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The focus of this thesis was to bring a nonlinear geophysical approach to urban hydrology. It aimed the study of rainfall non-linearity scaling and intermittency, achieving a stochastic very short-range forecast (nowcast) method, as well as its application to hydrological processes in (semi-) urban environments.

The overall hydrological modelling part concerned the Bièvre Valley, which is a 110 km 2 semi-urbanised area in the southwest of Paris region. Therefore, three different studies were performed within this area using two hydrological models: the conceptuallybased semi-distributed model InfoWorks CS over the total Bièvre catchment, and the physically-based fully-distributed model developed at École des Ponts ParisTech called Multi-Hydro over two sub-catchments. The main goals were to better understand the impacts of spatio-temporal variability of rainfall data by using two products (the Météo-France C-band radar data with a resolution of 1 km x 1 km x 5 min; and the ENPC DPSRI X-band radar data at a 250 m x 250 m x 3.41 min resolution) as input to the models, and to identify the capacities of each model to deal with better resolution data, such as the X-band one. Then, the obtained results demonstrate that the reliability of the hydrological simulations are intrinsically dependent on rainfall data features.

Moreover, the X-band radar data could measure higher peaks of rainfall rates and the fully-distributed model was more sensitive to better resolution rainfall data.

Afterwards, different weather rainfall radar data from completely different sites (Brazil, France, Japan) were statistically analysed and compared in order to improve the general comprehension of rainfall scaling behaviour. In addition, the Intersection Theorem was applied to highlight the impacts of spatial variability of a virtual rain gauge network.

The latter was generated by considering the location of each Bièvre Valley sub-catchment mass centre. Thus, it was possible to identify that the fractality of the virtual network led to an important information loss of the rainfall fields, biasing their statistics. This indicates that the common process (largely found in literature) of radar data calibration using rain gauges should be properly take into account this fractality.

ii iii Finally, a new stochastic nowcast approach was proposed, using the continuous in scale cascade Universal Multifractals (UM) model. This method was applied to weather rainfall radar data from the Parisian region. Although it is still under development and needs some improvements, the first results obtained with this forecast model presented here in this thesis are really encouraging and once more corroborate to the need of high spatio-temporal resolution data to cope flash floods.

Résumé

L'objectif de cette thèse était d'apporter une approche géophysique non linéaire à l'hydrologie urbaine. Elle a visé l'étude de la mise à l'échelle et de l'intermittence de la non-linéarité des précipitations, la réalisation d'une méthode de prévision stochastique à très court terme ("nowcast"), ainsi que son application aux processus hydrologiques dans les environnements (semi-) urbains.

La partie modélisation hydrologique globale concerne la vallée de la Bièvre, zone semiurbanisée de 110 km 2 dans le sud-ouest de la région parisienne. Par conséquent, trois études différentes ont été réalisées dans cette zone à l'aide de deux modèles hydrologiques: le modèle conceptuel semi-distribué InfoWorks CS appliqué sur tout le bassin versant de Bièvre; et le modèle physique complètement distribué Multi-Hydro, développé à l' École des Ponts ParisTech, appliqué sur deux sous-bassins versants de la Bièvre. Les principaux objectifs étaient de mieux comprendre les impacts de la variabilité spatiotemporelle des données pluviométriques en utilisant deux produits (les données radar bande-C de Météo-France avec une résolution de 1 km x 1 km x 5 min, et les données radar DPSRI band-X de l'ENPC à une résolution de 250 m x 250 m x 3.41 min) comme entrées pour les modèles, et d'identifier les capacités de chaque modèle pour traiter des données à une meilleur résolution, telles que la bande-X. Ensuite, les résultats obtenus démontrent que la fiabilité des simulations hydrologiques dépend intrinsèquement des caractéristiques des données pluviométriques. De plus, les données du radar bande-X pourraient mesurer des pics de précipitations plus élevés et le modèle complètement distribué était plus sensible à une meilleure résolution des données pluviométriques.

Par la suite, des données de pluie provenant des radars météorologiques situés à des endroits complètement différents (Brésil, France, Japon) ont été analysées et comparées statistiquement afin d'améliorer la compréhension générale du comportement scalant des précipitations. De plus, le théorème d'intersection a été appliqué pour mettre en évidence les impacts de la variabilité spatiale d'un réseau virtuel de pluviomètres, qui a été généré en considérant l'emplacement des centres de masse de chaque sous-bassin versant de la vallée de la Bièvre. Ainsi, il a été possible d'identifier que la fractalité v du réseau virtuel a conduit à une perte d'information importante des champs de pluie, biaisant leurs statistiques. Cela indique que le processus commun (largement retrouvé dans la littérature) de calibration des données radar à l'aide de pluviomètres devrait prendre en compte correctement cette fractalité.
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Introduction

The increase in global urbanisation and population density emphasises the importance and the need to improve the adaptation of (peri-) urban areas mainly to climate change.

Managing extreme weather events, particularly intense precipitation ones and heat waves, in these areas is a major challenge for the future. The population's demand for a better quality of life motivates an improvement in the ability to measure, understand, model and predict hydrometeorological processes in urban and peri-urban environments, aiming at better flood control and associated risk management. According to the National Weather Service of the USA (NWS, 2014), almost 8 billion dollars are spent in damages and 82 people die due to floods per year (average flood losses from 1985 to 2014) in the USA. Furthermore, 78% of the reported emergencies are weather related [START_REF] Weaver | An overview of a demographic study of united states emergency managers[END_REF], which highlights the importance of the main goals of this PhD research: to have better predictive models, but also obtaining better observations of rainfall.

Conventional local measurements in urban areas generally do not meet the World Meteorological Organisation (WMO) criteria for the measurement of precipitation (WMO, 2014). Better spatio-temporal scales with accuracy and reliability are required. In this way, the use of ground-based remote sensing has been very important in elucidating complex urban environment structures, thus expanding hydrometeorological challenges (NRC, 2012).

Weather radars provide high-resolution spatio-temporal measurements of rainfall fields (see Appendix A for an overview). However, as they do not measure rainfall directly, radar-based rainfall estimates may have substantial uncertainties. To quantify the uncertainty on accumulated rainfall, comparison of different radar products or of ground measurements and precipitation estimates on radar pixels where rain gauges are located are usually performed [START_REF] Diss | Ability of a dual polarized x-band radar to estimate rainfall[END_REF][START_REF] Tabary | Evaluation of two "integrated" polarimetric quantitative precipitation estimation (qpe) algorithms at c-band[END_REF][START_REF] Emmanuel | Evaluation of the new french operational weather radar product for the field of urban hydrology[END_REF][START_REF] Figueras I Ventura | Long-term monitoring of french polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at c-band[END_REF][START_REF] Figueras I Ventura | The new french operational polarimetric radar rainfall rate product[END_REF]. [START_REF] Tabary | The new french operational radar rainfall product. part i: Methodology[END_REF] shows that in spite of the greatly improved quality of the operational C-band radar estimates, the average differences between the radar estimates (without calibration with rain gauges) and ground observations vary between 28% and 54%, while increasing with the distance. Polarimetric radars have opened a new perspective to improve estimates for stronger rainfall by using the specific differential phase (KDP) values to directly estimate the rainfall intensity [START_REF] Oguchi | Differential attenuation and differential phase shift of radio waves due to rain: Calculations of microwave and milimeter wave regions[END_REF][START_REF] Seliga | Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[END_REF][START_REF] Figueras I Ventura | Long-term monitoring of french polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at c-band[END_REF].

Coming together with rainfall data improvement, an efficient stormwater management also deals with the accuracy and reliability of hydrological models, especially in urban areas where response times are shorter due to high levels of imperviousness and smaller catchments [START_REF] Schilling | Rainfall data for urban hydrology: what do we need?[END_REF][START_REF] Aronica | Studying the hydrological response of urban catchments using a semi-distributed linear non-linear model[END_REF][START_REF] Berne | Temporal and spatial resolution of rainfall measurements required for urban hydrology[END_REF][START_REF] Segond | Simulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applications[END_REF][START_REF] Schellart | Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale[END_REF]Gires et al., 2012a;[START_REF] Ochoa-Rodriguez | Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation[END_REF][START_REF] Simões | Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator[END_REF][START_REF] Peleg | Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling[END_REF]. Additionaly, the anticipation (or forecast) of severe rainfall events at a short period of time is still a major open issue [START_REF] Einfalt | A radar rainfall forecasting method designed for hydrological purposes[END_REF][START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF][START_REF] Berenguer | Hydrological validation of a radar-based nowcasting technique[END_REF][START_REF] Macor | Multifractal methods applied to rain forecast using radar data[END_REF][START_REF] Liguori | Using probabilistic radar rainfall nowcasts and nwp forecasts for flow prediction in urban catchments[END_REF]NRC, 2012).

This PhD research is conceptually structured as presented in Figure 1 which is indispensable and appropriate, especially considering that they have been primarily developed to account for the extreme variability of rainfall fields through a wide range of scales (Schertzer and Lovejoy, 1987a;[START_REF] Lovejoy | Multifractals and rain[END_REF]Schertzer and Lovejoy, 1997). Additionally, in this framework, it is possible to recall the hydrological applications' restraints, which somehow impose an adaptation of the theoretical framework. More precisely, the limitations of semi-distributed hydrological models (in comparison to fully-distributed ones), notably while considering the spatial variability of rainfall, and the risks of merging radar rainfall data with rain gauges' network are analysed.

Lastly, Chapter 3 proposes another important application of the UM framework: a stochatic model for very short-range rainfall forecasts (or nowcasts). Firstly, the theory of UM fields' simulation and its application to rainfall nowcasts are reviewed. In the following, a simplification of previous UM nowcast schemes [START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF]Schertzer and Lovejoy, 2004b;[START_REF] Macor | Multifractal methods applied to rain forecast using radar data[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF] is performed, by adapting the UM theory to overcome numerical instabilities. Then, the model is applied to the ENPC X-band radar data, followed by a discussion of the results and some perspectives to improve the model. Finally, Conclusions and Perspectives are presented.

Chapter 1

Complexity of urban stormwater management

The urban population in 2014 accounted for 54% of the total global population (UN, 2014), and by the deadline of the new Sustainable Development Goals (SDGs) in 2030, 60% of all people will reside in cities, in comparison to 30% in 1950 [START_REF] Who | World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals[END_REF]. This growing urbanisation, which typically creates impervious surface areas, with hydraulically efficient drainage, results in much faster drainage than in natural areas [START_REF] Burns | Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform[END_REF][START_REF] Furusho | Analysis of the hydrological behaviour of an urbanizing basin[END_REF]) and consequently has the potential to produce huge floods, threatening human security and infrastructure integrity [START_REF] Schmitt | Analysis and modeling of flooding in urban drainage systems[END_REF][START_REF] Huang | Effect of growing watershed imperviousness on hydrograph parameters and peak discharge[END_REF][START_REF] Chen | A gis-based model for urban flood inundation[END_REF][START_REF] Olang | Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the nyando river basin, kenya[END_REF][START_REF] Salvadore | Hydrological modelling of urbanized catchments: A review and future directions[END_REF]. In order to manage its impacts and their consequences, continuous simulations are required [START_REF] Braud | Hydrology of peri-urban catchments: Processes and modelling[END_REF][START_REF] Fletcher | Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art[END_REF].

The study of water fluxes in urbanised catchments is crucial for human lives, environmental protection and infrastructures safety and is clearly gaining importance during the past few decades [START_REF] Niemczynowicz | Urban hydrology and water management-present and future challenges[END_REF][START_REF] Price | Urban hydroinformatics: data, models, and decision support for integrated urban water management[END_REF][START_REF] Schirmer | Current research in urban hydrogeology-a review[END_REF][START_REF] Braud | Hydrology of peri-urban catchments: Processes and modelling[END_REF][START_REF] Fletcher | Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art[END_REF][START_REF] Ochoa-Rodriguez | Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation[END_REF][START_REF] Salvadore | Hydrological modelling of urbanized catchments: A review and future directions[END_REF][START_REF] Simões | Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator[END_REF][START_REF] Paz | Multifractal comparison of reflectivity and polarimetric rainfall data from c-and x-band radars and respective hydrological responses of a complex catchment model[END_REF]. However, the high heterogeneity of urban areas, the difficulties to measure the physical parameters and to define the limits of the catchment, and the interaction of the hydrological processes at various spatio-temporal scales make the hydrological modelling a complex task [START_REF] Salvadore | Hydrological modelling of urbanized catchments: A review and future directions[END_REF]. And even with the recent increase of computational power and resolution of distributed data, such as altitude, precipitation and land use, the understanding of hydrological behaviour remains a challenge. In addition, as a fine spatio-temporal resolution of rainfall data becomes mandatory for accurate model validation and exploitation [START_REF] Fabry | High resolution rainfall measurements by radar for very small basins: the sampling problem reexamined[END_REF][START_REF] Berne | Temporal and spatial resolution of rainfall measurements required for urban hydrology[END_REF][START_REF] Salvadore | Hydrological modelling of urbanized catchments: A review and future directions[END_REF], weather radar data have been increasingly

applied to hydrological models due to their ability to spatio-temporally estimate rainfall fields.

Furthermore, there are different types of hydrological models and those dealing with urban stormwater are usually characterised as semi-distributed or fully-distributed models [START_REF] Pina | Semi-distributed or fully distributed rainfall-runoff models for urban pluvial flood modelling?[END_REF][START_REF] Ichiba | X-band radar data and predictive management in urban hydrology[END_REF]. The first are generally conpetual models divided in sub-catchments and need careful calibration. The others, usually physically based and generally more realistic, are two-dimensionally discretised with a land use unit being atributed to each surface pixel.

This Chapter first presents a hydrological modelling performed over a French semiurbanised area using a semi-distributed model. Afterwards, two different smaller sites of the same area are studied using a fully-distributed model, and finally some difficulties to obtain accurate hydrological simulations, comparisons between semi-and fullydistributed models and some perspectives are discussed.

1.1 Bièvre catchment and a semi-distributed model The Bièvre basin has been related to the main floods of the Seine River in the past century. The most known occurred on January 1910, when hundreds of streets were flooded and over 14,000 buildings were affected in Paris [START_REF] Mellot | Paris inonde[END_REF]. There were other two major floods later on also with catastrophic features: 1973 and 1982. In the latter, in only three hours 110 mm of precipitation was recorded over the Bièvre Valley, of which 80 mm in just 40 minutes. At that time, it was estimated: 10 x 10 6 m 3 of water run-off, 2 x 10 6 m 3 of water discharged downstream, 0.5 x 10 6 m 3 stored in ponds and 7.5 x 10 6 m 3 that invaded the valley.

Following the mentioned severe flood events in 1973 and 1982, local authorities started the construction of storage basins (integrated in the landscape) to limit the consequences of extreme events. Four of these basins along the Bièvre River can be remotely regulated.

In standard situation, basins are locally regulated according to downstream measured water levels, while on extreme situations an optimisation of flows and storage capacity is done at the catchment scale using water levels in the river and in storage basins, along with rainfall data provided by six rain gauges (see Fig. 1.1). The catchment scale regulation is automated although under a permanent human supervision.

InfoWorks CS/Optim Sim models

The Bièvre catchment was modelled using InfoWorks CS (Collection Systems), a widely used semi-distributed model [START_REF] Soft | Infoworks cs 11.0 help file[END_REF]. The area is divided into 27 sub-catchments not yet taken into account in the models. This difficulty motivates the study of events without active regulation, i.e. when gates positions remain unchanged and therefore focusing on the differences associated with rainfall.

(
There are two simulation modes in Optim Sim: the "replay mode" and the "forecasting mode". The first one enables to replay past events by extracting data from the linked database of the six rain gauges of the SIAVB. The rain rates for each sub-catchment are obtained using the Thiessen polygons technique. Then the simulations and observations the simulations with measured flow observations. Rainfall data can be input in three ways: an average intensity (mm/h) over all sub-catchments; a single average intensity time series over all sub-catchments; and an average intensity time series over each subcatchment. In the last case, which was chosen here, a text file with a column containing rainfall intensity in mm/h with 5 min time steps has to be generated for each subcatchment.

Practically, in order to generate the rain over each sub-catchment (R (sub-catchment) ), the Bièvre catchment map (provided by Veolia) with sub-catchment boundaries in GIS format is used along with the radar data ones (Météo-France C-band product and ENPC X-band) (see Appendix B for more details). Then, the weighted average of the radar pixel rainfall rate values (R ij ) by the intersection area of the radar pixels (A ij ) with the sub-catchment areas (A (sub-catchment) ) is calculated as [START_REF] Paz | Multifractal comparison of reflectivity and polarimetric rainfall data from c-and x-band radars and respective hydrological responses of a complex catchment model[END_REF]:

R (sub-catchment) = ij [R ij .(A ij A (sub-catchment) )] ij (A ij A (sub-catchment) ) (1.1)
where the sum is made over all radar pixels (i, j). For the rain gauges, the input rainfall data was generated using the Thyssen polygons' method [START_REF] Clarke | Analytical archaeology[END_REF].

In spite of the subdivision of the catchment for the InfoWorks CS model into 27 subcatchments, as exposed on Figure 1.1, the operational version of the Optim Sim model employed in this work uses a subdivision with 26 sub-catchments, where the subcatchment BINSAN2 is modeled as part of the sub-catchment BISAN3.

Selected rainfall events and three data types

Three rainfall events that occurred in 2015 were selected to be studied here: 12-13

September 2015 (44 hours, 04:05 -00:00), 16 September 2015 (16.8 hours, 00:05 -16:50), and 5-6 October 2015 (31 hours, 09:10 -16:05). These rainfall events last in total more than 90 hours, and were purposefully not split into many successive rainy periods as commonly done, which would have somehow artificially increased their number. Additionally, they were selected taking into account the hydrologic impacts on the Bièvre catchment as well as to cover the most common meteorological situations of the area. More precisely the rainfall of 12-13 September is due to two successive depressions coming from the British Islands (North-West) combined with the influence of Cevenol events from the South. The event of 16 September is associated with a storm Henry, generated by a former tropical depression coming from the South, resulting in high winds. The 5-6 October event is associated with a depression coming from the West.

A combination of stratiform and convective rainfall was observed during these events.

The first two triggered an optimisation of the river management at the catchment scale, while only local regulations (with no optimisation at all) were used for the third one.

Over the Bièvre catchment (see Fig. 1.3), the rainfall data could be provided from three different sources:

-the SIAVB network of six tipping bucket rain gauges, being distributed over the catchment;

-the Météo-France C-band radar of Trappes, being located in a direct proximity (∼ 0 -20 km) of the catchment;

-the ENPC dual-polarimetric X-band radar of Champs-sur-Marne, with distances ranging between 25 to 45 km. For its C-band radar products, Météo-France (the French national meteorological service) uses standard Z -R relation [START_REF] Marshall | The distribution of raindrops with size[END_REF] to convert corrected reflectivity factor (Z (mm 6 m -3 )) to rain rate Z (mm.h -1 ):

Z = aR b (1.2)
with parameter values being fixed as a = 200 and b = 1.6 [START_REF] Tabary | The new french operational radar rainfall product. part i: Methodology[END_REF].

The data provided by Météo-France is the radar mosaic for precipitation amount over the whole territory generated with the help of its radar network (Fig In the PANTHER products, the incremental rainfall accumulation is calculated at time steps of 5 minutes. It results from many post-treatments that manage the common radar issues of partial masks, bright band, fixed echoes and signal attenuation. For example, [START_REF] Gourley | A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations[END_REF] suggested that the specific attenuation is related to the specific differential phase with the help of a simple linear relation and calibrated it for the Trappes radar. Since February 2012, the double polarisation is used, but exclusively for the attenuation and clear air corrections, it does not take into account the biases introduced by large scale drops and therefore the different rainfall regimes. The ratio of reflectivity and incremental accumulation therefore requires calibration in real time, which is evenly performed over the entire area of the radar (radius of about 100 km) and according to a quality code based on the last twelve hours rain gauge radar comparison.

This ratio is calculated in particular for correcting a slow drift of the measurement and is used to trigger the appropriate intervention for radar maintenance.

Furthermore, an irregular spatial distribution (Fig. 1.5) of the Météo-France PANTHER mosaic [START_REF] Tabary | The new french operational radar rainfall product. part i: Methodology[END_REF][START_REF] Tabary | Evaluation of two "integrated" polarimetric quantitative precipitation estimation (qpe) algorithms at c-band[END_REF] was identified, albeit each data pixel has a 1 km x 1 km square shape and is North-South oriented. The ENPC X-band radar rainfall data were processed with the standard Rainbow software (Selex, 2015). Due to the initial choice of the pulse width and angle step, the highest resolution of pixel in the radial direction is 250 m only and 3.4 min in time.

Hence, a more appropriate choice of scan/scheduler parameters could further improve the space-time resolution of the rainfall products for the Bièvre catchment. In this thesis, the Dual Polarisation Surface Rainfall Intensity (DPSRI) product was used. Contrary to the Surface Rainfall Intensity (SRI) product, which is generated only with the help of the horizontal reflectivity data, DPSRI also uses the vertical one with the help of the differential reflectivity, ZDR, and the specific differential phase, KDP. The signal of the differential phase shift φ is quite noisy and, in practice, it is smoothed before computing the specific differential phase. The Rainbow software proposes a choice of several sophisticated smoothing methods, starting from the classical filter that is based on a (weighted or non-weighted) moving average, a median filter (which produces the simply filtered KDP) up to the Finite Impulse Response (FIR) filter. The resulting specific differential phase is almost independent of attenuation and partial beam blocking by attenuation. In order to illustrate the influence of either Selex (the multinational company that manufactured the ENPC X-band radar and the Rainbow software (Selex, 2015)) data filtering procedures or parameters for the DPSRI at 1.5 km, the time evolution of ENPC X-band radar rainfall accumulations over the six sub-catchments containing rain gauges is considered here, for the event of 12-13 September 2015. Firstly the FIR filtered KDP is used with Z-R parameters a=200 and b=1.6 (those applied by Météo-France for the C-band radar in Trappes). Then, the Z-R parameters are modified to a=150 and b=1.3, using either FIR or simply filtered KDP. the second observation is that simply filtered KDP results in a slight increase in the rainfall estimates. A similar behaviour was observed for two other events. Henceforth, the DPSRI FIR filtered KDP will be used for the hydrological modelling. The ENPC X-band radar had only a one point calibration, i.e. to test the equivalence of the vertical and the horizontal reflectivities for an isotropic scattering (such as the solar radiation which is used for this test), but no absolute calibration was used so far.

Rainfall estimates over the catchment

An overview of the rainfall data resulting from different measurement techniques (SIAVB rain gauges, ENPC X-band and Météo-France C-band radar data) over the whole catchment area will be given in this Section for each of three events: 12-13 September 2015, 16 September 2015 and 5-6 October 2015. Whereas all measurement techniques overall agree on the dynamics of the total rainfall during the events studied, there are some significant differences among the rainfall estimates. Figure 1.9 presents the temporal evolution of the averaged rainfall rate and cumulative rainfall over the Bièvre catchment area, for both C-band and X-band radar data. On the other hand, Figure 1.10 displays maps of the total cumulative rainfall depth, for X-band and C-band rainfall measurements along with the SIAVB rain gauges estimates (circle) for the rainfall events studied. It seems that C-band data yield greater total estimates than those of the X-band and rain gauges, although X-band radar was able to observe some spikes that were not detected by C-band. This could be partly justified by the use of dual polarisation only for high intensities (R > 7 mm/h, see Eq. A.5)

and by the absence of calibration of the a-b parameters for the low intensities (see Eq.

1.4) in the X-band radar data. On the other hand, there is also a difference in the way both radar products were obtained: the X-band radar rain rate estimates were obtained by the DPSRI product at the height of 1.5 km above the ground, whereas the C-band estimates correspond to the height with the highest quality indicator over the pixel.

Additionally , Figures 1.11 (12-13 September 2015), 1.12 (16 September 2015), and 1.13

(5-6 October 2015) display maps of the C-band, X-band and rain gauged rainfall totals per sub-catchment (calculated using Eq. 1.1) and six circles corresponding to the SIAVB rain gauges. Such five-minute totals per sub-catchment illustrate well the loss of information with regards to rainfall when considering only a limited number of subcatchments, especially for the big ones. This discussion will be re-addressed later in Section 2.4 with the help of multifractals.

As described in subsection 1.1.2, a spatial averaging process (see Eq. 1.1) is performed on the radar rainfall data over the sub-catchments to obtain the rainfall series given as input to the semi-distributed hydrological model InfoWorks CS. Then, as the catchment's average size of 2 km is twice bigger than the C-band radar spatial resolution (1 km) and 8 times bigger than the X-band radar spatial resolution (250 m), the impacts of this averaging rainfall process are much higher on the X-band data than on the C-band data.

