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Résumé

Le but de cette thèse est de créer une image couleur de haute qualité, contenant un faible niveau
de bruit et d’aliasing, à partir d’une grande séquence (par exemple des centaines ou des mil-
liers) d’images RAW prises avec une caméra grand public. Il s’agit d’un problème complexe
nécessitant d’effectuer à la volée du dématriçage, du débruitage et de la super-résolution. Les
algorithmes existants produisent des images de haute qualité, mais le nombre d’images d’entrée
est limité par des coûts de calcul et de mémoire importants.

Dans cette thèse, nous proposons un algorithme de fusion d’images qui traite les images
séquentiellement de sorte que le coût mémoire ne dépend que de la taille de l’image de sor-
tie. Après un pré-traitement, les images mosaïquées (ou CFA) sont alignées dans un système
commun de coordonnées en utilisant une méthode de recalage en deux étapes que nous intro-
duisons. Ensuite, une image couleur est calculée par accumulation des données irrégulièrement
échantillonnées en utilisant une régression à noyau classique. Enfin, le flou introduit pendant la
régression est supprimé en appliquant l’inverse du filtre équivalent asymptotique correspondant
(que nous introduisons).

Au cours de la thèse, chaque étape de la méthode est introduite et analysée séparément.
Les performances et la précision sont évaluées sur des données synthétiques et réelles. Cette
procédure permet de contrôler l’erreur à chaque étape, mais également d’analyser correctement
les améliorations proposées des méthodes existantes.

La première partie de la thèse est consacrée aux méthodes d’interpolation. En effet, la
génération de données synthétiques nécessite une méthode d’interpolation et le contrôle de
l’erreur d’interpolation est crucial pour analyser les performances de notre méthode. Nous
étudions en détail les méthodes d’interpolation par polynôme trigonométrique et par B-spline.
Nous tirons de cette étude de nouvelles méthodes d’interpolation affinées que nous utilisons
pour générer des données synthétiques dans les deux parties suivantes.

La deuxième partie de la thèse traite des méthodes de recalage. Nous commençons par
améliorer une méthode existante, à savoir l’algorithme inverse compositional. Ensuite, nous
considérons le recalage d’images mosaïquées. Nous proposons une méthode en deux étapes
qui convertit les images en images non mosaïquées par filtrage passe-bas avant d’effectuer le
recalage avec une méthode préexistante (généralement l’algorithme inverse compositional mod-
ifié).

La troisième partie de la thèse est consacrée aux méthodes de fusion d’images. Première-
ment, nous étudions l’ajustement des données irrégulièrement échantillonnées par des méthodes
de régression à noyau. Nous montrons que le système linéaire impliqué peut être obtenu par
accumulation des données. Pour la régression à noyau classique, nous introduisons le filtre
équivalent asymptotique, une approximation du filtre équivalent réel qui explique le flou intro-
duit. À partir de cette étude, nous développons un algorithme de fusion d’images, rapide et à
faible coût mémoire, qui est conçu pour un grand nombre d’images. Les paramètres optimaux
et la performance de notre méthode sont méticuleusement évalués expérimentalement. Enfin,
cette méthode est adaptée aux images RAW puisque nous proposons l’algorithme de formation
d’image décrit précédemment.



Nous trouvons que pour une grande séquence d’images RAW, notre méthode de formation
d’images améliore avec succès la résolution tout en ayant un bruit résiduel décroissant comme
prévu. Nous avons obtenu des résultats similaires à ceux de méthodes plus lentes et plus gour-
mandes en mémoire.

Cette méthode ouvre la voie à la formation d’images en temps réel à partir d’images RAW.
Les images sont traitées séquentiellement pendant les étapes de pré-traitement, de recalage et
d’accumulation, de sorte que des calculs à la volée peuvent être effectués.
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Abstract

The aim of this thesis is to build a high-quality color image, containing a low level of noise
and aliasing, from a large sequence (e.g. hundreds or thousands) of RAW images taken with
a consumer camera. This is a challenging issue requiring to perform on the fly demosaicking,
denoising and super-resolution. Existing algorithms produce high-quality images but the number
of input images is limited by severe computational and memory costs.

In this thesis we propose an image fusion algorithm that processes the images sequentially so
that the memory cost only depends on the size of the output image. After a preprocessing step,
the mosaicked (or CFA) images are aligned in a common system of coordinates using a two-
step registration method that we introduce. Then, a color image is computed by accumulation
of the irregularly sampled data using classical kernel regression. Finally, the blur introduced
by the underlying kernel regression is removed by applying the inverse of the corresponding
asymptotic equivalent filter (that we introduce).

During the dissertation each step of the method is introduced and analyzed separately. The
performance and the accuracy are evaluated on synthetic and real data. This procedure allows
for a control of the error at each step but also for a proper analysis of the proposed improvements
of existing methods.

The first part of the dissertation is devoted to interpolation methods. Indeed, generating
synthetic data requires an interpolation method and controlling the interpolation error is crucial
for analyzing the performance of our method. We study in detail the trigonometric polynomial
and B-spline interpolation methods. We derive from this study new fine-tuned interpolation
methods that we use to generate synthetic data in the following two parts.

The second part of the dissertation deals with registration methods. We begin by improv-
ing an existing intensity-based method, namely the inverse compositional algorithm. Then, we
consider the registration of mosaicked images. We propose a two-step method that converts the
images into non-mosaicked images by lowpass filtering before performing the registration with
a pre-existing method (typically the modified inverse compositional algorithm).

The third part of the dissertation is dedicated to image fusion methods. First, we study the
irregularly sampled data fitting by kernel regression. We show that the linear system involved can
be obtained by a data accumulation. For classical kernel regression, we introduce the asymptotic
equivalent filter, an approximation of the actual equivalent filter that explains the blur introduced
by the method. From this study, we derive a fast and low memory image fusion algorithm that
is designed for a large number of images. The optimal parameters and the performance of our
method are meticulously evaluated experimentally. Finally, this method is adapted to RAW
images as we propose the image formation algorithm described previously.

We find that for a large sequence of RAW images, our image formation method from RAW
images successfully performs super-resolution with a residual noise decreasing as expected. We
obtained results similar to those obtained by slower and memory greedy methods.

This efficient method opens the way to real time image formation from RAW images. The
images are processed sequentially during the preprocessing, registration and accumulation steps
so that on the fly computations can be performed.



On peut fusionner mille images une fois.
On peut fusionner mille images mille fois.
Mais on ne peut pas fusionner une image une fois.

Pause Thé n°21228239, 07/2018, Anonyme.



CONTENTS 9

Contents

List of Algorithms 12

1 Introduction (en français) 15
1.1 Introduction à la partie I: Interpolation . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Chapitre 3: Interpolation d’image par polynôme trigonométrique . . . . 18
1.1.2 Chapitre 4: Filtrage utilisant l’interpolation par polynôme trigonométrique 18
1.1.3 Chapitre 5: Interpolation par B-spline . . . . . . . . . . . . . . . . . . 20
1.1.4 Chapitre 6: Cohérence des méthodes d’interpolation . . . . . . . . . . 20

1.2 Introduction à la partie II: Recalage . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 Chapitre 7: Algorithme inverse compositional modifié . . . . . . . . . 24
1.2.2 Chapitre 8: Recalage d’images mosaïquées (ou CFA) . . . . . . . . . . 26

1.3 Introduction à la partie III: Fusion/Formation d’images . . . . . . . . . . . . . 28
1.3.1 Chapitre 9: Fusion d’images rapide et à faible coût mémoire utilisant

une régression à noyau classique . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Chapitre 10: Évaluation expérimentale de notre algorithme de fusion

d’images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Chapitre 11: Formation d’image à partir d’une grande séquence d’images

RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Contributions et publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Introduction 35
2.1 Introduction to Part I: Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Chapter 3: Trigonometric Polynomial Interpolation of Images . . . . . 38
2.1.2 Chapter 4: Filtering using Trigonometric Polynomial Interpolation . . . 38
2.1.3 Chapter 5: B-spline Interpolation . . . . . . . . . . . . . . . . . . . . 40
2.1.4 Chapter 6: Consistency of Interpolation Methods . . . . . . . . . . . . 40

2.2 Introduction to Part II: Registration . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Chapter 7: Modified Inverse Compositional Algorithm . . . . . . . . . 44
2.2.2 Chapter 8: Registration of Mosaicked (or CFA) Images . . . . . . . . . 46

2.3 Introduction to Part III: Image Fusion/Formation . . . . . . . . . . . . . . . . 48
2.3.1 Chapter 9: Fast and Low Memory Image Fusion using Classical Kernel

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Chapter 10: Experimental Evaluation of our Image Fusion Algorithm . 49
2.3.3 Chapter 11: Image Formation from a Large Sequence of RAW images . 50

2.4 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 53

I Interpolation 55

3 Trigonometric Polynomial Interpolation of Images 57



10 CONTENTS

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Trigonometric Polynomial Interpolation of Images . . . . . . . . . . . . . . . 59

3.2.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Trigonometric Polynomial Interpolators . . . . . . . . . . . . . . . . . 61
3.2.3 Trigonometric Polynomial Interpolators of a Real-valued Image . . . . 62

3.3 Application to Geometric Transformation of Images . . . . . . . . . . . . . . . 65
3.3.1 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Efficient Image Transformation Algorithm . . . . . . . . . . . . . . . 68

3.4 Up-sampling and Down-sampling . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Up-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Down-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.3 Link between Up-sampling and Down-sampling . . . . . . . . . . . . 72

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Filtering using Trigonometric Polynomial Interpolation 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Convolution of Trigonometric Polynomials . . . . . . . . . . . . . . . 77
4.2.2 Discrete Image Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.2 Application of the Algorithms . . . . . . . . . . . . . . . . . . . . . . 86
4.4.3 Which Method should I use? . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 B-spline Interpolation: Theory and Practice 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 B-spline Interpolation of a Discrete Signal . . . . . . . . . . . . . . . . . . . . 102

5.2.1 B-spline Interpolation Theory . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Prefiltering Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 B-spline Interpolation of a Finite Signal . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Application of the Exponential Filters . . . . . . . . . . . . . . . . . . 107
5.3.2 Prefiltering of a Finite Signal . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.3 Indirect B-spline Transform: Computation of the Interpolated Value . . 112

5.4 Extension to Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5 Control of the Prefiltering Error . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.2 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5.3 Choice of Values mu . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Practical Computations and Numerical Implementation Details . . . . . . . . . 122
5.6.1 Practical Computation of the Poles and the Normalization Constant . . 122
5.6.2 Normalized B-spline Function Evaluation . . . . . . . . . . . . . . . . 125
5.6.3 Provided implementation . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.7.1 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.7.2 Computation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.7.3 Zoom at the Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.7.4 Evolution of the Results with the Order of Interpolation . . . . . . . . 134

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



CONTENTS 11

6 Consistency of Interpolation Methods: Definition and Improvements 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Consistency Measurements of Interpolation Methods . . . . . . . . . . . . . . 143

6.2.1 Spectrum Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Definition and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Fine-tuned Interpolation Methods . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.1 Zoomed Version of Interpolation Methods . . . . . . . . . . . . . . . . 146
6.3.2 Periodic plus Smooth Decomposition Version of Interpolation Methods 146

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.1 Evaluation of the Consistency Measurements . . . . . . . . . . . . . . 149
6.4.2 Transformation by a Homography . . . . . . . . . . . . . . . . . . . . 151
6.4.3 Propagation of the Error . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

II Registration 159

7 Modified Inverse Compositional Algorithm 161
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 The Inverse Compositional Algorithm for Parametric Registration . . . . . . . 162

7.2.1 Mathematical Construction . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.3 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2.4 Coarse-to-fine Multiscale Approach . . . . . . . . . . . . . . . . . . . 167

7.3 Modifications of the Inverse Compositional Algorithm . . . . . . . . . . . . . 169
7.3.1 Grayscale Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3.2 Boundary Handling by Discarding Boundary Pixels . . . . . . . . . . . 169
7.3.3 Gradient Estimation on a Prefiltered Image . . . . . . . . . . . . . . . 171
7.3.4 First Scale of the Gaussian Pyramid . . . . . . . . . . . . . . . . . . . 172
7.3.5 Modified Inverse Compositional Algorithm . . . . . . . . . . . . . . . 172

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.2 Influence of the Modifications . . . . . . . . . . . . . . . . . . . . . . 176
7.4.3 Comparison with a SIFT+RANSAC Based Algorithm . . . . . . . . . 181

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8 Registration of Mosaicked (or CFA) Images 187
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2 Registration of Mosaicked Images . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.1 From Mosaicked to Non-mosaicked Images . . . . . . . . . . . . . . . 189
8.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.3.2 Impact of the Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.3.3 Comparison of Different Base Registration Methods . . . . . . . . . . 197

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



12 CONTENTS

III Image Fusion/Formation 199

9 Fast and Low Memory Image Fusion using Classical Kernel Regression 201
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.2 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2.2 Resolution of the Weighted Linear Regression Problem . . . . . . . . . 203
9.2.3 Summative Expressions of the System Coefficients . . . . . . . . . . . 204
9.2.4 Choice of the Weights . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.3 Classical Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.3.1 Local Linear Filtering and Equivalent Filter . . . . . . . . . . . . . . . 207
9.3.2 Asymptotic Equivalent Filter . . . . . . . . . . . . . . . . . . . . . . . 208
9.3.3 Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.4 Fast and Low Memory Image Fusion . . . . . . . . . . . . . . . . . . . . . . . 212
9.4.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.4.2 A Low Memory Requirement . . . . . . . . . . . . . . . . . . . . . . 214

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10 Experimental Evaluation of our Image Fusion Algorithm 217
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.2 Evaluation of the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.3 Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.3.2 Discussion of the Sharpening Step . . . . . . . . . . . . . . . . . . . . 221
10.3.3 Choice of Order and Scale . . . . . . . . . . . . . . . . . . . . . . . . 228
10.3.4 Comparison with Burst Denoising and the ACT . . . . . . . . . . . . . 239
10.3.5 Comparison between Two Reconstructed Images . . . . . . . . . . . . 246

10.4 Experiments on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

11 Image Formation from a Large Sequence of RAW images 257
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
11.2 Preprocessing of RAW images . . . . . . . . . . . . . . . . . . . . . . . . . . 258

11.2.1 Color Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
11.2.2 Variance Stabilizing Transform . . . . . . . . . . . . . . . . . . . . . 259
11.2.3 Adjustments of the Histograms . . . . . . . . . . . . . . . . . . . . . . 260

11.3 Image Formation from RAW images . . . . . . . . . . . . . . . . . . . . . . . 260
11.3.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.3.2 A Low Memory Requirement . . . . . . . . . . . . . . . . . . . . . . 262

11.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.4.2 A First Sequence with Inadequate Spatial Repartition . . . . . . . . . . 263
11.4.3 A Second Sequence with Adequate Spatial Repartition . . . . . . . . . 267

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

12 Conclusion and perspectives 275

Bibliography 279



LIST OF ALGORITHMS 13

List of Algorithms

3.1 Transformation of an image using trigonometric polynomial interpolation . . . . 69

4.1 Standard filtering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Theoretical prefiltering of an infinite signal . . . . . . . . . . . . . . . . . . . . 106
5.2 Application of the exponential filter h(α) to a discrete signal . . . . . . . . . . . 109
5.3 Prefiltering algorithm on a larger domain . . . . . . . . . . . . . . . . . . . . . 111
5.4 Prefiltering algorithm with a transmitted boundary condition . . . . . . . . . . . 111
5.5 Indirect B-spline transform (1D) . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6 Indirect B-spline transform (2D) . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.7 Two-dimensional B-spline interpolation . . . . . . . . . . . . . . . . . . . . . . 116
5.8 Polynomial coefficients computation . . . . . . . . . . . . . . . . . . . . . . . . 124
5.9 Coefficients of the piecewise polynomial expression of β(n) . . . . . . . . . . . 128

6.1 Evaluation of the consistency measurements . . . . . . . . . . . . . . . . . . . 145
6.2 Transformation of an image using a zoomed interpolation method . . . . . . . . 146
6.3 Transformation of an image using the periodic plus smooth version of interpola-

tion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Generation of a random homography . . . . . . . . . . . . . . . . . . . . . . . 149

7.1 One-scale inverse compositional algorithm . . . . . . . . . . . . . . . . . . . . 166
7.2 Multiscale inverse compositional algorithm . . . . . . . . . . . . . . . . . . . . 169
7.3 One-scale modified inverse compositional algorithm . . . . . . . . . . . . . . . 173
7.4 Multiscale modified inverse compositional algorithm . . . . . . . . . . . . . . . 173

8.1 Registration of mosaicked images (general algorithm) . . . . . . . . . . . . . . 195
8.2 Registration of mosaicked images (recommended algorithm) . . . . . . . . . . . 195

9.1 Image fusion algorithm using classical kernel regression. . . . . . . . . . . . . . 214

11.1 Preprocessing of RAW images . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.2 Image formation algorithm from RAW images . . . . . . . . . . . . . . . . . . 262



14 LIST OF ALGORITHMS



15

Chapter 1

Introduction (en français)

L’objectif général de cette thèse est d’obtenir des images de haute qualité par traitement numérique.
La qualité d’une image peut être améliorée par des méthodes mono-image (par exemple [18,
25] pour le débruitage, [47, 67, 135] pour la super-résolution et [3] pour l’augmentation de
la dynamique). Ces méthodes sont généralement basées sur des transformées (changement de
domaine) ou sur des exemples (patches similaires, apprentissage). Au contraire, les méthodes
multi-images produisent une image de haute qualité à partir d’un ensemble d’images de qualité
inférieure et sont plus proches de l’essence de la photographie, qui accumule les photons. De
tels procédés compensent les inconvénients du système d’imagerie par un traitement numérique
adéquat des données accumulées. Cette idée a été exploitée avec succès pour augmenter la ré-
solution [35, 87, 125], pour le débruitage [19, 71], pour le défloutage [26] ou pour améliorer
la dynamique d’image [2, 53, 81]. La plupart des méthodes prennent en entrée des images pré-
traitées, ce qui peut entraîner des artefacts. Par conséquent, les bonnes méthodes devraient plutôt
gérer les images RAW [35, 36, 37, 48, 61, 131]. La contrepartie de l’utilisation d’images RAW
est que ces images peuvent être plus difficiles à gérer. Notamment, la plupart des images RAW
sont des images mosaïquées (ou CFA) où une seule valeur d’intensité de couleur est disponible
par pixel.

Les performances des algorithmes de traitement d’image dépendent fortement de la qual-
ité des images d’entrée. En particulier, le bruit et l’aliasing sont deux des principales sources
d’erreur. Le bruit introduit une incertitude dans les échantillons mesurés, qui diffèrent des
valeurs réelles du signal sous-jacent. Par exemple, l’influence du bruit sur la précision de la
stéréovision est discutée dans [101]. Le bruit peut généralement être réduit en combinant les
données bruitées disponibles. L’aliasing se produit lorsqu’un signal est sous-échantillonné [59].
Cela introduit une ambiguïté dans la reconstruction du signal continu sous-jacent. Les images
aliasées ne peuvent pas être correctement interpolées.

L’objectif de cette thèse est de construire les algorithmes produisant une image couleur de
haute qualité, contenant un faible niveau de bruit et aliasing, à partir d’une grande séquence
(par exemple des centaines ou des milliers) d’images RAW prises avec un appareil photo grand
public. Nous supposons que les réglages de la caméra sont fixes et que les images, représentant
une scène statique, sont prises quasi instantanément. Les images diffèrent en raison des petits
mouvements de la caméra, du bruit et des petites variations d’éclairage. Il s’agit d’un problème
difficile nécessitant d’effectuer à la volée du dématriçage [68], du débruitage et de la super-
résolution.

Les méthodes multi-images (à partir d’images RAW ou non) peuvent généralement être
décomposées en deux étapes principales: l’étape de recalage, dans laquelle les images sont
exprimées dans un système commun de coordonnées, et l’étape de combinaison, où les données
sont combinées pour construire une image. Même si certaines méthodes ne nécessitent pas
une précision de recalage sous-pixellique [119], il s’agit en général d’une condition préalable à
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l’obtention de bonnes performances. Cependant, il n’y a pas de méthode standard et satisfaisante
pour recaler des images mosaïquées [48, 131]. En raison du contenu particulier de ces images,
les méthodes de recalage existantes, conçues pour les images classiques, ne peuvent pas être
utilisées directement.

En supposant que les images sont correctement recalées, la plupart des méthodes de com-
binaison (spécifiques aux images mosaïquées ou non) sont conçues pour une faible quantité
d’images d’entrée [37, 38, 48, 86, 87, 91, 117, 118, 131]. Elles utilisent un schéma itératif et ex-
igent la disponibilité de toutes les données en mémoire en même temps. Elles peuvent produire
des images de haute qualité, mais la quantité de données accumulées, c’est-à-dire le nombre
d’images d’entrée, est nécessairement limitée par la capacité mémoire de l’ordinateur.

Une méthode multi-image rapide et à faible coût mémoire nécessite une méthode de com-
binaison plus simple. Pour un grand nombre d’images, elle devrait pouvoir atteindre des per-
formances similaires à celles des méthodes plus gourmandes en mémoire. Une image peut être
calculée pixel par pixel sans schéma itératif en utilisant une régression à noyau classique [117].
C’est la méthode de régression à noyau la plus simple et la plus rapide car elle ne prend en
compte que la distance spatiale mais pas la distance photométrique. Cependant, cela donne des
résultats de mauvaise qualité dans les zones contenant des textures ou des discontinuités. En
fait, l’image finale est floue. Comme montré dans [41], chaque valeur de pixel calculée est une
moyenne locale pondérée des échantillons et est donc obtenue par un filtrage linéaire local. Mais
le filtre équivalent dépend de la répartition spatiale des données, qui varie avec la position du
pixel.

Dans cette thèse, nous brisons les deux limites (évoquées précédemment) des méthodes ex-
istantes. Nous proposons un algorithme de formation d’image à partir d’images RAW qui traite
les images séquentiellement de sorte que le coût mémoire ne dépend que de la taille de l’image
de sortie. Après une étape de pré-traitement, les images mosaïquées (ou CFA) sont alignées dans
un système commun de coordonnées en utilisant une méthode de recalage en deux étapes que
nous introduisons. Ensuite, une image couleur est calculée en utilisant une régression à noyau
classique et en accumulant les données irrégulièrement échantillonnées. Enfin, le flou intro-
duit pendant la régression est supprimé en appliquant l’inverse du filtre équivalent asymptotique
correspondant (que nous introduisons).

Dans cette thèse, chaque étape de la méthode est introduite et analysée séparément. Ses
performances et sa précision sont évaluées sur des données synthétiques et réelles. De cette
manière, nous parvenons à contrôler l’erreur à chaque étape et à fournir une analyse appropriée
des améliorations proposées des méthodes existantes. La génération de données synthétiques
nécessite une méthode d’interpolation et le contrôle de l’erreur d’interpolation est crucial pour
analyser les performances de notre méthode. Par conséquent, nous étudions également en détail
les méthodes d’interpolation. Nous tirons de cette étude de nouvelles méthodes d’interpolation
affinées que nous utilisons pour générer des données synthétiques.

La partie I (du chapitre 3 à 6) est consacré aux méthodes d’interpolation. La partie II
(chapitre 7 et 8) traite des méthodes de recalage. Finalement, la partie III (du chapitre 9 à 11)
est dédiée aux méthodes de fusion d’images.
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1.1 Introduction à la partie I: Interpolation

L’interpolation consiste à construire de nouvelles valeurs à partir de la donnée d’un ensemble
discret de valeurs connues. Cette notion est étroitement liée aux concepts d’approximation [21],
d’ajustement [29] et d’extrapolation. En traitement du signal, elle est couramment exprimée
comme le problème de la récupération du signal continu sous-jacent à partir duquel les valeurs
connues sont échantillonnées. En supposant que le signal appartient à une classe de fonctions
donnée, le principe commun à tous les schémas d’interpolation est de déterminer les paramètres
de la représentation continue du signal. Les méthodes d’interpolation les plus courantes sont
présentées dans [46, 123].

Une représentation continue du signal est nécessaire lorsque l’on souhaite implémenter
numériquement un opérateur défini initialement dans le domaine continu. En particulier, cette
représentation est requise lors de l’application d’une transformation géométrique à une image.
Soit σ(R2) l’ensemble des fonctions bijectives de R2 dans lui-même. Une fonction ϕ ∈ σ(R2)
est appelée une transformation géométrique. Soit u une image de taille M×N. Appliquer la
transformation géométrique ϕ à u consiste à ré-échantillonner u aux emplacements ϕ−1(k, l).
Comme représenté dans la figure 1.1, en général ϕ−1(k, l) ∈ R2 n’appartient pas à la grille en-
tière et une représentation continue u : R2 → R de u est requise. L’image transformée uϕ est
alors définie comme l’image de taille M×N vérifiant

(uϕ)k,l = u
(
ϕ
−1(k, l)

)
. (1.1)

Figure 1.1: Transformation géométrique d’une image. Pour appliquer une transformation
ϕ ∈ σ(R2) à une image u, les valeurs de pixels aux emplacements ϕ−1(k, l) doivent être cal-
culées. Comme les échantillons de u sont uniquement connus aux positions entières, une
représentation continue u : R2 → R de u est requise. Cette représentation s’obtient par une
méthode d’interpolaton. Les échantillons (uϕ)k,l sont dits "tirés" (pulled). Dans le système de
coordonnées transformé, les seules valeurs de pixel qui peuvent être obtenues sans interpolation
correspondent aux échantillons "poussés" (pushed) uk,l se trouvant aux positions ϕ(k, l).

Dans la partie II et la partie III, nous évaluerons les performances des méthodes proposées
sur des données synthétiques qui sont composées d’images transformées. La génération des don-
nées requiert une méthode d’interpolation dont le choix influe sur les résultats finaux. L’erreur
d’interpolation doit être prise en compte. C’est pourquoi dans la partie I nous étudions en détail
les méthodes d’interpolation par polynôme trigonométrique et par B-spline. Nous tirons de cette
étude de nouvelles méthodes affinées d’interpolation.
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1.1.1 Chapitre 3: Interpolation d’image par polynôme trigonométrique

Pour des signaux 1D ou 2D, l’interpolation de Shannon-Whittaker avec extension périodique
peut être formulée comme une interpolation par polynôme trigonométrique [1]. Dans le chapitre 3,
nous introduisons la théorie de l’interpolation par polynôme trigonométrique ainsi que quelques
unes de ses applications. Premièrement, les polynômes trigonométriques interpolateurs d’une
image sont caractérisés et il est prouvé qu’il y en a une infinité dès lors que l’une des tailles
de l’image est paire. Trois choix classiques d’interpolateur pour des images à valeur réelles
sont présentés et les cas où ils coïncident sont explicités. Ensuite, l’interpolation par polynôme
trigonométrique est appliquée à la transformation géométrique des images, au sur-échantillonage
et au sous-échantillonnage. Les résultats généraux sont exprimés pour n’importe quel choix
d’interpolateur mais davantage de détails sont donnés pour les trois cas particuliers consid-
érés. On montre que les calculs bien-connus basés sur la transformée de Fourier discrète (DFT)
doivent être légèrement adaptés.

L’application au filtrage est détaillée séparément dans le chapitre 4. Les performances et les
limites de l’interpolation par polynôme trigonométrique sont discutés dans le chapitre 6.

1.1.2 Chapitre 4: Filtrage utilisant l’interpolation par polynôme trigonométrique

Le chapitre 4 est extrait de [15] et est une application du chapitre 3. Nous proposons des al-
gorithmes permettant de filtrer des images à valeurs réelles lorsque le filtre est fourni par une
fonction continue φ : [−π,π]2→C. Ce problème est ambigu puisque les images sont des entités
discrètes et qu’il n’y a pas de moyen unique de définir le filtrage. Nous fournissons un cadre
théorique permettant d’examiner les implémentations classiques et efficaces de filtrage qui sont
basées sur les DFTs.

Dans ce cadre, le filtrage est interprété comme la convolution fφ ∗P d’une distribution fφ,
représentant le filtre, avec un polynôme trigonométrique interpolateur P de l’image. Les dif-
férentes interpolations plausibles et les choix de la distribution conduisent à trois algorithmes
qui sont tous les trois également licites et qui peuvent être vus comme des variantes du même
algorithme standard de filtrage, décrit dans l’algorithme 1.1.

Algorithme 1.1: Algorithme standard de filtrage

Entrée: Une image à valeurs réelles u de taille M×N, un filtre φ : [−π,π]2→ C
(fonction continue) et l’indice j ∈ {1,2,3} de la variante.

Sortie : L’image filtrée v de taille M×N correspondant à la variante j.
1 Calculer ũ = FM,N(u) la DFT de u.
2 Calculer S = (Sm,n)(m,n)∈Ω̂M,N

les échantillons spectraux correspondant à la variante j
(voir chapitre 4 pour les détails).

3 Calculer ṽ = (ũm,nSm,n)(m,n)∈Ω̂M,N
la mutiplication point à point de ũ et S.

4 Calculer v = F −1
M,N(ṽ) la DFT inverse de ṽ.

Aucune méthode ne devrait a priori être préférée aux autres; le choix dépend de l’application.
Les différences entre les résultats sont localisées à la frontière de la DFT et ne sont en pra-
tique pas visibles à l’oeil nu. Nous montrons cela sur plusieurs configurations expérimentales
en faisant varier l’image d’entrée et le filtre considéré. Par exemple, les résultats du filtre de
translation de paramètre (1/4,1/4) sont comparés dans la figure 1.2 et dans la table 1.1. La
différence maximale globale se situe autour de deux niveaux de gris. Dans certains cas, cepen-
dant, nous discutons de la manière dont le choix de la variante peut affecter les propriétés
fondamentales du filtrage. Nous fournissons une implémentation des algorithmes à l’adresse
http://www.ipol.im/pub/art/2016/116/.

http://www.ipol.im/pub/art/2016/116/


1.1–Introduction à la partie I: Interpolation 19

(a) Lenna

(b) Square

(c) Dice

(d) Garden

Figure 1.2: Comparaison des trois méthodes de filtrage pour le filtre de translation de paramètre
(1/4,1/4). De gauche à droite nous montrons pour chaque image d’entrée: la partie réelle de la pre-
mière méthode et les différences relatives ∆

1,2
rel , ∆

1,3
rel et ∆

2,3
rel . Les images de différence sont multipliées par

105 pour des soucis de visualisation. Les différences entre les résultats sont localisées à la frontière de la
DFT et ne sont pas visibles à l’oeil nu.

Lenna Square Dice Garden
1 vs 2 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.052%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)
1 vs 3 d 1.1 (0.48%) 2.2 (0.58%) 0.18 (0.093%) 2.0 (0.61%)

md 0.17 (0.075%) 0.77 (0.20%) 0.029 (0.015%) 0.42 (0.13%)
2 vs 3 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.053%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)

Table 1.1: Différence maximale d et différence moyenne md entre les trois méthodes de filtrage pour le
filtre de translation de paramètre (1/4,1/4). Les valeurs relatives sont entre parenthèses. La différence
maximale globale est d’environ deux niveaux de gris de sorte qu’aucune différence ne peut être vue à
l’oeil nu.
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1.1.3 Chapitre 5: Interpolation par B-spline

Le chapitre 5 est extrait de [14]. L’interpolation par B-spline est une alternative non bande
limitée et largement utilisée à l’interpolation de Shannon-Whittaker. Pour des signaux 1D elle
est définie de la manière suivante.

Definition 1.1. La fonction de B-spline normalisée d’ordre n, notée β(n), est définie récursive-
ment par

β
(0)(x) =


1, −1

2 < x < 1
2

1
2 , x =±1

2
0, sinon

et pour n≥ 0, β
(n+1) = β

(n) ∗β
(0) (1.2)

où le symbole ∗ désigne l’opérateur de convolution.

Definition 1.2 (Interpolation par B-spline). L’interpolateur par B-spline d’ordre n d’un signal
discret f ∈ RZ est la spline ϕ(n) de degré n définie pour x ∈ R par

ϕ
(n)(x) = ∑

i∈Z
ciβ

(n)(x− i) (1.3)

où les coefficients de B-spline c = (ci)i∈Z sont caractérisés par la condition d’interpolation

ϕ
(n)(k) = fk, ∀k ∈ Z. (1.4)

Dans le chapitre 5, nous expliquons comment les signaux et les images peuvent être ef-
ficacement interpolés par B-spline en utilisant du filtrage linéaire. Dans la méthode phare en
deux étapes proposée par Unser et al. en 1991 [129], les coefficients de B-spline c sont d’abord
calculés lors d’une étape de préfiltrage. Ensuite, les valeurs interpolées sont calculées à l’aide
de (1.3). Nous proposons deux algorithmes de préfiltrage légèrement différents dont les préci-
sions sont contrôlées grâce à un traitement rigoureux des conditions au bord. Le premier algo-
rithme est général et fonctionne pour toute extension au bord tandis que le second est applicable
sous des hypothèses spécifiques.

Le chapitre 5 contient toutes les informations, théoriques et pratiques, nécessaires pour ef-
fectuer efficacement une interpolation par B-spline pour tout ordre et toute extension au bord.
Nous décrivons précisément comment évaluer le noyau et comment calculer les paramètres de
l’interpolateur B-spline.

Dans une partie expérimentale, nous montrons que l’augmentation de l’ordre améliore la
qualité de l’interpolation. Par exemple, l’interpolation B-spline se rapproche de l’interpolation
de Shannon-Whittaker lorsque l’ordre augmente [5]. La figure 1.3 illustre la décroissance de la
différence avec l’ordre.

En tant qu’application fondamentale, nous fournissons également une implémentation de la
transformation homographique des images en utilisant une interpolation par B-spline à l’adresse
http://www.ipol.im/pub/art/2018/221/. Un exemple de transformation homographique
est présenté dans la figure 1.4.

1.1.4 Chapitre 6: Cohérence des méthodes d’interpolation

Il n’y a pas de procédure universelle pour évaluer la qualité et la performance d’une méth-
ode d’interpolation. Dans le chapitre 6, nous introduisons une nouvelle quantité: la mesure de
cohérence. Pour une image donnée, la mesure de cohérence CM (ϕ) pour la transformation
ϕ ∈ σ(R2) mesure l’erreur après avoir appliqué successivement ϕ, une extraction de sous-image

http://www.ipol.im/pub/art/2018/221/
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Figure 1.3: Décroissance de la différence entre l’interpolation de Shannon-Whittaker et
l’interpolation par B-spline pour n ∈ {0, . . . ,16}. Des transformations géométriques de l’image
Lenna sont comparées. La RMSE est prise au centre des images de sorte que l’extension au
bord a une influence négligeable. L’extension périodique est utilisée pour les deux méthodes
d’interpolation.

Figure 1.4: Exemple de transformation homographique utilisant l’interpolation par B-spline
d’ordre 11 (avec condition au bord symétrique).

(supprimant les artefacts au bord) et l’inverse ϕ−1. Une moyenne sur des transformations aléa-
toires (ϕi)1≤i≤Ntransf est faite pour supprimer la dépendance en la transformation. Nous définis-
sons la mesure de cohérence CM par

CM =
1

Ntransf

Ntransf

∑
i=1

CM (ϕi). (1.5)

Une mesure plus précise, qui élimine les artefacts à très haute fréquence, est obtenue en coupant
le spectre de la différence. La variante est appelée la mesure de consistance coupée et est notée
CM c.

Nous proposons également de nouvelles méthodes d’interpolation affinées qui sont basées
sur le zoom avant par DFT et sur des méthodes d’interpolation préexistantes. La version zoomée
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d’une méthode d’interpolation est obtenue en l’appliquant au zoom avant par DFT de l’image.
Dans la version periodic plus smooth de deux méthodes d’interpolation, la non-périodicité est
gérée en appliquant la version zoomée de la première méthode à la composante périodique et la
seconde méthode à la composante lisse (smooth).

Dans une partie expérimentale, nous montrons que les méthodes affinées proposées ont de
meilleures mesures de cohérence que leurs méthodes d’interpolation de base et que l’erreur
est principalement localisée dans une petite bande haute fréquence. Cela peut être vu dans les
résultats présentés dans le tableau 1.2. Le spectre de l’image de différence (à partir de laquelle
les mesures de cohérence sont calculées) est montré dans la figure 1.5 pour diverses méthodes
d’interpolation.

Sur la base de cette analyse, il est recommandé d’utiliser les versions periodic plus smooth
de l’interpolation par B-spline d’ordre élevé. Cette méthode est plus rapide et donne de meilleurs
résultats que l’interpolation par polynôme trigonométrique. Dans le chapitre 10, une telle méth-
ode sera utilisée pour générer des données synthétiques et pour la méthode de burst denoising.

CM CM c Temps (s)
spline1 2.53480 2.50077 225
bic 1.18612 1.13573 336
spline3 0.75702 0.67967 283
spline11 0.35355 0.19626 796
tpi 0.20564 0.06345 4767
spline1-z2 0.86002 0.81810 1308
bic-z2 0.25140 0.15072 1425
spline3-z2 0.20585 0.06816 1407
spline11-z2 0.20564 0.06345 2053
p+s-spline1 0.84660 0.81640 2039
p+s-spline1-bic 0.84660 0.81640 2159
p+s-bic 0.18008 0.13811 2355
p+s-spline3 0.09417 0.03007 2199
p+s-spline3-bic 0.09417 0.03007 2259
p+s-spline11 0.08785 0.01506 3360
p+s-spline11-bic 0.08785 0.01506 2907
p+s-tpi-spline1 0.08785 0.01506 5865
p+s-tpi-bic 0.08785 0.01506 5960
p+s-tpi-spline3 0.08785 0.01506 5926
p+s-tpi-spline11 0.08785 0.01506 6443

Table 1.2: Évaluation des mesures de cohérence pour Ntransf = 1000 homographies aléatoires.
L’évaluation est faite en excluant au bord des images une bande de largeur δ= 20 pour rendre les
résultats indépendants du choix de l’extension. Le temps affiché correspond au temps de calcul,
en secondes, de toutes les transformations. Cela peut également être interprété comme le temps
moyen, en millisecondes, nécessaire pour appliquer une transformation et son inverse. Les
méthodes tpi et bic représentent respectivement l’interpolation par polynôme trigonométrique
et l’interpolation bicubique. Le suffixe z2 correspond aux versions zoomées. Pour la version
periodic plus smooth, nous utilisons le préfixe p+s. La première méthode est celle utilisée sur la
composante périodique. Il est clair que les méthodes affinées ont une meilleure cohérence. Les
erreurs sur les versions coupées (colonne 2) étant significativement plus faibles, nous concluons
que l’erreur est principalement localisée dans une petite bande haute fréquence. Les méthodes
periodic plus smooth fournissent de meilleurs résultats car la non-périodicité de l’image est
correctement gérée.
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(h) p+s-tpi-spline11 (0.117,0.0187)

Figure 1.5: Spectre de l’image de différence (à partir de laquelle les mesures de cohérence sont cal-
culées) pour différentes méthodes d’interpolation. Les spectres correspondent à la transformée de Fourier
discrète non normalisée en échelle logarithmique u 7→ log(1 + u). La transformation géométrique ϕ

utilisée est une homographie. Les valeurs entre parenthèses correspondent aux mesures de cohérence
(CM (ϕ),CM c

(ϕ)), qui sont respectivement les énergies L2 sans et avec suppression de la bande des
fréquences les 5% plus élevées. Pour les méthodes bic, bic-z2 et p+s-bic, i.e., les méthodes où les images
éventuellement zoomées sont interpolées par interpolation bicubique, le spectre de la différence est élevé
partout sauf dans une petite région de basse fréquence. Pour la méthode spline11, la région correspon-
dante est plus grande. Pour les méthodes tpi et spline11-z2, le spectre a des valeurs non-négligeables
dans une bande autour de la fréquence de Nyquist et dans une structure en croix verticale et horizontale.
La structure en croix est également visible pour la méthode bic-z2 et est due à la gestion incorrecte de la
non-périodicité. En effet, elle disparaît dans les méthodes p+s-spline11 et p+s-tpi-spline11.
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1.2 Introduction à la partie II: Recalage

Le recalage d’images est l’une des techniques les plus utilisées en vision par ordinateur. L’objectif
est de trouver la transformation optimale qui met en correspondance les pixels de deux (ou plus)
images. Le recalage d’images est requis par exemple lorsque les images sont acquises à des
moments différents, à partir de points de vue distincts ou par différents capteurs. Une estimation
précise et rapide est importante dans des problèmes tels que l’estimation du flux optique [10,
56], le suivi des objets [134], la stabilisation vidéo [78], l’assemblage [115] ou la reconstruction
3D [52]. La tâche est difficile car elle traite des problèmes tels que les occlusions, le bruit, les
changements de luminosité locaux ou les mouvements parasites.

Des revues des méthodes existantes sont fournies par [75, 88, 137]. Les méthodes sont en
général fondées sur l’information géométrique [27] ou sur l’intensité. Les méthodes basées sur
l’intensité sont généralement plus rapides mais plus sensibles aux changements de luminosité et
aux valeurs aberrantes. Les méthodes basées sur la géométrie sont généralement plus sensibles
au bruit et au flou de mouvement, mais permettent d’estimer des déformations plus fortes [114].

Dans la partie III, nous considérerons des méthodes multi-images qui nécessitent une étape
de recalage efficace. Les images d’entrée ne différeront que par de petits mouvements de la
caméra, du bruit, de la quantification et éventuellement de petites variations d’éclairage. C’est
pourquoi dans la partie II nous considérons des méthodes de recalage basées sur l’intensité. Tout
d’abord, nous améliorons l’algorithme inverse compositional. Ensuite, nous développons une
méthode en deux étapes pour les images mosaïquées (ou CFA).

1.2.1 Chapitre 7: Algorithme inverse compositional modifié

Introduit pour la première fois dans [8, 122], l’algorithme inverse compositional est une amélio-
ration de la méthode classique de Lucas-Kanade [74] pour l’estimation de mouvement paramétrique.
À chaque étape de son schéma itératif, il résout un problème de minimisation équivalent à
Lucas-Kanade mais plus efficacement. Plus précisément, à une étape donnée j ≥ 1, l’idée est
d’affiner la transformation estimée actuelle Ψ(·;p j−1) avec une transformation incrémentale in-
versée (d’où le nom de l’algorithme) Ψ(·;∆p j)

−1, i.e.,

Ψ(·;p j) = Ψ(·;p j−1)◦Ψ(·;∆p j)
−1. (1.6)

L’incrément ∆p j approche le minimiseur de l’énergie incrémentale

∆p ∈ Rn 7→ E1(∆p;p j−1) = ∑
x∈Ω

ρ
(
‖I2(Ψ(x;p j−1))− I1(Ψ(x;∆p))‖2) (1.7)

où ρ : R+→ R+ est appelée fonction d’erreur. Une meilleure précision pour les larges déplace-
ments est obtenue avec des approches multi-échelles comme dans [104].

Dans le chapitre 7, nous introduisons plusieurs améliorations de l’algorithme inverse com-
positional. Nous proposons une gestion améliorée des pixels du bord, une gestion des couleurs
et une estimation différente du gradient, ainsi que la possibilité de sauter des échelles dans le
schéma multi-échelle. Dans une partie expérimentale, nous analysons l’influence des modifi-
cations. Nous trouvons que la précision d’estimation est améliorée d’un facteur supérieur à 1,3
alors que le temps de calcul est réduit d’un facteur supérieur à 2,2 pour les images en couleur. Un
exemple d’estimation de mouvement sur des données synthétiques, avec et sans modifications,
est présenté dans la figure 1.6. Les modifications conduisent à des résultats nettement meilleurs.

L’algorithme inverse compositional modifié sera utilisé dans le chapitre 8 dans la méthode
en deux étapes proposée pour les images mosaïquées.
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(a) Image de référence I1 = I2(Ψ(·;p?)) (b) Image déformée I2
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Figure 1.6: Exemple d’estimation de mouvement sur des données synthétiques. L’image de
référence I1 = I2(Ψ(·;p?)) est un exemple d’image synthétique relié à I2 par une homographie.
À la deuxième et troisième ligne, le mouvement estimé p est obtenu soit par l’algorithme in-
verse compositional soit par sa version modifiée. Pour les deux méthodes, l’image de droite
est en réalité la RMS sur les canaux du résidu I1− I2(Ψ(·;p)), qui est obtenue par interpola-
tion bicubique. Sans modification, on a EPE=0.00460 et RMSE(I1(x), I2(Ψ(x;p))) = 0.042838.
Avec modification, on a EPE=0.00022 et RMSE(I1(x), I2(Ψ(x;p))) = 0.001790.
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1.2.2 Chapitre 8: Recalage d’images mosaïquées (ou CFA)

Une image mosaïquée (ou CFA) est une image numérique dans laquelle un seul des trois canaux
de couleur a été capturé à chaque emplacement de pixel. L’image en niveaux de gris correspon-
dante a une structure en mosaïque provoquée par le filtre-réseau coloré (CFA). L’image RAW
acquise est un exemple typique d’image mosaïquée. Le modèle le plus commun pour le CFA, et
celui qui est considéré ici, est le motif de Bayer [12]. Dans de nombreuses applications, la trans-
formation géométrique entre deux images mosaïquées doit être estimée sans connaissance des
images couleur sous-jacentes. Malheureusement, il n’existe pas de méthode de recalage standard
et satisfaisante pour les images mosaïquées. Les méthodes de recalage existantes conçues pour
les images classiques ne peuvent pas être utilisées directement et une étape de pré-traitement est
requise.

Dans le chapitre 8, nous introduisons des méthodes en deux étapes pour le recalage des
images mosaïquées. Tout d’abord, les deux images mosaïquées sont converties en images non-
mosaïquées (niveaux de gris) par filtrage passe-bas. Selon [6], ces images filtrées estiment
l’information de luminance contenue dans les images mosaïquées. Un exemple de conversion
est présenté dans la figure 1.7. Ensuite, la transformation est estimée en appliquant une méthode
de recalage préexistante conçue pour les images classiques.

Les performances des méthodes proposées sont évaluées expérimentalement pour plusieurs
filtres passe-bas et plusieurs méthodes de recalage préexistantes. Nous concluons qu’un filtre
passe-bas parfait doit être appliqué et que l’algorithme inverse compositional modifié avec fonc-
tion d’erreur robuste (voir le chapitre 7) doit être utilisé. Une comparaison des performances
pour différentes méthodes de recalage de base est présentée dans le tableau 1.3. La méthode
recommandée est à la fois précise et rapide, et sera utilisée dans notre algorithme de formation
d’image à partir d’images RAW (voir le chapitre 11).

(a) Image couleur I (b) Image mosaïquée ICFA

(c) Filtrage passe-bas parfait de ICFA

Figure 1.7: Conversion d’image mosaïquée à non-mosaïquée. L’image mosaïquée ICFA (en (b))
est obtenue en appliquant le filtre de Bayer à l’image couleur I (en (a)). L’image en (c) est
obtenue après filtrage passe-bas parfait de (b).
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SIFT + RANSAC IC M-IC

σ = 0
EPE 0.01932 0.01173 0.00360
Temps (s) 1298 458 149

σ = 3
EPE 0.03002 0.01309 0.00559
Temps (s) 1334 453 151

σ = 5
EPE 0.04929 0.01678 0.00979
Temps (s) 1393 451 153

σ = 10
EPE 0.15314 0.02391 0.01550
Time 1671 447 165

σ = 20
EPE 0.49535 0.04903 0.03352
Temps (s) 2575 424 204

σ = 30
EPE 0.83937 0.07455 0.05327
Temps (s) 3029 463 344

σ = 50
EPE 1.84189 0.13512 0.10812
Temps (s) 3003 579 531

Table 1.3: Influence de la méthode de recalage de base pour la méthode de recalage en deux
étapes d’images mosaïquées. La conversion en images non-mosaïquées est faite par filtrage
passe-bas parfait. Pour les algorithmes inverse compositional (IC) et inverse compositional mod-
ifié (M-IC), la fonction d’erreur de Lorentz est utilisée. Le temps de calcul affiché correspond
au temps CPU utilisé pour les estimations de mouvement de Nimages = 1000 images et est ex-
primé en secondes. Notez que cela correspond également au temps de calcul moyen par image
en millisecondes. La précision est évaluée en termes d’end-point-error (EPE). L’algorithme M-
IC donne les meilleurs résultats pour tous les niveaux de bruit, à la fois en termes d’efficacité
et de précision. Grâce à la manipulation correcte des pixels au bord et au pré-filtrage avant
l’estimation du gradient, il est possible d’obtenir une estimation de mouvement précise en
quelques itérations, même si les images non-mosaïquées contiennent des artefacts.
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1.3 Introduction à la partie III: Fusion/Formation d’images

Les étapes principales des méthodes multi-images sont les étapes de recalage et de combinai-
son. Après le recalage, les valeurs de pixels peuvent être exprimées dans le système de co-
ordonnées de référence soit en tirant soit en poussant les échantillons (voir Figure 1.1). Les
valeurs d’intensité tirées sont calculées en effectuant une transformation géométrique des im-
ages et donc en utilisant une méthode d’interpolation. Par exemple, dans les méthodes de burst
denoising [19, 71], l’image fusionnée est calculée par une moyenne des images transformées.
Cela fournit des résultats médiocres lorsque les images sont aliasées et ne peut pas être utilisé
dans un contexte de super-résolution. Au contraire, la combinaison des échantillons poussés
est ouverte à la super-résolution. Les échantillons poussés définissent un ensemble de don-
nées irrégulièrement échantillonnées (voir l’exemple de la figure 1.8). Le calcul d’une valeur
d’intensité à un emplacement arbitraire est appelé ajustement (ou approximation) de données
irrégulièrement échantillonnées. Une image est obtenue en calculant des intensités dans une
grille régulière.

508.5 509.5 510.5 511.5 512.5 513.5

508.5

509.5

510.5

511.5

512.5

513.5

Figure 1.8: Exemple de répartition spatiale de données irrégulièrement échantillonnées. Pour
calculer les intensités aux positions entières (croix rouges), une méthode d’ajustement des don-
nées irrégulièrement échantillonnées doit être utilisée.

1.3.1 Chapitre 9: Fusion d’images rapide et à faible coût mémoire utilisant une
régression à noyau classique

Dans le chapitre 9, nous considérons l’ajustement de données irrégulièrement échantillonnées
par régression à noyau (KR) [117]. Nous proposons une méthode de fusion d’images rapide et
à faible coût mémoire qui est conçue pour un grand nombre d’images.

Dans les méthodes KR, la valeur d’intensité des données est localement approchée par une
expansion polynomiale (d’ordre au plus 2 dans la suite), dont les coefficients sont obtenus en
résolvant une régression linéaire pondérée (avec des poids issus d’un noyau). Nous montrons
que les systèmes linéaires impliqués peuvent être obtenus par accumulation de données.

La régression à noyau classique (CKR) est le cas le plus simple et le plus efficace où les poids
ne dépendent que de la répartition spatiale des données. Étant équivalent à un filtrage linéaire
local [41], la CKR introduit du flou. Nous introduisons le filtre équivalent asymptotique (AEF),
une approximation du filtre équivalent réel. Un exemple d’AEF est montré dans la figure 1.9.

Dans l’algorithme de fusion d’images proposé l’étape de combinaison, utilisant la CKR avec
noyau gaussien, est divisée en une étape d’accumulation, où les images sont traitées séquentielle-
ment, et une étape de calcul de l’image. Le flou, introduit par la CKR, est inversé en appliquant
l’inverse du AEF. Les étapes principales de notre méthode sont résumées à la figure 1.10.
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Figure 1.9: Filtre équivalent asymptotique w̃σs,∞ pour un noyau gaussien d’écart-type σs = 0.7.
Dans le domaine spatial (a) et de Fourier (b), les fonctions sont radiales de sorte que seule la
coupe y = 0 est montrée. Les fonctions décroissent quand ‖x‖ augmente. En particulier, le
filtrage par AEF atténue le contenu haute fréquence.

(a) Algorithme gourmand en mémoire

(b) Notre algorithme

Figure 1.10: Étapes principales de notre méthode de fusion d’images. (a) et (b) sont théorique-
ment équivalents. La combinaison des données irrégulièrement échantillonnées est remplacée
par une étape d’accumulation, où les images sont traitées séquentiellement pour obtenir les co-
efficients des systèmes linéaires, et une étape de calcul de l’image, où les systèmes sont résolus.

La méthode de recalage utilisée est celle introduite dans le chapitre 7. Le choix des paramètres
optimaux et l’évaluation de la performance de notre algorithme sont les sujets du chapitre 10.
L’étape de combinaison est adaptée aux images mosaïquées dans le chapitre 11.

1.3.2 Chapitre 10: Évaluation expérimentale de notre algorithme de fusion d’images

Dans le chapitre 10, nous évaluons expérimentalement les performances de notre algorithme de
fusion d’images sur des données synthétiques et réelles. Notre analyse du cas synthétique montre
que l’étape d’affûtage est cruciale pour obtenir une image débruitée et sans flou. Nous déter-
minons également la meilleure configuration pour l’ordre et l’échelle, en fonction du facteur de
sous-échantillonnage. En supposant une répartition uniforme des échantillons, nous concluons
qu’il est préférable d’utiliser l’ordre 0 lorsqu’aucune super-résolution n’est requise, et l’ordre 2
pour la super-résolution. Nous trouvons qu’une échelle d’environ 0,7 pour le noyau gaussien est
le meilleur choix.

Le résultat de notre méthode pour 200 images réelles de taille 512× 512 est comparé à
ceux d’une méthode de burst denoising et de ACT dans la figure 1.12 pour un zoom de λ ∈



30 1–Introduction (en français)

{1,2}. Comme ils ne peuvent pas être distingués à l’oeil nu, la différence avec notre méthode
est montrée. Les temps de calcul et les utilisations mémoire maximales des méthodes sont les
suivants:

Burst denoising ACT Notre méthode (avec KR)

λ = 1
Temps (s) 442 1784 135
Mémoire maximale (kB) 175468 5562344 82192

λ = 2
Temps (s) ND 1942 444
Mémoire maximale (kB) ND 6224528 1200492

Nous montrons que pour un grand nombre d’images (synthétiques ou réelles), notre algorithme
de fusion d’images fournit des résultats similaires aux méthodes plus lentes et plus gourmandes
en mémoire. Le bruit résiduel sur les exemples synthétiques et réels diminue comme prévu et
notre algorithme est capable d’effectuer de la super-résolution.

À partir des expériences sur les données réelles, nous constatons que les performances des
méthodes de fusion d’images sont limitées par des processus incontrôlés (dématriçage, com-
pression JPEG, quantification sur 8 bits). C’est pourquoi nous proposons dans le chapitre 11 un
algorithme de formation d’image prenant en entrée des images RAW.

1.3.3 Chapitre 11: Formation d’image à partir d’une grande séquence d’images
RAW

Dans le chapitre 11, nous proposons une méthode de formation d’image à partir d’une grande
séquence d’images RAW. Il s’agit une version adaptée de notre méthode de fusion d’images,
décrite dans le chapitre 9, pour les images RAW. Ce chapitre fait suite au travail publié dans [13].

Les images RAW sont d’abord pré-traitées pour transformer la courbe de bruit et ajuster les
histogrammes. Ensuite, la méthode de recalage en deux étapes pour les images mosaïquées,
introduite dans le chapitre 8, est utilisée pour aligner les images. Comme dans le chapitre 9,
les images sont combinées par une régression à noyau classique du second ordre avec noyau
gaussien. Le processus comporte deux étapes. La première est un processus d’accumulation
dans lequel les images sont traitées séquentiellement. Dans la seconde étape, le flou introduit
par la régression à noyau classique est inversé par un filtre d’affûtage. Les principales étapes de
notre méthode de formation d’image à partir d’images RAW sont présentées dans la figure 1.11.

(a) Algorithme gourmand en mémoire

(b) Notre algorithme

Figure 1.11: Étapes principales de notre méthode de formation d’image à partir d’images RAW.
(a) et (b) sont théoriquement équivalents. La combinaison des données irrégulièrement échan-
tillonnées est remplacée par une étape d’accumulation, où les images sont traitées séquentielle-
ment, et une étape de calcul de l’image.

Nous montrons expérimentalement que, pour un grand nombre d’images RAW, notre méth-
ode de formation d’image fournit, de manière efficace et avec une faible utilisation de la mé-
moire, un résultat de haute qualité. Contrairement aux images fusionnées à partir d’images
traitées (comme dans le chapitre 10), les images formées à partir d’images RAW ne contiennent
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pas d’artefact provenant du processus inconnu de traitement des images. Notre méthode ef-
fectue avec succès de la super-résolution et le bruit résiduel diminue comme prévu. Nous avons
obtenu des résultats similaires à ceux obtenus par des méthodes plus lentes et plus gourmandes
en mémoire. Le résultat de notre méthode appliquée à 200 images RAW est montré dans la
figure 1.13.

1.4 Contributions et publications

Liste des contributions. Les principales contributions de cette thèse, chapitre par chapitre, sont
les suivantes:

• Chapitre 3: Caractérisation des polynômes trigonométriques interpolateurs. Application
à la transformation géométrique des images, au sur-échantillonnage et au sous-échantillonnage
avec des calculs basés sur la DFT.

• Chapitre 4: Extrait de [15]. Des algorithmes basés sur la DFT pour le filtrage d’images à
valeurs réelles. Justification théorique basée sur l’interpolation par polynôme trigonométrique.
Théorie et implémentation fournie à l’adresse http://www.ipol.im/pub/art/2016/
116/.

• Chapitre 5: Extrait de [14]. Description complète de l’interpolation par B-spline (théorie
et pratique). Deux algorithmes de préfiltrage dont la précision est contrôlée. Implémenta-
tion fournie à l’adresse http://www.ipol.im/pub/art/2018/221/.

• Chapitre 6: Introduction des mesures de cohérences. Méthodes d’interpolation affinées
ayant des meilleures mesures de cohérence.

• Chapitre 7: Extrait de [16]. Améliorations de l’algorithme inverse compositional en
termes de précision et de rapidité. Implémentation et prépublication fournies à l’adresse
https://www.ipol.im/pub/pre/222/.

• Chapitre 8: Méthode de recalage en deux étapes des images mosaïquées.

• Chapitre 9: Présentation de la régression à noyau. Introduction du filtre équivalent
asymptotique dans le cas de la régression à noyau classique. Une méthode de fusion
d’images rapide et à faible coût mémoire qui est conçue pour un grand nombre d’images.

• Chapitre 10: Justification expérimentale de notre méthode de fusion d’images. Détermi-
nation des meilleurs ordre et échelle sur des données synthétiques.

• Chapitre 11: Une méthode de formation d’image rapide et à faible coût mémoire qui est
conçue pour un large nombre d’images RAW.

Liste des publications. Le travail durant cette thèse a donné lieu aux publications suivantes:

• T. Briand et J. Vacher. "How to Apply a Filter Defined in the Frequency Domain by a
Continuous Function". Dans Image Processing On Line (IPOL), vol. 6, pp. 183–211,
2016.

• T. Briand et P. Monasse. "Theory and Practice of Image B-Spline Interpolation". Dans
Image Processing On Line (IPOL), vol. 8, pp. 99–141, 2018.

• T. Briand. "Low Memory Image Reconstruction Algorithm from RAW Images". Dans
IEEE Image, Video, and Multidimensional Signal Processing (IVMSP), 2018.

http://www.ipol.im/pub/art/2016/116/
http://www.ipol.im/pub/art/2016/116/
http://www.ipol.im/pub/art/2018/221/
https://www.ipol.im/pub/pre/222/
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(a) Burst denoising (RMSD = 0.17)
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(b) ACT pour λ = 1 (RMSD = 0.19)
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(c) ACT pour λ = 2 (RMSD = 0.48)

Figure 1.12: Différence entre notre méthode de fusion d’images et les méthodes ACT et burst
denoising pour 200 images réelles. Les résultats sont très proches et ne peuvent être distingués à
l’oeil nu. Par conséquent, les images de différences sont montrées. Elles ne sont pas composées
de bruit. Pour λ = 2, la différence est plus importante en particulier près des discontinuités (où
les structures de type zipper peuvent être vues).
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(a) Image mosaïquée de référence (b) Détails de (a)

(c) Image formée (λ = 1)
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(d) Spectre de (a)

(e) Image formée (λ = 1.5)
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(f) Spectre de (c)

Figure 1.13: Résultat de notre méthode de formation d’images appliquée à 200 images RAW.
L’image mosaïquée de référence (en (a)) est de taille 512× 512 et correspond à l’image après
pré-traitement de l’image RAW de référence. Des détails dans une zone de taille 128×128 sont
montrés en (b). La structure en mosaïque est clairement visible en (b), en particulier près des
discontinuités. Les images formées, en (c) et (e), sont nettes, sans artefact et sans bruit apparent.
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• T. Briand, G. Facciolo, et J. Sánchez. "Improvements of the Inverse Compositional Al-
gorithm for Parametric Motion Estimation". Dans Image Processing On Line (IPOL),
soumis.
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Chapter 2

Introduction

The general objective of this thesis is to obtain high-quality images by digital processing. The
quality of an image can be enhanced in single-image methods (e.g. [18, 25] for denoising, [47,
67, 135] for super-resolution and [3] for increasing the dynamic range). These methods are
generally transform-based or exemplar-based. On the contrary multi-image methods produce
a high-quality image from a set of lower quality images and are closer to the essence of pho-
tography, which proceed to an accumulation of photons. Such methods compensate for the
shortcomings of the imaging system by an adequate digital processing of the accumulated data.
This idea has been successfully exploited for increasing resolution [35, 87, 125], denoising [19,
71], reducing blur [26] or improving the image dynamic [2, 53, 81]. Most methods take as input
preprocessed images, which may lead to artifacts. Therefore, good methods should rather han-
dle RAW images [35, 36, 37, 48, 61, 131]. The counterpart of using RAW images is that such
images may be more difficult to handle. Notably, most RAW images are mosaicked (or CFA)
images where only one color intensity value is available per pixel.

