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Abstract

This work focuses on the uncertainty quantification in the modeling of road traffic
emissions in a metropolitan area. The first step is to estimate the time-dependent
traffic flow at street-resolution for a full agglomeration area, using a dynamic traffic
assignment (DTA) model. Then, a metamodel is built for the DTA model set up for the
agglomeration, in order to reduce the computational cost of the DTA simulation. Then
the road traffic emissions of atmospheric pollutants are estimated at street resolution,
based on a modeling chain that couples the DTA metamodel with an emission factor
model. This modeling chain is then used to conduct a global sensitivity analysis to
identify the most influential inputs in computed traffic flows, speeds and emissions. At
last, the uncertainty quantification is carried out based on ensemble simulations using
Monte Carlo approach. The ensemble is evaluated with observations in order to check
and optimize its reliability.

Keywords : Dynamic traffic assignment, traffic emissions, metamodeling, global
sensitivity analysis, uncertainty quantification, ensemble simulation

Résumé

Ce travail porte sur la quantification d’incertitude dans la modélisation des émissions
de polluants atmosphériques dues au trafic routier d’une aire urbaine. Une chaîne de
modélisation des émissions de polluants atmosphériques est construite, en couplant un
modèle d’affectation dynamique du trafic (ADT) avec un modèle de facteurs d’émission.
Cette chaîne est appliquée à l’agglomération de Clermont-Ferrand (France) à la ré-
solution de la rue. Un méta-modèle de l’ADT est construit pour réduire le temps
d’évaluation du modèle. Une analyse de sensibilité globale est ensuite effectuée sur
cette chaîne, afin d’identifier les entrées les plus influentes sur les sorties. Enfin, pour la
quantification d’incertitude, deux ensembles sont construits avec l’approche de Monte
Carlo, l’un pour l’ADT et l’autre pour les émissions. L’ensemble d’ADT est évalué
et amélioré grâce à la comparaison avec les débits du trafic observés, afin de mieux
échantillonner les incertitudes.

Mots clés: Affectation dynamique du trafic, émission du trafic routier, méta-modélisation,
analyse de sensibilité globale, quantification d’incertitude, simulation d’ensemble
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Context and background

Increasing attention has been paying to air quality at urban area in order to study
the exposure of city dwellers to air pollution. To monitor air quality, forecast pollution
episodes, inform citizens, and assist policy maker in controlling air pollution in the short
and long terms, urban scale air quality models down to street resolution are developed
and used by atmospheric environmental scientists and agencies. With the help of air
quality models, different scenarios can be designed in order to understand what kind of
measures can be proposed to decision makers, medias, and citizens in order to decrease
air pollutant concentrations, and more importantly, to prevent pollution episodes from
happening. However, there are uncertainties in the estimated pollutant concentrations
from the models, due to uncertainties in input data, parametrizations, and numerical
limitations of the models.

Emissions are one of the most important inputs of an urban air quality model, be-
cause they can directly impact the model performance in estimating atmospheric pollu-
tant concentrations at urban scale. The atmospheric pollutant emissions due to on-road
traffic are one of the key uncertainty sources in urban air quality simulations [Soulhac
et al., 2012]. In fact, on-road traffic emissions are one of the main sources of atmo-
spheric pollution at urban scale. According to the 2017 European Environment Agency
(EEA) report [EEA, 2017], road transportation contributes 39% of NOx emissions in
Europe, as the first source among all sectors. In addition, road transportation is also
the second biggest contributor of CO and BC (black carbon) emissions, representing
20% and 29%, respectively. Road transport is also responsible for 11% of the particu-
late matter (PM) emissions in Europe. In Paris Region (Région Île-de-France), on-road
traffic contributes 56% of NOx emissions, 28% of PM10 and 35% of PM2.5 emissions
[Airparif, 2014]. This is the main reason why many countries and regions impose legal
requirements for on-road vehicles and engines, and introduce emission standards. Those
emission standards set emission thresholds for vehicles and engines, which may require
better emission control technology to comply. In Europe for example, emissions from
road vehicles have been controlled by European legislation since the 1970s. In order to
meet the increasingly stringent requirements of the legislation, vehicle manufacturers
have continually improved engine technologies and have introduced various emission-
control systems. Road vehicles are usually classified according to their level of emission
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control technology (pre-Euro, Euro1, Euro2, . . ., Euro6c, etc.), which is actually defined
in terms of the emission legislation with which they are compliant [EEA, 2016].

Modeling of atmospheric pollutant emissions

In fact, on-road traffic emissions are estimated from numerical models. On-road
emission is the production of (i) activity data and (ii) emission factor. In the on-road
transportation sector, activity data refers to total vehicle-kilometers (in veh·km) on
the area that we want to study, during a given period [Boulter and McCrae, 2007;
EEA, 2016]. The emission factors ( in g km−1 veh−1) for road traffic are estimations
of vehicle average real-world emissions, according to different type of vehicle, emission
standard technologies, type of road and traffic conditions. In order to analyze the
uncertainty of estimated on-road traffic emissions, it is therefore necessary to analyze
the uncertainty due to both categories of inputs: (i) the vehicle-kilometers and (ii)
the emission factors. For an annual estimation of emissions through out a country,
vehicle-kilometers can be roughly obtained from a country’s statistics. However, for
the emission estimation at urban scale down to street resolution, a traffic assignment
model should be coupled with an emission model in order to compute traffic flow at
street-level at a required temporal resolution. As reviewed in [Boulter and McCrae,
2007], "uncertainty in emission estimates remains strongly associated to the traffic-
related parameters, which are themselves often highly uncertain." On the one hand,
traffic volume information is required for estimating emissions. At urban scale, traffic
volumes are modeled by traffic models, for which the uncertainty analysis is a new topic.
On the other hand, emission factors are modeled as a function of vehicle kinematics
(vehicle speed), which can also be simulated by traffic models. Therefore, uncertainty
quantification in on-road traffic models is an important part for analyzing uncertainty
in traffic emission estimations.

At urban scale, macroscopic traffic assignment models (TA models) are used to
compute traffic flow and vehicle travel speed at street resolution. The traffic flow is
defined as the number of vehicles passing through a point during a unit period of
time. Traffic assignment aims at determining the network traffic flows and travel times
according to network users’ route choices when they travel from their origin to their
destination. It can also be considered as an economical equilibrium between the demand
and the supply. The traffic demand is represented as an Origin-Destination matrix (O-
D matrix), describing the total flux from original zones to destination zones. The
supply is the road network with limited capacities to absorb all the demand. One of
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the main hypotheses for traffic assignment problems is that every network user makes
their route choice by minimizing their own travel cost, such as travel time, toll price,
etc. At equilibrium when every traveler succeeds in finding such a route, all used
routes associated with the same origin and destination should have the same minimum
cost, so that there is no possibility for travelers to shift to another route [Wardrop,
1952]. There are static traffic assignment models and dynamic ones. The static models
compute average traffic flow and vehicle travel time during a given period, without
taking into account time-dependent interactions of traffic flows. The dynamic models
add the time dimension into the model. Dynamic models can give time-varying traffic
flows and speeds with a finer temporal resolution compared to static models. That is
the main reasons why we chose a dynamic traffic assignment (DTA) model in this PhD
study. The uncertainty lying in the inputs of the DTA models may then propagate to
the estimated traffic outputs (traffic flow, vehicle kinematics, etc.), and then influence
the simulated on-road traffic emissions from emission models. Therefore, an uncertainty
analysis on DTA simulation needs to be carried out first.

Then in order to estimate time-dependent street resolution emission due to on-road
traffic at urban area, the DTA model is coupled with an emission model to build a
modeling chain. The uncertainties lying in traffic flows and vehicle speeds, due to inputs
of traffic models, are propagated to the final emission simulation, via the modeling
chain. In addition, the calculation of emission factor requires other inputs and there
is uncertainty lying in these inputs, too. For example, the emission factors for a given
pollutant vary based on vehicle fleet composition: vehicle type (passenger car, light
commercial car, heavy duty vehicles, motorcycles), motorization type (diesel, petrol,
hybrid, electric), vehicle technology (Euro standard), etc. This fleet composition should
be taken into account in the distribution of traffic volume, too. The estimated emissions
at urban area are very sensitive to the fleet composition [Grassot et al., 2012; Carteret
et al., 2014]. Therefore, it is important to analyze the uncertainty lying in the final
estimated on-road traffic emissions, due to inputs of traffic assignment model, as well
as the inputs of the emission model. Eventually, the uncertainty in these inputs is
propagated to the uncertainty of the final computed on-road emissions.

Uncertainty quantification

The uncertainty quantification aims to quantify the uncertainty of outputs resulting
from numerical models. Brief definitions of the uncertainty and uncertainty quantifica-
tion are presented below. Unlike the deterministic simulation with known inputs, the
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inputs and outputs are both considered as random variables U and X in the process
of uncertainty quantification. Let us denote the model as X = f(U). A deterministic
simulation can be denoted as x = f(u) where x and u are realizations of X and U .
There are many criteria to evaluate the performance of the model f . Let us assume
that the true value of X is an observed value o. If we consider that there is uncer-
tainty in the observation, the observation can also be considered as a random variable
O. However, here we assume that the observation is perfect and we ignore the error
lying in observations. Therefore, in deterministic simulation, we can evaluate the model
f with the error e, which is defined as the distance between x and the observation o:

e = d(x, o), (1)

where d(·, ·) is a measure of distance (Mean Squared discrepancy for example). Another
criterion to evaluate the performance or the robustness of the numerical model is the a
priori uncertainty: σX = σ. It is defined only from the a priori probability distribution
of X without taking into account the observations. There is also the a posteriori uncer-
tainty which is estimated given the observation o. In our study, we only focus on the
a priori uncertainty and the term “uncertainty” in this dissertation refers to a priori
uncertainty. Therefore, the objective of uncertainty quantification is to determine the
probability distribution of X. If the model f is used to forecast a target value, then we
may calculate the expectation of X and denote it as E(X). The measure of the uncer-
tainty can then be expressed as its variance V ar(X) = E((X − E(X))(X − E(X))T ).
To do so, we need to use a probabilistic approach and introduce uncertainties in inputs
U , in order to obtain the probabilistic distributions of output X computed by f(U).

In practice, an ensemble of deterministic simulations is generated in order to get
the distribution of the output variable X. With a Monte Carlo approach of size n for
example, a sequence of inputs (ui)i=1,2,...,n is drawn according to a given probabilistic
distribution. Therefore, n deterministic simulations are carried out with each of the
input ui: xi = f(ui), i = 1, . . . , n. Therefore, the distribution of the output sequence
(xi)i=1,...,n can be considered as samples from the random variable X. Its variance or
the standard deviation can be considered as a measure of the uncertainty of X, due to
the given uncertainty lying in the input U .

If the error can already evaluate the performance of the model f with deterministic
simulations, why do we make use of a probabilistic approach to quantify the uncertainty
which is computationally costly? In fact, in the context of estimating uncertainty in
DTA simulation and emission estimation in urban area, the main outputs are traffic
flows, vehicle speeds, and atmospheric pollutant emissions at street resolution. On the
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one hand, there are no available observations of the traffic flows/speeds in all the streets.
On the road network, there may be loop detectors that measure the number of vehicles
passing a point of a lane during a unit of time and therefore give traffic flow of the
street. However, not all the streets on the network are equipped with detectors. On
the other hand, the emissions due to on-road traffic cannot be measured directly in
atmosphere. There are interactions between the pollutant emitted by road traffic and
other chemical species in the environment. The concentrations measured by air quality
monitoring stations cannot directly measure the emission. Therefore, the errors can not
be measured on all the streets of the studied urban area. Instead, the measure of a priori
uncertainty does not depend on the observation and the uncertainty estimation can be
carried out on all the roads of a network. In addition, the deterministic simulations do
not take into account the uncertainty in inputs. With probabilistic approach, we are
able to give a possible distribution of the inputs U , and then quantify the uncertainty
in output X by estimating its probability distribution, on all the roads of the studied
urban area.

Objectives

The main motivation of this PhD work is to quantify the uncertainty in the simula-
tion of on-road emissions due to the inputs of a dynamic traffic assignment model and
the inputs of the emission factor model, at urban scale with high spatial and temporal
resolutions. Within the context of emission estimation and uncertainty quantification,
the objectives of this dissertation are as follows.

1. To apply a DTA model at street resolution to a real-world network and evaluate
the model performance with loop detector observations.

2. To build a modeling chain of on-road emission estimation at metropolitan scale,
at high spatial and temporal resolutions. This involves evaluating a state-of-the-
art dynamic traffic assignment (DTA) model applied in an urban area. The DTA
model computes time-varying traffic flows and speeds at metropolitan scale at
high spatial and temporal resolution. Then the time-varying traffic information is
coupled with an emission model in order to compute on-road emissions at street
level with the same spatial-temporal resolution.

3. To identify the most influential factors in the DTA model and the modeling chain
that affect the final computed traffic flow and its emissions at urban scale down to
street resolution. This involves qualitative and quantitative sensitivity analysis on
(i) the computed traffic flows and speeds with respect to the DTA model inputs
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and (ii) the computed on-road traffic emissions with respect to both inputs of the
DTA model and emission factor model in the modeling chain.

4. To quantify the uncertainty of the computed traffic flows and its emissions for a full
city scale down to street resolution. To this end, two ensembles of simulations are
to be generated: (i) an ensemble of dynamic traffic assignment simulations in order
to quantify the uncertainty of the DTA simulation in an urban area during a long
period (one month), with time resolution down to every 15 minutes. The inputs of
DTA models are to be perturbed with given probabilistic distributions. Therefore,
the distributions of the computed traffic flows and speeds can be deduced based
on the ensemble. (ii) An ensemble of on-road traffic emissions at street resolution,
based on the built ensemble of traffic assignment during the same period of time
with the same temporal resolution. It is then possible to analyze the propagation
of the uncertainty in the modeling chain from traffic assignment model to the final
computed on-road traffic emissions, due to the uncertainty of traffic assignment
inputs.

In order to achieve the objectives 3 and 4 listed above, a large number of model evalua-
tions are required. Nevertheless, the additional time dimension in the traffic assignment
model makes it more accurate in modeling time-varying traffic features, yet more com-
putationally costly. The DTA model used in this PhD work is proved to be tractable
in an operational context for a large-size traffic network with a model evaluation time
around several hours [Aguiléra and Leurent, 2009]. However, the model evaluation time
still needs to be reduced. For example, in the quantitative global sensitivity analysis,
the order of magnitude of the number of model evaluations is typically 104×k, where k
is the dimension of inputs. In order to tackle with the computational burden, this disser-
tation proposes a metamodeling framework in order to build a metamodel (or surrogate
model) of the DTA model applied to a metropolitan area. The metamodel computes
similar traffic assignment results (traffic flows and speeds) at the street resolution with
high temporal resolution when compared with those computed by the original model,
but with a much lower computational cost.

Organization of the thesis

The dissertation is organized as follows:
Chapter 1 presents literature review, and gives introduction of models and methods

used in this PhD work. Firstly, a review of traffic assignment models is given. Secondly,
a review of metamodeling method is presented, especially its application in the field of
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traffic assignment model on large-scale network. Thirdly, a review of state-of-the-art
emission models is given. Fourthly, a brief review regarding main methods of sensitivity
analysis and uncertainty quantification is given, especially their applications in traffic
modeling and on-road emission estimations.

Chapter 2 presents the most important definitions, assumptions and formulations
of the dynamic user-equilibrium (DUE) traffic assignment problem at first, followed by
the presentation of a DUE-based traffic assignment model named LADTA (for Lumped
Analytical DTA) [Leurent, 2003] with its inputs, outputs and assumptions. Then,
the framework of the implementation of LADTA model, LTK (for LADTA Tool Kit)
[Aguiléra and Leurent, 2009; Aguiléra, 2014], is presented. Finally, a DTA simulation
using LADTA is presented with an example of a two-link network.

Chapter 3 presents the application of LADTA model to a metropolitan scale
network, and qualitative sensitivity analysis of the computed results with respect to
LADTA inputs. The case study is for the whole agglomeration of Clermont-Ferrand
(France). It has about 200,000 residents in an area of about 300 km2. LADTA computes
continuous traffic flow at street resolution during one day. The traffic flows computed by
LADTA are compared with those computed by the widely-used static traffic assignment
model VISUM, during evening peak hour (17:00 - 18:00) of a working day. The com-
puted traffic flows by both models are also compared with loop detector measurements
in order to evaluate the models performance.

Chapter 4 presents a metamodeling method for DTA model applied to a real-world
network. A case study is carried out for LADTA model applied in the agglomeration
of Clermont-Ferrand. Uncertain inputs in DTA simulation with LADTA model are
identified: (i) time-varying traffic demand, (ii) spatial uncertainty in the traffic demand,
(iii) spatial uncertainty in network parameters. Then a metamodel based on these
uncertain inputs is built. Thirdly, a one-month DTA simulation during November 2014
is carried out with both the metamodel and the complete model. The performance
of the metamodel is evaluated by comparing its computed traffic flows with those of
the complete model at street resolution for all time intervals of 15 minutes during one
month. The performance of the metamodel is also evaluated by comparing its computed
traffic flows with the loop detector measurements during a month, at detector resolution
at all time intervals.

In Chapter 5, the metamodel built in Chapter 4 is used. A global sensitivity
analysis (GSA) with Sobol’ method is carried out in order to study the sensitivity of
the computed traffic flows and speeds with respect to the uncertain inputs of LADTA
model. Sobol’ sensitivity indices are computed at street resolution throughout the whole



8 Preamble

agglomeration of Clermont-Ferrand.
Chapter 6 builds the modeling chain for estimating on-road by coupling the DTA

model LADTA with the emission model COPERT IV, in the whole agglomeration of
Clermont-Ferrand at street resolution. Then a qualitative sensitivity analysis is carried
out on the modeling chain, in order to study the sensitivity of the computed on-road
traffic emissions with respect to the LADTA inputs as well as the inputs of COPERT IV
model: (i) total traffic demand, (ii) speed limits of the road network, (iii) vehicle fleet
composition. Then COPERT IV model is also coupled with the metamodel built in
Chapter 4. Then the GSA with Sobol’ method is carried out to study the sensitivity of
on-road traffic emissions computed by the modeling chain in the whole agglomeration
at street resolution, with respect to both (i) the uncertain inputs of LADTA model, and
(ii) the vehicle fleet composition inputs for COPERT IV.

Chapter 7 generates two ensembles: (i) an ensemble of DTA simulations and (ii) an
ensemble of emission simulations, for the agglomeration of Clermont-Ferrand at street
resolution at all time intervals of 15 minutes during November 2014. Then the uncer-
tainty in the computed traffic flows/speeds/emissions with respect to the uncertainty
lying in the inputs of DTA model is quantified based on the generated ensemble. In
addition, by comparing the traffic flow results from the DTA simulation ensemble with
the traffic flows measurements obtained by loop detectors, the reliability of the ensemble
of DTA simulation is evaluated in order to know whether the ensemble well represents
the uncertainty lying in the computed traffic flows. Preliminary results for the ensemble
calibration are also presented in this chapter.

Finally, conclusions of the PhD work are presented at the end of this dissertation.
Perspectives and future research lines that have raised from the results of this thesis are
also presented.



Chapter 1

Introduction

Summary

This chapter introduces to traffic and emission models. It reviews the associated
literature and the various methods used in this PhD work. Firstly, a review of
macroscopic static and dynamic user-equilibrium based traffic assignment models
is given. Secondly, a review of the metamodeling approach is given, especially for
its application in the field of traffic assignment modeling and in on-road traffic
emission modeling. Thirdly, a review of state-of-the-art emission models is given.
At last, a brief review regarding main methods of sensitivity analysis and uncer-
tainty quantification are given, in view of their application to traffic modeling and
on-road emission estimations.

Résumé

Ce chapitre présente l’état de l’art des modèles de trafic et des méthodes util-
isées dans cette thèse. Tout d’abord, différents modèles d’affectation du trafic
sont présentés. On souligne notamment (i) les différences entre modèle statique et
modèle dynamique, et (ii) les différences entre les modèles dynamiques à l’échelle
mésoscopique et à l’échelle macroscopique pour une agglomération entière. Deux-
ièmement, une présentation de l’état de l’art sur la méta-modélisation est proposé,
en particulier pour l’application dans le domaine de la modélisation dynamique
du trafic et de ses émissions. Ensuite, différents modèles d’émission sont briève-
ment présentés. Le modèle COPERT est choisi pour estimer les émissions dues au
trafic routier à l’échelle métropolitaine. Enfin, les différentes méthodes d’analyse
de sensibilité et de quantification d’incertitude sont présentées. On présente aussi
l’originalité du travail de cette thèse, par rapport à l’état de l’art.
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1.1 Traffic assignment

The traffic assignment (TA) aims at determining the network traffic flows according
to users route choices when they travel from origins to destinations. It can be considered
as an economical equilibrium between the traffic demand and the supply. The traffic
demand is often represented by an Origin-Destination matrix (O-D matrix), filled with
traffic flow between each Origin-Destination pair (O-D pair). In metropolitan area,
the O-D matrix summarizes the total number of users traveling between the Origin-
Destination zones (O-D zones), predefined for the simulation area. The supply is a
modeled network for the simulation area, represented by an oriented graph with nodes
and links. In general, nodes are used to model intersections of roads on the real-world
network. Links are used to model roads/streets/freeways of the real-world network. We
talk about demand-supply equilibrium since there are various constraints on the network
for users to choose their travel routes. Capacity and speed limit are two main constraints
of roads for a network. The capacity is defined as the maximum traffic flow (in veh h−1)
that can pass through a road. There are two categories of traffic assignments: static
one and dynamic one. There are two main modeling problems in traffic assignment
problem: (i) modeling the route choices of the network users throughout the network
and (ii) the flowing model: a function that maps the traffic flow to travel time for a
path or for a road, especially when there are congestions on the network. In the static
TA problem, the demand and parameters for the network supply are constant during a
given simulation period, usually during peak hours. There is no temporal dimension in
static TA problem. In dynamic traffic assignment (DTA) problem, traffic demand, road
capacities and network parameters can depend on the clock time during the simulation
period.

1.1.1 Route choice model

One of the most widely used assumptions for modeling users’ route choice is that
they choose their routes between O-D zones by minimizing their perceived travel cost,
such as travel times, monetary costs (toll, fuel, etc.). The generalized cost of users
route choice is then modeled by converting all kinds of costs into one general criterion
(often the time). Then, it is assumed by the user equilibrium (UE) condition [Wardrop,
1952] that at equilibrium when every user succeeds in finding a route with a minimum
generalized cost, all used routes associated with the same O-D pair should have the
same minimum cost, so that there is no possibility for users to shift to another route.
Different individuals may have different perceptions of their least cost route. Different
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user classes (e.g., according to vehicle types such as passenger cars, utility vehicles,
trucks, etc.) can be considered when modeling route choice. Stochastic effects can also
be considered in modeling route choice since travelers may not have the full information
on the network so that they choose their best routes according to a perceived probability
distribution. Detailed reviews concerning different kinds of route choice models can be
found in de Dios Ortúzar and Willumsen [2011] (page 356-357).

In static TA problem with fixed O-D matrix and network parameters, the equilibrium
status does not depend on the clock time. The static assignment problem is formulated
as a classical optimization problem with unique and stable equilibrium [Beckmann et al.,
1956; Smith, 1979; Sheffi, 1985]. This optimization problem can be formulated as

find x∗ ∈X, s.t. 〈C(x∗), (x− x∗)〉 ≥ 0,∀x ∈X, (1.1)

where x is the path flow between origins and destinations. X is the set of traffic flows
satisfying the traffic demand constraints of the O-D matrix. C is the generalized cost of
all paths. At metropolitan scale with large-size network, static TA model is well studied.
Most of the transportation planning software are based on static TA formulations such
as VISUM, TransCAD, etc.

In dynamic traffic assignment (DTA) models however, the traffic demand, travel
costs, link parameters (capacity and speed limits) and route choice strategies are time-
dependent [Chiu et al., 2011; Peeta and Ziliaskopoulos, 2001]. For the DTA problem,
the Wardrop equilibrium principle of route choice can be extended to the dynamic user
equilibrium (DUE) principle as follows:

Under equilibrium conditions in networks where congestion varies over time, traffic
arranges itself so that at each instant the costs incurred by drivers on those routes that
are used are equal and no greater than those on any unused route [de Dios Ortúzar and
Willumsen, 2011].

The DUE represents the travel time needed to reach any point in the network and
its variations as a function of clock time over the simulation period. It gives an accurate
description of spatio-temporal propagation of traffic through the network [Meunier and
Wagner, 2010].

With the additional time dimension, DTA models are more complex than static ones
in both analytical and algorithmic aspects. On the one hand, the analytical models are
more complex regarding the dynamic user equilibrium (DUE) condition and analytical
formulations of the DTA problem. Researches on the existence, uniqueness and stability
of the DUE solution are challenging tasks among DTA studies [Zhu and Marcotte,
2000; Mounce, 2006, 2007; Meunier and Wagner, 2010; Wagner, 2012]. The DUE-based
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traffic assignment problem can be considered as a dynamic optimization problem (DOP),
and the formulations of the analytical model are complex. As reviewed in Ran and
Boyce [1996]; Chen and Hsueh [1998]; Peeta and Ziliaskopoulos [2001], the variational
inequality (VI) approach, firstly proposed by Friesz et al. [1989, 1992, 1993], is a general
approach that provides analytical flexibility and convenience in addressing various DTA
problems. On the other hand, the computation of dynamic minimum cost path is an
NP-hard problem [Orda and Rom, 1990]. The application of DTA to real-word network
with limited (computational) budget is still challenging. In fact, it requires to compute
for each node in the network, the path who has the minimum (generalized) travel costs
from all other nodes as a function of clock time during the whole simulation period. DTA
models are far more computationally demanding than static ones, and may exceed in
many cases the capability of current hardware.

1.1.2 Flowing model

The offer side of a traffic assignment problem is often constrained by the infrastruc-
ture of the simulation area. The flowing model aims at modeling the travel speed or
travel time on a road in function of traffic flow, with constraints of road capacity. In a
static TA model, the effect of road capacity on travel time is modeled by a volume-delay
function (VDF): the travel cost (or time) is a strictly increasing function of the traf-
fic volume on a road. For example, Bureau [1964] proposed the most commonly used
function

t = t0[1 + αV DF (V
C

)β], (1.2)

where t is the link travel time to be determined, t0 is the link free flow travel time, V is
the volume on the link, C is the capacity, αV DF and β are coefficients to be adjusted.
Figure 1.1 illustrates this type of VDFs with αV DF = 1 and a varying β.
It is observed that VDFs are very sensitive to β. To represent the fact that the link
travel time increases with the volume loaded on a link in congested cases, the volume
may increase indefinitely and exceed the link capacity. This is not possible in reality,
and it is also unrealistic to assume that the travel cost depends only on the flow of
the link. In other words, in congested condition, the travel time calculated by VDF in
static models does not depend on physical features of congestion (such as travel speed,
density, or queue) [de Dios Ortúzar and Willumsen, 2011].

Modeling dynamics of traffic flow can better represent the congestion phenomenon.
Time-dependent dynamic flowing models are used in DTA problems for describing time-
dependent relation between traffic loaded on a path (or on a link) and travel cost
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Figure 1.1: An example of volume-delay functions in static traffic assignment models.
When volume loaded on a link exceeds the capacity, the link travel time (t) can be
calculated with αV DF = 1 and different β.

(time). Some DTA models use a microscopic traffic simulator [Mahut and Florian,
2010] as flowing model which provides detailed behavior of each traveler on the network.
Other traffic flowing models use a simpler macroscopic approach. For instance, LWR
model of Whitham [1955] and Richards [1956] based on hydrodynamic principles of fluid
mechanics (see in Appendix A). It is widely used in macroscopic traffic modeling but it
involves calibrating the fundamental diagram, which gives a relation between the traffic
flow (in veh h−1) and the traffic density (in veh km−1), according to characteristics of
each street. This might be computationally costly for a metropolitan-scale network with
more than 10,000 links. Another simpler way to represent the relation between travel
time and traffic flow on links is the use of a first-in-first-out (FIFO) point queue model
[Kuwahara and Akamatsu, 1993; Mounce, 2006]. A point queue is associated with each
link and it replaces the volume/delay functions used in static TA problem. A point
queue model allows to map the time-varying traffic demand on a link to its travel time.
The time-varying route travel times are then computed by composing the individual link
travel time functions along each route. The point queue indeed ignores the spillback
of queues. However, it can model the congestion condition where the travel time is
bigger than the free-flow travel time when the entering traffic flow of a link exceeds link
capacity. It can better model the travel time in congested condition, when compared
with volume/delay functions in static models.
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1.1.3 Choosing between static and dynamic models

The choice of the modeling approach depends on the required application: the accu-
racy required, the decision-making context, the level of details required, the availability
of data and resources, etc. [de Dios Ortúzar and Willumsen, 2011] (page 10 - 12). For
emission estimation at urban scale, it is important to choose appropriate models in order
to build the modeling chain from traffic modeling to emission modeling. Microscopic
simulators coupled with emission model have been already used for estimating on-road
traffic emissions at district scale on a limited-dimension network [da Rocha et al., 2015;
Shorshani et al., 2015a,c; Thouron et al., 2018]. At urban scale and metropolitan scale
however, dynamic microscopic simulators are computational costly if we want to com-
pute aggregated traffic flows and speeds at link resolution for a high-dimensional net-
work. In this case, macroscopic traffic assignment models are widely used. Compared
to static macroscopic traffic assignment models [Fellendorf et al., 2000], DUE-based
assignment models compute time-dependent traffic flow and average speed at link reso-
lution. This allows us to estimate on-road traffic emissions with detailed time resolution.
Moreover, unlike in static models where averaged traffic flows are computed for each
chosen route during an hour, the DUE-based assignment model takes into account the
continuous spatial-temporal evaluation of traffic flows throughout the network. The
spatial-temporal feature is also important for estimating on-road traffic emissions.

The traffic model we use in this PhD work is a DUE-based dynamic traffic assign-
ment model called LADTA. The traffic demand in O-D matrix is a continuous function
of time, expressed by cumulated traffic demand for each O-D pair during a given sim-
ulation time interval. The outputs of LADTA are cumulated traffic volumes at link
resolution, as a function of the clock time at which users enter into the link, during the
same simulation period. Link capacities and speed limits can be time-depending, too.
Detailed descriptions of LADTA model, and its implementation LTK are presented in
Chapter 2. It has already been applied to a real-world network [Leurent, 2003; Aguiléra
and Leurent, 2009]. It has also been coupled with an emission model in order to esti-
mate the atmospheric pollutant emission due to on-road traffic in the metropolitan area
of Paris region [Aguiléra and Tordeux, 2011].

1.2 Model evaluation and performance criteria

This section presents the statistical criteria to compare two sequences of traffic flows.
On the one hand, the criteria are used to compare the results computed by two models:
(i) static model v.s. dynamic model in traffic assignment, (ii) metamodel v.s. original
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model to evaluate the performance of the metamodel. On the other hand, in order to
evaluate the performance of models, the computed traffic flows on the network are also
compared with loop detector measurements.

Traffic measurement data

At urban area, inductive loop detectors are installed beneath the road surface in
order to detect whether a metallic object is above them. Figure 1.2 illustrates the basic
structure and function of a loop detector [Treiber et al., 2012].

Figure 1.2: The induction loop is part of an inductor-capacitor circuit (complemented
by an external capacitor and an alternating current voltage source) tuned to be in
resonance if the loop is "unoccupied", yielding a high voltage Ueff . The metallic parts
of a vehicle will increase the inductance of the loop upon driving over it. This puts the
circuit out of tune and decreases the voltage Ueff . Source: [Treiber et al., 2012]

The detectors transmit aggregated data to the traffic control center. The traffic flow
is defined as the number of vehicles ∆Ni passing a location i within a time interval ∆h:

Qi,h = ∆Ni

∆h . (1.3)

Qi,h is expressed in veh h−1. It can be directly measured by loop detectors. The time
intervals of detectors can be down to every 20 s and ∆h = 20

3600 h. The output of LADTA
model is the cumulated flow at link resolution. It is non-decreasing and measurable on
R. The cumulated traffic during H∆h = [h, h + ∆h] for the link a is Xa([h, h + ∆h]).
Assuming that the traffic flow on link a can be measured at location i, then Xa([h,h+∆h])

∆h
can be compared with Qi,h measured by loop detectors.
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Performance criteria

Let (ri)i be the sequence of reference and (si)i be the sequence to be evaluate.
Statistical criteria in Table 1.1 are used to compare these two sequences.

Table 1.1: Statistical criteria to evaluate a model by comparing the computed values
(si)i with the reference sequence (ri)i. They have the same dimension denoted as N .

Criteria Notations Formula

Mean value Mean r̄ = 1
N

∑N

i=1 ri, s̄ = 1
N

∑N

i=1 si

Root mean square error RMSE
√

1
N

∑N

i=1(si − ri)2

Bias Bias 1
N

∑N

i=1(si − ri)

Correlation Corr
∑N

i=1
(si−s̄)(ri−r̄)√∑N

i=1
(si−s̄)2

√∑N

i=1
(ri−r̄)2

Normalized root mean square error NRMSE RMSE
r̄

Mean normalized bias error MNBE 1
N

∑N

i=1
si−ri

ri

With the additional time dimension, the output of DTA simulation has therefore two
dimensions (i, h): (i) the spatial dimension represented by the index of location i and (ii)
the temporal dimension represented by the time h. Let ri,h denote the reference value at
(i, h). It can be the output of a reference model or be an observation at (i, h). Let si,h be
the computed value at (i, h). Let Nlink be the number of links in the simulation network
and T be the dimension of time for the simulation period. Then we use total criteria
when we compare the two sequences at all locations and all times. N in Table 1.1 equals
to Nlink × T . We can also evaluate the temporal performance and spatial performance
of a model. The temporal performance is given by comparing spatially-averaged values
of si,h with those of ri,h at all times h. The spatial performance is given by comparing
temporally-averaged values of si,h with those of ri,h at all locations i. Table 1.2 presents
the formulas for evaluating total, temporal and spatial performance of a DTA model.
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Table 1.2: Total, temporal and spatial statistical criteria to evaluate a model. si,h and
ri,h respectively denote the computed and reference value at location i at time h. Nlink

is the spatial dimension and T is the temporal dimension. We reuse some notations and
formula presented in Table 1.1.

Criteria Formula

Spatially-averaged sequence (dimension T ) r̄h = 1
Nlink

∑Nlink

i=1 ri,h, s̄h = 1
Nlink

∑Nlink

i=1 si,h

Temporally-averaged sequence (dimension Nlink) r̄i = 1
T

∑T

i=1 ri,h, s̄i = 1
T

∑T

i=1 si,h

Temporal bias Bias (s̄h, r̄h)

Spatial bias Bias (s̄i, r̄i)

Temporal RMSE RMSE (s̄h, r̄h)

Spatial RMSE RMSE (s̄i, r̄i)

Temporal NRMSE NRMSE (s̄h, r̄h)

Spatial NRMSE NRMSE (s̄i, r̄i)

Temporal correlation Corr (s̄h, r̄h)

Spatial correlation Corr (s̄i, r̄i)

1.3 Metamodeling

DTA models can compute traffic flows and speeds at link resolution for a whole
metropolitan area. The additional time dimension can model time-varying traffic fea-
tures. However, as reviewed in Section 1.1, dynamic models are more complex than
static models in both analytical and numerical aspects. To speed up the DTA simula-
tions on large-size networks is one of the main challenges for researchers and engineers
in traffic modeling. One of the solutions to deal with computer intensive models is using
metamodels (i.e., surrogate models) in order to approximate complex models.

A metamodel is an approximation of the input/output function that is implied by
the underlying simulation model [Kleijnen, 2009]. The built metamodel preserves the
main response of the original model to input, but with much lower computational time.
Once a class of surrogate models has been chosen according to some prior knowledge,
they can be built upon available samples [Roustant et al., 2012]. There are three main
steps for constructing a metamodel based on an original model: (i) sampling selection
or experimental design in order to build a set of training points, and the corresponding
training values; (ii) construction of the metamodel in order to find an surrogate model
based on the training points and training values; (iii) evaluation and optimization of
the metamodel. There are various types of metamodeling methods for computer experi-
ments include linear regression (polynomial regression) [Madu and Kuei, 1994; Kleijnen,
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2009], splines, neural networks, Gaussian emulators [Rasmussen and Williams, 2006;
Sacks et al., 1989], Kriging surrogates [Kleijnen, 2009], and radial basis function (RBF)
[Dyn et al., 1986; Broomhead and Lowe, 1988], etc. For low-dimensional problems,
linear regression may be straightforward and efficient. However, it has less robustness
when applied to high-dimensional models, compared with Kriging and RBF methods
[Jin et al., 2001].

Kriging method is a spatial interpolation method [Roustant et al., 2012]. The Kriging
method was firstly proposed by D.G. Krige [Krige, 1951] and mathematically formulated
in Matheron [1963] for geostatistics. It is applied to interpolate spatial data for con-
structing surrogate models [Rasmussen, 2004; Kleijnen, 2009; Stein, 2012]. Numerical
Kriging approximation packages are developed such as DACEMatlab toolbox [Lophaven
et al., 2002] and DiceKriging [Roustant et al., 2012]. Let us denote a model y = f(p)
with p ∈ RK and f is computationally costly. Basically, the Kriging metamodel aims
at predicting the model’s outputs on a target (unknown) input point p(0) ∈ RK , based
on a linear combination of known training values ({f(p(1)), . . . , f(p(i)), . . . , f(p(n))} ),
computed at training points (denoted as {p(1), . . . ,p(i), . . . ,p(n)} with n ∈ N ). The
objective of Kriging interpolation is to find f̂ so that for any unknown p(0) ∈ RK ,
f̂(p(0)) = ∑n

1 ωi(p(0),p(1), . . . ,p(n))f(p(i)) ' f(p(0)). ωi is the weight affected to f(p(i))
and it depends only on the relative position of p(0) with respect to training points. They
are chosen to minimize the variance of the prediction error. The training process of the
Kriging interpolation consists in determining the covariance of the Gaussian process
[Roustant et al., 2012; Mallet et al., 2013]. The interpolation process is unbiased so
that the predictions at all training points coincide with the corresponding training val-
ues. Thorough reviews regarding Kriging method and Gaussian process can be found
in Rasmussen and Williams [2006]; Kleijnen [2009]; Stein [2012]; Roustant et al. [2012].

The Kriging interpolation is unbiased. However, it is very time-consuming especially
for interpolating large-dimension training points because it involves a K-dimension op-
timization process [Jin et al., 2001; Mallet et al., 2013]. Another similar interpolation
method is with radial basis functions (RBFs) [Dyn et al., 1986; Broomhead and Lowe,
1988]. The RBF-based interpolation of the training points is more computationally
efficient than the Kriging method. RBFs were developed initially in Duchon [1977];
Oeuvray and Bierlaire [2009] and their applications are in various fields in sciences and
mathematics [Buhmann, 2003]. The concept of RBF-based interpolation is that the
influence of a training point p(i) to the approximation of f(p) depends only on the dis-
tance between p(i) and the target point p(0): the bigger the distance, the less p(i) should
be influential. Interpolation based on RBFs can be briefly summarized as finding f̂ so
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that for any unknown p(0) ∈ RK , f̂(p(0)) = ∑n
1 λiφ(d(p(0),p(i))) ' f(p(0)), where φ is

the chosen RBF, λi is the weight and d(·, ·) defines the distance between p(0) and p(i). λi
is computed so that f̂(p(i)) = f(p(i)) for i = 1, . . . , n. The computation of the weights
is in fact to solve a linear system. The distance here can be defined by users in order to
take into account the sensitivity of the model f with respect to each input p(i). Without
specification, it is often defined as Euclidean norm. The choice of different radial basis
functions depends on applications. A method employing multiquadric radial functions
is proposed in Hardy [1990] and it can be used for a large variety of problems. Most of
these applications are one, two or three dimensional [Oeuvray and Bierlaire, 2009].

The three main methods mentioned above are widely used in various domains, and
the choice among different methods depends on the application. In recent years, meta-
modeling methods have also been used in traffic modeling and management, in order to
solve the computational burden in algorithm, sensitivity analysis, safety management,
etc. For example, surrogate of the microscopic Aimsun model is built with Kriging
method for global sensitivity analysis (GSA) and model calibration [Ciuffo et al., 2013;
Azevedo et al., 2015]. Some other studies of metamodeling applied to microscopic traf-
fic simulators are reviewed in Song et al. [2017] for different applications. Macroscopic
traffic assignment problems at urban scale are also addressed by embedding surrogates
of microscopic traffic simulators in an optimization algorithm. For example, Osorio
and Bierlaire [2013] propose an efficient simulation-based optimization framework em-
bedding a polynomial-based metamodel that integrates information from a microscopic
simulator with an analytical queuing network model. Based on this framework, different
algorithms are proposed to carry out (i) static traffic assignment [Osorio and Chong,
2015; Osorio and Nanduri, 2015] and (ii) dynamic traffic assignment and calibration
[Chong and Osorio, 2017; Zhang et al., 2017], at urban scale under tight computational
budget. Metamodels based on microscopic simulators are also used in other optimization
problems in transportation management such as highway charges and dynamic pricing
[Chen et al., 2014; He et al., 2016]. Besides the initiatives in accelerating the optimiza-
tion algorithm, there are also applications that make use of metamodeling methods in
order to build surrogate for dynamic network loading (DNL) models, mapping the set
of path departure rates to the set of path travel time. For example, Song et al. [2017]
propose a framework of building metamodel of dynamic flowing models based on Krig-
ing method. Their case studies on a SiouxFall network (76 links and 24 nodes) show
the potential of surrogates of DNL models for speeding up DUE-based model.

However, the mentioned surrogate-based DTA models might be adequate for trans-
portation planning, management and optimization problems in an operational context.
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Applying these models to large-scale DUE-based model for a whole city is still com-
putationally costly, in cases where large numbers of model evaluations are required at
metropolitan scale. These cases include carrying out global sensitivity analysis of model
inputs, long-term DTA simulations to be combined with traffic emission models for air
quality simulations, and probabilistic simulations based on Monte Carlo simulation of
the deterministic DTA model. In these cases, metamodels that replace DTA models
applied to large-scale networks are needed. Based on the objectives of this PhD work,
the on-road traffic emission estimation, GSA analysis and uncertainty quantification
should be carried out at metropolitan scale. It is necessary to reduce the computa-
tional cost of the DTA model applied to a large-scale network of a whole city. The
most important outputs computed from the DTA model for the emission estimation is
time-depending street-level traffic flow and travel speed. This motivates us to build a
statistical metamodel that directly emulates the relation between the DTA model in-
puts and the computed street-level traffic flow/speed. The final metamodel is efficient
because it ignores the computationally expensive dynamic optimization problem lying
behind the DTA model. This metamodeling approach has not yet been applied in traffic
modeling, but the idea of applying the metamodeling method directly to a given large
scale model has proved to be successful in various fields such as tsunami simulation
[Sarri et al., 2012], as well as in air quality simulations with a global aerosol model [Lee
et al., 2011], an urban model [Mallet et al., 2013] and an atmospheric dispersion model
for radionuclides [Girard et al., 2016]. Kriging, RBF interpolations or alternatives are
limited by the dimension of the input space [Saltelli et al., 2008; Mallet et al., 2013].
For large dimension models (which is the case for LADTA model applied to a large-scale
network), a dimension reduction should be firstly carried out. The outputs are projected
onto a reduced subspace, which can be obtained based on principal component analysis
of the training values. Then the final metamodel combines an emulator of the reduced
model and a reconstruction of the model outputs. Detailed methods and applications
are presented in Chapter 4.

1.4 Modeling of atmospheric pollutant emissions

The on-road traffic emissions are often modeled as the product of (i) the traffic vol-
ume and (ii) the emission factors (EF, in g km−1), for different pollutants, vehicle types
and technologies [Boulter and McCrae, 2007; EEA, 2016]. In metropolitan areas, the
former can be estimated by traffic assignment models, and the latter are often mod-
eled by empirical functional relations between pollutant emissions and characteristics
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of on-road traffic. Various models are built for emission factors (EFs), and five main
types of EF models are categorized by Smit et al. [2010] according to the required in-
put variables: (i) ’average-speed’ models (e.g., COPERT), where EFs are a function of
the mean traveling speed; (ii) ’traffic-situation’ models (e.g., HBEFA) where EFs are
determined by descriptions of a particular traffic situation (e.g., ’stop-and-go-driving’,
’free flow driving’); (iii) ’cycle-variable’ models (e.g., MEASURE, VERSIT+), and (iv)
’modal’ models (e.g., PHEM) where EFs (in g s−1) are produced via engine of vehicle op-
erating models at the highest resolution (down to seconds), etc. Different types should
be applied for different contexts to adapt the level of detail required by researchers, city
planners or policy makers. Detailed review concerning different emission models can be
found in Shorshani [2014]; Shorshani et al. [2015a]. Table 1.3 adapted from [Shorshani,
2014; Shorshani et al., 2015a; Smit et al., 2010] summarizes the most commonly used
traffic models.

Table 1.3: Summary of emission factor models

Categories Application domain Required traffic inputs Example

Averaged-speed
Urban area Average speed

COPERT [EEA, 2016]

based [Ntziachristos et al., 2009]

Traffic-situation
Neighborhood

Average speed corresponding HBEFA

based to different traffic condition [INFRAS, 2017]

Model based on Neighborhood Driving cycles PHEM

chronological speed intersection area Vehicle characteristics [Zallinger et al., 2008]

Driving cycle Neighborhood Driving cycles MEASURE [Fomunung et al., 2001]

variable based VERSIT+ [Smit et al., 2007]

"Model-based" and "circle-based" emission models require detailed information of
vehicle speed. They can be coupled with microscopic dynamic traffic simulators and
compute on-road traffic emissions at neighborhood area [Boulter et al., 2007; da Rocha
et al., 2015; Shorshani et al., 2015b; Thouron et al., 2018]. At urban scale for a whole city,
the microscopic simulators are too computationally costly at street resolution for a large-
scale network. Macroscopic traffic assignment models replace microscopic simulators.
They compute average speed at street resolution instead of detailed vehicle moving
dynamics. Therefore, average-speed based emission model is a straight-forward choice
for building the emission modeling chain coupling at large urban scale. The methodology
of COPERT IV model is one of the most used ’average-speed’ based emission factor
models.
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The COPERT IV formulations are presented as the Tier 3 method in the air pol-
lutant emission inventory guide book published by the European Environment Agency
(EEA) [EEA, 2016]. The core principal of COPERT IV method is that the emission fac-
tors are modeled as empirical functions of vehicle average speed. The parameterization
in the functions depends on different pollutant type (main pollutants such as NOx, CO,
VOC, and particulate matter PM), vehicle type (passenger car, light commercial car,
heavy duty vehicles, motorcycles), motorization type (diesel, petrol, hybrid, electric),
vehicle technology (Euro standard), etc. This method was initially proposed for esti-
mating emissions at national or regional level. Recently, the COPERT emission factor
model has been applied to street resolution at urban scale by coupling with static traffic
assignment model [Soulhac et al., 2012; Shorshani et al., 2015a; Pu et al., 2015; Tang
et al., 2017], in order to estimate street resolution emissions at urban scale. As already
mentioned in Section 1.1, the static traffic assignment model computes only average
traffic flows during a fix time period, ignoring the temporal-spatial variation of traffic
flows over the whole urban area. With the modeling chain which couples static traffic
assignment model and COPERT model, the computed emissions are stable during the
simulation period. The time-varying dynamics of the traffic flow and emission are not
captured more precisely than at this level [Shorshani et al., 2015b]. That is one of
the main reasons for which we chose the DUE-based dynamic traffic assignment (DTA)
model in order to compute the emission at a higher time resolution, yet preserving the
efficiency of the traffic model for being able to simulation street-level traffic flows and
speeds under tight computational budget in operational context. In addition, with the
metamodeling method presented in Section 1.3, the computation of street resolution
traffic flows and speeds can be much more efficient. This allows us to estimate emis-
sions during long-term period (e.g., a whole year) with a more accurate time resolution
than the static TA model, at street resolution at metropolitan scale. It also allows us
to carry out a large number of evaluations of the modeling chain, in order to carry
out global sensitivity analysis and uncertainty quantification for emission estimation, at
urban scale.

1.5 Sensitivity analysis and uncertainty analysis in
modeling traffic and its emissions

The uncertainty analysis aims at determining the distribution of the model output.
To analyze the uncertainty of model output due to its inputs, the sensitivity analysis
of the model can help us to identify to which input(s) the model output is sensitive.
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The uncertainty analysis and sensitivity analysis can be carried out in tandem [Saltelli
et al., 2008]. Themodel mentioned here corresponds to a mathematical or computational
interpretation of a physical real-world system. Let us denote f as the model andX as the
model output. Ui is the input and the model to be analyzed isX = f(U1, . . . , Ui, . . . , Uk)
where X ∈ RD is the model output, Ui is the ith input and k is the number of inputs
of the model.

1.5.1 Sensitivity analysis

The objective of sensitivity analysis (SA) is to study how uncertainty in the output
of a model can be apportioned to different sources of uncertainty in the model input
[Saltelli et al., 2004]. From SA, we want to know what input of the model can cause
large variation in the model output, or to know whether there are some factors that
are not influential on the output. The SA is a useful tool for various applications such
as testing the robustness of the model outputs regarding to inputs, calibrating model
parameterization, identifying influential inputs for decision making, etc. There are both
local sensitivity analysis (LSA) and global sensitivity analysis (GSA). Detailed reviews
of different LSA methods can be found in Helton [1993]; Saltelli et al. [2004]; Borgonovo
and Plischke [2016]. In LSA, the variability of the model output is explored around
one point of interest in the model input space [Borgonovo and Plischke, 2016]. There
are many widely used LSA methods such as the one at a time method (OAT) method,
deviation-based method, differentiation-based methods. OAT is straightforward. One
can vary one model input at a time and analyze the variation of the model output.
Deviation-based method is also a widely used in LSA. The derivative ∂Xj

∂Ui
of an output

Xj with respect to the input Ui is in fact considered as the mathematical definition
of the sensitivity of Uj versus Ui [Saltelli et al., 2008]. The LSA was carried out on
mathematical models of User-Equilibrium (UE) traffic assignment in order to explore
the variation of the optimization solution with respect to perturbation of traffic demand
and parameters in route cost functions (e.g., in Tobin and Friesz [1988]; Yang [1997];
Cho et al. [2000]; Patriksson [2004]; Lu [2008]; Lu and Nie [2010]).

However, LSA is carried out around a point in the input space with small per-
turbations. It does not explore the entire input space and ignores the effect of input
interactions when perturbations are given to more than one input simultaneously. Since
the main objective of the PhD work is to quantify the uncertainty in traffic emission
estimation due to model inputs, we are interested the relative importance of the inputs
over their whole variation domains, with consideration of input interactions. In addi-
tion, increasing computational models are used in order to interpret physical system that
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firstly expressed mathematically and then implemented in the form of computer pro-
gram [Morris, 1991]. These models are computationally expensive and the closed form
is not available. The differentiation-based methods cannot be applied. For example,
the macroscopic traffic assignment model at urban scale can be considered as a model
with (i) O-D matrix and network parameters as inputs, and (ii) street resolution traffic
flows/speeds as outputs. The underlying input-output relation is not straightforward.
At urban scale, the dimension of the outputs is usually high. The model evaluation re-
lies on numerical simulation (e.g., for searching the minimum cost routes and reaching
User Equilibrium condition) and is often computationally expensive. Emission models
and air quality models have the similar features, too. Therefore, we are more interested
in choosing a SA method that can cope with these kinds of models in order to study
the relative influence of each input on outputs. Elementary effect method (e.g., Morris
model [Morris, 1991]), variance-based method (e.g., FAST-Fourier Amplitude Sensitiv-
ity Test [Cukier et al., 1978] and Sobol’ method [Sobol, 1993]). Iooss [2011] reviews
various global sensitivity analysis methods of model output, in a relatively complete
methodological framework. A comparison of different methods for local and global sen-
sitivity analysis is synthesized in Figure 1.3, depending on (i) the model behavior and
(ii) the (approximate) required number of model evaluations [Iooss, 2011].
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Figure 1.3: Methods for sensitivity analysis. p is the dimension of the model input.
Source: [Iooss, 2011]. Figure regenerated by Sylvain Girard.

Among various GSA methods, both Morris method and VBSA have been used in
traffic assignment models and emission models. Morris model is a qualitative GSA
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method. It involves individually randomized OAT experiments. It is relatively efficient
and can give qualitative information to rank the model inputs according to their in-
fluence on the output Campolongo and Saltelli [1997]. It has been successfully used
in analyzing global sensitivity of COPERT III model for estimating transport emis-
sion in Italy [Kioutsioukis et al., 2004]. Thorough reviews regarding Morris method
and its extension can be found in Campolongo and Saltelli [1997]; Saltelli et al. [2000];
Campolongo et al. [2007]; Saltelli et al. [2008]; Campolongo et al. [2011].

However, Morris method is carried out in a deterministic setting and does not take
into account the uncertainty of inputs. For a quantitative GSA with consideration of
input uncertainties, variance-based sensitivity analysis (VBSA) has been widely used
in recent decades. VBSA methods were firstly employed in 1970s [Cukier et al., 1973].
Instead of being carried out in the deterministic setting as in LSA or Morris method,
the VBSA is carried out in the probabilistic setting. The model inputs are considered
as random variables with known probability distributions. This allows us to take into
account the uncertainty of inputs throughout their full variation domains. The outputs
of the model are also random variables, whose probability density functions (pdf s) are
unknown. To determine the pdf s of the outputs is the objective of uncertainty quan-
tification (see later in Section 1.5.2 ). The variance (or standard deviation) can be a
measure of a model’s uncertainty Saltelli et al. [2008]. Therefore, the reduction of the
output variance when fixing an input or a group of inputs can be a measure of im-
portance of the inputs. VBSA is based on the decomposition of the output variance
firstly proposed by Sobol [1993]. Sobol’ method makes use of the first-order index and
total effect index in order to quantify (i) the main effect of the input Ui on the model
output and (ii) the effect of all possible input interactions with Ui. The combination of
Sobol’ method with Monte Carlo simulation framework is applied to various domains
for carrying out GSA, e.g., in microscopic traffic models [Ciuffo et al., 2013; Punzo and
Ciuffo, 2011; Ge et al., 2015], transportation emission estimations [Kioutsioukis et al.,
2004], hydrological models [Pianosi et al., 2016; Sarrazin et al., 2016] and atmospheric
dispersion model [Girard et al., 2016]. Various computational tools are developed for
implementing Sobol’ method such as SIMLAB [Tarantola and Becker, 2016] software,
or SAFE Matlab toolbox [Pianosi et al., 2015].

Sobol’ method gives quantified sensitivity measures with consideration of uncertain
inputs throughout the whole input space. It gives precise sensitivity estimates of in-
put interactions, too. One of the main challenges of applying Sobol’ method is that
it requires a large number of model evaluations in order to reach the convergence of
the sensitivity indices. Many researches are addressed to propose relatively efficient
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strategies for computing Sobol’ indices, for instance in Saltelli [2002]. Metamodeling
method is increasingly used for better estimating model sensitivity with Sobol’ method
in modeling on-road traffic and its corresponding emissions [Ciuffo et al., 2013; Punzo
and Ciuffo, 2011; Ge et al., 2015; da Rocha et al., 2015]. These studies are focus on
microscopic scale. To the authors’ best knowledge, the global sensitivity analysis for
traffic assignment model and emission estimations have not been carried out at urban
scale and street resolution. The computational burden is one of the main difficulties and
that is the main reason why we make use of a metamodeling method at urban scale to
address this challenge. Similar GSA study combined with a metamodeling method was
successfully carried out in other fields such as in atmospheric dispersion model applied
to the Fukushima nuclear accident [Girard et al., 2016].