Comparing the C-band and X-band radar rainfall totals to those resulting from the SIAVB tipping bucket rain gauges, one may note that the X-band radar tends to underestimate the rainfall, while the C-band radar mostly overestimates it, for the three studied events. However, these observations remain non-conclusive due to the fact that the rainfall is strongly variable at small scales, and totals measured by a single rain gauge are not necessarily representative at the scale of the whole catchment. Furthermore, there are several works and studies in the literature pointing out the many sources of errors that affect the quality and reliability of tipping-bucket rain gauges' information such as wind, evaporation induced losses, local turbulence and sampling errors [START_REF] Sevruk | International comparison of national precipitation gauges with a reference pit gauge[END_REF][START_REF] Fankhauser | Influence of systematic errors from tipping bucket rain gauges on recorded rainfall data[END_REF][START_REF] Habib | Sampling errors of tipping-bucket rain gauge measurements[END_REF][START_REF] Ciach | Local random errors in tipping-bucket rain gauge measurements[END_REF][START_REF] Emmanuel | Evaluation of the new french operational weather radar product for the field of urban hydrology[END_REF]. For the 12-13 September 2015 event, at two locations (SYGAM and VAUHAM), the X-band radar gives estimates closer to the rain gauge estimates than the C-band radar, while at two others (MARAM and JOUY3) the C-band radar does. And at two remaining locations (GEN and VERR2), their differences remain comparable. Except for the C-band in VERR2, these differences remain inferior to the uncertainties induced by the unmeasured (below the radar observation scale) rainfall variability [START_REF] Gires | Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data[END_REF]; making it difficult to compare directly the rainfall estimates. This illustrates well the contribution of the multifractal analysis carried out later (see Chapter 2), which proposes a comparison framework independent of an observation scale, as well as the need for further hydrological modelling that would reduce the uncertainties of multifractal parameters estimation.

Then, for the 16 September 2015 event, both C-band and X-band radars underestimate the rainfall in the beginning of the event compared to the rain gauges, at all six locations.

Nevertheless, without considering these first cumulative differences in the first 8 hours, in the second part of the event, the C-band radar overestimates the rainfall and the X-band radar fits better to the rain gauges (with slightly higher accumulated rainfall) at all six locations.

Lastly, for the 5-6 October 2015 event, the C-band radar estimates fit the P1 (Geneste) rain gauge's measurements, whereas there is an overestimation of the C-band radar in comparison to other four rain gauges' measurements (P2 Troup Salé, P3 Loup Rendu, P4 Sablons and P5 Vauboyen) and underestimation compared to the last rain gauge (P6 Vilgénis). On the other hand, the X-band radar underestimates the rain gauges' measurements at all six locations.

Hydrological comparison

The main objective of comparing hydrological simultaions using rainfall data resulting from C-band and X-band radar measurements is notably to study the impact of smallscale rainfall variability over the Bièvre catchment. This comparison is performed here with the semi-distributed model Optim Sim (coupled with InfoWorks CS) as described in section 1.1.2.

Simulated flows are compared with observations at four locations from upstream to downstream (see Fig. 1.1): "La Minière", "Arcade de Buc"; "Moulin Vauboyen" and "Pont Cambaceres". "La Minière" is actually the point where the portion of the Bièvre River managed by the SIAVB starts, while the upstream area is modeled to simulate the flow entering the SIAVB territory. And "Pont Cambaceres" is the only point located downstream the Vilgénis basin (not existing anymore, but remaining in the model).

However, this situation could have only limited impact on simulation outputs because the unregulated flow should remain rather similar whether the basin is removed from the model or not.

These four locations correspond to an increasing number of regulated storage basins: none for "La Minière", while two for "Arcades de Buc", three for "Moulin Vauboyen" and seven for "Pont Cambaceres". This implies that the simulated outputs downstream will potentially be more affected by a regulation at the whole catchment scale, i.e., at "Pont de Cambaceres" than at "La Minière".

Figures 1.17, 1.18 and 1.19 display the simulated flows at the four selected measurement points for respectively the 12-13 September, 16 September and 5-6 October 2015 events.

The tool simulating the optimisation of the regulation at the basin scale was not used.

All C-band data, X-band data and SIAVB rain gauge network were tested and intercompared.

Figure 1.17: Flow simulated at the four locations studied with X-band, C-band and rain gauged data for the 12-13 September 2015 event, along with observations. Simulations are carried out without the implementation of the tool mimicking regulation at the basin scale

For the 12-13 September 2015 event (Fig. 1.17), the increase of the flow at the measurement point "La Minière" reaches its regulated target value of 0.8 m 3 /s, being well reproduced with the three rainfall products. The fact that regulation at the catchment scale is not mimicked makes comparison with observations not relevant, as discussed above. For this event there is a tendency of the X-band data to generate slightly smaller flows than the other two products, well visible on all curves of the figure. This tendency is more pronounced for the first half of the event (until 13 September 2015 at 07:00)

than for the second one. It is important to mention here that the simulated flow values observed at "La Minière" are greater than the 0.8 m 3 /s regulated target value because additional water coming from an overflow at Val d'Or is input in the model for this event, which should be investigated more precisely in future work. The differences between the three rainfall products on the simulated flows are more pronounced for this event than for the other two. It should also be noted that there are some changes according to the observation point and time. For instance, at the beginning of the event (before 16 September 2015 at ∼ 05:00), rain gauges yield a greater flow at "Arcades de Buc" and "Moulin Vauboyen"

whereas it is at "Pont Cambaceres" for the X-band radar. At this location, the C-band radar rainfall data generate a peak that is found neither with other rainfall data nor on the observations. In the period between 08:00 and 16:50 on 16 September 2015, C-band data yield greater simulated flows at "Arcades de Buc" and "Moulin Vauboyen" (more pronounced for the beginning of this period) whereas it is the rain gauges' network at "Pont Cambaceres". Here, the simulated flows are smaller with X-band data. As for the 12-13 September event, it is not relevant to compare with actual measurements due to the problematic simulation of regulation at the catchment scale that was actually deployed.

As previously mentioned, for the 5-6 October 2015 event, the regulation at the basin scale was only enforced at the end of the event, meaning that comparison with observations is more relevant (see Fig. 1.19). At "Arcades de Buc", there is overall less overestimation of flows, but it should be noted that the peak at about 12:00 on 6 October 2015 is underestimated with the X-band radar data. Similar patterns are found at "Moulin Vauboyen" with a lower underestimation for the peak. At "Pont Cambaceres", simulations with X-band data reproduce well observations whereas there is an overestimation with C-band data and rain gauges.

Finally, an additional simulation with the optimising tool using X-band data was made for the 16 September event. Figure 1.20 displays the results at the four locations studied (thick violet for the additional curve). While all simulations presented up to now were performed at a 5-min time step, the time step of update of gate positions remains of 15 min. It is possible to reduce it to 5 min as well, but it would multiply by three the computation time. Although it could affect the results, it is likely that it does not really in this case because the model's sensitivity to the time step is rather low due to the size of the sub-catchments. As it can be seen from this figure, at "La Minière", since there is no regulated basin upstream this location, the flows simulated using Xband radar data with and without optimisation are the same. At "Arcades de Buc", the observations are situated right in between the two simulations using the X-band radar data, with and without the implementation of the Optim Sim tool. Here, the with observations given the previously mentioned limitations of this tool. The last two locations also present some differences between both simulated flows using X-band radar data. However, at "Moulin Vauboyen", both X-band simulated flows reproduce relatively well the observations behaviour, getting even closer to the latter when using the optimisation tool. The impacts of optimisation are stronger at "Pont Cambaceres", since it is located downstream seven regulated storage basins. It is possible to identify that the use of the optimisation tool even anticipates the second X-band peak, in relation to that without optimisation. without the implementation of the tool optimising regulation at the catchment scale using X-band, C-band and rain gauged data; and with the optimising tool using X-band data

It turned out that comparison with distributed data in replay mode was more difficult than expected due to the necessary update for the tool mimicking actual real time control of the river network. In general, for the first two events, the X-band radar data yields slightly lower simulated flows. It is also the case for the last rainfall event, where observations tend to validate the use of X-band radar data, although there are some discrepancies on a peak.

Massy sub-catchment and fully-distributed model

This section brings a work developed during the internship of Bianca Alves de Souza, supervised by the authors of this thesis.

Case study

The Massy case study is a sub-catchment of the Bièvre catchment located in its down- 

Data preparation: MH-AssimTool

The implementation of Multi-Hydro requires the preparation of its input data. Except for the rainfall data, all the others Multi-Hydro input data can be easily generated using a GIS (Geographic Information System) -based interface developed at École des Ponts, called MH-AssimTool [START_REF] Richard | Gis data assimilation interface for distributed hydrological models[END_REF]. It takes as inputs some geolocalised vector files (more precisely, with shapefile .shp format) such as land use, pedology, river network, catchment limit and sewer system, and also a raster file for the topography (Fig. 1.23). Finally, it generates the demanded files: a general one containing all the necessary parameters; a land use file divided into categories at a selected spatial resolution, in the ASCII format; and a sewer system descriptive file in a .inp format, which can be imported into SWMM model. 

Land use

The land use file attributes a identification value to each pixel, which will be later related to its physical properties inside the Multi-Hydro model. Then, concerning the preparation of this file, some previous information might be provided (e.g., by local or national authorities, field inspection or even satellite images).

For this case study (and for other French areas as well), the IGN institute ("Institut National de l'Information Géographique et Forestière" -National Institute of Geographical and Forest Information) provides information on land use. Firstly, using QGIS

program (an open source GIS-based program, http://www.qgis.org), 10 different classes were identified over the catchment: parking areas, main roads, secondary roads, sport fields, farms, grass, houses, woods, water surface and gullies2 . Then, in order to group those with similar hydrological behaviours, parking areas, main and secondary roads3 

were joined into a single class, and sport fields, farms and grass were also classified together. This resulted in only six categories: Gully (given later to MH-AssimTool in the sewer system file, see Section 1.2.3.2); Road; House; Wood; Grass and Water surface.

Nevertheless, the available information was not enough to cover the whole catchment (Fig. 1.24). were added to the corresponding areas with same characteristics. Then, the remaining "non-identified" areas were assumed to be covered with grass (Fig. 1.25). where the highest percentage of land use category observed within a pixel is affected to it [START_REF] Ichiba | X-band radar data and predictive management in urban hydrology[END_REF]. However, since it is important to link the surface runoff with the sewer system, both methodologies firstly affect the gully pixels. In addition, the first clearly leads to higher imperviousness, which could interfere in the hydrological simulation results. On the other hand, it helps to maintain the preferential water paths by prioritising the continuity of the roads. One way reduce the impact of this problem by improving the spatial resolution, which would take more computation time. Furthermore, according to [START_REF] Ichiba | Scale effect challenges in urban hydrology highlighted with a distributed hydrological model[END_REF], the second approach gives a better representation of the heterogeneity of the catchment. In this case study, both methodologies will be applied (see Fig. 1.26 for a comparison between the two land use maps generated by MH-AssimTool), considering a mesh size4 of 10 m (which was chosen in order to preserve most of the details and moderate computation time). Initially, Veolia Company provided the information of the sewer system network and storage basins inside the catchment area. The shapefile was divided into several parts, such as gullies, connecting pipes, visiting points, and others. However, preliminary work was needed before implementing MH-AssimTool.

Firstly, some of the provided sewer elements were totally disconnected from the main network. Their hydrological contributions were though analysed, and then connected to or deleted from the sewer system. In addition, a buffering of the gully points was carried out, attributing a radius to them.

Then, it turned out that some network connections were not single lines, but polylines, which are not recognised by MH-AssimTool. Moreover, some of them seemed to be connected to the network, when in fact they were not. Therefore, QGIS commands were used to explode the polyline entities and to verifify the network interconnection, in order to correct them all. Additionally, some pipes had no diameter information. Hence, the printed sewer system maps provided by Veolia were used to check and (if needed) edit the diameter values of all pipes.

Nevertheless, as the GIS sewer system input file contained no storage basins, the MH-AssimTool output SWMM file did not take them into account. Therefore, it was necessary to modify this SWMM file once again, and manually insert the six storage basins (Fig. 1.27). 
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Modelling of storage basins

The hydrological modelling of complex urban catchments containing artificial storage basins and other regulatory devices, as in this case study, required some modifications of the Multi-Hydro model. Indeed, its previous version already enabled to include nonregulated water bodies by modifying the topography of a riverbed in TREX, but not artificial basins as needed here. The solution found to deal with such storage basins in Multi-Hydro was to model them only within SWMM, while fully ignoring them on the surface within the corresponding pixels of TREX. It required modifying the portions of the interacting core code of Multi-Hydro that handles the connection between surface gullies (in TREX) and sewer network (in SWMM).

Hence, even before performing the simulation, it was necessary to calculate the discharge coefficients (C d ) of each orifice in the respective storage basin. They are dimensionless factors used to characterise the flow through the outlet of the storage basins. Then, using the data set shown in Table 1 and considering a complete submersion, these coefficients were estimated as follows [START_REF] Rossman | Storm water management model user's manual[END_REF]:

C d = Q A. 2.g.(h -h 0 ) (1.5)
where A = πD 2 4 is the cross-sectional area of the orifice, h is the water height in the storage basin (above the lowest basin level), g is the standard acceleration due to Earth's gravity (9.81 m.s -2 ) and h 0 is the height of the lowest orifice's level with respect to the lowest basin's level.

However, there are two variables whose values are known for the Cora's basin but not for the other basins: h 0 , defined above, and H 0 (the initial water level in each basin, relative to the lowest level of the basin). For Cora's basin, h 0 = 0 m. Then, as a consequence of the lack of these variables' values, the same value h 0 = 0 m was considered for the other basins as well, yielding the discharge coefficients presented in resulting H 0 values used for the three rainfall events.

Rainfall data description and selected events

In this work, the same three events (12-13 September, 16 September and 5-6 October)

presented in Section 1.1.3 were used. However, the duration of the second event ( 16September) was shortened to 8.5 hours from 08:25 to 16:50 (instead of 16.8 hours as used in section 1.1.3), focusing on the strongest part of the event.

To test the applicability of the new -storage adapted -version of Multi-Hydro and to study the hydrological impacts of small-scale rainfall variability for the Massy urban catchment, two types of radar data were used: the Météo-France C-band product and the ENPC X-band DPSRI (using the FIR filtering smoothing method) product (see Section 1.1.3.1). Figure 1.28 displays the time evolution of the average rain rate and cumulative rainfall depth estimated over the whole Massy catchment, and Figure 1.29 presents the accumulated rainfall rate values per radar pixels over the catchment area, for both C-band and X-band radar data for the three studied events.

For the event of 12-13 September, the first and third peaks of the total rainfall series are very similar for the C-band and X-band radar data, with a relevant difference in the cumulative rainfall at about 8 hours after the beginning of the event. However, the second peak (approximately 12 hours after the event starts) is much higher for the C-band (achieving ∼ 60 mm/h, while it stays around 5 mm/h for the X-band), also clearly noticeable in the accumulative rainfall series. Furthermore, the pixels on the North, Northwest and West of the cacthment present the highest accumulated rainfall depths for the C-band, whereas for the X-band the highest accumulated rainfall depths (which are much smaller than those for the C-band) are just outside the catchment.

For the 16 September event, during the first hour the C-band radar data present higher total rainfall rate as well as higher accumulated rainfall depth over the catchment than the X-band. Around 4 hours and 20 minutes after the event starts, it is the X-band at this time that presents a higher total rainfall rate peak (approximately 19 mm/h, whereas for the C-band it is around 7 mm/h) with a slight difference on the cumulative rainfall series, which is also the case for the last peak (between 6 and 7 hours from the beginning of the event). Additionally, the accumulated rainfall depths are almost uniform over the catchment for the C-band radar data with the highest values on the Southwest. On the contrary, there is a higher intermittency for the X-band with the highest values on the West.

On the last event there is not a big difference on the cumulative rainfall series, although the X-band radar data present higher values than the C-band ones on the last three peaks of the total rainfall rate. Moreover, with regard to the accumulated rainfall depths, the Finally, it can be seen that the X-band radar data yields lesser estimates of rainfall amounts, which was also discussed in Section 1.1.4. Nonetheless, the finer pixel size enables to detect the rainfall patterns with much more details.

Rainfall data input

The Multi-Hydro model requires a rainfall data input with a time resolution of 1 min and the same spatial resolution as the land use (10 m x 10 m in this case), independently of the rainfall data type. The contribution of the pluviometric indexes of each radar data pixel to the model pixels was performed similarly as shown in Section 1.1.2 (see Eq. 1.1):

R i M H ,j M H = i C ,j C [R i C ,j C .(A i M H ,j M H A i C ,j C )] i C ,j C (A i M H ,j M H A i C ,j C ) (1.6) R i M H ,j M H = i X ,j X [R i X ,j X .(A i M H ,j M H A i X ,j X )] i X ,j X (A i M H ,j M H A i X ,j X ) (1.7)
where: R i M H ,j M H is the rainfall rate calculated for each model pixel; R i C ,j C is the rainfall rate obtained with the C-band radar product in one pixel of the data mesh; R i X ,j X is the rainfall rate obtained with the X-band radar product in one pixel of the data mesh;

A i M H ,j M H , A i C ,j C
and A i X ,j X are the pixel area of the model, C-band and X-band radar data, respectively.

Hydrological simulations

Then, the simulations using the Multi-Hydro model were performed for the three analysed events, employing the two different types of rainfall radar data (C-band and Xband) and the two methods of land use data rasterisation (priority order and majority rule). Figures 1.30, 1.31, 1.32 and 1.33 present the results of the simulations.

Since Veolia provided data of the water levels measured in Cora's basin (every 5 min), located next to the catchment outlet (Fig. 1.27), it was possible to compare them with the simulated values. The last ones were considered as the volume stored in the basin at each time step (taken from SWMM output file) normalised by the Cora's basin area (assuming vertical hedges of the basin).

For all three events, five different discharge coefficients were used at Cora's basin: one calculated using Eq. 1.5, and four others with a variation of ±25% and ±50% over the first one. For the event of 12-13 September 2015, decreasing Cora's discharge coefficient, water level gets closer to the measurements for the X-band radar. However it does not reach the maximum water level, whereas it remains largely overestimated using the C-band radar rainfall data. For the 16 September 2015 event, the simulated water levels using the X-band radar rainfall data even overlap the measurements with C d variations. However, the time evolution of the measured water level is best represented using the C-band radar rainfall with C d + 50%.

Finally, for the last event, although the behaviours of all simulated water levels for both rainfall data follow well the measurements' behaviour, the variations in C d are not sufficient to reproduce the observations. Such discrepancy could be due to the model sensitivity to the rainfall event type (e.g., weak/strong), as well as to the lack of initial conditions (e.g., soil saturation level) that should be even more pronounced when modelling the land use of Massy area without the priority order.

In this perspective, the maximum level in the Cora's basin was achieved after about 13 hours from the beginning of the event for the C-band radar data input, and this naturally yields a water level difference falling to 0 m. For this event, the temporal evolutions of this difference are significantly different for both radar data input, with greater values reached for the C-band radar data. For the other two events, the studied difference exhibits similar patterns for both radar data input, with slightly greater values for the C-band data.

This difference is reduced when percentages are studied (lower row of Fig. 1.31). Except when the maximum level of the basin is reached, the values tend to increase during the rainfall event. This increase is even almost linear for the 16 September event. The observed differences are not directly related to the strength of the event. For example, the 16 September event is weaker than the 5-6 October one but yields greater differences, although smaller when expressed in %. For the less intense event, it reaches 40%, which highlights the strong dependency of the output to C d . and the measurements in Cora's storage basin, during the three events. As expected, the more permeable land use (without priority) generates lower water levels, for both radar data, although creating stronger uncertainties with respect to unknown initial conditions. It seems that this decrease is more pronounced for C-band data than for X-band data (especially on 16 September and 5-6 October events, where the maximum water level is not achieved, which happens on the 12-13 September event for the C-band radar data). This highlights the model sensitivity to rainfall resolution, and consequently the need for the highest possible resolution.

And finally, Figure 1.33 displays the non-linear relations for cumulative total rainfall normalised by its mean (top), normalised cumulative water level using land use generated with priority order (centre), and normalised cumulative water level using land use generated without priority order (bottom) between C-band and X-band radars during each of the three events: 12-13 September 2015 (left), 16 September 2015 (centre) and 5-6

October 2015 (right). The normalisation by the corresponding mean was used to better evidence the non-linearity in time evolution of cumulative C-and X-band radar rainfall, and of its influence on normalised cumulative water levels. While the cumulative rainfall measured by C-band radar remains superior to the one measured by X-band radar for all three events (see Fig. 1.28), Figure 1.33 exhibits significant differences among these three events.

For the 12-13 September 2015 event, a faster accumulation of C-band radar rainfall is evidenced by the convexity of the comparative curve obtained for the temporal evolution of the cumulative rainfall below its mean (see the intersection point between the curve and the bisectrix on Fig. 1.33). This convexity then propagates to the comparative graphs of normalised cumulative water levels, being more pronounced for the land use obtained using the majority rule. Inversely, the concavity of the comparative curve obtained for the cumulative rainfall below its mean confirms a faster accumulation of X-band radar rainfall during the event of 16 September 2015. However, this faster accumulation seems to be later compensated and the above concavity vanishes for the comparative curves of normalised cumulative water levels, independently on the land use attribution rule. Finally, for the event of 5-6 October 2015, all of comparative curves exhibit satisfying linear behaviour. Thus, for this event, independently on the origin of the rainfall data, simulations reproduce well the time evolution of the measured water level, although both underestimating the observations.

Refined land use: ecosystem services approach

This subsection brings the development of a third land use affection method, named as "weighted values". For its application and comparison with the two previous methods (priority order and majority rule, described in subsection 1.2.3.1), a carbon storage analysis of the Massy sub-catchment was performed during the internship of Eduardo Cândido Borges, supervised by the authors of this thesis.

The acceleration of biodiversity loss and the uncertainties about the impacts of climate change are threatening the human societies' ability to produce wealth. Measuring the multiple values of all the benefits that we receive from ecosystems is a considerable challenge, which partly explains why these values are systematically undervalued in the economic analyses and often ignored in the decision-making process. Bring nature to the calculation of the wealth of nations is therefore a necessary condition for a lasting prosperity.

To trigger investments of ecological transition, the economic, public and private actors, must rely on credible shared natural asset values of natural capital. Valuing nature should not make it a bargaining chip. Exceeding the controversies on the measurement conventions is necessary for building socio-economic incentives of ecosystem services.

Without a well-recognised measure, being both accountable and biophysical, nature remains insufficiently taken into account in economic choices.

Biodiversity and abiotic drivers determine ecosystem functions individually and in concert. The challenge is to find the balance between biodiversity conservation and resources exploitation for immediate societal needs of the local communities. The concept of ecosystem services that has been applied to rural environments for several decades, and their accountability have been widely assessed with Decision Support Tools, such as

InVEST [START_REF] Sharp | InVEST +VERSION+ User's Guide[END_REF], which use a given range of GIS data for identifying spatial patterns in the provision and value of ecosystem services on the current landscape or under future scenarios, and trade-offs between management scenarios. Extensions to (semi-) urban areas has become more and more needed for the greening of our cities, as well as to make them more liveable. Such extensions have been recently considered [START_REF] Hamel | Mapping stormwater retention in the cities: A flexible model for data-scarce environments[END_REF], but some of the current limitations of these tools become more apparent due to the complexity of urban areas over a wide range of space-time scales.

This study integrates this ecosystem services approach (in the specific case of carbon storage) into the Multi-Hydro model, enabling it to become a more complete tool to help decision makers. It is based on the InVEST Carbon Storage and Sequestration model methodology [START_REF] Sharp | InVEST +VERSION+ User's Guide[END_REF], which estimates the amount of carbon stored in a landscape using maps of land use and stocks in four carbon "pools": aboveground biomass, belowground biomass, soil and dead organic matter. The aboveground biomass encompasses all living plant material above the soil (e.g., bark, trunks, branches, leaves); the belowground biomass is composed by the living roots; the soil organic matter is the organic component of soil, and represents the largest terrestrial carbon pool; and the dead organic matter includes litter as well as lying and standing dead wood.

Since there were no available measurements of carbon storage for the region of Massy, different sources were used to obtain the carbon pools' values (Table 1.3), albeit the intrinsic uncertainty in these estimates [START_REF] Lenart | An unseen carbon sink[END_REF]. [START_REF] Giangola-Murzyn | Modélisation et paramétrisation hydrologique de la ville, résilience aux inondations[END_REF]. Then, considering the ecofloristic zone as temperate oceanic forest and given that most of the tree species located near Massy area are broadleaves (according to the National Institute of Geographical and Forest Information -IGN), the GLC2000 classes 1-3 were chosen for the "forest" land use class. For the "grass" one, an average of the GLC2000 classes 13, 14 and 18 was assumed, since it encompasses different land uses such as farms, soccer fields, among others. Futhermore, no biomass was considered to roads, houses, gullies and water surfaces.

Land
For the soil carbon pool, [START_REF] Arrouays | The carbon content of topsoil and its geographical distribution in france[END_REF] presented an estimate of the organic topsoils (0-30cm depth) carbon stocks in France metropolitan. Following [START_REF] Sol | L'état des sols de france[END_REF], the Luvisol was selected as the predominant soil type. Then, the carbon values estimated for "forest" and "natural grassland" were attributed to "forest" and "grass" land uses, respectively. Although [START_REF] Arrouays | The carbon content of topsoil and its geographical distribution in france[END_REF] did not provide estimates for the other classes, [START_REF] Edmondson | Organic carbon hidden in urban ecosystems[END_REF] evaluated that the total organic carbon stored in greenspace soils is about five times higher than in capped ones. Then, the soil carbon storage values for "road" and "gully" were considered as 1/5 of that for "grass". And the soil estimates for "house" and "water surface" were assumed to be zero. Finally, all soil carbon storage values were multiplied by 2 in order to consider the depth of 100 cm [START_REF] Batjes | Total carbon and nitrogen in the soils of the world[END_REF][START_REF] Wang | Vertical distribution of soil organic carbon in china[END_REF]. Lastly, the litter carbon value for "forest" was obtained from Table 2.2 of IPCC (2006). And it was assumed that there were no litter stocks in the other land use classes.