The performances of image processing algorithms highly depend on the quality of the input
images. In particular, noise and aliasing are two of the main sources of error. Noise introduces
uncertainty in the measured samples, that differ from the actual values of the underlying signal.
For instance, the influence of noise in stereovision accuracy is discussed in [101]. Noise may
typically be reduced by combining the available noisy data. Aliasing arises when a signal is un-
dersampled [59]. This introduces ambiguity in the reconstruction of the underlying continuous
signal. Aliased images cannot be properly interpolated.

The aim of this thesis is to build the algorithms producing a high-quality color image, con-
taining a low level of noise and aliasing, from a large sequence (e.g. hundreds or thousands) of
RAW images taken with a consumer camera. We assume that the camera settings are fixed and
that the images, representing a static scene, are taken quasi instantaneously. The images differ
because of small motions of the camera, noise and small illumination variations. This is a chal-
lenging issue requiring to perform on the fly demosaicking [68], denoising and super-resolution.

Multi-image methods (from RAW images or not) can generally be decomposed into two
main steps: the registration step, where the images are expressed in a common system of coor-
dinates, and the combination step, where the data are combined to build an image. Even though
some methods do not require a sub-pixel accuracy for the registration [119], it is in general a
pre-requisite for achieving good performances. However, there is no standard and satisfactory
method registering mosaicked images [48, 131]. Because of the particular content of these im-
ages, existing registration methods designed for classical grayscale or color images cannot be
used directly.

Assuming the images are correctly registered, most combination methods (specific to mo-
saicked images or not) are designed for a small amount of input images [37, 38, 48, 86, 87, 91,
117, 118, 131]. They use an iterative scheme and require the availability of all the data in mem-
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ory at once. They might be able to achieve high performance but the amount of accumulated
data, i.e. the number of input images, is necessarily limited by the computer memory capacity.

A fast and low memory multi-image method requires a simpler combination method. For a
large number of images it should be able to achieve similar performance as more advanced mem-
ory greedy methods. An image can be computed pixel-by-pixel without any iterative scheme
using classical kernel regression [117]. This is the simplest and most efficient kernel regression
method as it only takes into account the spatial distance but not the photometric distance. How-
ever, this provides low quality results in areas containing textures or edges. Actually, the final
image is blurry. As shown in [41], each output pixel value is a local weighted average of the
samples, i.e. obtained by an underlying local linear filtering. But the equivalent filter depends
on the data spatial repartition, which varies with the pixel position.

In this thesis we break the two evoked limitations of existing methods. We propose an
image formation algorithm from RAW images that processes the images sequentially so that
the memory cost only depends on the size of the output image. After a preprocessing step, the
mosaicked (or CFA) images are aligned in a common system of coordinates using a two-step
registration method that we introduce. Then, a color image is computed by accumulation of the
irregularly sampled data using classical kernel regression. Finally, the method blur is removed
by applying the inverse of the corresponding asymptotic equivalent filter (that we introduce).

In this dissertation, each step of the method is introduced and analyzed separately. Its perfor-
mance and accuracy are evaluated on synthetic and real data. In that way we manage to control
the error at each step, and provide a proper analysis of the proposed improvements of existing
methods. Generating synthetic data requires an interpolation method and controlling the inter-
polation error is crucial for analyzing the performance of our method. Therefore, we also study
in detail interpolation methods. We derive from this study new fine-tuned interpolation methods
that we use to generate synthetic data.

Part I (from Chapter 3 to Chapter 6) is devoted to interpolation methods. Part II (from
Chapter 7 to Chapter 8) deals with registration methods. Finally, Part III (from Chapter 9 to
Chapter 11) is dedicated to the image fusion methods.
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2.1 Introduction to Part I: Interpolation

Interpolation consists in constructing new data points within the range of a discrete set of known
data points. It is closely related to the concept of approximation [21], fitting [29] and extrapola-
tion. In signal processing it is commonly expressed as the problem of recovering the underlying
continuous signal from which the known data points are sampled. Under the assumption that the
signal belongs to a given class of functions, the common principle of all interpolation schemes
is to determine the parameters of the continuous signal representation. The most common inter-
polation methods are presented in [46, 123].

A continuous signal representation is required when one wishes to implement numerically
an operator that is initially defined in the continuous domain. In particular, this representation
is required when applying a geometric transformation to an image. Denote by σ(R2) the set of
bijective functions of R2 to itself. A function ϕ ∈ σ(R2) is called a geometric transformation.
Let u be an image of size M×N. Applying the geometric transformation ϕ to u consists in
resampling u at locations ϕ−1(k, l). As represented in Figure 2.1, in general ϕ−1(k, l) ∈R2 does
not belong to the integer grid and a continuous representation u : R2→ R of u is required. The
transformed image uϕ is then defined as the image of size M×N verifying

(uϕ)k,l = u
(
ϕ
−1(k, l)

)
. (2.1)

Figure 2.1: Geometric transformation of an image. To apply a transformation ϕ ∈ σ(R2) to
an image u, the pixel values at locations ϕ−1(k, l) must be computed. As the samples of u are
only known at integer locations, a continuous representation u : R2→ R of u is required. This
representation is obtained by an interpolation method. The samples (uϕ)k,l are said to be pulled.
In the transformed system of coordinates, the only pixel values that can be obtained without
interpolation correspond to the pushed samples uk,l located at ϕ(k, l).

In Part II and Part III, we will evaluate the performance of the proposed methods on syn-
thetic dataset composed of transformed images. This generation of synthetic data involves an
interpolation method whose choice impacts the results. The interpolation error has to be taken
into account. This is why in Part I we study in detail the trigonometric polynomial and B-spline
interpolation methods. We derive from this study new fine-tuned interpolation methods.
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2.1.1 Chapter 3: Trigonometric Polynomial Interpolation of Images

For 1D and 2D signals, the Shannon-Whittaker interpolation with periodic extension can be
formulated as a trigonometric polynomial interpolation (TPI) [1]. In Chapter 3, we introduce
the theory of TPI of images and some of its applications. First, the trigonometric polynomial
interpolators of an image are characterized and it is shown that there is an ambiguity as soon as
one size of the image is even. Three classical choices of interpolator for real-valued images are
presented and cases where they coincide are pointed out. Then, TPI is applied to the geometric
transformation of images, to up-sampling and to down-sampling. General results are expressed
for any choice of interpolator but more details are given for the three proposed ones. It is proven
that the well-known computations based on the discrete Fourier transform (DFT) have to be
slightly adapted.

The application of TPI to filtering is detailed separately in Chapter 4. The performances and
the limits of TPI are discussed in Chapter 6.

2.1.2 Chapter 4: Filtering using Trigonometric Polynomial Interpolation

Chapter 4 is taken from [15] and is an application of Chapter 3. We propose algorithms for filter-
ing real-valued images, when the filter is provided as a continuous function φ : [−π,π]2→C de-
fined in the Nyquist frequency domain. This problem is ambiguous because images are discrete
entities and there is no unique way to define the filtering. We provide a theoretical framework
designed to analyse the classical and computationally efficient filtering implementations based
on DFTs.

In this framework, the filtering is interpreted as the convolution fφ ∗P of a distribution fφ,
standing for the filter, with a trigonometric polynomial interpolator P of the image. The various
plausible interpolations and choices of the distribution lead to three equally licit algorithms
which can be seen as method variants of the same standard filtering algorithm, which is described
in Algorithm 2.1.

Algorithm 2.1: Standard filtering algorithm

Input : A real-valued image u of size M×N, a filter φ : [−π,π]2→ C (continuous
function) and the number j ∈ {1,2,3} of the method variant.

Output: The filtered image v of size M×N corresponding to the method j.
1 Compute ũ = FM,N(u) the DFT of u.
2 Compute S = (Sm,n)(m,n)∈Ω̂M,N

the spectral samples corresponding to method j (see
Chapter 4 for the details).

3 Compute ṽ = (ũm,nSm,n)(m,n)∈Ω̂M,N
the element-wise multiplication of ũ and S.

4 Compute v = F −1
M,N(ṽ) the inverse DFT of ṽ.

No method should be preferred a priori to the others; the choice depends on the application.
In practice, the image differences arising for different boundary DFT coefficients are not visible
to the naked eye. We demonstrate this on several experimental configurations by varying the
input image and the considered filter. For instance, the results for the shift filter of parameter
(1/4,1/4) are compared in Figure 2.2 and Table 2.1. The overall maximal difference is around
two grey levels. In some cases however, we discuss how the choice of the variant may affect
fundamental properties of the filtering. We provide an implementation of the algorithms at
http://www.ipol.im/pub/art/2016/116/.

http://www.ipol.im/pub/art/2016/116/
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(a) Lenna

(b) Square

(c) Dice

(d) Garden

Figure 2.2: Comparison of the three filtering methods for the shift filter of parameter (1/4,1/4).
From left to right we display for each input image: the real part of the first method and the
relative difference images ∆

1,2
rel , ∆

1,3
rel and ∆

2,3
rel . The difference images are multiplied by 105 for

visualization purposes. The method differences, which come from the boundary DFT coeffi-
cients, are not visible to the naked eye.

Lenna Square Dice Garden
1 vs 2 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.052%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)
1 vs 3 d 1.1 (0.48%) 2.2 (0.58%) 0.18 (0.093%) 2.0 (0.61%)

md 0.17 (0.075%) 0.77 (0.20%) 0.029 (0.015%) 0.42 (0.13%)
2 vs 3 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.053%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)

Table 2.1: Maximum difference d and mean difference md between the three filtering methods
for the shift filter of parameter (1/4,1/4). Relative values are in brackets. The overall maximal
difference is around two grey levels so that no difference can be seen to the naked eye.
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2.1.3 Chapter 5: B-spline Interpolation

Chapter 5 is taken from [14]. B-spline interpolation is a widely used non band-limited alternative
to Shannon-Whittaker interpolation. For 1D signals it is defined as follows.

Definition 2.1. The normalized B-spline function of order n, noted β(n), is defined recursively
by

β
(0)(x) =


1, −1

2 < x < 1
2

1
2 , x =±1

2
0, otherwise

and for n≥ 0, β
(n+1) = β

(n) ∗β
(0) (2.2)

where the symbol ∗ denotes the convolution operator.

Definition 2.2 (B-spline interpolation). The B-spline interpolate of order n of a discrete signal
f ∈ RZ is the spline ϕ(n) of degree n defined for x ∈ R by

ϕ
(n)(x) = ∑

i∈Z
ciβ

(n)(x− i) (2.3)

where the B-spline coefficients c = (ci)i∈Z are uniquely characterized by the interpolating con-
dition

ϕ
(n)(k) = fk, ∀k ∈ Z. (2.4)

In Chapter 5 we explain how the B-spline interpolation of signals and images can be effi-
ciently performed by linear filtering. In the seminal two-step method proposed by Unser et al.
in 1991 [129], the B-spline coefficients c are first computed in a prefiltering step. Then, interpo-
lated values are computed using (2.3). We propose two slightly different prefiltering algorithms
whose precisions are proven to be controlled thanks to a rigorous boundary handling. The first
algorithm is general and works for any boundary extension while the second is applicable under
specific assumptions.

Chapter 5 contains all the information, theoretical and practical, required to perform effi-
ciently B-spline interpolation for any order and any boundary extension. We describe precisely
how to evaluate the kernel and to compute the B-spline interpolator parameters.

In an experimental part, we show that increasing the order improves the interpolation quality.
For instance, B-spline interpolation approaches the Shannon-Whittaker interpolation as the order
increases [5]. An illustration of the decay of the difference with the order is shown in Figure 2.3.

As a fundamental application we also provide an implementation of homographic transfor-
mation of images using B-spline interpolation at http://www.ipol.im/pub/art/2018/221/.
An example of homographic transformation is shown in Figure 2.4.

2.1.4 Chapter 6: Consistency of Interpolation Methods

There is no universal procedure for evaluating the quality and performance of an interpolation
method. In Chapter 6 we introduce a new quantity: the consistency measurement. For a given
image, the consistency measurement CM (ϕ) for the transformation ϕ ∈ σ(R2) measures the
error after applying successively ϕ, a crop (removing boundary artifacts) and the inverse ϕ−1.
An average over random transformations (ϕi)1≤i≤Ntransf is made to remove the dependency on the
transformation. We define the consistency measurement CM as

CM =
1

Ntransf

Ntransf

∑
i=1

CM (ϕi). (2.5)

A more precise measurement discarding very high-frequency artefacts is obtained by clipping
the spectrum of the difference. The variant is called the clipped consistency measurement and is
noted CM c.

http://www.ipol.im/pub/art/2018/221/
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Figure 2.3: Decay of the difference between the Shannon-Whittaker interpolation and the B-
spline interpolation for n∈{0, . . . ,16}. It is obtained by comparing transformations of the Lenna
image. The RMSE is taken on the central part of the images so that the boundary extension has
a negligible influence. The periodic extension is used for both interpolation methods.

Figure 2.4: Example of homographic transformation using B-spline interpolation of order 11
(with half-symmetric boundary condition).

We also propose new fine-tuned interpolation methods that are based on the DFT zoom-
in and pre-existing interpolation methods. The zoomed version of an interpolation method is
obtained by applying it to the DFT zoom-in of the image. In the periodic plus smooth version
of interpolation methods, the non-periodicity is handled by applying the zoomed version to the
periodic component and a base interpolation method to the smooth component.

In an experimental part, we show that the proposed fine-tuned methods have better consis-
tency measurements than their base interpolation methods and that the error is mainly localized
in a small high-frequency band. This is can be seen in the results presented in Table 2.2. The
spectrum of the difference image (from which the consistency measurements are computed) is
shown in Figure 2.5 for various interpolation methods.

Based this analysis, we recommend to use the periodic plus smooth versions of high order
B-spline interpolation. It is more efficient and provides better results than trigonometric polyno-
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mial interpolation. In Chapter 10, such a method will be used for generating synthetic data and
for the burst denoising method.

CM CM c Time (s)
spline1 2.53480 2.50077 225
bic 1.18612 1.13573 336
spline3 0.75702 0.67967 283
spline11 0.35355 0.19626 796
tpi 0.20564 0.06345 4767
spline1-z2 0.86002 0.81810 1308
bic-z2 0.25140 0.15072 1425
spline3-z2 0.20585 0.06816 1407
spline11-z2 0.20564 0.06345 2053
p+s-spline1 0.84660 0.81640 2039
p+s-spline1-bic 0.84660 0.81640 2159
p+s-bic 0.18008 0.13811 2355
p+s-spline3 0.09417 0.03007 2199
p+s-spline3-bic 0.09417 0.03007 2259
p+s-spline11 0.08785 0.01506 3360
p+s-spline11-bic 0.08785 0.01506 2907
p+s-tpi-spline1 0.08785 0.01506 5865
p+s-tpi-bic 0.08785 0.01506 5960
p+s-tpi-spline3 0.08785 0.01506 5926
p+s-tpi-spline11 0.08785 0.01506 6443

Table 2.2: Evaluation of the consistency measurements for Ntransf = 1000 random homogra-
phies. The evaluation is made excluding a boundary band of width δ = 20 to render results
independent of the boundary extension choice. The displayed time corresponds to the compu-
tation time, in seconds, for all the transformations. This can also be interpreted as the average
time, in milliseconds, required to apply a transformation and its inverse. The tpi and bic methods
represent respectively the trigonometric polynomial and the bicubic interpolations. The suffix
z2 corresponds to zoomed versions. For the periodic plus smooth version we use the prefix p+s.
The first method is the one used on the periodic component. It is clear that fine-tuned methods
have a better consistency measurement. As the errors on the clipped versions (column 2) are
significantly smaller, we conclude that the error is mainly localized in a small high-frequency
band. The periodic plus smooth methods provide better results because the non-periodicity of
the image is correctly handled.
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(h) p+s-tpi-spline11 (0.117,0.0187)

Figure 2.5: Spectrum of the difference image (from which the consistency measurements are computed)
for various interpolation methods. The spectrums correspond to the unnormalized discrete Fourier trans-
form in logarithmic scale u 7→ log(1+u). The geometric transformation ϕ used is an homography. The
values between parentheses correspond to the consistency measurements (CM (ϕ),CM c

(ϕ)), which are
the L2 energies respectively without and with removing the band of 5% highest frequencies. For the
bic, bic-z2 and p+s-bic methods i.e. the methods where the possibly zoomed images are interpolated by
bicubic interpolation, the spectrum of the difference is high everywhere except in a small low-frequency
region. For the spline11 method the corresponding region is larger. For the tpi and spline11-z2 methods,
the spectrum has non-negligible values in a band around the Nyquist frequency and in a vertical and hor-
izontal cross structure. The cross structure is also visible in the bic-z2 method and is due to the incorrect
handling of the non-periodicity. Indeed it disappears in the p+s-spline11 and p+s-tpi-spline11 methods.
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2.2 Introduction to Part II: Registration

Image registration is one of the most widely used techniques in computer vision. The objective
of image registration methods is to find the optimal transformation that puts in correspondence
the pixels of two (or more) images. Image registration is required for instance when images
are acquired at different times, from distinct viewpoints or by different sensors. An accurate
and efficient estimation is important in problems such as optical flow estimation [10, 56], object
tracking [134], video stabilization [78], image stitching [115] or 3D reconstruction [52]. The
task is difficult because it deals with problems like occlusions, noise, local brightness changes
or spurious motions.

Surveys of existing methods are provided in [75, 88, 137]. The methods can be classified
into intensity-based and feature-based [27]. Intensity-based methods are usually faster but more
sensitive to brightness changes and outliers. Feature-based methods are typically more sensitive
to noise and motion blur, but allow to estimate stronger deformations [114].

In Part III, we will consider multi-image methods that require an efficient registration step.
The input images will only differ because of small motions of the camera, noise, quantization,
and possibly small illumination variations. This is why in Part II we consider intensity-based
methods. First, we improve the inverse compositional algorithm. Then, we develop a two-step
methods for mosaicked (or CFA) images.

2.2.1 Chapter 7: Modified Inverse Compositional Algorithm

First introduced in [8, 122], the inverse compositional algorithm for parametric motion estima-
tion is an improvement of the classical intensity-based method of Lucas-Kanade [74]. At each
step of its iterative scheme it solves a minimization problem equivalent to Lucas-Kanade but
more efficiently. More precisely, at a given step j ≥ 1, the idea is to refine the current estimated
transformation Ψ(·;p j−1) with an inverted incremental transformation (hence the name of the
algorithm) Ψ(·;∆p j)

−1, i.e.,

Ψ(·;p j) = Ψ(·;p j−1)◦Ψ(·;∆p j)
−1. (2.6)

The increment ∆p j approximates the minimizer of the incremental energy

∆p ∈ Rn 7→ E1(∆p;p j−1) = ∑
x∈Ω

ρ
(
‖I2(Ψ(x;p j−1))− I1(Ψ(x;∆p))‖2) (2.7)

where ρ : R+ → R+ is called the error function. Better precision for large motions can be
obtained with a coarse-to-fine multiscale approach as in [104].

In Chapter 7, we introduce several improvements of the inverse compositional algorithm.
We propose an improved handling of boundary pixels, a different color handling and gradient
estimation, and the possibility to skip scales in the multiscale coarse-to-fine scheme. In an
experimental part, we analyze the influence of the modifications. We find that our estimation
accuracy is improved by a factor larger than 1.3 while the computation time reduced by a factor
larger than 2.2 for color images. An example of motion estimation on synthetic data, with and
without modifications, is presented in Figure 2.6. The modifications lead to significantly better
results.

The modified inverse compositional algorithm will be used in Chapter 8 in the proposed
two-step method for mosaicked images.
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(a) Reference image I1 = I2(Ψ(·;p?)) (b) Warped image I2
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(d) End-point error field EPE(p,p?)(x) (left) and residual (right) using the modified IC algo-
rithm

Figure 2.6: Example of motion estimation on synthetic data. The reference image I1 =
I2(Ψ(·;p?)) is an example of synthetic image related to I2 by an homography. On the sec-
ond and third line, the estimated motion p is obtained using either the inverse composi-
tional algorithm or our modified inverse compositional algorithm. For both methods, the
right image is actually the root mean square over the channels of the residual I1− I2(Ψ(·;p)),
which is obtained by bicubic interpolation. Without modification, we have EPE=0.00460
and RMSE(I1(x), I2(Ψ(x;p))) = 0.042838. With modification, we have EPE=0.00022 and
RMSE(I1(x), I2(Ψ(x;p))) = 0.001790.
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2.2.2 Chapter 8: Registration of Mosaicked (or CFA) Images

A mosaicked (or CFA) image is a digital image where only one of the three color channels has
been captured at each pixel location. The corresponding grayscale image has a mosaic structure
caused by the color filter array (CFA). The acquired RAW image is a typical example of mo-
saicked image. The most common pattern for the CFA, and the one that is considered here, is the
Bayer pattern [12]. In many applications, the geometric transformation between two mosaicked
images has to be estimated without knowledge of the underlying color images. Unfortunately
there is no standard and satisfactory registration method for mosaicked images. Existing regis-
tration methods designed for classical images cannot be used directly, and a preprocessing step
is required.

In Chapter 8 we introduce two-step methods for the registration of mosaicked images. First,
the two mosaicked images are converted into non-mosaicked (grayscale) images by lowpass
filtering. According to [6], these filtered images contain an estimate of the luminance informa-
tion in the mosaicked images. An example of conversion is shown in Figure 2.7. Then, the
transformation is estimated by applying a pre-existing registration method designed for classical
images.

The performances of the proposed methods are evaluated experimentally for several lowpass
filters and pre-existing registration methods. We conclude that a perfect lowpass filter should be
applied and that the modified inverse compositional algorithm with robust error function (see
Chapter 7) should be used. A comparison of the performance using different base registration
methods is shown in Table 2.3. The recommended method is both accurate and efficient, and
will be used in our image formation algorithm from RAW images (see Chapter 11).

(a) Color image I (b) Mosaicked image ICFA

(c) Perfect lowpass filtering of ICFA

Figure 2.7: Conversions from mosaicked to non-mosaicked images. The mosaicked image ICFA
in (b) is obtained by applying the Bayer filter to the color image I in (a). The image in (c) is
obtained after perfect lowpass filtering of (b).
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SIFT + RANSAC IC M-IC

σ = 0
EPE 0.01932 0.01173 0.00360
Time 1298 458 149

σ = 3
EPE 0.03002 0.01309 0.00559
Time 1334 453 151

σ = 5
EPE 0.04929 0.01678 0.00979
Time 1393 451 153

σ = 10
EPE 0.15314 0.02391 0.01550
Time 1671 447 165

σ = 20
EPE 0.49535 0.04903 0.03352
Time 2575 424 204

σ = 30
EPE 0.83937 0.07455 0.05327
Time 3029 463 344

σ = 50
EPE 1.84189 0.13512 0.10812
Time 3003 579 531

Table 2.3: Influence of the base registration method for the two-step registration method of mo-
saicked images. The conversion to non-mosaicked images is done by perfect lowpass filtering.
For the inverse compositional (IC) and the modified inverse compositional (M-IC) algorithms,
the Lorentzian error function is used. The displayed computation time corresponds to the CPU
time used for the Nimages = 1000 motion estimations and is expressed in seconds. Note that
it also corresponds to the average computation time per image in milliseconds. The accuracy
is evaluated in terms of end-point error (EPE). The M-IC algorithm gives the best results for
all noise levels σ both in terms of efficiency and accuracy. Thanks to the correct handling of
the boundary pixels and to the prefiltering before the gradient estimation, it is able to achieve
a precise motion estimation in only a few iterations even if the non-mosaicked images contain
artifacts.
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2.3 Introduction to Part III: Image Fusion/Formation

The two main steps of multi-image methods are the registration and the combination steps.
After the registration, the pixel values can be expressed in the reference system of coordinates
either by pulling or by pushing (see Figure 2.1). The pulled intensity values are computed by
performing a geometric transformation of the images and thus by using an interpolation method.
For instance, in burst denoising methods [19, 71] the fused image is computed by an averaging
of the transformed images. This provides poor results when the images are aliased and cannot be
used in a super-resolution context. On the contrary, the combination of pushed samples is open
to super-resolution. The pushed samples define a set of irregularly sampled data (see example of
Figure 2.8). Computing an intensity value at an arbitrary location is called irregularly sampled
data fitting (or approximation). An image is obtained by computing intensities in a regular grid.

508.5 509.5 510.5 511.5 512.5 513.5

508.5

509.5

510.5

511.5

512.5

513.5

Figure 2.8: Example of spatial repartition of irregularly sampled data. To compute the intensity
values at integer locations (red crosses), an irregularly sampled data fitting method has to be
used.

2.3.1 Chapter 9: Fast and Low Memory Image Fusion using Classical Kernel
Regression

In Chapter 9 we consider irregularly sampled data fitting by kernel regression (KR) [117] and
propose a fast and low memory image fusion method that is designed for a large number of
images.

Using KR, the intensity value of the data is locally approximated by a polynomial expansion
(of order at most 2 in the following), whose coefficients are obtained by solving a weighted
linear regression (with weights built from a kernel function). We show that the linear systems
involved can be obtained by a data accumulation.

Classical kernel regression (CKR) is the most simple and efficient case where the weights
only depend on the data spatial repartition. As it is equivalent to a local linear filtering [41],
CKR introduces blur. We introduce the asymptotic equivalent filter (AEF), an approximation of
the actual equivalent filter. An example of AEF is shown in Figure 2.9.

In the proposed image fusion algorithm the combination part, using CKR with a Gaussian
kernel, is split into an accumulation part, where the images are processed sequentially, and an
image computation part. The blur, introduced by CKR, is inverted by applying the inverse of the
AEF. The main steps of our method are summarized in Figure 2.10.

The registration method used is the one introduced in Chapter 7. The choice of the optimal
parameters and the evaluation of the performance of our algorithm are the subjects of Chapter 10.
The combination part of our image fusion method is adapted to mosaicked images in Chapter 11.
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Figure 2.9: Asymptotic equivalent filter w̃σs,∞ for the Gaussian kernel of standard deviation
σs = 0.7. In both spatial (a) and Fourier domains (b), the functions are radial so that only the
slice y = 0 is shown. They decrease as ‖x‖ increases. In particular, the filtering using the AEF
attenuates the high-frequency content.

(a) Memory greedy algorithm

(b) Our algorithm

Figure 2.10: Main steps of our image fusion method. (a) and (b) are theoretically equivalent.
The combination from the irregularly sampled data is replaced by the accumulation step, where
the images are sequentially processed to get the system coefficients, and the image computation
step, where the systems are solved.

2.3.2 Chapter 10: Experimental Evaluation of our Image Fusion Algorithm

In Chapter 10 we evaluate experimentally the performance of our proposed image fusion algo-
rithm on synthetic and real data. Our analysis of the synthetic case shows that the sharpening
step is crucial to obtain a blur-free denoised image. We also figure out the best configuration for
the order and the scale, depending on the sub-sampling factor. Assuming a uniform repartition
of the samples, we conclude that it is better to use the order 0 when no super-resolution is re-
quired, and the order 2 for super-resolution. We find that a Gaussian kernel scale of about 0.7 is
the best choice.

The result using our method for 200 real images of size 512×512 is compared to the ones of
a burst denoising method and the ACT in Figure 2.12 for a zoom of λ ∈ {1,2}. As they cannot
be distinguished to the naked eye, the difference with our method is shown. The computation
times and memory requirements of the methods are following:
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Burst denoising ACT Our method (KR)

λ = 1
Time (s) 442 1784 135
Max memory (kB) 175468 5562344 82192

λ = 2
Time (s) ND 1942 444
Max memory (kB) ND 6224528 1200492

We show that for a large amount of data (synthetic or real) our image fusion algorithm provides
similar results as slower and memory greedy methods. The residual noise on both synthetic and
real examples decreases as expected and our algorithm can perform super-resolution.

From the experiments on real data we see that the performance of image fusion methods is
limited by uncontrolled processes (demosaicking, JPEG compression, 8-bit quantization). This
is why we propose in Chapter 11 an image formation algorithm taking RAW images as input.

2.3.3 Chapter 11: Image Formation from a Large Sequence of RAW images

In Chapter 11 we propose an image formation method from a large sequence of RAW images.
This is an adapted version of our image fusion method, described in Chapter 9, for RAW images
and it follows the work of [13].

The RAW images are first preprocessed to transform the noise curve and to adjust the his-
tograms. Then the two-step registration method for mosaicked images, introduced in Chapter 8,
is used to align the images. As in Chapter 9, the images are combined by classical kernel re-
gression of second order with Gaussian kernel. The process has two stages. The first one is an
accumulation process where the images are processed sequentially. In the second stage, the blur
introduced by the classical kernel regression is inverted by a sharpening filter. The main steps
of our image formation method from RAW images are shown in Figure 2.11.

(a) Memory greedy algorithm

(b) Our algorithm

Figure 2.11: Main steps of our image formation method from RAW images. (a) and (b) are
theoretically equivalent. The combination from the irregularly sampled data is replaced by the
accumulation step, where the images are sequentially processed, and the image computation
step.

We show experimentally that, for a large number of RAW images, our image formation
method provides, efficiently and with a low memory usage, a high-quality result. Contrarily
to images fused from processed images (as in Chapter 10), the images formed from RAW im-
ages do not contain artifacts coming from the unknown image processing pipeline. Our method
successfully performs super-resolution and the residual noise decreases as expected. We ob-
tained results similar to those obtained by slower and memory greedy methods. The result of
our method applied to 200 RAW images is shown in Figure 2.13.
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(a) Burst denoising (RMSD = 0.17)
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(b) ACT for λ = 1 (RMSD = 0.19)
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(c) ACT for λ = 2 (RMSD = 0.48)

Figure 2.12: Difference of our image fusion method with the ACT and the burst denoising
methods for 200 real images. The results are really close and cannot be distinguished to the
naked eye. Therefore the difference images are considered. They are not composed of noise.
For λ= 2 the difference is more important in particular around the edges (where zipper structures
can be seen).
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(a) Reference CFA image (b) Details of (a)

(c) Output image (λ = 1)
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(f) Spectrum of (c)

Figure 2.13: Result of our image formation method applied to 200 RAW images. The reference
CFA image in (a) is of size 512×512 and corresponds to the preprocessed version of the refer-
ence RAW image. Details in a zone of size 128× 128 are shown in (b). The mosaic structure
is clearly visible in (b), in particular near the edges. The output color images in (c) and (e) are
sharp, without artifacts and there is no apparent noise.
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2.4 Contributions and Publications

List of contributions. The main contributions of this thesis, chapter-by-chapter, are the follow-
ing:

• Chapter 3: Characterization of the trigonometric polynomial interpolators. Application
to the geometric transformation of images, to up-sampling and down-sampling with DFT-
based computations.

• Chapter 4: Taken from [15]. DFT-based algorithms for the filtering of real-valued im-
ages. Theoretical justification based on trigonometric polynomial interpolation. Theory
and implementation provided at http://www.ipol.im/pub/art/2016/116/.

• Chapter 5: Taken from [14]. Complete description of B-spline interpolation (theory and
practice). Two prefiltering algorithms with controlled precision. Implementation provided
at http://www.ipol.im/pub/art/2018/221/.

• Chapter 6: Introduction of the consistency measurements. Fine-tuned interpolation meth-
ods with better consistency measurements.

• Chapter 7: Taken from [16]. Improvements of the inverse compositional algorithm in
terms of accuracy and efficiency. Implementation and preprint provided at
https://www.ipol.im/pub/pre/222/.

• Chapter 8: Two-step registration methods for mosaicked images.

• Chapter 9: Presentation of kernel regression. Introduction of the asymptotic equivalent
filter for classical kernel regression. A fast and low memory image fusion method that is
designed for a large sequence of images.

• Chapter 10: Experimental justification of our image fusion method. Determination of
the best order and scale on synthetic data.

• Chapter 11: Fast and low memory image formation method that is designed for a large
sequence of RAW images.

List of publications. The work in this thesis has led to the following publications:

• T. Briand and J. Vacher. "How to Apply a Filter Defined in the Frequency Domain by a
Continuous Function". In Image Processing On Line (IPOL), vol. 6, pp. 183–211, 2016.

• T. Briand and P. Monasse. "Theory and Practice of Image B-Spline Interpolation". In
Image Processing On Line (IPOL), vol. 8, pp. 99–141, 2018.

• T. Briand. "Low Memory Image Reconstruction Algorithm from RAW Images". In IEEE
Image, Video, and Multidimensional Signal Processing (IVMSP), 2018.

• T. Briand, G. Facciolo, and J. Sánchez. "Improvements of the Inverse Compositional
Algorithm for Parametric Motion Estimation". In Image Processing On Line (IPOL),
submitted.

http://www.ipol.im/pub/art/2016/116/
http://www.ipol.im/pub/art/2018/221/
https://www.ipol.im/pub/pre/222/
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Chapter 3

Trigonometric Polynomial
Interpolation of Images

Abstract

For 1D and 2D signals, the Shannon-Whittaker interpolation with periodic extension can be
formulated as a trigonometric polynomial interpolation (TPI). In this chapter, we introduce
the theory of TPI of images and some of its applications. First, the trigonometric polynomial
interpolators of an image are characterized and it is shown that there is an ambiguity as
soon as one size of the image is even. Three classical choices of interpolator for real-valued
images are presented and cases where they coincide are pointed out. Then, TPI is applied
to the geometric transformation of images, to up-sampling and to down-sampling. General
results are expressed for any choice of interpolator but more details are given for the three
proposed ones. It is proven that the well-known DFT-based computations have to be slightly
adapted. The filtering using TPI is detailed separately in Chapter 4. The performances and
the limits of TPI are discussed in Chapter 6.
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3.1 Introduction

A fundamental example of interpolation formula is given by Shannon-Whittaker’s sampling
theory [108, 133]. Let d ∈ N (typically 1 or 2).

Definition 3.1 (Fourier transform). The continuous Fourier transform applied to L1(Rd) and its
inverse, denoted F and F −1, are defined by

∀u ∈ L1(Rd), ∀y ∈ Rd , û(y) = F (u)(y) =
∫
Rd

u(x)e−ix.ydx (3.1)

and ∀x ∈ Rd , F −1(u)(x) =
1

(2π)d

∫
Rd

u(y)eix.ydy. (3.2)

The Fourier transform extended to tempered distributions [107, 113] is still denoted F .

Definition 3.2 (Band-limited distribution). A tempered distribution u is said to be band-limited
if the support of its Fourier transform is bounded. It is said to be Nyquist band-limited if the
support is contained in the Nyquist domain [−π,π]d .

Theorem 3.1 (Shannon-Whittaker sampling theorem [108, 133]). Let u∈L1(Rd ,C) be a Nyquist
band-limited function. Then, u is continuous and uniquely determined by its values at integer
locations {u(k)}k∈Zd since for x ∈ Rd ,

u(x) = ∑
k∈Zd

f (k)sinc(x−k) (3.3)

where the cardinal sine function sinc is the continuous function defined by

∀(x1, . . . ,xd) ∈ (R∗)d , sinc(x1, . . . ,xd) =
d

∏
i=1

sin(πxi)

πxi
. (3.4)

Theorem 3.1, namely the Shannon-Whittaker sampling theorem, provides an equivalence be-
tween a band-limited function and its equidistant samples taken at a frequency that is superior
or equal to the Nyquist rate. According to the Shannon-Whittaker interpolation formula (3.3),
a band-limited signal can be written as the convolution between a Dirac comb weighted by its
samples and the cardinal sine (or sinc) function. However this result cannot be used directly be-
cause, among others, it requires an infinite number of samples [109]. The finite signal first needs
to be arbitrarily extended. Among all the possible extensions a classical solution is the periodic
extension. For 1D and 2D signals, the Shannon-Whittaker interpolation with periodic exten-
sion can be formulated as a trigonometric polynomial interpolation (TPI), namely the Discrete
Shannon interpolation [1].

More generally, TPI is theoretically interesting since the band-limited periodic distributions
are exactly the trigonometric polynomials. But the main advantage is practical. It is well known
that the discrete Fourier transform (DFT) of a signal, which can be computed efficiently using
the fast Fourier transform (FFT) algorithm [24], is deeply linked to TPI (or sampling). Efficient
image processing algorithms that rely on DFT-based computations can be used, for instance,
to perform linear filtering, up-sampling and down-sampling or to shift signals. More generally,
any geometric transformation can be applied efficiently to images using the nonequispaced Fast
Fourier transform (NFFT) algorithm [94], which is based on oversampled FFT.

However it has to be noted that as soon as one of the dimensions is even there is an ambi-
guity in the definition of trigonometric polynomial interpolators (whose degree corresponds to
the size of the image). The various interpolators differ from each other at the Nyquist frequency.
Three particular interpolators are commonly used for real-valued images. The most common is
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obtained directly from the DFT coefficients so that it is compatible with DFT-based computa-
tions but it may be complex-valued. Its real part is also a trigonometric polynomial interpolator
and is usually used implicitly by taking the real part afterwards. The third interpolator is also
real-valued and is given by the discrete Shannon interpolation. The choice of the interpolator
depends on the context of application and may influence the results of algorithms relying on TPI
(e.g. see [15]). Also, the compatibility with DFT-based computations has to be proven.

In this chapter we present the TPI of images and some of its applications. The trigonometric
polynomial interpolators are characterized in terms of the DFT of the image. Three classi-
cal choices of interpolator for real-valued images are presented and cases where they coincide
are pointed out. The theory is applied to the geometric transformations of images, and to up-
sampling and down-sampling by integer factor. General results are expressed for any choice of
interpolator but more details are given for the three proposed interpolators. This study proves
that the well-known DFT-based computations have to be slightly adapted. The filtering using
TPI is detailed separately in Chapter 4. The performances and the limits of TPI are discussed in
Chapter 6.

This chapter is organized as follows: Section 3.2 presents the theory of TPI of images.
This theory is applied to the geometric transformation of images in Section 3.3, and to the up-
sampling and down-sampling in Section 3.4.

3.2 Trigonometric Polynomial Interpolation of Images

In this section we present the theory of TPI for images. First, useful definitions and notations
are introduced in Section 3.2.1. Then, the trigonometric polynomial interpolators of an image
are characterized in Section 3.2.2 and it is shown that there is an ambiguity as soon as one of
the dimensions is even. In Section 3.2.3 three classical choices of interpolator for real-valued
images are proposed and cases where they coincide are pointed out.

3.2.1 Definitions and Notations

In the following M and N denote two positive integers. First, discrete domains are defined as in

Definition 3.3 (Discrete domains). The discrete spatial domain ΩM,N is defined by

ΩM,N = {0, . . . ,M−1}×{0, . . . ,N−1}. (3.5)

The discrete Fourier domain Ω̂M,N , associated to ΩM,N , is defined by Ω̂M,N = Ω̂M× Ω̂N where
for a positive integer L

Ω̂L =

{
{−L−1

2 , . . . , L−1
2 } if L is odd,

{−L
2 , . . . ,

L
2 −1} if L is even.

(3.6)

The boundary ΓM,N of Ω̂M,N is defined by ΓM,N =
(
ΓM× Ω̂N

)
∪
(
Ω̂M×ΓN

)
where for a positive

integer L

ΓL =

{
/0 if L is odd,
{−L

2} if L is even.
(3.7)

The symmetrized discrete Fourier domain Ω̂s
M,N , associated to ΩM,N , is defined by Ω̂s

M,N = Ω̂s
M×

Ω̂s
N where for a positive integer L

Ω̂
s
L =

{
Ω̂L if L is odd
Ω̂L∪{L

2} if L is even.
(3.8)

The boundary Γs
M,N of Ω̂s

M,N is defined by Γs
M,N = Ω̂s

M,N \
(
Ω̂M,N \ΓM,N

)
.



60 3–Trigonometric Polynomial Interpolation of Images

As an example, the discrete domains Ω̂M,N , Ω̂s
M,N , ΓM,N and Γs

M,N for M = N = 4 are dis-
played in Figure 3.1. Note that assuming that M and N are odd numbers, Ω̂M,N = Ω̂s

M,N and
ΓM,N = Γs

M,N = /0.

0-1-2 1 2

-2

-1

0

1

2

Figure 3.1: Discrete domains Ω̂M,N , Ω̂s
M,N , ΓM,N and Γs

M,N for M = N = 4.

Definition 3.4 (Image). An image (or digital image) u of size M × N is defined as a two-
dimensional finite matrix of complex numbers (uk,l)(k,l)∈ΩM,N . The image is said to be real-valued
when every number is real.

In the following u denotes an image of size M×N. Unless it is specified, u is not assumed
to be real-valued. Trigonometric polynomial functions of the plane are defined as follows.

Definition 3.5 (Trigonometric polynomial). A function P : R2→C is said to be a trigonometric
polynomial of degree ≤M×N if there exists c ∈ CΩ̂s

M,N , called coefficients of P, s.t.

∀(x,y) ∈ R2, P(x,y) = ∑
(m,n)∈Ω̂s

M,N

cm,ne2iπ(x m
M +y n

N ). (3.9)

The set of trigonometric polynomials of degree ≤ M×N, denoted PM,N , is a subset of the set
of (M,N)−periodic functions. Denote R the real part operator and let P ∈ PM,N then R (P) ∈
PM,N .

Note that another possible convention [100, p. 88] for trigonometric polynomials of degree
M×N is to consider (2π,2π)−periodic functions of the form

Q(x,y) = ∑
(m,n)∈Ω̂2M+1,2N+1

cm,nei(mx+ny) =
M

∑
m=−M

N

∑
n=−N

cm,nei(mx+ny). (3.10)

It is directly linked to our convention (see Definition 3.5) since (x,y) ∈ R2 7→ Q(2π

M x, 2π

N y) is a
trigonometric polynomial of degree ≤ (2M+1)× (2N+1). Note that the corresponding degree
necessarily involves odd numbers. Our convention has the advantage of being compatible with
the size of images and with the Discrete Fourier transform (DFT), which is defined as in

Definition 3.6 (Discrete Fourier transform). The discrete Fourier transform (DFT) of u ∈CΩM,N

is denoted FM,N(u) ∈ CΩ̂M,N and is defined by

∀(m,n) ∈ Ω̂M,N , FM,N(u)m,n =
1

MN ∑
(k,l)∈ΩM,N

uk,le
−2πi(k m

M +l n
N ). (3.11)
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The inverse discrete Fourier transform (iDFT) of v ∈ CΩ̂M,N is denoted F −1
M,N(v) ∈ CΩM,N and is

defined by
∀(k, l) ∈ΩM,N , F −1

M,N(v)k,l = ∑
(m,n)∈Ω̂M,N

vm,ne2πi(m k
M +n l

N ). (3.12)

Note that another classical convention is obtained by moving the normalization factor 1
MN

from the DFT to the iDFT. The resulting unnormalized DFT is used in this document to show
the spectrum of images (for visualization purposes). The DFT and iDFT of size M×N can
be computed efficiently in O(MN log(MN)) floating point operations thanks to the fast Fourier
transform (FFT) algorithm [24].

3.2.2 Trigonometric Polynomial Interpolators

The trigonometric polynomial interpolators of an image u are defined and characterized as fol-
lows.

Definition 3.7 (Trigonometric polynomial interpolator). A trigonometric polynomial interpola-
tor of u is a trigonometric polynomial P ∈ PM,N verifying the interpolation condition

∀(k, l) ∈ΩM,N , P(k, l) = uk,l. (3.13)

By definition a trigonometric polynomial interpolator has a degree smaller than the size of
the interpolated image. Note that if the degree is not controlled, the interpolation condition
in (3.13) is verified by infinitely many trigonometric polynomials.

Proposition 3.1. Let P ∈ PM,N . P is a trigonometric polynomial interpolator of u if and only if
its coefficients c ∈ CΩ̂s

M,N verify
cm,n = FM,N(u)m,n for |m|< M

2 and |n|< N
2

c M
2 ,n

+ c−M
2 ,n

= FM,N(u)−M
2 ,n

for |n|< N
2

cm,N
2
+ cm,−N

2
= FM,N(u)m,−N

2
for |m|< M

2

c M
2 ,

N
2
+ c M

2 ,−
N
2
+ c−M

2 ,
N
2
+ c−M

2 ,−
N
2
= FM,N(u)−M

2 ,−
N
2
.

(3.14)

Proof. Let P ∈ PM,N be a trigonometric polynomial interpolator of u. Let (k, l) ∈ ΩM,N . We
have

uk,l = P(k, l) = ∑
(m,n)∈Ω̂s

M,N

cm,ne2iπ(k m
M +l n

N ). (3.15)

Noting that for any (L, j) ∈ N∗×N we have e2iπ j L
2

1
L = e2iπ j−L

2
1
L = (−1) j, we can write

uk,l = ∑
(m,n)∈Ω̂M,N

dm,ne2iπ(k m
M +l n

N ) (3.16)

where d = (dm,n) ∈ CΩ̂M,N verify for (m,n) ∈ Ω̂M,N ,

dm,n =


cm,n if |m|< M

2 and |n|< N
2

c M
2 ,n

+ c−M
2 ,n

if m =−M
2 and |n|< N

2

cm,N
2
+ cm,−N

2
if |m|< M

2 and n =−N
2

c M
2 ,

N
2
+ c M

2 ,−
N
2
+ c−M

2 ,
N
2
+ c−M

2 ,−
N
2

if m =−M
2 and n =−N

2 .

(3.17)

Finally by definition of the DFT and iDFT we have F −1
M,N(d) = u = F −1

M,N(FM,N(u)) and thus
d = FM,N(u).

Conversely, if P ∈ PM,N is defined by the coefficients c verifying (3.14) then it is an interpo-
lator of u.
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The existence of trigonometric polynomial interpolators and their characterization is given
by Proposition 3.1. They can easily be obtained from the DFT coefficients of the image so that
the TPI is commonly called DFT interpolation.

Corollary 3.1. One of the two following cases occur.

• If M and N are odd, then there is a unique trigonometric polynomial interpolator noted
Pu whose coefficients are FM,N(u).

• If M or N is even, then there are infinitely many trigonometric polynomial interpolators.
Their coefficients only differ from each other on the boundary Γs

M,N .

Proof. It is a direct consequence of Proposition 3.1.

When for instance M is even, one can easily check that the interpolation property is kept
when adding any multiple of the trigonometric polynomial of degree M×N defined by (x,y) ∈
R2 7→ sin(πx). As pointed out in [1] and [15], the lack of symmetry for even sizes introduces an
ambiguity in the choice of the trigonometric polynomial interpolator.

This can also be seen with a dimensional approach. The space of trigonometric polynomials
of degree ≤M×N has for dimension #Ω̂s

M,N , which is greater or equal to MN = #ΩM,N . The
linear map P ∈ PM,N 7→ (P(k, l))(k,l)∈ΩM,N is one-to-one (and bijective) if and only if the kernel

dimension #
(

Γs
M,N \ΓM,N

)
is 0. Finally, it is one-to-one if and only if M and N are odd numbers.

Actually #Ω̂s
M,N is the number of coefficients cm,n used to represent trigonometric polynomials

of degree M×N and is a product of odd numbers. If M is even and N is odd then the kernel
dimension is N. If both M and N are even then the kernel dimension is M+N +1.

The dimensional approach also shows that M×N is the smallest degree (along both dimen-
sions) ensuring the existence of a trigonometric polynomial verifying the interpolation condi-
tion (3.13).

3.2.3 Trigonometric Polynomial Interpolators of a Real-valued Image

Assume that u is real-valued. Three particular trigonometric polynomial interpolators of u are
proposed and the cases where they coincide are pointed out.

Definition 3.8 (Trigonometric polynomial interpolator in complex convention). The trigono-
metric polynomial interpolator of u in complex convention is the trigonometric polynomial
P(c)

u ∈ PM,N defined by

∀(x,y) ∈ R2, P(c)
u (x,y) = ∑

(m,n)∈Ω̂M,N

FM,N(u)m,ne2iπ(x m
M +y n

N ). (3.18)

The trigonometric polynomial interpolator in complex convention is the natural and sim-
plest way to define a trigonometric polynomial interpolator since the coefficients are directly
expressed in terms of the DFT of the image. Using Proposition 3.1 it is proven to be an in-
terpolator (even for a complex-valued image) since it corresponds to the particular case where
the coefficients are null in Γs

M,N \ΓM,N . However because of the DFT asymmetry it may be
complex-valued. Therefore two other interpolators, which are guaranteed to be real-valued, are
built.
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Proposition 3.2. Assume u is real-valued. Then, R (P(c)
u ) ∈ PM,N is a trigonometric polynomial

interpolator of u whose coefficients c ∈ Ω̂s
M,N verify for (m,n) ∈ Ω̂s

M,N ,

cm,n =



FM,N(u)m,n if |m|< M
2 and |n|< N

2
1
2 FM,N(u)−M

2 ,n
if |m|= M

2 and |n|< N
2

1
2 FM,N(u)m,−N

2
if |m|< M

2 and |n|= N
2

1
2 FM,N(u)−M

2 ,−
N
2

if (m,n) ∈
{
±(M

2 ,
N
2 )
}

0 if (m,n) ∈
{
±(−M

2 ,
N
2 )
}
.

(3.19)

Proof. This is a consequence of the Hermitian symmetry of the DFT of real-valued images.
Indeed, extending the DFT by (M,N)−periodicity we easily get FM,N(u)m,n = FM,N(u)−m,−n

for all (m,n) ∈ Z2. Let (x,y) ∈R2. By grouping the terms of the sum in Equation (3.18) we can
deduce that the complex contribution of P(c)

u comes from the terms with indices in ΓM,N ,

P(c)
u (x,y) = FM,N(u)0,0 + ∑

0≤m<M
2 ,

0≤n<N
2

(m,n)6=(0,0)

2R
(

FM,N(u)m,ne2iπ(x m
M +y n

N )
)

︸ ︷︷ ︸
∈R

+ ∑
(m,n)∈ΓM,N

FM,N(u)m,ne2iπ(x m
M +y n

N ). (3.20)

Case 1: Assume M and N are odd. Then ΓM,N = /0. This implies that P(c)
u is real-valued and

we have the result.

Case 2: Assume that M is even and N is odd. Then ΓM,N =
{
−M

2

}
×
{
−N−1

2 , . . . , N−1
2

}
. Using

the relation FM,N(u)−M
2 ,n

= FM,N(u)−M
2 ,−n we have

∑
(m,n)∈ΓM,N

FM,N(u)m,ne2iπ(x m
M +y n

N ) = e−iπx

FM,N(u)−M
2 ,0 +

N−1
2

∑
n=1

2R
(

FM,N(u)−M
2 ,ne2iπ ny

N

)
︸ ︷︷ ︸

∈R

. (3.21)

Finally as R (e−iπx) = 1
2(e

iπx + e−iπx) = 1
2(e

2iπ M
2

x
M + e2iπ(−M

2 )
x
M ), we have

R

(
∑

(m,n)∈ΓM,N

FM,N(u)m,ne2iπ(x m
M +y n

N )

)
= ∑

(m,n)∈Γs
M,N

1
2

FM,N(u)m,ne2iπ(x m
M +y n

N ) (3.22)

and the result is obtained by identification. Similarly, we deal with the case M odd and N even
by switching the coordinates.

Case 3: Assume that M and M are even. Then we have the partition

ΓM,N =

{
−M

2

}
×
{
−N

2
+1, . . . ,

N
2
−1
}⊔{

−M
2
+1, . . . ,

M
2
−1
}
×
{
−N

2

}⊔{
−M

2

}
×
{
−N

2

}
(3.23)

so that the sum ∑(m,n)∈ΓM,N FM,N(u)m,ne2iπ(x m
M +y n

N ) can be decomposed into three sums. The two
first components can be handled as in case 2 (even though the sum indices are slighlty different).



64 3–Trigonometric Polynomial Interpolation of Images

The third component corresponds to the index
(
−M

2 ,−
N
2

)
for which we have

R
(

FM,N(u)−M
2 ,−

N
2
e−iπ(x+y)

)
= FM,N(u)−M

2 ,−
N
2︸ ︷︷ ︸

∈R

R (e−iπ(x+y)) (3.24)

=
1
2

FM,N(u)−M
2 ,−

N
2
(eiπ(x+y)+ e−iπ(x+y)). (3.25)

Finally the result is obtained by identification.

As stated in Proposition 3.2, R (P(c)
u ) is a real-valued trigonometric polynomial interpolator

of u which can be easily obtained from the complex convention. However when M and N are
even its coefficients show an asymmetry in the highest frequencies. Therefore the following
alternative may be prefered.

Definition 3.9 (Trigonometric polynomial interpolator in real convention). Assume u is real-
valued. The trigonometric polynomial interpolator of u in real convention is defined as the
trigonometric polynomial P(r)

u ∈ PM,N whose coefficients c ∈ Ω̂s
M,N verify for (m,n) ∈ Ω̂s

M,N ,

cm,n =


FM,N(u)m,n if |m|< M

2 and |n|< N
2

1
2 FM,N(u)−M

2 ,n
if |m|= M

2 and |n|< N
2

1
2 FM,N(u)m,−N

2
if |m|< M

2 and |n|= N
2

1
4 FM,N(u)−M

2 ,−
N
2

if |m|= M
2 and |n|= N

2 .

(3.26)

Proposition 3.3. Assume u is real-valued. Then P(r)
u is a real-valued interpolating function of u

since for (x,y) ∈ R2,

P(r)
u (x,y) =

{
R (P(c)

u )(x,y)+FM,N(u)−M
2 ,−

N
2

sin(πx)sin(πy) if M and N are even

R (P(c)
u )(x,y) otherwise.

(3.27)

Proof. Noticing that FM,N(u)−M
2 ,−

N
2
∈ R and using the relation

R (e−iπ(x+y))+ sin(πx)sin(πy) =
1
4

(
eiπ(x+y)+ e−iπ(x+y)+ eiπ(x−y)+ eiπ(−x+y)

)
, (3.28)

it is directly obtained from the definition of P(r)
u and Proposition 3.2.

Proposition 3.3 states that P(r)
u is another real-valued trigonometric polynomial interpolator

and makes the link with R (P(c)
u ). When M and N are even P(r)

u is usually preferred to R (P(c)
u )

because it has the same DFT coefficients at the four corners of Ω̂s
M,N . In [1] the trigonometric

polynomial interpolator in real convention is called discrete Shannon interpolator because it
corresponds to the Shannon-Whittaker interpolator with periodic boundary extension.

The particular conditions under which the proposed trigonometric polynomial interpolators
are equal are presented in Proposition 3.4.

Proposition 3.4. Assume u is real-valued. The cases of equality of the three proposed trigono-
metric polynomial interpolators are:

1. P(c)
u = R (P(c)

u ) = P(r)
u if and only if

{(m,n) ∈ ΓM,N |FM,N(u)m,n 6= 0}= /0. (3.29)

In particular, it is the case when M and N are odd since there is a unique trigonometric
polynomial interpolator and ΓM,N = /0.
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2. Assume that M or N is odd. Then, R (P(c)
u ) = P(r)

u .

3. Assume that M and N are even. Then R (P(c)
u ) = Pu if and only if FM,N(u)−M

2 ,−
N
2
= 0.

Proof. It is a direct consequence of Proposition 3.2 and Proposition 3.3.

3.3 Application to Geometric Transformation of Images

In this section we apply TPI to geometric transformations of images. Let P ∈ PM,N be a trigono-
metric polynomial interpolator of u with coefficients c ∈ Ω̂s

M,N and ϕ ∈ σ(R2) be a geometric
transformation. The transformation of u by ϕ using P is noted uP,ϕ and is defined by

∀(k, l) ∈ΩM,N ,(uP,ϕ)k,l = P(ϕ−1(k, l)). (3.30)

First the case of translations is considered in Section 3.3.1. It is shown that a translated image
can be computed efficiently using DFT-based computations. In particular the results for the three
classical trigonometric interpolators introduced in Section 3.2.3 are detailed. The invertibility
of the translation operation is also studied. Then, an efficient algorithm for computing any
transformation of an image is proposed in Section 3.3.2.

3.3.1 Translation

Let (α,β) ∈ R2 be a shift parameter. The translation by (α,β) is defined by ϕ : (x,y) ∈ R2 7→
(x+α,y+β). For simplicity we use slightly different notation for uP,ϕ as proposed in

Definition 3.10. The translated image of u with shift (α,β) using the interpolator P is noted
u(P,α,β) ∈ CΩM,N . It is defined by

∀(k, l) ∈ΩM,N ,
(

u(P,α,β)
)

k,l
= P(k−α, l−β). (3.31)

Proposition 3.5. The DFT coefficients of u(P,α,β) verify

FM,N(u(P,α,β))m,n = cm,ne−2iπ(α m
M +β

n
N ) for |m|< M

2 and |n|< N
2

FM,N(u(P,α,β))−M
2 ,n

=
(

c−M
2 ,n

eiπα + c M
2 ,n

e−iπα

)
e−2iπβ

n
N for |n|< N

2

FM,N(u(P,α,β))m,−N
2
=
(

cm,−N
2
eiπβ + cm,N

2
e−iπβ

)
e−2iπα

m
M for |m|< M

2

FM,N(u(P,α,β))−M
2 ,−

N
2
= c−M

2 ,−
N
2
eiπ(α+β)+ c M

2 ,
N
2
e−iπ(α+β)

+c−M
2 ,

N
2
eiπ(α−β)+ c M

2 ,−
N
2
e−iπ(α−β).

(3.32)

Proof. For (k, l) ∈ΩM,N we have(
u(P,α,β)

)
k,l

= P(k−α, l−β) (3.33)

= ∑
(m,n)∈Ω̂s

M,N

cm,ne−2iπ(α m
M +β

n
N )e2iπ(mk

M + nl
N ). (3.34)

The result is obtained using the same reasoning as in the proof of Proposition 3.1 except that the
cm,n are multiplied by e−2iπ(α m

M +β
n
N ).

As stated in Proposition 3.5 the DFT coefficients of the translated image u(P,α,β) can be
easily computed from the trigonometric polynomial coefficients c by a phase shift. Therefore
the translation using TPI is commonly called the DFT translation. The coefficients in ΓM,N have
a slightly different expression that depends on the choice of the interpolator. In particular, for
the three classical trigonometric polynomial interpolators the DFT coefficients of the translated
images are given by
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Proposition 3.6. For all (m,n) ∈ Ω̂M,N ,

FM,N(u(P(c)
u ,α,β)

)m,n = FM,N(u)m,ne−2iπ(α m
M +β

n
N ). (3.35)

If in addition u is real-valued, then

FM,N(u(R (P(c)
u ),α,β)

)m,n = FM,N(u)m,ne−2iπ(α m
M +β

n
N ) for |m|< M

2 and |n|< N
2

FM,N(u(R (P(c)
u ),α,β)

)−M
2 ,n

= FM,N(u)−M
2 ,n

cos(πα)e−2iπβ
n
N for |n|< N

2

FM,N(u(R (P(c)
u ),α,β)

)m,−N
2
= FM,N(u)m,−N

2
cos(πβ)e−2iπα

m
M for |m|< M

2

FM,N(u(R (P(c)
u ),α,β)

)−M
2 ,−

N
2
= FM,N(u)−M

2 ,−
N
2

cos(π(α+β))

(3.36)
and

FM,N(u(P(r)
u ,α,β)

)m,n = FM,N(u)m,ne−2iπ(α m
M +β

n
N ) for |m|< M

2 and |n|< N
2

FM,N(u(P(r)
u ,α,β)

)−M
2 ,n

= FM,N(u)−M
2 ,n

cos(πα)e−2iπβ
n
N for |n|< N

2

FM,N(u(P(r)
u ,α,β)

)m,−N
2
= FM,N(u)m,−N

2
cos(πβ)e−2iπα

m
M for |m|< M

2

FM,N(u(P(r)
u ,α,β)

)−M
2 ,−

N
2
=

FM,N(u)−M
2 ,−

N
2

1
2 (cos(π(α+β))+ cos(π(α−β))) .

(3.37)

Proof. It is a direct consequence of Proposition 3.5. The coefficients of the trigonometric poly-
nomial interpolators are given in Definition 3.8, Proposition 3.2 and Definition 3.9.

Using Proposition 3.6 it is possible to determine if the DFT translation can be inverted by
applying the DFT translation with opposite shift. It is the case for the trigonometric polynomial
interpolator in complex convention as stated in

Proposition 3.7. Set v = u
(P(c)

u ,α,β)
. Then,

v
(P(c)

v ,−α,−β)
= u. (3.38)

Proof. It is obtained using (3.35) successively for (α,β) and −(α,β).

On the contrary for the two classical real-valued trigonometric polynomial interpolators it is
not automatically the case. The DFT coefficients of the image obtained after the two opposite
translations may differ from the original ones on the Fourier boundary. More precisely, the DFT
coefficients are given by

Proposition 3.8. Assume u is real-valued. Set v = u
(R (P(c)

u ),α,β)
. Then, v

(R (P(c)
v ),−α,−β)

verifies



FM,N(v(R (P(c)
v ),−α,−β)

)m,n = FM,N(u)m,n for |m|< M
2 and |n|< N

2

FM,N(v(R (P(c)
v ),−α,−β)

)−M
2 ,n

= cos(πα)2FM,N(u)−M
2 ,n

for |n|< N
2

FM,N(v(R (P(c)
v ),−α,−β)

)m,−N
2
= cos(πβ)2FM,N(u)m,−N

2
for |m|< M

2

FM,N(v(R (P(c)
v ),−α,−β)

)−M
2 ,−

N
2
= cos(π(α+β))2 FM,N(u)−M

2 ,−
N
2
.

(3.39)
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Set w = u
(P(r)

u ,α,β)
. Then, w

(P(r)
w ,−α,−β)

verifies



FM,N(w((P(r)
w ,−α,−β)

)m,n = FM,N(u)m,n for |m|< M
2 and |n|< N

2

FM,N(w((P(r)
w ,−α,−β)

)−M
2 ,n

= cos(πα)2FM,N(u)−M
2 ,n

for |n|< N
2

FM,N(w((P(r)
w ,−α,−β)

)m,−N
2
= cos(πβ)2FM,N(u)m,−N

2
for |m|< M

2

FM,N(w((P(r)
w ,−α,−β)

)−M
2 ,−

N
2
=

1
4 (cos(π(α+β))+ cos(π(α−β)))2 FM,N(u)−M

2 ,−
N
2
.

