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Résumé long

Résumé

Les interventions coronariennes percutanées (ICP) sont réalisées à l’aide de la dif-
fusion en temps réel d’images radiographiques dans une suite interventionnelle. La
modélisation de ces procédures ICP pour aider le praticien implique la compréhen-
sion des différentes phases de la procédure ICP par la machine d’intervention, qui
peut être utilisée pour optimiser la dose de rayons X et l’agent de contraste. Pour
atteindre cet objectif, l’une des tâches importantes consiste à segmenter différents
outils d’intervention dans les flux d’images fluoroscopiques et à en déduire des in-
formations sémantiques. L’arbre des composants, un puissant outil morphologique
mathématique, constitue la base des méthodes de segmentation proposées. Nous
présentons ce travail en deux parties: 1) la segmentation du cathéter vide à faible
contraste, et 2) la segmentation de la pointe du guide et le suivi de la détection
du vaisseau d’intervention. Nous présentons une nouvelle méthode de segmentation
basée sur l’espace à plusieurs échelles pour détecter des objets faiblement contrastés
comme un cathéter vide. Pour la dernière partie, nous présentons la segmentation
de la pointe du guide avec le filtrage basé sur l’arbre de composants et proposons
un algorithme pour suivre sémantiquement la pointe segmentée pour déterminer le
vaisseau d’intervention.

Mots Clef

Radiographie, morphologie mathématique, imagerie médicale, segmentation, suivi
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Figure 1: Phases de la procédure ICP.

A Introduction

L’intervention coronarienne percutanée (ICP) est une procédure employée pour le
traitement de la sténose de l’artère coronaire. Une sténose est un rétrécissement
d’une coronaire, ce qui arrive en cas de maladie coronarienne, une pathologie com-
mune avec son état aigu la crise cardiaque pouvant conduire à la mort l’ICP est
une procédure très mature reposant sur le déploiement d’un stent ayant la forme
de l’artère à l’endroit de la sténose. Les outils utilisés sont navigués dans le réseau
artériel du patient. Le guidage est réalisé en visualisant ces outils à travers un flux
d’images radiographiques en temps réel. La contribution clinique de ces procédures
est très reconnue: c’est ainsi qu’environ 175 000 stents (prothèses endovasculaires
intra-coronaires) sont déployés par an en France et 2,3 millions dans les pays de
l’OECD [OECD, 2011]. Par conséquent, l’optimisation du coût et de la qualité
du résultat est de la plus haute importance. En fait, la quantité élevée de radi-
ations ionisantes et d’agent de contraste (utilisé pour visualiser la vascularisation
sous rayons X) est l’une des limites de ces procédures, qui a un impact sur les
patients ainsi que sur le praticien. Dans ce contexte, il est souvent observé que
l’équipement d’imagerie est utilisé de façon sous-optimale car il est difficile pour
le praticien d’optimiser les points de fonctionnement compte tenu des multiples
tâches qu’il doit effectuer. Par conséquent, le compromis qualité d’image / dose de
rayonnement / agent de contraste utilisé n’est pas toujours adéquat.

Les interactions de l’équipement d’imagerie avec son utilisateur peuvent être
améliorées, en particulier via des optimisations du comportement de la machine en
fonction des phases de la procédure. Obtenir des informations sur les phases de la
procédure directement auprès de l’opérateur humain n’est pas acceptable du point
de vue du workflow. Nous visons donc à concevoir une famille d’algorithmes de
traitement d’images pour identifier la présence de différents outils d’intervention
dans les images et relier cette information à des connaissances de haut niveau
décrivant les phases de la procédure et les attentes des utilisateurs pour chacune
d’entre elles. La compréhension de ces phases dépend en partie d’une analyse sé-
mantique des images produites tout au long de la procédure. Nous appelons cette
analyse sémantique de la procédure modélisation de procédure ICP. Une telle anal-
yse d’image a été étudiée dans la vision par ordinateur comme la reconnaissance
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B. Opérateurs connectés et espaces de formes basés sur des arbres

d’activité [Turaga et al., 2008] et a été traduite dans le domaine médical pour
l’application chirurgicale [Lalys and Jannin, 2014]. En cas de procédures ICP, les
cliniciens ont mentionné l’importance des rapports structurés et une documentation
complète des indications pour les procédures ICP [Nallamothu et al., 2014; Sanborn
et al., 2014]. Les différentes phases des procédures ICP sont représentées sur la
Fig. 1.7. La détection et le suivi des outils d’intervention comme le cathéter de
guidage, le cathéter, la pointe du guide, le corps du guide, les billes de repérage,
le ballon, le stent sont nécessaires pour construire cette modélisation. Ainsi, la
segmentation de ces outils est une brique fondamentale. Il est alors envisageable
de déterminer des informations sémantiques sur les régions d’intérêt, les points de
contrôle et les phases à l’aide des outils segmentés. L’apparence de ces différents
objets peut varier beaucoup dans les images radiographiques projetées. Les nom-
breux facteurs qui contribuent à cette variation sont l’apparence peut être la taille
et la forme de l’objet, la radio-opacité du matériau et l’orientation de l’outil dans
le plan d’imagerie.

Nous divisons ce travail en deux parties, à savoir: 1) la segmentation du cathéter
vide et 2) la détection du vaisseau d’intervention en suivant l’extrémité du guide. Les
articles de la version longue de chacune de ces parties [Bacchuwar et al., 2017a,b]
peuvent être lus pour plus de détails. Ces tâches impliquent la segmentation du
cathéter vide et l’extrémité du fil-guide dans les images fluroscopiques respective-
ment. Nous choisissons un cadre unique d’arbres de composants basés sur la mor-
phologie mathématique, un espace de forme basé sur l’arbre, pour segmenter le
cathéter vide et l’extrémité du fil-guide. Sec. B fournit un bref aperçu des opéra-
teurs morphologiques connectés mathématiques et de l’espace de forme basé sur les
arbres utilisé pour la segmentation.

B Opérateurs connectés et espaces de formes basés

sur des arbres

En morphologie mathématique, les opérateurs connectés [Serra and Salembier, 1993;
Salembier and Serra, 1995; Salembier and Wilkinson, 2009] sont des outils de fil-
trage qui peuvent être définis pour agir sur des ensembles. Dans le cas des images
en niveaux de gris, elles ne modifient pas les pixels individuels mais agissent sur
le niveau des composants connectés, appelés zones plates [Salembier and Serra,
1995]. Les opérateurs connectés fonctionnent en fusionnant les zones plates adja-
centes, ce qui garantit qu’elles ne créent ni de nouveaux contours ni ne modifient
l’emplacement ou la forme des contours dans l’image d’entrée. Les opérateurs con-
nectés sont définis à l’origine par le concept de partition de composants connectés.
Soit P une partition et P(p) une région de la partition contenant le pixel p. Nous
pouvons créer une relation d’ordre partiel entre partitions: étant donné deux parti-
tions P1 et P2 de l’ensemble V , partition P1 est dit être un raffinement de P2
(écrit comme P1 v P2) si toute région de P1 est incluse dans une région de P2
(c-à-d P1(x) ⊆ P2(x)). Les opérateurs connectés sont donc définis comme,

Definition B.1. Un opérateur ψ travaillant sur une image en niveaux de gris f est
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(a) Image d’entrée (b) Blobs de courbes ex-
traits

(c) Grappe séléctionnée
des blobs de courbes

(d) Ligne centrale es-
timée du cathéter

Figure 2: Segmentation d’un cathéter vide.

dit connexe si la partition des zones plates de l’image d’entrée f est un raffinement
de la partition des zones plates de ψ(f).

Une implémentation populaire des opérateurs connexes repose sur une représen-
tation arborescente de l’image. Le filtrage consiste alors à concevoir un attribut
caractérisant la forme des composants ou le degré de ressemblance entre la forme
des composantes et la forme attendue.

L’arborescence des composantes est la plus simple des représentations hiérar-
chiques des images. Cette représentation est composée des régions de l’image (c.à.d
des composantes connexes) de la plus petite à la plus grande, deux régions dif-
férentes étant soit incluses l’une dans l’autre, soit disjointes. Ces régions peuvent
donc être organisées sous la forme d’une structure arborescente, chaque région R
formant un nœudN de l’arbre. Le nœud racine désigne le domaine entier de l’image.
Deux régions distinctes R1 et R2, représentées par deux nœuds N1 et N2, ont une
propriété d’inclusion: R1 ∩ R2 6= ∅ → R1 ⊂ R2 or R2 ⊂ R1. Si R1 ⊂ R2, et qu’il
n’existe pas de région R3 telle que R1 ⊂ R3 ⊂ R2, on dit que N2 est parent de N1.
Hormis pour le nœud racine, chaque nœud N de l’arbre a un nœud parent unique
Np, et il existe une arête (N ,Np) les reliant, reflétant cette relation de parenté.

Cette notion nous aide à définir des espaces de formes arborescentes ST [Xu
et al., 2016] pour toute représentation d’image basée sur l’arbre:

Definition B.2. Espace arborescent de formes. Un espace de forme d’arbre ST
est défini comme un ensemble Ri de régions, qui peut être organisé en une structure
arborescente T pour laquelle le nœud racine représente R0, le domaine entier de
l’image et deux régions R1 et R2 sont soit incluses, soit disjointes. Le voisinage de
l’espace de forme est défini par la relation d’inclusion entre les deux régions.

Dans ce travail, nous nous intéressons à des espaces de formes, qui munis d’une
certaine fonction de pondération (c.à.d, un poids est associé à chacune des formes)
forment une représentation équivalente de l’image dans le sens où l’image peut être
reconstruite à partir de l’espace de forme et de sa pondération. Nous décrivons
brièvement ci-dessous deux types de représentations arborescente d’images utilisées
dans ce travail: Min tree. Le min tree [Salembier and Wilkinson, 2009] structure
les composants connectés des ensembles de niveau inférieur de l’image en niveaux de
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gris en fonction de la relation d’inclusion. Une image en niveaux de gris f , lorsqu’elle
est seuillée dans un ordre croissant à chaque niveau de gris possible allant de hmin à
hmax, donne une pile d’ensembles de niveaux inclus (inférieurs). Chaque ensemble de
niveaux peut être partitionné en composants connectés lorsque le domaine d’image
est structuré comme un graphe d’adjacence de pixels (nous considérons la relation 4-
adjacence). Dans ce paramètre, deux composants connectés à deux seuils successifs
sont inclus ou disjoints. L’ensemble de tous les composants connectés est un arbre
dirigé appelé min tree T > de l’image f .

Hiérarchie par zones quasi-plates. L’espace de forme appelé hiérarchie
des zones quasi-plates [Meyer and Maragos, 2000] est la hiérarchie induite par les
ensembles de niveaux d’un graphe aux aretes pondérées. Par exemple, on peut
pondérer les arêtes du graphe 4-connexe de l’image par la différence des niveaux
de gris entre les deux pixels de chaque arête. Une différence importante avec le
min tree est que chaque ensemble de niveaux d’une hiérarchie de zones quasi-plates
forme une partition du domaine de l’image.

Segmentation de cathéter vide Un cathéter de guidage est un outil présent
tout au long de la procédure ICP. Il contribue à l’information sémantique de façon
significative, puisqu’il est le premier outil présent dans le champ de vision. Il est
positionné à l’ostia de l’artère coronaire gauche ou droite pour le reste de la procé-
dure. C’est le conduit pour tous les autres outils / dispositifs qui seront amenés
dans le vaisseau où la lésion est présente. L’agent de contraste est également injecté
dans le système vasculaire à travers le cathéter de guidage. Ainsi, sa segmentation
peut aider à la modélisation de la procédure ICP pour déterminer les événements
/ phases de l’arrivée et du retrait des autres dispositifs (guide, les marqueurs des
ballons d’angioplastie).

Plusieurs méthodes ont été proposées dans la littérature pour détecter différents
types de cathéters comme les cathéters d’électrophysiologie (EP) [Baur et al., 2016],
les cathéters de sinus coronaires [Wu et al., 2011], les cathéters en queue de co-
chon [Lessard et al., 2015]. Les inconvénients majeurs de ces méthodes sont: i) le
première image doit être annotée manuellement et ii) la longueur et la courbure du
guide et du cathéter ne doivent pas beaucoup changer pendant la séquence. Récem-
ment, [Ambrosini et al., 2017] a proposé une segmentation automatique à base de
réseau neuronal convolutif profond basée sur un guide et un cathéter. Toutes ces
approches se concentrent sur le suivi du fil-guide avec le corps du cathéter. Dans
ce travail, nous abordons la tâche de la segmentation du cathéter de guidage vide
dans les images fluoroscopiques. En raison du faible contraste dans les images flu-
oroscopiques, le cathéter vide apparâıt comme une structure faiblement contrastée
avec deux bords parallèles et partiellement déconnectés car il s’agit juste d’un tube
vide fait d’un matériau avec peu de radio-opacité.

B.1 Méthode

Dans ce travail, nous utilisons d’abord l’espace d’échelle de niveau pour identifier
les blobs de courbe (Sec. 3.4.1), qui sont de petites régions sombres persistantes
qui font potentiellement partie du cathéter vide. Nous proposons un nouvel espace
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Figure 3: Flux de travail du système de détection et suivi du vaisseau d’intervention.

d’échelle basé sur un graphe structurel, sous la forme d’une hiérarchie, c.à.d un
arbre construit sur les blobs de la courbe (Sec. 3.4.2). Nous analysons ce second
arbre avec les mêmes techniques que le premier, et nous conservons les structures
les plus persistantes dans ce second espace d’échelle comme segmentation finale. Si
le premier arbre présente les structures profondes des points critiques, le deuxième
arbre met en avant les structures d’intérêt encore plus profondes, que nous appelons
composants connectés profonds.

Extraction de blob de courbe Nous construisons d’abord le min tree de
l’image d’entrée. Le min tree considère seulement les régions sombres connectées
de l’image et les blobs de la courbe apparaissent comme des régions à différents
niveaux de cet arbre (c.à.d, à différentes échelles.) Ensuite, l’ensemble des blobs
de la courbe est inclus dans une coupe horizontale de ce min tree. On attribue à
chaque composante du min tree des attributs caractérisant sa forme et ses propriétés
structurelles. Nous utilisons les attributs d’aire et d’élongation pour filtrer les blobs
de courbe, en concevant un critère de sélection basé sur ces attributs. Les régions
retenues forment l’ensemble des blobs de la courbe. En fonction de la structure du
min tree, un filtrage est effectué pour conserver les éléments ayant la plus grande
surface.

Groupement de blob de courbe Cette section présente l’idée principale de la
détection de cathéter vide, c.à.d le regroupement de blobs de courbe dans un espace
d’échelle structurel. Les blobs de courbe extraits à l’étape précédente peuvent ou
non être des régions des bords du cathéter. En analysant individuellement un blob
donné, il est difficile de décider s’il fait partie d’un cathéter, parce que l’information
contextuelle est manquante. Nous les considérons donc dans un espace commun
et définissons un poids pour chaque paire de blobs de courbe, appelé poids de la
paire blob, formant ainsi un graphe pondéré par les bords. Nous proposons de le
construire en combinant différents poids élémentaires, a) un poids Euclidien et un
poids d’alignement basé sur des informations géométriques; et b) le poids du profil
basé sur l’intensité de l’image. Ainsi, les blobs connectés avec un poids de paire blob
forment un graphe pondéré par les bords, dont les ensembles de niveaux forment une
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C. Vaisseau d’intervention détection dynamique

hiérarchie de zones quasi-plates. Une composante connexe profonde est un élément
de cette hiérarchie, qui est un cluster de blobs de courbe. Nous explorons donc
cette hiérarchie de la même manière que le min tree en concevant des attributs qui
caractérisent les propriétés du cathéter vide. La segmentation résultante est formée
par la ligne médiane estimée du cathéter, qui est une courbe polynomiale ajustée à
la grappe de blobs maximisant le score de probabilité d’être cathéter.

B.2 Évaluation et résultats

Nous évaluons notre algorithme de segmentation de cathéter vide en utilisant un
ensemble de données d’images fluoroscopiques d’environ 1250, appartenant à des 10
séquences prélevées sur des examens de 6 patients. Les images considérées représen-
tent une grande variabilité en raison de l’indice de masse corporelle (IMC) des pa-
tients, des niveaux de bruit, de différents antécédents anatomiques, de la présence
occasionnelle de sondes de stimulation, de stents, d’agrafes et de fils sternaux. À
la suite de l’évaluation d’une base de données de ces images fluoroscopiques, nous
obtenons de très bonnes performances de segmentation qualitatives et quantitatives,
avec une précision moyenne et des rappels de 83,85% et 67,87% respectivement.

C Vaisseau d’intervention détection dynamique

Le Vaisseau D’Intervention (VDI) est une branche de l’arbre des vaisseaux coro-
naires entre l’ostia et l’extrémité distale du vaisseau à travers la lésion coronaire.
Dans cette partie, nous présentons un algorithme de suivi entièrement automatique,
appelé Vaisseau D’Intervention Détection Dynamique (VDIDD), pour détecter le
vaisseau d’intervention, traité pendant la procédure, en combinant les informations
des images de vaisseau avec injection d’agent de contraste et des images fluoro-
scopiques acquises navigation où le VDI n’est pas visible. Un travail important ex-
iste dans la littérature avec un but différent et un flux de travail que notre but. Ce
travail a été fait pour co-localiser entre différentes modalités, comme les séquences
angiographiques radiographiques avec échographie intra-vasculaire (IVUS) [Frimer-
man et al., 2016] ou avec la tomographie par cohérence optique (OCT) [Koyama
et al., 2015] qui sont impliqués dans certaines des procédures ICP.

Comme mentionné dans la section B, le cathéter est placé à l’ostia de l’arbre
coronaire gauche et droit, préparant ainsi la première phase de la procédure ICP,
phase de diagnostic du vaisseau (voir Fig. 1.7). Dans une étape suivante, les lésions
coronaires sont traitées en naviguant un fil guide dans le vaisseau d’intervention,
suivi par l’implantation d’une endoprothèse au niveau de la lésion dans le VDI.
Nous combinons l’information à ces phases initiales à partir de deux séquences
d’images radiographiques différentes: i) les images de ciné de séquence de référence,
un sous-ensemble de séquence angiographique, qui sont injectées avec un agent de
contraste pour décrire le système vasculaire complet; ii) les images fluoroscopiques
de flux d’image fluoroscopique, qui sont acquises lors de la navigation du fil-guide.
Notre cadre de suivi vise à déterminer la position correspondante de la pointe du
fil-guide dans les vaisseaux injectées. Le point crucial de l’algorithme réside dans la
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création et le suivi de paires de caractéristiques cohérentes dans le temps et dans
l’espace. Afin de former de telles paires, nous présentons également (i) un algo-
rithme d’extraction d’arbre de vaisseau, (ii) une méthode robuste de segmentation
de bout de fil guide, et (iii) une procédure d’appariement permettant de faire des
correspondances entre pointes de fil guide et vascularisation détectées. Les dif-
férentes étapes de traitement de la méthode sont montrées dans la Fig. 4.2. Plus
précisément, cet algorithme est capable de reconnâıtre à partir du flux d’images
fluoroscopiques, l’instant correspondant à la navigation du fil-guide et de l’exploiter
pour déterminer le navire d’intervention sans ajouter de contraintes au déroulement
de la procédure. Afin d’atteindre cet objectif, un cadre de suivi général est expliqué
dans Sec. 4.3.1 (algorithme détaillé dans [Bacchuwar et al., 2017b]).

Nous commençons par le pré-traitement et la synchronisation des données d’image
par rapport aux données non-image. Le mouvement cardiaque provoque des change-
ments de position et de forme périodiques des vaisseaux coronaires et ces déforma-
tions s’appliquent au guide qui est navigué dans la lumière de ces vaisseaux. Il vient
donc que, l’apparence d’un guide dans l’image 2D projetée par rayons X change con-
tinuellement. Par conséquent, nous avons choisi d’utiliser des données ECG pour
associer les images à partir de deux séquences à une même phase cardiaque, où le
système vasculaire décrit et des fils de guidage ont des déformations correspondantes
induite par le mouvement cardiaque. Malgré l’appariement d’images en iso-phase,
il peut subsister des incohérences spatiales entre les deux images appariées en raison
du mouvement de respiration, des déformations des vaisseaux dues au corps rigide
du guide, des translation de table, des rotations de l’arceau qui porte la châıne
image. Nous avons également remarqué, dans certains cas, un décalage de phase
ECG induite par un retard électronique de la machine ECG. Par conséquent, il est
nécessaire que l’algorithme d’appariement et de suivi suive de manière cohérente le
guide dans l’image de référence en prenant en compte tous ces facteurs.

C.1 Cadre de suivi général

Nous visons à obtenir le VDI en faisant une correspondance intelligente entre la
séquence de référence et le flux d’image fluoroscopique. Par conséquent, nous pro-
posons un algorithme, appelé VDIDD, qui est capable de détecter simultanément
l’extrémité du fil-guide dans les images fluoroscopiques et le VDI, cest-à-dire la
branche des vaisseaux coronaires dans laquelle le fil-guide navigue actuellement.
Dans une perspective plus large, l’algorithme consiste à: i) détecter des paires de
caractéristiques à partir de paires d’images isophases; ii) regrouper ces paires de
caractéristiques en pistes, une piste étant une séquence de paires de caractéristiques
spatialement cohérentes dans le temps; iii) sélectionner la voie la plus pertinente en
tant que vaisseau d’intervention détecté. Une paire de caractéristiques est composée
de deux courbes correspondantes et est extraite d’une paire d’images isophases. Le
premier, appelé candidat de pointe, correspond peut-être à l’extrémité du guide dans
l’image fluoroscopique. Le second, appelé un chemin de vaisseau, est un chemin dans
l’arbre des vaisseaux coronariens qui s’adapte de manière optimale au candidat de
pointe associé.
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C. Vaisseau d’intervention détection dynamique

L’algorithme VDIDD gère un dictionnaire de pistes, où chaque piste est une
séquence de paires d’entités, avec au plus une paire d’entités par image du flux
d’image fluoroscopique. Pour chaque paire d’images en isophase, l’algorithme at-
tribue de façon optimale chaque paire de caractéristiques détectées à l’une des pistes
existantes. Un coût appelé coût de assignation de piste (décrit dans la section 4.3.3)
est considéré comme assignant de manière optimale une paire de caractéristiques
à une piste. S’il n’existe pas de piste adéquate pour une paire de caractéristiques,
une nouvelle piste est initialisée. Une fois que toutes les images du flux d’images
fluoroscopiques sont traitées, la piste la plus longue (, c.à.d la piste avec le nombre
maximum de paires de caractéristiques) est sélectionnée en tant que VDI.

C.2 Extraction de paires de caractéristiques

Comme mentionné précédemment, l’extraction de paires de caractéristiques consiste
à suivre les trois étapes suivantes:

Extraction de ligne centrale du vaisseau. Chaque image de la séquence
de référence est pré-traitée avec fermeture morphologique pour estimer le fond
anatomique. Pour améliorer les vaisseaux dans l’image soustraite résultante, une
technique basée sur Hessian [Krissian et al., 2000] est adaptée qui suppose que
les vaisseaux sont des structures tubulaires localement linéaires. Afin d’avoir une
représentation graphique de la structure du vaisseau, nous proposons un schéma
d’extraction de la ligne centrale pour obtenir les axes des vaisseaux.

Extraction du candidat de point. Afin de détecter les emplacements pos-
sibles des pointes de guide dans une image fluoroscopique, nous utilisons la même
représentation de l’image, le min tree, qui était précédemment utilisé pour la seg-
mentation du cathéter vide. L’extrémité du fil de guidage est caractérisée par des
attributs de zone et d’allongement pour le filtrage dans un min tree. On observe
qu’un simple seuillage sur l’attribut d’allongement n’est pas suffisant. Par con-
séquent, nous adoptons le cadre de mise en forme [Xu et al., 2016] qui nous permet
d’extraire efficacement des composants connectés significatifs. Nous simplifions la
pointe segmentée (objet de type fil) en utilisant la squelettisation [Couprie and
Bertrand, 2012] pour obtenir sa ligne centrale parce que nous la considérons comme
un objet 1-D. Cette simplification de l’objet 1D aide à l’étape correspondante de
l’extraction de la paire de caractéristiques.

Correspondance Une étape importante dans la tâche de détection de VDI est
de désigner des associations possibles de l’extrémité du fil de guidage à l’intérieur du
vaisseau injecté. La tâche à accomplir dans cette étape consiste à faire correspon-
dre et à aligner un candidat de pointe sur le graphique du vaisseau pour trouver
le trajet du vaisseau correspondant. Une distance courbe-courbe doit être définie
pour faire correspondre et aligner deux courbes. Nous utilisons une version dis-
crète de la distance de Fréchet [Eiter and Mannila, 1994] car elle prend en compte
l’emplacement et l’ordre des points le long des courbes en établissant une correspon-
dance monotone d’une courbe à l’autre. Dans ce cas, nous adaptons l’appariement
de la courbe de [Benseghir et al., 2015] pour effectuer la tâche d’appariement car il
prend en compte la distance du Fréchet et la similarité de forme entre deux courbes.
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L’ensemble obtenu de paires de caractéristiques pour chaque candidat de pointe est
ensuite trié en fonction de la propriété de ressemblance de la courbe pour préférer
les trajets de vaisseau avec une ressemblance de forme plus élevée avec le candidat
de pointe.

C.3 Coût d’assignation de piste

Le coût d’assignation de piste est calculé comme le coût d’attribution d’une paire
d’entités proposée à une piste. C’est une combinaison de trois valeurs de distance:
une distance d’extrémité de pointe, une distance d’extrémité de trajet de vaisseau et
une distance de graphique. Les deux premières valeurs sont définies avec la distance
de l’extrémité de la courbe qui est la distance Euclidienne entre les extrémités de
deux courbes (non orientées). Ensuite, la troisième valeur de distance est obtenue
avec une distance de graphe qui est la longueur moyenne des trajets géodésiques
(dans le graphe de ligne centrale du vaisseau) entre les points d’extrémité de deux
trajets de vaisseaux donnés dans le graphique du vaisseau. Pour limiter la frag-
mentation de la piste, nous privilégions la longueur de piste en multipliant le coût
d’assignation de piste par un facteur de longueur de piste. Les deux valeurs de
distance d’extrémité de courbe représentent le décalage géométrique entre les deux
candidats de pointe et les deux trajets de vaisseau respectivement. La distance de
l’extrémité de la courbe de chemin et la distance du graphique conservent la co-
hérence dans les pistes, tandis que la distance de l’extrémité de la courbe de pointe
évite que des extrémités de guide soient faussement détectées dans la piste la plus
longue.

C.4 Raffinement du vaisseau d’intervention

La piste la plus longue contient le VDI détecté pour différentes phases cardiaques.
A une phase cardiaque donnée, la réunion des chemins de vaisseaux associés dans
cette phase constitue constituent une première proposition du VDI. Ce premier
VDI proposé a souvent de petites branches, des boucles, des trous, des connexions
manquantes / vaisseau coupé résultant des appariements individuels des candidats
de pointe. Nous effectuons diverses opérations morphologiques pour post-traiter
l’union de ces trajets de vaisseaux afin d’affiner le VDI détecté automatiquement à
une phase donnée. Nous appliquons une technique de reconnexion et de fermeture
de trou basée sur la transformation homotopique guidée. Le résultat final après
raffinement ne contient aucune petite branche, boucle, épaisseur ou déconnexion.

C.5 Évaluation et résultats

L’ensemble de données d’évaluation comprend des séquences recueillies dans 15
cas cliniques différents, y compris 9989 images provenant de flux d’images fluo-
roscopiques et 140 images provenant de séquences de référence provenant de 14
patients. Ce jeu de données représente une variété de cas cliniques, y compris dif-
férentes anatomies et localisations vasculaires des lésions, angulations de l’arceau
du système interventionnel, indices de masse corporelle (IMC), qualités d’image des
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C. Vaisseau d’intervention détection dynamique

Figure 4: Les taux de récupération VDI

images fluoroscopiques et complexités de la navigation du guide. Nous avons égale-
ment effectué une analyse détaillée pour analyser les cas en fonction de la qualité
de l’image et des différences d’angulation de l’arceau.

Afin d’évaluer l’efficacité de l’algorithme pour identifier l’arrivée et la navigation
d’un fil guide dans un flux d’image fluoroscopique, nous analysons la robustesse de
l’algorithme VDIDD pour détecter les VDI dans les images sans guide dans le champ
de vision. Il s’agit d’une phase de procédure pendant laquelle le système d’imagerie
est employée avant que le guide n’arrive dans le champ de vue. Selon cette mesure,
l’algorithme VDIDD détecte de façon robuste la pointe (d’où son arrivée) avec un
taux de détection moyen pondéré de 99, 05± 1, 61%.