Based on the two previous land use generation methods (priority order and majority rule, see Figs. Then, a new land use generation method was implemented here, using weighted values. In order to estimate the total carbon storage over each model pixel (i,j), the sub-catchment limit is used in GIS format along with the model grid (in this case, 10 m

x 10 m). The weighted average carbon storage values are therefore calculated as: 

CarbonStorage(i, j) = k C k .A k (i, j) (1.8)
where CarbonStorage(i, j) is the total carbon storage over the pixel (i, j); C k is the total carbon pools' sum for each land use class k, which means the last column of Table 1.3; Finally, the total amounts of carbon storage for this case study, considering the three land use generation methods, are: 41,405.17 ton (priority order), 49,063.95 ton (majority for the amount of carbon currently stored in a catchment, it is also possible to analyse different scenarios and assess the amount of carbon sequestred over time [START_REF] Lenart | An unseen carbon sink[END_REF].

A k (i,
This new implementation to Multi-Hydro enhances its qualities and capacities as a really helpful decision support tool, taking into account the non-linear interactions between the ecosystem components.

1.3 Jouy-en-Josas sub-catchment: fully-distributed vs semidistributed models

Case study

The site of Jouy-en-Josas is a sub-catchment of the Bièvre catchment, located in the South-West of Paris region. The Jouy-en-Josas basin is a semi-urbanised area of 3.017 km 2 bordering the Bièvre River (mostly on its left bank and with a small portion on its right one). Figure 1.39 presents: on the bottom, the InfoWorks' division of the Bièvre catchment into 27 sub-catchments; and, on the top, the Jouy-en-Josas sub-catchment which is in fact mostly composed by the equivalent JOUY2 InfoWorks' sub-catchment area and a smaller wooden area corresponding to the JOUY1 InfoWorks' sub-catchment.

And Figure 1.40 displays the topographic view of the area, which presents a significant difference of altitudes between the north and the south parts of the catchment. These big slopes would certainly contribute to an important runoff. (2018) that considered the measurement point of water depth at the "Pont de Pierre"6 , the outlet of the catchment was taken as the comparison point here. This therefore validates the whole catchment at this time and not only 60 % of it.

Rainfall data

The same rainfall events of Section 1.1. In this case study, differently from the Massy catchment (see Section 1.2) for the 12-13

September event, the second peak of the total rainfall series (approximately 12 hours after the beginning of the event) is higher for the X-band radar data. Nevertheless, the cumulative rainfall series are very similar for both radars (the X-band one being even slightly higher). Additionally, with regard to the accumulated rainfall depths, one may verify the spatial intermittency of the pixels' values on both radar data types (much more noticeable on the X-band ones).

For the 16 September event, the behaviours of both C-band and X-band cumulative rainfall series are similar from those of the Massy catchment (see Fig. 1.28), with the C-band series higher than the X-band one. Between 3 and 4 hours of event, the peak of the total rainfall series is higher for the C-band radar data. However, the peak at around 7 hours of event is just slightly higher for the X-band radar data, whereas it is .44: Accumulated rainfall depths by radar pixels over the Jouy-en-Josas subcatchment area, for both C-band and X-band radar data for the three studied events much higher over the Massy catchment. And similarly to the Massy case study, there is a higher intermittency for the X-band accumulated rainfall depths.

For the last event, there is an important difference in the beginning of the event on the cumulative rainfall series, with a cumulative depth approximately 6 mm higher for the C-band radar data, increasing up to 8 mm in the end of the event. In comparison to the Massy catchment (Fig. 1.28), this gap is not that big in that case, achieving up to 3 mm of difference. Nevertheless, the last three peaks of the total rainfall series are also higher for the X-band radar data, similarly to the Massy case study, whereas the last two do not present important differences here in this case. Once again, the intermittency of the accumulated rainfall depths is more remarkable for the X-band radar data.

Then, the rainfall rate input files for both C-and X-band radar data were generated by getting intersections' contributions of the rainfall data pixels to the 10 m x 10 m sized model pixels, as in Eqs. 1.6 and 1.7, respectively.

Additionally, as already mentioned, unlike the work previously developed by Gires et al. Radar) product [START_REF] Keefe | Calamar and nexrad dramatically increase accuracy of urban hydrology[END_REF][START_REF] Stevens | Evaluation of gauge adjusted radar for rainfall measurement in rdii programs[END_REF]. The latter is a system developed by RHEA SAS Company for treating (by gauge adjustment) and diffusing the radar data produced by Météo-France. The image calibration is done in such a way that a rain gauge and its corresponding radar image pixel show approximately the same rainfall value. The operational spatio-temporal resolution is 1 km 2 and 5 minutes. It provides a real-time measurement and also enables a rainfall event to be reconstructed by using its off-line mode (http://www.rhea.tm.fr).

For the Bièvre River catchment, the CALAMAR images are firstly calibrated in a broader area (left side of Figure 1.45) and then recalibrated using the six SIAVB rain gauges over the Bièvre catchment area (right side of Figure 1.45). 

Hydrological simulations

After all input data preparation, Multi-Hydro was employed to simulate both cases for each event. Then, the hydrological results of the Multi-Hydro simulations without amount inflow were compared to the results of the Optim Sim simulations over the sub-catchment JOUY2, at the outlet of the catchment (Fig. 1.46).

One may note that the temporal evolution of the main peaks of the simulated water height is mostly in agreement for both models and all data types. Given the absence of local measurements and that the semi-distributed model InfoWorks of the Bièvre catchment has been calibrated, these results seem to partially validate the fullydistributed model Multi-Hydro. Nevertheless, the Multi-Hydro simulations present an evident higher variability, especially for the event of 16 September 2015, which was already expected because of the averaging process for the rainfall data in the case of the semi-distributed model.

For the event of 12-13 September 2015, the simulations using Mult-Hydro are very similar for both C-and X-band radar data, following the tiny difference of the total rainfal series (see Fig. 1.43). However, especially for the first two peaks of water height, the simulations using InfoWorks are much higher than for those using Multi-Hydro. For the 16 September 2015 event, the first peak (between 3 and 4 hours of simulation) of water height is higher for the C-band than for the X-band (both with Multi-Hydro), and the former is slightly lower than the two simulations with InfoWorks. However, for the other two peaks (around 7.5 and 9.5 hours of simulation), both Multi-Hydro simulations are similar and slightly higher than those with InfoWorks. In addition, between the first two peaks the Multi-Hydro simulations present intermediary peaks whereas they are smoothed by the InfoWorks model. Finally, for the event of 5-6 October 2015, the Multi-Hydro simulated water heights are slightly higher on average for the C-band radar, whereas the last three peaks are marginally higher for the X-band radar data. During the first 15 hours of the event, the InfoWorks simulated water heights are both higher than the Multi-Hydro ones, except for the first 3 hours where the InfoWorks heights are equal to zero. Nevertheless in the end of the event, the peaks of the simulated water heights are comparable among both models, alternating which one provides the highest values, except for the rain gauges simulations between 20 and 23 hours, which are much higher than the others.

Considerations about hydrological modelling

First, it is worthwhile to recall in which conditions the present results were obtained:

-the ENPC X-band radar had only a one point calibration, i.e. to test the equivalence of the vertical and horizontal reflectivity's for an isotropic scattering (such as the solar radiation). However, no absolute calibration was used so far;

-no calibration was performed for the Z-R relation parameters (which could be done in the future using local available disdrometers), whereas this relation was used for low reflectivities;

-the scan strategy was chosen for a volumetric exploration of the 3D-nature of the rainfall; more precisely, only two scans over ten have an elevation below 2.5 • ;

-the rotation rate was kept uniform (24 • /s) for all elevations;

-the ENPC X-band radar rain rate estimates were obtained by the product DPSRI (Double Polarisation Surface Rainfall Intensity) at 1.5 km height over the ground, whereas the C-band estimates corresponds to the data having the highest quality indicator over the vertical pixel;

The first case study (the Bièvre test site) is located about 35 km far from the ENPC X-band radar, while it is only about 15 km from the Météo-France C-band radar. This catchment has a very complex topography, e.g. with very steep slopes, that influences on the rainfall (micro orographic effects), its detection (ground clutter) and the runoff.

It is therefore interesting to note that in such conditions a semi-quantitative agreement was obtained by the dual-polarimetric X-band radar estimates with respect to the insitu observations and those of the Météo-France C-band radar (with a higher level of processing -calibration performed for many years and real time adjustment to rain gauges). Two differences are also worthwhile to note and to discuss: as expected, the X-band radar was able to pick up a few extremes that were smoothed out by the Cband radar; on the other hand, the DPSRI product of the X-band radar seems to have underestimated low intensity episodes of the chosen events. The latter might be explained by both chosen data processing and acquisition strategies. However, this study should be considered as a very first attempt to compare the X-band and C-band radar rainfall products using hydrological models. Therefore, further investigations are required, which can be presented in two ways:

-those that can be achieved with the past data, i.e. without changing the data acquisition: they correspond to modify given stages of the data processing chain leading to a given type of rainfall estimate. Main options include: at least two different methodologies to estimate the specific differential phase shift (KDP), using differently the double polarisation (e.g. the KDP-R relation including for low reflectivity's), attenuation correction, different heights for the product DPSRI, defining other products (e.g. closer to those used by Météo-France);

-those that cannot be achieved with the past data, i.e. changing the data acquisition. This includes modifying the scan strategy, the pulse repetition frequency and the pulse length itself.

Both lists show a large choice of possible settings for respectively data processing or data acquisition. The former was slightly investigated, although not presented in this thesis. Further X-band radar tests and comparative studies are necessary in order to ensure the optimal measurement capability.

The last, but not least, remarks about this first case study correspond to: (i) the manifest requirement of hydrological models able to take into account the spatio-temporal variability of rainfall fields, with sufficiently high resolution, which is in fact one of the drivers for the development of fully-distributed models [START_REF] El Tabach | Multi-hydro: a spatially distributed numerical model to assess and manage runoff processes in peri-urban watersheds[END_REF][START_REF] Fewtrell | Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial lidar data[END_REF][START_REF] Giangola-Murzyn | Modélisation et paramétrisation hydrologique de la ville, résilience aux inondations[END_REF]Multi-Hydro, 2015;[START_REF] Ichiba | X-band radar data and predictive management in urban hydrology[END_REF]; and (ii) the necessity to proceed to similar studies on other test sites, in particular those being located at a similar distance from both radars.

In this direction, the second case study addresses a smaller area of the Bièvre catchment (the sub-catchment of Massy, which is the one that presents the smallest distance difference from both cited radars), using the fully-distributed model Multi-Hydro. The latter has been purposely conceived for handling highly heterogeneous fields and complex interactions among multifractal processes. Up to now, less complex catchments had been performed with this model using radar rainfall [START_REF] Gires | Impacts of small scale rainfall variability in urban areas: a case study with 1d and 1d/2d hydrological models in a multifractal framework[END_REF][START_REF] Gires | Multifractal characterisation of a simulated surface flow: a case study with multi-hydro in jouy-en-josas, france[END_REF], without comprehending or considering the operation of storage basins and flow control orifices.

For this case study, some new developments of the model were required, due to the presence of various regulatory devices, by considering the storage basins only whithin SWMM that recognises them as valid devices. In addition, two alternative rules (with or without priority; the latter also called majority rule) for rasterising land use data were tested and the pitfalls on the sewer network generation were also highlighted.

The lack of information regarding the initial water level and the orifice level for most of basins (except for Cora) makes it impossible to establish precise initial conditions. This influences the simulations, since the initial conditions of each basin change the flow in the sewer system network and, consequently, the water amount reaching the Cora's basin (measurement point). In the absence of these data, a series of additional assumptions was suggested, while evaluating their influence on the obtained results. In particular, the sensitivity analysis was performed for this purpose.

Furthermore, although the simulations did not necessarily reproduce the observed water levels, Multi-Hydro model provided quite satisfactory time evolution of the water level in Cora's basin, for the three very different rainfall events. Indeed, the X-band radar data lead to systematically lower water levels than C-band radar data, often underestimating the measured values. However, comparing X-band and C-band radar data, the absolute disparity between simulated and measured water level values is lower using X-band radar rainfall for most analyses.

Lastly, another case study (the Jouy-en-Josas sub-catchment) was modelled with Multi-Hydro using both X-band and C-band radar data as rainfall inputs once again. The results were then compared to the hydrological simulations obtained with InfoWorks CS using two different rainfall data: the CALAMAR C-band radar product and the SIAVB network of six rain gauges.

The main objectives in this case were: (i) to compare somehow the two different models already applyed in Sections 1.1 (the semi-distributed conceptually based InfoWorks CS model) and 1.2 (the fully-distributed phyisically based Multi-Hydro model), over a semiurban area with steep slopes; and (ii) to analyse the impacts of the rainfall spatiotemporal variability. Even with different rainfall data used as inputs to both models, it was possible to note higher intermittency and faster response of the Multi-Hydro simulated heights. In addition, in most of the cases, the peaks of water heights were higher for the X-band rainfall data, highlighting the gains of a better resolution.

This Chapter brought the difficulties to perform really accurate hydrological modelling, mostly due to models' limitations and data quality and resolution. Two types of deterministic hydrological models were studied here. The semi-distributed conceptual models (represented here by InfoWorks CS) present evident difficulties to take into account the spatial variability of weather radar data, averaging them over eventually big (sub-catchment) areas. Furthermore, they need exhaustive calibrations, which have to be performed after each single modification of the sub-catchments' division or of the sewer system or even after important land use changes. Additionally, the size (and/or number) of sub-catchments is questionable related to the type and resolution of rainfall data used as input to the model, which will be discussed further in Section 2.4. On the other hand, the fully distributed physical models (e.g., Multi-Hydro) can better consider the spatial variability of the rainfall data, as they use information (such as topography, land use, ...) distributed in pixels, that makes spatial resolution adaptation possible.

And due to the fact of using physical measurable parameters, they do not need calibration. However, the input data preparation requires complete information, especially of a complex sewer system, as discussed in Section 1.2.3.2.

Moreover, the rainfall data have a big role in the hydrological simulations' reliability.

The spatio-temporal resolution, the choice of the best products and data treatment are some of the factors that impact the hydrological results. Throughout this Chapter, it was possible to note that the simulations using the X-band radar data could sometimes better perform, measuring higher peaks of rainfall rates, even without any absolute calibration; and also that the fully-distributed model was much more sensitive to a better rainfall data resolution. However, there is an urgent need to study the best a-b parameters (see Eq. A.4) that should be used in each situation, as they impact directly on the low intensities estimates. In order to better understand the rainfall data scaling behaviour, Section 2.3 will later present some results of stochastic analysis of different weather rainfall radar data types from completely different sites.

Finally, a different approach may perhaps be taken in the future: to merge deterministic (e.g., the fully-distributed physically based Multi-Hydro model) and stochastic models (also named empirical models, they directly relate the input data with the output results via a statistical way), which would be a hybrid model.

Chapter 2

Multifractal Analysis

Rainfall is a very complex process that can be hardly represented using a deterministic equations' system. However, it does possess non-trivial symmetries that have been used more and more to define stochastic processes modelling rainfall using a few parameters that are physically meaningful. This parsimonious representation is of paramount importance for many applications, in particular to assess the small-scale rainfall variability and its hydrological impacts.

Multifractals have been developed and widely applied to analyse and simulate geophysical fields exhibiting extreme variability over a wide range of scales such as rainfall (Schertzer and Lovejoy, 1987a;[START_REF] Gupta | A statistical analysis of mesoscale rainfall as a random cascade[END_REF][START_REF] Harris | Multifractal characterization of rain fields with a strong orographic influence[END_REF][START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF][START_REF] Olsson | Multifractal analysis of daily spatial rainfall distributions[END_REF][START_REF] De Lima | Multifractal analysis of 15-min and daily rainfall from a semi-arid region in portugal[END_REF][START_REF] Deidda | Rainfall downscaling in a space-time multifractal framework[END_REF][START_REF] Pathirana | Multifractal modelling and simulation of rain fields exhibiting spatial heterogeneity[END_REF][START_REF] Biaou | Fractals, multifractals et previsions des precipitations[END_REF][START_REF] Pathirana | On the modelling of temporal correlations in spatial-cascade rainfall downscaling[END_REF]Ferraris et al., 2003a,b;[START_REF] Macor | Multifractal methods applied to rain forecast using radar data[END_REF][START_REF] Royer | Multifractal analysis of the evolution of simulated precipitation over france in a climate scenario[END_REF][START_REF] Nykanen | Linkages between orographic forcing and the scaling properties of convective rainfall in mountainous regions[END_REF][START_REF] De Montera | The effect of rain-no rain intermittency on the estimation of the universal multifractals model parameters[END_REF][START_REF] Langousis | Multifractal rainfall extremes: Theoretical analysis and practical estimation[END_REF][START_REF] Tchiguirinskaia | Multifractal study of three storms with different dynamics over the paris region[END_REF][START_REF] Gires | Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework[END_REF][START_REF] Hoang | Caractéristiques multifractales et extrêmes de la précipitation à haute résolution, application à la détection du changement climatique[END_REF][START_REF] Souza | Hydrological modelling of complex urban catchment (massy, france) with the multi-hydro model using c-band and x-band radar rainfall data[END_REF][START_REF] Paz | Multifractal comparison of reflectivity and polarimetric rainfall data from c-and x-band radars and respective hydrological responses of a complex catchment model[END_REF]. In this Chapter, it will be fristly presented a short recap on fractals, multifractals, and Universal Multifractal (UM) analysis. Then, different types of radar data from completely distinct regions will be analysed and compared, and the limitations and impacts of the short number of virtual rain gauges (or the big averaged size of sub-catchments in a semi-distributed model) over a case study area will be highlighted using UM analysis. Finally, the significance of rainfall forecasts and the contributions that UM can bring to it will be discussed.

Multifractals

Fractals

When studying some objects of very irregular or fragmented form (with unusual properties in classical geometry), [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF] named them as "fractals" ("fractus" means irregular in Latin).

Nevertheless, fractal objects must not just be irregular, but also scale invariant, which means that their form remains unchanged at different scales of observation. This brings the properties of self-similarity (a zoomed part of the object looks similar to the object itself, which means an isotropic variation) and self-affinity (when the variation is anisotropic). As examples, the Cantor set (Fig. 2.1-(a)) and Sierpinski triangle (Fig. 

N = λ D , with λ = L l ⇒ D = log(N ) log(λ) (2.1)
In the case of fractal objects and sets, the dimension is no longer an integer and is called fractal dimension (D f ) [START_REF] Mandelbrot | How long is the coast of britain[END_REF][START_REF] Mandelbrot | Fractals: form, chance and dimension[END_REF][START_REF] Mandelbrot | The fractal geometry of nature[END_REF]; Feder [START_REF] Feder | Fractals (physics of solids and liquids)[END_REF][START_REF] Falconer | Fractal geomatry: mathematical foundations and applications[END_REF][START_REF] Hastings | Fractals. a user's guide for the natural sciences[END_REF][START_REF] Barnsley | Fractals everywhere[END_REF]. Even if its theoretical computation (see Appendix C, for Hausdorff dimension) is rather complex, an easier way to evaluate it is through the box-counting method [START_REF] Hentschel | The infinite number of generalized dimensions of fractals and strange attractors[END_REF][START_REF] Lovejoy | Functional box-counting and multiple elliptical dimensions in rain[END_REF][START_REF] Hubert | Dimensions fractales de l'occurrence de pluie en climat soudano-sahélien[END_REF]. It takes into account that when λ → ∞ there is a power-law relation between the fractal dimension and the number of "non-empty" pixels of the set (N λ ) at the scale λ:

N λ ≈ λ D f (2.2)
The method consists, therefore, in plotting N λ vs λ on a log-log scale. Hence, due to the scaling invariance behaviour of a fractal set and by using Eq. 2.2, the slope of the straight line will be approximately equal to D f . Figure 2.3 illustrates the application of this method on the rainfall data from the ENPC X-band radar at a resolution of 250 m x 250 m x 3.41 min, over an area of 64 km

x 64 km, during the 12 September 2015 event (averaged over the full duration, from 04:05 to 00:00 UTC). Firstly, the number of non-zero pixels1 is counted over the highest resolution (in this case Λ = 256). Then, the rainfall field is upscaled at a scale ratio of 2, and the counting process is repeated for each resolution up to the smallest one (λ = 1).

The numbers of non-zero rainfall rate (called the support) is displayed in a log-log plot versus the resolution. Finally, the fractal dimension is obtained through all scales as the slope of the graph.

Considering n the number of steps in the iterative process of the following fractal sets generation, we have: 

N = 2 n , λ = L l = 3 n ⇒ D f = log(2) log(3) = 0.631 (2.3)
-Sierpinski triangle (Fig. 2.1-(b)), n = 7:

N = 3 n , λ = L l = 2 n ⇒ D f = log(3) log(2) = 1.585 (2.4)
Furthermore, the codimension of a fractal set A is usually (geometrically) defined as [START_REF] Mandelbrot | How long is the coast of britain[END_REF][START_REF] Mandelbrot | Fractals: form, chance and dimension[END_REF][START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Feder | Fractals (physics of solids and liquids)[END_REF][START_REF] Falconer | Fractal geomatry: mathematical foundations and applications[END_REF][START_REF] Barnsley | Fractals everywhere[END_REF]:

c = D -D f (2.5)
where D is the Euclidian dimension and D f is the fractal dimension previously defined.

From Eq. 2.2, we obtain:

N λ ≈ λ D N λ (A) ≈ λ D f (A) (2.6)
where ≈ means the proportionality.

Then, it is also possible to probabilistically define the fractal codimension, using Eq.

2.6, where the probability that a cube embedded in the set D at a scale λ is contained in the fractal set A is given by:

N λ (A) N λ ≈ λ D f (A)-D = λ -c (2.7)
This last definition is more general because it enables c > D, which would imply D f < 0 from Eq. 2.5.

Many geophysical fields with different intensity levels, and also irregular geometries and scale invariance, can be seen as fractal fields at different thresholds (singularities). Then, for each singularity it is possible to calculate its fractal dimension, which means that the field is characterised by several fractal dimensions according to the imposed threshold [START_REF] Grassberger | Generalized dimensions of strange attractors[END_REF][START_REF] Hentschel | The infinite number of generalized dimensions of fractals and strange attractors[END_REF]Schertzer and Lovejoy, 1984a,b).

These fields were named by [START_REF] Parisi | A multifractal model of intermittency. Turbulence and predictability in geophysical fluid dynamics and climate dynamics[END_REF] as "multifractals".

Discrete cascade models

Multifractals rely on the assumption that a geophysical field is generated through a multiplicative cascade process (Schertzer and Lovejoy, 1984b, 1987a, 2011) produced by random multiplicative modulation of large scale structures into small scale ones. In the case of discrete cascades, a step n ∈ N of the process consists in dividing a parent structure ( n-1 ) into sub-structures ( i n ), at a constant scale ratio λ 1 (λ =

L l n = λ n 1 ,
where L is the outer scale and l n = L λ n 1 the observation scale at step n; see Appendix D for the structure generation), with intensities:

i n = µε i n n-1 (i = 1, 2, ..., λ n 1 ) (2.8)
where the variables µε i n are random increments usually assumed to be identically and independently distributed (i.i.d.), as well as independent of the variables n .

Following the scale invariance of the process, for each cascade step, the probability distribution of the random multiplicative increments ( µε ) is the same. In the case of a "canonical conservation"2 (where there is an ensemble conservation through scales):

i k = i 1 = 0 ⇒ µε i k = µε i 1 = 1 , k = 2, 3, 4, ..., n (2.9) 
Then, taking into account Eq. 2.17:

(µε) q ≈ λ K(q) (2.10)

The simplest cascade model, taking the intermittency of turbulence into account, is the β-model [START_REF] Novikov | The intermittency of turbulence and the spectrum of energy dissipation fluctuations(turbulence intermittency model to calculate spectrum of energy dissipation fluctuations)[END_REF][START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF][START_REF] Frisch | A simple dynamical model of intermittent fully developed turbulence[END_REF]. Only two values of random variable are possible: µε = 0 or λ c , corresponding to the "dead" or "alive" states, respectively (see Fig. 2.4 for illustration). Then, we obtain the following probabilities:

P r(µε = 0) = 1 -λ -c , "dead" P r(µε = λ c ) = λ -c , "alive" (2.11) where λ is the scale ratio and c is the codimension of the "alive" state structures. And following the ensemble conservation ( µε = 1) for all cascade steps, µε = λ c > 1. This is a very simple didatic model to explain the cascade principle, but it is not able to characterise complex phenomena. It can also be seen as monofractal due to its single fractal exponent.

Thus, Schertzer andLovejoy (1984a, 1985a) developed the α-model, which is in fact a more realistic alternative to generate multifractals. It considers, instead of "dead"/"alive" states, "less active"/"more active" ones (see Fig. 2.5 for illustration):

P r(µε = λ γ -) = 1 -λ -c
, "less alive" P r(µε = λ γ + ) = λ -c , "more alive"

(2.12)

where Similarly to the β-model3 , the ensemble conservation ( µε = 1) implies:

γ + = c α > 0, γ -= - c α < 0 and 1 α + 1 α = 1.
λ γ + λ -c + λ γ -(1 -λ -c ) = 1 (2.13)
Then, at the n th step of the cascade process, there will be several mixed singularities [START_REF] Schertzer | Hard and soft multifractal processes[END_REF][START_REF] Biaou | De la méso-échelle à la micro-échelle: Désagrégation spatio-temporelle multifractale des précipitations[END_REF]:

(γ + ≥ γ ≥ γ -)
γ = n + γ + + n -γ - n + + n - , with n = n + + n - (2.14)
which implies that the α-model is a multifractal model, since it can be characterised by an infinity of singularities γ, and therefore by an infinity of fractal dimensions. Figure 2.6 demonstrates that for two different singularities (γ 1 < γ 2 ) one may obtain different fractal dimensions (and codimentions). 