(3.40)

Proof. It is a direct consequence of (3.36) and (3.37) applied successively to (α,β) and−(α,β).

The particular cases where a DFT translation is inverted by the opposite DFT translation can
be summarized as in

Proposition 3.9. Assume u is real-valued. Let P ∈ {P(c)
u ,R (P(c)

u ),P(r)
u }. Then, the following

propositions are equivalent:

(1) The translation of u with shift (α,β) using the interpolator P can be inverted by the opposite
translation.

(2) For all (m,n) ∈ Ω̂M,N , ∣∣∣FM,N(u(P,α,β))
∣∣∣
m,n

= |FM,N(u)|m,n . (3.41)

(3) For all (m,n) ∈ ΓM,N , ∣∣∣FM,N(u(P,α,β))
∣∣∣
m,n

= |FM,N(u)|m,n . (3.42)

In particular, (1) holds as soon as:

1. P = P(c)
u .

2. (α,β) ∈ Z2.

3. P(c)
u = R (P(c)

u ) = P(r)
u i.e.

{(m,n) ∈ ΓM,N |FM,N(u)m,n 6= 0}= /0. (3.43)

In particular it is the case when M and N are odd.

4. β ∈ Z and {
n ∈ ΓN |FM,N(u)−M

2 ,n
6= 0
}
= /0. (3.44)

In particular it is the case when N is odd.

5. α ∈ Z and {
m ∈ ΓM |FM,N(u)m,−N

2
6= 0
}
= /0. (3.45)

In particular it is the case when M is odd.
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Proof. Set v = u(P,α,β) and w = v(P′,−α,−β) where P′ is the corresponding trigonometric polyno-
mial interpolator of v. Using Proposition 3.6 we can write

FM,N(v) = h(α,β)FM,N(u). (3.46)

Set h′(α,β) = |h(α,β)|2. Using Proposition 3.8 we have

FM,N(w) = h′(α,β)FM,N(u). (3.47)

Thus, (1) holds if and only if w = u if and only if for all (m,n) ∈ ΩM,N , h′(α,β)m,n = 1 or
FM,N(u)= 0. As h′(α,β)= |h(α,β)|2, (1) holds if and only if for all (m,n)∈ΩM,N , |h(α,β)|m,n =
1 or FM,N(u) = 0. Using (3.46) we obtain the equivalence of (1) and (2). For all (m,n) ∈
ΩM,N \ΓM,N , h(α,β)m,n = e−2iπ(α m

M +β
n
N ) so that |h(α,β)|m,n = 1. This shows that (2) and (3) are

equivalent.
The verification of the particular cases is straightforward using Proposition 3.8.

Note that in the proof of Proposition 3.9 the DFT translation is implicitly expressed as a
filtering through (3.46). In Chapter 4 we consider another approach where the DFT translation
is defined as a filtering (see Section 4.4.1).

How to deal with the non-invertibility of the DFT translation. The non-invertibility may
be avoided by working with images with odd sizes, which is not always possible, or by killing
the DFT coefficients on the boundary ΓM,N , which modifies the image content. Alternatively it
is possible to take into account the effect of the non-invertibility on the output result. For in-
stance in Chapter 6 we propose a measure of the consistency measurement where high frequency
components are discarded before the comparison.

3.3.2 Efficient Image Transformation Algorithm

The transformed image uP,ϕ of u by ϕ using P is given by (3.30). The interpolated values
correspond to the evaluation of the trigonometric polynomial P at locations

{
ϕ−1(k, l)

}
(k,l)∈ΩM,N

,
which are a priori nonequispaced. As stated in Corollary 3.1 the coefficients c of P are expressed
in terms of the DFT of u. When ϕ is a translation it was shown in Section 3.3.1 that uP,ϕ is
computed by phase shift and an inverse DFT. Using the FFT algorithm [24] it can be obtained
in O(MN log(MN) floating point operations. As described below, in general the computation of
the transformed image is more costly but can be approximated with an efficient algorithm.

Trigonometric polynomial evaluation. Let us consider the general problem of trigonomet-
ric polynomial evaluation at arbitrary locations. Let Ns be the number of output values and
{(x j,y j)}1≤ j≤Ns be the locations. Then, P can be evaluated at (x j,y j) directly from the coeffi-
cients using the formula

P(x j,y j) = ∑
(m,n)∈Ω̂s

M,N

cm,ne2iπ
(mx j

M +
ny j
N

)
. (3.48)

The total cost is of O(MNNs) floating point operations so that this operation cannot be done in
practice.

Let us introduce the nonequispaced discrete Fourier transform (NDFT) algorithm. Let M′

and N′ be two even numbers and ( f̂m,n)(m,n)∈Ω̂M′,N′
. Let

{
(x′j,y

′
j)
}

1≤ j≤Ns
be pixel positions in

[−1
2 ,

1
2)

2. The NDFT evaluates the sums

f (x′j,y
′
j) = ∑

(m,n)∈Ω̂M′,N′

f̂m,ne−2iπ(x′jm+y′jn). (3.49)
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The evaluation is done using the straightforward matrix form and requires O(M′N′Ns) floating
point operations.

It is clear that the expressions in (3.48) and (3.49) are closely related. Actually P can be
evaluated using the NDFT algorithm. The correspondences between positions are given by{

x′j =−
x j
M +α j,

y′j =−
y j
N +β j

(3.50)

where α j and β j are integers insuring (x′j,y
′
j) ∈ [−1

2 ,
1
2)

2. The even bandwidth M′ and N′ sizes
are taken as

M′ =

{
M+1 if M is odd,
M+2 if M is even

and N′ =

{
N +1 if N is odd,
N +2 if N is even.

(3.51)

The Fourier coefficients ( f̂m,n)(m,n)∈Ω̂M′,N′
are obtained from (ĉm,n)(m,n)∈Ω̂s

M,N
by zero-padding on

the boundary ΓM′,N′ i.e.

f̂m,n =

{
cm,n (m,n) ∈ Ω̂s

M,N ,

0 (m,n) ∈ ΓM′,N′ .
(3.52)

The interest of considering the NDFT formulation is that it can be efficiently approximated
by the nonequispaced fast Fourier transform [94] (NFFT) algorithm. The NFFT approximation
is based on the usage of an oversampled FFT and a window function which is simultaneously
localised in space and frequency. It only requires O(M′N′ log(M′N′)+ | log(ε)|2Ns) operations
where ε denotes the desired (relative) output precision. Details concerning the NFFT perfor-
mances are provided in [65].

How to transform an image. Algorithm 3.1 details how the image u is transformed by ϕ

using the trigonometric polynomial interpolator P. First the locations
{

ϕ−1(k, l)
}
(k,l)∈ΩM,N

are
computed. Then, the DFT coefficients of u are computed (thanks to the FFT algorithm [24]
in O(MN log(MN) floating point operations) and linked to the coefficients of P. Finally the
values (uP,ϕ)k,l = P(ϕ−1(k, l)) are approximated on ΩM,N using the NFFT algorithm using the
correspondances provided in (3.50), (3.51) and (3.52). An implementation of this algorithm
can be done using the FFTW library [42] and the NFFT3 library [63].

Algorithm 3.1: Transformation of an image using trigonometric polynomial interpolation
Input : An image u of size M×N, the geometric transformation ϕ and the trigonometric

polynomial interpolator P
Output: The transformed image uP,ϕ

1 Compute the locations
{

ϕ−1(k, l)
}
(k,l)∈ΩM,N

2 Compute the DFT coefficients of u with the FFT algorithm
3 Deduce the coefficients of P from the DFT coefficients
4 Compute (uP,ϕ)k,l = P(ϕ−1(k, l)) on ΩM,N from the coefficients of P using the NFFT

algorithm. See (3.50), (3.51) and (3.52) for the correspondences.

Assume that the trigonometric polynomial interpolator P is one of the three classical in-
terpolators i.e. P ∈ {P(c)

u ,R (P(c)
u ),P(r)

u }. When P = P(c)
u it is possible to avoid unnecessary

computations during the NFFT by keeping even bandwidths. M′ and N′, given in (3.51), are
replaced by

M′ =

{
M+1 if M is odd,
M if M is even

and N′ =

{
N +1 if N is odd,
N if N is even.

(3.53)
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The result for P ∈ {R (P(c)
u ),P(r)

u } can be obtained by taking the real part and by possibly us-
ing (3.27).

3.4 Up-sampling and Down-sampling

Up-sampling and down-sampling are common operations in image processing. For instance in
multi-scale approaches the down-sampling factor corresponds to the pyramid scale. These oper-
ations cannot be interpreted as geometric transformations as described in Section 3.3 since the
image sizes change. However they involve a spatial scaling and are closely related to zooming.
That is why it is common to (improperly) refer to up-sampling as a zoom-in and to down-
sampling as a zoom-out.

Let z be a positive integer representing the resampling factor. In this section we present the
up-sampling and down-sampling by factor z using TPI. It is shown that DFT based computations
can be performed and the link between the two operations is established. Note that this study
may be extended to rational resampling factor.

3.4.1 Up-sampling

Here up-sampling refers to the process of increasing the sampling rate of a signal/image. As no
additional information is provided, up-sampling can be seen as resampling on a finer grid using
interpolation. Let P ∈ PM,N be a trigonometric polynomial interpolator of u with coefficients
c ∈ Ω̂M,N . First the up-sampling of u by factor z using P is defined as in

Definition 3.11 (Up-sampling of an image). The up-sampled image of u by factor z using the
interpolator P ∈ PM,N is noted u(P,z) ∈ CΩzM,zN and is defined by

∀(k, l) ∈ΩzM,zN ,
(

u(P,z)
)

k,l
= P

(
k
z
,

l
z

)
. (3.54)

Note that the scaling of factor z is involved in (3.54). The DFT coefficients of the up-sampled
image u(P,z) can be easily computed from the trigonometric polynomial coefficients by padding
with zeros as stated in

Proposition 3.10. For (m,n) ∈ Ω̂zM,zN ,

FzM,zN(u(P,z))m,n =

{
cm,n if (m,n) ∈ Ω̂s

M,N

0 otherwise.
(3.55)

Proof. The result is obvious for z = 1. Now assume z > 1. For (k, l) ∈ΩzM,zN we have(
u(P,z)

)
k,l

= P
(

k
z
,

l
z

)
(3.56)

= ∑
(m,n)∈Ω̂s

M,N

cm,ne2iπ( mk
zM + nl

zN ) (3.57)

= ∑
(m,n)∈Ω̂zM,zN

dm,ne2iπ( mk
zM + nl

zN ) (3.58)

where

dm,n =

{
cm,n if (m,n) ∈ Ω̂s

M,N

0 otherwise.
(3.59)

By uniqueness of the iDFT (of size zM× zN) we obtain the result.
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Therefore the up-sampling using TPI is commonly referred to as the DFT zero-padding. We
recall that the trigonometric polynomial coefficients are expressed in terms of the DFT of u (see
Corollary 3.1). In particular, for the three classical trigonometric polynomial interpolators the
DFT coefficients of the up-sampled images are given by

Proposition 3.11. For (m,n) ∈ Ω̂zM,zN ,

FzM,zN(u(P(c)
u ,z)

)m,n =

{
FM,N(u)m,n if (m,n) ∈ Ω̂M,N

0 otherwise.
(3.60)

If in addition u is real-valued, then for (m,n) ∈ΩzM,zN

FzM,zN(u(R (P(c)
u ),z)

)m,n =



FM,N(u)m,n if |m|< M
2 and |n|< N

2
1
2 FM,N(u)−M

2 ,n
if |m|= M

2 and |n|< N
2

1
2 FM,N(u)m,−N

2
if |m|< M

2 and |n|= N
2

1
2 FM,N(u)−M

2 ,−
N
2

if (m,n) ∈
{
±(M

2 ,
N
2 )
}

0 otherwise

(3.61)

and

FzM,zN(u(P(r)
u ,z)

)m,n =



FM,N(u)m,n if |m|< M
2 and |n|< N

2
1
2 FM,N(u)−M

2 ,n
if |m|= M

2 and |n|< N
2

1
2 FM,N(u)m,−N

2
if |m|< M

2 and |n|= N
2

1
4 FM,N(u)−M

2 ,−
N
2

if |m|= M
2 and |n|= N

2

0 otherwise.

(3.62)

Proof. It is a direct consequence of Proposition 3.10. The coefficients of the different trigono-
metric polynomial interpolators are given in Definition 3.8, Proposition 3.2 and Definition 3.9.

Note that the up-sampled image using the trigonometric polynomial interpolator in complex
convention P(c)

u may be complex-valued for u real-valued. Actually it is real-valued if and only
if {(m,n) ∈ ΓM,N |FM,N(u)m,n 6= 0}= /0.

3.4.2 Down-sampling

Here down-sampling refers to the process of reducing the sampling rate of a signal/image. It is
also called decimation and is usually expressed as a two-step process. First the high-frequency
component is reduced by a low-pass filtering. Then, the down-sampled image is obtained by
keeping only one sample over z2 of the filtered image. The aim of the low-pass filtering is to
avoid the introduction of a strong aliasing.

Let v be an image of size zM× zN. A natural definition for the down-sampling by factor z of
v is (vzk,zl)(k,l)∈ΩM,N . It does not require low-pass filtering but the output image may be aliased.
Discrete spatial filters may be considered for the low-pass filtering. A classical example is the
Gaussian filter (e.g. with standard deviation σ = 0.6). Low-pass filters may also be defined in
the Fourier domain since it covers all the possible image sizes in a single formula. As described
in Chapter 4 the filters are then applied using DFT-based computations that rely on TPI. For
instance it is the case for the low-pass filter used to build the steerable pyramid of E. Simoncelli
et al. [111].

The down-sampling of v by factor z using TPI is defined as in
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Definition 3.12 (Down-sampling of an image). Let z ≥ 2 and v be an image of size zM× zN.
The down-sampled image of v with factor z is noted v( 1

z )
∈ CΩM,N . It is defined by

∀(k, l) ∈ΩM,N ,
(

v( 1
z )

)
k,l

= Pv, 1
z
(k, l) (3.63)

where Pv, 1
z
∈ PM,N is given by

∀(x,y) ∈ Z2, Pv, 1
z
(x,y) = ∑

(m,n)∈Ω̂s
M,N

FzM,zN(u)m,ne2iπ( m
M x+ n

N y). (3.64)

The definition is naturally extended to z = 1 by setting v(1) = v.

The DFT coefficients of the zoomed image v( 1
z )

can be easily computed from DFT coeffi-
cients of v as stated in

Proposition 3.12. Assume that z≥ 2 and let v be an image of size zM× zN . Then for (m,n) ∈
Ω̂M,N ,

FM,N(v( 1
z )
)m,n =



FzM,zN(v)m,n if |m|< M
2 and |n|< N

2

FzM,zN(v)M
2 ,n

+FzM,zN(v)−M
2 ,n

if m =−M
2 and |n|< N

2

FzM,zN(v)m,−N
2
+FzM,zN(v)m,−N

2
if |m|< M

2 and n =−N
2

FzM,zN(v)M
2 ,

N
2
+FzM,zN(v)M

2 ,−
N
2

+FzM,zN(v)−M
2 ,

N
2
+FzM,zN(v)−M

2 ,−
N
2

if m =−M
2 and n =−N

2 .

(3.65)

Proof. It is obtained by using similar computations as in the proof of Proposition 3.1.

The down-sampling using TPI is commonly called DFT zoom-out. For z ≥ 2 it relies on
TPI through Pv, 1

z
, which is defined in (3.64) without ambiguity since it is built from the DFT

coefficients of v on Ω̂s
M,N . Intuitively Pv, 1

z
is obtained by taking any trigonometric polynomial

interpolator of v, "killing" the coefficients in Ω̂zM,zN \ Ω̂s
M,N and applying a scaling of factor

z. The underlying continuous low-pass filter is the perfect low-pass defined by the indicator
function of [−π

z ,
π

z ]
2.

3.4.3 Link between Up-sampling and Down-sampling

The left invertibility of the up-sampling using TPI is guaranteed by

Proposition 3.13. Let P ∈ PM,N be a trigonometric polynomial interpolator of u. Then,(
u(P,z)

)
( 1

z )
= u. (3.66)

Proof. It is obtained using Proposition 3.10 and Proposition 3.12.

More precisely, the left inverse of the up-sampling with any trigonometric polynomial inter-
polator is the down-sampling with the same factor. Obviously for z≥ 2 the up-sampling does not
admit a right inverse since up-sampled images have imposed null DFT coefficients. Similarly
the down-sampling does not admit a left inverse since DFT coefficients are "killed" i.e. some
information is lost.
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3.5 Conclusion

In this chapter we presented a trigonometric polynomial interpolation theory for images and ap-
plied it to the geometric transformation of images, to the up-sampling and to the down-sampling
by an integer factor. The trigonometric polynomial interpolators of an image were character-
ized and it was shown that there are infinitely many candidates as soon as one of the image
dimensions is even. The interpolator choice has an influence as shown in the two discussed
applications. Three classical choices of interpolator for real-valued images were presented and
the cases where they coincide were pointed out.

For image translation, the classical DFT-based computations by phase shift were described.
In the general case an efficient but approximate algorithm, based on the NFFT algorithm, was
proposed. DFT-based computations were also presented for the up-sampling and down-sampling
by an integer factor. All of the algorithms described are efficient and can be used in practice.
Trigonometric polynomial interpolation is also applied to linear filtering in Chapter 4.

The performances and the limits of trigonometric polynomial interpolation are discussed in
Chapter 6.
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Chapter 4

Filtering using Trigonometric
Polynomial Interpolation

Abstract

This chapter is taken from [15] and is an application of Chapter 3. We propose algorithms
for filtering real-valued images, when the filter is provided as a continuous function de-
fined in the Nyquist frequency domain. This problem is ambiguous because images are
discrete entities and there is no unique way to define the filtering. We provide a theoretical
framework designed to analyse the classical and computationally efficient filtering imple-
mentations based on discrete Fourier transforms (DFT). In this framework, the filtering is
interpreted as the convolution of a distribution, standing for the filter, with a trigonometric
polynomial interpolator of the image. The various plausible interpolations and choices of
the distribution lead to three equally licit algorithms which can be seen as method variants
of the same standard filtering algorithm. In general none should be preferred to the others
and the choice depends on the application. In practice, the method differences, which come
from the boundary DFT coefficients, are not visible to the naked eye. We demonstrate that
claim on several experimental configurations by varying the input image and the consid-
ered filter. In some cases however, we discuss how the choice of the variant may affect
fundamental properties of the filtering. We provide an implementation1 of the algorithms.
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4.1 Introduction

The application to images of a filter defined by a continuous function in the frequency domain,
more precisely in the Nyquist domain [−π,π]2, is a well-known problem. Images are discrete
entities so there is no unique way to define the filtering whether it be as a continuous or a discrete
convolution.

The definition in the Fourier domain by a continuous function may be handy to impose a
given property to a filter (e.g. low-pass, high-pass or steered filter). Moreover, it covers all the
possible image sizes in a single formula. For instance this is a classical approach used to build
multi-scale structures (e.g. the steerable pyramid of E. Simoncelli et al. [111]).

In practice, the filtering is usually applied by performing discrete Fourier transform (DFT)
computations [17, 45, 89] but, to the best of our knowledge, no clear theoretical justification
can be found in the literature. In particular, the interpretations generally involve a trigonometric
polynomial interpolation. As shown in Chapter 3, it is ambiguous for even-sized images and
relies on the complex convention whose influence on the boundary DFT coefficients should be
taken into account.

The aim of this chapter is to give a clear definition, as a continuous convolution, of the
filtering of a discrete real-valued image by a filter specified by a continuous function in the
Nyquist domain [−π,π]2. Additionally, for computational purposes it should be compatible
with DFT computations.

With this goal in mind, we interpret the filtering as the convolution of a distribution, standing
for the filter, with a trigonometric polynomial interpolator of the image. The various plausible
interpolations and choices of the distribution lead to three equally licit algorithms which can be
seen as variants of the same standard filtering algorithm. In general none should be preferred
to the others and the choice depends on the application. The method differences, which come
from the boundary DFT coefficients, are not visible to the naked eye in practice. This analysis
is illustrated by an application to several fundamental filters. When necessary, we also discuss
the impact of the chosen method on some desired properties of the filtering (e.g. semi-group
property, exact reconstruction).

The remainder of this chapter is organized as follows: We present in Section 4.2 the theory
intended to give a clear interpretation of the filtering of a discrete real-valued image by a filter
defined by a continuous function in the Nyquist domain. It underlies the three proposed algo-
rithms which are detailed in Section 4.3. Finally an experimental study with fundamental filter
examples is presented in Section 4.4.

4.2 Theoretical Results

Let φ : [−π,π]2→ C be a continuous function. Let M and N be two positive integers and u be a
discrete real-valued image of size M×N.

In this section we introduce the theory intended to give a clear interpretation of the filtering of
u by a filter defined by φ. It is formalized as the convolution between a trigonometric polynomial
interpolator Pu, associated with the image u, and a tempered distribution fφ associated with
the filter φ, whose Fourier transform is continuous on [−π,π]2. This theory is aimed at being
consistent with the DFT implementations that are typical in the literature.

Section 4.2.1 justifies that the convolution between the tempered distribution fφ and the
trigonometric polynomial Pu is mathematically well sounded (see Theorem 4.2). In Section 4.2.2,
according to the choice of Pu and fφ, we consider three different but equally licit ways of defin-
ing the filtering of discrete images (see Definition 4.9). The resulting filtered images can be
efficiently obtained by DFT based computations thanks to Proposition 4.2.
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4.2.1 Convolution of Trigonometric Polynomials

In this part we define the convolution between a tempered distribution whose Fourier transform
is a continuous function on [−π,π]2 and a trigonometric polynomial. This convolution will be
used in Section 4.2.2 to define the filtering of an image. The distribution will represent the filter
and the trigonometric polynomial the image. To do this we extend known results on the set of
integrable functions.

Definition 4.1 (Fourier transform). The continuous Fourier transform applied to L1(R2) and its
inverse, denoted F and F −1, are defined by

∀u ∈ L1(R2), ∀(ξ,ν) ∈ R2, û(ξ,ν) = F (u)(ξ,ν) =
∫
R2

u(x,y)e−i(xξ+yν)dxdy (4.1)

and ∀(x,y) ∈ R2, F −1(u)(x,y) =
1

(2π)2

∫
R2

u(ξ,ν)ei(xξ+yν)dξdν. (4.2)

The Fourier transform extended to tempered distributions [107, 113] is still denoted F .

Definition 4.2 (Convolution). Let u ∈ L1(R2) and v ∈ L∞(R2). The convolution of u and v,
denoted u∗ v, is defined by

∀(x,y) ∈ R2, u∗ v(x,y) =
∫
R2

u(x− s,y− t)v(s, t)dsdt. (4.3)

We recall that the notations and definitions relative to trigonometric polynomials were in-
troduced in Section 3.2.1. As a trigonometric polynomial is bounded, its convolution with an
integrable function is well-defined and the following result holds.

Theorem 4.1 (Convolution theorem 1 [62]). Let f ∈ L1(R2) and P ∈ PM,N with coefficients c.
Then, f ∗P ∈ PM,N and verifies

∀(x,y) ∈ R2, ( f ∗P)(x,y) = ∑
(m,n)∈Ω̂s

M,N

f̂
(

2πm
M

,
2πn
N

)
cm,ne2iπ(x m

M +y n
N ). (4.4)

Theorem 4.1 states that this convolution is also a trigonometric polynomial whose coeffi-
cients depend on the values of the Fourier transform of the integrable function on [−π,π]2 and
the trigonometric polynomial coefficients. We now want to extend this result to the wider set of
distributions defined as follows.

Definition 4.3. A distribution T of the plane is said to be continuous on [−π,π]2 if its restriction2

T|]−π,π[2 is a function of ]−π,π[2 admitting a continuous extension to [−π,π]2. By construction,
this extension is unique.

Definition 4.4. We define CFπ as the subspace of tempered distributions of the plane whose
Fourier transforms are continuous on [−π,π]2 (in the sense of Definition 4.3).

Note that we have L1(R2) ⊂ CFπ since the Fourier transform of an integrable function is
continuous on R2. As the extension of the convolution to CFπ will only depend on the Fourier
transforms of the distributions on [−π,π]2 we consider the following equivalence relation and
quotient space.

2Note that we can define distribution restrictions only on open sets.
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Definition 4.5. We define the equivalence relation R on CFπ by

f R g⇔ f̂ = ĝ on [−π,π]2. (4.5)

The set of equivalence classes is denoted 〈CFπ〉 and the equivalence class of f ∈CFπ is denoted
〈 f 〉. We define on the vectorial space 〈CFπ〉 the norm N : 〈CFπ〉 → R+ by

∀〈 f 〉 ∈ 〈CFπ〉, N(〈 f 〉) = sup
[−π,π]2

| f̂ |. (4.6)

The equivalence classes which admit an integrable representative play a special role since
we have the following density result.

Proposition 4.1. Let 〈L1(R2)〉 =
{
〈 f 〉 ∈ 〈CFπ〉 | f ∈ L1(R2)

}
. Then 〈L1(R2)〉 is dense in

(〈CFπ〉,N).

Proof. Let 〈 f 〉 ∈ 〈CFπ〉. Starting from the definitions of CFπ and 〈CFπ〉 we can easily build
g∈CFπ such that 〈g〉= 〈 f 〉 and ĝ is a continuous function on R2. Now let (hn)n∈N be a sequence
of Schwartz functions (on R2) that converges uniformly to ĝ on [−π,π]2. Then for each n ∈ N,
gn = F −1(hn) is also a Schwartz function and thus is in L1(R2). By construction, (〈gn〉)n∈N ∈
〈L1(R2)〉N and converges in the norm N to 〈g〉= 〈 f 〉.

Starting from Theorem 4.1 we can define the convolution between an element of 〈L1(R2)〉
and a trigonometric polynomial.

Definition 4.6. Let P ∈ PM,N with coefficients c and 〈 f 〉 ∈ 〈L1(R2)〉. We define the convolution
of 〈 f 〉 and P, still denoted 〈 f 〉 ∗P, as the trigonometric polynomial of degree M×N verifying

∀(x,y) ∈ R2, (〈 f 〉 ∗P)(x,y) = ∑
(m,n)∈Ω̂s

M,N

f̂
(

2πm
M

,
2πn
N

)
cm,ne2iπ(x m

M +y n
N ). (4.7)

This definition is compatible with the classical definition of the convolution given in Defini-
tion 4.2. It is extended to 〈CFπ〉 in the following theorem.

Theorem 4.2 (Convolution theorem 2). Let P ∈ PM,N with coefficients c. The bounded linear
transformation TP : 〈 f 〉 ∈ (〈L1(R2)〉,N) 7→ 〈 f 〉∗P ∈ (PM,N ,‖.‖∞) can be uniquely extended to a
bounded linear transformation T̃P : (〈CFπ〉,N)→ (PM,N ,‖.‖∞).

Let 〈 f 〉 ∈ 〈CFπ〉 then T̃P(〈 f 〉) is called the convolution of 〈 f 〉 and P. It is denoted 〈 f 〉 ∗P
and verifies for all (x,y) ∈ R2,

(〈 f 〉 ∗P)(x,y) = T̃P(〈 f 〉)(x,y) = ∑
(m,n)∈Ω̂s

M,N

f̂
(

2πm
M

,
2πn
N

)
cm,ne2iπ(x m

M +y n
N ). (4.8)

The convolution of f ∈CFπ with a trigonometric polynomial P, still denoted f ∗P, is then defined
by f ∗P = 〈 f 〉 ∗P.

Proof. The transformation TP is clearly linear and is bounded since for all 〈 f 〉 ∈ 〈CFπ〉,

‖TP(〈 f 〉)‖∞ ≤ ∑
(m,n)∈Ω̂s

M,N

∣∣∣∣ f̂ (2πm
M

,
2πn
N

)
cm,n

∣∣∣∣≤
 ∑

(m,n)∈Ω̂s
M,N

cm,n

N(〈 f 〉). (4.9)

As (PM,N ,‖.‖∞) is a complete normed linear space and 〈L1(R2)〉 is dense in (〈CFπ〉,N) (see
Proposition 4.1) then the bounded linear transformation (B.L.T) theorem [96, p. 9] states that TP

can be uniquely extended to a bounded linear transformation T̃P : (〈CFπ〉,N)→ (PM,N ,‖.‖∞).
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Let 〈 f 〉 ∈ 〈CFπ〉 and consider a sequence (〈 fk〉)k∈N ∈ 〈L1(R2)〉N that converges to 〈 f 〉 in
norm N. Define

g〈 f 〉,P : (x,y) ∈ R2 7→ ∑
(m,n)∈Ω̂s

M,N

f̂
(

2πm
M

,
2πn
N

)
cm,ne2iπ(x m

M +y n
N ). (4.10)

Then,

∥∥〈 fk〉 ∗P−g〈 f 〉,P
∥∥

∞
≤ ∑

(m,n)∈Ω̂s
M,N

∣∣∣∣( f̂ − f̂k)

(
2πm
M

,
2πn
N

)
cm,n

∣∣∣∣ (4.11)

≤

 ∑
(m,n)∈Ω̂s

M,N

|cm,n|

N( f − fk) (4.12)

−→
k→∞

0. (4.13)

Thus by continuity we have T̃P = g〈 f 〉,P.

Therefore, Theorem 4.2 provides a sound definition for the convolution of a tempered distri-
bution whose Fourier transform is continuous on [−π,π]2 with a trigonometric polynomial. The
resulting distribution is itself also a trigonometric polynomial. It is also interesting to point out
that this convolution is entirely independent from the distribution of f̂ outside [−π,π]2.

4.2.2 Discrete Image Filtering

Thanks to Theorem 4.2 we can define the filtering of discrete real-valued images. A continuous
function on [−π,π]2 is sufficient to define a filter. In the rest of the chapter we will indistinctly
refer to φ as a function that defines a filter and the filter itself.

Definition 4.7. We denote by fφ any element of the equivalence class{
f ∈ CFπ | f̂ = φ on [−π,π]2

}
. (4.14)

In Definition 4.7 we introduce fφ as any representative of the equivalence class of tempered
distributions whose Fourier transforms are equal to the filter φ on [−π,π]2. The filtering of
real-valued images by φ can be defined as the convolution3 of fφ with trigonometric polyno-
mial interpolators of the images. The choice between the complex and real conventions (see
Section 3.2.3) provides two equally licit definitions of the filtering. A third one is obtained
by considering a slight modification of the filter that removes the ambiguity due to the Fourier
coefficients located at the boundary of the Nyquist domain.

Definition 4.8. We define the continuous function φM,N : [−π,π]2→ C by

∀(µ,ν) ∈ R2, φM,N(µ,ν) = φ(µ,ν)lM(|µ|)lN(|ν|) (4.15)

where, for a positive integer L, we note

lL : x ∈ [0,π] 7→

{
1 if 0≤ x≤ π− 1

L

L(π− x) if π− 1
L < x≤ π.

(4.16)

As an example, we display in Figure 4.1 the continuous piece-wise linear function lL near π for
L = 32.
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Figure 4.1: The continuous piece-wise linear function lL near π for L = 32.

The function φM,N introduced in Definition 4.8 is constructed so that for (m,n) ∈ Ω̂s
M,N ,

φM,N

(
2πm
M

,
2πn
N

)
=

{
φ
(2πm

M , 2πn
N

)
if |m|< M

2 and |n|< N
2

0 if (m,n) ∈ Γs
M,N .

(4.17)

This entails that fφM,N ∗P(c)
u = fφM,N ∗P(r)

u . It allows us to define the filtering of real-valued images
as below.

Definition 4.9 (Filtering real-valued images). 1. The filtering φ1(u) of u by φ in complex
convention is defined as the convolution

φ1(u) = fφ ∗P(c)
u . (4.18)

2. The filtering φ2(u) of u by φ in real convention is defined as the convolution

φ2(u) = fφ ∗P(r)
u . (4.19)

3. The windowed filtering φ3(u) of u by φ is defined as the convolution

φ3(u) = fφM,N ∗Pu (4.20)

where Pu can be taken indifferently as P(c)
u or P(r)

u .
Let j ∈ {1,2,3}. The filtered image φ j(u) is defined as the image canonically associated to

the filtering φ j(u) i.e
φ j(u) = (φ j(u)(k, l))(k,l)∈ΩM,N

. (4.21)

In Definition 4.9 the three proposed results for the filtering of an image u by the filter φ

are trigonometric polynomials whose coefficients depend on samples of φ and on the DFT of u.
Applying Theorem 4.2 we see that their coefficients only differ at the boundary Γs

M,N of Ω̂s
M,N .

In particular when M and N are odd numbers, the three definitions are equivalent.
Now let us present how the resulting filtered images can be obtained by using DFT compu-

tations.

3We recall that this convolution does not depend on the choice of the representative fφ.
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Definition 4.10 (Spectral samples). 1. The spectral samples (S1,M,N
m,n )(m,n)∈Ω̂M,N

of size M×N

in the complex convention are defined for all (m,n) ∈ Ω̂M,N by

S1,M,N
m,n = φ

(
2πm
M

,
2πn
N

)
. (4.22)

2. The spectral samples (S2,M,N
m,n )(m,n)∈Ω̂M,N

of size M×N in the real convention are defined

for all (m,n) ∈ Ω̂M,N by

S2,M,N
m,n =


φ(2πm

M , 2πn
N ) if (m,n) /∈ ΓM,N

1
2

(
φ(−π, 2πn

N )+φ(π, 2πn
N )
)

if m =−M
2 ,n 6=−

N
2

1
2

(
φ(2πm

M ,−π)+φ(2πm
M ,π)

)
if m 6=−M

2 ,n =−N
2

1
4 (φ(−π,−π)+φ(π,−π)+φ(−π,π)+φ(π,π)) if m =−M

2 ,n =−N
2 .
(4.23)

3. The spectral windowed samples (S3,M,N
m,n )(m,n)∈Ω̂M,N

of size M×N are defined for all (m,n)∈
Ω̂M,N by

S3,M,N
m,n =

{
φ(2πm

M , 2πn
N ) if (m,n) /∈ ΓM,N

0 if (m,n) ∈ ΓM,N .
(4.24)

Proposition 4.2. Let j ∈ {1,2,3}. Then, the DFT of the filtered image φ j(u) is given for all

(m,n) ∈ Ω̂M,N by

FM,N

(
φ j(u)

)
m,n

= S j,M,N
m,n FM,N(u)m,n. (4.25)

Proof. We carry the proof for all three cases in turn.

Complex convention : With Theorem 4.2 and Definition 4.7 we have for (x,y) ∈ R2,

φ1(u)(x,y) = ( fφ ∗P(c)
u )(x,y) = ∑

(m,n)∈Ω̂M,N

φ

(
2πm
M

,
2πn
N

)
FM,N(u)m,ne2iπ(x m

M +y n
N )(4.26)

= ∑
(m,n)∈Ω̂M,N

S1,M,N
m,n FM,N(u)m,ne2iπ(x m

M +y n
N ). (4.27)

We conclude by evaluating at (x,y) = (k, l) ∈ΩM,N .

Real convention : Similarly we have for (x,y) ∈ R2,

φ2(u)(x,y) = ( fφ ∗P(r)
u )(x,y) = ∑

(m,n)∈Ω̂s
M,N

φ

(
2πm
M

,
2πn
N

)
cm,ne2iπ(x m

M +y n
N ) (4.28)

where the coefficients c are given in Definition 3.9. Using the partition Ω̂s
M,N = Ω̂M,N \

ΓM,N tΓs
M,N we get

φ2(u)(x,y) =

 ∑
(m,n)∈Ω̂M,N\ΓM,N

+ ∑
(m,n)∈Γs

M,N

φ

(
2πm
M

,
2πn
N

)
cm,ne2iπ(x m

M +y n
N ). (4.29)

Now let (x,y) = (k, l) ∈ ΩM,N . By using the simple identity e2iπ j
L

L
2 = (−1) j = e2iπ j

L
−L
2 ,

we can perform a straightforward identification of the DFT coefficients of the boundary
ΓM,N .
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Windowed filtering : The proof is similar to the complex convention one by replacing φ
(2πm

M , 2πn
N

)
by 0 for (m,n) ∈ ΓM,N .

As stated in Proposition 4.2, the filtered image (see Definition 4.9) can be characterized by
its DFT which is the element-wise product of the DFT of the image u and the spectral samples
(introduced in Definition 4.10). This observation underlies the efficient FFT based algorithm
presented in Section 4.3.

4.3 Algorithms

In this section we propose three filtering algorithms taking as inputs a discrete image u and a
filter specified by a continuous function φ defined on the Nyquist domain [−π,π]2. They are
presented as three variants of Algorithm 4.1, namely the common standard filtering algorithm,
as follows:

• Method 1: Filtering in complex convention.
The spectral samples are the S1,M,N given by Equation (4.22).

• Method 2: Filtering in real convention.
The spectral samples are the S2,M,N given by Equation (4.23).

• Method 3: Windowed filtering.
The spectral samples are the S3,M,N given by Equation (4.24).

We summarize in Table 4.1 how the spectral samples are computed according to the method
variant. Our implementation is available at the web page4 of [15].

Filtering method 1 2 3
Spectral samples S1,M,N given by

Equation (4.22)
S2,M,N given by
Equation (4.23)

S3,M,N given by
Equation (4.24)

Table 4.1: How to compute the spectral samples according to the filtering method.

Algorithm 4.1: Standard filtering algorithm

Input : A real-valued image u of size M×N, a filter φ : [−π,π]2→ C (continuous
function) and the number j ∈ {1,2,3} of the method variant.

Output: The filtered image v of size M×N corresponding to the method j.
1 Compute ũ = FM,N(u) the DFT of u.
2 Compute S = (Sm,n)(m,n)∈Ω̂M,N

the spectral samples corresponding to method j (see
Table 4.1).

3 Compute ṽ = (ũm,nSm,n)(m,n)∈Ω̂M,N
the element-wise multiplication of ũ and S.

4 Compute v = F −1
M,N(ṽ) the inverse DFT of ṽ.

These algorithms rely on DFT computations whose interpretations are given in Section 4.2.
Let M and N be two positive integers. For an image u of size M×N the filtered image is com-
puted in O(MN log(MN)) operations thanks to Fast Fourier transform (FFT) algorithms [42].
Color images can be filtered by applying the algorithms independently to each color channel.

4http://www.ipol.im/pub/art/2016/116/

http://www.ipol.im/pub/art/2016/116/
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The filtering in complex convention (method 1) corresponds to the classical DFT based com-
putations that can be found in the literature [17]. Note that the three methods can be naturally
extended to complex-valued images.

The three methods only differ by the computation of the spectral samples which may vary
at the boundary ΓM,N of Ω̂M,N . In particular suppose the sizes M and N are odd (i.e. ΓM,N = /0)
then the three methods are equivalent. Similarly, suppose the continuous function φ that defines
the filter is null at the boundary of the Nyquist domain then the three methods are equivalent for
any input image of any size.

These algorithms are applicable for any image size and any filter that can be defined by
a continuous function in the Nyquist domain. The current general form can be modified in
particular cases. For instance, suppose we want to apply a filter to a set of images of the same
sizes. Then the filtering only depends (with respect to the filter) on the spectral samples of φ

which can be precomputed. This discretization step entails a loss of information that may lead
to the following degenerated situation:

• Two different filters may lead to the same filtered images for a fixed size.

• It is easy to construct a filter that behaves in very different ways for different sizes.

4.4 Experiments

In this experimental part we apply the three methods introduced in the previous section to several
fundamental filters. We start by presenting the filters before comparing the results of the different
methods applied to an experimental set of four images.

4.4.1 Filters

We propose to consider the following fundamental filters.

Cardinal sine (sinc) filter. The first filter proposed is the simplest one since it is defined by a
constant function on the Nyquist domain.

Definition 4.11 (Cardinal sine (sinc) filter). The cardinal sine (or sinc) filter5 is defined by the
constant function

φsinc : (ξ,ν) ∈ [−π,π]2 7→ 1. (4.30)

Since φsinc is symmetric at the boundary of [−π,π]2 the spectral samples in both conventions
coincide i.e. method 1 and method 2 are equivalent. The filtered image obtained by applying
method 1 (or 2) is exactly the input image. This property is in general false for method 3.

Shift Filter. Shifting an image is common in image processing. It can be done by using the
following filter.

Definition 4.12 (Shift filter). Let a = (a1,a2) ∈ R2. The shift filter of parameter a is defined by
the function

φa : (ξ,ν) ∈ [−π,π]2 7→ ei(a1ξ+a2ν) ∈ C. (4.31)

Derivative Filter. The derivative filters are used to highlight the variations along an axis.

5The name of the filter comes from the separable cardinal sine function, which Fourier transform is the indicator
function of [−π,π]2.
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Definition 4.13 (Derivative filter). The partial derivative filter with respect to the variable x is
defined by the function

ϕx : (ξ,ν) ∈ [−π,π]2 7→ iξ ∈ C. (4.32)

Similarly the partial derivative filter with respect to the variable y is defined by the function

ϕy : (ξ,ν) ∈ [−π,π]2 7→ iν ∈ C. (4.33)

In the following we choose to concentrate on the filter ϕx (the results for ϕy are similar). Let
M and N be the size of the image to be filtered. We notice that when M is even and N is odd
the spectral samples of method 2 are null at the boundary ΓM,N i.e. method 2 and method 3 are
equivalent. When M is odd and N is even the spectral samples of method 1 and method 2 are the
same i.e. method 1 and method 2 are equivalent. Of course, if both M and N are odd, all three
methods coincide (since this is true for any filter).

Laplacian Filter. The Laplacian filter is used to highlight the high frequencies of images. In
particular, it is often used for edge detection.

Definition 4.14 (Laplacian filter). The Laplacian filter is defined by the function

L : (ξ,ν) ∈ [−π,π]2 7→ −ξ
2−ν

2 ∈ C. (4.34)

Since L is a radial function the spectral samples in both conventions coincide i.e. method 1
and method 2 are equivalent.

Gaussian Filter. It is common to use a Gaussian filter (e.g. to blur images).

Definition 4.15 (Gaussian filter). Let σ > 0. The Gaussian filter of standard deviation σ is
defined by the function

gσ : (ξ,ν) ∈ [−π,π]2 7→ e−σ2 ξ2+ν2
2 ∈ R. (4.35)

Since gσ is a radial function the spectral samples in both conventions coincide i.e. method 1
and method 2 are equivalent.

Let us justify the definition of the filter. Let σ > 0 and define fσ : (x,y) ∈R2 7→ 1
2πσ2 e−

x2+y2

2σ2 .
Then we have,

∀(ξ,ν) ∈ [−π,π]2, f̂σ(ξ,ν) = gσ(ξ,ν).

The convolution with fσ, namely Gaussian convolution [45, 98], is a common operation and
building block for algorithms in image processing. Note that for all the three methods, the
sequential application of gσ and gσ′ is equivalent to the direct application of g√

σ2+σ′2 (semi-
group property).

Steerable Pyramid Filters. The steerable pyramid is a linear multiscale and multi-orientation
image decomposition that has been developed in the 90s by E. Simoncelli and his co-authors [93,
111]. It is designed after the receptive fields found by Hubel and Wiesel [58]. Given an input
image, it is obtained by first splitting the image in a high-frequency part and a low-frequency
part and then by sequentially applying bandpass oriented filters and downsampling to the low-
frequency image. This process results in a sequence of images having different sizes, known as
a pyramid. With the exception of two special images in the pyramid, each image corresponds
to a certain scale and orientation. The two remaining images are referred to as respectively the
high-frequency residual and the low-frequency residual. A fundamental property of the steerable
pyramid decomposition is that it can be inverted i.e. the input image can be recovered from its
decomposition. For instance, this property is essential in the Heeger & Bergen texture synthesis
algorithm [17, 54].
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(a) Low-pass filter (φlow) (b) High-pass filter (φhigh) (c) Horizontal filter (φ(4,0)steer )

(d) 1st diagonal filter (φ(4,1)steer ) (e) Vertical filter (φ(4,2)steer ) (f) 2nd diagonal filter (φ(4,3)steer )

Figure 4.2: Functions defining the low-pass, high-pass and steered filters of the steerable pyra-
mid in the Nyquist domain (with a number of orientations Q = 4). These images are actually the
spectral samples corresponding to method 1 for M = N = 512 (multiplied by a factor 255 for
visualization purposes).

The three building block types (low-pass, high-pass and steered filters) are defined by con-
tinuous functions on the Nyquist domain. All of them rely on the transformation between polar
and cartesian coordinates given by the following formula:

ρ
−1 : (r,θ) ∈ R+×]−π,π] 7→ (r cosθ,r sinθ) ∈ R2. (4.36)

Definition 4.16 (Low-pass filter). The low-pass filter (of the steerable pyramid) is defined by
the function φlow = l ◦ρ : [−π,π]2→ R where

l(r,θ) = l(r) =


1 if r 6 π

4 ,

cos(π

2 log2(
4r
π
)) if π

4 6 r 6 π

2 ,
0 if r > π

2 .
(4.37)

Since φlow is null at the boundary of [−π,π]2 the three methods are equivalent for this filter.

Definition 4.17 (High-pass filter). The high-pass filter (of the steerable pyramid) is defined by
the function φhigh = h◦ρ : [−π,π]2→ R where

h(r,θ) = h(r) =


0 if r 6 π

4 ,

cos(π

2 log2(
2r
π
)) if π

4 6 r 6 π

2 ,
1 if r > π

2 .
(4.38)

Since φhigh is symmetric at the boundary of [−π,π]2, method 1 and method 2 are equivalent
for this filter.
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Definition 4.18 (Steered filter). Let Q be the number of orientations of the steerable pyramid
and q ∈ {0, . . . ,Q− 1}. The steered filter of orientation q is defined by the function φ

(Q,q)
steer =

sQ,q ◦ρ : [−π,π]2→ R where

sQ,q(r,θ) = sQ,q(θ) = αQ(cos(θ− πq
Q
)Q−11|θ− πq

Q |6
π

2
+ cos(θ− π(q−Q)

Q
)Q−11|θ− π(q−Q)

Q |6 π

2
),

(4.39)
where αQ = 2Q−1 (Q−1)!√

Q(2(Q−1))!
is a normalization constant and p! denotes the factorial of the

non-negative integer p.

Let Q be the number of orientations of the steerable pyramid. We notice that for the horizon-
tal filter φ

(Q,0)
steer the spectral samples in both conventions are the same i.e. method 1 and method 2

are equivalent.

The reconstruction process (detailed in [17]) is made possible by the relation

φ
2
low +φ

2
high = 1 (4.40)

and the normalization constant αQ which guarantees that ∑(φ
(Q,q)
steer )

2 = 1. The continuous func-
tions that define the low-pass, high-pass and steered filters in the Nyquist domain for Q = 4 are
represented in Figure 4.2.

4.4.2 Application of the Algorithms

We now apply the three filtering methods to an experimental set of four images and compare the
results.

Experimental Set of Images. In order to explain how the set of experimental images is chosen
we lead a simple study on the difference between filtered images obtained with two different
methods.

Let u be a real-valued image and φ : [−π,π]2→ C be a filter. Denote by d(u,φ) the maxi-
mum absolute difference between filtered images obtained with two different methods and define
φmax = supB |φ| where B denotes the boundary of [−π,π]2. The following definition allows us to
obtain a simple upper-bound of d(u,φ).

Definition 4.19 (Boundary value). Let M and N be two positive integers and u be an image of
size M×N. The boundary value of u is denoted Bv(u) and is defined by

Bv(u) = ∑
(m,n)∈ΓM,N

|FM,N(u)m,n| . (4.41)

The relative boundary value of u is denoted Bvrel(u) and is defined by

Bvrel(u) =
Bv(u)

∑(m,n)∈Ω̂M,N
|FM,N(u)m,n|

(4.42)

with the convention “0/0 = 0". It is the ratio between the boundary value and the total value
1

MN ∑(m,n)∈Ω̂M,N
|FM,N(u)m,n|.

A straightforward computation shows that

d(u,φ)≤ φmaxBv(u). (4.43)

The difference between two filtered images obtained by different methods depends on the con-
sidered filter and on the frequency content of the input image and more precisely, as stated in
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Equation (4.43), on its boundary value. This is why we propose to work with images with
diverse frequency contents (from oversampled to textured). The four images used in the experi-
ments are presented in Figure 4.3. The modulus of the DFT in logarithmic scale of an image u
of size M×N denoted M(u) is defined by

∀(m,n) ∈ Ω̂M,N , M(u)m,n = log(1+MN|FM,N(u)m,n|) . (4.44)

For the visualization (in Figure 4.3), it is multiplied by the constant factor 15. We notice that the
Dice image is almost oversampled (it has a little high-frequency content) whereas the Garden
image is textured (it has a large amount of high-frequencies). The Garden and Dice images only
have one even size. The Square image is a binary image that has two strong orientations and an
important boundary value. The Lenna image is an intermediate example of natural image whose
relative boundary value is higher than the Garden image one because it is a smaller image with
two even sizes.

Comparison Procedure of Two Methods. Let us explain in detail how the comparison between
the methods is made.

Let φ be a filter and u be an image of size M×N. Let ( j, j′) ∈ {1,2,3}2 and denote by v j
the filtered image obtained by method j. Let R be the range (maximum value minus minimum
value) of R (v1)

6. Then a comparison of v j and v j′ is done by considering the difference image

∆ j, j′ = |v j − v j′ | and the relative difference image7 ∆
j, j′
rel = ∆ j, j′/R. Before visualization the

6It’s an arbitrary choice.
7We use the convention “0/0 = 0".

(a) Lenna image (512×512): Bv = 5.5 (0.10%) (b) Square image (256×256): Bv = 7.4 (0.21%)

(c) Dice image (704×469): Bv = 0.68 (0.028%) (d) Garden image (704×469): Bv = 10 (0.068%)

Figure 4.3: Set of four images used in the experiments. For each image we plot the image
(left) and the modulus of its DFT (right) in logarithmic scale (multiplied by a factor 15). The
boundary value is noted Bv and the relative boundary value is written in percentage. We notice
that the Dice image is almost oversampled (it has a few high frequencies amount) whereas the
Garden image is textured (it has a large amount of high frequencies). Note that the Garden and
Dice images only have one even size. The Square image is a binary image that has two strong
orientations and an important boundary value. The Lenna image is an intermediate example of
natural image whose relative boundary value is higher than the Garden image one because it is
a smaller image with two even sizes.
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relative difference image is multiplied by the constant factor 105 (which is the same whatever
are the filter and the input image). We also compute the following values:

1. the maximum difference (maximum value of ∆ j, j′ over ΩM,N) noted d = d j, j′(u,φ) and
the relative maximum difference (maximum value of ∆

j, j′
rel over ΩM,N) expressed in per-

centage,

2. the mean difference (mean value of ∆ j, j′ over ΩM,N) noted md =m j, j′
d (u,φ) and the relative

mean difference (mean value of ∆
j, j′
rel over ΩM,N) expressed in percentage.

Note that the differences highly depend on the range of the filtered images, thus the relative
values provide more significant information while comparing differences (over the experimental
set of images for a given filter or over the filters for a given image).

Results.
We apply the comparison procedure to our experimental set of four images and the nine

following filters:

• the sinc filter (Figure 4.4),

• the shift filter of parameter (1/4,1/4) (Figure 4.5 and Table 4.2),

• the derivative filter ϕx (Figure 4.6 and Table 4.3),

• the Laplacian filter L (Figure 4.7),

• the Gaussian filter of parameter σ0 =

√
log(2)
π

(Figure 4.8)8,

• the low-pass filter (Figure 4.9),

• the high-pass filter (Figure 4.10),

• the horizontal filter φ
(4,0)
steer with Q = 4 orientations9 (Figure 4.11),

• the first diagonal filter φ
(4,1)
steer with Q = 4 orientations (Figure 4.12 and Table 4.4).

When the three methods provide different filtered images we decompose the presentation of the
results into a figure containing filtered images and relative difference images and a table with
the maximum difference and mean difference values (and the corresponding relative values).

To display images we use the most common method. The brightness of a pixel is represented
by its pixel value which is an integer from 0 to 255 (8-bits images). Let u be a real-valued
image. The 8-bit image corresponding to u is the integral part of max(0,min(255,u)). An affine
transformation may have to be applied to filtered images (or their real parts) before obtaining 8-
bit images in order to avoid saturation10 and badly constrasted images. The affine transformation
choice (which is arbitrary) depends on the filter and is detailed in the corresponding figure.

The difference is more important when the input image has a strong high-frequency content
(Garden and Square images). For 8-bit images the typical range value is R = 255, therefore
a maximum difference of one grey level corresponds approximately to a relative difference of
1/255 ' 0.39%. For the proposed set of nine filters and four images, the relative maximum
difference values are lower than 5/255' 1.9% and the relative mean difference values are lower
than 3/255' 1.2%. It is hardly possible to distinguish with the naked eye a difference between
the results of two methods. That is why we only display the real part of the filtered image in

8The value σ0 is chosen so that gσ0(π,π) = 1/2.
9It is the default value used in the Heeger & Bergen texture synthesis algorithm.

10For instance saturation occurs for zero-mean images.
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the complex convention (method 1). The higher difference values are obtained for the derivative
filter and the Laplacian filter. Indeed, it comes from the fact that |Dx| and |L| reach their maxima
on the boundary of [−π,π]2.

4.4.3 Which Method should I use?

The three methods are equally licit and in general none should be preferred to the others. The
results are numerically different but indistinguishable in practice. The maximum difference
between the methods of at most 5 grey levels11 (in a scale from 0 to 255) leads to no visible
distinction but determining if it represents a meaningful difference depends on the application.
For instance if the goal is to blur an image the user may attach less importance to the differences
than when trying to denoise it.

It is left to the user to choose the method. The following remarks may be helpful for making
the decision:

• Method 1 is the easiest one to implement. For simple applications it can be used in first
place.

• Suppose the filter φ has Hermitian symmetry. Then the filtered images obtained by meth-
ods 2 and 3 are real-valued.

• Method 3 destroys high-frequency information but there is no ambiguity in the inter-
polation. It should not be used in analysis/synthesis scheme based on a reconstruction
property.

We recall that when the sizes of the image are odd the three methods are equivalent. If the
user has the possibility to modify the size of its input images odd sizes should be considered.
However generally the images sizes cannot be changed and sometimes are powers of two (e.g.
in a pyramidal decomposition).

Lenna Square Dice Garden
1 vs 2 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.052%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)
1 vs 3 d 1.1 (0.48%) 2.2 (0.58%) 0.18 (0.093%) 2.0 (0.61%)

md 0.17 (0.075%) 0.77 (0.20%) 0.029 (0.015%) 0.42 (0.13%)
2 vs 3 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.053%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)

Table 4.2: Maximum difference d and mean difference md for the shift filter of parameter
(1/4,1/4). Relative values are in brackets.

11Actually for most of the examples it is less than 1 grey level.
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(a) Lenna: 1.0 (0.46%) and 0.17 (0.078%) (b) Square: 2.0 (0.78%) and 0.75 (0.30%)

(c) Dice: 0.17 (0.092%) and 0.029 (0.016%) (d) Garden: 2.3 (0.92%) and 0.43 (0.17%)

Figure 4.4: Comparison of the filtering methods for the sinc filter. The filtered image v1 is the
input. For each image we display v3 and the relative difference image ∆

1,3
rel (right). The numbers

below the images refer respectively to the maximum difference d and the mean difference md
(with the relative values in brackets).

Lenna Square Dice Garden
1 vs 2 d 1.6 (0.67%) 3.1 (0.84%) 0.53 (0.32%) 7.2 (1.4%)

md 0.44 (0.19%) 1.6 (0.42%) 0.091 (0.055%) 1.3 (0.26%)
1 vs 3 d 1.8 (0.75%) 3.2 (0.86%) 0.53 (0.32%) 7.2 (1.4%)

md 0.50 (0.21%) 1.7 (0.45%) 0.091 (0.055%) 1.3 (0.26%)
2 vs 3 d 0.80 (0.33%) 0.72 (0.19%) 0 0

md 0.16 (0.067%) 0.20 (0.053%) 0 0

Table 4.3: Maximum difference d and mean difference md for the derivative filter ϕx. Relative
values are in brackets.

Lenna Square Dice Garden
1 vs 2 d 0.29 (0.14%) 0.36 (0.10%) 0.058 (0.054%) 0.64 (0.19%)

md 0.046 (0.022%) 0.056 (0.016%) 0.0080 (0.0074%) 0.12 (0.036%)
1 vs 3 d 0.38 (0.18%) 0.79 (0.23%) 0.076 (0.071%) 0.83 (0.25%)

md 0.086 (0.040%) 0.27 (0.077%) 0.015 (0.014%) 0.22 (0.064%)
2 vs 3 d 0.37 (0.17%) 0.70 (0.20%) 0.060 (0.056%) 0.81 (0.24%)

md 0.062 (0.029%) 0.24 (0.070%) 0.011 (0.0097%) 0.16 (0.047%)

Table 4.4: Maximum difference d and mean difference md for the first diagonal filter L(4,1)
steer with

Q = 4 orientations. Relative values are in brackets.
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(a) Lenna

(b) Square

(c) Dice

(d) Garden

Figure 4.5: Comparison of the filtering methods for the shift filter of parameter (1/4,1/4). From
left to right we display for each input image: the real part of v1 and the relative difference images
∆

1,2
rel , ∆

1,3
rel and ∆

2,3
rel .

Lenna Square Dice Garden
Sinc d 1.013115 1.996120 0.169090 2.299789

md 0.170532 0.752396 0.028972 0.425675
Highpass d 1.013123 1.996094 0.169037 2.299735

md 0.170532 0.752396 0.028971 0.425676

Table 4.5: Maximal difference d and mean difference md between method 1 and method 3 for
the sinc and high-pass filters. In theory the differences should be the same. In practice it is not
the case because of numerical error while computing the DFT and inverse DFT. 10−7
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(a) Lenna

(b) Square

(c) Dice

(d) Garden

Figure 4.6: Comparison of the filtering methods for the derivative filter ϕx. From left to right we
display for the Lenna and Square images: the real part of v1 and the relative difference images
∆

1,2
rel , ∆

1,3
rel and ∆

2,3
rel . As method 2 and 3 are equivalent for images of the size of the Dice and

Garden image, we only display the real part of v1 and ∆
1,2
rel for these images. For visualization

purposes we change the mean of v1 to 127 (instead of 0). The derivative filter highlights the
strong horizontal variations of the input image. We notice a lot of ringing effect (particularly for
the Square image).
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(a) Lenna: 12 (1.6%) and 2.0 (0.29%) (b) Square: 23 (1.4%) and 7.7 (0.46%)

(c) Dice: 2.1 (0.38%) and 0.35 (0.064%) (d) Garden: 26 (1.6%) and 5.2 (0.32%)

Figure 4.7: Comparison of the filtering methods for the Laplacian filter. For each image we
display the real part of v1 and the relative difference image ∆

1,3
rel (right). The numbers below the

images refer respectively to the maximum difference d and the mean difference md (with the
relative values in brackets). For visualization purposes we change the mean of v1 to 127 (instead
of 0). The Laplacian filter highlights the high-frequencies of the input image. We notice a lot of
ringing effect (particularly for the Square image).

(a) Lenna: 0.68 (0.31%) and 0.11 (0.052%) (b) Square: 1.4 (0.54%) and 0.53 (0.20%)

(c) Dice: 0.11 (0.063%) and 0.019 (0.011%) (d) Garden: 1.6 (0.61%) and 0.28 (0.11%)

Figure 4.8: Comparison of the filtering methods for the Gaussian filter of standard deviation

σ0 =

√
log(2)
π

. For each image we display the real part of v1 and the relative difference image
∆

1,3
rel (right). The numbers below the images refer respectively to the maximum difference d and

the mean difference md (with the relative values in brackets). With a higher value of standard
deviation the filtered images are more blurry and the differences between the methods decrease.
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(a) Lenna (b) Square

(c) Dice (d) Garden

Figure 4.9: Filtering of the images by the low-pass filter. The three methods are equivalent. We
notice that as expected the filtered images are blurred versions of the input.
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(a) Lenna: 1.0 (0.61%) and 0.17 (0.10%) (b) Square: 2.0 (0.69%) and 0.75 (0.26%)

(c) Dice: 0.17 (0.16%) and 0.030 (0.027%) (d) Garden: 2.3 (0.84%) and 0.43 (0.16%)

Figure 4.10: Comparison of the filtering methods for the high-pass filter. For each image we
display the real part of v1 and the relative difference image ∆

1,3
rel (right). The numbers below the

images refer respectively to the maximum difference d and the mean difference md (with the
relative values in brackets). For visualization purposes we multiply by a factor 5 the image v1
and then set the mean to 127 (instead of 0). The high-pass filter highlights the strong variations
of the input image.

