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Abstract

The main objective of this work was the study of the fragmentation of a
metallic shell. This thesis is divided into four parts: construction of a damage
model, numerical implementation, calibration of the model parameters using
experimental data and analytical works.

In this work, we considered a model that couples the standard gradient
damage models with plasticity and dynamics. Using the energy and the
action of the system, we could obtain all the equations necessary to describe
the dynamic ductile model: the equations of dynamics, the plasticity criterion
and the damage criterion. We then detail the numerical implementation of
these models.

Some qualitative behaviours are then obtained, such as the number and
the direction of cracks, and the convergence to the quasi-static model.

In order to better understand the influence of the parameters, we studied
the problem analytically. By studying the amplitude of the perturbations, we
describe how to obtain an analytic approximation for the number of cracks
in a ring under expansion.

In order to run realistic simulations, it is needed to calibrate the material
parameters. We focus here on a simple case of brittle materials. The exper-
imental data were obtained in a series of shockless spalling tests performed
by the CFEA.

We also study other forms of regularization, now applied to the plastic
strain, avoiding localization in zero-thickness bands. We considered using
the dissipative properties of the temperature field to regularize the model.
Finally, we conclude with plasticity models where we add a term depending
on the gradient of the plastic strain (gradient plasticity models).
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Résumé

Cette these porte sur ’étude de la fragmentation d’enveloppes métalliques
avec des applications dans le domaine militaire. L’enveloppe est mise en
expansion par la détonation d’explosifs et la tres forte pression (quelques
centaines de kilo-bars) ainsi générée. L’état de contrainte induit dans le
matériau va conduire a sa fragmentation et a la génération d’un tres grand
nombre d’éclats. Le principal objectif de cette these est de prévoir le nombre,
la forme et la distribution massique de ces fragments.

Cette these est divisée en cing parties : la construction d’un modele
d’endommagement, I'implémentation numérique, des études analytiques, la
calibration des parametres du modele en utilisant des données expérimentales,
et des travaux analytiques.

Tout d’abord, nous avons considéré des modeles qui couplent les modeles
d’endommagement classiques avec la plasticité et la dynamique. En utilisant
I’énergie et I'action du systeme, nous avons obtenu toutes les équations qui
décrivent le modele dynamique et ductile : I'équation de la dynamique, le
critere de plasticité et le critere d’endommagement.

Nous avons ensuite détaillé I'implémentation numérique de ces modeles.
Deux codes ont été utilisés : la bibliotheque d’éléments finis FENICS et le
logiciel EUROPLEXUS. Dans un premier instant, nous avons implémenté
les modeles d’endommagement avec la bibliotheque FENICS pour des tests
initiaux, en particulier pour des problemes unidimensionnels. Ensuite un
des modeles de fracture ductile a été implémenté dans le code industriel
EUROPLEXUS, avec lequel nous avons fait des simulations des problemes
tridimensionnels.

En ce qui concerne la performance du code, le probleme d’endommagement
peut étre écrit comme un probleme linéaire, ou la matrice en question est
symétrique définie-positive. Par conséquent, nous avons pu utiliser la méthode
du gradient-conjugué, déja implémentée dans la bibliotheque PETsC, et qui
marche tres bien dans les codes parallélisés.



Dans un premier instant, des résultats qualitatifs ont pu étre obtenus,
comme le nombre et la direction des fissures, ainsi qu’une étude de la con-
vergence vers le modele quasi-statique.

La principale application est ’explosion d’un cylindre métallique a cause
d’une forte pression intérieure. De fagon surprenante, le probleme d’un cylin-
dre avec un chargement radial perd sa symétrie et nous obtenons plusieurs
fissures inclinés qui se croisent. Une premiere question que se pose c¢’est de
comprendre pourquoi ces zones de localisation de 'endommagement appa-
raissent.

Afin de mieux comprendre l'influence de chaque parametre du modele,
nous avons fait des études analytiques. Le probleme du cylindre a été sim-
plifié en un anneau, qui peut étre vu comme une barre avec des conditions aux
limites périodiques. A partir de I'observation de 'amplitude des perturba-
tions, nous avons pu décrire comment obtenir une approximation analytique
du nombre de fissures pour ’anneau en expansion.

Cependant, pour étre capable de simuler des problemes réalistes, il est
nécessaire de calibrer les parametres du modele. Nous nous sommes intéressés
plus particulierement au probleme d’écaillage de matériaux fragiles (céramiques).
A partir des données expérimentales obtenues par une série d’expériences
réalisée par le CEA, nous avons pu calibrer les parametres de notre modele
pour avoir une bonne approximation de I’énergie dissipée par le processus de
rupture.

Des travaux complémentaires ont également été réalisés concernant 1’écaillage
et la modélisation de la striction. Afin d’empécher la localisation de la
déformation plastique dans des bandes d’épaisseur nulle, d’autres formes de
régularisation ont été étudiées, comme par exemple, I'utilisation des pro-
priétés dissipatives du champ de température. Enfin, nous avons conclu ce
travail en proposant des modeles de plasticité ou 1’énergie dépend aussi du
gradient de la déformation plastique (modeles de plasticité a gradient).

D’une forme générale, les travaux effectués pendant cette these ont aidé
a mieux comprendre I’évolution de 'endommagement dans un contexte dy-
namique. Sur le plan numérique, ces modeles marchent, peuvent étre par-
allélisés et donnent des bonnes directions de fissures. La fragmentation d’un
cylindre sous pression a été étudiée en 1D et 3D et I'influence de chaque
parametre du probleme a pu étre identifiée. Comme continuation de ce tra-
vail, nous avons encore deux grandes questions théoriques : la convergence
vers le modele quasi-statique et 1’épaississement des régions endommagées.
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Introduction

The initiation and propagation of cracks is still an unresolved question in
fracture mechanics. Several models have been studied in different contexts
(Barenblatt [9], Abraham and Rudge [1], Hentz and Daudeville [24], Hakim
and Karma [23]), in quasi static and dynamics (Ravi-Chandar [48], Larsen
[27]), and accounting for different phenomena. The main objective of this
thesis is to explain the development of the so-called ”gradient damage mod-
els” (Pham [42]) and its extension to ductile materials under a dynamic
loading.

The main application behind this thesis is that of a metallic shell that
expands due to a strong internal pressure, until it fragments. Several models
have been proposed to estimate the number and size of the resulting frag-
ments. These models focus mostly on the one-dimensional expanding ring
and use statistical arguments or presence of micro-voids, as in Mott and Lin-
foot [37], Grady [20]. Our approach differs from the previous ones in the
sense that we consider a homogeneous and sound material, and no random
phenomenon is considered.

