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General Introduction

The work presented in this Ph.D. thesis has been produced thanks to the collaboration
between the “Communications et Électronique” (COMELEC) department of the Inti-
tut Mines-Télécom / Télécom ParisTech (Paris, France) and the “Secteur Temps Réel”
(STR) of Thales SIX GTS France (former Thales Communications & Security) (Gennevil-
liers, France), within the framework of “Convention Industrielle de Formation par la
REcherche” (CIFRE). The thesis started in October 2015.

Problem statement

Unlike conventional cellular networks, ad hoc networks have no predefined infrastruc-
ture and each node can communicate with any other without Base Station (BS). This
characteristic renders them especially suitable in configurations requiring fast deploy-
ment such as for instance in military communications. Ad hoc networks have received a
lot of interest during the past decades, and especially Mobile Ad Hoc Network (MANET),
in which all the nodes can be moving [26]. Nowadays, infrastructure-less networks such
as MANETs still receive attention because they encompass Device-to-Device (D2D) com-
munications, which are of central importance within 5G networks [105].

The performance of such multiuser wireless networks strongly depends on Resource
Allocation (RA), which is the task of allocating the available physical resource to the
different nodes. This thesis main objective is to propose solutions to perform RA in
multiuser MANETs, in which either the Orthogonal Frequency Division Multiple Ac-
cess (OFDMA) or the Single-Carrier Frequency Division Multiple Access (SC-FDMA)
is used as the multi-access technology. The infrastructure-less nature of MANETs in-
creases the difficulty in performing an efficient RA since there is no BS to centralize the
links’ instantaneous Channel State Information (CSI). To alleviate this issue, we consider
that RA is performed in an assisted fashion, meaning that there is a node in the network,
called the Resource Manager (RM), whose task is to perform RA. However, due to the
inherent delay for each node to communicate their link’s CSI to the RM, the RM does not
have access to instantaneous CSI and we assume that it has only access to statistical
CSI to perform RA.
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The RA is performed by optimizing one criterion subject to Quality of Service (QoS)
constraints. In wireless communications, a key objective is to maximize the equipment
autonomy (i.e., the duration between complete charge and complete discharge of the
battery), which can be achieved by maximizing the so-called Energy Efficiency (EE). For
this reason, in this thesis, we choose to perform RA using EE-related criteria.

In our considered MANETs, the nodes do not have instantaneous CSI, and thus
we further assume that they use the Hybrid ARQ (HARQ) mechanism to increase their
communications reliability. HARQ is a powerful mechanism combining Forward Error
Correction (FEC) and the Automatic Repeat reQuest (ARQ) retransmission mechanism,
allowing to improve the transmission capability. Actually, FEC provides a correction
capability while ARQ enables the system to take advantage of the time varying nature
of the wireless channel. In addition, we aim to take into account the use of any realistic
Modulation and Coding Scheme (MCS) in our RA algorithms such that they can be used
in practical systems.

The above discussion yields the following two goals of the thesis.

1. To propose and analyse EE-based RA algorithms for MANETs taking into account
the use of HARQ and practical MCS, assuming that only statistical CSI is available.

2. To estimate the channel’s statistical CSI.

To detail the first aforementioned goal, we remind that the propagation channel is
by nature random, and several Probability Density Function (PDF) have been proposed
in the literature to describe the statistical behaviour of the sampled Channel Impulse
Response (CIR) magnitude. Among them, the Rayleigh one, which is characterized only
though the channel power, is popular in the literature dealing with RA with statistical
CSI. However, it is known that this channel model is accurate only for communications
without Line of Sight (LoS) between the transmitted and the receiver. A more general
distribution overcoming this weakness is the Rician one. This channel model is charac-
terized through both the channel power and the well known Rician K factor, which is an
important indicator of the link quality. The Rician channel encompasses the conventional
Rayleigh one by setting K = 0 and the Additive White Gaussian Noise (AWGN) channel
by setting K → +∞ as special cases. Although the Rician channel is more general than
the Rayleigh one, it is more rarely used in the RA since it often yields more complicated
theoretical derivations. Our first goal is thus to design EE-based RA algorithms in
MANETs when only statistical CSI is available, i.e., the links’ channels power and
Rician K factors, and assuming that HARQ and practical MCS are used. This goal is in
the same lines as in the Ph.D dissertation [77], which addressed the RA in HARQ-based
MANET with the objective of minimizing the total transmit power under the Rayleigh
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channel.

Let us now explain our second goal. In general in the literature, when performing
RA with statistical CSI, the channel’s statistics are assumed to be known. However, in
practice, they have to be estimated. Since this thesis takes place in an industrial context,
we aim to provide practical and implementable solutions and thus, our second goal is to
estimate the Rician K factor such that it can be used in the RA.

Notice that we choose to organize the thesis by first addressing the estimation problem
and then the RA problems since in practice, the estimation of the Rician K factor comes
before the RA.

Outline and contributions

This thesis is composed of five chapters. Our original contributions are gathered in Chap-
ters 2, 4 and 5 whereas Chapter 1 explains the context of the thesis and Chapter 3 provides
an overview of the optimization framework used to solve the RA problems.

In Chapter 1, we first introduce the considered system model by describing the
MANETs, the transmitter, the receiver and the channel models. We review the HARQ
basics. We introduce the notion of EE, and provide numerical examples illustrating the
relevancy of this metric. We also formalize the addressed EE-based RA problems as con-
strained optimization problems, and finally, we provide a detailed discussion regarding
the two goals of the thesis.

In Chapter 2, we address the estimation of the Rician K factor with and without shad-
owing, when the channel samples are estimated from a training sequence and thus are
noisy. In the absence of shadowing, we propose four new estimators of the Rician K fac-
tor: two deterministic and two Bayesian ones. We also derive the deterministic Cramer
Rao Lower Bound (CRLB) in closed-form. In the presence of shadowing, we propose two
estimation procedures: one based on the Expectation Maximization (EM), and the other
one based on the Method of Moments (MoM). We perform extensive numerical simu-
lations to show that our proposed estimators outperform existing ones from the literature.

In Chapter 3, we first provide an overview of the existing literature addressing EE-
based RA problems. We then review some optimization tools that are extensively used
in Chapter 4 and 5 to solve the addressed RA problems. More precisely, we present the
theoretical basis and vocabulary of convex optimization, geometric programming and
fractional programming. We also explain two conventional non-convex optimization
procedures: the Alternating Optimization (AO) and the Successive Convex Approxima-
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tion (SCA) procedures.

In Chapter 4, we solve the EE-based RA problems for Type-II HARQ under the
Rayleigh channel. More precisely based on a tight approximation of the error probability
available in the literature, we address four RA problems: the Sum of the links’ EE (SEE)
maximization, the Product of the links’ EE (PEE) maximization, the Minimum of the
links’ EE (MEE) maximization and the Global Energy Efficiency (GEE) maximization,
the GEE being the EE of the network. For the rest of this thesis, these criteria will be
referred to as Maximum SEE (MSEE), Maximum PEE (MPEE), Maximum MEE (MMEE)
and Maximum GEE (MGEE), respectively. We find the optimal solutions for the first three
problems whereas we propose two suboptimal solutions for the MGEE problem. We an-
alyze the solutions complexity and, since the MSEE optimal solution is computationally
expensive, we propose two suboptimal less complex procedures for this problem. We
provide extensive numerical results to compare these criteria with two conventional ones.
We also study the impact of the HARQ retransmission mechanism on the EE.

In Chapter 5, we address the same EE-related RA problems as in Chapter 4, but now
considering Type-I HARQ under the Rician channel. We first propose an approximation
of the Packet Error Rate (PER) and check its accuracy through simulations. Second, we
optimally solve the MSEE, MMEE and MGEE problems whereas we propose a subopti-
mal procedure to solve the MPEE problem. We provide guidelines to extend these results
to Type-II HARQ under the Rician channel. Through numerical simulations, we illustrate
the interest of taking into account the existence of a LoS during the RA process (i.e.,
Rician channel with Rician K factor strictly positive) instead of only taking into account
the channel power (i.e., Rayleigh channel).

The thesis organization along with reading guidelines are provided in Fig. 1. Actually,
reading Chapter 1 is highly recommended for all readers since it introduces notations and
basic hypothesis used throughout the thesis. Chapter 2 deals with the estimation of the
Rician K factor and is rather independent of the other ones in terms of both mathematical
tools and addressed problem. The reader interested in RA can skip this Chapter, and
directly read Chapters 3 to 5, or only Chapters 4 and 5 if he/she is familiar with the
optimization framework.

Publications

The work conducted during this thesis has led to the following publications. We highlight
that the material published in [C1] and [C5] is linked to results obtained during my Master
internship, and thus it is not directly linked with the thesis two goals. As a consequence,
it will not be developed in this document.
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Chapter 1

General Context

1.1 Introduction

Modern wireless communications often take place in a multiuser context, in which the
available physical resource such as the bandwidth or transmit power are inherently
limited. The performance of such systems strongly depend on the so-called RA, which
consists in sharing these resource between the links in the network. Thus, performing an
efficient RA is a crucial task for system designers. This thesis addresses this problem in
the context of MANETs, with a special emphasize on EE.

This first Chapter presents the technical context of the thesis, and formalizes the RA
problems that we address. The material and notations introduced in this Chapter serve
as a basis for the rest of the thesis.

The rest of the Chapter is organized as follows. In Section 1.2, we describe the
considered network model while, in Section 1.3, we give the mathematical models of the
transmitter, the channel and the receiver. In Section 1.4, we review the basics of HARQ
along with conventional related performance metrics. In Section 1.5, we define the notions
of EE and GEE, and motivate the use of these metrics in this thesis. Section 1.6 is devoted
to the formalization of RA as optimization problems. In Section 1.7, we summarize the
thesis objectives. Finally, Section 1.8 concludes the Chapter.

1.2 Multiuser Context

1.2.1 System model

Unlike cellular networks, MANETs have no predefined infrastructure and each node can
communicate without necessarily going through a central point such as a BS, which ren-
ders these networks highly flexible. Nowadays, this type of infrastructure-less networks
receives much interest from both the scientific community and the industry since it en-
compasses D2D ones, which are of central importance within 5G [11, 105]. Since there is
no BS, the following two solutions can be considered to perform RA:
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• Performing RA in a distributed fashion, i.e., each node computes its own RA by
itself, with possible message exchanges with the other nodes.

• Performing RA in an assisted fashion, i.e., there is a node in the network, called RM,
whose task is to collect the links’ CSI, to allocate the resources and to communicate
to the links their RA.

Since assisted MANETs are of interest for Thales, we focus on this latter category in this
thesis. An example of such an assisted MANET with 3 links is illustrated in Fig. 1.1. Each
transmitter Txi, i = 1, 2, 3, transmits packets to a receiver Rxi, and the links are represented
with the coloured solid lines. In this example, Tx3 is the RM and thus the receivers Rxi
send their CSI to him, which is represented with the dashed lines.
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Figure 1.1: Example of a considered assisted MANET.

We consider a persistent RA, meaning that the allocation remains constant for a
predefined fixed time duration TP. During this duration, each Txi transmits several
packets using the same allocation. These packets contain pilots symbols known from the
Rxi, which are used to estimate the link’s CIR. The estimated CIR are stored by the Rxi.
Once the allocation has been used during duration TP, each Rxi computes and transmits
some CSI to the RM, which uses it to perform the new persistent RA, and sends the
resulting allocation to the nodes.

From the considered system model, we see that there is a delay between the time the
links send their CSI to the RM and the time the RM sends them their new allocation. This
delay is due to the need to find time slots to perform the different exchanges between the
nodes, and it may be larger than the channel coherence time. As a consequence, unlike
in cellular systems, it is impossible to perform RA using instantaneous CIR.

For this reason, we assume that only statistical CSI is available to perform RA since
the channel statistics are expected to remain constant for a time duration much longer
than the channel coherence time.
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1.3 Transmitter, Channel and Receiver Model

In this Section, we introduce several important hypothesis related to both the signal and
the channel models, along with notations which are used throughout this thesis. In the rest
of this document, (.)T stands for the transposition operator,E[.] denotes the mathematical
expectation and := means by definition.

1.3.1 Transmit signal

Let us focus on a MANET with L active links sharing a bandwidth B, which is divided in
Nc subcarriers using either the OFDMA or the SC-FDMA as the multi-access technology,
without multiuser interference.

For link `, the stream of transmit symbols {X`( j)}+∞j=1 typically corresponding to the
output of a Bit-Interleaved Coded Modulator [16] is split into blocks of length n`: X`( j) :=
[X`( jn` + 1), . . . ,X`(( j + 1)n`)] where n` is the number of subcarriers allocated to the `th
link. The sent signal by the `th link during the jth OFDMA or SC-FDMA symbol writes:

S`( j) := CpIFFTNc(ξ`(Idn`−M+1 ⊗ FFTD(X`( j)))), (1.1)

where FFTD is theD×D Fourier transform matrix (withD = 1 for OFDMA andD = n`
for SC-FDMA), ⊗ is the Kronecker product, Idn is the n× n identity matrix, ξ` is a Nc × n`
matrix mapping the output of the Fourier transform onto the subcarriers allocated to link
`, IFFTNc is the Nc × Nc inverse Fourier transform matrix, and Cp is a matrix adding the
Cyclic Prefix (CP) at the beginning of the transmitted block.

1.3.2 Channel model in the time domain

Because our RA uses statistical CSI, the underlying statistical channel model is of high
importance. In this thesis, we mainly focus on the Rician channel, which is known to
accurately represent the realistic statistical behaviour of wireless channel when there
exists a LoS between the transmitter and the receiver [107]. This model receives today
more attention in the literature due to its accuracy to model the channel in the context
of millimetre wave communications [95, 110]. The Rician channel is versatile since it
encompasses both the Rayleigh and the AWGN channels as special cases (detailed later).
It is worth emphasizing that this channel model is rarely assumed in RA-related literature,
as it will be seen in Chapter 3. This is because the performance metrics under the Rician
channel often involves complicated functions, leading thus to cumbersome theoretical
derivations.

We assume that each link’s channel is modeled as a time-varying multipath Rician
channel which is constant within the duration of an OFDMA or SC-FDMA symbol, and
changes independently from symbol to symbol. Let h`( j) = [h`( j, 0), ..., h`( j,M − 1)]T

be the sampled CIR of link ` during the jth OFDMA or SC-FDMA symbol, where
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M is the length of the channel. We make the common assumption of uncorrelated
taps, meaning that h`( j) ∼ CN(a`( j),Σ`), where CN(a`( j),Σ`) stands for the multi-
variate circularly-symmetric complex-valued normal distribution with covariance matrix
Σ` := diagM×M(ζ2

`,0, ..., ζ
2
`,M−1), and we assume that the first tap magnitude is Rician dis-

tributed whereas the other ones are Rayleigh distributed, i.e., a`( j) := [a`( j)e jθ0 , 0, . . . , 0]T.

Conventionally, a`( j) is considered as time invariant, i.e., ∀ j, a`( j) = a`. However,
because of the partial or complete blockage of the LoS component, which may occur for
instance when trees or hills are located between the transmitter and the receiver, a`( j)
might become random. This blockage phenomenon is known as shadowing. Actually,
it is observed through measurement campaigns in [72] that the amplitude of the LoS
is well modelled by a log-normal random variable in the context of shadowed land-
mobile communications. Later, in [2], the authors propose to model the LoS amplitude
by a Nakagami-m random variable, which is shown to produce similar results as the
log-normal distribution while allowing simpler theoretical derivations. It is observed
through measurements campaigns that the model from [2] is accurate for mobile-to-
mobile communications in [27]. This model is also considered in several more theoretical
works including [80, 108].

This shadowing phenomenon can be mathematically formalized as:

a`( j) = c`( j)a`, (1.2)

where c`( j) is a Nakagami-m random variable with parameters m`,Na and Ω`, whose PDF
fc`( j) is given by [89]:

fc`( j)(x) =
2
(
m`,Na

)m`,Na

Γ(m`,Na)Ωm`,Na
`

x2m`,Na−1e−
m`,Na

Ω`
x2
, (1.3)

with Γ(x) the gamma function. For simplicity and without any loss of generality, we
assume that the average shadowing power is equal to 1, i.e., ∀`, Ω` = 1.

In [27], the shadowing is assumed to vary independently between time slots, i.e.,
{c`( j)} j∈N are independent and identically distributed (i.i.d.) random variables. In this
thesis, we consider a more general model in which c`( j) is constant for NTc,` time slots,
and changes independently every NTc,` OFDMA or SC-FDMA symbols. This model
encompasses the case without shadowing by setting NTc,` = +∞ and c`( j) = 1 ∀ j, and the
model of [27] by setting NTc,` = 1 and Nc = 1.

1.3.3 Received signal

At the receiver side, after removing the CP and applying the matrix FFTNc , the received
signal on link ` on the nth subcarrier at symbol j is

Y`( j,n) = H`( j,n)X`( j,n) + Z`( j,n), (1.4)
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where H`( j) := [H`( j, 0), ...,H`( j,Nc−1)]T is the Fourier transform of h`( j),X`( j,n) is the nth
coefficient of Θ`(Idn`−M+1 ⊗ FFTD(X`( j))), and Z`( j,n) ∼ CN(0, 2σ2

n), with 2σ2
n := N0B/Nc

where N0 is the noise level in the power spectral density. The elements of H`( j) are
identically distributed random variables H`( j,n) ∼ CN(a`( j), 2σ2

h,`) with 2σ2
h,` := Tr(Σ`).

1.3.4 Fast fading

In this thesis and as in [65, 77], we assume that each modulated symbol experiences an
independent channel realization. This can be achieved by either:

1. designing ξ` such that the band between the allocated sucarriers is larger than the
coherence bandwidth of the channel.

2. Using a sufficiently deep interleaver.

3. Performing Frequency Hopping (FH) between consecutive OFDMA symbols.

In the rest of the thesis, this channel model is referred to as Fast Fading (FF) model.

1.3.5 Statistical CSI

With the above notations, we can define the average Gain to Noise Ratio (GNR) G` and
the Rician K factor K` of the `th link as:

G` :=
E

[
|H`( j,n)|2

]
N0

=
∆`
N0
, (1.5)

K` :=
a2
`

2σ2
h,`

, (1.6)

with ∆` := a2
` + 2σ2

h,`.
The Rician K factor defined in (1.6) is an important indicator of the link quality. For

instance, when there is no shadowing (i.e., ∀ j, a`( j) = a`), K` = 0 corresponds to the
Rayleigh channel (worst case) whereas K` → +∞ corresponds to the AWGN channel
(best case). These different configurations are illustrated in Fig. 1.2. The impact of the K
factor on the system performance is also illustrated in Section 1.5.

We assume that the links only communicate to the RM estimates of their average
GNR and Rician K factor.

Also, since no instantaneous channel adaptation is possible, we assume that each link
uses an HARQ mechanism, which is detailed in the next Section.

1.4 HARQ Basics

Let us begin this introduction to HARQ by reminding some facts about packet oriented
communications.
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Power NLOS = 0  𝐾 = +∞ AWGN channel 

Rayleigh channel 

Figure 1.2: Several configurations yielding different Rician K factor.

1.4.1 Packet oriented communications systems

Nowadays, wireless communications system are often based on layer models such as
the Open Systems Interconnection (OSI) model which works as follows. The incoming
packet at a given layer (coming from its adjacent upper layer) is called a Service Data
Unit (SDU). The layer transforms this SDU into a Protocol Data Unit (PDU), typically by
adding it a header and/or a footer. Then, the PDU is passed to the adjacent lower layer,
where it becomes the SDU of this layer, and so on.

In this layer model, the stream of bits is partitioned into information packets (shortened
as packets in the rest of this thesis), which is the smallest piece of information that has to
be transmitted.

A special case of the above discussion is the Medium Access Control (MAC) which
transmits packets of information bits to the Physical (PHY) layer, whose task is to trans-
form those bits into a signal, and to send it through the propagation medium, i.e., the
channel. In wireless communications, the transmission takes place in time-varying chan-
nel yielding degradations on the signal, which have to be mitigated. To this end, in almost
all practical systems, FEC codes are used. Hence, the packets can be retrieved if and only
if the receiver is able to decode the codeword.

As a consequence, it appears that the PER is more adequate than Bit Error Rate (BER)
to measure wireless systems’ performance due to the underlying packet oriented model.
Both ARQ and HARQ are mechanisms allowing to decrease the PER.
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1.4.2 ARQ

The ARQ mechanism is packet oriented and works as follows: the transmitter adds Cyclic
Redundancy Check (CRC) in each packet of information bits and sends them on the
channel. The receiver decodes the information bits and checks for error using the CRC.
If no error is detected, an ACKnowledgment (ACK) is sent, and the transmitter sends
another packet. Otherwise, a Negative ACKnowledgment (NACK) is sent, and the same
packet is retransmitted until either an error-free transmission occurs, or the maximum
allowed number of transmissions M is reached. Notice that this latter case is called
truncated ARQ, which is opposed to pure ARQ in which the number of transmission is
theoretically infinite. The principle of ARQ is illustrated in Fig. 1.3, where KO (resp. OK)
means that a packet is received in error (resp. without error).
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Figure 1.3: ARQ mechanism illustration.

Thus, ARQ allows to increase the reliability of a wireless communication thanks to the
retransmission mechanism. However, it is known that ARQ performance significantly
degrades in the case of bad channel conditions. This performance degradation can be
countered through the use of HARQ.

1.4.3 Hybrid ARQ

As ARQ, the HARQ mechanism is also packet oriented and based on retransmission with
the use ACK/NACK feedback. In addition, HARQ uses FEC, providing to it a correction
capability to handle bad channel condition. This mechanism is nowadays used in several
standards such as 4G Long Term Evolution (LTE) [97] or High Speed Downlink Packet
Access (HSDPA) [42]. There exists different types of HARQ and, in this thesis, we focus
on Type-I and Type-II HARQ, described hereafter.
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1.4.3.1 Type-I HARQ

Type-I HARQ is the most simple HARQ scheme: after adding a CRC to the information
bits, they are encoded by a FEC with rate R, and the resulting block is sent through the
channel. The receiver decodes the bits and acts as in the ARQ case.

The advantage of Type-I HARQ is their straightforward implementation, making them
easy to use. They have however two drawbacks: i) the receiver discards erroneous blocks,
while they could bring information helping for the decoding of the retransmissions and
ii) the throughput is degraded due to the use of channel coding.

1.4.3.2 Type-II HARQ

Contrarily to the simple Type-I HARQ scheme, Type-II HARQ uses all the blocks received
in error to decode the information bits. There exist at least two Type-II HARQ mechanisms:
Chase Combining (CC) and Incremental Redundancy (IR).

CC HARQ. In CC HARQ, the transmitter acts exactly the same way as Type-I HARQ.
The difference is at the receiver side: when a block is received in error, instead of being
discarded, it is kept in a buffer. Then, at the reception of the mth block (m = 1, . . . ,M),
the receiver performs the Maximum Ratio Combining (MRC) with the m available blocks.
Hence, the correction capability of CC HARQ is more important than the simple Type-I
HARQ scheme. The drawback of CC HARQ is, as for Type-I HARQ, the throughput
degradation induced by the channel coding.

IR HARQ. The IR HARQ mechanism at both the transmitter and receiver side is different
from Type-I and CC HARQ because the transmitted blocks between the several attempts
to transmit one packet differ. The principle of IR HARQ is described as follows: after
adding the CRC to the information bits, they are encoded by a FEC called mother code,
and the coded bits are split into redundancy blocks following the rate-compatible coding
principle [53]. At the receiver side, at the mth transmission (m = 1, . . . ,M), all the
received blocks are concatenated, and then decoded. In general, the throughput of IR
HARQ is higher than the one of CC HARQ since it can adapt to the channel conditions
by transmitting short (resp. long) packets under good (resp. bad) channel. Its drawback
lies in its implementation, which is more complicated.

1.4.4 Performance metrics

There exist in the literature several metrics aiming to measure the performance of HARQ
based systems and this Section provides an overview of the most common ones. It is
worth noticing that giving a complete overview of HARQ metrics is out of the scope of
this work, and we refer to [67] for a more comprehensive survey.
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In the rest of this document, we assume that the transmitted blocks during the M
attempts to transmit one packet have equal length L. This assumption is always valid
for Type-I and CC HARQ, and valid for several IR HARQ schemes including the nested
schemes described in [43]. Let us define q`,m as the probability that the first m transmissions
are all received in error on link `.

1.4.4.1 Packet Error Rate

Since we consider truncated HARQ, there is a non-zero probability that a packet is
dropped at the end of the Mth HARQ attempt. The PER is defined as the probability
that, after the transmission of theMth block corresponding to the same packet, a NACK
is received and, as a consequence, the packet is dropped. Formally, it can be written as:

PER` := Pr(Packet discarded after theMth transmission ),

Using the previously-introduced notations, the PER is given by:

PER` = q`,M, (1.7)

which gives, for Type-I HARQ with no correlation between successive transmissions

PER` = (q`,1)M. (1.8)

1.4.4.2 Efficiency

The efficiency e` of link ` is defined as the ratio between the number of successfully
received information bits with the number of transmitted bits. It can be computed using
the renewal theory as follows [125]:

e` =
E[Ir]
E[br]

, (1.9)

where Ir is a random variable representing the number of received information bits per
correctly received packet and br is the random number of transmitted bits between two
successive packets received without error. Eq. (1.9) can be computed as [77]:

e` =
1 − q`,M

1 +
∑
M−1
m=1 q`,m

. (1.10)

When there is no correlation between successive blocks transmissions, (1.10) simplifies
for Type-I HARQ as:

e` = (1 − q`,1). (1.11)

Notice that (1.11) is independent of the maximum number of transmissionsM.
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1.4.4.3 Goodput

A crucial figure of merit in wireless communications is the data rate. The goodput is a
measure of the useful data rate, i.e., the number of information bits that can be transmitted
without error per second. It is proportional to the efficiency, and for the `th link writes:

η` := B`m`R`e`, (1.12)

where m` is the modulation order, R` is the code rate and B` is the bandwidth used per link
` to communicate. This metric is now well established in the ARQ and HARQ literature
to measure the useful data rate of practical systems [39]. By plugging (1.10) into (1.12) we
obtain, for Type-II HARQ:

η` = B`m`R`
1 − q`,M

1 +
∑
M−1
m=1 q`,m

, (1.13)

whereas, for Type-I HARQ with no correlation between successive blocks transmissions,
plugging (1.11) into (1.12) yields:

η` = B`m`R`(1 − q`,1). (1.14)

1.5 Energy Efficiency

In this Section, we introduce the fundamental notion of EE, which is of central importance
in this thesis, and we justify the interest of considering this metric to perform RA.

1.5.1 Why considering energy efficiency?

The RA is performed by optimizing a criterion subject to QoS constraints. Two conven-
tional objectives when designing a wireless communication system are either to maximize
the data rate [84], or to minimize the power consumption [114], with maximum transmit
power and/or minimum data rate constraints. For the rest of this document, the power
minimization criteria will be referred to as Minimum Power (MPO) and the goodput
maximization as Maximum Goodput (MGO). These two objectives are generally conflict-
ing: indeed, increasing the data rate requires to increase the power consumption whereas
minimizing the power consumption reduces the data rate. Hence, these two metrics lead
to different working points of the system, depending on the system designer objective.
Thus, it appears interesting to define metrics combining both power consumption and
data rate in order to reach a tradeoff, which can be achieved by using the EE as defined
in the next Section.

1.5.2 Energy efficiency definition

A formal definition of EE, is provided in [124], and is given as follows:

E` :=
total amount of data delivred on link ` [bits]

total consumed energy on link ` [joules]
. (1.15)
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To the best of our knowledge, [124] is the first work formalizing the EE as (1.15). The
authors introduce this metric in order to investigate the ARQ retransmissions impact on
the energy consumption under correlated fading channels.

Since the consumed energy is equal to the product between the consumed power and
the transmission time, dividing both the numerator and the denominator of (1.15) by a
time unit allows us to rewrite it as follows:

E` :=
η` [bits/s]
PO,` [W]

, (1.16)

where PO,` is `th link power consumption.
From (1.16), we can see that the EE is defined as the ratio between the goodput and the

power consumption and thus optimizing EE is expected to provide a tradeoff between
these two metrics. Since [124], the EE as defined in (1.16) has been extensively studied in
the literature, as it can be seen in [41, 120] and references therein.

The EE given in (1.16) is user centric since it measures the `th link performance. We
can also define the EE of the whole network, called GEE, which is defined as the ratio
between the sum of the links goodput and the sum of their power consumption and
writes as:

G :=
∑L
`=1 η`∑L
`=1 PO,`

. (1.17)

It is worth emphasizing that a large amount of existing EE-related works consider the
capacity as the measure of the data rate (i.e., η` is replaced by the Shannon capacity in
(1.16) and (1.17)), see, i.e., Chapter 3, which is an upper bound of the achievable rate of
real MCS. Since this thesis aims to provide algorithms for systems using practical MCS,
unless otherwise stated, η` is given by (1.13) for Type-II HARQ or (1.14) for Type-I HARQ.

1.5.3 Energy consumption model

The total consumed power to send and receive one OFDMA or SC-FDMA symbol on the
`th link is equal to the sum of the transmit power and the circuitry consumption of both
the emitter and the receiver, and can be written as:

PO,`( j) :=
1
κ`

n∑̀
n=1

PT,`( j,n) + Pctx,` + Pcrx,`, (1.18)

whereκ` ≤ 1 is the Power Amplifier (PA) efficiency, PT,`( j,n) := E[|X`( j,n)|2] is the transmit
power on subcarrier n during the jth OFDMA (or SC-FDMA) symbol, and Pctx,` (resp.
Pcrx,`) is the per-symbol circuitry power consumption at the transmitter (resp. receiver),
which are assumed to be independent of the transmit power.

1.5.4 Numerical illustration

In this Section, we numerically illustrate i) the interest of considering the EE as the criterion
to optimize instead of the conventional ones, i.e., the MPO and the MGO, ii) the impact
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of the Rician K factor on the EE, and iii) the importance of taking into account practical
MCS instead of capacity achieving codes during the RA process.

To do so, we focus on a single link ` and we assume that this link transmits on
the whole bandwidth with the same power, and does not perform link adaptation (i.e.,
∀n, ∀ j, PT,`( j,n) = PT,`). For simplicity, in this Section, we drop the link index. The
simulation setup is the following. The link distance is δ(D) = 800 m, we set B = 5 MHz,
N0 = −170 dBm/Hz, L = 128. The carrier frequency is fc = 2400 MHz and we set ∆ =

(4π fc/c)−2δ(D)−3 where c is the speed of light in vacuum. We also set Pctx = Pcrx = 0.05 W
and κ = 0.5.

First, let us focus on the interest of considering EE as the criterion to optimize instead
of conventional ones. We consider the following three RA objectives, O1: minimizing the
transmit power subject to minimum goodput constraint of 1 Mbits/s (MPO), O2: maximiz-
ing the goodput subject to maximum transmit power constraint of 35 dBm (MGO), and
O3: maximizing the EE subject to both the minimum goodput and maximum transmit
power constraints. We consider a Rayleigh FF channel (i.e., ∀ j, a( j) = 0), and we consider
a Type-I HARQ system using a convolutional code with generator polynomial [171, 133]8

and a Quadrature Phase Shift Keying (QPSK) modulation. In Fig. 1.4, we superimpose
both the goodput, given by (1.12), and the EE given by (1.16). We indicate on the figure
the optimal points for each scenario Oi, i=1,2,3.

We can see that the optimal points of O1 (resp. O2) yield an EE loss of about 65% (resp.
75%) compared with the optimal point of O3. An EE loss of X% means that, for a given
amount of energy, X% less information bits can be transmitted. To see this, let us define
EOi the EE achieved for a given objective Oi. From (1.15), EO3/EOi = (bO3/EO3)/(bOi/EOi)
where bOi (resp. EOi) is the number of information bits transmitted without error (resp. the
energy consumption). Thus, for fixed consumed energy consumption (i.e., EO3 = EOi),
EO3/EOi = bO3/bOi . Since EO3/EOi >> 1, we infer that, for a given quantity of energy,
O3 can transmit much more information bits without error than the two conventional
schemes O1 and O2. We can also see that, at the optimal point of O3, increasing the
power consumption would increase the goodput only slightly. This traduces that the EE
allows us to achieve a tradeoff between these two metrics.

To further illustrate the real effectiveness of the EE criterion to achieve a better user
experience than the MGO and MPO, we consider the practical example of a smartphone
which has to send a sequence of messages, and evaluate for these criteria the performance
achieved in terms of number of transmitted messages and battery drain. Let us consider
a battery with capacity Q0 = 3000 mAh, with voltage U = 3.85 V, which are typical values
for recent smartphones. The battery drain equation as a function of time t is given by:

Q`(t) = Q0 −
POt
U
. (1.19)

We investigate two cases: in the first one, the smartphone has to transmit 107 messages.
In the second one, the smartphone sends messages until its battery is empty. For both
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Optimal point O3 

Optimal point O2 

Optimal point O1 

Figure 1.4: EE and goodput of Type-I HARQ scheme versus the transmit power under
Rayleigh channel.

cases, we compute the following metrics: Qr the remaining battery (in %), Tt the time to
transmit the messages (in s) and Np the number of transmitted messages, The results are
reported in Table 1.1.

Table 1.1: Comparison of the EE with the conventional criteria (MPO and MGO) in terms
of equipment autonomy and time to transmit information for the two cases.

Case Criterion Qr Tt (s) Np ηA (Mbits/s)

107 sent messages
EE 96% 297 1 × 107 4.3

MGO 85% 256 1 × 107 5
MPO 89% 1 280 1 × 107 1

Full battery drain
EE 0% 8 327 2.8 × 108 4.3

MGO 0% 1 800 7 × 107 5
MPO 0% 12 180 9.5 × 107 1

In the first case, as expected, the transmit duration of the MGO is the lowest among
the considered criteria since it has the highest goodput, but it has also the highest energy
consumption. The EE transmit duration is slightly higher than the MGO one, but its
power consumption is much lower. Regarding the MPO, its energy consumption is lower
than the MGO but higher than the EE, and it has the highest transmit duration, which is
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explained because it has the lowest goodput.
In the second case, the EE maximization is clearly the best criterion among the consid-

ered ones since it enables to transmit more packet and to transmit for longer duration than
the two other criteria. the MPO transmit more packets than the MGO, but its goodput is
much less.

From the above discussion, we infer that the EE maximization enables either to trans-
mit more packets in average than when using the MPO and the MGO at the end of the
battery lifetime, or the links have higher battery levels in average for the same number of
transmit messages. This clearly demonstrates the practical relevance of considering the
EE when designing a RA procedure.

Now, we show the importance of taking into account both the Rician K factor and the
use of practical MCS during the RA. To this end, we consider a Rician FF channel without
shadowing (i.e., ∀ j, a( j) = a and c`( j) = 1). We consider the same convolutional code
as in Fig 1.4 along with both QPSK and 16-Quadrature Amplitude Modulation (QAM)
modulations, and we also consider the ideal case in which the goodput η in (1.16) is
replaced by the so-called ergodic capacity, defined as [107]:

Θerg(PT) := E
[
log

(
1 + PT

∆

2σ2
n
|H|2

)]
, (1.20)

with H ∼ CN(a, 2σ2
h) with a and 2σ2

h such that a2 + 2σ2
h = 1 (i.e., the average channel power

is normalized) and a2/(2σ2
h) = K. Eq. (1.20) is an upper bound of the achievable data rate

under Rician FF channels. In Fig. 1.5, we plot the EE for the considered practical MCSs
and ergodic capacity, for K = 0 and K = 10. First, concerning the impact of the Rician K
factor, we can see that, for practical MCS, considering K = 0 when K = 10 or K = 10 when
K = 0 yields EE losses (reported in Table 1.2), meaning that performing RA with the actual
K value is of importance. Second, we clearly see the importance of taking into account
practical MCS, indeed, the point maximizing the EE with capacity achieving codes yields
almost zero EE for practical MCS (the EE losses are reported in Table 1.2) for both K = 0
and K = 10. As a consequence, we cannot use (1.20) to perform RA when using practical
MCS.

