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Déroulement de la thèse

De tous temps les hommes se sont posé des questions. Certaines pouvant être qualifiées d'utiles, d'autres moins. Quand on s'engage dans la noble voie des mathématiques, on reste généralement éloigné de la première catégorie. Je n'ai pas fait exception à cette règle.

Aux origines de ces travaux figure une question à l'apparence simple. "Vois-tu Hadrien, en une dimension et sous la condition de Spence-Mirlees, on montre que le transport optimal conditionnel se concentre sur deux graphes. Je voudrais que tu trouves une condition en dimension supérieure qui garantisse que le transport se concentre sur d + 1 points. On sent que c'est vrai car sous un modèle optimal, on est en marché complet."

Suite à cet entretien initial avec mon directeur de thèse, Nizar Touzi, le labeur commença. D'arrachages de cheveux en épluchage de bibliographies, j'explorai de nombreuses pistes, toutes infructueuses. Les mois passèrent mais le problème restait entier, résistant à toutes formes d'assaut. En dimension d = 2, un maudit quatrième point semblait toujours s'inviter et gâcher la fête. Je rencontrai alors Tongseok Lim lors d'une école d'été au Mans. Tongseok était un jeune doctorant, élève de Nassif Ghoussoub à la University of British Columbia. Il venait d'achever un papier qui annonçait décrire la structure du transport optimal martingale multidimensionnel. Je ressentis à sa lecture la crainte terrible connue de tout chercheur : avait-il réussi à résoudre ce problème avant moi, réduisant ainsi à néant mes efforts ? À la stressante lecture de son papier je constatai qu'il avait prouvé le résultat dans le cas particulier où la mesure cible était atomique. Je réalisai que sa démonstration était très spécifique à ce cas particulier. Je redoublai alors d'efforts et crus plusieurs fois être parvenu à une preuve qui s'avérait toujours fausse.

Après 6 mois de thèse, Nizar accepta d'acter ma défaite et de me donner un autre problème à étudier. Il s'agissait d'étendre un résultat qu'il avait prouvé à un horizon en temps infini. J'étudiai ce problème avec le peu de passion que suscite l'idée d'emprunter les sentiers battus pour n'ajouter qu'une moindre pierre à l'édifice. Ainsi, une part de mon esprit continuait de ruminer le transport. Un jour, face à la difficulté de prouver le résultat de transport optimal martingale demandé par Nizar, je décidai de me simplifier la vie en prouvant qu'il était faux. Ce fut alors explosif, la fécondité gigantesque de cette nouvelle approche me submergea tant, que je trouvai un nouveau résultat chaque semaine. Cependant, je les présentai si mal à Nizar qu'il ne comprit pas leur intérêt. Il me proposa d'étudier un nouveau problème. vi Ainsi commença l'étude qui allait mener aux Chapitres 2 et 3 de cette thèse : l'étude de la dualité. Nizar me montra ce qui se passait en une dimension, il m'incombait alors de l'étendre à la dimension supérieure. Je compris très tôt que pour comprendre le phénomène de partitionnement de l'espace pour les plans de transport, il fallait observer l'action de la différence des lois marginales sur les fonctions convexes. Cette action avait un effet dual, d'une part sur les lieux d'accessibilité des noyaux des plans de transport, d'autre part sur le contrôle des fonctions duales. Bien que cette idée soit la bonne, sa mise en oeuvre technique posait une myriade de problèmes. C'est ainsi qu'après une année entière, la taille surcritique de cette oeuvre m'obligea à la couper en deux parties : une première traitant uniquement de la décomposition de l'espace et la seconde traitant de la dualité.

C'est dans la rédaction de ce premier article que j'ai le plus travaillé avec Nizar. Malgré ses nombreuses responsabilités à ce moment dans le laboratoire, il parvint à me consacrer un temps certain. Au plus fort de la tempête, j'allai jusqu'à le rejoindre en Tunisie pour commencer la rédaction de l'article.

"Voilà comment nous nous organiserons : nous travaillerons ensemble le matin pendant que les enfants dorment et je m'occuperai de ma famille l'après-midi."

Puis après la rentrée, il m'accueillit dans l'atelier de sculpteur au fond de son jardin de Malakoff plusieurs samedis matin pour finaliser le travail, loin de la sollicitation incessante de ses responsabilités au laboratoire.

Ainsi le premier article fut écrit. Une première version fut mise en ligne en février 2017. Cette opération ne se fit pas sans inquiétude. Lors d'une conférence en janvier, nous échangeâmes avec Jan Obloj. Jan était un grand expert en transport martingale, professeur à l'université d'Oxford. Il affirmait que dans un travail conjoint avec Pietro Siorpaes, un jeune assistant professeur italien à l'Imperial College, il démontrait également l'existence des composantes irréductibles. Nous convînmes de mettre en ligne nos travaux en même temps en se citant mutuellement, belle pratique de gentlemen de la recherche, traditionnelle dans le domaine des mathématiques financières.

"Nous sommes si peu nombreux à travailler sur ces sujets, si on commence à se fâcher avec quelques-uns, on perd alors la moitié de notre auditoire !" Finalement, les travaux de nos collègues étaient à un stade beaucoup moins avancé et il leur manquait quelques ingrédients cruciaux pour arriver à un résultat aussi abouti que le nôtre. Mon travail était sauf.

Suite à cette première mise en ligne, je fus invité à présenter cette oeuvre au séminaire de calcul stochastique de Vienne où je commençai à travailler avec Mathias Beiglböck, professeur à l'université technologique de Vienne et expert internationnal vii reconnu du transport optimal martingale. Je fus également invité au séminaire de l'École des Ponts où je pus échanger avec Aurélien Alfonsi et Benjamin Jourdain.

Travailler sur ce projet avec Nizar m'a énormément appris, en particulier sur la rédaction à adopter et la quantité d'information à inclure dans les démonstrations. J'ai ainsi appris à structurer, qualité essentielle pour présenter des résultats à la technicité retorse. Fort de cette expérience je m'attelais à deux nouveaux articles : le Chapitre 3 qui concerne la dualité et le Chapitre 4 qui reprenait et nettoyait mes travaux illisibles du début de thèse qui donnaient la structure des noyaux de transport martingale optimaux. Cet ordre était naturel car le résultat de dualité s'appuyait sur la décomposition en composantes irréductibles et le résultat de structure prenait sa source dans la dualité.

En travaillant sur le résultat de structure, je fus amené à étudier des mathématiques très éloignées de mon domaine : la géomètrie algébrique. Je pus apprendre les rudiments de cet art avec des chercheurs du deuxième laboratoire de mathématiques de Polytechnique, le Centre de Mathématiques Laurent Schwartz (CMLS), opportunément situé à proximité. J'échangeai avec René Mboro, élève de ma promotion spécialisé en géomètrie algébrique des corps finis. Il m'exposa patiemment les contre-intuitives notions de géomètrie algébrique, le théorème de Bézout ainsi que les grandes références classiques. Il m'orienta ensuite vers Erwan Brugallé, chargé de recherche à l'X en géométrie algébrique réelle qui répondit aimablement à mes premières interrogations. Il posa également mes questions plus délicates à la communauté de la géométrie algébrique réelle parisienne. J'échangeai également sur ce passionnant sujet avec Guillaume Cloître, alors doctorant à Villetaneuse, qui m'a initié à la beauté de la notion de schéma. Plus tard Nguyen-Bac Dang du CMLS relut également mon papier et me poussa à rédiger une preuve supplémentaire.

Deux années plus tard je les contactai suite à une erreur découverte par Benjamin Jourdain dans le Chapitre 4 de ce manuscrit. L'erreur semblait superficielle mais était en réalité profonde et portait sur des définitions de géométrie algébrique. Ils surent alors m'apporter les outils nécessaires à la résolution de mon problème et à la formulation d'un résultat nouveau permettant de répondre franchement par la négative à la question initiale de Nizar. En effet, pour presque toute fonction de coût régulière, on peut trouver des marginales qui donnent un transport optimal qui se décompose sur d + 2 points en dimension paire.

Revenons cependant en juin 2017. J'eus alors une discussion avec Nizar : "Hadrien, tu as de beaux résultats dans ta thèse, mais ils se cantonnent à un sujet très précis, dit-il, il serait bien que tu abordes un autre sujet un peu plus appliqué." viii Je décidai alors de m'attaquer à la résolution numérique du problème. Comment aurais-je pu prétendre à un doctorat en mathématiques appliquées sans avoir fait d'application ? Je commençai alors une étude de l'état de l'art en transport optimal classique. Je profitai une nouvelle fois de la proximité du CMLS en allant y rencontrer un des plus grands experts mondiaux du transport optimal : Yann Brénier. Il eut la grande gentillesse de me faire un panorama assez exhaustif des méthodes existantes en transport classique, me vantant en particulier l'approche entropique. J'arrivai à la première conclusion erronée que cette approche entropique ne pouvait fonctionner que dans le cas du transport classique.

Xiaolu Tan, ancien doctorant de Nizar, aujourd'hui assistant professeur à Dauphine, avait travaillé dans sa thèse sur des méthodes numériques appliquées au transport optimal martingale en temps continu. Il me proposa un algorithme astucieux basé sur une dualisation partielle du problème. Je passai les semaines suivantes à coder cet algorithme, travaillant comme un forçat pour dénicher les bugs et trouver des méthodes d'optimisation numériques. Je passai ainsi l'école des probabilités de Saint-Flour à coder hors des cours, ne dormant que quelques heures chaque nuit. L'algorithme semblait converger, mais sa lenteur était désespérante. Je décidai d'utiliser le calcul parallèle dont l'efficacité m'avait laissé d'agréables souvenirs lors de mon expérience en banque. Je reçus alors l'aide de Romain Poncet, doctorant du CMAP qui participait à la même conférence à Téhéran et me partagea son expérience du numérique et du calcul parallèle. Cet art nécessitait une part d'ingénierie : un ensemble de recettes qui fonctionnent pour une raison qui peut être inconnue. De retour à l'X je pus bénéficier de puissants calculateurs multi-coeurs pouvant éxécuter jusqu'à 16 tâches en parallèle.

Malgré ces ressources démultipliées, la résolution demeurait trop lente. Pour trouver le meilleur algorithme à employer pour minimiser ma fonction convexe irrégulière, Éric Moulines me conseilla d'aller poser la question à Marco Cuturi, expert de la résolution numérique des problèmes de transport optimaux. Son laboratoire venait justement d'emménager avec l'ENSAE sur le plateau de Saclay à deux pas de Polytechnique. Sa rencontre me donna du grain à moudre et me relança sur la piste de l'approche entropique, car le meilleur moyen pour optimiser une fonction irrégulière est de l'approcher par une fonction régulière, comme me confirma un échange avec Charles-Albert Lehalle, professionnel habitué aux problèmes pratiques. Je finis par réaliser que l'approche entropique était applicable au cas martingale par une petite dose d'astuce. Elle s'avéra même d'une impressionnante efficacité. Elle permettait en effet cette régularisation que je recherchais. Après l'avoir confirmé expérimentalement, je poussai l'étude vers la recherche de meilleurs algorithmes sous la forme d'algorithmes de Newton. Je recodai première vraie rencontre avec les probabilités et m'a immédiatement séduit. Plus tard je la revis au moment d'une conférence à Berlin ayant pour objectif de mêler biologie et finance. Je fut alors frappé par l'effort qu'elle fit pour comprendre mon poster, pourtant éloigné de son domaine habituel et j'en tirai un profond respect pour elle. Je remercie aussi Pierre Henry-Labordère, connu en tant qu'analyste quantitatif disruptant les mathématiques financières par ses connaissances en théorie des cordes. Il est un des créateurs initiaux du transport optimal martingale. Il a toujours foisonné d'idées originales en apparence insensées. J'ai eu l'honneur d'échanger avec lui au sujet des Chapitres 4 et 5 et d'une variante quantique du transport optimal de son invention. Il a aussi su poser les bonnes questions sur les Chapitres 2 et 3 : "mais en fait ça sert à quoi tout ça ?" Enfin je remercie Guillaume Carlier, co-créateur des barycentres de Wasserstein, sorte de "bonne notion" de moyenne pour plusieurs distributions de probabilité. Nos échanges concernant le transport optimal martingale se sont limités à la marge des pots de thèse de Gaoyue Guo et d'Habilitation à Diriger des Recherches de Xiaolu Tan, je suis donc heureux d'approfondir cette relation en le comptant dans mon jury.

Mes remerciements suivants vont à ceux qui m'ont aidé à comprendre la géométrie algébrique : René Mboro, Erwan Brugallé, Guillaume Cloître et Nguyen-Bac Dang. J'ai également une pensée pour Xiaolu Tan qui m'a aidé à étudier la sélection mesurable et qui m'a donné un algorithme pour résoudre le transport optimal numériquement. Je remercie également Yann Brénier,

ix même le package Python de ces algorithmes sous la recommandation de Bruno Levy pour mieux en choisir et contrôler le paramétrage. Ainsi naquit le Chapitre 5 de cette thèse.

Une nouvelle fois, j'eus la terrible surprise de constater, lorsqu'il m'invita à Oxford pour discuter de mes projets théoriques, que Jan Obloj travaillait sur le même sujet. Il collaborait avec mon grand frère de thèse Gaoyue Guo, parti en postdoctorat à Oxford. Fort heureusement je constatai qu'ils n'avaient guère exploré la direction entropique en pratique. Je pus ainsi, en réarticulant mes résultats, obtenir que mon travail prolonge le leur. Pour avoir de nouveaux résultats, je décidai de mettre au jour les vitesses de convergence des schémas numériques. Je repérai alors un étrange phénomène sur les simulations, l'erreur sur l'approximation entropique semblait beaucoup plus faible que ce que la théorie habituelle prévoyait. Je décidai alors d'étudier théoriquement ce phénomène et vis par une approche à la physicienne que la borne était universelle : elle ne dépendait ni de la fonction de coût, ni des lois marginales. La preuve de ce résultat extrêmement technique et le juste calibrage des hypothèses le concernant prit beaucoup plus de temps que je ne le pensais initialement, la preuve rigoureuse n'est pas encore terminée et nécéssite encore quelques précisions. Mais tout mathématicien sait que le diable se cache dans ce genre de détails. Il peut nous maintenir en échec sur des périodes souvent sous-estimées. La preuve de ce même résultat, n'existant pas dans la littérature pour le transport classique, aurait été beaucoup plus facile.

En conclusion cette thèse fut une expérience incroyablement enrichissante, aussi bien du point de vue scientifique, qu'humain. L'affrontement avec la difficulté irréductible. Le travail d'horloger qui doit sans cesse recréer et réorganiser son mécanisme. Ce fut une aventure qui me permit d'aller au fond des choses et de mobiliser toutes mes ressources tout en gérant les difficultés inhérentes à la frustration et à la lenteur. La phrase la plus présente dans mon esprit durant ces trois années fut "il est à présent temps d'en finir avec ce projet". Mais demeurent toujours des erreurs dissimulées dans des détails anodins. Si bien qu'à l'instant où un travail est effectivement achevé, le soulagement en devient incomparable.

Naviguant de l'exaltation à la dépression profonde, le seul moyen d'affronter cette maniaco-dépression endémique a été pour moi d'accueillir la contingence avec détachement et constance, tout en continuant à chercher et à me battre. Comme scandait Rudyard Kipling : "If you can meet with Triumph and Disaster, and treat those two impostors just the same".

Malgré la solitude qui lui est intrinsèque, le difficile travail de thèse repose sur l'interaction essentielle avec d'autres acteurs, comme le bref récit qui précède a voulu en témoigner. Je tiens ici à les remercier, en espérant n'oublier personne.

Je tiens en premier lieu à remercier Nizar Touzi, mon directeur de thèse, que j'avais rencontré pour la première fois à son cours de deuxième année de chaînes de Markov et martingale, un des cours que j'avais trouvé vraiment exaltants à l'X. L'année suivante je passai par son réseau pour obtenir un stage de recherche académique. "Je voudrais faire des maths dans un endroit anglophone". Mon voeu fut exaucé et je partis au Canada avec Matthieu Vermersch, un autre étudiant de ma promotion, pour faire un stage de recherche passionnant sur le risque systémique et les graphes aléatoires, sous la direction de Tom Hurd et Matheus Grasselli. Je remercie une nouvelle fois Nizar, Tom, Matheus et Matthieu pour cette expérience qui m'a donné un goût certain pour la recherche. Nizar m'a également permis de faire cette thèse malgré son démarrage chaotique lié au timing de mes stages de master 2 qui sont légèrement sortis des clous. Enfin pendant la thèse en elle-même Nizar a été très présent et m'a beaucoup aidé et tiré vers le haut, malgré ses nombreuses responsabilités et le fait qu'il parte chaque semaine aux quatre coins du monde. J'ai été très sensible au fait qu'il passe au moins deux jours chaque semaine à l'X pour travailler avec ses doctorants et ses postdoctorants et pour s'endormir à cause du décalage horaire devant leurs explications ennuyeuses.

Je me dois également de remercier ceux qui ont accepté d'être mes rapporteurs. Tout d'abord Walter Schachermayer dont la gentillesse et le style raffiné m'ont frappé dès notre première rencontre informelle au Bachelier Colloquium de Métabief. J'ai été par la suite impressionné par la clarté et l'intérêt communicatif que dégageaient ses exposés. Finalement je n'oublierai jamais le moment où, à la suite à mon exposé au séminaire de Vienne il m'avait glissé "this is beautiful" au sujet de mon travail. Je remercie également Benjamin Jourdain qui par sa relecture a trouvé de sensibles points d'amélioration pour les Chapitres 4 et 5. Je le remercie également pour son invitation au séminaire des Ponts où j'avais présenté le chapitre 2. À cette occasion, il me montra des résultats numériques qu'il avait obtenus qui m'inspirèrent une conjecture sur le nombre de graphes maximal sur lequel le transport optimal martingale se concentre en pratique.

Je remercie également ceux qui me font l'honneur d'être les membres de mon jury de thèse. En premier lieu Sylvie Méléard, connue de tous les Polytechniciens car elle est LA professeur de mathématiques appliquées du tronc commun. Son cours fut ma xiv Mes remerciements vont à ceux qui m'ont enseigné les mathématiques au fur et à mesure de ma scolarité, M. Dessertenne en première, Mme Robillard en terminale, Jean-Marc Wachter en première année de classe préparatoire et enfin Serge Francinou en mathématiques spécialités, qui n'a jamais su trouver son égal pour me lancer des chiffons remplis de craie au visage quand je mangeais en classe. Vincent Bansaye qui sans le savoir a éveillé un véritable goût chez moi pour les probabilités appliquées et fondamentales par le biais de son projet de première année "Pourquoi on attend autant le bus ?" Amandine Veber qui a encadré mon PSC sur la conquête de l'Ouest et à qui j'ai emprunté un livre traitant de statistiques sur une durée de 5 ans. Je remercie Stéphane Gaubert avec qui j'ai fait un projet d'Enseignement d'Approfondissement sur le rayon spectral tropical d'ensembles de matrices. Enfin je remercie mes professeurs de master 2, en particulier Gilles Pagès pour sa causticité, Philippe Bougerol pour son identité, Jean Bertoin pour sa lettre de recommandation inégalable "Je recommande Adrien De March qui a eu 20 à mon partiel, ce qui montre qu'il a parfaitement assimilé les notions de bases de la théorie des processus de Levy", Mathieu Rosenbaum pour son attachement à la ponctualité, Nicole El Karoui pour ses cours inoubliables et Emmanuel Gobet pour m'avoir autorisé à faire n'importe quoi.

Je dis également un grand merci à ma famille de thèse, le grand frère ainé Bruno Bouchard pour le jogging sous le soleil tunisien, Dylan Possamai pour avoir su montrer la voie et pour ses conseils, Zhen-Jie Ren pour sa vision positive des mathématiques, Gaoyue Guo pour ses enseignements sur le transport optimal martingale, Kaitong Hu pour sa coiffure exceptionnelle et enfin merci à Heythem Farhat pour sa réceptivité à mon enseignement et à ma sagesse sans borne, ainsi que pour sa relation fusionnelle avec les escabots dans les caves des boîtes shanghaiennes.

Finalement que serait une thèse sans des compagnons d'infortune ? Big up au bureau 20 16 : Massil Achab, parti trop tôt dans le bunker du big data, Antoine Hocquet et Aymeric Maury, illustres anciens de caractère, happés par l'achèvement de leur thèse. Merci à Perle Geoffroy, toujours prête à écouter mes plaintes et à m'apporter son soutien total et inconditionnel dans les moments difficiles. Jean-Bernard Eytard pour la qualité de sa conversation en des temps raisonnablement éloignés des compétitions sportives, pour ses brillantes participations à l'émission "des chiffres et des lettres" qui en fait un exemple à suivre pour nous tous. Florian Feppon pour son amour de l'Inde et des jeux de mots laids. Paul Thévenin pour ses calembours et son rire inimitable. Matthieu Kohli pour son complotisme amical et son amour de Jacques Attali. Paul Jusselin pour sa sympathie et sa performance au 10km. Cheikh Touré pour son inépuisable bonne humeur. Merci à Jing-jing Hao pour son art inimitable du xv "awkward moment". Raphael Forien pour sa force tranquille et son regard expressif, ainsi que pour le jeu de mot que je n'ai que peu osé dire tout haut : "Raphael, il ne Fo rien". Uladislau Stazhynski pour son don d'invisibilité. Cédric Rommel pour ses origines glorieuses. Julie Tourniaire pour ses belles tenues de sport. Nicolas Augier pour son implication. Merci à Pamela pour son entrain tout libanais, son talent pour le body combat et sa surveillance des vilains traders haute fréquence. Enfin mention spéciale à Pierre Cordesse pour son magistral ragequit du bureau pour cause de bruit.

Évidemment n'oublions pas l'équipe mathématiques financières du laboratoire, Mathieu Rosenbaum pour son aptitude à créer le traquenard en soirée et pour avoir remarqué que j'utilisait le logo du Centre de Médiation et d'Arbitrage de Paris pour mes présentations, Stefano De Marco pour son charme italien désuet, son nom qui sonne bien, son regard qui traversera de nombreuses générations d'étudiants, ainsi que sa réplique "je confirme !" le jour où il me surprit en train de dire que d'habitude je m'habillais n'importe comment. Merci à Thibaut Mastrolia pour son esprit mal tourné et son rat de compagnie. A Jocelyne Bion-Nadal pour les discussions autour du café du matin. Je n'oublie pas non plus les postdoctorants, merci à Julien Claisse pour son détachement, sa sympathie inconditionnelle et côté Guillaume Meurice, merci à Ankhush Agarwal pour sa maturité et son accent indien, merci à Mauro Rosestolato pour avoir écouté mes élucubrations sur la bonne utilisation de la récurrence transfinie sans broncher. À Omar El Euch pour sa goguenardise et ses incessants "alors, tu sais ce que tu fais après ta thèse ?". Merci à Othmane Mounjid pour sa bonne humeur perpétuelle et pour sa mesure en temps réel de mon IMC "tu as grossi/minci Hadrien". Merci au petit Thomas Ozello qui a su mettre un sel tout particulier dans l'école d'été en Russie. Merci à Gang Liu pour sa gentillesse dans ce corps de brute. Merci à Sigrid Kaalblad pour sa joie de vivre apparente, sa révélation de nombreux potins et sa tentative de nous emmener dans un restaurant végétarien gastronomique avec l'argent du séminaire de Vienne. Merci à Yiqing Lin pour la conférence à Shanghai, à Junjian Yang pour sa sociabilité poussée à l'extrémisme et à Alexandre Richard pour les longues conversations berlinoises. Merci également aux professionnels d'EDF, toujours rayonnants et intéressés par mon travail : René Aïd et Clémence Alasseur.

Mentionnons également dans le laboratoire Vianney Boeuf pour sa passion de l'administration, de la politique et du traditionnalisme, Joon Kwon pour sa capacité à lui donner la réplique, son poste d'agronome et sa passion pour les claviers mécaniques, Loïc Richier pour sa gentillesse et sa passion pour le motocrotte, Gustaw Matulewicz pour son besoin de cruncher la data avec des devices Apple, Tristan Roget pour son style inimitable et son accent du sud. Romain Poncet pour son sourire charmeur, ses xvi connaissances en informatique et ses vidéos de condensats de Bose-Einstein. Merci à Martin Averseng pour son grand banditisme du café, ses paris stupides et son optimisme que même une troisième guerre mondiale au napalm ne saurait entacher. Céline Bonnet pour sa sollicitude. Merci à Ludovic Saccelli pour m'avoir pardonné d'avoir oublié son nom au moins huit fois. Mathilde Boissier pour son prénom idoine. Maxime Grangereau pour ses plaisanteries amusantes. Je remercie aussi Carl Graham de m'avoir rappelé une bonne dixaine de fois au petit déjeuner en voyant mes céréales de la marque Dukan que le docteur Dukan qui leur avait donné son nom avait été radié de l'ordre des médecins pour pratique illégale de la médecine. Un grand merci à Behlal Karimi pour ses unboxings de contrefaçons de la marque SUPREME, à Alexei pour montrer qu'il est possible de mener deux thèses en parallèle en publiant 7 articles, à Fedor Goncharov pour m'avoir excusé de parler français trop vite, à Geneviève Robin pour son amour de Sheryl Sandberg, à Kevish Napal pour son volume de cheveux exceptionnel, à Aline Marguet pour sa sérénité et à Jaouad Mourtada pour les belles couleurs de ses présentations. Merci à Giovanni Conforti pour nos échanges sur le transport optimal entropique. Sarah Kakai pour sa conversation agréable et passionnante, ainsi que les problèmes de probabilités qu'elle m'a soumis. Antoine Havet pour être parvenu à m'extorquer une rente de 5 euros par ans pour le GICS. Juliette Chevallier pour ses attrape-rêves. Frédéric Logé-Munerel pour ses apparitions aléatoires. Corentin Caillaud pour avoir écouté mes preuves fausses. Il en est de toute évidence d'autres que j'oublie, mais je ne les oublie pas.
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Ainsi les mathématiques financières ont connu un essor. Il a cependant rapidement été constaté que le modèle log-normal n'était pas satisfaisant car il ne couvrait pas une série de phénomènes observés sur les cours de la bourse. Plus fondamentalement, ses évolutions ne pouvaient être réduites à un simple paramètre de volatilité constante. De nombreux modèles plus complexes ont été étudiés, permettant de capturer plus efficacement les comportements des prix des actifs. On pourra citer le modèle d'Ornstein-Uhlenbeck [START_REF] Uhlenbeck | On the theory of the brownian motion[END_REF] le modèle de Heston [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], célèbre pour sa formule quasi-fermée, les modèles à volatilité locale [START_REF] Dupire | Pricing and hedging with smiles[END_REF] et à volatilité stochastique [START_REF] Hagan | Managing smile risk[END_REF]. Tous ces modèles sont basés sur des processus diffusifs, guidés par un mouvement Brownien. Ils ont le défaut de ne pas prendre en compte l'instabilité locale des processus réels de prix [START_REF] Mandelbrot | The (mis) behaviour of markets: a fractal view of risk, ruin and reward[END_REF]. Pour parer à ce problème fondamental, de nouveaux modèles ont été trouvés, on peut citer en premier lieu les processus de Lévy [START_REF] Schoutens | Book series[END_REF], incluant des sauts imprévisibles dans les cours, observés dans les cours réels lors d'événements macroéconomiques majeurs, ainsi que parfois sans raison apparente, laissant lieu à des spéculations interprétatives a posteriori pas les analystes financiers. Les modèles les plus à la mode actuellement utilisent un processus continu mais plus erratique que le mouvement Brownien classique, il s'agit du mouvement Brownien fractionnaire [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF], dont le mouvement Brownien est un cas particulier. Ce mouvement Brownien fractionnaire possède une caractéristique appelée exposant de Hurst 0 < α < 1. Cet exposant exprime la "rugosité" de la trajectoire du mouvement Brownien fractionnaire, exprimée par une relation du type 2α . Le mouvement Brownien classique correspond à α = 1 2 . Malgré l'amélioration de ces modèles et certains de leurs bons résultats, ils ne sont jamais parfaits, car l'économie est rarement une science exacte et l'imprévisible est par essence difficile à modéliser parfaitement. Pire, il est difficile de quantifier le "risque de modèle", c'est à dire la taille caractéristique de l'erreur que l'on fait en choisissant un modèle plutôt qu'un autre. Ce problème est fondamentalement mal posé, car la seule manière existante de gérer l'imprévisible est la modélisation elle-même. Ainsi évaluer l'imprévisibilité liée au risque de modèle consisterait à créer un super-modèle
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Réplication et sur-réplication des payoffs

Le calcul des prix des actifs se base donc sur l'existence de stratégies de réplication autofinancée. En pratique, les coûts de transactions et les légers retards entre observations des prix et décision de transaction font qu'il n'est pas possible de procéder au hedging dynamique prescrit par la théorie de Black-Scholes ou par ses dérivés. Ainsi il est en pratique difficile de parler de prix certain pour les produits dérivés, car ces prix dépendent du modèle employé. Pour certains produits liquides, le prix est déterminé par le marché. Les acteurs estiment le risque qu'ils sont prêts à prendre et la loi de l'offre et de la demande se charge de fixer un prix. Une classe de produits liquides classique est celle des produits "vanilles", qualificatif d'origine américaine désignant les choses simples. Les produits financiers "vanilles" sont en pratique les produits dont le payoff ne dépend que du cours d'un unique actif très échangé, à une unique maturité très échangée sur les marchés.

L'approche aujourd'hui utilisée par les praticiens consiste à utiliser les produits vanilles, faciles à acheter, et au prix connu, pour couvrir les risques des produits "exotiques" (i.e. non vanille). La technique employée consiste à fixer un modèle sans arbitrage de calcul du prix, déterminer les sensibilités (i.e. dérivées partielles du prix) du produit exotique par rapport aux différents facteurs observables, puis annuler la sensibilité globale du portefeuille en achetant la bonne quantité de produit vanille pour la compenser. Cette méthode est appelée [nom de la sensibilité]-hedging. L'exemple le plus simple est le Delta-hedging. En pratique, on appelle Delta d'un portefeuille de produits la dérivée partielle de la valeur du portefeuille P t par rapport au prix d'une action S t au temps t : ∆ t = ∂P t ∂S t . Ainsi pour annuler la sensibilité du portefeuille à une variation du prix de l'action à l'ordre 1, il faudra vendre ∆ t actions. Ainsi le nouveau delta du portefeuille sera : (∂P t -∆ t S t ) ∂S t = ∆ t -∆ t = 0. Une autre méthode utilisée en pratique consiste à couvrir les parties très irrégulières des payoffs par une sur-couverture statique. Une couverture vise à répliquer un payoff tandis qu'une sur-couverture vise à obtenir des flux financiers strictement supérieurs aux flux du payoff. Par exemple dans le cas des options digitales au payoff très irrégulier, les praticiens utilisent 1 dK options d'achat de strike K -dK et vendent 1 dK options d'achat de strike K. Rendre dK trop petit rendrait le hedging trop instable, la solution consiste donc à ne pas rendre dK trop petit et à placer la différence avec l'option digitale dans un portefeuille d'overhedge, qui contient une part négligeable mais surtout strictement positive, donc ne posant aucun problème car couverte par 0.

Il est possible de généraliser cette approche. On peut sur-couvrir son portefeuille à l'aide de produits liquides, ainsi le choix du modèle n'a aucune importance, car on couvre le payoff indépendamment des événements à venir. L'objectif est alors de trouver la sur-couverture au prix le plus faible possible.

Dualité entre les approches

Ici, nous nous concentrerons sur la situation de marché suivante : le but est de couvrir un produit dérivé structuré de maturité t 2 sur d ≥ 1 actifs risqués sousjacents, dont le payoff est donné par une fonction c : R d × R d -→ R calculée en le prix des sous-jacents aux temps futurs t 1 et t 2 . Ainsi, ce produit verse un flux c (S . Pour poser le problème simplement et faire le rapport aisément avec le transport optimal, on introduit les vecteurs aléatoires X := S t 1 et Y := S t 2 . On rappelle que les hedges sont gratuits sous taux d'intérêt nul, quant aux payoffs φ(X) et ψ(Y ), leurs prix sont donnés par le marché. La fonction de prix qui à une fonction φ associe le prix du payoff φ(X) est une forme linéaire croissante telle que le prix de 1 est 1, elle peut donc être représentée par une mesure de probabilité. On appelle µ cette probabilité et ν la probabilité associée au temps t 2 . Ainsi si φ, ψ : R d -→ R et h : R d -→ R d , le prix du payoff φ(X)

+ ψ(Y ) + h(X) • (Y -X) est µ[φ] + ν[ψ]. On notera L 1 (µ) l'ensemble des fonction µ-intégrables, L 0 (R d , R d ) l'ensemble des fonction R d -→ R d boréliennes et D µ,ν (c) := {(φ, ψ, h) ∈ L 1 (µ) × L 1 (ν) × L 0 (R d , R d ) : φ ⊕ ψ + h ⊗ ≥ c} l'ensemble des sur-couvertures du payoff c, où h ⊗ désigne h(X) • (Y -X).
Dans ces conditions, un modèle probabiliste sur (X, Y ) donnant les bons prix aux produits liquides du marché est une mesure de probabilité P sur Ω := R d × R d telle que la loi de X est donnée par µ et la loi de Y est donnée par ν. De plus, comme évoqué précédemment, la gratuité des hedges est équivalente pour P à vérifier la contrainte martingale, i.e. E P [Y |X] = X, µ-presque sûrement. On notera M(µ, ν), l'ensemble des modèles vérifiant ces contraintes.

On peut donc poser deux problèmes qui s'avèreront être duaux. Premièrement, le problème du modèle donnant le prix le plus élevé au payoff c tout en donnant les bons prix aux produits liquides du marché, qui s'avèrera être le problème de transport (1.1.1)

Deuxièmement, on introduit le problème de la sur-couverture la moins onéreuse, étant également le problème dual du problème de transport optimal martingale:

I µ,ν (c) := inf (φ,ψ,h)∈Dµ,ν (c) µ[φ] + ν[ψ]. (1.1.2)
Beiglböck, Henry-Labordère et Penckner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] ont prouvé qu'il y avait une relation de dualité dans le cas d = 1, entre le problème du modèle sans arbitrage qui donne le prix le plus élevé et le problème de la sur-couverture au prix le moins élevé. Ce supremum et cet infimum sont égaux : S µ,ν (c) = I µ,ν (c). Quitte à appliquer ce résultat à l'opposé du payoff, on a également égalité entre la sous-couverture au prix le plus élevé et le modèle qui donne le prix le moins élevé. Ce résultat permet de comprendre la pertinence de la valorisation par utilisation de modèles sans arbitrage, ces modèles donnant tous les prix sans arbitrage possible, et le problème dual donnant des arbitrages pour les prix sortant de ces bornes.

Il est classique d'utiliser des relations de dualité pour lier problématiques de modélisation et absence d'arbitrage. Dans le cas où il existe une probabilité universelle indiquant les événements impossibles en pratique, le célèbre "théorème fondamental de la valorisation d'actif" dit que l'absence d'arbitrage est équivalent à l'existence d'un modèle martingale qui détermine les prix (voir Delbaen et Schachermayer [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF], Föllmer et Schied [START_REF] Föllmer | Stochastic finance: an introduction in discrete time[END_REF] ou El Karoui et Quenez [START_REF] El Karoui | Dynamic programming and pricing of contingent claims in an incomplete market[END_REF] dans le cas d'un marché incomplet). Dans le cas où il n'existe pas une telle probabilité dominante en temps discret, Bouchard et Nutz [START_REF] Bouchard | Arbitrage and duality in nondominated discrete-time models[END_REF] ont apporté un résultat de dualité exploitant un type de limite universelle compatible avec les probabilités. Cette procédure a été étendue au temps continu par [START_REF] Biagini | Robust fundamental theorem for continuous processes[END_REF]. On citera également [START_REF] Burzoni | Model-free superhedging duality[END_REF] qui donne un résultat similaire dans un cadre légèrement différent. Les autres exemples de travaux démontrant le même type de dualité sont nombreux, voir [START_REF] Acciaio | A modelfree version of the fundamental theorem of asset pricing and the super-replication theorem[END_REF][START_REF] Dolinsky | Martingale optimal transport and robust hedging in continuous time[END_REF][START_REF] Fahim | Model-independent superhedging under portfolio constraints[END_REF][START_REF] Guo | Optimal skorokhod embedding under finitely many marginal constraints[END_REF][START_REF] Hou | On robust pricing-hedging duality in continuous time[END_REF].

Ces bornes ont l'intérêt pratique de montrer quel est le risque de modèle associé à un payoff. Ce problème de sur-couverture robuste avait été introduit par Hobson [START_REF] Hobson | Robust hedging of the lookback option[END_REF], et donnait des solutions pour des exemples particuliers de produits dérivés exotiques à l'aide de solutions correspondantes du problème de plongement de Skorokhod, voir [START_REF] Cox | Robust pricing and hedging of double no-touch options[END_REF][START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF][START_REF] Hobson | Robust bounds for forward start options[END_REF], et l'étude [START_REF] Hobson | The skorokhod embedding problem and model-independent bounds for option prices[END_REF]. On peut également citer des résultats analogues obtenus dans le cas du temps continu pour des options asiatiques [START_REF] Cox | Model-independent bounds for asian options: a dynamic programming approach[END_REF][START_REF] Stebegg | Model-independent pricing of asian options via optimal martingale transport[END_REF], pour des options américaines [START_REF] Aksamit | Robust pricing-hedging duality for american options in discrete time financial markets[END_REF][START_REF] Deng | Duality in nondominated discrete-time models for americain options[END_REF] ou même pour des options sur le temps local [START_REF] Claisse | Robust hedging of options on local time[END_REF], voir également [START_REF] Henry-Labordere | The maximum maximum of a martingale with given n marginals[END_REF][START_REF] Källblad | Optimal skorokhod embedding given full marginals and azéma-yor peacocks[END_REF]. Beiglböck, Cox et Huessman [START_REF] Beiglböck | Optimal transport and skorokhod embedding[END_REF] montrent même que le problème de plongement de Skorokhod optimal peut être vu comme un problème de transport optimal et que par nature, il optimise l'espérance d'un payoff, mettant ainsi en lien les travaux précédemment évoqués.

Cette relation de dualité est l'analogue de la célèbre relation de dualité de Kantorovitch [START_REF] Kantorovitch | On the translocation of masses[END_REF], et le problème de l'espérance maximale du payoff est un problème de transport optimal sous contrainte martingale. La relation de dualité s'obtient de manière similaire grâce au théorème de minimax [START_REF] Komiya | Elementary proof for sion's minimax theorem[END_REF].

Nous avons fait ici l'hypothèse que le marché permettait d'acheter les payoffs de la forme φ(S t 1 ) de façon liquide. Dans le cas d = 1, on peut en pratique acheter des options d'achat, ou call (de payoff (S t 1 -K) + , où on appelle K le prix d'exercice, ou strike) et des options de vente, ou put (de payoff (K -S t 1 ) + , où K est le strike) sur le marché. Breeden et Litzenberger [START_REF] Breeden | Prices of state-contingent claims implicit in option prices[END_REF] prouvent que sous l'hypothèse de non arbitrage, et si le marché offre des calls ou puts liquides à tous strikes K ≥ 0, alors il existe une unique probabilité µ représentant leur prix, et elle est obtenue en prenant la dérivée seconde au sens des distributions des prix de call par rapport au strike :

µ := ∂ 2 K Call(t 1 , K) = ∂ 2 K P ut(t 1 , K).
Réciproquement, tout payoff régulier peut s'écrire comme une intégrale de calls et de puts d'après la formule de Carr-Madan [START_REF] Carr | Option valuation using the fast fourier transform[END_REF], ainsi il est raisonnable d'estimer pouvoir acheter n'importe quel payoff fonction de S t 1 ou S t 2 . En pratique les calls et puts sont liquides sur certaines grandes échéances de temps à un nombre de prix d'exercice dépendant de la taille du marché de l'actif. On approxime souvent ce nombre discret par un continuum.

Si on suppose à présent que d > 1, il faut supposer que l'on a accès à un grand nombre d'options basket de payoffs (λ 1 S 1 t 1 + ... + λ d S d t 1 -K) + , pour des strikes K et des coefficients λ 1 , ..., λ d ≥ 0, qui somment à 1. On peut par une formule de type Carr-Madan reconstituer une portion de la fonction génératrice exponentielle de S t 1 et en reconstituer la loi. En pratique, cette hypothèse est peu réaliste, mais le problème reste intéressant. Il est plus naturel de ne pas supposer connaître la copule entre les S i (voir [START_REF] Lim | Multi-martingale optimal transport[END_REF]) ou de résoudre un problème hybride où on connaît les lois marginales des actifs à un temps donné tout en ajoutant comme contraintes les espérances de quelques payoffs basket.

Transport optimal 1.2.1 Le problème de Monge

Le transport optimal martingale est une variante récente du transport optimal tiré de la finance robuste. Cependant le transport optimal classique possède des racines beaucoup plus anciennes et une évolution qui en a fait un des sujets incontournables des probabilités. Le transport optimal est apparu au XVIIIe siècle, posé initialement par Gaspard Monge [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF]. A la suite de la Révolution française, le temps était à la reconstruction et le problème de transports optimal est apparu comme un problème concret lié aux travaux publics : comment déplacer des déblais vers les lieux de remblais en parcourant le moins de distance possible ? Le problème initial consistait à trouver une fonction de transport T qui indique le lieu T (x) où envoyer une part de déblais partis d'un point x. On peut l'écrire comme suit inf

T :X -→Y T #µ=ν X |T (x) -x| µ(dx).
(

Plus d'un siècle plus tard, Kantorovitch redécouvrit le problème de transport optimal en lui donnant une forme probabiliste [START_REF] Kantorovitch | On the translocation of masses[END_REF]. On peut l'exprimer comme suit inf P∈P(µ,ν) E P [c(X, Y )] ,

(1.2.4) où P(µ, ν) est l'ensemble des couplages entre µ et ν, c'est à dire l'ensemble des probabilités P ∈ P(X × Y) aux marginales prescrites P • X -1 = µ et P • Y -1 = ν, avec X la variable aléatoire fondamentale de projection sur X et Y la projection sur Y.

Il fit plus tard le lien avec le problème de Monge [START_REF] Kantorovich | On a problem of monge[END_REF]. La différence entre les deux problèmes réside dans le fait qu'un grain de matière n'a plus nécessairement une unique destination, mais peut avoir une masse de destination. En devenant probabiliste, l'ensemble d'optimisation acquiert une structure compacte pour la topologie faible qui permet de montrer qu'un minimum existe dans le cas semi-continu inférieurement (voir le chapitre 4 de [START_REF] Villani | Optimal transport: old and new[END_REF]) ou alors en général, modulo une rectification de la fonction de coût [START_REF] Beiglböck | Duality for rectified cost functions[END_REF]. Cette nouvelle version du problème permet également de définir la distance de Kantorovitch-Rubinstein [START_REF] Kantorovich | On a space of completely additive functions[END_REF][START_REF] Kantorovich | Functional analysis in normed spaces [funktsional'nyi analiz v normirovannykh prostranstvakh[END_REF], ou distance de Wasserstein [START_REF] Vaserstein | Markov processes over denumerable products of spaces, describing large systems of automata[END_REF] entre deux mesures de probabilité qui consiste en la solution du transport optimal avec ces deux marginales, et avec la fonction de coût |X -Y | p pour p ≥ 1. Cette métrique est très naturelle et possède de bonnes propriétés : elle donne à l'ensemble des mesures de probabilité sur un espace polonais une structure d'espace polonais (voir Section 14 de [START_REF] Dobrushin | Perturbation methods of the theory of gibbsian fields[END_REF]).

Dualité de Kantorovitch et ses conséquences

Certains des résultats du transport optimal classique notables auront des extensions au transport optimal martingale. Le premier est la célèbre dualité de Kantorovitch, il s'agit d'un résultat de dualité de type Kuhn-Tucker [START_REF] Kuhn | Nonlinear programming[END_REF] en dimension infinie. Kantorovitch [START_REF] Kantorovitch | On the translocation of masses[END_REF] montre que le problème suivant

sup φ⊕ψ≤c µ[φ] + ν[ψ],
(1.2.5) est le dual du problème 1.2.4 et possède la même valeur. De plus ce problème possède un optimiseur si la fonction de coût c est continue. Le problème dual du transport optimal est un problème d'optimisation sur le dual des mesures, c'est à dire des fonctions. Si on limite le problème à la dimension finie, les fonctions duales ont l'intérêt d'être de dimension très inférieure à la probabilité, ce qui présente des avantages de nombreux points de vue. Une de ses conséquences est la monotonie (voir [START_REF] Rockafellar | Convex analysis[END_REF]). On peut montrer qu'il existe un ensemble Γ qui caractérise l'optimalité des transports, i.e. un transport P ∈ P(µ, ν) est optimal pour le problème 1.2.4 si et seulement si P est concentré sur Γ. L'ensemble de contact entre la fonction de coût à deux variables et la somme de fonctions duales optimales d'une variable Γ := {c = φ ⊕ ψ} est un choix possible pour cet ensemble monotone.

Sous certaines hypothèses de régularité sur c, on peut prouver que φ est localement Lipschitz et donc dérivable presque partout (voir [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). Ainsi raisonnons formellement, soit ∆(X, Y ) := c(X, Y ) -φ(X) -ψ(Y ). Nous avons vu que, les probabilités optimales pour 1.2.4 sont concentrées sur Γ := {∆ = 0}, et par définition du dual, ∆ ≥ 0. Ainsi ∆ atteint son minimum sur Γ, ce qui donne une équation utile en utilisant la condition d'optimalité du premier ordre. On obtient le problème est linéaire et que toute combinaison convexe de transports optimaux est encore optimale. Dans le cas particulier du coût distance au carré, un célèbre résultat de Yann Brénier [START_REF] Brenier | Polar factorization and monotone rearrangement of vectorvalued functions[END_REF] montre que l'application de transport optimal T est le gradient d'une fonction potentielle convexe.

Dans le cas du coût distance qui était initialement présent pour le problème de Monge (1.2.3), l'équation (1.2.6) indique que les transports sont envoyés sur des droites. Mais prouver l'existence d'une fonction de transport solution du problème (1.2.3) rigoureusement est très compliqué. Sudakov [START_REF] Sudakov | Geometric problems in the theory of infinite-dimensional probability distributions[END_REF] a cru avoir résolu le problème mais il a pensé à tort que la mesure de Lebesgue se désintégrait de manière régulière sur les lignes de transport. Ambrosio corrigea sa preuve plus tard [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]. Dans [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF], est exhibé un contre-exemple, inspiré d'un contre-exemple paradoxal de Davies [START_REF] Davies | On accessibility of plane sets and differentiation of functions of two real variables[END_REF], qui sera important pour le transport optimal martingale. Il s'agit de l'exemple de l'ensemble de Nikodym N , un ensemble presque partout égal à un cube tridimensionnel tel qu'un continuum de lignes deux à deux disjointes qui intersectent tout N , n'en intersectent qu'un point à la fois. Ainsi la mesure de Lebesgue sur le cube se désintègre comme des masses de Dirac sur les lignes du continuum. Le problème (1.2.3) avait cependant été résolu entre temps par Evans et Gangbo [START_REF] Evans | Differential equations methods for the Monge-Kantorovich mass transfer problem[END_REF] sous de fortes hypothèses, par Trudinger et Wang [START_REF] Trudinger | On the monge mass transfer problem[END_REF] et enfin par Cafarelli, Feldman et McCann [START_REF] Caffarelli | Constructing optimal maps for monge's transport problem as a limit of strictly convex costs[END_REF]. Plus tard, [START_REF] Bianchini | On the extremality, uniqueness and optimality of transference plans[END_REF] étudie des propriétés d'extrémalité et d'unicité de ces transports et [START_REF] Bianchini | The monge problem for distance cost in geodesic spaces[END_REF] étend ce résultat à des espaces géodésiques.

La dualité a aussi des applications pour des coûts non réguliers. L'application du théorème du minimax qui donne la dualité requiert au moins que c soit semi-continue inférieurement. Cependant Kellerer [START_REF] Kellerer | Duality theorems for marginal problems[END_REF] est parvenu à étendre ce résultat de dualité à des fonctions seulement mesurables grâce au puissant théorème de capacitabilité de Choquet [START_REF] Choquet | Forme abstraite du théorème de capacitabilité[END_REF] basé sur son extension des ensembles analytiques [START_REF] Choquet | Ensembles k-analytiques et k-sousliniens. cas général et cas métrique[END_REF]. Cette dualité permet d'obtenir un résultat très difficile à prouver autrement : la structure des ensembles boréliens polaires. Un ensemble N ⊂ X × Y est dit P(µ, ν)-polaire si P[N ] = 0 pour tout P ∈ P(µ, ν). Ainsi en appliquant la dualité de Kantorovitch-Kellerer au coût c := -1 N , on obtient le résultat suivant: soit N µ l'ensemble des ensembles µ-négligeables et N ν l'ensemble des ensembles ν-négligeables.

Theorem 1.2.1. Soit un ensemble borélien N ⊂ X × Y, alors N est P(µ, ν)-polaire si et seulement si N ⊂ (N µ × R d ) ∪ (R d × N ν ), pour un certain couple (N µ , N ν ) ∈ N µ × N ν .
Un autre résultat notable que la dualité permet de démontrer est le fait que la restriction d'un transport optimal est toujours optimale, cf Théorème 5.19 de [START_REF] Villani | Optimal transport: old and new[END_REF]. Pour des monographes de référence sur le transport optimal, voir Villani [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport: old and new[END_REF], Ambrosio, Gigli et Savaré [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF][START_REF] Gigli | A user's guide to optimal transport[END_REF] et Santambrosio [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF].

Techniques de résolution numérique et applications

Pour résoudre le problème numériquement il semble difficile de s'affranchir d'une discrétisation des marginales. La façon naturelle de procéder est de remplacer µ et ν par des sommes de masses de Dirac sur des grilles finies. On peut soit passer par une grille régulière, soit utiliser un tirage de Monte Carlo pour approximer les mesures µ et ν, pour combattre la malédiction de la dimension en dimension plus grande que 2. Les méthodes de résolution ont énormément évolué, se sont drastiquement améliorées et sont encore un domaine de recherche très actif étant donnée l'utilité du transport optimal dans divers domaines tels que l'analyse d'image par exemple.

Historiquement, ce problème était naturellement résolu par des méthodes de programmation linéaire. On pourra citer la méthode hongroise [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF], l'algorithme des enchères, le simplexe [START_REF] Ahuja | Network flows[END_REF], on évoquera également [START_REF] Goldberg | Finding minimum-cost circulations by canceling negative cycles[END_REF]. Cependant, les méthodes de programmation linéaire ont un coût polynomial, voir [START_REF] Smale | On the average number of steps of the simplex method of linear programming[END_REF] et [START_REF] Spielman | Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time[END_REF]. Plus tard, Benhamou et Brénier [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF] relancèrent la course à la performance en découvrant une autre méthode pour résoudre le problème en le transformant en problème de programmation dynamique avec une pénalisation finale sur la différence entre la loi finale du processus et la mesure cible. Pour des cas particuliers, il est aussi possible de passer par l'équation de Monge-Ampère [START_REF] Gutiérrez | The Monge-Ampere equation[END_REF]. Dans le cas du coût distance au carré, le potentiel convexe de Brénier [START_REF] Brenier | Polar factorization and monotone rearrangement of vectorvalued functions[END_REF] u satisfait une équation provenant de l'équation de conservation des masses par changement de variable. Quand en particulier les mesures de départ et d'arrivée possèdent une densité par rapport à la mesure de Lebesgue, on peut prouver que u est solution de l'équation de Monge-Ampère det

D 2 u = g•∂xc(X,•) -1 •∇u f
, où f est la densité de µ et g est la densité de ν. Cette équation satisfait un principe du maximum, ce qui permet de la résoudre en pratique, voir [START_REF] Benamou | Numerical solution of the optimal transportation problem using the monge-ampère equation[END_REF] et [START_REF] Benamou | Monotone and consistent discretization of the monge-ampere operator[END_REF]. D'autre travaux comme [START_REF] Trudinger | On the second boundary value problem for monge-ampere type equations and optimal transportation[END_REF] résolvent des équations de Monge-Ampère plus générales qui permettent d'envisager de prouver que des problèmes de transport optimal pour des coûts plus généraux la satisfont. Nous nous devons également de mentionner Mérigot [START_REF] Mérigot | A multiscale approach to optimal transport[END_REF], qui résout le problème en utilisant une formulation semi-discrète (i.e. une des mesures est approximée par une somme de mesures de masses de Dirac et l'autre par une mesure à densité affine par morceaux par rapport à la mesure de Lebesgue). Lévy [START_REF] Lévy | A numerical algorithm for l2 semi-discrete optimal transport in 3d[END_REF] a introduit une méthode de Newton utilisant la dérivée seconde qui permet de résoudre le problème semi-discret extrêmement rapidement.

Ces solutions sont cependant limitées car soit elles ne permettent pas de résoudre des problèmes assez grands, soit elle ne permettent de résoudre que des cas particuliers de coûts, bien que ceux-ci soient très pertinents. C'est alors que Leonard [START_REF] Léonard | From the schrödinger problem to the monge-kantorovich problem[END_REF] prouva la Gamma-convergence d'un problème de transport avec pénalisation entropique vers le problème original de transport optimal en marge d'un article traitant du problème de Schrödinger. La Gamma-convergence est la convergence adaptée dans le cas de l'étude des limites des problèmes d'optimisation. Elle montre la convergence de la valeur du problème de transport optimal entropique vers la valeur du problème (1.2.4), et de plus toute suite d'optimiseurs convergente converge vers un optimiseur de (1.2.4). Voir [START_REF] Carlier | Convergence of entropic schemes for optimal transport and gradient flows[END_REF] et [START_REF] Cominetti | Asymptotic analysis of the exponential penalty trajectory in linear programming[END_REF] pour des études plus précises et quantitatives de ces convergences dans des cas particuliers. Il avait été observé par [START_REF] Kosowsky | The invisible hand algorithm: Solving the assignment problem with statistical physics[END_REF] que la formulation entropique était particulièrement utile en pratique pour résoudre des problèmes numériquement, étant donné que cela permettait d'employer le célèbre algorithme de Sinkhorn [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF]. La puissance de cette technique a été redécouverte par Marco Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], et largement adoptée par la communauté, voir [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF][START_REF] Rabin | Convex color image segmentation with optimal transport distances[END_REF][START_REF] Thorpe | A transportation lˆp lp distance for signal analysis[END_REF]. Le principe de cette méthode a déjà été adapté pour résoudre plusieurs variantes du transport optimal, tels que les barycentres de Wasserstein [START_REF] Agueh | Barycenters in the wasserstein space[END_REF] et le transport optimal multi-marginales [START_REF] Benamou | Iterative bregman projections for regularized transportation problems[END_REF], des problèmes de flots de gradient [128], le transport optimal déséquilibré [START_REF] Chizat | Scaling algorithms for unbalanced transport problems[END_REF], et le transport optimal martingale en dimension 1 [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF].

Le travail remarquable de Schmitzer [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF], très orienté vers le praticien, donne des considérations très pratiques et des astuces pour stabiliser et faire converger l'algorithme de Sinkhorn beaucoup plus vite que par une implémentation naïve. Cuturi et Peyré [START_REF] Cuturi | A smoothed dual approach for variational wasserstein problems[END_REF] ont utilisé une méthode de quasi-Newton pour résoudre le problème de transport optimal. Leur conclusion semble être que l'algorithme de Sinkhorn reste plus efficace. Cependant, [START_REF] Brauer | A sinkhorn-newton method for entropic optimal transport[END_REF] utilise une méthode de Newton inexacte (i.e. utilisant également l'expression de la dérivée d'ordre 2) et parvient à surperformer l'algorithme de Sinkhorn. Il nous faut également mentionner [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF] qui introduit un "Greenkhorn algorithm" qui surperforme l'algorithme de Sinkhorn d'après leurs expériences numériques, et de la même manière [START_REF] Thibault | Overrelaxed sinkhorn-knopp algorithm for regularized optimal transport[END_REF] introduit une version relâchée de l'algorithme de Sinkhorn qui passe l'exposant de convergence linéaire au carré, accélérant sensiblement sa convergence.

Transport optimal martingale 1.3.1 Résultats de la littérature en une dimension

Le transport optimal martingale est une variante du transport optimal incluant une contrainte martingale. Ce problème a été introduit comme le dual d'un problème de couverture robuste d'un produit dérivé exotique en mathématiques financières, voir Beiglböck, Henry-Labordère et Penkner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] en temps discret, et Galichon, Henry-Labordère et Touzi [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF] en temps continu. En temps discret, le problème inclut une temporalité et des contraintes martingales. On se place dans le cas X = Y = R d pour d ≥ 1, la variable aléatoire Y est considérée comme postérieure à la variable aléatoire X et on introduit une contrainte martingale en relation :

E P [Y |X] = X. On écrit M(µ, ν) := {P ∈ P(µ, ν) : E P [Y |X] = X},
l'ensemble des transports optimaux martingales. Contrairement à l'ensemble P(µ, ν) qui avait la particularité de ne jamais être vide, contenant µ ⊗ ν, par exemple, l'ensemble M(µ, ν) peut être vide, par exemple si µ := δ x et ν := δ y avec x ̸ = y. Il existe une caractérisation basée sur le théorème de Hahn-Banach de la vacuité ou non de M(µ, ν). On remarque que si f : R d -→ R est convexe et P ∈ M(µ, ν), alors

E P [f (Y )|X] ≥ f E P [Y |X] = f (X), (1.3.7)
par l'inégalité de Jensen. En intégrant (1.3.7) par rapport à la mesure µ, on obtient

ν[f ] ≥ µ[f ]. (1.3.8)
Quand l'équation (1.3.8) est vérifiée pour toute fonction convexe f , on dit que µ est plus petite que ν pour l'ordre convexe, nous venons donc de montrer que si M(µ, ν) est non vide, alors µ ≤ ν pour l'ordre convexe. Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] a prouvé qu'il s'agit d'une équivalence. On saisit dès à présent la forte intrication entre la structure de M(µ, ν) et l'action de l'opérateur (ν -µ) sur les fonctions convexes. Nous exploiterons de nouveau par la suite la fécondité de cette relation. Qu'en est-il de la dualité ? [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] prouve une relation de dualité pour des fonctions de couplage semi-continues supérieurement et ne montre pas qu'il existe un optimiseur pour le problème dual. Beiglböck, Nutz et Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] montrent qu'en une dimension il faut considérer des fonctions duales dominant M(µ, ν)-quasi-sûrement (i.e. P-presque sûrement pour tout P ∈ M(µ, ν)) la fonction de couplage c plutôt que uniformément. Il faut également prendre garde au cas où on a µ

[φ] + ν[ψ] = -∞ + ∞, auquel cas il faut utiliser un modérateur convexe χ et étendre la définition de µ[φ] + ν[ψ] comme suit : µ[φ] + ν[ψ] := µ[φ + χ] + ν[ψ -χ] + (ν -µ)[χ],
où l'opérateur (ν -µ) est étendu de manière spécifique pour les fonctions convexes. Avec cette définition étendue, la dualité est obtenue en remplaçant le problème (1.1.2) par le problème

I qs µ,ν (c) := inf (φ,ψ,h)∈D qs µ,ν (c) µ[φ] + ν[ψ], (1.3.9) où D qs µ,ν (c) := {(φ, ψ, h) : φ ⊕ ψ + h ⊗ ≥ c, M(µ, ν) -q.
s.}. [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] caractérise pour ce faire le fait qu'une propriété soit quasi-sûre, ils présentent un phénomène étonnant initialement découvert par [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], l'existence de composantes irréductibles laissées stables par tous les transports martingales entre µ et ν. Ces composantes sont des intervalles ouverts disjoints (I k ) k , en conséquence au plus dénombrables. On a alors la propriété suivante : [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] prouve même que ces composantes permettent de caractériser les ensembles M(µ, ν)-polaires par le théorème suivant, qui peut être vu comme une extension du Théorème 1.2.1. Soit J k = conv suppP k , où P k := P |I k ×R , pour P ∈ M(µ, ν), dont le choix n'influe pas la valeur de J k .

P[Y ∈ cl I k |X ∈ I k ] = 1 pour tout k.
Theorem 1.3.1. Soit N ⊂ R 2 Borel, alors N est M(µ, ν)-polaire si et seulement si N ⊂ (N µ × R) ∪ (R × N ν ) ∪ (∪ k I k × J k ∪ {X = Y }) c , pour un certain couple (N µ , N ν ) ∈ N µ × N ν .
Les J k sont des ensembles convexes compris au sens de l'inclusion entre I k et cl I k , c'est à dire avec zéro, un ou deux points supplémentaires. Les auteurs montrent aussi que le problème se décompose en sous-problèmes de transport optimal martingale sur chaque composante.

Beiglböck, Nutz et Touzi donnent aussi d'utiles contre-exemples montrant que même dans des cas très simples, soit la dualité n'était pas vérifiée pour des fonctions non semi-continues supérieurement, soit il n'existait pas de dual ne nécessitant pas de modérateur convexe qui minimise le problème dual.

Nutz, Stebegg et Tan [START_REF] Nutz | Multiperiod martingale transport[END_REF] ont généralisé le résultat précédent à un nombre fini de temps. Beiglböck, Lim et Obloj [START_REF] Beiglböck | Dual attainment for the martingale transport problem[END_REF] prouvent qu'en dimension 1, sous des hypothèses de régularité sur la fonction de couplage c, on peut montrer qu'un résultat de dualité uniforme est vraie, malgré la présence de composantes irréductibles.

Il existe aussi des résultat de structure, Beiglböck et Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] introduisent le "left-curtain" couplage martingale tel que les noyaux conditionnés en X sont toujours concentrés sur deux points au plus, et [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF] montrent que ce couplage particulier est toujours solution si la dérivée partielle en x de la fonction de couplage c est strictement convexe en y. Beiglböck et Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] prouvent également que dans le cas du coût distance, les noyaux conditionnels sont également concentrés sur deux points au plus.

Le problème en temps continu, qui ne sera pas traité par cette thèse, a été introduit par [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF] et supplante l'outil habituellement utilisé, le plongement de Skorokhod qui consiste à trouver un temps d'arrêt τ pour un mouvement Brownien (W t ) t≥0 de loi initiale µ, tel que le mouvement Brownien arrêté W τ possède la loi prescrite ν. Ce problème a été introduit par Monroe [START_REF] Monroe | On embedding right continuous martingales in brownian motion[END_REF] pour la loi initiale µ = δ 0 , puis généralisé à µ quelconque par Cox [START_REF] Cox | Extending chacon-walsh: minimality and generalised starting distributions[END_REF]. On trouve de nombreux exemples dans [START_REF] Hirsch | Peacocks and associated martingales, with explicit constructions[END_REF]. Par la suite [START_REF] Beiglböck | Monotone martingale transport plans and skorohod embedding[END_REF] établit une nouvelle fois cette relation entre plongement de Skorokhod et transport optimal martingale dans le cas précis de l'étude du couplage "left curtain". Une dualité ainsi qu'une étroitesse sont démontrées dans le cas continu par [START_REF] Guo | Tightness and duality of martingale transport on the skorokhod space[END_REF], tandis que [START_REF] Backhoff | Martingale benamou-brenier: A probabilistic perspective[END_REF] étend le résultat d'interpolation de Brénier au cas martingale. Voir aussi l'étude [START_REF] Obłój | The skorokhod embedding problem and its offspring[END_REF].

Résultats de la littérature en dimension supérieure

La propriété de dualité de [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] s'étend sans difficulté à la dimension supérieure même si ils ne l'écrivent pas. On peut obtenir le résultat à partir de Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF] comme cas particulier où les contraintes linéaires sont la contrainte martingale. Des résultats généraux de dualité, où l'ensemble dual conserve une forme abstraite peuvent être trouvés dans [START_REF] Ekren | Constrained optimal transport[END_REF] ou [START_REF] Bartl | A pointwise bipolar theorem[END_REF].

Lim [START_REF] Lim | Optimal martingale transport between radially symmetric marginals in general dimensions[END_REF] a été le premier à essayer de comprendre la structure des solutions en dimension supérieure. Basé sur un problème à symmétrie radiale, il considère un cas particulier permettant de se ramener à la dimension 1. Ghoussoub, Kim et Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] sont les premiers à avoir apporté des résultats vraiment intrinsèques à la dimension supérieure. Ils prouvent l'existence de composantes sur lesquelles la dualité a lieu. Ils utilisent ces composantes pour prouver un résultat de structure en dimensions 1 et 2 et conjecturent que ce résultat reste vrai en dimension supérieure. Ce résultat de structure stipule que dans le cas du problème de maximisation du transport optimal pour le coût distance, les noyaux du transport optimal se concentrent sur l'enveloppe de Choquet (i.e. les points extrêmes de l'enveloppe convexe) de leur support. Les composantes irréductibles de [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] présentent l'inconvénient de ne pas être universelles, elles peuvent dépendre du support choisi, de plus elles peuvent être en quantité non dénombrable, et donc des propriétés de mesurabilité sont nécessaires pour parvenir à décomposer correctement le problème "composante par composante" et cette mesurabilité semble difficile à démontrer dans le cadre de leur définition des composantes. Ils relèvent une difficulté qu'ils ne résolvent qu'en dimension 2 pour leur résultat de structure, il s'agit du problème causé par le fait que la décomposition des marginales sur les composantes irréductibles peut ne pas être diffuse, comme dans l'exemple de l'ensemble de Nikodym [START_REF] Pratelli | Existence and stability results in the l1 theory of optimal transportation[END_REF].

Obloj et Siorpaes [START_REF] Oblój | Structure of martingale transports in finite dimensions[END_REF] définissent des composantes irréductibles intrinsèques aux fonctions convexes dont la minimalité n'est pas avérée.

Finalement, nous mentionnons [START_REF] Lim | Multi-martingale optimal transport[END_REF] où Lim traite un problème légèrement différent où chaque marginale 1-dimensionnelle est prescrite et la contrainte martingale est imposée. Ce problème est plus facile que le transport optimal martingale en dimension supérieure mais semble plus adapté à la finance en cela qu'il peut être peu réaliste de supposer que l'on connaît parfaitement la copule entre deux actifs à un temps donné.

Littérature pour la résolution numérique du transport optimal martingale

Pierre Henry-Labordère résout le problème de transport optimal martingale par de simples méthodes de programmation linéaire [START_REF] Henry-Labordere | Model-free Hedging: A Martingale Optimal Transport Viewpoint[END_REF]. Il utilise des payoffs à structure particulière, ce qui lui permet de réduire les contraintes sur les fonctions duales, et donc lui permet de résoudre un problème pour une grille de taille 10000 en moins d'une minute. Tan et Touzi [START_REF] Tan | Optimal transportation under controlled stochastic dynamics[END_REF] résolvent une forme continue du transport optimal avec une méthode proche de [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF].

Alfonsi, Corbetta et Jourdain [START_REF] Alfonsi | Sampling of probability measures in the convex order and approximation of martingale optimal transport problems[END_REF] utilisent également une version discrétisée des marginales mais se heurtent au problème de la nécessité que les marginales soient en ordre convexe pour qu'un transport martingale existe et que le problème linéaire n'ait pas une solution infinie. Ils résolvent ce problème en présentant des résultats d'existence de marginales en ordre convexe qui approche pour des distances de Wassertstein la mesure cible, et ils calculent ces marginales optimales.

Guo et Obloj [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] résolvent le problème précédent en relâchant la contrainte martingale dans leur approximation. Ils proposent ensuite un algorithme d'optimisation semi-duale implicite non-régulière et un algorithme de projection entropique de Bregman sans préciser leur efficacité respective.

On peut également mentionner Henry-Labordère et Touzi [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF] qui utilisent la structure du transport martingale "left curtain" pour le déterminer numériquement.

Nouveaux résultats en dimension supérieure 1.4.1 Composantes irréductibles

Dans le Chapitre 2, on démontre que l'on peut définir des composantes irréductibles correspondant aux transports martingales. Il s'agit de l'article [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]. En dimension 1 ( [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]), les composantes sont "révélées" par les potentiels des marginales. Ces potentiels sont définis par u µ (x) := R |y -x|µ(dy) et la même définition pour u ν . Par Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF], les marginales sont en ordre convexe, on a donc u µ ≤ u ν . La fonction u ν -u µ est continue car Lipschitz. L'ensemble (u ν -u µ ) -1 (R * + ) est donc un ouvert de R, et peut donc classiquement être décomposé de manière unique en une union dénombrable d'intervalles ouverts disjoints. On remarque que si u µ (x) = u ν (x) pour un certain x ∈ R, on est dans le cas d'égalité de l'inégalité de Jensen dans (1.3.7). Ainsi la fonction y → |y -x| est vue comme affine par tour les transports martingales. D'où la propriété de stabilité par les transports des composantes. En parallèle, on remarque que si (ν -µ)[χ n ] est borné avec (χ n ) n≥1 une suite de fonctions convexes, χ n possède des propriétés de compacité sur chaque composante irréductible. Ainsi sur chaque composante irréductible, il est possible de trouver une limite pour les fonctions duales. On a alors un optimiseur dual sur chaque composante. Il est cependant difficile d'étendre cette technique à la dimension supérieure car les fonctions convexes extrêmes ont une structure beaucoup plus compliquée que les y -→ |y -x| de la dimension 1, voir [START_REF] Johansen | The extremal convex functions[END_REF].

On a vu que pour le résultat de Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] ainsi que pour [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], l'action de (ν -µ) sur les fonctions convexes permet de comprendre la structure de M(µ, ν). En utilisant cette considération, on prouve dans le Chapitre 2 l'existence de composantes irréductibles intrinsèquement liées à (µ, ν), couple de probabilités dans l'ordre convexe. Pour ceci ils définissent les fonctions convexes tangentes, qui sont les limites de fonctions

R d × R d -→ R + , définies par θ := f (Y ) -f (X) -p(X) • (Y -X) ≥ 0, pour f : R d -→ R convexe et p(x) ∈ ∂f (x), tels que (ν -µ)[f ] = E P [θ] ≤ 1, pour tout P ∈ M(µ, ν).
On remarque que θ est une fonction que l'on trouve naturellement dans l'espace dual dans le cas du transport optimal. On appelle cet ensemble de limites T (µ, ν), et pour θ ∈ T (µ, ν), on a E P [θ] ≤ 1. Ainsi P[Y ∈ cl domθ(X, •)] = 1, où cl désigne la fermeture d'un ensemble et domθ est le domaine de θ, i.e. son lieu de finitude. Étant donné que formellement, on a ri domθ(X, •) qui est convexe relativement ouvert si on désigne par ri l'ouvert relatif d'un ensemble, et que de plus, on peut montrer que {ri domθ(x, •) : x ∈ R d } est une partition de R d . Ainsi les ensembles ri domθ(x, •) pour x ∈ R d sont des candidats naturels pour être les composantes irréductibles. La stratégie consiste donc à résoudre un problème de minimisation de la taille de ces domaines. On obtient ainsi les composantes irréductibles. On définit G, une fonction qui mesure la taille d'un ensemble convexe, puis on minimise une quantité qui correspond formellement à R d G domθ(x, •) µ(dx). La minimisation est possible grâce à une propriété de mesurabilité analytique des fonctions à valeur ensemblistes ri domθ(X, •). Cette mesurabilité permettra aussi de démontrer la possibilité de désintégrer les problèmes de transport composante par composante.

On a remarqué que les fonctions de T (µ, ν) pouvaient servir de parties de fonctions duales. Ainsi on obtient de la compacité dans le problème dual et on peut utiliser le théorème de capacitabilité de Choquet [START_REF] Choquet | Forme abstraite du théorème de capacitabilité[END_REF] de la même manière que dans [START_REF] Kellerer | Duality theorems for marginal problems[END_REF] et [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] pour montrer un théorème de dualité général pour les fonctions mesurables. Ce théorème de dualité permet de montrer que ces composantes irréductibles sont les plus petites possibles. En effet on peut montrer qu'il existe une probabilité dont le noyau remplit toutes les composantes irréductibles. En termes mathématiques, si on note I l'application qui à x ∈ R d associe la composante irréductible le contenant I(x), il existe P ∈ M(µ, ν) tel que cl conv supp P X = cl I(X), µ-presque sûrement. Ce résultat est montré de manière non constructive en passant par la dualité. On regarde un problème de maximisation sur la surface recouverte par les transports martingales P ∈ M(µ, ν) : R d G conv suppP x µ(dx). Soit P ∈ M(µ, ν) le maximiseur, on remarque que N := {Y / ∈ cl conv supp P X } est un ensemble M(µ, ν)-polaire. Ainsi en appliquant le résultat de dualité à 1 N , on obtient l'inclusion difficile cl conv supp P X ⊃ cl I(X), µ-presque sûrement.

On remarque via ce qui précède que l'on peut obtenir une caractérisation des ensembles polaires de M(µ, ν) similaire au Théorème 1.3.1.

Dualité

Le travail sur les composantes irréductibles et sur les ensembles polaires de [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF] permet de servir de base pour obtenir des résultats de dualité. Le Chapitre 3, présente un résultat de dualité quasi-sûre et quelques résultats corollaires, tels qu'une désintégration du problème de transport optimal sur les composantes irréductibles en sous-problèmes de transport optimal, ainsi qu'un théorème de monotonie.

Le chapitre précédent use d'un résultat de dualité imparfait, car les limites des fonctions duales sont en partie des limites inférieures. Le lieu problématique est la frontière relative des composantes irréductibles. Dans [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF] on utilise différentes hypothèses pour dominer ces parties manquantes du lieu de la convergence. On fait l'hypothèse que les composantes sont de dimension 1 ou moins (maîtrise de la frontière qui est constituée de deux points au maximum), sont de dimension d (elles sont alors en quantité dénombrable) ou alors ne chargent pas leur frontière. Une autre hypothèse qui permet d'obtenir la dualité est l'existence des limites médiales, impliquée par l'axiome du continu. Les limites médiales, inventées par Mokobodzkyi [START_REF] Mokobodzki | Ultrafiltres rapides sur N. construction d'une densité relative de deux potentiels comparables[END_REF] (voir [START_REF] Meyer | Limites médiales d'après mokobodzki[END_REF] et [149]) sont des objets qui généralisent les limites. Toute suite bornée inférieurement possède une limite médiale, quand elle possède une limite, elle est alors égale à la limite médiale et la limite médiale de fonctions universellement mesurables est encore universellement mesurable (i.e. mesurable par rapport à toutes les mesures boréliennes).