The idea behind the models used in damage mechanics is that we can
represent the crack by a damage field. No a-priori hypothesis of its path is
made.

As we will see in a simple example, local models are not capable of cor-
rectly predicting damage evolution (Peerlings and Brekelmans [41], Pham
et al. [44]). Softening local damage models allow damage localization in in-
finitely thin bands and, consequently, cracks with zero energy dissipation
(Benallal [10]). In finite elements simulations, this implies that the mesh size
determines the size of the localization zones and the results will necessarily
depend on the mesh used. Moreover, some attention must be payed to the
mesh in order to avoid creating a preferential direction for crack propagation
(Negri [38]).

In this context, the problem of localization is solved by adding a nonlocal
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term, such as an integral (Pijaudier-Cabot and P. Bazant [47], P. Bazant and
Pijaudier-Cabot [39], Peerlings and de Vree [40], Lorentz and Andrieux [31])
or a gradient (Comi [16], Lorentz and Benallal [32], Lorentz et al. [33]) of
the damage or the strain. The family of gradient damage models contain the
gradient of damage weighed by a parameter called the ” characteristic length”
(Pham et al. [45]) in order to avoid a localization in a band of null thickness.

These models have been originally proposed for quasi-static brittle dam-
age evolution, but have also been extended to ductile (Alessi et al. [3], Ambati
et al. [5], Miehe et al. [36]) and dynamic loading (Bourdin et al. [14], Borden
et al. [12], Li et al. [29]). In this thesis, we explain the necessary changes to
the original model, in order to take plastic deformations and inertial effects
into account.

In the first chapter, we briefly present the construction of gradient damage
models for brittle softening materials based on the principle of minimum
energy. We discuss the main hypothesis and the need for regularization. We
then talk about the Von-Mises plasticity criterion, how to write it using a
principle of minimum energy and how to couple plasticity and damage by
using a suitable form of energy, as done by Alessi et al. [2]. We conclude the
model by removing the hypothesis of static equilibrium at each instant and
adding inertial effects. We follow the same methodology of Li et al. [29]: we
write the Lagrangian and the action of the system, and find the equations
of dynamics, along with the criterion of damage and plasticity evolution, by
using the principle of least action.

In Chapter 2, once the model is complete, we detail how the evolution
of damage and plasticity is calculated numerically, and the schemes used
for the temporal integration. In a first stage, we consider the standard La-
grangian discretization using P1 elements. We then show some examples
to validate our implementation, test the convergence rate in function of the
mesh size and the time-step and have a first insight in how the parameters
of the problem affect the results. We conclude this chapter by detailing the
implementation of the discontinuous Galerkin (DG) methods for quasi-static
and dynamic damage-plasticity problems. The FEniCS library (Logg [30])
and the industrial code FUROPLEXUS' are used.

In Chapter 3, we study the particular case of a cylinder in expansion.
After fragmentation, we want to count the number of fragments obtained and
determine how it depends on the parameters used. The problem is axially
symmetric and, therefore, we should obtain an axially symmetric profile for
the damage. Surprisingly, this is not what happens, as we obtain radial
cracks somewhat evenly spaced. In order to understand what is causing the
evolution of these cracks, we focus mostly on the one-dimensional case, that
is, a ring. By studying the linearised system, we show that some modes of

2
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perturbation grow faster than others, allowing us to predict the number of
cracks that appear in the simulations.

Chapter 4 consists of the calibration of the model. The identification of
the parameters used in the gradient damage model is of great importance if
such material is to be used in an industrial context. We study the shockless
spalling test of a ceramic material and, from the results obtained in the ex-
periments, we want to propose a model representing the material behaviour.
With these tests, we are also able to better understand the role of the strain
rate in the critical stress and the dissipated energy.

Finally, in Chapter 5, we study possible forms of regularization for soft-
ening materials. Local models for ductile softening materials have the same
problems found in local damage models, that is, problems of existence or
unicity of solutions and absence of stable configurations. We study how
adding a dependency on the gradient of the plasticity to the total energy
could solve the problem of localization in infinitely thin bands. We also
study the temperature-plasticity coupling: when plasticity occurs, energy is
dissipated as heat, increasing the temperature of the bar. The main ques-
tion is whether the regularization character of the heat equation is enough
to regularize the plastic strain.
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Chapter

1

Dynamic Gradient Damage
Models

The objective of this first chapter is to explain the development of the
so-called "gradient damage models” and its extension to ductile materials
and dynamic loading. The main idea of these models is that a crack can be
represented by a scalar (the damage field). No hypothesis are made a-priori
of its path.

We explain how gradient damage theory deals with the question of dam-
age localization in infinitely thin bands (and, consequently, cracks that dissi-
pate no energy) by adding a term containing the gradient of damage weighed
by a parameter called the ”characteristic length”. Roughly speaking, this
constant is going to determine how thick the crack region is going to be.

These models have been originally proposed for quasi-static brittle dam-
age evolution, but have also been extended to ductile (Alessi et al. [3], Ambati
et al. [5], Miehe et al. [36]) and dynamic loading (Bourdin et al. [14], Borden
et al. [12], Li et al. [29]). The main objective of this chapter is to explain
the necessary changes in order to account for both plastic deformations and
inertial effects.

More precisely, we first present the construction of gradient damage mod-
els for brittle softening materials based on the principle of energy minimiza-
tion. We discuss the main hypothesis and present one example in order to
illustrate the need for regularization. We then briefly talk about Von-Mises
plasticity criterion and how to take it into account. We conclude the model
by moving from quasi-static to dynamic loadings.

5



Chapter 1 — Dynamic Gradient Damage Models

1.1 Gradient Damage Models

We present here a simplified construction of gradient damage models for
brittle elastic materials when there are no other dissipative phenomena. We
are going to consider the case of small strains theory and isotropic material.

For a more detailed construction of these models, see Marigo [35], Bourdin
et al. [13], Pham [43], Pham et al. [45]. For the proof of Gamma-convergence
to Griffth’s model (Griffith [21]), the reader is referred to Braides [15], Dal-
Maso and Toader [17].

We denote the stress by o, the strain by e, the displacement by u and
the rigidity tensor by E. When working in a 1D scenario, we are going to
call the Young’s modulus simply by E, the stress by ¢ and the strain by ¢.

We recall that e = %(Vu + V%Tu). Tt is clear that we consider that the
variables in question are regular enough so that trace and the energies are
well-defined. Unless otherwise stated, the variables will be either in the L?()
or the H'(2) spaces. The contracted product of two tensors a and b will be
denoted by a:b and, for elastic materials, the stress can be written o = E'e.

1.1.1 Construction of a Damage Model (non-regularized)

In this section, we are going to describe a family of damage models that
can be applied to different types of materials. We will discuss the qualitative
properties of these models.

We begin the construction by making the following hypothesis:

1. Damage can be represented by a scalar a€[0,1]. When a=0 the mate-
rial is sound and when a=1 the material is completely broken.

2. The rigidity tensor E(«) is a function of « and the material becomes
less rigid when « increases. When the material is completely broken,
there will be no rigidity left, in other words, E(a=1) = 0. It is impor-
tant to notice that, for a fixed damage value, the stress-strain relation
is supposed to be linear (o=F(«a):€).

3. Damage is irreversible, that is, it can only grow in time (&>0).

We now need to specify under which circumstances damage increases.
For that, we are going to use an idea similar to Griffith’s criterion (Griffith
[21]), based on the notion of elastic energy restitution, in its variational form
(Francfort and Marigo [18]).

The elastic energy can be written as

Y(e,a) = %E:E(a):e. (1.1)

6



1.1 = Gradient Damage Models

For a fixed deformation, a small increase da>0 of damage causes a loss
of elastic energy equivalent to —g—’i(e, a)da>0. We compare the variation of
elastic energy to a threshold k(). As in Griffith’s model, the rate of energy
restitution is always smaller or equal to a threshold value and the crack only
propagates when we have an equality. For this family of damage models, the

propagation criterion can be written as

— 15:E’(Oé>:€ < k(a), {

a=0 if —ie:E (a)e < k()

a>0 if —ie:E'(a)e =k(o)

: (1.2)

where k(a)>0 is a function of « representing the necessary energy restitution
necessary for damage to evolve.

Let w(a) be a function such that w'(a) = k(«). We define the energy
density by

W(e,a) =9, a) + w(a). (1.3)
We can write the stress as
o= %—2/(6,04) (1.4)
and the damage evolution criterion as
ow
%(8,01)'0.1 = 07 (15)

where each of the two factors is non-negative.
Now let 8 > 0 be a small increase of damage in time. We have that

ow :
Consider a structure whose initial configuration is given by 2 C R”

(n=1,2,3).

Suppose we have a volume force f acting on the whole structure, an
imposed displacement uy on 9, C 9€2 and a normal stress T on dp C 0.
We also suppose that 9, () 0r = 0 and 9, |J Or = 99Q. The static equilibrium

can be written as
dive + f =0 in

u=up on dy (1.7)
on="1T onOr.

We fix a test function w such that w = 0 on 0,. Then
/ (divew + f-w)dQ =0 (1.8)
Q

7



Chapter 1 — Dynamic Gradient Damage Models

and Green’s formula shows that

0

/ (a-n)-wdS+/ T-wdS—/a:s(w)dQ+/f-wdQ:O. (1.9)
du T Q Q
—_—
0
We define

C={u: u=upond,}

. 1.10
Co ={w: w=0on J,} (1.10)

The static equilibrium problem consists of finding v € C such that
ow
—(e(u),a):e(w)dQ = [ fwd+ T-wdS, VYwelC. (1.11)
q Oe Q oT

If we consider the evolution problem where the time is denoted by ¢, by
integrating (1.6), we obtain the following problem: find &>0 such that

/ a—W(s,a)-(ﬂ' —a)dQ >0, VB>0. (1.12)
Q 5@
We define the total energy of the system by
E(u,a) = / W (e(u), a)dS — / fud— [ Tuds. (1.13)
Q Q oT

It is easy to see that the evolution problem, given by equations (1.11) and
(1.12), is equivalent to finding u € C and &>0 such that

DE(u,0)(v —u, B — &) >0,Yvel, V3> 0. (1.14)

1.1.2 Regularized Model

It is now a well-known fact that local softening damage models are not
viable (Alessi et al. [3], Pham [42]) as they allow damage localization in
infinitely thin bands. The example below illustrates this problem:

Example 1.1.1. Consider a 1D bar represented by the interval [0, L] and a
material such that E(a)=FEy(1 — a)? and w(a)=w;a.

When in equilibrium, we know that o(x)=c (constant).

We will show that for any 0<0<1 fized, we can construct a solution to
the damage problem such that there is no damage in the interval (0,0L) and
uniform damage in (6L, L).



1.1 = Gradient Damage Models

In fact, for x€(0,0L), we have £(x)=0/Ey.
For x€(0L, L), the damage criterion can be written as

1 o2 o? o? 1
— __F =FE(l-a)—— = — 1.15
i E A - il c i L S
Therefore, damage in this interval is given by
o2
=1 : 1.16
a wi e (1.16)
The dissipated energy can be calculated
L L
D= / w(a)dr = / wiadr = wia (1 —0)L (1.17)
0 oL

This shows that we have a solution of the damage problem for any 0. We
can see that damage can be localized in an infinitely thin band and if we take
0 — 1, the dissipated energy D tends to zero.

In a finite elements code, the size of the damage band will be determined
by the mesh size. This means that refining the mesh will produce different
results and dissipated energies that can tend to zero.

The main idea behind gradient damage models is to add to the energy
a term that depends on the gradient of damage. This way, sharp damage
profiles will dissipate an infinite amount of energy and will not be minimizers
of this energy. This construction leads to the notion of a characteristic length
of the damage problem. We will now use an energy density of the form

1
W(e,a,Va)=¢(a,e) +w(a) + §w1£2V0z-Va, (1.18)

where £ is the characteristic length and w; >0 is a normalization constant.

In the previous section, when describing the model, we first proposed an
evolution law based on the energy restitution rate. We then expressed the
static equilibrium and damage evolution by a principle of minimum energy.
For this new energy density, we are going to use directly the principle of
minimum energy to obtain an evolution law, instead of manually proposing
it. We notice that for a homogeneous damage profile, we obtain the same
damage criterion.

We have

oc=FE(a)e=—/(g,a). (1.19)
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We define the dissipated energy by
1
D(a) = / (w(a) + §w1€2Voz-Va)dQ (1.20)
Q
and redefine the total energy

E(u,a) = /Q W (e(u), , Va)de — /Q Fud) — /d Twds.(121)

The evolution problem consists of finding u € C and &>0 such that

DE(u,a)(v —u, B — &) >0, Yo € C, VS > 0. (1.22)

1.2 Damage Coupled with Plasticity

The family of models we have developed so far cannot take into account
residual strains. In this section, we want to extend the damage models
described in section 1.1.2 to ductile materials.

For that, we first review the plasticity model that we are going to use,
showing how it can be written as a problem of energy minimization. We then
discuss the model obtained when writing an energy functional that contains
both plasticity and damage dissipation terms.