Nous analysons des vaisseaux sur les plus longues pistes avec une mesure d’évaluation,
qui estime le taux de détection en calculant la distance entre le vaisseau et la vérité
terrian. Sur la base de cette mesure, les vaisseaux sont correctement détectés avec
une précision moyenne de 84,09%. Nous avons développé également des mesures
d’évaluation VDI pour analyser le VDI après raffinement. Les données ont été di-
visées en deux séries de 12 cas réguliers et 3 cas extrêmes basés sur l’angulation de
l’arceau. Les données de 12 cas cliniques (11 patients) sont ensuite évaluées selon la
mesure d’évaluation VDI comme représenté sur la Fig. 4.12, où les barres se réfèrent
aux valeurs médianes, minimum et maximum du taux de récupération VDI. Pour
chaque cas, ces statistiques sont calculées sur les taux de récupération VDI pour
différentes phases cardiaques (=10). Sur notre ensemble de données, le taux moyen
de récupération de VDI est 93,22%. L’une des observations les plus importantes est
que le vaisseau d’intervention récupéré contient l’emplacement de la lésion coronaire
dans 100% des cas.
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D Conclusion

Dans ce travail, nous introduisons le concept de modélisation de procédure ICP
comme une analyse sémantique de la progression de la procédure. Nous montrons
que la segmentation des outils d’intervention est l’une des tâches les plus impor-
tantes pour une telle analyse sémantique. Nous avons démontré que les arbres de
composants basés sur la morphologie mathématique sont des approches robustes
pour la segmentation de plusieurs outils. La segmentation du cathéter vide basée
sur l’espace à plusieurs échelles est une nouvelle méthode pour la segmentation
d’objets à faible contraste. L’algorithme VDIDD pour déterminer automatique-
ment le vaisseau d’intervention est une nouvelle approche algorithmique dans le
domaine ICP. Des résultats encourageants ont été obtenus avec un taux moyen de
récupération des VDI d’environ 93,22% et une précision moyenne de détection des
pointes de 99,05%, ce qui prouve la robustesse par rapport aux différentes conditions
d’imagerie du patient. Nous croyons que cet algorithme de suivi peut être étendu
à des applications comme le suivi des sondes IVUS. Cet algorithme a le potentiel
de faire partie du logiciel embarqué par les systèmes d’imagerie à rayons X et ca-
pable de surveiller automatiquement les étapes successives de la procédure en vue
d’adapter en continu le comportement du système aux besoins de l’utilisateur. Le
même filtrage basé sur l’arbre min peut être utilisé pour effectuer la segmentation
d’autres outils d’intervention. Ce formalisme ouvre des portes pour le développe-
ment d’applications variées comme la documentation automatique des procédures,
la prédiction du début de la phase de navigation, l’amélioration des algorithmes
d’amélioration des stents entre autres. Les travaux futurs comprennent l’étude de
la détection des autres outils majeurs (marqueurs, ballons) en prenant appui sur le
vaisseau d’intervention détecté et leur intégration dans un modèle sémantique de la
procédure.
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Introduction, clinical background and
motivation
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This PhD in the field of image processing falls into the context of interventional
cardiology, a medical specialty where procedures are performed to cure coronary
heart disease, which is first cause of death worldwide. One of the most common
treatment is percutaneous coronary intervention (PCI), which is minimally invasive
procedure performed under the control of real time streaming of X-ray images in an
interventional suite. In this work we introduce the concept of modeling of these PCI
procedures to aid the patient and the clinical team. This involves understanding
the different phases of the PCI procedure by the interventional machine, which can
be used to optimize the X-ray dose and contrast agent. The purpose of this thesis
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is to study ways to segment different interventional tools in the X-ray images and
deduce semantic information from them.

In this introductory chapter, we first present the coronary heart disease and the
possible treatment options, in Section 1.1. This is followed by a detailed view on
the PCI procedure in Section 1.2, summarizing the clinical facts and the steps of
the procedure necessary to understand the modeling of the procedure. Section 1.3
describes the concept of PCI procedure modeling, its motivation and conceivable
applications. Section 1.4 is dedicated for briefly understanding the dataset used in
this study. Finally, Section 1.5, presents the technical context of the thesis, the
overall structure of the thesis and the contributions.

1.1 Clinical context

Ischemic heart disease, also known as coronary heart disease, and its consequences
are one of the major world public health issues. According to the World Health
Organization (WHO), the ischemic heart disease is the number 1 cause of death
both globally and for the high income countries. According to [World Health Or-
ganization, 2017] report, 8.76 million people died of coronary artery disease in 2015
representing 15.5% of all deaths around the world. This Ph.D. thesis is made in
the context of interventional cardiology, which is a key treatment option for coro-
nary artery disease. This section aims at giving the reader a brief overview of the
clinical context and introducing the terms that are commonly met in the field of
interventional cardiology. We shortly introduce the cardiovascular atherosclerosis
pathology in Section 1.1.1 and the associated treatment options 1.1.2.

1.1.1 Cardiovascular pathologies

Heart attack and angina are the two main consequences of the coronary artery dis-
ease. We are particularly interested in the main cause of angina or heart attack:
the atherosclerosis. This disease is also called as atheromatous stenosis. It is the
progressive buildup of cholesterol, fat, calcium and fibrous tissue, called plaque, on
the inner wall of coronary arteries typically over decades (Figure 1.1). In a first
stage, the vessel wall enlarges to include the presence of plaque, while maintain-
ing a normal cross section size. Artherosclerosis is a chronic disease that remains
asymptomatic for decades until this narrowing, also called stenosis, limits the flow
of oxygen-rich blood to organs. This narrowing of artery lumen is usually evident in
blood stream column irregularities visible on a angiography (Figure 1.2), an X-ray
technique that enables vessel visualization.

When the stenosis is severe enough, it can have consequences on the blood
supply to related part of the heart muscle, resulting in a severe chest pain due
to ischemia (a lack of blood, hence a lack of oxygen supply). It is called angina
pectoris (commonly known as angina). From a quantitative standpoint, a stenosis
is considered significant if the narrowing obstructs more than 70% of the diameter of
the artery and non-significant below 50% [Brasselet et al., 2002]. For intermediate
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1.1. Clinical context

Figure 1.1: Artherosclerosis explained by [National Heart, Lung and Blood Institute,
2015d]. (top) Normal artery with normal blood flow; (bottom) an artery with plaque
buildup. The inset images shows cross-sections of corresponding arteries.

Figure 1.2: Visualization of a diseased artery under X-ray fluoroscopy (angiography) with
an IGS 520 X-ray system (GE Healthcare) . The position of the stenosis is shown with
an arrow.
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cases, additional diagnosis and information is required to quantify the impact of the
stenosis.

At a more severe stage, plaques can become unstable, rupture, and additionally
promote a thrombus (blood clot) that occludes the artery. If a thrombus completely
blocks an artery, a whole part of the myocardium is cut off any supply, it leads to
myocardial infarction, known as heart attack. The non-irrigated cardiac cells will
eventually die if the blood flow is not restored soon enough, creating collagen scars
in the muscle that can induce severe life threatening clinical complications. As a
thumb rule, the longer the infarct, the greater the damage.

1.1.2 Treatments

The treatment options for angina and acute myocardial infarction do share some
similarities. Most of the known risk factors for atherosclerosis are: lack of physical
activities, smoking, unhealthy diet, diabetes, geographical factors and high choles-
terol level. Therefore the first treatment of atherosclerosis constitutes of working on
these causes. This can be achieved by change in lifestyle (like exercising, no smok-
ing and low fat/salt diet) and administration of drugs. The administered drugs
are inspired by strategies to reduce the oxygen needs of the heart by reducing the
heart beat rate or to dilate the coronary arteries to improve blood supply or by
avoiding blood clots formation. For more severe cases, two medical procedures can
be performed to treat consequences and re-vascularize properly the myocardium.

Coronary artery bypass graft (CABG): CABG is the surgical procedure
performed to relieve angina and reduce the risk of death from coronary artery dis-
ease. It is an open heart surgery where arteries and/or veins from elsewhere in
the patient’s body are grafted to the coronary arteries to bypass the narrowing and
re-orient the flow, thus improving the blood supply to the coronary circulation (Fig-
ure 1.3). Historically, it was the first developed approach. It is still recommended
for the most complex cases involving multiple territories at risk.

Percutaneous Coronary Intervention (PCI): The Percutaneous Coronary
Intervention (PCI) , or angioplasty is a very mature and minimally invasive pro-
cedure that consists of introducing a balloon into the clotted artery and inflating
it to dilate the artery. It relies on the deployment of a stent, a fine mesh of wire,
having the shape of the artery at the location of the stenosis as a permanent endo-
prothesis. The main steps of these procedures, balloon angioplasty and stenting, are
illustrated in Figure 1.4. We further make a detailed description of this minimally
invasive procedure in next section (Sec. 1.2) since it is the procedure of interest for
our work.
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Figure 1.3: An illustration of CABG [National Heart, Lung and Blood Institute, 2015b]

Figure 1.4: An illustration of balloon angioplasty and stenting [National Heart, Lung and
Blood Institute, 2015c]
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1.2 Detailed view on PCI

So far, we presented a general clinical context. We now propose to detail further
the field of interventional cardiology and stenting. A very short historical perspec-
tive [Gaspard, 2017] of coronary angioplasty will enable us to understand the PCI
procedure as it is performed today. A different family of methods, the angioplasty
methods, has been introduced in 60’ following the pioneering work of [Dotter and
Judkins, 1964], that is considered as the father of Interventional Radiology and
won the Nobel prize in 1978. During his first angiography, Dotter injected con-
trast media into the vessel to make them visible on radiographs. In 1977 Andreas
Gruntzig performed first balloon coronary angioplasty (Figure 1.4), it was the birth
of interventional cardiology. In order to overcome the problem of re-stenosis after
balloon angioplasty, coronary (bare metal) stents were developed in mid 1980s. In
1986 Sigwart et. al. implanted the first coronary stent (Figure 1.4). The PCI
procedures with stenting reduced the rate of CABG. More recently, drug eluting
balloons and drug eluting stents were developed to solve the re-stenosis caused by
intrastent growth of scar tissue.

1.2.1 The Cathlab

The PCI procedures take place in a dedicated interventional room called catheteri-
zation lab, or simply cathlab. At the center of cathlab is the imaging system in our
case a system from the Innova series manufactured by GE (Interventional Guiding
System: IGS 520, or IGS 530 for instance). We first detail the interventional system
in the Section 1.2.1.1. In most of the cases, cathlabs are also equipped with ECG
monitors, as detailed in the Section 1.2.1.2.

1.2.1.1 Interventional system

The imaging of coronary arteries (angiography) and the deployment of stent (PCI)
are minimally invasive techniques monitored under X-ray fluoroscopy with the In-
nova system. At the command (stepping on/off the pedal) of the clinician, real-time
X-ray video is produced at 7.5, 15 or 30 fps. Any part of the body can be imaged, at
virtually any angulation, thanks to positioning capabilities of the system: a moving
table (3 degrees of freedom in translation), on which the patient lies, and an imaging
C-arm (3 degrees of freedom in rotation) that can be positioned around the patient
body part. The images are displayed on the suspended monitors, right in front of
the clinician. Figure 1.5 shows the Innova IGS 520 system, and the positioning of
the patient, the clinician and the monitors. The system also offers the possibility
to spin the C-arm around the patient to perform 3D reconstruction for instance.

Interventional systems are provided with two key acquisition modes, namely
fluoroscopy (also called fluoro, or scopy) and record mode (also called cine or gra-
phy). Fluoroscopy mode is used for maneuvering the interventional tools. In record
mode, the system is set to deliver images with a quality sufficient to support the
operator in his assessment of the vasculature. Record images are more contrasted
and less noisy than fluoroscopic images. In fluoroscopy, the intensity of X-ray beam
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Figure 1.5: Innova Interventional Guiding System, IGS-520 from GE Healthcare in cath-
lab.

(a) Record image (b) Fluoroscopic image

Figure 1.6: Comparison between fluoro and record images on IGS-520. All other compo-
nents of the imaging situation (patient, geometry) are identical. Fluoroscopic images are
noisier and the contrasts are weaker than in the record images.

and so the dose delivered are limited as per regulation. [Didier et al., 2016] reports
observed radiation level and exposure time during PCI procedures in the different
exposure modes. Typical number of dose rate is a ratio of 6 to 10 between the
two acquisition modes which explains the significant difference in noise level and
contrast. In Fig. 1.6, a record image and a fluoroscopic images taken at few seconds
of interval in the same setting illustrate the difference of quality between these two
imaging modes of interventional angiographic units. The appropriate usage of both
and of the multiple dose customization capabilities of the system enables performing
interventions according to the ALARA principle that rules the image quality/dose
trade-off: Xray dose must be As Low As Reasonably Achievable.
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1.2.1.2 ECG acquisition

During the PCI procedure, the patient on the table in the cathlab is connected
to an ECG monitor that records the electrical activity of the heart and monitors
the heart during the procedure using small electrodes that stick to the skin of the
patient. These ECG monitors are also coupled with the imaging system such that
the ECG signals are acquired simultaneously and are mapped temporally to the
X-ray image stream.

1.2.2 Breakdown of a PCI procedure

The PCI procedures follow a set of pre-defined steps/phases. It is important to
understand these different steps given the context of the thesis. A presentation of the
overall procedure is provided in [National Heart, Lung and Blood Institute, 2015a],
which illustrates the different phases of the PCI procedure. Several interventional
tools are involved in the PCI procedure. We list few tools, visible in X-ray images,
in the Section 1.2.2.1, which will help the reader to understand the different phases
of the procedure detailed in Section 1.2.2.2. We refer to this breakdown in several
chapters depending on the problem we are addressing.

1.2.2.1 Interventional tools

Facilities performing PCIs must have a varied inventory of coronary diagnostic/guiding
catheters, coronary guide wires, angioplasty balloons, coronary stents and other
treatment devices commensurate with the scope of services. These are the four
tools mostly visible in X-ray images. Some details about them are as follows:

1. Coronary catheter. A catheter is a flexible surgical tube or instrument
inserted in body cavity or vessel. The coronary catheters used during PCI
are of two types: i) the diagnostic catheter, and ii) the guiding catheter. The
diagnostic catheter functions as a conduit for contrast, fluids, and pressure
measurement during cardiac catheterization of coronary arteries and the left
ventricle The coronary guide catheter provides support for device advance-
ment (stents, balloons, etc.). It is the conduit for device and wire transport,
a vehicle for contrast injection and takes measurements. Both these types of
catheters look almost alike in X-ray images. Coronary catheters are available
in a variety of shapes and sizes to fit a variety of patient anatomies. They are
available in 1.5 to 3 mm inner diameter measurements.

2. Coronary guidewire. Coronary guidewires are designed to navigate vessels
to reach a lesion or vessel segment. Once the tip of the device arrives at its
destination, it acts as a guide that balloon catheters and stents can rapidly
follow for easier delivery to the treatment site. The guidewire, a very thin
(wire-like) object of diameter 0.35 mm has two sections namely the guidewire
body and the guidewire tip. The tip being the distal section of 20 mm length,
aids the navigation of guidewire. It is enough radio opaque to be seen with low-
dose fluoroscopy mode of interventional systems. Guidewires with different
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Figure 1.7: Phases of the PCI procedure

features exist and are used in specialized procedures such as treatment of
chronic total occlusions.

3. Angioplasty balloon. An angioplasty balloon is a medical device that is
inserted into a clogged artery and inflated to clear blockage and allow blood
to flow. A balloon catheter is a catheter with an inflatable ”angioplasty bal-
loon” at its tip which is used during a catheterization procedure to enlarge a
narrow opening or passage within the body. The balloons are provided with
radiopaque markers, called markerballs, which helps the clinician to navigate
the balloon to the location of the lesion. The deflated balloon catheter is thus
positioned, then inflated to perform the necessary procedure, and deflated
again in order to be removed. When a balloon catheter is used to compress
plaque within a clogged coronary artery it is referred to as a plain old balloon
angioplasty or POBA. Balloon catheters are also utilized in the deployment
of stents during angioplasty.

4. Coronary stent. A stent is a wire-mesh tube placed in the coronary arteries
that supply the heart, to keep the arteries open in the treatment of coronary
heart disease during PCI. Stents reduce chest pain and have been shown to
improve survivability in the event of an acute myocardial infarction. Balloon
catheters are supplied to the cath lab with a stent premounted on the balloon.
When the cardiologist inflates the balloon it expands the stent. When the
cardiologist subsequently deflates the balloon the stent stays behind in the
artery and pulls it back out of the patient, the stent stays (Figure 1.4).

1.2.2.2 Phases of the procedure

The different phases of the PCI procedures are shown in Fig. 1.7. As illustrated
in [National Heart, Lung and Blood Institute, 2015a], firstly a needle is used to
make a small hole in the blood vessel, usually the groin and the diagnostic catheter
is inserted to navigate through the aorta. The radial artery, on the left or right side
arm of the patient is also commonly used as access point to enter in the vascula-
ture. The tip of the catheter is placed at the coronary ostium (entry) to produce
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Table 1.1: Phases of the PCI procedure. The first column is the index of the phase,
second one its description, third one is X-ray mode (F stands for fluoro and R for record)
and the last one the clinical challenges.

Phase X-ray Clinical challenges

1 Diagnosis R
Assessing if lesion shall be treated;
choosing appropriate sized balloon
and stent

2 Guidewire navigation F Some lesions can be difficult to cross

3 Markerball positioning F
Visualizing the position of the balloon
versus the anatomy

4
Balloon inflation/
(stent expansion)

F or R
Controlling the pressure in balloon and
counting time of inflation simultaneously

5 Stent assessment R Assessing is stent is correctly deployed
6 Contrast injection R Assessing if lesion is treated

7
If the lesion is not
properly treated repeat 4

F

8
Removal of interventional
tools

F

reference images of the pathology. This phase is referred to as diagnostic phase or
reference sequence. The images of reference sequence, illustrating the vessels, help
the clinician to decide the treatment strategy. If stenting is selected, he/she will
preserve this reference image on one of his monitors to guide his gesture all along
the procedure. The imaging C-arm typically stays in the same position until the
end of the treatment.

Then during the guidewire navigation phase, a guidewire is inserted down to the
distal end of the artery. The crossing of the lesion may present some difficulties
depending on its characteristics. Usually, a balloon catheter is slided over the
guidewire to the lesion and inflated at high pressure (10-12atm). Then a stent is
mounted on a balloon and is slided down to the lesion and positioned with the help
of markerballs. We term this phase as markerballs positioning phase. Following this,
during the balloon inflation phase, the balloon carrying stent is inflated to deploy
the stent at the lesion. Then, the balloon is removed and a stent enhancement
visualization software, like StentViz (commercialized by GE), is launched. This
is termed as the stent assessment phase. Finally, a record acquisition is performed
with contrast injection to verify that the lesion is properly treated, the corresponding
phase being dye/contrast injection phase. If necessary, a balloon is brought back
and inflated again. The main phases of the procedure, the corresponding X-ray
acquisition mode and the challenges met by physicians during these phases are
reported in Table 1.1.
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1.3 Motivation: PCI procedure modeling and its

applications

In interventional cardiology, PCI procedures are performed with real time streaming
of X-ray images, most of it being low dose fluoroscopic images. The clinical contri-
bution of these procedures is very recognized: it is thus that about 175,000 stents
are deployed per year in France and 2.3 million in the OECD countries [OECD,
2011]. Therefore, optimizing the cost and the quality of the result is of utmost im-
portance for the stakeholders. In fact, the high amount of ionizing radiations and
contrast agent is one of the limitation of these procedures, which impacts patients
as well as the practitioner. In this context, it is often observed that the machine
is used sub-optimally because it is difficult for practitioner to optimize operating
points given the multiple tasks he should perform. As a result, the image quality /
radiation dose / contrast agent compromise employed is not always adequate.

The design of the machine and the interactions of the imaging equipment with its
user can be improved. These can be partly achieved by optimizations of the behavior
of the machine according to the phases of the procedure. Getting information about
phases of the procedure directly from the human operator is not acceptable from
a workflow point of view. So we aim at designing a family of image processing
algorithms to identify the presence of different interventional tools in the images and
link this information to high-level knowledge describing the phases of the procedure
and the user expectations for each of them. The understanding of these phases
depends in part on a semantic analysis of the images produced throughout the
procedure. We term this semantic analysis of the procedure as “PCI procedure
modeling”.

We can relate the PCI procedure modeling to the concept of human activity
recognition in computer vision. The vast research on human activity recognition
has been actively investigated [Turaga et al., 2008] and translated to the domain
of surgical applications [Lalys and Jannin, 2014], where it is termed as surgical
process modeling. In the field of operating theater monitoring and surgical pro-
cess modeling for laparascopic and cataract surgeries, similar pioneering work has
been reported [Lalys et al., 2012; Padoy et al., 2012]. In our case, such semantic
information may also be used for automatic dose control.

In the cathlab, a number of events are recorded, such as the position of the
imaging system, ECG information or the use of the different image acquisition
modes. The most significant information is in X-ray images produced and used by
the operator for guidance. It is from these images that we think we can follow the
progress of the procedure. The task of PCI procedure modeling can be conceived on
several levels. At the level of the individual images: by identifying the tools present
in the image. At the sequence level: by identifying the intention of the operator
during the sequence like what information was obtained, which tool manipulation
was performed. Finally, at the level of the whole procedure: by recognizing the key
phases of the procedure in the succession of recorded sequences. This strategy is
based on the assumption that recognition of an interventional tool in X-ray image
leads to information that a given phase of the procedure is starting or on-going.
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Monitoring the interventional tools like coronary catheters, guide wire, marker balls,
balloon, stent is thus necessary to obtain this information. Therefore, segmentation
of these tools is a fundamental brick in such procedure modeling. It is then required
to obtain semantic information about the regions of interest, control points and
phases using the segmented tools. The appearance of these different devices may
vary a lot in the projected X-ray images. The numerous factors contributing to
this variation may be the size and shape of the object, radio-opacity of the material
and the orientation of the tool in the imaging plane. These tools are contrasted
and relatively easy to segment. Others are more challenging and we aim to develop
collaborative segmentation scheme. Tracking these tools along the sequence and
obtaining semantic information is challenging given the complex motions apparent
because of heart beat, breathing and the navigation of the interventional tools.

PCI procedure modeling can help to improve the interaction of the clinician with
the imaging equipment. Some of the applications that we can envision can be smart
dose control, as patented in [Riddell et al., 2017]. The labelled sequences according
to recognized phases can be used to generate automatic electronic medical records.
A system was presented for automatic generation of electronic medical record [Agar-
wal et al., 2007], which contains information about administration of medicines and
the occurrence of medically significant events. In case of PCI procedures, clinicians
have mentioned importance of structured reporting and comprehensive documen-
tation of indications for PCI procedures [Nallamothu et al., 2014; Sanborn et al.,
2014]. Besides, identification of key events can be used to automatically launch
softwares like StentViz, thus improving the user machine interaction. Another ap-
plication of PCI procedure modeling, can be prediction of remaining time which
would aid the clinical teams for smoother clinical workflow between two interven-
tions. Similar application has been presented in the field of surgical procedure
modeling [Aksamentov et al., 2017].

1.4 A word about the dataset

During the PCI procedures, in general, the record images are automatically stored
on the system and are used for diagnosis and documentation of the stages of the
treatment. Whereas the fluoroscopic images are not systematically stored. In some
cases, like ours, based on an agreement between the clinical institutes and research
labs, the fluoroscopic images throughout the procedure can be stored and then
retrospectively used for research purposes. Thus, our dataset consists of fluoroscopic
and record images along with the mapped ECG data. Each image is also associated
with additional system information like the position of the C-arm gantry, the table
position, collimation parameters, and time stamp for the frame. Though the dataset
used in this work is from a single clinical site, there is a lot of variation because
of different patients, anatomy, SNR, dose etc. We further mention details on data
used in different parts of work in the corresponding chapters.
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1.5 Context of the thesis

In the previous paragraph we presented PCI procedures which are minimally inva-
sive treatment for coronary heart disease and the concept of PCI procedure mod-
eling we introduce in this work. In order to perform continuous monitoring of the
procedure to reach the goal of PCI procedure modeling, one of the important task
is to detect different interventional tools in the X-ray image sequences and deduce
semantic information from them and various available information. Thus, it is nec-
essary to detect, recognize and delineate automatically (segment) the interventional
tools in record as well as fluoroscopic images. However, the segmentation task is
difficult due to low contrast in fluoroscopic images. Given the different nature of
the tools to be detected (shape / contrast / size), the methods to detect should take
advantage of multi-scale descriptions of images to construct appropriate hierarchical
image representations and detect the structures of interest.

Segmentation of different interventional tools has been studied vastly in liter-
ature for aiding or driving different applications: motion compensation, naviga-
tion, stent visualization, 3D/2D registration, guidewire enhancement, denoising,
3D reconstruction of stents and closure devices. Overall we observe that dedicated
methods were proposed in the literature for the detection and the segmentation
of specific interventional tools. However, these methods cannot be generalized for
segmentation of other tools. We propose methods based on graph based connected
filters for segmenting these interventional tools. We choose a unique framework of
mathematical morphology based on component trees, a tree based shape-space, for
segmenting different interventional tools. The goal of Chapter 2 is to have a brief
literature review of the methods used for segmentation of interventional tools and
to have an overview of the background and theory of mathematical morphology
based connected operators which are the core segmentation methods of this thesis.
We also review some registration methods in this chapter.

We split this work in two parts, namely: 1) empty catheter segmentation and,
2) vessel of intervention detection by tracking guidewire tip. In Chapter 3, we
present a method for the segmentation of empty coronary catheter in X-ray images.
The coronary catheter, being a commonly visible landmark, its segmentation is an
important and a difficult brick for PCI procedure modeling. In a number of clinical
situations, the catheter is empty and appears as a low contrasted structure with two
parallel and partially disconnected edges. To segment it, we work on the level-set
scale-space of image, the component tree called as min tree, to extract curve blobs.
We then propose a novel structural scale-space, a hierarchy built on these curve
blobs. The deep connected components, which are the clusters of curve blobs on
this hierarchy are analyzed to detect empty catheter. This work was presented in
conferences [Bacchuwar et al., 2016] and was published in journal [Bacchuwar et al.,
2017a].

In Chapter 4, we present a fully automatic tracking algorithm, called vessel
of intervention dynamic detection (VOIDD), to detect the vessel of intervention
(VOI), which is treated during the procedure, by combining information from a
reference image with contrast injected vasculature and fluoroscopic images acquired
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during guidewire tip navigation phase where the VOI is not visible. This work is
preliminary step towards PCI procedure modeling and can be used to automatize
preparation of enhanced images and also to optimize the image acquisition to reduce
the use of ionizing radiation or amount of contrast media. This work was presented
in a conference [Bacchuwar et al., 2017b] and the corresponding journal article is
under review.

Both the chapters on the contributions of this PhD thesis are organized as an
independent publication (abstract - introduction - method - result - discussion -
conclusion) and can be read quite independently from the other ones. Readers who
are interested in mathematical morphology and graph based connected filters can
read Chapter 2 independently.
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2.1 Segmentation and detection of interventional

tools in X-ray images

The task of segmentation and detection of interventional tools in X-ray fluoroscopic
images have been studied in details by various teams. They mostly aimed at real
time or near real time detection of interventional tools like marker balls, guidewires,
stents, IVUS probes, and catheters.Most of these methods were developed for aiding
or driving different applications: motion compensation, navigation, stent visualiza-
tion, 3D/2D registration, guidewire enhancement, denoising, 3D reconstruction of
stents and closure devices. The appearance of these different devices may vary a lot
in the projected X-ray images. The numerous factors contributing to this variation
in appearance may be the size and shape of the object, radio-opacity of the material
and the orientation of the tool in the imaging plane.

Many methods in the literature use the marker balls to detect the stent regions.
The proposed applications are either 2D digital stent enhancement/visualization [Flo-
rent et al., 2008; Bismuth et al., 2011] or 3D stent reconstruction [Schoonenberg
et al., 2008, 2009]. [Schoonenberg et al., 2009] describes the marker balls as blob
like structures. They use blob detection with automatic scale selection proposed
by [Lindeberg, 1993], thus obtaining number of candidate markers. The tracked
marker couple is further used to perform the task of motion compensation or re-
construction of coronary segments. The authors of [Bismuth et al., 2011] proposed
marker ball segmentation based on local minima selection in an intensity range.
The numerous detected candidates for marker balls were then tracked to detect the
marker balls couple, which was followed by guidewire segmentation between the
marker balls. Finally, the stent is visualized by combining images after registering
them in a non-linear fashion to a reference position (image). [Chen et al., 2012;
Wang et al., 2012] accomplish the task of marker ball detection by training a detec-
tor with manually annotated samples and probabilistic boosting tree classifier. In
these two methods, the tracking is based on Vertibi algorithm to find the marker
ball couple in globally optimal manner.

The various guidewire enhancement techniques include edge-detection meth-
ods [Palti-Wasserman et al., 1997], methods based on vesselness measure [Frangi
et al., 1998; Heibela et al., 2009] and Hessian eigenvalues [Baert et al., 2003] and
phase congruency [Slabaugh et al., 2007]. The various guidewire detection methods
were reviewed, compared and classified into three families by [Bismuth et al., 2009].
The application of clinical interest for this study was respiratory motion compensa-
tion for 2D/3D roadmapping. They claim that the Hessian based methods are most
robust to strong curvature of the guidewires and that techniques based on family
of highly anisotropic rotated filters [Kunz and Schweiger, 2005] are most suited for
detection of low CNR and low curvature guidewires. They also demonstrate that
steerable filter approach, based on the work of [Jacob and Unser, 2004], had less in-
teresting detection capabilities and appeared to be most computationally expensive
among the three families.

Among the another set of methods based on machine learning, [Barbu et al.,
2007] presented guidewire localization and enhancement in cardiac fluoroscopic im-
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(a) Input binary image (b) Filtered binary image

Figure 2.1: An example of binary connected operator.

ages using hierarchical data organization guided by classification. As a first step,
they obtain parts of curve using a low-level segment detector. They use marginal
space learning based hierarchical model of curves to model complex free-form curves.
This method is purely learning based and is neither invariant to guidewire pose pa-
rameters nor it can handle well miss-detection. In order to over come these short-
comings [Honnorat et al., 2010b,a] proposed more robust guidewire segmentation
method based on detection using boosting, mid-level grouping scheme based on clus-
tering and a complete reconstruction through the minimization of global criterion.
Other method for guidewire enhancement include more general curvilinear structure
enhancement technique based on polygonal path image as proposed by [Bismuth
et al., 2012]. This method is based on selection of best fitting curve at each pixel
and has ability to control the smoothness and length of the curvilinear structures to
be analyzed. This method unifies in a single framework local, semi-local and global
curvilinear structure analysis with computational efficiency.

Catheters of different types are also another important set of tools in interven-
tional procedures which serve for different purposes. We have listed several works
on segmentation and detection of various catheters in Section 3.2.2 as they are
more relevant to the empty catheter segmentation problem we address in this work.
Overall we observe that dedicated methods were proposed in literature for detection
and segmentation of specific interventional tools. However, these methods cannot
be generalized for segmentation of other tools.

