk) and with Newton polytopes respectively denoted by ∆1, . . . ,∆k. Assume that
the k tropical hypersurfaces are in general position. Consider k non-negative integers q1, . . . , qk
such that

∑k
i=1 qi = n. The number of apices x of the tropical hypersurface T (P1 � · · · � Pk)

such that, for every i ∈ [k], at least qi + 1 monomials are maximal for Pi in x is less or equal
than:

n!V(∆1, . . . ,∆k ; q1, . . . , qk),

where V(∆1, . . . ,∆k ; q1, . . . , qk) is the mixed volume V(∆1, . . . ,∆1, . . . ,∆k, . . . ,∆k) in which
each ∆i appears qi times.

Proof. See Appendix B.

We can now deduce the number of apices of an arrangement of tropical hypersurfaces:

Corollary 6.6. Let P1, . . . Pk be k tropical polynomials in Rn, with tropical hypersurfaces denoted
by T (P1), . . . , T (Pk) and with Newton polytopes respectively denoted by ∆1, . . . ,∆k. Assume
that the k tropical hypersurfaces are in general position. The number of intersection points of
the arrangement of the tropical hypersurfaces T (Pi) for each 1 ≤ i ≤ k is less or equal than:

n!
∑

(q1,...,qk)∈Nk∑k
i=1 qi=n

V(∆1, . . . ,∆k ; q1, . . . , qk).

Proof. For each apex x of the arrangement of the tropical hypersurfaces T (Pi), there exists a
partition (q1, . . . , qk) of n such that for every i ∈ [k], at least qi + 1 monomials are maximal for
Pi in x. The result follows readily from Theorem 6.5.

We mention that a similar result was established by Bihan and Bertrand [BB07, Th. 4.5] in
the case of the tropical hypersurface T (Pi) intersects transversally in each apex of T (P1� · · · �
Pk).

6.1.3 Upper bounds on the number of cells

We can deduce from the previous general results an upper bound of the number f0(S) of 0-
dimensional cells in S.

Theorem 6.7. The number f0(S) of 0-dimension cells in S verifies:

f0(S) ≤ n!
∑

(j1,...jq)∈Nq∑q
i=1 ji=n

V(P1, . . . ,Pq ; j1, . . . , jq)

Proof. The number f0(S) of 0-dimension cells in S is the number of apices of the arrangement
of tropical hypersurfaces associated to each tropical polynomial Qj . The result comes from
Corollary 6.6.
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This bound is better than the bound given by Proposition 5.8 in this case. Consider for
example P1 = · · · = Pq. The upper bound given by Proposition 5.8 is n! Vol(

∑q
j=1 Pj) =

n!qn Vol(P1).
For all (j1, . . . , jq) ∈ Nq such that

∑q
i=1 ji = n, we have V(P1, . . . ,Pq ; j1, . . . , jq) = Vol(P1).

Then, the upper bound given by Theorem 6.7 is:

n! Vol(P1)×#

(
{(j1, . . . , jq) ∈ Nq |

q∑
i=1

ji = n}

)
= n!

(
n+ q − 1

n

)
Vol(P1)

according to Lemma 5.13. When the dimension n is fixed, we have asymptotically
(
n+q−1
n

)
∼ qn

n! .
Theorem 6.7 provides a better upper bound of the number of 0-dimensional cells in S. It is

hence possible to improve the worst case complexity of Algorithm 8 and Algorithm 7 in the case
of arrangements of tropical hypersurfaces.

Case of arrangement of hyperplanes We finally study a particular case in which each tropical
hypersurface T (Qj) is a tropical hyperplane. It means that Qj is a tropical polynomial of degree
1 and New(Qj) = ∆1 for all j.

Develin and Sturmfels [DS04] gave the following result concerning the f -vector of a polyhedral
complex associated to an arrangement of tropical hyperplanes in general position.

Theorem 6.8 ([DS04], Corollary 25). The number fd(S) of d-dimensional faces of the polyhedral
complex S associated to an arrangement of q tropical hyperplanes in dimension n and in general
position is:

fd(S) =
(q + n− d− 1)!

(q − d− 1)!(n− d)!d!

As a particular case, we find f0(S) =
(
q+n−1
n

)
. Notice that if for every j ∈ [n], New(Qj) = ∆1,

then Theorem 6.7 gives f0(S) ≤ n!
(
q+n−1
n

)
1
n! =

(
q+n−1
n

)
. Theorem 6.8 shows that the upper

bound given by Theorem 6.7 is attained.

6.2 A particular case: f does not depend on y

In this Section, we study the economic situation described by Problems 4.1, 4.2 (we still suppose
Assumption B) and 4.3 when the producer is concerned by balancing its production between its
different goods. It means that the high-level function, corresponding to the optimization of the
producer, does not depend on the "leader" variable decision y.

This specific form simplifies the way to solve the optimistic solution of the different studied
problems. Consider for instance Problem 4.1. According to Corollary 4.15, the optimistic
solution of Problem 4.1 is given by:

inf
y∈Rn

inf
z∗∈φ(Cy)

f(z∗),

that is infz∗∈
⋃
y∈Rn φ(Cy) f(z∗). We notice that this optimization problem does not depend on y.

This means that solving the high-level problem consists in minimizing a function over the set of
feasible z (which has to be determined) and then in finding the vectors y ∈ Rn such that z is an
optimal solution of the low-level problem. This approach can be adapted for solving Problem 4.2
and 4.3 First, we have the following lemma:
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Lemma 6.9. • If z∗ ∈ CTP, then there exists y ∈ Rn such that z∗ ∈ arg maxz∈CTP〈y, z〉+
ϕ(z). Moreover

⋃
y∈Rn φ(Cy) = CTP.

• If z∗ ∈ CTP ∩ Zn, then there exists y ∈ Rn such that z∗ ∈ arg maxz∈CTP∩Zn〈y, z〉+ ϕ(z).
Moreover

⋃
y∈Rn(φ(Cy) ∩ Zn) = CTP ∩ Zn.

• If z∗ ∈ CTE(P), then there exists y ∈ Rn such that z∗ ∈ arg maxz∈CT E(P)〈y, z〉 + ϕ(z).
Moreover

⋃
y∈Rn(φ(Cy) ∩ CTE(P)) = CTE(P).

Proof. The first item comes directly from Proposition 4.12. The two other items are a direct
consequence of the first one. If z∗ ∈ CTP ∩ Zn, then it belongs to CTP and there exists
y ∈ Rn such that for each z ∈ CTP, 〈y, z∗〉 + ϕ(z∗) ≥ 〈y, z〉 + ϕ(z). In particular, z∗ ∈
arg maxz∈CTP∩Zn〈y, z〉+ ϕ(z). The same reasoning is applied for the third item.

The different theorems of enumeration of cells for solving the different bilevel problems
(Theorems 4.17, 4.34 and 4.41 respectively for Problems 4.1, 4.2 and 4.3) can be rewritten in
this particular case. We have the following decomposition theorems:

Theorem 6.10 (Decomposition theorem for the continuous bilevel problem). Assume that f is
lower semicontinuous. Then, the optimistic version of Problem 4.1 is equivalent to:

• Find z∗ ∈ arg minz∈CTP f(z).

• Find y∗ ∈ φ−1(C′z∗).

Proof. According to Corollary 4.15, the optimistic solution of Problem 4.1 is equal to:

inf
y∈Rn

inf
z∈φ(Cy)

f(z) = min
z∈

⋃
{φ(Cy)|y∈Rn}

f(z) = min
z∈CTP

f(z).

Also, from Corollary 4.16, it is equivalent to

inf
z∈CTP

inf
y∈φ−1(C′z)

f(z).

Hence, an optimal solution verifies z∗ ∈ arg minz∈CTP f(z) and y∗ ∈ φ−1(C′z∗).

Theorem 6.11 (Decomposition theorem for the discrete bilevel problem). If Assumption B
holds true, the optimistic version of Problem 4.2 is equivalent to:

• Find z∗ ∈ arg minz∈CTP∩Zn f(z).

• Find y∗ ∈ φ−1(C′z∗).

Proof. It is a direct consequence of Corollary 4.33.

Theorem 6.12 (Decomposition theorem for the extreme points bilevel problem). The optimistic
version of Problem 4.3 is equivalent to:

• Find z∗ ∈ arg minz∈CT E(P) f(z).

• Find y∗ ∈ φ−1(C′z∗).

Proof. It is a direct consequence of Corollary 4.40.
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According to Theorems 6.10, 6.11 and 6.12, we need to solve two different optimization
problems in order to obtain an optimal solution of the bilevel problem.

The second one is the same for the three studied bilevel problems: given z∗ ∈ CTP, how to
find y∗ ∈ φ−1(C′z∗) ? We next show that this can be solved in polynomial time.

When dealing with such complexity issues, we work in the Turing (bit) model of computation.
Recall that the input matrices or vectors C,A, b have been assumed to have integer entries. We
assume in addition that ρ ∈ Qk.

Proposition 6.13. Let z∗ ∈ CTP. Then, it is possible to find y∗ ∈ φ−1(C′z∗) in polynomial
time.

Proof. The condition y∗ ∈ φ−1(C′z∗) is equivalent to

〈y, z∗〉+ ϕ(z∗) ≥ 〈y, z〉+ ϕ(z), ∀z ∈ CTP . (6.7)

In other words, we are looking for a vector y belonging to the subdifferential at point z∗ of the
convex map z 7→ −ϕ(z) taking finite values on C>P, and the +∞ value elsewhere. We next
show that such a vector y can be obtained as an optimal Lagrange multiplier, i.e., as an optimal
solution of a dual linear program.

More precisely, the dual of the linear program

ϕ(z) = max
Ax≤b, C>x=z

〈ρ, x〉 (6.8)

is given by

inf
y∈Rn, µ∈Rm+

〈µ, b〉 − 〈y, z〉 s.t. ρ−A>µ+ Cy = 0 , (6.9)

where m is the number of rows of the matrix A, µ ≥ 0 is the Lagrange multiplier associated to
the constraint Ax ≤ b, and y is the unsigned Lagrange multiplier associated to the constraint
C>x = z. The strong duality theorem in linear programming shows in particular that as soon
as the value of the primal problem (6.8) is finite, this value ϕ(z) coincides with the value of the
dual problem (6.9), and the dual problem has an optimal solution µ∗, y∗. Then, for all z and z∗

such that ϕ(z) and ϕ(z∗) are finite, taking for µ∗ and y∗ the values of y, µ achieving the infimum
in (6.9) when z is specialized to z∗,

ϕ(z∗)− ϕ(z) = inf
y∈Rn,µ∈Rm+

(〈µ, b〉 − 〈y, z∗〉)− inf
y∈Rn,µ∈Rm+

(〈µ, b〉 − 〈y, z∗〉)

= 〈µ∗, b〉 − 〈y∗, z∗〉 − inf
y∈Rn,µ∈Rm+

(〈µ, b〉 − 〈y, z∗〉)

≥ 〈µ∗, b〉 − 〈y∗, z∗〉 − 〈µ∗, b〉+ 〈y∗, z〉
= 〈y∗, z − z∗〉 ,

showing that y∗ satisfies (6.7). Therefore, to determine y∗, it suffices to solve the dual linear
program (6.9), which can be done in polynomial time, either by the ellipsoid [GLS81] or by
interior point methods [Ren88].

We consider a convex function f accessible through an approximate polynomial-time evalu-
ation oracle, i.e. a procedure returning a rational vector approximating f(x) up to an error ε,
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given a rational input vector x, in a time polynomial in the bitsize of x and in − log ε. We call
ε-solution of the optimistic version of the bilevel problem 4.1 a vector yε such that there is an
optimal response x∗ of the follower such that f(C>x∗) does not exceed the optimal value of this
bilevel problem by more than ε.

Theorem 6.14. Suppose f is convex. Then, for each ε > 0, an ε-solution of the optimistic
continuous bilevel problem 4.1 can be obtained in polynomial time. Moreover, if f is linear, an
exact optimistic solution can be obtained in polynomial time.

Proof. It is a consequence of Theorem 6.10. If f is convex, then an ε-solution zε of the problem
minz∈CTP f(z) can be obtained in polynomial time, using the ellipsoid method [Kha79, GLS81].
If f is linear, the same method, or the interior points method, gives an exact solution in polyno-
mial time. Then, finding y∗ ∈ φ−1(C′zε) can be done in polynomial time in n by Proposition 6.13.
To be complete, we also have to find the optimal x∗ ∈ P such that ϕ(zε) = 〈ρ, x∗〉. Because
maxz∈CTP〈y∗, z〉+ϕ(z) = maxx∈P〈ρ+Cy∗, x〉, each solution of the linear programming problem
maxx∈P; CT x=zε〈ρ, x〉 is suitable.

For Problem 4.2 and Problem 4.3, Theorems 6.11 and Theorem 6.12 show that it is necessary
to solve a discrete optimization problem.

Theorem 6.15. Suppose f is a M \-convex function and CTP is a generalized polymatroid.
Under Assumption B, the optimistic version of Problem 4.2 can be solved in polynomial time.

Proof. According to Theorem 6.11, if Assumption B holds true, then an optimistic solution of
Problem 4.2 can be obtained by finding z∗ ∈ arg maxz∈CTP∩Zn f(z) and then y∗ ∈ φ−1(C′z∗).
If CTP is a generalized polymatroid, then the characteristic convex function χCTP∩Zn is M \-
convex. Then, the first step consists in minimizing the sum of two M \-convex functions, that
can be done in polynomial time in n. Then, finding y∗ ∈ φ−1(C′z∗) can be done in polynomial
time in n, according to Proposition 6.13. Finally, we need to find x∗ ∈ P ∩ Zk such that
〈ρ+ Cy∗, x∗〉 = maxx∈P∩Zk〈ρ+ Cy∗, x〉. Using

max
x∈P∩Zk

〈ρ+ Cy∗, x〉 = max
z∈CTP∩Zn

〈y∗, z〉+ ϕ(z) = 〈y∗, z∗〉+ ϕ(z∗),

it is sufficient to find x∗ ∈ P ∩ Zk such that CTx = z∗ and ϕ(z∗) = 〈ρ, x∗〉. This is equivalent
to x∗ ∈ arg maxx∈P∩Zk;CT x=z∗〈ρ, x〉, and to:

x∗ ∈ arg max
x∈P;CT x=z∗

〈ρ, x〉,

under Assumption B. Computing a solution of such a linear programming problem can also be
done in polynomial time.

Theorem 6.16. Suppose f is a M \-convex function and CTE(P) is a M \-convex set. Then,
the optimistic version of Problem 4.3 can be solved in polynomial time.

Proof. According to Theorem 6.12, then an optimistic solution of Problem 4.3 can be obtained
by finding z∗ ∈ arg maxz∈CT E(P) f(z) and then y∗ ∈ φ−1(C′z∗). If CTE(P) is a generalized
polymatroid, then the first step consists in minimizing a M \-convex function over a M \-convex
set, that can be done in polynomial time in n. Then, finding y∗ ∈ φ−1(C′z∗) can be done in
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polynomial time in n, according to Proposition 6.13. Finally, we need to find x∗ ∈ E(P) such
that 〈ρ+ Cy∗, x∗〉 = maxx∈E(P)〈ρ+ Cy∗, x〉. Using

max
x∈E(P)

〈ρ+ Cy∗, x〉 = max
z∈CT E(P)

〈y∗, z〉+ ϕ(z) = 〈y∗, z∗〉+ ϕ(z∗),

it is sufficient to find x∗ ∈ E(P) such that CTx = z∗ and ϕ(z∗) = 〈ρ, x∗〉. This is equivalent to
x∗ solution of

max
x∈E(P);CT x=z∗

〈ρ, x〉 = max
x∈P;CT x=z∗

〈ρ, x〉.

Computing a solution of such a linear programming problem can also be done in polynomial
time.

6.3 A balancing problem in economics

In this section, we consider another economic situation modelled by a bilevel programming
problem. This problem is a particular case of the ones studied in Section 6.1 and 6.2.

6.3.1 A congestion problem

Let us consider the economic situation described in Section 6.1, that is a producer selling n
goods at a price −yi ∈ R to q different customers. We suppose now that the producer is only
concerned by balancing his production between the different goods. Mathematically, it means
that the high-level function depends only on the global consumption

∑
j x
∗
j .

This situation can describe a congestion problem. Suppose that the producer is an operator
managing a network with different roads. Each customer has a preference to use more or less
the roads and determines his consumption in each road by maximizing his utility. The sum of
consumptions of the customer determines the traffic. The operator is interested by minimizing
the congestion in the network, that is by minimizing a measure of the global traffic. In order
to do this, he proposes some discounts in the different roads to incite the customers to modify
their optimal consumptions and so to reduce the congestion.

We assume here that the consumptions of the customers are discrete. It leads to a bilevel
optimization problem, corresponding to Problem 6.2 where the high-level function does not
depend on the discount vector y. We focus on the optimistic version:

Problem 6.17.
min
y∈Rn

f(z∗) (6.10)

with z∗ =
∑q

j=1 x
j∗ and for all j ∈ [q], xj∗ solution of:

max
xj∈Pj∩Zn

〈ρj + y, xj〉. (6.11)

Because the high-level function of Problem 6.17 does not depend on the vector y, the results of
Section 6.2 can be applied. In particular, because we focus on the optimistic case, Problem 6.17
can be solved by the decomposition method:

Theorem 6.18. Suppose that each polytope Pj is of the form {x ∈ Rn | Ajx ≤ bj} where the
matrix Aj is totally unimodular and the vector bj has integer entries. Suppose moreover that∑

j(Pj ∩ Zn) = (
∑

j Pj) ∩ Zn. Then, Problem 6.17 is equivalent to:
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• Find z∗ ∈ arg minz∈
∑q
j=1(Pj∩Zn) f(z)

• Find y∗ ∈ φ−1(C′z∗)

Proof. As mentioned in Section 6.1, Problem 6.17 corresponds to Problem 4.2 with P = P1 ×
· · · × Pq and CT = [In . . . In]. We assumed that Pj = {x ∈ Rn | Ajx ≤ bj}, with Aj is totally
unimodular. Hence, P = {x ∈ Rn | Ax ≤ b} where A is block diagonal (A = Diag(A1, . . . , Aq)).
So, P is an integer polytope. The entries of C are integer. Since we assume

∑
j(Pj ∩ Zn) =

(
∑

j Pj) ∩ Zn, Assumption B holds true. We can then apply Theorem 6.11.

Theorem 6.18 can be understood by the Unimodularity theorem of Baldwin, Klemperer
[BK12], Yu and Tran [TY15]. With our notations, the unimodularity theorems give necessary
and sufficient conditions over the sets Pj ∩ Zn to guarantee that for every z∗ ∈

∑
j(Pj ∩ Zn),

the set φ−1(C′z∗) 6= ∅. These conditions are related with the unimodularity of the sets Pj ∩ Zn.
However, Theorem 6.18 shows that we have to minimize a convex function over a discrete

set. We have nevertheless the following result:

Theorem 6.19. Suppose that f is a M \-convex function and that for each j ∈ [q], the polytope
Pj is a g-polymatroid. Then, Assumption B holds true and Problem 6.17 can always be solved
in polynomial time.

Proof. Since each polytope Pj is a generalized polymatroid, then it can be written as Pj = {xj ∈
Rn | Ajxj ≤ bj}, with each Aj totally unimodular. Moreover,

∑
j(Pj ∩Zn) = (

∑
j Pj)∩Zn as a

consequence of [CLV08, Th. 2.10]. Then, Assumption B holds true and Theorem 6.18 is valid.
Moreover, according to Proposition 3.26, the set

∑q
j=1(Pj ∩Zn) is M \-convex. We conclude by

Theorem 6.15.

6.3.2 Generalization of the congestion problem

Here, we generalize the results of Section 6.3.1. We mentioned in Chapter 4, Section 4.3.1
that the integer problem can be generalized with concave functions instead of linear ones. We
consider low-level problems of the type:

max
xj∈Pj∩Zn

〈y, xj〉+ ρj(x
j),

where functions ρj are M \-concave. Hence, the global optimistic bilevel problem becomes:

Problem 6.20.
min
y∈Rn

f(z∗) (6.12)

with z∗ =
∑q

j=1 x
j∗ and for all j ∈ [q], xj∗ solution of:

max
xj∈Pj∩Zn

〈y, xj〉+ ρj(x
j). (6.13)

This generalization can also be solved with the decomposition approach, using the function

ϕ(z) = max
∀j, xj∈Pj∩Zn∑q

j=1 x
j=z

∑
j

ρj(x
j) = max

∀j, xj∈Zn∑q
j=1 x

j=z

∑
j

[
ρj(x

j)− χPj∩Zn(xj)
]

(6.14)
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and its associated tropical polynomial

Q(y) = max
z∈

∑
j(Pj∩Zn)

[〈y, z〉+ ϕ(z)] . (6.15)

We define φ as the bijection between the cells of the subdivision associated to the tropical
hypersurface of Q and the cells of the dual subdivision of the Newton polytope (see Section 3.3).

Theorem 6.21. Suppose that for each j the polyhedron Pj is a g-polymatroid. Suppose further-
more that the function ρj − χPj∩Zn is M \-concave. Then, Problem 6.20 is equivalent to

• Find z∗ ∈ arg minz∈
∑q
j=1(Pj∩Zn) f(z).

• Find y∗ ∈ φ−1(C′z∗).

Proof. By summing the different low-level problems, Problem 6.20 can be rewritten:

min
y∈Rn

f(z∗),

with z∗ solution of maxz∈
∑
j(Pj∩Zn) [〈y, z〉+ ϕ(z)], with ϕ as in (6.14). Hence, if each function

ρj − χPj∩Zn is M \-concave, then ϕ is M \-concave as a consequence of Proposition 3.26. In
particular, ϕ can be extended to Rn in a polyhedral concave function. Let Q be its associated
tropical polynomial (6.15), and S the polyhedral complex associated to T (Q).

Since the polyhedra Pj are g-polymatroid, we have (
∑q

j=1 Pj)∩Zn =
∑q

j=1(Pj∩Zn). Hence,
with a similar approach as in Section 4.3.1, Corollary 4.33 can be applied. Problem 6.20 is then
equivalent to:

min
z∗∈(

∑q
j=1 Pj)∩Zn

inf
y∈φ−1(C′

z∗ )
f(z∗).

Because the high-level function does not depend on y, and
∑q

j=1 Pj =
⋃
y∈Rn φ(Cy), and

(
∑q

j=1 Pj) ∩ Zn =
∑q

j=1(Pj ∩ Zn), this problem is equivalent to minz∗∈
∑q
j=1(Pj∩Zn) f(z∗). This

result leads to a similar decomposition theorem as Theorem 6.11.

This decomposition of the bilevel problem leads to the following result:

Corollary 6.22. Let us assume that ∀j, Pj is a g-polymatroid, ρj is a M \-concave function
such that ρj − χPj∩Zn is still M \-concave. Assume moreover that f is M \-concave. Then,
Problem 6.20 can be solved in polynomial time.

Proof. According to Theorem 6.21, Problem 6.20 is decomposed in two optimization problems.
The first one is minz∗∈

∑
j(Pj∩Zn) f(z). For each j, Pj is a g-polymatroid. Hence, Pj ∩ Zn is a

M \-convex set. Then,
∑

j(Pj∩Zn) is also aM \-convex set as Minkowski sum ofM \-convex sets.
Consequently, we have to minimize a M \

2-concave function, which can be done in polynomial
time (see Section 3.4). To find a point y∗ ∈ φ(C′z∗) is equivalent to find a point verifying the
following linear inequalities system:

∀z ∈ Zn, 〈y∗, z∗〉+ ϕ(z∗) ≥ 〈y∗, z〉+ ϕ(z). (6.16)

The function ϕ is a M \-concave function taking finite values only over
∑

j(Pj ∩Zn). Hence, we
search y∗ such that z∗ is a global maximum of the discrete function z 7→ ϕ(z) + 〈y∗, z〉, which is
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also M \-concave by addition of a M \-concave function and a linear function. Consequently, the
linear system (6.16) is equivalent to:

∀i ∈ [n] , 〈y∗, z∗〉+ ϕ(z∗) ≥ 〈y∗, z∗ − ei〉+ ϕ(z∗ − ei)
∀i ∈ [n] , 〈y∗, z∗〉+ ϕ(z∗) ≥ 〈y∗, z∗ + ei〉+ ϕ(z∗ + ei)

∀i, j ∈ [n] , 〈y∗, z∗〉+ ϕ(z∗) ≥ 〈y∗, z∗ − ei + ej〉+ ϕ(z∗ − ei + ej).

This can be rewritten in:

∀i ∈ [n] , ϕ(z∗)− ϕ(z∗ + ei) ≥ y∗i ≥ ϕ(z∗ − ei)− ϕ(z∗)

∀i, j ∈ [n] , ϕ(z∗)− ϕ(z∗ − ei + ej) ≥ y∗j − y∗i .

It is a linear system in dimension n with n2 inequalities. Hence, it can be solved in polynomial
time in n and in the input size.

Once z∗ and y∗ have been computed, a solution x∗ of the low level problem (6.13) is obtained
by solving the maximization problem in (6.14). This consists in computing the sup-convolution
ϕ of M \-concave functions, which can be done in polynomial time by solving a M \-convex
submodular flow problem. (see Note 9.30 of [Mur03]).

Example 6.23. We apply the previous results on a simple example. We consider n = 2 and
q = 4. We define the polytopes Pj together with the functions ρj as :

P1 = {(x1, x2) ∈ R2
+ | x1 + x2 ≤ 1} and ρ1(u1) = −u1(1)− 3u1(2)

P2 = {(x1, x2) ∈ R2
+ | x1 + x2 ≤ 1} and ρ2(u2) = −2u2(1)− u2(2)

P3 = {(x1, x2) ∈ R2
+ | x1 ≤ 1, x2 = 0} and ρ3(u3) = u3(1)

P4 = {x1, x2) ∈ R2
+ | x2 ≤ 1, x1 = 0} and ρ4(u4) = −2u4(2)

Moreover, we define the function to minimize at the high-level stage as f(z) = (z1−2)2+(z2−1)2.
Hence, for each 1 ≤ j ≤ 4, the sets Pj ∩ Z2 are P1 ∩ Z2 = {(0, 0); (0, 1); (1, 0)}, P2 ∩ Z2 =

{(0, 0); (0, 1); (1, 0)}, P3∩Z2 = {(0, 0); (1, 0)} and P4∩Z2 = {(0, 0); (0, 1)}. It is straightforward
to verify that for all 1 ≤ j ≤ 4 the set Pj ∩Z2 is M \-convex and the function ρj +χPj∩Z2 is M \-
concave. Moreover, the function f + χ∑

j(Pj∩Z2) is M \-convex, as sum of a M \-convex function
and a separable convex function.

The Minkowski sum
∑

j(Pj∩Z2) is equal to {(z1, z2) ∈ Z2 | 0 ≤ z1 ≤ 3, 0 ≤ z2 ≤ 3, z1+z2 ≤
4}. By solving the high-level problem, we obtain z∗ = (2, 1). The optimal x∗j are those which
attain the maximum in the sup-convolution ϕ of functions ρj , that is the optimal solutions of:

max
x1∈P1,...,x4∈P4

x1,...,x4∈Z2

x1+x2+x3+x4=z∗

−x1
1 − 3x1

2 − 2x2
1 − x2

2 + x3
1 − 2x4

2

It leads to x1∗ = (1, 0), x2∗ = (0, 1), x3∗ = (1, 0) and x4∗ = (0, 0).
The low-level problems can be written for the different k as max(y1− 1, y2− 3, 0), max(y1−

2, y2−1, 0), max(y1−1, 0) and max(y2−2, 0). To ensure the optimal solutions of these problems
are the u∗k defined previously, we have to take y∗ in the polyhedron defined by the following
equations: y1 − 1 ≥ y2 − 3, y1 − 1 ≥ 0, y2 − 1 ≥ y1 − 2, y2 − 1 ≥ 0, y1 − 1 ≥ 0 and 0 ≥ y2 − 2.
It means the optimal prices y∗ are those which belong to the polyhedron {y ∈ R2 | 1 ≤ y1, 1 ≤
y2 ≤ 2, y1 − y2 ≤ 2}.
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6.4 Comparison with a competitive equilibrium problem

6.4.1 The problem of competitive equilibrium

In this section, we establish a comparison between Problem 6.20 and a competitive equilibrium
problem for indivisible goods developed by Danilov, Koshevoy and Murota ([DKM01]).