(a) Lenna: 0.37 (0.22%) and 0.071 (0.042%) (b) Square: 0.95 (0.35%) and 0.45 (0.16%)

(c) Dice: 0.022 (0.016%) and 0.0031 (0.0023%) (d) Garden: 0.22 (0.070%) and 0.047 (0.015%)

Figure 4.11: Comparison of the filtering methods for the horizontal filter φ
(4,0)
steer with Q = 4

orientations. For each image we display the real part of v1 and the relative difference image
∆

1,3
rel (right). The numbers below the images refer respectively to the maximum d and the mean

difference md (with the relative values in brackets). The horizontal filter highlights the strong
horizontal variations of the input image.
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(a) Lenna

(b) Square

(c) Dice

(d) Garden

Figure 4.12: Comparison of the filtering methods for the first diagonal filter φ
(4,1)
steer with Q = 4

orientations. From left to right we display for each input image: the real part of v1 and the
relative difference images ∆

1,2
rel , ∆

1,3
rel and ∆

2,3
rel . As expected the first diagonal filter highlights the

strong variations in the first diagonal orientation.
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4.5 Conclusion

In this chapter we gave a clear interpretation, as a continuous convolution, of the filtering of a
discrete real-valued image by a filter specified by a continuous function in the Nyquist domain
[−π,π]2. The filtering is interpreted as the convolution of a distribution, standing for the filter,
with a trigonometric polynomial interpolator of the image. Two plausible interpolations and two
choices of distribution are considered. They lead to three equally licit algorithms. All of them
can be seen as method variants of the same standard filtering algorithm in the DFT domain. By
an application to several fundamental filters we have shown that the method differences, which
come from the boundary DFT coefficients, is not visible to the naked eye in practice. For 8-bit
images, the difference order of magnitude is in general of one grey level but may be higher for
filters with large values on the boundary of the Nyquist domain. In general none method should
be preferred to the others and the choice depends on the desired properties of the filtering. For
instance, in the implementation of the Heeger-Bergen pyramid-based texture synthesis algorithm
provided in [17], method 1 is used in order to guarantee the exact reconstruction property.
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Chapter 5

B-spline Interpolation: Theory and
Practice

Abstract

This chapter is taken from [14]. B-spline interpolation is a widely used non band-limited
alternative to Shannon-Whittaker interpolation. In this chapter, we explain how the B-spline
interpolation of signals and images can be efficiently performed by linear filtering. Based
on the seminal two-step method proposed by Unser et al. in 1991, we propose two slightly
different prefiltering algorithms whose precisions are proven to be controlled thanks to a
rigorous boundary handling. The first algorithm is general and works for any boundary ex-
tension while the second is applicable under specific assumptions. This chapter contains all
the information, theoretical and practical, required to perform efficiently B-spline interpo-
lation for any order and any boundary extension. We describe precisely how to evaluate the
kernel and to compute the B-spline interpolator parameters. We show experimentally that
increasing the order improves the interpolation quality. As a fundamental application we
also provide an implementation1 of homographic transformation of images using B-spline
interpolation.
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5.1 Introduction

In this chapter, n denotes a non-negative integer. A non band-limited signal representation that
has been widely used since the 1990s is the spline representation. A spline of degree n is a
continuous piece-wise polynomial function of degree n of a real variable with derivatives up to
order n− 1. This representation has the advantage of being equally justifiable on a theoretical
and practical basis [126]. It can model the physical process of drawing a smooth curve and it
is well adapted to signal processing thanks to its optimality properties. It is handy to consider
the B-spline representation [106] where the continuous underlying signal is expressed as the
convolution between the B-spline kernel, that is compactly supported, and the parameters of
the representation, namely the B-spline coefficients. One of the strongest arguments in favor of
the B-spline interpolation is that it approaches the Shannon-Whittaker interpolation as the order
increases [5].

The determination of the B-spline coefficients is done in a prefiltering step which, in general,
can be done by solving a band diagonal system of linear equations [57, 70]. For uniformly
spaced data points, Unser et al. proposed in [129] an efficient and stable algorithm based on
linear filtering that works for any order. More details, in particular regarding the determination
of the interpolator parameters, were provided by the authors in later publications [127, 128].

As for Shannon’s sampling theory, the spline representation is designed for infinite signals.
Finite signals need to be extended in an arbitrary way in order to apply the interpolation scheme.
This issue is commonly referred to as the boundary handling. The influence of the unknown
exterior data decays with the distance to the boundary of the known data points [109] and is
therefore often neglected. However in some applications this decay may be too slow or it can be
relevant to consider a particular extension. Unser’s algorithm is described with a symmetrical
boundary handling which is a classical but restrictive choice. Additional boundary extensions
are available in the implementation provided by [46]. The problem that arises in this prefiltering
algorithm is that the boundary handling involves infinite sums that are approximated by trunca-
tion. Because it uses a recursive structure, the B-spline coefficients are computed a priori with
an uncontrolled error.

In this chapter we provide all the information, theoretical and practical, required to perform
B-spline interpolation for any order and any boundary extension. We propose two slightly differ-
ent prefiltering algorithms based on Unser’s algorithm but with additional computations that take
into account the boundary extension. The computational errors are proven, theoretically and ex-
perimentally, to be controlled (up to dimension two) thanks to a correct boundary handling. The
computational cost increases slowly with the desired precision (which can be set to the single
precision in most of the applications). The first algorithm is general and works for any boundary
extension while the second is applicable under specific assumptions. In addition, we describe
precisely how to evaluate the B-spline kernel and to compute the B-spline interpolator parame-
ters. We show experimentally that increasing the order improves the interpolation quality. As a
fundamental application we also provide an implementation of homographic transformation of
images using B-spline interpolation.

This chapter is organized as follows: Section 5.2 presents the B-spline interpolation theory
of a discrete infinite unidimensional signal as a two-step method. Section 5.3 describes two pre-
filtering algorithms for a finite unidimensional signal whose computational errors are controlled
thanks to a proper boundary handling. The extension in higher dimension, with a particular focus
to dimension two, is done in Section 5.4. Section 5.5 proves that the prefiltering error is con-
trolled in dimension one and two. Details concerning practical computations and the provided
numerical implementation are given in Section 5.6. Section 5.7 presents some experiments.
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5.2 B-spline Interpolation of a Discrete Signal

In this section we present the B-spline interpolation of an infinite discrete unidimensional signal
as a two-step interpolation method. We detail how the first step, i.e., the prefiltering step, can be
decomposed into a cascade of exponential filters, themselves separated into two complementary
causal and anti-causal components. We also explain how to evalute by closed form formulas the
B-spline values at arbitrary points.

5.2.1 B-spline Interpolation Theory

A spline of degree n ≥ 1 is a continuous piece-wise polynomial function of degree n of a real
variable with continuous derivatives up to order n−1. The junction abscissas between successive
polynomials are called the knots.

Definition 5.1. The normalized B-spline function of order n, noted β(n), is defined recursively
by

β
(0)(x) =


1, −1

2 < x < 1
2

1
2 , x =±1

2
0, otherwise

and for n≥ 0, β
(n+1) = β

(n) ∗β
(0) (5.1)

where the symbol ∗ denotes the convolution operator.

The normalized B-spline function of order n is even, compactly supported in supp(β(n)) =
[−n+1

2 , n+1
2 ] and non-negative. Moreover, it has n+ 2 equally spaced knots k ∈ Z∩ supp(β(n))

when n is odd and n+ 2 equally spaced knots k ∈
(
Z+ 1

2

)
∩ supp(β(n)) when n is even. An

explicit formula for β(n) can be derived from its recursive definition [126] and will be used in
Section 5.6.2. Figure 5.1 displays β(n) for n = 0, . . . ,3.
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Figure 5.1: Normalized B-spline functions β(n) for 0≤ n≤ 3.
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The normalized B-spline functions are the basic atoms for constructing splines in the case
of equally spaced knots. Let ϕ be a spline of degree n with equally spaced knots belonging to
Z for n odd and to Z+ 1

2 for n even. Then, as proved by Schoenberg [106], ϕ can be uniquely
represented as the weighted sum of shifted normalized B-splines of order n i.e.

ϕ(x) = ∑
i∈Z

ciβ
(n)(x− i) (5.2)

where the weights c = (ci)i∈Z ∈RZ are called the B-spline coefficients. The spline ϕ is uniquely
characterized by its B-spline coefficients or equivalently by its samples (ϕ(k))k∈Z ∈RZ at integer
locations. Thus, the interpolation of a discrete signal f ∈RZ by a spline of degree n, namely the
B-spline interpolation of order n, can be defined as follows.

Definition 5.2 (B-spline interpolation). The B-spline interpolate of order n of a discrete signal
f ∈ RZ is the spline ϕ(n) of degree n defined for x ∈ R by

ϕ
(n)(x) = ∑

i∈Z
ciβ

(n)(x− i) (5.3)

where the B-spline coefficients c = (ci)i∈Z are uniquely characterized by the interpolating con-
dition

ϕ
(n)(k) = fk, ∀k ∈ Z. (5.4)

Given a signal f and a real x, computing the right hand side of (5.3) requires two evaluations:
the signal c = (ci)i∈Z and β(n)(x− i). This explains the two steps involved in the computation:

• Step 1 (prefiltering or direct B-spline transform) provides a B-spline representation of
the signal. The computation of the B-spline coefficients c is done in the prefiltering step
detailed in Section 5.2.2. Except in the simplest cases, n = 0 or n = 1, in which case
β(n)(k− i) = δi(k) and so ci = fi, the determination of the coefficients ci from f so as to
satisfy (5.4) is not straightforward.

• Step 2 (indirect B-spline transform [129]) reconstructs the signal values from the B-spline
representation. Given the Dirac comb of B-spline coefficients c = ∑i∈Z ciδi the value of
ϕ(n)(x) in (5.3) is computed at any location x ∈ R as a convolution of c with the finite
signal β(n)(x− .), whose computation is explained in Section 5.6.2.

The B-spline interpolation can be expressed also as a direct interpolation

ϕ
(n)(x) = ∑

i∈Z
fi η

(n)(x− i) (x ∈ R) (5.5)

where η(n) is called the cardinal spline function of order n [126, 127]. In [5] it is proven that the
cardinal spline Fourier transform approaches the ideal filter (i.e., the Fourier transform of the
cardinal sine) when n goes to infinity. This result makes the link between the Shannon’s sam-
pling theory and the B-spline interpolation. For n = 0 and n = 1, we have ci = fi and η(n) = β(n)

so that the direct and indirect methods coincide. These interpolations correspond respectively
to the nearest neighbor and linear interpolation methods [46]. For n≥ 2, η(n) is no longer com-
pactly supported so that the two-step representation becomes more efficient. See [123] for more
information about two-step interpolation methods.

5.2.2 Prefiltering Step

The prefiltering step (or direct B-spline transform) consists in computing the B-spline coeffi-
cients c introduced in (5.3).
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Expression as a Discrete Convolution. The interpolating condition (5.4) can be written as

ϕ
(n)(k) = ∑

i∈Z
ciβ

(n)(k− i) = fk, ∀k ∈ Z. (5.6)

Let us define b(n) ∈ RZ by b(n)i = β(n)(i) for i ∈ Z. Then, we recognize in (5.6) the convolution
equation

c∗b(n) = f . (5.7)

Solving for c in the latest equation is efficiently done thanks to transfer functions:

Definition 5.3 (Z-transform (or transfer function) [60]). The Z-transform of a discrete signal
y ∈ RZ is the formal power series Z[y] defined by

Z[y](z) = ∑
i∈Z

yiz−i. (5.8)

The set of complex points for which the Z-transform summation converges is called the region of
convergence (ROC). In particular, if the ROC contains the unit circle then the Z-transform can
be inverted and characterizes the signal.

The advantage of introducing this transform is its property of transforming a convolution into a
simple multiplication, so that inverting a convolution amounts to a division in the Z-domain:

Proposition 5.1 (Convolution property [60]). Let v ∈ RZ and w ∈ RZ be two discrete signals.
Then,

Z[v∗w] = Z[v]Z[w] (5.9)

on the intersection of their regions of convergence.

The finite discrete convolution kernel b(n) is entirely characterized by its Z-transform B(n) =
Z[b(n)] (whose ROC is C\{0} since β(n) is compactly supported). As B(n) has no zeros on the
unit circle [5], the inverse operator (b(n))−1 exists and is uniquely defined by its Z-transform,
noted (B(n))−1, which verifies (formally)

(B(n))−1 = Z[(b(n))−1] =
1

Z[b(n)]
=

1
B(n)

(5.10)

and whose ROC contains the full unit circle. Finally, the prefiltering step boils down to the
discrete convolution

c = (b(n))−1 ∗ f . (5.11)

Decomposition into Elementary Filters. The filter (b(n))−1 can be decomposed into elemen-
tary causal and anti-causal filters. Using the fact that β(n) is even and supported in

[
−n+1

2 , n+1
2

]
,

denoting ñ = bn
2c, we can write

B(n)(z) = b(n)0 +
ñ

∑
i=1

b(n)i (zi + z−i). (5.12)

Schoenberg proved that B(n) has only negative (simple) zeros [105, lemma 8]. By the symmetry
B(n)(z) = B(n)(z−1) for z 6= 0, these zeros can be grouped in reciprocal pairs (α,α−1). Denoting
by R(n) the set of zeros of B(n) yields

R(n) =
ñ⋃

i=1

{zi,z−1
i }, with −1 < z1 < · · ·< zñ < 0. (5.13)
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The zi’s are called the poles of the B-spline interpolation. Their practical computation is dealt
with in Section 5.6.1. As zñB(n)(z) is a polynomial whose roots are the elements of R(n), B(n)

can be rewritten for z 6= 0 as

B(n)(z) = b(n)ñ z−ñ
ñ

∏
i=1

(z− zi)(z− z−1
i ), (5.14)

which gives for z /∈ R(n)∪{0},

(B(n))−1(z) = γ
(n)

ñ

∏
i=1

H(z;zi) (5.15)

where
γ
(n) =

1

b(n)ñ

(5.16)

and
H(z;zi) =

−zi

(1− ziz−1)(1− ziz)
. (5.17)

Let −1 < α < 0, α playing the role of one zi. Denote by k(α) ∈ RZ the causal filter and by
l(α) ∈ RZ the anti-causal filter defined for i ∈ Z by

k(α)i =

{
0 i < 0
αi i≥ 0

and l(α)i =

{
0 i > 0
α−i i≤ 0.

(5.18)

In terms of Z-transform we have for |z|> |α|,

Z[k(α)](z) =
∞

∑
i=0

α
iz−i =

1
1−αz−1 (5.19)

and for |z|< |α−1|,

Z[l(α)](z) =
0

∑
i=−∞

α
−iz−i =

1
1−αz

. (5.20)

Set h(α) =−αl(α) ∗ k(α). The filter h(α) is called exponential filter because it is shown, using for
instance (5.30), that for j ∈ Z,

h(α)j =
α

α2−1
α
| j|. (5.21)

Define the domain Dα = {z ∈ C, |α|< |z|< |α−1|}. Applying Proposition 5.1 to h(α) and com-
bining (5.19), (5.20) and (5.17), we get the following equality, valid on Dα:

Z[h(α)] =−αZ[k(α)]Z[l(α)] = H(.;α). (5.22)

Since z1 < · · · < zñ < 0 we have Dz1 ⊂ ·· · ⊂ Dzñ . Thus with Proposition 5.1 and (5.22) we get
for z ∈ Dz1 ,

Z
[
γ
(n)h(zñ) ∗ · · · ∗h(z1)

]
(z) = γ

(n)
ñ

∏
i=1

H(z;zi) = (B(n))−1(z). (5.23)

Since Dz1 contains the unit circle, this yields

(b(n))−1 = γ
(n)h(zñ) ∗ · · · ∗h(z1) (5.24)

and provides a new expression for c,

c = γ
(n)h(zñ) ∗ · · · ∗h(z1) ∗ f . (5.25)
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To simplify, define recursively the signal c(i) ∈ RZ for i ∈ {0, . . . , ñ} by

c(0) = f and for i≥ 1, c(i) = h(zi) ∗ c(i−1). (5.26)

We have c = γ(n)c(ñ). Thus the computation of the prefiltering step can be decomposed2 into
ñ successive filtering steps with exponential filters that can themselves be separated into two
complementary causal and anti-causal components. The corresponding algorithm for prefiltering
an infinite discrete signal is presented in Algorithm 5.1. This is a theoretical algorithm that
cannot be used in practice because it requires an infinite input signal. Turning this algorithm
into a practical one, that is, applicable to a finite signal, is the subject of Section 5.3.

Algorithm 5.1: Theoretical prefiltering of an infinite signal
Input : A discrete infinite signal f = ( fi)i∈Z and the B-spline interpolation order n
Output: The B-spline coefficients c = (ci)i∈Z of f

1 Compute the poles (zi,z−1
i )1≤i≤ñ and the normalization coefficient γ(n) = 1

b(n)ñ
(Section 5.6.1)

2 Define c(0) = f
3 for i = 1 to ñ do
4 Compute c(i) = h(zi) ∗ c(i−1) where h(zi) is given by (5.21)

5 Normalization: c = γ(n)c(ñ)

5.3 B-spline Interpolation of a Finite Signal

In practice the signal f to be interpolated is finite and discrete, i.e., f = ( f
i
)0≤i≤K−1 for a given

positive integer K. There exists an infinite number of coefficients (ci)i∈Z satisfying the inter-
polating condition (5.6) for 0 ≤ k ≤ K− 1. To insure uniqueness, an arbitrary extension of f
outside {0, . . . ,K−1} is necessary. B-spline interpolation theory can then be applied to the ex-
tended signal f ∈ RZ. To simplify the notations in the following, no distinction will be made
between the signal f and its extension f when there is no ambiguity.

Extension on a finite domain. Let x ∈ [0,K− 1]. To compute the interpolated value ϕ(n)(x),
the indirect B-spline transform in (5.3) only requires the ci’s for i ∈

(
x+
]
−n+1

2 , n+1
2

[)
∩Z ⊂

{−ñ, . . . ,K− 1+ ñ}. In addition, even though the value fk for k ∈ Z contributes to every B-
spline coefficient ci, this contribution vanishes when |k− i| tends to infinity. As presented in the
following, to compute ϕ(n)(x) with a relative precision ε it is sufficient to extend the signal to
a finite domain {−L(n,ε), . . . ,K− 1+L(n,ε)} where L(n,ε) is a positive integer that only depends
on the B-spline order n and the desired precision ε. The precision is relative to the values of
the signal. A relative precision of ε means that the error committed is less than εsupk∈Z | fk| =
ε‖ f‖∞. In practice the images are large enough so that L(n,ε) < K and it is possible to express the
extension as a boundary condition around 0 and K−1. Otherwise the extension is obtained by
iterating the boundary condition. The most classical boundary condition choices are summarized
in Table 5.1 and represented in Figure 5.2.

Prefiltering computation using the extension. As presented in Algorithm 5.1, for comput-
ing the B-spline coefficients using the prefiltering decomposition given in (5.25), only the first
exponential filter h(z1) is applied directly to f = c(0). Therefore, for i ≥ 1 the intermediate fil-
tered signals c(i) are known a priori only where they are computed. Considering this, the two
following approaches are proposed in order to perform the prefiltering.

2In general the same decomposition principle is applicable to linear interpolation methods whose kernel is sym-
metrical and compactly supported [123].
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Extension Signal abcde
Constant aaa|abcde|eee
Half-symmetric cba|abcde|edc
Whole-symmetric dcb|abcde|dcb
Periodic cde|abcde|abc

Table 5.1: Classical boundary extensions of the signal abcde by L = 3 values.

(a) Input

(b) Constant (c) Periodic (d) Half-symmetric (e) Whole-symmetric

Figure 5.2: Classical extensions by L= 5 values of a binary image of size 10×10. The boundary
of the original image is colored in red.

• Approach 1: The intermediate filtered signals c(i) are computed in a larger domain than
{−ñ, . . . ,K−1+ ñ}. This works with any extension.

• Approach 2: The extension, expressed as a boundary condition, is chosen so that it is trans-
mitted after the application of each exponential filter h(zi). The intermediate filtered signals
c(i) (and the B-spline coefficients c) verify the same boundary condition and only need to
be computed in {0, . . . ,K−1}.

In the rest of this section, we first detail the general method for computing an exponential
filter application on a finite domain. Then we propose two algorithms, corresponding to both
above-mentioned approaches, for computing the B-spline coefficients of a finite signal with a
given precision. Finally we present the simple algorithm for performing the indirect B-spline
transform, i.e., for evaluating the interpolated values.

5.3.1 Application of the Exponential Filters

Let s ∈ RZ be an infinite discrete signal. Let −1 < α < 0 and Lini < Lend. The application of
the exponential filter h(α) = −αl(α) ∗ k(α) to the signal s is computed in the domain of interest
{Lini, . . . ,Lend} as follows.

Causal filtering. To simplify the notation we set s(α) = k(α) ∗ s so that h(α) ∗ s = −αl(α) ∗ s(α).
Given the initialization

s(α)Lini
=
(

k(α) ∗ s
)

Lini
=

+∞

∑
i=0

α
isLini−i, (5.27)

the application of the causal filter k(α) to s can be computed recursively from i = Lini + 1 to
i = Lend according to the recursion formula

s(α)i = si +αs(α)i−1. (5.28)
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Anti-causal filtering initialization. With a simple partial fraction decomposition we can rewrite

H(z;α), the Z-transform of h(α) introduced in (5.17), as

H(z;α) =
α

α2−1

(
1

1−αz−1 +
1

1−αz
−1
)
. (5.29)

Thus h(α) can also be written as

h(α) =
α

α2−1

(
k(α)+ l(α)−δ0

)
(5.30)

and we have

h(α) ∗ s =
α

α2−1

(
k(α) ∗ s+ l(α) ∗ s− s

)
. (5.31)

This last formula provides an expression for the initialization of the (renormalized) anti-causal
filtering, (

h(α) ∗ s
)

Lend
=

α

α2−1

(
s(α)Lend

+
(

l(α) ∗ s
)

Lend
− sLend

)
(5.32)

where (
l(α) ∗ s

)
Lend

=
+∞

∑
i=0

α
isLend+i. (5.33)

Anti-causal filtering. The renormalized anti-causal filtering is computed recursively from i =

Lend−1 to i = Lini according to the following formula,(
h(α) ∗ s

)
i

=
(
−αl(α) ∗ s(α)

)
i

(5.34)

= −α

(
s(α)i +α

(
l(α) ∗ s(α)

)
i+1

)
(5.35)

= α

((
h(α) ∗ s

)
i+1
− s(α)i

)
. (5.36)

Approximation of the initialization values. The two infinite sums in (5.27) and (5.33) can-
not be computed numerically. Let N be a non-negative integer. The initialization values are
approximated by truncating the sums at index N so that

(
k(α) ∗ s

)
Lini
'

N

∑
i=0

α
isLini−i (5.37)

and (
l(α) ∗ s

)
Lend
'

N

∑
i=0

α
isLend+i. (5.38)

Algorithm. The general method for computing the application of the exponential filter h(α) to

a discrete signal in a finite domain is summarized in Algorithm 5.2. Note that is is sufficient to
know the signal in the domain {Lini−N, . . . ,Lend +N}. It consists in 6(N +1)+4(Lend−Lini)
operations.
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Algorithm 5.2: Application of the exponential filter h(α) to a discrete signal
Input : A pole −1 < α < 0, a range of indices Lini < Lend, a truncation index N and a

discrete signal s (whose values are known in {Lini−N, . . . ,Lend +N})
Output: The filtered signal h(α) ∗ s at indices {Lini, . . . ,Lend}

1 Compute s(α)Lini
using (5.37)

2 for i = Lini +1 to Lend do
3 Compute s(α)i using (5.28)

4 Compute
(
l(α) ∗ s

)
Lend

using (5.38)

5 Compute
(
h(α) ∗ s

)
Lend

using (5.32)
6 for i = Lend−1 to Lini do
7 Compute

(
h(α) ∗ s

)
i using (5.36)

5.3.2 Prefiltering of a Finite Signal

Define (µ j)1≤ j≤ñ by 
µ1 = 0

µk =

(
1+ 1

log |zk|∑k−1
i=1

1
log |zi |

)−1

, 2≤ k ≤ ñ.
(5.39)

Let ε > 0. Define for 1≤ i≤ ñ,

N(i,ε) =

⌊
log
(
ερ(n)(1− zi)(1−µi)∏

ñ
j=i+1 µ j

)
log |zi|

⌋
+1, (5.40)

where

ρ
(n) =

(
ñ

∏
j=1

1+ z j

1− z j

)2

. (5.41)

We propose two algorithms for computing the B-spline coefficients of a finite signal with pre-
cision ε. In both cases they are computed by successively applying the exponential filters to
the intermediate filtered signals using Algorithm 5.2 with the truncation indices (N(i,ε))1≤i≤ñ.
The difference between both algorithms lies in the computation domains. The choice for the
truncation indices guarantees a precision ε for n≤ 16, as stated in the next theorem.

Theorem 5.1. Assume n≤ 16. Let ε > 0 and f be a finite signal of length at least 4 (arbitrarily
extended to Z). The computation of the B-spline coefficients of f using Algorithm 5.3 or Algo-
rithm 5.4 with the truncation indices (N(i,ε))1≤i≤ñ has a precision of ε, i.e., the error committed
is less than ε‖ f‖∞.

Proof. See Section 5.5.1.

Notice that N(i,ε) = O(logε), which shows that the truncation indices remain moderate even
for high precision specification ε. However, a problematic factor is log |zi| in the denominator,
which increases the indices when zi is close to −1. This is not unexpected, since a root with
modulus close to 1 involves a slowly decaying exponential filter.

Approach 1: Extended Domain. The first approach for computing the prefiltering coefficients
with precision ε consists in computing the intermediate filtered signals c(i) in a larger domain
than {−ñ, . . . ,K−1+ ñ}. For 0≤ j ≤ ñ define

L(n,ε)
j = ñ+

ñ

∑
i= j+1

N(i,ε) (5.42)
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which can be computed recursively using{
L(n,ε)

ñ = ñ,

L(n,ε)
j = L(n,ε)

j+1 +N( j+1,ε), j = ñ−1 to 0.
(5.43)

The input signal f = c(0) is first extended to {−L(n,ε)
0 , . . . ,K− 1+L(n,ε)

0 }. Then, for i = 1 to ñ,
c(i) is computed in {−L(n,ε)

i , . . . ,K−1+L(n,ε)
i } from the values of c(i−1) in {−L(n,ε)

i−1 , . . . ,K−1+

L(n,ε)
i−1 } using Algorithm 5.2 with truncation index N(i,ε). The prefiltering algorithm on a larger

domain is presented in Algorithm 5.3.

Approach 2: Transmitted Boundary Condition. The second approach for computing the
prefiltering coefficients with precision ε consists in extending the input signal with a boundary
condition that is transmitted after the application of the exponential filters. Assume that the c(i)

for 0≤ i≤ ñ share the same boundary condition. Then, c(i) can be computed at any index from
the values of c(i−1) in {0, . . . ,K−1} using Algorithm 5.2 (with truncation index N(i,ε)). Indeed,
we notice that the initialization values in (5.37) and (5.38) only depend on the values of c(i−1) in
{0, . . . ,K−1}. The prefiltering algorithm with a transmitted boundary condition is described in
Algorithm 5.4.

Note that the initialization values in (5.27) and (5.33) can be expressed as weighted sums of
the c(i−1)

k for k ∈ {0, . . . ,K− 1} where the weights depend on k, the poles zi and the boundary
condition. For specific boundary conditions the weights, and therefore the initialization values,
can be exactly computed. However these explicit expressions are not used in the following
because they generally involve sums of K terms, i.e., more computation.

Particular cases. Among the four classical boundary extensions presented in Table 5.1, the
periodic, half-symmetric and whole-symmetric boundary conditions are transmitted after the
application of an exponential filter. For the periodic extension the filtered signal by any filter
always remains periodic. For the half-symmetric and whole-symmetric extensions it is a conse-
quence of the symmetry of the exponential filters. However, this property is not satisfied for the
constant extension, so that Algorithm 5.4 is not applicable in this case.

For the three boundary conditions that are transmitted, the anti-causal initialization value
in (5.32) can be computed without using (5.38) as follows. Let s be a finite signal of length K
and −1 < α < 0. We recall that for the two symmetrical extensions the signal is extended to Z
by periodization.

• Periodic extension: As s is a K-periodic signal then s(α) = k(α) ∗ s is also K-periodic. Noting
N the truncation index, we can write

(
l(α) ∗ s(α)

)
K−1

'
N

∑
i=0

s(α)K−1+iα
i (5.44)

= s(α)K−1 +α

N−1

∑
i=0

s(α)K+iα
i (5.45)

= s(α)K−1 +α

N−1

∑
i=0

s(α)i α
i. (5.46)

It yields, (
h(α) ∗ s

)
K−1
'−α

(
s(α)K−1 +α

N−1

∑
i=0

s(α)i α
i

)
. (5.47)
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Algorithm 5.3: Prefiltering algorithm on a larger domain
Input : A finite discrete signal f of length K, a boundary extension, a B-spline

interpolation order n≤ 16 and a precision ε

Output: The B-spline coefficients c of order n at indices {−ñ, . . . ,K−1+ ñ} with
precision ε

1 Precomputations
2 Compute the poles (zi,z−1

i )1≤i≤ñ and the normalization coefficient γ(n) = 1
b(n)ñ

(Section 5.6.1).
3 for 1≤ i≤ ñ do
4 Compute the truncation index N(i,ε) using (5.40)

5 Define L(n,ε)
ñ = ñ

6 for j = ñ−1 to 0 do
7 Compute L(n,ε)

j = L(n,ε)
j+1 +N( j+1,ε)

8 Prefiltering the signal:
9 Set c(0)k = fk for k ∈ {−L(n,ε)

0 , . . . ,K−1+L(n,ε)
0 } using the boundary extension

10 for i = 1 to ñ do
11 Compute c(i)k =

(
h(zi) ∗ c(i−1)

)
k for k ∈ {−L(n,ε)

i , . . . ,K−1+L(n,ε)
i } using

Algorithm 5.2 with truncation index N(i,ε)

12 Renormalize c = γ(n)c(ñ)

Algorithm 5.4: Prefiltering algorithm with a transmitted boundary condition
Input : A finite discrete signal f of length K, a boundary condition that is transmitted, a

B-spline interpolation order n≤ 16 and a precision ε

Output: The B-spline coefficients c of order n at indices {0, . . . ,K−1} with precision ε

1 Precomputations:
2 Compute the poles (zi,z−1

i )1≤i≤ñ and the normalization coefficient γ(n) = 1
b(n)ñ

(Section 5.6.1).
3 for 1≤ i≤ ñ do
4 Compute the truncation index N(i,ε) using (5.40)

5 Prefiltering of the signal:
6 Set c(0)k = fk for k ∈ {0, . . . ,K−1}
7 for i = 1 to ñ do
8 Compute c(i−1)

k for k ∈ {−N(i,ε), . . . ,−1}∪{K, . . . ,K−1+N(i,ε)} using the boundary
condition

9 Compute c(i)k =
(
h(zi) ∗ c(i−1)

)
k for k ∈ {0, . . . ,K−1} using Algorithm 5.2 with

truncation index N(i,ε)

10 Renormalize c = γ(n)c(ñ)
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• Half-symmetric extension: For i≥ 0 we have sK+i = sK−1−i so that we can write(
l(α) ∗ s

)
K−1

= sK−1 +α

+∞

∑
i=0

sK+iα
i (5.48)

= sK−1 +α

+∞

∑
i=0

sK−1−iα
i (5.49)

= sK−1 +αs(α)K−1. (5.50)

It yields with (5.32),(
h(α) ∗ s

)
K−1

=
α

α−1
s(α)K−1 =

α

α−1

(
k(α) ∗ s

)
K−1

. (5.51)

•Whole-symmetric extension: For i≥ 0 we have sK+i = sK−2−i so that we can write(
l(α) ∗ s

)
K−1

= sK−1 +α

+∞

∑
i=0

sK+iα
i (5.52)

= sK−1 +α

+∞

∑
i=0

sK−2−iα
i (5.53)

= sK−1 +αs(α)K−2. (5.54)

It yields with (5.32),(
h(α) ∗ s

)
K−1

=
α

α2−1

(
s(α)K−1 +αs(α)K−2

)
=

α

α2−1

((
k(α) ∗ s

)
K−1

+α

(
k(α) ∗ s

)
K−2

)
.

(5.55)

In practice, when one of these three boundary conditions is used in Algorithm 5.4, a slightly
different version of Algorithm 5.2 is called in Line 8. The boundary extension is added to the
input list and the computation of

(
h(α) ∗ s

)
K−1 (see Line 4 and Line 5) is done using (5.47), (5.51)

or (5.55) according to the extension case. Note that the anti-causal initialization value admits an
exact expression for the two symmetric extensions.

5.3.3 Indirect B-spline Transform: Computation of the Interpolated Value

The indirect B-spline transform reconstructs the signal values from the B-spline representa-
tion. Given the B-spline coefficients c in {−ñ, . . . ,K− 1+ ñ}, the interpolated value ϕ(n)(x)
can be computed with precision ε, using (5.3), as the convolution of ∑

K−1+ñ
i=−ñ ciδi with the com-

pactly supported function β(n). The computation of the indirect B-spline transform at location
x∈ [0,K−1] is presented in Algorithm 5.5. Assume the B-spline coefficients are computed with
precision ε using either Algorithm 5.3 or Algorithm 5.4 then ϕ(n)(x) is also computed with pre-
cision ε because ∑k∈Z β(n)(x− k) = 1. We recall that in Algorithm 5.4 the B-spline coefficients
are known in {−ñ, . . . ,−1}∪{K, . . . ,K−1+ ñ} thanks to the boundary condition.

The computation of (5.3) at a point x involves only a finite sum. Noting r = (n+ 1)/2 the
radius of the support of β(n), we have for n≥ 1

β(x− k)> 0⇔−r < x− k < r

⇒ dx− re ≤ k ≤ bx+ rc.

In general, we have bx+ rc−dx− re+ 1 = 2r = n+ 1 except when x± r is an integer. In the
latter case, we have only 2r− 2 terms since β(n)(x− .) vanishes at the bounds k = x± r. For
n = 0, β(n) is special because it does not vanish at the bounds of its support, and in that case up
to 2 terms are involved. In any case, we have at most max(1,n)+1 terms.
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Algorithm 5.5: Indirect B-spline transform
Input : A finite discrete signal f of length K, a B-spline interpolation order n, the

corresponding B-spline coefficients c in {−ñ, . . . ,K−1+ ñ} and x ∈ [0,K−1]
Output: The interpolated value ϕ(n)(x)

1 x0← dx− (n+1)/2e
2 Initialize ϕ(n)(x)← 0
3 for k = 0 to max(n,1) do
4 Update ϕ(n)(x)← ϕ(n)(x)+ ckβ(n)(x− (x0 + k))

5.4 Extension to Higher Dimensions

The one-dimensional B-spline interpolation theory (Section 5.2) and practical algorithms (Sec-
tion 5.3) are easily extended to higher dimensions by using tensor-product basis functions. The
multi-dimensional prefiltering is performed by applying the unidimensional prefiltering succes-
sively along each dimension. The indirect B-spline transform is efficiently computed as the
convolution with a separable and compactly supported function.

Note d the dimension. The Normalized B-spline function of order n is defined in dimension
d as follows.

Definition 5.4. The Normalized B-spline function of order n and dimension d, noted β(n,d), is
defined for x = (x1, . . . ,xd) ∈ Rd by

β
(n,d)(x) =

d

∏
j=1

β
(n)(x j). (5.56)

Then, the B-spline interpolate of order n of a discrete signal f ∈RZd
can be naturally defined as

follows.

Definition 5.5. The B-spline interpolate of order n of a discrete signal f ∈ RZd
is the function

ϕ(n) : Rd 7→ R defined for x ∈ Rd by

ϕ
(n)(x) = ∑

i∈Zd

ciβ
(n,d)(x− i) (5.57)

where the B-spline coefficients c = (ci)i∈Zd are uniquely defined by the interpolation condition

ϕ
(n)(k) = fk, ∀k ∈ Zd . (5.58)

Prefiltering Decomposition. The B-spline interpolation in dimension d is also a two-step inter-
polation method. The prefiltering step is decomposed as follows. Define b(n,d) = ∏

d
j=1 b(n,d, j)

where for 1 ≤ j ≤ d and k = (k1, . . . ,kd) ∈ Zd , b(n,d, j)k = bk j . Then, the interpolating condition
is rewritten as

f = c∗b(n,d). (5.59)

Using the separability of b(n,d) and Z-transform based arguments as in Section 5.2.2, the pre-
filtering can be expressed as the filtering

c =
(

b(n,d)
)−1
∗ f (5.60)

where for k = (k1, . . . ,kd) ∈ Zd((
b(n,d)

)−1
)

k
=

d

∏
j=1

((
b(n)
)−1
)

k j

. (5.61)
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The prefiltering filter
(
b(n,d)

)−1
being separable, the B-spline coefficients c can be computed by

filtering f successively along each dimension by
(
b(n)
)−1

. In other words, the multi-dimensional
prefiltering is decomposed in successive unidimensional prefilterings along each dimension.

Algorithms in 2D. A particular and interesting case is given by d = 2 where the finite dis-
crete signals to be interpolated are images. The B-spline coefficients are obtained by applying
successively the unidimensional prefiltering on the columns and on the rows.

More precisely, let g ∈ RZ2
and (i, j) ∈ Z2. We denote C j(g) ∈ RZ the j-th column of g so

that C j(g)i = gi, j. Similarly, we denote Ri(g) ∈RZ the i-th row of g so that Ri(g) j = gi, j. Define
ccol( f ) ∈ RZ2

, the unidimensional prefiltering of the columns of f , by their columns

C j(ccol( f )) =C j( f )∗ (b(n))−1. (5.62)

Then, the B-spline coefficients c are given by the unidimensional prefiltering of the lines of ccol
i.e.

Ri(c) = Ri(ccol( f ))∗ (b(n))−1. (5.63)

In practice the images are finite and an arbitrary extension has to be chosen. Let f be an
image of size K×L. In order to compute interpolated values in [0,K−1]× [0,L−1] the B-spline
coefficients c of f has to be computed in {−ñ, . . . ,K−1+ ñ}×{−ñ, . . . ,L−1+ ñ}. According
to (5.62) and (5.63) it is done by applying Algorithm 5.3 or Algorithm 5.4 successively on the
columns and on the rows.

Theorem 5.2. Assume n ≤ 16. Let ε > 0 and f be a finite image of size at least 4 along each
dimension (arbitrarily extended to Z2). Denote ε′ = ερ(n)

2 . The computation of the B-spline
coefficients of f by applying Algorithm 5.3 or Algorithm 5.4 successively on the columns and on
the rows with truncation indices (N(i,ε′))1≤i≤ñ (as in Algorithm 5.7) have a precision of ε.

Proof. See Section 5.5.2

Theorem 5.2 provides a control of the error that is committed during the two-dimensional
prefiltering. Note that to insure a precision ε using Algorithm 5.3, ccol( f ) has to be com-
puted in {−ñ, . . . ,K − 1+ ñ}× {−L(n,ε′)

0 , . . . ,L− 1+ L(n,ε′)
0 } i.e. for the columns indexed by

j ∈ {−L(n,ε′)
0 , . . . ,L− 1+ L(n,ε′)

0 }. In Figure 5.3 is displayed, for the four classical boundary
condition, the extended image used during the prefiltering (using Algorithm 5.3) for a precision
of ε = 10−8 i.e. 8 digits and n = 11. The image is extended of L(n,ε′)

0 = 125 pixels from its
boundary.

The two-dimensional indirect B-spline transform is efficiently performed, as described in
Algorithm 5.6, as a convolution with the separable and compactly supported function β(n,2).
Finally, the two-dimensional B-spline interpolation of an image is presented in Algorithm 5.7.
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(a) Constant (b) Periodic

(c) Half-symmetric (d) Whole-symmetric

Figure 5.3: Extended image used during the prefiltering using Algorithm 5.3 for ε = 10−8 i.e 8
digits and n = 11. The image is extended of L(n,ε′)

0 = 125 pixels from its boundary.
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Algorithm 5.6: Two-dimensional indirect B-spline transform
Input : An image f of size K×L, a B-spline interpolation order n, the corresponding

B-spline coefficients c in {−ñ, . . . ,K−1+ ñ}×{−ñ, . . . ,L−1+ ñ} and a
location (x,y) ∈ [0,K−1]× [0,L−1]

Output: The interpolated value ϕ(n)(x,y)
1 x0← dx− (n+1)/2e
2 for k = 0 to max(1,n) do
3 Tabulate xBuf[k]← β(n)(x− (x0+ k))

4 Initialize ϕ(n)(x,y)← 0
5 for l = 0 to max(1,n) do
6 y0← dy− (n+1)/2e
7 Initialize s← 0
8 for k = 0 to max(1,n) do
9 Update s← s+ cx0+k,y0+l xBuf[k]

10 Update ϕ(n)(x,y)← ϕ(n)(x,y)+ sβ(n)(y− (y0+ l))

Algorithm 5.7: Two-dimensional B-spline interpolation
Input : An image f of size K×L, an extension method, a B-spline interpolation order

n≤ 16, a precision ε and a list of pixel locations
(x j,y j)1≤ j≤J ∈ ([0,K−1]× [0,L−1])J

Output: The interpolated values (ϕ(n)(x j,y j)) j∈J (with precision ε)

1 Compute ε′ = ρ(n)e
2 .

2 Compute with precision ε′ the unidimensional prefiltering of the columns of f , noted ccol,
using Algorithm 5.3 or Algorithm 5.4

3 Compute with precision ε′ the unidimensional prefiltering of the rows of ccol, noted c,
using Algorithm 5.3 or Algorithm 5.4

4 for j = 1 to J do
5 Compute, from the B-spline coefficient c, the interpolated value ϕ(n)(x j,y j) using

Algorithm 5.6
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5.5 Control of the Prefiltering Error

Theorem 5.1 and Theorem 5.2 state that the error committed during the prefiltering can be con-
trolled with an adequate choice of the truncation indices. They are proven to be true in the
following.

5.5.1 Proof of Theorem 5.1

In Algorithm 5.3 and Algorithm 5.4, the output error comes from the truncation of the initial-
ization sums during the application of the exponential filters. Each truncation introduces an
error that propagates to the following computations. To prove Theorem 5.1 we state and prove
a more general theorem which provides a control of the error incurring after each application of
an exponential filter.

Given N, a non-negative integer, Lini < Lend two integers, and s∈RZ, we define the truncated
signal TN,Lini,Lend(s) by

∀k ∈ Z, TN,Lini,Lend(s)k =

{
sk Lini−N ≤ k ≤ Lend +N,

0 otherwise.
(5.64)

We recall that f denotes the input finite signal of length K and ε > 0 the output precision.
Instead of computing the intermediate filtered signals (c(i))0≤i≤ñ, in Algorithm 5.3 and Algo-
rithm 5.4 we compute the (p(i))0≤i≤ñ defined by{

p(0) = f ,
p(i) = h(zi) ∗T

N(i,ε),L(i,ε)
ini ,L(i,ε)

end
(p(i−1)) for 1≤ i≤ ñ,

(5.65)

where

L(i,ε)
ini =

{
−L(n,ε)

i in Algorithm 5.3,
0 in Algorithm 5.4,

(5.66)

and

L(i,ε)
end =

{
K−1+L(n,ε)

i in Algorithm 5.3,
K−1 in Algorithm 5.4.

(5.67)

For 0 ≤ i ≤ ñ, we can write p(i) = c(i)+ e(i) where e(i) is the error committed at step i. Finally
the computed coefficients are p = γ(n)p(ñ) = c(ñ) + γ(n)e(ñ). Note that the filtered signals are
implicitly extended outside their computational domains (by zeros in Algorithm 5.3 and by the
boundary condition in Algorithm 5.4).

Lemma 5.1. Let s ∈ RZ and −1 < α < 0. Let g ∈ RZ be a perturbation. Let N be a non-
negative integer and Lini < Lend be two integers. Define s′ = TN,Lini,Lend(s+ g) and the error
e = h(α) ∗ (s′− s). Then,

‖e‖∞ ≤Cα

(
(1−α)‖g‖∞ + |α|N+1 (1+ |α|Lend−Lini

)
‖s‖∞

)
, (5.68)

where
Cα =

−α

(1−α2)(1+α)
. (5.69)

Proof of Lemma 5.1. With (5.30) we can write

e =
α

α2−1

k(α) ∗ (s′− s)︸ ︷︷ ︸
causal part

+ l(α) ∗ (s′− s)︸ ︷︷ ︸
anticausal part

−(s′− s)

 (5.70)
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Now, let us evaluate ei for Lini ≤ i≤ Lend. First, by definition of s′, (s′− s)i = gi. Then we deal
with the causal and anti-causal part of (5.70).

Causal part. With the adequate change of indices we have(
k(α) ∗ (s′− s)

)
i

=
∞

∑
j=0

α
j(s′− s)i− j (5.71)

=
i

∑
j=−∞

α
i− j(s′− s) j (5.72)

= α
i

(
i

∑
j=Lini−N

α
− jg j−

Lini−N−1

∑
j=−∞

α
− js j

)
. (5.73)

Anticausal part. Similarly we have(
l(α) ∗ (s′− s)

)
i

=
∞

∑
j=0

α
j(s′− s)i+ j (5.74)

=
∞

∑
j=i

α
j−i(s′− s) j (5.75)

= α
−i

(
Lend+N

∑
j=i

α
jg j−

∞

∑
j=Lend+N+1

α
js j

)
. (5.76)

Finally,

ei =
α

α2−1

α
i

i−1

∑
j=Lini−N

α
− jg j +α

−i
Lend+N

∑
j=i

α
jg j︸ ︷︷ ︸

previous error

−α
i
Lini−N−1

∑
j=−∞

α
− js j−α

−i
∞

∑
j=Lend+N+1

α
js j︸ ︷︷ ︸

initialization error

 .

(5.77)
By the triangular inequality we obtain the four upper-bounds∣∣∣∣∣ i−1

∑
j=Lini−N

α
− jg j

∣∣∣∣∣≤ |α|N−Lini
1−|α|−(i−Lini+N)

1−|α|−1 ‖g‖∞ =−α
|α|−i−|α|N−Lini

1+α
‖g‖∞, (5.78)

∣∣∣∣∣Lend+N

∑
j=i

α
jg j

∣∣∣∣∣≤ |α|i 1−|α|Lend+N−i+1

1−|α|
‖g‖∞ =

|α|i−|α|Lend+N+1

1+α
‖g‖∞, (5.79)∣∣∣∣∣Lini−N−1

∑
j=−∞

α
− js j

∣∣∣∣∣≤ |α|N+1−Lini

1+α
‖s‖∞, (5.80)∣∣∣∣∣ ∞

∑
j=Lend+N+1

α
js j

∣∣∣∣∣≤ |α|N+1+Lend

1+α
‖s‖∞. (5.81)

Thus,

|ei| ≤Cα

(
‖g‖∞

[
1−α

(
1−|α|N−Lini+i−|α|N+Lend−i)]+‖s‖∞|α|N+1 (|α|i−Lini + |α|Lend−i))

(5.82)
Using the relation |α|i−Lini + |α|Lend−i ≤ 1+ |α|Lend−Lini and by removing the negative terms we
get the following upper-bound that is independent of i,

‖e‖∞ ≤Cα

(
(1−α)‖g‖∞ + |α|N+1 (1+ |α|Lend−Lini

)
‖s‖∞

)
. (5.83)
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For 0≤ i≤ ñ, define D(i) and ε(i) by

D(i) =
i

∏
j=1

−z j

(1+ z j)2 (5.84)

and

ε
(i) = ερ

(n)D(i)
ñ

∏
j=i+1

µ j. (5.85)

We recall that the (µ j)1≤ j≤ñ are defined in (5.39). Lemma 5.1 provides a control of the error
when an exponential filter is applied to a signal whose values may be perturbed by a small error
and where the initialization sums are truncated. We deduce from it the following theorem.

Theorem 5.3. Assume n≤ 16 and K ≥ 4. For 0≤ i≤ ñ, we have

‖e(i)‖∞ ≤ ε
(i)‖ f‖∞. (5.86)

To prove this theorem we need the two following lemmas.

Lemma 5.2. For 0≤ l ≤ ñ, we have

‖c(l)‖∞ ≤ D(l)‖ f‖∞. (5.87)

Proof of Lemma 5.2. Let s ∈ RZ and −1 < α < 0. Applying the triangular inequality in (5.31)
we get

‖h(α) ∗ s‖∞ ≤
α

α2−1
1−α

1+α
|s|∞ =

−α

(1+α)2 ‖s‖∞. (5.88)

The result is proven by successively applying this inequality to c( j) and z j for 1≤ j ≤ l.

Define θ : (x,m) ∈]−1,0[×N 7→ − log(1+|x|m)
log |x| .

Lemma 5.3. For x >−0.75 and m≥ 4 we have θ(x,m)< 1.

Proof of Lemma 5.3. θ is a decreasing function with respect to its variables and θ(−0.75,4) <
1.

Proof of Theorem 5.3. The result is proved by induction.

• Base case: For i = 0 we have e(0) = 0 and because µ1 = 0, ε(0) = 0. Thus, ‖e(0)‖∞ = ε(0)‖ f‖∞.

• Inductive step: For 1≤ i≤ ñ, assume ‖e(i−1)‖∞ ≤ ε(i−1)‖ f‖∞. Then we prove that ‖e(i)‖∞ ≤
ε(i)‖ f‖∞ as follows.

Applying Lemma 5.1 to s = c(i−1), α = zi, g = e(i−1), N = N(i,ε), Lini = L(i,ε)
ini and Lend =

L(i,ε)
end we get

‖e(i)‖∞ ≤Czi

(
(1− zi)‖e(i−1)‖∞ + |zi|N

(i,ε)+1
(

1+ |zi|L
(i,ε)
end −L(i,ε)

ini

)
‖c(i−1)‖∞

)
. (5.89)

Using the induction hypothesis and Lemma 5.2 with l = i−1 we have

‖e(i)‖∞ ≤ η
(i,ε)‖ f‖∞ (5.90)

where
η
(i,ε) =Czi

(
(1− zi)ε

(i−1)+ |zi|N
(i,ε)+1

(
1+ |zi|L

(i,ε)
end −L(i,ε)

ini

)
D(i−1)

)
. (5.91)
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Noting that for n ≤ 16 the poles are greater than −0.75, we have by definition of N(i,ε)

and with Lemma 5.3 applied to x = zi >−0.75 and m = L(i,ε)
end −L(i,ε)

ini ≥ 4,

N(i,ε)+1 ≥
log
(
ερ(n)(1− zi)(1−µi)∏

ñ
j=i+1 µ j

)
log |zi|

+1 (5.92)

≥
log
(
ερ(n)(1− zi)(1−µi)∏

ñ
j=i+1 µ j

)
log |zi|

+θ

(
zi,L

(i,ε)
end −L(i,ε)

ini

)
(5.93)

≥
log
(
ερ(n)(1− zi)(1−µi)∏

ñ
j=i+1 µ j

)
− log

(
1+ |zi|L

(i,ε)
end −L(i,ε)

ini

)
log |zi|

.(5.94)

The previous relation is equivalent to

|zi|N
(i,ε)+1

(
1+ |zi|L

(i,ε)
end −L(i,ε)

ini

)
≤ ερ

(n)(1− zi)(1−µi)
ñ

∏
j=i+1

µ j (5.95)

=
(1− zi)ε

(i)

D(i)
− (1− zi)ε

(i−1)

D(i−1) . (5.96)

Finally,

η
(i,ε) ≤Czi

D(i−1)

D(i)
(1− zi)ε

(i) =
−zi(1+ zi)

2(1− zi)

−zi(1− z2
i )(1+ zi)

ε
(i) = ε

(i) (5.97)

and using (5.90) we obtain ‖e(i)‖∞ ≤ ε(i)‖ f‖∞.

Theorem 5.3 is more general than Theorem 5.1 because it provides a control of the error at
each step.

Lemma 5.4. We have

ρ
(n)D(ñ) =

1
γ(n)

. (5.98)

Proof of Lemma 5.4. With the recursive definition of β(n) in (5.1) we have for n≥ 1,

∑
k∈Z

β
(n)(k) = ∑

k∈Z

∫
R

β
(n−1)(x)β(0)(k− x)dx =

∫
R

β
(n−1)(x)dx = 1. (5.99)

Noticing that ∑k∈Z β(n)(k) = B(n)(1) and with (5.14) it can be rewritten has

γ
(n) =

ñ

∏
j=1

(1− z j)
2

−z j
. (5.100)

By definition of D(ñ) and ρ(n) we have the result.

From Lemma 5.4 we deduce that ε(ñ) = ε

γ(n)
. In particular with i = ñ in Theorem 5.3, we

have ‖e(ñ)‖ ≤ ε(ñ)‖ f‖∞ = ε

γ(n)
‖ f‖∞ which proves Theorem 5.1.
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Remarks:

• In practice the error decreases exponentially with the distance to the boundaries. Thus,
the upper-bounds in the proof of Theorem 5.3 are not tight. The theoretical precision
overestimates the experimental error. In addition, in Algorithm 5.3 we do not initialize at
the same places so that the propagation error between steps could be neglected.

• For really small values of ε (e.g. ε < 10−12), the machine precision should be considered.
Thus the experimental error may be higher in this case.

• In our implementation (see Section 5.6.3) the order is limited to 16 because of the poles
computation. For higher order Theorem 5.3 may remain true provided the signals are large
enough.

5.5.2 Proof of Theorem 5.2

Theorem 5.2 can be proven as a direct consequence of Theorem 5.1. We recall that f denotes the
input finite image of size at least 4 along each dimension and ε > 0 the output precision. Instead
of computing ccol( f ) by applying Algorithm 5.3 or Algorithm 5.4 on the columns of f with
truncation indices N(n,ε′), we actually compute pcol( f ) = ccol( f )+ ecol( f ) where ecol( f ) ∈ RZ2

is an unidimensional prefiltering error. Then, by applying Algorithm 5.3 or Algorithm 5.4 on
the rows of pcol( f ) we obtain

p = c+ erow + erow+col (5.101)

where erow is the error that comes from the prefiltering along the rows of pcol( f ) and erow+col is
the prefiltering along the rows of ecol( f ). The output error e = erow + erow+col is proven to be
smaller than ε as follows. On the one hand,

‖erow+col‖∞ ≤
Lemma 5.2

γ
(n)D(ñ)‖ecol‖∞ ≤

T heorem 5.1
ε
′
γ
(n)D(ñ)‖ f‖∞. (5.102)

On the other hand,

‖erow‖∞ ≤
T heorem 5.1

e′‖ccol( f )‖∞ ≤
Lemma 5.2

ε
′
γ
(n)D(ñ)‖ f‖∞ (5.103)

Finally,
‖e‖∞ ≤ 2ε

′
γ
(n)D(ñ) =

Lemma 5.4
ε (5.104)

which proves Theorem 5.2.

5.5.3 Choice of the µi

To prove Theorem 5.3 we did not use the value of µi for 2≤ i≤ ñ. Any (µ j)2≤ j≤ñ ∈]0,1[ñ−1 is
acceptable to guarantee the output precision ε but the choice has an influence on the truncation
indices N(i,ε) and thus on the complexity of the algorithms. Indeed, a small value for µi leads to
less computations for the step i but more computations for steps j < i. We set µ1 = 0 because
e(0) = 0.

We select µ = (µ j)2≤ j≤ñ ∈]0,1[ñ−1 that minimizes the function

Ψ : ν = (ν j)2≤ j≤ñ ∈]0,1[ñ−1 7→
ñ

∑
i=1

log
(
(1−νi)∏

ñ
j=i+1 ν j

)
log |zi|

(5.105)
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with the notation ν1 = 0. In other words it is selected so that ∑
ñ
i=1 N(i,ε) is small3. Ψ is a derivable

function that admits a unique minimizer µ that is given by the Euler condition ∇Ψ(µ) = 0. For
2≤ k ≤ ñ we have

∂Ψ

∂νk
(µ) =

−1
1−µk

1
log |zk|

+
1
µk

k−1

∑
i=1

1
log |zi|

= 0 (5.106)

i.e.
1
µk

= 1+
1

log |zk|∑k−1
i=1

1
log |zi|

(5.107)

which corresponds to the definition given in (5.39). The values of (µi)2≤i≤ñ are displayed in
Table 5.2 for 4≤ n≤ 9.

n (µi)2≤i≤ñ

4 µ2 = 0.8081702588338142
5 µ2 = 0.7886523126940346
6 µ2 = 0.7775037872839968

µ3 = 0.9217057449487258
7 µ2 = 0.7705847640302491

µ3 = 0.9069526580525736
8 µ2 = 0.7660491039752506

µ3 = 0.8982276825918423
µ4 = 0.9583935084163903

9 µ2 = 0.7628638545450653
µ3 = 0.8921921530329509
µ4 = 0.9478524258426756

Table 5.2: Values of (µi)2≤i≤ñ for 4≤ n≤ 9.

5.6 Practical Computations and Numerical Implementation Details

In this section we explain how computations are performed in practice. For any order n, algo-
rithms for computing the poles along with the normalization constant and evaluating the B-spline
function are detailed.

5.6.1 Practical Computation of the Poles and the Normalization Constant

As expressed in (5.25), the prefiltering step requires the knowledge of the normalization constant
γ(n) = 1

b(n)ñ

and of the poles of order n introduced in (5.13). The poles correspond to the roots in

]−1,0[ of the (palindromic) polynomial B̃(n) of degree 2ñ defined for z ∈ C by

B̃(n)(z) = zñB(n)(z) = b(n)0 zñ +
ñ

∑
i=1

b(n)i (zñ+i + zñ−i). (5.108)

The coefficients (b(n)k )0≤k≤ñ =
(
β(n)(k)

)
0≤k≤ñ being given, the poles can be approximated nu-

merically using a polynomial equation solver. The coefficients themselves can be computed
directly thanks to the explicit formula given in Proposition 5.4 but a more efficient computa-
tion based on a recursive formula, which only involves simple additions and multiplications, is
preferred.

3The minimality is not guaranteed because of the integral part in the definition of N(i,ε).
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Proposition 5.2. Let m≥ 1 and x ∈ R. Then,

mβ
(m)(x) =

(
m+1

2
+ x
)

β
(m−1)

(
x+

1
2

)
+

(
m+1

2
− x
)

β
(m−1)

(
x− 1

2

)
. (5.109)

Proof. It is shown by induction on m. For m = 1, it is straightforward using the explicit expres-
sion

β
(1)(x) =

{
1−|x|, |x| ≤ 1
0, |x|> 1.

(5.110)

Assume the identity is verified up to m≥ 1. Then we can write

β
(m+1)(x) =

∫ 1/2

−1/2
β
(0)(y)β(m)(x− y)dy, (5.111)

and integrating by parts we get

β
(m+1)(x) =

[
yβ

(m)(x− y)
]1/2

−1/2
+

∫ 1/2

−1/2
yβ

(m)′(x− y)dy

=
1
2

(
β
(m)(x+

1
2
)+β

(m)(x− 1
2
)

)
+

∫
R

β
(0)(y)yβ

(m)′(x− y)dy. (5.112)

For m = 1, β(1)′ is defined everywhere except at x ∈ {−1,0,1}, but from the point of view of
integration we can ignore this defect and write

β
(1)′(x) =


1, −1 < x < 0
−1, 0 < x < 1
0, |x|> 1,

= β
(0)(x+

1
2
)−β

(0)(x− 1
2
). (5.113)

Now for m≥ 2, we have

β
(m)′(x) =

∫
β
(m−2)(y)β(1)′(x− y)dy

=
∫

β
(m−2)(y)β(0)(x+

1
2
− y)dy−

∫
β
(m−2)(y)β(0)(x− 1

2
− y)dy

= β
(m−1)(x+

1
2
)−β

(m−1)(x− 1
2
), (5.114)

so that according to (5.113), this equation is also valid for m = 1. Note that this could also be
shown more concisely using distributions by the observation that β(0)′ = δ−1/2−δ1/2. Therefore

∫
β
(0)(y)yβ

(m)′(x− y)dy =
∫

β
(0)(y)y

(
β
(m−1)(x+

1
2
− y)−β

(m−1)(x− 1
2
− y)

)
dy. (5.115)

But the recursivity assumption at location x− y can be rewritten

y
(

β
(m−1)(x+

1
2
− y)−β

(m−1)(x− 1
2
− y)

)
= x
(

β
(m−1)(x+

1
2
− y)−β

(m−1)(x− 1
2
− y)

)
+

m+1
2

(
β
(m−1)(x+

1
2
− y)+β

(m−1)(x− 1
2
− y)

)
−mβ

(m)(x− y) (5.116)
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Combining (5.115) and (5.116), and then coming back to (5.112), we can write

β
(m+1)(x) =

(
m+1

2
+

1
2

)(
β
(m)(x+

1
2
)+β

(m)(x− 1
2
)

)
+ xβ

(m)(x+
1
2
)− xβ

(m)(x− 1
2
)−mβ

(m+1)(x), (5.117)

which yields after rearrangement of the terms

(m+1)β(m+1)(x) =
(
(m+1)+1

2
+ x
)

β
(m)(x+

1
2
)+

(
(m+1)+1

2
− x
)

β
(m)(x− 1

2
), (5.118)

exactly (5.109) at m+1.

Let m≥ 1. Setting for simplicity d(m)
k = β(m)

(
k+ 1

2

)
for k ∈ Z, we have with Proposition 5.2

mb(m)
k =

(
m+1

2
+ k
)

d(m−1)
k +

(
m+1

2
− k
)

d(m−1)
k−1 (5.119)

md(m)
k =

(
m+2

2
+ k
)

b(m−1)
k+1 +

(m
2
− k
)

b(m−1)
k . (5.120)

Define m̃ =
[m

2

]
. As b(m)

m̃+1 = 0 and d(m)
−1 = d(m)

0 we can compute the coefficients (b(n)k )0≤k≤ñ
recursively using Algorithm 5.8.

Algorithm 5.8: Polynomial coefficients computation
Input : The B-spline order n
Output: The coefficients (b(n)k )0≤k≤ñ of B̃(n)

1 Initialize with b(0)0 = 1 and d(0)
0 = 1

2
2 for m = 1 to n−1 do
3 Define m̃ =

[m
2

]
4 for k = 0 to m̃ do
5 Compute b(m)

k using (5.119)

6 Compute d(m)
k using (5.120)

7 for k = 0 to ñ do
8 Compute b(n)k using (5.119)

In particular, it is possible to obtain an explicit expression of γ(n) = 1
b(n)ñ

as a function of n.

Proposition 5.3. We have

γ
(n) =

{
2nn! n even
n! n odd.