PCI procedure modeling requires segmentation and detection of various inter-
ventional tools which appear throughout the procedure. We propose methods based
on graph based connected filters for segmenting these interventional tools.
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2.2 Graph based connected filtering

This section presents the background of the core segmentation methods used in this
thesis. We present the basic definitions and notions of graphs in mathematical mor-
phology in the Section 2.2.2. We review the mathematical morphological connected
operators in graph based framework in Section 2.2.3. Following this we present the
notions of connectivity in weighted graphs in Section 2.2.4 and the concept of con-
nected partitions and hierarchies in Section 2.2.5. We then introduce the concept
of component trees as tree-based shape space for tree-based hierarchical represen-
tations of images (graphs) and filtering on these shape spaces in Section 2.2.6 and
Section 2.2.7. We then discuss the challenges for using graph based connected filters
and some approaches to solve them in Section 2.2.8.

2.2.1 General overview

Traditionally, digital images are represented as rectangular grid of pixels and digital
videos are seen as continuous flow of digital images. New multimedia applications
like indexing (e.g. PCI procedure modeling presented in this thesis), require a rep-
resentation that is closer to observed and human perceived physical reality. The
tasks in indexing applications like creation of table of contents rely on the knowl-
edge of spatio-temporal entities describing when and where the indexed elements
can be observed. In these applications, the notion of regions is central. If we try
to distinguish between the notion of regions and objects: an object is a set of re-
gions that forms a semantic entity. Most of the signal processing tools, in particular
classical filtering techniques, are inappropriate for region-based representation and
processing as they depend on classical pixel-oriented signal representation where the
notion of region is absent. In literature, early examples of region-based processing
can be found in the field of segmentation.

Connected filters [Serra and Salembier, 1993; Salembier and Serra, 1995; Salem-
bier et al., 1998; Salembier and Wilkinson, 2009] is a set morphological filtering
tools which has received much attention being at the frontier between segmenta-
tion and filtering [Gatica-Perez et al., 2001]. Connected filters have the property of
simplifying the image while preserving contour information and have proved useful
in a large number of applications, including image filtering, segmentation, pattern
recognition, and multiresolution decomposition. Connected filters are filtering tools
which can be defined to be acting on sets or graphs. They focus on the notion of
connected components, i.e., maximal set of vertices in which a path exists between
any two vertices. The extension of connected operators to different types of graphs
(vertex or edge weighted) leads to definition of several hierarchical representation:
the component tree [Salembier et al., 1998], the binary partition tree [Salembier and
Garrido, 2000], the tree of shapes [Monasse and Guichard, 2000b] or the quasi-flat
zones tree [Cousty, Najman and Perret, 2013]. They are higher level of abstrac-
tion for understanding [Chen et al., 2000], classifying [Urbach et al., 2007], filter-
ing [Salembier et al., 1998] or segmenting [Jones, 1999; Passat et al., 2011] regions
(and eventually objects) in images. In this PhD, the connected filters-based con-
cepts which are proved in literature are used for images and more complex spaces
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than images. As mentioned by [Perret et al., 2015], a general definition scheme for
connected filter consist of four steps:

1. construct the image hierarchical representation;

2. compute attributes at each node of the representation;

3. select relevant nodes according to these attributes;

4. produce a filtered image or segmentation map.

A connected component appearing in the hierarchical representation is called as
node. Based on the above four steps, the task of designing connected operators to
perform segmentation, classification or filtering has two major issues, noted:

1. making structures of interest emerge in the hierarchical representation;

2. distinguishing structures of interest in this hierarchy.

The first issue has been discussed in the literature through the definition of sec-
ond generation connectivity [Ronse, 1998; Ouzounis and Wilkinson, 2007a; Passat
and Naegel, 2011], constrained connectivity [Soille, 2008], and hyper-connectivity
[Ouzounis and Wilkinson, 2011]. Second generation connectivity will be discussed
in Section 2.2.8. For the first issue, our contribution of deep connected components
in multi-level scale space will be described in Chapter 3. The second issue, i.e. se-
lecting relevant nodes of hierarchy refers to steps 2 and 3 of the definition scheme
of connected operators:

� defining attributes that provide a suitable feature space to be able to charac-
terize relevant nodes; and

� defining robust and accurate node selection process.

The task of defining attributes refers to designing attribute functions described in
the Section 2.2.3.3. Significant effort has also been made to propose node selection
processes which have evolved from global thresholding [Jones, 1999], to energy-
minimization methods [Guigues et al., 2006; Serra, 2012], to connected filtering in
feature space [Xu et al., 2016] and learning based classification [Caldairou et al.,
2009]. More details on attributes is provided in tree based image filtering strategies
described in Section 2.2.7. The notion of connectivity is required to define a region
mentioned above in this section. The objective of the next section is to introduce
the elementary notions of the graph theory which provides, in particular, the tools
to understand the concept of connectivity in the discrete sets.

2.2.2 Graphs and connectivity for image analysis

Graphs are effective representation applied vastly in image analysis and process-
ing [Lézoray and Grady, 2012]. The usefulness of graphs in mathematical morphol-
ogy has been recognized by [Vincent, 1989], and later [Bertrand, 2005; Cousty et al.,
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Figure 2.2: A graph

2009; Heijmans and Vincent, 1999; Loménie and Stamon, 2008; Meyer and Angulo,
2007; Meyer and Lerallut, 2007; Stawiaski and Meyer, 2009; Ta et al., 2008; Cou-
prie et al., 2011] extended various tools from mathematical morphology in graphs.
Further, the overview of advantages of graphs for mathematical morphology was
described with least possible mathematical jargon by [Najman and Cousty, 2014].
Graphs are more abstract representation than images with adjacency relationship
and less specific than connectivity. In mathematical morphology, set connectivity is
explained through more global and axiomatic definition of connection, first proposed
by [Serra, 1988] (Ch. 2, p. 51).

Definition 2.2.1 (Graphs). A graph is a pair G = (V,E) composed of a non-empty
finite set V and of a set E of unordered pairs of elements of V , i.e., E is a subset
of V

⊗
V = {{x, y} ⊆ V |x 6= y}. Each element of V is called vertex (of G), and

each element of E is called an edge (of G). If V 6= ∅, we say G is non-empty. The
vertex and edge sets of a graph G ′ are denoted by V (G ′) and E(G ′) respectively.

Let G be a graph. Similarly, we consider a function Γ∗G, of V (G) in the set of
parts of V (G), which associates to each vertex x of G to set of its neighbors: Γ∗G(x) =
{y ∈ V (G) | {x, y} ∈ E(G)}. Let x and y be two vertices of G. If y ∈ Γ∗G(x), we
say x and y are adjacent for G.

The Figure 2.2 below shows an example of a graph G. The vertices are repre-
sented by the circles and the edges by the segments joining two vertices. The set
of vertices of G is V (G) = {a, b, c, d, e, f, g, h, i, j, k}; the set E(G) of edges of G
is: {{a, b}, {a, e}, {b, d}, {b, e}, {b, g}, {d, e}, {d, g}, {e, g}, {e, i}, {g, h}, {g, i}, {f, j},
{f, k}, {j, k}}. The vertex a is adjacent to vertex b and Γ∗G(a) = {b, e}.

Let i and j be two integers, i.e., i ∈ Z, j ∈ Z, we denote by [i, j] the set {k ∈
Z | k ≥ i and k ≤ j}.

Definition 2.2.2 (Paths and connectivity). Let G be a graph. Let π = 〈x0, . . . , x`〉
be an ordered sequence of vertices of G, we say that π is a path from x0 to x` in G
if for any i ∈ [1, `], the vertex xi is adjacent to xi−1, i.e., (xi, xi−1 ∈ E(G). The
graph G is said to be connected if for any pair of vertices x and y of G, there exists
a path from x to y.

In the graph G of Figure 2.2, the sequence 〈a, b, e, g, h〉 is a path: the vertices a
and h are connected. On the other hand, vertices b and c are not connected. Indeed

20



2.2. Graph based connected filtering

(a) (b) (c)

Figure 2.3: Adjacency relations for image analysis: (a) a two-dimensional image; (b) graph
induced by 4-adjacency associated with the image (a); (c) graph induced by 8-adjacency
associated with the image (a)

in G, there is no path from b to c. The graph G is not connected. On the other hand,
the graph G∗ = ({f, j, k}, {{f, j}, {f, k}, {j, k}}) is connected. Note also that G can
be broken down into three connected graphs: these are the connected components
of G.

Let G be a graph, a subgraph of G is a graph G ′ such that V (G ′) ⊆ V (G)
and E(G ′) ⊆ E(G). If G∗ is subgraph of G, we write G∗ v G.

Definition 2.2.3 (Connected components of a graph). Let G be a graph and let
G ′ be a subgraph of G. We say that G ′ is connected component of G, or simply
a component of G, if G ′ is connected and maximal for this property, i.e., for any
connected graph G ′′ such that G ′ v G ′′ v G, we have G ′ = G ′′.

We can note that any two distinct connected components G ′ and G ′′ of a graph G
are necessarily disjoint: V (G ′) ∪ V (G ′′) = ∅ and E(G ′) ∪ E(G ′′) = ∅.

The graph Gi = ({f, j}, {{f, j}}) (Figure 2.2) is a subgraph of G but it is
not a connected component of G. In fact, the graph G∗ = ({f, j, k}, {{f, j}, {f, k},
{j, k}}) is connected and Gi is a subgraph of G∗; G∗, on the other hand, is a connected
component of G.

Usual adjacency relation for 2D image analysis. An image F is often
defined as a function of set D, called as domain of the image, into a set K. The
domain of a two-dimensional image is in general a “rectangular” subset of Z2: the
elements of D are called pixels. The image F is often with integer values, that is to
say K ⊆ Z. In image analysis, there are two fundamental adjacency relations defined
on Z2 which makes it possible to structure the pixels of a two-dimensional image with
a graph. The 4-adjacency relation, denoted as E4, is defined by: ∀x, y ∈ Z2, {x, y} ∈
E4 if and only if |x1 − y1|+ |x2 − y2| = 1, where x = (x1, x2) and y = (y1, y2). The
8-adjacency relation, denoted by E8, is defined as: ∀x, y ∈ Z2, {x, y} ∈ E4 if and
only if max |x1 − y1|+ |x2 − y2| = 1.
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The Figure 2.3 illustrates the notions introduced in this paragraph. Figure (a)
shows a two-dimensional image. Figures (b) and (c) show the graphs associated
with (a) when the 4-and the 8-adjacency relations are considered, respectively.

Intuitively, when an image domain is structured with a graph as described in
the previous paragraph, we can see a binary image as a subset of this domain, that
is a subset of the vertex set of the considered graph. The following definition allows
to infer a notion of a connected component of a binary image from the definitions
on graphs seen in this section.

Subgraphs induced by sets of vertices and edges. Let G be a graph. Let V
(resp. E) be the set of all subsets of vertices (resp. edges) of G. Let P be a subset
of vertices of G, i.e., P ∈ V . The edge set induced by P , denoted by ε(P ), is the set
of all edges of G having their two vertices in P :

ε(P ) = {{x, y} ∈ E | x ∈ P, y ∈ P} . (2.1)

Using such operator ε, the usual notion of a subgraph induced by a set of vertices
can be easily recovered. More precisely, the subgraph of G induced by P , denoted
by GP , is the graph whose vertex set is P and whose edge set is the edge set
induced by P :GP = (P, ε(P )). Hence, the graph induced by P is the graph whose
set of vertices is P and whose set of edges is composed of the edges of G having
their two vertices in P .

Let A be a subset of edges of G, i.e., A ∈ E . The vertex set induced by A,
denoted by δ(A), is the set of all vertices of G which belong to an edge in A:

δ(A) = {x ∈ V | ∃u ∈ A, x ∈ u} . (2.2)

The subgraph of G induced by A, denoted by GA, is the graph whose set of edges
is A and whose vertex set is δ(A): GA = (δ(A), A). In other words, the vertex
set of the graph GA induced by A is composed of all vertices which appear in an
edge of A and its edge set is A. Hereafter, by abuse of notations, the subgraph of G
induced by the edge set A is simply denoted by A and the one induced by the vertex-
set P is simply denoted by P . More information on the mathematical morphology
properties of the operators ε and δ are detailed in article [Cousty, Najman, Dias and
Serra, 2013] where it is shown in particular that δ is a dilation and ε is the adjunct
erosion of δ.

Connected components of set of vertices and of edges. Let G be a graph
and let P be a subset of V (G) (resp. a subset of E(G)). We say that P is connected
whenever the subgraph of G induced by P is connected and if C is a subset of P
such that the subgraph of G induced by C is a connected component of GP , we say
that C is a connected component of P . In other words, a connected component C
of P is a connected subset of P that is maximal for this property.

In Figure 2.2, ({g, h, i}, {{g, h}, {g, i}}) is the graph induced by the set of ver-
tices {g, h, i} and by the set of edges {{g, h}, {g, i}}. We can notice that there are
subgraphs of G that are not induced by any set of vertices. For example, in Fig-
ure 2.2, there is no subset of vertices that induces G∗ = ({a, b, e}, {{a, b}, {a, e}}).
The subgraph G∗ is induced by the set of edges {{a, b}, {a, e}}; and the subgraph
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induced by {a, b, e} is the graph ({a, b, e}, {{a, b}, {a, e}, {b, e}}). In Figure 2.3b,
(the subgraph induced by) the set of black vertices comprises of three connected
components whereas in Figure 2.3c, it comprises of only two connected components.

As said previously, a binary image X is a subset of an image domain. If the
image domain D is equipped with an adjacency relation E then the pair G = (D,E)
is a graph and the binary image X is simply a subset of the vertices of G. Within this
setting, the notion of a connected component of the binary image X is well defined.
For instance, in Figure 2.3, for a given binary image the connected components are
the three (resp. two) black regions in Figure 2.3b (resp. Figure 2.3c) depending on
the adjacency relationship.

A subset of vertices of graph G is connected if the corresponding induced graph is
connected. The notion of connectivity in the vertices of a graph can be realised with
the notion of connection mentioned in the beginning of this section. As compared
to set connectivity proposed by Serra [Serra, 1988], the notion of connectivity in
graph theory is generated by an adjacency relation that can be described as local in
the sense that it involves only pairs of vertices. Note also that the notions related to
connected components seen in this section have been extended to directed graphs
in [Perret et al., 2015], allowing, in particular, to handle non-symmetric relations
between image pixels.

Important notation. In the sequel of this manuscript, the symbol G denote
a connected graph. To shorten the notations, the vertex and edge sets of G are
denoted by V and E respectively instead of V (G) and E(G).

2.2.3 Connected operators

In mathematical morphology, connected operators [Serra and Salembier, 1993; Salem-
bier and Serra, 1995; Salembier et al., 1998; Salembier and Wilkinson, 2009] are
filtering tools which can be defined to be acting on sets or can be extended to act
on grayscale images. Connected operators are based on the notion of connected
components, i.e. maximal sets of points that may be connected by a path in the set
(see Section 2.2.2). In this section, we first recall the definitions of mathematical
morphology operators and filters. Then, we introduce connected operators follow-
ing the flaw of [Serra and Salembier, 1993]. Finally, we close the section with some
basic examples of connected filters.

2.2.3.1 Mathematical morphology operators on binary and grayscale
images

Let S be any set, in mathematical morphology, an (binary-) operator on S, also
called a set-operator on S, is any map from P(S) in P(S), where P(S) denotes the
set of all subsets of S. Any map f from S into the set R+ of positive real values,
is called an (grayscale) image on S and we denote by F(S) the set of all images
on S. A (grayscale-) operator on S is any map from F(S) in F(S). In other words,
a binary operator Ψ maps to any subset X of S another subset Ψ(X) of S and any
grayscale operator ψ maps to any image f on S another image ψ(S) on S.
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Mathematical morphology is particularly interested in families of operators sat-
isfying some algebraic properties. Before detailing further the applications of math-
ematical morphology operators, let us review these different properties. Let S be a
set and Ψ be any binary-operator on S.

� The operator Ψ is increasing if, for any two subsets X and Y of S, we have
X ⊆ Y ⇒ Ψ(X) ⊆ Ψ(Y ).

� The operator Ψ is extensive if, for any subset X of S, we have X ⊆ Ψ(X);

� The operator Ψ is anti-extensive if, for any subset X of S, we have Ψ(X) ⊆ X;

� The operator Ψ is idempotent if, for any subset X of S, we have Ψ(X) =
Ψ(Psi(X));

� The operator Ψ is self-dual if, for any subset X of S, Ψ(X) = S \Ψ(S \X).

Similarly, for a grayscale operator ψ working on grayscale images the above men-
tioned properties are defined by replacing ⊆ by ≤ and the complement operation
(X → S \X) by the opposite operation f → −f . Accordingly, a grayscale opera-
tor ψ is self-dual whenever it is able to process dark and bright image components
symmetrically,i.e. ψ(f) = −ψ(−f). A mathematical morphology operator is called
a filter whenever it is both increasing and idempotent [Serra, 1988]; a filter which is
extensive is called a closing and a filter which is anti-extensive is called an opening.

2.2.3.2 Definition of connected operators

We now present the definition of connected operators as provided by [Serra and
Salembier, 1993]. Intuitively, in the case of a binary image X defined on a domain D
(i.e., X is a subset of D), a connected operator is a binary operator which can only
remove from X connected components of X or add to X connected components of
the complement of X. When the image domain D = V is structured as a graph,
the notion of a connected component of X reduces to a maximal subset of vertices
included in X in which a path exist between any two points. In order to deal with
the set of connected components of a subset X of V , in the following, we denote
by C(X) the set of all connected components of X.

Definition 2.2.4 (Connected operator). A connected (binary) operator is a binary
operator Ψ on V such that for any subset X of V , the set of symmetrical differ-
ence X ∆ Ψ(X) is exclusively composed of connected components of X or of its
complement XC = V \ X, i.e., there exist a subset A of C(X) and a subset B
of C(XC) such that

⋃{A ∪B} = (X \Ψ(X))⋃(Ψ(X) \X).

Intuitively, when speaking of a binary image, this means that the connected op-
erators act only by preserving or removing connected components of the foreground
and of the background of the image. Figure 2.1 illustrates the connected operator
that removes the “oval connected components” of binary images.

In order to extend this definition to grayscale operators, [Serra and Salembier,
1993] considers the set of flat zones of an image, a grayscale connected operator
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2.2. Graph based connected filtering

being an operator which can only “enlarge” the flat zones. Let us now recall precise
definition for these notions.

These connected operators filter the grayscale images by merging its elementary
regions called flat zones [Salembier and Serra, 1995].

Definition 2.2.5 (Flat zone). Let f be a grayscale image on V . A flat zone of f is
a maximal connected subset X of V where f is constant, i.e., (i) X is connected, (ii)
f(x) = f(y) for any two x and y in X, and (iii) for any subset Y of V , Y satisfies
both (i) and (ii) implies Y = X.

An illustration of flat zone can be seen in Figure 2.10a, where each region denoted
by a separate gray-value denotes a flat zone of the image. It can be seen, as
demonstrated by [Serra and Salembier, 1993], that the set of flat zones of a grayscale
image f is a partition of the image domain.

Definition 2.2.6 (Connected grayscale operator). An grayscale operator ψ is said
connected if, for any image f on V , any flat zone of f is included in a flat zone
of ψ(f).

This implies that the only allowed operation is the deletion of connected compo-
nents, which is merging of flat zones. Therefore, the regions of the output partitions
are created by the union of regions of the input partition, thus ensuring that they
neither create new contours nor change the location or shape of contours in the
input image. The connected operators are considered as filtering tools in the sense
that they transform input grayscale image into filtered grayscale image. Owing to
the contour-preservation properties, connected operators are capable of both low-
level filtering and higher-level object recognition. An example of such low-level
filtering task is shown in Figure 2.4, where connected operator is compared with
other classical filters like low-pass (mean) filter, median filter, Gaussian filter and
other morphological operators like opening with structuring element.

Thanks to these properties of connected operators, they have been used for
filtering [Salembier et al., 1998], segmentation [Jones, 1999; Passat et al., 2011],
classification [Urbach et al., 2007], and registration [Mattes et al., 1999]. Con-
nected operators are claimed to bridge the gap between segmentation and classical
filtering [Gatica-Perez et al., 2001].

2.2.3.3 Example of connected operators: attribute filters

As seen in the previous section, the connected operators act by preserving or re-
moving connected components. In this section, we present some simple examples
of connected operators, namely we describe some attribute filters as introduced
by [Breen and Jones, 1996]. These filters are based on an attribute that describes
some features of the connected components and that allows one to decide whether
a given component is kept or removed in the result of the filter. As connected
operators, they satisfy the property of acting on connected components instead of
individual points as developed by [Serra, 1982].

Any attribute filter is based on an attribute function A designed to encode some
interesting features of any subset of V (i.e., the vertex set of the graph G which
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(a) Input image (b) Low-pass (mean) filter

(c) Median filter (d) Gaussian filter

(e) Opening with disk (f) Connected operator

Figure 2.4: A connected operator example on grayscale image for low-level filtering task
compared with classical filters: (b) low-pass (mean) filter, (c) median filter, (d) Gaussian
filter, (e) opening with structuring element. (f) The grain filter does not create or move
contours.
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corresponds to the image domain). Such attribute function A, which is then a
mapping from the set V of all subsets of vertices of G in the set R+ or N. The
attribute function A can be some shape information measurement such as the area,
elongation, perimeter, circularity, compactness, eccentricity or some various notions
of shape-complexity [Salembier et al., 1998; Urbach et al., 2007]. In the latter case,
the attributes are called shape attributes since they do not depend on the gray
levels of the points inside the regions. The family of shape filters [Urbach et al.,
2007], i.e. the attribute filters obtained from shape-attributes. It has to be noted
that the operators called shape-filters in the literature are not always filters in the
sense of Section 2.2.3.1 since the increasing property is sometimes relaxed. For this
reason some authors such as [Breen and Jones, 1996] prefer to call such operators
as attribute thinning. Some attribute functions based on the gray levels of points
might also be interesting. It can be as simple as the minimum/maximum/average
gray level of the pixels in the considered region or it can be such more complex
measure such as the height or volume of the region. As a sample of such attribute,
we formally define below three of the most used attribute function: the area, height
and volume attributes denoted by Aarea, Aheight, and, Avolume, respectively. For a
given subset of points C ∈ V , they are given by:

Aarea(C) = |C|
Aheight(C) = max

x∈C
f(x)−min

x∈C
f(x)

Avolume(C) =
∑
x∈C
|max
x∈C

f(x)− f(x)|
(2.3)

Given an attribute function A and a scalar value λ in R+, we define the binary
connected filter of size λ by the attribute A, denoted by ΓλA, by

ΓλA(X) =
⋃{

C ∈ C(X)
∣∣∣A(C) > λ

}
, (2.4)

for any subset X of V .
For instance, we see in Figure 2.5, for a given vertex-weighted graph (G, f),

the subset X of vertices of G are shown in red. The filtered subsets for binary
connected filters with area, height and volume attributes for different λ is shown in
the Figure 2.5b, 2.5c, 2.5d respectively.

The above mentioned attribute filters are indeed filters. When the considered
attribute is not increasing, the operator is not necessarily a filter: it is then a binary
attribute thinning. A typical example of a binary attribute thinning is the operator
obtained from an ovalness attribute, which is not increasing. An illustration of this
operator is provided on Figure 2.1. We can easily see that the provided examples of
attribute filters are anti-extensive operators. Extensive attribute filters for binary
images can be obtained by duality from the anti-extensive versions defined above

(X →
[
ΓλA(Xc)

]c
).

The operators investigated in this section are binary increasing operators. As
such, they all induce stack operators acting on functions weighting the vertices
of a graph (hence acting on grayscale image). The interested reader can for in-
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Figure 2.5: Attribute filters

stance refer to [Wendt et al., 1986] for stack operators, to [Serra, 1982; Maragos
and Schafer, 1987; Heijmans, 1991; Ronse, 2006] for stack operators in the con-
text of flat mathematical morphology, and to [Bertrand, 2005] for stack operators
in the context of watershed image segmentation. This allows filters for weighted
graphs and thus for grayscale images to be systematically inferred from the ones
on non-weighted graphs. An fruitful presentation of grayscale connected operators
obtained by stacking is obtained through the notions of hierarchies and component
trees as introduced in the next sections. This structure also allows to go beyond
stack operators and to define operators which cannot be obtained by stacking from
binary connected operators.

2.2.4 Connectivity in weighted graphs

In this section, we introduce the necessary materials to handle weighted graphs with
the particular goal of presenting stack operators obtained from binary connected
filters. In Section 2.2.4.1 we recall definitions for edge- and vertex-weighted graphs.
Then, we introduce the fundamental structure of a stack of graphs, which allows
to handle within a same setting both stack operators for edge- and vertex-weighted
graphs. Finally, we present how stacks of graphs can be induced by weighted graphs.

2.2.4.1 Weighted graphs

In graph theory, the traditional weighted graphs consist of weights on edges only.
Although, edges have many practical applications, weighing vertices can also serve
many purposes. In particular, in image processing a digital image is often seen as
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2.2. Graph based connected filtering

a vertex-weighted graph.

Definition 2.2.7 (Vertex-/Edge-weighted graph). Let G = (V,E) be a graph, if f
(resp. w) is a map from the vertex (resp. edge) set of G to set R+ of positive
real numbers, then the pair (G, f) (resp. (G, w)) is said to be vertex-(resp. edge-)
weighted graph.

Any vertex-(resp. edge-) weighted graph can be easily decomposed into a series
of sets (of vertices or edges) by thresholding, allowing the elements of the series to
be handle with the binary operators presented previously. Let us start with formal
definitions of such thresholding operations.

Let f : X → R+ be a function assigning a real positive value to each element
of a set X. Given any real positive value h ∈ R+, the lower-level set (or lower
threshold) of f at level h is the set Xh(f) of elements of X whose value for f is
below h:

Xh(f) = {x ∈ X | f(x) ≤ h} (2.5)

Dually, the upper-level set (or upper threshold) of f at level h is the set X h(f) of
elements of X whose value for f is above h:

X h(f) = {x ∈ X | f(x) ≥ h} . (2.6)

Important notation. In the remaining part of this chapter, the symbol f
denotes a mapping from the vertex set V of G to the set R+ of real positive values
and the map w denotes a mapping from the edge set E of G to the set R+. Therefore,
the pairs (G, f) and (G, w) are vertex- and edge-weighted graphs respectively.

2.2.4.2 Stacks of graphs

In order to understand the notion of connectivity in weighted graphs, we present the
stacks of graphs [Perret et al., 2015]. We will then see several ways to induce stacks
of graphs from weighted graphs, leading to several notions of connected components
of a weighted graphs allowing the design of connected operators for weighted graphs.

Definition 2.2.8 (Stack of graphs). A stack of graphs is a finite sequence S =
(G0, . . . ,G`) of graphs such that, for any i in {1, . . . , `}, the graph Gi is a subgraph
of Gi−1. We say that Gi is the level set of S at level i, for any i ∈ {1, . . . , `}.

Definition 2.2.9 (Component of a stack). Let S = (G0, . . . ,G`) be a stack. A
(connected) component of S is a pair (i,X) such that X is connected component of
the level set of S at level i. The stack S is connected when S0 is connected.

An illustration of stack of graph can be seen in Figure 2.6, which shows a con-
nected stack composed of four graphs (G0, . . . ,G3).

As seen in previous section, a binary connected operators act by removing con-
nected components from a set of vertices. This notion can be easily extended to
stacks. Intuitively, a connected operators on a stack can be thought of as an oper-
ator which removes certain connected components of the stack, for instance based

29



Chapter 2. Related works

(a) G0 (b) G1 (c) G2 (d) G3

Figure 2.6: A stack S = (G0,G1,G2,G3). Each color represent a component of the stack S.

on a shape attribute on the components. Before studying such filters with more
details, let us describe some means to induce a stack from a weighted graph (Sec-
tion 2.2.4.3 and 2.2.4.4) and study some hierarchical properties of the set of all
connected components of a stack (Section 2.2.5).

A graph may be weighted either on vertices or on edges. Classically, when
dealing with connected operators, these two cases are handled separately. However,
in this work, based on the notion of a stack, we tackled both in a same setting. This
allows us to highlight the common structures of operators which otherwise appear
weakly- or even un-related. 1

2.2.4.3 Stacks induced by a vertex-weighted graph

Intuitively, in order to obtain a stack from the vertex-weighted graph (G, f), we
consider the decomposition of f into its upper-level or lower-level sets and we con-
sider the graphs induced by these levels sets to form a stack. We recall that, if P
is a subset of vertices of G, then ε(P ) contains every edge of G whose vertices are
in P .

Definition 2.2.10 (Vertex induced stacks). The stack lower-induced by f on V
and the stack upper-induced by f on V , denoted by S≤• (f) and S≥• (f) respectively,
are defined by:

S≤• (f) =
((
Xh(f), ε(Xh(f))

)
| h ∈ R≥f

)
, and (2.7)

S≥• (f) =
((
X h(f), ε(X h(f))

)
| h ∈ R≤f

)
, (2.8)

where R≥f (resp. R≤f ) is the series of values of f ranked in decreasing order (resp.
increasing order).

An illustration of stack induced by vertex-weighted graph is shown in the Fig-
ure 2.7. It can be observed that both the stacks S≤• (f) and S≥• (f) are connected.