The Universal Multifractals (UM)

As just mentioned, the multifractal fields are characterised by a hierarchy of fractal dimensions (and codimensions). Then, by referring to the notion of fractal codimension (Section 2.1.1), one can calculate, for a given field λ , the probability of obtaining, at the scale λ, a singularity of order greater than or equal to γ:

Pr( λ ≥ λ γ ) = N λ ( λ ≥ λ γ ) N λ = λ D f (γ) λ D (2.15)
where D is the domain dimension, N λ ( λ ≥ λ γ ) is the number of boxes of size λ -1 characterised by a singularity of order greater than or equal to γ, and N λ is the total number of boxes necessary to pave the whole space.

Finally from Eq. 2.5 we have D = D f (γ) + c(γ), and then:

Pr( λ ≥ λ γ ) ≈ λ -c(γ) (2.16)
where the codimension function c(γ) is convex and increases with λ, and ≈ means asymptotic equivalence.

Additionally, multifractal fields can also be described by their statiscal moments. Schertzer andLovejoy (1987a, 1991) introduced the scaling moment function K(q), which is also convex and characterises the various q th order statistical moments of the multifractal field λ :

q λ ≈ λ K(q) (2.17)
where q is the statistical moments order, q λ is the q th moment mean of the intensities at the scale λ and ≈ denotes the assymptotic equivalence .

As both statistical functions c(γ) and K(q) have the only constraint of convexity, there is an infinity of parameters required to characterise a multifractal process. Then, Schertzer andLovejoy (1987a, 1997) explored the concept of universality (usually used in physics, where among an infinite number of parameters only a few would be relevant) and developed the Universal Multifractals (UM). In this context, c(γ) and K(q) can be fully described by only three "UM parameters" (α, C 1 and H) as (see Fig. 2.7 for illustration, when H = 0):

K(q) = qH + C 1 α -1 (q α -q) , α = 1 C 1 qlog(q) , α = 1 (2.18) c(γ + H) = C 1 γ C 1 α + 1 α α , α = 1 C 1 exp γ C 1 -1 , α = 1 (2.19)
where 1 α + 1 α = 1, for α = 1, and:

-the parameter α is Levy's multifractality index (0 ≤ α ≤ 2). It measures the degree of multifractality of the process. In particular, if α = 0 we observe a monofractal process and α = 2 corresponds to the maximum of multifractality for a model improperly called lognormal.

-the parameter C 1 is the codimension of the mean singularity of the field. It measures the mean inhomogeneity where C 1 = 0 for a homogeneous field. The more it increases, the more the singularity of the field average is dispersed. We thus observe a field rarely exceeding its mean, but which can do so in an extremely strong way.

-the parameter H is Hurst's exponent, which measures the degree of non-conservation of the field. Furthermore, [START_REF] Parisi | A multifractal model of intermittency. Turbulence and predictability in geophysical fluid dynamics and climate dynamics[END_REF] demonstrated that the two functions c(γ) and K(q) have a one-to-one relationship, which is highlighted by the Legendre transform:

K(q) = max γ {qγ -c(γ)} ⇔ c(γ) = max q {qγ -K(q)} (2.20)
These related expressions bring the correspondence between the orders of moments and the singularities, such that:

q γ = c (γ) ; c(γ) = q γ γ -K(q γ ) (2.21) γ q = K (q) ; K(q) = qγ q -c(γ q ) (2.22)
where at the moment of order q corresponds the singularity γ q , and conversely, at the singularity γ corresponds the order of moment q γ . In addition, it is possible to see from Eq. 2.16 that more rare events (with very large singularities γ) correspond to bigger values of c(γ). Consequentely, due to the convexity of both c(γ) and K(q) and to the Legendre transform, for q > 1, these extreme events also correspond to bigger values of q and K(q).

Mandelbrot (1974) predicted that some discontinuities in the first or second derivatives of K(q) could arise when studying empirical scaling of multifractal fields, and they would be called "multifractal phase transitions" of first or second orders, respectively. That could be caused mainly by two reasons: spatial integration or finite sample size. But firstly the "bare"/"dressed" quantities definitions should be cited (Schertzer and Lovejoy, 1987a).

The former ones are the fields generated by finite multiplicative cascades, which are theoretically modelled from large to smaller scales. On the contrary, the "dressed" quantities are spatial (or temporal) averages of a completed cascade (with an infinite number of steps), corresponding to empirical data. Therefore, just the latter ones can lead to divergence of moments. That is why K d (q) and c d (γ) will be used below to denote the dressed scaling functions. Schertzer and Lovejoy (1987a) presented the first order multifractal phase transition as the result of the averaging of a bare multifractal process over a D-dimensional space at a given critical moment order q D given by:

K(q D ) = (q D -1)D (2.23)
where D is the "effective" dimension of dressing, which can be smaller than d (the dimension of the observing space).

This divergence corresponds to a "hyperbolic" (or algebraic) tail for the probability distribution of the dressed field (i.e. P r( > s) ≈ s -q D ; s 1), which evidences the need of a large data set to be able to reach the large orders of singularity. Furthermore, one may obtain the following expression for the dressed codimension function [START_REF] Schertzer | Multifractals and Turbulence: Fundamentals and Applications in Geophysics[END_REF]:

c d (γ) = c(γ) γ ≤ γ D q D (γ -γ D ) + c(γ D ) γ D ≤ γ ≤ γ ∆s (2.24)
where γ D = K (q D ) is the critical singularity, and γ ∆s the maximum reachable singularity given by (Schertzer and Lovejoy, 1989b):

c d (γ ∆s ) = ∆ s (2.25)
where

∆ s = d + D s (D s = log λ (N s )
) is an effective dimension, and N s the finite number of realisations.

Thus, via Legendre transform:

K d (q) = K(q) q ≤ q D γ ∆s q -c(γ D ) q D < q (2.26)
Then, regarding Eq. 2.26:

K d (q) = K (q) q ≤ q D γ ∆s q D < q
(2.27)

One may note then, as γ D = K d (q D ) ≤ γ ∆s and γ ∆s incresases with N s , that Eq. 2.27 brings the discontinuity of the first derivative of K d (q) at q = q D .

On the other hand, when the size of the finite sample is not large enough to obtain the critical order of singularity γ D , the first order multifractal phase transitions cannot be reached. And then, the second order multifractal phase transitions are obtained at the maximum reachable singularity γ S (γ S ≤ γ D ) given by:

c(γ S ) = ∆ s (2.28)
Then, at this time [START_REF] Schmitt | Empirical study of multifractal phase transitions in atmospheric turbulence[END_REF]:

c d (γ) = c(γ) , γ ≤ γ S (2.29)
And once again via Legendre transform:

K d (q) = K(q) q ≤ q S γ S q -∆ S q S < q (2.30)
where q S = c (γ S ) is the critical order moment, which can be written in the UM framework as:

q S = D + D S C 1 1/α (2.31)
From Eq. 2.30, one may obtain that K d (q) is linear for q > q S . This discontinuity in the second derivative of K d (q) at q = q S brings the second order multifractal phase transition.

Finally, in the case of discrete UM model (see Section 3.1.1 for the more general continuous in scale case), a conservative (H = 0) UM field is generated using random multiplicative increments (µε) defined only by the parameters α and C 1 [START_REF] Pecknold | The simulation of universal multifractals[END_REF]:

µε = exp C 1 ln(λ 0 ) | α -1 | 1/α L(α) (2.32)
where λ 1 is the constant scale ratio defined in 2.1.2 and L(α) is an extremal Lévy-stable random variable (see Appendix E) of index α (whose generation procedure was detailed by [START_REF] Chambers | A method for simulating stable random variables[END_REF]) with the following property:

e qL(α) = e q α (2.33)

UM Analysis

While performing a multifractal analysis of a field, we firstly verify the scaling behaviour (and its conservativeness) via spectral analysis. Once it has been checked, if the field is multifractal, we should determine its statiscal functions c(γ) and K(q) (and the corresponding UM parameters α and C 1 , which can be done directly or indirectly).

Spectral Analysis

In a very general framework, if a field is scaling, then its power spectra E is a power-law with respect to a wide range of the wave number k [START_REF] Mandelbrot | The fractal geometry of nature[END_REF]Schertzer and Lovejoy, 1985a;[START_REF] Lovejoy | Multifractals and rain[END_REF]:

E(k) ≈ k -β (2.34)
where β is the spectral exponent. A larger β reflects stronger field correlations.

Additionaly, as the power spectrum is the Fourier transform of the field covariance (second-order moment), considering a 1-dimensional field and assuming the unit power of the flux (i.e., a = 1; see further discussion in Section 3.1.2), it is possible to obtain the Hurst's exponent (H) [START_REF] Pecknold | The simulation of universal multifractals[END_REF][START_REF] Tessier | Universal multifractals: theory and observations for rain and clouds[END_REF][START_REF] Tessier | Multifractal analysis and simulation of the global meteorological network[END_REF]:

β = 1 -K(2) + 2H (2.35)
For a D-dimensional field, Eq. 2.35 becomes [START_REF] Lovejoy | The weather and climate: emergent laws and multifractal cascades[END_REF]:

β + (1 -D) = 1 -K(2) + 2H ⇒ β = D -K(2) + 2H (2.36)
Then, after determining the UM parameters α and C 1 , and using the conservative part of Eq. 2.18, we obtain the theoretical value of K( 2):

H = β -D + K(2) 2 = β -D 2 + C 1 2(α -1) (2 α -2) (2.37)
Finally, by analysing the power spectra, it is also possible to identify indications of a scaling break. 

Trace Moment Method

The Trace Moment (TM) method (Schertzer and Lovejoy, 1987a) allows to directly determine the scaling moments function K(q) for any q > 0, as presented in Eq. 2.17.

Following the discussions in Section 2.1.3, this estimation will be reliable up to a q max = min{q S , q D }.

As K(q) > 0 for q > 1, q λ ≈ λ K(q) → ∞ when λ → ∞. Then, in order to avoid this divergence, the concept of flux is used. So, let be D the dimension, λ the scale ratio, the flux of the field λ through the scales is given by:

Π λ (A) = A λ d D x (2.38)
And the trace of the q th power of the flux Π λ is:

T r A [ q λ ] = A ( λ ) q d qD x ≈ λ K(q)-D(q-1) (2.39)
In practice, the method consists in taking the q th -power of each value of the field λ at the scale λ, and then the ensemble average of q th -order moments is calculated at that scale.

Then, the same process is repeated for different scales λ, the resulting averages q λ are logarithmically represented as a function of λ, and a linear regression is performed to obtain the value of K(q) (which will be equal to the given slope). In fact, the linearity of this curve assures the scaling invariance of the field at that scaling moment. This is a more general way to verify the scaling behaviour of the field, because, unlike the spectral analysis, this TM method takes into account other values of q (and not only q = 2). Finally, by calculating also with other values of q, one obtains the K(q) function (as well as the c(γ) function, via Legendre Transform -see Section 2.1.3). Figure 2.9 illustrates the application of TM method to rainfall data without scaling break (on the left) and considering scaling break at 4 km (on the right). On the top, it is possible to identify the scaling behaviour of the spatial rainfall, obtained as an average over the full duration of each event. For each value of q, the respective slope in the log-log plot gives the estimated value of K(q). On the bottom, the obtained K(q) functions are plotted, in which the influence of the numerical limitations on the lower statiscal moments are noticeable.

Thus, once we know K(q), it is possible to determine the UM parameters α and C 1 (which makes this method an indirect way to obtain these parameters):

C 1 = K (1) (2.40) α = K (1)/C 1 (2.41)

Double Trace Moment Method

Lavallée et al. (1993) developed a technique to directly determine the UM parameters α and C 1 , which means that there is no need to firstly obtain K(q) (and c(γ)). It is called the Double Trace Moment (DTM) method and is in fact a generalisation of the TM method.

The idea is to apply the TM method to a renormalised4 η-power of a conservative multifractal field λ :

(η) λ = η λ η λ
(2.42)

Then the q th -order moments of the renormalised field remain scale invariant:

( (η) λ ) q ≈ λ K(q,η) ⇒ ηq λ η λ q ≈ λ K(qη) λ qK(η) = λ K(qη)-qK(η) (2.43)
And we obtain:

K(q, η) = K(ηq) -qK(η) (2.44)
Because this method is especially applied for UM (Eq. 2.18), Eq. 2.44 becomes: c) display the evaluation of K(q, η) for q = 1.5; (b) displays the log-log plot of K(q, η) vs. η for q = 1.5 without scaling break; and (d) and (e) display the log-log plot of K(q, η) vs. η for q = 1.5 at small and large scales, respectively.

K(q, η) = η α K(q) (2.45) (a) (b) (c) (d) (e)
which enables the estimation of α, as the slope of the linear part of K(q, η) vs. η in a log-log plot, for a given q. And in the same log-log plot, C 1 can be estimated from the value of the interception of the linear part and the axis log(η) = 0 (see [START_REF] Hoang | Prise en compte des fluctuations spatio-temporelles pluies-débits pour une meilleure gestion de la ressource en eau et une meilleure évaluation des risques[END_REF] for more details).

Figure 2.10 presents the application of DTM method to rainfall data without scaling break and considering scaling break. In the first case, the 12/02/2012 event of the Sband radar from the Brazilian Amazon Region over an area of 64 km x 64 km with a 1 km x 1 km resolution is analysed without scaling break. In the second one, the 28-31/05/2016 event of the ENPC X-band radar over an area of 64 km x 64 km with a 250 m x 250 m resolution is analysed with scaling break at 4 km.

On the left side, Figure 2.10 displays the scaling behaviour of the spatial rainfall, obtained as an average over the full duration of each rainfall event. For each power η with a fixed value q (q = 1.5 in all examples that follow), the slope of the linear regression gives an estimate of K(q, η). On the right side, the log-log plot of K(q, η) vs. η gives the so-called DTM curve for a fixed q. The characteristic S-shape of these figures is conditioned by appearance of numerical limitations at smaller moments and the critical behaviour of extremes at higher statistical moments, both being characterised by the flattering of the DTM curves. The UM parameters are estimated over the intermediate range of statistical moments around η = 1.

Rainfall data analyses 2.3.1 Selected data

In this section, the UM framework will be used to analyse different types of radar rainfall data, as well as different products, from completely distinct regions (Figure 2.11): Sband radars from the Brazilian Amazon Region; S-band radar from São Paulo, Brazil;

dual-polarised X-band radar from Tokyo, Japan; C-band and dual-polarised X-band radars from Ile-de-France, France. A summary of the data information and the selected events is presented in the following sub-sections. All data were selected over 64 km x 64 km areas. The Amazon Protection System ("Sistema de Proteção da Amazônia" -SIPAM) operates a weather radar network, constituted by 11 S-band radars (10 of them are represented in Fig. 2.12, and another one has been recently installed in São Luis, Maranhão), run by the Brazilian Air Force.

The weather radars were calibrated with a methodology proposed by [START_REF] Anagnostou | The use of trmm precipitation radar observations in determining ground radar calibration biases[END_REF], which performs intercomparisons with Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR) reflectivity measurements. And they heve been configured

to perform two different volumetric scans [START_REF] Saraiva | Regional variability of rain clouds in the amazon basin as seen by a network of weather radars[END_REF]: one meteorological and other of surveillance (Tab. 2.1). The radar product used in this work is the Constant-Altitude Plan Position Indicator (CAPPI) at 3-km height with a spatio-temporal resolution of 1 km x 1 km x 12 min, and is originated from the meteorological scan. 

Meteorological

S-band radar from São Paulo, Brazil

The Meteorological Research Institute ("Instituto de Pesquisas Meteorológicas" -IP-Met/UNESP) operates two S-band radars in the state of São Paulo: one located in Presidente Prudente and another in Bauru5 . This is a densely populated area and a very important economic pole in Brazil.

Similarly to the SIPAM network, both radars perform two different volumetric scans (a meteorological one with a range of 240 km, and another of surveillance with a range of 450 km) and were also calibrated using the TRMM PR reflectivity measurements [START_REF] Anagnostou | The use of trmm precipitation radar observations in determining ground radar calibration biases[END_REF]. In the framework of this thesis, the radar product used is a CAPPI at 3.5 km height with a resolution of 1 km x 1 km x 7.5 min. 2015)) research project. The latter takes advantage of a dense meteorological instruments network from many Japanese institutions to monitor and predict extreme events, in order to reduce their damages.

The National Research Institute for Earth Science and Disaster Prevention (NIED), which is one of the main project managers, has implemented a X-band polarimetric radar network over the area. In this work, data from this network were used with a resolution of 500 m x 500 m x 5 min. Table 2.4: Data description of X-band radar, Tokyo, Japan. Spatio-temporal resolution of 500 m x 500 m x 5 min, and space grid dimension of 128 x 128.

2.3.1.4 Météo-France C-band and ENPC X-band radars from Ile-de-France,

France

The Météo-France C-band radar product and the ENPC X-band radar DPSRI product (both described in Section 1.1.3.1) will also be analysed in this Chapter, over a common area of 64 km x 64 km (Fig. 2.13). Tables 2.5 and 2.6 summarise the selected events for both radars, respectively. 

Spectral analyses

Firstly, spectral analyses were performed for all data (Fig. 2.14, 2.15, 2.16, 2.17 and 2.18). One may note that when it is possible to verify a scaling breaking it happens in a range between 4 km and 8 km in most of the cases.

Based on the obtained β values and on the α and C 1 parameters, estimated in the next Section, Tables 2.7, 2.8, 2.9, 2.10 and 2.11 present the H parameters for all radar data analysed, using Eq. 2.37. In the cases where there is an apparent scaling break, the corresponding H values were also displayed for small and large scales.

For the Brazilian Amazon Region, clear scaling breaks -with good scaling behaviour in both small and large scales -are found for the first three events. However, for the last event, the scaling break is not evident and there is a weak scaling behaviour at large scales. For the Japanese rainfall data, both events present good scaling behaviour, without clear scaling break. In addition, besides the differences in the α and C 1 estimates in the next Section, the H parameters are really similar. for the ENPC X-band radar.

Without

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Additionally, it is important to note that the TM and DTM techniques used in the next Section to perform UM analyses take into account only conservative fields, which means H = 0. Nevertheless, they can still be directly applied when H < 0.5. When this condition is not respected, the conservative field has to be obtained by fractionally integrating the original field by an order H, which is commonly approximated by a renormalisation of the field fluctuations [START_REF] Lavallée | Nonlinear variability and landscape topography: analysis and simulation[END_REF].

Finally, small absolute values of H were estimated for almost all events. Therefore, this renormalisation process was not performed in this thesis. For the rainfall data analysed here, all of them respect this condition while no scaling break is considered and most of them also respect it when a scaling break behaviour is apparent. The only exceptions are the small scales of: the 18/05/2015 event in the Amazon Region -H = 0.560; the 15-16/12/2011 event from Météo-France C-band radar -H = 0.884; and the 12-13/09/2015 event from Météo-France C-band radar -H = 0.649.

TM and DTM analyses

Following the spectral analyses, the TM and DTM methods were applied to all data (see Appendix G for all graphs), considering three conditions: without scaling break; with scaling break at 4 km; and with scaling break at 8 km. Each of these scaling regimes yields a pair of multifractal parameters (α, C 1 ). Tables 2 .12, 2.14, 2.16, 2.18 and 2.20 present the UM parameters estimated for all data in the cited conditions.

These estimates strongly fluctuate among the rainfall events and products. Therefore, a subdivision on three statistical sub-categories, taking into account their levels of multifractality over the full range of scales, is suggested:

(I) very strong multifractality: α > 1.6

(II) more common multifractality: 1.0 < α < 1.6

(III) weak multifractality: α < 1.0 Furthermore, based on Eq. 2.31, Tables 2.13, 2.15, 2.17, 2.19 and 2.21 display all respective q S values in order to verify the feability of these estimates, since they were provided using all range of moments up to q = 3.

The rainfall data from Brazilian Amazon Region presented weak multifractility (category III), with α < 1.0. However, the very high estimated C 1 parameters could have influenced the detectability of the singularities, which are normally bounded for this range of α values. This means that the rainfall cells may be too concentrated, with the large amount of zeros affecting the estimates. Nevertheless, this multifractality weakness can not be justified by the sample size, since the estimated q S values are much higher than the range of moments used here. In addition, the α and C 1 values are quite similar when comparing among the events (illustrated by low standard deviations, especially

for the α values), which suggests that they have comparable features. in category (I), and the other six in category (II). Among those of category (I), the first three events present spurious statistics (α > 2.0) over the small scales. However, they do not really show a clear scaling break behaviour, as discussed in the previous Section.

Without

For the 05/01/2015 event, where α > 2.0 is also estimated without considering scaling break, the respective q S values are too close to the cited value of q = 3, which could have influenced the estimates. For those of category (II) presenting apparent scaling break, if this break (in both points, 4 km or 8 km) was considered in the classification of these events, the small scales would be classified in category (I) whereas the large ones would remain in category (II). Furthermore, C 1 = 0.2 seems to be a good approximation for all events of both categories (I) and (II), also implying that the severity of their extremes will increase with the increasing multifractality. For the Japanese data, the 04-05/07/2010 event is classified in category (III) and the 26/08/2011 event in category (II). The first presents similar characteristics of those from the Amazon Region, whith high C 1 , probably impacting on the detectability of high singularities. The second event also presents the average value of C 1 = 0.2, mentioned for those events from São Paulo (Brazil). In addition, the estimated q S values are much higher than the range of moments used, removing any doubt about the sample size impacts. The events from the Météo-France C-band radar are mostly classified in category (II), with only two exceptions: the 15-16/12/2011 event, category (I); and the 16/09/2015 event, category (III). For the first, which presents a clear scaling break behaviour, α > 2.0 over all ranges of scales (with and without scaling break). However, its respective q S values are once again close to the cited value of q = 3, probably influencing the estimates, which does not happen for the other events. The event of 15-16/08/2010 also presents α > 2.0 over the small scales. However, there is not a clear scaling break behaviour, as discussed in the previous Section. Furthermore, among those of category (II), two event show apparent scaling break: 12-13/09/2015, and 05-06/10/2015. Then, if this break (at 4 km, which is closer to 5.3 km -estimated in last Section) was considered in the classification of these events, the small scales of the first event would be classified in category (I) and the large scales of the same event would be classified in category (III), whereas the second event would remain in category (II) for both small and large scales.

Without

Without

Additionally, one may note that the estimate C 1 parameters are generally lower than the average C 1 = 0.2 cited for the previous radar data in both categories (I) and (II), which indicates a higher homogeneity. The selected events from the ENPC X-band radar data are the most heterogeneous. considered in the classification, the small scales would be allocated in category (I) and the large scales in category (III). In the case of the 05-06/10/2015 event, considering the scaling break (at 8 km, which is closer to 7.1 km -estimated in last Section) would move the large scales to the category (II), whereas the small scales would remain in category (I). It is important to note that, for this radar product, the smallest q S values were obtained for this event, although not too critically close to q = 3. And among all events, the only α > 2.0 was estimated at the small scales of this event while considering the scaling break at 4 km, which is further from the 7.1-km point estimated in Fig. 2.18-(c). For the 13/05/2016 event, even considering the scaling break (at 8 km), it remains in category (III). And for the events of 28-31/05/2016 and 17/06/2016, considering the scaling break (at both 4 km and 8 km) would move the small scales to categories (I) and (II), respectively, and would keep the large scales in categories (II) and (III), respectively. Moreover, similarly to the events from São Paulo (Brazil) and from Japan, the estimated C 1 parameters also fit the approximative value of 0.2 for those events classified in categories (I) and (II). On the other hand, for those events classified in category (III), very high values are estimated for C 1 , as it was the case for the rainfall data from the Amazon Region, which could probably have impacted on the detectability of the singularities. Finally, while comparing the Météo-France C-band radar and the ENPC X-band radar over the same three events from 2015, both products present very similar degrees of homogeneity (C 1 ) although different levels of multifractalities (α), considering or not the scaling break conditions. The estimated α parameters for the X-band radar are higher than those for the C-band radar, even impacting on different classifications (categories)

Without

Without

for the first and last events of 2015. This means that the X-band radar is capable to observe higher singularities than the C-band radar, which goes along with the discussion in Chapter 1, highlighting the need for better rainfall data resolution.

2.4 Pitfalls of rain gauge network highlighted with the help of the ENPC X-band radar, implications to hydrological modelling

The higher frequency of intense precipitation events makes water management and precipitation risk important issues especially for urban areas. The literature is full of engineering solutions to work with either very local rain gauge networks as the main rainfall input data or as calibration to C-band weather radars [START_REF] Ciach | Local random errors in tipping-bucket rain gauge measurements[END_REF][START_REF] Tabary | Evaluation of two "integrated" polarimetric quantitative precipitation estimation (qpe) algorithms at c-band[END_REF][START_REF] Emmanuel | Evaluation of the new french operational weather radar product for the field of urban hydrology[END_REF][START_REF] Figueras I Ventura | Long-term monitoring of french polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at c-band[END_REF][START_REF] Figueras I Ventura | The new french operational polarimetric radar rainfall rate product[END_REF].