(5.121)

Proof. Assuming n≥ 2 and applying (5.119) to k = ñ and m = n we get

b(n)ñ =
1
n

(
n+1

2
− ñ
)

d(n−1)
ñ−1 . (5.122)

Similarly, applying (5.120) to k = ñ−1 and m = n−1 we get

d(n−1)
ñ−1 =

1
n−1

(
n+1

2
− ñ
)

b(n−2)
ñ−1 . (5.123)
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As ñ−1 = ñ−2 we obtain the recursive equation

b(n)ñ =
1

n(n−1)

(
n+1

2
− ñ
)2

b(n−2)
ñ−2

. (5.124)

Now let n≥ 0. Noting that b(0)0̃ = b(1)1̃ = 1 and

m+1
2
− m̃ =

{
1
2 m even
1 m odd,

(5.125)

we finally have the following explicit expression for b(n)ñ ,

b(n)ñ =

{
1

2nn! n even
1
n! n odd.

(5.126)

It is a direct consequence of Proposition 5.3 that γ(n)B̃(n) is a polynomial with integer co-
efficients. Indeed, let j ∈ Z. Combining (5.128) at location x = j with (5.121), we obtain
b(n)j = b(n)ñ a(n)j where

a(n)j =

{
∑

n+1
i=0

(n+1
i

)
(−1)i (2( j− i)+n+1)n

+ , n even

∑
n+1
i=0

(n+1
i

)
(−1)i

(
j− i+ n+1

2

)n
+
, n odd.

(5.127)

Thus a(n)j =
b(n)j

b(n)ñ

∈ Z. Actually it is a non-negative integer since β(n) is non-negative. This

property justifies why the expression of B(n) in Table 5.3 only involves integers. However it is
not used in practice because the renormalization by γ(n) may introduce numerical errors for n
large.

5.6.2 Normalized B-spline Function Evaluation

The evaluation of the normalized B-spline function β(n) at any location x ∈ R is necessary in
order to perform the indirect B-spline transform (see Algorithm 5.5 and Algorithm 5.6). As β(n)

is continuous, even and compactly supported in [−n+1
2 , n+1

2 ], it is sufficient to evaluate β(n)(x)
for 0 ≤ x < n+1

2 . Moreover, β(n) is a piece-wise polynomial function so this evaluation can be
efficiently performed after the precomputation of the polynomial coefficients between each pair
of successive knots.

Proposition 5.4 (Explicit expression of β(n)). For n≥ 1 and x ∈ R,

β
(n)(x) =

1
n!

n+1

∑
i=0

(−1)i
(

n+1
i

)(
x− i+

n+1
2

)n

+

(5.128)

where for all y ∈ R, y+ = max(y,0) denotes the positive part of y.

Proof. It is shown by induction on n. For n = 1, we have the four cases for the right hand side
of (5.128):

0+0+0 = 0 if x <−1 since x− i+1 < 0 for i = 0,1,2.
(x+1)++0+0 = x+1 if −1≤ x≤ 0.
(x+1)−2x+0 = 1− x if 0≤ x≤ 1.
(x+1)−2x+(x−1) = 0 if 1≤ x.
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We recognize the function max(0,1−|x|). On the other hand, we have

β
(1)(x)=

∫
β
(0)(y)β(0)(x−y)dy=

(∫ min(1/2,x+1/2)

max(−1/2,x−1/2)
dy
)

+

=(1+min(0,x)−max(0,x))+=(1−|x|)+,

which justifies (5.128) for n = 1. To proceed with the induction, let us first consider the function
pn(x) = (x)n

+ and compute

pn ∗β
(0)(x) =

∫ +∞

0
yn

β
(0)(x− y)dy =

∫ (x+1/2)+

(x−1/2)+
yn dy =

1
n+1

(
(x+

1
2
)n+1
+ − (x− 1

2
)n+1
+

)
.

Now, assuming (5.128) holds for some n≥ 1, we get

β
(n+1)(x) =

1
n!

n+1

∑
i=0

(−1)i
(

n+1
i

)
pn ∗β

(0)
(

x− i+
n+1

2

)
=

1
(n+1)!

n+1

∑
i=0

(−1)i
(

n+1
i

)((
x− i+

(n+1)+1
2

)n+1

+

−
(

x− (i+1)+
(n+1)+1

2

)n+1

+

)

=
1

(n+1)!

n+1

∑
i=0

(−1)i
(

n+1
i

)(
x− i+

(n+1)+1
2

)n+1

+

+

1
(n+1)!

n+2

∑
i=1

(−1)i
(

n+1
i−1

)(
x− i+

(n+1)+1
2

)n+1

+

=
1

(n+1)!
(−1)0

(
n+2

0

)(
x−0+

(n+1)+1
2

)n+1

+

+

1
(n+1)!

n+1

∑
i=0

(−1)i
((

n+1
i

)
+

(
n+1
i−1

))(
x− i+

(n+1)+1
2

)n+1

+

+

1
(n+1)!

(−1)n+2
(

n+2
n+2

)(
x− (n+2)+

(n+1)+1
2

)n+1

+

=
1

(n+1)!

n+2

∑
i=0

(−1)i
(

n+2
i

)(
x− i+

(n+1)+1
2

)n+1

+

.

The third equality is obtained by changing index i to i+ 1, and the last one using the identity(n+1
i

)
+
(n+1

i−1

)
=
(n+2

i

)
. Thus, we get the explicit formula (5.128) at index n+1.

Let 0≤ x < n+1
2 and n≥ 1. Using Proposition 5.4 and by symmetry we get,

β
(n)(x) = β

(n)(−x) =
1
n!

n+1

∑
i=0

(−1)i
(

n+1
i

)(
n+1

2
− i− x

)n

+

(5.129)

To get rid of the + subscript in this equation, we observe that

n+1
2
− i− x > 0⇔ x− n+1

2
+ i < 0⇔

⌊
x− n+1

2
+ i
⌋
≤−1⇔ i≤ k

with

k =
⌈

n+1
2
− x
⌉
−1.

Therefore (5.129) can be rewritten as the restricted sum

β
(n)(x) =

1
n!

k

∑
i=0

(−1)i
(

n+1
i

)(
n+1

2
− i− x

)n

. (5.130)
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We then expand the powers to write β(n)(x) as a sum of monomials. We observe that 0≤ k ≤ ñ.

Polynomial expression. Define y = n+1
2 − x− k, so that 0 < y≤ 1. Using the relation n+1

2 − i−
x = y+(k− i) and the binomial expansion, (5.130) becomes

β
(n)(x) =

1
n!

(
(−1)k

(
n+1

k

)
yn +

k−1

∑
i=0

(−1)i
(

n+1
i

) n

∑
j=0

(
n
j

)
y j(k− i)n− j

)
(5.131)

=
1
n!

(
(−1)k

(
n+1

k

)
yn +

n

∑
j=0

((
n
j

) k−1

∑
i=0

(−1)i
(

n+1
i

)
(k− i)n− j

)
y j

)
.(5.132)

For 0≤ j ≤ n define the polynomial coefficients

C(n)
k, j =

{(n
j

)
∑

k−1
i=0 (−1)i

(n+1
i

)
(k− i)n− j 0≤ j ≤ n−1

∑
k
i=0(−1)i

(n+1
i

)
j = n

(5.133)

so that

β
(n)(x) =

1
n!

n

∑
j=0

C(n)
k, j y j. (5.134)

Polynomial expression near 0. Assume k = ñ, i.e., 0 ≤ x < n+1
2 − ñ. This upper bound is 0.5

for even n and 1 for odd n. Using the binomial expansion, we have

β
(n)(x) =

1
n!

ñ

∑
i=0

(−1)i
(

n+1
i

) n

∑
j=0

(−1) j
(

n
j

)
x j
(

n+1
2
− i
)n− j

(5.135)

=
1
n!

n

∑
j=0

(
(−1) j

(
n
j

) ñ

∑
i=0

(−1)i
(

n+1
i

)(
n+1

2
− i
)n− j

)
x j (5.136)

For 0≤ j ≤ n, define the polynomial coefficients

D(n)
ñ, j = (−1) j

(
n
j

) ñ

∑
i=0

(−1)i
(

n+1
i

)(
n+1

2
− i
)n− j

=
1

2n− j

(
n
j

) ñ

∑
i=0

(−1)i+ j
(

n+1
i

)
(n+1−2i)n− j (5.137)

so that

β
(n)(x) =

1
n!

n

∑
j=0

D(n)
ñ, jx

j. (5.138)

The function β(n) is even and (n− 1)-times differentiable, so that d jβ(n)

dx j (0) = 0 for any odd j
such that 0 ≤ j ≤ n− 1. In other words, Dñ, j = 0 for 0 ≤ j ≤ n− 1, j odd. Applying (5.138)
results in only n+1− ñ terms (i.e., ñ+1 if n is even and ñ+2 if n is odd) in the sum instead of
n+1 with (5.134).

In practice, the polynomial coefficients (C(n)
l, j )0≤l≤ñ−1,0≤ j≤n and (D(n)

ñ, j)0≤ j≤n are precom-
puted4 before the indirect B-spline transform, as detailed in Algorithm 5.9. Then, the evaluation
of β(n)(x) is done by Horner’s method [30].

4Note that [83] provides a recursive algorithm, that is not used in our implementation, for computing these
coefficients.
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Algorithm 5.9: Coefficients of the piecewise polynomial expression of β(n)

Input : Order n of the B-spline
Output: The coefficients C(n)

k, j and D(n)
ñ, j for j = 0 . . .n, k = 0 . . . ñ−1

1 Compute
(n

j

)
for j = 0 . . .n using recursive formulas

(n
0

)
= 1,

(n
j

)
= n− j+1

j

( n
j−1

)
for

j = 1 . . . ñ and
(n

j

)
=
( n

n− j

)
for j > ñ.

2 Compute
(n+1

i

)
= n+1

i

( n
i−1

)
for i = 1 . . . ñ

3 Compute matrix P with Pi j = ji for i = 0 . . .n, j = 1 . . .n+1 using P0,. = 1 and
Pi, j = jPi−1, j for i≥ 1

4 Compute C(n)
k, j for j = 0 . . .n, k = 0 . . . ñ−1 applying (5.133)

5 Compute D(n)
ñ, j applying (5.137).

5.6.3 Provided implementation

In the provided implementation5 of Algorithm 5.7, the 2D B-spline interpolation can be per-
formed for 0≤ n≤ 16. The order limitation is due to numerical errors in the computation of the
poles and the kernel evaluation. We replace β(n) by n!β(n) and γ(n) by

γ
′(n) =

γ(n)

n!
=

{
2n n even
1 n odd.

(5.139)

This prevents numerical errors that could occur when n is large because of the useless renormal-
ization by n!. The following entities are precomputed:

• the poles (zi)1≤i≤ñ as described in Section 5.6.1,

• the normalized B-spline coefficients (Cl, j)0≤l≤ñ,0≤ j≤n as described in Section 5.6.2,

• the normalization constant γ
′(n) defined in (5.139),

• the truncation indices (N(i,ε′))1≤i≤ñ defined in (5.40) with ε′ = ρ(n)ε

2 .

The first three items are tabulated for n ≤ 11. For information purposes, B(n), γ(n), γ
′(n) and the

corresponding poles are displayed in Table 5.3 for 2≤ n≤ 7. Note that the computation are per-
formed in double-precision floating-point format to prevent from round-off error. Multi-channel
images, and in particular color images, are handled by applying the prefiltering algorithm on
each channel independently, which gives the multi-channel B-spline coefficients. Then, the in-
terpolated values are computed by applying the indirect B-spline transform to the multi-channel
B-spline coefficients.

Homographic transformation. In the field of computer vision homographies [52, 85] are
widely used to relate images of scene assimilable to planar surfaces (or when the camera motion
is a rotation around the optical center). As a fundamental application of Algorithm 5.7 we pro-
vide an implementation of homographic (or projective) transformation of images. Given a 2D
homography h and an image f of size K×L, the homographic transformation of f by h is the
image fh of size K′×L′ verifying

∀(i, j) ∈ {0, . . . ,K′−1}×{0, . . . ,L′−1}, ( fh)i, j = f
(
h−1(i, j)

)
. (5.140)

It is done by applying Algorithm 5.7 at locations
(
h−1(i, j)

)
(i, j)∈{0,...,K′−1}×{0,...,L′−1}. In the

provided implementation the output image has the same size as the input, i.e., K′=K and L′= L.

5http://www.ipol.im/pub/art/2018/221/

http://www.ipol.im/pub/art/2018/221/
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n B(n) poles
2 (z−1 +6+ z)/8 −0.1715728752538099
3 (z−1 +4+ z)/6 −0.26794919243112281
4 (z−2 +76z−1 +230z+76z+1)/384 −0.36134122590021989

−0.013725429297339109
5 (z−2 +26z−1 +66z+26z+1)/120 −0.4305753470999743

−0.043096288203264443
6 (z−3 +722z−2 +10543z−1 +23548+10543z+722z2 + z3)/46080 −0.48829458930303893

−0.081679271076238694
−0.0014141518083257976

7 (z−3 +120z−2 +1191z−1 +2416+1191z+120z2 + z3)/5040 −0.53528043079643672
−0.12255461519232777
−0.0091486948096082266

Table 5.3: B(n) and the (approximate values of the) poles for 2≤ n≤ 7.

If the location h−1(i, j) does not belong to [0,K−1]× [0,L−1] the value ( fh)i, j is arbitrarily set
to 0 to avoid extrapolation. The implementation inputs are:

• an image f ,

• a homography h,

• a B-spline order n ∈ {0, . . . ,16},

• one of the four classical extensions of Table 5.1,

• a desired precision ε,

• a choice between the two proposed prefiltering algorithms (larger or exact domain).

Online Demo. The implementation is accompanied by an online demo where the user can
upload an image and apply to it an homographic transformation. The choice of the homography
is made by selecting the images of the four corners of the image. In Figure 5.4 we display an
example of the online demo use which corresponds to the homographic transformation of the
512×512 Lenna image by the homography h defined by

h(0,0) = (25,13)
h(0,511) = (11,500)
h(511,0) = (480,12)
h(511,511) = (468,482).

(5.141)

We recall that the pixels outside [0,511]2 are arbitrarily set to 0.
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Figure 5.4: Example of the online demo use. The Lenna image is transformed by the homog-
raphy h defined in (5.141). We use order 11, the half-symmetric boundary condition, ε = 10−6

and the exact domain.
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5.7 Experiments

In this section we make several experiments using Algorithm 5.7. The input image used is a
standard test image, Lenna, a gray-level image of size 512×512.

5.7.1 Computational Cost

The computational cost of the B-spline interpolation depends on the order n, the size of the input
signal (and its dimension), the desired precision ε and the number of interpolated values. The
total length of the extension has a dependency with respect to n and ε that is not straightforward
so that it is difficult to express the complexity of the prefiltering step in general. It is given
by 2L(n,ε)

0 = 2
(
ñ+∑

ñ
i=1 N(i,ε)

)
in dimension one and 2L(n,ε′)

0 in dimension two. We display in

Table 5.4 and Table 5.5 the values of 2L(n,ε)
0 and 2L(n,ε′)

0 for different order and precision values.
We notice that the values are slightly greater in dimension two. Assuming that the length of the
extension has the same order of magnitude as the input length we obtain in dimension one and
two the complexities, independent of ε, presented in Table 5.6. The complexity of the indirect
B-spline transform corresponds to the computation of a single interpolated value.

n \ ε 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

2 8 12 14 16 20 22 24 28 30 32 34
3 12 14 18 22 26 28 32 36 40 42 46
4 18 24 30 36 40 46 52 58 62 68 74
5 22 28 34 42 48 56 62 70 76 84 90
6 30 38 46 56 66 74 82 90 100 110 118
7 32 42 54 64 76 84 96 106 116 126 138
8 40 54 66 78 90 104 116 130 140 154 166
9 46 58 72 90 102 116 130 144 162 172 188
10 54 68 88 104 118 134 152 168 186 202 218
11 58 76 94 110 132 148 168 188 204 222 242

Table 5.4: Total length of extension 2L(n,ε)
0 for unidimensional signal in function of the order n

and the precision ε.

n \ ε 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

2 10 14 16 18 20 24 26 28 32 34 36
3 14 18 22 24 28 32 36 38 42 46 48
4 20 26 30 38 42 48 52 60 64 70 76
5 24 32 38 44 52 58 64 72 80 86 92
6 32 40 48 58 68 76 86 94 106 112 120
7 36 48 56 68 78 88 98 110 120 132 142
8 44 56 70 80 96 110 120 132 144 158 172
9 50 64 78 92 106 122 134 150 164 180 192
10 56 76 90 108 126 140 158 172 190 206 222
11 64 82 100 118 138 154 172 190 210 228 246

Table 5.5: Total length of extension 2L(n,ε′)
0 for two-dimensional signals in function of the order

n and the precision ε.

We verified empirically how the computation time of each step depends on the B-spline
order n for a homographic transformation. As it depends neither on the extension choice nor
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on the homography, we took the half-symmetric extension and the identity. In Figure 5.5 we
display the computation times for ε = 10−6. The prefiltering in the larger domain is more costly
than the prefiltering in the same domain and the difference increases with the order. However in
any case the prefiltering cost remains negligible with respect to the indirect B-spline transform
cost. The strong increase between n = 11 and n = 12 in the indirect B-spline transform cost
comes from the non-tabulation of the kernel.

1D 2D
Prefiltering O(nK) O(2nKL)
Indirect B-spline transform O(n2) O(n3)

Table 5.6: Complexity of the B-spline interpolation algorithms for a signal of length K or an
image of size K×L using order n. The complexity of the indirect B-spline transform corresponds
to the computation of a single interpolated value.
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Figure 5.5: Computation time of the different B-spline interpolation steps for a homographic
transformation of the 512× 512 gray-level image Lenna with ε = 10−6. The jump between
n = 11 and n = 12 is due to the kernel not being tabulated in the code above order 11.

5.7.2 Computation Error

The computation error committed during the prefiltering step is estimated by checking if the
interpolation condition (5.58) is verified. In practice it is done by comparing the initial image f
with its homographic transformation by the identity fId.

We lead the computations for:

• the four boundary extensions of Table 5.1,

• any order n ∈ {2, . . . ,16},

• any precision ε ∈ {10−2, . . . ,10−12},

• the two prefiltering algorithms (only on the larger domain for the constant extension).

In all cases the computation error is less than ε i.e. ‖ f − fId‖∞ ≤ ε. It empirically shows that the
result of Theorem 5.2 is verified.
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Which precision ε should be used? There is no recommended choice for ε because it depends
on the context of application. There is clearly a trade-off between precision and computational
cost. As the prefiltering step cost is negligible with respect to the indirect B-spline transform cost
(see previous section) when a large amount of pixel values are interpolated, the computational
cost aspect should not be taken into account by the user. For instance if the interpolated values
are stored in single-precision floating-point format, the value ε = 10−6 should be considered.

5.7.3 Zoom at the Boundary

By zooming at one of the boundaries of an image using the B-spline interpolation we are able
to highlight the influence of the boundary extension. We performed a zoom by a factor 20 using
various orders and boundary conditions. It is computed using ε = 10−6 and the prefiltering is
done on a larger domain. In Figure 5.6 we display a small part of size 256×256 of the zoomed
images that corresponds to the center of the right boundary. We see more and more details as
the order increases. The boundary condition influence can be seen by comparing the right part
of images. As an example we display in Figure 5.7 the comparison between the small images
corresponding to order 16.

(a) Order 0 and order 1

(b) Order 3

(c) Order 16

Figure 5.6: Zoom by a factor 20 (crop of size 256× 256 centered in the middle of the right
boundary) using B-spline interpolation for various orders and boundary conditions. It is com-
puted using ε = 10−6 and the prefiltering on a larger domain. From the left to the right we
use the constant, half-symmetric, whole-symmetric and periodic extension. For orders 0 and 1
the result are the same with the four extensions. We see more and more details as the order
increases. The boundary condition influence can be seen by comparing the right part of images.
The affine transformation y = 9x−1080 is applied to these images before visualization.
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(a) Half-symmetric (b) Difference with
constant

(c) Difference with
whole-symmetric

(d) Difference with pe-
riodic

Figure 5.7: Comparison between the results of Figure 5.6 for order 16. The difference is made
with the half-symmetric extension result. The affine transformation y = 22x+154 is applied to
the difference images before visualization.

5.7.4 Evolution of the Results with the Order of Interpolation

In this part, we analyze experimentally the evolution of the B-spline interpolation results with
the order n. It is commonly admitted that the results of the cubic (n = 3) B-spline interpolation
are sufficient and that increasing the order does not lead to significant improvements. We show
the contrary and recommend, except when efficiency is primordial, to use a higher order B-spline
interpolation. In the following, the computations are done using ε = 10−6 and the prefiltering
on a larger domain.

Comparison to the Shannon-Whittaker Interpolation. The B-spline interpolation approaches
the Shannon-Whittaker interpolation when the order goes to infinity [5]. We empirically high-
light this result by comparing the homographic transformations of the Lenna image by h (defined
by (5.141)) obtained using respectively the B-spline interpolation and the Shannon-Whittaker in-
terpolation. The comparison is done by computing the root mean square error (RMSE) between
the central parts of the two resampled images. Since the boundary extension choice has no in-
fluence we choose the periodic extension. As explained in Chapter 3, the Shannon-Whittaker
interpolation with periodic extension corresponds to the trigonometric polynomial interpolation
in real convention (also called discrete Shannon interpolation in [1]). Algorithm 3.1 is used
to resample the image. It is based on the nonequispaced fast Fourier transform (NFFT) algo-
rithm [63], which is a much slower algorithm (see Chapter 6) than the B-spline interpolation.
The decay of the error difference with the order n is visible in Figure 5.8.

Consistency of the B-spline Interpolation. In order to study the consistency of the B-spline
interpolation we applied ten shifts of 0.1 pixels (in the horizontal direction) and then one shift of
−1 pixel. The consistency measurement is then given as the RMSE between the central parts of
the initial and output images. Note that in Chapter 6 we propose another, but similar, definition
for the consistency measurement. As in practice the boundary condition influence on this mea-
surement is negligible, we arbitrarily chose to use the half-symmetric boundary condition. The
decay of the consistency measurement with the order n is displayed in Figure 5.9. It justifies
the choice of a high order B-spline interpolation (n = 11 for instance) while it is commonly
admitted that the cubic B-spline interpolation is sufficient. Note that the computational error
is negligible with respect to the model error. In Figure 5.10 we display for n ∈ {0,1,3,16} the
central parts of the difference images and the corresponding discrete Fourier transform modulus.
The differences are localized in the high frequencies were the model error is higher. For n = 0
it’s exactly the gradient of the image.

Comparison between Different Orders. We also compared the B-spline interpolation results
for different orders. As in Section 5.7.4, we computed the homographic transformations of the
Lenna image by h (defined by (5.141)) for different orders. The resampled images are compared
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to the one corresponding to the maximal order available, i.e., n = 16. The comparison is done
by computing the RMSE between the central parts of the images. As the boundary extension
choice has no influence we chose the half-symmetric extension. The decay of the difference
with the order n is visible in Figure 5.11. The average difference for the cubic B-spline is
around one grey level and is three times smaller for order 11. In Figure 5.12 we display for
n ∈ {1,3,11,15} the central parts of the resampled images and of the difference images (with
the corresponding discrete Fourier transform modulus). As the order increases the resampled
image becomes sharper. The interpolation kernel becomes closer to the cardinal sine so that less
high-frequency content is attenuated.
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Figure 5.8: Decay of the difference between the Shannon-Whittaker interpolation and the B-
spline interpolation for n ∈ {0, . . . ,16}. The RMSE is taken on the central part of the images so
that the boundary extension has a negligible influence. The periodic extension is used for both
interpolation methods. The Shannon-Whittaker interpolation corresponds to the trigonometric
polynomial interpolation with real convention introduced in Chapter 3.
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Figure 5.9: Decay of the error for the interpolation order n ∈ {0, . . . ,16} when performing
ten successive translations by 0.1 pixel of an image and finally compensating with a −1 pixel
translation. It justifies the choice of a high order B-spline interpolation (n = 11 for instance)
while it is commonly admitted that the cubic B-spline interpolation is sufficient. Note that the
computational error is negligible with respect to the model error.
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(a) Order 0 (b) Order 1

(c) Order 3 (d) Order 16

Figure 5.10: Central parts of the difference images for the consistency tests and the correspond-
ing unnormalized discrete Fourier transform modulus (in logarithmic scale u 7→ log(1+u)) for
n ∈ {0,1,3,16}. The differences are localized in the high frequencies were the model error is
higher. For n = 0 it is exactly the gradient of the image. We added 126 to the difference images
and multiplied the spectrum modulus by 30 before visualization.
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Figure 5.11: Decay of the difference between the B-spline interpolation of order n ∈ {0, . . . ,16}
and the one of order 16. The comparison is done by computing the RMSE between the central
parts of the images. As the boundary extension choice has no influence we chose the half-
symmetric extension. The average difference for the cubic B-spline is around one grey level and
is three times smaller for order 11.
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(a) Order 1

(b) Order 3

(c) Order 11

(d) Order 15

Figure 5.12: Comparison between resampled images obtained using n∈ {0,1,3,15} and the one
using n = 16. Only the central parts of the resampled image (left) and of the difference image
(center) are shown. The right image is 30 times the (unnormalized) discrete Fourier transform
modulus (in logarithmic scale u 7→ log(1 + u)) of the difference. The affine transformation
y = 50x+ 128 is applied to the difference images before visualization. As the order increases
the resampled image becomes sharper. The interpolation kernel becomes closer to the cardinal
sine so that less high-frequency content is attenuated.
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5.8 Conclusion

In this chapter we presented the theory and practice to perform B-spline interpolation for any
order, in particular in the case of images. It is based on the seminal two-step method proposed
by Unser et al. in 1991 that uses linear filtering and for which the computational error is not
controlled and the boundary extension is fixed.

The two proposed prefiltering algorithms require additional computations to handle correctly
any boundary extension. We prove theoretically and experimentally that the computational er-
rors are controlled (up to dimension two). The first algorithm is general and works for any
boundary extension while the second is applicable under specific assumptions. The global in-
terpolation algorithm remains efficient because the computational cost increases slowly with the
precision (which can be set to the single precision in most of the applications).

In an experimental part we showed that increasing the order of the B-spline interpolation
improves the interpolation quality. When efficiency is not primordial, a high order B-spline
interpolation must be preferred to cubic B-spline interpolation.

In addition, we provide a detailed description, and the corresponding implementation, of
how to evaluate the B-spline kernel and to compute the B-spline interpolator parameters. As a
fundamental application we also provide an implementation of homographic transformation of
images using B-spline interpolation.
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Chapter 6

Consistency of Interpolation Methods:
Definition and Improvements

Abstract

There is no universal procedure for evaluating the quality and performance of an interpo-
lation method. In this chapter, we introduce a new quantity: the consistency measurement.
For a given image, it measures the error after applying successively a transformation, a
crop (removing boundary artefacts) and the inverse transformation. An average over ran-
dom transformations is made to remove the dependency on the transformation. A more
precise measurement discarding very high-frequency artefacts is obtained by clipping the
spectrum of the difference. We also propose new fine-tuned interpolation methods that are
based on the DFT zoom-in and pre-existing interpolation methods. The zoomed version of
an interpolation method is obtained by applying it to the DFT zoom-in of the image. In
the periodic plus smooth version of interpolation methods, the non-periodicity is handled
by applying the zoomed version to the periodic component and a base interpolation method
to the smooth component. In an experimental part, we show that the proposed fine-tuned
methods have better consistency measurements than their base interpolation methods and
that the error is mainly localized in a small high-frequency band. We recommend to use
the periodic plus smooth versions of high order B-spline. It is more efficient and provides
better results than trigonometric polynomial interpolation. In Chapter 10, such a method
will be used for generating synthetic data and for the burst denoising method.
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6.1 Introduction

Interpolation is one of the most useful tools in image processing since the evaluation of an image
at subpixel locations is required in many algorithms. The overall performances are directly
impacted and it is not always possible to neglect the error introduced. For instance, assume the
generation of a dataset involves an interpolation step. Then, the interpolation error has to be
taken into account during the performance evaluation of an algorithm on these synthetic data. In
particular, this will influence the choice of the interpolation method used for generating synthetic
data and for the burst denoising method in Chapter 10.

There is no universal procedure for evaluating the quality and performance of an interpo-
lation method. A non-rigourous first possibility is to have a qualitative approach with a visual
analysis of the results. A second standard procedure consists in interpolating samples for which
an underlying continuous signal is known. However there is no satisfactory and practical model
for real-world images. A third procedure, which does not require a ground truth model, is to
measure the error after applying successively several transformations whose composition is the
identity (for instance a transformation and its inverse). The accuracy of the interpolation method
is not directly measured but this gives an information about the consistency (or stability) of the
interpolation method. For instance, in [123, Section VIII] they apply 15 rotations of angle 2π

15 .
In [69], they perform forward and backward image transformations using optical flow.

Even though the Shannon-Whittaker formula cannot be used in practice, images are still
commonly assumed to be bandlimited (at least theoretically). The interpolation error is inter-
preted as the consequence of the cardinal sine approximation by the interpolation kernel. The
Fourier transform of the kernel is, in general, a smooth approximation of the Nyquist domain
indicator function [46, 123]. In practice, for finite images, the Shannon-Whittaker interpolate
becomes a trigonometric polynomial when the bandlimited assumption is made along with a
periodic extension [1]. As shown in Chapter 3, trigonometric polynomial interpolation is com-
patible with DFT-based computations and can be used in practice. It provides high quality
results because it does not introduce spectral attenuations or aliasing in the high-frequencies.
As pointed out in [1], it is possible to improve the performance of interpolation methods using
a DFT zoom-in i.e. an upsampling by trigonometric polynomial interpolation. However, the
periodic assumption is not compatible in general with the image content and this may intro-
duce undesirable ringing artefacts. In [84], the periodic plus smooth decomposition is applied
for handling the non-periodicity during the up-sampling of images. The periodic component is
upsampled using a DFT zoom-in while the smooth component is interpolated by bilinear inter-
polation.

In this chapter, we introduce a new quantity for evaluating the interpolation method quality:
the consistency measurement. For a given image and a geometric transformation, the error after
applying successively the transformation, a crop (removing boundary artefacts) and the inverse
transformation is measured. The consistency measurement is obtained by averaging the error
over random transformations. A more precise measurement discarding very high-frequency
artefacts is obtained by clipping the spectrum of the difference. We also propose new fine-
tuned interpolation methods that are based on the DFT zoom-in and pre-existing interpolation
methods. The zoomed version of an interpolation method is obtained by applying it to the
DFT zoom-in of the image. In the periodic plus smooth version of interpolation methods, the
non-periodicity is handled by applying the zoomed version to the periodic component and a
base interpolation method to the smooth component. In an experimental part, we show that the
proposed fine-tuned methods have better consistency measurements than their base interpolation
methods and that the error is mainly localized in a small high-frequency band.

This chapter is organized as follows. First, the consistency measurements are defined in
Section 6.2. Then, the new fine-tuned methods are introduced in Section 6.3. Finally, the per-
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formances of these methods are experimentally evaluated in Section 6.4.

6.2 Consistency Measurements of Interpolation Methods

In the rest of this chapter, u denotes a real-valued image of size M×N and ϕ ∈ σ(R2) is a geo-
metric transformation. The quantity u(x,y) denotes the interpolated value at location (x,y) ∈R2

of u obtained with an interpolation method and a boundary extension (specified in the context).
The transformation of u by ϕ is noted uϕ and is defined by

∀(k, l) ∈ΩM,N , (uϕ)k,l = u(ϕ−1(k, l)). (6.1)

Two variants of the consistency measurements of an interpolation method are introduced
in Section 6.2.2. But first, spectrum clipping is presented in Section 6.2.1 since one of the
consistency measurements relies on it.

6.2.1 Spectrum Clipping

Let r ∈ [0,1]. The spectrum of the image v of size M×N is clipped with ratio r as follows. For
L a positive integer, denote by cL,r the piece-wise constant function defined by

cL,r(x) =

{
1 |x| ≤ (1− r)L/2,
0 |x|> (1− r)L/2.

(6.2)

The image vc, whose spectrum corresponds to the spectrum of v clipped with ratio r, is the image
of size M×N defined by

FM,N(vc)m,n = FM,N(v)m,ncM,r(m)cN,r(n). (6.3)

Spectrum clipping can be seen as a (perfect) lowpass filtering operation. Along each dimension
only the frequencies lower or equal to (1− r)π are kept. The coefficient FM,N(v)m,n is killed if
and only if 2πm

M > (1−r)π or 2πn
N > (1−r)π if and only if cM,r(m)cN,r(n) = 0. Note that because

of the Parseval Theorem, spectrum clipping reduces the energy (i.e. the root mean square) of the
images.

To simplify, the dependency of vc on r is skipped in the notation. For r = 0 spectrum clipping
has no impact i.e. vc = v. For r = 1, vc is the constant image corresponding to the mean of v. An
example of spectrum clipping with r = 5% is shown in Figure 6.1.

6.2.2 Definition and Evaluation

Let δ be a non-negative integer that is assumed to be small with respect to the size of the image
(e.g. δ = 20). Denote by Cδ the crop operator of size δ so that Cδ(u) is the image of size
(M−2δ)× (N−2δ) verifying

(Cδ(u))k,l = uk+δ,l+δ. (6.4)

The image ũ(ϕ) = ũ(ϕ,δ) is defined as the image of size (M−2δ)× (N−2δ) verifying

ũ(ϕ) =
(
Cδ(uϕ)

)
ϕ−1 . (6.5)

The image ũ(ϕ) represents the reconstruction of the image u after successively applying the
transformation ϕ and its inverse ϕ−1. For δ = 0, ũ(ϕ) = ũ(ϕ,0) = (uϕ)ϕ−1 . For δ > 0, the
transformation ϕ−1 is applied to the cropped transformed image Cδ(uϕ). The aim of the crop is
to get rid of boundary artefacts introduced during the first transformation.
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Figure 6.1: Example of spectrum clipping using r = 5% on the RubberWhale image. Only
details of the images are shown in (a), (b) and (e). The difference (e) between (a) and (b) is not
visible to the naked eye. The spectrums in (c) and (d) correspond to the unnormalized discrete
Fourier transform in logarithmic scale u 7→ log(1+u). The root mean square over the channels
is shown in (c)-(d)-(e). The RMSE between v and vc is approximately 0.80. The energy (i.e the
root mean square) of v is around 143 so that the ratio of energy removed is approximately of
0.6%.

The difference image DI(ϕ)=DI(ϕ,u,δ) is defined as the image of size (M−4δ)×(N−4δ)
verifying

DI(ϕ) =Cδ(ũ(ϕ))−C2δ(u). (6.6)

DI(ϕ) is nothing but the cropped difference image between the reconstructed image ũ(ϕ) and the
input image u. Here, the aim of the crop is to prevent from considering the boundary artefacts
introduced during the second transformation.

Consistency measurement for a transformation. The consistency measurement for the trans-
formation ϕ, noted CM (ϕ), is defined as the `2 energy of the difference image DI(ϕ). It is given
by

CM (ϕ)2 =
1

(M−4δ)(N−4δ)

(M−1−4δ)

∑
k=0

(N−1−4δ)

∑
l=0

|DI(ϕ)k,l|2. (6.7)
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For δ = 0, it corresponds to the RMSE between the reconstructed image ũ(ϕ) and u. Note that
to simplify the dependencies on the image u, the interpolation method and δ are not specified.

Clipped consistency measurement for a transformation. A variant is obtained by replacing
DI(ϕ) by its clipped version DI(ϕ)c. The spectrum clipping of DI(ϕ) is done with ratio r = 5%
as described in Section 6.2.1. This variant is called the clipped consistency measurement for the
transformation ϕ and is denoted by CM c

(ϕ). Both measurements are linked by the inequality
CM c

(ϕ)≤ CM (ϕ) by Parseval’s theorem.

Consistency measurements. The quantity CM (ϕ) highly depends on the transformation ϕ.
First, the dependency is reduced by considering transformations of the same type (e.g. trans-
lations, affinities or homographies) that are moderate i.e. close to the identity. Secondly, it is
reduced by averaging over several random transformations as follows. Consider a random list
(ϕi)1≤i≤Ntransf (e.g. Ntransf = 1000) of moderate transformations of the same type. The consis-
tency measurement, noted CM , is defined as the average of the consistency measurements over
the transformations ϕi,

CM =
1

Ntransf

Ntransf

∑
i=1

CM (ϕi). (6.8)

It is clear that CM is a random variable whose value depends on the random transformations
(ϕi)1≤i≤Ntransf (and the way they are generated) but for Ntransf large enough it should be close
enough to the expected value. The clipped variant CM c is naturally defined by using the
clipped measure in (6.8). The evaluation of the consistency measurements is summarized in
Algorithm 6.1.

Algorithm 6.1: Evaluation of the consistency measurements
Input : An image u, a sequence of transformations (ϕi)1≤i≤Ntransf , a non-negative integer

δ, an interpolation method and a boundary condition
Output: The consistency measures CM and CM c

1 for i ∈ {1, . . . ,Ntransf} do
2 Compute Cδ(uϕi

) using the interpolation method and the boundary condition
3 Compute ũ(ϕi) =

(
Cδ(uϕi

)
)

ϕ
−1
i

using the interpolation method and the boundary
condition

4 Compute the difference image DI(ϕi) =Cδ(ũ(ϕi))−C2δ(u)
5 Compute the clipped difference image DIc(ϕi) with r = 5% as described in

Section 6.2.1
6 Compute the consistency measurements CM (ϕi) and CM c

(ϕi) for the
transformation ϕi using (6.7) and its clipped variant

7 Compute the consistency measurements CM and CM c by averaging as in (6.8)

6.3 Fine-tuned Interpolation Methods

In this section fine-tuned interpolation methods are built from pre-existing methods, which are
called "base" methods. They rely on the DFT zoom-in i.e. the upsampling by trigonometric
polynomial interpolation. In the following we use the trigonometric polynomial interpolator in
real convention. See Chapter 3 for more details.
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6.3.1 Zoomed Version of Interpolation Methods

As pointed out in [1], it is possible to improve the performance of interpolation methods using
a DFT zoom-in. Consider a base interpolation method and let us describe the corresponding
zoomed version. Let λ ≥ 2 be an integer representing a zoom factor and denote by uλ the
DFT zoom-in of u by factor λ. The interpolate of u using the zoomed method is defined as
the rescaling by factor 1

λ
of the interpolate of uλ using the base method. In other words, for

(x,y) ∈ R2, the interpolated value u(x,y) is given by

u(x,y) = uλ (λ(x,y)) (6.9)

where uλ is interpolated at location λ(x,y) using the base interpolation method. The geometric
transformation of an image using a zoomed interpolation method is described in Algorithm 6.2.

Algorithm 6.2: Transformation of an image using a zoomed interpolation method
Input : An image u of size M×N, a zoom factor λ, a base interpolation method, a

boundary extension and a transformation ϕ

Output: A transformed image uϕ

1 Compute the locations
{

ϕ−1(k, l)
}
(k,l)∈ΩM,N

2 Compute uλ the DFT zoom-in of u by factor λ

3 Compute (uϕ)k,l = uλ(λϕ−1(k, l)) on ΩM,N using the base interpolation method with the
boundary extension

The zoomed version is computationally less efficient than its base interpolation method since
it requires to zoom the image and to compute the representation of the zoomed image for the base
interpolation method. As shown in Section 6.4, the zoomed versions are more consistent than
their base methods. Intuitively, they are closer to the discrete Shannon interpolation method and
the base interpolation method is applied to a well-sampled image. However the DFT zoom-in
relies on trigonometric polynomial interpolation and assumes a periodic extension, which may
not be adapted to the image content and may introduce ringing artefacts.

6.3.2 Periodic plus Smooth Decomposition Version of Interpolation Methods

The periodic plus smooth decomposition of [84] is useful for handling the non-periodicity of
images [1, 17, 43]. The image u is decomposed into a periodic component p, which is almost
periodic, and a smooth component s, which varies slowly. The images p and s (of size M×N) are
linked by the relation u= p+s and p has the same mean as u. More precisely, the decomposition
is characterized and computed as follows. Denote by v1 and v2 the two images of size M×N
defined by

(v1)k,l =

{
u(M−1− k, l)−u(k, l) if k = 0 or k = M−1,
0 otherwise,

(6.10)

and

(v2)k,l =

{
u(k,N−1− l)−u(k, l) if l = 0 or l = N−1,
0 otherwise.

(6.11)

Set v = v1 + v2. Denote by ∆ the discrete Laplacian operator that associates to an image w of
size M×N the image ∆w, of the same size, defined by

∆w = Klap ?w (6.12)
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where ? represents the (M,N)-periodic convolution operator and

Klap =

0 1 0
1 −4 1
0 1 0

 . (6.13)

Then, the periodic component p of u is defined as the unique solution of the discrete Poisson
equation {

∆p = ∆u− v,
mean(p) = mean(u).

(6.14)

In practice the decomposition is obtained using DFT-based computations. Indeed, the DFT of
the smooth component s is given by FM,N(s)0,0 = 0 (zero mean) and

∀(m,n) ∈ Ω̂M,N \ (0,0), FM,N(s)m,n =
FM,N(v)m,n

2cos
(2πm

M

)
+2cos

(2πn
N

)
−4

. (6.15)

An example of decomposition is shown in Figure 6.2. The cross structure in the spectrum of u,
which is caused by its non-periodicity, is not visible in the spectrum of p.

In [84], this periodic plus smooth decomposition is used to up-sample images. More gener-
ally, the decomposition can be used to improve interpolation methods as follows. The periodic
component p is almost periodic so that the periodic extension of its DFT zoom-in does not
introduce indesirable ringing artefacts. It is interpolated using a zoomed version of an inter-
polation method with periodic extension. The smooth component s varies slowly and is easily
interpolated by a base interpolation method with any extension. Each component is interpolated
independently, possibly using different base interpolation methods, and the results are added
to get the interpolated values. The transformation of an image using the periodic plus smooth
version of interpolation methods is described in Algorithm 6.3. As the periodic plus smooth
decomposition is computed using DFT-based computations (see (6.15)), in practice the DFT
zoom-in of p is obtained directly from FM,N(p), which saves the computations of a DFT and an
iDFT.

Algorithm 6.3: Transformation of an image using the periodic plus smooth version of
interpolation methods

Input : An image u, a zoom factor λ, two base interpolation methods, a boundary
condition and a transformation ϕ

Output: A transformed image uϕ

1 Compute the periodic plus smooth decomposition p+ s of u using (6.15)
2 Compute the transformed periodic component p

ϕ
using Algorithm 6.2 with factor λ and

the first base interpolation method with periodic extension
3 Compute the transformed smooth component sϕ using the second base interpolation

method and the boundary condition
4 Compute uϕ = p

ϕ
+ sϕ
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Figure 6.2: Periodic plus smooth decomposition u = p+ s of the Lena image. The spectrums in
(b), (d) and (f) correspond to the unnormalized discrete Fourier transform in logarithmic scale
u 7→ log(1+u). The content of the periodic component p is almost periodic and is similar to the
input except near the image boundaries. The smooth component s varies slowly and is close to
0 in the center of the image. The cross structure in the spectrum of u, which is caused by the
non-periodicity, is not visible in the spectrum of p.
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6.4 Experiments

In this experimental part, interpolations methods are compared in terms of consistency and effi-
ciency. The interpolation methods used are the following:

• Five base interpolation methods: trigonometric polynomial interpolation (in real conven-
tion), bicubic interpolation and B-spline interpolations of order 1, 3 and 11. They are
noted respectively tpi, bic, spline1, spline3 and spline11. Note that spline1 corresponds to
the so-called bilinear interpolation.

• The zoomed versions, with zoom factor λ = 2, of the base interpolation methods (except
for tpi because by construction the DFT zoom-in is useless). The suffix z2 is added to the
corresponding base method.

• The periodic plus smooth versions, with zoom factor λ = 2, of several pairs of interpo-
lation methods. The notation of the method starts with p+s, then the second term refers
to the interpolation method used for the periodic component and an eventual third term
corresponds to the interpolation method used for the smooth component (if different from
the method used for the periodic component). Note that the DFT zoom-in is not applied
for the p+s-tpi-*** methods.

For example the periodic plus smooth version of the B-spline interpolation of order 11 and the
bicubic interpolation is noted p+s-spline11-bic. The half-symmetric extension is used for all the
methods except the tpi for which the use of the periodic extension is required. The performance
evaluation was made using the crop size δ = 20, so that the four classical boundary extensions
proposed in Table 5.1 provide the same results.

The conclusions on the order of the methods are clear-cut and do not depend on the choice
of the image. The image u considered is the RubberWhale image, which is a generic color image
of size 584×388 taken from the Middlebury database [10]. Only details on a small part of the
images are shown. For the difference and spectrum images, the displayed images correspond to
the root mean square over the channels. The computations were made using an Intel(R) Xeon(R)
CPU E5-2650 @ 2.60GHz.

6.4.1 Evaluation of the Consistency Measurements

In this section, the consistency measurements are evaluated for the different interpolation meth-
ods using Algorithm 6.1 with Ntransf = 1000 moderate random homographies. The homographies
were generated by moving the four corners of the image. More precisely we used Algorithm 6.4
with L = 1.

Algorithm 6.4: Generation of a random homography
Input : A size M×N and an integer L > 0.
Output: A random homography h.

1 for i ∈ {1,2,3,4} do
2 Generate a couple of real numbers Di according to the uniform law in [−L,L]2

3 Define C1 = (0,0), C2 = (M−1,0), C3 = (0,N−1) and C4 = (M−1,N−1) the four
corners and C′i =Ci +Di the four transformed corners

4 Compute the unique homography h corresponding to the four pairs (Ci,C′i)

The results are presented in Table 6.1. It contains the two consistency measurements for the
considered interpolations methods and the computation time, in seconds, for all the transforma-
tions. Therefore the displayed time can also be interpreted as the average time, in milliseconds,
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required to apply a transformation and its inverse. The B-spline interpolation of order 3 was
more efficiently implemented than the bicubic one, which explains why the computation time is
lower while the complexity is higher.

CM CM c Time (s)
spline1 2.53480 2.50077 225
bic 1.18612 1.13573 336
spline3 0.75702 0.67967 283
spline11 0.35355 0.19626 796
tpi 0.20564 0.06345 4767
spline1-z2 0.86002 0.81810 1308
bic-z2 0.25140 0.15072 1425
spline3-z2 0.20585 0.06816 1407
spline11-z2 0.20564 0.06345 2053
p+s-spline1 0.84660 0.81640 2039
p+s-spline1-bic 0.84660 0.81640 2159
p+s-bic 0.18008 0.13811 2355
p+s-spline3 0.09417 0.03007 2199
p+s-spline3-bic 0.09417 0.03007 2259
p+s-spline11 0.08785 0.01506 3360
p+s-spline11-bic 0.08785 0.01506 2907
p+s-tpi-spline1 0.08785 0.01506 5865
p+s-tpi-bic 0.08785 0.01506 5960
p+s-tpi-spline3 0.08785 0.01506 5926
p+s-tpi-spline11 0.08785 0.01506 6443

Table 6.1: Evaluation of consistency measurements for the RubberWhale image and Ntransf =
1000 random homographies. A crop of size δ = 20 was used so that the results do not depend
on the boundary extension choice. The displayed time corresponds to the computation time,
in seconds, for all the transformations. This can also be interpreted as the average time, in
milliseconds, required to apply a transformation and its inverse.

Base interpolation methods. Except for the tpi, the consistency measurements for the base in-
terpolation methods are the worst and spectrum clipping did not reduce significantly the value.
The measurements for the tpi are better and the errors are mainly localized in the high frequen-
cies since the clipped consistency measure is way lower. The resulting ranking is tpi, spline11,
spline3, bic, spline1. In particular increasing the B-spline order leads to better results as already
seen in Chapter 5.

Zoomed versions. The zoomed versions have better consistency measurements than their corre-
sponding base methods but are slower (by a factor between 3 and 8). As the clipped consistency
measurement is significantly lower (except for the spline1-z2), we deduce that the error is mainly
localized in the high frequencies. The zoomed methods are closer to the tpi. In particular, using
spline11-z2 provides almost the same results as the tpi but is two times faster.

Periodic plus smooth versions. The periodic plus smooth versions have the best consistency
measurements. This is due to the proper handling of the non-periodicity during the DFT zoom-
in. The base method used for interpolating the zoomed periodic component has to be of high
order (here tpi or spline11). The method used for the smooth component can be any base method
(except the tpi) since it varies smoothly and is easily interpolable. No distinction can be made in
the results. Indeed, the best results are obtained using p+s-spline11-*** or p+s-tpi-*** methods.
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The p+s-spline11-*** methods are way more efficient (three to four times here) and should be
preferred.

Clipped consistency measurement. As already remarked above, for the fined-tuned methods
the clipped consistency measurement CM c is significantly lower than the non-clipped consis-
tency measurement CM . The amount of energy removed from u only represents 0.6% of its total
energy. This means that the error is mainly localized in the high frequencies for the fined-tuned
methods but not for the base methods (except the tpi).

6.4.2 Transformation by a Homography

In this section, the analysis of Section 6.4.1 will be confirmed visually by considering the trans-
formation by an arbitrary homography. We define the homography ϕ by moving respectively
the top-left corner, the top-right corner, the bottom-left and the bottom-right corner by (1,1),
(−1,−1), (0,0) and (1,1). It is represented by the matrix

Hϕ =

 0.990261 −0.001957 1
−0.0039025 0.9922065 1
−1.14219.10−5 −1.14219.10−5 1

 . (6.16)

The transformed images uϕ and ũ(ϕ) were computed using an interpolation method with half-
symmetric extension. The methods considered were bic, spline11, tpi, bic-z2, spline11-z2, p+s-
bic, p+s-spline11 and p+s-tpi-spline11.

The difference images DI(ϕ) are shown in Figure 6.3. For the base methods bic and spline11,
we recognize the structure of the image. It is also the case for the bic-z2 and p+s-bic methods i.e.
the fine-tuned methods using bicubic interpolation on the zoomed image. For the tpi, spline11-
z2, p+s-spline11 and p+s-tpi-spline11 methods the difference is mainly composed of typical
high frequency structures.

The spectra of the difference images are shown in Figure 6.4. For the bic, bic-z2 and p+s-
bic methods i.e. the methods where the possibly zoomed images are interpolated by bicubic
interpolation, the spectrum of the difference is high everywhere except in a small low-frequency
region. For the spline11 method the corresponding region is larger. This explains why the
structure of the image is visible in the difference image for these methods in Figure 6.3. For
the tpi and spline11-z2 methods, the spectrum has non-negligible values in a band around the
Nyquist frequency and in a vertical and horizontal cross structure. The cross structure is also
visible in the bic-z2 method and is due to the incorrect handling of the non-periodicity. Indeed
it disappears in the p+s-spline11 and p+s-tpi-spline11 methods.

The difference images DI(ϕ)c with spectrum clipping of ratio r = 5% are shown in Fig-
ure 6.5. Only the results for the tpi, spline11-z2, p+s-spline11 and p+s-tpi-spline11 methods are
presented because in the other cases the clipping has no significative impact on the difference
images. For the considered methods, the structure of the input image is visible while it was
not before clipping (see Figure 6.3). The error is clearly lower when the periodic plus smooth
decomposition is used.

6.4.3 Propagation of the Error

In this section, we evaluate the propagation of the error after successive direct and inverse trans-
formations. Let (ϕi)1≤i≤Ntransf be random geometric transformations. Define the images ui for
0≤ i≤ Ntransf by {

u0 = u
ui+1 =

(
(ui)ϕi+1

)
ϕ
−1
i+1

0≤ i≤ Ntransf−1.
(6.17)
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The RMSE, taken at a distance δ = 20 of the boundary, between the ui and u represents the
error after i successive direct and inverse transformations. The fundamental difference with
the consistency measurement is that no crop is done between the transformations. The clipped
variant of this error is obtained by clipping the spectrum of the difference in a band of b = 10
pixels.

The interpolation methods considered are the same as in Section 6.4.2 (with half-symmetric
extension). The evolutions of the errors using up to Ntransf = 50 random homographies are
shown in Figure 6.6. Globally the errors tend to increase with the number of transformations.
To prevent an important increase of the error p+s-spline11-*** or p+s-tpi-*** methods must be
used. The curves of p+s-tpi-spline11 and p+s-spline11 are indistinguishable since the results
are almost the same. Otherwise a large part of the spectrum is not well reconstructed: either
because the interpolation method is not able to reconstruct the high frequencies or either because
the non-periodicity is not well handled (this is apparent by the presence of a cross structure in
the difference spectrum). The clipped versions of the error for the tpi, spline11-z2, p+s-spline11
and p+s-tpi-spline11 methods are significantly smaller than the original error. We deduce that
the error is mainly localized in a small high-frequency band.
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Figure 6.3: Difference image DI(ϕ) for various interpolation methods. The geometric trans-
formation ϕ used is the homography defined by the matrix Hϕ in (6.16). The values between
parentheses correspond to (CM (ϕ),CM c

(ϕ)). For bic and spline11, we recognize the structure
of the image. It is also the case for the bic-z2 and p+s-bic methods i.e. the fine-tuned methods
using bicubic interpolation on the zoomed image. For the tpi, spline11-z2, p+s-spline11 and
p+s-tpi-spline11 methods the difference is mainly composed of high frequency structures.
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Figure 6.4: Spectrum of the difference image DI(ϕ) for various interpolation methods. The spectrums
correspond to the unnormalized discrete Fourier transform in logarithmic scale u 7→ log(1+ u). The
geometric transformation used is the homography ϕ defined by the matrix Hϕ in (6.16). The values
between parentheses correspond to (CM (ϕ),CM c

(ϕ)). For the bic, bic-z2 and p+s-bic methods i.e. the
methods where the possibly zoomed images are interpolated by bicubic interpolation, the spectrum of
the difference is high everywhere except in a small low-frequency region. For the spline11 method the
corresponding region is larger. This explains why the structure of the image is visible in the difference
image for these methods in Figure 6.3. For the tpi and spline11-z2 methods, the spectrum has non-
negligible values in a band around the Nyquist frequency and in a vertical and horizontal cross structure.
The cross structure is also visible in the bic-z2 method and is due to the incorrect handling of the non-
periodicity. Indeed it disappears in the p+s-spline11 and p+s-tpi-spline11 methods.
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Figure 6.5: Difference image DI(ϕ)c with spectrum clipping of ratio r = 5% for various interpo-
lation methods. The geometric transformation ϕ used is the homography defined by the matrix
Hϕ in (6.16). The structure of the input image is visible while it was not before clipping (see
Figure 6.3). The error is clearly lower when the periodic plus smooth decomposition is used.
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Figure 6.6: Evolution of the error after successive direct and inverse transformations for various
interpolation methods (with half-symmetric extension). Up to Ntransf = 50 random homogra-
phies are used. For the error with spectrum clipping (bottom), the bic and bic-z2 methods are not
shown since not in the range. The curves of p+s-tpi-spline11 and p+s-spline11 are indistinguish-
able since the results are almost the same. Globally the errors tend to increase with the number
of transformations. The clipped versions of the error for the tpi, spline11-z2, p+s-spline11 and
p+s-tpi-spline11 methods are significantly smaller than the original error. We deduce that the
error is mainly localized in a small high-frequency band. To prevent an important increase of
the error p+s-spline11-*** or p+s-tpi-*** methods must be used.
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6.5 Conclusion

In this chapter, we introduced the consistency measurement of interpolation methods. For a
given image, it measures the error after applying successively a transformation, a crop (removing
boundary artefacts) and the inverse transformation. An average over random transformations is
made to remove the dependency on the transformation. The clipped consistency measurement
is obtained by clipping the spectrum of the difference.

We also proposed new fine-tuned interpolation methods that are based on pre-existing inter-
polation methods. The zoomed version of an interpolation method is obtained by applying it to
the DFT zoom-in of the image. It is closer to the trigonometric polynomial interpolation and has
a better performance but it suffers from artefacts due to the non-periodicity of the image. In the
periodic plus smooth version of interpolation methods, this non-periodicity is handled by apply-
ing the zoomed version to the periodic component and a base interpolation method, possibly of
low order, to the smooth component.

In an experimental part, we have shown that the proposed fine-tuned methods have better
consistency measurements than pre-existing interpolation methods and that the error is mainly
localized in a small high-frequency band. The periodic plus smooth versions should be used to
interpolate images. We recommend to use the periodic plus smooth versions of high order B-
spline (e.g. p+s-spline11-***). It is more efficient and provides better results than trigonometric
polynomial interpolation. In Chapter 10, the p+s-spline11 method will be used for generating
synthetic data and for the burst denoising method.
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Chapter 7

Modified Inverse Compositional
Algorithm

Abstract

This chapter is taken from [16]. First introduced in [8, 122], the inverse compositional algo-
rithm for parametric motion estimation is an improvement of the classical intensity-based
method of Lucas-Kanade [74]. At each step of its iterative scheme it solves a minimiza-
tion problem equivalent to Lucas-Kanade but more efficiently. In this chapter, we introduce
several improvements of the inverse compositional algorithm. We propose an improved
handling of boundary pixels, a different color handling and gradient estimation, and the
possibility to skip scales in the multiscale coarse-to-fine scheme. In an experimental part,
we analyze the influence of the modifications. The estimation accuracy is at least improved
by a factor 1.3 while the computation time is at least reduced by a factor 2.2 for color
images. The modified inverse compositional algorithm will be used in Chapter 8 in the
proposed two-step method for mosaicked images.

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 The Inverse Compositional Algorithm for Parametric Registration . . . . 162

7.2.1 Mathematical Construction . . . . . . . . . . . . . . . . . . . . . . . 163
7.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.3 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2.4 Coarse-to-fine Multiscale Approach . . . . . . . . . . . . . . . . . . 167

7.3 Modifications of the Inverse Compositional Algorithm . . . . . . . . . . . 169
7.3.1 Grayscale Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3.2 Boundary Handling by Discarding Boundary Pixels . . . . . . . . . . 169
7.3.3 Gradient Estimation on a Prefiltered Image . . . . . . . . . . . . . . 171
7.3.4 First Scale of the Gaussian Pyramid . . . . . . . . . . . . . . . . . . 172
7.3.5 Modified Inverse Compositional Algorithm . . . . . . . . . . . . . . 172

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.2 Influence of the Modifications . . . . . . . . . . . . . . . . . . . . . 176
7.4.3 Comparison with a SIFT+RANSAC Based Algorithm . . . . . . . . 181

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



162 7–Modified Inverse Compositional Algorithm

7.1 Introduction

First introduced in [8, 122], the inverse compositional algorithm for parametric motion estima-
tion is an improvement of the classical intensity-based method of Lucas-Kanade [74]. At each
step of its iterative scheme it solves a minimization problem equivalent to Lucas-Kanade but
more efficiently. It allows for precomputations and the gradient of the reference image is not
interpolated. The inverse compositional algorithm was studied in more detail in [9]. With the
extension to robust error functions in [11], it becomes less sensitive to outliers. Better precision
for large motions can be obtained with a coarse-to-fine multiscale approach as in [104]. Us-
ing the implementation provided by [104], it can be observed that, for moderate deformations,
this method is faster and more accurate than classical feature-based methods that rely on SIFT
keypoints [72, 97] and the RANSAC algorithm [39].

We claim that the inverse compositional algorithm can be further improved and accelerated
with a correct handling of the boundary values, a different color handling and gradient estima-
tion, and by skipping scales in the multiscale coarse-to-fine scheme. The estimation accuracy is
at least improved by a factor 1.3 while the computation time is at least reduced by a factor 2.2
for color images. In this chapter, we detail the inverse compositional algorithm and analyze the
influence of the proposed modifications. An implementation of the modified algorithm based on
the one of [104] is also provided1.

The chapter is organized as follows. First, we detail the inverse compositional algorithm in
Section 7.2 as it is presented in [104], i.e., with the use of robust error functions and a multiscale
approach. In Section 7.3, we present the proposed modifications that lead to the modified in-
verse compositional algorithm. In the experimental part (Section 7.4) we study and discuss the
influence of the modifications, and we finish with conclusions in Section 7.5.

7.2 The Inverse Compositional Algorithm for Parametric Registra-
tion

Let M,N,C be three positive integers. Define the spatial domain Ω = ΩM,N = {0, . . . ,M−1}×
{0, . . . ,N − 1}. Let I1 and I2 be two images of size M×N with C channels (e.g. C = 1 for
grayscale images and C = 3 for color images). The channels are handled so that, for x ∈ Ω,
I1(x) = (I(1)1 (x), . . . , I(C)

1 (x))T ∈ RC is a vector of length C.
The motion between the two images is assumed to be representable by a parametric motion

model. Denote by Ψ(·;p) : R2→R2 the transformation parametrized by p∈Rn. The parametric
motion estimation problem is to find a motion parameter p? such that

∀x ∈Ω, I1(x)' I2 (Ψ(x;p?)) . (7.1)

There is in practice no equality in (7.1) because, for instance, images contain noise and occlu-
sions may occur. In addition, the motion model in general only approximates the real motion.

Additional hypotheses. In order to apply the inverse compositional algorithm, additional hy-
potheses are made on the set of transformations {Ψ(·;p), p ∈ Rn} and its parametrization.

1. The motion parameter p = 0 corresponds to the identity transformation, i.e. Ψ(x;0) = x
for all x ∈ R2.

2. The set of transformations has a group structure under composition of functions.

3. For all x ∈ R2, the function p ∈ Rn 7→Ψ(x;p) is differentiable at p = 0.

1http://dev.ipol.im/~briand/mInverseCompositional_1.00.zip

http://dev.ipol.im/~briand/mInverseCompositional_1.00.zip
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Table 7.1 lists the typical planar transformations and provides examples of parametrization.
An example of images related by an homographic transformation is proposed in Figure 7.1.