It can be observed that the stack lower-induced by f on V is indeed a stack since
(Xh(f), ε(Xh(f)) is a subgraph of (Xh′(f), ε(Xh′(f)) for any h′ > h. Similarly, the

1Note also that the framework of stacks allows one to deal with non-symmetric graphs and to
build hierarchical image representations where asymmetric information can be taken into account
and to obtain connected filters relying on this information [Perret et al., 2015].
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(
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))
(h)
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X 2(f), ε
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X 2(f)
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(
X 3(f), ε

(
X 3(f)

))
Figure 2.7: An illustration of stack lower-induced and upper-induced by a ver-
tex weighted graph shown in (a). The stack lower-induced S≤• (f) is the series
of graphs ((b), (c), (d), (e)). The stack upper-induced S≥• (f) is the series of
graphs ((f), (g), (h), (i)).

stack upper-induced by f on V is also a stack since (X h(f), ε(X h(f)) is a subgraph
of (X h′(f), ε(X h′(f)) for any h′ < h.

2.2.4.4 Stacks induced by an edge-weighted graph

In order to obtain a stack from an edge-weighted graph, we provide a similar con-
struction, namely we consider the series of all level sets and associate a graph with
each of these level sets. Note that any level set X = Xh(w) of (G, w) is a subset of
the edge set of G. In such case, two interesting subgraphs of G can be considered.

1. The first one is the graph (δ(X), X) whose vertex set contains every vertex
of G which belongs to an edge in X and whose edge set is X itself.

2. The second one is the graph (V,X) whose vertex set contains all vertices of G
and whose edge set is X.
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Considering also that we can consider both upper and lower level sets, we dis-
tinguish four possibilities for a stack induced by an edge-weighted graph.

Definition 2.2.11 (Edge induced stacks). The stack lower-induced, the stack complete-
lower-induced, the stack upper-induced, and the stack complete-upper-induced by w
on V , denoted by S≤× (w), S≤×̌ (w), S≥× (w), S≥×̌ (w), are defined by:

S≤× (w) =
(
(δ (Xh (w)) ,Xh (w)) | h ∈ R≥w

)
, (2.9)

S≤×̌ (w) =
(
(V,Xh (w)) | h ∈ R≥w

)
, (2.10)

S≥× (w) =
((
δ
(
X h (w)

)
,X h (w)

)
| h ∈ R≤w

)
, and (2.11)

S≥×̌ (w) =
((
V,X h (w)

)
| h ∈ R≤w

)
, (2.12)

where R≥w (resp. R≤w) is the series of values of f ranked in decreasing order (resp.
increasing order).

An illustration of these four types of stacks induced by edge-weighted graph is
shown in Figure 2.8. Similar to stacks induced by vertex-weighted graph, the stacks
S≤× (w), S≤×̌ (w), S≥× (w) and S≥×̌ (w) are connected.

It can be noted that the stack lower-induced, the stack complete-lower-induced,
the stack upper-induced, and the stack complete-upper-induced by w on V are all
indeed stacks.

The notations • and × in different stack of graphs S>• (f),S>× (w),S<• (f),S<× (w)
refers to vertex- and edge-weighted graphs respectively and the notations ≤ and ≥
refers to lower- and upper-induced stacks respectively. In the next Section (2.2.5)
on partitions and hierarchies we will see that these various stack of graphs can be
expressed as hierarchies.

2.2.5 Connected partitions and hierarchies

As seen previously connected operators help bridging the gap between image seg-
mentation and filtering. So far, we have seen connected operators from the filtering
point of view. In this section, we introduce the (hierarchical) segmentation coun-
terpart. Indeed, many image segmentation methods look for a partition of the set
of image pixels such that each region of the partition corresponds to an object of in-
terest in the image. Although finding a single partition of an image is still an active
topic, it is now recognized that a more robust approach is working in a multi-scale
approach that can be given in the form of a hierarchy [Soille, 2008]. Hierarchical seg-
mentation methods, instead of providing a unique partition, produce a sequence of
nested partitions at different scales, allowing the description of an object of interest
as a grouping of several objects of interest that appear at lower scales. The stacks
of graphs introduced in the previous sections allows such interesting hierarchical
segmentation to be obtained.

In this section, we define the basic notions of partitions and hierarchies which
will be further used to define hierarchies given by a stack of graphs leading to
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Figure 2.8: An illustration of stack lower-induced, the stack complete-lower-
induced, the stack upper-induced, and the stack complete-upper-induced by edge-
weighted graph shown in Figure (a). The stack lower-induced S≤× (w) is the se-
ries of graphs ((b), (c), (d)), the stack complete-lower induced S≤×̌ (w) is the

the series of graphs ((e), (f), (g)), the stack upper-induced S≥× (f) is the series
of graphs ((h), (i), (j)) and the stack complete-upper induced is the series of
graphs ((k), (l), (m)).
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the well known notions of component trees which are tree-based representations of
images.

Definition 2.2.12 (Partition). A partition of V is a set P of non-empty mutually
disjoint subsets of V whose union is V , that is

� for any two X and Y in P such that X 6= Y , we have X ∩ Y = ∅; and

� ∪{X ∈ P} = V .

Definition 2.2.13 (Partial partition). A partial partition of a V is a partition P∗
of any subset V∗ of V , that is

� for any two X and Y in P such that X 6= Y , we have X ∩ Y = ∅; and

� ∪{X ∈ P} ⊆ V .

Any element X of a (partial) partition P of V is called a region of P. It can be
seen that any partition is a partial partition and that for any partial partition P,
there is unique region of P containing x ∈ V .

Let G ′ be a graph. The connected component partition of G ′, denoted by C(G ′)
is the set which contains the vertex set of every connected component of G ′:

C(G ′) = {V (C) | C is a connected component of G ′}.

It is well known that C(G ′) is a partition of V (G ′). Thus, if G ′ is a subgraph of G,
then C(G ′) is a partial partition of V . Furthermore, whenever we have V (G ′) = V ,
the set C(G ′) is a partition of V .

We can consider a partial order relationship between (partial) partitions: given
two (partial) partitions P1 and P2 of set V , partition P1 is said to be a refinement
of P2 (written as P1 v P2) if any region of P1 is included in the region of P2 (
i.e. ∀X ∈ P1,∃Y ∈ P2, X ⊆ Y ). The union of all regions of a partial parti-
tion P∗ is called the support of P∗ and is denoted by supp(P∗); thus P∗ is partition
of supp(P∗). Thereby, a partition of V is a partial partition whose support is V .

Definition 2.2.14 (Hierarchy). A hierarchy of partitions (resp. partial partitions)
on V is a sequence H = (P0, . . . ,P`) of partitions of V (resp. partial partitions
of V ), such that Pi−1 is a refinement of Pi, for any i ∈ {1, . . . , `}.

If H = (P0, . . . ,P`) is a hierarchy, the integer ` is called the depth of the hier-
archy H. A hierarchy H = (P0, . . . ,P`) is called complete if P` = {V } and if P0
contains every singleton of V (i.e., P0 = {{x} | x ∈ V }). Further details on hier-
archies in framework of partial partition are explained by [Ronse, 2014]. A partition
of V is connected if every of its regions is connected and a hierarchy on V is con-
nected (for G) if every of its partitions is connected. Further details on connected
hierarchies and their representations are explained by [Cousty et al., 2017].

Figure 2.9 represents a hierarchy H = (P0,P1,P2,P3) on a rectangular sub-
set V ⊂ Z2 made of 9 dots. Here, we notice that P1 is refinement of P2 as any
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region of P1 is included in a region of P2. It can also be seen that hierarchy H is
complete as P0 is made of singletons and P3 = {V } is made of single region that
contains all elements. Also here, P∗ represents a partial partition of the rectangular
subset V as all the elements of P∗ does not sum up to 9 dots.

Definition 2.2.15 (Component hierarchy of a stack). Let S = (G0, . . . ,G`) be a
stack of graphs. The component hierarchy of S is the series of connected components
partitions of the level sets of S

HS =
(
C(Gh)

∣∣∣ h ∈ {0, . . . , `}) (2.13)

It can be easily seen that HS is indeed a hierarchy of partial partitions since,
for any h in {1, · · · , `}, the connected component partition C(Gh) is a refinement of
than C(Gh−1), which can easily established by the fact that the level set Gh of the
stack S is a subgraph of the level set Gh−1. In general, the component hierarchy of a
stack S is not a hierarchy of partitions of V . For instance, the component hierarchies
of the stack S≤• (f) of Figure 2.7 is indeed a hierarchy of partial partitions but not a
hierarchy of partitions since its level set at level-0, 1 and 2 is not a partition of V .
Note that this stack is lower-induced by a vertex-weighted graph. Similar examples
can be found for stacks which are upper-induced by a vertex-weighted graph and
lower or upper induced by an edge weighted graph. However, any level set of a stack
which is complete-lower-induced (or complete-upper-induced) by any edge weighted
graph induces a hierarchy of partitions of V . For instance, the connected component
hierarchies of the stacks S≤×̌ (w) and S≥×̌ (w) of Figure 2.8 is an example of induced
hierarchy of partitions. The following property summarizes these results.

Propety 2.2.1. Let S be a stack. The following statements hold true:

1. if S is lower-induced by f , then the component-hierarchy of S is a hierarchy
of partial partitions of V but not, in general, a hierarchy of partitions of V ;

2. if S is upper-induced by f , then the component-hierarchy of S is a hierarchy
of partial partitions of V but not, in general, a hierarchy of partitions of V ;

3. if S is lower-induced by w, then the component-hierarchy of S is a hierarchy
of partial partitions of V but not, in general, a hierarchy of partitions of V ;

4. if S is upper-induced by w, then the component-hierarchy of S is a hierarchy
of partial partitions of V but not, in general, a hierarchy of partitions of V ;

5. if S is complete-lower-induced by w, then the component-hierarchy of S is a
hierarchy of partitions of V ;

6. if S is complete-upper-induced by w, then the component-hierarchy of S is a
hierarchy of partitions of V .

35



Chapter 2. Related works

P0 P1 P2 P3

P∗ H

Figure 2.9: An illustration of partition, partial partition and hierarchy on a set V of
9 dots. In first row, for every partition Pi, each region is represented by a gray level:
two dots with same gray level belong to same region. P∗ is the partial partition
of the set V . The right subfigure in second row represents the hierarchy H =
(P0,P1,P2,P3) as a tree structure, called as a dendogram, where inclusion relation
between regions of successive partitions is represented by line segments.

The component hierarchies of these six stacks are well studied in mathematical
morphology, through the notions of min/max trees of an edge and vertex-weighted
graphs [Salembier et al., 1998; Najman and Couprie, 2006; Carlinet and Géraud,
2015] and through the notion of quasi-flat zones of an edge-weighted graph [Meyer
and Maragos, 2000; Cousty, Najman and Perret, 2013; Bosilj et al., 2018]. In the
next section, we present a tree data structure, called a component tree or a tree-
based shape space, that can be associated to any of these hierarchies, which allows
one to efficiently handle them in computerized procedures for segmenting and fil-
tering images.

2.2.6 Component trees: tree based shape space

A component tree is a compact representation of a hierarchy which is adopted for
handling efficiently a hierarchy with computerized procedure. Tree based represen-
tations of data have been a classical approach across different fields of mathematics.
In discrete mathematics it has been Hasse diagram of partial ordering relations, in
classification as the dendograms of hierarchy and component trees in mathematical
morphology.

Let H = {P0, . . . ,P`} be a hierarchy. We say that a subset R of V is a region
of H if ∃i ∈ {0, . . . , `} such that R belongs to Pi. We denote by RH, the set of
all regions of H. Let S = (G0, . . . ,Gη) be a stack of graphs. When the considered
hierarchy H is the component hierarchy HS of a stack S (refer Definition 2.2.15),
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any region R of HS is an element of the connected component partition of the
graph Gh of the stack S, i.e. R ∈ C(Gh) such that h ∈ {0, . . . , η}.

The component tree representation is composed of regions (i.e.connected com-
ponents) from small to large, where two regions are either nested or disjoint. In
component tree representation, any region is the node of the component tree . Let
R1 and R2 be any two distinct regions, we have a nesting property:

R1 ∩R2 6= ∅ → R1 ⊂ R2 or R2 ⊂ R1 (2.14)

As any tree, the component tree of H can be defined as a pair made of a set of nodes
and of a binary (parent) relation on the set of nodes. More precisely, the component
tree of H is the pair T = (RH, parent) such that RH is the set of all regions of H
and such that a region R1 in RH is a parent of a region R2 in RH whenever R1
is a minimal (for inclusion relation) proper superset of R2. Note that every region
in RH has exactly one parent except the region V which has no parent and is called
the root of the component tree of H. Any region which is not the parent of another
one is called a leaf of the tree. It can be observed that any singleton of V is a leaf
of T and that conversely any leaf of T is a singleton of V .

Remark: In case of hierarchical representation of images, a tree-based shape
spaces ST [Xu, 2013] is defined as set {Ri} of regions, that can be organized into a
tree structure T for which the root node represents R0, the entire image domain and
any pair of regions R1 and R2 follows the nesting property (Equation. 2.14). The
neighborhood of the shape space is defined by the inclusion relationship between
the two regions. A tree-based shape space is thus a component tree, when the
considered graph is image.

A tree-based shape space ST is built from a tree-based image representation,
which is equivalent to image in the sense that the image can be reconstructed from
the set of the nodes of the tree. Therefore, tree-based shape space is equivalent tree
representation.

A tree-based shape space ST can also be considered and processed as a con-
nected graph, where the nodes of the tree are vertices of the graph weighted by
some attribute function A and the edges of the graph are the links created by the
inclusion relationship between the nodes in the shape space. One of the signifi-
cant step involves defining the attribute function A according to the input image
and application. Attribute filters for binary images have been described in the
Section 2.2.3.3. In case of grayscale images, the attribute function based image
filtering, when the tree-representation is the component tree, is the extension of
attribute filters to grayscale images.

The different hierarchies induced by stack of graphs mentioned in the previous
section forms various component trees which are studied vastly in literature. We first
present Min/Max tree which is one of the simplest tree based image representation.

2.2.6.1 Min/Max tree.

The max-tree was firstly proposed by [Salembier et al., 1998] as a suitable and effi-
cient structure to deal with the processing steps involved in antiextensive connected
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(a) Image

(b) Min tree (c) Max tree

Figure 2.10: An illustration of component tree on an image. (a) Original image
where the numbers represent the grayscale value of flat zone. (b) and (c) represent
the min tree and max tree respectively where the root is at the top.

operators. The resulting component tree when the considered hierarchy is compo-
nent hierarchy of the stack S≤• (f) (resp. S≤× (w)) lower-induced by a vertex- (resp.
edge-) weighted graph is the min tree of the vertex- (resp. edge-) weighted graph and
is denoted by T ≤• (resp. T ≤× ). Similarly, the component tree when the considered
hierarchy is component hierarchy of the stack S≥• (f) (resp. S≥× (w)) upper-induced
by a vertex- (resp. edge-) weighted graph is the max tree of the vertex- (resp. edge-)
weighted graph and is denoted by T ≥• (resp. T ≥× ).

In most of the image processing applications, grayscale image f is considered as
a vertex-weighted graph (G, f), where f is mapping from vertex set V to R+. The
min tree of the graph (G, f) is called the min tree T ≤• of the image f . By duality,
the max tree of (G, f) obtained by upper-level set decomposition leads max tree T ≥•
of the image f . By construction, in case of min tree of image, the leaf nodes of the
tree are the dark connected components whereas in case of max tree of the image
the leaf nodes are the bright connected components. In both these cases, the root
node represents the complete image domain V . These min/max tree of images are
studied vastly in literature [Salembier et al., 1998; Jones, 1999; Jalba et al., 2006;
Westenberg et al., 2007; Berger et al., 2007]. However, the min tree T ≤× and max
tree T <× of edge-weighted graphs are not studied in literature.

A simple example of min/max tree is illustrated in Figure 2.10. The original
image is composed of five flat zones identified by letters A, B, C, D and E. The
numbers next to the letters represent the grayscale value of the flat zones. In our
example the grayscale values range from zero to three. The leaves of the min tree
corresponds to the regional minima of the image. In this example, as the image has
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G (G, f) X0(G)

X1(G) X2(G) X3(G)

T ≤•

Figure 2.11: An illustration of min tree as a hierarchy of partial partition. (a) a
graph; (b) its vertex-weighted graph; (c), (d), (e), (f) are the level sets of graph at
levels 0, 1, 2 and 3 respectively; (g) is the min tree of graph (G, f).

three minima, the min tree has three leaves. The leaves of the max tree are the
regional maxima of the image. As the image of Figure 2.10 has only one maxima,
the max tree has only one leaf, hence one branch. The image can be reconstructed
from the data of the families of upper-level sets (Equation 2.6) and of lower-level
sets (Equation 2.5) [Caselles et al., 1999].

f(x) = inf
{
h ∈ R |x ∈ X h

}
= sup

{
h ∈ R |x ∈ Xh

}
(2.15)

We now present that the min/max trees are hierarchies of partial partition in-
duced by vertex-weighted graph with the help of an example. Let us consider a
graph G as in Figure 2.11a which is weighted on vertices by map f : V → R+ to
obtain vertex-weighted graph (G, f), as in Figure 2.11b. In this example, f ranges
from zero to three. The level set of graph (G, f) at level 0 yields a subgraph X0(G)
(Figure 2.11c) which consist of single connected component composed of two ver-
tices of the vertex set V . Therefore, this subgraph is the partition of the subset

39



Chapter 2. Related works

of the vertex set V where the connected component is the region of the partition.
According to definition 2.2.13, the level set X0(G) is a partial partition of V(G).
Figure 2.11d and 2.11e represent the level sets at levels one and two respectively and
consist of two connected components (regions) each. It can also be seen that the two
connected components of X1(G) are refinements of the larger connected component
of X2(G). Furthermore, partition X2(G) is made of single connected component
which contains all elements of V . The component hierarchy of the stack S≤• (f)
lower-induced by f forms the min tree T ≤• (Figure 2.11g) and is a hierarchy of the
partial partitions.

The min tree of an image has been used extensively in this thesis for segmenting
different interventional tools as they appear as dark objects in the fluoroscopic
images. The different algorithms to compute the min/max tree are discussed in the
Section 2.2.6.3.

2.2.6.2 Quasi-flat zones tree

The min/max tree is the hierarchy of the partial partition induced by weighted
graph. On the contrary, the component tree called as quasi-flat zones tree [Meyer
and Maragos, 2000] is the hierarchy of the partition of edge-weighted graph. Quasi-
flat zones tree has been widely used in image processing and is also known as
hierarchy of single linkage [Nagao et al., 1979], or constrained connectivity [Soille,
2008], and α-tree [Ouzounis and Soille, 2011].

As seen in Section 2.2.4.4, for an edge-weighted graph (G, w), the stack complete
lower- (upper-) induced S≤×̌ (w) (resp. S≥×̌ (w)) on E is series of graphs whose vertex
set is same as that of (G, w). Hence, unlike the min/max tree, the graph induced
by each level-set Xh(w) is the partition of V . The corresponding hierarchy H≤×̌
(or H≥×̌) is thus the hierarchy of the partition induced by the level-sets of edge-
weighted graph. The resulting component tree when the considered hierarchy is
component hierarchy of the stack S≤×̌ (w) (or S≥×̌ (w)) lower- (or upper-) induced by
an edge-weighted graph is the quasi-flat zones tree of the edge-weighted graph and
is denoted by T×̌.

A simple example of quasi-flat zones tree is given in Figure 2.12. Let us consider
the graph G shown in Figure 3.10 and the map w shown in Figure 2.12b. The 0-, 1-,
2- and 3-level sets of G contain the edges shown in Figures 2.12c, 2.12d, 2.12e, 2.12f,
respectively. The graphs depicted in this figure are the associated 0-, 1-, 2- and
3-level graphs of G and the associated 0-, 1-, 2- and 3-level partitions are shown in
Figure 2.12g.

Two distant maps that weight the edges of the same graph can induce the same
quasi-flat zones tree. As we can observe, only the edges present in Figure 2.12f
are sufficient to define corresponding hierarchy in Figure 2.12g. Therefore, in this
case, some of the edge weights do not convey any useful information with respect to
corresponding quasi-flat zones tree. Therefore, for an edge-weighted graph G(E), its
minimum-spanning tree is the minimal subgraph G∗ v G such that the quasi-flat
zones trees of G and G∗ are the same. Interested readers are directed to the work
of [Cousty et al., 2017] for more details about this link between quasi-flat zones tree
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(a) G (b) (G, w) (c) wV0 (G)

(d) wV1 (G) (e) wV2 (G) (f) wV3 (G)

(g) QFZ(G)

Figure 2.12: Illustration of quasi-flat zones tree. (a) A graph G; (b) a edge-weighted
graph (G, w) of G where edges (in gray) are weighted (numbers in black) with
map w; (c), (d), (e), (f) the λ−level graph of G, with λ = 0, 1, 2, 3, respectively; (g)
the associated connected component partitions that make up the quasi-flat zones
tree of G for w.
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and minimum spanning tree.
For image analysis applications, the edge-weighted graph (G, w) can be obtained

as a pixel or a region adjacency graph: the vertex set of (G, w) is either the domain
of the image to be processed or the set of regions of an initial partition of the image
domain. In the latter case, the regions are often called the “image superpixels”
(see, e.g., [Achanta et al., 2012]). In both cases, two typical settings for the edge
set of G can be considered:

� the edges of (G, w) are obtained from an adjacency relation between the image
pixels, such as the well known 4- or 8-adjacency relations; and

� the edges of (G, w) are obtained by considering, for each vertex v of (G, w),
the nearest neighbors of v for a distance in a features space onto which the
vertices of (G, w) are mapped.

A common feature space (see, e.g., [Felzenszwalb and Huttenlocher, 2004]) is the
one where each pixel of a color image is mapped to a vector in dimension 5 made of
the two spatial coordinates and the three spectral values describing the color of the
pixel. Also, the weight w(e) of an edge between pair of neighboring pixels x and y
of image f may be the dissimilarity measure between two pixels. This dissimilarity
measure can be as simple as the intensity difference w(e) = | f(x) − f(y) |. In
some other cases [Guimarães et al., 2017], the edges are weighted by a simple color
gradient: the Euclidean distance in the RGB space between the colors of the two
adjacent pixels. Some algorithms to compute this tree are mentioned in next section.

2.2.6.3 Algorithms for component tree construction

Several fast algorithms have been proposed in literature to efficiently compute com-
ponent trees. In this section we briefly discuss the various algorithms used to
compute the min/max tree, α-tree (quasi-flat zones trees) and tree of shapes.

The various algorithms used to compute the min/max tree can be classified
in to three approaches as compared by [Carlinet and Géraud, 2014]. The first
approach is based on flood-filling [Salembier et al., 1998; Nistér and Stewénius, 2008;
Wilkinson, 2011] which generally starts at the root and performs a breadth-first or
depth-first flooding procedure to make the tree. And the second approach called as
immersion algorithms [Najman and Couprie, 2006; Aho et al., 1983; Berger et al.,
2007] uses Tarjan’s union-find procedure [Tarjan, 1975], consisting of two passes.
A first pass sorts the vertex weights/pixels, and the second pass, build the tree
while performing the union-find procedure. This type of algorithm has quasi-linear
complexity.The third approach is merge-based algorithms, which divide image in
blocks and compute min/max tree on each sub-image using another min/max tree
algorithms. Sub min/max trees are then merged to form the tree of the whole image.
Those algorithms are well-suited for parallelism using a map-reduce (or divide-and-
conquer) approach [Ouzounis and Wilkinson, 2007b; Wilkinson et al., 2008]. When
blocks are image lines, dedicated 1D max tree algorithms can be used [Matas et al.,
2008; Menotti et al., 2007; Morard et al., 2012].
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The α-tree construction algorithm relies on its equivalence with a min tree de-
fined on the edges valued with pixel intensity differences [Soille and Najman, 2012;
Najman, 2011], and can use any min tree algorithm. Extending the idea, [Havel
et al., 2016, 2013] calculate the α-tree directly using a modification of Tarjan’s
union-find [Tarjan, 1975] , presenting an algorithm suited for multi-threading ap-
plications. The algorithm by [Najman et al., 2013], inspired by Kruskal’s Minimum
Spanning Tree algorithm [Kruskal, 1956] and using Tarjan’s union-find [Tarjan,
1975], first constructs a BPT by Altitude Ordering, from which the α-tree can
be obtained with a linear post-processing step [Cousty, Najman and Perret, 2013;
Najman et al., 2013].

The Tree of Shapes (ToS) [Monasse and Guichard, 2000b,a], also called topo-
graphic map, is an inclusion tree combining the min and max tree to represent both
bright and dark structures simultaneously. Early approaches to ToS construction
operated with worst-case time complexity of O(N2) [Ballester et al., 2001; Caselles
and Monasse, 2009] and were not easily extendible to multidimensional (nD) im-
ages [Monasse and Guichard, 2000a]. A recent algorithm by [Géraud et al., 2013]
overcomes these drawbacks by using the immersion algorithms for min tree con-
struction as a canvas, and replacing the sorting step.

2.2.7 Filtering on component trees

The reviewed image representations of min/max trees and quasi-flat zones trees
can be considered as trees TT based on thresholding decompositions and trees TH
based on hierarchical image segmentation. The major difference between these two
representations is that any cut (except the root) on the min/max tree TT yields
a subset of image domain whereas any cut on the quasi-flat zones tree TH gives a
partition of the image domain.

A component tree T is built from a tree-based image representation, which is
equivalent to image in the sense that the image can be reconstructed from the set of
the nodes of the tree. Therefore, component tree is equivalent tree representation.
This component tree T can also be considered as a connected graph, where the
nodes of the tree are vertices of the graph weighted by some attribute functionA and
the edges of the graph are the links created by the inclusion relationship between
the nodes in the shape space. One of the significant step involves defining the
attribute function A according to the input image and application. Once the tree
is constructed and the attribute function A is defined, the connected operators
include a tree filtering step which simplifies it based on the attribute function.
Attribute filters for binary images have been described in the Section 2.2.3.3. In
case of grayscale images, the attribute function based image filtering, when the tree-
representation is the min/max tree, is the extension of attribute filters to grayscale
images.

Based on the filtered nodes and attribute functions, the tree filtering strategies
can be divided into two categories: pruning strategies and non-pruning strategies.
Tree pruning strategies consist of removing of the complete subtree of tree below
a considered node for which the considered node is root, while other nodes above
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that node are preserved. It can be seen as cutting of sub-branches of the tree. If
a node is filtered by pruning strategy, then its descendants are also filtered. For
the case of non-pruning strategies, the descendants of the node to be removed may
be preserved. We distinguish the attribute function A based image filtering in the
following two sections 2.2.7.1 and 2.2.7.2.

2.2.7.1 Increasing attributes based filtering

An attribute function A is said to be increasing if,

A(N ) ≤ A(Np) ∀N ∈ T (2.16)

where Np is parent node of node N according to inclusion relationship. We denote
an increasing attribute function by the notation A∧. Some examples of increasing
attributes A∧(N ) for any given node N ∈ T are area, height and volume denoted
by A∧area, A∧height, and, A∧volume (refer Equation 2.3), respectively. Another example
of increasing attribute can be the diameter of the smallest (resp. largest) circle that
encloses (resp. can fit into) N [Breen and Jones, 1996].

In case of increasing attributes A∧, the tree filtering is performed by pruning
the nodes whose attribute functions A∧ is less than a given threshold, which can be
considered as attribute thresholding. The increasingness of the attribute function
make the attribute thresholding a pruning strategy.

2.2.7.2 Non-increasing attributes based filtering

Most of the interesting attribute functions A, like the shape attributes described
in Section 2.2.3.3 which describes the form of the shapes are non-increasing at-
tributes [Salembier et al., 1998; Urbach et al., 2007]. Some examples of non-
increasing attribute functions are:

� Perimeter P (N ) of the node N ;

� Compactness(N ) = 4πArea(N )
P 2(N) , similar attributes computing circularity of

the node are presented by [Montero and Bribiesca, 2009];

� Elongation(N ) = lmax(N )
lmin(N ) , where lmax and lmin are the lengths of the major

and minor axes of the best fitting ellipse of the node N ;

� Sharpness(N ) = Volume(N )
Area(N )× Height(N ) ;

� Largest geodesic distance in the connected component represented byN [Breen
and Jones, 1996];

� Geodesic tortuosity and geodesic elongation [Morard et al., 2013].
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The attribute thresholding has also been proposed for non-increasing attributes,
originally as attribute thinnings by [Breen and Jones, 1996]. In this case a node
is removed iff A(N ) < t, where t is the attribute threshold. The content of the
removed nodes are merged with their lowest preserved ancestor. Once the node to
be removed is selected, the image filtering result depends on either of the two recon-
struction rules, namely: 1) direct rule [Salembier et al., 1998], and 2) subtractive
rule [Breen and Jones, 1996; Urbach et al., 2007]. Three more pruning strategies
(Min, Max, Viterbi) were proposed for non-increasing attributes by [Salembier et al.,
1998] and [Urbach et al., 2007].

All these attributes are scalar attributes, i.e.the attribute function A associates
a scalar value for each node. More recently, vectorial attributes were proposed,
which consist of a vector of scalar attributes. In [Urbach et al., 2005; Perret and
Collet, 2015], the authors proposed filtering based on vector attributes where node
is removed on the basis of designed distance measure between the attribute vector
of the attribute vector of the node and reference vector. There exist many works
in literature that perform image segmentation based on “relevant” shape extraction
from tree-based shape spaces. For instance, a set of filtering strategies using max
tree representation for image segmentation was proposed by [Salembier et al., 1998].
[Najman, 2011] in his work shows that segmentation result can be easily obtained
by an horizontal cut on the hierarchy of segmentations. Also, [Felzenszwalb and
Huttenlocher, 2004] in their work proposed efficient graph based image segmentation
algorithm using the minimum spanning tree. The authors of [Guigues et al., 2006]
proposed scale-sets theory which was modeled as an energy minimization problem
to obtain non-horizontal optimal cut.

For attribute thresholding based filtering strategies, including the pruning strat-
egy for increasing attributes, the regions of component trees are considered indi-
vidually based on the attribute value of the nodes themselves. In particular, such
simple filtering processes do not take into account the intrinsic parenthood rela-
tionship of the tree. Therefore, [Xu, 2013] in his work proposed the framework of
shape-based morphology (or shaping), where the idea is to apply connected opera-
tors in the tree-based shape space ST . More information on filtering with shaping
is detailed in next section 2.2.7.3.