1.5.2 Uncertainty quantification and ensemble simulation

For a model X = f(U1, . . . , Ui, . . . , Uk), the output X is a random variable of which
the pdf is to be determined via uncertainty quantification. In practice, the distribution
of X can be obtained via ensemble simulation. The concept of the latter method is
firstly developed in the early 1960s in meteorology in order to evaluate the certainty of
weather forecasts [Lorenz, 1963; Epstein, 1969b]. The main idea of Lorenz [1963] is to
convert deterministic equations into stochastic dynamic equations by adding perturba-
tions in the initial conditions, in order to approximate stochastic solution. To analyze
the uncertainty in model output due to inputs, N model evaluations of f are carried out
by sampling N times U . Each Ui is attributed a known pdf in its variation domain. The
N -member ensemble can then give a discrete probability distribution of X. It is impor-
tant to evaluate the quality of uncertainty quantification [Anderson, 1996]. Although
the uncertainty estimation is in a probabilistic setting, we are able to use the observa-
tions to evaluate whether or not the built ensemble can well represent the uncertainty
of the model. This involves statistical comparison between the forecast and observed
values for the output variable. There are three desirable properties for a good ensemble
system: reliability, sharpness and resolution. The reliability indicates the accuracy of
prediction of an event. An ensemble with high reliability is so that the probabilistic
forecast by the ensemble is (approximately) the same as the observed frequency of this
event. The sharpness indicates the variability of the ensemble forecasts. The resolution
indicates the ability of the ensemble to make distinct predictions for different events.
Various criteria are used to evaluate the performance of an ensemble within observa-
tion data: Brier score [Brier, 1950], rank histogram [Anderson, 1996; Hamill, 2001],
reliability diagram [Wilks, 2011], and RPS (Ranked Probability Score) [Epstein, 1969a;
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Murphy, 1971], etc. A detailed review can be found in Candille [2003].

With increasing population and automobiles in urban area, the main objective of
traffic management is how to make best use of the limited infrastructure resources in or-
der to maintain the mobility, accessibility and reliability of our everyday transportation
system [Hoogendoorn et al., 2012]. Traffic models play an important role for decision
making and policy instruction, and increasing attention has been paying to reliability
and uncertainty analysis in traffic models. In fact, adding stochastic aspects in inputs
of traffic models is not a new topic, but early studies mainly focus on analytical models
[Gendreau et al., 1996]. Based on LSA on the analytical models, main input uncertain-
ties of macroscopic UE-based traffic assignment models lie in (i) traffic demand (O-D
matrix) [Yang et al., 1992], (ii) network constraints (capacities and free flow travel
times) [Chen et al., 1999]. Efforts have been done to reduce input uncertainty by better
estimating the O-D matrix with the help of various type of traffic data [Yang et al.,
1992; Ashok and Ben-Akiva, 2000; Zhou and Mahmassani, 2006; Shao et al., 2014; Car-
rese et al., 2017]. Uncertainty quantification of traffic demand estimation has also been
carried out [Hugosson, 2005; Jones et al., 2017; Ma and Qian, 2018]. However, these
studies only focus on the uncertainty of the traffic demand. There is no quantitative
conclusion of how these uncertainties in traffic demand can propagate through the traffic
models and affect the estimated traffic flows, travel times or travel speeds at urban scale.
Recently, probabilistic approach with repetitive simulations of a deterministic model is
proposed. Calvert et al. [2012] point out the inefficiency of overcomplicated analytical
stochastic approaches, and make use of the Monte Carlo simulation of a macroscopic
traffic model in order to better taking into account the input uncertainty in the model.
Later in Calvert et al. [2018], the same authors applies the probabilistic approach to a
DTA simulation on a network of about 8,200 links and 285 zones, with a macroscopic
dynamic traffic model. They show the importance of taking into account both the traffic
demand and road capacity uncertainties at the same time, in order to better evaluate
the effect of the traffic management measures on a road of interest. They also show
the uncertainty of network delay time (discrepancy between computed travel time and
free flow travel time), and the distribution of travel times on that road. This study is
interesting and shows the possibility of applying probabilistic approach to macroscopic
traffic models at urban scale. However, the uncertainty given in inputs are focus on
global demand of the network and ignores the spatial uncertainty between different O-
D pairs. In addition, since the approach in Calvert et al. [2018] was used to test a traffic
management measure on a specific road, only the capacity uncertainty on that road is
taken into account in their probabilistic approach. Spatial uncertainty of different O-D
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traffic demand and of different road capacities might also affect the uncertainty of traffic
times at urban scale.

Based on the literature reviews, it can be concluded that in the context of traffic
management and transportation planning, uncertainty analysis in traffic models has
become an important issue. However, most emphasis is given to traffic demand or link
travel time estimation. During the latest two decades, increasing attention is paid to the
environmental effects of road traffic. The uncertainty analysis in modeling road traffic
emissions is becoming an essential topic. For estimating road traffic emissions however,
uncertainty in transportation-related inputs mostly lie in traffic flows and vehicle travel
speed. There is few analysis that deals with the uncertainty of street-resolution traffic
flow based on macroscopic traffic models. There are some researches that focus on
uncertainty analysis of microscopic traffic models for better taking into account the
traffic related uncertainties for estimating CO2 emissions Zhu and Ferreira [2013], fuel
consumption and emissions of NOx, particulate matter [da Rocha et al., 2015]. These
studies are carried out at microscopic-scale, for one motorway or several trajectories.
There is no study that focuses on the uncertainty quantification for macroscopic traffic
models or traffic emission estimations at full-city scale. In addition, in the few existing
uncertainty analyses for traffic models or emission models, only the distributions of the
outputs are given. These distributions are obtained by ensemble simulations using a
probabilistic framework. There is no assessment of the generated simulation ensemble
in order to evaluate whether the ensemble is capable to well represent the uncertainty or
not. This PhD work tackles these challenges, and proposes a complete methodological
framework to address the uncertainty quantification in modeling road traffic and its
emissions at urban scale. It also presents a corresponding ensemble evaluation method
based on real-world measurement data, with a case study for a whole agglomeration
area.

1.5.3 Different types of errors

There are increasing available data to measure traffic volume, travel times, vehicle
speeds and vehicle trajectories of the network, measured from loop detectors, cameras,
Global Positioning System (GPS), Vehicle Identification Systems, and floating car data,
etc. Estimating the error of the models is an important issue for evaluating model
performance. We tend to use the discrepancy between the simulated value and observed
value to measure the error. However, when we compare the simulated results with
measurements, the error can be in fact decomposed into three parts: measurement
error, representativeness error and modeling error [Garaud and Mallet, 2012].
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Here we take traffic flow as an example to illustrate different types of errors when
we compare simulated results with measurements at a single time. Let X ∈ RD be the
vector of computed traffic flows of the modeled network G, with D the number of links
in the network. Let X true ∈ RD be the true state of the traffic flow vector. Let O ∈ Rd

be the vector of induction-loop detector measurements on the real-world network, with
d the number of detectors on the network. Let Otrue ∈ Rd be the real number of vehicles
passing through the positions of the detectors during a unit of time. When comparing a
simulated value with an observed one, we use an operator H that maps the simulation
space into the observation space, so that HX can be compared with O. The discrepancy
between the computed vector and observed vector is

e = O −HX, (1.4)

and it can be decomposed as

e = O −Otrue︸ ︷︷ ︸
measurement error

+ Otrue −HX true︸ ︷︷ ︸
representativeness error

+H(X true −X︸ ︷︷ ︸
modeling error

). (1.5)

Measurement error

With our example here, the measurement error can be denoted as eo = O − Otrue.
The measurement error is mainly due to the limitations of the observation instruments,
malfunctions, errors in the calibration of the instruments, and errors in the postpro-
cessing of the raw measurements. Taking the induction-loop detectors for example, the
aggregated data is sent to the data center during every time step of ∆h. There might
be errors in the data postprocessing during ∆h. Different choices of ∆h can lead to
different aggregated traffic flow [Jacobson et al., 1990]. Other measurement errors in
traffic modeling are reviewed in de Dios Ortúzar and Willumsen [2011] (page 65).

Representativeness error

In fact, when we compare the simulation results with measurements, we are compar-
ing two vectors of two spaces. The discrepancy between the true value of the observation
and the true value of the link-level traffic flow refers to the representativeness error. A
loop detector measures road traffic flow at lane resolution at a certain point of a road,
while the computed traffic flow on a link is the average flow on the whole segment. In
addition, for DUE-based traffic models, the computed traffic flows are at link resolution.
For roads where the number of detectors is less than the number of lanes, the operator



1.5. Sensitivity analysis and uncertainty analysis in modeling traffic and
its emissions 31

H aims to convert X so that HX is comparable with O, and this conversion can lead
to representativeness error as well.

Modeling error

The modeling error is mainly due to the assumptions, simplifications and parameter-
izations of a mathematical model, when we use the latter to interpret a complex physical
system. With increasing development of numerical technologies, a computational ap-
proach is often used to approximate the solution of complex analytical mathematical
models. This computational model can bring numerical error, which is also a part of
modeling error. When quantifying the a priori uncertainty of a model, we are actually
trying to determine the distribution of the modeling error. Ensemble simulations give
a discrete probability distribution of X. We can use the standard deviation of X to
measure the uncertainty, or use the relative standard deviation σX/X̄, with X̄ the mean
value of X.

Conclusions

This chapter reviews the literature related to the PhD work. It gives an introduction
to models and methods used in this PhD work, and highlights the originality of this
PhD work compared with existing studies. Firstly, a review of macroscopic static and
dynamic user-equilibrium based traffic assignment models is given. We compare static
traffic assignment models with dynamic models (DTA models), and also compare dy-
namic user equilibrium based (DUE-based) macroscopic DTA models with hydrological
models. We conclude that for carrying out DTA simulation on a large-scale network for
a whole city, DUE-based models are more suitable in an operational context. In addi-
tion, they are more suitable for a coupling with an emission model in order to estimate
traffic emissions at metropolitan scale with high spatial and temporal resolutions. Then
a DUE-based DTA model named LADTA is introduced with an application example on
a two-link network.

Secondly, a review of metamodeling is given, focused on three important methods:
polynomial regression, Kriging and radial basis functions (RBF). Their applications
to traffic modeling are also reviewed. In the recent decades, there have been increas-
ing studies on applying metamodeling methods to traffic models in order to deal with
the computational burden of DTA models. Some metamodeling methods are used for
speeding up optimization algorithms and to improve model calibration methods. Some
others are used in order to propose a surrogate model based on complex traffic flowing
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models, in order to speed up DUE-based traffic models. However, in the cases where
large numbers of model evaluations are need, it is necessary to build a faster metamodel,
which directly maps the input of a DTA model applied to traffic flows and travel time
on a large-scale network. This allows the application of Monte Carlo simulations so
that quantitative global sensitivity analysis and uncertainty quantification be possible.
Based on these needs, a method for building such a metamodel combing RBF method
and a dimension reduction is proposed in this PhD work. Then a review of state-of-the-
art emission models is given. Among different emission models, an average-speed-based
emission model, COPERT method, is adopted for coupling with LADTA model. This
choice is made based on the objective of estimating the road traffic emissions throughout
a whole city scale.

Finally, a review regarding important methods for sensitivity analysis and uncer-
tainty quantification are given, especially their applications in traffic modeling and
on-road emission estimations. Concerning sensitivity analysis, there are many research
works related to traffic models. However, most of them focus on local sensitivity analysis
based on analytical models. Some other studies focus on global sensitivity analysis of
microscopic traffic simulators. The application of quantitative global sensitivity analysis
to DTA simulation on a full city size network needs to be explored. This PhD work deals
with these challenges, and presents global sensitivity analyses of traffic models and emis-
sion estimations at urban scale with high spatial and temporal resolutions. Concerning
uncertainty quantification, taking into account the uncertainty in traffic modeling is not
a new topic. However, the existing uncertainty analyses of traffic models are carried
out either for traffic demand forecasts, or for travel time estimations. These might
be adequate in the operational context for transportation management and planning,
but are insufficient for studying the uncertainty propagation from the traffic models to
traffic emission estimations, especially at urban scale with high spatial and temporal
resolutions. Uncertainty quantification in estimating on-road traffic and its emissions is
becoming increasingly important in the context of better assessing the environmental
impact of road transportation, with consideration of input uncertainty lying in both
traffic models and emission models. This requires applying probabilistic approaches
in order to generate two ensembles of both DTA simulations and emission estimations
at urban scale. Furthermore, the ensemble evaluation using measurements is also im-
portant for uncertainty quantification. It has not yet been addressed in the existing
uncertainty analyses in dynamic traffic assignment models or traffic emission models,
but similar studies have already been successfully carried out for air quality models at
urban scale. Therefore, compared with existing studies, the uncertainty quantification
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in modeling on-road traffic and its emissions at urban scale is on the one hand orig-
inal yet with a clear theoretical background, and on the other hand tractable with a
thorough case study of a full agglomeration. This PhD work also aims to show how
the uncertainties in the inputs of traffic models are propagated to the final traffic emis-
sion estimations, through a complete modeling chain combining a traffic model and an
emission model at urban scale.





Chapter 2

A dynamic traffic assignment
model: LADTA and its

implementation LTK

Summary

This chapter presents the most important definitions, assumptions and formu-
lations of the dynamic user-equilibrium (DUE) traffic assignment problem. Then
a DUE-based traffic assignment model named LADTA is presented in detail, with
its inputs, outputs and assumptions. The framework of the implementation of
LADTA model, LTK (for LADTA Tool Kit), is also presented. Finally, a DTA
simulation using LADTA is presented with an example of a two-link network.

Résumé

Ce chapitre présente les définitions, les hypothèses et les formulations les plus
importantes pour l’affectation dynamique du trafic basée sur le principe de l’équilibre
dynamique de Wardrop (dynamic user-equilibrium, i.e., DUE). Un modèle de ce
type d’affectation, LADTA, est ensuite présenté, avec ses entrées, sorties, les hy-
pothèses principales associées, et son logiciel LTK (pour LADTA Tool Kit). Pour
finir, un exemple est présenté pour illustrer le modèle LADTA, sur d’un cas d’école
avec un réseau composé de deux arcs et deux noeuds.
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2.1 Dynamic user-equilibrium assignment problem

In dynamic traffic assignment (DTA) models, the traffic demand, travel costs, link
parameters (capacities and speed limits) and route choice strategies are time-dependent
[Chiu et al., 2011; Peeta and Ziliaskopoulos, 2001]. For the DTA problem, the Wardrop
equilibrium principle can be extended to the dynamic user equilibrium (DUE) principle
as follows.

Under equilibrium conditions in networks where congestion varies over time, traf-
fic arranges itself so that at each instant the costs incurred by drivers on those routes
that are used are equal and no greater than those on any unused route [de Dios Or-
túzar and Willumsen, 2011]. We present some general notations and definitions of
DUE traffic assignment problem in this section. They are mainly summarized from
Leurent [2003]; Aguiléra and Leurent [2009]; Meunier and Wagner [2010]; Wagner [2012];
Aguiléra [2014].

– G = (N ,A): an oriented graph to model the road network. N is the set of nodes,
and A is the set of links. The total number of links is D = card(A).

– q(o,d),o,d∈N ∈ L1(H,R+): the traffic demand (in veh h−1) from node o to node d.
Note that q(o,d) and q(d,o) represent traffic demands of opposite directions.

– H: bounded time interval for carrying out DTA simulation.
– L1(H,R+): set of positive measurable functions on H.
– C(R+): set of all continuous maps from R+ to R.
– M(R): the set of measures on the set R. Given a measure M on R defined by

M(]−∞, h]) =
h∫
−∞

m(h̃)dh̃, then the map m in L1(R,R+) is the density ofM.

– (ya(h))a∈A: traffic flow at h, y(h) ∈ L1(H,R+).

– Accumulated traffic flow (Ya)a∈A: Ya([−∞, h]) =
h∫
−∞

ya(h̃)dh̃. Ya(h) is the number
of users having entered link a until h. (ya(h))a∈A is the density of (Ya)a∈A.

– (ta)a∈A(Ya)(h): link travel time functions for the network G(N ,A). They express
the time needed to travel along link a when travel begins at h. They are defined
from L1(H,R+) to C(R+). They can be obtained by congestion models mentioned
in Section 1.1.2

– Link exit time function: Ha(Ya)(h) := h + ta(Ya)(h) for Y ∈ M(R) and h ∈ H.
Given a cumulated flow Ya, Ha(Ya)(h) is the instant at which the link a is left if
it has been entered at h. Given that H ⊂ R, the subset Ha(Ya)−1(H) is all the
instants at which link a can be entered in order to leave it at some instant in H.

– S := H×R: the strategy set, where R is the set of acyclic directed paths (the set
of routes). Spatially, R(o,d) is the route from the original node o to the destination
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node d. Each network users chooses his strategy from S: (i) a departure time
h ∈ H and (ii) a route r = a1, a2, . . . , an, with a1, a2, . . . , an ∈ A. User goes
through links in the order that they appear in the route: entering ai+1 after
leaving the link ai.

– X ∈M(S): a distribution of users strategy.

2.1.1 Definition of dynamic flowing model

We define the dynamic traffic flowing model by the cumulated flow function to ex-
press the interaction between ta and Ya. The link cumulated flow (Ya)a∈A induced by a
route choice strategy distribution X ∈M(S) is a collection of measures on R such that
there exists (Y r

a )a∈A,r∈R that satisfies the system

Ya =
∑

r∈R:a∈r
Y r
a , (2.1)

and for all r = a1, . . . , ai, . . . , an ∈ R,

Y r
a1 = Xr, (2.2a)

Y r
ai

= Y r
ai−1 ◦ (Hai−1(Yai−1))−1, i = 2, . . . , n, and (2.2b)

Y r
a = 0 if a /∈ r, (2.2c)

where Xr is the cumulated number of users entering into the route r for some instant
in H. Y r

a is the cumulated flow on link a with respect to route r during H. In other
words, Y r

a is the number of users whose chosen route is r and who enter the link a

at some instant in H. Equation 2.2 states that the users going through link a can be
decomposed by routes. Equation 2.2a means that the number of users entering the first
link of route r is the number of users entering the route r during H. Equation 2.2b is
the conservation of number of users from link ai−1 to link ai during H. Equation 2.2c
means that if link a does not belong to a route r, there is no user having chosen r that
has traveled or will travel along a. With some assumptions for link travel time function
ta, Meunier and Wagner [2010] proved that the existence and uniqueness are guaranteed
for solutions of the system 2.1-2.2 for all X ∈ S. Link-travel time functions used in
LADTA satisfy these assumptions and they are presented later in Section 2.3. Then the
dynamic flowing model associated to each link a is defined as
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Φa(X) := Ya, for all a ∈ A and X ∈ S. (2.3)

With the above definitions, the route exit time function for all r = a1, . . . , ai, . . . , an ∈ R,
is defined as

Hr(X) := Han(Yan) ◦Han−1(Yan−1) ◦ · · · ◦Ha1(Ya1). (2.4)

Hr depends on the whole measure on the strategies while Ha only depends on the
cumulated flow on the link a. From Equation 2.3 and Equation 2.4, we can get the
route exit time as

Ha1,...,an(X) = Han(Φan(X)) ◦Han−1(Φan−1(X)) ◦ · · · ◦Ha1(Φa1(X)). (2.5)

2.1.2 Dynamic User Equilibrium (DUE) assignment of traffic

We define the dynamic assignment of traffic x = (x)rr∈R(o,d)
∈ L1(H,R+) such that∑

r∈R(o,d) x
r(h) = q(o,d)(h) for all (o, d) ∈ N ×N and h ∈ H. R(o,d), o ∈ N , d ∈ N is the

set of routes connecting o to d. Then we define the route travel time function tr:

tr(X)(h) := Hr(X)(h)− h, (2.6)

where X is the measure whose density is x. tr(X)(h) is then the time needed to travel
through the route r when leaving at instant h for an assignment x. Hr(X) is the route
exit time function defined in Definition 2.5 with r = a1, . . . , ai, . . . , an ∈ R. In fact, the
users route choice strategy can be represented by Xr: the cumulated flow of vehicles
(users). Xr[−∞;h] counts the number of users that have already entered route r. Then
we can define the DUE assignment of traffic as follows.

Definition 2.1.1. (DUE assignment problem) Find an assignment x ∈ L1(H,R+)R(o,d)
such that whenever r, r′ ∈ R(o,d),

xr(h) > 0⇒ tr(X)(h) ≤ tr′(X)(h) for almost every h ∈ H, (2.7)

where tr(X)(h) is defined in Definition 2.6. The assignment is called dynamic because
the equilibrium is established at every instant h ∈ H.

Figure 2.1 shows the structure of DUE-based assignment.
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Figure 2.1: Structure of DUE-based assignment. Source: [Leurent, 2003; Wagner, 2012]

2.2 Inputs and outputs of LADTA model

LADTA model is a DUE-based assignment model. Inputs of LADTA model are
defined here for carrying out a DTA simulation with LADTA model during the period
H.

– Network: oriented graph G = (N ,A). N is the set of nodes, and A is the set of
links. The total number of links is D = card(A).

– Zones: ZO ⊂ N and ZD ⊂ N representing the set of nodes for Origin-Destination
zones. z = card(ZO) = card(ZD). z is the number of zones in the simulation area.
The dimension of the O-D matrix is z × z.

– Dynamic O-D matrix: Q(h) = (Q(o,d)(h))(o,d),o∈ZO,d∈ZD
representing traffic de-

mand Q(o,d) ∈M(R) between origin-destination zones. Q(o,d) represents the accu-
mulated demand from o to d.

– Density of traffic demand during H: qH(o,d)(h) ∈ L1(H,R+).
– Vector of capacity, free flow travel time and speed limit: K = [Ka(h)]a∈A,h∈H,
T0 = [T0a(h)]a∈A,h∈H, V0 = [V0a(h)]a∈A,h∈H. The dimension ofK, T0 and V0 equals
to the number of links. K is in veh h−1, T0 is in h and V0 is in kmh−1.

– Vector of generalized travel cost: U(h) = [Ua(h)]a∈A,h∈H: a vector of gen-
eralized travel costs on each link a for time h. In particular, if we consider that
users minimize their travel time, U(h) = T (h) = [Ta(h)]a∈A,h∈H.

The outputs of LADTA model are link travel time and cumulated traffic flow for all
links. The latter corresponds to the DUE assignment solution satisfying Equation 2.7.
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– Link travel time: T (h) = [Ta(h)]a∈A,h∈H.
– Minimum cost routes: R(h) = [R(o,d)(h)](o,d)∈N×N ,h∈H. In the software LTK
(for LADTA Tool Kit), R(o,d)(h) is defined as piecewise linear function of h to
give indices of links to take at instant h, where h is the departing instant (clock
time) from o.

– Cumulated flow for route: Xr, r ∈ R(o,d). Its density xr(h) satisfies the defi-
nition of DUE in 2.1.1 in Section 2.1.2. In practice, the density is the traffic flow
expressed in veh h−1.

– Link cumulated flow: Y = [Ya]a∈A. Ya ∈ M(R). Ya satisfies the equation
system 2.1-2.2 in Section 2.1.1.

The outputs of LADTA model are link travel time and cumulated traffic flow for all
links. The latter corresponds to the DUE assignment solution satisfying Equation 2.7.

– Link travel time: T (h) = [Ta(h)]a∈A,h∈H.
– Minimum cost routes: R(h) = [R(o,d)(h)](o,d)∈N×N ,h∈H. In the software LTK
(for LADTA Tool Kit), R(o,d)(h) is defined as piecewise linear function of h to
give indices of links to take at instant h, where h is the departing instant (clock
time) from o.

– Cumulated flow for route: Xr, r ∈ R(o,d). Its density xr(h) satisfies the defi-
nition of DUE in 2.1.1 in Section 2.1.2. In practice, the density is the traffic flow
expressed in veh h−1.

– Link cumulated flow: Y = [Ya]a∈A. Ya ∈ M(R). Ya satisfies the equation
system 2.1-2.2 in Section 2.1.1.

In the DTA simulation for a metropolitan area, we are interested in T and Y because
they can give traffic information at each instant h. We can deduce average travel speed
at link resolution from T so that the emission estimation at link resolution can be
possible. The density of Y is traffic flow at link resolution. It can be compared with
loop detector measurements to evaluate the model performance. In this PhD work, the
density of Ya is compared with loop detector measurements at high time resolution for
a one-day DTA simulation and a one-month DTA simulation, with LADTA applied to
a real-world network (Chapter 3 and Chapter 4).

2.3 Assumptions in LADTA model

2.3.1 Assumption of traffic demand input

In LADTA model, users are supposed to be rational and choose their routes by
minimizing their generalized travel cost. They are also assumed to have full travel
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information during H, so that they can adapt their route choice strategies according
to the time-dependent link travel time. In practice, for transportation planning, the
O-D matrix is often given (or modeled) during a bounded period. The traffic demand
is constant in the given O-D matrix and the latter is called static O-D matrix. It is
difficult to get cumulated traffic demand Q(o,d) ∈M(R) since the measureM is defined
on the set of R in the definition of DUE problem, and in practice, the simulation period
is always bounded. Therefore, we state the following Assumption 1 so that we can
define q(o,d) ∈ L1(R,R+) as the density of Q. Then Q(o,d) ∈M(R) can be deduced from
qH(o,d)(h) ∈ L1(H,R+) by imposing its boundary condition (see in Assumption 2).

Assumption 1. We denote the simulation period as H = [h0, h1] and h0 < h1. The
density of Q(o,d) is zero everywhere on R except on H, q(o,d)(h) = qH(o,d)(h), h ∈ H.

q(o,d)(h) =

q
H
(o,d)(h) if h ∈ H

0.0 if not
, ∀(o, d) ∈ Z × Z. (2.8)

Therefore, Q(o,d) can be considered as the cumulated traffic volume from o to d. We also
state the limit condition at the instant h0 in Assumption 2.

Assumption 2. The network is empty before the beginning of the simulation period.
There is no cumulated traffic demand before h0 so that Q(o,d)(] − ∞, h0]) = 0. Then
Q(o,d) can be obtained based on its density as

Q(o,d)(h) =
∫ h

−∞
q(o,d)(h̃)dh̃ =


0.0 if h ∈]−∞, h0]∫ h
h0 q

H
(o,d)(h̃)dh̃ if h ∈ [h0, h1]∫ h1

h0 q
H
(o,d)(h̃)dh̃ = Q(o,d)(h1) if h ∈]h1,+∞[

. (2.9)

In practice for a DTA simulation, the density (q(o,d)) can be considered as the tem-
poral variation of traffic demand on the network, which is always non-negative. If we
know the total cumulated traffic demand during H for each O-D pair, i.e. Q(o,d)(h1),
with the Assumption 1 and Assumption 2, the input Qo,d(h) can be obtained from
(q(o,d)(h))o∈ZO,d∈ZD

. This helps us to establish the dynamic O-D matrix based on a
static one. Detailed approach for converting a static O-D matrix to a dynamic one
is presented in Section 3.3.2 with the case study for the agglomeration of Clermont-
Ferrand.
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2.3.2 Assumption of link travel time model

In LADTA model, a first-in-first-out (FIFO) bottleneck queuing model is used to
model the link travel time [Vickrey, 1969; Kuwahara and Akamatsu, 1993; Mounce,
2006, 2007]. It is proved to satisfy the assumptions that can ensure the existence of
DUE [Mounce, 2007; Meunier and Wagner, 2010]. If the income flow at the bottleneck
exceeds the capacity, a queue began to form and users have to wait according to a FIFO
rule before leaving the bottleneck. The waiting time is called bottleneck delay. The link
travel time Ta on the link a for an entrance time h is then the sum of (i) a constant
travel time and (ii) a bottleneck delay. Let L(h) denote the number of users queuing at
h in the bottleneck. xa(h) is the inflow of the link a (in veh h−1).

Ta(h) = T0a + L(h)
Ka(h) , (2.10)

where L can be obtained by the following differential equation:

dL

dh
(h) =

xa(h)−Ka(h) + L(h)
Ka(h) if L(h) 6= 0 or xa(h)−Ka(h) > 0

0 otherwise
. (2.11)

The point queue indeed ignores the spillback of queues. However, it can better
model the travel time in congestion when compared with volume/delay functions in
static models. If H is long enough to cover the congestion period, it is verified that the
cumulated traffic demand of all O-D pairs equals to the sum of computed cumulated
link-level X [Aguiléra and Leurent, 2009]. In other words, ∑

(o,d)∈Z×Z Q(o,d)(h1) =∑
a∈AXa(h1), where h1 is the end of the simulation period H. For a DTA simulation

at metropolitan scale, the use of point queue allows more efficient algorithm in order to
carry out DTA simulation for a real-world network [Aguiléra and Leurent, 2009; Chen
et al., 2017].

2.4 Structure of LADTA model and main algorithm
framework of LTK

There are in total 5 main steps in the main loop of LTK framework. LATDA model
and LTK can also take highway toll into account for modeling generalized travel cost
at link resolution. In the case where there are toll highways, it is necessary to initialize
toll prices and add toll price into the model for calculating generalized cost of each link.
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In this case, the generalized cost can be modeled as a function of travel time and the
value of time coefficient β of users at instant h:

Ca,general(h) = Ta(h) + vt · Pa(h), (2.12)

where Pa is the toll price of link a and vt is the value of time in monetary unit per unit
of time (e.g., e/h). Then the generalized travel cost can be expressed in time unit. The
following steps present the main simulation loop of LTK, summarized from [Aguiléra
and Leurent, 2009].

– Step 0: Initialization
Initialization of the modeled network G and cumulated demand volume to all the
destination nodes d: (Qd)d∈ZD

. The initial link travel time is free-flow travel time
T0.

– Step 1: Formation of costs
The travel cost is computed as a function of the link travel time computed from
the last iteration for link a and the toll price: Ca,k(h)← Ta,k−1(h) + β · Pa(h).

– Step 2: Route choice (RC) RI,k(h)← RC(Ca,k(h), Ta,k−1(h), Qd)
This step computes the dynamic least-cost routes for every (o, d) pair for each
destination d ∈ ZD, departing at instant h from every node o ∈ N . At iteration
k, this step saves the indices Id(h) of least-cost path as a function of h for each
destination d, composed of links from A.

– Step 3: Volume loading (VL)
Routes computed in step 2 are used here with the help of Id(h). This step
computes cumulated traffic flow Xa,k with a ∈ Id when entering the link a at h:
Xa,k(h)← V L(Ta,k−1(h), Qd, RI,k(h)). This step composes of a complex dynamic
network loading problem (DNLP). In the implementation of LTK, all-or-nothing
assignment with Djkastra’s algorithm [Leurent and Aguiléra, 2009] is used to get
auxiliary traffic flow Ya,k(h) as a function of Qd(h). Then a convex combination
algorithm [Leurent, 2003] is used to compute Xa,k(h) as a function of Ya,k(h) and
Xa,k−1(h): Xa,k(h) = wk · Ya,k(h) + (1− wk) ·Xa,k−1(h).

– Step 4: Traffic flowing (TF) model
This step computes link travel time at iteration k as a function of loaded traffic flow
on link a from the step 3. The flowing model used in LADTA is the bottleneck
model and the link travel time is a function of loaded cumulated flow, link capacity
and free flow travel time. Ta,k(h)← TF (Xa,k(h), Ka(h), T0,a).

A stopping criterion is defined to decide whether to exit the main loop or to do one
more iteration. The final outputs are cumulated flows and travel times on each link
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a ∈ A: Xa,k(h) and Ta,k(h). Figure 2.2 shows the algorithm framework of LTK model.

Link travel time
          T

k-1

Least cost path R
I,k 

Loading traffic Q on route R
I,k

(All or nothing assignment)

Auxiliary cumulated flow 
      loaded on R

k
 : Y

k

Convex combination algorithm
X

k
 = (1 - w

k
)*X

k-1
+w

k
*Y

k

        Link travel time model :  
       (Bottleneck) T

k
 = f(C

k
, T

0
, X

k
)

Criterion :
X

k
 – X

k-1
 < e

Cumulated flow : X
k

Link travel time : T
k

YES
ouptut

NO
Travel cost C

k

Figure 2.2: The algorithm framework of LTK software

2.5 Example of two-link DTA assignment with LADTA

A network with two links (a1 and a2) and two nodes (A and B) is presented in
Figure 2.3 (left). The cumulated traffic demand is presented in Figure 2.3 (right). The
simulation period H = [0.0, 2.0]. The density of traffic demand is

q(A,B)(h) =



0.0 if h < 0.0
500.0 if h ∈ [0.0, 1.0]
1500.0 if h ∈ [1.0, 2.0]
0.0 if h > 2.0

(2.13)



46
Chapter 2. A dynamic traffic assignment model: LADTA and its

implementation LTK

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (h)

0

500

1000

1500

2000

vo
lu

m
e 

(v
eh

)

Demand 
from A to B

Figure 2.3: Network and cumulated traffic demand (in veh) of two links and two nodes.
The link a1 is longer but it has a higher capacity (illustrated by its width). The sim-
ulation period is [0.0, 2.0] hour. Before 0.0 h and after 2.0 h, the traffic demand is
0.0. During [0.0, 1.0] hour, the cumulated traffic demand increases with a density of
500 veh h−1. During [0.0, 1.0] hour, the cumulated traffic demand increases with a den-
sity of 1500 veh h−1.

Link capacity and free flow travel time is presented in Table 2.1.

Table 2.1: Capacity and free flow travel time of the two-link network

Link Origin Destination Free flow travel time (h) Capacity (in veh h−1)

a1 A B 0.5 1000.

a2 A B 0.4 500.

According to the given link capacity and free flow travel time, T0a1 > T0a2 and
K0a1 > K0a2 . Therefore, when users departing from node A during [0.0, 1.0], the density
of traffic demand is 500.0 veh h−1. Users choose the route that minimizes their travel
time: a2. For users leaving after 1.0 h, the traffic demand density is 1500.0 veh h−1

and it is bigger than the link capacity of a2. The queuing time at the end of a2 is
xa2−Ka2
Ka2

= 1500−500
500 = 2 h per unit of time (per hour). The difference of link free-flow

travel time between a1 and a2 is ∆T = Ta1 − Ta2 = 0.1 h. With the DUE condition,
the final assignment will lead to Ta1 = Ta2 . Let hc define the entering instant into
the network so that the travel times on a1 and a2 are the same. Therefore, hc can be
calculated from the system 2.14:
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Ta1(hc) = Ta2(hc)
Ta1(hc) = T0a1

Ta2(hc) = T0a2 + xa2 (hc)−Ka2
Ka2

(hc − 1.0 hour)

T0a1 = 0.5 hour
T0a2 = 0.4 hour.

hc ∈ [1.0, 2.0] hour (2.14)

The resulting hc = 1.0 + ∆T
2.0 = 1.0 + 0.1

2.0 = 1.05 hour. Therefore, users entering node
A from the instant 1.05 h will choose the link a1 and during the period [1.05, 2.0],
the link travel time of the two links are the same. The assignment on the network is
then xa1(h) = 1000 veh h−1 and xa2(h) = 500 veh h−1 with h ∈ [1.05, 2.0] hour, and the
incoming demand density q(A,B) = 1500 veh h−1. When h > 2.0 h, the density of demand
departing from 2.0 h decreases to 0.0 veh h−1 and the travel time on link a2 decreases
back to its free-flow travel time (0.4 h). Figure 2.4 shows the cumulated traffic flow on
two links and the corresponding link travel time against the instant (h) entering to the
network from node A.
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Figure 2.4: Network and cumulated traffic demand (in veh) of two links and two nodes

This is an example of a DTA simulation on an elementary network with LADTA
model and its software. The model is then applied to the network of the agglomeration
of Clermont-Ferrand. Detailed model setting and model evaluation results are presented
in Chapter 3.
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Conclusions

This chapter introduces the basic definitions and formulas for dynamic traffic as-
signment (DTA) problem based on dynamic user equilibrium (DUE) principle. The
latter interprets an equilibrium at each instant between traffic demand and network
supply. Under DUE condition, traffic arranges itself so that at each instant travel costs
of network users on those routes that are used are equal and no greater than those on
any unused route. The LADTA model used in this PhD work is a DUE-based model.
It can be applied to a road network for carrying out DTA simulation in continuous time
during a given simulation period. The traffic demand inputs in LADTA are cumulated
traffic flow between origin-destination zones, which vary continuously as a function of
the clock time when users leave from the original zone. The outputs of LADTA are (i)
cumulated traffic volume that are passing through each of the links and (ii) travel time
on each of the links in the network, as a function of the clock time. These outputs can
give traffic information of a network with high spatial and temporal resolutions. These
two outputs can then be coupled with emission models at link-resolution, in order to
compute atmospheric pollutant emissions due to road traffic for a large-scale network.
The DTA simulation of road traffic for a metropolitan-scale network is presented in
Chapter 3, and the estimation of on-road traffic emissions is presented in Chapter 6.



Chapter 3

Dynamic traffic assignment for the
agglomeration of Clermont-Ferrand

Summary

Two dynamic traffic assignments (DTA) with LADTA model are carried out in
the agglomeration of Clermont-Ferrand (France): (i) a whole-day simulation on
the 20th November 2014, and (ii) a whole-day simulation during a working Tuesday.
The use of dynamic LADTA model allows us to visualize the temporal variation of
traffic flow in the agglomeration with high temporal resolution down to 1 minute.
It is observed that during morning peak period, traffic on the network can change
significantly and bring congestions even within a quarter of an hour. A reference
static traffic assignment using VISUM model is also carried out for the same
agglomeration. The traffic flows at street resolution computed by LADTA model
are compared with those of VISUM model during the evening peak hour. The
results of both models are compared to loop detector measurements. Statistical
scores show that traffic flows computed by both models have similar performance
when compared with observations. The whole-day simulation during a working
Tuesday is also compared with loop detector measurements of all the working
Tuesdays from September 2014 to July 2015, at lane resolution at all time intervals
of 15 minutes. Results show that LADTA model preserves well the temporal
variation of traffic flows on the network. It has however some limitations when
predicting route choices of users, due to uncertainties in the O-D matrix and the
assumptions in the model. A sensitivity analysis is also carried out to the DTA
simulation with LADTA. We analyzed throughout the network during a whole
day the influences on the computed vehicle travel time (in veh·h) of (i) the total
demand in the O-D matrix and (ii) the speed limits on the network Results show
that the total vehicle travel time is very sensitive to the total demand. It is less
influenced by the speed limits.
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Résumé

Deux affectations dynamiques du trafic sont réalisées avec le modèle LADTA
pour l’agglomeration de Clermont-Ferrand: (i) l’une pour le 20 novembre 2014,
and (ii) l’autre pour une journée entière d’un mardi normal hors vacances sco-
laires ou jours fériés. L’utilisation du modèle dynamique LADTA nous permet
de visualiser la variation temporelle du débit de trafic avec une résolution tem-
porelle fine jusqu’à 1 minute. Les résultats montrent que pendant la période de
pointe du matin, l’augmentation du trafic trafic peut être importante et peut ren-
dre le réseau congestionné pendant un quart d’heure. Une affectation de trafic
statique de référence est également effectuée avec le modèle VISUM pour la même
agglomération. Les débits simulés par LADTA sont comparés à ceux du modèle
VISUM pendant l’heure de pointe du soir à la résolution de la rue. Les résultats
des deux modèles sont aussi comparés aux observations obtenues par les boucles de
comptages sur le réseau routier de Clermont-Ferrand. Les scores statistiques mon-
trent que les débits simulés par les deux modèles ont des performances similaires
par rapport aux observations. La simulation d’un mardi normal est également
comparée avec observations de tous les mardis ouvrés de septembre 2014 à juil-
let 2015, à la même résolution que les comptages pendant toutes les 15 minutes.
Les résultats montrent que le modèle LADTA peut bien prédire la variation tem-
porelle des débits sur l’ensemble du réseau. Il est toutefois constaté certaines
limites lors de la simulation des choix d’itinéraire par les usagers. Ces limites spa-
tiaux sont dues aux incertitudes dans la matrice O-D, aux hypothèses du modèle,
etc. Une analyse de sensibilité qualitative est ensuite réalisée pour la simulation
avec LADTA. Nous avons analysé la sensibilité du véhicule-heure total (en veh·h)
de tous les usagers sur le réseau par rapport aux variations des deux entrées prin-
cipales: (i) la demande totale dans la matrice O-D et (ii) les vitesses maximales
autorisées sur le réseau. Les résultats montrent que le véhicule-heure total est
très sensible à la variation de la demande totale en entrée. Il n’est néanmoins pas
sensible de manière significative aux vitesses maximales autorisées sur le réseau.
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3.1 Introduction

Traffic assignment aims at determining the network traffic flows according to network
users’ route choices when they travel from their origins to their destinations. It can also
be considered as an economical equilibrium between the demand and the supply. The
Origin-Destination matrix (O-D matrix) describes the total fluxes from origin zones to
destination zones. The road network shows limited capacities to absorb all the demand.
One of the main hypotheses for traffic assignment problems is that every network user
makes their route choice by minimizing their own travel cost, such as travel time, toll,
etc. The cost is often converted to one general criterion, such as time, which is called
generalized cost of route choice. At equilibrium when every travel succeeds in finding
such a route, all used routes associated with the same O–D pair should have the same
minimum generalized cost, so that there is no possibility for users to shift to another
route. This is the user equilibrium condition [Wardrop, 1952], and it was proved to be
adequate for both static and dynamic traffic assignment models, with a certain number
of assumptions [Leurent, 2003; Aguiléra and Leurent, 2009; Meunier and Wagner, 2010;
Wagner, 2012].

In both static and dynamic traffic assignment models, the travelers are assumed to
have complete information about each link in a network (the supply): physical capacity,
length, speed limit and toll price (if any), in order to estimate the generalized travel
cost of each available route. In a static model, the effect of road capacity on travel time
is modeled by a volume-delay function (VDF): the travel cost (or time) is a strictly
increasing function of the traffic volume [Bureau, 1964] (see Figure 1.1). In static models,
the volume may increase indefinitely and exceed the link capacity. The travel time
calculated by VDF in static models does not depend on physical features of congestion
(such as travel speed, density, or queue) [de Dios Ortúzar and Willumsen, 2011]. In order
to better represent the congestion phenomenon and the temporal and spatial evolution
of traffic flow, we use a dynamic traffic assignment (DTA) model.

In DTA simulation, the travel time depends not only on the traffic flow on the
link, but also depends on the vehicles’ entrance (clock) time on the link. In fact, the
traffic already existing on the link can decrease the link capacity. This may result in
an increase of link travel time if the actual inflow volume exceeds the actual capacity of
the link. There are different methods to calculate the link travel time in DTA, such as
the bottleneck modeling where queue appears in upstream junction when the volume
assigned to the link exceeds the capacity [Vickrey, 1969]. In this model, the time spent
in queue is taken into consideration to compute the link travel time.

The LADTA model is one of the DTA models which can be applied to a large-scale
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real network. Together with its implementation, LADTA ToolKit (LTK), it can handle
the DTA problem of a metropolitan network frame within a reasonable time [Aguiléra
and Leurent, 2009]. LADTA model has already been applied to the network of Paris
region (Île-de-France) in Aguiléra and Leurent [2009]. The model is evaluated by com-
paring the computed average speed on main roads of Paris region with measured average
speed. For this chapter, we applied the LADTA model to a network at metropolitan
scale for the agglomeration of Clermont-Ferrand. The DTA simulation with LADTA
model is evaluated by comparing the computed traffic flows with the results computed
by the static model, and with traffic flows measured by loop detectors at lane resolution.
In addition, a qualitative sensitivity analysis is also carried out to study the sensitivity
of LADTA outputs to the inputs. It studies the sensitivity of the computed vehicle
travel time with respect to the variation of the total traffic demand in input and the
speed limits of the network.

Section 3.2 presents network user behaviors and data analysis from measurements
of loop detectors. Section 3.3 presents inputs for carrying out dynamic traffic assign-
ment (DTA) simulation with LADTA model. Then in Section 3.4, the results of DTA
simulation are compared with those of VISUM model, which is a commonly used static
assignment model in transportation planning problem. The performance of LADTA
model is also evaluated by comparing the computed traffic flows with loop detector
measurements. At last in Section 3.5, qualitative sensitivity analysis is carried out for
the DTA simulation with LADTA model.

3.2 Traffic measurements and users travel behavior

Clermont-Ferrand has in total 535 inductive loop traffic detectors on the road net-
work, which are generally located in main city boulevards and/or crossroads (see in
Figure 3.1). We have filtered out (i) the detectors for which the data are always zero
and (ii) the data that are bigger than 4000 veh h−1 detector−1. At last, there are in to-
tal about 400 detectors in use for analyzing travelers behavior and evaluating LADTA
model. The detectors collect the traffic density (in veh km−1) and traffic flow (in veh h−1)
every minute. These precious and rich traffic data help us to analyze the network users’
behavior and to set up the LADTA simulation. The City of Clermont-Ferrand (Ville de
Clermont-Ferrand) has provided two years of observational data of every detector with
a resolution of 15 minutes, from September 2013 to September 2015. The data from
September 2013 to August 2014 have been analyzed in details in order to set up and
calibrate LADTA model, and the data from September 2014 to September 2015 were
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then used to evaluate the traffic flow results predicted by LADTA.

Figure 3.1: Locations and directions of loop detectors in the City of Clermont-Ferrand.
The detectors are at lane resolution. The blue lines represent the roads of Clermont-
Ferrand. The yellow arrows represent the positions and directions of traffic detectors.

The observational data of the real road traffic help us to better understand the
behaviors of road network users. It is observed that the network users in Clermont-
Ferrand almost always behave the same for the same type of day. Figure 3.2 shows
temporal variation of spatially-averaged flow for all Tuesdays from September 2013 to
September 2014. For each interval of 15 minutes, we calculate the spatially-averaged
traffic flow over all the 469 detectors, and then plot this average against the clock time
of a day (Clermont-Ferrand local time, GMT+1).

The left profile in Figure 3.2 presents the temporal variation of spatially-averaged
traffic flow during a normal period. The right profile is the traffic during school vacation
period. It is clear that for all working Tuesdays, the morning peak appears almost at
the same moment of the day around 08:00. The evening peak hour also appears at
the same moment around 17:00. The differences among traffic flows during peak hours
of different days are not significant. Moreover, the total volume of traffic during a
day remains almost unchanged from one Tuesday to another. The same feature is
observed for other working weekdays, and the temporal variation of the same weekday
during a year can be easily represented by an average temporal profile (yellow line).
Figure 3.3 shows that the temporal variation of a same weekday remains almost the
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Figure 3.2: Temporal profiles of spatially-averaged traffic flow for all Tuesdays. Each
thin line represents a temporal profile of traffic on each Tuesday during normal peri-
ods (left) and scholar vacation periods (right), during 2013.9 – 2014.9, and the yellow
lines are the average temporal profiles of traffic flow over all Tuesdays in normal peri-
ods (left) and school vacation periods (right). Several points reach zero when no data
was collected. This rarely happens (less than 5% of the time), and the data in these
cases have not been taken into account for calculating the average temporal profile.

same during normal periods. Figure 3.4 shows that the total daily volume of the traffic
measured from all the detectors slightly changes from Monday to Friday, but remains
quite stable from month to month during non-vacation periods. However, temporal
variations in Figure 3.2 (right) and daily volume difference in Figure 3.4 show that
during the vacation period, the temporal variation of traffic flow and total daily traffic
volume are less regular than during working periods, and the traffic flow during peak
hours are not the same neither. This might lead to DTA simulation errors if we use only
the temporal variation of an average working day to represent the temporal variation of
traffic demand during vacation periods, due to the uncertainties of traffic demand from
day to day.
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Figure 3.3: Spatially-averaged traffic flow measured by loop detectors, during September
2014. The value reaches zero when no data was collected.

Figure 3.4: Daily traffic volume measured during the year 2014 (in 106 veh day−1). The
value of each point shows the sum of observational data over all detectors during each
day. The value reaches zero when no data was collected.

3.3 Inputs and outputs for dynamic traffic assign-
ment in the agglomeration of Clermont-Ferrand

3.3.1 Network

The road network of the agglomeration of Clermont-Ferrand is modeled as an ori-
ented graph with nodes and links. Two modeled networks are used in this work. They
are provided by the City of Clermont-Ferrand (Ville de Clermont-Ferrand). The first
network is modeled based on the network of the agglomeration in 2003, presented in
Figure 3.5. There are 739 nodes and 2194 links. Data are available for capacity, speed
limit, length and number of lanes for each link. The free flow travel time of a link is
calculated from its length and speed limit. This network is only used for evaluating the
LADTA model when compared with the static model VISUM applied to the agglomera-
tion. In LADTA model, the network speed limits and capacities can be time-dependent.
In our case study, we assume that they are constant over the simulation period.

The second network is the main modeled network we used in the PhD work. This
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Figure 3.5: Modeled network of the agglomeration of Clermont-Ferrand based on the
road network in 2003. The red rectangle delimits the city of Clermont-Ferrand. The
width of lines represents link capacity. Blue links represent normal freeways and roads.
Red links represent the highway A89 with toll. Other highways (A75, A71, A710),
national road (N89) and departmental road (D2009) are free of charge. The projection
system is Lambert-93 (RGF93).

network is modeled based on the road network of the agglomeration in 2012. It is
presented in Figure 3.6. There are in total 19628 links and 8844 nodes. Detailed
information is available for each link, including its beginning and ending nodes, length,
capacity, speed limit and number of lanes. The free flow travel time of a link is calculated
from its length and speed limit. Except the comparison of simulation results from
VISUM and LADTA, all the results and simulations in this PhD work are computed
based on the network of 2012 with 19628 modeled links.

In order to compare the loop detector measurements with computed traffic flows
from VISUM model or LADTA model, we should link the positions of detectors to the
modeled network. To this end, we use the QGIS software to display the detectors, links
and nodes in a same map with different layers. Then we noted manually the directions
of detectors by their origin nodes and destination nodes. Figure 3.7 illustrates a part of
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Figure 3.6: Modeled network for the agglomeration of Clermont-Ferrand based on the
road network in 2012. D = 19, 628 links, and 8,844 nodes, with z = 124 zones. It has
about 200,000 residents in an area of about 300 km2. The red rectangle delimits the
city of Clermont-Ferrand. A89, A71 and A75 are three highways passing through the
agglomeration and Clermont-Ferrand city. D2009 and N89 are departmental road and
national road, connecting the city and the suburbs.

QGIS map with different layers of detectors of the real-world network, and the nodes
of the modeled network for the agglomeration of Clermont-Ferrand. The position and
direction of a detector can then be associated to a link in the modeled network, by
identifying the origin-destination nodes of the link.

3.3.2 Traffic demand

The whole simulation domain is divided into 124 zones. They are both origin zones
and destination zones. The traffic demand is represented by an O-D matrix. The latter
is obtained by summarizing trip-makers’ origin zones and destination zones during a
certain period. This information is often modeled based on household survey question-
naires. In our study, a static O-D matrix during the evening peak hour is given for 2008.
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Figure 3.7: Illustration of the layers for determining the detectors origin and destination
nodes of the modeled network of Clermont-Ferrand in QGIS software. The figure on
the right side is the zoom of the region delimited by the red rectangular in the left-side
figure.

It summarizes the averaged vehicle users’ trips in the agglomeration of Clermont-Ferrand
from 17:00 to 18:00. The unit of traffic demand is veh h−1. The static O-D matrix dur-
ing an hour (or during a fixed time period) is sufficient for carrying out static traffic
assignment study. However, for DTA simulation with LADTA model, time-dependent
traffic demand is required. Therefore, it is necessary to convert the static O-D matrix
into a dynamic one. To this end, we use information from loop detector measurements
in the network. We present here how to convert the static O-D matrix of evening peak
hour into a dynamic one with traffic demand continuously varying as a function of time,
using an example on the 20th November, for the old network presented in Figure 3.5.

Notation

h0: the beginning time of the simulation.
h: the time when users enter the road network. It is expressed in local time of

Clermont-Ferrand (GMT +1).
q(o,d)(h): the traffic demand (in veh h−1) from the Origin zone o to the Destination

d from at instant h. (o, d) is called as an O-D pair. q(o,d)(h) is integrable in R. Note
that q(d,o)(h) and q(o,d)(h) represent traffic demands of opposite directions. The static
O-D matrix gives hourly average traffic flow during the evening peak hour for each O-D
pair. We denote it as q17−18

(o,d) .
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Q(o,d)(h): the cumulated traffic demand Q(o,d)(h) from o to d, from h0 until the
instant h. It is measurable on [h0, h] and in our DTA case study, it is expressed in veh.
Its density is q(o,d)(h) and Q(o,d)(h) can be obtained by integrating q(o,d)(h) from h0 until
h: Q(o,d)(h) =

∫ h
h0 q(d,o)(h̃)dh̃. Q(o,d)(h) is non-negative and non-decreasing. It is defined

as the temporal profile of traffic demand from o to d. The objective for converting a
static O-D matrix into a dynamic one is to determine the temporal profile for each O-D
pair during the simulation period, based on the static O-D matrix.

Ndet: total number of loop detectors whose positions have been associated with nodes
in the modeled network presented in Figure 3.5. The detectors whose measured values
are always zero should be filtered out.

T : total number of time steps during the simulation period. T = 1440 for LADTA
simulation on the 20th November 2014 with temporal resolution down to every minute
for LADTA simulation on the network of 2003 (Figure 3.5).

ok,h: average traffic flow measured by the detector k during [h, h + ∆h] (ok,h in
veh h−1 detector−1). [h, h+ ∆h] is the time interval in LADTA during which we consid-
ered q(o,d)(h) is constant. ∆h is the same as the temporal resolution of data observed
by detectors: ∆h = 1

60 hour.
ōh = 1

Ndet

∑Ndet
k=1 ok,h: the spatially-averaged traffic flow measured by loop detectors

during [h, h+ ∆h].
Ok,(h1,h): number of cumulated vehicles passing through the detector k from h1 to

h (in veh): Ok,(h1,h) = ∑h
h=h1(ok,h × ∆h). Therefore, Ok,(h0,h) denotes the number of

vehicles passing through detector k from the beginning time h0 until the instant h.
Ototal

(h1,h) = ∑Ndet
k=1 Ok,(h1,h): the total observed traffic (in veh) of all detectors on the

network, during [h1, h]. In particular, the spatially-averaged measured traffic during
the evening peak hour is denoted as Ototal

(17,18). The spatially-averaged measured traffic
from h0 till h is denoted as Ototal

(h0,h). For a one-day simulation, the total cumulated traffic
is denoted as Ototal

(h0,h0+24).

ρ(h) =
Ototal

(h0,h)
Ototal

(h0,h0+24)
: the temporal variation ratio between (i) the total cumulated traffic

on the network from h0 till h, and (ii) the total cumulated traffic during the whole
simulation period of one day. For our case study with temporal resolution of 1 minute,
we can also denote this ratio as ρ = (ρt)t=1,2,...,T with T = 1440. In particular, ρ0 = 0.0
and ρT = 1.0.