Transform n Parameters - p Matrix - H(p) Jacobian - J(x,y)

Translation 2 (tx, ty)

1 0 tx
0 1 ty
0 0 1

 (
1 0
0 1

)

Euclidean 3 (tx, ty,θ)

cosθ −sinθ tx
sinθ cosθ ty

0 0 1

 (
1 0 −y
0 1 x

)

Similarity 4 (tx, ty,a,b)

1+a −b tx
b 1+a ty
0 0 1

 (
1 0 x −y
0 1 y x

)

Affinity 6 (tx, ty,a11,a12,a21,a22)

1+a11 a12 tx
a21 1+a22 ty
0 0 1

 (
1 0 x y 0 0
0 1 0 0 x y

)

Homography 8 (h11,h12,h13, . . . ,h32)

1+h11 h12 h13
h21 1+h22 h23
h31 h32 1

 (
x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2

)

Table 7.1: Planar transformations in their homogeneous coordinates and their Jacobians.

Figure 7.1: Example of reference image I1 (left) and warped image I2 (right). These are color
images of size 512×512 (i.e. M = N = 512 and L = 3) linked by a homography. The reference
image is generated from the warped image by bicubic interpolation where outside pixel values
are set to 0 (black region).

The inverse compositional algorithm tries to solve the parametric motion problem with an
iterative scheme. Firstly, we start by introducing the mathematical construction on which the
algorithm relies on. Secondly, we detail the inverse compositional algorithm along with all its
parameters. Then, we discuss the influence of the error function. Finally, we present the coarse-
to-fine multiscale approach.

7.2.1 Mathematical Construction

A good candidate for the parameter p∗ in (7.1) is a minimizer of the energy

p ∈ Rn 7→ E0(p) = ∑
x∈Ω

ρ
(
‖I2(Ψ(x;p))− I1(x)‖2) (7.2)

where ρ : R+→ R+ is an increasing and derivable function called the error function whose in-
fluence is discussed in Section 7.2.3. As there is in general no explicit expression for computing
a minimizer, it is approximated using an iterative scheme.
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At a given step j ≥ 1, the idea of the inverse compositional algorithm is to refine the cur-
rent estimated transformation Ψ(·;p j−1) with an inverted incremental transformation (hence the
name of the algorithm) Ψ(·;∆p j)

−1, i.e.,

Ψ(·;p j) = Ψ(·;p j−1)◦Ψ(·;∆p j)
−1. (7.3)

The ideal choice for the increment ∆p j would be a minimizer of the incremental energy

∆p ∈ Rn 7→ E1(∆p;p j−1) = ∑
x∈Ω

ρ
(
‖I2(Ψ(x;p j−1))− I1(Ψ(x;∆p))‖2) (7.4)

as it would give p j = p? with (7.3) under the assumption that (7.1) holds. But, as for the original
energy E0, such a minimizer cannot be computed and can only be approximated. Therefore the
energy E1 is approximated as follows using two successive first order Taylor expansions. Let
x ∈Ω.

First approximation. A first order Taylor expansion of the function ∆p ∈Rn 7→ I1(Ψ(x;∆p))
around 0 gives

I1(Ψ(x;∆p))' I1(x)+∇IT
1 (x)J(x)∆p (7.5)

where

J(x) =
∂Ψ

∂p
(x;0) ∈M2,n (7.6)

is the Jacobian matrix of the model at x and ∇I1(x) =
(

∂I1
∂x (x),

∂I1
∂y (x)

)T
∈M2,C is the gradient

of I1 at x. The Jacobian matrices J of some typical planar transformations can be found in
Table 7.1. For C > 1, ∇I1 actually corresponds to the transposed of the Jacobian matrix of I1 but
to simplify we keep the gradient notation. Let us set

G(x) = ∇IT
1 (x)J(x) ∈ML,n, (7.7)

and denote DI the difference image defined by

DI(x) = DI(x;p j−1) = I2(Ψ(x;p j−1))− I1(x) ∈ RC. (7.8)

Using (7.5) in (7.4), we define the approximated incremental energy

∆p ∈ Rn 7→ E2(∆p;p j−1) = ∑
x∈Ω

ρ
(
‖DI(x)−G(x)∆p)‖2) . (7.9)

Second approximation. A first order Taylor expansion of the function t ∈R 7→ ρ(‖DI(x)‖2+
t) around 0 gives

ρ(‖DI(x)‖2 + t)' ρ(‖DI(x)‖2)+ρ
′(‖DI(x)‖2)t. (7.10)

Using the expansion

‖DI(x)−G(x)∆p)‖2 = ‖DI(x)‖2−2∆pT G(x)T DI(x)+∆pT G(x)T G(x)∆p (7.11)

and t =−2∆pT G(x)T DI(x)+∆pT G(x)T G(x)∆p in (7.10), we obtain the approximation

ρ(‖DI(x)−G(x)∆p)‖2)' ρ(‖DI(x)‖2)+ρ
′(‖DI(x)‖2)

(
−2∆pT G(x)T DI(x)+∆pT G(x)T G(x)∆p

)
.

(7.12)
To simplify we denote ρ̃′(x) = ρ̃′(x;p j−1) = ρ′(‖DI(x)‖2) ∈ R+. We define the Hessian matrix
H ∈Mn and the vector b ∈ Rn by

H = H(p j−1) = ∑
x∈Ω

ρ̃
′(x) ·G(x)T G(x), (7.13)
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b = b(p j−1) = ∑
x∈Ω

ρ̃
′(x) ·G(x)T DI(x). (7.14)

Using (7.12), we define a second approximated incremental energy

∆p ∈ Rn 7→ E3(∆p;p j−1) = ∑
x∈Ω

ρ(‖DI(x)‖2)−2∆pT b+∆pT H∆p. (7.15)

Assuming that this quadratic form is non-degenerate (i.e. that the symmetric matrix H is positive
definite), we define the increment ∆p j as its unique minimizer that is given by

∆p j = H−1b. (7.16)

7.2.2 Algorithm

In practice, the gradient of I1 is estimated using the central differences scheme, i.e. for x =
(x,y) ∈Ω,

∂I1

∂x
(x) ' 1

2
(I1(x+1,y)− I1(x−1,y)) , (7.17)

∂I1

∂y
(x) ' 1

2
(I1(x,y+1)− I1(x,y−1)) . (7.18)

The difference image DI defined in (7.8) requires the values I2(Ψ(x;p j−1)), which are computed
by bicubic interpolation [46]. Neumann boundary conditions are adopted for both, the gradient
estimation, and the interpolation. As in [104], when I2(Ψ(x;p j−1)) has to be evaluated outside
of the domain [0,M− 1]× [0,N− 1] its values are arbitrarily set to 0. This may be useful for
simulated images as the one shown in Figure 7.1 but it is not adapted to real data. In Section 7.3.2
we discuss the impact of this choice and propose a strategy to avoid introducing bias.

Given an initialization p0 ∈ Rn, the p j’s can be computed using (7.3) and (7.16), and are
expected to be close to a minimizer of the original energy E0 after enough iterations. The
iterations are stopped as soon as the increment ∆p j is small enough. More precisely, for a given
threshold ε > 0, the stopping criterion is

‖∆p j‖ ≤ ε. (7.19)

Because the sequence (p j) j∈N is not guaranteed to converge, a maximum number of iterations
jmax is also set. When the error function ρ depends on a threshold parameter we adjust it during
the iterations as explained in Section 7.2.3. The one-scale inverse compositional algorithm is
shown in Algorithm 7.1.

This algorithm is an improvement of the Lucas-Kanade method [74] since at each step of the
incremental refinement it solves an equivalent minimization problem but more efficiently [8]. As
∇I1, G, and GT G do not depend on p j−1 they are precomputed before the incremental refinement.
The Hessian H can also be precomputed for the L2 error function (see Section 7.2.3). Note that
precomputing is memory greedy and may be replaced by in-place computations. For instance the
precomputation of GT G requires to store n2MN values. In addition, the gradient of the reference
image is not interpolated during the incremental refinement.

Note that contrast change may deteriorate the algorithm performance since it is not taken into
account in (7.1). It can be handled by equalizing the input image contrasts, for instance using
the Midway Image Equalization algorithm [28, 50] or a simpler mean equalization method.
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Algorithm 7.1: One-scale inverse compositional algorithm
input : I1, I2, p, ε, jmax, ρ

output: Motion parameter p ∈ Rn

// Precomputations
1 Estimate the gradient ∇I1 as in (7.17) and (7.18) using central differences with constant

boundary condition.
2 Compute the Jacobian matrix J as in (7.6) (see Table 7.1 for typical planar

transformations).
3 Compute G = ∇IT

1 J.
4 Compute GT G.
// Incremental refinement

5 Initialize p0 = p and j = 1.
6 repeat
7 for x ∈Ω do
8 if Ψ(x;p j−1) ∈ [0,M−1]× [0,N−1] then
9 Compute I2(Ψ(x;p j−1)) by bicubic interpolation with constant boundary

condition.
10 else
11 Set I2(Ψ(x;p j−1)) = 0

12 Compute DI(x) = I2(Ψ(x;p j−1))− I1(x).

13 Update the threshold parameter of the error function ρ as explained in Section 7.2.3.
14 Compute ρ̃′ = ρ′(‖DI‖2).
15 Compute the vector b = ∑x∈Ω ρ̃′(x) ·G(x)T DI(x).
16 Compute the Hessian H = ∑x∈Ω ρ̃′(x) ·G(x)T G(x) and invert it.
17 Compute ∆p j = H−1b.
18 Ψ(·;p j)←Ψ(·;p j−1)◦Ψ(·;∆p j)

−1.
19 j← j+1.
20 until j > jmax or ‖∆p j−1‖ ≤ ε;
21 Return p = p j.

7.2.3 Error Function

The influence of the error function ρ on the model estimation is only determined by its variations,
i.e., its derivative ρ′ through the weighting by ρ′(‖DI(x)‖2) in (7.13) and (7.14). In theory, any
increasing and derivable function can be chosen as the error function but in the following we
only consider the L2 error function, for which the computations are simplified, and the robust
error functions, for which the model estimation is robust to outliers. Note that the method can
be extended to error functions that are derivable almost everywhere by arbitrarily choosing a
representative of the derivative. In particular, it allows to use the truncated L2 error function.

L2 error function. The error function originally considered in [8] was the identity function
ρ(s)= s, which results in an L2 error in (7.2). It has the advantage of having a constant derivative
ρ′ = 1 so that the Hessian H, defined in (7.13), and its inverse can be precomputed before the
incremental refinement. Another theoretical advantage is that in Section 7.2.1 only one first
order Taylor expansion is necessary and E2 = E3. However, as it gives the same weight to every
pixel, the model estimation is not robust to outliers.

Robust error function. We call robust error function [11, 104] an error function that reduces
the influence of high errors in the model estimation. Typically, it is the case when ρ′ is bounded
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and ρ′(s) −→
s→+∞

0. The model estimation using a robust error function is more robust to outliers

because they have less influence. In particular, it allows to deal with problems like occlusions,
noise, local brightness changes or spurious motions. Typical robust error functions considered
in [104] are given in Table 7.2. Note that they all depend on a threshold parameter λ > 0, which
controls the variation of the error function, i.e., the influence of outliers. A small value limits
the influence of pixels with a high error while a large value means that all the pixels tend to have
the same weighting.

Selection of the threshold parameter. In Algorithm 7.1, when the error function depends
on a threshold parameter that is not specified by the user, it is initialized with a large value λ0
and then geometrically reduced during the incremental refinement. This strategy successively
reduces the influence of outliers, which are gradually eliminated. In practice, at step j of the
incremental refinement we use the parameter λ j = max(0.9 jλ0,5), where λ0 = 80.

7.2.4 Coarse-to-fine Multiscale Approach

The two approximations in Section 7.2.1 are only valid under the assumption that ∆p is small.
Therefore, in order to estimate large displacements, a coarse-to-fine multiscale approach is used.

Gaussian pyramid of an image. Let I be an image, Nscales be the number of scales in the
pyramid and η ∈ (0,1) be the downsampling factor. For s ∈ {0, . . . ,Nscales− 1} we note Is the
image of the pyramid at scale s. The Gaussian pyramid is recursively computed for s = 1 to
Nscales−1 from I0 = I by

Is(x) =
(
Gσ ∗ Is−1)( 1

η
x). (7.20)

In order to avoid aliasing and to reduce the noise, the images are smoothed with a Gaussian
kernel of standard deviation

σ = σ(η) = σ0

√
1

η2 −1, (7.21)

where σ0 = 0.6 is found empirically in [79]. After the convolution (which is computed by
applying a discrete kernel with finite support and using the whole-symmetric boundary condi-
tion [46]), the images are resampled using bicubic interpolation with a step 1

η
. In practice, the

number of scales Nscales is adjusted so that the coarsest scale image is greater than 32 pixels in
the shortest dimension. Thus, the maximal number of scales is

Nmax
scales = 1+

[
log(min(M,N)

32 )

− log(η)

]
. (7.22)

Coarse-to-fine approach. The estimation of the motion between I1 and I2 using the mul-
tiscale approach is done as follows. First, the two Gaussian pyramids (Is

1)0≤s≤Nscales−1 and
(Is

2)0≤s≤Nscales−1 are computed as explained in the previous paragraph. Assuming that the im-
ages share a large common part, the motion is initialized at the coarsest scale s = Nscales−1 as
pNscales−1 = 0 (i.e., the identity transformation) and is estimated using the one-scale inverse com-
positional algorithm (Algorithm 7.1). Then the estimation is refined in the following finer scales.
To transfer the motion parameter ps at scale s to the motion parameter ps−1 at scale s− 1, the
transformation is updated according to the parametrization. Update rules for the parametriza-
tions of planar transformations proposed in Table 7.1 are presented in Table 7.3. The multiscale
inverse compositional algorithm is shown in Algorithm 7.2.
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Table 7.2: Example of error functions. Except for the L2 error function, they are all robust error
functions depending on a threshold parameter λ. The curves correspond to λ = 5.



7.3–Modifications of the Inverse Compositional Algorithm 169

Transform ps−1 ps

Translation (tx, ty) 1
η
(tx, ty)

Euclidean (tx, ty,θ) ( 1
η

tx, 1
η

ty,θ)
Similarity (tx, ty,a,b) ( 1

η
tx, 1

η
ty,a,b)

Affinity (tx, ty,a11,a12,a21,a22) ( 1
η

tx, 1
η

ty,a11,a12,a21,a22)

Homography (h11,h12,h13,h21,h22,h23,h31,h32) (h11,h12,
1
η

h13,h21,h22,
1
η

h23,ηh31,ηh32)

Table 7.3: Update rule in the coarse-to-fine scheme for the parametrizations of planar transfor-
mations proposed in Table 7.1.

Algorithm 7.2: Multiscale inverse compositional algorithm
input : I1, I2, ε, jmax, ρ, Nscales, η

output: Transformation p ∈ Rn

1 Create a Gaussian pyramid of images Is
1, Is

2 for s = 0, . . . ,Nscales−1
2 Initialize with pNscales−1 = 0
3 for s = Nscales−1 to 0 do
4 Compute ps with Algorithm 7.1 applied to Is

1, Is
2, ps, ε, jmax, ρ.

5 if s > 0 then
6 Compute ps−1 from ps by zoom of factor η (see Table 7.3 for typical planar

transformations).

7 Return p = p0

7.3 Modifications of the Inverse Compositional Algorithm

In this section we propose simple modifications to the inverse compositional algorithm that allow
to improve its performance and precision. These improvements are experimentally verified in
Section 7.4.

7.3.1 Grayscale Conversion

Assume that I1 and I2 are color images (i.e. C = 3). We consider a classical alternative for
color handling, which consists in averaging the channels to obtain a grayscale image. This is
valid since the motion is the same for all the channels. This divides by 3 the number of input
pixels and by

√
3 ' 1.7 the noise level. As we will see in Section 7.4.2, there is no clear

advantage of using color over grayscale images. Since operating on grayscale images implies
less computations, we use it.

7.3.2 Boundary Handling by Discarding Boundary Pixels

Even though it concerns a relatively small amount of pixels, the handling of boundary pixels
has a significant impact on the performance of the algorithm. To estimate ∇I1(x) at a pixel
x close to the boundary of Ω, an arbitrary extension of the domain is needed (constant exten-
sion in Algorithm 7.1 and whole-symmetric extension in Section 7.3.3). Also the evaluation of
I2(Ψ(x;p j−1)) by bicubic interpolation requires an arbitrary extension for position Ψ(x;p j−1)
that fall close to the boundary of [0,M− 1]× [0,N− 1]. Therefore, during the motion estima-
tion the boundary pixels are more likely to have incorrect gradient estimates, which deteriorates
the performance of the algorithm. When a robust error function is used, the influence of these
boundary effects is lessened but is still noticeable.
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Ω

ΩδΨ−1(Ω̃δ;p)

Ωδ,p

Figure 7.2: Example of domain Ωδ,p. Ω is the spatial domain where I1 and I2 are defined.
Ωδ represents the pixels at distance at least δ of the boundary of Ω. Pixels outside of Ωδ are
discarded to avoid incorrect gradient estimations. Ω̃δ is the continuous domain corresponding to
the convex hull of Ωδ. The continuous domain Ψ−1(Ω̃δ;p) represents the points whose images
by Ψ(·;p) belongs to Ω̃δ. Pixels outside of Ω∩Ψ−1(Ω̃δ;p) are discarded to avoid incorrect
interpolations. Finally, pixels outside of the gray area are discarded and the computation are
made on the pixels of Ωδ,p = Ωδ∩Ψ−1(Ω̃δ;p).

The handling proposed in [104], and used in Algorithm 7.1, only avoids the interpolation of
values outside of the image domain. Let x ∈Ω such that Ψ(x;p j−1) falls outside of the domain
[0,M−1]× [0,N−1]. Then, the value I2(Ψ(x;p j−1)) is set to 0. This strategy is only adapted
to synthetic images where pixels outside the domain are set to 0 during the resampling (see
example in Figure 7.1). Otherwise, as in general I1(x) has no reason to be close to 0, the model
error at x is likely to be high.

Discarding boundary pixels. We propose an alternative strategy that handles all boundary
pixels without introducing outliers. It consists in discarding boundary pixels from the sums in the
energies introduced in Section 7.2.1. Note that it has the advantage of reducing the complexity
of the algorithm.

More precisely, let δ be a non-negative integer and define for p ∈ Rn

Ω
δ = Ω

δ
M,N = {δ, . . . ,M−1−δ}×{δ, . . . ,N−1−δ}, (7.23)

Ω̃
δ = Ω̃

δ
M,N = [δ,M−1−δ]× [δ,N−1−δ], (7.24)

Ω
δ,p = {x ∈Ω

δ |Ψ(x;p) ∈ Ω̃
δ}= Ω

δ∩Ψ
−1(Ω̃δ;p). (7.25)

Ωδ represents the pixels at distance at least δ of the boundary of Ω. Pixels outside of Ωδ are
discarded to avoid incorrect gradient estimations. Ω̃δ is the continuous domain corresponding to
the convex hull of Ωδ. The continuous domain Ψ−1(Ω̃δ;p) represents the points whose images
by Ψ(·;p) belongs to Ω̃δ. Pixels outside of Ω∩Ψ−1(Ω̃δ;p j) are discarded to avoid incorrect
interpolations. Finally, the computation are made on the pixels of Ωδ,p = Ωδ∩Ψ−1(Ω̃δ;p). We
display in Figure 7.2 an example of domain Ωδ,p.

At step j of the incremental refinement, the boundary pixels are assumed to be located in
Ω\Ωδ,p j−1 . Boundary pixels are discarded by replacing Ω by Ωδ,p j−1 in the sums of the energies
of Section 7.2.1. Equivalently it comes back to applying the mask 1

Ω
δ,p j−1 (x). Consequently, the

increment ∆p j is given by

∆p j = H−1
δ

bδ (7.26)
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where

Hδ = Hδ(p j−1) = ∑
x∈Ω

δ,p j−1

ρ̃
′(x) ·G(x)T G(x) = ∑

x∈Ω

1
Ω

δ,p j−1 (x)ρ̃′(x) ·G(x)T G(x), (7.27)

bδ = bδ(p j−1) = ∑
x∈Ω

δ,p j−1

ρ̃
′(x) ·G(x)T DI(x) = ∑

x∈Ω

1
Ω

δ,p j−1 (x)ρ̃′(x) ·G(x)T DI(x). (7.28)

7.3.3 Gradient Estimation on a Prefiltered Image

In Algorithm 7.1, the gradient ∇I1 is estimated using the central differences scheme defined
by (7.17) and (7.18). In [95], it was shown that the shift estimation with inverse composi-
tional based-methods can be improved by using other gradient estimators. In particular, the shift
estimation becomes more robust under noise. We extend this study to the general context of
parametric motion estimation.

Smoothing the input image I1 reduces its noise and its aliasing, which may lead to a better
gradient estimation. Therefore, during the incremental refinement, we do not estimate directly
the gradient of I1 but we replace I1 and I2 by prefiltered versions Ĩ1 and Ĩ2 and estimate the
gradient ∇Ĩ1. In order to be compatible with the gradient, the difference image DI is replaced by
a prefiltered difference image D̃I. Both the gradient estimation and the prefiltering are computed
by applying separable kernels. More precisely, a gradient estimation method is determined by a
pair of matched prefilter and derivative kernels (stored as vectors):

• the prefilter kernel k is symmetrical,

• the derivative kernel d, which is anti-symmetrical.

The prefilter is defined as kT ∗ k while the horizontal and vertical gradient filters are defined
respectively by dT ∗k and kT ∗d. The prefiltered image Ĩ1 whose gradient is estimated is given
by

Ĩ1 = kT ∗k∗ I1. (7.29)

The gradient ∇Ĩ1 is estimated by computing the partial derivative estimates

∂Ĩ1

∂x
' dT ∗k∗ I1, (7.30)

∂Ĩ1

∂y
' kT ∗d∗ I1. (7.31)

Note that computing the gradient estimation with (7.30) and (7.31) does not require Ĩ1. However
it is still computed along with Ĩ2 in order to get the difference image during the incremental
refinement. At step j, the prefiltered difference image D̃I is given by2

D̃I(x) = Ĩ2(Ψ(x;p j−1))− Ĩ1(x), x ∈Ω. (7.32)

The convolutions with one-dimensional kernels are computed using the whole-symmetric bound-
ary condition [46]. Let I be an image and k1 and k2 be two vectors. The filtering kT

2 ∗k1 ∗ I is
computed by convolving each column of I with k1 and then convolving each row of the result
with k2.

All the considered gradient estimation kernels are shown in Table 7.4. In practice the kernels
k and d were designed simultaneously in order to verify given properties [34, 110]. Note that
the central differences estimator corresponds to k = 1 and d = 1

2(−1,0,1)T so that there is
no prefiltering required. In the following, when the central difference estimator is chosen, the
gradient is computed as in Algorithm 7.1, i.e., with no prefiltering and the constant boundary
condition.

2Interpolating the prefiltered image Ĩ2 should be an easy task since the image is smooth.
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Gradient estimator
Sample number

-2 -1 0 1 2
Central k 1

differences d -0.5 0 0.5
Hypomode k 0.5 0.5

d -1 1
Farid k 0.229879 0.540242 0.229879
3x3 d -0.425287 0 0.425287

Farid k 0.037659 0.249153 0.426375 0.249153 0.037659
5x5 d -0.109604 -0.276691 0 0.276691 0.109604

Gaussian k 0.003865 0.999990 0.003865
σ = 0.3 d -0.707110 0 0.707110

Gaussian k 0.003645 0.235160 0.943070 0.235160 0.003645
σ = 0.6 d -0.021915 -0.706770 0 0.706770 0.021915

Table 7.4: Prefilter kernel k and derivative kernel d of the proposed gradient estimators.

7.3.4 First Scale of the Gaussian Pyramid

When dealing with low quality input images (i.e. noisy), skipping the finest scales in the Gaus-
sian pyramid usually yield results similar to using all the scales in the multiscale algorithm 7.2.
Indeed the images are smoothed during the construction of the Gaussian pyramid, this reduc-
ing noise, alias, chromatic aberration, and zipper effects [73]. The motion estimation at coarser
scales is less affected by the artifacts of the input images and the improvement at the fine scales
can be negligible. Another advantage of not using the finest scales is that it significantly re-
duces the complexity of the algorithm. Because of its recursive construction the whole Gaussian
pyramid has to be computed, but the motion estimation is only performed at the coarser scales.

In order to select the first scale used in the Gaussian Pyramid, we introduce a new parameter
s0 ∈ {0, . . . ,Nscales− 1}. The modified multiscale approach only refines the motion estimation
for the scales Nscales−1 to s0. Note that if s0 ≥ 2, p0 is computed from ps0−1 thanks to the update
rule with zoom factor ηs0−1 (see Table 7.3).

7.3.5 Modified Inverse Compositional Algorithm

Incorporating the proposed modifications to Algorithms 7.1 and 7.2, we obtain the modified in-
verse compositional algorithm. The one-scale and multiscale versions are respectively presented
in Algorithms 7.3 and 7.4. The additional parameters are:

1. the non-negative integer δ for discarding boundary pixels (see Section 7.3.2),

2. the pair (k,d) of kernels for the gradient estimation and the prefiltering (see Section 7.3.3),

3. the first scale s0 ∈ {0, . . . ,Nscales−1} used in the pyramid (see Section 7.3.4).

In addition, the user has to specify if the grayscale conversion of Section 7.3.1 is used.
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Algorithm 7.3: One-scale modified inverse compositional algorithm
input : I1, I2, p, ε, jmax, ρ, δ, (k,d)
output: Motion parameter p ∈ Rn

// Precomputations
1 Estimate the gradient ∇Ĩ1 from I1 and (k,d) as in (7.30) and (7.31).
2 Compute the prefiltered images Ĩ1 = kT ∗k∗ I1 and Ĩ2 = kT ∗k∗ I2.
3 Compute the Jacobian matrix J as in (7.6) (see Table 7.1 for typical planar

transformations).
4 Compute G = ∇Ĩ1

T J.
5 Compute GT G.
// Incremental refinement

6 Initialize p0 = p and j = 1.
7 repeat
8 Compute the domain Ωδ,p j−1 as in (7.25).
9 for x ∈Ωδ,p j−1 do

10 Compute Ĩ2(Ψ(x,p j−1)) by bicubic interpolation with constant boundary
condition.

11 Compute D̃I(x) = Ĩ2(Ψ(x,p j−1))− Ĩ1(x).

12 Update the threshold parameter of the error function ρ as explained in Section 7.2.3.
13 Compute ρ̃′ = ρ′(‖D̃I‖2) on Ωδ,p j−1 .
14 Compute the vector bδ = ∑x∈Ω

δ,p j−1 ρ̃′(x) ·G(x)T D̃I(x).
15 Compute the Hessian Hδ = ∑x∈Ω

δ,p j−1 ρ̃′(x) ·G(x)T G(x) and invert it.
16 Compute ∆p j = H−1

δ
bδ.

17 Ψ(·;p j)←Ψ(·;p j−1)◦Ψ(·;∆p j)
−1.

18 j← j+1.
19 until j > jmax or ‖∆p j−1‖ ≤ ε;
20 Return p = p j.

Algorithm 7.4: Multiscale modified inverse compositional algorithm
input : I1, I2, ε, jmax, ρ, Nscales, s0 ∈ {0, . . . ,Nscales−1}, η, δ, (k,d)
output: Transformation p ∈ Rn

1 If the grayscale conversion is specified by the user, replace I1 and I2 by the average of
their channels.

2 Create a Gaussian pyramid of images Is
1, Is

2 for s = 0, . . . ,Nscales−1
3 Initialize with pNscales−1 = 0
4 for s = Nscales−1 to s0 do
5 Compute ps with Algorithm 7.3 applied to Is

1, Is
2, ps, ε, jmax, ρ, δ, (k,d).

6 if s > 0 then
7 Compute ps−1 from ps by zoom of factor η (see Table 7.3 for typical planar

transformations).

8 if s0 > 1 then
9 Compute p0 from ps0−1 by zoom of factor ηs0−1 (see Table 7.3 for typical planar

transformations).
10 Return p = p0
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7.4 Experiments

In this section, we evaluate experimentally the impact of the modifications proposed in Sec-
tion 7.3 on the motion estimation performance and on the computation time. First, we describe
the experimental setup and the error measure used to evaluate the performance on synthetic
data. Then we study the influence of the modifications and show in what extent each improves
the performance of the algorithm. Finally, we compare the non-modified and modified inverse
compositional algorithms with a classic parametric motion estimation based on the SIFT key-
points and the RANSAC algorithm.

7.4.1 Experimental Setup

To evaluate the performance of a motion estimation method we build, from a reference image,
a sequence of noisy warped images whose transformations are known. For each image, the
error between the estimated transformation and the ground truth transformation is expressed in
terms of end-point error. The mean of the error among the sequence gives an evaluation of the
performance of the method.

End-point error. Let I1 and I2 be two images linked by a transformation parametrized by p?.
Let p be the estimated motion parameters provided by a given motion estimation method. The
end-point error EPE(p,p?)(x) at a pixel x ∈Ω is defined by

EPE(p,p?)(x) = ‖Ψ(x;p)−Ψ(x;p?)‖2. (7.33)

It is the distance between the images of the estimated transformation and the ground truth trans-
formation. The end-point error is a measure of the error that is commonly used in optical flow
estimation [102, 103]. An example of end-point error field, i.e the image of end-point errors on
Ω, is shown in Figure 7.3. The average end-point error EPE(p,p?) is defined as the mean of the
end-point errors EPE(p,p?)(x) over the domain Ω i.e.

EPE(p,p?) =
1

MN ∑
x∈Ω

EPE(p,p?)(x). (7.34)

Building the test sequence. As the error varies with the images, the transformations and the
noise, we evaluate the performance of methods by considering the mean of the errors over a
sequence of images, which is built as follows. Let I be a reference input image. We draw
Nimages homographies parametrized by (p?

i )1≤i≤Nimages
by randomly shifting the four corners of

the domain Ω along both directions. The shifts are drawn independent and uniform in [−L,L]
for a given non-negative integer L (see Algorithm 6.4). We build a sequence (Ii)1≤i≤Nimages of
warped images using bicubic interpolation3 with whole-symmetric boundary condition, verify-
ing Ii = I(Ψ(·;p?

i )). Finally, we add Gaussian white noise of standard deviation σ to the refer-
ence image and the warped images. The role of the reference and warped images is swapped
in the estimation algorithm to avoid the accumulation of interpolation error. In other words, we
use I1 = Ii and I2 = I.

We compute the average error EPEi as in (7.34). The error of the method for the image I and
the noise level σ, noted EPE to simplify, is evaluated as the mean

EPE =
1

Nimages

Nimages

∑
i=1

EPEi. (7.35)

3The bicubic interpolation is prefered to fine-tuned methods introduced in Chapter 6 because it is used to trans-
form images during the iterative scheme.
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(a) Reference image I1 = I2(Ψ(·;p?)) (b) Warped image I2
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(c) End-point error field EPE(p,p?)(x) (left) and residual (right) using the IC algorithm
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(d) End-point error field EPE(p,p?)(x) (left) and residual (right) using the modified IC algo-
rithm

Figure 7.3: Example of motion estimation on synthetic data. The warped image I2 is the image
used in the experiments of Section 7.4.2. It is a color image of size 584× 388 taken from the
Middlebury database [10]. The reference image I1 = I2(Ψ(·;p?)) is an example of synthetic im-
age related to I2 by an homography and obtained by bicubic interpolation with whole-symmetric
boundary condition. On the second and third line, the estimated motion p is obtained using ei-
ther the inverse compositional algorithm or the modified inverse compositional algorithm. For
the modifications we use δ = 5, the Farid 5x5 kernel estimator, the grayscale conversion and
s0 = 0. For both methods, the right image is actually the root mean square over the channels of
the residual I1− I2(Ψ(·;p)), which is obtained by bicubic interpolation. Without modification,
we have EPE=0.00460 and RMSE(I1(x), I2(Ψ(x;p))) = 0.042838. With modification, we have
EPE=0.00022 and RMSE(I1(x), I2(Ψ(x;p))) = 0.001790.
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Note that this error is not deterministic since it depends on the transformations and the noise
realizations.

7.4.2 Influence of the Modifications

In order to evaluate the influence of the modifications proposed in Section 7.3, we use the exper-
imental setup described in Section 7.4.1. We introduce one by one the modifications to simplify
the presentation of the results.

We take as reference image I the image presented in Figure 7.3, which is a color image of
size 584×388 taken from the Middlebury database [10]. For all the experiments, the sequence
of transformations used is the same and is obtained by taking Nimages = 1000 and L = 20. The
noise level σ varies in {0,3,5,10,20,30,50}. In order to perform reliable comparisons, for a
given noise level, the noisy images used are the same for all the methods. We use the follow-
ing parameter values: η = 1

2 , ε = 0.001, jmax = 30 and Nscales = Nmax
scales (see (7.22)). The error

functions used are the L2 and the Lorentzian functions, for which the threshold parameter varies
during the incremental refinement as explained in Section 7.2.3. In order to study the perfor-
mance of each method, we consider the end-point error (EPE) and the computation time. The
displayed computation time corresponds to the CPU time used for the Nimages = 1000 motion es-
timations and is expressed in seconds. Note that it also corresponds to the average computation
time per image in milliseconds. The experiments were made using an Intel(R) Xeon(R) CPU
E5-2650 @ 2.60GHz (on a single thread).

Discarding Boundary Pixels. To analyze the influence of the boundary handling, we compare
the results of the inverse compositional algorithm described in Section 7.2 and of the modified
version that discards boundary pixels with δ ∈ {0,5}. The gradient estimation is done using
the central difference scheme, all scales are used and there is no grayscale conversion. Note
that δ = 0 corresponds to the case where outside pixels are discarded during the interpolation
(instead of setting the interpolated values to 0). Considering that, in the following, we use the
gradient kernels of Table 7.4 and bicubic interpolation, the value δ = 5 is large enough to discard
all boundary pixels.

The results are presented in Table 7.5. It clearly shows that discarding boundary pixels al-
ways provides significantly better results in terms of precision and computation time. Discarding
boundary pixels with δ = 5 provides slightly better results than with δ = 0 since it handles all
the boundary pixels and not only outside pixels during the interpolation (which introduce more
error than inside boundary pixels). By discarding boundary pixels, the incremental refinement
is not perturbed by arbitrarily introduced outliers so that it has the following consequences.

• On the precision. The precision of the estimated model is increased by a factor ranging from
3.7 to 780 for the L2 function and from 1.4 to 22 for the Lorentzian function. Since the
robust error functions handle more correctly the outliers, the precision improvements are
less important for the Lorentzian error function than for the L2 function. The improvement
factor decreases as the noise level increases i.e. as the noise becomes the main source of
estimation error. It explains why the ranges of improvement factor are large.

• On the computation time. The computation time is divided by a factor ranging from 1.1 to
2 for the L2 function and from 1.1 to 2.4 for the Lorentzian function. At each step the
incremental refinement complexity is lessened but it is not sufficient to explain such a
reduction. The main reason is that less iterations are required to converge since the incre-
mental refinement does not try to fit the model with the outliers. Globally the improvement
factor tends to decrease with the noise level.

Finally, because it improves the precision and the computation time, we strongly recommend to
discard boundary pixels with δ = 5. It is done in the following experiments.
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Color Handling. To analyze the influence of the grayscale conversion, we compare the results of
the modified inverse compositional algorithm with and without grayscale conversion. Boundary
pixels are discarded with δ = 5, the gradient estimation is done using the central differences
scheme and all scales are used.

The results are presented in Table 7.6. By using the grayscale conversion the computation
time is reduced by a factor ranging from 1.4 to 2.6. Indeed, a reduction was expected since the
input number of channels is divided by 3. For large noise value the reduction is globally more
important because the input noise is divided by

√
3. For the precision, the results are similar but

the grayscale conversion provides the best results for large noise values.
Note that the precision is similar as long as the main structures of the image are preserved

by the grayscale conversion. On the other hand, we have introduced independent Gaussian
noise in each channel, which may not be realistic. For a real image the noise reduction due
to the grayscale conversion may not be so important. Nevertheless, we recommend the use of
the grayscale conversion because it is much faster and the difference in precision is usually not
remarkable.

Gradient Estimation on a Prefiltered Image. To analyze the influence of the gradient estima-
tion, we compare the results of the modified inverse compositional algorithm using each one of
the gradient kernels of Table 7.4. Boundary pixels are discarded with δ = 5, all scales and the
grayscale conversion are used.

The results are presented in Table 7.7 for the L2 error function and in Table 7.8 for the
Lorentzian error function. The results analysis is not as simple as for the boundary handling
influence and the color handling. In general, all the estimators provide similar results in terms
of precision (except for the hypomode estimator that gives worse results). However, the central
differences estimator provides slightly better results for small noise level, while it is the Farid
3x3 and 5x5 estimators [34] for larger noise levels. The main difference between the gradient
estimators lies in the computation time. For low noise levels the computation times are similar
but for large noise levels the Farid 5x5 estimator provides significantly better results.

In general, computing the gradient on a prefiltered image provides a gradient estimation
more robust to noise. In addition, the prefiltered images contain less aliasing and the interpolated
values are computed more precisely. Finally, it allows for a faster convergence of the incremental
refinement and a more precise motion estimation. Therefore, in the following we use the Farid
5x5 estimator.

First Scale in the Gaussian Pyramid. To analyze the influence of the first scale s0 used in
the Gaussian pyramid, we compare the results of the modified inverse compositional algorithm
using s0 ∈{0,1,2,3}. Boundary pixels are discarded with δ= 5, the Farid 5x5 gradient estimator
and the grayscale conversion are used. The results are presented in Table 7.9 for the L2 error
function and in Table 7.10 for the Lorentzian error function.

• Evolution with the number of skipped scales s0. As expected, the precision and the compu-
tation time both decrease with s0, i.e. the number of scales skipped. There is a trade-off
between precision and speed. By comparing the evolution between the column s0 and
s0 + 1 we notice that it is less and less interesting to remove scales. Indeed, the decreas-
ing factor for the computation time decreases with s0 while the increasing factor for the
estimation error increases with s0. Therefore it is reasonable to only consider s0 ∈ {0,1}.

• Evolution with the noise level σ. As σ increases, it is more and more interesting to skip the
finest scale, i.e. to take s0 = 1. Indeed, the decreasing factor for the computation time
increases with σ while the increasing factor for the estimation error decreases with σ.
For large values of σ, the estimation error is similar for s0 = 0 and s0 = 1 while the
computation time is divided by a factor up to 2.3 for the L2 function and 4.4 for the
Lorentzian function.
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L2 Lorentzian

σ = 0
EPE 0.06268 0.00008 0.00008 0.00221 0.00010 0.00010
Time 438 320 311 915 419 404

σ = 3
EPE 0.06296 0.00208 0.00192 0.00341 0.00207 0.00192
Time 453 333 323 893 387 378

σ = 5
EPE 0.06394 0.00338 0.00282 0.00517 0.00337 0.00282
Time 524 373 355 903 402 391

σ = 10
EPE 0.06646 0.00962 0.00711 0.01163 0.00963 0.00714
Time 669 406 386 951 481 459

σ = 20
EPE 0.09194 0.02901 0.01730 0.03340 0.03101 0.02147
Time 1104 640 544 1290 1109 1069

σ = 30
EPE 0.14683 0.06508 0.03393 0.06763 0.06569 0.04447
Time 1319 1008 827 1741 1651 1581

σ = 50
EPE 0.24210 0.12385 0.06515 0.10959 0.10487 0.07646
Time 1507 1454 1313 2139 2000 1918

Table 7.5: Influence of the boundary handling. Comparison between the inverse compositional
algorithm presented in Section 7.2 (noted IC) and the modified inverse compositional algorithm
that discards boundary pixels (noted DBP) with δ= 0 and δ= 5. The gradient estimation is done
using the central difference scheme, all scales are used and there is no grayscale conversion. It
clearly shows that discarding boundary pixels always provides significantly better results in
terms of precision and computation time. The gain is less and less important as the noise level
increases.

Finally, we recommend to use s0 ∈ {0,1} with a choice depending on the context of application
and the aim of the user (precision or speed).

Summary of the improvements. The study of the modifications proposed previously can be
summarized as follows:

• Boundary pixels must be discarded with δ = 5.

• The grayscale conversion must be used for high noise level and should be used in general
since the eventual loss in precision is negligible with respect to the gain in speed.

• The central differences and the Farid 5x5 gradient estimators provide similar results. But
the Farid 5x5 estimator is prefered because it is more robust to noise.

• Discarding the finest scale, i.e. taking s0 = 1, allows for a significant speed up of the
motion estimation with a moderate loss of precision, which decreases with the noise level.

Using this recommended modifications:

• Using s0 = 0. The computation time is at least reduced by a factor 2.2. The estimation
accuracy is at least improved by a factor 5 for the L2 function and 1.3 for the Lorentzian
function.

• Using s1 = 1. The computation time is at least reduced by a factor 3.4. For the L2 function,
the estimation accuracy is at least improved by a factor 3.4. For the Lorentzian function
the estimation accuracy is at most reduced by a factor 0.6.
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L2 Lorentzian
Color handling Color Grayscale Color Grayscale

σ = 0
EPE 0.00008 0.00008 0.00010 0.00010
Time 311 176 404 261

σ = 3
EPE 0.00192 0.00216 0.00192 0.00215
Time 323 208 378 262

σ = 5
EPE 0.00282 0.00300 0.00282 0.00300
Time 355 195 391 261

σ = 10
EPE 0.00711 0.00707 0.00714 0.00707
Time 386 210 459 281

σ = 20
EPE 0.01730 0.01810 0.02147 0.01929
Time 544 255 1069 449

σ = 30
EPE 0.03393 0.03299 0.04447 0.03941
Time 827 319 1581 806

σ = 50
EPE 0.06515 0.06192 0.07646 0.07060
Time 1313 527 1918 1066

Table 7.6: Influence of the color handling. Boundary pixels are discarded with δ = 5, the gra-
dient estimation is done using the central differences scheme and all scales are used. By using
the grayscale conversion the computation time is reduced by a factor ranging from 1.4 to 2.6.
Indeed, a reduction was expected since the input number of channels is divided by 3. For large
noise value the reduction is globally more important because the input noise is divided by

√
3.

For the precision, the results are similar but the grayscale conversion provides the best results
for large noise values.

Central Differences Hypomode Farid 3x3 Farid 5x5 Gaussian 3 Gaussian 6

σ = 0
EPE 0.00008 0.03146 0.00017 0.00026 0.00019 0.00015
Time 176 210 187 202 213 207

σ = 3
EPE 0.00216 0.03169 0.00241 0.00269 0.00219 0.00235
Time 208 249 216 206 216 208

σ = 5
EPE 0.00300 0.03212 0.00317 0.00351 0.00305 0.00312
Time 195 230 202 205 221 209

σ = 10
EPE 0.00707 0.03451 0.00702 0.00749 0.00707 0.00694
Time 210 252 220 210 240 226

σ = 20
EPE 0.01810 0.04133 0.01698 0.01782 0.01800 0.01694
Time 255 306 245 238 281 252

σ = 30
EPE 0.03299 0.04992 0.02917 0.02941 0.03243 0.02940
Time 319 375 291 258 349 290

σ = 50
EPE 0.06192 0.06848 0.04644 0.04491 0.05804 0.04788
Time 527 568 435 370 572 450

Table 7.7: Influence of the gradient estimator (L2 error function). Comparison of the modified
inverse compositional algorithm using the L2 error function and each one of the gradient kernels
of Table 7.4. Boundary pixels are discarded with δ = 5, all scales and the grayscale conversion
are used. In general, all the estimators provide similar results in terms of precision (except for
the hypomode estimator that gives worse results). However, the central differences estimator
provides slightly better results for small noise level while it is the Farid 3x3 and 5x5 estimators-
for larger noise levels. For low noise levels the computation times are similar but for large noise
levels the Farid 5x5 estimator provides significantly better results.
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Central Differences Hypomode Farid 3x3 Farid 5x5 Gaussian 3 Gaussian 6

σ = 0
EPE 0.00010 0.03140 0.00016 0.00024 0.00010 0.00012
Time 261 277 251 252 279 261

σ = 3
EPE 0.00215 0.03162 0.00240 0.00268 0.00217 0.00234
Time 262 285 255 254 284 255

σ = 5
EPE 0.00300 0.03203 0.00316 0.00349 0.00303 0.00311
Time 261 297 254 253 283 262

σ = 10
EPE 0.00707 0.03437 0.00700 0.00746 0.00705 0.00692
Time 281 341 272 262 318 285

σ = 20
EPE 0.01929 0.04145 0.01693 0.01778 0.01906 0.01698
Time 449 452 334 303 514 361

σ = 30
EPE 0.03941 0.05042 0.02934 0.02933 0.03638 0.03091
Time 806 739 481 375 814 617

σ = 50
EPE 0.07060 0.07333 0.04934 0.04717 0.06203 0.05439
Time 1066 940 837 704 1041 942

Table 7.8: Influence of the gradient estimator (Lorentzian error function). Comparison of the
modified inverse compositional algorithm using the Lorentzian error function and each one of
the gradient kernels of Table 7.4. Boundary pixels are discarded with δ = 5, all scales and the
grayscale conversion are used. In general, all the estimators provide similar results in terms of
precision (except for the hypomode estimator that gives worse results). However, the central
differences estimator provides slightly better results for small noise level while it is the Farid
3x3 and 5x5 estimators for larger noise levels. For low noise levels the computation times are
similar but for large noise levels the Farid 5x5 estimator provides significantly better results.

s0 = 0 s0 = 1 s0 = 2 s0 = 3

σ = 0
EPE 0.00026 0.00328 0.01265 0.05672
Time 202 131 107 97

σ = 3
EPE 0.00269 0.00562 0.01446 0.05829
Time 206 130 110 104

σ = 5
EPE 0.00351 0.00684 0.01777 0.06094
Time 205 128 109 107

σ = 10
EPE 0.00749 0.01261 0.02611 0.06899
Time 210 132 113 104

σ = 20
EPE 0.01782 0.02641 0.04101 0.09040
Time 238 132 114 107

σ = 30
EPE 0.02941 0.04276 0.07127 0.12303
Time 258 131 112 106

σ = 50
EPE 0.04491 0.06679 0.10165 0.19240
Time 370 160 129 123

Table 7.9: Influence of the first scale s0 used in the Gaussian pyramid (L2 error function).
Boundary pixels are discarded with δ = 5, the Farid 5x5 gradient estimator and the grayscale
conversion are used. The precision and the computation time both decrease with s0. There is
a trade-off between precision and speed. By comparing the evolution between the column s0
and s0 + 1 we notice that it is less and less interesting to remove scales. As the noise level σ

increases, it is more and more interesting to skip the finest scale, i.e. to take s0 = 1. For large
values of σ, the estimation error is similar for s0 = 0 and s0 = 1 while the computation time is
divided by a factor up to 2.3.
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s0 = 0 s0 = 1 s0 = 2 s0 = 3

σ = 0
EPE 0.00024 0.00327 0.01265 0.05667
Time 252 122 92 87

σ = 3
EPE 0.00268 0.00561 0.01446 0.05826
Time 254 140 114 110

σ = 5
EPE 0.00349 0.00682 0.01777 0.06101
Time 253 143 119 107

σ = 10
EPE 0.00746 0.01257 0.02609 0.06901
Time 262 142 115 106

σ = 20
EPE 0.01778 0.02639 0.04099 0.09019
Time 303 146 112 110

σ = 30
EPE 0.02933 0.04272 0.07131 0.12286
Time 375 150 116 109

σ = 50
EPE 0.04717 0.06675 0.10165 0.19220
Time 704 158 116 105

Table 7.10: Influence of the first scale used in the Gaussian pyramid (Lorentzian error function).
Boundary pixels are discarded with δ = 5, the Farid 5x5 gradient estimator and the grayscale
conversion are used. The precision and the computation time both decrease with s0. There is
a trade-off between precision and speed. By comparing the evolution between the column s0
and s0 + 1 we notice that it is less and less interesting to remove scales. As the noise level σ

increases, it is more and more interesting to skip the finest scale, i.e. to take s0 = 1. For large
values of σ, the estimation error is similar for s0 = 0 and s0 = 1 while the computation time is
divided by a factor up to 4.4.

7.4.3 Comparison with a SIFT+RANSAC Based Algorithm

In order to put in perspective the performance of the proposed modified inverse compositional
algorithm, it is compared with a classical feature-based motion estimation algorithm. It uses as
features the SIFT keypoints [72, 97] and estimates the model with a RANSAC algorithm [39].
Note that the grayscale conversion is used. A similar algorithm can be found in [85].

For the comparison, we consider the SIFT+RANSAC algorithm, the inverse compositional
(IC) algorithm described in Algorithm 7.2 and the modified inverse compositional (mIC) algo-
rithm. For the modifications we follow the recommendations of Section 7.4.2, i.e., we discard
boundary pixels with δ = 5 and use the Farid 5x5 kernel estimator, the grayscale conversion and
s0 ∈ {0,1}.

On Synthetic Data. First we compare the algorithms using the same experimental setup and
synthetic data as in Section 7.4.2. The results are presented in Table 7.11.

• On the computation time. The inverse compositional algorithm, modified or not, is faster
than the SIFT+RANSAC algorithm. The computation time increases with the noise level while
it decreases for the SIFT+RANSAC algorithm. Using s0 = 0, the mIC algorithm is 5.6 to 11
times faster for the L2 function and 3 to 8.6 times faster for the Lorentzian function. Using
s0 = 1, the mIC algorithm is 13 to 17 times faster for the L2 function and 13 to 18 times faster
for the Lorentzian function.

• On the precision. The IC algorithm is in general more accurate than the SIFT+RANSAC
algorithm (except using the L2 function for low noise levels because of the incorrect boundary
handling). On the opposite, the mIC algorithm always clearly outperforms the SIFT+RANSAC
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L2 Lorentzian
SIFT+R IC mIC s0 = 0 mIC s0 = 1 IC mIC s0 = 0 mIC s0 = 1

σ = 0
EPE 0.03131 0.06268 0.00026 0.00328 0.00221 0.00024 0.00327
Time 2171 438 202 131 915 252 122

σ = 3
EPE 0.04063 0.06296 0.00269 0.00562 0.00341 0.00268 0.00561
Time 2173 453 206 130 893 254 140

σ = 5
EPE 0.04805 0.06394 0.00351 0.00684 0.00517 0.00349 0.00682
Time 2144 524 205 128 903 253 143

σ = 10
EPE 0.15998 0.06646 0.00749 0.01261 0.01163 0.00746 0.01257
Time 2208 669 210 132 951 262 142

σ = 20
EPE 0.82330 0.09194 0.01782 0.02641 0.03340 0.01778 0.02639
Time 2198 1104 238 132 1290 303 146

σ = 30
EPE 0.67803 0.14683 0.02941 0.04276 0.06763 0.02933 0.04272
Time 2177 1319 258 131 1741 375 150

σ = 50
EPE 1.22713 0.24210 0.04491 0.06679 0.10959 0.04717 0.06675
Time 2075 1507 370 160 2139 704 158

Table 7.11: Comparison of motion estimation methods: SIFT+RANSAC (SIFT+R), inverse
compositional (IC) algorithm described in Algorithm 7.2 and the modified inverse compositional
(mIC) algorithm with s0 ∈ {0,1}. The mIC algorithm discards boundary pixels with δ = 5 and
uses the Farid 5x5 kernel estimator and the grayscale conversion. The inverse compositional al-
gorithm, modified or not, is always faster than the SIFT+RANSAC algorithm. The computation
time increases with the noise level while it decreases for the SIFT+RANSAC algorithm. The IC
algorithm is in general more accurate than the SIFT+RANSAC algorithm (except using the L2
function for low noise levels because of the incorrect boundary handling). On the opposite, the
mIC algorithm always clearly outperforms the SIFT+RANSAC algorithm and in particular for
high noise levels.

algorithm and in particular for high noise levels. The precision is 14 to 130 times better for
s0 = 0 and 7 to 31 times better for s0 = 1.

• General remarks on the experiments. We observed that the behavior of the algorithm for
other reference images is similar to the reported results. However the improvement factors may
differ with the input images. Also, we noticed that in the context of low quality input images the
precision may be better while using s0 = 1.

In our tests the reference and warped images are linked with moderate deformations without
occlusion nor contrast change. For larger deformations, the inverse compositional based algo-
rithms may be outperformed by feature-based methods. The occlusions highly increase the error
for the L2 error function but are well handled by the robust error functions.

On Real Data. Secondly, we compare the methods on two images taken from the "Lunch
Room" sequence of the PASSTA Dataset [80]. Between the acquisitions, the camera was rotated
around its optical center so that the images are linked by an homography. The images I1 and I2,
of size 2048×2048 and stored in the JPEG format, are displayed in Figure 7.4. For the IC and
mIC algorithms, we only use the Lorentzian error function.

Since the real motion p? is unknown, the end-point error cannot be computed. Let denote
by p the estimated motion by a given method. The algorithm precision is indirectly evaluated
by considering the residual I1− I2(Ψ(·;p)), which is computed by bicubic interpolation. The
root mean square over the channels of the residuals are displayed in Figure 7.5. The residuals
are inevitably corrupted by JPEG artifacts, noise and interpolation error. The JPEG artifacts and
noise are noticeable on flat areas. The interpolation error is localized at discontinuities and can
be confounded with the consequence of a bad registration. The SIFT+RANSAC residual has



7.4–Experiments 183

(a) Reference image I1 (b) Warped image I2

Figure 7.4: Real data used in Section 7.4.3. The images are taken from the "Lunch Room"
sequence of the PASSTA Dataset [80]. Between the acquisitions, the camera was rotated around
its optical center so that the images are linked by an homography. The images of size 2048×
2048 are stored in JPEG format.

significantly higher values than the IC and mIC residuals. In particular, at the top-right corner
of the image (refrigerator edge) the registration is not precise enough. It can be explained by the
low density of SIFT keypoints in this zone. The mIC s0 = 0 residual is slightly lower than the IC
and mIC s0 = 1 residuals on average but more importantly on the image discontinuities, which
is interpreted as a better motion estimation.

By replacing the real motion p? by an estimated motion in the end-point error definition
in (7.33), we define the end-point difference between two motions. It allows for a comparison
of the estimated motions. The end-point difference fields between the mIC s0 = 0 and the three
other methods are shown in Figure 7.6. The mIC s0 and SIFT+RANSAC results are considerably
different. On average, the end-point difference is greater than 0.5 pixel. They mainly differ at the
top-right corner of the image, where the SIFT+RANSAC residual is higher. The mIC s0 = 0 and
mIC s0 = 1 mainly differ at the top-left corner of the image. The average end-point difference
of 0.15 pixel is not negligible. The finest scale must be used to achieve sufficient precision.
The IC and mIC s0 results are closer but still significantly different. On average, the end-point
difference is greater than 0.05 pixel. They mainly differ at the boundaries of the domain, which
is a consequence of the different boundary pixels handling but also of the images content.

The estimated motions are computed in respectively 39, 42, 18 and 2 seconds for the SIFT+RANSAC,
IC and mIC algorithms. The IC algorithm is slower because at each scale the incremental re-
finement requires a large amount of iterations. For the mIC algorithm it is the case only for the
finest scale. It explains why not using the finest scale divides the computation time by 9.
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(a) SIFT+RANSAC (3.865058, 39)
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(b) IC (3.601141, 42)
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(c) mIC s0 = 0 (3.598951, 18)
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(d) mIC s0 = 1 (3.599503, 2)

Figure 7.5: Example of motion estimation on real data. The images correspond to the root mean
square over the channels of the residuals I1− I2(Ψ(·;p)), which is computed using bicubic inter-
polation. The first value between parentheses is the RMSE between I1 and I2(Ψ(·;p)). The sec-
ond value is the computation time expressed in seconds. The residuals are inevitably corrupted
by JPEG artifacts, noise and interpolation error. The JPEG artifacts and noise are noticeable on
flat areas. The interpolation error is localized at discontinuities and can be confounded with the
consequence of a bad registration. The SIFT+RANSAC residual has significantly higher values
than the IC and mIC residuals. In particular, at the top-right corner of the image (refrigerator
edge) the registration is not precise enough. It can be explained by the low density of SIFT
keypoints in this zone. The mIC s0 = 0 residual is slightly lower than the IC and mIC s0 = 1
residuals on average but more importantly on the image discontinuities, which is interpreted as
a better motion estimation.
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(a) SIFT+RANSAC vs mIC s0 = 0 (0.64806)
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(b) IC vs mIC s0 = 0 (0.06032)
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(c) mIC s0 = 1 vs mIC s0 = 0 (0.14505)

Figure 7.6: Example of end-point difference fields on real data. The value between parentheses
is the average end-point difference. The mIC s0 and SIFT+RANSAC results are considerably
different. On average, the end-point difference is greater than 0.5 pixel. They mainly differ at the
top-right corner of the image, where the SIFT+RANSAC residual is higher. The mIC s0 = 0 and
mIC s0 = 1 mainly differ at the top-left corner of the image. The average end-point difference
of 0.15 pixel is not negligible. The finest scale must be used to achieve sufficient precision.
The IC and mIC s0 results are closer but still significantly different. On average, the end-point
difference is greater than 0.05 pixel. They mainly differ at the boundaries of the domain, which
is a consequence of the different boundary pixels handling but also of the images content.
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7.5 Conclusion

In this chapter we detailed the inverse compositional algorithm and proposed to modify it with a
correct boundary handling, the grayscale conversion, a more robust gradient estimation applied
to a prefiltered image and by skipping scales in the multiscale coarse-to-fine scheme. Discarding
boundary pixels is the main source of improvements and must always be done. In general, we
recommend to discard boundary pixels with δ = 5 and to use the grayscale conversion and the
Farid 5x5 gradient estimator. With this settings, the estimation accuracy is at least improved by
a factor 1.3 while the computation time is at least reduced by a factor 2.2 when all the scales
are used and by a factor 3.4 when the finest scale is not used. For moderate transformations, the
modified algorithm outperforms the classical feature-based methods using the SIFT keypoints
and the RANSAC algorithm.

For low quality images, for instance because of noise, using the Farid 5x5 gradient estimator
and the grayscale conversion provides the best results. For high quality images, using the central
differences gradient estimator without grayscale conversion may provide slightly better results.
When efficiency is preferred over accuracy, the grayscale conversion must be used and the finest
scale must be skipped.

The modified inverse compositional algorithm will be used in Chapter 8 in the proposed
two-step method for mosaicked images.
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Chapter 8

Registration of Mosaicked (or CFA)
Images

Abstract

A mosaicked (or CFA) image is a digital image where only one of the three color channels
has been captured at each pixel location. The corresponding grayscale image contains a
mosaic structure incoming from the color filter array (CFA). The acquired RAW image is a
typical example of mosaicked image. The most common pattern for the CFA, and the one
that is considered in this chapter, is the Bayer pattern [12]. In many applications, the geo-
metric transformation between two mosaicked images has to be estimated without knowing
the underlying color images. Unfortunately there is no standard and satisfactory method for
mosaicked images. Existing registration methods designed for classical images cannot be
used directly and a preprocessing step is required. In this chapter, we introduce two-step
methods for the registration of mosaicked images. First, the two mosaicked images are
converted into non-mosaicked (grayscale) images by lowpass filtering. According to [6],
these filtered images estimate the luminance information contained in the mosaicked im-
ages. Then, the transformation is estimated by applying a pre-existing registration method
designed for classical images. The performances of the proposed methods are evaluated ex-
perimentally for several lowpass filters and pre-existing registration methods. We conclude
that a perfect lowpass filter should be applied and that the modified inverse compositional
algorithm with robust error function (see Chapter 7) should be used. This recommended
method is both accurate and efficient, and will be used in our image formation algorithm
from RAW images (see Chapter 11).
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8.1 Introduction

At least three color components per pixel location are required to produce a digital color image.
Typically, the red, green and blue colors are used. An RGB image is composed of the three
corresponding grayscale images. However, to reduce production cost, most digital cameras use
a single sensor covered by a color filter array (CFA), which is arranged in a mosaic pattern. The
acquired RAW image is a typical example of what is called a mosaicked (or CFA) image. The
most common pattern for the CFA, and the one that is considered in this chapter, is the Bayer
pattern [12].

Color demosaicking is the image reconstruction process consisting in estimating the missing
color samples [68, 73]. As demosaicking involves some form of interpolation from neighboring
pixel values, this may lead to blurring and false colors (a.k.a color aliasing). To avoid the intro-
duction of these artefacts, multi-image fusion methods taking as input RAW images have been
developed [35, 36, 37, 48, 61, 131, 136]. Such methods perform joint demosaicking, denoising
and, possibly, super-resolution. Multi-image fusion methods can generally be decomposed into
two main steps: the registration step, where the images are expressed in a common system of
coordinates, and the combination step, where the data are combined to form an image.

In this chapter, we focus on the registration of mosaicked images where the transformation
between the two images has to be estimated while the underlying color images are unknown.
Although an accurate subpixel registration is crucial in many applications, there is no standard
and satisfactory method for mosaicked images. Because of the particular content of these im-
ages, existing registration methods designed for classical grayscale or color images cannot be
used directly and a preprocessing step is required.

The most natural solution is to register demosaicked versions of the mosaicked images.
However the registration precision is limited by the artefacts introduced during the demosaick-
ing. In the super-resolution method from RAW images of [48], translations are first roughly
estimated on pairs of demosaicked images obtained by bilinear interpolation [6]. This is done
by minimizing the simple sum of squared difference (SSD) criterion followed by a parabola fit-
ting. Then, the estimations are refined during the iterative scheme that builds the high-resolution
color image from all the RAW images.

Another solution proposed in [131] is to only use the low-frequency content of the mo-
saicked images. The registration is done by applying the Fourier-based method of [130], which
is designed for aliased images, directly to the mosaicked images. Although the motion estima-
tion is not accurate enough and is limited to rigid transformations, this work is based on the two
following fundamental ideas.