2.2.7.3 Filtering with shaping

The tree-based shape spaces (Definition B.2) allows us to view classical connected
operators in a new way. They can be perceived as granular analysis of the shape
space without using the tree structure. In [Xu et al., 2016], the authors explain that
the idea of shape-based morphology or morphological shaping is to apply connected
filters in the space of all the components of the image, such space being structured
into a graph by parenthood relationship (i.e., the neighbors of a node are the parent
and the child nodes). This space of all components of image is the tree-based shape
space. This framework consists of two trees construction: the first one is constructed
from the image, and the second one is constructed from the first tree representation.
This process is explained by black+red path in Figure 2.13. The process depicted
in the red block is exactly a tree-based connected operator on the tree-based shape
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Figure 2.13: Shape-based morphological filtering scheme: classical connected oper-
ators (black path) and connected operators on tree-based shape spaces (black+red
path). Illustration from [Xu et al., 2016]

space ST induced by a tree-based image representation T . It is composed of three
steps:

� tree T T construction from tree-based image representation T ;

� tree T T filtering to obtain a simplified tree T T ′;

� and a simplified tree T ′ reconstruction from the simplified tree T T ′.

Let first tree T be any tree-based image representation. Two tree based image
representations are reviewed in Section 2.2.6. A tree-based shape space given by
tree-based image representation T with values assigned to nodes by an attribute
function A can be represented by a node-weighted graph GT , where the nodes of
graph are the nodes of the tree T and the edges of graph GT are links created accord-
ing to parenthood relationship between nodes. The second tree T T is a component
tree built on graph GT , where the first tree T was built from the input image. Based
on the application and the characteristics of the attribute function A, the second
tree T T can be chosen to be max tree or min tree. Considering the application
object segmentation, when local minima of some attribute function A corresponds
to meaningful objects, the filtering on second tree T T helps to remove meaningless
local minima. In order to make the second tree filtering a simple pruning strategy,
the second attribute AA characterizing nodes of T T is always designed to be in-
creasing criterion. The step of simplified tree T ′ reconstruction is trivial, which is
achieved by removing the corresponding nodes {Ni} of tree T contained in the series
of filtered nodes NN k. This framework of shape-based morphology which is basi-
cally inspired from connected operators can be useful for shape filtering (connected
filters on tree-based shape spaces) and object detection/segmentation. Several ap-
plications of this framework ranging from hierarchical image simplification, to shape
filtering for retinal images, to object segmentation have been proposed in [Xu, 2013;
Xu et al., 2016]. The application of shaping for PET image segmentation has been
presented in the work of [Grossiord et al., 2015].
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2.2.8 Challenges with connected filters: second order con-
nectivity

As mentioned in Section 2.2.1 the important step in the general definition scheme
of connected operators is transforming the image (or graph) into an equivalent
hierarchical representation. And a major issue related to this step of hierarchical
image representation is to make the structures of interest visible in this hierarchical
representation. The role of connectivity is significant to solve this issue.

Until now, we implicitly considered the connected components and the flat zones
on which connected operators work to be the usual four- or eight-connectivity for
2-D images. These connectivities relies on graph-based path connectivity: two
pixels belong to same connected component or flat zone if they can be connected
by a path. However, this approach to connectivity has many drawbacks. One of
them being inability to remove boundary noise due to strict preservation of edges.
Furthermore, objects broken up by, e.g., sampling errors, are treated as different
objects rather than part of the same. Conversely, disjoint real objects connected by
noise pixels cannot be treated separately. More fundamentally, path connectivity
may not correctly correspond to perception of human observer of an object as either
distinct or single perceptual group. Many of the non-classical connectivities are ob-
tained from path connectivity in some way. Second-generation connectivity [Ronse,
1998; Braga-Neto and Goutsias, 2002] is realized by means of a connectivity opening
which is associated with a structural operator. The dependency on this operator
may define constraints for the image domain to be connected. One of the most
intuitive of these cases are extension of connectivity by means of a clustering oper-
ator, or so called clustering based connectivities [Braga-Neto and Goutsias, 2002].
These take the path-connected components of an image, and cluster them based
on the size of separation between them. Thereby, the clusters of path-connected
components now form the new connected components. In this case, any connected
component in the base representation, is also connected in the new connectivity
class, however the reverse is not valid.

To define a clustering-based connection, a simple approach is to apply an exten-
sive operator Ψ such as dilation or a closing to the original image X with structuring
elements. These operators will narrow the gap between connected components in
the original image. The connected components are defined on this modified image,
and then intersected with the original image. This means that the new connected
components are defined on Ψ(X). But as Ψ(X) may be larger than X, it is required
to compute the intersection of the connected components in Ψ(X) and X. Alter-
natively, we can partition path-connected components in the original image into
multiple fragments by cutting them, e.g., narrow connecting bridges between wider
regions. This idea leads to contraction-based connectivity described by [Ronse,
1998]. In this case, Ψ has to be an anti-extensive operator, like an opening by a
connected structuring element.

In some cases, we might want to cluster in certain regions and partition in
some other regions. This represents the case of mask-based connectivity introduced
by [Ouzounis and Wilkinson, 2007a]. The idea here is to compute a mask image M
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by any method and then use the connected components of this mask to modify
the connectivity of the original image X. Therefore, instead of using an operator
to modify the connectivity, a mask image is used as the modified image Ψ(X)
mentioned for clustering- or contraction- based connectivities. Instead, M and X
can be images of the same scene obtained at different wavelengths (e.g. IR and
visible in astronomy), or in different modalities (e.g. registered multi-modal medical
image analysis).

These different types of second-order connectivities and their applications pre-
serves the information of the original images, i.e., these connectivities generate
unique partition of the image domain. This property helps to reconstruct the im-
age after filtering operations. However, in this work we present the concept of
connected components in structural scale space built above the image scale space
which relates closely to human perception of sparse objects, like empty catheter in
fluoroscopic images described in Chapter 3.

Once the image has been transformed into equivalent hierarchical representation,
one of the popular implementation of connected operators explained in Section 2.2.3
is image filtering and segmentation. This also corresponds to the second issue
with connected operators of distinguishing structures of interest in the hierarchical
representation. The task of image filtering involves designing of attribute functionA
as described in Section 2.2.3.3, a filtering of hierarchy which simplifies it based on
attribute function A and image reconstruction from the simplified hierarchy that
consist the filtering result [Salembier and Garrido, 2000; Salembier and Wilkinson,
2009]. The attribute function A can also be designed to segment a particular
region of the image. We previously discuss these image filtering and segmentation
techniques in Section 2.2.7.

2.3 Registration

Image registration, often referred as image fusion, warping or matching, can be de-
fined as process of finding the transformation between two or more images so that
their structures of interest align. Medical image registration is so vast topic and
so widely studied for various applications and modalities. Registration methods
and algorithms can be classified in different ways and in literature several reviews
have been published compose them together [Oliveira and Tavares, 2014; Zitova
and Flusser, 2003; Maintz and Viergever, 1998]. We restrict the goal of this sec-
tion to understand the context of image registration with respect to the vessel of
intervention detection problem to be solved in this work.

Image registration is a crucial step for image analysis in which valuable informa-
tion is conveyed in two images; i.e. images acquired at different times and/or from
different view points and/or in different modalities (different sensors). This infor-
mation conveyance is essentially represented by a transformation that compensates
the absence of geometrical information during the acquisition of two images to be
registered. The registration problem can be well defined as finding the “optimal”
transformation that “best” aligns the two considered images. Here, the adjective
“optimal” for transformation donates a sense of a minimization problem and the
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adjective “best” for alignment hints a distance or dissimilarity measure that is min-
imized. Thus, a general formulation of registration problem is as a solution to
equation:

T̂ = argmin
T∈Ω

D(T (g), f) (2.17)

where T̂ is the desired optimal transformation between two images g and f , D
is called as objective function (or similarity measure) quantifying the distance or
dissimilarity that is minimized and Ω is set of admissible transformations. Based on
the information represented, the similarity measures are divided into two classes:

� Intensity-based similarity measures

� Feature-based similarity measures

Depending on features used some similarity measures can be included in both
classes. Intensity-based measures use all image pixels and do not require any feature
extraction. They tend to be more stable near the minima of the objective function
as they do not depend on uncertain feature locations or on correspondences which
may fluctuate with slight changes in transformation. They are used in cases when
the structures to be matched are not sparse in image or challenging to segment.
They are based on intensity differences, intensity cross-correlation or information
theory (mutual information). On the other hand, feature-based measures tend to be
faster, have wide capture range and allow registration quality to be focused only on
selected (sparse) subset of information in both images. The selected sparse subset
of image information essentially refers to the features which are segmentations of
the structures of interest in the images. Thus, these methods strongly depend on
the segmentation accuracy. The segmentations representing the features can be set
of non-connected points, open/closed curves or more complex structures like trees
or graphs. The strengths and weaknesses of the two measures are studied with a
quantitative approach in [McLaughlin et al., 2001].

The task of vessel of intervention detection is about determining the position of
guidewire tip in the vasculature from two fluoroscopic images: one obtained dur-
ing contrast agent injection in the vasculature and another during navigation of
guidewire when vasculature is not visible. An easy approach would be extract-
ing the features from the two images, i.e. the vessels modeled by their centerlines
and segmented guidewire tip, and find the position of the guidewire tip in the seg-
mented vessel. This task can be modeled as a feature-based registration or matching
problem, where we solve the Equation 2.17 by minimizing the distance D between
two geometric representations (features). The vessel centerlines and the segmented
guidewire tip can be represented by different types of features. The simplest feature
representation can be a set of points representing the centerlines of the vessels and
the centerline of the segmented guidewire tip [Kim et al., 2017]. In this work, the
registration is conducted using the Iterative Closest Point (ICP) algorithm, first
proposed by [Besl and McKay, 1992]. The ICP algorithm consist of two steps:
1) pair each point of model to its closest in the data; 2) eliminate the transfor-
mation minimizing the distance between paired points. The closest point pairing
assumption in the ICP framework can lead to incorrect pairings causing some part
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of guidewire tip to pair to one vessel and some other part of guidewire tip to pair
to other vessel. Similar issue in case of 3D/2D registration has been mentioned
in the work of [Kita et al., 1998]. Though we can relate the task to guidewire tip
to vasculature registration to that of 3D/2D vascular registration and take aid of
the corresponding vast literature, however there are significant major differences
between the two problems: 1) guidewire tip is small as compared to vasculature;
2) thereby, a non-rigid registration can lead to multiple pairings of guidewire tip to
the vasculature at different positions.

Taking into account these anomalies as compared to 3D/2D registration, an-
other natural way of representing the guidewire tip and vasculature can be a curve
and set of curves respectively. A curve can be a set of ordered points, a continuous
interpolation passing through them. In the work of [Liu et al., 1998], 3D and 2D
structures were represented as curves and a new point pairing strategy was proposed
using the local vessel direction to restrict the search zone for point pairing candi-
dates. This is followed by optimization of sum of squared Euclidean distance using
the Newton approach. The work of [Benseghir et al., 2015] was an advancement in
registration algorithm endorsing the particular structure of the vasculature to be
matched. The proposed Iterative Closest Curve (ICC) framework for registration of
curvilinear structures allows curve pairing by avoiding to penalize incoherence in the
point pairing set by imposing coherence using a dedicated distance called Fréchet
distance. In case of vessel of intervention detection problem, the curve belonging to
guidewire tip can be paired to its corresponding position in the vasculature using
the curve pairing imposed with Fréchet distance. More details on this curve pairing
are discussed in the Chapter 4.
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3.1 Abstract

In this chapter, we present a method for segmentation of empty guiding catheter
in fluoroscopic X-ray images. The guiding catheter, being a commonly visible land-
mark, its segmentation is an important and a difficult brick for PCI procedure
modeling. In number of clinical situations, the catheter is empty and appears as
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a low contrasted structure with two parallel and partially disconnected edges. To
segment it, we work on the level-set scale-space of image, the min tree, to extract
curve blobs. We then propose a novel structural scale-space, a hierarchy built on
these curve blobs. The deep connected component, i.e. the cluster of curve blobs
on this hierarchy, that maximizes the likelihood to be an empty catheter is retained
as final segmentation. We evaluate the performance of the algorithm on a database
of 1279 fluoroscopic images from 6 patients. As a result, we obtain very good qual-
itative and quantitative segmentation performance, with mean precision and recall
of 83.85% and 67.87% respectively. We develop a novel structural scale-space to
segment a structured object, the empty catheter, in challenging situations where the
information content is very sparse in the images. Fully-automatic empty catheter
segmentation in X-ray fluoroscopic images is an important and preliminary step in
PCI procedure modeling, as it aids in tagging the arrival and removal location of
other interventional tools.

3.2 Introduction

3.2.1 Guiding catheter vs other catheters

A catheter is a flexible surgical tube or instrument inserted in body cavity or vessel.
In cardiology, numerous types of catheters are used in X-ray guided electrophys-
iology (EP) and PCI procedures. In X-ray images catheters appear as tubular
structures with low contrast. These catheters can be mainly distinguished by their
shape and features of their tip. Various EP catheters and the catheters used in PCI
procedures are shown in Figure 3.1. EP catheters are used for electrical mapping
and ablation and can be characterized by features such as electrodes which are well
contrasted in X-ray images. The different types of EP catheters are radio-frequency
(RF) ablation catheter, circumferential mapping (or lasso) catheter, coronary sinus
catheter, right ventricle (RV) catheter, His catheter. The catheters used in PCI
procedures are guiding (Judkins) catheter and pigtail catheter. Guiding catheter,
which is our tool of interest here, is used throughout PCI procedures for performing
various tasks. Whereas, pigtail catheters are used for calculating ejection fraction.
Figure 3.1b also contains pacing lead, which may appear in X-ray images during
PCI procedures and looks like a catheter.

A guiding catheter is a tool that appears throughout the PCI procedure. It can
contribute to significant semantic information since it is the first tool to appear in
the field of view. The guiding catheter is fixed at ostia of left or right coronary
artery for rest of the procedure. It is the conduct for all other tools/devices which
will be brought into the vessel where the lesion is present. The contrast agent is also
delivered into the vasculature by injecting it through the guiding catheter. Thus,
the segmentation of guiding catheter can help in procedure modeling to determine
the events/phases of the arrival and removal location of other devices (guide wire,
marker balls).
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(a) EP catheters

(b) PCI catheters

Figure 3.1: Different types of catheters in cardiac fluoroscopy: (a) Electrophysiol-
ogy (EP) catheters, abbreviations: ABL catheter, ablation catheter; CS catheter,
coronary sinus catheter; RV catheter, right ventricle catheter; His catheter, (b) two
types of PCI catheters including pigtail catheter and guiding catheter. Pacing lead,
a tubular tool, also looks like a catheter.

3.2.2 Related works

In literature, most of the approaches focusing on catheter segmentation and tracking
in X-ray images are catheter type-specific or catheter tip type-specific and cannot
be extended to other types. These works have particularly addressed the segmen-
tation and tracking of electrophysiology (EP) catheters. EP electrodes are clearly
visible and well contrasted, which can be localized to segment the EP catheters.
For segmentation and tracking of coronary sinus catheter tips, [Ma et al., 2010]
proposed electrode-based detector, which identifies blob-like structures based on
Hessian matrix analysis. [Wu et al., 2011] proposed learning based approach for
CS catheter segmentation consisting of a blob-detector trained with probabilistic
boosting trees (PBT). [Milletari et al., 2013] showed that it’s possible to automat-
ically detect multiple and overlapping CS catheters with segmentation accuracy of
99.3%. This method was based on blob detection and clustering of CS electrodes.
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The electrode-based detector of [Ma et al., 2010] was extended for detection of ab-
lation catheter and lasso catheters [Ma et al., 2013]. [Brost et al., 2009, 2010] has
also proposed efficient tracking of lasso catheter for electrophysiology procedures.
Though the performance of segmentation of EP catheters evolved with state-of-the-
art methods [Milletari et al., 2014; Wu et al., 2015; Baur et al., 2016], these methods
are all based on the well contrasted electrodes of EP catheters. Similarly, radio-
opaque markers of the pigtail catheters were used to design a dedicated method for
its segmentation by [Lessard et al., 2015].

Most of these approaches for catheter segmentation and tracking are specific
to the catheter types and catheter tip types. Hence, these approaches cannot be
extended segmentation of other types of catheters. Segmentation of catheters in ab-
sence of salient features like electrodes or tips has been studied less frequently. There
are very few approaches that focuses on tracking of whole catheter. Some of these
methods [Baert et al., 2003] enhance the catheter and guidewire with the help of
Hessian-based filters followed by spline fitting approach. Many approaches model
the catheter as B-spline, which is parametric representation of non-linear curve.
Other popular approaches include modeling tools with B-splines whose control
points are determines with discrete optimization [Heibel et al., 2013] and B-spline
tube models [Chang et al., 2016]. [Chen et al., 2016] proposed guidewire segmenta-
tion with B-spline refinement on sequence of small segments followed by guidewire
tracking which was formulated as graph-based optimization problem. [Wang et al.,
2009] proposed segmentation of guidewire between the catheter tip and guidewire
tip.

The major drawbacks of these methods are: i) the first frame of the fluoroscopic
sequence has to be annotated manually and ii) the length and the curvature of the
guidewire and catheter should not change much during the sequence. To overcome
these challenges, [Wagner et al., 2016] proposed a fully automatic method using
directional noise reduction and path extraction. Recently, [Ambrosini et al., 2017]
proposed deep convolutional neural network based faster and fully automatic seg-
mentation of guidewire and catheter. All these approaches focus on tracking of
guidewire along with the catheter body.

As underlined previously in Section 1.3, the workflow of the procedures shall
not be modified by requiring additional user interactions. So the approach shall not
only include the capability to track the catheter from image to image but also the
capability to locate it without any type of initialization. This is why we propose
to focus our work on the task of searching the empty catheter in individual X-ray
image. In a second step, temporal tracking strategies can be used to increase the
robustness, eliminate outliers and focus on catheter tip.In this work, we address the
task of empty catheter segmentation in fluoroscopic images.

3.2.3 Guiding catheter in fluoroscopy

A guiding catheter is a tool that appears throughout the PCI procedure. We address
here the empty catheter case i.e. when it is not filled with contrast media. Such
empty catheter appears in 30% to 40% of the images acquired during PCI procedure
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(a) Filled catheter

(b) Empty catheter in record image (c) Empty catheter in fluoroscopic image

Figure 3.2: Guiding catheter in fluoroscopy: (a) filled catheter, empty catheter
appearance in (b) record image and (c) fluoroscopic image. All other components
of the imaging situation (patient, geometry) are identical. Fluoroscopic images are
noisier and the contrasts are weaker than in the record images

and mostly in the first steps of the procedure where the analysis shall start. A filled
catheter (with contrast agent) is highly contrasted structure and relatively easy to
segment. Figure 3.2 shows the difference between the filled and empty catheter.
From first analysis, we observe that the segmentation of empty guiding catheter is
of utmost importance.

The appearance of empty guiding catheter also varies according to the imaging
modes of the interventional systems. Figures 3.2b and 3.2c, shows a record and a
fluoroscopic image respectively, taken at few seconds of interval in the same setting
illustrate the difference of quality between these two imaging modes of interven-
tional angiographic units. However, the segmentation task is difficult due to low
contrast in fluoroscopic images. In these images the empty catheter appears as a
low contrasted structure with two parallel and partially disconnected edges because
it is just an empty tubular pipe made of a material with little radio-opacity. As
X-ray contrast of the object depends on both the radio-opacity of the material and
its thickness, an empty catheter is mainly detectable on its boundaries, where the
projective thickness is larger. So overall the image signal can be characterized by a
general geometric structure coming from smooth curve of the catheter and sparse
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information due to the limitations of X-ray imaging with low dose.

3.2.4 Proposed method at a glance

We devise a bottom up approach for segmenting the empty catheter in fluoroscopic
images. We first use the level-set scale-space, i.e., the hierarchy of all the level sets
of the gray scale image, called the component tree, to extract curve blobs, small
dark persistent regions that are potentially part of the empty catheter. These curve
blobs are disconnected in the image space. We then propose a structural graph-
based scale-space, in the form of a hierarchy (i.e., a tree), where these curve blobs
are connected. We analyze this hierarchy to select the cluster of curve blobs that
maximizes a score of likelihood to be an empty catheter. If the first tree exhibits the
deep structures of the critical points, the second tree puts forward the even deeper
structures of interest, that we call deep connected components. To evaluate our
work, we use a database of 1279 fluoroscopic images from 6 patients (retrospective
use of collected images of patients). The centerline of the catheter in this dataset
was manually delineated by a trained observer to define the ground truth.

3.3 Scale spaces and deep connected components

Classical techniques [Frangi et al., 1998] which are mostly differential-based, do not
work in this situation due to weak contrast of empty catheters and high noise level
of fluoroscopic images. We decided to adopt an approach derived from the theory
of scale-space. According to this theory, each structure in a scene is visible at a
certain scale. Finding the right scale is challenging issue that has been studied by
many authors, primarily using the Gaussian scale-space. [Lindeberg, 1993] studied
the problem of linking local critical points (extrema and saddle) over scales, leading
to the so-called scale-space primal sketch which makes explicit the relation between
structures at different scales. An important practical issue in this approach is the
ability to attach a persistence measure to the structures, i.e., a measure of the
duration of survival of the structures during the evolution. In their seminal works,
both [Koenderink, 1984] and [Witkin, 1984] propose to investigate the deep structure
of an image, i.e., the structure of all levels of resolution simultaneously.

For signal of dimension 2 or greater, two drawbacks of the Gaussian scale-space
are that, during the evolution, 1) structures evolve (change shape), and 2) critical
points can be created. On the other hand, connected filters from mathematical mor-
phology [Salembier and Wilkinson, 2009] can be seen as a non-linear scale space:
in such approaches, the image is transformed into an equivalent tree-based repre-
sentation (tree of upper-level sets, of lower level sets, or both), and attributes can
be computed for each node of the tree. Selecting the nodes with a criterion based
on these attributes allows to study the evolution of the nodes of the tree, and in
particular their persistence. Obviously, during such evolution, structures cannot
change, and no novel structure can be created. A formalization of such ideas in the
context of image segmentation has been achieved by [Guigues et al., 2006]. The
hierarchical data organization presented in this chapter has the main scale-space
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Figure 3.3: Curve blobs extraction with min tree filtering, from left to right: Input
toy image; lower level-sets of input image; corresponding min tree where each node
is one of the connected components of the level-sets; extracted curve blobs overlayed
with green centerlines.

properties studied by [Guigues et al., 2006]. Early attempt for using hierarchical
data organization for guidewire localization has been made by [Barbu et al., 2007].
They use marginal space learning based hierarchical model of curves (obtained from
low-level segment detector) to model complex free-form curves. The similarity with
our approach is that both are bottom up approaches with low level segment/blob
detector as first step. Though [Barbu et al., 2007] did not show segmentation of
empty catheter, a head-to-head comparison would be helpful but neither the dataset
nor the implementation has been made public. Reported computational time are
close to ours. A major insight that we draw from such methods is that any hier-
archical data organization has the main scale-space properties. As the algorithms
for computing the trees are graph-based ones, these ideas can be extended to work
on any graph, and not only on 2D/3D images (e.g. [Xu et al., 2016], [Najman and
Cousty, 2014]).

In this work, we first use the level-set scale space to identify curve blobs, which
are small dark persistent regions that are potentially part of the empty catheter.
We propose a novel structural graph-based scale-space, in the form of a hierarchy,
i.e. a tree built on the curve blobs. We analyze this second tree with the very
same techniques as the first one, and we retain the most persistent structures in
this second scale-space as the final segmentation. If the first tree exhibits the
deep structures of the critical points, the second tree puts forward the even deeper
structures of interest, that we call deep connected components.

The major steps of our proposed algorithm are detailed in section 3.4. The
strategy retained for assessing the performance of this algorithm is discussed in the
section 3.5. The qualitative and quantitative results are presented in section 3.6.
The main contributions are:

� proposal of a fully automatic catheter segmentation method in absence of
guidewire and contrast agent;

� proposal of a new notion of a deep connected component, appearing in a
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Figure 3.4: Distribution of connected components belonging to two classes (catheter
and non-catheter) in the attribute space of area and elongation.

second-order scale-space (Section 3.4); and

� assessment of the proposed method on a database of 1250 fluoroscopic images
(Section 3.6).

3.4 Method

Our bottom-up approach comprises two main parts: the first one aims at identify-
ing small dark regions called curve blobs (Section 3.4.1) and the second one focuses
on grouping them in order to retrieve the whole catheter (Section 3.4.2 and Sec-
tion 3.4.3). Both steps are performed by analyzing a hierarchical structure, called
a component tree [Salembier and Wilkinson, 2009].

3.4.1 Curve blobs extraction

Curve blobs are small dark persistent regions that are potentially part of the par-
allel edges of the catheter. Various methods in literature based on Haar or ridge
features can be used for extraction of curve blobs. We are interested to extract the
curve blobs from the image using a component tree called min tree. As described
previously in Section 2.2.7 a unique framework of min tree can be used for segmen-
tation of different interventional tools by designing dedicated filtering strategies for
each interventional tool.

As a first step, we pre-process the input image to remove the anatomical back-
ground with the help of morphological operation. The image f on which the min
tree is computed is obtained with a simple morphological dark top-hat on the input
X-ray image with a circular structuring element whose radius is same as radius of
catheter. According to the min tree framework (Section 2.2.6), for a grayscale image
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(a) (b)

Figure 3.5: Curve blob extraction, (a) input fluoroscopic image and (b) green cen-
terlines of extracted curve blobs.

(pre-processed fluoroscopic image in this case) f defined on a domain D and with
values in range R the lower-level set of f with level h in R is

fh =
{
x ∈ D | f(x) ≤ h

}
. (3.1)

The image f when thresholded in an increasing order at every possible gray
level in the range R, yields a stack of nested (lower-) level sets. Each level set
can be partitioned into connected components when the domain D is structured
as a pixel-adjacency graph (we consider 4-adjacency relation). Based on inclusion
relationship, the structured set of all connected components is a directed tree called
the min tree of the image f , denoted by Tf . These connected components are the
nodes of the tree Tf , and are denoted by N .

The min tree considers only the dark connected regions of the image and the
curve blobs appear as regions at different levels of this tree (i.e., at different scales,
refer Figure 3.3 for illustration). Thus, two curve blobs might well be obtained from
two distinct threshold values. Then, the set of all curve blobs is included in a non-
local (i.e., a spatially variable) threshold of the image, that is a non-horizontal cut
of the min tree. In order to obtain curve blobs among the connected components,
we design a criterion that selects them in this non-horizontal cut. We assign to
any component in the min tree, attributes characterizing its shape and structural
properties. For curve blobs, we design a selection criterion based on two attributes:

� Area: The area attribute refers to the number of pixels in the connected
component.

� Elongation: The elongation is given by 1 − lmin/lmax, where lmax and lmin
are the lengths of the axes of an ellipse optimally fitted to the component.

In order to select curve blobs, a straightforward idea is to select components
whose area is in a certain range and with elongation attribute large enough. Note

59



Chapter 3. Empty catheter segmentation

Figure 3.6: Curve blobs clustering; from left to right: extracted curve blobs (see
Figure 3.3); connection of curve blobs on structural scale-space; hierarchy of deep
connected components (clusters of curve blobs at different scales); selected deep
connected component overlayed on input image.

that we are not interested in too small connected components which might come
from noise nor in too large ones which might correspond to filled catheters, pacing
leads, or other large anatomical or interventional structures. To establish a proper
selection criterion, we built a set of curve blobs belonging to empty catheter (taken
in 14 images) and another set of curve blobs selected randomly in the same image
at location away from the marked empty catheter. We investigated the distribution
of these two sets, catheter and non-catheter blobs, in the area-elongation space
(see Figure 3.4). We observed that the two classes of catheter and non-catheter
blobs appear together in this space. We established a relevant criterion: defined
by independent lower limit for area and elongation and a maximum upper limit
on the weighted sum of area and elongation. All nodes satisfying this criterion are
selected to form the set C of curve blobs. Sometimes nested connected components
of min tree satisfy the selection criterion as they depict same region in the image. A
filtering on the component tree, Tf , is performed in order to preserve elements with
largest area (taking aid of the inclusion relationship). Thus we propose a strategy
to preserve the parent node Np of node N ,

If N ,Np ∈ C | ∀ N ∈ Tf (3.2)

prune the children nodes N . Figure 3.3 illustrates with an toy example, the ex-
tracted curve blobs with these filtering steps. As evident from the distribution in
the area-elongation space, the number of curve blobs in fluoroscopic image can be
significantly large. The extracted curve blobs with fluoroscopic image as input are
shown in Figure 3.5.

3.4.2 Curve blob clustering

This section presents the main idea of empty catheter detection, i.e. curve blob
clustering in the structural scale space. Fig. 3.6 intuitively portrays this idea of
curve blob clustering in the structural scale space. Some curve blobs extracted in
the previous step are regions of edges of the catheter, while some others correspond
to other anatomical and interventional structures or to noise. By analyzing indi-
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vidually a given curve blob, it is difficult to decide whether it is part of a catheter
because contextual information is missing. So we consider them in a common space
and define a weight for each pair of curve blobs, called as blob pair weight. The
weight is defined to be small when the two considered curve blobs are likely to be
part of an empty catheter. In rightmost image in Fig. 3.6, the selected cluster of
curve blob belonging to empty catheter is shown where green curve blobs are con-
nected with red edges which link blob pairs. We propose to build it by combining
three elementary weights, each of them characterizing one aspect of the relation be-
tween two curve blobs. Let us consider C1 and C2 be any two curve blobs and their
blob axes (Ca1 and Ca2 respectively) are the axes of the optimally fitted ellipses to
the respective blobs. These blob axes represent the orientations (or first moments)

of the blobs. Let b1 and b2 be the barycenters of two blobs and
−→
b be the vector

joining these barycenters as in Figure 3.7. The three elementary weights are defined
as,

� Spatial weight, wS: The intent of the hierarchy is to connect primarily the
curve blobs which are sufficiently close. So we include a spatial weight, which
is the Euclidean distance between two blobs. To be precise, the Euclidean
distance between two blobs is the minimum distance between the blob axes
of the pair of blobs considered.