We have hence numerically exhibited the interest of EE as compared with conventional
criteria, and the importance of considering the Rician K factor and the use practical MCS
during the RA.

1.6 EE-based RA as Constrained Optimization Problems

Here, we mathematically formalize the RA problems by first describing the design param-
eters, which are the optimization variables. Second, we present the considered constraints
that we impose in the RA. Finally, we formulate the optimization problems that we solve
in this thesis.
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Figure 1.5: EE of Type-I HARQ scheme and ergodic capacity-based system for K = 0 and
K = 10 versus the transmit power.

1.6.1 Design parameters

Our objective is to allocate to each link a transmit energy and a proportion of the band-
width. More precisely, because the channel coefficients on each subcarrier are identically
distributed and only statistical CSI is available as the RM, the same power is allocated
on all the subcarriers, there is no power adaptation between OFDMA or SC-FDMA sym-
bols (i.e., ∀n, ∀ j, PT,`( j,n) = PT,`), and we allocate a proportion of the bandwidth instead
of specific subcarriers. In Fig. 1.6, we represent an example of RA associated with the
network in Fig. 1.1.
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Figure 1.6: Example of a RA associated with the network in Fig. 1.1.

We can define γ` (resp. E`) as the proportion of bandwidth (resp. transmit energy)
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Real scheme Considered scheme to perform RA EE loss

QPSK, K = 0
QPSK, K = 10 50%

Ergodic capacity, K = 0 100%

QPSK, K = 10
QPSK, K = 0 20%

Ergodic capacity, K = 10 99.5%

16-QAM, K = 0
16-QAM, K = 10 57%

Ergodic capacity, K = 0 100%

16-QAM, K = 10
16-QAM, K = 0 22%

Ergodic capacity, K = 10 100%

Table 1.2: EE loss when performing RA with communications scheme mismatch.

allocated to the `th link as

γ` =
n`
Nc
, (1.21)

E` :=
Nc

B
PT,`. (1.22)

The design parameters, i.e., the resource that have to be allocated to the links, are given
by E := [E1, . . . ,EL] and γ := [γ1, . . . , γL].

1.6.2 Considered constraints

Hereafter, we present the constraints that are considered in our RA problems.
Notice that, until now, ∀`,m, we have dropped the error probabilities q`,m dependency

on the transmit energy E`. For the rest of this thesis, since E` is an optimization variable,
we will denote this dependency by letting q`,m(G`E`) be a function of both G` and E`.
Notice that E`G` corresponds to the Signal to Noise Ratio (SNR) since we have

SNR` =
PT,`∆`

N0
B

Nc

= E`G`. (1.23)

Goodput constraint: a basic requirement in a communication system is to ensure a
minimum data rate, providing minimum QoS guaranty. That is, in our RA problem, we
want to impose a minimum value for the goodput. Since the bandwidth used per link `
is B` = Bγ`, this constraint can be mathematically written as follows using (1.13):

Bγ`α`
1 − q`,M(G`E`)

1 +
∑
M−1
m=1 q`,m(G`E`)

≥ η(1)
`
, ∀`, (1.24)

with α` := m`R`. Constraint (1.24) can be rewritten as:

γ`α`
1 − q`,M(G`E`)

1 +
∑
M−1
m=1 q`,m(G`E`)

≥ η(0)
`
, ∀`, (1.25)
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with η(0)
`

:= η(1)
`
/B. Notice that η(0)

`
is known as the goodput efficiency.

For Type-I HARQ with no correlation between successive blocks transmissions, con-
straint (1.25) reduces to:

γ`α`(1 − q`,1(G`E`)) ≥ η
(0)
`
, ∀`. (1.26)

Power constraint: in order to avoid non linearity of the PA and to limit the consumption
of the devices, it is natural to put a per-link maximum transmit power, which can be
written as [65]:

γ`E` ≤ Pmax,`, ∀`. (1.27)

Bandwidth constraint: from the definition of the bandwidth variables γ`, it is clear that
the following inequality has to hold:

L∑
`=1

γ` ≤ 1, (1.28)

which ensures that we do not allocate more bandwidth than the total available bandwidth.

1.6.3 Problems formulation

From the considered system model and hypothesis exposed in the previous Sections, by
plugging (1.13), (1.18), (1.21) and (1.22) into (1.16), the `th link EE can be written as

E` =
α`(1 − q`,M(G`E`))

(1 +
∑
M−1
m=1 q`,m(G`E`))(κ−1

`
E` + γ−1

`
Ec,`)

, (1.29)

with Ec,` := Pctx,`+Pcrx,`
B . Similarly, the GEE (1.17) writes as

G =

∑L
`=1 α`γ`

1−q`,M(G`E`)

1+
∑
M−1
m=1 q`,m(G`E`)∑L

`=1(κ−1
`
γ`E` + Ec,`)

. (1.30)

In this thesis, we aim to perform RA by maximizing EE under constraints. As a
consequence, we wish to maximize either an aggregation of the links’ individual EE
(1.29), or the GEE (1.30), which writes in the following general form.

Problem 1.1. The general EE-based RA problems write as:

max
E,γ

H({E`(E`, γ`)}`=1,...,L) or G(E,γ) (1.31)

s.t. (1.25), (1.27), (1.28),

where H is a function of the links’ individual EE whereas G is the network EE. In this
thesis (Chapters 3 to 5), we consider the following functions forH :

• The sum, leading to the MSEE problem.



24 1. General Context

• The product, leading to the MPEE problem.

• The min` operator, leading to MMEE problem.

On the other hand, the problem of the maximization of the GEE is called the MGEE
problem. These four criteria are expected to yield different results in terms of fairness,
which represents how the resource are shared among the users.

1.7 Thesis Objectives

In this Section, we give the big picture of the thesis objectives by detailing the system
operation, which is represented on a time diagram in Fig. 1.7, where we focus on link 1
(each link performing the same operations). Tx1 transmits to Rx1 several OFDMA or
SC-FDMA symbols using resource allocated from a previous persistent RA and, using
training sequences, Rx1 estimates the CIR at different time instants. Using these CIR
estimations, Rx1 estimates the channel statistics: K̂1, the Rician K factor estimation, and
Ĝ1, the GNR estimation. Then, Rxi sends these estimated parameters to the RM. Using all
the links statistics, the RM performs RA by computing ∀`, E∗` and γ∗`, the optimal values
of E` and γ`, and sends these values to the links.

The thesis global objective is to propose solutions to perform RA based on statistical
CSI in the context described in Fig. 1.7. In general in the literature, when performing
such a RA, the channel’s statistical parameters are assumed to be known. However, in
practice, these parameters have to be estimated. Since this thesis is done in collaboration
with Thales and is thus performed in an industrial context, we seek for practical and
implementable solutions. Then, we aim to address both RA problems and the estimation
of the channel statistics.

The above discussion yield the following two intermediate goals of the thesis:

1. Estimating the channel statistics using CIR estimated from a training sequence.

2. Performing RA based on channel statistical CSI.

In details, for the first goal, we aim to estimate the Rician K factor defined in (1.6) in
practical configurations, i.e., when the available channel samples are estimated from a
training sequence as illustrated in Fig. 1.7 and as a consequence they are noisy. This first
goal is addressed in Chapter 2. For the second goal, we wish to propose algorithms based
on statistical CSI with affordable complexity to solve the general RA Problem 1.1. This
second goal is addressed in Chapters 3 to 5.

1.8 Conclusion

In this first Chapter, we introduced the working context of the thesis. We presented the
network, the signal and the channel model. We defined the crucial notions of EE and
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GEE. Finally, we formulated generals EE-based RA problems.
This Chapter serves as the basis for the rest of the thesis. In Chapter 2, we estimate

the Rician K factor, defined in (1.6), whereas Chapter 3 to 5 are devoted to the solution of
the RA Problem 1.1.
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Figure 1.7: Time diagram of the operations performed by the system. The topics handled
in this Thesis are represented by the red and blue boxes.
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Chapter 2

Estimation of the Rician K Factor

2.1 Introduction

In this second Chapter, we address one of the goal of this thesis, which is the estimation
of the Rician K factor. More precisely, we wish to estimate this parameter from imperfect
(noisy) complex channels’ samples. We address both cases with and without shadowing,
as explained in Chapter 1.

2.1.1 State of the art

Let us review the existing works related to our estimation problems.

Existing estimators without LoS shadowing. In [1, 9, 50, 66, 79, 104, 106], different
estimators using the magnitude of the complex channel coefficients are proposed and
compared. The estimators developed in [5, 6, 22, 69, 92, 106] use noiseless complex
channel coefficients. It is shown in [106] that using complex coefficients allows better
estimation than using magnitude only. All the estimators mentioned so far consider
noiseless coefficients, meaning that the channel is perfectly known. In [20] and [21],
estimators based on noisy coefficients magnitude are proposed. To the best of our knowl-
edge, the only estimators considering noisy complex channel coefficients are provided in
[19], which are valid only when the channel coefficients are correlated according to the
Clark’s model.

Existing estimators with LoS shadowing. Only few works investigate the estimation
of the Rician K factor in case of Nakagami-m shadowed LoS component [83], [47]. In
[83], an estimator based on noiseless coefficients magnitude is proposed. The proposed
approach is based on a MoM, and has an important drawback: the estimation of a
statistical parameter of the LoS shadowing is required, and the procedure to estimate it is
unclear. Recently, in [47], another estimator based on MoM is proposed. Its drawback is
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that it uses moments up to the order of 6 and as a consequence, it requires large sample
size to produce reliable estimates. Typically, 105 samples are used in [47].

In addition, both [83] and [47] assume that the shadowing changes independently
between consecutive channel samples. In this thesis, we assume a more general case in
which the shadowing is piecewise constant (see Section 1.3.2).

The existing estimators of the Rician K factor are summarized in Table 2.1. We can see
that the only estimator of the Rician K factor using noisy complex channel coefficients is
[19], which requires a specific correlation among complex samples and does not take into
account for LoS shadowing. Also, only two estimators address the estimation of K for
shadowed LoS, and they suffer from severe drawbacks.

Without LoS shadowing With LoS shadowing

Noiseless magnitude [1, 9, 50, 66, 79, 104, 106] [47, 83]
Noisy magnitude [20, 21] None
Noiseless complex [5, 6, 22, 69, 92, 106] None

Noisy complex [19] None

Table 2.1: Existing estimators of the Rician K factor.

Cramer Rao Bound. The CRLB is a lower bound on the variance of any unbiased esti-
mator [62]. The deterministic CRLB of the K factor is derived in [106] for both magnitude-
based estimators and complex coefficients-based estimators in the noiseless case. The
deterministic CRLB for the K factor in case of noisy coefficients magnitude is obtained
numerically in [20]. The authors of [59] propose a deterministic CRLB for the complex
coefficients estimation of K in the noiseless case. Finally, a stochastic CRLB is derived in
[100].

From the above discussions, we see that the CRLB for the deterministic estimation of
the Rician K factor without LoS shadowing using complex noisy channel coefficients is
not available in the literature.

2.1.2 Contributions

The contributions of this Chapter are summarized as follows.

2.1.2.1 Without LoS shadowing

• We propose two deterministic estimators of the Rician K factor using noisy complex
channel samples estimated from a training sequence. In addition, we also derive
the Rejection Rate (RR) (defined in this Chapter) of these estimators.
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• We design two Bayesian estimators of the Rician K factor: the mean a posteriori
and the maximum a posteriori. The mean a posteriori is approximated using the
Gauss-Hermite Quadrature (GHQ) whereas the maximum a posteriori is obtained
by numerically finding the root of a non linear equation.

• We derive the closed-form expression of the deterministic CRLB for the estimation
of the Rician K factor when using noisy complex samples to perform the estimation.

2.1.2.2 With LoS shadowing

• We propose an EM based procedure to estimate the Rician K factor with Nakagami-
m shadowed LoS.

• We also derive another estimator based on MoM to initialize the EM procedure.

In both cases (i.e., with and without LoS shadowing) we perform extensive simulations
to study the proposed estimators’ performance, and show that they outperform the ones
from the literature.

2.1.3 Chapter organization

The rest of the Chapter is organized as follows. In Section 2.2, we explain the channel
estimation procedure, and we provide the system model. In Section 2.3, we address the
estimation of the Rician K factor when there is no LoS shadowing, whereas, in Section 2.4,
we address this estimation problem in case of Nakagami-m shadowed LoS. Finally,
Section 2.5 concludes the Chapter.

2.2 Channel estimation and properties

Following the system model described in Chapter 1, we focus on a link ` and for simplicity,
we drop the links’ indices in this Chapter. Thus, the received signal on subcarrier n of the
ith OFDMA or SC-FDMA symbol can be written as:

Y(i,n) = H(i,n)X(i,n) + Z(i,n), (2.1)

where X(i,n) is the ith sent symbol on subcarrier n, Z(i,n) ∼ CN(0, 2σ2
n) is a complex

white Gaussian noise with zero mean and variance 2σ2
n, which is assumed to be known,

and H(i,n) ∼ CN(c(i)ae jθ0 , 2σ2
h). On one hand, when there is no shadowing, c(i) = 1 ∀i.

On the other hand, in the case of shadowed LoS, c(i) is constant during NTc OFDMA or
SC-FDMA symbols, and varies independently every NTc symbols following a Nakagami-
m distribution with parameters mNa and Ω = 1.
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We assume that the channel is estimated from (2.1) using a training sequence, meaning
that X(i,n) is known from the receiver. For instance, the channel samples H(i,n) can be
estimated as H̃(i,n) = Y(i,n)/X(i,n), yielding:

H̃(i,n) = H(i,n) + Ẑ(i,n), (2.2)

with Ẑ(i,n) ∼ CN(0, 2σ2
n) is an additive complex white Gaussian noise. The number of

pilots symbols per OFDMA or SC-FDMA symbol is denoted by i f whereas the number
of available OFDMA or SC-FDMA symbols is denoted by it. We then define the total
number of available estimated channel samples as N := it × i f .

We assume that the frequency space between the pilots symbols within one OFDMA
or SC-FDMA symbol is larger than the channel’s coherence bandwidth (which can be
evaluated for instance using the procedure from [44]), and thus we neglect the channel’s
frequency correlation. Following Chapter 1, we also neglect the channel’s time correlation.
The above notations are depicted in Fig. 2.1, in which the channel coherence bandwidth
is two frequency bins.
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Figure 2.1: Channel estimation procedure.

For the ease of mathematical formulation, let us reshape the estimated channel samples
in a matrix Ĥ defined such that each column’s mean is constant, and the consecutive
columns’ means are independent. To this end, we define Nmp := NTc i f as the number of
lines of Ĥ, and Nmd := it/NTc as its number of column (for the simplicity, we assume that
Nmd is integer). Notice that NmiNmd = N. The entries of Ĥ are then given by, ∀n, ∀i:

Ĥ[n, i] := H̃
(
1 + ((n − 1) mod i f ), 1 + (i − 1)NTc +

⌊
n − 1

i f

⌋)
, (2.3)
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where bxc is the floor function, defined as follows:

bxc ≤ x < bxc + 1,

and x mod y is the modulo operation, defined as follows:

x mod y = x −
⌊

x
y

⌋
y.

From the construction of Ĥ in (2.3) and due to the considered system model, we
know that the entries of Ĥ are independent complex gaussian random variables, that
each column has constant mean and that the columns’ mean are i.i.d. random variables
following a Nakagami-m distribution. Formally, we have Ĥ = [Ĥ1, . . . , ĤNmd

], with,

∀n ∈ [1,Nmd], Ĥn ∼ CN

(
c(c)

n ae jθ0 ,diagNmp×Nmp
(2σ2

h + 2σ2
n)
)

where
{
c(c)

n

}
n=1,...,Nmd

are i.i.d.

random variables whose PDF is given by:

fc(c)
n

(x) =
2(mNa)mNa

Γ(mNa)
x2mNa−1e−mNax2

. (2.4)

Moreover, ∀n1 , n2, E
[(

Ĥn1 − c(c)
n1

)∗ (
Ĥn2 − c(c)

n2

)]
= 0, where (.)∗ stands for the transpose-

conjugate operator.
Our system model encompasses the case without shadowing by letting Nmp = N,

Nmd = 1 and c(c)
1 = 1, and the case considered in [83] and [47] by setting 2σ2

n = 0,
Nmp = 1 and Nmd = N, i.e., the channel is perfectly known and the shadowing changes
independently between consecutive channel samples.

Our objective is to estimate K = a2/(2σ2
h) from the N estimated channel samples in Ĥ.

In Table 2.2, we remind the known and unknown parameters in our system model.

Parameter Notation Known?

Channel’s mean a No
Channel’s variance 2σ2

h No
Phase of the channel’s mean θ0 No

Rician K factor K = a2/(2σ2
h) No

Channel’s average power ∆ = a2 + 2σ2
h No

Nakagami-m parameter mNa No
Noise variance 2σ2

n Yes

Table 2.2: Summary of known and unknown statistical parameters in our estimation
problems.

For future use, we define the following vectors of unknown parameters with and
without shadowing as θ(S) = [a, 2σ2

h, θ0,mNa] and θ(Ns) = [a, 2σ2
h, θ0], respectively.

Let us begin with the estimation of the Rician K factor in the shadowing-less case.
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2.3 Estimation of K without LoS shadowing

Hereafter, we address the estimation of K without LoS shadowing. In this case, Ĥ reduces
to a N×1 vector, whose elements are i.i.d. complex gaussian random variables with mean
ae jθ0 and variance 2σ2

h + 2σ2
n. Hence, for the simplicity in this Section the ith element of Ĥ

is denoted by Ĥ[i] instead of Ĥ[i, 1].
First, we provide the mathematical expressions of some existing estimators from

the literature. Second, we design our four proposed estimators (two deterministic and
two Bayesian ones). Third, we derive the deterministic CRLB and finally, we propose
numerical results to compare the proposed estimators’ performance with existing ones.

2.3.1 Some existing estimators

The noiseless complex coefficients based Maximum Likelihood (ML) estimator of the
Ricean K factor is derived in [22] and can be written as:

K̂ML =
|â|2

2σ̂2 , (2.5)

with â = N−1 ∑N
i=1 Ĥ[i] and 2σ̂2 = N−1 ∑N

i=1 |Ĥ[i]− â|2. It is proved in [6] that K̂ML is biased,
and the authors propose the following unbiased estimator:

K̂MML =
1
N

(
(N − 2)K̂ML − 1

)
. (2.6)

To the best of our knowledge, K̂MML is the best existing estimator for the Ricean K factor
in term of both bias and Mean Square Error (MSE) when considering noiseless complex
coefficients.

Two magnitude based estimators that consider noisy coefficients are derived in [20].
The most efficient one is given by:

K̂MB =
µ̂2(3µ̂2µ̂1 − 2µ̂3 + b)

µ̂2(2µ̂3 − 2µ̂1µ̂2) − 2σ2
n(µ̂1µ̂2 + b)

, (2.7)

with µ̂k = N−1 ∑N
i=1 |Ĥ[i]|k and b = µ̂2

√
µ̂2

1 − µ̂−1µ̂3 + µ̂−1µ̂1µ̂2.

2.3.2 Proposed estimators

Here, we derive our proposed estimators, beginning with the two deterministic ones.

2.3.2.1 Deterministic estimators

ML estimator. The invariance property of the ML estimation [62] allows us to derive
the ML complex coefficients-based estimator of K in the noisy case as a straightforward
extension of (2.5), yielding:

K̂n
ML =

|ã|2

2σ̃2 − 2σ2
n
, (2.8)
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with ã = N−1 ∑N
i=1 Ĥ[i] and 2σ̃2 = N−1 ∑N

i=1 |Ĥ[i] − ã|2. However, although the theoretical
derivation of the bias of (2.8) appears to be intractable, we observe in our numerical
results (Section 2.3.5) that K̂n

ML is biased.

Corrected estimator To overcome the weakness of K̂n
ML and inspired by the approach

of [6], we study the bias of K̂ML given by (2.5) when the samples are noisy. After some
derivations provided in Appendix A.1, we obtain the following unbiased estimator of K:

K̂n
Prop =

1
Nα

(
(N − 2)

|ã|2

2σ̃2 − 1
)
, (2.9)

with α := σ2
h/(σ

2
h + σ2

n). However, (2.9) cannot be used in practice since the value of α
depends on 2σ2

h, which is unknown (i.e., Table 2.2). To tackle this problem, we derive in
Appendix A.2 the following unbiased estimator of α:

α̃ := 1 +
2σ2

n(2 −N)
N2σ̃2 . (2.10)

We propose to replace α by α̃ in (2.9). Although the resulting estimator of K is then
biased as illustrated in Section 2.3.5, both its bias and MSE are the smallest among all the
considered deterministic estimators.

Rejection rate From (2.8) and (2.9), we see that both K̂n
ML and K̂n

Prop might estimate nega-
tive values of K, which has no physical meaning and is thus undesirable. To characterize
how often this undesirable fact happens, in [4], the authors define the RR Rr(K̂) of a given
estimator K̂ of K as follows:

Rr(K̂) := Pr
(
K̂ < 0

)
. (2.11)

The authors compare several estimators through simulations in [4] in the noiseless case,
and find out that K̂MML has the smallest RR among the compared estimators.

In this thesis, we go further by deriving the theoretical RR of both K̂n
ML and K̂n

Prop,
which encompasses the RR of K̂MML as a special case, i.e., by setting 2σ2

n = 0. First, we
derive the RR of K̂n

ML in Result 2.1.

Result 2.1. The RR of K̂n
ML is given by:

Rr(K̂n
ML) =

γIC

(
N − 1,N 1+K

∆

2σ2
n

+1+K

)
Γ(N − 1)

, (2.12)

where Γ(x) is the gamma function, and γIC
(
x, y

)
is the incomplete gamma function defined as [49,

Section 8.35]

γIC(α, x) =

∫ x

0
e−ttα−1dt. (2.13)
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Proof. Plugging (2.8) into (2.11) yields:

Rr(K̂n
ML) = Pr

(
2σ̃2 < 2σ2

n

)
. (2.14)

We see from (2.14) that Rr(K̂n
ML) is given by the Cumulative Density Function (CDF) of

2σ̃2 computed in 2σ2
n. In Appendix A.1, we show that 4Nσ̃2/

(
2σ2

h + 2σ2
n

)
follows a χ2

distribution with (2N−2) degrees of freedom and thus (2.12) can be readily deduced from
[89], which concludes the proof. �

Also, we derive the RR of K̂n
Prop in Result 2.2, whose proof is provided in Appendix A.3.

Result 2.2. The RR of K̂n
Prop is given by:

Rr(K̂n
Prop) =1 + F2σ̃2(C1,Rr)

(
1 − 2F|ã|2

(
C1,Rr

C2,Rr

))
+

∫ C1,Rr/C2,Rr

0
f|ã|2(x)F2σ̃2(C2,Rrx)dx−∫

∞

C1,Rr/C2,Rr

f|ã|2(x)F2σ̃2(C2,Rrx)dx,
(2.15)

with C1,Rr := 2σ2
n(N − 2)/N, C2,Rr := N − 2,

F2σ̃2(x) :=
γIC

(
N − 1, xN

2σ2
h+2σ2

n

)
Γ(N − 1)

,

f|ã|2(x) :=
N

2σ2
h + 2σ2

n
e
−

xN
2σ2

h+2σ2
n
−

Na2

2σ2
h+2σ2

n I0

 2aN
√

x
2σ2

h + 2σ2
n


where I0(x) is the zeroth order modified Bessel function, and

F|ã|2(x) := 1 −Q1

a

√
2N

2σ2
h + 2σ2

n
,
√

x
2aN

2σ2
h + 2σ2

n

 ,
where Q1(a, b) is the Marcum function, defined as:

Q1(a, b) =

∫ +∞

b
xe−

x2+a2
2 I0(ax)dx. (2.16)

Results 2.1 and 2.2 enable us to theoretically compute the minimum number of re-
quired samples to achieve a desired RR for given K value, which might be of interest to
design the length of training sequence, i.e., the value of N. The exactness of (2.12) and
(2.15) are checked through numerical simulations in Section 2.3.5.

2.3.2.2 Bayesian estimators

In this Section, we design two Bayesian estimators of the Ricean K factor. Unlike in the
previous Section 2.3.2.1 in which K is considered as a deterministic unknown parameter,
in the Bayesian framework, K is considered as random with a given PDF, called the prior
PDF.
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Prior Density of K. As the prior PDF for K, we propose to use the log-normal distri-
bution, which has been shown through measurement campaigns to represent the real
distribution of K in different scenarios [123]. The log-normal PDF is given by:

fK(K) =
10

K log(10)
√

2πσ2
K

e
−

(10 log10(K)−aK)2

2σ2
K , (2.17)

where σ2
K and aK are the distribution’s parameters, which are fixed by the system designer

and thus are known.

Likelihood function of Ĥ. The likelihood function of a random variable X whose PDF
depends on some parameters θ is the PDF of X seen as a function of θ, which is given by
LX(X) = Pr(X|θ).

In this Section, we choose to work considering the unknown parameters K, ∆ and θ0

instead of θ(Ns) defined in Section 2.2 since we are able to find the closed-form expressions
for the ML estimators of ∆ and θ0 (detailed latter), which simplifies the derivations of our
proposed Bayesian estimators.

From the above discussion, the likelihood function L(Ns)
Ĥ

(Ĥ; K,∆, θ0) is the PDF of Ĥ
seen as a function of the unknown K, ∆ and θ0, which can be written as:

L(Ns)
Ĥ

(Ĥ; K,∆, θ0) = Pr(Ĥ|K,∆, θ0). (2.18)

Since the elements of Ĥ are i.i.d. complex normal random variables, (2.18) can be written
as:

L(Ns)
Ĥ

(Ĥ; K,∆, θ0) =

(
A1(K)
π

)N

e−A1(K)A2(K), (2.19)

with
A1(K) =

1 + K
2σ2

n(1 + K) + ∆
,

and

A2(K) =

N∑
i=1

∣∣∣∣∣∣∣Ĥ[i] −

√
K∆

1 + K
e jθ0

∣∣∣∣∣∣∣
2

.

In what follows, ∆ and θ0 are replaced by their ML estimators, which can be obtained as
a direct extension of [22] as

∆̂ = arg max
∆

L(Ns)
Ĥ

(Ĥ; K,∆, θ0) =
1
N

N∑
i=1

|Ĥ[i]|2 − 2σ2
n

and

θ̂0 = arg max
θ0

L(Ns)
Ĥ

(Ĥ; K,∆, θ0) = arctan

 ∑N
i=1=(Ĥ[i])∑N
i=1<(Ĥ[i])

 ,
where <(.) (resp. =(.)) denotes the real (resp. imaginary) part operator. For simplicity,
we denote the likelihood function (2.19) where ∆ is replaced by ∆̂ and θ0 by θ̂0 as
L(Ns)

Ĥ
(Ĥ; K) = L(Ns)

Ĥ
(Ĥ; K, ∆̂, θ̂0).
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Mean a Posteriori. The expression of the mean a posteriori estimator of K is [62]:

K̂MeanP = EK|Ĥ[K], (2.20)

where Ex|y[x] denotes the conditional expectation taken on x given y. Equation (2.20) can
be written as:

K̂MeanP =

∫ +∞

0
K fK|Ĥ(K|Ĥ)dK, (2.21)

where fK|Ĥ(K|Ĥ) is the PDF of K knowing Ĥ. Using the Bayes rule, we can rewrite (2.21)
as:

K̂MeanP =

∫ +∞

0 KL(Ns)
Ĥ

(Ĥ; K) fK(K)dK∫ +∞

0 L(Ns)
Ĥ

(Ĥ; K) fK(K)dK
. (2.22)

By plugging (2.17) and (2.19) into (2.22), we obtain:

K̂MeanP =
I1

I2
, (2.23)

with

Ii :=
∫ +∞

0
B(K)K−i+1e−τ1(log(K)−τ2)2

, i = 1, 2,

and
B(K) := (A1(K))N e−A1(K)A2(K),

with τ1 := (10/ log(10))2/(2σ2
K) and τ2 := aK log(10)/10. To evaluate I1 and I2 in (2.23),

we propose to use the GHQ [3], which allows us to perform the following integral
approximation: ∫ +∞

−∞

e−x2
f (x)dx ≈

J∑
n=1

wn f (xn), (2.24)

where J is the GHQ order and, for n = 1, . . . , J, wn (resp. xn) are the GHQ weights (resp.
absissas), which are tabulated in [3] and can be generated using the matlab code provided
in [51].

To match Ii, i = 1, 2, with (2.24), we first perform the change of variable u = log(K),
and we rewrite Ii as:

Ii =

∫ +∞

−∞

B (eu) e−τ1(u−τ3(i))2
eτ1(τ3(i))2

−τ1(τ2)2
du, i = 1, 2, (2.25)

with τ3(i) := τ2 + (2 − i)/ (2τ1), i = 1, 2. Now, performing the change of variable w =
√
τ1 (u − τ3(i)) yields the following expressions for Ii:

Ii =
1
τ1

eτ1(τ3(i))2
−τ1(τ2)2

∫ +∞

−∞

B

(
e

w
√
τ1

+τ3(i)
)

e−w2
dw, i = 1, 2. (2.26)

Using (2.24) to approximate (2.26), we obtain:

Ii ≈
1
τ1

eτ1(τ3(i))2
−τ1(τ2)2

J∑
n=1

wnB

(
e

xn√
τ1

+τ3(i)
)
. (2.27)
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Finally, plugging (2.27) into (2.23) yields the following simple approximate expression for
K̂MeanP:

K̂MeanP = τ4

∑J
n=1 wnB

(
e

xn√
τ1

+τ3(1)
)

∑J
n=1 wnB

(
e

xn√
τ1

+τ3(2)
) , (2.28)

with τ4 := eτ2+1/(4τ1). The impact of the GHQ order J on the estimation performance
is numerically studied in Section 2.3.5. Finally, the mean a posteriori is characterized
through the following property.

Property 2.1 ([62]). When K is a random variable distributed according to (2.17), the mean a
posteriori is unbiased, and minimizes the Bayesian MSE.

Maximum a Posteriori. The maximum a posteriori estimator of K is given by:

K̂MaxP = arg max
K

(
L(Ns)

Ĥ
(Ĥ; K) fK(K)

)
, (2.29)

which is equivalent to:

K̂MaxP = arg max
K

(
log

(
L(Ns)

Ĥ
(Ĥ; K) fK(K)

))
. (2.30)

We plug (2.17) and (2.19) into (2.30), we differentiate with respect to K the resulting
expression and, by setting this derivative to zero, we obtain the following relation:

−
1

K̂MaxP
−

10
K̂MaxPσ2

K log(10)

(
10 log10

(
K̂MaxP

)
− aK

)
+ N.A3

(
K̂MaxP

)
−

A4

(
K̂MaxP

)
A2

(
K̂MaxP

)
−A1

(
K̂MaxP

)
(A2)′

(
K̂MaxP

)
= 0,

(2.31)

where

A3(K) =
∆̂(

∆̂ + 2σ2
n(1 + K)

)
(1 + K)

,

A4(K) =
∆̂

(∆̂ + 2σ2
n(1 + K))2

,

and (A2)′ (K) is the first order derivative ofA2(K), which can be written as

(A2)′ (K) =
N∆̂

(1 + K)2 −

√
∆̂

(1 + K)3/2
√

K

N∑
i=1

<

(
Ĥ[i]e− jθ̂0

)
.

K̂MaxP can thus be obtained by finding the root of the non linear equation (2.31). This
can be done using for instance the bisection or the Newton method, which are both
iterative procedures.
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2.3.3 Complexity of the proposed estimators

The proposed estimators complexities are summarized in Table 2.3, where NI is the
number of iterations of the chosen iterative procedure (i.e., bisection of Newton method
for instance) to find the root of (2.31). We see that the Bayesian estimators are more
complex than the deterministic ones, especially when the values of J or NI are large
compared with N, which is especially the case for small sample size. On the other hand,
all the estimators’ complexity increase only linearly with the sample size N.

Table 2.3: Complexity order of the proposed estimators.

Estimators Deterministics Mean a posteriori Maximum a posteriori
Complexity O(N) O(N + J) O(N + NI)

2.3.4 Deterministic Cramer Rao Lower Bound

In this Section, we derive the deterministic CRLB for the estimation of the Ricean K factor
in the case of noisy complex channel coefficients. To do so, as suggested in [59], we use
the joint log-likelihood function of the envelope and phase in our derivations, for which
we define ri = |Ĥ[i]| and φi = arctan(=(Ĥi)/<(Ĥi)), i = 1, . . . ,N. The vectors r = (r1, ..., rN)
and φ = (φ1, ..., φN) represent the channel coefficients envelope and phase, respectively.
Moreover, instead of working on the likelihood function parametrized by the parameters
K, ∆ and θ0 as in (2.19), we choose to work with the log-likelihood parametrized by the
parameters θ(Ns) (defined in Section 2.2) since we find the derivations simpler.

We aim to estimate K and we thus define g
(
θ(Ns)

)
= a2/(2σ2

h), which is a function of
the unknown parameters in θ(Ns). We know from [62, Eq. 3.30 pp. 45] that the CRLB is
given by:

CRLB(K) =
∂g

(
θNs

)
∂θ(Ns)

I−1
(
θ(Ns)

) ∂g
(
θ(Ns)

)T

∂θ(Ns)
, (2.32)

where I−1
(
θ(Ns)

)
is the inverse of the Fisher information matrix I

(
θ(Ns)

)
, whose (i,n) entry

is defined as [
I
(
θ(Ns)

)]
i,n

= −E

∂
2 log

(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂θ(Ns)

i ∂θ(Ns)
n

 , (2.33)

where θ(Ns)
i is the ith element of the vector θ(Ns), and L(Ns)

Ĥ

(
Ĥ;θ(Ns)

)
is the log-likelihood

function of Ĥ when the unknown parameters are θ(Ns), which can be written as

log
(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
= −N log

(
2π

(
σ2

h + σ2
n

))
−

1

2
(
σ2

h + σ2
n

) N∑
i=1

(ri)2
−

Na2

2
(
σ2

h + σ2
n

)+

a
σ2

h + σ2
n

N∑
i=1

ri cos
(
φi − θ0

)
.

(2.34)
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After some derivations provided in Appendix A.4, we obtain

I
(
θ(Ns)

)
=


N

σ2
h+σ2

n
0 0

0 N
(2σ2

h+2σ2
n)2 0

0 0 Na2

σ2
h+σ2

n

 . (2.35)

Substituting (2.35) in (2.32), we eventually obtain the following CRLB after simplification

CRLB(K) =
2K
N

1 +
σ2

n

σ2
h

 +
K2

N

1 +
σ2

n

σ2
h

2

, (2.36)

which can be rewritten in term of K and ∆ as:

CRLB(K) =
2K
N

(
1 + 2(K + 1)

σ2
n

∆

)
+

K2

N

(
1 + 2(K + 1)

σ2
n

∆

)2

. (2.37)

From (2.37), we can draw the following remark concerning the asymptotic behavior
of CRLB(K) as K goes to the infinity.