Une fois que la convergence a lieu, une grande difficulté est de décomposer à nouveau la limite comme somme d'une fonction de X, d'une fonction de Y et d'un hedge. Pour obtenir ce résultat on montre qu'avoir la bonne forme est équivalent par dualité à un principe de monotonie sur les fonctions limites. Pour obtenir ce résultat, une autre étape consiste à obtenir des propriétés fines sur la structure des ensembles polaires.

Ce résultat de dualité permet d'obtenir que le transport optimal martingale se décompose en sous-problèmes de transport optimal martingales sur chaque composante irréductible, et sur chaque composante, la dualité est uniforme. Ce théorème possède une version plus faible qui s'affranchit du besoin des hypothèses.

De la même façon, la dualité permet d'obtenir un principe de monotonie, i.e. on prouve qu'il existe un ensemble Γ qui concentre tous les transports optimaux et qui est monotone. Un résultat très difficile et encore ouvert est l'implication inverse, le fait de savoir si le fait d'être concentré sur l'ensemble Γ implique l'optimalité du transport martingale.

Ce chapitre est également l'occasion de donner des exemples montrant qu'il ne peut y avoir de régularité suffisante de la fonction de couplage c pour permettre à un optimiseur dual d'exister quel que soient les lois µ et ν. On y trouve également un exemple où la restriction du problème à une composante irréductible n'est plus irréductible après son isolation des autres composantes.

Structure locale

Dans le Chapitre 4 qui correspond à [START_REF] De March | Local structure of the optimizer of multi-dimensional martingale optimal transport[END_REF], on s'intéresse à la structure locale de chaque noyau d'un transport optimal. On commence par démontrer un théorème qui donne la structure générale de ces noyaux sous certaines hypothèses techniques, il s'agit d'intersections entre le gradient partiel en x du coût c et une fonction affine dépendante de x. On peut utiliser la notation d'événements pour ces intersections :

S 0 = {∂ x c(x 0 , Y ) = A(Y )}, (1.4.10) avec A : R d -→ R d , affine.
La suite du chapitre consiste à expliciter les informations sur la structure des ensembles (1.4.10) que l'on peut obtenir pour différentes fonctions de couplage c. On montre en premier lieu un lien entre la géométrie algébrique réelle et la finitude des transports optimaux conditionnels, ainsi que avec le nombre maximal de fonctions de transport atteignables. En effet, si la fonction c est suffisamment régulière, son gradient partiel ∂ x c se comporte localement comme un vecteur de d polynômes à d variables, c'est donc également le cas de ∂ x c -A. Ainsi trouver les zéros de ∂ x c -A est un exercice qui se rapproche localement de trouver les zéros communs dans R d de d polynômes de d variables, ce qui est le problème fondamental de la géométrie algébrique. On peut utiliser par exemple le théorème de Bézout, ici exprimé en termes formels :

Theorem 1.4.1 (Bézout). Soit d ∈ N et (P 1 , ..., P d ), d polynômes "complets" dans R[X 1 , ..., X d ]. Alors |{(P 1 , ..., P d ) = 0}| = deg(P 1 )...

deg(P d ), où les racines sont comptées avec multiplicité et incluent des racines "à l'infini".

Voir [START_REF] Hartshorne | Algebraic geometry[END_REF]. Des précisions sur les notions de complétude, de racines à l'infini et de multiplicité seront apportées par le Chapitre 4. On montre en particulier grâce à ces notions que pour "presque toute" fonction de coût régulière, si la première marginale µ possède une densité par rapport à la mesure de Lebesgue, alors le noyau de tout transport optimal se concentre sur un ensemble discret et on peut toujours trouver des lois marginales µ et ν qui sont absolument continues par rapport à la mesure de Lebesgue qui donnent un transport optimal concentré sur d + 2 graphes quand d est pair.

On donne également des résultats sur la structure des supports (1.4.10) dans le cas des coûts puissance de la norme Euclidienne. On montre ainsi que le nombre naturel de graphes de transport atteints dans le cas de la norme distance, pour la maximisation ou pour la minimisation est 2d, contrairement à la Conjecture 2 de [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. On montre également que le résultat de structure qui peut être obtenu est beaucoup plus précis que le résultat de [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] qui se contente de dire que le transport optimal conditionnel est concentré sur la frontière de Choquet de l'enveloppe convexe de son support.

Méthodes numériques pour le transport optimal martingale

Enfin au-delà des considérations théoriques, les problèmes de type transport optimal sont des problèmes qui ont vocation à être résolus en pratique. Il était donc naturel d'explorer l'aspect numérique des choses. Le Chapitre 5 traite de ce sujet, il s'agit de [START_REF] De March | Entropic resolution for multi-dimensional optimal transport[END_REF]. Il compare et évalue la performance théorique de plusieurs algorithmes de résolution existant et en propose un nouveau, beaucoup plus performant et résolvant du même coup le problème de marginales qui perdent leur ordre convexe à la suite de leur discrétisation, relevé par [START_REF] Alfonsi | Sampling of probability measures in the convex order and approximation of martingale optimal transport problems[END_REF].

Les algorithmes existants sont, la programmation linéaire [START_REF] Henry-Labordere | Model-free Hedging: A Martingale Optimal Transport Viewpoint[END_REF], l'optimisation duale semi-implicitée introduite par [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF], la projection itérative de Bregman, inspirée de [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] et suggérée par [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF]. On présente finalement un nouvel algorithme de Newton implicité, qui peut être vu comme une version régularisée de l'optimisation duale semi-implicitée et qui surperforme les autres.

Un autre apport qui nous semble majeur est un théorème sur la précision de l'approximation entropique du transport optimal. La littérature fait généralement mention d'une précision de l'ordre de la pénalisation entropique maximale, c'est à dire ε ln(N ) -1 , où N est la taille de la grille de discrétisation. Cependant, sous couvert de faire des hypothèses de régularité difficilement vérifiables, on peut établir que le saut de dualité est plus faible qu'une quantité tendant vers ε d 2 , valeur qui possède une surprenante universalité. Une remarque indique qu'un résultat identique peut être obtenu pour le transport classique. Malgré la difficulté à démontrer la régularité nécessaire pour la preuve du résultat, on constate ce taux de convergence sur les expériences numériques. Ainsi avec un travail substantiel, il est probablement possible de l'établir de manière rigoureuse en utilisant la régularité prodiguée par l'équation de Monge-Ampère.

Comme expliqué dans la Section 1.2.3, la résolution numérique est généralement obtenue en ajoutant une pénalisation entropique, pondérée par un poids ε ≥ 0. Le problème dual correspondant consiste à minimiser la fonction duale V ε définie par

V ε (φ, ψ, h) := µ[φ] + ν[ψ] + ε X ×Y exp - φ ⊕ ψ + h ⊗ -c ε dm 0 . (1.4.11)
La minimisation partielle en fonction de chacune des variables duales implique le respect des variables primales. Dans le problème entropique primal, la mesure optimale est donnée par dP := exp -φ⊕ψ+h ⊗ -c la minimisation en φ ne brise pas la martingalité, il est donc naturel de minimiser en h puis en φ, dans cet ordre. Cette stratégie de minimisation par blocs n'exploite pas toute la régularité de la fonction et la connaissance explicite de sa dérivée seconde. Ainsi on propose un algorithme de Newton. Face à l'instabilité du terme exponentiel pouvant exploser facilement pour de faibles valeurs de ε, on utilise le fait que V ε (ψ) := inf φ,h V ε (φ, ψ, h) est également deux fois dérivable, de dérivées d'ordre 1 et 2 connues, mais avec la stabilité apportée par la minimisation en φ.

On présente également dans ce chapitre plusieurs astuces pratiques qui permettent d'améliorer la stabilité, la vitesse de convergence, ainsi que la vitesse de calcul effective de l'algorithme. Une de ces méthodes permet par la même occasion de résoudre le problème de défaut d'ordre convexe entre µ et ν remarqué par [START_REF] Alfonsi | Sampling of probability measures in the convex order and approximation of martingale optimal transport problems[END_REF]. Il s'agit de l'idée de minimiser V α ε := V ε + αf , où f est une fonction strictement convexe, sur-linéaire et p-homogène, avec p > 1. On montre que si α -→ 0, et si on note P α , l'unique optimiseur de V α ε , alors ν α := P α • Y -1 converge vers ν l , plus grand que µ dans l'ordre convexe et minimisant f * (ν l -ν), où f * est la conjuguée de Fenchel de f . Il suffit donc de minimiser V α 1 avec c = 0 en faisant tendre α vers 0.

Introduction

The problem of martingale optimal transport was introduced as the dual of the problem of robust (model-free) superhedging of exotic derivatives in financial mathematics, see Beiglböck, Henry-Labordère & Penkner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] in discrete time, and Galichon, Henry-Labordère & Touzi [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF] in continuous-time. The robust superhedging problem was introduced by Hobson [START_REF] Hobson | Robust hedging of the lookback option[END_REF], and was addressing specific examples of exotic derivatives by means of corresponding solutions of the Skorokhod embedding problem, see [START_REF] Cox | Robust pricing and hedging of double no-touch options[END_REF][START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF][START_REF] Hobson | Robust bounds for forward start options[END_REF], and the survey [START_REF] Hobson | The skorokhod embedding problem and model-independent bounds for option prices[END_REF].

Given two probability measures µ, ν on R d , with finite first order moment, martingale optimal transport differs from standard optimal transport in that the set of all coupling probability measures P(µ, ν) on the product space is reduced to the subset M(µ, ν) restricted by the martingale condition. We recall from Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] that M(µ, ν) ̸ = ∅ if and only if µ ⪯ ν in the convex order, i.e. µ(f ) ≤ ν(f ) for all convex functions f . Notice that the inequality µ(f ) ≤ ν(f ) is a direct consequence of the Jensen inequality, the reverse implication follows from the Hahn-Banach theorem.

This paper focuses on the critical observation by Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] that, in the one-dimensional setting d = 1, any such martingale interpolating probability measure P has a canonical decomposition P = k≥0 P k , where P k ∈ M(µ k , ν k ) and µ k is the restriction of µ to the so-called irreducible components I k , and ν k := x∈I k P(dx, •), supported in J k , k ≥ 0, is independent of the choice of P k . Here, (I k ) k≥1 are open intervals, I 0 := R \ (∪ k≥1 I k ), and J k is an augmentation of I k by the inclusion of either one of the endpoints of I k , depending on whether they are charged by the distribution P k . Remarkably, the irreducible components (I k , J k ) k≥0 are independent of the choice of P ∈ M(µ, ν). To understand this decomposition, notice that convex functions in one dimension are generated by the family f x 0 (x) := |x -x 0 |, x 0 ∈ R. Then, in terms of the potential functions U µ (x 0 ) := µ(f x 0 ), and U ν (x 0 ) := ν(f x 0 ), x 0 ∈ R, we have µ ⪯ ν if and only if U µ ≤ U ν and µ, ν have same mean. Then, at any contact points x 0 , of the potential functions, U µ (x 0 ) = U ν (x 0 ), we have equality in the underlying Jensen's equality, which means that the singularity x 0 of the underlying function f x 0 is not seen by the measure. In other words, the point x 0 acts as a barrier for the mass transfer in the sense that martingale transport maps do not cross the barrier x 0 . Such contact points are precisely the endpoints of the intervals

I k , k ≥ 1.
The decomposition into irreducible components plays a crucial role for the quasisure formulation introduced by Beiglböck, Nutz, and Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], and represents an important difference between martingale transport and standard transport. Indeed, while the martingale transport problem is affected by the quasi-sure formulation, the standard optimal transport problem is not changed. We also refer to Ekren & Soner [START_REF] Ekren | Constrained optimal transport[END_REF] for further functional analytic aspects of this duality.

Our objective in this paper is to extend the last decomposition to an arbitrary d-dimensional setting, d ≥ 1. The main difficulty is that convex functions do not have anymore such a simple generating family. Therefore, all of our analysis is based on the set of convex functions. A first extension of the last decomposition to the multi-dimensional case was achieved by Ghoussoub, Kim & Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. Motivated by the martingale monotonicity principle of Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] (see also Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF] for higher dimension and general linear constraints), their strategy is to find a monotone set Γ ⊂ R d × R d , where the robust superhedging holds with equality, as a support of the optimal martingale transport in M(µ, ν). Denoting Γ x := {y : (x, y) ∈ Γ}, this naturally induces the relation x Rel x ′ if x ∈ ri conv(Γ x ′ ), which is then completed to an equivalence relation ∼. The corresponding equivalence classes define their notion of irreducible components.

Our subsequent results differ from [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] from two perspectives. First, unlike [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF], our decomposition is universal in the sense that it is not relative to any particular martingale measure in M(µ, ν) (see example 2.2.2). Second, our construction of the irreducible convex paving allows to prove the required measurability property, thus justifying completely the existence of a disintegration of martingale plans.

Finally, during the final stage of writing the present paper, we learned about the parallel work by Jan Obłój and Pietro Siorpaes [START_REF] Oblój | Structure of martingale transports in finite dimensions[END_REF]. Although the results are close, our approach is different from theirs. We are grateful to them for pointing to us the notions of "convex face" and "Wijsmann topology" and the relative references, which allowed us to streamline our presentation. In an earlier version of this work we used instead a topology that we called the compacted Hausdorff distance, defined as the topology generated by the countable restrictions of the space to the closed balls centered in the origin with integer radii; the two are in our case the same topologies, as the Wijsman topology is locally equivalent to the Hausdorff topology in a locally compact set. We also owe Jan and Pietro special thanks for their useful remarks and comments on a first draft of this paper privately exchanged with them.

The paper is organized as follows. Section 3.3 contains the main results of the paper, namely our decomposition into irreducible convex paving, and shows the identity with the Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] notion in the one-dimensional setting. Section 5.2 collects the main technical ingredients needed for the statement of our main results, and gives the structure of polar sets. In particular, we introduce the new notions of relative face and tangent convex functions, together with the required topology on the set of such functions. The remaining sections contain the proofs of these results. In particular, the measurability of our irreducible convex paving is proved in Section 2.7.

Notation

We denote by R := R ∪ {-∞, ∞} the completed real line, and similarly denote R + := R + ∪ {∞}. We fix an integer d ≥ 1. For x ∈ R d and r ≥ 0, we denote B r (x) the closed ball for the Euclidean distance, centered in x with radius r. We denote for simplicity B r := B r (0). If x ∈ X , and A ⊂ X , where (X , d) is a metric space, dist(x, A) := inf a∈A d(x, a). In all this paper, R d is endowed with the Euclidean distance.

If V is a topological affine space and A ⊂ V is a subset of V , intA is the interior of A, cl A is the closure of A, affA is the smallest affine subspace of V containing A, convA is the convex hull of A, dim(A) := dim(affA), and riA is the relative interior of A, which is the interior of A in the topology of affA induced by the topology of V . We also denote by ∂A := cl A \ riA the relative boundary of A, and by λ A the Lebesgue measure of affA.

The set K of all closed subsets of R d is a Polish space when endowed with the Wijsman topology1 (see Beer [START_REF] Beer | A polish topology for the closed subsets of a polish space[END_REF]). As R d is separable, it follows from a theorem of Hess [START_REF] Hess | Contribution à l'étude de la mesurabilité, de la loi de probabilité et de la convergence des multifonctions[END_REF] that a function F : R d -→ K is Borel measurable with respect to the Wijsman topology if and only if its associated multifunction is Borel measurable, i.e.

F -(V ) := {x ∈ R d : F (x) ∩ V ̸ = ∅} is Borel measurable for all open subset V ⊂ R d .
The subset K ⊂ K of all the convex closed subsets of R d is closed in K for the Wijsman topology, and therefore inherits its Polish structure. Clearly, K is isomorphic to ri K := {riK : K ∈ K} (with reciprocal isomorphism cl). We shall identify these two isomorphic sets in the rest of this text, when there is no possible confusion. We denote Ω := R d × R d and define the two canonical maps

X : (x, y) ∈ Ω -→ x ∈ R d and Y : (x, y) ∈ Ω -→ y ∈ R d .
For φ, ψ : R d -→ R, and h : R d -→ R d , we denote

φ ⊕ ψ := φ(X) + ψ(Y ), and h ⊗ := h(X) • (Y -X), with the convention ∞ -∞ = ∞.
For a Polish space X , we denote by B(X ) the collection of Borel subsets of X , and P(X ) the set of all probability measures on X , B(X ) . For P ∈ P(X ), we denote by N P the collection of all P-null sets, supp P the smallest closed support of P, and suppP := cl conv suppP the smallest convex closed support of P. For a measurable function f : X -→ R, we denote dom f := {|f | < ∞}, and we use again the convention ∞ -∞ = ∞ to define its integral, and denote

P[f ] := E P [f ] = X f dP = X f (x)P(dx) for all P ∈ P(X ).
Let Y be another Polish space, and P ∈ P(X × Y). The corresponding conditional kernel2 P x is defined µ-a.e. by: P(dx, dy) = µ(dx) ⊗ P x (dy), where µ := P • X -1 .

We denote by L 0 (X , Y) the set of Borel measurable maps from X to Y. We denote for simplicity L 0 (X ) := L 0 (X , R) and L 0 + (X ) := L 0 (X , R+ ). Let A be a σ-algebra of X , we denote by L A (X , Y) the set of A-measurable maps from X to Y. For a measure m on X , we denote L 1 (X , m) := {f ∈ L 0 (X ) : m[|f |] < ∞}. We also denote simply ,m). We denote by C the collection of all finite convex functions f : R d -→ R. We denote by ∂f (x) the corresponding subgradient at any point x ∈ R d . We also introduce the collection of all measurable selections in the subgradient, which is nonempty by Lemma 2.9.2,

L 1 (m) := L 1 ( R, m) and L 1 + (m) := L 1 + ( R+
∂f := p ∈ L 0 (R d , R d ) : p(x) ∈ ∂f (x) for all x ∈ R d .
We finally denote f ∞ := lim inf n→∞ f n , for any sequence (f n ) n≥1 of real numbers, or of real-valued functions.

Main results

Throughout this paper, we consider two probability measures µ and ν on R d with finite first order moment, and µ ⪯ ν in the convex order, i.e. ν(f

) ≥ µ(f ) for all f ∈ C. Using the convention ∞ -∞ = ∞, we may define (ν -µ)(f ) ∈ [0, ∞] for all f ∈ C.
We denote by M(µ, ν) the collection of all probability measures on R d × R d with marginals P • X -1 = µ and P • Y -1 = ν. Notice that M(µ, ν) ̸ = ∅ by Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF].

An M(µ, ν)-polar set is an element of ∩ P∈M(µ,ν) N P . A property is said to hold M(µ, ν)-quasi surely (abbreviated as q.s.) if it holds on the complement of an M(µ, ν)-polar set.

The irreducible convex paving

The next first result shows the existence of a maximum support martingale transport plan, i.e. a martingale interpolating measure P whose disintegration P x has a maximum convex hull of supports among all measures in M(µ, ν). Theorem 2.2.1. There exists P ∈ M(µ, ν) such that for all P ∈ M(µ, ν), supp P X ⊂ supp P X , µ -a.s.

(2.2.1)

Furthermore supp P X is µ-a.s. unique, and we may choose this kernel so that (i) x -→ supp P x is analytically measurable3 R d -→ K, (ii) x ∈ I(x) := ri supp P x , for all x ∈ R d , and

I(x), x ∈ R d is a partition of R d .
This Theorem will be proved in Subsection 2.6.3. The (µ-a.s. unique) set valued map I(X) paves R d by its image by (ii) of Theorem 2.2.1. By (2.2.1), this paving is stable by all P ∈ M(µ, ν):

Y ∈ cl I(X), M(µ, ν) -q.s. (2.2.2)
Finally, the measurability of the map I in the Polish space K allows to see it as a random variable, which allows to condition probabilistic events to X ∈ I, even when these components are all µ-negligible when considered apart from the others. Under the conditions of Theorem 2.2.1, we call such I(X) the irreducible convex paving associated to (µ, ν). Now we provide an important counterexample proving that for some (µ, ν) in dimension larger than 1, particular couplings in M(µ, ν) may define different pavings.

Example 2.2.2. In R 2 , we introduce x 0 := (0, 0), x 1 := (1, 0), y 0 := x 0 , y -1 := (0, -1), y 1 := (0, 1), and y 2 := (2, 0). Then we set µ := 1 2 (δ x 0 + δ x 1 ) and ν := 1 8 (4δ y 0 + δ y -1 + δ y 1 + 2δ y 2 ). We can show easily that M(µ, ν) is the nonempty convex hull of P 1 and P 2 where

P 1 := 1 8 4δ x 0 ,y 0 + 2δ x 1 ,y 2 + δ x 1 ,y 1 + δ x 1 ,y -1
and

P 2 := 1 8 2δ x 0 ,y 0 + δ x 0 ,y 1 + δ x 0 ,y -1 + 2δ x 1 ,y 0 + 2δ x 1 ,y 2 y 1 x 0 y 0 x 1 y 2 y -1 P 1 y 1 x 0 y 0 x 1 y 2 y -1 P 2 y 1 x 0 y 0 x 1 y 2 y -1 C P2 (x 1 ) C P2 (x 0 ) y 1 x 0 y 0 x 1 y 2 y -1 C P1 (x 1 ) C P1 (x 0 )
Fig. 2.1 The extreme probabilities and associated irreducible paving.

(i) The Ghoussoub-Kim-Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] (GKL, hereafter) irreducible convex paving. Let

c 1 = 1 {X=Y } , c 2 = 1 -c 1 = 1 {X̸ =Y } ,
and notice that P i is the unique optimal martingale transport plan for c i , i = 1, 2. Then, it follows that the corresponding P i -irreducible convex paving according to the definition of [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] are given by C P 1 (x 0 ) = {x 0 }, C P 1 (x 1 ) = ri conv{y 1 , y -1 , y 2 }, and C P 2 (x 0 ) = ri conv{y 1 , y -1 }, C P 2 (x 1 ) = ri conv{y 0 , y 2 }. (ii) Our irreducible convex paving. The irreducible components are given by I(x 0 ) = ri conv(y 1 , y -1 ) and I(x 1 ) = ri conv(y 1 , y -1 , y 2 ).

To see this, we use the characterization of Proposition 2.2.4. Indeed, as M(µ, ν) = conv(P 1 , P 2 ), for any P ∈ M(µ, ν), P ≪ P := P 1 +P 2 2 , and supp P x ⊂ conv supp P x for x = x 0 , x 1 . Then I(x) = riconv supp P x for x = x 0 , x 1 (i.e. µ-a.s.) by Proposition 2.2.4.

Remark 2.2.3. In the one dimensional case, a convex paving which is invariant with respect to some P ∈ M(µ, ν) is automatically invariant with respect to all P ∈ M(µ, ν). Given a particular coupling P ∈ M(µ, ν), the finest convex paving which is P-invariant roughly corresponds to the GKL convex paving constructed in [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. Then Example 2.2.2 shows that this does not hold any more in dimension greater than one.

Furthermore, in dimension one the "restriction" ν I := I P(dx, •) does not depend on the choice of the coupling P ∈ M(µ, ν). Once again Example 2.2.2 shows that it does not hold in higher dimension. Conditions guaranteeing that this property still holds in higher dimension will be investigated in [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF].

Behavior on the boundary of the components

For a probability measure P on a topological space, and a Borel subset A, P| A := P[• ∩ A] denotes its restriction to A. Proposition 2.2.4. We may choose P ∈ M(µ, ν) in Theorem 2.2.1 so that for all

P ∈ M(µ, ν) and y ∈ R d , µ P X [{y}] > 0 ≤ µ P X [{y}] > 0 ,
and supp P X | ∂I(X) ⊂ supp P X | ∂I(X) , µ -a.s. (i) The set-valued maps J(X) := I(X) ∪ y ∈ R d : ν[
y] > 0, and P X {y} > 0 , and J(X) := I(X)∪supp P X | ∂I(X) are µ-a.s. independent of the choice of P, and Y ∈ J(X), M(µ, ν)-q.s. (ii) We may chose the kernel P X so that the map J is convex valued, I ⊂ J ⊂ J ⊂ cl I, and both J and J are constant on I(x), for all x ∈ R d .

The proof is reported in Subsection 2.6.3.

Structure of polar sets

Here we state the structure of polar sets that will be made more precise by Theorem 2.3.18.

Theorem 2.2.5. A Borel set

N ∈ B(Ω) is M(µ, ν)-polar if and only if N ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ J(X)},
for some (N µ , N ν ) ∈ N µ × N ν and a set valued map J such that J ⊂ J ⊂ J, the map J is constant on I(x) for all x ∈ R d , I(X) ⊂ conv(J(X) \ N ′ ν ), µ-a.s. for all N ′ ν ∈ N ν , and Y ∈ J(X), M(µ, ν)-q.s.

The one-dimensional setting

In the one-dimensional case, the decomposition into irreducible components and the structure of M(µ, ν)-polar sets were introduced in Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] and Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], respectively.

Let us see how the results of this paper reduce to the known concepts in the one dimensional case. First, in the one-dimensional setting, I(x) consists of open intervals (at most countable number) or single points. Following [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] Proposition 2.3, we denote the full dimension components (I k ) k≥1 .

We also have J = J (see Proposition 2.2.6 below) therefore, Theorem 2.2.5 is equivalent to Theorem 3.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Similar to (I k ) k≥1 , we introduce the corresponding sequence (J k ) k≥1 , as defined in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Similar to [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], we denote by µ k the restriction of µ to I k , and ν k := x∈I k P[dx, •] is independent of the choice of P ∈ M(µ, ν). We define the Beiglböck & Juillet (BJ)-irreducible components

I BJ , J BJ : x →      (I k , J k ) if x ∈ I k , for some k ≥ 1, {x}, {x} if x / ∈ ∪ k I k .
Proposition 2.2.6. Let d = 1. Then I = I BJ , and J = J = J BJ , µ -a.s.

Proof. By Proposition 2.2.4 (i)-(ii), we may find P ∈ M(µ, ν) such that supp P X = cl I(X), and supp P X | ∂I(X) = J(X), µ-a.s. Notice that as J \ I(R) only consists of a countable set of points, we have J = J. By Theorem 3.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], we have Y ∈ J BJ (X), M(µ, ν)-q.s. Therefore, Y ∈ J BJ (X), P-a.s. and we have J(X) ⊂ J BJ (X), µ-a.s. On the other hand, let k ≥ 1. By the fact that u ν -u µ > 0 on I k , together with the fact that J k \ I k is constituted with atoms of ν, for any

N ν ∈ N ν , J k ⊂ conv(J k \ N ν ). As µ = ν outside of the components, J BJ (X) ⊂ conv(J BJ (X) \ N ν ), µ -a.s. (2.2.3)
Then by Theorem 3.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], as {Y / ∈ J(X)} is polar, we may find N ν ∈ N ν such that J BJ (X) \ N ν ⊂ J(X), µ-a.s. The convex hull of this inclusion, together with (2.2.3) gives the remaining inclusion J BJ (X) ⊂ J(X), µ-a.s.

The equality I(X) = I BJ (X), µ-a.s. follows from the relative interior taken on the previous equality. 2

Preliminaries

The proof of these results needs some preparation involving convex analysis tools.

Relative face of a set

For a subset A ⊂ R d and a ∈ R d , we introduce the face of A relative to a (also denoted a-relative face of A):

rf a A := y ∈ A : (a -ε(y -a), y + ε(y -a)) ⊂ A, for some ε > 0 . (2.3.1)
Figure 2.2 illustrates examples of relative faces of a square S, relative to some points.

x 1

x 2 For later use, we list some properties whose proofs are reported in Section 2.9.4 

x 3 S x 1 x 2 x 3 rf x 3 S x 1 x 2 x 3 rf x 1 S rf x 2 S

Proposition 2.3.1. (i) For

A, A ′ ⊂ R d , we have rf a (A ∩ A ′ ) = rf a (A) ∩ rf a (A ′ ), and rf a A ⊂ rf a A ′ whenever A ⊂ A ′ . Moreover, rf a A ̸ = ∅ iff a ∈ rf a A iff a ∈ A. (ii) For a convex A, rf a A = riA ̸ = ∅ iff a ∈ riA. Moreover, rf a A is convex relatively open, A \ cl rf a A is convex, and if x 0 ∈ A \ cl rf a A and y 0 ∈ A, then [x 0 , y 0 ) ⊂ A \ cl rf a A. Furthermore, if a ∈ A, then dim(rf a cl A) = dim(A) if and only if a ∈ riA. In this case, we have cl rf a cl A = cl ri cl A = cl A = cl rf a A.

Tangent Convex functions

Recall the notation (2.3.1), and denote for all θ : Ω → R:

dom x θ := rf x conv dom θ(x, •). For θ 1 , θ 2 : Ω -→ R, we say that θ 1 = θ 2 , µ⊗pw, if dom X θ 1 = dom X θ 2 , and θ 1 (X, •) = θ 2 (X, •) on dom X θ 1 , µ -a.s.
The crucial ingredient for our main result is the following.

Definition 2.3.2. A measurable function θ

: Ω → R + is a tangent convex function if θ(x, •) is convex, and θ(x, x) = 0, for all x ∈ R d .
We denote by Θ the set of tangent convex functions, and we define

Θ µ := θ ∈ L 0 (Ω, R + ) : θ = θ ′ , µ⊗pw, and θ ≥ θ ′ , for some θ ′ ∈ Θ .
In order to introduce our main example of such functions, let

T p f (x, y) := f (y) -f (x) -p ⊗ (x, y) ≥ 0, for all f ∈ C, and p ∈ ∂f. Then, T(C) := {T p f : f ∈ C, p ∈ ∂f } ⊂ Θ ⊂ Θ µ .
Example 2.3.3. The second inclusion is strict. Indeed, let d = 1, and consider the convex function f := ∞1 (-∞,0) . Then θ ′ := f (Y -X) ∈ Θ. Now let θ = θ ′ + |Y -X|. Notice that since dom X θ ′ = dom X θ = {X}, we have θ ′ = θ, µ⊗pw for any measure µ, and θ ≥ θ ′ . Therefore θ ∈ Θ µ . However, for all x ∈ R d , θ(x, •) is not convex, and therefore θ / ∈ Θ. In higher dimension we may even have X ∈ ri domθ(X, •), and θ(X,

•) is not convex. Indeed, for d = 2, let f : (y 1 , y 2 ) -→ ∞(1 {|y 1 |>1} + 1 {|y 2 |>1} ), so that θ := f (Y -X) ∈ Θ. Let x 0 := (1, 0) and θ := θ ′ + 1 {Y =X+x 0 } . Then, θ = θ ′ , µ⊗pw for any measure µ, and θ ≥ θ ′ . Therefore θ ∈ Θ µ . However, θ / ∈ Θ as θ(x, •) is not convex for all x ∈ R d . Proposition 2.3.4. (i) Let θ ∈ Θ µ , then dom X θ = rf X domθ(X, •) ⊂ domθ(X, •), µ-a.s. (ii) Let θ 1 , θ 2 ∈ Θ µ , then dom X (θ 1 + θ 2 ) = dom X θ 1 ∩ dom X θ 2 , µ-a.s. (iii) Θ µ is a convex cone.
Proof. (i) It follows immediately from the fact that on dom X θ, we have that θ(X, •) is convex and finite, µ-a.s. by definition of Θ µ . Then dom X θ ⊂ rf X domθ(X, •). On the other hand, as domθ(X, •) ⊂ conv domθ(X, •), the monotony of rf x gives the other inclusion: rf X domθ(X,

•) ⊂ dom X θ. (ii) As θ 1 , θ 2 ≥ 0, dom(θ 1 + θ 2 ) = domθ 1 ∩ domθ 2 . Then, for x ∈ R d , conv dom(θ 1 (x, •)+ θ 2 (x, •)) ⊂ conv domθ 1 (x, •) ∩ conv domθ 2 (x, •). By Proposition 2.3.1 (i), dom x (θ 1 + θ 2 ) ⊂ dom x θ 1 ∩ dom x θ 2 , for all x ∈ R d .
As for the reverse inclusion, notice that (i) implies that dom

X θ 1 ∩dom X θ 2 ⊂ domθ 1 (X, •)∩ domθ 2 (X, •) = dom θ 1 (X, •)+θ 2 (X, •) ⊂ conv dom θ 1 (X, •)+θ 2 (X, •) , µ-a.s. Observe that dom x θ 1 ∩ dom x θ 2 is convex,
relatively open, and contains x. Then,

dom X θ 1 ∩ dom X θ 2 = rf X dom X θ 1 ∩ dom X θ 2 ⊂ rf X conv dom θ 1 (X, •) + θ 2 (X, •) = dom X (θ 1 + θ 2 ) µ -a.s.
(iii) Given (ii), this follows from direct verification.

2 Definition 2.3.5. A sequence (θ n ) n≥1 ⊂ L 0 (Ω) converges µ⊗pw to some θ ∈ L 0 (Ω) if dom X (θ ∞ ) = dom X θ and θ n (X, •) -→ θ(X, •), pointwise on dom X θ, µ -a.s.
Notice that the µ⊗pw-limit is µ⊗pw unique. In particular, if θ n converges to θ, µ⊗pw, it converges as well to θ ∞ . Proposition 2.3.6. Let (θ n ) n≥1 ⊂ Θ µ , and θ : Ω -→ R+ , such that

θ n -→ n→∞ θ, µ⊗pw, (i) dom X θ ⊂ lim inf n→∞ dom X θ n , µ-a.s. (ii) If θ ′ n = θ n , µ⊗pw, and θ ′ n ≥ θ n , then θ ′ n -→ n→∞ θ, µ⊗pw; (iii) θ ∞ ∈ Θ µ . Proof. (i) Let x ∈ R d , such that θ n (x, •) converges on dom x θ to θ(x, •). Let y ∈ dom x θ, let y ′ ∈ dom x θ such that y ′ = x -ϵ(y -x)
, for some ϵ > 0. As θ n (x, y) -→ n→∞ θ(x, y), and θ n (x, y ′ ) -→ n→∞ θ(x, y ′ ), then for n large enough, both are finite, and y ∈ dom x θ n . y ∈ lim inf n→∞ dom x θ n , and dom x θ ⊂ lim inf n→∞ dom x θ n . The inclusion is true for µ-a.e. x ∈ R d , which gives the result. (ii) By (i), we have dom 

X θ ⊂ lim inf n→∞ dom X θ n = lim inf n→∞ dom X θ ′ n , µ-a.s. As θ n ≤ θ ′ n , dom X θ ′ ∞ ⊂ dom X θ ∞ ⊂ lim inf n→∞ dom X θ n , µ-a.s. We denote N µ ∈ N µ , the set on which θ n (X, •) does not converge to θ(X, •) on dom X θ(X, •). For x / ∈ N µ , for y ∈ dom x θ, θ n (x, y) = θ ′ n (x,
∈ conv(θ k , k ≥ n), and θ ∞ ∈ Θ µ such that θ n -→ θ ∞ , µ⊗pw as n → ∞.
The proof is reported in Subsection 2.8.2.

Definition 2.3.8. (i) A subset T ⊂ Θ µ is µ⊗pw-Fatou closed if θ ∞ ∈ T for all (θ n ) n≥1 ⊂ T converging µ⊗pw (in particular, Θ µ is µ⊗pw-Fatou closed by Proposition 2.3.6 (iii)). (ii) The µ⊗pw-Fatou closure of a subset A ⊂ Θ µ is the smallest µ⊗pw-Fatou closed set containing A: A := T ⊂ Θ µ : A ⊂ T , and T µ⊗pw-Fatou closed .
We next introduce for a ≥ 0 the set

C a := f ∈ C : (ν -µ)(f ) ≤ a , and 
T (µ, ν) := a≥0
T a , where T a := T(C a ), and

T C a := T p f : f ∈ C a , p ∈ ∂f .
Proposition 2.3.9. T (µ, ν) is a convex cone.

Proof. We first prove that T (µ, ν) is a cone. We consider λ, a > 0, as we have λC a = C λa , and as convex combinations and inferior limit commute with the multiplication by λ, we have λ T a = T λa . Then T (µ, ν) = cone( T 1 ), and therefore it is a cone. We next prove that T a is convex for all a ≥ 0, which induces the required convexity of T (µ, ν) by the non-decrease of the family { T a , a ≥ 0}. Fix 0 ≤ λ ≤ 1, a ≥ 0, θ 0 ∈ T a , and denote T (θ 0 ) := θ ∈ T a : λθ 0 + (1 -λ)θ ∈ T a . In order to complete the proof, we now verify that T (θ 0 ) ⊃ T C a and is µ⊗pw-Fatou closed, so that T (θ 0 ) = T a .

To see that T (θ 0 ) is Fatou-closed, let (θ n ) n≥1 ⊂ T (θ 0 ), converging µ⊗pw. By definition of T (θ 0 ), we have

λθ 0 + (1 -λ)θ n ∈ T a for all n. Then, λθ 0 + (1 -λ)θ n -→ lim inf n→∞ λθ 0 + (1 -λ)θ n , µ⊗pw, and therefore λθ 0 + (1 -λ)θ ∞ ∈ T a , which shows that θ ∞ ∈ T (θ 0 ).
We finally verify that T (θ 0 ) ⊃ T C a . First, for θ 0 ∈ T C a , this inclusion follows directly from the convexity of T C a , implying that T (θ 0 ) = T a in this case. For general θ 0 ∈ T a , the last equality implies that T C a ⊂ T (θ 0 ), thus completing the proof. 2

Notice that even though T(C a ) ⊂ Θ, the functions in T (µ, ν) may not be in Θ as they may not be convex in y on (dom x θ) c for some x ∈ R d (see Example 2.3.3). The following result shows that some convexity is still preserved. Proposition 2.3.10. For all θ ∈ T (µ, ν), we may find N µ ∈ N µ such that for x 1 , x 2 / ∈ N µ , y 1 , y 2 ∈ R d , and λ ∈ [0, 1] with ȳ := λy 1 + (1 -λ)y 2 ∈ dom x 1 θ ∩ dom x 2 θ, we have:

λθ(x 1 , y 1 ) + (1 -λ)θ(x 1 , y 2 ) -θ(x 1 , ȳ) = λθ(x 2 , y 1 ) + (1 -λ)θ(x 2 , y 2 ) -θ(x 2 , ȳ) ≥ 0.
The proof of this claim is reported in Subsection 2.8.1. We observe that the statement also holds true for a finite number of points y 1 , ..., y k .5 

Extended integral

We now introduce the extended (ν -µ)-integral:

ν ⊖µ[θ] := inf a ≥ 0 : θ ∈ T a for θ ∈ T (µ, ν). Proposition 2.3.11. (i) P[θ] ≤ ν ⊖µ[θ] < ∞ for all θ ∈ T (µ, ν) and P ∈ M(µ, ν). (ii) ν ⊖µ[T p f ] = (ν -µ)[f ] for f ∈ C ∩ L 1 (ν) and p ∈ ∂f . (iii) ν ⊖µ is homogeneous and convex. Proof. (i) For a > ν ⊖µ[θ], set S a := F ∈ Θ µ : P[F ]
≤ a for all P ∈ M(µ, ν) . Notice that S a is µ⊗pw-Fatou closed by Fatou's lemma, and contains T(C a ), as for f ∈ C ∩ L 1 (ν) and p ∈ ∂f , P[T p f ] = (ν -µ)[f ] for all P ∈ M(µ, ν). Then S a contains T a as well, which contains θ. Hence, θ ∈ S a and P[θ] ≤ a for all P ∈ M(µ, ν). The required result follows from the arbitrariness of a > ν ⊖µ

[θ]. (ii) Let P ∈ M(µ, ν). For p ∈ ∂f , notice that T p f ∈ T(C a ) ⊂ T a for some a = (ν -µ)[f ], and therefore (ν -µ)[f ] ≥ ν ⊖µ[T p f ]. Then, the result follows from the inequality (ν -µ)[f ] = P[T p f ] ≤ ν ⊖µ[T p f ].
(iii) Similarly to the proof of Proposition 2.3.9, we have λ T a = T λa , for all λ, a > 0. Then with the definition of ν ⊖µ we have easily the homogeneity.

To see that the convexity holds, let 0 < λ < 1, and θ, θ

′ ∈ T (µ, ν) with a > ν ⊖µ[θ], a ′ > ν ⊖µ[θ ′ ],
for some a, a ′ > 0. By homogeneity and convexity of

T 1 , λθ + (1 -λ)θ ′ ∈ T λa+(1-λ)a ′ , so that ν ⊖µ[λθ + (1 -λ)θ ′ ] ≤ λa + (1 -λ)a ′ . The required convexity prop- erty now follows from arbitrariness of a > ν ⊖µ[θ] and a ′ > ν ⊖µ[θ ′ ]. 2 
The following compacteness result plays a crucial role.

Lemma 2.3.12. Let (θ n ) n≥1 ⊂ T (µ, ν) be such that sup n≥1 ν ⊖µ(θ n ) < ∞. Then we can find a sequence

θ n ∈ conv(θ k , k ≥ n) such that θ ∞ ∈ T (µ, ν), θ n -→ θ ∞ , µ⊗pw, and ν ⊖µ( θ ∞ ) ≤ lim inf n→∞ ν ⊖µ(θ n ).
Proof. By possibly passing to a subsequence, we may assume that lim n→∞ (ν ⊖µ)(θ n ) exists. The boundedness of ν ⊖µ(θ n ) ensures that this limit is finite. We next introduce the sequence θ n of Proposition 2.3.7. Then θ n -→ θ ∞ , µ ⊗ pw, and therefore

θ ∞ ∈ T (µ, ν), because of the convergence θ n -→ θ ∞ , µ⊗pw. As (ν ⊖µ)( θ n ) ≤ sup k≥n (ν ⊖µ)(θ k ) by Proposition 2.3.11 (iii), we have that ∞ > lim n→∞ (ν ⊖µ)(θ n ) = lim n→∞ sup k≥n (ν ⊖µ)(θ k ) ≥ lim sup n→∞ (ν ⊖µ)( θ n ). Set l := lim sup n→∞ ν ⊖µ( θ n ). For ϵ > 0, we consider n 0 ∈ N such that sup k≥n 0 ν ⊖µ( θ k ) ≤ l + ϵ. Then for k ≥ n 0 , θ k ∈ T l+2ϵ (µ, ν), and therefore θ ∞ = lim inf k≥n 0 θ k ∈ T l+2ϵ (µ, ν), implying ν ⊖µ( θ) ≤ l + 2ϵ -→ l, as ϵ → 0. Finally, lim inf n→∞ (ν ⊖µ)(θ n ) ≥ ν ⊖µ( θ ∞ ). 2 

The dual irreducible convex paving

Our final ingredient is the following measurement of subsets K ⊂ R d :

G(K) := dim(K) + g K (K) where g K (dx) := e -1 2 |x| 2 (2π) 1 2 dim K λ K (dx), (2.3.2) 
Notice that 0 ≤ G ≤ d + 1 and, for any convex subsets

C 1 ⊂ C 2 of R d , we have G(C 1 ) = G(C 2 ) iff riC 1 = riC 2 iff cl C 1 = cl C 2 . (2.3.3) For θ ∈ L 0 + (Ω), A ∈ B(R d ),
we introduce the following map from R d to the set K of all relatively open convex subsets of R d :

K θ,A (x) := rf x conv(domθ(x, •) \ A) = dom X (θ + ∞1 R d ×A ), (2.3.4) 
for all x ∈ R d . We recall that a function is universally measurable if it is measurable with respect to every complete probability measure that measures all Borel subsets.

Lemma 2.3.13. For θ ∈ L 0 + (Ω) and A ∈ B(R d ), we have: (i) cl conv domθ(X, •) : R d -→ K, dom X θ : R d -→ riK, and K θ,A : R d -→ riK are universally measurable;

(ii) G : K -→ R is Borel measurable; (iii) if A ∈ N ν , and θ ∈ T (µ, ν), then up to a modification on a µ-null set, K θ,A (R d ) ⊂ ri K is a partition of R d with x ∈ K θ,A (x) for all x ∈ R d .
The proof is reported in Subsections 2.4.2 for (iii), 2.7.1 for (ii), and 2.7.2 for (i). The following property is a key-ingredient for our dual decomposition into irreducible convex paving. Proposition 2.3.14. For all (θ, N ν ) ∈ T (µ, ν) × N ν , we have the inclusion Y ∈ cl K θ,Nν (X), M(µ, ν)-q.s.

Proof. For an arbitrary P ∈ M(µ, ν), we have by Proposition 2.3.

11 that P[θ] < ∞. Then, P domθ \ (R d × N ν ) = 1 i.e. P[Y ∈ D X ] = 1 where D x := conv(domθ(x, •) \ N ν ).
By the martingale property of P, we deduce that

X = E P [Y 1 Y ∈D X |X] = (1 -Λ)E K + ΛE D , µ -a.s. Where Λ := P X [Y ∈ D X \ cl K θ,Nν (X)], E D := E P X [Y |Y ∈ D X \ cl K θ,Nν (X)], E K := E P X [Y |Y ∈ cl K θ,Nν (X)]
, and P X is the conditional kernel to X of P. We have

E K ∈ cl rf X D X ⊂ D X and E D ∈ D X \ cl rf X D X because of the convexity of D X \ cl rf X D X given by Proposition 2.3.1 (ii) (D X is convex). The lemma also gives that if Λ ̸ = 0, then E P [Y |X] = ΛE D + (1 -Λ)E K ∈ D X \ cl K θ,Nν (X). This implies that {Λ ̸ = 0} ⊂ {E P [Y |X] ∈ D X \ cl K θ,Nν (X)} ⊂ {E P [Y |X] / ∈ K θ,Nν (X)} ⊂ {E P [Y |X] ̸ = X}.
Then P[Λ ̸ = 0] = 0, and therefore

P Y ∈ D X \ cl K θ,Nν (X) = 0. Since P[Y ∈ D X ] = 1, this shows that P[Y ∈ cl K θ,Nν (X)] = 1. 2 
In view of Proposition 2.3.14 and Lemma 2.3.13 (iii), we introduce the following optimization problem which will generate our irreducible convex paving decomposition:

inf (θ,Nν )∈ T (µ,ν)×Nν µ[G(K θ,Nν )].
(2.3.5)

The following result gives another possible definition for the irreducible paving.

Proposition 2.3.15. (i)

We may find a µ-a.s. unique universally measurable minimizer K := K θ, Nν : R d → K of (2.3.5), for some ( θ, N ν ) ∈ T (µ, ν) × N ν ;

(ii) for all θ ∈ T (µ, ν) and N ν ∈ N ν , we have K(X) ⊂ K θ,Nν (X), µ-a.s;

(iii) we have the equality K(X) = I(X), µ-a.s.

In item (i), the measurability of K is induced by Lemma 2.3.13 (i). Existence and uniqueness, together with (ii), are proved in Subsection 2.4.1. finally, the proof of (iii) is reported in Subsection 2.6. 

N ν := ∅ ∈ N ν ) is θ := lim inf n→∞ T pn f n ,
where f n := nf , p n := np for some p ∈ ∂f , and f (x) := dist x, aff(y 1 , y -1 ) + dist x, aff(y 1 , y 2 ) + dist x, aff(y 2 , y -1 ) .

One can easily check that µ[f ] = ν[f ] for any n ≥ 1: f, f n ∈ C 0 . These functions separate I(x 0 ), I(x 1 ) and I(x 0 ) ∪ I(x 1 ) c . Notice that in this example, we may as well take θ := 0, and N ν := {y -1 , y 0 , y 1 , y 2 } c , which minimizes the optimization problem as well.

Structure of polar sets

Let θ ∈ T (µ, ν), we denote the set valued map J θ (X) := dom θ(X, •) ∩ J(X), where J is introduced in Proposition 2.2.4.

Remark 2.3.17. Let θ ∈ T (µ, ν), up to a modification on a µ-null set, we have Y ∈ J θ (X), M(µ, ν) -q.s, J ⊂ J θ ⊂ J, and J θ constant on I(x), for all x ∈ R d .

These claims are a consequence of Proposition 2.6.2 together with Lemma 2.6.6.

Our second main result shows the importance of these set-valued maps:

Theorem 2.3.18. A Borel set N ∈ B(Ω) is M(µ, ν)-polar if and only if N ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ J θ (X)}, for some (N µ , N ν ) ∈ N µ × N ν and θ ∈ T (µ, ν).
The proof is reported in Section 2.6.3. This Theorem is an extension of the onedimensional characterization of polar sets given by Theorem 3.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], indeed in dimension one J = J θ = J by Proposition 2.2.6, together with the inclusion in Remark 2.3.17.

We conclude this section by reporting a duality result which will be used for the proof of Theorem 2.3.18. We emphasize that the primal objective of the accompanying paper De March [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF] is to push further this duality result so as to be suitable for the robust superhedging problem in financial mathematics.

Let c : R d × R d -→ R + , and consider the martingale optimal transport problem:

S µ,ν (c) := sup P∈M(µ,ν) P[c]. (2.3.6)
Notice from Proposition 2.3.11 (i) that S µ,ν (θ) ≤ ν ⊖µ(θ) for all θ ∈ T . We denote by D mod µ,ν (c) the collection of all (φ, ψ, h, θ) in

L 1 + (µ) × L 1 + (ν) × L 0 (R d , R d ) × T (µ, ν) such that S µ,ν (θ) = ν ⊖µ(θ), and φ ⊕ ψ + h ⊗ + θ ≥ c, on {Y ∈ affK θ,{ψ=∞} (X)}.
The last inequality is an instance of the so-called robust superhedging property. The dual problem is defined by:

I mod µ,ν (c) := inf (φ,ψ,h,θ)∈D mod µ,ν (c) µ[φ] + ν[ψ] + ν ⊖µ(θ).
Notice that for any measurable function c : Ω -→ R + , any P ∈ M(µ, ν), and any (φ, ψ, h, θ) ∈ D mod µ,ν (c), we have

P[c] ≤ µ[φ] + ν[ψ] + P[θ] ≤ µ[φ] + ν[ψ] + S µ,ν (θ)
, as a consequence of the above robust superhedging inequality, together with the fact that Y ∈ affK θ,{ψ=∞} (X), M(µ, ν)-q.s. by Proposition 2.3.14 This provides the weak duality:

S µ,ν (c) ≤ I mod µ,ν (c). (2.3.7)
The following result states that the strong duality holds for upper semianalytic functions. We recall that a function f : R d → R is upper semianalytic if {f ≥ a} is an analytic set for any a ∈ R. In particular, a Borel function is upper semianalytic. Remark 2.3.20. By allowing h to be infinite in some directions, orthogonal to affK θ,{ψ=∞} (X), together with the convention ∞ -∞ = ∞, we may reformulate the robust superhedging inequality in the dual set as φ ⊕ ψ + h ⊗ + θ ≥ c pointwise.

One-dimensional tangent convex functions

For an interval J ⊂ R, we denote C(K) the set of convex functions on K.

Proposition 2.3.21. Let d = 1, then T (µ, ν) = k 1 {X∈I k } T p k f k : f k ∈ C(J k ), p k ∈ ∂f k , k (ν k -µ k )[f k ] < ∞ ,
M(µ, ν)-q.s. Furthermore, for all such θ ∈ T (µ, ν) and its corresponding

(f k ) k , we have ν ⊖µ(θ) = k (ν k -µ k )[f k ].
Proof. As all functions we consider are null on the diagonal, equality on ∪ k I k × J k implies M(µ, ν)-q.s. equality by Theorem 3.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Let L be the set on the right hand side.

Step 1: We first show ⊂, for a ≥ 0, we denote

L a := {θ ∈ L : k (ν k -µ k )[f k ] ≤ a}.
Notice that L a contains T(C a ) modulo M(µ, ν)-q.s. equality. We intend to prove that L a is µ⊗pw-Fatou closed, so as to conclude that T a ⊂ L a , and therefore T (µ, ν) ⊂ L by the arbitrariness of a ≥ 0.

Let

θ n = k 1 {X∈I k } T p k n f n k ∈ L a converging µ⊗pw. By Proposition 2.3.6, θ n -→ θ := θ ∞ , µ⊗pw. For k ≥ 1, let x k ∈ I k be such that θ n (x k , •) -→ θ(x k , •) on dom x k θ,
and set f k := θ(x k , •). By Proposition 5.5 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], f k is convex on I k , finite on J k , and we may find

p k ∈ ∂f k such that for x ∈ I k , θ(x, •) = T p k f k (x, •). Hence, θ = k 1 {X∈I k } T p k f k , and k (ν k -µ k )[f k ] ≤ a
by Fatou's Lemma, implying that θ ∈ L a , as required.

Step 2: To prove the reverse inclusion ⊃,

let θ = k 1 {X∈I k } T p k f k ∈ L. Let f ϵ k be a convex function defined by f ϵ k := f k on J ϵ k = J k ∩ {x ∈ J k : dist (x, J c k ) ≥ ϵ}, and f ϵ k affine on R \ J ϵ k . Set ϵ n := n -1
, fn = n k=1 f ϵn k , and define the corresponding subgradient in ∂ fn :

pn := p k + ∇( fn -f εn k ) on J εn k , k ≥ 1, and pn := ∇ fn on R \ ∪ k J εn k . We have (ν -µ)[ fn ] = n k=1 (ν k -µ k )[f ϵn k ] ≤ k (ν k -µ k )[f k ] < ∞.
By definition, we see that T pn fn converges to θ pointwise on ∪ k (I k ) 2 and to θ * (x, y) := lim inf ȳ→y θ(x, ȳ) on

∪ k I k × cl I k where, using the convention ∞ -∞ = ∞, θ ′ := θ -θ * ≥ 0, and θ ′ = 0 on ∪ k (I k ) 2 . For k ≥ 1, set ∆ l k := θ ′ (x k , l k )
, and ∆ r k := θ ′ (x k , l k ) where I k = (l k , r k ), and we fix some x k ∈ I k . For positive ϵ < r k -l k 2 , and M ≥ 0, consider the piecewise affine function g ϵ,M k with break points l k + ϵ and r k -ϵ, and:

g ϵ,M k (l k ) = M ∧ ∆ l k , g ϵ,M k (r k ) = M ∧ ∆ r k , g ϵ,M k (l k + ϵ) = 0, and g ϵ,M k (r k -ϵ) = 0.
Notice that g ϵ,M k is convex, and converges pointwise to

g M k := M ∧ θ ′ l k +r k 2 , • on J k , as ϵ → 0, with (ν k -µ k )(g M k ) = ν k [{l k }] (M ∧ ∆ l k ) + ν k [r k ](M ∧ ∆ r k ) ≤ (ν k -µ k )[f k ] -(ν k -µ k )[(f k ) * ] ≤ (ν k -µ k )[f k ],
where (f k ) * is the lower semi-continuous envelop of f k . Then by the dominated convergence theorem, we may find positive

ϵ n,M k < r k -l k 2n such that (ν k -µ k ) g ϵ n,M k ,M k ≤ (ν k -µ k )[f k ] + 2 -k /n. Now let ḡn = n k=1 g ϵ n,n k ,n k
, and p′ n ∈ ∂ḡ n . Notice that T p′ n g n -→ θ ′ pointwise on

∪ k I k × J k , furthermore, (ν -µ)(ḡ n ) ≤ k (ν k -µ k )[f k ] + 1/n ≤ k (ν k -µ k )[f k ] + 1 < ∞.
Then we have θ n := T pn fn + T p′ n ḡn converges to θ pointwise on ∪ k I k × J k , and therefore M(µ, ν)-q.s. by Theorem 3.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Since (ν -µ)( fn + ḡn ) is bounded, we see that (θ n ) n≥1 ⊂ T(C a ) for some a ≥ 0. Notice that θ n may fail to converge µ⊗pw. However, we may use Proposition 2.3.7 to get a sequence θ n ∈ conv(θ k , k ≥ n), and θ ∞ ∈ Θ µ such that θ n -→ θ ∞ , µ⊗pw as n → ∞, and satisfies the same M(µ, ν)-q.s. convergence properties than θ n . Then θ ∞ ∈ T (µ, ν), and θ ∞ = θ, M(µ, ν)-q.s. 2

2.4

The irreducible convex paving 

) n∈N ⊂ T (µ, ν) × N ν with µ[G(K θn,N n ν )] ≤ m + 1/n.
By possibly normalizing the functions θ n , we may assume that ν ⊖µ(θ n ) ≤ 1. Set

θ := n≥1 2 -n θ n and N ν := ∪ n≥1 N n ν ∈ N ν .
Notice that θ is well-defined as the pointwise limit of a sequence of the nonnegative functions θ N := n≤N 2 -n θ n . Since ν ⊖µ θ N ≤ n≥1 2 -n < ∞ by convexity of ν ⊖µ, θ N -→ θ, pointwise, and θ ∈ T (µ, ν) by Lemma 2.3.12, since any convex extraction of ( θ n ) n≥1 still converges to θ. Since θ -1 n ({∞}) ⊂ θ -1 ({∞}), it follows from the

definition of N ν that m + 1/n ≥ µ[G(K θn,N n ν )] ≥ µ[G(K θ, Nν )], hence µ[G(K θ, Nν )] = m as θ ∈ T (µ, ν), and N ν ∈ N ν . (ii) For an arbitrary (θ, N ν ) ∈ T (µ, ν) × N ν , we define θ := θ + θ ∈ T (µ, ν) and Nν := N ν ∪ N ν , so that K θ, Nν ⊂ K θ, Nν . By the non-negativity of θ and θ, we have m ≤ µ[G K θ, Nν ] ≤ µ[G K θ, Nν ] = m. Then G K θ, Nν = G K θ, Nν , µ-a.s. By (2.3.3), we see that, µ-a.s. K θ, Nν = K θ, Nν and K θ, Nν = K θ, Nν = K. This shows that K ⊂ K θ,Nν , µ-a.s. 2

Partition of the space in convex components

This section is dedicated to the proof of Lemma 2.3.13 (iii), which is an immediate consequence of Proposition 2.4.1 (ii).

Proposition 2.4.1. Let θ ∈ T (µ, ν), and A ∈ B(R d ). We may find N µ ∈ N µ such that:

(i) for all x 1 , x 2 / ∈ N µ with K θ,A (x 1 ) ∩ K θ,A (x 2 ) ̸ = ∅, we have K θ,A (x 1 ) = K θ,A (x 2 ); (ii) if A ∈ N ν , then x ∈ K θ,A (x) for x / ∈ N µ ,

and up to a modification of K

θ,A on N µ , K θ,A (R d ) is a partition of R d such that x ∈ K θ,A (x) for all x ∈ R d .
Proof. (i) Let N µ be the µ-null set given by Proposition 2.3.10 for θ. For

x 1 , x 2 / ∈ N µ , we suppose that we may find ȳ ∈ K θ,A (x 1 ) ∩ K θ,A (x 2 ). Consider y ∈ cl K θ,A (x 1 ). As K θ,A (x 1
) is open in its affine span, y ′ := ȳ + ϵ 1-ϵ (ȳ -y) ∈ K θ,A (x 1 ) for 0 < ϵ < 1 small enough. Then ȳ = ϵy + (1 -ϵ)y ′ , and by Proposition 2.3.10, we get

ϵθ(x 1 , y) + (1 -ϵ)θ(x 1 , y ′ ) -θ(x 1 , ȳ) = ϵθ(x 2 , y) + (1 -ϵ)θ(x 2 , y ′ ) -θ(x 2 , ȳ) By convexity of dom x i θ, K θ,A (x i ) ⊂ dom x i θ ⊂ domθ(x i , •). Then θ(x 1 , y ′ ), θ(x 1 , ȳ), θ(x 2 , y ′ ), and θ(x 2 , ȳ) are finite and θ(x 1 , y) < ∞ if and only if θ(x 2 , y) < ∞. Therefore cl K θ,A (x 1 ) ∩ domθ(x 1 , •) ⊂ domθ(x 2 , •). We also have obviously the inclusion cl K θ,A (x 2 ) ∩ domθ(x 2 , •) ⊂ domθ(x 2 , •). Subtracting A, we get cl K θ,A (x 1 ) ∩ domθ(x 1 , •) \ A ∪ cl K θ,A (x 2 ) ∩ domθ(x 2 , •) \ A ⊂ domθ(x 2 , •) \ A.
Taking the convex hull and using the fact that the relative face of a set is included in itself, we see that conv

K θ,A (x 1 ) ∪ K θ,A (x 2 ) ⊂ conv domθ(x 2 , •) \ A . Notice that, as K θ,A (x 2
) is defined as the x 2 -relative face of some set, either x 2 ∈ riK θ,A (x) or K θ,A (x) = ∅ by the properties of rf x 2 . The second case is excluded as we assumed that K θ,A (x 1 ) ∩ K θ,A (x 2 ) ̸ = ∅. Therefore, as K θ,A (x 1 ) and K θ,A (x 2 ) are convex sets intersecting in relative interior points and x 2 ∈ riK θ,A (x 2 ), it follows from Lemma 2.9.1 that

x 2 ∈ ri conv K θ,A (x 1 ) ∪ K θ,A (x 2 ) . Then by Proposition 2.3.1 (ii), rf x 2 conv K θ,A (x 1 ) ∪ K θ,A (x 2 ) = ri conv K θ,A (x 1 ) ∪ K θ,A (x 2 ) = conv K θ,A (x 1 ) ∪ K θ,A (x 2 ) . Then, we have conv K θ,A (x 1 ) ∪ K θ,A (x 2 ) ⊂ rf x 2 conv domθ(x 2 , •) \ A = K θ,A (x 2 ), as rf x 2 is increasing. Therefore K θ,A (x 1 ) ⊂ K θ,A (x 2
) and by symmetry between x 1 and

x 2 , K θ,A (x 1 ) = K θ,A (x 2 ). (ii) We suppose that A ∈ N ν . First, notice that, as K θ,A (X) is defined as the X-relative face of some set, either x ∈ K θ,A (x) or K θ,A (x) = ∅ for x ∈ R d by the properties of rf x . Consider P ∈ M(µ, ν). By Proposition 2.3.14, P[Y ∈ cl K θ,A (X)] = 1. As supp(P X ) ⊂ cl K θ,A (X), µ-a.s., K θ,A (X) is non-empty, which implies that x ∈ K θ,A (x). Hence, {X ∈ K θ,A (X)} holds outside the set N 0 µ := {supp(P X ) ̸ ⊂ cl K θ,A (X)} ∈ N µ . Then we just need to have this property to replace N µ by N µ ∪ N 0 µ ∈ N µ . Finally, to get a partition of R d , we just need to redefine K θ,A on N µ . If x ∈ x ′ / ∈Nµ K θ,A (x ′ ) then by definition of N µ , the set K θ,A (x ′ ) is independent of the choice of x ′ / ∈ N µ such that x ∈ K θ,A (x ′ ): indeed, if x ′ 1 , x ′ 2 / ∈ N µ satisfy x ∈ K θ,A (x ′ 1 ) ∩ K θ,A (x ′ 2 ), then in particular K θ,A (x ′ 1 ) ∩ K θ,A (x ′ 2 ) is non-empty, and therefore K θ,A (x ′ 1 ) = K θ,A (x ′ 2 ) by (i). We set K θ,A (x) := K θ,A (x ′ ). Otherwise, if x / ∈ x ′ / ∈Nµ K θ,A (x ′ ), we set K θ,A (x) := {x} which is trivially convex and relatively open. With this definition, K θ,A (R d ) is a partition of R d . 2 

Proof of the duality

For simplicity, we denote Val(ξ 

) := µ[φ] + ν[ψ] + ν ⊖µ(θ), for ξ := (φ, ψ, h, θ) ∈ D mod µ,ν (c).

Existence of a dual optimizer

ξ n ∈ D mod µ,ν (c n ), n ∈ N, be such that c n -→ c, pointwise, and Val(ξ n ) -→ S µ,ν (c) < ∞ as n → ∞.
Then there exists ξ

∈ D mod µ,ν (c) such that Val(ξ n ) -→ Val(ξ) as n → ∞. Proof. Denote ξ n := (φ n , ψ n , h n , θ n ), and observe that the convergence of Val(ξ n ) implies that the sequence µ(φ n ), ν(ψ n ), ν ⊖µ(θ n ) n
is bounded, by the non-negativity of φ n , ψ n and ν ⊖µ(θ n ). We also recall the robust superhedging inequality

φ n ⊕ ψ n + h ⊗ n + θ n ≥ c n , on {Y ∈ affK θn,{ψn=∞} (X)}, n ≥ 1.
(2.5.1)

Step 1. By Komlòs Lemma together with Lemma 2.3.12, we may find a sequence

( φ n , ψ n , θ n ) ∈ conv{(φ k , ψ k , θ k ), k ≥ n} such that φ n -→ φ := φ ∞ , µ -a.s., ψ n -→ ψ := ψ ∞ , ν -a.s., and 
θ n -→ θ := θ ∞ ∈ T (µ, ν), µ ⊗ pw.
Set φ := ∞ and ψ := ∞ on the corresponding non-convergence sets, and observe that µ[φ] + ν[ψ] < ∞, by the Fatou Lemma, and therefore

N µ := {φ = ∞} ∈ N µ and N ν := {ψ = ∞} ∈ N ν . We denote by ( h n , c n ) the same convex extractions from {(h k , c k ), k ≥ n}, so that the sequence ξ n := ( φ n , ψ n , h n , θ n ) inherits from (2.5.1) the robust superhedging property, as for θ 1 , θ 2 ∈ T (µ, ν), ψ 1 , ψ 2 ∈ L 1 + (R d ), and 0 < λ < 1, we have affK λθ 1 +(1-λ)θ 2 ,{λψ 1 +(1-λ)ψ 2 =∞} ⊂ affK θ 1 ,{ψ 1 =∞} ∩ affK θ 2 ,{ψ 2 =∞} : φ n ⊕ ψ n + θ n + h ⊗ n ≥ c n ≥ 0, pointwise on affK θn,{ ψn=∞} (X). (2.5.2)
Step 2. Next, notice that

l n := h ⊗ n - := max -h ⊗ n , 0 ∈ Θ for all n ∈ N.
By the convergence Proposition 2.3.7, we may find convex combinations l n := k≥n λ n k l k -→ l := l ∞ , µ ⊗ pw. Updating the definition of φ by setting φ := ∞ on the zero µ-measure set on which the last convergence does not hold on (∂ x doml) c , it follows from (2.5.2), and the fact that affK θ,{ψ=∞} ⊂ lim inf n→∞ affK θn,{ ψn=∞} , that

l = l ∞ ≤ lim inf n k≥n λ n k φ k ⊕ ψ k + θ k ≤ φ ⊕ ψ + θ, pointwise on Y ∈ affK θ,{ψ=∞} (X) .
where θ := lim inf n k≥n λ n k θ k ∈ T (µ, ν). As {φ = ∞} ∈ N µ , by possibly enlarging N µ , we assume without loss of generality that {φ = ∞} ⊂ N µ , we see that dom l ⊃

(N c µ × N c ν ) ∩ dom θ ∩ Y ∈ affK θ,{ψ=∞} ( 
X) , and therefore

K θ,{ψ=∞} (X) ⊂ dom X l ′ ⊂ dom l ′ (X, •), µ-a.s. (2.5.3) Step 3. Let h n := k≥n λ n k h k . Then b n := h ⊗ n + l n = k≥n λ n k h ⊗ k +
defines a nonnegative sequence in Θ. By Proposition 2.3.7, we may find a sequence b n =:

h ⊗ n + l n ∈ conv(b k , k ≥ n) such that b n -→ b := b ∞ , µ ⊗ pw, where b takes values in [0, ∞]. b n (X, •) -→ b(X, •) pointwise on dom X b, µ-a.s. Combining with (2.5.3), this shows that h ⊗ n (X, •) -→ (b -l)(X, •), pointwise on dom X b ∩ K θ,{ψ=∞} (X), µ -a.s. (b -l)(X, •) = lim inf n h ⊗ n (X, •), pointwise on K θ,{ψ=∞} (X) (where l is a limit of l n ), µ-a.s. Clearly, on the last convergence set, (b -l)(X, •) > -∞ on K θ,{ψ=∞} (X), and we now argue that (b-l)(X, •) < ∞ on K θ,{ψ=∞} (X), therefore K θ,{ψ=∞} (X) ⊂ dom X b,
so that we deduce from the structure of h ⊗ n that the last convergence holds also on affK θ,{ψ=∞} (X):

h ⊗ n (X, •) -→ (b -l)(X, •) =: h ⊗ (X, •), (2.5.4) 
pointwise on K θ,{ψ=∞} (X), µ -a.s.

Indeed, let x be an arbitrary point of the last convergence set, and consider an arbitrary y ∈ K θ,{ψ=∞} (x). By the definition of K θ,{ψ=∞} , we have x ∈ riK θ,{ψ=∞} (x), and we may therefore find y ′ ∈ K θ,{ψ=∞} (x) with x = py + (1 -p)y ′ for some p ∈ (0, 1). Then,

p h ⊗ n (x, y) + (1 -p) h ⊗ n (x, y ′ ) = 0. Sending n → ∞, by concavity of the lim inf, this provides p(b -l)(x, y) + (1 -p)(b -l)(x, y ′ ) ≤ 0, so that (b -l)(x, y ′ ) > -∞ implies that (b -l)(x, y) < ∞.
Step 4. Notice that by dual reflexivity of finite dimensional vector spaces, (2.5.4) defines a unique h(X) in the vector space affK θ,{ψ=∞} (X)-X, such that (b-l)(X, •) = h ⊗ (X, •) on affK θ,{ψ=∞} (X). At this point, we have proceeded to a finite number of convex combinations which induce a final convex combination with coefficients ( λk n ) k≥n≥1 . Denote ξn := k≥n λk n ξ k , and set θ := θ∞ . Then, applying this convex combination to the robust superhedging inequality (2.5.1), we obtain by sending n → ∞ that (φ

⊕ ψ + h ⊗ + θ)(X, •) ≥ c(X, •) on affK θ,{ψ=∞} (X), µ-a.s. and φ ⊕ ψ + h ⊗ + θ = ∞ on the complement µ null-set. As θ is the liminf of a convex extraction of ( θ n ), we have θ ≥ θ ∞ = θ,
and therefore affK θ,{ψ=∞} ⊂ affK θ,{ψ=∞} . This shows that the limit point ξ := (φ, ψ, h, θ) satisfies the pointwise robust superhedging inequality

φ ⊕ ψ + θ + h ⊗ ≥ c, on Y ∈ affK θ,{ψ=∞} (X) .
(2.5.5)

Step 5. By Fatou's Lemma and Lemma 2.3.12, we have

µ[φ] + ν[ψ] + ν ⊖µ[θ] ≤ lim inf n µ[φ n ] + ν[ψ n ] + ν ⊖µ[θ n ] = S µ,ν (c). (2.5.6) By (2.5.5), we have µ[φ] + ν[ψ] + P[θ] ≥ P[c] for all P ∈ M(µ, ν). Then, µ[φ] + ν[ψ] + S µ,ν [θ] ≥ S µ,ν [c]. By Proposition 2.3.11 (i), we have S µ,ν [θ] ≤ ν ⊖µ[θ]
, and therefore

S µ,ν [c] ≤ µ[φ] + ν[ψ] + S µ,ν [θ] ≤ µ[φ] + ν[ψ] + ν ⊖µ[θ] ≤ S µ,ν (c), by (2.5.6). Then we have Val(ξ) = µ[φ] + ν[ψ] + ν ⊖µ[θ] = S µ,ν (c) and S µ,ν [θ] = ν ⊖µ[θ], so that ξ ∈ D mod µ,ν (c). 2 

Duality result

We first prove the duality in the lattice USC b of bounded upper semicontinuous fonctions Ω -→ R + . This is a classical result using the Hahn-Banach Theorem, the proof is reported for completeness.

Lemma 2.5.2. Let f ∈ USC b , then S µ,ν (f ) = I mod µ,ν (f ).
Proof. We have S µ,ν (f ) ≤ I mod µ,ν (f ) by weak duality (4.1.5), let us now show the converse inequality S µ,ν (f ) ≥ I mod µ,ν (f ). By standard approximation technique, it suffices to prove the result for bounded continuous f . We denote by C l (R d ) the set of continuous mappings R d → R with linear growth at infinity, and by

C b (R d , R d ) the set of continuous bounded mappings R d -→ R d . Define D(f ) := ( φ, ψ, h) ∈ C l (R d ) × C l (R d ) × C b (R d , R d ) : φ ⊕ ψ + h⊗ ≥ f ,
and the associated I µ,ν (f ) := inf ( φ, ψ, h)∈D(f ) µ( φ) + ν( ψ). By Theorem 2.1 in Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF], and Lemma 2.5.3 below, we have

S µ,ν (f ) = I µ,ν (f ) = inf ( φ, ψ, h)∈D(f ) µ( φ) + ν( ψ) ≥ I mod µ,ν (f ),
which provides the required result. 2

Proof of Theorem 2.3. [START_REF] Beiglböck | Monotone martingale transport plans and skorohod embedding[END_REF] The existence of a dual optimizer follows from a direct application of the compactness Lemma 2.5.1 to a minimizing sequence of robust superhedging strategies.

As for the extension of duality result of Lemma 2.5.2 to non-negative upper semianalytic functions, we shall use the capacitability theorem of Choquet, similar to [START_REF] Kellerer | Duality theorems for marginal problems[END_REF] and [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Let [0, ∞] Ω denote the set of all nonnegative functions Ω → [0, ∞], and USA + the sublattice of upper semianalytic functions. Note that USC b is stable by infimum.

Recall that a USC b -capacity is a monotone map C : [0, ∞] Ω -→ [0, ∞], sequentially continuous upwards on [0, ∞] Ω , and sequentially continuous downwards on USC b . The Choquet capacitability theorem states that a USC b -capacity C extends to USA + by:

C(f ) = sup C(g) : g ∈ USC b and g ≤ f for all f ∈ USA + .
In order to prove the required result, it suffices to verify that S µ,ν and I mod µ,ν are USC b -capacities. As M(µ, ν) is weakly compact, it follows from similar argument as in Prosposition 1.21, and Proposition 1.26 in Kellerer [START_REF] Kellerer | Duality theorems for marginal problems[END_REF] that S µ,ν is a USC b -capacity. We next verify that I mod µ,ν is a USC b -capacity. Indeed, the upwards continuity is inherited from S µ,ν together with the compactness lemma 2.5.1, and the downwards continuity follows from the downwards continuity of S µ,ν together with the duality result on USC b of Lemma 2.5. Proof. Let us consider ( φ, ψ, h) ∈ D(c). Then φ ⊕ ψ + h⊗ ≥ c ≥ 0, and therefore

ψ(y) ≥ f (y) := sup x∈R d -φ(x) -h(x) • (y -x).
Clearly, f is convex, and f (x) ≥ -φ(x) by taking value x = y in the supremum. Hence ψ -f ≥ 0 and φ + f ≥ 0, implying in particular that f is finite on R d . As φ and ψ have

linear growth at infinity, f is in L 1 (ν) ∩ L 1 (µ). We have f ∈ C a for a = ν[f ] -µ[f ] ≥ 0. Then we consider p ∈ ∂f and denote θ := T p f . θ ∈ T C a ⊂ T (µ, ν). Then denoting φ := φ + f , ψ := ψ -f , and h := h + p, we have ξ := (φ, ψ, h, θ) ∈ D mod µ,ν (c) and µ[ φ] + ν[ ψ] = µ[φ] + ν[ψ] + (ν -µ)[f ] = µ[φ] + ν[ψ] + ν ⊖µ[θ] = Val(ξ).

Polar sets and maximum support martingale plan 2.6.1 Boundary of the dual paving

Consider the optimization problems:

inf

(θ,Nν )∈ T (µ,ν)×Nν µ G(R θ,Nν ) , (2.6.1) with R θ,Nν := cl conv domθ(X, •) ∩ ∂ K(X) ∩ N c ν , and for y ∈ R d we consider inf (θ,Nν )∈ T (µ,ν)×Nν µ y ∈ ∂ K(X) ∩ domθ(X, •) ∩ N c ν . (2.6.2)
These problems are well defined by the following measurability result, whose proof is reported in Subsection 2.7.2.

Lemma 2.6.1. Let F : R d -→ K, γ-measurable. Then we may find

N γ ∈ N γ such that 1 Y ∈F (X) 1 X / ∈Nγ is Borel measurable, and if X ∈ riF (X) convex, γ-a.s., then 1 Y ∈∂F (X) 1 X /
∈Nγ is Borel measurable as well.

By the same argument than that of the proof of existence and uniqueness in Proposition 2.3.15, we see that the problem (2.6.1), (resp. (2.6.2) for y ∈ R d ) has an optimizer (θ

* , N * ν ) ∈ T (µ, ν) × N ν , (resp. (θ * y , N * ν,y ) ∈ T (µ, ν) × N ν ). Furthermore, we have that the map D := R θ * ,N * ν , (resp. D y (x) := {y} if y ∈ ∂ K(x) ∩ domθ * y (x, •) ∩ N * ν,y
, and ∅ otherwise, for x ∈ R d ) does not depend on the choice of (θ * , N * ν ), (resp. θ * y ) up to a µ-negligible modification.

We define K := D ∪ K, and K θ (X) := domθ(X, •) ∩ K(X) for θ ∈ T (µ, ν). Notice that if y ∈ R d is not an atom of ν, we may chose N ν,y containing y, which means that Problem (2.6.2) is non-trivial only if y is an atom of ν. We denote atom(ν), the (at most countable) atoms of ν, and define the mapping

K := (∪ y∈atom(ν) D y ) ∪ K, Proposition 2.6.2. Let θ ∈ T (µ, ν). Up to a modification on a µ-null set, we have (i) K is convex valued, moreover Y ∈ K(X), and Y ∈ K θ (X), M(µ, ν)-q.s. (ii) K ⊂ K ⊂ K θ ⊂ K ⊂ cl K, (iii) K, K θ , and K are constant on K(x), for all x ∈ R d . Proof. (i) For x ∈ R d , K(x) = D(x) ∪ K(x). Let y 1 , y 2 ∈ K(x), λ ∈ (0, 1), and set y := λy 1 + (1 -λ)y 2 . If y 1 , y 2 ∈ K(x), or y 1 , y 2 ∈ D(x)
, we get y ∈ K(x) by convexity of K(x), or D(x). Now, up to switching the indices, we may assume that y 1 ∈ K(x), and

y 2 ∈ D(x) \ K(x). As D(x) \ K(x) ⊂ ∂ K(x), y ∈ K(x), as λ > 0. Then y ∈ K(x). Hence, K is convex valued. Since domθ * (X, •)\N * ν ∩ (cl K)\ K ⊂ R θ * ,N * ν , we have the inclusion domθ * (X, •)\ N * ν ∩ cl K ⊂ R θ * ,N * ν ∪ K = K. Then, as Y ∈ domθ * (X, •) \ N * ν , and Y ∈ cl K(X), Y ∈ K(X), M(µ, ν)-q.s. Let θ ∈ T (µ, ν), then Y ∈ domθ(X, •), M(µ, ν)-q.s. Finally we get Y ∈ domθ(X, •)∩ K(X) = K θ (X), M(µ, ν)-q.s. (ii) As R θ,Nν (X) ⊂ cl conv∂ K(X) = cl K(X), K ⊂ cl K. By definition, K θ ⊂ K, and K ⊂ K. For y ∈ atom(ν), and θ 0 ∈ T (µ, ν), by minimality, D y (X) ⊂ domθ 0 (X, •) ∩ ∂ K(X), µ -a.s.
(2.6.3) Applying (2.6.3) for θ 0 = θ, we get D y ⊂ domθ(X, •), and for θ 0 = θ * , D y (X) ⊂ K(X), µ-a.s. Taking the countable union: K ⊂ K θ , µ-a.s. (This is the only inclusion that is not pointwise). Then we change K to K on this set to get this inclusion pointwise.

(iii) For θ 0 ∈ T (µ, ν), let N µ ∈ N µ from Proposition 2.3.10. Let x ∈ N c µ , y ∈ ∂ K(x), and y ′ := x+y 2 ∈ K(x). Then for any other x ′ ∈ K(x) ∩ N c µ , 1 2 θ 0 (x, y) -θ 0 (x, y ′ ) = 1 2 θ 0 (x ′ , x) + 1 2 θ 0 (x ′ , y) -θ 0 (x ′ , y ′ ), in particular, y ∈ domθ(x, •) if and only if y ∈ domθ(x ′ , •).
Applying this result to θ, θ * , and θ * y for all y ∈ atom(ν), we get N µ such that for any x ∈ R d , K, K θ , and K are constant on K(x) ∩ N c µ . To get it pointwise, we redefine these mappings to this constant value on 

K(x) ∩ N µ , or to K(x), if K(x) ∩ N c µ = ∅.
(N µ , N ν ) ∈ N µ × N ν and θ ∈ T (µ, ν), we have N ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ K θ (X)}.
Proof. One implication is trivial as Y ∈ K θ (X), M(µ, ν)-q.s. for all θ ∈ T (µ, ν), by Proposition 2.6.2. We only focus on the non-trivial implication. For an M(µ, ν)-polar set N , we have S µ,ν (∞1 N ) = 0, and it follows from the dual formulation of Theorem 2.3.

19 that 0 = Val(ξ) for some ξ = (φ, ψ, h, θ) ∈ D mod µ,ν (∞1 N ). Then, φ < ∞, µ -a.s., ψ < ∞, ν -a.s. and θ ∈ T (µ, ν),
As h is finite valued, and φ, ψ are non-negative functions, the superhedging inequality

φ ⊕ ψ + θ + h ⊗ ≥ ∞1 N on {Y ∈ affK θ,{ψ=∞} (X)} implies that 1 {φ=∞} ⊕ 1 {ψ=∞} + 1 {(domθ) c } ≥ 1 N on {Y ∈ affK θ,{ψ=∞} (X)}. (2.6.4) By Proposition 2.3.15 (ii), we have K(X) ⊂ K θ,{ψ=∞} (X), µ-a.s. Then K(X) ⊂ aff K(X) ⊂ affK θ,{ψ=∞} (X), which implies that K θ (X) := domθ(X, •) ∩ K(X) ⊂ domθ(X, •) ∩ affK θ,{ψ=∞} (X), µ -a.s.
(2.6.5)

We denote

N µ := {φ = ∞} ∪ {K θ (X) ̸ ⊂ domθ(X, •) ∩ affK θ,{ψ=∞} (X)} ∈ N µ , and N ν := {ψ = ∞} ∈ N ν . Then by (2.6.4), 1 N = 0 on ({φ = ∞} c ×{ψ = ∞} c )∩{Y ∈ domθ(X, •)∩ affK θ,{ψ=∞} (X)}, and therefore by (2.6.5), N ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ K θ (X)}. 2 

The maximal support probability

In order to prove the existence of a maximum support martingale transport plan, we introduce the maximization problem.

M := sup P∈M(µ,ν) µ[G(suppP X )]. (2.6.6)
where we rely on the following measurability result whose proof is reported in Subsection 2.7.2.

Lemma 2.6.4. For P ∈ P(Ω), the map suppP X is analytically measurable, and the

map supp P X | ∂ K(X) is µ-measurable.
Now we prove a first Lemma about the existence of a maximal support probability.

Lemma 2.6.5. There exists P ∈ M(µ, ν) such that for all P ∈ M(µ, ν) we have the inclusion supp P X ⊂ supp P X , µ-a.s.

Proof. We proceed in two steps:

Step 1: We first prove existence for the problem (2.6.6). Let (P n ) n≥1 ⊂ M(µ, ν) be a maximizing sequence. Then the measure P := n≥1 2 -n P n ∈ M(µ, ν), and satisfies

suppP n X ⊂ supp P X for all n ≥ 1. Consequently µ[G(supp X P n X )] ≤ µ[G(supp P X )], and therefore M = µ[G(supp P X )].
Step 2: We next prove that suppP X ⊂ supp P X , µ-a.s. for all P ∈ M(µ, ν). Indeed, the measure

P := P+P 2 ∈ M(µ, ν) satisfies M ≥ µ[G(suppP X )] ≥ µ[G(supp P X )] = M , implying that G(suppP X ) = G(supp P X ), µ-a.s. The required result now follows from the inclusion supp P X ⊂ suppP X . 2 
Proof of Proposition 2.3.15 (iii) Let P ∈ M(µ, ν) from Lemma 2.6.5, if we denote S(X) := supp P X , then we have supp(P X ) ⊂ S(X), µ-a.s.

Then {Y / ∈ S(X)} is M(µ, ν)-polar. By Lemma 2.6.1, {Y / ∈ S(X)} ∪ {X / ∈ N ′ µ } is Borel for some N ′ µ ∈ N µ . By Theorem 2.3.18, we see that {Y / ∈ S(X)} ⊂ {Y / ∈ S(X)} ∪ {X / ∈ N ′ µ } ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ K θ (X)}, and therefore {Y ∈ S(X)} ⊃ {X / ∈ N µ } ∩ {Y ∈ K θ (X) \ N ν }, for some N µ ∈ N µ , N ν ∈ N ν , and θ ∈ T (µ, ν). The last inclusion implies that K θ (X) \ N ν ⊂ S(X), µ-a.s. However, by Proposition 2.3.15 (ii), K(X) ⊂ conv domθ(X, •) \ N ν , µ-a.s. Then, since S(X) is closed and convex, we see that cl K(X) ⊂ S(X).
To obtain the reverse inclusion, we recall from Proposition 2.3.

15 (i) that {Y ∈ cl K(X)}, M(µ, ν)-q.s. In particular P[Y ∈ cl K(X)] = 1, implying that S(X) ⊂ cl K(X), µ-a.s. as cl K(X) is closed convex. Finally, recall that by definition I := riS and therefore K(X) = cl I(X), µ-a.s. 2
Lemma 2.6.6. We may choose P ∈ M(µ, ν) in Theorem 2.2.1 so that for all P ∈ M(µ, ν) and y ∈ R d ,

µ P X [{y}] > 0 ≤ µ P X [{y}] > 0 ,
and supp P X | ∂I(X) ⊂ supp P X | ∂I(X) , µ -a.s.
In this case the maps J(X)

:= I(X)∪ y ∈ R d : ν[y] > 0 and P X {y} > 0 , and J(X) := I(X) ∪ supp P X | ∂I(X) are unique µ-a.s. Furthermore J(X) = K(X), J(X) = K(X), and J θ (X) = K θ (X), µ-a.s. for all θ ∈ T (µ, ν).
Proof.

Step 1: By the same argument as in the proof of Lemma 2.6.5, we may find

P ′ ∈ M(µ, ν) such that M ′ := sup P∈M(µ,ν) µ G supp P X | ∂ K(X) (2.6.7) = µ G supp P ′ X | ∂ K(X) .
We also have similarly that supp

P X | ∂ K(X) ⊂ supp P ′ X | ∂ K(X)
, µ-a.s. for all P ∈ M(µ, ν). Then we prove similarly that S ′ (X) := supp P ′ X | ∂ K(X) = D(X), µ-a.s., where recall that D is the optimizer for (2.6.1). Indeed, by the previous step, we have supp(

P X | ∂ K(X) ) ⊂ S ′ (X), µ-a.s. Then we have {Y / ∈ S ′ (X)∪ K(X)} is M(µ, ν)-polar.
By Theorem 2.3.18, we see that

{Y / ∈ S ′ (X) ∪ K(X)} ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ K θ (X) ∪ K(X)}, or equivalently {Y ∈ S ′ (X) ∪ K(X)} ⊃ {X / ∈ N µ } ∩ {Y ∈ K θ (X) \ N ν }, (2.6.8) 
for some N µ ∈ N µ , N ν ∈ N ν , and θ ∈ T (µ, ν). Similar to the previous analysis, we have

K θ (X) \ N ν \ K(X) ⊂ S ′ (X), µ-a.s. Then, since S ′ (X) is closed and convex, we see that D(X) ⊂ S ′ (X).
To obtain the reverse inclusion, we recall from Proposition 2.6.2 that {Y ∈ K(X)}, M(µ, ν)-q.s.

In particular P ′ [Y ∈ K(X) ∪ D(X)] = 1, implying that S ′ (X) ⊂ D(X), µ-a.s. By Proposition 2.3.15 (iii), we have J(X) = (I ∪ S ′ )(X) = ( K ∪ D)(X) = K(X), µ-a.s.
Finally, P+ P ′ 2 is optimal for both problems (2.6.6), and (2.6.7). By definition, the equality J θ (X) = K θ (X), µ-a.s. for θ ∈ T (µ, ν) immediately follows.

Step 2: Let y ∈ atom(ν), if y is an atom of γ 1 ∈ P(R d ) and γ 2 ∈ P(R d ), then y in an atom of λγ 1 + (1 -λ)γ 2 for all 0 < λ < 1. By the same argument as in Step 1, we may find P y ∈ M(µ, ν) such that

M y := sup P∈M(µ,ν) µ P X {y} ∩ cl K(X) > 0 (2.6.9) = µ P y X {y} ∩ cl K(X) > 0 .
We denote S y (X) := supp P y X | aff K(X)∩{y} . Recall that D y is the notation for the optimizer of problem (2.6.2). We consider the set

N := Y / ∈ (cl K(X) \ {y}) ∪ S y (X) . N is polar as Y ∈ cl K(X), q.s.,

and by definition of S

y . Then N ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ K θ (X)}, or equivalently, Y / ∈ (cl K(X) \ {y}) ∪ S y (X) ⊃ {X / ∈ N µ } ∩ {Y ∈ K θ (X) \ N ν }, (2.6.10) for some N µ ∈ N µ , N ν ∈ N ν , and θ ∈ T (µ, ν). Then D y (X) ⊂ K θ (X) \ N ν ⊂ cl K(X) \ {y} ∪ S y (X), µ-a.s. Finally D y (X) ⊂ S y (X), µ-a.s.
On the other hand, S y ⊂ D y , µ-a.s., as if P y X [{y}] > 0, we have θ(X, y) < ∞, µ-a.s. at the corresponding points. Hence, D y (X) = S y (X), µ-a.s. Now if we sum up the countable optimizers for y ∈ atom(ν), with the previous optimizers, then the probability P we get is an optimizer for (2.6.6), (2.6.7), and (2.6.9), for all y ∈ R d (the optimum is 0 if it is not an atom of ν). Furthermore, the µ-a.e. equality of the maps S y and D y for these countable y ∈ atom(ν) is preserved by this countable union, then together with Proposition 2.3.15 (iii), we get J = K, µ-a.s.

2

As a preparation to prove the main Theorem 2.2.1, we need the following lemma, which will be proved in Subsection 2.7.2. Lemma 2.6.7. Let F : R d -→ ri K be a γ-measurable function for some

γ ∈ P(R d ), such that x ∈ F (x) for all x ∈ R d , and {F (x) : x ∈ R d } is a partition of R d .
Then up to a modification on a γ-null set, F can be chosen in addition to be analytically measurable.

Proof of Theorem 2.2.1 Existence holds by Lemma 2.6.5 above, (i) is a consequence of Lemma 2.6.4, and (ii) directly stems from Lemma 2.3.13 (iii) together with Proposition 2.3.15 (iii). Now we need to deal with the measurability issue. Lemma 2.6.7 allows to modify ri supp P X to get (ii) while preserving its analytic measurability, we denote I its modification. However, we need to modify P X to get the result. As supp P X is analytically measurable by Lemma 2.6.4, the set of modification N µ := {supp P X ̸ = cl I(X)} ∈ N µ is analytically measurable. Then we may redefine P X on N µ , so as to preserve a kernel for P. By the same arguments than the proof of Lemma 2.3.13 (ii), the measure-valued map κ X := g I(X) is a kernel thanks to the analytic measurability of I, recall the definition of g K given by (2.3.2). Furthermore, supp κ X = I(X) pointwise by definition. Then a suitable kernel modification from which the result follows is given by

P ′ X := 1 {X∈Nµ} κ X + 1 {X / ∈Nµ} P X .
2

Proof of Proposition 2.2. [START_REF] Aksamit | Robust pricing-hedging duality for american options in discrete time financial markets[END_REF] The existence and the uniqueness are given by Lemma 2.6.6 and the other properties follow from the identity between the J maps and the K maps, also given by the Lemma, together with Proposition 2.6.2. 2

Proof of Theorem 2.3.18 We simply apply Lemma 2.6.6 to replace K θ by J θ in Proposition 2.6.3.

Measurability of the irreducible components 2.7.1 Measurability of G

Proof of Lemma 2.3.13 (ii) As R d is locally compact, the Wijsman topology is locally equivalent to the Hausdorff topology6 , i.e. as n → ∞, K n -→ K for the Wijsman topology if and only if

K n ∩ B M -→ K ∩ B M for the Hausdorff topology, for all M ≥ 0. We first prove that K -→ dim affK is a lower semi-continuous map K → R. Let (K n ) n≥1 ⊂ K with dimension d n ≤ d ′ ≤ d converging to K. We consider A n := aff K n .
As A n is a sequence of affine spaces, it is homeomorphic to a d + 1-uplet. Observe that the convergence of K n allow us to chose this d + 1-uplet to be bounded. Then up to taking a subsequence, we may suppose that A n converges to an affine subspace A of dimension less than d ′ . By continuity of the inclusion under the Wijsman topology,

K ⊂ A and dim K ≤ dim A ≤ d ′ .
We next prove that the mapping

K → g K (K) is continuous on {dim K = d ′ } for 0 ≤ d ′ ≤ d, which implies the required measurability. Let (K n ) n≥1 ⊂ K be a sequence with constant dimension d ′ , converging to a d ′ -dimensional subset, K in K. Define A n := affK n and A := affK, A n converges to A as for any accumulation set A ′ of A n , K ⊂ A ′ and dim A ′ = dim A, implying that A ′ = A. Now we consider the map ϕ n : A n → A, x → proj A (x)
. For all M > 0, it follows from the compactness of the closed ball B M that ϕ n converges uniformly to identity as n → ∞ on B M . Then,

ϕ n (K n ) ∩ B M -→ K ∩ B M as n → ∞, and therefore λ A [ϕ n (K n ∩ B M ) \ K] + λ A [K \ ϕ n (K n ) ∩ B M ] -→ 0.
As the Gaussian density is bounded, we also have

g A [ϕ n (K n ∩ B M )] -→ g A [K ∩ B M ]. We next compare g A [ϕ n (K n ∩ B M )] to g Kn (K n ∩ B M ). As (ϕ n
) is a sequence of linear functions that converges uniformly to identity, we may assume that ϕ n is a C 1 -diffeomorphism. Furthermore, its constant Jacobian J n converges to 1 as n → ∞. Then,

Kn∩B M e -|ϕn(x)| 2 /2 (2π) d ′ /2 λ Kn (dx) = ϕn(Kn∩B M ) e -|y| 2 /2 J -1 n (2π) d ′ /2 λ A (dy) = J -1 n g A [ϕ n (K n ∩ B M )].
As the Gaussian distribution function is 1-Lipschitz, we have

Kn∩B M e -|ϕn(x)| 2 /2 (2π) d ′ /2 λ Kn (dx) -g Kn (K n ∩ B M ) ≤ λ Kn [K n ∩ B M ]|ϕ n -Id A | ∞ , where | • | ∞ is taken on K n ∩ B M . Now for arbitrary ϵ > 0, by choosing M sufficiently large so that g V [V \ B M ] ≤ ϵ for any d ′ -dimensional subspace V , we have |g Kn [K n ] -g K [K]| ≤ |g Kn [K n ∩ B M ] -g A [K ∩ B M ]| + 2ϵ ≤ g Kn [K n ∩ B M ] - Kn∩B M C exp -|ϕ n (x)| 2 2 λ Kn (dx) + J -1 n g A [ϕ n (K n ∩ B M )] -g A [K ∩ B M ] + 2ϵ ≤ 4ϵ,
for n sufficiently large, by the previously proved convergence. Hence

G d ′ := G dim -1 {d ′ } is continuous, implying that G : K -→ d d ′ =0 1 dim -1 {d ′ } (K)G d ′ (K) is Borel-measurable. 2 

Further measurability of set-valued maps

This subsection is dedicated to the proof of Lemmas 2.3.13 (i), 2.6.1, and 2.6.4. In preparation for the proofs, we start by giving some lemmas on measurability of setvalued maps. Let A be a σ-algebra of R d . In practice we will always consider either the σ-algebra of Borel sets, the σ-algebra of analytically measurable sets, or the σ-algebra of universally measurable sets.

Lemma 2.7.1. Let (F n ) n≥1 ⊂ L A (R d , K). Then cl ∪ n≥1 F n and ∩ n≥1 F n are A-measurable.
Proof. The measurability of the union is a consequence of Propositions 2.3 and 2.6 in Himmelberg [START_REF] Himmelberg | Measurable relations[END_REF]. The measurability of the intersection follows from the fact that R d is σ-compact, together with Corollary 4.2 in [START_REF] Himmelberg | Measurable relations[END_REF].

2 Lemma 2.7.2. Let F ∈ L A (R d , K).
Then, cl convF , affF , and cl rf X cl convF are A-measurable.

Proof. The measurability of cl convF is a direct application of Theorem 9.1 in [START_REF] Himmelberg | Measurable relations[END_REF].

We next verify that affF is measurable. Since the values of F are closed, we deduce from Theorem 4.1 in Wagner [START_REF] Wagner | Survey of measurable selection theorems[END_REF], that we may find a measurable x -→ y(x), such that y(x) ∈ F (x) if F (x) ̸ = ∅, for all x ∈ R d . Then we may write affF (x) = cl conv cl ∪ q∈Q y(x) + q (F (x) -y(x)) for all x ∈ R d . The measurability follows from Lemmas 2.7.1, together with the first step of the present proof.

We finally justify that cl rf X cl convF is measurable. We may assume that F takes convex values. By convexity, we may reduce the definition of rf x to a sequential form:

cl rf x F (x)=cl ∪ n≥1 y ∈ R d , y + 1 n (y -x) ∈ F (x) and x - 1 n (y -x) ∈ F (x) = cl ∪ n≥1 y ∈ R d , y + 1 n (y -x) ∈ F (x) ∩ y ∈ R d , x - 1 n (y -x) ∈ F (x) = cl ∪ n≥1 1 n + 1 x + n n + 1 F (x) ∩ (-(n + 1)x -nF (x)) ,
so that the required measurability follows from Lemma 2.7.1. 2

We denote by S the set of finite sequences of positive integers, and Σ the set of infinite sequences of positive integers. Let s ∈ S, and σ ∈ Σ. We shall denote s < σ whenever s is a prefix of σ.

Lemma 2.7.3. Let (F s ) s∈S be a family of universally measurable functions R d -→ K with convex image. Then the mapping cl conv ∪ σ∈Σ ∩ s<σ F s is universally measurable.

Proof. Let U the collection of universally measurable maps from R d to K with convex image. For an arbitrary γ ∈ P(R d ), and F : R d -→ K, we introduce the map

γG * [F ] := inf F ⊂F ′ ∈U γG[F ′ ], where γG[F ′ ] := γ G F ′ (X) for all F ′ ∈ U.
Clearly, γG and γG * are non-decreasing, and it follows from the dominated convergence theorem that γG, and thus γG * , are upward continuous.

Step 1: In this step we follow closely the line of argument in the proof of Proposition 7.42 of Bertsekas and Shreve [START_REF] Bertsekas | Stochastic optimal control: The discrete time case[END_REF]. Set F := cl conv ∪ σ∈Σ ∩ s<σ F s , and let ( Fn ) n a minimizing sequence for γG *

[F ]. Notice that F ⊂ F := ∩ n≥1 Fn ∈ U, by Lemma 2.7.1. Then F is a minimizer of γG * [F ].
For s, s ′ ∈ S, we denote s ≤ s ′ if they have the same length |s| = |s ′ |, and

s i ≤ s ′ i for 1 ≤ i ≤ |s|. For s ∈ S, let R(s) := cl conv ∪ s ′ ≤s ∪ σ>s ′ ∩ s ′′ <σ F s ′′ and K(s) := cl conv ∪ s ′ ≤s ∩ |s ′ | j=1 F s ′ 1 ,...,s ′ j .
Notice that K(s) is universally measurable, by Lemmas 2.7.1 and 2.7.2, and

R(s) ⊂ K(s), cl ∪ s 1 ≥1 R(s 1 ) = F, and cl ∪ s k ≥1 R(s 1 , ..., s k ) = R(s 1 , ..., s k-1 ).
By the upwards continuity of γG * , we may find for all ϵ > 0 a sequence σ ϵ ∈ Σ s.t.

γG * [F ] ≤ γG * [R(σ ϵ 1 )] + 2 -1 ϵ, and γG * [R(σ k-1 )] ≤ γG * [R(σ k )] + 2 -k ϵ, for all k ≥ 1, with the notation σ ε k := (σ ϵ 1 , . . . , σ ε k ).
Recall that the minimizer F and K(s) are in U for all s ∈ S. We then define the sequence

K ϵ k := F ∩ K(σ ϵ k ) ∈ U, k ≥ 1
, and we observe that

(K ϵ k ) k≥1 decreasing, F ϵ := ∩ k≥1 K ϵ k ⊂ F, (2.7.1)
and

γG[K ϵ k ] ≥ γG * [F ] -ϵ = γG[F ] -ϵ, by the fact that R(σ ϵ k ) ⊂ K ϵ k .
We shall prove in Step 2 that, for an arbitrary α > 0, we may find

ε = ε(α) ≤ α such that (2.7.1) implies that γG[F ϵ ] ≥ inf k≥1 γG[K ϵ k ] -α ≥ γG[F ] -ϵ -α. (2.7.2) Now let α = α n := n -1 , ε n := ϵ(α n ), and notice that F := cl conv ∪ n≥1 F ϵn ∈ U, with F ϵn ⊂ F ⊂ F ⊂ F , for all n ≥ 1. Then, it follows from (2.7.2) that γG[F ] = γG[F ],
and therefore F = F = F , γ-a.s. In particular, F is γ-measurable, and we conclude that F ∈ U by the arbirariness of γ ∈ P(R d ).

Step 2: It remains to prove that, for an arbitrary α > 0, we may find ε = ε(α) ≤ α such that (2.7.1) implies (2.7.2). This is the point where we have to deviate from the argument of [START_REF] Bertsekas | Stochastic optimal control: The discrete time case[END_REF] because γG is not downwards continuous, as the dimension can jump down.

Set

A n := {G F (X) -dim F (X) ≤ 1/n}, and notice that ∩ n≥1 A n = ∅. Let n 0 ≥ 1 such that γ[A n 0 ] ≤ 1 2 α d+1 , and set ϵ := 1 2 1 n 0 α d+1 > 0. Then, it follows from (2.7.1) that γ inf n G(K ϵ n ) -dim F ≤ 0 ≤ γ inf n G(K ϵ n ) -G(F ) ≤ n -1 0 +γ G(F ) -dim F ≤ -n -1 0 ≤ n 0 γ G(F ) -γ inf n G(K ϵ n ) + γ A n 0 = n 0 γ G(F ) -inf n γ G(K ϵ n ) + γ A n 0 ≤ n 0 ϵ + 1 2 α d + 1 = α d + 1 , (2.7.3)
where we used the Markov inequality and the monotone convergence theorem. Then:

γ inf n G(K ϵ n ) -G F ϵ ≤ γ 1 {infn G(K ϵ n )-dim F ≤0} inf n G(K ϵ n ) -G F ϵ +1 {infn G(K ϵ n )-dim F >0} inf n G(K ϵ n ) -G F ϵ ≤ γ (d + 1)1 {infn G(K ϵ n )-dim F ≤0} +1 {infn G(K ϵ n )-dim F >0} inf n G(K ϵ n ) -G F ϵ . We finally note that inf n G(K ϵ n ) -G F ϵ = 0 on {inf n G(K ϵ n ) -dim F > 0}. Then (2.7.
2) follows by substituting the estimate in (2.7.3).

2

Proof of Lemma 2.3.13 (i) We consider the mappings θ :

Ω → R+ such that θ = n k=1 λ k 1 C 1 k ×C 2 k
where n ∈ N, the λ k are non-negative numbers, and the C 1 k , C 2 k are closed convex subsets of R d . We denote the collection of all these mappings F. Notice that cl F for the pointwise limit topology contains all L 0 + (Ω). Then for any θ ∈ L 0 + (Ω), we may find a family (θ s ) s∈Σ ⊂ F, such that θ = inf σ∈Σ sup s<σ θ s . For θ ∈ L 0 + (Ω), and n ≥ 0, we denote

F θ : x -→ cl conv domθ(x, •), and F θ,n : x -→ cl conv θ(x, •) -1 ([0, n]). Notice that F θ = cl ∪ n≥1 F θ,n
. Notice as well that F θ,n is Borel measurable for θ ∈ F, and n ≥ 0, as it takes values in a finite set, from a finite number of measurable sets. Let θ ∈ L 0 + (Ω), we consider the associated family (θ s ) s∈Σ ⊂ F, such that θ = inf σ∈Σ sup s<σ θ s . Notice that F θ,n = cl conv ∪ σ∈Σ ∩ s<σ F θs,n is universally measurable by Lemma 2.7.3, thus implying the universal measurability of F θ = cl domθ(X, •) by Lemma 2.7.1.

In order to justify the measurability of dom X θ, we now define

F 0 θ := F θ and F k θ := cl conv(domθ(X, •) ∩ aff rf X F k-1 θ ), k ≥ 1. Note that F k θ = cl ∪ n≥1 cl conv ∪ σ∈Σ ∩ s<σ F θs,n ∩ aff rf x F k-1 θ . Then, as F 0 θ is univer- sally measurable, we deduce that F k θ k≥1
are universally measurable, by Lemmas 2.7.2 and 2.7.3.

As dom X θ is convex and relatively open, the required measurability follows from the claim:

F d θ = cl dom X θ. Hence F d θ (x) = cl dom x θ. Finally, K θ,A = dom X (θ + ∞1 R d ×A ) is universally measurable by the universal measurability of dom X . 2 
Proof of Lemma 2.6.1 We may find (F n ) n≥1 , Borel-measurable with finite image, converging γ-a.s. to F . We denote N γ ∈ N γ , the set on which this convergence does not hold. For ϵ > 0, we denote

F ϵ k (X) := {y ∈ R d : dist y, F k (X) ≤ ϵ}, so that F (x) = ∩ i≥1 lim inf n→∞ F 1/i n (x), for all x / ∈ N γ .
Then, as

1 Y ∈F (X) 1 X / ∈Nγ = inf i≥1 lim inf n→∞ 1 Y ∈F 1/i n (X) 1 X /
∈Nγ , the Borel-measurability of this function follows from the Borel-measurability of each 1 Y ∈F 1/i n (X) . Now we suppose that X ∈ riF (X) convex, γ-a.s. Up to redefining N γ , we may suppose that this property holds on

N c γ , then ∂F (x) = ∩ n≥1 F (x) \ x + n n+1 (F (x) -x) , for x / ∈ N γ . We denote a := 1 Y ∈F (X) 1 X / ∈Nγ .
The result follows from the identity

1 Y ∈∂F (X) 1 X / ∈Nγ = a -sup n≥1 a X, X + n n+1 (Y -X) . 2 Proof of Lemma 2.6.4 Let K Q := {K = conv(x 1 , . . . , x n ) : n ∈ N, (x i ) i≤n ⊂ Q d }. Then suppP x = cl ∪ N ≥1 ∩{K ∈ K Q : suppP x ∩ B N ⊂ K} = cl ∪ N ≥1 ∩ K∈K Q F N K (x),
where

F N K (x) := K if P x [B N ∩ K] = P x [B N ],
and

F N K (x) := R d otherwise. As for any K ∈ K Q and N ≥ 1, the map P X [B N ∩ K] -P X [B N ]
is analytically measurable, then F N K is analytically measurable. The required measurability result follows from lemma 2.7.1. Now, in order to get the measurability of supp(P X | ∂I(X) ), we have in the same way

supp(P X | ∂I(X) ) = cl ∪ n≥1 ∩ K∈K Q F ′N K (x),
where

F ′N K (x) := K if P x [∂I(x) ∩ B N ∩ K] = P x [∂I(x) ∩ B N ],
and

F ′N K (x) := R d other- wise. As P X [∂I(X) ∩ B N ∩ K] = P X [1 Y ∈∂I(X) 1 X / ∈Nµ 1 Y / ∈B N ∩K ], µ-a.s., where N µ ∈ N µ is taken from Lemma 2.6.1, P X [∂I(X) ∩ B N ∩ K] is µ-measurable, as equal µ-a.s. to a Borel function. Then similarly, P X [∂I(X) ∩ B N ∩ K] -P X [∂I(X) ∩ B N ] is µ-measurable, and therefore supp(P X | ∂I(X) ) is µ-measurable. 2
Proof of Lemma 2.6.7 By γ-measurability of F , we may find a Borel function

F B : R d -→ ri K such that F = F B , γ-a.s. Let a Borel N γ ∈ N γ such that F = F B on N c γ .
By the fact that riK is Polish, we may find a sequence (F n ) n≥1 of Borel functions with finite image converging pointwise towards F B when n -→ ∞. We will give an explicit expression for F n that will be useful later in the proof. Let (K n ) n≥1 ⊂ ri K a dense sequence,

F n (x) := argmin K∈(K i ) i≤n dist F B (x), K , (2.7.4)
Where dist is the distance on ri K that makes it Polish, and we chose the K with the smallest index in case of equality.

We fix n ≥ 1, let K ∈ F n (N c γ ), the image of F n outside of N γ , and

A K := F -1 n
{K} . We will modify the image of F n so that it is the same for all

x ′ ∈ F B (x) = F (x), for all x ∈ N c γ ∩ A K . Then we consider the set A ′ K := ∪ x∈N c γ ∩A K F B (x)
, we now prove that this set in analytic. By Theorem 4.2 (b) in [START_REF] Wagner | Survey of measurable selection theorems[END_REF],

GrF B := {Y ∈ cl F B (X)} is a Borel set. Let λ > 0, we define the affine deformation f λ : Ω -→ Ω by f λ (X, Y ) := X, X + λ(Y -X) . By the fact that for k ≥ 1, f 1-1/k (GrF B ) is Borel together with the fact that x ∈ f B (x) for x / ∈ N γ , we have {Y ∈ F B (X)} ∩ {X / ∈ N γ } = ∪ k≥1 f 1-1/k (GrF B ) ∩ {X / ∈ N γ }. Therefore, {Y ∈ F B (X)} ∩ {X / ∈ N γ } is Borel, and so is {Y ∈ F B (X)} ∩ {X ∈ N c γ ∩ A K }. Finally, A ′ K = Y {Y ∈ F B (X)} ∩ {X ∈ N c γ ∩ A K } , therefore, A ′ K
is the projection of a Borel set, which is one of the definitions of an analytic set (see Proposition 7.41 in [START_REF] Bertsekas | Stochastic optimal control: The discrete time case[END_REF]). Now we define a suitable modification of F n by F ′ n (x) := K for all x ∈ A ′ K , we do this redefinition for all K ∈ F B (N c γ ). Notice that thanks to the definition (2.7.4) and the fact that

F B (x) = F B (x ′ ) if x, x ′ / ∈ N γ and x ′ ∈ F B (x) = F (x), we have the inclusion A ′ K ⊂ A K ∪ N γ . Then the redefinitions of F n only hold outside of N γ , furthermore for different K 1 , K 2 ∈ F n (N c γ ), A ′ K 1 ∩ A ′ K 2 =
∅ as the value of F n (x) only depends on the value of F B (x) by (2.7.4). Notice that

N ′ γ := ∪ K∈Fn(N c γ ) A ′ K c = ∪ x / ∈Nγ F B (x) c ⊂ N γ , (2.7.5) 
is analytically measurable, as the complement of an analytic set, and does not depend on n. For x ∈ N ′ γ , we define F ′ n (x) := {x}. Notice that F ′ n is analytically measurable as the modification of a Borel Function on analytically measurable sets. Now we prove that F ′ n converges pointwise when n -→ ∞.

For x ∈ N ′ γ , F ′ n (x) is constant equal to {x}, if x / ∈ N ′ γ , by (2.7.5) x ∈ ∪ x / ∈Nγ F B (x)
, and therefore

F ′ n (x) = F B (x ′ ) = F (x ′ ) for some x ∈ N c
γ , for all n ≥ 1. Then as F ′ n (x ′ ) converges to F (x ′ ), F ′ n (x) converges to F (x). Let F ′ be the pointwise limit of F ′ n . the maps F ′ n are analytically measurable, and therefore, so does F ′ . For all n ≥ 1, F ′ n = F n , γ-a.e. and therefore

F ′ = F B = F , γ-a.e. Finally, F ′ (N c γ ) = F (N c γ ), and ∪F (N c γ ) = (N ′ γ ) c . By property of F , F ′ (N c γ ) is a partition of (N ′ γ ) c such that x ∈ F ′ (x) for all x / ∈ N ′ γ . On N ′ γ , this property is trivial as F ′ (x) = {x} for all x ∈ N ′ γ . 2 

Properties of tangent convex functions 2.8.1 x-invariance of the y-convexity

We first report a convex analysis lemma. 

f * (y) = lim ϵ↘0 f ϵx + (1 -ϵ)y , for all (x, y) ∈ U × cl U.
Proof. f * is the lower semi-continuous envelop of f on U , i.e. the lower semi-continuous envelop of

f ′ := f + ∞1 U c . Notice that f ′ is convex R d -→ R ∪ {∞}.
Then by Proposition 1.2.5 in Chapter IV of [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I: Fundamentals[END_REF], we get the result as

f = f ′ on U . 2 
Proof of Proposition 2.3. [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF] The result is obvious in T(C 1 ), as the affine part depending on x vanishes. We may use N ν = ∅. Now we denote T the set of mappings in Θ µ such that the result from the proposition holds. Then we have T(C 1 ) ⊂ T .

We prove that T is µ⊗pw-Fatou closed. Let (θ n ) n be a sequence in T converging µ⊗pw to θ ∈ Θ µ . Let n ≥ 1, we denote N µ , the set in N µ from the proposition applied to θ n , and let N 0 µ ∈ N µ corresponding to the µ⊗pw convergence of θ n to θ. We denote

N µ := ∪ n∈N N n µ ∈ N µ . Let x 1 , x 2 / ∈ N µ , and ȳ ∈ dom x 1 θ ∩ dom x 2 θ. Let y 1 , y 2 ∈ dom x 1 θ, such that we have the convex combination ȳ = λy 1 + (1 -λ)y 2 , and 0 ≤ λ ≤ 1. Then for i = 1, 2, θ n (x 1 , y i ) -→ θ(x 1 , y i ), and θ n (x 1 , ȳ) -→ θ(x 1 , ȳ), as n → ∞.
Using the fact that θ n ∈ T , for all n, we have ∆ n := λθ n (x i , y 1 ) + (1 -λ)θ n (x i , y 2 ) -θ n (x i , ȳ) ≥ 0, and independent of i = 1, 2.

(2.8.1) Taking the limit n → ∞ gives that θ ∞ (x 2 , y i ) < ∞, and y i ∈ domθ ∞ (x 2 , •). ȳ is interior to dom x 1 θ, then for any y ∈ dom x 1 θ, y ′ := ȳ + ϵ 1-ϵ (ȳ -y) ∈ dom x 1 θ for 0 < ϵ < 1 small enough. Then ȳ = ϵy + (1 -ϵ)y ′ . As we may chose any y ∈ dom x 1 θ, we have dom

x 1 θ ⊂ domθ ∞ (x 2 , •). Then, we have rf x 2 conv(dom x 1 θ ∪ dom x 2 θ) ⊂ rf x 2 conv dom θ ∞ (x 2 , •) = dom x 2 θ. (2.8.2)
By Lemma 2.9.1, as dom

x 1 θ ∩ dom x 2 θ ̸ = ∅, conv(dom x 1 θ ∪ dom x 2 θ) = ri conv(dom x 1 θ ∪ dom x 2 θ). In particular, conv(dom x 1 θ ∪ dom x 2 θ
) is relatively open and contains x 2 , and therefore rf x 2 conv(dom

x 1 θ ∪ dom x 2 θ) = conv(dom x 1 θ ∪ dom x 2 θ). Finally, by (2.8.2), dom x 1 θ ⊂ dom x 2 θ.
As there is a symmetry between x 1 , and x 2 , we have dom x 1 θ = dom x 2 θ. Then we may go to the limit in equation (2.8.1):

∆ ∞ := λθ(x i , y 1 ) + (1 -λ)θ(x i , y 2 ) -θ(x i , ȳ) ≥ 0, (2.8.3)
and independent of i = 1, 2. Now, let y 1 , y 2 ∈ R d , such that we have the convex combination ȳ = λy 1 + (1 -λ)y 2 , and 0 ≤ λ ≤ 1. we have three cases to study. Case 1: y i / ∈ cl dom x 1 θ for some i = 1, 2. Then, as the average ȳ of the y i is in dom x 1 θ, by Proposition 2.3.1 (ii), me may find i ′ = 1, 2 such that

y i ′ / ∈ conv domθ(x 1 , •), thus implying that θ(x 1 , y i ) = ∞. Then λθ(x 1 , y 1 ) + (1 -λ)θ(x 1 , y 2 ) -θ(x 1 , ȳ) = ∞ ≥ 0. As dom x 1 θ = dom x 2 θ
, we may apply the same reasoning to x 2 , we get λθ(x 1 , y 

1 ) + (1 - λ)θ(x 2 , y 2 ) -θ(x 2 , ȳ) = ∞ ≥ 0. We get the result. Case 2: y 1 , y 2 ∈ dom x 1 θ.
(x, •) is convex on dom x θ. Let y ∈ cl dom x 1 θ, for 1 ≥ ϵ > 0, y ϵ := ϵx 1 + (1 -ϵ)y ∈ dom x 1 θ. By (2.8.1), (1 -ϵ)θ n (x 1 , y) - θ n (x 1 , y ϵ ) = (1 -ϵ)θ n (x 2 , y) -θ n (x 2 , y ϵ ). Taking the lim inf, we have (1 -ϵ)θ(x 1 , y) - θ(x 1 , y ϵ ) = (1 -ϵ)θ(x 2 , y) -θ(x 2 , y ϵ ). Now taking ϵ ↘ 0, we have θ(x 1 , y) -θ * (x 1 , y) = θ(x 2 , y) -θ * (x 2 , y). Then the jump of θ(x, •) in y is independent of x = x 1 or x 2 . Now for 1 ≥ ϵ > 0, by (2.8.3) λθ(x 1 , y ϵ 1 ) + (1 -λ)θ(x 1 , y ϵ 2 ) -θ(x 1 , ȳϵ ) = λθ(x 2 , y ϵ 1 ) + (1 -λ)θ(x 2 , y ϵ 2 ) -θ(x 2 , ȳϵ ) ≥ 0.
By going to the limit ϵ ↘ 0, we get

λθ * (x 1 , y 1 ) + (1 -λ)θ * (x 1 , y 2 ) -θ * (x 1 , ȳ) = λθ * (x 2 , y 1 ) + (1 -λ)θ * (x 2 , y 2 ) -θ * (x 2 , ȳ) ≥ 0.
As the (nonnegative) jumps do not depend on x = x 1 or x 2 , we finally get

λθ(x 1 , y 1 ) + (1 -λ)θ(x 1 , y 2 ) -θ(x 1 , ȳ) = λθ(x 2 , y 1 ) + (1 -λ)θ(x 2 , y 2 ) -θ(x 2 , ȳ) ≥ 0.
Finally, T is µ⊗pw-Fatou closed, and convex. T 1 ⊂ T . As the result is clearly invariant when the function is multiplied by a scalar, the Result is proved on T (µ, ν). 2

Compactness

Proof of Proposition 2.3. [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] We first prove the result for θ

= (θ n ) n≥1 ⊂ Θ. De- note conv(θ) := {θ ′ ∈ Θ N : θ ′ n ∈ conv(θ k , k ≥ n), n ∈ N}.
Consider the minimization problem:

m := inf θ ′ ∈conv(θ) µ[G(dom X θ ′ ∞ )], (2.8.4) 
where the measurability of G(dom X θ ′ ∞ ) follows from Lemma 2.3.13.

Step 1: We first prove the existence of a minimizer. Let (θ ′k ) k∈N ∈ conv(θ) N be a minimizing sequence, and define the sequence θ ∈ conv(θ) by:

θ n := (1 -2 -n ) -1 n k=1 2 -k θ ′k n , n ≥ 1.
Then, dom( θ ∞ ) ⊂ k≥1 dom(θ ′k ∞ ) by the non-negativity of θ ′ , and we have the inclusion

θ n -→ n→∞ ∞ ⊂ θ ′k n -→ n→∞ ∞ for some k ≥ 1 . Consequently, dom x θ ∞ ⊂ conv k≥1 domθ ′k ∞ (x, •) ⊂ k≥1 dom x θ ′k ∞ for all x ∈ R d .
Since (θ ′k ) k is a minimizing sequence, and

θ ∈ conv(θ), this implies that µ[G(dom X θ ∞ )] = m.
Step 2: We next prove that we may find a sequence (

y i ) i≥1 ⊂ L 0 (R d , R d ) such that y i (X) ∈ aff(dom X θ ∞ ), (2.8.5) 
and (y i (X)) i≥1 dense in affdom X θ ∞ , µ -a.s.

Indeed, it follows from Lemmas 2.3.13, and 2.7.2 that the map x → aff(dom x θ ∞ ) is universally measurable, and therefore Borel-measurable up to a modification on a µ-null set. Since its values are closed and nonempty, we deduce from the implication (ii) =⇒ (ix) in Theorem 4.2 of the survey on measurable selection [START_REF] Wagner | Survey of measurable selection theorems[END_REF] the existence of a sequence (y i ) i≥1 satisfying (2.8.5).

Step 3: Let m(dx, dy) := µ(dx) ⊗ i≥0 2 -i δ {y i (x)} (dy). By the Komlòs lemma (in the form of Lemma A1.1 in [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF], similar to the one used in the proof of Proposition 5.2 in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]), we may find

θ ∈ conv( θ) such that θ n -→ θ ∞ ∈ L 0 (Ω), m-a.s. Clearly, dom x θ ∞ ⊂ dom x θ ∞ , and therefore µ G(dom X θ ∞ ) ≤ µ G(dom x θ ∞ ) , for all x ∈ R d . This shows that G(dom X θ ∞ ) = G(dom X θ ∞ ), µ -a.s. (2.8.6)
so that θ is also a solution of the minimization problem (2.8.4). Moreover, it follows from (2.3.3) that ri dom X θ ∞ = ri dom X θ ∞ , and therefore aff dom X θ ∞ = aff dom X θ ∞ , µ -a.s.

Step 4: Notice that the values taken by θ ∞ are only fixed on an m-full measure set. By the convexity of elements of Θ in the y-variable, dom X θ n has a nonempty interior in aff(dom X θ ∞ ). Then as µ-a.s., θ n (X, •) is convex, the following definition extends θ ∞ to Ω:

θ ∞ (x, y) := sup a • y + b : (a, b) ∈ R d × R, a • y n (x) + b ≤ θ ∞ (x, y n (x)) for all n ≥ 0 .
This extension coincides with θ ∞ , in (x, y n (x)) for µ-a.e. x ∈ R d , and all n ≥ 1 such that y n (x) / ∈ ∂dom X θ k for some k ≥ 1 such that dom x θ n has a nonempty interior in aff(dom x θ ∞ ). As for k large enough, ∂dom X θ k is Lebesgue negligible in aff(dom x θ ∞ ), the remaining y n (x) are still dense in aff(dom x θ ∞ ). Then, for µ-a.e. x ∈ R d , θ n (x, •) converges to θ ∞ (x, •) on a dense subset of aff(dom x θ ∞ ). We shall prove in Step 6 below that dom θ ∞ (X, •) has nonempty interior in aff(dom X θ ∞ ), µ -a.s.

(2.8.7)

Then, by Theorem 2.9.3, we have the convergence

θ n (X, •) -→ θ ∞ (X, •), pointwise on aff(dom X θ ∞ ) \ ∂dom θ ∞ (X, •), µ-a.s. Since dom X θ ∞ = dom X θ ∞ , and θ converges to θ ∞ on dom X θ ∞ , µ-a.s., θ converges to θ ∞ ∈ Θ, µ⊗pw.
Step 5: Finally for general (θ n ) n≥1 ⊂ Θ µ , we consider θ ′ n , equal to θ n , µ⊗pw, such that θ ′ n ≤ θ n , for n ≥ 1, from the definition of Θ µ . Then we may find λ k n , coefficients such that

θ ′ n := k≥n λ k n θ ′ k ∈ conv(θ ′ ) converges µ⊗pw to θ ∞ ∈ Θ. We denote θ n := k≥n λ k n θ k ∈ conv(θ), θ n = θ ′ n , µ⊗pw, and θ n ≥ θ ′ n . By Proposition 2.3.6 (iii), θ converges to θ ∞ , µ⊗pw.
The Proposition is proved.

Step 6: In order to prove (2.8.7), suppose to the contrary that there is a set A such that µ[A] > 0 and dom θ ∞ (x, •) has an empty interior in aff(dom x θ ∞ ) for all x ∈ A. Then, by the density of the sequence (y n (x)) n≥1 stated in (2.8.5), we may find for all x ∈ A an index i(x) ≥ 0 such that

y(x) := y i(x) (x) ∈ ri dom x θ ∞ , and θ ∞ (x, y(x)) = ∞.
(2.8.8)

Moreover, since i(x) takes values in N, we may reduce to the case where i(x) is a constant integer, by possibly shrinking the set A, thus guaranteeing that y is measurable.

Define the measurable function on Ω:

θ 0 n (x, y) := dist(y, L n x ), (2.8.9) with L n x := y ∈ R d : θ n (x, y) < θ n (x, y(x)) .
Since L n x is convex, and contains x for n sufficiently large by (2.8.8), we see that

θ 0 n is convex in y and θ 0 n (x, y) ≤ |x -y|, for all (x, y) ∈ Ω. (2.8.10)
In particular, this shows that θ 0 n ∈ Θ. By Komlòs Lemma, we may find

θ 0 n := k≥n λ n k θ 0 k ∈ conv(θ 0 ) such that θ 0 n -→ θ 0 ∞ , m -a.s.
for some non-negative coefficients (λ n k , k ≥ n) n≥1 with k≥n λ n k = 1. By convenient extension of this limit, we may assume that θ 0 ∞ ∈ Θ. We claim that

θ 0 ∞ > 0 on H x := {h(x) • (y -y(x)) > 0}, for some h(x) ∈ R d . (2.8.11)
We defer the proof of this claim to Step 7 below and we continue in view of the required contradiction. By definition of θ 0 n together with (2.8.10), we compute that

θ 1 n (x, y) := k≥n λ n k θ k (x, y) ≥ k≥n λ n k θ k (x, y(x))1 {θ 0 n >0} ≥ k≥n λ n k θ k (x, y(x)) θ 0 k (x, y) |x -y| ≥ θ 0 n (x, y) |x -y| inf k≥n θ k (x, y(x)).
By (2.8.8) and (2.8.11), this shows that the sequence θ 1 ∈ conv(θ) satisfies

θ 1 n (x, •) -→ ∞, on H x , for all x ∈ A.
We finally consider the sequence

θ 1 := 1 2 ( θ + θ 1 ) ∈ conv(θ). Clearly, dom θ 1 ∞ (X, •) ⊂ dom θ ∞ (X,
•), and it follows from the last property of θ 1 that dom θ

1 ∞ (x, •) ⊂ H c x ∩ dom θ ∞ (x,
•) for all x ∈ A. Notice that y(x) lies on the boundary of the half space H x and, by (2.8.8), y(x

) ∈ ridom x θ ∞ . Then G(dom x θ 1 ∞ ) < G(dom x θ ∞ ) for all x ∈ A and, since µ[A] > 0, we deduce that µ G(dom X θ 1 ∞ ) < µ G(dom X θ ∞ )
, contradicting the optimality of θ, by (2.8.6), for the minimization problem (2.8.4).

Step 7: It remains to justify (2.8.11). Since θ n (x, •) is convex, it follows from the Hahn-Banach separation theorem that:

θ n (x, •) ≥ θ n (x, y(x)) on H n x := y ∈ R d : h n (x) • (y -y(x)) > 0 ,
for some h n (x) ∈ R d , so that it follows from (2.8.9) that L n x ⊂ (H n x ) c , and

θ 0 n (x, y) ≥ dist y, (H n x ) c = y -y(x) • h n (x) + . Denote g x := g domx θ ∞
the Gaussian kernel restricted to the affine span of dom x θ ∞ , and B r (x 0 ) the corresponding ball with radius r, centered at some point x 0 . By (2.8.8), we may find r x so that B x r := B r ( y(x)) ⊂ ri dom x θ ∞ for all r ≤ r x , and

B x r θ 0 n (x, y)g x (y)dy ≥ B x r y -y(x) • h n (x) + g x (y)dy ≥ min B x r g x Br(0) (y • e 1 ) + dy =: b r x > 0,
where e 1 is an arbitrary unit vector of the affine span of dom x θ ∞ . Then we have the inequality B x r θ 0 n (x, y)g x (y)dy ≥ b r x , and since θ 0 n has linear growth in y by (2.8.10), it follows from the dominated convergence theorem that B r x θ 0 ∞ (x, y)g(dy) ≥ b r x > 0, and therefore θ 0 ∞ (x, y r x ) > 0 for some y r x ∈ B r x . From the arbitrariness of r ∈ (0, r x ), We deduce (2.8.11) as a consequence of the convexity of θ 0 (x, •).

2

Proof of Proposition 2.3.6 (iii) We need to prove the existence of some

θ ′ ∈ Θ such that θ ∞ = θ ′ , µ⊗pw, and θ ∞ ≥ θ ′ .
(2.8.12)

For simplicity, we denote θ := θ ∞ . Let

F 1 := cl conv domθ(X, •), F k := cl conv domθ(X, •) ∩ aff rf X F k-1 , k ≥ 2,
and

F := ∪ n≥1 (F n \ cl rf X F n ) ∪ cl dom X θ.
Fix some sequence ε n ↘ 0, and denote

θ * := lim inf n→∞ θ X, ε n X + (1 -ε n )Y , and 
θ ′ := ∞1 Y / ∈F (X) + 1 Y ∈cl dom X θ θ * 1 X / ∈Nµ ,
where N µ ∈ N µ is chosen such that 1 Y ∈F k (X) 1 X / ∈Nµ are Borel measurable for all k from Lemma 2.6.1, and θ(x, •) (resp. θ n (x, •)) is convex finite on dom x θ (resp. dom x θ n ), for x / ∈ N µ . Consequently, θ ′ is measurable. In the following steps, we verify that θ ′ satisfies (2.8.12).

Step 1: We prove that θ ′ ∈ Θ. Indeed, θ ′ ∈ L 0 + (Ω), and θ ′ (X, X) = 0. Now we prove that

θ ′ (x, •) is convex for all x ∈ R d . For x ∈ N µ , θ ′ (x, •) = 0. For x / ∈ N µ , θ(x,
•) is convex finite on dom x θ, then by the fact that dom x θ is a convex relatively open set containing x, it follows from Lemma 2.8.

1 that θ * (x, •) = lim n→∞ θ x, ε n x + (1 -ε n ) • is the lower semi-continuous envelop of θ(x, •) on cl dom x θ. We now prove the convexity of θ ′ (x, •) on all R d . We denote F (x) := F (x) \ cl dom x θ so that R d = F (x) c ∪ F (x) ∪ cl dom x θ. Now, let y 1 , y 2 ∈ R d , and λ ∈ (0, 1). If y 1 ∈ F (x) c , the convexity inequality is verified as θ ′ (x, y 1 ) = ∞. Moreover, θ ′ (x, •) is constant on F (x)
, and convex on cl dom x θ. We shall prove in Steps 4 and 5 below that F (x) is convex, and rf x F (x) = dom x θ.

(2.8.13)

In view of Proposition 2.3.1 (ii), this implies that the sets F (x) and cl dom x θ are convex. Then we only need to consider the case when y 1 ∈ F (x), and y 2 ∈ cl dom x θ. By Proposition 2.3.1 (ii) again, we have [y 1 , y 2 ) ⊂ F (x), and therefore λy 1 +(1-λ)y 2 ∈ F (x), and θ ′ (x, λy 1 + (1 -λ)y 2 ) = 0, which guarantees the convexity inequality.

Step 2: We next prove that θ = θ ′ , µ⊗pw. By the second claim in (2.8.13), it follows that θ * (X, •) is convex finite on dom X θ, µ-a.s. Then as a consequence of Proposition 2.3.4 (ii), we have dom

X θ ′ = dom X (∞1 Y / ∈F (X) ) ∩ dom X (θ * 1 Y ∈cl dom X θ
), µ-a.s. The first term in this intersection is rf X F (X) = dom X θ. The second contains dom X θ, as it is the dom X of a function which is finite on dom X θ, which is convex relatively open, containing X. Finally, we proved that dom X θ = dom X θ ′ , µ-a.s. Then θ ′ (X, •) is equal to θ * (X, •) on dom X θ, and therefore, equal to θ(X, •), µ-a.s. We proved that θ = θ ′ , µ⊗pw.

Step 3: We finally prove that θ ′ ≤ θ pointwise. We shall prove in Step 6 below that domθ(X, •) ⊂ F.

(2.8.14)

Then, ∞1 Y / ∈F (X) 1 X / ∈Nµ ≤ θ, and it remains to prove that θ(x, y) ≥ θ * (x, y) for all y ∈ cl dom x θ, x / ∈ N µ .

To see this, let x / ∈ N µ . By definition of N µ , θ n (x, •) -→ θ(x, •) on dom x θ. Notice that θ(x, •) is convex on dom x θ, and therefore as a consequence of Lemma 2.8.1,

θ * (x, y) = lim ϵ↘0 θ x, ϵx + (1 -ϵ)y , for all y ∈ cl dom x θ.
Then y ϵ := (1 -ϵ)y + ϵx ∈ dom x θ n , for ε ∈ (0, 1], and n sufficiently large by (i) of this Proposition, and therefore (1

-ϵ)θ n (x, y) -θ n (x, y ϵ ) ≥ (1 -ϵ)θ ′ n (x, y) -θ ′ n (x, y ϵ ) ≥ 0, for θ ′ n ∈ Θ such that θ ′ n = θ n , µ⊗pw, and θ n ≥ θ ′ n .
Taking the lim inf as n → ∞, we get (1 -ϵ)θ(x, y) -θ(x, y ϵ ) ≥ 0, and finally θ(x, y) ≥ lim ϵ↘0 θ x, ϵx + (1 -ϵ)y = θ ′ (x, y), by sending ϵ ↘ 0.

Step 4: (First claim in (2.8.13)) Let x 0 ∈ R d , let us prove that F (x 0 ) is convex. Indeed, let x, y ∈ F (x 0 ), and 0 < λ < 1. Since cl dom x θ is convex, and F n (x 0 ) \ cl rf X F n (x 0 ) is convex by Proposition 2.3.1 (ii), we only examine the following non-obvious cases:

• Suppose x ∈ F n (x 0 ) \ cl rf x 0 F n (x 0 ), and y ∈ F p (x 0 ) \ cl rf x 0 F p (x 0 ), with n < p. Then as F p (x 0 ) \ cl rf x 0 F p (x 0 ) ⊂ cl rf x 0 F n (x 0 ), we have λx + (1 -λ)y ∈ F n (x 0 ) \ cl rf x 0 F n (x 0 ) by Proposition 2.3.1 (ii). • Suppose x ∈ F n (x 0 ) \ cl rf x 0 F n (x 0 )
, and y ∈ cl dom x 0 θ, then as cl dom x 0 θ ⊂ cl rf x 0 F n (x 0 ), this case is handled similar to previous case.

Step 5: (Second claim in (2.8.13)). We have dom X θ ⊂ F (X), and therefore dom X θ ⊂ rf X F (X). Now we prove by induction on k

≥ 1 that rf X F (X) ⊂ ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ. The inclusion is trivially true for k = 1. Let k ≥ 1, we suppose that the inclusions holds for k, hence rf X F (X) ⊂ ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ. As ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ ⊂ F k . Applying rf X gives rf X F (X) ⊂ rf X ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ = rf X F k ∩ ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ = rf X F k ∩ rf X ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ ⊂ cl rf X F k ∩ ∪ n≥k (F n \ cl rf X F n ) ∪ cl dom X θ ⊂ ∪ n≥k+1 (F n \ cl rf X F n ) ∪ cl dom X θ.
Then the result is proved for all k. In particular we apply it for k = d + 1. Recall from the proof of Lemma 2.3.13 that for n ≥ d + 1, F n is stationary at the value cl dom X θ.

Then ∪ n≥d+1 (F n \ cl rf X F n ) = ∅, and rf X F (X) ⊂ rf X cl dom X θ = dom X θ. The result is proved.
Step 6: We finally prove (2.8.14). Indeed, domθ(X, 

•) ⊂ F 1 by definition. Then domθ(X, •) ⊂ F 1 \ affF 1 ∪ ∪ 2≤k≤d+1 (domθ(X, •) ∩ aff rf X F k-1 ) \ affF k ∪ F d+1 ⊂ F 1 \ cl F 1 ∪ ∪ k≥2 cl conv(domθ(X, •) ∩ aff rf X F k-1 ) \ cl F k ∪ cl dom X θ = ∪ k≥1 F k \ cl F k ∪ cl dom X θ = F.

Some convex analysis results

As a preparation, we first report a result on the union of intersecting relative interiors of convex subsets which was used in the proof of Proposition 2.4.1. We shall use the following characterization of the relative interior of a convex subset

K of R d : riK = x ∈ R d : x -ϵ(x ′ -x) ∈ K for some ϵ > 0, for all x ′ ∈ K (2.9.1) = x ∈ R d : x ∈ (x ′ , x 0 ],
for some x 0 ∈ riK, and x ′ ∈ K .

(2.9.2)

We start by proving the required properties of the notion of relative face.

Proof of Proposition 2.3.1 (i)

The proofs of the first properties raise no difficulties and are left as an exercise for the reader. We only prove that rf a A = riA ̸ = ∅ iff a ∈ riA. We assume that rf a A = riA ̸ = ∅. The non-emptiness implies that a ∈ A, and therefore a ∈ rf a A = riA. Now we suppose that a ∈ riA. Then for x ∈ riA, x, a -ϵ(x -a) ⊂ riA ⊂ A, for some ϵ > 0, and therefore riA ⊂ rf a A. On the other hand, by (2.9.2), riA = {x ∈ R d : x ∈ (x ′ , x 0 ], for some x 0 ∈ riA, and x ′ ∈ A}. Taking x 0 := a ∈ riA, we have the remaining inclusion rf a A ⊂ riA.

(ii) We now assume that A is convex.

Step 1:

We first prove that rf a A is convex. Let x, y ∈ rf a A and λ ∈ [0, 1]. We consider ϵ > 0 such that a -ϵ(x -a), x + ϵ(x -a) ⊂ A and a -ϵ(y -a), y + ϵ(y -a) ⊂ A. Then if we write z = λx + (1 -λ)y, we have a -ϵ(z -a), z + ϵ(z -a) ⊂ A by convexity of A, because a, x, y ∈ A.
Step 2: In order to prove that rf a A is relatively open, we consider x, y ∈ rf a A, and we verify that x -ϵ(y -x), y + ϵ(y -x) ⊂ rf a A for some ϵ > 0. Consider the two alternatives:

Case 1: If a, x, y are on a line. If a = x = y, then the required result is obvious. Otherwise,

a -ϵ(x -a), x + ϵ(x -a) ∪ a -ϵ(y -a), y + ϵ(y -a) ⊂ rf a A.
This union is open in the line and x and y are interior to it. We can find

ϵ ′ > 0 such that x -ϵ ′ (y -x), y + ϵ ′ (y -x) ⊂ rf a A. Case 2: If a, x, y are not on a line. Let ϵ > 0 be such that a -2ϵ(x -a), x + 2ϵ(x -a) ⊂ A and a -2ϵ(y -a), y + 2ϵ(y -a) ⊂ A. Then x + ϵ(x -a) ∈ rf a A and a -ϵ(y -a) ∈ rf a A. Then, if we take λ := ϵ 1+2ϵ , λ(a -ϵ(y -a)) + (1 -λ)(x + ϵ(x -a)) = (1 -λ)(1 + ϵ)x -λϵy = x + λϵ(x -y).
Then x + λϵ(x -y) ∈ rf a A and symmetrically, y + λϵ(y -x) ∈ rf a A by convexity of rf a A. And still by convexity, we have that

x -ϵ ′ (y -x), y + ϵ ′ (y -x) ⊂ rf a A, for ϵ ′ := ϵ 2 1+2ϵ > 0.
Step 3: Now we prove that A \ cl rf a A is convex, and that if x 0 ∈ A \ cl rf a A and y 0 ∈ A, then [x 0 , y 0 ) ⊂ A \ cl rf a A. We will prove these two results by an induction on the dimension of the space d. First if d = 0 the results are trivial. Now we suppose that the result is proved for any d ′ < d, let us prove it for dimension d.

Case 1: a ∈ riA. This case is trivial as rf a A = riA and A ⊂ cl riA = cl rf a A because of the convexity of A. Finally A \ cl rf a A = ∅ which makes it trivial.

Case 2: a / ∈ riA. Then a ∈ ∂A and there exists a hyperplan support H to A in a because of the convexity of A. We will write the equation of E, the corresponding half-space containing A, E : c

• x ≤ b with c ∈ R d and b ∈ R. As x ∈ rf a A implies that [a -ϵ(x -a), x + ϵ(x -a)] ⊂ A for some ϵ > 0, we have (a -ϵ(x -a)) • c ≤ b and (x + ϵ(x -a)) • c ≤ b. These equations are equivalent using that a ∈ H and thus a • c = b to -ϵ(x -a) • c ≤ 0 and (1 + ϵ)(x -a) • c ≤ 0. We finally have (x -a) • c = 0 and x ∈ H.
We proved that rf a A ⊂ H. Now using (i) together with the fact that rf a A ⊂ H and a ∈ H affine, we have

rf a (A ∩ H) = rf a A ∩ rf a H = rf a A ∩ H = rf a A.

Then we can now have the induction hypothesis on

A ∩ H because dim H = d -1 and A ∩ H ⊂ H is convex. Then we have A ∩ H \ cl rf a A which is convex and if x 0 ∈ A ∩ H \ cl rf a (A ∩ H), y 0 ∈ A ∩ H and if λ ∈ (0, 1] then λx 0 + (1 -λ)y 0 ∈ A \ cl rf a (A ∩ H). First A \ cl rf a A = (A \ H) ∪ (A ∩ H) \ cl rf a A , let us
show that this set is convex. The two sets in the union are convex (A \ H = A ∩ (E \ H)), so we need to show that a non trivial convex combination of elements coming from both sets is still in the union. We consider x ∈ A \ H, y ∈ A ∩ H \ cl rf a A and λ > 0, let us show that

z := λx + (1 -λ)y ∈ (A \ H) ∪ (A ∩ H \ cl rf a A). As x, y ∈ A (cl rf a A ⊂ A because A is closed), z ∈ A by convexity of A. We now prove z / ∈ H, z • c = λx • c + (1 -λ)y • c = λx • c + (1 -λ)b < λb + (1 -λ)b = b.
Then z is in the strict half space:

z ∈ E \ H. Finally z ∈ A \ H and A \ cl rf a A is convex.
Let us now prove the second part: we consider x 0 ∈ A \ cl rf a A, y 0 ∈ cl rf a A and λ ∈ (0, 1] and write z 0 := λx 0 + (1 -λ)y 0 . Case 2.1: x 0 , y 0 ∈ H. We apply the induction hypothesis. Case 2.2:

x 0 , y 0 ∈ A \ H. Impossible because rf a A ⊂ H and cl rf a A ⊂ cl H = H. y 0 ∈ H. Case 2.3: x 0 ∈ A \ H and y 0 ∈ H.
Then by the same computation than in Step 1,

z 0 ∈ A \ H ⊂ A \ cl rf a A.
Step 4: Now we prove that if a ∈ A, then dim(rf a cl A) = dim(A) if and only if a ∈ riA, and that in this case, we have cl rf a cl A = cl ri cl A = cl A = cl rf a A. We first assume that a ∈ riA. As by the convexity of A, riA = ri cl A, rf a cl A = ri cl A, and therefore cl rf a cl A = cl A. Finally, taking the dimension, we have dim(cl rf a cl A) = dim(A). In this case we proved as well that cl rf a cl A = cl ri cl A = cl A = cl rf a A, the last equality coming from the fact that riA = rf a A as a ∈ riA. Now we assume that a / ∈ riA. Then a ∈ ∂cl A, and rf a cl A ⊂ ∂cl A. Taking the dimension (in the local sense this time), and by the fact that dim

∂cl A = dim ∂A < dim A, we have dim(cl rf a cl A) < dim(A) (as cl rf a cl A is convex, the two notions of dimension coincide). 2 Lemma 2.9.1. Let K 1 , K 2 ⊂ R d be convex with riK 1 ∩ riK 2 ̸ = ∅. Then conv(riK 1 ∪ riK 2 ) = ri conv(K 1 ∪ K 2 ). Proof. We fix y ∈ riK 1 ∩ riK 2 . Let x ∈ conv(riK 1 ∪ riK 2 ), we may write x = λx 1 + (1 -λ)x 2 , with x 1 ∈ riK 1 , x 2 ∈ riK 2 , and 0 ≤ λ ≤ 1. If λ is 0 or 1, we have trivially that x ∈ ri conv(K 1 ∩ K 2 ).
Let us now treat the case 0 < λ < 1. Then for x ′ ∈ conv(K 1 ∪ K 2 ), we may write

x ′ = λ ′ x ′ 1 + (1 -λ ′ )x ′ 2 , with x ′ 1 ∈ K 1 , x ′ 2 ∈ K 2 ,
and 0 ≤ λ ′ ≤ 1. We will use y as a center as it is in both the sets. For all the variables, we add a bar on it when we subtract y, for example x := x -y. The geometric problem is the same when translated with y,

x -ϵ(x ′ -x) = λ x1 -ϵ λ ′ λ x′ 1 -x1 + (1 -λ) x2 -ϵ 1 -λ ′ 1 -λ x′ 2 -x2 . (2.9.3)
However, as x1 and x′

1 are in K 1 -y, as 0 is an interior point, ϵ( λ ′ λ x′ 1 -x1 ) ∈ K 1 -y for ϵ small enough. Then as x1 is interior to K 1 -y as well, x1 -ϵ( λ ′ λ x′ 1 -x1 ) ∈ K 1 -y as well. By the same reasoning, x2 -ϵ( 1-λ ′ 1-λ x′ 2 -x2 ) ∈ K 2 -y. Finally, by (2.9.3), for ϵ small enough, x -ϵ(x ′ -x) ∈ conv(K 1 ∪ K 2 ). By (2.9.1), x ∈ ri conv(K 1 ∪ K 2 ). Now let x ∈ ri conv(K 1 ∪ K 2 )
. We use again y as an origin with the notation x := x -y. As x is interior, we may find ϵ > 0 such that (1

+ ϵ)x ∈ conv(K 1 ∪ K 2 ). We may write (1 + ϵ)x = λx 1 + (1 -λ)x 2 , with x1 ∈ K 1 -y, x2 ∈ K 2 -y, and 0 ≤ λ ≤ 1. Then x = λ 1 1+ϵ x1 + (1 -λ) 1 1+ϵ x2 . By (2.9.2), 1 1+ϵ x1 ∈ riK 1 , and 1 1+ϵ x2 ∈ riK 2 . x ∈ conv ri(K 1 -y) ∪ ri(K 2 -y) , and therefore x ∈ conv(riK 1 ∪ riK 2 ). 2 
Now we use the measurable selection theory to establish the non-emptiness of ∂f .

Lemma 2.9.2. For all f ∈ C, we have ∂f ̸ = ∅.

Proof. By the fact that f is continuous, we may write ∂f

(x) = ∩ n≥1 F n (x) for all x ∈ R d , with F n (x) := {p ∈ R d : f (y n ) -f (x) ≥ p • (y n -x)}
where (y n ) n≥1 ⊂ R d is some fixed dense sequence. All F n are measurable by the continuity of (x, p) -→ f (y n ) -f (x) -p • (y n -x) together with Theorem 6.4 in [START_REF] Himmelberg | Measurable relations[END_REF]. Therefore the mapping x -→ ∂f (x) is measurable by Lemma 2.7.1. Moreover, the fact that this mapping is closed nonempty-valued is a well-known property of the subgradient of finite convex functions in finite dimension. Then the result holds by Theorem 4.1 in [START_REF] Wagner | Survey of measurable selection theorems[END_REF]. 2

We conclude this section with the following result which has been used in our proof of Proposition 2.3.7. We believe that this is a standard convex analysis result, but we could not find precise references. For this reason, we report the proof for completeness.