In this thesis, only the Von-Mises criterion will be studied, even though
only a few adaptations are needed if we want to consider other criteria.
More details about the coupling gradient damage and plasticity can be seen
in Alessi et al. [3], Tanne [50].

We finish this section by showing some examples of material behaviour
that can be obtained using this approach.

1.2.1 Perfect Plasticity Model

Unidimensional Model

In this section, we follow the approach of Marigo [34], Alessi et al. [2].

We will denote the plastic strain by €P. The total strain can be decom-
posed in an elastic part (a part that contributes to the stress) and a plastic
part (a permanent strain). The stress-strain relation is now

o=FE(—¢P). (1.23)

10
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— Stress
- Plastic Strain

05
Strain

Figure 1.1: Damage (dashed green) and normalized stress (blue) for a generic
ductile material.

In the general case, o is admissible if it satisfies f(0)<0, where the func-
tion f depends on the criterion used. The evolution law is given by the
relation

2] f (o) = 0. (1.24)

We are interested in the Von-Mises yield criterion, where oy is the yield
stress. In 1D, we have
f(o) =lo| - oy <0. (1.25)

This behaviour is shown in Figure 1.1. We can see the normalized strain,
normalized stress and normalized plastic strain.

We define the cumulated plastic strain from zero to the instant ¢ as
B(t) = /t ev|dr (1.26)
0
and the energy density for a elasto-plastic material as
WP (e, el p) = %E(e —&?)? + oy p. (1.27)

Proposition 1.2.1. The 1D version of the Von-Mises criterion, written as

1. yield criterion: |o| < oy

2. flow rule:
>0 ifo=+oy
=0 iflo| <oy (1.28)
e <0 ifo=—oy

11
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18 equivalent to

1. stability condition: for any p*, we have WP (g, &P, p) < WP (g, p*, p +
p* —ePl)

2. energy balance: WP (e, P, p) = o¢.
Proof. We first notice that for any p*, we have
1

WP (e, p", pHlp" =" )=W'P(e, ", p) = S E(p"—e")* = E(e—e") (p"—" ) +oy |p —e”).

2
(1.29)

If the yield criterion holds, it is easy to see that the stability condition is
also true.
Conversely if the stability condition holds and by taking p*—&P, we obtain

— E(e—€P)(p* —€P) + oylp* —P| > 0. (1.30)

If we divide it by p* — P and study the cases p*>eP and p*<eP, we obtain
the yield criterion.
We take the derivative of W1P:

WP (e, e? ) = (¢ — €P) + oy |éP|. (1.31)

If the flow rule holds, it is easy to see that the the energy balance is also
verified.
Finally, if the energy balance holds, then

ol = oy |éP|. (1.32)

Thus, if |o|<oy, then éP=0. Otherwise £ and ¢ have the same sign.
[

By using this, it is clear that the plasticity criterion can be written as the
minimization an energy defined as the integral of W1P.

Three-dimensional Model

In 3D, the stress-strain relation can be written as

o=FE:(e—¢€"). (1.33)

The Von-Mises criterion is now given by the function

flo) = \/gs:s — oy, (1.34)

12
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where s:=0 — TrT"I is the deviatoric stress. We also recall that this criterion
imposes that TreP=0.
We can define the energy density as

1 2
W3P (e, e?, p) = 5(6 —el)E:(e — &)+ \/;Uyﬁ (1.35)

and, by following the same steps described in 1D, we can show that cal-
culating the evolution of plasticity in 3D is equivalent to minimizing this
energy.

1.2.2 Damage-Plasticity Coupling

In this section, in order to construct a family of models that account
for plasticity and damage, instead of proposing the evolution laws for each
variable, we work directly with a suitable form of energy and, by minimizing
this energy, we deduce the constitutive relations. For simplicity, we remove
volume forces from our calculations

We recall that, in section 1.1.2, we obtained a total energy for brittle
damage:

Eprittie (U, ) = / <¢(a, e(u)) +w(a) + %wMQVa-Va) dsQ. (1.36)

Q

We recall that the evolution of the system for quasi-static loading can be
obtained minimizing this energy with respect to u and «. A perturbation in
the direction u gives us the static equilibrium and a perturbation in « gives
us the damage criterion.

In section 1.2.1, we showed that the evolution of the plasticity minimizes
the energy

1
Epiast(,€7) = / (§E(e — eP)? +0yﬁ>d9 (1.37)
Q

in 1D, and

£ (e,6") = /Q (%(e _eP):E:(e — ) + \/gayp) dQ (1.38)

in 3D. By examining perturbations in € and €?, obtain the static equilibrium
and the plasticity criterion, respectively.

As we can see, the problems of damage and plasticity are similar in the
sense that the quasi-static evolution in both cases is found after minimizing
the total energy. For the coupled problem, we are going to use an energy

13
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form that is, in a way, a combination of the damage energy and the plastic
energy. For that, we are going to assume that the yield stress now depends
on the damage, that is, oy =0y («).

We define the the following 1D and 3D energies for the damage-plasticity
(DP) coupling:

8117?3(1" 5p7?7 a) - / <1E(a) (5(u) - 5p)2 + O'Y(a)p + w(a) + %IUngO/Z)dQ

o \2
(1.39)
and
e po) = | (%(a<u)—ep):E(a):(e(u)—sp)+\/gay(a)ﬁ+w<a)+%wle2|va|2)dQ.
(1.40)

To obtain the quasi-static evolution criterion, we minimize the total en-
ergy with respect to all three variables (u, e” and «):

e The minimization of the displacement gives us the static-equilibrium:

dive =0 , where o = E(a):(e(u) — €P). (1.41)

e The minimization of the plastic strain gives us

\/g <oy(a) and ||| (\/? —oy(a)) =0 (1.42)

e The minimization of « gives us the new damage criterion (after taking
the derivative with respect to a and integrating by parts). In 1D:

%E(o/)(e(u) — P2 4+ o (a)p + w(d) —w P’ >0 (1.43)
In 3D:
%(r—:(u) —eP):E'(a):(e(u) — €7) + \/gag/(a)ﬁ—l— w' (o) — wil?Aa > 0

(1.44)

We also have &=0 when we have a strict inequality.

Example 1.2.2. Consider a bar given by Q=[0, L] under traction, where
the displacement at the extremities are controlled. We want to calculate the

14
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evolution of damage and plastic strain for the homogeneous case. We consider

the case 09 < /w1 Ey. We take the functions
E(a)=FEy(1-a)* , wl)=wa , oy(a)=0cy(l—a)’ (1.45)

Since we are assuming uniformity in space, we only have to calculate the
scalars o, €, €P and «.
We have 3 different stages:

e clastic phase: it is easy to see that while ¢ < +/o%./Ey, then o <
oy (a)=cy and there is no change in the plastic strain. Since there is
no plastic strain, the damage criterion is the same for brittle materials
and we see that the bar does not suffer any damage.

e plastic phase: if € > /0% /Ey, then plastic strain evolves. In a pure
traction test, the plastic strain and the cumulated strain are the same

and we must have Ey(e—eP)=0%. Thus p=eP=c—0% | Ej.