Remark 2.1. The asymptotic behavior of (2.37) as K → +∞ is different in the noisy and
in the noiseless cases. Indeed, in the noiseless case (i.e., 2σ2

n = 0), for K → +∞, we have
CRLB(K) ∼ K2/N whereas, in the noisy case, CRLB(K) ∼ 4K4σ4

n/(N∆2). This result suggests
that estimating large value of K is especially difficult in the noisy case.

Intuitively, this can be explained because the denominator of K is given by the channel variance
and, in the noisy case, estimating this variance is difficult because of the noise, especially for large
K values for which 2σ2

h might be small compared with 2σ2
n. This remark is numerically illustrated

in Fig. 2.5.

2.3.5 Numerical Results

In this Section, the proposed estimators’ performance are assessed through simulations,
and compared with the one from [6] given by (2.6), and the best moment-based estimators
from [20], which is (2.7). Their performance are compared in terms of bias magnitude and

Nomalized MSE (NMSE), defined for a given estimator K̂ as NMSE = E
[(

K̂ − K
)2
]
/K2.

Notice that, when the performance of K̂MML are displayed, we also represent both its
theoretical bias and NMSE, which can be obtained using (A.8) and (A.9) in Appendix A.1.

We set ∆ = 1, and the SNR is given by SNR = ∆/(2σ2
n). All results are averaged

through 10, 000 Monte Carlo trials. The log-normal distribution parameters are aK = 2.5
and σK = 3.8, which have been found through simulations to yield accurate estimation.

First of all, we study the impact of the GHQ order J in (2.28) on the performance
of K̂MeanP. In Fig. 2.2, we set SNR = 10 dB, N = 100 and we plot both bias magnitude
(Fig. 2.2a) and NMSE (Fig. 2.2b) of K̂MeanP versus J for several values of K. We see that J
has no real impact on the estimation performance as long as we choose J ≥ 50 and thus
in the rest of our simulations, we set J = 50.
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Figure 2.2: Performance of KMeanP versus J for several values of K, N = 100, SNR = 10 dB.

In both Fig. 2.3 and 2.4, we set SNR = 10 dB, and we plot the estimators’ performance
versus the value of K. In Fig. 2.3, we set N = 100, and Fig. 2.3a and 2.3b displays the
estimators’ bias magnitude and NMSE, respectively. The advantage of the proposed
estimators is clear since both their bias magnitude and NMSE are smaller than the one of
the other considered estimators. The mean a posteriori has the smallest biais magnitude
among the proposed estimators. The maximum a posteriori has a bias magnitude similar
to the ML, and it has the smallest NMSE among the proposed estimators. Also, K̂n

Prop has
the smallest bias magnitude and NMSE among all the considered deterministic estimators.
The NMSE of the maximum a posteriori is smaller than the CRLB, which can be explained
by the prior knowledge on K introduced by the prior distribution. Moreover, its NMSE
is smaller than the one of the mean a posteriori since K although this latter estimator
minimizes the Bayesian NMSE. This is because K is deterministic here. We also see that
the bias and the variance of K̂n

MML obtained by simulations are in agreement with our
theoretical derivations.

In Fig. 2.4, we set N = 30 and we plot the estimators bias magnitude in Fig. 2.4a and
NMSE in Fig. 2.4b. Such small sample size is of practical interest to be able to quickly
estimate the channel’s statistical parameters in order to adapt the RA to the link’s quality.
We observe that both K̂n

ML and K̂n
Prop may provide unreliable estimates, especially for high

values of K (i.e., K ≥ 9). This is explained because these estimators require to estimate
2σ2

h, which is difficult when its value is close to the noise variance 2σ2
n, as explained in

Remark 2.1. To illustrate how close 2σ2
h and 2σ2

n are, in Fig. 2.5, we plot their values versus
K for SNR = 10 dB. We see that they are very close for K ≥ 9, which corroborate our
previous explanation about the performance of K̂n

ML and K̂n
Prop in Fig. 2.4. It can be seen

that the Bayesian estimators are more robust than the deterministic ones because of the
prior information provided by the prior density of K.
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Figure 2.3: Performance of the proposed estimators versus K, SNR = 10 dB, N = 100.
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Figure 2.4: Performance of the proposed estimators versus K, SNR = 10 dB, N = 30.



42 2. Estimation of the Rician K Factor

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

V
ar

ia
nc

e

 

 
2σ

2

h

2σ
2

n

Figure 2.5: Values of 2σ2
h and 2σ2

n versus the value of K, SNR = 10 dB.

In Fig. 2.6, we set K = 5 and we plot the estimators bias and NMSE versus the SNR
in Fig. 2.6a and 2.6b, respectively. We can see that the proposed deterministic estimators
are unreliable for low SNR values, which is in agreement with our previous observations.
Also, for very low SNR (i.e., lower than 4 dB), the mean a posteriori has lower NMSE than
the maximum a posteriori. We also see that, even for high SNR, K̂n

ML is biased whereas
K̂n

Prop is not. This is because, as SNR→ +∞, 2σ2
n → 0 and K̂n

ML is equivalent to (2.8), which
is biased, whereas K̂n

Prop is equivalent to (2.6), which is unbiased.
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Figure 2.6: Performance of the proposed estimator versus SNR, K = 5, N = 30.

In Fig. 2.7, we set K = 5, SNR = 15 dB and we plot the estimators’ bias magnitude in
Fig 2.7a and NMSE in Fig 2.7a versus the number of samples N. Once again, we see that
the Bayesian estimators are robust to small sample size, especially the mean a posteriori
which has low bias magnitude even for N = 5.

Now, we are interested into: i) comparing the RR of our proposed estimators (2.8) and
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Figure 2.7: Performance of the considered estimators versus the sample size N, SNR =

15 dB.

(2.9) with the one of (2.7), and ii) validating the theoretical formulas for the RR derived
in Results 2.1 and 2.2. In Fig. 2.8, we set K = 5, SNR = 6 dB and we plot the estimators’
RR versus the sample size N. Notice that the Bayesian estimators are not displayed since
the use of the log-normal prior prevents from obtaining negative estimations. We see that
K̂n

Prop has a RR smaller than K̂n
ML and K̂MB, which confirms its advantage compared with

these estimators. Moreover, we see a very good agreement between the theoretical and
analytical RR.

To summarize our observations, K̂n
Prop is the most efficient deterministic estimator

since it has lower bias, NMSE and RR than K̂n
ML and K̂MB. Also, the Bayesian estimators

are robust to small sample size, but they are more complex. The mean a posteriori has in
general the lowest bias, whereas the maximum a posteriori has the lowest NMSE.

2.4 Estimation of K with Nakagami-m LoS shadowing

In this Section, we aim to estimate K when the LoS component is subject to Nakagami-
m shadowing. In this case, we remind that, following the system model described in
Section 2.2, Ĥ is a Nmp × Nmd matrix whose entries are independent Gaussian random
variables with variance 2σ2

h + 2σ2
n, whose nth column mean is c(c)

n ae jθ0 where {c(c)
n }n=1,...,Nmd

are i.i.d. random variables following a Nakagami-m distribution with parameters mNa

and Ω = 1.
First, we review the two existing estimators from the literature. Second, we present

the EM estimation framework. Third, we detail how we can apply EM to our problem,
and fourth we propose another estimator based on the MoM to initialize the EM. Finally,
we perform simulations to compare the two proposed estimators with the ones from the
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literature.

2.4.1 Existing estimators

The two existing estimators use noiseless channel magnitudes. In [83], the authors use
the MoM to propose an estimator denoted by K̂(S)

WMoM, which is obtained by solving the
following equation:(

µ̂(S)
1

)2

µ̂(S)
2

=
π

4
(
1 + K̂(S)

WMoM

)2F1

−1
2
,mNa; 1;−

K̂(S)
WMoM

mNa

 , (2.38)

where 2F1(x1, x2; y; z) is the Gauss-Hypergeometric function [3, Chapter 15], and

µ̂(S)
k =

1
NmpNmd

Nmp∑
i=1

Nmd∑
n=1

|Ĥ[i,n]|k.

One drawback of (2.38) is that it involves the value of mNa and unfortunately, in [83], it is
unclear how to estimate this parameter.

Very recently, in [47], another MoM based estimator has been proposed. It requires
to find the solution of a quadratic equations involving moments up to the order of 6.
However, it is known that the highest the moments order, the highest the estimation
variance and thus the estimator from [47] requires large sample size to provide reliable
results. Since the related equation is cumbersome, it is not reported in this thesis.
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2.4.2 The Expectation Maximization Procedure

We propose to estimate the Rician K factor using the EM procedure, which has been
originally proposed in [30] and has widely been used in the context of channel statistical
parameters estimation [14, 35, 86, 93, 118].

The EM procedure aims to find local maximum of the likelihood function itera-
tively. This procedure is especially interesting when analytical maximization of the
log-likelihood function is intractable, but is rendered possible by fixing some parameters.

In our case, let us show that maximizing the log-likelihood function of Ĥ, denoted
by log

(
L(S)

Ĥ

(
Ĥ;θ(S)

))
, is analytically intractable when the LoS is subject to Nakagami-m

shadowing. To do so, we use the independence of the columns of Ĥ to write

log
(
L(S)

Ĥ

(
Ĥ;θ(S)

))
=

Nmd∑
n=1

log
(
L(S)

Ĥn

(
Ĥn;θ(S)

))
, (2.39)

where L(S)
Ĥn

(
Ĥn;θ(S)

)
is the likelihood function of Ĥn. To derive it, we use the law of total

probability as suggested in [47], which yields

L(S)
Ĥn

(
Ĥn;θ(S)

)
=

∫ +∞

0
L(S)

Ĥn|c
(c)
n

(
Ĥn|x;θ(S)

)
fc(c)

n
(x) dx, (2.40)

where L(S)

Ĥn|c
(c)
n

(
Ĥn|x;θ(S)

)
is the PDF of Ĥn knowing c(c)

n , which can be written as

L(S)

Ĥn|c
(c)
n

(
Ĥn|x;θ(S)

)
=

 1
π(2σ2

h + 2σ2
n)

Nmp

e
−

1
2σ2

h+2σ2
n

∑Nmp
i=1 |Ĥ[i,n]−xae jθ0 |2

. (2.41)

Plugging (2.41) and (2.4) into (2.40) yields

L(S)
Ĥn

(
Ĥn;θ(S)

)
= C

(c)
n

∫ +∞

0
x2mNa−1e−x2

B2,n−xB3,ndx, (2.42)

with

C
(c)
n =

 2(mNa)mNa

πNmp (2σ2
h + 2σ2

n)Nmp Γ(mNa)

 e
−

∑Nmp
i=1

|Ĥ[i,n]|2

2σ2
h+2σ2

n ,

B2,n := Nmp

a2

2σ2
h + 2σ2

n
+ mNa

and

B3,n := −
a

σ2
h + σ2

n

Nmp∑
i=1

<

(
Ĥ[i,n]e− jθ0

)
.

Using [49, 3.462], we obtain the following closed-form expression for (2.42):

L(S)
Ĥn

(
Ĥn;θ(S)

)
= C

(c)
n

(
2B2,n

)−mNa Γ(2mNa)e
(B3,n)2

8B2,n D−2mNa

 B3,n√
2B2,n

 , (2.43)
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where D−2mNa(x) is the parabolic cylinder function, whose presence in (2.43) prevents us
from maximizing the log-likelihood function (2.39) analytically.

The difficulty in our estimation problem comes from the fact that the column of Ĥ are
random because of to the random variables c := [c(c)

1 , . . . , c
(c)
Nmd

]. Fixing the value of c would
alleviate this difficulty. The EM procedure is suitable to handle this type of difficulty since

it consists in considering c as nuisance parameters and averaging log
(
L(S)

Ĥ,c

(
Ĥ, c;θ(S)

))
,

the complete log-likelihood function, on c to alleviate the influence of these nuisance
parameters.

More precisely, the EM procedure alternates between the following two steps until
convergence is reached.

• The Expectation (E) step.

• The Maximization (M) step.

Let us detailed these steps at given iteration t.
The E step. Suppose that the current estimation of the parameters is given by θ̂

(S),(t)
=[

â(S),(t), 2σ̂2,(S),(t)
h , θ̂(S),(t)

0 , m̂(S),(t)
Na

]
. The E step consists in computing the following expectation:

QEM

(
θ(S), θ̂

(S),(t)
)

= E
c|Ĥ,θ̂

(S),(t)

[
log

(
L(S)

Ĥ,c

(
Ĥ, c;θ(S)

))]
, (2.44)

The M step. The M step consists in finding θ̂
(S),(t+1)

by maximizing QEM

(
θ(S), θ̂

(S),(t)
)

defined in (2.44) w.r.t θ(S), which mathematically writes as:

θ̂
(S),(t+1)

= arg max
θ(S)

{
QEM

(
θ(S), θ̂

(S),(t)
)}
. (2.45)

The EM procedure converges to a local maximum of the likelihood function (2.39)
[30]. Let us now apply the EM procedure to our estimation problem, beginning with the
E step.

2.4.3 The complete log-likelihood function

In this Section, we provide the closed-form expression of the complete log-likelihood

function log
(
L(S)

Ĥ,c

(
Ĥ, c;θ(S)

))
. To do so, first, we decompose it as follows:

log
(
L(S)

Ĥ,c

(
Ĥ, c;θ(S)

))
= log

(
L(S)

Ĥ|c

(
Ĥ|c;θ(S)

))
+ log

(
L(S)

c

(
c;θ(S)

))
, (2.46)

whereL(S)
c

(
c;θ(S)

)
is the likelihood function of c. Let us express the closed-form expression

of (2.46). For fixed c, log
(
L(S)

Ĥ|c

(
Ĥ|c;θ(S)

))
can be written as follows:

log
(
L(S)

Ĥ|c

(
Ĥ|c;θ(S)

))
= −NmdNmp log

(
π

(
2σ2

h + 2σ2
n

))
−

1
2σ2

h + 2σ2
n

Nmp∑
i=1

Nmd∑
n=1

|Ĥ[i,n] − c(c)
n ae jθ0 |

2.
(2.47)
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Also, the elements of c being i.i.d. Nakagami-m random variables, using (2.4), we obtain:

log
(
L(S)

c

(
c;θ(S)

))
=Nmd

(
mNa log (mNa) + log(2) − log (Γ (mNa))

)
+

(2mNa − 1)
Nmd∑
n=1

log
(
c(c)

n

)
−mNa

Nmd∑
n=1

(
c(c)

n

)2
.

(2.48)

Plugging (2.47) and (2.48) into (2.46) yields the following complete log-likelihood expres-
sion:

log
(
L(S)

Ĥ,c

(
Ĥ, c;θ(S)

))
= −NmdNmp log

(
π

(
2σ2

h + 2σ2
n

))
−

1
2σ2

h + 2σ2
n

Nmp∑
i=1

Nmd∑
n=1

(
|Ĥ[i,n]|2 − 2c(c)

n a<(Ĥ[i,n]e− jθ0)
)
−

Nmp

Nmd∑
n=1

(
c(c)

n

)2
a2

2σ2
h + 2σ2

n
+ Nmd

(
mNa log(mNa) + log(2) − log (Γ(mNa))

)
+

(2mNa − 1)
Nmd∑
n=1

log
(
c(c)

n

)
−mNa

Nmd∑
n=1

(
c(c)

n

)2
.

(2.49)

2.4.4 The expectation step

To perform the E step, we plug (2.49) into (2.44), yielding:

QEM

(
θ(S), θ̂

(S),(t)
)

= −NmdNmp log
(
π

(
2σ2

h + 2σ2
n

))
−

1
2σ2

h + 2σ2
n

Nmp∑
i=1

Nmd∑
n=1

(
|Ĥ[i,n]|2 − 2T (t)

1 (n)a<(Ĥ[i,n]e− jθ0)
)
−

Nmp

Nmd∑
n=1

T
(t)
2 (n)

a2

2σ2
h + 2σ2

n
+ Nmd

(
mNa log(mNa) + log(2) − log (Γ(mNa))

)
+

(2mNa − 1)
Nmd∑
n=1

T
(t)
3 (n) −mNa

Nmd∑
n=1

T
(t)
2 (n),

(2.50)

with
T

(t)
k (n) := E

c(c)
n |Ĥ,θ̂

(S),(t)

[(
c(c)

n

)k
]
, k = 1, 2,n = 1, . . . ,Nmd , (2.51)

and
T

(t)
3 (n) := E

c(c)
n |Ĥ,θ̂

(S),(t)

[
log

(
c(c)

n

)]
, n = 1, . . . ,Nmd . (2.52)

In what follows, we find the closed-form expressions of (2.51) and (2.52). To do so, we
use the Bayes rule, which yields:

T
(t)
k (n) =

T(t)
k (n)

T(t)
0 (n)

, k = 1, 2, 3,n = 1, . . . ,Nmd , (2.53)
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with, for k = 0, 1, 2:

T(t)
k (n) =

∫ +∞

0
L(S)

Ĥn|c
(c)
n

(
Ĥn|x; θ̂

(S),(t)
)

fc(c)
n

(x) xkdx, n = 1, . . . ,Nmp , (2.54)

and

T(t)
3 (n) =

∫ +∞

0
L(S)

Ĥn|c
(c)
n

(
Ĥn|x; θ̂

(S),(t)
)

fc(c)
n

(x) log (x) dx, n = 1, . . . ,Nmp . (2.55)

After some derivations provided in Appendix A.5, we obtain the following closed-form
expressions for (2.54) and (2.55):

T(t)
k (n) = C

(c),(t)
n

(
2B(t)

2,n

)− 2mNa+k
2 Γ(2m̂(S),(t)

Na + k)e

(
B

(t)
3,n

)2
8B(t)

2,n D
−2m̂(S),(t)

Na −k


B

(t)
3,n√

2B(t)
2,n

 , k = 0, 1, 2, (2.56)

T(t)
3 (n) =C

(c),(t)
n e

(
B

(t)
3,n

)2
8B(t)

2,n Γ
(
2m̂(S),(t)

Na

) (
2B(t)

2,n

)−m̂(S),(t)
Na

−1
2

log
(
2B(t)

2,n

)
D
−2m̂(S),(t)

Na


B

(t)
3,n√

2B(t)
2,n

+

ψ0

(
2m̂(S),(t)

Na

)
D
−2m̂(S),(t)

Na


B

(t)
3,n√

2B(t)
2,n

 +
∂
∂w

D
−2m̂(S),(t)

Na −w


B

(t)
3,n√

2B(t)
2,n

 |w=0

 ,
(2.57)

where ψ0(x) is the digamma function, and with

C
(c),(t)
n =

 2
(
m̂(S),(t)

Na

)m̂(S),(t)
Na

πNmp
(
2σ̂2,(S),(t)

h + 2σ2
n

)Nmp
Γ
(
m̂(S),(t)

Na

)
 e
−

∑Nmp
i=1

|Ĥ[i,n]|2

2σ̂2,(S),(t)
h +2σ2

n ,

B
(t)
2,n := Nmp

(
â(S),(t)

)2

2σ̂2,(S),(t)
h + 2σ2

n

+ m̂(S),(t)
Na ,

and

B
(t)
3,n := −

(
â(S),(t)

)
σ̂2,(S),(t)

h + σ2
n

Nmp∑
i=1

<

(
Ĥ[i,n]e− jθ̂(S),(t)

0

)
,

and where ∂
∂w D

−2m̂(S),(t)
Na −w

 B
(t)
3,n√

2B(t)
2,n

 |w=0 is the derivative of D
−2m̂(S),(t)

Na −w w.r.t. w evaluated in

w = 0, which can be approximated according to the following equation:

∂
∂w

D
−2m̂(S),(t)

Na −w(x)|w=0 ≈

D
−2m̂(S),(t)

Na −w+h(S)(x) −D
−2m̂(S),(t)

Na −w−h(S)(x)

2h(S)
. (2.58)

In our numerical results in Section 2.4.8, we set h(S) = 10−3.
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2.4.5 The maximization step

During the M step, we aim to maximize (2.50) w.r.t θ(S). Then, by setting the derivative
of (2.50) w.r.t the elements of θ(S) to zero, we obtain the following parameters estimators
after some algebraic manipulations:

θ̂(S),(t+1)
0 = arctan


∑Nmp

i=1

∑Nmd
n=1 T

(t)
1 (n)=(Ĥ[i,n])∑Nmp

i=1

∑Nmd
n=1 T

(t)
1 (n)<(Ĥ[i,n])

 , (2.59)

â(S),(t+1) =
1

Nmp

∑Nmd
n=1 T

(t)
2 (n)

Nmp∑
i=1

Nmd∑
n=1

T
(t)
1 (n)<

(
Ĥ[i,n]e− jθ̂(S),(t+1)

0

)
, (2.60)

2σ̂2,(S),(t+1)
h =

1
NmpNmd

Nmp∑
i=1

Nmd∑
n=1

(
|Ĥ[i,n]|2 − 2T (t)

1 (n)â(S),(t+1)
<

(
Ĥ[i,n]e− jθ̂(S),(t+1)

0

)
+ T

(t)
2 (n)

(
â(S),(t+1)

)2
)
,

(2.61)
and

m̂(S),(t+1)
Na = arg max

mNa

Nmd(mNa log(mNa) − log(Γ(mNa))) −mNa

Nmd∑
n=1

T
(t)
2 (n) + (2mNa − 1)

Nmd∑
n=1

T
(t)
3 (n)

 .
(2.62)

We have hence closed-form expressions for the estimators of θ0, a and 2σ2
h in (2.59),

(2.60) and (2.61), respectively, whereas the estimator of mNa is obtained by the maxi-
mization of the univariate function (2.62), which can be performed for instance using the
Newton method.

2.4.6 Initialization of the EM procedure using the method of moments

The EM procedure requires to find initialization for the parameters to estimate, i.e., finding
initial θ̂

(S),(0)
. It is possible to initialize these parameters randomly, however, since the

EM does not guaranty global likelihood maximization, good initialization is preferable.
Here, we propose to use the MoM to initialize them.

Let us first remind that Ĥ[i,n] can be expressed as follows:

Ĥ[i,n] = c(c)
n ae jθ0 + Hc[i,n], (2.63)

with Hc[i,n] ∼ CN(0, 2σ2
h + 2σ2

n). From (2.63), we can compute the expectation of Ĥ[i,n]
as follows:

µ(S)
1 := E

[
Ĥ[i,n]

]
=

a
√

mNa

(
Γ(mNa + 0.5)

Γ(mNa)

)
e jθ0 . (2.64)

Second, we can infer the following two other equalities from [83]:

µ(S)
2 := E

[
|Ĥ[i,n]|2

]
= 2σ2

h + 2σ2
n + a2, (2.65)
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µ(S)
4 := E

[
|Ĥ[i,n]|4

]
= 2

(
2σ2

h + 2σ2
n

)2
+ 4

(
2σ2

h + 2σ2
n

)
a2 +

mNa + 1
mNa

a4. (2.66)

Using (2.65), we obtain
2σ2

h + 2σ2
n = µ(S)

2 − a2. (2.67)

Plugging (2.67) into (2.66) yields after some algebraic manipulations:

mNa =
a4

µ(S)
4 − 2

(
µ(S)

2 − a2
)2
− 4

(
µ(S)

2 − a2
)

a2 − a4
. (2.68)

Plugging (2.68) into (2.64), we propose to estimate a by â(S),(0) given by the solution of the
following equation:

|µ̂(S)
1 |

2 =

(
â(S),(0)

)2

uS
(
â(S),(0))

) Γ
(
uS

(
â(S),(0)

)
+ 0.5

)
Γ
(
uS

(
â(S),(0)))


2

, (2.69)

with

uS(x) :=
x4

µ̂(S)
4 − 2

(
µ̂(S)

2 − x2
)2
− 4

(
µ̂(S)

2 − x2
)

x2 − x4
.

Then, using the above derivations, mNa, 2σ2
h, and θ0 are estimated according to the

following equations:
m̂(S),(0)

Na = uS

(
â(S),(0)

)
, (2.70)

2σ̂2,(S),(0)
h = µ̂(S)

2 − 2σ2
n −

(
â(S),(0)

)2
, (2.71)

θ̂(S),(0)
0 = ∠

√m̂(S),(0)
Na

µ̂(S)
1 Γ

(
m̂(S),(0)

Na

)
â(S),(0)Γ

(
m̂(S),(0)

Na + 0.5
) , (2.72)

where ∠(z) in (2.72) is the phase of the complex number z, (2.70) is obtained from (2.68) ,
(2.71) from (2.67) and (2.72) from (2.64).

We also propose to estimate the Rician K factor according to the following equation:

K̂(S)
MoM =

(
â(S),(0)

)2

2σ̂2,(S),(0)
h

. (2.73)

2.4.7 The EM procedure algorithm

Finally, we propose the following estimator of the Rician K factor:

K̂(S)
EM =

(
â(S),(tEM)

)2

2σ̂2,(S),(tEM)
h

(2.74)

where tEM is the number of iteration for the EM procedure to reach the convergence.
The proposed EM procedure to estimate the Rician K factor with Nakagami-m shad-

owed LoS is depicted in Algorithm 2.1.
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Algorithm 2.1: EM procedure for estimation of the Rician K factor.
Set ε > 0, C = ε + 1, t = 1.
Initialize â(S),(0), m̂(S),(0)

Na , 2σ̂2,(S),(0)
h and θ̂(S),(0)

0 according to (2.69), (2.70), (2.71) and
(2.72), respectively.
Set θ̂

(S),(0)
S =

[
â(S),(0), 2σ̂2,(S),(0)

h , θ̂(S),(0)
0 , m̂(S),(0)

Na

]
.

while C > ε do
Compute θ̂(S),(t)

0 , â(S),(t), 2σ̂2,(S),(t)
h and m̂(S),(t)

Na , and using (2.59), (2.60), (2.61) and
(2.62), respectively.
Set θ̂

(S),(t)
=

[
â(S),(i), 2σ̂2,(S),(t)

h , θ̂(S),(t)
0 , m̂(S),(t)

Na

]
.

Set C = ||θ̂
(S),(t−1)
S − θ̂

(S),(t)
S ||.

Set t = t + 1.
end
Set tEM = t.

Return K(S)
EM =

(â(S),(tEM))2

2σ̂
2,(S),(tEM)
h

.

2.4.8 Numerical results

In this Section, we provide numerical to compare the proposed estimators bias magnitude
and NMSE with the ones of [83] and [47], denoted by K̂(S)

WMoM and K̂(S)
LMoM, respectively.

To do so, we consider the same system model as in [83] and [47] and thus we set Nmd =

N and Nmp = 1, meaning that only one subcarrier is used for channel estimation and
that the shadowing changes independently between consecutive OFDMA or SC-FDMA
symbols. Moreover, since no noise is considered in [83] and [47], unless otherwise stated,
we set 2σ2

n = 0, i.e., the channel is perfectly known. We also compare our proposed
estimators with K̂n

MML given by (2.9), which does not take into account LoS shadowing.
The estimators’ performance are averaged through 10 000 Monte-Carlo simulations.

It is worth emphasizing that (2.38) involves mNa, and it is unclear in [83] how to
estimate this parameter. Therefore, we perform our simulations of (2.38) considering
perfect knowledge of mNa. As a consequence, the comparison is not fair since in our
proposed estimators, this parameter has to be estimated, and thus (2.38) has access to
more statistical information. However, it will be shown that, despite this disadvantage,
our proposed estimators generally perform better than (2.38).

In Fig. 2.9, we set mNa = 5 and N = 100, and we plot the estimators bias magnitude
and NMSE in Figs. 2.9a and 2.9b, respectively, versus the value of K. We can see that
both the proposed MoM and EM estimators perform better than the ones from [83] and
[47] in terms of both bias magnitude and NMSE. Especially, we see that the estimator
from [47] provides unreliable estimation since its NMSE does not even appear in the
plot. This is explained because we consider N = 100 in our simulation and this estimator
requires larger sample size. We can see that the bias of our proposed estimator is almost
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independent on K whereas the bias of the other considered estimators increases with K.
We can also observe that, although K̂n

Prop does not take into account the shadowing, this
estimator yields the best performance among the considered estimators as long as K < 2.
This observation is in agreement with [47] where it is observed that for low values of K, not
taking into account the shadowing during the estimation does not engender important
performance degradations. This is explained because for low K, the LoS component has
low value and thus the shadowing has less impact. This is interesting since we can also
see that the NMSE of our proposed estimators is the highest for low values of K, and thus
K̂n

MML and K̂(S)
EM and K̂(S)

MoM exhibit some complementarity.
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Figure 2.9: Performance of the considered estimators versus K, 2σ2
n = 0, mNa = 5, N = 100.

Now, let us study the influence of N. To do so, we set mNa = 5 and K = 5. In
Fig. 2.10a and 2.10b, we plot the estimators bias magnitude and NMSE, respectively,
versus the value of N. We observe that the proposed estimators yield once again the
best performance among the considered ones, except for N = 50 where K̂n

Prop is better

in terms of NMSE than K̂(S)
MoM. We also observe that for all the estimators except K̂n

MML
whose performance are almost independent on N, the higher the value of N, the better the
performance. Especially, K̂LMoM starts to provide reliable results when N = 104. Finally,
we observe that for N ≥ 100, K̂(S)

MoM has a lower bias magnitude than K̂(S)
EM, which exhibits

a slight bias for N = 104.

In Fig. 2.11a and 2.11b, we set K = 5, N = 100 and we plot the estimators bias
magnitude and NMSE, respectively, versus the value of mNa. We can draw the following
observations.

• For mNa > 8, K̂(S)
WMoM provides the lowest bias magnitude among the considered

estimators, but its NMSE is higher than the one of K̂n
Prop, K̂(S)

MoM and K̂(S)
EM, regardless

the value of mNa.
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Figure 2.10: Performance of the considered estimators versus N, 2σ2
n = 0, K = 5, mNa = 5.

• For mNa > 8, K̂n
Prop has the lowest NMSE among the considered estimators and, for

mNa > 14, its bias magnitude is also lower then the one of K̂(S)
MoM and K̂(S)

EM.

• When comparing K̂(S)
MoM and K̂(S)

MoM, K̂(S)
MoM has the lowest bias whereas K̂(S)

MoM has
lower NMSE.

The low bias of K̂WMoM in our first observation can be explained because this estimator
has perfect knowledge of mNa, however, despite this advantage, its NMSE is higher than
the one of our proposed estimators.

Our second observation can be explained because, for high values of mNa, the Nakagami-
m distribution is tighter around its expectation and thus the random nature of the shad-
owing has less impact. We can also infer that it corresponds to a case in which the EM
only provides local log-likelihood maximums and not global ones.

Our third observation is in agreement with Fig. 2.10, where we already observed that
the bias magnitude of K̂(S)

MoM is lower than the one of K̂(S)
EM, but its NMSE is higher.

Finally, let us now compare the estimators’ performance when the samples are noisy.
To this end, we set K = 5, mNa = 5, N = 100 and, in Figs. 2.12a and 2.12b, we plot the
estimators bias and NMSE, respectively, versus the SNR. We can see that K(S)

EM has the best
performance among the considered estimators in terms of NMSE regardless of the SNR
and that, for SNR < 14 dB, its bias magnitude is also the lowest. For SNR > 18 dB, the
bias magnitude of K̂MoM is lower than the one of K(S)

EM. Thus, for low SNR, K(S)
EM is always

preferable whereas for high SNR, system designers should choose between K̂MoM which
has the lowest bias and K(S)

EM which has the lowest NMSE.
To summarize our observations, our two proposed estimators outperform the existing

ones from the literature in terms of both bias magnitude and NMSE. Especially, K̂(S)
EM

almost always provides the lowest NMSE whereas its bias magnitude is slightly higher
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Figure 2.11: Performance of the considered estimators versus mNa, 2σ2
n = 0, K = 5, N = 100.
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Figure 2.12: Performance of the considered estimators versus the SNR, mNa = 5, K = 5,
N = 100.
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than the one of K̂(S)
MoM. Moreover, for high values of mNa or for low values of K, K̂n

Prop
exhibits good performance and thus it should be of interest to design estimation procedure
in which K̂(S)

Prop is used in these cases, and K̂(S)
EM or K̂(S)

MoM are used otherwise.

2.5 Conclusion

In this Chapter, we addressed the first goal of this thesis, which is the estimation of the
Rician K factor from noisy complex channel samples. We considered both the cases with
and without LoS shadowing.

In the shadowing-less case, we derived four new estimators of the Rician K factor:
two deterministic and two Bayesian. We also derived the deterministic CRLB in closed-
form. We provided extensive numerical results and showed that our proposed estimators
outperforms existing ones from the literature. We observed that the Bayesian estimators
are more robust to small sample size than the deterministic ones, but they are also more
complex.

In the case of Nakagami-m shadowed LoS, we proposed two estimation procedures:
one based on the EM and the other one based on the MoM. We provided numerical results
and showed that both the EM and the MoM estimators outperform the existing ones from
the literature. We observed that the MoM-based estimator has the lowest bias, whereas
the EM-based one is better in term of NMSE. We also found out that for low K value, our
proposed deterministic estimator that does not take into account performs better than
our two proposed shadowing-aware estimators and thus they are complementary.

Table 2.4 summarizes our proposed estimators. Part of the material presented in this
Chapter has been published in [C2] and patented in [P1].

Table 2.4: Summary of our contributions on the estimation of the Rician K factor.

No LoS shadowing Four new estimators + deterministic CRLB
Nakagami-m LoS shadowing Two new estimators
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Chapter 3

Background on Energy Efficiency
Based Resource Allocation Problems

3.1 Introduction

This third Chapter introduces the second goal of this thesis, which is to propose and
analyze algorithms to perform EE-based RA algorithms in MANETs when only statistical
CSI is available, and when taking into account the use of HARQ and practical MCS.

We provide an overview of the existing works dealing with RA problems using EE
metrics with and without HARQ. We also review the main existing optimization tools
that are extensively used in Chapter 4 and 5 to solve the EE related RA Problems 1.1
introduced in Chapter 1.

The rest of the Chapter is organized as follows. In Section 3.2, we review the state
of the art of existing EE-based RA schemes. Section 3.3 is dedicated to basic definitions
and properties of convex optimization, geometric programming and pseudo concavity.
Section 3.4 introduces tools to solve certain class of fractional programming problems.
Section 3.5 is dedicated to suboptimal procedures to solve non Convex Optimization
Problem (COP)s, whereas Section 3.6 concludes the Chapter, and introduces the content
of Chapter 4 and 5.

3.2 Literature Review on EE based RA

3.2.1 Single user context

First, let us review the works studying the EE of HARQ in the single user context [18, 37,
45, 46, 52, 57, 63, 71, 76, 90, 94, 98, 99, 101, 111, 115]. In [18, 45, 52, 57, 63, 71, 76, 90, 94, 98, 99,
101, 111, 115], the authors consider statistical CSI at the transmitter, while in [46] imperfect
CSI is assumed and in [37], perfect CSI is assumed to be available. Notice that, in [37],
the authors do not explicitely consider the HARQ mechanism, but the considered metric



58 3. Background on Energy Efficiency Based Resource Allocation Problems

is valid for Type-I HARQ. These works mainly address power and/or rate optimization
within HARQ mechanism, typically using convex optimization.

3.2.2 Multi user context, perfect CSI at the transmitter

Second, we focus on the works dealing with the RA with EE related criteria in a multiuser
context when considering perfect CSI at the transmitter side. In this category, a lot of works
consider the use of capacity achieving codes [25, 32, 36, 70, 85, 109, 116, 117, 119] while
practical MCS are considered in [13]. Among those works, [13, 32, 36, 70, 85, 109, 117, 119]
do not consider HARQ whereas this mechanism is taken into account in [25, 116]. In
details, when capacity achieving codes are considered with no HARQ, the MSEE problem
is solved in [119] while the MMEE problem is solved in [70]. In [117], several heuristics
are derived for the MSEE and MMEE problems. The multi-cell context is addressed in
[36, 109]. In [109], the MSEE, MPEE, and MGEE problems are solved, while in [85],
the MMEE problem is addressed. In [32], centralized and decentralized algorithms are
proposed for the MGEE problem. In [36], a distributed algorithm is proposed to solve the
MMEE problem. When capacity achieving codes are considered with HARQ and perfect
CSI [25, 116], the GEE is optimized in [116] whereas several RA schemes are investigated
in [25]. When practical MCS along with perfect CSI are considered without HARQ, the
MGEE problem for the LTE downlink is addressed in [13]. All these works address power
and/or subcarriers allocation.

3.2.3 Multi user context, statistical CSI at the transmitter

Third, we review the works addressing the RA problem with EE related objective functions
when statistical CSI is available. This problem is addressed considering capacity achieving
codes with no HARQ and the Rayleigh channel in [33, 121]. Practical MCS with HARQ are
considered in [75] under the Rayleigh channel. In [75], the authors maximize the harmonic
mean of the users’ EE in a relay assisted networks when Type-I HARQ is considered.

3.2.4 Summary

Table 3.1 summarizes the existing works concerning the RA problem with EE related
metrics for HARQ when considering practical MCS. We see that: i) the only work
addressing the RA problem for HARQ based system with practical MCS and statistical
CSI is [75], in which Type-I HARQ under the Rayleigh channel is considered and ii) no
work addresses the RA problem with the objective of maximizing EE related metrics
under the Rician channel when statistical CSI is available
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Table 3.1: Existing works dealing with RA with EE related criteria in the multiuser context.

Full CSI
Statistical CSI

Rayleigh Rician
Capacity MCS Capacity MCS Capacity MCS

No HARQ [32, 36, 70, 85, 109, 117, 119] [13] [33, 121] [75] None None
Type-I HARQ [25, 116] None None [75] None None
Type-II HARQ [25, 116] None None None None None

3.3 Convexity, Geometric Programming and Pseudo Convexity

This Section introduces basic definitions and properties of some conventional classes
of optimization problems. All the proofs for the results presented in this Section are
provided in [15, 23, 120]. First, let us review the convex optimization framework.

3.3.1 Convex optimization

3.3.1.1 Convex set

A set C is convex if, ∀x1, x2 ∈ C, ∀θ with 0 ≤ θ ≤ 1, we have:

θx1 + (1 − θ)x2 ∈ C.

In words, C is convex if the line between any two points x1, x2 ∈ C is in C. In Fig. 3.1, we
plot an example of a convex (Fig. 3.1a) and a non-convex (Fig. 3.1b) set. In Fig. 3.1b, we
also plot a red line between two points of the set that does not lie into the set, illustrating
its non-convexity.
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(b) non-convex set.

Figure 3.1: Illustration of convex and non-convex sets.
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3.3.1.2 Convex and concave functions

Let us define f : Rn
→ R. f is said to be convex if its domain dom f is convex, and,

∀x1, x2 ∈ C, ∀θ with 0 ≤ θ ≤ 1, the following inequality holds:

f (θx1 + (1 − θ)x2) ≤ θ f (x1) + (1 − θ) f (x2).

Similarly, f is said to be concave if− f is convex. In Fig. 3.2, examples of univariate convex
(Fig. 3.2a) and non-convex (Fig. 3.2b) functions are illustrated. In Fig. 3.2b, we plot in red
a chordal of the function. This chordal is not strictly above the function, illustrating its
non-convexity.
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Figure 3.2: Illustration of convex and non-convex functions.

The following property characterizes twice differentiable convex function.

Property 3.1. Let f be a twice differentiable function. f is convex if and only dom f is convex
and if its Hessian is positive semidefinite.

Remark 3.1. For a twice differentiable real value function f : R → R with a convex domain,
Property 3.1 reduces to ∀x, f ′′(x) ≥ 0, where f ′′(x) is the second order derivative of f .

Hereafter, we remind some operations preserving the convexity.

Property 3.2. Let us define f1, . . . , fi i convex functions, and w1, . . . ,wi with, ∀k ∈ {1, . . . , i},
wk ∈ R

+∗. Then
∑i

k=1 wk fk is convex.

Property 3.3. Let f be a convex function. Let g be the perspective of f , which is defined as:

g(x, t) := t f
(x

t

)
.

Then, g is convex in (x, t).
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Property 3.4. Let us define f : Rn
→ R a convex function, A ∈ Rn×m and b ∈ Rn. Then, the

function g : Rm
→ R defined as

g(x) = f (Ax + b)

is convex.

3.3.1.3 Convex optimization problems

Here, we introduce the notion of constrained COPs, and the associated vocabulary. Let
us consider the following general optimization problem with constraints:

Problem 3.1.

min
x

f0(x), (3.1)

s.t. fk(x) ≤ 0, k = 1, . . . , i. (3.2)

The function f0 : Rn
→ R is called the objective function of Problem 3.1 whereas for

∀k ∈ {1, . . . , i}, fk : Rn
→ R are the inequality constraints. Notice that it is also possible

to include equality constraint in Problem (3.1) as long as they are linear. Since we do not
consider such constraints in our work, they are thus omitted here.

Definition 3.1. The feasible set F of Problem 3.1 is defined as:

F := {x ∈ Rn such that ,∀k ∈ {1, . . . , i}, fk(x) ≤ 0}. (3.3)

Problem 3.1 is said to be feasible iff F is non empty, i.e., iff it is possible to find a point
satisfying the i constraints (3.2) simultaneously. Also, Problem 3.1 is said to be a standard
COP iff f0(x) is a convex function, and F is a convex set.

Remark 3.2. A sufficient condition for F to be convex is ∀k ∈ {1, . . . , i}, fk(x) is convex.

Remark 3.3. A special case of standard COP is when ∀k ∈ {0, . . . , i}, fk(x) is linear. This type of
problem is called a linear program.

The main advantage of COPs lies in the following fundamental property.

Property 3.5. Every local minimizer of a standard COP is a global minimizer.

3.3.1.4 Optimality conditions

The so-called Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to find
the optimal solution of a COP. Going back to Problem 3.1 and assuming that, ∀k ∈
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{0, . . . , i}, fk is differentiable, the associated KKT conditions are given by:

∇ f0(x∗) +

i∑
k=1

λ∗k∇ fk(x∗) = 0, (3.4a)

fk(x∗) ≤ 0, ∀k, (3.4b)

λ∗k ≥ 0, ∀k, (3.4c)

λ∗k fk(x∗) = 0, ∀k, (3.4d)

where∀k ∈ {0, . . . , i}, λ∗k is the optimal non-negative Lagrangian multiplier associated with
the inequality constraint (3.2), ∇ fk(x) is the gradient of fk(x) and x∗ is the optimal solution
of Problem 3.1. The set of equalities (3.4d) are the complementary slackness conditions.

Solving the KKT conditions consists in finding λ∗1, . . . , λ
∗

i and x∗ simultaneously satis-
fying (3.4a)-(3.4d), and allows us to find the global minimizer of a standard COP. There
are two possibilities to solve these conditions.

1. The analytical methods.

2. The numerical procedures.

The analytical methods are problem-dependent and are, in general, less complex than
the numerical procedures. We consider that a COP is analytically solved as long as the
solution of the KKT conditions can be expressed as a function of a unique Lagrangian
multiplier, as done for instance in the waterfilling [15]. However, it is not always possible
to solve the KKT conditions analytically, and the numerical procedures have the merit to
be problem independent.

The numerical procedures gather the Interior Point Method (IPM) and its variants
(barrier or primal dual methods for instance). They are in general more complex, and use
the Netwon method to numerically solve the KKT conditions [15]. There exist a number
of different versions of the IPMs (barrier or primal dual methods for instance), with their
own convergence rate. In [10, pp. 4], an upper bound on the IPM complexity is given by
ρ := n(n3 + i).

3.3.1.5 Epigraph formulation

The epigraph formulation of Problem 3.1 consists in rewriting it equivalently as:

Problem 3.2.

min
t,x

t, (3.5)

s.t. t ≤ f0(x) (3.6)

fk(x) ≤ 0, k = 1, . . . , i. (3.7)
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Remark 3.4. Two optimization problems are said to be equivalent iff any optimal solution of one
problem is also an optimal solution of the other one.

Remark 3.5. Although the number of optimization variables in Problem 3.2 is higher than in
Problem 3.1, it might be easier to solve in certain cases as it will be seen in the following Chapters.

3.3.2 Geometric programming

Geometric programming is a special case of non-convex problems that can be efficiently
transformed into convex ones through a change of variables. Before defining a Geometric
Program (GP), let us introduce some vocabulary.

Definition 3.2. A monomial function is a function taking the following form:

f (x1, . . . , xn) = cxb1
1 . . . x

bn
n , (3.8)

with c ∈ R+ and, ∀k ∈ {1, . . . ,n}, bk ∈ R.

Definition 3.3. A posynomial function is a function taking the following form:

f (x1, . . . , xn) =

j∑
k=1

ckxb1,k
1 . . . xbn,k

n , (3.9)

with ∀k ∈ {1, . . . , j}, ck ∈ R
+ and ∀p ∈ {1, . . . ,n}, bp,k ∈ R.

With these two definitions, we can now define a GP as an optimization problem whose
objective function and inequality constraints are posynomial. Mathematically, a GP takes
the following form.

Problem 3.3.

min
x

P0(x), (3.10)

s.t. Pk(x) ≤ 0, k = 1, . . . , i, (3.11)

where, for k ∈ {0, . . . , i}, Pk(x) is posynomial.
In general, GPs are non-convex problems. However, the following property enables

us to transform them into COPs.

Property 3.6. The Log-Sum-Exp (LSE) function, defined as

LSE(y1, . . . , yn) := log

 n∑
k=1

exp(yk)

 (3.12)

is convex.

Combining Properties 3.6 and 3.4 allows us to turn a non-convex GP into a standard
COP through the following change of variables

yk := log(xk), ∀k. (3.13)

As a consequence, GPs are a class of non COPs which can be solved with the same
complexity as convex ones.



64 3. Background on Energy Efficiency Based Resource Allocation Problems

3.3.3 Pseudo concavity

In this Section, we define the notion of Pseudo Concave (PC) functions, and give a
characterization of there optimum.

Definition 3.4. Let C be a convex set, and let f : C → R be a differentiable function. f is said to
be PC iff, ∀(x1, x2) ∈ C2, the following holds:

f (x2) < f (x1) =⇒ ∇( f (x2))T(x1 − x2) > 0. (3.14)

In Fig. 3.3, we represent an example of a univariate PC function along with one of its
chordal, represented in red. We see that, unlike concave function, a PC function can be
both above and below its chordal.
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Figure 3.3: Example of a PC function with one of its chordal, represented in red.

The main advantage of PC from an optimization point of view comes from the fol-
lowing property.

Property 3.7. The KKT conditions are necessary and sufficient to find the optimal solution of the
maximization of a PC function over a convex set.

3.4 Fractional Programming

In this Section, we review a class of non-COPs that are optimally solvable in polynomial
time. Due to the fractional form of the EE (i.e., (1.16)), EE-based RA problems involves
objective functions in the form of combinations of ratios. These type of problems are
called fractional programming problems. In general, these problems are not convex.
Fortunately, there exist in the literature several tools helping us to transform them into
convex ones. In this Section, we provide an overview of these tools. The proofs of
convergence and optimality for the algorithms presented in this Section are provided in
[120], [28] and [61].
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3.4.1 Maximization of a ratio

The general problem of the maximization of a ratio can be written:

Problem 3.4.

min
x

f0(x)
h0(x)

, (3.15)

s.t. fk(x) ≤ 0, k = 1, . . . , i. (3.16)

This type of problem can be handled by the so called Dinkelbach’s algorithm [34],
which finds its optimal solution as long as the following hypothesis is satisfied.

Hypothesis 3.1. In Problem 3.4, f0 and h0 are continuous, the feasible set is compact and h0 is
positive.

The Dinkelbach’s algorithm is used in various works dealing with RA including [13, 64,
112]. It is based on the following two steps, which are iterated until convergence to the
optimal solution of Problem 3.4.

1. At iteration t, find x∗t , the optimal solution of the following problem:

min
x

f0(x) − λ(t)h0(x), (3.17)

s.t. fk(x) ≤ 0, k = 1, . . . , i, (3.18)

where λ(t)
≥ 0 depends on the optimal solution at iteration (t − 1).

2. Compute λ(t+1) using the following equation:

λ(t+1) =
f0(x∗t)
h0(x∗t)

. (3.19)

Notice that although the Dinkelbach’s convergence Hypothesis 3.1 does not include re-
quirements concerning the convexity or concavity of fk and hk, optimally solving the
problem defined by (3.17)-(3.18) in step 1 is generally intractable, unless if this problem
is convex, i.e., if f0 is convex, h0 is concave and for k ∈ {1, . . . , i}, fk is convex.

The detailed procedure to optimally solve Problem 3.4 is depicted in Algorithm 3.1.

3.4.2 Maximization of the minimum of a set of ratios

The general problem of the maximization of the minimum of a set of ratios can be written:

Problem 3.5.

min
x

{
max

p∈{1,..., j}

fp(x)
hp(x)

}
, (3.20)

s.t. gk(x) ≤ 0, k = 1, . . . , i. (3.21)
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Algorithm 3.1: Dinkelbach’s algorithm to optimally solve Problem 3.4.

Set ε > 0, t = 0 and λ(0) = 0
Set CD = ε + 1.
while CD > ε do

Find x∗t by optimally solving the problem defined by (3.17)-(3.18) with λ(t).
Set CD = f0(x∗) − λ(t)h0(x∗).
Compute λ(t+1) using (3.19).
Set t = t + 1.

end

This type of problem can be handled by the generalized Dinkelbach’s algorithm [28],
which finds its optimal solution as long as Hypothesis 3.1 is satisfied. This algorithm is
used in different works dealing with resource allocation including [70]. The algorithm
is based on the following two steps, which are iterated until convergence to the optimal
solution of Problem 3.5.

1. At iteration t, find x∗t , the optimal solution of the following problem:

min
x

max
p∈{1,..., j}

{
fp(x) − λ(t)hp(x)

}
, (3.22)

s.t. gk(x) ≤ 0, k = 1, . . . , i, (3.23)

where λ(t)
≥ 0 depends on the optimal solution at iteration (t − 1).

2. Compute λ(t+1) using the following equation:

λ(t+1) = max
p∈{1,..., j}

{
fp(x∗t)
hp(x∗t)

}
. (3.24)

The same comment as for the Dinkelbach’s algorithm complexity holds true: the problem
defined by (3.22)-(3.23) in step 1 can be solved with affordable iff it is a standard COP.

The detailed algorithm to optimally solve Problem 3.5 is given in Algorithm 3.2

Algorithm 3.2: Generalized Dinkelbach’s algorithm to optimally solve Problem 3.5.

Set ε > 0, t = 0 and λ(0) = 0
Set CD = ε + 1.
while CD > ε do

Find x∗t by optimally solving the problem defined by (3.22)-(3.23) with λ(t).
Set CD = maxp∈{1,..., j}

{
fp(x∗) − λ(t)hp(x∗)

}
.

Compute λ(t+1) using (3.24).
Set t = t + 1.

end
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3.4.3 Maximization of a sum ratios

The general problem of the maximization of a sum of ratios can be written as:

Problem 3.6.

min
x

j∑
p=1

fp(x)
hp(x)

, (3.25)

s.t. gk(x) ≤ 0, k = 1, . . . , i. (3.26)

This type of problem can be handled using the Jong’s algorithm [61], which finds its
optimal solution as long as the following hypothesis is satisfied.

Hypothesis 3.2. In Problem 3.6, ∀p ∈ {1, . . . , j}, fp(x) is twice continuously differentiable and
convex, hp(x) is positive, twice continuously differentiable and concave and, ∀k ∈ {1, . . . , i}, gk(x)
is convex.

The Jong’s algorithm is used in several works dealing with RA including [12, 91, 119].
The algorithm is based on the following two steps, which are iterated until convergence
to the optimal solution of Problem 3.6.

1. At iteration t, find x∗t , the optimal solution of the following problem:

min
x

j∑
p=1

u(t)
p

(
fp(x) − β(t)

p hp(x)
)
, (3.27)

s.t. gk(x) ≤ 0, k = 1, . . . , i, (3.28)

where, ∀p ∈ {1, . . . , j}, u(t)
p > 0 and β(t)

p ≥ 0 depend on the optimal solution at iteration
(t − 1).

2. Compute u(t+1) := [u(t+1)
1 , . . . ,u(t+1)

j ] and β(t+1) := [β(t+1)
1 , . . . , β(t+1)

j ] using a modified

Newton method, for which we defineψ(β(t),u(t), x) := [ψ1(β(t)
1 ,u

(t)
1 , x), . . . , ψ2 j(β

(t)
j ,u

(t)
j , x)],

and, ∀p ∈ {1, . . . , j}:

ψp(β(t)
p ,u

(t)
p , x) := − fp(x) + β(t)

p hp(x), (3.29)

ψp+ j(β
(t)
p ,u

(t)
p , x) := −1 + u(t)

p hp(x). (3.30)

The update equations for u(t+1) and β(t+1) are the following ones:

u(t+1)
p = (1 − εn)u(t)

p + εn 1
hp(x∗t)

, ,∀p, (3.31)

β(t+1)
p = (1 − εn)β(t)

p + εn fp(x∗t)
hp(x∗t)

, ,∀p, (3.32)
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where ε ∈ (0, 1) and n ∈ {1, 2, . . .} is the largest value satisfying

||ψ(β(t) + εnq(t),u(t) + εnq(t), x∗t)|| ≤ (1 − δεn)||ψ(β(t),u(t), x∗t)||,

with δ ∈ (0, 1) and q(t) := −[ψ′(β(t),u(t), x∗t)]
−1ψ(β(t),u(t), x∗t), where ψ′(β(t),u(t), x∗t) is

the Jacobian matrix of ψ(β(t),u(t), x∗t).

Step 1 requires to solve a standard COP due to Hypothesis 3.2. The detailed procedure
to optimally solve Problem 3.6 is given in Algorithm 3.3.

Algorithm 3.3: Jong’s algorithm to optimally solve Problem 3.6.

Set ε > 0, t = 0, initialize u(0) and β(0)

Set CD := ε + 1.
while CD > ε do

Find x∗t by optimally solving the problem defined by (3.27)-(3.28) with u(t) and
β(t).
Set CD := ||ψ(β(t),u(t), x∗t)||.
For k = 1, . . . , j, compute u(t+1)

k and β(t+1)
k using (3.31) and (3.32), respectively.

Set t = t + 1.
end

3.4.4 Summary of fractional programming tools

The algorithms enabling us to find the optimal solution of some class of fractional pro-
gramming problems are summarized in Table 3.2. These algorithms are extensively used
in Chapters 4 and 5.

Table 3.2: Fractional programming algorithms.

Problem’s objective function Ratio Sum of ratios Minimum of a set of ratios
Algorithm Dinkelbach’s Jong’s Generalized Dinkelbach’s

3.5 Other Non-Convex Optimization Procedures

When the optimization problem at hand is non-convex, i.e., when either the objective
function or the feasible set is not convex, the computational complexity to find its global
optimal solution is in general exponential, except fractional programs, which can be
turned into COPs as it has been seen in the previous Section, and which are thus not
addressed here. In this Section, we present suboptimal optimization procedures aiming
to solve non-convex problems with affordable complexity.
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3.5.1 Alternating optimization

Let us define the following possibly non-convex constrained problem:

Problem 3.7.

min
x1,...,xn

f0(x1, . . . , xn), (3.33)

s.t. fk(x1, . . . , xn) ≤ 0, k = 1, . . . , i. (3.34)

The principle of AO, which is an iterative procedure, is to optimize alternately between
the optimization variables until convergence is reached. Formally, at iteration t, there are
n steps and, for a given step p ∈ {1, . . . ,n}, we fix (x̄(t)

1 , . . . , x̄
(t)
p−1, x̄

(t−1)
p+1 , . . . , x̄

(t−1)
n ) and we

solve the following problem:

Problem 3.8.

min
xp

f0(x̄(t)
1 , . . . , x̄

(t)
p−1, xp, x̄

(t−1)
p+1 , . . . , x̄

(t−1)
n ), (3.35)

s.t. fk(x̄(t)
1 , . . . , x̄

(t)
p−1, xp, x̄

(t−1)
p+1 , . . . , x̄

(t−1)
n ) ≤ 0, k = 1, . . . , i. (3.36)

AO is interesting if, ∀p ∈ {1, . . . ,n}, finding the optimal solution of Problem 3.8 is easier
than optimally solving Problem 3.7. The AO procedure to solve Problem 3.7 is depicted
in Algorithm 3.4, whose convergence can be proved for instance following the proof of
Theorem 1 in [81]. Notice that there is no guarantee on the optimality of the convergence
point.

Algorithm 3.4: AO based procedure to solve Problem 3.7.
Set ε > 0, t = 1, CAO = ε + 1.
Find (x̄(0)

1 , . . . , x̄
(0)
n ) a feasible solution of Problem 3.7.

while CAO > ε do
for p = 1, . . . ,n do

Find x∗p the optimal solution of Problem 3.8 with x̄(t)
1 , . . . , x̄

(t)
p−1, x̄

(t−1)
p+1 , . . . , x̄

(t−1)
n .

Set x̄(t)
p = x∗p.

end
CAO = ||[x̄(t)

1 , . . . , x̄
(t)
n ] − [x̄(t−1)

1 , . . . , x̄(t−1)
n ]||.

Set t = t + 1.
end

3.5.2 Successive convex approximation

The SCA procedure has been introduced in [78]. It is an iterative procedure enabling
us to find KKT solutions of non COPs, which is used in various works dealing with
RA, including [31, 102]. For a given iteration, it consists in approximating a non-convex
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problem around a feasible point by a COP we optimally solve, and to use this optimal
solution as the initialization for the next iteration.

Formally, consider the following non-COP:

Problem 3.9.

min
x

f0(x), (3.37)

s.t. fk(x) ≤ 0, k = 1, . . . , i, (3.38)

where,∀k ∈ {0, . . . , i}, fk(x) is continuous and differentiable. At iteration t, the SCA requires
to optimally solve the following optimization problem:

Problem 3.10.

min
x

f̄0(x, x̄(t−1)), (3.39)

s.t. f̄k(x, x̄(t−1)) ≤ 0, k = 1, . . . , i, (3.40)

where x̄(t−1) is the optimal solution at iteration (t − 1) and, ∀k ∈ {0, . . . , i}, f̄k(x, x̄(t−1))
is the convex approximation of fk(x) around x̄(t−1), which is assumed to be continuous
and differentiable. The SCA procedure convergence to a solution satisfying the KKT
conditions of Problem 3.9 is ensured in [78] as long as Hypothesis 3.3 is satisfied. Notice
that there is no guaranty regarding the global optimality of the convergence point.

Hypothesis 3.3. In Problem 3.9 and 3.10, ∀k ∈ {0, . . . , i}, fk(x) and f̄k(x,y) satisfy the following
properties.

• The approximate functions are upper-bounds of the original ones, i.e., ∀x, ∀y, fk(x) ≤
f̄k(x,y).

• The approximation is locally tight, i.e., ∀x, fk(x) = f̄k(x, x).

• The gradient of the approximations is consistent with the gradient of the original functions,
i.e., ∀x, ∇ fk(x̃)|x̃=x = ∇ f̄k(x̃, x)|x̃=x.

Finally, the SCA based procedure to solve Problem 3.9 is depicted in Algorithm 3.5.

3.6 Conclusion

In this Chapter, we provided a review of existing works dealing with EE-related RA
problems. We also introduced the optimization framework that serves in Chapter 4 and
5 to solve Problems 1.1 described in Chapter 1.
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Algorithm 3.5: SCA based procedure to solve Problem 3.9.
Set ε > 0, t = 0, C = ε + 1.
Find x̄(0) a feasible solution of Problem 3.9.
while C > ε do

Find x∗ the optimal solution of Problem 3.10.
Compute C = ||x∗ − x̄(t)

||.
Set x̄(t+1) = x∗.
Set t = t + 1.

end
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Chapter 4

Resource Allocation for Type-II
HARQ Under the Rayleigh Channel

4.1 Introduction

From Table 3.1 in Chapter 3, we see that the RA problem with EE-related metrics for
Type-II HARQ in assisted MANETs using practical MCS under the Rayleigh channel has
never been addressed in the literature. In this Chapter, we address this problem. In
details, the contributions of this Chapter are the following ones.

• Considering HARQ and practical MCS, we derive optimal and computationally
tractable algorithms solving the MSEE, the MPEE and the MMEE problems under
per-link minimum goodput and maximum transmit power constraints. Our main
technical contribution is to transform all these problems that have no special prop-
erties (like convexity) into equivalent convex ones. We also propose two suboptimal
procedures to solve the MGEE problem.

• In addition, we analyze the complexity of the proposed algorithms. Since this
analysis reveals that finding the optimal solution of the MSEE problem is complex,
we derive two suboptimal less-complex algorithms to solve this problem.

• We show how our proposed solutions can also handle a minimum PER constraint
with no additional derivations.

• We analyze the results of the proposed criteria through simulations of relevant
practical scenarios. We also compare these results with two conventional criteria:
the MPO from [65], and the MGO (also derived in this Chapter). Our simulations
show that these two schemes actually achieve rather bad performance in EE. On the
other hand, we find out that the MPEE criterion is especially relevant for MANETs.

• We also illustrate the effect of these differences on the battery drain of the same
smartphone example as in Chapter 1, Section 1.5.4. The results confirm the fact that
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the scheme with the best PEE outperforms the conventional ones by allowing to
transmit the largest amount of information bits with the least battery drain.

The rest of this Chapter is organized as follows. In Section 4.2, we present the error
probability approximation used in this Chapter to solve the RA problems. In Section 4.3,
we mathematically formulate the addressed RA problems whereas In Section 4.4, we
present the methodology used to solve them. In Section 4.5, 4.6, 4.7 and 4.8 we solve the
MSEE, MPEE, MMEE and MGEE problems, respectively. In Section 4.9, we show how
our proposed framework can also handle a maximum PER constraint. In Section 4.10, we
analyze the complexity of the proposed solutions. Section 4.11 is dedicated to numerical
results and finally Section 4.12 concludes this Chapter.

4.2 Error Probability Approximation

We can see from (1.13), (1.29) and (1.30) in Chapter 1 that the links’ goodput, the links’
EE and the GEE involve the error probability q`,m, which has no closed-form expressions
when considering HARQ along with practical MCS. In this thesis, we overcome this issue
by considering the following upper bound [96]

q`,m(G`E`) ≤ π`,m(G`E`), ∀`,∀m, (4.1)

where π`,m(G`E`) is the probability of decoding failure when p packets are available.
When OFDMA is considered along with Zero Forcing (ZF) one-tap equalizer followed

by a soft decoding, as in [65], we use the following tight upper bound of π`,m(G`E`) for
medium-to-high SNR.

π`,m(G`E`) ≤ π̃`,m(G`E`) :=
g`,m

(G`E`)d`,m
, ∀`,∀m, (4.2)

where g`,m and d`,m are fitting coefficients obtained through least square estimation, which
depend both on the packet length and the considered MCS. Notice that these coefficients
capture the effect of the frequency correlation due to multipath as well as the effect of the
Bit Interleaved Coded Modulation (BICM) when the hypothesis of ideal FF channel is not
fulfilled. When SC-FDMA is considered, (4.2) is still valid for ZF equalizer followed by a
soft decoding with different fitting coefficients [40].

To check the accuracy of the upper bound (4.2), we consider two channel models.

1. The FF channel described in Chapter 1 corresponding to the ideal case of in which
the interleaving allows each modulated symbols to act over independent frequency
bins realizations

2. The Block Fading (BF) channel in which the frequency-selective channel is constant
within the duration of one OFDMA symbol and varies from symbol-to-symbol. It is
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simulated with M = 10 and ζ2
`,p = ∆`

M ,∀p, ` (i.e., uniform power delay profile), using
256 subcarriers with 20 randomly chosen subcarriers allocated to the link of interest
and considering codeword of length 128 modulated symbols. As a consequence,
the codeword is spanned over 7 OFDMA symbols.

In Figs. 4.1 and 4.2, we plot the error probability along with the approximation whose
coefficients are reported in Table 4.1 using the same setup as in Section 4.11, versus the
SNR defined in Section 1.6.2. We see that the approximation is tight for both models for
medium-to-high SNR. As expected, the two schemes achieve almost the same diversity
orders thanks to the BICM1, whereas the frequency correlation of the BF model induces a
performance degradation of about 1 dB. Although the results exhibited in the rest of this
Chapter are obtained considering the case of ideal FF channel, it is worth emphasizing
that our derivations are valid as long as fitting coefficients g`,m and d`,m are available.
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Figure 4.1: Tightness of the error probability approximation, FF model.

Table 4.1: Fitting coefficients.

g`,m, FF model g`,m, BF model d`,m, FF model d`,m, BF model
m = 1 25.04 29.33 5.73 5.16
m = 2 0.13 0.91 9.23 8.16
m = 3 0.0021 0.012 10.07 8.79

Thanks to (4.1) and (4.2), we can now derive the approximated expressions of the
metrics of interest, replacing q`,m with its upper bound π̃`,m, in (1.12) for the goodput,

1notice that the frequency correlation induces a slight diversity degradation of the BF model as compared
with the ideal FF one
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Figure 4.2: Tightness of the error probability approximation, BF model.

in (1.16) for the EE, and in (1.17) for the GEE, leading to the following approximate
expressions, ∀`:

η̃`(G`E`) := Bγ`α`
1 − π̃`,M(G`E`)

1 +
∑
M−1
m=1 π̃`,m(G`E`)

, (4.3)

Ẽ`(E`, γ`) :=
α`γ`(1 − π̃`,M(G`E`))

(1 +
∑
M−1
m=1 π̃`,m(G`E`))(γ`E`κ−1

`
+ Ec,`)

, (4.4)

G̃(E,γ) :=

∑L
`=1 α`γ`

1−π̃`,M(G`E`)

1+
∑
M−1
m=1 π̃`,m(G`E`)∑L

`=1(γ`E`κ−1
`

+ Ec,`)
. (4.5)

The goodput constraint (1.25) is thus approximated by:

γ`α`
1 − π̃`,M(G`E`)

1 +
∑
M−1
m=1 π̃`,m(G`E`)

≥ η(0)
`

(4.6)

Notice that due to the upper bound of the approximation (4.1)-(4.2), if (4.6) holds then
(1.25) also holds, implying that the QoS is necessarily satisfied.

In the rest of the Chapter, all our derivations are performed based on the approxima-
tions (4.3)-(4.5).

4.3 Problems Formulation

In this Section, we mathematically formulate the optimization problems we wish to solve,
which are approximations of the general Problems 1.1 in Chapter 1, where the goodput,
the EE and the GEE are replaced by the approximations (4.3), (4.4) and (4.5), respectively.
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4.3.1 MSEE Problem

A simple way to combine the links’ EE is to sum them, leading to the following MSEE
problem.

Problem 4.1. The MSEE problem for Type-II HARQ under the Rayleigh channel writes as:

max
E,γ

L∑
`=1

D̃`(G`E`)
S̃`(G`E`)(κ−1

`
E` + Ec,`γ−1

`
)
, (4.7)

s.t. (4.6), (1.27) and (1.28),

with, ∀`,

D̃`(G`E`) := α`(1 − π̃`,M(G`E`)), (4.8)

S̃`(G`E`) := 1 +

M−1∑
m=1

π̃`,m(G`E`). (4.9)

It is known that maximizing the sum of the individual EE of the different links may lead
to unfair RA [120]. Therefore, we also investigate metrics allowing to achieve a better
degree of fairness in the RA.

4.3.2 MPEE Problem

Achieving a better fairness is possible by maximizing the product of the links’ EE, leading
to the following MPEE problem.

Problem 4.2. The MPEE problem for Type-II HARQ under the Rayleigh channel writes as:

max
E,γ

L∏
`=1

D̃`(G`E`)
S̃`(G`E`)(κ−1

`
E` + Ec,`γ−1

`
)
, (4.10)

s.t. (4.6), (1.27) and (1.28),

Since the function f : x → log(x) is strictly increasing on R+∗, problem 4.2 can be
rewritten equivalently as follows, which is also known as the proportional fairness
problem.

Problem 4.3. The MPEE Problem 4.2 is equivalent to the following problem:

max
E,γ

L∑
`=1

log

 D̃`(G`E`)
S̃`(G`E`)(κ−1

`
E` + Ec,`γ−1

`
)

 , (4.11)

s.t. (4.6), (1.27) and (1.28),
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4.3.3 MMEE Problem

We also consider the highest degree of fairness which can be achieved by maximizing the
worst link’s EE. This problem is also known as the max-min fairness problem, and leads
to the following MMEE problem.

Problem 4.4. the MMEE problem for Type-II HARQ under the Rayleigh channel writes as:

max
E,γ

 min
`∈{1,...,L}

D̃`(G`E`)
S̃`(G`E`)(κ−1

`
E` + Ec,`γ−1

`
)

 , (4.12)

s.t. (4.6), (1.27) and (1.28),

4.3.4 MGEE Problem

Finally, we also consider the problem of maximizing the EE of the network, leading to the
following MGEE problem.

Problem 4.5. the MGEE problem for Type-II HARQ under the Rayleigh channel writes as:

max
E,γ

∑L
`=1 γ`

D̃`(G`E`)
˜S`(G`E`)∑L

`=1(κ−1
`
γ`E` + Ec,`)

, (4.13)

s.t. (4.6), (1.27) and (1.28),

4.3.5 Problems Feasibility

Since the feasible set in Problems 4.1 to 4.5 is identical to the one in [65], the same feasibility
condition holds. This condition is not detailed in this thesis, and we only assume that the
considered problems are feasible by carefully choosing Pmax,` and η(0)

`
∀`.

4.4 Solution Methodology

As they are formulated, Problems 4.1 to 4.5 are not concave and thus, without additional
efforts, they are not computationally tractable, meaning that they cannot be solved ana-
lytically or numerically with affordable complexity, i.e., in polynomial time. One of the
main contribution of this Chapter is to transform these problems into equivalent simpler
ones, for which standard convex optimization tools are applicable, e.g. the IPM. This
Section is dedicated to the methodology used to achieve this purpose.

4.4.1 General idea

Problems 4.1 to 4.5 can be written in the general form

max
E,γ

JG(E,γ), (4.14)

s.t. (4.6), (1.27), (1.28), (4.15)
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whereJG is a generic function representing the objective function of one of the considered
problem.