1. First, the knowledge of the intensity of the light, i.e. the luminance information, is gen-
erally sufficient to perform accurate registration. Indeed, in many registration algorithms,
color images are first converted into grayscale images by (weighted) average of the chan-
nels. For instance, such a conversion was proposed in Chapter 7 to handle color.

2. Second, it is shown in [6] that the luminance information is mainly localized in the low-
frequency of the mosaicked images. Thus, the luminance component of a mosaicked
image is not directly available but can be estimated by lowpass filtering.

In this chapter, we introduce two-step methods for the registration of mosaicked images.
First, the two mosaicked images are converted into non-mosaicked (grayscale) images by low-
pass filtering. According to [6], these filtered images estimate the luminance information con-
tained in the mosaicked images. Then, the transformation is estimated by applying a pre-existing
registration method designed for classical images. The performances of the proposed methods
are evaluated experimentally for several lowpass filters and pre-existing registration methods.
We recommend the use of a perfect lowpass filter, which cancels half of the spectrum along
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each direction, and of the modified inverse compositional algorithm with robust error function
(see Chapter 7). These recommendations lead to a method that is both accurate and efficient.

The chapter is organized as follows. First, two-step methods for the registration of mo-
saicked images are presented in Section 8.2. Then, in Section 8.3, the performances are evalu-
ated experimentally.

8.2 Registration of Mosaicked Images

In the rest of this chapter, the color filter array considered is the classical Bayer filter RGGB [12].
Let I be a color image of size M×N whose red, green and blue channels are respectively denoted
R, G and B. The mosaicked image ICFA, corresponding to I, is the grayscale image of size M×N
defined by

∀(k, l) ∈ΩM,N , (ICFA)k,l =


Rk,l if k and l are even,
Bk,l if k and l are odd,
Gk,l otherwise.

(8.1)

An example of mosaicked image is shown in Figure 8.1.
Let I1 and I2 be two color images of size M×N. We recall that the registration of I1 and I2

consists in estimating the geometric transformation ϕ ∈ σ(R2) such that

∀x ∈ΩM,N , I1(x)' I2 (ϕ(x)) . (8.2)

The registration of mosaicked images consists in estimating ϕ from the mosaicked images I1
CFA

and I2
CFA (without knowing the underlying color images I1 and I2). Existing registration meth-

ods cannot be applied directly on the mosaicked images because of the mosaic structure (see
Figure 8.1(b)) and of the high-frequencies artefacts (see Figure 8.1(d)).

In this section, we present two-step registration methods for mosaicked images. The prin-
ciple is to apply pre-existing registration methods on grayscale images that are built from the
mosaicked ones. First, the conversion from mosaicked to non-mosaicked images is considered
in Section 8.2.1. Then, Section 8.2.2 details the proposed registration algorithm for mosaicked
images.

8.2.1 From Mosaicked to Non-mosaicked Images

The mosaicked images are grayscale images containing artefacts that deteriorate the perfor-
mance of registration algorithms. A natural way of handling these artefacts consists in transform-
ing the mosaicked images before the motion estimation. The considered transformation should
convert mosaicked images into grayscale images whose contents allow for an accurate registra-
tion. The mosaic structure and the high-frequencies artefacts should be removed/reduced. In the
following, this process is called the conversion from mosaicked to non-mosaicked images.

First, two classical, but not satisfactory, conversions are presented.

Channel extraction. A sub-sampled version of a channel can be directly obtained by extracting
one in four pixels from a mosaicked image. However, the motion estimation on extracted chan-
nels is not in general precise enough since these images are strongly aliased and correspond to a
coarser scale.

Image demosaicking. As presented in the introduction, a color image can be reconstructed from
a mosaicked image using a color demosaicking method. Then, the mean of the three channels
gives a grayscale image of the same size as the mosaicked one. Even though demosaicking
may introduce blurring and color aliasing, the registration on demosaicked images provides in
general significantly better results than the registration on extracted channels.
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(a) Color image I (b) Mosaicked image ICFA
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Figure 8.1: Example of a color image and its mosaicked version. Only details are shown in (a)
and (b). The spectra correspond to the unnormalized discrete Fourier transform in logarithmic
scale u 7→ log(1+ u). The root mean square over the channels is shown in (c). The mosaic
structure is clearly visible in (b). The spectrum of the mosaicked image in (d) contains high-
frequency structures that are not present in original spectrum in (a). This corresponds to the
chrominance information.
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Figure 8.2: Frequency response of the HVS filter F defined in (8.6). The eight dark spots
correspond to the location of the chrominance information in the Fourier domain.
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In the following we consider the simple, but computationally efficient, demosaicking method
by bilinear interpolation [6]. The reconstructed channels are obtained by filtering the extracted
channels, which are filled by zeros at unknown pixel locations. The bilinear filter for the red and
blue channels is given by

FR,B =
1
4

 1 2 1
2 4 2
1 2 1

 (8.3)

while the bilinear filter for the green channel is given by

FG =
1
4

 0 1 0
1 4 1
0 1 0

 . (8.4)

Proposed conversion by lowpass filtering. Better results can be obtained by considering the
following conversion approach that does not require demosaicking. It relies on the two funda-
mental ideas that were used in [131]:

1. The knowledge of the intensity of the light, i.e. the luminance information, is generally
sufficient to perform accurate registration.

2. As shown in [6], the luminance information is mainly localized in the low-frequency of
the mosaicked images while the chrominance information is mainly localized around the
eight dark spots of Figure 8.2.

Thus, we propose to build non-mosaicked images, which result from the estimation of the lu-
minance information by lowpass filtering of the mosaicked images. As the frequency locations
of the luminance and chrominance overlap, a compromise has to be made between bandwidth
and separation. A too small bandwidth gives a blurry image while a wrong separation of the
two components leads to mosaic artefacts. In the case of a strong aliasing, for instance in a
super-resolution context, a smaller bandwidth may be preferable. We propose to consider the
following filters.

• Gaussian filter. The Gaussian filter of standard deviation σ0, noted Gσ0 , is defined by

Gσ0(x,y) =
1

2πσ2
0

exp
(
−x2 + y2

2σ2
0

)
. (8.5)

Among all the possible ways of applying Gσ0 [45], the finite impulse response (FIR) method is
chosen. The higher σ0 the better the separation, but also the smoother the filtered image. In the
following we take σ0 = 1, which is a good compromise.

• The HVS filter. In [6], the luminance information is estimated using the 11× 11 filter F
defined by

F =
1

128



0 0 0 0 1 0 1 0 0 0 0
0 0 0 −1 0 −2 0 −1 0 0 0
0 0 1 1 2 1 2 1 1 0 0
0 −1 1 −5 3 −9 3 −5 1 −1 0
1 0 2 3 1 7 1 3 2 0 1
0 −2 1 −9 7 104 7 −9 1 −2 0
1 0 2 3 1 7 1 3 2 0 1
0 −1 1 −5 3 −9 3 −5 1 −1 0
0 0 1 1 2 1 2 1 1 0 0
0 0 0 −1 0 −2 0 −1 0 0 0
0 0 0 0 1 0 1 0 0 0 0



. (8.6)
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The frequency response of the filter F is shown in Figure 8.2. The eight dark spots correspond
to the location of the chrominance information in the Fourier domain. The experimental process
leading to this filter is described in Section IV of [6]. As its theory is based on the human visual
system (HVS), we refer to F as the HVS filter.

• A perfect lowpass filter. The perfect lowpass filter with ratio r is defined in the Fourier
domain by the indicator function of [−(1− r)π,(1− r)π]2. Along each dimension a ratio r of
the frequencies is killed. Because the indicator function is discontinuous, the filtering theory of
Chapter 4 does not apply. However in practice the DFT computations of Algorithm 4.1 can still
be used. This application of the perfect lowpass filter is equivalent to the spectrum clipping with
ratio r introduced in Section 6.2.1. In the following we take r = 1

2 because [−π

2 ,
π

2 ]
2 is a part of

the spectrum of mosaicked images that in general does not seem affected by the artefacts (see
Figure 8.4(a)-(b)).

Examples of conversion from mosaicked to non-mosaicked images are shown in Figure 8.3.
The corresponding spectra are in Figure 8.4. The mosaicked image ICFA in Figure 8.3(b) is
obtained by applying the Bayer filter to the color image I in Figure 8.3(a). The channel average
of the demosaicked image obtained by bilinear interpolation is compared to the lowpass filtering
of ICFA by the three filters introduced previously. Mosaic structures around the edges are still
visible for the demosaicked image and the HVS filter. Indeed, the high-frequency structures are
not removed from the spectra. The HVS filter gives the image with the most details (in particular
in the textured areas). The other results are blurry since more high-frequency content is filtered.
The filtered image by the perfect lowpass seems to contain more details than the demosaicked
one.
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(a) Color image I (b) Mosaicked image ICFA

(c) Demosaicking (d) Gaussian filter

(e) HVS filter (f) Perfect lowpass filter

Figure 8.3: Conversions from mosaicked to non-mosaicked images (spatial domain). The mo-
saicked image ICFA in (b) is obtained by applying the Bayer filter to the color image I in (a). The
channel average of the demosaicked image obtained by bilinear interpolation in (c) is compared
to the lowpass filtering of ICFA by the three filters introduced in Section 8.2.1. Mosaic structures
around the edges are still visible in (c) and (e). The image with the most details, in particular in
the textured areas, is (e). The other results are blurry. (f) seems to contain more details than (c).
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(a) Color image I
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(b) Mosaicked image ICFA
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(e) HVS filter
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(f) Perfect lowpass filter

Figure 8.4: Conversion from mosaicked to non-mosaicked images (spectra). The spectra cor-
respond to the unnormalized discrete Fourier transform in logarithmic scale u 7→ log(1+ u).
The root mean square over the channels is shown in (a). The high-frequency structures are not
removed in (c) and (e), which explains the mosaic structure around the edges in Figure 8.3.
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8.2.2 Algorithm

Given a conversion method from mosaicked to non-mosaicked images and a base registration
method, mosaicked images are registered using Algorithm 8.1. Intensity-based registration
methods should be preferred to Fourier-based methods as they are more robust and not limited
to rigid transformations. Typically, the modified inverse compositional algorithm, introduced in
Chapter 7, with a robust error function is a good candidate for the base registration method as
it is efficient and robust. In particular, Algorithm 8.2 is obtained by following the recommenda-
tions of Section 8.3, i.e., using a perfect lowpass filter and the modified inverse compositional
algorithm.

Algorithm 8.1: Registration of mosaicked images (general algorithm)

input : A reference mosaicked image I1
CFA, a warped mosaicked image I2

CFA, a
conversion method and a base registration method

output: An estimated transformation ϕ

1 Compute the images I1
gray and I2

gray from I1
CFA and I2

CFA using the conversion method
2 Compute the estimated transformation ϕ between I1

gray and I2
gray using the base

registration method

Algorithm 8.2: Registration of mosaicked images (recommended algorithm)

input : A reference mosaicked image I1
CFA and a warped mosaicked image I2

CFA
output: An estimated transformation ϕ

1 Compute the images I1
gray and I2

gray from I1
CFA and I2

CFA using the perfect lowpass filter in
[−π

2 ,
π

2 ]
2

2 Compute the estimated transformation ϕ between I1
gray and I2

gray using the modified
inverse compositional algorithm with Lorentzian error function (see 7)

Remark: In practice, for real-world mosaicked images, a preprocessing step may be required to
achieve better performance. For instance, a variance stabilizing transformation (VST) should be
applied to RAW images to approximate a homoscedastic noise. In addition, the base registration
method may require an equalization of the input image constrasts. These two operations are
used in the preprocessing step of Chapter 11.

8.3 Experiments

In this section, we evaluate experimentally the performance of the registration methods for mo-
saicked images that have been proposed in Section 8.2 (see Algorithm 8.1). The results confirm
the choices of the perfect lowpass filter and of the modified inverse compositional (see Algo-
rithm 8.2). First, the experimental setup for generating synthetic data and measuring the regis-
tration error is described in Section 8.3.1. Then, the impact of the conversion from mosaicked
to non-mosaicked images is studied in Section 8.3.2. Finally, the results obtained using different
base registration methods are compared in Section 8.3.3.

8.3.1 Experimental Setup

To evaluate the performance of a registration method, we consider an experimental setup similar
to the one developed in Chapter 7. As described in Section 7.4.1, a sequence of warped images,
whose transformations are known, is built from a color image. The mosaicked images are then
obtained by applying the RGGB Bayer filter. For each image, the error between the estimated
transformation and the ground truth transformation is expressed in terms of end-point error
(EPE). The mean of the error among the sequence gives an evaluation of the performance of
the method.
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Demosaicking Gaussian HVS Perfect Red channel

σ = 0
EPE 0.00464 0.00906 0.00389 0.00360 0.01615
Time 188 404 191 149 38

σ = 3
EPE 0.00669 0.01254 0.00583 0.00559 0.01877
Time 195 378 197 151 55

σ = 5
EPE 0.01127 0.01595 0.00998 0.00979 0.02230
Time 195 373 200 153 56

σ = 10
EPE 0.01734 0.02179 0.01561 0.01550 0.03834
Time 208 461 216 165 59

σ = 20
EPE 0.03867 0.03813 0.03340 0.03352 0.08158
Time 244 451 259 204 67

σ = 30
EPE 0.06081 0.06485 0.05252 0.05327 0.11601
Time 369 472 393 344 107

σ = 50
EPE 0.12019 0.11296 0.10655 0.10812 0.27328
Time 564 598 571 531 139

Table 8.1: Influence of the conversion from mosaicked to non-mosaicked images. The modified
inverse compositional algorithm with Lorentzian error function (see Chapter 7) is used as the
base registration method. Using the extracted red channel is the most computationally efficient
method but the end-point error is the highest. All the other methods are computationally less
efficient but lead to more accurate estimations. For moderate noise levels (σ≤ 5), the end-point
error is below or around one hundredth of pixel. As the noise level increases, the performances
of the methods converge. Globally, the filtering with the perfect lowpass provides the best results
both in terms of accuracy and efficiency.

More precisely, we take as input image I the RubberWhale image, which is a color image of
size 584×388 taken from the Middlebury database [10]. Similar results are obtained using other
images. For all the experiments, the same sequence of Nimages = 1000 non-noisy mosaicked
images is used. The transformations are random homograhies obtained using Algorithm 6.4
with L = 5. The interpolation method used to transform I is the periodic plus smooth version
of the B-spline of order 11, i.e., the p+s-spline11 interpolation method, with half-symmetric
extension (see Chapter 6). The mosaicked sequence is obtained by applying the RGGB Bayer
filter as described in (8.1). Then, to get noisy images, a Gaussian white noise of level σ ∈
{0,3,5,10,20,30,50} is added. As preprocessing, each mosaicked noisy image is cropped in a
band of δ = 20 pixels.

In order to study the performance of each method, we consider the end-point error and the
computation time. The displayed computation time corresponds to the CPU time used for the
Nimages = 1000 motion estimations and is expressed in seconds. Note that it also corresponds to
the average computation time per image in milliseconds. The experiments were made using an
Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz (on a single thread).

8.3.2 Impact of the Conversion

First, we consider the impact of the conversion from mosaicked to non-mosaicked images. This
is done using the five methods described in Section 8.2.1. The modified inverse compositional
algorithm, introduced in Chapter 7, with the Lorentzian error function (and the recommended
parameter) is then used as the base registration method. The results are presented in Table 8.1.

As expected, performing the base registration on one of the channels is the most compu-
tationally efficient method since the extracted channels are four times smaller images obtained
by subsampling. The counterpart is that the end-point error is the highest because these images
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SIFT + RANSAC IC M-IC

σ = 0
EPE 0.01932 0.01173 0.00360
Time 1298 458 149

σ = 3
EPE 0.03002 0.01309 0.00559
Time 1334 453 151

σ = 5
EPE 0.04929 0.01678 0.00979
Time 1393 451 153

σ = 10
EPE 0.15314 0.02391 0.01550
Time 1671 447 165

σ = 20
EPE 0.49535 0.04903 0.03352
Time 2575 424 204

σ = 30
EPE 0.83937 0.07455 0.05327
Time 3029 463 344

σ = 50
EPE 1.84189 0.13512 0.10812
Time 3003 579 531

Table 8.2: Influence of the base registration method. The conversion to non-mosaicked images
is done by perfect lowpass filtering. For the inverse compositional (IC) and the modified inverse
compositional (M-IC) algorithms, the Lorentzian error function is used. The M-IC algorithm
leads to the best results for all noise levels both in terms of efficiency and accuracy. Thanks to
the correct handling of the boundary pixels and to the prefiltering before the gradient estimation,
it is able to achieve a precise motion estimation in only a few iterations even if the non-mosaicked
images contain artefacts.

correspond to a coarser scale and are strongly aliased.
All the other methods are computationally less efficient but lead to more accurate estima-

tions. For moderate noise levels (σ ≤ 5), the end-point error is below or around one hundredth
of pixel. Note that as the noise level increases the performances of the methods converge. Glob-
ally, filtering with the perfect lowpass provides the best results both in terms of accuracy and
efficiency.

Conclusion: The perfect lowpass filter should be used to convert from mosaicked to non-
mosaicked images.

8.3.3 Comparison of Different Base Registration Methods

We now compare the results obtained using different base registration methods. The conversion
from mosaicked to non-mosaicked images is done by the perfect lowpass filtering. The base
registration methods considered are the SIFT+RANSAC algorithm, the inverse compositional
(IC) algorithm and its modified version (M-IC). These methods were introduced in Chapter 7.
For the IC and M-IC algorithm the Lorentzian error function and the recommended parameters
are used. The results are presented in Table 8.2.

The modified inverse compositional algorithm leads to the best results for all noise levels
both in terms of efficiency and accuracy. Thanks to the correct handling of the boundary pixels
and to the prefiltering before the gradient estimation, it is able to achieve a precise motion
estimation in only a few iterations even if the non-mosaicked images contain artefacts.

Conclusion: The modified inverse compositional algorithm with robust error function should
be used as the base registration method.
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8.4 Conclusion

In this chapter, we introduced two-step methods for the registration of mosaicked images. First,
the two mosaicked images are converted into non-mosaicked images by lowpass filtering. Fol-
lowing [6], these filtered images estimate the luminance information contained in the mosaicked
images. Then, the transformation between the mosaicked images is estimated by applying a
pre-existing registration method designed for classical images.

The performances of the proposed methods were evaluated experimentally for several low-
pass filters and pre-existing registration methods. We recommend the use of a perfect lowpass
filter, which cancels half the spectrum along each direction, and of the modified inverse compo-
sitional algorithm with robust error function (see Chapter 7). This recommended method is both
accurate and efficient, and will be used in our image formation algorithm from RAW images
(see Chapter 11).
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Image Fusion/Formation
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Chapter 9

Fast and Low Memory Image Fusion
using Classical Kernel Regression

Abstract

In this chapter we consider irregularly sampled data fitting by kernel regression (KR) [117]
and propose a fast and low memory image fusion method that is designed for a large number
of images. Using KR, the intensity value of the data is locally approximated by a polyno-
mial expansion, whose coefficients are obtained by solving a weighted linear regression
(with weights built from a kernel function). We show that the linear systems involved can
be obtained by a data accumulation. Classical kernel regression (CKR) is the most simple
and efficient case where the weights only depend on the data spatial repartition. As it is
equivalent to a local linear filtering [41], CKR introduces blur. We introduce the asymptotic
equivalent filter (AEF), an approximation of the actual equivalent filter. In the proposed
image fusion algorithm the combination part, using CKR with a Gaussian kernel, is split
into an accumulation part, where the images are processed sequentially, and an image com-
putation part. The blur, introduced by CKR, is inverted by applying the inverse of the AEF.
The registration method used is the one introduced in Chapter 7. The choice of the optimal
parameters and the evaluation of the performance of our algorithm are the subjects of Chap-
ter 10. The combination part of our image fusion method is adapted to mosaicked images
in Chapter 11.
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9.1 Introduction

In this chapter we consider the problem of image fusion from a large number of images. While
registration can be performed sequentially on the images, most combination methods use an
iterative scheme and require the availability of all the data in memory at once [38, 87, 91, 117,
118]. They might be able to achieve high performance but the amount of accumulated data, i.e.
the number of input images, is necessarily limited by the computer memory capacity. A fast and
low memory method requires a simpler combination. Note that burst denoising methods [19,
71] rely on interpolation and are not applicable in a super-resolution context.

An image can be computed pixel-by-pixel without any iterative scheme using classical ker-
nel regression [117]. This is the simplest and most efficient kernel regression method as it only
takes into account the spatial distance but not the photometric distance. However, this provides
low quality results in areas containing textures or edges. Actually, the final image is blurry.
As shown in [41], each output pixel value is a local weighted average of the samples, i.e. ob-
tained by an underlying local linear filtering. But the equivalent filter depends on the data spatial
repartition, which varies with the pixel position.

In this chapter we analyze how to fit irregularly sampled data by kernel regression. We show
that the linear systems involved can be obtained by a data accumulation. Then, we focus on
classical kernel regression and introduce the asymptotic equivalent filter, an approximation of
the actual equivalent filter. Finally, we propose a fast and low memory image fusion method that
is designed for a large number of images. The combination part, using classical kernel regres-
sion with a Gaussian kernel, is split into an accumulation part, where the images are processed
sequentially, and an image post-processing part. The quality of the result is significantly im-
proved in a sharpening step where the blur is successfully inverted by applying the inverse of the
asymptotic equivalent filter. The registration method used is the one introduced in Chapter 7.
The performance of the proposed algorithm is evaluated in Chapter 10.

This chapter is organized as follows: Section 9.2 presents the irregularly sampled data fitting
by kernel regression. In Section 9.3 we focus on classical kernel regression and introduce the
asymptotic equivalent filter. Finally, Section 9.4.1 describes our image formation algorithm.

9.2 Kernel Regression

In this section we present the fitting method for irregularly sampled data using a kernel re-
gression [117]. This includes methods known as normalized convolution [64, 91] and bilateral
filtering [20, 32, 55, 90, 124]. We focus on order NKR ∈ {0,1,2} because higher order are more
likely to fit noise and the computational cost increases rapidly with the order. First we introduce
two notations. Denote by dNKR the number of coefficients of a two-dimensional polynomial of
degree (at most) NKR. We have

dNKR =
(NKR +1)(NKR +2)

2
=


1 if NKR = 0
3 if NKR = 1
6 if NKR = 2.

(9.1)

We define the function X : R2→ RdNKR by

X(x,y)T =


1 if NKR = 0
(1,x,y) if NKR = 1
(1,x,y,x2,xy,y2) if NKR = 2.

(9.2)
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9.2.1 Principle

Let S be a set of irregularly sampled data. Let x0 = (x0,y0) ∈ R2 be a pixel position for which
the intensity value Ix0 has to be computed. Within a local neighborhood B(x0,r) of radius r > 0
around x0, the intensity value at position x = (x+ x0,y+ y0) is approximated by a polynomial
expansion

Px0(x,v) = X(x−x0)T v =


v1 if NKR = 0
v1 + v2x+ v3y if NKR = 1
v1 + v2x+ v3y+ v4x2 + v5xy+ v6y2 if NKR = 2.

(9.3)

An example of irregularly sampled data S and of neighborhood B(x0,r) is shown in Figure 9.1.

Figure 9.1: Example of irregularly sampled data S and of neighborhood B(x0,r). The red crosses
correspond to the integer grid. Here we have x0 = (290,193) and r = 1.

Denote by (Ii,xi)1≤i≤Nx0 the samples of S located in B(x0,r) at position xi and with inten-
sity value Ii. To each location xi is associated a weight wi ≥ 0, whose choice is discussed in
Section 9.2.4. The parameter v = vx0 = (vi)

T
1≤i≤dNKR

∈ RdNKR , representing the polynomial co-
efficients, is chosen as the solution to a weighted linear regression on the intensities Ii, which
amounts to minimizing the energy

u ∈ RdNKR 7→ Ex0(u) =
Nx0

∑
i=1

wi (Ii−Px0(xi,u))2 . (9.4)

The intensity value Ix0 at location x0 is then given by

Ix0 = Px0(x0,v) = v1. (9.5)

An image can be computed from S by applying the kernel regression method to pixels x0 in a
regular grid.

9.2.2 Resolution of the Weighted Linear Regression Problem

We now detail how the polynomial coefficients v, and consequently the intensity value Ix0 , are
obtained.
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Notations. To the sample location xi = (x0 + xi,y0 + yi) we associate the vector Xi ∈ RdNKR

defined by

XT
i = X(xi−x0)T =


1 if NKR = 0
(1,xi,yi) if NKR = 1
(1,xi,yi,x2

i ,xiyi,y2
i ) if NKR = 2.

(9.6)

Denote by B the matrix defined by

B =

 XT
1
· · ·

XNx0

= (XT
i )1≤i≤Nx0 ∈MNx0 ,NKR(R) (9.7)

and by W the diagonal matrix defined by

W =

w1
. . .

wNx0

 ∈MNx0 (R) (9.8)

Finally, set I = (Ii)
T
1≤i≤Nx0

∈ RdNKR . Note that, to simplify, the dependencies on x0 of Xi, B, W
and I are not specified.

Symmetric linear system. With these notations we can write

Ex0(u) = ‖W (Bu− I)‖2
2 (9.9)

so that the solution to the minimization problem v= argminu∈RdNKR
Ex0(u) is given by the normal

equation
(BTWB)v = BTW I. (9.10)

In other words, the parameter v satisfies the NKR-by-NKR symmetric linear system

Ax0v = bx0 (9.11)

where
Ax0 = (BTWB) and bx0 = BTW I. (9.12)

Practical system resolution. In a non-degenerate case Ax0 is positive definite and the system
in (9.11) admits a unique solution. For NKR = 0, the 1-by-1 system is solved by a simple division

v = v1 =
∑

Nx0
i=1 wiIi

∑
Nx0
i=1 wi

. (9.13)

For NKR = 1, the closed-form expression for the inverse of a 3-by-3 matrix is available. For
NKR = 2, the Cholesky decomposition [44, p. 93] is used to solve the 6-by-6 system. In practice,
to save computations, only the first component v1 =

(
A−1

x0 bx0

)
1 is computed.

9.2.3 Summative Expressions of the System Coefficients

Set Ai = XiXT
i . It is possible to rewrite Ax0 and bx0 as

Ax0 =
Nx0

∑
i=1

wiAi (9.14)

and

bx0 =
Nx0

∑
i=1

wiXiIi. (9.15)

The corresponding expressions in terms of wi, xi, yi and Ii for the three considered orders are the
following.
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For NKR = 0: We have Ax0 = ∑
Nx0
i=1 wi and bx0 = ∑

Nx0
i=1 wiIi.

For NKR = 1: We have

Ax0 =
Nx0

∑
i=1

wi

1 xi yi

xi x2
i xiyi

yi xiyi y2
i

 (9.16)

and

bx0 =
Nx0

∑
i=1

wi

1
xi

yi

 Ii. (9.17)

For NKR = 2: We have

Ax0 =
Nx0

∑
i=1

wi



1 xi yi x2
i xiyi y2

i
xi x2

i xiyi x3
i x2

i yi wixiy2
i

yi xiyi y2
i x2

i yi xiy2
i y3

i
x2

i x3
i x2

i yi x4
i x3

i yi x2
i y2

i
xiyi x2

i yi xiy2
i x3

i yi x2
i y2

i xiy3
i

y2
i xiy2

i y3
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 (9.18)

and

bx0 =
Nx0

∑
i=1



Ii

xi

yi

x2
i

xiyi

y2
i

 Ii. (9.19)

Thanks to these summative expressions the contribution of a sample to the system coefficients
can be computed by accumulation. This property is crucial to guarantee the low memory re-
quirement of our image fusion algorithm described in Algorithm 9.1.

9.2.4 Choice of the Weights

In Section 9.2.1 we associated a weight wi to the sample (Ii,xi). This weight controls the relative
contribution of (Ii,xi), with respect to the other samples, in order to compute v and thus Ix0 .

Among all the kernel regression methods there is a large variability in the choice of the
weights but they rely on the common idea that they are built from a kernel function w :R2→R+.
This function is assumed to reach its maximum at (0,0) and to be a radial function. Depending
on the way weights are built from the kernel, the methods can be categorized into two groups.

Classical kernel regression. In classical kernel regression methods [117] the weights only
depend on the spatial repartition of the data around the current location x0. The idea is to have
the highest contributions for the samples close to x0. The weights are given by

∀1≤ i≤ Nx0 , wi = w(xi−x0). (9.20)

In general the kernel w = wσs is parametrized by a scaling parameter σs, which is linked to the
neighborhood radius r. For instance in the Gaussian case we will take r = 4σs in Section 9.4.
A large scale allows for pixels far from x0 to contribute in a non-negligible way, which may
be interesting for denoising. The choice of the scale is either made manually or automatically
depending on the density of the data.
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When the data density varies significantly, classical kernel regression methods can be slightly
modified by taking into account the local density [91, 117]. A scale σs(x0) is computed from
the density around x0. The weights are then given by

∀1≤ i≤ Nx0 , wi = wσs(x0)(xi−x0). (9.21)

Classical kernel regressions methods are the simplest and most efficient methods but they do
not perform well in areas containing textures or edges. When an image is built it appears blurry.
In Section 9.3 we focus on classical kernel regression and show that it can be interpreted as local
linear filtering of the data.

Data-adapted. In data-adapted kernel regression methods the weights also depend on the inten-
sity values of the data.

• Bilateral kernel regression: In bilateral kernel regression methods [20, 32, 55, 90, 91, 124]
the penalizations over the spatial distance and the intensities are separated. The weights
are given by

∀1≤ i≤ Nx0 , wi = wσs(xi−x0)wσr(Ii− Ĩ(x0)) (9.22)

where σr > 0 is the scale for the radiometric information and Ĩ(x0) is an estimate of Ĩx0 .
The scale σr > 0 can, for instance, be chosen depending on the data noise level.

For NKR = 0 the results of the bilateral kernel regression is given by

Ix0 =
∑

Nx0
i=1 wσs(xi−x0)wσr(Ii− Ĩ(x0))Ii

∑
Nx0
i=1 wσs(xi−x0)wσr(Ii− Ĩ(x0))

. (9.23)

This is nothing but the bilateral filter [124]. For NKR > 0 it corresponds to high-order
bilateral filters [116].

In the denoising case, where regularly sampled data provide from an image, the estimate
Ĩx0 is the noisy intensity value at x0. Otherwise, Ĩx0 has to be estimated using, for instance,
another irregularly sampled data fitting method. In [91] and [117] the authors propose to
use a classical kernel regression method. More precisely, in [91] they replace Ĩ(x0) by the
polynomial expansion Px0(xi,v) where v is the parameter obtained during the regression
at location x0.

• Steered kernel regression The separation of the penalizations terms in (9.22) does not take
into account the link between spatial and radiometric distances. For instance, it is clear
that the intensity value varies more rapidly across an edge than along. In steered kernel re-
gression methods [82, 91, 117, 119] the spatial penalization depends on the local structure
of the data that is estimated from the intensity values. To simplify, the idea is to estimate
the local gradient of the data and, accordingly, to associate to each location xi a steering
matrix Hsteer

i ∈M2(R). The weights are given by

∀1≤ i≤ Nx0 , wi = wσs

(
Hsteer

i (xi−x0)
)
. (9.24)

The steering matrices were built in order to give higher contribution to samples located
far from x0 along the edges and less contribution across.

Data-adapted kernel regression methods provide better results than classical kernel regression.
The data-adapted weights make these methods equivalent to a local nonlinear filtering of the
data. The drawback is a significant increase of the computational cost. These methods rely on
an pre-estimation of the output and an iterative scheme is usually required.
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9.3 Classical Kernel Regression

In Section 9.2 we presented the general theory and computations of kernel regression methods.
We now focus on the classical kernel regression, which is the most simple particular case where
the weights only depend on the spatial repartition (see Section 9.2.4). Given a kernel w the
weights are given by (9.20). The variation of the local density is not taken into account.

In Section 9.3.1 the pixel computation by classical kernel regression is interpreted as a local
linear filtering process, which defines an equivalent filter and explains the blur introduction. The
asymptotic equivalent filter, an approximation of the equivalent filter that does not depend on
the pixel location, is introduced in Section 9.3.2. The asymptotic equivalent filter corresponding
to a Gaussian kernel is presented in Section 9.3.3. The inverse of this filter will be used in our
image fusion algorithm, described in Algorithm 9.1, to remove the blur and, consequently, to
improve the results of classical kernel regression.

9.3.1 Local Linear Filtering and Equivalent Filter

As pointed out in [41, 117], classical kernel regression can be interpreted as a local linear filter-
ing of the data. Indeed, we have

Ix0 = v1 =
(
A−1

x0 bx0

)
1 =

dNKR

∑
j=1

(A−1
x0 )[1, j](bx0) j (9.25)

=

dNKR

∑
j=1

(A−1
x0 )[1, j]

Nx0

∑
i=1

wi(Xi) jIi (9.26)

=
Nx0

∑
i=1

wi

(
dNKR

∑
j=1

(A−1
x0 )[1, j](Xi) j

)
Ii. (9.27)

This can be written as

Ix0 =
Nx0

∑
i=1

w̃(xi,x0)Ii (9.28)

where

w̃(xi,x0) = w(xi−x0)

(
dNKR

∑
j=1

(A−1
x0 )[1, j](X(xi−x0)) j

)
. (9.29)

Thus, the computed intensity value Ix0 is the weighted average of the intensities (Ii)1≤i≤Nx0

where the weights w̃(xi,x0) depends on the spatial repartition of the data in the neighborhood
B(x0,r), i.e., on the locations (xi)1≤i≤Nx0 . Note that, similarly, data-adapted kernel regression
can be interpreted as a local nonlinear filtering since the corresponding weights also depend on
the intensities (Ii)1≤i≤Nx0 .

Equivalent filter. The local linear filtering defines equivalent filters (or kernel). The equivalent
filter corresponding to the location x0 is given by

x 7→ w̃(x,x0). (9.30)

Note that classical kernel regression reproduces constants so that we have ∑
Nx0
i=1 w̃(xi,x0) = 1.

The equivalent filter w̃(x,x0), however, is not normalized, i.e., its integral may be different from
one.

An example of equivalent filter is shown in Figure 9.2. The equivalent filters for NKR = 0
and NKR = 1 are similar. More generally, classical kernel regression with orders NKR = 2q
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Figure 9.2: Example of equivalent filter for a Gaussian kernel of standard deviation σs =
√

2
2

and r = 4σs. For the data whose spatial repartition is represented in (b), the equivalent filters
at location x0 = (0,0) for NKR ∈ {0,1,2} are computed. The curves corresponding to the slice
y = 0 are shown in (a). The equivalent filters for NKR = 0 and NKR = 1 are similar.

and NKR = 2q+ 1 lead asympotically (see Section 9.3.2 for a proper definition) to the same
results [117]. This property is proved in Section 9.3.3 for the Gaussian kernel.

In general the equivalent filter is a low-pass approximation (more or less tight) of the Dirac
function δx0 . This explains why an image computed by classical kernel regression seems blurry:
the equivalent filter has attenuated the high-frequencies.

9.3.2 Asymptotic Equivalent Filter

The blur introduced by a linear filter can be inverted by applying the inverse filter (provided there
is one). The problem here is that the equivalent filter is a local linear filter, which depends on the
data spatial repartition. In the following we show that the equivalent filter can be approximated
"asymptotically" by a linear filter, that does not depend on the pixel location.

Additional hypothesis on the kernel. To guarantee that the quantities introduced below are
well-defined, an additional hypothesis is made on the kernel w. We assume that for all non-
negative integers m,n such that m+n≤ 2NKR,∫

R2
w(x,y)|x|m|y|ndxdy <+∞. (9.31)

Asymptotic formulation. Consider the ideal case where the data in S correspond to the sam-
pling, with a uniform spatial distribution, of a bounded function I : R2 → R. The energy Ex0 ,
introduced in (9.4) and defining the weighted linear regression problem, can be written as

Ex0(u) =
Nx0

∑
i=1

w(xi−x0)(I(xi)−Px0(xi,u))2 . (9.32)

As the number of local samples Nx0 and the neighborhood radius r go to infinity, thanks to
Monte-Carlo integration [51], we have

1
Nx0

Ex0(u)−→
∫
R2

w(x−x0)(I(x)−Px0(x,u))2 dx .
= Ex0(u). (9.33)
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The energy Ex0 is called the asymptotic energy. As for the discrete case, to the minimizer v of
Ex0 (provided there is one) is associated the intensity value Ix0 = v1.

Minimization of the asymptotic energy. Using similar computations as for the discrete case, a
continuous version of the normal equation (9.10) is obtained. The parameter v is a critical point
of Ex0 if and only if(∫

R2
w(x−x0)(XXT )(x−x0)dx

)
v =

∫
R2

w(x−x0)X(x−x0)I(x)dx. (9.34)

After a change of variable this can be written as the linear system

Av = b(x0) (9.35)

where

A = Aw,NKR =
∫
R2

w(x)(XXT )(x)dx ∈MdNKR
(R) (9.36)

is a positive semi-definite matrix that does not depend on x0 and, denoting by ? the cross-
correlation operator,

b(x0) = (wX ? I)(x0). (9.37)

In a non-degenerate case (i.e. for an appropriate choice of kernel w), A is positive definite and
the asymptotic energy has a unique minimum v, which is defined by (9.35).

Linear filtering. The intensity value Ix0 is given by

Ix0 =
∫
R2

(
A−1X(x−x0)

)
1 w(x−x0)I(x)dx. (9.38)

Set X∗ = X(−·). We define the asymptotic equivalent filter w̃∞ : R2→ R by

w̃∞ =
(
A−1X∗

)
1 w. (9.39)

Then, the intensity value Ix0 given by classical kernel regression in the asymptotic case is ex-
pressed as the linear filtering of the underlying image I by w̃∞,

Ix0 = (w̃∞ ∗ I)(x0). (9.40)

Global approximation of the equivalent kernel. Contrarily to the equivalent filter w̃, whose
expression is given in (9.29), the asymptotic equivalent filter w̃∞ does not depend on the location
x0 nor on the spatial data repartition.

A and b(x0) can be obtained respectively from the discrete quantities Ax0 and x0 (see (9.14)
and (9.15)) thanks to Monte-Carlo integration. Thus, w̃∞, which was at first place obtained from
the minimizer of the approximate energy Ex0 , is also an approximation of the equivalent filter w̃.

Interpretation. To summarize, an image computed by classical kernel regression can be asymp-
totically interpreted as the convolution between the ideal unknown target image I and a filter w̃∞.
The image may seem blurry since w̃∞ attenuates the high-frequencies (see Gaussian case in the
next section). This justifies, in Algorithm 9.1, the application of an enhancement filter reverting
the blur.
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9.3.3 Gaussian Case

Denote by wσs the two-dimensional Gaussian kernel of scale σs > 0, i.e.,

wσs(x) =
1

2πσ2
s

exp
(
−‖x‖

2

2σ2
s

)
. (9.41)

The asymptotic equivalent filter depends on the kernel and on the order NKR. We now present
the equivalent filter w̃σs,∞ corresponding to wσs for NKR ∈ {0,1,2}.

Expression of A. The matrix A, defined in (9.36), is composed of elements of the form

Wσs,m,n =
∫
R2

xmynwσs(x,y)dxdy =
(√

2πσ2
s

∫
R

wσs(x,0)x
mdx
)

︸ ︷︷ ︸
.
=Wσs,m

(√
2πσ2

s

∫
R

wσs(0,y)y
ndy
)

︸ ︷︷ ︸
.
=Wσs ,n

(9.42)
for n,m non-negative integers. By symmetry, for n odd we have Wσs,n = 0. For n even, we use
the following formula ∫

∞

0
xne−ax2

dx =
Γ(n+1

2 )

2a
n+1

2
. (9.43)

where a > 0 and Γ : z ∈C 7→
∫

∞

0 xz−1e−xdx is the Gamma function. With a = 1
2σ2

s
, we have for n

even,

Wσs,n =
1√

2πσ2
s
(2σ

2
s )

n+1
2 Γ

(
n+1

2

)
. (9.44)

Finally, we have for n ∈ {0,1,2,3,4},
Wσs,0 = 1
Wσs,2 = σ2

s

Wσs,4 = 3σ4
s

Wσs,1 =Wσs,3 = 0.

(9.45)

Note that we used the well-known formulas Γ(1
2) =

√
π and Γ(x+1) = xΓ(x) (for x > 0). The

explicit expressions of A and A−1 for NKR ∈ {0,1,2} are the following.

For NKR = 0: We have A = 1 and A−1 = 1.

For NKR = 1: A is a diagonal matrix given by

A =

Wσs,0 0 0
0 Wσs,2Wσs,0 0
0 0 Wσs,2Wσs,0

=

1 0 0
0 σ2

s 0
0 0 σ2

s

 (9.46)

and its inverse A−1 is given by

A =

1 0 0
0 1

σ2
s

0
0 0 1

σ2
s

 . (9.47)
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For NKR = 2: A is given by

A =


W 2

σs,0 0 0 Wσs,0Wσs,2 0 Wσs,0Wσs,2

0 Wσs,0Wσs,2 0 0 0 0
0 0 Wσs,0Wσs,2 0 0 0

Wσs,0Wσs,2 0 0 Wσs,0Wσs,4 0 W 2
σs,2

0 0 0 0 W 2
σs,2 0

Wσs,0Wσs,2 0 0 W 2
σs,2 0 Wσs,0Wσs,4

 (9.48)

=



1 0 0 σ2
s 0 σ2

s
0 σ2

s 0 0 0 0
0 0 σ2

s 0 0 0
σ2

s 0 0 3σ4
s 0 σ4

s
0 0 0 0 σ4

s 0
σ2

s 0 0 σ4
s 0 3σ4

s

 (9.49)

and its inverse A−1 is given by

A−1 =



2 0 0 − 1
2σ2

s
0 − 1

2σ2
s

0 1
σ2

s
0 0 0 0

0 0 1
σ2

s
0 0 0

− 1
2σ2

s
0 0 1

2σ4
s

0 0
0 0 0 0 1

σ4
s

0
− 1

2σ2
s

0 0 0 0 1
2σ4

s


. (9.50)

Expression of w̃σs,∞. Combining the above expressions of A−1 and (9.39), we obtain an explicit
formula for the asymptotic equivalent filter w̃σs,∞.

For NKR ∈ {0,1}: As discussed in Section 9.3.1, order 0 and 1 share the same asymptotic
equivalent filter and are asymptotically equivalent. The asymptotic equivalent filter co-
incides with the Gaussian kernel wσs , i.e.,

w̃σs,∞(x) = wσs(x). (9.51)

Its Fourier transform is given by

F (w̃σs,∞)(x) = exp
(
−σ

2
s
‖x‖2

2

)
. (9.52)

For NKR = 2: The asymptotic equivalent filter is given by

w̃σs,∞(x) = wσs(x)
(

2− ‖x‖
2

2σ2
s

)
(9.53)

and its Fourier transform is

F (w̃σs,∞)(x) =
(

1+
σ2

s

2
‖x‖2

)
exp
(
−σ

2
s
‖x‖2

2

)
. (9.54)

Note that we can write

w̃σs,∞ = wσs−
σ2

s

2
∆(wσs) (9.55)

where ∆ denotes the Laplacian operator.
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Figure 9.3: Asymptotic equivalent filter for the Gaussian kernel (σs = 0.7). In both spatial
(a) and Fourier domains (b), the functions decrease as ‖x‖ increases. In particular, the linear
filtering by w̃σs,∞ attenuates the high-frequency content. This attenuation is less important for
NKR = 2. The shape of w̃σs,∞ is similar to the shape of the equivalent filter w̃ shown in Figure 9.2.
The asymptotic filters have an integral of one. For NKR = 2 it only seems larger because the filter
takes negative values.

In both cases the asymptotic equivalent filters are radial functions with positive Fourier trans-
forms. The asymptotic equivalent filters for NKR ∈{0,1,2}, and the corresponding Fourier trans-
forms, are shown in Figure 9.3. In both spatial and Fourier domains, the functions decrease as
‖x‖ increases. In particular, the linear filtering by w̃σs,∞ attenuates the high-frequency content.
This attenuation is less important for NKR = 2. The shape of w̃σs,∞ is similar to the shape of
the equivalent filter w̃ shown in Figure 9.2. The asymptotic filters have an integral of one. For
NKR = 2 it only seems larger because the filter takes negative values.

9.4 Fast and Low Memory Image Fusion

In this section we propose a fast and low memory image fusion method that is designed for a
large number of images. The combination part, using classical kernel regression with Gaussian
kernel, is split into an accumulation part and an image computation part. Using the particular
structure of the linear systems involved for computing the pixel values (see Section 9.2.3), the
input images are processed sequentially during the accumulation. Then, an image is computed
by resolving the small systems at each pixel locations. The counterpart of this efficient image
computation, which do not require an iterative scheme, is the blurry aspect of the image. The
quality of the result is significantly improved in the sharpening step. The blur is inverted by
applying the inverse of the asymptotic equivalent filter, introduced in Section 9.3.3.

Our algorithm is detailed in Section 9.4.1. The low memory requirement of the method
is discussed in Section 9.4.2. The choice of the optimal parameters and the evaluation of the
performance of our algorithm are the subjects of Chapter 10.

9.4.1 Proposed Algorithm

Given a sequence (I j)1≤ j≤Nim of Nim images of common size M×N, a zoom factor λ > 0, an
order NKR ∈ {0,1,2} and a scale σs > 0, our image fusion method builds an image I of size
[λM]× [λN]. Our algorithm is presented in Algorithm 9.1 and its main steps are summarized in
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(a) Memory greedy algorithm

(b) Our algorithm

Figure 9.4: Main steps of our image fusion method. (a) and (b) are theoretically equivalent.
The combination from the irregularly sampled data is replaced by the accumulation step, where
the images are sequentially processed to get the system coefficients, and the image computation
step, where the systems are solved.

Figure 9.4(b).

Registration. The first image I1 is arbitrarily chosen as the reference image for the registration
part, i.e., the irregularly sampled data are expressed in the system of coordinates defined by I1.
The transformation ϕ1 is set to the identity. The homographic transformation ϕ j between I1 and
I j, so that I1 ' I j(ϕ j(·)), is estimated using the modified inverse compositional algorithm with
Lorentzian error function (see Algorithm 7.4 in Chapter 7).

Accumulation. The system coefficents in Ax0 and bx0 for each output pixel x0 ∈ Ω[λM],[λN]

are computed by accumulation. First, they are initialized to zero i.e. Ax0 = 0MdNKR
(R) and

bx0 = 0RdNKR
. Then, the images are processed sequentially. For each pixel (k, l) ∈ ΩM,N , the

corresponding location x = λ(ϕ j)−1(k, l) in the zoomed reference system is computed. The
sample (x, I j

k,l) contributes to the system coefficients of the output pixel x0 ∈ B(x,4σs) as writ-
ten in (9.14) and (9.15).

Image computation. For each output pixel x0 ∈ Ω[λM],[λN], the intensity value Ix0 is computed
from Ax0 and bx0 as described in Section 9.2.2. It defines an image I of size [λM]× [λN], which
is blurry.

Sharpening. To remove the blur, the inverse of the equivalent asymptotic filter w̃σs,∞ (see Sec-
tion 9.3.3) is applied to I using the DCT convolution method [45, 77]. Note that the DCT
convolution method only applies when the filter is symmetrical (and real-valued). Thanks to the
symmetrical boundary handling, it provides better results than the filtering method presented in
Chapter 4, which implicitly uses a periodic extension.

Precisions.

• Our method naturally extends to color images by processing the channels independently
(except for the registration part that is shared).

• The evaluation of the Gaussian weights is costly. Therefore they are tabulated.

• As discussed in Section 9.4.2, in practice there is no need to compute the whole matrix
Ax0 because of redundancies. This saves both memory and computations.

• Contrast change may deteriorate the algorithm performance (during the registration and
the fitting). This can be handled by equalizing the input image contrasts, for instance
using the Midway Image Equalization algorithm [28, 50]. In Chapter 10 we perform a
simple mean equalization.
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Algorithm 9.1: Image fusion algorithm using classical kernel regression.
Input : A sequence (I j)1≤ j≤Nim of Nim images of size M×N, a zoom factor λ > 0, an

order NKR ∈ {0,1,2} and a scale σs > 0
Output: A fused image I of size [λM]× [λN]
// Registration

1 Set ϕ1 to the identity transformation
2 for j ∈ {2, . . . ,Nim} do
3 Compute the estimated homographic transformation ϕ j between I1 and I j using

Algorithm 7.4 with Lorentzian error function
// Accumulation

4 for x0 ∈Ω[λM],[λN] do
5 Initialize Ax0 and bx0 to zero

6 for j ∈ {1, . . . ,Nim} do
7 for (k, l) ∈ΩM,N do
8 Compute x = λ(ϕ j)−1(k, l)
9 for x0 ∈Ω[λM],[λN]∩B(x,4σs) do

10 Compute the Gaussian weight w = wσs(x−x0) using (9.41)
11 Compute X = X(x−x0) using (9.2)
12 Update Ax0 ← Ax0 +wXXT

13 Update bx0 ← bx0 +wXI j
k,l

// Image computation
14 for x0 ∈Ω[λM],[λN] do
15 Compute Ix0 from Ax0 and bx0 as described in Section 9.2.2

// Sharpening
16 Apply the inverse of the equivalent asymptotic filter w̃σs,∞ (see Section 9.3.3) to I using

the DCT convolution

Remarks.

• A zoom factor λ > 1 corresponds to a super-resolution context. For λ < 1, it can be seen
as a down-sampling.

• The scale σs is relative to the zoomed system of coordinates. In the reference system of
coordinates the corresponding scale is λσs.

• Assume an additional reference image is provided to the algorithm. A variant of the algo-
rithm consists in using this image as the reference (instead of I1) during the registration
and not during the data fitting part. The idea is to remove the asymmetry between the
images since, in Algorithm 9.1, I1 plays a particular role. Indeed, the samples of I1 al-
ways have the maximal weight during the fitting. This variant is used in the experimental
evaluation of our algorithm in Chapter 10.

• Our method does not perform deblurring (as in [33] for instance). The sharpening step
only corrects the blur introduced by the classical kernel regression.

9.4.2 A Low Memory Requirement

Our image fusion algorithm is designed for a large number of images Nim. As the images are
processed sequentially, the memory requirement does not depend on the number of input images
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Nim but on the size of the output image. The majority of the memory requirement comes from
the storage of the system coefficients. In theory, the storage of Ax0 and bx0 requires d2

NKR
+dNKR

(double-precision floating point) numbers. Thanks to the redundancies in Ax0 (see Section 9.2.3),
it comes back down to the storage of

Nmem =


2 if NKR = 0
9 if NKR = 1
21 if NKR = 2

(9.56)

numbers. Finally, the overall storage of the system coefficient represents Nmem [λM] [λN] num-
bers.

Theoretically the accumulation and image computation steps are equivalent to a single com-
bination step taking as input the irregularly sampled data. The structure of the resulting memory
greedy algorithm is shown in Fig. 9.4(a). The knowledge of the irregularly sampled data requires
to store three numbers per sample (two for the location and one for the intensity). The overall
storage represents 3NimMN numbers. The storage of the system coefficients is smaller than the
storage of the data as soon as the number of images Nim becomes larger than λ2Nmem

3 . For λ = 1
and NKR ∈ {0,1,2} it corresponds respectively to 1, 3 and 7 images. For λ = 2 the values are
multiplied by 4.

Note that the number of updates per sample depends on the scale σs. For instance, assume
the value σs = 1/

√
2 is used. Then, each sample contributes to at most 20 surrounding pixels,

which represents 20Nmem updates.

9.5 Conclusion

In this chapter we presented irregularly sampled data fitting by kernel regression. The intensity
value of the data is locally approximated by a polynomial expansion, whose coefficients are
obtained by solving a weighted linear regression (with weights built from a kernel function). We
showed that summative expressions for the system coefficients are available.

Classical kernel regression is the most simple and efficient case where the weights only
depend on the data spatial repartition. As it is equivalent to a local linear filtering, classical kernel
regression introduces blur. We introduced the asymptotic equivalent filter, an approximation of
the actual equivalent filter, that does not depend on the spatial repartition. We obtained the
expression of this filter in the Gaussian case.

Based on these results we proposed a fast and low memory image fusion algorithm that is
designed for a large number of images. The registration method used is the one introduced in
Chapter 7. Using the particular structure of the system coefficients, the combination part, using
classical kernel regression with a Gaussian kernel, is split into an accumulation part, where
the images are processed sequentially, and an image computation part. The blur, introduced by
classical kernel regression, is inverted by applying the inverse of the asymptotic equivalent filter.

The choice of the optimal parameters and the evaluation of the performance of our algorithm
are the subjects of Chapter 10. The combination part of our image fusion method is adapted to
mosaicked images in Chapter 11.
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Chapter 10

Experimental Evaluation of our Image
Fusion Algorithm

Abstract

In this chapter we evaluate experimentally the performance of our proposed image fu-
sion algorithm on synthetic and real data, as it has been described in Algorithm 9.1. Our
analysis of the synthetic case shows that the sharpening step is crucial to obtain a blur-free
denoised image. We also figure out the best configuration for the order and the scale, de-
pending on the sub-sampling factor. Assuming a uniform repartition of the samples, we
conclude that it is better to use the order 0 when no super-resolution is required, and the
order 2 for super-resolution. We find that a Gaussian kernel scale of about 0.7 is the best
choice. We show that for a large amount of data (synthetic or real) our image fusion algo-
rithm provides similar results as slower and memory greedy methods. The residual noise
on both synthetic and real examples decreases as expected and our algorithm can perform
super-resolution. From the experiments on real data we see that the performance of image
fusion methods is limited by uncontrolled processes (demosaicking, JPEG compression,
8-bit quantization). This is why we propose in Chapter 11 an image formation algorithm
taking RAW images as input.
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10.1 Introduction

In this experimental chapter we evaluate the performance of our image fusion algorithm, de-
scribed in Algorithm 9.1, on synthetic and real data and estimate the best configuration for the
order and the scale, depending on the sub-sampling factor. In Chapter 9 we saw that order 0 and
1 are asymptotically equivalent. Therefore in the following we consider NKR ∈ {0,2}.

Our image fusion algorithm is compared to similar methods where the data fitting part (by
classical kernel regression) is respectively replaced by the ACT method [38] and by a burst
denoising method. We show that for a large amount of data (synthetic or real) our image fusion
algorithm provides similar results as both of these slower and memory greedy methods. The
residual noise decay proves to be as theoretically expected, and our algorithm also allows super-
resolution.

The experiments were made using an Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz (on
a single thread) and a C language implementation. We used the p+s-spline11 interpolation
method, introduced in Chapter 6, for the burst denoising. Using a fine-tuned interpolation
method makes the burst denoising slower but leads to significantly better results. First, the
two error measurements Eref and Eset, which are used to evaluate the algorithm performances,
are introduced in Section 10.2. Section 10.3 presents the experiments on synthetic data. The
results on real data are analyzed in Section 10.4.

10.2 Evaluation of the Error

Let (Ii)1≤i≤n be a sequence of images and consider an image fusion method.

Distance to the reference. Assume that the reference target image Iref (of size M×N) is known.
Denote by I the image built from the sequence (Ii)1≤i≤n. The error Eref is defined as the root
mean square error (RMSE) of the reconstructed image I. It is given by

E2
ref =

1
MN ∑

(k,l)∈ΩM,N

(I− Iref)
2
k,l. (10.1)

Distance between reconstructed image. When no reference image is available (for instance
for real data), it is not possible to define Eref. We propose to consider the distance between
reconstructed images from two separated sequences. Let (I′i )1≤i≤n be another sequence. Denote
by I and I′ the two reconstructed images, which are assumed to be expressed in the same system
of coordinates. The error Eset is defined as the root mean square difference (RMSD) between I
and I′. It is given by

E2
set =

1
MN ∑

(k,l)∈ΩM,N

(I′− I)2
k,l. (10.2)

For instance, the two sequences can be obtained by splitting a sequence (Ii)1≤i≤2n in two.
Remark: In practice, to discard boundary artefacts, a crop of 20 pixels is done before computing
Eref and Eset.

Link with the residual noise. The ideal denoising case corresponds to the case where each
intensity value is computed as the average of nsample noisy samples. Denote by σn the noise
level. For the pixel (k, l) ∈ΩM,N denote by Jk,l

s the samples. We assume that we can write Jk,l
s =

(Iref)k,l + ε
k,l
s where the (εk,l

s ), which represent the noise, are independent identically distributed
with E(εk,l

s ) = 0 and Var(εk,l
s ) = σ2

n. Then, we have

Ik,l =
1

nsample

nsample

∑
s=1

Jk,l
s = (Iref)k,l +

1
nsample

nsample

∑
s=1

ε
k,l
s . (10.3)



10.3–Experiments on Synthetic Data 219

The residual noise εk,l at location (k, l) is then given by

εk,l =
1

nsample

nsample

∑
s=1

ε
k,l
s (10.4)

and it verifies E(ε2
k,l) =

σ2
n

nsample
. Finally, thanks to the strong law of large numbers, we can write

as MN goes to infinity

E2
ref =

1
MN

n

∑
i=1

(εk,l)2→ σ2
n

nsample
. (10.5)

Similarly, we obtain that

E2
set→ 2

σ2
n

nsample
. (10.6)

When a number n of images are combined and a zoom factor λ is used, the number of samples
per output pixel is around nsample ' n

λ2 . Therefore, in the ideal denoising case, we have

Eref ' λ
σn√

n
and Eset '

√
2λ

σn√
n
. (10.7)

10.3 Experiments on Synthetic Data

First, we evaluate on synthetic data the performance of our image fusion algorithm, described
in Algorithm 9.1. More precisely, we focus on the performance of the irregularly sampled
data fitting part, which uses classical kernel regression. In this evaluation, the transformations
between the images are therefore assumed to be known. We refer to Chapter 7 for more details
about the performance of the registration part.

Section 10.3.1 describes our experimental setup. The interest of the sharpening is discussed
in Section 10.3.2. The best configuration for the order NKR and the scale σs, depending on the
sub-sampling factor λ, is obtained in Section 10.3.3. Section 10.3.4 compares our method with
the burst denoising and the ACT methods. Finally, the comparison between two reconstructed
images (using our method) from separated sets is considered in Section 10.3.5.

10.3.1 Experimental Setup

To evaluate the performance of an image fusion method we build a sequence of noisy warped
and sub-sampled images from a reference image. The image reconstructed from the sequence
using the image fusion method is compared to the reference image.

Building of the test sequences. We build several test sequences from the same reference image,
noted Iref, as follows. First, we build a base sequence (Ii)1≤i≤Nim of warped non-noisy images,
which have the same size as Iref. The transformation ϕi between Iref and Ii is a random homog-
raphy obtained using Algorithm 6.4 with L = 3. The geometric transformations are computed
using the p+s-spline11 interpolation method (with half-symmetric boundary condition) that was
introduced in Chapter 6. Let λ be an integer sub-sampling factor and σn be a noise level. The
test sequence (Iλ,σn

i )1≤i≤Nim is computed from (Ii)1≤i≤Nim by sub-sampling of factor λ (keeping
only one sample over λ2) and by adding Gaussian white noise of standard deviation σn.

Exact registration. As we focus on the performance of the irregularly data fitting part, the
registration part of Algorithm 9.1, which uses the first image of the sequence as reference, is
replaced by an exact registration, which uses Iref as reference. The transformations used during
the data fitting part are exactly the random homographies (ϕi)1≤i≤Nim that were generated.
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We take as reference image Iref the image presented in Figure 10.1(a). It is the grayscale
version of the RubberWhale image, which is of size 584× 388 and is taken from the Middle-
bury database [10]. We checked that similar results are obtained using other images. The test
sequences are built using Nim = 200 images for the noise levels σn ∈ {0,1,3,5,10,20,50}. We
consider the sub-sampling factors λ = 1 and λ = 2, which correspond respectively to no super-
resolution and to super-resolution by 2.

An example of noisy warped image is shown in Figure 10.1(b). The spatial repartition of
the irregularly sampled data, with and without super-resolution, is shown in Figure 10.2. As
the homographies ϕi are locally similar to translations, the data repartition seems to have a
periodicity of λ along each direction.

(a) Reference image Iref (b) Noisy warped image I1,20
1

Figure 10.1: Synthetic data for the performance evaluation. The reference image Iref in (a) is used in
Section 10.3 to generate the test sequences. It is the grayscale version of the RubberWhale image, which
is of size 584×388 and is taken from the Middlebury database [10]. The noisy warped image I1,20

1 in (b)
is the first image of the test sequence without sub-sampling and for the noise level σn = 20.
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(a) λ = 1

288.5 289.5 290.5 291.5 292.5 293.5

190.5
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192.5

193.5

194.5

195.5

(b) λ = 2 (super-resolution)

Figure 10.2: Spatial repartition of the irregularly sampled data, around the center of the reference image,
in the synthetic case (Section 10.3). The factor λ corresponds to the sub-sampling factor used to generate
the test sequences or, equivalently, to the zoom factor used in the image formation algorithm. As the
homographies ϕi are locally similar to translations, the data repartition is approximately λ-periodic in
each direction.
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10.3.2 Discussion of the Sharpening Step

In this section, we discuss the impact of the sharpening step. We recall that it consists in applying
the inverse of the asymptotic equivalent filter introduced in Section 9.3. To do that we compare
the results with and without performing the sharpening. The comparisons for the scale σs = 0.7
and for various values of sub-sampling factor λ, noise level σn and order NKR are shown in
Figure 10.3 to Figure 10.8. The sets of parameters used for each figure are the following:

Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8
λ 1 1 1 2 2 2
σn 0 5 50 0 0 5
NKR 0 0 0 0 2 2

Blur removal. As expected, in every case the reconstructed image without sharpening is blurry
(see (a)). The high frequency content is not well reconstructed. The spectrum seems to have
been low-pass filtered (see (c)). The difference to the reference image is high at the edges or in
textured areas (see (e)). The reconstructed image with sharpening does look sharper (see (b))
and has a richer high frequency content (see (d)).