� Alignment weight, wA: In the image space, empty catheter looks like par-
tially disconnected elements of curvilinear structure. Thus, the blobs belong-
ing to an empty catheter shall be a part of a smooth curvilinear structure and
as such shall have a close orientation when they are not distant from each
other. The alignment weight is designed to measure this property. Two con-

sidered blobs with their barycenters are enriched by orientation vectors
−−→
Ca1

and
−−→
Ca2 representing the blob axes. Thus, the alignment weight of two blobs

is derived using the minimum of the inner product of these orientation vectors
and of vectors joining barycenters as given by,

wA = 1−
∣∣∣∣min(〈−−→Ca1,

−→
b 〉, 〈
−−→
Ca2,

−→
b 〉)

∣∣∣∣ (3.3)

� Profile weight, wP : We have mentioned that, in an image, empty catheter’s
appearance reduces to two parallel edges. In order to incorporate this infor-
mation in the strength measure, we need to perform a measurement on the
intensity of the blob and its immediate neighborhood in the image. Profile
weight estimates the dissimilarity between the intensity profiles along a pair
of blobs and the desired intensity profile along an ideal empty catheter. The
intensity profile P along a blob is a series of values (p[d] | d ∈ [−N,N ]), where
p[d] is the average of the intensities of the pixels on the segments parallel to
the blob axis located at (signed) distance d. The intensity profile along a
blob on the edge of catheter should ideally have two minima corresponding
to the two parallel edges of the catheter. Let the intensity profiles of given
two blobs C1 and C2 be P1 and P2 as shown in Figure 3.7. We compute
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(a) (b) (c)

Figure 3.7: Blob pair weight computation, (a) wS is the spatial weight between two
blobs with blob axes Ca1 and Ca2 (b) vectors to compute alignment weight and (c)
shows profiles P1 and P2 to compute profile weight.

the expected intensity profile Pcat as the mean intensity profile of the blobs
belonging to catheter in the ground truth images. The distance to expected
intensity profile of a blob is computed as,

δP (Cn) =
2N∑
d=0
|Pn[d]− Pcat[d]| . (3.4)

The profile weight of a blob pair is the mean of the distances to expected
profile of the two blobs,

wP = δP (C1) + δP (C2)
2 (3.5)

We transform the individual weights (w) with sigmoidal function,

w∼ = 1
1 + e−k(w−wo) (3.6)

so that the three weights lie in the same range. Thus we obtain w∼S , w∼A and w∼P by
establishing the parameters k and wo of Equation 3.6 for each of the three weights
from simple numerical consideration. The blob pair weight wB is computed for any
two curve blobs C1 and C2 in C as:

wB(C1, C2) = α ∗ w∼S (C1, C2) + β ∗ w∼A(C1, C2) + (1− α− β) ∗ w∼P (C1, C2) (3.7)

The hierarchy of curve blobs can be defined with using the blob pair weight.
Intuitively, a threshold on the blob pair weight gives a partition of C into clusters
of connected blobs which are “consistent” with respect to blob pair weights. More

62



3.4. Method

(a) Extracted curve blobs (b) Cluster of curve blobs

Figure 3.8: Curve blob clustering, (a) green centerlines of extracted curve blobs
with the input image (Figure 3.5a); (b) selected cluster of curve blob representing
empty catheter.

precisely, for a given threshold value λ, we build a curve blobs graph Gλ = (C, Eλ)
where each vertex is a curve blob in C and where two curve blobs are linked by an
edge in Eλ if their blob pair weight is below λ:

Eλ = {{C1, C2} | wB(C1, C2) ≤ λ, C1, C2 ∈ C}. (3.8)

Such graph induces a partition Pλ of the curve blobs into connected components,
each element being referred to as blob clusters at scale λ. The set of all blob clusters
obtained at every possible scale is a hierarchy H of partitions on the set of curve
blobs, given by:

H =
⋃
{Pλ|λ ∈ [0, 1]}. (3.9)

Indeed H is a hierarchy since any two blob clusters in H are either nested or
disjoint. Hence, this hierarchy can be managed as a tree structure where the par-
enthood relationship is given by inclusion relationship on the set of clusters (more
precisely it is its Hasse diagram). Using the terminology from mathematical mor-
phology, where a similar construction has been done for pixels with a different
measure [Soille, 2008; Cousty et al., 2015], we name this precise component tree
the quasi-flat zone hierarchy of the blob pair weight. Any element of a partition
at scale λ is called a (quasi-flat) zone. Hence, in the context of this chapter, these
zones refer to clusters of the curve blobs or deep connected components. This hi-
erarchy is what we mention previously as a structural scale-space in which we are
looking for the deep connected component corresponding to the empty catheter in
the image. Unlike the min tree, which was directly built over the image pixels, at
every threshold value, the set of all curve blobs is partitioned, the elements of the
partitions being clusters of curve blobs.

63



Chapter 3. Empty catheter segmentation

3.4.3 Deep connected component selection

An empty catheter appears to be a zone (deep connected component) in the parti-
tion of this quasi-flat zones hierarchy at some scale λ in the structural scale-space.
The object (zone) of interest here being the catheter which is elongated curvilinear
object, its length can be best determined by the centerline. Determining the length
of the zone is not straightforward. Zones are the connected components whose
vertices are the curve blobs and the edges are the segments joining any two curve
blobs. As a result, towards the analysis of the size and shape of zones (clusters of
curve blobs) in the structural scale-space, we decide to fit a curve to each of the
zones to determine their centerlines. As the zone belonging to the catheter may
contain curve blobs from either one or both edges of the catheter (see Figure 3.8b),
spline interpolation may not be best estimate for the centerline of the catheter.
We go for a global fitting with a 3rd order polynomial curve for each zone. The
order of the polynomial is determined on the basis of the possible appearance of
the catheter in the fluoroscopic images. The data points considered to effectively
perform polynomial least square fitting are the barycenter of the blob and the two
ends of the blob axis for all the blobs in the zone. This classical fitting is done by
minimizing a least-square error obtained by L2−norm of the difference between the
blob (observed) points and fitted points.

In order to further analyze the shape of the zones, we have a measure L which
maps to any zone Z a positive real value L (Z) that represents the likelihood of Z
of being an empty catheter. For each zone Z the measure L (Z) depends on some
attributes of zone Z. These attributes depend on several geometric and (time
and space) continuity properties of Z modeling the appearance of empty catheter
in fluoroscopic images sequences. The six zone attributes used in this study are
explained below:

� Length: the length of a zone is the length of the 3rd order polynomial curve
fitted on the zone as described above. Once the fitting is done, the segment
of the curve is selected by mapping the blob points on the fitted curve and
determining the extremities of these mappings on the curve. The length is
the arc length of the curve between these extremities.

� Fitting error : the fitting error is calculated as average of the residual errors
in the least square fitting above. For the zone belonging to catheter expected
fitting error is small as curvilinear structure belonging to catheter can be fitted
with 3rd order polynomial. However, when the zones are more spread in the
space (not related to elongated object), the fitting error is larger.

� Average distance to expected profile: zone belonging to empty catheter should
have information related to the parallel edges of the catheter. In previous
steps, this information was imbibed in the profile weight where the distance
to expected profile δP (Cn) for any blob Cn is defined (Equation 3.4). This
attribute is the mean of distances to expected profile of all curve blobs of the
given zone.
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� Proximity to expected scale of observation: an empty catheter is expected
to appear as a zone at a certain scale λ?. Therefore, we design a proximity
attribute to this expected scale. The expected scale is observed from the
image dataset and is a value in the range [0, 1], (refer Equation 3.9).

� Proximity to image borders : one end of the catheter in field of view always
appears at the borders of the image frame. We incorporate this information
to design an attribute by computing the minimum of the distances of all the
curve blobs in a zone to the border of image.

� Temporal feedback : for each frame, we compute a feedback image with the
score of the detected catheter in its bounding box and 0 elsewhere. We then
sum the feedback images of the past 10 frames and consider the average for
all pixels of a zone. It is taken as the temporal feedback attribute of the
zone. We choose bounding box based method for temporal feedback because
of the motion of the catheter across the sequence induced by heartbeat and
breathing.

However, to homogenize the range of the attributes before combining them,
we form homogenized scores as the images of the attributes by Gaussian functions
whose parameters (centers and width) are determined by analyzing the ground truth
(see Section 3.5 for details on ground truth). The measure L is product of the six
homogenized scores. The resulting segmentation S is the zone in the hierarchy H
that maximizes the likelihood score:

S = arg max
Z∈H

L (Z) (3.10)

3.5 Segmentation Quality Evaluation

For evaluation, we use a database of clinical images and the ground truth annotated
by experienced human observers with support of a semi-automatic software.

3.5.1 Dataset

Though this method is designed to segment empty catheter in fluoroscopic images,
we evaluate our empty catheter segmentation algorithm using a dataset fluoroscopic
images and record images to determine its robustness to image quality. The dataset
consists of 1279 fluoroscopic images belonging to 10 sequences taken from examina-
tions of 6 patients. While it consists of 630 record images belonging to 7 sequences
from 5 patients. These images were acquired at frame rate of 15 fps. Considered
images of angioplasty exams depict large variability because of patients’ body mass
index (BMI), noise levels, different anatomical backgrounds, occasionally presence
of pacing leads, stents, staples, sternal wires (see Table 4.2).
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Chapter 3. Empty catheter segmentation

3.5.2 Ground truth construction

Catheter appears as low contrasted tubular structures in X-ray images. We de-
cided to have the centerline of the catheter as a reference point to evaluate the
performance of our segmentation. An internally developed (image similarity based)
semi-automatic software for curve tracking is used by human operators to mark,
track and correct the centerline, forming a curve which forms the ground truth for
empty catheters in fluoro images along the temporal sequence. For each frame in
a sequence, a centerline is a curve in 2D image space, which is then sampled in a
series of equidistant pixels as Cgt = (g1, . . . , gm).

3.5.3 Segmentation

The automatically detected empty catheter is a cluster of curve blobs. As described
in previous section, a polynomial curve is fitted to these blobs which is then sampled
in a series of equidistant pixels given by Cseg = (s1, . . . , sn). Right column in Figure
3.10a shows the estimated centerline. In Cgt and Cseg, the sampling distance between
two consecutive points is 1 pixel (0.2mm).

3.5.4 Evaluation measures

In this work, we want to evaluate our ability to locate the empty catheter. We
quantify the proximity between the two objects: the reference centerline, curve
marked as ground truth, and the estimated centerline, fitted polynomial curve.
This metric of proximity is then analyzed using the precision and recall formalism.
Precision is defined as fraction of correctly detected catheter. As explained in Figure
3.9a, the matched detection is denoted as true positive, emphasizing the fact that the
segmentation algorithm has indeed found the catheter. The unmatched detection
is denoted as false positive, because the detected catheter hypotheses are incorrect.
Similarly, recall is fraction of reference centerline (ground truth) which is retrieved
and retained in the estimated centerline. Figure 3.9b shows the matched reference
(true positive) which is correctly retrieved ground truth points. Such centerline line
based evaluation methods are employed for evaluation of road extraction algorithms
in photogrammetry and remote sensing [Wiedemann et al., 1998].

Precisely explaining our implementation, for each image, we quantify the prox-
imity between: the series Cgt = (g1, . . . , gm) of ground truth points and the se-
ries Cseg = (s1, . . . , sn) of the points extracted from segmentation. To this end, we
consider the minimal distance from a point x to a series of points C = (c1, . . . , c`)
as,

δ(x,C ) = min{d(x, ci) | i ∈ {1, . . . , `}} , (3.11)

where d is Euclidean distance. Based on this measure, a point si of the segmented
catheter curve Cseg is considered as correctly classified (true positive) when,

δ(si,Cgt) ≤ η . (3.12)

Each point si which does not satisfy this equation, is classified as false positive.
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(a) (b)

Figure 3.9: Evaluation principle to compute precision and recall. (a) Matched
detection (extracted centerline); (b) Matched reference (ground truth)

These sets of true and false positive points are used to compute precision (Fig-
ure 3.9a). In this regards, we enumerate the number of true positives (#TP ) and
false positives (#FP ) in Cseg. Thus we compute the Precision as the fraction of
segmented points correctly classified,

Precision = #TP

#TP + #FP
(3.13)

Similarly, a point gi of the ground truth Cgt is considered as correctly retrieved
when,

δ(gi,Cseg) ≤ η . (3.14)

On this basis, each point gi ∈ Cgt is classified as true positive or false negative
to calculate the number of true positives (#TP ) and false negatives (#FN) (Fig-
ure 3.9b). From this information, we compute Recall as the fraction of ground truth
points correctly retrieved,

Recall = #TP

#TP + #FN
(3.15)

The value of η used for evaluation is based on the the standard diameter of an
empty catheter in the image plane (here η = 24 pixels (4.8mm)). We also analyze
the precision and recall for various possible values of η.
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Chapter 3. Empty catheter segmentation

(a) Input images

(b) Selected clusters of curve blobs

(c) Estimated centerline of catheters

Figure 3.10: Results of empty catheter segmentation in X-ray fluoroscopic images.
(a) input fluoroscopic images from two patients, (b) selected cluster of curve blobs
from hierarchy(c) fitted curve on the cluster (estimated centerline).
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3.6 Results and discussion

We evaluate our empty catheter segmentation algorithm using a dataset of 1279
fluoroscopic images and 630 record images of cardiac angiographic sequences of
patients. The segmentation of empty catheters in fluoroscopic images with different
image qualities and different anatomical and interventional contents are shown in
the Figure 3.10. Figure 3.10a shows two fluoroscopic images which are input of the
segmentation algorithm, and in Figure 3.10b, the corresponding input images are
overlayed with the selected cluster of curve blobs. Whereas, Figure 3.10c shows the
fitted curve for the selected cluster of blobs, this curve is considered as an estimation
of the centerline of the catheter. Figure 3.10c portrays empty catheter segmentation
in presence of other elongated interventional and anatomical objects.

Figure 3.12a depicts the results of empty catheter segmentation in fluoroscopic
images from three different patients. These images illustrate the potential of the
segmentation method, where empty catheter is detected in spite of the presence of
other elongated objects like pacing leads, sternal wires. These fluoroscopic images
also have disturbing anatomical contents like the spine. Indeed, some internal struc-
ture of the vertebra bodies may take part of the appearance of catheter because of
contrast and curvilinear outlook. Figure 3.12b shows the result of our segmentation
method on the record images from three patients. Rightmost image in this figure
refers to the point in the sequence, towards the end of an injection in the cardiac
artery and the fading injection is still visible. Whereas, left and middle images in
Figure 3.12b belong to rotational record sequence and contains sternal wires.

For fluoroscopic images, we assess two versions of our automatic algorithm with
and without temporal feedback using the defined evaluation measure. According to
the evaluation measure defined in Section 3.5.4, precision and recall can be com-
puted for obtained centerline of each image. In order to analyze the performance for
a sequence, we report the mean precision and mean recall over all the images in the
sequence. Similarly, we report weighted mean precision and recall for the complete
dataset where the weights are the number of images in each sequence. In 1279 fluo-
roscopic images, the weighted mean precision and recall without temporal feedback
are 62.40 ± 18.86% and 55.84 ± 18.2% respectively. With temporal feedback, this
weighted mean precision and recall improves to 83.85 ± 23.29% and 67.87 ± 19.53
respectively. The weighted standard deviation of precision and recall with temporal
feedback is more because per sequence performance improves more for sequences
with higher rates of precision and recall without temporal feedback. For record
images, we analyze the performance with temporal feedback. The segmentation is
better due to better image quality as compared to fluoroscopic images. With tem-
poral feedback, the weighted mean precision and recall values are 88.2±13.54% and
71.5± 12.78%. Some record sequences were obtained during C-arm spin, leading to
some artifacts due to occlusion with sternal wires.

In case of fluoroscopic images, we graphically analyze the precision and recall
over complete dataset by drawing the boxplots (3.11) for precision and recall at
different thresholds (η in Equations 3.12 and 3.14). In these graphs, the red line
connects the medians at various thresholds. The weighted mean values at each
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Chapter 3. Empty catheter segmentation

(a) Precision vs thresholds (b) Recall vs thresholds

Figure 3.11: Box plots of precision and recall at different thresholds in fluoroscopic
images.

threshold is marked by red square in the corresponding box plot. The whiskers in
these box-plots refer to 1.5×(Quartile Range) value. Among these informative plots,
we are particularly interested in the precision and recall at threshold of 24−30 pixels,
which is slightly more than the width of the catheter which varies between 20− 24
pixels. In these two plots, it can be seen that the mean value is lower than the
median value. This is mainly because of the poor performance in some patient
sequences namely B2, D1, and E2.

In a detailed per sequence analysis (Table 3.1), we notice that in few sequences
the performance of our algorithm is hampered because of some factors such as the
patient’s body mass index (BMI), catheter appearing over the spine making it less
visible, several sections of catheter in the field of view (FOV) leading to multiple
apparent catheters (e.g. left and middle images in Figure 3.12a). Low precision and
recall was observed in sequences B2, D1 and E2 (in Table 3.1) due to multiple section
of the same catheter in the FOV and high patient body mass index. In sequence
B2, our proposed algorithm fails to identify the desired section of catheter with the
tip, among the two sections. Figure 3.13a depicts a frame from sequence B2, where
ground truth is marked in green and detected catheter is marked in red. However,
in sequence E1 the undesired section of catheter (without the tip) was above the
spine making it difficult to be detected. Hence, the precision and recall for this
sequence is 96.54% and 71.10% respectively, leading to successful segmentation of
desired section of catheter with tip.

In sequence D1, the algorithm fails due to high patient BMI of 39.7, resulting
in high noise level and very low contrasted catheter. It can be seen in Figure 3.13b,
that the catheter is barely visible to naked eyes. We also noticed that position
and orientation of the gantry affects the image quality and the performance of our
algorithm. In further experiments we observe that the precision and recall rate is
stable when parameters of the edge weights are changed in a range of ±20%, which
is encouraging regarding the robustness of the approach which is not dependent of
very precise parameter setting. A small set of 30 images from 4 sequences (A1, B1,
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Chapter 3. Empty catheter segmentation

(a) Fluoroscopic images

(b) Record images

Figure 3.12: Results of empty catheter segmentation in X-ray images. Detected
centerlines in (a) fluoroscopic images of three patients, (b) record images of three
other patients.

B2, C1) was used for tuning parameters in the full algorithm development. Once
the development was completed, we built a large database of images with ground
truth. Optimizing the α and β parameters of the blob pair weight function (refer
equation 3.7) on 650 images (instead of 30) from 4 sequences (A1, B2, C1 and D1)
slightly improves the results ( 3.45% Recall / 6.20% Precision). Our evaluation
measure and the ground truth are used for this optimization step.

The average execution time per image is 0.58 seconds on a Intel® Core � i7−
4810MQ CPU. The software has good potential for further optimization.
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(a)

(b)

Figure 3.13: Failed segmentation cases. In (a) and (b), left image shows the input
image and right image shows the ground truth in green and the falsely detected
catheter in red. See Section 3.6 for details.

3.7 Conclusion of catheter segmentation

In this chapter, we studied the challenging problem of detecting and locating the
empty catheter in fluoroscopic images. We also presented the results of segmenta-
tion in record images. Empty catheter segmentation is a very challenging problem
taking into consideration the appearance of the catheter in fluoroscopic images. To
achieve our goal, we developed a novel structural scale-space in the form of a hier-
archy of deep connected components, one of them being selected as empty catheter.
Our experimental results are very encouraging, showing that it is indeed possible to
locate with good precision the empty catheter in such noisy images. These results
also open the doors for PCI procedure modeling since empty catheter is an impor-
tant landmark in these images. Indeed, using a similar strategy in the scale space
framework, we aim to simultaneously detect other landmarks, such as guide wire
tip, marker balls, or balloons that are well contrasted. Therefore, our next chap-
ter includes segmentation of these objects by handling in a common scale-space
framework. These segmentations can contribute to the PCI procedure modeling.
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CHAPTER 4

VOIDD: vessel of intervention dynamic
detection and tracking
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Chapter 4. VOIDD: vessel of intervention dynamic detection and tracking

In the chapter, we present a fully automatic tracking algorithm, called VOIDD,
to detect the vessel of intervention (VOI), which is treated during the procedure,
by combining information from a vessel image with contrast agent injection and
fluoroscopic images acquired during guidewire tip navigation where the VOI is not
visible. The crux of the algorithm lies in creating and tracking feature pairs that
are spatially and temporally consistent. In order to form such feature pairs, we also
present

1. a robust guidewire tip segmentation method,

2. a vessel tree extraction algorithm, and

3. a matching procedure allowing to make smart correspondences between de-
tected guidewire tips and vasculature.

Such capabilities can be used for varied applications like automatic documentation
of PCI procedures, automatize preparation of enhanced images and also to optimize
the image acquisition to reduce the use of ionizing radiation or amount of contrast
media. We provide evaluation methodologies to characterize the correctness of
the guidewire tip detection and correct identification of the VOI. The method is
evaluated on a 15 clinical sequences dataset consisting of 9989 fluoroscopic images
and 150 VOIs annotated by a trained observer. Our results show that VOI can be
robustly obtained from X-ray images acquired during the PCI procedures. We also
show that our method is able to detect the sequences of guidewire navigation, that
is the appearance of guidewire tip in field of view, with high accuracy and we assess
its robustness with respect to different patient and imaging conditions.

4.1 Introduction

4.1.1 Clinical interest

As mentioned in Chapter 3, the catheter is placed at the ostium of each of the left
and right coronary tree, one after another, thus preparing for the vessel diagnosis
phase. The vessel diagnosis is one of the first phases in the PCI procedure. It
includes the visualization of the lumen of the coronary arteries which is achieved by
injecting an iodine based contrast media at the ostium of each coronary tree (left
and/or right). The contrast media flows through the catheter into the coronary
vessels and is rapidly washed out by the blood flow. The propagation of the contrast
media is documented under X-ray radiation to acquire the angiographic sequences
which are further used to diagnose the stenoses. The procedure is overall beneficial
to the patient but has several side effects that we aim to reduce. However, the
tolerance to the contrast agent is limited to some amount. The other side effect is
the use of ionizing radiation which affects both the patient and the medical team
present in the interventional room including the interventional cardiologist.

Vessel of intervention: The Vessel of intervention (VOI) is a branch of the
coronary vessel tree between the ostia and the distal end of the vessel across the
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(a) (b)

Figure 4.1: Vessel of intervention definition: a branch of coronary vessel tree in
which the guidewire is navigated and is between ostia (yellow region) and the distal
end of the vessel (green region) across the coronary lesion (red arrow). (a) shows
the VOI in injected vessel image and (a) shows the guidewire tip at the distal end
of vessel.

coronary lesion. Coronary lesions are treated by navigating a guidewire through
the VOI (during the guidewire navigation phase), followed by implantation of a
stent at the lesion in the VOI. Figure 4.1 illustrates this vessel of intervention in
injected vessel image and guidewire navigation image. In the work presented here,
we develop methods for automatic detection of VOI by combining the information
from X-ray image sequences acquired at different steps of the procedure. Our aim is
to automatically identify the guidewire arrival at the ostia of the coronary vessel tree
and to determine the VOI which is going to be treated in the following steps of the
PCI procedure, such as lesion reparation with angioplasty balloon, stenting, post-
dilatation. The detected vessel of intervention can be used as a region of interest
to segment forthcoming objects like marker balls or balloon. One of the goals of
PCI procedure modeling is the detection of the procedure phases. We associate
the detection of the guidewire navigation phase to the task of identification of the
arrival of guidewire tip in the field of view. Thus, giving the capability to the
imaging equipment to monitor precisely the phases of the procedure can lead to
improvement of the overall workflow of these procedures. In the long term, this
capability could be used to optimize the image acquisition to reduce the amount of
dose or contrast media employed during the procedures.

4.1.2 Related work

Keeping in mind the goal of PCI procedure modeling, detecting the vessel of in-
tervention can lead to significant semantic information about the potential region
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of interest for the following part of the procedure. However, there has not been
any work in literature with a goal similar to this one. Some of the works with
similar clinical interests are some applications from the manufacturers of inter-
ventional suites. Some manufacturers of interventional suites propose applications
which facilitate the visual appreciation of the relationship between the guidewire
and the vessel. The main idea is to combine a sequence of consecutive injected
images, which visualize the vessel along a cardiac cycle, with the images obtained
during tool navigation as briefed by [Dannenberg et al., 2016]. The images at these
different times are paired mostly based on the ECG. Breathing motion may be com-
pensated by comparing moving structures in the images [Dannenberg et al., 2016].
The slight deformation of the arteries caused by the introduction of the guidewire
is not compensated. The detailed methodology and quantitative measurements on
the obtained accuracy have not been reported so far for this challenging problem.
Though these methods maybe useful for navigation of the tool, but they may not
be easily extended to detect the region of interest (here, VOI) in the injected image.

From a more technical standpoint, looking at the task of identification of the
vessel of intervention in angiographic images, significant work exists in literature
with a different aim and a workflow than our purpose. Most of such works have
been done to co-register between different modalities, such as X-ray angiographic
sequences with

1. intra-vascular ultrasound (IVUS) or with

2. optical coherence tomography (OCT)

which are involved in some of the PCI procedures. The co-registration between
angiographic sequences and IVUS has been studied by [Wang et al., 2013; Prasad
et al., 2016; Frimerman et al., 2016]. In these methods, the position of IVUS trans-
ducer during pullback is mapped to segmented vessel branch in ECG triggered
angiographic image. The outcome of these methods is registration of corresponding
point in the IVUS plane to a point along the segmented vessel branch. The clini-
cal studies and methods for co-registration of coronary angiographic sequences and
OCT has been presented by [Tu et al., 2011; Hebsgaard et al., 2015; Koyama et al.,
2015]. These co-registration methods provides the interventional cardiologist with
detailed information about vessel size and plaque size at every position along the
vessel of interest, making themselves suitable tools during the actual intervention.
[Prasad et al., 2016] have shown that it is possible to search the correspondence
between a location identified in the low-dose X-ray (fluoroscopic) images acquired
during tool navigation and the high dose X-ray (cine) images which depict the
injected vessels. The addressed clinical need is the registration of intra-vascular
images acquired with a sensor placed along the guidewire with the vessel. By this
means, the operator can easily correlate the readings of the angiographic images and
the intravascular images signals. In this situation, a full application is developed
with a specific acquisition workflow with the different steps of the image acquisition
and processing being done based on landmark points and appropriate images se-
lected by an operator. One of the important step in these methods involve manual
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Figure 4.2: Vessel of intervention detection system workflow
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identification within the diagnostic angiogram of the vessel that is subject to IVUS
examination.

Our tracking framework aims at determining the corresponding position of the
guide-wire tip in the injected vessels. The significant prior information required
for our tracking framework includes guidewire tip segmentation, coronary vessel
centerlines and the matching between segmented guidewire tips and centerlines of
the coronary vessels. Several authors have worked on the task of segmenting the
guidewire [Vandini et al., 2017; Chen et al., 2016; Wang et al., 2017, 2009]. For
PCI application as in [Honnorat et al., 2012], the weak contrast of the guidewire
body makes the task very challenging. Therefore, we decide to use the tip of the
guidewire to extract information regarding the advancement of the guidewire in the
vasculature. In order to extract coronary vessel centerline, Hessian based vessel
enhancement techniques [Frangi et al., 1998; Kirbas and Quek, 2004; Zhang, 2010]
have been largely used in the literature. These techniques are based on the basic
assumption that the vessels are locally linear tubular structures. They are often
composed of two steps: 1) enhancing the vessels in the images, 2) segmenting vessel
centerlines.

4.1.3 Major contributions

The main contribution of this chapter is the proposition and the assessment of a
method, called VOIDD, to automatically detect the so-called vessel of intervention,
from the images acquired during the initial phases of the PCI procedure. We com-
bine information at these initial phases from two different X-ray image sequences:
i) the cine images from reference sequence, a subset of angiographic sequence, which
are injected with contrast agent to depict the vasculature during complete cardiac
cycle and ii) the fluoroscopic images from fluoroscopic image stream, which are
acquired following the reference sequence to aid navigation of various tools and es-
pecially the guidewire. These phases of the procedure are introduced in the 1.2.2.2
and in Figure1.7. These X-ray image sequences are further detailed in Section 4.2
to lay the basis for this Chapter. The different processing steps of the method are
shown in Figure 4.2. More precisely, this algorithm is able to recognize from the
fluoroscopic image stream, the period corresponding to the guidewire navigation
and to exploit it to determine the vessel of intervention location (see Fig. 4.3)
without adding any constraint to the procedure workflow. In order to reach this
goal, a general tracking algorithm is proposed and explained in Section 4.3. This
algorithm relies on features extracted from the two considered types of X-ray image
sequences. These features consist of coronary vessel centerlines extracted from ref-
erence sequences and of guidewire tip location candidates detected in fluoroscopic
image streams. Hessian based vesselness techniques are used to obtain the vascu-
lature from reference sequences. Guidewire tip detection is tackled with advanced
approaches involving the use of min tree [Salembier and Wilkinson, 2009]. Frèchet
distance based curve matching approaches derived from [Benseghir et al., 2015] are
used to match the guidewire tip with detected vessels. In Section 4.4, we present the
evaluation methodologies designed to characterize the correctness of the guidewire
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tip detection and the correct identification of the VOI location. These developments
are assessed on 15 clinical sequences dataset from 14 patients and comprising 9989
images with expert annotations. The results are presented and discussed in Section
4.5.