A competitive equilibrium problem in game theory can be formulated as follows. A set of K
producers wants to sell n different goods to a set of J customers. We denote for each k ∈ [K] by
zk ∈ Rn the supply of producer k (meaning that zki is the quantity of good i sold by producer k),
and for each j ∈ [J ] by xj ∈ Rn the demand of customer j (meaning that xji is the quantity of
good i bought by customer i). Without any storage, the demand has to be equal to the supply
at equilibrium, that is

∑K
k=1 z

k =
∑J

j=1 x
j . If the price of a good i is not constant among the

different producers, then the customers want to buy it to the least expansive producer. The
most expansive producers do not sell anything, then they decrease their prices. Consequently,
if an equilibrium exists, then the price of each good i is pi, not depending on the producers.

The profit of producer k is described by a function fk(zk, p) depending on his production and
on the price, whereas the utility of customer j is represented by a function gj(xj , p) depending
on his consumption and on the price. Each agent wants to maximize his own profit or utility.
Hence, when the market price vector is p, the producer k is satisfied if his supply zk∗ is such
that zk∗ ∈ arg maxzk∈Rn fk(z

k, p), whereas the customer j is satisfied if his demand xj∗ is such
that xj∗ ∈ arg maxxj∈Rn gj(x

j , p). Hence, a competitive equilibrium exists if one can find a price
vector p∗ such that:

∀k ∈ [K] , zk∗ ∈ arg max
zk∈Rn

fk(z
k, p∗)

∀j ∈ [J ] , xj∗ ∈ arg max
xj∈Rn

gj(x
j , p∗)

K∑
k=1

zk∗ =
J∑
j=1

xj∗

For divisible quantities, the existence of such an equilibrium under certain conditions was
established by Arrow and Debreu [AD54]. Danilov, Koshevoy and Murota ([DKM01]) study
the case of indivisible goods, meaning that the vectors zk and xj are constrained to belong
to Zn. They study the usual case where the function fk and gj can be written fk(z

k, p) :=
fk(zk) + 〈p, zk〉, and gj(xj , p) := gj(xj)− 〈p, xj〉, with functions fk and gj are defined over Zn.

Theorem 6.24 (Corollary of [DKM01], th.3). Assume that fk and gj are M \-concave function.
Then, there always exist a competitive equilibrium.

In fact, they mention the theorem for fk and gj belonging to a class of discrete concave
functions, and prove in particular that M \-concave functions are appropriate. We mention how
an equilibrium can be found. The condition ∀k ∈ [K] , zk∗ ∈ arg maxzk∈Zn f

k(zk) + 〈p, zk〉 is
equivalent to N∗ ∈ arg maxN∈Zn F (N)+〈p,N〉 with N =

∑K
k=1 z

k and F is the sup-convolution
of functions fk. Writing the same equivalence for the customers by introducing G as the sup-
convolution of functions gj , and using

∑
k z

k∗ =
∑

j x
j∗, a competitive equilibrium exists if and

only if there exist p∗ ∈ Rn and N∗ ∈ Zn such that:

N∗ ∈ arg max
N∈Zn

F (N) + 〈p∗, N〉 and N∗ ∈ arg max
N∈Zn

G(N)− 〈p∗, N〉
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Because F and G areM \-concave as sup-convolutions ofM \-concave functions, such a vector
N∗ exist if and only if N∗ ∈ arg max(F +G). The vector p∗ is hence any vector p such that the
functions N 7→ F (N) + 〈p,N〉 and N 7→ G(N) − 〈p,N〉 are maximal in N∗, that is p∗ belongs
to the polyhedron defined by the following inequalities:

∀i ∈ [n] , max(F (N∗ − ei)− F (N∗), G(N∗ + ei)−G(N∗))

≤ p∗i ≤ min(F (N∗)− F (N∗ + ei), G(N∗)−G(N∗ − ei))
∀i, j ∈ [n] , max(F (N∗ − ei + ej)− F (N∗), G(N∗ + ei − ej)−G(N∗))

≤ p∗i − p∗j ≤ min(F (N∗)− F (N∗ + ei − ej), G(N∗)−G(N∗ − ei + ej))

6.4.2 Comparison bewteen the competitive equilibrium problem and the conges-
tion problem

We introduce here a special case of the competitive equilibrium problem introduced in Sec-
tion 6.4.1.

Let us consider the case K = 1 and J = q. We define y ∈ Rn as the opposite of the price,
that is y = −p. It means that the supply of the producer satisfies z∗ ∈ arg maxz∈Zn F (z∗, y),
whereas the demand of each customer j ∈ [q] satisfies xj∗ ∈ arg maxxj∈Zn gj(x

j , y), with the
condition z∗ =

∑q
j=1 x

j∗. We introduce a class of parametric competitive equilibrium problems
as follows. We suppose that for each j ∈ [q], gj(xj , y) = ρj(x

j) − χPj∩Zn(xj) + 〈y, xj〉. For
λ ≥ 0, we define F (z∗, y) = −f(z∗)− χ∑

j(Pj∩Zn)(z
∗)〈y, z∗〉. We do the following assumption.

Assumption G. The function f is M \-convex. For each j ∈ [q], the function ρj is M \-concave
and the polytope Pj is a g-polymatroid. Moreover, at least one of the following condition holds:

• For each j ∈ [q], the function ρj − χPj∩Zn is M \-concave.

• The function f + χ∑
j(Pj∩Zn) is M \-convex.

Hence, the competitive equilibrium problem (Pλ) is written as follows. For λ ≥ 0, under
Assumption G, can we find y∗λ ∈ Rn, z∗λ ∈ Zn and for each j ∈ [q], xj∗ ∈ Zn such that:

(Pλ) :


z∗λ ∈ arg minz∈

∑
j(Pj∩Zn) f(z) + λ〈y∗λ, z〉

∀j ∈ [q] , xj∗λ ∈ arg maxxj∈Pj∩Zn ρj(x
j) + 〈y∗λ, xj〉

z∗λ =
∑q

j=1 x
j∗
λ

We notice that if λ = 0, then the optimization of the producer does not depend on y. It
leads to separate the study between two cases: λ > 0, and λ = 0.

Proposition 6.25. Suppose that λ > 0. Then, a competitive equilibrium exists and can be
obtained in polynomial time in n, q and the input size.

Proof. If λ > 0, then the problem (Pλ) can be rewritten. By using p = −y, the optimization of
the producer is maxz∈Zn(−f − χ∑

j(Pj∩Zn))(z) + 〈p, z〉, and the optimization of each customer
j is maxxj∈Zn(ρj − χPj∩Zn)(xj) − 〈p, xj〉. Hence, under Assumption G, Theorem 6.24 can
be applied, ensuring the existence of a competitive equilibrium. The optimal z∗λ is such that
z∗λ ∈ arg max−f(z) +ϕ(z)−χ∑

j(Pj∩Zn)(z), where ϕ is the sup-convolution of the functions ρj .
ϕ − χ∑

j(Pj∩Zn) being the sup-convolution of the M \-concave functions ρj − χPj∩Zn , it is still
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M \-concave. Hence, z∗λ is obtained by maximizing a M \
2-concave function, what can be done in

polynomial time in n and the input size (see Section 3.4). The price Y∗λ is obtained by finding
a point satisfying linear inequalities as mentioned in Section 6.4.1. Finally, the vectors xj∗λ are
such that ϕ(z∗λ) =

∑q
j=1 ρj(x

j∗
λ ). It can be obtained by solving a submodular flow problem (see

Section 3.4), what can be done in polynomial time in n, q and the size input.

Example 6.26. We consider the same functions as in Example 6.23. We take λ = 1. The
optimization problem of the producer becomes minz∈

∑
j(Pj∩Zn) f(z) − 〈y, z〉, whereas the opti-

mization problem of each customer becomes maxxj∈Pj∩Zn ρj(x
j) + 〈y, xj〉.

Consequently, the optimal z∗ is computed as an optimal solution of:

min
z∈

∑
j(Pj∩Zn)

(z1 − 2)2 + (z2 − 1)2 + min
x1∈P1,...,x4∈P4

x1,x2,x3,x4∈Z2

x1+x2+x3+x4=z

[
x1

1 + 3x1
2 + 2x2

1

+ x2
2 − x3

1 + 2x4
2

]
The minimal value is equal to 1 and is attained for z∗ = (1, 0), z∗ = (1, 1) or z∗ = (2, 0). Take

z∗ = (1, 0) for example. It leads to x1∗ = (0, 0), x2∗ = (0, 0), x3∗ = (1, 0) and x4∗ = (0, 0). The
optimal y∗ correspond to the value of y for which xj∗ is the optimal solution of the customer
problem for each j, and z∗ the optimal solution of the producer problem. From customers’
problem, we deduce y∗1 − 1 ≤ 0, y∗2 − 3 ≤ 0, y∗2 − 1 ≤ 0, y∗1 − 2 ≤ 0, y∗1 − 1 ≥ 0, y∗2 − 2 ≤ 0,
that is y∗1 = 1 and y∗2 ≤ 1. Moreover, the optimal y∗ ara also the values of y for which z∗ is
optimal for the producer By the equivalence between local and global optimality for M \-convex
functions, we have 2 + y∗1 ≤ 5, 2 + y∗1 ≤ 1 + 2y∗1, 2 + y∗1 ≤ 1 + y∗1 + y∗2 and 2 + y∗1 ≤ 4 + y∗2, that
is 1 ≤ y∗1 ≤ 3, y∗2 ≥ −1 and y∗1 − y∗2 ≤ 2. Consequently, the set of optimal y∗ is the following
polyhedron {y ∈ R2 | y1 = 1, −1 ≤ y2 ≤ 1}.

The optimization function of the producer in the case λ = 0 does not depend on the price,
as in the bilevel problem 6.20. Moreover, we have the following result.

Theorem 6.27. The competitive equilibrium problem (P0) is equivalent to Problem 6.20.

Proof. Problem (P0) is equivalent to find y∗0 ∈ Rn, z∗0 ∈ Zn and for each j ∈ [q], xj∗0 ∈ Pj ∩
Zn such that z∗0 ∈ arg minz∈

∑
j(Pj∩Zn) f(z), for each j ∈ [q], xj∗0 ∈ arg maxxj∈Pj∩Zn ρj(x

j) +

〈y∗0, xj〉, and z∗0 =
∑q

j=1 x
j∗
0 . This is hence equivalent to find y∗0 ∈ Rn and z∗0 ∈ Zn such that

z∗0 ∈ arg minz∈
∑
j(Pj∩Zn) f(z) and z∗0 ∈ arg maxz∈

∑
j(Pj∩Zn)〈y, z〉 + ϕ(z). By introducing the

subdivision associated to the tropical polynomial Q(y) = maxz∈
∑
j(Pj∩Zn)〈y, z〉 + ϕ(z), this is

equivalent to Problem 6.20 according to Theorem 6.21.

It means that the bilevel Problem 6.20 belong in fact to the class of competitive equilibrium
problems. This correspondance comes from the specific structure of Problem 6.20 and Problem
(P0), that is the non-dependance on the price y in the optimization function of the producer.

6.4.3 Congestion problem as a limit of competitive equilibrium problems

We will now see that the congestion problem can be viewed as a limit case of competitive
equilibrium problems when λ goes to 0.
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For λ ∈ R+, we consider the sets of optimal supply Zλ defined by:

Zλ = arg min
z∈

∑
j(Pj∩Zn)

[f(z)− λϕ(z)]

We define also the sets of equilibrium prices Yλ as the sets of vectors y ∈ Rn such that there
exists z∗ ∈ Zλ with ∀z ∈

∑
j(Pj ∩ Zn):

ϕ(z∗) + 〈y, z∗〉 ≥ ϕ(z) + 〈y, z〉
f(z∗) + λ〈y, z∗〉 ≤ f(z) + λ〈y, z∗〉

We mention that in the case λ = 0, the second inequality in the definition of Y0 is automat-
ically induced by the condition z∗ ∈ Z0.

We will now explain in which sense the congestion problem (P0) is a limit case of the
competitive equilibrium problems (Pλ) when λ goes to 0.

Theorem 6.28. There exists a critical value λC such that ∀0 < λ < λC , Zλ = arg maxz∈Z0 ϕ(z).
In particular, we have Zλ ⊂ Z0.

Proof. The set
∑

j(Pj ∩ Zn) is finite. Hence, the sets of values {f(z) | z ∈
∑

j(Pj ∩ Zn)} and
{ϕ(z)|z ∈

∑
j(Pj ∩ Zn)} are also finite and discrete.

If f is constant over
∑

j(Pj ∩ Zn), then Z0 =
∑

j(Pj ∩ Zn) and clearly ∀λ ∈ R+,Zλ =

arg maxN∈Z0
ϕ(z). If ϕ is constant over

∑
j(Pj ∩ Zn), then we have:

arg min
z∈

∑
j(Pj∩Zn)

[f(z)− λϕ(z)] = arg min
z∈

∑
j(Pj∩Zn)

f(z),

that is Zλ = Z0. In this case, we have also arg maxz∈Z0 ϕ(z) = Z0.
Assume now that f and ϕ are not constant over

∑
j(Pj ∩ Zn). We define two value f0 and

f1 as :

f0 = min
z∈

∑
j(Pj∩Zn)

f(z)

f1 = min
z∈

∑
j(Pj∩Zn), f(z)>f0

f(z).

Because the set {f(z) | z ∈
∑

j(Pj ∩ Zn)} is finite and discrete, those definitions mean that f0

and f1 correspond to the two smallest values of function f .
Define λC as:

λC =
f1 − f0

maxN ∈
∑
j(Pj∩Zn) ϕ(z)−minN ∈

∑
j(Pj∩Zn) ϕ(z)

Because f and ϕ are not constant functions over
∑

j(Pj∩Zn), λC is well defined and positive.
Let 0 < λ < λC and z∗ ∈ Zλ. For each z ∈

∑
j(Pj∩Zn), we have f(z∗)−λϕ(z∗) ≤ f(z)−λϕ(z),

that is:

f(z∗) ≤ f(z) + λ (ϕ(z∗)− ϕ(z)) < f(z) + λC (ϕ(z∗)− ϕ(z))

< f(z) + (f1 − f0) < f1.
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Hence, by definition of constants f0 and f1, f(z∗) = f0 and z∗ ∈ Z0. Take z ∈ Z0. We
have f(z∗) − λϕ(z∗) ≤ f(z) − λϕ(z) and f(z∗) = f(z) = f0. So, ϕ(z∗) ≥ ϕ(z) and z∗ ∈
arg maxz∈Z0

ϕ(z).
Conversely, consider z∗ ∈ arg maxz∈Z0

ϕ(z). In particular, z∗ ∈ Z0, meaning that f(z∗) =
f0. Consider z ∈

∑
j(Pj ∩ Zn). If f(z) = f0, then z ∈ Z0. So, by definition of z∗, ϕ(z∗) ≥ ϕ(z)

and f(z∗)− λϕ(z∗) ≤ f(z)− λϕ(z). Else, f(z) ≥ f1. So:

f(z)− f(z∗) ≥ f1 − f0 = λC

[
max

z∈
∑
j(Pj∩Zn)

ϕ(z)− min
z∈

∑
j(Pj∩Zn)

ϕ(z)

]
≥ λ(ϕ(z∗)− ϕ(z))

So, we also have f(z∗)− λϕ(z∗) ≤ f(z)− λϕ(z), that is z∗ ∈ Zλ.

The existence of the critical value λC means that for small values of λ, the problem consisting
to determine Zλ belongs to the class of lexicographic optimization problems. To belong to Zλ,
it is necessary to solve minz∈

∑
j(Pj∩Zn) f(z), and then to solve maxϕ(z) among the solutions of

the first problem.

Corollary 6.29. For 0 ≤ λ < λC , Yλ ⊂ Y0.

Proof. By definition of Yλ, a price vector y belongs to Yλ if and only if there exists z∗ ∈ Zλ
such that ∀z ∈

∑
j(Pj ∩ Zn):

ϕ(z∗) + 〈y, z∗〉 ≥ ϕ(z) + 〈y, z〉
f(z∗) + λ〈y, z∗〉 ≤ f(z) + λ〈y, z∗〉

According to Theorem 6.28, z∗ ∈ Z0. So, ∀z ∈
∑

j(Pj ∩ Zn), we have f(z∗) ≤ f(z). Thus,
y ∈ Y0.

It means that for 0 < λ < λC , the problem (Pλ) can be solved lexicographically, first by
minimizing f over

∑
j(Pj ∩ Zn), and secondly by maximizing ϕ over the set of minimizers of f

which is exactly Z0.

Example 6.30. We illustrate Theorem 6.28. In Example 6.23, we study the case λ = 0. In
Example 6.26, we study λ = 1. We consider the same functions for the producer and for the
customers.

To illustrate the previous results, we need to determine the critical value λC .

• f0 = minz∈
∑
j(Pj∩Zn) f(z) = −minz∈

∑
j(Pj∩Zn)(z1 − 2)2 + (z2 − 1)2 = 0.

• f1 = minz∈
∑
j(Pj∩Zn), f(z)>0 f(z) = 1.

The function ϕ is defined as the sup-convolution of functions ρj over Pj . Hence,

ϕ(z) = − min
x1∈P1,...,x4∈P4

x1,x2,x3,x4∈Z2

x1+x2+x3+x4=z

[
x1

1 + 3x1
2 + 2x2

1 + x2
2 − x3

1 + 2x4
2

]

So, maxz∈
∑
j(Pj∩Zn) ϕ(z) = −minx1∈P1,...,x4∈P4

x1,x2,x3,x4∈Z2

x1
1 + 3x1

2 + 2x2
1 + x2

2 − x3
1 + 2x4

2 = 1, attained

for z∗ = (1, 0) and x1∗ = (0, 0), x2∗ = (0, 0), x3∗ = (1, 0), x4∗ = (0, 0). We can also calculate
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minz∈
∑
j(Pj∩Zn) ϕ(z) = −6 In fact, consider z ∈

∑
j(Pj ∩Z2) such that z1 ≥ 1. Take x3 = (1, 0).

Then, f.or each j ∈ {1, 2, 4} and xj ∈ Pj ∩ Z2, we have:

x1
1 + 3x1

2 + 2x2
1 + x2

2 − x3
1 + 2x4

2 ≤ 3 + 2− 1 + 2 = 6

Then φ(z) ≥ −6. Consider now z ∈
∑

j(Pj ∩ Z2) such that z1 = 0. Then, for each j ∈ [4] and
each xj ∈ Pj ∩ Z2, the condition

∑
j x

j = z implies xj1 = 0 and:

x1
1 + 3x1

2 + 2x2
1 + x2

2 − x3
1 + 2x4

2 ≤ 3 + 2 + 1 = 6,

meaning that ϕ(z) ≥ −6. Hence, for z∗ = (0, 3) and x1∗ = (0, 1), x2∗ = (0, 1), x3∗ = (0, 0) and
x4∗ = (0, 1), we have ϕ(z∗) = −6. Consequently, λC = 1−0

1−(−6) = 1/7.
Take for example λ = 0.1. We have to compute Zλ, that is to solve:

min
z∈

∑
j(Pj∩Zn)

10(z1 − 2)2 + 10(z2 − 1)2 + min
x1∈P1,...,x4∈P4

x1,x2,x3,x4∈Z2

x1+x2+x3+x4=z

[
x1

1 + 3x1
2 + 2x2

1

+ x2
2 − x3

1 + 2x4
2

]
We have clearly Zλ = {(2, 1)}, that is Zλ = Z0. We have x1∗ = (1, 0), x2∗ = (0, 1),

x3∗ = (1, 0) and x4∗ = (0, 0). The optimal y∗ correspond to the prices for which xj∗ is the
optimal consumption of each customer. It gives y∗1 ≥ 1, 1 ≤ y∗2 ≤ 2 and y∗1 − y∗2 ≤ 2 according
to the result of Section 6.4.2. The optimal y∗ correspond also to the prices for which z∗ is
the optimal solution of the producer problem. By the equivalence between global and local
optimality for M \-convex functions, we have:

2y∗1 + y∗2 ≤ 10 + y∗1 + y∗2 2y∗1 + y∗2 ≤ 10 + 3y∗1 + y∗2

2y∗1 + y∗2 ≤ 10 + 2y∗1 + y∗2 2y∗1 + y∗2 ≤ 10 + 2y∗1 + 2y∗2

2y∗1 + y∗2 ≤ 20 + y∗1 + 2y∗2 2y∗1 + y∗2 ≤ 20 + 3y∗1,

that is −10 ≤ y∗1 ≤ 10, −10 ≤ y∗2 ≤ 10 and −20 ≤ y∗1 − y∗2 ≤ 20. Notice that 1 ≤ y∗2 ≤ 2 and
2 ≥ y∗1 − y∗2 imply y∗1 ≤ 4. Moreover, y∗1 ≥ 1 and y∗2 ≤ 2 imply y∗1 − y∗2 ≥ −1. Hence, the set of
optimal prices Yλ is the polyhedron Yλ = {y ∈ R2 | y∗1 ≥ 1, 1 ≤ y∗2 ≤ 2, y∗1 − y∗2 ≤ 2}, that is
Yλ = Y0.
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Figure 6.3: Set of optimal prices Yλ of Problem (Pλ) for λ = 0.1
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Part II

Application to a telecom problem





CHAPTER 7
A bilevel model for price incentives

in telecommunications network

We propose a model of incentives for data pricing in large mobile networks, in which an operator
wishes to balance the number of connexions (active users) of different classes of users in the
different cells (or locations) and at different time instants, in order to ensure them a sufficient
quality of service. We assume that each user has a given total demand per day for different
types of applications, which he may assign to different time slots and locations, depending on
his own mobility, on his preferences and on price discounts proposed by the operator. We show
that this can be cast as a bilevel programming problem with a special structure allowing us
to develop a polynomial time decomposition algorithm suitable for large networks. First, we
determine the optimal number of connexions (which maximizes a measure of balance); next, we
solve an inverse problem and determine the prices generating this traffic. Our results exploit a
recently developed application of tropical geometry methods to mixed auction problems, as well
as algorithms in discrete convexity (minimization of discrete convex functions in the sense of
Murota). We finally present an application on real data provided by Orange and we show the
efficiency of the model to reduce the peaks of congestion.

7.1 Introduction

With the development of new mobile data technologies (3G, 4G), the demand for using the
Internet with mobile phones has increased rapidly. Mobile service providers (MSP) have to
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confront congestion problems in order to guarantee a sufficient quality of service (QoS).
Several approaches have been developed to improve the quality of service, coming from

different fields of the telecommunication engineering and economics. For instance, one can refer
to Bonald and Feuillet [BF13] for some models of performance analysis to optimize the network
in order to improve the QoS. One of the promising alternatives to solve such problems consists
in using efficient pricing schemes in order to encourage customers to shift their mobile data
consumption. In [MT06], Maillé and Tuffin describe a mechanism of auctions based on game-
theoretic methods for pricing an Internet network, see also [MT14]. In [ABEA+06], Altman
et al. study how to price different services by using a noncooperative game. These different
approaches are based on congestion games. In the present work, we are interested in how a MSP
can improve the QoS by balancing the traffic in the network. We wish to determine in which
locations, and at which time instants, it is relevant to propose price incentives, and to evaluate
the influence of these incentives on the quality of service.

This kind of problem belongs to smart data pricing. We refer the reader to the survey of
Sen et al. [SJWHC13] and also to the collection of articles [SJWHC14]. Finding efficient pricing
schemes is a revenue management issue. The first approach consists in usage-based pricing; the
prices are fixed monthly by analysing the use of the former months. It is possible to improve
this scheme by identifying peak hours and non-peak hours and proposing incentives in non-peak
hours in order to decrease the demand at peak hours and to better use the network capacity
at non-peak hours. This leads to time-dependent pricing. Such a scheme for mobile data is
developed by Ha et al. in [HSJW+12]. The prices are determined at different time slots and
based on the usage of the previous day in order to maximize the utility of the customers and
the revenue of the MSP. This pricing scheme was concretely implemented by AT&T, showing
the relevance of such a model. In another approach, Tadrous et al. propose a model in which
the MSP anticipates peak hours and determines incentives for proactive downloads [TEEG13].

The latter models concern only the time aspects. One must also take into account the spatial
aspect in order to optimize the demand between the different locations. In [MLH14], Ma, Liu
and Huang present a model depending on time and location of the customers where the MSP
proposes prices and optimizes his profit taking into account the utility of the customers.

Here, we assume (as in [MLH14]) that the MSP proposes incentives at different time and
places. Then, customers optimize their data consumption by knowing these incentives and the
MSP optimizes a measure of the QoS. In this way, we introduce a bilevel model in which the
provider proposes incentives in order to balance the traffic in the network and to avoid as much
as possible the congestion (high level problem), and customers optimize their own consumption
for the given incentives (low level problem).

Bilevel programs have been widely studied, see the surveys of Colson, Marcotte and Savard
[CMS07] and of Dempe [Dem03b]. They represent an important class of pricing problems in sense
that they model a leader wanting to maximize his profit and proposing prices to some followers
who maximize themselves their own utility. Most classes of bilevel programs are known to be
NP-hard. Several methods have been introduced to solve such problems. For instance, if the low
level program is convex, it can be replaced by its Karush-Kuhn-Tucker optimality conditions
and the bilevel problem becomes a classical one-stage optimization problem, which is however
generally non convex. If some variables are binary or discrete, and the objective function is
linear, the global bilevel problem can be rewritten as a mixed integer program, as in Brotcorne
et al. [BLMS00].

In the present work, we optimize the consumption of each customer in a large area (large
urban agglomerations) during typically one day divided in time slots of one hour, taking into
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account the different types of customers and of applications that they use. Therefore, we have to
confront both with the difficulties inherent to bilevel programming and with the large number of
variables (around 107). Hence, we need to find polynomial time algorithms, or fast approximate
methods, for classes of problems of a very large scale, which, if treated directly, would lead to
mixed integer linear or nonlinear programming formulations beyond the capacities of current
off-the-shelve solvers.

This motivated us to introduce a different approach, based on tropical geometry. Tropical
geometry methods have been recently applied by Baldwin and Klemperer in [BK12] to an auction
problem. This has been further developed by Yu and Tran [TY15]. In these approaches, the
response of an agent to a price is represented by a certain polyhedral complex (arrangement of
tropical hypersurfaces). This approach is intuitive since it allows one to vizualize geometrically
the behavior of the agents: each cell of the complex corresponds to the set of incentives leading
to a given response. Then, we vizualize the collective response of a group of customers by
“superposing” (refining) the polyhedral complexes attached to every customer in this group. We
apply here this idea to represent the response of the low-level optimizers in a bilevel problem.
This leads to the following decomposition method: first we compute, among all the admissible
consumptions of the customers, the one which maximizes a measure of balance of the network;
then, we determine the price incentive which achieves this consumption. In this way, a bilevel
problem is reduced to the minimization of a convex function over a certain Minkowski sum
of sets. We identify situations in which the latter problem can be solved in polynomial time,
by exploiting the discrete convexity results developed by Murota [Mur03]. In this approach,
a critical step is to check the membership of a vector to a certain Minkowski sum of sets
of integer points of polytopes. In our present model, these polytopes, which represent the
possible consumptions of one customer, have a remarkable combinatorial structure (they are
hypersimplices). Exploiting this combinatorial structure, we show that this critical step can be
performed quickly, by reduction to a shortest path problem in a graph. This leads to an exact
solution method when there is only one type of contract and one type of application sensitive
to price incentive, and to a fast approximate method in the general case.