However, performing the sharpening does not necessarily provide a better result, in terms
of Eref or visually. The impact of the sharpening highly depends on the noise level and on the
spatial data repartition.

Residual noise increase. The sharpening increases the high frequency content of the recon-
structed image. Therefore it also inevitably increases the residual noise. There is a trade-off
between removing the blur and increasing the noise. For instance consider the results without
sub-sampling (λ = 1) for order NKR = 0 and noise levels σn ∈ {0,5,50}. In Figure 10.3 and
Figure 10.4, i.e. for a low level of noise, the sharpening leads to better results both visually
and in terms of Eref. On the contrary for a high noise level, as in Figure 10.5, the distance to
the reference Eref is higher after sharpening. However this does not mean that it should not be
performed. Indeed, the residual after sharpening is not signal dependent and is mostly composed
of white noise in Figure 10.4(f),(h) and Figure 10.5(f),(h).

Spatial repartition. The sharpening step consists in applying the inverse of the asymptotic
equivalent filter, which is an approximation of the equivalent filter. If the approximation is not
tight enough, the sharpening may not be adapted and may introduce additional errors. Typically,
this is the case when the data repartition is not dense or uniform enough. For instance in the
super-resolution case (λ = 2) the data repartition seems to have a (2,2)-periodicity and is not
as dense as for λ = 1 (see Figure 10.2). Consequently, in the results corresponding to λ = 2,
shown in Figure 10.6 to Figure 10.8, the residual after sharpening remains signal dependent and
contains some high-frequency structures. In Figure 10.8, for σn = 5 and NKR = 2, the signal
dependency is negligible with respect to the residual noise.

Sharpening and order. The asymptotic equivalent filter k2 (corresponding to NKR = 2) is closer
to the Dirac function δ0 than k0 (corresponding to NKR = 0). More precisely, we have

0≤ F (k0)≤ F (k2)≤ 1. (10.8)

Therefore using NKR = 2 introduces less blur during the image computation by classical kernel
regression and requires less sharpening. In the super-resolution case without noise (λ = 2 and
σn = 0), the sharpened image using NKR = 0 contains zipper artefacts (see Figure 10.6). This is
not the case for NKR = 2 (see Figure 10.7).
To sharpen or not to sharpen ? In general the answer mostly depends on the user’s goal, but
sharpening will deliver a sharper image that is closer to the original, as illustrated in Figures
10.3 and 10.4. In the following, unless specified, we consider the results with sharpening.
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(a) Without sharpening (b) With sharpening
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Figure 10.3: Comparison without and with sharpening for λ = 1, NKR = 0 and σn = 0. The
value σs = 0.7 is used. The reconstructed image after sharpening looks sharper and is closer to
the reference image.
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Figure 10.4: Comparison without and with sharpening for λ = 1, NKR = 0 and σn = 5. The
value σs = 0.7 is used. The reconstructed image after sharpening looks sharper and is closer to
the reference image. The residual after sharpening is mostly composed of white noise.
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(a) Without sharpening (b) With sharpening
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Figure 10.5: Comparison without and with sharpening for λ = 1, NKR = 0 and σn = 50. The
value σs = 0.7 is used. The reconstructed image after sharpening looks sharper but is not closer
to the reference image. The sharpening increases the residual noise but the residual after sharp-
ening is mostly composed of white noise.
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Figure 10.6: Comparison without and with sharpening for λ = 2, NKR = 0 and σn = 0. The value
σs = 0.7 is used. The reconstructed image after sharpening is closer to the reference image but
contains zipper artifacts. With NKR = 0 and λ = 2 the sharpening is not adapted and introduces
artifacts.
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Figure 10.7: Comparison without and with sharpening for λ = 2, NKR = 2 and σn = 5. The
value σs = 0.7 is used. The reconstructed image after sharpening looks sharper and is closer to
the reference image. Because of the inadequate data repartition the residual is slightly signal
dependent and contains a moderate amount of high frequency artifacts. The results are better
than the ones of Figure 10.6 where NKR = 0 is used.
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Figure 10.8: Comparison without and with sharpening for λ = 2, NKR = 2 and σn = 5. The
value σs = 0.7 is used. The reconstructed image after sharpening looks sharper and is closer to
the reference image. The residual after sharpening is signal dependent but is mostly composed
of white noise.
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10.3.3 Choice of Order and Scale

In this section we find the best options for the order NKR and scale σs, when the sharpening
is performed, depending on the sub-sampling factor λ and the noise level σn. To do that we
compare the results using Nim = 200 images for σs ∈ {0.10,0.15, . . . ,0.85} and NKR ∈ {0,2}.
Our conclusions do not differ for different numbers of images exceeding 50.

Without super-resolution (λ = 1). The evolution of Eref with the scale σs for NKR ∈ {0,2} and
σn ∈ {0,5,20,50} is shown in Figure 10.9. Without noise using NKR = 2 leads to the smallest
error for small values of σs while as soon as there is noise using NKR = 0 is always (slightly)
better. Indeed, the denoising capacity of higher order is less important because more parameters
are estimated (here 6 against 1) and the model is more likely to fit noise.

The reconstructed images of the two orders (with σs = 0.7) are compared, respectively with-
out noise and with σn = 5, in Figure 10.11 and Figure 10.12. Without noise the results are
difficult to interpret since Eref is of the same order as the interpolation error used to generate
the data. With noise the results are similar but slighlty better for NKR = 0 and the residuals are
mostly composed of white noise. Another advantage of using NKR = 0 is that less computations
are required (see Figure 10.10). Therefore NKR = 0 should be used for λ = 1. Note that this
analysis is valid only when the data repartition is uniform and dense enough. Otherwise the
incoming conclusions corresponding to λ = 2 should be considered.

For NKR = 0 the error Eref decreases with the scale σs (see Figure 10.9). The decay is slower
and slower and is almost negligible after σs = 0.7. The residuals for σs ∈ {0.3,0.5,0.7} are
compared in Figure 10.13 for σn ∈ {0,5,20}. It is clear that the best results are obtained for
σs = 0.7. As σs increases the number of neighboring pixels used to compute the pixel values by
kernel regression increases. As shown in Figure 10.10 the computation time increases with σs.
Therefore, we choose to use σs around 0.7.

With super-resolution (λ = 2). The evolution of Eref with the scale σs for NKR ∈ {0,2} and
σn ∈ {0,5,20,50} is shown in Figure 10.14. Without noise using NKR = 2 leads to the smallest
error. As soon as the data are noisy, the error Eref is smaller for small values of σs when NKR = 0
is used and smaller for high values when NKR = 2. Actually for the largest noise level, σn = 50,
using NKR = 0 leads to a smaller error Eref thanks to a better denoising but the results are not
visually satisfactory for the reasons evoked below.

The reconstructed images of the two orders (with σs = 0.7) are compared, respectively with-
out noise and with σn = 5, in Figure 10.15 and Figure 10.16. A zipper effect is visible around the
edges of the results of NKR = 0. As seen in Section 10.3.2, this is introduced by the sharpening
when the data repartition is not uniform or not dense enough, which is the case here. There-
fore, using NKR = 2 is recommended (even though the denoising capacity may be lessened).
The residuals for σs ∈ {0.3,0.5,0.7} are compared in Figure 10.17 for σn ∈ {0,5,20}. With-
out noise small values of σs provides the best results because it corresponds to a less important
sharpening. For noisy data the best results are obtained for σs = 0.7, which is the value we
recommend.

About the sharpening. In Figure 10.9 and Figure 10.14, the evolution of Eref when the sharp-
ening is not performed is also shown. For high noise levels (σn ≥ 20) the error Eref without
sharpening may be smaller than the residual noise in the ideal denoising case. In other words the
blur removes more noise than it introduces error. There is a compromise between using more
neighboring pixels (to denoise) and increasing the high-frequency error (because of the blur).
Note that after the sharpening the error is always higher than the ideal residual noise.

Summary. The denoising ability of the classical kernel regression is more important with NKR =
0 and with high values of σs. However this implies a strong sharpening step that may introduce
artifacts. We choose the following compromise: using NKR = 0 when λ = 1 and NKR = 2
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otherwise (λ > 1). In both cases a scale around 0.7 should be considered (for instance σs =√
2

2 ' 0.71).
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Figure 10.9: Evolution of the error Eref with the scale σs for NKR ∈ {0,2} and σn ∈ {0,5,20,50}
(Nim = 200 images with λ = 1), and comparing the sharpening-no sharpening options. Without
noise using NKR = 2 leads to the smallest error for small values of σs while as soon as there is
noise using NKR = 0 is always (slightly) better. Indeed, the denoising capacity of higher order
convolution decays because more parameters are being estimated at each pixel (here 6 against
1). Therefore the model is more likely to fit noise. Eref decreases with the scale σs. The decay
is slower and slower and is almost negligible after σs = 0.7. For high noise levels (σn ≥ 20) the
error Eref without sharpening may be smaller than the residual noise in the ideal denoising case.
In other words the blur removes more noise than it introduces error. There is a compromise
between using more neighboring pixels (to denoise) and increasing the high-frequency error
(because of the blur). Note that after the sharpening the error is always higher than the ideal
residual noise.
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Figure 10.10: Evolution of the computation time with the scale σs for Nim = 200 images and
λ = 1. The sharpening step is taken into account for the kernel regression methods. The kernel
regression methods are most efficient. The computation time increases with the scale σs but
remains way smaller than for the burst combination and the ACT methods. The ACT method is
computationally and memory greedy.
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Figure 10.11: Comparison of the reconstructed images of the two orders for λ = 1 and σn = 0
with σs = 0.7. The sharpening is performed. The results are difficult to interpret since Eref is of
the same order as the interpolation error used to generate the data.
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Figure 10.12: Comparison of the reconstructed images of the two orders for λ = 1 and σn = 5
with σs = 0.7. The sharpening is performed. The results are similar but slightly better for
NKR = 0. The residuals are mostly composed of white noise.
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(a) σn = 0 (0.1517,0.0637,0.0390)
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(b) σn = 5 (0.4771,0.3948,0.3744)
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(c) σn = 20 (1.8178,1.5609,1.4897)

Figure 10.13: Comparison of the residuals for σs ∈ {0.3,0.5,0.7} (from left to right) when
λ = 1 and NKR = 0. The sharpening is performed. The values between parentheses are the
corresponding error Eref. It is clear that the best results are obtained for σs = 0.7. When the data
are noisy the residuals are mostly composed of white noise (except for σn = 0.3).
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Figure 10.14: Evolution of the error Eref with the scale σs for NKR ∈ {0,2} and σn ∈
{0,5,20,50} (Nim = 200 images with λ = 2). The sharpening and no-sharpening options are
considered for kernel regression. Without noise using NKR = 2 leads to the smallest error. As
soon as the data are noisy, the error Eref is smaller for small values of σs when NKR = 0 is used
and smaller for high values when NKR = 2. Actually for the largest noise level, σn = 50, using
NKR = 0 leads to a smaller error Eref. For high noise levels (σn ≥ 20) the error Eref without
sharpening may be smaller than the residual noise in the ideal denoising case. In other words the
blur removes more noise than it introduces error. There is a compromise between using more
neighboring pixels (to denoise) and increasing the high-frequency error (because of the blur).
Note that after the sharpening the error is always higher than the ideal residual noise.



236 10–Experimental Evaluation of our Image Fusion Algorithm

(a) Order 0 (b) Order 2

0

5

10

15

(c) Spectrum of (a)

0

5

10

15

(d) Spectrum of (b)

0

0.2

0.4

0.6

0.8

1

(e) Residual for (a) (Eref = 1.5000)

0

0.2

0.4

0.6

0.8

1

(f) Residual for (b) (Eref = 0.2759)

0

1

2

3

4

5

6

7

(g) Spectrum of (e)

0

1

2

3

4

5

6

7

(h) Spectrum of (f)

Figure 10.15: Comparison of the reconstructed images of the two orders for λ = 2 and σn = 0
with σs = 0.7. The sharpening is performed. A zipper effect is visible around the edges of the
results of NKR = 0. As seen in Section 10.3.2, this is introduced by the sharpening when the data
repartition is not uniform or not dense enough, which is the case here.
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Figure 10.16: Comparison of the reconstructed images of the two orders for λ = 2 and σn = 5
with σs = 0.7. The sharpening is performed. A zipper effect is visible around the edges of the
results of NKR = 0. As seen in Section 10.3.2, this is introduced by the sharpening when the data
repartition is not uniform or not dense enough, which is the case here.
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(a) σn = 0 (0.0522,0.1325,0.2759)
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(b) σn = 5 (1.13,0.84,0.81)
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(c) σn = 20 (4.52,3.33,3.07)

Figure 10.17: Comparison of the residuals for σs ∈ {0.3,0.5,0.7} (from left to right) when
λ = 2 and NKR = 2. The sharpening is performed. The values between parentheses are the
corresponding error Eref. Without noise small values of σs provides the best results because
it corresponds to a less important sharpening. For noisy data the best results are obtained for
σs = 0.7.
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10.3.4 Comparison with Burst Denoising and the ACT

In this section we compare our method, based on classical kernel regression, with the burst
denoising and the ACT methods. We take for the order NKR and the scale σs the values chosen
in Section 10.3.3.

Evolution with the number of images. First, we consider the evolution of the error Eref with
the number n of images combined. This number n varies from 50 to Nim = 200 (by step of 10).
The results for noise levels σn ∈ {0,5,20,50} are presented in Figure 10.18 for λ = 1 and in
Figure 10.19 for λ = 2. The ACT method clearly provides the best results in every situation. For
noisy data all the curves are similar to the ideal denoising one, which is n 7→ λσn√

n , but the ACT
and burst denoising curves are closer.

The error for the classical kernel regression decreases with the number of images, even
without noise, since having more samples allows for a better fit and sharpening. For λ = 1 the
burst denoising performs well but without noise it is beaten by our method for a high number of
images. As already seen, using NKR = 0 for λ = 2 leads to high errors. However it does better
than NKR = 2 for σn = 50 (in terms of Eref but artifacts are introduced).

Evolution with the noise level. The evolution of the error Eref for Nim = 200 images with the
noise level σn is presented in Figure 10.20. The results confirm the analysis made previously.
The ACT and burst denoising have the best results but for all the methods the error is close to the
ideal residual noise. For λ = 2 the bad results of our method with NKR = 0 are clearly noticible.

Residual comparison. For λ = 1, the residuals of the three methods are compared in Fig-
ure 10.21. For λ = 2, the residuals of our method and of the ACT are compared in Figure 10.22.
The noise levels considered are σn ∈ {0,5,20}. In every situation the ACT method leads to the
best result. The burst denoising (for λ = 1) provides similar results. Without noise, the spectrum
of the burst denoising is similar to the spectrum of the residual during the consistency mea-
surement evaluation (see Figure 6.4(g)) and is mostly composed of high-frequency content. For
noisy data, with and without sub-sampling, the residuals of all methods are mostly composed of
white noise.

Computation time. The evolution of the computation time with the number of images n for
λ = 1 is shown in Figure 10.23. For all the methods the computation time increases linearly
with the number of images. The ACT method is the most costly method and is followed by
the burst denoising. The gap between the methods increases with the number of images. For
instance the factor between the ACT and our method (with NKR = 0) varies from 5 to 10. Note
that the computation time for the Nim = 200 images using our method is smaller than the one of
the ACT for 50 images.

Memory requirement. The maximum memory usages of the methods in kilobytes (kB) are the
following.

Burst denoising ACT Our method (KR)
λ = 1 82608 4101764 17428
λ = 2 ND 1185360 95832

Compared to the ACT, our method uses 235 times less memory for λ = 1 and 12 times less for
λ = 2. Besides the different sub-sampling factor, the difference between the two factors is due
to the use of a different order NKR. Indeed, using NKR = 2 requires to store 21/2 ' 10 times
more system coefficients than for NKR = 0.

For λ = 1, the burst denoising method is in between since the images are processed sequen-
tially but with a costly interpolation method.
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Figure 10.18: Evolution of the error Eref with the number n of images combined for λ = 1. The
scale σs = 0.7 is used for both orders. The ACT method clearly provides the best results in every
situation. For noisy data all the curves are similar to the ideal denoising one, which is n 7→ σn√

n ,
but the ACT and burst denoising curves are closer. The error for the classical kernel regression
decreases with the number of images, even without noise, since having more samples allows for
a better fit and sharpening. The burst denoising performs well but it is beaten by our method for
a high number of images without noise.
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Figure 10.19: Evolution of the error Eref with the number n of images combined for λ = 2. The
scale σs = 0.7 is used for both orders. The ACT method clearly provides the best results in every
situation. For noisy data all the curves are similar to the ideal denoising one, which is n 7→ 2σn√

n .
The error for the classical kernel regression decreases with the number of images, even without
noise, since having more samples allows for a better fit and sharpening. As already seen, using
NKR = 0 for λ = 2 leads to high errors. However this choice performs better than NKR = 2 for
σn = 50 (in terms of Eref, but artifacts are introduced).
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Figure 10.20: Evolution of the error Eref for Nim = 200 images with the noise level σn. The
results confirm the analysis made previously. The scale σs = 0.7 is used for both orders. The
ACT and burst denoising have the best results but for all the methods the error is close to the
ideal residual noise. For λ = 2 the bad results of our method with NKR = 0 are clearly noticible.



10.3–Experiments on Synthetic Data 243

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

(a) σn = 0 (0.0390,0.0599,0.0038)
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(b) σn = 5 (0.3744,0.3596,0.3544)
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(c) σn = 20 (1.4887,1.4154,1.4164 )

Figure 10.21: Residuals of our method, burst denoising and ACT (from left to right) for λ = 1.
Our method uses NKR = 0 and σs = 0.7. The values between parentheses are the corresponding
error Eref. The ACT method yields the best result. The burst denoising provides similar results.
Without noise, the spectrum of the burst denoising is similar to the spectrum of the residual
during the consistency measurement evaluation (see Figure 6.4(g)) and is mostly composed of
high-frequency content. For noisy data, the residuals of all methods are mostly composed of
white noise.
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(b) σn = 5 (0.8101,0.7164)
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(c) σn = 20 (3.0718,2.8502 )

Figure 10.22: Residuals of our method (left) and ACT (right) for λ = 2. Our method uses
NKR = 2 and σs = 0.7. The values between parentheses are the corresponding error Eref. The
ACT method yields the best result. For noisy data, the residuals of both methods are mostly
composed of white noise.
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Figure 10.23: Evolution of the computation time with the number of images n for λ = 1. For
all the methods the computation time increases linearly with the number of images. The ACT
method is the most costly method and is followed by the burst denoising. The gap between the
methods increases with the number of images. For instance the factor between the ACT and our
method (with NKR = 0) varies from 5 to 10. Note that the computation time for the Nim = 200
images using our method is smaller than the one of the ACT for 50 images.

Conclusion. The best results are obtained using the ACT method but it is computationally and
memory greedy. The burst denoising method provides similar results while being faster and not
memory greedy (since images are processed sequentially). But it is not applicable when the
input images are aliased (for instance for λ > 1). Our method shows similar performance for a
high enough number of images. But is much faster and only requires a small amount of memory.
The denoising factor is close to the ideal one and it is open to super-resolution.
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10.3.5 Comparison between Two Reconstructed Images

For real data, in Section 10.4, the reference image is not available. The error Eset, where two
images built from separate sets are compared, has to be considered. Therefore, in this section we
consider the same process in order to have a baseline for real data. The scale σs =

√
2

2 is used.

Evolution with the number of images. First, we consider the evolution of the error Eset with the
number n of images used in each set. This number n varies from 50 to Nim/2 = 100. The results
for noise levels σn ∈ {0,5,20,50} are presented in Figure 10.25 for λ = 1 and in Figure 10.26
for λ = 2. For the same reason as for Eref, the error Eset decreases with the number of images
even though there is no noise. For noisy data the curves for both orders are similar to the ideal
denoising one, which is n 7→

√
2λσn√

n . For λ = 1 using NKR = 0 gives the smallest error while for
λ = 2 it is NKR = 2 (except for high noise σn = 50).

Difference images for σn = 5. The difference images between the two reconstructed images
using 100 images for σn = 5 and λ ∈ {1,2} are shown in Figure 10.24. We used NKR = 0 for
λ = 1 and NKR = 2 for λ = 2. The differences are mostly composed of residual white noise. For
λ = 2 the structure of the image can still be noticed.
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(b) With super-resolution (λ = 2): Eset = 1.70

Figure 10.24: Difference images between the two reconstructed images using 100 images for
σn = 5. We used with NKR = 0 for λ = 1 and NKR = 2 for λ = 2 (with σs =

√
2

2 ). The differences
are mostly composed of residual white noise. For λ = 2 the structure of the image can still be
noticed.
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Figure 10.25: Evolution of the error Eset with the number n of images used in each set for λ = 1.
The scale σs =

√
2

2 is used. For the same reason as for Eref, the error Eset decreases with the
number of images even though there is no noise. For noisy data the curves for both orders are
similar to the ideal denoising one, which is n 7→

√
2σn√

n . Using NKR = 0 gives the smallest error.
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Figure 10.26: Evolution of the error Eset with the number n of images used in each set for λ = 2.
The scale σs =

√
2

2 is used. For the same reason as for Eref, the error Eset decreases with the
number of images even though there is no noise. For noisy data the curves for both orders are
similar to the ideal denoising one, which is n 7→ 2

√
2σn√
n . Using NKR = 2 gives the smallest error

(except for high noise σn = 50).



10.4–Experiments on Real Data 249

10.4 Experiments on Real Data

In this section, we evaluate on real data the performance of our image fusion algorithm, de-
scribed in Algorithm 9.1. First, the experimental setup is described in Section 10.4.1. Then, the
results are analyzed in Section 10.4.2.

10.4.1 Experimental Setup

The considered dataset is composed of 201 color images of a static outdoor scene. They were
acquired using an Olympus E-M5 Mark II camera (with a 17.0mm lens) that was set in sequential
mode. We used a shutter speed of 1/100s, an aperture of f/5.6 and ISO 200. The camera was fixed
on a tripod but the internal stabilization mode was desactivated. Thus, small motions/vibrations
of the camera were allowed and super-resolution can be considered. Finally, the images differ
because of small motions of the camera, noise, JPEG compression [132], quantization (8-bit),
and possibly small illumination variations. Note that the corresponding RAW images are used
in Chapter 11.

Because of the ACT memory limitations, we only keep the central part of the images of size
512×512, which is by the way distortion-free. We arbitrarily set the first image as the reference
image (see Figure 10.28(a)). Small illumination variations are handled by a mean equalization
of the images to the reference one. As for the synthetic data the reference image is used for
the registration but not for the combination. The irregularly data fitting is performed on the
remaining images (here at most Nim = 200).

Details of the reference image and of another image of the sequence can be seen in Fig-
ure 10.28(b)-(c). The difference between these images after registration and the corresponding
spectrum are displayed in Figure 10.28(d)-(e). The difference is mostly composed of noise since
the image structure is hardly noticible. However it does not seem to be white noise (probably
because of the JPEG compression). The root mean square difference (RMSD) is around 4.30,
which corresponds (assuming a perfect registration and white noise) to a standard deviation
σn ≤ 3.

In our experiments we consider the zoom factors λ = 1 (without super-resolution) and λ = 2.
Note that, contrary to the synthetic case, the output image using λ = 2 is of size 1024× 1024.
As recommended in Section 10.3.3, our method uses NKR = 0 for λ = 1 and NKR = 2 for λ = 2,
with the scale σs =

√
2

2 in both cases.

10.4.2 Results

The registration step for the Nim = 200 images is done in 128s, i.e., a single transformation
is estimated in approximately 0.6s. The estimated data repartitions with and without super-
resolution are shown in Figure 10.27. As the transformations between the images are locally
similar to translations, the data repartition seems to have a periodicity of λ along each direction.

Computation time and memory requirement. The computation times and maximal memory
requirements of the methods are the following.

Burst denoising ACT Our method (KR)

λ = 1
Time (s) 442 1784 135
Max memory (kB) 175468 5562344 82192

λ = 2
Time (s) ND 1942 444
Max memory (kB) ND 6224528 1200492

Our method is significantly more efficient and requires less memory.
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Comparison with the reference image. For λ = 1, the result of our method is compared to
the reference image in Figure 10.29. The output image has less high frequency content than the
reference image thanks to the denoising. Note that no blur is introduced. The difference image
is mostly composed of noise but the structure of the image can be noticed. The RMSD is around
3.11, which is (assuming σn = 3) close to the expected value σn

√
1+1/200' 3.

Comparison between reconstructed images. The difference between two reconstructed im-
ages from separate sets of 100 images is shown in Figure 10.30. For λ = 1 the difference is
mostly composed of noise while for λ = 2 the structure of the image can be noticed.

The evolution of the error Eset with the number n of images used in each set is shown
in Figure 10.31. The error tends to decrease with n but, contrarily to synthetic data, it may
increase temporarily when adding images. However it has to be noted that an increase of the
error does not necessarily mean a deterioration of the results. Anyway the error Eset for both λs
is approximately divided by 2 between 20 and 100 images instead of

√
100/20 =

√
5 ' 2.2 in

the ideal denoising case.

Comparison with other methods. Our method is compared to the ACT and the burst denoising
methods in Figure 10.32. The results are really close and cannot be distinguished to the naked
eye. Therefore the difference images are shown. They are not composed of noise. For λ = 2
the difference is more important in particular around the edges (where zipper structures can be
seen).

Conclusion. Our method performs well on real data since it provides similar results as slower
and memory greedy methods. The residual noise decreases as expected. The output image is
denoised and no blur is introduced. In addition, super-resolution can be performed.

The results of the three methods are not as good as for synthetic data because of demosaick-
ing, JPEG compression and 8-bit quantization. These uncontrolled processings deteriorate both
the registration and the irregularly data fitting part. This is why we propose in Chapter 11 an
image formation algorithm taking RAW images as input.
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Figure 10.27: Estimated spatial repartition of the irregularly sampled data, around the center of
the reference image, for real data (Section 10.4). The factor λ corresponds to the zoom factor
used in the image formation algorithm. As the transformations between the images are locally
similar to translations, the data repartition seems to have a periodicity of λ along each direction.



10.4–Experiments on Real Data 251

(a) Reference image
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Figure 10.28: Real data used in Section 10.4. The reference image in (a) is a color image of
size 512× 512. In (b) and (c) details in a zone of size 128× 128 are shown. The difference
in (d) is mostly composed of noise since the image structure is hardly noticible. However it
does not seem to be white noise (probably because of the JPEG compression). The RMSD is
around 4.30, which corresponds (assuming a perfect registration and white noise) to a standard
deviation σn ≤ 3.
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Figure 10.29: Comparison to reference image for our method (λ = 1, Nim = 200). The output
image (c) has less high frequency content than the reference image (a) thanks to the denoising.
Note that no blur is introduced. The difference image (e) is mostly composed of noise but the
structure of the image can be noticed (probably because of the JPEG compression). The RMSD
is around 3.11, which is (assuming σn = 3) close to the expected value σn

√
1+1/200' 3.
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Figure 10.30: Comparison between two reconstructed images from separate sets of Nim/2 = 100
images. For λ = 1 the difference is mostly composed of noise while for λ = 2 the structure of
the image can be noticed.
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Figure 10.31: Evolution of the error Eset with the number n of images used in each set. The error
tends to decrease with n but, contrarily to synthetic data, it may increase when adding images.
However it has to be noted that an increase of the error does not necessarily mean a deterioration
of the results. Anyway the error Eset for both λ is approximately divided by 2 between 20 and
100 images instead of

√
100/20 =

√
5' 2.2 in the ideal denoising case.
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(c) ACT for λ = 2 (RMSD = 0.48)

Figure 10.32: Comparison to the ACT and the burst denoising methods. The results are really
close and cannot be distinguished to the naked eye. Therefore the difference images are shown.
They are not composed of noise. For λ = 2 the difference is more important in particular around
the edges (where zipper structures can be seen).
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10.5 Conclusion

In this chapter we evaluated experimentally the performance of our image fusion algorithm, de-
scribed in Algorithm 9.1, on synthetic and real data. The experiments on synthetic data allowed
us to highlight the interest of the sharpening step and to find the best configuration for the order
and the scale. The choice of the order mostly depends on the data spatial repartition. Assuming
a uniform sample repartition, we have been led to recommend the use of order 0 without super-
resolution and order 2 with super-resolution. The optimal kernel scale turns out to be around
0.7. We showed that for a large amount of data (synthetic or real) our image fusion algorithm
provides results nearly as good as those obtained with slower and memory greedy methods. The
residual noise decreases as expected and it is able to perform super-resolution.

From the experiments on real data we saw that the performance of image fusion methods is
limited by uncontrolled processes (demosaicking, JPEG compression, 8-bit quantization). This
is why we propose in Chapter 11 an image formation algorithm taking RAW images as input.
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Chapter 11

Image Formation from a Large
Sequence of RAW images

Abstract

In this chapter, we propose an image formation method from a large sequence of RAW
images. This is an adapted version of our image fusion method, described in Chapter 9,
for RAW images and it follows the work of [13]. The RAW images are first preprocessed
to transform the noise curve and to adjust the histograms. Then the two-step registration
method for mosaicked images, introduced in Chapter 8, is used to align the images. As
in Chapter 9, the images are combined by classical kernel regression of second order with
Gaussian kernel. The process has two stages. The first one is an accumulation process
where the images are processed sequentially. In the second stage, the blur introduced by the
classical kernel regression is inverted by a sharpening filter. We show experimentally that,
for a large number of RAW images, our image formation method provides, efficiently and
with a low memory usage, a high-quality result. Contrarily to image fused from processed
images (as in Chapter 10), the images formed from RAW images do not contain artifacts
coming from the unknown image processing pipeline. Our method successfully performs
super-resolution and the residual noise decreases as expected. We obtained results similar
to those obtained by slower and memory greedy methods.
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11.1 Introduction

A RAW image is an unprocessed (or minimally processed) image acquired by a camera. The
CCD or CMOS captor transforms incoming light photons into voltage output to which is as-
sociated, after quantization, an intensity value [4]. Usually a 12-bit (4096 values) or 14-bit
(16384 values) quantization is used. Contrarily to a JPEG image [132], which is quantized in
8-bit (256 values), there is no compression. As already discussed in Chapter 8, a RAW image
is a mosaicked (or CFA) image. The color image provided by a commercial camera is the re-
sult of a generally unknown image processing pipeline [49]. Among others, gamma correction,
demosaicking, denoising, deblurring, compression and quantization may have been applied.

Most multi-image algorithms take as input a sequence of such preprocessed images, which
leads to artifacts as noticed in Chapter 10. Therefore, good methods should rather handle RAW
images [35, 36, 37, 48, 61, 131]. Forming an image from a sequence of RAW images [35,
36, 37, 48, 131] implies solving simultaneously demosaicking, denoising, and possibly super-
resolution. Such methods can generally be decomposed into two main steps: the registration
step, where the images are expressed in a common system of coordinates, and the combination
step, where the data are combined to form an image. In Chapter 8 we showed that there was
no standard satisfactory registration method for mosaicked images, and we proposed an accu-
rate and efficient two-step method. Assuming the images correctly registered, existing methods
produce high-quality images [37, 38, 131] but the number of input images is limited by severe
computational and memory costs. In Chapter 9, we broke this limitation by developing a simple,
efficient and low memory combination method.

In this chapter, we propose an image formation method taking as input a large sequence of
RAW images. This method is a version adapted to RAW images of our image fusion method
described in Chapter 9, published in [13].

The RAW images are first preprocessed to transform the noise curve and to adjust the his-
tograms. Then the two-step registration method for mosaicked images introduced in Chapter 8
is used to align the images. As in Chapter 9, the image combination stage, using classical kernel
regression of second order with Gaussian kernel, is split into an accumulation step, where the
images are processed sequentially, and an image computation step. Finally, the blur introduced
by the classical kernel regression is inverted in a sharpening step. We show experimentally that,
for a large number of RAW images, our image formation method provides, efficiently and with
a low memory usage, a high-quality result. Our method successfully performs super-resolution
and the residual noise decreases as expected. Our results are similar to slower and memory
greedy methods.

The chapter is organized as follows: Section 11.2 describes the preprocessing step of our
method. Our image formation algorithm from RAW images is presented in Section 11.3 and is
experimentally validated in Section 11.4.

11.2 Preprocessing of RAW images

Let (I j
RAW)1≤ j≤Nim be a sequence of Nim RAW images. In this section we describe how the

input sequence (I j
RAW)1≤ j≤Nim is preprocessed in our image formation algorithm. First, a vari-

ance stabilizing transform (VST) is applied to the images in order to approximate an additive,
homoscedastic, white, and Gaussian noise (see Section 11.2.2). Then, the histograms of the im-
ages are ajusted (see Section 11.2.3). The aim is to optimize the performances of the registration
and combination steps.
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11.2.1 Color Handling

We start with notations and remarks about color channels that will prove useful.

Channel index. Let I be a color image. The three channels of I are index by c ∈ {1,2,3}. The
intensity value at location (k, l) in the channel c is noted Ik,l,c.

RAW image and channel. Let IRAW be a RAW image. In this chapter we assume that the color
filter array is given by the classical Bayer filter RGGB [12]. The intensity value at location (k, l)
is an intensity value corresponding to the channel c given by

c = k%2+ l%2+1 (11.1)

where

n%2 =

{
0 if n is even,
1 if n is odd.

(11.2)

11.2.2 Variance Stabilizing Transform

The registration and combination parts of our algorithm are designed for additive, homoscedas-
tic, white, Gaussian noise. However, this is not a realistic assumption for RAW images for
which the noise is the combination of a Poisson noise, coming from the photon emission, a
thermal noise and an electronic noise [4, 23, 40]. A good approximation for such noise is an
additive, white and Gaussian noise with a signal-dependent variance.

Variance stabilizing transform. To transform a signal-dependent noise into a nearly homoscedas-
tic noise, a variance stabilizing transform (VST) has to be applied [23, 66]. Applying a VST to
an image I consists in computing an image f (I) (pixel-by-pixel operation) where f : R+→ R+

is chosen so that the noise level in f (I) is approximately independent from the intensity value.
The choice of f depends on the function g : R+→ R+ that associates to an intensity value u the
variance g(u) of the noise (in I). In [66] it is shown that a good choice for f is given by

f (u) ∝

∫ u

0

ds√
g(s)

. (11.3)

Anscombe transform. Using the classical assumption that the variance of the noise is an affine
function of the intensity value, i.e., g(u) = au+b, (11.3) can be rewritten as

f (u) ∝
√

au+b. (11.4)

This corresponds to a generalized Anscombe transform [7], which was originally designed for
Poisson noise.

Practical application of the VST. We apply the VST to the sequence (I j
RAW)1≤ j≤Nim as follows.

First, the noise curve gc(u) is estimated for each channel c ∈ {1,2,3} of the first image I1
RAW by

the Ponomarenko et al. method [22, 92]. The parameters ac and bc such that gc(u) ' acu+ bc

are computed by linear least squares. Then, for each image I j
RAW the image I j

CFA is obtained as

(I j
CFA)k,l =

√
ac(I

j
RAW)k,l +bc (11.5)

where c = k%2+ l%2+1.

Remarks. The VST is not inverted in the end of Algorithm 11.2. Note that in order to do it, one
should not just use the algebraic inverse of the VST, which is biased. A discussion around the
unbiased inverse VST is proposed in [76].
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11.2.3 Adjustments of the Histograms

After the VST, the histograms of the images I j
CFA are adjusted as follows.

Reference image. First, the histogram of the first image I1
CFA is modified so that its channels

have the same mean. This equalization is done multiplicatively. This color balance is interesting
for two reasons: (1) it corrects the eventual unnatural color balance introduced during the VST
and (2) a CFA image with equalized channels is likely to show an attenuated mosaic structure
after the lowpass filtering of Algorithm 8.2. Then, the maximal value of I1

CFA is arbitrarily set
(multiplicatively) to 255.

Histogram equalization channel-by-channel. As the illumination of the scene may slightly
vary during the acquisition, the histograms of the images have to be equalized. For j∈{2, . . . ,Nim}
the means of the channels of I j

CFA are set multiplicatively to the mean of I1
CFA (same mean for

the three channels). Note that by construction all the CFA images have equalized channels and
a maximal value around 255.

The overall preprocessing step is summarized in Algorithm 11.1. It will be used in Algo-
rithm 11.2. Without loss of generality the reference image can be any other image than the
first one. Note that advanced photographic effects such as vignetting, distortion and chromatic
aberration [112] are neglected.

Algorithm 11.1: Preprocessing of RAW images

Input : A sequence (I j
RAW)1≤ j≤Nim of Nim RAW images

Output: A preprocessed sequence (I j
CFA)1≤ j≤Nim of Nim mosaicked images

// Variance Stabilizing Transform
1 for c ∈ {1,2,3} do
2 Estimate the noise curve gc of the channel c of I1

CFA
3 Compute ac and bc such that gc(u)' acu+bc by linear least squares

4 for j ∈ {1, . . . ,Nim} do
5 Compute I j

CFA from I j
RAW using (11.5)

// Adjustments of the histograms
6 Equalize multiplicatively the means of the channels of I1

CFA
7 Set multiplicatively the maximal value of I1

CFA to 255
8 for j ∈ {2, . . . ,Nim} do
9 Set multiplicatively the means of the channels of I j

CFA to the mean of I1
CFA

11.3 Image Formation from RAW images

In this section we propose a fast and low memory image formation method from RAW images
that is designed for a large number of images. This is an adapted version of our image fusion
method, described in Chapter 9, for RAW images. The RAW images are first preprocessed
as described in Section 11.2. The considered registration method for mosaicked images was
introduced in Chapter 8.

11.3.1 Proposed Algorithm

Given a sequence (I j
RAW)1≤ j≤Nim of Nim RAW images of common size M×N, a zoom factor

λ > 0 and a scale σs > 0, our image formation builds a color image I of size [λM]× [λN]. Our
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algorithm is presented in Algorithm 11.2 and its main steps are summarized in Figure 11.1(b).
The first image is arbitrarily chosen as the reference image.

(a) Memory greedy algorithm

(b) Our algorithm

Figure 11.1: Main steps of our image formation method. (a) and (b) are theoretically equivalent.
The combination from the irregularly sampled data is replaced by the accumulation step, where
the images are sequentially processed, and the image computation step.

Preprocessing. First, the sequence (I j
RAW)1≤ j≤Nim is preprocessed as described in Section 11.2.

The sequence (I j
CFA)1≤ j≤Nim of mosaicked images is computed using Algorithm 11.1.

Registration. The transformation ϕ1 is set to the identity. The homographic transformation
ϕ j between I1

CFA and I j
CFA, so that I1

CFA ' I j
CFA(ϕ

j(·)), is estimated using a two-step method
for the registration of mosaicked images, introduced in Chapter 8. More precisely, we use the
recommended method that is summarized in Algorithm 8.2. It uses a perfect lowpass filter and
the modified inverse compositional algorithm with robust error function.

Accumulation. The accumulation part is mostly the same as in Algorithm 9.1 except that the
input images are mosaicked. Multi-image demosaicking can be considered as a form of super-
resolution with factor 2. Therefore following the recommendation of Chapter 10 we use NKR =
2. The system coefficents in Ax0,c and bx0,c for each output pixel (x0,c)∈Ω[λM],[λN]×{1,2,3} are
computed by accumulation. First, they are initialized to zero i.e. Ax0,c = 0M6(R) and bx0,c = 0R6 .
Then, the CFA images are processed sequentially. For each pixel (k, l) ∈ ΩM,N , the channel
c = k%2+ l%2+ 1 and the corresponding location x = λ(ϕ j)−1(k, l) in the zoomed reference
system are computed. The sample (x, I j

k,l) contributes to the system coefficients of the output
pixel x0 ∈ B(x,4σs) in the channel c as written in (9.14) and (9.15).

From here the steps are exactly the same as in Algorithm 9.1. We recall them for clarity.

Image computation. For each output pixel (x0,c) ∈ Ω[λM],[λN] ∈ {1,2,3}, the intensity value
Ix0,c is computed from Ax0,c and bx0,c as described in Section 9.2.2. It defines a color image I of
size [λM]× [λN], which is blurry.

Sharpening. To remove the blur, the inverse of the equivalent asymptotic filter w̃σs,∞ (see Sec-
tion 9.3.3) is applied to I using the DCT convolution method [45, 77].

Remarks.

• The same remarks as in Section 9.4.1 apply.

• In the preprocessing step the mean of the channels were equalized. The color images may
look grayish. Depending on the context of use, the color balance of the output image can
be adjusted in a post-processing step [31].
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Algorithm 11.2: Image formation algorithm from RAW images

Input : A sequence (I j
RAW)1≤ j≤Nim of Nim RAW images of size M×N, a zoom factor

λ > 0 and a scale σs > 0
Output: A color image I of size [λM]× [λN]
// Preprocessing

1 Compute the preprocessed sequence (I j
CFA)1≤ j≤Nim from (I j

RAW)1≤ j≤Nim using
Algorithm 11.1
// Registration

2 Set ϕ1 to the identity transformation
3 for j ∈ {2, . . . ,Nim} do
4 Compute the estimated homographic transformation ϕ j between I1

CFA and I j
CFA using

Algorithm 8.2
// Accumulation

5 Set NKR = 2
6 for (x0,c) ∈Ω[λM],[λN]×{1,2,3} do
7 Initialize Ax0,c and bx0,c to zero

8 for j ∈ {1, . . . ,Nim} do
9 for (k, l) ∈ΩM,N do

10 Compute c = k%2+ l%2+1
11 Compute x = λ(ϕ j)−1(k, l)
12 for x0 ∈Ω[λM],[λN]∩B(x,4σs) do
13 Compute the Gaussian weight w = wσs(x−x0) using (9.41)
14 Compute X = X(x−x0) using (9.2)
15 Update Ax0,c← Ax0,c +wXXT

16 Update bx0,c← bx0,c +wX(I j
CFA)k,l

// Image computation
17 for (x0,c) ∈Ω[λM],[λN]×{1,2,3} do
18 Compute Ix0,c from Ax0,c and bx0,c as described in Section 9.2.2

// Sharpening
19 Apply the inverse of the equivalent asymptotic filter w̃σs,∞ (see Section 9.3.3) to I using

the DCT convolution

11.3.2 A Low Memory Requirement

As the low memory requirement is ensured in the combination stage, the following analysis is
similar to the one made in Section 9.4.2 for the image fusion algorithm.

Algorithm 11.2 is designed for a large number of images Nim. As the images are processed
sequentially, the memory requirement does not depend on the number of input images Nim but on
the size of the output image. The majority of the memory requirement comes from the storage
of the system coefficients. As we use NKR = 2, 21 coefficients have to be stored per output
pixel. As the output color image is of size [λM]× [λN], the overall storage is of 63 [λM] [λN]
(double-precision floating point) numbers.

Theoretically the accumulation and image computation steps are equivalent to a single com-
bination step taking as input the irregularly sampled data. The structure of the resulting memory
greedy algorithm is shown in Fig. 11.1(a). The knowledge of the irregularly sampled data re-
quires to store three numbers per sample (two for the location and one for the intensity). The
overall storage represents 3NimMN numbers. The storage of the system coefficients is smaller
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than the storage of the data as soon as the number of images Nim becomes larger than 21λ2.

11.4 Experiments

In this section we evaluate on real data the performance of our image formation algorithm,
described in Algorithm 11.2. Two sequences of RAW images are considered. First, the common
experimental setup is described in Section 11.4.1. In Section 11.4.2 the results for the first
sequence show the limits of our method when the spatial repartition of the samples is not uniform
enough. On the contrary, our method performs well in Section 11.4.3 for the second sequence,
which has a (more) uniform sample repartition.

We recall that the performance of the registration method was evaluated on synthetic data
in Chapter 8. For the combination method (using classical kernel regression) it was done in
Chapter 10.

11.4.1 Experimental Setup

The two considered sequences are composed of 201 RAW images of a static outdoor scene.
In both cases, they were acquired using an Olympus E-M5 Mark II camera (with a 17.0mm
lens) that was set in sequential mode. The camera was fixed on a tripod but the internal sta-
bilization mode was desactivated. Thus, small motions/vibrations of the camera were allowed
and demosaicking and super-resolution can be considered. Finally, the images of a sequence
differ because of small motions of the camera, noise, quantization (14-bit), and possibly small
illumination variations.

In both cases, we only keep the central part of the images of size 512×512, which is by the
way distortion-free. As in Chapter 10 we arbitrarily set the first image as the reference image,
which is used for the preprocessing and registration but not for the combination. The irregularly
data fitting is performed on the remaining images (here at most Nim = 200).

In our experiments we considered the zoom factors λ = 1 (demosaicking without super-
resolution) and λ = 1.5 (demosaicking and super-resolution). We recall that this respectively
corresponds to zooms of factor 2 and 3 of the red and blue channels. As recommended in
Chapter 10, our method uses the scale σs =

√
2

2 in both cases.

11.4.2 A First Sequence with Inadequate Spatial Repartition

The first sequence was obtained using a shutter speed of 1/50s, an aperture of f/5.6 and ISO 250.
The camera was strongly fixed on the tripod so that the movements of the camera were limited.
The reference CFA image (after preprocessing) is shown in Figure 11.3(a). The mosaic structure
is clearly visible in Figure 11.3(b).

Spatial repartition. The estimated spatial repartition of the irregularly sampled data is shown
in Figure 11.3. As the transformations between the images are locally similar to translations, the
data repartition seems to have a periodicity of 2λ along each direction. As the camera did not
move enough the samples are clustered and the spatial repartition is not uniform.

Output images. The output color images obtained from the Nim = 200 RAW images using our
method are presented in Figure 11.4. For both zoom factors, chromatic aberration [99] can be
seen near the edges. As expected the results for λ= 1.5 have a lower quality and artifacts, caused
by the periodicity of the spatial data repartition, that can also be seen in the Fourier domain.

Comparison between reconstructed images. The difference between two reconstructed im-
ages from separate sets of 100 images is shown in Figure 11.5. For both zoom factors the
structure of the image is visible. In the spatial domain, the difference is mostly composed of
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signal-dependent noise for λ = 1 while there is a lot of zipper structure [73] for λ = 1.5. In the
Fourier domain, artifacts caused by the periodicity of the spatial data repartition are present for
both zoom factors.

Conclusion. The non-uniform spatial repartition of the data has a negative impact on the results
for two main reasons. First, this introduces a periodicity in the image content during the data
fitting by classical kernel regression. The resulting high-frequency structures are boosted during
the sharpening. Secondly, the asymptotic equivalent filter is not adapted and poorly approxi-
mates the actual equivalent filter.

(a) Reference CFA image (b) Details of (a)

Figure 11.2: Dataset used in Section 11.4.2. The reference CFA image in (a) is of size 512× 512 and
corresponds to the preprocessed version of the reference RAW image. Details in a zone of size 128×128
are shown in (b). The mosaic structure is clearly visible near the edges.
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Figure 11.3: Estimated spatial repartition of the irregularly sampled data (red channel) for the first
sequence (used in Section 11.4.2). Only a small region around the center of the image is shown. The
factor λ corresponds to the zoom factor used in the image formation algorithm. As the transformations
between the images are locally similar to translations, the data repartition seems to have a periodicity of
2λ along each direction. As the camera did not move enough the samples are clustered and the spatial
repartition is not uniform.
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(a) Output image (λ = 1)
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Figure 11.4: Output color images obtained from the first sequence of Nim = 200 RAW images
using our method. For both zoom factors, chromatic aberration [99] can be seen near the edges.
As expected the results for λ = 1.5 have a lower quality and artifacts, caused by the periodicity
of the spatial data repartition, which can be seen in the Fourier domain.
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(a) Difference image λ = 1 (Eset = 1.01)
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(c) Difference image λ = 1.5 (Eset = 1.63)
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Figure 11.5: Comparison between two reconstructed images from separate sets of Nim/2 = 100
images (first sequence). For both zoom factors the structure of the image is visible. In the spatial
domain, the difference is mostly composed of signal-dependent noise for λ = 1 while there is a
lot of zipper structure for λ = 1.5. In the Fourier domain, artifacts caused by the periodicity of
the spatial data repartition are present for both zoom factors.



11.4–Experiments 267

11.4.3 A Second Sequence with Adequate Spatial Repartition

The second sequence was obtained using a shutter speed of 1/100s, an aperture of f/5.6 and ISO
200. The camera was fixed on the tripod but larger movements of the camera were authorized
compared to the first sequence. The reference CFA image (after preprocessing) is shown in
Figure 11.7(a). The mosaic structure is clearly visible in Figure 11.7(b). Note that the corre-
sponding JPEG images were used in Chapter 10 (see Figure 10.28).

Spatial repartition. The estimated spatial repartition of the irregularly sampled data is shown
in Figure 11.7. As the transformations between the images are locally similar to translations, the
data repartition seems to have a periodicity of 2λ along each direction. As the camera did move
enough the data spatial repartition is close to be uniform.

Output images. The output color images obtained from the Nim = 200 RAW images using our
method are presented in Figure 11.8. The images are sharp, without artifacts and there is no
apparent noise. Contrarily to the results for the first sequence, the spectral artifacts caused by
the periodicity can hardly be seen. Note that the corresponding output image for JPEG images
can be seen in Figure 10.29.

Comparison between reconstructed images. The difference between two reconstructed im-
ages from separate sets of 100 images is shown in Figure 11.9. For both zoom factors the struc-
ture of the image is visible. For λ = 1 the difference is mostly composed of signal-dependent
noise. However the structure is significantly less visible compared to the results for JPEG images
(see Figure 10.30). This is an argument in favour of taking RAW images as input in multi-image
methods. For λ = 1.5 the difference image contains zipper structures [73] but the impact on the
spectrum is more important as for the first sequence.

The evolution of the error Eset with the number n of images used in each set is shown in
Figure 11.10. The error tends to decrease with n but may increase temporarily when adding
images. As noted in Chapter 10, this does not mean a deterioration of the results. For both
zoom factors, the error Eset is approximately divided by 2 between 20 and 100 images instead
of
√

100/20' 2.2 in the ideal denoising case.

Comparison to the ACT method. Our image formation method is compared to a similar
method where the combination part (by classical kernel regression) is replaced by the ACT
method [38]. The results of the two methods are similar and cannot be distinguished to the
naked eye. The difference images for λ ∈ {1,1.5} are shown in Figure 11.11. For both zoom
factors the structure of the image and zipper structures are visible. The difference images do not
seem to contain (residual) noise.

Computation time and maximal memory usage. The preprocessing and registration steps
were performed in 108s, i.e., around 0.5s per image. Note that the experiments were made
using an Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz (on a single thread) and a C language
implementation. The computation times and maximal memory usages of our method and of the
ACT are the following.

ACT Our method (KR)

λ = 1
Time (s) 612 114
Max memory (kB) 3084984 306604

λ = 1.5
Time (s) 675 133
Max memory (kB) 3651948 675432

Our method is around 5 times faster. For λ = 1 it requires 10 times less memory. The ratio
decreases to 5 for λ = 1.5 because the main memory cost of our method depends on the size of
the output image.
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Conclusion. Contrarily to image fused from processed images (as in Chapter 10), the images
formed from RAW images do not contain artifacts coming from the unknown image processing
pipeline. For a large number of RAW images and under the assumption of a uniform data spatial
repartition, our image formation method provides, efficiently and with a low memory usage, a
high-quality result. Our method successfully performs super-resolution and the residual noise
decreases as expected. Our results are similar to slower and memory greedy methods.

(a) Reference CFA image (b) Details of (a)

Figure 11.6: Dataset used in Section 11.4.3. The reference CFA image in (a) is of size 512× 512 and
corresponds to the preprocessed version of the reference RAW image. Details in a zone of size 128×128
are shown in (b). The mosaic structure is clearly visible, in particular near the edges. Note that the
corresponding JPEG images were used in Chapter 10 (see Figure 10.28).
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Figure 11.7: Estimated spatial repartition of the irregularly sampled data (red channel) for the second
sequence (used in Section 11.4.3). Only a small region around the center of the image is shown. The
factor λ corresponds to the zoom factor used in the image formation algorithm. As the transformations
between the images are locally similar to translations, the data repartition seems to have a periodicity
of 2λ along each direction. As the camera did move enough the data spatial repartition is close to be
uniform.



11.4–Experiments 269

(a) Output image (λ = 1)
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Figure 11.8: Output color images obtained from the second sequence of Nim = 200 RAW im-
ages using our method. The images are sharp, without artifacts and there is no apparent noise.
Contrarily to the results for the first sequence, the spectral artifacts caused by the periodicity
can hardly be seen. Note that the corresponding output image for JPEG images can be seen in
Figure 10.29.



270 11–Image Formation from a Large Sequence of RAW images

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Difference image λ = 1 (Eset = 0.80)
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(c) Difference image λ = 1.5 (Eset = 1.15)
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Figure 11.9: Comparison between two reconstructed images from separate sets of Nim/2 = 100
images (second sequence). For both zoom factors the structure of the image is visible. For
λ = 1 the difference is mostly composed of signal-dependent noise. However the structure is
significantly less visible compared to the results for JPEG images (see Figure 10.30). This is an
argument in favour of taking RAW images as input in multi-image methods. For λ = 1.5 the
difference image contains zipper structures but the impact on the spectrum is more important as
for the first sequence.
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Figure 11.10: Evolution of the error Eset with the number n of images used in each set (second
sequence). The error tends to decrease with n but may increase temporarily when adding images.
As noted in Chapter 10, this does not mean a deterioration of the results. For both zoom factors,
the error Eset is approximately divided by 2 between 20 and 100 images instead of

√
100/20'

2.2 in the ideal denoising case.
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Figure 11.11: Comparison to the ACT method. The results of the two methods are similar and
cannot be distinguished to the naked eye. Therefore, the difference images are shown in (a)
and (c). For both zoom factors the structure of the image and zipper structures are visible. The
difference images do not seem to contain (residual) noise.



11.5–Conclusion 273

11.5 Conclusion

In this chapter, we proposed an image formation method from a large sequence of RAW images,
which is an adapted version of the image fusion method described in Chapter 9.

The RAW images are first preprocessed to transform the noise curve and to adjust the his-
tograms. Then the two-step registration method for mosaicked images, introduced in Chapter 8,
is used to align the images. As in Chapter 9, the combination part, using classical kernel regres-
sion of second order with Gaussian kernel, is split into an accumulation part, where the images
are processed sequentially, and an image computation part. Finally, the blur introduced by the
classical kernel regression is inverted in a sharpening step.

We showed experimentally that, for a large number of RAW images, our image formation
method provides, efficiently and with a low memory usage, a high-quality result. Our method
sucessfully performs super-resolution and the residual noise decreases as expected. Our results
are similar to slower and memory greedy methods. Contrarily to image fused from processed
images (as in Chapter 10), the images formed from RAW images do not contain artifacts coming
from the unknown image processing pipeline.

This efficient method opens the way to real time image formation from RAW images. The
images are processed sequentially during the preprocessing, registration and accumulation steps
so that on the fly computations can be performed. In our experiments, without any optimiza-
tion of the code, the processing time per image (in these three steps) was around one second.
Considering multi-threading (or using a GPU), this value may decrease significantly.
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Chapter 12

Conclusion and perspectives

We addressed in this dissertation the problem of building a high-quality color image, containing
a low level of noise and aliasing, from a large sequence (e.g. hundreds or thousands) of RAW
images taken with a consumer camera. This was a challenging issue requiring to perform on the
fly demosaicking, denoising and super-resolution. Existing methods were limited by inaccurate
registration methods for mosaicked images and by severe computational and memory costs. We
broke these limitations by providing an efficient and accurate two-step registration method for
mosaicked images, and by developping a simple, efficient and low memory combination method.

During the dissertation each step of the proposed image formation method was introduced
and analyzed separately. The performance and the accuracy were evaluated on synthetic and
real data. This procedure allowed for a control of the error at each step but also for a proper
analysis of the proposed improvements of existing methods. Generating synthetic data required
an interpolation method and controlling the interpolation error was crucial for analyzing the
performance of our method. From our study of interpolation methods we derived new fine-
tuned interpolation methods that we used to generate synthetic data. It may be interesting to
undertake a more thorough study of the properties of such new methods.

In our analysis, we found that for a large sequence of RAW images, our image formation
method from RAW images successfully performs super-resolution with a residual noise decreas-
ing as expected. We obtained results similar to those obtained by slower and memory greedy
methods. Contrarily to images fused from previously processed images (e.g. JPEG images), the
images formed from RAW images do not contain artifacts coming from the previous unknown
image processing pipeline.

The key of our method efficiency and low memory requirement is that the small linear sys-
tems involved in classical kernel regression can be computed by data accumulation. The key
of our method accuracy is its sharpening step. Thanks to our analysis of the classical kernel
regression we were able to understand the behavior of the method for large datasets and we in-
troduced the asymptotic equivalent kernel. The low-quality of the image computed by classical
kernel regression is compensated in the sharpening step where the blur introduced is successfully
removed.

Improvements of the method can still be envisaged. For instance, it is possible to slightly
modify the registration method so that it takes into account lens distortion. The homography
transformation can be replaced by local translations (in small blocks). In addition, badly reg-
istered images could be automatically detected. Also, a post-processing enhancement may be
considered. Notably, chromatic aberration can be handled using [99].

Our method opens the way to highly accurate real time image formation from RAW images.
The images are processed sequentially during the preprocessing, registration and accumulation
steps so that on the fly computations can be performed. In our experiments, which did not
involve any code optimization, the processing time per image of size 512× 512 (in these three
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steps) was around one second. Considering multi-threading (or using a GPU), this value will
decrease significantly.
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Open-source Tools

The following open-source tools were used:

• imscript by Enric Meinhardt-Llopis: a collection of small and standalone utilities for im-
age processing, written in pure C. Available at https://github.com/mnhrdt/imscript/.

• pvflip by Gabriele Facciolo: an OpenGL accelerated image viewer. Available at
https://github.com/gfacciol/pvflip/.

• vpv by Jérémy Anger: a viewer of image sequences to analyze image and video processing
results. Available at https://github.com/kidanger/vpv/.

• GNU parallel by Ole Tange: a shell tool for executing jobs in parallel [120, 121]. Avail-
able at
https://www.gnu.org/software/parallel/.

• dcraw by Dave Coffin: an ANSI C program that decodes raw images. Available at
https://www.cybercom.net/~dcoffin/dcraw/.

https://github.com/mnhrdt/imscript/
https://github.com/gfacciol/pvflip/
https://github.com/kidanger/vpv/
https://www.gnu.org/software/parallel/
https://www.cybercom.net/~dcoffin/dcraw/
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Titre: Formation d’image à partir d’une grande séquence d’images RAW: performance et
précision

Mots clefs: Formation d’image • Débruitage • Dématriçage • Super-résolution • Haute
précision • Interpolation • B-spline • Recalage • Fusion d’images • Ajustement de données
irrégulièrement échantillonnées

Résumé:
Le but de cette thèse est de construire une image couleur de haute qualité, contenant un faible
niveau de bruit et d’aliasing, à partir d’une grande séquence (e.g. des centaines) d’images RAW
prises avec un appareil photo grand public. C’est un problème complexe nécessitant d’effectuer
à la volée du dématriçage, du débruitage et de la super-résolution. Les algorithmes existants
produisent des images de haute qualité, mais le nombre d’images d’entrée est limité par des
coûts de calcul et de mémoire importants. Dans cette thèse, nous proposons un algorithme de
fusion d’images qui les traite séquentiellement de sorte que le coût mémoire ne dépend que de
la taille de l’image de sortie. Après un pré-traitement, les images mosaïquées sont recalées en
utilisant une méthode en deux étapes que nous introduisons. Ensuite, une image couleur est
calculée par accumulation des données irrégulièrement échantillonnées en utilisant une régres-
sion à noyau classique. Enfin, le flou introduit est supprimé en appliquant l’inverse du filtre
équivalent asymptotique correspondant (que nous introduisons). Nous évaluons la performance
et la précision de chaque étape de notre algorithme sur des données synthétiques et réelles.
Nous montrons que pour une grande séquence d’images, notre méthode augmente avec suc-
cès la résolution et le bruit résiduel diminue comme prévu. Nos résultats sont similaires à des
méthodes plus lentes et plus gourmandes en mémoire. Comme la génération de données né-
cessite une méthode d’interpolation, nous étudions également les méthodes d’interpolation par
polynôme trigonométrique et B-spline. Nous déduisons de cette étude de nouvelles méthodes
d’interpolation affinées.

Title: Image Formation from a Large Sequence of RAW Images: Performance and Accuracy

Keywords: Image formation • Denoising • Demosaicking • Super-resolution • High-precision
• Interpolation • B-spline • Registration • Image fusion • Irregularly sampled data fitting

Abstract:
The aim of this thesis is to build a high-quality color image, containing a low level of noise
and aliasing, from a large sequence (e.g. hundreds or thousands) of RAW images taken with
a consumer camera. This is a challenging issue requiring to perform on the fly demosaicking,
denoising and super-resolution. Existing algorithms produce high-quality images but the number
of input images is limited by severe computational and memory costs. In this thesis we propose
an image fusion algorithm that processes the images sequentially so that the memory cost only
depends on the size of the output image. After a preprocessing step, the mosaicked (or CFA)
images are aligned in a common system of coordinates using a two-step registration method
that we introduce. Then, a color image is computed by accumulation of the irregularly sampled
data using classical kernel regression. Finally, the blur introduced is removed by applying the
inverse of the corresponding asymptotic equivalent filter (that we introduce). We evaluate the
performance and the accuracy of each step of our algorithm on synthetic and real data. We find
that for a large sequence of RAW images, our method successfully performs super-resolution and
the residual noise decreases as expected. We obtained results similar to those obtained by slower
and memory greedy methods. As generating synthetic data requires an interpolation method, we
also study in detail the trigonometric polynomial and B-spline interpolation methods. We derive
from this study new fine-tuned interpolation methods.
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