We remark that the feasible set for Problems 4.1 to 4.5 defined by the constraints
(4.6), (1.27) and (1.28) is not convex due to the non-convexity of constraint (1.27), thus
preventing us from using convex optimization tools. To overcome this issue, in a first
step, we rewrite these constraints in posynomial form since posynomial constraints can
be transformed into convex ones through a change of variables. The posynomial form is,
∀`,

η(0)
`
γ−1
`

1 +

M−1∑
m=1

a`,mE−d`,m
`

 + α`a`,ME−d`,M
`

≤ α`, (4.16)

E`γ` ≤ Pmax,`, (4.17)
L∑
`=1

γ` ≤ 1, (4.18)

with a`,m := g`,m/G
d`,m
`

> 0. After the change of variables (detailed in the next Section), the
problem defined by (4.14)-(4.15) writes as

max
x,y

JG(x,y), (4.19)

s.t. (4.6)′, (1.27)′, (1.28)′, (4.20)

where (x,y) := UF(E,γ) withUF a one-to-one mapping, and (4.6)’, (1.27)’ and (1.28)’ are
constraints (4.6), (1.27) and (1.28) after the change of variables.

In a second step, for the MSEE, MPEE and MMEE problems after the change of
variables, we identify properties of the new objective functions (4.19) allowing us to
optimally solve them using convex optimization procedures. Concerning the MGEE
problem, we do not find such properties, leading us to work directly on Problem 4.5
before the change of variables, since its structure enables us to apply two suboptimal
procedures.

4.4.2 Change of variables yielding a convex feasible set

The change of variable we apply to our problems is the one of the geometric programming
[15], which writes UF(E,γ) = [U(E1), . . . ,U(EL),U(γ1), . . . ,U(γL)] with U(u) := log(u).
Hence, we have, ∀`

x` = log(E`), (4.21)

y` = log(γ`). (4.22)

After this change of variables, constraints (4.6), (1.27) and (1.28) can be rewritten equiva-
lently ∀` as

η(0)
`

e−y`

1 +

M−1∑
m=1

a`,me−d`,mx`

 + α`a`,Me−d`,Mx` ≤ α`, (4.23)
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ex`+y` ≤ Pmax,`, (4.24)
L∑
`=1

ey` ≤ 1. (4.25)

We can now formulate the following result concerning the feasible set of the optimization
problems after the change of variables.

Result 4.1. The set

FP = {(x,y) ∈ RL
+ ×R

L
+ |Eqs. (4.23)-(4.25) are satisfied.} (4.26)

is convex.

Proof. We use the following two properties: i) the composition of a convex function with
an affine function is convex, and ii) a non-negative sum of convex functions is convex
[15]. We see that constraints (4.23)-(4.25) are sums of functions, which are convex since
they can be expressed as the composition of the exponential function, which is convex,
and affine functions. Contraints (4.23)-(4.25) are then sums of convex functions and as a
result Fp is convex. �

We have thus converted the non convex constraints (4.6), (1.27) and (1.28) into convex
ones (4.23)-(4.25) thanks to the change of variables (4.21)-(4.22). We now address the
solution of Problems 4.1 to 4.5, beginning with the MSEE one.

4.5 MSEE Solution

In this Section, we provide the optimal solution of the MSEE Problem 4.1 along with two
suboptimal less complex solutions.

4.5.1 Optimal solution

We obtain the optimal solution of Problem 4.1 by applying the change of variables (4.21)-
(4.22), enabling us to rewrite it equivalently as:

Problem 4.6.

max
E,γ

L∑
`=1

f`(x`)
g`(x`, y`)

, (4.27)

s.t. (4.23), (4.24) and (4.25),

with,∀`, f`(x`) := α`(1−a`,Me−x`d`,M) and g`(x`, y`) := (1+
∑
M−1
m=1 a`,me−x`d`,m)(κ−1

` ex`+Ec,`e−y` ).
Problem 4.6 is characterized in Result 4.2.

Result 4.2. Problem 4.6 is the maximization of a sum of ratios whose numerators are concave and
denominators are positive and convex, over a convex set.
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Proof. The convexity of the feasible set is given by Result 4.1. Also, the concavity of f` ∀`
can be established by computing its second order derivative whereas the positivity of g`
∀` is straightforward and their convexity can be proved using same steps as for the proof
of Result 4.1. �

Thanks to Result 4.2, we know that Problem 4.6 can be optimally solved according to
the Jong’s algorithm [61], by alternating between the following two steps until conver-
gence is reached.

1. At iteration i, find the optimal solution of the problem defined by:

max
x,y

L∑
`=1

u(i)
`

(
f`(x`) − β

(i)
`

g`(x`, y`)
)
, (4.28a)

s.t. (4.23), (4.24) and (4.25). (4.28b)

where ∀`, u(i)
`
> 0 and β(i)

`
≥ 0 depend on the optimal solution at iteration (i−1). The

problem defined by (4.28a)-(4.28b) is the maximization of a concave function over a
convex set (i.e., Result 4.2) and can thus be optimally solved using the IPM.

2. Compute ∀`, u(i+1)
`

and β(i+1)
`

using the modified Newton method given by (3.31)
and (3.32) in Chapter 3, where ψ is given by, ∀`

ψ`(β
(i)
`
,u(i)
`
, x`, y`) := − f`(x`) + β(i)

`
g`(x`, y`), (4.29)

ψ`+L(β(i)
`
,u(i)
`
, x`, y`) := −1 + u(i)

`
g`(x`, y`). (4.30)

Finally, the optimal solution of problem 4.1 is depicted in Algorithm 4.1.

Algorithm 4.1: Jong’s algorithm to optimally solve the MSEE Problem 4.1.

Set ε > 0, i = 0, initialize u(0) and β(0) using any feasible solution, for instance the
MPO from [65].
Set CD = ε + 1.
while CD > ε do

Find x∗ and y∗, the optimal solution of the problem defined by (4.28a)-(4.28b)
with u(i) and β(i), using the IPM.
Set CD := ||ψ(β(i),u(i), x∗,y∗)||.
For ` = 1, . . . ,L, compute u(i+1)

`
and β(i+1)

`
using (3.31) and (3.32), respectively.

Set i = i + 1.
end

4.5.2 Suboptimal solutions

Our complexity analysis (i.e., Table 4.2 in Section 4.10) reveals that finding the optimal
solution of the MSEE problem is computationally demanding. For this reason, in the
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following, we develop two suboptimal less complex solutions: one based on AO and
the other one on an approximation of the objective function, called Objective Function
Approximation (OFA). In both approaches, we start from Problem 4.1 before the change
of variables (4.21)-(4.22).

4.5.2.1 Alternating optimization

In our AO based approach, the optimization is performed alternately between the op-
timization variables E and γ until convergence is reached. Let us first explain the opti-
mization w.r.t E.

Optimization w.r.t E In a first time, γ is fixed and the optimization is performed w.r.t
E. For fixed γ, we see that Problem 4.1 is separable since there is no coupling constraints
between the elements of E, meaning that the optimization can be performed separately
among the links. We thus have to solve L parallels sub problems, which write as:

Problem 4.7.

max
E`

D̃`(G`E`)
S̃`(G`E`)(κ−1

`
E` + F`,E)

, (4.31)

s.t. h`,E(G`E`) ≤ 0, (4.32)

E` − Emax,` ≤ 0, (4.33)

with,∀`, h`,E(G`E`) = η(0)
`
γ−1
` S̃`(G`E`) − D̃`(G`E`), Emax,` = Pmax,`/γ` and F`,E := γ−1

` Ec,`.
We give a characterization of the resulting sub problems 4.7 in Result 4.3.

Result 4.3. Problem 4.7 is the maximization of a PC function over a convex set.

Proof. First, we prove that the feasible set defined by (4.32)-(4.33) is convex. Constraint
(4.33) is linear and thus it is convex. To prove the convexity of constraint (4.32), let us
prove that ∀`, h′′`,E(G`E`), the second order derivative of h`,E(G`E`) w.r.t. E`, is positive:

h′′`,E(G`E`) = η(0)
`
γ−1
`

M−1∑
m=1

g`,md`,m(d`,m + 1)

Gd`,m
`

Ed`,m+2
+

g`,Md`,M(d`,M + 1)

Gd`,M
`

Ed`,M+2
`

> 0, ∀`. (4.34)

Second, let us prove that the objective function (4.31) is PC. To do so, we prove that its
numerator is concave and its denominator is convex and positive. We compute D̃′′` (G`E`),
the second order derivative of D̃`(G`E`) w.r.t. E`, as:

D̃′′` (G`E`) =
g`,Md`,M(d`,M + 1)

Gd`,M
`

Ed`,M+2
`

> 0, ∀`, (4.35)
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proving that D̃`(G`E`) is convex. Now, let us compute the second order derivative of
S̃`(G`E`)(κ−1

` E` + F`) w.r.t. E`:

(S̃`(G`E`)(κ−1
` E` + F`))′′ = κ−1

`

M−1∑
m=1

g`,m

Gd`,m
`

(
d`,m(d`,m + 1) − 2

)
+ F`,E

M−1∑
m=1

g`,m

Gd`,m
`

(
d`,m(d`,m + 1)

)
.

(4.36)
We see from (4.36) that a sufficient condition for the second order derivative of the
denominator of (4.31) to be is non-negative is, ∀`, ∀p, d`,m ≥ 1, which is the case for
practical MCS. As a consequence, from (4.35) and (4.36), (4.31) is the ratio between a
concave and a non-negative convex function and thus, from [120, Proposition 2.9], we
can infer that it is PC, which concludes the proof. �

Hence, from [120] and Result 4.3, we know that the KKT conditions are necessary
and sufficient to find the optimal solution of Problem 4.7, which is given in Theorem 4.1
whose proof is straightforward and as a consequence omitted.

Theorem 4.1. Let Emin,` denote the unique zero of h`,E(G`E`) on (g1/d`,M
`,M

/G`,Emax,`], and Q` as

Q`(G`E`) =
D̃`(G`E`)

S̃`(G`E`)(A`E` + F`,E)
, ∀`. (4.37)

The optimal solution E∗` of problem 4.7 takes the following form:
1) If Q′`(G`Emin,`) < 0, then E∗` = Emin,`.
2) If Q′`(G`Emax,`) > 0, then E∗` = Emax,`.
3) Else, E∗` is the solution of Q′`(G`E∗`) = 0 in [Emin,`,Emax,`], which is unique. This case can

be easily solved using the bisection method.

Theorem 4.1 gives us an efficient method to find the optimal solution of the L sub prob-
lems. In addition, we emphasize that these L sub problems can be solved in a distributed
fashion since there is no coupling constraints between the optimization variables.

Optimization w.r.t γ In the second step, E is fixed and the optimization is performed
w.r.t γ. In this case, Problem 4.1 writes as:

Problem 4.8.

max
γ

L∑
`=1

γ`H`

γ` J` + M`
(4.38)

s.t. γ` ≥ γmin,`, ∀`, (4.39)

γ` ≤ γmax`, ∀`, (4.40)
K∑

k=1

γ` ≤ 1, (4.41)
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with,∀`, γmin,` := η(0)
`

S̃`(G`E`)/D̃`(G`E`), γmax,` := Pmax,`/E`, H` := D̃`(G`E`), J` :=
κ−1
` E`S̃`(E`) and M` := Ec,`S̃`(E`). We give a characterization of Problem 4.8 in Result 4.4.

Result 4.4. Problem 4.8 is the maximization of a concave function over a convex set.

Proof. First, we remark that the constraints (4.39)-(4.41) of Problem 4.8 are all linear, and
thus its feasible set is convex. Therefore, we turn our attention to the objective function
(4.38). To prove its concavity, we define,∀`,

f`,γ(γ`) =
γ`H`

γ` J` + M`
.

We prove the concavity of f`,γ by computing its second order derivative, which is given
by, ∀`,

f ′′`,γ(γ`) = −
2H`M` J`

(J`γ` + M`)3 < 0.

Since the sum of concave functions is a concave function, it results that the objective
function (4.38) of problem 4.8 is concave, concluding the proof. �

From Result 4.4, we know that the optimal solution of Problem 4.8 can be found by
solving the KKT conditions. This optimal solution is given in theorem 4.2, whose proof
is provided in appendix B.1.

Theorem 4.2. If
∑L
`=1 γmax,` ≤ 1, then the optimal solution of Problem 4.8 is given by ∀`, γ∗` =

γmax,`.
Otherwise, let us define γ∗`(λ) as, ∀`

γ∗`(λ) =

[
−

M`

J`
+

√
H`M`λ
λJ`

]γmax,`

γmin,`

, (4.42)

with [x]b
a := min{b,max{x, a}}. The optimal solution of Problem 4.8 is given by ∀`, γ∗` = γ∗`(λ

∗),
whereλ∗ is the solution of

∑L
`=1 γ

∗

`(λ
∗) = 1, which is unique onR+∗. Moreover, λ∗ lies in [λ∗−, λ∗+]

with λ∗− := min`∈{1,...,L}(H`M`/(J`γmax,` + M`)2) and λ∗+ := max`∈{1,...,L}(H`M`/(J`γmin,` +

M`)2).

Algorithm. Finally, the AO based procedure to suboptimally solve Problem 4.1 is sum-
marized in Algorithm 4.2.

4.5.2.2 Objective function approximation

Here, we solve Problem 4.1 using our OFA approach. The difficulty to solve Problem 4.1
comes from the sum of ratios in its objective function. To alleviate this problem, we
remark that the EE is defined as the inverse of the Energy per Bit (EB), defined as the
energy consumed per information bit received without error. Then, we propose as a
first approximation to minimize the sum of the EB instead of maximizing the SEE. The
resulting optimization problem writes as:
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Algorithm 4.2: AO based suboptimal solution of Problem 4.1.
Set ε > 0, CA = ε + 1, i = 0.
Find initial feasible E(0) and γ(0).
while CA > ε do

Find E(i+1) := [E(i+1)
1 , . . . ,E(i+1)

L ] the optimal solutions of the L Problems 4.7 with
γ(i) using Theorem 4.1.
Find γ(i+1) := [γ(i+1)

1 , . . . , γ(i+1)
L ] the optimal solution of Problem 4.8 with E(i+1)

using Theorem 4.2.
Set CA = ||[E(i),γ(i)] − [E(i+1),γ(i+1)]||.
Set i = i + 1.

end

Problem 4.9.

min
E,γ

L∑
`=1

S̃`(G`E`)(κ−1
` E` + Ec,`γ−1

` )

D̃`(E`)
, (4.43)

s.t. (4.6), (1.27) and (1.28)

It is worth noticing that problem 4.9 is not equivalent to Problem 4.1. Actually, one
can check that minimizing the sum of the EB is equivalent to maximizing the harmonic
mean of the EE. However, we expect that minimizing the sum of the EB to yield an
energy efficient RA policy. Problem 4.9 is still the maximization of the sum of ratios, that
is, this problem is still complex to solve. To alleviate this difficulty, we make another
approximation: we consider the high SNR regime, in which we consider that q`,M = 0.
With this approximation, Problem 4.9 can be rewritten as

Problem 4.10.

min
E,γ

L∑
`=1

S̃`(E`)
α`

(κ−1
` E` + Ec,`γ

−1
` ), (4.44)

s.t. (4.6), (1.27) and (1.28)

Problem 4.10 is a GP, and hence it can be efficiently solved using the IPM, as imple-
mented for instance in [82].

4.5.3 Numerical comparison of optimal and suboptimal MSEE solutions

In this Section, we numerically compare the SEE obtained using the optimal MSEE solu-
tion (Algorithm 4.1), with the AO based procedure (Algorithm 4.2) and the OFA approach.

To do so, we consider the same setup as in Section 4.11 and, in Fig. 4.3, we plot the
SEE obtained using the three considered solutions versus the maximum transmit power
constraint. We can see that the optimal MSEE solution yields, as expected, the highest SEE,
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but we also see that the AO based solution is very close to the optimal one, especially for
Pmax,` ≥ 22 dBm, where the curves are superimposed. We can finally remark that the OFA
approach yields lower SEE, but the degradation as compared with the optimal solution
does not exceed 10%. On the other hand, it will be shown in Section 4.10 that these two
suboptimal solutions are much less complex than the optimal one, and thus they are of
interest for practical implementations.
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Figure 4.3: SEE of the optimal and suboptimal MSEE solutions versus Pmax,`.

4.6 MPEE Solution

We obtain the optimal solution of Problem 4.3 by applying the change of variables (4.21)-
(4.22), enabling us to rewrite it equivalently as:

Problem 4.11.

max
x,y

L∑
`=1

(
log

(
f`(x`)

)
− log

(
g`(x`, y`)

))
, (4.45)

s.t. (4.23), (4.24) and (4.25). (4.46)

In Result 4.5, we exhibit a property of Problem 4.11 allowing us to find its optimal
solution.

Result 4.5. Problem 4.11 is the maximization of a concave function over a convex set.

Proof. The convexity of the feasible set is ensured by Result 4.1. The objective function
(4.45) can be written as

∑L
`=1W`(x`, y`), with W`(x`, y`) := log( f`(x`)) − log(g`(x`, y`)).
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Let us prove that W`(x`, y`) is concave. To do so, first, we remind that the logarithm
of a concave function is concave [15]. As a consequence, since f`(x`) is concave (see
i.e Result 4.2), log( f`(x`)) is concave. Second, using the convexity of the LSE function,
one can prove that log(g`(x`, y`)) is convex and hence − log(g`(x`, y`)) is concave. As
a consequence, W` is concave and finally,

∑L
`=1W`(x`, y`) is concave, concluding the

proof. �

The MPEE problem can then be optimally solved directly using the IPM, requiring no
additional computation.

4.7 MMEE Solution

We obtain the optimal solution of Problem 4.4 by applying the change of variables (4.21)-
(4.22), enabling us to rewrite it equivalently as:

Problem 4.12.

max
x,y

min
`∈{1,...,L}

{
f`(x`)

g`(x`, y`)

}
, (4.47)

s.t. (4.23), (4.24) and (4.25). (4.48)

Due to Results 4.1 and 4.2, one can check that this Problem 4.12 is the maximization of
the minimum of a set of ratios with concave numerators and convex denominators, over
a convex set. Hence, this problem falls within the generalized fractional programming
framework, and could be solved with the Generalized Dinkelbach’s algorithm. However,
by taking a closer look at our objective function (4.47), we are able to find a more simple
procedure (not iterative) to solve this problem. To do so, we observe that each f` and
g` in (4.47) are combinations of exponentials. Hence, our idea is to introduce a mono-
mial auxiliary optimization variable and to perform the change of variable of geometric
programming in this new variable to obtain a COP.

More precisely, using the epigraph formulation of Problem 4.12, we introduce the
optimization variable φ, and the following constraint φ ≤ min`∈{1,...,L}

f`(x`)
g`(x`,y`)

. Noticing

that φ ≤ min`∈{1,...,L}
f`(x`)

g`(x`,y`)
⇔ φ ≤

f`(x`)
g`(x`,y`)

,∀`, we can rewrite Problem 4.12 equivalently
as

max
x,y,φ

φ, (4.49a)

s.t. φg`(x`, y`) − f`(x`) ≤ 0, ∀`, (4.49b)

(4.23), (4.24) and (4.25). (4.49c)

In this new problem, the objective function (4.49a) is linear and hence concave, but the
L new constraints given by (4.49b) are not convex due to the product between φ and g`.
To render them convex, we remark that g` is a sum of exponential in x` and y`. Clearly,
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performing the change of variable of the geometric programming on φ, i.e., z := log(φ),
enables to obtain convex constraints since we exhibit a linear combination of exp–sum.
After this change of variable, the problem defined by (4.49a)-(4.49c) can be rewritten as

max
x,y,z

ez, (4.50a)

s.t. ezg`(x`, y`) − f`(x`) ≤ 0, ∀`, (4.50b)

(4.23), (4.24) and (4.25). (4.50c)

All the constraints defined by (4.50b)-(4.50c) are now convex. However, the objective
function (4.50a) is not concave anymore. So we cannot use convex optimization tools yet.
To overcome this issue, one can remark that maximizing ez is equivalent to minimizing
1/ez = e−z, which is convex. The resulting equivalent optimization problem writes in the
following convex form

min
x,y,z

e−z, (4.51a)

(4.50b), (4.23), (4.24) and (4.25). (4.51b)

The problem defined by (4.51a)-(4.51b) is the minimization of a convex function over a
convex set, and then it can be optimally solved using the IPM.

4.8 MGEE Solution

Last, we address the MGEE Problem 4.5. In general, in the literature, this problem is the
easiest one to tackle when there is no multiuser interference since most of the existing
works consider the capacity as the measure of the useful data rate, and hence the GEE
reduces to a ratio between a concave and a convex function, which can be efficiently
solved using the Dinkelbach’s algorithm. In our case however, the GEE problem is
the most complicated one due to the consideration of the HARQ mechanism. Indeed,
unlike the previously discussed problems, the numerator of the GEE is not necessarily a
concave function even after the change of variables (4.21)-(4.22). Hence, to the best of our
knowledge, there exists no algorithm to optimally solve this problem in polynomial time.
For this reason, we propose two suboptimal solutions, one based on SCA, and the other
one based on AO. We highlight that, contrary to our work to optimally solve Problem 4.1
to 4.4, we address the solution of Problem 4.5 starting from the problem before the change
of variables (4.21)-(4.22) since we are able to observe specific structure of this problem.
Let us first explain the SCA based solution.

4.8.1 Successive convex approximation

Following the derivations for the MSEE, MPEE and MMEE, we first searched a solution
using the change of variables defined by (4.21)-(4.22) in order to render the feasible set of
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the problem convex and then applying the SCA procedure by approximating the objective
function. We actually did not succeed to find such an approximation which has to verify
certain properties to ensure the convergence of the SCA algorithm. To overcome this
issue, we choose to work on the original Problem 4.5 with variables E,γ, since it allows
us to use an efficient approach from the literature.

Looking at our optimization problem, we see that all the constraints and the denom-
inator of the objective function are posynomials (i.e., (4.16)-(4.18)), but the numerator is
not posynomial. This problem is closed to the framework proposed in [24], where a SCA
procedure, called single condensation method for GP, is proposed to solve the problem of
the minimization of a ratio of posynomials with posynomial constraints. Hence, our idea
is to transform our optimization problem in order to use the approach from [24]. The first
step is to transform the numerator of the objective function (4.5) into a posynomial. To do
so, we introduce L new optimization variables [z1, . . . , z`] along with L new constraints
z` ≤ γ`D̃`(G`E`)/S̃`(G`E`), which will be shown to be posynomials. The second step is
to transform the maximization problem into a minimization one, by taking the inverse
of the resulting objective function. After these two steps, Problem 4.5 can be rewritten
equivalently as follows, using (4.8) and (4.9):

min
E,γ,z

∑L
`=1(γ`E`κ−1

` + Ec,k)∑L
`=1 z`

(4.52a)

s.t. z` ≤ γ`D̃`(G`E`)/S̃`(G`E`), ∀`, (4.52b)

(4.6), (1.27) and (1.28), (4.52c)

with z := [z1, . . . , z`]. We can see that the problem defined by (4.52a)-(4.52c) is the
minimization of a ratio of posynomials with posynomial constraints since constraints
(4.52b) can be rewritten equivalently as follows

z`γ−1
`

1 +

M−1∑
m=1

a`,mE−d`,m

 + α`a`,ME−d`,M ≤ α`, ∀`, (4.53)

which is posynomial. The solution proposed in [24] is to replace the denominator in
(4.52a), at each iteration, with its best monomial lower bound in the sense of its Taylor
approximation about the solution found at the previous iteration. To do so, let us first
define E∗(i) := [E∗(i)1 , . . . ,E∗(i)

`
] and γ∗(i) := [γ∗(i)1 , . . . , γ∗(i)

`
] the optimal solution at the end of

the ith iteration of the SCA procedure. To derive the lower bound of the denominator
of the ratio at the (i + 1)th iteration, the authors of [24] take advantage of the arithmetic-
geometric mean inequality to write

L∑
`=1

z` ≥
L∏
`=1

 z`
ν(i)
`


ν(i)
`

(4.54)
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with, ∀`,

ν(i)
`

:=
H`(E

∗(i)
`
, γ∗(i)
`

)∑L
`=1H`(E

∗(i)
`
, γ∗(i)
`

)
, (4.55)

withH`(E`, γ`) := γ`D̃`(G`E`)/S̃`(G`E`). In [24], it is proven that this lower bound meets
the SCA convergence hypothesis.

The problem defined by (4.52a)-(4.52c) is then approximated by replacing
∑L
`=1 z` in

(4.52a) with its lower bound given in (4.54). The resulting approximated problem writes

min
E,γ,z

K∑
k=1

(γ`E`κ−1
` + Ec,k)

 K∏
k=1

z`
ν(i)
`


−ν(i)

`

(4.56a)

s.t. (4.53), (4.6), (1.27), and (1.28). (4.56b)

The approximated problem defined by (4.56a)-(4.56b) is the minimization of a posynomial
function (4.56a) with posynomial constraints (4.56b). Thus, it can be optimally solved by
applying the change of variables of the geometric programming, i.e., (4.21)-(4.22) for E
and γ, and z` := log(Φ`), and by using the IPM on the resulting problem. Finally, the SCA
procedure solving Problem 4.5 is depicted in Algorithm 4.3.

Algorithm 4.3: SCA based procedure solving the MGEE Problem 4.5.
Set ε > 0, i = 0, C = ε + 1.
Find E∗(0) = [E∗(0)

1 , . . . ,E∗(0)
L ] and γ∗(0) = [γ∗(0)

1 , . . . , γ∗(0)
L ] a feasible solution or

Problem 4.5.
For all `, compute ν(0)

`
using (4.55).

while C > ε do
Find E∗(i+1) = [E∗(i+1)

1 , . . . ,E∗(i+1)
L ] and γ∗(i+1) = [γ∗(i+1)

1 , . . . , γ∗(i+1)
L ] the optimal

solution of Problem (4.56a)-(4.56b).
Compute C = ||[E∗(i+1), γ∗(i+1)] − [E∗(i), γ∗(i)]||.
For all `, compute ν(i+1)

`
using (4.55).

Set i = i + 1.
end

4.8.2 Alternating optimization

Similarly to the suboptimal AO based procedure for the MSEE problem in Section 4.5.2.1,
the optimization is performed alternately with respect to the variables E and γ until
convergence is reached. Let us first explain the optimization w.r.t. E.
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Optimization w.r.t. E when γ is fixed, Problem 4.5 writes as

max
E

∑L
`=1 C`,E

D̃`(G`E`)
S̃`(G`E`)∑L

`=1(W`,EE` + Ec,`)
(4.57a)

s.t.
D̃`(G`E`)
S̃`(G`E`)

≥M`,E, ∀` (4.57b)

E` ≤ Emax,k, ∀` (4.57c)

with C`,E := γ`, W`,E := γ`κ−1
` , M`,E := η(0)

`
/γ` and Emax,k := Pmax,`/γ`.

The problem defined by (4.57a)-(4.57c) is the maximization of a ratio between two
differentiable functions with positive denominator and compact feasible set and hence, it
can be solved with the Dinkelbach’s algorithm [120, pp. 243]. For a given iteration (i + 1),
the Dinkelbach’s algorithm requires to optimally solve the following problem:

max
E

L∑
`=1

(
C`,E

D̃`(G`E`)
S̃`(G`E`)

− λ(i)
D (W`,EE` + Ec,`)

)
(4.58a)

s.t. (4.57b), (4.57c) (4.58b)

where λ(i)
D ≥ 0 depends on the optimal solution of the ith iteration. This problem defined

by (4.58a)-(4.58b) is not concave due to the non concavity of the objective function (4.58a)
and then we cannot apply the IPM to solve it. However, we are able to optimally solve
for certain configurations, detailed later. To do so, we first remark that this problem is
separable into L subproblems since there is no coupling constraints between the elements
of E. The L resulting subproblems write

max
E`

C`,E
D̃`(E`)
S̃`(E`)

− λ(i)
D W`,EE`, ∀`, (4.59a)

s.t. (4.57b), (4.57c). (4.59b)

The objective functions (4.59a) of the L subproblems are not posynomial, but using
its epigraph formulation, it is possible to alleviate this issue by introducing L auxiliary
optimization variables (one per subproblem) w` along with L new constraints, leading to
the following L subproblems

max
E`,w`

w` (4.60a)

s.t. (λ(i)
D W`,EE` + w`)S̃`(E`) − C`,ED̃`(E`) ≤ 0, ∀` (4.60b)

M`,ES̃`(E`) − D̃`(E`) ≤ 0, ∀` (4.60c)

E` ≤ Emax,k, ∀`. (4.60d)

Constraint (4.60c) can be rewritten in posynomial form as in (4.16), and, similarly, con-
straint (4.60b) can also be rewritten in posynomial form. As a consequence, the problem
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defined by (4.60a)-(4.60d) is the maximization of a monomial function with posynomials
constraints, and it can be turned into a standard GP as follows

min
E`,w`

w−1
` (4.61a)

s.t. (4.60b), (4.60c), (4.60d). (4.61b)

The problem defined by (4.61a)-(4.61b) is a geometric program and then it can be optimally
solved performing the change of variable (4.21) on E`, by setting Ψ` := log(w`), and using
the IPM on the resulting equivalent problem.

Notice that this approach does not work if the maximum of the subproblem defined
by (4.59a)-(4.59b) is negative since it implies w` ≤ 0 and as a result, we cannot apply
the change of variable Ψ` := log(w`). If this case occurs, it is always possible to switch
the SCA based procedure using the end of the last feasible iterations of the AO based
procedure for initialization.

Finally, the procedure to optimally solve the problem defined by (4.58a)-(4.58b) is
given in Algorithm 4.4 whose convergence is guaranteed since it creates a non-decreasing
and bounded sequence of GEE.

Algorithm 4.4: Dinkelbach’s algorithm solving Problem (4.59a)-(4.59b).

Set ε > 0, λ(0)
D , i = 0.

Set λ(i)
D = ε + 1.

while CD > ε do
For all `, find E∗` the optimal solution of Problem (4.61a)-(4.61b) with λ(i)

D .

Set CD :=
∑L
`=1

(
C`,E

D̃`(G`E∗`)
S̃`(G`E∗`)

− λ(i)
D (F`,EE∗` + Ec,`)

)
.

Compute λ(i+1)
D =

∑L
`=1 C`,E

D̃`(G`E∗
`

)

S̃`(G`E∗
`

)∑L
` (F`,EE∗

`
+Ec,`)

.

Set i = i + 1.
end

Optimization w.r.t. γ when E is fixed, Problem 4.5 writes as:

max
γ

∑L
`=1 A`,γγ`∑L

`=1(C`,γγ` + Ec,`)
(4.62a)

s.t. γ` ≥ γmin,k (4.62b)

γ` ≤ γmax,k (4.62c)
L∑

k=1

γ` ≤ 1 (4.62d)

with, ∀`, A`,γ := D̃`(E`)/S̃`(E`), C`,γ := E`/κ`, and γmin,` and γmax,` have same definitions
as in Problem 4.8.
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The problem defined by (4.62a)-(4.62d) is a linear fractional programming problem,
i.e., an optimization problem whose objective function (4.62a) is the ratio of two linear
functions and whose constraints are all linear. Hence, it can be efficiently solved using the
Charnes-Cooper transformation [17], for which we introduce the following (L + 1) new
optimization variables

r`,γ :=
γ`∑L

`=1(C`,γγ` + Ec,`)
, ∀`, (4.63)

tγ :=
1∑L

`=1(C`,γγ` + Ec,`)
. (4.64)

With these new variables, we can rewrite the problem defined by (4.62a)-(4.62d) equiva-
lently in the following linear form:

Problem 4.13.

max
r,t

L∑
`=1

A`,γr`,γ (4.65)

s.t. r`,γ ≥ tγγmin,`, ∀`, (4.66)

r`,γ ≤ tγγmax,`, ∀`, (4.67)
L∑
`=1

r`,γ − tγ ≤ 0 (4.68)

L∑
`=1

C`,γr`,γ + tγ
L∑
`=1

Ec,` = 0 (4.69)

with r := [r1,γ, . . . , rL,γ]. Problem 4.13 can be optimally solved using numerical algorithms
such as the simplex method [15] or IPM. The optimal solution of the original problem
(4.62a)-(4.62d) can then be deduced from (4.63)-(4.64) as follows

γ∗` =
r∗`,γ
t∗γ
, ∀`, (4.70)

where, ∀`, r∗`,γ and t∗γ are the optimal solution of the equivalent linear Problem 4.13.

Algorithm Finally, the AO based procedure to suboptimally solve the MGEE Prob-
lem 4.5 is depicted in Algorithm 4.5.

4.9 Adding a maximum PER constraint

Until now, we have only considered the per-link minimum goodput constraint (4.6) as a
QoS constraint. Although the goodput involves the error probabilities q`,m, it does not
provide guarantee on the achieved PER q`,M (i.e., Chapter 1), as illustrated hereafter on
a simple example. Let us consider the case withM = 1, and two energy and bandwidth
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Algorithm 4.5: AO based procedure solving the MGEE Problem 4.5.
Set ε > 0, i = 0, CD = ε + 1.
Find initial feasible E(0) := [E(0)

1 , . . . ,E
(0)
L ] and γ(0) := [γ(0)

1 , . . . , γ
(0)
L ] .

while CD > ε do
Find E(i+1) := [E(i+1)

1 , . . . ,E(+1)
L ] the optimal solution of the problem defined by

(4.57a)-(4.57c) with γ(i) using Algorithm 4.4.
Find γ(i+1) := [γ(0)

1 , . . . , γ
(0)
L ] the optimal solution of the problem defined by

(4.62a)-(4.62d) with E(i+1) solving the linear Problem 4.13 with the IPM method
and using (4.70).
Set CD = ||[E(i+1),γ(i+1)] − [E(i),γ(i)]||.
Set i = i + 1.

end

parameters for the `th link E`,i andγ`,i, i = 1, 2, satisfying its minimum goodput constraint,
i.e., α`γ`,i(1 − q`,1(G`E`,i)) ≥ η

(0)
`

. Let us further assume that E`,1 (resp. E`,2) yields high
(resp. low) PER value, for instance q`,1(G`E`,1) = 0.5 and q`,1(G`E`,2) = 10−3. The same
goodput can be achieved for the two set of parameters if γ`,1 = 2γ`,2 since we have

1 − q`(G`E`,1)
1 − q`(G`E`,2)

≈ 0.5. (4.71)

Thus, the two set energy and bandwidth parameters yields approximately the same
goodput although E`,1 (resp. E`,2) yields high (resp. low) PER value, simply by allocating
more bandwidth when the PER is high. However, in several applications such as video,
ensuring a minimum goodput constraint is not enough and forcing a maximum PER
constraint is of interest [54]. For instance within LTE standard, a maximum PER of 10−6

must be achieved in non-conversational video [97].

Therefore, we now investigate how handling a maximum PER constraint in our solu-
tions. This constraint which can be written as:

q`,M(G`E`) ≤ q(t)
`
, ∀`. (4.72)

Using the approximations (4.1) and (4.2), Constraint (4.72) can be approximated as:

E` ≥ G−1
`

 g`,M

q(t)
`


1

d`,M

, ∀`. (4.73)

Let us now rewrite Problems 4.1, 4.3 and 4.4 by adding the maximum PER constraint
(4.73) in a general form similar to (4.19)-(4.20) by applying the change of variables (4.21)-
(4.22):
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Problem 4.14.

max
x,y

JG(x,y), (4.74)

s.t. e−x`G−1
`

 g`,M

q(t)
`


1

d`,M

≤ 1, ∀`, (4.75)

(4.23), (4.24), and (4.25). (4.76)

Following similar steps as for the proof of Result 4.1, we can prove the following result.