We finally present the application of this model on real data from Orange and show how
price incentives can improve the QoS by balancing the number of active customers in an urban
agglomeration during one day. These results indicate that a price incentive mechanism can
effectively improve the satisfaction of the users by displacing their consumption from the most
loaded regions of the space-time domain to less loaded regions.

The paper is organized as follows. In Section 7.2, we present the bilevel model. In Section 7.3,
we explain how a certain polyhedral complex can be used to represent the user’s responses, and
we describe the decomposition method. In Section 7.5, we deal with the high level problem and
identify special cases which are solvable in polynomial time. We also propose a general relaxation
method. The application to the instance provided by Orange is presented in Section 7.6.

7.2 A bilevel model

We consider a time horizon of one day, divided in T time slots numbered t ∈ [T ] = {1, . . . T}, and
a network divided in L different cells numbered l ∈ [L]. We assume that K customers, numbered
k ∈ [K], are in the network. The customers have different types of contracts b ∈ [B] and
they make requests for different types of applications a ∈ [A] (web/mail, streaming, download,
. . . ). We denote by Kb the set of customers with the contract b. A given customer k ∈ Kb is
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characterized by the following data. We denote by Lkt ∈ [L] the position of the customer k at
each time t ∈ [T ], so that the sequence (Lk1, . . . , L

k
T ) represents the trajectory of this customer.

We assume that this trajectory is deterministic, so we consider customers with a regular daily
mobility (for example, the trip between home and work). We denote by ρak(t) the inclination of
a customer k to make a request for an application of type a at time t ∈ [T ]. We suppose that
customer k wishes to make a fixed number of requests Rak ≤ T using the application a during the
day. We consider a set of time slots Iak ⊂ [T ] in which the customer k decides not to consume
the application a.

We denote by uak(t) the consumption of the customer k for the application a at time t,
setting uak(t) = 1 if k is active at time t and makes a request of type a and uak(t) = 0 otherwise.
Therefore, the number Na,b(t, l) of active customers with contract b for the application a at time
t and location l is given by Na,b(t, l) =

∑
k∈Kb u

a
k(t)1(Lkt = l), where 1 denotes the indicator

function, and the total number of active customers N(t, l) at time t and location l is given by
N(t, l) =

∑
a

∑
bN

a,b(t, l).
We consider the following two-stage model of price incentives. The first stage consists for

the operator in announcing a discount ya,b(t, l) at time t and location l for the customers of
contract b making requests of type a. We consider only nonnegative discounts, so ya,b(t, l) ≥ 0.
The second stage models the behavior of customers who modify their consumption by taking
the discounts into account. We will assume the preference of a customer k for consuming at
time t becomes ρak(t) + αaky

a,b(t, Lkt ), where αak denotes the sensitivity of customer k to price
incentives for the application a. It corresponds to classical linear utility functions, see e.g.
[BK12]. We also assume that the customers cannot make more than one request at each time,
that is ∀t ∈ [T ],

∑
a u

a
k(t) ≤ 1. Therefore, each customer k determines his consumptions

uak = (uak(t))t∈[T ] ∈ {0, 1}T for the applications, as an optimal solution of the linear program:

Problem 7.1 (Low-level, customers).

max
uak∈{0,1}T

∑
a∈[A]

T∑
t=1

[
ρak(t) + αaky

a,b(t, Lkt )
]
uak(t) (7.1)

s.t. ∀a ∈ [A] ,
T∑
t=1

uak(t) = Rak, ∀t ∈ [T ] ,
∑
a∈[A]

uak(t) ≤ 1

∀t ∈ Iak ,∀a ∈ [A] , uak(t) = 0

Consequently, each price ya,b = (ya,b(t, l))t∈[T ], l∈[L] determines the possible individual con-
sumptions uak for the users with contract b, and so the possible cumulated traffic vectors
Na,b = (Na,b(t, l))t∈[T ], l∈[L] and N =

∑
a

∑
bN

a,b. The aim of the operator is, through price in-
centives, to balance the load in the network into the different locations and time slots to improve
the quality of service perceived by each customer. We introduce a coefficient γb relative to the
kind of contracts of the different customers in order to favor some classes of premium customers.
In [LMS05], Lee et al. suppose that the satisfaction of a customer depends on his perceived
throughput, which can be considered as inversely proportional to the number of customers in
the cell. Here, we assume that the satisfaction of each customer k in the cell l ∈ [L] is a decreas-
ing function sa,bl of the total number of active customers in the cell N(t, l), depending on the
characteristics of the cell, of the type of application the user wants to do (some applications like
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streaming need a higher rate than other) and on the type of contract. We also assume the satis-
faction of all the customers with contract b using a given application a in a given cell is maximal
until the number of active customers reaches a certain threshold Na,b

l , then sa,bl (N(t, l)) = 1 for
N(t, l) ≤ Na,b

l . After this threshold, the satisfaction decreases until a critical value NC
l . We add

the constraint ∀t ∈ [T ] , ∀l ∈ [L] , N(t, l) ≤ NC
l to prevent the congestion. For non-real time

services like web, mail, download, the satisfaction function can be viewed as a concave function
of the throughput, like 1−e−δ/δc where δ denotes the throughput, see Moety et al. [MBENN16].
Hence, we will consider that for contents like web, mail and download, Na,b

l = N1
l , s

a,b
l (n) = 1

for n ≤ N1
l and sa,bl (n) = 1 − λb exp

(
− 2NC

l

n−N1
l

)
for N1

l ≤ n ≤ NC
l where λb is a positive pa-

rameter depending on the kind of contract of the customer. The more expensive the contract of
the customer is, the larger is λb. We can prove that this function is concave for 0 ≤ n ≤ NC

l .
For real time services like video streaming, the customers need a more important throughput to
ensure a good QoS [LMS05]. We will here consider the same type of functions sa,bl but with N1

l

replaced by Na,b
l = 0, that is sa,bl (n) = 1− λb exp

(
−2NC

l
n

)
for 0 < n ≤ NC

l .

N(t, l)

sa,bl

1

0
N1
l NC

l

Figure 7.1: Different kind of satisfaction functions of the number of active customers in a cell.
The blue ones are those for streaming contents whereas the red ones are those for web, mail and
download contents. The dashed ones corresponds to the satisfaction of standard customers, the
continuous ones to the satisfaction of premium customers.

So, the first stage consists in maximizing the global satisfaction function s which depends
on the vectors Na,b ∈ NT×L and is defined by:

s(Na,b) =
T∑
t=1

∑
a∈[A]

∑
b∈[B]

∑
k∈Kb

γbs
a,b

Lkt
(N(t, Lkt ))u

a
k(t)

=

T∑
t=1

∑
a∈[A]

∑
b∈[B]

∑
k∈Kb

L∑
l=1

γbs
a,b
l (N(t, l))1(Lkt = l)uak(t)

=
T∑
t=1

L∑
l=1

∑
a∈[A]

∑
b∈[B]

γbN
a,b(t, l)sa,bl (N(t, l))

with ∀b ∈ [B] , γb > 0. Our final model consists in solving the following bilevel program:
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Problem 7.2 (High-level, provider).

max
ya,b∈RT×L+

T∑
t=1

L∑
l=1

∑
a∈[A]

∑
b∈[B]

γbN
a,b(t, l)sa,bl (N(t, l)) (7.2)

where ∀t ∈ [T ] , l ∈ [L] , N(t, l) =
∑A

a=1

∑B
b=1N

a,b(t, l), and N(t, l) ≤ NC
l , ∀t ∈ [T ] , l ∈

[L] , a ∈ [A] , b ∈ [B] , Na,b(t, l) =
∑

k∈Kb u
a
k(t)1(Lkt = l), and ∀k ∈ [K], the vectors uak are

solutions of Problem 7.1.

7.3 A polynomial time algorithm for solving the first model

We will present a decomposition method for solving the previous bilevel problem. In this section,
and in the two next ones, we suppose that there is only one kind of application and one kind
of contract. This special case is already relevant in applications: it covers the case when, for
instance, only the download requests are influenced by price incentives, whereas other requests
like streaming or web are fixed. Whereas the analytical results of the present section carry over
to the general model, the results of the next two sections (polynomial time solvability) are only
valid under these restrictive assumptions. We shall return to the general case in Section 7.5,
developing a fast approximate algorithm for the general model based on the present principles.

In this special case, the bilevel model can be rewritten:

max
y∈RT×L+

T∑
t=1

L∑
l=1

N(t, l)sl(N(t, l))

where ∀t, l N(t, l) ≤ NC
l and N(t, l) =

∑
k∈[K] u

∗
k(t)1(Lkt = l), and for each k ∈ [K] the vectors

u∗k are solutions of the problem:

max
uk∈{0,1}T

T∑
t=1

[
ρk(t) + αky(t, Lkt )

]
uk(t)

s.t.
T∑
t=1

uk(t) = Rk, ∀t ∈ Ik, uk(t) = 0,

In order to deal more abstractly with the bilevel model, we introduce the notation uk(t, l) =
uk(t)1(Lkt = l). Hence, we have uk(t, l) = 0 if Lkt 6= l. By defining the set Jk = {(t, l) | t ∈ Ik or
Lkt 6= l}, we have that (t, l) ∈ Jk implies that uk(t, l) = 0. We can then define ρk(t, l) = ρk(t)/αk
if (t, l) /∈ Jk and ρk(t, l) = −∞ otherwise. Then, we can rewrite each low-level problem as:

max
uk∈Fk

∑
t,l

[ρk(t, l) + y(t, l)]uk(t, l)

where Fk = {u ∈ {0, 1}T×L |
∑

t,l u(t, l) = Rk and ∀(t, l) ∈ Jk, u(t, l) = 0}, and the global
bilevel problem becomes:

max
y∈RT×L+

∑
t,l

fl(N(t, l)) s.t. ∀(t, l), N(t, l) ≤ NC
l , N(t, l) =

K∑
k=1

uk(t, l)
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with
fl : x ∈ R+ 7→ xsl(x) .

Notice that the set Jk corresponds to the set of couples (t, l) such that ρk(t, l) = −∞. It is
possible to enumerate all the couples (t, l) ∈ [T ] × [L]. Let us define n = T × L and associate
each couple (t, l) to an integer i ∈ [n]. The quantities ρk(t, l), uk(t, l), N(t, l) and y(t, l) can
be respectively denoted by ρk(i), uk(i), Ni and yi. The function fl and the integer NC

l can be
respectively denoted by fi and NC

i . It means that for two indices i and j associated to two
couples (t, l) and (t′, l) with the same l, we have fi = fj := fl and NC

i = NC
j := NC

l . The
low-level problem can be rewritten:

Problem 7.3 (Abstract low-level problem).

max
uk∈Fk

n∑
i=1

[ρk(i) + yi]uk(i) (7.3)

where Fk = {u ∈ {0, 1}n|
∑n

i=1 u(i) = Rk and ∀i ∈ Jk, u(i) = 0}.

The global bilevel problem is:

Problem 7.4 (Bilevel problem).

max
y∈Rn+

n∑
i=1

fi(Ni) s.t. ∀i,Ni ≤ NC
i , Ni =

K∑
k=1

u∗k(i) (7.4)

with for all k ∈ [K], u∗k solution of Problem 7.3.

Proposition 7.5. Suppose that the functions si are decreasing and concave on
[
0, NC

i

]
. Then,

the functions fi are also concave on
[
0, NC

i

]
.

Proof. The result comes easily if we suppose that the functions si are twice differentiable, because
we have:

∀x ∈
[
0, NC

i

]
, f ′′i (x) = xs′′i (x) + 2s′i(x) ≤ 0

. We could deduce that the same is true without the differentiability assumption by a density
argument, writing a concave function as a pointwise limit of smooth concave functions. However,
we prefer to provide the following elementary argument. Consider 0 ≤ x ≤ y ≤ NC

i and t ∈ [0, 1].
Because si is decreasing, we have si(x) ≥ si(y). We have:

tfi(x) + (1− t)fi(y) = txsi(x) + (1− t)ysi(y)

= (tx+ (1− t)y)

[
tx

tx+ (1− t)y
si(x) +

(1− t)y
tx+ (1− t)y

si(y)

]
≤ (tx+ (1− t)y)si

(
tx2 + (1− t)y2

tx+ (1− t)y

)
Because of the well-known inequality 2xy ≤ x2 + y2, we have:

(tx+ (1− t)y)2 = t2x2 + (1− t)2y2 + 2t(1− t)xy
≤ tx2 + (1− t)y2
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Then, because si is decreasing, we have:

si

(
tx2 + (1− t)y2

tx+ (1− t)y

)
≤ si(tx+ (1− t)y)

so that:

tfi(x) + (1− t)fi(y) ≤ (tx+ (1− t)y)si(tx+ (1− t)y) ≤ fi(tx+ (1− t)y)

and fi is concave.

An important remark is that Problem 7.4 is a particular case of Problem 6.17, studied
in Chapter 6. We study first the tropical interpretation of the low-level problem in terms of
arrangements of tropical hypersurfaces. Next, we adapt Theorem 6.18 to our problem. It states
consequently that Problem 7.4 can be solved in polynomial time.

7.3.1 A tropical interpretation

The low-level component of Problem 7.4 can be studied thanks to tropical techniques. We first
consider the relaxation in which the price vector y can take any real value, i.e. y ∈ Rn. Each
customer k defines his consumption u∗k by solving the problem:

max
uk∈Fk

∑
i

[ρk(i) + yi]uk(i) = max
uk∈Fk

〈ρk + y, uk〉 , (7.5)

The map Pk : y 7→ maxuk∈Fk〈ρk + y, uk〉 is convex, piecewise affine, and the gradients of its
linear parts are integer valued. It can be thought of as a tropical polynomial function in the
variable y. Indeed, with the tropical notation, we have

Pk(y) =
⊕
uk∈Fk

⊙
i∈[n]

(ρk(i)� yi)�uk(i)


where z�p := z� · · · � z = p× z denotes the pth tropical power. In this way, we see that all the
monomials of Pk have degree

∑
i uk(i) = Rk, so that Pk is homogeneous of degree Rk, in the

tropical sense. This remark leads to the following lemma:

Lemma 7.6. Denote by e = (1 . . . 1) ∈ Rn. Let y be a solution of the relaxation y ∈ Rn of
Problem 7.4. Then, for all β ∈ R, y + βe is a solution of the relaxation y ∈ Rn of Problem 7.4.

Proof. Consider a solution y ∈ Rn of the relaxed problem. Because Pk is homogeneous of degree
Rk, we have for all β ∈ Rn, Pk(y + βe) = Pk(y) + βRk. In particular:

u∗k ∈ arg max
uk∈Fk

〈ρk + y, uk〉 ⇔ u∗k ∈ arg max
uk∈Fk

〈ρk + y + βe, uk〉

Hence, y + βe leads to the same repartition of the customers N∗ and corresponds also to an
optimal solution of the relaxed bilevel problem.

Corollary 7.7. The bilevel problem 7.4 has the same value as its relaxation y ∈ Rn.

Proof. Consider a solution y∗ ∈ Rn of the relaxed problem, and take β ≥ −mini y
∗
i . Then, we

have y∗+ βe ∈ Rn+ and solution of the relaxed problem according to Lemma 7.6. Consequently,
y∗ + βe is a solution of Problem 7.4.
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By definition, the tropical hypersurface associated to a tropical polynomial function is the
nondifferentiability locus of this function. Since the monomial Pk is homogeneous, its associated
tropical hypersurface is invariant by the translation by a constant vector. Therefore, it can be
represented as a subset of the tropical projective space TPn−1. The latter is defined as the
quotient of Rn by the equivalence relation which identifies two vectors which differ by a constant
vector, and it can be identified to Rn−1 by the map y ∈ TPn−1 7→ (yi − yn)i∈[n−1] ∈ Rn−1.

Example 7.8. Consider a simple example with T = 3 time steps (for instance morning, afternoon
and evening), L = 1 (that is n = 3), K = 5 and Jk = ∅ for each k. The parameters of the
customers are

ρ1 = [0, 0, 0] , R1 = 1, ρ2 = [0,−1, 0] , R2 = 2 ,

ρ3 = [−1, 1, 0] , R3 = 1 ρ4 = [1/2, 1/2, 0] , R4 = 2,

ρ5 = [1/2, 2, 0] , R5 = 1 .

The tropical polynomial of the first customer is P1(y) = max (y1, y2, y3), meaning that this
customer has no preference and consumes when the incentive is the best. Its associated tropical
hypersurface is a tropical line (since P1 has degree 1), so it splits TP2 in three different regions
corresponding to a choice of the vector u1 among (1, 0, 0), (0, 1, 0) and (0, 0, 1), see Figure 7.2.
E.g., the cell labeled by (1, 0, 0) represents a consumption concentrated the morning, induced
by a price y1 > y2 and y1 > y3.

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

y1 − y3

y2 − y3

Figure 7.2: A customer response: a tropical line splits the projective space into three cells. Each
cell corresponds to a possible customer response

To study jointly the responses of the five customers, we represent the arrangement of the
tropical hypersurfaces associated to the Pk, k ∈ [5] (see Figure 7.3), with

P2(y) = max (y1 + y2 − 1, y1 + y3, y2 + y3 − 1) ,

P3(y) = max (y1 − 1, y2 + 1, y3) ,

P4(y) = max (y1 + y2 + 1, y1 + y3 + 1/2, y2 + y3 + 1/2) ,

P5(y) = max (y1 + 1/2, y2 + 2, y3) .
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(a)

y1 − y3

y2 − y3

Figure 7.3: Arrangement of tropical hypersurfaces: each tropical hypersurface corresponds to a
customer response. For example, the cell (a) corresponds to discounts y with responses (1,0,0)
for customer 1, (1,0,1) for customer 2, (0,1,0) for customer 3, (1,1,0) for customer 4 and (0,1,0)
for customer 5 . Hence, the total number of customers in the network with these discounts is
(3,3,1).

Lemma 7.9 (Corollary of [TY15, §4, Lemma 3]). Each cell of the arrangement of tropical
hypersurfaces corresponds to a collection of customers responses (u1, ..., uK) and to an unique
traffic vector N , defined by N =

∑
k uk.

7.3.2 Decomposition theorem

We next show that the present bilevel problem belongs to the subclass studied in Section 6.3.1.
We prove than Theorem 6.18 can be applied, that is Problem 7.4 can be solved by decomposition.

We note that the function to optimize for the high-level problem of Problem 7.4, i.e. the
optimization problem of the provider, depends only on N . The variables yi allow one to generate
the different possible vectors N .

Definition 7.10. A vector N ∈ Zn is said to be feasible if there existsK vectors u∗1, . . . , u∗K such
that N =

∑K
k=1 u

∗
k and there exists y ∈ Rn such that for each k ∈ [K], u∗k ∈ arg maxuk∈Fk〈ρk +

y, uk〉.

So, we will characterize the feasible vectors N in order to optimize directly the satisfaction
function on the set of feasible N . This idea is motivated by the tropical approach thanks to
Lemma 7.9. In Section 6.3.1, we developed a similar approach to solve a certain class of bilevel
problems, of the following form:

min
y∈Rn

f(z∗), (7.6)
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with z∗ =
∑q

j=1 x
j∗ and for all j ∈ [q], xj∗ solution of:

max
xj∈Pj∩Zn

〈ρj + y, xj〉. (7.7)

We define the relaxation of Problem 7.4 to the case y ∈ Rn.

Problem 7.11 (Bilevel problem with real discounts).

max
y∈Rn

n∑
i=1

fi(Ni) s.t. ∀i,Ni ≤ NC
i ,

with N =
∑K

k=1 u
∗
k and for all k ∈ [K], u∗k solution of:

max
uk∈Fk

〈ρk + y, uk〉.

According to Corollary 7.7, Problem 7.4 has the same value than the relaxation problem 7.11.
Moreover, according to Lemma 7.6, if (y∗, N∗) is an optimal solution of Problem 7.11, then
(y∗ + βe,N∗) is also an optimal solution of Problem 7.11 for every β ∈ R. We recall that
e ∈ Rn is a vector defined by eT = (1, . . . , 1). Then, if we find an optimal solution (y∗, N∗)
of Problem 7.11, then (y∗ + βe,N∗) with β = −mini∈[n] y

∗
i is a solution of Problem 7.11 such

that y∗ + βe ∈ Rn+. Consequently, (y∗ + βe,N∗) is a solution of Problem 7.4. Hence, a solution
of Problem 7.11 (with real discounts) provides a solution of Problem 7.4 (with nonnegative
discounts). In the sequel, we will study the bilevel problem 7.11.

We next state that Problem 7.11 can be solved by the decomposition method introduced in
Section 6.3.1. We recall that the convex characteristic function χA of a set A ⊂ Rn is defined
by χA(x) = 0 if x ∈ A, and χA(x) = +∞ otherwise. If A is a convex set, then χA is a convex
function. Moreover, we define also for every k the polytope Pk by:

Pk = {u ∈ [0, 1]n |
n∑
i=1

u(i) = Rk and ∀i ∈ Jk, u(i) = 0}.

We notice that for every k ∈ [K], Pk ∩ Zn = Fk. We also define for every k ∈ [K] the convex
function ϕk defined by ϕk(u) = −〈ρk, u〉+ χ∆k

(u).

Proposition 7.12. Problem 7.11 is a particular case of Problem 6.17.

Proof. For every k ∈ [K], Fk is the set of integer points of the polytope Pk. Hence, the low-level
problem of Problem 7.11 is a special case of the low-level problem of Problem 6.17. Moreover, the
high-level problem of Problem 7.11 consists in minimizing the function −f +

∑n
i=1 χNi≤NC (Ni),

where χNi≤NC (x) = 0 if Ni ≤ NC and +∞ otherwise. It is hence a special case of the high-level
part of Problem 6.17.

In order to apply Theorem 6.18 to Problem 7.11, we have to show that for every k ∈ [K],
Pk is defined by totally unimodular matrices, and that

∑
k(Pk ∩ Zn) = (

∑
k Pk) ∩ Zn.

Lemma 7.13. For every k ∈ [K], Pk can be written as Pk = {u ∈ [0, 1]n | Aku = bk}, where
Ak is a totally unimodular matrix. Moreover,∑

k

Fk = (
∑
k

Pk) ∩ Zn.
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Proof. Let k ∈ [K]. The polytope Pk is of the form:

Pk = {u ∈ [0, 1]n | eTu = Rk, ∀i ∈ Jk, ui = 0},

with eT = (1, . . . , 1) and Rk ∈ Z. Because all the entries of e are equal to 1, Pk is defined by a
totally unimodular matrix.

Moreover, each set Fk is a M -convex set. In fact, take u, u′ ∈ Fk and an index i such that
ui > u′i. Then, ui = 1 and u′i = 0. Since, the sum of the entries of u and u′ is equal to Rk,
there exists an index j such that uj = 0 and u′j = 1. We have directly that u − ei + ej and
u′ + ei − ej are in Fk. Then, the projection of the n first entries of Fk defines a M \-convex set.
The statement comes from [CLV08, Th.2.10].

According to Lemma 7.13, Theorem 6.18 can be applied to solve Problem 7.11. Let S be the
polyhedral complex associated to the tropical hypersurface T (P ) with P = �kPk. The tropical
polynomial P is hence defined by:

P (y) =
K∑
k=1

max
uk∈Fk

〈ρk + y, uk〉 = max
u1∈F1,...,uK∈FK

K∑
k=1

〈ρk + y, uk〉

= max
N∈

∑
k Fk

[〈y,N〉 − ψ(N)] ,

where:
ψ(N) = min

u1∈F1,...,uK∈FK∑
k uk=N

∑
k

−〈ρk, uk〉. (7.8)

We define S ′ as the subdivision of the Newton polytope of P , which is dual to S (see
Section 3.3). Let φ be the bijection between the cells of S and those of C′. For y ∈ Rn, we define
Cy = ∩{C ∈ S | y ∈ C}. Similarly, for N ∈

∑
k Pk, we define C′N = ∩{C′ ∈ S ′ | N ∈ C′}.

Proposition 7.14. Let y∗ ∈ Rn and N∗ ∈
∑

k Fk. Then (y∗, N∗) is an optimal solution of
Problem 7.11 if and only if:

N∗ ∈ arg max
N∈

∑
k Fk

f(N) s.t ∀i ∈ [n] , Ni ≤ NC ,

and y∗ ∈ φ−1(C′N∗).

Proof. We apply Theorem 6.18 to Problem 7.11. The condition:

N∗ ∈ arg min
N∈

∑
k(Pk∩Zn)

−f(N) +
n∑
i=1

χNi≤NC (Ni)

is equivalent to:
N∗ ∈ arg max

N∈
∑
k Fk

f(N) s.t ∀i ∈ [n] , Ni ≤ NC .

We next explain how to find a vector y∗ ∈ φ−1(C′N∗) for a fixed N∗ ∈
∑

k Fk. We notice that
φ−1(C′N∗) is a cell of the polyhedral complex S. Hence, the condition y∗ ∈ φ−1(C′N∗) means that
y∗ belongs to a polyhedron. We first characterize this polyhedron by inequalities.
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Lemma 7.15. Let N∗ ∈
∑

k Fk. Then, y
∗ ∈ φ−1(C′N∗) if and only if:

N∗ ∈ arg max
N∈

∑
k Fk

〈y,N〉 − ψ(N).

Proof. Problem 7.11 belongs more generally to the subclass of integer bilevel problems studied
in Section 4.2.3, as explained in Section 6.1.

Hence, the condition y∗ ∈ φ−1(C′N∗) is equivalent to N∗ ∈ φ(Cy∗) ∩ Zn, which is equivalent
to N∗ ∈ arg maxN∈

∑
k Fk
〈y,N〉 − ψ(N) by applying Lemma 4.31 to Problem 7.11.

Lemma 7.16. Let N∗ ∈
∑

k Fk and y ∈ Rn The following assertions are equivalent.

1. N∗ ∈ arg maxN∈
∑
k Fk
〈y,N〉 − ψ(N).

2. There exists for every k ∈ [K] a vector u∗k ∈ Fk such that N∗ =
∑

k u
∗
k and:

(u∗1, . . . , u
∗
K) ∈ arg max

u1∈F1,...,uK∈FK∑
k uk=N∗

∑
k

〈ρk, uk〉

∀k ∈ [K] , u∗k ∈ arg max
uk∈Fk

〈ρk + y, uk〉.

Proof. 1 ⇒ 2: Suppose that N∗ ∈ arg maxN∈
∑
k Fk
〈y,N〉 −ψ(N). Consider for every k ∈ [K] a

vector u∗k ∈ Fk such that:

(u∗1, . . . , u
∗
K) ∈ arg max

u1∈F1,...,uK∈FK∑
k uk=N∗

∑
k

〈ρk, uk〉.

Let (u1, . . . , uK) ∈ F1 × · · · × FK , and N =
∑

k uk. Then −ψ(N) ≤
∑

k〈ρk, uk〉. Then:∑
k

〈ρk + y, u∗k〉 = 〈y,N∗〉+
∑
k

〈ρk, u∗k〉 = 〈y,N∗〉 − ψ(N∗)

≥ 〈y,N〉 − ψ(N) =
∑
k

〈ρk + y, uk〉.

Consequently,
(u∗1, . . . , u

∗
K) ∈ arg max

u1∈F1,...,uK∈FK

∑
k

〈ρk + y, uk〉.