From static O-D matrix to dynamic O-D matrix

In order to convert a static O-D matrix into a dynamic one, we make the following
assumptions.
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Assumption 3. The temporal variation of the measured traffic on the network can
reflect the temporal variation of the traffic demand in the O-D matrix.

Assumption 4. The traffic demands of each O-D pair in the O-D matrix share the
same temporal variation.

Therefore, if we know the total traffic demand during one day for each O-D pair, as
well as ρ obtained from loop detector measurements, we can build the temporal profile of
traffic demand for LADTA simulation during a whole day. Since the static O-D matrix
only gives traffic demand during evening peak hour, we use an evening peak coefficient α
to represent the ratio between (i) the total traffic demand during the whole day and (ii)
the traffic demand during evening peak hour on the same day. Besides the loop detector
measurements with time resolution of 15 minutes mentioned in Section 3.2, measured
traffic flows with temporal resolution down to 1 minute are also available during a week
from the 17th to the 23th November 2014. Based on Assumption 3 and Assumption 4,
α can be obtained as α =

Ototal
(h0,h0+24)
Ototal

(17,18)
for a one-day simulation of 24 hours. Therefore, all

the parameters that we need to convert the static O-D matrix into a dynamic one can
be obtained based on loop detector measurements.

Nevertheless, we have only one static O-D matrix but that does not model a specific
day. The total number of vehicles measured by the detectors is not the same from one
day to another. All the parameters obtained from loop detector measurements depend
on the which day the simulation is carried out. For example, in our case study on the
20th November 2014, temporal variation ratio is denoted as ρ20141120 and the evening
peak coefficient is α20141120. However, we are not sure whether the traffic demand given
in the static O-D matrix can well represent the traffic demand during evening peak hour
on the 20th November 2014. Therefore, we introduce total demand coefficient ξ in order
to adjust the total demand so that at the end of the simulation when h = h0 + 24 h
and the time step t = T = 1440 with ∆h = 1min, the total computed traffic volume
on the network is the same as the measured total traffic for the specific simulation
day. ξ depends only on which day the DTA simulation with LADTA is carried out.
It can be obtained by calibrating computed traffic flows with measured ones. The
calibration of the total demand is presented in the following Section 3.4. Therefore,
the time-dependent cumulated traffic demand for the day at simulation time h can be
represented as

Qday,(o,d)(h) = ρday(h)× (ξdayαday × q17−18
(o,d) ), (3.1)

where ρday(h) and αday are directly obtained from loop detector measurements on the
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particular day for LADTA simulation. ξday is obtained from the calibration based on
the comparison between the simulation results and observations.

3.4 Calibration and evaluation of dynamic traffic
assignment results and comparison with static
model

In this section, we compare the computed traffic flows from LADTA model to those
computed from the static model VISUM. The results from both models are also com-
pared to the loop detector measurements. The comparison between LADTA and VISUM
is carried out on the network of 2003 (see Figure3.5) for the 20th November 2014. Then
with the new modeled network of 2012 (see Figure3.6), we evaluate the LADTA model
by comparing LADTA outputs during a Tuesday with loop detector measurements of
all Tuesdays during a whole year from September 2014 to September 2015.

Before presenting the results, we present here the formulas for calculating comparison
criteria. LetN denote the total number of modeled links or the total number of detectors
on the network, and let Tsize denote the total time steps of the simulation period. Let
si,t be the simulation results of traffic assignment model at link i (or at detector i)
at time step t, and we denote ri,t as the reference value at the same location i and
time step t. The reference sequence ri,t can be either (i) the traffic flows computed by
VISUM at link resolution or (ii) the loop detector measurements at detector resolution
(lane resolution), depending on different comparison cases. Table 3.1 shows statistical
criteria for model evaluation.

3.4.1 Calibration of the total traffic demand

The LADTA simulation is carried out from 03:15 on the 20th November 2014 till 03:15
on the next day. After filtering the detectors whose values are always zero on that day,
Ndet = 387. For calibrating the total demand, the used reference sequence is observed
traffic flows (ok,h)k=1,...,Ndet,h=3.25 hour,...,(3.25+24.0) hour, where k represents detector loca-
tion and h represents the clock time (local time). Figure 3.8 shows spatially-averaged
values of ōh = 1

Ndet

∑Ndet
k=1 ok,h during each time interval [h, h+ ∆h] with ∆h = 1

60 (hour).
We choose the beginning time of the simulation is 03:15 of the day: h0 = 3.25 hour.
In fact, this is the clock time when the traffic on the network is the minimum on the
20th November. For carrying out the DTA simulation with LADTA on the target day,
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Table 3.1: Statistical criteria and formula for model evaluation

Criteria Formula

Total mean value
r̄total = 1

N×Tsize
(
∑N

i=1
∑Tsize

t=1 ri,t)

s̄total = 1
N×Tsize

(
∑N

i=1
∑Tsize

t=1 si,t)

Spatially-averaged values r̄t = 1
N

∑N

i=1 ri,t; s̄t = 1
N

∑N

i=1 si,t

Temporally-averaged values r̄i = 1
Tsize

∑Tsize

t=1 ri,t; s̄i = 1
Tsize

∑Tsize

t=1 si,t

Spatial mean r̄spatial = 1
N

∑N

i=1 r̄i; s̄spatial = 1
N

∑N

i=1 s̄i

Temporal mean r̄temporal = 1
Tsize

∑Tsize

t=1 r̄t; s̄temporal = 1
Tsize

∑Tsize

t=1 s̄t

Mean bias error

etotal = 1
N×Tsize

∑N

i=1
∑Tsize

t=1 (si,t − ri,t)

espatial = 1
N

∑N

i=1(s̄i − r̄i)

etemporal = 1
Tsize

∑Tsize

t=1 (s̄t − r̄t)

RMSE

RMSEtotal = 1
N×Tsize

∑N

i=1
∑Tsize

t=1 (si,t − ri,t)2

RMSEspatial = 1
N

∑N

i=1(s̄i − r̄i)2

RMSEtemporal = 1
Tsize

∑Tsize

t=1 (s̄t − r̄t)2

NRMSE

NRMSEtotal = RMSEtotal
r̄total

NRMSEspatial = RMSEspatial

r̄spatial

NRMSEtemporal = RMSEtemporal

r̄temporal

Correlation

Rtotal =
∑N

i=1

∑Tsize

t=1
(ri,t−r̄total)(si,t−s̄total)√∑N

i=1

∑Tsize

t=1
(ri,t−r̄total)2

√∑N

i=1

∑Tsize

t=1
(si,t−s̄total)2

Rspatial =
∑N

i=1
(r̄i−r̄spatial)(s̄i−s̄spatial)√∑N

i=1
(r̄t−r̄spatial)2

√∑N

i=1
(s̄i−s̄spatial)2

Rtemporal =
∑Tsize

t=1
(r̄t−r̄temporal)(s̄t−s̄temporal)√∑Tsize

t=1
(r̄t−r̄temporal)2

√∑Tsize

t=1
(s̄t−s̄temporal)2

the network can be considered as nearly empty before this moment so that we can
approximately satisfy the Assumption 1 and Assumption 2.

Ototal
(h0,h), Ototal

(h0,h0+24) and ρ(h) can be obtained from (ok,h). The evening peak coefficient
is obtained by α20141120 = ∑h=27.15

h=3.15 ōh/
∑h=18
h=17 ōh = 11.849. Note that the traffic simu-

lated in LADTA model is the cumulated traffic at link resolution while the detectors are
at lane resolution. For comparing computed results with measurements, let sk,h denote
the computed cumulated traffic from h0 till h at detector k. sk,h for a detector can be
obtained by dividing the computed results of LADTA by number of lanes. The total
simulated cumulated traffic over all detectors is Stotalh0,h0+24 = ∑Ndet

k=1
∑h0+24
h0 sk,h. Then we

get the error of computed total traffic over all detectors compared with measured total
traffic on theses detectors: e = Stotalh0,h0+24 − Ototal

(h0,h0+24). Then we calibrate the temporal
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Figure 3.8: Spatially-averaged traffic flow measured by loop detectors (ōh) on the 20th

November 2014. The time resolution is 1 minute.

profile of demand for the dynamic O-D matrix by adjusting ξ mentioned in Equation 3.1
so that e = 0.0. The final optimal total demand coefficient for the 20th November 2014
is ξ20141120 = 0.704.

3.4.2 LADTA simulation versus VISUM simulation

Case study of LADTA without taking highway toll into account

Since the total demand of LADTA is calibrated by the ξ20141120 on the 20th November
2014, the same coefficient is also multiplied to the static O-D matrix for carrying out
VISUM simulation on the same day during evening peak hour (17:00 to 18:00). Both
LADTA and VISUM compute traffic flows at link resolution of the agglomeration. Since
the outputs of VISUM model are not time-dependent, we only use spatial criteria in
Table 3.1 to compare the performance of the two models during evening peak hour. The
r̄i in Table 3.1 is the link-resolution traffic flow computed by VISUM during evening
peak. For the LADTA model, we take the temporal average of traffic flow computed
during 17:00 to 18:00 as s̄i. The scatter plot of traffic flow computed by LADTA model
against those computed by VISUM during evening peak hour is presented in Figure 3.9.

Results in Table 3.2 and Figure 3.9 show that there are less traffic assigned by
LADTA model than VISUM. This might due to the fact that the static model averagely
assigns traffic on the network without taking into account the temporal variation within
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Table 3.2: Comparison of flows computed by VISUM and LADTA model during 17:00
to 18:00 of a working day. The comparison criteria are calculated based on formula
presented in Table 3.1.

Criteria Values

Spatial mean bias error (in veh h−1) -37

Spatial RMSE (in veh h−1) 250

Spatial NRMSE (in %) 70.56

Spatial correlation 0.87

Figure 3.9: Scatter plot of hourly-averaged traffic flow computed by LADTA model
against VISUM model, during 17:00 to 18:00 on the 20th November 2014.

an hour. Another reason might be the ignorance of monetary cost in modeling users
travel cost in the DTA simulation with LADTA. Figure 3.10 shows the assignment maps
of traffic flows computed by VISUM model and LADTA model during evening peak hour
from 17:00 to 18:00. We can see that bigger traffic flow is computed by LADTA on the
highways in the east side of the Clermont-Ferrand city.

The traffic flows computed by both models are also compared with loop detector
measurements. Table 3.3 shows statistical scores of VISUM and LADTA when compared
with loop detector measurements. In this comparison, the reference sequence ri,t in
Table 3.1 is composed by measured values, while si,t are traffic flows computed by



66
Chapter 3. Dynamic traffic assignment for the agglomeration of

Clermont-Ferrand

0
400
800
1200
1600
2000
2400
2800
3200
3600
4000

VISUM LADTA (veh/h)

7.06 7.07 7.08 7.09 7.10 7.11 7.12
1e5

1

2

3

4

5

6

7

1e3+6.516e6

7.06 7.07 7.08 7.09 7.10 7.11 7.12
1e5

1

2

3

4

5

6

7

1e3+6.516e6

Figure 3.10: Maps of computed traffic flow on the network of the city of Clermont-
Ferrand. In these two maps, both colors and widths of lines represent values of computed
traffic flows. For the links that share the same nodes but are oriented in opposite
directions, the sum of the computed flows are calculated and displayed in these two
maps.

VISUM or LADTA, at location i at time step t.

Table 3.3: Comparison of flows computed by VISUM and LADTA model from 17:00 to
18:00 of a working day at link resolution. The comparison criteria are calculated based
on formulas presented in Table 3.1.

Comparison VISUM v.s. measurements LADTA v.s measurements

Spatial mean bias error (in veh h−1) 22 -14

Spatial RMSE (in veh h−1) 290 302

Spatial NRMSE (in %) 79.07 82.54

Spatial correlation 0.36 0.38

Results in Table 3.3 show that the traffic flows computed by both models during
the evening peak hour have big spatial errors when compared with loop detector mea-
surements. This might due to the following reasons. (i) The O-D matrix is modeled
for 2008 but the comparison is carried out based on observed data in 2014. In addi-
tion, the O-D matrix only contains trips between working places and homes. Trips of
other purposes were not taken into account. (ii) The modeled network is based on the
real-world network in 2003 while the observations are measured in 2014. Traffic on the
network may change due to the infrastructural changes from 2003 to 2014. For the
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agglomeration of Clermont-Ferrand, the tramway system has officially opened in 2006.
This might influence the structure of the network and spatial distribution of traffic on
the network. (iii) Clermont-Ferrand is a city in the center part of France. There must
be road transit traffic through the city but the O-D matrix does not take it into account.
(iv) Assumptions in both models that travelers choose their routes by minimizing travel
costs may not be true in reality. In VISUM model, the generalized travel costs are
composed of travel time and toll prices. In the case study here for DTA simulation with
LADTA model presented here, only travel time is taken into consideration as the travel
cost to be minimized. There are also other criteria for travelers to choose their route
from one zone to another in reality. (v) The uncertainty in modeling the network. In
fact, the Origin-Destination zones (O-D zones) are represented by centroids of zones
in the modeled network. The departing and arriving traffic comes from or go to cen-
troids of O-D zones. The centroids are connected to the nodes of the modeled network
through connectors with unlimited capacity and negligible free-flow travel time. In the
modeled network, not all the nodes are connected with connectors to centroids. This
might generate an unbalance of computed traffic flows around centroids of zones.

However, we can see that the LADTA model has approximately the same perfor-
mance as the VISUM model when compared with loop detector measurements during
evening peak hour. Moreover, LADTA can give detailed temporal variation of traffic
flow within an hour, during a whole-day simulation or even longer. For example, Fig-
ure 3.11 shows the spatially-averaged traffic flow computed by LADTA during the whole
day on the 20th November 2014, from 03:15 to 03:15 of the next day. Figure 3.11 shows
that LADTA model can well represent the temporal variation of spatially-averaged traf-
fic flow. This is because we gave a temporal variation to inputs in O-D matrix that
reflects the temporal variation of measured traffic flows on the network.

Case study of LADTA with highway toll

Then we added monetary cost in modeling generalized travel cost in order to influ-
ence the users route choice decision. Let Atoll denote the set of links that model the
tolled highway in the network. Then at link resolution, the generalized travel cost is
modeled as a linear combination of the travel time and toll cost

Ca(h) = Ta(h) + vt × pa(h)× la, (3.2a)

pa(h) =

punit(h) a ∈ Atoll
0.0 if not

(3.2b)
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Figure 3.11: Temporal variation of spatially-averaged traffic flow computed by LADTA
and measured by loop detectors, on the 20th November 2014. The simulation is carried
out from 03:15 to 03:15 of the next day.

where vt is the value of time of travelers in e/h, Ta(h) is the travel time at time h,
pa(h) is the monetary price that network users should pay on link a and punit(h) is
the price of the tolled highway (in e/km). We set punit(h) = 0.5 e/km for our case
study. In general, the value of time varies for different categories of users and for
difference purpose of traveling. Here we assume that there is only one category of users
on the network and vt is the same for all users. In the agglomeration of Clermont-
Ferrand, A89 is a north-south tolled highway. It connects Riom in the northern part of
the agglomeration and Clermont-Ferrand city. There is also a free departmental road
(D2009) connecting these two zones. Since we do not have the observations of these two
roads, we used the results of VISUM model to approximate the ratio between the traffic
volume passing through these two roads during evening peak hour: βD2009/A89. Then
we fixed other parameters such as ξ, α for the demand, and link parameters including
punit, capacity and speed limit. We varied vt for carrying out DTA simulation with
LADTA in order to find an optimal v∗t resulting in the same ratio βD2009/A89. Therefore,
with a unit toll price of punit = 0.5 e/km, we found v∗t = 66.9. Figure 3.12 shows
the DTA simulation results compared with traffic assigned by VISUM for the whole
agglomeration of Clermont-Ferrand, with or without adding the highway toll price into
the routing choice criteria.

Results in Figure 3.12 show that the adding of monetary cost in the route choice
modeling can significantly change the spatial distribution of the traffic on the roads
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Figure 3.12: Maps of computed traffic flow on the network of the agglomeration of
Clermont-Ferrand from 17:00 to 18:00 on the 20th November. In these two maps, both
colors and widths of lines represent values of computed traffic flows. For the links that
share the same nodes but are oriented in opposite directions, the sum of the computed
flows are calculated and displayed. The highway toll is taken into account in the static
simulation and the assignment results are shown by the two figures on the left side). For
LADTA simulation results, the upper figure on the right side presents the assignment
map in the case study where the highway toll is not taken into account in the route
choice criteria. The lower figure on the right side presents the results where the highway
toll is taken into account in modeling users travel cost.

around the tolled highway in the network. In addition, we calculated the difference
between the traffic flows computed by the two models: e17−18

i = s̄17−18
i − r̄17−18

i , where
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s̄17−18
i and r̄17−18

i are respectively the temporally-averaged traffic flow during 17:00 to
18:00 computed by LADTA and VISUM. The spatial distributions of (e17−18

i ) for the
two case studies with or without taking into account the toll in route choice modeling
are presented in Figure 3.13. Results show that adding toll into route choice criteria
can influence not only the traffic flows computed on the highway in question, but also
can affect traffic flows on links of other parts of the network.

Table 3.4 presents the statistical results for the comparison between LADTA model
and VISUM model, during evening peak hour on the 20th November 2014. The com-
puted flows from LADTA model are also compared with loop detector measurements
during the same period. If we compare the results in Table 3.4 with those in Table 3.2,
we can see that the difference of computed flows between VISUM and LADTA is de-
creased after adding toll cost into users route choice criteria.

Table 3.4: Comparison of flows computed by LADTA with (i) traffic flows computed by
VISUM at link resolution (ii) loop detector measurements, in the case where the highway
toll has been taken into account in modeling users route choice, for the simulation from
17:00 to 18:00 on the 20th November 2014. The comparison criteria are calculated based
on formula presented in Table 3.1.

Comparison LADTA v.s VISUM LADTA v.s measurments

at link resolution

Spatial mean bias error (in veh h−1 ) -34 2

Spatial RMSE (in veh h−1) 199 308

Spatial NRMSE (in % ) 55.92 84.31

Spatial correlation 0.92 0.38

If we compare the flows computed by LADTA with loop detector measurements, the
statistical scores do not change significantly when compared with the results in Table 3.4
and those in Table 3.3. This might due to the lack of observations on links where the
computed flows are sensitive to the addition of toll costs. However, we adjusted the
value of vt in order to get the same βD2009/A89 in LADTA and in VISUM simulation.
The final vt = 67 is much higher than the average value of time (17.5 e/h) in France
for professional traveling purpose [Roquigny, 2013]. In addition, even with big value
of vt = 67, the resulting spatial variation cannot significantly decrease the big spatial
errors of LADTA when comparing its results with loop detector measurements. This
suggests that the addition of toll cost in the model of generalized cost is not sufficient
for improving the performance of LADTA in predicting spatial distribution of traffic on
the network, when comparing computed traffic flows with measured ones. Therefore,
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Figure 3.13: Maps of differences between hourly-averaged loaded flows computed by
LADTA and flows computed by VISUM: LADTA results - VISUM results. We calculate
the difference between the loaded traffic by two models during evening peak hour on
the 20th November 2014. In these two maps, both colors and widths of lines represent
the differences. For the links that share the same nodes but are oriented in opposite
directions, the sum of traffic flows on both directions is firstly calculated, and then the
difference between the two resulting sums are calculated and displayed in the maps.

we carried out LADTA simulation on the latest modeled network with more detailed
links, presented in Figure 3.6. The simulation results are presented in the following
Section 3.4.3.
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3.4.3 LADTA simulation results on the network of the agglom-
eration of Clermont-Ferrand of the year 2012

In this simulation on the larger network, loop detector measurements data from
September 2013 to September 2015 are used for carrying out the LADTA simulation and
for model evaluation. The time resolution of measured traffic flows is every 15 minutes:
∆h = 0.25 hour. A one-day DTA simulation with LADTA is carried out for a working
Tuesday during non-vacation period. The static O-D matrix used here is the same one
that used in Section 3.4.2. Then we converted the static O-D matrix into a dynamic
one by applying a temporal variation to each O-D pair of the static O-D matrix, and
calibrated the total demand using the same methods mentioned in Section 3.4.1. The
temporal profile of the working Tuesday is obtained by averaging temporal profiles of all
the Tuesdays from September 2013 to July 2014. The temporal variation of the working
Tuesday is represented by the yellow line in Figure 3.2. The evening peak coefficient
for the average temporal profile of Tuesdays is αTuesday = 11.70. The total demand
coefficient is ξTuesday = 0.9823 for calibrating the total traffic demand compared with
loop detector measurements of all Tuesdays from September 2013 to July 2014. Then
LADTA simulation is carried out, and the results are compared with loop detector
measurements of all Tuesdays from September 2014 to July 2015 in order to evaluate
the performance of LADTA simulation. The toll of the highway A89 has not been taken
into account.

Temporal variation of spatially-averaged traffic flows

Figure 3.14 shows the temporal variation of spatially-averaged traffic flows computed
by LADTA and measured by loop detectors, during a working Tuesday. For plotting the
measurement curve in Figure 3.14, we firstly calculate the spatially-averaged measured
traffic flows of each Tuesday from September 2014 to July 2015 to obtain a temporal
profile of each Tuesday. Then we calculate an average temporal profile of all these
Tuesdays to obtain the measurement curve and compare it with LADTA simulation
results. This result shows that LADTA can well simulate the temporal variation of
spatially-averaged traffic flows.

Note that the comparison results presented in this subsection is not obtained by the
same way as those presented in Section 3.4.2. In fact, in the simulation in Section 3.4.2,
the input temporal variation for converting the static O-D matrix into the dynamic
one is obtained from the loop detector measurements on the 20th November 2014. The
comparison results presented in Figure 3.11 are also obtained from the same day. It
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is normal (and reassuring) to find that the two temporal profiles fit with each other.
However, in this subsection, the input temporal profile is learned from observed data of
all Tuesdays from September 2013 to June 2014, while the comparison is carried out for
the spatially-averaged traffic flow of all the Tuesdays in another period from September
2014 to June 2015. The fit between the two temporal profiles refers to a good prediction
of temporal variation of on-road traffic flows during working Tuesdays.

Figure 3.14: Temporal variation of spatially-averaged flow on a normal Tuesday during
non vacation periods from the 1st September 2014 to the 30th June 2015.

Spatial distribution of traffic flows and congestions

Figure 3.15 and Figure 3.16 show the traffic assignment and the congestion distri-
bution of Clermont-Ferrand from 07:00 a.m. to 08:30 a.m., during each time interval
of 15 minutes. In this section, a link is considered to be congested when the average
travel time on it (denoted as t) is 50% more than its free flow travel time (denoted
as t0). The results show that the links with higher capacities have been assigned more
traffic volume, and the congestions appear firstly and more frequently on crossroads.
These fit well to the reality of urban traffic situation. The spatial distributions at dif-
ferent time periods show that the transition to the morning peak is almost immediate,
and some links become congested within a quarter of an hour. The dynamic traffic
assignment model gives more detailed information of traffic temporal evolutions than
the static assignment model. Moreover, if we compare the computed traffic flow results
with congestion results from 07:45 to 08:30, we can see that even though it seems like
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the traffic flows do not change significantly during this period (Figure 3.15), the num-
ber of congested links increase from 07:45 to 08:30 (Figure 3.16). In fact, in LADTA,
the interaction between link travel time and link loaded traffic is modeled by bottleneck
model [Vickrey, 1969]. The travel time of a link equals to the free flow travel time if the
entering traffic flow does not exceed the link capacity, and the travel time equals to the
sum of free flow travel time and queuing time if the assigned traffic flow is higher than
link capacity. Therefore, the computed traffic flows on congested links do not increase
any more if they exceed the link capacity, and the congestion is represented by the
increase of travel time.

Figure 3.15: The traffic assignment results of LADTA from 07:00 a.m. to 08:30 a.m.
for a working Tuesday. Black lines represent unused links. Bold lines with various
colors represent traffic flow computed by LADTA model. For the links that share the
same nodes but are oriented in opposite directions, the sum of the computed flows are
calculated and displayed. The line width is proportional to the traffic flow on the link.
The projection system of the map is Lambert-93 (RGF93).
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Figure 3.16: The spatial distribution of congestion from 07:00 a.m. to 08:30 a.m. for
a working Tuesday. Black lines represent unused links. Thin blue lines represent links
whose travel time equals to its free flow travel time. Bold lines with various colors
represent links with travel time larger than its free flow travel time. For the links that
share the same nodes but are oriented in opposite directions, the bigger travel time /
free-flow travel time ratio is displayed in the maps. The projection system of the map
is Lambert-93 (RGF93).

Statistical scores

We use the formula in Table 3.1 to evaluate the performance of LADTA model for
the simulation on the larger network. The comparison is carried out for all the working
Tuesdays (during non-vacation period) from September 2014 to July 2015. There are 36
Tuesdays during the simulation period. For each day, there are 96 time steps. Therefore,
the total time step in Table 3.1 is Tsize = 36×96 = 3456. The total number of detectors
associated with the larger network is 469 so that N = 469 in Table 3.1. For the loop
detector measurements, the comparison sequence is composed by measured traffic flows
during all Tuesdays from September 2014 to July 2015: ri,t with i = 1, . . . , N and
t = 1, . . . , Tsize. Since we only carried out LADTA simulation for an average working
Tuesday, we assumed that for all the Tuesdays, the computed traffic flows are the
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same so that the dimension of simulation sequence (si,t)i=1,...,N ;t=1,...,Tsize
equals to that

of (ri,t)i=1,...,N,t=1,...,Tsize
. Therefore, the total, temporal and spatial criteria defined in

Table 3.1 can be computed. The statistical scores are presented in Table 3.5.

Table 3.5: Comparison of traffic flow results between LADTA and measurements at all
times and detectors during all Tuesdays from September 2014 to June 2015. The scores
are calculated based on the criteria presented in Table 3.1.

Score Total Temporal Spatial

Mean bias error (veh h−1 detector−1) 6 6 5

RMSE (veh h−1 detector−1) 149 12 112

Mean value of measurements (veh h−1 detector−1) 183 183 183

NRMSE (%) 81.4 6.6 61.2

Correlation 0.73 0.99 0.57

Results in Table 3.5 show that LADTAmodel can well predict the temporal evolution
of the daily traffic. The model performed well with high correlation, low bias and low
RMSE. However, the model still has limitations to predict the spatial distribution of
the traffic in the network. This may be mainly due to the following three reasons.
(i) The method to estimate the simulated results for each detector by dividing link
volume with lane number brings representativeness errors (see definition and example in
Section 1.5.3). This simplification ignores the fact that left side lanes and right side lanes
might have different traffic flows. (ii) It is not always true in reality that all the travelers
choose their route by minimizing their generalized travel cost. Different users may use
several different criteria for their route choice strategies. (iii) The ignorance of monetary
cost in modeling generalized travel cost. In this case, the toll of the highway A89 does
not influence the traffic assignment of LADTA. This leads to a heavier traffic assignment
on the highway since it has higher capacity and lower free flow travel time. This might
then lead to an underestimation of traffic flow on the road in parallel of the highway, and
an eventual underestimation of traffic flow passing through the city. (iv) The temporal
variation of traffic demands might be different for an O-D pair from an industrial zone
to a residence zone, and for a pair from a residence zone to an industrial zone. (v) The
O-D matrix only contains travel purpose of users with passenger cars. Therefore, the
computed traffic flows and travel times are only for this class of users. While the traffic
flow measured by detectors contain all kinds of vehicles including light utility vehicles,
heavy duty vehicles, buses, etc. Comparing computed traffic flows of passenger cars to
measurements of various kinds of vehicles can also bring representativeness errors.
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3.5 Qualitative sensitivity analysis

In this section, we are interested in how the inputs of LADTA can influence the
computed traffic flows on the network of the agglomeration of Clermont-Ferrand. The
simulation results in Section 3.4.3 are considered as references. A local sensitivity anal-
ysis is carried out with one at a time method. We vary each of two main inputs: the
total demand during a day on the network, and the speed limits of the links (i.e. the free
flow travel times on links). We take two outputs as indicators to evaluate the sensitivity
of LADTA simulation: the total vehicle travel time (in veh·h) and the proportion of
congested links on the whole network. For the latter indicator, a link is considered as
congested using the same criterion in Section 3.4.3: travel time 50% higher than the
free flow travel time. The congestion proportion is then calculated as the ratio between
the total length of congested roads on the network, and the total length of the whole
network.

3.5.1 Total demand of traffic volume in the network

We vary the total demand volume from −50% to 100%, with the same temporal
profile of a working Tuesday as in Section 3.4.3. The speed limits and capacities remain
unchanged. Then the vehicle travel time and the proportion of congested roads in the
whole network are calculated for each link during each 15 minutes. Figure 3.17 shows
the spatial distribution of these two indicators during the period from 7:45 a.m. to 8:00
a.m., with a total traffic demand volume of −50%, 0%, and 50%, compared with the
referenced simulation case in Section 3.4.3. It can be observed that the traffic volume
and the link travel time are strongly influenced by the evolution of the total demand
volume entered to the LADTA model.

In order to analyze the sensitivity in detail, the total values of these indicators of
the whole network during 24 h are calculated for each case of different total demand
volume. The evaluations of these two global indicators in function of different total
traffic demand volume are presented in Figure 3.18 and Figure 3.19.

From Figure 3.18 and Figure 3.19, we can see that the total vehicle travel time and
the congestion rate of the network are very sensitive to the total demand volume, espe-
cially when congestion phenomenon appears. Figure 3.18 (left) and Figure 3.19 (left)
show that the total vehicle travel time and the congestion proportion of the network
becomes about 10 times higher than the reference case, when the total demand is dou-
bled. In Figure 3.18 (right) and Figure 3.19 (right), below the reference total demand
volume, the increase of vehicle travel time and the congestion rate is almost linear with



78
Chapter 3. Dynamic traffic assignment for the agglomeration of

Clermont-Ferrand

Figure 3.17: The spatial distribution of (a) traffic flow (in veh h−1) and (b) congestion
ratio during 07:45 a.m. to 08:00 a.m. of a working Tuesday, with change of total
demand volume of −50%, reference case, and 50%. Black lines represent unused links
in LADTA model. The projection system of all the maps is Lambert-93 (RGF93). In
(a), the line width is proportional to the traffic flow on the link. For the links that
share the same nodes but are oriented in opposite directions, the sum of the computed
flows are calculated and displayed.In (b), thin blue lines represent links whose travel
time equals to its free flow travel time. Bold lines with various colors represent links
with travel time larger than its free flow travel time. For the links that share the same
nodes but are oriented in opposite directions, the bigger travel time / free-flow travel
time ratio is displayed in the maps.

the increase of the demand. After that, the network becomes more and more congested
and the growth of travel time of vehicles becomes increasingly fast. Furthermore, the
road traffic during the evening peak period is more congested than during the morn-
ing peak. Travelers suffer a longer travel time during evening peak with congestions
than during morning peak hour. In fact, the network before evening peak hour is no
longer empty and the traffic appeared before the evening peak can affect the dynamic
assignment traffic results. This is a phenomenon that we can only observe in DTA sim-
ulations. In fact, the existing traffic before evening peak hours can be considered as an
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Figure 3.18: Sensitivity of vehicle travel time to the total demand volume. Left: evolu-
tion of vehicle travel time (in 103 veh·h) during the day at all time steps of 15 minutes.
Right: evolution of the total vehicle travel time (in 106 veh·h) in the whole network.

Figure 3.19: Sensitivity of the congestion rate (in %) to the total demand volume. Left:
evolution during the day all time steps of 15 minutes. Right: evolution of the proportion
of congested links in the whole network.

decrease of the link capacity. The increasing traffic demand during evening peak hour
needs longer time to pass through the network than during the morning peak where
the network is nearly empty. This phenomenon cannot be simulated by static traffic
assignment models even with separate time periods, since the static models do not take
into account the influence of the existing traffic on the network.
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3.5.2 Speed limits

In this sub-section, we decrease the speed limit of all the roads on the network by
5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%. LADTA model assumes
that the users free flow speed is the same as speed limit of the network. The decrease
of speed limits leads to an increase of free flow travel time. It is found that the total
vehicle travel time increases almost linearly with the decrease of speed limits, but it is
less sensitive to the speed limitation than to the total demand, as shown in Figure 3.20.
This might due to the fact that the speed limits have been changed homogeneously for
all roads on the network.

Figure 3.20: Sensitivity of vehicle travel time to the decrease of speed limits of links on
the network. Left: evolution during the day (in 103 veh·h). Right: evolution of the total
vehicle travel time in the whole network (in 106 veh·h) of the proportion of congested
links in the whole network

Conclusions

The LADTAmodel was applied to the road network of the agglomeration of Clermont-
Ferrand. A reference simulation with static VISUM model was also carried out. The
results computed by LADTA and VISUM were compared at link resolution. Results
show that the correlation between the traffic flow computed by the two models was
0.87. When we took the toll into account for modeling users travel cost, the correlation
between traffic flows computed by the two models was 0.92. The traffic flows computed
by two models were also compared with loop detector measurements. Results show that
LADTA and VISUM model have similar performance for simulating traffic flow during
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evening peak hour from 17:00 to 18:00. Both models have limitations for predicting
spatial distribution of traffic flow on the network when compared with traffic flow mea-
surements. These may due to (i) the uncertainties in O-D matrix, (ii) assumptions for
route choice criteria, (iii) errors in the modeled network and (iv) the conversion from
link-level flows to detector-level flows by dividing the link-resolution flow by the num-
ber of lanes. Then we added the monetary cost for modeling travel cost of users. With
the help of VISUM simulation results, we adjusted the ratio of assigned traffic flow
between the toll highway and the departmental road in parallel in LADTA simulation.
The setting price of toll highway is 0.5 e/km and users value of time is 66.9 e/h−1.
This brings a decrease of NRMSE from 71% to 56% when comparing the traffic flows
computed by LADTA model with those computed by VISUM model at link resolution
(see Table 3.2 and Table 3.4). The correlation between the traffic flows computed by
VISUM and LADTA increases from 0.87 to 0.92. Nevertheless, it does not improve
significantly statistical scores of LADTA simulation when compared with loop detector
measurements.

A DTA simulation with LADTA model for a working Tuesday was also carried out
for the same agglomeration with the latest modeled network of 2012. The computed
flows were compared with loop detectors measurements of all the working Tuesdays from
September 2014 to July 2015. In this case study, users choose their route by minimizing
only travel time, without taking into monetary cost into account. Results show that
the spatial error still exists, but it is less than in the case with the old network of 2003.
Results also show that LADTA model can well predict temporal variation of spatially-
averaged traffic flow in the whole agglomeration, even for a long period of more than 30
days with temporal resolution of 15 minutes. The temporal NRMSE is about 6.6% and
the correlation is 0.99 when comparing the computed and measured spatially-averaged
traffic flow for all time intervals. The DTA simulation with LADTA gives more detailed
temporal evaluation of traffic flows and congestions on the network. For example, the
LADTA results during morning peak hour from 07:00 to 08:30 show that the traffic
flows on the network vary significantly within a quarter of an hour. In addition, the
congestion on the network is represented by the increase of vehicle travel time. The use
of DTA model can better reflect the temporal variation of traffic flow and congestions
with a high time resolution than static traffic assignment models.

A qualitative sensitivity analysis was then carried out to analyze the sensitivity of
computed flows with respect to total traffic demand and link speed limits. Results show
that the total vehicle travel time (in veh·h) is very sensitive to the input traffic demand,
especially during evening peak hour due to the existing traffic on the network before
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the peak. The total vehicle travel time increases almost linearly with the decrease of
speed limits on the network.

Even though the LADTA simulation is able to compute time-dependent traffic flow
and travel time on the network, it is computationally costly for the large size network of
more than 19,000 links. For a whole-day simulation, it requires several hours. This might
already be quite a computational burden in an operational context for transportation
planning, model calibration or qualitative sensitivity analysis. However, if we want to
analyze the quantitative global sensitivity of computed flows with respect to all the
inputs and then carry out uncertainty quantification using ensemble prediction, large
numbers of model evaluations are required. A more efficient model is then required.
This is the reason why we build a metamodel in the next chapter.



Chapter 4

Metamodeling for a dynamic traffic
assignment model at metropolitan

scale

Summary

Dynamic traffic assignment (DTA) allows for better modeling of traffic flows
than static assignments because all the features of the demand and supply are
time-varying. However, their high computational costs are one of the limitations
for their operational application to large-size networks. In this chapter, we sug-
gest a metamodeling method for a DTA model applied to a given network, i.e., a
reasonable close approximation to the original model, but with a very low compu-
tational cost. It consists of a dimensionality reduction and a statistical emulation.
A reduced base for the model outputs is firstly built with the help of principal
component analysis (PCA). The outputs of the original model are projected onto
this reduced subspace. Then, the relations between the projection coefficients and
the inputs of the original model are reproduced by a statistical emulator, based
on radial basic functions (RBF). In our work, we have applied this metamod-
eling method to a DTA model named LADTA. A case study is carried out for
the agglomeration of Clermont-Ferrand (France), whose network has more than
19,000 links and 8,800 nodes. In comparison with traffic flow measurements, the
performance of the metamodel is similar to that of the complete model during
a one-month simulation, but the computational time for a one-month simulation
decreases from 2 days on 110 cores to less than 1 minute on one core. The spatio-
temporal correlation between the metamodel and the traffic flow measurements
during one month is about 0.7. Note that the metamodeling treats the traffic
assignment (TA) model as black box, and builds reasonable relationships between
the TA inputs and outputs for a given road network. The independence of the
method to the model type gives us new insights in TA problems on large scale
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networks during long-term periods, and opens the way to further studies such as
global sensitivity analysis and uncertainty quantification.

Résumé

L’affectation dynamique du trafic permet une meilleure modélisation des débits
que les modèles statiques. En effet, les modèles dynamiques prennent en compte
la dimension temporelle des entrées et des sorties: sur la demande, les paramètres
du réseau, les débits et temps de parcours simulés, etc. Cependant, l’affectation
dynamique du trafic reste coûteuse, notamment quant à l’application sur un réseau
urbain ou bien métropolitain. Dans ce chapitre, nous présentons une méthode de
méta-modélisation pour un modèle d’affectation dynamique configuré pour un
réseau routier métropolitain. Les sorties du méta-modèle sont très proches de
celles simulées par le modèle complet, mais avec un coût de calcul très faible. Plus
précisément, il y a trois étapes principales dans la méthode de méta-modélisation
présenté dans ce chapitre: (i) un échantillonnage par hypercube latin avec un grand
nombre de simulations du modèle original pour obtenir les points d’apprentissage,
(ii) une réduction de dimension à l’aide d’une analyse en composantes principales
des sorties résultant des points d’apprentissage, et (iii) une émulation statistique
entre les points d’apprentissage et les coefficients de projection correspondant à
chaque composante principale. Dans notre travail, nous avons appliqué cette
méthode de méta-modélisation au modèle dynamique LADTA. Un cas d’étude de
cas est réalisé pour l’agglomération de Clermont-Ferrand (France), dont le réseau
routier est modélisé par plus de 19 000 arcs et 8 800 nœuds. Les débits simulés
par le modèle original et par le méta-modèle sont comparés avec les observations
obtenues par les comptages sur le réseau, à la résolution de la voie pour tous les
intervalles de 15 minutes pendant un mois complet. Les scores montrent que la
performance du méta-modèle est similaire à celle du modèle complet, mais le temps
de calcul pour une simulation d’un mois passe de 2 jours sur 110 cœurs à moins de
1 minute sur un seul cœur. La corrélation spatio-temporelle entre le méta-modèle
et les débits mesurés pendant un mois est d’environ 0,7. Notons que le méta-
modèle traite le modèle d’affectation de trafic comme une boîte noire et établit
des relations raisonnables entre les entrées et sorties du modèle pour un réseau
routier modélisé. L’indépendance de la méthode par rapport au type de modèle
nous donne de nouvelles perspectives sur les problèmes d’affectation du trafic
sur les grands réseaux pendant une longue période. L’efficacité du méta-modèle
nous permet ensuite de réaliser d’autres études où il est demandé de réaliser un
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grand nombre d’évaluations du modèle, comme par exemple l’analyse de sensibilité
globale et la quantification d’incertitude.
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4.1 Introduction

This chapter focuses on proposing a metamodeling method to reduce significantly
the computational cost of dynamic traffic assignment (DTA) problems at metropolitan
scale. In the field of transportation planning and modeling, static assignment models are
being replaced by dynamic assignment models. The time dimension in dynamic assign-
ment allows for more accurate modeling of various phenomena, including for instance
congestion and time-dependent route choice. However, more detailed models lead to
complex high-dimensional simulations, which lead to computational requirements.

Traffic assignment (TA) aims at determining traffic flows on a transportation net-
work. TA is often modeled as a demand/supply equilibrium problem. The demand
comprises two parts: (i) an Origin-Destination matrix (O-D matrix) and (ii) a model of
users route choice behavior. The supply is modeled oriented graph with nodes and links.
The interaction between supply and demand is expressed by a flowing model: to each
link is associated a flowing function that maps a flow to a travel time [Wardrop, 1952;
Beckmann et al., 1956; Smith, 1979; Sheffi, 1985], with constrains of link constraints.
In static TA models, the O-D matrix expresses peak hour flows. Flowing functions
are volume/delay functions [Bureau, 1964]. Users are assumed to choose routes of least
travel cost. The equilibrium follows Wardrop’s user equilibrium (UE) principle. The TA
problem is often formulated as a classical optimization problem. By definition, static
TA models ignore the time dimension: traffic conditions do not vary during the modeled
time interval. This approximation is adequate for transportation planning studies. It is
less adequate when fine grain time variations of traffic conditions have to be modeled.

Dynamic traffic assignment (DTA) models have been developed to address this issue
[Chiu et al., 2011; Peeta and Ziliaskopoulos, 2001]. The demand in a DTA model is
expressed as a dynamic O-D matrix. For each departure instant, a dynamic O-D matrix
expresses the instantaneous flow between each O-D pair. The underlying flowing model
allows to map the (time-varying) traffic load on each route to its (time-varying) travel
time [Chen and Hsueh, 1998; Ran and Boyce, 1996]. Some DTA models use a micro-
scopic traffic simulator [Mahut and Florian, 2010] as flowing model detailing traveler
behavior which is quite computer-intensive. Some use a simpler macroscopic approach.
For instance, a first-in-first-out (FIFO) point queue model [Kuwahara and Akamatsu,
1993] associated with each link essentially replaces the volume/delay functions used in
static TA. A point queue model allows to map the time-varying load on a link to its
time-varying travel time. The time-varying route travel times are then computed by
composing the individual link travel time functions along each route.

The DTA problem can be considered as a dynamic optimization problem (DOP).
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The mathematical programming, optimal control and variational inequality (VI) formu-
lations are three main approaches for expressing the DTA problem [Friesz et al., 1989,
1992, 1993]. Ran et al. [1996] extend the VI formulations in [Friesz et al., 1993], propos-
ing a link-based VI model and a dynamic user optimum (DUO) route choice condition.
Based on the latter condition, a flowing model can then be associated to each link. With
link-based VI formulations and point queue model of each link, it is possible to carry
out within-day DTA for a large scale network. However, numerical simulations of DTA
models and DOP raise challenges. They are far more computationally demanding than
static ones, and may exceed in many cases the capability of current hardware.

One of the solutions to deal with computer intensive models is using metamodel (or
surrogate models, emulators) in order to approximate complex models. A metamodel is
an approximation of the input/output function that is implied by the underlying simu-
lation model [Kleijnen, 2009]. The built metamodel preserves the main response of the
original model to input, but with much lower computational time. Once a class of surro-
gate models has been chosen according to some prior knowledge, they can be built upon
available samples [Roustant et al., 2012]. There are three main steps for constructing a
metamodel based on an original model: (i) sampling selection or experimental design in
order to build a set of training points, and the corresponding training values; (ii) con-
struction of the metamodel in order to find an surrogate model based on the training
points and training values; (iii) evaluation and optimization of the metamodel. There
are various types of metamodeling methods for computer experiments include linear
regression (polynomial regression) [Madu and Kuei, 1994; Kleijnen, 2009], splines, neu-
ral networks, Gaussian emulators [Rasmussen and Williams, 2006; Sacks et al., 1989],
Kriging surrogates [Kleijnen, 2009], and radial basis function (RBF) [Dyn et al., 1986;
Broomhead and Lowe, 1988], etc. For low-dimensional problems, linear regression may
be straightforward and efficient. However, it has less robustness when applied to high-
dimensional models, compared with Kriging and RBF methods [Jin et al., 2001].

Kriging method is a spatial interpolation method [Roustant et al., 2012]. The Kriging
method was firstly proposed by D.G. Krige [Krige, 1951] and mathematically formulated
in Matheron [1963] for geostatistics. It is applied to interpolate spatial data for con-
structing surrogate models [Rasmussen, 2004; Kleijnen, 2009; Stein, 2012]. Numerical
Kriging approximation packages are developed such as DACEMatlab toolbox [Lophaven
et al., 2002] and DiceKriging [Roustant et al., 2012]. Let us denote a model y = f(p)
with p ∈ RK and f is computationally costly. Basically, the Kriging metamodel aims
at predicting the model’s outputs on a target (unknown) input point p(0) ∈ RK , based
on a linear combination of known training values ({f(p(1)), . . . , f(p(i)), . . . , f(p(n))} ),
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computed at training points (denoted as {p(1), . . . ,p(i), . . . ,p(n)} with n ∈ N ). The
objective of Kriging interpolation is to find f̂ so that for any unknown p(0) ∈ RK ,
f̂(p(0)) = ∑n

1 ωi(p(0),p(1), . . . ,p(n))f(p(i)) ' f(p(0)). ωi is the weight affected to f(p(i))
and it depends only on the relative position of p(0) with respect to training points. They
are chosen to minimize the variance of the prediction error. The training process of the
Kriging interpolation consists in determining the covariance of the Gaussian process
[Roustant et al., 2012; Mallet et al., 2013]. The interpolation process is unbiased so
that the predictions at all training points coincide with the corresponding training val-
ues. Thorough reviews regarding Kriging method and Gaussian process can be found
in Rasmussen and Williams [2006]; Kleijnen [2009]; Stein [2012]; Roustant et al. [2012].

The Kriging interpolation is unbiased. However, it is very time-consuming especially
for interpolating large-dimension training points because it involves a K-dimension op-
timization process [Jin et al., 2001; Mallet et al., 2013]. Another similar interpolation
method is with radial basis functions (RBFs) [Dyn et al., 1986; Broomhead and Lowe,
1988]. The RBF-based interpolation of the training points is more computationally
efficient than the Kriging method. RBFs were developed initially in Duchon [1977];
Oeuvray and Bierlaire [2009] and their applications are in various fields in sciences and
mathematics [Buhmann, 2003]. The concept of RBF-based interpolation is that the
influence of a training point p(i) to the approximation of f(p) depends only on the dis-
tance between p(i) and the target point p(0): the bigger the distance, the less p(i) should
be influential. Interpolation based on RBFs can be briefly summarized as finding f̂ so
that for any unknown p(0) ∈ RK , f̂(p(0)) = ∑n

1 λiφ(d(p(0),p(i))) ' f(p(0)), where φ is
the chosen RBF, λi is the weight and d(·, ·) defines the distance between p(0) and p(i). λi
is computed so that f̂(p(i)) = f(p(i)) for i = 1, . . . , n. The computation of the weights
is in fact to solve a linear system. The distance here can be defined by users in order to
take into account the sensitivity of the model f with respect to each input p(i). Without
specification, it is often defined as Euclidean norm. The choice of different radial basis
functions depends on applications. A method employing multiquadric radial functions
is proposed in Hardy [1990] and it can be used for a large variety of problems. Most of
these applications are one, two or three dimensional [Oeuvray and Bierlaire, 2009].

The three main methods mentioned above are widely used in various domains, and
the choice among different methods depends on the application. In recent years, meta-
modeling methods have also been used in traffic modeling and management, in order to
solve the computational burden in algorithm, sensitivity analysis, safety management,
etc. For example, surrogate of the microscopic Aimsun model is built with Kriging
method for global sensitivity analysis (GSA) and model calibration [Ciuffo et al., 2013;
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Azevedo et al., 2015]. Some other studies of metamodeling applied to microscopic traf-
fic simulators are reviewed in Song et al. [2017] for different applications. Macroscopic
traffic assignment problems at urban scale are also addressed by embedding surrogates
of microscopic traffic simulators in an optimization algorithm. For example, Osorio
and Bierlaire [2013] propose an efficient simulation-based optimization framework em-
bedding a polynomial-based metamodel that integrates information from a microscopic
simulator with an analytical queuing network model. Based on this framework, different
algorithms are proposed to carry out (i) static traffic assignment [Osorio and Chong,
2015; Osorio and Nanduri, 2015] and (ii) dynamic traffic assignment and calibration
[Chong and Osorio, 2017; Zhang et al., 2017], at urban scale under tight computational
budget. Metamodels based on microscopic simulators are also used in other optimization
problems in transportation management such as highway charges and dynamic pricing
[Chen et al., 2014; He et al., 2016]. Besides the initiatives in accelerating the optimiza-
tion algorithm, there are also applications that make use of metamodeling methods in
order to build surrogate for dynamic network loading (DNL) models, mapping the set
of path departure rates to the set of path travel time. For example, Song et al. [2017]
propose a framework of building metamodel of dynamic flowing models based on Krig-
ing method. Their case studies on a SiouxFall network (76 links and 24 nodes) show
the potential of surrogates of DNL models for speeding up DUE-based model.

However, the mentioned surrogate-based DTA models might be adequate for trans-
portation planning, management and optimization problems in an operational context.
Applying these models to large-scale DUE-based model for a whole city is still com-
putationally costly, in cases where large numbers of model evaluations are required at
metropolitan scale. These cases include carrying out global sensitivity analysis of model
inputs, long-term DTA simulations to be combined with traffic emission models for air
quality simulations, and probabilistic simulations based on Monte Carlo simulation of
the deterministic DTA model. In these cases, metamodels that replace DTA models
applied to large-scale networks are needed. Based on the objectives of this PhD work,
the on-road traffic emission estimation, GSA analysis and uncertainty quantification
should be carried out at metropolitan scale. It is necessary to reduce the computa-
tional cost of the DTA model applied to a large-scale network of a whole city. The
most important outputs computed from the DTA model for the emission estimation is
time-depending street-level traffic flow and travel speed. This motivates us to build a
statistical metamodel that directly emulates the relation between the DTA model in-
puts and the computed street-level traffic flow/speed. The final metamodel is efficient
because it ignores the computationally expensive dynamic optimization problem lying
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behind the DTA model. This metamodeling approach has not yet been applied in traffic
modeling, but the idea of applying the metamodeling method directly to a given large
scale model has proved to be successful in various fields such as tsunami simulation
[Sarri et al., 2012], as well as in air quality simulations with a global aerosol model [Lee
et al., 2011], an urban model [Mallet et al., 2013] and an atmospheric dispersion model
for radionuclides [Girard et al., 2016]. Kriging, RBF interpolations or alternatives are
limited by the dimension of the input space [Saltelli et al., 2008; Mallet et al., 2013].
For large dimension models (which is the case for LADTA model applied to a large-scale
network), a dimension reduction should be firstly carried out. The outputs are projected
onto a reduced subspace, which can be obtained based on principal component analysis
of the training values. Then the final metamodel combines an emulator of the reduced
model and a reconstruction of the model outputs.

In the mentioned literature, the metamodels are built for either the users route choice
behavior models to propose surrogates for the objective functions of SO problems, or
for building approximations for flowing model. The DTA simulation still needs to solve
expensive DOP for large-scale network: searching for minimum-cost route at each mo-
ment for each destination. They might be adequate for management and optimization
problems for transportation planners, however, in cases where large numbers of model
evaluations are required such as global sensitivity analysis of model inputs, or long-term
DTA simulations to be combined with traffic emission models in air quality simulations,
more efficient alternatives of DTA models are needed.

The work presented here applies the metamodeling method in a different way: to
directly build a DTA metamodel at metropolitan scale. A DTA model applied in a given
network is treated as a black-box. The relationship between the inputs and outputs of
the given DTA model is approximated by a metamodel, which is significantly more
efficient than the original one since it ignores the computationally expensive DOP lying
behind the DTA model. The idea of applying the metamodeling method directory to
a given large scale model has proved to be successful in various fields such as tsunami
simulation [Sarri et al., 2012] and air quality simulations with a global aerosol model,
an urban model and an atmospheric dispersion model for radionuclides [Lee et al., 2011;
Mallet et al., 2013; Girard et al., 2016].

The proposed metamodeling approach comprises (i) dimension reduction of the in-
puts and outputs of the original modal, and (ii) statistical emulation. The DTA outputs
considered here are traffic flows at link level. Other outputs such as travel time or travel
speed at link-level can also be considered. Briefly, this chapter deals with the following
challenges.



4.1. Introduction 91

Metamodeling framework for TA models at metropolitan scale. We propose
a model-free metamodeling framework in order to build surrogates of TA models applied
to large-scale network. We take a DTA model called LADTA [Leurent, 2003; Aguiléra
and Leurent, 2009] to illustrate the process, but the metamodeling method can be used
to any other macroscopic TA model, whatever static or dynamic.

Efficiency of the built metamodel. A case study is carried out for the agglom-
eration of Clermont-Ferrand (France) during a whole month. The evaluation time of
an atomic simulation of LADTA in Clermont-Ferrand decreases from 2 hours to about
0.02 seconds with the help of the metamodel. A one-month DTA simulation for this
large-scale network decreases from 48 hours on 110 cores to less than 1 minute on only
one core.

Good approximation performance when compared with original model
as well as with observations. In our case study, the area is divided into 124 ori-
gin/destination zones, and the road network comprises more than 19,000 links and 8,800
nodes. The accuracy of the metamodel is close to the original DTA model. The per-
formance of the metamodel is acceptable when comparing the traffic flows computed
by the metamodel to the flows computed by the original model, and to traffic flows
observed by loop detector measurements during one month, as shown in Figure 4.1.
More detailed results are presented in Section 4.4.
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Figure 4.1: Temporal variation of the spatially-averaged flows (in veh h−1) of obser-
vation (blue), flows computed by the original model (green) and flows computed by
metamodel (red), with a time step of 15min during the November 2014 for the agglom-
eration of Clermont-Ferrand.

The ability to carry out TA traffic simulations at a large scale and during long
time intervals opens up new fields of application. Long-period traffic assignment results
at street level can be coupled with emission models to simulation on-road emissions
for long-term (several years) air quality simulations at metropolitan scale. Moreover,
global sensitivity analysis, where large numbers of model evaluations are required (' 104
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times of the input dimension), can be carried out for TA models in order to identify
the most influential inputs and help us understand the interaction between them. In
addition, once a metamodel with low computational cost exists, a stochastic model
can easily be built upon, so that inputs are taken from probability distributions to
better represent their day to day variability in traffic conditions. Eventually, detailed
uncertainty analyses may be carried out thanks to this new approach. Detailed further
applications of the resulting metamodel are presented in Section 4.4.5.