Theorem 2.9.3. Let f n , f : R d → R be convex functions with int domf ̸ = ∅. Then f n -→ f pointwise on R d \ ∂domf if and only if f n -→ f pointwise on some dense subset A ⊂ R d \ ∂domf .
Proof. We prove the non-trivial implication "if". We first prove the convergence on int domf . f n converges to f on a dense set. The reasoning will consist in proving that the f n are Lipschitz, it will give a uniform convergence and then a pointwise convergence. First we consider K ⊂ int domf compact convex with nonempty interior. We can find N ∈ N and x 1 , ...x N ∈ A ∩ (int domf \ K) such that K ⊂ int conv(x 1 , ..., x N ). We use the pointwise convergence on A to get that for n large enough, f n (x) ≤ M for x ∈ conv(x 1 , ..., x N ), M > 0 (take M = max 1≤k≤N f (x k ) + 1). Then we will prove that f n is bounded from below on K. We consider a ∈ A ∩ K and δ 0 := sup x∈K |x -a|. For n large enough, f n (a) ≥ m for any a ∈ A (take for example m = f (a) -1). We write δ 1 := min (x,y)∈K×∂conv(x 1 ,...,x N ) |x-y|. Finally we write δ 2 := sup x,y∈conv(x 1 ,...,x N ) |x-y|. Now, for x ∈ K, we consider the half line x + R + (a -x), it will cut ∂conv(x 1 , ..., x N ) in one only point y ∈ ∂conv(x 1 , ..., x N ). Then a ∈ [x, y], and therefore

a = |a-y| |x-y| x + |a-x| |x-y| y. By the convex inequality, f n (a) ≤ |a-y| |x-y| f n (x) + |a-x| |x-y| f n (y). Then f n (x) ≥ -|a-x| |a-y| M + |x-y| |a-y| m ≥ -δ 0 δ 1 M + δ 2 δ 1 m. Finally, if we write m 0 := -δ 0 δ 1 M + δ 2 δ 1 m, M ≥ f n ≥ m 0 , on K.
This will prove that f n is M -m0 δ 1 -Lipschitz. We consider x ∈ K and a unit direction

u ∈ S d-1 and f ′ n ∈ ∂f n (x). For a unique λ > 0, y := x + λu ∈ ∂conv(x 1 , ..., x N ). As u is a unit vector, λ = |y -x| ≥ δ 1 . By the convex inequality, f n (y) ≥ f n (x) + f ′ n (x) • (y -x). Then M -m 0 ≥ δ 0 |f ′ n • u| and finally |f ′ n • u| ≤ M -m0 δ 1 as this bound does not depend on u, |f ′ n | ≤ M -m0 δ 1
for any such subgradient. For n large enough, the f n are uniformly Lipschitz on K, and so in f . The convergence is uniform on K, it is then pointwise on K. As this is true for any such K, the convergence is pointwise on int domf . Now let us consider x ∈ (cl domf ) c . The set conv(x, int domf ) \ domf has a nonempty interior because dist(x, domf ) > 0 and int domf ̸ = ∅. As A is dense, we can consider a ∈ A ∩ conv(x, int domf ) \ domf . By definition of conv(x, int domf ), we can find y ∈ int domf such that a = λy

+ (1 -λ)x. We have λ < 1 because a / ∈ domf . If λ = 0, f n (x) = f n (a) -→ n→∞ ∞. Otherwise, by the convexity inequality, f n (a) ≤ λf n (y) + (1 - λ)f n (x). Then, as f n (a) -→ n→∞ ∞, and f n (y) -→ n→∞ f (y) < ∞, we have f n (x) -→ n→∞ ∞. 2

Chapter 3

Quasi-sure duality for multi-dimensional martingale optimal transport

Based on the multidimensional irreducible paving of De March & Touzi [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we provide a multi-dimensional version of the quasi sure duality for the martingale optimal transport problem, thus extending the result of Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Similar to [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], we also prove a disintegration result which states a natural decomposition of the martingale optimal transport problem on the irreducible components, with pointwise duality verified on each component. As another contribution, we extend the martingale monotonicity principle to the present multi-dimensional setting. Our results hold in dimensions 1, 2, and 3 provided that the target measure is dominated by the Lebesgue measure. More generally, our results hold in any dimension under an assumption which is implied by the Continuum Hypothesis. Finally, in contrast with the one-dimensional setting of [21], we provide an example which illustrates that the smoothness of the coupling function does not imply that pointwise duality holds for compactly supported measures.

Key words. Martingale optimal transport, duality, disintegration, monotonicity principle.

Introduction

The problem of martingale optimal transport was introduced as the dual of the problem of robust (model-free) superhedging of exotic derivatives in financial mathematics, see Beiglböck, Henry-Labordère & Penkner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] in discrete time, and Galichon, Henry-Labordère & Touzi [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF] in continuous-time. This robust superhedging problem was introduced by Hobson [START_REF] Hobson | Robust hedging of the lookback option[END_REF], and was addressing specific examples of exotic derivatives by means of corresponding solutions of the Skorokhod embedding problem, see [START_REF] Cox | Robust pricing and hedging of double no-touch options[END_REF][START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF][START_REF] Hobson | Robust bounds for forward start options[END_REF], and the survey [START_REF] Hobson | The skorokhod embedding problem and model-independent bounds for option prices[END_REF].

Given two probability measures µ, ν on R d , with finite first order moment, martingale optimal transport differs from standard optimal transport in that the set of all interpolating probability measures P(µ, ν) on the product space is reduced to the subset M(µ, ν) restricted by the martingale condition. We recall from Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] that M(µ, ν) ̸ = ∅ if and only if µ ⪯ ν in the convex order, i.e. µ(f ) ≤ ν(f ) for all convex functions f . Notice that the inequality µ(f ) ≤ ν(f ) is a direct consequence of the Jensen inequality, the reverse implication follows from the Hahn-Banach theorem.

This paper focuses on proving that quasi-sure duality holds in higher dimension, thus extending the results by Beiglböck, Nutz and Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] who prove that quasi-sure duality holds by identifying the polar sets. The structure of these polar sets is given by the critical observation by Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] that, in the one-dimensional setting d = 1, any such martingale interpolating probability measure P has a canonical decomposition P = k≥0 P k , where P k ∈ M(µ k , ν k ) and µ k is the restriction of µ to the so-called irreducible components I k , and ν k := x∈I k P(dx, •), supported in J k for k ≥ 0, is independent of the choice of P ∈ M(µ, ν). Here, (I k ) k≥1 are open intervals, I 0 := R \ (∪ k≥1 I k ), and J k is an augmentation of I k by the inclusion of either one of the endpoints of I k , depending on whether they are charged by the distribution P k .

In [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], this irreducible decomposition gives a form of compactness of the convex functions on each components, and plays a crucial role for the quasi-sure formulation, and represents an important difference between martingale transport and standard transport. Indeed, while the martingale transport problem is affected by the quasi-sure formulation, the standard optimal transport problem is not changed. We also refer to Ekren & Soner [START_REF] Ekren | Constrained optimal transport[END_REF] for further functional analytic aspects of this duality.

Our objective in this paper is to extend the quasi-sure duality, find a disintegration on the components, and a monotonicity principle for an arbitrary d-dimensional setting, d ≥ 1. The main difficulty is that convex functions may lose information when converging. A first attempt to find such duality results was achieved by Ghoussoub, Kim & Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. Their strategy consists in finding the largest sets on which pointwise monotonicity holds, and prove that it implies a pointwise existence of dual optimisers.

The paper is organized as follows. Section 3.2 collects the main technical ingredients needed for the definition of the relaxed dual problem in view of the statement of our main results. Section 3.3 contains the main results of the paper, namely the duality for the relaxed dual problem, the disintegration of the problem in the irreducible components identified in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], and a monotonicity principle. In all the cases there are some claims that hold without any need of assumption, and a second part using Assumption 3.2.6 defined in the beginning of the section. Section 3.4 shows the identity with the Beiglböck, Nutz & Touzi [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] duality theorems in the one-dimensional setting, and provides non-intuitive examples, in particular Example 3.4.1 showing that there is no hope of having pointwise duality. The remaining sections contain the proofs of these results. In particular, Section 5.6 contains the proofs of the main results, and Section 3.6 checks the situations in which Assumption 3.2.6 holds.

Notation

We denote by R the completed real line R∪{-∞, ∞}, and similarly denote

R + := R + ∪ {∞}.
We fix an integer d ≥ 1. If x ∈ X , and A ⊂ X , where (X , d) is a metric space, dist(x, A) := inf a∈A d(x, a). In all this paper, R d is endowed with the Euclidean distance.

If V is a topological affine space and A ⊂ V is a subset of V , intA is the interior of A, cl A is the closure of A, affA is the smallest affine subspace of V containing A, convA is the convex hull of A, dim(A) := dim(affA), and riA is the relative interior of A, which is the interior of A in the topology of affA induced by the topology of V . We also denote by ∂A := cl A \ riA the relative boundary of A. If A is an affine subspace of R d , we denote by proj A the orthogonal projection on A, and ∇A is the vector space associated to A (i.e. A -a for a ∈ A, independent of the choice of a). We finally denote Aff(V, R) the collection of affine maps from V to R.

The set K of all closed subsets of R d is a Polish space when endowed with the Wijsman topology 1 (see Beer [START_REF] Beer | A polish topology for the closed subsets of a polish space[END_REF]). As R d is separable, it follows from a theorem of Hess [START_REF] Hess | Contribution à l'étude de la mesurabilité, de la loi de probabilité et de la convergence des multifonctions[END_REF] that a function F : R d -→ K is Borel measurable with respect to the Wijsman topology if and only if

F -(V ) := {x ∈ R d : F (x) ∩ V ̸ = ∅} is Borel for each open subset V ⊂ R d .
The subset K ⊂ K of all the convex closed subsets of R d is closed in K for the Wijsman topology, and therefore inherits its Polish structure. Clearly, K is isomorphic to ri K := {riK : K ∈ K} (with reciprocal isomorphism cl). We shall identify these two isomorphic sets in the rest of this text, when there is no possible confusion.

We denote Ω := R d × R d and define the two canonical maps

X : (x, y) ∈ Ω -→ x ∈ R d and Y : (x, y) ∈ Ω -→ y ∈ R d .
For φ, ψ : R d -→ R, and h : R d -→ R d , we denote

φ ⊕ ψ := φ(X) + ψ(Y ), and h ⊗ := h(X) • (Y -X),
with the convention ∞ -∞ = ∞. Finally, for A ⊂ Ω, and x ∈ R d , we denote andA c x := {y ∈ R d : (x, y) / ∈ A}. For a Polish space X , we denote by B(X ) the collection of Borel subsets of X , and P(X ) the set of all probability measures on X , B(X ) . For P ∈ P(X ), we denote by N P the collection of all P-null sets, supp P the smallest closed support of P, and supp P := cl conv supp P the smallest convex closed support of P. For a measurable function f : X → R, we use again the convention ∞ -∞ = ∞ to define its integral, and we denote

A x := {y ∈ R d : (x, y) ∈ A},
P[f ] := E P [f ] = X f dP = X f (x)P(dx) for all P ∈ P(X ).
Let Y be another Polish space, and P ∈ P(X × Y). The corresponding conditional kernel P x is defined by: P(dx, dy) = µ(dx) ⊗ P x (dy), where µ := P • X -1 .

We denote by L 0 (X , Y) the set of Borel measurable maps from X to Y. We denote for simplicity L 0 (X ) := L 0 (X , R) and L 0 + (X ) := L 0 (X , R+ ). For a measure m on X , we denote ,m). We denote by C the collection of all finite convex functions f : R d -→ R. We denote by ∂f (x) the corresponding subgradient at any point x ∈ R d . We also introduce the collection of all measurable selections in the subgradient, which is nonempty (see e.g. Lemma 9.2 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]),

L 1 (X , m) := {f ∈ L 0 (X ) : m[|f |] < ∞}. We also denote simply L 1 (m) := L 1 ( R, m) and L 1 + (m) := L 1 + ( R+
∂f := p ∈ L 0 (R d , R d ) : p(x) ∈ ∂f (x) for all x ∈ R d .
Let f : R d -→ R, f conv (x) := sup{g(x) such that g : R d -→ R is convex and g ≤ f } denotes the lower convex envelop of f . We also denote f ∞ := lim inf n→∞ f n , for any sequence (f n ) n≥1 of real number, or of real-valued functions.

Let I : R d -→ K be the irreducible components mapping defined in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], which is the µ-a.s. unique mapping such that for some P ∈ M(µ, ν), ri conv supp P X = I(X) ⊃ ri conv supp P X , µ-a.s. for all P ∈ M(µ, ν).

The relaxed dual problem

Preliminaries

Throughout this paper, we consider two probability measures µ and ν on R d with finite first order moment, and µ ⪯ ν in the convex order, i.e. ν(f

) ≥ µ(f ) for all f ∈ C. Using the convention ∞ -∞ = ∞, we may then define (ν -µ)(f ) ∈ [0, ∞] for all f ∈ C.
We denote by M(µ, ν) the collection of all probability measures on R d × R d with marginals P • X -1 = µ and P • Y -1 = ν. Notice that M(µ, ν) ̸ = ∅ by Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF].

An M(µ, ν)-polar set is an element of N µ,ν := ∩ P∈M(µ,ν) N P . A property is said to hold M(µ, ν)-quasi surely (abbreviated as q.s.) if it holds on the complement of an M(µ, ν)-polar set.

For a derivative contract defined by a non-negative cost function c : R d × R d -→ R + , the martingale optimal transport problem is defined by:

S µ,ν (c) := sup P∈M(µ,ν) P[c]. (3.2.1)
The corresponding robust superhedging problem is

I µ,ν (c) := inf (φ,ψ,h)∈Dµ,ν (c) µ(φ) + ν(ψ), ( 3.2.2) 
where

D µ,ν (c) := (φ, ψ, h) ∈ L 1 (µ) × L 1 (ν) × L 0 (µ, R d ) : φ ⊕ ψ + h ⊗ ≥ c . (3.2.3)
The following inequality is immediate:

S µ,ν (c) ≤ I µ,ν (c). (3.2.4)
This inequality is the so-called weak duality. For upper semi-continuous cost function, Beiglböck, Henry-Labordère, and Penckner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] proved that there is no duality gap, i.e. S µ,ν (c) = I µ,ν (c). See also Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF]. The objective of this paper is to establish a similar duality result for general measurable positive cost functions, thus extending the findings of Beiglböck, Nutz, and Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. For a probability P ∈ P(Ω), we say that P ′ ∈ P(Ω) is a competitor to 

P if P • X -1 = P ′ • X -1 , P • Y -1 = P ′ • Y -1 , and P[Y |X] = P ′ [Y |X]. Let f : Ω -→ R,
N ∈ N µ,ν with {X = Y } ⊂ N c . We say that θ is a N -tangent convex function if (i) θ(x, x) = 0, and θ(x, •) is partially convex in y on N c x ; (ii) N c is θ-martingale monotone;
(iii) for all P with finite support in N c , and any competitor P ′ to P such that supp P ′ ∩ N is a singleton, we have

P ′ [N ] = 0; (iv) A := {X / ∈ N µ } ∩ {Y ∈ I(X)} ⊂ N c , and 1 A θ is finite Borel measurable, for some N µ ∈ N µ .
We denote by Θ µ,ν the collection of all functions θ which are N -tangent convex for some N as above. Clearly, Θ µ,ν ⊃ {T p f : f ∈ C, p ∈ ∂f }, where Indeed, for f ∈ C, and p ∈ ∂f , T p f is convex in the second variable, thus satisfying (i) with N = ∅. For all P 0 with finite support in N c = Ω, and P ′ competitor to Notice that some sequences in Θ µ,ν may generate infinitely many elements of Θ µ,ν . For example, for any nonzero θ ∈ Θ µ,ν , the sequence (θ n ) n∈N := (0, θ, 0, θ, ...) generates any θ ′ ∈ Θ µ,ν which is smaller than θ. In particular θ n ⇝ xθ, as n goes to infinity, for all 0 ≤ x ≤ 1, which are uncountably many.

T p f (x, y) := f (y) -f (x) -p ⊗ (x,
P 0 , P 0 [f (X)] = P ′ [f (X)], P 0 [f (Y )] = P ′ [f (Y )], and P 0 [p(X) • (Y -X)] = P 0 [p(X) • (P 0 [Y |X] -X)] = P ′ [p(X) • (Y -X)], and therefore P 0 [T p f ] = P ′ [T p f ]. Definition 3.2.2. We say that a sequence (θ n ) n≥1 ⊂ Θ µ,ν generates some θ ∈ Θ µ,ν (and we denote θ n ⇝ θ) if θ ∞ ≤ θ
Definition 3.2.3. (i) A subset T ⊂ Θ µ,ν is semi-closed if θ ∈ T for all (θ n ) n≥1 ⊂ T generating θ (in particular, Θ µ,ν is semi-closed).
(ii) The semi-closure of a subset A ⊂ Θ µ,ν is the smallest semi-closed set containing A:

A := T ⊂ Θ µ,ν : A ⊂ T , and T semi-closed .
We next introduce for a ≥ 0 the set

C a := f ∈ C : (ν -µ)(f ) ≤ a , and 
T (µ, ν) := a≥0 T a , where T a := T p f : f ∈ C a , p ∈ ∂f .
Remark 3.2.4. Notice that even though the construction of T (µ, ν) is very similar to the construction of T (µ, ν) in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], these objects may be different, see Lemma 3.5.4 below.

Proposition 3.2.5. T (µ, ν) is a convex cone.

Proof. The proof is similar to the proof of Proposition 2.9 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], using the fact that for θ, θ n , θ ∞ ∈ Θ µ,ν , the generation θ n ⇝ θ ∞ implies the generation θ n + θ ⇝ θ ∞ + θ. 2

Structure of polar sets

The main results of this paper require the following assumption.

Assumption 3.2.6. (i) For all (θ n ) n≥1 ⊂ T 1 , we may find θ ∈ T 1 such that θ n ⇝ θ. (ii) I(X) ∈ C ∪ D ∪ R, µ-a.s. for some subsets C, D, R ⊂ K with C well ordered, dim(D) ⊂ {0, 1}, and 
∪ K̸ =K ′ ∈R K × (cl K ∩ cl K ′ ) ∈ N µ,ν .
The condition

∪ K̸ =K ′ ∈R K × (cl K ∩ cl K ′ ) ∈ N µ,ν
means that the probabilities in M(µ, ν) do not charge the intersections between frontiers of elements in R, see Figure 3.1.

We provide in Section 3.3.4 some simple sufficient conditions for the last assumption to hold true. In particular, Assumption 3.2.6 holds true in dimensions d = 1, 2, in dimension 3 with ν dominated by the Lebesgue measure, and in arbitrary dimension under the continuum hypothesis. Recall that by Theorem 3.7 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], a Borel set

N ∈ B(Ω) is M(µ, ν)-polar if and only if N ⊂ {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ J θ (X)}, for some (N µ , N ν , θ) ∈ N µ × N ν × T (µ, ν), ( 3.2.5) 
with J θ := domθ(X, •)∩ J, for some I ⊂ J ⊂ cl I, characterized µ-a.s. by suppP X|∂I(X) ⊂ J(X) \ I(X) = supp P X|∂I(X) , µ-a.s., for some P ∈ M(µ, ν), for all P ∈ M(µ, ν). The definition of T (µ, ν) ⊂ L 0 + (Ω) is reported to Subsection 3.5.2. By Remark 3.5 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], J θ is constant on I(x) for all x ∈ R d . Then the random variable J θ is I-measurable. Notice as well that by this remark we have

I ⊂ J ⊂ J θ ⊂ J ⊂ cl I, µ -a.s.
Where J is characterized in Proposition 2.4 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]. These sets J θ are very important for characterising the polar sets. However they are not satisfactory as they may not be convex. We extend the notion in next proposition. Let A ⊂ Ω, we say that A is martingale monotone if for all finitely supported P ∈ P(Ω), and all competitor P ′ to P,

P[A] = 1 if and only if P ′ [A] = 1. Notice that A is martingale monotone if and only if A is 1 A c -martingale monotone. Proposition 3.2.7. Under Assumption 3.2.6, for any N -tangent convex θ ∈ T (µ, ν), we may find θ ≤ θ ′ ∈ T (µ, ν) and (N 0 µ , N 0 ν ) ∈ N µ × N ν such that for all (N 0 µ , N 0 ν ) ⊂ (N µ , N ν ) ∈ N µ × N ν ,
the maps I, J, and J from [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF] may be chosen so that J(X) := conv(domθ ′ (X, •) \ N ν ) ∩ aff I(X) satisfies, up to a modification on N µ : (i) J(X) = conv J(X) \ N ν , and on N c µ , we have J(X) ⊂ domθ(X, •);

(ii) N ⊂ N ′ := {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ J(X)} ∈ N µ,ν and N ′c is martingale monotone; (iii) the set-valued map J • (x) := ∪ x ′ ∈J(x)\Nµ I(x ′ ) ∪ (J(x) \ N ν ) ∪ {x} satisfies J ⊂ J • ⊂ J ⊂ J, furthermore J and J • are constant on I(x), for all x ∈ R d .
The proof of Proposition 3.2.7 is reported in Subsection 3.5.4. We denote by J (µ, ν) (resp. J • (µ, ν)) the set of these modified set-valued mappings J resp. J • from Proposition 3.2.7.

Remark 3.2.8. Let J ∈ J (µ, ν), N ν ∈ N ν , and J • ∈ J • (µ, ν) from Proposition 3.2.7. The following holds for J ∈ {J, J • , J \ N ν }. Let x, x ′ ∈ R d , (i) Y ∈ J(X), M(µ, ν)-q.s.; (ii) J(x) ∩ J(x ′ ) = aff J(x) ∩ J(x ′ ) ∩ J(x); (iii) J(x) ∩ J(x ′ ) = conv J(x) ∩ J(x ′ ) ; (iv) if I(x ′ ) ∩ J(x) ̸ = ∅, then J(x ′ ) ⊂ J(x).
Remark 3.2.8 will be justified in Subsection 3.5.4. We next introduce a subset of polar sets which play an important role. Definition 3.2.9. We say that The proof of Theorem 3.2.10 is reported in Subsection 3.5.4. Remark 3.2.11. For a fixed x ∈ R d , even though J(x) is convex for J ∈ J (µ, ν), it may not be Borel anymore, unlike J θ (x) when θ ∈ T (µ, ν). The same holds for J • (x), with J • ∈ J • (µ, ν) or for a canonical polar sets, they may not be Borel but only universally measurable (i.e. P-measurable2 for all P ∈ P(Ω)). Similar to J θ for θ ∈ T (µ, ν), the invariance of J ∈ J (µ, ν) and

N ∈ N µ,ν is canonical if N = {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ J(X)}, for some (N µ , N ν , J) ∈ N µ × N ν × J (µ,
J • ∈ J • (µ, ν) on I(x) for each x ∈ R d proves that J is I-measurable.

Weakly convex functions

We see from [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] 4.2 that the integral of the dual functions needs to be compensated by a convex (concave in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]) moderator to deal with the case µ

[φ] + ν[ψ] = -∞ + ∞.
However, they need to define a new concave moderator for each irreducible component before summing them up on the countable components. In higher dimension, as the components may not be countable there may be measurability issues arising. We need to store all these convex moderators in one single moderator which is convex on each component, but that may not be globally convex (see Example 3.2.14). Definition 3.2.12. A function f : R d -→ R is said to be M(µ, ν)-convex or weakly convex if there exists a tangent convex function θ ∈ T (µ, ν) such that

T p f = θ, on {Y ∈ J • (X), X / ∈ N µ }, for some p : R d → R d ,
and

(N µ , J • ) ∈ N µ × J • (µ, ν).
Under these conditions, we write that θ ≈ T p f . Notice that by Remark 3.2.8, Y ∈ J • (X), M(µ, ν)-q.s., whence θ ≈ T p f implies that θ = T p f , M(µ, ν)-q.s. We denote by C µ,ν the collection of all M(µ, ν)-convex functions. Similarly to convex functions, we introduce a convenient notion of subgradient:

∂ µ,ν f := p : R d -→ R d : T p f ≈ θ ∈ T (µ, ν) ,
which is by definition non-empty. A key ingredient for all the results of this paper is that the sets Θ µ,ν and C µ,ν turn out to be in one-to-one relationship. Proposition 3.2.13. Under Assumption 3.2.6,

T (µ, ν) = {θ ≈ T p f, for some f ∈ C µ,ν , and p ∈ ∂ µ,ν f }.
The proof of this proposition is reported in Subsection 3.5.6.

Example 3.2.14. [M(µ, ν)-convex function in dimension one] Let

µ := 1 2 (δ -1 + δ 1 )
, and ν(dy) := 1 8 1 [-2,2] (y)dy + δ -2 (dy) + 2δ 0 (dy) + δ 2 (dy) . For these measures, one can easily check that the irreducible components from [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], and [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF] are given by I(-1) = (-2, 0), and I(1) = (0, 2), and the associated J mapping is given by J(-1) = [-2, 0], and

J(1) = [0, 2]. By Example 3.2.17 in this paper, f : R -→ R is M(µ, ν)-convex if it is convex on each irreducible components. See Figure 3.2.
The next result shows that the weakly convex functions are convex on each irreducible component. Let η := µ • I -1 , and recall that any J ∈ J (µ, ν) is I-measurable by Remark 3.2.11.

0 -1 1 2 -2 f(x) x= Fig. 3.2 Example of a M(µ, ν)-convex function. Proposition 3.2.15. Let f ∈ C µ,ν and p ∈ ∂ µ,ν f . Then f is convex on J • , and proj ∇affJ • (p)(X) ∈ ∂f | J • (X), µ-a.s. Furthermore, we may find f ∈ C µ,ν and p ∈ ∂ µ,ν f such that f = f , µ + ν-a.s., p = proj ∇affJ • (p), µ-a.s., and f is convex on J with p ∈ ∂ f | I , η-a.s. for some J ∈ J (µ, ν).
The proof of this proposition is reported in Subsection 3.5.6.

Extended integrals

The following integral is clearly well-defined:

(ν -µ)[f ] = P[T p f ] for all P ∈ M(µ, ν), f ∈ C ∩ L 1 (ν), p ∈ ∂f. (3.2.6)
Similar to Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], we need to introduce a convenient extension of this integral. For f ∈ C µ,ν , define:

ν⊖µ[f ] := inf a ≥ 0 : T p f ≈ θ ∈ T a , for some p ∈ ∂ µ,ν f (3.2.7) ν⊖µ[f ] := S µ,ν (T p f ), for p ∈ ∂ µ,ν f, (3.2.8)
where the last value is not impacted by the choice of

p ∈ ∂ µ,ν f , whenever ν⊖µ[f ] < ∞. Indeed, if p 1 , p 2 ∈ ∂ µ,ν f such that P[T p 1 f ] < ∞ and P[T p 2 f ] < ∞, then T p 1 f -T p 2 f = (p 2 -p 1 ) ⊗ ∈ L 1 (P)
, and it follows from the Fubini theorem that

P[T p 1 f -T p 2 f ] = P[(p 2 -p 1 ) ⊗ ] = P[P[(p 2 -p 1 ) ⊗ |X]] = 0.
We also abuse notation and define for θ ∈ T (µ, ν), ν⊖µ[θ] := inf a ≥ 0 : θ ∈ T a .

Proposition 3.2.16. For f ∈ C µ,ν and θ ∈ T (µ, ν), we have

(i) ν⊖µ[f ] ≥ ν⊖µ[f ] ≥ 0, and ν⊖µ[θ] ≥ S µ,ν (θ) ≥ 0; (ii) if f ∈ C ∩ L 1 (ν), then ν⊖µ[f ] = ν⊖µ[f ] = ν⊖µ[T p f ] = (ν -µ)[f ],
for all p ∈ ∂f ;

(iii) ν⊖µ and ν⊖µ are homogeneous and convex.

Proof. The proof is similar to the proof of Proposition 2.11 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF].

2
We can prove the next simple characterization of T (µ, ν), C(µ, ν) and T (µ, ν) in the one-dimensional setting. In dimension 1, by Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], there are only countably many irreducible components of full dimension. The other components are points. Then we can write these components I k for k ∈ N like in [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] Proposition 2.3. We also have uniqueness of the J(x) from Theorem 3.7 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], that is equivalent in dimension 1 to Theorem 3.2. We denote them J k as well. We also take another notation from the paper, µ k and ν k the restrictions of µ and ν to I k and J k , and (ν k -µ k ) extending their Definition 4.2 to non integrable convex functions, which corresponds to the operator ν⊖µ in this paper.

Example 3.2.17.

If d = 1, C µ,ν = f : R d → R : f |J k is convex for all k , T (µ, ν) = θ = k 1 X∈I k T p k f k : f k convex finite on J k , p k ∈ ∂f k , and k (ν k -µ k )(f k ) < ∞ , and ν⊖µ[f ] = ν⊖µ[f ] = k (ν k -µ k )(f |J k ), for all f ∈ C µ,ν .
This characterization follows from the same argument than the proof of Proposition 3.11 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF].

Problem formulation

Definition 3.2.18. Let φ, ψ : R d -→ R and f ∈ C µ,ν . We say that f is a convex moderator for (φ, ψ) if

φ + f ∈ L 1 + (µ), ψ -f ∈ L 1 + (ν), and ν⊖µ[f ] := ν⊖µ[f ] = ν⊖µ[f ] < ∞.
We denote by L(µ, ν) the collection of triplets (φ, ψ, h) such that (φ, ψ) has some convex moderator f with h + p ∈ L 0 (R d , R d ) for some p ∈ ∂ µ,ν f .

We now introduce the objective function of the robust superhedging problem for a pair (φ, ψ) ∈ L(µ, ν) with convex moderator f :

µ[φ]⊕ν[ψ] := µ[φ + f ] + ν[ψ -f ] + ν⊖µ[f ].
(3.2.9)

We observe immediately that this definition does not depend on the choice of the convex moderator. Indeed, if f 1 , f 2 are two convex moderators for (φ, ψ), it follows that

f 1 -f 2 ∈ L 1 (µ) ∩ L 1 (ν), and consequently µ⊖ν[f 1 ] = µ⊖ν[f 2 ] + (ν -µ)[f 1 -f 2 ] by Proposition 3.2.16. This implies that µ[φ + f 1 ] + ν[ψ -f 1 ] + ν⊖µ[f 1 ] = µ[φ + f 2 ] + ν[ψ -f 2 ] + ν⊖µ[f 2 ].
For a cost function c : R d × R d -→ R + , the relaxed robust superhedging problem is

I qs µ,ν (c) := inf (φ,ψ,h)∈D qs µ,ν (c) µ[φ]⊕ν[ψ], (3.2.10) 
where

D qs µ,ν (c) := (φ, ψ, h) ∈ L(µ, ν) : φ ⊕ ψ + h ⊗ ≥ c, M(µ, ν) -q.s. . (3.2.11)
Remark 3.2.19. This dual problem depends on the primal variables M(µ, ν). However this issue is solved by the fact that Theorem 3.7 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF] gives an intrinsic description of the polar sets. See also Theorem 3.2.10.

We also introduce the pointwise version of the robust superhedging problem:

I pw µ,ν (c) := inf (φ,ψ,h)∈D pw µ,ν (c) µ[φ]⊕ν[ψ], (3.2.12)
where

D pw µ,ν (c) := (φ, ψ, h) ∈ L(µ, ν) : φ ⊕ ψ + h ⊗ ≥ c . (3.2.13)
The following inequalities extending the classical weak duality (4.1.5) are immediate,

S µ,ν (c) ≤ I qs µ,ν (c) ≤ I pw µ,ν (c). (3.2.14)

Main results

Remark 3.3.1. All the results in this section are given for c ≥ 0. The extension to the case c

≥ φ 0 ⊕ ψ 0 + h ⊗ 0 with (φ 0 , ψ 0 , h 0 ) ∈ L 1 (µ) × L 1 (ν) × L 1 (µ, R d )
, is immediate by applying all results to c -φ 0 ⊕ ψ 0 -h ⊗ 0 ≥ 0.

Duality and attainability

We recall that an upper semianalytic function is a function f : R d → R such that {f ≥ a} is an analytic set for any a ∈ R. In particular, a Borel function is upper semianalytic. This Theorem will be proved in Subsection 3.5.3.

Remark 3.3.3. For an upper-semicontinuous coupling function c, we observe that the duality result S µ,ν (c) = I qs µ,ν (c) = I pw µ,ν (c) holds true, together with the existence of an optimal martingale interpolating measure for the martingale optimal transport problem S µ,ν (c), without any need to Assumptions 3.2.6. This is an immediate extension of the result of Beiglböck, Henry-Labordère & Penckner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF], see also Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF]. However, dual optimizers may not exist in general, see the counterexamples in Beiglböck, Henry-Labordère & Penckner and in Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. Observe that in the one-dimensional case, Beiglböck, Lim & Obłój [START_REF] Beiglböck | Dual attainment for the martingale transport problem[END_REF] proved that pointwise duality, and integrability hold for C 2 cost functions together with compactly supported µ, and ν. We show in Example 3.4.1 below that this result does not extend to higher dimension. Remark 3.3.4. An existence result for the robust superhedging problem was proved by Ghoussoub, Kim & Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. We emphasize that their existence result requires strong regularity conditions on the coupling function c and duality, and is specific to each component of the decomposition in irreducible convex pavings, see Subsection 3.3.2 below. In particular, their construction does not allow for a global existence result because of non-trivial measurability issues. Our existence result in Theorem 3.3.2 (ii) by-passes these technical problems, provides global existence of a dual optimizer, and does not require any regularity of the cost function c.

Decomposition on the irreducible convex paving

The measurability of the map I stated in Theorem 2.1 (i) in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], induces a decomposition of any function on the irreducible paving by conditioning on I. We shall denote η := µ • I -1 , and set µ I the law of X, conditionally to I. Then for any measurable f : R d -→ R, non-negative or µ-integrable, we have

R d f (x)µ(dx) = I(R d ) ( i f (x)µ i (dx)) η(di).
Similar to the one-dimensional context of Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF], it turns out that the martingale transport problem reduces to componentwise irreducible martingale transport problems for which the quasi-sure formulation and the pointwise one are equivalent. For P ∈ M(µ, ν), we shall denote ν P I := P • (Y |X ∈ I) -1 and

P I := P • ((X, Y )|X ∈ I) -1 .
Theorem 3.3.5. Let c : Ω → R + be upper semianalytic with S µ,ν (c) < ∞. Then we have:

S µ,ν (c) = sup P∈M(µ,ν) I(R d ) S µ i ,ν P i (c)η(di). (3.3.1)
Furthermore, we may find functions (φ, h) 

∈ L 0 (R d ) × L 0 (R d , R d ), and 
(ψ K ) K∈I(R d ) ⊂ L 0 + (R d ) with ψ I(X) (Y ) ∈ L 0 + ( 
(φ ′ , ψ ′ , h ′ ) ∈ D qs µ,ν (c) optimizer for I qs µ,ν (c) such that c ≤ φ ′ ⊕ ψ ′ + h ′⊗ , on {Y ∈ J(X)}. (iv)
Under the conditions of (ii) and (iii), we may find (ii) There exists a primal optimizer for the problem S µ,ν (c).

(φ ′ , ψ ′ , h ′ ) ∈ D pw µ I ,ν P * I (c |I×J ), such that S µ I ,ν P * I (c) = µ I [φ ′ ]⊕ν P * I [ψ ′ ], η -a.s.

Martingale monotonicity principle

As a consequence of the last duality result, we now provide the martingale version of the monotonicity principle which extends the corresponding result in standard optimal transport theory, see Theorem 5.10 in Villani [START_REF] Villani | Optimal transport: old and new[END_REF]. The following monotonicity principle states that the optimality of a martingale measure reduces to a property of the corresponding support.

The one-dimensional martingale monotonicity principle was introduced by Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], see also Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF], and Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF]. 

(Γ K ) K∈I(R d ) such that Γ = ∪ K∈I(R d ) Γ K with Γ I ⊂ I × J θ , Γ I is c-martingale monotone,

Proof. Let functions (φ, h)

∈ L 0 (R d ) × L 0 (R d , R d ) and functions (ψ K ) K∈I(R d ) ⊂ L 0 + (R d ) with ψ I(X) (Y ) ∈ L 0 + (Ω) from Theorem 3.3.5.
Recall that pointwise we have c ≤ φ(X) + ψ I(X) (Y ) + h ⊗ . We set Γ := {c = φ(X) + ψ I(X) (Y ) + h ⊗ < ∞}.

(i) If P * is optimal for the primal problem then,

∞ > P * [c] = P * [φ(X) + ψ I(X) (Y ) + h ⊗ ] = S µ,ν (c) and P * [φ(X) + ψ I(X) (Y ) + h ⊗ -c] = 0 As φ(X) + ψ I(X) (Y ) + h ⊗ -c ≥ 0
, and the expectation of c is finite, and therefore (iii) By definition of Θ µ,ν , for P 0 with finite support, supported on Γ ⊂ N c , and P ′ competitor to P 0 . As N c is canonical, it is martingale monotone by definition. Then

P * [c < ∞] = 1, it follows that P * is concentrated on Γ. (ii) Let θ ∈ T (µ, ν) such that J θ = domψ I(X) from Theorem 3.3.5. For K ∈ I(R d ), let Γ K := Γ ∩ K × R d . Then we have Γ I(x) ⊂ I(x) × J θ (x) for all x ∈ R d , Γ I(x) is c-
P ′ [N c ] = 1, and therefore P ′ [c] ≤ P ′ [φ ′ ⊕ ψ ′ + h ′⊗ ] = P[φ ′ ⊕ ψ ′ + h ′⊗ ] = P 0 [c].
Finally, by definition we have Γ ⊂ N c . 2

Remark 3.3.9. Let (φ, ψ, h) ∈ D qs µ,ν (c) be a minimizer of I q.s. µ,ν (c). Assume that

P[φ ⊕ ψ + h ⊗ ] does not depend on the choice of P ∈ M(µ, ν) (e.g. if (φ, ψ) ∈ L 1 (µ) × L 1 (ν), or if d = 1
). Then we may chose Γ such that a measure P ∈ M(µ, ν) is optimal for S µ,ν (c) if and only if it is concentrated on Γ. Indeed, with the notations from the previous proof, if P ∈ M(µ, ν) is concentrated on Γ, P[φ ⊕ ψ + h ⊗ -c] = 0 and as Remark 3.3.13. Proposition 3.3.10 may be applied in particular in the trivial case in which there is a unique irreducible component. We state here that any pair of measures µ, ν ∈ P(R d ) in convex order may be approximated by pairs of measures that have a unique irreducible component, and therefore satisfy Assumption 3.2.6. We may then use a stability result like in Guo & Obłój [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] to use the approximation (µ ϵ , ν ϵ ) of (µ, ν) in practice.

P[φ ⊕ ψ + h ⊗ ] = µ[φ]⊕ν[ψ] because of the invariance, P(c) = P[φ ⊕ ψ + h ⊗ ] = I qs µ,ν (c) = S µ,ν (c).

On

(i) Y / ∈ ∂I(X), M(µ, ν)-q.s. or equivalently µ • I -1 = ν • I -1 . (ii) dim I(X) ∈ {0,
Let µ ′ ⪯ ν ′ in convex order with (µ ′ , ν ′ ) irreducible, and supp ν ⊂ ri conv supp ν ′ . Then (µ ϵ , ν ϵ ) := 1 1+ϵ (µ + ϵµ ′ , ν + ϵν ′ ) is irreducible for all ϵ > 0. Indeed by Proposition 3.4 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may find P ∈ M(µ ′ , ν ′ ) such that conv supp PX = ri conv supp ν ′ , µ ′ -a.s. Then, 1 1+ϵ (P + ε P) ∈ M(µ ϵ , ν ϵ ) for all P ∈ M(µ, ν), and ri conv supp ν ′ ⊂ I(X) on a set charged by µ ϵ , which proves that I = ri conv supp ν ′ ⊃ supp ν, preventing other components from appearing on the boundary. Thus (µ ϵ , ν ϵ ) is irreducible.

Convenient measures to consider are for example µ ′ := δ 0 or µ ′ := N (0, 1), and ν ′ := N (0, 2). For finitely supported µ and ν we may consider y 1 , ..., y k ∈ R d for some k ≥ 1 such that supp ν ⊂ int conv(y 1 , ..., y k ), ν ′ := 

Measurability and regularity of the dual functions

In the main theorem, only φ ⊕ ψ + h ⊗ has some measurability. However, we may get some measurability on the separated dual optimizers.

Proposition 3.3.16. For all (φ, ψ, h) ∈ L(µ, ν), (i) φ, ψ, proj ∇affI (h) ∈ L 0 (I) × L 0 (I) × L 0 (I, ∇affI);

(ii) under any one of the conditions of Proposition 3.3.10, we may find R d . Furthermore, the canonical set from Theorem 3.2.10, and the set Γ ′ from Theorem 3.3.8 may be chosen to be Borel measurable, and {Y ∈ J(X)} (resp. {Y ∈ J • (X)}) for J ∈ J (µ, ν) (resp. J • ∈ J • (µ, ν)) may be chosen to be analytically measurable.

(φ ′ , ψ ′ , h ′ ) ∈ L(µ, ν) such that φ⊕ψ +h ⊗ = φ ′ ⊕ψ ′ +h ′⊗ , q.s. and (φ ′ , ψ ′ , h ′ ) ∈ L 0 R d 2 ×L 0 R d ,
The proof of this proposition is reported to Subsection 3.5.6. We may as well prove some regularity of the dual functions, provided that the cost function has some appropriate regularity. This Lemma is very close to Theorem 2.3 (1) in [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. Lemma 3.3.17. Let c : Ω → R + be upper semi-analytic. We assume that x -→ c(x, y) is locally Lipschitz in x, uniformly in y, and that S µ,ν (c

) = S µ,ν (φ ⊕ ψ + h ⊗ ) < ∞, with φ : R d -→ R ∪ {∞}, ψ : R d -→ R ∪ {∞}, and h : R d -→ R d such that c ≤ φ ⊕ ψ + h ⊗ , pointwise. Then, we may find (φ ′ , h ′ ) = (φ, h), µ -a.e. such that c ≤ φ ′ ⊕ ψ + h ′⊗ ≤ φ ⊕ ψ + h ′⊗ , φ ′ is
locally Lipschitz, and h ′ is locally bounded on ri conv dom ψ.

The proof of Lemma 3.3.17 is reported in Subsection 3.5.7.

Examples

Pointwise duality failing in higher dimension

In the one-dimensional case, Beiglböck, Lim & Obłój [START_REF] Beiglböck | Dual attainment for the martingale transport problem[END_REF] proved that pointwise duality, and integrability hold for C 2 cost functions together with compactly supported µ, and ν. We believe that integrability may hold in higher dimension, and strong monotonicity holds. However the following example shows that dual attainability does not hold with such generality for a dimension higher than 2.

Example 3.4.1. Let y --:= (-1, -1), y -+ := (-1, 1), y +-:= (1, -1), y ++ := (1, 1), y 0-:= (0, -1), y 0+ := (0, 1), y 00 := (0, 0), y +0 := (1, 0), C := conv(y --, y -+ , y +-, y ++ ),

x 1 := (-1 2 , 0), x 2 := ( 1 2 , 1 2 ), x 3 := ( 1 2 , -1 2 ), µ := 1 2 δ x 1 + 1 4 δ x 2 + 1 4 δ x 3
, and ν := 1 4 1 C Vol. We can prove that for these marginals, the irreducible components are given by I(x 1 ) := ri conv(y --, y -+ , y 0+ , y 0-), I(x 2 ) := ri conv(y 0+ , y ++ , y +0 , y 00 ), and I(x 3 ) := ri conv(y 00 , y +0 , y +-, y 0-), and M(µ, ν) is a singleton {P}, with

P(dx, dy) := 1 4 2δ x 1 (dx)1 y∈I(x 1 ) + δ x 2 (dx)1 y∈I(x 2 ) + δ x 3 (dx)1 y∈I(x 3 ) ⊗ Vol(dy). Now we define a cost function c such that c x 1 , • is 0 on cl I(x 1 ), c x 2 , • is 0 on cl I(x 2 ),
and c x 3 , • is 0 on cl I(x 3 ). However we also require c(x 2 , y +-) = 1. We may have these conditions satisfied with c ≥ 0, and C ∞ . Let (φ, ψ, h) be pointwise dual optimizers, then φ ⊕ ψ + h ⊗ = c, P-a.s. then ψ is affine on each irreducible components:

ψ(y) = c(x i , y) -φ(x i ) -h(x 1 ) • (y -x i ) = -φ(x i ) -h(x 1 ) • (y -x i )
, Lebesgue-a.e. on I(x i ), for i = 1, 2, 3. By the last equality, we deduce that φ(x i ) = -ψ(x i ), and h(x i ) = -∇ψ(x i ). Now by the superhedging inequality, ψ(y

) -ψ(x i ) -∇ψ(x i ) • (y -x i ) ≥ c(x i , y) ≥ 0.
Therefore ψ is a.e. equal to a convex function, piecewise affine on the components.

However a convex function that is affine on I(x 1 ), I(x 2 ), and I(x 3 ) is affine on cl I(x 2 ) ∪ cl I(x 3 ) (it follows from the verification at the angles between the regions where ψ has nonzero curvature). Then c(x 2 , y) ≤ ψ(y) -ψ(x 2 ) -∇ψ(x 2 ) = 0 for a.e. y ∈ cl I(x 3 ) ⊂ cl I(x 2 ) ∪ cl I(x 3 ). This is the required contradiction as c(x 2 , y +-) = 1 and c is continuous, and therefore nonzero on a non-negligible neighborhood of (x 2 , y +-). Notice that in this example, µ is not dominated by the Lebesgue measure for simplicity, however this example also holds when δ x i is replaced by 1 πϵ 2 1 Bϵ(x i ) Vol for ϵ > 0 small enough.

Disintegration on an irreducible component is not irreducible

Example 3.4.2. Let x 0 := (-1, 0),

x 1 := ( 1 2 , 1 2 ), x -1 := ( 1 2 , - 1 
2 ), y 1 = (0, 1), y 2 := (2, 0), y -1 := -y 1 , y -2 := -y 2 , and y 0 := 0. Let the probabilities

µ := 1 3 (δ x 0 + δ x 1 + δ x -1 ), and ν := 1 6 (δ y -2 + δ y 2 + δ y 0 ) + 1 4 (δ y 1 + δ y -1 ).
We can prove that for these marginals, the irreducible components are given by I(x 0 ) = ri conv(y -2 , y 1 , y -1 ), and I(x 1 ) = I(x -1 ) = ri conv(y 2 , y 1 , y -1 ), indeed, M(µ, ν) = conv(P 1 , P 2 ), with

P 1 := 1 6 δ (x 0 ,y -2 ) + 1 6 δ (x 0 ,y 0 ) + 1 12 δ (x 1 ,y 2 ) + 3 16 δ (x 1 ,y 1 ) + 1 16 δ (x 1 ,y -1 ) + 1 12 δ (x -1 ,y 2 ) + 3 16 δ (x -1 ,y -1 ) + 1 16 δ (x -1 ,y 1 )
, and

P 2 := 1 6 δ (x 0 ,y -2 ) + 1 12 δ (x 0 ,y 1 ) + 1 12 δ (x 0 ,y -1 ) + 1 6 δ (x 1 ,y 1 ) + 1 12 δ (x 1 ,y 0 ) + 1 12 δ (x 1 ,y 2 ) + 1 6 δ (x -1 ,y -1 ) + 1 12 δ (x -1 ,y 0 ) + 1 12 δ (x -1 ,y 2 ) .
(See Figure 3.3). Let c be smooth, equal to 1 in the neighborhood of (x 0 , y 1 ) and 0 at a distance higher than 1 2 from this point, P 2 is the only optimizer for the martingale optimal transport problem S µ,ν (c). However, µ I(x 1 ) = 1 2 (δ x 1 + δ x -1 ), and ν P 2 I(x 1 ) = 1 4 (δ y 2 + δ y 0 + δ y 1 + δ y -1 ), and the associated irreducible components are

I µ I(x 1 ) ,ν P 2 I(x 1 )
(x 1 ) = ri conv(y 0 , y 1 , y 2 ), and I µ I(x 1 ) ,ν P 2

I(x 1 ) (x -1 ) = ri conv(y 0 , y -1 , y 2 ),
and therefore, the couple µ I(x 1 ) , ν P 2 I(x 1 ) obtained from the disintegration of the optimal probability P 2 in the irreducible component I(x 1 ) = I 1 can be reduced again in two irreducible sub-components. 

Coupling by elliptic diffusion

Assumption 3.2.6 holds when ν is obtained from an Elliptic diffusion from µ.

Remark 3.4.3. Notice that (iii) in Proposition 3.3.10 holds if ν is the law of X τ := X 0 + t 0 σ s dW s , where X 0 ∼ µ, W a d-dimensional Brownian motion independent of X 0 , τ is a positive bounded stopping time, and (σ t ) t≥0 is a bounded cadlag process with values in M d (R) adapted to the W -filtration with σ 0 invertible. We observe that the strict positivity of the stopping time is essential, see Example 3.4.4.

We justify Remark 3.4.3 in Subsection 3.6.1.

Example 3.4.4. Let

C := [-1, 1] × [0, 2] × [-1, 1], F := {0} × [-1, 1] × [-1, 1],
x 0 := (0, 0, 0), x 1 := (0, 1, 0) µ := 1 2 δ x 0 + 1 2 δ x 1 , a F-Brownian motion W , and X a random variable F 0 -measurable with X 0 ∼ µ. Consider the bounded stopping time τ := 1 ∧ inf{t ≥ 0 : W t ∈ ∂C}, and ν, the law of X 0 + W τ . We have µ ⪯ ν in convex order, as the law P of (X, Y ) := (X 0 , X 0 + W τ ) is clearly a martingale coupling. However, observe that p := P[X = x 1 , Y ∈ C] > 0, and that by symmetry

P[Y |X = x 1 , Y ∈ C] = x 0 . Let ν C be the law of Y , conditioned on {X = x 1 , Y ∈ C}. Then P ′ := P + p (δ x 0 -δx 1 ) ⊗ ν C - (δ x 0 -δx 1 ) ⊗ δ x 0 is also in M(µ, ν).
We may prove that the irreducible components are riC, and riF , and therefore (iii) of Proposition 3.3.10 does not hold. This proves the importance of the strict positivity of the stopping time τ in Remark 3.4.3. In dimension 4, we may find an example in which (v) of Proposition 3.3.10 does not hold either, by replacing F by a continuum of translated F in the fourth variable, thus introducing an orthogonal curvature in the lower face of C to avoid the copies of F to communicate with each other.

Proof of the main results

Moderated duality

Let c ≥ 0, we define the moderated dual set of c by

D mod µ,ν (c) := ( φ, ψ, h, θ) ∈ L 1 + (µ) × L 1 + (ν) × L 0 (R d , R d ) × T (µ, ν) : c ≤ φ ⊕ ψ + h⊗ + θ, on {Y ∈ aff rf X conv dom(θ + ψ)} .
We then define for ( φ, ψ, h, θ) ∈ D This Theorem will be proved in Subsection 3.5.3.

Definitions

We first need to recall some concepts from [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]. For a subset A ⊂ R d and a ∈ R d , we introduce the face of A relative to a (also denoted a-relative face of A): rf a A := y ∈ A : (a -ε(y -a), y + ε(y -a)) ⊂ A, for some ε > 0 . Now denote for all θ : Ω → R:

dom x θ := rf x conv dom θ(x, •).
For θ 1 , θ 2 : Ω -→ R, we say that

θ 1 = θ 2 , µ⊗pw, if dom X θ 1 = dom X θ 2 , and θ 1 (X, •) = θ 2 (X, •) on dom X θ 1 , µ -a.s.
The main ingredient for our extension is the following.

Definition 3.5.2. A measurable function θ

: Ω → R + is a tangent convex function if θ(x, •) is convex, and θ(x, x) = 0, for all x ∈ R d .
We denote by Θ the set of tangent convex functions, and we define Similar to ν⊖µ for T (µ, ν), we now introduce the extended (ν -µ)-integral:

Θ µ := θ ∈ L 0 (Ω, R + ) : θ = θ ′ , µ⊗pw, and θ ≥ θ ′ , for some θ ′ ∈ Θ . Definition 3.5.3. A sequence (θ n ) n≥1 ⊂ L 0 (Ω) converges µ⊗pw to some θ ∈ L 0 (Ω) if dom X (θ ∞ ) = dom X θ and θ n (X, •) -→ θ(X, •), pointwise on dom X θ, µ -a.s. (i) A subset T ⊂ Θ µ is µ⊗pw-Fatou closed if θ ∞ ∈ T for all (θ n ) n≥1 ⊂ T converging µ⊗pw. (ii)
ν ⊖µ[θ] := inf a ≥ 0 : θ ∈ T a for θ ∈ T (µ, ν).

Duality result

As a preparation for the proof of Theorem 3.5.1, we prove the following Lemma. 

, θ ≥ θ ∞ ≥ θ. By construction, ν⊖µ[θ] ≤ l = ν ⊖µ[ θ].
2

Proof of Theorem 3.5.1 By Theorem 3.8 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may find ( φ, ψ, h, θ) We have that c ≤ φ ⊕ ψ + h⊗ + θ ≤ φ ⊕ ψ + h⊗ + θ on {Y ∈ aff rf X conv dom(θ(X,

∈ L 1 + (µ) × L 1 + (ν)×L 0 (R d , R d )× T (µ, ν) such that c ≤ φ⊕ ψ + h⊗ + θ on {Y ∈ aff rf X conv dom( θ(X, •)+ ψ)}, furthermore, S µ,ν (c) = µ[ φ] + ν[ ψ] + ν ⊖µ[ θ] and S µ,ν ( θ) = ν ⊖µ[ θ] < ∞.
•) + ψ)} which is included in {Y ∈ aff rf X conv dom( θ(X, •) + ψ)}. As θ ≤ θ, we have S µ,ν (θ) ≥ S µ,ν ( θ) = ν ⊖µ[ θ] ≥ ν⊖µ[θ]. From Proposition 3.2.16 (i), we get that S µ,ν (θ) = ν⊖µ[θ] = ν ⊖µ[ θ] < ∞. As θ ≥ θ, we have ( φ, ψ, h, θ) ∈ D mod µ,ν (c). Finally, as V al( φ, ψ, h, θ) = µ[ φ] + ν[ ψ] + ν⊖µ[θ] = µ[ φ] + ν[ ψ] + ν ⊖µ[ θ] = S µ,ν (c), the result is proved. 2 
Proof of Theorem 3.3.2 By Theorem 3.5.1, we may find ( φ, ψ, h, θ)

∈ D mod µ,ν (c) such that µ[ φ] + ν[ ψ] + ν ⊖µ[θ] = S µ,ν (c).
As Assumption 3.2.6 holds, by Proposition 3.2.13, we get f ∈ C µ,ν and p ∈ ∂ µ,ν f such that T p f = θ, q.s. Therefore, by definition we have ν⊖µ

[f ] ≤ ν ⊖µ[θ]. Then we denote φ := φ -f , ψ := ψ + f , and h := h -p. As φ ⊕ ψ + h ⊗ = φ ⊕ ψ + h⊗ + θ ≥ c, q.s., (as Y ∈ aff rf X conv dom( θ(X, •) + ψ), q.s.) S µ,ν (T p f ) = ν ⊖µ[θ] ≥ ν⊖µ[f ]. As ν⊖µ[f ] := S µ,ν (T p f ) ≤ ν⊖µ[f ] by Proposition 3.2.16 (i), we have ν⊖µ[f ] := ν⊖µ[f ] = ν⊖µ[f ],
and therefore f is a M(µ, ν)-convex moderator for (φ, ψ), and as µ

[φ + f ] + µ[ψ -f ] + ν⊖µ[f ] = S µ
,ν (c), the duality result, and attainment are proved.

Structure of polar sets

Proof of Proposition 3.2. [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] Step 1: Let a Borel N ∈ N µ,ν such that θ is a N -tangent convex function. Then c := ∞1 N is Borel measurable and non-negative. Notice that S µ,ν (c) = 0. By Theorem 3.5.1, we may find (φ

1 , ψ 1 , h 1 , θ 1 ) ∈ D mod µ,ν (c) such that µ[φ 1 ] + ν[ψ 1 ] + ν ⊖µ[θ 1 ] = S µ,ν (c) = 0. Then by the pointwise inequality ∞1 N ≤ φ 1 ⊕ ψ 1 + h ⊗ 1 + θ 1 on {Y ∈ aff rf X conv D(X)}, with D(X) := dom θ 1 (X, •) + ψ 1 , (the convention is 0 × ∞ = 0).
By Subsection 6.1 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may find

N ′ µ ∈ N µ , N ν ∈ N ν , and θ ∈ T (µ, ν) such that I(X) ⊂ D(X), rf X conv(dom θ(X, •) \ N ν ) = I(X), and dom θ(X, •) \ N ν ⊂ J(X), on N ′c
µ . By Lemma 3.5.4 we may find θ ≤ θ ∈ T (µ, ν). Up to adding 1 N ′ µ to ϕ 1 , 1 Nν to ψ 1 , and θ to θ 1 , we may assume that 1 N ′ µ ≤ ϕ 1 , 1 Nν ≤ ψ 1 , and θ ≤ θ 1 . We get that

N ⊂ {φ 1 (X) = ∞} ∪ {ψ 1 (Y ) = ∞} ∪ {Y / ∈ domθ 1 (X, •)} ∪ {Y / ∈ aff rf X conv D(X)} = {φ 1 (X) = ∞} ∪ Y / ∈ D(X) ∩ aff rf X conv D(X) = {φ 1 (X) = ∞} ∪ Y / ∈ D(X) ∩ aff I(X) .
We have

N ⊂ dom θ 1 + φ 1 ⊕ ψ 1 c , andN ⊂ {X ∈ N µ } ∪ {Y ∈ N µ } ∪ {Y / ∈ J(X)} . (3.5.1)
Notice that as µ[φ 1 ] + ν[ψ 1 ] = 0, {φ 1 = ∞} ∈ N µ and {ψ 1 = ∞} ∈ N ν . We also have ν⊖µ[θ 1 ] < ∞. We may replace φ 1 by ∞1 φ 1 =∞ , ψ 1 by ∞1 ψ 1 =∞ , and θ 1 by ∞1 θ 1 =∞ ∈ T (µ, ν), where the fact that ∞1 θ 1 =∞ ∈ T (µ, ν) stems from the fact that

1 n θ 1 ⇝ ∞1 θ 1 =∞ ∈ T (µ, ν), proving as well that ν⊖µ[∞1 θ 1 =∞ ] = 0. (3.5.2)
Thanks to these modifications, φ 1 , ψ 1 , and θ 1 only take the values 0 or ∞.

Step 2: Now let a Borel set N 1 ∈ N µ,ν be such that θ 1 is a N 1 -tangent convex function.

Then similar to what was done for N , we may find (φ

2 , ψ 2 , θ 2 ) ∈ L 1 + (µ)×L 1 + (ν)× T (µ, ν) such that N 1 ⊂ dom θ 2 + φ 2 ⊕ ψ 2 c .
Step 4: Now we prove that J(X) = conv J(X) \ N ν ⊂ domθ(X, •), which is the first part of (i).

dom

(θ ′ + ∞u ⊗ )(X, •) + ψ ⊂ J(X) ∩ domψ ∞ ⊂ J(X).
Passing to the convex hull, we get J(X) = conv J(X) ∩ domψ = conv J(X) \ N ν as N ν = {ψ = ∞}.

Step 5: Now we prove that J(X) ⊂ domθ ′ (X, •) ⊂ domθ(X, •), which is the second part of (i). Let x ∈ R d , and y ∈ J(x). Then y = i λ i y i , convex combination, with

(y i ) ⊂ domθ ′ (x, •) ∩ domψ. Let P := i λ i δ (x,y i ) + δ (y,y) . Let k ≥ 1, P[N c k ∪ {X = Y }] = 1, P[θ k ] < ∞,
and therefore, as

P ′ := i λ i δ (y,y i ) + δ (x,y) is a competitor to P, P ′ [θ k ] ≤ P[θ k ] < ∞, and y ∈ domθ k (x, •). J(x) ⊂ domθ k (x, •) for all k ≥ 1, J(X) ⊂ domθ ′ (X, •) on N c µ .
Step 6: Now we prove that up to choosing well I, and up to a modification of J on a µ-null set, I ⊂ J ⊂ J ⊂ cl I, and J is constant on I(x), for all x ∈ R d , which is the part concerning J of the end of (iii).

We have that {I(x), x ∈ R d } is a partition of R d , I ⊂ J ⊂ cl I, and J is constant on I(x) for all x. By looking at the proof of Theorem 2.1 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may enlarge the µ-null set

N I µ ∈ N µ such that I = {X} on ∪ x ′ / ∈N I µ I(x ′ ) c
. We do so by requiring that N µ ⊂ N I µ . Now we prove that J is constant on I(X), µ-a.s. Let x 1 , x 2 ∈ domφ ∞ , and

y ∈ dom(θ ∞ + ∞u ⊗ ∞ )(x 1 , •) ∩ domψ ∞ , then y -ϵ(y -x 2 ) ∈ I(x 2 )
for ϵ > 0 small enough, as x 2 ∈ riI(x 2 ) = riI(x 1 ), and y ∈ cl I(x 1 ), as J(X) ⊂ J(X) ⊂ cl I(X) by (3.5.1). Then we may find x 1 = i λ i y i +λy, convex combination, with (y i ) ⊂ dom(θ ∞ +∞u ⊗ ∞ )(x 1 , •)∩ domψ ∞ , and λ > 0. Then let

P := i λ i δ (x 1 ,y i ) + λδ (x 1 ,y) + δ (x 2 ,x 2 ) . For all k ≥ 1, notice that P[N c k ∪ {X = Y }] = 1, as x 2 ∈ (N c k ) x 2 .
Notice furthermore that P[θ k ] < ∞, and that

P ′ := i λ i δ (x 2 ,y i ) + λδ (x 2 ,y) + δ (x 1 ,x 2 ) is a competitor to P. Then as θ k is a N k -tangent convex function, P ′ [θ k ] ≤ P[θ k ] < ∞, and therefore, as λ > 0, θ k (x 2 , y) < ∞. We proved that dom(θ ∞ + ∞u ⊗ ∞ )(x 1 , •) ∩ domψ ∞ ⊂ domθ k (x 2 , •). Therefore, dom(θ ∞ + ∞u ⊗ ∞ )(x 1 , •) ∩ domψ ∞ ⊂ domθ ∞ (x 2 , •).
As the other ingredients of J do not depend on x, and as we can exchange x 1 , and x 2 in the previous reasoning,

dom(θ ∞ + ∞u ⊗ ∞ )(x 1 , •) ∩ domψ ∞ = dom(θ ∞ + ∞u ⊗ ∞ )(x 2 , •) ∩ domψ ∞ .
Taking the convex hull, we get J(x 1 ) = J(x 2 ).

Step 7: Now we prove that thanks to the modification of I and J, we have that J • is constant on all I(x), for x ∈ R d , and that J ⊂ J • ⊂ J, which is the remaining part of (iii). By its definition, we see that the dependence of J • in x stems from a direct dependence in J(x). The map J is constant on each I(x), x ∈ R d , whence the same property for J • . Now for I(x) / ∈ I(N c µ ), all these maps are equal to {x}, whence the inclusions and the constance. Now we claim that for x, x ′ ∈ R d such that x ′ ∈ J(x), we have J(x ′ ) ⊂ J(x). This claim will be justified in (iii) of the proof of Remark 3.2.8 above. Now if x ′ ∈ J(x)\N µ ⊂ J(x), we have as a consequence that J(x ′ ) ⊂ J(x), and therefore I(x ′ ) ⊂ J(x). We proved that J • ⊂ J.

Finally by Proposition 2.4 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may find P ∈ M(µ, ν) such that J(X) \ I(X) ⊂ {y :

P X [{y}]}, on N µ . Then J ⊂ J • on N c µ .
Otherwise, these maps are again equal to {X}, whence the result.

2

Proof of Remark 3.2.8 (i) Recall that, with the notations from Proposition 3.2.7,

J(X) := conv(domθ ′ (X, •) \ N ν ) ∩ J(X). θ ′ ∈ T (µ, ν), then S µ,ν (θ) < ∞ and Y ∈ domθ ′ (X, •), M(µ, ν)-q.s. Recall that Y ∈ J(X)
, and Y / ∈ N ν , M(µ, ν)-q.s. All these ingredients prove that Y ∈ J(X), q.s. and Y ∈ J(X) \ N ν , q.s. The result for J • is a consequence of the inclusion

J \ N ν ⊂ J • ⊂ J. ( 3.5.4) 
(ii) Let x, x ′ ∈ R d , we prove that J(x) ∩ J(x ′ ) = aff J(x) ∩ J(x ′ ) ∩ J(x). The direct inclusion is trivial, let us prove the indirect inclusion. We first assume that x, x ′ ∈ N c µ . We claim that

J(x) ∩ J(x ′ ) = conv J(x) ∩ J(x ′ ) \ N ′ ν . (3.5.5)
This claim will be proved in (iii). If J(x) ∩ J(x ′ ) = ∅, the assertion is trivial, we assume now that this intersection is non-empty. Let y 1 , ...,

y k ∈ J(x) ∩ J(x ′ ) \ N ′ ν with k ≥ 1, spanning aff J(x) ∩ J(x ′ ) \ N ′ ν . Let y ∈ aff J(x) ∩ J(x ′ ) ∩ J(x)
, and y ′ = 1 k i y k . We have y ′ ∈ ri conv(y 1 , ..., y k ) and y ∈ aff conv(y 1 , ..., y k ), therefore, for ε > 0 small enough, εy

+(1-ε)y ′ ∈ ri conv(y 1 , ..., y k ) ⊂ J(x)∩J(x ′ ) ⊂ J(x ′ ) = conv J(x ′ )\N ν by (i). Then, for ε small enough, εy + (1 -ε)y ′ = i λ i y ′ i , convex combination, with (y i ) i ⊂ J(x ′ ) \ N ν . Then P = 1 2 εδ (x,y) + 1 2k (1 -ε) i δ(x, y i ) + 1 2 i λ i δ(x ′ , y ′ i
) is concentrated on N ′c , and by (iv) we have that its competitor

P ′ = 1 2 εδ (x ′ ,y) + 1 2k (1 -ε) i δ(x ′ , y i ) + 1 2 i λ i δ(x, y ′ i
) is also concentrated on N ′c . Therefore y ∈ J(x ′ ), and as y ∈ J(x), we proved the reverse inclusion:

J(x) ∩ J(x ′ ) = aff J(x) ∩ J(x ′ ) ∩ J(x). Now if x, x ′ ∈ ∪ x ′′ /
∈Nµ I(x ′′ ), we may find x 1 , x 2 ∈ N c µ such that J(x) = J(x 1 ), and J(x ′ ) = J(x 2 ), whence the result from what precedes. Finally if x or x ′ is not in

∪ x ′′ / ∈Nµ I(x ′′ ), If it is x, then I(x) = J(x) = {x}, and if x ∈ J(x ′ ), then the result is {x} = {x}, else it is ∅ = ∅. If it is x ′ , then if x ′ ∈ J(x), the result is {x ′ } = {x ′ }, otherwise, it is again ∅ = ∅.
In all the cases, the result holds.

Finally we extend this result to J • . Notice that by (3.5.5) together with (3.5.4), we have aff J(x) ∩ J(x ′ ) = aff J • (x) ∩ J • (x ′ ) . Now consider the equation that we

previously proved J(x) ∩ J(x ′ ) = aff J(x) ∩ J(x ′ ) ∩ J(x), subtracting N ν \ ∪ x ′′ / ∈Nµ I(x ′′ ) and replacing aff J(x) ∩ J(x ′ ) , we get J • (x) ∩ J • (x ′ ) = aff J • (x) ∩ J • (x ′ ) ∩ J • (x).
(iii) Let y ∈ J(x) ∩ J(x ′ ). By (i), conv J(x) \ N ν = J(x), and the same holds for x ′ . Then we may find y 1 , ..., y k ∈ J(x) \ N ν and y

′ 1 , ..., y ′ k ′ ∈ J(x ′ ) \ N ν with i λ i y i = i λ ′ i y ′ i = y,
where the (λ i ) and (λ ′ i ) are non-zero coefficients such that the sums are convex combinations. Now notice that P :=

1 2 i λ i δ (x,y i ) + 1 2 i λ ′ i δ (x ′ ,y ′ i ) is supported in N ′c . By (iv), its competitor P ′ := 1 2 i λ i δ (x ′ ,y i ) + 1 2 i λ ′ i δ (x,y ′ i ) is also supported on N ′c . Therefore, y 1 , ..., y k , y ′ 1 , ..., y ′ k ′ ∈ J(x) ∩ J(x ′ ) \ N ν . We proved that J(x) ∩ J(x ′ ) ⊂ conv J(x) ∩ J(x ′ ) \ N ′
ν , and therefore as the other inclusion is easy, we have

J(x) ∩ J(x ′ ) = conv J(x) ∩ J(x ′ ) \ N ′ ν .
The extension of this result for J • is again a consequence of the inclusion (3.5.4). (iv) Now we assume additionally that I(x ′ ) ∩ J(x) ̸ = ∅, let us prove that then J(x ′ ) ⊂ J(x). If x ′ / ∈ ∪ x ′′ / ∈Nµ I(x ′′ ), then J(x ′ ) = {x ′ } and the result is trivial. If x / ∈ ∪ x ′′ / ∈Nµ I(x ′′ ), then the result is similarly trivial. By constance of J and I on I(x) for all x, we may assume now that x, x ′ ∈ N c µ . Then let

y ∈ I(x ′ ) ∩ J(x) ⊂ conv J(x ′ ) \ N ν ∩ conv J(x) \ N ν . Let y ′ ∈ J(x ′ ) \ N ν , for ε > 0 small enough, y -ε(y ′ -y) ∈ I(y ′ ) by the fact that I(y ′ ) is open in affJ(x ′ ). Then y -ε(y ′ -y) = i λ i y i , and y = i λ ′ i y ′ i , convex combinations where (y i ) i ⊂ J(x ′ ) \ N ν , and (y i ) i ⊂ J(x ′ ) \ N ν . Then P := 1 2 ε 1+ε δ (x,y ′ ) + 1 2 1 1+ε i λ i δ (x,y i ) + 1 2 i λ ′ i δ (x ′ ,y ′ i )
is concentrated on N ′c , and by (iv), so does its competitor

P ′ := 1 2 ε 1+ε δ (x ′ ,y ′ ) + 1 2 1 1+ε i λ i δ (x ′ ,y i ) + 1 2 i λ ′ i δ (x,y ′ i ) .
Then in particular, y ′ ∈ J(x). Finally, J(x ′ ) \ N ν ⊂ J(x), passing to the convex hull, we get that J(x ′ ) ⊂ J(x).

Finally, if

I(x ′ ) ∩ J • (x) ̸ = ∅, then I(x ′ ) ∩ J(x) ̸ = ∅, and J(x ′ ) ⊂ J(x). Subtracting N ν \ ∪ x ′′ / ∈Nµ I(x ′′ ) on both sides, we get J • (x ′ ) ⊂ J • (x). 2 
Proof of Theorem 3.2.10 Let (N µ , N ν ) ∈ N µ × N ν , and J ∈ J (µ, ν). The "if" part holds as Y ∈ J(X), X / ∈ N µ , and Y / ∈ N ν q.s. Now, consider an analytic set N ∈ N µ,ν . Then c := ∞1 N is upper semi-analytic non-negative. Notice that S µ,ν (c) = 0. By Theorem 3.5.1, we may find (φ, ψ, h, θ) ∈

D mod µ,ν (c) such that µ[φ] + ν[ψ] + ν ⊖µ[θ] = S µ,ν (c) = 0.
Then by the pointwise inequality

∞1 N ≤ φ ⊗ ψ + h ⊗ + θ, on {Y ∈ aff rf X conv D(X)}, with D(X) = dom θ(X, •) + ψ , we get that N ⊂ {φ(X) = ∞} ∪ {ψ(Y ) = ∞} ∪ {Y / ∈ domθ(X, •)} ∪ {Y / ∈ aff rf X conv D(X)} = {φ(X) = ∞} ∪ {ψ(Y ) = ∞} ∪ Y / ∈ domθ(X, •) ∩ aff rf X conv D(X) ,
Let J ∈ J (µ, ν) from Proposition 3.2.7 for θ, and N ν := domψ c ∈ N ν . We have J(X) ⊂ aff rf X conv D(X) and J(X) ⊂ J(X) ⊂ domθ(X, •), µ-a.s. Therefore, we have

N ⊂ N 0 := {X ∈ N µ } ∪ {Y ∈ N ν } ∪ {Y / ∈ J(X)},
for some N µ ∈ N µ , and N ν ⊂ N ν ∈ N ν . By Proposition 3.2.7 (i) and (iv), N 0 may be chosen canonical up to enlarging N µ . 2

Decomposition in irreducible martingale optimal transports

In order to prove theorem 3.3.5, we first need to establish the following lemma.

Lemma 3.5.5. Let θ ∈ T (µ, ν) and P ∈ M(µ, ν), we may find

θ ′ ∈ T (µ, ν) such that θ ≤ θ ′ , ν ⊖µ[θ ′ ] ≤ ν ⊖µ[θ], and 
I(R d ) ν P i ⊖µ i [θ ′ ]η(di) ≤ ν ⊖µ[θ]
. Furthermore under Assumption 3.2.6, we may find f ∈ C µ,ν and p ∈ ∂ µ,ν f such that θ ≤ T p f , q.s., ν⊖µ[f ] ≤ ν ⊖µ[θ], and

I(R d ) ν P i ⊖µ i [f ]η(di) ≤ ν ⊖µ[θ].
Proof. Let a > 0, we consider T the collection of θ ∈ Θ µ such that we may find θ ′ ∈ T a with θ ′ ≥ θ, ν ⊖µ[θ ′ ] ≤ a, and

I(R d ) ν P i ⊖µ i [θ ′ ]η(di) ≤ a.
First we have easily T(C a ) ⊂ T , as T(C a ) ⊂ T a , and

I(R d ) ν P i ⊖µ i [θ ′ ]η(di) = I(R d ) (ν P i -µ i )[θ ′ ]η(di) = (ν -µ)[θ ′ ], for θ ′ ∈ T(C a ). Now we consider ( θ n ) n≥1 ⊂ T converging µ⊗pw to θ ∞ . For each n ≥ 1, we may find θ n ∈ T a such that θ n ≥ θ n , ν ⊖µ[θ n ] ≤ a, and I(R d ) ν P i ⊖µ i [θ n ]η(di) ≤ a.