It follows that for every k ∈ [K], u∗k ∈ arg maxuk∈Fk〈ρk + y, uk〉.
2 ⇒ 1: Let N ∈

∑
k Fk and (uk)k∈[K] such that ψ(N) = −

∑
k〈ρk, uk〉. We have ψ(N∗) =

−
∑

k〈ρk, u∗k〉, and:
∀k ∈ [K] , 〈ρk + y, u∗k〉 ≥ 〈ρk + y, uk〉.

By summing these inequalities K inequalities, we have 〈y,N∗〉 − ψ(N∗) ≥ 〈y,N〉 − ψ(N).

The previous lemmas allow us to rewrite Proposition 7.14 so that the optimal solutions of
Problem 7.11(bilevel problem with real discounts) are obtained by solving successively different
optimization problems.

Theorem 7.17. (Decomposition) The bilevel problem 7.11 can be solved as follows:
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1. Find an optimal solution N∗ to the high level problem with unknown N :

max
N∈

∑
k Fk

n∑
i=1

fi(Ni) s.t. ∀i, Ni ≤ NC
i . (7.9)

2. Find vectors (u∗1, . . . , u
∗
K) solutions of the following problem:

max
u1∈F1,...,uK∈FK∑

k uk=N∗

∑
k

〈ρk, uk〉 .

3. Find a vector y∗ such that ∀k, u∗k is a solution of the low level problem.

Proof. It comes from Proposition 7.12 together with Lemma 7.15 and Lemma 7.16.

Complexity of the decomposition method We next study how to use the decomposition Theo-
rem 7.17 to solve Problem 7.11. The bilevel problem is decomposed in three one-level optimiza-
tion subproblems. We next show that we can solve these three subproblems in polynomial time,
meaning that Theorem 7.17 leads to a polynomial time algorithm for the bilevel problem 7.11
with real discounts.

We first show that the second step of the Theorem 7.17 consists in solving a linear program.

Lemma 7.18. Let N∗ ∈
∑

k Fk. Then :

arg max
u1∈F1,...uK∈FK∑

k uk=N∗

∑
k

〈ρk, uk〉 =

 arg max
u1∈P1,...uK∈PK∑

k uk=N∗

∑
k

〈ρk, uk〉

 ∩ ZKn.
Proof. We have:

arg max
u1∈F1,...uK∈FK∑

k uk=N∗

∑
k

〈ρk, uk〉 = arg max
u1∈P1,...uK∈PK∑

k uk=N∗

u1,...,uK∈Zn

∑
k

〈ρk, uk〉.

This means that we have to solve an integer linear program. The continuous linear program can
be rewritten:

max
u∈[0,1]Kn,Au=b
∀i∈J ,u(i)=0

ρTu,

with J = ∪kJk, ρT = [ρT1 . . . ρ
T
K ], and A ∈MK+n,Kn(Z), b ∈ ZK+n defined by :

A =



1 1 ... 1 0 0 ... 0 ... 0 0 ... 0
0 0 ... 0 1 1 ... 1 ... 0 0 ... 0

...
0 0 ... 0 0 0 ... 0 ... 1 1 ... 1
−1 0 ... 0 −1 0 ... 0 ... −1 0 ... 0
0 −1 ... 0 0 −1 ... 0 ... 0 −1 ... 0

...
0 0 ... −1 0 0 ... −1 ... 0 0 ... −1


and b =



R1

R2

...
RK
−N1

−N2

...
−Nn


.
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In each column, A has two non-zero entries, one being equal to 1 and the other one to −1. By
Poincaré lemma, A is totally unimodular. Then,

arg max
u∈[0,1]Kn,Au=b
∀i∈J ,u(i)=0

u∈ZKn

ρTu =

 arg max
u∈[0,1]Kn,Au=b
∀i∈J ,u(i)=0

ρTu

 ∩ ZKn.

The statement of the lemma follows.

We next show that the third step reduces to a linear feasibility problem.

Lemma 7.19. Let N∗ ∈
∑

k Fk and u∗k ∈ Fk (k ∈ [K]) be vectors such that N∗ =
∑

k u
∗
k and

ψ(N∗) = −
∑

k〈ρk, u∗k〉. Then, the set of vectors y∗ ∈ Rn such that for every k ∈ [K], u∗k ∈
arg maxuk∈Fk〈ρk + y∗, uk〉 is non-empty and is the polytope defined by the following inequalities:

∀k ∈ [K] , ∀i, j /∈ Jk, such that u∗k(i) = 1, u∗k(j) = 0, ρk(i) + y∗i ≥ ρk(j) + y∗j

Proof. If N∗ ∈
∑

k Fk, then there exists y∗ ∈ Rn such that N∗ ∈ arg maxN∈
∑
k Fk
〈y,N〉−ψ(N)

by Lemma 7.15. According to Lemma 7.16, we have for every k ∈ [K], u∗k ∈ arg maxuk∈Fk〈ρk +
y∗, uk〉.

Consider indices i, j /∈ Jk with u∗k(i) = 1, u∗k(j) = 0, and the vector uk defined by uk(i) = 0,
uk(j) = 1 and ∀l 6= i, j, uk(l) = u∗k(l). We verify easily uk ∈ Fk, so that the condition
〈ρk + y∗, u∗k〉 ≥ 〈ρk + y∗, uk〉, which can be rewritten ρk(i) + y∗i ≥ ρk(j) + y∗j , is satisfied.

Moreover, this condition is sufficient. Consider y∗ such that ∀i, j /∈ Jk with u∗k(i) = 1,
u∗k(j) = 0, we have ρk(i) + y∗(i) ≥ ρk(j) + y∗(j). Consider uk ∈ Fk. By definition of Fk, the
quantitiy 〈ρk + y∗, uk〉 corresponds to the sum of Rk coordinates of ρk + y∗ for which the index
is not in Jk. Hence,

〈ρk + y∗, uk〉 =
∑

i,uk(i)=1,u∗k(i)=1

(ρk(i) + y∗i ) +
∑

j,uk(j)=1,u∗k(j)=0

(
ρk(j) + y∗j

)
≤

∑
i,uk(i)=1,u∗k(i)=1

(ρk(i) + y∗i ) +
∑

j,uk(j)=0,u∗k(j)=1

(
ρk(j) + y∗j

)
= 〈ρk + y∗, uk〉

because of the lemma hypothesis and because #{j|uk(j) = 1, u∗k(j) = 0} = #{j|uk(j) =
0, u∗k(j) = 1}.

For every k, the latter inequalities define a polytope, and we have to find y∗ in the intersection
of all these polytopes.

We next explain how to solve the first step of Theorem 7.17. We will use some elements of
discrete convexity developed by Murota [Mur03] (see Section 3.4). We show that the first step
of Theorem 7.17 is a M -concave maximization problem, what can be done in polynomial time.

Lemma 7.20. The feasible domain of the high-level program B = {N ∈
∑

k Fk|∀i Ni ≤ NC
i } is

a M -convex set of Zn.

Proof. We can easily check that ∀k, the set Fk is M -convex. See in the proof of Lemma 7.13.
It is known that a Minkowski sum of M -convex sets is M -convex [Mur03, Th. 4.23, p.115], and
so the set

∑
k Fk is M -convex.
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Finally, consider two vectors N and N ′ of B. They belong to
∑

k Fk, so for each i with
Ni > N ′i , we can find j with Nj < N ′j such that N − ei + ej and N ′ + ei − ej are in

∑
k Fk.

The i-th coordinate of N − ei + ej is Ni − 1 < Ni ≤ NC
l and the j-th coordinate of N − ei + ej

is Nj + 1 ≤ N ′j ≤ NC
j . So N − ei + ej ∈ B and similarly N ′ + ei − ej ∈ B, which proves the

M -convexity of B.

If B is a M -convex set, then χB is a M -convex function (we recall that χB : Zn 7→ R is
defined by χB(x) = 0 if x ∈ B and χB(x) = +∞ otherwise). An important property of M -
convex functions is that local optimality guarantees global optimality [Mur03, Th. 6.26, p.148]
in the following sense. Let g be a M -convex function and x ∈ Zn. Then g(x) = miny∈Zn g(y) if
and only if ∀i, j ∈ [n] , g(x) ≤ g(x− ei + ej).

According to Theorem 7.17, we have to solve maxN∈Zn f(N) − χB(N), where f : N 7→∑
i fi(Ni) is a separable concave function, and B is theM -convex set introduced in Lemma 7.20.

The function f − χB is M -concave [Mur03, Th. 6.13.(4), p.143].
Murota [Mur03, Section 10.1] gives different algorithms to minimize a M -convex function

in polynomial time, if an initial point is given and if the domain of the function is bounded.
Whereas it is easy to find a vector of Zn such that ∀i, Ni ≤ NC

i or a vector N belonging to∑
k Fk, it is not obvious to find one satisfying both conditions. In fact, such a point can be

obtained by solving the minimization problem:

min
N∈

∑
k Fk

∑
i

max(Ni −NC
i , 0)

The condition N ∈ B is equivalent to N ∈ arg minN∈
∑
k Fk

∑
i max(Ni − NC

i , 0) if B is non-
empty. The function N 7→

∑
i max(Ni − NC

i , 0) is separable convex. Then, the function N 7→
M
∑

i max(Ni−NC
i , 0)+χ∑

k Fk
isM -convex according to [Mur03, Th. 6.13.(4), p.148]. Because∑

k Fk is bounded and a point in
∑

k Fk can be obtained in O(Kn) operations by summing
vectors taken in each set Fk, it is possible to find a point N0 ∈ arg minN∈

∑
k Fk

∑
i max(Ni −

NC
i , 0) = B in polynomial time by Proposition 3.22.
We can finally write the following result about the complexity of the decomposition method

given by Theorem 7.17.

Theorem 7.21. Let R =
∑

k Rk, for every k ∈ [K], nk = n−#Jk and R =
∑

k Rk(nk −Rk).
An optimal solution of Problem 7.11 can be obtained in O((Kn)3.5Ln3 log2(K/n) + (n+R)3.5L)
arithmetic operations, where L is the input size of the bilevel problem.

Proof. The first step of Theorem 7.17 is a maximization of aM -concave function over a bounded
domain B. Finding a point in B can be done by solving the M -convex minimization problem:

min
N∈

∑
k Fk

∑
i

max(Ni −NC
i , 0)

The domain of the function N 7→
∑

i max(Ni −NC
i , 0) + χ∑

k Fk
is
∑

k Fk. We define K1
∞ by:

K1
∞ = max{||N −N ′||∞ | N,N ′ ∈

∑
k

Fk}

For every N ∈
∑

kNk, the entries of N are sum of K binary values. Then, K1
∞ ≤ K. We have

to estimate the number of operations F 1 needed to evaluate the function N 7→
∑

i max(Ni −
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NC
i , 0)+χ∑

k Fk
. The functionN 7→

∑
i max(Ni−NC

i , 0) can be evaluated inO(n) operations. As
explained in Lemma 7.13,

∑
k Fk = (

∑
k Pk)∩Zn. Hence, for any vector N , the conditions N ∈∑

k Fk is equivalent to N ∈ (
∑

k Pk)∩Zn. A vector N belongs to
∑

k Pk if there exists for every
k ∈ [K] a vector uk ∈ Pk such that

∑
k uk = N . Hence, to know whether N belongs to

∑
k Pk or

not is a linear feasibility problem in dimension Kn, It can be solved in O((Kn)3.5L) arithmetic
operations by an interior point method ([Ren88]). Here L is the input size of the linear program.
Consequently, F 1 = O((Kn)3.5L), and a point in B can be obtained in O((Kn)3.5Ln3 log2(K/n))
by Proposition 3.22.

After obtaining a point in B, the first step of Theorem 7.17 consists in solving theM -concave
maximization problem:

max
N∈B

∑
i

fi(Ni).

The domain of the function N 7→
∑

i fi(Ni) − χB(N) is bounded and equal to B. We define
K2
∞ by:

K2
∞ = max{||N −N ′||∞ | N,N ′ ∈ B}

For every N ∈
∑

kNk, the entries of N are sum of K binary values. Then, for every i ∈
[n], we have Ni ≤ min(K,NC

i ) Then, K2
∞ ≤ min(K,N

C
), with N

C
= maxi∈[n]N

C
i . The

number of operations F 2 needed to evaluate the function N 7→
∑

i max(Ni − NC
i , 0) − χB(N)

is O((Kn)3.5L) like previously. Hence, a point N∗ ∈ arg maxN∈B
∑

i fi(Ni) can be obtained in
O((Kn)3.5Ln3 log2(min(K,N

C
)/n)) by Proposition 3.22.

According to Lemma 7.18, the second step of Theorem 7.17 is a linear program in dimension
Kn. Hence, it can be solved in O((Kn)3.5L) arithmetic operations.

The third step of Theorem 7.17 is a linear program in n variables. For some u∗k ∈ Fk, the
constraints of this program are:

∀k ∈ [K] , ∀i, j /∈ Jk, such that u∗k(i) = 1, u∗k(j) = 0, ρk(i) + y∗i ≥ ρk(j) + y∗j .

For every k ∈ [K], the number of entries of u∗k equal to 1 is Rk, and the number of entries of
u∗k equal to 0 and which do not belong to Jk is nk. Hence, the number of inequality constraints
of this linear program is

∑
k Rk(nk −Rk) = R. Hence, a solution of this linear program can be

found in O((n+R)3.5L) by interior-point methods.

7.4 An efficient algorithm for solving the bilevel problem

7.4.1 A polynomial time algorithm for the bilevel problem

Theorem 7.21 shows that the decomposition method provides a polynomial time algorithm for
solving Problem 7.11. In the worst case, we have nk = n and R = Kn2

4 . Hence, the complexity
given by Theorem 7.21 depends on K in K3.5.

We deal with problems with large values of K (the number of customers in the network).
Hence, in this section, we look for more efficient algorithms, in which the exponent of K in the
complexity can be as small as possible.

Algorithm 1 can be applied to solve problem (7.9) of Theorem 7.17, that is maximizing the
M -concave function f − χB, or equivalently minimizing the M -convex function −f + χB.

Step 1 consists in finding an initial vector N ∈ B. Whereas it is trivial to find a vector of Zn
such that ∀i, Ni ≤ NC

i or a vector in N ∈
∑

k Fk, it is not obvious to find one satisfying both
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conditions. In fact, it is possible to replace the function f −χB by g : N 7→ f(N)−χ∑
k Fk

(N)−
M
∑

i max(Ni − NC
i , 0), where M > 0 is an integer. If N ∈ B, then g(N) = f(N). If M is

sufficiently large, thenM
∑

i max(Ni−NC
i , 0) ≥M if N /∈ B, and the maximum of the function

g is attained for N ∈ B. Moreover N 7→ M
∑

i max(Ni − NC
i , 0) is separable convex, then g

is M -concave according to [Mur03, Th. 6.13.(4), p.148]. Then, we apply Algorithm 1 the to
function g to solve the problem maxN∈B f(N).

A first part is to determine the number F of operations to evaluate g. Because the different
functions fi are known, we have to determine the number of operations to decide whether a
vector N belongs to

∑
k Fk or not. More precisely, the different evaluations of f − χB are done

in Step 2. Hence, the question is the following: given a vector N ∈
∑

k Fk, how many operations
are needed to check whether N −ei+ej (for i, j ∈ [n]) belongs to

∑
k Fk. However, this problem

can be studied as a shortest path problem in a graph. Consider N ∈
∑

k Fk and let us define
u∗k ∈ Fk for k ∈ [K] such that ψ(N) =

∑
k〈ρk, u∗k〉, that is the optimal decomposition of N

in Theorem 7.17. For each k ∈ [K] and α, β ∈ [n], we define by wkαβ the following quantity:
wkαβ = ρk(α) − ρk(β) if u∗k(α) = 1 and u∗k(β) = 0, and wkαβ = +∞ otherwise. Then, we define
for each α, β ∈ [n], wαβ = mink∈[K]w

k
αβ . We consider the oriented valuated graph G = (V,E)

where the set of vertices V = [n] and there is an oriented edge between each vertices α, β ∈ V
of value wαβ .

Theorem 7.22. Let i, j ∈ [n]. Suppose that there exists a path in G with finite valuation between
the vertices i, j ∈ V . Then N − ei + ej ∈

∑
k Fk. Moreover, there are no negative cycles and

there is a shortest path between i and j. Let (αu)0≤u≤p be any sequence such that α0 = i, αp = j
and let α0 → α1 . . . αp−1 → αp be a shortest path between i and j. Let also (ku)0≤u≤p−1 be any
sequence such that wkuαuαu+1

= wαuαu+1 for all 0 ≤ u ≤ p − 1. Let us finally define the vectors
v∗k, k ∈ [K] such that v∗ku = u∗ku − eαu + eαu+1 for each 0 ≤ u ≤ p − 1 and v∗k = u∗k for each
k /∈ {k0, . . . , kp−1}. Then, ψ(N − ei + ej) =

∑
k〈ρk, v∗k〉.

Proof. If N − ei + ej ∈
∑

k Fk, then N − ei + ej =
∑

k v
∗
k with each v∗k ∈ Fk and ψ(N −

ei + ej) = −
∑

k 〈ρk, v∗k〉. This is a consequence of Lemma 7.16 and Lemma 4.31. We consider
ψ(N) = −

∑
k 〈ρk, u∗k〉 with each u∗k ∈ Fk. Hence, ψ(N − ei + ej)− ψ(N) is equal to:

min
vk∈Fk and

∑
k vk=N−ei+ej

∑
k

〈ρk, u∗k − vk〉.

We have
∑

k(u
∗
k − vk) = ei − ej . When vk describes Fk, the possible u∗k − vk are the vectors

xk with the following properties:

n∑
α=1

xk(α) = 0, ∀α s.t. u∗k(α) = 1, xk(α) ∈ {0; 1},

∀α ∈ Jk, xk(α) = 0, ∀α s.t. u∗k(α) = 0, xk(α) ∈ {−1; 0}

Hence, ψ(N − ei + ej) − ψ(N) =
∑

k〈ρk, x∗k〉, where x∗k is such that #{α | x∗k(α) = 1} =
#{α | x∗k(α) = −1}. Consequently, ψ(N − ei + ej)− ψ(N) can be written as a sum of wkαβ for
certain α, β. Because of the condition

∑
k u
∗
k − vk = ei − ej , we have ψ(N − ei + ej)− ψ(N) =

wk0α0α1
+ wk1α1α2

+ · · ·+ w
kp−1
αp−1αp , with the notations introduced in Theorem 7.22.

Consider now the graph defined in Theorem 7.22. If there exists a path between i and j, then
its value can be written wl0β0β1 +wl1β1β2 +· · ·+wlp−1

βq−1βq
(with the convention β0 = i and βq = j). By

defining vk = u∗k if k /∈ {l0, . . . , lq−1} and vlu = u∗lu−eβu+eβu+1 for 0 ≤ u ≤ q−1 , the value of the
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path is equal to
∑

k〈ρk, u∗k−vk〉. Because w
lu
βuβu+1

< +∞, we have u∗lu(βu) = 1 and u∗lu(βu+1) =

0. Then, each vk ∈ Fk. Consequently, the value minvk∈Fk and
∑
k vk=N−ei+ej

∑
k 〈ρk, u∗k − vk〉 is

finite and N − ei + ej ∈
∑

k Fk. Moreover, the value ψ(N − ei + ej)− ψ(N) corresponds to the
minimal values of the path between i and j in G, that is the shortest path. Hence, if the value
of the shortest path is

∑p−1
u=0w

lu
αuαu+1

, we have ψ(N − ei + ej)− ψ(N) =
∑

k〈ρk, u∗k − v∗k〉, with
v∗k defined as in the statement of Theorem 7.22. Moreover, we can prove that there exists no
cycle with negative weight in this graph. Suppose that such a cycle exists. It can be written
wl0γ0γ1 + wl1γ1γ2 + · · · + wlrγrγ0 < 0. For all i ∈ {0 . . . r}, we have uli(γi) = 1 and uli(γi+1) = 0.
We consider for k ∈ [K] the vectors vk defined by vli = u∗li − eγi + eγi+1 , and vk = u∗k for
k /∈ {l0, . . . , lr}. We have

∑
k u
∗
k − vk = 0 and so

∑
k 〈ρk, uk〉 =

∑
k 〈ρk, vk〉 + wk1α1α2

+ wk2α2α3
+

· · · + w
kp
αpα1 <

∑
k 〈ρk, vk〉 which refutes the optimality of the vectors u∗k in the definition of

ψ(N).

Example We consider the cell (a) of Figure 7.3. We build the graph associated to N = (3, 3, 1)
(see Figure 7.4).

1

2

3

0

1.5
0.51

0

Figure 7.4: Graph G associated to the vector N = (3, 3, 1)

Consider N ′ = N − e1 + e2 = (2, 4, 1). The shortest path in G is 1→ 2 with w12 = 0 = w1
12.

Then, according to Theorem 7.22, the optimal decomposition of (2, 4, 1) is v∗1 = (0, 1, 0),
v∗2 = (1, 0, 1), v∗3 = (0, 1, 0), v∗4 = (1, 1, 0) and v∗5 = (0, 1, 0).

Thanks to Theorem 7.22, if we know that a vector N belongs to
∑

k Fk, it is possible to
check whether a vector N−ei+ej belongs to Fk by checking if there exists a path between i and
j in the graph G = (V,E). Generally, G has n vertices and n2 edges. From each vertex i ∈ V ,
it is possible to find if there exists a path between i and j by using a depth-first or breadth
first search algorithm in O(n2) operations. Consequently, the number of operations needed to
evaluate g is O(n3).

According to Theorem 7.22, by checking if N − ei + ej ∈ B, we obtain the optimal decompo-
sition of N −ei+ej =

∑
k v
∗
k such that ψ(N −ei+ej) = −

∑
k〈ρk, v∗k〉 by solving a shortest path

problem between two vertices. This can be done in O(n3) operations thanks to Ford-Bellman
algorithm ([Bel58], [FJ56]), because the graph G has n vertices and at most n2 edges. Hence,
according to Theorem 7.17, it suffices to solve the bilevel problem 7.4 to solve the linear feasi-
bility problem of Lemma 7.19. Moreover, this problem can also be viewed as a shortest path
problem in G, according to the following result.

Theorem 7.23. Consider K vectors u∗k ∈ Fk for each k ∈ [K] such that, if we define N =∑
k u
∗
k, we have ψ(N) = −

∑
k〈ρk, u∗k〉. Consider the graph G associated to N . Consider an
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index s ∈ [n]. Let M > 0 be any real scalar such that M ≥ nmaxi,j∈[n]wij and let us modify G
such that for all t ∈ [n] with t 6= s and wst = +∞, we have wst = M . Let us define a vector
y∗ ∈ Rn by y∗s = 0 and for each t ∈ [n] with t 6= s, y∗t is the length of the shortest path between s
and t in G. Then, for M sufficiently large and for each k ∈ [K], u∗k ∈ arg maxuk∈Fk〈ρk+y∗, uk〉.

Proof. According to Lemma 7.19, a vector y ∈ Rn is such that for every k ∈ [K],

u∗k ∈ arg max
uk∈Fk

〈ρk + y, uk〉

if and only if the following inequalities are satisfied:

∀k ∈ [K] , ∀i, j /∈ Jk, such that u∗k(i) = 1, u∗k(j) = 0, ρk(i) + yi ≥ ρk(j) + yj .

Consider such a vector y. Consider also the graph G associated to N The previous inequalities
can be rewritten ∀k ∈ [K] , ∀i, j ∈ [n] , yj − yi ≤ wkij , or equivalently : ∀i, j ∈ [n] , yj − yi ≤ wij .
For each δ ∈ R, y + δe is also a solution. Consequently, it is possible to fix a coordinate to 0.
Take a coordinate s such that ys = 0. Consider M > 0 such that M ≥ nmaxi,j wij and modify
the graph G as in the statement of the theorem. Consider an elementary cycle (that is a cycle
containing no smaller cycle) of the modified graph. The cycle has no more than n − 1 edges.
Suppose that exaclty q edges have a modified weight, with 0 ≤ q ≤ n− 1. If q = 0, then no edge
has a modified weight, and this cycle is a cycle of G. So, its weight is nonnegative. If q ≥ 1, then
the total weight of the cycle is bigger than qM+(n−1−q) mini,j wij ≥ n(maxi,j wij−mini,j wij) ≥
0. Consequently, the modified graph has no negative cycles.

For each t ∈ [n], with t 6= s, there exists a path between s and t. Let us define y∗ such that
y∗s = 0 and for each t ∈ [n] with t 6= s, y∗t corresponds to the length of the shortest path between
s and t. Consider i, j ∈ [n]. Then y∗i + wij is the length of a path between s and j defined as
the concatenation of the shortest path between s and i and the edge i → j. So y∗i + wij ≥ y∗j .
Hence, according to Lemma 7.19, we have for each k ∈ [K], u∗k ∈ arg maxuk∈Fk〈ρk + y∗, u∗k〉.

These different results lead to Algorithm 3 to solve the bilevel problem 7.4. First, we have
to find an initial point N in

∑
k Fk, with its optimal decomposition

∑
k u
∗
k. We can calculate

for each k ∈ [K] and for each i, j /∈ Jk the value wkij , store them, and then define the graph
G associated to N . Hence, with a graph search algorithm, we know for each i, j ∈ [n] whether
N − ei + ej ∈

∑
k Fk or not, and can calculate g(N − ek + ek) for each k, l ∈ [n] and find

i, j ∈ arg maxk,l g(N − ek + el). By finding the shortest path between i and j in G, we obtain
the optimal decomposition N − ei + ej =

∑
k v
∗
k. Like in Algorithm 1, if g(N − ei + ej) ≤ g(N),

then N∗ = N is the maximum value of g over
∑

k Fk. Else, we take N := N − ei + ej . For all
the indices k such that u∗k 6= v∗k, we evaluate the new value of wkij and we define the graph G
associated to N − ei + ej and restart the algorithm. Notice that the number of indices k such
that u∗k 6= v∗k is bounded by the length of the shortest path in G; it means that this number is
less than n. After finding the optimal N∗ and having its optimal decomposition N∗ =

∑
k u
∗
k,

we can redefine the graph associated to N∗ and return an optimal y∗ defines as in the statement
of Theorem 7.23.

Algorithm 3 can be written as follows. We take in input a function GraphSearch, which
associate to a graph G (defined by the weight vector w of its edges) a boolean vector b such that
bij = 1 if there is an edge between i and j and 0 otherwise. We also take a function ShortestPath,
which associate to a graph G (also defined by the weight vector w) and two vertices i and j, the
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value v of the shortest path and a vector path with the indices of this shortest path. Finally, we
consider the function ShortestPath2, which associate to w and a vertex s a vector corresponding
to the values of the shortest path between s and all other vertices in G. For much ease, we
denote by f∗ the function f∗ : N 7→ f(N) +M

∑n
i=1 max(Ni −NC

i , 0).
Note that the pseudo-polynomial time bound for Murota’s algorithm leads in this special

case to a polynomial time bound.

Theorem 7.24. Let us define R =
∑

k Rk, for each k ∈ [K] nk = n−#Jk (that is the number
of possible non-zero coordinates of the vectors of Fk) and R =

∑
k Rk(nk − Rk). Algorithm 3

returns a global optimizer with a time complexity of O(R(n3 + R)) and a space complexity of
O(R).