The damage criterion becomes

(0y)”

—(1—a) = 2(1 — a)o)-p+w, > 0. (1.46)
0
It is easy to see that for =0, we have a strict inequality while e? <57 —
7y v
2Eo

e damage-plastic phase: the plasticity continues to evolve and the plastic
evolution criterion gives us P = e—o% | Fy.

The damage criterion is now

. (1 . a) (UY>

—2(1 — )oY p+w;, = 0. (1.47)
Eq

We can thus find

W 495w
Ey p oY

o = cro—,Y' (148)
7 T2p

Figure 1.2 shows these three phases. We see the normalized (in function

of damage threshold) stress ¢ = o/o. and strain € = o/e.. We can clearly
identify the three phases in the stress curve.

15
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— Stress
- - Damage
® e Plastic Strain

Strain

Figure 1.2: Damage (dashed red), normalized stress (blue) and plastic strain
(green dots), according to example 1.2.2.

1.3 Material Behaviour

In order to illustrate the reach of such models, we show some examples
of material behaviour that we can obtain only by changing how the function
E(:), w(-) and oy(:) depend on a. The curves were obtained considering
homogeneous damage, as in example 1.2.2.

In Figure 1.3, we have E(a)=(1 — «)? and w(a)=a and we don’t have
plastic strain. We can clearly see an elastic phase and then a phase where
damage evolves. By taking into account the plastic evolution (Figure 1.4),
we see that we have now three phases (elastic, plastic with no damage and
plastic with damage). It is important to notice that, for both models, the
stress is maximal before the beginning of the damage phase and then it
decreases until it reaches zero.

For this next set of models, where we take w(a)=a?, we see that the

behaviour changes. In Figure 1.5, we see the evolution of brittle damage.
There is no longer an elastic phase and, as strain increases, both damage
and the stress increase, even though the relation stress-strain is no longer
linear because of damage evolution.

16
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— Normalized Stress
— Damage

0.0 0.5 10 15 20 25
Normalized Strain

Figure 1.3: Brittle damage. F(a)=(1 — a)? and w(a)=a.

— Normalized Stress
Damage

0.0 0.5 10 15 2.0 25
Normalized Strain

Figure 1.4: Ductile damage. F(a)=cy(a)=(1 — a)? and w(a)=a.
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— Normalized Stress
Damage

0.0 0.5

10 15 20 25
Normalized Strain

Figure 1.5: Brittle damage. F(a)=(1 — a)? and w(a)=a?.

— Normalized Stress
—— Damage

Figure 1.6: Ductile damage. F(a)=0y(a)=(1 — a)? and w(a)=a?.

" Normalized Strain

2
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The list of models described above is, of course, far from extensive. Many
other evolution laws could be created by taking, for instance, a different
polynomial degree for the previous expressions or by combining them. It is
important to notice that when we take functions F, w and oy that depend
linearly or quadratically on «, the damage problem is linear, which is a
easier to calculate, specially numerically. If F(«)/oy(«) is constant for every
«, then the plasticity problem depends only on the strain, and not on the
damage.

1.4 Dynamic Damage Models

To formulate the evolution of the dynamic system, we are going to use
the principle of least action, as in Li [28].

Suppose we have a mechanic system {2 whose displacement is u and stress
is o(u). At each instant ¢ € [t1,t3] we impose a displacement up(t) on
0, C 02 and a normal stress T(t) on dr C 0f2. We also suppose that
0,07 =0 and 90, dr = 092. We have the following equations:

pi =dive + f on ()
u=up(t) ond, (1.49)
on=T() on Jr.

We fix a test function w such that w(z,¢)=0 on 0, for all t € [t1,t5] and
w(t=t;) = w(t=ty) = 0 on Q. Then

/pu-wdQ:/(diva'(u)-w+f-w)dQ (1.50)
0 Q

and Green’s formula shows that

/qu-wdQ:/au(a-n)-wdA+/6TT-wdA—/Qa(u):s(w)d9+/9f-wd9.
Jou

' (1.51)

We integrate this equation between instants t; and t,, and after an inte-
gration by parts, we obtain

( /Q pu-wd9> z - /: ( /Q pu-wd9>dt:
/: ( /a TwdA)dt - /: ( /Q o (w):e(w)d) dt + /: ( /Q fawd@) dr.

(1.52)

19



Chapter 1 — Dynamic Gradient Damage Models

We define the kinetic energy of the system

K (i) = / R (1.53)

and the potential energy
P(u) = = / o(u):e(u)dQ — / frudQ — / T-udA. (1.54)
2 Ja Q or

Applying the boundary conditions of w on t; and t5, we have

2 oP oK .
/t1 <%w - %w> dt =0, Yw. (1.55)

We have thus shown that the problem (1.49) implies equation (1.55). It is
easy to see that equation (1.55) can be obtained by searching for stationary
points of an action functional defined by

S(u, ) = /t CPut)) — K(at)dt. (1.56)

1

This motivates us to construct a dynamic gradient model by defining
a suitable form of the action functional. Instead of using a purely elastic
energy [ o:e, we are going to use the energies defined by equations (1.39)
and (1.40) with the terms containing the plastic strain and energy dissipated
by the damage process. We remember that they were written as

(lE(a)(€ —&P)? + oy (a)p + w(a) + 111)1520/2>al§2

Q

and

£3D (e, €” 7, 1) — / (%(s—ap):E(a):(s—sp)—l—\/gay(a)ﬁ—l—w(a)—k%wlﬁVaP)dQ.

Q

We take the external loads into account and define a potential energy as

Ppp(u,e?,a) = Epp(e(u), P, p, ) —/f-udQ—/ T-udA. (1.57)
Q )

T

We define the new Lagrangian by
Lpp(u, e’ p,a,t) = Ppp(u(t),e’(t), p, a(t)) — K(u(t)) (1.58)
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and the action by

t2
SDP(U,H,&Tp,p, Oé) = / ﬁDp<u,?l,€p,ﬁ,Oé,t)dt. (159)
t1
We define the admissible displacement space C and admissible damage
space D by

C ={u: u(t)=uy(t) on 0,}

D={ae0,1]: a>0on0Q} (1.60)

In order to preserve the irreversibility of damage and plasticity, instead
of searching for stationary points, we will now only consider the unilateral
minimal condition of the action, that is, we search an displacement ueC,
damage a€D and €? such that

SDP(u7u7€pap7 O'/) S SDP(w7w7p7 ||p - €p|| +ﬁ7 6) (161)

for any weC, f€D and p.
In particular, if we take f=a and p=eP, we must have

and, by following the previous calculations in reverse order, we find the prob-
lem given by (1.49).