By the Komlós Lemma on I -→ ν P

I ⊖µ I [θ n ] under the probability η together with Lemma 2.12 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may find convex combination coefficients (λ n k ) 1≤n≤k such that 

∞ k=n λ n k ν P I ⊖µ I [θ k ] converges η-a.s. and θ ′ n := ∞ k=n λ n k θ k converges µ⊗pw to θ ′ := θ ′ ∞ , as n -→ ∞, and moreover ν ⊖µ[θ ′ ] ≤ a. As θ ′ n is a convex extraction of θ n , we have θ ′ := θ ′ ∞ ≥ θ ∞ .
P I 0 [c] ≤ S P I 0 •X -1 ,P I 0 •Y -1 (c) = S µ I 0 ,ν P I 0 (c),
where we denote by P I a conditional disintegration of P with respect to the random variable I. Now we consider a minimizer for the dual problem ( φ, ψ, h, θ) ∈ D mod µ,ν (c) and

θ ′ ∈ T (µ, ν) such that θ ≤ θ ′ , ν ⊖µ[θ ′ ] ≤ ν ⊖µ[θ], and I(R d ) ν P i ⊖µ i [θ ′ ]η(di) ≤ ν ⊖µ[θ] from Lemma 3.5.5. Recall the notation m X := µ[X|I(X)] = P[Y |I(X)]
, by the martingale property, and let f X (Y ) := θ ′ (m X , Y ). From Lemma 3.5.6, we have θ

′ (X, Y ) = f X (Y ) - f X (X) -p X (X) • (Y -X), with p X ∈ ∂f X (X), M(µ, ν)-q.s. Then let φ := φ -f X , ψ I (X) := ψ(Y ) + f X (Y ), h := h -p X . µ I [ φ] + ν P I [ ψ] + ν P I ⊖µ I [θ ′ ] ≥ µ I [φ]⊕ν P I [ψ] ≥ I µ I ,ν P I (c) ≥ S µ I ,ν P I (c).
Integrating with respect to η, we get:

I mod µ,ν (c) ≥ I(R d ) µ i [ φ] + ν P i [ ψ] + ν P i ⊖µ i [θ ′ ]η(di) ≥ I(R d ) I µ i ,ν P i (c)η(di) ≥ I(R d ) S µ i ,ν P i (c)η(di) ≥ P[c].
Taking the supremum over P:

I mod µ,ν (c) ≥ sup P∈M(µ,ν) I(R d ) I µ i ,ν P i (c)η(di) ≥ sup P∈M(µ,ν) I(R d ) S µ i ,ν P i (c)η(di) ≥ S µ,ν (c)
Then all the inequalities are equalities by the duality Theorem 3.8 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]. We consider P * such that P * [c] = S µ,ν (c) = I mod µ,ν (c) gives us that there is an optimizer.

S µ,ν (c) = P * [c] = I(R d ) P * i [c]η(di) ≤ I(R d ) S µ i ,ν P * i (c)η(di) ≤ I(R d ) I mod µ i ,ν P * i (c)η(di) ≤ I(R d ) µ i [ φ] + ν P * i [ ψ] + ν P * i ⊖µ i [θ ′ ]η(di) ≤ I mod µ,ν (c).
Then all these inequalities are equalities by duality.

The second part is proved similarly, using the second part of Lemma 3.5.5.

N ′c

x ′ , by Proposition 3.2.7, y ∈ J(x)∩J(x ′ ) = conv J(x)∩J(x ′ )\N ν . Then we may find y 1 , ..., y k ∈ J(x) ∩ J(x ′ ) \ N ν such that y = i λ i y i , convex combination. We also have y ∈ N c

x ′ , then P := 1 2 i λ i δ (x,y i ) + 1 2 δ x ′ ,y , and P ′ := 1 2 i λ i δ (x ′ ,y i ) + 1 2 δ x,y are competitors such that the only point in their support that may not be in N c is (x, y), then by Definition 3.2.1 (iii), (x, y) ∈ N c . We proved that {Y ∈ J • (X), X / ∈ N µ } ⊂ N c . The other properties are direct consequences of Remark 3.2.8. 2

Let J • ∈ J • (µ, ν) and N µ ∈ N µ from Lemma 3.5.8.

Lemma 3.5.9. We have

θ = T p f I (X) on {Y ∈ J • (X), X / ∈ N µ } for some p ∈ L 0 (R d , R d ), and J • ∈ J • (µ, ν). Proof. Let a x := f I(x) -f I(x) (x) -θ(x, •). We claim that a x is affine on J • (x), for all x /
∈ N µ , i.e. we may find a measurable map p on N c µ such that, by the above definition of a x together with the fact that a x (x) = 0,

θ = f I(X) (Y ) -f I(X) (X) -p(X) • (Y -X), on {Y ∈ J • (X), X / ∈ N µ }.
Now we prove the claim. Let x / ∈ N µ , and y, y 1 , ..., y k ∈ J • (x), for some k ∈ N, such that y = i λ i y i , convex combination. Now consider P := i δ (m I(x) ,y i ) + δ x,y , and P ′ := i δ (x,y i ) + δ m I(x) ,y .

Notice that P, and P ′ are competitors with finite supports, concentrated on N c , by the fact that m I(x) / ∈ N µ , together with Lemma 3.5.8, and the fact that J • is constant on I(x) by Proposition 3.2.7. Therefore

i λ i θ(m I(x) , y i ) + θ(x, y) = i λ i θ(x, y i ) + θ(m I(x) , y), ( 3.5.8) 
from Definition 3.2.1 (ii). Then the proof that a x is affine is similar to the proof of Lemma 3.5.6. Let p(x) be a vector in ∇affI(x) representing this linear form. By the fact that a x is linear and finite on J • (x), we have the identity

θ(x, y) = f I(x) (y) -f I(x) (x) -p(x) • (y -x), for all (x, y) ∈ {Y ∈ J • (X), X / ∈ N µ }.
(3.5.9)

We define A K = 0 for all the remaining K ∈ I(R d ). Now we check that (A K ) K satisfies the right conditions at the interfaces. Let K, K ′ ∈ I(R d ) such that interf(K, K ′ ) ̸ = ∅. If K ∈ D, or K ′ ∈ D, the value at endpoints has been adapted to get the desired value. Now we treat the remaining case, we assume that

K, K ′ ∈ C ∪ R. We have A K -A K ′ = -T K K 0 + T K ′ K 0 .
Property (i) applied to (K, K, K) implies that T K K = 0, and therefore, (i) applied to (K 0 , K, K) gives that

T K K 0 = T K 0 K . Finally, (i) applied to (K, K 0 , K ′ ) gives that A K -A K ′ = T K ′ K . Finally, by (iii), we get that A K -A K ′ = f K ′ (y) -f K (y) for all y ∈ interf(K, K ′ ). 2 Lemma 3.5.12. Let K, K ′ ∈ I(R d ), we have that f K ′ -f K is affine finite on interf(K, K ′ ).
Proof. First, by the fact that interf(K,

K ′ ) ⊂ domθ(m K , •) ∩ domθ(m K ′ , •), a := f K ′ - f K is finite on interf(K, K ′ ). Now we prove that this map is affine, let y 1 , ..., y k , y ′ 1 , ..., y ′ k ′ ∈ interf(K, K ′ ) such that y = i λ i y i = i λ ′ i y ′ i , convex combinations. Then P := 1 2 i λ i δ (m K ,y i ) + 1 2 i λ ′ i δ (m K ′ ,y ′ i )
, and

P ′ := 1 2 i λ i δ (m K ′ ,y i ) + 1 2 i λ ′ i δ (m K ,y ′ i ) are competitors that are con- centrated on {Y ∈ J • (X), X / ∈ N µ } ⊂ N c by Lemma 3.5.8. Therefore, by Definition 3.2.1 (ii) we have i λ i θ(m K , y i ) + i λ ′ i θ(m K ′ , y ′ i ) = i λ i θ(m K ′ , y i ) + i λ ′ i θ(m K , y ′ i ), which gives i λ i a(y i ) = i λ ′ i a(y ′ i ).
Similar to the proof of Lemma 3.5.6, we have that a is affine on interf(K, K ′ ). 2

Let K, K ′ ∈ I(R d ), by the preceding lemma f K ′ -f K is affine finite on interf(K, K ′ ). If this set is not empty, let the unique a

K ′ K ∈ ∇aff interf(K, K ′ ) and b K ′ K ∈ R such that f K ′ (y) -f K (y) = a K ′ K • y + b K ′ K , for y ∈ interf(K, K ′ ).
We denote

H K ′ K : y -→ a K ′ K • y + b K ′ K ∈ Aff(R d , R). If interf(K, K ′ ) = ∅, we set H K ′ K := 0.
Lemma 3.5.13. We may find (T

K ′ K ) K,K ′ ∈C∪R ⊂ Aff(R d , R) satisfying (i)
, and (ii) from Lemma 3.5.11 if and only if we may find (H

K ′ K ) K,K ′ ∈C∪R ⊂ Aff(R d , R) such that H K ′ K = 0 on interf(K, K ′ ) for all K, K ′ ∈ C ∪ R, and for all triplet (K i ) i=1,2,3 ∈ (C ∪ R) 3 such that with the convention K 4 = K 1 , we have 3 i=1 H K i+1 K i + H K i+1 K i = 0.
(3.5.11)

Proof. We start with the necessary condition, let (T K ′ K ) K,K ′ ∈C∪R ⊂ Aff(R d , R) satisfying (i), and (ii) from Lemma 3.5.11. Then for K, K ′ ∈ C ∪ R, we introduce Lemma 3.5.14. Let F ⊂ I(N c µ ) finite, we may find (H

K ′ K ) K,K ′ ∈F ⊂ Aff(R d , R) such that H K ′ K = 0 on interf(K, K ′ ) for all K, K ′ ∈ F, and for all triplet (K i ) i=1,2,3 ∈ F 3 such that with the convention K 4 = K 1 , we have 3 i=1 H K i+1 K i + H K i+1 K i = 0. Proof. Let p ∈ F 2 , we denote H p := H p 2 p 1 , interf(p) := interf(p 1 , p 2 ),

and the linear map g

p : A ∈ Aff(R d , R) -→ A |aff interf(p) ∈ Aff(aff interf(p), R). Let the linear map g : (A p ) p∈F 2 ∈ Aff(R d , R) F 2 -→ g p (A p ) p∈F 2 ∈ p∈F 2
Aff(aff interf(p), R), and if we denote t i,j := (t i , t j ) ∈ F 2 for t ∈ F 3 and i, j ∈ {1, 2, 3}, let the other linear map

f : (A p ) p∈F 2 ∈ Aff(R d , R) F 2 -→ A t 1,2 + A t 2,3 + A t 3,1 t∈F 3 ∈ Aff(R d , R) F 3 .
Notice that the result may be written in terms of f and g as

f (H p ) p∈F 2 ∈ f (kerg). (3.5.12)
We prove this statement by using the monotonicity principle (ii) of Definition 3.2.1. Let the canonical basis (e j ) 1≤j≤d of R d , and e 0 := 0 so that (e j ) 0≤j≤d is an affine basis of R d , and the scalar product on Aff(R d , R) F 3 defined by (A t ) t∈F 3 , (A ′ t ) t∈F 3 := t∈F 3 ,0≤j≤d A t (e j )A ′ t (e j ). As the dimensions are finite, (3.5.12) is equivalent with the inclusion f (kerg

) ⊥ ⊂ f (H p ) p∈F 2 ⊥ . Let (A t ) t∈F 3 ∈ f (kerg) ⊥ , we now prove that (A t ) t∈F 3 ∈ f (H p ) p∈F 2 ⊥ , i.e. that (A t ) t∈F 3 , f (H p ) p∈F 2 = t∈F 3 ,0≤j≤d
A t (e j ) H t 1,2 (e j ) + H t 2,3 (e j ) + H t 3,1 (e j ) = 0.

Let p ∈ F 2 , P p := proj aff interf(p) , and 0 ≤ j ≤ d. By the fact that P p (e j ) ∈ aff interf(p) = aff J(m p 1 ) ∩ J(m p 2 ) \ N ν by Remark 3.2.8, we may find (y i,j,p ) 1≤i≤d+1 ⊂ J(m p 1 ) ∩ J(m p 2 ) \ N ν , and (λ i,j,p ) 1≤i≤d+1 ⊂ R such that P p (e j ) = d+1 i=1 λ i,j,p y i,j,p , affine combination, and d+1 i=1 λ i,j,p = 1. Then with these ingredients we may give the expression of H p (e j ) as a function of values of θ:

H p (e j ) = d+1 i=1 λ i,j,p H p (y i,j,p ) = d+1 i=1 λ i,j,p [θ(m p 2 , y i,j,p ) -θ(m p 1 , y i,j,p )] = L j p [θ],
where L j p := d+1 i=1 λ i,j,p δ (mp 2 ,y i,j,p ) -δ (mp 1 ,y i,j,p ) is a signed measure with finite support in {Y ∈ J(X) \ N ν , X / ∈ N µ }. We now study the marginals of L j p : we have obviously from its definition that L j p [Y = y] = 0 for all y ∈ R d . For the X-marginals, L j p [X = m p 2 ] = -L j p [X = m p 1 ] = d+1 i=1 λ i,j,p = 1, and L j p [X = x] = 0 for all other x ∈ R d . Finally we look at its conditional barycenter:

L j p [Y |X = m p 2 ] = -L j p [Y |X = m p 1 ] = d+1 i=1
λ i,j,p y i,j,p = P p (e j ).

(3.5.13) Now let t ∈ F 3 , we denote L j t := L j t 1,2 + L j t 2,3 + L j t 3,1 . We still have L j t [Y = y] = 0 for all y ∈ R d by linearity. Now

L j t [X = t 1 ] = L j t 1,2 [X = t 1 ] + L j t 2,3 [X = t 1 ] + L j t 3,1 [X = t 1 ] = -1 t 1 =t 1 + 1 t 2 =t 1 -1 t 2 =t 1 + 1 t 3 =t 1 -1 t 3 =t 1 + 1 t 3 =t 1 = 0. Similar, L j t [X = t 2 ] = L j t [X = t 3 ] = 0, and L j t [X = x] = 0 for all x ∈ R d . Notice that (A t ) t∈F 3 , f (H p ) p∈F 2 = L[θ],
with L := t∈F 3 ,0≤j≤d A t (e j )L j t . By linearity, we have that It remains to prove the claim that

L[X = x] = L[Y = x] = 0, for all x ∈ R d . (3.5.14) Furthermore, L is supported on {Y ∈ J(X) \ N ν , X / ∈ N µ } ⊂ N c like each L j p . We claim that L[Y |X] = 0,
L[Y |X] = 0. Recall that (A t ) t∈F 3 ∈ f (kerg) ⊥ . Let K ∈ F and p ∈ F 2 such that p 1 = K, and u ∈ R d , the map ξ p : x -→ u • x -P p (x)
is in kerg p . For all the other p ′ ∈ F 2 , we set ξ p ′ := 0 ∈ kerg p ′ . Then (ξ p ) p∈F 2 ∈ kerg, and therefore (A t ) t∈F 3 , f (ξ p ) p∈F 2 = 0, we have

0 = t∈F 3 ,0≤j≤d A t (e j ) p=t 1,2 ,t 2,3 ,t 3,1 1 p 1 =K u • e j -P p (e j ) = u • t∈F 3 ,0≤j≤d A t (e j ) p=t 1,2 ,t 2,3 ,t 3,1 1 p 1 =K e j -P p (e j ) .
As this holds for all u ∈ R d , we have t∈F 3 ,0≤j≤d A t (e j ) p=t 1,2 ,t 2,3 ,t 3,1 1 p 1 =K e j -P p (e j ) = 0. Similarly, we have t∈F 3 ,0≤j≤d A t (e j ) p=t 1,2 ,t 2,3 ,t 3,1 1 p 2 =K e j -P p (e j ) = 0. Combining these two equations, and using (3.5.13) together with the definition of L we get 

L[Y |X = m K ] = t∈F 3 ,0≤j≤d A t (e j ) p=t 1,2 ,t 2,3 ,t 3,1 (1 p 2 =K -1 p 1 =K )P p (e j ) = t∈F 3 ,0≤j≤d A t (e j ) p=t 1,2 ,t 2,3 ,t 3,1 (1 p 2 =K -1 p 1 =K )e j = L[X = m K ]e j =
K ′ K ) K,K ′ ∈C∪R ⊂ Aff(R d , R) such that H K ′ K = 0 on interf(K, K ′ ) for all K, K ′ ∈ C ∪R, and for all triplet (K i ) i=1,2,3 ∈ (C ∪ R) 3 such that with the convention K 4 = K 1 , we have 3 i=1 H K i+1 K i + H K i+1 K i = 0.
Proof. We use the well-order of C from Assumption 3.2.6 to extend the result of Lemma 3.5.14 to the possibly infinite number of components. By the fact that C is well ordered, we have that C 2 is also well ordered (we may use for example the lexicographic order based on the well-order of C). We shall argue by transfinite induction on C 2 . For (

K, K ′ ) ∈ C 2 , we denote C(K, K ′ ) := {(K 1 , K 2 ) ∈ C 2 : (K 1 , K 2 ) < (K, K ′ )}.
Finally we fix ∥ • ∥, a euclidean norm on the finite dimensional space Aff(R d , R), and for (K, K ′ ) ∈ C 2 , we define an order relation ⪯ K,K ′ on Aff(R d , R) C(K,K ′ ) which is the lexicographical order induced by (C(K, K ′ ), ≤), and by the order on affine function (Aff(R d , R), ⪯), defined by A ⪯ A ′ if ∥A∥ ≤ ∥A ′ ∥. Our induction hypothesis is: H(K, K ′ ) : we may find a unique (H

K 2 K 1 ) (K 1 ,K 2 )∈C(K) such that: (i) for all finite F ⊂ C ∪ R, we may find ( H K 2 K 1 ) K 1 ,K 2 ∈F ⊂ Aff(R d , R) such that H K 2 K 1 = 0 on interf(K 1 , K 2 ) for all K 1 , K 2 ∈ F, such that for all triplet (K i ) ∈ F 3 we have 3 i=1 H K i+1 K i + H K i+1 K i = 0
, and finally such that H

K 2 K 1 = H K 2 K 1 for all (K 1 , K 2 ) ∈ F 2 ∩ C(K, K ′ ); (ii) for all (K ′′ , K ′′′ ) ≤ (K, K ′ ), (H K 2 K 1 ) K 1 ,K 2 ∈C(K ′′ ,K ′′′ )
is the minimal vector satisfying (i) of H(K ′′ , K ′′′ ), for the order ⪯ K ′′ ,K ′′′ .

Similar to the ordinals, we consider C 2 as the upper bound of all the elements it contains, which gives a meaning to H(C 2 ). The transfinite induction works similarly to a classical structural induction: let (K 0 , K ′ 0 ) ∈ C 2 be the smallest element of C, then the fact that H(K 0 , K ′ 0 ) holds, together with the fact that for all (K, K ′ ) ∈ C, we have that H(K ′′ , K ′′′ ) holding for all (K ′′ , K ′′′ ) < (K, K ′ ) implies that H(K, K ′ ) holds, then the transfinite induction principle implies that H(C 2 ) holds.

The initialization is a direct consequence of Lemma 3.5.14 as C(K 0 , K ′ 0 ) = ∅. Now let (K, K ′ ) ∈ C, we assume that H(K ′ , K ′′ ) holds for all (K ′′ , K ′′′ ) < (K,

K ′ ). Let (K 1 , K ′ 1 ) < (K 2 , K ′ 2 ) < (K, K ′ ). As H(K 1 , K ′ 1 )
, and H(K 2 , K ′ 2 ) hold, we may find unique (H

1,K ′′ K ′ ) K ′ ,K ′′ ∈C(K 1 ,K ′ 1 )
, and (H

2,K ′′ K ′ ) K ′ ,K ′′ ∈C(K 2 ,K ′ 2 )
satisfying the conditions of the induction hypothesis. The restriction (H

2,K ′′ K ′ ) K ′ ,K ′′ ∈C(K 1 ,K ′ 1 ) satisfies the conditions of H(K 1 , K ′ 1 ) by H(K 2 , K ′ 2 )
, and by the fact that for the lexicographic order, if a word is minimal then all its prefixes are minimal as well for the sub-lexicographic orders. Therefore, by uniqueness in H(K 1 , K ′ 1 ), (H

1,K ′′ K ′ ) K ′ ,K ′′ ∈C(K 1 ,K ′ 1 ) = (H 2,K ′′ K ′ ) K ′ ,K ′′ ∈C(K 1 ,K ′ 1 )
. For all (K ′′ , K ′′′ ) < (K, K ′ ) which are not predecessors of (K, K ′ ) (i.e. such that we may find (

K int , K ′ int ) ∈ C 2 with (K ′′ , K ′′′ ) < (K int , K ′ int ) < (K, K ′ )), let H K ′′ K ′ be the (K ′ , K ′′ )-th affine function of (H K 2 K 1 ) K 1 ,K 2 ∈C(K int ,K ′ int ) satisfying H(K int , K ′ int )
, which is unique by the preceding reasoning. If (K, K ′ ) has no predecessor, then

H := (H K ′′′ K ′ ) K ′′ ,K ′′′ ∈C(K,K ′ ) solves H(K, K ′
). Now we treat the case in which we may find a predecessor (K pred , K ′ pred ) ∈ C 2 to (K, K ′ ). In this case this predecessor is unique because C 2 is well ordered. Then we consider H := (H

K 2 K 1 ) K 1 ,K 2 ∈C(K pred ,K ′ pred ) from H(K pred , K ′ pred )
. Now we need to complete H by defining H

K ′ pred K pred .

Consequences of the regularity of the cost in x

Proof of Lemma 3.3.17 We have for all x, y ∈ R d , φ(x)+ψ(y)+h(x)•(y -x) ≥ c(x, y).

Then φ(x) ≥ φ ′ (x) := -(ψ -c(x, •)) conv (x). For all x ∈ R d , f x := (ψ -c(x, •))
conv is convex and finite on D := ri conv dom φ, let -h ′ : R d -→ R d be a measurable selection in its subgradient on D (then in affD -x 0 for some x 0 ∈ D). Then for all y ∈ R d ,

-φ ′ (x) -h ′ (x) • (y -x) ≤ f x (y) := (ψ -c(x, •)) conv (y) ≤ ψ(y) -c(x, y).
Then c ≤ φ ′ ⊕ ψ + h ′⊗ , and therefore,

P[φ ′ ⊕ ψ + h ′⊗ ] ≥ P[c] is well defined. Subtracting P[φ ⊕ ψ + h ⊗ ] < ∞, we get µ[φ ′ -φ] = P[(φ ′ -φ)(X) + (h ′ -h) ⊗ ] ≥ P[c] -P[φ ⊕ ψ + h ⊗ ].
Finally, taking the supremum over P, we get For r ≥ 1, and y = r i=1 λ i y i , x -→ r i=1 λ i ψ(y i ) -c(x, y i ) is locally Lipschitz. By taking the infimum, we get that for x ∈ D, f x (y) is uniformly Lipschitz in x. Furthermore, f x is convex on the relative interior of its domain D, and therefore locally Lipschitz on it. We claim that for the convex function f x , the Lipschitz constant on a compact K ⊂ D is bounded by

µ[φ ′ -φ] ≥ S µ,ν (c) -S µ,ν (φ ⊕ ψ + h ⊗ ) = 0. As φ ′ -φ ≤ 0, this shows that φ ′ = φ, µ-a.e. Now f x (y) = -inf r i=1 λ i ψ(y i ) -c(x, y i ) :
max K ′ fx-min K fx δ
, where δ = inf (x,y)∈K×K ′ |x -y|, for any compact K ′ ⊂ D such that K ⊂ ri K ′ (cf proof of Theorem 9.3 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]). Then if we fix K and K ′ , the Lipschitz constant of f x is dominated on K as x -→ (max ′ K f x , min K f x ) is Locally Lipschitz. Then for K ⊂ D compact, we may find L, and L ′ , Lipschitz constants for both variables. Finally, for x 1 , x 2 ∈ B,

|φ ′ (x 1 ) -φ ′ (x 2 )| ≤ |f x 1 (x 1 ) -f x 1 (x 2 )| + |f x 1 (x 2 ) -f x 2 (x 2 )| ≤ (L + L ′ )|x 1 -x 2 |.
In the proof of Theorem 9.3 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], the bound

max ′ K fx-min K fx δ is in fact a bound for the subgradients of f x . As -h ′ is a subgradient of f x in x, its component in affD -x 0 (for some x 0 ∈ D) is bounded in K. d-dimensional components (I k ) k≥1 , we have Y / ∈ ∪ k≥1 ∂I k , ν-a.
s. and therefore M(µ, ν)-q.s. Now we deal with the (d -1)-dimensional components. I is a Borel map, and therefore by Lusin theorem (see Theorem 1.14 in [START_REF] Evans | Measure theory and fine properties of functions[END_REF]), for all ϵ > 0, we may find

K ϵ ⊂ {dim I(X) = d -1} with µ[K ϵ ] ≥ µ[dim I(X) = d -1] -ϵ, on which I is continuous.
We may also assume that K ϵ is compact. Then for all x ∈ K ϵ such that dim

I(x) = d -1, I(x) contains a closed d -1-dimensional ball B x := I(x) ∩ B rx (x) for some r x > 0.
As I is continuous on K ϵ , we may find ϵ x > 0 such that for x ′ ∈ B ϵx (x), B x ⊂ proj affI(x) I(x ′ ) , and such that the angle between the normals of I(x) and I(x ′ ) is smaller than η := π/4 < π/2. We denote l x the line from x, normal to I(x). The balls B ϵx (x) cover K ϵ , then by the compactness of K ϵ , we may consider x 1 , ..., [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF], we may find a bi-Lipschitz flattening map F : andλ x ′ is a d -1-dimensional Lebesgue measure, we have λ x ′ F ∂I(x ′ ) = 0, 1 x ′ ∈A i dx ′ -a.e. Therefore, λ F ∪ x ′ ∈A i ∂I(x ′ ) = 0, and as F is bi-Lipschitz, λ[∪ x ′ ∈A i ∂I(x ′ )] = 0. Then summing up on all the 1 ≤ i ≤ k and by the fact that ν is dominated by the Lebesgue measure, we get ν[∪ x∈Kϵ ∂I(x)] = 0, so that for all P ∈ M(µ, ν), we have

x k ∈ K ϵ for k ≥ 1 such that K ϵ ⊂ ∪ k i=1 B ϵx i (x i ). Let 1 ≤ i ≤ k, by Lemma C.1. in
∪ x ′ ∈A i I(x ′ ) -→ R d = affI(x i ) × l x i , where A i := B ϵx i (x i ) ∩ l x i , such that for all x ′ ∈ A i and all (v, w) ∈ I(x ′ ), F (v, w) = (v, x ′ ). Notice that for all x ′ ∈ B ϵx i (x i ), I(x ′ ) ∩ A i ̸ = ∅. Then for all x ′ ∈ A i , F I(x ′ ) ⊂ affI(x i ) × {x ′ }. Now, let λ be the Lebesgue measure. By the Fubini theorem, λ F ∪ x ′ ∈A i ∂I(x ′ ) = lx 1 x ′ ∈A i λ x ′ F ∂I(x ′ ) ]dx ′ . By the facts that F is bi-Lipschitz, ∂I(x ′ ) is Lebesgue- negligible in affI(x ′ ),
P[Y ∈ ∂I(X), dim I(X) = d-1] ≤ P[X / ∈ K ϵ , dim I(X) = d-1]+P[Y ∈ ∪ x∈Kϵ ∂I(x)] ≤ ϵ.
As this holds for all ϵ > 0 and for all P ∈ M(µ, ν), the lemma is proved. 2

Proof of Proposition 3.3.10 Let us first prove the equivalence from (i). First for

P ∈ M(µ, ν).
As Y ∈ I(X), P-a.s., we have I(X) = I(Y ), P-a.s., and therefore, for all A ∈ B(K),

ν • I -1 [A] = P[I(Y ) ∈ A] = P[I(X) ∈ A] = µ[I(X) ∈ A] = µ • I -1 [A]
Conversely, suppose that µ • I -1 = ν • I -1 . We will prove by backward induction on 0 ≤ k ≤ d + 1 that Y ∈ I(X), M(µ, ν)-q.s., conditionally to dim I(X) ≥ k. For k = d + 1 this is trivial because the dimension is lower than d. Now for k ∈ N we suppose that the property is true for k ′ > k. Then conditionally to dim I(x) = k, we have that on {dim I(X) = 1}, by the fact that there is not mass coming from higher dimensional components, we have Proof of Remark 3.4. [START_REF] Ahuja | Network flows[END_REF] We consider τ the stopping time, and write Q the probability measure associated with the diffusion. We claim that the components suppP X 0 ⊂ I(X 0 ), µ-a.s. have dimension d, µ-a.s, where P ∈ M(µ, ν) is the joint law of (X 0 , X τ ). Then (iii) of Proposition 3.3.10 holds, which proves the remark. Now we prove the claim. Let p > 0. For x ∈ R d , we consider τ x , the stopping time τ conditional to X 0 = x, and σ x t , which is σ t conditional to X 0 = x. Now we fix x ∈ R d . As σ 0 has rank d, ∥σ x 0 ∥ := inf |u|=1 |u t σ x 0 | > 0, a.s. Then we may find α > 0 such that

Q[∥σ x 0 ∥ ≤ α] ≤ p.
Similarly, we consider δ > 0 small enough so that

Q[τ < δ] ≤ p. (3.6.3)
Finally, by the fact that σ x t is right-continuous in 0, a.s, we may lower δ > 0 so that Q sup t≤δ |σ x t -σ x 0 | 2 > β ≤ p for some β > 0 that we will fix later. Now we use these ingredients to prove that (X t ) "spreads out in all directions" for t close to 0. Let u ∈ R d with |u| = 1 and λ > 0,

Q[u • σ x 0 W δ ≥ λα √ δ] ≥ Q[v • W 1 ≥ λ] -p ≥ 1 2 -2p, (3.6.4) with v = u • σ x 0 /|u • σ x 0 |, for λ small enough, independent of α and δ. Now recall that Q sup t≤δ |σ x t -σ x 0 | 2 > β ≤ p.
As a consequence, the stopping time τ = inf{t ≥ 0 :

|σ x t -σ x 0 | 2 ≥ β} satisfies Q[τ < δ] ≤ p. (3.6.5)
Now, stopping X t , we get, conditionally to X = x:

E Q [( δ∧τ 0 (σ x t -σ x 0 )dW t ) 2 ]
≤ δβ by Itô isometry, and therefore, by the Markov inequality,

Q δ∧τ 0 (σ x t -σ x 0 )dW t ≥ αλ √ δ/2 ≤ 4δβ α 2 λ 2 δ . Then if we chose β = p α 2 λ 2 4
(not depending on δ), we finally get that

Q δ∧τ 0 (σ x t -σ x 0 )dW t ≥ αλ √ δ/2 ≤ p. (3.6.6) Therefore Q[(X t∧τ -x) • u ≥ αλ √ δ/2|X = x] is greater than Q σ x 0 W t∧τ • u ≥ αλ √ δ, and δ 0 (σ x t -σ x 0 )dW t ≤ αλ √ δ/2
, and τ ≥ δ, and τ

≥ δ|X = x ≥ Q[u • σ x 0 W δ ≥ λα √ δ] -3p ≥ 1 2
-5p, by (3.6.3), (3.6.4), (3.6.5), and (3.6.6). Then by setting p = 1 12 , for all u of norm 1, we get

Q[(X t∧τ -x) • u ≥ α 0 |X 0 = x] ≥ p 0 , (3.6.7)
with α 0 := αλ √ δ/2 > 0, and p 0 := 1 12 > 0. We use (3.6.7) to prove that suppP x is d dimensional. Indeed, we suppose for contradiction that suppP x ⊂ H, where H is a hyperplane. H contains 0, as it contains suppP x . Let u be a unit normal vector to H, by (3.6.7), we have

Q[(X t∧τ -x) • u ≥ α 0 |X = x] ≥ p 0 .
Then by the martingale property (the volatility is bounded) combined with the boundedness of τ , we have

E Q [X τ |F t∧τ ] = X t∧τ . Therefore, P x [Y • u ≥ α 0 /2] = Q[X τ • u ≥ α 0 /2|X = x]
> 0, which contradicts the inclusion of the support of P x in H. 2

Medial limits

Medial limits, introduced by Mokobodzki [START_REF] Mokobodzki | Ultrafiltres rapides sur N. construction d'une densité relative de deux potentiels comparables[END_REF] (see also Meyer [START_REF] Meyer | Limites médiales d'après mokobodzki[END_REF]), are powerful instruments. It is an operator from the set of real bounded sequences l ∞ to R satisfying the following properties:

Definition 3.6.3. A linear operator m : l ∞ → R is a medial limit if (i) m is nonnegative: if u ≥ 0 then m(u) ≥ 0. (ii) m is invariant by translation: if T is the translation operator (T : (u n ) n → (u n+1 ) n ) then m(T u) = m(u). (iii) m((1) n ) = 1.
(iv) m is universally measurable on the unit ball [0, 1] N . (v) m is measure linear: for any sequence of Borel-measurable functions

f n : [0, 1] → [0, 1], if we write f := m((f n ) n ) (defined pointwise), then for any Borel measure λ on [0, 1], f is λ-measurable and f dλ = m(f n )dλ = m f n dλ .
Chapter 4

Local structure of multi-dimensional martingale optimal transport

This paper analyzes the support of the conditional distribution of optimal martingale transport couplings between marginals in R d for arbitrary dimension d ≥ 1. In the context of a distance cost in dimension larger than 2, previous results established by Ghoussoub,Kim & Lim [74] show that this conditional distribution is concentrated on its own Choquet boundary. Moreover, when the target measure is atomic, they prove that the support of this distribution is concentrated on d + 1 points, and conjecture that this result is valid for arbitrary target measure. We provide a structure result of the support of the conditional distribution for general Lipschitz costs. Using tools from algebraic geometry, we provide sufficient conditions for finiteness of this conditional support, together with (optimal) lower bounds on the maximal cardinality for a given cost function. More results are obtained for specific examples of cost functions based on distance functions. In particular, we show that the above conjecture of Ghoussoub, Kim & Lim is not valid beyond the context of atomic target distributions. Key words. Martingale optimal transport, local structure, differential structure, support.

Introduction

The problem of martingale optimal transport was introduced as the dual of the problem of robust (model-free) superhedging of exotic derivatives in financial mathematics, see Beiglböck, Henry-Labordère & Penkner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] in discrete time, and Galichon, Henry-Labordère & Touzi [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF] in continuous-time. Previously the robust superhedging problem was introduced by Hobson [START_REF] Hobson | Robust hedging of the lookback option[END_REF], and was addressing specific examples of exotic derivatives by means of corresponding solutions of the Skorokhod embedding problem, see [START_REF] Cox | Robust pricing and hedging of double no-touch options[END_REF][START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF][START_REF] Hobson | Robust bounds for forward start options[END_REF], and the survey [START_REF] Hobson | The skorokhod embedding problem and model-independent bounds for option prices[END_REF].

Our interest in the present paper is on the multi-dimensional martingale optimal transport. Given two probability measures µ, ν on R d , with finite first order moment, martingale optimal transport differs from standard optimal transport in that the set of all interpolating probability measures P(µ, ν) on the product space is reduced to the subset M(µ, ν) restricted by the martingale condition. We recall from Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] that M(µ, ν) ̸ = ∅ if and only if µ ⪯ ν in the convex order, i.e. µ(f ) ≤ ν(f ) for all convex functions f . Notice that the inequality µ(f ) ≤ ν(f ) is a direct consequence of the Jensen inequality, the reverse implication follows from the Hahn-Banach theorem.

This paper focuses on showing the differential structure of the support of optimal probabilities for the martingale optimal transport Problem. In the case of optimal transport, a classical result by Rüschendorf [START_REF] Rüschendorf | Fréchet-bounds and their applications[END_REF] states that if the map y -→ c x (x 0 , y) is injective, then the optimal transport is unique and supported on a graph, i.e. we may find T : X -→ Y such that P * [Y = T (X)] = 1 for all optimal coupling P * ∈ P(µ, ν). The corresponding result in the context of the one-dimensional martingale transport problem was obtained by Beiglböck-Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], and further extended by Henry-Labordère & Touzi [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF]. Namely, under the so-called martingale Spence-Mirrlees condition, c x strictly convex in y, the left-curtain transport plan is optimal and concentrated on two graphs, i.e. we may find T d , T u : X -→ Y such that P * [Y ∈ {T d (X), T u (X)}] = 1 for all optimal coupling P * ∈ M(µ, ν). In this case we get similarly the uniqueness by a convexity argument.

An important issue in optimal transport is the existence and the characterization of optimal transport maps. Under the so-called twist condition (also called Spence-Mirrlees condition in the economics litterature) it was proved that the optimal transport is supported on one graph. In the context of martingale optimal transport on the line, Beiglböck & Juillet introduced the left-monotone martingale interpolating measure as a remarkable transport plan supported on two graphs, and prove its optimality for some classes of cost functions. Ghoussoub, Kim & Lim conjectured that in higher dimensional Martingale Optimal Transport for distance cost, the optimal plans will be supported on d + 1 graphs. We prove here that there is no hope of extending this property beyond the case of atomic measure. This is obtained using the reciprocal property of the structure theorem of this paper, which serves as a counterexample generator. We further prove that for "almost all" smooth cost function, the optimal coupling are always concentrated on a finite number of graphs, and we may always find densities µ and ν that are dominated by the Lebesgue measure such that the optimal coupling is concentrated on d + 2 maps for d even.

A first such study in higher dimension was performed by Lim [START_REF] Lim | Optimal martingale transport between radially symmetric marginals in general dimensions[END_REF] under radial symmetry that allows in fact to reduce the problem to one-dimension. A more "higherdimensional specific" approach was achieved by Ghoussoub, Kim & Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]. Their main structure result is that for the Euclidean distance cost, the supports of optimal kernels will be concentrated on their own Choquet boundary (i.e. the extreme points of the closure of their convex hull).

Our subsequent results differ from [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] from two perspectives. First, we prove that with the same techniques we can easily prove much more precise results on the local structure of the optimal Kernel, in particular, we prove that they are concentrated on 2d (possibly degenerate) graphs, which is much more precise than a concentration on the Choquet boundary. Our main structure result states that the optimal kernels are supported on the intersection of the graph of the partial gradient c x (x 0 , •) with the graph of an affine function A x 0 ∈ Aff d . Second, we prove a reciprocal property, i.e. that for any subset of such graph intersection {c x (x 0 , Y ) = A(Y )} for A ∈ Aff d , we may find marginals such that this set is an optimizer for these marginals. Thanks to this reciprocal property we prove that Conjecture 2 in [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] that we mentioned above is wrong. They prove this conjecture in the particular case in which the second marginal ν is atomic, however in view of our results it only works in this particular case, as we produce counterexamples in which µ and ν are dominated by the Lebesgue measure. Indeed, we prove that the support of the conditional kernel is characterized by an algebraic structure independent from the support of ν, then when this support is atomic, very particular phenomena happen. Thus the intuition suggests that finding this kind of solution for an atomic approximation of a non-atomic ν is not a stable approach, as in the limit there are generally 2d points in the kernel.

The paper is organized as follows. Section 4.2 gives the main results: Subsection 4.2.1 states the Assumption and the main structure theorem, Subsection 4.2.2 applies this theorem to show the relation between finiteness of the conditional support and the algebraic geometry of its derivatives, Subsection 4.2.3 gives the maximal cardinality that is universally reachable for the support up to choosing carefully the marginals, and finally Subsection 4.2.4 shows how the structure theorem applied to classical costs like powers of the Euclidean distance allows to give precise descriptions and properties of the conditional supports of optimal plans. Finally Section 4.3 contains all the proofs to the results in the previous sections, and Section 5.7 provides some numerical experiments.

Notation We fix an integer

d ≥ 1. For x ∈ R, we denote sg(x) := 1 x>0 -1 x<0 . If f : R -→ R we denote by fix(f ) the set of fixed points of f . A function f : R d -→ R d is said to be super-linear if lim |y|→∞ |f (y)| |y| = ∞. Let a function f : R d -→ R and x 0 ∈ R d , we say that f is super-differentiable (resp. sub-differentiable) at x 0 if we may find p ∈ R d such that f (x) -f (x 0 ) ≤ p • (x -x 0 ) + o(x -x 0 ) (resp. ≥) when x -→ x 0 ,
in this condition, we say that p belongs to the super-gradient ∂ + f (x 0 ) (resp. subgradient ∂ -f (x 0 )) of f at x 0 . This local notion extends the classical global notion of super-differential (resp. sub) for concave (resp. convex) functions.

For x ∈ R d , r ≥ 0, and V an affine subspace of dimension d ′ containing x, we denote S V (x, r) the dim V -1 dimensional sphere in the affine space V for the Euclidean distance, centered in x with radius r. We denote by Aff d the set of Affine maps from R d to itself. Let A ∈ Aff d , notice that its derivative ∇A is constant over R d , we abuse notation and denote ∇A for the matrix representation of this derivative. Let M ∈ M d (R), a real matrix of size d, we denote det M the determinant of M , kerM is the kernel of M , ImM is the image of this matrix, and Sp(M ) is the set of all complex eigenvalues of M . We also denote Com(M ) the comatrix of M : for 1 ≤ i, j ≤ d, Com(M ) i,j = (-1) i+j det M i,j , where M i,j is the matrix of size d -1 obtained by removing the i th line and the j th row of M . Recall the useful comatrix formula:

Com(M ) t M = M Com(M ) t = (det M )I d . (4.1.1)
As a consequence, whenever M is invertible, M -1 = 1 det M Com(M ) t . Throughout this paper, R d is endowed with the Euclidean structure, the Euclidean norm of x ∈ R d will be denoted |x|, the p-norm of x will be denoted

|x| p := d i=1 |x i | p 1 p .
We denote (e i ) 1≤i≤d the canonical basis of R d . Let B ⊂ E with E a vector space, we denote B * := B \ {0}, and |B| the possibly infinite cardinal of B. If V is a topological affine space and B ⊂ V is a subset of V , intB is the interior of B, cl B is the closure of B, affB is the smallest affine subspace of V containing B, convB is the convex hull of B, dim(B) := dim(affB), and riB is the relative interior of B, which is the interior of B in the topology of affB induced by the topology of V . We also denote by ∂B := cl B \ riB the relative boundary of B, and if V is endowed with a euclidean structure, we denote by proj B (x) the orthogonal projection of x ∈ V on affB. A set B is said to be discrete if it consists of isolated points.

We denote Ω := R d × R d and define the two canonical maps

X : (x, y) ∈ Ω -→ x ∈ R d and Y : (x, y) ∈ Ω -→ y ∈ R d .
For φ, ψ : R d -→ R, and h : R d -→ R d , we denote

φ ⊕ ψ := φ(X) + ψ(Y ), and h ⊗ := h(X) • (Y -X),
with the convention ∞ -∞ = ∞.

For a Polish space X , we denote by P(X ) the set of all probability measures on X , B(X ) . For P ∈ P(X ), we denote by suppP the smallest closed support of P. Let Y be another Polish space, and P ∈ P(X × Y). The corresponding conditional kernel P x is defined by: P(dx, dy) = µ(dx)P x (dy), where µ := P • X -1 .

Let n ≥ 0 and a field K (R or C in this paper), we denote K n [X] the collection of all polynomials on K of degree at most n. The set C hom [X] is the collection of homogeneous polynomials of C[X]. Similarly for k ≥ 1, we define K n [X 1 , ..., X d ] the collection of multivariate polynomials on K of degree at most n. We denote the monomial X α := X α 1 1 ...X α d d , and |α| = α 1 + ... + α d for all integer vector α ∈ N d . For two polynomial P and Q, we denote gcd(P, Q) their greatest common divider. Finally, we denote P d := C d+1 * /C * the projective plan of degree d.

The martingale optimal transport problem Throughout this paper, we consider two probability measures µ and ν on R d with finite first order moment, and µ ⪯ ν in the convex order, i.e. ν(f ) ≥ µ(f ) for all integrable convex f . We denote by M(µ, ν) the collection of all probability measures on R d × R d with marginals P • X -1 = µ and [START_REF] Strassen | The existence of probability measures with given marginals[END_REF]. An M(µ, ν)-polar set is an element of ∩ P∈M(µ,ν) N P . A property is said to hold M(µ, ν)-quasi surely (abbreviated as q.s.) if it holds on the complement of an M(µ, ν)-polar set.

P • Y -1 = ν. Notice that M(µ, ν) ̸ = ∅ by Strassen
For a derivative contract defined by a non-negative cost function c : R d × R d -→ R + , the martingale optimal transport problem is defined by:

S µ,ν (c) := sup P∈M(µ,ν) P[c]. (4.1.2)
The corresponding robust superhedging problem is

I µ,ν (c) := inf (φ,ψ,h)∈Dµ,ν (c) µ(φ) + ν(ψ), (4.1.3)
where

D µ,ν (c) := (φ, ψ, h) ∈ L 1 (µ) × L 1 (ν) × L 1 (µ, R d ) : φ ⊕ ψ + h ⊗ ≥ c . (4.1.4)
The following inequality is immediate:

S µ,ν (c) ≤ I µ,ν (c). (4.1.5)
This inequality is the so-called weak duality. For upper semi-continuous cost, Beiglböck, Henry-Labordère, and Penckner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF], and Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF] proved that strong duality holds, i.e. S µ,ν (c) = I µ,ν (c). For any Borel cost function, De March [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF] extended the quasi sure duality result to the multi-dimensional context, and proved the existence of a dual minimizer.

Main results

Main structure theorem

An important question in optimal transport theory is the structure of the support of the conditional distribution of optimal transport plans. Theorem 4.2.2 below gives a partial structure to this question. As a preparation we introduce a technical assumption. We denote K the collection of closed convex subsets of R d , which is a Polish space when endowed with the Wijsman topology (see Beer [START_REF] Beer | A polish topology for the closed subsets of a polish space[END_REF]). De March & Touzi [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF] proved that we may find a Borel mapping

I : R d -→ K such that {I(x) : x ∈ R d } is a partition of R d , Y ∈ cl I(X), M(µ,
ν)-a.s. and cl I(X) = cl conv supp PX , µ-a.s. for some P ∈ M(µ, ν). As the map I is Borel, I(X) is a random variable, let η := µ • I -1 be the push forward of µ by I. It was proved in [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF] that the optimal transport disintegrates on all the "components" I(X). The following conditions are needed throughout this paper. The statements (i) and (ii) of Assumption 4.2.1 are verified for example if c is differentiable and if µ and ν are compactly supported. On another hand, the statement (iii) is much more tricky. It is well known that Sudakov [START_REF] Sudakov | Geometric problems in the theory of infinite-dimensional probability distributions[END_REF] thought that he had solved the Monge optimal transport problem by using the (wrong) fact that the disintegration of the Lebesgue measure on a partition of convex sets would be dominated by the Lebesgue measure on each of these convex sets. However, [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF], provides a counterexample inspired from another paradoxal counterexample by Davies [START_REF] Davies | On accessibility of plane sets and differentiation of functions of two real variables[END_REF]. This Nikodym set N is equal to the tridimensional cube up to a Lebesgue negligible set. Furthermore it is designed so that a continuum of mutually disjoint lines which intersect all N in one singleton each. Thus the Lebesgue measure on the cube disintegrates on this continuum of lines into Dirac measures on each lines.

Assumption 4.2.1. (i) c : Ω -→ R is upper semi-analytic, µ ⪯ ν in convex order in P(R d ), c ≥ α⊕β +γ ⊗ for some (α, β, γ) ∈ L 1 (µ)×L 1 (ν)×L 0 (R d , R d ),
Statement (iii) is implied for example by the domination of µ by the Lebesgue measure together with the fact that dim I(X) ∈ {0, d -1, d}, µ-a.s. (see Lemma C.1 of [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] implying that the Lebesgue measure disintegrates in measures dominated by Lebesgue on the d -1-dimensional components), in particular together with the fact that d ≤ 2, or together with the fact that ν is the law of X τ := X 0 + t 0 σ s dW s , where X 0 ∼ µ, W a d-dimensional Brownian motion independent of X 0 , τ is a positive bounded stopping time, and (σ t ) t≥0 is a bounded cadlag process with values in M d (R) adapted to the W -filtration with σ 0 invertible. See the proof of Remark 4.3 in [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF].

Theorem 4.2.2. (i) Under Assumption 4.2.1 we may find

(A x ) x∈R d ⊂ Aff d such that for all P * ∈ M(µ, ν) optimal for (4.1.2),
x ∈ ri conv supp P *

x , and supp

P * x ⊂ {c x (x, Y ) = A x (Y )} for µ -a.e. x ∈ R d . (ii) Conversely, let a compact S 0 ⊂ {c x (x 0 , Y ) = A(Y )} for some x 0 ∈ R d and A ∈ Aff d , be such that x 0 ∈ int conv S 0 , c is C 2,0 ∩ C 1,1
in the neighborhood of {x 0 } × S 0 , and c xy (S 0 ) -∇A ⊂ GL d (R), then S 0 has a finite cardinal k ≥ d + 1 and we may find µ 0 , ν 0 ∈ P(R d ) with C 1 densities such that

P * (dx, dy) := µ 0 (dx) k i=1 λ i (x)δ T i (x) (dy)
is the unique solution to (4.1.2), with

(T i ) 1≤i≤k ⊂ C 1 (supp µ 0 , R d ) such that S 0 = {T i (x 0 )} 1≤i≤k , and (λ i ) 1≤i≤k ⊂ C 1 (supp µ 0 ).
Remark 4.2.3. We have ∇A x (x) = ∇φ(x) -h(x) in Theorem 4.2.2 from its proof. Under the stronger assumption that φ and h are C 1 , we can get this result much easier. As for

(x, y) ∈ R d , φ(x) + ψ(y) + h(x) • (y -x) -c(x, y) ≥ 0,
with equality for (x, y) ∈ Γ. When y 0 is fixed,

x 0 such that (x 0 , y 0 ) ∈ Γ is a critical point of x → φ(x) + ψ(y 0 ) + h(x) • (y 0 -x) -c(x, y 0 ). Then we get c x (x 0 , y 0 ) = ∇h(x 0 )(y 0 - x 0 ) + ∇φ(x 0 ) -h(x 0
) by the first order condition.

We see that we have in this case A x 0 (y) := ∇h(x 0 )(y -x 0 ) + ∇φ(x 0 ) -h(x 0 ), and

Γ x 0 ⊂ {c x (x 0 , Y ) = A x 0 (Y )}, for µ-a.e. x 0 ∈ R d .

Remark 4.2.4. Even though the set S

0 := {c x (x 0 , Y ) = A(Y )} for x 0 ∈ R d and A ∈ Aff d
may contain more than d + 1 points, it is completely determined by d + 1 affine independent points y 1 , ..., y d+1 ∈ S 0 , as the equations c x (x 0 , y i ) = A(y i ) determine completely the affine map A.

Proof of Theorem 4.2.2 (i) By Theorem 3.5 (i) in [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF], (and using the notation therein), the quasi-sure robust super-hedging problem may be decomposed in pointwise robust super-hedging separate problems attached to each components, and we may find functions (φ, h)

∈ L 0 (R d ) × L 0 (R d , R d ), and (ψ K ) K∈I(R d ) ⊂ L 0 + (R d ) with ψ I(X) (Y ) ∈ L 0 + (Ω), and dom ψ I = J θ , η-a.s. for some θ ∈ T (µ, ν), such that c ≤ φ(X) + ψ I(X) (Y ) + h ⊗ , and S µ,ν (c) = S µ,ν φ(X) + ψ I(X) (Y ) + h ⊗ . Then applying the theorem to c ′ := φ(X) + ψ I(X) (Y ) + h ⊗ , S µ,ν (c) = S µ,ν φ(X) + ψ I(X) (Y ) + h ⊗ = sup P∈M(µ,ν) S µ I ,ν P I φ(X) + ψ I(X) (Y ) + h ⊗ . Then if P ∈ M(µ, ν) is optimal for S µ,ν (c), then P I [c = φ ⊕ ψ I + h ⊗ ] = 1,
η-a.s. By Lemma 3.17 in [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF] the regularity of c in Assumption 4.2.1 (ii) guarantees that we may chose φ to be locally Lipschitz on I, and h locally bounded on I. In view of Assumption 4.2.1 (iii), φ is differentiable µ I -a.e. by the Rademacher Theorem. Then after possibly restricting to an irreducible component, we may suppose that we have the following duality: for any x, y ∈ R d ,

φ(x) + ψ(y) + h(x) • (y -x) -c(x, y) ≥ 0, (4.2.6)
with equality if and only if (x, y) ∈ Γ := {φ ⊕ ψ + h ⊗ = c < ∞}, concentrating all optimal coupling for S µ,ν (c). Let x 0 ∈ ri conv dom ψ such that φ is differentiable in x 0 . Let y 1 , ..., y k ∈ Γ x 0 such that k i=1 λ i y i = x 0 , convex combination. We complete (y 1 , ..., y k ) in a barycentric basis (y 1 , ..., y k , y k+1 , ..., y l ) of ri conv dom ψ. Let x ∈ ri conv dom ψ in the neighborhood of x 0 , and let (λ ′ i ) such that x = l i=1 λ ′ i y i , convex combination. We apply (4.2.6), both in the equality and in the inequality case:

φ(x) + l i=1 λ ′ i ψ(y i ) ≥ l i=1 λ ′ i c(x, y i ), φ(x 0 ) + l i=1 λ ′ i ψ(y i ) + h(x 0 ) • (x -x 0 ) = l i=1 λ ′ i c(x 0 , y i ).
By subtracting these equations, we get

φ(x) -φ(x 0 ) -h(x 0 ) • (x -x 0 ) ≥ l i=1 λ ′ i c(x, y i ) -c(x 0 , y i ) .
As c is Lipschitz in x, and λ ′ i -→ λ i when x → x 0 , we get:

∇φ(x 0 ) -h(x 0 ) • (x -x 0 ) + o(x -x 0 ) ≥ k i=1 λ i c(x, y i ) -c(x 0 , y i ) .
Then, x -→ k i=1 λ i c(x, y i ) is super-differentiable at x 0 , and ∇φ(x 0 ) -h(x 0 ) belongs to its super-gradient. As x -→ c(x, y) is sub-differentiable by Assumption 4.2.1 (ii), it implies that x -→ c(x, y i ) is differentiable at x 0 for all i such that λ i > 0, and therefore

∇φ(x 0 ) -h(x 0 ) = k i=1 λ i c x (x 0 , y i ). (4.2.7)
Now we want to prove that we may find A x ∈ Aff d such that A x (y) = c x (x, y) for all y ∈ Γ x . Let y 0 1 , ..., y 0 m ∈ Γ x 0 generating affΓ x 0 and such that x ∈ ri conv(y 0 1 , ..., y 0 m ), let y ∈ Γ x 0 . A x is defined in a unique way if ∇A = 0 on (affΓ x 0 -x 0 ) ⊥ by its values on (y 0 1 , ..., y 0 m ). Now we prove that A x (y) = c x (x 0 , y). As y ∈ aff(y 0 1 , ..., y 0 m ), we may find (µ i ) so that i=1 µ i y 0 i = y, and i=1 µ i = 1. For ε > 0 small enough, x 0 -ε(y -x 0 ) ∈ ri conv(y 0 1 , ..., y 0 m ). Then x 0 -ε(y -x 0 ) = i=1 λ 0 i y i with λ 0 i > 0. We take the convex combination:

x 0 = 1 1+ε (x 0 -ε(y -x 0 )) + ε 1+ε y, and x 0 = i=1 1 1+ε λ 0 i + ε 1+ε µ i y 0 i . We suppose that ε is small enough so that λ ε i := 1 1+ε λ 0 i + ε 1+ε µ i > 0. Then applying (4.2.7) for (y i ) = (y 0 i ) and (λ i ) = (λ ε i ), ∇φ(x 0 ) -h(x 0 ) = l i=1 λ ε i c x (x 0 , y i ) = l i=1 1 1 + ε λ i c x (x 0 , y i ) + ε 1 + ε c x (x 0 , y).
By subtracting, we get c x (x 0 , y)

= A x 0 1+ε ε l i=1 (λ ε i -1 1+ε λ i )y i = A x 0 (y)
. Now doing this for all x ∈ R d so that φ is differentiable in x, by domination of µ I by Lebesgue, this holds for µ I -a.e. x ∈ R d , η-a.s. and therefore µ-a.s.

(ii) Now we prove the converse statement. Let S 0 ⊂ {A(Y ) = c x (x 0 , Y )} be a closed bounded subset of Ω for some x 0 ∈ R d , and

A ∈ Aff d such that x 0 ∈ int conv S 0 , c is C 2,0 ∩ C 1,1
in the neighborhood of S 0 , and c xy (S 0 ) -∇A ⊂ GL d (R). First, we show that S 0 is finite. Indeed, we suppose to the contrary that |S 0 | = ∞, we can find a sequence (y n ) n≥1 ⊂ S 0 with distinct elements. As S 0 is closed bounded, and therefore compact, we may extract a subsequence (y φ(n) ) converging to y l ∈ S 0 . We have c x (x 0 , y φ(n) ) = A(y φ(n) ), and c x (x 0 , y l ) = A(y l ). We subtract and get c x (x 0 , y φ(n) )c x (x 0 , y l ) -∇A(y φ(n) -y l ) = 0, and using Taylor-Young around y l , c xy (x 0 , y l )(y φ(n) -

y l ) + o(|y φ(n) -y l |) -∇A(y φ(n) -y l ) = 0. As y φ (n) ̸ = y l for n large enough , we may write u n := y φ(n) -y l |y φ(n) -y l | .
As u n stands in the unit sphere which is compact, we can extract a subsequence (u ψ(n) ), converging to a unit vector u. As we have c xy (x 0 , y l )u ψ(n) + o(1) -∇Au ψ(n) = 0, we may pass to the limit n → ∞, and get: (c xy (x 0 , y l ) -∇A)u = 0.

As u ̸ = 0, we get the contradiction: c xy (x 0 , y) -∇A / ∈ GL d (R). Now, we denote S 0 = {y i } 1≤i≤k where k := |S 0 |. For r > 0 small enough, the balls B (x 0 , y i ), r are disjoint, c xy (•) -∇A ⊂ GL d (R) on these balls by continuity of the determinant, and c is C 2,0 ∩ C 1,1 on these balls. Now we define appropriate dual functions. Let M > 0 large enough so that on the balls, (M -1)

I d -(∇A + ∇A t ) -c xx is positive semidefinite. We set h(X) := ∇A(X -x 0 ) -A(x 0 ), and φ(X) := 1 2 M |X -x 0 | 2 . Now for 1 ≤ i ≤ k, c x (x 0 , y i ) -∇A • (y i -x 0 ) = ∇φ(x 0 ) -h(x 0 ), (x, y) -→ c x (x, y) -∇A • (y -x) is C 1 ,
and its partial derivative with respect to y, c xy -∇A is invertible on the balls. Then by the implicit functions Theorem, we may find a mapping

T i ∈ C 1 (R d , R d ) such that for x ∈ R d in the neighborhood of x 0 , c x x, T i (x) -∇A • T i (x) -x = ∇φ(x) -h(x). (4.2.8)
Its gradient at x 0 is given by ∇T

i (x 0 ) = c xy (x 0 , y i ) -∇A -1 M I d -(∇A + ∇A t ) - c xx (x 0 , y i ) .
This matrix is invertible, and therefore by the local inversion theorem T i is a C 1 -diffeomorphism in the neighborhood of x 0 . We shrink the radius r of the balls so that each T i is a diffeomorphism on B := X B (x 0 , y i ), r (independent of i).

Let B i := T i (B), for y ∈ B i , let ψ(y) := c T -1 i (y), y -φ T -1 i (y) -h T -1 i (y) • y - T -1
i (y) . These definitions are not interfering, as we supposed that the balls B i are not overlapping.

Let Γ := {(x, c, we prove now that F (x, y) ≥ 0, with equality if and only if x = x 0 (i.e. (x, y) ∈ Γ). F (x 0 , y) = 0, and F x (x 0 , y) = 0 by (4.2.8). However,

T i (x)) : x ∈ B, 1 ≤ i ≤ k}. By definition of ψ, c = φ ⊕ ψ + h ⊗ on Γ. Now let (x, y) ∈ B × B i , for some i. (x 0 , y) ∈ Γ, for some x 0 ∈ B. Let F := φ ⊕ ψ + h ⊗ -
F xx (X, Y ) = M I d -(∇A + ∇A t ) -c xx (X, Y )
which is positive definite on B × B i , and therefore we get

F (x, y) = F (x, y) -F (x 0 , y) = x x 0 F x (z, y) • dz = x x 0 F x (z, y) -F x (x 0 , y) • dz = x x 0 z x 0 dw • F xx (w, y) • dz ≥ 0.
Where the last inequality follows from the fact that F xx is positive definite and dw and dz are two vectors collinear with (x -x 0 ). It also proves that F (x, y) = 0 if and only if (x, y) ∈ Γ. Now, we define C 1 mappings λ i : B -→ (0, 1] such that k i=1 λ i (x)T i (x) = x. We may do this because we assumed that x ∈ int conv S 0 , and therefore, by continuity, up to reducing B again, x ∈ int conv{T 1 (x), ..., T k (x)} for all x ∈ B. Finally let µ 0 ∈ P(R d ) such that supp µ 0 = B with C ∞ density f (take for example a well chosen wavelet). Now

for 1 ≤ i ≤ k, we define ν 0 on B i by ν 0 (dy) = λ i T -1 i (y) f T -1 i (y) det ∇T i T -1 (y) -1
. Then P * (dx, dy) := µ 0 (dx) ⊗ k i=1 λ i (x)δ T i (x) (dy) is supported on Γ, is in M(µ 0 , ν 0 ). As φ, and ψ are continuous, and therefore bounded, and as µ 0 and ν 0 are compactly supported,

P * [c] = µ 0 [φ] + ν 0 [ψ],
and therefore P * is an optimizer for S µ 0 ,ν 0 (c). Now we prove that this is the only optimizer. Let P be an optimizer for S µ 0 ,ν 0 (c). Then P[Γ] = 1, and therefore P(dx, dy) = µ 0 (dx) ⊗ k i=1 γ i (x)δ T i (x) (dy), for some mappings γ i . Let 1 ≤ i ≤ k, as for y ∈ B i , there is only one x := T -1 i (y) ∈ B such that (x, y) ∈ Γ. Then we may apply the Jacobian formula:

ν 0 (dy) = γ i T -1 i (y) f T -1 i (y) det ∇T i T -1 (y) -1
.

As this density in also equal to ν 0 (dy

) = λ i T -1 i (y) f T -1 i (y) det ∇T i T -1 (y) -1
,

and as f T -1 i (y) det ∇T i T -1 (y) -1 > 0, we deduce that λ i T -1 (Y ) = γ i T -1 (Y )
, ν 0 -a.s. and λ i = γ i , µ 0 -a.s. and therefore P = P * . 2

The statement (i) of Theorem 4.2.2 is well known, it is already used in [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF] (to establish Theorem 5.1), [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] (see Theorem 7.1), and [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] (for Theorem 5.5). However, the converse implication (ii) is new and we will show in the next subsections how it gives crucial information about the structure of martingale optimal transport for classical cost functions. This converse implication will serve as a counterexample generator, similar to counterexample 7.3.2 in [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], which could have been found by an immediate application of the converse implication (ii) in Theorem 4.2.2.

Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] and Henry-Labordère & Touzi [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF] solved the problem in dimension 1 for the distance cost or for costs satisfying the "Spence-Mirless condition" (i.e. ∂ 3 ∂x∂y 2 c > 0), in these particular cases, the support of the optimal probabilities is contained in two points in y for x fixed. See also Beiglböck, Henry-Labordère & Touzi [START_REF] Beiglböck | Monotone martingale transport plans and skorohod embedding[END_REF]. Some more precise results have been provided by Ghoussoub, Kim, and Lim [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]: they show that for the distance cost, the image can be contained in its own Choquet boundary, and in the case of minimization, they show that in some particular cases the image consists of d + 1 points, which provides uniqueness. They conjecture that this remains true in general. The subsequent theorem will allow us to prove that this conjecture is wrong, and that the properties of the image can be found much more precisely.

Algebraic geometric finiteness criterion

Completeness at infinity of multivariate polynomial families

Algebraic geometry is the study of algebraic varieties, which are the sets of zeros of families of multivariate polynomials. When the cost c is smooth, the set {c x (x 0 , Y ) = A(Y )} for x 0 ∈ R d and A ∈ Aff d , behaves locally as an algebraic variety. This statement is illustrated by Proposition 4.2.12 and Theorem 4.2.18.

Let k, d ∈ N and (P 1 , ..., P k ) be k polynomials in R[X 1 , ..., X d ]. We denote ⟨P 1 , ..., P i-1 ⟩ the ideal generated by (P 1 , ..., P i-1 ) in R[X 1 , ..., X d ] with the convention ⟨∅⟩ = {0}, and P hom denotes the sum of the terms of P which have degree deg(P ):

If P (X) = |α|≤deg P a α X α , then P hom (X) := |α|=deg P a α X α . Definition 4.2.5. Let k, d ∈ N and (P 1 , ..., P k ) be k multivariate polynomials in R[X 1 , ..., X d ].
We say that the family (P 1 , ..., P k ) is complete at infinity if

QP hom i / ∈ ⟨P hom 1 , ..., P hom i-1 ⟩, for all Q / ∈ ⟨P hom 1 , ..., P hom i-1 ⟩, for 1 ≤ i ≤ k. 1
Remark 4.2.6. This notion actually means that the intersection of the zeros of the polynomials P i in the points at infinity in the projective space has dimension d -k -1 (with the convention that all negative dimensions correspond to ∅), or equivalently by the correspondance from Corollary 1.4 of [START_REF] Hartshorne | Algebraic geometry[END_REF], that P hom 1 , ..., P hom d is a regular sequence of R[X 1 , ..., X d ], see page 184 of [START_REF] Hartshorne | Algebraic geometry[END_REF]. See Proposition 4.3.3 to understand why P hom 1 , ..., P hom d may be seen as the projections of P 1 , ..., P d at infinity. The algebraic geometers rather say that the algebraic varieties defined by the polynomials intersect completely at infinity. The ordering of the polynomials in Definition 4.2.5 does not matter. Notice that P 1 , ..., P d is a regular sequence if P hom 1 , ..., P hom d is a regular sequence, therefore the completeness at infinity of (P i ) 1≤i≤k implies that the intersection of the zeros of the polynomials in the points in the projective space has dimension d -k. Remark 4.2.7. Notice that in Definition 4.2.5, we restrict to R[X 1 , ..., X d ], whereas the algebraic geometry results that we will use apply with the same definition where we need to replace R[X 1 , ..., X d ] by C[X 1 , ..., X d ]. However, the families (P i ) that we will consider here stem from Taylor series of smooth cost functions. Therefore we only consider (P i ) ⊂ R[X 1 , ..., X d ], and we notice that in this case, Definition 4.2.5 is equivalent with R[X 1 , ..., X d ] or with C[X 1 , ..., X d ], up to projecting on the real or on the imaginary part of the equations.

Example 4.2.8. If d ∈ N * and k ∈ (N * ) d Then (X k 1 1 , ..., X k d d ) is complete. Indeed, let 1 ≤ i ≤ d, ⟨X k 1 1 , ..., X k i-1 i-1 ⟩ = {X k 1 1 P 1 + ... + X k i-1 i-1 P i-1 , P 1 , ..., P i-1 ∈ R[X 1 , ..., X d ]}.
Notice that for this family of polynomials, P ∈ ⟨X k 1 1 , ..., X

k i-1 i-1 ⟩ is equivalent to ∂ X l P (X 1 = 0, ..., X i-1 = 0, X i , ..., X d ) = 0 for all l ∈ N d such that l j < k j for j < i, and l j = 0 for j ≥ i. Let Q ∈ R[X 1 , ..., X d ] such that QX k i i ∈ ⟨X k 1 1 , ..., X k i-1 i-1 ⟩, then for all such l ∈ N d , we have ∂ X l (QX k i i )(X 1 = 0, ..., X i-1 = 0, X i , ..., X d ) = X k i i ∂ X l Q(X 1 = 0, ..., X i-1 = 0, X i , ..., X d ) = 0, and therefore ∂ X l Q(X 1 = 0, ..., X i-1 = 0, X i , ..., X d ) = 0, implying that Q ∈ ⟨X k 1 1 , ..., X k i-1 i-1 ⟩.
The notion is also invariant by linear change of variables. For example, (X 3 + XY + 3, Y 3 -X 2 + X) is complete at infinity because the homogeneous polynomial family (X 3 , Y 3 ) is complete at infinity by Example 4.2.8 above. 1 In algebraic terms this means that P hom i is not a divider of zero in the quotient ring R[X 1 , ..., X d ]/⟨P 

) = Π ̸ = 1, then P 1 /Π / ∈ ⟨P 1 ⟩ but P 1 /ΠP 2 = P 1 P 2 /Π ∈ ⟨P 1 ⟩
, and therefore (P 1 , P 2 ) is not complete at infinity. Conversely, if (P 1 , P 2 ) is non complete at infinity, we may find

P ′ , Q ∈ R[X 1 , ..., X d ] such that Q /
∈ ⟨P 1 ⟩ and QP 2 = P 1 P ′ . We assume for contradiction that gcd(P 1 , P 2 ) = 1, then P 1 is a divider of Q, and Q ∈ ⟨P 1 ⟩, whence the contradiction.

Let k, d ∈ N and (P 1 , ..., P k ) be k homogeneous polynomials in R[X 0 , X 1 , ..., X d ], we define the set of common zeros of (P 1 , ..., P k ): Z(P 1 , ..., P k ) = {x ∈ P d : P i (x) = 0, for all 1 ≤ i ≤ k}. An element x ∈ R d is a single common root of P 1 , ..., P k if x ∈ Z(P 1 , ..., P k ), and the vectors ∇P i (x) are linearly independent in R d . Remark 4.2.10. Let k ∈ (N * ) d . It is well known by algebraic geometers that we may find a polynomial equation system T ∈ R (X i,j ) 1≤i≤d,j∈(N * ) d :|j|≤k i such that for all

(P 1 , ..., P d ) ∈ d i=1 R k i [X 1 , ..., X d ] with P i = j∈(N * ) d :|j|≤k i a i,j X j 1 1 ...X j d d , we have the equivalence T (a i,j ) 1≤i≤d,j∈(N * ) d :|j|≤k i ̸ = 0 ⇐⇒ (P 1 , ..., P d ) is complete at infinity.
We provide a proof of this statement in Subsection 4.3.1. Furthermore, not all multivariate polynomials families (P 1 , ..., P d )

∈ d i=1 R k i [X 1 , ..., X d ]
are solution of T as shows Example 4.2.8. As a consequence T is non-zero and we have that almost all (in the sense of the Lebesgue measure) homogeneous polynomial family is complete at infinity.

Criteria for finite support of conditional optimal martingale transport

We start with the one dimensional case. We emphasize that the sufficient condition (i) below corresponds to a local version of [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF]. 

S 0 = {c x (x 0 , Y ) = A(Y )}, for some A ∈ aff(R, R), such that x 0 ∈ ri convS 0 , and c : Ω -→ R. (i) If y → c x (x 0 , y) is strictly convex or strictly concave for some x 0 ∈ R, then |S 0 | ≤ 2. (ii) If for all y 0 ∈ R, we can find k(y 0 ) ≥ 2 such that y → c x (x 0 , y 0 ) is k(y 0 ) times differentiable in y 0 and c xy k(y 0 ) (x 0 , y 0 ) ̸ = 0, then S 0 is discrete. If furthermore c x (x 0 , •) is super-linear in y, then S 0 is finite.
Proof. (i) The intersection of a strictly convex or concave curve with a line is two points or one if they intersect.

(ii) We suppose that S 0 is not discrete. Then we have (y n ) ∈ S N 0 a sequence of distinct elements converging to y 0 ∈ R. In y 0 , f : y → c x (x 0 , y) is k times differentiable for some k ≥ 2 and f (k) (y 0 ) = c xy k (x 0 , y 0 ) ̸ = 0. We have f (y n ) = A(y n ). Passing to the limit y n → y 0 ; we get f (y 0 ) = A(y 0 ). Now we subtract and get f (y n ) -f (y 0 ) = ∇A(y n -y 0 ). We finally apply Taylor-Young around y 0 to get

(f ′ (y 0 ) -∇A)(y n -y 0 ) + k i=2 f (i) (y 0 ) i! (y n -y 0 ) i + o(|y n -y 0 | k ) = 0
This is impossible for y n close enough to y 0 , as one of the terms of the expansion at least is nonzero. If furthermore c x (x 0 , •) is superlinear in y, S 0 is bounded, and therefore finite. 2

Our next result is a weaker version of Theorem 4.2.11 (i) in higher dimension.

Proposition 4.2.12.

Let x 0 ∈ R d such that for y ∈ R d , c x (x 0 , y) = d i=1 P i (y)u i , with for 1 ≤ i ≤ d, P i ∈ R[Y 1 , .., Y d ]
and (u i ) 1≤i≤d a basis of R d . We suppose that the P i have degrees deg(P i ) ≥ 2 and are complete at infinity. Then if

S 0 = {c x (x 0 , Y ) = A(Y )} for some x 0 ∈ R d , and A ∈ Aff d , we have |S 0 | ≤ deg(P 1 )... deg(P d ).
The proof of this proposition is reported in Subsection 4.3.1. Remark 4.2.13. This bound is optimal as we see with the example:

P i = (Y i -1)(Y i - 2)...(Y i -k i ), for 1 ≤ i ≤ d. Then {1, 2, ..., k 1 } × ... × {1, ..., k d } = {c x (x 0 , Y ) = A(Y )}.
(For A = 0) And this set has cardinal k 1 ...k d = deg(P 1 )...deg(P d ). But this bound is not always reached when we fix the polynomials as we can see in the example d = 1 and P = X 4 , we can add any affine function to it, it will never have more than 2 real zeros even if its degree is 4.

The following example illustrates this theorem in dimension 2. 