Proof. The vector returned by the algorithm is a global optimizer according to Algorithm 1
and Theorem 7.22. The initialization consists in taking vectors in each Fk and in adding them;
it can be done in O(K) operations. Then, to define the graph G, we have to calculate wkij
for each i, j /∈ Jk and each k ∈ [K], and to store the values. Let us define for each k ∈ [K]
nk = n−#Jk. For each k ∈ [K], we have Rk ≤ nk, and there are precisely Rk coordinates of u∗k
equal to 1 for each u∗k ∈ Fk. Then, for each k ∈ [K], there are exaclty Rk(nk −Rk) finite values
of wkij to store. Then, by defining R =

∑
k Rk(nk −Rk), we need O(R) operations to define wij

and kij . The function GraphSearch needs O(n3) operations by a depth-first or breadth-first
algorithm to know if there is a path between i and j. The function ShortestPath needs also
O(n3) operations to calculate the shortest path between i and j with Ford-Bellman algorithm.
The length of the path is bounded by n. Consequently, there is less than n vectors u∗k which
have to be updated; and then less than 2nnk values wkαβ to update. R operations are needed to
calculate the new values of wij and kij . So, the number of operations in each step of the "while"
loop is O(n3 + nR). The number of iterations of the loop is the same as in Algorithm 1, and is
bounded by K1 where K1 = max(||x− y||1, x, y ∈

∑
k Fk). For each x, y ∈

∑
k Fk, we have:

||x− y||1 =

n∑
i=1

|xi − yi| ≤
n∑
i=1

(xi + yi) = 2R

by defining R =
∑K

k=1Rk. Finally, to find the optimal y∗, n2 operations are needed to find
M , and O(n3) operations are needed to evaluate the function ShortestPath2 by using again
the Ford-Bellman algorithm. Step 7 consists in calculating the shortest path between a vertex
s and the other ones in a graph with n vertices and n2 edges. Then, Step 7 can be obtained in
O(n3) thanks to Ford-Bellman algorithm. Hence, the global time complexity of Algorithm 3 is
O(R(n3 +R)) and space complexity is O(R).

Notice that for each k ∈ [K], nk ≤ n and 1 ≤ Rk ≤ nk. Then K ≤ R ≤ nK and
0 ≤ R ≤ Kn2. Therefore, the time complexity of Algorithm 3 is O(Kn3(K + n)) in the worst
case, whereas the space complexity is O(Kn2).

Example Consider again Example 7.8 together with the concave function f defined by

f : N 7→ −
∑
t,l

N(t, l)2.

We suppose that ∀k,Jk = ∅. Hence, we can prove that
∑

k Fk = {N ∈ N3|
∑3

i=1Ni =
7 and max(Ni) ≤ 5}. First, we want to solve maxN∈

∑
k Fk
−(N2

1 +N2
2 +N2

3 ). We start from
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Algorithm 3 Solving the bi-level problem, for one application and one type of contract
Require: u∗k ∈ Fk,∀k ∈ [K],ρk,∀k ∈ [K], f∗, GraphSearch, ShortestPath, ShortestPath2, s ∈ [n]
Ensure: N∗ optimal number of customers, y∗ optimal discount vector
N ←

∑K
k=1 u

∗
k

for all k ∈ [K] do
for all i, j /∈ Jk do

if uk(i) = 1 and uk(j) = 0 then
wkij ← ρk(i)− ρk(j)

end if
end for

end for
for all i, j ∈ [n] do
wij ← mink∈[K] w

k
ij ; kij ∈ arg mink∈[K] w

k
ij

end for
stop← 0
while stop = 0 do
b← GraphSearch(w)
gN ← f∗(N); g∗ ← maxu,v∈[n],buv=1 f

∗(N − eu + ev); i, j ∈ arg maxu,v∈[n],buv=1 f
∗(N − eu + ev)

if g∗ ≤ gN then
stop← 1

else
(v, path)← Shortestpath(w, i, j); N ← N − ei + ej
for q = 1 to Length(path)− 1 do
α← path(q); β ← path(q + 1); k ← kαβ ; u∗k(α) = 0; u∗k(β) = 1
for all γ /∈ Jk do
wkαγ ← +∞; wkγβ ← +∞
if u∗k(γ) = 1 then
wkγα ← ρk(γ)− ρk(α)

else
wkβγ ← ρk(β)− ρk(γ)

end if
end for

end for
for all i, j ∈ [n] do
wij ← mink∈[K] w

k
ij ; kij ∈ arg mink∈[K] w

k
ij

end for
end if

end while
M ← 1 + nmaxi,j∈[n] wij
for all t ∈ [n] do

if t 6= s AND wst = +∞ then
wst = M

end if
y∗ ← Shortestpath2(w, s)
y∗s ← 0

end for
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N (0) = (5, 2, 0), a feasible point. Following Algorithm 1, we compute N (1) = (4, 2, 1) and
N (2) = (3, 2, 2) which is a minimizer. We take N∗ = (3, 2, 2). Now, we solve

max
u1∈F1,...,u5∈F5∑5

k=1 uk=N∗

5∑
k=1

〈ρk, uk〉.

We obtain u∗1 = [1, 0, 0], u∗2 = [1, 0, 1], u∗3 = [0, 1, 0], u∗4 = [1, 0, 1], u∗5 = [0, 1, 0]. Applying
Lemma 7.19, we obtain the linear inequalities y∗1−y∗2 ≤ 3/2, 0 ≤ y∗1−y∗3 and−1 ≤ y∗2−y∗3 ≤ −1/2.
In particular, y∗ = (3/4, 0, 3/4) is an optimal solution.

7.4.2 A particular case : theory of majorization

Algorithm 3 can be accelerated in the particular case ∀k ∈ [K] , Jk = ∅, that is Fk =
{uk ∈ {0; 1}n|

∑n
i=1 uk(i) = Rk}.

As previously, an important step of the maximization of the function g consists in being
able to know whether a point belongs to

∑
k Fk or not. In this particular case, we can use the

majorization order [OM79]. For every x ∈ Rn, denote by x[1] ≥ · · · ≥ x[n] the coordinates of
x arranged in nonincreasing order. A vector x ∈ Rn is said to be majorized by another vector
y ∈ Rn, denoted x ≺ y, if

∑n
i=1 xi =

∑n
i=1 yi and ∀1 ≤ k ≤ n− 1,

∑k
i=1 x[i] ≤

∑k
i=1 y[i].

We have the following result.

Theorem 7.25 (Gale-Ryser , see [OM79, Th. 7.C.1]). Let a ∈ Nk and b ∈ Nn be two integer
vectors with nonnegative values. Let a∗ ∈ Nn defined by a∗i = #{j | aj ≥ i}. Then, the following
assertions are equivalent:

1. b ≺ a∗

2. There exists a matrix U ∈ Mk,n(Z) such that for each i, j, uij ∈ {0; 1}, ∀1 ≤ i ≤
k,
∑n

j=1 uij = ai and ∀1 ≤ j ≤ n,
∑k

i=1 uij = bj

Corollary 7.26. Denoting by fr = (1, . . . , 1, 0, . . . , 0) the vector with exactly r 1 and by pr =
#{k|Rk = r}, for 1 ≤ r ≤ n, we have

∑
k Fk = {N ∈ Nn|N ≺

∑n
r=1 prfr}.

Proof. A vector N belongs to
∑

k Fk if and only if for each i ∈ [n], Ni corresponds to the sum of
the coefficients of the i-th column of a matrix of size K × n with coefficients in {0; 1} and such
that the sum of the coefficients of the k-th line is Rk. We conclude by 7.25.

Example 7.27. Consider Example 7.8. We have p1 = 3, p2 = 2 and p3 = 0. So N is feasible iff
N verifies N ≺ (5, 2, 0) .

Like for Algorithm 3, we need to know for a given N ∈
∑

k Fk whether N − ei + ej ∈
∑

k Fk
for each i, j ∈ [n]. It is possible to answer to this question in polynomial time in n by sorting
N −ei+ej for each i, j and by checking the condition N −ei+ej ≺ Nmax. The time complexity
of such a procedure is O(n3 log(n)). However, it can be accelerated thanks to the following
result.

Lemma 7.28. Let N ∈
∑

k Fk, and i, j ∈ [n]. Let S be the function defined on Rn × [n] such
that ∀x ∈ Rn,∀k ∈ [n], S(x, k) is the sum of the k largest values of the coordinates of x. Suppose
finally that Nj is the kj-th largest value of the coordinates of N (if kj > 1, then we suppose that
the kj − 1-th largest value of N is strictly bigger than Nj), and that Ni is the ki-th largest value



144 Chapter 7. A bilevel model for price incentives in telecommunications network

of the coordinates of N (if ki < n, then we suppose that the ki+1-th largest value of N is strictly
smaller than Nj). Then N − ei + ej ∈

∑
k Fk if and only if Ni > 0 and, either Ni > Nj or

∀kj ≤ k ≤ ki, S(N, k) < S(Nmax, k).

Proof. Suppose N −ei+ej ∈
∑

k Fk. Then Ni−1 ≥ 0 and Ni > 0. Moreover, suppose Ni ≤ Nj .
Then, Ni − 1 < Nj + 1 and S(N, k) = S(N, k) + 1. Then, S(N, k) < S(N, k) + 1 = S(Nmax, k).

Conversely, if Ni > 0, then all the coordinates of N − ei + ej are nonnegative integers. If
Ni > Nj , then we easily see that N−ei+ej ≺ N . So N−ei+ej ≺ Nmax and N−ei+ej ∈

∑
k Fk.

Suppose that Ni ≤ Nj . Because we suppose that the k−1-th largest value of N is strictly bigger
than Nj , then ki > kj . We also suppose that ∀kj ≤ k ≤ ki, S(N, k) < S(Nmax, k). The k− 1-th
largest value of N is strictly bigger than Nj , so it is bigger than Nj + 1. Consequently, we have
for all 1 ≤ l ≤ k − 1, S(N − ei + ej , l) = S(N, l) ≤ S(Nmax, l) (because N ≺ Nmax). Moreover,
∀kj ≤ k ≤ ki− 1, S(N, k) < S(Nmax, k). Because the ki + 1-th larger coordiante of N is strictly
smaller than Ni, then it is smaller than Ni + 1 and we have S(N − e+ej , ki) = S(N, ki) ≤
S(Nmax, ki) and ∀l ≥ ki+ 1, S(N − e+ej , l) = S(N, l) ≤ S(Nmax, l). Hence, N − ei+ ej ≺ Nmax

and N − ei + ej ∈
∑

k Fk.

To solve the bilevel problem 7.4 in this specific case, we need to find u∗1 ∈ F1, . . . , u
∗
K ∈ FK

such that ψ(N∗) = −
∑

k〈ρk, u∗k〉. In Algorithm 3, such vectors (uk)
∗ are found in the same time

as N∗. Then, to accelerate Algorithm 3, we need to be able to solve this problem rapidly. In
particular, to use a classical linear programming approach leads to a O((Kn)3,5) time complexity,
which is not acceptable. The problem to solve can be written:

Problem 7.29.

max
u1,...,uK∈{0;1}n
∀k,

∑n
i=1 uk(i)=Rk

∀i,
∑K
k=1 uk(i)=Ni

K∑
k=1

〈ρk, uk〉

We already mentioned in the proof of Theorem 7.25 that the constraints of this linear program
can be written 0 ≤ u ≤ 1, Au = b, where A is a totally unimodular matrix. Therefore, the
value of this problem is equal to the value of its continuous relaxation. Moreover, it can be
interpreted as a minimum cost flow problem (see [Sch03, Ch. 12] for background). We define
a bipartite graphs with vertices i ∈ [n] and k ∈ [K], and edges between each i ∈ [n] and each
k ∈ [K]. Each vertex i ∈ [n] has an incoming flow equal to Ni, whereas each vertex k ∈ [K] has
an outgoing flow equal to Rk. Moreover, the capacity of each edge is 1, meaning that each flow
uk(i) satisfies 0 ≤ uk(i) ≤ 1, and a cost −ρk(i) is associated to each edge. Hence, the problem
consists in finding the flow u minimizing the total cost in this graph. Plenty of algorithms exist
to solve such a problem. In our case, we have K � n. According to Theorem 7.24, Algorithm 3
needs O(Rn2(K + n)) operations to solve Problem 7.4. Notice that K ≤ R ≤ nK. Therefore,
in order to accelerate Algorithm 3 in the studied case, we need an algorithm solving the flow
problem with a complexity depending on K in Kα with α < 2.

We can interprete the minimum cost flow problem as a minimum cost circulation problem,
as presented in [Sch03, Ch. 12]. We introduce a sink t. We define an edge between each k ∈ [K]
and t of cost equal to 0, with a lower-bound for the flow equal to Rk and a capacity of Rk. We
also define an edge between t and each i ∈ [n] of cost equal to 0, with a lower-bound for the flow
equal to N∗i and a capacity of N∗i . Such a graph is represented on Figure 7.5.

Such a graph has |V | = K + n + 1 vertices and |E| = Kn + K + n edges. The sum of the
capacities of the different edges is 2R+Kn. In [GT89, Sec. 3.3], an algorithm is proposed to solve
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i = 1

i = 2

i = n

k = 1

k = 2

k = K

t

Figure 7.5: Minimum cost flow problem transformed in a minimum cost circulation problem.
The flow in the edges between each i and k is in [0, 1], the flow in the edges between each k and
t is equal to Rk, and the flow in the edges between t and each i is N∗i .

such a problem. Different complexity bounds of such an algorithm are given in [GT89, Th. 3.5].
In the caseK � n, the optimal vectors u∗1, . . . , u∗K can be found inO((Kn)3/2 log((K+n)||ρ||∞)),
according to [GT89, Th. 3.5, (a)].

We can now write an algortihm for solving the bilevel problem in this specific case. We need
first to calculate Nmax =

∑n
r=0 prfr, where pr is defined as in the statement of Theorem 7.25,

and to find an initial point N ∈
∑

k Fk. We apply the same method as in Algorithm 1. In order
to calculate g(N − ei + ej) for each i, j ∈ [n], we sort the coordinate of N in the decreasing
order, and we use Lemma 7.28 to decide whether N − ei + ej ∈ Fk for all i, j. We use the
same loop as in Algorithm 1 to compute an N∗ such that g(N∗) is the maximal value of g over∑

k Fk. Then, we solve the minimum cost flow problem 7.29, as described previously, to find the
optimal u∗k and then we use Theorem 7.23 to determine an optimal y∗. It leads to Algorithm 4.
The function Sort associates to a vector x ∈ Rn a couple (y, ind), where y is a permutation of
x such that y1 ≥ · · · ≥ yn and ind is such that xi = yind(i) for each i ∈ [n]. The function S is
defined by S(x, k) =

∑n
i=1 xi. The function MinCostF low associates to the different vectors

(ρk)k∈[K] the vectors (u∗k)k∈[K] solving the minimum cost flow problem 7.29. The functions f∗

and ShortestPath2 are defined as for Algorithm 3.

Theorem 7.30. Let us define ||ρ||∞ = maxk∈[K],i∈[n] |ρk(i)|, R =
∑

k Rk, for each k ∈ [K]

nk = n−#Jk and R =
∑

k Rk(nk −Rk). Algorithm 4 is correct and returns a global optimizer
in O(Rn2 + (Kn)3/2 log((K + n)||ρ||∞) +R+ n3) time and O(Kn+ n2) space.

Proof. According to Theorem 7.17, Theorem 7.25, Lemma 7.28 and Algorithm 1, this algorithm
returns an optimal solution N∗ of the high-level problem and an optimal discount vector y∗.
Similarly as in the proof of Algorithm 3, the number of calls of the "while" loop is bounded
by R. The function Sort needs O(n log(n)) time and space operations. O(n2) operations are
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Algorithm 4 Solving the bilevel problem, in the case of majorization
Require: N ∈

∑
k Fk, N

max, ρk,∀k ∈ [K], f∗, S, Sort, MinCostF low, ShortestPath2, s ∈ [n]
Ensure: N∗ optimal number of customers, y∗ optimal discount vector
smax
1 ← 0

for i = 1 to n do
smax
i ← smax

i +Nmax
i

end for
stop← 0
while stop = 0 do

(Nsort, ind)← Sort(N); s1 = 0
for i = 1 to n do
si ← si +Nsort(i)
for all j ∈ [n] do

if N(i) = 0 then
b(i, j)← 0

else
b(i, j)← 1

end if
end for
if si = smax

i then
for j = 1 to i do
b(ind(i), ind(j))← 0

end for
for j = i to n do
b(ind(j), ind(i))← 0

end for
end if

end for
gN ← f∗(N); g∗ ← maxu,v∈[n] b(u, v)f

∗(N − eu + ev); i, j ∈ arg maxu,v∈[n] b(u, v)f
∗(N − eu + ev)

if g∗ ≤ gN then
stop← 1

end if
end while
(u∗1, . . . , u

∗
K)←MinCostF low((ρk)k∈[K])

for all k ∈ [K] do
for all i, j /∈ Jk do

if u∗k(i) = 1 and u∗k(j) = 0 then
wkij ← ρk(i)− ρk(j)

end if
end for

end for
for all i, j ∈ [n] do
wij ← mink∈[K] w

k
ij ; kij ∈ arg mink∈[K] w

k
ij

end for
M ← 1 + nmaxi,j∈[n] wij
for all t ∈ [n] do

if t 6= s AND wst = +∞ then
wst =M

end if
y∗ ← Shortestpath2(w, s)
y∗s ← 0

end for
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needed to evaluate the vector b, then the global time complexity of the "while" loop is O(Rn2)
whereas the space complexity is O(n2). Then, the optimal vectors u∗1, . . . , u∗K can be obtained
in O((Kn)3/2 log((K + n)||ρ||∞)) time and O(Kn) space. By calculating only the finite values
of wkij (which are not necessary stored here), the number of operations needed to determine each
wij and kij is O(R), with R =

∑
k Rk(nk −Rk) and for each k ∈ [K], nk = n−#Jk. We need

only O(n2) space to store the values wij and kij . Finally, the vector y∗ can be found by using
the Ford-Bellman algorithm in a graph of n vertices and n2 edges, that is in time complexity of
O(n3).

In the worst case, we have R = Kn and R = Kn2. Then, the time complexity of Algorithm 4
is O(Kn3+(Kn)3/2 log((K+n)||ρ||∞)) If the number of bites needed to write ||ρ||∞ is polynomial
in n and if K � n, then Algorithm 4 is faster than Algorithm 3. We finally notice that a
minimum cost flow problem is strongly polynomial time solvable, and it is then possible to
adapt Algorithm 4 to return an optimal y∗ in strongly polynomial time. The complexity of
Algorithm 4 does not depend in this case on log(||ρ||∞). However, Algorithm 4 does not go
faster than Algorithm 3 in this case.

Schur-convex functions at the high-level We focus on a particular case in which the high-level
function is Schur-convex.

Definition 7.31 ([OM79], Ch.3, Def.A.1). Let A ⊂ Rn. A function f is said Schur-convex on
A if for every x, y ∈ A:

x ≺ y ⇒ f(x) ≤ f(y).

Proposition 7.32 ([OM79], Ch.3, Prop.C.1). Let I be an interval of R and g be a convex
function on I. Then, the function f defined over In by:

∀x ∈ In, f(x) =

n∑
i=1

g(xi)

is Schur-convex.

The high-level function of Problem 6.17 is a separable convex function of the form f(x) =∑n
i=1 fi(xi). According to Proposition 7.32, f is Schur-convex if all functions fi are equal.
Let us assume in the following that the high-level function f is Schur-convex. According to

Corollary 7.26, the high-level problem can be written minN∈Nn, N≺
∑n
r=1 prfr

f(N). Minimizing
a Schur-convex function over a certain set defined by majorization inequalities is equivalent to
find a minimal element in this set for the majorization order. We have the following result.

Proposition 7.33. Let f be a Schur-convex function. Let R =
∑K

k=1Rk and r be the remainder
of the Euclidean division of R by n. Then, N∗ ∈ arg minN∈Nn, N≺

∑n
r=1 prfr

f(N) if r entries of
N∗ are equal to R−r

n + 1 and n− r entries of N∗ are equal to R−r
n .

Proof. Let N ∈ Nn such that N ≺ sumn
r=1prfr. Suppose without loss of generality that N1 ≥

· · · ≥ Nn. We have
∑n

i=1Ni =
∑K

k=1Rk = R. If r = 0, then R
n ∈ N and (Rn , . . . ,

R
n ) ≺ N . Then

f(Rn , . . . ,
R
n ) ≤ f(N). Suppose that r ≥ 1. We next show by induction that for every j ∈ [r],∑j

i=1Ni ≥ jR−rn + j. We have N1 ≥ R−r
n + 1. If not, it would mean that Ni ≤ R−r

n for every
i ∈ [n], that is

∑n
i=1Ni ≤ R−r

< R. Suppose that for a certain j ∈ [r − 1],
∑j

i=1Ni ≥ jR−rn + j.
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If
∑j+1

i=1 Ni < (j + 1)R−rn + j + 1, then Nj+1 <
R−r
n + 1, that is Nj+1 ≤ R−r

n . Consequently, for
every i ≥ j + 1, Ni ≤ R−r

n . Then:

n∑
i=1

Ni ≤
j+1∑
i=1

Ni + (n− 1− j)R− r
n

≤ (j + 1)
R− r
n

+ j + (n− 1− j)R− r
n
≤ R− r + j < R.

We now prove by induction that for every r ≤ j ≤ n,
∑j

i=1Ni ≥ jR−rn +r. It is shown for j = r.
Suppose that for a certain r ≤ j ≤ n,

∑j−1
i=1 Ni ≥ (j − 1)R−rn + r. If

∑j
i=1Ni < jR−rn + r, then

Nj <
R−r
n , that is for every i ≥ j, Ni ≤ R−r

n − 1. Then:

n∑
i=1

Ni ≤
j∑
i=1

Ni + (n− j)R− r
n
− (n− j)

≤ jR− r
n

+ r − 1 + (n− j)R− r
n
− (n− j) ≤ R− r + (r − 1)− (n− j) < R.

Let N∗ be a vector with r first entries equal to R−r
n +1 and n−r remaining entries equal to R−r

n .
Then, N∗ ∈ Nn and the next inequalities state that for every j ∈ [n− 1],

∑j
i=1Ni ≥

∑j
i=1N

∗
i ,

and
∑j

i=1Ni =
∑j

i=1N
∗
i = R. Consequently, N∗ ≺ N and f(N∗) ≤ f(N) by Schur-convexity

of f . Any vector obtained by permuting the coordinates of N∗ is suitable, since the majorization
order is invariant by any permutation of entries.

As a consequence, the first part of Algorithm 4, consisting in finding an optimal N∗ solution
of minN∈

∑
k Fk

f(N) can be done in O(K + log(n)) operations (O(K) operations for calculating
R and O(log(n)) operations to do the Euclidean division of R by n). Then, the number of
operations needed to find a solution of the bilevel problem is O(K+(Kn)3/2 log((K+n)||ρ||∞))
in this case.

7.5 The general algorithm

In this section, we come back to the general bilevel problem 7.2 proposed in Section 7.2, and
extend Algorithm 3 to it. In the low level problem of each customer, the consumptions for
different contents verify the constraints ∀a ∈ [A] ,

∑T
t=1 u

a
k(t) = Rak, ∀t ∈ Iak , a ∈ [A] , uak(t) = 0

and ∀t ∈ [T ] ,
∑

a∈[A] u
a
k(t) ≤ 1. We make the assumption that for each customer k, the sets

of possible instants at which this customer makes a request for the different applications are
disjoint, meaning that for any two applications a 6= a′, the complements of Iak and Ia′k in [T ]
have an empty intersection. Then the constraint ∀t ∈ [T ] ,

∑
a∈[A] u

a
k(t) ≤ 1 is automatically

verified and the low-level problem of each customer can be separated into different optimization
problems corresponding to the consumption vector uak of each customer k for each application
a. Each of these problems takes the following form:

Problem 7.34.

max
uak∈{0,1}T

T∑
t=1

[
ρak(t) + αaky

a,b(t, Lkt )
]
uak(t) (7.10)

s.t.
T∑
t=1

uak(t) = Rak, ∀t ∈ Iak , a ∈ [A] , uak(t) = 0 .
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We denote by F ak the feasible set of this problem. The above assumption (that the com-
plements of Iak and Ia′k have an empty intersection) is relevant in particular if only one kind of
application is sensitive to price incentives. For instance, requests for downloading data can be
anticipated (see [TEEG13]) and it makes sense to assume that customers are only sensitive to
incentives for this kind of contents. In this case, the assumption means that customers wanting
to download data can shift their consumption only at instants when they do not request another
kind of content.

Moreover, under this assumption, the decomposition theorem is still valid and Problem 7.2
can be solved with the following method:

Theorem 7.35 (Decomposition (general case)). The bilevel problem 7.2 can be solved as follows:

1. Find an optimal solution (Na,b)∗ to the high level problem with unknown Na,b for each
a ∈ [A], b ∈ [B]:

Problem 7.36.

max
Na,b∈

∑
k F

a
k

∑
t,l

∑
a∈[A]

∑
b∈[B]

γbN
a,b(t, l)sa,bl (N(t, l))


s.t. ∀t, l, N(t, l) =

∑
a∈[A]

∑
b∈[B]

Na,b(t, l) and ∀t, l, N(t, l) ≤ NC
l .

2. For each a ∈ [A] and b ∈ [B], find vectors ((uak)
∗)k∈Kb solutions of the following problem:

max
(uak∈F

a
k )k∈Kb∑

k∈Kb
uak=(Na,b)∗

∑
k∈Kb

〈ρak, uak〉 .

3. Find for each a ∈ [A] and b ∈ [B] a vector y∗a,b such that for every k ∈ Kb,

(uak)
∗ ∈ arg max

uak∈F
a
k

〈ρak, uak〉.

Proof. The different problems corresponding for each a ∈ [A], for each b ∈ [B] and for each
k ∈ Kb to Problem 7.34 are independent. Thus, the global bilevel program consists in solving
Problem 7.36. Moreover, the optimal decomposition of (Na,b)∗ and the optimal price vector
(ya,b)∗ are totally independent for each a ∈ [A] and b ∈ [B]. Then, the proof of the last two
parts in the theorem is the same as in Theorem 7.17.

The last two parts of Theorem 7.35 are independent for each a ∈ [A] and b ∈ [B]. Thus, they
can be solved similarly as in the case of one kind of application and one kind of contracts, studied
in Section 7.3. We need to solve Problem 7.36. The function to optimize is separable (it can
be written as a sum of function depending only of one coordinate), but these functions are not
concave in (N1,1, . . . , NA,B) ∈ RnAB. However, because each function sa,bl is concave decreasing
and each Na,b(t, l) is positive, we notice that ∀a′ ∈ [A] , b′ ∈ [B], the function which sends
Na′,b′(t, l) to

∑
a∈[A]

∑
b∈[B] γbN

a,b(t, l)sa,bl (N(t, l)) is still concave. Consequently, the function
to optimize in Problem 7.36 isM -concave in each vector Na,b ∈ ZT×L considered separately, the
other one being fixed. This leads to a block descent method, in which we use the same scheme



150 Chapter 7. A bilevel model for price incentives in telecommunications network

as in Algoritm 1, successively, to maximize the objective function over every vector Na,b. We
denote by f(N1,1, . . . , NA,B) the objective function of the high-level problem. We consider for
each a, b a vector Na,b ∈

∑
k∈Kb F

a
k . For each couple (a, b) taken successively, we find (ia,b, ja,b)

belonging to:

arg max
(k,l) s.t. Na,b−ek+el∈

∑
k∈Kb

Fak

f(N1,1, . . . , Na,b − ek + el, . . . , N
A,B)

If f(N1,1− ei1,1 + ej1,1 , . . . , N
A,B− eiA,B + ejA,B ) ≤ f(N1,1, . . . , NA,B), then the algorithm stops

and returns (N1,1, . . . , NA,B). Otherwise, we take for each a, b, Na,b := Na,b − eia,b + eja,b
and begin again. Consequently, Algorithm 3 can be modified to solve the bilevel problem 7.9
in the general case. It leads to Algorithm 5. The function GraphSearch, ShortestPath and
ShortestPath2 are the same as for Algorithm 3. The function f∗ is here defined by:

f∗ : (N1,1, . . . , NA,B) 7→
∑
t

∑
l

∑
a∈[A]

∑
b∈[B]

γbN
a,b(t, l)sa,bl (N(t, l))−M max(N(t, l)−NC

l , 0)


with N(t, l) =

∑
a∈[A]

∑
b∈[B]N

a,b(t, l).
Because the objective function of Problem 7.36 is notM -convex in (N1,1, . . . , NA,B), we have

no guarantee of convergence of Algorithm 5 to a global optimal of the function f∗. However, we
can characterize the nature of the optimum returned by Algorithm 5. In order to estimate the
complexity of Algorithm 5, we define the function ∆f∗ by:

∆f∗(N1,1, . . . ,NA,B) = −f∗(N1,1, . . . , NA,B)

+ max
ua,b,va,b∈[T ]×[L]

Na,b−e
ua,b

+e
va,b
∈
∑
k∈Kb

Fak

f∗(N1,1 − eu1,1 + ev1,1 , . . . , N
A,B − euA,B + evA,B )

If for each a, b we have ua,b = va,b, then ∆f∗(N1,1, . . . , NA,B) = 0. Thus, we have

∆f∗(N1,1, . . . , NA,B) ≥ 0 .