4.2 Data and preprocessing

This section describes the data used in the different stages of the algorithm. This
section also details the pre-processing and synchronization of image data with re-
spect to non-image data. The system workflow, as described in Figure 4.2, comprises
of two main stages: the reference sequence processing and the fluoroscopic image
stream processing followed by a post-processing stage. The reference sequence,
consisting of images of contrast-enhanced vessels, is described in Section 4.2.1. The
fluoroscopic image stream for navigation of tools (here, guidewire) is described in
Section 4.2.2. Section 4.2.3 explains the synchronization of data from different se-
quences performed to pair images according to same cardiac phase. Section 4.2.4
describes pre-processing of images with homography transformation to align images
in the same reference plane.

4.2.1 Reference sequence

The purpose of the angiographic sequence is to document contrast enhanced car-
diac vasculature in a X-ray image sequence using the cine mode of the interventional
system. In cine mode, the system is set to deliver images with a quality sufficient
to support the operator in his assessment of the vasculature. In general, angio-
graphic sequence may have around 10-20 images with contrast agent highlighting
the complete vasculature. The number of images with well contrasted vasculature
depends on the amount of contrast agent injected. Standard algorithm as one pro-
posed by [Hoffmann et al., 2015] can then be used to identify such subset of the
images where the coronary images are well opacified with the contrast agent. In
this subset, a reference sequence R of reference images is then selected that covers
a full cardiac cycle. The ECG acquisition, as mentioned in Section 1.2.1.2, maps
the X-ray images to the ECG data. This mapping aids the selection of the refer-
ence sequence covering full cardiac cycle. In the interventional systems considered
for this work, the acquisition frame rate of cine images is 15 frames/second. The
normal heart rate being 75-80 beats per minute, a full cardiac cycle takes 0.7-0.8
seconds of time. Thus, the reference sequence is selected to include best opacified
10-15 images (based on acquisition frame rate and heart rate). In the following, any
image of this reference sequence is called a reference image, and is denoted by R.
In relation to the system workflow, the reference sequence can be processed at the
acquisition of the full angiographic sequence.
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Figure 4.3: VOIDD: (from left to right) Input image f ; centerline of segmented
guidewire tip; tip candidate (red) matched to vessel centerline (green) marked by
pairings (blue); corresponding location (green) of guidewire tip (red) inside vessel.

4.2.2 Fluoroscopic image stream

The reference sequence acquisition is usually followed by the navigation of guidewires
and other tools through the catheter until the distal end of the VOI. A guidewire, a
very thin (wire-like) object, usually has a stiff body and a floppy tip. The tip being
the distal section of 20 mm length, aids the navigation of guidewire. It is enough
radio opaque to be seen with fluoroscopy, low-dose X-ray mode (input image in Fig-
ure 4.3). The acquisition rate of fluoroscopy mode of interventional system (used in
this study) is also 15 fps. The fluoroscopic image stream, denoted by F , contains
the fluoroscopic images acquired during navigation of the guidewire, which is nav-
igated from the ostia of the coronary vessels down to the distal part after crossing
the lesion (as shown in Figure 4.1b). The fluoroscopic image stream is most of the
times split in several sequences corresponding to stepping on/off the X-ray pedal by
the physician. Some of these sequences contains images where guidewire tip is not
visible in the field of view as it has not yet arrived at the ostia. In the following,
any image of such fluoroscopic image stream F is called a fluoroscopic image and is
denoted by F . The ECG signal is recorded in parallel to these images as well. Each
individual image of the fluoroscopic image stream F shall be paired to an image
of the reference sequence R. It is mostly done based on ECG signal as explained
in Section 4.2.3. Unlike the processing of the reference sequence, the processing of
fluoroscopic image stream shall be casual.

4.2.3 Iso-phase image pairing

The cardiac motion causes periodic position and shape changes in the coronary
vessels and these deformations apply to the guidewire tip which is navigated in the
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lumen of these vessels. Therefore, the appearance of guidewire tip in the 2D pro-
jected X-ray image is continuously changing. Consequently, we elected to pair each
individual image of the fluoroscopic image stream with an image from the reference
sequence, where the depicted vasculature and guidewires have corresponding defor-
mations induced by cardiac motion. In order to perform this pairing, we use the
patient ECG as a mean to identify for each image a phase in the cardiac cycle and
pair the images based on this phase. The ECG is recorded with the X-ray images
and is analyzed to identify the QRS complex which marks the start of a cardiac
cycle. These cardiac phases are indicated as the percentage interval between two
R-waves (R-R interval) from the QRS complex. In this work, a cardiac cycle is
divided into Φ cardiac phases (Φ = 10 here). Therefore, we select Φ images from
the reference sequence which correspond to the Φ divisions of the cardiac cycle.
This set of images is given by the sequence,

R =
{
Rφ | φ = {1, . . . ,Φ}

}
. (4.1)

The cardiac phase of each image F of the fluoroscopic image stream is also
determined by analyzing the recorded ECG. It is then paired to the retained image
of the reference sequence which has the closest phase. We refer such pair of images F
and R at cardiac phase (φ), as an iso-phase image pair, denoted by (F,R). The set
of all iso-phase image pairs for given F and R is{

(F,R) | F ∈ F , R ∈ R, φ(R) = φ(F )
}
, (4.2)

where φ(I) is the cardiac phase of the image I.
Despite of iso-phase image pairing, there may still exist some spatial inconsis-

tencies between the two images in an (F,R) because of numerous reasons as listed
below:

� breathing motion, as the images in the iso-phase image pair may come from
different breathing phase;

� vessel deformations, due to the presence of stiff guidewire body in the vessel

� tablepanning and gantry rotation, as the physician may change the settings of
the interventional systems between the acquisition of the reference sequence
and guidewire navigation phase.

� ECG phase mismatch, due to electronic delay of the coupled ECG machine.

The inconsistencies induced by the tablepanning and gantry rotation can be com-
pensated with geometrical transformations. However, to cope up with the incon-
sistencies induced by remaining factors, it is necessary to design a matching and
tracking algorithm to coherently track the guidewire tip in the reference image by
taking into account all these factors. In order to curtail the effect of tablepanning
and gantry rotation, we pre-process images from reference sequence and fluoroscopic
image stream with table panning compensation, as explained in next section.
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Figure 4.4: Projective geometry in case of gantry rotation: X1 and X2 are projec-
tions of a 3D point X in image (detector) planes π1 and π2 respectively. S1 and S2
are the positions of the X-ray source in these two cases.

4.2.4 Table panning and gantry rotation compensation

During the navigation of the tools, the physicians commonly maintain the settings
of the interventional systems such as gantry angulation and the table position to
be the same as or close to the ones of the reference sequence. However, in some
cases the table position and the gantry angulation are not the same for reference
sequence and the fluoroscopic image stream. As a consequence, the appearance
of the anatomy between the two sequences is changed. We figured out that the
knowledge of the system configuration enables to partially correct this difference of
appearance. In this section, we explain the projective transformation.

A camera model is used for perspective projection to describe how the observed
3D point project onto an image. Let (X, Y, Z, 1)t be a 3D point in homogeneous
coordinates and let (x, y)t be the image of this point in the camera, then the camera
model is a linear map between the homogeneous point coordinates, given by

sxsy
s

 = P


X
Y
Z
1

 , (4.3)

where P is a 3 × 4 projection matrix (or projective operator) with 11 degrees of
freedom and s is any scalar. Assuming now that we consider only the 3D points
belonging to a given plane. As a consequence, X, Y, Z can be expressed linearly
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from R, S, where (R, S) are the coordinates of a point defined in a referential at-
tached to this plane. So (X, Y, Z, 1) = G(R, S, 1) where G is a 4 × 3 matrix with
its last line being (0 0 1). By introducing these elements in Equation 4.3, it can be
further simplified to (x y 1) = H(R, S, 1). H is a 3× 3 homogeneous matrix.

Figure 4.4 exemplifies the projective geometry during X-ray acquisition. Let
us consider two acquisitions done in different geometry and one plane. Here, S1
and S2 are two positions of the X-ray source and π1 and π2 are images acquired at
the X-ray detector respectively. The gantry angulation is changed by moving the
source from S1 to S2 along RS. For illustration, we consider a coordinate system
with XY-plane as the object plane π′ at some height above the table T . This object
plane is an approximation of the position of the anatomy being imaged. The two
obtained images are two acquisitions done in different geometry (table panning and
rotation) and a plane, attached to the table. There exists an homography between
these two images if we consider that the imaged objects lies entirely in this plane.
This homography is an approximation for objects placed slightly above or below
this plane. We consider that this is the case for the anatomy of interest.

The homography is very simply determined by taking 4 points in the considered
planes thus computing their projection matrices. Thereafter, using the projection
matrices we can derive the matrix H from these two projections of 4 points by
simple linear computations. This computation can handle both table panning and
gantry motion if the projection matrices are defined in a referential attached to the
object plane. In this setting, for any point X in the object plane π′, the relation
between the points X1 and X2, in the images π1 and π2 respectively, can be given
by,

X1 = H1π′X

X2 = H2π′X

X2 = H2π′H−1
1π′X1 = HX1 ,

(4.4)

where H, H1π′ and H2π′ are the homographies. The computed homography H is
used for transforming π2. As we consider the plane parallel to table top as object
plane, the determined transformation is perfectly exact for points belonging to this
plane and is inexact for points out of plane. The error grows as the distance to this
plane increases. The error is smaller if the gantry angulation difference is smaller.
For our task, we compute homography and transform all images in the reference
sequence and fluoroscopic image stream to the reference image at first cardiac phase.

4.3 VOIDD algorithm

In this section, we first elaborate the general tracking framework of the proposed
VOIDD algorithm (Section 4.3.1). We then explain (Section 4.3.2) how to extract
the features (from the reference sequence and the fluoroscopic image stream), which
are then used by the VOIDD algorithm.
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Algorithm 1: VOIDD

Data: A fluoroscopic image stream F and a reference sequence R
Result: Track TVOI representing detected vessel of intervention

1 Initialize T, a dictionary of tracks ;
2 foreach image F in F do
3 (F,R) := CreateImagePair(F ,R) ;
4 P := ExtractFeaturePairs(F,R) ;

// feature pairs are ranked in decreasing order of matching

score

5 foreach P ∈ P do
6 Tbest := nil ;
7 Ψbest

TAC := λTAC ;
8 foreach T ∈ T do
9 if (TrackNotAssigned(T ,F )) then

10 ΨTAC := TrackAssignmentCost(T,P) ;
11 if ΨTAC < Ψbest

TAC then
12 Tbest := T ;
13 Ψbest

TAC := ΨTAC;

14 if Tbest 6= nil then
15 AssignTrack(Tbest,P);

16 else
17 Tnew := MakeTrack(P);
18 AddTrack(T, Tnew) ;

19 Tvoi = LongestTrack(T) ;
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4.3.1 General tracking framework

We aim to obtain the VOI by making a smart correspondence between the reference
sequence R and the fluoroscopic image stream F . Therefore, we propose an algo-
rithm, called VOIDD, that is able to simultaneously detect the guidewire tip in the
fluoroscopic images and the VOI, that is the branch of the coronary vessels in which
the guidewire is currently navigating. From a broader perspective, the algorithm
consists of: i) detecting feature pairs from iso-phase image pairs; ii) grouping these
feature pairs into tracks, a track being a sequence of feature pairs that are spatially
consistent in time; iii) selecting the most relevant track as the detected vessel of
intervention. A feature pair P = (C,P ) is made of two corresponding curves and is
extracted from an iso-phase image pair (F,R). The first one, called a tip candidate
(C), is extracted from the fluoroscopic image and it possibly corresponds to the
guidewire tip in the fluoroscopic image F . The second one, called a vessel path (P )
is obtained from the reference sequence R and is a path in the coronary vessel tree
that optimally fits the associated tip candidate C. The precise description of the
VOIDD algorithm and of the feature pairs extraction is given in algorithm 1 and in
Section 4.3.2 respectively.

VOIDD algorithm manages a dictionary T of tracks, where each track T in T is a
sequence of feature pairs, with at most one feature pair per image of the fluoroscopic
image stream F . For each iso-phase image pair (F,R), the algorithm optimally
assigns each detected feature pair to one of the existing tracks. A cost called the
track assignment cost (described in Section 4.3.3), is considered to optimally assign
a feature pair to a track. If there exists no adequate track for a feature pair, a new
track in T is initialized. Once all the images in the fluoroscopic image stream are
processed, the longest track (i.e. the track with maximum number of feature pairs)
is selected as the VOI.

4.3.2 Feature pairs extraction

This section elaborates the extraction of the feature pairs, which are associations
between images in any iso-phase image pair (F,R). For each input image F in
the fluoroscopic image stream an iso-phase image pair is formed. The function
CreateImagePair(F ,R) of algorithm 1 returns such a pair (F,R) given an input
image F and the reference sequenceR. First, we explain the extraction of centerline
of the injected vessels to obtain vessel graph in Section 4.3.2.1. This is followed by
the tip candidate extraction by morphological segmentation and thinning, explained
in Section 4.3.2.2. Finally, we present in Section 4.3.2.3, the matching part to find
the possible associations (the vessel paths) of the tip candidate in the vessel graph.

4.3.2.1 Vessel centerline extraction

This section describes how reference image R is transformed into sparse representa-
tion by representing extracted centerlines of the vessels in the form of a graph. The
task of centerline extraction can be divided into two steps: i) vessel enhancement,
and ii) vessel centerline segmentation. To enhance vessels, articles in the literature
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(a) Reference image (b) Estimated background (c) Background subtracted image

Figure 4.5: Background subtraction for contrasted vessels: (a) Native reference im-
age, (b) estimated background with the help of morphological closing, (c) resulting
background subtracted image.

(a) (b) (c)

(d) (e)

Figure 4.6: Vessel centerline extraction and graph representation: (a) Native refer-
ence image with injected vessels, (b) vesselness image, (c) result of Non-Maximum
Suppression (NMS) applied to vesselness image, (d) extracted vessel centerlines su-
perimposed on the native reference image and the region marked in blue is then
zoomed in (e) where the vertices of different degrees of the vessel graph X . Vertices
of degree 1 in yellow, vertices of degree 2 in blue, vertices of degree 3 or more in
red.
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often estimate the anatomical background by morphological operations. Each im-
age R in the reference sequence R is preprocessed with a morphological closing to
estimate the background image. This estimated background is used to remove the
contrasted structures whose size is derived from the estimated maximum of diam-
eter of coronaries in angiographic images, thus obtaining a background subtracted
image as presented in Figure 4.5. However, some negatively contrasted anatomical
structures like (ribs, spine and pulmonary structures) may persist in the background
subtracted image. To enhance the vessels in the resulting background subtracted
image an Hessian based technique [Krissian et al., 2000] is adapted which assumes
that vessels are locally linear tubular structures. Since the coronary vessels have
a full range of possible radii, the vesselness image obtained by [Krissian et al.,
2000] contains vesselness measure at different scales as in the method of [Frangi
et al., 1998]. Figure 4.6b shows the obtained vesselness image from the background
subtracted image in Figure 4.6a.

In order to have a geometrical representation of the vessel structure, we propose
a centerline extraction scheme to obtain vessel centerlines from the vesselness im-
age. This centerline extraction includes a first step of Non-Maximum Suppression
(NMS) that gives a skeletonized vesselmap with only pixels at the vessel center pre-
served. The resulting NMS image is segmented with a hysteresis thresholding which
eliminates components formed of pixels with low vesselness values only. The pixels
in resulting image (Figure 4.6c) from the hysteresis thresholding are organized in a
graph structure X , such that each pixel is a vertex of the graph [Benseghir, 2015].
According to this graph representation, the vertices of degree 1 correspond to the
vessel extremities, the vertices of degree 2 corresponds to the vessel branches and
higher degree vertices correspond to the bifurcation of the vessel tree (see illustra-
tion in Figure 4.6), the degree of a vertex being the number of edges incident to this
vertex. We call a vessel path, any simple path in this graph X , that is a sequence

P =
〈
P0, . . . , P`

〉
, (4.5)

such that and (Pi−1, Pi) is an edge of X for any i ∈ {1, . . . , `} and,

Pi 6= Pj ∀i, j ∈ {1, . . . , `} s.t. i 6= j . (4.6)

The integer ` is called the length of P and given any vessel path Q, we denote
by #(Q), the length of Q. The set of all possible vessel paths in a graph X is
denoted by ΠX . Hence, for each reference image R a graph XR is computed as
described above, providing us with a representation of the vessel tree at each phase
of the cardiac cycle.

4.3.2.2 Tip candidate extraction

A guidewire tip appears as a contrasted thin and elongated object (input image
in Figure 4.3) in a fluoroscopic image. Several authors have worked on the task
of segmenting the guidewire [Vandini et al., 2017; Chen et al., 2016; Wang et al.,
2017, 2009]. For PCI application as in [Honnorat et al., 2012], the weak contrast of
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the guidewire body makes the task very challenging. Therefore, we choose to rely
on the more contrasted guidewire tips. In order to detect possible locations of the
guidewire tips in a fluoroscopic image, we use the same image representation, the
min tree, which was used for segmentation of empty catheter in Chapter 3. The
detailed description of the min-tree has been made in the Section 2.2.6.1.

We pre-process the input image to remove the anatomical background with the
help of morphological closing.As a brief review of min tree framework, for a grayscale
image (pre-processed fluoroscopic image in this case) F defined on a domain D and
with values in range R the lower-level set of F with level h in R is

Fh =
{
x ∈ D | F (x) ≤ h

}
. (4.7)

The image F when thresholded in an increasing order at every possible gray level
in the range R, yields a stack of nested (lower-) level sets. Each level set can be
partitioned into connected components when the domain D is structured as a pixel-
adjacency graph (we consider 4-adjacency relation). Based on inclusion relationship,
the structured set of all connected components is a directed tree called the min tree
of the image F , denoted by TF . We assign to any connected component Z of the min
tree T , an elongation attribute A(Z) allowing us to characterize the guidewire tip as
an elongated and thin connected component. More precisely, for any component Z,
we set

A(Z) = (π × lmax(Z)2)
|Z|

, (4.8)

where |Z| is the cardinality of Z and lmax(Z) is the length of the largest axis
of the best fitting ellipse for Z. Since the guidewire tip is thin and long, the
connected components corresponding to the tips have high value of attribute A.
A mere thresholding of the elongation A is not sufficient, often giving other long
and elongated (unwanted) objects like pacing lead and filled catheters. Indeed,
these objects have higher elongation value than the guidewire tip. Hence, according
to physical properties of the guidewire tip (recalled in Section 4.2.2), we set an
upper bound value tmax on A to the maximum possible elongation value of the
guidewire tip, to ensure that extracted components contain guidewire tip. Even
with this upperbound threshold keeping the most elongated components does not
always lead to the desired tip.

Therefore, we adopt the shaping framework defined in Section 2.2.7 that allows
us to efficiently extract significant connected components. We apply shaping fil-
ters [Xu et al., 2016] with a height criterion: using the Min-tree T T of the weighted
graph (T ,A) we preserve the nodes that are filtered in the first step and which have
certain height in T T . The extracted components constitute the tip candidates.

We describe a segmented tip (wire-like object) by its centerline because we con-
sider it as a 1-D object. This simplification to 1-D object aids in the matching
step of feature pair extraction. Therefore, we perform skeletonization [Couprie and
Bertrand, 2012; Saha et al., 2016] of the selected connected components to obtain
the centerlines of the tip candidates. The medial axis (or skeleton) of a connected
component is often sensitive to the noise on the boundary of the connected compo-
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(a) Input image (b) Background subtracted image

(c) Segmented guidewire tip (d) Skeletonized guidewire tip

Figure 4.7: Tip candidate extraction: (a) Native fluoroscopic image, (b) background
subtracted image, (c) result of guidewire tip segmentation, (d) segmented guidewire
tip after skeletonization
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nent, leading to a large number of (spurious) branches on the medial axis. Hence,
the adopted skeletonization techniques include some regularization to prune the
unwanted branches [Saha et al., 2016; Shaked and Bruckstein, 1998], allowing the
resulting skeleton to contain only one branch and two ends. By its very definition,
the medial axis of an object does not in general reach the border of the object, which
results to a loss of geometrical information for our application. In order to recover
this lost information, we extend the skeleton at the two ends along its tangents till
the border of the connected component. Fig. 4.7 shows an example of the obtained
centerline of segmented guidewire tip from the input image. This centerline of the
tip candidate C is modeled as a series of points

C =
〈
C0, . . . , C`

〉
s.t.∀ i ∈ {0, . . . , `}, Ci ∈ R2 (4.9)

where C0 and C` denote the end-points of curve C. Such a series of points, when
pairwise interpolated by straight lines, can be equivalently considered as a polygonal
curve QC defined by:

x ∈ QC ⇐⇒

∃ i ∈ {0, . . . , `}∃ α ∈ [0 ; 1]
s.t. x = α · Ci−1 + (1− α) · Ci (4.10)

4.3.2.3 Matching

An important step in the task of VOI detection is to designate possible associations
of the guidewire tip inside the injected vessel. In the previous sections, we presented
extraction of necessary information from an iso-phase image pair. We recall that
for any iso-phase image pair (F,R), the set CF is set of all tip candidates and
the set ΠXR

is set of the vessel paths of the corresponding vessel graph XR. The
matching step refers to building association from each tip candidate to one or more
vessel paths that corresponds to the possible location of the tip candidate in the
vessel graph. The task to be performed in this step is matching and aligning a tip
candidate to the vessel graph to find corresponding vessel path. Therefore, the task
reduces to a curve matching problem.

A curve-to-curve distance has to be defined to match and align two curves. [Alt
and Godau, 1992] addressed the problem of measuring distance between two polyg-
onal curves and proposed a continuous version of Fréchet distance. The method
of Fréchet distance [Alt and Godau, 1992] based curve matching had been pro-
posed to perform 3D 2D registration by [Benseghir et al., 2015]. In this case, we
adapt the curve pairing algorithm of [Benseghir et al., 2015] to perform the task
of matching as it takes into account the Fréchet distance and the shape similarity
between two curves. It is required to define a curve-to-curve distance to compare
any pair of elements from the two sets CF and ΠXR

. We use a discrete version
of Fréchet distance [Eiter and Mannila, 1994] as it takes into account the location
and the order of points along the curves by establishing a monotone mapping from
one curve to another. Imposed non-decreasing surjective mappings (reparameter-
ization mapping) in computation of Fréchet distance takes into account the order
of points along the curves. This order aids in curve pairing described below to give
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scan direction along the curves. The shape similarity between two curves as defined
in [Benseghir et al., 2015] is curve resemblance distance dR, which is the residual
Fréchet distance after 2D rigid registration between two curves. The resulting curve
pairing distance dC(Q,Q′) between any two polygonal curves Q and Q′ is given by,

dC(Q,Q′) = β · dF (Q,Q′) + (1− β) · dR(Q,Q′)
s.t. dR(Q,Q′) = dF (T2D ◦Q,Q′)

(4.11)

where β ∈ [0; 1] controls the relative significance between the geometric and shape
criterion. Given a tip candidate C, the above matching step requires the selection of
every admissible vessel path P in the graph XR. In order to restrict computational
complexity of search, we restrict the set of admissible vessel paths P to be in the
neighborhood (search zone radius λE) of the tip candidate C extremities. Thus, we

say that a pair P =
(〈
C0, . . . , Cm

〉
, 〈P0, . . . , Pn〉

)
is a feature pair of the iso-phase

image pair (F,R) whenever we have,

d
(
C0, P0

)
≤ λE and

d
(
Cm, Pn

)
≤ λE and

dC(C,P ) ≤ λC ,

(4.12)

where d and dC represent Euclidean and curve pairing distances respectively. After
extracting all feature pairs of an iso-phase image pair (F,R) as defined by equa-
tion (4.12), we filter out redundant feature pairs. Two feature pairs Pa = (Ca, Pa)
and Pb = (Cb, Pb) are redundant if,

Ca = Cb and dH(Pa, Pb) ≤ λH (4.13)

where dH is the Hausdorff distance between two vessel paths. When two redundant
feature pairs (C,Pa) and (C,Pb) are found, we keep (C,Pa) if dF (C,Pa) ≤ dF (C,Pb)
or otherwise we keep (C,Pb). This filtered set of feature pairs are sorted according
to a curve resemblance distance (Equation 4.11) to prefer vessel paths with higher
shape resemblance to the tip candidate. The filtered set of feature pairs is consid-
ered for each iso-phase image pair (F,R) and is denoted by P(F,R). Thus, the filtered
and sorted set P(F,R) of feature pairs is what is returned by the function Extract-
FeaturePairs() in algorithm 1. Figure 4.8 shows different feature pairs obtained for
corresponding position of the guidewire tip shown on the iso-phase reference image.

4.3.3 Track assignment cost

It is necessary to design a strategy to assign a new feature pair to the appropriate
track. A track being a dictionary of feature pairs, the task of assigning a new feature
to a track can be considered a measuring a kind of distance between the feature
pair and the track. Intuitively, we may consider that for any new feature pair, the
most appropriate track will minimize such distance.
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(a)

(b) (c)

(d) (e)

Figure 4.8: Feature pair extraction: (a) Tip candidate (red) in the iso-phase refer-
ence image with extracted centerlines (green), (b), (c), (d) and (e) corresponding
feature pairs with tip candidate (in red) and vessel paths (in green)

94



4.3. VOIDD algorithm

(a) Feature pair to be allotted

(b) Tip extremity distance (c) Vessel path extremity dis-
tance

(d) Graph distance

Figure 4.9: Illustration of track assignment cost: (a) shows the feature pair to be
allotted, (b) is the tip extremity distance between tip candidate of the feature pair
and the latest feature pair in considered track, (c) is the curve extremity distance
between the corresponding vessels paths of the above two feature pairs, (d) is the
graph distance between the vessel path of the feature pair and vessel path of latest
iso-phase feature pair in the considered track.

The track assignment cost ΨTAC is computed as the cost to assign a proposed
feature pair P = (C,P ) to a track T . We design the track assignment cost with
the spatial distance between the feature pairs and also the geodesic distance along
the vessel graph. It is a combination of three distance values:

1. a tip extremity distance,

2. a vessel path extremity distance, and

3. a graph distance.

The two extremity distance values account for the geometrical shift between the
two tip candidates and the two vessel paths respectively. The vessel path extremity
distance and the graph distance preserve coherency in the tracks, whereas tip curve
extremity distance avoids falsely detected guidewire tips to be added in the track.

The two extremity distance values are defined with the curve extremity dis-
tance which is the Euclidean distance between the extremities of two (non-oriented)
curves. Given the positions of the guidewire tip (hence, feature pair) apparent due
to navigation in the vessel, we consider the distance between two curves as mean
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distance between their extremities. More precisely, given two curves C and C ′, we
define the curve extremity distance between C = 〈C0, . . . , Cm〉 and C ′ = 〈C ′0, . . . , C ′n〉
by

dE(C,C ′) = 1
2 min

(i.j)∈{(0,n),(n,0)}

{
d(C0, C

′
i) + d(Cm, C ′j)

}
(4.14)

where m = #(C) and n = #(C ′). Then the third distance value is obtained with
the graph distance dX that is the mean length of the geodesic paths (in the graph X )
between the end-points of two given vessel paths in X . Figure 4.9 illustrates with
an example the three distances composing the track assignment cost. We transform
these three distances with a non-linear normalizing function of the form ν(x) =
1 − e−λx, so that they belong to the same range [0, 1[. The parameter λ of this
normalizing function is set according to the length of the guidewire tip (recalled in
Section 4.2.2).

Given a feature pair P = (C,P ) and a (non-empty) track T , if T contains a fea-
ture pair at the same cardiac phase as P, then the track assignment cost ΨTAC(P, T )
is given by

ΨTAC(P, T ) = 1
3

(
ν
(
dE
(
C,C ′

))
+ ν

(
dE
(
P, P ′

))
+ ν

(
dX
(
P, P ′′

)))
, (4.15)

where P′ = (C ′, P ′) is the latest feature pair in the track T and P′′ = (C ′′, P ′′)
is the latest iso-phase feature pair in T . Otherwise, if the considered track T
does not contain any iso-phase feature pair for a given feature pair P, then the
cost ΨTAC(P, T ) is given by

ΨTAC(P, T ) = 1
2

(
ν
(
dE
(
C,C ′

))
+ ν

(
dE
(
P, P ′

)))
. (4.16)

The number of admissible vessel paths for a given position of tip candidate
can be more than one. This may lead to track fragmentation, i.e. breaking of the
longest track and creation of multiple tracks representing different parts of VOI.
To limit this track fragmentation, we favor longer track by multiplying the track
assignment cost by a track length factor lT derived from the latest n processed
images. We consider the number |T | of feature pairs assigned to the track T . Then,
the track length factor lT is defined as |T |/n. In order to decide if a new track should
be initialized (see line 17 of algorithm 1), we determine a track assignment cost
threshold (λTAC) as the theoretically maximum possible value of track assignment
cost to assign a feature pair to a track. The computation of λTAC is based on the
length of the guidewire tip and the maximum observed guidewire speed.

4.3.4 Vessel of intervention refinement

The longest track contains the detected VOI for different cardiac phases. Fig-
ure 4.10(a,b) depicts all vessel paths of the longest track (Tvoi) for one of the car-
diac phases. All these vessel paths constitute a first proposal of the VOI for this
cardiac phase as can be seen in Figure 4.10(a,b). This first proposed VOI often has
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small branches, loops, hole, missing connections/cut vessel resulting from individ-
ual pairings of the tip candidates. We perform various morphological operations
to post-process the union of these vessel paths in order to refine the automatically
detected VOI at a given phase. We first apply a reconnection and hole-closing tech-
nique based on guided homotopic transform [Bertrand and Couprie, 2007], taking
advantage of the prior knowledge on the VOI which is a simply connected object
(i.e. made of a single connected component without any hole). More precisely,
given the firstly proposed VOI X, we apply a guided homotopic thinning from a
simply connected binary object consisting of the whole image with the following
characteristics:

1. deletion of points in X are forbidden; and

2. points at higher Euclidean distance from X are deleted in priority.