We now set w=u and p=eP to study the damage evolution. If at an
instant ¢ the damage is «; then we define the admissible damage D, taking
oy and the irreversibility condition into account:

(i — ) =0 (1.62)

D, ={B:8>0and > a; on Q}. (1.63)
For every €D,
0Sps
— > 0. .
505 (5~ a) 20 (164)

From this, it is easy to see that we obtain the same damage criterion for
dynamic configurations and quasi-static loading:

0Epp
Oa

Finally, we look at the plastic evolution by taking w=u and S=a. Then,
for any p, we must have

(u,e?,p,a)- (B —a) > 0. (1.65)

SDP(uaua €p>pa CM) S SDP(u7u7p7 Hp - €p” _'_p? CY),
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which is the same criterion used in the quasi-static case, that is, for any p

gDP(u7€p7p7 Oé) S 5DP(U;p7 Hp - 5p“ +]57 Oé).

The whole set of equations can now be written:

(1.66)

e Dynamic evolution:

pi =dive + f on ()
u=up(t) on d,
on="T() onJdr.

e Damage evolution: for any >0 admissible, we have

0Epp
Oa

(u,€”, p, @)-(8 — a) > 0.

e Evolution of plastic strain: for any p, we have

SDP(ua€p7p7 CY) S 8DP(u7pa Hp - EPH +ﬁ7 Oé)'

(1.67)

(1.68)

(1.69)
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2

Numerical Implementation and
Validation

In this chapter, we detail the numerical implementation of the gradient
damage model using the finite elements method. We consider a spatial dis-
cretization based on the standard Lagrange family of P1 elements, unless
otherwise stated. We first discuss the damage problem, calculations of the
plastic strain and dynamics, showing the algorithms and numerical methods
used for each separate problem. We then show some test cases to validate our
implementation and we discuss some qualitative properties of the dynamic
damage model.

For the time discretization, we consider the instants ¢;, with t;1=t; + At.
In 1D, the elements of the mesh have the same length Az. In 2D and 3D,
we will specify whether we are using a structured mesh or an unstructured
mesh.

We finish this chapter by detailing the implementation of the discontinu-
ous Galerkin (DG) methods. We write the variational formulation associated
to it and how the type of element used affects our results.

For the calculations, we used the FeniCS (Logg [30]) library and the
industrial code Furoplezus [51].

2.1 Implementation of Plasticity
We present here the algorithm we used when calculating the evolution of
the plastic strain. We will consider that the total deformation ¢ is known

and fixed, and we are only interested in the evolution of €”. Even though this
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algorithm is commonly used in solid mechanics, we considered important to
detail it here.

The only important remark here is that this algorithm considers the yield
stress oy to be constant. When coupling plasticity and damage, the only
necessary change for the algorithm is to consider the yield stress as a function
of damage.

2.1.1 Plasticity in 1D

We first discuss how the plasticity was implemented. We remember from
section 1.2.1 that the evolution of the plasticity can be found by minimising

WP defined by
1
WP (e, e, p) = EE(e — M) + oy p. (2.1)

It is important to notice that this is a local problem, that is, it can be
solved independently in each element or Gauss point.
Suppose that the plastic strain is (¢7)’. We define the auxiliary function

1 .
fle,p) = §Ep2 — Eep+oylp— ()7 (2.2)

In the discrete problem, it is clear the the minimization of f in p is
equivalent to the minimization of WP (g(u),eP) in P.

The function f is strictly convex in p and is differentiable everywhere
except in p=(e?)""1. As a consequence, f has one unique minimum.

We use two auxiliary results:

Proposition 2.1.1. For a given ¢, set 0*=FE(e—(e?)*"'). The value p that
minimizes f(e,p) can be characterized by:

(1) If |o*|<oy, then the minimum is attained in (eP)*~ .
(2) If |o*|>0y, then the minimum is attained at a point such that g—i(a,p):O.

Proof. We write p=(e?)""! + e. Then

Flep) = fle (7)) + %EeQ —o"e+oyle|. (2.3)

(1) If |o*|<oy, then o*e<oy|e| and f(e,p)>f(e, (e7)"')+5Ee?. Hence, the
minimum is attained when e = 0, that is, when p=(g?)"~!.
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(2) If |o*|>0y, we put e=ho*/|c*|, with h>0. Then

Fp) = (e, (7)) + %Eh? ~o*h + oyh. (2.4)

If i is small enough, then f(e,p)<f(e, (?)*"!). Since f is regular every-
where except e=0, we must have %(5, p) =0.

]

Proposition 2.1.2. In the evolution problem, we set o*=E(e' — (eP)""1).
The muinimization of W in €P is equivalent to:

(1) If |o*|<oy: -
(") = (). (2.5)

(2) If |o*| > oy:
() = (eP)i~! + (1 . "—Y‘) (ei . (gp)i—l) (2.6)
and

‘E(gi — (&))] = oy (2.7)

Proof. We have already proved (1) in proposition (2.1.1).

To prove (2), again by proposition (2.1.1), we have to find p such that
g—ﬁ(sl, p)=0.

We notice that for e#£0 and |de|<|e|, we have

le + de| = |e] —|—5eﬁ. (2.8)
e
Then o/
. e
(9p( ,D) e—o +O’y‘€’ (2.9)
Hence,
E(p— (7)Y — B( — (eP)i7Y) + ayﬁ — 0. (2.10)
e
Rearranging the terms,
BE(e®) — p) = ayﬁ. (2.11)
e
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If we write o=FE(e’ — p), then, by taking the absolute values, we obtain
|o|=loy|.
We can write

= 2.12
=T (2.12)
Since we are working on the case |o|=0y < |o*|, we have
e ot —o o*
-7 (2.13)
el lo* —al o]
Finally, by (2.10),
1 e 1 o*
B W 2.14
‘ E(” UY|ey> E(" "Yya*|> (2.14)

This is an elastic prediction - plastic correction procedure: we calculate
the current strain and stress based on the previous time instant assuming that
the material is elastic (elastic prediction). If the stress is inside the elastic
domain, that is, |0*|<oy, we keep it and the plasticity does not change. On
the other hand, if the stress is not in the elastic domain, we update the plastic
deformation (plastic correction).