The remainder of this chapter is organized as follows. In Section 4.2, metamodeling
framework for TA models at metropolitan scale is proposed. In Section 4.3, a brief
introduction of LADTA model is proposed, as well as the corresponding DTA simula-
tions in Clermont-Ferrand. An atomic simulation with LADTA is designed to reduce
input dimension yet preserve the main features of the complete LADTA simulations.
This atomic simulation is called LCF (for LADTA applied in Clermont-Ferrand). The
input of LCF is a vector of uncertain factors concerning time-varying traffic demands
and network parameters. The evaluation of LCF model is presented by comparing
model results with traffic flow observations during a reference day. In Section 4.4, the
metamodeling approach is then applied to the LCF model, including the dimension
reduction of the outputs and a statistical emulation. The CPU time per run for LCF
model decreases from about 2 hours to 0.022 seconds on one core. The results of the
metamodel are compared with the results computed by the original model, and also
with loop detector traffic measurements on the network of Clermont-Ferrand during a
one-month simulation for November 2014. Results show that the metamodel can well
preserve input/output responses of the original LCF model. At last, we conclude with
a discussion on future extensions of the metamodeling applications in global sensitivity
analysis, uncertainty quantifications and on-road traffic emission estimations.

4.2 Methodology

Metamodeling consists in replacing a model, usually complex and computationally
intensive, with a surrogate model (or emulator) whose computational cost is very low.
A classical approach relies on Gaussian processes which provide a clear theoretical back-
ground [Rasmussen and Williams, 2006; Sacks et al., 1989] and quality implementations
[Roustant et al., 2012]. The main idea is to sample the inputs of the model and compute
the corresponding outputs. Under given assumptions, a Gaussian process emulator can
be computed by Kriging of the samples [Kleijnen, 2009]. This emulator can then be
seen as an interpolator between the samples. Other emulators can be computed with a
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faster interpolator based on radial basis functions (RBF) [Dyn et al., 1986; Broomhead
and Lowe, 1988], which is the method we chose in our work.

Kriging, RBF interpolation or alternatives are limited by the dimension of the input
space. A few dozens of inputs is already a large number for an interpolation method.
Hence the model to be emulated needs to carefully designed with a limited number
of inputs. Also, in practice, one emulator is built for each output of the model. The
dimension of the model outputs should remain moderate, so that the total computational
cost remains low. When the dimension of the outputs is too high, a dimension reduction
is necessary. In these cases, the model outputs are projected onto a reduced subspace,
and an emulator of the reduced model is built. The metamodel combines an emulator
of the reduced model and a reconstruction of the model outputs.

More precisely, a model is considered as a function M whose input is a vector of
parameters p ∈ RK and output is a vector y ∈ RD : y = M(p), where K is the
dimension of inputs and D is the dimension of outputs. M is computationally costly.
The proposed metamodeling aims at replacing the original M with a metamodel M̂:
ŷ = M̂(p), so that the computational cost of M̂ is very low and ŷ is close to y with
the same input vector p. The detailed implementation of the metamodeling method
combined with dimension reduction is presented as follows.

4.2.1 Dimension reduction

The objective of dimension reduction is to project any y onto the subspace spanned
by the reduced basis (Ψj)j=1,2,...,N , with N � D. The reduced basis is represented by
a matrix Ψ = [Ψ1...ΨN ]. The reduced basis is chosen in order to include the directions
of variability of the outputs. Principal component analysis (PCA) is used for building
the reduced basis.

Firstly, m sample points p(i) (i = 1, 2, . . . ,m) are generated with m sufficiently
large. The sample points are generated with Latin Hypercube Sampling (LHS) to
ensure that p(i) are evenly spread across all possible values in their variation domain.
The latter should be carefully designed in order to take into account all the possible
variations of the inputs, including their uncertainty ranges. Then a training set Y =
[y1 . . .ym] = [M(p(1)) . . .M(p(m))] is obtained. The mean of the training set is denoted
as ȳ = 1

m

∑m
i=1 yi. By subtracting ȳ from each column of Y , the centered training set

is obtained and denoted as Ȳ : Ȳ = [y1 − ȳ . . .ym − ȳ]. The projection coefficient on
the j-th principal component is denoted as αj = (y− ȳ)TΨj. Therefore, for any output
y, its projection (denoted as ỹ) is written as y ' ỹ = ȳ + ∑N

j=1 αjΨj. The principal
components Ψj are sorted in a way that the first component accounts for the largest
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variance of Y , and then each following component accounts for the largest possible
variance. The approximation of the training set is denoted as Ỹ = [ỹ1 . . . ỹm], and total
quadratic error of Ỹ compared with the training set Y is:

m∑
i=1
‖yi−ỹi‖2 =

m∑
i=1
‖yi−(ȳ+

N∑
j=1

αjΨj)‖2 =
m∑
i=1
‖yi−ȳ−

N∑
j=1

((yi−ȳ)TΨj)Ψj‖2 =
D∑

k=N+1
λk,

(4.1)
where λk satisfies Ȳ Ȳ TΨk = λkΨk, for k = 1, 2, . . . , D. The total variance of the
training set is ∑m

i=1 ‖yi − ȳ‖2, and the proportion of explained variance in Ȳ is then
varexplained = 1−∑D

k=N+1 λk/(
∑m
i=1 ‖yi − ȳ‖2). In practice, we can determine the basis

sizeN by fixing a target varexplained, and evaluate the performance of PCA by calculating
the total quadratic error using equation 4.1. At last, a dimensional reduced model is
obtained as:

y ' ȳ +
N∑
j=1

((y − ȳ)TΨj)Ψj = ȳ + ΨΨT (M(p)− ȳ) (4.2)

After centering, the output of the model is always in the reduced subspace spanned
by (Ψj)j=1,...,N . The dimension of the model is therefore reduced. As mentioned in the
second paragraph of this section (Section 4.2), both inputs and outputs should be low of
dimension for building the emulator. The outputs dimension affects the computational
cost of the metamodel (see later in Section 4.2.3). The input dimension should also
remain low enough, presumably lower than 100, for the emulation introduced below to
properly work. In case p is of high dimension, it may be reduced by a PCA, just like
for the outputs. We can also decrease the input dimension by defining inputs that we
want to analyze the most, because they are associated with large uncertainties. In our
case study, the input dimension is decreased by selecting the key inputs that we want
to analyze (see later in Section 4.3.2).

4.2.2 Emulation of the reduced model

The reduced model in Equation 4.2 is of lower dimension, but computing the pro-
jection coefficient α = f(p) = ΨTM(p) is still computationally costly because M(p)
requires running the original model. The objective of building emulator is to replace
f(p) with a statistical emulator f̂(p) so that f̂ ' f and its computational cost is low.
We need a large number of samples to establish the direct relation between the inputs
p and each of the independent projection coefficients αj = fj(p). The same training
samples generated in PCA are used here: the m training points p(i). The emulator
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applied in our study consists of two parts: (i) a linear model (a linear regression), and
(ii) an interpolation between the regression residuals of the samples fj(p(i)),

f̂j(p(i)) =
K∑
k=1

βj,kp
(i)
k +

m∑
i=1

ωj,iφ(dj(p,p(i))). (4.3)

The regression represents the linear dependencies between the input parameters pk
(k = 1, . . . , K) and the projection coefficients αj. In practice, the most important part
is the interpolation of the residuals of the regression fj(p(i))−∑K

k=1 βj,kp
(i)
k . There are

many approaches for the interpolation part of the emulator, and the method used in
this study relies on radial basis functions (RBF).

The concept of RBF interpolation is that the influence of a sample point p(i) to the
approximation of fj(p) depends only on the distance between p(i) and the target point
p: the bigger the distance, the less p(i) should be influential. The Euclidean distance is
used in our study. Therefore, the interpolation with RBF of the regression residuals is:

f̂j(p(i))−
B∑
k=1

βj,kp
(i)
k =

m∑
i=1

ωj,iφ(d(p,p(i))), (4.4)

where d(·, ·) is the Euclidean distance, φ is the chosen RBF and the ωj,i are weights
that depend on the residuals fj(p(i))−∑K

k=1 βj,kp
(i)
k . The ωj,i are computed so that the

relation (4.4) is exactly satisfied at the sample points p(i). This involves solving a linear
system.

4.2.3 Completion of the metamodel with reconstruction step

After dimension reduction and the emulation of the projection coefficients, an ap-
proximation of the original modelM output can be written as follows:

ŷ = ȳ + Ψ(f̂(p)−ΨT ȳ) = ȳ −ΨΨT ȳ + Ψ


f̂1(p)
f̂2(p)

...
f̂N(p)

 ' y, (4.5)

where ȳ and ΨΨT are already known according to PCA studies. Therefore, when
the model is applied to a new input vector p, the computational cost is that of each
f̂j(p) (j = 1, . . . , N). Each component is emulated independently, so that the total cost
is N times the cost of the emulation of one component. Even though one emulator can
be very fast, we could not afford the computational cost for D emulators if D is high,
hence the dimension reduction to N � D on the outputs before the emulation.



96
Chapter 4. Metamodeling for a dynamic traffic assignment model at

metropolitan scale

4.3 Design of experiment with case study

This section presents the analytical DTAmodel named LADTA and the experimental
design of LADTA applied in a large-scale network of the agglomeration of Clermont-
Ferrand. We designed an atomic LADTA simulation applied in Clermont-Ferrand and
named it as LCF (for LADTA applied in Clermont-Ferrand). The discretization of the
complete LADTA simulation applied in Clermont-Ferrand into the atomic simulation
of LCF model allows us to carry out DUE traffic assignment with LADTA for a large
scale network with low dimensional input data. An evaluation of LCF model during
a reference day is also presented by comparing LCF model results with traffic flow
observations in the city of Clermont-Ferrand. The methods mentioned in Section 4.2 is
applied to this atomic LCF model in the following Section 4.4.

4.3.1 Complete LADTA model

Leurent [2003] designed an analytical DTA model, named LADTA (for Lumped
Analytical Dynamic Assignment). LADTA formulates the time-varying features in DUE
problem by introducing temporal profiles of traffic demand, volume loaded, travel costs
and routes for each user class. It also introduced FIFO point queues to represent
volume-delay relation on links. The implementation LTK (for Ladta Tool Kit) succeeded
in applying LADTA on the large-scale network of Paris metropolitan area[Aguiléra
and Leurent, 2009]. Wagner [2012] provided a mathematically rigorous and general
formulation of LADTA, together with numerical algorithms and applications. LADTA
and LTK were applied to another network at metropolitan scale in [Chen et al., 2017]
for the agglomeration of Clermont-Ferrand, and the simulation results were compared
with traffic measurements.

Inputs and outputs of LADTA

G = (N ,A): the nodes and links of an oriented graph for a modeled network. The
total link number is D = card(A).
ZO,ZD ⊂ N : the set of nodes representing the Origin-Destination zones. z =

card(ZO) = card(ZD) and z is the number of Origin/Destination zones.
H: the simulation period of LADTA. H = [h0, h1].
∆h: time step for loop detectors to register aggregated traffic flow data. It is also

assumed that during the interval [h, h+∆h], the traffic flow on the network is constant,
and so is the time-varying traffic demand.
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C = [Ca(h)]a∈A,h∈H, T0 = [T0a(h)]a∈A,h∈H, V0 = [V0a(h)]a∈A,h∈H: a vector of link
capacity, free-flow travel time and speed limits of each link a at time h.
X = [Xa(h)]a∈A,h∈H, T = [Ta(h)]a∈A,h∈H and : a vector of traffic volume, travel time

on each link a for time h. They are outputs of LADTA model.
U = [Ua(h)]a∈A,h∈H: a vector of generalized travel costs on each link a for time h.
Q(h) = (Qo,d(h))(o,d)∈ZO×ZD

: the time-varying O-D matrix. Qo,d(h) is the cumulated
traffic demand (total number of vehicles in veh) from o to d during H. It is non-
decreasing and can be deduced from time-varying traffic demand density qo,d(h) (in
veh h−1) at instant h for the O-D pair od. qo,d(h) is assumed to be a piecewise linear
function of h and qo,d(h) is constant in the interval [h, h + ∆h]. With known qo,d(h),
bounded H and boundary condition of Qo,d(h0) and Qo,d(h1), Qo,d(h) can be obtained
by (Qo,d(h))(o,d)∈ZO×ZD

=
∫ h
h0 qo,d(h̃)dh̃ with h ∈ H.

LADTA model structure

LADTA is a time-continuous link-based DUE assignment model. The analytical
model proposed in [Leurent, 2003] can be briefly formulated as five sub-models:

(i) Traffic flowing model denoted as F , stating that the travel time on each link is
a function of the current traffic volume circulating on a: T = F(X,T0). The capacity
is constrained by C, and the travel time of each link is based on a bottle-neck model.

(ii) Service formation (denoted as S), modeling the total travel costs of a route,
noted as UR, resulting from the travel costs of each link: UR = S(T ).

(iii) Route choice model denoted as U , essentially depending on UR: U(UR).
(iv) Route volume loading model for each least-cost route R. This will assign the

traffic demand Q along each least-cost route: XR = U(UR).
(v) Link volume loading model noted as D, which gives the volume loaded on each

link, as a result of (iv). A link might belong to several different routes: X = D(XR,T )
The sub-models from (ii) to (iv) are modeled for all pairs of nodes in N × N , by

considering that each node is a destination point from all other nodes, for each h ∈ H.
Therefore, the DUE traffic assignment modeled by LADTA can be considered as a
fixed-point problem as:

find X such that X = D((U ◦ S(T )),T ) and T = F(T ) (4.6)

A detailed algorithmic scheme for LADTA is presented in [Aguiléra and Leurent,
2009] for each sub-model listed above. The implementation of LADTA (called as LTK)
can be applied to large-scale networks [Aguiléra and Leurent, 2009; Chen et al., 2017].
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4.3.2 LADTAmodel applied in the agglomeration of Clermont-
Ferrand: the LCF model

The input dimension is high for TA simulation at metropolitan scale, especially
for dynamic simulation because of the additional time dimension. As mentioned in
Section 4.2, the input dimension should be low for metamodeling process. Therefore,
it is needed to decrease the input dimension and focus on the most influential inputs
concerning network characteristics and time-dependent O-D matrix. For a given TA
problem, the dimension of inputs could be reduced by assuming that the parameters the
demand and network are somehow fixed by the infrastructure of the given metropolitan
area. Some scalar multiplicative coefficients are considered as uncertain inputs of DTA
model applied to a given network.

With our case study, we build an atomic model based on LADTA applied in Clermont-
Ferrand. This atomic model is called LCF (for LADTA applied in Clermont-Ferrand).
For the same simulation period with the same input condition, the output of LCF model
is nearly the same as that of the complete LADTA model. This subsection presents
the construction and inputs of LCF model. The following subsection 4.3.3 presents
the application of LCF model for a reference day simulation at the agglomeration of
Clermont-Ferrand.

Inputs and outputs for LCF model

(1) Inputs
In our case study, the agglomeration of Clermont-Ferrand has more than 200,000

residents and an area of about 300 km2. The modeled network has D = 19, 628 links
and 8,844 nodes, as shown in Figure 4.2. In total, there are 469 inductive loop detectors,
giving real-time vehicle counts at high-time resolution (every minute) at lane-level.

The inputs H, G = (N ,A), ZO,ZD, C, V0 and T0 mentioned in Section 4.3.1 for
the complete LADTA model are specified here for the network of the agglomeration of
Clermont-Ferrand. The number of links is D = card(A) = 19628. C,V0,T0 ∈ RD. The
number of zones is z = card(ZO) = card(ZD) = 124. In addition, links are regrouped
according to link capacities and speed limits. Below we introduce the notation related
to the model inputs. Detailed description of the inputs regarding network parameters
is presented in Section 4.4.1.
V low

0 = [V0a]a∈Alow
: the vector of low speed limits (V0 ≤ 50 kmh−1), with Alow as

the set of links with V0 ≤ 50 kmh−1.
V high

0 = [V0a]a∈Ahigh
with Ahigh = A\Alow: the vector of high speed limits.
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Figure 4.2: Domain of the agglomeration of Clermont-Ferrand. (D = 19, 628 links,
and 8,844 nodes, with z = 124 zones. It has about 200,000 residents in an area of
about 300 km2. The red rectangle delimits the center Clermont-Ferrand. Concerning
the measurements, there are in total 469 inductive loop detectors at lane resolution,
giving vehicle counts at high-time resolution (each minute). In our case study, the
average flow during each 15min is used as measurement data.)

Csmall = [Ca]a∈Asmall
: the vector of small link capacities, with Asmall as the set of

links with C ≤ 900 veh h−1.
Cbig = [Ca]a∈Abig

with Abig = A\Asmall: the vector of big link capacities.
The time-dependent traffic demandQ(h) mentioned in Section 4.3.1 can be obtained

based on a static O-D matrix given for the agglomeration.
Qpeak = (qpeako,d )(o,d)∈ZO×ZD

: O-D matrix of the agglomeration of Clermont-Ferrand dur-
ing the evening peak hour 17:00 – 18:00, where (qpeako,d )(o,d) is the average traffic demand
during the evening peak. It is the static O-D matrix.

In addition, in order to study the spatial uncertainties lying in the O-D matrix, the
O-D pairs are categorized into five groups according to their distance between Origin-
Destination zones: 0 km, 0− 5 km, 5− 10 km, 10− 15 km and > 15 km. can be divided
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by 5 matrices and we have: Qpeak = Qpeak
0 +Qpeak

0−5 +Qpeak
5−10 +Qpeak

10−15 +Qpeak
>15 .

(2) Outputs
X(h) = [Xa(h)]a∈A,h∈H : the vector of computed traffic volumes at time h. Note that

in LADTA model, X(h) is the cumulated traffic flow (in number of vehicles) passing
through the network. It is measurable on the whole period H.

∆h = 0.25 hour: the time step of simulation in our case study. It is assumed that
(qo,d)(o,d)∈ZO×ZD

is piecewise constant during [h, h + ∆h]. Therefore, during the simu-
lation period H = [h0, h1], if (qo,d), (Qo,d(h0)), and (Qo,d(h1)) are known, the dynamic
O-D matrix Q(h), h ∈ H can be obtained by integrating (qo,d) on H.
y = X(h+∆h)−X(h) (in veh h−1): a vector of average traffic flow during [h, h+∆h].

It is the final output of the LADTA model applied in Clermont-Ferrand.

The construction of LCF model

The LADTA model takes into account the influence of the time-varying traffic de-
mand to compute time-dependent X(h). In the one-day DTA simulation with the
complete LADTA model, the length of the simulation period is 24 h [Chen et al., 2017]
(refer to Section 3.4.3 of Chapter 3). With a known density of the traffic demand qo,d(h),
a given static O-D matrix Qpeak and the boundary condition for Qo,d(h0) and Qo,d(h1),
the dynamic O-D matrix can be obtained by integrating qo,d(h) on H. Let P (h) define
the temporal variation coefficients, representing the ratio between (i) the traffic demand
during [h, h + ∆h] and (ii) during evening peak hour 17:00 - 18:00. With ∆h = 0.25 h
and the assumption that qo,d(h) is piece-wise constant, a one-day dynamic O-D matrix
can be obtained by 96 P (h) with h ∈ Iday = {h0, h0 + 0.25 h, 0.5 h, . . . , h− 0.25 h, h, h+
0.25 h, h1− 0.25 h}. Iday is the set of discrete time instants. The additional time dimen-
sion in LADTA model allows us to compute time-varying X on the network during the
whole periodH, however, the simulation during a whole day requires big additional time
dimension (96) and it is not recommended to build a meta-model with inputs of such
dimension. In addition, since LADTA model is a DUE-based DTA model, it computes
equilibrium at each instant during H, the longer H is, the longer computational time
is required. Therefore, instead of building a metamodel of LADTA with high input
dimension and long computational time for a one-day DTA simulation, a metamodel is
built based on an atomic DTA simulation with LADTA applied to Clermont-Ferrand
with shorter simulation period. This atomic simulation is call LCF model, for LADTA
applied in Clermont-Ferrand.

The atomic LCF model takes time-varying traffic demand during a 3.25 hours period.
It computes link-level traffic flow during an interval of [hsimu, hsimu + ∆h], with hsimu the
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instant at which we want to compute traffic flow. The simulation period for an atomic
simulation with LCF model isHatomic = [hsimu−3.25 h, hsimu+1.0 h]. The interval outside
Hatomic is denoted as H̄. The computed y(hsimu) during [hsimu, hsimu + ∆h] is assumed
to be not affected by traffic demands during H̄. Let Iatomic denote the set of instants
{hsimu− 2.25 h, hsimu− 2.0 h, . . . , hsimu− 0.25 h, hsimu, . . . , hsimu + 0.75 h}. Therefore, the
piece-wise constant (qo,d(h))h∈Hatomic can be obtained by

qo,d(h̃) = P (h)× qpeako,d , h ∈ Iatomic, h̃ ∈ Hatomic. (4.7)

(P (h))h∈Iatomic contains the 13 temporal variation coefficients for converting the static
O-D matrix into the dynamic O-D matrix during Hatomic. The boundary condition is set
to Qo,d(hsimu−2.25 h) = 0.0. Therefore, the dynamic O-D matrix with cumulated traffic
demand Q during Hatomic can be obtained for carrying out LCF model. It is assumed
that the temporal variation of the demand is independent of the spatial distribution of
O-D pairs: at the same time h, P (h) is the same for all (qo,d(h))(o,d)∈ZO×ZD,h∈H.

It is needed to decrease the input dimension for carrying out metamodeling. It is
assumed that for the given agglomeration, the default values of Q(h)h∈Hatomic

,V0 and
C remain unchanged. Some scalar multiplicative coefficients are chosen to represent
variations and uncertainties for inputs mentioned in Section 4.3.2. The LCF model can
then read, with demand and supply as inputs,

y(hsimu) = F(Q(h)h∈Hatomic
,G)

= F(Q(h)h∈Hatomic
,V0,C)

= F(P (h)h∈Iatomic
, δ0Q

peak
0 , δ0−5Q

peak
0−5 , δ5−10Q

peak
5−10, δ10−15Q

peak
10−15, δ>15Q

peak
>15 ,

µlowV
low

0 , µhighV
high

0 , λsmallC
small, λbigC

big).
(4.8)

In Equation (4.8), P (h) can represent not only the temporal variation but also the
uncertainty of the traffic demand. δ0, δ0−5, δ5−10, δ10−15 and δ>15 are five evening peak
coefficients to represent spatial uncertainty of the demand. µlow, µhigh, λsmall, and λbig
are four coefficients applied to speed limits and link capacities. In addition, the direction
of the traffic demand is mainly from working zones to residence zones in the given Qpeak

since it contains traffic demands during the evening rush hour. The direction of the
demand during the morning might be opposite. During morning period (before 12:00),
we use (Qpeak)T as O-D matrix. The input for the transposition is a binary parameter
η, with η = 0 when the simulation is carried out with the normal O-D matrix Qpeak,
and η = 1 when we use the transposed O-D matrix (Qpeak)T instead. We now focus
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on the parameters p that either vary in time or parameterize the uncertainties in the
inputs, and we write the LCF model as

y(hsimu) =M(P (h)h∈Iatomic
, δ0, δ0−5, δ5−10, δ10−15, δ>15, λbig, λsmall, µhigh, µlow, η) =M(p),

(4.9)
where p ∈ RK is the input vector of the LCF model and its dimension is K = 23. One
atomic simulation with LCF model takes about 2 hours. A metamodel named Meta-
LCF is built for LCF model. With the same input vector p, the Meta-LCF model also
computes traffic flows at street level.

4.3.3 Case study with LCF model

In this section, we present the performance of traffic assignment simulation with the
LCF for a reference day, Thursday, 20th November 2014. The period of the one-day
simulation with LCF is actually from 2:00 to 22:30, i.e., hsimu ∈ Hdaily = [2.0, 22.5].
There were then 82 runs of the LCF for the whole-day simulation. We then evaluated
the original LCF model for the reference day, by comparing with observed traffic counts
collected by inductive loop detectors. The outputs of traffic assignment with LCF model
are the average traffic flow during each time interval [hsimu, hsimu + ∆h] on the reference
day, on each road of the network in the agglomeration of Clermont-Ferrand. The com-
parisons were carried out between (i) the outputs of the simulations to be evaluated and
(ii) the outputs of the reference simulation. The global criteria are computed with the
spatio-temporal flows computed at all links (or all detectors) at all time intervals. The
temporal criteria are calculated over the spatially-averaged flows with all discrete-time
intervals of 15 minutes. The spatial criteria are calculated over the temporally-averaged
flows with all links (or all detectors).

DTA with LCF model on the reference day

There are 469 detectors in the city of Clermont-Ferrand, giving real-time vehicle
counts at lane-level. Spatially-averaged traffic measurements can be obtained for each
interval of 15min during a day, by averaging vehicle counts of all detectors during
each interval. It is assumed that the temporal variation of the traffic demand is the
same as the temporal variation of the spatially-averaged traffic flow measurement on
the network. Therefore, the temporal variation coefficients P (h) in p can be obtained
by taking the ratio between the spatially-averaged traffic flow during [h, h + ∆h] and
during the evening peak hour (17:00 – 18:00) of the measured traffic flow.
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As mentioned in Section 4.3.2, a 3.25 hours temporal variation is needed for one
atomic simulation with LCF model, to compute average flow during [hsimu, hsimu + ∆h].
For example, for computing traffic flows during 8:00 - 8:15 (i.e. y(8.0)), a vector of
(P (h))h∈{5.75,6.00,...,7.75,8.0,8.25,...,8.75} hour are needed. They can be obtained by taking the
ratio of spatially-averaged traffic measurements during periods {[5 : 45, 6 : 00], [6 : 00, 6 :
15], . . . , [7 : 45, 8 : 00], [8 : 00, 8 : 15], . . . , [8 : 45, 9 : 00]}, and during evening peak.

It is assumed that there is no spatial variation in the O-D matrix and δ0 = δ0−5 =
δ5−10 = δ10−15 = δ>15 = 1.0 for the reference day. It is also assumed that there is no
variation in link capacities and speed limits neither: λbig,small = 1.0 and µlow,high = 1.0.
The O-D matrix transposition parameter η = 1 when LCF model is carried out before
12:00, and η = 0 otherwise. The input vector pref has then been initialized for each
simulation time hsimu.

Model evaluation on the reference day

With pref, the traffic assignment during the reference day was carried out and we
compared the computed traffic flows (denoted as ci) and measured vehicle counts (de-
noted as ri) at each detector. As the computed flows are at link level, while the traffic
counts are at lane level, we converted the simulated link flow to detector flows by divid-
ing the number of lanes on the link. The formulas for calculating comparison scores are
presented in Table 4.1. The scores for the simulations are presented in Table 4.2. The
temporal variation of spatially-averaged flows during the whole-day is shown in Fig-
ure 4.3, for both the simulation links with LCF model and traffic flow measurements.

Table 4.1: Scores for the performance evaluation of a simulated flow. (ci)i is a sequence
of traffic flow to be evaluated. (ri)i is the corresponding sequence of observations. n is
the dimension of the sequences. c̄ and r̄ are respectively the means of (ci)i and (ri)i.

Score Formula

Mean value of the reference data 1
n

∑n

i=1 ri

Bias 1
n

∑n

i=1(ci − ri)

Normalized bias 1
n

∑n

i=1
(ci−ri)

r̄

Correlation
∑n

i=1
(ci−c̄)(ri−r̄)√∑n

i=1
(ci−c̄)2

√∑n

i=1
(ri−r̄)2

Root mean square error (RMSE)
√

1
n

∑n

i=1(ci − ri)2

Normalized mean square error (NRMSE) RMSE
r̄
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Table 4.2: Comparison of traffic flow results between LCF and measurements for a
whole-day simulation on the 20th November 2014 during 2:00 - 22:30. In the global
column, the scores are computed with all detectors and times. In the temporal column,
the scores are calculated for the spatially-averaged flows during all time intervals of
15 minutes. In the spatial column, the scores are computed for the temporally-averaged
flows at all detectors. The 82 runs of LCF for the whole-day simulation are launched in
parallel using 82 cores.

Iteration number 50

Simulation time 107min17s

Comparison vectors Global Temporal Spatial

Mean bias error (veh h−1) 7 7 7

RMSE (veh h−1) 161 14 123

NRMSE (%) 75.53 6.54 57.57

Correlation 0.70 1.00 0.59
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Figure 4.3: Temporal variation of the spatially-averaged flow on Thursday, the 20th

November 2014. For each time step of 15 minutes, we compute the traffic flow averaged
over all detectors in the network. This figure illustrates the temporal distribution of the
traffic over the simulation period.

The distribution of the traffic flow at all detectors and during each 15 minutes is
shown in Figure 4.4 (left), and the distribution of the errors is also shown in Fig-
ure 4.4 (right). The results show that the spatio-temporal errors are mainly in [−200, 200]
(veh h−1 detector−1). Figure 4.4 (left) shows that overestimations of traffic flows are
found on links with measured flows less than 100 veh h−1 lane−1, especially on with very
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low traffic measurements (< 100 veh h−1 lane−1). There are some underestimation of
flows on links with relatively heavier traffic (> 500 veh h−1 lane−1) measurements.

Figure 4.4: The distribution of the assigned traffic flow (left), and its error (in veh h−1,
right), computed using all 15-minute flows at the detectors, from 02:00 to 22:30 on the
20th November 2014 (in veh h−1).

The temporal and spatial performance is evaluated with the scatter plots in Fig-
ure 4.5. As shown in Figure 4.3 and Figure 4.5 (left), the LCF model produces a
relatively good estimation for the daily temporal profile. We inputted the observed
temporal profile, and the model did not deteriorate this information during the traf-
fic assignment. However, the traffic assignment with LCF model is less accurate for
simulating the users road choices (Figure 4.5, right). We have relatively big spatial
errors, and consequently spatio-temporal errors (Figure 4.4 and Figure 4.5, right). This
confirms the conclusions from Table 4.2.

The limitation of the LCF model in predicting the spatial distribution of the traffic in
Clermont-Ferrand might be due to five reasons. (i) The assumption that the traffic are
uniformally distrubuted on lanes of a same link ignores that there are surely differences
of traffic flows on different lanes. In fact, we are not comparing exactly the same values.
The flows computed by the model are the flows on each link, while the flows measured
are flows on each lane. This difference brings representativeness errors. An example
of this kind of error is presented in the following paragraph. (ii) The errors in the
estimation of the O-D matrix, and the underlying difference of user classes in a static
O-D matrix. In fact, in static O-D matrix during rush hours, the proportion of users
with travel purpose to/from work/school is greater than other categories of travelers
(leisure, personal, social, etc.). However, as we convert this matrix into a dynamic one
during a whole day, the proportion of different users categories might change during
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Figure 4.5: Evaluation of the daily temporal variation (left) and spatial variations (right)
between the simulation outputs LCF and the measurements. In the temporal scatter
plot, the flows are firstly averaged over all 469 detectors, and each 15-minute flow is
then reported. In the spatial scatter plot, the flows are firstly averaged over the whole
simulation period from 02:00 to 22:30, and then reported for each detector.

different period of a day. This might lead to spatial differences in O-D matrix between
rush hours and off-peak periods. These spatial differences were not taken into account
when converting the static O-D matrix into the dynamic one in our case study. Besides,
there might be errors lying in the modeling of O-D matrix based on the household
travel survey, and there are also uncertainties in the survey itself. (iii) We assume that
all the users choose their paths by minimizing their travel time, while users may use
different criteria in reality. (iv) For several paths between an O-D pair where there is
no congestion, the model will assign all the demand on one and only one path. This is
not exactly the case in reality. Randomness should be added in route choice strategies
in these cases. (v) There is a toll highway (A89) connecting the north part of the
agglomeration (Riom) to the center of Clermont-Ferrand, and the south part of the
agglomeration (for instance, Auvergne). The toll price was not taken into account for
calculating the travel cost. The spatial distribution on this highway may therefore be
different between traffic assignment with LADTA and the measurements.

Here is an example for representativeness errors. Figure 4.6 (left) shows the spatial
distribution of bias between the computed and observed flows. It helps us to locate
the links with big errors when comparing with observations. In the red rectangle of
Figure 4.6 (left), there are big overestimations on certain links. These links have three
lanes, and they are located at the free north-south county road D2009 connecting the
residence zone Riom, and the center of Clermont-Ferrand. However, there are only
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left-turning detectors on theses links. The uniform distribution of traffic on lanes of a
same given link is not applicable on these links. In fact, on this north-south country
road, the traffic on straight lanes are significantly heavier than the traffic on left turn
lanes. By deleting these 6 detectors only, the spatial NRMSE decreases from 57.57%
to 53.71% (see results in Table 4.3 and in Table 4.2).
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Center Clermont-Ferrand: bias on links with detectors (veh/h)

Figure 4.6: Left: map of bias (in veh h−1 link−1) between the temporally-averaged flows
computed by LCF on each link and the measured flows, on the 20th November 2014.
(In the red rectangle, the links with overestimated flows have detectors only on left-turn
lanes.) Right: scatter plot of the temporally-averaged flows on each detector. (The red
points match the simulation-observation comparison at detectors located on left-turning
lanes in the red-rectangle zone of the left figure.)

4.4 Metamodeling for the dynamic traffic assign-
ment model for the agglomeration of Clermont-
Ferrand and performance evaluation

In this section, we applied the metamodeling method mentioned in Section 4.2 to the
LCF modelM(p) in Equation 4.9 whose input dimension is K = 23. A fast metamodel
is built and it preserves the main features of the original LCF model: M̂(p) = ŷ '
y = M(p). The output dimension D = 19, 628: y ∈ RD and ŷ ∈ RD. The resulted
metamodel is called Meta-LCF. Then the outputs of Meta-LCF is compared with those
of LCF model, and the outputs of the two models are also compared with observation
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Table 4.3: Comparison of traffic flow results between LCF and measurements for a
whole-day simulation on the 20th November 2014 during 2:00 - 22:30. In the global
column, the scores are computed with all detectors and times. In the temporal column,
the scores are calculated for the spatially-averaged flows during all time intervals of
15 minutes. In the spatial column, the scores are computed for the temporally-averaged
flows at all detectors. The scores are computed without the 6 left-turning detectors.

Iteration number 50

Comparison vectors Global Temporal Spatial

Mean bias error (veh h−1) 6 6 5

RMSE (veh h−1) 155 13 (14) 116 (123)

NRMSE (%) 71.93 6.43 53.71

Correlation 0.72 1.00 0.63

data collected by inductive loop detectors in the network of Clermont-Ferrand, during
a one-month simulation.

4.4.1 Input variation intervals

We define the variation intervals of each input element pi in p of LCF model. The
variation intervals are chosen to cover the possible uncertainties in inputs.

Traffic demand

For the temporal variation coefficients, we consider that P (h) varies in [0.0, 1.5] so
that the traffic demand at instant h can vary from 0% to 150% of the average flow
during evening peak hour. This range of variation allows us to build all the temporal
profiles we need to reproduce the traffic demand during any period of the day, for any
day type (working days, weekends and holidays).

One of the most important uncertainty source of LCF model is the O-D matrix of
the agglomeration of Clermont-Ferrand. It is based on surveys on a limited part of the
citizens. Based on the surveys, one can use a model to generate the O-D matrix, which
can introduce large uncertainties in the O-D matrix. Besides, most of the travels in the
O-D matrix are to/from work, from Monday to Friday. If we want to compute the traffic
volume during weekends or holidays, the O-D matrix might be completely different.

We categorize 5 groups of O-D pairs based on the distance between their centroids:
0 km (the diagonal of the O-D matrix), 0−5 km, 5−10 km, 10−15 km and > 15 km. For
each of these 5 categories, the variation of the corresponding evening peak coefficients
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is set as [0.25, 1.50], in order to take into account all possible spatial variations and
uncertainties lying in O-D matrix.

Link capacities and speed limits

The capacities and speed limits are characteristics of the road network of Clermont-
Ferrand. As for link capacities, we categorize the links in two classes: the "big links"
whose capacities are strictly bigger than 900 veh h−1, and the "small links" with capaci-
ties less than or equal to 900 veh h−1. For each category, we consider two multiplicative
coefficients for the link capacity (λbig, λsmall). Because of the uncertainties, the ca-
pacities are assumed to vary by ±30%, and λbig, λsmall ∈ [0.7, 1.3] for big and small
links.

Although the speed limits are defined by transportation regulations, they are also
subject to uncertainties. In fact, the uncertainty may lie in the assumption that users
travel at the speed limit in free flow condition. In some cases, users cannot always
travel at the maximum speed even if there is no congestion according to the fundamental
diagram presented in Chapter 1. In other cases, users might also exceed a little bit the
speed limit (rural areas and highways). We then categorize network links according to
their speed limit. A link is considered as "high speed link" if its speed limit is> 50 kmh−1,
which should correspond to a link in a rural area or to highways. A link is considered
as "low speed link" if the speed limit is ≤ 50 kmh−1, which corresponds to a link in
an urban area. Two multiplicative coefficients are applied to the speed limit of these
two categories, µhigh, µlow. The variation of these two coefficients is different since the
road conditions and users behavior might be different in urban areas, rural areas or
highways. We consider that the speed variation of "high speed link" is 80% − 120% of
the modeled speed limits, and the speed variation of "low speed link" is 70% − 110%.
Figure 4.7 presents the link capacities and speed limitations in the agglomeration of
Clermont-Ferrand.

The variations of each element in the vector p to build the training sets are presented
in Table 4.4. Then sample points are generated with LHS of the pi varying in their
intervals. Note that η is fixed to 1 if we build a metamodel of LCF to be applied before
12:00, and it is fixed to 0 when building the metamodel for LCF applied to case studies
after 12:00. The variation of η is not an uncertain value, as for the other 22 inputs.
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Figure 4.7: Capacity map (left) and speed limit map (right) for the agglomeration of
Clermont-Ferrand.

Table 4.4: The inputs of LCF model and their variations for training sets

Input Temporal profile Capacity Speed Demands in O-D matrix Transposed

O-D matrix

Symbol (P (h)h∈Hatomic λbig, λsmall µhigh, µlow δ0, δ0−5, δ5−10, δ10−15, δ>15 η

Number 13 2 2 5 1

Variation [0.00, 1.5] [0.70, 1.30] [0.80, 1.20], [0.70, 1.10] [0.25, 1.50] 1 or 0

4.4.2 Metamodeling for LCF model

The sample size mOD = mODtransposed
= 3003 for the cases with the given O-D

matrix as demand input (η = 0 in Equation 4.9), or with its transposition (η = 1 in
Equation 4.9). We generated m samples using LHS approach for each case, i.e. for 6,006
training atomic simulations with LCF model in total. Then the PCA is carried out.
The outputs of LCF are completely different if we use the original O-D matrix, or the
transposed matrix. Therefore, we decided to carry out one PCA for each case, resulting
in two different reduced bases. The projection of the outputs on the subspaces resulting
from the PCA studies were compared with the outputs of the training simulations. We
conditioned the explained variance to choose the basis dimension N as mentioned in
Section 4.2.1. The errors presented in Section 4.2.1 are analyzed by using the root-



4.4. Metamodeling for the dynamic traffic assignment model for the
agglomeration of Clermont-Ferrand and performance evaluation 111

mean-square error (RMSE) between the outputs and their projection for evaluating
PCA performance. Detailed evaluation of the dimension reduction is presented in the
following Section 4.4.3

At last, we used the 3003 input samples, that were generated with LHS, to built N
emulators of the N reduced models with input p and one of the N projection coefficients
(on the principal components) as output. This was carried out once for the first half of
the day (before 12:00), and once for the second half of the day (after 12:00). A linear
trend was firstly fitted for each projection coefficient. Then we relied on the Python
module SciPy to carry out the interpolation with radial basis functions (RBF). The
cubic RBF φ : r 7→ r3 was chosen for the interpolation. 13 and 15 emulators were built
for the projection coefficients on the principal components, for simulations with LCF
before 12:00 and after 12:00 respectively. The Meta-LCF was then built, and a detailed
model evaluation is presented in the Section 4.4.4

An atomic simulation of the original LCF requires about 117min on one core. 3003
evaluations of the original LCF model are needed to build a training set for a metamodel.
Once the training set is available, the construction of emulators is very fast. The
computational time for emulators construction only increases linearly with the reduced
basis size. Once the Meta-LCF is built, it has a very low computational cost. The
evaluation time of a single atomic simulation decreases to 0.022 s with Meta-LCF. The
computational time of the DTA simulation during the reference day decreases from
several hours to several seconds. Then we were able to carry out a one-month simulation
with Meta-LCF model in less than 1 minute on one core. Even though there are some
losses due to dimension reduction and emulation of the original model as shown in
the following Section 4.4.3, the metamodel shows a very similar behavior as the original
LCF model. The performance of Meta-LCF model is essentially the same as the original
model when compared with loop detector measurements. Detailed results concerning
Meta-LCF performance are presented in Section 4.4.4 and Section 4.4.5.

4.4.3 Performance evaluation of dimension reduction

The results in Table 4.5 show the performance of dimensionality reduction for differ-
ent sizes of the basis. We denote ya,i as the computed flow on road a of with the sample
point p(i), i ∈ [1, 2, . . . ,m], and we denote y′a,i as the projection of ya,i on the reduced
subspace. Total RMSE and NRMSE in Table 4.5 are calculated between ya,i and y′a,i
at each link a for each input point p(i), i ∈ [1, 2, . . . ,m]. At each road ã, the RMSE
and NRMSE are calculated between yã,i and y′ã,i, with i ∈ [1, . . . ,m], and we can get
RMSEã and NRMSEã. Then the average spatial NRMSE in Table 4.5 is the average
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over all NRMSEã, with ã ∈ {1, 2, . . . , 19628}. The results in Table 4.5 show that the
PCA performance can be improved by increasing the basis size, but it will also increase
the dimension of the subspace (i.e., the number of principal components). Consequently,
this will increase the total computational cost for the metamodel (as mentioned in Sec-
tion 4.2.3). It is necessary to choose a low-dimension reduced subspace, yet keep a
reasonable good performance of the projections.

Table 4.5: Comparison of the traffic flow projection against the original simulations,
for different sizes of the basis, using the original O-D matrix Qpeak (simulation during
periods after 12:00, η = 0), and the transposed O-D matrix (Qpeak)T (simulation during
periods before 12:00, η = 1).

Explained variance 0.80 0.85 0.90 0.95 0.98

O-D matrix transposition η 0 1 0 1 0 1 0 1 0 1

Reduced basis size 5 4 7 6 15 13 63 56 228 218

Mean bias error (veh h−1) 0 0 0 0 0 0 0 0 0 0

Total RMSE (veh h−1) 54 52 47 47 39 38 28 27 18 17

Total NRMSE (%) 41.63 40.20 35.96 31.19 30.18 29.62 21.34 21.14 13.49 13.37

Avg spatial RMSE (veh h−1) 36 35 31 31 26 26 20 19 13 13

Avg spatial NRMSE (%) 31.9 31.591 28.86 29.41 25.23 25.22 20.39 20.53 14.81 15.05

Correlation 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.00

Now we focus on where the errors mainly come from. Figure 4.8 shows the dispersion
of the spatial NRMSEa against the average computed flow of each link a over all M
training samples ( 1

m

∑m
j=1 ya,k, with k = 1, 2, . . . ,m; m = 3003 and a = 1, 2, . . . , D;

D = 19628 ). It can be observed that bigger errors (with NRMSEa > 50%) are found
on links whose traffic computed by LCF is relatively low (< 200 veh h−1). Besides,
Figure 4.9 shows the distributions of all computed 15-minute traffic flows (from all
links), for the training simulations and for their projections. It is observed that the
projection has its limitations in reproducing the lowest traffic flows computed by LCF,
especially when the basis dimension is low. The projection performance gets better as
basis dimension increases. However, in both Figure 4.8 and 4.9, we find that the increase
of the basis dimension mainly improves the performance on links with lower flows. The
improvement of the comparison criteria shown in Table 4.5 mainly comes from a better
performance on these links, which are often less important in a DTA simulation. A PCA
basis with explained variance of 0.90 can already reproduce a relatively good projection
of the computed flows in training simulations. Therefore, for the construction of the
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metamodel, we chose a PCA reduced basis with the explained variance equal to 0.90.
The final chosen basis size for the case with the O-D matrix (i.e., simulations after 12:00)
is Nnon_transposed = 15, and Ntransposed = 13 for the simulation cases with the transposed
O-D matrix (i.e., simulations period before 12:00). Figure 4.10 illustrates two of the
13 selected principal components, for the case of simulation with the transposed O-D
matrix for morning periods.

Figure 4.8: The dispersion of NRMSEi (projection error) against the flow for all links
over the 3,003 samples, for the simulation case with the non-transposed O-D matrix.
Left: explained variance = 0.8, N = 6; center: explained variance = 0.9, N = 15;
right: explained variance = 0.98, N = 228. (We compute the RMSE for each link i over
the average flows of 3,003 samples, and divide the RMSE by the average flow to get
NRMSEi.)
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Figure 4.9: The distribution of traffic assigned by LCF (blue) and its projection (red), for
all links of all 3,003 samples. Left: explained variance = 0.8, N = 6; center: explained
variance = 0.9, N = 15; right: explained variance = 0.98, N = 228.
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Figure 4.10: The figures represent two of the 13 selected principal components. (The
first principal component (left) explains the most important part of the variance, and
highlights links with high capacities. The fourth principal component (right) represents
the effect of the links with higher speed limit, i.e. shorter free-flow travel time.)

4.4.4 Comparison between the metamodel of LCF and the
original LCF model

In this subsection, we carried out a one-month DTA simulation with the original
LCF model and the Meta-LCF model for November 2014. Both models rely on the
same inputs, and the performance of Meta-LCF model is first evaluated by comparing
its outputs to those of the original model. The results of both models are also compared
with inductive loop detector observations in the following Section 4.4.5.

The traffic demand varies from one day to another. We introduce here a new mul-
tiplicative coefficient: the total demand coefficient ξday for the simulation day. The
demand variation for a given simulation day can then be represented by temporal vari-
ation coefficients (Pday(h)) and ξday. It is assumed that there is no spatial difference in
the O-D matrix so that δ0 = δ0−5 = δ5−10 = δ10−15 = δ>15 = 1.0. It is also assumed
that, during one month, the inputs regarding street capacities and speed limits take
the default value so that λ = µ = 1.0 in Equation 4.9. Pday(h) and δday are obtained
as follows. It is assumed that the temporal variation of traffic flow measured by loop
detectors can reflect the time variation of traffic demand in the dynamic O-D matrix.
We used the observations from September 2013 to August 2014 as learning samples, and
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built 16 typical temporal profiles. The 16 different day types in Clermont-Ferrand are
(i) seven weekdays during normal period, (ii) seven weekdays during school vacation pe-
riod, (iii) a public holiday during normal period and (iv) a public holiday during school
vacation period. Then for each day type day, Pday(h) is obtained by taking the ratio
between (i) the measured spatially-averaged traffic flow (in veh h−1) during [h, h+ ∆h]
and (ii) the average traffic flow (in veh h−1) during 17:00 - 18:00 on that day. ξday are
obtained by taking the ratio between (i) the measured traffic flow (in veh h−1) during
the evening peak hour of the typical day day and (ii) that on the reference day. There-
fore, for computing traffic flow during [hsimu, hsimu + ∆h] on the typical day, the input
vector p in the Equation 4.9 is set as

pday(hsimu) =

(ξday(Pday(h))h∈Iatomic , 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1) hsimu < 12 h
(ξday(Pday(h))h∈Iatomic , 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0) otherwise.

(4.10)
For computing traffic flows at link resolution at time resolution of every 15 minutes
from 02:00 to 22:30, hsimu is in the set {2.0, 2.25, 2.5, . . . , 22.0, 22.25, 22.5} h. Figure 4.11
gives an example of spatially-averaged profile of all the Tuesdays from September 2013
to August 2014.

From Figure 4.11, considering the Tuesdays in normal periods, the differences be-
tween the traffic flows at peak hours of different days are very small. Moreover, the
total volume of traffic during a day remains almost unchanged. The same feature is
observed for other weekdays, so that the temporal variation during a given weekday can
be represented by an average temporal profile (yellow line). However, Figure 4.11 (right)
shows that during the vacation periods, bigger differences are found in both the total
daily volume and the temporal variation of the traffic. These may lead to errors in our
simulations.

We compared the traffic flows computed by Meta-LCF and those computed by the
original LCF model during November 2014 from 2:00 to 22:30 (local time) each day:
y(h) computed by the two models with h ∈ {2.0, 2.25, 2.5, . . . , 22.0, 22.25, 22.5} (hour).
During November 2014, there were (i) one day of public holiday during school vacation
(the 1st November), (ii) one public holiday during normal period (the 11th November),
(iii) one Sunday during school vacation (the 2nd November) and (iv) weekdays during
normal period. The corresponding typical day profiles are used as demand inputs. The
outputs are traffic flows at link-level during all 15-minutes intervals [h, h+ ∆h], and are
denoted (yi,h) for the original model and (xi,h) for the metamodel.
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Figure 4.11: Temporal profiles of spatially-averaged flows of all Tuesdays from Septem-
ber 2013 to August 2014. The profiles in yellow are average profiles that we use to
represent typical temporal profiles as inputs of LCF and Meta-LCF models. Each thin
line represents the temporal profile of traffic of a Tuesday during normal periods (left)
and school vacation periods (right), and the yellow line represent the average temporal
profile of traffic flow over all Tuesdays during each kind of period. Several points reach
zero when all detectors failed. This rarely happens, less than 5% of the time, and these
failed values have not been taken into account for calculating of the average temporal
profiles.

Table 4.6 summarizes the comparison between (yi,h) and (xi,h) against different basis
sizes. The results show that the performance of the metamodel improves slightly when
increasing the basis size, i.e., the number of principal components. These results are
consistent with the projection performance in PCA studies. The computational time
for constructing emulators increases with the increase of basis size as well.

Figure 4.12 shows the comparison between the flows computed by LCF and Meta-
LCF model at link-level. The Meta-LCF model can well predict both the spatially-
averaged flows over all time steps, and the temporal-averaged traffic flows over all links.

Figure 4.13 shows the spatial distribution map of traffic flows computed by the orig-
inal LCF model and the Meta-LCF for the one-month simulation. For each link, the
temporally-averaged flows are calculated and displayed in the Figure 4.13. It shows that
the spatial distribution of the flows computed by the two models are similar. Figure 4.14
presents the comparison criteria of the metamodel against the original model. The nor-
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Table 4.6: Comparison of the traffic flows computed by the metamodel against the
results from the original model, for different sizes of the reduced basis. The simulations
were carried out for the same period of the original LCF model evaluation, i.e., November
2014, from 2:00 to 22:30 each day. (The global comparison criteria are calculated for
spatio-temporal flows at all links and times. The temporal comparison are carried out
based on spatially-averaged flows for all time intervals. The spatial comparison criteria
are calculated for temporally-averaged flows on all links.)

Explained variance 0.80 0.85 0.90 0.95 0.98

Basis size (simulation periods before 12:00 and after 12:00) 4/4 6/7 13/15 56/63 218/228

Computational cost for building Meta-LCF (s) 54.319 85.734 182.412 773.625 3070.521

Computational cost per run of Meta-LCF (s) 0.0147 0.0151 0.0220 0.0442 0.1471

Global bias (veh h−1) 0 0 2 2 2

Global RMSE (veh h−1) 47 45 44 43 44

Global NRMSE (%) 54.15 51.70 51.20 50.00 50.53

Global Correlation 0.98 0.98 0.98 0.98 0.98

Temporal bias (veh h−1) 0 0 2 2 2

Temporal RMSE (veh h−1) 2 2 3 3 4

Temporal NRMSE (%) 2.68 3.17 4.55 4.47 4.70

Temporal Correlation 1.00 1.00 1.00 1.00 1.00

Spatial bias (veh h−1) 0 0 2 2 2

Spatial RMSE (veh h−1) 24 23 20 19 19

Spatial NRMSE (%) 28.52 26.50 23.37 22.12 22.44

Spatial Correlation 0.99 0.99 0.99 0.99 0.99

malized bias and NRMSE for each link is calculated according to Table 4.1. Comparing
Figure 4.13 and Figure 4.14, it is observed that most of the large errors are found on
links where the flows computed by the original model are low (less than 200 veh h−1, see
Figure 4.13 as reference). This is the similar conclusion as in Section 4.4.3, where errors
lying in projection of PCA studies are higher on links with lower computed flows.

4.4.5 Comparison between the metamodel of LCF and the
traffic flow measurements

We compared measured traffic flows and the computed flows for the simulation
of November 2014, with both the original LCF model and Meta-LCF. The scores in
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Figure 4.12: Evaluation of the spatially-averaged traffic flows (left) at all time steps, and
temporally-averaged traffic flows (right) on all links computed by LCF and Meta-LCF
model. (For the spatially-averaged flows, the flows are firstly averaged over all links and
then reported during each 15-minutes interval. For the temporally-averaged flow, the
flows are firstly averaged over the whole simulation period during one month and then
reported for each link.)

Figure 4.13: Maps of temporally-averaged flow computed by models during the whole
month for the center Clermont-Ferrand. Left: flows computed by the original model;
right: flows computed by the metamodel. For the links that share the same nodes but
are oriented in opposite directions, the sum of the computed flows are calculated and
displayed. The projection system is Lambert-93.
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Figure 4.14: Maps of normalized bias (left, in %), correlation (center) and normalized
RMSE (NRMSE, right, in % ), over the center of Clermont-Ferrand, between the flows
computed by the Meta-LCF and the original LCF model. (For each link, the normalized
bias and the NRMSE are the bias and RMSE divided by the temporally-averaged flows
computed by the original model. Bigger errors are found on links whose computed flows
are lower than 200 veh h−1.)

Table 4.7 are computed similarly as in Section 4.4.4, except that the comparison is at
detector level, as in the LCF model evaluation from Section 4.3.3. It is observed that
the metamodel has slightly better performance than the original model. Furthermore,
the performance of the metamodel is insensitive to the number of principal components.

From results in Table 4.7 and Table 4.6, we can conclude that the losses due to
dimension reduction and emulation of the original model are barely significant for the
prediction of the observed traffic flows on the network. The metamodeling approach
preserves the essential behavior of the original LCF model for operational applications
to the network of Clermont-Ferrand even during long-term simulation of one month.
Figure 4.15 is a zoom of Figure 4.1 in Section 4.1. It shows the temporal variation
of the spatially-averaged flows over two weeks of loop detector measurements (blue),
flows computed by the original LCF model (green) and flows computed by Meta-LCF
model (red). Figure 4.16 (left) shows the scatter plot of the spatially-averaged flows
computed by Meta-LCF against measured flows at all 15 minute time intervals. The
results in Figure 4.1, Figure 4.15 and Figure 4.16 (left) show that both the original
LCF model and the Meta-LCF can well predict the temporal variation of the spatially-
averaged flows for a long-term simulation.

However, an overestimation during the morning peak hour is observed in the simula-
tion on Monday the 10th November as shown in Figure 4.15. In fact, it is a day between
a weekend and a public holiday and some people do not work on this day. Therefore,
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Table 4.7: Scores of the one-month simulation during November 2014 against the ob-
servations. These evaluate the traffic flows computed by the original model and the
metamodel with different sizes for the reduced basis. (The global scores are calculated
for spatio-temporal flows at all detectors and time steps. The temporal scores are calcu-
lated for spatially-averaged flows for all time intervals. The spatial scores are calculated
based on temporally-averaged flows on all detectors.)