In this section, the pilot site of Bièvre catchment, which was modelled with the semidistributed model InfoWorks CS (see Section 1.1) and the X-band radar data were used to construct a network of virtual rain gauges located in the centre of mass of each subcatchment (Fig. 2.20). Then, an area of 8 km x 8 km was selected to perform the scaling analyses using the X-band radar grid (Fig. 2.20). This choice corresponds to the most homogeneous distribution of virtual rain gauges over a square area of Bièvre catchment. Firstly, the fractal analysis of the centroid pixels' distribution using the box-counting method (Fig. 2.22) was performed. It is possible to identify a scaling break at the spatial scale of 2 km, which is in fact the average sub-catchment's size. This characteristic scale remains compatible with a 1-km resolution of C-band radar rainfall that have been used for the model calibration and as inputs. Hence, a relatively high fractal dimension (D f = 1.66) obtained over tha large scale range corresponds to the network of 9 virtual rain gauges at 2-km scale. This number of gauges remains still reasonable, although only 6 real rain gauges are available for the full Bièvre catchment (i.e. 4 over the selected area). Preserving the same fractal dimension D f = 1.66 over smaller scales up to 250 m (the resolution of the X-band radar rainfall) would result in N = 315 of sub-catchments (and/or virtual rain gauges). A smaller number of gauges (N = 15), characterised by much lower fractal dimension (D f = 0.185), significantly reduces the captivity of spatial rainfall variability over small scales and hence its representativity in the model having a constant rainfall per sub-catchment of 2-km characteristic scale. To better evaluate the unfortunate consequences of this, the multifractal analyses were performed by using the TM (Fig. 2.23) and the DTM (Fig. Due to the fact that the fields (a) and the rain gauge network (e) are fully independent, the Intersection theorem (see Appendix F) implies that the co-dimension function of their product (b) will correspond to the following sum of the co-dimension functions:

c (b)=(a)∩(e) (γ) = c (a) (γ) + c (e) (γ) (2.46)
And then, by Legendre transform (see Section 2.1.3), the scaling moment function of the product (b) will correspond to the sum of the scaling moment functions of the rainfall field (a) and the network (e):

K (b)=(a)∩(e) (q) = K (a) (q) + K (e) (q) (2.47)
The relationships similar to Eqs. 2.46 and 2.47 stand for the rainfall fields (c), network (e) and their product (d) as well. curves for all fields taking into account the estimated values 6 (from Fig. 2.22 and Tables 2.22, 2.23, 2.24 and 2.25), for large scales (2 km -8 km) and small scales (250 m -2 km) respectively.

From Figure 2.25 one may note that the theoretical expression given by Eq. 2.47 works better for some of the events than for others. This could be easily understood by evaluating the linear term of the Eq. 2.47. Indeed, the scaling moment function of the network will correspond to the β-model with c = D -D f :

K (e) (q) = c(q -1) (2.48)
where over the large scales: c = 2 -1.66 = 0.34, and this is independently either of rainfall events, or rainfall fields.

Then:

K (b) (q) = C 1 α -1 (q α -q) + c(q -1) = C 1 α -1 q α - C 1 α -1 -c q -c (2.49)
6 α was simulated as 0 when the estimated α < 0, and as 2 when estimated α > 2. The resulting scaling moment function is no longer UM function, but still could be well approximated by it, at least between statistical moments of the orders 1-3, when the pre-factor The obtained results suggest that:

C 1 α -1 -c of
-the events with stronger negative values of the pre-factor give less empirical agreement with the theoretical expression of Eq. 2.47.

-on the contrary, a larger positive pre-factor leads to a much stronger convergence between the theoretical and empirical curves.

-all pre-factors become negative for fields (c) for all considered events.

The first two observations suggest that a conditioning by the rain gauges could be rather counterproductive for rainfall events with C 1 α-1 being weaker than the co-dimension of the fractal rain gauge networks. Obviously, the number of such events will increase with the decrease of the fractal dimension of the network.

The last observation suggests that the semi-distributed hydrological models statistically reduce the rainfall fields into rainfall measured by a much scarcer network of virtual rain gauges.

Overall, the obtained results suggest that inhomogeneous distributions of rain gauging networks lead to only partial information on the rainfall fields. In fact, the statistics of measured rainfall is strongly biased by the fractality of the measuring networks. This fractality needs to be properly taken in to account to retrieve the original properties of the rainfall fields, in spite of the radar data calibration. Additionally, a proper rainfall data re-normalisation is needed when comparing gauged rainfall with the radar data, and consequently when quantifying the impacts of space-time variability within hydrological modelling.

Applying UM and radar data to prevent flash-floods

Climate change and global warming are expected to make precipitation events more frequent, more severe and more local. This may have serious consequences for human health, environment, cultural heritage, economic activities, utilities and public service providers [START_REF] Ozkaynak | Global Environmental Outlook V. United Nations Environment Programme[END_REF]. Therefore, precipitation risk and water management is a key challenge for densely populated urban areas. Applications derived from high (time and space) resolution observation of precipitations will make our cities more weather-ready. Finer resolution data (espeacially from X-band dual radar measurements) enhance engineering tools as used for urban planning policies as well as protection (mitigation/adaptation) strategies to tackle climate-change related weather events. Therefore, it highlights the necessity for increase comprehension of the intrinsically complex rainfall process.

In this Chapter, it was particularly addressed the issue of regional variability of radar rainfall data through stochastic analyses, more precisely in the framework of UM. Then, using UM, the impacts of the scarcity of virtual rain gauges' network using the ENPC X-band radar data were discussed. Furthermore, radar meteorology has been very inspiring for the development of multifractals. It has enabled to work on a 3D+1 field with many challenging applications.

These include stochastic rainfall forecast, which is in fact a major issue to deal with flash floods, especially in urban areas. In this direction, Chapter 3 will present a stochastic algorithm to obtain short-term precipitation forecasts in the framework of UM using rainfall radar data at a high resolution.

Chapter 3

Rainfall Forecast

The uncertainty in rainfall field forecasts remains the main source of uncertainties for flood forecasts. The long spin-up time needed for Numerical Weather Prediction (NWP) models to reach equilibrium (typically exceeding several hours) actually prevents them to deliver short term rainfall forecasts (nowcasts). Indeed, early warning systems require detailed and reliable information about intense convective cells with lifetimes ranging from several minutes to several hours, and with a striking variability in space. This easily exceeds the predictive capabilities of current NWP models.

Hence, given that weather radars cover large areas with high spatial resolution, a large number of rainfall forecasting methods were developed in recent decades based on radar data [START_REF] Austin | The use of digital weather radar records for short-term precipitation forecasting[END_REF][START_REF] Rosenfeld | Objective method for analysis and tracking of convective cells as seen by radar[END_REF][START_REF] Bremaud | Forecasting heavy rainfall from rain cell motion using radar data[END_REF][START_REF] Mecklenburg | Improving the nowcasting of precipitation in an alpine region with an enhanced radar echo tracking algorithm[END_REF][START_REF] Germann | Scale-dependence of the predictability of precipitation from continental radar images. part i: Description of the methodology[END_REF][START_REF] Berenguer | Hydrological validation of a radar-based nowcasting technique[END_REF][START_REF] Kyznarová | Celltrack-convective cell tracking algorithm and its use for deriving life cycle characteristics[END_REF][START_REF] Novák | Quantitative precipitation forecast using radar echo extrapolation[END_REF][START_REF] Bellon | Mcgill algorithm for precipitation nowcasting by lagrangian extrapolation (maple) applied to the south korean radar network. part i: Sensitivity studies of the variational echo tracking (vet) technique[END_REF]. Most of them use as basic principle the radar echo extrapolation. Many extrapolation techniques (e.g. cell tracking, area tracking, variational echo tracking and others) are described in the literature [START_REF] Hilst | An objective extrapolation technique for semi-conservative fields with an application to radar patterns[END_REF][START_REF] Bellon | The evaluation of two years of real-time operation of a short-term precipitation forecasting procedure (sharp)[END_REF][START_REF] Rosenfeld | Objective method for analysis and tracking of convective cells as seen by radar[END_REF][START_REF] Einfalt | A radar rainfall forecasting method designed for hydrological purposes[END_REF][START_REF] Johnson | The storm cell identification and tracking algorithm: An enhanced wsr-88d algorithm[END_REF][START_REF] Mecklenburg | Improving the nowcasting of precipitation in an alpine region with an enhanced radar echo tracking algorithm[END_REF][START_REF] Reyniers | Quantitative precipitation forecasts based on radar observations: Principles, algorithms and operational systems[END_REF].

However, the extrapolation-based forecasts were identified to not account for the growth and decay of rainfall intensity [START_REF] Browning | Nowcasting of precipitation systems[END_REF][START_REF] Wilson | Precipitation nowcasting: past, present and future[END_REF], which was defined by [START_REF] Smith | Nowcasting precipitation-a proposal for a way forward[END_REF] as the main factor resulting in errors in nowcasting systems.

Therefore, some stochastic nowcasting models, such as SBMcast [START_REF] Berenguer | Hydrological validation of a radar-based nowcasting technique[END_REF][START_REF] Berenguer | Sbmcast -an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by lagrangian extrapolation[END_REF] and STEPS [START_REF] Seed | A dynamic and spatial scaling approach to advection forecasting[END_REF][START_REF] Bowler | Steps: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled nwp[END_REF][START_REF] Seed | Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme[END_REF], were developed to take into account the temporal evolution of rainfall patterns. Especially in the case of STEPS, a probabilistic extrapolation nowcast is merged with a NWP downscaling scheme, producing an ensemble of rainfall forecasts. In this model, the small-scale precipitation features are separeted from the large-scale ones. Then, the first are replaced by randomly-generated small-scale features (in the framework of lognormal multifractal cascades) whereas the latter are maintained.

Due to the strong (and possibly anisotropic) scale dependence of rainfall in both space and time, it is rather straightforward to stochastically reproduce small-scale spatial variability using multiplicative cascades. Moreover, advances in the casual modelling of rainfall prescribe well-defined theoretical limits on the predictability of such models. This last Chapter aims to contribute to the development of stochastic multifractal forecasts, using UM. This approach has merged from the successive developments of continuous in scale multifractal cascade models, scaling anisotropy between space and time and causality (Schertzer and Lovejoy, 1987a;[START_REF] Tessier | Universal multifractals: theory and observations for rain and clouds[END_REF]Schertzer and Lovejoy, 1997;[START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF]Schertzer and Lovejoy, 2004a,b;[START_REF] Macor | Multifractal methods applied to rain forecast using radar data[END_REF]Lovejoy and Schertzer, 2010a,b;[START_REF] Schertzer | Multifractals, generalized scale invariance and complexity in geophysics[END_REF]. In the framework of UM, these models have the advantage to be defined by only three robust parameters that have a straightforward physical significance that can be either theoretically or empirically determined (see Chapter 2).

In the following, it will be firstly recalled the UM fields simulations (this time, through continuous in scale cascades) and then the physical principles of multifractal predictability and predictions, which are so closely related that the latter correspond to the most optimal predictions in the multifractal framework. Indeed, these predictions are based on the fundamental duality of a relatively slow decay of large scale structures and an injection of new born small scale structures. Overall, this triggers a mulfitractal inverse cascade of unpredictability. Hence, with the help of rainfall radar data, a stochastic algorithm in the framework of (causal) UM Fractionally Integrated Flux models (UM-FIF) will be detailed. In this case, the rainfall field is obtained with the help of a fractional integration of a conservative multifractal flux, whose average is strictly scale invariant (like the energy flux in a dynamic cascade). Whereas, the introduction of small structures is rather straightforward, the deconvolution of the past of the field is more subtle, but nevertheless achievable, to obtain the past of the flux. Then, one needs to only fractionally integrate a multiplicative combination of past and future fluxes to obtain a nowcast realisation. Finally, some applications of the algorithm will be illustrated.

Simulations of Universal Multifractal Fields

Continuous in scale cascades

The discrete UM cascades discussed in Section 2.1.3 present the disadvantage that they are developed only on a countable set of scales, hence the structure generator (see Appendix D) is only applicable for multiple scale ratios of λ 1 (λ = λ n 1 , with integer values for λ 1 , Λ and n = 1, 2, ..., log λ 1 (Λ)). These models are more easily simulated, but are not necessarily physically acceptable.

More realistic continuous models can be obtained by densifying the cascade process (Schertzer and Lovejoy, 1987a;[START_REF] Lovejoy | Multifractals, universality classes and satellite and radar[END_REF][START_REF] Schertzer | Nonlinear variability in geophysics[END_REF]Schertzer et al., 1997). It means to let λ 1 → 1, increasing the number (n → ∞) of intermediate scales, whithout changing the maximum scale ratio Λ. Hence, for any arbitrary scale ratio λ ≥ 1, and independently and identically distributed densities λ and λ , the multiplicative group property is obtained:

Λ d = λ • T λ ( Λ/λ ) , ∀Λ ≥ λ ≥ 1 (3.1)
where T λ is the structure generator.

Then, considering the generator Γ λ at a scale ratio λ as:

λ = e Γ λ (3.2)
From Eqs. 3.1 and 3.2, the corresponding additive group property appears:

Γ Λ d = Γ λ + T λ (Γ Λ/λ ) , ∀Λ ≥ λ ≥ 1 (3.3)
which can also be rewriten, considering Γ λ infinitely divisible with Γ λ 1 increments, as:

Γ Λ d = Γ λ 1 + T λ 1 (Γ λ 1 + T λ 1 (Γ λ 1 + T λ 1 (Γ λ 1 + (...))) (3.4)
And, in order to satisfy Eq. 2.17:

q λ = e qΓ λ = e K Γ λ (q) ≈ λ K(q) (3.5)
where e K Γ λ (q) and K Γ λ (q) are respectively the first and second Laplace (or Fourier) characteristic functions of Γ λ . This makes K Γ λ (q) logarithmically divergent in ln(λ):

K Γ λ (q) ≈ K(q)ln(λ) (3.6)
In addition, in the framework of UM, which considers infinitely divisible Lévy stable laws, the continuous cascade generator must satisfy the following four conditions (Schertzer andLovejoy, 1987a,b, 1989a,b;[START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF][START_REF] Biaou | De la méso-échelle à la micro-échelle: Désagrégation spatio-temporelle multifractale des précipitations[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF]:

(1) The second characteristic function (in the Fourier sense) of the generator Γ λ (K Γ λ (q)) has a logarithmic divergence with the scale, which is already respected by Eq. 3.6.

(2) The wave numbers (in the Fourier space on fractional integration) are restricted to the interval [1, λ].

(3) The probability distribution of positive fluctuations of the generator Γ λ must fall faster than the exponential function in order to ensure convergence of K Γ λ (q) for positive q's.

(4) The normalisation of the cascade must be canonical1 , which leads to K Γ λ (1) = 0.

Hence, the generator Γ λ is obtained by adding weighted contributions of the subgenerator γ α ( d = L(α), previously defined in Section 2.1.3, see Appendix E), performed using the Green function g.

Spatial case

In the purely spatial case:

Γ λ (x) = D λ g(x )γ α (x -x )dx (3.7)
where the integration domain D λ is the set of vectors x ∈ [λ -1 , 1] (respecting condition ( 2)).

In order to satisfy condition (1):

D λ g(x) α dx = ln(λ) (3.8)
Thus, g is defined as: Actually, Eq. 3.7 is a convolution between g and γ α and can be rewriten as:

g(x) = x -D α , x ∈ [λ -1 , 1] 0 , else ( 
Γ λ (x) = g(x) * γ α (x) (3.10)
Then, using the convolution theorem, Eq. 3.10 gives:

Γ λ (k) = g(k) • γ α (k) (3.11)
where the "∧" symbol means the Fourier transform of these functions.

Therefore, the generator Γ λ is obtained in the physical space by taking the inverse Fourier transform of Eq. 3.11:

Γ λ (x) = F -1 { Γ λ (k)} (3.12)
And its exponential gives the conservative multifractal field ( λ , see Eq. 3.2).

Finally, the obtained field is normalised by λ = e Γ λ , satisfying condition (4) and Eq. 2.18 as well.

Spatio-temporal case

On the other hand, in the spatio-temporal case, one may consider two main points: the spatio-temporal anisotropy, and causality. The latter corresponds to the independence of the past on the future, which means that the propagation only occurs into the future, leading to a break of the temporal symmetry [START_REF] Bunge | Causality, chance, and law[END_REF].

Then Eq. 3.7 can be rewritten as:

Γ λ (x, t) = D λ g(x , t )γ α (x -x , t -t )dx dt (3.13)
where the integration domain D λ is the set of vectors x, t ∈ [λ -1 , 1] (still respecting condition ( 2)).

And satisfying condition (1):

D λ g(x, t) α dxdt = ln(λ) (3.14)
At this time, taking into account the causaility, g is a retarded Green funtion defined as:

g(x, t) = Θ(t) x, t -D el α , x, t ∈ [λ -1 , 1] 0 , else (3.15)
with • being a resolution function that should respect λx, λ 1-Ht t = λ x, t , D el = 3 -H t being the trace of matrix G (see Eq. D.5, in the case of 2D+1 spatiotemporal cascades), H t is the exponent of spatio-temporal anisotropy and Θ(t) is the Heaviside function, which is defined as:

∀t ∈ R, Θ(t) = 0 , t < 0 1 , t ≥ 1 (3.16)
Similarly to Eq. 3.7, Eq. 3.13 is also a convolution between g and γ α and can be rewriten as:

Γ λ (x, t) = g(x, t) * γ α (x, t) (3.17)
which gives:

Γ λ (x, t) = F -1 { Γ λ (k, ω)} = F -1 { g(k, ω) • γ α (k, ω)} (3.18)

Non-conservative multifractals

Up to now, only conservative multifractal fields have been considered in this thesis.

However, most of geophysical processes (including rainfall) present a degree of nonconservation [START_REF] Schertzer | Nonlinear variability in geophysics[END_REF], which is considered in the UM framework as the Hurst's exponent H (see Section 2.1.3). Then, Schertzer and Lovejoy (1997) proposed the generation of non-conservative multifractal fields (ρ λ ) by performing a fractional integration of a conservative field ( λ ). This method, named Fractional Integrated Flux (FIF) model, is an analogy to the Kolmogorov law for atmospheric turbulence [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number[END_REF]:

δρ λ ≈ λ -H a λ (3.19)
where δρ λ is the increment of the non-conservative field and a is a dimensional exponent2 .

Generally, the symmetry properties of the non-conservative field ρ are measured by the structure function exponent ζ(q) [START_REF] Schmitt | Multifractal analysis of the greenland ice-core project climate data[END_REF] such that:

ρ q λ ≈ λ -ζ(q) (3.20)
Then, combining Eqs. 3.19, 3.20 and 2.17, the structure function ζ(q) can be described as:

ζ(q) ≈ qH -K(aq) (3.21)
where the scaling moment function K(q) is taken as the conservative part of Eq. 2.18.

In addition, Eq. 3.21 demonstrates the non-conservation of ρ, since ζ(1) = H -K(a) = 0.

On the contrary, the conservation is obtained at the moment of order q that gives K(aq) = qH, which means ζ(q) = 0.

Spatial case

In the purely spatial case, the non-conservative field ρ can be generated by a fractional integration of the conservative field (Schertzer andLovejoy, 1987a, 1997):

ρ λ (x) = D λ G(x) a λ (x, t)dx (3.22)
where G(x) is defined as (Schertzer andLovejoy, 1987a, 1997;[START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF]:

G(x) = x -D+H+K(a) , x ∈ [λ -1 , 1] 0 , else (3.23) 
Similarly to Eq. 3.7, Eq. 3.22 corresponds to a convolution in the physical space:

ρ λ (x) = G(x) * a λ (x) (3.24)
which is equivalent to a multipication in the Fourier space:

ρ λ (k) = G(k) • λ (k) (3.25)
And then, ρ λ (x) is obtained by taking the inverse Fourier transform of ρ λ (k):

ρ λ (x) = F -1 { ρ λ (k)} (3.26) 3.1.2.2 Spatio-temporal case
Finally, in the spatio-temporal case, the non-conservative field ρ can be generated by:

ρ λ (x, t) = D λ G(x, t) a λ (x -x , t -t )dx dt (3.27)
where, due to causality, G(x, t) is defined as (Schertzer andLovejoy, 1987a, 1997;[START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF]:

G(x, t) = Θ(t)f (x, t) (3.28) with: f (x, t) = x, t -D el +H+K(a) , x, t ∈ [λ -1 , 1] 0 , else (3.29) 
Then, Eq. 3.27 can also be rewritten as a convolution in the physical space:

ρ λ (x, t) = G(x, t) * a λ (x, t) (3.30)
which is equivalent to:

ρ λ (x, t) = F -1 { ρ λ (k, ω)} = F -1 { G(k, ω) • λ (k, ω)} (3.31)
3.2 Forecasts

Limits of predictability

The aforementioned multiplicative cascades are associated with the turbulent phenomenology [START_REF] Richardson | Weather prediction by numerical processes[END_REF] of a hierarchy of structures over a wide range of scales. Since atmospheric turbulent structures present a typical lifetime τ l for each scale l [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF], these spatio-temporal scale invariant models can be dinamically characterised by the relation (Schertzer et al., 1997;[START_REF] Marsan | Predictability of multifractal processes: the case of turbulence[END_REF][START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF]Schertzer and Lovejoy, 2004b;[START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF]:

τ l = l 1-Ht (3.32)
where H t is the exponent of spatio-temporal anistropy.

Eq. 3.32 gives that, after a period ∆t > τ l , the structures on a given scale l are sufficiently deformed (not presenting any correlation anymore with the former ones) and therefore can not be predicted [START_REF] Robinson | Some current projects for global meteorological observation and experiment[END_REF]. However during this period, while new smaller size structures appear (modifying the field and at the same time preserving its complexity), the larger scales still present non-zero correlation levels. This concept will be used to formulate the prediction method, in next Section.

With the popularisation of the "butterfly effect" methaphor, the classical approach to measure the predictability of turbulence has been to introduce a small-scale error and to estimate its propagation over time [START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF]. In the framework of deterministic chaos [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF][START_REF] Lorenz | The predictability of a flow which possesses many scales of motion[END_REF][START_REF] Lorenz | The essence of chaos[END_REF] with a few degrees of freedom, this error grows exponentially with time, leading two initially extremely close trajectories to become fully decorrelated in a finite characteristic time.

However, Schertzer and Lovejoy (2004a) support that, since completely developed turbulunce presents spatio-temporal scale invariance, the decorrelation evolves in a power law over time, and no longer at a given characteristic time. And then, the dependence (or non-zero correlation) between the two cited trajectories would remain up to a scaling resolution λ(t) ≤ Λ [START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF]Schertzer and Lovejoy, 2004a):

λ(t) ≈ min Λ, T t 1 1-H t (3.33)
where T is the external time scale of the process.

Predictions

As discussed in Section 3.1, in the context of Universal Multifractals, the construction of a non-conservative field ρ λ (x, t) can be performed from a Lévy white noise (the subgenerator γ λ (x, t)), considering the parameters α, C 1 , H and H t . This method involves two fractional integrations (or convolutions) and one exponentiation (left side of Fig. 3.1). Then, if the reversal of this process is known, one would theoretically be able to obtain the corresponding sub-generator, at this time performing two fractional derivatives (or deconvolutions) and a logarithm (right side of Fig. 3.1).

Therefore, defining the sub-generator of the field in the past (t ≤ t 0 , for a given present time t 0 ) and in the future (t > t 0 ), one may obtain [START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF]:

γ p,λ (x, t) = γ λ (x, t)Θ(t 0 -t) (3.34) γ f,λ (x, t) = γ λ (x, t) -γ p,λ (x, t) = γ λ (x, t)[1 -Θ(t 0 -t)] (3.35)
where γ p,λ (x, t) is the "past sub-generator" (obtained by the reversal of the multifractal field contruction process, as represented on the right side of Fig. 3.1), and γ f,λ (x, t) is the "future sub-generator".

At least two different forecast proposals have been made in the framework of UM: one deterministic [START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF] and another stochastic (Schertzer and Lovejoy, 2004b;[START_REF] Macor | Multifractal methods applied to rain forecast using radar data[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF]. The first one considers that the future would purely be a relaxation of the past, which means that no small scale structures are added, and then the field would become smoother and smoother. In order to preserve the conservation of the field, this correponds to assigning: The second forecast proposal aims to conserve the complexity of the field in the future and to maintain the same nature as that of the past. Then, γ f,λ (x, t > t 0 ) is taken as an ensemble average of an infinite number of possible realisations of white noise with the same UM parameters of γ p,λ (x, t ≤ t 0 ):

γ f,λ (x, t > t 0 ) d = γ p,λ (x, t ≤ t 0 ) (3.37) with d
= designating equality in distribution law. [START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF] identified two main difficulties to obtain the past-subgenerator by the process previously described:

(1) Some numerical instabilities inherently related to the process of deconvolution.

(2) Limitations of the rainfall measuring devices (including weather radars) to detect low rain rates, introducing an artificial minimum threshold3 (e.g., rain rates smaller than 0.2 mm/h were assigned as 0).

To overcome these points, he proposed to directly obtain the relaxation of the past generator without passing by the past sub-generator. However, the same cited difficulties still had some impacts on obtaining the past generator, by generating unrealistic negative values on the past conservative field. Figure 3.2 presents an example of the appearence of the cited negative values, resulted from the instabilities of the deconvolution, which prevents the following step of the inverse process (the logarithm).

Then, another assumption was made: to consider the past conservative field as the past non-conservative field itself (in order to skip the deconvolution step), which obviously avoid many difficulties but does not correctly solve the problem.