2.1.2 Plasticity in 3D

In this section, we are going to write the same results as in the previous
section, but now to a problem in 3D. We use the standard Von Mises criterion:

tr(eP) = 0 (2.16)

\/gs : s < oy, (2.17)

where the deviatoric stress tensor s is given by

and

I. (2.18)
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The discrete energy density at the instant ¢ + 1 is written as

1 2 A 2 -
Wi(e,e?) = 5(5 —eP)Ei(e —€P) + \/;astp — (")) + \/;aypl, (2.19)
where
el = Ve:e. (2.20)

We now define e as the deviatoric part of ¢ and since tr(e”)=0, the mini-
mization of W in P is equivalent to

min  f(p), for every point in (2.21)
p: tr(p)=0
where
2 .
f(p) == pp:p — 2pe:p + \/;ayllp — (") (2.22)

(The Lamé’s coefficients are denoted by A and p.)

We set o*=E:(' — (eP)""!) and its deviatoric part is given by s*=2u(e —
("))

The following propositions are the 3D equivalents of the auxiliary results
in section 2.1.2:

Proposition 2.1.3. The value p that minimizes f(e,p) can be characterized
by:

(1) if ||s*|| < \/gay, then the minimum is attained in (eP)"~';

(2) if ||s*]] > \/gay, then the minimum is attained at a point such that

g—i(e,p) =0.
Proof. We write p = (¢P)""! +§. Then
fle,p) =

;mm—%wm+vgmwp—@@FW+f«fYﬂ—w@5“WfV*+mw@5“l

FUEPY ™) + 1d:6 + 2upe(e”) ™" — 2p(e”)" ™ 1(e")' 7 — 2ue:d + \/gw\lfﬂl =

3

. . 2
FUEP)TY) + p0:0 + 200:(e7)' ™" — 2pe:d + \/;UYWH =

ﬂ@%Fw+u&a+¢§mww—wﬂd
(2.23)
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(1) If ||s*]| < \/gay, then f(e,p) > f(e, (€?)""')+ud:6. Hence, the minimum
is attained when 6 = 0.

(2) 1t [l5°| > /20y, we put & = hs*/||s°|, with h > 0. Then
- 2 .
F) = F()) 4y 2ovh = |+t (220
If h is small enough, then f(p) < f((e?)""!). Since f is regular everywhere

except 6 = 0, we must have %f(p) =0.

Proposition 2.1.4. The minimization of W in €P is equivalent to:

(1) 1 |5 < /2oy
(eP) = (eP)' 1 (2.25)

(2) I Is'l| > /30y

. - \/%UY ) -

N <e’ — (e?)" ) (2.26)
s

Proof. The proof of (1) follows directly from the last proposition.

To prove (2), we have to find p such that g—i(a,p) =0.
We derive f and apply it to a tensor ¢:

of 5 iy 2 p—(em)t o
a—p(s,p).& =2u(p—e€"):0 + \/;O'y o= (@) ] 0 =0. (2.27)
If
o' = E:(e" - p) (2.28)

and s is its deviatoric part, we must have

¢ — 20 p— (")}
VZYM—@W*W (2.29)

A 2
It = \/;ay. (2.30)
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We note that ‘ .
s'=s"+2u((e")' ™ —p) (2.31)

and, by equation (2.29), s* and s* have the same direction.
Since we know s*, we obtain

. 2 s*
st = —O'Y—*. (232)
\/; [Is*]]

Finally, applying this to (2.29) and (2.31),

p—(eP)i! = glle = _ Gl = sl *H;’ f*H _
Jiw a2
(2.33)
\/gUY s* sov\ ,
-4t | —=|1— " | (¢ = (")"").
ls*[l ) 2p 5%
We conclude by taking (eP)" = p. O

2.2 Implementation of Damage

The implementation of damage using the FEniCS library is straight for-
ward: we define the total energy of the system and find its derivative with
respect to « and in the direct S using the derivative(energy, alpha,
beta) command.

We solve the resulting constrained minimisation problem using the class
OptimisationProblem along with the NonlinearVariationalSolver.

The main advantage of this approach is that, once the code is imple-
mented, studying the influence of the functions F(«), w(a) and oy (a) de-
mands little effort in terms of programming.

We now detail the implementation of the damage problem in the indus-
trial code EUROPLEXUS. We use the model E(a)=(1 — a)?Ey, w(a)=wa
and oy (a)=(1 — a)?0?..

The damage problem consists of finding & € [amin, ¥mas] that minimizes
the total energy, that is

/(a — 1D)e’Ee’B + w8+ wi ?°VaVp +2(a — oypp > 0VE.  (2.34)
Q

We have to solve a linear system on the form Aa = b, where

A = (" Ec 4 20yp) + w °VTV (2.35)
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and
b=e"Ee® +20yp — w. (2.36)

The first step is the initialization of our variables and of the libraries used
(PETSC and TAO).
Initialization:

e Create the table containing the value of « at each node.

Store the determinant of the jacobian Jy on each element at t = 0.

Initialize PETSC and TAO.

Assemble the constant matrix Ag := w2VIV J,.

Ao(i,7) = Ao(J, 1) = 6;; if the material of the node 7 cannot be damaged.

Set the vectors v, = 0 and e, = 1

At each time step 7 + 1:

e update the value of ayi,:=a’;
e assemble the matrix A; := e Fe® 4 20y p;
e assemble vector b and the matrix A = Ay + Ay;

e find the vector o'™! by solving Aa = b using TAO;

It is important to recall that the solution of this last linear system using
TAO also takes into account the irreversibility condition. The GPCG solver
(J. Moré and Toraldo [26]) is used. Others solvers, such as the Scalable
Nonlinear Equations Solvers (Balay et al. [8]) were tested, but with a less
satisfying performance in our problems.

2.3 Dynamic Numerical Schemes

In this section, we describe the schemes used to solve the dynamic evolu-
tion. We first discuss each method for an elastic material and then we add
its extension to damage and plasticity.

We are going to detail three schemes: the explicit Newmark scheme,
an implicit variational scheme and the generalized midpoint rule scheme,
studying the influence of vibrations, convergence rate, energy dissipation
and stability for each one.
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2.3.1 Explicit Newmark Scheme

This method is used to solve second order (linear or non-linear) differential
equations. It is commonly used in civil engineering for numerical evaluation
of the dynamic response of structures. In particular, the industrial code we
used for the large calculations uses this scheme, so we first investigate its
properties and how to couple it with damage.