(x, y) ∈ R 2 × R 2 -→ x 1 (y 2 1 + 2y 2 2 ) + x 2 (2y 2 1 + y 2 2 ). Then c x (x, y) = (y 2 1 + 2y 2 2 )e 1 + (2y 2 1 + y 2 2 )e 2 for all (x, y), where (e 1 , e 2 ) is the canonical basis of R 2 . Let A ∈ Aff 2 , A = A 1 e 1 + A 2 e 2 . The equation c x (x 0 , y) = A(y) can be written    y 2 1 + 2y 2 2 = A 1 (e 1 )y 1 + A 1 (e 2 )y 2 + A 1 (0) 2y 2 1 + y 2 2 = A 2 (e 1 )y 1 + A 2 (e 2 )y 2 + A 2 (0).
These equations are equations of ellipses C 1 of axes ratio √ 2 oriented along e 1 , and C 2 of axes ratio √ 2 oriented along e 2 . Then we see visualy on Figure 4.1 that in the nondegenerate case, C 1 and C 2 are determined by three affine independent points y 1 , y 2 , y 3 ∈ {c x (x 0 , Y ) = A(Y )}, and that a fourth point y ′ naturally appears in the intersection of the ellipses.

e 1 e 2 C 2 C 1 y 1 y 2 y 3 y 0 x 0 Fig. 4.1 Solution of c x (x 0 , Y ) = A(Y ) for c(x, y) = x 1 (y 2 1 + 2y 2 2 ) + x 2 (2y 2 1 + y 2 2 ).
Now we give a general result. If k ≥ 1, we denote

c x i ,y k (x 0 , y 0 )[Y k ] := 1≤j 1 ,...,j k ≤d ∂ k+1 x i ,y j 1 ,...,y j k c(x 0 , y 0 )Y j 1 ...Y j k , (4.2.9) 
the homogeneous multivariate polynomial of degree k associated to the Taylor term of the expansion of the map c x i (x 0 , •) around y 0 for 1 ≤ i ≤ d.

We now provide e the extension of Theorem 4.2.11 (ii) to higher dimension. 

≤ i ≤ d, c x i (x 0 , •) is k i ≥ 2 times differentiable at the point y 0 and that c x i ,y k i (x 0 , y 0 )[Y k i ] 1≤i≤d is a complete at infinity family of R[Y 1 , ..., Y d ], then S 0 consists of isolated points. If furthermore c x (x 0 , •) is super-linear in y, then S 0 is finite.
The proof of this theorem is reported in Subsection 4.3.1.

Largest support of conditional optimal martingale transport plan

The previous section provides a bound on the cardinal of the set S 0 in the polynomial case, which could be converted to a local result for a sufficiently smooth function, as it behaves locally like a multivariate polynomial. However, with the converse statement (ii) of the structure Theorem 4.2.2, we may also bound this cardinality from below.

Let c be a C 1,2 cost function, and x 0 ∈ R d , we denote

N c (x 0 ) := sup P ∈R 1 [Y 1 ,...,Y d ] d Z 1 R (H c (x 0 ) + P ) , where H c (x 0 ) := c x i ,y 2 (x 0 , x 0 )[Y 2 ] 1≤i≤d .
where we denote by

Z 1 R (Q 1 , ..., Q d ) the set of real (finite) single common zeros of the multivariate polynomials Q 1 , ..., Q d ∈ R[Y 1 , ..., Y d ].
Definition 4.2.16. We say that c is second order complete at infinity at x 0 ∈ R d if c is differentiable at x = x 0 and twice differentiable at y = x 0 , and

H c (x 0 ) is a complete at infinity family of R 2 [Y 1 , ..., Y d ].
Remark 4.2.17. Recall that by Remark 4.2.10, this property holds for almost all cost function. We highlight here that this consideration should be taken with caution, indeed cost functions of importance which are c := f (|X -Y |) with f smooth fail to be second order complete at infinity, even in the case of c smooth at (x 0 , x 0 ), as the sets {c x (x 0 , Y ) = A(Y )} for A ∈ Aff d may be infinite and contradict Theorem 4.2.15, as they may contain balls, see Theorem 4.2.20 below. Theorem 4.2.18. Let c : Ω -→ R be second order complete at infinity and C 2,0 ∩ C 1,2 in the neighborhood of (x 0 , x 0 ) for some x 0 ∈ R d . Then, we may find µ 0 , ν 0 ∈ P(R d ) with C 1 densities, and a unique P * ∈ M(µ 0 , ν 0 ) such that

S µ 0 ,ν 0 (c) = P * [c] and |supp P * X | = N c (x 0 ), µ -a.s.
The proof of this result is reported in subsection 4.3.2. Theorem 4.2.18 shows the importance of the determination of the numbers N c (x 0 ). We know by Remark 4.2.13 that for some cost c : Ω -→ R, the upper bound is reached: N c (x 0 ) = 2 d . We conjecture that this bound is reached for all cost which is second order complete at infinity at x 0 . An important question is whether there exists a criterion on cost functions to have the differential intersection limited to d + 1 points, similarly to the Spence-Mirless condition in one dimension. It has been conjectured in [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] in the case of minimization for the distance cost. Theorem 4.2.22 together with (ii) of Theorem 4.2.2 proves that this conjecture is wrong. Now we prove that even for much more general second order complete at infinity cost functions, there is no hope to find such a criterion for d even.

Theorem 4.2.19. Let x 0 ∈ R d , and c be second order complete at infinity and C 1,2 at (x 0 , x 0 ), then

d + 1 + 1 {d even} ≤ N c (x 0 ) ≤ 2 d .

Support of optimal plans for classical costs

Euclidean distance based cost functions Theorem 4.2.2 shows the importance of sets S 0 = {c x (x 0 , Y ) = A(Y )} for x 0 ∈ ri conv S 0 , and A ∈ Aff d . We can characterize them precisely when c :

(x, y) ∈ R d ×R d -→ f (|x-y|) for some f ∈ C 1 (R + , R).
In view of Remark 4.2.4, the following result gives the structure of S 0 as a function of d + 1 known points in this set. Let g : t > 0 -→ -f ′ (t)/t, notice that 

c x (x, y) = g(|y -x|)(y -x), on {X ̸ = Y }. Furthermore, c(x, y) is differentiable in x = y if and only if f ′ (0) = 0, in this case c x (x, x) = 0. We fix S 0 := {c x (x 0 , Y ) = A(Y )}, for some x 0 ∈ int conv S 0
S 0 = ∪ (t,ρ)∈A S ρ t ∪ y(t) : t ∈ fix(g • |y -x 0 |) ,
where

S ρ t := S V t p t , ρ 2 -|p t -x 0 | 2 , with V t := y(t) + ker(tI d -∇A), p t := proj V t (x 0 ), and A := (t, ρ) : t ∈ Sp(∇A), |y(t)| < ∞, g(ρ) = t, and ρ ≥ |p t -x 0 | . (i)
The elements in the spheres S ρ t 0 for all ρ from Theorem 4.2.20 will be said to be 2d t 0 degenerate points, where d t 0 := dim V t 0 . This convention corresponds to the degree 2d t 0 of their associated root t 0 of the extended polynomial χ(t)

:= det(tI d - ∇A) 2 g -1 (t) 2 -|Com(tI d -∇A) t A(0)| 2 ).
Notice that in the case d t 0 = 1, the sphere S ρ t 0 is a 0-dimensional sphere, which consists in 2d t 0 = 2 points. (ii) We say that y(t 0 ) ∈ S 0 is double for t 0 ∈ R if min t g |y(t) -x 0 | -t = 0 (attained at t 0 ) where the minimum is taken in the neighborhood of t 0 . Notice that then in the smooth case, t 0 is a double root of χ. 

Powers of Euclidean distance cost

In this section we provide calculations in the case where f is a power function. The particular cases p = 0, 2 are trivial, for other values, we have the following theorems. The proof of this theorem is reported in Subsection 4.3.4. Remark 4.2.23. In both cases, for almost all choice of y 0 , ..., y d ∈ R d as the first elements of S 0 , determining the Affine mapping A, we have d i = 0 for all i, and c xy (x 0 , S 0 ) -∇A ⊂ GL d (R d ). Then for -∞ < p ≤ 1, and p ̸ = 0, |S 0 | = 2d, and for Lim [113] that in this case the value {X = Y } is preferentially chosen by the problem: Theorem 4.2 in [START_REF] Lim | Optimal martingale transport between radially symmetric marginals in general dimensions[END_REF] states that the mass µ ∧ ν stays put (i.e. this common mass of µ and ν is concentrated on the diagonal {X = Y } by the optimal coupling) and the optimization reduces to a minimization with the marginals µ -µ ∧ ν and ν -µ ∧ ν. Therefore, c is differentiable on all the points concerned by this other optimization, and the supports are given by supp

1 < p < 2 -2 5 or p > 2 + 2 3 , |S 0 | = 2d + 1. Therefore, by (ii) of Theorem 4.2.2, we may find µ, ν ∈ P(R d ) with C 1 densities such that the associated optimizer P ∈ M(µ, ν) of the MOT problem (4.1.2) satisfies |supp P X | = 2d, µ-a.s. if p ≤ 1,
P x ⊂ {c x (x, Y ) = A x (Y )} ∪ {x}, for µ-a.e. x ∈ R d .
Then the supports are exactly given by the ones from the maximisation case with eventually adding the diagonal.

Notice that Remark 4.2.25 together with (ii) of Theorem 4.2.2 and Theorem 4.2.22 prove that Conjecture 2 in [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] is wrong, and explains the counterexample found by Lim [START_REF] Lim | Multi-martingale optimal transport[END_REF], Example 2.9.

(iv) c : (x, y) -→ |x -y| p , with 1 < p < 2 -2 5 or p > 2 + 2 3 , and p min y∈S 0 |y -

x 0 | p-2 is a double root of the polynomial det(∇A -XI d ) 2 -|p| 2 2-p X 2 2-p |Com(∇A -XI d ) t A(0)| 2 . Furthermore, if c : (x, y) -→ |x -y| p , with 1 < p < 2 -2 5 or p > 2 + 2 3
, and S 0 is not concentrated on its own Choquet boundary, then we may find a unique y 0 ∈ S 0 such that |y 0 -x 0 | = min y∈S 0 |y -x 0 |, and S 0 \ {y 0 } is concentrated on its own Choquet boundary.

The proof of this proposition is reported in Subsection 4.3.5. 

Proofs of the main results

Proof of the support cardinality bounds

We first introduce some notions of Algebraic geometry. Recall P d := C d+1 * /C * , the d-dimensional projective space which complements the space with points at infinity. Recall that there is an isomorphism

P d ≈ C d ∪ P d-1
, where P d-1 are the "points at infinity". Then we may consider the points for which x 0 = 0 as "at infinity" because the surjection of P d in C d is given by (x 0 , x 1 , ..., x d ) -→ (x 1 /x 0 , ..., x d /x 0 ) so that when x 0 = 0, we formally divide by zero and then consider that the point is sent to infinity. The isomorphism P d ≈ C d ∪ P d-1 follows from the easy decomposition:

P d = {(x 0 , ..., x d ) ∈ C d+1 , x 0 ̸ = 0}/C * ∪ {(0, x 1 , ..., x d ), (x 1 , ..., x d ) ∈ C d \ {0}}/C * = {(1, x 1 /x 0 , ..., x d /x 0 ), (x 0 , ..., x d ) ∈ C d+1 , x 0 ̸ = 0} ∪ (0, x 1 , ..., x d ), (x 1 , ..., x d ) ∈ C d * /C * ≈ C d ∪ C d * /C * ≈ C d ∪ P d-1 .
The points in the projective space P d in the equivalence class of {x 0 = 0} are called points at infinity.

Definition 4.3.1. The map

P = n∈N d ,|n|≤deg(P ) a n X n -→ P proj := n∈N d ,|n|≤deg(P ) a n X n X deg(P )-|n| 0 , defines an isomorphism between C[X 1 , ..., X d ] and C hom [X 0 , X 1 , ..., X d ]. Let (P 1 , ..., P k ) be k ≥ 1 polynomials in R[X 1 , ..., X d ],
we define the set of common projective zeros of (P 1 , ..., P k ) by Z proj (P 1 , ..., P k ) := Z(P proj 1 , ..., P proj k ). This allows us to define the zeros of a nonhomogeneous polynomial in the projective space.

We finally report the following well-known result which will be needed for the proofs of Proposition 4.2.12 and Theorem 4.2.19. Proof. By Corollary 7.8 of Hartshorne [START_REF] Hartshorne | Algebraic geometry[END_REF] extended to P d and d curves, we have

V ∈Irr Z proj (P 1 ,...,P d ) i Z proj (P 1 ), ..., Z proj (P d ), V = deg(P 1 )...deg(P d ), (4.3.10) 
where i Z proj (P 1 ), ..., Z proj (P d ), V is the multiplicity of the intersection of Z proj (P 1 ),..., and Z proj (P d ) along V , and Irr Z proj (P 1 , ..., P d ) is the collection of irreducible components of Z proj (P 1 , ..., P d ). By Remark 4.2.6, Z proj (P 1 , ..., P d ) has dimension d -d = 0 by the fact that (P 1 , ..., P d ) is complete at infinity. Therefore, its irreducible components (in the algebraic sense) are singletons, and (4.3.10) proves the result. 2

Notice that we have the identity P hom = P proj (X 0 = 0). Then P hom may be interpreted as the restriction to infinity of P proj and we deduce the following characterization of completeness at infinity that justifies the name we gave to this notion. We believe that this is a standard algebraic geometry result, but we could not find precise references. For this reason, we report the proof for completeness. For P 1 , ..., P d ∈ R[X 1 , ..., X d ], we denote Z aff (P 1 , ..., P d ) := {x ∈ C d : P 1 (x) = ... = P d (x) = 0} the set of their common affine zeros.

Proposition 4.3.3. Let P 1 , ..., P d ∈ R[X 1 , ..., X d ],
Then the following assertions are equivalent:

(i) (P 1 , ..., P d ) is complete at infinity; (ii) Z proj (P 1 , ..., P d ) contains no points at infinity; (iii) Z aff (P hom 1 , ..., P hom d ) = {0}.
Proof. We first prove (iii) =⇒ (ii), let x ∈ P d at infinity, i.e. such that x 0 = 0. Then by definition of the projective space, x ′ := (x 1 , ..., x d ) ̸ = 0, and by (iii) we have that P hom i (x ′ ) ̸ = 0 for some i. Notice that P hom i (x ′ ) = P proj i (x), and therefore P proj i (x) ̸ = 0 and x / ∈ Z proj (P 1 , ..., P d ).

are also complete at infinity as for all i, we have

P hom i = P hom i
. By Bezout Theorem 4.3.2 there are deg(P 1 )... deg(P d ) common projective roots to these polynomial. These roots may be complex, infinite, or multiple, therefore the set S 0 which is the set of these common roots that are finite and real has its cardinal bounded by deg(P 1 )... deg(P d ). 2 Proof of Theorem 4.2. [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF] We suppose that S 0 is not discrete. Then we have (y n ) ∈ S N 0 a sequence of distinct elements converging to y 0 ∈ R d . We denote

P i (Y 1 , ..., Y d ) := c x i ,y k i (x 0 , y 0 )[Y k i ] for 1 ≤ i ≤ d. We know that (P i ) 1≤i≤d is a complete at infinity family of R[Y 1 , ..., Y d ]. We have f (y n ) := c x (x 0 , y n ) = A(y n ).
Passing to the limit y n → y 0 , we get f (y 0 ) = A(y 0 ). Now subtracting the terms, we get f (y n ) -f (y 0 ) = ∇A(y n -y 0 ), and applying Taylor-Young around y 0 , we get

(∇f (y 0 ) -∇A) • (y n -y 0 ) + k-1 i=2 f (i) (y 0 ) i! [(y n -y 0 ) i ] + P (y n -y 0 ) + o(|y n -y 0 | k i ) = 0 (4.3.11) 
With P = (P 1 , ..., P d ). By Proposition 4.2.12, the Taylor multivariate polynomial is locally nonzero around y 0 as it has a finite number of zeros on R d . This is in contradiction with (4.3.11) for y n close enough to y 0 .

If furthermore c is super-linear in the y variable at x 0 , T is bounded, and therefore finite. 2

Lower bound for a smooth cost function

As a preparation for the proof of Theorem 4.2.19, we need to prove the following lemma. Proof. We suppose to the contrary that det(∇P ) = 0, where we denote P = (P 1 , ..., P d ).

We claim that we may find y 0 ∈ R d , and a map u : R d -→ S 1 (0) which is C ∞ in the neighborhood of y 0 and such that u(y) ∈ ker(∇P (y)) for y in this neighborhood.

Then we solve the differential equation y ′ (t) = u(y(t)) with initial condition y(0) = y 0 . As a consequence of the regularity of u in the neighborhood of y 0 , by the Cauchy-Lipschitz theorem, this dynamic system has a unique solution for t in a neighborhood [-ε, ε] of 0, where ε > 0. However, we notice that P (y(t)) is constant in t, indeed,

d(P (y(t))) dt
= ∇P (y(t))u(y(t)) = 0. Since |y ′ (t)| = 1, this solution is non constant, then P -P (y 0 ) has an infinity of roots: y([-ε, ε]). However, as P is non-constant, P -P (y 0 ) is also complete at infinity, which is in contradiction with the fact that it has an infinity of zeros by the Bezout Theorem 4.3.2.

It remains to prove the existence of y 0 ∈ R d , and a map u : R d -→ R d , C ∞ in the neighborhood of y 0 , such that u(y) ∈ ker(∇P (y 0 )) for y in this neighborhood. For all i < d, we consider the determinants of submatrices of ∇P which have size i. Let r ≥ 0 the biggest such i so that at least one of these determinants is not the zero polynomial. By the fact that det(∇P ) = 0, and that the polynomials are non-constant by completeness at infinity, we have 0 < r < d -1. We fix one of these non-zero polynomial determinants. Let x 0 ∈ R d such that this determinant is non-zero at y 0 . As this determinant is continuous in y, it is non-zero in the neighbourhood of y 0 . Therefore, ∇P has exacly rank r in the neighbourhood of y 0 . Now we show that this consideration allows to find a continuous map y -→ u(y), such that u(y) is a unit vector in ker(∇P ). Notice that ker(∇P ) = Im(∇P t ) ⊥ . We consider r columns of ∇P t that are used for the non-zero determinant. We apply the Gramm-Schmidt orthogonalisation algorithm on them. We get u 1 (y), ..., u r (y), an orthonormal basis of Im(∇P (y) t ), defined and C ∞ in the neighbourhood of y 0 . Then let u 0 ∈ ker(∇P (y 0 )), a unit vector. The map

u(y) := u 0 -r i=1 ⟨u 0 , u i (y)⟩u i (y) |u 0 -r i=1 ⟨u 0 , u i (y)⟩u i (y)|
is well defined, C ∞ , and in Im(∇P (y) t ) ⊥ = ker(∇P (y)) in the neigbourhood of y 0 , and therefore satisfies the conditions of the claim. 2

Proof of Theorem 4.2.19

Step 1: Let P i := (X 1 , ..., X d )c x i ,yy (x 0 , x 0 )(X 1 , ..., X d ) t . Let y 1 , ..., y d+1 ∈ R d , affine independent. We may find A ∈ Aff d such that A(y i ) = P (y i ) for all i, where we denote P := (P i ) 1≤i≤d . Now we prove that ∇(P (y ′ i ) -A) may be made invertible at points y ′ i at the neighborhood of y i . Recall that A is a function of the d + 1 vectors y i : A = A(y 1 , ..., y d+1 ). Then we look for an explicit expression of ∇A(y 1 , ..., y d+1 ) (denoted ∇A for simplicity) as a function of the y i . Let Y = M at(y i -y d+1 , i = 1, ..., d), the matrix with columns y i -y d+1 , using the equality ∇Ay i + A(0) = P (y i ), we get the identity ∇AY = M , where we denote M := M at(P (y i ) -P (y d+1 ), i = 1, ..., d). Then we get the result ∇A = M Y -1 (Y is invertible as the y i are affine independent). Then having ∇P (y d+1 ) -∇A invertible is equivalent to having ∇P (y d+1 )Y -M invertible. Notice that ∇P (y d+1 )Y -M = -M at( P (y i ), i = 1, ..., d), where P = P -P (y d+1 ) -∇P (y d+1 ) • (Y -y d+1 ), and that the multivariate polynomials Pi are complete at infinity, as they only differ from the P i by degree one polynomials. Consider the multivariate polynomial D := det(∇ P ). Let 1 ≤ i ≤ d, by Lemma 4.3.4 we may find y ′ i in the neighborhood of y i such that D(y ′ i ) ̸ = 0, and therefore ∇ P (y ′ i ) is invertible. Thanks to this invertibility, we may perturb the y ′ i to make M ′ := M at( P (y ′ i ), i = 1, ..., d) invertible. As Sp(M ′ ) is finite, for λ > 0 small enough, M ′ + λI d is invertible. For 1 ≤ i ≤ d, we may find y ′′ i in the neighborhood of y ′ i so that P (y ′′ i ) = P (y ′ i ) + λe i + o(λ), thanks to the invertibility of ∇ P (y ′ i ). Then for λ small enough, (P (y ′′ i ), i = 1, ..., d) = M ′ + λI d + o(λ) is invertible. We were able, by perturbing the y i for i ̸ = d + 1 to make ∇(P (y ′ d+1 ) -A) invertible. By continuity, this invertibility property will still hold if we perturb again sufficiently slightly the y i . Then we redo the same process, replacing y ′ d+1 by another y ′ i . We suppose that the perturbation is sufficiently small so that all the invertibilities hold in spite of the successive perturbations of the y i . Finally, we found y ′ 1 , ..., y ′ d+1 affine independent so that P (y

′ i ) = A(y ′ i ) and ∇P (y ′ i ) -∇A is invertible for all 1 ≤ i ≤ d + 1. Step 2: Then N c (x 0 ) ≥ d + 1 because y ′ 1 , ..., y ′ d+1 are d + 1 single real roots of P + A = H c (x 0 ) + A, and A ∈ Aff d , which may be identified to R 1 [Y 1 , ..., Y d ] d .
As the P i -A i are real multivariate polynomials, all non-real zeros have to be coupled with their complex conjugate. Recall that by Theorem 4.3.2, there are exactly 2 d zeros to this system. There are no zeros at infinity by Proposition 4.3.3, and there is an even number of non-real zeros by the invariance by conjugation observation. Then there must be an even number of real roots. As the y ′ i are simple roots by invertibility of the derivative of P -A at these points, there must be an even number of real roots, counted with multiplicity. If d is even, d + 1 is odd, which proves the existence of a possibly multiple d + 2-th zero y 0 , distinct from the y i . We assume, up to renumbering, that y ′ 0 , ..., y ′ d are affine independent, and we perturb again y ′ 0 , ..., y ′ d to make y 0 a single zero. We need to check that y ′ d+1 is still a single zero of P -A. Indeed, the map (y ′ 1 , ..., y ′ d+1 ) -→ A if locally a diffeomorphism around (y 1 , ..., y d+1 ), then by the implicit functions Theorem, we may write

y ′ d+1 = F (y ′ 1 , ..., y ′ d , A) = F y ′ 1 , ..., y ′ d , A(y ′ 0 , ..., y ′ d ) ,
where F is a local smooth function. Then y ′ d+1 remains a single zero if the perturbation of y 0 , ..., y d is small enough. The result is proved, if d is even we may find d + 2 single zeros to P -A.

The reverse inequality is a simple application of Proposition 4.2.12. 2

As a preparation for the proof of Theorem 4.2.18, we introduce the two following lemmas: Lemma 4.3.5. Let Q 1 , ..., Q d , d complete at infinity multivariate polynomials of degree 2 and x ∈ R d . Then, for all P 1 , ..., P d multivariate polynomials of degree 1, we may find P 1 , ..., P d , multivariate polynomials of degree

1 such that |Z 1 R (Q 1 + P 1 , ..., Q d + P d )| ≥ |Z 1 R (Q 1 + P 1 , ..., Q d + P d )| and x ∈ int conv Z 1 R (Q 1 + P 1 , ..., Q d + P d ).
Proof. Let P 1 , ..., P d multivariate polynomials of degree 1. We claim that we may find R 1 , ..., R d of degree 1 so that

Z 1 R (Q 1 + R 1 , ..., Q d + R d ) has full dimension and contains Z 1 R (Q 1 + P 1 , ..., Q d + P d ). Then we may find x ′ ∈ int conv Z 1 R (Q 1 + R 1 , ..., Q d + R d )
, and by the fact that all Q i have degree 2, we may find P 1 , ..., P d of degree 1 such that (Q + P )(X + x ′ -x) = Q + P . Finally, as the change of variables X + x ′ -x does not change the number of roots of Q + P nor their multiplicity, and by the fact that

x ∈ int conv Z 1 R (Q 1 + P 1 , ..., Q d + P d
) by translation, P 1 , ... P d solves the problem. Now we prove the claim. We prove by induction that we may add dimensions to

Z 1 R (Q 1 + R 1 , ..., Q d + R d ) by changing the R i . First by Theorem 4.2.19, we may assume that Z 1 R (Q 1 + R 1 , ..., Q d + R d ) is non-empty.
Up to making a distance-preserving linear change of variables, we may assume that

Z 1 R (Q 1 , ..., Q d ) ⊂ {X d = 0} and that 0 ∈ Z 1 R (Q 1 , ..., Q d ). We look for D ∈ R[X 1 , ..., X d ] d in the form D = X d v for some v ∈ R d , so that Q + D leaves Z 1 R (Q 1 , ..., Q d ) unchanged. In order to include some y ∈ {X d ̸ = 0}, we set D := -Q(y)/y d X d . The constraint that we have now is to fix y is that ∇(Q + D)(y ′ ) ∈ GL d (R) for all y ′ ∈ Z 1 R (Q 1 , ..., Q d )
and for y ′ = y. Notice that all these constraints have the form det ∇(

y d Q -Q(y)X d )(y ′ ) ̸ = 0 if y ′ ̸ = y, and det ∇(y d Q -Q(y)X d )(y) ̸ = 0 for the case y ′ = y,
therefore in all the cases this is a polynomial equation in y. We claim that each of these equations on y have a solution. Then as there is a finite number of such equations, the set of solutions is a dense open set, in particular it is non-empty and we may find

y ∈ R d so that {y} ∪ Z 1 R (Q) ⊂ Z 1 R (Q + D) and dim Z 1 R (Q + D) > dim Z 1 R (Q)
. By induction, we may reach full dimension for dim Z 1 R (Q + D), and the problem is solved. Finally, we prove the claim that the solution set to det ∇(

y d Q -Q(y)X d )(y ′ ) ̸ = 0 is non-empty. Case 1: y ′ ∈ Z 1 R (Q).
Then, up to applying a translation change of variables, we may assume that y ′ = 0. Then by the fact that Q has degree 2, the equation that we would like to satisfy is

det y d ∇Q(0) -∇Q(0)y + 1 2 D 2 Q(0)[y 2 ] e t d ̸ = 0.
We make it more tractable by making operations on the columns:

det y d ∇Q(0) -∇Q(0)y + 1 2 D 2 Q(0)[y 2 ] e t d = det   y d d i=1 ∇Q i (0)e t i -   d i=1 ∇Q i (0)y i + 1 2 D 2 Q(0)[y 2 ]   e t d   = det   y d d-1 i=1 ∇Q i (0)e t i - 1 2 D 2 Q(0)[y 2 ]e t d   ,
where we have subtracted the i th column multiplied by y i /y d to the d th column for all 1 ≤ i ≤ d -1. Now we prove that this multivariate polynomial is non-zero. We assume for contradiction that it is zero. Then for all y

∈ {X d ̸ = 0}, D 2 Q(0)[y 2 ] ∈ H := V ect(∇Q i (0), 1 ≤ i ≤ d -1), which is d -1-dimensional by the fact that ∇Q ∈ GL d (R)
by simplicity of the root 0. By continuousness, we have in fact that

D 2 Q(0)[y 2 ] ∈ H for all y ∈ R d . Therefore, for all y 1 , y 2 ∈ R d , we have the equality D 2 Q(0)[y 1 , y 2 ] = 1 2 D 2 Q(0)[(y 1 + y 2 ) 2 ] -D 2 Q(0)[y 1 , y 1 ] -D 2 Q(0)[y 2 , y 2 ] ∈ H. Then we may find u ∈ R d non-zero such that d i=1 u i D 2 Q i (0) = 0. Then (Q hom 1 , ..., Q hom d ) is d-1-dimensional and Z proj (Q 1 , ..., Q d ) is at least 1-dimensional,
then it intersects the variety of points at infinity, which is a contradiction by Proposition 4.3.3 together with the fact that (Q 1 , ..., Q d ) is a complete at infinity family. Case 2: y ′ = y. Then the equation that we would like to satisfy is

det y d ∇Q(y) -∇Q(0)y + 1 2 D 2 Q(0)[y 2 ] e t d ̸ = 0,
which may be expanded thanks to the fact that Q has degree 2:

det y d ∇Q(0) + D 2 Q(0)y -∇Q(0)y + 1 2 D 2 Q(0)[y 2 ] e t d ̸ = 0.
Similar than in the previous case, by the same operations on the columns we get:

det y d ∇Q(0) + D 2 Q(0)y -∇Q(0)y + 1 2 D 2 Q(0)[y 2 ] e t d = det   y d d i=1 ∇Q i (0) + D 2 Q i (0)y e t i -   d i=1 ∇Q i (0)y i + 1 2 D 2 Q i (0)yy i   e t d   = det   y d d-1 i=1 ∇Q i (0) + D 2 Q i (0)y e t i + 1 2 D 2 Q(0)[y 2 ]e t d   ,
Now we assume for contradiction that this polynomial in y is zero. Then for all y ∈ {X d ̸ = 0} small enough so that ∇Q(0)

+ D 2 Q(0)y ∈ GL d (R), D 2 Q(0)[y 2 ] ∈ H y := V ect(∇Q i (0) + D 2 Q i (0)y, 1 ≤ i ≤ d -1
). Notice that up to multiplying y by λ > 0, we have that λ 2 D 2 Q(0)[y 2 ] ∈ H λy , and therefore D 2 Q(0)[y 2 ] ∈ H λy . By passing to the limit λ -→ 0, we have

D 2 Q(0)[y 2 ] ∈ H 0 thanks to the fact that ∇Q ∈ GL d (R).
Therefore we obtain a contradiction similar to case 1. 2 Lemma 4.3.6. Let M > 0, we may find R(M ) such that for all F : R d -→ R d and

x 0 ∈ R d such that on B M -1 (x 0 ), F is C 2 and we have that ∇F and D 2 F is bounded by M , and det ∇F ≥ M -1 , we have that F is a C 1 -diffeomorphism on B R(M ) (x 0 ).
Proof. The determinant is a polynomial application, therefore it is Lipschitz when restricted to the compact of matrices bounded by M . Let L(M ) be its Lipschitz constant. Then on the neighbourhood B R 0 (M ) (x 0 ), we have that det ∇F is bigger than

1 2 M -1 , with R 0 (M ) = min M -1 , 1 2L(M )M . We claim that F is injective on B R 1 (M ) (x 0 ) with R 1 (M ) := min M -1 , 1 4M 2 C(M )
, where C(M ) is a bound for the comatrices of matrices dominated by M . Then by the global inversion theorem,

F is a C 1 -diffeomorphism on B R(M ) (x 0 ) with R(M ) = min R 0 (M ), R 1 (M ) . Now we prove the claim that F is injective on B R 1 (M ) (x 0 ). Let x, y ∈ B R 1 (M ) (x 0 ), F (y) -F (x) = 1 0 ∇F (tx + (1 -t)y)(y -x)dt = ∇F (x)(y -x) + 1 0 t 0 D 2 F (sx + (1 -s)y)[(y -x) 2 ]dsdt = ∇F (x) y -x + ∇F (x) -1 1 0 (1 -s)D 2 F (sx + (1 -s)y)[(y -x) 2 ]ds .
Then we assume that F (y) = F (x). Then

|y -x| = ∇F (x) -1 1 0 (1 -s)D 2 F (sx + (1 -s)y)[(y -x) 2 ]ds ≤ ∥∇F (x) -1 ∥ M 2 |y -x| 2 ≤ C(M )M 2 |y -x| 2 , (4.3.12)
where the last estimate comes from the comatrix formula (5.1.2). Then by the fact that R 1 (M ) ≤ Now the theorem is just an application of (ii) of Theorem 4.2.2 to S 0 := {x 0 +εh ε i , i = 1, ..., n}. 2

Characterization for the p-distance

Fot p ≥ 1 and x ∈ R d , we have c(•, y) differentiable on (R d ) * with

c x (x, y) = 1 |x -y| p-1 p d i=1 |x i -y i | p-1 x i -y i |x i -y i | e i
For p = 1 and p = ∞, it takes a simpler form. [START_REF] Benamou | Iterative bregman projections for regularized transportation problems[END_REF] We start with the case p = 1. We suppose without loss of generality that

If p = 1, c(•, y) is differentiable on d i=1 (R \ {y i }) and c x (x, y) = d i=1 x i -y i |x i -y i | e i . If p = ∞, c(•, y) is differentiable on {x ′ ∈ R d , |x ′ i -y i | > |x ′ j -y j |, j ̸ = i, for some 1 ≤ i ≤ d}, let i := argmax 1≤j≤d (|x j -y j |), we have c x (x, y) = x i -y i |x i -y i | e i . Proof of Proposition 4.2.
x 0 = 0. Recall that c(•, y) is differentiable on (R * ) d and c x (0, y) = d i=1 y i |y i | e i .
Then the equation that we get is

A(y) = d i=1 sg(y i )e i . Let E := { d i=1 sg(y i )e i : y ∈ S 0 } ⊂ ε ∈ {-1, 1} d .
We have E ⊂ ImA, which is an affine space of dimension r. Then there are r coordinates i 1 , ..., i r that can be chosen arbitrarily in ImA, and the other coordinates are affine functions of the previous one. We denote I := (i 1 , ..., i r ) and I := (1, ..., d) \ I. Thus, card(ImA ∩ {-1, 1} d ) ≤ card({-1, 1} I ) = 2 r . As 0 ∈ riS 0 , r ≥ 1. Now for all ε ∈ E, let y ε ∈ S 0 such that c x (0, y ε ) = ε. Then if y := y ε + y 0 ∈ Q 1 ε with y 0 ∈ ker∇A, we have A(y) = c x (0, y), and therefore y ∈ S 0 , proving the first part of the result. Now we prove that S 0 ⊂ ∂conv S 0 . Let us suppose to the contrary that y ∈ ri conv S 0 ∩ S 0 . Let y 1 , ..., y n ∈ S 0 such that y = n i=1 λ i y i , convex combination. Then c x (0, y) = n i=1 λ i c x (0, y i ). As |c x (0, y)| = n i=1 λ i |c x (0, y i )| = √ d, we are in a case of equality in Cauchy-Schwartz inequality. ε := c x (0, y), c x (0, y 1 ), ..., c x (0, y n ) are all nonnegative multiples of the same unit vector, and therefore all equal as they have the same norm. Then y, y 1 , ..., y n ∈ Q 1 ε , and y, y 1 , ..., y n ∈ y ε + ker ∇A. As we may apply the same to any y ′ ∈ y ε + ker ∇A, these vectors cannot be written as convex combinations of elements of S 0 that do not belong to y ε + ker ∇A. Therefore, (y ε + ker ∇A) ∩ S 0 = (y ε + ker ∇A) ∩ Q 1 ε is a face of conv S 0 . As we assumed that y ∈ ri conv S 0 , we have (y ε + ker ∇A) ∩ Q 1 ε = ri conv S 0 , by the fact that ri conv S 0 and (y ε + ker ∇A) ∩ Q 1 ε are faces of conv S 0 (which constitute a partition of conv S 0 , see Hiriart-Urruty-Lemaréchal [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I: Fundamentals[END_REF]) both containing y. This is impossible as 0 ∈ ri conv S 0 and 0 / ∈ Q 1 ε . Whence the required contradiction.

The proof of the case p = ∞ is similar to the proof of Proposition 4.2.26, replacing by card({-1, 1}(e i ) 1≤i≤d ) = 2d instead of 2 d , and by |c x (0, y)| = 1 instead of √ d. 2

Characterization for the Euclidean p-distance cost

By the fact that int conv S 0 contains x 0 , we may find y 1 , ..., y d+1 ∈ S 0 that are affine independent. Then we may find unique barycenter coefficients (λ i ) i such that x 0 = d+1 i=1 λ i y i . For some y 1 , ..., y d+1 ∈ S 0 . For all a ∈ R, we define

y ′ (a) := G(a) d+1 i=1 λ i a -a i y i , with G(a) =   d+1 i=1 λ i a -a i   -1
, and a i := g(|y i -x 0 |), We now find the barycentric coordinates of y(a). For any i, A(y i ) = a i y i with a i := g(|y i |). As (y i ) i is a barycentric basis, we may find unique (λ i (a)) i ⊂ R such that y(a) = i λ i (a)y i , and 1 = i λ i (a). Then we apply A and get A(y(a)) = i λ i (a)A(y i ), so that ay(a) = i λ i (a)a i y i . Subtracting the previous equality on y(a), we get 0 = i λ i (a)(a -a i )y i . As (y i ) i is a barycentric basis, it is a family or rank d. Then, by the fact that d+1 i=1 λ i y i = 0, we have (λ i ) 1≤i≤d+1 and (λ i (a)(a -a i )) 1≤i≤d+1 are in the same 1-dimensional kernel of the matrix (y 1 , ..., y d+1 ). Then we may find G(a) such that λ i (a)(a -a i ) = G(a)λ i . Now we assume that a is not part of the a i , then we have

λ i (a) = G(a) λ i a-a i , and G(a) = d+1 i=1 λ i a-a i -1
. Finally

y(a) = y ′ (a) = G(a) d+1 i=1 λ i a -a i y i with G(a) =   d+1 i=1 λ i a -a i   -1 . (4.3.15)
Now we prove that G(a) = (a-a 1 )...(a-a d+1 ) det(aI d -∇A) . We first assume that a 1 < ... < a d+1 and that x 0 ∈ int conv(y 1 , ..., y d+1 ) (i.e. λ 1 , ..., λ d+1 > 0). Then G(a) -1 has d + 1 single poles a 1 , ..., a d+1 , such that lim a↑a i G(a) -1 = +∞, and lim a↓a i G(a) -1 = -∞ for all i. Therefore, G(γ i ) -1 = 0 for some a i < γ i < a i+1 for all i ≤ d. Then γ i is a pole of G, and |y ′ (a)| goes to infinity when a → γ i , as the coefficient in the affine basis (y i ) i go to ±∞. Therefore, γ i is an eigenvalue of ∇A, as there are d such eigenvalues, we have obtained all of them. Finally, by the fact that the rational fraction f has degree 1, as the set of its roots is restricted to the d + 1 numbers a i . Furthermore the γ i are d poles, and a -1 G(a) -→ ( d+1 i=1 λ i ) -1 = 1, when a → ∞, we deduce the rational fraction G(X) = (X-a 1 )...(X-a d+1 ) (X-γ 1 )...(X-γ d ) = (X-a 1 )...(X-a d+1 ) det(XI d -∇A) . Now if we chose other affine independent (y i ) 1≤i≤d+1 (this time not necessary with x 0 ∈ conv(y i , 1 ≤ i ≤ d + 1)), let the associated barycenter coordinates λ 1 , ..., λ d+1 ∈ R * , we suppose that the (a i ) i are still distinct, the poles of y ′ (a) are still the d distinct eigenvalues of ∇A that are determined by the γ i such that lim a→γ i |y(a)|, independent of the choice of (y i ) i because y ′ (a) = (aI d -∇A) -1 A(0) is independent of this choice. However, the numerator of the fraction can be determined in the same way than it is determined in the previous case. Now we want to generalize this result to λ 1 , ..., λ d+1 ∈ R, and any (a i ) i . If we stay in the open set in which (y i ) i is an affine basis of R d , the mapping (y i , a i ) i -→ A is continuous, and so is the mapping (y i ) i -→ (λ i ) i . Therefore, as (y i , a i , λ i ) i -→

d i=0 λ i
X-a i is continuous as well, the identity remains true for all a i , y i such that (y i ) i is an affine basis and λ i ≥ 0.

Let us now focus on the multiple a i s. We consider 1 ≤ i ≤ r such that d i > 0. By passing to the limit n → ∞ with some distinct a n i converging to a i for all 1 ≤ i ≤ d, d i eigen values of ∇A at least will be trapped between the a i s, as a n i < γ n i+1 < a n i+1 < ... < γ n i+k < a n i+k becomes at the limit a i = γ i+1 = a i+1 = ... = γ i+k = a i+k . Now we prove that no other eigenvalue is equal to a i . Indeed, rewriting (4.3.15) that equation become

y(a) = y ′ (a) = G(a) r i=1 λ ′ i a -b i y i with G(a) = r i=1 λ ′ i a -b i -1 . (4.3.16) with λ ′ i := a j =b i λ j . And G(a) = (X-b 1 ) d 1 +1 ...(X-br) dr +1 det(XI d -∇A)
. By a similar reasoning than when the (a i ) i are distinct, we may find b 

1 < γ 1 < b 2 < ... < γ r-1 < b r ,
:= det(H -XI d ) 2 -|p| 2 2-p λ 2 2-p |Com(XI d -∇A) t A(0)| 2 is
continuous in (y i ) i , then similar to the proof of Theorem 4.2.20, we can pass to the limit from sequences of y n i converging to y i for all i such that for all n ≥ 1, the vectors y n i have distinct norms. It follows that b i is a d i -eigenvalue of ∇A, and a (2d i -1)-root of χ. By Theorem 4.2.20, we have

S i = S V i p i , b 2 i -|p i | 2 ⊂ {c x (0, Y ) = A(Y )}.
With the radius b2 i -|p i | 2 > 0 as there are more than one elements in the sphere. We have a single sphere as the function g is monotonic, and therefore injective. Now we prove that if -∞ < p ≤ 1, then the polynomial with real exponents

χ(X) := det(XI d -∇A) 2 -|p| 2 2-p X 2 2-p |Com(XI d -∇A) t A(0)| 2 (4.3.18)
has exactly 2d positive roots, counted with multiplicity. By Corollary 4.2.21, it has at least 2d roots, counted with multiplicity. Now we prove that there are at most 2d roots.

By Theorem 4.2.20, the roots of det(XI d -∇A) all have the same sign (same than p). Consequently, the coefficients of det(XI d -∇A) are alternated or all have the same sign. The same happens for det(XI d -∇A) 2 . Now we use the Descartes rule 2 for polynomials with non integer exponents in order to dominated the number of roots of χ. Recall that

χ = det(XI d -∇A) 2 -|p| 2 2-p X 2 2-p |Com(XI d -∇A) t A(0)| 2 .
We saw that the coefficients from the part det(XI d -∇A) 2 are alternated or all of the same sign. The exponent sequences from det(XI d -∇A) 2 , and from |p| Then χ(X) has at most 2d + 2 alternations in its coefficients by the same reasoning than the case p ≤ 1. Furthermore, the sign of the coefficients in front of the extreme monomials are opposed (because χ is a difference of positive polynomials) then the maximum number of positive roots is odd, and therefore it has at most 2d + 1 positive roots according to Descartes rule.

By Corollary 4.2.21, we have 2d elements in S 0 , more precisely, which range between b 1 and b r . Furthermore, between 0 and b 1 we can find some a ∈ D: Case 1: We assume that p > 2. Then χ(X) → -∞ when X → 0 as we have that -|p|

2 2-p X 2 2-p |Com(XI d -∇A) t A(0)| 2 becomes dominant.
Case 2: We assume that p < 2. Then χ(X) → -∞ when X → +∞ as we have that -|p|

2 2-p X 2 2-p | t Com(XI d -∇A)A(0)| 2 becomes dominant.
Therefore there is one more real root, on the side where the polynomial goes to -∞ as there is already one. Finally χ has 2d + 1 roots at least and less than 2d + 1 roots, it follows that it has exactly 2d + 1 roots. We proved the second part of the theorem. 2

Concentration on the Choquet boundary for the p-distance

Proof of Proposition 4.2.28 (i) Let y 0 , y 1 , ..., y k ∈ S 0 such that y 0 = k i=1 λ i y i , convex combination. Then as c x (x 0 , y i ) • u = t uA(y i -x 0 ), we have k i=1 λ i c x (x 0 , y i ) • u = u t A(y 0 -x 0 ) = c x (x 0 , y 0 ) • u. As y → c x (x 0 , y) • u is strictly convex, this imposes that λ i = 1 and y i = y 0 for some i. Finally, y 0 is extreme in S 0 , S 0 is concentrated in its own Choquet boundary. (ii) We know that for any y ∈ S 0 we have c x (x 0 , y) = A(y). As the situation is invariant in x 0 , we will assume x 0 = 0 for notations simplicity. We consider 1 < q < +∞ such that 1 p + 1 q = 1. For any y ∈ (R d ) * ,

|c x (0, y)| q = 1 |y| p-1 p d i=1 |y i | p-1 y i |y i | e i q = 1 |y| p-1 p   d i=1 |y i | (p-1)q   1 q = 1 |y| p q p |y| p q p = 1,
as we know that y ̸ = 0 because c is superdifferentiable. Then for any y ∈ S 0 , we have |Hy + v| q = 1. We now assume that y 0 = k i=1 λ i y i is a strict convex combination with

(y i ) 0≤i≤k ∈ S k+1 0 . 1 = |A(y 0 )| q = k i=1 λ i A(y i ) q ≤ k i=1 λ i |A(y i )| q = k i=1 λ i = 1
We are in a case of equality for the triangular inequality for the norm | • | q . We know then that all the λ i A(y i ) and A(y 0 ) are positively multiples. As we know that all their q-norm is λ i ̸ = 0 and 1, therefore A(y 0 ) = ... = A(y k ) and 1

|y 0 | p-1 p d i=1 |(y 0 ) i | p-1 (y 0 ) i |(y 0 ) i | e i = ... = 1 |y k | p-1 p d i=1 |(y k ) i | p-1 (y k ) i |(y k ) i | e i .
Notice that for y ∈ R d , we have 

|y i | p-1 y i |y i | e i is bijective R d -→ R d for p > 1.
Then we have y 0 |y 0 |p = ... = y k |y k |p . It means that they all belong to the same semi straight line originated in 0. As we supposed that y 0 is not extreme, 0 can be included in the convex combination as we must have 1 ≤ i ≤ k such that |y k | > |y 0 |. Then increasing the corresponding λ i while decreasing all the others, 0 can be included. As 0 ∈ ri conv S 0 , we can then put any element of S 0 in the convex combination and S 0 ⊂ {0} + y 0 |y 0 | R + . As 0 ∈ ri conv S 0 , then S 0 = {0} and y 0 = 0, which is the required contradiction because we supposed that y 0 is not extreme in S 0 . (iii) We use the notations from Theorem 4.2.22. We suppose again without loss of generality that x 0 = 0. Let d := dim S 0 , for any y 1 , ..., y d+1 ∈ S 0 with full dimension d, we may find unique barycentric coordinates (λ i ) 1≤i≤d+1 such that d i=0 λ i y i = 0. Let y ∈ S 0 such that p|y| p-2 = g(|y|) / ∈ Sp(∇A). By Proposition 4.3.7, y can be expressed as

y = G(X) d+1 i=1 λ i X -a i y i with G(X) =   d+1 i=1 λ i X -a i   -1 .
with X = p|y| p-2 > 0. To have y ∈ conv(S 0 ) we then need to have all the λ i X-a i of the same sign. As we supposed that the (a i ) i is an increasing sequence, there must be a 0 ≤ i 0 ≤ d -1 such that λ i < 0 if i ≤ i 0 and λ ≥ 0 if i ≥ i 0 + 1 (or λ i > 0 if i ≤ i 0 and λ ≤ 0 if i ≥ i 0 + 1 but we will only treat the first case as this one can be dealt with similarly). Then the idea consists in proving that χ defined by (4.3.18) has no zero in ]a i 0 , a i 0 +1 [. First let us prove that G has no pole on ]a i 0 , a i 0 +1 [. G -1 can hit 0 at most d times (It is a polynomial of degree d divided by another polynomial). It hits 0 in any ]a i , a i+1 [ for i ̸ = i 0 , as the limits on the bounds are +∞ and -∞. This provides d -1 zeros. If there where a zero in ]a i 0 , a i 0 +1 [, it would be double, as the infinity limits at a + i 0 and a - i 0 +1 have the same sign. Which would be a contradiction. Finally, as the poles of G are the eigenvalues of ∇A and do not depend on the choice of y 1 , ..., y d+1 , we know that there are exactly two roots of χ between two poles. As a i 0 and a i 0 +1 are two zeros surrounded by two consecutive poles, there are not other zeros between these two poles. χ has no zero on ]a i 0 , a i 0 +1 [. If X = a i 0 or X = a i 0 +1 , then it is a zero of a i 0 -X, and all the elements in the convex combination have same size than y. By the fact that we are in the case of equality in the Cauchy-Schwartz inequality, this proves that the combination only contains one element. Hence, y ∈ S 0 has to be extreme in S 0 . Now if y corresponds to an eigenvalue of ∇A, let b := g(|y|). We suppose that y = d+1 i=1 µ i y i , convex combination with y 1 , ..., y d+1 ∈ S 0 , affine basis. Recall that all y(a) for a / ∈ Sp(∇A) can be written

y(a) = G(a) d+1 i=1 λ i a-a i y i = G(a) r i=1 λ ′ i a-b i y ′ i where λ ′ i = a j =b i λ j , and y ′ i = a j =b i λ j λ ′ i y j . Let i 0 such that b i 0 = b, let {y ′ 1 , ..., y ′ d i 0 } := {y ′ ∈ {y 1 , ..., y d+1 } : g(|y ′ |) = b i 0 }. y ∈ aff(y ′ 1 , ..., y ′ d i 0 ), therefore µ i = 0 if a i ̸ = b.
As S i is a sphere, it is concentrated on its own Choquet boundary, and therefore the convex combination y = d+1 i=1 µ i y i is trivial, y = y i for some i and µ i = 1. (iv) In the first case, if p|y 0 | p-2 is a double root of χ defined by (4.3.19), then if p < 2 -2 5 or p > 2 + 2 3 , χ has 2d + 1 roots and at most 2d distinct roots set around the poles of G in the same way than in the case p ≤ 1 in the proof of (iii).

The same happens when we remove the smallest element y 0 of S 0 . Similarly S 0 \{y 0 } is concentrated on its own Choquet boundary. Now we prove that S 0 is not concentrated on its own Choquet boundary. If p|y 0 | p-2 is a single root of χ, we select y ′ 1 , ..., y ′ d+1 ∈ S 0 such that 0 is in their convex hull. By Proposition 4.3.7, if y ∈ S 0 and X := p|y| p-2 , then

y = G(X) d+1 i=1 λ i X -a i y i with G(X) =   d+1 i=1 λ i X -a i   -1 . (4.3.20)
Case 1: We assume that y ′ 1 = y 0 . Then we apply (4.3.20) to X := p|y| p-2 the second smallest zero of χ which is strictly smaller than the first pole by Theorem 4.2.22 (which also means that G(X) ≥ 0): y := G(X) d i=0 λ i a i -X y i ∈ S 0 , or written otherwise:

λ 0 G(X) X -a 0 y 0 = G(X) d+1 i=2 λ i X -a i y i -y
G has its first zero at a 0 which is smaller than its first pole which is between a 1 and a 2 strictly, so that G(X) > 0. This gives the result, rewriting the barycenter equation, we get:

y 0 = d+1 i=2 λ i (X -a 0 ) λ 0 (X -a i ) y i + G(X) λ 0 y
Therefore, y 0 ∈ conv(S 0 \ {y 0 }).

Case 2: Now we assume that y ′ 0 ̸ = y 0 . We write the barycenter equation for X = p|y 0 | p-2 , we get:

y 0 = d i=0 λ i G(X) X -a i y ′ i with G(X) =   d i=0 λ i X -a i   -1 .
Then for any i, λ i G(X) X-a i > 0 as all the λ i X-a i have the same sign. Therefore y 0 ∈ conv(S 0 \ {y 0 }). 2

Numerical experiment

In the particular example c(X, Y ) = |X -Y | p , the computations are easy as the important unknown parameter λ = p|y| p-2 is one-dimensional. We coded a solver that generates random y 1 , . , however the numerical experiment seems to show that the result of this theorem still holds for all 2 ̸ = p > 1. Figures 4.2,4.3,4.4,4.5,and 4.6 show configurations (S 0 , on the left) for p = 1.9 and p = 2.1 in which the result of the theorem holds, and the graphs of 1 p-2 log λ p compared to log y(-pλ p-2 ) as functions of log(λ) (on the right). The intersections are in bijection with the points in S 0 because of the non-degeneracy by Theorem 4.2.20 with the change of variable t = -pλ p-2 . The color of the points need to be interpreted as follows: d + 1 blue points are chosen at random so that 0 belongs to their convex hull. Then the new d points given by Theorem 4.2.20 are colored in red. Finally the point corresponding to the first intersection of the curves on the right is colored in yellow because this special intersection differentiates the case p ≤ 1 and the case p > 1. We begin with Figures 4. all interpolating probability measures P(µ, ν) on the product space is reduced to the subset M(µ, ν) restricted by the martingale condition. We recall from Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] that M(µ, ν) ̸ = ∅ if and only if µ ⪯ ν in the convex order, i.e. µ(f ) ≤ ν(f ) for all convex functions f . Notice that the inequality µ(f ) ≤ ν(f ) is a direct consequence of the Jensen inequality, the reverse implication follows from the Hahn-Banach theorem. This paper focuses on giving numerical aspects of martingale optimal transport for finite marginals. Henry-Labordère [START_REF] Henry-Labordere | Model-free Hedging: A Martingale Optimal Transport Viewpoint[END_REF] used dual linear programming techniques to solve this problem, chosing well the cost functions so that the dual constraints were much easier to check. Alfonsi, Corbetta & Jourdain noticed the difficulty, when going to higher dimension to get a discrete approximation of continuous marginals in convex order, that are still in convex order in higher dimension. So they mainly solve this problem, and then do several optimal transport resolutions with primal linear programming. Guo & Obłój [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] provide convergence results in the one dimensional setting of the discrete problem converges to the continuous problem, and they provide a Bregman projection scheme for solving the martingale optimal transport problem in the one dimensional setting. We also mention Tan & Touzi [START_REF] Tan | Optimal transportation under controlled stochastic dynamics[END_REF] who used a dynamic programming approach to solve a continuous-time version of martingale optimal transport. The idea of using Bregman projection comes from classical optimal transport. Christian Leonard [START_REF] Léonard | From the schrödinger problem to the monge-kantorovich problem[END_REF] was the first to have the idea of introducing an entropic penalization in an optimal transport problem. The entropic penalization makes this problem smooth and strictly convex and gives a Gibbs structure to the optimal probability, which has an explicit formula as a function of the dual optimizer. The unanimous adoption of entropic methods for solving optimal transport problems came from Marco Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] who noticed that finding the dual solution of the entropic problem was equivalent to finding two diagonal matrices that made a full matrix bistochastic, therefore allowing to use the celebrated Sinkhorn algorithm.

Historically in classical optimal transport, the practitioners used linear programming algorithm to solve it, such as the Hungarian method [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF], the auction algorithm [START_REF] Bertsekas | The auction algorithm: A distributed relaxation method for the assignment problem[END_REF], the network simplex [START_REF] Ahuja | Network flows[END_REF], we may also mention [START_REF] Goldberg | Finding minimum-cost circulations by canceling negative cycles[END_REF]. However, this method was so costly that only small problems could be treated because of the polynomial cost of linear programming algorithms. Later, Benhamou & Brenier [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF] found another way of solving numerically the optimal transport problem by making it a dynamic programming problem with a final penalization on the mismatch of the final marginal of the dynamic process with the target marginal. For particular cases, it was also possible to use the Monge-Ampere equation. In the case of the square distance cost, Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vectorvalued functions[END_REF] proved that the optimal coupling is concentrated on a deterministic map, which was the gradient of a "potential" convex function u. When furthermore the marginals have densities with respect to the Lebesgue measure, we may prove that u is a solution of the Monge-Ampere equation det

D 2 u = g•cx(X,•) -1 •∇u f
, where f is the density of µ and g is the density of ν. This equation satisfies a maximum principle, allowing to solve it in practice, see [START_REF] Benamou | Numerical solution of the optimal transportation problem using the monge-ampère equation[END_REF] and [START_REF] Benamou | Monotone and consistent discretization of the monge-ampere operator[END_REF]. We also mention a smart strategy by Merigot [START_REF] Mérigot | A multiscale approach to optimal transport[END_REF], using semi-discrete transport. Levy [START_REF] Lévy | A numerical algorithm for l2 semi-discrete optimal transport in 3d[END_REF] introduced a Newton method to solve the semi-discrete problem very fast.

For the entropic resolution, Leonard [START_REF] Léonard | From the schrödinger problem to the monge-kantorovich problem[END_REF] proved that the value of the entropic penalized optimal transport converged to the one of the unpenalized problem, while the optimal transports converged as well to a solution of the optimal transport. See [START_REF] Carlier | Convergence of entropic schemes for optimal transport and gradient flows[END_REF] and [START_REF] Cominetti | Asymptotic analysis of the exponential penalty trajectory in linear programming[END_REF] for more precise studies of this convergence in particular cases. It have been observed by [START_REF] Kosowsky | The invisible hand algorithm: Solving the assignment problem with statistical physics[END_REF] that the entropic formulation was particularly useful for numerical resolution, as it allowed to use the celebrated Sinkhorn algorithm [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF]. The power of this technique has been rediscovered by [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], and widely adopted by the community, see [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF], [START_REF] Rabin | Convex color image segmentation with optimal transport distances[END_REF], or [START_REF] Thorpe | A transportation lˆp lp distance for signal analysis[END_REF]. This method has already been adapted to different transport problems, such as Wasserstein barycenters [START_REF] Agueh | Barycenters in the wasserstein space[END_REF] and multi-marginal transport problems [START_REF] Benamou | Iterative bregman projections for regularized transportation problems[END_REF], gradient flows problems [128], unbalanced transport [START_REF] Chizat | Scaling algorithms for unbalanced transport problems[END_REF], and one dimensional martingale optimal transport [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF].

The remarkable work by Schmitzer [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF] gives very practical considerations and tricks on how to actually make the Bregman projection algorithm converge fast and stay stable in practice. Cuturi & Peyre [START_REF] Cuturi | A smoothed dual approach for variational wasserstein problems[END_REF] used a quasi-Newton method to solve the smooth entropic optimal transport. Their conclusion seems that the Sinkhorn algorithm is still more effective. However, [START_REF] Brauer | A sinkhorn-newton method for entropic optimal transport[END_REF] use an inexact Newton method (i.e. including the use of the second derivative) and manage to beat the performance of the Sinkhorn algorithm. We also mention [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF] which introduces a "Greenkhorn algorithm" that outperforms the Sinkhorn algorithm according to their experiment, and similarly [START_REF] Thibault | Overrelaxed sinkhorn-knopp algorithm for regularized optimal transport[END_REF] introduces an overrelaxed version of the Sinkhorn algorithm that squares the linear convergence coefficient, and accelerates the algorithm.

Our subsequent work differs from Guo & Obłój as we explain how to deal with higher dimension, give a more effective algorithm for martingale optimal transport by inexact Newton method. We also provide a speed of convergence for the Bregman projection algorithm, and explains how to deal with the lack of convex ordering of the marginals. Finally the universal bound that we give for the error linked to the entropy term is much sharper than the previous state-of-the-art. This bound may be extended to classical optimal transport for which it does not seem to be in the literature either.

In this paper we introduce several existing algorithms for solving martingale optimal transport such as linear programming, non-smooth semi-dual optimization, and Bregman projections. We introduce the smooth Newton algorithms, and the Newton semi-implied algorithm. Then we give some theoretical results on the speed of convergence of these algorithms, together with solutions to stabilize them and make them work in practice, like the preconditioning for the Newton method, or how to deal with marginals that are not in convex order. We provide new convergence rates for the entropic approximation of the martingale optimal transport, that are much better than the existing ones. The known result is an error of the order ε ln(N ) -1 , where N is the size of the discretized grid, while we prove that we can get a result of order ε d 2 , where d is the dimension of the space of the problem (1 or 2 in this paper). These rates rely on very strong hypotheses that may be hard to check in practice. However we see on the numerical example that they are well verified in practice.

The paper is organized as follows. Section 5.2 gives the problem to solve, Section 5.3 give the different algorithms that we will compare. In Section 5.4, we provide practical solutions to some usual problems, Section 5.5 provides theoretical convergence rates for the algorithms, Section 5.6 gathers the proofs of the theoretical results, and finally Section 5.7 contains numerical results.

For a Polish space X , we denote by P(X ) the set of all probability measures on X , B(X ) . Let Y be another Polish space, and P ∈ P(X × Y). The corresponding conditional kernel P x is defined by: P(dx, dy) = P • X -1 (dx)P x (dy).

We also use this notation for finite measures. For a measure m on X , we denote

L 1 (X , m) := {f ∈ L 0 (X ) : m[|f |] < ∞}.
We also denote simply L 1 (m) := L 1 ( R, m).

Preliminaries

Throughout this paper, we consider two probability measures µ and ν on R d with finite first order moment, and µ ⪯ ν in the convex order, i.e. ν(f ) ≥ µ(f ) for all integrable convex f . We denote by M(µ, ν) the collection of all probability measures on R d × R d with marginals P • X -1 = µ and P • Y -1 = ν. Notice that M(µ, ν) ̸ = ∅ by Strassen [START_REF] Strassen | The existence of probability measures with given marginals[END_REF].

For a derivative contract defined by a non-negative coupling function c : R d × R d -→ R + , the martingale optimal transport problem is defined by: S µ,ν (c) := sup

P∈M(µ,ν) P[c].
The corresponding robust superhedging problem is

I µ,ν (c) := inf (φ,ψ,h)∈Dµ,ν (c) µ(φ) + ν(ψ),
where

D µ,ν (c) := (φ, ψ, h) ∈ L 1 (µ) × L 1 (ν) × L 1 (µ, R d ) : φ ⊕ ψ + h ⊗ ≥ c .
The following inequality is immediate:

S µ,ν (c) ≤ I µ,ν (c).
This inequality is the so-called weak duality. For upper semi-continuous coupling, we get from Beiglböck, Henry-Labordère, and Penckner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF], and Zaev [START_REF] Zaev | On the monge-kantorovich problem with additional linear constraints[END_REF] that there is strong duality, i.e. S µ,ν (c) = I µ,ν (c). For any Borel coupling function bounded from below, Beiglböck, Nutz & Touzi [START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] in dimension 1, and De March [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF] in higher dimension proved that duality holds for a quasi-sure formulation of dual problem and proved dual attainability thanks to the structure of martingale transports evidenced in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]. Along all this paper, we assume that µ and ν are discrete, i.e. we may find finite X and Y so that µ = x∈X µ x δ x , and ν = y∈Y ν y δ y , so that all the coordinates of µ and ν are positive. Similarly, duality clearly holds thanks to the finiteness of the support, and the dual problem becomes discretized as well: for (φ, ψ, h) ∈ D µ,ν (c), we can denote φ, ψ, and h as vectors (φ(x)) x∈X , (φ(y)) y∈Y , and (h i (x)) x∈X ,1≤i≤d .

To solve the martingale transport problem in practice, it seems necessary to discretize the problem. Guo & Oblój [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] prove that the martingale optimal transport problem with continuous µ, ν, and c is a limit of this kind of discrete problem in dimension one under reasonable assumptions. This paper does not focus on proving the convergence of the discretized problem towards the continuous problem, we focus on how to solve the discretized problem.

Algorithms

Primal and dual simplex algorithm

Primal

The natural strategy to solve this problem will be to use linear programming techniques such as simplex algorithm. One major problem with this approach is that the set M(µ, ν) may be empty, because in practice, the discretization of the marginals may break the convex ordering between then, thus making the set M(µ, ν) empty by Strassen theorem. This problem was relieved by Guo & Obłój [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF], and by Alfonsi, Corbetta & Jourdain [START_REF] Alfonsi | Sampling of probability measures in the convex order and approximation of martingale optimal transport problems[END_REF]. In [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF], they deal with the problem by replacing the convex ordering constraint by an approximate convex ordering constraint which is more resilient to perturbating the marginals. In [START_REF] Alfonsi | Sampling of probability measures in the convex order and approximation of martingale optimal transport problems[END_REF], they go beyond and gives several algorithms to find measures ν ′ (resp. µ ′ ) that are in convex order with µ (resp. with ν) and satisfy some optimality criteria such as minimality of ν -ν ′ (resp. µ -µ ′ ) in terms of p-Wasserstein distance. We also give in Subsubsection 5.4.3 a technique to avoid this issue.

Dual

One huge weakness of the Primal algorithm is that the size of the problem is |X ||Y|, which is the size of X × Y, the support of the probabilities we consider. When |X | and |Y| are big, it becomes a problem for memory storage. We notice that the number of constraints is (d + 1)|X | + |Y|, which is much smaller, because the dual functions φ, and h are respectively in R X and in (R d ) X , and the dual function ψ lies in R Y . This is why in practice it makes sense to solve the Kuhn & Tucker dual problem instead of the primal one. We will see considerations on the speed of convergence in Subsubsection 5.5.4.

Semi-dual non-smooth convex optimization approach

It is well known from classical transport that solving directly the linear programming problem is too costly (see [START_REF] Oberman | An efficient linear programming method for optimal transportation[END_REF]) consequently, some alternative techniques have been developed like the Benamou-Brenier [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF] approach, which inspired Tan & Touzi [START_REF] Tan | Optimal transportation under controlled stochastic dynamics[END_REF] for the continuous time optimal transport problem. The idea consists in solving a Hamilton-Jacobi-Bellman problem with a penalization on the distance between the final marginal and ν. Then an extension of this idea to our two-steps MOT problem gives the following resolution algorithm, suggested by Guo and Obłój [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF]. We denote M(µ) := {P ∈ P(Ω) : P • X -1 = µ, and P[Y |X] = X, µ -a.s.}, and get

S µ,ν (c) := sup P∈M(µ,ν) P[c] = inf ψ∈L 1 (ν) sup P∈M(µ) P[c -ψ] + ν[ψ] = inf ψ∈L 1 (ν) µ[(c(X, •) -ψ) conc (X)] + ν[ψ] = inf ψ∈L 1 (ν) V (ψ) where V (ψ) := µ[(c(X, •) -ψ) conc (X)] + ν[ψ]
is a convex function in the variable ψ. Then the problem becomes a simple convex optimization problem. It seems appropritate in these conditions to solve the problem with using a classical gradient descent algorithm. It is proved in [START_REF] Tan | Optimal transportation under controlled stochastic dynamics[END_REF] that V has an explicit gradient. To give the explicit form of this gradient, we first need to introduce a notion of contact set. Let

f : Y -→ R, as Y is finite, f conc (x) = inf f ≤g affine g(x) = sup{ i λ i f (y i ) : y 1 , ..., y d+1 ∈ Y, λ 1 , ..., λ d+1 ≥ 0 : i λ i y i = x}. By finiteness of Y, this supremum is a maximum. We denote argconc f (x) := argmax{ i λ i f (y i ) : y 1 , ..., y d+1 ∈ Y, λ 1 , ..., λ d+1 ≥ 0 : i λ i y i = x}.
Then the subgradient of V at ψ is given by

∂V (ψ) =    x∈X µ x i λ i (x)δ y i (x) -ν : y(x), λ(x) ∈ argconc c(x,•)-ψ (x), for all x ∈ X   
Notice that this set is a singleton for a.e. ψ ∈ L 1 (Y), as V is a convex function in finite dimensions. Then with high probability, on each gradient step, the function V will be differentiable on this point. In practice there is always uniqueness after the first step.

Entropic algorithms

The entropic problem in optimal transport

In practice, this problem is added some regularity by the addition of an entropic penalization (see Leonard [START_REF] Léonard | From the schrödinger problem to the monge-kantorovich problem[END_REF], Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]). Let ε > 0,

S ε µ,ν (c) := sup P∈P(µ,ν) P[c] -εH(P|m 0 ),
where H(P|m 0 ) := Ω ln dP dm 0 -1 dP dm 0 m 0 (dω). The measure m 0 is the "reference measure", we assume that it may be decomposed as m

0 := m X ⊗ m Y such that µ is dominated by m X ∈ M(R d ), and ν is dominated by m Y ∈ M(R d ).
For this text we chose m 0 := (x,y)∈X ×Y δ (x,y) . By the finiteness of the supports of µ and ν, we know that P is absolutely continuous with respect to m 0 . Denote p := dP dm 0 , and abuse notation writting p ∈ P(µ, ν). Then H(P|m 0 ) := (x,y)∈X ×Y (ln p(x, y) -1) p(x, y). This problem can be written with Lagrange multipliers, sup

P∈P(µ,ν) P[c] -εH(P|m 0 ) = inf (φ,ψ)∈L 1 (µ)×L 1 (ν) sup P∈P(µ,ν) P[c -φ ⊕ ψ] -εH(P|m 0 ) + µ[φ] + ν[ψ].
which leads to an explicit Gibbs form for the optimal kernel p. Then as the supports are finite we easily get the shape of the optimizer p(x, y) = expφ(x)+ψ(y)-c(x,y) ε , and the associated dual problem becomes

I ε µ,ν (c) := inf (φ,ψ)∈L 1 (µ)×L 1 (ν) µ[φ] + ν[ψ] + ε x,y exp - φ(x) + ψ(y) -c(x, y) ε .
One important property that we need is the Γ-convergence. We say that F ε Γ-converges to F when ε -→ 0 if for all sequence ε n -→ 0, we have (i) For all sequences x n -→ x, we have F (x) ≥ lim sup n F εn (x n ). (ii) There exists a sequence x n -→ x such that F (x) ≤ lim inf n F εn (x n ).

The Γ-convergence implies that min F n -→ F , when n -→ ∞, and that if x n is a minimizer of F n for all n ≥ 1, and if x n -→ x, then x is a minimizer of F . Leonard [START_REF] Léonard | From the schrödinger problem to the monge-kantorovich problem[END_REF] proved this Γ-convergence of the penalized problem to the optimal transport problem.

The Bregman iterations algorithm

Coupled with the Sinkhorn algorithm [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF] introduced by Marco Cuturi for optimal transport [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], this method allows an exponentially fast approximated resolution. Notice that the operator V ε (φ, ψ) := µ[φ] + ν[ψ] + ε x,y expφ(x)+ψ(y)-c(x,y) ε is smooth convex. The Euler-Lagrange equations ∂ φ V ε = 0 (resp. ∂ ψ V ε = 0) are exactly equivalent to the marginal relations P • X -1 = µ (resp. P • Y -1 = ν). It was noticed in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] that these partial optimizations can be obtained in closed form:

φ(x) = ε ln   1 µ x y exp - ψ(y) -c(x, y) ε   ,
and

ψ(y) = ε ln 1 ν y x exp - φ(x) -c(x, y) ε .
By iterating these partial optimization, we obtain the so-called Sinkhorn algorithm (see [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF]) that is equivalent to a block optimization of the smooth function V ε which dual is called Bregman projection [START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF], and converges exponentially fast, see Knight [START_REF] Knight | The sinkhorn-knopp algorithm: convergence and applications[END_REF].

The entropic approach for the one period martingale optimal transport problem

As observed by Guo & Obłój [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] in dimension 1, the Sinkhorn algorithm can be extended to the martingale optimal transport problem. With exactly the same computations, we get

S ε µ,ν (c) := sup P∈M(µ,ν) P[c] -εH(P|m 0 ) = I ε µ,ν (c) := inf (φ,ψ,h)∈L 1 (µ)×L 1 (ν)×L 0 (R d ) µ[φ] + ν[ψ] +ε x,y exp - φ(x) + ψ(y) + h ⊗ (x, y) -c(x, y) ε .
First notice that the Γ-convergence still holds in this easy finite case.

Proposition 5.3.1. Let F ε : P ∈ M(µ, ν) -→ P[c] -εH(P|m 0 ). For ε > 0, F ε is strictly concave upper semi-continuous. Furthermore, F ε Γ-converges to F 0 when ε -→ 0.
Proof. This Γ-convergence is easy by finiteness as the entropy is bounded by ln(|X ||Y|) -1 when P is a probability measure. 2

We denote ∆ := φ ⊕ ψ + h ⊗ -c, the convex function to minimize becomes

V ε (φ, ψ, h) := µ[φ] + ν[ψ] + ε x,y exp - ∆(x, y) ε .
Then the Sinkhorn algorithm is complemented by another step so as to account for the martingale relation:

φ(x) = ε ln   1 µ x y exp - ψ(y) + h(x) • (y -x) -c(x, y) ε   , (5.3.3) ψ(y) = ε ln 1 ν y x exp - φ(x) + h(x) • (y -x) -c(x, y) ε , 0 = 1 µ x y exp - ∆(x, y) ε (y -x) = -1 µ x ∂ ∂h(x) ε y exp - ∆(x, y) ε .
Notice that the martingale step is not closed form and is only implied. However, it may be computed almost as fast as φ, and ψ, thanks to the Newton algorithm applied to each smooth strongly convex function F x of d variables given, for each x ∈ X with its derivatives by

F x (h) := ε y exp - ∆(x, y) ε , (5.3.4) ∇F x (h) = - y exp - ∆(x, y) ε (y -x), D 2 F x (h) = 1 ε y exp - ∆(x, y) ε (y -x) ⊗ (y -x).
Notice that the optimization of F x 1 and F x 2 are independent for x 1 ̸ = x 2 .

Truncated Newton method

For these problems, it may make sense to use a Newton method, as the problems are smooth, and the Newton method converges very fast. For very highly dimensional problems (here (d + 1)|X | + |Y|), the inversion of the hessian is too much costly. Then it is in general preferred to use quasi-Newton. Instead of computing the Newton step D 2 V -1 ε ∇V ε , we use a conjugate gradient algorithm to find by iterations a vector p ∈ D X ,Y such that |D 2 V ε p -∇V ε | is small enough, generally in practice this quantity is chosen to be smaller than min 1 2 , |∇V ε | . The conjugate gradient algorithm approximates the solution of the equation Ax = b by solving it "direction by direction" along the most important direction, until a stopping criterion is reached. The exact algorithm may be found in [START_REF] Wright | Numerical optimization[END_REF].

Implied truncated Newton method

Some instabilities may appear from Newton steps as any term of the form exp(X/ε) can easily explode when ε is very small and X > 0. The dimension may also make the conjugate gradient from the quasi-Newton algorithm slow. A good way to avoid this problem and exploit the near-closed formula for the optimal φ and h when ψ is fixed, or optimal ψ when φ and h are fixed.

Instead of applying the truncated method to V ε (φ, ψ, h), we apply the truncated Newton method to V ε (ψ) := min φ,h V ε (φ, ψ, h). It is elementary that with these definitions we have inf

φ,ψ,h V ε (φ, ψ, h) = inf ψ V ε (ψ).
Doing this variable implicitation is easy by the fact that we have a closed formula for φ and a quasi-closed formula for h. It brings the great advantage of having the first marginal and the martingale relationship verified, this fact will be exploited in Subsubsection 5.4.3. Now we give a general framework that allows to use variables implicitation. The following framework should be used with F = V ε , x = ψ, and y = (φ, h). Proposition 5.3.2 below provides the appropriate convexity result together with the closed formulas for the two first derivatives of V ε that are necessary to apply the truncated Newton algorithm. Let A and B finite dimensional spaces and

F : A × B -→ R, we say that F is α-convex if λF (ω 1 ) + (1 -λ)F (ω 2 ) -F λω 1 + (1 -λ)ω 2 ≥ α λ(1 -λ) 2 |ω 1 -ω 2 | 2 ,
for all ω 1 , ω 2 ∈ A × B, and 0 ≤ λ ≤ 1. The case α = 0 corresponds to the standard notion of convexity. y) is unique and we have

Proposition 5.3.2. Let

F : A × B -→ R be a α-convex function. Then the map F : x -→ inf y∈B F (x, y) is α-convex. Furthermore, if α > 0 and F is C 2 , then y(x) := argmin y F (x,
∇y(x) = -∂ 2 y F -1 ∂ 2 yx F x, y(x) , ∇ F (x) = ∂ x F x, y(x) , D 2 F (x) = ∂ 2 x F -∂ 2 xy F ∂ 2 y F -1 ∂ 2 yx F x, y(x) .
The proof of Proposition 5.3.2 is reported in Subsection 5.6.1.

Remark 5.3.3. The matrix ∂ 2 xy F ∂ 2 y F -1 ∂ 2 yx
F is symmetric positive definite, therefore the curvature of the function F is reduced by the implicitation process, making heuristically the minimization easier. This fact is also observed in practice. This method shall be used for the optimization of V ε , but also for the optimization of F x that gives the martingale step, see (5.3.4). Indeed the value of φ(x) does not change the martingale optimality of F x . We provide these important formulas.

The map V ε and its derivatives

: Let ψ ∈ R Y , we denote ( φ ε ψ , h ε ψ ) := argmin φ,h V ε (φ, ψ, h
), that are unique and may be found in quasi-closed form from (5.3.3). Now we give the formula for V ε and its derivatives. We directly get from Proposition 5.3.2 that

V ε (ψ) = V ε φ ε ψ , ψ, h ε ψ , ∇ V ε (ψ) = ∂ ψ V ε φ ε ψ , ψ, h ε ψ , D 2 V ε =   ∂ 2 ψ V ε -∂ 2 ψ,φ V ε (∂ 2 φ V ε ) -1 ∂ 2 φ,ψ V ε - d i=1 ∂ 2 ψ,h i V ε (∂ 2 h i V ε ) -1 ∂ 2 h i ,ψ V ε   φ ε ψ , ψ, h ε ψ .
The last additive decomposition of

∂ (φ,h) 2 V -1 ε stems from the fact that ∂ (φ,h) 2 V ε φ ε ψ , ψ, h ε ψ is diagonal. Indeed, V ε is a sum of functions of (φ(x), h(x)) for x ∈ X , and the crossed derivative ∂ φ(x),h(x) V ε = y (y -x) exp -∆(x,y) ε cancels at φ ε ψ (x), h ε ψ (x)

by the martingale property induced by the optimality in h(x). The same holds for ∂

h i (x),h j (x) V ε for i ̸ = j. We denote ∆ ε ψ := φ ε ψ ⊕ ψ + h ε ψ ⊗
-c, and we have

V ε (ψ) = µ φ ε ψ + ν[ψ] + ε x,y exp - ∆ ε ψ (x, y) ε , ∇ V ε (ψ) = ν y - x exp - ∆ ε ψ (x, y) ε y∈Y , D 2 V ε = ε -1 diag x exp - ∆ ε ψ (x, y) ε -ε -1 x   y exp - ∆ ε ψ (x, y) ε   -1 ×   exp - ∆ ε ψ (x, y 1 ) ε exp - ∆ ε ψ (x, y 2 ) ε   y 1 ,y 2 ∈Y -ε -1 x d i=1   y (y i -x i ) 2 exp - ∆ ε ψ (x, y) ε   -1 ×   (y 1 -x) i exp - ∆ ε ψ (x, y 1 ) ε (y 2 -x) i exp - ∆ ε ψ (x, y 2 ) ε   y 1 ,y 2 ∈Y
.

Notice that for the conjugate gradient algorithm, we only need to be able to compute the product D 2 V ε p for p ∈ R Y . Then if the RAM is not sufficient to store the whole matrix D 2 V ε , it may be convenient to only store

D ψ := diag x exp - ∆ ε ψ (x,y) ε , D -1 φ := diag y exp - ∆ ε ψ (x,y) ε -1
, and D -1

h i := diag y (y i -x i ) 2 exp - ∆ ε ψ (x,y) ε -1
for all 1 ≤ i ≤ d. Then we compute D 2 V ε p in the following way:

p ψ := D ψ p p φ :=   y exp - ∆ ε ψ (x, y) ε p y   x∈X , p h i :=   y (y i -x i ) exp - ∆ ε ψ (x, y) ε p y   x∈X , p ′ φ := D -1 ϕ p φ , p ′ h i := D -1 h i p h i , p ′′ φ := x exp - ∆ ε ψ (x, y) ε (p ′′ φ ) x y∈Y , p ′′ h i := x (y i -x i ) exp - ∆ ε ψ (x, y) ε (p ′′ h i ) x y∈Y , D 2 V ε p = ε -1   p ψ -p ′′ φ - d i=1 p ′′ h i   .
The map F x and its derivatives: In this paragraph we fix ψ ∈ R Y and ε > 0.

Recall the map F x from (5.3.4). This map may be seen as a function of φ(x), h(x) . Then we set

F x (h) := min φ(x)∈R µ x φ(x) + ε y exp - φ(x) + ψ + h • (y -x) -c(x, y) ε .
The optimizer is given by (5.3.3), hence by the closed formula

φ h (x) := argmin φ(x)∈R µ x φ(x) + F x φ(x), h = ε ln   1 µ x y exp - ψ(y) + h • (y -x) -c(x, y) ε   .
A direct application of Proposition 5.3.2 gives

F x (h) = min φ(x)∈R µ x φ h (x) + ε y exp - ∆ h (x, y) ε , ∇ F x (h) = - y (y -x) exp - ∆ h (x, y) ε , D 2 F x (h) = ε -1    y (y -x) 2⊗ exp - ∆ h (x, y) ε -µ -1 x   y (y -x) exp - ∆ h (x, y) ε   2⊗    ,
where we denote ∆ h (x, y) := φ h (x) + ψ(y) + h • (y -x) -c(x, y), and u 2⊗ := u ⊗ u for u ∈ R d .

Solutions to practical problems

Preventing numerical explosion of the exponentials

As we want to make ε go to 0, all the terms like exp • ε tend to explode numerically. Here are the different risks that we have to deal with, and how we deal with them.

First the Newton algorithm is very local, and nothing guarantees that after one iteration, the value function will not explode. From our practical experience, the algorithm tends to explode for ε < 10 -3 . Notice that the numerical experiment given by [START_REF] Brauer | A sinkhorn-newton method for entropic optimal transport[END_REF] does not go beyond 10 -3 , we may imagine that this is because they do not use the variable implicitation technique. Furthermore, we notice from our numerical experimenting that this variable implicitation, additionaly to the stabilizing the numerical scheme, makes the convergence of the Newton algorithm much faster. Moreover, impliciting in φ and h is much more effective than impliciting in ψ, even though we have to do the implicitation in h which is much more costly than the implicitation in ψ.

For the computation of the implicitations (5.3.3), the computation of the formula φ(x) = ε ln 1 µx y expψ(y)+h(x)•(y-x)-c(x,y) ε should be done as follows to prevent numerical explosion. First we compute M x := max y∈Y -ψ(y)+h(x)•(y-x)-c(x,y) ε , and then the computation that we do effectively is

φ(x) = M x + ε ln   y exp - ψ(y) + h(x) • (y -x) -c(x, y) ε -M x   -ε ln µ x (5.4.5)
In (5.4.5), the exponential arguments are always smaller than 1, and one of them is equal to 1, then any explosion makes the exponential be totally negligible when compared to exp(0) = 1, this computation rule makes it very stable. Notice also the separation of ln µ x that allows to treat the case when the value of µ x is extremely low (like for exemple when you discretise a Gaussian measure on a grid) even if in this case, it may be smarter to just remove the value from the grid. Notice that the variable implicitation should also be used during each partial optimisation in h(x) for x ∈ X , as this Newton algorithm is highly susceptible to explode as well. The implicitation simply consists in minimizing in φ(x) the maps F x from (5.3.4), and has a closed form.

Another thing to take care of about h is the initial value taken for the next partial optimization of V ε in h. On a first hand, chosing the last value for h helps diminishing the number of steps for the optimization. Also, when ε is very small, even with the implicitation, the Newton optimization may get hard if the initial value is too far from the optimum.

Customization of the Newton method Preconditioning

The conjugate gradient algorithm used to compute the search direction for the Newton algorithm has a convergence rate given by |x

k -x * | A ≤ 2 √ κ(A)-1 √ κ(A)+1 k |x 0 -x * | A , where
x k is the k-th iterate, x * is the solution of the problem, |x| A := x t Ax is the Euclidean norm associated to the scalar product A, and κ(A) := ∥A∥∥A -1 ∥ is the conditioning of A. This conditioning is the fundamental parameter for this convergence speed. When ε is getting small, the conditioning raises. We also observe on the numerics that is happens when the marginals have a thin tail (e.g. Gaussian distributions). The simplest way of dealing with this conditioning problem consists in applying a "preconditioning" algorithm. We find a matrix P that is easy to invert (for example a diagonal matrix) and we use the fact that solving Ax = b is equivalent with solving P t AP x ′ = P t b, where x ′ := P -1 x. We use the most classical and simple preconditioning which consists in taking P := diag(A) -1

. See [START_REF] Wright | Numerical optimization[END_REF] for the precise algorithm.

Line search

An important advantage of the Bregman projection algorithm over the primitive Newton algorithm is that V ε is a Lyapunov function as the steps only consist of block minimizations of this function, whereas the Newton step may get very wrong and lose the optimal region if we are not close enough to the minimum. However in practice, some ingredients need to be added to the Newton step. Indeed, once the direction of search is decided by the conjugate gradient algorithm, in practice it is necessary to make a line search algorithm, i.e. to find a point on the line on which the value function V ε is strictly smaller, and so does the directional gradient absolute value |∇V ε • p|, where p is the descent direction. This "descent" condition is called the Wolfe condition. A very good line search algorithm that is commonly used in practice is detailed in [START_REF] Wright | Numerical optimization[END_REF].

Remark 5.4.1. Notice that if a value is rejected by the line search, it is important to throw away the value of h given by this wrong point, and to come back to the last value of h corresponding to a point that was not rejected by the line search.

Penalization

The penalized problem

The dual solution may not be unique, which may lead to numerical unstabilities. As an example we may add any constant to φ while subtracting it to ψ without changing the value of V . A straightforward solution is to add a penalization to the minimization problem. I.e. we have the new problem

min ψ∈R Y V ε (ψ) + αf (ψ) (5.4.6)
where f is a strictly convex superlinear function, so that there is a unique minimum by the fact that the gradient of V ε is a difference of probabilities, which proves that this convex function is Lipschitz, whence the strict convexity and super-linearity of V ε (ψ) + αf (ψ). In practice we take f (ψ) := 1 2 y∈Y a y ψ(y) 2 , for some a ∈ R Y , so that ∇f (ψ) = y∈Y a y ψ(y)e y , where (e y ) y∈Y is the canonical basis, and Df (ψ) = diag(a) have these easy closed expressions. In practice we take a = (1), a = ν, a = ν 2 , or a = ν/ψ 0 , where φ 0 is a fixed estimate of ψ from the last step of ε-scaling (see Subsection 5.4.4).

Marginals not in convex order

Problem 5.4.6 allows to solve the problem of mismatch in the convex ordering thanks to the following theorem that allows for probability measures µ, ν not in convex order to find another probability measure ν in convex order with µ that satisfies some optimality criterion, for example in terms of distance from ν. Theorem 5.4.2. Let (µ, ν) ∈ P(X ) × P(Y) not in convex order. Let ν α := P α • Y -1 , where P α is the optimal probability for Problem (5.4.6), where f is a super-linear, differentiable, strictly convex, and p-homogeneous function R Y -→ R for some p > 1. Then ν α -→ ν l when α -→ 0, for some ν l ⪰ c µ satisfying

f * (ν l -ν) = min ν⪰cµ f * (ν -ν).
The proof of Theorem 5.4.2 is reported in Subsection 5.6.2. Notice that for f (ψ) := 1 2 y∈Y a y ψ(y) 2 , we have f * (γ) = 1 2 y∈Y a -1 y γ(y) 2 , whence the idea of taking a = ν 2 .

Conjugate gradient improvement and stabilization

Adding a penalization also allows to accelerate the conjugate gradient algorithm, indeed it reduces the conditioning of the Hessian matrix by killing the small eigenvalues, and therefore accelerates the conjugate gradient algorithm's convergence. It also stabilizes this algorithm, indeed when ε is small we observe that without penalization, the numerical error may cause instabilities by returning a non positive definite Hessian. Adding the positive definite Hessian of the penalization function bypasses this instability.

Epsilon scaling

For all entropic algorithms, we observe that when ε is small, the algorithm may be very slow to find the region of optimality. For the Bregman projection, the formula for the speed of convergence in Subsection 5.5.4 suggests to have a strategy of ε-scaling: i.e. we solve the problem for ε = 1, so that the function to optimize is very smooth. Then solve the problem for ε ′ < ε, with the previous optimum as an initial point. We continue this algorithm until we reach the desired value for ε. In practice we divide ε by 2 at each step.

Grid size adaptation

It may be a huge loss of time to run the algorithm on full resolution since the beginning of ε-scaling. To prevent this waste of time, Schmitzer [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF] suggests to raise the size of the grid at the same time than shrinking ε. In practice we give to each new point of the grid for φ, ψ, and h the value of the closest point in the previous grid. We use heuristic criteria to decide when to doble the size of the grid, avoiding for example to doble is when ε is too small as is seriously challenges the stability of the resolution scheme.

Kernel truncation

While ε shrinks to 0, we observe that the optimal transport tends to concentrate on graphs, as suggested in [START_REF] De March | Local structure of the optimizer of multi-dimensional martingale optimal transport[END_REF]. Because of the exponential, the value of the optimal probability far enough to these graphs tends to become completely negligible. For this reason, Schmitzer [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF] suggests to truncate the grid in order to do much less calculation. In dimensions higher than 1, the gain in term of number of operation may quickly reach a factor 100 for small ε. In practice we removed the points in the grid when their probability were smaller than 10 -7 µ x (resp. 10 -7 ν y ) for all x ∈ X (resp. for all y ∈ Y).

Computing the concave hull of functions

We were not able to find algorithms that compute the concave hull of a function in the literature, so we provide here the one we used. Let f : Y -→ R.

In dimension 1 the algorithm is linear in |Y|, we use the McCallum & Avis [START_REF] Mccallum | A linear algorithm for finding the convex hull of a simple polygon[END_REF] algorithm to find the points of the convex hull of the upper graph of f in a linear time and then we go through these points until we find the two consecutive points y 1 , y 2 ∈ Y around the convex hull such that y 1 < x ≤ y 2 . Then f conc (x) = y 2 -x y 2 -y 1 f (y 1 ) + x-y 1 y 2 -y 1 f (y 2 ). In higher dimension we use Algorithm 1 in order to compute the convex hull of a function. We do not know if a better algorithm exists, but this one should be the fastest when the active points of the convex hull are already close to the maximum, this will be useful to compute (c(x, •) -ψ) conc (x) from Theorem 5.5.5 below, so as the field "gradient" of the result that allows to find the right h. We believe that the complexity of this algorithm is quadradic in the (not so improbable) worst case of a concave function, O n ln(n) on average for a "random" function, and linear when the guess of the gradient is good. These assesments are formal and based on the observation of numerics, we do not prove anything about Algorithm 1, not even the fact that it cannot go on infinite loops. We provide it for the reader who would like to reproduce the numerical experiments without having to search for an algorithm by himself. grad ← grad -a × p Remark 5.5.4. In Proposition 5.5.3, we introduce µ ′ N , ν ′ M because the Monte-Carlo approximation will not conserve the convex order for µ N , ν N in general. Then we obtain µ ′ N , ν ′ M from "convex ordering processes" such as the one suggested in Subsection 5.4.3, or the one suggested in [START_REF] Alfonsi | Sampling of probability measures in the convex order and approximation of martingale optimal transport problems[END_REF]. In both cases, the quantity

Convergence rates

Discretization error

Proposition 5.5.1. Let µ ⪯ ν in convex order in P(R d ) having a dual optimizer (φ, ψ, h) ∈ D µ,ν (c) such that φ is L φ -Lipschitz, and ψ is L ψ -Lipschitz. Then for all µ ′ ⪯ ν ′ in convex order in P(R d ) having a dual optimizer (φ ′ , ψ ′ , h ′ ) ∈ D µ,ν (c) such that φ ′ is L φ ′ -Lipschitz, and ψ ′ is L ψ ′ -Lipschitz, we have S µ,ν (c) -S µ ′ ,ν ′ (c) ≤ max L φ , L φ ′ W 1 (µ ′ , µ) + max L ψ , L ψ ′ W 1 (ν ′ , ν)
(µ N -µ ′ N )[φ N ] + (ν M - ν ′ M )[ψ M ]
may be computed exactly numerically.

Entropy error

In this subsection, m ε is a generic finite measure and no assumptions are made on µ ε and ν ε .

Theorem 5.5.5. Let µ ε ⪯ ν ε in convex order in P(R d ) with dual optimizer (φ ε , ψ ε , h ε ) ∈ D µε,νε (c) to the ε-entropic dual problem with reference measure m ε , such that we may find γ, η, β > 0, sets (D X ε , D Y ε ) ε>0 ⊂ B(R d ), and parameters (α ε , A ε ) ε>0 ⊂ (0, ∞), such that if we denote r ε := ε 1 2 -η , m X ε := m ε • X -1 , and ∆ ε := φ ⊕ ψ + h ⊗ -c, for ε > 0 small enough we have: (i) dµε dm X ε (x) ≤ ε -γ , µ ε -a.e., m ε [Ω] ≤ ε -γ , and A ε ≪ ε -q for all q > 0. (ii) For m ε -a.e. (x, y) ∈ R d × R d , we have (m ε ) x [B αε (y)] ≥ ε γ , and for (m ε ) x -a.e. y ′ ∈ B αε (y), we have |∆ ε (x, y) -∆ ε (x, y ′ )| ≤ γε ln(ε -1 ). (iii) µ ε (D X ε ) c ≪ 1/ ln(ε -1
) and for all x ∈ D X ε we may find k ε

x ∈ N, S ε x ∈ (B Aε ) k ε x , and λ ε x ∈ [0, 1] k ε x with det aff (S ε x ) ≥ A -1 ε , min λ ε x ≥ A -1 ε , and k ε x i=1 λ ε x,i S ε x,i = x, convex combination. (iv) On B rε (S ε x ), ∆ ε (x, •) is C 2 , A -1 ε I d ≤ ∂ 2 y ∆ ε (x, •) ≤ A ε I d , and for all y, y ′ ∈ B rε (S ε x ), we have |∂ 2 y ∆ ε (x, y) -∂ 2 y ∆ ε (x, y ′ )| ≤ ε η . (v) For x ∈ D X ε and y / ∈ B rε (S ε x ), we have that ∆ ε (x, y) ≥ √ ε dist(y, S ε x ). (vi) ν ε (D Y ε ) c ≪ 1 Aε ln(ε -1 ) and for all y 0 ∈ D Y ε , R, L ≥ 1, and f : R d -→ R + such that f ∥f ∥ R ∞ is L-Lipschitz, we have B R f (y)   d(m ε ) x • zoom y 0 √ ε (m ε ) x [B R √ ε (y 0 )] - dy |B R |   ≤ [R + L] γ ε β B R f (y) dy |B R | .
Then if we denote P ε := e -∆ε ε m ε , we have

lim ε→0 µ ε [ φε ] + ν ε [ψ ε ] -P ε [c] ε = d 2 , where φε := c(X, •) -ψ ε conc (X).
The proof of Theorem 5.5.5 is reported to Subsection 5.6.4.

is exponential because of the shape of the kernel. We observe on the experiments that in this case the duality gap becomes indeed smaller, however as a downside, the convergence of the scheme becomes much less effective because the marginal error stays high (see Proposition 5.5.1). See Figure 5.1b.

Remark 5.5.9. Assumption (ii) from the theorem seems to hold in one dimension, but it seems to be wrong in two dimensions, as shown in the example of Figure 5.4. However, we may still find a formula similar to (5.5.7) below. Therefore, we may reasonably assume that the error is still of order ε, as confirmed in a the numerical examples by Figure 5.1b.

Remark 5.5.10. In the case when X is obtained from Monte-Carlo methods, (vi) is verified with a constant that depends on the point, and is probabilistic. the exponent α may be taken taken equal to 1 d , see [START_REF] Fournier | On the rate of convergence in wasserstein distance of the empirical measure[END_REF].

Remark 5.5.11. Despite the difficulty to check the assumptions, this result is inspired and satisfied by observation on the numerics, we have tried with several cost functions, differentiable or not, and the result seems to be always satisfied, probably with the help of its universality. See figure 5.1. Remark 5.5.13. By similar reasoning, we may prove that even for martingale optimal transport, replacing c(X, •) -ψ ε conc (X) by sup c(X, •) -ψ ε would still give a good result (see 5.1). We may formally estimate the new limit of duality gap ε : for all y ε i (x) that are not the optimizer (say y ε 0 (x)), the weight added to

d 2 is λ ε i (x) ∆ ε (x, y ε i (x)) - ∆ ε (x, y ε 0 (x))
. By using the tools of the proof of Theorem 5.5.5, we get the formal formula, if we denote λ i for the limit of λ ε i (X), and y i for the limit of y ε i (x), we have

µ ε sup{c(X, •) -ψ ε }(X) + ν ε [ψ ε ] -P ε [c] ≈ αε, ( 5.5.7 
)

with α = d 2 + R d i>0 λ i ln   dm Y y i dm Y y 0 λ 0 det(∂ 2 y ∆ 0 (x,y 0 )) λ i det(∂ 2 y ∆ 0 (x,y i ))
  dµ. Then we could reasonably make the assumption the the second term in α does not explode, and then the limit is still of the order of ε, as we may see on the numerical experiments of Figure 5.1. This result also generalises to optimal transport when there are several transport maps.

Penalization error

Proposition 5.5.14. Let (µ, ν) ∈ P(X ) × P(Y) in convex order. Let ν α := P α • Y -1 , where P α is the optimal probability for the entropic dual implied problem with an additional penalization αf , where f is a super-linear, strictly convex, and differentiable function R Y -→ R. Then let ψ 0 be the only optimizer for the entropic dual implied problem with minimal f (ψ), we have

ν α -ν α -→ ∇f (ψ 0 ), when α -→ 0.
The proof of Proposition 5.5.14 is reported to Subsection 5.6.5.

Convergence rates of the algorithms Convergence rate for the simplex algorithm

Precise results on the convergence rate of the simplex algorithm is an open problem. Roos [START_REF] Roos | An exponential example for terlaky's pivoting rule for the criss-cross simplex method[END_REF] gave an example in which the convergence takes an exponential time in the number of parameters. However the simplex algorithm is much more efficient in practice, Smale [START_REF] Smale | On the average number of steps of the simplex method of linear programming[END_REF] proved that in average, the number of necessary steps in polynomial in the number of entries, and Spielman & Teng [START_REF] Spielman | Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time[END_REF] refined this analysis by including the number of constraints in the polynomial. However, none of these papers provide the real time of convergence of this algorithm. Schmitzer [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF] reports that this algorithm is not very useful in practice as it only allows to solve a discretized problem with no more than hundreds of points. Theorem 5.5.15. Let x 0 = (φ 0 , ψ 0 , h 0 ) ∈ D X ,Y such that e - φ 0 ⊕ψ 0 +h ⊗ 0 -c ε X ×Y sums to 1, and for n ≥ 0, let the n th iteration of the martingale Sinkhorn algorithm:

x n+1/2 := φ n , ψ n+1 := argmin ψ V ε (ϕ n , •, h n ), h n , x n+1 := φ n+1 := argmin φ V ε (•, ψ n+1 , •), ψ n+1 , h n+1 := argmin h V ε (•, ψ n+1 , •) .
Furthermore let P 0 ∈ M(µ, ν) and let X * be the minimizing affine space of V ε and let V * ε be its minimum, then we have

V ε (x n ) -V * ε ≤ βR(x 0 ) 2 ε -1 n , (5.5.8) V ε (x n ) -V * ε ≤ 1 - 2|X | βλ 2 e -D(x 0 ) ε n V ε (x 0 ) -V * ε , ( 5 
.5.9)

and dist(x n , X * ) ≤ λ 2 ε |X | e D(x 0 ) ε V ε (x n ) -V * ε 1 2 , where β := 2 ln(2) -1 -1 ≈ 2, 6, λ p := |X | -1 inf x∈D X ,Y :∆(x)̸ =0 sup ∆( x)=∆(x) |∆(x)| p p | x| p p , for p = 1, 2, D(x 0 ) := λ 1 max(1, ∥Y -X ∥ ∞ ) Vε(x 0 )-P 0 [c]-ε |X |(P 0 ) min , (P 0 ) min := min x∈X ×Y P 0 [{x}], ∥Y -X ∥ ∞ := sup x∈Y-X |y -x| ∞ , and we may choose R(x 0 ) among R(x 0 ) :=                  sup Vε(x)≤Vε(x 0 ) dist(x, X * ) λ 2 ε |X | e D(x 0 ) ε V ε (x 0 ) -V * ε 1 2 2λ 1 Vε(x 0 )-P 0 [c]-ε |X |(P 0 ) min sup k≥0 dist(x k , X * )
.

The proof of Theorem 5.5.15 is reported in Subsection 5.6.6. Remark 5.5.17. The theoretical rate of convergence given by Theorem 5.5.15 becomes pretty bad when ε -→ 0. We observe it in practise when we apply this algorithm with a small ε and a starting point x 0 = 0. This emphasizes the need of using the epsilon scaling trick, of Subsection 5.4.4.

In practice we observe that the convergence for this implied algorithm is much faster and much more stable than the non-implied Newton algorithm.

Proofs of the results

Minimized convex function

Proof of Proposition 5.3.2 Let x 1 , x 2 ∈ A, y 1 , y 2 ∈ B, and 0 ≤ λ ≤ 1. We have

λF (x 1 , y 1 ) + (1 -λ)F (x 2 , y 2 ) ≥ F λ(x 1 , y 1 ) + (1 -λ)(x 2 , y 2 ) +α λ(1 -λ) 2 |(x 1 , y 1 ) -(x 2 -y 2 )| 2 ≥ F (λx 1 + (1 -λ)x 2 ) + α λ(1 -λ) 2 |x 1 -x 2 | 2 .
By minimizing over y 1 and y 2 , we get

λ F (x 1 , y 1 ) + (1 -λ) F (x 2 , y 2 ) ≥ F (λx 1 + (1 -λ)x 2 ) + α λ(1 -λ) 2 |x 1 -x 2 | 2 ,
which establishes the α-convexity of F . Now if we further assume that α > 0 and F is C 2 , y -→ F (x, y) is α-convex, and therefore strictly convex and super-linear. Hence, there is a unique minimizer y(x). Using the first order derivative condition of this optimum, we have ∂ y F x, y(x) = 0. By the fact that ∂ 2 y F is positive definite (bigger than αId by α-convexity), we may apply the local inversion theorem, which proves that y(x) is C 1 in the neighborhood of x. We also obtain ∂ 2 yx F x, y(x) + ∂ 2 y F x, y(x) ∇y(x) = 0, which gives the following expression of ∇y: ∇y

(x) = -∂ 2 y F -1 ∂ 2 yx F x, y(x) .
Now we may compute the derivatives of F . By definition, we have F (x) = F x, y(x) , then just differentiating this expression, we get

∇ F (x) = ∂ x F x, y(x) + ∂ y F x, y(x) ∇y(x) = ∂ x F x, y(x) ,
where the second equality comes from the fact that ∂ y F x, y(x) = 0 because y(x) is a minimizer. Finally we get the Hessian by deriving again this expression and injecting the value of ∇y(x).

2

Then we assume that F (y) = F (x), and we suppose for contradiction that x ̸ = y. Therefore by the fact that ∇F is invertible, we have , (e i ) 1≤i≤d be the orthonormal basis obtained from (y i -y k+1 ) 1≤i≤d , (u i ) k+1≤i≤d from the Gram-Schmidt process, p the orthogonal projection of 0 on aff(y 1 , ..., y k+1 ), and (λ i ) 1≤i≤k+1 the unique coefficients such that p = k+1 i=1 λ i y i , barycentric combination. Then the maps e i , λ i , and p are differentiable on B r and we may find C, q > 0, only depending on d such that if r ≤ C -1 A -q , then we have that |∇e i | ≤ CA q , |∇p| ≤ CA q , |∇λ i | ≤ CA q , and ∇ det aff (y 1 , ..., y k+1 ) ≤ CA q .

|y -x| = ∇F (x) -1 1 0 [∇F (tx + (1 -t)y) -∇F (x 0 ) + ∇F (x 0 ) -∇F (x)] (y -x)dt < ∥∇F (x) -
Proof. The determinant is a polynomial expression of the coefficients, therefore if these coefficients are bounded by A. Then we may find C det , q det > 0 (only depending on d) such that |∇ det | ≤ C det A q det . Let (v i ) 1≤i≤d := (y i -y k+1 ) 1≤i≤d , (u i ) k+1≤i≤d . Notice that for all i, we have |∇v i | ≤ 2A, and by the fact that . Then we may find C 1 , q 1 > 0 such that ∇e 1 ≤ C 1 A q 1 . Now for 1 ≤ i ≤ k,

Step 1: For all i, the map y -→ ∇F (y) is a C 1 -diffeomorphism on B r (y i ) by Lemma 5.6.1. Then we define the map z i (a) := ∇F -1 (a) which is defined on B rA -1 . Notice that its gradient is given by ∇z i (a) := D , implying that p(a) = 0. Then 0 ∈ aff z 1 (a), ..., z k (a) . By Lemma 5.6.2, we may find C 1 , q 1 > 0 (only depending on d) such that |∇ det aff (z 1 , ..., z k )| ≤ C 1 A q 1 . Therefore, if a ≤ 1 2 A -2 C -1 1 A -q 1 , we have that | det aff (z 1 , ..., z k )| ≥ 1 2 A -1 and we may find (λ i ) 1≤i≤k+1 such that p(a) = k+1 i=1 λ i z i (a), and λ i ≥ 1 (5.6.12)

Step 3: Now we prove that Φ may be locally inverted. a for a ∈ B r by Lemma 5.6.2 for some C 2 , q 2 > 0. Therefore by Lemma 5.6.2, we may find C 3 , q 3 > 0 so that if H ≤ C -1 3 A -q 3 , we have the control |∇e i (a)| ≤ C 3 A q 3 , whence the inequality |∇e i (a)p(a)| ≤ C 3 A q 3 (H + C 2 A q 2 a).

(5.6.13)

Step 5: Now we provide a lower bound to det ∇Φ. Notice that ∇Φ = P 0 + P ′ with P 0 := (z i -z k+1 : i ≤ k, De i : i ≥ k + 1), and P ′ := (∇e i p : i ≥ k + 1), where D := 4 A -q 4 if a, H ≤ C -1 4 A -q 4 , and a ≤ r for some C 4 , q 4 > 0.

Step 6: Finally |Φ| ≤ A + A = 2A. In order to apply Lemma 5. ≤ A 2 e + C 1 A q 1 |a -a ′ |A, and therefore we may find C 5 , q 5 > 0 such that if |a|, e ≤ C -1 5 A -q 5 , then we have that |∇Φ(a) -∇Φ(a ′ )| ≤ 1 2 |det∇Φ(0)| -1 ∥Com ∇Φ(0) t ∥ = ∥∇Φ(0)∥. Then we may apply Lemma 5.6.1: Φ is a C 1 -diffeomorphism on B r , we may find C 6 , q 6 > 0 such that C -1 6 A -q 6 ≤ |∇Φ| ≤ C 6 A q 6 . By assumption, we have |Φ(0)| ≤ dH. Furthermore, B rC -1 6 A -q 6 Φ(0) ⊂ Φ(B r ). Therefore, if H ≤ rC -1 6 d -1 A -q 6 , then we may find a 0 ∈ B r such that Φ(a 0 ) = 0. We have

|a 0 | = |Φ -1 (0) -Φ -1 (Φ(0))| ≤ C 6 A q 6 |Φ(0)| ≤ C 6 dA q 6 H.

By

Step 2, z 1 (a 0 ), ..., z k (a 0 ) have the required property. Moreover, |z i (a 0 ) -S i | = |z i (a 0 ) -z i (0)| ≤ C 6 dA q 6 +1 H.

Finally, (5.6.12) is satisfied if δ ≥ C 7 A q 7 H, with C 7 := C 6 + 5 2 , and q 7 := max(3, q 6 ). The lemma is proved for C := max(3, C 1 , ..., C 7 , C 6 d) and q := max(3, q 1 , ..., q 7 , q 6 +1). 2 Proof of Theorem 5.5.5

Step 1: We claim that we may find C 1 > 0 such that for ε small enough, we have ∆ ε ≥ -C 1 ε ln(ε -1 ), m ε -a.e. Indeed, by the fact that (φ ε , ψ ε , h ε ) is an optimum, we have that e -∆ε ε m ε is a probability distribution. Therefore, e -∆ε(X,•) ε (m ε ) X / dµε dm X ε is a probability measure, µ ε -a.s. Then by (i), m ε -a.s., we have that

1 ≥ Bα ε (Y ) e -∆ε(X,y) ε (m ε ) X (dy)/ dµ ε dm X ε ≥ ε γ Bα ε (Y )
e -∆ε(X,y)-γε ln(ε -1 ) ε (m ε ) X (dy)

≥ ε 3γ e -∆ε(X,y) ε .

Hence ∆ ε (X, Y ) ≥ -3γε ln(ε -1 ), m ε -a.s. The claim is proved for ε small enough.

Step 2: We claim that we may find C 2 > 0 such that ∆ε≥C 2 ε ln(ε -1 ) ∆ ε e -∆ε ε dm ε ≪ ε, and ∆ε≥C 2 ε ln(ε -1 ) e -∆ε ε dm ε ≪ 1. Indeed, let C 2 > 0. By (i), we have

∆ε≥C 2 ε ln(ε -1 ) ∆ ε e -∆ε ε dm ε ≤ m ε [Ω]C 2 ε ln(ε -1 )ε C 2 ≤ C 2 ε ln(ε -1 )ε C 2 +γ .
Similar, we have that ∆ε≥C 2 ε ln(ε -1 ) e -∆ε ε dm ε ≤ C 2 ε C 2 +γ . Therefore, up to choosing C 2 large enough, the claim holds.

Step 3: Let ∆ε :

= ∆ ε -∆ ε (X, •) conv (X) -∇ ∆ ε (X, •) conv (X) • (Y -X). We claim that x / ∈D X
ε ∆ε e -∆ε ε dm ε ≪ ε. Indeed by (iii) we have that µ ε [D X ε ] ≪ 1/ ln(ε -1 ), therefore we have

x / ∈D X ε ∆ ε e -∆ε ε dm ε ≤ x / ∈D X ε C 2 ε ln(ε -1 )e -∆ε ε dm ε + ∆ε≥C 2 ε ln(ε -1 ) ∆ ε e -∆ε ε dm ε ≤ C 2 ε ln(ε -1 )µ ε [(D X ε ) c ] + ∆ε≥C 2 ε ln(ε -1 )
∆ ε e -∆ε ε dm ε ≪ ε.

Finally, by the martingale property of e -∆ε ε dm ε , we have

x / ∈D X ε ∆ε e -∆ε ε dm ε = x / ∈D X ε ∆ ε -∆ ε (X, •) conv (X) -∇ ∆ ε (X, •) conv (X) • (Y -X) e -∆ε ε dm ε = x / ∈D X ε ∆ ε -∆ ε (X, •) conv (X) e -∆ε ε dm ε ≤ x / ∈D X ε ∆ ε e -∆ε ε dm ε + µ ε [D X ε ]C 1 ε ln(ε -1 ) ≪ ε.
Step 4: Let x / ∈ D X ε , we denote S ε x = {s 1 , ..., s k }, where k := k ε x . We claim that for all S ′ := (s ′ 1 , ..., s ′ k ) ∈ R d such that s ′ i ∈ B rε (s i ) for all i, and λ ′ i s ′ i = x ′ ∈ B rε (x) we have for ε > 0 small enough that

S ′ ∈ (B 2Aε ) k , | det aff S ′ | ≥ 1 2 A -1 ε , min λ ε x ≥ 1 2 A -1 ε . Indeed, λ ′ i (s ′ i + x -x ′ ) = x, with s ′ i + x -x ′ ∈ B 2rε (s i )
. By Lemma 5.6.2, we may find C 3 , q 3 such that |λ ′ i -λ i | ≤ C 3 A q 3 ε r ε , | det aff S ′ -det aff S| ≤ C 3 A q 3 ε r ε , and |s ′ i | ≤ A ε + r ε . Now by the fact that r ε ≪ A -q 3 ε , the claim is proved.

Step 5: We claim that up to shrinking D X ε , we may assume that for x / ∈ D X ε , we have

dµε dm X ε (x) ≥ ε γ+1 . Indeed, µ X ε dµε dm X ε ≤ ε γ+1 ≤ ε γ+1 m X ε [R d ]. Therefore, µ X ε dµ ε dm X ε ≤ ε γ+1 ≤ ε γ+1 m X ε [R d ] = ε γ+1 m ε [Ω] ≤ ε ≪ 1/ ln(ε -1 ).
Therefore we may shrink D X ε by removing dµε dm X ε > ε γ+1 from it.

Step 6: We claim that for ε > 0 small enough, we may find unique y i ∈ B rε (s i ) such that ∇∆(x, y i ) = 0 for all i, B rε (y i ) ⊂ B rε (s i ), with r ε := ε 

√

ε dist y, (y 1 , ..., y k ) for y / ∈ ∪ k i=1 B rε (y i ). Indeed ∆ ε (x, •) is strictly convex on B rε (s i ) for all i. Furthermore, let

m i := 1 λi Br ε (s i ) ye -∆ε(x,y) ε dm Y ε dµ ε dm X ε -1
, with λi := Br ε (s i ) e -∆ε(x,y)

ε dm Y ε dµε dm X ε -1
. By the martingale property of e -∆ε ε m ε , we have 

dµ ε dm X ε -1 ≤ (∪ k i=1 Br ε (s i )) c |y|e -ε -1 2 dist(y,S ε x ) m Y ε (dy)ε -γ-1 ≤ (∪ k i=1 Br ε (s i )) c ,|y|≥2Aε |y|e -ε -1 2 dist(y,S ε x ) m Y ε (dy)ε -γ-1 + (∪ k i=1 Br ε (s i )) c ,|y|<2Aε
2A ε e -ε -1 2 dist(y,S ε x ) m Y ε (dy)ε -γ-1 .

Observe that as y i ≤ A ε , we have dist(y, S ε x ) ≥ |y| -A ε . Furthermore, if A ε ≥ 2, and |y| ≥ 2A ε , we have |y| ≤ e |y|-Aε . Then we have

k i=1 λi m i -x ≤ (∪ k i=1 Br ε (s i )) c ,|y|≥2Aε e -ε -1 2 -1 (|y|-Aε) m Y ε (dy)ε -γ-1 + (∪ k i=1 Br ε (s i )) c ,|y|<2Aε 2A ε e -ε -1 2 rε m Y ε (dy)ε -γ-1 ≤ e -ε -1 2 -1 Aε m Y ε [R d ]ε -γ-1 + 2A ε e -ε -η m Y ε [R d ]ε -γ-1 ≪ ε.
(5.6.14)

Similar, we have i λi = 1 + o(ε), with uniform convergence of o(ε) in x. By Step 4, we have that λi ≥ 1 2 A -1 ε for ε > 0 small enough, as ε ≪ r ε . Therefore, we may find y ∈ B rε (s i ) such that ∆ ε (x, y) < ε 1-η 2 , as otherwise, similar to (5.6.14), we would have λi ≪ ε. Notice that for y in the boundary of B rε (s i ), by (v), we have ∆ ε (x, y) ≥ ε

1 2 r ε = ε 1-η > ε 1-η 2
, then as ∆ ε (x, •) is strictly convex on B rε (s i ), we may find a unique minimizer y i ∈ B rε (s i ). Now let l := dist y i , ∂B rε (s i ) , we have that ∆ ε (x, y i ) + 1 2 A ε l 2 ≥ ε 1-η . Then by the inequality ∆ ε (x, y i ) ≤ ε 1-η 2 , we have that l ≥ 2A -1 ε ε

1 2 -η 2 1 -ε η 2
. Now, let 0 < η < η 2 , we have l ≤ ε 1 2 -η for ε > 0 small enough. Finally, let y / ∈ ∪ k i=1 B rε (y i ), we treat two cases. Case 1: y ∈ B rε (y i )\B rε (y i ) for some i. Then by (iv) we have ∆ ε (x, y) ≥ ∆ ε (x, y i ) + The claim is proved. Now, up to changing η to η, the properties (i) to (vi) are still satisfied, and the properties of (iv) and (v) also hold if we replace S ε

x by (y 1 , ..., y k ). 

A -1 ε µ ε [D X →Y ε ] ≤ P ε [Y / ∈ D Y ε ] = ν ε [(D Y ε ) c ] ≪ A -1 ε / ln(ε -1 ).
The claim is proved. Now up to shrinking D X ε , we may assume that D X ε ∩ D X →Y ε = ∅.

Step 8: We claim that up to raising γ, if 

f |B 2R \B R ∥f ∥ 2R ∞ ≤
(y i ) ⊂ B 2R √ ε (y ′ i ). Then B R f (y)   d(m ε ) x • zoom y i √ ε (m ε ) x [B 2R (y ′ i )] - dy |B 2R |   ≤ [2R + L] γ ε β B R f (y) dy |B 2R | + | f -f | ∞ .
As we may find y * ∈ B R/2 such that f (y * ) = ∥f ∥ R ∞ , we have f (y) ≥ ∥f ∥ R ∞ (1 -L|y -y * |), and B R f (y) dy

|B 2R | ≥ |B 1 |L -d . Therefore, as |B 2R | = 2 d |B R |, we have B R f (y)   d(m ε ) x • zoom y i √ ε (m ε ) x [B 2R (y ′ i )]/2 d - dy |B R |   ≤ [2R + L] γ ε β + |B 1 | -1 L d ε β B R f (y) dy |B R | ≤ [R + L] 2γ+2 ε β B R f (y) dy |B R | .
(5.6.15)

From now we replace γ by γ ′ := 2γ + 2.

Step 9: As a preparation for this step, we observe that (i) to (vi) are preserved if we replace η by any 0 ≤ η ′ ≤ η. Then, up to lowering η, we may assume without loss of generality that η < β/γ. Therefore β -ηγ > 0.

(5.6.16)

We claim that kx i=1 Br ε (y i ) (∆ ε (x, y) -∆ ε (x, y i )) (P ε ) x (dy) = d 2 ε + o(ε), where the convergence of o(ε) is uniform in x. Indeed, consider

λ i := Br ε (y i ) exp - ∆ ε (x, y) ε m Y (dy) dµ ε dm X (x) -1
(5.6.17)

= dµ ε dm X (x) -1 B ε -η exp   - ∆ ε x, zoom y i √ ε (y) ε    m Y • zoom y i √ ε (dy).
We want to compare λ i to

λ ′ i := dµ ε dm X (x) -1 B ε -η exp   - ∆ ε x, zoom y i √ ε (y) ε    dy (m ε ) x [B 2rε (y ′ i )]/2 d |B ε -η | .
Notice that the map F : y -→ ∆ε x,zoom y i √ ε (y) ε may be differentiated in

∇F = ∂ y ∆ ε x, zoom y i √ ε (y) √ ε ,
which is bounded by A ε ε -η , by the fact that ∇F (0) = 0 and D 2 F ≤ A ε I d by (iv).

Then, we observe that the map f : y -→ exp   -∆ε x,zoom

y i √ ε (y) ε   satisfies that f f ε -η ∞ is A ε ε -η -Lipschitz.
We may apply (5.6.15) to f , with R = r ε / √ ε, as for y ∈ B 2R \ B R , we have |F (y)| ≤ e -∆ε(x,y i )

ε -A -1 ε |y| 2 ≤ |F | 2R ∞ e -Aεε -2η ≤ 1 4 ε β ,
for ε > 0 small enough, and get that

|λ i -λ ′ i | ≤ B ε -η f (y)   (m ε ) x • zoom y i √ ε (dy) (m ε ) x [B 2rε (y ′ i )]/2 d - dy |B ε -η |   (m ε ) x [B 2rε (y ′ i )]/2 d dµ ε dm X (x) -1 ≤ ε -η (A ε + 1) γ ε β B ε -η f (y) dy |B ε -η | (m ε ) x [B 2rε (y ′ i )]/2 d dµ ε dm X (x) -1
= (A ε + 1) γ ε β-ηγ λ ′ i .

(5.6.18)

Similar, we claim that the map g, defined by

g : y -→ ∆ ε x, zoom y i √ ε (y) -∆ ε x, y i exp   - ∆ ε x, zoom y i √ ε (y) ε    , satisfies that g g ε -η
∞ is e -1 A ε ε -η -Lipschitz. Now, we want to compare

D i := B ε -η g(y)d(m ε ) x • zoom y i √ ε (dy) dµ ε dm X (x) -1 , with D ′ i := B ε -η g(y)dy (m ε ) x [B 2rε (y i )]/2 d |B ε η | dµ ε dm X (x) -1 .
Hence similar, by (5.6.15), we have

|D i -D ′ i | = B ε -η g(y)   d(m ε ) x • zoom y i √ ε (dy) (m ε ) x [B 2rε (y ′ i )]/2 d - dy |B ε -η |   (m ε ) x [B 2rε (y ′ i )]/2 d dµ ε dm X (x) -1 ≤ ε -η (e 1 A ε + 1) γ ε β B ε -η g(x) dx |B ε -η | (m ε ) x [B 2rε (y ′ i )]/2 d dµ ε dm X (x) -1
= (e -1 A ε + 1) γ ε β-ηγ D ′ i .

(5.6.19)

Now we denote K i :=

(mε)x[B 2rε (y ′ i )]/2 d |B ε -η | dµε dm X (x) -1 exp   - ∆ε x,y i ε   , so that λ ′ i = K i B ε -η exp   - ∆ ε x, zoom y i √ ε (y) -∆ ε x, y i ε    dy.
We now compare λ ′ i with λ ′′ i := K i R d e -∂ 2 y ∆ε(x,y i )y 2 dy. By the formula of the Gaussian integral, we have λ ′′ i = K i √ 2Π d det ∂ 2 y ∆ ε x, y i . Similar to (5.6.14), the part of the integral out of B ε -η is uniformly negligible in front of ε. We assume that ε > 0 is small enough so that this integral is uniformly smaller than ε. By (iv), we have that

∂ 2 y ∆ ε x, y i -ε η (y -y i ) 2 ≤ ∆ ε x, zoom y i √ ε (y) -∆ ε x, y i ≤ ∂ 2 y ∆ ε x, y i + ε η (y -y i ) 2 .
Therefore, we have

K i √ 2Π d det ∂ 2 y ∆ ε x, y i -ε η I d -ε ≤ λ ′ i ≤ K i √ 2Π d det ∂ 2 y ∆ ε x, y i -ε η I d + ε.
By the fact that εI d ≪ ε η I d ≪ A -1 ε I d ≤ ∂ 2 y ∆ ε x, y i , we may find C 4 , q 4 > 0 such that

|λ ′ i -λ ′′ i | ≤ C 4 A q 4 ε ε η λ ′′ i .
(5.6.20)

Similar, we get that the integral of g may be approximated by the integral of g(y) := ε∂ 2 y ∆ ε x, y i y 2 exp -∂ 2 y ∆ ε x, y i y 2 .

Let D ′′ i := K i R d g(y)dy. Similar than the previous computation, up to raising C 4 and q 4 , we have 

|D ′ i -D ′′ i | ≤ C 4 A q 4 ε ε η D ′′ i . ( 5 
(∆ ε (x, y) -∆ ε (x, y i )) (P ε ) x (dy) = k i=1 D i = k i=1 D ′′ i + o   k i=1 D ′ i + D ′′ i   = k i=1 εK i d 2 det ∂ 2 y ∆ ε x, y i + o   k i=1 D i   = ε d 2 k i=1 λ ′′ i + o   k i=1 D i   = ε d 2 k i=1 λ i + o   k i=1 D i + ε(λ ′ i + λ ′′ i )   = ε d 2 + o   ε + k i=1 D i   = ε d 2 + o(ε),
where all the o(•) are uniform in x, thanks to all the controls established in this step. The claim is proved.

Step 10: We claim that for ε > 0 small enough, we have dist x, aff(y 1 , ..., y k ) ≤ C 5 A q 5 ε ε , where recall that λ ′ i = Br ε (y i ) e -∆ε(x,y) ε dy (mε)x[Br ε (y i )]

|Br ε | dµε dm X ε -1
. We claim that we may find universal C 5 , q 5 > 0, such that |λ i (z i -y i ) -λ ′ i (z ′ i -y i )| ≤ C 5 A q 5 ε ε 1 2 +β-ηγ . Indeed, if u is a unit vector, we have

h : y -→ √ ε|y • u| exp   - ∆ ε x, zoom y i √ ε (y) -∆ ε (x, y i ) ε    .
We claim that h ∥h∥ ε -η ∞ is ε -η A ε 1 + √ Aε 2y 3 0 -Lipschitz, where y 0 > 0 is the unique positive real satisfying 2y 2 0 = e -y 2 0 , furthermore the function is small enough on B 2R (y i ) \ B R (y i ) so that we may apply (5.6.15): 

u • λ i (z i -y i ) -λ ′ i (z ′ i -y i ) = B ε -η (y i ) h(y)   d(m ε ) x • zoom y i √ ε (dy) (m ε ) x [B 2rε (y ′ i )]/2 d - dy |B ε -η |   K i |B ε -η | ≤ ε -η A ε 1 + √ A ε 2y 3 0 γ ε β B ε -η (y i ) h(y)dyK i , ≤ A ε 1 + √ A ε 2y 3 0 γ ε 1 2 +β-γη IA ε K i , ( 5 
dyK i ≤ K i √ ε λ ′ i (I/2) ∂ 2 y ∆ ε (x, y i ) -ε η I d -1 u 2 -∂ 2 y ∆ ε (x, y i ) + ε η I d -1 u 2 ≤ C 6 A q 6 ε ε 1 2 +η ,
for some C 6 , q 6 > 0, independent of x and u, as ∂ 2 y ∆ ε (x, y i ) ≥ A -1 ε I d ≫ ε η I d , and

λ ′ i ≥ 1 2 A -1 ε . Then |z ′ i -y i | ≤ C 6 A q 6 ε ε 1 2 +η
. Finally, with (5.6.18) and (5.6.20), up to raising C 5 , C 6 , q 5 , q 6 , we get the estimate |z i -y i | ≤ C 5 A q 5 ε ε 1 2 +β-γη + C 6 A q 6 ε ε 1 2 +η . We finally get the desired estimate from the fact that dist x, aff(y 1 , ..., y k ) .

Step 11: We now claim that Br ε (y i ) ∆ε (x, •)d(P ε ) x = Br ε (y i ) ∆ ε (x, •) -∆ ε (x, y i ) d(P ε ) x + o(ε), (5.6.24) where the convergence speed of o(ε) is independent of the choice of x and i. Indeed, by (5.6.22) and the fact that

|∆ ε (x, y i )| ≤ max(C 1 , C 2 )ε ln(ε -1 ) ≤ ε 1-η 2 ≤ r ε H ε , with H ε := ε 1 2 + 1
2 min(η,β-ηγ) for ε small enough. Furthermore, by (5.6.22), we have that for ε > 0 small enough, dist x, aff(y 1 , ..., y k ) ≤ H ε . Then, we may apply Lemma 5.6.3: we may find C 7 , q 7 > 0 such that we have ∆ε (x, y) = ∆ ε (x, y) -∆ ε (x, ȳi ) -∇∆ ε (x, ȳi ) • (yȳi ), with ε H ε as well. Notice that therefore, we have 0 ≤ ∆ ε (x, ȳi ) -∆ ε (x, y i ) ≤ with R(x 0 ) := sup Vε(x)≤Vε(x 0 ) dist(x, X * ), L 1 (resp. L 2 ) is the Lipschitz constant of the ψ-gradient (resp. (φ, h)-gradient) of V ε , and σ is the strong convexity parameter of V ε . Furthermore, the strong convexity gives that dist

|y i -ȳi | ≤ C 7 A q 7 ε H ε ≤ C 7 A q 7 ε ε 1 2 ,
(x k , X * ) ≤ 2 σ (V ε (x k ) -V * ε ) 1 2 .
(5.6.27)

However the gradient ∇V ε is locally but not globally Lipschitz, nor V ε strongly convex. Therefore we need to refine the theorem by looking carefully at where these constants are used in its proof.

Step 1: The constant L 1 is used for Lemma 5.1 in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF]. We need for all k ≥ 0 to have

V ε (x k ) -V ε (x k+1/2 ) ≥ 1 2L 1 |∇V ε (x k )| 2 .
We may start from x 1 , this way all the x k are such that (e - ∆(x k ) i,j ε

) i∈X ,j∈Y is a probability distribution. Then

|∂ 2 ψ V ε (x k )| ≤ ε -1 . Let u ∈ R Y , then |∂ 2 ψ V ε (φ k , ψ k + u, h k )| ≤ ε -1 e |u|∞ ε .
We want to find C, L > 0 such that

V ε (x k ) -V ε (φ k , ψ k -C∂ ψ V ε (x k ), h k ) ≥ 1 2L |∂ ψ V ε (x k )|
, then L may be use to replace L 1 in the final step of the proof of Lemma 5.1 in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF]. Recall that |∂ ψ V ε (x k )| ∞ ≤ 1, as it is the difference of two probability vectors. We have

V ε (x k ) -V ε φ k , ψ k -C∂ ψ V ε (x k ), h k = -∂ ψ V ε (x k ) • -C∂ ψ V ε (x k ) -C 2 1 0 (1 -t)∂ ψ V ε (x k ) t ∂ 2 ψ V ε φ k , ψ k -tC∂ ψ V ε (x k ), h k ∂ ψ V ε (x k )dt ≤ C|∂ ψ V ε (x k )| 2 -C 2 |∂ ψ V ε (x k )| 2 1 0 ε -1 (1 -t)e tC ε dt = C|∂ ψ V ε (x k )| 2 -C 2 |∂ ψ V ε (x k )| 2 ε -1 e C ε -1 -C ε C 2 ε 2 = C -ε e C ε -1 - C ε |∂ ψ V ε (x k )| 2 .
Deriving with respect to C gives the equation C = ε ln(2). We get

V ε (x k ) -V ε φ k , ψ k -C∂ ψ V ε (x k ), h k ≥ ε 2 ln(2) -1 |∂ ψ V ε (x k )| 2 .
Therefore we may use L := ε -1 4 ln(2) -2 -1

.

Step 2: The constant σ is used to get the result from (3.21) in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF]. Then we just need the inequality (5.6.28) to hold for some y ∈ X * and x = x k for all k ≥ 0. Now we give a lower bound for σ. Notice that V ε = µ[φ] + ν[ψ] + ε x∈X ,y∈Y exp -• ε • ∆ x,y . Then for x 0 , u ∈ D X ,Y , we have

V ε (y) ≥ V ε (x) + ∇V ε (x) • (y -x) + σ 2 |y -x| 2 ,
u t D 2 V ε (x 0 )u = ε -1 x∈X ,y∈Y exp - • ε • ∆ x,y (x 0 )∆ x,y (u) 2 ≥ ε -1 exp - |∆(x)| ∞ ε |∆(u)| 2 .
Then, by definition of λ 2 , we may find u such that ∆(u) = ∆( u), and

u t D 2 V ε (x 0 )u ≥ |X | λ 2 ε exp - |∆(x)| ∞ ε | u| 2 .
(5.6.29)

Now, we claim that |∆(x)| ∞ ≤ D(x 0 ). Then let x * ∈ X * and consider (5.6.29) for u = x * -x. Then we have that x + u ∈ X * , and therefore, we may take y = x + u for (5.6.28), and therefore use Step 4: Now we provide the bound on R(x 0 ). From the proof of Theorem 5.2 in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF], what is needed to make the proof work is R(x 0 ) = sup k≥0 dist(x k , X * ), which is smaller than sup Vε(x)≤Vε(x 0 ) dist(x, X * ). Furthermore, from (5.6.27) together with (5.6.30), we get that the supremum sup k≥0 dist(x k , X * ) is also smaller than |X |(P 0 ) min . Therefore the same bound holds for sup k≥0 dist(x k , X * ).

σ := |X | λ 2 ε exp - D(x 0 ) ε , ( 5 
Step 5: Finally, as we focus on the L 1 optimization phase, we may replace n -1 by n in the convergence formula (5.6.25) and (5.6.26), see the proof of Theorem 5.2 in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF]. The result is proved. The solution to this equation system is given by p y = -∂ 2 y F -1 ∂ 2 yx F p x , and

∂ 2 x F p x -∂ 2 xy F ∂ 2 y F -1 ∂ 2 yx F p x = ∇ F (x) (5.6.32) 
The conclusion follows from the fact that (5.6.32) is the step for the Newton algorithm applied to F . The Newton step on y does not matter, as y will be immediately thrown away and replaced by y(x). 2

Numerical experiment

An hybrid algorithm

The steps of the Newton algorithm are theoretically very performing if the current point is close enough to the optimum. What is really time-consuming is the computation of the descent direction with the conjugate gradient algorithm. The idea of preferring the Newton method to the Bregman projection method in the case of martingale optimal transport comes from the fact that, unlike in the case of classical transport, projecting on the martingale constraint is more costly than projecting on the marginal constraints, as we use a Newton algorithm instead of a closed formula. From the experiment, we would say that in dimension 1 it takes 7 times more time, and 20 times more in dimension 2. The implied Newton algorithm performs this projection only for the Newton step, whereas it is not necessary for the conjugate gradient algorithm.

We Notice that the Bregman projection algorithm is more effective at the beginning, to find the optimal region, and then it converges slower. In contrast, the Newton algorithm is slow at the beginning when it is searching the neighborhood of the optimum, but when its finds this neighborhood, the convergence gets very fast. Then it makes sense to apply an hybrid algorithm that starts with Bregman projections, and concludes with the Newton method. We call this dual-method algorithm the hybrid algorithm. We see on the simulations that it generally out-performs the two other algorithms.

Figure 5.2 compares the evolution of the gradient error in dimension 1 and 2 of the longest step of the three algorithms in terms of computation time. What we call here the gradient error is the norm 1 of the gradient of the function V ε that we are minimizing, and which is also equal to the difference between the target measure ν and the current measure. In the case of Newton algorithms, the penalization gradient is also included, then we use a coefficient in front of this penalization so that it does not interfere too much with the equation between the current and the target measure. We use the ε-scaling technique. For each value of ε, we iterate the minimization algorithm until the error is smaller than 10 -2 . Then at the final iteration we lower the target error to the one we want.

The green line corresponds to the Bregman projections algorithm. The orange line corresponds to the implied truncated Newton algorithm. All the techniques evocated in Section 5.4 are applied. We use the diagonal of the Hessian to precondition the conjugate gradient algorithm. The coefficient in front of the quadratic penalization, which is normalized by ν 2 , is set to 10 -2 . Finally the blue line corresponds to the "hybrid algorithm", which consists in doing some Bregman projection steps before switching to the implied truncated Newton algorithm. The moment of switching is chosen by very empirical criteria: we do it after having the initial error divided by 2 or after 100 iteration, or if the initial error is divided by 1.1 if the initial error is smaller than 0.1.

Figure 5.2a gives the computation times of these three entropic algorithms, for a grid size going from 10 to 2500 while ε goes from 1 to 10 -4 , with the cost function c := XY 2 , µ uniform on [-1, 1], and ν := 1 K |Y | 1.5 µ, where K := (|Y | 1.5 µ) [R]. By [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF] the optimal coupling that we get is the "left curtain" coupling studied in [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]. We show the curves for the value of ε that takes the largest amount of time, the one for which the time of computation is the most important for ε = 4.2 × 10 -4 .

We conduct the same experiment on a two dimensional problem. The difference of efficiency between the algorithms should be even bigger, as the computing of the optimal h becomes more costly, as the optimization of a convex function of two variables. 

Results for some simple cost functions

Examples in one dimension )) -1 with σ 1 = 0.1, and ν 2 is the law of exp(N (-1 2 σ 2 2 , σ 2 2 )) -1 with σ 2 = 0.2. The scale indicates the mass in each point of the grid, the mass of the entropic approximation of the optimal coupling is the yellow zone. Notice that in all the cases the optimal coupling is supported on at most two maps. We saw this in all our experiment, we conjecture that for almost all µ, ν this is the case.

Figure 5.3a shows well the left curtain coupling from [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] and [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional brenier theorem[END_REF]. Figure 5.3b shows the optimal coupling for the distance cost. This coupling has been studied by Hobson & Neuberger [START_REF] Hobson | Robust bounds for forward start options[END_REF]. They predict that this coupling is concentrated on two graphs. Finally, Figure 5.3c shows how we may find solutions for any kind of cost function. In dimension 2, it has been proved in [START_REF] De March | Local structure of the optimizer of multi-dimensional martingale optimal transport[END_REF] that for the cost function c : (x, y) ∈ R 2 × R 2 -→ x 1 (y 2 1 + 2y 2 2 ) + x 2 (2y 2 1 + y 2 2 ), the kernel of optimal probabilities are concentrated on the intersection of two ellipses with fixed characteristics, except for their position and their scale. Figure 5.4 is meant to test this theoretical result. We do an entropic approximation with a grid 160 × 160, and ε = 10 -4 . Then we selected 4 points x 1 := (-0.45, -0.65), x 2 := (0.3, -0.66), x 3 := (0.2, 0.44), and x 4 := (0.13, 0.16) and draw the kernels of the approximated optimal transport P * conditioned to X = x i for i = 1, 2, 3, 4. We see on this figure that for i = 1, 2, 3, 4, P * (•|X = x i ) is concentrated on exactly i points, showing that all the numbers between 1 and 4 are reached. It seems that no trivial result can be proved on the number of maps that we may reach.

Example in two dimensions

  optimal martingale : S µ,ν (c) := sup P∈M(µ,ν) E P [c].

Figure 2 .

 2 Figure 2.1 shows the extreme probabilities P 1 and P 2 , and their associated irreducible convex pavings map C P 1 and C P 2 .(ii) Our irreducible convex paving. The irreducible components are given by

Fig. 2 . 2

 22 Fig. 2.2 Examples of relative faces.

Theorem 2 . 3 . 19 .

 2319 Let c : Ω → R + be upper semianalytic. Then we have (i) S µ,ν (c) = I mod µ,ν (c); (ii) If in addition S µ,ν (c) < ∞, then existence holds for the dual problem I mod µ,ν (c).

Lemma 2 . 5 . 1 .

 251 Let c, c n : Ω -→ R + , and

2 . 2 Lemma 2 . 5 . 3 .

 22253 Let c : Ω → R + , and ( φ, ψ, h) ∈ D(c). Then, we may find ξ ∈ D mod µ,ν (c) such that Val(ξ) = µ[ φ] + ν[ ψ].

Lemma 2 . 8 . 1 .

 281 Let f : R d → R be convex finite on some convex open subset U ⊂ R d . We denote f * : R d → R the lower-semicontinuous envelop of f on U , then

2

 2 

  y), for all f : R d -→ R, and p : R d -→ R d .

  , and P[θ] ≤ lim sup n→∞ P[θ n ], for all P ∈ P(Ω).

P 2 MFig. 3 . 1

 231 Fig. 3.1 No communication between frontiers of elements in R.

Theorem 3 . 2 . 10 .

 3210 ν) from Proposition 3.2.7 for some θ ∈ T (µ, ν). Under Assumption 3.2.6, an analytic set N ⊂ Ω is M(µ, ν)-polar if and only if it is contained in a canonical M(µ, ν)-polar set.

Theorem 3 . 3 . 2 .

 332 Let c : Ω → R + be upper semianalytic. Then, under Assumption 3.2.6, we have (i) S µ,ν (c) = I qs µ,ν (c); (ii) If in addition S µ,ν (c) < ∞, then existence holds for the quasi-sure dual problem I qs µ,ν (c).

  Ω), and dom ψ I = J θ , η-a.s. for some θ ∈ T (µ, ν), such that (i) c ≤ c := φ(X) + ψ I(X) (Y ) + h ⊗ , and S µ,ν (c) = S µ,ν c . (ii) If the supremum (3.3.1) has an optimizer P * ∈ M(µ, ν), then we may chose φ, h, (ψ K ) K so that (φ, ψ I , h) ∈ D pw µ I ,ν P * I (c |I×J θ ), and S µ I ,ν P * I (c) = I pw µ I ,ν P * I (c) = µ I [φ]⊕ν P * I [ψ I ], η -a.s. (iii) If Assumption 3.2.6 holds, we may find J ∈ J (µ, ν), and

Theorem 3 . 3 . 5 Remark 3 . 3 . 6 .Remark 3 . 3 . 7 .

 335336337 5 will be proved in Subsection 3.5.Notice that (µ I , ν P * I ) may not be irreducible. See Example 3.4.2. This is an important departure from the one-dimensional case. Existence holds for the maximization problem (3.3.1) (and therefore (ii) in Theorem 3.3.5 holds) under any of the following assumptions: (i) ν I := ν P I is independent of P ∈ M(µ, ν) (see Remark 3.3.12 for some sufficient conditions);

Theorem 3 . 3 . 8 .

 338 Let c : Ω → R + be upper semianalytic with S µ,ν (c) < ∞. (i) Then we may find a Borel set Γ ⊂ Ω such that: (a) Any solution P of S µ,ν (c), is concentrated on Γ; (b) we may find θ ∈ T (µ, ν) and

  and for any optimizer P * of S µ,ν (c), we have that any optimizer P ∈ M(µ I , νP * I ) of S µ I ,ν P * I (c), is concentrated on Γ I . (ii) if Assumption 3.2.6 holds, we may find a universally measurable Γ ′ ⊂ N c , for some canonical N ∈ N µ,ν , satisfying (a) and (b), such that Γ ′ is c-martingale monotone.

  martingale monotone because of the pointwise duality on each component, andΓ = ∪ x∈R d Γ I(x) by definition because I(R d ) is a partition of R d .If Assumption 3.2.6 holds, we consider (φ ′ , ψ ′ , h ′ ) ∈ D qs µ,ν (c) from the second part of Theorem 3.3.5. Let a canonical N ∈ N µ,ν be such that c = φ ′ ⊕ ψ ′ + h′⊗ on N c . Γ := N c ∩ {c = φ ′ ⊕ ψ ′ + h′⊗ }. Similarly, (i) and (ii) hold.

1 ,Remark 3 . 3 . 11 . 8 . 3 . 3 . 12 .

 1331183312 d}, µ-a.s. (iii) ν is dominated by the Lebesgue measure and dim I(X) ∈ {0, 1, d -1, d}, µ-a.s. (iv) I(X) ∈ C ∪ D ∪ R, µ-a.s. for some subsets C, D, R ⊂ K with C countable, dim(D) ⊂ {0, 1}, and ∪ K∈R K × ∂K ∈ N µ,ν . Furthermore, (iv) is implied by either one of (i), (ii), and (iii). This proposition is proved in Subsection 3.6.1. Assumption 3.2.6 holds in dimension 1 by Proposition 3.3.10. Theorem 3.3.2 is equivalent to[START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] Theorem 7.4 and the monotonicity principle Theorem 3.3.8 is equivalent to[START_REF] Beiglböck | Complete duality for martingale optimal transport on the line[END_REF] Corollary 7.Remark Notice that under either one of (i) or (iii) of Proposition 3.3.10, or in dimension one, the disintegration ν P I := P • (Y |X ∈ I) -1 is independent of the choice of P ∈ M(µ, ν). See Subsection 3.6.1 for a justification of this claim.

Fig. 3 . 3

 33 Fig. 3.3 Disintegration on an irreducible component is not irreducible.

Theorem 3 . 5 . 1 .

 351 mod µ,ν (c), V al( φ, ψ, h, θ) := µ[ φ] + ν[ ψ] + ν ⊖ν[θ], and the moderated dual problem I mod µ,ν (c) := inf ξ∈D mod µ,ν (c) V al(ξ). Let c : Ω → R + be upper semianalytic. Then, under Assumption 3.2.6, we have (i) S µ,ν (c) = I mod µ,ν (c); (ii) If in addition S µ,ν (c) < ∞, then existence holds for the moderated dual problem I mod µ,ν (c).

  The µ⊗pw-Fatou closure of a subset A ⊂ Θ µ is the smallest µ⊗pw-Fatou closed set containing A:A := T ⊂ Θ µ : A ⊂ T , and T µ⊗pw-Fatou closed .Recall the definition for a ≥ 0, of the setC a := f ∈ C : (ν -µ)(f ) ≤ a ,we introduce T (µ, ν) := a≥0 T a , where T a := T(C a ), and T C a := T p f : f ∈ C a , p ∈ ∂f .

By lemma 3 . 5 . 4 ,

 354 we may find θ ∈ T (µ, ν) such that θ ≤ θ and ν⊖µ[θ] ≤ ν ⊖µ[ θ].

  this claim will be justified at the end of this proof. Then we consider the Jordan decomposition L = L + -L -with L + the positive part of L and L -its negative part. By the fact that L[R d ] = 0, we have the decompositionL = C(P + -P -), for C = L + [R d ] = -L -[R d ]≥ 0. Then P + and P -are two finitely supported probabilities concentrated on N c . By the fact that L[X] = L[Y ] = L[Y |X] = 0, P + , and P -are furthermore competitors, then by Definition 3.2.1 (ii), P + [θ] = P -[θ], and therefore (A t ) t∈F 3 , f (H p ) p∈F 2 = L[θ] = 0, which concludes the proof.

2 Lemma 3 . 5 . 15 .

 23515 0, by(3.5.14) together with the definition of L. We conclude that L[Y |X = m K ] = 0, the claim is proved. Under Assumption 3.2.6, we may find (H

λ

  i y i = y, and r ≥ 1(3.5.15) 

  ν P I = ν I + λ 1 (I)δ a(I) + λ 2 (I)δ b(I) , where λ 1 (I), λ 2 (I) ≥ 0, and a(I), b(I) are measurable selections of the boundary of I. Then µ I -ν I = λ 1 (I) + λ 2 (I), and µ I [X] -ν I [Y ] = λ 1 (I)a(I) + λ 2 (I)b(I). Therefore, λ 1 and λ 2 depend only on µ I and ν I , therefore, ν P I does not depend on the choice of P. 2

  and S µ,ν (c) < ∞. (ii) The cost c is locally Lipschitz and sub-differentiable in the first variable x ∈ I, uniformly in the second variable y ∈ cl I, η-a.s. (iii) The conditional probability µ I := µ • X|I -1 is dominated by the Lebesgue measure on I, η-a.s.

Theorem 4 . 2 . 11 .

 4211 Let d = 1 and let

Example 4 . 2 . 14 .

 4214 Let d = 2 and c :

Theorem 4 . 2 . 15 .

 4215 Let x 0 ∈ R d and S 0 = {c x (x 0 , Y ) = A(Y )} for some A ∈ Aff d . Assume that for all y 0 ∈ R d and any 1

Theorem 4 . 2 . 20 .

 4220 , and A ∈ Aff d . The next theorem gives S 0 as a function of A and x 0 . For a / ∈ Sp(∇A), let y(a) := x 0 + (aI d -∇A) -1 A(x 0 ). For a ∈ Sp(∇A), if the limit exists, we write |y(a)| < ∞ and denote y(a) := lim t→a y(t). Let S 0 := {c x (x 0 , Y ) = A(Y )} for x 0 ∈ ri conv S 0 , and A ∈ Aff d . Then

Corollary 4 . 2 . 21 .

 4221 S 0 contains at least 2d possibly degenerate points counted with multiplicity. The proofs of Theorem 4.2.20 and Corollary 4.2.21 are reported in Subsection 4.3.4.

Theorem 4 . 2 . 22 .

 4222 Let c := |X -Y | p . Let S 0 := {c x (x 0 , Y ) = A(Y )}, for some x 0 ∈ int conv S 0 ,and A ∈ Aff d . Then if p ≤ 1, S 0 contains 2d possibly degenerate points counted with multiplicity, and if 1 < p < 2 -2 5 or p > 2 + 2 3 , S 0 contains 2d + 1 possibly degenerate points counted with multiplicity.

Remark 4 . 2 . 29 .

 4229 If p = 1 or p = ∞, there are counterexamples to Proposition 4.2.28 (ii), as S 0 may contain a non-trivial face of itself , see Proposition 4.2.26.

Theorem 4 . 3 . 2 (

 432 Bezout). Let d ∈ N and P 1 , ..., P d ∈ R[X 1 , ..., X d ] be complete at infinity. Then |Z proj (P 1 , ..., P d )| = deg(P 1 )...deg(P d ), where the roots are counted with multiplicity.

Lemma 4 . 3 . 4 .

 434 Let (P 1 , ..., P d ) be a complete at infinity family in R 2 [X 1 , ..., X d ]. Then the multivariate polynomial det(∇P 1 , ..., ∇P d ) is non-zero.

1 4M 2 1 M 2

 1212 C(M ) , we have |y -x| < C(M ) , and therefore x = y by (4.3.12). The injectivity is proved.2

( 4 .Proposition 4 . 3 . 7 .