Result 4.6. The set

FP,2 = {(x,y) ∈ RL
+ ×R

L
+ |Eqs. (4.75)-(4.76) are satisfied.} (4.77)

is convex.

From Result 4.6, we can see that adding the PER constraint (4.73) does not change
our solution procedures for Problems 4.1, 4.3 and 4.4 since their objective functions
remains the same and thus our derivations from the previous Sections remain valid.
Adding constraint (4.73) only changes the solutions computational complexity. The same
observation holds for the MGEE Problem 4.5. Thus, our proposed framework can handle
a maximum PER constraint with no additional derivations.

Notice that we have conducted this Section work at the end of the thesis and thus we
did not include maximum PER constraints in our numerical results (except for Fig. 4.13).

4.10 Complexity Analysis

Here, we give an analysis of the proposed solutions complexity, when the PER constraint
is omitted. We first remind that these solutions are iterative, and at each iteration, they
all use the IPM except the MSEE AO-based suboptimal solution.

Let us define NI as the number of times the IPM is used for a given solution. The
overall complexity of the optimal solutions of the MSEE, MPEE and MMEE problems,
the MSEE OFA-based solution and the MGEE SCA-based solution is given by

NIO
(
ρ
)

with ρ = V(V3 + C), where V (resp. C) is the number of variables (resp. constraints) of
the optimization problem.

Concerning the MSEE AO-based solution, the complexity is given by

NoutO(Nb,γ + LNb,E),

where Nb,E (resp. Nb,γ) is the number of iterations of the bisection procedure aiming to
solve Problem 4.7 (resp. Problem 4.8), and Nout is the number of times the algorithm
alternates between the optimization w.r.t E and γ.
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Concerning the MGEE AO-based solution, the complexity is given by

NoutO
(
ργ + NILO(ρE)

)
,

where ργ := Vγ(V3
γ + Cγ) where Cγ and Vγ are the number of constraints and variables of

the optimization problem w.r.t γ, respectively, and ρE := V3
E(V3

E +CE) where CE and VE are
the number of constraints and variables of the optimization problem w.r.t E, respectively.

In Table 4.2, we report the values of C and V, the average values of NI, Nout, Nb,γ and
Nb,E for the proposed solutions, and the total number of Floating Point Operation (FLOP)s
using the same setup as in Section 4.11. We see that the solutions complexity can be split
into three classes. The first class includes the optimal MSEE and the SCA based MGEE
solutions, which are the most complex ones because of their high number of iterations to
converge (i.e., NI is high). The second class gathers the high SNR MSEE, MPEE, MMEE
and AO based MGEE solutions which are less complex. Finally, the third class is only
composed of the AO based MSEE solution, which is the less complex one because we were
able to find the optimal solution in quasi closed-form at each iteration, and the number
of iterations to converge is low.

Finally, we see that both suboptimal MSEE solutions are much less complex than the
optimal one. The AO based solution is especially of interest since it yields almost the
same result as the optimal one (see Section 4.5.2.1), with much lower complexity.

Table 4.2: Problems dimensionality, number of iterations and solutions complexity.

V C NI Nb Nout Total FLOPs (O)
MSEE, optimal 2L 2L + 1 979.1 - - 64 432 613

MSEE, AO (γ: top, E: bottom)
- - - 25.76

4.12 1, 021
- - - 27.75

MSEE, OFA 2L 2L + 1 1 - - 65 808
MPEE 2L 2L + 1 1 - - 65 808
MMEE 2L + 1 3L + 1 1 - - 83 946

MGEE, SCA 3L 3L + 1 839.18 - - 27 892 329

MGEE, AO (γ: top, E: bottom)
L + 1 2L + 3 1

- 3 20, 546
1 3 3.5

4.11 Numerical Results

4.11.1 Setup

We use the IR-HARQ scheme based on the convolutional code with rate R` = 1/2 described
in [43, Table V], and we use a QPSK modulation. The number of links is L = 8 and the link
distances δ(D)

`
are uniformly drawn in [50 m, 1 km]. We set B = 5 MHz, N0 = −170 dBm/Hz
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and the packet length is, ∀`,L` = 128. The carrier frequency is fc = 2400 MHz and we put
∆` = (4π fc/c)−2δ(D)−3

`
. We assume that the required goodput per-link is equal for all links,

and unless otherwise stated, is equal to η(1)
`

= 62.5 kbits/s. Except in Fig. 4.13, we do not
consider maximum PER constraint. Also, unless otherwise stated, we put M = 3, and
we consider that ∀`, Pctx,` = Pcrx,` = 0.4 W and κ` = 0.5. All points have been obtained by
averaging through 50 random networks configurations.

4.11.2 Performance analysis

In this Section, we analyse the performance of the MSEE, MPEE,MMEE and MGEE
optimal solutions. For the sake of comparison, we also display the MGO optimal solution,
which is provided in Appendix B.2, and the MPO optimal solution from [65]. Notice that,
for clarity, we do not plot the MSEE suboptimal solutions since we have already studied
their results in Section 4.5.2.1.

In Figs. 4.4 to 4.7, we plot as the function of the maximum transmit power the SEE,
PEE, MEE, and GEE obtained with the proposed solutions, the MPO, and the MGO.

The comparison between EE-related criteria with MPO and MGO shows that: i) the
MPO gives systematically the worst performance, ii) the MGO gives bad MEE and PEE
whereas it is comparable to SEE and GEE for low Pmax but degrades when Pmax increases.
Both behaviors can be explained because, as observed in Chapter 1, the EE given by (4.4)
is a unimodal function of E` for fixed γ, with a unique maximizer, and the E` obtained by
MPO (resp. MGO) is much lower (resp. larger) than this maximizer. As a consequence,
these two criteria achieve low EE values. It is worth emphasizing that the MPO is the
worst due to the considered setup. Indeed, the lower the circuitry consumption, the lower
the value of the EE maximizer, and thus the better the MPO and the worst the MGO. In
other words, for lower values for Pctx,` and Pcrx,`, the MPO (resp. MGO) performance
would have been better (resp. worst).

The comparison between the EE-related criteria leads to the following observations:
i) the results are in agreement with what is expected, i.e. ,maximizing a given criterion
leads to the highest values with regard to this criterion. ii) Regarding the MGEE criterion,
both SCA and AO achieve almost the same performance. Since we established that the
AO has much less complexity (see Table 4.2 in Section 4.10), we recommend to use it for
practical implementation. iii) Among all the criteria, the MPEE achieves almost the best
performance for all the metrics. Moreover, since it has lowest complexity than all the
other solutions (expect the AO based MSEE solution), it makes it attractive for practical
implementations.

From the above observations, we provide the following recommendations for apply-
ing our algorithms to communication systems when EE is concerned. For MANETs,
maximizing individual EE is of interest, and thus the MMEE is a good candidate. How-
ever, MMEE performs badly for the other criteria and thus we recommend the use of
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MPEE, because of observation (iii) in the previous paragraph, and the fact that its perfor-
mance is close to MMEE in terms of MEE.
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Figure 4.4: SEE of the proposed
solutions versus Pmax,`.
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Figure 4.5: PEE of the proposed
solutions versus Pmax,`.
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Figure 4.6: MEE of the proposed
solutions versus Pmax,`.
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Figure 4.7: GEE of the proposed
solutions versus Pmax,`.

4.11.3 Fairness analysis

We analyze the fairness of the proposed criterion versus the minimum required goodput
and the maximum transmit power. To measure the fairness, we use the Jain’s index on
the links’ EE [E1, . . . ,EL] defined by [58]:

JA :=

(∑L
`=1 E`

)2

L
∑L
`=1 E

2
`

. (4.78)

It is well known thatJA ∈ [1/L, 1] for non negative E` and the highest its value, the fairer
the solution.
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In Fig. 4.8, the maximum transmit power is set to 29 dBm, and we study the influence
of the goodput constraint on the solutions fairness. The MMEE gives the fairest RA
among the proposed algorithms, followed by the MPEE. The other EE-based criteria
(MSEE and MGEE) lead to a less fair RA, especially for low required goodput because
they allow to advantage only the links with good conditions. The fairness of the MSEE
and MGEE increases as the minimum goodput constraint increases because it forces the
algorithms to give more resource to the link with bad channel conditions, increasing their
EE and as a consequence the overall fairness. The MPO is very fair because it forces all
the links to achieve the same goodput (i.e., Bη(1)

`
). Moreover, their power consumptions

are close to each others since the transmit power is very low and then the denominator of
the EE is dominated by the circuitry consumption. The MGO is very fair as well because
we consider fixed MCS and high maximum transmit power. Hence, all the links achieve
almost the same goodput, given by Bα`/L. Moreover, the power consumption is almost
equal for all the links since they all use their maximum transmit power. Hence, the links
have almost equal goodput and power consumption and thus the MGO is fair.

In Fig. 4.9, we study the influence of the maximum transmit power on the solutions
fairness. We observe once again that the MPO is very fair in EE but with low EE. We
also see that the MMEE fairness increases with the maximum transmit power, achieving
a Jain’s index of one for sufficiently high value. This is because when the maximum
transmit power is low, the links with bad channel conditions meet the power constraint
with equality (i.e., the EE of these links cannot be increased) while the EE of the other
links can be higher. The MPEE has a similar behaviour. The MSEE and MGEE lead to
low fairness because the minimum required goodput is low and then these algorithms
advantage only the links with good channel conditions. Finally, concerning the MGO, one
can observe that for low maximum transmit power, the fairness is low for similar reasons
as for the MSEE and MGEE. As the maximum transmit power increases, the fairness of
the maximum goodput also increases, for the reasons already observed in Fig. 4.8.

These observations corroborate the insights of the previous section: the MPEE is
of interest for MANETs since the fairness issue is of importance for this type of com-
munications. For this reason, we only consider the MPEE in the rest of our numerical
experiments.

4.11.4 Application to the smartphone case

In this Section, we extend the smartphone example of Section 1.5 to the multiuser context
and illustrate the effectiveness of the MPEE criterion. We use the same numerical values
for Q0 and U as in Section 1.5, and we compute the same metrics with in addition
the following ones: nt the average number of HARQ rounds and γ̄ the average used
bandwidth (in %).

In the first scenario, the MPEE is the best one since it transmits all the messages within
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versus η(1)
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Figure 4.9: Jain’s index for the links EE
versus Pmax,`.

the shortest duration, with the least energy consumption. It is followed by the MGO
which also succeeds to transmit all the messages but in a longer duration and with more
energy consumption. The MPO criterion gives the worst result since the battery goes flat
before succeeding to transmit all the messages. We can first see from γ̄ that the MPO
allocates little proportion of the bandwidth to the users which implies that the transmit
duration of each message is long as observed through Tt. This actually explains the small
goodput. Second, the MPO succeeds to use low transmit power taking advantage of the
retransmission capability of HARQ to achieve the target goodput at the expense of the
time duration. Finally the tradeoff between the (very low) transmit power and the (very
large) time duration is disastrous for the energy consumed by the MPO for sending the
pre-fixed number of messages.

In the second scenario, the MPEE allows to transmit more packets than the other
criteria when the whole battery is used. The battery lifetime for the MPEE is also longer
than for the MGO. Indeed, the average goodput is almost the same for the MPEE and
the MGO, but the energy consumption is much lower for the MPEE, which gives a better
tradeoff between the energy consumption and the goodput. The results for the MPO are
identical to the ones for the first scenario since the baterry was already empty.

To summarize, when the RA is performed using the MPEE criterion, either the links
can transmit more packets in average than when using the MPO and the MGO at the
end of the battery lifetime, or the links have higher battery levels in average for the
same number of transmit messages. This clearly demonstrates the practical relevance of
considering the EE (and especially the MPEE) when designing a RA procedure.
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Table 4.3: Comparison of the MPEE with the conventional criteria (MPO and MGO) in
terms of battery lifetime and time to transmit information for both scenarios.

Scenario Criterion Qr Tt (s) Np ηA
` (kbits/s) nt γ̄ (%)

107 sent messages
MPEE 83% 2150 1 × 107 6150 1.02 100%
MGO 72% 2222 1 × 107 6250 1 100%
MPO 0% 14 271 7 × 106 63 1.2 12.2%

Full battery drain
MPEE 0% 12 937 6 × 107 6150 1.02 100%
MGO 0% 8063 4 × 107 6250 1 100%
MPO 0% 14 271 7 × 106 63 1.2 12.2%

4.11.5 Impact of the parameterM

To investigate the impact ofM, we compute the PEE gains whenM = 3 compared with
M = 1, defined as:

100 ×
(PEE3

PEE1
− 1

)
, (4.79)

where PEEi stands for the optimal PEE value obtained forM = i.
Fig. 4.10 represents this gain as a function of Pmax,` for η(1)

`
= 1.25 kbits/s. Notice that

the PEE obtained whenM = 2 is not displayed since it is very close to the one whenM = 3
and the curves are superimposed. This is because the throughput resulting from the RA
for M = 3 and M = 2 are very close, and as a consequence, the EE is almost identical.
Choosing betweenM = 2 andM = 3 should hence be a tradeoff between the delay and
the error probability. Indeed, increasing M increases the delay but decreases the error
probability. We observe that the gain is strictly positive and offers good improvement for
low Pmax,`. For instance, when Pmax = 0 dBm, the gain is about 22%.

Actually, the fact that the gain is positive can be checked using the sufficient condition
on the q`,ms given in [96], which writes as follows:

q`,m+1

q`,m
≤

q`,m
q`,m−1

, ∀m ∈ [1, . . . ,M− 1]. (4.80)

In Fig. 4.11 (resp. Fig. 4.12), we plot q`,m+1/q`,m − q`,m/q`,m−1 for m = 1 (resp. m = 2). We
can see that the curves are always below 0, except for SNR = 2 dB and m = 2, where the
value is very close to 0. This means that the sufficient condition (4.80) holds, explaining
the strictly positive PEE gain observed in Fig. 4.10.

Condition (4.80) enables system designers to choose the best value ofM: for delay-
tolerant application, one can choose the largest value ofM such that (4.80) holds.

Now, let us study the PEE gains as a function of the maximum PER constraint q(t)
`

. To
solve the MPEE Problem, we use the solution provided in Section 4.9. In Fig. 4.13, we
consider same q(t)

`
for all `, we set Pmax,` = 20 dBm, and we plot the PEE gains as a function

of q(t)
`

. We see once again a strictly positive gain whenM = 3 as compared withM = 1,
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Figure 4.10: PEE gains whenM = 3 compared withM = 1 versus Pmax,`.

and especially when the PER constraint is low, we see substantial gain of several hundreds
of percent. These observations can be explained as follows. For the sake of explanation,
we considerM = 2 (the reasoning forM > 2 being the same), and we plot q`,1 and q`,2

versus the SNR in Fig. 4.14. Let us assume that E
∗,q̄(t)

`

`
, the optimal value of E` without PER

constraint, is such that q`,1(E
∗,q̄(t)

`

`
G`) = 3.5 × 10−1, yielding q`,2(E

∗,q̄(t)
`

`
G`) = 2 × 10−4 as it can

be read in Fig. 4.14. Let us now impose a PER constraint q(t)
`

= 10−4. In order to satisfy

q`,1(G`E
∗,q(t)

`

`
) ≤ 10−4 (ifM = 1) or q`,2(E

∗,q(t)
`

`
) ≤ 10−4 (ifM = 2), one has to increase the `th

link transmit energy E`. We see in Fig. 4.14 that the required energy increment to reach
the PER constraint is much less forM = 2 than forM = 1 , meaning that this constraint
produces a more important EE loss for the system withM = 1 as compared with the one
withM = 2, explaining the result in Fig. 4.13.

4.11.6 Influence of an error in Pc,tx and Pc,rx

In this Section, we illustrate the impact of a mismatch between the values of Pctx,` and
Pcrx,` used to perform RA and their real values. To do so, we set Pmax,` = 19 dBm, and
we solve the MPEE problem for several Pctx,` and Pcrx,` values, denoted by P̂cx. With the
obtained optimal E` and γ`, we compute the PEE with the real value of Pctx,` and Pcrx,`

being 0.4 W. In Fig. 4.15, we plot the PEE versus the value of P̂cx. As we can see, an
error in the circuitry consumption during the RA induces a PEE loss. However, the error
in the model has to be large to dramatically decreases the solutions performance. For
example, an error of 0.2 W (i.e., 50%) in the circuitry consumption induces a PEE loss of
approximately 1.6%. Hence, although the model is of importance, it is tolerant to small
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Figure 4.11: Illustration of condition
(4.80) with m = 1.
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Figure 4.12: Illustration of condition
(4.80) with m = 2.

error.

4.12 Conclusion

In this Chapter, we addressed EE-based RA problems under the Rayleigh channel in
HARQ based MANETs when only statistical CSI is available and considering the use
of practical MCS. More precisely, we addressed the MSEE, MPEE, MMEE and MGEE
problems. For the first three, we proposed algorithms to find their optimal solutions
whereas we proposed two suboptimal solutions for the MGEE one. We also proposed
two suboptimal less-complex solutions for the MSEE problem. The addressed problems
along with the proposed solutions and their optimality are summarized in Table 4.4.
In addition, we analyzed the complexity of the procedure to find these solutions. We
performed extensive simulations to analyze the relevancy of each criteria, and to compare
it with conventional ones (i.e., MPO and MGO).

Problems Solutions Optimality

MSEE
Jong + IPM Optimal

AO Suboptimal
OFA Suboptimal

MPEE IPM Optimal
MMEE IPM Optimal

MGEE
AO Suboptimal
SCA Suboptimal

Table 4.4: Addressed problems and optimality of the proposed solution procedures.

We found out that the MPEE is especially relevant for MANETs since it allows to
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Figure 4.13: PEE gains whenM = 3 compared withM = 1 versus q(t)
`

.

achieve a tradeoff between all the EE metrics, and is fair. We also observed that considering
HARQ might provide very large EE gains, especially for low per-link transmit power or
PER constraints.

Finally, part of the material presented in this Chapter has been published in [C4].
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Chapter 5

Resource Allocation for Type-I
HARQ Under the Rician Channel

5.1 Introduction

From Table 3.1 in Chapter 3, we see that the RA with EE-related metrics for Type-I
HARQ in assisted MANETs using practical MCS under the Rician channel has never
been addressed in the literature. In this Chapter, we address this problem when there is
no shadowing (i.e., the CIR first tap’s mean is time-invariant, see Chapter 1). In details,
the contributions of this Chapter are the following ones.

• We provide an analytically tractable approximation of the PER under the Rician FF
channel with no shadowing, and prove that this approximation is strictly convex
with respect to the transmit energy.

• We optimally solve the MSEE, MGEE and MMEE problems for Type-I HARQ under
the Rician FF channel. Actually, we manage to transform these problems which have
no convexity properties into equivalent COPs. Our main technical contribution is to
provide low-complexity algorithms finding these COPs optimal solution using the
KKT conditions. We also provide an AO based suboptimal solution to the MPEE
problem.

• We analyze the results of the proposed criteria through numerical simulations, and
point out that substantial EE gains can be achieved by taking into account the Rician
channel instead of the conventional Rayleigh ones. In other words, we exhibit the
importance of taking into account the existence of a LoS during the RA instead of
only considering the average channel power.

• We numerically study solutions to perform the RA for Type-II HARQ under the
Rician channel. Actually, in Chapter 4 we solved RA problems for Type-II HARQ
under the Rayleigh channel, whereas in this Chapter, we perform the RA for Type-I
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HARQ under the Rician channel. We compare the solution from Chapter 4 and the
one from this Chapter when applied on Type-II HARQ under the Rician channel.
We find out that applying the Type-I HARQ Rician RA from this Chapter yields
better performance than applying Type-II Rayleigh RA from Chapter 4.

The rest of this Chapter is organized as follows. In Section 5.2, we derive an ap-
proximation of the error probability under the Rician FF channel. In Section 5.3, we
mathematically formulate the RA problems we wish to solve. Section 5.4 is devoted to
the methodology we use to solve these problems. The problems solutions are derived
in Sections 5.5, 5.6, 5.7 and 5.8. In Section 5.9, we give insights on how this Chapter’s
material extends to Type-II HARQ. Simulations results are given in Section 5.10 whereas
Section 5.11 concludes this Chapter.

5.2 Error Probability Approximation

Our first task, as in Chapter 4, is to find an approximation of the error probability q`,1, ∀`,
to solve the EE-based RA problems. Unfortunately, unlike under the Rayleigh channel,
we did not find such an approximation in the literature for the Rician channel. For this
reason, in this Section, we develop an analytically tractable approximation of q`,1 under
the Rician FF channel.

To do so, we use [88], where the following two observations are drawn concerning
the relation between the error probability at the output of the Viterbi decoder and the
uncoded BER at the input of the decoder under the Rayleigh channel:

• This relation is almost independent of the considered modulation.

• The relation is approximately affine in the logarithmic domain.

Our proposal is to extend the approach from [88] to the Rician channel. From the two
above observations, q`,1(G`E`) can be approximated by q̃`,1(G`E`) defined as:

q̃`,1(G`E`) = (BER`(G`E`))a(T1)
` eb(T1)

` , (5.1)

where a(T1)
`

and b(T1)
`

are fitting coefficients depending on the packets length L`, on the
convolutional code parameters and on the Rician K factor, BER` is the `th link uncoded
BER link under the Rician FF channel with factor K`. Notice that this type of approxima-
tion is used to perform RA in the single user context in [38], where full CSI is available at
the transmitter side.

In Eq. (5.1), q̃`,1(G`E`) involves the `th link BER under the Rician fading channel, which
is obtained by averaging the BER under the AWGN channel over all the possible values
of the SNR. To perform this operation, we first express the `th link instantaneous SNR on
one subcarrier as:

snr` := |H`|
2E`G`, (5.2)



5.2. Error Probability Approximation 109

with H` ∼ CN(a`, 2σ2
h,`), where a` and 2σ2

` are such that |a`|2 + 2σ2
h,` = 1 (i.e., normalized

average channel power) and |a`|2/(2σ2
h,`) = K`. Hence, from the above discussion, the `th

link average BER can be written as

BER`(G`E`) = Esnr` [BER`,AWGN(snr`)], (5.3)

where Esnr` [.] is the mathematical expectation taken over the possible values of snr`, and
BER`,AWGN is the `th link BER under the AWGN channel. A conventional approximation
of BER`,AWGN is given by [48]

BER`,AWGN(snr`) ≈ c(T1)
`

Q
(√

d(T1)
`

snr`

)
, (5.4)

where c(T1)
`

and d(T1)
`

are modulation-dependent parameters whose values can be found in
Table 6.1 in [48], and Q(.) is the Q-function. Calculating the exact value of the expectation
in (5.3) appears to be difficult since it involves numerical integrations due to the presence
of the Q-function, and for this reason, we propose to approximate it by a combination of
exponentials as suggested for example in [73] or [74]:

Q(x) ≈
imax∑
i=1

δ(T1)
i e−θ

(T1)
i x2

, (5.5)

where, ∀i, δ(T1)
i and θ(T1)

i are fitting coefficients and imax is the number of exponentials in
the sum. The larger the value of imax, the better the approximation. In this thesis, we
use the coefficients proposed in [74], where imax = 4. The expectation in (5.3) can thus be
approximated as

BER`(G`E`) ≈ c(T1)
`

4∑
i=1

δ(T1)
i Esnr` [e

−θ(T1)
i d(T1)

`
snr` ]. (5.6)

The expectation in (5.6) is exactly the moment generating function of the distribution
of snr` evaluated in −θ(T1)

i d(T1)
`

. One can prove that snr`/(G`E`σ2
h,`) follows a noncentral

chi-square distribution with 2 degrees of freedom and noncentrality parameter |a`|2/σ2
h,`,

yielding [89]:

BER`(G`E`) ≈ c(T1)
`

4∑
i=1

δ(T1)
i

e
−
|a` |

2G`E`θ
(T1)
i d(T1)

`

1+2σ2
h,`G`E`θ

(T1)
i d(T1)

`

1 + 2σ2
h,`G`E`θ

(T1)
i d(T1)

`

. (5.7)

Thus, the error probability q`,1(G`E`) can be approximated by plugging (5.7) into (5.1),
yielding, ∀`:

q̃`,1(G`E`) =

c(T1)
`

4∑
i=1

δ(T1)
i

e
−
|a` |

2G`E`θ
(T1)
i d(T1)

`

1+2σ2
h,`G`E`θ

(T1)
i d(T1)

`

1 + 2σ2
h,`G`E`θ

(T1)
i d(T1)

`


a(T1)
`

eb(T1)
` . (5.8)
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The accuracy of the approximation (5.8) is numerically checked in Fig. 5.1 (resp. 5.2)
where we plot both q`,1 and q̃`,1 versus the SNR for Binary Phase Shift Keying (BPSK)
(resp. QPSK) modulation using the same setup a in Section 5.10. The fitting coefficients
are obtained through curve fitting are provided in Table 5.1. We can observe that the
approximation is quiet accurate, and therefore can be used to predict q`,1(G`E`) with an
analytically tractable expression.
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Figure 5.1: Tightness of the approximation of the error probability q̃`,1 under the FF Rician
channel, BPSK modulation.

K` 0 10

a(T1)
`

9.73 9.39

b(T1)
`

18.57 19.37

Table 5.1: Fitting coefficients for the approximation (5.8).

Approximating q`,1(x) by q̃`,1(x), the per-link minimum goodput constraint for Type-I
HARQ (1.26) can be approximated as:

α`γ`(1 − q̃`,1(G`E`)) ≥ η
(0)
`
, ∀`. (5.9)

Moreover, the approximation (5.8) is characterized in Lemma 5.1.

Lemma 5.1. The approximation q̃`,1(x) given by (5.8) is strictly convex.

Proof. First, let us prove the strict convexity of each term in the sum in (5.8). To do so, let
us prove that f n

c (x) := exp(−an
c x/(1 + 2bn

c x))/(1 + 2bn
c x), where an

c and bn
c are non-negative
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Figure 5.2: Tightness of the approximation of the error probability q̃`,1 under the FF Rician
channel, QPSK modulation.

constants, is strictly log-convex by computing the second order derivative of log( f n
c (x)):

log( f n
c (x))′′ =

4an
c bn

c

(1 + 2bn
c x)3 +

4(bn
c )2

(1 + 2bn
c x)2 > 0. (5.10)

Therefore, f n
c (x) is strictly log-convex and as a consequence it is stricly convex [15]. It

follows that q̃`,1 is strictly convex since it can be expressed as (gn
c (x))un

c where gn
c (x) is a

non-negative linear combination of convex function, and un
c ≥ 1. �

With Lemma 5.1 at hand, we now address the solution of the RA problems, beginning
with their mathematical formulations.

5.3 Problem Formulation

In this Section, we mathematically formulate the optimization problems we wish to solve,
which are based on the same criteria as in Chapter 4, the difference being the following
ones:

• In this Chapter, we consider Type-I HARQ under the Rician channel, yielding
different performance closed-form expressions (see Chapter 1) and error probability
approximation from in Chapter 4.

• In this Chapter, unlike in Chapter 4, we do not take into account the per-link maxi-
mum transmit power constraint (1.27) for technical reason. Actually, not considering
(1.27) enables us to derive the analytical optimal solutions for the MSEE, MMEE
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and MGEE problems. Although we cannot control the maximum transmit power
anymore, since the optimized metrics are EE-related, the energy consumption of the
proposed criteria is finite (i.e., it does not go to the infinity as for instance the MGO
criterion with no transmit power constraint). Notice that relaxing this constraint
in Chapter 4 would not have alleviated the solutions complexity since the main
difficulty lies in the combination mechanism of packets received in error in Type-II
HARQ.

5.3.1 MSEE Problem

First, we address the MSEE problem under the Rician channel, which is a natural aggre-
gation of the links’ EE.

Problem 5.1. The MSEE problem for Type-I HARQ under the Rician channel can be written as:

max
E,γ

L∑
`=1

α`(1 − q̃`,1(G`E`))

κ−1
`

E` + Ec,`γ−1
`

, (5.11)

s.t. (5.9) and (1.28).

5.3.2 MPEE Problem

Second, we address the MPEE problem under the Rician channel, which was shown in
Chapter 4 to be especially relevant for MANETs.

Problem 5.2. The MPEE problem for Type-I HARQ under the Rician channel can be written as:

max
E,γ

L∏
`=1

α`(1 − q̃`,1(G`E`))

κ−1
`

E` + Ec,`γ−1
`

, (5.12)

s.t. (5.9) and (1.28).

5.3.3 MMEE Problem

Third, we address the MMEE problem under the Rician channel, which yields the highest
fairness.

Problem 5.3. the MMEE problem for Type-I HARQ under the Rician channel can be written as:

max
E,γ

 min
`∈{1,...,L}

α`(1 − q̃`,1(G`E`))

κ−1
`

E` + Ec,`γ−1
`

 , (5.13)

s.t. (5.9) and (1.28).
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5.3.4 MGEE Problem

Finally, we address the MGEE problem under the Rician channel, which is of interest
when network EE is at stake.

Problem 5.4. the MGEE problem for Type-I HARQ under the Rician channel can be written as:

max
E,γ

∑L
`=1 α`γ`(1 − q̃`,1(G`E`))∑L
`=1(κ−1

`
γ`E` + Ec,`)

, (5.14)

s.t. (5.9) and (1.28).

5.4 Solution Methodology

5.4.1 General idea

As they are stated, Problems 5.1-5.4 have no special properties like convexity and thus,
without additional efforts, they cannot be directly solved with affordable complexity.
To overcome this issue, we first propose a change of variables, enabling us to convert
three of them (Problems 5.1, 5.3 and 5.4) into equivalents COPs using the fractional
programming framework. It is worth emphasizing that, unlike in Chapter 4, the error
probability approximation under the Rician FF channel (5.8) is not posynomial. As a
consequence, the change of variables of geometric programming (4.21)-(4.22) does not
render our problems convex, and thus we have to find another change of variables.
Second, using the KKT conditions, we propose low-complexity algorithms finding the
optimal solutions of these equivalents COPs.

5.4.2 Change of variable enabling us to apply convex optimization tools

The change of variables we propose to apply convex optimization tools to Problems 5.1-5.4
is the following one: (γ,E) 7→ (γ,Q), with Q := [Q1, . . . ,QL], and

Q` := γ`E`, ∀`. (5.15)

Using (5.15), constraint (5.9) can be rewritten equivalently as:

α`γ`

(
1 − q̃`,1

(
G`

Q`

γ`

))
≥ η(0)

`
, ∀`. (5.16)

Moreover, using the change of variables (5.15), Problems 5.1-5.4 can be rewritten equiva-
lently as follows.

Problem 5.5. The MSEE Problem 5.1 can be equivalently rewritten as:

max
Q,γ

L∑
`=1

α`γ`(1 − q̃`,1(G`Q`/γ`))

κ−1
`

Q` + Ec,`
, (5.17)

s.t. (5.16) and (1.28),
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Problem 5.6. The MPEE Problem 5.2 can be equivalently rewritten as:

max
Q,γ

L∏
`=1

α`γ`(1 − q̃`,1(G`Q`/γ`))

κ−1
`

E` + Ec,`γ−1
`

, (5.18)

s.t. (5.16) and (1.28),

Problem 5.7. The MMEE Problem 5.3 can be equivalently rewritten as:

max
Q,γ

 min
`∈{1,...,L}

α`γ`(1 − q̃`,1(G`Q`/γ`))

κ−1
`

E` + Ec,`γ−1
`

 , (5.19)

s.t. (5.16) and (1.28),

Problem 5.8. The MGEE Problem 5.4 can be equivalently rewritten as:

max
Q,γ

∑L
`=1 α`γ`(1 − q̃`,1(G`Q`/γ`))∑L

`=1(κ−1
`
γ`E` + Ec,`)

, (5.20)

s.t. (5.16) and (1.28),

Remark 5.1. We did not apply the change of variables (5.15) in Chapter 4 since applying it
on Problems 4.1 to 4.5 prevents us from finding their optimal solution since the EE expression
for Type-II HARQ has a more complicated denominator preventing us from finding a convex
property, whereas we were able to find it using the change of variables of geometric programming
(4.21)-(4.22).

Problems 5.5, 5.7 and 5.8 are characterized in Lemma 5.2.

Lemma 5.2. The numerators of the objective functions of Problems 5.5, 5.7 and 5.8 are concave,
their denominators are convex and the feasible set defined by (5.16) and (1.28) is convex.

Proof. First, let us prove that the feasible set defined by constraints (1.28) and (5.16)
is convex. Constraint (1.28) is linear and as a consequence it is convex. Moreover,
γ`(1− q̃`,1(G`Q`/γ`)) is the so called perspective [15] of the concave function 1− q̃`,1(G`E`)
(i.e., Lemma 5.1) and thus it is concave, meaning that constraint (5.16) is convex.

Second, let us focus on the objective functions of Problems 5.5, 5.7 and 5.8. We remark
that there denominators are linear and thus they are convex. The numerators of the
objective functions of Problems 5.5 and 5.7 are given by α`γ`(1− q̃`,1(G`Q`/γ`)) and hence
they are concave as the perspective of concave functions. For Problem 5.8, the numerator
is given by

∑L
`=1 α`(γ`(1−q̃`,1(G`Q`/γ`))) and thus it is concave as a positive sum of concave

functions, concluding the proof. �

According to Lemma 5.2, we know that Problems 5.5, 5.7 and 5.8 (and thus Prob-
lems 5.1, 5.3 and 5.4 since they are equivalent) can be optimally solved iteratively: Prob-
lem 5.5 can be solved using the Jong’s algorithm [61], Problem 5.7 using the Generalized
Dinkelbach’s algorithm [28] and Problem 5.8 using the Dinkelbach’s algorithm [34]. At
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each iteration, these three algorithms require to solve a COP. The main technical con-
tribution of this Chapter is to provide these COPs optimal solutions using the so-called
KKT conditions [15].

For these three COPs, we solve the KKT solution as follows: we first express the
optimal solution as a function of a single parameter, and second we find the optimal
value of this parameter.

Concerning the MPEE Problem 5.6, we do not find specific properties such as Lemma 5.2.
Therefore, we propose a suboptimal AO based solution, working on the original Prob-
lem 5.2 before the change of variable.

5.5 MSEE Solution

Due to Lemma 5.2, we know that the MSEE Problem 5.5 can be solved using the Jong’s
algorithm [61]. This iterative algorithm requires to solve the following COP at iteration i:

Problem 5.9.

max
Q,γ

L∑
`=1

u(i)
`

(α`γ`(1 − q̃`,1(G`Q`/γ`)) − β
(i)
`
κ−1
` Q`), (5.21)

s.t. (5.16) and (1.28),

where, ∀`, u(i)
`
> 0 and β(i)

`
≥ 0 depend on the optimal solution at iteration (i − 1).