Because the set
∏
a,b(
∑

k∈Kb F
a
k ) is finite, we can define the value δg by:

δg = min
Na,b∈

∑
k∈Kb

Fak
∆f∗(N1,1,...,NA,B)>0

∆f∗(N1,1, . . . , NA,B)

because f∗ has not a constant value.

Theorem 7.37. Let us define γmax = maxb∈[B] γb. Let us also define R =
∑

a∈[A]

∑
k∈[K]R

a
k, for

each a ∈ [A] and k ∈ [K] nak = TL−#J ak (that is the number of possible non-zero coordinates of
the vectors of F ak ) and R =

∑
a

∑
k R

a
k(n

a
k−Rak). Algorithm 5 terminates in O(γmaxR

δg (AB(TL)3+

R)) time and O(R) space, and returns vectors (ya,b)∗a∈[A],b∈[B] and (Na,b)∗a∈[A],b∈[B] such that
∀a ∈ [A] , b ∈ [B] , ∀Na,b ∈

∑
k KbF ak :

f∗((N1,1)∗, . . . , (Na,b)∗, . . . , (NA,B)∗) ≥ f∗((N1,1)∗, . . . , Na,b, . . . , (NA,B)∗)
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Algorithm 5 Solving the bilevel problem for an arbitrary number of types of contracts.
Require: (uak)

∗ ∈ F ak ,∀a ∈ [A] , ∀k ∈ [K], ρak, ∀a ∈ [A] ,∀k ∈ [K], f∗, GraphSearch, ShortestPath,
ShortestPath2, s ∈ [n]

Ensure: N∗ optimal number of customers, y∗ optimal discount vector
for all a ∈ [A] , b ∈ [B] do
Na,b ←

∑
k∈Kb

(uak)
∗

for all k ∈ Kb do
for all t, t′ /∈ Iak do
i = (t, Lk(t)) j = (t′, Lk(t

′)),
if uak(i) = 1 and uak(j) = 0 then
wk,aij ← ρak(i)− ρak(j)

end if
end for

end for
for all t, t′ ∈ [T ], l, l′ ∈ [L] do
i = (t, l) j = (t′, l′)
wa,bij ← mink∈Kb w

k,a
ij ; ka,bij ∈ arg mink∈Kb

wk,aij
end for

end for
stop← 0
while stop = 0 do
gN ← f∗(N1,1, . . . , NA,B);
for all a ∈ [A] , b ∈ [B] do
ca,b ← GraphSearch(wa,b)
g∗ ← maxu,v∈[T ]×[L] c

a,b
uv f

∗(N1,1, . . . , Na,b − eu + ev, . . . , N
A,B); ia,b, ja,b ∈

arg maxu,v∈[T ]×[L] c
a,b
uv f

∗(N1,1, . . . , Na,b − eu + ev, . . . , N
A,B)

end for
if g∗ ≤ gN then
stop← 1

else
for all a ∈ [A] , b ∈ [B] do

(v, path)← Shortestpath(wa,b, i, j); Na,b ← Na,b − eia,b + eja,b

for q = 1 to Length(path)− 1 do
α← path(q); β ← path(q + 1); k ← ka,bαβ ; (uak)

∗(α) = 0; (uak)
∗(β) = 1

for all γ /∈ J ak do
wk,aαγ ← +∞; wk,aγβ ← +∞
if (uak)

∗(γ) = 1 then
wk,aγα ← ρak(γ)− ρak(α)

else
wk,aβγ ← ρak(β)− ρak(γ)

end if
end for

end for
for all t, t′ ∈ [T ] , l, l′ ∈ [L] do
i = (t, l) j = (t′, l′)
wa,bij ← mink∈Kb w

k,a
ij ; ka,bij ∈ arg mink∈Kb

wk,aij
end for

end for
end if

end while
M ← 1 +ABTLmaxi,j∈[T ]×[L],a∈[A],b∈[B] w

a,b
ij

for all t ∈ [n] do
if t 6= s AND wst = +∞ then
wst =M

end if
y∗ ← Shortestpath2(w, s)
y∗s ← 0

end for
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Proof. Algorithm 5 continues while the value g∗ is strictly larger than gN . Because the set∏
a,b(
∑

k∈Kb F
a
k ) is finite, the algorithm terminates. When it stops, the vector (Na,b)a∈[A],b∈[B]

is such that ∀a ∈ [A] , b ∈ [B] , ∀u, v ∈ [T ]× [L]:

f(N1,1, . . . , Na,b − eu + ev, . . . , N
A,B) ≤ f(N1,1, . . . , Na,b, . . . , NA,B)

For each a, b, the function Na,b 7→ f(N1,1, . . . , Na,b, . . . , NA,B) is M -concave. The statement of
the theorem comes straightforwardly from the equivalence between local and global optimality
for M -concave functions.

Algorithm 5 differs from Algorithm 3 by the different applications and kind of contracts
and by the number of iterations of the loop. The set [K] of customers is splitted following the
different kind of contracts b ∈ [B]. Thus, we have to define the parameters wk,aij for each k ∈ [K]

and a ∈ [A] and the global space complexity becomes
∑

a

∑
k R

a
k(n

a
k − Rak) = R. The number

of iterations of the loop can be estimated with a pseudo-polynomial bound. The algorithm
continues while g∗ > gN . Then, the new value of g∗ is f∗(N1,1 − ei1,1 + ej1,1 , . . . , N

A,B −
eiA,B + ejA,B . Consequently, at each iteration of the loop, the value of g∗ increases of at least
δg until the algorithm stops. The finite values of f∗ are nonnegative, and an upper bound is
(maxb∈B γb)(

∑
a

∑
k∈[K]R

a
k) = γmaxR because each function sl takes values between 0 and 1. In

each loop, the number of operations is O(R+AB(TL)3) to calculate the new values of wa,bij and
to solve a shortest path problem for each a and b in the graph Ga,b with nodes corresponding
to all couples in [T ]× [L] and edges with values wa,bij between vertices i, j ∈ [T ]× [L].

7.6 Experimental results

We consider an application based on real data provided by Orange. It involves the data con-
sumptions in an area of L = 43 cells, during one day divided in time slots of one hour, that is
T = 24 time slots. We will focus here our study on price incentives only for download contents.
During this day, a number K of more than 2500 customers make some requests for downloading
data in this area and we are interested in balancing the number of active customers in the net-
work. Even though they are insensitive to price incentives, other kind of requests (web, mail,
etc.) have to be satisfied and they are taken into account in the high level optimization problem.
We consider two classes of users: standard and premium customers. The premium ones demand
a better quality of service. Hence, they are less satisfied than the standard customers if they
share their cell with a given number of active customers. We therefore define the satisfaction
function as in Section 7.2. The provider wants to favor the premium customers. Hence, we take
γb = 2 for the latter ones and γb = 1 for the standard customers, in the high-level optimization
problem. We also assume that the premium customers are less sensitive to the incentives, and
thus take αak = 1/2 for all standard customers and αak = 1 for all premium customers in the
low-level problem 7.1. We estimate very simply the parameters ρk. We take ρk(t) = 1 when the
customer k consumes download at time t without incentives, ρk(t) = 0 when he does not make
any request without incentives but makes a request for download at times t − 1 or t + 1 (we
assume he could shift his consumption of one hour) and ρk(t) = −∞ otherwise.

We solve the bilevel problem using Algorithm 5, implemented in Scilab. The computation
took 9526 seconds on a single core of an Intel i5-4690 processor @ 3.5 GHz.

On Figures 7.6– 7.9, we show the evolution of the satisfaction of different kind of customers for
different kind of contents without and with incentives. These results show that price incentives
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Figure 7.6: Satisfaction of premium customers for streaming without (left) and with (right)
incentives. The grey level indicates the satisfaction: critical unsatisfaction, s < 0.3 (black),
0.3 < s < 0.7 (dark grey), 0.7 < s < 0.9 (grey), 0.9 < s < 0.99 (light grey) and complete
satisfaction 0.99 < s (white).

have an effective influence on the load, especially in the most loaded cells (the number of black
regions in the space-time coordinates, in which the unsatisfaction of the users is critical, is
considerably reduced). Moreover, Figure 7.10 reveals that the consumption of users is not only
moved in time, but also in space: not only some consumption is moved from the peak hour to
the night (off peak), but the surface of the dark grey region, representing the total download
consumption in the cell over the whole day, is decreased, indicating that some part of the
consumption has been shifted to other cells.

7.7 Conclusion

We presented here a bilevel model for price incentives in data mobile networks. We solved this
problem by a decomposition method based on discrete convexity and tropical geometry. We
finally applied our results to real data. In further work, we shall consider more general models:
unfixed number of requests, nonlinear preferences of the customers, satisfaction functions of the
provider taking into account the profit. Stochastic models shall also be considered in particular
to take into account the partial information of the provider about the customers preferences and
trajectories.
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Figure 7.7: Satisfaction of standard customers for streaming without (left) and with (right)
incentives

Figure 7.8: Satisfaction of premium customers for web, mail or download without (left) and
with (right) incentives
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Figure 7.9: Satisfaction of standard customers for web, mail or download without (left) and with
(right) incentives

Figure 7.10: Traffic in the most loaded cell. The light grey part represents the web, mail and
streaming customers who have no incentives and are fixed. The dark grey part corresponds to
the download customers in the cell without (left) and with (right) incentives
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CHAPTER 8
Perspectives

In this chapter, we deal with some perspectives and further developments of the work presented
in this thesis.

8.1 A branch-and-bound algorithm for a class of bilevel problems

In this thesis we have solved a class of bilevel programming problems introducing a polyhedral
approach. The proposed method requires solving a large number of optimization subproblems
(each problem being associated to a cell of a regular polyhedral subdivision). In Section 5.3, the
corresponding algorithm has been shown to be polynomial in the low-level dimension, when the
high-level dimension is fixed. However, as proved in the same section, the complexity bounds
of such an algorithm can be very large even for small values of the high-level dimension. We
already mentioned in Section 5.4 that the real time needed to solve such an algorithm can be
much smaller than the worst-case complexity bound.

This algorithm is based on the enumeration of the faces of a certain polyhedron. Applying
an algorithm proposed by Fukuda et al. [FLM97], we enumerate all the faces of the polyhedron.
This enumeration has a tree structure: the d-dimensional faces are constructed as intersections
of (d+ 1)-dimensional faces.

It could be relevant to use these tree structure to develop a branch-and-bound algorithm. We
saw in Section 3.1 that branch-and-bound algorithms are very much used in bilevel programming,
for solving continuous or discrete problems. The idea is to cut certain cells of the polyhedral
complex defined by the low-level problem. Since we reduced the bilevel problem to a large
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number of subproblems associated to the cells of this polyhedral complex, one could investigate
if it is possible to obtain some bounds over the optimal values of certain subproblems. These
bounds would guarantee that the value of these subproblems is not the optimal value of the
bilevel problem.

One could also study if it is possible to develop a pivoting algorithm. The idea would be to
define a path in the polyhedral complex by solving subproblems associated to neighbour cells.
It could provide a "local" optimum in the following sense. We are looking for a cell such that
the optimal value of the subproblem associated to this cell is better than the optimal value of
the subproblems associated to all the "neighbor" cells.

8.2 Best possible upper bounds for the number of cells

In Chapter 5, we count the number of cells of a certain subdivision of the Newton polytope.
This means that we estimate the f -vector of a certain polyhedral complex. We are interested in
finding an upper bound to the different entries of this vector, in order to obtain an upper bound
of the total complexity of Algorithm 2. In Section 5.2.1, we provide general upper bounds.
However, these upper bounds are possibly not attainable. For instance, the upper bound we
give in Theorem 5.12 consists in summing the total number of faces of each n-dimensional cell.
This implies that a large number of cells are counted twice.

An open problem is to find the best possible upper bounds to the total number of cells of a
regular subdivision of a polytope, such that the zero-dimensional cells are integer points. This
means that we want to propose a certain subdivision of a polytope which attains the upper
bound. We study in Section 5.2.2 the case of a simplex ∆d, and we propose a particular subdivi-
sion Eds(∆d), called edgewise subdivision. We show that this subdivision has the maximal total
number of faces in dimension less than 4. It is possible to show that the subdivision Eds(∆d)
has the maximal number of 0-dimensional and n-dimensional cells. We conclude by using the
Dehn-Sommerville equations. Since the Dehn-Sommerville equations give only n/2 linear inde-
pendent equations between the entries of the f -vector of a polyhedral complex, such a reasoning
can be applied only in small dimensions. We would be interested in generalizing this result to
all dimensions.

8.3 Bounded price incentives for the congestion problem

In the second part of the thesis, we have considered an optimistic bilevel approach to tackle
a congestion problem in mobile data networks. More precisely, a mobile service provider an-
nounces some discounts at certain times and in certain cells. The users determine their optimal
consumption by maximizing their utility function. The provider wants to minimize a congestion
measure, depending only on the optimal consumptions of the users, using discounts that can
take any non-negative value.

As the provider cannot pay an infinite amount of money to incite the users to shift their data
consumptions, these discounts must be bounded. This leads to the analysis of a bilevel problem
under the constraint of bounded discounts. Adding this constraint implies that the high-level
function also depends on the discounts proposed by the provider. Since all the polynomial
time algorithms developed in this thesis solve bilevel problems in which the high-level function
depends only on the low-level response, we have developed new algorithms in Chapter 4 that deal
with these bounded discounts. However, such algorithm can have an exponential complexity in
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the high-level dimension making them inefficient for a real implementation. Some perspectives
have been proposed in Appendix C, where we have shown that it is possible to characterize the
feasible set of the high-level problem.

8.4 A stochastic model for the congestion problem

An other perspective to improve the methods introduced in this thesis would consist in analyzing
the relevance of the mutliple assumptions we have made. More precisely, we have assumed that
the provider knows for each user its trajectory and its preference measure to consume at the
different time slots of the day.The observations of a mobile data network [YQZ+15], [PSBD11]
have shown that the demand is actually daily periodic: the data consumption of the customers
is approximately the same each day. The trajectory of the different users (who are mobile in
the network) can be relatively well predicted [SQBB10]. Mobile users have standard trajectories
(similar from one day to another one), like leaving home at morning to go work, and coming
back at the evening. The variations from such standard trajectories are rare events. These
standard trajectories can be identified by the mobile service provider (MSP), analyzing the
data consumptions of the different customers of the network. Such an analysis has been done
in [YQZ+15] showing large disparities between the behaviors of customers. Top 1 % users
consume more than 80 % of the data traffic whereas the 70 % users who consume at least
are responsible for only 0,21 % of the data traffic. These disparities have been taken into
accounts introducing clusters of users (as big, medium, or small consumers). We have made
the choice in this work to model the consumptions of the users by binary variables. The data
consumption per day in the network show that the number of active users per day in the network
is globally constant (between 2.84 and 2.95 million) even if there are not all active every day:
4.51 million different users were connected during the studied week. These data also show that
the traffic is globally constant (between 8.52 and 8.71 terabytes) with a peak at January 1st at
9.20 terabytes.Finally, the relation between the packet numbers and the flow numbers is quite
constant (between 1735 and 1780) during the week. This leads to a large correlation between
the number of users and the traffic. This legitimates the modeling the user consumption by a
binary value equal to 1 if the user is active and 0 if not.

To improve the efficiency of the method, it can be relevant to consider the observed trajectory
and consumptions of the users instead of the predicted ones. This would lead to an adaptative
model, in which the provider proposes discounts at each time t knows the past (the observed
data until time t − 1) and predicts the future. This corresponds to a stochastic model for the
congestion problem in mobile data networks.

The probabilistic aspect of the model comes from different problems. First, the trajectory
cannot be exactly defined, even for the customer, at the beginning of the day as there can
exist some events which have a significant probability to occur (for example at the evening:
staying at home, going to the cinema or the restaurant, swimming . . . ). Then, even if the
path of a customer is well known, the time slots in which he follows this path could be not
well-defined (a customer can go work at 8 a.m. or 8.30 a.m.), which introduces a difficulty to
predict the position of a customer at certain time. A new probabilistic model that exploits as
more as possible the information known about the habits of the customer would consequently
be a tremendous perspective for further improvements. With this approach, the trajectory of a
customer could be modeled as a path in a tree, where to each of his different actions is associated
a probability to switch from an action to another one.

Then, the provider has to predict the data consumptions of the different users. Different
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types of applications have to be distinguished [EABG17]. Some kind of contents like mail or
search do not need a lot of resources from the antenna as they do not generate a lot of traffic.
Moreover, they are difficult to anticipate and to shift. For instance, a user can check his e-mails
at fixed time or use mobile data during his trip "home-work", and no incentive mechanism has
any effect on his behavior. Other contents like streaming, music needs a better throughput to
ensure a minimal quality of service. However, they are also not movable. Finally, upload or
download contents can generate a lot of traffic but seem to be movable (an user wishing to read
the newspaper or to use a new application can download it previously whenever he wants).

In this extent, a stochastic model would enable to develop a real-time price incentives scheme.
At each time slot t, the provider observes the situation in the network, knowing the standard
behavior of the users and their past trajectory. Being able to estimate the probability that
each user will be in each cell for each time slot t′ ≥ t and its probability to consume at each
further time, the provider solves a stochastic optimization problem to decide at time t whether
he proposes price incentives or not and in which cells. This model is real-time since he solves a
problem at each time slot t by using the observations of the network at each time slot t′ < t. As
such a model would lead to a huge scale optimization problem, some complementary assumptions
would be necessary to develop applicable methods. For instance, we could study some clusters
of users who have the same behavior (same total consumptions, same habits . . . ). Such an
assumption would reduce the dimension of the problem and would enable to use this model to
solve huge scale problems.



APPENDIX A
Compactification of a polyhedron to

enumerate its faces

A.1 Enumerating the faces

In this chapter, we provide another approach to enumerate the cells of the epigraph epi(Q) of a
tropical polynomial. This problem was studied in Section 5.1.2.

We recall that epi(Q) is a (n+ 1)-dimensional polyhedron given by nZ inequalities:

epi(Q) = {(y, yn+1 ∈ Rn × R | ∀z ∈ CTP ∩ Zn, yn+1 ≥ 〈y, z〉+ ϕ(z)}.

We assume we already determined the set {(z, ϕ(z)) | z ∈ CTP ∩ Zn}.
We present here how to define a polytope P(Q) which is a compactification of epi(Q). In

fact, we add one facet, that is one inequality, and show that the polyhedron obtained P(Q) is
bounded. Then, we apply an algorithm proposed by Avis and Fukuda [AF92] to enumerate all
the vertices of P(Q). We then determine the vertex-facet incidence matrix of P(Q) in order to
apply an algorithm proposed by Kaibel and Pfetsch [KP02] to enumerate all the faces of P(Q).
Finally, we deduce the faces of epi(Q) by removing the added facet.

We recall that V (Q) is the set of points z ∈ CTE(P) such that y 7→ 〈y, z〉 + ϕ(z) is an
essential monomial. Let z ∈ CTP ∩ Zn. Then, there exists a facet of epi(Q) included in the
hyperplane {(y, yn+1) ∈ Rn × R | yn+1 = 〈y, z〉+ ϕ(z)} if and only if z ∈ V (Q).

We know explain how to define a polytope P(Q) by adding a facet to epi(Q). Let z0 be in
the interior of CTP. Let V be the set of vertices of epi(Q). Then, we define a real number M
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Algorithm 6 Sketch of the algorithm to enumerate the faces of epi(Q)

1. Add a face to epi(Q) to obtain a polytope P(Q)

2. Apply the Avis and Fukuda algorithm to obtain the vertices of P(Q)

3. Determine the vertex-facet incidence matrix of P(Q)

4. Apply the Kaibel and Pfetsch algorithm to obtain the faces of P(Q).

5. Obtain the faces of epi(Q)

by M = 1 + maxy∈V [Q(y)− 〈y, z0〉]. P(Q) is then defined as:

P(Q) = epi(Q) ∩ {(y, yn+1) ∈ Rn+1 | yn+1 ≤ 〈y, z〉+M}

We first have to show that P(Q) is bounded.

Proposition A.1. P(Q) is a polytope of Rn+1.

Proof. Let y ∈ Rn. Then, (y, yn+1) belongs to P(Q) if and only if:

Q(y) ≤ yn+1 ≤ 〈y, z0〉+M

Thus, for a fixed y ∈ Rn, yn+1 belongs to a segment. We next have to show that the set
of values of y ∈ Rn such that there exists yn+1 with (y, yn+1) ∈ P(Q) is bounded. For a
fixed y ∈ Rn, there exists yn+1 such that (y, yn+1) ∈ P(Q) if and only if for each z ∈ CTP,
〈y, z0〉+M ≥ 〈y, z〉+ ϕ(z), that is:

∀z ∈ CTP, 〈y, z − z0〉 ≤M − ϕ(z)

Because z0 is in the interior of CTP, 0 is in the interior of CTP − z0. For a vector x ∈ Rn, we
denote by sgn(x) ∈ {−1; 0; 1}n the vector whose i-th coordinate is equal to 0 if xi = 0 and is
equal to xi

|xi| otherwise. Then, for each possible sign vector s ∈ {−1; 0; 1}n, there exists εs > 0

such that εss ∈ CTP − z0, that is z0 + εss ∈ CTP. Let M ′ be defined by:

M ′ =
M + 1−minz∈CTP ϕ(z)

mins∈{−1;0;1}n εs

We next show that a point (y, yn+1) ∈ P(Q) is such that y ∈ [−M ′,M ′]n. In fact, suppose that
there exists a coordinate yi such that |yi| > M ′. Take s = sgn(y). Then z = z0 + εss ∈ CTP.
Consequently:

〈y, z − z0〉 = εs

n∑
j=1

|yj | ≥ εsM ′ ≥ 1 +M − ϕ(z)

by definition of M ′. Thus, there does not exist a point yn+1 ∈ R such that (y, yn+1) ∈ P(Q) if
||y||∞ > M ′.

For each 0 ≤ d ≤ n, the d-dimensional faces of P(Q) are related to the d-dimensional faces
of epi(Q). We clarify this relation.
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Proposition A.2. Let F be a d-dimensional face of epi(Q) (with 0 ≤ d ≤ n). The intersection
F ∩ P(Q) is non-empty and is a d-dimensional face of P(Q).

Proof. Let F be a d-dimensional face of epi(Q). There exists a cell C ∈ S such that F =
{(y,Q(y)) ∈ Rn × R | y ∈ C}. Moreover, F is defined by the following set of inequalities:

∀z ∈ φ(C), yn+1 = 〈y, z〉+ ϕ(z)

∀z ∈ CTP \ φ(C), yn+1 ≥ 〈y, z〉+ ϕ(z)

F has at least one vertex. Let (yV , yVn+1) be such a vertex. We have yVn+1 = Q(yV ) By definition
ofM , we haveM ≥ 1+Q(yV )−〈yV , z0〉. Then, yVn+1 < 〈yV , z0〉+M , which means (yV , yVn+1) ∈
P(Q). Moreover, (yV , yVn+1) is in the interior of the half-space {(y, yn+1) | yn+1 ≤ 〈y, z0〉+M}.
Thus, there exists ε > 0 such that F ∩ B∞((yV , yVn+1), ε) ⊂ P(Q), where B∞((yV , yVn+1), ε) is
the ball centered in (yV , yVn+1) of radius ε for the infinite norm, that is:

B∞((yV , yVn+1), ε) = {(y, yn+1) ∈ Rn+1 | ∀i ∈ [n+ 1] , |yi − yVi | ≤ ε}

Then, F ∩ B∞((yV , yVn+1), ε) is a k-dimensional polyhedron and:

F ∩ B∞((yV , yVn+1), ε) ⊂ F ∩ P(Q) ⊂ P(Q)

Consequently, F ∩ P(Q) is a k-dimensional polyhedron, which is straightforwardly a face of
P(Q).

Proposition A.3. Let F be a k-dimensional face of P(Q) for 0 ≤ k ≤ n. Then, exactly one of
the two following assertions is true.

1. There exists a k-dimensional face F ′ of epi(Q) such that F = F ′ ∩ P(Q).

2. There exists a k + 1-dimensional face F ′ of epi(Q) such that F = F ′ ∩ {(y, yn+1) | yn+1 =
〈y, z0, rangle+M} (with the convention that epi(Q) is a n+1-dimensional face of epi(Q)).

Proof. First, we prove that {(y, yn+1) | yn+1 = 〈y, z0, 〉+M} is a n-dimensional face of epi(Q).
Let (yV , yVn+1) be any vertex of epi(Q). Consider the point (yV , 〈yV , z0〉+M). It belongs clearly
to {(y, yn+1) | yn+1 = 〈y, z0, 〉+M}. Moreover 〈yV , z0〉+M ≥ 1+Q(y). Then (yV , 〈yV , z0〉+M)
belongs to P(Q) but does not belong to any other face of P(Q). It means that there exists ε > 0
such that {(y, yn+1) | yn+1 = 〈y, z0, 〉 + M} ∩ B∞((yV , 〈yV , z0〉 + M), ε) is a n-dimensional
polyhedron included in P(Q). This concludes that {(y, yn+1) | yn+1 = 〈y, z0, 〉 + M} is a n-
dimensional face of P(Q). Then, the n-dimensional faces of P(Q) are exactly the intersection
of the n-dimensional faces of epi(Q) with the half-space {(y, yn+1) | yn+1 ≤ 〈y, z0, 〉+M} or the
face {(y, yn+1) | yn+1 = 〈y, z0, 〉+M}. This establishes the statement of the proposition for the
case d = n. Let d < n and F be a d-dimensional face of P(Q). The polytope P(Q) is defined
by the inequalities:

∀z ∈ V (Q), yn+1 ≥ 〈y, z〉+ ϕ(z)

yn+1 ≤ 〈y, z0〉+M

Each of this inequality corresponds hence to a n-dimensional face of P(Q). Consequently, F is
characterized by exactly n + 1 − d equalities among these inequalities. If yn+1 = 〈y, z0〉 + M
is one of those equalities, then F = F ′ ∩ {(y, yn+1) | yn+1 = 〈y, z0, 〉 + M} where F ′ is a face
of epi(Q) characterized by n − d equalities, so a d + 1-dimensional face of epi(Q). If not, then
F = F ′ ∩P(Q) where F ′ is a face of epi(Q) characterized by the same n+ 1− d equalities than
F . Hence, it is a d-dimensional face of epi(Q).
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The polytope P(Q) is defined by a list of inequalities. Thus, by applying the Avis-Fukuda
algorithm [AF92], it is possible to enumerate all the vertices of P(Q). We can now build the
vertex-facet incidence matrix of P(Q). However, we do not know precisely the set V (Q) of points
z ∈ CTP ∩Zn such that a n-dimensional face of P(Q) is included in yn+1 = 〈y, z〉+ϕ(z). Then,
we build a matrix with nZ + 1 lines and a column per vertex of P(Q). For each z ∈ CTP ∩ Zn,
there is a line of the matrix corresponding to the following face of P(Q):

yn+1 = 〈y, z〉+ ϕ(z)

∀z′ ∈ CTP ∩ Zn with z′ 6= z, yn+1 ≥ 〈y, z′〉+ ϕ(z′)

yn+1 ≤ 〈y, z0〉+M

The last line corresponds to the following face of P(Q):

yn+1 = 〈y, z0〉+M

∀z′ ∈ CTP ∩ Zn, yn+1 ≥ 〈y, z′〉+ ϕ(z′)

For each of these faces f and for each vertex v of P(Q), we take afv = 1 if v ∈ f and afv = 0
otherwise. As explained previously, the last face is a n-dimensional face of P(Q). The previous
faces are n-dimensional if and only if the corresponding z ∈ V (Q). We can now identify the set
V (Q).