The results of this step is illustrated in Figure 4.10(c,d). This is followed by
skeletonization [Bertrand and Couprie, 2007] to reduce thick parts of the object
resulting from the hole-closing. Thereafter, a branch pruning is performed [Postolski
et al., 2013] to remove spurious branches of the skeleton and to obtain the longest
section of the detected vessel of intervention. The resulting VOI after refinement,
as shown in figure 4.10(e,f), does not contain any small branch, loop, thickness or
disconnection.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Vessel of intervention refinement, (a,b) VOI from longest track con-
tains small branches (shaded red), loops (shaded blue) and hole/cut vessel (shaded
yellow); (c,d) result after guided homotopic thinning step; (e,f) VOI after refine-
ment (right). Images (b,d,e) on right shows zoomed sections of images (a,c,e) on
left.
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4.4 Dataset and evaluation measures

This section describes the dataset, the expert annotations (Section 4.4.1), and the
three evaluation measures used to assess the results of the VOIDD algorithm. The
tip detection evaluation measure (Section 4.4.2) analyzes the ability to detect the
absence of tip in the beginning of the fluoroscopic image stream, the track evaluation
measure (Section 4.4.3) analyzes the vessel paths in the feature pairs from the
longest track, whereas the VOI evaluation measure (Section 4.4.4) estimates the
ability to retrieve the VOI after refinement.

4.4.1 Dataset and expert annotations

The evaluation dataset consists of sequences collected in 15 different clinical cases
including 9989 images from fluoroscopic image streams and 140 images from ref-
erence sequences (Innova 2100-IQ, GE Healthcare). These 15 clinical cases come
from 14 patients. Each case contain 10 images in their reference sequence referring
to the Φ different cardiac phases. The X-ray image size is 1024 × 1024, and given
the size of the pixels of the detector and the standard magnification, an image pixel
corresponds to a structure of physical size about 0.14 mm. This dataset repre-
sents a variety of clinical cases, including different anatomies and vascular locations
of the lesions, angulations of the gantry of the interventional system, the patient
body mass indices (BMI), the image qualities (IQ) of the fluoroscopic images and
the complexities of guidewire navigation. Table 4.1 illustrates the variation in this
dataset of 15 clinical cases with respect to factors like the patient BMI, the VOI
and the difference in gantry angulation between the reference sequence and fluoro-
scopic image stream. High patient BMI may exacerbate the image quality whereas
large cranial angulation difference affects the appearance of vascular anatomy in
two sequences. Some extreme cases of these factors may prevail in some patient
data (patient L, M, N in Table 4.1). Based on the severity of extreme cases, we
split the data for our evaluation study into two sets of 12 and 3 clinical cases.

The first set consists of 12 clinical cases named from A to K. These 12 clinical
cases come from 11 patients, of which two clinical cases D1 and D2 refer to two
different guidewires navigated in the patient D. For this patient, the first guidewire
was navigated in distal left anterior descending artery whereas the second guidewire
was navigated in a diagonal. Among the three extreme cases, which make up
the second dataset, the patient M has high BMI (35.5 kg/m2) leading to very
low contrasted images in fluoroscopy and cine mode of interventional system (see
Figure 4.16). On the other hand, the patients L and N have high gantry angulation
difference between the reference sequences and the fluoroscopic image streams. Such
difference affects the appearance of the (2D projected) vascular anatomy in the two
image sequences. Therefore, the guidewire tip appears relatively far, from its actual
position, in the vessel centerlines resulting in an incorrect matching. Generally, the
physicians try to maintain the same gantry angulation for the acquisition of the two
sequences. For these reasons, these three patient cases do not fulfill the conditions
of the VOIDD workflow and fall outside the bound of hypothesis of the proposed
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Clinical BMI Name of Gantry angle difference(◦)
case kg/m2 VOI LAO/RAO CRA/CAU

A 29.20 Distal RCA 0.00 0.00
B 27.80 Distal LAD 0.80 6.40
C 19.60 RPD 2.50 0.60
D1 27.50 Distal LAD 0.00 0.00
D2 27.50 Diagonal 0.00 0.00
E 31.90 Diagonal 2.90 0.00
F 26.70 Distal LAD 2.70 1.90
G 23.50 Diagonal 4.00 0.20
H 32.00 Distal RCA 1.50 4.00
I 30.60 Distal LAD 3.10 0.80
J 31.50 LCX 11.70 4.30
K 34.80 Distal RCA 25.00 0.20
L (NA) Distal RCA 11.30 21.80
M 35.50 LCX 0.00 2.60
N 21.70 Proximal LAD 0.20 14.10

Table 4.1: Variation across the dataset of 15 patient sequences with three extreme cases.
The different names of VOI are: RCA, right coronary artery; LAD, left anterior descend-
ing; RPD right posterior descending artery; LCX, left circumflex artery

method. A discussion on these three patient cases is presented in the next section
to assess the proposed method on limit cases.

Each fluoroscopic image stream contains two different types of images: 1) images
where guidewire tip is absent in the field of view at the beginning of the stream,
2) images where guidewire tip is visible in field of view and is navigating in the
vessel of intervention. There may be images (shortly before the end of fluoroscopic
image stream) where the guidewire tip is fixed at the distal end of the VOI. An
expert user annotated the centerline of the branch of the artery navigated by the
guidewire tip in the corresponding reference sequences of these patients. The expert
annotations were marked by a single expert user using a semi-automatic software
by selecting points of the vessel centerlines in the reference image extracted by
the method presented in Section 4.3.2. However, it is not possible to define the
exact corresponding location of the distal end of the guidewire tip in the vessel
centerline because there is no visual information to determine the motion between
the fluoroscopic and cine images. Therefore, a visually approximate location in
vessel centerline image is decided as distal end, ensuring that this distal position
is sufficiently away from the lesion. Thus, the expert annotations consist of the
centerlines of 150 VOIs from 15 clinical cases. Each expert annotated centerline is
modeled as a discrete polygonal curve, referred to as GT in the following sections.
These centerlines are marked for each image of the reference sequence, representing
different cardiac phases.
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4.4.2 Tip detection evaluation measure

In order to evaluate the efficacy of the algorithm to identify the arrival and naviga-
tion of a guidewire (tip) in a fluoroscopic image stream, we analyze the robustness
of VOIDD algorithm to detect VOI in images with no guidewire tip in field of
view (FOV) in the beginning of the fluoroscopic image stream. In such sequence
(of m images), we consider the length n of the longest track before the arrival of
guidewire tip in FOV. The tip detection accuracy is computed as, 100∗ (m−n)/m.
This evaluation measure conveys the ability of the algorithm to detect the arrival
of the guidewire which in turn will help for automatic documentation of the PCI
procedures.

4.4.3 Track evaluation measure

The longest track from the VOIDD algorithm includes multiple feature pairs, each
of them indicating the location of the detected tip in the fluoroscopic image and the
matched vessel path in the corresponding iso-phase reference image. Here, we assess
the correctness of each individual feature pair (C,P ) by considering the distance
between the vessel path P of the feature pair and the expert annotation GT . We
consider the following target registration error (TRE) between P and GT given by,

TRE(P ) = 1
n

i=n∑
i=1

min
∀j∈1,...,m−1

∣∣∣∣d(Pi, GT (j, j + 1)
)∣∣∣∣
 m = #(GT ), n = #(P ) ,

(4.17)
where GT (j, j+ 1) refers to the segment between point GTj and GTj+1 and d refers
to point to segment distance converted to mm using typical known patient level pixel
size (0.14 mm/pixel in our case). If the tip is correctly paired to the VOI then this
TRE is governed by the usual small difference between the estimated centerline and
the expert marked vessel centerline. The algorithm chosen feature pair is considered
as a correct detection if the corresponding TRE is less than 0.5 mm. If the TRE is
more than 0.5 mm, we consider that we have a wrong detection. If the input image
contains a guidewire tip, but the algorithm does not provide any detection, then
the TRE cannot be computed and a missed detection is reported. In Section 4.5,
the results report the percentage of correctly detected feature pairs with respect
to the total number of images with guidewire tip in the fluoroscopic image stream.
Similarly, the wrong and missed detection are also reported as percentages of total
images.

4.4.4 VOI evaluation measure

The track evaluation measure evaluates the feature pairs in the longest track whereas
the VOI evaluation measure, presented in this section, analyzes the VOI after the
refinement step (selected VOI). The selected VOI is modeled as a discrete polygonal
curve. This evaluation method computes VOI retrieval rate, which is the fraction
of expert annotated vessel of intervention correctly retrieved in the automatically
selected VOI. The VOI retrieval rate is the ratio of the length of the correctly
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Table 4.2: Performance of VOIDD algorithm on 12 clinical cases of 11 patients

Clinical Total Images Tip Track evaluation measure
case images without detection Correct Wrong Missed

tip rate detection detection detection

A 320 156 98.72% 96.34% 0 % 3.66%
B 878 172 99.42% 89.24% 5.10% 5.67%
C 713 264 98.48% 92.87% 2.45% 4.68%
D1 302 98 97.96% 90.20% 2.45% 7.35%
D2 354 0 (NA) 61.58% 5.65% 32.77%
E 691 257 99.61% 83.87% 1.38% 14.75%
F 382 218 94.04% 95.17% 0.61% 1.22%
G 555 209 99.04% 83.53% 9.83% 6.65%
H 1002 546 99.45% 55.26% 1.32% 43.42%
I 781 366 100.00% 96.63% 2.65% 0.72%
J 710 248 99.60% 80.09% 6.28% 13.64%
K 1161 543 100.00% 92.72% 4.53% 2.43%

99.05% 84.09% 4.21% 11.65%

detected part of the VOI over the length of the expert annotated VOI. The correctly
detected part of the VOI contains the segments of the selected VOI which have their
two extremities at a distance less than 0.5 mm from the expert annotated VOI. Each
patient sequence has a selected VOI corresponding to each cardiac phase (number
of cardiac phases being Φ = 10). Therefore, the VOI retrieval rate for a patient is
represented as the median, minimum and maximum of these Φ values.

4.5 Results

This section reports the performance of the VOIDD algorithm to detect vessel of
intervention and assesses its potential to identify the arrival of a guidewire tip in the
fluoroscopic image stream. Table 4.2 depicts the performance of VOIDD algorithm
according to the tip detection evaluation measure and the track evaluation mea-
sure. The images in fluoroscopic image streams without guidewire tip are referred
as images without tip in these tables. According to the tip detection evaluation
measure, VOIDD algorithm robustly detects the tip with weighted mean detection
rate of 99.05 ± 1.61% throughout the 12 clinical cases. Looking at this tip detec-
tion accuracy of VOIDD, we can use it to automatically detect the arrival of the
guidewire tip and eventually for automatic documentation of PCI. The tip detection
rate for the image stream D2 (navigation of second guidewire) cannot be computed
as these images already contain one guidewire tip navigated during the D1 image
stream.

According to the track evaluation measure in Table 4.2, the vessel paths in the
longest tracks are correctly detected with an average accuracy of 84.09%. This
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Figure 4.11: Correct detection example: (top) iso-phase image pair i.e. fluoroscopic
image (left) with guidewire tip and the reference image at same cardiac phase;
(bottom) segmented guidewire tip in fluoroscopic image and (on right) the result of
matching (feature pair) and its location in the longest track.
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Figure 4.12: VOI retrieval rate

value is the mean correct detection rate weighted with the number of images with
guidewire tip for corresponding image streams. Figure 4.11 illustrates an example
of correctly detected vessel path in longest track for a given iso-phase image pair.
Similarly, in these 12 clinical cases, the (weighted) mean wrong detection and the
mean missed detection rates are 4.21% and 11.65% respectively. A non-zero wrong
detection rate means that some vessel paths in the longest track do not correspond
to the vessel of intervention. These wrong detections may refer to matching tip
candidate to bifurcating branches of the vessel of intervention or due to the fact that
sometimes the guidewire is pulled back by the operator after it entered by error in
a non-targeted branch. The reporting of a missed detection implies non-assignment
of guidewire tip to the longest track and the reasons for this being segmentation
failure of guidewire tip or too large gantry angulation difference between reference
sequence and the fluoroscopic stream. Failure of guidewire tip segmentation may
occur due to: 1) blurred appearance of the tip because of its sudden movement
imposed by cardiac motion, 2) reduced visibility of the tip caused by small contrast
media injection to guide the navigation. Gantry angulation difference between the
reference sequence and fluoroscopic image stream renders the guidewire tip away
from the projected vessel centerlines, thus leading to missed detection. As compared
to wrong detection, missed detection have a lesser impact on the ability to retrieve
the vessel of intervention after refinement.

This 12 clinical cases (11 patients) dataset is further evaluated according to the
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Figure 4.13: Detected VOI in 6 patient sequences
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Figure 4.14: Detected VOI in 6 patient sequences
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Table 4.3: Performance of VOIDD algorithm on second dataset of 3 clinical cases

Clinical Total Images Tip absence Track evaluation measure VOI
case images without detection Correct Wrong Missed retrieval

tip rate detection detection detection rate

L 551 243 99.18% 62.01% 11.04% 26.95% 74.08%
M 1060 202 99.50% 47.32% 11.31% 41.38% 45.67%
N 529 350 99.56% 20.67% 2.65% 76.54% 26.64%

VOI evaluation measure as shown in Figure 4.12, where the bars refer to median,
minimum and maximum values of the VOI retrieval rate. For each case, these statis-
tics are computed on the VOI retrieval rates for different cardiac phases (Φ=10).
The mean VOI retrieval rate for these 12 cases is 93.22%. This rate is signifi-
cantly higher than the correct detection rate in track evaluation measure (average
of 84.09%). This means that even if the algorithm does not completely succeed
to correctly detect the tip in some images, the vessel of intervention may be cor-
rectly retrieved overall. The detected VOI for these 12 patient sequences at one
of the cardiac phases is shown in Figures 4.13 and 4.14. The detected VOI for all
(10) phases of patient E is shown in Figure 4.15, where Figure 4.15f depicts the
phase where the VOI retrieval rate is 80.97% (lowest for this patient). The refine-
ment step described in Section 4.3.4 is clearly helping here. In spite of the higher
missed detections rates of sequences D2 and H, the vessel of interventions were well
retrieved after refinement, the mean VOI retrieval rates being 92.7% and 79.26%
respectively. On further analysis it was observed that the detected VOI after refine-
ment contained the lesion in all the cardiac phases of the 12 cases. Thus, we can
claim 100% lesion detection for the algorithm. Intuitively, the inability to detect
the VOI near the distal end of the vessel, leads to smaller VOI retrieval rate.

As reported in in Table 4.3, high BMI of the patient M leads to very low im-
age quality (low-contrasted images). Figure 4.16 demonstrates difference in image
quality for images with injected vessels, where the low image quality image be-
longs to patient M. Such low IQ may hinder the guidewire tip segmentation and
vessel centerline extraction, eventually leading to a failure to detect the vessel of
intervention. On the other hand, high gantry angulation differences between the
reference sequences and the fluoroscopic image streams in the patients L and N
have led to poor performance of the method. In these cases, the guidewire tip ap-
pears relatively far from vessel centerlines resulting in incorrect matching. Despite
of these conditions, the mean tip detection rate for these three patients is 99.42%.
We considered interesting to assess the performance of these cases because these
two types of challenging conditions, high BMI and difference of angulation may be
detected automatically and as such an application relying on our algorithm may
automatically reject the case avoiding to deliver inconsistent results.

The parameters involved in various stages of the algorithm e.g. tip candidate
extraction or track assignment cost were designed based on the physical properties
of guidewire tip, permissible speed of advancement of guidewire. Current implemen-
tation runs in average 0.24 seconds/image for tracking and 1.12 seconds/patient for
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.15: Detected vessel of intervention in 10 cardiac phases of patient E.
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Figure 4.16: Image quality (IQ) demonstration: normal IQ reference image (on left)
and low IQ reference image (on right).

the VOI refinement on a Intel Core i7 cadenced at 2.80 GHz. A video is available
as supplementary material1.

4.6 Conclusion and future work

We proposed in this chapter a framework to determine the vessel of intervention
in fluoroscopic images during the PCI procedures. We also demonstrated the seg-
mentation of the guidewire tip and the accuracy of detection of navigation of tip.
We evaluated the accuracy and robustness of the algorithm for these two abilities.
Encouraging results have been obtained with mean VOI retrieval rate of 93.22%
and mean tip detection accuracy of 99.05%, proving robustness over different pa-
tient and imaging conditions. We believe this tracking algorithm can be extended
to other applications like tracking IVUS probes. Also, unerringly efficient tip detec-
tion accuracy in all the 15 sequences, including the low IQ cases, proves the ability
of the method to determine the arrival of the guidewire in the field of view. This
algorithm has the potential to be part of the software embarked by X-ray imag-
ing systems and capable of automatically monitoring the successive steps of the
procedure in view of continuously adapting the system behavior to the user needs.
This framework opens gates for development of varied applications like automatic
documentation of the procedures, predicting the beginning of the navigation phase,
improving the stent enhancement algorithms among others. Future work includes
investigating the detection of the other major tools (marker balls, balloons) taking
aid of detected vessel of intervention and their integration into a semantic model of
the procedure.

1https://voidd-demo.github.io
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CHAPTER 5

Conclusion and perspectives
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5.1 Conclusion

This PhD thesis in the field of image processing falls into the context of curing
coronary heart diseases with minimally invasive procedures. Percutaneous coronary
intervention is one such procedure which is performed under the control of real-time
X-ray images in an interventional suite. During the procedure, a significant amount
of contrast agent is used to visualize the vasculature of the patient under the X-
ray images. The ionizing radiations are harmful to the patient and the clinician,
whereas the high amount of contrast agent used during the procedure may affect the
renal functions of the patient. Therefore, it is important to optimize the amount
of contrast agent and X-ray radiations during the PCI procedure. We proposed
in this thesis the concept of PCI procedure modeling, which intends at optimizing
the behavior of the interventional machine according to phases of the procedure.
As a preliminary step in this direction we elaborated the concept and described
an approach based on the segmentation of interventional tools to detect the phases
of the procedure. The concept of PCI procedure modeling was developed with
the clinical objective of optimizing the use of the interventional machine to reduce
the amount of X-ray dose and contrast under the constraint of not affecting the
workflow of the procedure.
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However, the tasks of segmentation and extraction of semantic information from
X-ray images present some significant challenges as discussed at different parts in
the thesis. We briefly summarize the different challenges here:

� Low exposure modes of X-ray system;

� Limited contrast of interventional tools;

� Cardiac and breathing motions;

� Multiple overlapping tools apparent in 2D projective X-ray images.

To this extent, we designed, studied and validated a segmentation technique to
detect empty catheter, a low contrasted tubular structure, in fluoroscopic images.
Furthermore, we proposed an automatic vessel of intervention detection method
thus creating a semantic link between the two different phases of the procedure.
These developments have been published and presented in conferences and one
application of PCI procedure modeling has been patented (refer publication list
A).

As it has been discussed in Chapter 2, though some articles in literature demon-
strated segmentation of some interventional tools in X-ray images, they were in-
tended for particular applications and could not be extended for segmentation of
other tools. With the aim of developing generic framework, we propose a unique tool
for segmenting different interventional tools. The tree-based shape spaces used in
this thesis are based on component trees from mathematical morphology. It is possi-
ble to involve arbitrarily large and heterogeneous sets of knowledge in segmentation
processes by associating to each node of the component-tree several attributes. This
can lead to very accurate descriptions of the different structures to be segmented. In
our case, these different structures are number of interventional tools. Throughout
the thesis, we make an extensive use of the tree of lower-level sets of image, called
the min tree, to segment interventional tools which appear as dark structures in the
X-ray images.

We presented the segmentation of empty catheter in fluoroscopic images in Chap-
ter 3. The catheter, being a commonly visible landmark and first tool to appear
in the field of view, its segmentation is an important step towards PCI procedure
modeling. The empty catheter (without contrast agent) appears as a low contrasted
structure with two parallel and partially disconnected edges in fluoroscopic images.
In other words, the dark structures (edges) belonging to the empty catheters are
not connected in the image space. Therefore, we filter the min tree to extract curve
blobs, which are tentative regions of the edges of the catheter. We then propose
a novel structural scale-space, a hierarchy built on the blobs. The deep connected
components in this hierarchy are explored to detect empty catheter. We design
appropriate validation methodologies to quantify and evaluate the performance of
the segmentation algorithm. The experimental results are presented on a database
of 1279 fluoroscopic images and 630 record images. For fluoroscopic images, we as-
sess two versions of our automatic algorithm with and without temporal feedback,
whereas, for record images we analyze the performance with temporal feedback. We
demonstrate the following results:
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� In case of fluoroscopic images, the mean precision and recall for our method
improves from 62.40±18.86% and 55.84±18.2% respectively, without temporal
feedback, to 83.85 ± 23.29% and 67.87 ± 19.53 respectively, with temporal
feedback.

� In case of record images, the mean precision and recall values are 88.2±13.54%
and 71.5± 12.78%.

This method for empty catheter segmentation can also be extended for the segmen-
tation of other low contrasted structures.

The fully automatic tracking algorithm, VOIDD, depicted in Chapter 4, is de-
signed to address the problem of vessel of intervention detection. During the PCI
procedures, the vessel of intervention is the significant region of interest in the X-
ray field of view where different interventional tools are navigated in and out. The
proposed framework combines information from a vessel image with contrast agent
injection and fluoroscopic images acquired during guidewire tip navigation where
the VOI is not visible. As a part of this study, we demonstrated a robust guidewire
tip detection method. Therefore, the VOIDD algorithm has been demonstrated for
two abilities:

� detection of vessel of intervention, and

� detection of guidewire navigation phase.

We propose validation methodologies and we evaluate the accuracy and robustness
of the VOIDD algorithm for these two abilities. For the task of VOI detection,
the mean VOI retrieval rate obtained is 93.22%. Encouraging results are obtained
with mean guidewire navigation phase detection rate (also called tip detection rate)
of 99.05%. The evaluation is performed on 15 cases from 14 patients with varying
imaging conditions, thus allowing to evaluate robustness of the algorithm. One of
the most interesting observation is that even though the VOI retrieval rate is 93.22%,
the detected VOI contained the coronary lesion in 100% of the cases. Such promising
results prove the potential of the algorithm to aid the detection of other interven-
tional tools like balloon markerballs and balloon which will arrive at the coronary
lesion at the later part of the procedure. We discuss these in the next section on
perspectives.

5.2 Perspectives

In interventional cardiology, the concept of PCI procedure modeling opens vast
perspectives in the direction of cathlab of the future. Though it may seem to be
an ambitious claim, we will try to list perspectives step by step to strengthen our
claim. To this extent, we start with some preliminary works that has been explored
without being significantly developed to be part of this PhD thesis. However, it
seemed important to us to provide evidence of the potential next steps making use
of the detected vessel of intervention (VOI).

113



Chapter 5. Conclusion and perspectives

(a) (b)

(c) (d)

Figure 5.1: Markerball segmentation with semantic information based on vessel of
intervention

5.2.1 Vessel of intervention for semantic applications

The VOIDD algorithm proposed in Chapter 4 returns a region of interest, i.e. a
vessel of intervention, at the end of the guidewire navigation phase of the PCI
procedure. This is followed by the markerballs positioning phase where a (stent
mounted) balloon with markerballs is navigated to land at the location of lesion.
As the name suggests, markerballs appear as pair of small dark contrasted circu-
lar structures in fluoroscopic images. An example in Figure 5.1a shows a frame of
markerball navigation sequence. The corresponding vessel of intervention detected
is shown in Figure 5.1b. As previously mentioned, we use the same min tree struc-
ture and filter the nodes with circularity and area attributes to select candidate
nodes for markerballs. The filtered image as in Figure 5.1c contains many other
connected components which are candidates for markerballs. This is mainly because
of the low SNR of fluoroscopic images. However, we may use the detected VOI as
region of interest to select and track marker balls among these various candidates.
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In case of above example, the corresponding image by fusing the filtered markerball
candidates and VOI is shown in Figure 5.1d. This ability to use VOI can thus
facilitate the detection and tracking of markerballs.

Similar proof of concept trials to segment inflated balloon with min tree based
filtering and VOI have also been part of the preliminary work. Though these meth-
ods need to be evaluated and validated, the above given example assures promising
perspective directions of the thesis work. The following steps would include detec-
tion of the arrival and departure of a tool to further advance towards PCI procedure
modeling. Several other conceivable applications of such modeling are mentioned
in Section 1.3.

Digital stent enhancement technique, a temporal filtering technique, is used to
produce an enhanced image of a stent from an X-ray image sequence. It is a special
case of motion compensated noise reduction where motion of stent is inferred by
motion of balloon markerballs [Bismuth et al., 2011; Koolen et al., 2005]. In these
techniques, the detected VOI can help to augment the robustness of markerballs
detection. Besides, the detected VOI can also be used as an aid to produce enhanced
image of the stent in the absence of markerballs.

5.2.2 Cathlab of the future and Robotics in PCI

Today, the adoption of robotic assisted PCI systems has its fair share of support-
ers and critics. Operators already perform procedures manually without robotic
assistance, but advocates for the technology point out these systems can greatly
improve staff safety by reducing radiation dose and improve outcomes with more
accurate procedural navigation [Carrozza, 2012; Granada et al., 2011; Bao et al.,
2018]. There are now robotic systems available for peripheral, coronary and electro-
physiology procedures. Users say these systems greatly improve their accuracy in
vessel navigation and procedural precision, even among experienced well-known op-
erators. These systems enable precise steering of guidewires and catheters through
complex anatomies. The manufacturers of the robotic-assisted systems claim to
make procedures less invasive, and to reduce physician’s radiation dose by 95%. It
is still important to reduce the patient’s radiation and contrast agent dose. Enabling
the imaging systems and the robotic navigation systems to recognize the phases of
the procedure, through PCI procedure modelling, can help to reduce the patient
dose. We hope that this work will establish a useful reference for further research
in this exciting field.

115





APPENDIX A

Publication list

A.1 Journal

Bacchuwar, K., Cousty, J., Vaillant, R., and Najman, L. (2017). Scale-space
for empty catheter segmentation in PCI fluoroscopic images. International
Journal of Computer Assisted Radiology and Surgery, 12(7), 1179-1188.

A.2 Conferences

Bacchuwar, K., Cousty, J., Vaillant, R., and Najman, L. (September 2016).
Towards semantic image analysis of PCI: Empty catheter segmentation. CVII-
Stent Workshop, MICCAI 2016.

Bacchuwar, K., Cousty, J., Vaillant, R., and Najman, L. (2017). Scale-space for
empty catheter segmentation in PCI fluoroscopic images. IPCAI 2017, CARS.

Bacchuwar, K., Cousty, J., Vaillant, R., and Najman, L. (2017). VOIDD: auto-
matic vessel-of-intervention dynamic detection in PCI procedures. In Intravas-
cular Imaging and Computer Assisted Stenting, and Large-Scale Annotation
of Biomedical Data and Expert Label Synthesis (pp. 47-56). Springer, Cham.,
MICCAI 2017.

A.3 Patents

Riddell, C., Vaillant, R., and Bacchuwar, K. (General Electric Co, 2017) ”System
and method for adjusting a radiation dose during imaging of an object within
a subject.” U.S. Patent Application 15/087,304.
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Abstract: Percutaneous coronary interventions (PCI) are performed using real-
time X-ray fluoroscopic images in an interventional suite. PCI procedure modeling
enables the interventional machine to identify, monitor and understand the different
phases of the procedure. Such modeling can help the practitioners by improving
their interaction with the machine and by optimizing the X-ray dose and the con-
trast agent. One of the important tasks in achieving this goal is to segment different
interventional tools into the flow of X-ray fluoroscopic images and to derive semantic
information from them. The component tree, a powerful mathematical morpholog-
ical tool, forms the basis of the proposed segmentation methods. We present this
work in two parts: 1) empty catheter segmentation, and 2) vessel of intervention dy-
namic detection (VOIDD). We present a new multi-scale space-based segmentation
method for detecting low-contrasted objects such as an empty catheter. For the
last part, we present the segmentation of the guidewire tip with filtering based on
the component tree and propose an algorithm to semantically track the segmented
tip to determine the vessel of intervention. The qualitative and quantitative exper-
imental results prove the efficiency of the proposed methods and their potential to
aid the detection of interventional tools such as balloon markerballs, balloons and
stents.

Résumé: Les interventions coronariennes percutanées (ICP) sont effectuées
dans des salles interventionnelles à l’aide d’un guidage temps-réel d’images rayons
X fluoroscopiques. La modélisation des procédures ICP permet d’identifier automa-
tiquement et de comprendre ses différentes phases. Cette modélisation peut aider
les praticiens à améliorer leurs interactions avec le système interventionnel et à op-
timiser la dose de rayon X et de produit de contraste. Pour atteindre cet objectif,
l’une des tâches importantes consiste à segmenter différents outils de l’intervention
dans le flux d’images fluoroscopiques et à en déduire des informations sémantiques.
L’arbre des composantes, un puissant outil de morphologie mathématique, constitue
la base des méthodes de segmentation proposées. Nous présentons ce travail en deux
parties: 1) la segmentation du cathéter vide, et 2) la segmentation de la pointe du
guide et le suivi de la détection du vaisseau d’intérêt. Nous présentons une nou-
velle méthode de segmentation basée sur l’espace multi-échelles pour détecter des
objets faiblement contrastés tels que le cathéter vide. Pour la dernière partie, nous
présentons la segmentation de la pointe du guide avec un filtrage basé sur l’arbre des
composantes et proposons un algorithme de suivi sémantique permettant de seg-
menter le vaisseau d’intêret. Les résultats expérimentaux démontrent l’efficacité des
méthodes proposées et leur potentiel pour la détection des outils interventionnels
tels que les marqueurs de ballons, les ballons d’angioplastie et les stents.
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