 4437 3.13) where {b 1 , ..., b r } := {a 1 , ..., a d+1 } with r ≤ d + 1 and b 1 < ... < b r , and d i := {j : a j = b i } -1, the multiplicity of each b i for all i. We have y ′ (a) = y(a) for all a / ∈ Sp(∇A). In particular the map y ′ is independent of the choice of y 1 , ..., y d+1 ∈ S 0 . Furthermore, G(a) = (a-a 1 )...(a-a d+1 ) det(aI d -∇A) = (a-b 1 )...(a-br)(a-γ 1 )...(a-γ r-1 ) where γ 1 < ... < γ r-1 are eigenvalues of ∇A. Finally if we have x 0 ∈ int conv(y 1 , ..., y d+1 ), then we have b1 < γ 1 < b 2 < ... < γ r-1 < b r .Proof. We suppose that x 0 = 0 for simplicity. Let a / ∈ Sp(∇A), y(a) is the unique vector such that (aI d -∇A) y(a) = A(0)(4.3.14) 

2 Remark 4 . 3 . 8 . 2 + 2 Proof of Corollary 4 . 2 . 21 2 Proof of Theorem 4 . 2 . 22 2 p-2 λ 2 p- 2

 243822422124222222 eigenvalues of ∇A. Then, as deg det(XI d -∇A) = d, and (X -b 1 ) d 1 ...(X -b r ) dr is a divider to det(XI d -∇A), we have det(XI d -∇A) = (X -γ 1 )...(X -γ r-1 )(X -b 1 ) d 1 ...(X -b r ) dr . Notice that in Proposition 4.3.7, the eigenvalues of ∇A are given by the γ i , and by each b i such that d i > 0, which has multiplicity d i , in particular, these coefficients (up to their numbering) do not depend on the choice of y 1 , ..., y d+1 .Proof of Theorem 4.2.[START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] We suppose again that x 0 = 0 for simplicity. We know that if y ∈ S 0 , c x (0, y) = g(|y|)y = A(y). We denote a := g(|y|) and get,(aI d -∇A) y = A(0) (4.3.17) Let a ∈ fix(g • |y -x 0 |),then (aI d -∇A)y(a) = A(0), and A y(a) = ay(a) = g |y(a)| y(a) = c x 0, y(a) , and therefore y(a) ∈ S 0 . Conversely, if y ∈ S 0 and a := g(|y|) is not an eigenvalue of ∇A, y = (aI d -∇A) -1 A(0) = y(a), and finally g(|y(a)|) = a, hence a ∈ fix(g • |y -x 0 |). Now let t ∈ Sp(∇A) such that |y(t)| < ∞. Let y ∈ S ρ t , we have (tI d -∇A)y = (tI d -∇A)(yy(t)) + A(0) = A(0), by passing to the limit a -→ t in the equation (aI d -∇A)y(a) = A(0). Finally, as |y| 2 = ρ 2 -|p t | 2 |p t | 2 = ρ 2 by Pythagoras theorem, A(y) = c x (0, y), and therefore y ∈ S 0 . Conversely, if y ∈ S 0 with g(|y|) = t, then we have yy(t) ∈ ker(tI d -∇A), and |y -p t | = ρ 2 -|p t | 2 by Pythagoras theorem: by definition y ∈ S ρt . We use the notations from Proposition 4.3.7 and assume that x 0 ∈ int conv(y 1 , ..., y d+1 ). By Theorem 4.2.20, S 0 contains 2 r i=1 d i degenerate points. Furthermore, for all 1 ≤ i ≤ r -1, lim t→γ i |y(t) -x 0 | = ∞, therefore, as b i+1 is a root of g |y(t) -x 0 | -t between γ i and γ i+1 , there is another root b ′ i , possibly multiple equal to b i , by continuity of g. Finally we have 2 r i=1 d i + r + (r -2) = 2d elements in S 0 at least, with possible degeneracy. We assume again that x 0 = 0 for simplicity. We suppose again that x 0 = 0 for simplicity. By identity (5.1.2), if we multiply (4.3.14) by the comatrix, we get det(λI d -∇A)y = Com(λI d -∇A) t A(0). Now taking the square norm, we get: det(λI d -∇A) 2 |p| -|Com(λI d -∇A) t A(0)| 2 = 0. The polynomial with real exponents χ

2 2-p X 2 2 2 2-p X 2 2 2 2-p X 2 2 2 2-p X 2 2

 22222222 |Com(XI d -∇A) t A(0)| 2 have both integer differences between two exponents from the same sequence. Then the exponents of |p| -p |Com(XI d -∇A) t A(0)| 2 are located between the ones of det(XI d -∇A) 2 in the exponent sequence of χ, i.e. the sequence of χ consists in one exponent from det(XI d -∇A) 2 , then one exponent from |p| -p |Com(XI d -∇A) t A(0)| 2 , and so on. By the fact that deg(det(XI d -∇A) 2 ) = 2d and deg(|Com(XI d -∇A) t A(0)| 2 ) = 2d -2, and 0 < 2 2-p ≤ 2. Then χ(X) has at most 2d alternations in its coefficients, and therefore it has at most 2d positive roots according to the Descartes rule. Now, assume that 1 < p < 2 -2 5 or p > 2 + 2 3 , then χ(X) := det(XI d -∇A) 2 -|p| -p |Com(XI d -∇A) t A(0)| 2 (4.3.19) has exactly 2d + 1 positive roots counted with multiplicity. Let us first prove that the polynomial has less than 2d + 1 roots. Similar to above, the coefficients of det(XI d -∇A) are alternated. And the same happens for det(XI d -∇A) 2 . Using the Descartes rule for polynomials with non integer coefficients, by the fact that the coefficients of |p| -p |Com(XI d -∇A) t A(0)| 2 are located between the ones of det(XI d -∇A) 2 , except strictly less than 3, and as deg(det(XI d -∇A) 2 ) = 2d, it follows that deg(|Com(XI d -∇A) t A(0)| 2 ) = 2d -2 and -3 < 2 2-p < 5.
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Fig. 4 . 2 S

 42 Fig. 4.2 S 0 for d = 2 and p = 1.9.

Fig. 4 . 3 SFig. 4 . 4 S

 4344 Fig. 4.3 S 0 for d = 2 and p = 2.1.

Fig. 5 . 1 Remark 5 . 5 . 12 .

 515512 Fig. 5.1 Duality gap for the supremum, and the concave hull dual approximation vs ε.

Remark 5 . 5 . 16 .

 5516 By the same arguments, we may prove a similar theorem for the case of optimal transport with λ 1 = min 1, |Y| |X | , and λ 2 =

det aff y 1

 1 (0), ..., y k+1 (0) := det y 1 (0) -y k+1 (0), ..., y k (0) -y k+1 (0), u k+1 , ..., u d ≥ A -1 , we have that | det(v 1 , ..., v d )| ≥ 1 2 A -1 on B r for r ≤ C -1 det A -q det 1 2 A -1 . Recall that e 1 := v 1 |v 1 | . By the fact that |v 1 |...|v d | ≥ | det(v 1 , ..., v d )|, we have that |v 1 | ≥ A -d

2 F.Step 2 :

 22 -1 (a). Now we define the map Φ : R d -→ R d as follows: Φ i (a) := a • z i (a) -z k+1 (a) -F z i (a) -F z k+1 (a) , for 1 ≤ i ≤ k, and Φ i (a) := e i (a) • p(a) for k + 1 ≤ i ≤ d, where p(a) is the orthogonal projection of 0 on aff z 1 (a), ..., z k (a) , and e k+1 (a), ..., e d (a) is the orthonormal basis of aff z 1 (a), ..., z k (a) ⊥ defined as the Gram-Schmidt basis obtained from (z 1 (a) -z k+1 (a), ..., z k (a) -z k+1 (a), u k+1 , ..., u d ), where (u k+1 , ..., u d ) is a fixed basis of z 1 (0) -z k+1 (0), ..., z k (0) -z k+1 (0) ⊥ Now we prove that the convex hull F conv (0) is determined by the equation Φ(a) = 0 for a small enough. Let |a| ≤ rA -1 such that Φ(a) = 0. Then a z i (a)z k+1 (a) -F z 1 (a) -F z k+1 (a) = 0, and therefore let b := F z 1 (a) -az 1 (a) = ... = F z k (a) -az k (a). Then the map y → ay + b is tangent to F at all z i . Furthermore, p(a) is orthogonal to aff z 1 (a), ..., z k (a) ⊥

2 A - 1 2 A 3 2 A 3

 212323 by Lemma 5.6.2 together with the fact that min λ ≥ A -1 . Now we prove that F ≥ aY +b. This holds on each B r z i (a) by convexity of F on these balls, together with the fact that aY + b is tangent to F . Now out of these balls, F ≥ δdist(Y, S) by assumption. Furthermore, |z i (a) -z i (0)| ≤ A|a|, and ∇F z i (a) ≤ A 2 |a|, while similar,we have F z i (a) ≤ h+ 1 2 A 3 |a| 2 . Notice that as it is tangent, aY +b = ∇F z i (a) Yz i (a) + F z i (a) = ∇F z i (a) Y -S i + ∇F z i (a) S i -z i (a) + F z i (a) , for all i. Then, |aY + b| ≤ ∇F z i (a) |Y -S i | + ∇F z i (a) S i -z i (a) + F z i (a) ≤ A 2 |a| |Y -S i | + 3 |a| 2 + h Therefore, if δ ≥ A 2 |a| + 3 2 A 3 |a| 2 + h r -1 , then F ≥ δdist(Y, S) ≥ aY + b. This holds in particular if r ≥ h/H, implying that A 2 |a| + 3 2 A 3 |a| 2 + h r -1 ≤ A 2 |a| + 3 2 A 3 |a| 2 r -1 + hH/h ≤ A 2 |a| + 3 2 A 3 |a| + H.Finally, the following domination is sufficient:δ ≥ A 2 |a| + 3 |a| + H.

  If 1 ≤ i ≤ k, we have ∇Φ i (a) = z i (a) -z k+1 (a). If k + 1 ≤ i ≤ d, we have ∇Φ i (a) = ∇p(a)e i (a) + ∇e i (a)p(a). We may rewrite the previous expression by introducing the locally smooth maps λ j (a) such that p(a) =: k j=1 λ j (a)z j (a), convex combination. Then ∇p(a) = k j=1 λ j (a)∇z j (a) + k j=1 ∇λ j (a)z j (a). Notice that by the relationship k j=1 λ j (a) = 1, we have that k j=1 ∇λ j (a) = 0, therefore k j=1 ∇λ j (a)z j (a) = k j=1 ∇λ j (a) z j (a) -z k+1 (a) and k j=1 ∇λ j (a) z j (a) -z k+1 (a) e i = 0 as z j -z k+1 ⊥ e i . Finally, we have ∇p(a)e i (a) = k j=1 λ j (a)D 2 F -1 z j (a) e i (a). Step 4: Now we provide a bound for ∇e i (a)p(a). We have the control |p(a)| ≤ |p(0)| + sup Ba |∇p|r ≤ H + C 2 A q

2

 2 

k j=1 λ j D 2 F

 2 -1 (z j ). Let M basis := M at(z i -z k+1 : i ≤ k, e i : i ≥ k + 1), then P 0 M -1basis may be written as a block matrix as follows: P 0 M -1 basis = D basis := (e t i De j ) k+1≤i,j≤d . Then det(P 0 M -1 basis ) = det(D basis ) ≥ A -(d-k) , det(M basis ) = det(z iz k+1 : i ≤ k) ≥ A -1 , and therefore det P 0 ≥ A -(d-k+1) . Then by Lemma 5.6.2, as k lines of P 0 are dominated by 2A and d-k are dominated by A, we have det ∇Φ(a) ≥ C -1

1 -D 2 F 1 |≤

 121 [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF].1, we need to control|∇Φ(a) -∇Φ(a ′ )| for a, a ′ ∈ B r . For i ≤ k, |∇Φ i (a) -∇Φ i (a ′ )| = |D 2 F z i (a) z k+1 (a ′ ) -2A 2 e. For i ≥ k + 1, |∇Φ i (a) -∇Φ i (a ′ )| = |∇ p(a) • e i (a) -∇ p(a ′ ) • e i (a ′ ) | ≤ |∇p(a)e i (a) -∇p(a ′ )e i (a ′ )| + |∇e i (a)p(a) -∇e i (a ′ )p(a ′ )| ≤ |∇p(a)e i (a) -∇p(a ′ )e i (a ′ )| + 2 H + C 2 A q 2 (|a| + |a ′ |) C 1 A q 1 .We consider the first term:|∇p(a)e i (a) -∇p(a ′ )e i (a ′ )| ≤ k j=1 λ j (a ′ ) D 2 F -1 (z j (a)) -D 2 F -1 (z j (a ′ )) + k j=1 λ j (a) -λ j (a ′ ) D 2 F -1 z j (a)

1 2

 1 -η , where 0 < η < η 2 , and finally ∆ ε (x, y) ≥ 1 2

ii=1

  λi m i = x -(∪ i Br ε (s i )) c ye -∆ε(x,y) Br ε (s i )) c ye -∆ε(x,y) ε m Y ε (dy)

1 2 A - 1 ε√ εr ε ≥ 1 2 √ ε|y -y i | ≥ 1 2 √ 2 √

 1222 r2ε ≥ -C 1 ε ln(ε -1 ) + ε dist y, (y 1 , ..., y k ) , for ε > 0 small enough. Case 2: y / ∈ B rε (y i ) for all i. Then let 1 ≤ i ≤ k, we have |y -s i | ≤ r ε , and recall that|y i -s i | ≤ r ε . Then |y -y i | ≤ |y -s i | + r ε ≤ 2|y -y i |,and therefore dist y, (y 1 , ..., y k ) ≤ 2dist(y, S ε x ). By (v) we have ∆ ε (x, y) ≥ √ ε dist(y, S ε x ) ≥ 1 ε dist y, (y 1 , ..., y k ) , for ε > 0 small enough.

Step 7 :

 7 Let D X →Y ε := x ∈ D X ε : B rε (y) \ D Y ε = ∅, for some y ∈ S ε x . We claim that we have µ ε D X →Y ε ≪ 1/ ln(ε -1 ). Indeed, for x ∈ D Xε , and for all y ∈ S ε x , we have(P ε ) x [B rε (y)] ≥ A -1ε by Step 6. Therefore, if for some such y, we have thatB rε (y) ⊂ (D Y ε ) c , then A -1 ε ≤ (P ε ) x [B rε (y)] ≤ (P ε ) x [(D Y ε ) c ].Then, if we integrate along µ ε on D X →Y ε , together with (vi) we get that

  .6.23) where I := d R |y • u|e -|y| 2 dy, as recall that by Step 9, K i = we consider again a unit vector u, and(z ′ i -y i ) • u = √ ε λ ′ i B ε -η (y • u) + -(y • u) -e -∆ε(x,y)-∆ε(x,y i ) ε -η (y • u) + e -(∂ 2 y ∆ε(x,y i )-ε η I d )y 2 ε -η (y • u) -e -(∂2 y ∆ε(x,y i )+ε η I d )y 2

1 2 A ε C 2 7 A 2q 7 ε H 2 ε 1 2 1 2

 12211 ≪ ε, and similar, we have|∇∆ ε (x, ȳi ) • (y i -ȳi )| ≤ A ε C 2 7 A 2q 7 ε H 2 ε ≪ ε. Finally, Br ε (y i ) ∇∆ ε (x, ȳi ) • (y -y i )d(P ε ) x = ∇∆ ε (x, ȳi ) • Br ε (y i ) (y -y i )d(P ε ) x . We have from the computations in Step 10 that Br ε (y i ) (y -y i )d(P ε ) x ≤ C 3 A q 3ε ε , and|∇∆ ε (x, ȳi ) • Br ε (y i ) (y -y i )d(P ε ) x | ≤ C 3 C 7 A q 3 +2q 7 ε ε H ε ≪ ε, whence the result.

3 :

 3 Now we prove our claim that |∆(x)| ∞ ≤ D(x 0 ). IndeedV ε (x 0 ) ≥ V ε (x) = µ[φ] + ν[ψ] + ε = P 0 [φ ⊕ ψ + h ⊗ ] + ε = P 0 [∆(x)] + P 0 [c] + ε.Therefore we have P 0 [∆(x)] ≤ V ε (x 0 ) -P 0 [c] -ε, and finally(P 0 ) min |∆(x)| 1 ≤ V ε (x 0 ) -P 0 [c] -ε.(5.6.31)Then |∆(x)| ∞ ≤ D(x 0 ) stems from the definition of λ 1 .

1 2

 1 . Finally, from(5.6.31) together with the definition of λ 1 , we may find thatx * , x k ∈ D X ,Y such that ∆(x k ) = ∆( x k ), x * ∈ X * , | x k | 1 ≤ λ 1 Vε(x 0 )-P 0 [c]-ε |X |(P 0 ) min , and | x * | 1 ≤ λ 1 Vε(x 0 )-P 0 [c]-ε |X |(P 0 ) min . Then | x k -x * | ≤ | x k -x * | 1 ≤ 2λ 1 Vε(x 0 )-P 0 [c]-ε |X |(P 0 ) min by the fact that | • | ≤ | • | 1 . Finally, as x * + x k -x k ∈ X * , we have dist(x k , X * ) ≤ 2λ 1Vε(x 0 )-P 0 [c]-ε

2 5. 6 . 7

 267 Implied Newton equivalenceProof of Proposition 5.5.[START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] We apply the Newton step in the algorithm to x, y(x) .we are looking for p such thatD 2 F p = ∇F . First ∇F x, y(x) = ∂ x F x, y(x) = ∇ F (x), then if we decompose p = p x ⊕ p y ∈ X ⊕ Y, the equation becomes ∂ 2 x F p x + ∂ 2 xy F p y = ∇ F (x),and ∂ 2 yx F p x + ∂ 2 y F p y = 0.

Let d = 2 ,

 2 c : (x, y) ∈ R 2 × R 2 -→ x 1 (y 2 1 + 2y 2 2 ) + x 2 (2y 2 1 + y 2 2 ), µ uniform on [-1, 1] 2 , and ν = 1 K (|Y 1 | 1.5 + |Y 2 | 1.5 )µ where K := (|Y 1 | 1.5 + |Y 2 | 1.5 )µ [R 2 ].We start with a 10 × 10 grid and scale it to a 160 × 160 one while ε scales from 1 to 10 -4 . Figure5.2b gives the computation times of the three entropic algorithms. Once again we show the curves for the value of ε that takes the largest amount of time, the one for which the time of computation is the most important for ε = 7.4 × 10 -3 . (a) Dimension 1. (b) Dimension 2.

Fig. 5 . 2

 52 Fig. 5.2 Log plot of the size of the gradient VS time for the Bregman projection algorithm, the Newton algorithm, and the Hybrid algorithm.

  (a) c = XY 2 . (b) c = |X -Y |. (c) c = sin(8XY ).

Fig. 5 . 3

 53 Fig. 5.3 Optimal coupling for different costs in dimension one.

Figure 5 . 1 K

 51 Figure 5.3 give the solution for three different costs for ε = 10 -5 with µ := (µ 1 + µ 2 )/2 and ν := (ν 1 + ν 2 )/2 with mu 1 uniform on [-1, 1], ν 1 = 1 K |Y | 1.5 µ 1 with K =

Fig. 5 . 4

 54 Fig. 5.4 Optimal coupling conditioned to several values of X.

  

  1 t 1 , ..., S d t 1 ), (S 1 t 2 , ..., S d t 2 ) au temps t 2 , où S i t est le prix de l'actif i au temps t. On suppose également qu'on dispose d'un marché liquide sans arbitrage et sans taux d'intérêt où peuvent être achetés tous les sous-jacents, ainsi que tout produit dérivé des sous-jacents dont le payoff ne dépend que d'une unique maturité. En termes mathématiques, on peut acheter sur ce marché tout produit de la forme φ (S 1 t

1 , ..., S d t 1 ) , et tout produit de la forme ψ (S 1 t 2 , ..., S d t 2 ) , ainsi que n'importe quel hedge d i=1 h i (S 1 t 1 , ..., S d t 1 ) (S i t 2 -S i t 1 ) = h(S t 1 ) • (S t 2 -S t 1 ), où h := (h 1 , ..., h d ) et S t := (S 1 t , ..., S d t )

Proposition 2.3.7. Let

  The next result shows the relevance of this notion of convergence for our setting. (θ n ) n≥1 ⊂ Θ µ . Then, we may find a sequence θ n

	dom X θ = dom X θ ′	y), for n large enough, and θ ′ n (x, y) -→ n→∞ θ(x, y) < ∞. Then ∞ , and θ ′ n (X, •) converges to θ(X, •), on dom X θ, µ-a.s. We proved
	that θ ′ n -→ n→∞ θ, µ⊗pw.
	(iii) has its proof reported in Subsection 2.8.2 due to its length and technicality. 2

2.4.1 Existence and uniqueness Proof of Proposition 2.3.15 (

  

	i) The measurability follows from Lemma 2.3.13. We
	first prove the existence of a minimizer for the problem (2.3.5). Let m denote the
	infimum in (2.3.5), and consider a minimizing sequence (θ n , N n ν

2.6.2 Structure of polar sets Proposition 2.6.3

  The previous properties are preserved. 2

. A Borel set N ∈ B(Ω) is M(µ, ν)-

polar if and only if for some

  This case is (2.8.3). Case 3: y 1 , y 2 ∈ cl dom x 1 θ. The problem arises here if some y i is in the boundary ∂dom x 1 θ. Let x / ∈ N µ , we denote the lower semi-continuous envelop of θ(x, •) in cl dom x θ, by θ * (x, y) := lim ϵ↘0 θ(x, ϵx + (1 -ϵ)y ′ ), for y ∈ cl dom x θ, where the latest equality follows from Lemma 2.8.1 together with that fact that θ

  we say that a set A ⊂ Ω is f -martingale monotone if for all probability P having a finite support in A, and for all competitor P ′ to P, we have P[f ] ≥ P ′ [f ].

3.2.2 Tangent convex functions

Definition 3.2.1. Let θ : Ω → R + be a universally measurable function, and a Borel set

Assumption 3.2.6 Proposition

  

3.3.10. Assumption 3.2.6 holds true under either one of the following conditions:

  δy 1 +...+δy k

n , and µ ′ := δy 1 +...+yn n . Proposition 3.3.14. Assumption 3.2.6 holds if we assume existence of medial limits and Axiom of choice for R.

We prove this Proposition in Subsection 3.6.2. Remark 3.3.15. Notice that existence of medial limits and Axiom of choice for R is implied by Martin's axiom and Axiom of choice for R, which is implied by the continuum hypothesis. Furthermore, all these axiom groups are undecidable under either the Theory ZF nor the Theory ZFC. See Subsection 3.6.2.

  Let a > 0, we consider T the collection of θ ∈ Θ µ such that we may find θ ∈ T a with θ ≥ θ. First we have easily T(C a ) ⊂ T , as T(C a ) ⊂ T a . Now we consider ( θ n ) n≥1 ⊂ T converging µ⊗pw to θ ∞ . For each n ≥ 1, we may find θ n ∈ T a such that θ n ≥ θ n and ν⊖µ[θ n ] ≤ a. Now we may use Assumption 3.2.6, we may find θ ∈ T a such that θ n ⇝ θ by the fact that T a = a T 1 . By the generation properties, θ ≥ θ ∞ ≥ θ ∞ , which implies that θ By what we did above, for all n ≥ 1, we may find θ n ∈ T l+1/n such that θ ≤ θ n . We use again Assumption 3.2.6 to get θ n ⇝ θ, by properties of generation

Lemma 3.5.4. Let θ ∈ T (µ, ν), under Assumption 3.2.6, we may find θ ∈ T (µ, ν) such that θ ≥ θ and ν⊖µ[θ] ≤ ν ⊖µ[ θ]. Proof. ∞ ∈ T . T is µ⊗pw-Fatou closed, and therefore T a ⊂ T . Now let θ ∈ T (µ, ν), with l := ν ⊖µ[ θ].

  is finite if and only if f x (y) is finite. This proves that (3.5.6) holds for y ∈ aff dom x θ.2

	Proof of Theorem 3.3.5 For P ∈ M(µ, ν), I 0 ∈ I(R d ), we have by definition of the
	supremum,	
		Moreover, by convexity of ν P I ⊖µ I , we have ∞ k=n λ n k ν P I ⊖µ I [θ k ] ≥ ν P I ⊖µ I [θ ′ n ],
	and therefore
		∞	
	lim inf n→∞	k=n	λ n k ν P

I ⊖µ I [θ k ] = lim sup n→∞ ∞ k=n λ n k ν P I ⊖µ I [θ k ] ≥ lim sup n→∞ ν P I ⊖µ I [θ ′ n ] ≥ ν P I ⊖µ I [θ ′ ]

and therefore θ(x, y)

  Let d ∈ N and (P 1 , P 2 ) be 2 homogeneous polynomials in R[X 1 , ..., X d ]\ R, then (P 1 , P 2 ) is complete at infinity if and only if gcd(P 1 , P 2 ) = 1. Indeed, if gcd(P 1 , P 2

	Example 4.2.9.	
	hom 1	, ..., P hom i-1 ⟩.

  and |supp P X | = 2d + 1, µ-a.s. if p > 1.

	Remark 4.2.24. Based on numerical experiments, we conjecture that the result of
	Theorem 4.2.22 still holds for 2 -2 5 ≤ p ≤ 2 + 2

3 , and p ̸ = 2. See Section 5.7. Remark 4.2.25. Assumption 4.2.1 implies that c is subdifferentiable. Then we can deal with cost functions c := -|X -Y | p with 0 < p ≤ 1 only by evacuating the problem on {X = Y }. If 0 < p ≤ 1, it was proved by

  .., y d+1 ∈ R d and determines the missing y d+2 , ..., y k , with k = 2d if p ≤ 1, and k = 2d + 1 if p > 1 such that {y 1 , ..., y k } = {c x (0, Y ) = A(Y )} for some A ∈ Aff d , see Theorem 4.2.22. (As we chose randomly these vectors, we are in a non-degenerate case with probability 1). Theorem 4.2.28 only covers the case in which p < 2 -2 5 or p > 2 + 2 3

Algorithm 1

 1 Concave hull of f .

	1: procedure ConcaveHull(f, x, grid, gradientGuess)
	2:	if gradientGuess is None then
	3:	grad ← vector of zeros with the same size than x
	4:	gridF ← f (grid)
	5:	else
	6:	grad ← gradientGuess
	7:	gridF ← f (grid) -grad • grid
	8:	y ← argmaxgridF
	9:	support ← [y]
	10:	gridF ← gridF -gridF [y 0 ]
	11:	while True do
	12:	if x ∈ aff support then
	13:	bary ← barycentric coefficients of x in the basis support
	14:	if bary are all > 0 then
	15:	
	17:	else
	18:	i ← argmin bary
	19:	remove entry i in support
	20:	remove entry i in bary
	21:	else
	22:	
	25:	if scalar are all ≤ 0 then
	26:	Fail with error "x not in the convex hull of grid."
	27:	y ← argmax{gridF/scalar such that scalar > 0}
	28:	add y to support
	29:	a ← -gridF [y]/scalar[y]
	30:	gridF ← gridF + a × scalar
	31:	

value ← sum bary × f (support) 16: return {"value" : value; "support" : support; "barycentric coefficients" : bary; "gradient" : grad} projx ← orthogonal projection of x on aff support 23: p = x -projx 24:

scalar ← p • (grid -x)

  Then we get the contradiction |y -x| < |y -x|. The injectivity is proved.2In order to prove Lemma 5.6.3, we first need the following technical lemma.

	1 ∥2	a 2	|y -x|
	≤ |y -x|,		

Lemma 5.6.2. Let an integer d ≥ 1, k ≤ d, r > 0, and

(y i ) 1≤i≤k+1 , k + 1 differentiable maps B r -→ R d such that |∇y i | ≤ A, |y i | ≤ A and det aff (y 1 , ..., y k ) ≥ A -1 . Let (u i ) k+1≤i≤d

an orthonormal basis of (y i (0) -y k+1 (0)) 1≤i≤k ⊥

  1 4 ε β and R ≥ r ε / √ ε, then (vi) may be applied to y i (even ify i / ∈ D Y ε ), up to replacing (m ε ) x [B R ′ i )]/2 d for some y ′ i ∈ B rε (y i ).Indeed, by Step 7 we may findy ′ i ∈ B rε (y i ) ∩ D Y ε . Let f have such property. Now let f defined by f = f on B R/2 , and f (y) := 1 -2|y| R f Ry 2|y| . Let L, R ≥ 1 such that f is L-Lipschitz, then f is L-Lipschitz.Therefore, We have B 2R f (y)

			√ ε (y i )] by
	(m ε ) x [B 2R from (vi). Now, as R ≥ r ε / √ ε (y   √ ε, we have that B R d(mε)x•zoom y ′ i √ ε (mε)x[B 2R (y ′ i )] -dy |B 2R | √ ε	  ≤ [2R + L] γ ε β	B 2R f (y) dy |B 2R |

  .6.21) Now we compute the value of D ′′ i . By change of variables z = ∂ 2 y ∆ ε x, y i y, where √ A applied to a symmetrical positive definite matrix denotes the only symmetrical positive definite square root of the matrix A, we get thatD ′′ i = εK i d 2 det ∂ 2 y ∆ ε x, y i .We observe that from (5.6.16) and (i), together with (5.6.18), (5.6.19), (5.6.20), and (5.6.21), we have for all i thatλ i = λ ′ i + o(λ ′ i ), λ ′ i = λ ′′ i + o(λ ′′ i ), D i = D ′ i + o(D ′ i ),andD ′ i = D ′′ i + o(D ′′ i ).Finally, using (5.1.1) and the fact that we can sum up positive o(•), we get kx i=1 Br ε (y i )

  Br ε (y i ) ye -∆ε(x,y)We have that x = R d ye -∆ε(x,y), by the martingale property of e -∆ε ε m ε . Similar to (5.6.14), we havek i=1 λ i z i -x ≪ ε.Similar, we also havek i=1 λ i = 1 + o(ε). Therefore, dist x, aff(z 1 , ..., z k ) ≪ ε. Now let

	Indeed, let z i := λ -1 i			ε	m Y ε (dy) dµε dm X ε	-1	, where recall that
		λ i =	Br ε (y i )	e -∆ε(x,y) ε	m Y ε (dy)	dµ ε ε dm X	-1	.
				ε	m Y ε (dy) dµε dm X ε	-1
	z ′ i :=	1 λ ′ i Br ε (y i )	ye -∆ε(x,y) ε	dy	|B rε | (m ε ) x [B 2rε (y ′ i )]/2 d	ε dm X dµ ε	-1
								1 2 +β-ηγ + C 6 A q 6 ε ε	1 2 +η + ε.	(5.6.22)

  as byStep 6, we have that for y /∈ ∪ k i=1 B rε (y i ), we have ∆ ε (x, y) ≥ 1 2 √ ε dist y, (y 1 , ..., y k ) , where 1 2 √ ε ≫ C 7 A q 7 ε H ε , and r ε ≫ C 7 A q 7

The Wijsman topology on the collection of all closed subsets of a metric space (X , d) is the weak topology generated by {dist(x, •) : x ∈ X }.

The usual definition of a kernel requires that the map x → P x [B] is Borel measurable for all Borel set B ∈ B(R d ). In this paper, we only require this map to be analytically measurable.

Analytically measurable means measurable with respect to the smallest σ-algebra containing the analytic sets. All Borel sets are analytic and all analytic sets are universally measurable, i.e. measurable with respect to all Borel measures (see Proposition 7.41 and Corollary 7.42.1 in[START_REF] Bertsekas | Stochastic optimal control: The discrete time case[END_REF]).

rf a A is equal to the only relative interior of face of A containing a, where we extend the notion of face to non-convex sets. A faceF of A is a nonempty subset of A such that for all [a, b] ⊂ A, with (a, b) ∩ F ̸ = ∅, we have [a, b] ⊂ F . It is discussed in Hiriart-Urruty-Lemaréchal[START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I: Fundamentals[END_REF] as an extension of Proposition 2.3.7 that when A is convex, the relative interior of the faces of A form a partition of A, see also Theorem 18.2 in Rockafellar[START_REF] Rockafellar | Convex analysis[END_REF].

This is not a direct consequence of Proposition 2.3.10, as the barycentre ȳ has to be in dom x 1 θ ∩ dom x 2 θ.

The Haussdorff distance on the collection of all compact subsets of a compact metric space (X , d) is defined byd H (K 1 , K 2 ) = sup x∈X |dist(x, K 1 ) -dist(x, K 2 )| , for K 1 , K 2 ⊂ X , compact subsets.

A set A is said to be P-measurable if P (A ∪ B) \ (A ∩ B) = 0 for some Borel set B ⊂ Ω.

The Descartes rule states that for a polynomial with possibly non integer real coefficients, the number of positive roots is dominated by the number of alternations of signs of its coefficients ordered by their associated exponents, see[START_REF] Jameson | Counting zeros of generalised polynomials: Descartes' rule of signs and laguerre's extensions[END_REF].

Remerciements

Iterating this process for all k ≥ 2, we define (N k , φ k , ψ k , θ k ) for all k ≥ 1. Now let

Let N 0 µ := (domφ ∞ ) c , and N 0 ν := (domψ ∞ ) c . Notice that µ[φ ∞ ] = ν[ψ ∞ ] = 0, and therefore, (N 0 µ , N 0 ν ) ∈ N µ × N ν . We now fix (N 0 µ , N 0 ν ) ⊂ (N µ , N ν ) ∈ N µ × N ν , and denote φ := ∞1 Nµ , and ψ := ∞1 Nν .

Recall that J(X) := conv dom θ ′ (X,

where we denote D ∞ (X) := dom θ ′ (X, •)+ψ By Proposition 2.1 (ii) in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], conv D ∞ (x)\ rf x conv D ∞ (x) is convex for x ∈ R d . Therefore, we may find u(x) ∈ (affrf x conv D ∞ (x)x) ⊥ such that y ∈ conv D ∞ (x) \ rf x conv D ∞ (x) implies that u(x) • (y -x) > 0 by the Hahn-Banach theorem, so that

with the convention ∞ -∞ = ∞. Finally,

We proved the inclusion from (ii).

Step 3: Now we prove that N ′c is martingale monotone, which is the end of (ii). Let P with finite support such that P[N ′c ] = 1, and P ′ a competitor to P. Let k ≥ 1, we have P[N c k ] = 1 by (3.5.3), therefore, as θ k is a N k -tangent convex function, P ′ [θ k ] ≤ P[θ k ], therefore, as by (3.5.3) we have that P[domθ k ] = 1, we also have that P ′ [domθ k ] = 1. As this holds for all k ≥ 1, and for N and the N -tangent convex function θ, we have P ′ [domθ ′ ] = 1. Now as P[domφ × domψ] = 1, we clearly have P ′ [domφ × domψ] = 1. Recall that by construction, dom

As u ⊗ is negative only where the rest of the function is infinite, ∞1 θ ′ =∞ + nu ⊗ + φ ⊕ ψ ≥ 0 for all n ≥ 1. Then by monotone convergence theorem, P ′ [∞1 θ ′ =∞ + ∞u ⊗ + φ ⊕ ψ] = P[∞1 θ ′ =∞ + ∞u ⊗ + φ ⊕ ψ] = 0. Therefore, P ′ [N ′ ] = 0, proving that N ′c is martingale monotone. η-a.s. Integrating this inequality with respect to η, and using Fatou's Lemma, we get

Then θ ∞ ∈ T . Hence, T is µ⊗pw-Fatou closed, and therefore T a ⊂ T . Now let θ ∈ T (µ, ν), with l := ν ⊖µ [ θ]. By the previous step, for all n ≥ 1, we may find θ ′ n ∈ T l+1/n with I(R d ) ν P i ⊖µ i [θ ′ n ]η(di) ≤ l + 1/n such that θ ≤ θ ′ n . Similar to the proof of Lemma 3.5.4, we get θ ′ ∈ T (µ, ν) such that θ ≤ θ ′ , ν ⊖µ[θ ′ ] ≤ l, and

≤ l, thus proving the result. We prove the second part of the Lemma similarly, using Assumption 3.2.6 instead of Lemma 2.12 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF].

2

For the proof of next result, we need the following lemma: Lemma 3.5.6. Let θ ∈ T (µ, ν), m X := µ[X|I(X)], and f X (•) := θ(m X , •). Then we may find a µ-unique measurable p(X) ∈ affI(X) -X such that for some

Proof. We consider N µ ∈ N µ from Proposition 2.10 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], so that for x 1 , x 2 / ∈ N µ , y 1 , y 2 ∈ R d , and λ ∈ [0, 1] with ȳ := λy 1 + (1 -λ)y 2 ∈ dom x 1 θ ∩ dom x 2 θ, we have: λθ(x 1 , y 1 ) + (1 -λ)θ(x 1 , y 2 ) -θ(x 1 , ȳ) = λθ(x 2 , y 1 ) + (1 -λ)θ(x 2 , y 2 ) -θ(x 2 , ȳ) ≥ 0.

(3.5.7)

By possibly enlarging N µ , we may suppose in addition that I(x) ⊂ dom x θ for all x ∈ N c µ . For x ∈ N c µ and y ∈ dom x θ, we define H x (y) := f x (y) -f x (x) -θ(x, y). By (3.5.7), H x is affine on aff dom x θ ∩ domθ(x, •). Indeed let y 1 ∈ aff dom x θ ∩ domθ(x, •), y 2 ∈ dom x θ, and 0 ≤ λ ≤ 1, then ȳ := λy 1 + (1 -λ)y 2 ∈ dom x θ and

We notice as well that H x (x) = 0. Then we may find a unique p(x) ∈ affI(x) -x so that for y ∈ dom x θ, H x (y) = p(x) • (y -x). p(X) is measurable and unique on N c µ , and therefore µ-a.e. unique. For y ∈ aff dom x θ ∩ domθ(x, •), it gives the desired equality (3.5.6). Now for y ∈ aff dom x θ ∩ domθ(x, •) c , let 0 < λ < 1 such that ȳ := λx + (1 -λ)y ∈ dom x θ. By (3.5.7), λθ(x, x) + (1 -λ)θ(x, y) -θ(x, ȳ) = λf x (x) + (1 -λ)f x (y) -f x (ȳ),

Properties of the weakly convex functions

The proof of Proposition 3.2.13 is very technical and requires several lemmas as a preparation.

Lemma 3.5.7. Let N µ ∈ N µ , we may find N µ ⊂ N ′ µ ∈ N µ , and a Borel mapping

Proof. We may approximate N c µ from inside by a countable non-decreasing sequence of compacts (K n ) n≥1 :

For n ∈ N, the mapping I n : x → x + (1 -1/n) cl I(x) -x ∩ K n is measurable with closed values. Then we deduce from Theorem 4.1 of the survey on measurable selection [START_REF] Wagner | Survey of measurable selection theorems[END_REF] that we may find a measurable selection

and m ∞ := 0. Then for all x / ∈ N ′ µ , we have the inclusion

µ . However, we want to find a map from K to R d . Consider again the map mI := E µ [X|I]. Notice that mI ∈ I by the convexity of I, and that it is constant on I(x), for all x ∈ R d . Then the map m I := m ′ ( mI ) satisfies the requirements of the lemma.

2

We fix a N -tangent convex function θ ∈ T (µ, ν).

, a canonical polar set such that (N 0 ) c ⊂ N c ∩ domθ from Proposition 3.2.7. Consider the map m I given by Lemma 3.5.7 for

By Proposition 3.2.7 together with the fact that N µ ⊃ N 0 µ , we may chose the map I so that

Proof. The map defined by J

Recall that we want to find f : R d -→ R, and p :

A good candidate for f would be f I , in view of (3.5.9). However f defined this way could mismatch at the interface between two components. We now focus on the interface between components. Let K, K

∈ N µ , and ∅ otherwise.

Lemma 3.5.10.

(3.5.10)

and if we set p(y) := p(y) + ∇A I(y) , we have

where the last equality comes from the fact the A I is affine in y. Then Lemma 3.5.9 concludes the proof. 2

We now use Assumption 3.2.6 (ii) to prove the existence of a family (A K ) K satisfying the conditions of Lemma 3.5.10. Let C ⊂ K, D ⊂ K, and R ⊂ K from Assumption 3.2.6 such that I(X) ∈ C ∪ D ∪ R, µ-a.s. with C well ordered, dim(D) ⊂ {0, 1}, and

Lemma 3.5.11. We assume Assumption 3.2.6, and the existence of (T

satisfying the conditions of Lemma 3.5.10.

Proof. We define

. Otherwise, we set A K (x) := 0, and set A K to be the only affine function on K that has the right values at the endpoints, and has a derivative orthogonal to K, which exists as K is at most one-dimensional.

Now we prove the sufficiency. Let (H

and for all finite set F ⊂ C ∪ R, and all triplet

For all finite F ⊂ C ∪ R, we define the affine subset

pred )}, we have that A F is non-empty for all F. Then the intersection taken on finite sets A := ∩ F⊂C∪R A F is also non-empty as we intersect finite dimensional always non-empty affine spaces that have the property

Then if we chose H

pred ) will be verified, except for the minimality. To have the minimality, we chose the minimal H ∈ A for the norm ∥ • ∥, which is unique as A is affine and the norm is Euclidean. This uniqueness, together with the uniqueness from the induction hypothesis gives the uniqueness for H ( K pred , K ′ pred ) by properties of the lexicographic order. We proved H ( K pred , K ′ pred ), and therefore H(C 2 ) holds. Finally, we need to include R in the indices of H. Let the unique (H

Similar to the step in the induction (K pred , K ′ pred ) to (K, K ′ ), we may find a unique H K ′ K which satisfies the right relations and is minimal for the norm ∥ • ∥. As we may do it independently for all (K, K ′ ) ∈ R × C by the property of R in Assumption 3.2.6. For K ∈ C and K ′ ∈ R, we set H

We may prove thanks to H(C 2 ) that this definition does not depend on the choice of K 0 ∈ C, and that H defined this way on (C ∪ R) 2 satisfies the right conditions. 2

Proof of Proposition 3.2. [START_REF] Backhoff | Martingale benamou-brenier: A probabilistic perspective[END_REF] The inclusion ⊃ is obvious from the definition of ∂ µ,ν f . We now prove the reverse inclusion by using Assumption 3.2.6. Then by Lemma 3.5.15, we may find (H

) such that for all finite set F ⊂ C ∪ R, and all permutation σ ∈ S F such that K ∼ 1 σ(K) for all K ∈ F, we have K∈F H

Then, by Lemma 3.5.13, we may find (T

) satisfying (i), (ii), and (iii) from Lemma 3.5.11. Then we may apply Lemma 3.5.11: we may find

for all y ∈ interf(K, K ′ ), and for all K, K ′ ∈ I(R d ). Finally, by Lemma 3.5.10, f (y) := f K (y) + A K (y) does not depend of the choice of K such that y ∈ J • (m K ), and if we set p(y) := p(y) + ∇A I(y) , we have

Therefore, θ ≈ T p f , whence f ∈ C µ,ν and we proved the reverse inclusion. 2

Now, we prove the convexity of the functions in C µ,ν on each components. Proof of Proposition 3.2.15 Let p ∈ ∂ µ,ν f , and θ ∈ T (µ, ν) such that T p f = θ on {Y ∈ J • (X), X / ∈ N µ } for a N -tangent convex function θ ∈ T (µ, ν), N µ ∈ N µ , and J • (µ, ν). By proposition 3.2.7, we may chose N µ and J

∈ N µ , and y ∈ J • (x), f (y) = f (x) + p(x) • (y -x) + θ(x, y), which is clearly convex in y for x fixed. The function f is convex on J • , η-a.s.

For all x ∈ N c µ and y ∈ J • (x), we have

, where the equality comes from Proposition 3.2.7 (i) together with the fact that J \ N ν ⊂ J • . We also define

These definitions are not interfering as if x ′ ∈ J(x) then J(x ′ ) ⊂ J(x) by Remark 3.2.8. Therefore, the convex envelops (f

Then the map p(X)

, with

, where everything is expressed in the basis (y i -y dx+1 ) 1≤i≤dx , is Borel measurable on I(x). Then as it is a subgradient of f |I(x) on I(x) by the fact that θ(x, y) = f (y) -f (x) -proj ∇affI(x) p(x) • (y -x) ≥ 0 for all x, y ∈ I(x), we have the result.

Finally, notice that

Proof of Proposition 3.3.16 (i) Let (φ, ψ, h) ∈ L(µ, ν), and let f be its q.s.-convex moderator, and p ∈ ∂ µ,ν f . By Proposition 3.2.15, f is convex and finite on I, and

is Borel measurable on I, η-a.s.

(ii) If one of the conditions in Proposition 3.3.10 holds, then condition (iv) holds by Proposition 3.3.10. Then the transfinite induction from the proof of Proposition 3.2.13 becomes a countable induction, thus preserving the measurability. The process of subtracting lines for the one dimensional components is also measurable.

Verification of Assumptions 3.2.6 3.6.1 Marginals for which the assumption holds

In preparation to prove Proposition 3.3.10, we first need to prove two lemmas.

Lemma 3.6.1. Assume that there exists Q ∈ P(Ω) such that

Then for all [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]). Then by Komlós lemma, we may find

for all P ∈ P(Ω). Finally we need to prove that θ ∈ Θ µ,ν . For n ≥ 1, let N n ∈ N µ,ν be the set from Definition 3.2.1 for θ n , and let N cvg ∈ N µ,ν be the set where θ n does not converge. We set

x by passing to the limit, I(X) ⊂ N c X , µ-a.s. By Lemma 6.1 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF], we may chose

Borel set, and therefore, the function 1 {Y ∈I(X)}∩{X∈N ′c µ } θ ∞ is Borel and Definition 3.2.1 (iv) holds. For P with finite support on N c , and P ′ competitor to P, P[θ] = lim n→∞ P[ θ n ], and

Then as the term on the right of this equality converges, θ n (ω) converges as well, and ω ∈ N c . We got the contradiction, (iii) of Definition 3.2.1 holds. 2 Lemma 3.6.2. Assume that ν is dominated by the Lebesgue measure. Then Y / ∈ ∂I(X)

Proof. First the components of dimension d are at most countable, and their boundary is Lebesgue negligible as they are convex. Then, if we enumerate the countable Y ∈ cl I(X), q.s. Then for P ∈ M(µ, ν),

By the induction hypothesis, P[Y ∈ ∂I(X) and dim I(X) > k] = 0. (i) gives that

implying that P -a.s., dim I(X) = k =⇒ Y ∈ I(X). As holds true for all P ∈ M(µ, ν), combined with the induction hypothesis, we proved the result at rank k. By induction, Y ∈ I(X), q.s. The equivalence is proved.

It remains to show that (iv) is implied by all the other conditions. If (i) holds, We suppose that (iv) holds. The second part of the proposition follows from the fact that a countable set can be well ordered. Now let us deal with the first part. According to Lemma 3.6.1, we just need to find a probability measure Q that implies the quasi-sure convergence of functions in T 1 . This is possible thanks to the convexity of these functions in the second variable: the interior of the components can be dealt with µ(dx)

For the boundaries, the measure µ ⊗ ν will deal with the countable components of C.

µ ∩ K, for some N µ ∈ N µ by the previous step. For all n ≥ 1, let N n ∈ N µ,ν be such that θ n is a N n -tangent convex function. By (3.2.5) and by possibly enlarging the µ-null set N µ , we may assume that we may find (N ν , θ) 

We re-order the terms

As we assumed that θ n converges µ(dx) ⊗ n≥1 2 -n δ fn(x) (dy) + µ ⊗ ν-a.s. by possibly enlarging N µ , without loss of generality, we may assume that for all x ∈ N c µ , θ n (x, •) converges pointwise to θ on I(x), and

ν , and x ∈ K, identity (3.6.2) implies that θ n (x, y) converges, as all the other terms have a limit, and θ(x, y ′ ) and θ(x ′ , y ′ ) are finite. Now for P ∈ M(µ, ν),

This holds for all K ∈ C, and P ∈ M(µ, ν).

For the 1-dimensional components of D, if we call a(x) and b(x) their (measurably selected) endpoints, the measure µ(dx) ⊗

will fit. Finally, in the case of the components in R, for all probability P ∈ M(µ, ν), P x does not send mass to ∂K for µ-a.e. x ∈ K ∈ R by assumption. We take

the convergence of θ n , Q-a.s. implies its convergence M(µ, ν)-q.s. Assumption 3.2.6 holds. 2

Proof of Remark 3.3.12 The fact the ν P I is independent of P ∈ M(µ, ν) for d = 1 is proved by Beiglböck & Juillet [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]. Now we assume that (i) in Proposition 3.3.10 holds. If Y ∈ I(X), M(µ, ν)-q.s., then by symmetry as {I(x) 

∈ ∂I(X), q.s. by Lemma 3.6.2, so that for all P ∈ M(µ, ν), ν P I = ν I on {dim I(X) ≥ d -1}. Now on {dim I(X) = 0}, µ I = ν P I is also independent of P. Finally, We can extend any medial limit m to R N + by setting m(u) := sup N ∈N m((u n ∧ N ) n ). It keeps the same properties, except (v) which becomes a kind of Fatou's Lemma: for any sequence of Borel-measurable functions f n : [0, 1] → R + , then for any Borel measure λ on [0, 1],

The existence of medial limits is implied by Martin's axiom. Notice that Martin's axiom is implied by the continuum hypothesis (See Chapter I of Volume 5 of [START_REF] Fremlin | Measure theory[END_REF]).

Kurt Gödel [START_REF] Godel | What is cantor's continuum problem?[END_REF] provides 6 paradoxes implied by the continuum hypothesis, Martin's axiom implies only 3 of these paradoxes. All these axioms are undecidable either under ZF and under ZFC, indeed Paul Larson [START_REF] Larson | The filter dichotomy and medial limits[END_REF] proved that if ZFC is consistent, then ZFC+"there exists no medial limits" is also consistent (Corollary 3.3 in [START_REF] Larson | The filter dichotomy and medial limits[END_REF]). See

[149] for a complete survey.

Proof of Proposition 3.3.14 Axiom of choice on R implies that R can be wellordered, which proves that Assumption 3.2.6 (ii) holds. Now let us prove the first part. 

is dense in affI(x) for all x ∈ R d as in the proof of Lemma 3.6.1, we may assume without loss of generality that (

A θ is Borel measurable as the pointwise limit of Borel measurable functions 1 A θ n , as the medial limit coincides with the real limit when convergence holds. 

One and infinity norm cost

In particular, S 0 is concentrated on the boundary of its convex hull.

This Proposition will be proved in Subsection 4.3.3. The case r = d is of particular interest.

Remark 4.2.27. Notice that the gradient of c is locally constant where it exists (i.e. if c is differentiable at (x 0 , y 0 ), then c is differentiable at (x, y) and ∇c(x, y) = ∇c(x 0 , y 0 ) for (x, y) in the neighborhood of (x 0 , y 0 )). 

Concentration on the Choquet boundary

Recall that a set S 0 is included in its own Choquet boundary if S 0 ⊂ Ext cl conv(S 0 ) , i.e. any point of S 0 is extreme in cl conv(S 0 ). A result showed in [START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF] is that the image of the optimal transport is concentrated in its own Choquet boundary for distance cost. We prove that this is a consequence of (i) of the structure Theorem 4.2.2, and we generalize this observation to some other cases. 

Now we prove (i) =⇒ (iii). By definition of completeness at infinity, we have that (P hom , therefore it is the only common projective root of these multivariate polynomials, in particular 0 is their only affine common root.

Finally we prove that (ii) =⇒ (i). In order to prove this implication, we assume to the contrary that (i) does not hold. Then by Remark 4.2.6, we have that the dimension of this projective variety is higher than d -(d -1) = 1. Then we may find some x ∈ Z(P hom 1 , ..., P hom d-1 ) which is different from z = (1, 0, ..., 0), as if z was the only zero, the dimension of Z(P hom 1 , ..., P hom d-1 ) would be 0. Now we consider x ′ := (0, x 1 , ..., x d ) ∈ P d . As x ′ 0 = 0, x ′ is at infinity and 

H n the set of homogeneous polynomials of degree n for n ∈ N. The set X is a projective variety as the set of zeros of the polynomial X 0 , and the set Y is a quasi-projective variety as it is an affine space. The set A := {(p, P 1 , ..., P d ) ∈ X × Y : P 1 (p) = ... = P d (p) = 0} is a set of zeros of polynomials in X × Y (also called closed set for the Zariski topology by algebraic geometers). Notice that the set of non-complete at infinity polynomials in R[X 1 , ..., X d ] is exactly the projection of A on Y by Proposition 4.3.3, and therefore this set is characterized by a polynomial equation system on the coefficients of the P i by Theorem 1.11 in [START_REF] Shafarevich | Basic Algebraic Geometry 1: Varieties in Projective Space[END_REF], which states that the projection of closed sets for the Zariski topology in X × Y stays closed for the Zariski topology of Y.

2

Proof of Proposition 4.2.12 For 1

we get:

Thanks to the completeness at infinity of (P i ), the P i which are defined for 1 ≤ i ≤ d by

Proof of Theorem 4.2.18 By Taylor expansion of c x in y in the neighborhood of x 0 , we get for h ∈ R d and ε > 0 small enough that

where, recalling the notation (4.2.9), Q i (Y ) := 1 2 c x i yy (x 0 , x 0 )[Y 2 ] and the remainder

. By Proposition 4.2.12, we see that N c (x 0 ) is finite by second order completeness at infinity of c at (x 0 , x 0 ). We consider from the definition of N c (x 0 ) an affine map A ∈ Aff d such that the d-tuple of multivariate polynomials of degree one A(X 1 , ..., X d ) satisfies

By Theorem By Lemma 4.3.5, let P = (P 1 , ..., P d ), d multivariate polynomials of degree

. By continuousness of c xyy in the neighborhood of (x 0 , x 0 ), up to restricting to a compact neighborhood, c xyy is uniformly continuous on this neighborhood. For ε > 0 small enough, each x 0 + εh i in in the interior of this neighborhood. Therefore, by uniform continuousness R ε , and ∇R ε converges uniformly to 0 when ε -→ 0. Let 1 ≤ i ≤ n, we have (Q+P +R ε )(h i ) = R ε (h i ), and ∇(Q + P )(h i ) ∈ GL d (R) by the fact that h i is a single root of Q + P , and therefore

for ε small enough. Therefore we may apply Lemma 5.6.1 around h i : Q + P + R ε is a diffeomorphism in a neighborhood of h i depending only on the lower bounds of det ∇(Q + P + R ε )(h i ) and of the bounds for ∇(Q + P + R ε ) and D 2 (Q + P + R ε ), which may then work for all ε small enough. Then for ε small enough, we may find h ε i in this neighborhood of h i such that (Q + P + R ε )(h ε i ) = 0. Furthermore, by the fact that ∇(Q 

Chapter 5

Entropic approximation for multi-dimensional martingale optimal transport

We study the existing algorithms that solve the multidimensional martingale optimal transport. Then we provide a new algorithm based on entropic regularization and Newton's method. Then we provide theoretical convergence rate results and we check that this algorithm performs better through numerical experiments. We also give a simple way to deal with the absence of convex ordering among the marginals. Furthermore, we provide a new universal bound on the error linked to entropy. Key words. Martingale optimal transport, entropic approximation, numerics, Newton.

Introduction

The problem of martingale optimal transport was introduced as the dual of the problem of robust (model-free) superhedging of exotic derivatives in financial mathematics, see Beiglböck, Henry-Labordère & Penkner [START_REF] Beiglböck | Model-independent bounds for option prices: a mass transport approach[END_REF] in discrete time, and Galichon, Henry-Labordère & Touzi [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF] in continuous-time. This robust superhedging problem was introduced by Hobson [START_REF] Hobson | Robust hedging of the lookback option[END_REF], and was addressing specific examples of exotic derivatives by means of corresponding solutions of the Skorokhod embedding problem, see [START_REF] Cox | Robust pricing and hedging of double no-touch options[END_REF][START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF][START_REF] Hobson | Robust bounds for forward start options[END_REF], and the survey [START_REF] Hobson | The skorokhod embedding problem and model-independent bounds for option prices[END_REF].

Given two probability measures µ, ν on R d , with finite first order moment, martingale optimal transport differs from standard optimal transport in that the set of Notation We fix an integer d ≥ 1.

In all this paper, R d is endowed with the Euclidean structure, the Euclidean norm of x ∈ R d will be denoted |x|. Let A ⊂ R d we denote |A| the Lebesgue volume of A. The map ι A is the map equal to 0 on A, and ∞ otherwise. If V is a topological affine space and A ⊂ V is a subset of V , intA is the interior of A, cl A is the closure of A, affA is the smallest affine subspace of V containing A, convA is the convex hull of A, and dim(A

(5.1.1)

Let x 0 ∈ R d , and r > 0, we denote zoom x 0 r : x -→ x 0 + rx, B r (x 0 ) is the closed ball centered in x 0 with radius r, and we only write B r when the center is 0.

, where (e j ) 1≤j≤k-1 is an orthonormal basis of V ect u 1 -u k , ..., u k-1 -u k .

Let M ∈ M d (R), a real matrix of size d, we denote det M the determinant of M . We also denote Com(M ) the comatrix of M : for 1 ≤ i, j ≤ d, Com(M ) i,j = (-1) i+j det M i,j , where M i,j is the matrix of size d -1 obtained by removing the i th line and the j th row of M . Recall the useful comatrix formula:

As a consequence, whenever M is invertible, M -1 = 1 det M Com(M ) t . We denote Ω := R d × R d and define the two canonical maps

For φ, ψ : R d -→ R, and h : R d -→ R d , we denote

The proof of Proposition 5.5.1 is reported in Subsection 5.6.3. [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] provide a very similar result in Proposition 2.2. It is however very different as they need to introduce an approximately martingale optimal transport problem, and our result makes hypotheses on the Lipschitz property of the dual optimizers, which are unknown, and even their existence in unknown. In dimension 1, thanks to the work by Beiglböck, Lim & Obłój [START_REF] Beiglböck | Dual attainment for the martingale transport problem[END_REF], we may prove the existence of these Lipschitz dual, thanks to some regularity assumptions on c. In higher dimension, there are ongoing investigations about the existence of similar results. However, by Example 4.1 in [START_REF] De March | Quasi-sure duality for multi-dimensional martingale optimal transport[END_REF], it will be necessary to make assumptions on µ, ν as well, as the smoothness of c cannot guarantee the existence of a dual optimizer. Proposition 5.5.1 is entitled to be a proposition of practical use, we may formally assume that the partial dual functions that we get converge to the continuous dual and assume that their Lipschitz constant converges to the Lipschitz constant of the limit.

Remark 5.5.2. Guo & Obłój

We refer to Subsection 2.2 in [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] for a study of the discrete W 1 -approximation of the continuous marginals. In dimensions higher than 3, it is necessary to use a Monte-Carlo type approximation of µ and ν to avoid the curse of dimensionality linked to a grid type approximation. However, Proposition 5.5.1 is not well-adapted to estimate the error, as we know from [START_REF] Fournier | On the rate of convergence in wasserstein distance of the empirical measure[END_REF] that the Wasserstein distance between a measure and its Monte-Carlo estimate is of order n 

The proof of Proposition 5.5.3 is reported in Subsection 5.6.3.

Corollary 5.5.6. Under the assumptions of 5.5.5, we have that 

to be compared to the green flat curve which is its theoretical limit d 2 according to Theorem 5.5.5. Finally the orange curve provides the ratio of the weaker dominator

of the duality gap with respect to ε. The interest of this last weaker dominator is that it avoids computing the concave envelop which may be a complicated issue, while having a reasonable comparable performance in practice than the concave hull dominator as showed by the graphs and by Remark 5.5.13 below.

Figure 5.1a provides these curves for the one-dimensional cost function c := XY 2 , µ uniform on [-1, 1], and ν = |Y | 1.5 µ. The grid size adaptation method is used and the size of the grid goes from 10 when ε = 1 to 10000 when ε = 10 -5 . Figure 5.1b provides these curves for the two-dimensional cost function c :

The grid size adaptation method is used again and the size of the grid goes from 10 × 10 when ε = 1 to 160 × 160 when ε = 10 -4 . Remark 5.5.7. The hypotheses of regularity are impossible to check at the current state of the art. One element that could argue in this direction is the fact that the limit of ∆ ε when ε -→ 0, that we shall denote ∆ 0 , should satisfy the Monge-Ampère equation det ∂ 2 y ∆ 0 = f , similar to classical transport [START_REF] Trudinger | On the second boundary value problem for monge-ampere type equations and optimal transportation[END_REF] that may provide some regularity, but less than the one needed to satisfy (ii) of Theorem 5.5.5, see Chapter 5 of [START_REF] Gutiérrez | The Monge-Ampere equation[END_REF]. It also justifies, in the case where f > 0, that ∂ 2 y ∆ ε ∈ GL d (R).

Remark 5.5.8. Assumption (vi) on the local convergence of the reference measures is justified is we take a regular grid for Y that becomes fine fast enough. If the grid does not become fine fast enough, then the local decrease of

Convergence rate for the semi-dual algorithm

We notice that any subgradient of this function is a difference of probabilities, and then the gradient is bounded. Furthermore the function V is a supremum of a finite number of affine functions, and therefore it does not have a smooth second derivative.

In this condition the best theoretical way to optimize this function is by a gradient descent with a step size of order O(1/ √ n) at the n-th step, see Ben-Tal & Nemirovski [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF]. Then by Theorem 5.3.1 of [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF], the rate of convergence is O(1/ √ n) as well, which is quite slow. Furthermore, the time of computation of one step needs to compute one convex hull which has the average complexity O(|Y| ln(|Y|)) for each x ∈ X , and O(|Y|) in dimension 1, see Subsection 5.4.7. However, we give in Subsection 5.4.7) an algorithm that computes the concave hull in a linear time if the relying points of the concave hull do not change too much. Then let us be optimistic and assume that the computation of one concave hull is on average O(|Y|), then we have that the complexity is O(|X ||Y|) operations for each step. Although this algorithm is highly parallelizable, its complexity imposes to the grid to be very coarse. Indeed, to get a precision of 10 -2 , we need an order of 10 4 operations. We shall see that the entropic algorithms are much more performing for this low precision.

Notice that even though the best theoretical algorithm is the last gradient descent, Lewis & Overton [START_REF] Lewis | Nonsmooth optimization via quasinewton methods[END_REF] showed that in most case, quasi-Newton methods converge faster, even when the convex function is non-smooth, however they find a particular case in which quasi-Newton fails at being better. The L-BFGS method is a quasi-Newton method that is adapted to high-dimensions problems. The Hessian (even though it does not exist) is approximated by a low-dimensional estimate, and the classical Newton step method is applied. See [START_REF] Wright | Numerical optimization[END_REF] for the exact algorithm. We see on simulations that this algorithm is indeed much more efficient.

Even if the quasi-Newton algorithm gives better results, the smooth entropic algorithms are much more effective in practice.

Convergence rate for the Sinkhorn algorithm

In practice, if we want to observe the transport maps from [START_REF] De March | Local structure of the optimizer of multi-dimensional martingale optimal transport[END_REF] to have a good precision on the estimation of the support of the optimal transport, we need to set ε = 10 -4 . The rate of convergence of the Sinkhorn algorithm is given by κ 2n after n iterations for some 0 < κ < 1, see [START_REF] Knight | The sinkhorn-knopp algorithm: convergence and applications[END_REF]. This result is extended by [START_REF] Guo | Computational methods for martingale optimal transport problems[END_REF] to the one-dimensional martingale Sinkhorn algorithm. However, we have κ :

, and

in the case of classical transport. Then θ is of the order of exp(K(c)/ε) for some map K(c) bounded from below. For ε = 10 -5 , this θ is so big that κ 2 is so close to 1 that κ 2n , with n the number of iterations will remain approximately equal to 1. We also see in practice for the martingale Sinkhorn algorithm that the rate of convergence is not exponential for small values of ε, see Figure 5.2 in the numerical experiment part, as the graph is logarithmic in the error, an exponential convergence rate would be characterized by a straight line. However we observe that for the Bregman projection algorithm we do not have a straight line during the first part of the iteration for the one-dimensional case, and it never happens in the two-dimensional case.

In this regime of ε small, another convergence theory looks to have a better fit with this algorithm. The Sinkhorn algorithm may be interpreted as a block coordinates descent for the optimization of the map V ε (φ, ψ). We optimize alternatively in φ, and in ψ. We know from Beck & Tetruashvili [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF] that this optimization problem has a speed of convergence given by LR(x 0 ) 2 n , where R(x 0 ) is a quantity that is of the order of |x 0 -x * | in practice, where x * is the closest optimizer of V ε and L is the Lipschitz constant of the gradient. This speed is more comparable to the convergence observed in practice. More precisely, L is of the order of 1/ε. This formula shows that in order to minimize the problem for a very small ε, we first need to make R(x 0 ) small to compensate L. This can be done by minimizing the problem for larger ε. In practice, we divide ε by 2 until we reach a sufficiently small ε. Then we make the grid finer as ε becomes small, and exploit the sparsity in the problem that appears when ε gets small. See Schmitzer [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF].

We may apply the same theory for the martingale V ε and its block optimization in (φ, h) and in ψ.

Remark 5.5.18. Depending on the experiment, in some cases we observe a linear convergence like (5.5.8) (see Figure 5.2a), however in other cases, we observe a convergence speed that looks more like (5.5.9) (see Figure 5.2b). However, the convergence rates that we provide here are generic, if we wanted to have convergence rates that look more like the one observed, we would need to look for the asymptotic convergence rates like it was suggested by Peyré in [START_REF] Peyré | Computational optimal transport[END_REF] for the case of classical transport. Remark 5.5.19. The positive probability P 0 ∈ M(µ, ν) is necessary. We know from [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF] that for some (possibly elementary) µ ⪯ ν in convex order, we way find (x 0 , y 0 ) ∈ X × Y such that P[{(x 0 , y 0 )}] = 0 for all P ∈ M(µ, ν) even thought µ[{x 0 }] > 0 and ν[{y 0 }] > 0 (see Example 2.2 in [START_REF] De March | Irreducible convex paving for decomposition of multi-dimensional martingale transport plans[END_REF]). Therefore, in this situation there is no optimal x * ∈ D X ×Y , as this would mean that ∆(x * ) x 0 ,y 0 = ∞.

Convergence rate for the Newton algorithm

When the current point gets close enough from the optimum, the convergence rate of the Newton algorithm is quadratic if the hessian is Lipschitz, i.e. |x k -x * | and |∇V ε (x k )| both converge quadratically to 0, see Theorem 3.5 in [START_REF] Wright | Numerical optimization[END_REF]. The truncated Newton is a bit slower, but still has a superlinear convergence rate, see Theorem 7.2 in [START_REF] Wright | Numerical optimization[END_REF].

Convergence rate for the implied Newton algorithm

The important parameter for Newton algorithm is the Lipschitz constant of the Hessian of the objective function. However in the case of variable implicitation, the presence of ∂ 2 y F -1 in the Hessian, and the addition of the variation of y(x) in the Lipschitz analysis may kill the Lipschitz property of the Hessian of F . The following proposition solves this problem.

Proposition 5.5.20. Let (x n ) n≥0 the Newton iterations applied to F starting from x0 := x 0 ∈ X . Now let (x n ) n≥0 the sequence defined by recurrence by x 0 := x 0 , then for all n ≥ 0, y n := y(x n ), and let (x, y) be the result of a Newton step from (x n , y n ), and we set x n+1 := x.

Then

The proof of Proposition 5.5.20 is reported to Subsection 5.6.7. This proposition implies that the theoretical convergence of the Newton algorithm on F can be extended to the Newton algorithm applied to F , indeed the partial minimization in y only decreases the distance from the current point to the minimum around the minimum.

Limit marginal

Proof of Theorem 5.4.2 Let α > 0, we are considering the following minimization problem: (5.6.11) where the first equality comes from a mutualisation of the infima, the second comes from a partial dualisation of the infimum in φ, h in a supremum over P ∈ M(µ), we obtain the third equality by applying the minimax theorem and reordering the terms, the fourth equality the definition of the Fenchel-Legendre transform, and the fifth and final equality is just a consequence of the transformation of a multiplyer of a p-homogeneous function by the Fenchel-Legendre conjugate. Let (α n ) n≥1 converging to 0. As Y is finite, the set P(Y) is compact. Then we may assume up to extracting a subsequence that ν αn converges to some limit ν l . The first order optimality equation for all y ∈ Y gives that ν -ν αn + α n ∇f (ψ n ), where ψ n is the unique optimizer of V ε + αf . By the p-homogeneity of f , the gradient ∇f is (p -1)-homogeneous. Then we have the convergence ψn := ψn α 1 p-1 n -→ n→∞ ψ l := ∇f -1 (ν l -ν). As we have by (5.6.10)

By dividing this equation by α 1 p-1 n , we have that ψ l is the minimizer of the strictly convex function sup P∈M(µ) P[-ψ] + ν[ψ] + f (ψ), it is therefore unique. Then ν l is unique as well. By (5.6.10), P αn tends to minimize f * (P • Y -1 -ν), by the fact that ν l = lim α→0 P α • Y -1 , which concludes the proof. 2

Discretization error

Proof of Proposition 5.5. [START_REF] Acciaio | A modelfree version of the fundamental theorem of asset pricing and the super-replication theorem[END_REF] We have that (φ, ψ, h) is a dual optimizer for (µ, ν).

If we take the supremum in P ′ , we get that

As the reasoning may be symmetrical in (µ, ν), (µ ′ , ν ′ ) , we get the result. 2

Proof of Proposition 5.5.3 Similar to the proof of Proposition 5.5.1, we have that

and

The first inequality gives

The two first terms are independent and their sum (µ

M N (0, 1) when N, M go to infinity. Then doing the same work on the symmetric inequality and using the Assumptions (i) to (iv), we get the result. 2

Entropy error

Lemma 5.6.1. Let r, a > 0, F : R d -→ R d and x 0 ∈ R d such that ∥(∇F ) -1 (x 0 )∥ ≤ a -1 , and on B r (x 0 ), we have that F is C 1 , that ∇F is invertible, and that ∥∇F -∇F

Proof. We claim that F is injective on B r (x 0 ), we also have that ∇F is invertible on this set. Then by the global inversion theorem, F is a C 1 -diffeomorphism on B r (x 0 ). Now we prove the claim that F is injective on B r (x 0 ). Let x, y ∈ B r (x 0 ),

we have that e i :=

and therefore we have that v i -j<i (e j • v i )e j ≥ A -d . Therefore, by induction, we may find C i , q i such that |∇e i | ≤ C i A q i . Now notice that p := y k+1 + k i=1 e i • (0 -y k+1 )e i . Then we may find C 0 , q 0 > 0 such that |∇p| ≤ C 0 A q 0 . Finally let λ := (λ 1 , ..., λ k+1 ),

and

We have that M λ = P , and therefore λ we may find C ′′′ , q ′′′ such that det aff (y 1 , ..., y k+1 ) ≤ C ′′′ A q ′′′ . The lemma is proved for

, and for q := max(q 0 , ..., q d , q ′ , q ′′ , q ′′′ , q det + 1). 

. Furthermore, assume that F (S) ⊂ [-h, h], and F ≥ δdist(Y, S) on B r (S) c . Then we may find C, q > 0 such that if δ, r ≥ CA q H, e, H ≤ C -1 A -q , and h ≤ rH, then we have that 0,

Proof.

Step 12: Now using Step 3 and Step 9, integrating against µ ε , with the uniform error estimate (5.6.24), together with controls that are independent of x, similar to (5.6.14), to deal with

Finally, notice that

Therefore we have

Whence the result of the theorem. 2

Asymptotic penalization error

Proof of Proposition 5.5.14 As µ ⪯ c ν, V ε is convex with a finite global minimum.

Then the minimum of V ε + αf converges to a minimum of V ε . More precisely, let ψ α be the only global minimizer of V ε + αf , then ψ α is also the minimizer of the map + f , whose unique global minimizer is ψ 0 . Therefore ψ α -→ ψ 0 when α -→ 0. Now the first order condition gives that να-ν α = ∇f (ψ α ) -→ ∇f (ψ 0 ), when α -→ 0, by convexity and differentiability of f , guaranteeing that ψ -→ ∇f (ψ) is continuous. 2

Convergence of the martingale Sinkhorn algorithm

Proof of Theorem 5.5.15 This result stems from an indirect application of Theorem 5.2 in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF]. By a direct application of this theorem we get that .6.25) and that (5.6.26) Titre : Transport optimal de martingale multidimensionnel Mots cl és : transport optimal martingale, composantes irr éductibles, dualit é, structure locale, num érique, finance robuste, risque de mod èle, r égularisation entropique.

R ésum é : Nous étudions dans cette th èse divers aspects du transport optimal martingale en dimension plus grande que un, de la dualit é à la structure locale, puis nous proposons finalement des m éthodes d'approximation num érique. On prouve d'abord l'existence de composantes irr éductibles intrins èques aux transports martingales entre deux mesures donn ées, ainsi que la canonicit é de ces composantes. Nous avons ensuite prouv é un r ésultat de dualit é pour le transport optimal martingale en dimension quelconque, la dualit é point par point n'est plus vraie mais une forme de dualit é quasi-s ûre est d émontr ée. Cette dualit é permet de d émontrer la possibilit é de d écomposer le transport optimal quasi-s ûre en une s érie de sous-probl èmes de transports optimaux point par point sur chaque composante irr éductible. On utilise enfin cette dua-lit é pour d émontrer un principe de monotonie martingale, analogue au c él èbre principe de monotonie du transport optimal classique. Nous étudions ensuite la structure locale des transports optimaux, d éduite de consid érations diff érentielles. On obtient ainsi une caract érisation de cette structure en utilisant des outils de g éom étrie alg ébrique r éelle. On en d éduit la structure des transports optimaux martingales dans le cas des co ûts puissances de la norme euclidienne, ce qui permet de r ésoudre une conjecture qui date de 2015. Finalement, nous avons compar é les m éthodes num ériques existantes et propos é une nouvelle m éthode qui s'av ère plus efficace et permet de traiter un probl ème intrins èque de la contrainte martingale qu'est le d éfaut d'ordre convexe. On donne également des techniques pour g érer en pratique les probl èmes num ériques.

Title : Multi-dimensional martingale optimal transport

Keywords : martingale optimal transport, irreducible components, duality, local structure, numerics, robust finance, model risk, entropic regularization.

Abstract :

In this thesis, we study various aspects of martingale optimal transport in dimension greater than one, from duality to local structure, and finally we propose numerical approximation methods. We first prove the existence of irreducible intrinsic components to martingal transport between two given measurements, as well as the canonicity of these components. We have then proved a duality result for optimal martingale transport in any dimension, pointby-point duality is no longer true but a form of quasisafe duality is demonstrated. This duality makes it possible to demonstrate the possibility of decomposing the quasi-safe optimal transport into a series of optimal transport subproblems point by point on each irreducible component. Finally, this duality is used to demonstrate a principle of martingale monotony, analogous to the famous monotonic principle of classical optimal transport. We then study the local structure of optimal transport, deduced from differential considerations. We thus obtain a characterization of this structure using tools of real algebraic geometry. We deduce the optimal martingal transport structure in the case of the power costs of the Euclidean norm, which makes it possible to solve a conjecture that dates from 2015. Finally, we compared the existing numerical methods and proposed a new method which proves more efficient and allows to treat an intrinsic problem of the martingale constraint which is the defect of convex order. Techniques are also provided to manage digital problems in practice.
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