Proposition A.4. Let z ∈ CTP ∩ Zn. If the number of vertices of P(Q) contained in the
hyperplane yn+1 = 〈y, z〉+ ϕ(z) is less or equal than n, then there exists no n-dimensional face
F of P(Q) included in yn+1 = 〈y, z〉+ ϕ(z).

Proof. If the hyperplane yn+1 = 〈y, z〉+ ϕ(z) contains a n-dimensional face F of P(Q), then it
contains the vertices of F . Because F is a n-dimensional polytope, it contains at least n + 1
vertices. Conversely, suppose that n+ 1 vertices of P(Q) belong to yn+1 = 〈y, z〉+ ϕ(z).

Proposition A.5. Let z ∈ CTP ∩ Zn. Then, there exists a n-dimensional face F of P(Q)
included in {(y, yn+1 | yn+1 = 〈y, z〉 + ϕ(z)} if and only if for each z′ ∈ CTP ∩ Zn, the set
of vertices of P(Q) contained in {(y, yn+1 | yn+1 = 〈y, z〉 + ϕ(z)} is not included in the set of
vertices of P(Q) contained in {(y, yn+1 | yn+1 = 〈y, z′〉+ ϕ(z′)}.

Proof. Suppose that there exists a n-dimensional face F of P(Q) included in {(y, yn+1 | yn+1 =
〈y, z〉 + ϕ(z)}. If the set of vertices of P(Q) contained in {(y, yn+1 | yn+1 = 〈y, z〉 + ϕ(z)} is
included in the set of vertices of P(Q) contained in {(y, yn+1 | yn+1 = 〈y, z′〉 + ϕ(z)} for some
z′ ∈ CTP ∩ Zn, ’ then F is also included in the hyperplane {(y, yn+1 | yn+1 = 〈y, z′〉 + ϕ(z)}.
Then, F cannot be a n-dimensional polyhedron.

Conversely, suppose that for each z′ ∈ CTP ∩ Zn, the set of vertices of P(Q) contained in
{(y, yn+1 | yn+1 = 〈y, z〉 + ϕ(z)} is not included in the set of vertices of P(Q) contained in
{(y, yn+1 | yn+1 = 〈y, z′〉 + ϕ(z′)}. Let F be the convex hull of the vertices of P(Q) contained
in {(y, yn+1 | yn+1 = 〈y, z〉 + ϕ(z)}. F 6= ∅ because ∅ is included in the set of vertices of
P(Q) contained in {(y, yn+1 | yn+1 = 〈y, z′〉 + ϕ(z′)} for each z′ ∈ CTP ∩ Zn. If F is not a
n-dimensional polyhedron, then there exists a n-dimensional face F ′ of P(Q) such that F  F ′.
There exists z′ ∈ CTP ∩ Zn with z′ 6= z such that F ′ ⊂ {(y, yn+1 | yn+1 = 〈y, z′〉+ ϕ(z′)}. It is
impossible because {(y, yn+1 | yn+1 = 〈y, z〉+ ϕ(z)} 6= {(y, yn+1 | yn+1 = 〈y, z′〉+ ϕ(z′)}.
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Proposition A.4 and Proposition A.5 enable us to eliminate the hyperplanes which does not
correspond to a n-dimensional face of P(Q). In fact, we eliminate first the hyperplanes which
contain less or equal than n vertices of P(Q) according to Proposition A.4, that is the lines of
the vertex-facet incidence matrix A with less or equal than n components equal to 1. After that,
for each couples of faces (f, f ′), we compare the vertices belonging to f and to f ′. If the vertices
contained in f belong all to f ′, that is if for each v, afv ≤ af ′v, then we remove the line associated
to f according to Proposition A.5. The remaining lines correspond exactly to the n-dimensional
faces of P(Q). Excepting the last face (which is included in {(y, yn+1) | yn+1 = 〈y, z0〉 + M}),
the other lines of this matrix correspond exactly to the restriction to P(Q) of the n-dimensional
faces of epi(Q) according to Proposition A.3. Thus, as a consequence of the definition of V (Q),
the set V (Q) correspond to the elements of Sn.

We can now write an algorithm to determine all the cells of Sn. It leads to Algorithm 7.
We introduce the function AvisFukuda which associates to a list LI of linear inequalities of the
type Aix ≤ bi a list LV of all the vertices of the polyhedron {x | Ax ≤ b}.
Theorem A.6. Algorithm 7 terminates and returns all the cells of Sn in O(n2

Z(v+n
(
nZ
n

)
)) time

complexity. where v is the number of vertices of P(Q) and nZ = #(CTP ∩ Zn).

Proof. Algorithm 7 constructs P(Q), determines all the vertices of P(Q) thanks the Avis-Fukuda
algorithm, constructs the vertex-facet incidence matrix of P(Q) and keeps only the hyperplanes
corresponding to a facet of P(Q) according to Proposition A.4 and Proposition A.5. Hence,
by duality, it returns the set V ′ of points z such that (z, zn+1) is a vertex of New(Q), that is
{z} ∈ S ′0. The corresponding cell in Sn is defined by the inequalities:

∀z′ ∈ CTP ∩ Zn, 〈y, z〉+ ϕ(z) ≥ 〈y, z′〉+ ϕ(z′)

We now evaluate the complexity of the algorithm. Let v be the number of vertices of P(Q). O(bn)
operations are necessary to write the inequalities defining epi(Q). epi(Q) is a n-dimensional
polyhedron defined by nZ inequalities. Thus, we need O(n2

Zn
(
nZ
n

)
) to obtain the vertices of

epi(Q). For each vertex (y, yn+1), the value of Q(y) is obtained directly, because Q(y) = yn+1

(the vertices of epi(Q) belong to gph(Q)). Thus, O(nZ) operations are needed to evaluate M .
Again, we need O(n2

Zn
(
nZ
n

)
) to obtain the vertices of P(Q). O(nZv) operations are necessary to

define the vertex-facet incidence matrix of P(Q) and finally we eliminate the hyperplanes which
do not correspond to any facet of P(Q) in O(n2

Zv) operations.

When the vertex-facet incidence matrix of P(Q) is known, we can apply the algorithm of
Kaibel and Pfetsch [KP02] to obtain all the d-dimensional faces of P(Q). In fact, the algorithm
proposed by Kaibel and Pfetsch constructs the face lattice of P(Q) by adding faces with higher
dimensions than the faces already added in the lattice. It means than the faces are constructed
as the convex hull of their vertices. To better correspond to our problem, we apply the algorithm
of Kaibel and Pfetsch to the transpose of the vertex-facet incidence matrix. It corresponds to
vertex-facet incidence matrix of a dual polytope, in the same sense as the duality between epi(Q)
and New(Q). Hence, enumerating all the faces of this dual polytope is equivalent to enumerate
all the faces of P(Q) as the intersections of n-dimensional faces. Then, we eliminate the faces
which belong to {(y, yn+1) = 〈y, z0〉 + M} and keep the other ones. If a face is defined by a
subset Ṽ ⊂ V ′ such that ∀z ∈ Ṽ , yn+1 = 〈y, z〉+ϕ(z) and ∀z′ /∈ Ṽ , yn+1 ≥ 〈y, z′〉+ϕ(z′), then
the corresponding cell C ∈ S is obtained by:

∀z, z′ ∈ Ṽ , 〈y, z〉+ ϕ(z) = 〈y, z′〉+ ϕ(z′)

∀z ∈ Ṽ , z′ /∈ Ṽ 〈y, z〉+ ϕ(z) ≥ 〈y, z′〉+ ϕ(z′)
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Algorithm 7 Enumeration of the cells of Sn
Require: Points (z, ϕ(z)) ∀z ∈ CTP ∩ Zn, point z0 in the interior of CTP.
Ensure: Vertex-facet incidence matrix U of P(Q) ; List L of n-dimensional cells of the subdi-
vision S of T (Q); List L′ of the dual cells
LI = ∅
for all z ∈ CTP ∩ Zn do
LI ← LI ∪ {yn+1 ≥ 〈y, z〉+ ϕ(z)}

end for
LV ← AvisFukuda(LI) {Enumerate the vertices of epi(Q)}
M = 1 + maxy∈LV [Q(y)− 〈y, z0〉]
LI ← LI ∪ {yn+1 ≤ 〈y, z0〉+M}
LV ← AvisFukuda(LI) {Enumerate the vertices of P(Q)}
f = 1
for all z ∈ CTP ∩ Zn do
v = 1
for all {(y, yn+1)} ∈ LV do
if yn+1 = 〈y, z〉+ ϕ(z) then
Ufv = 1

else
Ufv = 0

end if
v ← v + 1

end for
if
∑

v Ufv ≤ n then
Remove line f in U ; LI ← LI \ {yn+1 ≥ 〈y, z〉+ ϕ(z)} ; f ← f − 1

end if
f ← f + 1

end for
for all i, j ∈ [f ] do
if For each k ∈ [v], Uik ≤ Ujk then
Remove line i in U ; for the corresponding z do LI ← LI \ {yn+1 ≥ 〈y, z〉+ ϕ(z)}

end if
end for
L = ∅ L′ = ∅ {Create the list of cells of Sn and S ′0}
for all {yn+1 ≥ 〈y, z〉+ ϕ(z)} ∈ LI do
L = L ∪ {yn+1 = 〈y, z〉+ ϕ(z), ∀z′ ∈ CTP ∩ Zn, yn+1 ≥ 〈y, z′〉+ ϕ(z′)}
L′ = L′ ∪ {z}

end for
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and the dual cell is φ(C) = Conv(Ṽ ).
It leads to Algorithm 8 to enumerate the different cells of P(Q). We introduce a function

KaibelPfetsch which associates to a vertex-facet incidence matrix U a list LF containing all
the faces of the corresponding polytope

Algorithm 8 Enumeration of all the faces of S
Require: Points (z, ϕ(z)) ∀z ∈ B, Point z0 in the interior of CTP
Ensure: List L of cells of the subdivision S of T (Q); List L′ of the dual cells
Apply Algorithm 7 to obtain the vertex-facet incidence matrix U of P(Q)
LF ← KaibelPfetsch(UT )
L = ∅ L′ = ∅
for all F ∈ LF do
if F is not included in {(y, yn+1) | 〈y, z0〉+M} then
Define Ṽ as the set of vertices in V ′ such that F = {(y, yn+1) | ∀z ∈ Ṽ , yn+1 =
〈y, z〉+ ϕ(z), ∀z′ /∈ Ṽ , yn+1 ≥ 〈y, z〉+ ϕ(z), yn+1 ≤ 〈y, z0〉+M}
L = L ∪ {∀z, z′ ∈ Ṽ , 〈y, z〉 + ϕ(z) = 〈y, z′〉 + ϕ(z′), ∀z ∈ Ṽ , z′ /∈ Ṽ , 〈y, z〉 + ϕ(z) ≥
〈y, z′〉+ ϕ(z′)}
L′ = L′ ∪ {Conv Ṽ }

end if
end for

Theorem A.7. Algorithm 8 terminates and returns all the cells of S in O(n2
Z(v + n

(
nZ
n

)
) +

min(fn, v)αf) time complexity, where nZ = #(CTP ∩ Zn), α is the number of ones in U , v
the number of vertices of P(Q), fn the number of n-dimensional faces in P(Q) and f the total
number of faces of P(Q).

Proof. The vertex-facet incidence matrix U can be obtained in O(n2
Z(v+n

(
nZ
n

)
)) time according

to Theorem A.6. The complexity of Kaibel-Pfetsch algorithm is O(min(fn, v)αf), where α is
the number of ones in U , fn the number of n-dimensional faces in P(Q) and f the total number
of faces of P(Q). The creation of the different lists can be done in O(f) operations, each face of
P(Q) being given by its corresponding set Ṽ of supporting hyperplanes if we apply the algorithm
to the matrix UT .

A.2 Estimating the number of faces

In this section, we try to estimate the different combinatorial parameters introduced in the
complexities of the previous algorithms, that is the number of vertices, full-dimensional faces or
total number of faces of P(Q). We use the results of Section 5.2.

We denote by f(P(Q)) the f -vector of P(Q), that is for each 0 ≤ d ≤ n, fd(P(Q)) is the
number of d-dimensional faces of P(Q). We recall that f(S) is the f -vector of the subdivision
S, defined similarly.

In order to refine the complexity estimates of Algorithm 8 and 7, provided respectively by
Theorem A.7 and A.6, we can give an upper bound about the components of the f -vector of
P(Q)

Theorem A.8. 1. fn(P(Q)) = 1 + fn(S)
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2. f0(P(Q)) ≤ f0(S) + f1(S)

3.
∑n

d=0 fd(P(Q)) ≤ 2
∑n

d=0 fd(S)

Proof. By Proposition A.3, the d-dimensional faces of P(Q) are either d-dimensional faces of
epi(Q), or the intersection of d+ 1-dimensional faces of epi(Q) with the hyperplane {(y, yn+1) |
〈y, z0〉 + M}. The number of d-dimensional faces of epi(Q) is equal to fd(S). It follows that
from each 0 ≤ d ≤ n− 1:

fd(P(Q)) ≤ fd(S) + fd+1(S)

P(Q) is constructed by adding one face to epi(Q), so fn(P(Q)) = fn(S) + 1. By summing these
different inequalities and by using f0(S) ≥ 1, we obtain the third assertion.

Corollary A.9. 1. fn(P(Q)) ≤ 1 + n+ n! Vol(CTP)

2. f0(P(Q)) ≤ (n+ 2)n! Vol(CTP)

3.
∑n

d=0 fd(P(Q)) ≤ (2n+2 − 2)n! Vol(CTP)

Proof. The upper bound of fn(P(Q)) and
∑n

d=0 fd(P(Q)) comes directly from Theorem A.8 and
from the results of respectively Corollary 5.11 and Theorem 5.12. To obtain an upper bound of
f0(P(Q)), we have to obtain an upper bound of f1(S) = fn−1(S ′). S ′ is a subdivision of CTP.
Suppose it maximizes the number of n − 1-dimensional cells of a subdivision of CTP. Then
it is a triangulation. It would be possible to triangulate the non-simplicial n-dimensional cells
otherwise, which increases the number n − 1-dimensional cells of the subdivision. The number
of (n− 1)-dimensional faces of a simplex is n+ 1. Then, we have:

fn−1(S ′) ≤ (n+ 1)fn(S ′) ≤ (n+ 1)n! Vol(CTP)

Then, f0(P(Q)) ≤ (n+ 2)n! Vol(CTP) by using Proposition 5.8.

Corollary A.10. The number α of ones in the vertex-facet incidence matrix of P(Q) is such
that:

α ≤ (n+ 2)n! Vol(CTP)[1 + n+ n! Vol(CTP)]

Proof. By definition of the vertex-facet incidence matrix of P(Q), the number α satisfies α ≤
f0(P(Q))fn(P(Q)). We conclude by Corollary A.9.



APPENDIX B
Proof of Theorem 6.5

B.1 Sketch of the proof

In this chapter, we provide a proof of Theorem 6.5, that we recall:

Theorem B.1. Let P1, . . . Pk be k tropical polynomials in Rn, with tropical hypersurfaces denoted
by T (P1), . . . , T (Pk) and with Newton polytopes respectively denoted by ∆1, . . . ,∆k. Assume that
the k tropical hypersurfaces are in general position. Consider k non-negative integers q1, . . . , qk
such that

∑k
i=1 qi = n. The number of apices x of the tropical hypersurface T (P1 � · · · � Pk)

such that, for every i ∈ [k], at least qi + 1 monomials are maximal for Pi in x is less or equal
than:

n!V(∆1, . . . ,∆k ; q1, . . . , qk),

where V(∆1, . . . ,∆k ; q1, . . . , qk) is the mixed volume V(∆1, . . . ,∆1, . . . ,∆k, . . . ,∆k) in which
each ∆i appears qi times.

The idea of the proof is the following. For every 1 ≤ i ≤ k, we write:

Pi(x) = max
1≤j≤pi

[
cij + 〈x, aij〉

]
.

We consider q = (q1, . . . , qk) a partition of n, that is
∑k

i=1 qi = n, with every qi ∈ N. We denote
by Xq the set of apices of the arrangement of tropical hypersurfaces T (P1), . . . T (Pk) such that,
for every i ∈ [k], at least qi + 1 monomials are maximal for Pi in x.



170 Chapter B. Proof of Theorem 6.5

We idea is to introduce qi small generic perturbations of each Pi. Then, for every i ∈ [k], we
define qi polynomials P 1

i , . . . , P
qi
i such that ∀l ∈ [qi]:

P li (x) = max
1≤j≤pi

[
cij + εij,l + 〈x, aij〉

]
,

where εijl are "small" and randomly defined such that ∀j, j′ ∈ [pi] and ∀l, l′ ∈ [qi]:

εij,l − εij′,l 6= εij,l′ − εij′,l′ .

For every l ∈ [qi], the tropical hypersurface T (P li ) is then "close" from the tropical hyper-
surface T (Pi). Moreover, the Newton polytope of each tropical polynomial P li is ∆i. Since the
perturbations are generic, the number of intersection points of the n tropical hypersurfaces P li
for every i ∈ [k] and every l ∈ [qi] is equal to:

n!V(∆1, . . . ,∆k ; q1, . . . , qk),

where V(∆1, . . . ,∆k ; q1, . . . , qk) is the mixed volume V(∆1, . . . ,∆1, . . . ,∆k, . . . ,∆k) in which
each ∆i appears qi times, according to Theorem 3.16.

We prove that in a certain "small ball" centered in every x ∈ Xq, we can find an intersection
point of the n tropical hypersurfaces T (P li ), for every i ∈ [k] and l ∈ [qi]. An example is
shown on Figure B.1. We consider the arrangement of two tropical hypersurfaces in dimension
2 corresponding to the tropical polynomials:

P1(x) = max(x1, x2, 0),

P2(x) = max(x1 + x2 + 2, x1 + 1, x2 + 1, 0).

The arrangement of tropical hypersurfaces can be found in Figure 6.1, in Chapter 6. We have
∆1 = New(P1) = Conv((0, 0), (0, 1), (1, 0)), ∆2 = New(P2) = Conv((0, 0), (0, 1), (1, 0), (1, 1)).
Hence:

2V(∆1,∆1) = 1, 2V(∆2,∆2) = 2, 2V(∆1,∆2) = 2.

The number of intersection points between T (P1) and T (P2) is directly given by Theorem 3.16
as equal to 2. On Figure B.1, we introduce a small perturbation of T (P1), and we see that in a
small ball (blue ball) around all the apices of T (P1), we find an intersection between T (P1) and
the perturbated T (P1). We deduce that the number of apices of T (P1) is less or equal than 1.
We do the same thing for T (P2), and we deduce that the number of apices of T (P2) is less or
equal than 2. In fact, the number of apices of T (P2) is only 1, meaning that we provide only an
upper bound.

B.2 Proof

For all 1 ≤ i ≤ k, we write Pi(x) = max1≤j≤pi

[
cij + 〈x, aij〉

]
. Let Xq be the set of apices of

the arrangement of tropical hypersurfaces T (P1), . . . T (Pk) such that, for every i ∈ [k], at least
qi+ 1 monomials are maximal for Pi in x. When the tropical hypersurfaces T (P1), . . . T (Pk) are
in general position, Xq contains a finite number of points if it is not empty. Consider i ∈ [k].
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y1

y2

Figure B.1: Arrangement of perturbed tropical hypersurfaces: the blue ones are T (P1) together
with its perturbation, the red ones are T (P2) togerther with its perturbation. The blue circle is
centered in the apex of T (P1), the red one is centered in the apex of T (P2). We see that there
exists at least one intersection point of the two "copies" of each tropical hypersurface in every
circle.

For all x ∈ Xq, the value of exactly qi + 1 monomials in Pi is equal to Pi(x), the value of the
other one being strictly less than Pi(x). We define R1 > 0 by:

R1 = min
i∈[k]

min
x∈Xq

Pi(x)− max
1≤i≤pi

cij+〈x,aij〉<Pi(x)

cij + 〈x, aij〉


For all x ∈ Rn, we define ||x||∞ = max1≤i≤n |xi|. For all x ∈ Rn and r > 0, we define the

ball B∞(x, r) = {y ∈ Rn | ||y − x||∞ ≤ r}. Then, we define R2 > 0 such that ∀x, x′ ∈ Xq,
B∞(x,R2) ∩ B∞(x′, R2) = ∅.

Consider a point x ∈ Xq. It is defined by n equalities, qi for each tropical polynomial Pi,
that is for each i ∈ [k], there exists qi + 1 indices j(i, 1), . . . , j(i, qi + 1) such that

cij(i,1) + 〈aij(i,1), x〉 = · · · = cij(i,qi+1) + 〈aij(i,qi+1), x〉

It means that x is defined by a system Ax = c, where A ∈Mn(R) is a matrix with for all i ∈ [k]
exactly qi lines equal to aij(i,l) − a

i
j(i,l′) with l, l′ ∈ [qi + 1]. We define M ∈ N∗ and R3 > 0 by:

M = max
1≤i≤k

max
1≤j,j′≤pi

||aij − aij′ ||∞, R3 = min(
R1

3nM
,R2)

We consider the subset A of GLn(R) of invertible matrices with, for each i ∈ [k], exactly qi
lines equal to aij(i,l) − a

i
j(i,l′) with l, l′ ∈ [qi + 1]. The set A is finite. We define R4 > 0 by:

R4 = R3 ×min(1,
1

nmaxA∈A ||A−1||∞
)
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We define qi polynomials P 1
i , . . . , P

qi
i such that ∀l ∈ [qi]:

P li (x) = max
1≤j≤pi

[
cij + εij,l + 〈x, aij〉

]
where 0 < εijl < R4 are randomly defined such that ∀j, j′ ∈ [pi] and ∀l, l′ ∈ [qi]:

εij,l − εij′,l 6= εij,l′ − εij′,l′

The n polynomials P 1
1 , . . . , P

q1
1 , . . . , P 1

k , . . . , P
qk
k are generically defined. Hence, according to

Theorem 3.16, the number of intersection points of their tropical hypersurfaces is generically:

n!V (New(P 1
1 ), . . . ,New(P q11 ), . . . ,New(P 1

k ), . . . ,New(P qkk ) = n!V (∆1, . . . ,∆k | q1, . . . , qk)

Consider x̂ ∈ Xq and an index i ∈ [k]. There are qi + 1 maximal monomials at point x̂. We
denote by jx̂(i, α) for 1 ≤ α ≤ qi + 1 the indices of the maximal monomials in x̂, that is :

∀1 ≤ α ≤ qi + 1, Pi(x̂) = cijx̂(i,α) + 〈x̂, aijx̂(i,α)〉

∀j /∈ {jx̂(i, α) | 1 ≤ α ≤ qi + 1}, Pi(x̂) > cij + 〈x̂, aij〉

Take α ∈ [qi + 1], j /∈ {jx̂(i, α) | 1 ≤ α ≤ qi + 1} and a point y ∈ B∞(x̂, R3). Then:[
cij + εij,l + 〈y, aij〉

]
−
[
cijx̂(i,α) + εijx̂(i,α),l + 〈y, aijx̂(i,α)〉

]
=
[
cij + 〈x̂, aij〉

]
−
[
cijx̂(i,α) + 〈x̂, aijx̂(i,α)〉

]
+ 〈y − x̂, aij − aijx̂(i,α)〉+ εij,l − εijx̂(i,α),l

≤ −R1 + 2R4 + nMR3 < −R1 + 3nMR3 ≤ 0

For each i ∈ [k], we define qi other polynomials Q1
i,x̂, . . . , Q

qi
i,x̂ such that ∀l ∈ [qi]:

Qli,x̂(x) = max
j∈{jx̂(i,α)|1≤α≤qi+1}

[
cij + εij,l + 〈x, aij〉

]
The tropical hypersurface of the n polynomials Q1

1,x̂, . . . , Q
q1
1,x̂, . . . , Q

1
k,x̂, . . . , Q

qk
k,x̂ are

also in general position. According to Theorem 3.16, the number of intersection points of their
tropical hypersurfaces is n!V (S1, . . . , Sk | q1, . . . , qk) with Si = Conv({aij | j ∈ {jx̂(i, α) | 1 ≤
α ≤ qi + 1}}). If Si was not a full-dimensional simplex in Rn, it would mean that, for some
α ∈ [p+ 1], the point aijx(i,α) is in the convex hull of {aij | j ∈ {jx̂(i, β) | 1 ≤ β ≤ qi+1, β 6= α}},
which would imply the non-genericity of Pi because of the existence of x̂. Hence, by the inequality
given by Lemma 3.14, n!V (S1, . . . , Sk | q1, . . . , qk) ≥ 1, and the tropical hypersurfaces associated
to Q1

1,x̂, . . . , Q
q1
1,x̂, . . . , Q

1
k,x̂, . . . , Q

qk
k,x̂ have always at least one intersection point.

Consider such an intersection point xε. It is defined by n equalities. For each i ∈ [k] and
for each l ∈ [qi], two monomials in Qli,x̂ are maximal in xε, that is there exists j1(i, l), j2(i, l) ∈
{jx̂(i, α) | 1 ≤ α ≤ qi + 1} such that

P li (xε) = cij1(i,l) + εij1(i,l),l + 〈aij1(i,l), xε〉 = cij2(i,l) + εij2(i,l),l + 〈aij2(i,l), xε〉

Then, we have Axε = c+ ε, with A ∈Mn(R), c ∈ Rn and ε ∈ Rn defined by:

A =



a1
j1(1,1) − a

1
j2(1,1)

. . .
a1
j1(1,q1) − a

1
j2(1,q1)

. . .
akj1(k,1) − a

k
j2(k,1)

. . .
akj1(k,qk) − a

k
j2(k,qk)


c =



c1
j2(1,1) − c

1
j1(1,1)

. . .
c1
j2(1,q1) − c

1
j1(1,q1)

. . .
ckj2(k,1) − c

k
j1(k,1)

. . .
ckj2(k,qk) − c

k
j1(k,qk)


ε =



ε1
j2(1,1),1 − ε

1
j1(1,1),1

. . .
ε1
j2(1,q1),q1

− ε1
j1(1,q1),q1

. . .
εkj2(k,1),1 − ε

k
j1(k,1),1

. . .
εkj2(k,qk),qk

− εkj1(k,qk),qk
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Then, it means A is invertible and xε = A−1(c+ ε). In fact, if A was not invertible, there would
exist either zero or an infinite number of solutions of Axε = c+ε. Because xε is a solution, there
is at least one solution, and because the number of intersection points of the n polynomials Q1

1,x̂,
. . . , Qq11,x̂, . . . , Q

1
k,x̂, . . . , Q

qk
k,x̂ is finite, there is a finite number of solutions of Axε = c+ ε.