Due to the concavity of Problem 5.9 (i.e., Lemma 5.2), we know that the KKT conditions
are necessary and sufficient to find its optimal solution [15]. Defining δ := [δ1, . . . , δL] and
λ as the Lagrangian multipliers associated with constraints (5.16) and (1.28), respectively,
the KKT conditions of Problem 5.9 write:

α`G`q̃′`,1(G`Q`/γ`)(u
(i)
`

+ δ`) + u(i)
`
β(i)
`
κ−1
` = 0, ∀`, (5.22)

α`h
(T1)
`,M(G`Q`/γ`)(u

(i)
`

+ δ`) + λ = 0, ∀`, (5.23)

with h(T1)
`,M(x) := −1 + q̃`,1(x)− xq̃′`,1(x). In addition, the following complementary slackness

conditions hold at the optimum:

δ`(η
(0)
`
− α`γ`(1 − q̃`,1(G`Q`/γ`))) = 0, ∀`, (5.24)

λ

 L∑
`=1

γ` − 1

 = 0. (5.25)

To solve the optimality conditions (5.22)-(5.25), in a first time we consider the value
of λ as fixed and we find the optimal solution as a function of this multiplier. In a second
time, we search for the optimal value of this multiplier.
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5.5.1 Solution for fixed λ

From (5.22), we obtain the following L relations:

u(i)
`

+ δ` =
−u(i)

`
β(i)
`
κ−1
`

α`G`q̃′`,1(x∗
`
(λ))

, ∀`, (5.26)

with, ∀`, x∗`(λ) := G`Q∗`(λ)/γ∗`(λ), where Q∗`(λ) (resp. γ∗`(λ)) is the optimal Q` (resp. γ`) for
given λ. Then, by plugging (5.26) into (5.23), we get

f (T1)
`,M (x∗`(λ)) =

λ

u(i)
`
β(i)
`
κ−1
`

, ∀`, (5.27)

with f (T1)
`,M (x) := h(T1)

`,M(x)/(G`q̃′`,1(x)). We prove that, ∀`, f (T1)
`,M (x) is strictly increasing by

computing its derivative, which is given by:

f (T1)′

`,M (x) =
q̃′′`,1(x)(1 − q̃`,1(x))

G`q̃′`,1(x)2 > 0. (5.28)

The strict monotonicity of f (T1)
`,M (x) allows us to obtain x∗`(λ) using (5.27) as:

x∗`(λ) = f (T1)−1
`,M

 λ

u(i)
`
β(i)
`
κ−1
`

 , ∀`, (5.29)

where f (T1)−1
`,M (x) is the inverse of f (T1)

`,M (x) with respect to the composition. We can then
plug this optimal value (5.29) into Problem 5.9 , which can be rewritten as:

Problem 5.10.

max
γ

L∑
`=1

K`(λ)γ`, (5.30)

s.t. γ` ≥ γmin,`(λ), ∀`, (5.31)

(1.28). (5.32)

with, ∀`, K`(λ) := α`u
(i)
`

(1 − q̃`,1(x∗`(λ))) − u(i)
`
β(i)
`
κ−1
` x∗`(λ)G−1

` and γmin,`(λ) := η(0)
`
/(α`(1 −

q̃`,1(x∗`(λ)))). Problem 5.10 is a linear program depending only on the optimization vari-
ables γ. In addition, since there is only one coupling constraint (1.28), its optimal solution
is obtained according to Theorem 5.3.

Theorem 5.3. The optimal solution of Problem 5.10 is given according to the following two cases.

1. If, ∀`,K`(λ) < 0: ∀`, γ∗`(λ), the optimal value of γ`(λ), is given by γ∗`(λ) = γmin,`(λ).

2. If, ∃`, such thatK`(λ) ≥ 0: let `M,K be such that, ∀`,K`M,K (λ) ≥ K`(λ). Then, ∀` , `M,K ,
γ∗`(λ) = γmin,`(λ) and γ∗`M,K

(λ) = 1 −
∑
`,`M,K

γmin,`(λ).

So far, we have exhibited the optimal solution of Problem 5.9 as a function of the single
Lagrangian multiplier λ. Let us now turn our attention to finding the optimal value of
this multiplier.
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5.5.2 Search for the optimal λ

To find λ∗, the optimal value of λ, we discuss the following two possibilities: either there
exists ` such that δ` = 0, or ∀`, δ` > 0.

Case 1: ∃` such that δ` = 0. In Lemma 5.4, whose proof is provided in Appendix C.1,
we exhibit λ∗.

Lemma 5.4. If there is at least one link `1 with δ`1 = 0, then we have

λ∗ = − arg min
`

{
α`u`h

(T1)
`,M(x∗`,δ`=0)

}
, (5.33)

with ∀`, x∗`,δ`=0 := q̃′−1
`,1 (−β(i)

`
κ−1
` /(α`G`)).

Thanks to Lemma 5.4, we can optimally solve Problem 5.9 by solving Problem 5.10
with low complexity using Theorem 5.3. Moreover, Lemma 5.4 enables us to check
whether ∃` such that δ` = 0 by computing λ∗ and plugging it into Problem 5.10. If the
resulting problem is feasible, then we know that ∃` such that δ` = 0.

Case 2: ∀`, δ` > 0. In this case, γ∗`(λ) can be obtained more easily using (5.24), which
gives us

γ∗`(λ) =
η(0)
`

α`(1 − q̃`,1(x∗
`
(λ)))

, ∀`, (5.34)

where x∗`(λ) is given by (5.29). Since f (T1)
`,M (x) is strictly increasing (i.e., (5.28)), f (T1)−1

`,M (x) is
also strictly increasing and as a consequence x∗`(λ) is also increasing (i.e., (5.29)), implying
that γ∗`(λ) is strictly decreasing due to (5.34). To find λ∗, we use the complementary
slackness condition (5.25). To this end, we define the following function representing the
sum of the optimal bandwidth parameters:

Γ̃M(λ) :=
L∑
`=1

γ∗`(λ). (5.35)

Since γ∗`(λ) is strictly decreasing, there are two possibilities: either Γ̃M(0) ≤ 1 and in this
case λ∗ = 0, or λ∗ is such that Γ̃M(λ∗) = 1. Thus, λ∗ can be found by a one dimensional
linesearch method.

5.5.3 Solution

Finally, the optimal solution of Problem 5.5 is depicted in Algorithm 5.1. for which we
define ψ(T1)(β(i),u(i),γ,Q) := [ψ(T1)

1 (β(i)
1 ,u

(i)
1 , γ1,Q1), . . . , ψ(T1)

2L (β(i)
L ,u

(i)
L , γL,QL)], with β(i) :=

[β(i)
1 , . . . , β

(i)
L ] and u(i) := [u(i)

1 , . . . ,u
(i)
L ] and, for ` = 1, . . . ,L:

ψ(T1)
`

(β(i)
`
,u(i)
`
, γ`,Q`) := −α`γ`(1 − q̃`,1(G`Q`/γ`)) + β(i)

`
(κ−1
` Q` + Ec,`), (5.36)

ψ(T1)
`+L(β(i)

`
,u(i)
`
, γ`,Q`) := −1 + u(i)

`
(κ−1
` Q` + Ec,`). (5.37)
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Algorithm 5.1: Optimal solution of Problem 5.5.
Set ε > 0, i = 0, CD = ε + 1.
Initialize β(0) = [β0, . . . , βL] and u(0) = [u0, . . . ,uL] with any feasible solution as for
instance the MPO solution.
while CD > ε do

Set λ∗ = −min`
{
α`u`h

(T1)
`,M(x∗`,δ`=0)

}
, where ∀`, x∗`,δ`=0 is computed as in Lemma 5.4

if Problem 5.10 is feasible with λ∗ then
Find (Q∗,γ∗), Problem 5.9 optimal solution by solving Problem 5.10 using
Theorem 5.3 with β(i) and u(i).

else
Find (Q∗,γ∗) using a linesearch method with β(i) and u(i) (case 2 in
Section 5.5.2).

Set CD = ||ψ(T1)(β(i),u(i),γ∗,Q∗)||.
For ` = 1, . . . ,L, compute u(i+1)

`
and β(i+1)

`
using (3.31) and (3.32), respectively.

Set β(i+1) = [β(i+1)
1 , . . . , β(i+1)

L ] and u(i+1) = [u(i+1)
1 , . . . ,u(i+1)

L ].
Set i = i + 1.

end

5.6 MPEE Solution

Unlike for the MSEE, MMEE and MGEE problems, we are not able to find specific
properties such as Lemma 5.2 enabling us to transform either Problem 5.2 or 5.6 into COPs.
As a consequence, we propose suboptimal AO based solution, in which we optimize
alternately between E and γ until convergence is reached. We apply this procedure on
the original Problem 5.2 before the change of variables (5.15). Let us begin with the
optimization w.r.t E.

Optimization w.r.t E In a first time, γ is fixed and the optimization is performed w.r.t
E. For fixed γ, we see that Problem 5.6 is separable since there is no coupling constraints
between the elements of E, meaning that the optimization can be performed separately
among the links. We thus have to solve L parallels sub problems, which write as:

Problem 5.11.

max
E`

α`(1 − q̃`,1(G`E`))

κ−1
`

E` + F`,E
, (5.38)

s.t. h(T1)
`,E (G`E`) ≤ 0, (5.39)

with h(T1)
`,E (G`E`) := η(0)

`
γ−1
` α

−1
` + q̃`,1(G`E`) − 1 and F`,E is defined in Section 4.5.2.1. Prob-

lem 5.11 is characterized in Result 5.1, whose proof is identical to the one of Result 4.3.

Result 5.1. Problem 5.11 is the maximization of a PC function over a convex set.
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Thus, according to [120], the optimal solution of Problems 5.11 can be obtained using
the KKT conditions, and is given in Theorem 5.5, whose proof is straightforward and thus
omitted.

Theorem 5.5. Let Emin,` denote the unique zero of h(T1)
`,E (G`E`) on (0,+∞], and Q`,M be defined

as

Q`,M(G`E`) =
α`(1 − q̃`,1(G`E`))

κ−1
`

E` + F`,E
, ∀`. (5.40)

The optimal solution E∗` of Problem 5.11 takes the following form:

1) If Q′`,M(G`Emin,`) < 0, then E∗` = Emin,`.

2) Else, E∗` is the solution of Q′`,M(G`E∗`) = 0 in [Emin,`,+∞], which is unique.

Optimization w.r.t γ In the second step, E is fixed and the optimization is performed
w.r.t γ. In this case, Problem 5.6 can be written as:

Problem 5.12.

max
γ

L∏
`=1

H(T1)
`

J(T1)
`,γ

+ Ec,`γ−1
`

, (5.41)

s.t. γ−1
` γ

(T1)
min,` ≤ 1, ∀`, (5.42)

(1.28). (5.43)

with,∀`, H(T1)
`

:= α`(1 − q̃`,1(G`E`)), J(T1)
`

:= κ−1
` E`, and γ(T1)

min,` := η(0)
`
/(α`(1 − q̃`,1(G`E`))).

Problem 5.12 be can rewritten as a geometric program as follows:

Problem 5.13.

min
γ

L∏
`=1

 J(T1)
`

H(T1)
`

+
Ec,`

H(T1)
`

γ−1
`

 , (5.44)

s.t. (5.42) and (1.28). (5.45)

(5.46)

Since both the objective function (5.44) and constraints (5.46) of Problem 5.13 are
posynomials, it falls within the GP framework, and can be optimally solved with the IPM
[82].

AO based algorithm to solve Problem 5.2 The AO based procedure to suboptimally
solve Problem 5.2 is depicted in Algorithm 5.2, whose convergence can be proved using
the same argument as for the convergence proof of Algorithm 4.2.
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Algorithm 5.2: AO based suboptimal solution of Problem 5.6.
Set ε > 0, CA = ε + 1, i = 0.
Find E(0) = [E(0)

1 , . . . ,E
(0)
L ] and γ(0) = [γ(0)

1 , . . . , γ
(0)
L ], with any feasible solution as for

instance the MPO solution.
while CA > ε do

Find E(i+1) = [E1, . . . ,E∗L], the optimal solution of the L Problems 5.11 with γ(i)

using Theorem 5.5.
Find γ(i+1) = [γ(i+1)

1 , . . . , γ(i+1)
L ], the optimal solution of Problem 5.13 with E(i+1)

using the IPM.
Set CA = ||[E(i),γ(i)] − [E(i+1),γ(i+1)]||.
Set i = i + 1.

end

5.7 MMEE Solution

Due to Lemma 5.2, we know that the MMEE Problem 5.7 can be solved using the so-
called generalized Dinkelach’s algorithm [28]. This iterative algorithm requires to solve
the following COP at iteration i:

Problem 5.14.

max
Q,γ

min
`

{
α`γ`(1 − q̃`,1(G`Q`/γ`)) − ψ

(i)
GD(κ−1

` Q` + Ec,`)
}
, (5.47)

s.t. (5.16), (1.28), (5.48)

where ψ(i)
GD ≥ 0 depends on the optimal solution at iteration (i− 1). We solve this problem

using its epigraph formulation [15], i.e., we introduce an auxiliary optimization variable
t along with the following L new constraints:

t ≤ α`γ`(1 − q̃`,1(G`Q`/γ`)) − ψ
(i)
GD(κ−1

` Q` + Ec,`), ∀`, (5.49)

allowing us to rewrite Problem 5.14 equivalently as follows:

Problem 5.15.

max
Q,γ,t

t, (5.50)

s.t. (5.49), (5.16) and (1.28). (5.51)

Problem 5.15 is the maximization of a concave function over a convex set (i.e., Lemma 5.2).
Defining ω := [ω1, . . . , ωL] as the Lagrangian multipliers associated with constraints
(5.49) and using the same notations as in Section 5.5 for the multipliers associated with
constraints (5.16) and (1.28), the KKT conditions of Problem 5.15 are given by

L∑
`=1

ω` − 1 = 0, (5.52)
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α`G`q̃′`,1(G`Q`/γ`)(ω` + δ`) + ω`ψ
(i)
GDκ

−1
` = 0, ∀`, (5.53)

α`h
(T1)
`,M(G`Q`/γ`)(ω` + δ`) + λ = 0, ∀`. (5.54)

In addition, the following complementary slackness conditions hold at the optimum:

ω`(t − α`γ`(1 − q̃`,1(G`Q`/γ`)) + ψ(i)
GD(κ−1

` Q` + Ec,`)) = 0, ∀`, (5.55)

δ`(η
(0)
`
− α`γ`(1 − q̃`,1(G`Q`/γ`))) = 0, ∀`, (5.56)

λ

 L∑
`=1

γ` − 1

 = 0. (5.57)

We observe an important difference between the KKT conditions related to Problem 5.15
as compared with the ones related to Problem 5.9: ∀`, the optimality condition (5.54)
involves three distinct Lagrangian multipliers,λ,ω` and δ`, preventing us from expressing
the optimal solution of Problem 5.15 as a function of a single multiplier. Fortunately, in
the following lemma whose proof is provided in Appendix C.2, we are able to prove that
constraints (1.28) and (5.49) hold with equality.

Lemma 5.6. At the optimum of Problem 5.15, λ > 0 and, ∀`, ω` > 0.

Since λ > 0, the KKT conditions (5.53) and (5.54) can be rewritten as follows:

α`G`q̃′`,1(G`Q`/γ`)(ω̃` + δ̃`) + ω̃`ψ
(i)
GDκ

−1
` = 0, ∀`, (5.58)

α`h
(T1)
`,M(G`Q`/γ`)(ω̃` + δ̃`) + 1 = 0, ∀`, (5.59)

with, ∀`, ω̃` := ω`/λ and δ̃` := δ`/λ.
Thanks to Lemma 5.6, we can use tools from the multilevel waterfilling theory [87]

to find the optimal solution of Problem 5.15. The idea is to express the parameters
x` := G`Q`/γ` (which are equal to G`E`) and γ` as functions of the single parameter t
using (5.55). The condition (5.57) is then used to obtain the optimal value of t, enabling
us to find the optimal values of γ` and x`, and as a consequence the optimal Q` and then
E`.

Let us define ω̃ := [ω̃1, . . . , ω̃L]. We also define It (resp. Īt) as the set of links with δ̃` = 0
(resp. δ̃` > 0). In the following, we first consider ω̃ and t as fixed, and we find the optimal
values of x` and γ` for the links in It and Īt as a function of t, as well as a characterization
of these two sets.

5.7.1 Solution for fixed ω̃ and t

Case 1: ` ∈ It. From (5.58), we obtain x∗`,1, the optimal value of x`, as follows:

x∗`,1 = q̃′−1
`,1

−ψ(i)κ−1
`

α`G`

 . (5.60)
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Using Lemma 5.6 and (5.55), we obtain γ∗`,1(t), the optimal value of γ`, depending only
on t as:

γ∗`,1(t) =
t + ψ(i)

GDEc,`

α`(1 − q̃`,1(x∗
`,1)) − ψ(i)

GDκ
−1
`

G−1
`

x∗
`,1

. (5.61)

Lemma 5.7, whose proof is provided in Appendix C.3, enables us to check whether `
belongs to It or not.

Lemma 5.7. A link ` is in It iff the following inequality holds:

t ≥ tT
` , (5.62)

with tT
` := −ψ(i)

GDEc,` + η(0)
`

(1 − (ψ(i)
GDκ

−1
` G−1

` x∗`,1)/(α`(1 − q̃`,1(x∗`,1)))).

Case 2: ` ∈ Īt. Optimal solution as a function of ω̃` Similarly to the derivations related
to Problem 5.9, using (5.58) and (5.59) we obtain x∗`,2(ω̃`), the optimal x`, as follows:

x∗`,2(ω̃`) := f (T1)−1
`,M

 1

ω̃`ψ
(i)
GDκ

−1
`

 . (5.63)

Since δ̃` > 0, we obtain from (5.56) γ∗`,2(ω̃`), the optimal γ`, depending only on ω̃` as:

γ∗`,2(ω̃`) =
η(0)
`

α`(1 − q̃`,1(x∗
`,2(ω̃`)))

. (5.64)

We have managed to obtain the optimal values of x` and γ` for fixed ω̃ and t. Now,
we turn our attention to exhibit a relation between ω̃` and t in order to express x∗`,2(ω̃`)
and γ∗`,2(ω̃`) as function of t.

Relation between ω̃` and t. Using Lemma 5.6, we obtain the following L relations by
plugging (5.63) and (5.64) into (5.55):

t =M
(T1)
`,M(ω̃`), ∀`, (5.65)

with ω 7→ M(T1)
`,M(ω) := η(0)

`
− ψ(i)(κ−1

` α
−1
` x∗`,2(ω)/(1 − q̃`,1(x∗`,2(ω))) + Ec,`). To express ω̃` as a

function of t, we use Lemma 5.8, whose proof is provided in Appendix C.4.

Lemma 5.8. ∀`, the functionM(T1)
`,M is continuous and strictly increasing, and thusM(T1)−1

`,M exists
and is strictly increasing.

Using Lemma 5.8 in conjunction with (5.65) yields

ω̃` =M
(T1)−1
`,M (t), ∀`, (5.66)
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and then we can obtain γ∗`,2 as a function of t by plugging (5.66) into (5.64). As a

consequence, γ∗`,2(M(T1)−1
`,M (t)), shortened to γ∗`,2(t) by abuse of notation, is given by:

γ∗`,2(t) =
η(0)
`

α`(1 − q̃`,1(x∗
`,2(M(T1)−1

`,M (t))))
. (5.67)

For a given t, we have succeeded to find a necessary and sufficient condition given in
Lemma 5.7 to check whether a node belongs to It or Īt, and we have found the optimal
parameters in both cases. Now we search for the optimal value of t.

5.7.2 Search for the optimal t

To find t∗, the optimal value of t, we use the complementary slackness condition (5.57).
Let us define the following function representing the sum of the bandwidth parameters
for given value of t

Γ̃GD(t) :=
∑
`∈It

γ∗`,1(t) +
∑
`∈Īt

γ∗`,2(t). (5.68)

Due to (5.57), t∗ is such that Γ̃(t∗) = 1. In the following lemma whose proof is provided
in Appendix C.5, we prove that such a t∗ always exists, and can be found through a
linesearch.

Lemma 5.9. The function Γ̃GD(t) is continuous, strictly decreasing, and there exists t∗ such that
Γ̃GD(t∗) = 1.

The optimal solution of Problem 5.15 can be found by solving Γ̃(t∗) = 1, which always
has a solution. Then, the optimal values x∗`,i(t

∗) and γ∗`,i(t
∗), i ∈ {1, 2}, are computed, and

we deduce the optimal Q∗`(t
∗).

Algorithm 5.3: Optimal solution of the MMEE Problem 5.7.

Set ε > 0, ψ(0)
GD = 0, i = 0, t∗ = ε + 1.

while t∗ > ε do
Compute t∗, Q∗ and γ∗ by solving Problem 5.15 with ψ(i)

GD.
Update ψ(i+1)

GD = min`∈{1,...,L}{E`(Q∗`/γ
∗

`, γ
∗

`)}.
i = i + 1.

end

5.8 MGEE Solution

Due to Lemma 5.2, we know that the MGEE Problem 5.8 can be solved using the Dinkel-
bach’s algorithm [34]. This iterative algorithm requires to solve the following COP at
iteration i:
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Problem 5.16.

max
Q,γ

L∑
`=1

(α`γ`(1 − q̃`,1(G`Q`/γ`)) − ν(i)κ−1
` Q`), (5.69)

s.t. (5.16) and (1.28),

where ν(i)
≥ 0 depends on the optimal solution at iteration (i−1). Using the same notations

for the Lagrangian multipliers as for the MSEE Problem 5.5 (i.e., Section 5.5), the KKT
conditions of Problem 5.16 write as follows:

α`G`q̃′`,1(G`Q`/γ`)(1 + δ`) + ν(i)κ−1
` = 0, ∀`, (5.70)

α`h
(T1)
`,M(G`Q`/γ`)(1 + δ`) + λ = 0, ∀`, (5.71)

and the complementary slackness conditions are given by

δ`(η
(0)
`
− α`γ`(1 − q̃`,1(G`Q`/γ`))) = 0, ∀`, (5.72)

λ

 L∑
`=1

γ` − 1

 = 0. (5.73)

We observe that, if ∀` we set u(i)
`

= 1 and β(i)
`

= ν(i), then the optimality conditions of
the MSEE problem, i.e., (5.22)-(5.25) are the same as the ones of the MGEE problem, i.e.,
(5.70)-(5.73). Hence, we can apply the same procedure to solve Problem 5.16 as the one
of 5.9. Algorithm 5.4 depicts the optimal solution of Problem 5.8.

Algorithm 5.4: Optimal solution of the MGEE Problem 5.8.
Set ε > 0, i = 0, CD = ε + 1.
Set ν(0) = 0.
while CD > ε do

Set λ∗ = −min`
{
α`u`h

(T1)
`,M(x∗`,δ`=0)

}
, where ∀`, x∗`,δ`=0 is computed as in Lemma 5.4

if Problem 5.10 is feasible with λ∗ then
Find (Q∗,γ∗), Problem 5.9 optimal solution by solving Problem 5.10 using
Theorem 5.3 with ν(i).

else
Find (Q∗,γ∗) using a linesearch method with ν(i) (case 2 in Section 5.5.2)

Set CD =
∑L
`=1

(
α`γ∗`(1 − q̃`,1(G`Q∗`/γ

∗

`)) − ν
(i)(κ−1

` Q∗` + Ec,`)
)
.

Set ν(i+1) = G
(

Q∗
γ∗ ,γ

∗
)
.

Set i = i + 1.
end
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5.9 Extension to Type-II HARQ

In this Section, we study how to extend the work done for Type-I HARQ under the Rician
channel, and for Type-II HARQ under the Rayleigh channel to Type-II HARQ under
the Rician channel. Indeed, we did not succeed to identify neither specific properties
nor change of variables enabling us to find the optimal solution for the considered RA
problems for Type-II HARQ under the Rician channel and thus we seek for suboptimal
procedures based on solutions from this Chapter (Type-I HARQ under the Rician channel,
this RA will be referred in the sequel as RAIRi) and Chapter 4 (Type-II HARQ under the
Rayleigh channel, this RA will be referred in the sequel as RAIIRa). In Table 5.2, we
remind the existing solutions performing EE-based RA for Type-I and Type-II HARQ
under Rayleigh and Rician channel, where RAIRa is the RA performed for Type-I HARQ
under the Rayleigh channel.

Table 5.2: Existing EE-based RA algorithms for HARQ with practical MCS and statistical
CSI in the multiuser context.

Rayleigh channel Rician channel
Type-I HARQ [75], Chapter 4 (RAIRa) This Chapter (RAIRi)
Type-II HARQ Chapter 4 (RAIIRa) None

To investigate the extension of Table 5.2 solutions to Type-II HARQ under the Rician
channel, we consider the following two possibilities:

1. Applying the resources found by Type-II HARQ Rayleigh RA (i.e., RAIIRa from
Chapter 4) to Type-II HARQ system under the Rician channel, leading to what we
call here a channel model mismatch. The result from this mismatch will be referred
to as RAIIRa-IIRi in the sequel.

2. Applying the resources found by Type-I HARQ Rician RA (i.e., RAIRi from this
Chapter) to Type-II HARQ system under the Rician channel, leading to what we
call here an HARQ type mismatch. The result from this mismatch will be referred
to as RAIRi-IIRi in the sequel.

In Fig. 5.3, we illustrate the two considered mismatches. For the two above possibili-
ties, we consider a given GNR defined in (1.5), meaning that the `th link channel has the
same average power ∆` = a2

`+2σ2
h,`. The two approaches differ in the values of a` and 2σ2

h,`
during RA. In the channel model mismatch approach, RA is performed by assuming that
K` = 0 and thus a` = 0 and ∆` = 2σ2

h,`, whereas in the HARQ type mismatch approach,
RA is performed by taking into account the Rician K factor and as a consequence a`.

Notice that since in this Chapter we do not consider per-link maximum transmit power
constraint, we also neglect this constraint when applying the solutions from Chapter 4.
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Figure 5.3: The two possible extensions of previous solutions to handle Type-II HARQ
under the Rician channel.

To determine the less detrimental mismatch among the two considered ones, we
simulate a CC HARQ scheme withM = 3 under the Rician FF channel using the same
setup as in Section 5.10. The Rician channel is such that, ∀`, K` = 10. We focus on the
MSEE criterion since we are able to optimally solve this problem for both Type-II HARQ
under the Rayleigh channel and Type-I HARQ under the Rician channel.

In Fig. 5.4, we plot RAIIRa-IIRi and RAIRi-IIRi versus η(1)
`

. We observe that RAIRi-IIRi
yields much higher SEE than RAIIRa-IIRi, whatever the value of η(1)

`
. Thus, we advocate

an HARQ type mismatch approach rather than a channel model mismatch approach
to perform suboptimal Type-II RA under the Rician channel. It is worth to emphasize
that this conclusion only applies to the considered setup (i.e., with neither maximum PER
nor maximum transmit power constraints) and thus this subject should deserve more
investigations. The material presented in this Section provides a framework to perform
such investigations.

5.10 Numerical results

In this Section, the results of the proposed algorithms are numerically studied and com-
pared with the MPO from [77].
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Figure 5.4: RAIIRa-IIRi and RAIRi-IIRi versus η(1)
`

.

5.10.1 Setup

We use a convolutional code with rate 1/2 with generator polynomial [171, 133]8, and
we use the QPSK modulation, i.e., m` = 2. The number of link is L = 5 and the link
distances δ(D)

`
are uniformly drawn in [50 m, 1 km]. We consider that all the links have

identical K factor value, and that the minimum goodput constraint is equal for all the
links. Unless otherwise stated, we simulate both a Rician channel in which ∀`, K` = 10
and a Rayleigh channel in which ∀`, K` = 0. We set B = 5 MHz, N0 = −170 dBm/Hz
and L` = 128. The carrier frequency is fc = 2 400 MHz and we put ∆` = (4π fc/c)−2δ(D)−3

`
.

We assume that the minimum goodput constraint is equal for all links. We put ∀`,
Pctx,` = Pcrx,` = 0.05 W and κ` = 0.5. The results are obtained by averaging through 50
random networks configurations.

5.10.2 Performance analysis

In Figs. 5.5-5.8, we plot the SEE, PEE, MEE and GEE obtained with the proposed crite-
ria and with the MPO versus η(1)

`
. We perform the optimal RA according to the links

channel distribution: Rayleigh RA under Rayleigh channel and Rician RA under Rician
channel. As expected, the maximization of a given criterion yields the highest value for
this criterion. The proposed criteria yield higher EE than the MPO, especially for low
goodput constraint. In addition, due to the LoS component, the performance under the
Rician channel are much higher than those obtained under the Rayleigh channel. This
is interesting since considering the Rician channel does not induce additional complex-
ity as compared with considering the conventional Rayleigh channel for the problems
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Figure 5.6: PEE obtained for the
considered criteria versus η(1)
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solid lines: Rayleigh channel,
dashed lines: Rician channel.

addressed in this Chapter. We can also make the following additional observations.

1. When maximizing a given criterion, increasing the goodput constraint decreases
this criterion performance.

2. In Figs. 5.6 and 5.8, we see that increasing η(1)
`

increases the MEE and PEE of both
MSEE and MGEE criteria.

3. Increasing the goodput constraint also increases the EE performance of the MPO.

The first observation is explained because increasing η(1)
`

reduces the feasible set of the
optimization problems and thus there is less degrees of freedom for the solutions, which
degrades the criteria performance.

The second observation is explained because both MSEE and MGEE are unfair crite-
ria, and thus they advantage only the links with good channel quality (see Chapter 4).
Increasing η(1)

`
forces these criteria to give more resource to links’ with poor quality and

since both the PEE and MEE relies on the performance of the links’ with poor channel
condition, increasing η(1)

`
increases the MSEE and MGEE performance on PEE and MEE.

Finally, the third observation explanation is the following one. The MPO yields low
EE since it gives few resource to the link, i.e., Chapters 1 and 4. Increasing η(1)

`
forces the

MPO to give more resource to the links’, thus increasing their EE.

5.10.3 Channel model mismatch

In this section, we consider the same cases as in Section 5.9, and we investigate the impact
of a channel model mismatch on all the criteria. To do so, let us define the gains of the
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Figure 5.7: GEE obtained for the
considered criteria versus η(1)
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Rician allocation over the Rayleigh one as follows:

100 ×
(ZG(E∗,Ri

I ,γ∗,Ri
I ) −ZG(E∗,Ra

I ,γ∗,Ra
I ))

ZG(E∗,Ri
I ,γ∗,Ri

I )
, (5.74)

whereZG(E,γ) stands for either the SEE, PEE, MEE or GEE computed for Type-I HARQ
under the Rician channel, E∗,Ri

I and γ∗,Ri
I are the optimal transmit energy and bandwidth

parameters obtained using RAIRi, and E∗,Ra
I and γ∗,Ra

I are the optimal transmit energy and
bandwidth parameters obtained using RAIRa.

In Fig. 5.9, we plot the EE gains for the different criteria versus the minimum goodput
constraint. We observe that substantial EE gains can be achieved when considering the
Rician K factor during the RA process. Especially, we observe that the Rician channel
enables for very large PEE (up to more than 55%) and MEE (up to more than 35%) gains,
which can be explained as follows. These two metrics highly depends on the worst link’s
EE. As a consequence, since the EE is higher under the Rician channel than under the
Rayleigh one (i.e., Chapter 1), the Rician channel enables us to improve these worst link’s
EE, improving thus the MPEE and MMEE performance.

In Fig. 5.10, we set η(1)
`

= 6.5×105 bps, and we plot the criteria gains versus the number
of Rician links in the network. We see that the gain is a strictly increasing nearly-linear
function of the number of Rician links for all the considered criteria, confirming thus once
again that the Rician K factor should be included during the RA process.

5.11 Conclusion

In this Chapter, we first proposed an analytically tractable approximation of the error
probability under the Rician FF channel, and second we addressed EE-based RA problems
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under the Rician channel in HARQ based MANETs when only statistical CSI is available
and considering the use of practical MCS. More precisely, we optimally solved the MSEE,
MMEE and MGEE problems whereas we proposed a suboptimal AO based solution for
the MPEE one. Table 5.3 summarizes the addressed problems along with the proposed
solutions optimality.

Problem Solutions optimality
MSEE Optimal
MPEE Sub-optimal
MMEE Optimal
MGEE Optimal

Table 5.3: Addressed problems and optimality of proposed algorithms.

We performed extensive simulations to show that substantial EE gains can be achieved
by taking into account the Rician K factor during the RA process instead of only consid-
ering the pathloss.

In addition, we also studied how to extentend this work to perform EE-based RA for
Type-II HARQ under the Rician channel. We found out that an HARQ type mismatch (i.e.,
performing the RA considering Type-I HARQ under the Rician channel) produces better
SEE performance than a channel model mismatch (i.e., performing the RA considering
Type-II HARQ under the Rayleigh channel).

Finally, part of the material presented in this Chapter has been published in [C3],
[C6] and [C7]. It is worth noticing that, in [C7], we considered another MSEE problem
formulation, yielding completely different derivations to solve the KKT conditions.
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Conclusions and Perspectives

The main objective of this thesis was to propose and analyze RA schemes for MANETs
assuming that only statistical CSI is available to perform the RA at the RM. This objective
was decomposed into the following two intermediate goals:

1. To estimate the channel’s statistical CSI, i.e., the Rician K factor with and without
shadowing.

2. To propose and analyze new EE-based RA algorithms for MANETs taking into
account the use of HARQ and practical MCS, and assuming that only statistical CSI
is available.

In Chapter 1, we introduced the technical context of the thesis. We described the
considered MANETs along with the signal and the channel models. We provided an
introduction to the basics of HARQ. We introduced the EE and formalized EE-based RA
problems as constrained optimization ones. Finally, we detailed the two goals of the thesis.

In Chapter 2, we addressed the Rician K factor estimation when the available channel
samples are estimated from a training sequence and as a consequence are noisy. We con-
sidered both the cases with and without LoS shadowing. In the absence of shadowing, we
proposed two deterministic estimators. We also proposed two Bayesian estimators, the
mean a posteriori which is approximated using the GHQ, and the maximum a posteriori,
which is obtained by solving a non-linear equation. We derived the CRLB in closed-form.
We showed that our proposed estimators outperform existing ones from the literature,
and we found out that the Bayesian estimators are more robust to small sample size, but
they are also more complex. In the presence of shadowing, we proposed two estimation
procedures, one based on the EM principle, and the other one based on the MoM. We
performed extensive simulations to show the superiority of our proposed estimators as
compared with existing ones from the literature. We observed that the MoM-based es-
timator provides the lowest bias, whereas the EM-based one is better in term of NMSE.
We also found that, in certain cases, not considering the shadowing during the estimation
might be preferable, and thus we recommend to use shadowing-aware and shadowing-
unaware estimators complementarily.
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In Chapter 3, we first provided a state of the art of existing works addressing EE-based
RA problems. Second, we reviewed the optimization framework that serves as a basis to
solve the EE-based RA problems: we provided an overview of convex optimization, frac-
tional programming and geometric programing. Finally, we explained two non-convex
optimization procedures.

In Chapter 4, we provided the optimal solutions for the the MSEE, MPEE and MMEE
problems under the Rayleigh channel for Type-II HARQ, along with two suboptimal solu-
tions for the MGEE problems. We also provided two suboptimal solutions for the MSEE
problems, and showed by simulation that they achieve almost the same performance
as the optimal one with much less complexity. We compared the solutions in terms of
performance, fairness and complexity and we found out that the MPEE criterion is es-
pecially relevant for MANETs. We illustrated the practical relevancy of this criterion on
a smartphone example by comparing it to conventional criteria. Through this example,
we showed that, as compared with the conventional criteria, i) for a given energy, the
MPEE can transmit more information packets and ii) when transmitting a given number
of packets, the MPEE energy consumption is lower. We also provided guidelines regard-
ing the choice of the number of transmissions for the HARQ mechanism.

In Chapter 5, we provided the optimal solutions of MSEE, MMEE and MGEE prob-
lems under the Rician channel for Type-I HARQ, along with a suboptimal solution for
the MPEE problem. We studied how to extend this work to Type-II HARQ under the
Rician channel, and we found out that an HARQ type mismatch is preferable to a channel
model mismatch, i.e., when performing a Type-II HARQ under the Rician channel, the
RA for Type-I HARQ under the Rician channel provides better result than the one for
Type-II HARQ under the Rayleigh channel. Finally, we provided numerical results to
exhibit the interest of taking into account the existence of a LoS when performing the RA
rather than only considering the channel power. In other words, we showed that incor-
porating the knowledge of the Rician K factor during the RA enables substantial EE gains.

Our contributions related to the estimation of the Rician K factor (i.e., Chapter 2) are
summarized in Table 5.4, whereas our contributions related to RA (i.e., Chapters 4 and 5)
are summarized in Table 5.5.

No LoS shadowing Four new estimators + deterministic CRLB
Nakagami-m LoS shadowing Two new estimators

Table 5.4: Summary of the thesis contributions on the estimation of the Rician K factor.
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Type-I HARQ, Rician channel Type-II HARQ, Rayleigh channel

MSEE Optimal Optimal + 2 suboptimals
MPEE Suboptimal Optimal
MMEE Optimal Optimal
MSEE Optimal 2 suboptimals

Table 5.5: Summary of the thesis contributions on the EE-based RA problems.

Perspectives

The following issues should deserve to be addressed in future works.

System design

All our algorithms have been proposed and validated assuming ideal fully interleaved
fading channel. Moreover, the RA algorithms assumed perfect knowledge of the chan-
nel’s statistics. Therefore, it should be of high practical interest to study i) the impact
of both frequency and time correlation on the estimation and the RA performance and
ii) using channel’s statistics estimated using our estimators from Chapter 2 in the RA
algorithms.

Estimation of the Rician K factor

1. In practical communications, the Rician K factor is likely to be time-varying, for
instance if the transmitter moves from a place with LoS to another place with no
LoS, the Rician K factor is likely to decrease suddenly. Thus, being able to track the
Rician K factor time-variation should be of great interest, in order to constantly adapt
the RA. We have conducted some preliminary works regarding this perspective (not
presented in this document) which have been patented in [P1], where we proposed
to use a sliding window in conjunction with tools from change detection theory [8].

2. In Chapter 2, the noise variance 2σ2
n is considered as known. However, in practice,

this variance has to be estimated and it is thus of interest to study solutions to
perform this estimation.

Resource allocation

1. The algorithms developed in Chapters 4 and 5 require either the use of the IPM, or
several numerical functions inversion, which might be too complex for embedded
systems. Some recent works have proposed the use of neural networks to alleviate
the RA complexity [29, 68, 122], and it should be of interest to study how to apply
this framework to our algorithms.
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2. Our proposed solutions are centralized and a perspective for the future should be
to study solutions to perform the RA in a distributed fashion.

3. We performed RA assuming that only statistical CSI is available at the RM. In-
corporating more knowledge regarding the channel would increase the algorithms
performance, for instance, it is shown in [56, 103] that using Accumulated Mutual
Information (ACMI) for power or rate adaptation between HARQ transmissions
yields substantial gains as compared with persistent RA. However, using this type
of CSI requires more exchanges of information between the nodes and thus, an
interesting perspective is to study the tradeoff between the achievable performance
gains and the additional exchange requirements.
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Appendix A

Appendix related to Chapter 2

A.1 Derivations leading to (2.9)

Here, we present the derivations yielding the unbiased estimator K̂n
Prop in (2.9). To find an

unbiased estimator of K in the noisy case, we study the bias of K̂ML from (2.5) when the
channel coefficients are noisy. We rewrite (2.5) when the channel coefficients are replaced
by their noisy estimation:

K̂ML =
|ã|2

2σ̃2 . (A.1)

We observe that ã is a complex Gaussian random variable with mean ae jθ0 and variance
λ = N−1(2σ2

h + 2σ2
n). Therefore, X = 2|ã|2/λ follows a noncentral χ2 distribution with two

degrees of freedom and noncentrality parameter ω = 2a2/λ. Also, we can prove that
Y = 4σ̃2/λ follows a central χ2 distribution with degrees of freedom 2N − 2. Moreover,
using the Cochran’s theorem [55], we know that X and Y are independent.

Following similar lines as [7], we define

K̂
′

=
X/2

Y/(2N − 2)
. (A.2)

Since K̂′ is the ratio of a noncentral χ2 distributed random variable with a central χ2

distributed random variable, which are independent and both normalized by their re-
spective degrees of freedom, K̂′ has a noncentral F distribution with degrees of freedom
2 and 2N − 2 and noncentrality parameter ω. Its mathematical expectation can be found
in [60] and is given by:

E
[
K̂′

]
=

(2N − 2)(2 + ω)
2(2N − 4)

. (A.3)

Since K̂ML = (N − 1)−1K̂′, the expectation of K̂ML can be deduced as

E
[
K̂ML

]
=

1 + ω
2

N − 2
. (A.4)

Observing that
ω
2

= N
σ2

h

σ2
h + σ2

n
K (A.5)
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leads to
E[K̂ML] =

1 + KNα
N − 2

, (A.6)

where α = σ2
h/(σ

2
h + σ2

n).
The bias of K̂ML in case of noisy coefficients is obtained from (A.6) and is expressed as

E[K̂ML−K] = (N−2)−1(1+K(Nα−N +2)). Using this expression, we deduce the following
unbiased estimator of K:

K̂n
Prop =

1
Nα

(
(N − 2)

|µ̃|2

2σ̃2 − 1
)
. (A.7)

Notice that, as a byproduct of the previous derivations, we can derive the variance of
K̂ML in case of noisy channel coefficients, which is given by Var[K̂ML] = (2N − 4)−1(N −
3)−1((2N − 4)−1(ω + 2)2 + 2ω + 2). Moreover, we can also derive both the bias and the
variance of K̂MML when the coefficients are noisy, which are given by

E[K̂MML − K] = K(α − 1), (A.8)

Var[K̂MML] = N−2(N − 2)2Var[K̂ML]. (A.9)

A.2 Derivations leading to (2.10)

In this appendix, we present the derivations yielding the unbiased estimation of α (2.10).
In (2.9), α has to be estimated, and a natural estimator of α is α̃ = (σ̃2

− σ2
n)/σ̃2. Let us

study the bias of α̃. To do so, we write

E[α̃] = 1 − σ2
nE

[ 1
σ̃2

]
. (A.10)

From Appendix A.1, we know that 4σ̃2/λ follows aχ2 distribution with degrees of freedom
2N − 2. Then, λ/(4σ̃2) follows an inverse chi-square distribution with degrees of freedom
2N − 2, and its expectation is given by [113]:

E[α̃] = 1 −
Nσ2

n

(N − 2)(σ2
n + σ2

h)
. (A.11)

We thus derive an unbiased estimator of α as:

α̃ = 1 +
(2 −N)2σ2

n

2Nσ̃2 . (A.12)

A.3 Proof of Result 2.2

In this Appendix, we derive the RR of K̂n
Prop. Replacing α by α̃ in (2.9) and plugging the

resulting expression into (2.11) yields after straightforward algebraic manipulations:

Rr
(
K̂n

Prop

)
= Pr

((
α̃ < 0 ∩ (N − 2)

|ã|2

2σ̃2 − 1 > 0
)
∪

(
α̃ > 0 ∩ (N − 2)

|ã|2

2σ̃2 − 1 < 0
))
, (A.13)



A.3. Proof of Result 2.2 137

which can be rewritten as:
Rr

(
K̂n

Prop

)
= ARr + BRr, (A.14)

with ARr := Pr
(
α̃ < 0 ∩ (N − 2) |ã|

2

2σ̃2 − 1 > 0
)

and BRr := Pr
(
α̃ > 0 ∩ (N − 2) |ã|

2

2σ̃2 − 1 < 0
)
.

First, let us focus on computing ARr. Plugging (2.10) into ARr yields after some alge-
braic manipulations:

ARr = Pr
(
2σ̃2 < C1,Rr ∩ 2σ̃2 < C2,Rr|ã|2

)
, (A.15)

Using the independence of |ã|2 and 2σ̃2 (see Appendix A.1), (A.15) can be rewritten as:

A =

∫ +∞

x=0

∫ min{C1,Rr,C2,Rrx}

y=0
f|ã|2(x) f2σ̃2(y)dxdy, (A.16)

with f|ã|2(x) (resp. f2σ̃2(y)) the PDF of |ã|2 (resp. 2σ̃2). From Appendix A.1, we know that
2|ã|2/λ has a noncentral χ2 distribution with two degrees of freedom and noncentrality
parameterω = 2|a|2/λ, and that 4σ̃2/λ follows a central χ2 distribution with 2N−2 degrees
of freedom. Thus we know from [89] that:

f|ã|2(x) =
1
λ

e−
x
λ−

ω
2 I0


√

2xω
λ

 , (A.17)

f2σ̃2(y) =
1
λ

1
Γ(N − 1)

( x
λ

)N−2
e−

x
λ . (A.18)

The integrals in (A.16) can be separated as follows:

ARr =

∫ C1,Rr/C2,Rr

x=0
f|ã|2(x)

∫ C2,Rrx

y=0
f2σ̃2(y)dxdy +

∫ +∞

x=C1,Rr/C2,Rr

f|ã|2(x)
∫ C1,Rr

y=0
f2σ̃2(y)dxdy (A.19)

yielding

ARr =

∫ C1,Rr/C2,Rr

x=0
f|ã|2(x)F2σ̃2(C2,Rrx)dx + F2σ̃2(C1,Rr)

∫ +∞

x=C1,Rr/C2,Rr

f|ã|2(x)dx, (A.20)

with F2σ̃2(y) the CDF of 2σ̃2, which writes as [89]:

F2σ̃2(y) =
γIC

(
N − 1, y

λ

)
Γ(N − 1)

. (A.21)

By performing similar algebraic manipulations, BRr in (A.14) can be obtained as:

BRr = (1 − F2σ̃2(C1,Rr))
∫ C1,Rr/C2,Rr

x=0
f|ã|2(x)dx +

∫ +∞

x=C1,Rr/C2,Rr

f|ã|2(x)(1 − F2σ̃2(C2,Rrx))dx. (A.22)

Plugging (A.20) and (A.22) into (A.14) yields:

Rr
(
K̂n

Prop

)
=1 + F2σ̃2(C1,Rr)

(∫ +∞

C1,Rr/C2,Rr

f|ã|2(x)dx −
∫ C1,Rr/C2,Rr

0
f|ã|2(x)dx

)
−∫ +∞

C1,Rr/C2,Rr

f|ã|2(x)F2σ̃2(C2,Rrx)dx +

∫ C1,Rr/C2,Rr

0
f|ã|2(x)F2σ̃2(C2,Rrx)dx.

(A.23)
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Also, F|ã|2(x) :=
∫ x

0 f|ã|2(u)du is the CDF of |ã|2, which is given by [89]

F|ã|2(x) = 1 −Q1

√ω,
√

2x
λ

 , (A.24)

concluding the proof.

A.4 Derivations leading to (2.35)

In this Appendix, we derive the Fisher information matrix (2.35). To this end, we compute
the derivative involved in (2.33):

∂2 log
(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂
(
2σ2

h

)2 =
1(

2σ2
h + 2σ2

n

)3

(
N

(
2σ2

h + 2σ2
n

)
− 2ACRLB − 2Na2 + 4aBCRLB

)
,

(A.25)
∂2 log

(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂(a)2 = −

N
σ2

h + σ2
n
, (A.26)

∂2 log
(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂(θ0)2 = −

a
σ2

h + σ2
n

BCRLB, (A.27)

∂2 log
(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂a∂2σ2

h

=
1

2
(
σ2

h + σ2
n

)2
(Na − BCRLB) , (A.28)

∂2 log
(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂a∂θ0

=
1

σ2
h + σ2

n
CCRLB, (A.29)

∂2 log
(
L(Ns)

Ĥ

(
Ĥ;θ(Ns)

))
∂2σ2

h∂θ0
= −

a

2
(
σ2

h + σ2
n

)2 CCRLB, (A.30)

with ACRLB :=
∑N

i=1(ri)2, BCRLB :=
∑N

i=1 ri cos
(
φi − θ0

)
and CCRLB :=

∑N
i=1 ri sin

(
φi − θ0

)
.

Using E [ACRLB] = N
(
a2 + 2σ2

h + 2σ2
n

)
, E [BCRLB] = Na and E [CCRLB] = 0 into (A.25)-

(A.30) yields (2.35).

A.5 Derivations leading to (2.56) and (2.57)

In this Appendix, we compute the closed form expressions of Tk(n), k = 0, . . . , 3, n =

1, . . . ,N.
First, let us focus on Tk(n), k = 0, 1, 2. Plugging (2.41) and (2.4) into (2.54) yields, for

n = 1, . . . ,N

Tk(n) = C
(c),(t)
n

∫ +∞

0
x2m̂(S),(t)

Na −1+ke−x2
B

(t)
2,n−xB(t)

3,ndx. (A.31)
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The integral in (A.31) can be computed using [49, 3.462] which yields (2.56).
Now, let us compute T3(n). To do so, we use the following relationship [93]:∫ +∞

0
log(x)g(x)dx =

∂
∂w

∫ +∞

0
xwg(x)dx|w=0. (A.32)

Plugging (2.41) and (2.4) into (2.55) and using (A.32), we obtain for n = 1, . . . ,N

T3(n) = C
(c),(t)
n

∂
∂w

(∫ +∞

0
x2m̂(S),(t)

Na −1+we−x2
B

(t)
2,n−xB(t)

3,ndx
)
|w=0. (A.33)

Using once again [49, 3.462], we can compute (A.33) as follows:

T3(n) = C
(c),(t)
n e

(
B

(t)
3,n

)2
8B(t)

2,n
∂
∂w


(
2B(t)

2,n

)− 2m̂(S),(t)
Na +w

2 Γ
(
2m̂(S),(t)

Na + w
)

D
−2m̂(S),(t)

Na −w


B

(t)
3,n√

2B(t)
2,n


 |w=0.

(A.34)
Finally, (2.57) is obtained by computing the derivative in (A.34).
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Appendix B

Appendix related to Chapter 4

B.1 Proof of Theorem 4.2

Here, we optimally solve Problem 4.8. To do so, let us define δ = [δ1, ..., δL], µ = [µ1, ..., µL]
and λ as the non-negative Lagrangian multipliers associated with constraints (4.39), (4.40)
and (4.41), respectively. The KKT conditions of Problem 4.8 write:

H`M`

(J`γ` + M`)2 − δ` + µ` − λ = 0, ∀`. (B.1)

Moreover, the following complementary slackness conditions hold at the optimum:

µ`(γ` − γmin,`) = 0, ∀`, (B.2)

δ`(γ` − γmax,`) = 0, ∀`, (B.3)

λ(
L∑
`=1

γ` − 1) = 0. (B.4)

To solve the optimality conditions (B.1)-(B.4), we proceed in two steps: first, we solve
them for fixed value of λ, and second we find the optimal value of λ.

Step 1: solution for fixed λ Here, we discuss the possible values of δ` and µ` in order
to exhibit the solution of (B.1)-(B.4) as a function of λ.

Case 1): δ` > 0, µ` > 0: the complementary slackness conditions (B.2) and (B.3) gives
us γ∗` = γmin,` = γmax,`, meaning that γ` can take only one value. Let Iµ̄,δ̄ ⊆ {1, · · · ,L}
denote the set of links for which δ` > 0, µ` > 0.

Case 2) δ` > 0, µ` = 0: the complementary slackness condition (B.3) gives us γ∗` =

γmax,`, whereas the KKT condition (B.1) yields

λ <
H`M`

(J`γmax,` + M`)2 . (B.5)

Let Iµ,δ̄ ⊆ {1, · · · ,L} denote the set of links for which δ` > 0, µ` = 0.
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Case 3) δ` = 0, µ` > 0: according to (B.2), we have γ∗` = γmin,` and similarly to the
previous case, (B.1) gives us the following inequality

λ >
H`M`

(J`γmin,` + M`)2 . (B.6)

Let Iµ̄,δ ⊆ {1, · · · ,L} denote the set of links for which δ` = 0, µ` > 0.
Case 4) δ` = 0, µ` = 0: in this case, we have from (B.1)

F` J`
(H`γ` + J`)2 = λ. (B.7)

We can see that γ` is the solution of a quadratic equation, which can be obtained as

γ∗` = −
M`

J`
+

√
H`M`λ
λJ`

. (B.8)

Let Iµ,δ ⊆ {1, · · · ,L} denote the set of links for which δ` = 0, µ` = 0.
The solutions of cases 1 to 4 can be written in the following compact form

γ∗` =

[
−

M`

J`
+

√
H`M`λ
λJ`

]γmax,`

γmin,`

. (B.9)

We have expressed the optimal solution of Problem 4.8 as a function of the unique
multiplier λ. Now, we focus on finding the optimal value of this Lagrangian multiplier.

Step 2: search for optimal λ To find the optimal value of λ, we use the complemen-
tary slackness condition (B.4). In details, we form the sum of the optimal value of the
bandwidth sharing factors

Γ(Λ) =
∑
`∈Iµ̄,δ̄

γmin,k +
∑
`∈Iµ,δ̄

γmax,` +
∑
`∈Iµ̄,δ

γmin,` +
∑
`∈Iµ,δ

(
−

M`

J`
+

√
H`M`λ
λJ`

)
. (B.10)

We have the following property concerning Γ.

Proposition B.1. Γ is a continuous non increasing function of Λ.

Proof. To prove Proposition B.1, we first define ∀` ∈ {1,L}, Λ` = H`M`/(J`γmax,` + M`)−2

and ∀` ∈ {L + 1, 2L}, Λ` = H`M`/(J`γmin,` + M`)−2. Moreover, we define `′m as a one-to-one
mapping from {1, 2L} in itself such that Λ`′1

≤ ... ≤ Λ`′2L
. First of all, we see that Γ(Λ)

is continuous on every open set (Λ`′i,Λ`′i+1
) since the three first term of the Right-Hand

Side (RHS) of (B.10) are constants, and the function FT,` defined for all ` as

FT,`(x) = −
M`

J`
+

√
H`M`
√

xJ`
(B.11)

is continuous on R+∗. Moreover, it can be proved that F` is strictly decreasing on R+∗,
which implies that Γ is also decreasing on (Λ`′i,Λ`′i+1

). Finally, one can check that, ∀i, Γ is
continuous in Λ`′i

, concluding the proof. �

We have the following two possibilities for the optimal solution of Problem 4.8.
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Either
∑L
`=1 γmax,` ≤ 1. Since the objective function of Problem 4.8 is increasing in γ, the

optimal solution is ∀k ∈ {1, · · · ,L}, γ∗` = γmax,`.

Or
∑L
`=1 γmax,` > 1. In this case, the optimal value of λ is strictly positive, and thus λ

has to be increased such that Γ(λ) = 1. Therefore, the optimal solution of Problem 4.8 is
given in this case by ∀` ∈ {1, · · · ,L}, γ∗` =

[
−M`/J` +

√
H`M`λ∗/(λ∗J`)

]γmax,`

γmin,`
where λ∗ is the

unique solution of Γ(λ∗) = 1 on R+∗.
Finally, from (B.5), one can see that Γ(Λ) is constant as long as Λ ≥ max`(

H`M`

(J`γmin,k+M`)2 ).
Therefore, we can deduce that λ∗ is upper bounded as follows

λ∗ ≤ max
`∈{1,··· ,L}

(
H`M`

(J`γmin,` + M`)2

)
. (B.12)

Similarly, we can obtain the following lower-bound for the optimal λ:

λ∗ ≥ min
`∈{1,··· ,L}

(
H`M`

(J`γmax,` + M`)2

)
. (B.13)

Eq. (B.12) and (B.13) facilitate the search of λ∗, which can be performed with the bisection
method.

B.2 Optimal solution of the maximum goodput problem

In this Appendix, we find the optimal solution of the MGO problem, which writes as:

Problem B.1.

max
E,γ

L∑
`=1

D̃`(G`E`)
γ−1
`

S̃`(G`E`)
, (B.14)

s.t. (4.6), (1.27) and (1.28).

Applying the change of variables (4.21)-(4.22) to Problem B.1 enables us to rewrite it
equivalently as:

Problem B.2.

max
E,γ

L∑
`=1

f`(x`)

e−y` (1 +
∑
M−1
p=1 a`,pe−x`d`,p)

, (B.15)

s.t. (4.23), (4.24) and (4.25). (B.16)

Following same steps as for the proof of Result 4.2, one can check that Problem B.2 is
the maximization of a sum of ratios whose numerators are concave and denominators are
convex over a convex set. Hence, similarly to the MSEE problem, the Jong’s algorithm
allows us to optimally solve it.
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C.1 Proof of Lemma 5.4

First due to (5.23), we are only interested in solutions yielding non-positive values for
h(T1)
`,M(x). If there exists at least one link `1 with δ`1 = 0, we obtain the optimal value of x`1

using (5.22) as:

x∗`1
= x∗`1,δ`1 =0 = q̃′−1

`1

−β
(i)
`1
κ−1
`1

α`1G`1

 . (C.1)

By plugging (C.1) into (5.23), we obtain the optimal value of λ as:

λ∗ = −α`1u(i)
`1

h(T1)
`1,M

(x∗`1,δ`1 =0) ≥ 0. (C.2)

Hence, we prove that `1 ∈ arg min`{α`u
(i)
`

h(T1)
`,M(x`,δ`=0)}. To do so, we proceed by contra-

diction: we assume that ∃`2 such that α`2u(i)
`2

h(T1)
`2,M

(x∗`2,δ`2 =0) < α`1u(i)
`1

h(T1)
`1,M

(x∗`1,δ`1 =0), and we
prove that the KKT condition (5.23) cannot hold for `2. This condition writes as follows:

α`2u(i)
`2

h(T1)
`2,M

(x∗`2
)(u(i)

`2
+ δ`2) − α`1u(i)

`1
h(T1)
`1,M

(x∗`1,δ`1 =0) = 0. (C.3)

To prove that (C.3) cannot hold, we upper bound it by a term stricly lower than 0. To this
end, we use the following proposition.

Lemma C.1. ∀`, the following inequality holds:

h(T1)
`,M(x∗`) ≤ h(T1)

`,M(x∗`,δ`=0
). (C.4)

Proof. First, let us study the monotonicity of h(T1)
`,M(x) by computing its first order derivative:

h(T1)′

`,M (x) = −xq̃′′`,1(x). (C.5)

Due to the strict convexity of q̃`,1, it results from (C.5) that h(T1)
`,M(x) is strictly decreasing.
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Second, let us compare x∗` with x∗`,δ`=0
. From (5.22), we have

x∗` = q̃′−1
`,1

 −u(i)
`
β(i)
`
κ−1
`

α`G`(u
(i)
`

+ δ`)

 . (C.6)

Since q̃′−1
`,1 is strictly increasing, the following inequality holds

x∗` ≥ x∗`,δ`=0. (C.7)

Finally, the proof is completed using (C.5). �

Using Proposition C.1 we can upper bound (C.3) as follows

α`2u(i)
`2

h(T1)
`2,M

(x∗`2
)(u(i)

`2
+ δ`2) − α`1u(i)

`1
h(T1)
`1,M

(x∗`1,δ`1 =0) ≤

α`2u(i)
`2

h(T1)
`2,M

(x∗`2,δ`2 =0)(u(i)
`2

+ δ`2) − α`1u(i)
`1

h(T1)
`1,M

(x∗`1,δ`1 =0).
(C.8)

Since by hypothesis, α`2u`2h(T1)
`2,M

(x∗`2,δ`2 =0) < α`1u`1h(T1)
`1,M

(x∗`1,δ`1 =0), α`1u`1h(T1)
`1,M

(x∗`1,δ`1 =0) =

−λ∗ ≤ 0 and δ`2 ≥ 0, we obtain from (C.8)

α`2u(i)
`2

h(T1)
`2,M

(x∗`2
)(u(i)

`2
+ δ`2) − α`1u(i)

`1
h(T1)
`1,M

(x∗`1,δ`1 =0) < 0. (C.9)

Due to (C.9), the KKT condition (5.23) cannot hold for link `2 yielding a contradiction
and thus concluding the proof.

C.2 Proof of Lemma 5.6

First, let us prove that λ > 0. We need the following intermediate result, whose proof is
provided in [28].

Proposition C.1. [28, Proposition 2] At any iteration i, the optimal t for Problem 5.15 is such
that t ≥ 0.

The rest of the proof of Lemma 5.6 is by contradiction: we assume that λ = 0, and we
prove that it yields a strictly negative value for t, which contradicts Proposition C.1. To
do so, we remark from (5.52) that

∑L
`=1ω` = 1, meaning that ∃` such that ω` > 0. Let us

focus on this link. We consider the following two possible cases: either δ` = 0 or δ` > 0.
Case 1: δ` = 0. Using (5.53) and (5.54), we obtain:

α`(q̃`,1(x`) − 1) +
x`κ−1

` ψ
(i)
GD

G`
= 0, (C.10)

with x` := G`Q`/γ`. In addition, since ω` > 0, plugging (C.10) into (5.55) yields

t = γ`

α`(1 − q̃`,1(x`)) −
x`ψ

(i)
GDκ

−1
`

G`

 − ψ(i)
GDEc,` = −ψ(i)

GDEc,` < 0. (C.11)
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Case 2: δ` > 0. The condition (5.53) gives us:

α`(−1 + q̃`,1(x`) − x`q̃′`,1(x`)) = 0. (C.12)

Since δ` > 0, we obtain:

γ` =
η(0)
`

α`(1 − q̃`,1(x`))
. (C.13)

By plugging (C.12) and (C.13) into (5.55), we obtain

t = η(0)
`

1 +
ψ(i)

GDκ
−1
`

α`G`q̃′`,1(x`)

 − ψ(i)
GDEc,`. (C.14)

To upper bound (C.14), we use (5.54) which gives us

ψ(i)
GDκ

−1
`

α`G`q̃′`,1(x`)
< −1. (C.15)

Using (C.15) into (C.14) yields t < 0.
Gathering case 1 and case 2 together, we obtain that λ = 0 yields t < 0, contradicting

Proposition C.1. Hence, we deduce that λ > 0.
Now, let us prove that, ∀`, ω` > 0. Assume that there exists ` such that ω` = 0. We

can see from (5.53) that δ` = 0. However, plugging ω` = 0 and δ` = 0 into (5.54) implies
λ = 0, which contradicts λ > 0. Hence, ∀`, ω` > 0 which concludes the proof.

C.3 Proof of Lemma 5.7

First, assume that a link ` belongs to It. Its optimal values for x` and γ` are given by (5.60)
and (5.61), respectively. Moreover, link ` has to satisfy its goodput constraint (5.16). By
plugging (5.60) and (5.61) into (5.16), the direct part of Lemma 5.7 is proved.

Second, we prove the converse part of Lemma 5.7 by contradiction: assuming that
there exists a link ` such that inequality (5.62) holds and which is not in It, we prove
that the optimality condition (5.56) cannot hold. Let us define x∗`,2(δ`) (resp. γ∗`,2(δ`, t))
the optimal value of x` (resp. γ`) for fixed ω` and t. Notice that x∗`,2(0) (resp. γ`,2(0, t))
coincides with x∗`,1 (resp. γ∗`,1(t)). With these notations, (5.62) can be rewritten as follows:

η(0)
`
≤ α`γ

∗

`,2(0, t)(1 − q̃`,1(x∗`,2(0))). (C.16)

Since δ` > 0, (5.56) yields:

η(0)
`

= α`γ
∗

`,2(δ`, t)(1 − q̃`,1(x∗`,2(δ`))). (C.17)

To show the contradiction, we prove that (C.17) cannot hold using the following propo-
sition.
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Proposition C.2. For all δ` > 0 and ∀`, the following inequalities hold:

x∗`,2(δ`) > x∗`,2(0) (C.18)

γ∗`,2(δ`, t) > γ∗`,2(0, t) (C.19)

Proof. We start by proving (C.18). Using (5.59), we obtain

x∗`,2(δ`) = q̃′−1
`,1

 −ω`ψ(i)
GDκ

−1
`

α`G`(ω` + δ`)

 . (C.20)

Since q̃′−1
`,1 is continuous, differentiable with non zero derivative and strictly increasing,

x∗`,2(δ`) is a continuous, differentiable and strictly increasing function of δ`, which proves
(C.18).

Now, let us focus on γ∗`,2(δ`, t). Using Lemma 5.6, we can obtain:

γ∗`,2(δ`, t) =
t + ψ(i)

GDEc,`

p(T1)
`

(δ`)
, (C.21)

with p(T1)
`

(δ`) := α`(1 − q̃`,1(x∗`,2(δ`)) −ψ
(i)
GDκ

−1
` G−1

` x∗`,2(δ`). To prove (C.19), let us prove that

p(T1)
`

(δ`) is strictly decreasing by computing its derivative:

p(T1)′

`
(δ`) = −x∗

′

`,2(δ`)V`(δ`), (C.22)

with x∗
′

`,2(δ`) > 0 the derivative of x∗`,2(δ`) with respect to δ`, andV`(δ`) := (α`q̃′`,1(x∗`,2(δ`))+

ψ(i)
GDκ

−1
` G−1

` ). Using (C.20), we can see thatV`(0) = 0, meaning that p′`(0) = 0. In addition,
we can prove thatV`(δ`) is strictly increasing by computing its derivative, meaning that,
for all δ` > 0,V`(δ`) > 0 which, together with (C.22) concludes the proof. �

Using Proposition C.2, we hence have, for all δ` > 0:

α`γ
∗

`,2(δ`, t)(1 − q̃`,1(x∗`,2(δ`))) > α`γ∗`,2(0, t)(1 − q̃`,1(x∗`,2(0))) ≥ η(0)
`
, (C.23)

which contradicts (C.17) and concludes the proof.

C.4 Proof of Lemma 5.8

To prove Lemma 5.8, it is sufficient to prove that, ∀`,F (T1)
`,M (ω`) := x∗`,2(ω`)/(1− q̃`,1(x∗`,2(ω`)))

is strictly decreasing. Let us compute the derivative of F (T1)
`

(ω`):

F
(T1)′

`,M (ω`) = −
x∗
′

`,2(ω`)h
(T1)
`,M(x∗`,2(ω`))

(1 − q̃`,1(x∗
`,2(ω`)))2 , (C.24)

with x∗
′

`,2(ω`) = −1/(ω2
`ψ

(i)
GDκ

−1
` )( f (T1)−1

`,M )′(ω−1
` κ`/ψ

(i)
GD) < 0. Moreover, due to (5.59), we are

only interested in the values of x∗`,2(ω`) such that h(T1)
`,M(ω`) < 0. As a consequence,F (T1)

`,M (ω`)

is strictly decreasing and it follows thatM(T1)
`,M(ω`) is strictly increasing, which concludes

the proof.



C.5. proof of Lemma 5.9 149

C.5 proof of Lemma 5.9

Let us define k′m a one-to-one mapping from {1, · · · ,L} in itself such that tT
k′1
≤ · · · ≤ tT

k′L
where tT

k′i
is defined in (5.62). To prove Theorem 5.9, we first observe that the first term in

the RHS of Γ̃GD(t) is continuous and strictly increasing on every open set (tT
k′i
, tT

k′i+1
). Second,

let us prove that the second term is also strictly increasing. To this end, we remind that
γ∗`,2(t) is expressed as

γ∗`,2(t) =
η(0)
`

α`(1 − q̃`,1(x∗
`,2(M(T1)−1

`,M (t))))
. (C.25)

SinceM(T1)−1
`,M (t) is strictly increasing and x∗`,2(ω̃`) is strictly decreasing, we infer that 1 −

q̃`,1(x∗`,2(M(T1)−1
`,M (t))) is decreasing and as a consequence γ∗`,2(t) is strictly increasing. Third,

it can be checked that Γ̃GD(t) is continuous in every tT
k′i

by checking that limt↗tT
k′i

Γ̃GD(t) =

limt↘tT
k′i

Γ̃GD(t).

Finally, by letting t̃ be sufficiently small, one can show that γ∗`,2(t) goes to η(0)
`
/α`, and

we have
∑L
`=1 η

(0)
`
/α` ≤ 1 (otherwise the problem would be infeasible). Moreover, when t

is sufficiently large, it is clear that Γ̃GD(t) > 1. Hence, there exists t∗ such that Γ̃GD(t∗) = 1,
which concludes the proof.
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Titre : Allocation de ressources pour les HARQ dans les réseaux ad hoc mobiles

Mots clés : HARQ, allocation de ressources, optimisation, efficacité énergétique, canal de Rice

Résumé : Cette thèse traite le problème de l’allo-
cation des ressources physiques dans les réseaux
ad hoc mobiles en contexte multi-utilisateurs. Nous
considérons qu’un noeud du réseau, appelé gestion-
naire des ressources (GR) a pour tache d’effectuer
cette allocation de ressources, et que pour ce faire,
les autres noeuds lui communiquent des informations
relatives aux canaux de propagations de leurs liens
de communications. Ce modèle de réseaux induit un
délai entre le moment où les noeuds envoient leurs in-
formations au GR et le moment où le GR leur envoie
leur allocation de ressource, ce qui rend impossible
l’utilisation d’informations de canal instantanées pour
effectuer l’allocation. Ainsi, nous considérons que le
GR ne disposent que d’informations statistiques rela-
tives aux canaux des différents liens de communica-

tions. De plus, nous supposons que chaque lien uti-
lise le mécanisme de l’ARQ Hybride (HARQ). Dans
ce contexte, la thèse comporte deux objectifs prin-
cipaux : i) proposer des procédures d’estimation de
la statistique du canal de propagation, et plus parti-
culièrement du facteur K du canal de Rice avec et
sans effet de masquage. ii) Proposer et étudier des
algorithmes d’allocation de ressources basés sur les
statistiques du canal et prenant en compte l’utilisation
de l’HARQ ainsi que de schéma de modulation et de
codage pratique. En particulier, on cherche à maximi-
ser des grandeurs relatives à l’efficacité énergétique
du système. Les ressources à allouer à chaque lien
sont une énergie de transmission et une proportion
de la bande de fréquence.

Title : Resource Allocation for HARQ in Mobile Ad Hoc Networks

Keywords : HARQ, resource allocation, optimization, energy efficiency, Rician channel

Abstract : This thesis addresses the Resource Allo-
cation (RA) problem in multiuser mobile ad hoc net-
works. We assume that there is a node in the net-
work, called the resource manager (RM), whose task
is to allocate the resource and thus the other nodes
send him there channel state information (CSI). This
network model induces a delay between the time the
nodes send the RM their CSI and the time the RM
sends them their RA, which renders impossible the
use of instantaneous CSI. Thus, we assume that only
statistical CSI is available to perform the RA. Moreo-

ver, we assume that an Hybrid ARQ (HARQ) mecha-
nism is used on all the links. In this context, the ob-
jective of the thesis is twofold: i) propose procedures
to estimate the statistical CSI, and more precisely to
estimate the Rician K factor with and without sha-
dowing. ii) Propose and analyse new RA algorithms
using statistical CSI and taking into account the use of
HARQ and practical modulation and coding schemes.
We aim to maximize energy efficiency related metrics.
The resource to allocate are per-link transmit energy
and bandwidth proportion.
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