The finite elements method gives us a system of the form

MU(t) + KU(t) = f(t). (2.37)

We will approximate U (t), U(t) and U(t) by the sequences U?, U? and U
satisfying
U = U+ At + B
it — [ + %(Uz + Uz‘—i—l) (2.38)
MUH—l — f(ti-i-l) — Kyitt,

It is easy to see that this implies that

(U = U) = (U = U + AU = U + GO =07 o
Ui _ Ui—l _ %(Ui—l + Uz) ’
Therefore )
Ut 20"+ U™ = (At)*U". (2.40)
We obtain the equivalent equation for the Newmark scheme
Ui+1 _ 2Ui Uz'—l ) )
M U KU = £, (2.41)

(At)?

We can see that this scheme is a second order scheme (in time). It is now
a well-known fact that this scheme is stable if
max \;(At)? < 4, (2.42)
J
where \; are the eigenvalues of the problem KU = AMU.

In particular, for a uniform 1D mesh with elements of length Az, we
have that the eigenvalues of the laplacian are smaller than 4/(Az)?. For a
material of density p and Young’s modulus E, we obtain thus the following
CFL condition

At p
— <= 2.43
Ax — | FE ( )

We now have to change the matrix K because of damage and the force f

to include the effects of plasticity. In order to avoid confusion, we will use the
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notation u for the displacement, v for the velocity, a for the acceleration , «
for the damage and P for the plastic strain. When written in the variational
form, form a test function w, we have

/Qpade + /Q E(a)e(u)e(w)dV = /QE(a)gpa(w)dV (2.44)
which, can be written as
Ma+ K(a)u = f(a, €P). (2.45)

We propose the following algorithm:

(1) Update boundary conditions.
(2) Calculate v = u’ + Atv’ + %ai.
(3) Repeat:

(3.1) solve the plasticity problem;

(3.2) solve the damage problem;

(3.3) stop when the alternate minimisation converged for damage o'*!

and plastic strain (e?)"*!.
(4) Find the acceleration Ma'™ = f(a'*! (eP)™) — K(a)uit?,
(5) Find the velocity v'! = v’ + £(a’ + a'*?).

(6) Advance to time step i + 1.

As we’ll see in the validation section, this method produces good results
with an almost-constant energy. The main problem we face here is the ap-
parition of vibrations.

We also notice that when the yield stress and rigidity tensor have the
same dependency on the damage, the result of the plasticity problem is in-
dependent of the damage. For this reason, the damage and the plasticity
problem will be solved only once, allowing us to gain a significant amount of
time at teach iteration.

2.3.2 Implicit Variational Scheme

The objective of this subsection is to propose a simple, intuitive and
easy to implement scheme that allows us to compare results using a different
discretization.
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Contrary to the previous section, we now propose a method for the dy-
namic equation that should be solved, along with the problems of damage
and plasticity, until convergence of all variables.

For this scheme, we use the same ideas of Bourdin et al. [14]. We use the
following approximation for the second derivative of wu:

i u — 2ut 2

i’ = 5 : (2.46)

The problem of dynamics becomes finding the displacement u**! solution

of

A A A it ot — i1
/(s(u’“)—(sp)’“):E(a’“):s(w)dV = p/ AP -de—p/ A—tz-de,
Q Q Q
(2.47)
for any test function w admissible.

We show that this scheme is dissipative for the elastic problem. In fact,
the problem can be written as

‘ Vit _ i
/ e(u™):E:e(w)dV = p/ ———wdV, (2.48)
where . -
Cout—u
b= 2.4
v Y (2.49)

By taking w=vt'At=u"t'—u’, we find

/Q e(u): B (e(u ) — e(u))dV = p /Q (W — o), (2.50)

We remark that

) . 1 . 1 1 . 1 S
(Uerl _ U1>‘UZ+1 — §“Uz+1H2 _ §”Uz||2 4 §Hvz+1H2 4 5HvzHZ o Uz_Uerl —
1., . 1. . 1. . )
ST = Sl 2+ S o — o
(2.51)
This shows us that
1 i i Py i 1 i i Py i
(Ge(u™):Ee(w™) + Sv*) - (Ge(w'):Ee(u') + S|lv'|*) =
2 ) 2 2 , 2 (2.52)
—5 (™ —e(u)):Bi(e(u™ —e()) = Sl —o'|"
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We see that the total energy between two time steps always decreases if
there are no sources of energy to the system. From these calculations, we
can expect this change of energy to be proportional to At? at each time step.

In conclusion, this method is very dissipative (dissipation proportional to
At), and the numerical solution is more regular than the analytic solution
(this becomes very evident when studying a problem containing shockwaves).
This regularizing effect, even though undesirable in certain cases, can be
helpful when analysing the behaviour of displacement and velocity near the
cracks, as will be discussed later.

Even though we don’t have stability problems, we still have to pay at-
tention to the time step in order to control how much energy is dissipated
numerically.

2.3.3 Generalized Midpoint Rule Scheme

In this section, we detail a 1D algorithm that can be seen as a general-
ization of the previously proposed variational scheme. This scheme and the
calculations presented could easily be extended to 2D and 3D, but we chose
to focus on the 1D case, as we wanted to try a third method to obtain the
qualitative behaviour of our model.

We start by presenting the scheme and the calculations in Simo and
Hughes [49] for an elastic-plastic problem.

We fix n € [0,1], 6 € [0,1] and 6 € [0,1], and define

flo) =|o| —oy. (2.53)
For a variable X, we define the notation
Xo=01-0)X; +0X;11. (2.54)

We have the following equations for an elastic-plastic material:

’
Ui+l — U; = Atvn

o p—(”i“zt_”")w + [y 00w =0, Vw

elry — e = p sign(ag), p > 0 (2.55)
flos) <0
| p- f(os) =0.
To obtain the stability, we take the test function w = u;41 — u; = Atw,,.
Therefore
Qp(viﬂ — v;) U, + /QO'@(U%_H —u}) = 0. (2.56)
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We have
(Vi1 =vi)vy = (vi1—vi) ((1=m)vitvisn) = o2y = (L=n)of+(1=2n)vivisa,
(2.57)
Since )
Vg1 = 5( — (Vi1 — v) 2+ vl + vf), (2.58)
we have
1
(Vigr — vi)vy = 5(%2“ —v7) = (1/2 = n)(vig1 — v3)*. (2.59)

From this general expression, we can study the properties for each par-
ticular case.

Purely Elastic Case

When there is no plastic strain, we have

/Q,o(viﬂ — v;) vy, + /Q Eugy(u; 4 — u;) = 0. (2.60)

We can then see that the difference of total energies (elastic energy plus
kinetic energy) between two different instants is

p 1 p 1 1 1
| St Bl = [ St B = [ Gomomn—u+ G0~

(2.61)
From that, we obtain the the scheme is table if >1/2 and #>1/2 and
non-dissipative if n=0=1/2.
Elastic-Plastic Case