Model Original model metamodel

Explained variance of PCA − 0.80 0.85 0.90 0.95 0.98

Global bias (veh h−1 detector−1) 18 7 9 11 10 10

Global RMSE (veh h−1 detector−1) 154 140 140 142 143 143

Global NRMSE (%) 84.13 76.68 76.61 77.77 78.00 78.22

Global Correlation 0.69 0.72 0.72 0.71 0.71 0.71

Temporal bias (veh h−1 detector−1) 18 7 9 11 10 10

Temporal RMSE (veh h−1 detector−1) 25 20 20 23 23 23

Temporal NRMSE (%) 14.05 11.02 11.23 12.50 12.62 12.60

Temporal Correlation 0.99 0.99 0.99 0.99 0.99 0.99

Spatial bias (veh h−1 detector−1) 20 9 10 13 12 12

Spatial RMSE (veh h−1 detector−1) 116 106 106 108 108 108

Spatial NRMSE (%) 64.02 58.90 58.75 59.89 59.79 59.93

Spatial Correlation 0.58 0.59 0.59 0.59 0.59 0.59

the traffic demand is less than a normal Monday during working periods. However, we
took the temporal variation of traffic demand from a normal working Monday as input,
so that the demand for LCF and Meta-LCF model is bigger than the actual demand.
In addition, results show that bigger errors are found in the prediction during public
holiday (the 11th November) and weekends (the 15th – 16th and 22th – 23th of November
2014). This is due to a bigger variance of temporal profile of holidays and weekends than
that of normal working weekdays. Figure 4.17 shows the temporal profiles of all the
Saturdays and Sundays during working period from September 2013 to August 2014.
The bias between the average profile which we used as inputs of Meta-LCF and the
actual profiles of different weekend are bigger than those of working days as shown in
Figure 4.11.

Concerning the spatial features, spatial scores in Table 4.7 and scatter plot in Fig-
ure 4.16 (right) show the dispersion of the computed temporally-averaged flows, against
measured flows for all detectors. Both the original LCF model and the Meta-LCF has
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Figure 4.15: Temporal variation of the spatially-averaged flows (in veh h−1) of obser-
vation (blue), flows computed by the original model (green) and flows computed by
metamodel (red), with a time step of 15min from the 10th to 23th November 2014 for
the agglomeration of Clermont-Ferrand.
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Figure 4.16: Left: dispersion diagram of spatially-averaged flows computed by models
(blue for the original one, and red for the metamodel), against measured flows, at each
time step. Right: dispersion diagram of temporally-averaged flows computed by models
(blue for the original one, red for the metamodel), against measured flows, at each
detector.
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Figure 4.17: Temporal profiles of spatially-averaged flows of all Saturdays (left) and
Sundays (right) during normal period from September 2013 to August 2014. Each
thin line represents a temporal profile of traffic on each Saturday and Sunday, and
the bold yellow line is the average temporal profile of traffic flow over all profiles of
Saturdays/Sundays.

limitations in predicting the spatial distribution of the traffic on the network. However,
it is reassuring to find that the metamodel can preserve the main behavior of the original
model. These results are consistent with those shown in Table 4.7.

Figure 4.18 (left) and Figure 4.19 (left) present the total distribution of the flows
computed by the original model and the metamodel, for all detectors and time steps.
The distributions are similar for both the original model and metamodel. Differences
between simulations and measurements can mostly be found on links with low observed
traffic (< 200veh h−1 lane−1), but there are still some errors on links with heavy flow
observed traffic (> 700veh h−1 lane−1). This limitation for predicting the spatial distri-
bution of the traffic might due to the same reasons as mentioned in Section 4.3.3. Fig-
ure 4.18 (right) and Figure 4.19 (right) show the spatio-temporal errors between the com-
puted flows by two models, and the flows measured by detectors. The spatio-temporal
errors are almost distributed symmetrically for both models. The mean value of errors
between the original model and observations is µLCF = 48 veh h−1 lane−1. The standard
deviation is σLCF = 173 veh h−1 lane−1. The spatio-temporal errors between the original
LCF model and the observation are mostly distributed in the interval µLCF ± σLCF =
[−125, 221] veh h−1 lane−1, for one-month simulation of time step of 15 minutes. For
the spatio-temporal errors between the metamodel and observations, the mean value is
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µMeta = 40 veh h−1 lane−1. The standard deviation is σMeta = 160 veh h−1 lane−1. The
errors are mostly distributed in the interval µMeta± σMeta = [−120, 200] veh h−1 lane−1.

Figure 4.18: Left: the total distribution of the flows computed for each ∆h on each
detector, by the simulation with original model. Right: the distribution of error
between the flows computed by original model and flows measured by detectors.

Figure 4.19: Left: the total distribution of the flows computed for each ∆h on each
detector, by the simulation with metamodel. Right: the distribution of error between
the flows computed by metamodel and flows measured by detectors.

Conclusions

In this chapter, a metamodeling framework is presented in order to build surrogates
of TA models applied to large-scale network. The proposed metamodeling method
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is then used in a DTA model (called LADTA) applied in a metropolitan network of
Clermont-Ferrand in France. The simulation process was firstly replaced by an atomic
simulation with LCF (for LADTA applied in Clermont-Ferrand) model, whose input
is a vector of 23 multiplicative coefficients to perturb the most uncertain inputs. The
outputs of LCF are the flows during 15min on each road of the network in Clermont-
Ferrand, and the output dimension is about 19,000. This LCF model was then replaced
by a metamodel named Meta-LCF by using the proposed metamodeling method. The
computational cost of the resulted Meta-LCF model is very low. The evaluation time
of LCF decreases from about 2 hours to 0.022 seconds. The Meta-LCF can reproduce
the traffic flows in Clermont-Ferrand with values very close to the computed flows of
the original LCF. Time-varying traffic demand for one month was derived from traffic
flows measured by detectors. We were able to carry out long-term DUE simulation
in Clermont-Ferrand with typical day temporal profiles. The original model and its
metamodel have similar performance when compared with traffic flow observations, and
the results show that the metamodel preserves well the main features of the original
LCF model.

For the metamodeling implementation to the LCF model, we firstly ran 3003 × 2
training simulations with LCF (3003 before 12:00, 3003 after). The intervals for the
inputs variations were then designed in order to take into account all possible variations
and input uncertainties. The input samples for the training simulations were generated
by Latin hypercube sampling (LHS). With the outputs of the training simulations,
we carried out principal component analysis (PCA) to build a reduced basis of LCF
outputs. The number of the principal components N was less than 15, and we could
keep more than 90% of the output flow variance. Next, for each principal component,
the relations between each of the projection coefficients and the inputs of LCF were
reproduced by statistical emulators. The training points for building the emulators were
the same as in PCA studies. The emulator for each principal component was composed
of a regression part and an interpolation between the residuals of the regression at the
training points, by using radial basis functions (RBF). Combining the emulators of the
projection coefficients and a reconstruction of the outputs in the reduced space, we were
able to construct a metamodel, called Meta-LCF, which is a surrogate for the original
LCF.

We compared the outputs of Meta-LCF and the original LCF model for simulating
traffic flow on each link of the agglomeration of Clermont-Ferrand during the one-month
simulation of November 2014. The computational time for a one-month simulation
decreases from 48 hours using 110 cores, to less than 1 minute on one core. The flows
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computed at link level during each 15 minutes time step show a good correlation of 0.98
between the metamodel and the original LCF model. Moreover, the metamodel can well
reproduce the temporal variation of the spatially-averaged flows. The temporal NRMSE
is about 4.5%. The performance of spatial distribution of the traffic flows computed
by Meta-LCF is not as good as the temporal performance. The spatial NRMSE is
about 23.4%, but it is found that the main errors appeared on links where the flows
computed by LCF are low (< 200 veh h−1). The errors between the metamodel and
the original model could be decreased by increasing the total number of samples. The
performance of the metamodel could also be improved by better designing the distance
function dj(·, ·) of RBF for the interpolation part of emulation. However, despite the
spatial errors, the Meta-LCF built in this work is able to preserve the main features of
the original LCF. We compared the one-month simulation outputs of the two models
with the traffic flows measured by detectors on the network. The scores are similar
for both models. They can reproduce the temporal variation of the spatially-averaged
traffic flows over the whole simulation period, with good correlation (0.99) and low
NRMSE (about 12.5%) during the one-month simulation. There are still spatial errors
with NRMSE bigger than 50%. The main spatial errors might due to representativeness
errors, the uncertainty in the O-D matrix and the road choice assumptions.

One of the main purposes to build the metamodel of a DTA model is to facilitate
the variance-based global sensitivity analysis (such as Sobol’ method) and uncertainty
quantification of a road traffic emission model, in the process of air quality simulation
at the metropolitan scale, during long-term periods. In fact, in the fields of air quality
modeling, the on-road emissions are among the most important inputs and show large
uncertainties. To predict traffic emissions, the traffic flows and speeds during long-term
periods are needed as inputs of emission models. Concerning uncertainty quantification,
even though the LADTA model is a deterministic model, the inputs of the model is often
with big uncertainties. The errors, especially spatial error of LADTA when compared
with traffic flow observations are inevitable as shown in [Chen et al., 2017]. The objective
of uncertainty analysis is to generate an ensemble of LADTA simulations with input
perturbations using Monte-Carlo method, and then to evaluate the uncertainty of the
inputs by analyzing if the traffic flow observations during a long-period time can be well
predicted (statistically) by the generated ensemble. The computational cost for applying
DTAmodels is often high and to generate an ensemble of DTA simulations is challenging.
The metamodeling methods make this study possible by largely reducing the evaluation
time of a DTA simulation yet preserving main behaviors of the original DTA models.
In our case study with the LCF model, with the same inputs of the original LCF model,
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the resulted Meta-LCF can reproduce traffic flows at street level of the given network
and the outputs of Meta-LCF model are of the same performance as those of the original
one when compared with traffic flow observations. This encouraging results give new
insights to carry out a large number of LCF simulations with very low computational
cost, making quantitative sensibility analysis and uncertainty quantification possible.
The quantitative global sensitivity analysis (GSA) on the DTA model is presented later
in Chapter 5. The uncertainty quantification of the computed traffic flows from DTA
simulation is presented later in Chapter 7. In addition, since the Meta-LCF allows us to
compute the emissions of road traffic during a long-term period with low computational
costs, we can build an on-road traffic emission model combining the Meta-LCF and
the emission factor model COPERT IV, for the same agglomeration. Therefore, the
GSA study and uncertainly quantification of the emission simulation chain Meta-LCF-
COPERT can be carried out, which will be presented in Chapter 6 and Chapter 7.

In future works, more inputs could be added to LCF model, in order to take into
account more uncertainty sources. (i) On the demand side, we assumed that users of
all O-D pairs share the same temporal profile of the departure time. Different profiles
of departure times according to different categories of O-D pairs can be designed to
investigate the influence of the departure-time choice. Moreover, in order to represent
the spatial uncertainty lying in the O-D matrix, more categories of O-D pairs could be
considered. (ii) On the supply side, more categories of links can be added according to
their capacities, speed limits and spatial positions as well. These designs of supply inputs
would allow us to take into account the spatial variations of the network features. In
addition, with the help of the built emission simulation chain of very low computational
cost, the uncertainties lying in the traffic assignment model and emission model can be
propagated through the whole air quality simulation chain, from the traffic assignment
to air quality simulations. It is then possible to carry out the uncertainty quantification
of the air quality simulations
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Summary

In this chapter, a global sensitivity analysis (GSA) is carried out on the dynamic
traffic assignment (DTA) simulation with LADTA model applied to the agglom-
eration of Clermont-Ferrand. The Sobol’ method is used. It is a variance-based
GSA method aiming at variance decomposition. For an input pi, two indices are
used to measure the effect of this input on one output: the first-order and total-
effect sensitivity indices. The first-order index reflects the main effect of pi. The
total-effect index reflects the higher-order interactions involving pi and the other
parameters. These two indices are computed for the traffic flows and average
speeds at street resolution, with respect to a number of uncertain inputs of DTA
simulations in the agglomeration of Clermont-Ferrand with LADTA model. GSA
results show that the computed traffic flows are very sensitive to the direction of
traffic demands in the Origin-Destination (O-D) matrix. They are also sensitive
to the volume of traffic demands, especially: (i) the temporal variation of traffic
demand during the previous 0.5 hour before the target simulation time and (ii) the
traffic demands between O-D pairs for which the inter-zone distance is between 0
- 5 km. The computed flows are not very sensitive to the link capacity or speed
limit in our case study. For the GSA study on the computed average speeds in the
agglomeration, they are sensitive to (i) the direction of traffic demand, and (ii) the
uncertain inputs corresponding to street speed limits. The computed speeds are
not significantly sensitive to other inputs on most of the streets in our case study.
However, there are still some streets on which the traffic speeds are sensitive to the
inputs that are influential to the computed traffic flows. The spatial distributions
of output sensitivity with respect to uncertain inputs is also illustrated by maps of
sensitivity indices. These maps allow us to visualize how the uncertain inputs can
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influence traffic flows and travel speeds throughout the whole network at street
resolution.

Résumé

On s’intéresse dans ce chapitre à l’analyse de sensibilité globale (global sensitivity
analysis, GSA) de l’affectation dynamique du trafic avec le modèle LADTA, dans
l’agglomération de Clermont-Ferrand. La méthode de Sobol’ est utilisée. On
calcule deux types d’indice de sensibilité: (i) l’indice de Sobol du premier ordre
et (ii) l’indice total. Les indices sont calculés pour chaque entrée du modèle, à la
résolution de la rue sur l’ensemble de l’agglomération, pour étudier la sensibilité
du débit et de la vitesse simulés par le modèle LADTA. Les résultats de l’analyse
montrent que les débits du trafic simulés sont très sensibles à la direction dans
la demande de trafic décrite par la matrice d’Origine-Destination (matrice O-D).
Ils sont également sensibles aux demandes totales et plus précisément, (i) aux
demandes de trafic pendant les 30 minutes précédant l’heure de simulation et
(ii) aux demandes entre les paires O-D dont la distance inter-zone est de 0 à 5
km. Dans notre cas d’étude pour l’agglomération de Clermont-Ferrand, les débits
simulés ne sont très sensibles ni aux capacités ni aux vitesses maximales autorisées
sur le réseau. Pour les vitesses moyennes simulées par LADTA, elles sont sensibles
(i) à la direction de la demande de trafic, et (ii) aux vitesses maximales autorisées
sur le réseau de l’agglomération. Dans la plupart des rues, les vitesses simulées sont
peu sensibles aux autres entrées. Cependant, il existe des rues où les vitesses du
trafic sont sensibles aux entrées qui sont influentes sur le débit simulé par LADTA.
La distribution spatiale des indices de sensibilité est illustrée par des cartes, qui
nous permettent de visualiser comment les entrées incertaines peuvent influencer
les débits et vitesses simulés, à la résolution de la rue sur toute l’agglomération.
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5.1 Introduction

This chapter introduces the definition of quantitative global sensitivity analysis based
on Sobol’ method [Sobol, 1993] and the computation of global sensitivity indices. Then
the method is applied to the dynamic traffic assignment (DTA) in the agglomeration of
Clermont-Ferrand using the metamodel built in Chapter 4.

5.2 Global sensitivity analysis with Sobol’ method

5.2.1 Definition of global sensitivity analysis

The sensitivity analysis aims to “study how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty in the
model input” [Saltelli et al., 2004, 2008]. Sobol’ method is one of the variance-based
methods for global sensitivity analysis (GSA). The variance-based measures are useful to
explore the model over different combinations of values for the uncertain inputs [Saltelli
et al., 2008]. They show how the variance of the output depends on the uncertain
input factors, and can then be decomposed accordingly. A model is denoted by y =
g(p1, p2, . . . , pi, . . . , pK). The decomposition can be applied to the expectation and the
variance of the model output y. This allows us to analyze the first-order effect of the
factor pi, and the higher-order interaction effects of combination of factors [Sobol, 2001].
The first-order effect expresses what would happen to the uncertainty of y if we could
fix a factor pi = p∗i , where p∗i is a particular value. V arp∼i

(y | pi = p∗i ) is the resulting
variance of y, taken over p∼i (all factors but pi). By taking the average of the measure
V arp∼i

(y | pi = p∗i ) over all possible points p∗i , the dependence of this measure on p∗i
disappears. This average is denoted by Epi

(V arp∼i
(y | pi)). The unconditional variance

of y can be decomposed into (i) the main effect of pi and (ii) a residual with respect to
the other factors:

V ar(y) = V arpi
(Ep∼i

(y | pi = p∗i )) + Epi
(V arp∼i

(y | pi = p∗i )). (5.1)

A small Epi
(V arp∼i

(y | pi = p∗i )), or a large V arpi
(Ep∼i

(y | pi = p∗i )), will imply that pi
is an influential factor. The conditional variance V arpi

(Ep∼i
(y | pi = p∗i )) is called the

first-order effect of pi on y, and the sensitivity measure

Si = V arpi
(Ep∼i

(y | pi = p∗i ))
V ar(y) (5.2)

is the first-order sensitivity index of pi on y. A high value of Si implies that pi is an
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influential factor. However, a small value of Si does not naturally refer a non-influential
variable, since the first-order index ignores the interaction effects of factor combinations
within pi. That is why we need the total-effect sensitivity index ST i. ST i estimates
the total contribution to the output variation due to the factor pi, i.e., its first-order
effect plus all higher-order effects due to interactions with pi. The condition ST i = 0
is necessary and sufficient for pi to be a non-influential factor [Saltelli et al., 2008].
This means that the uncertainty of pi would not significantly affect the output variance
V ar(y). In order to estimate the total effect of pi, we can condition on p∼i except pi
and V ar(y) can be decomposed as :

V ar(y) = Ep∼i
(V arpi

(y | p∼i = p∗∼i)) + V arp∼i
(Epi

(y | p∼i = p∗∼i)). (5.3)

The measure Ep∼i
(V arpi

(y | p∼i = p∗∼i)) = V ar(y) − V arp∼i
(Epi

(y | p∼i = p∗∼i))
is the remaining variance of y that would be left on average if we could determine the
“true” values of p∼i. This remaining variance is then due to not conditioning the factor
pi, and it can be considered as the total effect of pi. Ep∼i

(V arpi
(y | p∼i = p∗∼i)) is

calculated over all possible combinations of p∼i since p∼i are uncertain factors and their
“true” values are unknown. Therefore, the total effect index for pi is obtained after
dividing the measure Ep∼i

(V arpi
(y | p∼i = p∗∼i)) by V ar(y):

ST i = Ep∼i
(V arpi

(y | p∼i = p∗∼i))
V ar(y) = 1− V arp∼i

(Epi
(y | p∼i = p∗∼i))
V ar(y) . (5.4)

5.2.2 Computation of first-order and total-effect Sobol’ indices

V ar(E(y | pi)) in Equation 5.2 can be calculated as

V ar(E(y | pi)) =
∫
E2(y | pi = p̃i)ρ(p̃i)dp̃i − E2(y) = Ui − E2(y), (5.5)

where ρ(p̃i) is the probability that pi = p̃i. Saltelli [2002] proposes an efficient
strategy for computing Si and ST i by using Monte Carlo estimates. The sample size
used for the Monte Carlo estimate is n, and there are K uncertain inputs. Two input
sample matrices M1 and M2 are generated:

M1 =


p11 p12 . . . p1K

p21 p22 . . . p2K

. . .

pn1 pn2 . . . pnK

 ,
M2 =


p′11 p′12 . . . p′1K
p′21 p′22 . . . p′2K
. . .

p′n1 p′n2 . . . p′nK

 (5.6)
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Saltelli [2002] proposes estimators V̂ ar(y), Ê2(y), Ûi and Û∼i for computing the first-
order and total-effect indices presented in Equation (5.2) and Equation (5.4):

Si '
Ûi − Ê2(y)
V̂ ar(y)

, (5.7)

ST i '
Û∼i − Ê2(y)
V̂ ar(y)

. (5.8)

V̂ ar(y), Ê2(y), Ûi and Û∼i can be obtained by Monte Carlo estimates from values of y
computed on the sample in M1, M2, and Ni, N∼i, defined as [Saltelli, 2002; Homma
and Saltelli, 1996]

Ni =


p′11 p′12 . . . p1i . . . p′1K
p′21 p′22 . . . p2i . . . p′2K
. . . . . . . . . . . . . . . . . .

p′n1 p′n2 . . . pni . . . p′nK


N∼i =


p11 p12 . . . p′1i . . . p1K

p21 p22 . . . p′2i . . . p2K

. . . . . . . . . . . . . . . . . .

pn1 pn2 . . . p′ni . . . pnK


(5.9)

Since bothM1 andM2 are generated randomly, they are considered to be independent
of each other. If we consider M1 as the “sample” matrix and M2 as the “re-sample”
matrix, in Ni, all the values are “re-sampled” except for the column i for the factor pi.
Ûi can be obtained from values of y computed on matrices M1 and Ni:

Ûi = 1
n− 1

n∑
r=1

g(pr1, pr2, . . . , prk)g(p′r1, p′r2, . . . , p′r(i−1), pri, p
′
r(i+1), . . . , p

′
rK). (5.10)

The matrix N∼i in Equation (5.9) can be considered as M1 with only the factor pi
re-sampled. Therefore, Û∼i can be obtained from values of y computed on matricesM1

and N∼i:

Û∼i = 1
n− 1

n∑
r=1

g(pr1, pr2, . . . , prk)g(pr1, pr2, . . . , pr(i−1), p
′
ri, pr(i+1), . . . , prK). (5.11)

V̂ ar(y) is computed from M1. For the estimator of E2(y) in Equation (5.7) and (5.8),
Homma and Saltelli [1996] propose that better estimates for the first-order terms are
obtained if E2(y) is estimated from values of y computed on bothM1 andM2 matrices:

Ê2 = 1
n

n∑
r=1

g(pr1, pr2, . . . , prk)g(p′r1, p′r2, . . . , p′rK). (5.12)
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In summary, for computing Si and ST i, Saltelli [2002] proposes an efficient strategy
by using Monte Carlo estimates. The sample size used for the Monte Carlo estimate is
n, and there are K uncertain inputs. The total number required of model evaluations is
n(2K + 2): nK for the first-order terms, nK for the total-effect terms, and 2n for Ê(y)
[Saltelli et al., 2000]. Saltelli et al. [2008] recommend that for carrying out GSA with
Sobol’ method, it is better to have a lower dimension model in inputs and outputs. The
recommended CPU time per run of the model should be less than 1min. However, for
simulating traffic flows and emissions of an urban area at street level, the computational
cost is much more higher than recommended. Also, the inputs of classic traffic assign-
ment models are of very high dimension. To reach similar conditions as recommended
carried out the GSA with Sobol’ method for the dynamic traffic assignment model built
in Chapter 4.

5.3 Application to the dynamic traffic assignment
model for the agglomeration of Clermont-Ferrand

At the metropolitan scale, traffic assignment (TA) models are used to predict the
traffic flows at street level. The inputs of TA models are traffic demand and a modeled
network. The network is modeled with origins/destinations, nodes and links. The link
capacity constraints and speed limits are given at street level. In the following parts,
a ”link” represents a ”street” or ”road” of a city road network. The traffic demand
is represented by an Origin-Destination matrix (O-D matrix), summarizing the traffic
flow from each origin zone to each destination zone during a certain period. A pair
of Origin-Destination zones is refered to an O-D pair. The most commonly used TA
models are based on the Wardrop User Equilibrium (UE) principle [Wardrop, 1952],
stating that users choose the least cost path to travel through the network from an
origin to a destination. There are static TA models and dynamic TA models. In this
paper, we used a dynamic TA model in order to take into account time-dependent
inputs. The model used here is called LADTA [Leurent, 2003; Aguiléra and Leurent,
2009]. It is applicable to large-size network [Aguiléra and Leurent, 2009]. LADTA model
is computationally costly. A meta-modeling approach was therefore applied to LADTA
model in the agglomeration of Clermont-Ferrand in Chapter 4. The outputs of the
resulting meta-model is very close to those of the complete model, yet the computation
time is significantly decreased. Then GSA studies are carried out on this meta-model
instead of the complete LADTA model.
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5.3.1 Metamodel of LADTA applied to the agglomeration of
Clermont-Ferrand

We recall here the modeled network of the agglomeration of Clermont-Ferrand in
Figure 5.1. There are more than 19,000 links on the network. For each link, the
computed traffic flow is a scalar so that we can compute sensitivity indices at link
resolution.

Figure 5.1: Domain of the agglomeration of Clermont-Ferrand. The red rectangle de-
limits the city of Clermont-Ferrand. A89, A71 and A75 are three highways in this
agglomeration. They cross the city of Clermont-Ferrand as well. D2009 and N89 are
two national roads, connecting the city and the suburbs.

The metamodel we use in this chapter is the one built in Chapter 4. The metamodel
is built based on LADTA model applied to the agglomeration of Clermont-Ferrand (LCF
model). The metamodel is called Meta-LCF model. We recall here the inputs, outputs
and equations of the LCF model and the Meta-LCF model.
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Inputs

G = (N ,A): the nodes (∈ N ) and links (∈ A) of the oriented graph G modeled for
the network of the agglomeration of Clermont-Ferrand. D = card(A) = 19628. D is
the number of links.
ZO,ZD ⊂ N : the set of nodes representing the Origin-Destination zones. z =

card(ZO) = card(ZD) = 124.
C = [Ca]a∈A, L = [La]a∈A, V0 = [V0a]a∈A: the vector of link capacities, link lengths

and speed limits. C,L,V0 ∈ RD.
T0 = [T0a]a∈A: a vector of free-flow travel time. T0 ∈ RD.
In order to represent the uncertainty of the network parameters, links are regrouped

according to link capacities and speed limits.
V low

0 = [V0a]a∈Alow
: the vector of low speed limits (V0 ≤ 50 kmh−1), with Alow as

the set of links with V0 ≤ 50 kmh−1. Links in the set Alow are considered “low-speed
links”.
V high

0 = [V0a]a∈Ahigh
with Ahigh = A\Alow: the vector of high speed limits. Links in

the set Ahigh are considered “high-speed links”.
Csmall = [Ca]a∈Asmall

: the vector of small link capacities, with Asmall as the set of
links with C ≤ 900 veh h−1.
Cbig = [Ca]a∈Abig

with Abig = A\Asmall: the vector of big link capacities.
H = [h0, h1]: the simulation period of LADTA.
∆h: time step for loop detectors to register aggregated traffic flow data. It is also

assumed that during the interval [h, h+∆h], the traffic flow on the network is constant,
and so is the time-varying traffic demand. In our case study, ∆h = 0.25 hour.
Q(h) = (Qo,d(h))(o,d)∈ZO×ZD

: the time-varying O-D matrix. Qo,d(h) is the cumulated
traffic demand (total number of vehicles in veh) from o to d during H. It is non-
decreasing and can be deduced from time-varying traffic demand density qo,d(h) (in
veh h−1) at instant h for the O-D pair od. qo,d(h) is assumed to be a piece-wise linear
function of h and qo,d(h) is constant in the interval [h, h+ ∆h]. With known qo,d(h) and
bounded H, (Qo,d(h))(o,d) =

∫ h
h0 qo,d(h̃)dh̃ with h ∈ H.

Qpeak = (qpeako,d )(o,d)∈ZO×ZD
: O-D matrix of the agglomeration of Clermont-Ferrand

during the evening peak hour 17:00 – 18:00, where (qpeako,d )(o,d) is the average traffic
demand during the evening peak. It is the static O-D matrix.

Outputs

X(h) = [Xa(h)]a∈A, T (h) = [Ta(h)]a∈A,h∈H : the vector of cumulated traffic volumes
at time h ∈ H computed by LADTA.
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y = X(h+∆h)−X(h) (in veh h−1): a vector of average traffic flow during [h, h+∆h].
It is the final output of the LADTA model.

LCF model: LADTA applied in Clermont-Ferrand

The LADTA model takes into account the influence of the time-varying traffic de-
mand to compute time-dependent X(h). Unlike in a static assignment model, X(h)
computed by LADTA varies continuously as a function of h. The longer H is, the more
traffic demand inputs are required in order to represent time-dependent Qo,d(h). In ad-
dition, the longer H is, the longer computation time is required since LADTA computes
dynamic equilibrium at each instant h ∈ H. Therefore, an atomic LADTA simulation
for the agglomeration of Clermont-Ferrand is defined in Chapter 4. It allows us to reduce
input dimension and computational cost, yet preserve the time-varying influence of traf-
fic demand before the target time hsimu on the computed flows at hsimu. This atomic
LADTA simulation is called LCF, for LADTA applied to Clermont-Ferrand. In the
LCF model, the simulation period is decreased to Hatomic = [hsimu− 2.25, hsimu + 0.75].
Hatomic is chosen based on the assumption that the traffic flow at hsimu is not affected by
traffic demands before 2.25 hours and after 1.0 hour for the agglomeration of Clermont-
Ferrand. LCF model still takes cumulated traffic demand (Qo,d(h))h∈Hatomic

as input
and computes X(h), h ∈ Hatomic. However, we focus only on the computed traffic flow
at time hsimu and consider the computed y(hsimu) as the output of one DTA simulation
with LCF model.

(Qo,d(h))h∈Hatomic
can be obtained if we know the density of traffic demand on the

network during Hatomic: (qo,d(h))h∈Hatomic
. (qo,d(h))h∈Hatomic

is assumed to be piece-wise
linear and constant on the interval [h, h+∆h],∀h ∈ Hatomic. With ∆h = 0.25, we define
the set of instants as Iatomic = {hsimu−2.25, hsimu−2.0, . . . , hsimu−0.25, hsimu, . . . , hsimu+
0.75}. Then qo,d(h)h∈Hatomic can be obtained if we know qo,d(h)h∈Iatomic . In our case
study, the static O-D matrix Qpeak is given. Therefore, based on this static ma-
trix, qo,d(h)h∈Iatomic can be obtained by qo,d(h)h∈Iatomic = P (h)h∈Iatomic × qpeako,d , where
P (h)h∈Iatomic are temporal variation coefficients representing the ratio between traffic de-
mand (i) during [h, h+∆h],∀h ∈ Iatomic and (ii) during the evening peak hour. It is also
assumed that the temporal variation of the demand is independent of the spatial distri-
bution of O-D pairs: at the same time h, P (h) is the same for all (qo,d(h))(o,d)∈ZO×ZD,h∈H.
The dimension of Iatomic is 13. Therefore, 13 coefficients P (h)h∈Iatomic can define the
temporal-variation of traffic demand and build the input dynamic O-D matrix for car-
rying out DTA with LCF model during Hatomic.

The O-D pairs are categorized into five groups according to their distance between
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Origin-Destination zones: 0 km, 0 − 5 km, 5 − 10 km, 10 − 15 km and > 15 km. The
matrixQpeak can be divided by 5 matrices and we have: Qpeak = Qpeak

0 +Qpeak
0−5 +Qpeak

5−10+
Qpeak

10−15 +Qpeak
>15 . With all the inputs mentioned in Section 5.3.1, the temporal-variation

coefficients P (h) the LCF model can then be represented as

y(hsimu) = F(Q(h)h∈Hatomic
,G)

= F(Q(h)h∈Hatomic
,V0,C)

= F(P (h)h∈Iatomic
, δ0Q

peak
0 , δ0−5Q

peak
0−5 , δ5−10Q

peak
5−10, δ10−15Q

peak
10−15, δ>15Q

peak
>15 ,

µlowV
low

0 , µhighV
high

0 , λsmallC
small, λbigC

big).
(5.13)

In Equation (5.13), P (h) represents the temporal variation of the demand and is
perturbed to account for part of the uncertainty in O-D matrix input. δ0, δ0−5, δ5−10,
δ10−15 and δ>15 are five evening peak coefficients to represent spatial uncertainty of
the demand in the static O-D matrix for evening peak hour. They can be perturbed
to account for spatial uncertainty lying in the static O-D matrix. µlow, µhigh, λsmall,
and λbig are four coefficients applied to link capacities and speed limits. They can be
perturbed to account for uncertainties in link capacities and speed limits. In addition,
the direction of the traffic demand is mainly from working zones to residence zones in
the given Qpeak since it contains traffic demands during the evening rush hour. The
direction of the demand during the morning might be opposite. During morning period
(before 12:00), we use (Qpeak)T as O-D matrix. The input for the transposition is a
binary parameter η, with η = 0 when the simulation is carried out with the normal O-D
matrix Qpeak, and η = 1 when we use the transposed O-D matrix (Qpeak)T instead. The
LCF model can then be represented by the multiplicative coefficients corresponding to
its inputs. The LCF model represented by multiplicative coefficients is written as

y(hsimu) =M(P (h)h∈Iatomic
, δ0, δ0−5, δ5−10, δ10−15, δ>15, λbig, λsmall, µhigh, µlow, η) =M(p),

(5.14)
where p ∈ RK is the input vector of the LCF model and its dimension is K = 23. The
objective of global sensitivity analysis is to analyze the sensitivity of computed traffic
flows and average speeds from the metamodel, with respect to the 23 inputs representing
the uncertainty in the LCF model.

One atomic simulation with LCF model takes about 2 hours. After applying meta-
modeling methods in Chapter 4, the final metamodel of the LCF model is called Meta-
LCF model and it is written as
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ŷ = ȳ + Ψ(f̂(p)−ΨT ȳ) = ȳ −ΨΨT ȳ + Ψ


f̂1(p)
f̂2(p)

...
f̂N(p)

 ' y, (5.15)

where ȳ and ΨΨT are already known. When the model is applied to a new input vector
p, the computational cost is that of each f̂j(p) with (j = 1, . . . , N). With the same
input vector p, the outputs ŷ are also average traffic flows during [hsimu, hsimu + ∆h] at
street level, and ŷ is close to y.

For the metamodeling process in our case study, the training size m is 3003 for each
case using Q or using the its transposition QT as input O-D matrix. Once the training
set is get, the ȳ and ΨΨT are obtained from the PCA study mentioned in Chapter 4.
The resulting Meta-LCF model takes only 0.022 second to compute ŷ, with ȳ and ΨΨT

already known. By using the same training set, a metamodel for computing average
speeds is also built. The metamodels for computing traffic flow and average speed at link
resolution allow us carry out large numbers of model evaluations. The global sensitivity
analysis for computed traffic flow and average speeds with respect to each element of
the input p is then carried out by computing Sobol’ indices introduced in Section 5.2.

5.3.2 Variation domain of Meta-LCF model inputs for com-
puting Sobol’ indices

The inputs p = (p1, p2, . . . , pi), i ∈ {1, 2, . . . , 23} of Meta-LCF and their variation
intervals are listed in Table 5.1. The variation interval of each input is set so that it can
cover the possible uncertainty. They are the same as we build the training set for the
metamodeling of LCF model in Section 4.4.1 of Chapter 4. Monte-Carlo simulations
of Meta-LCF are then applied by taking each input factor pi randomly in its variation
interval, following the method described in Section 5.1. The total sampling size is
n = 40000.

Table 5.1: The variation intervals of Meta-LCF model inputs

Input Temporal profile Capacity Speed Demands in O-D matrix Transposed

O-D matrix

Symbol (P (h)h∈Hatomic λbig, λsmall µhigh, µlow δ0, δ0−5, δ5−10, δ10−15, δ>15 η

Number 13 2 2 5 1

Variation [0.00, 1.5] [0.70, 1.30] [0.80, 1.20], [0.70, 1.10] [0.25, 1.50] 1 or 0
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5.4 Global sensitivity analysis results for the DTA
simulation in the agglomeration of Clermont-
Ferrand

For the simulation time hsimu, the outputs of the Meta-LCF are the computed flows
y(hsimu) and average speed V (hsimu) at link level during [hsimu, hsimu + ∆h]. The GSA
study aims at investigating how the computed traffic flow and average speed on each
link is influenced by the 23 elements of the input p. For each link, the computed traffic
flow/speed can be considered as a scalar output of the Meta-LCF model with K = 23
inputs: ya = g1(p1, p2, . . . , pi, . . . , p23), Va = g2(p1, p2, . . . , pi, . . . , p23). With respect
to the same input, the sensitivity of the computed output on different links may be
different. The first-order and total-effect sensitivity indices (Si,a and ST i,a) for traffic
flows and average speeds are computed at all links.

The GSA results are represented by plotting sensitivity indices in two kinds of figures:
boxplot and maps. Firstly, the boxplots allow us to compare the influence of all input
factors among each other, throughout the whole network. Each point in a boxplot
corresponds to Sa,i or STa,i

on link a of input factor pi. The box contains the indices
of values between the 1st quartile (Q1) and the 3rd quartile (Q3). The interquartile
range (IQR) is Q3 - Q1. The red line corresponds to the median value of Sa,i or STa,i

.
The Whisker is designed as 3.0: a value < Q1 − 3.0 × IQR or > Q3 + 3.0 × IQR will
be considered as out of range and presented by points. Secondly, since the sensitivity
indices are calculated at link level for each factor pi, a map of all Sa,i for the whole
network of Clermont-Ferrand is displayed. The maps help us to visualize how the input
factors can influence the computed flows and average speeds in function of link spatial
locations.

5.4.1 Sensitivity analysis for computed traffic flows

The sensitivity of the computed flows at all links with respect to all 23 input in
Equation 5.14 are displayed in Figure 5.2.

From Figure 5.2, it is observed that for the whole network, the computed flows
are very sensitive to the direction of traffic demand, represented by the transposition
parameter η. Concerning other factors, the computed flows duringHsimu = [hsimu, hsimu+
0.25 hour] are sensitive to the traffic demand during [hsimu−0.25 hour, hsimu] and during
[hsimu−0.5 hour, hsimu−0.25 hour]. The traffic demands before hsimu−0.5 hour and after
hsimu are essentially not influential to the output traffic flows, as shown by total-effect
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Figure 5.2: First-order (blue) and total-effect (grey) sensitivity indices of the inputs of
the Meta-LCF model for the computed traffic flows

indices. Concerning demands between O-D pairs, the computed flows are sensitive to
traffic demands of the O-D pairs whose inter-distance is between 0 km and 5 km. That
is because most of the travels in the given static O-D matrix are in this category of
distance. Concerning link capacities and speed limits, they are not very influential to
the flows computed by LCF model. The median values for λsmall, λbig, µlow, µhigh are
nearly zero. This might due to the limited variation ranges for these inputs (less than
±30%).

The spatial differences of input influence on computed flows are illustrated by two
examples. Figure 5.3 shows the spatial distribution of Sa,i resulting from GSA, for traffic
demands of O-D pairs whose inter-distance is less than 5 km (δ0-5, left) and more than
15 km (δ>15, right) in the whole agglomeration.

Figure 5.3 shows that the computed traffic flows on roads in the city of Clermont-
Ferrand are sensitive to the demands between low-distance O-D pairs, while the com-
puted flows on highways and roads of suburbs are sensitive to the traffic demands
between high-distance O-D pairs. This is due to (i) the route choices of travelers
and (ii) the spatial distribution of working/residential zones in the agglomeration of
Clermont-Ferrand. In fact, O-D pairs with low-distance are mainly located in the city
of Clermont-Ferrand so that the corresponding traffic is assigned on roads in the city,
and the flows on these roads are more sensitive to the demands between low-distance
O-D pairs than long-distance demand. For users traveling between long-distance O-D
pairs, the roads outside the city with high capacities are chosen, so that the flows on
these roads are more sensitive to the traffic demands between long-distance O-D pairs
than demands between low-distance O-D pair. Demands of long-distance O-D pairs
represent often the traffic demands between the city of Clermont-Ferrand and suburb
residential areas, such as the north part or the south-east part of the agglomeration.
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Figure 5.3: The spatial distribution of Sδ0-5 (left) and Sδ>15 (right) in the whole agglom-
eration of Clermont-Ferrand. δ0-5 represents the uncertainty in the traffic demand of
O-D pairs between which the distance is non-zero and lower than 5 km. δ>15 represents
the uncertainty in the traffic demand of O-D pairs between the distance is greater than
15 km. For the links that share the same nodes but are oriented in opposite directions,
only the largest Sobol’ index of the two directions is displayed.

That is why the input coefficient δ0−5 would influence mostly the flows on roads in the
city, while the coefficient δ>15 would affect mostly the traffic flows in suburb areas.

Figure 5.4 presents the spatial distribution of Sa,i for the traffic demand during
[hsimu− 0.5 hour, hsimu− 0.25 hour] (P (hsimu− 0.5 hour) in p, left), and demand during
[hsimu − 0.25 hour, hsimu] (P (hsimu − 0.25 hour) in p, right).

It can be observed in Figure 5.4 that the flows computed on the highways and
roads outside of the city Clermont-Ferrand are more sensitive to P (hsimu − 0.5 hour)
than flows computed on roads in the city. This implies that traffic demand during
Hpre_0.5_0.25 hour = [hsimu−0.5 hour, hsimu−0.25 (hour)], can affect the current computed
flows y(hsimu) during Hsimu on highways and roads in suburbs. In fact, it is obvious that
the demands between more distant O-D pairs require longer time to travel from the
origin zone to the destination zone. For example, if users travel at a speed more than
60 kmh−1, they spend more than 15min for traveling more than 15 km. Therefore, the
variations of long-distance demands of travelers departing during Hpre_0.5_0.25 hour, can
still influence the computed traffic flows y(hsimu) during Hsimu, especially on highways
and roads in suburbs for the same reasons presented in previous paragraph. This is an
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Figure 5.4: The spatial distribution of Sa,P (hsimu−0.25 hour) (left) and P (hsimu − 0.5 hour)
(right) in the city of Clermont-Ferrand. P (hsimu−0.25 hour) represents the uncertainty
in traffic demand during 15min before the target simulation time. Sa,P (hsimu−0.5 hour)

represents the uncertainty in the traffic demand during the previous 30min to 15min
before the target simulation time. Black lines represent links for which the Sobol’ first-
order indices are less than 0.01.

interesting result that we can obtain thanks to the dynamic traffic assignment. Note
that the static traffic models cannot take the previous temporal variations of the traffic
demands into account for the simulation hour.

5.4.2 Sensitivity analysis for computed average speeds

The first-order and total-effect indices of the computed speeds with respect to the 23
inputs are presented in Figure 5.5. Results show that the direction of the traffic demands
in O-D matrix is also an important factor to the output travel speeds. Besides, the
computed average speeds are also influenced by the uncertainty parameter associated
with the V low

0 : µlow. It corresponds to the uncertainty of speed limits on links whose
speed limits are less than 50 kmh−1. If we focus on the values out of range in boxplots
of the first-order indices (blue points), we can find that the factors which are influential
on the computed traffic flows mentioned in Section 5.4.1 have also some contribution to
the variance of output speeds on certain links.

In order to analyze the influence of inputs besides O-D matrix transposition, Fig-
ure 5.6 presents the spatial distribution of the first-order sensitivity index on each link
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Figure 5.5: First-order and total effect Sobol’ sensitivity index of the inputs of the
Meta-LCF model for the computed average speeds

with respect to µlow and µhigh. It is normal (and reassuring) to find that the computed
average speeds on “low-speed links” are sensitive to the variation of the speed limits on
this category of links, and the computed speeds on “high-speed links” are sensitive to
the variation of the speed limits of these links, if we compare the results with the speed
limit map shown in Figure 5.7.
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Figure 5.6: The spatial distribution of sensitivity of the computed average speeds by
Meta-LCF model, to the variations of speed limits of ’low-speed links’ (left), and ’high-
speed links’ (right), in the agglomeration of Clermont-Ferrand. Refer to Figure 5.7 to
see the maps of speed limits in the city of Clermont-Ferrand. Black lines represent links
for which the Sobol’ first-order indices are less than 0.01.

Besides µlow and µhigh, the traffic demand during the previous 30min and especially
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Figure 5.7: Maps of speed limits in kmh−1 in the city of Clermont-Ferrand.

during the previous 15min are also influential to the computed average speed on some
links, if we focus on the first-order indices “out of range” plotted in the boxplot of
Figure 5.5. Figure 5.8 shows the influence of P (hsimu−0.25 hour) on the average speeds
of Meta-LCF model for the city of Clermont-Ferrand.

We have already observed that computed traffic flow is very sensitive to the traffic
demand. The traffic demand cannot directly affect the computed average speed, but
the resulting traffic flow can influence the average speed on the network since the travel
time on a link is computed as a function of (i) the free flow travel time of the link
which depends on its speed limit, and (ii) traffic flow on the link computed by the
traffic assignment model. Therefore, if the traffic flow on a link is very sensitive to
the some inputs of the Meta-LCF model, the computed averaged speed might also be
sensitive to the same inputs. Even though there are many links where the computed
traffic flow is sensitive to the traffic demand during the previous 15min, as shown in
Figure 5.4 (left) in Section 5.4.1, Figure 5.8 (left) shows that only for some of them
the computed average speeds are sensitive to the traffic flows. In fact, if we compare
the sensitivity map with link capacity map in Figure 5.8 (right), we can see that only
on links with low capacity (< 1000 veh h−1), especially on low-capacity links connected
to links with higher capacities, the computed average speeds are sensitive to the input
traffic demand. This suggests that it is more likely to observe congestion phenomena on
these links. The computed average speeds are not very sensitive to the traffic flows on
links with capacities more than 2000 veh h−1. These results are due to the assumption
in the LADTA model, that vehicles can travel with the same speed as the speed limit,
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Figure 5.8: First-order Sobol’ sensitivity index for the computed average speed with
respect to (i) P (hsimu − 0.25 hour) (left), and to (ii) link capacity (right) at street reso-
lution for the city of Clermont-Ferrand. P (hsimu−0.25 hour) represents the uncertainty
in traffic demand during 15min before the target simulation time. In the left figure,
black lines represent links for which the Sobol’ first-order indices are less than 0.01.

when the computed flows do not exceed the link capacities. With the demand variation
presented in Table 5.1, the computed traffic flows on these big-capacity roads rarely
exceed the link capacities.

Conclusions

With the metamodeling approach and Sobol’ method, a global sensitivity analysis
(GSA) was carried out for the meta-model of a DTA model applied in the agglomeration
of Clermont-Ferrand (France). The Sobol’ method was chosen for GSA studies. The
GSA is carried out to the Meta-LCF computing traffic flows and average speeds at street
level.

GSA results show that the computed traffic flows are very sensitive to the direction
of traffic demands in the O-D matrix. They are also sensitive to the volume of traffic
demands: (i) the temporal variation during the previous 0.5 hour before the simulation
time and (ii) the total demands between O-D pairs for which the inter-zone distance
is between 0 - 5 km. The computed flows are not very sensitive to the link capacity
or speed limit in our case study. Besides, the resulting Sobol’ indices also depend on
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spatial location and characteristics of the links. The computed flows on highways are
sensitive to the traffic demands departing from 0.5 hour before the simulation period
and the traffic demands between long-distance O-D zones, while the computed flows
on links in the city center are sensitive to the traffic demands during the previous
0.25 hour and the demands between short-distance O-D zones. For the average speeds
computed by Meta-LCF model however, besides the direction of traffic demand and the
uncertainty inputs corresponding to the street speed limits, the computed speeds are
not very sensitive to other inputs of the Meta-LCF model on most of the streets in our
case study. However, results show that on some street where the capacity is low, the
computed speeds are sensitive to the traffic demands. This suggests that traffic jams
are more likely to happen on these streets.

The GSA study results help us to identify the most influential inputs in dynamic
traffic assignment model. In the uncertainty quantification, the transposition input η is
not an uncertain input since it depends on the simulation time of LADTA simulation.
The traffic demands are influential inputs for computed traffic flows. This refers that
it is very likely the uncertainty in the traffic demand will propagate to the computed
traffic flows. The computed average speeds are not very sensitive to the 22 inputs except
η. This refers that the uncertainty of computed average speeds due to the uncertainty
of the 22 inputs might not be significant. The quantified uncertainty analysis results
are presented in Chapter 7.



Chapter 6

Air pollutant emissions for the
agglomeration of Clermont-Ferrand

and sensitivity analysis

Summary

In this chapter, we build a modeling chain for estimating on-road traffic emis-
sions by coupling the dynamic traffic assignment (DTA) model LADTA with the
emission factor model COPERT IV, in the whole agglomeration of Clermont-
Ferrand at street resolution. A qualitative local sensitivity analysis (LSA) with
the one-at-a-time method is carried out on the modeling chain. The LSA stud-
ies the sensitivity of the computed on-road traffic emissions with respect to the
LADTA inputs as well as the inputs of COPERT IV model: (i) total traffic de-
mand, (ii) speed limits of the road network, and (iii) vehicle fleet composition.
The results of LSA show that the emissions are very sensitive to these factors, es-
pecially during the transition from a free traffic network to a congested one. The
COPERT IV model is also coupled with the metamodel built in Chapter 4. With
the modeling chain coupling COPERT IV and the metamodel of LADTA, we are
able to carry out emission estimations at urban area during a long-term period
(one year) with high spatial and temporal resolutions. Then the global sensitiv-
ity analysis with Sobol’ method is carried out to study the sensitivity of on-road
traffic emissions computed by the modeling chain in the whole agglomeration at
street resolution, with respect to both (i) the uncertain inputs of LADTA model,
and (ii) the vehicle fleet composition inputs for COPERT IV. The Sobol’ first-
order and total-effect sensitivity indices show that the hot emissions of on-road
traffic are very sensitive to all the inputs that are influential to the traffic flow
computed by the DTA model. Besides, the emissions are also sensitive to gasoline
car share in passenger cars, and the proportion of heavy duty vehicles. Further-
more, spatial differences are found among the sensitivity indices throughout the
metropolitan area. For example, on streets without Heavy Duty Vehicles (HDVs),
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the most influential factor that affects the computed NOx (hot) emissions is the
share of gasoline vehicles, while on streets with HDVs, the share of HDVs is the
most influential factor. In addition, the factors that influence the computed (hot)
emissions of different pollutants are not the same. For example, the computed CO
emissions are not as sensitive to the HDV share as the computed NOx emissions.

Résumé

Dans ce chapitre, on construit une chaîne de modélisation en couplant le modèle
d’affectation dynamique du trafic LADTA avec le modèle d’émission COPERT IV,
à la résolution de la rue. Cela permet d’estimer les émissions dues au trafic routier
à l’échelle urbaine et à une résolution temporelle fine. Ensuite, une étude de sensi-
bilité locale est effectuée sur cette chaîne de modélisation. On étudie la sensibilité
des émissions par rapport aux entrées du modèle LADTA ainsi qu’à celles du
modèle COPERT IV: (i) la demande totale du trafic, (ii) les vitesses maximales
autorisées sur le réseau, et (iii) la composition du parc. Les résultats montrent
que les émissions sont très sensibles à ces entrées, surtout lorsqu’une congestion
du trafic se produit. COPERT IV est également couplé avec le métamodèle con-
struit dans le chapitre 4. Cela nous permet d’effectuer des simulations d’émissions
à l’échelle urbaine pendant une longue période (un an). L’analyse de sensibilité
globale avec la méthode de Sobol’ est aussi effectuée sur cette chaîne de modélisa-
tion couplant le métamodèle de LADTA et COPERT IV. Les indices de sensibilité
montrent que les émissions en sortie sont sensibles à toutes les entrées qui influen-
cent le débit simulé par LADTA. De plus, les émissions sont également sensibles à
la composition du parc: (i) la proportion de véhicules essence et (ii) la proportion
de poids lourds (PL) sur le réseau. Par ailleurs, les émissions simulées dans dif-
férentes rues sont sensibles à différentes données d’entrée. Par exemple, dans les
rues où il n’y a pas de PL, les émissions sont sensibles à la proportion de véhicules
essence. Au contraire, dans les rues où les PL sont présents, les émissions sont
beaucoup plus sensibles à la proportion de PL. De plus, les facteurs les plus influ-
ents pour les émissions estimées ne sont pas les mêmes pour différents polluants.
Par exemple, la proportion de PL est moins influente pour les émissions de CO
que pour les émissions de NOx.



149

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Modeling chain of street-level on-road traffic emission estima-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Emission results for the agglomeration of Clermont-Ferrand . 153

6.3.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.1 Qualitative sensitivity analysis results . . . . . . . . . . . . . . . 161
6.4.2 Global sensitivity analysis results: Sobol’ indices . . . . . . . . . 165

This chapter is reproduced from the articles: (i) Chen, R., Aguiléra, V., Mallet,
V., Cohn, F., Poulet, D., and Brocheton, F. (2017). A sensitivity study of road trans-
portation emissions at metropolitan scale. Journal of Earth Science & Geotechnical
Engineering, 7(1):151-173. (ii) Chen, R., Mallet, V., Aguiléra, V., Cohn, F., Poulet, D.,
and Brocheton, F. (2017). Global Sensitivity Analysis in the Simulation of Road Traffic
Emissions at Metropolitan Scale. In Proceedings of the 22th International Transporta-
tion and Air Pollution Conference (TAP 2017).



150
Chapter 6. Air pollutant emissions for the agglomeration of

Clermont-Ferrand and sensitivity analysis

6.1 Introduction

The emissions of road traffic are one of the main sources of air pollutants in urban
area. In Île-de-France for instance, the road traffic is responsible for more than 55% of
nitrogen oxides (NOx) and more than 30% of particulate matter [Airparif, 2014]. One
of the biggest contributors to urban air pollution is the on-road traffic emissions [Smit
et al., 2010; Franco et al., 2013], and the associated uncertainty is then an important
factor for the air quality simulation. The on-road traffic emissions are often modeled as
the product of (i) the number of vehicles and (ii) the emission factors (EF, in g km−1),
for different pollutants, vehicle types and technologies, etc. In metropolitan areas, the
former can be estimated by traffic assignment models, and the latter are often mod-
eled by empirical functional relations between pollutant emissions and characteristics
of on-road traffic. Various models are built for EFs, and five main types of EF models
are categorized by Smit et al. [2010] according to the required input variables, such
as (i) ’average-speed’ models (e.g. COPERT, MOBILE, EMFACA), where EFs are a
function of the mean traveling speed; (ii) ’traffic-situation’ models (e.g. HBEFA) where
EFs are determined by descriptions of a particular traffic situation (e.g. ’stop-and-go-
driving’, ’free flow driving’); or (iii) ’modal’ models (e.g. PHEM) where EF (in g s−1)
are produced via engine of vehicle operating models at the highest resolution (down to
seconds), etc. Different types should be applied for different contexts to adapt the level
of detail required by researchers, city planners or policy makers.

Among different types of EF models, there is no conclusive evidence that demon-
strates that more complex models systematically perform better in terms of prediction
error than less complex models [Smit et al., 2010]. In fact, complex models require more
detailed inputs in order to predict more accurate EFs, but the uncertainty of extra in-
puts would also add complexity and uncertainty to the EF models themselves. Complete
sensitivity analysis of each EF models are needed, in order to evaluate the reliability
and uncertainty of the computed EFs. For example, Kioutsioukis et al. [2004]; Kouridis
et al. [2010] carried out a global sensitivity analysis (GSA) on COPERT model via the
Monte Carlo method and the extended FAST method. They found that vehicle fleet
share are among the most important factors that influence the output emissions of most
pollutants (PM, VOC, NOx, etc.). However, this is an individual sensitivity analysis
for an isolated EF model and the uncertainty from the traffic inputs and traffic models
were not taken into account. In fact, concerning emission estimations, the required
traffic inputs (number of vehicles and travel speeds) are also computed by models. The
uncertainty of the traffic models and their inputs might be propagated in the simula-
tion coupling traffic models and EF models, and affect the final computed emissions.
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Therefore, it is necessary to carry out a sensitivity analysis through the whole modeling
chain from traffic modeling to emission estimation.

The main purpose of this chapter is to build the modeling chain from dynamic traffic
assignment model to emission estimation at street level. Then it is possible to carry
out the qualitative and quantitative sensitivity analysis on the modeling chain, in order
to study how both the traffic model inputs and emission model inputs can influence
the computed emissions at an metropolitan area. Concerning the traffic assignment
model, a dynamic traffic assignment model called LADTA [Leurent, 2003] is used in
order to better represent the congestion phenomenon, and the temporal-spatial varia-
tion of traffic flow and travel time. LADTA computes time-varying traffic flows and
average speed at street resolution. These outputs correspond to traffic input required
by COPERT model. Therefore, we built a modeling chain from traffic assignment to
emission estimation: LADTA-COPERT IV. The emissions are also at street resolution,
and they are computed at the same time resolution as that of the computed traffic
flow/speed from LADTA model. A case study on a working Tuesday in the agglomera-
tion of Clermont-Ferrand is carried out. With the modeling chain LADTA-COPERT IV,
emissions are computed at street resolution at each time interval of 15 minutes during
a whole day. Then a qualitative sensitivity analysis is carried out to the modeling chain
LADTA-COPERT IV [Chen et al., 2017]. We vary the total traffic demand, speed limits
and vehicle fleet composition in the agglomeration to see how they can influence the
computed NOx emission due to on-road traffic.

For the quantitative sensitivity analysis, the global sensitivity analysis (GSA) with
Sobol’ method presented in Chapter 5 is used here. Since the GSA with Sobol’ method
requires a large number of model evaluations, a modeling chain coupling the metamodel
of LADTA (cf. the Meta-LCF model built in Chapter 4) model and COPERT IV is
built: Meta-LCF-COPERT IV. The efficiency of Meta-LCF model allows us to compute
street resolution traffic flow and average speed during any interval of 15 minutes. A
whole-year emission simulation is then carried out for NOx and CO. The low model
evaluation time of Meta-LCF-COPERT IV also allows us carry out GSA with Sobol’
method. We perturb independently the inputs of meta traffic assignment model and
COPERT IV model in order to analyze the contribution of each input to the computed
emissions at street resolution. The case study is carried out in the agglomeration of
Clermont-Ferrand, but the method can be applied to other networks.

This chapter is organized as follows. Firstly, in Section 6.2, the modeling chain cou-
pling the complete LADTA model and the COPERT IV model is built. Then in Sec-
tion 6.3 the built modeling chain is applied to the agglomeration of Clermont-Ferrand,
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which is an important industrial city located in the center part of France. In the case
study, we computed traffic flows, average traffic speeds, NOx and CO emissions at street
level for the whole agglomeration during the whole year 2014. At last, qualitative and
quantitative sensitivity analysis is carried out for the modeling chain from dynamic
traffic assignment to emission estimations in Section 6.4. The inputs of LADTA model
as well as vehicle fleet parameters are analyzed in order to study the influence of in-
puts from both DTA model and COPERT IV model to the final estimated emissions.
The GSA of estimated emissions is carried out for the modeling chain of Meta-LCF-
COPERT IV. Both the first-order effect and the total effect are studied. The spatial
distributions of the sensitivity of different input factors are also presented.

6.2 Modeling chain of street-level on-road traffic emis-
sion estimation

For computing on-road traffic emissions, one of the most common used methods is
the tier 3 method of the EMEP CORINAIR emission inventory guidebook of European
Environment Agency [EEA, 2016]. The total exhaust emissions of on-road traffic are
calculated as the sum of hot emissions and cold-start emissions. In this study, only hot
emissions are considered. According to the tier 3 method of EMEP inventory guidebook,
the hot emissions can be estimated by the following formulation:

Ehot,i,j(g) = ehot,i,j(g km−1)×Nj(veh)×Mj(kmveh−1), (6.1)

where Ehot,i,j and ehot,i,j are respectively the hot emission and hot emission factor (HEF)
of pollutant i, for vehicle of technology j. N is the number of vehicles of technology
j. Mj is the mileage of vehicle of technology j. The tier 3 method of EMEP inventory
guidebook was initially introduced to estimate the exhaust on-road emissions of a whole
country during long periods of time. The emissions at street level can be computed by
combining the HEF with traffic flows and average speeds at street level. Then the
Equation 6.1 is applied to each road a of the studied area and we get

Ehot,i,j,a(g) = ehot,i,j,a(g km−1)×Nj,a(veh)× La(kmveh−1), (6.2)

where Ehot,i,j,a and ehot,i,j,a are respectively the hot emissions and the HEFs on the road
a for pollutant i, for vehicle of technology j. Nj,a is the number of vehicles on the road
a. Mj in Equation 6.1 is replaced with the road length of a, which is denoted as La
in Equation 6.2. In order to compute Ehot,i,j,a, we need to compute the traffic volume,
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as well as the emission factor of each pollutant, associated with each type of vehicle.
The emission factors can be modeled by COPERT IV formula in EMEP inventory
standards [EEA, 2016; Gkatzoflias et al., 2007]. In this study, we only consider hot
exhaust emissions. According to COPERT IV, the hot emission factor (HEF) ehot is a
function gi,j of the vehicle average speed v, for a given pollutant i and a given class of
vehicle technology j. For example, for pollutant NOx and for gasoline passenger cars
(PCs) with emission standard of Euro1 to Euro4,

ehot = gNOx,euro1_euro4(v) = a+ c× v + e× v2

1 + b× v + d× v2 , (6.3)

for gasoline passenger cars (PC) of Euro 1 to Euro 4. While for gasoline PC of Euro 5
to Euro 6c, the formulation is then:

ehot = gNOx,euro5_euro6(v) = a× v5 + b× v4 + c× v3 + d× v2 + e× v + f. (6.4)

In Equation 6.3 and 6.4, the parameters a, b, . . . , f depend on the technology of emission
standards for gasoline PC. The function gi,j itself as well as its parameters depend on
vehicle type and pollutant. If the vehicle technologies and vehicle speeds are given at
street level, ehot can be computed at street level as well. The computation of emissions
at street level combining with traffic information is implemented and published as an
open-source program Pollemission [Chen and Mallet, 2016].

6.3 Emission results for the agglomeration of Clermont-
Ferrand

Both the complete LADTA model and the metamodel Meta-LCF compute time-
varying traffic flow and average speed at street resolution. The temporal resolution
is ∆h = 0.25 hour. Let ya,h and va,h denote the computed traffic flow and average
speed at link a during [h, h + ∆h], respectively. They are computed by the complete
model LADTA or the metamodel of LADTA applied to the agglomeration of Clermont-
Ferrand. Based on Equation 6.2, the hot emission at link a during [h, h+ ∆h] can then
be computed as

Ehot,i,j,a,h(g) = ehot,i,j,a,h(g km−1)× yj,a,h(veh)
ghot,i,j(va,h)× yj,a,h,

(6.5)
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where ghot,i,j is the HEF function for pollutant i and vehicle type j. It is calculated
based on average speed va,h. Firstly, the modeling chain LADTA-COPERT IV is used
to compute NOx emission during a working Tuesday in the agglomeration. Then a
qualitative sensitivity analysis is carried out to the LADTA-COPERT IV to see how
the NOx emission is influenced by the input total demand and network speed limits
during each interval of 15 minutes of the whole day. Secondly, ya,h and va,h computed
by Meta-LCF model is coupled with COPERT IV model. The modeling chain Meta-
LCF-COPERT IV is used to compute CO and NOx emission at street resolution during
the whole year 2014. There are in total 23 inputs for computing ya,h and va,h, and 6
added inputs with vehicle fleet inputs for COPERT IV model. A GSA using Sobol’
method is then applied to Meta-LCF-COPERT IV to analyze the contribution of all
the 29 inputs of the modeling chain to the computed NOx and CO emission at street
resolution.

6.3.1 Inputs

Dynamic traffic assignment inputs for LADTA and Meta-LCF model

We recall here the inputs of LADTA model and Meta-LCF model.
G = (N ,A): the nodes (∈ N ) and links (∈ A) of the oriented graph G modeled for

the network of the agglomeration of Clermont-Ferrand. D = card(A) = 19628. D is
the number of links.
ZO,ZD ⊂ N : the set of nodes representing the Origin-Destination zones. z =

card(ZO) = card(ZD) = 124.
C = [Ca]a∈A, L = [La]a∈A, V0 = [V0a]a∈A: the vector of link capacities, link lengths

and speed limits. C,L,V0 ∈ RD.
L = [La]a∈A, T0 = [T0a]a∈A and C = [Ca]a∈A : vector of link length, free-flow travel

time and link capacity.
H = [h0, h1]: the simulation period of LADTA.
∆h: time step for loop detectors to register aggregated traffic flow data. It is also

assumed that during the interval [h, h+∆h], the traffic flow on the network is constant,
and so is the time-varying traffic demand. In our case study, ∆h = 0.25 hour.
Q(h) = (Qo,d(h))(o,d)∈ZO×ZD

: the time-varying O-D matrix. Qo,d(h) is the cumulated
traffic demand (total number of vehicles in veh) from o to d during H. It is non-
decreasing and can be deduced from time-varying traffic demand density qo,d(h) (in
veh h−1) at instant h for the O-D pair od. qo,d(h) is assumed to be a piece-wise linear
function of h and qo,d(h) is constant in the interval [h, h+ ∆h]. With known qo,d(h) and
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bounded H, (Qo,d(h))(o,d) =
∫ h
h0 qo,d(h̃)dh̃ with h ∈ H.

Qpeak = (qpeako,d )(o,d)∈ZO×ZD
: O-D matrix of the agglomeration of Clermont-Ferrand

during the evening peak hour 17:00 – 18:00, where (qpeako,d )(o,d) is the average traffic
demand during the evening peak. It is the static O-D matrix.

In Meta-LCF model, in order to represent the uncertainty of the network parameters,
links are regrouped according to link capacities and speed limits.
V low

0 = [V0a]a∈Alow
: the vector of low speed limits (V0 ≤ 50 kmh−1), with Alow as

the set of links with V0 ≤ 50 kmh−1. Links in the set Alow are considered “low-speed
links”.
V high

0 = [V0a]a∈Ahigh
with Ahigh = A\Alow: the vector of high speed limits. Links in

the set Ahigh are considered “high-speed links”.
Csmall = [Ca]a∈Asmall

: the vector of small link capacities, with Asmall as the set of
links with C ≤ 900 veh h−1.
Cbig = [Ca]a∈Abig

with Abig = A\Asmall: the vector of big link capacities.
For a whole-day DTA simulation with the complete LADTAmodel,H = [0.0, 24.0] hour

for a working Tuesday. (Qo,d(h))(o,d)∈ZO×ZD
is the dynamic O-D matrix converted from

the given static matrixQpeak. LADTA then computes (ya,h)a∈A and (va,h)a∈A for h ∈ H.
Detailed description for the whole-day simulation with LADTA is presented in Sec-
tion 3.3 and Section 3.4.3 of Chapter 3.

For the metamodel, we recall the Meta-LCF model for the agglomeration of Clermont-
Ferrand in Equation 6.6. It computes traffic flows y in veh h−1 at street resolution during
a time step of [hsimu, hsimu + ∆h],∆h = 0.25 (h in hour) on a day d. The road network
in the agglomeration of Clermont-Ferrand is modeled by oriented graph and the roads
are represented by links.

yd(hsimu) = M̂(ξdPd(h)h∈Iatomic
, δ0, δ0−5, δ5−10, δ10−15, δ>15, λbig, λsmall, µhigh, µlow, η)

= M̂(p),
(6.6)

where Iatomic is a set of instants {hsimu−2.25, hsimu−2.0, . . . , hsimu, . . . , hsimu+0.75} (in hour).
LADTA requires time-dependent traffic demand as input and computes time-varying
traffic flow. qo,d(h) with h ∈ Hatomic can be obtained from loop detector measurements of
the simulation period (refer to Section 4.3.2 in Chapter 4). We assume that the dynamic
demand and the computed flow are constant during an interval of 15 minutes. Then
Qo,d(h) can be obtained by integrating qo,d(h) during [hsimu−2.25, hsimu+1.0] (in hour).
Then y = (ya,hsimu

)a∈A and v = (va,hsimu
)a∈A can be computed using Meta-LCF. We

also assume that the traffic flow computed during [hsimu, hsimu+∆h] is not influenced by
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the traffic demand during the time intervals [−∞, hsimu − 2.25] and [hsimu + 1.0,+∞].
Pd(h)h∈Iatomic are the 13 temporal variation coefficients. They are ratios between the
traffic demand during [h, h + ∆h] and during the evening peak of a given simulation
day d. ξd is the total demand coefficient for adjusting the total traffic demand according
to different day d. δ0, δ0−5, δ5−10, δ10−15 and δ>15 are five spatial variation coefficients
to represent spatial uncertainty of the demand according to the Origin-Destination dis-
tance. λbig, λsmall, µhigh, µlow represent uncertainty of road capacities and speed limits.
η = 1.0 if hsimu <= 12 and η = 0.0 otherwise.

Vehicle fleet inputs for COPERT IV model

The hot emission factors (HEFs) depend on the following factors according to COP-
ERT IV model: (i) vehicle category (passenger car, heavy duty vehicle, etc.), (ii) emis-
sion standard technology (pre-Euro, Euro 1, Euro 2, etc.), (iii) engine type (gasoline,
diesel, etc.), (iv) engine capacity (< 1.4L, 1.4L−2.0L, > 2.0L, etc.), (v) pollutant type
and (vi) vehicle average speed. The first four factors are often categorized as vehicle
fleet inputs. LADTA model and the Meta-LCF model compute the number of vehicles
and average speeds at street level. Hot emissions can then be computed at street level
if vehicle fleet inputs are provided at the same level.

In our case study, it was assumed that the vehicle fleet inputs were the same on all
the streets of the network. As the O-D matrix of traffic simulation is only provided for
passenger cars (PCs), the outputs of the traffic assignment model are only traffic flows
of PCs. Five scalar coefficients are used to represent the vehicle fleet inputs. (i) θgaso
is the proportion of gasoline PCs. (ii) γgaso_1.4 is the share of gasoline PCs with engine
capacity less than 1.4L, among all gasoline PCs. (iii) εdiesel_2.0 is the proportion of diesel
PCs with engine capacity less than 2.0L, among all diesel PCs. (iv) ζgaso_euro4 is the
proportion of gasoline PCs with emission standard of Euro 4 and higher. (v) ϕdiesel_euro4

is the proportion of diesel PCs with emission standard of Euro 4 and higher. All these
parameters are less than or equal to 1. For the agglomeration of Clermont-Ferrand, the
default vehicle fleet data for PCs is that of France, provided in [André et al., 2013] and
presented in Table 6.1 and 6.2.

In Table 6.1 and 6.2, the distribution of engine capacity (τ<1.4l, τ1.4−2.0l, τ>2.0l) is
different according to the engine type. In France, the share of diesel PCs is bigger
than that of gasoline PCs: θdiesel > θgaso. In our case study, it was assumed that
θgaso + θdiesel = 1. The default share of emission standard is assumed to be independent
of the engine type (Table 6.2). As we vary γgaso_euro4 or εdiesel_euro4 for sensitivity
studies in Section 6.3.2, we keep the proportion of each vehicle technology among them,
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Table 6.1: Distribution of engine type and engine capacity in France. Source: [André
et al., 2013]. For vehicles with emission standard Euro 6, the share is unknown and
supposed to be zero.

Engine type Engine capacity Proportion in each category

(proportion in all PCs, in %) (in %)

gasoline (θgaso = 29.2)

< 1.4L (τgaso,<1.4l) 59.9

1.4− 2.0L (τgaso,1.4−2.0l) 34.6

> 2.0L (τgaso,>2.0l) 3.8

Diesel (θdiesel = 70.6)

< 1.4L (τdiesel,<1.4l) 9.8

1.4− 2.0L (τdiesel,1.4−2.0l) 77.8

> 2.0L (τdiesel,>2.0l) 12.5

Table 6.2: Distribution of emission standard technology in France [André et al., 2013]

Emission standard technology Proportion in all PCs (in %)

Pre-Euro (τpre-euro) 3.6

Euro 1 (τeuro1) 6.6

Euro 2 (τeuro2) 14.0

Euro 3 (τeuro3) 33.5

Euro 4 (τeuro4) 39.9

Euro 5 (τeuro5) 2.4

i.e, τpre : τeuro1 : τeuro2 : τeuro3 = 3.6 : 6.6 : 14.0 : 33.5, and τeuro4 : τeuro5 = 39.9 : 2.4. Note
that the share of Euro-6 PCs is unknown and assumed to be zero. In the same category
of vehicles with emission standards lower or higher than Euro 4, the sum of the shares
for each class is 1.0: τpre + τeuro1 + τeuro2 + τeuro3 = 1.0, and τeuro4 + τeuro5 = 1.0. As
a result, with one parameter ζgaso_euro4 or ϕdiesel_euro4, the proportion of vehicles with
other emission standards can be obtained. Similarly, concerning the engine capacity, the
proportion of gasoline PCs with engine capacity 1.4L−2.0L and> 2.0L is assumed to be
constant, i.e., τgaso,1.4−2.0l : τgaso,>2.0l = 34.6 : 3.8 with τgaso,1.4−2.0l + τgaso,>2.0l = 1.0. The
proportion of diesel PCs with engine capacity < 1.4L and 1.4L− 2.0L is also assumed
to be constant: τdiesel,<1.4l : τdiesel,1.4−2.0l = 9.8 : 77.8, with τdiesel,<1.4l+τdiesel,1.4−2.0l = 1.0.
Therefore, the proportion of gasoline or diesel PCs with different engine capacities can
be expressed by only two scalars: γgaso_1.4 and εdiesel_2.0. For example, assuming that
the vehicle fleet data are default values presented in Table 6.1 and 6.2, the computation
of hot emissions of NOx on link a, for Euro 4 gasoline PCs, with engine capacity less
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than 1.4L can be written as

ENOx, euro4, gaso_1.4l, a = ζgaso_euro4×
τeuro4

τeuro4 + τeuro5
×(γgaso_1.4θgasoNa)×eNOx, euro4, gaso_1.4l×La,

(6.7)
where Na is the total number of vehicles on link a computed by LADTA or Meta-
LCF, La is the length of link a (in km) and eNOx, euro4, gaso_1.4l is the corresponding
HEF. The total emissions on the link a is then the sum of computed hot emissions
of all types of PCs with all different technologies. The complete modeling chain from
traffic assignment to emission estimation is referred to as LADTA-COPERT IV, and
Meta-LCF-COPERT IV.

6.3.2 Results

NOx emissions on a working Tuesday

A dynamic traffic assignment (DTA) simulation is carried out for a working Tuesday.
During each time interval of 15 minutes, an emission map of NOx is plotted. Figure 6.1
shows the temporal evaluation of NOx (in g/km/15min) from 07:00 to 08:30.

Figure 6.2 compares the computed emission and traffic flow during the period of
07:00 to 07:45. We can see that the emission is mainly influenced by the traffic flow
on the link. The spatial distribution of NOx emissions is highly correlated with that of
the traffic flow. In fact, based on Equation 6.2, the street-resolution hot emission is the
production of (i) hot emission factor and (ii) traffic volume on the street. Figure 6.2
shows that the traffic volume on the street influences more significantly the computed
NOx emission than the emission factor, with fixed vehicle fleet composition data on the
network.

Annual emissions of NOx and CO

With traffic counts collected by detectors, the temporal variation of on-road traffic in
Clermont-Ferrand can be obtained for all kinds of days (working days, weekends, public
holidays and school vacations) during any periods. A whole-year traffic assignment
simulation with Meta-LCF was carried out. The computed traffic flows and average
speeds at street level were then coupled with COPERT IV model. Together with the
default vehicle fleet data listed in Table 6.1 and 6.2, a whole year of hot emissions for
PCs were estimated. Figure 6.3 presents the temporal variation of the daily vehicle
counts, total daily on-road traffic (hot) emissions of PCs for NOx and CO during 2014.
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Figure 6.1: Emission maps of NOx (in g/km/15min) in the City of Clermont-Ferrand
from 07:00 to 08:30. Black lines represent links with zero emission (due to zero computed
traffic flow). The line width is proportional to the NOx emission on the link. For links
with the same origin-destination nodes, the sum of their NOx emissions is calculated
and displayed in these maps.

Figure 6.3 shows that there is a strong correlation between the traffic volume and
computed emissions. During vacations, weekends and public holidays when there are
less traffic, the resulting on-road emissions decrease as well. The computed hot emissions
of CO are less than those of NOx. This is due to the large proportion of diesel PCs in
France (> 70%) and Euro 3-4 PCs (> 70% in total) (shown in Table 6.1 and 6.2). For
PCs, the HEFs of CO are smaller than those of NOx, especially for Euro 3 and Euro 4
PCs (shown in Figure 6.4).

6.4 Sensitivity analysis

A qualitative local sensitivity analysis (LSA) with the one-at-a-time method is car-
ried out on the modeling chain. In the LSA study, the simulation results in Section 6.3.2
are considered as references. The LSA studies the sensitivity of the computed on-road
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Figure 6.2: Comparison of traffic flow (upper three figures) and emission of NOx (lower
three figures) in the city of Clermont-Ferrand from 07:00 to 07:45. Traffic flows (in
veh h−1) are computed by LADTA model. NOx emissions (in g km−1) are computed
by the modeling chain. Black lines represent links with zero traffic or emission. The
line width is proportional to the traffic flow or to the NOx emission on the link. For
the links that share the same nodes but are oriented in opposite directions, the sum
of the traffic flows (or of the NOx emissions) from the two directions is calculated and
displayed.

traffic emissions of NOx, with respect to the LADTA inputs as well as the inputs of
COPERT IV model: (i) total traffic demand, (ii) speed limits of the road network,
and (iii) vehicle fleet composition. In addition, with the modeling chain of Meta-LCF-
COPERT IV, the model evaluation time for estimating street-resolution emission has
been significantly decreased. Then the global sensitivity analysis with Sobol’ method
is carried out to study the sensitivity of on-road traffic emissions computed by the
modeling chain in the whole agglomeration at street resolution, with respect to both
(i) the uncertain inputs of LADTA model, and (ii) the vehicle fleet composition in-
puts for COPERT IV. The reference values for the inputs are those used in the case of
Section 6.3.
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Figure 6.3: Daily observed on-road traffic (black, in 106 veh/day), total daily
NOx (green) and CO (blue) emissions (in 107 g/day) for PCs estimated by Meta-LCF-
COPERT IV, during 2014. For each day, the traffic data is the sum of observed vehicle
counts of all detectors. The total daily emission is the sum of street-resolution emis-
sion computed by the modeling chain Meta-LCF-COPERT IV at all links and all time
intervals. The value reaches zero when no data was collected. On these days, it was
assumed that the values of emissions were the same as those of the same weekday in
the previous week (except that if the day in the previous week is a public holiday, and
then the value of the same weekday of the next week was taken).
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Figure 6.4: Hot emission factors of (a) NOx and (b) CO for diesel passenger cars for
different emission standard.

6.4.1 Qualitative sensitivity analysis results

Total traffic demand on the whole network

We change the total demand volume by 50% to 150% with respect to the reference
demand. The temporal variation of traffic demand remains the same: the temporal
profile for a working Tuesday. The data for links’ information and vehicle fleet compo-
sition remain unchanged. Then the emissions are calculated for each link during each
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15 minutes for the working Tuesday with different total traffic demands.
Figure 6.5 shows the spatial distribution of computed traffic flow and NOx emissions

during the period from 07:45 to 08:00, with a total traffic demand volume of −50%, 0%
and 50% with respect to the reference demand. Results in Figure 6.5 show that NOx
emission increases with the increase of travel demand, especially on links whose traffic
flow is sensitive to the increase of the total demand.

Figure 6.5: The spatial distribution of (a) traffic flows (in veh h−1) and (b) NOx emis-
sions (in g km−1) from 07:45 to 08:00, with the total demand volume of −50%, 0% and
50% of the demand in the reference case. Black lines represent unused links in LADTA
model. The line width is proportional to link’s emission. For the links that share the
same nodes but are oriented in opposite directions, the sum of their NOx emissions is
calculated and displayed.

In order to analyze the sensitivity in details, the total values of these indicators on
the whole network during 24 h are calculated for each case with different total demand
volumes. The sensitivity of total daily NOx emissions with respect to total traffic
demand is presented in Figure 6.6.

Figure 6.6 shows that the influence of the total volume to the total daily NOx emis-
sion in the whole agglomeration of Clermont-Ferrand is not linear. The total emissions
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Figure 6.6: Sensitivity of the total emissions of the network to the total demand volume.
Left: emission evolution (in 103 g) for the whole day, right: evolution of the total vehicle
travel time in the whole network (in 106 g).

are tripled when we double the total demand volume comparing with the reference case.

Speed limits of the network

This sub-section analyzes the sensitivity of traffic emission to the road’s average
speed. The maximum authorized speed of each road has been decreased by 5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%. It is found that the network total
emissions are less sensitive to the speed limitation than to the total traffic demand, as
shown in Figure 6.7. Figure 6.7 (right) shows that the variation of the total emissions
is not monotonic with the decrease of speed limitation. A minimum is reached for a
decrease of 25% of the speed limits on all links on the network.

In fact, the hot emission factors of NOx change with the average travel speed as
shown in Figure 6.8. With fixed traffic demand, the computed emissions follow the
same non-monotonic trend as in Figure 6.8, and the variation of the amplitude depends
on the vehicle fleet.

Vehicle fleet composition

(1) Effects of vehicle emission Euro standards
In this subsection, we divide passenger cars into two big categories: (i) the “Euro 4 +”

vehicles with Euro standards of Euro 4 and higher, (ii) the “Euro 3 –” vehicles with
Euro standards from pre-Euro to Euro 3. In the reference simulation, the percentage
of “Euro 4 +” vehicles is about 42.3% for passenger cars. For the sensitivity study, we
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Figure 6.7: Sensitivity of hot emission factor of passenger cars for NOx to the average
speed.
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Figure 6.8: Variation of emission factors (in g km−1 veh−1) of NOx for gasoline passenger
car (left) and diesel passenger car (right) against the increase of average travel speed.

increase the percentage of “Euro 4 +” cars from 42.3% to 80%. Within each category,
we keep the same distribution of car standards. Figure 6.9 (left) shows that the total
daily emissions of NOx decrease when the proportion of “Euro 4 +” category increases.

(2) Effects of the proportion for gasoline passenger cars and diesel passenger cars
In the reference case, the percentage of diesel passenger cars is 70.6% and that of

gasoline passenger cars is 29.2%. We increase the proportion of gasoline passenger cars
from 30% to 70% with steps of 10%. At the same time, the sum of the percentage
of diesel passenger cars and gasoline passenger cars remains 1.0. The results in Fig-
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Figure 6.9: Sensitivity of total emissions of NOx to Left: Euro Standard and right:
vehicle fleet type.

ure 6.9 (right) show that we can decrease the total NOx emission of 45% by doubling
the percentage of gasoline passenger cars.

6.4.2 Global sensitivity analysis results: Sobol’ indices

For computing global sensitivity using Sobol’ method presented in Chapter 5, COP-
ERT IV model is coupled with Meta-LCF model built in Chapter 4 for computing
traffic flows and average speeds at street resolution. The outputs of the Meta-LCF and
the on-road emission modeling chain are the computed flow y(hsimu), average speed
V (hsimu) and emission Ei (in gram) at link level during [hsimu, hsimu + ∆h]. The emis-
sion modeling chain Meta-LCF-COPERT IV is built. According to Equation 6.1, the
number of vehicles, the average speeds and vehicle fleet data can all affect the hot emis-
sions computed by the modeling chain. For the global sensitivity analysis (GAS), we
focus not only on inputs of COPERT IV model, but also on the 23 traffic assignment
(TA) inputs in order to analyze the propagation of uncertainty from the traffic model
inputs to the computed emissions. In total, 29 inputs for the whole modeling chain
are studied, including 23 inputs of Meta-LCF model, the five inputs presented in Sec-
tion 6.3.1, and an additional input concerning HDVs. In addition, the GSA study here
aims at investigating how the computed emissions on each link are influenced by all 29
inputs. For each link, the computed emissions can be considered as scalar output of
the modeling chain with 29 inputs: Ea = g(p1, p2, . . . , pi, . . . , p29). With respect to the
same inputs, the sensitivity of the computed output on different links may be differ-
ent. The first-order and total-effect sensitivity indices (Si,a and ST i,a) for traffic flows,
speeds and emissions are therefore computed at all links. Table 6.3 presents the inputs
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p = (p1, p2, . . . , pi), i ∈ {1, 2, . . . , 23} of Meta-LCF and their variation intervals.

Table 6.3: The variation intervals of Meta-LCF model inputs

Input Temporal profile Capacity Speed Demands in O-D matrix Transposed

O-D matrix

Symbol (P (h))h∈Hatomic λbig, λsmall µhigh, µlow δ0, δ0−5, δ5−10, δ10−15, δ>15 η

Number 13 2 2 5 1

Variation [0.00, 1.5] [0.70, 1.30] [0.80, 1.20], [0.70, 1.10] [0.25, 1.50] 1 or 0

Table 6.4 presents six inputs of vehicle fleet parameters and their variation intervals.
Besides the five parameters defined in Section 6.3.1, we added an input to represent the
share of Heavy Duty Vehicles (HDVs) on a group of roads passing through Clermont-
Ferrand and near an industrial logistic center (shown in Figure 6.10). Since the traffic
flows modeled by Meta-LCF represent only PCs, extra HDV are added on certain links,
with the ratio σHDV between HDVs/PCs varying from 0% to 30%. In COPERT IV
model, there are many parameters for computing HEFs of HDVs. In our case study,
only one type of HDV was added on given links: 100% charged articulated diesel track
of 28 −32 t, with emission standard of Euro IV. It is assumed that the slope is 0% over
all roads. The outputs of an atomic simulation with Meta-LCF-COPERT IV are the
emissions of NOx and CO at link level of the whole agglomeration, during the time
interval of [hsimu, hsimu + ∆h].

Table 6.4: The vehicle fleet inputs for COPERT IV model and their variations in the
Monte Carlo simulations for GSA

Input θgaso γgaso_1.4 εdiesel_2.0 ζgaso_euro4 ϕdiesel_euro4 σHDV

Variation (%) [10, 100] [10, 100] [10, 100] [10, 100] [10, 100] [0, 30]

The GSA results are represented by plotting sensitivity indices in two kinds of figures:
boxplots and maps. Firstly, the boxplots allow us to compare the influence of all input
factors among each other, throughout the whole network. Each point in a boxplot
corresponds to Sa,i or STa,i

on a link a for an input factor pi. The box contains the
indices between the 1st quartile (Q1) and the 3rd quartile (Q3). The interquartile range
(IQR) is Q3 - Q1. The red line corresponds to the median value of Sa,i or STa,i

. The
Whisker parameter is set to 3.0: a value < Q1− 3.0× IQR or > Q3 + 3.0× IQR will be
considered as out of range and plotted as points. Secondly, since the sensitivity indices
are calculated at link level for each factor pi, a map of all Sa,i for the whole network
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Figure 6.10: Map of links with HDVs, and link capacity map of the whole agglomeration
of Clermont-Ferrand. The red point in the map is a big industrial logistic center. Black
lines represent roads without HDVs. Lines with colors represent roads with HDVs. The
color and width of links represent the link capacity (in veh h−1).

of Clermont-Ferrand is displayed. The maps help us to visualize how the input factors
can influence the computed emissions depending on the link spatial locations.

NOx emissions

Figure 6.11 presents Si,a and ST i,a of the computed NOx emissions at all links, with
respect to the total 29 inputs in Table 6.3 and Table 6.4 of modeling chain Meta-LCF-
COPERT IV. Classical Monte-Carlo simulations of the modeling chain were applied by
taking each input factor pi randomly in its variation interval. The total sampling size
is n = 80000.

Figure 6.11 shows that the computed NOx emissions are sensitive to all the factors
that are influential to the computed traffic flows mentioned in Chapter 5 (see Figure 5.2).
Though the average speed is a parameter of the COPERT IV model, the computed NOx
emission is not significantly sensitive to it. The variation of travel speeds does not con-
tribute much to the variance of NOx emissions on most of the streets. Concerning
vehicle fleet composition, Figure 6.11 shows that the NOx emissions are not very sen-
sitive to the emission standard technology. This might due to the assumption that no
PCs of Euro 6 standard technology is taken into account, while according to HEFs of
NOx (Figure 6.4), the HEFs decrease significantly for Euro 6 diesel PCs compared with
other emission standard classes. Figure 6.11 also shows that the NOx emissions are
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Figure 6.11: First-order and total-effect Sobol’ sensitivity indices of the 29 inputs of the
modeling chain Meta-LCF-COPERT IV for the computed NOx emissions

very sensitive to the proportion of gasoline cars (θgaso), and to the HDV share (σHDV).
On links with HDVs, the computed emissions are still significantly more sensitive to the
variation of HDVs than other vehicle fleet inputs of the modeling chain. This is all the
more noteworthy that σHDV varies only on a few roads and only up to 30%. The spatial
distribution of Sa,i is presented in Figure 6.12. It shows that on links without HDVs, the
computed NOx emissions are very sensitive to the proportion of gasoline PCs. While
on links with HDVs, even if the variation of σHDV are small, the uncertainty of σHDV
dominates the variance of the NOx emissions computed by the modeling chain.

CO emissions

We also carried out GSA to the computed CO emissions with respect to the 29
inputs of the modeling chain of Meta-LCF-COPERT IV. Figure 6.13 presents the first-
order and total-effect sensitivities of the computed emissions (in gram) at link level,
with respect to 12 factors that are the most influential factors to the computed flows
and speeds (Chapter 5), and to the 6 vehicle fleet factors in Table 6.4 for COPERT IV
model.

Figure 6.13 shows that the computed CO emissions are also sensitive to all the factors
that are influential for the computed traffic flows mentioned in Chapter 5: traffic demand
direction, traffic demand during the previous 30 minutes and traffic demand between
short distance O-D pair. Concerning vehicle fleet inputs however, only θgaso has first-
order effect on the computed CO emissions. Unlike in the case for NOx emissions, the
total-effect indices in Figure 6.13 show that the HDV share (σHDV), within the designed
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Figure 6.12: Spatial distribution of the 1st order sensitivity indices of the computed NOx
emissions with respect to the share of gasoline passenger cars θgaso (left) and heavy duty
vehicles σHDV (right). The red point in the map represents a big industrial logistic
center.

uncertainty range of 0 to 30%, is not an influential factor to computed CO emissions.
However, contrary to the emission of NOx, the hot emissions of CO are influenced
by some high-order interactions involving the emission standards of PCs. The median
values of the total-effect indices for ζgaso_Euro4 and ϕdiesel_Euro4 are not zero, and are
bigger than those of NOx case in Figure 6.11.

Conclusions

In this chapter, we have presented a simulation chain for emission estimations com-
bined with a dynamic traffic assignment model LADTA, and the COPERT IV model.
The case study was carried out for a typical working day during non-vacation period
for the agglomeration of Clermont-Ferrand. The emission calculations are based on
traffic flow results of LADTA for each link during every 15 minutes for the day. Results
show that high emissions are found on roads with heavy traffic, especially during peak
hours. We have already seen in Chapter 3 that traffic flow changes significantly within
a quarter of an hour. The use of a dynamic traffic assignment (DTA) model allows us to
estimate emissions down to the same time resolution. Moreover, since a metamodel of
the LADTA model applied to the agglomeration of Clermont-Ferrand has already been
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Figure 6.13: First-order and total-effect Sobol’ sensitivity index of some inputs of mod-
eling chain of Meta-LCF-COPERT IV, for the computed traffic emissions of CO

built, a modeling chain combing the metamodel of traffic model and the COPERT IV
model was also built in this chapter. At last, we studied the sensitivity of the emissions
to LADTA model and COPERT inputs.

According to the qualitative sensitivity analysis results, total emissions increase with
the total demand volume onto the network. However, the variation is not linear. The
variation of the link speed has less influence on the network total vehicle travel time
and total emissions. As we decreased the links’ speed limits, the total emissions firstly
decreased and then increased. The minimum value has been reached when the speed
decreased by about 25%. This is mainly due to the influence of vehicle travel speed on
the hot emission factors of NOx.

The global sensitivity analysis (GSA) is carried out to the modeling chain combining
the metamodel of LADTA applied to Clermont-Ferrand and the COPERT IV model:
Meta-LCF-COPERT IV. Hot exhaust emissions are computed by multiplying hot emis-
sion factors (HEFs) and the number of vehicles at street level. The hot emission factors
mainly depend on vehicle speed and technology. HEFs were modeled by COPERT IV in
our case study. The output emissions are then affected by inputs of the modeling chain
via traffic flows and HEFs. The results of GSA show that the computed NOx emissions
are sensitive to all the inputs that influence the traffic flows. The traffic speeds do not
have significant influence to the NOx emissions computed by Meta-LCF-COPERT. In
addition, the computed NOx emissions are very sensitive to some of the vehicle fleet
inputs: (i) the share of HDVs and (ii) the percentage of gasoline cars on road. Other
fleet parameters such as the emission standards and engine capacity, are non-influential
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factors to the on-road NOx emissions simulation. Nevertheless, these sensitivity results
are different for different pollutants. For the hot emissions of CO, only the gasoline PCs
share has a first-order effect to the emissions computed by the modeling chain. The
share of HDVs is not very influential to the computed CO emissions, compared with the
case study for NOx emissions. Moreover, the hot emissions of CO are more affected by
high-order effects of emission standard factors (the share of Euro 4 and higher PCs in
vehicle fleet composition) than in the case of NOx.





Chapter 7

Uncertainty quantification for
dynamic traffic assignment and
on-road emission simulations at

metropolitan scale

Summary

The uncertain inputs of the dynamic traffic assignment (DTA) simulation with
LADTA are considered as random variables with uniform probability distributions.
We then use the Monte Carlo approach to generate two ensembles of simulations:
(i) an ensemble of DTA simulations with the metamodel of LADTA, and (ii) an
ensemble of emission simulations, for the agglomeration of Clermont-Ferrand at
street resolution and for all time intervals of 15 minutes during November 2014.
The objective of uncertainty quantification is ideally to derive an estimation of
the probability distribution of the computed outputs. For DTA simulations, the
ensemble is evaluated with the help of observations of traffic flows, measured
by loop detectors on the network of Clermont-Ferrand at all time steps during
November 2014. Rank histogram, reliability diagram and statistical scores are
chosen criteria to evaluate whether or not the ensemble can well represent the
uncertainty of the DTA simulations. Then the uncertainty quantification is carried
out based on the ensembles. Standard deviation, relative standard deviation,
interquartile range (IQR) and 5th − 95th percentile range are used to measure the
uncertainty of the outputs. For traffic flow prediction, high absolute uncertainty
(measured by the standard deviation) is found on streets with heavy traffic. In
addition, high IQR and 5th− 95th percentile range are found on roads with heavy
traffic volume, too. However, the high relative uncertainty (measured by the
relative standard deviation) is mostly found on streets where the simulated traffic
flow is low. For on-road traffic emissions, an ensemble of NOx emissions is built
based on the ensemble of DTA simulations, using the modeling chain that couples
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LADTA and COPERT IV at street resolution. We then analyze the uncertainty
of computed emissions due to the uncertainty in inputs of the dynamic traffic
assignment. Results show that the emission uncertainty is highly correlated with
(i) the computed traffic flow on the network and (ii) the uncertainty of traffic flows.
In addition, the uncertainty tends to be amplified from the computed traffic flow
to the computed emission, especially on streets with heavy duty vehicles.

Résumé

On considère que les entrées incertaines de l’affectation dynamique du trafic
(ADT) avec le modèle LADTA sont des variables aléatoires avec distributions
uniformes. Nous utilisons ensuite l’approche Monte Carlo pour générer deux en-
sembles de simulations: (i) un ensemble de simulations ADT avec le méta-modèle
de LADTA, et (ii) un ensemble de simulations d’émissions, pour l’agglomération
de Clermont-Ferrand à la résolution de rue, pour tous les intervalles de temps
de 15 minutes en novembre 2014. L’objectif de la quantification d’incertitude est
idéalement d’obtenir les distributions de probabilité des sorties. Pour les simula-
tions d’affectation du trafic, l’ensemble est évalué à l’aide de données de comptage
du trafic, collectées sur le réseau de Clermont-Ferrand pendant la même période
que la simulation. Le diagramme de rang, le diagramme de fiabilité et des scores
statistiques sont les critères utilisés pour évaluer si l’ensemble représente correcte-
ment l’incertitude des sorties. Ensuite, la quantification d’incertitude est effectuée
grâce aux sorties des deux ensembles. L’écart type, l’écart type relatif, l’écart in-
terquartile (EI) et l’écart entre les 5e et 95e centiles sont deux mesures choisies
pour décrire l’incertitude des sorties. Pour l’affectation du trafic, une forte incer-
titude absolue (mesurée par l’écart type) se trouve principalement dans les rues
où le débit du trafic simulé est grand. De grands EI et écarts entre les 5e et 95e
centiles se trouvent également dans les rues avec forts débits de trafic. Cependant,
une forte incertitude relative (mesurée par l’écart type relatif) se trouve princi-
palement dans les rues où le débit du trafic simulé est faible. Pour les émissions
dues au trafic routier, un ensemble d’émissions de NOx est construit à partir des
sorties (débits et vitesses moyennes) de l’ensemble d’affectations du trafic. Nous
analysons ensuite l’incertitude des émissions simulées due aux entrées incertaines
de l’ADT. Les résultats montrent que l’incertitude des émissions est fortement
corrélée avec (i) le débit du trafic simulé sur le réseau et (ii) l’incertitude du débit.
De plus, l’incertitude a tendance à s’amplifier depuis le trafic simulé jusqu’aux
émissions en sortie, en particulier dans les rues où les poids lourds sont présents.
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7.1 Introduction

The uncertainty quantification aims at quantifying the uncertainty of outputs result-
ing from numerical models. For modeling atmospheric pollutant emissions of on-road
traffic, there are many uncertainty sources in inputs, in the model parameterizations,
and in numerical approximations. In our work, we only study the uncertainty due to
model inputs for estimating on-road traffic emissions. Before a detailed discussion, we
define here more precisely what is uncertainty and uncertainty quantification. Unlike
the deterministic simulation with certain known inputs, the inputs and outputs are both
considered as random variables U and X. Let us denote the model as X = f(U) and f
is a numerical model for estimating traffic flows or on-road traffic emissions. A deter-
ministic simulation can then be denoted as x = f(u) where x and u are realizations of
random variables X and U . For simplification, we assume that the output variable X
follows a normal distribution with mean X̄ and standard deviation σ:

X ∼ N (X̄, σ2). (7.1)

The true value of X is an observed value o. If we consider that there is uncertainty
in the observation, the observation can also be considered as a random variable O.
However, here we assume that the observation is perfect and we ignore the error lying
in observations. Therefore, in deterministic simulation, we can evaluate the model f
with the error e. The error is defined as the distance between a realization of X and
the observation o:

e = d(x, o), (7.2)

where d(·, ·) is a measure of distance (Mean Squared discrepancy for example). Another
criterion to evaluate the performance or the robustness of the numerical model is the a
priori uncertainty: σX = σ. It is defined only from the a priori probability distribution
of X without taking into account the observations. There is also a posteriori uncertainty
which estimated given the observation o: σX|o. In our study, we only focus on the a priori
uncertainty and the term “uncertainty” in this chapter refers to a priori uncertainty.
Therefore, the objective of uncertainty quantification is to determine the probability
distribution of X and to quantify σ. To do so, we need to use a probabilistic approach
and introduce uncertainties in inputs U , in order to obtain the probabilistic distribution
of output X computed by f(U). This requires a large number of model evaluations and
is often computationally costly.

If the error can already evaluate the performance of the model f with deterministic
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simulations, why do we make use of probabilistic approach to quantify the uncertainty
which is computationally costly? In fact, if we consider that f is a traffic assignment
model at metropolitan scale, the output X is the traffic flow (or volume) assigned
on all the roads of the network. However, only some roads are equipped with loop
detectors. There is no available observations on all the roads and errors cannot be
computed for the whole network. Instead, the measure of uncertainty does not depend
on the observation so that uncertainty estimation can be carried out on all the roads
of a network. In addition, the deterministic simulations do not take into account the
uncertainty in inputs. In many simulations, the inputs are themselves obtained by other
numerical models. For example, in a dynamic traffic assignment (DTA) model, one of
the main inputs is an Original-Destination matrix (O-D matrix), representing the traffic
demands on the network. This O-D matrix is modeled from household surveys. The
road capacities and speed limits are also estimated from observations and we are not
sure about their true values. Therefore, with probabilistic approach, we are able to give
a possible distribution of the inputs U , and then quantify the uncertainty σ in output
X by estimating its probability distribution, on all the roads of the network in question.

In this chapter, we firstly quantify the uncertainty of the DTA model applied to the
agglomeration of Clermont-Ferrand. Since the probabilistic approach requires a large
number of model evaluations, the metamodel Meta-LCF built in Chapter 4 replaces the
original LADTA model for uncertainty quantification. In this case, f is the Meta-LCF
model M̂ and the input variable U is p. The output X corresponds to y in Chapter 4
and it is time-varying with dimension D = 19628. Then we estimate the uncertainty of
computed on-road traffic emissions. This time we considered the model f as the whole
modeling chain Meta-LCF-COPERT built in Chapter 6. The output X is the estimated
on-road traffic emissions on all roads of the network. To estimate the uncertainty of
traffic flow and emissions, two ensembles are generated: an ensemble of DTA simulations
using Meta-LCF model, and an ensemble of on-road emission estimations.

This chapter is organized as follows. We firstly generate a large ensemble of DTA
simulations using Meta-LCF model, with p of known probability distribution as input.
The ensemble generation is presented in Section 7.2. Secondly, we use loop detector
measurements to evaluate the generated ensemble in Section 7.3. Then, we use the
same input distributions to generate the ensemble of on-road emissions by using the
modeling chain Meta-LCF-COPERT. At last, the uncertainty quantification of DTA
simulations and on-road traffic emissions is presented in Section 7.4.
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7.2 Ensemble simulations for dynamic traffic assign-
ment and on-road emission estimations

In this section, we use the Monte Carlo approach to generate an ensemble of DTA
simulations with the metamodel of LADTA applied to the agglomeration of Clermont-
Ferrand (Meta-LCF model). We consider each input of Meta-LCF as an independent
random variable with uniform distribution. The boundaries of the distributions for the
inputs are given based on the default inputs of a deterministic simulation, during the
whole month of November 2014 in the agglomeration. In this section, we rebuilt a Meta-
LCF model using the same methods as in Chapter 4 but with larger input variation
intervals. Therefore, we firstly briefly recall the Meta-LCF model and the inputs for
carrying out the deterministic simulation for the November 2014 in the agglomeration of
Clermont-Ferrand. Then we present the simulation results of this extended Meta-LCF
model. An ensemble of DTA simulations with this Meta-LCF model it then built based
on Monte Carlo approach. Without specifications, all the results shown in this Chapter
are obtained based on this extended Meta-LCF model with larger input variations,
including the deterministic simulation results in this Section 7.2, the built ensemble and
the corresponding evaluation (Section 7.3), and the uncertainty results (Section 7.4).

7.2.1 Default inputs and deterministic simulation

Metamodel of DTA simulations in Clermont-Ferrand and inputs for deter-
ministic simulation

We recall the Meta-LCF model for the agglomeration of Clermont-Ferrand in Equa-
tion 7.3. It computes traffic flows y in veh h−1 at street resolution during a time step of
[hsimu, hsimu + ∆h],∆h = 0.25 (h in hour) on a day d. The road network in the agglom-
eration of Clermont-Ferrand is modeled by oriented graph and the roads are represented
by links.

yd(hsimu) = M̂(ξdPd(h)h∈Iatomic
, δ0, δ0−5, δ5−10, δ10−15, δ>15, λbig, λsmall, µhigh, µlow, η)

= M̂(p),
(7.3)

where Iatomic = {h1, h2, . . . , h13} = {hsimu−2.25 h, hsimu−2.0 h, . . . , hsimu, . . . , hsimu+
0.75 h}. LADTA requires time-dependent traffic demand as input and computes time-
varying traffic flow. We assume that the dynamic demand and the computed flow are
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constant during an interval of 15 minutes. We also assume that the traffic flow computed
during [hsimu, hsimu+∆h] does not depend on the traffic demand during the period before
hsimu−2.25 h and after hsimu+1.0 h. Pd(h)h∈Iatomic are the temporal variation coefficient
and its dimension is 13. They are ratios between the traffic demand during [h, h +
∆h] and during the evening peak of a given simulation day d. ξd is the total demand
coefficient for adjusting the total traffic demand according to the day d. δ0, δ0−5, δ5−10,
δ10−15 and δ>15 are five evening peak coefficients to represent spatial uncertainty of the
demand according to the Origin-Destination distance. λbig, λsmall, µhigh, µlow represent
the uncertainties on road capacities and speed limits. η = 1.0 if hsimu <= 12 and
η = 0.0 otherwise.

For the deterministic simulation with Meta-LCF model in Clermont-Ferrand, the
capacities and speed limits of the network are supposed to be unchanged: λbig = λsmall =
µhigh = µlow = 1.0. Each Pd(h) of the 13 (Pd(h))h∈Iatomic = (P (hi))i=1,...,13 can be
obtained as follows. We assume that the temporal variation of the traffic demand is the
same as the temporal variation of the spatially-averaged traffic flows measured by the
loop detectors on the network. This temporal variation on the day d is called temporal
profile and denoted as Wd(h), h = 0.0, 0.25, 0.30, . . . , 23.75 (in hour). The time step is
always ∆h and the dimension of Wd(h) is 96. At any simulation time hsimu, Pd(hsimu)
can then be obtained by:

Pd(hsimu) =Wd(hsimu)/(
1
4 ×

∑
h

(Wd(h)h∈{17.0,17.25,17.50,17.75})

=Wd(hsimu)/Wpeak
d ,

(7.4)

whereWpeak
d is the average traffic during evening peak hour on day d. For the determin-

istic simulation, the coefficients Pd(h) depend and only depend on the temporal profile
on day d. The evening peak coefficients are assumed to be 1.0 and there is no spatial
difference in the O-D matrix: δ0 = δ0−5 = δ5−10 = δ10−15 = δ>15 = 1.0.

ξd in equation 7.3 can also be obtained from observed temporal profiles. It is obtained
as follows. We firstly choose a reference day, the 20th November 2014. The temporal
profile of the reference day is Wref (h), obtained by averaging the measured traffic flows
on the network of all detectors during each interval of 15 minutes. Let Wpeak

ref denote
the average flow during evening peak hour on the reference day. Then for any day d,
ξd = Wpeak

d /Wpeak
ref . As a result, all the coefficients regarding traffic demands can be

calculated based on temporal profiles, obtained from historical traffic flow data measured
by loop detectors on the network.

In order to carry out DTA simulations with Meta-LCF models during a long period,
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we used 16 typical profiles Wtype(h) of the following 16 “typical days”: 7 days from
Monday to Sunday during normal period, 7 weekdays during school vacation period, 1
public holiday during normal period, and 1 public holiday during school vacation period.
Each Wtype(h) is obtained by averaging the daily profiles of the same day type, during
the period from September 2013 to August 2014:

Wtype(h) = 1
Ntype

Ntype∑
d

Wd(h), (7.5)

for all the days d of the same day type, and Ntype is the total number of days of the same
type of day, from September 2013 to August 2014. The latter period is the learning
period in our case study. The inputs are obtained from measurements during the learning
period. The simulation and model evaluation are carried out with measured traffic data
out of this learning period. With the learned typical profiles, the deterministic simulation
is carried out during the period of November 2014. The observed traffic data during
this period are used in the evaluation of the deterministic simulation and the ensemble
evaluation. The different types of days during the simulation month are presented in
Table 7.1.

Table 7.1: Type of days during November 2014

Mon Tue Wed Thu Fri Sat Sun
Normal period 4 3 4 4 4 4 4
School vacation 0 0 0 0 0 0 1

Public holiday, normal 0 1 0 0 0 0 0
Public holiday, vacation 0 0 0 0 0 1 0

Metamodel with larger input variation intervals

As mentioned in Section 7.1, the uncertainty quantification aims at determining
the probabilistic distribution of the computed traffic flows. To do so, we use Monte
Carlo simulation of size n. This requires a large number of model evaluations. That
is the reason why we built the metamodel in Chapter 4 in the first place, and then
use it for probabilistic DTA simulation. However, the metamodel itself is built based
on emulation of training points and training values, obtained from DTA simulations in
Clermont-Ferrand with the original LADTA model. Therefore, the variation intervals
for sampling the training points when building the Meta-LCF model actually delimit
the boundaries of Meta-LCF inputs when generating the ensemble. In other words, the
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boundaries of the uniform distributions, given to input variables for carrying out Monte
Carlo simulations, cannot exceed the variation intervals given to the inputs when the
Meta-LCF model was built. Before generating the ensemble presented in the following
sections of this chapter, we have actually built an ensemble of simulations based on the
Meta-LCF model in Chapter 4 in the first place. We will see in the Section 7.3.3 that
this first ensemble does not satisfy the criteria for a reliable ensemble, when compared
with the loop detector measurements. Therefore, in this chapter, we built an extended
Meta-LCF with the metamodeling approach as shown in Chapter 4, but with larger
input variation intervals for sampling the training sets. The sample size for building the
extended Meta-LCF model is 4000, for each of the cases carrying out DTA simulation
with LADTA before 12:00 and after 12:00. The variation intervals for the 22 inputs of
this Meta-LCF model are presented in Table 7.2. The transposition parameter η is not
an uncertain input since it has certain value of 1 or 0, if the Meta-LCF is used during
the morning before 12:00 or during the afternoon. The same rule is used when carrying
out the deterministic DTA simulation with the extended Meta-LCF model. Note that
we considered the total demand coefficient ξ as scalar and did not give it a probabilistic
distribution. It depends on the type of day for carrying out LCF model. In fact, the
uncertainty in the total demand can already be parameterized by fives coefficients that
represent the uncertainty in the O-D matrix. We gave large variation intervals to these
five coefficients (δ0, δ0−5, δ5−10, δ10−15, δ>15) in order to take into account (i) the spatial
uncertainty lying in the O-D matrix with respect to different O-D pair categories, and
(ii) the uncertainty in the total traffic demand from day to day.

Table 7.2: The inputs of original LCF model and their variations for building training
sets to build the Meta-LCF model. Larger input variation intervals are presented in
bold.

Input Temporal profile Capacity Speed Demands in O-D matrix

Symbol P (h1), . . . , P (h13) λbig, λsmall µhigh, µlow δ0, δ0−5, δ5−10, δ10−15, δ>15

Number 13 2 2 5

Initial variation [0.00, 1.5] [0.70, 1.30] [0.80, 1.20], [0.70, 1.10] [0.25, 1.50]

Larger variation [0.00, 2.0] [0.50, 1.50] [0.50, 1.50] [0.00, 1.80]

Deterministic simulation results

The computed flows computed by the extended Meta-LCF model are compared with
the loop detector measurements. The scores are also compared with the scores of the
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Meta-LCF model built in Chapter 4. See Table 7.3.

Table 7.3: Scores of the one-month simulation during November 2014 of the traffic
flows computed (i) by the complete model in Chapter 4 and (ii) by the metamodel with
different input variation intervals when sampling the learning points for building Meta-
LCF models. Computed flows are compared with loop detector measurements. (The
global scores are calculated for spatio-temporal flows at all detectors and time steps.
The temporal scores are calculated for spatially-averaged flows for all time intervals.
The spatial scores are calculated based on temporally-averaged flows on all detectors.)

Model Original

Metamodel

Meta-LCF with larger Meta-LCF

model possible input variations in Chapter 4

Global bias (veh h−1 detector−1) 18 5 11

Global RMSE (veh h−1 detector−1) 154 142 142

Global NRMSE (%) 84.13 77.91 77.77

Global Correlation 0.69 0.70 0.71

Temporal bias (veh h−1 detector−1) 18 5 11

Temporal RMSE (veh h−1 detector−1) 25 30 23

Temporal NRMSE (%) 14.05 16.86 12.50

Temporal Correlation 0.99 0.97 0.99

Spatial bias (veh h−1 detector−1) 20 5 13

Spatial RMSE (veh h−1 detector−1) 116 105 108

Spatial NRMSE (%) 64.02 58.16 59.89

Spatial Correlation 0.58 0.59 0.59

The deterministic simulation results show that the extended Meta-LCF model has
similar performance as the one built in Chapter 4. The comparison of the spatially-
averaged flows computed by these two metamodels is presented in Figure 7.1 and Fig-
ure 7.2. Results show that the metamodel built with larger input variation intervals is
also able to predict the spatially-averaged flows on the network when compared with
the loop detector measurements.

Figure 7.3 shows the comparison of temporally-averaged flows computed by the two
metamodels. They both have limits to predict the spatial distribution of traffic on
the network, when comparing the computed flows with loop detectors. Figure 7.2 and
Figure 7.3 show that bigger differences are found between the extended metamodel and
the original model when comparing the metamodel built in Chapter 4. However, the two
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Figure 7.1: Temporal variation of the spatially-averaged flows (in veh h−1) of obser-
vation (blue), flows computed by the original model (green) and flows computed by
the metamodel (red), with a time step of 15min during the November 2014 for the
agglomeration of Clermont-Ferrand. The upper figure presents the results of the ex-
tended Meta-LCF model in this chapter, and the lower figure presents the results of the
Meta-LCF built in Chapter 4.

metamodels have approximately similar performance when compared with loop detector
measurements.

7.2.2 Ensemble simulations based on Monte Carlo approach

We considered that the inputs of the Meta-LCF model are random variables with
known probability distributions. We then used the Monte Carlo approach with sample
size n = 100 to generate an ensemble of n DTA simulations with Meta-LCF model. The
uncertain input data (cf Table 7.2) are perturbed independently, n times, i.e., once for
each member of the Monte Carlo simulations. Then each of the n simulations is a unique
run of the Meta-LCF with one of the n perturbed inputs. From the n-member ensemble,
we obtain a discrete probability density function of the traffic flows and speeds.

The ensemble outputs are traffic flows during the whole month of November 2014 at
street resolution at all time intervals of 15 minutes, for the agglomeration of Clermont-
Ferrand. The uncertainty added to the input p = (pi)i=1,...,22 in Table 7.2 of Meta-
LCF model are supposed to be uniformly distributed in order to explore the whole
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Figure 7.2: Scatter plots of spatially-averaged flows. Left: dispersion diagram of
spatially-averaged flows computed by models (blue for the original LCF model, and
red for the meta-model firstly built in Chapter 4), against measured flows at each time
step. Right: dispersion diagram of spatially-averaged flows computed by models (blue
for the original LCF model, red for the meta-model built in this chapter), against mea-
sured flows at each time step.

Figure 7.3: Scatter plots of temporally-averaged flows. Left: dispersion diagram of
temporally-averaged flows computed by models (blue for the original model, and red for
the meta-model built in Chapter 4), against measured flows at each detector. Right:
dispersion diagram of temporally-averaged flows computed by models (blue for the orig-
inal model, red for the meta-model built in this chapter), against measured flows at each
detector.
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input space. For instance, the uncertainty of pi follows the uniform distribution on
the interval [ai, bi]. Therefore, in the Monte Carlo simulations, pi is randomly sampled
from [p∗i × ai, p∗i × bi], with i = 1, 2 . . . , 22 and p∗i is the value of pi in the deterministic
simulation.

The first ensemble is generated with the Meta-LCF model from Chapter 4. The
variation intervals for the 22 inputs of Meta-LCF model are presented in Table 7.4.
Note that the 23th element in p of the Meta-LCF model is the O-D matrix transposition
coefficient η. For generating the ensemble of DTA simulations during a given period, η
is a known input, depending on the simulation time (before or after 12:00) of the day.
It is not perturbed in our Monte Carlo simulations.

Table 7.4: The variation intervals of Meta-LCF inputs for generating ensemble by Monte
Carlo simulations. The Meta-LCF used here is the one built in Chapter 4.

Input Temporal profile Link capacity Speed limits Demands in O-D matrix

Symbol P (h1), . . . , P (h13) λbig λsmall µhigh µlow δ0, δ0−5, δ5−10

δ10−15, δ>15

Interval ai(i = 1, bi(i = 1,
a14 b14 a15 b15 a16 b16 a17 b17

ai(i = 1, bi(i = 1,

boundaries . . . , 13 . . . , 13 . . . , 22 . . . , 22

Variations 0.5 1.5 0.7 1.3 0.7 1.3 0.8 1.2 0.7 1.1 0.25 1.5

We will see in the Section 7.3.3 that the first ensemble does not prove to be a
reliable ensemble, when compared with the loop detector measurements during the
whole month of November 2014. Therefore, a second ensemble is generated with larger
uniform distributions, using the Meta-LCF model presented in Section 7.2.1. The final
boundaries of input variables are presented in Table 7.5.

Table 7.5: The variation intervals of Meta-LCF inputs for generating ensemble Monte
Carlo simulations

Input Temporal profile Link capacity Speed limits O-D matrix

Symbol P (h1), . . . , P (h13) λbig λsmall µhigh µlow δ0, δ0−5, δ5−10

δ10−15, δ>15

Interval ai(i = 1, bi(i = 1,
a14 b14 a15 b15 a16 b16 a17 b17

ai(i = 1, bi(i = 1,

boundaries . . . , 13 . . . , 13 . . . , 22 . . . , 22

Variations 0.0 2.0 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.0 1.8

Uncertainty ±100% ±50% ±50% ±50% ±50% [−100%,+80%]

For the whole month of November 2014, there are in total Tsize = 30×96 = 2880 time
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steps. The values of the 22 inputs of Meta-LCF model for the deterministic simulation
during the simulation period are denoted as p∗i,t, with i = 1, . . . , 22 and t = 1, 2, . . . , Tsize.
With the given boundaries, the ith input variables are randomly sampled from the
interval [p∗i,t × aj,i, p

∗
i,t × bj,i] with j = 1, 2, . . . , n for the Monte Carlo simulation of

size n. The jth sampled input for carrying out DTA simulation with Meta-LCF is pj.
Therefore, there are in total n computed traffic flows xj,t ∈ R19628 for the agglomeration
of Clermont-Ferrand. The output of the jth member of the ensemble is computed as
xj,t = M̂(pj). The computed traffic flow of the jth member of the ensemble at link
a and time t is xj,a,t. Let Xa,t denote random output of the Meta-LCF model at link
a at time t. Let f and U denote the Meta-LCF model and its input variable. Then
on the link a and time t, Xa,t = f(U). The objective for uncertainty quantification is
to determine the probability distribution of Xa,t and calculate its standard deviation,
interquartile range and 5th − 95th percentile range from the ensemble (xj,a,t)j=1,...,n.

7.3 Ensemble evaluation

Ensemble simulations are widely used in meteorology, air quality simulations, etc.
In this work, an ensemble of DTA simulations with Meta-LCF model is built based on
Monte Carlo approach. Before quantifying the output uncertainty, it is necessary to
evaluate the performance of the ensemble, in order to verify whether it is able to well
represent the uncertainty or not. To do so, traffic flow observations are used to evaluate
the generated ensemble. This section firstly presents criteria for evaluating an ensemble
with the help of observations. Then we applied these criteria to the ensemble of traffic
flow simulations in the agglomeration of Clermont-Ferrand, during November 2014.

7.3.1 Scores for ensemble evaluation

There are three desirable properties for a good ensemble system: reliability, sharp-
ness and resolution. The reliability indicates the accuracy of prediction of an event. An
ensemble with high reliability is so that the probabilistic forecast by the ensemble is
(approximately) the same as the observed frequency of this event. The sharpness indi-
cates the variability of the ensemble forecasts. The resolution indicates the ability of the
ensemble to make distinct predictions for different events. For uncertain quantification
using ensemble simulations, the most important criteria for the generated ensemble is
its reliability. A reliable ensemble can give us reliable uncertainty estimations of the
outputs of the simulation system. The other two criteria are more frequently used to
evaluate whether an ensemble is able to provide good probabilistic forecasts for the
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occurrence of an event. Therefore, in the following part of this chapter, we focus only
on the reliability criterion to evaluate our ensemble of traffic flow simulations.

To evaluate the reliability of the ensemble generated in Section 7.2, we use the rank
histogram, the reliability diagram and statistical scores for the outputs of the ensemble.
We only have traffic flow observations on the network of Clermont-Ferrand. Since the
reliability of an ensemble relies on the comparison between the ensemble forecast outputs
and observations, only the ensemble of DTA simulations is evaluated and improved in
this section.

Rank histogram

A rank histogram measures the reliability of an ensemble. The rank histogram
[Anderson, 1996; Hamill and Colucci, 1997; Talagrand, 1999] is used to compare two
random variables: (i) the variable predicted by the ensemble of simulations, and (ii) the
observations of the target variable. Let X = X1, X2, . . . , Xn−1, Xn be a sequence of n
independent and identically distributed random variables. Xj are sorted in increasing
order so that X1 ≤ X2 ≤ . . . ≤ Xn−1 ≤ Xn. Let Y be the target random variable to be
compared with. If all Xj and Y has the same probability distribution, it can be proved
that

EX [PY (Y ≤ Xj)] = j

n+ 1 , and (7.6a)

EX [PY (Xj−1 < Y ≤ Xj)] = 1
n+ 1 , (7.6b)

where EX [.] denotes the expectation related to X, PY denotes the probability associated
with Y . For the ensemble of traffic flow simulations, {X1, X2, . . . , Xj−1, Xj, . . . , Xn}
are traffic flow outputs of the n-member ensemble at detector i and time t, sorted by
increasing order. y is a realization of the random variable Y : traffic flow measured by the
loop detector at the same i and t. If the generated ensemble is reliable, the predictions
X = (X1, . . . , Xj, . . . , Xn) of the ensemble should has the same probability distribution
as the observation variable Y . Therefore, y should satisfy the conditions where (i) the
probability of y ≤ Xj equals to j

(n+1) and (ii) the probability of Xj−1 < y ≤ Xj equals to
1

(n+1) . The rank histogram is computed by counting the ranks of all the observations at
all detectors and times. It gives a quick examination of some qualities of the ensemble. A
perfect rank histogram is flat, while a U-shape rank histogram shows a lack of variability
in the ensemble. Consistent biases in the ensemble forecast will show up as a sloped
rank histogram. If there are more observations in lower ranks (= 0), the ensemble
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forecast presents an overestimation compared with the observations. If there are more
observations in higher ranks (≥ n), it means that the ensemble forecast presents an
underestimation when compared with the observations.

A quantitative indicator can be calculated in order to evaluate the flatness of a rank
histogram. Let Mob be the total number of observations. Let rj be the number of
observations of rank j in the rank histogram and j ∈ [0, n]. For a reliable system, the
expectation of rj should be γ = Mob/(n+ 1). The quantity

∆ =
n∑
j=0

(rj − γ)2 (7.7)

measures the deviation of the histogram from flatness. The ratio δ = ∆
nγ

is a measure
of the reliability of an ensemble prediction system for a scalar variable [Candille and
Talagrand, 2005]. A value of δ that is significantly larger than 1.0 indicates that the
ensemble prediction is not reliable. A value of δ significantly less than 1.0 indicates that
the realizations of the prediction process are not independent.

Reliability diagram

The reliability diagram is used to summarize and evaluate probabilistic forecasts.
It plots the observed relative frequency of an event, against the predicted probability
by the ensemble. Y is a variable that is equal to one when an event does happen, or
equal to zero when the event does not happen. The variable Y is called the verification.
Let Yi, i = 1, . . . ,Mob be a dataset of verifications. For each i, the forecast value from
the ensemble is Xi and it is between 0.0 and 1.0. It represents the forecast probability
that the corresponding verification Yi equals to one (i.e, the event does happen). The
reliability diagram assesses whether Xi is reliable or not. A probabilistic forecast is con-
sidered to be reliable if the event actually happens with an observed relative frequency
consistent with the forecast value. The forecast values of Xi are collected into a number
of representative bins. The definition of reliability is that: the relative frequency of the
event Yi = 1, when computed over all i for which Xi falls into a small interval, must be
equal to the mean of Xi over that interval [Bröcker and Smith, 2007].

Reliability diagram plots the observed relative frequencies against the forecast values.
Now we present how the diagram is computed. Firstly, we partition [0, 1] into B sub-
intervals: B1, . . . ,Bb, . . . ,BB, b = 1, . . . , B. Next, for each i, we search in which interval
Bb the forecast value Xi falls. For each sub-interval Bb, let Ib be the set of all indices
i for which Xi falls into Bb: Ib = {i|Xi ∈ Bb}. Then the corresponding observed
relative frequency fb is the number of times the event happened (Yi = 1), given that



7.3. Ensemble evaluation 189

Xi ∈ Bb, divided by the total number of forecast values Xi ∈ Bb (i.e. card(Ib)): fb =
(∑

i∈Ib
Yi)/card(Ib). Finally, we compute the average of the forecast values over the bin

Bb and denote it as rb = (∑
i∈Ib

Xi)/card(Ib). The reliability diagram is then obtained
by plotting fb against rb for all bins Bb. For a reliable forecast, the reliability diagram
should follow the diagonal (i.e., fb = rb) for any b = 1, 2, . . . , B.

Statistical scores

The distributions of the model outputs are to be determined and this is the objective
of uncertainty quantification. The discrete probability distributions of model outputs
are predicted by the ensemble. Regardless of the underlying output distribution, statis-
tical scores based on percentiles can be used to evaluate whether two random variables
have approximately the same probability distribution. For example, about 50% of the
predicted values should be in the interquartile range (IQR), which equals to the differ-
ence between 75th and 25th percentiles of the variable. About 90% of the predicted
values should be in the 90% confidence interval (denoted as CI90), which corresponds
to interval between the 5th and the 95th percentiles of the variable. Therefore, if the
variable X predicted by the ensemble has more or less the same distribution as the true
variable Y , we will have: (i) P (Y ∈ IQRX) ' 0.5, and (ii) P (Y ∈ CI90X) ' 0.90.
In our case study, the traffic flows are computed at link level and at time resolution of
15 minutes. If an ensemble can well predict the variability and uncertainty of a simu-
lation system, the statistical scores of the traffic flow predicted by the ensemble should
be consistent with the observed frequency.

In practice, assuming that there are Mob observation points. The ensemble predicts
n values at the observation point i, with i = 1, 2, . . . ,Mob. The observed value at point
i is denoted as yi. The variable computed by the ensemble is denoted as xi,j with
i = 1, 2, . . . ,Mob and j = 1, 2, . . . , n. Let us denote IIQR and ICI90 as the number of
the observations where yi ∈ IQRi and yi ∈ CI90i, respectively. We can say that the
ensemble prediction is reliable if (i) IIQR

Mob
' 0.50 and (ii) ICI90

Mob
' 0.90.

7.3.2 Evaluation of the 100-member ensemble of DTA simu-
lations for the agglomeration of Clermont-Ferrand with
Meta-LCF model

In this section, we apply the evaluation criteria to the 100-member ensemble of DTA
simulations built in Section 7.2.2. There are 469 detectors on the network in the city of
Clermont-Ferrand (Figure 7.4). They give the number of vehicles passing a road with
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time resolution down to 1 minute. In our study, the observation data are aggregated
to time intervals of 15 minutes. The simulation period is November 2014. Since the
traffic flows computed by the Meta-LCF model are at street resolution while the loop
detector measurements are at lane resolution, we divide the simulated link-level traffic
flow by the number of lanes, in order to convert link-level flow into lane resolution
traffic flow. Therefore, the total scores compare the simulation and observations for all
detectors and at all time intervals of 15 minutes during the whole month. The temporal
scores are calculated based on spatially-averaged traffic flows: for each time interval
[h, h + ∆h], spatially-averaged flows are obtained by taking the mean value of all the
detectors during the same interval, and we then compute statistical scores. The spatial
scores are calculated based on temporally-average traffic flows: for each detector, we
calculated the average flow over the whole simulation period, and we then computed
statistical scores.

Figure 7.4: Locations and directions of loop detectors in the City of Clermont-Ferrand.
The detectors are at lane resolution. The directions of the arrows in the figure indicate
the directions of traffic flows that the detectors can measure.

Rank histogram

Figure 7.5 shows the rank histogram of the 100-member ensemble of DTA simulations
with Meta-LCF model. The observations used for the evaluation are traffic flows at all
detectors and at all time intervals during November 2014. There are in total Mob =
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469× 30× 96 observations. Results show that there are many observations in the last
rank: the traffic flow predictions from the ensemble show an underestimation for some
detectors and/or during some time intervals. 8.25% of the Mob observations are higher
than the upper envelope of the ensemble.

Figure 7.5: Rank histogram of the 100-member ensemble on the network of Clermont-
Ferrand for traffic flows at all detectors and at all time intervals. The red horizontal
dashed line corresponds to the ideal value for a flat rank histogram with respect to the
number of members. The large number of observations on the right (in the last rank)
means that many observations are higher than the upper envelope of the ensemble of
DTA simulations with Meta-LCF model. 8.25% of the 469 × 30 × 96 observations are
higher than the upper envelope of the ensemble.

Now we want to analyze the locations (detectors) and time intervals where there is
an underestimation by the ensemble of DTA simulations. Let ok,t be the traffic flow
measured by the loop detector at detector k and time t. Let sj,k,t be the traffic flow
of the jth ensemble member, computed by the Meta-LCF model. In total, for the
detector k, there are at most Tsize = 96× 30 observations during the simulation period
of November 2014. The mean of the predicted traffic flow at k and time t is obtained by:
µk,t = 1

n

∑n
j=1 sj,k,t. We denote Klast and T last the set of positions and times, where the

ensemble underestimates the traffic flows. At these times and detectors, the observations
are in the nth rank in the rank histogram. These observations are higher than the upper
envelope of the ensemble of DTA simulations. At detector k and time t, we calculate
the error between (i) the mean of the traffic flows simulation by the ensemble and (ii)
the observations: ek,t = µk,t − ok,t with k ∈ Klast and t ∈ T last. Then we calculate
the bias between the observation and the mean of the traffic flows simulated by the
ensemble. The temporal bias is the temporally-averaged error, calculated at detector
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k: βtemporalk = 1
card(T last)

∑
t ek,t with k ∈ Klast and t ∈ T lase. The spatial bias is the

spatially-averaged error, calculated at time t: βspatialt = 1
card(Klast)

∑
k ek,t. Figure 7.6

shows the distribution of spatial and temporal bias. It shows that we have bigger
spatial bias than temporal bias. These results are compatible with the results of the
deterministic simulation: we can better predict the spatially-average traffic flows on the
network, but there are still errors in predicting route choices of network users.

Figure 7.6: The distribution of the spatial bias at all times (left) and the temporal bias
at all detectors (right) for the points where the ensemble underestimates the traffic flows
when compared with loop detector measurements.

Figure 7.7 shows the locations and the associated errors of the last-rank observations
in the road map of Clermont-Ferrand at six time intervals of 15 minutes during different
time periods, on the 20th November 2014. The figures show locations where the ensemble
underestimates the traffic flow at lane resolution when compared with loop detector
measurement.

Results in Figure 7.7 show that big errors are found during periods where the traffic
on the network is heavy. For example, on the 20th November 2014, we have the maxi-
mum number of observations above the upper envelope of the ensemble during 17:30 -
17:45, when there are 17.70% of the 469 detectors at which the observed traffic flows are
higher than the upper envelope of the ensemble. Results show that most of the underes-
timations of the ensemble prediction are located in the southern part of the ring road of
Clermont-Ferrand city. Results also show that there is a systematic underestimation for
the same detectors. The errors might due to the following reasons. (i) The representa-
tiveness errors are ignored. Traffic flow at lane resolution is obtained by dividing traffic
flows at link resolution by the number of lanes. On some links with more than one lane,
there may be an underestimation for the traffic flow predicted on the right-side detector,
or an overestimation for the traffic forecast on the left-side detector. (ii) Uncertainty



7.3. Ensemble evaluation 193

lying in the O-D matrix. Only the travel purpose of to/from work from/to home is
given in the current O-D matrix. Other categories of travel purpose (leisure, personal,
social, etc.) are not taken into account. However, the traffic flow measured by the loop
detectors take into account all kinds of traffic on the network. In addition, since the O-D
matrix is obtained from household travel survey, there are errors in modeling O-D ma-
trix from the traffic survey, too. (iii) Assumptions for route choices criteria. In LADTA
model, we assume that users choose the least cost route from the origin to destination,
with full information of the traffic situation of the network. This is certainly not be
exactly the same case in reality. (iv) The uncertainty in estimating the link capacity.
In fact, the traffic flow computed by LADTA model cannot exceed the link capacity.
Therefore, if a link has three lanes and its capacity is 1200 veh h−1, the capacity at lane
resolution is 400 veh h−1. The computed traffic flow cannot exceed 400 veh h−1 at lane
resolution. However, some measured traffic flows are much higher than the capacities
at lane resolution. On these detectors, big errors are found between (i) the traffic flow
computed by the ensemble and (ii) the loop detector measurements, especially during
peak periods when there are heavy traffic on the network. Figure 7.8 (left) shows the
difference between the capacity and the loop detector measurements at lane resolution
during 8:00 to 8:15 on the 20th November 2017. Figure 7.8 (right) presents the errors
between the computed flow and measurements on detectors where the observations are
in the last rank of the rank histogram (see Figure 7.5). Figure 7.8 shows that about
half of the observations in the last rank are higher than the capacity at lane resolution,
during the corresponding period.
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Figure 7.7: Errors of the traffic flow predicted by the ensemble, compared with the
observations at which the measured traffic flows are higher than the upper envelope of
the ensemble, on the 20th November 2014 during different time periods. The points with
colors represent detectors at which the measured flows are above the upper envelope of
the ensemble in Figure 7.5. The different colors represent the difference between the
mean flow predicted by the ensemble and the observed flow. The black dots represent
detectors where the envelope of the ensemble prediction can cover the measured traffic
flows.
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Figure 7.8: Difference between the capacity and loop detector measurements (left),
and the difference between the computed traffic flows and corresponding loop detector
measurements (right) at lane resolution (detector resolution) during 8:00 - 8:15 on the
20th November 2014, for the locations where the measured traffic flows are in the last
rank of the rank histogram in Figure 7.5. The black dots represent detectors where the
envelop of the ensemble prediction can cover the measured traffic flows.

The rank histogram can be improved by better representing the input uncertainty, es-
pecially better determining the inputs associated to spatial uncertainties. For example,
we could add more spatial uncertainty into the link capacities, speed limits, and O-
D matrix in order to increase the spatial uncertainty of traffic flows computed by the
ensemble.

Reliability diagram

The reliability diagram is used to evaluate whether an ensemble can well predict
an event. For example, in our application of predicting traffic flows, an event can be
whether traffic flow on a road exceeds a certain threshold. Transportation planners are
interested in the service level of service (LOS) of a road network [TRB, 2000]. The
density is used to define LOS, detailed in Table 7.6.

There are in total A to F levels of service for freeways. LOS-A describes completely
clear traffic conditions and the average speed is close to the free-flow speed. LOS-B also
indicates a nearly free flow condition. LOS-C describes a situation where vehicles inter-
fere significantly with one another. LOS-D marks the border of unstable regimes. The
average travel speed are greatly restricted by the congestion, and medium disturbances
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Table 7.6: Traffic density criteria for basic freeway segments for LOS. The traffic density
describes the number of vehicles passing through a segment of unit distance (km).

Level of Service (LOS) Density range (veh km−1 lane−1)
A [0− 7[

B [7− 11[

C [11− 16[

D [16− 22[

E [22− 28[

F > 28

can cause a transition to LOS-F. LOS-E indicates that the capacity is reached and it
marks unstable regimes. Since the capacity is reached, the vehicles follow each other
very closely. Any perturbation can lead to LOS-F. At last, the LOS-F indicates that the
road is in a constant traffic jam . For determining the LOS of freeway segment, criteria
is given based on density of a freeway segment by the definition of LOS. With given
free-flow speed and speed-volume curve of fundamental diagram, the density threshold
can be converted to volume-to-capacity ratio (V/C). The V/C criterion is presented in
Table 7.7 for freeways for which the free-flow speed is 90 kmh−1.

Table 7.7: LOS volume-capacity ratio criteria for basic freeway segments for which the
free-flow speed is 90 kmh−1.

Level of service

A B C D E

Volume-capacity-ratio (V/C) 0.28 0.44 0.64 0.87 1.00

Density threshold (veh h−1) 7 11 16 22 28

In our case study, we take the V/C criteria as an example to show whether the
ensemble of DTA simulations can give reliable prediction of LOS, for all the roads
on whole network of the agglomeration. Here we give a brief introduction of how to
plot reliability diagrams in our case study using the LOS criteria V/C. There are Mob

observation points for measuring traffic flows (in veh h−1 lane−1) at all detectors and all
times: Mob = Ndet × Tsize = 469 × (30 × 96). The indices of computed variables and
observations are denoted by i = 1, 2, . . . ,Mob. The observed traffic flow at i is denoted as
oi and the traffic flows computed by the ensemble at i is denoted as sj,i with j = 1, . . . , n,
and n is the size of Monte Carlo simulation. We choose the v/c = 0.44 as an example to
illustrate how to draw a reliability diagram. The binomial variable Yi equals to 1 when
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the traffic flows yi > 0.44Ci, where Ci is the lane capacity at the observation point i.
In our case study, the forecast probability at i is obtained as Xi = card({j|sj,i>0.44Ci})

n
.

The verification is given by loop detector measurements: Yi = 1 if oi > 0.44Ci and
Yi = 0 otherwise. We then define the bins Bb ∈ {]0.0, 0.1], ]0.1, 0.2], . . . , ]0.9, 1.0]}, b =
1, 2, . . . , 10. Ib = {i|Xi ∈ Bb}. The observed relative frequency for the bin b is computed
by

fb =
∑
i∈Ib

Yi
card(Ib)

= card({i ∈ Ib|oi > 0.44Ci})
card(Ib)

. (7.8)

The average of the forecast values over bin Bb is computed by

rb =
∑
i∈Ib

Xi

card(Ib)
. (7.9)

The reliability diagram then plots fb against rb with b = 1, . . . , 10, for the given event
"traffic flows being higher than 0.44 of the capacity".

Similarly, we use the V/C criterion to draw reliability diagrams for each LOS criteria
of Table 7.7. Four events are defined as v/c > 0.28, v/c > 0.44, v/c > 0.64, and
v/c > 0.87. The Figure 7.9 shows the four resulting reliability diagrams.

Reliability diagrams in Figure 7.9 show that with the given input uncertainty pre-
sented in Table 7.5, the ensemble prediction performs better for predicting events with
V/C threshold lower than 28%. The ensemble underestimates the probabilities for
lane-traffic flow exceeding 44%. This result is consistent with the results for the rank
histogram, showing that the ensemble prediction has a negative bias. The reason of this
underestimation might mainly due to the reasons we proposed in Section 7.3.2. The
reliability diagrams can be improved by better determining the boundaries a and b of
the uniform distributions for input uncertainties. It can also be improved by introduc-
ing other uncertainty sources such as those in the observations, and by adding more
uncertain inputs in the parameterization when building the metamodel of the LADTA.

Statistical scores

Now we want to see whether the traffic flows predicted by the ensemble show good
statistical characteristics when compared with loop detector measurements. The en-
semble size n is 100. The total number of observations isMob. At detector k and time t,
ok,t is the loop detector measurement and the ensemble gives n = 100 predicted traffic
flows sj,k,t with j ∈ 1, 2, . . . , n. sk,t = (sj,k,t)j is a vector of dimension n. Let IQRk,t de-
note the interquartile interval of sk,t, where Q1k,t and Q3k,t are the traffic flow values of
the first and third quartiles of sk,t respectively. Let CI90k,t denote the inter-percentile
between the 5th and 95th values of the ensemble forecasts at detector k and time t. In



198
Chapter 7. Uncertainty quantification for dynamic traffic assignment and

on-road emission simulations at metropolitan scale

Figure 7.9: Reliability diagrams of the ensemble simulation for volume-capacity-ratio
(V/C) at lane resolution. The V/C threshold is 0.28 (a), 0.44 (b), 0.64 (c) and 0.87 (d).
The corresponding events are "the level of service being lower than LOS-A" (a), "the
level of service being lower than LOS-B" (b), "the level of service being lower than LOS-
C" (c), and "the level of service being lower than LOS-D" (d). The red line corresponds
to a perfect reliability diagram.

order to evaluate the performance of the ensemble prediction of our case study, the two
statistical scores presented in Section 7.3.1 can be defined as follows.

– (i) The probability of ok,t ∈ IQRk,t: P (Q1k,t < ok,t ≤ Q3k,t) ' 0.5. It can be
approximated by calculating the occurrence frequency of observations that satisfy
the condition among all the Mob observations. In practice, it comes to count the
number of observations points (k, t) where ok,t ∈ IQRk,t and divide it by Mob.
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– (ii) The probability of ok,t ∈ CI90k,t: P (ok,t ∈ CI90k,t) ' 0.9. It can be ap-
proximated by calculating the occurrence frequency of observations that satisfy
the condition among all the Mob observations. In practice, it means counting the
number of observations points (k, t) where ok,t ∈ CI90k,t and dividing the total
number by Mob.

The statistical scores of the ensemble of traffic flow simulations are presented in
the 3rd column in Table 7.8. Results show that the statistical scores of the ensemble
prediction do not perfectly meet the statistical requirements. The output uncertainty
is not dispersed enough to statistically cover the loop detector measurement during the
one-month simulation period of November 2014.

Table 7.8: Statistical scores of the ensemble simulations compared with loop detector
measurements at all detectors and times

Criterion Target Ensemble score Temporal score Spatial score

PIQR 50% 44.50% 96.98% 50.12%

PCI90 90% 77.72% 100% 73.89%

Now we use the same statistical criteria to evaluate the temporal performance and
the spatial performance of the ensemble. The temporal performance is evaluated by
computing statistical scores for spatially-averaged traffic flows during each of the 15-
minute interval. The spatial performance is evaluated by computing statistical scores
for temporally-averaged flows for each detector. There are Ndet = 469 detectors and
in total Tsize = 96 × 30 time intervals in our case study. The two kinds of averaged
flows and the corresponding mean (µ) are presented in Table 7.9. The temporal and
spatial scores of the ensemble in our case study are presented the 4th and 5th column in
Table 7.8.

Table 7.9: Spatially-averaged and temporally-averaged flows and the formula for the
statistical scores

- Spatially-averaged flow Temporally-averaged flow

- Measurement Simulation Measurement Simulation

Variable
yt xt = (xj,t)j=1,...,n yk xk = (xj,k)j=1,...,n

= 1
Ndet

∑Ndet

k=1 ok,t = ( 1
Ndet

∑Ndet

k=1 sj,k,t)j = 1
Tsize

∑Tsize

t=1 ok,t = ( 1
Tsize

∑Tsize

t=1 sj,k,t)j

µ - µt = 1
n

∑n

j=1 xj,t - µk = 1
n

∑n−1
j=1 xj,k

Criteria
Occurence frequency for yt ∈ IQRxt Occurence frequency for yk ∈ IQRxk

Occurence frequency for yt ∈ CI90xt Occurence frequency for yk ∈ CI90xk
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The temporal scores (in the 4th column in Table 7.8) show that the ensemble over-
estimates the uncertainty in spatially-averaged traffic flows. The interquartile envelope
computed by the ensemble can already cover almost 100% of the spatially-averaged ob-
servations. Figure 7.10 illustrates the spatially-averaged flows during all time intervals
of one month. We can see that the observations almost all fall into the interquartile
range produced by the ensemble.
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Scores of spatially-averaged flow at all time steps (in total 2785 validate time steps) simulation year: 2014 - 2015, month: 11 (member size: 100) 

Figure 7.10: Interquartile score for the ensemble prediction of spatially-averaged traffic
flows for all time intervals. The loop detector observations are represented by blue line,
averaged from observations of all detectors for each 15 minutes time interval during
November 2014. The green color band delimits the values between the 25th and 75th

percentiles of the spatially-averaged flows computed by the ensemble. The red color
band delimits the values between the 5th and 95th percentiles of the spatially-averaged
flows computed by the ensemble.

However, the spatial scores (in the 5th column in Table 7.8) show that we cannot
perfectly predict the spatial uncertainty of the traffic flows. Even though the criteria of
interquartile occurrence frequency is approximately equal to the target frequency 50%,
there are still some locations (detectors) where the temporally-averaged flows cannot
be well predicted by the ensemble. There are less than 90% observations that fall
in the 90%-confidence interval. The statistical scores of temporally-average flows are
presented in Figure 7.11. We can observe that more than 10% of observations (blue
points) are not included in the 90%-confidence range estimated by the ensemble. In
particular, results in Figure 7.11 show that the lack of uncertainty spread is mostly
found for detectors where the mean value of the flow predicted by the ensemble is low.
Most of the detectors whose measured temporally-averaged flows are not covered in the
envelope of 90%-confidence interval are those with low simulated temporally-average
flows (< 100 veh h−1 lane−1). In other words, the lack of spread appears mostly on
detectors where there are underestimations of the mean traffic flow predicted by the
ensemble, when compared with measurements. In the previous subsection 7.3.2, we
have already analyzed some observations points where underestimation might happen,
as illustrated by the rank histogram (see Figure 7.5) and error maps (see Figure 7.7).
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Figure 7.11: Statistical scores for the ensemble prediction of temporally-averaged traffic
flows for all detectors. The loop detector observations are represented by blue points,
averaged from observations of all 15 minute intervals for each detector during November
2014. The green color band delimits the values between the 25th and 75th percentiles of
the temporally-averaged flows computed by the ensemble. The red color band delimits
the values between the 5th and 95th percentiles of the temporally-averaged flows com-
puted by the ensemble. The detectors are sorted from left to the right with respect to
the mean of temporally-averaged flows estimated by the ensemble (plotted by the red
line).

We have already used large ranges of traffic demand uncertainty. On the one hand,
the total traffic demand for computing traffic flow during an interval of 15 minutes can
be scaled from 0% to 200%, compared with the demand inputs in the deterministic
simulation. On the other hand, the demands in static O-D matrix are categorized
by 5 groups according to the distance between O-D pairs. Traffic demand in each of
the five categories can vary from 0% to 180% (see Table 7.5). This the reason why we
overestimate the uncertainty of the spatially-averaged traffic flows, since the latter reflect
the total traffic volumes on the network. However, there are still slight underestimations
of the spatial uncertainty. This might due to the lack of spatial uncertainties given in
inputs, for link capacities, speed limits and for O-D matrix. This lack of spatial input
uncertainty might result in poor variations in route choice strategies in DTA simulations.
It might also be due to the limits of principal component analysis and interpolation when
building the metamodel of LADTA applied to Clermont-Ferrand.

Influence of the input variation intervals of the Meta-LCF used for generating
ensemble

In fact, since the Monte Carlo simulation for uncertainty quantification is based
on the metamodel Meta-LCF, the maximum and minimum boundaries of the uniform
distribution given to inputs are limited by the boundaries of input variations previously
given for building the metamodel. The Meta-LCF firstly built in Chapter 4 has smaller
boundaries (Table 7.4). Before building the new Meta-LCF model with larger input
variation intervals, we have also generated an ensemble with the Meta-LCF model built
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in Chapter 4, and we have analyzed the scores of this ensemble as well. Here we present
some scores of the ensemble generated by the first Meta-LCF model. The statistical
scores for this first ensemble are presented in Table 7.10.

Table 7.10: Statistical scores of the ensemble simulations compared with loop detec-
tor measurements at all detectors and times. The ensemble is generated with smaller
uncertainties in inputs (see Table 7.4).

Criterion Target Ensemble score Temporal score Spatial score

PIQR 50% 34.30% 84.17% 34.05%

PCI90 90% 63.10% 96.59% 56.16%

The rank histogram, statistical scores for spatially-averaged flows and temporally-averaged
flows are presented in Figure 7.12, Figure 7.13 and Figure 7.14.

Figure 7.12: Rank histogram of the 100-member ensemble on the network of Clermont-
Ferrand for traffic flows at all detectors at all time intervals of 15 minutes. The ensemble
is built with the first Meta-LCF model built in Chapter 4. The higher bar on the left
(first rank) means that there are observation values lower than the minimum values
predicted by the ensemble. The higher bar on the right (the last rank) means that
the observations higher than the envelope of the ensemble of DTA simulations with
Meta-LCF model.
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Figure 7.13: Statistical scores for the ensemble prediction of spatially-averaged traffic
flows for time intervals. The ensemble is built with the first Meta-LCF model built in
Chapter 4. The loop detector observations are represented by blue line, averaged from
observations of all detectors for each 15 minutes time interval during November 2014.
The green color band delimits the values between the 25th and 75th percentiles of the
spatially-averaged flows computed by the ensemble. The red color band delimits the
values between the 5th and 95th percentiles of the spatially-averaged flows computed by
the ensemble.
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Figure 7.14: Statistical scores for the ensemble prediction of temporally-averaged traffic
flows for all detectors. The ensemble is built with the first Meta-LCF model built in
Chapter 4. The loop detector observations are represented by blue points, averaged
from observations of all 15-minute intervals for each detector during November 2014.
The green color band delimits the values between the 25th and 75th percentiles of the
temporally-averaged flows computed by the ensemble. The red color band delimits the
values between the 5th and 95th percentiles of the temporally-averaged flows computed
by the ensemble. The detectors are sorted from left to the right with respect to the
expectation of temporally-averaged flows estimated by the ensemble.

The obtained statistical scores from the ensemble generated by the Meta-LCF model
built in Chapter 4 have not satisfied the statistical criteria. These results illustrate that
the performance of the ensemble prediction is influenced of the inputs boundaries when
building the Meta-LCF model. With the limits of the metamodel built in Chapter 4,
we cannot increase the boundaries of inputs when generating the simulation ensemble.
This is the reason why we rebuilt a second Meta-LCF model with larger input variation
intervals, and use it to generate our prediction ensemble presented in this chapter.
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Conclusions on the ensemble evaluation

The total statistical scores of the ensemble almost satisfy the statistical criteria. If
we focus on the temporal scores and spatial scores, ensemble overestimates the temporal
uncertainty of the spatially-average traffic flows. However, this overestimation of the
temporal uncertainty still cannot offset the underestimation of spatial uncertainty, es-
timated by the ensemble of DTA simulations. There are still some negative bias when
comparing the simulated traffic flows with loop detector measurements. The results in
this subsection give information where the ensemble underestimates the uncertainty of
computed traffic flows. The underestimation might be due to (i) the model assumptions;
(ii) the lack of spatial uncertainty in traffic demands and in link parameters and (iii)
potentially substantial measurement errors and representativeness errors when using the
observations to evaluate the ensemble performance. In fact, in the evaluation, the traffic
flows measured by inductive-loop detectors are considered to be perfect. The measure-
ment error has not been taken into account when we compared the simulated traffic
flows with measurements. In addition, since the traffic flows computed by the DTA
model are at link-level while the observations are at lane resolution, representativeness
errors are introduced and they are not taken into consideration when evaluating the
ensembles. The statistical scores show that the underestimation of uncertainty mostly
occurs at detectors where the mean value predicted by the ensemble underestimates
the traffic flows, when compared with measured traffic flows at the same observation
points. The presented approach gives criteria and a tractable framework to evaluate the
generated ensemble, as well as the performance of the uncertainty quantification. Even
though the whole uncertainty quantification framework is presented with our case study
of DTA simulations in the agglomeration of Clermont-Ferrand, it can also be applied to
other traffic assignment models for other cities by using the same approaches.

7.3.3 Improvement of the 100-member ensemble of DTA sim-
ulations for the agglomeration of Clermont-Ferrand with
Meta-LCF model

It is shown that the performance of the ensemble can be improved by widening the
boundaries of the uniform distribution given to Meta-LCF inputs. In this section, we
use the same Meta-LCF model as in Section 7.2.2 with the largest input variations for
generating the ensemble. However, instead of using the uniform distribution determined
in Table 7.5, we define an objective function to search the optimal boundaries of ai and bi
for the uniform distributions, in order to get the improved evaluation criteria presented
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in Section 7.3.1. In other words, we focus on searching the distribution in inputs, in
order to improve the reliability of the generated ensemble. Since it is not possible to
find the analytical relation between the objective function and the input uncertainty
distribution, a numerical optimization treats the relation as a black box and we use
large sample of simulations to search for the improved uncertainty on the inputs.

The procedure for finding the optimal input uncertainty distribution is presented as
follows.

Step 1. The uncertainty of an input pi is modeled by the uniform distribution on
[ai, bi]. We sample ai and bi independently from two non-overlapping intervals.
We use Latin Hypercube Sampling (LHS) and the sample size for sampling ai and
bi is Nopti = 1000.

Step 2. With the boundaries [a(N)
i , b

(N)
i ], N = 1, 2, . . . , Nopti, Nopti ensembles are

generated and the size of each ensemble is n = 100, the same as in Section 7.3.2.
Step 3. The target ensemble evaluation criteria is computed for each of the Nopti

ensembles, and the value of some evaluation function is computed.
Step 4. We select the boundaries ([aN∗i , bN∗i ])i=1,...,K=23 that give the best value of
the evaluation function.

To represent the temporal variations of traffic demand, the deterministic simulation
makes use of (P ∗(hi))i=1,...,13 and for the ensemble simulation, each of (P (hi))i=1,...,13 is
sampled from the interval [P ∗(hi)× ai, P ∗(hi)× bi]. According to the global sensitivity
analysis in Chapter 5, the traffic flows computed by Meta-LCF are only sensitive to the
traffic demand during the previous 30 minutes before the simulation time. Therefore,
instead of defining 13 pairs of boundaries a and b for the uncertainty of the 13 temporal
variation coefficient (P (hi))i=1,...,13, only one parameter α1 is defined to represent the
boundaries of (P (hi))i=1,...,13 uncertainty. The minimum and maximum boundaries of
the uncertainty of (P (hi))i=1,...,13 are then (ai)i=1,...,13 = 1.0 − α1 and (bi)i=1,...,13 =
1.0 + α1. In the step 1 for sampling ai and bi, we need to make sure that the LHS
will not fall outside the input intervals with which we built the metamodel. Therefore,
α1 varies in [0.0, 1.0], so that [P ∗(hi) × ai, P

∗(hi) × bi] do not exceed the intervals
of (P (hi))i=1,...,13 in Table 7.5. For the LHS, the variation ranges for minimum and
maximum boundaries ai and bi in Table 7.5 are presented in Table 7.11.
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Table 7.11: Variation ranges for the boundaries ai and bi.

Meta-LCF input
Boundaries for uniform distributions

Range for LHS of boundaries Notes

P (h)
ai, i = 1, . . . , 13 [1.0− α1, 1.0] Sample α1

bi, i = 1, . . . , 13 [1.0, 1.0 + α1] from [0.0, 1.0]

λbig
ai, i = 14, . . . , 17 [0.5, 1.0]

λsmall

µhigh
bi, i = 14, . . . , 17 [1.0, , 1.5]

Sample all

µlow ai and bi

δ0
ai, i = 18, . . . , 22 [0.0, 1.0]

randomly and

δ0−5 independently

δ5−10

bi, i = 18, . . . , 22 [1.0, , 1.8]δ10−15

δ>15

The step 2 and step 3 are carried out in parallel. The process is carried out inde-
pendently for different ensemble evaluation criteria to be optimized. Here we present
the optimization process for reliability diagram as the criterion to be optimized.

For improving the reliability diagram, the objective is to minimize the difference
between fb and rb calculated by Equation 7.8 and Equation 7.9. Our objective function
is set as C = 1

B

∑B
b=1(fb−rb)2 with b = 1, . . . , B = 10. Here we define the event of interest

with v/c = 0.64 as the threshold of volume/capacity ratio. The optimization objective
is then to minimize C for the event that the traffic flow is higher than 0.64% of the link
capacity. Table 7.12 shows (i) the uncertainty given to inputs with maximum boundaries
defined in Table 7.5 for the original ensemble of DTA simulations in Clermont-Ferrand,
and (ii) the uncertainty of inputs that results in optimal reliability diagram for the given
event.

The obtained improved reliability diagram is presented in Figure 7.15 (left) and the
corresponding rank histogram is presented in Figure 7.15 (right).

Compared with the reliability diagram in Figure 7.9 (c), the diagram in Figure 7.15 (left)
is improved and closer to the diagonal line. In fact, with maximum possible uncertainty
in inputs, the original ensemble of DTA simulations shows an underestimation for pre-
dicting the event that the traffic flows are bigger than 64% of the link capacity. After
optimization, the uniform distributions given to the temporal coefficient (P (hi))i=1,...,13

and the link capacity parameter (λbig) for links with big capacities (≥ 900 veh h−1)
remain the same. However, for other inputs, the uncertainty is described with an in-
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Table 7.12: Uncertainty given to inputs of Meta-LCF model for the original ensemble
simulation with maximum possible uncertainty ranges (2nd column) and for the ensemble
simulation giving optimal reliability diagram (3rd column).

Meta-LCF input
Maximum Uncertainty corresponding Optimal

uncertainty to optimal reliability diagram

P (h) [−100%,+100%] [−100%,+100%]

λbig [−50%,+50%] [−50%,+50%]

λsmall [−50%,+50%] [0.0%,+50%]

µhigh [−50%,+50%] [0.0%,+50%]

µlow [−50%,+50%] [−1%,+18%]

δ0 [−100%,+80%] [0.0%,+48.55%]

δ0−5 [−100%,+80%] [0.0%,+80%]

δ5−10 [−100%,+80%] [0.0%,+80%]

δ10−15 [−100%,+80%] [0.0%,+80%]

δ>15 [−100%,+80%] [0.0%,+35%]
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Figure 7.15: The improved reliability diagram (left) of the ensemble simulation gener-
ated by using the corresponding inputs uncertainty (in the 3rd column of Table 7.12),
and the corresponding rank histogram (right) of the same ensemble. The V/C threshold
is 0.64.

creased left boundary of the uniform distribution. Most of the right-side boundaries
remain the same, except for µlow (uncertainty corresponding to low speed limits), δ0

(uncertainty corresponding to traffic demands in the same zone) and δ>15 (uncertainty
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corresponding to traffic demand between O-D pairs between which the distance is larger
than 15 km). This adjustment of input uncertainty distribution decreases the number
of simulations resulting in low traffic flows in the ensemble after optimization. Thus
it increases the probability of high computed traffic flows predicted by the ensemble
and leads to an improved reliability diagram. However, improving one of the ensemble
evaluation criteria cannot make sure that other criteria can be improved at the same
time. Figure 7.15 (right) presents the rank histogram of the ensemble after optimiza-
tion. There is still a right side bar. In other words, there are still too many observations
that are higher than the upper envelope of the ensemble. The number of observations
in the last rank has not decreased when compared with the original rank histogram in
Figure 7.5. Instead, since the some of left boundaries ai are higher after optimization,
the ensemble cannot predict low traffic flows as well as the ensemble in Section 7.3.2.
As consequence, more observations are in the lower ranks. Moreover, if we compare
the spatially-averaged traffic flows predicted by the two ensembles with loop detec-
tor measurements, the mean of the ensemble resulting from the optimization presents
overestimation of the spatially-average flows during the one-month period, as shown in
Figure 7.16. Figure 7.15 (right) and Figure 7.16 show that the optimization of reliability
diagram for a given event may worsen the rank histogram and the performance of the
ensemble mean.
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Figure 7.16: The spatially-averaged traffic flows computed with the original ensemble
(green line), by the ensemble resulting from the optimization of reliability diagram (red
line) and the spatially-averaged traffic flows measured by loop detectors. At each time
step, the spatially-averaged flow is calculated by averaging the traffic flow over all 469
detectors on the network of Clermont-Ferrand.

We also carried out the optimization of the rank histogram. The results show that for
optimizing the rank histogram, we should take the maximum intervals given in Table 7.5.
Note that the optimization approach is computationally costly. For example, it took
about two weeks for optimizing the reliability diagram in our case study for predicting
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street-resolution traffic flows at metropolitan scale during one month. In addition, as
shown in Figure 7.15 (right) and Figure 7.16, improving the ensemble according to one
given criterion might not bring improvement on uncertainty quantification, and might
even worsen other performance evaluation criteria of the ensemble. Other approaches
could be investigated. For example, we can choose a sub-ensemble of the ensemble so
that the criteria of the sub-ensemble are optimized. Then the selected sub-ensemble
can be used to carry out uncertainty estimation. This approach has proved useful in
the field of air quality forecasting [Garaud and Mallet, 2011].

7.4 Uncertainty quantification with the ensemble
simulations

We use the ensemble with the maximum uncertainty as defined by Table 7.5 in
Section 7.2.2, in order to quantify the uncertainty of output traffic flows and on-road
traffic emissions at link resolution of the whole agglomeration of Clermont-Ferrand.
Each member of the n-member ensemble computes traffic flow and speed at street
resolution and for all intervals of 15 minutes. The traffic flows and speeds computed
by each member are then coupled with the emission model built in Chapter 6 in order
to compute the corresponding emissions. Then an n-member ensemble of emissions is
built. We can measure the uncertainty of the emissions, resulting from the uncertainty
in traffic flows.

7.4.1 Uncertainty in dynamic traffic assignment simulations

Uncertainty of computed traffic flows

At time t and link a in the agglomeration of Clermont-Ferrand, the uncertainty of the
traffic flow computed by Meta-LCF model can be represented by the standard deviation
σa,t. It is obtained by the ensemble of DTA simulations. σ is time-dependent because
the traffic flow computed by the LADTA model is time-dependent. The mean of the
traffic flows computed by the ensemble is denoted as µa,t. The size of the ensemble is
n. In our case study, n = 100 and total number of time steps during November 2014
is Tsize = 30× 96 = 2880. Since the value of σa,t depends on the value of µa,t, another
criterion is also used to describe the spread of traffic flows: the relative uncertainty,
measured by the relative standard deviation (RSD). At link a and time t, µa,t, σa,t and
RSDa,t are computed as follows:
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µa,t = 1
n

n∑
j=1

xj,a,t, (7.10a)

σa,t =
√√√√ 1
n− 1

n∑
j=1

(xj,a,t − µa,t)2, (7.10b)

RSDa,t = σa,t
µa,t

, (7.10c)

where xj,a,t is the computed traffic flow of the jth member of the ensemble at time t and
link a. The monthly averages µa, σa and RSDa for road a during one month are:

µa = 1
Tsize

n∑
j=1

µa,t, (7.11a)

σa = 1
Tsize

Tsize∑
t=1

σa,t, (7.11b)

RSDa = 1
Tsize

Tsize∑
t=1

RSDa,t. (7.11c)

A map of the estimated uncertainty is then displayed at street resolution. With
Monte Carlo simulations, the uncertainties given to the inputs propagate to the com-
puted traffic flows throughout the whole network of the agglomeration. Figure 7.17
shows the monthly-averaged uncertainty map over the Clermont-Ferrand city (left) and
the whole agglomeration (right).

Uncertainty maps in Figure 7.17 show that high traffic flow uncertainty appears on
highways and streets with high capacity. This might be due to the fact that monthly-
averaged traffic flows assigned on these roads are also higher on these roads so that the
absolute standard deviations are high. However, if we measure the uncertainty with
the relative standard variation (RSD), we can see that traffic flows on roads with big
capacities are less uncertain than the traffic flows computed on roads with less traffic.
The temporally-averaged RSD map is displayed in Figure 7.18. RSD > 1.0 means very
high relative uncertainty of computed traffic flow. Figure 7.18 show that even though
the value of σa is higher on highways and roads with high assigned traffic flows, the RSD
on these roads remain less than 1.0. High relative uncertainty is found on links with
low monthly-averaged traffic flow µa. The high values of RSD (> 100%) for computed
traffic flows are found on links with µa < 60 veh h−1.

Figure 7.19 presents the relative frequency distributions of (i) the interquartile range
(denoted as IflowIQR ) and (ii) 5th − 95th percentile range (denoted as IflowCI90) of traffic flows
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Figure 7.17: Monthly average of traffic flow uncertainty (σa) estimated by the DTA
simulation ensemble during November 2014 over Clermont-Ferrand city (left) and the
whole agglomeration (right) (in veh h−1).
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Figure 7.18: Monthly average of relative standard deviation (RSD) of traffic flow com-
puted by the DTA simulation ensemble for November 2014 over Clermont-Ferrand
city (left) and the whole agglomeration (right).

over the whole network. These two distributions are obtained based on traffic flows
computed by the ensemble at all the links of the network and all time intervals of
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Figure 7.19: Relative frequency distribution of (i) the interquartile range (left) and (ii)
5th − 95th percentile range (right) of traffic flows over the whole network. The values
whose occurrence frequencies are less than 0.025 are filtered out.

15 minutes during November 2014. The frequencies are weighted according to the
lengths of links over the whole network. We have filtered out the values whose occurrence
frequencies were less than 0.025. Figure 7.19 (left) shows that 97.5% of IflowIQR forecasted
by the ensemble are less than 400 veh h−1. In addition, 68% of IflowIQR are less than
100 veh h−1. Figure 7.19 (right) shows that 97.5% of the IflowCI90 forecasted by the ensemble
are less than 960 veh h−1. It shows that 63% of the forecasted IflowCI90 are less than
200 veh h−1. Figure 7.19 shows the results over the whole simulation period of November
2014 for all time intervals of 15 minutes. The relative frequency distributions of the
interquartile range and 5th − 95th percentile range vary with the time of the day (e.g.,
during the peak hour and non-peak hour). These distributions also vary with the type
of day (e.g., working day, Saturday, Sunday or public holiday, etc.). Figure 7.20 and
Figure 7.21 show the interquartile ranges and 5th − 95th percentile ranges during non-
peak periods and peak periods on different kinds of days during November 2014, over
the whole network of the agglomeration. The values whose occurrence frequencies are
less than 0.025 are filtered out. The frequencies are also normalized so that the integral
of the complete distribution is 1.0.

These results show that for the same kind of day, the relative frequencies of high
forecasted IflowIQR and IflowCI90 are found on peak period. For different kinds of day, results
show that higher values of IflowIQR and IflowCI90 are frequent on working days than on week-
ends or public holidays. On working days, the maximum values of IflowIQR and IflowCI90 are
also higher during the morning peak of 08:00 - 08:15 than during 00:00 - 00:15. In
addition, there is a significant difference of the shown relative frequency distributions
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Figure 7.20: Relative frequency distributions of the interquartile ranges of computed
traffic flows during two different time intervals (00:00 - 00:15 and 08:00 - 08:15), over
different types of day during November 2014: working days, Saturdays, Sundays and
public holidays. The values whose occurrence frequencies are less than 0.025 are filtered
out. The frequencies are normalized so that the integral is 1.0 for each of the complete
distributions.

between peak and non-peak period during working days, whereas this different is not
that remarkable during other kinds of day. These results are mainly due to the fact that
the traffic flow is higher during 08:00 - 08:15 than during 00:00 - 00:15, and the traffic
volume is less heavy on weekends and holidays than on working days. These results are
consistent with the results in Figure 7.17, showing that high uncertainty (measured by
standard deviation) is found on links with heavy computed traffic flows. In addition,
Table 7.13 shows the average IflowIQR and IflowCI90 against measured traffic flows, on links
with loop detectors in the network of Clermont-Ferrand. Results in Table 7.13 also show
that the higher forecasted interquartile ranges and 5th− 95th ranges are found on roads
with heavy measured traffic flows.
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Figure 7.21: Relative frequency distributions of the 5th− 95th percentile ranges of com-
puted traffic flows during two different time intervals (00:00 - 00:15 and 08:00 - 08:15),
over different types of day during November 2014: working days, Saturdays, Sundays
and public holidays. The values whose occurrence frequencies are less than 0.025 are
filtered out. The frequencies are normalized so that the integral is 1.0 for each of the
complete distributions.