The new proposal here in this thesis is to keep the stochastic approach, however to directly obtain the relaxation ˜ p,λ (t) (x, t) (also defined in the future, with λ (t ≤ t 0 ) = Λ and λ (t > t 0 ) = λ(t), which is defined in Eq. 3.33) of the past conservative field p,Λ (x, t)

from the past (non-conservative) rainfall data ρ p,Λ (x, t), without going up to the past generator (or even to the sub-generator). Therefore, ˜ p,λ (t) (x, t) will be defined as:

˜ p,λ (t) (x, t) = G (- * ) (x, t) * ρ p,Λ (x, t) (3.38)
where G (- * ) (x, t)4 is the causality of the inverse convolution f (- * ) (x, t), with f (x, t)

being defined in Eq. 3.29:

G (- * ) (x, t) = Θ(t)f (- * ) (x, t) (3.39) f (- * ) (x, t) = F -1 {F{f (x, t)} -1 } (3.40)
Thus this past field under relaxation ˜ p,λ (t) (x, t) is multiplied by an extended future field ˜ f,Λ/λ (t) (x, t) (also defined in the past) to obtain the total conservative field Λ (x, t):

Λ (x, t) = ˜ p,λ (t) (x, t) • T λ (t) (˜ f,Λ/λ (t) (x, t)) (3.41) with: ∀t ∈ R, ˜ f,Λ/λ (t) (x, t) = 1 , t ≤ t 0 f,Λ/λ (t) (x, t) , t > t 0 (3.42)
where f,Λ/λ (t) (x, t > t 0 ) is a stochastically generated conservative future field5 .

Numerical simulation model

Due to the inherent discretisation of a numerical process, some notations have to be established. In the spatio-temporal (2D+1) case, the grid elements will be distributed considering the inner (l for space and τ for time) and outer scales (L for space and T for time), where Λ = Λ x 1 = Λ x 2 = L l and Λ t = T τ are, respectively, the maximum spatial and temporal scale ratios, the x i are the spatial coordinates and t is the time coordinate.

Here, l and τ are respectively considered as the spatial and temporal resolutions of the radar data.

Then, Eq. 3.14 is numerically given by:

x,t =1

x,t =λ -1 g(x, t) α = ln(λ) (3.43)

Here, the resolution function ( • , see Eq. 3.15) will be taken as the Euclidean norm, which can be written in the form:

x, t = x 2 1 + x 2 2 Λ 2 + | t | Λ t 2 1-H t (3.44)
However, it is known that:

E = lim n→∞ -ln(n) + n i=1 1 i (3.45)
where E ≈ 0.577 is the Euler constant.

Then, the Green function g must be multiplied by a prefactor k, such that [START_REF] Pecknold | The simulation of universal multifractals[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF]:

k α x,t =1 x,t =λ -1 g(x, t) α = ln(λ) (3.46)
where

k =   ln(λ) x,t =1 x,t =λ -1 g(x, t) α   1 α (3.47)
In addition, since e qγα(x,t) = e q α , similarly to the discrete case (see Eq. 2.32), the sub-genrator γ α should be multiplied by a factor (C 1 / | α -1 |) 1/α in order to obtain the C 1 codimension of the mean singularities of the field (Schertzer and Lovejoy, 1987a;[START_REF] Pecknold | The simulation of universal multifractals[END_REF]. Hence, taking into account Eqs. 3.17 and 3.47:

Γ λ (x, t) = k • g(x, t) * C 1 | α -1 | • γ α (x -x , t -t ) (3.48)
Then, using the convolution theorem, Eq. 3.48 can be writen as:

Γ λ (x, t) = F -1 { Γ λ (k, ω)} = F -1 k • C 1 | α -1 | • g(k, ω) • γ α (k, ω) (3.49)
Finally, the conservative field ( λ ) is obtained by exponentiation of Γ λ and then it is normalised by the magnitude λ C 1 α-1 , which satisfies condition (4) and Eq. 2.18 as well.

Application to the ENPC X-band radar data

This section will present an application of the forecast model using the ENPC X-band radar data. The event selected was the 21-23 May 2016. The mesh used here has 81

x 81 pixels (20.25 km x 20.25 km). The "present" time step (t 0 ) is at 23:35 UTC on 21/05/2016 (Fig. 3.3), with ∆t = 3.41 min. Firstly, the past conservative field (the relaxation ˜ p,λ (t) (x, t), which is also defined in the future) is obtained from the past (non-conservative) rainfall data (see Fig. 3.4), as described by Eq. 3.38.

Then, in order to conserve the complexity of the field in the future, the multifractal behaviour will be taken into account to generate the future small-scale structures. For this event, the UM paramaters used will be those already estimated over the full range of scales (without considering a scaling break, see Tables 2.11 and 2.20): α = 1.35, C 1 = 0.179 and H = 0.052. Additionally, the exponent of spatio-temporal anisotropy can be obtained by the rate between the spatial and temporal estimated scaling moments function [START_REF] Marsan | Multifractals espace-temps; dynamique et prédicibilité; application aux précipitations[END_REF][START_REF] Biaou | De la méso-échelle à la micro-échelle: Désagrégation spatio-temporelle multifractale des précipitations[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF]. Here, it was simplified as H t = H = 0.052.

Figure 3.5 displays on the left the result of a one-realisation forecast and on the right the real rainfall field, as comparison through the future five time steps. As the model does not take into account the advection yet, these results are not at the point to be correctly compared with the real data and to be finally validated. Nevertheless, it was done here an artificial block displacement of the real data in order to compare somehow with the forecast results. Finally, Table 3.1 presents the UM analyses performed on each time step of the real data and the one-realisation forecast. It is possible to note that the estimated UM paramaters for the real data vary for each time step, being different from the α and C 1 values (estimated on average over the full duration of the event) used for the future structures of the forecast realisation. Therefore, the influence of this variability and of that obtained for each forecast realisation have to be further analysed. Real data Forecast Events α C 1 α C 1 t 0 1.036 0.120 t 0 + ∆t 1.057 0.099 1.379 0.076 t 0 + 2∆t 1.104 0.084 1.449 0.069 t 0 + 3∆t 1.308 0.088 1.532 0.059 t 0 + 4∆t 1.466 0.087 1.605 0.051 t 0 + 5∆t 1.596 0.069 1.641 0.046 Although the general approach seems to be advanced now, as discussed in Section 3.2.2, the forecast model developed in this thesis is not accomplished yet. There are some implementations that will be issue of future work, maintaining the application of the UM theory with continuous in scale cascades. At least two can be listed:

t 0 t 0 + 3∆t t 0 + ∆t t 0 + 4∆t t 0 + 2∆t t 0 + 5∆t
t 0 + ∆t t 0 + 2∆t t 0 + 3∆t t 0 + 4∆t t 0 + 5∆t
-to take into account the advection of the rainfall cells (e.g. using vector UM field to considere velocity, [START_REF] Schertzer | Multifractal vector fields and stochastic clifford algebra[END_REF]).

-to perform a 3D+1 generalisation of the model (for the moment it was developed in a 2D+1 dimension), which would require different weather radar data (e.g. different hights of 2D+1).

Finally, in order to make it operational, an user-friendly platform would be very useful.

Conclusions

This thesis was conceived to discuss the rainfall heterogeneity using (X-band) radar data in order to improve flood forecasting. The socioeconomic impact of intense rainfall events, especially in urban areas, is very high. It is primordial therefore to improve the prediction in the short term of these events using reliable spatio-temporal information with high resolution, and to perform accurate hydrological modelling. The main goals of this PhD research were to develop a stochastic forecast model and to benefit of better rainfall measurements, which are related to the advancement of weather radars' technology. In fact, there is a technological rupture in which the rainfall spatio-temporal variability and the replacement of the reflectivity by the dual polarimetry in the estimates of high rain rates by weather radars were discussed.

The most technologically advanced weather radar used in this thesis is represented by the dual-polarised (or polarimetric) ENPC X-band radar, which has not undergone any absolute calibration so far. Therefore, it is important to distinguish polarimetric from non-polarimetric X-band radars. Although there is a great number of studies about Xband radars adjusted using rain gauge networks [START_REF] Einfalt | Comparison of radar and raingauge measurements during heavy rainfall[END_REF][START_REF] Gabella | A portable low-cost x-band rADAR for rainfall estimation in alpine valleys[END_REF][START_REF] Allegretti | X-band mini radar for observing and monitoring rainfall events[END_REF][START_REF] Borup | Dynamic gauge adjustment of high-resolution x-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow[END_REF], most of them do not consider polarimetric X-band radars. Additionally, there are many other studies demonstrating that the use of polarimetric X-band radars does not require any absolute calibration, including rain gauge adjustments [START_REF] Bringi | Polarimetric Doppler weather radar: principles and applications[END_REF][START_REF] Diss | Ability of a dual polarized x-band radar to estimate rainfall[END_REF][START_REF] Anagnostou | Performance evaluation of high-resolution rainfall estimation by x-band dualpolarization radar for flash flood applications in mountainous basins[END_REF][START_REF] Otto | Advances in polarimetric x-band weather radar[END_REF][START_REF] Otto | High-resolution polarimetric x-band weather radar observations at the cabauw experimental site for atmospheric research[END_REF][START_REF] Chandrasekar | Calibration procedures for global precipitation-measurement ground-validation radars[END_REF]. This discussion therefore remains widely open.

Firstly, in Chapter 1, hydrological modellings were performed over a semi-urbanised area southwest of Paris. Two different models were applied: the conceptually-based semi-distributed InfoWorks CS, and the physically-based fully-distributed Multi-Hydro.

Then, in order to analyse their responses to the technological rupture, two different radar data were used as inputs to both models: the C-band at a 1 km x 1 km x 5 min resolution, and the dual-polarised X-band at a resolution of 250 m x 250 m x 3.41 min. It was verified that the fully-distributed model presented higher sensitivity to the better resolution data (dual-polarised X-band) than the semi-distributed model.

In addition, Multi-Hydro has in many cases presented larger peaks at simulated water heights with X-band radar data than in those simulated with lower resolution data (Cband). These results highlight the gains obtained with the technological advancements (better resolution and double polarisation), even though the X-band radar data have not been the target of any absolute calibration. Moreover, they also point out the loss of information when averaging the rainfall data over (big) sub-catchment areas, as done by semi-distributed models.

Apart from the relevant roles of the spatio-temporal rainfall data resolution and the use of dual polarimetry (for high intensities' estimates) in the hydrological results, the data treatment and the choice of rainfall products also have important impacts. Therefore, it is still necessary to study the best a-b parameters of the Z-R relationship used for the low intensities estimates of the X-band radar.

In the following, given the hydrological assessment's difficulties, Chapter 2 brought the UM framework to adequately assess the aforementioned technological rupture in rainfall data. A multifractal analysis was performed on different types of radar data, as well as different products, from completely distinct regions: S-band radars from the Brazilian Amazon Region; S-band radar from São Paulo, Brazil; dual-polarised X-band radar from Tokyo, Japan; C-band and dual-polarised X-band radars from Ile-de-France,

France. The UM assessment enabled a morphological comparison of the radar rainfall fields, independent from scale observation. It was verified that the retrieved UM features depend on the rainfall event, the radar product and the region. In addition, a classification into three sub-categories was designed according to the multifractality indexes (α). This demonstrates the complexity of rainfall fields and the difficulty to generalise a couple of UM parameters for all rainfall data.

Moreover, while comparing the French C-band and dual-polarised X-band radar data for the same three events from 2015, the estimated α parameters are greater for the X-band radar data than for the corresponding C-band ones, though the C 1 parameter estimates remain almost the same for both radar data types. These results mean that the (high resolution) dual-polarised X-band radar is able to observe singularities (spikes) that the C-band radar cannot detect, while both have similar ability to observe lower intensity events.

In addition, with the help of the UM framework, the X-band radar data and the semidistributed hydrological model of the Bièvre catchment, a study was performed to analyse the impacts of rain gauge network's sparseness on radar data calibration and also the limitations of the semi-distributed models to take into account the spatial variability of better resolution data. Thus, a virtual rain gauge network was considered in the Bièvre pilot site by taking the centre of mass of each sub-catchment as the location of each virtual rain gauge. Their rainfall time series were therefore attributed in two ways: by obtaining the respective rainfall series of the X-band radar pixels in which the virtual rain gauges are located, and by considering the averaged X-band rainfall series used as inputs to the model. Taking advantage of the Intersection Theorem, and by performing multifractal analyses of all rainfall distributions (original X-band radar data, X-band radar data averaged over the sub-catchments' areas and virtual rain gauge data), it was demonstrated that the fractality of the virtual rain gauges' distribution biased the statistics of the rainfall field. This result has a threefold interpretation:

(i) The inhomogeneous distributions of rain gauge networks lead to only partial information on the rainfall fields. In other words, the semi-distributed hydrological models statistically reduce the rainfall fields into rainfall measured by a much scarcer network of virtual rain gauge.

(ii) Since the Bièvre catchment was calibrated to the C-band radar data, in case of the number and distribution of the virtual rain gauges would be reliable in comparison to the C-band radar resolution (1 km 2 ) -actually the SIAVB network has only 6 rain gauges -, the number of rain gauges to perform the calibration of betterresolution radar data (e.g. non polarimetric X-band radar) should be big enough to respect the same fractality of the big scales. This also means that the size of the sub-catchments should be comparable to the resolution of the rainfall data used, which would drastically increase the number of sub-catchments and become unmanageable.

(iii) The radar conditioning by rain gauge networks could be rather counterproductive for too sparse network and given rainfall events' features.

Finally, after a detailed study of the characteristics and difficulties of the urban hydrological modelling and the statistical behaviour of the rainfall fields, it turned out that the uncertainty in the rainfall field forecasts continues to be the main source of uncertainties for flood forecasts.

Therefore, in Chapter 3, a stochastic algorithm was developed to obtain very short-range forecasts (or nowcasts) in the framework of causal UM (with continuous in scale multiplicative cascades) using radar rainfall data at a high resolution. After reviewing the theory of UM fields' simulations and the physical principles of multifractal predictability and predictions, a new forecast approach was proposed in order to directly obtain the relaxation of the past conservative field from the past rainfall data. It is therefore a simplification of previous multifractal nowcast schemes [START_REF] Marsan | Causal space-time multifractal processes: Predictability and forecasting of rain fields[END_REF]Schertzer and Lovejoy, 2004b;[START_REF] Macor | Multifractal methods applied to rain forecast using radar data[END_REF][START_REF] Macor | Développement de techniques de prévision de pluie basées sur les propriétés multi-échelles des données radar et satellites[END_REF], with neither the estimation of the past generator nor the numerical instabilities related to the deconvolution process.

This model is based on the fundamental duality of a relatively slow decay of large scale structures and an injection of small scale structures (generated with only three robust UM parameters, with straightforward physical meanings, that can be theoretically or empirically estimated). Then, an application of the algorithm was illustrated using the ENPC X-band radar data. Nevertheless, some improvements would still be necessary to accomplish the development of this model, such as its extension to 3D+1 vector UM field (considering velocity) [START_REF] Schertzer | Multifractal vector fields and stochastic clifford algebra[END_REF].

Besides serving as a tool for hydrological alert systems, the forecast of high intensity rainfall events would also be of great value in other diverse sectors of daily life, such as:

avoiding the use of underground garages, knowing the conditions before taking the roads, checking for work crew mobilisation on earthworks (dams, roads, ...), flight control, among others. Finally, taking advantage of the fact that this model is numerically fast (i.e. operational), a user-friendly platform would enable it to be broadly applied in the future.

A parabolic antenna, a transceiver and a computer system conventionally constitute the weather radar system. The computer provides control of the antenna and the transmitter, as well as the processing of the received signal. is the basic measurement that is used to estimate the reflectivity. Hence, reflectivity (mm 6 .m -3 , commonly expressed in dBZ = 10log 10 (Z/Z 0 ) with Z 0 = 1 mm 6 .m -3 ) is a measure of the efficiency of a target in intercepting and returning the radio wave energy. It strongly depends upon the state of particles (frozen, liquid or mixture) and their size (e.g., one 3 mm drop will return 729 times as much power as one drop of 1 mm in diameter!). The concentration (number of particles per unit volume) and the shape of particles (round, oblate, flat) are also important parameters. Due to diffraction experienced by the electromagnetic energy at the edge of the parabolic reflector, a little bit less than 100% of the energy transmitted by the radar is contained in the half-power radar beam, the so-called 'main lobe". About 0.2% of the energy is not contained in the main lobe, it tends to travel in some preferred directions forming the so-called "side lobes". The main effect of the side lobes is in producing multiple displays of the same target that increase the ground clutter.

The estimation of reflectivity factor Z is based on the so-called radar equation (Selex, 2015): where the first fraction is a geometrical constant, the second fraction presents the constants of radar hardware, and the third one gives the characteristics of the precipitation. When scattering is not equal in all directions, the theory is very difficult. Large hail produces Mie scattering and the shorter wave radars have trouble sensing heavy rainfall and hail. Dual polarisation technique, being applied now for the majority of radars, allows enriching the measurements, including information on the type of precipitation (rain, snow, hail ...) [START_REF] Bringi | Polarimetric Doppler weather radar: principles and applications[END_REF].

Given that large drops are oblate and not spherical (see Fig . A.4), one of the most common polarisation parameters is the differential reflectivity (ZDR), the ratio of power returned at horizontal and vertical polarisation. For larger raindrops (> 1 mm), in the horizontal polarisation more power is returned than in the vertical polarisation and thus ZDR will be positive (in dB scale). Since ice particles tend to scatter energy like spheres, the ZDR for snow and hail will be near zero dB. ZDR data are used to distinguish between liquid and ice phases of water, and to describe the shapes of raindrops. Also, ZDR data can be used to identify echoes from non-meteorological targets. Spectral width W is a measure for turbulence that could be defined as the standard deviation of the single velocity estimates, like:

W = σ(ν) = σ 2 s + σ 2 α + σ 2 d + σ 2 o + σ 2 t (A.3)
where σ 2 s is due to shear, σ 2 α due to antenna motion, σ 2 d due to different speeds of fall for different sized drops, σ 2 o due to vibration of drops and σ 2 t due to turbulence.

The Doppler capability, present in many weather radars now, enables the measurement of the raindrops' velocity. This information helps to better understand the rainfall structure's dynamic and to indentify ground clutters (with zero velocity) [START_REF] Bringi | Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[END_REF][START_REF] Berenguer | A fuzzy logic technique for identifying nonprecipitating echoes in radar scans[END_REF]. Radial velocity V r is the only component that can be seen As a consequence, one scan can either be optimised for Z data or for V data, the socalled Doppler dilemma, -i.e. two scans are necessary if both data types are required in high quality. Indeed, the Z-scan requires low PRF (long pulse mode), but will be limited in unambiguous velocity, while V-scan with high PRF (long pulse mode) will be limited in range, inducing a high risk of second-trip echoes. Because of the dependency on the wavelength of the radar, the Doppler dilemma is less important for S-band radars, but it is dominant at X-band. Furthermore, by exploiting the Doppler effect, weather radars can also provide information on the wind in the precipitating areas.

A.2 Data processing flow

Reflectivity Z, radial velocity V r and spectral width W are the standard Doppler radar output data, many other data could be derived from them. As illustrated on Figure A.6, priory to further data processing there are naturally a number of corrections/filtering procedures to be performed on the standard outputs. To cite some examples, attenuation correction is needed to adjust the loss of radar energy due to the absorption and/or scattering as it passes through the atmosphere [START_REF] Hamilton | Radar Attenuation Estimates from Raingauge Statistics[END_REF]Berne andUijlenhoet, 2005, 2006;[START_REF] Otto | Attenuation correction for a high-resolution polarimetric x-band weather radar[END_REF]. Scattering and absorption are functions of the wavelength relative to the particle size and composition. Absorption occurs when energy in the pulse is intercepted and retained by a particle in the atmosphere. The absorbed energy increases the energy of the atoms that comprise the particle. The absorbed energy may be re-radiated by the particle later but at different wavelengths.

Due to natural variations of reflectivity with altitude, including bright band effects during wintertime, vertical profile of reflectivity should be corrected as well. There are some other typical corrections, like those for clean air echo, partial beam blockage, occultation correction and many others [START_REF] Bech | The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient[END_REF][START_REF] Hubbert | Weather radar ground clutter. part ii: Real-time identification and filtering[END_REF][START_REF] Zhang | Radar quality index (rqi)-a combined measure of beam blockage and vpr effects in a national network[END_REF].

Most of the filtering procedures use the ZDR information. Hence, the double polarisation brings multiple gains even for the hydrological products that do not take it explicitly into account. mf printf (gid, 0, 0, 0.00, 0, , 1 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 2 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 3 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 4 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 5 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 6 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 7 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 8 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 9 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 10 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 11 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 12 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 13 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 14 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 15 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 16 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 17 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 18 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 19 , \n ); mf printf (gid, 0, 0, 0.00, 0, , 20 , \n ); mf printf (gid, P DAT ET IM E, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\ n ); where H y is an exponent of spatial anisotropy and H t is an exponent of spatio-temporal anisotropy.

As schematically indicated on

f
Additionally, in the Generalised Scale Invariance (GSI) case [START_REF] Lovejoy | Generalized scale invariance in the atmosphere and fractal models of rain[END_REF]Schertzer and Lovejoy, 1985b;[START_REF] Lovejoy | Functional box-counting and multiple elliptical dimensions in rain[END_REF]Schertzer andLovejoy, 1987b, 1989a;[START_REF] Lovejoy | Generalized scale invariance and differential rotation in cloud radiances[END_REF][START_REF] Pflug | Differential rotation and cloud texture: analysis using generalized scale invariance[END_REF][START_REF] Pecknold | The morphology and texture of anisotropic multifractals using generalized scale invariance[END_REF], G can be defined as: with the only constraint that the real parts of the eigenvalues have to be positive (Schertzer and Lovejoy, 1985b).

G =     
b n = n 1/α , a n = n X i -X (f or α > 1) (E.4)

where the X variable in Eq. E.1 becomes the Lévy variable L α and Eq. E.1 corresponds to the "generalised" central limit theorem.

Thus, the Lévy law is a generalisation of the Gaussian one, remaining attractive and stable (by addition).

Furthemore, the scaling moments function (or second characteristic function) K(q), which is the logarithm of the first characterisc function Z(q), of the Lévy variables can be given by: e K(q) = Z(q) = e qX (E.5)

Then, taking Eqs. E.1 and E.5, for n independently and identically distributed random variables X i d = X d = L α , with i = 1, 2, ..., n:

K(b n q) = nK(q) -a n q (E.6) which gives:

K(q) = lim n→∞ n K q b n - a n q nb n (E.7)
Finally, Eq. E.7 leads to:

K(q) = c α q α (E.8)
where c α is the cumulant of order α, determining the amplitude of the random variables. 
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  . The technological rupture is mainly based on two leading discussions: the rainfall spatial and temporal variability, and the use of reflectivity and dual polarimetry of weather radars in estimating rain rates. Therefore, Chapter 1 presents a hydrological assessment of this rupture using a conceptually-based semi-distributed and a physically-based fully-distributed model in a French semi-urbanised area covered by two weather radars, which provide different products. The Météo-France C-band radar product has a spatio-temporal resolution of 1 km x 1 km x 5 min and only uses the radar reflectivity to indirectly obtain the rain rates, whereas the ENPC X-band radar product has a 250 m x 250 m x 3.41 min resolution and replaces the reflectivity by the dual polarisation in the estimation of high rainfall intensities. However, besides the uncertainties of the rainfall data, the difficulties of hydrological modelling highlight the limitations of the models (especially the semidistributed ones) to completely assess the impacts of the aforementioned technological rupture.
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 1 Figure 1: Thesis structure

  1.1.1 Case studyThe Bièvre is a 33 km long river and a tributary of the Seine River. The first 18 km upstream (from Saint-Quentin-en-Yvelines to Antony) are open and then it is channeled to downstream in the SIAAP ("Syndicat Interdépartemental pour l'Assainissement de l'Agglomération Parisienne", a French public administrative institution that manage the basin of metropolitan Paris) network with outflow limited to 12 m 3 /s by convention.The upstream catchment of the Bièvre River is a 110 km 2 peri-urban area, gathering 14 cities, with a very complex topography in the southwest of Paris region. Two local authorities are in charge of the river system management in the area: the CASQY ("Communauté d'Agglomération de Saint-Quentin-en-Yvelines" -Saint-Quentin-en-Yvelines Agglomeration Community) on the upstream portion and the SIAVB ("Syndicat Intercommunal d'Assainissement de la Vallée de la Bièvre" -an inter-municipal union that takes care of the Bièvre Valley's sanitation) for the downstream portion. Veolia (a French multinational company, which deals with collective services) has been given the responsibility to design, install and operate a real time control system of the river over the area since 1991. A map of the Bièvre River can be found in Figure1.1. The river network was plotted with the help of data available for the Ile-de-France region (https://www.data.gouv.fr/fr/datasets/reseau-hydrographique-idf/). There are some gaps in this network due to missing data on the storage basins along the Bièvre River and covered parts of the river. The level of urbanisation of the catchment increases downstream (from West to East). The Bièvre River flows in a valley with steep slopes on each side, especially on the northern part.