Moreover, by definition of x̂, we also have x̂ = A−1c. Then, we have xε− x̂ = A−1ε. Because
A ∈ A, we have:

||xε − x̂||∞ ≤ n||A−1||∞||ε||∞ ≤ n||A−1||∞R4 ≤ R3

Consequently, xε ∈ B∞(x̂, R3). So, we have for all j /∈ {jx̂(i, α) | 1 ≤ α ≤ qi + 1} and for
l ∈ [qi] that:

cij + εij,l + 〈xε, aij〉 ≤ cij1(i,l) + εij1(i,l),l + 〈xε, aij1(i,l)〉 = Qli,x̂(xε)

Then, for all i ∈ [k] and all l ∈ [qi], Qli,x̂(xε) = P li (xε). It means that xε is an intersection
point of the tropical hypersurfaces associated to P 1

1 , . . . , P
q1
1 , . . . , P 1

k , . . . , P
qk
k . Because xε ∈

B∞(x̂, R3) ⊂ B∞(x̂, R2), and because for all x, x′ ∈ Xq, we have B∞(x,R2) ∩ B∞(x′, R2) = ∅,
the number of intersection points of T (P 1

1 ), . . . , T (P q11 ), . . . , T (P 1
k ), . . . , T (P qkk ) is bigger than

the number of points in Xq, that is #Xq ≤ n!V (∆1, . . . ,∆k | q1, . . . , qk).
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APPENDIX C
Congestion problem with bounded

prices

In Chapter 7, we introduced a bilevel problem for solving a congestion problem in mobile data
networks. We show that a particular case (Problem 7.11) can be solved in polynomial time. In
this case, we assumed that the discounts proposed by the provider, that is the high-level decision
variables, can take any real values. However, in the practice, such an assumption is not very
realistic. It would mean that the provider can propose infinite discounts. Since he has to make
some profit, he cannot accept to propose very large discounts.

In this section, we study Problem 7.11 with bounded price incentives. If we consider the
discounts as a percentage of the total amount paid monthly by each user, it is relevant to assume
that the discounts belong to [0, 1]n. Because we deal with the optimistic case, the problem can
be formulated as follows:

Problem C.1.

min
y∈[0,1]n

n∑
i=1

fi(Ni)

s.t.

{
∀i, Ni =

∑K
k=1 uk(i)

∀k ∈ [K], max
uk∈Fk

〈ρk + y, uk〉

For simplicity, we include the constraint ∀i,Ni ≤ NC
i in the definition of the functions

fi. In this thesis, the main assumption to develop polynomial time algorithms is that the
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high-level function does not depend on the high-level decision variables. This assumption is
not satisfied by Problem bilevel-telecom-bounded, since the high-level function of is (y,N) 7→∑n

i=1 fi(Ni) + χy∈[0,1]n(y).
We study more specificly why the approach of Section 7.3.2 cannot be adapted to Prob-

lem bilevel-telecom-bounded. We say that a vector N ∈
∑

k Fk if feasible for Problem C.1 if
there exists y ∈ [0, 1]n and for every k a vector u∗k ∈ Fk such that N =

∑
k u
∗
k and for every k,

u∗k ∈ arg maxuk∈Fk〈ρ+ y, uk〉.
We proved in Section 7.3.2 that all the points of

∑
k Fk are feasible for Problem 7.11. In

this problem, it is not guaranteed that all points of
∑

k Fk are feasible. We first characterize the
feasible vectors for Problem C.1. We consider for simplicity that for every i ∈ Jk, ρk(i) = −∞.

Lemma C.2. The following assertions are equivalent:

1. There exists y ∈ [0, 1]n verifying 〈ρk + y, u∗k〉 = max
uk∈Fk

〈ρk + y, uk〉.

2. For all indices i, j such that ρk(i) > ρk(j) + 1, then u∗k(i) ≥ u∗k(j).

Proof. We have u∗k(i) = 1 if and only if ρk(i) + yi is one of the Rk highest coordinates of ρk + y.
Consequently, if ρk(i) + yi > ρk(j) + yj , we have:

u∗k(i) = 0⇒ u∗k(j) = 0 and u∗k(j) = 1⇒ u∗k(i) = 1

what corresponds to u∗k(i) ≥ u∗k(j).
Suppose there exists y ∈ [0, 1]n verifying 〈ρk + y, u∗k〉 = maxuk∈Fk〈ρk + y, uk〉. For all

indices i, j such that ρk(i) > ρk(j) + 1, we have ρk(i) + yi > ρk(j) + yj and so u∗k(i) ≥ u∗k(j).
Conversely, consider u∗k such that u∗k(i) ≥ u∗k(j) for all i, j with ρk(i) > ρk(j) + 1 and take
y = u∗k ∈ [0, 1]n. Consider i, j with u∗k(i) = 1 and u∗k(j) = 0. Then, u∗k(j) < u∗k(i) and so,
ρk(j) ≤ ρk(i) + 1. Because y = u∗k, we have yi = 1 and yj = 0 such that ρk(j) + yj ≤ ρk(i) + yi.
It means consequently that the Rk indices i such that u∗k(i) = 1 corresponds to the Rk highest
coordinates of ρk + y and so 〈ρk + y, u∗k〉 = maxuk∈Fk〈ρk + y, uk〉.

Lemma C.2 characterizes the sets of feasible uk when y ∈ [0, 1]n. Unfortunately, this set isnot
always M -convex. For example, consider n = 4, Rk = 2, ρk = [0, 0.3, 0.6, 1.1] and Jk = ∅. The
consumptions uk realizable by a discount vector y ∈ [0, 1]4 are (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1),
(0, 1, 1, 0). This set is not M -convex. Take x = (1, 0, 0, 1), y = (0, 1, 1, 0) and i = 1. To have
a M -convex set, we should have whether y + e1 − e2 = (1, 0, 1, 0) or y + e1 − e3 = (1, 1, 0, 0)
feasibles. This is not the case.

We can nevertheless notice that the feasible uk belong to a M -convex set which is included
in Fk. Consider ρk the Rk highest coordinate of ρk and ρk the Rk + 1 highest coordinate of ρk.
If a vector u∗k is realizable for y ∈ [0, 1]n, then for all indices i such that ρk(i) > ρk +1, u∗k(i) = 1
and for all indices i such that ρk(i) + 1 < ρk, u

∗
k(i) = 0. We have in fact that if an index i

verifies ρk(i) > ρk + 1, and because there exist (n − Rk) indices j such that ρk(j) ≤ ρk, then
ρk(j) + yj ≤ ρk + yj < ρk(i) ≤ ρk(i) + yi. So ρk(i) + yi is one of the Rk highest coordinates of
ρk + y and so u∗k(i) = 1. We prove similarly that if ρk(i) + 1 < ρk then u∗k(i) = 0. Hence, the
possible uk when y ∈ [0, 1]n belong to a subset of Fk where certain coordinates are fixed to 1,
and other fixed to 0. It defines also a M -convex set.

We could expect that the set of feasible N consists in the Minkowski sum of the sets of
possible uk. It is not true. Consider a simple example with n = 3 and K = 2. We assume
that F1 = F2 = {(1, 0, 0); (0, 1, 0); (0, 0, 1)}, and ρ1 = [3/4, 0,−1], ρ2 = [−1, 0, 3/4]. According
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to Lemma C.2, the feasible values of u∗1 are {(1, 0, 0); (0, 1, 0)} and the feasible values of u∗2 are
{(0, 0, 1); (0, 1, 0)}. The point (0, 2, 0) belongs to the Minkowski sum of these two sets. However,
a vector y such that.

However, the set of feasible N can be characterized. A vector N ∈
∑

k Fk is realizable if there
exists y ∈ [0, 1]n such that y ∈ ∂ψ(N) (where ψ is the sup-convolution of functions ϕk defined
by ϕk(uk) = −〈ρk, uk〉−χFk(uk)). It means ψ(N)+ 〈y,N〉 = maxN ′∈

∑
k Fk

ψ(N ′)+ 〈y,N ′〉, that
is N is a global maximizer of the function N 7→ ψ(N) + 〈y,N〉, which is M -concave. Global and
local optimality forM -concave functions are equivalent. Hence, a vector N ∈

∑
k Fk is realizable

if there exists y ∈ [0, 1]n such that ∀i, j, ψ(N) + 〈y,N〉 ≥ ψ(N − ei + ej) + 〈y,N − ei + ej〉, that
is ψ(N)− ψ(N − ei + ej) ≥ yj − yi. Moreover, we have the following characterization:

Theorem C.3. The feasible N are those who verify ∀i, j, ψ(N)− ψ(N − ei + ej) ≥ −1.

Proof. If N is feasible, then there exists y ∈ [0, 1]n such that ∀i, j, ψ(N)−ψ(N−ei+ej) ≥ yj−yi.
So ψ(N)− ψ(N − ei + ej) ≥ −1.

Conversely, consider N ∈
∑

k Fk and suppose that ∀i, j, ψ(N) − ψ(N − ei + ej) ≥ −1. We
define the matrix A ∈ Mn(R) by aij = ψ(N) − ψ(N − ei + ej). The matrix A satisfies the
following properties:

• ∀i, aii = 0. It comes straightforwardly from the definition of the coefficients of A.

• ∀i, j, aij ≥ −1. It is the hypothesis.

• ∀i, j, aij + aji ≥ 0. It comes from the M -concavity of ψ. Consider x = N − ei + ej and
y = N − ej + ei. Then x− y = −2ei + 2ej and x− y has only one positive coordinate (j)
and one negative coordinate (i). So ψ(x) + ψ(y) ≤ ψ(x− ej + ei) + ψ(y + ej − ei), that is
ψ(N)− ψ(N − ei + ej) + ψ(N)− ψ(N − ej + ei) ≥ 0.

• ∀i, j, k, aij+ajk ≥ aik. It comes also from theM -concavity of ψ. Consider x = N−ei+ej
and y = N−ej+ek. Then y−x = ei+ek−2ej and y−x has two positive coordinates (i, k)
and only one negative coordinate (j). So ψ(x) + ψ(y) ≤ ψ(x− ej + ek) + ψ(y + ej − ek),
that is ψ(N) +ψ(N − ei + ek) ≥ ψ(N − ei + ej) +ψ(N − ej + ek), which can be rewritten
ψ(N)− ψ(N − ei + ej) + ψ(N)− ψ(N − ej + ek) ≥ ψ(N)− ψ(N − ei + ek).

We want to show that there exists y ∈ [0, 1]n such that for every i, j, aij ≥ yj − yi. Consider
for every i ∈ [n], yi = −minj aij . We have aij ≥ −1 for every i, j ∈ [n] Hence, for each i,
yi ≤ 1. Moreover, minj aij ≤ aii = 0. So yi ≥ 0 and y ∈ [0, 1]n. Take i, j ∈ [n]. We have
yj − yi = aik − ajl with aik = minm aim and ajl = minm ajm. Since aij + ajk ≥ aik, we have
yj − yi ≤ aij + ajk − ajl and because ajl = minm ajm, we have ajl ≤ ajk. So, yj − yi ≤ aij .

The possible N do not consist in a M -convex set. We have to develop a heuristic for solving
the bilevel problem in this case. We use the tropical interpretation exposed in Section 7.3.1.
There exists a correspondence between the polyhedron [0, 1]n and the Hilbert ball H = max(y)−
min(y) ≤ 1. A vector y ∈ [0, 1]n satisfies max(z)−min(z) = yj−yk ≤ 1 for some j, k. Conversely,
a point y ∈ H satisfies for all α ∈ R, y+αe ∈ H with e = (1, . . . , 1). By considering α = −min(y),
we have min(y + αe) = 0 and max(y + αe) ≤ 1. Then y + α ∈ [0, 1]n.

We consider the tropical projective space TPn−1. We associate to each point y ∈ Rn a
point z ∈ TPn−1 with ∀i ∈ [n− 1] , zi = yi − yn. For all α ∈ R, y and y + αe correspond
to the same z ∈ TPn−1. Hence, there is a one-to-one correspondence between the polyhedron
[0, 1]n and the representation HP of the Hilbert ball H in TPn−1. The polyhedron HP satisfies
∀i ∈ [n− 1] , zi ≤ 1 and ∀i, j ∈ [n− 1] , zi − zj ≤ 1.
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y1 − y3

y2 − y3

Figure C.1: Representation of HP in TP2

Lemma C.4. The polyhedron HP corresponds to a cell of the subdivision in the tropical projective
space defined by the tropical polynomial

⊗n
k=1Qk(y) with Qk(y) = max(y1, . . . , yk + 1, . . . , yn).

Proof. Consider for all i the tropical polynomial Qi(y) = max(y1, . . . , yi+1, . . . , yn). There exist
a domain where the maximum is attained in yi+1. We have ∀j 6= i, yj−yi ≤ 1. The intersection
of all these domains corresponds to the polyhedron defined by ∀i, j such that j 6= i, yj − yi ≤ 1,
that is the Hilbert ball H. In the tropical projective space, this cell corresponds to HP .

We can draw the arrangement of tropical hypersurfaces corresponding to these polynomials.

y1 − y3

y2 − y3

Figure C.2: Representation of the arrangement of the tropical polynomials defined by
⊗
Qk in

TP2. The cell HP is filled in gray.

Each tropical polynomial can be written:

Qk(y) = max(y1, . . . , 1 + yk, . . . , yn) = max
ũk∈∆̃k

〈ρ̃k + y, ũk〉,

where the polytope ∆̃k is the classical simplex ( ∆̃k = {ũk ∈ [0, 1]n|
∑

i ũk(i) = 1} ) and the
vector ρ̃k = ek (the k-th vector of the canonical basis). We introduce n "ficive" customers. The
"fictive" customer k wants to do R̃k = 1 request, has the preference vector ρ̃k and we denote by
ũk its optimal consumption.
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We can calculate the number Ñ of active "fictive" customers in the network. By the results
of Section 7.4, all the vectors of

∑
k F̃k are feasible, with F̃k the set of extreme points of ∆̃k, that

is F̃k = {ũk ∈ {0; 1}n|
∑

i ũk(i) = 1}. The polyhedron HP corresponds to an optimal solution
of each "fictive" customer ũk∗ = ek and then Ñ = (1, . . . , 1) in this cell. It corresponds to a
perfect balancing of the "fictive" customers.

We can introduce the "fictive" customers to develop a heuristic, if we make the following
assumption:

Assumption H. The functions fi are such that:

max
N∈

∑n
k=1 Fk

∑
i

fi(Ni) = max
N∈Zn

∑
i

fi(Ni)

This assumption seems to be reasonable if we consider a balancing problem. In fact, because
of the M -concavity of the function

∑
i fi, Assumption H is verified when the optimal solution

of maxN∈
∑n
k=1 Fk

∑
i fi(Ni) is in the interior of Conv(

∑n
k=1 Fk).

We consider a perturbed bilevel problem which correspond to the previous one with both
real and "fictive" customers in the network. We are able to solve it without any constraint over
the discount vector y. The solution obtained can be ensured to be in H, and so to be the same
as the bounded problem (case y ∈ H), which is also equivalent to the case y ∈ [0, 1]n. The
heuristic is based on a "big M"-penalty method. Let M > 0 be a sufficiently large integer.
Consider Mn fictive customers, indexed by K+ 1, . . . ,K+Mn. For each fictive customer k, let
i be the remainder of the Euclidean division of k by n, and consider ρ̃k = ei. As previously, we
can calculate the number Ñ of active customers in the network

Proposition C.5. Let M >
∑n

k=1Rk. Consider the optimistic bilevel problem defined by:

max
y∈Rn

n∑
i=1

fi(N̂i −M)

s.t.



∀i, N̂i ≤ NC
i +M

∀i, N̂i =
∑K

k=1 û
∗
k(i)

∀k, ûk
∗ = u∗k + ũk

∗

∀k ∈ [K], u∗k ∈ arg max
uk∈Fk

〈ρk + y, uk〉

∀k ≥ K + 1, ũk
∗ ∈ arg max

ũk∈F̃k
〈ρk + y, ũk〉

Then, a solution (y∗, N̂∗) of this bilevel problem is such that y∗ ∈ H.

Proof. The function N̂ 7→
∑n

i=1 fi(N̂i −M) is a separable concave function because each fi is
concave. According to the results of Section 7.4, this bilevel problem can be solved by decom-
position. The optimal N̂∗ is a solution of the following optimisation problem:

max
N̂∈

∑n
k=1 Fk+

∑K+Mn
k=K+1 F̃k

n∑
i=1

fi(N̂i −M)

Take y ∈]0, 1[n. Then, for each "fictive" customer k, the optimal consumption ũk = ei
where i is the remainder of the Euclidean division of k by n. According to this result, the
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number of fictive customers in the network is Ñ = Me with e = (1, . . . , 1). It means that∑n
k=1 Fk +Me ⊂

∑n
k=1 Fk +

∑K+Mn
k=K+1 F̃k. Consequently,

max
N̂∈

∑n
k=1 Fk+Me

∑
i

fi(N̂i −M) ≤ max
N̂∈

∑n
k=1 Fk+

∑K+Mn
k=K+1 F̃k

∑
i

fi(N̂i −M) ≤ max
N̂∈Zn

∑
i

fi(N̂i −M)

According to Assumption H, we have:

max
N̂∈

∑n
k=1 Fk+Me

∑
i

fi(N̂i −M) = max
N̂∈

∑n
k=1 Fk+

∑K+Mn
k=K+1 F̃k

∑
i

fi(N̂i −M) = max
N̂∈Zn

∑
i

fi(N̂i −M)

It means that there always exists N̂∗ belonging to
∑n

k=1 Fk + Me. Take now y /∈ H. Then
maxi yi −mini yi > 1. Consider the index j ∈ arg mini yi. For i 6= j, the maximum in Qi(y) is
not attained at yj , because yi+1 > yj . And maxi yi > yj +1, then the maximum in Qj(y) is not
attained at yj + 1. So, any fictive customers will have ej for optimal consumptions. Consider N
and Ñ a possible number of respectively real and fictive customers, and N̂ = N + Ñ . We have
Ñj = 0, and Nj ≤

∑n
i=1Ni =

∑n
k=1Rk. So N̂j ≤

∑n
k=1Rk < M . It means N̂ /∈

∑n
k=1 Fk +Me

(because each Fk belongs to Nn, each coordinate of each vector of
∑n

k=1 Fk +Me is bigger than
M), and N̂∗ is not realizable for y. Consequently, there exists y∗ ∈ H such that (y∗, N∗) is a
solution of the bilevel problem with real and fictive customers.

Since y∗ is an optimal solution of a perturbation of a bilevel problem, a heuristic can be to
considered this vector y∗ as an optimal solution of Problem C.1 (or a translation of y∗ to ensure
that all its entries are in [0, 1]). This seems to be adapted to balancing problems, in which
all functions fi are equal. The high-level function is in this case Schur-convex and an optimal
solution is attained for vectors N such that the difference between Ni and Nj for every i, j ∈ [n]
does not exceed 1. Intuitively, the fictive customers have the same response to discounts in H.
Then, the optimal price y∗ provided by the bilevel problem with both real and ficitve customers
ensures a good "balancing" between the different consumptions of the real customers, which is
the aim of Problem C.1.
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Une approche par la géométrie tropicale et la convexité discrète de la programmation bi-niveau : application à la
tarification des données dans les réseaux mobiles de télécommunications

Mots clés : géométrie tropicale, programmation bi-niveau, convexité discrète, tarification des données, réseaux
mobiles de télécommunications

Résumé : La programmation bi-niveau désigne une classe de problèmes d’optimisation emboîtés impliquant deux joueurs. Un joueur
meneur annonce une décision à un joueur suiveur qui détermine sa réponse parmi l’ensemble des solutions d’un problème
d’optimisation dont les données dépendent de la décision du meneur (problème de niveau bas). La décision optimale du meneur est
la solution d’un autre problème d’optimisation dont les données dépendent de la réponse du suiveur (problème de niveau haut).
Lorsque la réponse du suiveur n’est pas unique, on distingue les problèmes bi-niveaux optimistes et pessimistes, suivant que la
réponse du suiveur soit respectivement la meilleure ou la pire possible pour le meneur. Les problèmes bi-niveaux sont souvent utilisés
pour modéliser des problèmes de tarification. Dans les applications étudiées ici, le meneur est un vendeur qui fixe un prix, et le
suiveur modélise le comportement d’un grand nombre de clients qui déterminent leur consommation en fonction de ce prix. Le
problème de niveau bas est donc de grande dimension. Cependant, la plupart des problèmes bi-niveaux sont NP-difficiles, et en
pratique, il n’existe pas de méthodes générales pour résoudre efficacement les problèmes bi-niveaux de grande dimension.
Nous introduisons ici une nouvelle approche pour aborder la programmation bi-niveau. Nous supposons que le problème de niveau
bas est un programme linéaire, en variables continues ou discrètes, dont la fonction de coût est déterminée par la décision du
meneur. Ainsi, la réponse du suiveur correspond aux cellules d’un complexe polyédral particulier, associé à une hypersurface
tropicale. Cette interprétation est motivée par des applications récentes de la géométrie tropicale à la modélisation du comportement
d’agents économiques. Nous utilisons la dualité entre ce complexe polyédral et une subdivision régulière d’un polytope de Newton
associé pour introduire une méthode de décomposition qui résout une série de sous-problèmes associés aux différentes cellules du
complexe. En utilisant des résultats portant sur la combinatoire des subdivisions, nous montrons que cette décomposition mène à un
algorithme permettant de résoudre une grande classe de problèmes bi-niveaux en temps polynomial en la dimension du problème de
niveau bas lorsque la dimension du problème de niveau haut est fixée.
Nous identifions ensuite des structures spéciales de problèmes bi-niveaux pour lesquelles la borne de complexité peut être améliorée.
C’est en particulier le cas lorsque la fonction coût du meneur ne dépend que de la réponse du suiveur. Ainsi, nous montrons que la
version optimiste du problème bi-niveau peut être résolue en temps polynomial, notamment pour des instances dans lesquelles les
données satisfont certaines propriétés de convexité discrète. Nous montrons également que les solutions de tels problèmes sont des
limites d’équilibres compétitifs.
Dans la seconde partie de la thèse, nous appliquons cette approche à un problème d’incitation tarifaire dans les réseaux mobiles de
télécommunication. Les opérateurs de données mobiles souhaitent utiliser des schémas de tarification pour encourager les différents
utilisateurs à décaler leur consommation de données mobiles dans le temps, et par conséquent dans l’espace (à cause de leur
mobilité), afin de limiter les pics de congestion. Nous modélisons cela par un problème bi-niveau de grande taille. Nous montrons
qu’un cas simplifié peut être résolu en temps polynomial en utilisant la décomposition précédente, ainsi que des résultats de
convexité discrète et de théorie des graphes. Nous utilisons ces idées pour développer une heuristique s’appliquant au cas général.
Nous implémentons et validons cette méthode sur des données réelles fournies par Orange.

A tropical geometry and discrete convexity approach to bilevel programming: application to smart data pricing in
mobile telecommunication networks

Keywords: tropical geometry, bilevel programming, discrete convexity, smart data pricing, telecommunication
mobile networks

Abstract: Bilevel programming deals with nested optimization problems involving two players. A leader annouces a decision to a
follower, who responds by selecting a solution of an optimization problem whose data depend on this decision (low level problem).
The optimal decision of the leader is the solution of another optimization problem whose data depend on the follower’s response
(high level problem). When the follower’s response is not unique, one distinguishes between optimistic and pessimistic bilevel
problems, in which the leader takes into account the best or worst possible response of the follower. Bilevel problems are often used
to model pricing problems. We are interested in applications in which the leader is a seller who announces a price, and the follower
models the behavior of a large number of customers who determine their consumptions depending on this price. Hence, the
dimension of the low-level is large. However, most bilevel problems are NP-hard, and in practice, there is no general method to solve
efficiently large-scale bilevel problems.
In this thesis, we introduce a new approach to tackle bilevel programming. We assume that the low level problem is a linear
program, in continuous or discrete variables, whose cost function is determined by the leader. Then, the follower responses
correspond to the cells of a special polyhedral complex, associated to a tropical hypersurface. This is motivated by recent
applications of tropical geometry to model the behavior of economic agents. We use the duality between this polyhedral complex
and a regular subdivision of an associated Newton polytope to introduce a decomposition method, in which one solves a series of
subproblems associated to the different cells of the complex. Using results about the combinatorics of subdivisions, we show that
this leads to an algorithm to solve a wide class of bilevel problems in a time that is polynomial in the dimension of the low-level
problem when the dimension of the high-level problem is fixed.
Then, we identify special structures of bilevel problems for which this complexity bound can be improved. This is the case when the
leader’s cost function depends only on the follower’s response. Then, we show the optimistic bilevel problem can be solved in
polynomial time. This applies in particular to high dimensional instances in which the data satisfy certain discrete convexity
properties. We also show that the solutions of such bilevel problems are limits of competitive equilibria.
In the second part of this thesis, we apply this approach to a price incentive problem in mobile telecommunication networks. The
aim for Internet service providers is to use pricing schemes to encourage the different users to shift their data consumption in time
(and so, also in space owing to their mobility), in order to reduce the congestion peaks. This can be modeled by a large-scale bilevel
problem. We show that a simplified case can be solved in polynomial time by applying the previous decomposition approach
together with graph theory and discrete convexity results. We use these ideas to develop an heuristic method which applies to the
general case. We implemented and validated this method on real data provided by Orange.
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Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Introduction
	Presentation of the problem
	Congestion in mobile data networks
	Bilevel programming for pricing problems
	Tropical geometry for economic problems

	Main contributions
	A tropical approach to bilevel programming
	An application to a congestion problem in mobile data networks


	Introduction (version française)
	Présentation du problème
	Congestion dans les réseaux de données mobiles
	La programmation bi-niveau appliquée à la tarification
	Géométrie tropicale appliquée à l'économie

	Principales contributions
	Une approche tropicale de la programmation bi-niveau
	Une application à un problème de congestion dans les réseaux de données mobiles


	Preliminaries
	Bilevel programming
	Polyhedra, polyhedral complexes and subdivisions
	Tropical geometry
	Discrete convexity

	I Tropical approach to bilevel programming
	Tropical representation of bilevel programs
	A special class of bilevel problems
	A tropical approach for the bilevel problem
	Low-level problem as a tropical polynomial
	Tropical interpretation of Problem 4.1
	Tropical interpretation of Problem 4.2
	Tropical interpretation of Problem 4.3
	An example

	Generalization of the tropical approach
	Generalization of the low-level problem
	Generalization of the high-level problem


	Cell enumeration applied to bilevel programming: general complexity results
	Enumerating the cells
	Determining the epigraph
	Algorithm for enumerating the cells of S

	Counting the number of cells
	General upper bounds
	Specific upper bounds for the simplex

	Fixed-parameter tractability
	Discussion of the results

	Structured classes of bilevel problems
	Arrangement of tropical hypersurfaces
	Bilevel problem with separable low-levels
	Number of apices of a tropical hypersurface
	Upper bounds on the number of cells

	A particular case: f does not depend on y
	A balancing problem in economics
	A congestion problem
	Generalization of the congestion problem

	Comparison with a competitive equilibrium problem
	The problem of competitive equilibrium
	Comparison bewteen the competitive equilibrium problem and the congestion problem
	Congestion problem as a limit of competitive equilibrium problems



	II Application to a telecom problem
	A bilevel model for price incentives in telecommunications network
	Introduction
	A bilevel model
	A polynomial time algorithm for solving the first model
	A tropical interpretation
	Decomposition theorem

	An efficient algorithm for solving the bilevel problem
	A polynomial time algorithm for the bilevel problem
	A particular case : theory of majorization

	The general algorithm
	Experimental results
	Conclusion

	Perspectives
	A branch-and-bound algorithm for a class of bilevel problems
	Best possible upper bounds for the number of cells
	Bounded price incentives for the congestion problem
	A stochastic model for the congestion problem

	Compactification of a polyhedron to enumerate its faces
	Enumerating the faces
	Estimating the number of faces

	Proof of Theorem 6.5
	Sketch of the proof
	Proof

	Congestion problem with bounded prices
	Bibliography