Uncertainty of computed travel speeds

The original LADTA model also computes travel time for each time interval of
15 minutes. When building the metamodel for traffic flows, we also saved a training
set of computed travel times at link resolution. The street lengths are constant and
known. Then we can get a training set of average travel speed at link-level and at time
resolution of each 15 minutes. We used the same metamodeling approach to build a
metamodel for the travel speed. We then used the same variables as in Table 7.5 to
carry out a Monte Carlo simulation for computing travel speed, during November 2014.
Then an ensemble of travel speeds is generated and the uncertainty of computed travel
speeds is obtained.
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Table 7.13: We partition the observations of all the detectors and for all time inter-
vals of 15 minutes into 20 intervals according to the measured traffic flow range (in
veh h−1 detector−1, as presented in columns 1 and 5). For the observations points in
each interval, we calculate the mean of observed traffic flows (in veh h−1 detector−1,
presented in columns 2 and 6). For links with detectors whose measured traffic flow
fall into an interval, we calculate the mean of interquartile ranges (denoted as IQR
in veh h−1 detector−1, presented in columns 3 and 7), and the corresponding mean of
5th− 95th ranges (denoted as ICI90 in veh h−1 detector−1, presented in columns 4 and 8)
forecasted by the ensemble of DTA simulations on the network of Clermont-Ferrand in
November 2014.

Range Avg. observation Avg. IQR Avg. ICI90 Range Avg. observation Avg. IQR Avg. ICI90

0-50 17 66 141 500-550 523 182 412

50-100 72 96 211 550-600 573 185 421

100-150 122 114 254 600-650 623 188 428

150-200 173 128 286 650-700 673 192 439

200-250 223 138 312 700-750 722 201 459

250-300 273 146 333 750-800 772 208 474

300-350 323 155 353 800-850 822 211 483

350-400 373 163 372 850-900 872 215 494

400-450 423 171 389 900-950 922 216 502

450-500 474 177 403 ≥ 950 971 221 515

We calculated the temporally-averaged uncertainty of travel speed at link resolution
and plotted the uncertainty map of estimated travel speed in Figure 7.22. The RSD of
estimated travel speed is presented in Figure 7.23.

Results in Figure 7.22 show that big speed uncertainty is found at crossroads and
highways. The results in Figure 7.23 show that the spatial distribution of relative un-
certainty is not the same as the spatial distribution of absolute uncertainty. Figure 7.24
compares the traffic flow uncertainty, relative uncertainty of travel speed, and link ca-
pacity. In fact, big traffic can be assigned on the upstream link a with big capacity.
According to assumptions of LADTA model, if the capacity of the downstream link a+1
is smaller, traffic flow from link a is restricted by the link capacity of link a + 1, and
a vertical queue occurs at the exit point of link a + 1. This will increase the average
travel time on the link a+ 1 and the travel speed is therefore affected.
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Figure 7.22: Monthly average of travel speed uncertainty from the ensemble of travel
speeds for November 2014 over Clermont-Ferrand city (left) and the whole agglomera-
tion (right) (in kmh−1).
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Figure 7.23: Monthly average of relative standard deviation (RSD) of average traffic
speed computed by the ensemble of travel speeds for November 2014 over Clermont-
Ferrand city (left) and the whole agglomeration (right).
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Figure 7.24: Monthly average traffic flow uncertainty (left, in veh h−1), monthly average
relative standard deviation (RSD) of traffic speed (center) and link capacity (right, in
kmh−1) over the Clermont-Ferrand city.

7.4.2 Uncertainty of on-road emission simulations

Then we used the modeling chain built in Chapter 6 to generate the ensemble of on-
road emissions for the agglomeration of Clermont-Ferrand during November 2014. The
ensemble of traffic flows and travel speeds are inputs for the emission ensemble genera-
tion. We firstly generated an ensemble without changing the vehicle fleet composition,
i.e, taking the values given from Table 6.1 and Table 6.2 in Chapter 6. Here we present
only the ensemble of NOx emissions. For each member of the emission ensemble, the
emission of NOx is computed at link level and at time resolution of 15 minutes. The
resulted NOx emissions are presented in g km−1 (per 15 minutes).

We then calculated the temporally-averaged uncertainty of the computed emission at
link resolution and plotted the uncertainty map in Figure 7.25. The RSD of estimated
emissions is presented in Figure 7.26.

Results in Figure 7.25 and Figure 7.26 show that large emission uncertainty is found
on links with large flow uncertainty. The uncertainty found in DTA simulation is prop-
agated to the computed emissions through the modeling chain. Detailed results are
presented in the following subsection 7.4.3.

Figure 7.27 presents the relative frequency distributions of (i) the interquartile range
(denoted as INOxIQR ) and (ii) 5th−95th percentile range (denoted as INOxCI90) of on-road traffic
emissions over the whole network. These two distributions are obtained based on the
ensemble of emissions at all the links of the network and all time intervals of 15 minutes
during November 2014. The frequencies are weighted according to the lengths of links
over the whole network. We have filtered out the values whose occurrence frequency is
less than 0.025. Figure 7.27 (left) shows that 97.5% of INOxIQR forecasted by the ensemble
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Figure 7.25: Monthly average of emission uncertainty from the ensemble of emission
estimations for November 2014 over Clermont-Ferrand city (left) and the whole ag-
glomeration (right) (in g km−1).

Figure 7.26: Monthly average of relative standard deviation (RSD) of on-road traffic
emissions computed by the ensemble of emission estimations for November 2014 over
Clermont-Ferrand city (left) and the whole agglomeration (right).

of NOx emissions are less than 38 g km−1 during an interval of 15 minutes. In addition,
78% of the forecasted INOxIQR are less than 10 g km−1. Figure 7.27 (right) shows that
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Figure 7.27: Relative frequency distribution of (i) the interquartile range (left) and (ii)
5th − 95th percentile range (right) of on road traffic emissions over the whole network.
The values whose occurrence frequencies are less than 0.025 are filtered out.

97.5% of the INOxCI90 forecasted by the NOx emission ensemble are less than 95 g km−1

during an interval of 15 minutes. It also shows that 74% of the forecasted INOxCI90 are less
than 20 g km−1 over the whole network during an interval of 15 minutes.

Figure 7.28 and Figure 7.29 show the interquartile ranges and 5th − 95th percentile
ranges during non-peak periods and peak periods on different kinds of day during
November 2014, over the whole network of the agglomeration. The values whose occur-
rence frequencies are less than 0.025 are filtered out. The frequencies are also normalized
so that the integral of the complete distribution is 1.0. The results shown in Figure 7.28
and Figure 7.29 are consistent with the results for forecasted traffic flows. Higher INOxIQR

and INOxCI90 are more frequently found on peak periods (e.g., 08:00 - 08:15) of working
days, than during non-peak periods (e.g., 00:00 - 00:15) or during non-working days.
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Figure 7.28: Relative frequency distributions of the interquartile ranges of computed
NOx emissions during two different time intervals (00:00 - 00:15 and 08:00 - 08:15), over
different types of day during November 2014: working days, Saturdays, Sundays and
public holidays. The values whose occurrence frequencies are less than 0.025 are filtered
out. The frequencies are normalized so that the integral is 1.0 for each of the complete
distributions.

7.4.3 Uncertainty propagation from inputs of traffic assign-
ment to on-road emission simulations

We calculated the correlation between the uncertainties of (i) computed traffic flow,
(ii) average speed and (iii) traffic emissions. The results are presented in Table 7.14.

The results in Table 7.14 show that the monthly average traffic flow, flow uncer-
tainty and emission uncertainty are highly correlated. This is due to the structure of
the modeling chain, combing link-level traffic flow with emission factors computed by
COPERT IV model. In fact, on a link with a given vehicle fleet data and travel speed,
the on-road traffic emission computed by the modeling chain is proportional to the com-
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Figure 7.29: Relative frequency distributions of the 5th− 95th percentile ranges of com-
puted NOx emissions during two different time intervals (00:00 - 00:15 and 08:00 -
08:15), over different types of day during November 2014: working days, Saturdays,
Sundays and public holidays. The values whose occurrence frequencies are less than
0.025 are filtered out. The frequencies are normalized so that the integral is 1.0 for each
of the complete distributions.

puted traffic flow on the link. However, the correlation is not perfectly equal to one
because the heavy duty vehicles (HDVs) are not uniformly distributed on the network.
If the share of HDVs is zero, we can see that the correlation between the traffic flow un-
certainty and emission is almost 1.0. Figure 7.30 (up) and Figure 7.30 (down) show the
log plots of monthly average traffic flow, monthly average flow uncertainty and emission
uncertainty, of the two ensembles of road traffic emissions generated in two cases: (i)
when there is no heavy duty vehicle (HDV) on the road network, and (ii) when there
are additional HDVs with a volume equal to 30% of the simulated vehicles on the roads
near the logistic center of Clermont-Ferrand (cf. Figure 6.10).
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Table 7.14: Correlation between the uncertainties of traffic flow, travel speeds and
emissions. "-" denotes the case where the results are from two ensembles of emissions
computed from the ensemble of the dynamic traffic assignments in two cases: (i) when
there is no heavy duty vehicle (HDV) on the road network, and (ii) when there are
additional HDVs with a volume equal to 30% of the simulated vehicles on the roads
near the logistic center of Clermont-Ferrand (cf. Figure 6.10).

Standard deviation of
flow speed emission emission without HDV

flow uncertainty 1.00 0.38 0.71 0.97

speed uncertainty 0.38 1.00 0.24 0.41

emission uncertainty 0.71 0.24 1.00 -

emission uncertainty without HDV 0.97 0.41 - 1.00

average flow 0.96 0.38 0.71 0.95

link capacity 0.03 0.0 0.03 0.03

speed limit 0.35 0.45 0.25 0.31
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Figure 7.30: Log plots of monthly-averaged traffic flow (in veh h−1), uncertainty (mea-
sured by standard deviation) of traffic flow (red line) and emission (blue line) against
the flow uncertainty (x axis). The plotted values are sorted by the increasing order of
traffic flow uncertainty. The emission uncertainty presented in the upper plot is com-
puted from the ensemble of emissions with the presence of HDV. The uncertainty in
lower plot is computed from the ensemble of emissions without HDV on the network.
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Figure 7.30 confirms the correlation between the monthly average compute flow,
flow uncertainty and emission uncertainty. Figure 7.31 shows the comparison between
the relative uncertainties of the monthly average flow and emission. The relative un-
certainty of computed emissions are almost always bigger than the relative uncertainty
of computed traffic flow. In other words, if the given input uncertainty shown in Ta-
ble 7.5 leads to 50% of traffic flow uncertainty on a link a, the resulting traffic emission
uncertainty would be not less than 50%.
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Figure 7.31: Log plots of monthly average traffic flow, flow uncertainty and emission
uncertainty against the relative uncertainty of traffic flow. The plotted values are sorted
in increasing order of relative uncertainty on traffic flow.

Results in Table 7.14 also show that the correlation between the traffic flow un-
certainty and speed uncertainty is not high. This may due to the assumptions of the
original LADTA model. On the one hand, we assume that the travel time equals to the
free flow travel time when the traffic flow does not exceed the link capacity. If the flow
uncertainty is big but the traffic flow does not reach the link capacity, the travel time is
constant and equals to the free flow travel time. Then the uncertainty on the average
travel speed is low, yet the uncertainty on emissions is big due to the high uncertainty
on traffic flow. On the other hand, the traffic flow computed by LADTA model can-
not exceed the link capacity. On links with low capacities, the traffic flow might reach
the link capacity and bring congestion on the link. The traffic flow does not increase
any more but the travel time increases, according to the bottleneck flowing model of
LADTA model. Therefore, the uncertainty in the traffic flow might not be high but the
uncertainty in computed travel speed might be.
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Conclusions and perspectives

In this chapter, we considered that the inputs of the modeling chain are random
variables with known probability distributions. We then used the Monte Carlo ap-
proach to generate two ensembles of simulations: (i) an ensemble of DTA simulations
with the metamodel of LADTA, and (ii) an ensemble of emission simulations, for the
agglomeration of Clermont-Ferrand at street resolution and at all time intervals of 15
minutes during November 2014. The objective of uncertainty quantification was then to
estimate the probability distribution of the outputs of the generated ensemble, taking
into account the given uncertainty lying in inputs. The measure of uncertainty was (i)
the standard deviation, and (ii) the relative standard deviation of the output variables
predicted by the ensemble

We recall here that the outputs of LADTA applied to Clermont-Ferrand (LCF model)
are link-resolution traffic flows for all time intervals of 15 minutes, during November
2014. The uncertainty given to inputs are (i) ±100% on the total demand compared
to the inputs for the deterministic simulation, (ii) [−100%, 80%] in the O-D matrix for
each of the five categories of O-D pairs, and (iii) ±50% for link capacities and speed
limits. We evaluated the ensemble of DTA simulations with the help of traffic flow
observations, measured by loop detectors on the network of Clermont-Ferrand during
November 2014. Rank histogram, reliability diagram and statistical scores were chosen
criteria to evaluate whether or not the ensemble can well represent the uncertainty of
the DTA simulations. Results show that the ensemble of DTA simulations overestimate
the temporal uncertainty and slightly underestimate the spatial uncertainty, with the
chosen criteria of ensemble evaluation in this section. We also found that there is a
systematic negative bias on a group of detectors, especially when the traffic on the
network is heavy. These results may be due to (i) the representativeness errors; (ii)
errors in estimating link capacities; (iii) the assumptions in the original LADTA model
for route choice; (iv) the losses due to the dimension reduction and emulation when
building the metamodel, especially on links with low computed traffic flow; (v) the lack
of spatial uncertainty in link characteristics and O-D matrix. The performance of the
ensemble can be improved by re-adjusting the input distributions in order to optimize
the evaluation criteria.

Then we carried out the uncertainty quantification using the built ensemble. For the
DTA simulation in the agglomeration of Clermont-Ferrand, the high relative uncertainty
(≥ 100%) is mostly found on links where the computed traffic flow is low (≤ 60 veh h−1).
The relative uncertainty in travel speeds were mostly found on links for which the
upstream links have bigger capacity than its own capacity. There is no clear correlation
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between the uncertainty in travel speeds and the uncertainty in the traffic flow. For on-
road traffic emissions, we built an ensemble of emissions based on the ensemble of DTA
simulations. We only took into account the uncertainty of DTA simulation inputs and
analyze the uncertainty of computed emissions due to the uncertainty in traffic flows.
Results show that the emission uncertainty is highly correlated with the computed traffic
flow on the network and its uncertainty. This result is consistent with the results of
the global sensitivity analysis in Chapter 5, showing that the emissions are sensitive to
traffic flows, but not significantly sensitive to traffic speeds. Results in this chapter also
show the relative uncertainty tends to be amplified from the computed traffic flows to
the computed traffic emissions, especially on links with heavy duty vehicles.

In future works, an ensemble of emissions can be generated with perturbations in
both DTA simulation inputs and vehicle fleet composition inputs in order to study
the uncertainty due to vehicle fleet composition. In addition, the performance of the
ensemble of DTA simulations can be improved by (i) adding spatial perturbations on
some uncertain inputs (in O-D matrix, link capacities and speed limits), (ii) adding
spatial uncertain inputs in the parameters of the metamodel. The ensemble can also be
calibrated by sampling a sub-ensemble for which the evaluation criteria are optimum.





Conclusions and Perspectives

1. Conclusions

The main objective of this PhD work was to quantify the uncertainty in the simula-
tion of on-road emissions due to the inputs of a dynamic traffic assignment model and
the inputs of the emission factor model, in a metropolitan area with street resolution.
The main findings of this work are summarized as follows.

• DUE-based dynamic traffic assignment (DTA) model applied to real-world
network with more than 19,000 links and 8,000 nodes for a one-day DTA
simulation
Chapter 3 gave the results of a DTA simulation with LADTA model, applied to
the road network of the agglomeration of Clermont-Ferrand (France). A qualitative
sensitivity analysis was also carried out. The model network for the agglomeration
has more than 19,000 links and 8,000 nodes. The traffic demand is represented by an
Origin-Destination (O-D) matrix with dimension 124 × 124. A reference simulation
with static VISUM model was also carried out. The results computed by LADTA and
VISUM were compared at link resolution. Results show that the correlation between
the traffic flow computed by the two models was 0.87. The traffic flows computed
by two models were also compared with loop detector measurements. Both models
have limitations for predicting spatial distribution of traffic flow on the network when
compared with traffic flow measurements. These may due to (i) the uncertainties
in O-D matrix, (ii) assumptions for route choice criteria, (iii) errors in the modeled
network and (iv) the conversion from link-level flows to detector-level flows by dividing
the link-resolution flow by the number of lanes. A DTA simulation with LADTA
model for a working Tuesday was then carried out for the same agglomeration with
the modeled network in 2012. The computed flows were compared with loop detector
measurements of all the working Tuesdays from September 2014 to July 2015. Results
show that LADTA model can well predict temporal variation of spatially-averaged
traffic flow in the whole agglomeration, even for a long period of more than 30 days
with a temporal resolution of 15 minutes. The temporal normalized root-mean-square
error (NRMSE) was about 6.6% and the correlation was 0.99 when we compared the
computed and measured spatially-averaged traffic flow for all time intervals. Results
show that the DTA simulation with LADTA gives more detailed temporal evaluation
of the traffic flows and congestions on the network. For example, the LADTA results
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during morning peak hour from 07:00 to 08:30 show that the traffic flows on the
network vary significantly within a quarter of an hour. In addition, the congestion on
the network is represented by the increase of vehicle travel time with the same time
resolution. The use of DTA model can better reflect the temporal variation of traffic
flow and congestions with a high time resolution than static traffic assignment models.
A qualitative sensitivity analysis was then carried out to analyze the sensitivity of
computed flows with respect to total traffic demand and link speed limits. Results
show that the total vehicle travel time (in veh·h) is very sensitive to the traffic demand,
especially during evening peak hour due to the existing traffic on the network before
the arrival of the peak hour. The total vehicle travel time is not very sensitive to the
speed limits of the network. It increases almost linearly with the decrease of speed
limits on the network.

• Introducing a metamodeling method coupling (i) a model reduction based
on principal component analysis and (ii) a statistical emulation, and build-
ing a metamodel of a DTA model applied to a metropolitan-scale network
Chapter 4 introduced the metamodeling approach coupling a dimensionality reduc-
tion and a statistical emulation. A reduced base for the model outputs was firstly
built based on principal component analysis (PCA). The outputs of the target model
were projected onto this reduced subspace. Then, the relations between the projec-
tion coefficients and the inputs of the original model were reproduced by a statistical
emulator, based on radial basis functions (RBF). This metamodeling method was
applied to the dynamic traffic assignment with LADTA model applied in the agglom-
eration of Clermont-Ferrand. Firstly, uncertain inputs for LADTA model applied in
Clermont-Ferrand were represented by a vector of multiplicative coefficients. They
were chosen in order to represent the uncertainties in (i) the temporal variations in
the traffic demand, (ii) the spatial uncertainty in the O-D matrix, and (iii) the spa-
tial uncertainty in network parameters (link capacities and speed limits). Secondly, a
metamodel of LADTA applied to Clermont-Ferrand was built based on the uncertain
inputs, using the metamodeling approach presented in Chapter 4. For a DTA sim-
ulation with LADTA before 12:00 (local time) of the day for example, a set of 3003
training points was generated with Latin Hypercube Sampling. The corresponding
training values were the traffic flows computed by the original LADTA model using
the training points. The performance of the metamodel was evaluated by compar-
ing the outputs of the metamodel with the training values. Results show that even
though there were some loses due to the dimension reduction and the interpolation,
big errors between the metamodel and the original model were mainly found on links
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with low computed traffic flows. Thirdly, the traffic flows computed by the original
model and the metamodel were compared with loop detector measurements at all de-
tectors and all time intervals of 15 minutes during November 2014. Scores show that
the performance of the metamodel was similar to that of the original model during a
one-month simulation, but the computational time for the simulation decreased from
2 days on 110 cores to less than 1 minute on one core. The spatio-temporal corre-
lation between the metamodel and the traffic flow measurements during one month
was about 0.7. Note that the metamodeling treats the traffic assignment (TA) model
as a black box, and builds reasonable relationships between the TA inputs and out-
puts for a given road network. The independence of the method to the model type
gives us new insights on the application of metamodeling to TA problems on large
scale networks during long-term periods, and opens the way to further studies such
as global sensitivity analysis and uncertainty quantification. The proposed metamod-
eling method can be applied to other traffic assignment models for other cities and
networks. The resulting metamodel preserves well the main features of the complete
model but with very low computational cost.

• Global sensitivity analysis (GSA) with a variance-based method (Sobol’)
for the dynamic traffic assignment simulation at metropolitan scale down
to street resolution
With the metamodel built in Chapter 4, a global sensitivity analysis (GSA) was
carried out on the DTA simulation with LADTA model applied in the agglomeration
of Clermont-Ferrand. The Sobol’ method was chosen for GSA studies. For an input pi,
first-order sensitivity index measures the effect of varying pi alone, but averaged over
variations in other input parameters. The total-effect index measures the contribution
of pi to the output variance, including all variance caused by its interactions with any
other input variables. The first and total-effect Sobol’ indices were computed for the
computed traffic flows and average speeds at street level over the whole agglomeration,
with respect to each uncertain input identified in Chapter 4.
GSA results show that the computed traffic flows are very sensitive to the direction
of traffic demands in the O-D matrix. They are also sensitive to the volume of traffic
demands: (i) the temporal variation during the previous 0.5 hour before the target
simulation time and (ii) the total demands between O-D pairs for which the inter-
zone distance is between 0 - 5 km. The computed flows are not very sensitive to the
link capacity or speed limit in our case study. Besides, the resulting Sobol’ indices
also depend on spatial location and characteristics of the links. On the one hand,
the computed flows on highways are sensitive (i) to the traffic demands departing
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from 0.5 hour before the target simulation period and (ii) to the traffic demands
between long-distance O-D zones. On the other hand, the computed flows on links in
the city center are sensitive (i) to the traffic demands during the previous 0.25 hour
and (ii) the demands between short-distance O-D zones (less than 5 km). For the
computed average speeds in the agglomeration, they are sensitive to the direction of
traffic demand and the uncertain inputs corresponding to the street speed limits. The
computed speeds are not significantly sensitive to other inputs on most of the streets
in our case study. However, results show that on some street on which the capacity
is low, the computed speeds are sensitive to the traffic demands during the previous
0.5 hour before the target simulation time. This suggests that traffic jams are more
likely to happen on these streets.

• Building a modeling chain coupling a dynamic traffic assignment model
with an average-speed-based emission model (COPERT IV) at metropoli-
tan scale with street resolution
In Chapter 6, a modeling chain for emission estimations was built by combining the
dynamic traffic assignment model LADTA, and the COPERT IV model. The use of a
dynamic traffic assignment (DTA) model allows us to estimate emissions with a finer
time resolution in order to compute time-varying emissions due to on-road traffic. For
example, in our case study in the agglomeration of Clermont-Ferrand, the emission
calculations are based on traffic flow results of LADTA for each link during every
15 minutes for a working day. Moreover, with the metamodel built in Chapter 4, a
modeling chain combing the traffic metamodel and the COPERT IV model was also
built. With this modeling chain, CO and NOx emissions during the whole year of
2014 were computed, at a time resolution of 15 minutes.
With the built modeling chain, qualitative and quantitative sensitivity analyses were
carried out in order to study the sensitivity of the estimated emission with respect to
both the inputs of LADTA model and COPERT IV. Qualitative sensitivity analysis
results show that total NOx emissions increase with the total demand volume onto
the network. They are less sensitive to the variation of network speed limits than
to the traffic demand. As we decreased the links’ speed limits, the total emissions
firstly decreased and then increased. This non-linearity is mainly due to the influence
of vehicle travel speed on the hot emission factors of NOx. Quantitative GSA with
Sobol’ method was also carried out on the modeling chain for computing street-level
emission. The results of GSA show that the computed NOx emissions are sensitive to
all the inputs that influence the traffic flows. The traffic speeds do not have significant
influence to the NOx emissions computed by modeling chain in our case study. In
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addition, the computed NOx emissions are very sensitive to some of the vehicle fleet
inputs: the share of heavy duty vehicles (HDVs) and the percentage of gasoline cars on
road. Other fleet parameters such as the emission standards and engine capacity, are
not very influential to the on-road NOx emissions computed by the modeling chain.
Nevertheless, these sensitivity results are different for different pollutants. For the hot
emissions of CO, only the gasoline car share has a first-order effect on the emissions
computed by the modeling chain. The share of HDVs is not as much influential to the
computed CO emissions, as they are to NOx emissions. Moreover, the hot emissions
of CO are affected by high-order effects of emission standard factors: the share of
passenger cars for which the emission standard is Euro 4 and higher. This result is
not found in the case of GSA study of NOx emission.
Though this work only presents the application of the built modeling chain to the
network of Clermont-Ferrand for CO and NOx emissions, the computation of link-
resolution emissions is implemented in the open-source code Pollemission Chen and
Mallet [2016], for various types of vehicles (e.g., passenger cars, heavy duty vehicles,
light utility vehicles, motorcycles, buses, etc.) and pollutants (e.g., CO, NOx, PM,
fuel consumption, hydrocarbon, etc.). It can be applied to other cities as well.

• Introducing a whole framework of uncertainty quantification of the com-
puted traffic flow and its emissions due to inputs of DTA model for a
full city scale down to street resolution, and presenting some preliminary
results of uncertainty quantification and ensemble calibration
In Chapter 7, inputs of the LADTA model applied in Clermont-Ferrand were con-
sidered as random variables with uniform distributions. The uncertainties given to
inputs are ±100% in the temporal variation of traffic demand, [−100%, 80%] in the
O-D matrix, and ±50% for link capacities and speed limits. A Monte Carlo approach
with simple size n = 100 was then used to generate two ensembles of simulations: (i)
an ensemble of DTA simulations and (ii) an ensemble of emission simulations, for the
agglomeration of Clermont-Ferrand at street resolution and at all time intervals of
15 minutes during November 2014. The measure of uncertainty is the standard devia-
tion and relative standard deviation of the traffic flows, average speeds and emissions
predicted by the ensembles.
Before the uncertainty quantification, the ensemble of DTA simulations was evalu-
ated with the help of traffic flows observations, measured by loop detectors on the
network of Clermont-Ferrand during November 2014. Rank histogram, reliability di-
agram and statistical scores were chosen criteria to evaluate whether the ensemble
could well represent the uncertainty of the DTA simulations. Results show that the
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ensemble of DTA simulations gives too-large uncertainty on the spatially-averaged
traffic flows (hence overestimates the temporal uncertainty), but slightly underesti-
mates the uncertainty of the temporally-averaged traffic flows. Results also show
that on some detectors, the traffic flows measured by loop detectors are often higher
than the upper envelope of the ensemble of DTA simulations, especially when the
measured traffic on the network is heavy. These results may be due to (i) not having
taken measurements uncertainty into account, (ii) the lack of spatial uncertainty in
the parameterization of the uncertain inputs (in the O-D matrix, link capacities and
speed limits, highway tolls). The performance of the ensemble can be improved by
re-adjusting the input distributions in order to optimize an evaluation criteria.
Concerning uncertainty quantification results for the DTA simulation in the agglom-
eration of Clermont-Ferrand, big uncertainty on traffic flow was found (i) on links
with heavy traffic and (ii) at time intervals and days with heavy traffic (e.g., dur-
ing peak hours on working days). However, the high relative uncertainty (≥ 100%)
was mostly found on links where the computed traffic flow is low (≤ 60 veh h−1).
The relative uncertainty of computed travel speeds were mostly found on links where
there is a decrease of link capacity when compared with upstream links. There is
no clear correlation between the uncertainty of travel speeds and that of the traffic
flow. For on-road traffic emissions, only uncertainty in DTA inputs were taken into
account. Results show that the emission uncertainty is highly correlated with (i) the
computed traffic flow on the network and (ii) the uncertainty of traffic flow. This
result is consistent with the results of the global sensitivity analysis in Chapter 5,
showing that the computed emissions are sensitive to the inputs that are influential
to the traffic flows computed by LADTA model. Uncertainty quantification results
also show the relative uncertainty tends to be amplified from the computed traffic
flows to the computed traffic emissions, especially on links with heavy duty vehicles.

2. Future research perspectives

In view of what has been achieved during this PhD work, extensions and new lines
of research for the future can be identified.

DTA simulation at metropolitan scale with LADTA model

More detailed investigation of the traffic flow data measured by loop detectors may
help to calibrate the DTA simulation. From the conclusions of this work, more studies
to decrease the representativeness error should be carried out. The distribution of traffic
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on different lanes on a road can be obtained from the measurements. This distribution
can then be applied to the conversion of link-level traffic flow to lane-resolution traffic
flow. In addition, instead of comparing the computed and observed traffic flows at lane
resolution for all detectors, one can also convert lane-resolution traffic flow to link-level
flow so that the comparison can be carried out at link resolution. This would decrease
the representativeness error on links where each lane has a detector so that the link-level
traffic flow can be obtained by summing up the lane-resolution measured flows. Besides,
the flowing model in LADTA is the bottleneck model. The bottleneck delay depends
on the time passed in point queues. For a given link in congested condition, the length
of queue depends on the modeled link capacity which is an estimated value based on
traffic flow data and the fundamental diagram. With the help of traffic flow measured
by loop detectors, link capacities can be calibrated before carrying out DTA simulation
with LADTA model. This would help us to avoid the case where the measured traffic
flows are always higher than the estimated capacity when the traffic is heavy.

DTA model calibration for a very large scale network is a challenging task. The
performance of the DTA simulation can also be improved by (i) better modeling route
choice models with multi-class users, (ii) better modeling the physical queues with
other kind of flowing models in order to take into account the spill-back effect when the
network is very congested, and by (iii) better modeling the O-D matrix with calibration
based on loop detector measurements, etc.

Modeling chain for estimating the on-road traffic emissions and
sensitivity analysis

In the modeling chain built in this PhD work, the cold-start emissions have not been
taken into consideration. This might be an uncertainty source of the estimated emis-
sions. However, the formulations for taking into account the cold-start emissions [EEA,
2016] are already implemented in Pollemission [Chen and Mallet, 2016]. According to
COPERT IV model, the cold-start emission is computed based on hot-start emissions,
the ambient temperature and the travel distance for which the vehicles are considered
to be in the warm-up phase. At least two inputs can be added into the modeling chain
for estimating the cold-start emissions. We would then be able to analyze the sensitivity
and uncertainty of the total emission with consideration of the uncertainty of inputs
related to cold-start emissions.

In addition, the chosen emission model is the COPERT IV model based on average
speed. At urban area with dense traffic and traffic lights, the distribution of the travel
speed on a road is not homogeneous. Taking into account the distribution of travel speed
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on a street instead of using the average speed could be a solution [Aguiléra and Tordeux,
2014]. The travel speed distributions can be obtained from loop detector observations.

With the built link-resolution modeling chain for estimating road traffic emissions,
more inputs can be studied in the global sensitivity analysis (GSA). For example, we
can estimate the emissions due to buses on the network and then analyze the sensitivity
of these emissions with respect to the bus frequency and fleet composition of buses. In
addition, if the DTA simulation is carried out for multi-class users, i.e., multi-class users
are added in the O-D matrix in inputs (e.g., light utility vehicles, heavy duty vehicles,
motorcycles, etc.), emissions from other user classes can also be estimated. Sensitivity
analysis for new categories of users can help us to identify whether the uncertain inputs
concerning these users can influence the computed traffic emissions on the network.
Based on these eventual results, we can then decide whether or not to add this new
vehicle fleet composition into the Monte Carlo simulations to carry out uncertainty
quantification.

Metamodeling of the DTA model

Parameterization of uncertain inputs

The metamodeling of the LADTA model applied to the agglomeration of Clermont-
Ferrand is an essential step for this PhD work. It is built based on uncertain inputs.
Results of the uncertainty quantification show that the generated ensemble still slightly
underestimates the spatial uncertainty, even though we have already overestimated the
uncertainty of spatially-averaged traffic flows. There are still more than 10% of the
observation points for which the measured traffic flows are not covered by the 5th− 95th

percentile range of the generated ensemble of DTA simulations. One of the main rea-
sons is that there is a lack of parameterization in the representation of spatial uncertain
inputs. We have only considered 5 uncertain inputs in the O-D matrix for representing
spatial uncertainty in traffic demand, and 4 uncertain inputs for the modeled network
(for link capacities and speed limits). According to local and global sensitivity analysis,
traffic demand is the most influential input for the computed traffic flow on the net-
work. One may add inputs that represent the spatial uncertainty in the O-D matrix in
the metamodeling parameterization, in order to bring more spatial uncertainty in the
computed traffic flow. Concerning the parameters in the modeled network, sensitivity
analysis results in this work show that the computed traffic flow in the agglomeration
is not very sensitive to the variation of speed limits or link capacities. However, in the
experiment setting of our case study, there are only a few inputs that represent the spa-
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tial uncertainties in speed limits and link capacities. We have only focused on the road
traffic variation by scaling the speed limits of all the links on the network in the quali-
tative sensitivity analysis. In the quantitative GSA study, links have been divided into
two categories with respect to their speed limits, and two other categories with respect
to their capacities. The GSA was then carried out by scaling speed limits or capacities
of links according to their categories. Spatial uncertainty can be added by adding more
spatial uncertain inputs in the parameterization associated to the modeled network. For
example, we could add more categories of links with respect to link speed limits and
capacities. We could then define the corresponding scalar coefficients to multiply to the
reference speed limits and capacities of the modeled network. In fact, link travel time
is modeled by the sum of (i) free-flow travel time and (ii) the bottleneck delay in point
queues in the flowing model of LADTA. With the assumption that travelers choose their
best routes in the network by minimizing their own travel costs, the spatial distribution
of both speed limits and link capacities can influence travelers’ route choice strategies,
and thus affect the spatial distribution of the traffic flows from the DTA simulation.
On the one hand, speed limits can influence the free-flow travel time when the network
is not congested. On the other hand, link capacities can influence the lengths of point
queues and then influence the delay time spent in queues. In addition, it is shown in
Chapter 3 that when we took into account the highway toll, the value of time could
influence the spatial distribution of traffic flow, too. It is worth considering the value
of time as an uncertain input and give it a distribution. This would allow us to study
the uncertainty of traffic flows due to the value of time input.

However, there should be a tradeoff between (i) the dimension of the input and (ii)
the representativeness of spatial uncertainty in inputs. The input dimension should be
moderate in order to assure the performance of the metamodel, the global sensitivity
analysis and the ensemble simulations with Monte Carlo approach [Saltelli et al., 2008].

Operational applications

There are various applications of the metamodeling to the operational context. For
example, it can be used in defining congestion zones in order to prevent very low level
of service on certain roads in a city. Therefore, instead of defining link categories
with respect to their speed limits or capacities, we can also define the categories of
roads with respect to different congestion zones. We can then add toll price on these
roads. A metamodel can be built by taking into account the toll prices for different
categories. Then a GSA can be carried out to study whether or not the traffic flow in
these zones would be sensitive to the congestion charging prices, under consideration of
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the uncertainty in other inputs such as traffic demand in the O-D matrix. Similarly, one
can define restricted zones in a city where users can only drive below a certain speed
limit. When building the metamodel of the DTA model, We can add a scalar input
with respect to the new speed limits on roads in the restricted zones. Then a GSA
can be carried out to see how this measure can influence the spatial distribution and
total volume of the road traffic volume and their resulting air pollutant emissions on
the whole network.

Uncertainty quantification of dynamic traffic assignment simu-
lation and emission estimation

Uncertainty quantification of the DTA simulation
We can deal with the underestimation of spatial uncertainty of traffic flow by adding

spatial uncertainty in inputs, or by taking into account the representativeness error.
Besides, the error in traffic flow measurements can also be taken into account when we
make use of the observations to evaluate the reliability of the generated ensemble. The
traffic flow measurements used in this PhD work have been considered to be perfect.
For each observation point, the measured traffic flow was considered as a scalar o. If we
consider that there are uncertainties in the observation, the latter can then be considered
as a random variable O whose mean value is o. This would require an analysis of error
in the loop detector measurements so that the distribution of O can be defined.

Concerning the uncertainty quantification of atmospheric pollutant emissions, only
the uncertainty due to the uncertain inputs of traffic assignment was taken into account
in our work. Two ensembles of emission simulations were generated, with or without
taking into account the heavy duty vehicles (HDVs) on the network. However, the ratio
of HDVs was given as constant on certain links and the uncertainty on this ratio has not
been taken into account. The uncertainty regarding other inputs of the COPERT IV has
not yet been taken into account in the uncertainty analysis. However, in the GSA study
for the modeling chain coupling the DTA model with COPERT IV, we have found
that the estimated emissions of NOx and CO were sensitive to the share of gasoline
passenger cars (PCs). In addition, the share of emission standard of PCs and HDVs can
also be taken into consideration when analyzing the uncertainty of emissions. With the
built metamodel, the implementation of COPERT IV (Pollemission [Chen and Mallet,
2016]) and the built modeling chain, it will be straightforward to generate emission
ensembles with consideration of the additional uncertainties in vehicle fleet inputs. It
will be possible to generate emission ensembles of other pollutants such as for CO and
particulate matters (PM) as well.
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Ensemble improvement and calibration

We tried to improve the performance of the generated ensemble of DTA simulations.
It is found that optimizing the ensemble according to reliability diagram criterion might
worsen other ensemble performance evaluation criteria. In future research, we can build
an ensemble with more members, and then select a sub-ensemble which is representative
of uncertainty or shows good reliability for probabilistic forecasting of traffic flows. In
addition, other criteria can also be used and optimized, in order to evaluate and cali-
brate the ensemble. For example, the minimization of the continuous ranked probability
score (CRPS) is commonly used in the calibration of meteorological forecast ensembles
[Gneiting et al., 2005; Junk et al., 2015]. It has also been successfully used in calibrating
the ensemble for photovoltaic power forecasts [Thorey, 2017].

Application to transportation management and air quality simulation

It is shown in this PhD work that the generated ensemble of dynamic traffic assign-
ments can be used to forecast the level of service (LOS) of roads in the network, under
consideration of uncertainties in traffic demand and road network in a full metropolitan
area. Although the uncertainty quantification approach presented in this work is based
on the DTA simulation in a given agglomeration, the method can be used on another
network and with other kinds of traffic models. The sensitivity analysis and uncertainty
quantification methods can bring about new insights and establish new methods for
assessing transportation systems through LOS forecasts, travel time/speed forecasts,
road-traffic related emissions estimations, etc.

In addition, although we cannot directly measure the concentration of the atmo-
spheric pollutants emitted by road traffic in a metropolitan area, the generated ensem-
bles of different pollutants can provide uncertain emission inputs for air quality models.
An ensemble of air quality simulations can then be generated, using the different traffic
emissions and other perturbed input data, in order to quantify the uncertainty in air
quality simulations. It is then possible to study the propagation of input uncertainty
through the whole modeling chain from dynamic traffic assignment to the final estima-
tion of air pollutant concentrations in a metropolitan area down to street resolution.
This ensemble of air quality simulations can then be evaluated and calibrated by using
the concentrations measured by air quality monitoring stations. These are in fact the
main objectives of the ANR research project ESTIMAIR, of which this PhD work is an
important part.
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Appendix A

Hydrodynamic model and
fundamental diagram

Inspired from fluid mechanics, hydrodynamic models are used to model the traffic
flow and congestion phenomenon on a road. The most widely used hydrodynamic model
is the LWR model, developed by Whitham [1955] and Richards [1956]. The LWR model
gives a relation between the three most important variables of an homogeneous flow of
vehicles: the flow rate (in veh h−1), traffic density (in veh km−1) and average speed (in
kmh−1).

x is the spatial dimension of traffic flow while t is the temporal dimension. Let
q(x, t), k(x, t) and v(x, t) denote the traffic flow, density and velocity of a flux of traffic.
Based on the homogeneity assumption and hydrodynamic in fluid mechanics, we have
the conservation law and flow-density-velocity relation:

∂q(x,t)
∂x

+ ∂k(x,t)
∂t

= 0
q(x, t) = k(x, t)v(x, t).

(A.1)

The assumption in LWR model is that the velocity of traffic flow only depends on
the traffic density on the road (v(x, t) = fvk(k(x, t))). The related fundamental diagram
describes thus the relation between traffic flow and density:

q(x, t) = k(x, t)v(x, t) = k(x, t)fvk(k(x, t)) = fkq(k(x, t)). (A.2)

Therefore, the final LWRmodel can be represented by the partial derivation equation

∂k(x, t)
∂t

+ ∂fkq(k(x, t))
∂x

= 0. (A.3)

There have been various formulations to model the fundamental diagram presented in
Equation A.2 since its first formulation from experimental observations by Greenshields
et al. [1935]. Detailed reviews can be found in Theory and Committee [2011]. The
modeling of the fundamental diagram depends on properties of roads (width of the
lanes), composition of traffic flow (passenger cars, trucks, buses) and external conditions
(weather...). It can be calibrated using measured traffic flow data. Here we use an
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example to illustrate a fundamental diagram and the fundamental values we can get
from it.

Traffic density k (veh/km)

Tr
af

fic
 fl

ow
q 

(v
eh

/h
)

qmax

free
flow bound flow congestion

Fundamental
equation: 
   q=k ·v

vc =qmax/kc
v=q/k

kc kmax

Figure A.1: Illustration of fundamental diagram. Density (k) defines the number of
vehicles passing through a given road with fixed length. It is expressed in veh km−1.
Traffic flow q is the number of vehicles passing a point during an unit of time. It is in
veh h−1. With the assumption that vehicles are homogeneous, the speed V is the average
speed of a flux of traffic. kc is the critical density of traffic. When k < kc, vehicles travel
with free-flow speed. When k = kc, the traffic flows reaches its maximum value qmax. It
defines the maximum traffic flow that can pass through a road: the capacity of a road.

The traffic density is derived from the number of vehicles (n) on a given distance
(L): k = n

L
. For security, there is a minimum distance between each vehicle in a traffic

flow and let dc denote this critical distance. If the inter-distance between two vehicles
is bigger than dc, vehicles can travel with free-flow speed. In this case, the traffic flow
increases with the traffic density. However, when the distance between two vehicles is
less than dc, vehicles should decrease their speed. Finally, if the density continues to
increase and reaches the maximum value, the congestion happens and the speed of the
traffic flow is zero. Therefore, the fundamental diagram gives information for maximum
traffic flow (qmax) and this is often the definition of capacity of a road. Before the critical
density kc, the flowing situation on the road is free-flow condition. When k > kc, the
traffic flow is bounded.



Nomenclature

Greek Symbols

αday ratio between (i) the total traffic demand during the whole
day and (ii) the traffic demand during evening peak hour
on the same day

−

αV DF coefficients to be adjusted in VDF −

β coefficients to be adjusted in VDF −

βtemporalk temporally-averaged error of the simulated flow at detector
k

veh h−1

βspatialt spatially-averaged error of the simulated flow at time step t veh h−1

Ψ reduced basis obtained from PCA −

δ0−5 evening peak coefficient multiplied with the traffic demand
between O-D pair between which the distance is from 0 to
5 km

−

δ0 evening peak coefficient multiplied with the traffic demand
between O-D pair in the same zone

−

δ10−15 evening peak coefficient multiplied with the traffic demand
between O-D pair between which the distance is from 10 to
15 km

−

δ5−10 evening peak coefficient multiplied with the traffic demand
between O-D pair between which the distance is from 5 to
10 km

−

δ>15 evening peak coefficient multiplied with the traffic demand
between O-D pair between which the distance is larger than
15 km

−

εdiesel_2.0 proportion of diesel PCs with engine capacity less than 2.0L
among all diesel PCs

−

η transposition coefficient for input O-D matrix −

γgaso_1.4 share of gasoline PCs with engine capacity less than 1.4L
among all gasoline PCs

−

λbig,small coefficient multiplied with default link capacities for links in
big capacity category and small capacity category, respec-
tively

−
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λhigh,low coefficient multiplied with default link speed limits for links
in high speed category and low speed category, respectively

−

φ chosen RBF function −

Ψj the jth component of the reduced basis −

ρ(h) temporal variation ratio between (i) the total cumulated
traffic from h0 till h and (ii) the total cumulated traffic
during the whole simulation period of one day

−

σHDV ratio between the number of HDVs and PCs −

τdiesel,1.4−2.0l proportion of diesel passenger cars with engine capacity
from 1.4L to 2.0L

−

τdiesel,<1.4l proportion of diesel passenger cars with engine capacity less
than 1.4L

−

τdiesel,>2.0l proportion of diesel passenger cars with engine capacity big-
ger than 2.0L

−

τeuro1 proportion of PCs with emission standard EURO 1 −

τeuro2 proportion of PCs with emission standard EURO 2 −

τeuro3 proportion of PCs with emission standard EURO 3 −

τeuro4 proportion of PCs with emission standard EURO 4 −

τeuro5 proportion of PCs with emission standard EURO 5 −

τgaso,1.4−2.0l proportion of gasoline passenger cars with engine capacity
from 1.4L to 2.0L

−

τgaso,<1.4l proportion of gasoline passenger cars with engine capacity
less than 1.4L

−

τgaso,>2.0l proportion of gasoline passenger cars with engine capacity
bigger than 2.0L

−

τpre-euro proportion of PCs with emission standard pre-EURO −

θdeisel proportion of diesel PCs −

θgaso proportion of gasoline PCs −

ϕdiesel_euro4 proportion of diesel PCs with emission standard of Euro 4
and higher

−

ξday total demand coefficient for the simulation day divided by
the total demand on the reference day

−
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ξd total demand coefficient for adjusting the total traffic de-
mand for the day d with respect to the reference day

−

ζgaso_euro4 proportion of gasoline PCs with emission standard of Euro
4 and higher

−

Roman Symbols

(o, d) an O-D pair −

(qpeako,d ) average traffic demand during the evening peak from o to d veh h−1

[ai, bi] uniform distribution for sampling pi in the Monte Carlo
simulation

−

H̄ interval outside Hatomic −

ōh spatially-averaged traffic flow over all detectors during
[h, h+ ∆h]

veh h−1

Cbig vector of big link capacities −

Csmall vector of small link capacities −

K vector of link capacity −

p input vector ofM −

pref input vector ofM on the reference day −

Qpeak O-D matrix of the agglomeration of Clermont-Ferrand dur-
ing the evening peak hour 17:00 – 18:00

−

R(h) vector of minimum cost routes −

T (h) vector of link travel times −

T0 vector of free-flow travel time −

U (h) vector of generalized travel cost −

V (hsimu) average speed during [hsimu, hsimu + ∆h] computed by DTA
model

−

V high
0 vector of high speed limits −

V low
0 the vector of low speed limits (V0 ≤ 50 kmh−1) −

V0 vector of speed limit −

Xr cumulated traffic flow on route r −

Y vector of link cumulated flow −
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y output vector of the original model −

∆h time step in DTA simulation h

R set of all real numbers −

RD real coordinate space of D dimensions, the space of outputs
in this dissertation

−

RK real coordinate space of K dimensions, the space of inputs
in this dissertation

−

R+ set of all positive real numbers −

M̂(p) metamodel ofM(p) −

A set of links −

Abig set of links with Ca > 900 veh h−1 −

Ahigh set of links with V0 > 50 kmh−1 −

Alow set of links with V0 ≤ 50 kmh−1 −

Asmall set of links with Ca ≤ 900 veh h−1 −

C(R+) set of all continuous maps from R+ to R −

G(N ,A) oriented graph to model the road network −

H bounded time interval for carrying out DTA simulation −

Hatomic simulation period for the LCF model −

Id(h) set of indices of links on the minimum cost route to the
destination d for users departing from origin at h

−

Klast set of locations of detector where the simulation ensemble
underestimates the traffic flow

−

L1(H,R+) set of positive measurable functions on H −

M(p) original model −

M(R) the set of measures on the set R with M(] − ∞, h]) =
h∫
−∞

m(h̃)dh̃

−

N set of nodes −

Q(h) dynamic O-D matrix −

S user strategy set during H −
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T last set of time intervals when the simulation ensemble underes-
timates the traffic flow

−

Wpeak spatially-averaged traffic flow in Clermont-Ferrand during
17 : 00− 18 : 00 on day d

veh h−1

Wd(h) spatially-averaged traffic flow in Clermont-Ferrand during
[h, h+ ∆h] on day d

veh h−1

Wref (h) spatially-averaged traffic flow in Clermont-Ferrand during
[h, h+ ∆h] on the reference day

veh h−1

Wpeak
ref spatially-averaged traffic flow in Clermont-Ferrand during

17 : 00− 18 : 00 on the reference day
veh h−1

Wtype(h) spatially-averaged traffic flow in Clermont-Ferrand during
[h, h+ ∆h] on the typical weekday type

veh h−1

ZD set of nodes for Destination zone −

ZO set of nodes for Origin zone −

ŷ output vector of the metamodel ofM(p) −

f̂(p) emulator of f −

C (in VDF) link capacity veh h−1

Ci lane capacity at observation point i veh h−1 lane−1

Ca,general generalized cost on link a h

D total number of links, D = card(A) −

d(·, ·) Euclidean distance −

Ehot,i,j,a hot emission on the road a for pollutant i, for vehicle of
technology j

g

ehot,i,j,a HEF on the road a for pollutant i, for vehicle of technology
j

g km−1

ehot hot emission factor g km−1

ek,t error of the simulated flow at detector k and at time t with
respect to observed traffic flow

veh h−1

f(p) original function f −

h time when users enter the road network h

h0 beginning time of the simulation h
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Ha(Ya)(h) link exit time function −

Ha(Ya)−1(H) all the instants at which link a can be entered in order to
leave it at some instant in H

−

hsimu the instant at which we want to compute traffic flow, travel
speed and time

h

Iatomic set of discrete time instants during 3.25 h for the LCF model −

ICI90 number of observations whose value is in CI90 predicted by
the ensemble

−

IflowCI90 5th − 95th percentile range of traffic flows over the whole
network of Clermont-Ferrand

−

INOxCI90 5th−95th percentile range of NOx emissions from passenger
cars over the whole network of Clermont-Ferrand

−

Iday set of discrete time instants on the day −

IIQR number of observations whose value is in IQR predicted by
the ensemble

−

IflowIQR interquartile range of traffic flows over the whole network of
Clermont-Ferrand

−

INOxIQR interquartile range of NOx emissions from passenger cars
over the whole network of Clermont-Ferrand

−

k (in LWR model) traffic density: number of vehicles per unit
of distance

veh km−1

kc (in LWR model) critical traffic density separating free-flow
and congested condition of the fundamental diagram

veh km−1

Ka(h) capacity on link a veh h−1

L(h) number of users queuing at h in the bottleneck veh

La length of link a km

M sample size for conducting metamodeling −

Mob total number of available observation points −

Ndet total number of loop detectors −

Nj,a number of vehicles on the road a veh

Nlink total number of links in the modeled network −

Ntype total number of days of the same type from September 2013
to August 2014

−
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Ototal
(17,18) total observed traffic of all detectors during 17:00 - 18:00 veh

Ototal
(h1,h) total observed traffic of all detectors during [h1, h] veh

Ok,(h0,h) number of cumulated vehicles passing through detector k
from h0 to h

veh

Ok,(h1,h) number of cumulated vehicles passing through detector k
from h1 to h

veh

ok,h average traffic flow measured at detector k during [h, h+∆h] veh h−1

ok,t traffic flow observation at detector k and at time t veh h−1

P (h) temporal variation coefficient −

P ∗(hi) temporal variation coefficient for the deterministic simula-
tion at time hi

−

Pa toll price of link a e

pi the ith component of input p −

p∗i value of input pi in the deterministic simulation −

Q1 value of the 1st quartile of a sequence of numbers −

Q3 value of the 3rd quartile of a sequence of numbers −

Q(o,d)(h) cumulated traffic demand from o to d from h0 until h veh

q(o,d)(h) traffic demand from o to d at instant h veh h−1

q17−18
(o,d) hourly average traffic flow during 17:00 - 18:00 for each O-D

pair
veh h−1

qH(o,d)(h) density of traffic demand from o to d during H veh h−1

qmax (in LWR model) the maximum traffic flow that can pass
through a road: the capacity of a road

veh h−1

R(o,d) route from the original node o to the destination node d −

R(o,d)(h) minimum cost route from o to d when a user departing from
o at the instant h

−

Si first-order Sobol’ sensitivity index with respect to the ith

component of input p
−

sj,i computed traffic flow on link i from the jth simulation from
the Monte Carlo approach

veh h−1
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sj,k,t traffic flow computed at detector k and at time t by the jth

simulation from the Monte Carlo approach
veh h−1

ST i total-effect Sobol’ sensitivity index with respect to the ith

component of input p
−

T total number of time steps during the simulation period −

t link travel time s

t0 free-flow link travel time s

T0a free-flow travel time on link a h

Ta(h) computed travel time on link a h

ta(Ya)(h) link travel time functions for the network G(N ,A) −

Ua(h) generalized travel cost on link a h

V (in VDF) traffic volume on a link veh h−1

v vehicle average speed kmh−1

V/C volume-to-capacity ratio on a link or on a road −

vt value of time e/h

V0a speed limit on link a kmh−1

va,h average speed at link a during [h, h+ ∆h] kmh−1

X distribution of users strategy in DUE problem, X ∈M(S) veh

xr(h) density of Xr veh h−1

ya(h) traffic flow at h, y(h) ∈ L1(H,R+) veh h−1

ya,h computed traffic flow during [h, h+ ∆h] veh h−1

Ya cumulated flow on link a veh

z × z dimension of the O-D matrix −

z number of zones in the simulation area −

Xr cumulated traffic flow on route r veh

Acronyms

BC black carbon
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CI confidence interval

CI90 90% confidence interval: the interval between the 5th and 95th percentiles
of a sequence of value predicted by the ensemble of simulations

DNL dynamic network loading

DNLP dynamic network loading problem

DOP dynamic optimization problem

DTA dynamic traffic assignment

DUE dynamic user-equilibrium

EEA European Environment Agency

EF emission factor

FIFO first-in-first-out

GPS global positioning system

GSA global sensitivity analysis

HDV heavy duty vehicle

HEF hot emission factor

IQR interquartile range

LADTA Lumped Analytical DTA

LCF atomic simulation of LADTA applied to Clermont-Ferrand

LHS Latin Hypercube Sampling

LOS level of service of a road network

LSA local sensitivity analysis

LTK LADTA Tool Kit

Meta-LCF metamodel of the original LCF model

MNBE mean normalized bias error

NRMSE normalized root mean square error

O-D Origin-Destination

OAT one at a time
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PC passenger car

PCA principal component analysis

pdf probability density function

PM particulate matter

RBF radial basis function

RC route choice

RMSE root mean square error

RPS ranked probability score

RSD relative standard deviation

SA sensitivity analysis

TA traffic assignment

TF traffic flowing

UE user equilibrium

VBSA variance-based sensitivity analysis

VDF volume-delay function

VI variational inequality

VL volume loading
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