Figure 1 . 1 :

 11 Figure 1.1: Illustration of the Bièvre catchment area with its representation in 27 sub-catchments used in InfoWorks CS. Five of them -BISAN1, BISAN2, BISAN3, BINSAN2 and VAL D'OR -belong to the CASQY-Bièvre catchment while the others belong to the SIAVB-Bièvre catchment. Location of six rain gauges over the SIAVB-Bièvre catchment and four measurement points are shown. The altitude scale is also represented, in meters.

  five of them -BISAN1, BISAN2, BISAN3, BINSAN2 and VAL D'OR -belong to the CASQY-Bièvre catchment while the others belong to the SIAVB-Bièvre catchment), as displayed on Figure 1.1. Their sizes range from 0.3 to 11 km 2 . The network as modeled is shown on Figure 1.2. This model is integrated in the Optim Sim platform, an offline tool developed by Veolia that imitates the actual regulation of the storage basins either at the local or catchment scale. It should be also mentioned that the settings of neither InfoWorks CS model nor Optim Sim are fully up to date. For instance, a recent modification of the networks that consisted in the removal of the Vilgénis basin to restore the natural flow of the river (near "Vilgénis" rain gauge P6 on Figure 1.1) is

Figure 1 . 2 :

 12 Figure 1.2: Bièvre InfoWorks CS model catchment

Figure 1 . 3 :

 13 Figure 1.3: Illustration of rainfall measurement devices available over the Bièvre catchment. The square area (red dashed line) is the 128 x 128 km 2 area, covered by both radars

  . 1.4), initially called Aramis (Parent-du Châtelet, 2003). Within the PANTHER project (Aramis New Technologies Hydrometeorology Extension and Renewal), this network includes 29 radars. Being spread over the entire territory, the radars have a range of about 100 km to measure the amount of precipitation and about 200 km to detect them. A number of "individual radar" products are transmitted every 5 minutes to the Météo-France centre in Toulouse. Mosaics are then constructed from these products by selecting for each pixel the individual radar information with best quality. Given that the Bièvre catchment is located very close to the polarimetric C-band radar of Trappes (∼ 25 km maximum), the mosaic data come only from the Trappes radar.
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 14 Figure 1.4: The Météo-France radar network (©Météo-France)

Figure 1

 1 Figure 1.5: C-band radar data pixels distribution

Figure 1 .

 1 Figure 1.6 illustrates an example of estimated rainfall (in dB scale), resulting from FIR

Figure 1 . 6 :

 16 Figure 1.6: Icon of the standard Rainbow software (©Selex): DPSRI product of rainfall intensity (in dB scale) using FIR filter

1. 2 )

 2 used at only for very low intensities and R -KDP for higher intensities: R = 19.63|KDP | 0.823 , f or Z > 35dBZ and KDP > 0

  Figure 1.8 displays the obtained results that suggest two intermediate conclusions. By comparing the left and middle graphs, the first observation is that, in spite of the fact that changing Z-R parameters for DPSRI modifies only very low rainfall intensities (lower than typically 7 mm.h -1 ), this change increases the rainfall totals by about 40 %. By comparing the middle and right graphs,

Figure 1 . 8 :

 18 Figure 1.8: Time evolution of accumulated X-band rainfall during the event of 12-13 September 2015 over six catchments containing the rain gauges: GEN (P1 Geneste/GEN), MARAM (P2 Trou Salé/TROU), SYGAM (P3 Loup Pendu/LOUP), VAUHAM (P4 Sablons/SABLO), JOUY3 (P5 Vauboyen/VAUB) and VERR2 (P6 Vilgénis/VILG). The three DPSRI rainfall products at 1.5 km were obtained with: FIR filter and Z -R parameters a = 200 and b = 1.6 (left); FIR filter and Z -R parameters a = 150 and b = 1.3 (centre); and simple filter and Z -R parameters a = 150 and b = 1.3 (right)
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 19 Figure 1.9: Temporal evolution of rainfall rate (top) and cumulative rainfall (bottom) over the whole Bièvre catchment during the studied events (from left to right): 12-13 September 2015, 16 September 2015 and 5-6 October 2015
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 1 Figure 1.10: C-band (left) and X-band (right) pixel maps of the rainfall totals, using the same color pallets, for the three events studied: 12-13 September 2015 (top), 16 September 2015 (centre) and 5-6 October 2015 (bottom). Six circles indicate the raingauged values.
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 111 Figure 1.11: Maps of the C-band (top), rain gauged (centre) and X-band (bottom) rainfall totals for the 12-13 September 2015 event per each of 27 sub-catchments. Six colored circles indicate the corresponding rain gauged values.

Figure 1 . 12 :

 112 Figure 1.12: Maps of the C-band (top), rain gauged (centre) and X-band (bottom) rainfall totals for the 16 September 2015 event per each of 27 sub-catchments. Six colored circles indicate the corresponding rain gauged values.

Figure 1 . 13 :

 113 Figure 1.13: Maps of the C-band (top), rain gauged (centre) and X-band (bottom) rainfall totals for the 5-6 October 2015 event per each of 27 sub-catchments. Six colored circles indicate the corresponding rain gauged values.
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 114 Figure 1.14: Comparison of accumulated rainfall per catchment (dashes) and per rain gauge pixel (solid line) during the event of 12-13 September 2015 for rain gauge (black), C-band (red) and X-band dual pol (green; FIR filter; a=150 and b=1.3 for small intensities) rainfall data

Figure 1 . 15 :

 115 Figure 1.15: Comparison of accumulated rainfall per catchment (dashes) and per rain gauge pixel (solid line) during the event of 16 September 2015 for rain gauge (black), C-band (red) and X-band dual pol (green; FIR filter; a=150 and b=1.3 for small intensities) rainfall data
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 118 Figure 1.18: Flow simulated at the four locations studied with X-band, C-band and rain gauged data for the 16 September 2015 event, along with observations. Simulations are carried out without the implementation of the tool mimicking regulation at the basin scale

Figure 1 . 19 :

 119 Figure 1.19: Flow simulated at the four locations studied with X-band, C-band and rain gauged data for the 5-6 October 2015 event, along with observations. Simulations are carried out without the implementation of the tool mimicking regulation at the basin scale

Figure 1 . 20 :

 120 Figure1.20: Flow simulated at the four locations studied for the 16 September event: without the implementation of the tool optimising regulation at the catchment scale using X-band, C-band and rain gauged data; and with the optimising tool using X-band data

  stream part, south ofParis (Fig. 1.21). It is a semi-urbanised area of 6.326 km 2 and is almost equally distanced from both cited radars (approximately 22 km far from the C-band radar of Trappes and 25 km from the ENPC X-band radar). It contains six storage basins, which will be especially discussed here (see Section 1.2.4). They are part of the network (mentioned in Section 1.1.1) created in order to limit flooding during extreme events.
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 121 Figure 1.21: Massy sub-catchment's location
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 1 Figure 1.22: Multi-Hydro model scheme

Figure 1 . 23 :

 123 Figure 1.23: Topography of Massy area, with the legend of altitude (m)
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 124 Figure 1.24: Land use of Massy area with all available layers

Figure 1 . 25 :

 125 Figure 1.25: Land use of Massy area completely filled

Figure 1 . 26 :

 126 Figure 1.26: Land use of Massy area: a) with priority and b) without priority order

Figure 1 .

 1 Figure 1.27: SWMM file of the Massy sub-catchment and the six storage basins, with Cora's basin (measurement point) highlighted

Figure 1 . 28 :

 128 Figure 1.28: Time evolution of rain rate (top) and cumulative rainfall (bottom) over the whole Massy sub-catchment area for the two data types (C-band, in green; and X-band, in blue) for the three events: 12-13 September 2015 (left), 16 September 2015 (centre) and 5-6 October 2015 (right).
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 129 Figure 1.29: Accumulated rainfall depths by radar pixels over the Massy subcatchment area, for both C-band and X-band radar data for the three studied events

Figure 1 . 30 :

 130 Figure 1.30: Comparison of water level obtained by simulations (using the calculated discharge coefficient and four variations over it --50%, -25%, +25% and +50%for Cora's basin) and measurements for the three events: a) 12-13 September 2015, b) 16 September 2015 and c)5-6 October 2015

Figure 1 . 31 :

 131 Figure 1.31: Temporal evolution for the difference between the simulated water levels obtained with the highest (C d + 50%) and the lowest (C d -50%) discharge coefficients used (top) and for the same difference ratio over the water levels obtained using the calculated C d (bottom); for both radar data and for the three studied events: 12-13 September 2015 (left), 16 September 2015 (centre) and 5-6 October 2015 (right)

Figure 1

 1 Figure 1.32: Comparison of water level obtained by simulations (using the land use of Massy area with priority and without priority order) and measurements for the three events: a) 12-13 September 2015, b) 16 September 2015 and c) 5-6 October 2015

Figure 1 .

 1 Figure 1.33: Relations for cumulative total rainfall normalised by its mean (top), mean normalised cumulative water level using land use generated with priority order (centre), and mean normalised cumulative water level using land use generated without priority order (bottom) between C-band and X-band radars and three events: 12-13 September 2015 (left), 16 September 2015 (centre), 5-6 October 2015 (right). Continuous red line indicates the best linear fit, while the blue dashed line corresponds to the first bissectrice.
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 1 Figure1.34: InVEST model: carbon storage[START_REF] Sharp | InVEST +VERSION+ User's Guide[END_REF] 

  1.26-(a) and 1.26-(b) respectively), the carbon storage totals were estimated for the present scenario of the Massy sub-catchment area (Figs. 1.35 and 1.36).

Figure 1 .

 1 Figure 1.35: Estimated carbon storage (in ton) for the Massy area considering the land use generation method using the priority order

  j) is the total area (in ha) of the land use class k covering the pixel (i,j), obtained by intersecting (in QGIS) the Massy land use shapefile with a 10 m x 10 m model grid (a similar process has been done by Paz et al. (2018) when dealing with rainfall radar data, see Section 1.1.2).
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 1 Figure 1.37: Estimated carbon storage (in ton) for the Massy area considering the land use generation method using weighted values

Figure 1 .

 1 Figure 1.38: Estimated carbon storage (in ton) for the whole Massy area (top) and over the zoomed red square area (bottom), considering the three land use generation methods: priority order (Richard et al., 2012), majority rule (Ichiba, 2016), and weighted values
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 1 Figure 1.39: Jouy-en-Josas sub-catchment's location

  3 were analysed in this work: 12-13 September 2015, 16 September 2015 (with a shortened duration of 11.3 hours from 05:35 to 16:50, instead of 16.8 hours as used in Section 1.1.3) and 5-6 October 2015. Figure 1.43 displays the temporal evolution of the average rain rate and cumulative depth over the Jouy-en-Josas area, and Figure 1.44 presents the accumulated rainfall depths by radar pixels over the catchment area. Once again the aforementioned rainfall data were used: the Météo-France C-band product and the ENPC X-band DPSRI (with FIR filtering smoothing method).

Figure 1 .

 1 Figure 1.43: Time evolution of rain rate (top) and cumulative depth (bottom) over the whole Jouy-en-Josas sub-catchment area for the two data types (C-band, in green; and X-band, in blue) for the three events: 12-13 September 2015 (left), 16 September 2015 (centre) and 5-6 October 2015 (right).

Figure 1

 1 Figure 1.44: Accumulated rainfall depths by radar pixels over the Jouy-en-Josas subcatchment area, for both C-band and X-band radar data for the three studied events

(

  2018), there were no more local measurements at the Pont de Pierre (seeFigs. 1.39 and 1.42) for the period of these three events. So, in order to compare the hydrological simulations, the operational software Optim Sim (see Section 1.1.2) -managed by the SIAVB office in Massy -was used to simulate the same three events with two different types of rainfall data: the SIAVB network of six rain gauges (Fig.1.1); and the CALA-MAR ("CAlcul de LAMes d'eau à l'Aide du Radar" -Calculating Rain with the Aid of

Figure 1 .

 1 Figure 1.45: Illustration of a CALAMAR image (©Veolia) over the Ile-de-France region (left) and zoomed over the Bièvre catchment (right).

Figure 1 . 46 :

 146 Figure 1.46: Comparison of water heights using X-band radar data (in blue) and C-band radar data (in green) compared to Optim Sim simulations using rain gauges and CALAMAR rainfall data, for the three events (12/13-09-2015, 16-09-2015 and 05/06-10-2015)
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 2 Figure 2.1: (a) : Cantor set, (b) : Sierpinski carpet

Figure 2 . 2 :

 22 Figure 2.2: l = L/3 ⇒ λ = 3; (a) : D = 1, (b) : D = 2, (c) : D = 3

Figure 2 . 3 :

 23 Figure 2.3: The fractal dimension evaluation of the ENPC X-band radar data at a resolution of 250 m x 250 m x 3.41 min, over an area of 64 km x 64 km, for the 12 September 2015 event (averaged over the full duration, from 04:05 to 00:00 UTC)
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 24 Figure 2.4: An illustration of a cascade step of the β-model

Figure 2 . 5 :

 25 Figure 2.5: An illustration of a cascade step of the α-model

Figure 2 . 6 :

 26 Figure 2.6: An illustration of a 32-time step rainfall series of rain gauge P1 over the Bièvre catchment during the 12 September 2015 event (from 09:30 to 12:05 UTC) at a scale ratio λ = 32 (L = 160 min, l = 5 min), indicating the sets exceeding two different scaling thresholds λ γ1 = 5.5 mm/h < λ γ2 = 11.5 mm/h, where γ 1 = 0.4919 < γ 2 = 0.7047 are the correspondig orders of singularity
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 27 Figure 2.7: Statistical functions: (a) K(q) and (b) c(γ)

Figure 2 .Figure 2 . 8 :

 228 Figure 2.8: Spectral Analysis: (a) 64 km x 64 km, S-band radar data, São Paulo, Brazil -21/01/2015; (b) 64 km x 64 km, X-band-radar data, Champs-sur-Marne, France -17/06/2016

Figure 2 . 9 :

 29 Figure2.9: TM analysis: (a,c) without scaling break of the S-band radar data from the Brazilian Amazon Region over an area of 64 km x 64 km with a 1 km x 1 km resolution -12/02/2012; (b,d) with scaling break of the ENPC X-band radar data over an area of 64 km x 64 km with a 250 m x 250 m resolution -28-31/05/2016. On the top, evaluations of K(q) are displayed, whereas their respective plots are shown on the bottom.

Figure 2 .

 2 Figure 2.10: DTM Analysis: (a,b) 64 km x 64 km, S-band radar data, Amazon Region, Brazil -12/02/2012; (c,d,e) 64 km x 64 km, X-band-radar data, France -28-31/05/2016. (a) and (c) display the evaluation of K(q, η) for q = 1.5; (b) displays the log-log plot of K(q, η) vs. η for q = 1.5 without scaling break; and (d) and (e) display the log-log plot of K(q, η) vs. η for q = 1.5 at small and large scales, respectively.
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 2 Figure 2.11: Locations of the radars studied in this thesis

Figure 2 .

 2 Figure2.12: The SIPAM radar network, where shading represents topography.[START_REF] Saraiva | Regional variability of rain clouds in the amazon basin as seen by a network of weather radars[END_REF] 

2. 3

 3 .1.3 X-band radars from Tokyo, Japan One of the most urbanised areas in the world, the Tokyo Metropolitan area, has been the main study case of the Tokyo Metropolitan Area Convective Study (TOMACS; Nakatani et al. (

Figure 2 .

 2 Figure 2.13: French radar data selected areas

Figure 2 .

 2 Figure 2.15: Spectral Analysis, São Paulo, Brazil: (a) 15-16/12/2002, (b) 08-09/12/2011, (c) 19-21/06/2012, (d) 02-03/09/2014, (e) 24-25/09/2014, (f) 05/01/2015, (g) 07-08/01/2015, (h) 21/01/2015, (i) 09/02/2015, and (j) 07/03/2015

Figure 2 .

 2 Figure 2.16: Spectral Analysis, Japan: (a) 04-05/07/2010, (b) 26/08/2011

  Moreover, it was observed that specifically in the events from São Paulo (Brazil), the mean α and C 1 values estimated at small scales are close to 1.8 and 0.1, respectively, which were reported by De Montera et al. (2009),[START_REF] Mandapaka | Multiscaling analysis of high resolution space-time lidar-rainfall[END_REF][START_REF] Verrier | Multifractal analysis of african monsoon rain fields, taking into account the zero rain-rate problem[END_REF] and[START_REF] Gires | Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework[END_REF] as the UM parameters obtained when focusing on the rainy portion of the rainfall field. However, as discussed above, these parameters vary at least with the type of rainfall event, the radar product and also with the region.

Figure 2 .

 2 Figure 2.19 summarises the previous results.
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 2 Figure 2.19: Multifractal classification of radar rainfall data from distinct regions

Figure 2 .

 2 Figure 2.20: Selected area over the Bièvre catchment

Figure 2 .

 2 Figure 2.21: Four different rainfall fields analysed over the selected area (demosntrated here with data of the 12 September 2015 event): (a) original data; (b) original data corresponding to each centroid pixel; (c) sub-catchment averaged rainfall; (d) sub-catchment averaged rainfall being concentrated at the corresponding centroid pixel. And the sub-catchment centroid pixels (e).

  2.24) methods on ensemble of data over the whole rainfall event (each time step being considered as an independent realisation) with scaling break. The values obtained for α and C 1 for the six studied events are presented at Tables: 2.22 (rainfall fields (a)), 2.23 (rainfall fields (b)), 2.24 (rainfall fields (c)) and 2.25 (rainfall fields (d)).
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 22232 Figure 2.22: Fractal analysis of the centroid pixels' distribution

Figures 2 .

 2 25 and 2.26 present the theoreticalK(q) 

Figure 2 .

 2 Figure 2.25: K(q) relations at large scales for the six studied events

Figure 2 .

 2 Figure 2.26: K(q) relations at small scales for the six studied events

  3.9) with • being a resolution function that should respect λx = λ x and D = 2 being the trace of matrix G (see Eq. D.3, in the case of self-affine (2D) spatial cascades).

Figure 3 . 1 :

 31 Figure 3.1: Simulation of a non-conservative UM field (on the left) and the hypothetical inverse process (on the right): α = 1.8, C 1 = 0.1, H = 1/3, H t = 1/3, λ xy = 3, λ t = 2
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 32 Figure 3.2: ENPC X-band radar data on 13 May 2016 at 14:25 UTC (on the left) and the result of the inverse process (on the right).

Figure 3

 3 Figure 3.3: ENPC X-band radar data on 21 May 2016 at 23:35 UTC, over an area of 20.25 km x 20.25 km. The rainfall rate scale is presented in mm/h.

Figure 3 . 4 :

 34 Figure 3.4: Obtaining the past conservative field, displayed through the next five time steps. The color pallet is different for each time step.

Figure 3 . 5 :

 35 Figure 3.5: Comparison between the real data (on the left) and forecast realisation (on the right) future time steps. The color pallets are different in all figures.

  Fig. A.1 gives a schematic illustration of the radar 'Volume Scan' composed of several 'Elevation Slices' during that the parabolic antenna of the radar enduringly creates conical rounds, defined by azimuthal velocity ( • /s) and elevation steps ( • ), while emitting at a regular rate very short pulses, or electromagnetic waves. By measuring the elapsed time between the pulse emission and subsequent detection of returned energy from a target, the radar system determines the distance between radar antenna and target.

Figure A. 1 :

 1 Figure A.1: Schematic illustration of the radar 'Volume Scan' (©Selex)

Figure A. 2 :

 2 Figure A.2: Schematic illustration of a dependence between the azimuth radar resolution and the width of antenna beam (©Selex)

Figure A. 3 :

 3 Figure A.3: Schematic illustration of the electromagnetic wave backscattering by hydrometeors (©Selex)

  Validity of the Radar Equation strongly depends on three hypotheses:-The target is composed of a very large number of small particles that obey Rayleigh scattering theory; -The particles, either water droplets or ice particles having a unique dielectric factor, are uniformly distributed over the sampling volume;-No attenuation occurs between the radar and the target.

Figure A. 4 :

 4 Figure A.4: Schematic illustration of the dual polarisation technique given that large drops are oblate and not spherical (©Selex)

by

  Doppler radar (see Fig. A.5 for illustration). Change of frequency is too small for exact measurement. An estimate of the radial velocity is provided by the change of the phase between the transmitted and received signals. The computation of the velocity is based on the "pulse-pair" processing since it requires two pulses -two consecutive signals return from the same target while the distance to target has changed, resulting in a phase shift (∆Φ).

Figure A. 5 :

 5 Figure A.5: Schematic illustration of the radial velocity component seen by Doppler radar (©Selex)

  Fig. A.6, a radar system first performs elevation slice based sampling of "raw" data on polar co-ordinate system (range/azimuth). After the filtering, signal pre-processing is used to estimate some other basic quantities that are required to produce the meteorological products, e.g., ZDR is required for the rainfall estimates. The radar software converts the data products from polar to Cartesian coordinate system to obtain pixel-based images. It is worth to remember that radar beam cannot reach the surface at all positions due to earth curvature and beam refraction (see Fig. A.7 for illustration). Hence, a typical resolution of pixel based images varies

Figure A. 6 :

 6 Figure A.6: Schematic illustration of the radar data processing flow (©Selex)

Figure A. 7 :Figure B. 2 :

 72 Figure A.7: Schematic illustration of the radar beam height ( • ) versus range (km) (©Selex)

  (R f inal(t, 20)) + \ n ); // for ENPC X-band (delta t = 3 + 25/60) f or r = 1 : nrows f or c = 1 : ncols if Area(r, c) > 0 then R f inal(r, c) = R(r, c)/Area(r, c= R f inal/(3600 * 1000); // In order to change the unities from (mm/hr) to m/s , we devide it by 3.6 * 10 6 // Writing the input files if T == 1 then // for the Météo-France C-band data f or n = 1 : 5 f ilename = mopen(path + Rainf all/ +data event+ / raingrid. + string(5 * (t -1) + n -1), w ); mf printf (f ilename, rainf all grid %d minutes \ n , 5 * (t -1) + n -1); mf printf (f ilename, ncols %d \ n , ncols); mf printf (f ilename, nrows %d \ n , nrows); mf printf (f ilename, xllcorner %8.2f \ n , xllcorner); mf printf (f ilename, yllcarner %9.3f \ n , yllcorner); mf printf (f ilename, cellsize %d \ n , cellsize); mf printf (f ilename, N ODAT A value %d \ n , N ODAT A value); f or k = 1 :
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 123 Figure G.1: TM Analysis, Amazon Region, Brazil: (a,b,c) 15/01/2010, (d,e,f) 03/01/2011, (g,h,i) 18/05/2011, and (j,k,l) 12/02/2012
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 111416171819202123 Figure G.6: DTM Analysis, São Paulo, Brazil: (a,b,c) 15-16/12/2002, (d,e,f) 08-09/12/2011, (g,h,i) 19-21/06/2012, (j,k,l) 02-03/09/2014, (m,n,o) 24-25/09/2014 (part I)
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Table 1

 1 

	H 0 (m)

.2.

Regarding the initial water levels in Cora's basin, provided by Veolia, H 0 is 0.039 m, 0.596 m and 0.071 m for the events of 12-13 September 2015, 16 September 2015 and 5-6 October 2015, respectively. It was assumed thus for the other basins that all of them

Table 1 . 2 :

 12 Discharge coefficients and initial water level in all storage basins for each of the three studied events would have the same ratio of water levels, H 0 /H, as Cora's basin. Table1.2 presents

Table 2 .

 2 

	Events	Location	Time Duration Time Steps
	15/01/2010	Belém /PA	8 hours	40
	03/01/2011 São Gabriel da Cachoeira	21 hours	105
	18/05/2011 São Gabriel da Cachoeira	9.4 hours	47
	12/02/2012	Macapá /AP	8 hours	40

2 presents the four selected events, from three different radars in the Amazon Region.

Table 2 . 2 :

 22 Data description of S-band radars in the Amazon Region, Brazil. Spatiotemporal resolution of 1 km x 1 km x 12 min, and space grid dimension of 64 x 64.

Table 2 .

 2 3summarises the ten selected events from the Bauru radar studied in this Chapter.

	Events	Time Duration Time Steps
	15-16/12/2002	9 hours	72
	08-09/12/2011	11.1 hours	89
	19-21/06/2012	47 hours	376
	02-03/09/2014	11.9 hours	95
	24-25/09/2014	15 hours	120
	05/01/2015	9.9 hours	79
	07-08/01/2015	14 hours	112
	21/01/2015	1.9 hours	15
	09/02/2015	6 hours	48
	07/03/2015	5.1 hours	41

Table 2

 2 

.3: Data description of S-band radar, Bauru, São Paulo, Brazil. Spatiotemporal resolution of 1 km x 1 km x 7.5 min, and space grid dimension of 64 x 64.

Table 2

 2 

	.4 displays the two events selected to be

Table 2

 2 

	Events	Time Duration Time Steps
	09/02/2009	12 hours	145
	14/07/2010	17 hours	205
	15-16/08/2010	29 hours	349
	15-16/12/2011	13 hours	157
	12-13/09/2015	44 hours	528
	16/09/2015	16.8 hours	202
	05-06/10/2015	31 hours	372

.5: Data description of the Météo-France C-band radar, Trappes, France. Spatio-temporal resolution of 1 km x 1 km x 5 min, and space grid dimension of 64 x 64.

Table 2 .

 2 7: Estimated H parameters for S-band radar data from the Brazilian Amazon Region

					Scaling break	
		scaling break Small scales Large scales
	Events	β	H	β	H	β	H
	15/01/2010 1.186	0.030	2.170 0.317 0.505 -0.207
	03/01/2011 1.313	0.026	2.188 0.386 0.767 -0.202
	18/05/2011 1.404	0.088	2.588 0.560 0.707 -0.222
	12/02/2012 1.353 -0.043 1.907 0.192 1.032 -0.180

The rainfall data from São Paulo, Brazil, mostly present good scaling behaviour. Only slight scaling breaks are identified in the events of 15-16/12/2002, 08-09/12/2011, 02-03/09/2014 and 07-08/01/2015. The latter, however, presents some instabilities in the

Table 2 .

 2 8: Estimated H parameters for S-band radar data from São Paulo, Brazil

Table 2

 2 

	05-

Figure 2.17: Spectral Analysis, France (C-band): (a) 09/02/2009, (b) 14/07/2010, (c) 15-16/08/2010, (d) 15-16/12/2011, (e) 12-13/09/2015, (f) 16/09/2015, (g) .10: Estimated H parameters for Météo-France C-band radar data, France

Lastly, the ENPC X-band radar data also present an overall good scaling behaviour.

Table 2 .

 2 11: Estimated H parameters for ENPC X-band radar data, France

	(a)	(b)
	(c)	(d)
	(e)	(f)
	(g)	

It is interesting to observe that although the Météo-France C-band radar and the ENPC X-band radar cover the same area of 64 km x 64 km, their ranges of estimated H parameters are very different, with much smaller values (lower levels of non-conservativity) Figure 2.18: Spectral Analysis, France (X-band): (a) 12-13/09/2015, (b) 16/09/2015, (c) 05-06/10/2015, (d) 13/05/2016, (e) 21-23/05/2016, (f) 28-31/05/2016, (g) 17/06/2016

Table 2 .

 2 12: Estimated UM parameters for Amazon Region, Brazil

				Scaling break: 4 km	Scaling break: 8 km
		scaling	Small	Large	Small	Large
		break	scales	scales	scales	scales
	Events	α	C 1	α	C 1	α	C 1	α	C 1	α	C 1
	15/01/2010 0.61 0.72 0.79 0.36 0.55 0.907 0.78 0.437 0.50 1.009
	03/01/2011 0.66 0.598 0.82 0.361 0.63 0.683 0.76 0.458 0.61 0.683
	18/05/2011 0.54 0.65 0.75 0.418 0.47 0.732 0.67 0.504 0.46 0.737
	12/02/2012 0.71 0.446 0.83 0.316 0.68 0.492 0.77 0.372 0.67 0.491
	Mean	0.63 0.604 0.80 0.364 0.58 0.704 0.75 0.443 0.56 0.730
	Standard	0.06 0.101 0.03 0.036 0.08 0.148 0.04 0.047 0.08 0.185
	deviation										
			Without Scaling break: 4 km Scaling break: 8 km	
			scaling	Small	Large		Small		Large	
	Events		break	scales	scales		scales		scales	
	15/01/2010	9.74	13.95		8.21		11.25		8.19	
	03/01/2011	12.21	13.87		11.14		12.48		12.06	
	18/05/2011	16.21	13.39		19.07		13.80		20.03	
	12/02/2012	13.88	14.37		13.49		14.31		14.07	

Table 2 .

 2 13: Estimated q S values for radar data from the Brazilian Amazon Region

	The rainfall events from São Paulo (Brazil) presented estimated values of α > 1.0. Four
	of them (19-21/06/2012, 24-25/09/2014, 05/01/2015, and 07/03/2015) were classified

Table 2 .

 2 14: Estimated UM parameters for São Paulo, Brazil

				Scaling break: 4 km	Scaling break: 8 km
		scaling	Small	Large	Small	Large
		break	scales	scales	scales	scales
	Events	α	C 1	α	C 1	α	C 1	α	C 1	α	C 1
	15-16/12/2002 1.49 0.133 1.82 0.053 1.43 0.171 1.71 0.075 1.40 0.188
	08-09/12/2011 1.43 0.192 1.73 0.096 1.33 0.236 1.67 0.127 1.24 0.253
	19-21/06/2012 1.94 0.064 2.09 0.03 1.86 0.081 2.15 0.038 1.76 0.09
	02-03/09/2014 1.50 0.299 1.89 0.123 1.40 0.39	1.82 0.161 1.33 0.437
	24-25/09/2014 1.71 0.106 2.15 0.059 1.52 0.128 2.11 0.073 1.36 0.137
	05/01/2015	2.07 0.188 2.10 0.124 2.04 0.214 2.13 0.146 1.99 0.215
	07-08/01/2015 1.52 0.203 1.83 0.099 1.41 0.259 1.806 0.122 1.32 0.291
	21/01/2015	1.08 0.366 1.45 0.132 0.99 0.483 1.39	0.18 0.92 0.535
	09/02/2015	1.46 0.211 1.70 0.11 1.38 0.262 1.65	0.13 1.33 0.285
	07/03/2015	1.66 0.229 1.85 0.137 1.57 0.271 1.87 0.163 1.48 0.286
	Mean	1.59 0.199 1.86 0.096 1.49 0.250 1.83 0.147 1.41 0.272
	Standard	0.26 0.084 0.20 0.035 0.27 0.112 0.39 0.043 0.27 0.126
	deviation										
			Without Scaling break: 4 km Scaling break: 8 km	
			scaling	Small		Large		Small	Large	
	Events		break	scales		scales		scales	scales	
	15-16/12/2002	8.15	9.23		7.46		8.69	7.28		
	08-09/12/2011	6.96	7.42		6.90		6.75	7.50		
	19-21/06/2012	7.78	9.65		7.49		8.12	7.91		
	02-03/09/2014	4.75	5.51		4.39		5.07	4.36		
	24-25/09/2014	7.27	6.36		8.23		5.96	10.03	
	05/01/2015		3.84	4.60		3.68		4.17	3.79		
	07-08/01/2015	6.05	6.61		5.86		6.03	6.05		
	21/01/2015		6.26	7.92		5.58		6.92	5.70		
	09/02/2015		6.06	6.90		5.75		6.61	5.77		
	07/03/2015		4.61	5.20		4.52		4.66	4.78		

Table 2

 2 

.15: Estimated q S values for radar data from São Paulo, Brazil

Table 2 .

 2 16: Estimated UM parameters for Japan

				Scaling break: 4 km	Scaling break: 8 km
		scaling	Small	Large	Small	Large
		break	scales	scales	scales	scales
	Events	α	C 1	α	C 1	α	C 1	α	C 1	α	C 1
	04-05/07/2010 0.45 0.485 0.68 0.163 0.39 0.756 0.62 0.23 0.37 0.866
	26/08/2011	1.01 0.201 1.07 0.069 0.98 0.302 1.08 0.099 0.97 0.332
	Mean	0.73 0.343 0.88 0.116 0.69 0.529 0.85 0.165 0.67 0.599
	Standard	0.28 0.142 0.20 0.047 0.30 0.227 0.23 0.066 0.30 0.267
	deviation										
			Without Scaling break: 4 km Scaling break: 8 km	
			scaling	Small		Large		Small		Large	
	Events		break	scales		scales		scales		scales	
	04-05/07/2010	60.08	74.74		36.15		65.11		30.40	
	26/08/2011		15.25	35.56		10.94		24.63		10.17	

Table 2 .

 2 17: Estimated q S values for radar data from Japan

Table 2 .

 2 18: Estimated UM parameters for France(C-band) 

				Scaling break: 4 km	Scaling break: 8 km
		scaling	Small	Large	Small	Large
		break	scales	scales	scales	scales
	Events	α	C 1	α	C 1	α	C 1	α	C 1	α	C 1
	09/02/2009	1.08 0.048 1.09 0.011 1.04 0.07 1.23 0.016 0.99 0.085
	14/07/2010	1.03 0.21 1.33 0.046 0.97 0.294 1.24 0.079 0.93 0.335
	15-16/08/2010 1.58 0.079 2.10 0.019 1.47 0.113 2.04 0.03 1.37 0.136
	15-16/12/2011 2.41 0.083 2.75 0.022 2.34 0.111 2.70 0.038 2.28 0.12
	12-13/09/2015 1.11 0.245 1.68 0.077 0.97 0.336 1.56 0.112 0.87 0.389
	16/09/2015	0.96 0.126 1.24 0.025 0.92 0.185 1.19 0.041 0.89 0.223
	05-06/10/2015 1.57 0.151 1.57 0.042 1.56 0.208 1.57 0.066 1.55 0.237
	Mean	1.39 0.135 1.68 0.035 1.32 0.188 1.65 0.055 1.27 0.218
	Standard	0.48 0.067 0.53 0.021 0.48 0.092 0.51 0.031 0.48 0.105
	deviation										
			Without Scaling break: 4 km Scaling break: 8 km	
			scaling	Small		Large		Small		Large	
	Events		break	scales		scales		scales		scales	
	09/02/2009		48.80	181.93		39.42		74.20		39.01	
	14/07/2010		14.42	24.73		12.02		20.18		11.63	
	15-16/08/2010	10.83	11.84		10.15		10.17		10.50	
	15-16/12/2011	4.56	6.13		4.21		5.17		4.23	
	12-13/09/2015	11.00	9.71		11.22		9.10		12.52	
	16/09/2015		29.78	51.01		22.74		39.70		20.48	
	05-06/10/2015	7.30	16.49		6.02		12.37		5.60	

Table 2 .
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19: Estimated q S values for Météo-France C-band radar data, France

Table 2 .

 2 20: Estimated UM parameters for France (X-band)

				Scaling break: 4 km	Scaling break: 8 km
		scaling	Small	Large	Small	Large
		break	scales	scales	scales	scales
	Events	α	C 1	α	C 1	α	C 1	α	C 1	α	C 1
	12-13/09/2015 1.29 0.205 1.86 0.085 0.99 0.338 1.75 0.111 0.85 0.381
	16/09/2015	1.08 0.126 1.61 0.048 0.89 0.216 1.47 0.063 0.83 0.246
	05-06/10/2015 1.79 0.154 2.03 0.068 1.63 0.236 1.99 0.091 1.54 0.251
	13/05/2016	0.58 0.442 1.06 0.161 0.37 0.725 0.93 0.231 0.28 0.782
	21-23/05/2016 1.35 0.179 1.52 0.072 1.30 0.288 1.45 0.096 1.28 0.311
	28-31/05/2016 1.53 0.176 1.87 0.068 1.35 0.293 1.81 0.092 1.26 0.326
	17/06/2016	0.77 0.53 1.35 0.225 0.54 0.814 1.13 0.309 0.49 0.852
	Mean	1.20 0.259 1.61 0.104 1.01 0.416 1.50 0.142 0.93 0.450
	Standard	0.39 0.147 0.31 0.060 0.42 0.228 0.35 0.085 0.42 0.237
	deviation										
			Without Scaling break: 4 km Scaling break: 8 km	
			scaling	Small		Large		Small		Large	
	Events		break	scales		scales		scales		scales	
	12-13/09/2015	8.41	7.03		9.68		6.83		12.22	
	16/09/2015		18.98	13.12		19.41		13.93		20.57	
	05-06/10/2015	5.39	6.60		4.89		5.92		5.15	
	13/05/2016		28.58	16.24		50.30		16.26		135.24	
	21-23/05/2016	8.57	12.27		6.46		11.36		6.26	
	28-31/05/2016	6.82	8.00		6.04		7.26		6.31	
	17/06/2016		9.87	6.96		11.82		7.67		13.86	

Table 2
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.21: Estimated q S values for ENPC X-band radar data, France

Table 2 .

 2 23: Estimated UM parameters for condition (b)

		Small scales Large scales
	Events	α	C 1	α	C 1
	12-13/09/2015 1.776 0.047	1.76	0.153
	16/09/2015	1.676 0.027 0.922 0.094
	05-06/10/2015 2.029	0.05	1.775 0.189
	21-23/05/2016 1.324 0.041 1.242 0.161
	28-31/05/2016 1.656 0.045 1.665 0.199
	17/06/2016	1.305 0.127 1.058 0.574
	Table 2.22: Estimated UM parameters for condition (a)
		Small scales Large scales
	Events	α	C 1	α	C 1
	12-13/09/2015 -0.009 1.757 0.746 0.659
	16/09/2015	0.023 1.769 0.244 0.539
	05-06/10/2015	0.07	1.788 0.636 0.623
	21-23/05/2016 0.015 1.778 0.295 0.571
	28-31/05/2016 -0.003 1.761 0.613	0.64
	17/06/2016	-0.009 1.753 0.487 1.016
		Small scales Large scales
	Events	α	C 1	α	C 1
	12-13/09/2015 0.642 0.087 1.397 0.131
	16/09/2015	0.247 0.075 0.602 0.092
	05-06/10/2015 0.684	0.09	1.421 0.152
	21-23/05/2016 0.309 0.083 0.844 0.127
	28-31/05/2016 0.493 0.084	1.31	0.149
	17/06/2016	0.661 0.123 0.969 0.341

Table 2 .

 2 24: Estimated UM parameters for condition (c)

		Small scales Large scales
	Events	α	C 1	α	C 1
	12-13/09/2015 -0.014 1.751 0.66	0.6
	16/09/2015	0.011 1.762 0.153 0.514
	05-06/10/2015 0.039 1.769 0.515 0.591
	21-23/05/2016 -0.003 1.763 0.278 0.545
	28-31/05/2016 -0.019 1.75 0.587 0.601
	17/06/2016	-0.006 1.749 0.545 0.871

Table 2

 2 

.25: Estimated UM parameters for condition

(d) 

Table 2 .

 2 the linear term remains positive. With c = 0.34 and UM 26: Estimated pre-factors over large scales for rainfall fields (a) and (c)

	parameters from Tabs. 2.22 and 2.24 over large scales one may obtain the following
	estimates (Tab. 2.26) of these pre-factors for (a) and (c):	
	Events	Rainfall field (a) Rainfall field (c)
	12-13/09/2015	-0.139	-0.01
	16/09/2015	-1.545	-0.571
	05-06/10/2015	-0.096	0.021
	21-23/05/2016	0.325	-1.154
	28-31/05/2016	-0.041	0.141
	17/06/2016	9.557	-11.34

Table 3 .

 3 1: Estimated UM parameters for the real data and forecast realisation present and five future time steps3.3 Future implementations to the forecast modelIn this Chapter, an implementation of a new technique for short-term forecast (nowcast) was presented. It is based on the spatio-temporal hierarchy of atmospheric structures, such as rainfall, and on the use of large data set (here furnished by weather radars). The multifractal behaviour of geophysical fields (in this case, rainfall fields) was explored to keep their nature and complexity through the future.

Table A .

 A 1 displays the description of all variables:

	Variable	Description	Unit	Remarks/typical values
	G	antenna gain	-	20,000 (∼ 43 dB)
	P r	received power	mW	1 ... 10 -11 (0 ... -110 dBm)
	P t	transmitted power	mW	250.10 8 (250 kW)
		(peak)		
	Z	reflectivity factor	mm 6 .m -3	200 (for R = 1 mm/h)
	h	radar pulse length	m	600 (long pulse 2 µs)
	|k| 2	complex index of	-	0.93 for water (0.2 for ice)
		refraction		
	r	target range	m	100.10 3 (100 km)
	λ	radar wave length	m	0.032 (X-band)
	θ	half power beam width	rad	0.017 (∼ 1 degree)
		(horizontal)		
	φ	half power beam width	rad	0.017 (∼ 1 degree)
		(vertical)		

Table A .

 A 1: Variables of radar equation

  // mf printf (gid, string(dates M D Y H m s(year, month, day, hour, minutes, seconds))+ , + string(R f inal(t, 1)) + , + string(R f inal(t, 2)) + , + string(R f inal(t, 3)) + , + string(R f inal(t, 4)) + , + string(R f inal(t, 5)) + , + string(R f inal(t, 6)) + , + string(R f inal(t, 7)) + , + string(R f inal(t, 8)) + , + string(R f inal(t, 9)) + , + string(R f inal(t, 10)) + , + string(R f inal(t, 11)) + , + string(R f inal(t, 12)) + , + string(R f inal(t,13)) + , + string(R f inal(t, 14)) + , + string(R f inal(t, 15)) +

or t = 1 : time steps disp(t) // Print the data with each line corresponding to a time step f ormat( v , 9); mf printf (gid, string(dates M D Y H m(year, month, day, hour, minutes)) + , + string

(R f inal(t, 1)) + , + string(R f inal(t, 2)) + , + string(R f inal(t, 3)) + , + string(R f inal(t, 4)) + , +string(R f inal(t, 5)) + , + string(R f inal(t, 6)) + , + string(R f inal(t, 7)) + , + string(R f inal(t, 8)) + , + string(R f inal(t, 9)) + , + string(R f inal(t, 10)) + , + string(R f inal(t, 11)) + , + string(R f inal(t, 12)) + , + string(R f inal(t, 13)) + , + string(R f inal(t, 14)) + , + string(R f inal(t, 15)) + , + string(R f inal(t, 16)) + , + string(R f inal(t, 17)) + , + string(R f inal(t, 18)) + , + string(R f inal(t, 19)) + , + string(R f inal(t, 20)) + \ n ); //

for C-band (delta t = 5) , + string(R f inal(t, 16)) + , + string(R f inal(t, 17)) + , + string(R f inal(t, 18)) + , + string(R f inal(t, 19)) + , + string

However, the VS2DT model has not been connected for this study because of computation time consuming.

The sewer system layer, which contained the gullies, was provided by Veolia Company (see Section 1.2.3.2).

The two layers of main and secondary roads were given as lines. Then, a buffering process was done, assigning though a width of 16 m for the main ones and of 8 m for the secondary ones.

Other mesh sizes, ranging from 2 m to 100 m, were recently used in Multi-Hydro[START_REF] Gires | Impacts of small scale rainfall variability in urban areas: a case study with 1d and 1d/2d hydrological models in a multifractal framework[END_REF][START_REF] Versini | Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model multi-hydro[END_REF][START_REF] Gires | Multifractal characterisation of a simulated surface flow: a case study with multi-hydro in jouy-en-josas, france[END_REF][START_REF] Ichiba | Scale effect challenges in urban hydrology highlighted with a distributed hydrological model[END_REF].

As mentioned by[START_REF] Giangola-Murzyn | Modélisation et paramétrisation hydrologique de la ville, résilience aux inondations[END_REF], the Multi-Hydro's user can modify this number according to each case study. However, as the same case study has already been used in this thesis with six classes, this number was kept in the present analysis.

This measuring point is disabled since 2014.

Actually, a threshold of 0.0001 mm/h was used.

In the "micro-canonical conservation" case, the conservation is applied for each cascade step.

It should be noted that the β-model is a special case of the α-model with γ+ = c (α = 1) and γ-→ -∞ (α → 0).

This renormalisation is performed on the highest resolution of the field ( Λ).

In this work, it will be used just data from Bauru.

The canonical conservation requires an ensemble conservation through scales, which means that λ = 1.

It will be considered here a = 1. In fact, changing the value of a will impact on the estimate of C1[START_REF] Tessier | Universal multifractals: theory and observations for rain and clouds[END_REF][START_REF] Tessier | Multifractal analysis and simulation of the global meteorological network[END_REF][START_REF] Tessier | Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions[END_REF].

In fact, many studies were performed to analyse the impacts of this threshold of detection on the rainfall scaling behaviour and the associated UM parameters' estimates[START_REF] Larnder | Observer problems in multifractals: the example of rain[END_REF][START_REF] Tessier | Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions[END_REF][START_REF] Harris | Factors affecting multiscaling analysis of rainfall time series[END_REF][START_REF] De Lima | Multifractal analysis of 15-min and daily rainfall from a semi-arid region in portugal[END_REF][START_REF] De Montera | The effect of rain-no rain intermittency on the estimation of the universal multifractals model parameters[END_REF] Gires et al., 2012b).

Note that G (- * ) (x, t) is not necessarily the inverse convolution of G(x, t), which would be represented as G (- * ) (x, t).

Actually, as already mentioned, it is an ensemble average of an "infinte" number (which will be numerically translated by a big number) of stochastically generated conservative fields, with the same UM parameters.

For more complex cases, see Generalised Scale Invariance -GSI-in(Schertzer and Lovejoy, 1985b, 1989a[START_REF] Schilling | Rainfall data for urban hydrology: what do we need?[END_REF] 

2011).
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Appendix A

Overview of weather radar systems

The word 'RADAR' corresponds to an abbreviation of "RAdio Detection And Ranging", which is a remote sensing device designed to detect specific targets using radio waves.

In the early 1940s, radars were developed to be used during World War II to detect aircraft. However, it was found that there was great disturbance of the echoes during strong rain events. Then, after the end of the War, scientists (notably led by David Atlas and J. Stewart Marshall) developed the first meteorological radars, able to measure the reflectivity (Z) of rain particles.

Initially, the C-band and S-band weather radars (typical wavelength ranges of 4-8 cm and 8-15 cm, respectively) were more used than the X-band radars (typical wavelengths of 2.5-4 cm). This is due to the greater influence of signal attenuation due to the atmosphere in the latter [START_REF] Chandrasekar | Error structure of multiparameter radar and surface measurements of rainfall part ii: X-band attenuation[END_REF][START_REF] Berne | Quantitative analysis of x-band weather radar attenuation correction accuracy[END_REF][START_REF] Willie | Attenuation statistics for x-band radar design[END_REF]. In addition, the 200-km average range of C-and S-band radars made it possible to cover larger areas than X-band radars (with ranges up to 100 km).

However, with the evolution of radar technology, the X-band radars have been largely

employed (e.g. in urban hydrology). Besides being cheaper and about twice smaller than the C-and S-band radars, the X-band ones meet the increasing need for better rainfall data resolution.

A.3 Rainfall rate computation: reflectivity vs. polarimetry Priory to dual polarisation techniques, a Z -R relation [START_REF] Marshall | The distribution of raindrops with size[END_REF] to convert corrected reflectivity factor (Z (mm 6 m -3 )) to rain rate Z (mm.h -1 ) has been widely used, with major efforts being devoted to "the best choice" of two associated parameters (a, b) [START_REF] Battan | Radar observation of the atmosphere[END_REF][START_REF] Badoche-Jacquet | Process and device for evaluating the precipitations over an area of terrain[END_REF][START_REF] Fišer | Zr (radar reflectivity-rain rate) relationships derived from czech distrometer data[END_REF][START_REF] Cyr | Estimation of zr relationship and comparative analysis of precipitation data from colocated rain-gauge, vertical radar and disdrometer[END_REF]:

Then, dual polarimetric radars were developed to improve estimates for stronger rain rates [START_REF] Bringi | Polarimetric Doppler weather radar: principles and applications[END_REF][START_REF] Illingworth | The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations[END_REF][START_REF] Figueras I Ventura | Long-term monitoring of french polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at c-band[END_REF]. The wave with vertical polarisation moves quicker than the horizontal one through the atmosphere with hydrometeors, and this results in a differential phase shift (ΦDP ) between the two polarisations. It increases with the distance to the radar.

The quantity most commonly used for the rainfall rate computation is actually the specific differential phase shift KDP ( • /km), which is the gradient of the differential phase shift along the radial beam direction. KDP is much stronger correlated to the rain rate than Z or ZDR [START_REF] Oguchi | Differential attenuation and differential phase shift of radio waves due to rain: Calculations of microwave and milimeter wave regions[END_REF][START_REF] Seliga | Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[END_REF].

Depending on KDP values, the rain rate R (mm/h) can be computed with a different relationship. Indeed, for stronger rainfall with KDP > 1 • /km, KDP values can be used directly to estimate the rainfall intensity:

where f is the frequency of the radar signal. For lower KDP , the Marshall-Palmer Z -R relation is still used to compute the rain rate.

Appendix B Generation of rainfall data input to the hydrological models

B.1 InfoWorks CS

In this Appendix, it will be explained in more details how the GIS data were treated to generate the rain rates over each sub-catchment (R (sub-catchment) , firstly presented in Section 1.1.2 and calculated using Eq. 1.1).

The demonstration will be done using Météo-France C-band radar data grid layer and the Bièvre sub-catchments division layer (Fig. [0,8,9,10,11,12,13,26,25,24,21,20,2,1,3,4,23,22,19,18,5,17,6,16,15,14,7]; 1,1,1,1,1,1,1,2,3,4,5, 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,14]; 

Eqs. 1.6 and 1.7). And then, once again, its QGIS's attributes table was exported to an auxiliary ".csv" file, resulting in a matrix with n rows (each one corresponding to a different entity, where n is the total number of entities) and 5 columns (the corresponding radar data pixel's coordinates i and j, the corresponding Multi-Hydro pixel's coordinates i M H and j M H , and the entity area, in this order).

1 Aij can be applied for any product of C-band, X-band or other radars. 

Hausdorff dimension

Let A be a real D-dimensional set covered by n balls of different sizes l i < l, i = 1, 2, ..., n.

The D-dimensional Hausdorff measure M D (A) is defined by:

where the Haussdorff dimension D H is given by [START_REF] Hausdorff | Dimension und äußeres maß[END_REF][START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Falconer | Fractal geomatry: mathematical foundations and applications[END_REF][START_REF] Barnsley | Fractals everywhere[END_REF]:

Contraction-dilatation operator

The construction of discrete cascades involves two different generators: one related to the intensities (see Section 2.1.2) and another related to the physical structure. The contraction-dilatation operator T λ (Schertzer and Lovejoy, 1985b, 1989a[START_REF] Schilling | Rainfall data for urban hydrology: what do we need?[END_REF], 2011) takes care of the structure generation of the cascades, where λ is the scale ratio. T λ has the group propertiy

and is defined as:

where G is a matrix given by 1 :

-for self-similar (2D) spatial cascades, In the "classical" Gaussian case, when X 2 = X 2 i < ∞, Eq. E.1 correponds to the "classical" central limit theorem, with:

where X is a Gaussian variable, even if X i are not, which means that the Gaussian law is attractive. [START_REF] Lévy | Théorie de l'addition des variables aléatoires[END_REF] introduced a divergence order α ∈ [0, 2] (named as Lévy index) for the real scaling moments q, considering:

Intersection theorem

Let us consider two sequences of independent events E 1,λ and E 2,λ , where E 1 ∈ F , E 2 ∈ F and F is the embedding space. Presuming that the intersection is not empty, the intersection theorem (Schertzer and Lovejoy, 1987a,b) comes as a consequence of the probability of the intersection:

P r(E 1,λ ∩ E 2,λ ) = P r(E 1,λ )P r(E 2,λ ) (F.1) Therefore, following Eq. 2.16, the resulting codimension is the addition of the independent (multi)fractal processes: