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Introduction générale

Le présent travail est consacré à la solution des problèmes de valorisation et de couverture des options liées au marché de l'électricité. Il est également dédié aux méthodes numériques pour une classe de problèmes de contrôle stochastique du type McKean-Vlasov liés à des questions financières, comme par exemple, la sélection de portefeuille sous incertitude de tendance du sousjancent. Dans une dernière partie, n'ayant aucun accès à un modèle multifactoriel complètement calibré pour les prix à terme, nous proposons un algorithme Monte Carlo stratifié non-intrusif pour résoudre le problème de valorisation des options Bermudéennes et Swing.

Dans la Partie I, nous étudions des problèmes de couverture et de valorisation des options européennes en tenant compte d'une mesure de risque asymétrique. L'approche principale est l'utilisation d'un cadre asymptotique afin d'obtenir des politiques de valorisation/couverture optimales à travers des équations aux dérivées partielles nonlinéaires.

Dans le Chapitre 1, nous considérons l'erreur résiduelle produite par un trading en temps discret. Nous supposons qu'un trader veut trouver des stratégies pour le portefeuille de couverture de sorte que l'erreur de discrétisation soit faible pénalisant les scénarios de pertes plus ceux de gains : nous cherchons à obtenir une politique de valorisation/couverture avec un grand nombre de dates de rebalancement du portefeuille pour laquelle l'erreur de couverture induite dans le cadre d'une mesure de risque asymétrique est minimisée. Plus précisément, nous définissons une stratégie optimale en terme de la solution d'un problème d'optimisation lié à l'erreur asymptotique. Dans ce cas, la fonction valeur optimale (resp., couverture) est la solution (resp., le gradient de la solution) d'une EDP totalement non linéaire, dont le terme nonlinéaire dépend de la dérivée seconde de la solution. En fait, ce terme de nonlinéarité caractérise notre stratégie asymptotiquement optimale. En dimension 1, une formulation quasi-explicite pour ce terme est obtenue.

Dans le Chapitre 2, nous étudions le problème d'évaluation d'une centrale électrique en tant qu'une application de la méthode de couverture précédente avec de faibles coûts proportionnels par pas de temps. Considérant que certains coûts (d'entretien) doivent être payés indépendamment du fait qu'une centrale électrique produise ou non de l'électricité, nous sommes intéressés à valoriser un revenu associé à la vente de sa production dans le futur. En fait, le propriétaire de l'usine est prêt à réduire le risque d'un revenu incertain en effectuant des opérations de couverture sur le marché à terme. Par conséquent, la stratégie de couverture optimale est obtenue en minimisant le risque asymptotique associé à une erreur de discrétisation, y compris les coûts proportionnels par pas de temps. Nous avons étudié l'impact des coûts (de maintenance) dans la stratégie de couverture, lorsque ces coûts dépendent du prix de l'électricité.

Dans la Partie II, nous avons étudié plusieurs méthodes numériques pour résoudre une classe de problèmes de contrôle associés à des interactions à champ moyen avec informations partielles. Nous avons également étudié une méthode de ré-échantillonnage stratifiée non-intrusive pour résoudre des équations de programmation dynamique discrètes en présence de peu de données INTRODUCTION GÉNÉRALE historiques.

Dans le Chapitre 3, nous étudions une classe de contrôle du type McKean-Vlasov (MKV) en présence d'un bruit commun, appelé MKV polynomial conditionnel. Cette classe est une généralisation de la classe de contrôle MKV stochastique linéaire quadratique. Ces problèmes découlent de la formulation asymptotique d'un équilibre coopératif dans une large population de joueurs avec une interaction à champ moyen ou d'un problème de contrôle avec fonction de coût dépendant d'une fonctionnelle nonlinéaire de la distribution du processus d'état. Après avoir réduit cette classe polynomiale par un plongement de Markov à des problèmes de contrôle en dimension finie, nous proposons une discussion et une comparaison de trois méthodes probabilistes différentes pour la résolution numérique du problème réduit : quantification, régression par contrôle aléatoire et régression différée. Nous avons résolu numériquement plusieurs problèmes liés à ce contrôle MKV polynomial : la sélection et la liquidation du portefeuille sous incertitude de la tendance ainsi qu'un modèle de risque interbancaire systémique avec observation partielle.

Dans le Chapitre 4, nous nous intéressons à la résolution d'équations de programmation dynamique (DPE) associées à une valorisation financière sur le marché de l'énergie. En particulier, nous nous concentrons sur le pricing des options Bermudéennes et Swing, où les actifs sousjacents sont des contrats à terme. Nous recherchons une méthode stratifiée non-intrusive pour résoudre ces équations en utilisant uniquement des données historiques, sans un modèle sousjacent calibré. Sur le marché de l'énergie, les contrats à terme sont souvent gouvernés par des facteurs de Markov cachés (modélisation multifactorielle). Par conséquent, le problème de valorisation de ces options produit des DPE dépendants de ces facteurs non observables. Puisque nous avons accès aux prix à terme mais pas aux facteurs cachés, nous proposons une méthode de rééchantillonnage uniquement sur les contrats observables.

I. Mesure de risque asymétrique pour la valorisation et couverture d'options 1. Valorisation et couverture d'options à l'aide d'une mesure de risque asymétrique : Optimalité asymptotique

En finance, la valorisation et la couverture des flux financiers futurs sont des préoccupations majeures. D'un point de vue théorique, ces problèmes sont bien établis (voir par exemple [START_REF] Karatzas | Methods of mathematical finance[END_REF]). En pratique, les traders couvrent leurs contrats en échangeant uniquement à des dates discrètes, disons t 0 " 0 ă t 1 ă . . . ă t N " T , ce qui génère un risque résiduel. Ici, ils ont l'intention de couvrir le flux H T à l'instant T en utilisant d produits de couverture dont les prix sont indiqués par X " pX p1q , . . . , X pdq q. Pour cela, nous définissons le risque local E n associé aux dates de trading t n et t n`1 donnés par E n " V t n`1 ´Vtn ´ϑtn ¨Xt n`1 ´Xtn , où V désigne le processus d'évaluation, ϑ " pϑ p1q , . . . , ϑ pdq q indique le processus de couverture avec ϑ piq étant le nombre d'actions investi dans le i-ème instrument de couverture.

Nous cherchons à trouver les règles d'évaluation/couverture pV, ϑq minimisant ce risque résiduel en utilisant une fonction de risque ℓ. En comparaison des résultats existants (voir par exemple, [START_REF] Schweizer | A Guided Tour through Quadratic Hedging Approaches[END_REF], pour la minimisation du risque local quadratique), nous choisissons une fonction ℓ pénalisant les profits (E n ă 0) et les pertes (E n ą 0) de manière asymétrique. Dans ce contexte, nous étudions le risque local intégré R N sous la forme

R N pV, ϑq " N ´1 ÿ n"0
ErℓpE n qs, où la fonction de risque ℓ est choisie comme ℓ γ pyq " p1 `γ sgnpyqq 2 y 2 {2, γ P p0, 1q.

Le paramètre γ, dans la fonction de risque ℓ γ , représente l'aversion au risque des investisseurs pénalisant davantage les pertes que les profits (voir la Figure 1.1).

Approche asymptotique standard. Dans ce contexte, nous visons à étudier l'asymptotique du minimum min pV,ϑqPA

R N pV, ϑq, (1) 
avec un grand nombre N de dates de couverture dans le cas équidistant t n " n∆t avec pas de temps ∆t " T {N . Le minimum (1) est calculé sur l'ensemble A de toutes les paires de processus pV, ϑq intégrable, adaptées à la filtration pF t q tě0 , sous la contrainte de réplication V T " H T .

Il existe dans la littérature quelques résultats dans cette direction :

• Dans [START_REF] Pham | Dynamic L p -hedging in discrete time under cone constraints[END_REF], l'auteur étudie une fonction L p de risque des pertes et avec un nombre fixe des dates de couveture ;

• Dans [START_REF] Abergel | Nonquadratic local risk-minimization for hedging contingent claims in incomplete markets[END_REF], les auteurs analysent des stratégies pseudo-optimales et obtiennent des résultats asymptotiques dans le cas d'une fonction de risque de classe C 3 .

Nous remarquons que la discontinuité de la dérivée seconde ℓ 2 γ rend l'analyse difficile et change complètement la nature des résultats ultérieurs. En bref, les références précédentes prennent en compte des contextes et difficultés différents des nôtres.

Approche asymptotique avec évaluation par EDP. Au lieu de résoudre le problème (1) dans le régime asymptotique N Ñ `8, nous abordons un problème modifié en utilisant une évaluation par EDP. Nous supposons que les instruments de couverture X sont modélisés par dX t " µpt, X t q `σpt, X t q dW t , où W est un mouvement brownien et les flux financiers futurs sont de la forme H T " gpX T q. Ensuite, nous supposons que le flux aléatoire est évalué de manière exogène par un processus d'évaluation V t " vpt, X t q, pour une fonction v donnée. La fonction v joue le rôle d'un prix de référence. Compte tenu de cette valorisation exogène, le trader déterminera comment se couvrir sur chaque intervalle rt n , t n`1 s en choisissant une règle d'évaluation/couverture adaptée p Ṽtn , θtn q et en considérant le risque local conditionnel R n,γ R n,γ " E " ℓ γ pV t n`1 ´Ṽ tn ´θ tn ¨Xt n`1 ´Xtn q ˇˇF tn ‰ .

Inspiré par la relation entre les valorisations dynamiques des risques et les équations différentielles stochastiques rétrogrades nonlinéaires (voir par exemple [START_REF] Crepey | Financial modeling: a Backward Stochastic Differential Equations perspective[END_REF]), le trader paramétrise sa règle de valorisation/couverture par une fonction f , éventuellement non linéaire, telle que

Ṽtn " u t n`1 pt n , X tn q, θtn " D x u t n`1 pt n , X tn q, où u t n`1 est la solution définie sur l'intervalle rt n , t n`1 s de la f -EDP suivante :

• La fonction u t n`1 : rt n , t n`1 s ˆRd Ñ R satisfait

u t n`1 t pt, xq `1 2 Tr " σσ ⊺ D 2 x u t n`1
‰ pt, xq `f pt, x, u τ pt, xq, D x u t n`1 pt, xq, D 2 x u t n`1 pt, xqq " 0, (2) pour tout pt, xq P rt n , t n`1 rˆR d , avec condition terminale u t n`1 pt n`1 , xq " vpt n`1 , xq à l'instant t n`1 ;

• Pour des fonctions continuous σ : r0, T s ˆRd Ñ R dˆd , f : r0, T s ˆRd ˆR ˆRd ˆRdˆd Ñ R ; et un prix de référence vpt n`1 , ¨q à l'instant t n`1 ;

Dans ce contexte, il est maintenant naturel d'analyser le comportement asymptotique du risque local conditionnel intégré après une renormalisation appropriée R N,γ pv, f q " 1 ∆t

N ´1 ÿ n"0
ErR n,γ s.

Notre contribution principale au Chapitre 1 est le résultat suivant (voir Théorème 1.6, page 34).

Résultat Principal 1 (Theorème 1.6). Soit B : r0, 1s ˆΩ Ñ R d un autre mouvement brownien standard indépendant de W . Sous les hypothèses 1.1-1.5, la limite R γ pv, f q :" lim

N Ñ8
R N,γ pv, f q existe et est donnée par

R γ pv, f q " E « ż T 0 ż 1 0 ℓ 2 γ ˜ż θ 0 B ⊺ θ 1 G t dB θ 1 ´Ft θ ¸˜F 2 t θ´F t ż θ 0 B ⊺ θ 1 G t dB θ 1 `}G t B θ } 2 {2 ¸dθ dt ff , où
F t " f `t, X t , vpt, X t q, D x vpt, X t q, D 2 x vpt, X t q ˘P R, G t " `σ⊺ pD 2

x vqσ ˘pt, X t q P R dˆd .

Par conséquent, nous discutons de l'existence d'un terme de nonlinéarité optimal pour la f ˚-EDP telle que l'évaluation par f ˚-EDP minimise le risque asymptotique dans le sens : R γ pv, f ˚q ď R γ pv, f q, pour toute nonlinéarité admissible f . De plus, ce terme de nonlinéarité optimal f ˚est quasi-explicit en dimension 1 (voir (1.22), page 39) et dépend du paramètre de risque γ, de la dérivée seconde valorisation de référence et de la volatilité du processus de prix. Par conséquent, un choix naturel et consistant pour la règle de valorisation/couverture peut être la solution à la f ˚-EDP (2) avec le payoff g : R d Ñ R étant la condition terminale à l'horizon T .

Ce chapitre est tiré d'un article rédigé en collaboration avec Emmanuel Gobet et Xavier Warin [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF].

Mesure de risque asymmétrique asympotique : Application à valorisation des actifs physiques

Dans le Chapitre 2, nous fournissons des politiques d'évaluation/couverture pour les revenus futurs liés à la production de centrales électriques à l'aide d'une évaluation asymétrique du risque . Depuis la déréglementation des marchés de l'énergie, plusieurs marchés spot et futurs ont été créés pour échanger de l'électricité. Après cela, les propriétaires de centrales électriques commencent à faire face au problème de l'évaluation la production de leur centrales, qui dépend du prix spot de l'électricité dans le futur.

En pratique, les propriétaires des centrales effectuent une couverture discrète à des dates, t 0 " 0 ă t 1 ă . . . ă t N " T en utilisant un actif de couverture X afin de réduire le risque associé à un aléa. revenu H T à une date future T . Cette couverture discrète génère un risque résiduel :

E " H T ´N´1 ÿ n"0 ϑ tn `Xt n`1 ´Xtn ˘,

où

• ϑ indique le nombre d'actions investies dans le actif de couverture ;

• X est un contrat à terme F p¨, T q avec livrasion T .

Ensuite, ils cherchent à trouver la règle d'évaluation/couverture en tenant compte du bilan local E n pénalisant E n ă 0) via une fonction de risque asymétrique ℓ :

E n " V t n`1 ´Vtn ´ϑtn `Xt n`1 ´Xtn ˘, où V représente le processus d'évaluation sous la contrainte de réplication V T " H T . Notez que les propriétaires des centrales :

• veulent obtenir un risque résiduel E avec un petit écart-type ;

• préfèrent les scénarios profitables où E n ą 0.

En réalité, la centrale génère des coûts fixes, qu'elle produise de l'électricité ou non. Ces coûts sont appelés ici coûts fixes :

• ils comprennent les coûts d'investissement et d'amortissement ;

• ils excluent les coûts de carburants (charbon, gaz, uranium).

Les producteurs d'électricité sont contraints de trouver aujourd'hui un prix équivalent au revenu futur généré par leur centrale afin de l'enregistrer dans leur bilan comptable.

En fait, ils ne font face à aucun risque financier en raison de ce revenu. D'autre part, parce qu'ils ne peuvent pas augmenter leur revenu en influençant le prix spot de l'électricité S, ils préfèrent obtenir une valeur certaine en vendant leur production future au lieu de recevoir le montant aléatoire positif H T " gpS T q.

Sur le plan économique, lorsque le prix spot de l'électricité est élevé, nous exigeons que la centrale fasse face à une demande plus élevée. En effet, un prix élevé est produit par une demande croissante. Par conséquent, nous augmentons la production en démarrant plus souvent la centrale électrique. C'est la raison pour laquelle nous supposons une dépendance des coûts c sur le prix au comptant de l'électricité S.

Valorisation asymmétrique de risque. Considérant les temps de couverture équidistants t n " n∆t avec le pas de temps ∆t " T {N , nous prenons en compte les coûts fixes proportionnels au pas de temps ∆t en soustrayant cpS tn q∆t du bilan locale E n . Dans un cadre analogue au Chapitre 1, nous étudions l'asymptotique du risque intégré R N R N " 1 ∆t N ´1 ÿ n"0 E " ℓ ´Vt n`1 ´Vtn ´ϑtn `Xt n`1 ´Xtn ˘´cpS tn q∆t ¯,
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Ici, nous définissons ℓ γ pyq " p1 `γ sgnpyqq 2 y 2 {2, γ P p´1, 0q, où le paramètre γ représente le désir du producteur de réduire l'aléa des revenus futurs. Contrairement au paramètre de risque du Chapitre 1, ce paramètre γ prend des valeurs dans p´1, 0q (voir Figure 2.1).

En vue d'étudier le risque intégré R N,γ dans le régime asymptotique N Ñ `8 avec une fonction de risque asymétrique ℓ γ , nous suivons une approche d'évaluation de EDP décrite au Chapitre 1. Nous supposons l'existence d'un processus d'évaluation exogène V t " vpt, X t q défini par une fonction v. Par exemple, v est un prix de référence obtenu par le producteur d'électricité lorsque aucun coût n'est pris en compte. Maintenant, le propriétaire de la centrale détermine sa position de couverture sur chaque intervalle rt n , t n`1 s en choisissant une règle d'évaluation/couverture adaptée p r V tn , r ϑ tn q. Pour cela, nous considérons le risque conditionnel R n,γ en utilisant la fonction de risque ℓ γ R n,γ " E " ℓ γ ´Vt n`1 ´r V tn ´r ϑ tn `Xt n`1 ´Xtn ˘´cpS tn q∆t

¯ˇˇˇF tn  .
Cette fois, la règle d'évaluation/couverture p r V tn , r ϑ tn q du producteur d'électricité est donnée par r V tn " u t n`1 pt n , X tn q, r ϑ tn " u t n`1

x pt n , X tn q, et est paramétrée par une fonction f , éventuellement non linéaire, à travers la solution u t n`1 : rt n , t n`1 s ˆR de la f -EDP avec condition terminale u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q à l'instant t n`1 (de façon analogue à la version unidimensionnelle de (1.5) mais avec terme de diffusion égal à σpt, T qx, avec une fonction de volatilité σpt, T q " σ0 e ´a0 pT ´tq ).

Ainsi comme dans le Chapitre 1, nous analysons le régime asymptotique du risque conditionnel intégré R N,γ pv, f q " 1 ∆t

N ´1 ÿ n"0 E " R n,γ ‰ ,
lorsque le nombre N des dates de couverture tends ver l'infini.

Notre contribution principale au Chapitre 2 est le résultat suivant (voir Théorème 2.9, page 71). C'est une version du Théorème 1.6 en présence de coûts fixes proportionnels au pas de temps.

Résultat Principal 2 (Théorèm 2.9). Soit B : r0, 1s ˆΩ Ñ R un autre mouvement Brownian standard indépendant de W . Sous les hypothèses 2.3-2.8, la limite de R N,γ pv, f q quand N Ñ 8 existe et est donnée par

R γ pv, f q " E « ż T 0 ż 1 0 ℓ 2 γ ˜J1 pv, pt, X t qq B 2 θ ´θ 2 ´J2 pv, pt, X t qqθ
|J 2 pv, pt, X t qq| 2 θ ´J2 pv, pt, X t qqJ 1 pv, pt, X t qq

B 2 θ ´θ 2 `|J 1 pv, pt, X t qq| 2 B 2 θ 2 ¸dθ dt ff , où
J 2 pv, pt, X t qq " f `t, X t , vpt, X t q, v x pt, X t q, v xx pt, X t q ˘`cpX t q P R, J 1 pv, pt, X t qq " σ2 pt, T qX t 2 v xx pt, X t q P R.

Comme dans le Chapitre 1, l'idée est d'obtenir un terme de nonlinéarité optimal f ˚minimisant le risque asymptotique : R γ pv, f ˚q ď R γ pv, f q, pour toute nonlinéarité admissible f . Une fois de plus, ce terme de nonlinéarité optimal f ˚est explicite et dépend de γ, de la dérivée seconde de v et de la fonction de coût cpxq. Enfin, le producteur d'électricité choisira la règle suivante V tn " v ˚pt n , X tn q, ϑ tn " v x pt n , X tn q, où v ˚est la solution v ˚: r0, T s ˆRd de la f ˚-EDP avec la condition terminale v ˚pT , ¨q " gp¨q à l'instant T .

Pour les résultats numériques, nous prenons un coût fixe dépendant du niveau du prix spot de l'électricité comme une fonction convexe (ou concave) cpxq. Nous calculons la solution numérique de la f ˚-EDP pour une fonction payoff du type call et differents modèles pour cpxq.

Ce chapitre est tiré d'un article en cours d'écriture en collaboration avec Clémence Alasseur, Emmanuel Gobet et Xavier Warin.

II. Méthodes numériques en contrôle stochastique

Problème de contrôle du type McKean-Vlasov avec bruit commun : Quelques méthodes probabilistes numériques

Dans le Chapitre 3, nous nous intéressons au problème de contrôle du type McKean-Vlasov (MKV) sous observation partielle et bruit commun. La formulation est décrite de la manière suivante. Sur un espace de probabilité pΩ, F, Pq équipé de deux mouvements browniens indépendants B et W 0 , nous considérons la dynamique stochastique contrôlée du type McKean-Vlasov dans R n : dX s " b ´Xs , P W 0 Xs , α s ¯ds `σ´X s , P W 0 Xs , α s ¯dB s `σ0 ´Xs , P W 0 Xs , α s ¯dW 0 s , où • P W 0 Xs indique la distribution de X s conditionnellement à W 0 ; • F 0 " pF 0 t q tě0 est la filtration naturelle générée par W 0 ;

• le contrôle α est F 0 -progressive à valeurs dans un espace polonais A.

La fonction de coût associée à l'équation stochastique du type McKean-Vlasov (9) pour un contrôle α est

Jpαq " E « ż T 0 f pX t , P W 0 X t
, α t qdt `gpX T , P W 0 X T q ff , et l'objectif est de minimiser sur un ensemble admissible A de contrôles la fonctionnel de coût :

V 0 " inf αPA Jpαq.
Notre but est d'étudier certaines classes de problèmes de contrôle MKV, qui peuvent être réduits à des problèmes de dimension finie en vue d'une résolution numérique.

Une classe de modèles polynomiaux et un plongement markovien. Premièrement, nous considérons une classe de modèles où les coefficients de l'équation MKV sont linéaires par rapport INTRODUCTION GÉNÉRALE la variable d'état X (voir (3.9)), alors que les fonctions de coût courant et de coût terminal sont polynomiales dans la variable d'état dans le sens suivant f px, µ, aq " f 0 pµ, aq `p ÿ k"1 f k pµ, aqx k , gpx, µq " g 0 pµq `p ÿ k"1 g k pµqx k , pour un entier p ě 1. Deuxièmement, nous supposons que tous les coefficients dépendent de µ à travers ses premiers moments p (voir (3.10)).

Étant donné le processus contrôlé X " X α solution de la dynamique stochastique du type McKean-Vlasov (9), nous notons 

Y k t "
pour certaines fonctions B k , Σ k (voir page 95) dépendant des moments conditionnels pY 1 , Y 2 , . . . , Y p q, alors que la fonctionnelle de coût est écrite sous une forme réduite

Jpαq " E " ż T 0 f pY 1 t , Y 2 t , . . . , Y p t , α t qdt `ḡpY 1 T , Y 2 T , . . . , Y p T q ı . (4) 
Le problème de contrôle du type McKean-Vlasov est réduit dans ce cadre polynomial à des problèmes de contrôle fini-dimensionnels avec des variables contrôlées pY 1 , Y 2 , . . . , Y p q qui sont F 0 -adaptées.

Méthodes numériques probabilistes.

En vue de résoudre le problème réduit (3)-(4), nous choisissons la formulation suivante. Soit Z " pY 1 , Y 2 , . . . , Y p q un processus contrôlé par un contrôle adapté α prenant des valeurs dans A, solution de l'équation dZ α t " bpZ α t , α t qdt `σ0 pZ α t , α t qdW 0 t et Jpt, z, αq " E " ż T t f pZ α s , α s qds `gpZ α T q ˇˇˇZ α t " z  , une version dynamique de la fonctionnelle de coût Jpαq.

En ayant une discrétisation en temps 0 " t 0 , t 1 , . . . , t N " T , nous écrivons l'approximation d'Euler de Z α t : Z α t n`1 " Z α tn `bpZ α tn , α tn q∆t `σ0 pZ α tn , α tn q∆W 0 tn et l'équivalent discret de Jpt, z, αq :

Jpt n , z, αq " E " N ÿ i"n f pZ α t i , α t i q∆t `gpZ α t N q ˇˇˇZ α tn " z  .

Maintenant, la fonction valeur V pt n , zq " sup pαt i q N i"n PA Jpt n , z, αq est représentée à travers l'équation de programmation dynamique suivante, étant donnée la condition terminale gpzq connue, V pT N , zq " gpzq, V pt n , zq " sup α ! f pZ α tn , αq∆t `Eα " V pt n`1 , Z t n`1 q ˇˇZ tn " z ‰ ) .

(5) L'équation de programmation dynamique (5) conduit à des méthodes numériques qui approchent itérativement la fonction valeur de manière rétrograde, à partir de la condition terminale. La principale difficulté dans la mise en oeuvre d'une telle approche réside dans l'estimation des espérances conditionnelles E α " V pt n`1 , Z t n`1 αq ˇˇZ tn " z ‰ .

Notre première contribution dans le Chapitre 3 est la description (voir Section 3.3) et l'application (voir Section 3.4) suivantes.

Résultat Principal 3. Nous décrivons trois méthodes numériques résolvant des problèmes du type MKV conditionnels (dans leur version réduite) :

• les techniques de régression de Monte Carlo (par randomisation de contrôle et par régression différée) sont une famille d'algorithmes dont l'efficacité repose sur le choix des fonctions de base utilisées pour projeter les futures fonctions valeur (voir Algorithmes 1 et 2) ;

• les techniques de quantification approchent le processus contrôlé Z α tn avec une chaîne de Markov particulière à états finis pour laquelle les espérances peuvent être rapidement estimées (voir Algorithme 3).

Nous appliquons chacune de ces méthodes à trois applications issues de problèmes de contrôle du type polynomial MKV sous hypothèse d'observation partielle et de bruit commun :

• l'Optimisation de portefeuillle sous l'incertitude de tendance (voir Sous-section 3.4.1), où la tendance de l'actif sous-jacent est inconnue et inobservable. D'abord, nous considérons le problème d'un trader prêt à liquider un grand nombre de parts d'actif dans un temps fini T en faisant face à un coût d'exécution et à un impact sur les prix du marché. Ensuite, nous regardons le problème de sélection d'une stratégie de portefeuille maximisant l'utilité de la richesse finale.

• le Risque intersystémique avec observation partielle (voir Sous-section 3.4.2). Nous supposons que les réserves monétaires des N banques, prêtant et empruntant les unes aux autres, satisfont un système de diffusion avec une interaction à champ moyen et un bruit commun. Ensuite, un planificateur social (la banque centrale, par exemple) en observant seulement le bruit commun agit sur l'intensité des interactions interbancaires afin de minimiser l'écart entre la réserve de chaque banque et la moyenne globale.

Résultats numériques.

Notre deuxième contribution au Chapitre 3 est les expériences numériques suivantes (voir Section 3.5). Nous avons présenté les résultats de trois exemples différents d'applications résumées ci-dessous 

Un schéma de ré-échantillonnage stratifié non-intrusif pour les modèles multifacteurs : Application en marché de l'énergie

Les équations stochastiques de programmation dynamique sont liées à la résolution de problèmes non-linéaires (contrôles stochastiques ou EDP non-linéaires) qui se posent dans presque tous les domaines de la science, de la gestion des réservoirs d'eau à la finance.

Dans le Chapitre 4, nous visons à résoudre des équations de programmation dynamique (DPE) liées à des évaluations financières sur le marché de l'énergie. Nous nous intéressons ici, par exemple, à la valorisation des options Bermudéennes ou Swing, où les actifs sous-jacents sont des contrats à terme. Ensuite, nous prévoyons de développer un algorithme nonintrusif pour résoudre ces DPEs en utilisant uniquement les données observables sans la calibration complète d'un modèle.

Dans un premier temps, nous traitons une DPE discrète prenant la forme suivante : Modèle multi-factoriel pour les contrats à terme. Dans le marché de l'énergie, nous modélisons habituellement le prix à l'instant t d'un contrat à terme F pt, T q comme étant dirigé par des facteurs de Markov cachés X. Nous obtenons du marché des données observables O à différents moments t ; typiquement O t est l'ensemble des log prix à terme log F pt, T q. Lorsque nous réécrivons le DPE en termes de F p¨, T q sous-jacent (aussi une fonction de X), nous obtenons des fonctions de contrôle ou des fonctions valeur dépendant des facteurs cachés X . Puisque ces processus de Markov X ne sont pas observables (nous n'avons aucun accès direct), nous ne pouvons pas appliquer une méthode de rééchantillonnage (proposée dans [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF], sous le nom de Non-Instrusive Stratified Resampler) régénérant chacun de ces facteurs individuellement. Pour traiter ce problème, nous modifions le schéma stratifié non-instrusif mentionné ci-dessus et proposons une méthode de rééchantillonnage uniquement sur les données observables O.

Y N " gN pX N q, Y i " Erg i pY i`1 , . . . , Y N , X i , . . . , X N q | X i s, i " N ´1, . . . ,
Maintenant, l'équation de programmation dynamique discrète (DDPE) prend une autre forme en préparation à la méthode de rééchantillonnage sur des données observables O : O j " e ´αpt j ´ti q O i `ż t j t i e ´αpt´sq pμ ds `σ dW s q, for all 0 ď i ď j ď N, pour certains coefficients α P R d , μ P R d and σ P R dˆn (où α est supposé connu).

Y N " g N pO N q, (6) 
Y i " Erg i pY i`1 , . . . , Y N , O i , . . . , O N q | O i s, i " N ´1, . . . ,
• En suivant la solution de O (voir (4.7)), nous extrayons la source aléatoire U d'une réalisation
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de l'échantillon de base tO m i : 0 ď i ď N u de la manière suivante

U m i,j :" O m j ´e´αpt j ´ti q O m i , for all 0 ď i ď j ď N.
• Inversement, à partir de la seule réalisation de la source aléatoire U m , nous obtenons une trajectoire correspondante partant à l'instant t i du point z P R d Θ i,j pz, U m q :" e ´αpt j ´ti q z `U m i,j , for all 0 ď i ď j ď N.

Maintenant nous pouvons rééchantillonner plusieures trajectoires partant de différentes conditions initiales pt i , zq grâce à la fonction flux Θ i,j (see (4.12)). 

O i,k,m j " Θ i,j pO i,k,m i , U m q, for all 1 ď m ď M, où O i,k,m i est échantillonné selon la distribution ν k indépendamment de i, k, m ; • A partir du M -échantillon O i,k,m j
, nous calculons l'approximation de la fonction valeur y i dans l'espace des fonctions de base linéaires par morceaux

L k " spant1 H k , z 1 1 H k , . . . , z d 1 H k u. Ici, par simplicité, dimpL k q est indépendant de k, c'est-à-dire, dimpL k q " d `1.

• Pour l'approximation locale de y i , nous introduisons l'opérateur Moindres Carrés Ordinaires (OLS) approximant la fonction

C : R dˆ2 Ñ R sur l'espace L k en utilisant l'échantillon O k,1:M i:i`1 : OLS ´C, L k , O k,1:M i:i`1 ¯" arg min φPL k M ÿ m"1 ˇˇCpO i,k,m i:i`1 q ´φpO i,k,m i q ˇˇ2.
• De manière rétrograde en temps à partir de ŷM N " g N , nous définissons ŷM i "

ř K k"1 ŷM,k i 1 H k , où ŷM,k i " ´|y i | 8 _ φ M,k ^|y i | 8 , φ M,k " OLSpC M , L k , O i,k,1:M i:i`1 q, C M pz i:i`1 q " g i pŷ M
i`1 pz i`1 q, z i:i`1 q.

On obtient alors une approximation ŷM i de la fonction de régression y i pour tout i dans t0, . . . , N u.

Dans l'Algorithme 4, nous observons que l'échantillon source O 1:M est une donné d'entrée pour le schèma de rééchantillonnage stratifié nonintrusif (voir Définition 4.8) à travers la source aléatoire U 1:M . Par conséquent, l'existence de l'approximation de l'algorithme est conditionné au fait que, pour tout i P t0, . . . , N u. les données observables O i sont en effet observées. En outre, nous proposons une version modifiée de l'Algorithme 4 dans le cas où certains log prix à terme log F pt, T q sont manquants (voir Sous-section 4.4.1).

Ce chapitre est tiré d'un article en cours d'écriture en collaboration avec Emmanuel Gobet et Jorge Zubelli [START_REF] Gobet | A Non-Intrusive Stratified Resampler for Multi-Factor Models: Application to the Pricing of Bermudan and Swing options[END_REF].

General Introduction

The present work is devoted to the solution of problems of pricing and hedging of options related to the electricity market. It is also dedicated to the numerical methods for a class of McKean-Vlasov stochastic control problems related to financial questions, e.g., the portfolio selection under drift uncertainty. In the last part, having no access to a fully calibrated multi-factor model for forward prices, we propose a non-intrusive stratified Monte Carlo algorithm to solve the pricing problem of Bermudan and Swing options.

In Part I, we study the pricing and hedging of European options taking into account an asymmetric risk measure. The main approach is the use of an asymptotic framework in order to obtain optimal pricing/hedging policies through nonlinear partial differential equations.

In Chapter 1, we consider the residual error produced by discrete-time trading. We suppose a trader wants to find strategies for the hedging portfolio such that the discretization error is small and penalizing the losses scenarios more the profits ones: we search to get a valuation/hedging policy at a large number of portfolio rebalancing dates for which the induced hedging error under an asymmetric risk measure is minimized. More precise, we define an optimal strategy in terms of the solution to the optimization problem related to the asymptotic expected-error. In this setting, the optimal value (resp., hedging) function is the solution (resp., the gradient of the solution) to a fully nonlinear PDE, whose nonlinear term depends on the second-order derivative of the solution. In fact, this nonlinearity term characterizes our asymptotically optimal strategy. In dimension 1, a quasi-explicit formulation for this term is derived.

In Chapter 2, we study the valuation problem of a power plant as an application of the previous hedging method with small costs proportional to the time step. Considering that some (maintenance) costs need to be paid regardless of the fact that a power plant is producing electricity or not, we are interested to evaluate an income associated to the selling of its production in the future. In fact, the plant's owner willing to reduce risk of a uncertain income by hedging in the forward market. Therefore, the optimal hedging strategy is obtained by minimizing the asymptotic risk associated to a discretization error including time-step-proportional costs. We studied impact of the (maintenance) costs into the hedging strategy, when those costs depends on the electricity price.

In Part II, we investigated several numerical methods to solve a class of control problems associated to mean-field interactions with partial information. We also studied a non-intrusive stratified resampler to solve discrete dynamic programming equations in the presence of a small historical data.

In Chapter 3, we study of a McKean-Vlasov (MKV) control class in the presence of a common noise, called polynomial conditional MKV. This class is a generalization of the linear quadratic stochastic MKV control class. Those problems raise from the asymptotic formulation of a cooperative equilibrium in a large population of players with mean-field interaction or from control problem with cost function depending on a nonlinear functional of the distribution of the state process. After reducing this polynomial class by a Markov embedding to finitedimensional control problems, we provide a discussion and a comparison of three different probabilistic methods for numerical resolution of the reduced problem: quantization, regression by control randomization and regression by regress later. We solved numerically several problems related to this polynomial MKV control: the selection and the liquidation of portfolio under drift uncertainty; and systemic interbank risk model with partial observation.

In Chapter 4, we are interested in solving dynamic programming equations (DPE) associated with a financial valuation in the energy market. In particular, we focus on the pricing of Bermudan and Swing options, where the underlying assets are forward contracts. We search for a non-intrusive stratified method to solve these equations using only historical data, without a full calibrated underlying model. In energy market, forward contracts are often driven by hidden Markov factors (multi-factor modeling). Consequently, the problem of pricing of those options produces DPEs depending on those unobservable factors. Since we have access to the forward prices but not to the hidden factors, we propose a resampling method only on observable contracts.

I. Asymmetric risk measure for pricing and hedging of options 1. Option pricing and hedging using asymmetric risk measure: Asymptotic optimality

In finance, the pricing and hedging of contingent claims are major concerns. In theoretical point of view, those problems is well established (see [START_REF] Karatzas | Methods of mathematical finance[END_REF], for instance). In practice, traders hedge their contracts by trading only at discrete times, say t 0 " 0 ă t 1 ă . . . ă t N " T , yielding a residual risk. Here, they intend to hedge the claim H T at time T using d hedging securities whose price are denoted by X " pX p1q , . . . , X pdq q. For that, we define the local risk E n associated with the trading times t n and t n`1 given by E n " V t n`1 ´Vtn ´ϑtn ¨Xt n`1 ´Xtn , where V denotes the valuation process; ϑ " pϑ p1q , . . . , ϑ pdq q denotes the hedging process with ϑ piq being the number of shares invested in the i-th hedging instrument.

We aim to find the valuation/hedging rules pV, ϑq minimizing this residual risk using a risk function ℓ. From the existing results (for instance, [START_REF] Schweizer | A Guided Tour through Quadratic Hedging Approaches[END_REF], for the quadratic local risk minimization), we choose a function ℓ penalizing profits (E n ă 0) and losses (E n ą 0) asymmetrically. In this context, we study the integrated local risk R N under the form

R N pV, ϑq " N ´1 ÿ n"0 ErℓpE n qs,
where the risk function ℓ is chosen as ℓ γ pyq " p1 `γ sgnpyqq 2 y 2 {2, γ P p0, 1q.

The parameter γ, in the risk function ℓ γ , represents the investor risk aversion penalizing losses further than profits (see Figure 1.1).

Standard asymptotic approach.

In this setting, we aim to study the asymptotics of the minimum min pV,ϑqPA

R N pV, ϑq, (7) 
with a large number N of trading dates in the case of equidistant trading times t n " n∆t with time step ∆t " T {N . The minimum (7) is computed over the set A of all adapted to the underlying filtration pF t q tě0 and appropriately integrable pair pV, ϑq, under the replication constraint V T " H T .

There exists in the literature a few results in that direction:

• In [START_REF] Pham | Dynamic L p -hedging in discrete time under cone constraints[END_REF], the author deals with a L p risk function of the losses and a fixed number trading dates;

• In [START_REF] Abergel | Nonquadratic local risk-minimization for hedging contingent claims in incomplete markets[END_REF], the authors study pseudo-optimal strategies and get asymptotic results in the case of a risk function in class C 3 .

We remark that the discontinuity of the second derivative ℓ 2 γ complicates the analysis and fully changes the nature of subsequent results. In short, the previous references consider different settings and difficulties from ours.

Asymptotic approach with a PDE valuation. Instead of solving the problem (7) in the asymptotic regime N Ñ `8, we tackle a modified problem using a PDE valuation. We suppose the hedging instruments X are modeled by dX t " µpt, X t q `σpt, X t q dW t , where W is a Brownian motion and the contingent claims is of the form H T " gpX T q. Then, we assume that the contingent claim is evaluated exogenously by a valuation process V t " vpt, X t q for some function v. The function v acts as a reference price. Given this exogenous valuation, the trader will determine how to hedge on each interval rt n , t n`1 s by choosing an adapted valuation/hedging rule p Ṽtn , θtn q and considering the related conditional local risk R n,γ R n,γ " E " ℓ γ pV t n`1 ´Ṽ tn ´θ tn ¨Xt n`1 ´Xtn q ˇˇF tn ‰ .

Inspired by the connection between dynamic risk valuations and nonlinear Backward Stochastic Differential Equations (BSDE) (see for instance [START_REF] Crepey | Financial modeling: a Backward Stochastic Differential Equations perspective[END_REF]), the trader parametrize its valuation/hedging rule through a function f , possibly nonlinear, such that

Ṽtn " u t n`1 pt n , X tn q, θtn " D x u t n`1 pt n , X tn q, where u t n`1 is the solution defined in the interval rt n , t n`1 s to the f -PDE below.

• The function

u t n`1 : rt n , t n`1 s ˆRd Ñ R satisfies u t n`1 t pt, xq `1 2 Tr " σσ ⊺ D 2 x u t n`1 ‰ pt, xq `f pt, x, u t n`1 pt, xq, D x u t n`1 pt, xq, D 2 x u t n`1 pt, xqq " 0, (8) 
for all pt, xq P rt n , t n`1 rˆR d with the terminal condition u t n`1 pt n`1 , xq " vpt n`1 , xq at the time t n`1 ;

• For some continuous functions σ : r0, T s ˆRd Ñ R dˆd , f : r0, T s ˆRd ˆR ˆRd ˆRdˆd Ñ R;

and a reference price vpt n`1 , ¨q at t n`1 ;

In this context, it is now natural to analyze the asymptotic behavior of the integrated conditional local risk after appropriate renormalization

R N,γ pv, f q " 1 ∆t N ´1 ÿ n"0
ErR n,γ s.

GENERAL INTRODUCTION

Our main contribution in Chapter 1 is the following result (see Theorem 1.6, page 34).

Main Result 1 (Theorem 1.6). Let B : r0, 1s ˆΩ Ñ R d be another standard Brownian motion independent from W . Under the Assumptions 1.1-1.5, R γ pv, f q :" lim

N Ñ8
R N,γ pv, f q exists and is given by,

R γ pv, f q " E « ż T 0 ż 1 0 ℓ 2 γ ˜ż θ 0 B ⊺ θ 1 G t dB θ 1 ´Ft θ ¸˜F 2 t θ´F t ż θ 0 B ⊺ θ 1 G t dB θ 1 `}G t B θ } 2 {2 ¸dθ dt ff , where 
F t " f `t, X t , vpt, X t q, D x vpt, X t q, D 2 x vpt, X t q ˘P R, G t " `σ⊺ pD 2
x vqσ ˘pt, X t q P R dˆd .

Consequently, we discuss the existence of an optimal PDE nonlinearity f ˚such that the f ˚-PDE valuation minimizes the asymptotic risk in the sense: R γ pv, f ˚q ď R γ pv, f q, for any admissible nonlinearity f . Additionally, this optimal PDE nonlinearity f ˚is quasi-explicit in dimension 1 (see (1.22), page 39) and it depends on the risk parameter γ, on the reference valuation second derivative and on the price process volatility. Consequently, a natural and consistent choice for the valuation/hedging rule may be the solution to the f ˚-PDE (8) with the payoff g : R d Ñ R being the terminal condition at the horizon time T .

This chapter is based on a paper written in collaboration with Emmanuel Gobet and Xavier Warin [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF].

Asymptotic asymmetric risk measure: Application to physical asset valuation

In Chapter 2, we provide valuation and hedging policies for future incomes due to the production of power plants using an asymmetric risk valuation. Since the deregulation of energy markets, several spot and future markets were created to exchange electricity. After that, power plant owners start to face the problem of evaluating their plant production, which depends on the electricity spot price in the future.

In practice, power plant owners perform a discrete hedging at trading times, t 0 " 0 ă t 1 ă . . . ă t N " T using a hedging security X in order to reduce the risk associated to a random income H T at a future time T . This discrete hedging produces a residual risk:

E " H T ´N´1 ÿ n"0 ϑ tn `Xt n`1 ´Xtn ˘,

where

• ϑ denotes the number of shares invested in the hedging security;

• X is a forward contract F p¨, T q with delivery time T .

Then, they search to find the valuation/hedging rule taking into account the local balance E n penalizing E n ă 0) through an asymmetric risk function ℓ:

E n " V t n`1 ´Vtn ´ϑtn `Xt n`1 ´Xtn ˘,
where V stands for the valuation process under the replication constraint V T " H T . Notice that plant owners:

• want to obtain a residual risk E with a small standard-deviation;

• prefer profitable scenarios where E n ą 0.

In reality, power plant generates some fixed costs whether it is producing electricity or not. Those costs are called here fixed costs:

• they include the investment and depreciation costs;

• they exclude the fuel costs (coal, gas, uranium).

To record in their balance book, power producers are constrained to find today an equivalent price to the future income generated by their power plant.

In fact, they do not face any financial risk due to this income. On the other hand, because they can not increase their income by influencing the electricity spot price S, they prefer to obtain a certain value due to the selling of their future production instead to receive the random positive amount H T " gpS T q.

Economically speaking, when the electricity spot price S is high, we require the power plant to face a higher demand. In indeed, a high price is produced by an increasing demand. Therefore, we increase the production by starting more often the power plant. That is the reason why we assume a dependence of the costs c on the electricity spot price S.

Asymmetric risk valuation.

Considering equidistant trading times t n " n∆t with time step ∆t " T {N , we take into account the fixed costs proportional to the time step ∆t by subtracting cpS tn q∆t from the local balance E n . In a setting analogous to Chapter 1, we study the asymptotic of the integrated risk

R N R N " 1 ∆t N ´1 ÿ n"0 E " ℓ ´Vt n`1 ´Vtn ´ϑtn `Xt n`1 ´Xtn ˘´cpS tn q∆t ¯,
Here, we set ℓ γ pyq " p1 `γ sgnpyqq 2 y 2 {2, γ P p´1, 0q,

where the parameter γ represents the producer's desire of reducing the randomness of future income. Unlike the risk parameter in Chapter 1, this parameter γ takes values in p´1, 0q (see Figure 2.1).

In view of studying the integrated risk R N,γ in the asymptotic regime N Ñ `8 with an asymmetric risk function ℓ γ , we follow an approach by PDE valuation described in Chapter 1. We assume the existence of exogenous valuation process V t " vpt, X t q defined by some function v. For example, v is a reference price obtained by the power producer when no cost is taken into account. Now, power plant owner determines its hedge position on each interval rt n , t n`1 s by choosing an adapted valuation/hedging rule p r V tn , r ϑ tn q. For that, we consider the related conditional risk R n,γ using the risk function

ℓ γ R n,γ " E " ℓ γ ´Vt n`1 ´r V tn ´r ϑ tn `Xt n`1 ´Xtn ˘´cpS tn q∆t ¯ˇˇˇF tn  .
This time, the valuation/hedging rule p r V tn , r ϑ tn q of the power producer is given by r V tn " u t n`1 pt n , X tn q, r ϑ tn " u t n`1

x pt n , X tn q, and is parametrized by a function f , possibly nonlinear, through the solution u t n`1 : rt n , t n`1 s ˆR to the f -PDE with terminal condition u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q at time t n`1 (analogously to the one-dimensional version of (1.5) but with diffusion term equal to σpt, T qx, with a volatility function σpt, T q " σ0 e ´a0 pT ´tq ).

As in Chapter 1, we analyze the asymptotic regime of the integrated conditional risk R N,γ pv, f q " 1 ∆t

N ´1 ÿ n"0 E " R n,γ ‰ ,
as the number N of trading dates goes to infinity.

Our main contribution in Chapter 2 is the following result (see Theorem 2.9, page 71). This is a version of the Theorem 1.6 in the presence of fixed costs proportional to the time step.

Main Result 2 (Theorem 2.9). Let B : r0, 1s ˆΩ Ñ R be another standard Brownian motion independent from W . Under the Assumptions 2.3-2.8, the limit of R N,γ pv, f q as N Ñ 8 exists and is given by

R γ pv, f q " E « ż T 0 ż 1 0 ℓ 2 γ ˜J1 pv, pt, X t qq B 2 θ ´θ 2 ´J2 pv, pt, X t qqθ |J 2 pv, pt, X t qq| 2 θ ´J2 pv, pt, X t qqJ 1 pv, pt, X t qq B 2 θ ´θ 2 `|J 1 pv, pt, X t qq| 2 B 2 θ 2 ¸dθ dt ff
, where J 2 pv, pt, X t qq " f `t, X t , vpt, X t q, v x pt, X t q, v xx pt, X t q ˘`cpX t q P R, J 1 pv, pt, X t qq " σ2 pt, T qX t 2 v xx pt, X t q P R.

As in Chapter 1, the idea is to obtain an optimal PDE nonlinearity f ˚minimizing the asymptotic risk: R γ pv, f ˚q ď R γ pv, f q, for any admissible f . Once more, this optimal PDE nonlinearity f ˚is explicit and depends on γ, on the second derivative of v and on cost function cpxq. Finally, the power producer will choose the following rule V tn " v ˚pt n , X tn q, ϑ tn " v x pt n , X tn q,

where v ˚is the solution to v ˚: r0, T s ˆRd to the f ˚-PDE with terminal condition v ˚pT , ¨q " gp¨q at time T .

For the numerical experiments, we take a fixed cost depending on the level of the electricity spot price through a convex (or concave) function cpxq. We compute the numerical solution to the f ˚-PDE for a call payoff and different models for cpxq. 

where • P W 0 Xs denotes the conditional distribution of X s given W 0 ;

• F 0 " pF 0 t q tě0 is the natural filtration generated by W 0 ;

• the control α is F 0 -progressive valued in some Polish space A.

The cost functional associated to the stochastic McKean-Vlasov equation (9) for a control process α is

Jpαq " E « ż T 0 f pX t , P W 0 X t , α t qdt `gpX T , P W 0 X T q ff ,
and the objective is to minimize over an admissible set A of control processes the cost functional:

V 0 " inf αPA Jpαq.
Our purpose is to investigate some classes of MKV control problems, which can be reduced to finite dimensional problems in view of numerical resolution.

A Class of polynomial models and Markovian embedding. First, we consider a class of models where the coefficients of the MKV equation are linear w.r.t. the state variable X (see (3.9)), while the running and terminal cost functions are polynomial in the state variable in the following sense

f px, µ, aq " f 0 pµ, aq `p ÿ k"1 f k pµ, aqx k , gpx, µq " g 0 pµq `p ÿ k"1 g k pµqx k ,
for some integer p ě 1. Second, we assume all the coefficients depend on µ through its first p moments (see (3.10)).

Given the controlled process X " X α solution to the stochastic McKean-Vlasov dynamics (9), we denote Y k t " ErX k t |W 0 s, k " 1, . . . , p. From the linear/polynomial assumptions (by Itô's formula and conditional expectations), we derive the dynamics of pY 1 , Y 2 , . . . , Y p q as 

dY k t " B k pY 1 t , Y
Jpt n , z, αq " E " N ÿ i"n f pZ α t i , α t i q∆t `gpZ α t N q ˇˇˇZ α tn " z  .
Now, the value function V pt n , zq " sup pαt i q N i"n PA Jpt n , z, αq is represented alternatively through the following dynamic programming equation, given the known terminal condition gpzq, V pT N , zq " gpzq,

V pt n , zq " sup α ! f pZ α tn , αq∆t `Eα " V pt n`1 , Z t n`1 q ˇˇZ tn " z ‰ ) . ( 12 
)
The dynamic programming equation (12) inspires numerical methods that approximate the value function iteratively backward in time, starting from the terminal condition. The main difficulty in implementing such approach lies in the estimation of conditional expectations

E α " V pt n`1 , Z α t n`1 q ˇˇZ tn " z ‰ .
Our first contribution in Chapter 3 is the following description (see Section 3.3) and application (see Section 3.4).

Main Result 3. We describe three numerical methods solving conditional MKV problems (in their reduced version):

• the Regression Monte Carlo techniques (by control randomization and by regress later) are a family of algorithms whose effectiveness relies on the choice of the basis functions used to project future value functions (see Algorithms 1 and 2);

• the Quantization techniques approximates the controlled process Z α tn with a particular finite state Markov chain for which expectations can be approximated quickly (see Algorithm 3).

We apply each of these methods to three applications arising from polynomial MKV control problems under partial observation and common noise:

• the Portfolio optimization under drift uncertainty (see Subsection 3.4.1), where the drift of the underlying asset is unknown and unobservable. First, we consider the problem of a trader willing to liquidate a large number of shares within a finite time T and facing execution cost and market price impact. Then, we see the selection problem of a portfolio strategy maximizing the utility of the terminal wealth.

• the Intersystemic risk with partial observation (see Subsection 3.4.2). We suppose the monetary reserves of N banks lending to and borrowing from each other satisfy diffusion system with mean-field interaction and a common noise. Then a social planner (the central bank, for example) only observing the common noise acts on strength of the interbank interaction in order to minimize the spread between each bank's reserve and the average.

Numerical results.

Our second contribution in Chapter 3 is the following numerical experiments (see Section 3.5). We presented the results of three different examples of applications summarized below

• We found that the Regression Monte Carlo algorithms perform correctly in problems of drift control. In those problems, they are much faster than Quantization for similar precision.

In particular, we noticed that Regress Later is more reliable than Control Randomization: the choice of a uniform distribution of the training points on a suitable interval suffices to obtain high-quality estimations.

• On the other hand, Control Randomization is sensitive to the choice of the distribution of the randomized control and few repetitions are necessary before finding a proprer control distribution. We have also tried to use the performance iteration or path re-computation methods. However, on the considered examples, those methods were time-consuming and did not help much in terms of accuracy.

• Quantization techniques provided the most stable and accurate results for the three different cases of control problems. Moreover, we are able to choose the grid to quantize the controlled process. It is possible to exploit this feature when we have a rough idea of where the controlled process should be driven by the optimal strategy (see the Portfolio liquidation problem). Therefore, we should build a grid with many points located where the process is supposed to go.

This chapter is based on a paper written in collaboration with Alessandro Balata, Côme Huré, Mathieu Laurière et Huyen Pham [BHL `18].

A non-intrusive stratified resampler for multi-factor models: Application in energy market

Stochastic dynamic programming equations are related to the resolution of non-linear problems (stochastic controls or nonlinear PDEs) arising in almost all areas of science, from water reservoir management to finance.

In Chapter 4, we aim to solve dynamic programming equations (DPE) related to a financial valuation in energy market. Here, we are concerned, for example, in the pricing of Bermudan or Swing options, where the underlying assets are forward contracts. Then, we plan to develop a non-intrusive algorithm to solve those DPE using only the observable data without a full model calibration.

In a first moment, we deal with a discrete DPE taking the following form:

Y N " gN pX N q, ( 13 
) Y i " Erg i pY i`1 , . . . , Y N , X i , . . . , X N q | X i s, i " N ´1, . . . , 0,
where X is a Markov chain in R n ; and gN , gi are some real functions depending on the problem under consideration.

To solve the discrete DPE (13), we first observe a historical data O of size M in view of calibrating the parameter values for some stochastic model describing X. Then, we perform regression Monte Carlo (MC) algorithms with N MC sampled points X to obtain the regression functions ỹi such that Y i " ỹi pX i q.

In our context, the number M of historical data is usually small compared to N MC . Thus, the calibration step gives a more substantial error than the empirical regression one. This is the reason why we perform a direct approach consisting in resampling the observed data and obtain directly the regression functions (see Figure 4.1 describing the change from the statistical approach to the resampling one).

Multi-factor model for forward contracts. In energy market, we usually model the price at time t of a T -forward contract F pt, T q as driven in terms of hidden Markov factors X. We get from the market some observable data O at different times t; typically O t is the set of log forward prices log F pt, T q. When we rewrite the DPE in terms of the underlying F p¨, T q (also a function of X), we get control or value functions depending on the hidden factors X. Since these Markov process X are not observable (we have no direct access to them), we can not apply a resampling method (proposed in [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF] under the name of Non-Intrusive Stratified Resampler) regenerating each one of those factors individually. To deal with this problem, we modify the non-instrusive stratified scheme mentioned above and propose a resampling method on the observable data O.

Now, the discrete dynamic programming equation (DDPE) takes another form in preparation for the resampling method on observable data O:

Y N " g N pO N q, (14) 
Y i " Erg i pY i`1 , . . . , Y N , O i , . . . , O N q | O i s, i " N ´1, . . . , 0,
where the process O takes values in R d .

Approach by historical-data Resampling. To ensure accurate scheme, the regression Monte Carlo methods usually need that the number of simulations N MC has to be much larger than the dimension of the vector space L (number of coefficients). Note that the inputs O 1:N MC :" O 1 , . . . , O N MC are sampled from a model which is estimated from M -size data only. In our setting, M is small, then model error may be a significant concern.

In [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF], the authors design a scheme where the N MC simulations are replaced by the M -size observed data. To overcome the problem of numerous coefficients to compute (despite the small number of data), they combine resampling approach with a stratification and localapproximation strategy, called the Non-Intrusive Stratified Resampler (NISR) scheme. The critical point in the non-intrusive part of the scheme is to assume that only the model structure for observable data O is known, but not their parameter/coefficient values. While the strength of the stratified part is the fact that we have independent local problems on a low-dimensional approximation space. Then, we have a double-fold improvement: (1) a small number of coefficients to compute on each local problem and (2) the quality of the aggregated approximation is not deteriorated when the number K of local problems increases.

Briefly, had we observed the factors X, we would have resampled it and used directly in the NISR scheme. In our case, we have only access to O, a affine and partially unknown transformation of X (see Assumption 4.1). Then we have proposed an extension of the native NISR scheme taking O as inputs. Additionally, we consider that the factors model is described as multidimensional Ornstein-Uhlenbeck (OU) (see Assumption 4.2), whose the mean-reverting parameters is supposed known (but not the volatilities/correlation).

Our contribution in Chapter 4 is the following NISR scheme (see Section 4.3). We present the NISR-regression Monte Carlo algorithm assuming the complete access to the observable data.

Main Result 4 (NISR scheme on the observable process O). We have the following steps to the resolution of the DDPE (14)

• From the linear relation between O and X (see (4.3)), the dynamics of O is also a OU (see Proposition 4.4):

O j " e ´αpt j ´ti q O i `ż t j t i
e ´αpt´sq pμ ds `σ dW s q, for all 0 ď i ď j ď N, for some coefficients α P R d , μ P R d and σ P R dˆn (where α is supposed known).

• Following the solution of O (see (4.7)), we extract the random source U from one realization of the root sample tO m i : 0 ď i ď N u as follows

U m i,j :" O m j ´e´αpt j ´ti q O m i , for all 0 ď i ď j ď N.
• Inversely, from the one realization of the random source U m , we obtain a corresponding path starting at time t i from point z P R d Θ i,j pz, U m q :" e ´αpt j ´ti q z `U m i,j , for all 0 ď i ď j ď N.

Now we can resample multiple paths from different initial conditions pt i , zq thanks to flow function Θ i,j (see (4.12)).

• In K different sets H k (called strata) from a partition of the space R d , we perform a regression Monte Carlo approximation. For that, we consider a probability measure ν such that its restriction

ν k on H k ν k p dzq " 1 H k pzq νpH k q νp dzq.
is used to resample paths starting from different initial points on H k .

• According to Proposition 4.7, the tensor product Pareto-type distribution ν given in (4.15) satisfies a norm-stability property: there exists a constant K ě 1 such that, for any ϕ :

R d Ñ R P L 2 pνq, it holds ż R d E|φpO i,z i`1 q| 2 νp dzq ď K ż R d |φpzq| 2 νp dzq, i P t0, . . . , N ´1u,
required to obtain the well-behaved propagation of errors.

• Using the distribution ν k , we obtain a M -sample on each stratum H k from time t i until time

t n : O i,k,m j " Θ i,j pO i,k,m i , U m q, for all 1 ď m ď M,
where O i,k,m i is sampled according to the distribution ν k independently from i, k, m;

• From the M -sample O i,k,m j , we compute the approximation of the value function y i in the space of piecewise linear basis functions

L k " spant1 H k , z 1 1 H k , . . . , z d 1 H k u.
Here, for simplicity, dimpL k q is independent from k, i.e., dimpL k q " d `1.

• To the local approximation of y i , we introduce the Ordinary Least Square (OLS) operator approximating the function C : R dˆ2 Ñ R on the space L k using the sample O k,1:M i:i`1 :

OLS ´C, L k , O k,1:M i:i`1 q " arg min φPL k M ÿ m"1 ˇˇCpO i,k,m i:i`1 q ´φpO i,k,m i q ˇˇ2.
• Backwardly in time starting from ŷM N " g N , we set ŷM i "

ř K k"1 ŷM,k i 1 H k , where ŷM,k i " ´|y i | 8 _ φ M,k ^|y i | 8 , φ M,k " OLSpC M , L k , O i,k,1:M i:i`1 q, C M pz i:i`1 q " g i pŷ M i`1 pz i`1 q, z i:i`1 q.
Then we obtain an approximation ŷM i of regression function y i for every i in t0, . . . , N u.

In the Algorithm 4, we observe that the root sample O 1:M is an input to the non-intrusive stratified resampler (see Definition 4.8) through the random source U 1:M . Therefore, the existence of algorithm's approximation is conditioned to the fact that for any i P t0, . . . , N u the observable data O i is indeed observed. In addition, we propose a modified version of Algorithm 4 in the case where some log forward prices log F pt, T q are missing (see Subsection 4.4.1).

This chapter is based on a work in progress in collaboration with Emmanuel Gobet and Jorge Zubelli [START_REF] Gobet | A Non-Intrusive Stratified Resampler for Multi-Factor Models: Application to the Pricing of Bermudan and Swing options[END_REF].

Part I

Asymmetric risk measure for pricing and hedging of options

Introduction

The valuation and hedging of contingent claims are major concerns in finance, both from a theoretical and a practical point of view. The continuous-time theory is well established (see [START_REF] Karatzas | Methods of mathematical finance[END_REF], for instance). But, in practice, hedging can be performed only at discrete trading times, say t 0 " 0 ă t 1 ă . . . ă t N " T , yielding a residual risk. Here, we intend to hedge the claim H T at time T using d hedging instruments with price processes X " pX p1q , . . . , X pdq q. So the local risk E n associated with the trading times t n and t n`1 writes

E n " V t n`1 ´Vtn ´ϑtn ¨Xt n`1 ´Xtn . (1.1)
Here, V stands for the valuation process and ϑ " pϑ p1q , . . . , ϑ pdq q, for the hedging process, Also, ϑ piq denotes the number of shares invested in the i-th hedging instrument. Up to considering discounted prices, we suppose the non-risky asset has zero drift.

In high-frequency hedging, the impact of discrete-time hedging compared to continuous-time one is small (see, for instance, [START_REF] Gobet | Discrete time hedging errors for options with irregular payoffs[END_REF] for results about convergence rate). In low-frequency hedging such as in energy markets [START_REF] Christodoulou | Quadratic hedging with multiple assets under illiquidity with applications in energy markets[END_REF], the local residual risk is slightly bigger and may become an issue. Our aim is to find the valuation/hedging rules pV, ϑq minimizing this risk. We differ from the existing results (for instance, those related to the quadratic local risk minimization [START_REF] Föllmer | Hedging by sequential regression: An introduction to the mathematics of option trading[END_REF][START_REF] Schweizer | A Guided Tour through Quadratic Hedging Approaches[END_REF]) by dealing with a risk function ℓ penalizing asymmetrically profits (E n ă 0) and losses (E n ą 0). So the integrated local risk R N under study takes the form

R N pV, ϑq " N ´1 ÿ n"0
ErℓpE n qs.

The simplest case of such a risk function ℓ is

ℓ γ pyq " p1 `γ sgnpyqq 2 y 2 {2 (1.2)
where γ P p0, 1q to penalize losses further than profits (see Figure 1.1). We define the above sign function as sgnpyq :" 1 yą0 ´1yă0 .

In this setting, our aim is to study the asymptotics of the minimum

min pV,ϑqPA R N pV, ϑq (1.3)
as the number N of trading dates becomes larger. To simplify we take equidistant trading times t n " n∆t with time step ∆t " T {N . The minimum (1.3) is computed over the set A of all adapted to the underlying filtration pF t q tě0 and appropriately integrable pair pV, ϑq, under the replication constraint V T " H T .

There are a few results in that direction. In [START_REF] Pham | Dynamic L p -hedging in discrete time under cone constraints[END_REF], the author deals with a L p risk function of the losses and a fixed number trading dates. In [START_REF] Pochart | Option pricing and hedging with minimum local expected shortfall[END_REF], the authors consider expected shortfall risk function. Their research concentrates on numerics for a fixed number of dates and does not handle any asymptotic analysis. In [START_REF] Abergel | Nonquadratic local risk-minimization for hedging contingent claims in incomplete markets[END_REF], the authors study pseudo-optimal strategies and get asymptotic results under the condition that the risk function is of class C 3 . So their analysis discards the prototype risk function (1.2). Indeed, the discontinuity of the second derivative ℓ 2 γ complicates the analysis and fully changes the nature of subsequent results. In short, the existing references consider different settings and difficulties from ours.

PDE valuation.

The minimization problem (1.3) appears attractive, but its study in the asymptotic regime N Ñ `8 is tough in the case of asymmetric risk function (1.2). To tackle this problem, we slightly modify the approach.

First, we suppose the hedging instruments are modeled by a Stochastic Differential Equation (SDE) with drift µ and diffusion σ. We also consider contingent claims of the form H T " gpX T q.

Second, we suppose that the contingent claim is evaluated exogenously by a valuation process V t " vpt, X t q for some function v. For instance, v is given by a mark-to-model value promoted by the regulator or the Central Counterparty (CCP). The latter imposes its minimum margin requirement to which the hedging entity has to comply with. Given this exogenous reference valuation, the trader will determine how to hedge on each interval rt n , t n`1 s by choosing an adapted valuation/hedging rule p Ṽtn , θtn q and considering the related conditional local risk R n,γ R n,γ " E " ℓ γ pV t n`1 ´Ṽ tn ´θ tn ¨Xt n`1 ´Xtn q ˇˇF tn ‰ .

(1.4) 

u τ t pt, xq `1 2 Tr " σσ ⊺ D 2 x u τ ‰ pt, xq `f pt, x, u τ pt, xq, D x u τ pt, xq, D 2 x u τ pt, xqq " 0, (1.5) 
for all pt, xq P r0, T s ˆRd with the terminal condition u τ pτ, xq " vpτ, xq at the time τ . The f -PDE valuation is the mapping from pτ, vpτ, ¨qq to the f -PDE (1.5) solution u τ ; this is typically the nonlinear valuation/hedging rule of the trader. We refer to f as the PDE nonlinearity and f " 0 corresponds to the usual risk-neutral valuation [START_REF] Karatzas | Methods of mathematical finance[END_REF], other nonlinearities appear in [START_REF] Karoui | Backward Stochastic Differential Equations in finance[END_REF] for instance. Then, in the conditional local risk expression given by (1.4), we naturally set

Ṽtn " u pn`1q pt n , X tn q, θtn " D x u pn`1q pt n , X tn q,

where we denote u pn`1q :" u t n`1 .

Our contributions. Our first main result is to prove the existence (Theorem 1.6) of the following limit, called the asymptotic risk,

R γ pv, f q " lim N Ñ`8 1 ∆t N ´1 ÿ n"0
ErR n,γ s.

(1.6) Moreover, we give an explicit expression for R γ pv, f q depending on γ, v, f, σ, X and T . Then, we discuss the existence of an optimal PDE nonlinearity f ˚such that the f ˚-PDE valuation minimizes the asymptotic risk in the sense

R γ pv, f ˚q ď R γ pv, f q, (1.7)
for any admissible f . In dimension 1, this optimal PDE nonlinearity f ˚is explicit (see (1.22)) and it depends on the risk parameter γ, on the reference valuation second derivative and on the price process volatility. Now, a natural choice for the reference valuation may be the solution to the f ˚-PDE (1.5). Here, the payoff g : R Ñ R is the f ˚-PDE terminal condition at the time T . We denote by v ˚the resulting valuation. In dimension one, this PDE takes the form

v t pt, xq `1 2 σ 2 pt, xq v xx pt, xq `c1 σ 2 pt, xq pv xx pt, xqq `´c 2 σ 2 pt, xq pv xx pt, xqq ´" 0
for some constants c 1 ě 0 and c 2 ď 0 depending on the risk parameter γ. In higher dimension, v ˚solves a fully nonlinear PDE with a nonlinear term depending on the Hessian D 2 x v ˚(see the nonlinear PDE (1.19)).

It gives somehow a consistent way to valuate the claim g by accounting for local hedging errors measured with the asymmetric risk function ℓ γ . To the best of our knowledge, this work is an original contribution, where local hedging errors are analyzed with asymmetric risk function. We perform the asymptotics of a large number of trading dates and we derive an optimal valuation/hedging policy.

Summing up, instead of minimizing (1.3) and then taking the limit in N after rescaling by ∆t, we take first the limit in N of the cumulated integrated local risk for a wide class of f -PDE valuation and then minimize over all nonlinearities f . We do not prove that inverting minimization and limit holds true in this setting. In other words, we do not state the limit of the minimum (1.3) rescaled by ∆t corresponds to R γ pv ˚, f ˚q. However, our numerical tests in dimension one seem to corroborate this fact. Proving this result rigorously is, so far, an open problem, that we expect to handle in the next future. This chapter is structured as follows. In Section 1.2, we present the notations, the stochastic setting and the assumptions. The Section 1.3 is reserved to the main result: the existence of the asymptotic risk. The proofs are gathered in Section 1.4. Section 1.5 contains our numerical experiments. Some technical results are collected in Appendix 1.6.

Notations and assumptions

Usual notations. Let d P N ˚and let a, b in R d . We denote by a ¨b " ř d i"1 a i b i the scalar product on R d , adopted for both row or column vectors a and b. We set }a} " ? a ¨a. We denote by M d the set of all d ˆd matrices with real entries. By S d we denote all symmetric matrices in M d . Let A P M d , we denote TrrAs and A ⊺ respectively the trace and the transpose of a matrix A. For A in M d , we set }A} " a TrrAA ⊺ s.

Let E, E 1 be two generic Euclidean space and let φ : r0, T s ˆE be a E 1 -valued function. In this work, we say φ satisfies a local regularity condition in time and space if for some real q ą 0 the coefficient

}φ} C 1{2,1 loc,pol :" sup t‰t 1 Pr0,T s sup x‰x 1 PE }φpt, xq ´φpt 1 , x 1 q} p|t ´t1 | 1{2 `}x ´x1 }qp1 `}x} q `}x 1 } q q is finite, then φ is said to be in C 1{2,1
loc,pol . We are aware that }φ} C 1{2,1 loc,pol depends on q but in the following, the precise value of q is unimportant and we prefer to avoid the reference to q in the notation }φ} C 1{2,1 loc,pol for the sake of simplicity.

Observe that φ P C 1{2,1 loc,pol means that φ is locally 1/2-Hölder continuous in time and Lipschitz continuous in space; and it has polynomial growth in space uniformly in time. Furthermore, we assert that for any φ 1 and φ 2 in C 1{2,1 loc,pol , the product φ 1 φ 2 , the pair pφ 1 , φ 2 q and the composition w.r.t. the space variable φ 1 pt, φ 2 pt, ¨qq are also in C 1{2,1 loc,pol . The set C 1,2 pr0, T s ˆE, E 1 q denotes the set of functions φ : r0, T s ˆE Ñ E 1 such that the partial derivatives B t φ, B x i φ, B x i B x j φ exist and are continuous, for any 1 ď i, j ď d. When E " R d and the domain E 1 is unambiguous, we simply write C 1,2 pr0, T s ˆRd q.

For every function φ P C 1,2 pr0, T s ˆRd , Rq, we denote its gradient in space by a row vector D x φ " pφ x i q 1ďiďd and its Hessian by D 2 x φ " pφ x i x j q 1ďi,jďd . Also, let L t φ : r0, T s ˆRd Ñ R be given by

L t φpt, xq " φ t pt, xq `1 2 Tr " σσ ⊺ D 2 x φ ‰ pt, xq. Notice that φ, φ t , D x φ, D 2 x φ P C 1{2,1
loc,pol is a sufficient condition to have φ P C 1,2 and be able to apply Ito's formula.

Probabilistic model. We fix a finite time horizon T ą 0. Let W " pW p1q , . . . , W pdq q : r0, T s Ω Ñ R d be a standard Brownian motion on a probability space pΩ, F, Pq. Let F " tF t , t P r0, T su be the augmented and completed filtration generated by W . We consider the F-adapted process X " pX p1q , . . . , X pdq q : r0, T s ˆΩ Ñ R d satisfying the following stochastic differential equation (SDE) dX t " µpt, X t q dt `σpt, X t q dW t , (1.8) with initial value X 0 " x 0 P R d . The coefficients µ : r0, T s ˆRd Ñ R d and σ : r0, T s ˆRd Ñ M d are Lipschitz in space uniformly in time (see Assumption 1.1 later).

Given N P N ˚equidistant hedging times tt 0 " 0 ă t 1 ă . . . ă t N " T u on the interval r0, T s, with t n " n∆t and ∆t " T {N , we write

ϕ N t :" sup tt n | t n ď tu , φN t :" inf tt n | t n ą tu
and the increment of X from t n to t n`1 as ∆X n " X t n`1 ´Xtn .

In the following we systematically consider the risk function ℓ γ as defined in (1.2). It is a convex and continuously differentiable function satisfying ℓ γ p0q " ℓ 1 γ p0q " 0 and ℓ γ pyq " ℓ ´γ p´yq. In addition, it is symmetric if and only if γ " 0. Further, ℓ 1 γ is a piecewise continuously differentiable function with ℓ 2 γ being discontinuous as soon as γ ‰ 0:

ℓ 1 γ pyq " p1 `γ sgnpyqq 2 y, ℓ 2 γ pyq " p1 `γ sgnpyqq 2 , (1.9)
where ℓ 2 γ is extended to zero as ℓ 2 γ p0q " 1, owing to sgnp0q " 0 (see Figure 1.2). In all the sequel, we assume γ P r0, 1q.

For a payoff function g : R d Ñ R, the input of our approach are a reference valuation v : r0, T s ˆRd Ñ R such that vpT, ¨q " gp¨q and a PDE nonlinearity f : r0, T s ˆRd ˆR ˆRd ˆSd Ñ R.

Both are assumed to be smooth functions (see Assumptions 1.2 and 1.3). So we associate the f -PDE valuation giving rise to the family of functions u t n`1 : r0, t n`1 s ˆRd Ñ R indexed by hedging times t n`1 . These functions are the solutions to the PDE (1.5) with Cauchy boundary condition u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q at time horizon t n`1 . Also, they are assumed to be smooth in the sense of Assumption 1.4. In this context, we set u pn`1q " u t n`1 and define the local residual risk E n : Ω Ñ R (see (1.1)) by E n " u pn`1q pt n`1 , X t n`1 q ´upn`1q pt n , X tn q ´Dx u pn`1q pt n , X tn q∆X n (1.10)

and the conditional local risk R n,γ " E " ℓ γ pE n q ˇˇF tn ‰ . (1.11)
As explained in introduction, our aim is to analyze the asymptotic behavior of the integrated conditional local risk, after appropriate renormalization,

R N,γ pv, f q " 1 ∆t N ´1 ÿ n"0
ErR n,γ s.

(1.12)

Main assumptions. Here, we study the asymptotic risk R γ (as defined in (1.6)) where a reference valuation v and a PDE nonlinearity f are given. We state the following assumptions.

Assumption 1.1. The coefficients µ : r0, T s ˆRd Ñ R d and σ : r0, T s ˆRd Ñ M d are in C 1{2,1 loc,pol . Assumption 1.2. The reference valuation v : r0, T s ˆRd Ñ R is in C 1{2,1 loc,pol . Further, D x v and D 2 x v exist and are in C 1{2,1 loc,pol . Assumption 1.3. The PDE nonlinearity f : r0, T s ˆRd ˆR ˆRd ˆSd Ñ R is in C 1{2,1 loc,pol .
Assumption 1.4. For all τ P p0, T s, there is a unique classical solution u τ to the PDE (1.5) with the terminal condition u τ pτ, ¨q " vpτ, ¨q at the time τ . In addition,

u τ t , u τ x i , u τ x i x j , u τ t x i , u τ x i x j , x k , exist and are in C 1{2,1 loc,pol .
Assumption 1.5. A non-degeneracy condition: the symmetric matrix pσ ⊺ pD 2 x vqσqpt, X t q is not 0 dt b dP-a.e.

Asymptotic risk: Existence of the limit R N,γ

For stating the asymptotic result below, we need to introduce an extra Brownian motion B, independent of W , with the same dimension as W . All these are defined on an extended probability space with obvious definitions. Whenever necessary, the expectation w.r.t. the distribution of B, or W , or both, is denoted by E B , or E W , or E W bB . Theorem 1.6 (Existence of lim N Ñ`8 R N,γ ). Let B " `Bp1q , . . . , B pdq ˘: r0, 1s ˆΩ Ñ R d be another standard Brownian motion independent from W . Consider R N,γ pv, f q given by (1.12) in the following form

R N,γ pv, f q " 1 ∆t N ´1 ÿ n"0 E " ℓ γ pE n q ‰ ,
where E n is given by (1.10). Under the Assumptions 1.1-1.5, the limit of R N,γ pv, f q as N Ñ 8 exists and is given by,

R γ pv, f q " E « ż T 0 ż 1 0 ℓ 2 γ ˜ż θ 0 B ⊺ θ 1 G t dB θ 1 ´Ft θ F 2 t θ ´Ft ż θ 0 B ⊺ θ 1 G t dB θ 1 `}G t B θ } 2 {2 ¸dθ dt ff , (1.13)
where

F t " f `t, X t , vpt, X t q, D x vpt, X t q, D 2 x vpt, X t q ˘P R, G t " `σ⊺ pD 2 x vqσ ˘pt, X t q P S d
The long and delicate proof is postponed to Section 1.4.

Asymptotic optimality through the PDE nonlinearity

Here, we study the optimization problem over the PDE nonlinearity f described in (1.7). To precise the definition of optimal PDE nonlinearity f ˚, we rewrite the asymptotic risk in (1.13) as a functional

R γ : Ω v ˆΩf Ñ R given by R γ pv, f q " E « ż T 0 L γ pG t , F t q dt ff , where L γ : S d ˆR Ñ R is L γ pS, aq " E « ż 1 0 ℓ 2 γ ´`B ⊺ θ SB θ ´TrrSsθ ˘{2 ´aθ ā2 θ ´a `B⊺ θ SB θ ´TrrSsθ ˘{2 ``B ⊺ θ S ⊺ SB θ ˘{2 ¯dθ ff , (1.14) with Ω v " ! v P C 1{2,1 loc,pol ˇˇD x v, D 2 x v P C 1{2,1 loc,pol ) , Ω f " ! f P C 1{2,1 loc,pol
) .

We aim at proving the existence of minimizers to the variational problem

min f PΩ f R γ pv, f q, (1.15)
for all v P Ω v . Observe that the minimizer f : pt, x, y, z, Aq defined by (for any fixed pt, x, y, z, Aq)

f : pt, x, y, z, Aq " arg min aPR L γ pσ ⊺ pt, xqAσpt, xq, aq ,
is also a minimizer to (1.15) under the condition to be in Ω f . Indeed, we just need to integrate and to take the expectation in both sides of

L γ `Gpt, X t q, f : `t, X t , vpt, X t q, D x vpt, X t q, D 2 x vpt, X t q ˘˘ď L γ pGpt, X t q, F pt, X t qq .
This is why we seek a minimizer to a Þ Ñ L γ pS, aq for a given symmetric matrix S.

We now prove the existence of a minimizer. (1.16)

Under the hypothesis of Theorem 1.6, there exists a global minimizer a ˚P R such that L γ pS, a ˚q ď L γ pS, aq for all a P R.

If a ˚is unique for each S, we define the mapping S Þ Ñ χ ˚pSq " a ˚. Then a natural candidate for f ˚is given by f ˚pt, x, y, z, Aq " χ ˚pσ ⊺ pt, xq A σpt, xqq, (1.17) for any t, x, y, z, A P r0, T s ˆRd ˆR ˆRd ˆSd .

Proof. First, we show that the function L γ pS, aq is coercive and continuous in a. For any θ P p0, 1s, we consider Z S,a θ " pB ⊺ θ SB θ ´TrrSsθq{2 ´aθ. Through simple computations, we check that Z S,a θ is continuous in a and integrable w.r.t. dP B b dθ.

1. Coercivity. We exhibit a coercive function which bounds L γ pS, aq from below. Owing to the boundedness of ℓ 2 γ , we estimate

ℓ 2 γ `ZS,a θ ˘´´aZ S,a θ `}SB θ } 2 {2 ¯ě p1 ´γq 2 ´a2 θ `}SB θ } 2 {2 p1 `γq 2 |a| `|B ⊺ θ SB θ | `| TrrSs|θ ˘{2,
dP B b dθ-almost surely. By integrating in θ and taking the expectation of the previous estimate, we get

L γ pS, aq ě p1 ´γq 2 ´a2 {2 `TrrS ⊺ Ss{4 ¯´p1 `γq 2 |a| pE|G ⊺ SG| `| TrrSs|q {4,
where G is a standard normal random vector. Then we conclude that a Þ Ñ L γ pS, aq is coercive. 2. Continuity. First we take S " 0 and we get

L γ p0, aq " p1 `γ sgnp´aqqa 2 {2.
Therefore, a Þ Ñ L γ p0, aq is a continuous and strictly convex function. Then we conclude that there is a unique global minimizer given by a ˚" 0. Now we take S ‰ 0 and decompose L γ pS, aq as follows

L γ pS, aq " ´E "ż 1 0 aZ S,a θ ℓ 2 γ `ZS,a θ ˘dθ  `1 2 E "ż 1 0 ℓ 2 γ `ZS,a θ ˘}SB θ } 2 dθ  . (1.18)
By replacing the expression of ℓ 2 γ (see Equation (1.9)), we get 

a Þ Ñ aZ S,a θ ℓ 2 γ `ZS,a θ ˘" p1 `γ2 qaZ S,a θ `2γa|Z
‰ 0, dP B b dθ-almost surely. It holds that a Þ Ñ ℓ 2 γ `ZS,a θ ˘}SB θ } 2
is continuous dP B b dθ-almost surely, due to the continuity of ℓ 2 γ on R ˚. Now, we conclude the second term of the decomposition in (1.18) is also continuous in a, by applying again the dominated convergence theorem. Therefore, we have proved that L γ pS, aq is continuous in a.

Let α P R large enough such that K " ta : L γ pS, aq ď αu is non-empty. Due to the continuity and coercivity of L γ pS, aq, K is compact. Then, by Weierstrass's Theorem, we conclude the announced result.

Here, we have just shown the existence of a minimizer a ˚to the Problem (1.16) for a given symmetric matrix S. The regularity of χ ˚pSq has not been analyzed, because the uniqueness has not been proved. In fact, the uniqueness and smoothness of f ˚of the problem (1.15) is challenging in the general case. Certainly, if χ ˚pSq is unique, then we could define f ˚as in (1.17). Then, a natural candidate for the self-consistent valuation/hedging rule is given by the solution to nonlinear PDE

# v t pt, xq `1 2 Tr " σσ ⊺ D 2 x v ˚‰pt, xq `χ˚p σ ⊺ pt, xq D 2 x v ˚pt, xq σpt, xqq " 0, v ˚pT , xq " gpxq. (1.19)
This PDE is fully nonlinear with a nonlinear term depending on the Hessian. Unfortunately, in full generality, we are not able to prove the existence/uniqueness of a solution v ˚satisfying Assumption 1.2. Also proving that the new PDE nonlinearity f ˚fulfills Assumption 1.3 is not straightforward. Fortunately, the one-dimensional case provides us a quasi-explicit formulation for χ ˚, which hopefully is a first step in the analysis of the PDE (1.19). Further investigation is left to future research.

Optimal PDE nonlinearity: Study in dimension 1

Here, we present a quasi-explicit formulation of the optimal PDE nonlinearity f ˚in the onedimensional case. Here, pB ⊺ θ SB θ ´TrrSsθq{2 becomes pB 2 θ ´θqy{2 for y " S P R. So, we rewrite the function L γ pS, aq given by (1.14) as

L γ py, aq " E "ż 1 0 ℓ 2 γ ´y `B2 θ ´θ˘{ 2 ´aθ ¯´a 2 θ ´ay `B2 θ ´θ˘{ 2 `y2 B 2 θ {2 ¯dθ  .
Let χ ˚P R a global minimizer of min aPR L γ py, aq. In the following proposition, we sum up some interesting properties of χ ˚. We denote by Φ N the cumulative distribution function (CDF) of the standard normal distribution and φ N " Φ 1 N its density.

Proposition 1.8. Let γ P r0, 1q. 

(b) The mapping c Þ Ñ L γ p1, cq and c Þ Ñ L γ p´1, cq
are strictly convex. Thus, c 1 and c 2 are unique characterized by `1 `γ2 ˘c1 `γ T pc 1 q " 0 and `1 `γ2 ˘c2 ´γ T pc 2 q " 0, respectively, where

T pcq " 2c1 2c`1ď0 `´8c Φ N `´? 2c `1˘´4 φ N `?2c `1˘? 2c `1 ´2c ¯12c`1ą0 .
Therefore, the minimizer χ ˚pyq (defined through c 1 and c 2 ) is unique.

Proof. (a) We start by the special case y " 0, we get L γ p0, aq " p1 `γ sgnp´aqq 2 a 2 {2. So, χ ˚p0q " 0. Now we consider the more interesting case y ‰ 0. By setting c " a{y, we rewrite L γ py, aq

L γ py, c yq " E "ż 1 0 ℓ 2 γ ´pB 2 θ ´θq{2 ´cθ ¯´c 2 θ ´cpB 2 θ ´θq{2 `B2 θ {2 ¯dθ  y 2 1 yą0 `E "ż 1 0 ℓ 2 γ ´´pB 2 θ ´θq{2 `cθ ¯´c 2 θ ´cpB 2 θ ´θq{2 `B2 θ {2 ¯dθ  y 2 1 yă0
(1.20) because ℓ 2 γ pyζq " ℓ 2 γ pζq if y ą 0 and ℓ 2 γ pyζq " ℓ 2 γ p´ζq if y ă 0, for any ζ P R. Consider a global minimizer c ‹ pyq of min cPR L γ py, c yq, then χ ˚pyq " c ‹ pyq y is also a global minimizer of min aPR L γ py, aq. Because py, cq Þ Ñ L γ py, c yq is multiplicatively separable on y ą 0 and on y ă 0, we write c ˚pyq " c 1 1 yą0 `c2 1 yă0 , where c 1 and c 2 are respectively global minimizers of min cPR L γ p1, cq and min cPR L γ p´1, cq.

(b) Let G be a standard normal random variable. It will be useful later to know ErG 2 1 Găα s for any real α : we have

E " G 2 1 Găα ‰ " ´α φ N pαq `ΦN pαq , E " G 2 1 Gąα ‰ " α φ N p´αq `ΦN p´αq , E " G 2 1 ´αăGăα ‰ " ´2α φ N p´αq `pΦ N pαq ´ΦN p´αqq .
(1.21) It holds that B θ " ? θG for all θ in r0, 1s. From (1.20), we get

L γ p1, cq " 1 `γ2 2 T 1 pcq `γ T 2 pcq, L γ p´1, cq " 1 `γ2 2 T 1 pcq ´γ T 2 pcq,
where

T 1 pcq " E " c 2 ´cpG 2 ´1q{2 `G2 {2 ‰ " c 2 `1{2, T 2 pcq " E " sgn `pG 2 ´1q{2 ´c˘`c 2 ´cpG 2 ´1q{2 `G2 {2 ˘‰ . Considering αpcq " ? 2c `1, it holds sgn `pG 2 ´1q{2 ´c˘" 1 2c`1ă0 `12c`1ą0 `1Gă´αpcq `1Gąαpcq ´1´αpcqăGăαpcq ˘.
From the expectations in (1.21), we deduce

T 2 pcq " 1 2c`1ă0 `c2 `1{2 12c`1ą0 `c2 `c{2 ˘E " 1 Gă´αpcq `1Gąαpcq ´1´αpcqăGăαpcq ‰ `12c`1ą0 p1{2 ´c{2q E " G 2 1 Gă´αpcq `G2 1 Gąαpcq ´G2 1 ´αpcqăGăαpcq ‰ " 1 2c`1ă0 `c2 `1{2 ˘`1 2c`1ą0 βpcq,
where βpcq " `c2 `1{2 ˘p3 ´4Φ N pαpcqqq `2 p1 ´cq αpcqφ N pαpcqq .

We easily check that L γ p1, cq and L γ p´1, cq are C 0 and piecewise C 2 . Let us compute their first derivatives for c ă ´1{2 and c ą ´1{2

B c L γ p1, cq " `1 `γ2 ˘c `γ `12c`1ă0 2c `12c`1ą0 β 1 pcq " 1 2c`1ă0 p1 `γq 2 c ```1 `γ2 ˘c `γ β 1 pcq ˘12c`1ą0 , B c L γ p´1, cq " `1 `γ2 ˘c ´γ `12c`1ă0 2c `12c`1ą0 β 1 pcq " 1 2c`1ă0 p1 ´γq 2 c ```1 `γ2 ˘c ´γ β 1 pcq ˘12c`1ą0 ,
where

β 1 pcq " 8c Φ N p´?2c `1q ´4φ N p ? 2c `1q ? 2c `1 ´2c.
Standard computations show that B c L γ p´1, cq and B c L γ p1, cq are continuous at c " ´1{2. Moreover, we see that B c L γ p1, cq and B c L γ p´1, cq are strictly increasing on c under the condition that |β 2 pcq| ď 2 on 2c `1 ą 0. Indeed, we have

β 2 pcq " 6 ´8 Φ N `?2c `1˘P r´2, 2s.
due to Φ N p ? 2c `1q P r1{2, 1s for all 2c `1 ą 0. Because L γ p1, cq , L γ p´1, cq are strictly convex, the optimal values c 1 and c 2 are unique and characterized respectively by B c L γ p1, c 1 q " 0 and B c L γ p´1, c 2 q " 0.

We depict the global minimizer χ ˚in Figure 1.3. We show the approximate values of c 1 and c 2 calculated by a root finding algorithm in Table 1.1. Therefore, in the spirit of Equation (1.17), we set f ˚pt, x, y, z, Aq " f γ pσ 2 pt, xq Aq with f γ denoting the optimal PDE nonlinearity in dimension 1:

f γ pyq :" χ ˚pyq " c 1 y1 yą0 `c2 y1 yă0 .
(1.22)

Asymptotic risk: Proof of the main result

The proof is long and technical. For this reason, we split it into different stages. • First, we study the conditional local risk R n,γ on the interval rt n , t n`1 s, by using a timespace rescaling argument (see Subsection 1.4.1). This rescaling turns out to be essential to pass to the limit later.

• Second, we derive an explicit approximation of the conditional local risk R n,γ (see Subsection 1.4.2).

• Finally, we prove that the remainder terms converge almost surely towards 0. For this, we show that the Greeks of u τ pt, ¨q converge to those of vpτ, ¨q as t Ò τ (see Subsection 1.4.2). Also, we show that the set of discontinuity points of ℓ 2 γ has measure zero under the Assumption 1.5.

In the proof, we use several constants K n,N pξq depending polynomially on the space variable ξ (uniformly in the interval rt n , t n`1 s and in the number of time steps). To simplify, we note K n,N pξq P K pol if for some real q ą 0, sup

N PN ˚sup 0ďnďN ´1 sup ξPR d |K n,N pξq| 1 `}ξ} q ă `8.
This upper bound depends on the polynomial bounds on the functions µ, σ, f, v and u.

Rescaling and conditioning

First, we start by a few observations.

• Thanks to the Markov property of the SDE and in view of our smoothness assumptions, R n,γ is a continuous function of t n and X tn only (see (1.11));

• R n,γ goes to zero at rate ∆t 2 , because we prove that the remainder of a second-order stochastic Taylor expansion will be inside ℓ γ . Rescaling it by ∆t, we expect to get a non-zero limit for the aggregated value of R n,γ (see (1.12));

• Note that ℓ 2 γ has a jump discontinuity at zero (see (1.9)). Then to decompose the conditional local risk, we will need to apply a stronger version of Ito's formula, known as, the Ito-Tanaka formula.

In view of a Taylor-Ito expansion, we consider the process X ∆t " tX ∆t θ , θ P r0, 1su satisfying

dX ∆t θ " ∆tµ `tn `θ∆t, X ∆t θ ˘dθ `∆t 1{2 σ `tn `θ∆t, X ∆t θ ˘dB θ , X ∆t 0 " ξ P R d , (1.23)
where B is an extra Brownian motion independent from W . It is a time-space rescaling of the original process starting from ξ at t n .

By denoting X t,ξ ¨as the SDE solution starting from ξ at t, we notice that the processes X tn,ξ tn`θ∆t , θ P r0, 1s ( and X ∆t θ , θ P r0, 1s

( have the same distribution. This is due to the fact both processes satisfy the same SDE generated by Brownian motions both independent from F tn . Then we can rewrite R n,γ (see (1.11)) as a continuous function in terms of X tn and X ∆t θ . Setting

P ∆t pt n , ξq " ∆t ´2E B " ℓ γ ´upn`1q pt n`1 , X ∆t 1 q ´upn`1q pt n , ξq ´Dx u pn`1q pt n , ξq `X∆t 1 ´ξ˘¯ı , leads to R n,γ " ∆t 2 P ∆t pt n , X tn q.
(1.24)

Stochastic expansion and approximation of sensitivities

Proposition 1.9 (Stochastic expansion of P ∆t pt n , X tn q). Assume notations and assumptions of Theorem 1.6. Denote F pn`1q : r0, t n`1 s ˆRd Ñ R and G pn`1q : r0, t n`1 s ˆRd Ñ S d as F pn`1q pt, ¨q " f `t, ¨, u pn`1q pt, ¨q, D x u pn`1q pt, ¨q, D 2 x u pn`1q pt, ¨q˘;

G pn`1q pt, ¨q " `σ⊺ pD 2 x u pn`1q qσ ˘pt, ¨q.

(1.25)

For any t n and ξ P R d , let X ∆t θ : r0, 1s ˆΩ Ñ R d be the strong solution to the SDE (1.23) such that X ∆t 0 " ξ and let E ∆t θ : r0, 1s ˆΩ Ñ R be the stochastic process defined by

E ∆t θ " u pn`1q `tn `θ∆t, X ∆t θ ˘´u pn`1q pt n , ξq ´Dx u pn`1q pt n , ξq ¨X∆t θ ´ξ (1.26) so that P ∆t pt n , ξq " ∆t ´2E B " ℓ γ pE ∆t 1 q ‰ .
(1.27)

The following local risk decomposition holds

P ∆t pt n , ξq " E B « ż 1 0 ℓ 2 γ ´Eθ `Gpn`1q pt n , ξq, F pn`1q pt n , ξq ˘`R ∆t θ pt n , ξq
Qθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯dθ ff

`Kn,N pξq∆t 1{2 ,
where

E θ pS, yq " ż θ 0 B ⊺ θ 1 S dB θ 1 ´yθ, (1.28) Q θ pS, yq " y 2 θ ´y ż θ 0 B ⊺ θ 1 S dB θ 1 `}SB θ } 2 {2, (1.29) R ∆t θ pt n , ξq " E ∆t θ {∆t ´Eθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯, (1.30)
for some constant K n,N pξq P K pol .

The proof of Proposition 1.9 is delicate. We postpone it to Subsection 1.4.4. In order to perform a second -order stochastic expansion, we need that u pn`1q and D x u pn`1q be in C 1,2 to apply Ito's formula. Additionally, we require σ, D x u pn`1q , D 2 x u pn`1q , D x u pn`1q t and D 2 x D x u pn`1q to have polynomial growth to obtain proper integrability along the computations. Finally, we ask for σ and D 2

x u pn`1q to be in C 1{2,1 loc,pol , which is useful at the stochastic expansion of the gradient D x u pn`1q . All the above conditions are satisfied thanks to our assumptions. Notice that the above expansion of P ∆t pt n , ξq depends on u pn`1q , solution of the PDE (1.5) on the subinterval rt n , t n`1 s, whose size goes to 0. Therefore, by invoking a small -time approximation argument, we replace u pn`1q and its first -second derivatives by its terminal value vpt n`1 , ¨q and its first -second derivatives. Notice that the reference valuation v is independent of ∆t. This is the matter of following statement, proved in Appendix 1.6.2. Proposition 1.10 (Approximation of sensitivities). Assume notations and assumptions of Theorem 1.6. Then, there exists some constant K n,N pξq P K pol such that ˇˇu pn`1q pt n , ξq

´vpt n`1 , ξq ˇˇď K n,N pξq∆t 1{2 , (1.31) › › ›D x u pn`1q pt n , ξq ´Dx vpt n`1 , ξq › › › ď K n,N pξq∆t 1{2 , (1.32) › › ›D 2 x u pn`1q pt n , ξq ´D2 x vpt n`1 , ξq › › › ď K n,N pξq∆t 1{2 .
(1.33)

Aggregation and passage to the limit

We set

F pt, ξq " f `t, ξ, vpt, ξq, D x vpt, ξq, pD 2 x vqpt, ξq ˘P R, Gpt, ξq " pσ ⊺ pD 2
x vqσqpt, ξq P S d .

(1.34)

Replacing ξ by X tn in the expansion of P ∆t pt n , ξq in Proposition 1.9 leads to

P ∆t pt n , X tn q "E B « ż 1 0 ℓ 2 γ ´Eθ ´Gpn`1q pt n , X tn q, F pn`1q pt n , X tn q ¯`R ∆t θ pt n , X tn q Qθ ´Gpn`1q pt n , X tn q, F pn`1q pt n , X tn q ¯dθ ff `Kn,N pX tn q∆t 1{2 ,
where K n,N pX tn q P K pol . By substituting u pn`1q pt n , ¨q by its terminal value vpt n`1 , ¨q in F pn`1q pt n , ¨q and G pn`1q pt n , ¨q (see (1.25)), we get F pt n`1 , ¨q and Gpt n`1 , ¨q (see (1.34)). Hence,

P ∆t pt n , X tn q "E B « ż 1 0 ℓ 2 γ ´Eθ pGpt n`1 , X tn q, F pt n`1 , X tn qq `R ∆t θ pt n , X tn q Qθ ´Gpt n`1 , X tn q, F pt n`1 , X tn q ¯dθ ff `C ∆t pt n , X tn q `Kn,N pX tn q∆t 1{2 ,
where

R∆t θ pt n , ξq :"E θ pG pn`1q pt n , ξq, F pn`1q pt n , ξqq ´Eθ pGpt n`1 , ξq, F pt n`1 , ξqq `R∆t θ pt n , ξq, (1.35) C∆t pt n , ξq :"E B « ż 1 0 ℓ 2 γ ´Eθ pGpt n`1 , ξq, F pt n`1 , ξqq `R ∆t θ pt n , ξq ¯(1.36)
ˆ´Q θ pG pn`1q pt n , ξq, F pn`1q pt n , ξqq ´Qθ pGpt n`1 , ξq, F pt n`1 , ξqq ¯dθ ff .

In the sequel, we require estimates of R∆t θ pt n , X tn q and C∆t pt n , X tn q, summarized in the following Proposition, proved later in Subsection 1.4.5.

Proposition 1.11 (Almost sure convergence of the remainder). Under the assumptions of Theorem 1.6, for any p ě 1, there exists a constant K p such that

(a) E " sup 0ďnďN ´1 sup θPr0,1s
ˇˇˇE θ pG pn`1q pt n , X tn q, F pn`1q pt n , X tn qq ´Eθ pGpt n`1 , X tn q, F pt n`1 , X tn qq ˇˇˇp  ď K p ∆t p{2 ;

(b) sup 0ďnďN ´1 E ˇˇC ∆t pt n , X tn q ˇˇď K 1 ∆t 1{2 ; (c) sup 0ďnďN ´1 sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇÝÑ N Ñ8 0, dP W b dP B -a.s.
From the definition of P ∆t in (1.24), we have ∆t ´1R n,γ " P ∆t pt n , X tn q∆t. By summing it for 0 ď n ď N ´1, we obtain

∆t ´1E " N ´1 ÿ n"0 R n,γ  " E " N ´1 ÿ n"0 P ∆t pt n , X tn q∆t  " E " ż T 0 P ∆t ´ϕN t , X ϕ N t ¯dt  " E W bB " ż T 0 ż 1 0 ℓ 2 γ ´Eθ ´Gp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯`R ∆t θ pϕ N t , X ϕ N t q Qθ ´Gp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯dθ dt  `N´1 ÿ n"0 E " C∆t pt n , X tn q∆t `Kn,N pX tn q∆t 3{2 ı .
(1.37)

The last sum goes to 0 as N Ñ `8, owing to Proposition 1.11 and Proposition 1.9. It remains to determine the limit of the first term in (1.37). We achieve this result by applying the dominated convergence theorem.

Step

1. Because of σ, v, D x v, D 2 x v, f P C 1{2,1
loc,pol (therefore, they are continuous in time and space) and the path-continuity of X, we get dP W -a.s. for any t

`σ⊺ pD 2 x vqσ ˘p φN t , X ϕ N t q ÝÑ N Ñ8 `σ⊺ pD 2 x vqσ ˘pt, X t q, f ´φ N t , X ϕ N t , vp φN t , X ϕ N t q, D x vp φN t , X ϕ N t q, D 2 x vp φN t , X ϕ N t q ÝÑ N Ñ8 f `t, X t , vpt, X t q, D x vpt, X t q, D 2 x vpt, X t q ˘.
Hence, it holds dP W b dP B -a.s. for any θ, t 

E θ ´Gp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯ÝÑ N Ñ8 E θ pΓpt, X t q, F pt, X t qq , Q θ ´Gp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯ÝÑ N Ñ8 Q θ pGpt, X t q, F
ˇˇR ∆t θ pt n , X tn q ˇˇÝÑ N Ñ8 0, dP W b dP B -almost surely.
Step 2. Seeing that the second derivative ℓ 2 γ is discontinuous at 0 and the set A :" tpω, t, θq P Ω ˆr0, T s ˆr0, 1s : E θ pGpt, X t pωqq, F pt, X t pωqqq pωq " 0u (1.38) has measure zero (see Proposition 1.19 in Appendix), it holds

ℓ 2 γ ´Eθ ´Gp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯`R ∆t θ p φN t , X ϕ N t q ÝÑ N Ñ8 ℓ 2 γ pE θ pGpt, X t q, F pt, X t qqq , dP W b dP B b dt b dθ-almost surely.
Step 3. Because of the boundedness of ℓ 2 γ and the polynomial growth of σ, v, D x v, D 2 x v, we have ˇˇˇℓ 2

γ ´Eθ ´Γp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯`R ∆t θ p φN t , X ϕ N t q ¯Qθ ´Gp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯ˇˇď C ˜1 `sup tPr0,T s |X t | `}B θ } `› › › › ż θ 0 B θ dB ⊺ θ › › › › ¸q
for some positive constants C and q.

By the dominated convergence theorem, we conclude

E W bB "ż T 0 ż 1 0 ℓ 2 γ ´Eθ ´Γp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯`R ∆t θ p φN t , X ϕ N t q Qθ ´Γp φN t , X ϕ N t q, F p φN t , X ϕ N t q ¯dθ dt ı ÝÑ N Ñ8 E W bB "ż T 0 ż 1 0 ℓ 2 γ pE θ pΓpt, X t q, F pt, X t qqq Q θ pΓpt, X t q, F pt, X t qq dθ dt  .
This completes the proof of Theorem 1.6.

Proof of the stochastic expansion in Subsection 1.4.2.

Now we present the proof of the results related to the stochastic expansion of P ∆t pt n , X tn q in Subsection 1.4.2.

Proof of Proposition 1.9. For the sake of conciseness, we set u " u pn`1q . By substituting X ∆t θ in (1.23) into E ∆t θ in (1.26), we get

E ∆t θ " u `tn `θ∆t, X ∆t θ ˘´upt n , ξq ´∆t ż θ 0 D x upt n , ξqµ `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 ´∆t 1{2 ż θ 0 D x upt n , ξqσ `tn `θ1 ∆t, X ∆t θ 1 ˘dB θ 1 , (1.39)
where D x up¨, ¨q is a row vector.

In the proof, we use the Ito-Tanaka formula to ℓ γ `E∆t θ ˘between θ " 0 and θ " 1 and we perform some Taylor-Ito expansions in terms of ∆t. Because u, u t , D x u, D 2

x u P C 1{2,1 loc,pol , then u P C 1,2 prt n , t n`1 s ˆRd , Rq. Applying Ito's formula to u `tn `θ∆t, X ∆t θ ˘yields

upt n `θ∆t, X ∆t θ q ´upt n , ξq " ∆t 1{2 ż θ 0 pD x uσq `tn `θ1 ∆t, X ∆t θ 1 ˘dB θ 1 `∆t ż θ 0 pL tn`θ 1 ∆t uq `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 `∆t ż θ 0 ppD x uq µq `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 . (1.40)
Here, we denote p∆D x uqpt, ζq " D x upt, ζq ´Dx upt n , ξq for any t P rt n , t n`1 s and ζ P R d . Replacing (1.40) in (1.39) leads to

E ∆t θ " ∆t 1{2 ż θ 0 pp∆D x uq σq `tn `θ1 ∆t, X ∆t θ 1 ˘dB θ 1 `∆t ż θ 0 pL tn`θ 1 ∆t uq `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 `∆t ż θ 0 pp∆D x uq µq `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 . (1.41)
Use that u solves the PDE (1.5) to simplify the second term above. Then, we apply the Ito-Tanaka formula to the convex function ℓ γ (see Theorem 1.5 and Corollary 1.6 in [RY99, Chapter VI]) composed with the process E ∆t θ between θ " 0 and θ " 1. Because ℓ 1 γ pyq " ℓ 2 γ pyqy for all y P R, we get

ℓ γ pE ∆t 1 q " ´∆t ż 1 0 ℓ 2 γ `E∆t θ ˘E∆t θ F pn`1q `tn `θ∆t, X ∆t θ ˘dθ `∆t 1{2 ż 1 0 ℓ 2 γ `E∆t θ ˘E∆t θ pp∆D x uq σq `tn `θ∆t, X ∆t θ ˘dB θ `∆t ż 1 0 ℓ 2 γ `E∆t θ ˘E∆t θ pp∆D x uq µq `tn `θ∆t, X ∆t θ ˘dθ `1 2 ∆t ż 1 0 ℓ 2 γ `E∆t θ ˘› › pp∆D x uq σq `tn `θ∆t, X ∆t θ ˘› › 2 dθ.
Considering P ∆t pt n , ξq in (1.27), taking the expectation of the above expression and dividing by ∆t 2 gives P ∆t pt n , ξq ": P ∆t 1 pt n , ξq `P ∆t 2 pt n , ξq `P ∆t 3 pt n , ξq, (1.42)

where

P ∆t 1 pt n , ξq :" ´∆t ´1E B "ż 1 0 ℓ 2 γ `E∆t θ ˘E∆t θ F pn`1q `tn `θ∆t, X ∆t θ ˘dθ  , (1.43) 
P ∆t 2 pt n , ξq :"

1 2 ∆t ´1E B "ż 1 0 ℓ 2 γ `E∆t θ ˘› › pp∆D x uq σq `tn `θ∆t, X ∆t θ ˘› › 2 dθ  , (1.44) 
P ∆t 3 pt n , ξq :" ∆t ´1E B "ż 1 0 ℓ 2 γ `E∆t θ ˘E∆t θ pp∆D x uq µq `tn `θ∆t, X ∆t θ ˘dθ  .
(1.45)

Here we have used that the stochastic integral in ℓ γ pE ∆t 1 q has expectation zero, following directly from E ş 1 0 |E ∆t θ | 4 dθ ă `8 and from the polynomial growth of σ and D x u (because σ, D x u P C 1{2,1 loc,pol ). Now we analyze the expansion of E ∆t θ and then apply it to T ∆t i pt n , ξq for i " 1, 2, 3.

Step 1: Expansion of pp∆D x uq σq `tn `θ∆t, X ∆t θ ˘and E ∆t θ . We approximate ∆D x u up to order ∆t 1{2 , by setting

p∆D x uq `tn `θ∆t, X ∆t θ ˘" ∆t 1{2 B ⊺ θ `σ⊺ `D2 x u ˘˘pt n , ξq `r∆t θ , (1.46) 
where ∆D x u and r ∆t θ are row vectors.

Lemma 1.12. Let p ě 2. Under the assumptions of Theorem 1.6, it holds

(a) sup 0ďnďN ´1 sup θPr0,1s E B › › r ∆t θ › › p ď K n,N pξq∆t p , (b) sup 0ďnďN ´1 sup θPr0,1s E B › › p∆D x uq `tn `θ∆t, X ∆t θ ˘› › p ď K n,N pξq∆t p{2 ,
for some constant K n,N pξq P K pol .

Proof of Lemma 1.12. (a

) Because D x u, D x u t , D 2 x u, D 2 x D x u P C 1{2,1
loc,pol , then D x u P C 1,2 prt n , t n`1 sR d q d. By applying Ito's formula to D x u `tn `θ∆t, X ∆t θ ˘, we get

r ∆t θ " ∆t ż θ 0 `Ltn`θ 1 ∆t D x u `µ⊺ pD 2 x uq ˘`t n `θ1 ∆t, X ∆t θ 1 ˘dθ 1 `∆t 1{2 ż θ 0 dB ⊺ θ 1 ``σ ⊺ `D2 x u ˘˘`t n `θ1 ∆t, X ∆t θ 1 ˘´`σ ⊺ `D2 x u ˘˘pt n , ξq ˘.
Owing to the Hölder inequality, the BDG inequality and the polynomial growth conditions on the functions (because

σ, D x u, D x u t , D 2 x u, D 2 x D x u P C 1{2,1
loc,pol ), we estimate

E B › › r ∆t θ › › p ď 2 p´1 ∆t p ż θ 0 E B › › `Ltn`θ 1 ∆t D x u `µ⊺ pD 2 x uq ˘`t n `θ1 ∆t, X ∆t θ 1 ˘› › p dθ 1 θ `2p´1 C BDG ∆t p{2 ż θ 0 E B › › `σ⊺ `D2 x u ˘˘`t n `θ1 ∆t, X ∆t θ 1 ˘´`σ ⊺ `D2 x u ˘˘pt n , ξq › › p dθ 1 .
Using the growth conditions from the assumptions and applying bounds (1.58) in Lemma 1.17

to σ ⊺ pD 2 x uq P C 1{2,1 loc,pol (because σ and D 2 x u are in C 1{2,1
loc,pol ), we obtain the announced estimate. (b) This item follows directly from Lemma 1.17 and from item (a), using standard computations.

By replacing the decomposition (1.46) into the expression of E ∆t θ given in (1.41), we obtain

E ∆t θ " ∆tE θ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`∆tR ∆t θ pt n , ξq, (1.47) 
where

E θ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯" ż θ 0 B ⊺ θ 1 G pn`1q pt n , ξq dB θ 1 ´F pn`1q pt n , ξqθ, (1.48) 
and

R ∆t θ pt n , ξq " ´ż θ 0 ´F pn`1q pt n `θ1 ∆t, X ∆t θ 1 q ´F pn`1q pt n , ξq ¯dθ 1 `ż θ 0 B ⊺ θ 1 `σ⊺ `D2 x u ˘˘pt n , ξq `σ `tn `θ1 ∆t, X ∆t θ 1 ˘´σpt n , ξq ˘dB θ 1 `∆t ´1{2 ż θ 0 r ∆t θ 1 σ `tn `θ1 ∆t, X ∆t θ 1 ˘dB θ 1 `∆t 1{2 ż θ 0 B ⊺ θ 1 `σ⊺ `D2 x u ˘˘pt n , ξqµ `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 `ż θ 0 r ∆t θ 1 µ `tn `θ1 ∆t, X ∆t θ 1 ˘dθ 1 .
(1.49) Lemma 1.13. Under the assumptions of Theorem 1.6, it holds

(a) sup θPr0,1s E B ˇˇE θ `Gpn`1q pt n , ξq, F pn`1q pt n , ξq ˘ˇ2 ď K n,N pξq; (b) sup θPr0,1s E B ˇˇR ∆t θ pt n , ξq ˇˇ2 ď K n,N pξq∆t,
for some constant K n,N pξq P K pol .

Proof of Lemma 1.13. (a) From (1.48) we get

E B ˇˇE θ ´pσ ⊺ pD 2 x uqσqpt n , ξq, F pn`1q pt n , ξq ¯ˇˇ2 ď 2|F pn`1q pt n , ξq| 2 θ 2 `2E B ˇˇˇˇż θ 0 B ⊺ θ 1 `pσ ⊺ pD 2 x uqσq ˘pt n , ξq dB θ 1 ˇˇˇˇ2 ,
and we conclude owing to the Ito isometry and the growth conditions on the coefficients (because

σ, u, D x u, D 2 x u, f P C 1{2,1 loc,pol ). (b) From (1.49) we estimate E B ˇˇR ∆t θ pt n , ξq ˇˇ2 ď 5 ż 1 0 E B ˇˇF pn`1q `tn `θ1 ∆t, X ∆t θ 1 ˘´F pn`1q pt n , ξq ˇˇ2 dθ 1 `5E B ż 1 0 › › B ⊺ θ 1 `σ⊺ `D2 x u ˘˘pt n , ξq `σ `tn `θ1 ∆t, X ∆t θ 1 ˘´σpt n , ξq ˘› › 2 2 dθ 1 `5∆t ´1E B ż 1 0 › › r ∆t θ 1 σ `tn `θ1 ∆t, X ∆t θ 1 ˘› › 2 2 dθ 1 `5∆t ż 1 0 E B ˇˇB ⊺ θ 1 `σ⊺ `D2 x u ˘˘pt n , ξqµ `tn `θ1 ∆t, X ∆t θ 1 ˘ˇ2 dθ 1 `5 ż 1 0 E B ˇˇr ∆t θ 1 µ `tn `θ1 ∆t, X ∆t θ 1 ˘ˇ2 dθ 1 ,
for all ξ P R d , n P t0, . . . , N ´1u and θ P r0, 1s. Now we conclude to the inequality (b) by using that f , u, D x u, D 2 x u, σ are in C

1{2,1 loc,pol , and by applying Lemmas 1.17 and 1.12.

Step 2: Expansion of P ∆t 1 pt n , ξq and P ∆t 3 pt n , ξq. From ℓ 2 γ pyq " ℓ 2 γ py{∆tq, for all y P R, and the expansion of E ∆t θ in (1.47), we get

ℓ 2 γ `E∆t θ ˘" ℓ 2 γ ´Eθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq ¯. (1.50)
By combining this with (1.43) and (1.47), we obtain

P ∆t 1 pt n , ξq " ´EB " ż 1 0 ℓ 2 γ ˆEθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq Ḟ pt n , ξqE θ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯dθ  `C∆t 1 pt n , ξq,
where

C ∆t 1 pt n , ξq :" ´EB " ż 1 0 ℓ 2 γ ´Eθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq R∆t θ pt n , ξqF pn`1q `tn `θ∆t, X ∆t θ ˘dθ  ´EB " ż 1 0 ℓ 2 γ `E∆t θ ˘´F pn`1q
`tn `θ∆t, X ∆t θ ˘´F pn`1q pt n , ξq ˆEθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯dθ  .

(1.51)

The estimates of C ∆t 1 pt n , ξq and P ∆t 3 pt n , ξq are summarized in the following lemma.

Lemma 1.14. Under the assumptions of Theorem 1.6, it holds

(a) E B ˇˇC ∆t 1 pt n , ξq ˇˇď K n,N pξq∆t 1{2 , (b) E B ˇˇP ∆t 3 pt n , ξq ˇˇď K n,N pξq∆t 1{2 ,
for some constant K n,N pξq P K pol .

Proof of Lemma 1.14. (a) From (1.51), it readily follows that

ˇˇC ∆t 1 pt n , ξq ˇˇď KE B "ż 1 0 ˇˇF pn`1q `tn `θ∆t, X ∆t θ ˘ˇˇˇˇR ∆t θ pt n , ξq ˇˇdθ  `KE B "ż 1 0 ˇˇF pn`1q `tn `θ∆t, X ∆t θ ˘´F pn`1q pt n , ξq ˇˇˇˇE θ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯ˇˇd θ 
where K is an upper bound of ℓ 2 γ . For the first term above, use that F pn`1q has polynomial growth in its arguments (because u pn`1q , D x u pn`1q , D 2

x u pn`1q , f P C 1{2,1 loc,pol ). and Lemma 1.13(b). For the second term, apply the Cauchy-Schwarz with Lemmas 1.17 and 1.13(a). It yields

ˇˇC ∆t 1 pt n , ξq ˇˇď K n,N pξq∆t 1{2
as announced.

(b) Similarly, from (1.45) we write

ˇˇP ∆t 3 pt n , ξq ˇď K ż 1 0 E B "ˇˇˇE θ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq ˇˇˇˇpp∆D x uq µq `tn `θ∆t, X ∆t θ ˘ˇı dθ ď K ż 1 0 d E B " ˇˇE θ `Gpn`1q pt n , ξq, F pn`1q pt n , ξq ˘`R ∆t θ pt n , ξq ˇˇ2  ˆdE B " ˇˇpp∆D x uq µq `tn `θ∆t, X ∆t θ ˘ˇ2  dθ.
It is now straightforward to conclude that the above is bounded by K n,N pξq∆t 1{2 , using Lemmas 1.17, 1.12 and 1.13.

Step 3: Expansion of C ∆t 2 pt n , ξq. Using the expansion of ∆D x u in (1.46), we obtain

› › pp∆D x uq σq `tn `θ∆t, X ∆t θ ˘› › 2 " ∆t › › B ⊺ θ `σ⊺ pD 2 x uq ˘pt n , ξqσ `tn `θ∆t, X ∆t θ ˘› › 2 `› › r ∆t θ σ `tn `θ∆t, X ∆t θ ˘› › 2 `2∆t 1{2 `B⊺ θ `σ⊺ pD 2 x uq ˘pt n , ξqσ `tn `θ∆t, X ∆t θ ˘˘¨`r ∆t θ σ `tn `θ∆t, X ∆t θ ˘˘.
Replacing the identity σpt, ζq " ∆σpt, ζq `σpt n , ξq into the first term of the previous equation, we get

› › pp∆D x uq σq `tn `θ∆t, X ∆t θ ˘› › 2 " ∆t › › B ⊺ θ `σ⊺ pD 2 x uqσ ˘pt n , ξq › › 2 `c∆t θ pt n , ξq, (1.52) 
where

c ∆t θ pt n , ξq " ∆t › › B ⊺ θ `σ⊺ pD 2 x uq ˘pt n , ξq∆σ `tn `θ∆t, X ∆t θ ˘› › 2 `› › r ∆t θ σ `tn `θ∆t, X ∆t θ ˘› › 2 `2∆t `B⊺ θ `σ⊺ pD 2 x uq ˘pt n , ξq∆σ `tn `θ∆t, X ∆t θ ˘˘¨`B ⊺ θ `σ⊺ pD 2 x uqσ ˘pt n , ξq 2∆t 1{2 `B⊺ θ `σ⊺ pD 2 x uq ˘pt n , ξqσ `tn `θ∆t, X ∆t θ ˘˘¨`r ∆t θ σ `tn `θ∆t, X ∆t θ ˘˘. (1.53)
From (1.52) and (1.50), the expression of P ∆t 2 in (1.44) becomes

P ∆t 2 pt n , ξq " 1 2 E B "ż 1 0 ℓ 2 γ ´Eθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq ¯› › B ⊺ θ `σ⊺ pD 2 x uqσ ˘pt n , ξq › › 2 dθ  `C∆t 2 pt n , ξq,
where

C ∆t 2 pt n , ξq :" 1 2 E B "ż 1 0 ℓ 2 γ ´Eθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq ¯∆t ´1c ∆t θ pt n , ξq dθ  .
(1.54) The estimate of C ∆t 2 pt n , ξq is summarized in the following lemma.

Lemma 1.15. Under the assumptions of Theorem 1.6, it holds

ˇˇC ∆t 2 pt n , ξq ˇˇď K n,N pξq∆t 1{2 ,
for some constant K n,N pξq P K pol .

Proof of Lemma 1.15. From the expression c ∆t θ pt n , ξq in (1.53), we write

E B ˇˇc ∆t θ pt n , ξq ˇˇď ∆tE B › › B ⊺ θ `σ⊺ pD 2 x uq ˘pt n , ξq∆σ `tn `θ∆t, X ∆t θ ˘› › 2 `EB › › r ∆t θ σ `tn `θ∆t, X ∆t θ ˘› › 2 `2∆t b E B › › B ⊺ θ pσ ⊺ pD 2 x uqq pt n , ξq∆σ `tn `θ∆t, X ∆t θ ˘› › 2 ˆbE B › › B ⊺ θ pσ ⊺ pD 2 x uqσq pt n , ξq › › 2 `2∆t 1{2 b E B › › B ⊺ θ pσ ⊺ pD 2 x uqq pt n , ξqσ `tn `θ∆t, X ∆t θ ˘› › 2 ˆbE B › › r ∆t θ σ `tn `θ∆t, X ∆t θ ˘› › 2 ď K n,N pξq∆t 3{2 .
Again we have used the polynomial growth condition on σ, D 2 x u and the local regularity condition on σ P C 1{2,1 loc,pol with Lemma 1.17, and Lemma 1.12 -(a). Consequently and in view of the definition (1.54) of C ∆t 2 pt n , ξq, we obtain the estimate ˇˇC ∆t 2 pt n , ξq ˇˇď

1 2 |ℓ 2 γ | 8 ∆t ´1 sup θPr0,1s E B ˇˇc ∆t θ pt n , ξq ˇˇ,
which leads to the announced result.

Step 4: Expansion of P ∆t pt n , ξq. From (1.42) and the previous expansions of T ∆t i pt n , ξq for i " 1, 2, 3, we deduce

P ∆t pt n , ξq " E B " ż 1 0 ℓ 2 γ ´Eθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯`R ∆t θ pt n , ξq Qθ ´Gpn`1q pt n , ξq, F pn`1q pt n , ξq ¯dθ  `C∆t 1 pt n , ξq `C∆t 2 pt n , ξq `P ∆t 3 pt n , ξq,
where Q θ is defined in (1.29). Since C ∆t 1 pt n , ξq, C ∆t 2 pt n , ξq and P ∆t 3 pt n , ξq satisfy ∆t 1{2 -bounds, we get the result of Proposition 1.9.

Proof of the almost sure convergence in Subsection 1.4.3

Now we present the proof of the results related to the the almost sure convergence of the remainder R∆t θ pt n , X tn q in Subsection 1.4.3.

Proof of Proposition 1.11. (a) From the definition of E θ in (1.28), it follows that ˇˇE θ ´Gpn`1q pt n , X tn q, F pn`1q pt n , X tn q ¯´E θ pΓpt n`1 , X tn q, F pt n`1 , X tn qq ˇď ˇˇf pt n , X tn , u pn`1q pt n , X tn q, D x u pn`1q pt n , X tn q, D 2

x u pn`1q pt n , X tn qq

´f pt n`1 , X tn , vpt n`1 , X tn q, D x vpt n`1 , X tn q, D 2 x vpt n`1 , X tn qq ˇ› › ›pσ ⊺ ´D2 x u pn`1q ¯σqpt n , X tn q ´pσ ⊺ `D2 x v ˘σqpt n`1 , X tn q › › › › › › › ż θ 0 B θ 1 dB ⊺ θ 1 › › › › ď K n,N pX tn q∆t 1{2 ˆ1 `› › › › ż θ 0 B θ 1 dB ⊺ θ 1 › › › › ˙,
for some constant K n,N pX tn q P K pol , where we have used Proposition 1.10 and the assumptions on coefficients, prices and greeks. Owing to the Burkholder-Davis-Gundy (BDG) inequalities, we conclude the proof of (a).

(b) From C∆t pt n , ξq in (1.36) we get

E ˇˇC ∆t pt n , X tn q ˇˇď |ℓ 2 γ | 8 ż 1 0 E ˇˇQ θ ´Gpn`1q pt n , X tn q, F pn`1q pt n , X tn q ¯´Q θ pΓpt n`1 , X tn q, F pt n`1 , X tn qq ˇˇdθ.
Considering the expression of Q θ in (1.29), we are able to apply the same arguments as for (a). Further details are left to the reader. We are done with the estimate (b).

(c) Let p ě 1 and set Z N :" sup 0ďnďN ´1 sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇp . From the definition (1.35) of R∆t θ pt n , ξq we write

ErZ N s ď 2 p´1 E « sup 0ďnďN ´1 sup θPr0,1s ˇˇE θ ´Gpn`1q pt n , X tn q, F pn`1q pt n , X tn q Ēθ ´Γpt n`1 , X tn q, F pt n`1 , X tn q ¯ˇˇp ff `2p´1 E « sup 0ďnďN ´1 sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇp ff ď K p N ∆t p{2
owing to (a) and Lemma 1.16 stated below. Last, apply Lemma 1.18 to the above Z N with p ą 4: we are done.

In the proof, we have used the following result, useful to justify the almost sure. convergence to 0 of remainder terms. We postpone its proof to Appendix 1.6.1.

Lemma 1.16. Let R ∆t θ pt n , ξq be given by (1.30) and p ě 1. Under the assumptions of Theorem 1.6, there exists a finite positive constant K p depending on the coefficients µ, σ, f , u pn`1q and its derivatives such that

E « sup 0ďnďN ´1 sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇp ff ď K p N ∆t p{2 .
Proof. We claim the following upper bound holds

E B " sup θPr0,1s ˇˇR ∆t θ pt n , ξq ˇˇp 2  ď K n,N pξq∆t p (1.55)
for some constant K n,N pξq P K pol .

With this control at hand, we complete the proof by using the rough inequality

E « sup 0ďnďN ´1 sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇp ff ď N ´1 ÿ n"0 E « sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇp ff .
So, it is enough to show (1.55). Regarding the control with R ∆t θ pt n , ξq, we follow the proof of Lemma 1.13 item (b). The adaptation is obvious since instead of taking p " 2, we take p ě 1. Then we handle the supremum over θ inside the expectation using BDG inequalities. Other arguments are unchanged, leading to the announced estimate. We leave to the reader the details.

Numerical results

In this section, we compute the numerical solution to the f -PDE (1.5) in dimension 1. In Subsection 1.3.2, we have obtained a formulation for the optimal PDE nonlinearity f γ (see (1.22)). First, in Section 1.5.1, we present the numerical solution for different European options. Then, in Section 1.5.2, we compute the asymptotic risk R γ pv ˚, f q for different f P tf 0 , f 0.1 , f 0.2 , f 0.3 u confirming the optimality of f γ .

Finally, in Section 1.5.3, we compare the optimal f ˚-PDE solution with the solution to the minimization problem (1.3). We aim to check the conjecture whether one can interchange the limit in N and the minimization over strategies in our setting. In other words, we verify the solution to the minimization problem in discrete time (see (1.3)) corresponds, as N large, to the solution to the nonlinear f ˚-PDE (1.5).

Optimal PDE valuation of European options

Here, we assume that the hedging instrument X satisfies the SDE (1.8) with µpt, xq " 0, σpt, xq " σx, 0 ď t ď T, x P R. (1.56) in a forward form, where αpxq " σ 2 x 2 {2, x P R, and f : R Ñ R is a real-valued function to be chosen.

Seeing that (1.56) has a second-order partial differential in space and first-order in time, we require for a numerical resolution one initial and two boundary conditions. Also, European option with maturity T , defined by a payoff function gpxq, are used as initial time condition.

European option payoffs. Denote the mapping x Þ Ñ maxpx, 0q by x `. We choose the following options:

• Call and put option with strike price K 0 ;

• Asset-or-nothing call and put option with strike price K 0 ;

• Bull-spread and bear-spread option with strike prices

K 2 ą K 1 ;
which is summarized below Type Call Put

Vanilla px ´K0 q `pK 0 ´xq Digital x1 K 0 ´xă0 x1 x´K 0 ă0 Spread px ´K1 q `´px ´K2 q `pK 2 ´xq `´pK 1 ´xq Ìn the following, we consider:

Set Type pK 0 , K 1 , K 2 q σ T A Vanilla and digital p100, ´, ´q 0.3 1.0 B Spread p´, 90, 110q 0.3 1.0
We examine the digital and the spread options because of the discontinuity and the change of convexity, respectively, of their payoffs. Aware these payoffs do not satisfy the assumptions of Theorem 1.6, we believe that these hypotheses are only sufficient and the previous asymptotic analysis can also be applied to those payoffs.

Numerical scheme: space discretization. Let us detail our numerical scheme. We look for a second-order approximation to the PDE (1.56) solution on a finite domain L " r0, L max s.

Let I P N. Therefore, we equally discretize L in I `1 points tx 0 , x 1 , . . . , x I´1 , x I u such that ∆x " L max {I and x i " i∆x for each 0 ď i ď I.

Assuming that u is smooth enough, we get the second-order approximation of the second derivative of u u i`1 ptq ´2u i ptq `ui´1 ptq ∆x 2 " upt,

xq xx | x"x i `Op∆x 2 q,
for every 1 ď i ď I ´1, with u i ptq denoting upt, x i q. Owing to the second-order approximation, we obtain a semi-discretization from (1.56):

u i ptq t " α i u i`1 ptq ´2u i ptq `ui´1 ptq ∆x 2 `f ˆ2α i u i`1 ptq ´2u i ptq `ui´1 ptq ∆x 2 ˙, (1.57)
for every 1 ď i ď I ´1, where the factor α i is αpxq evaluated in each x i .

Assuming that f in (1.56) is Lipschitz continuous, the system (1.57) is a second-order approximation of the PDE (1.56) and can be viewed in matrix form as

dU ptq dt " AU ptq `f p2AU ptqq,
where A is the coefficient matrix and U ptq " pu 0 ptq, . . . , u I ptqq ⊺ the discrete solution.

Besides the system (1.57), U ptq also satisfies u 0 ptq " b min ptq and u I ptq " b max ptq, where b min and b max represent a Dirichlet-type boundary condition imposed to the numerical solution. Therefore, the matrix A is of form

A 00 " 0, A ii´1 " α i ∆x 2 , A ii " ´2α i ∆x 2 , A ii`1 " α i ∆x 2 , A II " 0.
After the space discretization, it remains a system of ordinary differential equations dU ptq dt " AU ptq `F ptq, U p0q " g, F ptq :" f p2AU ptqq.

Numerical scheme: Time discretization. Now we apply a second-order method in time. Let J P N. Divide the time interval r0, T s in J intervals with a constant time step ∆t " T {J.

Denote U j (resp. F j ) as the vector U ptq (resp. F ptq) evaluated at t " j∆t. Due to the nonlinearity of F ptq regarding U ptq, we use Adams-Moulton (AM) methods together with Adams-Bashforth (AB) methods to construct a Predictor-Corrector algorithm with AM and AB of the same order. Here we apply the second-order Adams-Bashforth (AB2) method to predict F j`1 giving F j`1{2 and we use F j`1{2 within the second-order Adams-Moulton (AM2) method to correct F j`1 :

1. With AB2, we predict pU j`1 , F j`1 q giving us:

`F j`1{2 , U j`1{2 ˘" ˜f ´2AU j`1{2 ¯, U j `∆t ˆ3 2 `AU j `F j ˘´1 2 `AU j´1 `F j´1 ˘˙¸.
2. With AM2, we correct pU j`1 , F j`1 q giving us:

`F j`1 , U j`1 ˘" ˜f `2AU j`1 ˘, U j `∆t ˆ1 2 ´AU j`1 `F j`1{2 ¯`1 2 `AU j `F j ˘˙¸.
Since the algorithm looks two steps back, we will need some initialization steps. Therefore, we use the AB1 (Forward Euler) and the AM1 (Backward Euler) method for the prediction and correction part, respectively,

U 1{2 " U 0 `∆t ´AU 0 `f `2U 0 ˘¯, U 1 " U 0 `∆t ´AU 1 `f `2U 1{2 ˘¯,
Notice that the chosen f is the optimal PDE nonlinearity f f ˚pyq " c 1 y `´c 2 y ´, @y P R, as given in (1.22). Moreover, in Table 1.1, we find the computed constants c 1 and c 2 depending on the risk parameter γ.

Parameters. Regarding the boundary conditions, we stipulate a space domain L " r0, L max s, where L max is supposed to be large enough. Then, we use Dirichlet boundary conditions upt, 0q " b min ptq and upt, L max q " b max ptq, @t P r0, T s.

We set the left and right boundary b min ptq " gp0q and b max ptq " gpL max q, @t P r0, T s.

Regarding the numerical solution, we fix

L max I J 400 200 200
In Figure 1.4, we show the vanilla option value plotted for different risk parameters γ. We depict analogous plot for digital and spread options in Figure 1.5 and 1.6, respectively. We remark the numerical solutions are increasing in function of γ. Intuitively, whenever the seller's risk aversion increases, it will be more reasonable to asking him for a higher option price. According to Proposition 1.8, we have y Þ Ñ f γ pyq is nonnegative for all γ P p0, 1q. Therefore, the nonlinear source of PDE (1.56) is nonnegative whatever the sign of second derivatives. Our risk-aversion valuation adds a risk premium to the risk-neutral one whenever the underlying price varies too quickly, i.e., proportionally to the Greek Gamma.

Asymptotic risk: Dependence on the PDE nonlinearity

Here, we suppose the reference valuation v is given. Then, we test the asymptotic risk R γ pv, f q (see (1.13)) for different PDE nonlinearity f .

Using the optimal f γ -PDE valuation in dimension 1. Let us consider as reference valuation the function v γ pt, ¨q " upT ´t, ¨q, where u is the PDE (1.56) solution using the optimal PDE nonlinearity f γ (see Proposition 1.8).

We confirm numerically the optimality of f γ for the reference valuation v γ by computing R γ pv γ , f γ q for a different risk parameter γ. To achieve that, we approximate R γ pv γ , f γ q by forward Monte Carlo simulations of X. In addition, we use the numerical PDE solution to compute the partial derivatives of v γ present in the expression of R γ pv γ , f γ q (see (1.13)). Denote its estimate by p R N,M pγ, γq, where N is the number of time steps and M is the number of paths tX tn u N n"0 .

Parameters. Set

σ " 0.3, N " 20, M " 5 ˆ10 5 and X 0 P t90, 110u. The number of time steps used in the PDE resolution between each time step of the MC algorithm is 50. We study the following options:

Option pK 0 , K 1 , K 2 q T Call p100, ´, ´q 1.0 Bear p´, 80, 120q 1.0 Let γ P r0, 1q and X 0 P R `fixed. Thanks to Theorem 1.6 and Proposition 1.7, we expect the minimum of γ Þ Ñ p R N,M pγ, γq is attained at γ " γ. In Table 1.2, we compute the numerical approximation p R N,M pγ, γq for all γ, γ P t0.0, 0.1, 0.2, 0.3u to verify this claim.

Optimal PDE valuation/hedging: Comparison with the discrete-time solution

Here, we compare the optimal f γ -PDE valuation/hedging rule ϕ ‹ γ pt, ¨q " pv γ pt, ¨q, B x v γ pt, ¨qq, @t P r0, T s and the discrete time problem solution ϕ N γ pt n , ¨q " pV N γ pt n , ¨q, ϑ N γ pt n , ¨qq, @n P t0, . . . N u, where N is the number of hedging times. We approximate ϕ N γ by p ϕ N,M γ by using a Regression Monte Carlo (RMC) algorithm, where M is the number of Monte Carlo paths.

Principles of RMC methods. We present our RMC algorithm, which is a variation of the Hedged Monte Carlo algorithm (proposed in [START_REF] Potters | Hedged Monte-Carlo: low variance derivative pricing with objective probabilities[END_REF]) with a fixed-point stage. We determine the option value by working step by step from T " N ∆t to the present t " 0, where ∆t is the time interval. We denote the underlying asset price X at time t n " n∆t by X n and the option value V n pX n q at time t n only depends on the current asset price X n . We introduce the hedge ϑ n pX n q, which is the amount of the underlying asset in the portfolio at time t n , when the asset price is X n .

The average risk, over all paths of the underlying process, is given by R n " xℓ γ pV n`1 pX n`1 q ´Vn pX n q ´ϑn pX n q pX n`1 ´Xn qqy M , where the angled brackets x. . .y M denote the average over the sampled asset values. The functional minimization of R n with respect to V n pX n q and ϑ n pX n q gives us equations which allow us to determine the option value and hedge provided that V n`1 is known. We generate a set of M paths X m n , where n is the time index and m the path index. We decompose V n and ϑ n over a set of K basis functions L n k and C n k . The use of local basis function in RMC is presented in [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF]. Therefore, we set L n k and C n k , respectively, as a piecewise linear and constant function on each partition of real line. In addition, we use adaptive breakpoints as proposed in [START_REF] Bouchard | Monte-Carlo Valuation of American Options: facts and new algorithms to Improve existing methods[END_REF]:

V K n pxq :" K ÿ k"1 a n k L n k pxq, ϑ K n pxq :" K ÿ k"1 b n k C n k pxq.
In other words, we reduce the original functional optimization problem (find the functions V n and ϑ n ) to a numerical optimization (find the coefficients a n k and b n k q. We have a good approximation of the true functional solution conditionally to K be large enough. We then solve N minimization problems backwardly in time from maturity T , where V N pxq is equal to the payoff function g. For each step n, we minimize

1 M M ÿ m"1 ℓ γ `EK n,m pV n`1 , a n , b n q where E K n,m pV, a, bq :" V pX m n`1 q ´K ÿ k"1 a k L n k pX m n q ´K ÿ k"1 b k C n k pX m n q `Xm n`1 ´Xm n ˘.
Weighted Least Squares. Thanks to the choice of the risk function ℓ, we write ℓ γ pyq " py w γ pyqq 2 with a weight function w γ pyq " 1 `γ sgnpyq. Then, for each n P tN ´1, . . . , 0u, we solve the following fixed-point problem starting from the quadratic optimal solution `an,0 , b n,0 ˘:" argmin pa,bq

1 M M ÿ m"1 `EK n,m pV n`1 , a, bq ˘2 , `an,p`1 , b n,p`1 ˘:" argmin pa,bq 1 M M ÿ m"1 `EK n,m pV n`1 , a, bq w γ `EK n,m pV n`1 , a n,p , b n,p q ˘˘2 ,
for every p P t0, . . . , P ´1u, where V n`1 " V K,P n`1 ,

V K,P n`1 :" K ÿ k"1 a n`1,P k L n`1 k , ϑ K,P n`1 :" K ÿ k"1 b n`1,P k C n`1 k .
The least square problem with weights is solved using standard procedures. From a practical point of view, we have used a C++ library called StOpt (see the documentation in [START_REF] Gevret | STochastic OPTimization library in C++[END_REF]) to implement this previous RMC with local basis function and adaptive breakpoints. Even though we do not establish any theoretical convergence result, we know the previous algorithm is strongly related to a RMC method for computing generalized BSDEs proposed in [START_REF] Lemor | Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations[END_REF][START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]. In following, we denote the optimal strategy pV K,P n p¨q, ϑ K,P n p¨qq as p ϕ N,M γ pt n , ¨q.

Discussion. Regarding the RMC algorithm, we set M " 8 ˆ10 5 , N " 40, K " 80 and P " 20.

For the underlying process, we set σ " 0.3, X 0 " 100 and T " 1.

Here, we compare the optimal valuation/hedging rule ϕ ‹ γ pt, ¨q and the discrete-time solution ϕ N γ pt n , ¨q for the call and bear option with K 0 " 100, K 1 " 80 and K 2 " 120.

Thanks to the algorithm described before, we compute the option value p V N,M γ pt n , ¨q. Owing to the finite difference scheme in Subsection 1.5.1, we have the value function v γ pt n , ¨q.

Here we consider the risk parameter γ varying in t0.0, 0.1, 0.2, 0.3u and the following discrete 1.6. APPENDIX Claim 1.20. For A ‰ 0 P S d , y P R and θ ‰ 0, we claim that the random variable E θ pA, yq admits a density function w.r.t. the Lebesgue measure.

Therefore, for any triplet pA, y, θq satisfying the claim, we obtain P B `Eθ pA, yq " 0 ˘" 0. This proves the announced result.

Proof of the Claim 1.20. In view of the expression of E θ pA, yq, we notice that showing E θ pA, yq admits a density function is equivalent to show that B ⊺ θ AB θ {θ has a density function. The latter has the same distribution as Z ⊺ AZ where Z is a standard normal random vector. Consider the spectral decomposition of A: A "

ř I i"1 λ i v i v ⊺ i
, where v i are orthonormal vectors and the eigenvalues λ i are strictly positive. Since A ‰ 0, I ě 1. As a consequence, by setting Zi " v ⊺ i Z, we get Z ⊺ AZ "

ř I i"1 λ i Z2 i .
The components Zi are independent and distributed as standard normal random variables. To sum up, we have decomposed Z ⊺ AZ as a weighted sum of independent χ 2 1 random variables. Therefore, Z ⊺ AZ has a probability density given by the convolution of χ 2 1 random variables.

Proof of the convergence of the sensibilities

Now we present the proof of the results related to the convergence of the sensibilities in Section 1.4.

Proof of Proposition 1.10. Because the estimates are made on rt n , t n`1 s, we note u pn`1q by u.

In the following, K n,N pxq denotes a generic constant with polynomial growth in x (defined in Section 1.4).

Initially, a strategy of proof could be to use the Feynman-Kac (FK) representations. Here, we would represent the PDE (1.5) in terms of the SDE with zero drift and diffusion coefficient σ.

Although natural, this approach is cumbersome at some points, especially, when one has to deal with the derivatives of the SDE w.r.t. the initial condition. Instead, we take advantage of writing a FK formula using directly a Brownian motion. For any ξ P R d , we set

W tn,ξ t " ξ `Wt ´Wtn , t n ď t ď t n`1 ,
where W is a d-dimensional Brownian motion. Now, the proof consists of applying Ito's formula to up¨, W tn,ξ ¨q and estimating upt n , ξq´vpt n`1 , ξq. Observe that W tn,ξ is quite convenient for sensitivity computations because:

• the first-order derivative of W tn,ξ w.r.t. ξ is the identity matrix I d in R dˆd ;

• the second-order derivative of W tn,ξ w.r.t. ξ is the null array 0 in R dˆdˆd .

Proof of (1.31). Applying Ito's formula to up¨, W tn,ξ ¨q and taking the expectation leads to

E " upt n`1 , W tn,ξ t n`1 q ‰ " upt n , ξq `E"ż t n`1 tn `ut `1 2 TrrD 2 x us ˘pt, W tn,ξ t q dt  .
Since D x upt, xq has a polynomial growth in space (because D x upt, xq P C 1{2,1 loc,pol ), we have used that the stochastic integral is a martingale. By seeing that u is the solution of PDE (1.5) with terminal condition upt n`1 , ¨q " vpt n`1 , ¨q, we get the FK representation 1{2,1 loc,pol . By using the estimates in Lemma 1.17 with p " 1, we get

upt n , ξq " E " vpt n`1 , W tn,ξ t n`1 q `ż t n`1 tn φpt, W
|upt n , ξq ´vpt n`1 , ξq| ď }v} C 1{2,1 loc,pol K n,N pξq∆t 1{2 `ż t n`1 tn K n,N pξq dt ď K n,N pξq∆t 1{2 ,
because the term related to the integral converges to zero at rate ∆t.

To obtain the other announced results, we need to bound the derivatives of the following expectation Erφpt, W tn,ξ t qs. The following lemma provides an estimate in the interval rt n , t n`1 s.

Lemma 1.21. Let α " pα 1 , α 2 , . . . α d q be a d-dimensional multi-index with |α| "

ř d i"1 α i . For any function φ P C 1{2,1 loc,pol , it holds |D α ξ Erφpt, W tn,ξ t qs| ď K n,N pξqpt ´tn q p1´|α|q{2 , t n ă t ď t n`1 , |α| ě 1,
for some constant K n,N pξq P K pol .

Proof of (1.32). Next, we estimate the first derivative of upt n , ξq ´vpt n`1 , ξq w.r.t. the initial condition ξ. Differentiating (1.60) w.r.t. ξ yields

D ξ upt n , ξq ´Dξ vpt n`1 , ξq " E " D x vpt n`1 , W tn,ξ t n`1 q ´Dξ vpt n`1 , ξq ı `ż t n`1 tn D ξ E " φpt, W tn,ξ t q ı dt.
(1.61)

From our assumptions, φpt, xq and D x vpt, xq are in C

1{2,1 loc,pol . By using the Lemma 1.21 with |α| " 1 and the Lemma 1.17 with p " 1, we get

|D ξ upt n , ξq ´Dξ vpt n`1 , ξq| ď }D x v} C 1{2,1 loc,pol K n,N pξq∆t 1{2 `ż t n`1 tn K n,N pξq dt ď K n,N pξq∆t 1{2 ,
where the term related to the integral converges to zero at rate ∆t. This implies the announced result.

Proof of (1.33). Analogously, we estimate the second derivative of upt n , ξq ´vpt n`1 , ξq by differentiating (1.61) w.r.t. ξ

D 2 ξ upt n , ξq ´D2 ξ vpt n`1 , ξq " E " D 2 x vpt n`1 , W tn,ξ t n`1 q ´D2 ξ vpt n`1 , ξq ı `ż t n`1 tn D 2 ξ E " φpt, W tn,ξ t q dt ı .
From our assumptions, φpt, xq and D 2 x v are in C

1{2,1 loc,pol . By using the Lemma 1.21 with |α| " 2 1.6. APPENDIX and the Lemma 1.17 with p " 1, we get

ˇˇD 2 ξ upt n , ξq ´D2 ξ vpt n`1 , ξq ˇˇď }D 2 x v} C 1{2,1 loc,pol K n,N pξq∆t 1{2 `ż t n`1 tn K n,N pξq pt ´tn q 1{2 dt ď K n,N pξq∆t 1{2 ,
where the integral term is of magnitude ∆t 1{2 . Therefore, we obtain the announced estimate. 

Proof of

K}φ} C 1{2,1 loc,pol ż R d p1 `}x} q `}ξ} q q |t ´tn | 1{2 `}x ´ξ} pt ´tn q d{2`|α|{2 exp ˜´c }x ´ξ} 2 t ´tn ¸dx, (1.64) 
for some real q ą 0. In the following, we use that any exponential decrease crushes any polynomial growth: for any positive constants c and q, there exist two other positive constants c ă c and K such that, it holds

|p1 `|y| q qe ´y2 c | ď Ke ´y2 c, @y P R.
Therefore, we get from (1.64) that there exists a constant C such that ˇˇD α ξ Erφpt, W tn,ξ t qs ˇˇď Cp1 `}ξ} p qpt ´tn q d{2 |t ´tn | 1{2 pt ´tn q d{2`|α|{2 " Cp1 `}ξ} p qpt ´tn q p1´|α|q{2 , for any t n ă t ď t n`1 , which completes the proof.

Chapter 2

Asymptotic asymmetric risk measure: Application to physical asset valuation

This chapter is based on the paper [START_REF] Alasseur | Cost Management under asymmetric risk valuation[END_REF].

Abstract

Power producers are interested in valuing the future production of their power plant. They seek to reduce the risk associated with an uncertain income by trading into forward contracts. Also, their power plants generate fixed costs in the future despite the fact that they will be operating or not. After spreading those future fixed costs over the hedging period, we obtain staggered costs proportional to the time step, and we add it to the replication error. Thus, we obtain an optimal hedging strategy by minimizing the associated asymptotic risk with asymmetric risk function. We study the impact of staggered costs depending on the electricity spot price into the hedging strategy.

Introduction

This chapter provides valuation and hedging policies for future production of power plants using an asymmetric risk valuation. After the deregulation process of energy markets in early 1990, several spot and futures markets were created to exchange an almost non-storable commodity, the electricity. At the same time, power producers start to face the problem of evaluating their power plant production, which is dependent on the electricity spot price in the future.

To tackle this problem, there exist at least two different approaches. First, having a realistic model consistent with the electricity market data, we obtain a fair price by taking the expectation of the future income due to the production sale under the risk-neutral probability. Another approach consists of reducing the randomness of the future income by hedging with forward contracts (which are related to the electricity spot price).

Here, we consider the second approach as an application of asymmetric risk valuation and hedging to define an optimal pricing/hedging rule in an asymptotic framework (see [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF]).

In practice, power plant owners perform discrete hedging at trading times, t 0 " 0 ă t 1 ă . . . ă t N " T using a hedging security X to reduce the risk associated to a random future income G at the time T . This discrete hedging produces a residual risk:

E " G ´N´1 ÿ n"0 ϑ tn `Xt n`1 ´Xtn ˘,
where ϑ is the hedging process with ϑ t denoting the number of shares invested in the hedging security at time t. Here, we consider the hedging security as a forward contract with delivery time T .

From a theoretical point of view, the residual risk related to the discrete hedging becomes narrower with the number N of trading times.However, in the electricity market context, the power producer wants to perform its hedging at low-frequency rate (once a week, for example).

Then, we search to find the valuation/hedging rule taking into account the local balance E n depending on its sign through an asymmetric risk function ℓ:

E n " V t n`1 ´Vtn ´ϑtn `Xt n`1 ´Xtn ˘, 0 ď n ď N ´1,
where V stands for the valuation process under the replication constraint V T " G. Notice those plant owners are willing to obtain a residual risk E with a small standard deviation (i.e., they search for P&L histogram concentrated in a region). At the same time, they prefer the scenarios where the local balance E n ą 0, because we are averse to negative residues.

Fixed cost accounting.

In this context, we take into account the fact that a power plant generates some fixed costs, including maintenance and investment costs, and excepting the fuel cost, whether it is producing electricity or not. In an accounting point of view, the power producers are constrained to find today an equivalent price to the future income generated by their power plant to be written in the balance book. Actually, they do not face any financial risk due to a contingent claim. Since they can not influence the future electricity spot price S T to obtain a higher income, they prefer to ensure a certain value for the positive amount G " gpS T q due to the sale of their future production.

For an illustration purpose, we give an estimation of those fixed costs for a nuclear plant.

Following the assumptions1 of the World Energy Outlook (WEO) 2016 in [Int16], we consider

• an maintenance cost of $170 per kW (kilowatt) per yr (year);

• an investment cost of $6600 per kW;

• and an exchange rate at 0.90 e{$ (for 2015 US dollar).

This means that a nuclear plant with 1 GW of installed capacity has cost $6.6 billion (5.9 billion e). Also, we spend $170 million per year (153 million e) in maintenance. After that, we spread those fixed costs over the plant lifespan (20 years). Thus, we obtain the following fixed costs of 51.40 e per MW of installed capacity and per life hour, which is detailed as:

• investment cost: 33.90 e{MWh • maintenance cost: 17.50 e{MWh.

This means that for every 1 MW of installed capacity, one should pay each hour 33.90 e to repay the investment and 17.50 e to maintain it. Note that interest rates are not considered here and the investment cost is spread evenly over the life of the plant. Then, we look at the fixed costs generated by a power plant during a period of 24 hours: 1233.60 e for each 1 MW of installed power. Now, if we plan to hedge this production 1 year before, we must spread this cost over the 8760 previous hours and we get staggered costs of 0.14 e per MW (installed) per hour (hedging).

INTRODUCTION

In order to price the future income, they use the underlying forward market as a mark-tomarket way of reducing the randomness of gpS T q by minimizing an asymmetric risk measure R N . To simplify the analysis, we consider equidistant trading times t n " n∆t with time step ∆t " T {N . We include staggered costs proportional to the time step ∆t by subtracting cpS tn q∆t from the local balance E n . Here, the staggered cost function c : R Ñ R, c P CpRq represents the dependency of the spread fixed costs on the electricity spot price S tn at the time t n .

In this setting, we study the asymptotic of the integrated risk

R N R N " 1 ∆t N ´1 ÿ n"0 E " ℓ `Ec n ˘‰,
where E c n " V t n`1 ´Vtn ´ϑtn `Xt n`1 ´Xtn ˘´cpS tn q∆t.

In the following, we give two economic points of view to justify the dependence of staggered costs c on the electricity spot price. First, when the electricity spot price is high, we use more the power plant to respond to higher demand. In indeed, a high price is generated by high demand, which corresponds to high production, meaning that we have to start more often the power plant. That is the reason why we assume a dependence of c on the spot price. For example, we can take c " cpxq as an increasing convex or concave function of the spot price level x.

Second, the staggered costs related to maintenance are seasonal and higher during the refueling stop of a power plant. Also, the producer prefers to stop its power plant when the demand is low (i.e., when the spot price is low). In France, this occurs more often in summer than in winter. In this sense, the staggered costs and the spot prices are negatively correlated. Additionally, the maintenance team takes about 3 months to repair and refuel the power plant, and this refueling procedure for a nuclear plant occurs approximately every 12 months. Therefore, we consider a staggered costs c depending on the spot price level x such that cpxq is decreasing, convex and takes a finite positive value at x " 0.

Asymptotic risk by PDE valuation.

For the risk function ℓ : R Ñ R, we take the same as in [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF]:

ℓ γ pyq " p1 `γ sgnpyqq 2 2 y 2 (2.1)
for γ P p´1, 0q, where the sign function is defined as follows: sgnpyq :" 1 yą0 ´1yă0 , y P R. Here, the parameter γ represents the producer's desire of reducing the future income more often than increasing it (see Figure 2.1).

In view of studying the integrated risk R N,γ in the asymptotic regime N Ñ `8 using the asymmetric risk function ℓ γ , we follow an approach by PDE (partial differential equation) valuation described below. We suppose the hedging security X is modeled by a stochastic differential equation (SDE) with diffusion coefficient σ. Then, we assume the existence of exogenous valuation process V t " vpt, X t q defined by some function v P Cpr0, T s ˆRq. For example, v is a reference value function obtained by the power producer when no cost is taken into account. Now, with this exogenous reference valuation in hand, the power plant owner determines its hedge position on each interval rt n , t n`1 s by choosing an adapted valuation/hedging rule p r V tn , r ϑ tn q and considering the related conditional risk R n,γ using the risk function ℓ γ : where r E c n " V t n`1 ´r V tn ´r ϑ tn `Xt n`1 ´Xtn ˘´cpS tn q∆t.

R n,γ " E " ℓ γ `r E c n ˘ˇˇF tn ı . ( 2 
In fact, the valuation/hedging rule p r V tn , r ϑ tn q of the power producer is given by

r V tn " u t n`1 pt n , X tn q, r ϑ tn " u t n`1 x pt n , X tn q,
and is parametrized by a function f , possibly non-linear, through the solution u t n`1 : rt n , t n`1 sˆR to the f -PDE (2.3) with terminal condition u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q at the time t n`1 .

Definition 2.1. Given a terminal time τ ą 0, a diffusion function σ : r0, T s ˆR Ñ R, σ P Cpr0, T s ˆRq, a PDE non-linearity f : r0, T s ˆR ˆR ˆR ˆR Ñ R, f P C, a terminal condition vpτ, ¨q : R Ñ R, vpτ, ¨q P CpRq, the function u τ : r0, τ s ˆR Ñ R is solution to the f -PDE if it satisfies ´uτ t ´f pt, x, u τ , u τ x , u τ xx q "

1 2 σ 2 u τ xx (2.3)
and the terminal condition u τ pτ, xq " vpτ, xq.

Following the same path as in [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF], we obtain the limit R γ of the integrated conditional risk

R N,γ R N,γ " 1 ∆t N ´1 ÿ n"0
ErR n,γ s, as the number N of trading dates goes to infinity. After obtaining an explicit expression for R γ depending, among others, on γ, v, f, σ, we get an optimal PDE non-linearity f ˚minimizing the asymptotic risk: R γ rv, f ˚s ď R γ rv, f s, for any admissible f . Again, this optimal PDE non-linearity f ˚is explicit in dimension 1, depending on γ, on the second-order derivative of v and on the staggered cost function cp¨q. In the end, the power producer will choose the following rule V tn " v ˚pt n , X tn q, ϑ tn " v x pt n , X tn q, where v ˚: r0, T s ˆR is the solution to the f ˚-PDE with terminal condition satisfying v ˚pT , xq " gpxq at time T . It is a consistent way of reducing the randomness of the future income G " gpS T q.

For the numerical experiments, we take staggered costs depending on the level of the electricity 2.2. SETTING spot price through convex-concave functions. As an example, we compute the numerical solution to the f ˚-PDE for a call payoff given a function cpxq.

This chapter is structured as follows. In Section 2.2.1, we present the stochastic setting and define the problem. In Subsection 2.2.2, we gather the assumptions used here. Subsection 2.2.3 is reserved to the main result: the asymptotic risk with staggered fixed costs, and Section 2.3 summarizes important points of the proof. Finally, two different staggered cost models are provided in Section 2.4 and most numerical results are discussed in Section 2.5.

Setting

An asymmetric risk valuation with cost management

Here, we study the conditional risk R n,γ using the risk function ℓ γ in the case of staggered costs proportional to the time step. Analogous to [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF], we say φ satisfies a local regularity condition in time and space if, for some real α ą 0, the coefficient

}φ} C 1{2,1 loc,pol :" sup t‰t 1 Pr0,T s sup x‰x 1 PR }φpt, xq ´φpt 1 , x 1 q} p|t ´t1 | 1{2 `|x ´x1 |qp1 `|x| α `|x 1 | α q is finite, then φ is said to be in C 1{2,1
loc,pol . Also, the set C 1,2 pr0, T s ˆRq denotes the set of functions φ : r0, T s ˆR such that the partial derivatives φ t , φ x , φ xx exist and are continuous. Probabilistic model. We consider a fixed horizon time T ą 0. Let W " tW t : t P r0, T su be a standard Brownian motion on a probability space pΩ, F, Pq endowed with the natural filtration F " tF t : 0 ď t ď T u generated by W up to time T . Moreover, we take a collection of equidistant trading times t0 " t 0 ă t 1 ă t 2 ă . . . ă t N " T u on the interval r0, T s such that the time step is ∆t n :" t n`1 ´tn " T {N , also denoted by ∆t, for some N P N.

For simplicity, we assume that the interest rate is zero and that exist only one risk-neutral measure given by the probability measure P. We consider the hedging security X as the forward contract F p¨, T q with delivery time T . We model F p¨, T q " tF pt, T q : t P r0, T su according to the dynamics given by the (one-factor model) stochastic differential equation: dF pt, T q " σpt, T qF pt, T q dW t , 0 ď t ď T,

(2.4)

where the volatility function t P r0, T s Þ Ñ σpt, T q is continuous taking values in R ˚and satisfying σpT, T q " σ0 ą 0.

For example, we could take σpt, T q " σ0 e ´a0 pT ´tq for some positive constant a 0 . The map T Þ Ñ F p0, T q represents the initial forward curve.To be consistent with the definition of forward contracts, we take the electricity spot price S t at the time t as being the forward price with immediate delivery, i.e., S t " F pt, tq, for all t P r0, T s.

For a future income function g : R Ñ R, g P CpRq, we assume the existence of a reference price v : r0, T s ˆR Ñ R, v P Cpr0, T s ˆRq, satisfying a compatibility condition vpT, ¨q " gp¨q.

Parameterizing valuation/hedging rule of the power producer, we have a function f : r0, T s R ˆR ˆR ˆR Ñ R used as the source of non-linearity to the PDE (2.3). In fact, for each hedging time t n , we associate a function u t n`1 : rt n , t n`1 s ˆR Ñ R, the solution to

´ut n`1 t ´f pt, x, u t n`1 , u t n`1 x , u t n`1 xx q " 1 2 |σpt, T qx| 2 u t n`1 xx , (2.5) 
for all pt, xq P r0, t n`1 rˆR, with terminal condition u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q at the next hedging time t n`1 . In this context, after replacing the valuation/hedging rule r V tn " u t n`1 pt n , X tn q, r ϑ tn " u t n`1 xx pt n , X tn q, in (2.2), we obtain a conditional risk R n,γ as follows:

R n,γ " E " ℓ γ ´ut n`1 pt n`1 , X t n`1 q ´ut n`1 pt n , X tn q ´ut n`1

x pt n , X tn q `Xt n`1 ´Xtn cpX

tn q∆t ¯ˇˇˇF tn  , (2.6) 
Thanks to the relation between the electricity spot price S and the T -forward contract X, for all t P r0, T s, given an initial forward curve t Þ Ñ F p0, tq, for all t P r0, T s, we have replace S tn by X tn in (2.2), for some continuous function c : R Ñ R.

Problem 2.2. Given a finite horizon time T ą 0, a volatility function σp¨, T q : r0, T s Ñ R, σp¨, T q P Cpr0, T sq, a reference price v : r0, T s ˆR Ñ R, v P Cpr0, T s ˆRq to the future income function g : R Ñ R, a PDE non-linearity f : r0, T s ˆR ˆR ˆR ˆR Ñ R, an equidistant partition tt n " n∆t : n P t0, . . . , N ´1uu of the trading interval r0, T s with time step ∆t " T {N , the solution u t n`1 : rt n , t n`1 s ˆR Ñ R to the f -PDE (2.5) with terminal condition u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q for every n P t0, . . . , N ´1u and a cost function c : R Ñ R, c P CpRq, study the asymptotic regime of the integrated conditional risk R N,γ

R N,γ rv, f s " 1 ∆t N ´1 ÿ n"0 E " R n,γ ‰ , (2.7) 
as the number N of trading dates goes to infinity, where the conditional risk R n,γ is given in (2.6), the risk function ℓ γ in (2.1) and the diffusion process X " F p¨, T q in (2.4).

Main assumptions

In order to analyze the asymptotics of R N,γ in (2.7) for a given reference valuation v and PDE non-linearity f , we state the following assumptions.

Assumption 2.3. The volatility function t Þ Ñ σpt, T q is continuously differentiable.

Remark 2.4. Following the preceding assumption, we have that the map t Þ Ñ σpt, T q is globally bounded, and that its derivative t Þ Ñ σt pt, T q is locally bounded. Therefore, the diffusion function pt, xq Þ Ñ σpt, xq " σpt, T qx is Lipschitz in space and time, and it has linear growth in space uniformly in time, which is in C 

which is C 1{2,1
loc,pol , is also valid for J 2 pv, ¨q.

Assumption 2.7. Let N ě 1. For every n P t0, . . . , N ´1u, there is a unique classical solution u t n`1 : r0, t n`1 s ˆR Ñ R to the PDE (2.5) with the terminal condition u t n`1 pt n`1 , ¨q " vpt n`1 , ¨q at the time t n`1 . Moreover, u

t n`1 t , u t n`1 x , u t n`1 xx , u t n`1 tx , u t n`1 xxx exist and are in C 1{2,1 loc,pol .
Assumption 2.8. The volatility function σp¨, T q : r0, T s Ñ R, the diffusion process X " F p¨, T q in (2.4), and the reference price v : r0, T s ˆR Ñ R, vpt, ¨q P C 2 pRq, satisfy a non-degeneracy condition: |σpt, T qX t | 2 v xx pt, X t q ‰ 0, dt b dP-almost everywhere.

Main results

For stating the corresponding asymptotic result below, we need to introduce an extra Brownian motion B, independent of W . Also, the expectation w.r.t. the distribution of B, or W , or both, is denoted by E B , or E W , or E W bB .

Asymptotic risk with cost management

Theorem 2.9. Consider the setting of Problem 2.2 and suppose that Assumptions 2.3-2.8 hold. Let B " tB θ : θ P r0, 1su be another standard Brownian motion independent from W . Then, the limit of R N,γ rv, f s as N Ñ 8 exists and is given by (2.9)

R γ rv, f s " E « T ż 0 1 ż 0 ℓ 2 γ ˜J1 pv, pt, X t qq B 2 θ ´θ 2 ´J2 pv, pt, X t qqθ |J 1 pv, pt, X t qq| 2 B 2 θ 2 `|J 2 pv, pt, X t qq| 2 θ ´J1 pv, pt, X t qq J 2 pv,
Notice that Theorem 2.9 is a one-dimension version of Theorem 1.6 (Chapter 1) in the presence of staggered costs proportional to the time step. The proof relies on the same techniques as presented in Section 1.4 (Chapter 1) and is postponed to Section 2.3.

Optimal PDE non-linearity

Here, we obtain a quasi-explicit formulation for the optimal PDE non-linearity following the same approach as [START_REF] Gobet | Option Valuation and Hedging using Asymmetric risk function: Asymptotic Optimality through Fully Nonlinear Partial Differential Equations[END_REF]. First, we write the asymptotic risk in (2.8) as a functional

R γ rv, f s " E « T ż 0 L γ pJ 1 pv, pt, X t qq, J 2 pv, pt, X t qqq dt ff ,
in terms of L γ : R ˆR Ñ R given by

L γ px 1 , x 2 q " E B « 1 ż 0 ℓ 2 γ ˜x1 B 2 θ ´θ 2 ´x2 θ |x 1 | 2 B 2 θ 2 `|x 2 | 2 θ ´x1 x 2 B 2 θ ´θ 2 ¸dθ ff , for all x 1 , x 2 P R ˆR.
Second, we aimed to prove the existence of minimizers to the variational problem

min f PΩ f R γ rv, f s, (2.10) 
for all v P Ω v . The sets Ω f and Ω v are the set of all functions satisfying the Assumption 2.5. Observe that f ˚pt, x, y u , y ux , y uxx q defined by f ˚pt, x, y u , y ux , y uxx q :" arg min

x 2 PR L γ `|σpt, T q x| 2 y uxx , x 2 ˘´cpxq, for any fixed pt, x, y u , y ux , y uxx q P r0, T s ˆR ˆR ˆR ˆR, is also a minimizer to (2.10) under the condition to be in Ω f . We integrate and take the expectation on both sides of L γ pJ 1 pv, pt, X t qq, J 2 pv, pt, X t qqq ď L γ pJ 1 pv, pt, X t qq, J 2 pv, pt, X t qqq ,

where J 2 pv, pt, xqq " f ˚`t, x, vpt, xq, v x pt, xq, v xx pt, xq ˘`cpxq.
Consequently, we seek a minimizer to the map x 2 Þ Ñ L γ px 1 , x 2 q for a given real x 1 . By denoting χ ˚P R as a global minimizer of min x 2 PR L γ px 1 , x 2 q, we finally showed (see Proposition 1.8) the existence and uniqueness χ ˚, written in the following form χ ˚px 1 q " a ˚px 1 q `´a ˚px 1 q ´, (2.11) for all x 1 P R, for some real a ˚and a ˚(depending on γ). Denoting by Φ N the cumulative distribution function of the standard normal distribution and φ N " Φ 1 N its density, those constants a ˚and a ˚are respectively the unique solutions to `1 `γ2 ˘a˚`γ T pa ˚q " 0 (2.12) `1 `γ2 ˘a˚´γ T pa ˚q " 0,

2.2. SETTING with T paq " 2a1 2a`1ď0 `2a1 2a`1ą0 `8a Φ N `´? 2a `1˘1 2a`1ą0 ´4? 2a `1φ N `?2a `1˘1 2a`1ą0 .
Notice that Proposition 1.8 stands for γ in r0, 1q, but it is also for γ taking negatives values strictly greater than 1.

Because χ ˚is unique, the optimal PDE non-linearity f ˚is indeed given by f ˚pt, x, y u , y ux , y uxx q " χ ˚`|σpt, T q x| 2 y uxx ˘´cpxq " a ˚ˆ|σpt, T q x| 2 y uxx ˙`´a ˚ˆ|σpt, T q x| 2 y uxx ˙´´cpxq,

(2.13) for any t, x, y u , y ux , y uxx P r0, T s ˆR ˆR ˆR ˆR.

For numerical purposes, we present, in Table 2.1, the approximate values of a ˚and a ˚defined in (2.12) calculated by a root finding algorithm. So we depict, in Figure 2.2, the global minimizer χ ˚of min x 2 PR L γ px 1 , x 2 q in function of x 1 . For γ P p´1, 0q, the optimal function χ ˚px 1 q is negative and piecewise linear, with a positive (resp. negative) slope for the strictly negative (resp. positive) values of x 1 .

Existence of the asymptotic risk.

Here, we review some important aspects of the computation of the asymptotic risk. First of all, we consider a time-space rescaling of the hedging security dynamics in order to study the conditional risk R n,γ on each interval rt n , t n`1 s. Then, we obtain an expansion of R n,γ in terms of the time step ∆t. With expansion in hands, we aggregate the expectation of those conditional R n,γ and take the limit, after dividing by ∆t.

As explained in Section 2.2.1, we deal with one hedging instrument X, which is the forward contract with delivery time T , satisfying the following SDE

dX t " σpt, T qX t dW t , 0 ď t ď T, (2.14)
where W is a standard Brownian motion.

Rescaling and conditioning aspect. In view of the small-time approximations, we define a version X ∆t θ of the solution X of the SDE (2.14)

X ∆t θ " x `∆t 1{2 θ ż 0 σpt n `θ1 ∆t, T qX ∆t θ 1 dB θ 1 , 0 ď θ ď 1, (2.15) 
where B " tB θ : θ P r0, 1su is an extra standard Brownian motion independent from W . Depending on the trading dates, X ∆t is also dependent on the number N of time steps. Also, it was supposed the original probability space pΩ, F, Pq is large enough to contain an additional Brownian motion B.

Stochastic expansion aspect.

In view of expanding the conditional risk R n,γ E " ℓ γ ´ut n`1 pt n`1 , X t n`1 q ´ut n`1 pt n , X tn q ´ut n`1

x pt n , X tn q `Xt n`1 ´Xtn ˘´cpX tn q∆t

¯ˇˇˇF tn  ,
for any n P t0, . . . , N ´1u, we consider the stochastic process E ∆t θ defined by

E ∆t θ " u t n`1 pt n `θ∆t, X ∆t θ q ´ut n`1 pt n , xq ´ut n`1 x pt n , xqpX ∆t θ ´xq ´cpxqθ∆t, (2.16)
where X ∆t θ is the solution to the SDE (2.15) starting from x P R. Using the fact that the processes ! X tn,x tn`θ∆t : θ P r0, 1s

) and X ∆t θ : θ P r0, 1s ( have the same distribution, we rewrite R n,γ as a continuous function in terms of X tn,x and X ∆t at θ " 0, respectively. Indeed, by setting

P ∆t pt n , xq " 1 ∆t 2 Erℓ γ pE ∆t 1 qs " 1 ∆t 2 E " ℓ γ ´ut n`1 pt n`1 , X ∆t 1 q ´ut n`1 pt n , xq ´ut n`1 x pt n , xq `X∆t 1 ´x˘´c pxq∆t ¯,
(2.17) we obtain R n,γ " ∆t 2 P ∆t pt n , X tn q " Erℓ γ pE ∆t 1 qs ˇˇx"Xt n .

(2.18)

In the following, we consider several constants K n,N pxq depending polynomially on x, uniformly in the interval rt n , t n`1 s and in the number N of time steps. Whenever we note K n,N pxq P K pol , we mean that, for some real α ą 0, it holds

sup N ě1 sup 0ďnďN ´1 sup xPR |K n,N pxq| 1 `|x| α ă `8.
In the following proposition, we state the stochastic expansion of P ∆t at point pt n , xq in terms of the time step ∆t in the presence of a cost function cpxq proportional to ∆t.

Proposition 2.10. Consider the setting of Problem 2.2 and suppose that assumptions of Theorem 2.9 hold. Let t n " n∆t, x P R, X ∆t θ given in (2.15), E ∆t θ given in (2.16) and P ∆t pt n , xq be defined in (2.17). Then, it holds

P ∆t pt n , xq " E B « 1 ż 0 ℓ 2 γ ´J1 pu t n`1 , pt n , xqq B 2 θ ´θ 2 ´J2 pu t n`1 , pt n , xqqθ `R∆t θ pt n , xq |J 1 pu t n`1 , pt n , xqq| 2 B 2 θ 2 `|J 2 pu t n`1 , pt n , xqq| 2 θ ´J1 pu t n`1 , pt n , xqq J 2 pu t n`1 , pt n , xqq B 2 θ ´θ 2 ¯dθ ff `Kn,N pxq∆t 1{2 ,
where

R ∆t θ pt n , xq " E ∆t θ ∆t ´J1 pu t n`1 , pt n , xqq B 2 θ ´θ 2 `J2 pu t n`1 , pt n , xqqθ,
for some constant K n,N pxq P K pol .

Proof. Following the same argument as in Proposition 1.9, we use Ito's lemma in u t n`1 and its gradient u

t n`1 x
to obtain the dynamics of E ∆t θ . Then, we apply to the Ito-Tanaka formula to ℓ γ `E∆t θ ˘in order to obtain the announced result. Indeed, replacing X ∆t θ in (2.15) into E ∆t θ in (2.16) leads to

E ∆t θ " u t n`1 `tn `θ∆t, X ∆t θ ˘´u t n`1 pt n , xq ´cpxqθ∆t ´∆t 1{2 θ ż 0 u t n`1 x pt n , xqσpt n `θ1 ∆t, T qX ∆t θ 1 dB θ 1 .
Applying Ito's formula to u t n`1 pt n `θ∆t, X ∆t θ q, we obtain

E ∆t θ " ´∆t θ ż 0 cpxq dθ 1 `∆t θ ż 0 ´ut n`1 t `1 2 |σp¨, T q ¨|2 u t n`1 xx ¯pt n `θ1 ∆t, X ∆t θ 1 q dθ 1 `∆t 1{2 θ ż 0 ´ut n`1 x pt n `θ1 ∆t, X ∆t θ 1 q ´ut n`1 x pt n , xq σpt n `θ1 ∆t, T qX ∆t θ 1 dB θ 1 .
( where the remainder process R ∆t θ is given by

R ∆t θ pt n , xq " θ ż 0 ´ut n`1 t pt n `θ1 ∆t, X ∆t θ 1 q ´ut n`1 t pt n , xq ¯dθ 1 `1 2 θ ż 0 ´|σpt n `θ1 ∆t, T qX ∆t θ 1 | 2 u t n`1 xx pt n `θ1 ∆t, X ∆t θ 1 q ´|σpt n , T qx| 2 u t n`1 xx pt n , xq ¯dθ 1 `θ ż 0 ˆut n`1 x pt n `θ1 ∆t, X ∆t θ 1 q ´ut n`1 x pt n , xq ∆t 1{2 |σpt n , T qX ∆t θ 1 | 2 ´ut n`1 xx pt n , xq|σpt n , T qx| 2 B θ 1 ˙dB θ 1 .
Due to the result in Lemma 1.13 (see Chapter 1), R ∆t θ is supposed to be small in the following sense: sup θPr0,1s

E B |R ∆t θ pt n , xq| 2 ď K n,N pxq∆t,
for some constant K n,N pxq P K pol .

Thanks to the relation ℓ 2 γ pyqy " ℓ 1 γ pyq for all y P R, we get by applying the Ito-Tanaka formula

ℓ γ pE ∆t θ q " θ ż 0 ℓ 2 γ pE ∆t θ 1 q ´E∆t θ 1 dE ∆t θ 1 `1 2 dxE ∆t y θ 1 ¯.
After replacing the expression of E ∆t in (2.20), we take the expectation to obtain

E B rℓ γ pE ∆t 1 qs " ∆t 2 P ∆t pt n , xq (see relation in (2.18)) " ∆t 2 E B « 1 ż 0 ℓ 2 γ ´J1 pu t n`1 , pt n , xqq B 2 θ ´θ 2 ∆t ´J2 pu t n`1 , pt n , xqqθ∆t `R∆t θ pt n , xq∆t |J 1 pu t n`1 , pt n , xqq| 2 B 2 θ 2 `|J 2 pu t n`1 , pt n , xqq| 2 θ ´J1 pu t n`1 , pt n , xqq J 2 pu t n`1 , pt n , xqq B 2 θ ´θ 2 ˙dθ ff `Kn,N pxq ∆t 5{2 ,
where J 2 pu t n`1 , ¨q and J 1 pu t n`1 , ¨q are given in (2.9).

We omit the study of the terms in the remainder, because they were already treated in the proof of Proposition 1.9 in Chapter 1. Using the relation ℓ 2 γ pε yq " ℓ 2 γ pyq for any ε ą 0, we obtain the announced result.

Aggregating aspect. From the relation between P ∆t pt n , X tn q and R n,γ in (2.18), we write R N,γ rv, f s using the expansion of P ∆t pt, xq obtained in Proposition 2.10:

R N,γ rv, f s " 1 ∆t N ´1 ÿ n"0 ErR n,γ s " N ´1 ÿ n"0 E " P ∆t pt n , X tn q ı ∆t (see relation in (2.18)) " N ´1 ÿ n"0 E " 1 ż 0 ℓ 2 γ ´J1 pu t n`1 , pt n , X tn qq B 2 θ ´θ 2 ´J2 pu t n`1 , pt n , X tn qqθ `R∆t θ pt n , X tn q |J 1 pu t n`1 , pt n , X tn qq| 2 B 2 θ 2 `|J 2 pu t n`1 , pt n , X tn qq| 2 θ ´J1 pu t n`1 , pt n , X tn qq J 2 pu t n`1 , pt n , X tn qq B 2 θ ´θ 2 ¯dθ  ∆t `N´1 ÿ n"0 E " K n,N pX tn q∆t 3{2 ‰ .
(2.21)

In the previous expression, we substitute the solution u t n`1 pt n , ¨q by its terminal condition vpt n`1 , ¨q. This is equivalent to replace J 2 pu t n`1 , pt n , ¨qq and J 1 pu t n`1 , pt n , ¨qq by J 2 pv, pt n`1 , ¨qq and J 1 pv, pt n`1 , ¨qq. Then, we rewrite R N,γ rv, f s in (2.21) as follows

R N,γ rv, f s " N ´1 ÿ n"0 E " 1 ż 0 ℓ 2 γ ´J1 pv, pt n`1 , X tn qq B 2 θ ´θ 2 ´J2 pv, pt n`1 , X tn qqθ `R ∆t θ pt n , X tn q |J 1 pv, pt n`1 , X tn qq| 2 B 2 θ 2 `|J 2 pv, pt n`1 , X tn qq| 2 θ ´J1 pv, pt n`1 , X tn qq J 2 pv, pt n`1 , X tn qq B 2 θ ´θ 2 ¯dθ  ∆t `N´1 ÿ n"0 E " p C∆t pt n , X tn q `Kn,N pX tn q∆t 3{2 q ‰ , (2.22) 
where

R∆t θ pt n , xq :" R ∆t θ pt n , xq ``J 1 pu t n`1 , pt n , xqq ´J1 pv, pt n`1 , xqq ˘B2 θ ´θ 2 ´`J 2 pu t n`1 , pt n , xqq ´J2 pv, pt n`1 , xqq ˘θ and C∆t pt n , xq :" E B « 1 ż 0 ℓ 2 γ ´J1 pu t n`1 , pt n , xqq B 2 θ ´θ 2 ´J2 pu t n`1 , pt n , xqqθ `R∆t θ pt n , xq "´| J 1 pu t n`1 , pt n , xqq| 2 ´|J 1 pv, pt n`1 , xqq| 2 ¯B2 θ 2 `´|J 2 pu t n`1 , pt n , xqq| 2 ´|J 2 pv, pt n`1 , xqq| 2 ¯θ ´´J 1 pu t n`1 , pt n , xqq J 2 pu t n`1 , pt n , xqq ´J1 pv, pt n`1 , xqq J 2 pv, pt n`1 , xqq ¯B2 θ ´θ 2 * dθ ff .
Noticed that the terms R∆t θ pt n , X tn q and C∆t pt n , X tn q need to be estimated in order to pass to limit N Ñ 8 in the expression (2.22). From the result in Proposition 1.11 (in Chapter 1), we have the previous terms converge to zero in the following sense:

• sup 0ďnďN ´1 E ˇˇC ∆t pt n , X tn q ˇˇď K∆t 1{2 , for some constant K ą 0. 

• sup 0ďnďN ´1 sup θPr0,1s ˇˇR ∆t θ pt n , X tn q ˇˇÝÑ N Ñ8 0, dP W b dP B -
R N,γ rv, f s " E " T ż 0 1 ż 0 ℓ 2 γ ˆJ1 pv, p φN ptq, X ϕ N ptq qq B 2 θ ´θ 2 ´J2 pv, p φN ptq, X ϕ N ptq qqθ `R ∆t θ p φN ptq, X ϕ N ptq q "|J 1 pv, p φN ptq, X ϕ N ptq qq| 2 B 2 θ 2 `|J 2 pv, p φN ptq, X ϕ N ptq qq| 2 θ ´J1 pv, p φN ptq, X ϕ N ptq qq J 2 pv, p φN ptq, X ϕ N ptq qq B 2 θ ´θ 2 * dθ dt  `N´1 ÿ n"0 E " C∆t pt n , X tn q `Kn,N pX tn q∆t 3{2 ‰ .
(2.23)

When the number of trading dates N Ñ `8, the last term of R N,γ rv, f s in (2.23) goes to zero, due to the estimates in Lemma 1.11 and Proposition 1.9. On the other hand, the limit of the first term in (1.37) is achieved by applying the dominated convergence theorem.

Step 1. Because of the continuity of the volatility σpt, T q in time t, the reference price v and its derivatives v x , v xx in time t and in space x, the PDE non-linearity f , the cost function c, and the path-continuity of X, we get

J 1 pv, p φN ptq, X ϕ N ptq qq ÝÑ N Ñ8 J 1 pv, pt, X t qq J 2 pv, p φN ptq, X ϕ N ptq qq ÝÑ N Ñ8
J 2 pv, pt, X t qq, P W -almost surely, for all t P r0, T s. Moreover, the result of item (c) of Lemma 1.11 states

sup 0ďnďN ´1 sup θPr0,1s
ˇˇR ∆t θ pt n , X tn q ˇˇÝÑ

Step 2. Because of the second derivative ℓ 2 γ is discontinuous at 0 but the set A :" " pω, t, θq P Ω ˆr0, T s ˆr0, 1s : 

J 1 pv,
ℓ 2 γ ´J1 pv, p φN ptq, X ϕ N ptq qq B 2 θ ´θ 2 ´J2 pv, p φN ptq, X ϕ N ptq qqθ `R ∆t θ p φN ptq, X ϕ N ptq q ¯ÝÑ N Ñ8 ℓ 2 γ ´J1 pv, pt, X t qq B 2 θ ´θ 2 ´J2 pv, pt, X t qqθ ¯, dP W b dP B b dt b dθ-almost surely.
Step 3. Because of the boundedness of ℓ 2 γ , the polynomial growth of v, v x , v xx , and c in space x, we have that the integrand in (2.23) is bounded by

C ´1 `sup tPr0,T s |X t | `|B θ | ¯α,
for some positive constants C and α. Finally, we take the limit of the first term of R N,γ rv, f s in (2.23) to get

R γ rv, f s " E " T ż 0 1 ż 0 ℓ 2 γ ˆJ1 pv, pt, X t qq B 2 θ ´θ 2 ´J2 pv, pt, X t qqθ |J 1 pv, pt, X t qq| 2 B 2 θ 2 `J2 pv, pt, X t qq| 2 θ ´J1 pv, pt, X t qq J 2 pv, pt, X t qq B 2 θ ´θ 2 ˙dθ dt  ,
by dominated convergence theorem, which concludes the proof of Theorem 2.9.

Convex-concave staggered cost models

In this section, we consider convex-concave staggered cost models. First, we introduce the case of increasing costs with continuous differentiable dependence on the spot price. This corresponds to the economic point of view where the costs are split according to the power plant usability. Then, we examine decreasing costs being a piecewise convex function of the spot price. In this case, we consider the seasonality of the refueling and maintenance stops, which occur usually when the demand is in the lowest level, then when the spot price is also low.

Increasing costs

First, we take a convex-concave staggered cost function c depending on the spot price level c α pxq " c 0 `c1 `x{c 2 ˘α, (2.24) for x P R, where the constants c 0 ě 0, c 1 ą 0 and c 2 ą 0. The parameter α controls the convexity (α ą 1) or concavity (0 ă α ă 1) of the function c α . Notice that c 0 represents the minimal maintenance cost and c 1 , the cost increment from 0 up to level price c 2 (see Figure 2.3).

Decreasing costs

Now, we consider staggered costs decreasing with the spot price level. Thus, we take a staggered cost function c as follows c β,0 pxq " b 0 `b1 e ´px{b 2 q β , c β,1 pxq " b 0 `b1 p1 ´px{b 2 q β q `, for x P R, where the constants b 0 ě 0, b 1 ą 0 and b 2 ą 0. Here, the parameter β characterizes the convexity (0 ă β ď 1) of the costs. Analogously to the previous model, notice that b 0 represents the minimal staggered costs (related to the investment), and b 1 , the staggered cost increment (related to the maintenance) (see Figure 2.4).

This part of the fixed costs are influenced mostly by the maintenance costs, which are greater during the refueling stops. From an economic point of view, power producers prefer to schedule the maintenance of their power plant when the electricity demand is low, increasing the stability grid in the periods of high need of power. Thus, by avoiding to stop when the electricity is also high, they seek for higher profits.

Numerical experiments

In this section, we present the producer valuation/hedging policies in the presence of fixed costs. Those costs are spread over the hedging period and are dependent on electricity spot price according to the models proposed in Section 2.4. Now we describe how those valuation/hedging policies are computed. Denote by g the future income payoff due the power plant production. With the optimal PDE non-linearity f ˚(see (2.13)) in hands, the power producer selects the following rule

V tn " v ˚pt n , X tn q, ϑ tn " v x pt n , X tn q,
where v ˚is the solution to the f ˚-PDE

´vt ´f ˚pt, x, v ˚, v x , v xx q " 1 2 |σpt, T qx| 2 v xx , (2.25) 
for all pt, xq P r0, t n`1 s ˆR, with the terminal condition v ˚pT , ¨q " gp¨q at the time T . Notice that v ˚depend on the parameter γ and on the staggered cost function cpxq, through the PDE non-linearity f ˚.

To solve PDE (2.25), we use standard finite difference methods as described in Subsection 1.5.1 (Chapter 1). Also, we consider the following volatility function σpt, T q " σ0 e ´a0 pT ´tq , 0 ď t ď T, for some constants σ0 ą 0 and a 0 ě 0 (see Figure 2.5).

� � =��� � � =��� � � =��� ��� ��� ��� ��� ��� ��� � � �� �� �� �� �� ���������� ���� (����) ���������� (%)
Figure 2.5 -Volatility σpT ´τ, T q decreasing in expiration time τ with σ0 " 30%. The parameter a 0 represents the decay rate. In this case, the one-year-to-expiration volatility is 60.65% of the initial volatility σ0 for a 0 " 0.5.

Optimal valuation/hedging rule for increasing costs

Here, we study the impact of an increasing cost function cpxq on the producer valuation/hedging rule. At the horizon time T , power producers choose to turn their power plants on if the electricity spot price S T is greater than K 0 , representing the starting costs. Here, we assume those costs are due to the fuel consumed to produce electricity. So, the future income function describing this option is a call payoff with strike price K 0 given by gpS T q " pS T ´K0 q `at horizon time T " 1. Also, we consider the following set of parameters:

γ α c 0 c 1 c 2 σ0 a 0
-0.3 2.5 0.2 0.5 10 30% 0.5

Discussion about convex staggered costs. First, we consider the convex cost function c α defined in (2.24) for α ą 1. Economically, those increasing fixed costs model a positive correlation between maintenance costs and the electricity spot price. This is a result from the assumption that maintenance costs increase with a longer and an intense use of the power plant.

In Figure 2.6, we show the valuation/hedging rule at the time t " 0 for future income function (described as call option) with starting costs K 0 " 10. In the plot, we observe three different rules:

• the red (full) line represents the Black-Scholes valuation corresponding to γ " 0 and cpxq " 0; • the green (dashed) one represents the Black-Scholes valuation with staggered costs corresponding to γ " 0 and cpxq " c α pxq; • the blue (dotted) one represents the asymmetric risk valuation with staggered costs corresponding to γ " ´0.3 and cpxq " c α pxq.

Considering the value function, we remark that both asymmetric risk prices are inferior to the Black-Scholes one when the parameter γ P p´1, 0q. By increasing the risk aversion parameter γ, we obtain an asymmetric risk price with a greater convexity with respect to the hedging instrument X 0 (a forward contract with delivery time T ), corresponding to a smaller volatility coefficient in a Black-Scholes model. When the constant c 0 get larger, we have the price reduced due to costs incurred along the hedging.

γ=�� �=� γ=�� �=�α γ≠�� �=�α ��� ��� ��� ��� ��� -� � � � � � � � � � /� � � * (�� � � ) (€/���) (a) Value function v ˚p0, x 0 q γ=�� �=� γ=�� �=�α γ≠�� �=�α ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � /� � � � * (�� � � ) (b) Hedge function v x p0, x 0 q
Figure 2.6 -Optimal valuation/hedging rule for a call payoff with K 0 " 10 using a convex staggered cost function c α pxq with α ą 1.

Also, we notice that, when the staggered fixed costs depend on the electricity spot price level through a convex function, we obtain a hedging function inferior to hedge one in the case of zero cost. The first reason for that is the initial cost c 0 incurred independently of the price level. Secondly, due to the convexity of cpxq, the hedging function is reduced further for a large price level, then the parameter α controls the increment of the gap in the right-hand side of the graph in Figure 2.6 (b).

Discussion about concave staggered costs. Now, we consider the concave cost function defined in (2.24) by 0 ă α ă 1. In Figure 2.7, we show the valuation/hedging rule at the time t " 0 for call payoff with starting costs K 0 " 10. Similarly to the convex case, the hedging function is now reduced further for a small price level because it is the region where the costs are more important.

When power producers penalize further the negative local balance pE n ă 0q, as described in the introduction, through a more negative parameter γ, their optimal hedging for forward prices X 0 much larger than the strike price K 0 is to take a greater long position for call payoffs compared to Black-Scholes.

Optimal valuation/hedging rule for decreasing costs

Now, we examine the influence of staggered costs decreasing with the electricity spot price on the the producer valuation/hedging rule. Here, power producers will receive a future income gpS T q at time T due to the trading of electricity on the market. If the starting costs K 0 are covered by the sale of power, they will turn their plants on, obtaining a gain of gpS T q " pS T ´K0 q

`.
Fixed cost accounting. However, their power plants generate fixed costs (for example, due to maintenance stops) despite of their future decision. Therefore, those fixed costs K 1 should be subtracted from the previous gain generating then the following balance: pS T ´K0 q `´K 1 . In view of reduce the randomness of this future income, we trade on the forward contract F pt, T q with delivery time T at equidistant dates. Then, the amount K 1 is spread over the time interval r0, T s.

In order to use realistic values for those costs K 0 and K 1 , it is interesting to rewrite the payoff in terms of the initial forward price. With this formulation, we could compare the results for different values of initial forward price F p0, T q by changing the strike price in the rewritten payoff.

Rewriting in terms of the initial forward price

We write the forward price F pt, T q solution to the SDE (2.14) as follows F pt, T q " F p0, T qY pt, T q, where F p0, T q is the initial forward price and Y pt, T q is the stochastic deformation. Now, we consider the following transformation given by ṽ˚p t, yq " v ˚pt, F p0, T qyq{F p0, T q gpyq " gpF p0, T qyq{F p0, T q, cpyq " cpF p0, T qyq{F p0, T q,

γ=�� �=� γ=�� �=� �/α γ≠�� �=� �/α ��� ��� ��� ��� ��� -� � � � � � � � � � /� � � * (�� � � ) (€/���) (a) Value function v ˚p0, x 0 q γ=�� �=� γ=�� �=� �/α γ≠�� �=� �/α ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � /� � � � * (�� � � ) (b) Hedge function v x p0, x 0 q
Figure 2.7 -Optimal valuation/hedging rule for a call payoff with K 0 " 10 using a concave staggered cost function c 1{α pxq with 0 ă 1{α ă 1 .

for an initial forward price F p0, T q ‰ 0. Then, we get the following derivatives of ṽ˚i n terms of the derivatives of the value function v vẙ pt, yq " v x pt, F p0, T qyq,

ṽẙ y pt, yq " v xx pt, F p0, T qyqF p0, T q.
With this transformations in hands, we write the PDE (2.25) in v ˚with terminal condition v ˚pT , xq " gpxq in terms of ṽv t `f ˚pt, y, ṽ˚, ṽẙ , ṽẙ y q "

1 2 |σpt, T qy| 2 ṽẙ y ,
with terminal condition ṽ˚p T, yq " gpyq at time T , where f ˚pt, y, ṽ˚, ṽẙ , ṽẙ y q " χ ˚pF p0, T q |σpt, T qy| 2 ṽẙ y q{F p0, T q ´cpyq " χ ˚p|σpt, T qy| 2 ṽẙ y q ´cpyq, because χ ˚is homogenous of degree 1 (see (2.11)).

Discussion about decreasing staggered costs Now, we consider a transformed payoff gpyq " py ´K 0 q `and transformed costs cβ,0 pyq " b0 `b 1 expp´py{ b2 q β q, cβ,1 pyq " b0 `b 1 p1 ´py{ b2 q β q `, where K0 " K 0 {F p0, T q, bi " b i {F p0, T q, for every i P t0, 1, 2u. Also, we take the following sets of parameters corresponding to a growth of the initial forward price from F p0, T q " 40 to F p0, T q " 60: In Figures 2.8 and 2.9, we show the valuation/hedging rule at the time t " 0 for the transformed call option with starting costs K0 " 1{4 and K0 " 1{6, respectively. In the plot, we observe three different rules:

γ K0 b0 b1 b2 
• the red (full) line represents the asymmetric risk with staggered costs corresponding to γ P t´0.1, ´0.3u and cpxq " c β,0 pxq;

• the green (dotted) one represents the asymmetric risk valuation with staggered costs corresponding to γ P t´0.1, ´0.3u and cpxq " c β,1 pxq;

• the gray (dotted) one represents the Black-Scholes valuation corresponding to γ " 0 and cpxq " 0;

Regarding the value function, we notice a difference due to the transformed staggered costs b0 and b1 from the set A are lesser than the set B. At time t, the power producer observes the forward price F pt, T q at level x and computes the ratio x{K 0 . Following the relation x{K 0 " y{ K0 , the producer expects a positive option value at time t, if the value of ṽ˚p t, yq at point y{ K0 is positive (analogous to the function ṽ˚p 0, y 0 q in Figure 2.9). Considering the hedging function, we observe that the asymmetric risk hedging rule is greater than the Black-Scholes one, because of the decreasing property of staggered cost functions c β,i . Observing a forward price x at time t, the power producer can compare the different hedging rules by looking the hedging function ṽẙ pt, yq at point x{K 0 . Finally, we notice that the parameter γ ă 0 reduces the diffusion term in the PDE (2.25) on convex regions, and increases it on concave parts, influencing directly the value function.

Conclusions and extensions

Here, we described a valuation and hedging strategies for future production of power plants with fixed costs. Using an asymmetric risk valuation, we proved the existence of the asymptotic risk in the case of staggered fixed costs depending on the electricity spot price. Then, we provided methods to solve the associated PDE and to find the so-called optimal policies. Our model considered time-independent deterministic staggered costs which could be either a convex or concave function of the spot price level.

Several extensions are of interest. First, we can consider the case where the staggered costs c also depends on time. Since the maintenance costs increase in certain periods of the year (due to the scheduled maintenance stops), the problem is solved in a similar way. In addition, the optimal PDE in (2.25) becomes

´vt ´χ˚p |σpt, T qx| 2 v xx q `cpt, xq " 1 2 |σpt, T qx| 2 v xx .
Finally, a natural extension is the case where c is a random function. This is important if the
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(b) Hedge function ṽẙ p0, y 0 q Figure 2.8 -Optimal valuation/hedging rule for a call payoff using a decreasing staggered cost function c β,i pxq with parameter set A.

CONCLUSIONS AND EXTENSIONS
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(b) Hedge function ṽẙ p0, y 0 q Figure 2.9 -Optimal valuation/hedging rule for a call payoff using a decreasing staggered cost function c β,i pxq with parameter set B.

maintenance costs are subject to unpredictable factors like when a nuclear plant has a breakdown or when the maintenance periods has to be prolonged.

Part II

Numerical methods in stochastic control

a partial observation of the state, in the sense that she can only observe the common noise. We make the standard Lipschitz condition on the coefficients bpx, µ, aq, σpx, µ, aq, σ 0 px, µ, aq with respect to px, µq in R n ˆP2 pR n q, uniformly in a P A, where P 2 pR n q is the set of all probability measures on pR n , BpR n qq with a finite second-order moment, endowed with the 2-Wasserstein metric W 2 . This ensures the well-posedness of the controlled MKV stochastic differential equation (SDE) (3.1). The cost functional over a finite horizon T associated to the stochastic MKV equation (3.1) (sometimes called conditional MKV equation) for a control process α, is

Jpαq " E " ż T 0 f pX t , P W 0 X t , α t qdt `gpX T , P W 0 X T q ı ,
and the objective is to maximize over an admissible set A of control processes the cost functional:

V 0 " sup αPA Jpαq.
The set A of admissible controls usually requires some integrability conditions depending on the growth conditions on f , g, in order to ensure that Jpαq is well-defined for α P A (more details will be given in the examples, see Section 3.5). Notice that classical partial observation control problem (without MKV dependence on the coefficients) arises as a particular case of (3.1)-(3.2). We refer to the introduction in [START_REF] Pham | Dynamic Programming for Optimal Control of Stochastic McKean-Vlasov Dynamics[END_REF] for the details.

Let us recall from [START_REF] Pham | Dynamic Programming for Optimal Control of Stochastic McKean-Vlasov Dynamics[END_REF] the dynamic programming equation associated to the conditional MKV control problem (3.2). We start by defining a suitable dynamic version of this problem. Let us consider F 0 a sub σ-algebra of F independent of B, W 0 . It is assumed w.l.o.g. that F 0 is rich enough in the sense that P 2 pR n q " tLpξq : ξ P L 2 pF 0 ; R n qu, where Lpξq denotes the law of ξ. Given a control α P A, we consider the dynamic version of (3.1) starting from ξ P L 2 pF 0 ; R n q at time t P r0, T s, and written as:

X t,ξ,α s " ξ `ż s t bpX t,ξ,α u , P W 0 X t,ξ,α u , α u qdu `ż s t σpX t,ξ,α u , P W 0 X t,ξ,α u , α u qdB u `ż s t σ 0 pX t,ξ,α u , P W 0 X t,ξ,α u , α u qdW 0 u , t ď s ď T.
Let us then define the dynamic cost functional:

Jpt, ξ, αq " E " ż T t f pX t,ξ,α s , P W 0 X t,ξ,α s , α s qds `gpX t,ξ,α T , P W 0 X t,ξ,α T q ı ,
for pt, ξq P r0, T s ˆL2 pF 0 ; R n q, α P A, and notice by the law of conditional expectations, and as

α is F 0 -progressive that Jpt, ξ, αq " E " ż T t f pP W 0 X t,ξ,α s , α s qds `ĝpP W 0 X t,ξ,α s q ı ,
where f : P 2 pR n q ˆA Ñ R, ĝ : P 2 pR n q Ñ R are defined by

f pµ, aq " µpf p¨, µ, aqq " ż R n f px, µ, aqµpdxq, ĝpµq " µpgp¨, µqq " ż R n gpx, µqµpdxq.
Moreover, notice that the conditional law of X t,ξ,α s given W 0 depends on ξ only through its law

Lpξq, and we can then define for α P A:

ρ t,µ,α s " P W 0 X t,ξ,α s
, for t ď s, µ " Lpξq P P 2 pR n q.

Therefore, the dynamic cost functional Jpt, ξ, αq depends on ξ P L 2 pF 0 ; R n q only through its law Lpξq, and by an abuse of notation, we write Jpt, µ, αq " Jpt, ξ, αq when µ " Lpξq. We then consider the value function for the conditional MKV control problem (3.2), defined on r0, T s ˆP2 pR n q by vpt, µq " sup αPA Jpt, µ, αq "

sup αPA E " ż T t f pρ t,µ,α s , α s qds `ĝpρ t,µ,α T q ı ,
and notice that at time t " 0, when ξ " x 0 is a constant, then V 0 " vp0, δ x 0 q.

It is shown in [START_REF] Pham | Dynamic Programming for Optimal Control of Stochastic McKean-Vlasov Dynamics[END_REF] that dynamic programming principle (DPP) for the conditional MKV control problem (3.5) holds: for pt, µq P r0, T s ˆP2 pR n q, vpt, µq "

sup αPA E " ż θ t f pρ t,µ,α s , α s qds `vpθ, ρ t,µ,α θ q ı ,
for any F 0 -stopping time θ valued in rt, T s. Next, by relying on the notion of differentiability with respect to probability measures introduced by P. L. Lions [START_REF] Lions | Théorie des jeux de champ moyen et applications (mean field games)[END_REF] (see also the lecture notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF]) and the chain rule (Itô's formula) along flow of probability measures (see [START_REF] Buckdahn | Mean-field stochastic differential equations and associated pdes[END_REF], [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF]), we derive the HJB equation for v:

$ & % B t v `sup aPA " f pµ, aq `µ`L a vpt, µq ˘`µ b µ `M a vpt, µq ˘ı " 0, pt, µq P r0, T q ˆP2 pR n q,
vpT, µq " ĝpµq, µ P P 2 pR n q, (3.6) where for φ P C 2 b pP 2 pR n qq, a P A, and µ P P 2 pR n q, L a φpµq is the function R n Ñ R defined by

L a φpµqpxq " B µ φpµqpxq.bpx, µ, aq `1 2 tr `Bx B µ φpµqpxqpσσ ⊺ `σ0 σ ⊺ 0 qpx, µ, aq ˘,
and M a φpµq is the function R n ˆRn Ñ R defined by

M a φpµqpx, x 1 q " 1 2 tr `B2 µ φpµqpx, x 1 qσ 0 px, µ, aqσ ⊺ 0 px 1 , µ, aq ˘.
The HJB equation (3.6) is a fully nonlinear partial differential equation (PDE) in the infinitedimensional Wasserstein space. In general, this PDE does not have an explicit solution except in the notable important class of linear-quadratic MKV control problem. Numerical resolution for MKV control problem or equivalently for the associated HJB equation is a challenging problem due to the nonlinearity of the optimization problem and the infinite-dimensional feature of the Wasserstein space. In this work, our purpose is to investigate a class of MKV control problems which can be reduced to finite-dimensional problems in view of numerical resolution.

Notations and Assumptions

Main assumptions

We make two kinds of assumptions on the coefficients of the model: one on the dependence on x and the other on the dependence on µ.

Assumptions: dependence on x: we consider a class of models where the coefficients of the MKV equation are linear w.r.t. the state variable X, i.e., they are in the form $ & % bpx, µ, aq " b 0 pµ, aq `b1 pµ, aqx, σpx, µ, aq " ϑ 0 pµ, aq `ϑ1 pµ, aqx, σ 0 px, µ, aq " γ 0 pµ, aq `γ1 pµ, aqx, (3.9) while the running and terminal cost functions are polynomial in the state variable in the sense that they are in the form (for simplicity we present here the one-dimensional case n " 1)

f px, µ, aq " f 0 pµ, aq `p ÿ k"1 f k pµ, aqx k , gpx, µq " g 0 pµq `p ÿ k"1 g k pµqx k ,
for some integer p ě 1.

Assumptions: dependence on µ: we assume that all the coefficients depend on µ through its first p moments, i.e., they are in the form $ ' ' & ' ' % b 0 pµ, aq " b0 pμ 1 , μ2 , . . . , μp , aq, b 1 pµ, aq " b1 pμ 1 , μ2 , . . . , μp , aq ϑ 0 pµ, aq " θ0 pμ 1 , μ2 , . . . , μp , aq, ϑ 1 pµ, aq " θ1 pμ 1 , μ2 , . . . , μp , aq γ 0 pµ, aq " γ0 pμ 1 , μ2 , . . . , μp , aq, γ 1 pµ, aq " γ1 pμ 1 , μ2 , . . . , μp , aq f k pµ, aq " fk pμ 1 , μ2 , . . . , μp , aq, g k pµq " ḡk pμ 1 , μ2 , . . . , μp q, k " 0, . . . , p,

where, given µ P P p pRq, we denote by μk " ż x k µpdxq, k " 1, . . . , p.

We assume that the coefficients b0 , b1 , θ0 , θ1 , γ0 , γ1 are Lipschitz w.r.t. the p first arguments uniformly w.r.t. the control argument a P A. This condition will ensure existence and uniqueness of a solution to the finite-dimensional MKV SDE defined later in (3.11).

Notice that in this case, the functions f and ĝ defined in (3.3)-(3.4) are given by f pµ, aq " f0 pμ 1 , μ2 , . . . , μp , aq `p ÿ k"1 fk pμ 1 , μ2 , . . . , μp , aqμ k ": f pμ 1 , μ2 , . . . , μp , aq, ĝpµq " ḡ0 pμ 1 , μ2 , . . . , μp q `p ÿ k"1 ḡk pμ 1 , μ2 , . . . , μp qμ k ": ḡpμ 1 , μ2 , . . . , μp q.

Remark 3.1. In the multidimensional case, we should consider a class of multi-polynomial functions f and g of degree p in the form

f px, µ, aq " p ÿ |k|"0 f k ´pµ k 1 q |k 1 |ďp , a ¯xk , gpx, µq " p ÿ |k|"0 g k ´pµ k 1 q |k 1 |ďp ¯xk ,
where we use multi-index notations k " pk 1 , . . . , k n q P N n , |k| " k 1 `. . . `kn , x k " x k 1 1 . . . x kn n for x " px 1 , . . . , x n q P R n and

µ k " ż R n
x k µpdxq.

Markovian embedding

Given the controlled process X " X α solution to the stochastic MKV dynamics (3.1), denote by

Y pkq t " ErX k t |W 0 s, k " 1, . . . , p.
To alleviate the notations, we assume that n " 1 (otherwise multi-indices should be used).

From the linear/polynomial assumptions (3.9)-(3.10), by Itô's formula and taking conditional expectations, we can derive the dynamics of pY p1q , Y p2q , . . . , Y ppq q as

dY pkq t " B k pY p1q t , Y p2q t , . . . , Y ppq t , α t qdt `Σk pY p1q t , Y p2q t , . . . , Y ppq t , α t qdW 0 t , Y pkq 0 " x k 0 , k " 1, . . . , p, (3.11) 
where, by convention y 0 " 1, y ´1 " 0, B k py 1 , y 2 , . . . , y p , aq " k b0 py 1 , . . . , y p , aqy k´1 `kb 1 py 1 , . . . , y p , aqy k `kpk ´1q 2 p θ0 py 1 , . . . , y p , aqq 2 y k´2 `kpk ´1q 2 p θ1 py 1 , . . . , y p , aqq 2 y k `kpk ´1q θ0 py 1 , . . . , y p , aq θ1 py 1 , . . . , y p , aqy k´1 `kpk ´1q 2 pγ 0 py 1 , . . . , y p , aqq 2 y k´2 `kpk ´1q 2 pγ 1 py 1 , . . . , y p , aqq 2 y k `kpk ´1qγ 0 py 1 , . . . , y p , aqγ 1 py 1 , . . . , y p , aqy k´1 , k " 1, . . . , p, Σ k py 1 , y 2 , . . . , y p , aq " k pγ 0 py 1 , . . . , y p , aqy k´1 `γ 1 py 1 , . . . , y p , aqy k q , k " 1, . . . , p, while the cost functional is written as

Jpαq " E " ż T 0 f pY p1q t , Y p2q t , . . . , Y ppq t , α t qdt `ḡpY p1q T , Y p2q T , . . . , Y ppq T q ı .
The MKV control problem is then reduced in this polynomial framework into a finite-dimensional control problem with F 0 -adapted controlled variables pY p1q , Y p2q , . . . , Y ppq q. In the next section, we describe three probabilistic numerical methods for solving finite-dimensional stochastic control problems and will apply in section 3.5 each of these methods to three examples arising from polynomial MKV control problems under partial observation and common noise.

Probabilistic numerical methods

In this section, we introduce our numerical methods for the resolution of the reduced problem (3.11)-(3.12).

Let us introduce the process Z α , valued in R d , controlled by an adapted process α taking values in A, solution to dZ α t " bpZ α t , α t qdt `σ0 pZ α t , α t qdW 0 t , Z α 0 " z 0 P R d , and the performance measure

Jpt, z, αq " E "ż T t f pZ α t , α t qdt `gpZ α T q ˇˇZ α t " z  ,
which assesses the average performance of the control.

Introduce now a time discretization t n " n∆t, n " 0, . . . , N , ∆t " T {N , and denote by A ∆t the space of discrete processes pα tn q N ´1 n"0 such that for all n, n " 0, . . . , N ´1, α tn is F 0 tn -measurable. We can write the Euler approximation of the SDE governing the process Z " Z α , with α P A ∆t (to alleviate notations, we sometimes omit the dependence on α when there is no ambiguity, and keep the same notation Z for the discrete and continuous process)

Z t n`1 " Z tn `bpZ tn , α tn q∆t `σ0 pZ tn , α tn q∆W 0 tn , (3.13) 
where ∆W 0 tn " N p0, ∆tq is an increment of W 0 . The discrete time approximation of Jpt n , z, αq is defined as:

J ∆t pt n , z, αq " E « N ´1 ÿ k"n f pZ t k , α t k q∆t `gpZ t N q ˇˇZ tn " z ff ,
where α P A ∆t .

Value and Performance iteration

For n " 0, . . . , N , consider V ∆t pt n , zq " sup αPA ∆t J ∆t pt n , z, αq, the discrete time approximation of the value function at time t n : V `tn , z ˘" sup αPA Jpt n , z, αq. The dynamic programming principle states that `V∆t pt n , ¨q˘0 ďnďN is solution to the Bellman equation:

$ & % V ∆t pt N , zq " gpzq V ∆t pt n , zq " sup aPA ! f pz, aq∆t `Ea n,z " V ∆t pt n`1 , Z t n`1 q ‰ ) , n " N ´1, . . . , 0, (3.14) 
where E a n,z r¨s denotes the expectation conditioned on the event tZ tn " zu and when using the control α tn " a at time t n . Observe that for n " 0, . . . , N ´1, the equation (3.14) provides a backward procedure to recursively compute the V ∆t pt n , ¨q if we know how to analytically compute the conditional expectations E a n,z rV ∆t pt n`1 , Z t n`1 qs for all z P R d and all control a P A. We refer to the procedure in (3.14) as value iteration.

An alternative approach to compute V ∆t pt n , ¨q, for n " 0, . . . , N ´1, is to notice that once again by the dynamic programming principle, it holds that `V∆t pt n , ¨q˘0 ďnďN is solution to the backward equation

$ ' & ' % V ∆t pt N , zq " gpzq V ∆t pt n , zq " sup aPA # f pz, aq∆t `Ea n,z « N ´1 ÿ k"n`1 f `Zt k , α tk pZ t k q ˘∆t `gpZ t N q ff+ , n " N ´1, . . . , 0, (3.15 
) where for k " n `1, . . . , N ´1, the control α tk is the optimal control at time t k defined as follows:

α tk pzq " argmax aPA # f pz, aq∆t `Ea k,z « N ´1 ÿ ℓ"k`1
f `Zt ℓ , α tℓ pZ tℓ q ˘∆t `gpZ tN q ff+ , and where `Zt k ˘nďkďN is the process Z controlled by the following control α from time t n to t N : # α tn " a, α t k " α tk for n `1 ď k ď N ´1.

For n " 0, . . . , N ´1, the scheme (3.15) provides once again a backward procedure to compute V ∆t pt n , ¨q, assuming that we know how to analytically compute the conditional expectations

E a n,z " ř N ´1 k"n`1 f `Zt k , α tk pZ t k q ˘∆t `gpZ t N q
ı for all z P R d and all control a P A. We refer to the procedure in (3.15) as performance iteration.

Except for trivial cases, closed-form formulas for the conditional expectations appearing in the value and performance iteration procedures are not available, and they have to be approximated, which is the main difficulty when implementing both approaches to compute the value functions. In the next section, we discuss different ways to approximate conditional expectations and derive the corresponding estimations of the value functions V ∆t pt n , ¨q for n " 0, . . . , N ´1.

Approximation of conditional expectations

In this subsection, we present three numerical methods that we apply later to conditional MKV problems. Two of these methods belong to the class of Regression Monte Carlo techniques, a family of algorithms whose effectiveness highly relies on the choice of the basis functions used to approximate conditional expectations; the third algorithm, Quantization, approximate the controlled process Z α tn with a particular finite state Markov chain for which expectations can be approximated quickly.

Regression Monte Carlo

In the simpler uncontrolled case, the family of Regression Monte Carlo algorithms is based on the idea of approximating the conditional expectation E " V ∆t pt n`1 , Z t n`1 q ˇˇZ tn ‰ , for n " 0, . . . , N ´1, by the orthogonal projection of V ∆t pt n`1 , Z t n`1 q onto the space generated by a finite family of φ k pZ tn q ( kě1 where pφ k q kě1 is a family of basis functions, i.e., a family of measurable real-valued functions defined on R d such that `φk pZ tn q ˘kě1 is total in L2 pσpZ tn qq1 and such that for all scalars β k and all K ě 1, if ř K k"1 β k φ k pZ tn q " 0 a.s. then β k " 0, for k " 1, . . . , K. The expectation E " V ∆t pt n`1 , Z t n`1 q ˇˇZ tn ‰ should then be approximated as follows:

E " V ∆t pt n`1 , Z t n`1 q ˇˇZ tn ‰ « K ÿ k"1 β n k φ k pZ tn q,
where K ě 1 is fixed and β n " pβ n 1 , . . . , β n K q T is defined as:

β n " argmin βPR K # E « ˇˇV ∆t pt n`1 , Z t n`1 q ´K ÿ k"1 β k φ k pZ tn q ˇˇ2 ff+ . (3.16)
Notice that β n is defined in (3.16) as the minimizer of a quadratic function, and can then be rewritten by straightforward calculations as:

β n " E " φpZ tn qφpZ tn q T ‰ ´1 E " V ∆t pt n`1 , Z t n`1 qφpZ tn q ‰ , (3.17) 
where we use the notation φ " pφ 1 , . . . , φ K q T , and where we assumed that E " φpZ tn qφpZ tn q T ‰ is invertible.

In order to estimate a solution to (3.17) we rely on Monte Carlo simulations to approximate expectations with finite sums. Consider the training set t `Zm tn , Z m t n`1 ˘uM m"1 at time t n obtained by running M ě 1 forward simulations of the process Z from time t 0 " 0 to t n`1 . β n defined in (3.17) can then be estimated by

βn " ´Â M n ¯´1 1 M M ÿ m"1 V ∆t pt n`1 , Z m t n`1 qφpZ m tn q,
where we denote by ÂM n the estimator 1 M ř M m"1 φpZ m tn qφpZ m tn q T of the covariance matrix A n " E " φpZ tn qφpZ tn q T ‰ .

The procedure presented above offers a convenient mean to approximate conditional expectations when the dynamics of the process Z are uncontrolled. When controlled, however, one has to account for the effect of the control on the conditional expectations either explicitly, via Control Randomization, or implicitly, via Regress-Later.

Control Randomization

In order to explicitly account for the effect of the control, one could directly introduce dependence on the control in the basis function. This basic idea of Control Randomization consists in replacing in the dynamics of Z the endogenous control by an exogenous control pI tn q 0ďnďN , as introduced in [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF]. Its trajectories can then be simulated from time t 0 to time t N . Consider the training set tZ m tn , I m tn u N,M n"0,m"1 , with M ě 1, where I m tn are i.i.d. samples from a "training distribution" µ n with support in A. The training set will be used to estimate the optimal β n coefficients for n " 0, . . . , N ´1. In the case of value iteration, tV ∆t pt n`1 , Z m t n`1 qu M m"1 is regressed against basis functions (which are, in this context, functions of the state and the control) evaluated at the points tZ m tn , I m tn u M m"1 , as follows:

E a n,z " V ∆t pt n`1 , Z t n`1 q ‰ « K ÿ k"1 βn k φ k pz, aq, with βn " argmin βPR K # M ÿ m"1 " V ∆t `tn`1 , Z m t n`1 ˘´K ÿ k"1 β k φ k pZ m tn , I m tn q ı 2 + « `Â M n ˘´1 1 M M ÿ m"1 " V ∆t `tn`1 , Z m t n`1 ˘φpZ m tn , I m tn q ı ,
and where φ " pφ 1 , . . . , φ K q T and ÂM n "

1 M M ÿ m"1 φpZ m tn , I m tn qφpZ m tn , I m tn q T (3.18)
is an estimator of the covariance matrix A n " ErφpZ tn , I tn qφpZ tn , I tn q T s.

Notice that the basis functions take state and action variables as input in the case of Control Randomization-based method, i.e., their domain is R d ˆA. Also, observe that the estimated conditional expectation highly depends on the choice of the randomization for the control2 .

An optimal feedback control at time t n given Z tn " z is approximated by the expression (see Subsection 3.3.4 for more practical details on the computation of the argmax):

αtn pzq " argmax aPA # f pz, aq∆t `K ÿ k"1 βn k φ k pz, aq + . (3.19)
The value function at time t n is then estimated using Control Randomization method and value iteration procedure as

p V CR ∆t pt n , zq " f `z, αtn pzq ˘∆t `K ÿ k"1 βn k φ k `z, αtn pzq ˘, z P R d .
Notice that Control Randomization can be easily employed in a performance iteration procedure by computing controls (3.19), keeping in mind that at each time t n we need to re-simulate new trajectories t Zm t k u N,M k"n,m"1 iteratively from the initial condition Zm tn " z, using the estimated optimal strategies pα t k q N ´1 k"n`1 to compute the quantities

ř N ´1 k"n f `tk , Zm t k , αt k p Zm t k q ˘gp Zm t N q, for 1 ď m ď M .

Regress-Later

We present now a regress-later idea in which conditional expectation with respect to Z tn is computed in two stages. First, a conditional expectation with respect to Z t n`1 is approximated in a regression step by a linear combination of basis functions of Z t n`1 . Then, analytical formulas are applied to condition this linear combination of functions of future values on the present value Z tn . For further details see [START_REF] Glasserman | Simulation for American options: Regression now or regression later[END_REF], [START_REF] Nadarajah | Comparison of least squares Monte Carlo methods with applications to energy real options[END_REF] or [START_REF] Balata | Regress-Later Monte Carlo for optimal control of Markov processes[END_REF]. With this approach, the effect of the control is factored in implicitly, through its effect on the (conditional) distribution of Z t n`1 conditioned on Z tn .

Unlike the traditional Regress-Now method for approximating conditional expectations (which we discussed so far in the uncontrolled case and in Control Randomization), the Regress-Later approach, as studied in [START_REF] Balata | Regress-Later Monte Carlo for optimal control of Markov processes[END_REF], imposes conditions on basis functions: Assumption 3.2. For each basis function φ k , k " 1, . . . , K, the conditional expectation φn k pz, aq " E a n,z rφ k pZ t n`1 qs can be computed analytically.

Using the Regress-Later approximation of the conditional expectation and recalling Assumption 3.2 we obtain the optimal control α m tn corresponding to the point Z m tn , sampled independently from a "training distribution" µ n (see Subsection 3.3.3 for further details):

α m tn " argmax aPA ! f pZ m tn , aq∆t `K ÿ k"1 βn`1 k φn k `Zm tn , a ˘).
Notice that we are able to exploit the linearity of conditional expectations because

βn`1 " argmin βPR K # M ÿ m"1 " V ∆t pt n`1 , Z m t n`1 q ´K ÿ k"1 β k φ k pZ m t n`1 q ı 2 + (3.20)
is a constant once the training sets at times t k , k " n `1, . . . , N, are fixed.

The value function at time t n , is then estimated using Regress-Later method and value iteration procedure as

p V RL ∆t pt n , Z m tn q " f pZ m tn , α m tn q∆t `K ÿ k"1 βn`1 k φn k `Zm tn , α m tn ˘.
Notice that contrary to Control Randomization, Regress-Later does not require the training points to be distributed as Z t n`1 conditioned on Z tn because the projection (3.20) is an approximation to an expectation conditional to the measure µ n which can be chosen freely to optimize the precision of the sample estimation. On the other hand Regress-Later, similarly to Control Randomization, can be easily employed in a performance iteration procedure by generating forward trajectories at each time step.

Remark 3.3. Recall that the Regress-Later method uses training points that are i.i.d at each time step and independent across time steps. Contrary to other Regression Monte Carlo approaches, Regress-Later does not require to use the information about the conditional distribution during the regression step as that is accounted for in the second step of the method, when conditional expectations are computed analytically.

Quantization

We propose in this section a quantization-based algorithm to numerically solve control problems. We may also refer to the latter as the Q-algorithm or Q in all the numerical examples considered in Section 3.5, where Q stands for Quantization. Let us first introduce some ingredients of Quantization, and then propose different ways of using them to approximate conditional expectations.

Let pE, |.|q be a Euclidean space. We denote by ε a L-quantizer of an E-valued random variable ε, that is a discrete random variable on a grid Γ " te 1 , . . . , e L u Ă E L defined by

ε " Proj Γ pεq " L ÿ ℓ"1 e ℓ 1 εPC i pΓq ,
where C 1 pΓq, . . ., C L pΓq are the Voronoi cells corresponding to Γ, i.e., they form a Borel partition of E satisfying

C ℓ pΓq Ă ! e P E : |e ´eℓ | " min j"1,...,L |e ´ej | ) ,
and where Proj Γ stands for the Euclidian projection on Γ.

The discrete law of ε is then characterized by p ℓ " Prε " e ℓ s " Prε P C ℓ pΓqs, ℓ " 1, . . . , L.

The grid of points pe ℓ q L ℓ"1 which minimizes the L 2 -quantization error }ε ´ε} 2 leads to the socalled optimal L-quantizer, and can be obtained by a stochastic gradient descent method, known as Kohonen algorithm or competitive learning vector quantization (CLVQ) algorithm, which also provides as a byproduct an estimation of the discrete law pp ℓ q L ℓ"1 . We refer to [START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF] for a description of the algorithm, and mention that for the normal distribution, the optimal grids and the weights of the Voronoi tesselations are precomputed for dimension up to 10 and are available on the website http://www.quantize.maths-fi.com.

In practice, optimal grids of the Gaussian random variable N 1 p0, 1q of dimension 1 with 25 to 50 points, have been used to solve the control problems considered in Section 3.5.

We now propose two ways to approximate conditional expectations. The first approximation belongs to the family of the constant piecewise approximation, and the other one is an improvement on the first one, where the continuity of the approximation w.r.t. the control variable is preserved.

In the sequel, assume that for n " 0, . . . , N ´1 we have a set Γ n of points in R d that should be thought of as a training set used for estimating V pt n , ¨q. See Subsection 3.3.3 for more details on how to build Γ n .

Piecewise constant interpolation

We assume here that we already have an estimate of V ∆t pt n`1 , ¨q, the value function at time t n`1 , for n P t0, . . . , N ´1u, and we denote by p V Q ∆t pt n`1 , ¨q the estimate. The conditional expectation is then approximated as

E a n,z " p V Q ∆t `tn`1 , Z t n`1 ˘‰ « L ÿ ℓ"1 p ℓ p V Q ∆t ´tn`1 , Proj Γ n`1 `G∆t pz, a, e ℓ q ˘¯, for z P Γ n ,
where:

• G ∆t is defined, using the notations introduced in (3.13), as G ∆t pz, a, εq " z `bpz, aq∆t `σ0 pz, aq ? ∆t ε.

(3.21)

• Proj Γn p.q stands for the Euclidean projection on Γ n .

• Γ " te 1 , . . . , e L ( and p ℓ ( 1ďℓďL are respectively the optimal L-quantizer and its associated sequence of weights of the exogenous noise ε. See above for more details. An optimal feedback control at time t n and point z P Γ n is approximated by the expression (see Subsection 3.3.4 for more practical details on the computation of the argmax):

αQ tn pzq " argmax aPA # f pz, aq∆t `L ÿ ℓ"1 p ℓ p V Q ∆t ´tn`1 , Proj Γ n`1 `G∆t pz, a, e ℓ q ˘¯+ .
The value function at time t n , is then estimated using the piecewise constant approximation and value iteration procedure as

p V Q ∆t pt n , zq " f `Zm tn , αQ tn pzq ˘∆t `L ÿ ℓ"1 p ℓ p V Q ∆t ˆtn`1 , Proj Γ n`1 ´G∆t `z, αQ tn pzq, e ℓ ˘¯˙.
Remark 3.4. Clearly, the constant piecewise approximation can be easily extended to control problems of all dimensions d ě 1. However the latter is, in most cases, not continuous w.r.t. the control variable since it remains constant on each Voronoi cells (see, e.g., Figure 3.1 p.114). As a result, the optimization process over the control space suffers from high instability and inaccuracy, which implies a poor estimation of the value function V pt n , ¨q.

Semi-linear interpolation

Once again, we assume here that we already have p V Q ∆t pt n`1 , ¨q, an estimate of the value function at time t n`1 , with n P t0, . . . , N ´1u, and wish to provide an estimation of the conditional expectation in the particular case where the controlled process lies in dimension d=1. Consider the following piecewise linear approximation of the conditional expectation, which is continuous w.r.t. the control variable a:

E a n,z " p V Q ∆t `tn`1 , Z t n`1 ˘‰ « L ÿ ℓ"1 p ℓ " λ e ℓ ,z a p V Q ∆t `tn`1 , z `˘`p1 ´λe ℓ ,z a q p V Q ∆t `tn`1 , z ´˘ı , (3.22) 
for z P Γ n , where for all ℓ " 1, . . . , L, z ´and z `are defined as follows:

• z ´and z `are the two closest states in Γ n`1 from G ∆t pz, a, e ℓ q, such that z ´ă G ∆t pz, a, e ℓ q ă z `, if such states exist; and, in this case, we define λ e ℓ ,z a " G ∆t pz,a,e ℓ q´z ź`´z´.

• Otherwise, z ´and z `are equal and defined as the closest state in Γ Z n`1 from G ∆t pz, a, e ℓ q and we define λ e ℓ ,z a " 1.

Remark 3.5. This second approximation is continuous w.r.t. the control variable, which brings stability and accuracy to the optimal control task (see Subsection 3.3.4), and also ensures an accurate estimate of the value function at time t n . We will mainly use this approximation in the numerical tests (see Section 3.5).

Remark 3.6. Although the dimension d " 1 plays a central role to define clearly the states z ánd z `in (3.22), the semi-linear approximation can actually be generalized to a certain class of control problems of dimension greater than 1, using multi-dimensional Quantization (see, e.g., the comments on the Q-algorithm designed to solve the Portfolio Optimization example, in Subsection 3.5.1). However, it is not well-suited to solve numerically general control problems in dimension greater than 1. For these cases, other interpolating methods such as the use of Gaussian processes are more appropriated (see, e.g., [START_REF] Ludkovski | Simulation methods for stochastic storage problems: A statistical learning perspective[END_REF] for an introduction on the use of Gaussian processes in Regression Monte Carlo).

The optimal feedback control at time t n and point z P Γ n is approximated as (see Subsection 3.3.4 for more practical details on the computation of the argmax):

αQ tn pzq " argmax aPA # f pz, aq∆t `L ÿ ℓ"1 p ℓ " λ e ℓ ,z a p V Q ∆t `tn`1 , z `˘`p1 ´λe ℓ ,z a q p V Q ∆t `tn`1 , z ´˘ı + .
The value function at time t n is then estimated using the semi-linear approximation and value iteration procedure as

p V Q ∆t pt n , zq " f `z, αQ tn pzq ˘∆t `L ÿ ℓ"1 p ℓ " λ e ℓ ,z αQ tn pzq p V Q ∆t `tn`1 , z `˘`p1 ´λe ℓ ,z αQ tn pzq q p V Q ∆t `tn`1 , z ´˘ı ,
where z `and z ´are defined using the control αQ tn pzq. See (3.22) for their definitions.

Training points design

We discuss here the choice of the training measure µ and the sets pΓ n q n"0,...,N ´1 used to compute the numerical approximations in Regression Monte Carlo and Quantization. Two cases are considered in this section. The first one is a knowledge-based selection, relevant when the controller knows with a certain degree of confidence where the process has to be driven in order to optimize her reward functional. The second case, on the other hand, is when the controller has no idea where or how to drive the process to optimize the reward functional.

Exploitation only strategy

In the knowledge-based setting there is no need for exhaustive and expensive (in time mainly) exploration of the state space, and the controller can directly choose training sets Γ constructed from distributions µ that assign more points to the parts of the state space where the optimal process is likely to be driven.

In practice, at time t n , assuming we know that the optimal process is likely to stay in the ball centered around the point m n and with radius r n , we chose a training measure µ n centered around m n as, for example N pm n , r 2 n q, and build the training set as sample of the latter. In the Regress-Later setting this can be done straightforwardly, while Control Randomization requires one to select a measure for the random control such that the controlled process Z is driven in such area of the state space.

Taking samples according to µ to build grids makes them random. Another choice, which we used in the Quantization-based algorithm, is to use the (deterministic) optimal grid of N pm n , σ 2 n q with reduced size (typically take 50 points for a problem in dimension 1, 250 for one of dimension 2 when σ 2 n " 1,. . . ), which can be found at www.quantize.maths-fi.com, to reduce the size of the training set and alleviate the complexity of the algorithms.

Remark 3.7. As the reader will see, we chose the training sets based on the "exploitation only strategy" procedure, i.e. by guessing where to drive optimally the process, when solving the Liquidation Problem introduced in Subsection 3.4.1.

Explore first, exploit later

Explore first: If the agent has no idea of where to drive the process to receive large rewards, she can always proceed to an exploration step to discover favorable subsets of the state space. To do so, the Γ n , for n " 0, . . . , N ´1, can be built as uniform grids that cover a large part of the state space, or µ can be chosen uniform on such domain. It is essential to explore far enough to have a well understanding of where to drive and where not to drive the process.

Exploit later:

The estimates for the optimal controls at time t n , n " 0, . . . , N ´1, that come up from the Explore first step, are relatively good in the way that they manage to avoid the wrong areas of state space when driving the process. However, the training sets that have been used to compute the estimated optimal control are too sparse to ensure accuracy on the estimation. In order to improve the accuracy, the natural idea is to build new training sets by simulating M times the process using the estimates on the optimal strategy computed from the Explore first step, and then proceed to another estimation of the optimal strategies using the new training sets. This trick can be seen as a two steps algorithm that improves the estimate of the optimal control. Remark 3.8. In Control Randomization, multiple runs of the method are often needed to obtain precise estimates, because the initial choice of the dummy control could drive the training points far from where the optimal control would have driven them. In practice, after having computed an approximate policy backward in time, such policy is used to drive M simulations of the process forward in time, which in turn produce control paths that can be fed as a random controls in a new backward procedure, leading to more accurate results. Remark 3.9. We applied the "explore first, exploit later" idea to solve the Portfolio Optimization problem introduced in Subsection 3.4.1.

Optimal control searching

Assume in this section that we already have the estimates p V ∆t pt k , ¨q for the value function at time t k , for k " n `1, . . . , N , and want to estimate V pt n , ¨q the value function at time t n .

The optimal control searching task consists in optimizing the function3 

p Q n : pz, ¨q Þ Ñ f pz, aq∆t `Ê a n,z " p V ∆t pt n`1 , Z t n`1 q ‰
over the control space A, for each z P Γ n , and where we denote by Êa

n,z " p V ∆t pt n`1 , Z t n`1 q ‰ an approximation of E a n,z
" p V ∆t pt n`1 , Z t n`1 q ‰ using Regress-Later, or Control Randomization or Quantization-based methods (see Subsection 3.3.2). Once again, we remind that importance of this task is motivated by the dynamic programming principle stating that for all n " 0, . . . , N ´1, we can approximate the value function at time n as follows

p V ∆t pt n , zq " sup aPA p Q n pz, aq,
where p V ∆t pt n , ¨q is our desired estimate of the value function at time n.

Low cardinality control set

In the case where the control space A is discrete (with a relatively small cardinality), one can solve the optimization problem by an exhaustive search over all the available controls without compromising the computational speed.

Remark 3.10. Note that in the case where the control space is continuous, one can always discretize the latter in order to rely on the effectiveness of extensive search to solve the optimal control problem. However, the control space discretization brings an error. So the control might have to include a high number of points in the discretization in order to reduce the error thereby causing a considerable slow down of the computations.

High cardinality/continuous control space

If we assume differentiability almost everywhere, as follows from the semi-linear approximation in Quantization, and most choices of basis functions in Regression Monte Carlo, we can carry on the optimization step by using some gradient-based algorithm for optimization of differentiable functions. Actually, many optimizing algorithms (Brent, Golden-section Search, Newton gradientdescent,. . . ) are already implemented in standard libraries of most programming languages like Python (see, e.g., package scipy.optimize), Julia (see, e.g., package Optim.jl), C and C++ (see, e.g., package NLopt).

Algorithm 1 Regress-Later Monte Carlo algorithm (RLMC) -Value iteration Inputs:

• M : number of training points,

• µ: distribution of training points,

• K: number of basis functions,

• tφ k u K k"1 : family of basis functions, 1: Estimate the covariance matrix ÂM 2: Generate i.i.d. training points tZ m t N u M m"1 accordingly to the distribution µ. 3: Initialize the value function V RL ∆t pt N , Z m t N q " gpZ m t N q, @m " 1, . . . , M 4: for n " N ´1 to 0 do 5:

βn " ´1 M 1 M ř M m"1 " V RL ∆t pt n`1 , Z m t n`1 qφpZ m t n`1 q ı 6:
Generate a new layer of i.i.d. training points tZ m tn u M m"1 accordingly to the distribution µ.

7:

For all m " 1, . . . , M do

V RL ∆t pt n , Z m tn q " sup aPA ! f pZ m tn , aq∆t `K ÿ k"1 βn k φn k pZ m tn , aq ) 8: Evaluate the policy to obtain p V RL ∆t Outputs: t βn k u N,K n,k"1 , p V RL ∆t p0, zq for z P R d .
by V CR ∆t pt n , ¨q the derived estimation of V ∆t pt n , ¨q, and will refer to it as the CR algorithm in the numerical tests presented in Section 3.5.

Pseudo-code for a Quantization-based algorithm

We present in Algorithm 3 a pseudo-code to estimate V ∆t pt n , ¨, ¨q, for n " 0, . . . , N ´1, using value iteration procedure and based on Quantization method. For n " 0, . . . , N ´1, we denote by V Q ∆t pt n , ¨q the derived estimation of V ∆t pt n , ¨q, and will refer to it as the Q-algorithm in the numerical tests presented in Section 3.5.

Note that we made use of a piecewise constant approximation of conditional expectations to approximate V Q ∆t pt n , ¨q in order to keep the algorithm simple. Also, note that, as said previously, in most of the numerical tests run in Section 3.5, we will use optimal grids available at www. quantize.maths-fi.com and will take L " 25 to 50 points for the size of the optimal grid of the Gaussian noise ε.

Applications

Portfolio Optimization under drift uncertainty

We consider a financial market model with one risk-free asset, assumed to be equal to one, and d risky assets of price process S " pS 1 , . . . , S d q governed dS t " diagpS t qpβ t dt `σdB 0 t q, S 0 " s 0 P R d , Algorithm 2 Control Randomization algorithm (CR) -Value iteration Inputs:

• M : number of training points,

• µ: initial distribution of dummy control,

• K: number of basis functions,

• tφ k u K k"1 : family of basis functions, 1: Estimate the covariance matrix ÂM 2: Generate m trajectories, tZ m tn , I m tn u N,M n"0,m"1 , where Z m tn is driven by I m tn , and the I m tn are i.i.d with distribution µ. 3: Initialize the value function V CR ∆t pt N , Z m t N q " gpZ m t N q, m " 1, . . . , M 4: for n " N ´1 to 0 do 5:

βn " p ÂM q ´1 1 M ř M m"1 " V CR ∆t pt n`1 , Z m t n`1 qφpZ m tn , I m tn q ı 6:
For all m " 1, . . . , M do • Γ k , k " 0, . . . , N : grids of training points in R d ,

V CR ∆t pt n , Z m tn q " sup aPA ! f pZ m tn , aq∆t `K ÿ k"1 βn k φ k pZ m tn , aq
• Γ " te 1 , . . . , e L u , pp ℓ q 1ďℓďL : the L-optimal grid of the exogenous noise ε, and its associated weights.

1: Initialize the estimated value function at time N : V Q ∆t pt N , zq " gpzq, @z P Γ N . 2: for n " N ´1 to 0 do 3: Estimate the value function at time t n as follows:

p V Q ∆t pt n , zq " max aPA « f pz, aq ∆t `L ÿ ℓ"1 p ℓ p V Q ∆t ´tn`1 , Proj Γ n`1 `G∆t pz, a, e ℓ q
˘¯ff , @z P Γ n .

(3.23) 4:

Compute the optimal strategies αpt n , zq, z P Γ n , as maximizer of (3.23):

αpt n , zq P argmax aPA " f pz, aq ∆t `L ÿ ℓ"1 p ℓ p V Q ∆t ´tn`1 , Proj Γ n`1 `G∆t pz, a, e ℓ q

˘¯

, @z P Γ n .

5: Evaluate the policy to obtain p V Q ∆t Outputs: `αpt n , zq ˘zPΓn,0ďnďN´1 , `p V Q ∆t p0, zq ˘zPΓ 0 .

where B 0 is a d-dimensional Brownian motion on a filtered probability space pΩ, F, F, P 0 q, σ is the d ˆd invertible matrix volatility coefficient, assumed to be known and constant. However, the drift pβ t q of the asset (which is typically a diffusion process governed by another independent Brownian motion B) is unknown and unobservable like the Brownian motion B 0 . The agent can actually only observe the stock prices S, and we denote by F S the filtration generated by the price process S, which should be view as the available information.

In this context, we shall consider two important classes of optimization problems in finance:

1. Portfolio Liquidation. We consider the problem of an agent (trader) who has to liquidate a large number y 0 of shares in some asset (we consider one stock, d " 1) within a finite time T , and faces execution costs and market price impact. In contrast with frictionless Merton problem, we do not consider mark-to-market value of the portfolio and instead consider separately the amount on the cash account and the inventory Y , i.e., the position or number of shares held at any time. The strategy of the agent is then described by a real-valued F S -adapted process α, representing the velocity at which she buys (α t ą 0) or sells (α t ă 0) the asset, and the inventory is thus given by

Y t " y 0 `ż t 0 α u du, 0 ď t ď T.
The objective of the trader is to minimize over α the total liquidation cost

J 1 pαq " E 0 " ż T 0 α t `St `f pα t q ˘dt `ℓpY T q ‰
where f p.q is an increasing function with f p0q " 0, representing a temporary price impact, and ℓp.q is a loss function, i.e., a convex function with ℓp0q " 0, penalizing the trader when she does not succeed to liquidate all her shares.

Portfolio Selection.

The set A of portfolio strategies, representing the amount invested in the assets, consists in all F S -adapted processes α valued in some set A of R d , and satisfying ş T 0 |α t | 2 dt ă 8. The dynamics of wealth process X " X α associated to a portfolio strategy α is then governed by dX t " α t S ´1 t dS t " α t .β t dt `α⊺ t σdB 0 t , X 0 " x 0 P R, and as in Merton Portfolio Selection problem, the objective of the agent is to maximize over portfolio strategies the utility of terminal wealth

J 2 pαq " E 0 rU pX T qs,
where U is a utility function on R, e.g., CARA function U pxq " ´expp´pxq, p ą 0.

Let us show how one can reformulate the above problems into a McKean-Vlasov type problem under partial observation and common noise as described in Section 3.1. We first introduce the so-called probability reference P, which makes the observation price process a martingale. Let us then define the process

Z t " exp `´ż t 0 σ ´1β u dB 0 u ´1 2 ż t 0 |σ ´1β u | 2 du ˘, 0 ď t ď T,
which is a pP 0 , Fq-martingale (under suitable integrability conditions on β), and defines a probability measure P " P 0 through its density: dP dP 0 ˇˇF t " Z t , and under which the process

W 0 t " B 0 t `ż t 0 σ ´1β u du, 0 ď t ď T,
is a pP, Fq-Brownian motion by Girsanov's theorem, and the dynamics of S is dS t " diagpS t qσdW 0 t .

Notice that F S " F 0 the filtration generated by W 0 . We also denote by L t " 1{Z t the pP, Fqmartingale governed by

dL t " L t σ ´1β t .dW 0 t .
Next, we use Bayes formula and rewrite the gain (resp. cost) functionals of our two portfolio optimization problems as

J 1 pαq " E " ż T 0 L t α t pS t `f pα t qqdt `LT ℓpY T q ‰ " E " ż T 0 L0 t α t pS t `f pα t qqdt `L 0 T ℓpY T q ‰ " E " ż T 0 L0 t α t p S0 t `f pα t qqdt `L 0 T ℓp Ȳ 0 T q ‰ J 2 pαq " E " L T U pX T q ‰ " E " L0 T U pX T q ‰ " E " L0 T U p X0 T q ‰ where L0 t " ErL t |W 0 s " ş ℓP W 0 Lt pdℓq, X0 t " ErX t |W 0 s " ş xP W 0 Xt pdxq " X t , Ȳ 0 t " ErY t |W 0 s " ş yP W 0 Yt pdyq " Y t S0 t " ErS t |W 0 s " ş sP W 0
St pdsq " S t , and we used the law of conditional expectations and the fact that S, X and Y are F 0 -adapted. This formulation of the functional J 1 (resp. J 2 ) fits into the MKV framework of Section 3.1 with state variables pX, L, βq (resp. pY, S, L, βq)

We now consider the particular case when β is an F 0 -measurable random variable distributed according to some probability distribution νpdbq: this corresponds to a Bayesian point of view when the agent's belief about the drift is modeled by a prior distribution. In this case, let us show how our partial observation problem can be embedded into a finite-dimensional full observation Markov control problem. Indeed, by noting that β is independent of the Brownian motion W 0 under P, we have

L0 t " E " exp `σ´1 β.W 0 t ´1 2 |σ ´1β| 2 t ˘ˇW 0 ‰ " F pt, W 0 t q, where F pt, wq " ż exp `σ´1 b.w ´1 2 |σ ´1b| 2 t ˘νpdbq.
Hence, the functionals J 1 and J 2 can be written as

J 1 pαq " E " ż T 0 F pt, W 0 t qα t pS t `f pα t qqdt `F pT, W 0 T qℓpY T q ‰ J 2 pαq " E " F pT, W 0 T qU pX T q ‰ .
We are then reduced to a pP, F 0 q-control problem with state variables pW 0 , Xq for problem (1) and pW 0 , S, Y q for problem (2) with dynamics under P: dS t " diagpS t qσdW 0 t , S 0 " s 0 P pR `qd dX t " α ⊺ t σdW 0 t , X 0 " 0 dY t " α t dt, Y 0 " y 0 P R `.

Remark 3.12. Another example of partial observation for the drift β is the case when it is modeled by a linear Gaussian process. This would lead to the well-known Kalman-Bucy filter, hence to a finite-dimensional control problem. However, for general unobserved drift process β, we fall into an infinite dimensional control problem involving the filter process.

Interbank systemic risk with partial observation

We consider the following model of systemic risk inspired by the model in [START_REF] Carmona | Mean field games and systemic risk[END_REF]. The logmonetary reserves of N banks lending to and borrowing from each other are governed by the system

dX i t " κ N N ÿ j"1 pX j t ´Xi t qdt `σX i t p a 1 ´ρ2 dW i t `ρdW 0 t q, i " 1, . . . , N
where W i , i " 1, . . . , N , are independent Brownian motions, representing the idiosyncratic risk of each bank, W 0 is a common noise independent of W i , σ ą 0 is given real parameter, ρ P r´1, 1s, and where X i 0 , i " 1, ..., N are i.i.d.. The mean-reversion coefficient κ ą 0 models the strength of interaction between the banks where bank i can lend to and borrow from bank j with an amount proportional to the difference between their reserves. In the asymptotic regime when N Ñ 8, the theory of propagation of chaos implies that the reserve state X i of individual banks become independent and identically distributed conditionally on the common noise W 0 , with a state governed by dX t " κpErX t |W 0 s ´Xt qdt `σX t p a 1 ´ρ2 dB t `ρdW 0 t q for some Brownian motion B independent of W 0 .

Let us now consider a central bank, viewed as a social planner, who only observes the common noise and not the reserves of each bank, and can influence the strength of the interaction between the individual banks, through an F 0 -adapted control process α t . The reserve of the representative bank in the asymptotic regime is then driven by dX t " pκ `αt qpErX t |W 0 s ´Xt qdt `σX t p a 1 ´ρ2 dB t `ρdW 0 t q, X 0 " X 1 0 , and we consider that the objective of the central bank is to minimize

Jpαq " E " ż T 0 ˆ1 2 α 2 t `η 2 pX t ´ErX t |W 0 sq 2 ˙dt `c 2 pX T ´ErX T |W 0 sq 2 ı ,
where η ą 0 and c ą 0 penalize the departure of the reserve from the average. This is a MKV control problem under partial observation, but notice that it does not belong to the class of linear quadratic (LQ) MKV problems due to the control α which appears in a multiplicative form with the state. However, it fits into our class of polynomial MKV problem, and can be embedded into standard control problem as follows: We set Xt " ErX t |W 0 s and Y t " ErpX t ´X t q 2 |W 0 s. The cost functional is then written as

Jpαq " E " ż T 0 ˆ1 2 α 2 t `η 2 Y t ˙dt `c 2 Y T ı
where the dynamics of X and Y are governed by d Xt " σρ Xt dW 0 t , X0 " x 0 " ErX 0 s dY t " "`σ 2 ´2pκ `αt q ˘Yt `σ2 p1 ´ρ2 q X2 t ‰ dt `2ρσY t dW 0 t , Y 0 " VarpX 0 q.

We have then reduced the problem to a pP, F 0 q-control problem in dimension two with state variables p X, Y q, which is neither LQ, but can be solved numerically.

Numerical results

Portfolio Optimization

Let us now illustrate numerically the impact of uncertain Bayesian drift on the Portfolio Liquidation problem and the Portfolio Selection problem in dimension d " 1, by considering a Gaussian prior distribution β " ν " N pb 0 , γ 2 0 q, with b 0 P R and γ 0 ą 0. In this case, F is explicitly given by:

F pt, wq " σ a σ 2 `γ2 0 t exp ´1 2pσ 2 `γ2 0 tq p´b 2 0 t `2b 0 σw `γ2 0 w 2 q ¯.

Portfolio Liquidation

Let us first consider the Portfolio Liquidation problem (1) with a linear price impact function f paq " γa, γ ą 0, and a quadratic loss function ℓpyq " ηy 2 , η ą 0.

The optimal trading rate is given by (see [START_REF] Pham | Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications[END_REF])

α t " ´Y t T ´t `γ{η `1 2γ ´1 T ´t `γ{η ż T t E 0 rS u |F S t sdu ´St
where Y ˚is the associated inventory with feedback control α ˚: dY t " α t dt, Y 0 " y 0 . Since we consider a Gaussian prior N pb 0 , γ 2 0 q for β, the optimal trading rate is explicitly given by

α t " ´1 T ´t `γ{η # Y t `1 2γ " ´1 γ 0 c π 2 e ´b2 0 2γ 2 0 ˆerfi ˆb0 `γ2 0 pT ´tq ? 2γ 0 ˙´erfi ˆb0 ? 2γ 0 ˙˙`pT ´t`γ η q  S t + ,
where erfi is the imaginary error function, defined as:

erfipxq " 2 ? π ż x 0 e t 2 dt.
Remark 3.13. In the particular case where the price process is a martingale, i.e., b 0 " 0, and in the limiting case when the penalty parameter η goes to infinity, corresponding to the final constraint Y T " 0, we see that α t converges to ´Y t {pT ´tq, hence it becomes independent of the price process, and this leads to an explicit optimal inventory: Y t " y 0 T ´t T with constant trading rate α t " ´y0 {T . We retrieve the well-known VWAP strategy obtained in [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF].

We solve the problem numerically, taking N " 100 for the time discretization, and fixing the other parameters as follows: γ=5, S 0 =6, Y 0 =1, η=100 and σ=0.4. We run two sets of forward Monte Carlo simulations for b 0 " 0.1, T " 1 and b 0 " ´0.1, T " 0.5 changing the value of γ 0 . We tested the Regress-Later Monte Carlo (RLMC), the Control Randomization (CR) and the Quantization (Q) algorithms. In particular, we wanted to compare the performance of these algorithms with pα tn q N ´1 n"0 , where α ˚, defined above, is the optimal strategy associated to the continuous-time Portfolio Liquidation problem. We refer to this discrete-time strategy as α (i.e., re-using the same notation), and we use Opt, or continuous-time optimal strategy when we want to stress the fact that this strategy is optimal for the continuous-time control problem, and not for the discrete time one. We also tested a benchmark strategy (Bench) which consists in liquidating the inventory at a constant rate ´y0 {T . The test consisted in computing the estimates p V ∆t pt 0 " 0, S 0 " 6, Y 0 " 1q associated to the different algorithms.

We display the results obtained by the different algorithms in Table 3.1 and plot them in Figure 3.2. One can observe in Figure 3.2 that for ∆t " 1 100 the estimations p V ∆t pt 0 " 0, S 0 " 6, Y 0 " 1q of the value function V ∆t pt 0 " 0, S 0 " 6, Y 0 " 1q, provided by RLMC, CR or Q-based methods, are sometimes such that p V ∆t pt 0 " 0, S 0 " 6, Y 0 " 1q ď Ĵ∆t pt 0 " 0, S 0 " 6, Y 0 " 1, α ˚q, where Ĵ∆t p¨, ¨, ¨, α ˚q is a Monte Carlo estimate of J ∆t p¨, ¨, ¨, α ˚q applying strategy pα tn q N ´1 n"0 (see in Figure 3.2 the curve Opt). It means that RLMC, CR, or Q-based methods sometimes provide better estimations of the optimal strategy than α ˚for the discrete time control problem. However, since under suitable conditions (see, e.g., [START_REF] Kharroubi | Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps[END_REF]), the optimal strategy for the discrete time control problem α ∆t converges toward α ˚, i.e. we have α ∆t Ý ÝÝÝ Ñ ∆tÑ0 α ˚, then it holds:

Ĵ∆t pt 0 " 0, S 0 " 6, Y 0 " 1, α ˚q Ý ÝÝÝ Ñ ∆tÑ0 V pt 0 " 0, S 0 " 6, Y 0 " 1q.
Figure 3.3 shows a sample of the inventory pY t q tPr0,T s when the agent follows α ˚and the Quantization algorithm. One can notice that given the chosen penalization parameters, it is optimal to short some stocks at terminal time. Finally, notice that the concavity of the curves comes from the fact that the running cost does not penalize the inventory. If so, we expect the curves of the inventory w.r.t. time to be convex, see, e.g., [START_REF] Gatheral | Dynamical models of market impact and algorithms for order execution[END_REF].

Discussion on the Regress Later and Control Randomization algorithms. The implementation of Regression Monte Carlo algorithms has required intense tuning and the use of the performance iteration technique introduced in Subsection 3.3.3 in order to obtain satisfactory results. Paramount is, in addition, the distribution chosen for the training points in Regress-Later and for the initial control in Control Randomization. The problem of finding the best set of data to provide to the backward procedure is similar in the two Regression Monte Carlo algorithms. However little study is available in the literature; for more details on this problem in the Regress-Later setting see [START_REF] Nadarajah | Comparison of least squares Monte Carlo methods with applications to energy real options[END_REF] and [START_REF] Balata | Regress-Later Monte Carlo for optimal control of Markov processes[END_REF]. In the case of RL algorithm a training measure µ n has been chosen in order to sufficiently explore the state space in the Y dimension, in particular we considered µ n " U r´0.5, 0.5 `T ´tn tn s. Similarly for CR we seek a distribution of the random control such that the controlled process Y results in having a distribution similar to µ n . In order to achieve such goal we follow the "explore first, exploit later" approach presented in Subsection 3.3.3 and use a perturbed version of the empirical distribution of the control (to avoid concentration of the training points) obtained at previous iteration of the method to determine the random control at next iteration of the method.

In order to choose the basis functions, we used the fact that we expect the value function to be convex in the Y dimension with minimum around the optimal inventory level and monotone in the S dimension. For RL algorithm we choose therefore the following set of basis functions: ts, y, y 2 , sy, sy 2 u, where we take the square function y 2 as a general approximator for convex functions around their minima (where we expect the measure µ n to be concentrated). On the other hand, CR requires that we guess what the functional form of the conditional expectation of the value function is with respect to the control process. Considering our argument on square function approximating general convex functions we choose to add the set tα, α 2 , αy, αsu to the set of basis functions used by RL. Note that there is no need for time-consuming optimal control searching with such a choice of basis functions, as explained in Remark 3.11.

Finally note that we observed very high volatility in the quality of the policy estimated by control randomization. For this reason we estimated the policy 50 times, and report in Table 3.1 the results provided by the best performing one; increasing the number of training points further affects the variability only marginally.

Discussion on the Quantization algorithm implementation

To numerically solve this example, we used the optimal grid of the Gaussian random variable with L " 50 points, denoted by Γ ε L , to define the grid4 Γ W n " t n Γ ε L that discretizes W tn , the Brownian motion at time t n , and the grid Γ Y n " Y 0 ´tn T `tn Γ ε L that discretizes Y tn , the inventory at time t n , for n " 0, ..., N . Note that Γ Y n , for n " 0, ..., N , is centered at point Y 0 ´tn T because we guessed that the optimal liquidation rate was close to Y 0 T (see Figure 3.3 to check that our guess is correct). We then considered the grid Γ n " Γ W n ˆΓY n to discretize Z tn " pW tn , Y tn q, n " 0, ..., N .

We first tried to design a quantization algorithm using the following expression for the conditional expectation approximations:

E a n,pw,yq " p V Q ∆t ´tn`1 , Proj Γ W n`1 `Wt n`1 ˘, Proj Γ Y n`1 `Yt n`1 ˘¯ı « L ÿ ℓ"1 p ℓ p V Q ∆t ´tn`1 , Proj Γ W n`1 `
G∆t ppw, yq, a, e ℓ q ˘, Proj Γ Y n`1 `G∆t ppw, yq, a, e ℓ q ˘¯, for pw, y, aq

P Γ W n ˆΓY n ˆA, (3.29) 
where the first and second components of the process Z " pW, Y q are projected respectively on the grids Γ W n and Γ Y n ; and Proj Γ W n (resp. Proj Γ Y n ) stands for the Euclidean projection of the first (resp. second) component of Z " pW, Y q on Γ W n (resp. Γ Y n ). This approximation belongs to the family of constant piecewise approximations, and is in the spirit of multidimensional component-wise-quantization methods already studied in the literature (see, e.g., [START_REF] Pagès | Markovian and product quantization of an R d -valued Euler scheme of a diffusion process with applications to finance[END_REF]). Unfortunately, as it can be seen in Figure 3.1, approximation (3.29) is discontinuous w.r.t. the control variable a in such a way that the optimal control searching task suffered from instability and inaccuracy, which implied bad value function estimations at time n " 0, ..., N ´1. We thus had to use a better conditional expectation approximation.

We then decided to smooth the previous approximation of the conditional expectations w.r.t. the control variable by considering the following 

E a n,pw,yq " p V Q ∆t ´tn`1 , Proj Γ W n`1 `Wt n`1 ˘, Proj Γ Y n`1 `Yt n`1 ˘¯ı « L ÿ ℓ"1 p ℓ " λ e ℓ ,pw,yq a p V Q ∆t `tn`1 , Proj Γ W n`1 " G w ∆t ppw, yq, a, e ℓ q ‰ , y `p1 ´λe ℓ ,pw,yq a q p V Q ∆t ´tn`1 , Proj Γ W n`1 " G w ∆t ppw,
a Þ Ñ ř ePΓ ε Ppp ε " eq p V Q ∆t ´tn`1 , Proj Γ W n`1 `
G∆t ppw, yq, a, eq ˘, Proj Γ Y n`1 `G∆t ppw, yq, a, eq ˘¯. We took n " N ´1, w " 0, and y " ´0.18 to plot the curve. Observe that the approximation is discontinuous w.r.t. the control variable a in such a way that it makes the search of the minimizer of this function very difficult by usual (gradient descent-based) algorithms. Also, observe that the minimum of the function, which is actually equal to the estimation of the value function at time N ´1 at point pw " 0, y " ´0.18q, suffers from inaccuracy.

where, in the spirit of the semi-linear approximation presented in Subsection 3.3.2, we have for all ℓ " 1, ..., L:

• G w ∆t ppw, yq, a, e ℓ q and G y ∆t ppw, yq, a, e ℓ q respectively stand for the first and the second component of G ∆t ppw, yq, a, e ℓ q, i.e., G ∆t ppw, yq, a, e ℓ q " `Gw ∆t ppw, yq, a, e ℓ q, G y ∆t ppw, yq, a, e ℓ q ˘. See (3.21) for the definition of G ∆t .

• y ´and y `are the two closest states in Γ Y n`1 from G y ∆t ppw, yq, a, e ℓ q, such that y ´ă G y ∆t ppw, yq, a, e ℓ q ă y `if such point exists; y ´and y `are equal to the closest state in Γ Y n`1 from G y ∆t ppw, yq, a, e ℓ q otherwise.

• λ e ℓ ,pw,yq a " G y ∆t ppw,yq,a,e ℓ q´y ý`´y´i n the first case of the definition of y ´and y `above; λ e ℓ ,pw,yq a " 1 otherwise.

This approximation is a slight generalization (to dimension d=2) of the semi-linear approximation developed in (3.22). Its main interest lies in the continuity of the approximation w.r.t. the control variable a, which provides stability and accuracy to the usual (gradient descent-based) algorithms for the optimal controls searching, as can be seen on the numerical results (see, e.g., Table 3.1).

Portfolio Selection.

Consider the Portfolio Selection problem with one risky asset. We choose a CARA utility function U pxq " ´expp´pxq, with p ą 0. It has been shown in [START_REF] Guéant | Portfolio choice, portfolio liquidation, and portfolio transition under drift uncertainty[END_REF] Corollary 1] that the optimal portfolio strategy is explicitly given by

α t " σ 2 `γ2 0 t σ 2 `γ2 0 T βt pσ 2
where βt " E 0 rβ|F S t s " Figure 3.3 -Simulation of pY t q tPr0,T s using the (continuous-time) optimal strategy (Opt), the (Q) estimated one, and the Benchmark strategy (Bench) to solve the Portfolio Liquidation problem. We took T " 1, σ " 0.4, γ 0 " 1, b 0 " 0.1, S 0 " 6, Y 0 " 1, N " 100, γ " 5, η " 100.

σ 2 σ 2 `γ2 0 t b 0 `γ2 0 σ 2 `γ2 0 t ´ln S t S 0 `1 2 σ 2 t ¯,
is the posterior mean of the drift (Bayesian learning on the drift), and the optimal performance by J 2 pα ˚q " ´exp

" ´p´x 0 `1 2p `ln `σ2 `γ2 0 T σ 2 ˘´γ 2 0 T σ 2 `γ2 0 T ˘`b 2 0 2pσ 2 σ 2 T σ 2 `γ2 0 T ¯ı.
The Portfolio Selection problem, even though in many aspects similar to the Portfolio Liquidation problem, is interesting in its own right because the control acts only on the variance of the controlled wealth process. We tested the Regress-Later Monte Carlo (RLMC), the Control Randomization (CR) and the Quantization (Q) algorithm on the Portfolio Selection problem.

Similarly to what has been done for Portfolio Liquidation problem, we discretized time choosing N " 100 and solved the discrete time problem associated. We considered two set of experiments, b 0 " 0.1, T " 1 and b 0 " ´0.1, T " 0.5, for different values of γ 0 P r0, 1s, p " 1, σ " 0.4. Given all these different parameters, we compared the performance of these algorithms with the one of the optimal strategy for the continuous-time problem α ˚(Opt). The general test consists in computing a forward Monte Carlo with 500000 samples, following optimal strategy estimated using different strategies, to provide estimates of V pt 0 " 0, X 0 " 0, W 0 " 0q the value function at time 0.

We present the results of our numerical experiments in Table 3.2. One can see that the Quantization algorithm performs similarly to the theoretical optimal strategy (Opt) for the continuous time problem, which can be interpreted as stability and accuracy of the Q algorithm, and also shows that the time discretization error is almost zero here.

We also present in Figure 3.4 a sample of the wealth of the agent following the optimal strategy and the (Q) estimated one. One can see that the strategies slightly differ when the drift is high, and remain the same when the drift is low. The small difference can be explained by the fact that the optimal strategy (Opt) is not optimal for the discrete time version of the problem.

Remarks on the Quantization algorithm. We designed the same Quantization algorithm as the one built to solve the Portfolio Liquidation problem. We nevertheless had to take a larger number of points in the grids to minimize the back-propagation of errors from the borders of the girds; and had to use the "explore first, exploit later" idea (see Subsection 3.3.3) to improve the results.

Remarks on the RL and CR algorithms implementation. When implementing Regression

Monte Carlo algorithms, and choosing basis functions, the control on variance implies that low order polynomial can not be used alone, as they can easily cause the control to be bang-bang between the boundaries of its domain. Similarly, piecewise approximations are not very effective, as the dependence on the control is very weak, requiring a high number of local supports and making the computational complexity overwhelming. We tested both value and performance iteration and tried to employ different kinds of basis functions and training points. Unfortunately, both Regress-Later and Control Randomization do not cope well with controlling the dynamics of a process through the variance only. A tailor-made implementation of Regression Monte Carlo to deal with this kind of problems is outside the scope of this paper and further investigation will follow in future work. For now, we chose not to provide results based on RL and CR methods.

Interbank systemic risk

For this problem, in the absence of analytical solution, we decided to compare the estimations of the value function at time 0 provided by our algorithms with a numerical approximation based Table 3.2 -Portfolio Selection results. Estimations of the value function at point px 0 " 0, S 0 " 6q time 0 using the continuous-time optimal strategy (Opt) and (Q) estimated optimal strategy. b 0 " 0.1, T " 1 b 0 " ´0.1, T " 0.5 γ 0 Opt Q Opt Q 0.1 -0.985 -0.985 -0.992 -0.992 0.2 -0.982 -0.982 -0.991 -0.991 0.3 -0.973 -0.973 -0.988 -0.988 0.4 -0.954 -0.953 -0.981 -0.981 0.5 -0.927 -0.927 -0.969 -0.969 0.6 -0.896 -0.896 -0.952 -0.952 0.7 -0.863 -0.863 -0.932 -0.932 0.8 -0.830 -0.830 -0.910 -0.910 0.9 -0.797 -0.797 -0.886 -0.886 1 -0.767 -0.766 -0.863 -0.863 .4 -3 simulations of the agent's wealth pX t q tPr0,T s when the latter follows the continuoustime optimal strategy (Opt) and the (Q) estimated optimal strategy to solve the Portfolio Selection problem. We took σ=0.4, T =1, P =0.1, γ 0 =5, b 0 =0,1. One can see that the two strategies are the same when the drift is low; but Q performs slightly better than Opt when the drift is high, which is a time-discretization effect.

on finite difference scheme provided by Mathematica, of the solution to the 2-dimensional HJB equation associated to the systemic risk problem:

$ ' ' ' & ' ' ' % B t V `η 2 y `´`σ 2 ´2κ ˘y `σ2 p1 ´ρ2 qx 2 ¯By V `sup aPA " 1 2 a 2 ´2ayB y V  `σ2 ρ 2 x 2 2 B 2 xx V `2σ 2 ρ 2 xyB xy V `2σ 2 ρ 2 y 2 B 2
yy V " 0, for pt, x, yq P r0, T q ˆR ˆR`, V pT, x, yq " c 2 y, @px, yq P R ˆR`.

(3.30) We refer to the solution of this partial differential equation (obtained using Mathematica using finite differences as explained below) as the Benchmark (or simply Bench) in the sequel.

We computed p V ∆t pt 0 " 0, x 0 " 10, y 0 " 0q using RL, CR and Q methods by considering a sample of size 500 000, and using the following parameters T " 1, σ " 0.1, κ " 0.5 and X 0 " 10. We recall that p V ∆t pt 0 " 0, x 0 , y 0 q is an estimation of V p0, x 0 " 10, y 0 " 0q, the value function at px 0 , y 0 q and time 0 (see its definition on the last step of each pseudo-code presented in Subsection 3.3.6).

In Table 3.3 we display the numerical results of experiments run for two situations: we took η " 10, c " 100 and η " 100, ρ " 0.5 and vary the value of ρ in the first case, and vary the value of c in the second one. Plots of the two tables are also available in Figure 3.5. One can observe that the algorithms performs well. Mainly, Bench and Q provide slightly better results than the Regression Monte Carlo-based algorithms (the curves of Bench and Q are below those of the other two).

Figure 3.6 shows two examples of paths pX t q tPr0,T s controlled by RLMC (curve "RLMC"), pX t q tPr0,T s naively controlled by α " 0 (curve "uncontrolled"), and the conditional expectation of X p Xt q tPr0,T s (curve "EpX|W q"). One can see in these two examples that the (RLMC estimated) optimal control is as follows:

• do nothing when the terminal time is far, i.e., take α " 0, not to pay any running cost.

• catch X when the terminal time is getting close, to minimize the terminal cost.

We finally present a sample of paths pY t q tPr0,T s controlled by the decisions given by Q in Figure 3.7. One can see that the (Q estimated) optimal strategy minimizes the running cost first by letting Y grow; and deals with the terminal cost later by making Y small when the terminal time is approaching.

Remarks on the Regress Later and Control Randomization algorithms.

For the implementation of the RL algorithm we decided to use polynomial basis functions up to degree 2. This choice allows us to compute the optimal control analytically as a function of the regression coefficients (see Remark 3.11). Compared to other optimization techniques, explicit expression allows for much faster and error-free computations (see Remark 3.11). For CR, we used basis functions up to degree 3 in all dimensions to obtain more stable results.

Regarding the choice of the training measure in RL, we employed marginal normal distributions on each dimension. As we know that the inventory dimension Y represents the conditional variance of the original process X, we centered the training distribution µ n at zero but considered only training points Y m n ě 0. In CR, on the other hand, we need to carefully choose the distribution of the random control so that the process Y does not become negative. Notice in fact that the Euler approximation, contrary to the original SDE describing Y , does not remain positive and we would therefore need to carefully choose a control to avoid driving Y negative. In order to achieve such goal, without having to worry too much about the control, we modified the Euler approximation of (3.29) to feature a reflexive boundary at zero. Such features allow to train the estimated control policy to not overshoot when trying to drive the process Y to zero, without having Y to become negative.

Remarks on the Quantization algorithm. As stated above, it is straightforward that Y ą 0 on p0, T s. However, the Euler scheme used to approximate the dynamics of Y does not prevent the associated process pY t i q 0ăiďN to be non-positive. When implementing the Q algorithm for the systemic risk problem, we forced `Proj Γ Y i `Yt i ˘˘0ăiďN to remain positive by simply choosing positive points for the grids Γ Y i that quantize the states of Y t i , at time t i for i " 0, ..., N . Also, given the expression of the instantaneous and terminal reward, one can expect Y to stay close to 0, but we do not have any idea of how small Y should stay for the strategy to be optimal (cf. Figure 3.7 to see a posteriori where Y lies). To deal with this situation, we decided to adopt the "explore first, exploit later" procedure. First, we chose some random grids with a lot of points near 0 and computed the optimal strategy on these grids. Then, we ran forward Monte Carlo simulations and generated an empirical distribution of the quantized Y . Second, we build new grids of Quantization for Y by generating new points according to the empirical distribution that we got from in the previous step. Finally, we computed new (hopefully better) estimations of the optimal strategy by running the Q algorithm using the new grids. The Q strategy performed better after applying this step, but not significantly since our first naive guess for the grids (i.e., before bootstrapping) was already good enough. Details on the deterministic algorithm for the resolution of the HJB. We use the NDSolve function in Mathematica based on finite difference method to solve (3.30). Note that usually terminal and boundary conditions are required to get numerical results. The final condition: V pT, x, yq " c 2 y is already given by (3.30). However, the boundary conditions on V pt, 0, yq and V pt, x, 0q are missing, except the trivial condition consisting of V pt, 0, 0q " 0. We then provided the HJB without boundary conditions to the Mathematica function NDSolve, and let the latter add artificial boundary conditions by itself to output results. Table 3.3 -Results for the systemic risk problem. Estimations of the value function at point px 0 " 10q at time 0 provided by different strategies. We took T " 1, N " 100, σ " 0.1, κ " 0.5, X 0 " 10.

Discussion

In this work, we have investigated how to use probabilistic numerical methods for some classes of mean field control problem via Markovian embedding. We focused on two types of Regression Monte Carlo methods (namely, Regress-Later and Control Randomization) and Quantization. We have then presented three different examples of applications.

Regression Monte Carlo techniques. We found that the Regression Monte Carlo algorithms perform well in problems of control of the drift. In such problems, they are much faster than Quantization for similar precision. In particular, we noticed that Regress-Later is usually more reliable than Control Randomization; often the choice of a uniform distribution of the training points on an appropriate interval is sufficient to obtain high-quality estimations.

On the other hand Control Randomization is very sensitive to the choice of the distribution of the randomized control, and often a few iterations are necessary before finding a good control distribution. We have also tried to use the performance iteration or path recomputation method, but on the examples we considered, it was very time consuming and did not help much in terms of accuracy.

Despite the success of Regression Monte Carlo methods in problems with control on the drift, the example of Portfolio Selection highlighted a possible weakness of these algorithms. When the control acts on the variance only, we found difficult to make the numerical scheme converge to sensible results within the computational resources available. We realized that the study of these problems and the solution via Regression Monte Carlo methods is outside the scope of this paper. This is probably related to another limitation of this family of methods: the choice of the basis functions for the regression. Indeed, for some problems, a good basis might be very large or might require several steps of trials and errors.

Quantization techniques.

Quantization-based method, on the other hand, provided very stable and accurate results. A first interesting and practical feature of the Q-algorithm is that regressing the value function using quantization-based methods is local. So, first, it can be easily parallelized to provide fast results, and, second, it is easy to check at which points of the grids the estimations suffer from instability and how to change the grid to fix the problem (basically, by adding more points where the estimations need to be improved).

Another interesting feature of the quantization methods is that, one can choose the grids on which to learn the value function. It is possible to exploit this feature in the case where one has, a priori, a rough idea of where the controlled process should be driven by the optimal strategy (see, e.g., the liquidation problem). In this case, one should build grids with many points located where the process is supposed to go.

When one has no guess of where the optimal process goes, it is always possible to use bootstrapping methods to build better grids iteratively, starting from a random guess for the grid (see, e.g., the systemic risk problem). In both cases, one has to be particularly careful with the borders of the grids that have been built. Indeed, the decisions computed by quantization-based methods at the borders might easily be wrong if the grids do not have a "good shape" at the borders. Unfortunately, the shape of the grid that should be used depends heavily on the problem under consideration.

Except in special cases, it is not possible to avoid deterministic algorithms (such as gradient descent methods or extensive search) to find the optimal action at each point of the grid. A smooth expression of the conditional expectations of the quantized processes is necessary for the deterministic algorithms find optimal strategy efficiently. Once again, the use of parallel computing can alleviate the time-consuming task of searching for the optimal control at each point of the grids.

Introduction

Stochastic dynamic programming equations are related to the resolution of non-linear problems, e.g., the stochastic control (see [START_REF] Tsitsiklis | Regression methods for pricing complex American-style options[END_REF][START_REF] Pham | On some recent aspects of stochastic control and their applications[END_REF][START_REF] Belomestny | Regression methods for stochastic control problems and their convergence analysis[END_REF]) or non-linear partial differential equations (see [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF][START_REF] Pham | Feynman-Kac representation of fully nonlinear PDEs and applications[END_REF][START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]). These equations were studied in [MB46, Bel57, Put14] motivated by problem arising in almost all areas of science, from water reservoir management to finance.

We aim to solve dynamic programming equations (DPE) related to a financial application in energy market. For illustration, we can be concerned in the pricing of Bermudan or Swing options, where the underlying assets are power spot prices or forward contracts. We plan to build a non-intrusive method to solve those DPE using the observable data in the underlying market, without a full model calibration. We deal with a discrete-time framework, the DPE takes the following form:

Y N " gN pX N q, Y i " Erg i pY i`1 , . . . , Y N , X i , . . . , X N q | X i s, i " N ´1, . . . , 0,
for some real functions gN and gi depending on the problem under consideration. Here, X is a Markov chain in R n , determined by the problem.

In the usual methodology, we observe a historical data O of size M , from which we extract the values of parameters of some model describing the stochastic evolution of X, and then we perform regression Monte Carlo (MC) algorithms (with many sampled points X, say N MC ) to obtain the regression functions ỹi such that Y i " ỹi pX i q (see [START_REF] Longstaff | Valuing American options by simulation: a simple least-squares approach[END_REF][START_REF] Egloff | Monte Carlo algorithms for optimal stopping and statistical learning[END_REF]). In the current situation we are interested in, M is usually small compared to N MC and thus, the statistical step gives a larger error than the empirical regression one. This is an incentive to perform a direct approach consisting in resampling (or bootstrapping) the observed data and obtain directly the regression functions, see Figure 4.1, this is inspired from [START_REF] Potters | Hedged Monte-Carlo: low variance derivative pricing with objective probabilities[END_REF][START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF].

In energy market, the price at time t of a T -forward contract, denoted by F pt, T q, is usually modeled as driven in terms of hidden factors X, modeled by a Markov process (see [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]). We suppose a dynamic for the hidden Markov processes X representing different characteristics of the forward price, for example, the short-term and equilibrium components (see [START_REF] Schwartz | Short-Term Variations Dynamics in and Long-Term Prices Commodity[END_REF]). We get from the market some observable data at different times t, which we denote by O; typically O t is the set of forward prices F pt, T q or a transformation of them. Practical examples correspond to solving pricing problems when the time horizon T is one year. Regarding dates, we have daily historical data over last 20 years. However, energy data have a high seasonality component: for instance, the volatility in winter is quite different from volatility in summer (for instance as reference to seasonality effects in forward contracts, see [START_REF] Borovkova | Seasonal and stochastic effects in commodity forward curves[END_REF]). Therefore, it is questionable to estimate winter volatilities using summer data. It is more reasonable to consider that we have M " 20 independent realizations of a one-year path.

When we rewrite the DPE in terms of the underlying F p¨, T q, which is also function of X, we get control or value functions depending on the hidden factors. Because these Markov process X are not observable, meaning we have no direct access to them, we can not apply a resampling method (as in [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF]) that regenerates each one of those factor individually. To deal with this problem, we suggest a resampling method on the observable data O, by modifying the scheme of the aforementioned reference.

In view of applying a resampling method on observable data, the discrete dynamic programming equation (DDPE) will take another form:

Y N " g N pO N q, Y i " Erg i pY i`1 , . . . , Y N , O i , . . . , O N q | O i s, i " N ´1, . . . , 0.
The aim is to compute the value function y i such that Y i " y i pO i q (not as a function of X i ) using regression Monte Carlo methods. Here, X is a hidden process valued in R n and say that the process O takes values in R d . For instance, O and X could represent the market log-prices and the factors on a multi-factor model. Usual modeling works give that, in the market, we take d " 36 different transformed prices pO p1q , . . . , O p36q q, driven by n " 3 hidden factors pX p1q , X p2q , X p3q q (see [START_REF] Kiesel | A two-factor model for the electricity forward market[END_REF], for a two factor model in electricity forward market).

Let us briefly recall the Regression Monte Carlo (RMC) methodology. Owing to the L 2 -projection property of the conditional expectation, we have that y i solves the minimization problem 

min φ:R d ÑR E " ˇˇg i pY i`1 , . . . , Y N , O i , . . . , O N q ´φpO i q ˇˇ2  , i " N ´1, . . . ,
ˇˇg i pŷ N MC ,L i`1 pO m i`1 q, . . . , ŷN MC ,L N pO m N q, O m i , . . . , O m N q ´φpO m i q ˇˇ2,
for every i " N ´1, . . . , 0. But, to ensure accurate scheme, the RMC methods usually need that the number of simulations N MC has to be much larger than the dimension of the vector space L (number of coefficients). Note that the inputs are sampled from a model which is estimated from M data only: in our setting where M is small, model error may be a significant concern and we wish to better account for this.

In [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF], the authors design a scheme where the N MC simulations are replaced by the M observed data (and thus M " N MC ). To overcome the problem of numerous coefficients to compute (despite the small number of data), they combine this with a stratification strategy and local approximations.

This approach is called the Non-Intrusive Stratified Resampler (NISR) scheme. More precisely, this resampling method consists of subdividing R d in strata pH k q k and figuring out the approximations on each stratum H k using the root sample O 1:M . Due to the stratification part of the NISR scheme, we choose small stratum allowing to use a small dimensional approximation space L k , thus alleviating the large M constraint. The key point in the non-intrusive part of the scheme is to assume that only the structure of the model for O is known, but not the values of its parameters/coefficients.

In our setting, had we observed the factors X, we would have resampled it and used directly the NISR scheme. Unfortunately, we have only access to O which is a affine and partially unknown transformation of X: this is why we have to propose an extension of the native NISR scheme in a version which takes as inputs O. To make it possible, we consider that the factors model is described as multidimensional Ornstein-Uhlenbeck (OU) which we know the mean-reverting parameters, but not the volatilities/correlation.

We end this introduction with an outline of this chapter. The dynamics programming setting is discussed in Section 4.2 that leads to the NISR for regression Monte Carlo. Main notations, technical assumptions and model structures are also introduced. In Section 4.3, the algorithm to solve dynamic programming equation under standard conditions of accessibility to historical data is presented (see Algorithm 4). Section 4.4 is devoted to financial applications in energy market: the pricing of Bermudan and Swing options. Numerical results are in prospection.

Setting

Dynamic programming equation

In the following, we consider N fixed times t i and denote by O i the observable process O at time t i . Our aim is to compute the following discrete dynamic programming equations (DPE) in general form: Y N " g N pO N q, Y i " Erg i pY i`1:N , O i:N q | O i s, 0 ď i ď N ´1, (4.1)

for some functions g N and g i . Here, pO i q 0ďiďN and pY i q 0ďiďN are random processes taking values in R d and R, respectively, and we use the short notation O i:N " pO i , . . . , O N q.

We take a hidden Markov process X in R n such that the observable variable O in R d is described in terms of X as O i " φpX i q, thanks to some measurable function φ : R n Ñ R d . The modeling interpretation of X and O is that X drives the evolution of O; only O can be observed in practice, see the subsequent Example 4.3. We assume that there are more observable variables than hidden variables, i.e. , d ě n. We also assume that O is a Markov chain. Consider X i denoting the process X at time t i . Due the Markovian property of the data D, we write the previous system as follows

Y N " gN pX N q, Y i " E " gi pY i`1:N , X i:N q ˇˇX i ‰ , (4.2) 
for some functions gN and gi depending on g N , g i and φ. Assuming that measurable function φ is not completely explicit, the composed functions gN and gi are neither.

Discussion. Up to this point, we have presented two different approaches depending on the underlying Markov process we choose O or X. If we apply the NISR scheme to

• Equation (4.1), the Markovian variable O is in dimension d, much larger than the effective Markovian dimension (i.e. , n). We pay the price of a higher dimension. On the other hand, we may observe the data O solving a OU dynamics so that we can resample them easily (like in [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF]).

• Equation (4.2), the Markovian variable X is in low dimension n (good) but the payoff depends on φ (that we do not know). Also we do not observe X directly, we need φ to get X from O.

The problem is that φ depends on others unknown parameters such as correlation, volatilities (many parameters we do not know). This is why we follow the approach in (4.1).

From (4.1), we can deduce the existence of a measurable function y i such that Y i " y i pO i q. Therefore, our aim is to computation an approximation to the value functions y i for all i using the NISR scheme. Hence, for technical reasons we prefer to assume bounded value functions as in [GLZ18, Assumption 2.1].

Modeling of the observable and hidden processes

We need to compute the coefficients of an approximation of y i on a vector space using the samples of O (regression Monte Carlo). To invoke the NISR algorithm, we need to resample O and for this we specify the dynamics of O, X and the relation between O and X. First, essentially we will require φ : R n Ñ R d to be a linear transformation. where A is a real matrix in R dˆn and b is a vector in R d , with d ě n. The matrix A is deterministic and known, while b is deterministic and unknown. The (column) rank of A is n.

Hidden model. We present the underlying structure of the hidden Markov chain X as discrete version of a Markov process with time independent parameters. Let W " pW 1 , . . . , W n q be a n-dimensional Brownian motion on a probability space pΩ, F, Pq endowed with the natural (complete and right-continuous) filtration F " pF t q tďT generated by W up to some fixed time horizon T ą 0.

Assumption 4.2 (Hidden model). We suppose that X is a n-dimensional OU process in R n given by dX t " pµ ´αX t q dt `σ dW t , (4.4)

where µ is a drift vector in R n , α is a mean-reverting matrix in R nˆn , and σ is a diffusion matrix in R nˆn . We assume that α is known.

The value of n will depend on the model used to describe the commodity prices. Notice that X i (random variable indexed by i) denotes the process X at time t i , i.e., X i :" X t i . Below we show an example of a hidden multi-factor X in dimension n " 2.

Example 4.3 (Schwartz-Smith model, n " 2). Let pW χ , W ξ q be a couple of correlated Brownian motions given by pW χ , W ξ q " ´W 1 , ρW 1 `a1 ´ρ2 W 2 ¯, with correlation ρ. Let X " pχ, ξq be the process satisfying (4.4) whose parameters µ, α, σ are given by µ " ˆ0 µ ξ ˙, α " ˆκ 0 0 0 ˙, σ " ˆσχ 0 ρσ ξ a 1 ´ρ2 σ ξ ˙.

Those parameters are independent of time. Then the spot price S t is modeled in terms of two correlated factors χ and ξ as follows log S t " χ t `ξt .

Here, the processes χ and ξ represent short-term deviations and equilibrium levels respectively. After the change of probability to bring the process X " pχ, ξq to a risk neutral measure, we express the T -forward price F pt, T q as expectation of the future spot price S T and obtain log F pt, T q " e ´κpT ´tq χ t `ξt `apT ´tq, where ap∆τ q is a function of the time to maturity ∆τ " T ´t given by ap∆τ q " pµ ξ ´λξ q∆τ ´p1 ´e´κ∆τ q λ χ κ `1 2 ˜p1 ´e´2κ∆τ q σ 2 κ 2κ `σ2 ξ ∆τ `2p1 ´e´κ∆τ q ρσ χ σ ξ κ ¸.

Here, λ ξ and λ χ are the risk premiums for the short-term deviations and equilibrium level, respectively. For more details, we leave the reader to see the so-called Schwartz-Smith model in [START_REF] Schwartz | Short-Term Variations Dynamics in and Long-Term Prices Commodity[END_REF]. ¨ap∆τ 1 q ap∆τ 2 q . . .

ap∆τ 36 q ‹ ‹ ‹ ' (4.6)
and X t " pξ t , χ t q for some time t. In the previous example, we have assumed the existence of 36 forward contracts (with a sufficient liquidity).

According to Assumptions 4.1 and 4.2, we suppose the knowledge of matrix A and α (i.e. , of the parameter κ), but not of vector b (i.e. , of the parameters µ ξ , λ ξ , λ χ , σ ξ , σ χ and ρ).

Otherwise, it would mean we estimate all parameters of the OU model. Because we are looking for a non-intrusive algorithm, the knowledge of all model parameters is not reasonable. Say differently, to solve the DPE (4.1) we will assume to know κ only, and we will use observations of O.

Observable model. From the relation between the observable data O and the hidden Markov state X, we now deduce the dynamics of O.

Proposition 4.4. Under Assumption 4.1-4.2, we have O t " e ´αpt´t i q O i `ż t t i e ´αpt´sq pμ ds `σ dW s q, (4.7) with α " AαA : P R dˆd , μ " Aµ `αb P R d , σ " Aσ P R dˆn , and A : P R nˆd is the Moore-Penrose inverse of A (see the definition in [START_REF] Penrose | A generalized inverse for matrices[END_REF]).

Proof. From the assumption that the (column) rank of A is n, A J A P R nˆn is invertible. Therefore, we have the n ˆd matrix A : is the left inverse of A A : " pA J Aq ´1A J , A : A " I, (4.8)

where I is the n ˆn identity matrix.

From the relation in (4.5) and the left-inverse identity in (4.8), we obtain X t " A : pO t ´bq. (4.9) By differentiating O in (4.5), by multiplying the SDE on X in (4.4) by A on the left-hand side and using the left-inverse identity in (4.8), we obtain that O solves also another OU process with Instead of identifying the distribution of observable data O, we simply assume to be able to retrieve the random sources that generated the historical data. In order words, we suppose the existence of a general structure of the Markov chain model, but not a complete knowledge of the model parameters. This is the non-intrusive characteristic of the NISR scheme.

The NISR scheme

In this section, we present the NISR-regression Monte Carlo algorithm assuming the complete access to the observable data. From the historical data, we construct on a root sample O 1:M of size M (possibly small). Here we show how to recover the random sources generating the root sample, then be able to resampling M paths from any initial point z in R d . Assuming to know α, we apply the Example 4.6 in general case.

Extraction

Pick one path tO m i : 0 ď i ď N u of root sample O 1:M along N `1 discrete times tt i : 0 ď i ď N u. The explicit solution of O in (4.7) helps us to extract the random source U as follows U m i,j :" O m j ´e´αpt j ´ti q O m i , for all 0 ď i ď j ď N. (4.11)

Notice that for each path O m 1:N we obtain a triangular matrix U m . So the flow functions are Θ i,j pz, U q :" e ´αpt j ´ti q z `Ui,j , for all 0 ď i ď j ď N. (4.12)

Here, with a random source U , we obtain a another sample starting from a initial point z P R d .

We call the mapping in (4.11) from the path space R N `1 into random source space R pN `1qpN `2q 2 the extractor function Φ U " Φpt 0:N , O 0:N q :" ´Oj ´e´αpt j ´ti q O i ¯i,j : 0ďiďjďN . (4.13)

In the following, Θ i,j in (4.12) and Φ in (4.13) will be inputs of the NISR algorithm as well as the root sample O 1:M .

Stratification

Because the size M of the root sample is possibly small, we are not able to perform an accurate regression Monte Carlo method. Since the number of samples required for the empirical regression is much larger than sample extractable from the historical data, we will use the extracted random sources and resample them from different initial conditions pt i , zq thanks to flow function in (4.12).

In fact, we need that M be greater the dimension of approximation spaces L. For that, we resample the paths from distinct initial points in different regions of the space R d , then we perform a regression Monte Carlo on a low-dimensional approximation space. More precisely, we consider K strata tH k , 1 ď k ď Ku is a partition of the space R d , i.e., Here, we construct a resampling method using the probability measure ν and the random source U . To obtain a stability in the propagation of errors, we need a condition on the probability measure ν and the Markov chain O.

H k X H k 1 " H for k ‰ k 1 , K ď k"1 H k " R d .
According to Proposition 3.2 in [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF], we provide the probability measure ν that satisfying a stability condition for the OU processes, that we are resampling.

Proposition 4.7. Let p ą 0. Assume that O i,z i`1 " Dz `Ui for a diagonal invertible matrix D " diagpD 1 , . . . , D d q with Erp1 `|U i |q dpp`1q s ă `8. The proof of Proposition 4.7 is given [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF].

Now we present the stratified resampler using the distribution ν.

Definition 4.8 (Resampler). We define the M sample at time t i until time t N in the stratum H k as follows

• Let V i,k,m be a sample independent in i, k, m according to the distribution ν k ; we set O i,k,m i " V i,k,m , for all 1 ď m ď M.

• For every j P ti `1, . . . , N u, we set O i,k,m j " Θ i,j pO i,k,m i , U m q, for all 1 ď m ď M, where U m is given by (4.11).

From Assumption 4.1, we have that random source U 1:M " pU 1 , . . . , U M q are independent. We observe that tO i,k,m i:N : 1 ď m ď M u are independent and identically distributed copies of O i:N starting at O i " ν k , because pO j , i ď j ď N | O i " zq d " pΘ i,j pz, U q, i ď j ď N q.

NISR-regression Monte Carlo algorithm

By using M -sample given in Definition 4.8, we compute the approximation of the value function y i according to Algorithm 4. Here, we consider a piecewise linear basis functions

L k " spant1 H k , z 1 1 H k , . . . , z d 1 H k u.
In addition, we suppose the dimension of the space L k are independent from k, for the sake of simplicity. Indeed, we have dimpL k q " d `1.

In view of the following algorithm, we need to introduce the Ordinary Least Square (OLS) operator that approximates the function C : R dˆpN ´i`1q Ñ R on the approximation space L k using the sample O k,1:M i:N . The operator OLS is defined as OLSpC, L k , O k,1:M i:N q " arg min The NISR-regression Monte Carlo algorithm is given in Algorithm 4. In the Algorithm 4, the root sample O 1:M is an input to the Non-Intrusive Stratified Resampler given in Definition 4.8 through the random source U 1:M . Then, the existence of algorithm's approximation is conditioned to the fact that for any i P t0, . . . , N u the observable data O i is indeed observed.

Algorithm 4 General NISR-regression Monte Carlo algorithm Inputs:

• Extractor function Φ, Flow functions Θ i,j , resampling distribution ν;

• Truncation operator T L pxq " ´L _ x ^L and regression function bound |y i | 8 .

1: Set U 1:M " Φpt 0:N , O 1:M 0:N q. 2: Set ŷM N p¨q " g N p¨q. 3: for i " N ´1 to 0 do 4: for k " 1 to K do 5:

Set pV i,k,m q 1ďmďM according to ν k (given in (4.14)).

6:

Set O i,k,m i " V i,k,m and O i,k,m i`1 " Θ i,j pO i,k,m i , U m q for j P ti `1, . . . , N u.

7:

Set C M pz i:N q " g i pŷ M i`1 pz i`1 q, . . . , ŷM N pz N q, z i:N q.

8:

Compute φ M,k " OLSpC M , L k , O i,k,1:M i:N q.

9:

Set ŷM,k i " T |y i |8 pφ M,k q.

10:

Set ŷM i p¨q "

ř K k"1 ŷM,k i 1 H k .
Outputs: Approximation ŷM i of regression function y i .

Here, we state the convergence result for the Algorithm 4 (in the case of the one-step ahead DPE). It is expressed in term of the quadratic error of the best approximation of y i on each stratum H k : E i,k :" inf

φPL k |φ ´yi | 2 ν k ,
where |φ| 2 ν k :" ş R d |φpxq| 2 ν k p dxq. In fact, the Theorem 4.9 gives us an upper bound for

E " |ŷ M i ´yi | 2 ν ‰ ,
where |φ| 2 ν :" ş R d |φpxq| 2 νp dxq. The previous expectation is also taken over the random sources U 1:M , making the quadratic error averaged on the root sample. Theorem 4.9 (Converge result in the one-step ahead DPE case, see Corollary 3.1 in [START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF]). Assume 4.1-4.2-4.5 and define ŷM i as in Algorithm 4. Suppose each function g i is Lipschitz w.r.t y i`1 (with Lipschitz constant L g i ) and bounded at y i`1 " 0 w.r.t. z i:N by C g i . Let ν be the distribution given in Proposition 4.7. Then there are two constants C 1 pN q and C 2 pM q (with polynomial growth For more details in energy market derivatives, see [START_REF] Geman | Commodities and commodity derivatives -Modeling and Pricing for Agriculturals, Metals and Energy[END_REF] and [START_REF] Clewlow | Energy Derivatives: Pricing and Risk Management[END_REF] among others.

Option description. Let us describe the optimal stopping problem related the valuation of Bermudan options in Markovian framework. We take a set T N of N `1 deterministic exercise times t i and consider the optimal stopping rule associated: at final time T , the holder of the option exercises the option if it is in the money; at time t i , the holder of the option compares the cash flow from immediate exercise with the expected cash flow from continuation. The value V i " V pt i , Oq of the Bermudan option at time t i is given by the supremum over (integer-valued) stopping times τ in ti, . . . , N u of the immediate reward g:

V pt i , Oq " sup τ Pti,...,N u ErgpO τ q | O i " Os, 0 ď i ď N ´1. (4.16)

Following the dynamic programming principle (see [START_REF] Karatzas | On the pricing of American options[END_REF], for American options in continuous time and [START_REF] Lamberton | Optimal stopping and american options[END_REF] in discrete time), we have the existence of the optimal stopping time to (4.16): τ ‹ i " inf ! j ě i : V pt j , O j q " gpO j q

) , corresponding to the optimal stopping strategy given the option have not been exercised until time t i . Then, we rewrite the Bermudan option value V i " V pt i , Oq in terms of the continuation value Y i " Y pt i , Oq given by V pt i , Oq " max gpO i q, Y pt i , Oq ( , 0 ď i ď N ´1, where Y pt i , Oq " ErV pt i`1 , O i`1 q | O i " Os, 0 ď i ď N ´1 and Y N " 0.

Regarding the discrete dynamic programming equation (4.1), the Bermudan option valuation corresponds to g N pO N q " 0, g i pY i`1 , O i`1 q " maxpgpO i`1 q, Y pt i`1 , O i`1 qq, (4.17) similar to [START_REF] Tsitsiklis | Regression methods for pricing complex American-style options[END_REF]. Here we set the continuation value as the expectation of the optimal value function at the next time, differently from the Longstaff-Schwartz approach proposed in [START_REF] Longstaff | Valuing American options by simulation: a simple least-squares approach[END_REF].

Below we give some examples of reward (or payoff) functions g.

Example 4.10 (Options payoffs). Consider an option over N " 12 months such that exercise date t i is the first day of the i-th month of the year.

1. The payoff function of a Bermudan Put on a 1 Month-Ahead (MAH) forward contract with strike price λ is given by gpO i q " pλ ´ϕpO i qq ẁith ϕpzq " e z and O i " log F pt i , t i `1Mq.

2. The payoff of a Bermudan Exchange option on a 1 MAH forward contract against to 2 MAH one with strike price λ is gpO i q " pϕ 1 pO i q ´λϕ 2 pO i qq ẁith ϕpz 1 , z 2 q " pe z 1 , e z 2 q and O i " plog F pt i , t i `1Mq, log F pt i , t i `2Mqq J .

3. The payoff of Bermudan Exchange Asian option on 1-6 MAH forward contracts versus 7-12 MAH ones with strike price λ is gpO i q " pϕ 1 pO i q ´λϕ 2 pO i qq ẁith ϕpz 1 , . . . , z 12 q " p 1 6 ř 6 j"1 e z j , 1 6 ř 12 j"7 e z j q and O i " plog F pt i , t i `1Mq, . . . , log F pt i , t i 12Mqq J .

For the previous payoff, we need to know at most 12 monthly forward contracts.

Complete and incomplete historical data. Regarding the Example 4.10, we require pF pt i , t i `∆τ j qq 1ďjďn to be observable in the market for every i P t0, . . . , N u, which is summarized in the following case.

Case 1 (Complete data). For any i P t0, . . . , N u and j P t1, . . . , nu, t i `∆τ j is the maturity time of a observable forward contract.

Therefore, the component O j i " log F pt i , t i `∆τ j q is directly extracted from the historical data without any interpolation. However, whenever the log forward price log F pt i , t i `∆τ j q is not available in the historical data, we perform an interpolation of log prices. This approach is summarized in the Case 2. In Figure 4.2, we see the French Power Base Futures Prices at July 2nd 2018 for different delivery periods. Those future contracts have fixed maturities. Moreover, we observe at this date • The August 2018 futures is the most traded month contract;

• The Calendar 2022 and 1-Quarter 2020 futures are not traded yet; implying that not every expiry dates are listed.

For that, we define the closest expiry times available in the market. Definition 4.11. Let T " tT 1 , T 2 , . . .u be the collection of expiry time available in the market at every time t i . For any time t, we consider T d ptq " suptT P T : T ď tu and T u ptq " inftT P T : T ą tu as the greatest available expiry time less than time t and the least available expiry greater than time t, respectively.

Here, we interpolate those time to maturities which are not accessible by those which are.

Case 2 (Incomplete data). For any i P t0, . . . , N u, the log forward price log F pt i , t i `∆τ q is given by log F pt i , t i `∆τ q " T u pt i `∆τ q ´pt i `∆τ q T u pt i `∆τ q ´Td pt i `∆τ q log F pt i , T d pt i `∆τ qq `pt i `∆τ q ´Td pt i `∆τ q T u pt i `∆τ q ´Td pt i `∆τ q log F pt i , T u pt i `∆τ qq (4.18)

for every time to maturity ∆τ in ∆T " t∆τ 1 , . . . , ∆τ d u.

The forward prices F pt i , T d pt i `∆τ qq and F pt i , T u pt i `∆τ qq are those available in the market whose expiry times are the closest to F pt i , t i `∆τ q. We illustrate below some examples of payoffs with incomplete data.

Example 4.12 (Incomplete data). Consider an option over N " 24 exercise dates t 2i´1 with t 2i and is the 1st and the 15th day of the i-th month of the year, respectively. The payoff function of a Bermudan Exchange option on a 1 MAH forward contract with strike price λ is given by gpO i q " pλ ´ϕpO i qq ẁith ϕpzq " e z and O i " log F pt i , t i `1Mq.

Notice the 1MAH forward contract is the contract with delivery date starting in the first next month. Therefore, this is a contract with fixed maturity and not fixed time to maturity.

NISR-regression Monte Carlo algorithm: Incomplete data

In the case of incomplete data, we use the interpolation of log forward prices between different time to maturities given in (4.18).

Therefore, we modified the Algorithm 4 to solve the problem corresponding to the Bermudan option valuation in (4.17). The modified NISR-regression Monte Carlo algorithm uses the Ordinary Least Square operator that approximates the function C : R 2d Ñ R on the approximation space L k using the sample O k,1:M i:i`1 . Up to now, we deal with Bermudan options which are in between American and European options in the sense of exercises dates. However, in this example, the contract buyer has only one exercise right. Now we are going extend to multiple exercise rights.

Swing options

In this subsection, we again consider that the observable data O is the log of forward prices F pt i , t i `∆τ q. Then to recover the forward prices from the data O, we use the function ϕpz 1 , . . . , z d q " ř d i"1 exppz i q{d (i.e., a basket of future contracts).

Option description. Now we describe the stochastic optimal control problem related to the valuation of Swing options. We consider a set T N " tt 0 , . . . , t i , . . . , t N u of N `1 deterministic exercises dates. We give by q i the local consumption at time t i under (local) loading constraint:

q i P rq min , q max s.

The cumulative volume purchased up time t i is then denoted by Q i " ř i´1 j"0 q j , which satisfies the (total) volume constraint:

Q N P rQ min , Q max s.

At each time t i , the buyer of the contract gains q i pϕpO i q ´λq by purchasing forward contracts at price λ (we swing forward contracts against fixed prices). Moreover, whenever the total volume constraint is violated, the buyer must pay some penalties at maturity T . For example, these penalties can be linear in term of the forward contracts O N at time t N and in term of the under or over-consumption:

P N pO N , Q N q " ´α1 ϕpO N qpQ N ´Qmin q ´´α 2 ϕpO N qpQ N ´Qmax q `, for some positives constants α 1 and α 2 .
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  Plot of c 1 pγq (blue line) and c 2 pγq (purple dashed) on r0.0, 0.9s. (b) Plot of χ ˚pγ, yq on r0, 0.3s ˆr´1, 1s.

Figure 1

 1 Figure 1.3 -Global minimizer χ ˚pyq.

  Then, we show the numerical solution to the PDE (1.5) for different European options.The forward f -PDE valuation in dimension1. Consider the value function pt, xq as the solution to the f -PDE valuation Bu Bt pt, xq " αpxqu xx pt, xq `f p2αpxqu xx pt, xqq , 0 ă t ď T, x P R.

  Figure 1.4 -Vanilla options: f ˚-PDE solution u for different risk parameter γ.

Figure 2 . 1 -

 21 Figure 2.1 -Risk level ℓ γ depending on the local balance y with different parameter γ. For γ P p´1, 0q, the risk function ℓ γ pyq penalizes further the negative than positive local balances.

  The reference price v: r0, T sˆR Ñ R, its space derivatives v x , v xx : r0, T sˆR Ñ R and the PDE non-linearity f : r0, T s ˆR ˆR ˆR ˆR Ñ R are in C 1{2,1 loc,pol . Additionally, the cost function c : R Ñ R is locally Lipschitz with polynomial growth.Remark 2.6. The previous assumption is equivalent to Assumptions 1.2-1.3. Moreover, it implies that the mappt, xq Þ Ñ J 2 pv, pt, xqq " f pt, x, vpt, xq, v x pt, xq, v xx pt, xqq `cpxqis in C 1{2,1 loc,pol . Now, any estimation or convergence result valid for pt, xq Þ Ñ J 0 pv, pt, xqq " f pt, x, vpt, xq, v x pt, xq, v xx pt, xqq,

Figure 2

 2 Figure2.2 -Global minimizer χ ˚depending on x 1 with different parameter γ. For γ P p´1, 0q, the optimal function χ ˚px 1 q is negative and piecewise linear, with a positive (resp. negative) slope for the strictly negative (resp. positive) values of x 1 .

Figure 2

 2 Figure 2.3 -Cost c α depending on the price level x with c 0 " 1, c 1 " 0.5, and c 2 " 1. Around the price level c 2 , the convex function c α presents a steep slope while the concave function c 1{α is flatter.

Figure 2 . 4 -

 24 Figure 2.4 -Cost c β,0 and c β,1 depending on the price level x with b 0 " 1, b 1 " 2 and b 2 " 1.
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 73 Evaluate the policy to obtainp V CR ∆t Outputs: t βn k u N,K n"0,k"1 , p V CR ∆t p0, zq for z P R d . Quantization algorithm (Q) -Value iteration Inputs:

Figure 3 . 1 -

 31 Figure 3.1 -Plot of the quantized-based piecewise-constant approximation of the conditional expectation CondExp:a Þ Ñ ř ePΓ ε Ppp ε " eq p V Q ∆t ´tn`1 , Proj Γ W n`1 `G∆t ppw, yq, a, eq ˘, Proj Γ Y n`1 `G∆t ppw, yq, a, eq ˘¯. We took n " N ´1, w " 0, and y " ´0.18 to plot the curve. Observe that the approximation is discontinuous w.r.t. the control variable a in such a way that it makes the search of the minimizer of this function very difficult by usual (gradient descent-based) algorithms. Also, observe that the minimum of the function, which is actually equal to the estimation of the value function at time N ´1 at point pw " 0, y " ´0.18q, suffers from inaccuracy.

  Figure3.4 -3 simulations of the agent's wealth pX t q tPr0,T s when the latter follows the continuoustime optimal strategy (Opt) and the (Q) estimated optimal strategy to solve the Portfolio Selection problem. We took σ=0.4, T =1, P =0.1, γ 0 =5, b 0 =0,1. One can see that the two strategies are the same when the drift is low; but Q performs slightly better than Opt when the drift is high, which is a time-discretization effect.

Figure 4

 4 Figure 4.1 -Regression function reconstruction: Two different approaches

Following

  the Assumption 4.1, we take the matrix A in (4.3) to be known and given by A " ¨e´κ 1 ∆τ 1 . . . e ´κn∆τ1 e ´κ1 ∆τ 2 . . . e ´κn∆τ2 .

  

  

  

  

  

  

  ErX k t |W 0 s, k " 1, . . . , p.A partir des hypothèses linéaires et polynomiales (par la formule d'Itô et les espérances conditionnelles), nous dérivons la dynamique de pY 1 , Y 2 , . . . , Y p q comme

	dY k

t " B k pY 1 t , Y 2 t , . . . , Y p t , α t qdt `Σk pY 1 t , Y 2 t , . . . , Y p t , α t qdW 0 t , k " 1, . . . , p,

  D'autre part, la Randomisation du contrôle est sensible au choix de la distribution du contrôle randomisé et peu de répétitions sont nécessaires avant de trouver une bonne distribution de contrôle. Nous avons également essayé d'utiliser les méthodes d'itération de performance ou de re-calcul de trajectoires. Mais, sur les exemples considérés, ces méthodes prenaient beaucoup de temps et ne contribuaient pas beaucoup à la précision. • Les techniques de Quantification ont fourni les résultats les plus stables et les plus précis pour les trois différents cas de problèmes de contrôle. De plus, nous pouvons choisir la grille pour quantifier le processus contrôlé. Il est possible d'exploiter cette fonctionnalité lorsque nous avons une idée approximative de l'endroit où le processus contrôlé doit être guidé par la stratégie optimale (voir le problème de Liquidation de portefeuille). Par conséquent, nous devrions construire une grille avec de nombreux points situés là où le processus est censé aller. Ce chapitre est tiré d'un article rédigé en collaboration avec Alessandro Balata, Côme Huré, Mathieu Laurière et Huyen Pham [BHL `18].

• Nous avons constaté que les algorithmes de régression de Monte Carlo fonctionnent correctement dans les problèmes de contrôle de la tendance. Dans ces problèmes, ils sont beaucoup plus rapides que la quantification pour une précision similaire. En particulier, nous avons remarqué que la Régression différée (regress later) est plus fiable que la randomisation de contrôle : le choix d'une distribution uniforme des points d'apprentissage sur un intervalle approprié suffit pour obtenir des estimations de haute qualité.

•

  Pour garantir un schéma précis, les méthodes de régression Monte Carlo nécessitent généralement que le nombre de simulations N MC soit beaucoup plus grand que la dimension de l'espace vectoriel L (nombre de coefficients). Notez que les entrées O 1:N MC :" O 1 , . . . , O N MC sont échantillonnées à partir d'un modèle estimé à partir de données de taille M seulement. Dans ce contexte, puisque M est petit, l'erreur du modèle peut être une préoccupation importante.

0, où le processus O est à valeurs dans R d .

Approche par rééchantillonnage des données historiques.

Dans

[START_REF] Gobet | A Non-intrusive Stratified Resampler for regression Monte Carlo: application to solving nonlinear equations[END_REF]

, les auteurs conçoivent un schéma où les N MC simulations sont remplacées par les données observées de taille M . Pour surmonter le problème des nombreux coefficients à calculer (malgré le petit nombre de données), ils combinent l'approche de rééchantillonnage avec une stratégie de stratification et d'approximation locale, appelée schéma NISR (Non-Intrusive Stratified Resampler). Le point clé dans la partie non-intrusive du schéma est de supposer que seule la structure du modèle pour les données observables O est connue, mais pas leurs valeurs de paramètre/coefficient. Par ailleurs, la force de la partie stratifiée est le fait que nous avons des problèmes locaux indépendants sur un espace d'approximation de faible dimension. Ensuite, nous avons une double amélioration : (1) un petit nombre de coefficients à calculer sur chaque problème local et (2) la qualité de l'approximation agrégée n'est pas détériorée lorsque le nombre K de problèmes locaux augmente.

Brièvement, si nous avions observé les facteurs X, nous les aurions rééchantillonné et utilisé directement dans le schèma NISR. Dans notre cas, nous n'avons accès qu'à O, une transformation affine et partiellement inconnue de X (voir Hypothèse 4.1). Nous avons ensuite proposé une extension du schéma NISR natif prenant seulement O comme entrées. De plus, nous considérons que le modèle multi-factoriel est décrit comme un process d'Ornstein-Uhlenbeck (OU) multidimensionnel (voir Hypothèse 4.2), dont les paramètres de retour à la moyenne sont supposés connus (mais pas ceux de volatilité/corrélation).

Notre contribution au Chapitre 4 est le schéma NISR suivant (voir Section 4.3). Nous présentons l'algorithme de régression Monte Carlo NISR en supposant l'accès complet aux données observables.

Résultat Principal 4 (Schéma NISR sur le processus observable O). Nous avons les étapes suivantes pour la résolution du DDPE (6)

• A partir de la relation linéaire entre O et X (voir (4.3)), la dynamique de O est aussi un processus OU (voir Proposition 4.4) :

  • Dans K ensembles différents H k (appelés strates) d'une partition de l'espace R d , nous effectuons une approximation par régression Monte Carlo. Pour cela, nous considérons une mesure de probabilité ν telle que sa restriction ν k sur H

k ν k p dzq " 1 H k pzq νpH k q νp dzq. est utilisée pour rééchantillonner des trajectoires à partir de différents points initiaux sur H k . • Selon la Proposition 4.7, la distribution tensorielle du type Pareto ν donnée dans l'Equation (4.15) satisfait à une propriété de stabilité de la norme : il existe K ě 1 telle que, pour toute fonction ϕ : R d Ñ R P L 2 pνq, on a ż R d E|φpO i,z i`1 q| 2 νp dzq ď K ż R d |φpzq| 2 νp dzq, i P t0, . . . , N ´1u, nécessaire pour obtenir une correcte propagation des erreurs. • En utilisant la distribution ν k , nous obtenons un M -échantillon sur chaque strate H k à partir du temps t i jusqu'au temps t n :

II. Numerical methods in stochastic control 3. Polynomial conditional McKean-Vlasov control problems: Some probabilistic numerical methods

  

	In Chapter 3, we are interested to the McKean-Vlasov (MKV) control problem under partial
	observation and common noise. The formulation is described as follows. On a probability
	space pΩ, F, Pq equipped with two independent Brownian motions B and W 0 , we consider the controlled stochastic McKean-Vlasov dynamics in R n :
	dX s " b ´Xs , P W 0 Xs , α s ¯ds	`σ´X	s , P W 0 Xs , α s ¯dB s `σ0 ´Xs , P W 0 Xs , α s ¯dW 0 s ,
	This chapter is based on a work in progress in collaboration with Clémence Alasseur, Emmanuel
	Gobet and Xavier Warin.		

  Risk function ℓ γ for different risk parameter γ. be continuous functions. Let τ P p0, T s be a time horizon and let vpτ, ¨q be a reference valuation at the time τ . Given τ and vpτ, ¨q, the function u τ : r0, τ s ˆRd Ñ R is a solution to the f -PDE, if it satisfies

	1.1. INTRODUCTION					
			���			
			���			
			���			
			���			
	-���	-���	γ=���	γ=���	��� γ=���	���
	Figure 1.1 -					
	To clarify, the valuation/hedging rule of the trader will be parametrized by a function f , possibly
	nonlinear. Inspired by the connection between dynamic risk valuations, nonlinear Partial
	Differential Equations (PDE) and nonlinear Backward Stochastic Differential Equations (BSDE)
	[EPQ97, Pen04, Cre13], we introduce the concept of the f -PDE valuation. Let
	σ : r0, T s ˆRd Ñ R dˆd , f : r0, T s ˆRd ˆR ˆRd ˆRdˆd Ñ R

  S,a θ |, which is continuous dP B b dθ-almost surely and bounded by p1 `γq 2 |a||Z S,a θ | (integrable w.r.t. dP B b dθ locally uniformly in a). By the dominated convergence theorem, we conclude the first term of the decomposition in (1.18) is continuous in a. Also, we estimate ˇˇℓ 2

γ `ZS,a θ ˘}SB θ } 2 ˇˇď p1 `γ2 q}SB θ } 2 , which is integrable uniformly in a. Following that B ⊺ θ SB θ has a density w.r.t. the Lebesgue measure (see the proof of Proposition 1.19 in Appendix), we get Z S,a θ

Table 1 .

 1 1 -Optimal slopes c 1 and c 2 .

	γ	c 1	c	2
	0.1 0.1043 -0.09013
	0.2 0.2262 -0.1684
	0.3 0.3702 -0.2366

Table 1 .

 1 2 -Asymptotic risk estimate p R N,M for N " 20 and M " 5 ˆ10 5 .

	γ	γ	X 0 " 90	X 0 " 110	γ	γ	X 0 " 90	X 0 " 110
	0	0	41.20˘0.08 47.92˘0.08	0	0	41.20˘0.08 47.92˘0.08
	0	0.1 42.09˘0.08 48.96˘0.08	0	0.1 42.09˘0.08 48.96˘0.08
	0	0.2 45.41˘0.09 52.82˘0.09	0	0.2 45.41˘0.09 52.82˘0.09
	0	0.3 52.49˘0.10 61.05˘0.10	0	0.3 52.49˘0.10 61.05˘0.10
	0.1	0	41.26˘0.08 48.03˘0.08	0.1	0	41.26˘0.08 48.03˘0.08
	0.1 0.1 40.53˘0.08 47.17˘0.08	0.1 0.1 40.53˘0.08 47.17˘0.08
	0.1 0.2 41.52˘0.08 48.32˘0.08	0.1 0.2 41.52˘0.08 48.32˘0.08
	0.1 0.3 45.20˘0.09 52.61˘0.08	0.1 0.3 45.20˘0.09 52.61˘0.08
	0.2	0	41.46˘0.08 48.29˘0.07	0.2	0	41.46˘0.08 48.29˘0.07
	0.2 0.1 39.46˘0.07 45.97˘0.07	0.2 0.1 39.46˘0.07 45.97˘0.07
	0.2 0.2 38.66˘0.07 45.03˘0.07	0.2 0.2 38.66˘0.07 45.03˘0.07
	0.2 0.3 39.75˘0.07 46.30˘0.07	0.2 0.3 39.75˘0.07 46.30˘0.07
	0.3	0	41.61˘0.07 48.51˘0.07	0.3	0	41.61˘0.07 48.51˘0.07
	0.3 0.1 38.66˘0.07 45.08˘0.07	0.3 0.1 38.66˘0.07 45.08˘0.07
	0.3 0.2 36.51˘0.07 42.57˘0.06	0.3 0.2 36.51˘0.07 42.57˘0.06
	0.3 0.3 35.65˘0.06 41.56˘0.06	0.3 0.3 35	
		(a) p R N,M for a call option.				

.65˘0.06 41.56˘0.06

  

(b) p

R N,M for a bear option.

  Lemma 1.21. Let |α| ě 1. Differentiating Erφpt, W tn,ξ

					ż		t	qs w.r.t ξ yields
		D α ξ Erφpt, W tn,ξ t	qs "	R d ż		φpt, xqD α ξ ppt n , ξ; t, xq dx	(1.62)
			"	R d	pφpt, xq ´φpt n , ξqqD α ξ ppt n , ξ; t, xq dx,	(1.63)
	where	ppt n , ξ; t, xq :"	1 p2πq d{2 pt ´tn q d{2 exp	˜´1 2	t ´tn }x ´ξ} 2	is
	the transition density function of W tn,ξ t	. To pass from (1.62) to (1.63), we used that
		ż				
	0 " D α ξ loc,pol and the estimate in Proposition 1.22, we obtain from (1.63) R d 1{2,1 ppt By using φ P C ˇˇD α ξ Erφpt, W tn,ξ t qs ˇď

n , ξ; t, xq dx " ż R d D α ξ ppt n , ξ; t, xq dx. In the following, we use the result in [Fri08, Section 6, Chapter 9] related to the bounds for ppt n , ξ; t, xq. Proposition 1.22. Let |α| ě 1 and ppt n , ξ; t, xq be the transition density function of the Brownian motion W tn,ξ t . There exist two positive constants c and K depending on α such that |D α ξ ppt n , ξ; t, xq| ď K pt ´tn q p|α|`dq{2 exp ˜´c }x ´ξ} 2 t ´tn ¸, @pξ, t, xq P R d ˆst n , t n`1 s ˆRd .

Table 2

 2 

	-0.1

.1 -Optimal Positive/Negative-Part Constants Parameter γ PP constant a ˚NP constant a

  pt, X t,ω qq B θ pωq 2 ´θ 2 ´J2 pv, pt, X t,ω qqθ " 0

	*
	has measure zero (due to Proposition 1.19), it holds

Table 3 .

 3 1 -Portfolio Liquidation results. Estimations of the value functions at point ps 0 " 6, y 0 " 1q and time 0 provided by different algorithms. Results for the Portfolio Liquidation problem. Estimation of the value function at point ps 0 " 6, y 0 " 1q at time 0 provided by different strategies w.r.t. γ 0 . We took γ=5, S 0 =6, Y 0 =1, η=100 and σ=0.4.

	γ 0	Opt	b 0 " 0.1, T " 1 RLMC CR Q	Bench Opt	b 0 " ´0.1, T " 1{2 RLMC CR Q	Bench
	0.1 -1.347 -1.356 -1.278 -1.368 -1.318 3.689 3.687 3.995 3.686 4.144
	0.2 -1.385 -1.390 -1.283 -1.401 -1.348 3.682 3.682 3.847 3.679 4.138
	0.3 -1.445 -1.446 -1.314 -1.460 -1.402 3.670 3.674 4.034 3.667 4.126
	0.4 -1.523 -1.524 -1.323 -1.556 -1.485 3.655 3.674 4.128 3.650 4.108
	0.5 -1.642 -1.637 -1.348 -1.673 -1.585 3.636 3.664 4.243 3.630 4.088
	0.6 -1.783 -1.777 -1.425 -1.826 -1.711 3.611 3.640 4.386 3.607 4.064
	0.7 -1.973 -1.927 -1.513 -2.018 -1.870 3.581 3.613 4.783 3.572 4.029
	0.8 -2.213 -2.003 -1.637 -2.243 -2.057 3.545 3.575 5.142 3.537 3.992
	0.9 -2.526 -2.457 -1.819 -2.516 -2.288 3.500 3.530 5.345 3.498 3.952
	1	-2.918 -2.801 -1.806 -2.829 -2.560 3.453 3.513 6.765 3.452 3.903

b 0 " 0.1 and T " 1.

  0, where φ is a real measurable function on R d . The Regression Monte Carlo approach comprises simulating N MC paths of observable variable O, say O 1:N MC :" O 1 , . . . , O N MC (input of the algorithm), and finding approximations ŷN MC ,L

	ŷN MC ,L i	(output of the algorithm) solves	i	in a vector space of functions L. The real function
		min φPL	N MC ÿ m"1	

  Assumption 4.1 (Model structure). The observable data O i is related to the hidden Markov state X i as follows O i " AX i `b, (4.3)

  Linear model structure. Regarding the Schwartz-Smith model in Example 4.3, we write model structure (see (4.3)) in continuous time O t " AX t `b, (4.5) for a set of forward prices F pt, t `∆T q " tF pt, t `∆τ q : ∆τ P ∆T u with time to maturities ∆T " t∆τ 1 , . . . , ∆τ 36 u as follows O t " ¨log F pt, t `∆τ 1 q log F pt, t `∆τ 2 q . . . log F pt, t `∆τ 36 q

	‹ ‹ ‹ ' ,	A "	¨e´κ∆τ 1 1 e ´κ∆τ 2 1 . . . . . .	‹ ‹ ‹ ' ,	b "
			e ´κ∆τ 36 1		

  4.3. THE NISR SCHEMEand a probability measure ν such that its restriction ν k on H k is denoted byν k p dzq " 1 H k pzq νpH k q νp dzq. (4.14)

  Then the tensor-product Pareto-type distribution νp dzq :"

	d ź j"1	p 2	¯´p´1 ´1 `|z j |	dz	(4.15)

satisfies a norm-stability condition: there exists a constant K ě 1 such that, for any ϕ : R d Ñ R P L 2 pνq, we have ż

R d E|φpO i,z i`1 q| 2 νp dzq ď K ż R d |φpzq| 2 νp dzq,

for any i P t0, . . . , N ´1u.

1.2. NOTATIONS AND ASSUMPTIONS

For details on the WEO assumptions used here, see the database in the More Information on. . . section and Investment in power generation subsection of the World Energy Model website: www.iea.org/weo/weomodel/.

L

pσpZt n qq is the space of the square-integrable σpZt n q-measurable r.v.

Basically, different randomized controls may drive the process Z to very different locations, and the estimations will suffer from inaccuracy on the states that have been rarely visited.

often referred to as the Q-function, or action-value function, in the reinforcement learning literature. Be aware that Q stands here for the "Quality" of an action taken in a given state, and in particular does not refer to Quantization.

We use the notation tB " ttb, b P Bu, where t P R and B is a set.

Remerciements

Chapter 3

Polynomial conditional McKean-Vlasov control problems: Some probabilistic numerical methods

This chapter is based on the paper [BHL `18].

Abstract

We address a class of McKean-Vlasov (MKV) control problems with common noise, called polynomial conditional MKV, and extending the known class of linear quadratic stochastic MKV control problems. We show how this polynomial class can be reduced by suitable Markov embedding to finite-dimensional stochastic control problems. We provide a discussion and comparison of three probabilistic numerical methods for solving the reduced control problem: quantization, regression by control randomization, and regress later methods. Our numerical results are illustrated on various examples: portfolio selection and liquidation under drift uncertainty, and a interbank systemic risk model with partial observation.

Introduction

The optimal control of McKean-Vlasov (also called mean-field) dynamics is a rather new topic in the area of stochastic control and applied probability, which has been knowing a surge of interest with the emergence of the mean-field game theory. It is motivated on the one hand by the asymptotic formulation of cooperative equilibrium for a large population of particles (players) in mean-field interaction, and on the other hand from control problems with cost functional involving nonlinear functional of the law of the state process (e.g., the mean-variance portfolio selection problem or risk measure in finance).

In this chapter, we are interested in McKean-Vlasov (MKV) control problems under partial observation and common noise, whose formulation is described as follows. On a probability space pΩ, F, Pq equipped with two independent Brownian motions B and W 0 , let us consider the controlled stochastic MKV dynamics in R n : dX s " bpX s , P W 0 Xs , α s qds `σpX s , P W 0 Xs , α s qdB s `σ0 pX s , P W 0 Xs , α s qdW 0 s , X 0 " x 0 P R n , (3.1)

where P W 0 Xs denotes the conditional distribution of X s given W 0 (or equivalently given F 0 s where F 0 " pF 0 t q t is the natural filtration generated by W 0 ), and the control α is F 0 -progressive valued in some Polish space A. This measurability condition on the control means that the controller has Remark 3.11. When the control is of dimension 1, polynomials of order smaller than 5 are employed as basis functions in Regression Monte Carlo as well as for the running reward f . The optimal control can then be computed analytically as a function of the regression coefficients, since every polynomial equation of order smaller than 4 can be solved by radicals.

Concretely, in all the examples considered in Section 3.5, we used the Golden-section Search or the Brent methods when testing Quantization-based algorithm to find the optimal controls at each point of the grids. These algorithms were very accurate to find the optimal controls, and we made use of Remark 3.11 to find the optimal controls using the Regress-Later-based algorithm.

Upper and lower bounds

After completing the backward procedure, we can compute an unbiased estimation of the value of the control policy by using Monte Carlo simulations and sample average. Assume already computed (or simply available) the matrix of regression coefficients, in the case of Regression Monte Carlo, and discrete probability law p for Quantization, we can use this information to implicitly compute the control and simulate forward many trajectories of the controlled process starting from a common initial condition. We can then evaluate the average performance measure by computing the sample average of the rewards collected on each trajectory. Denoting such approximation by p V ∆t p0, zq, and recalling that by definition J ∆t p0, z, αq ď J ∆t p0, z, α ˚q, for all α P A ∆t and where α ˚represents the optimal control process; it holds p V ∆t p0, zq ď V ∆t p0, zq, for z P R d .

The argument above implies that, neglecting the time-discretization error, we obtain a lower bound for V ∆t p0, ¨q by evaluating the estimated policy. On the other hand, see [START_REF] Labordere | Deep Primal-Dual Algorithm for BSDEs: Applications of Machine Learning to CVA and IM[END_REF], based on [START_REF] Cristopher | Monte Carlo Valuation of American Options[END_REF], to get an upper bound of the value function via duality.

Pseudo-codes

In this section, we present the pseudo-code for the three approaches presented in the previous sections. For simplicity, we will only show the algorithms designed using value iteration procedure. However, the performance iteration update rule can be substituted in the codes below provided that forward simulations are run to obtain a pathwise realization of the controlled process and associated rewards.

Pseudo-code for a Regress-Later-based algorithm

We present in Algorithm 1 a pseudo-code to estimate V ∆t pt n , ¨q, for n " 0, . . . , N ´1, using Value Iteration and based on Regress-Later method. For n " 0, . . . , N ´1, we denote by V RL ∆t pt n , ¨q the derived estimation of V ∆t pt n , ¨q, and will refer to it as the RLMC algorithm in the numerical tests presented in Section 3.5.

Note that we use the same training measure µ at each time step so that there is only one covariance matrix to estimate (since A tn is the same for all n " 0, . . . , N ´1). Denote by ÂM the estimator, as defined in (3.18).

Pseudo-code for a Control Randomization-based algorithm

We present in Algorithm 2 a pseudo-code to estimate V ∆t pt n , ¨, ¨q, for n " 0, . . . , N ´1, using Value Iteration and based on Control Randomization method. For n " 0, . . . , N ´1, we denote Chapter 4

A non-intrusive stratified resampler for multi-factor models:

Application in energy market

This chapter is based on the paper [START_REF] Gobet | A Non-Intrusive Stratified Resampler for Multi-Factor Models: Application to the Pricing of Bermudan and Swing options[END_REF].

Abstract

We aim to solve dynamic programming equations (DPE) related to financial valuations in energy market. On the underlying asset, we consider that a calibrated model is not available and a limited sample from its historical data is accessible. We look for a non-intrusive method solving the DPE with empirical regression techniques, by suitable resampling of the historical data (and thus without calibration of the model). In power market, the forward contracts are driven by hidden factors modeled by Markov processes. Even though the DPE solution depends on these hidden factors, we come up with a resampling scheme using only the historical data of the observable log forward prices. 4.2. SETTING time independent parameters, after replacing the remaining X by the expression in (4.9) dO t " pAµ ´AαA : pO t ´bqq dt `Aσ dW t " pμ ´αO t q dt `σ dW t .

(4.10)

From the SDE in (4.10), we conclude the announced result.

The equation (4.7) shows how the dependence between O t and O i is parameterized by α, and the random part independent of O i . Notice that, in the case d " n and rankpAq " n, we have the existence of A ´1 and we simply obtain α " AαA ´1. In the Schwartz-Smith model, the knowledge of α is implied by the knowledge of the mean-reverting speed κ and the time to maturity ∆τ of forward contracts F pt, t `∆τ q.

Non-Intrusive resampling

For the regression Monte Carlo algorithm in the NISR framework, we use samples of O under the following assumption.

Assumption 4.5 (Observable data). We have access to the observation of M paths of O, denoted by O 1:M " tO m i : 0 ď i ď N, 1 ď m ď M u. They are independent and called root sample.

From the representation of the flow of the Markov chain O, we write O i,z j " Θ i,j pz, U q for different times i P t1, . . . , N u and points z P R d , where U is a random vector and Θ i,j is a deterministic function for pair pi, jq, called flow functions here.

We exhibit the flow function in the case of the Schwartz-Smith model. ). After computing the pseudo-inverse A : , we deduce that α is αi,j " κe ´κ∆τ i 36e ´κ∆τ j ´ř36 j 1 "1 e ´κ∆τ j 1 36 ř 36 j 1 "1 e ´2κ∆τ j 1 ´2 ř 36 j 1 "1 e ´κ∆τ j 1 , for all 1 ď i, j ď 36. Therefore, knowing α is equivalent to known the mean-reverting speed κ and all time to maturities p∆τ 1 , . . . , ∆τ 36 q.

Given N `1 times tt i : 0 ď i ď N u, we observe a path tO i : 0 ď i ď N u. Following the explicit solution of O in (4.7), we define the flow functions as Θ i,j pz, U q " e ´αpt j ´ti q z `Ui,j , and we extract a random source U U i,j " O j ´e´αpt j ´ti q O i , for all 0 ď i ď j ď N .

Note that from Assumption 4.5, observing M independent pO 1 , . . . , O m q implies we can get M independent realizations pU 1 , . . . , U m q of U . In addition, owing to Assumptions 4.1 and 4.2, the flow function Θ i,j is known.

in N and log growth M , resp.) such that, for any i P t0, . . . , N ´1u,

The proof is given in [GLZ18, Section 3.3]. Usually, in Regression Monte Carlo methods, there is a competition between the approximation error and the statistical error. Indeed, while the dimension of the approximation space K dimpL k q goes to infinity, the statistical error (proportional to K dimpL k q{M ) explodes. In Theorem 4.9, the bias term (approximation error) is well controlled in K since the terms νpH k q sum up to 1: we just obtain the average of the local quadratic errors E i,k . More striking is related to the variance term: it does not explode with the number K of strata. Therefore, taking a smaller stratum H k (which is interesting when we have a small root sample) does not make the statistical error increase. Briefly, the stratification improves the method by including several decoupled regression problems on a low-dimensional space.

Applications to Energy Market

In this section, we search for other applications to energy market. First, we look the valuation problem of Bermudan option whose the underlying processes are forward contracts in Subsection 4.4.1. Then, we explore the Gas storage valuation such as Swing option (multiple exercises rights) in Subsection 4.4.2. This study can be helpful for power producer willing to valuate its Swing contracts with its supplier.

Bermudan options

In this subsection, we consider the case where the observable data O i throughout the dates t 0:N is the log of forward prices F pt i , t i `∆τ q with time to maturity ∆τ .

Forward contracts. We suppose to have d different forward contracts, then O i is given by

for some collection of time to maturity ∆T " t∆τ j : 1 ď j ď du.

In the actual market, the forward prices are characterized by their maturity dates T . By definition, whenever the current time t reaches the maturity T , the forward contract is equal to the spot S T and after that it disappears. Notice then the actual forward data is defined for fixed maturity not for fixed time to maturity. We tackle this problem by performing a linear interpolation between the log forward prices log F pt i , T d pi, jqq and log F pt i , T u pi, jqq, where T d pi, jq (resp. T u pi, jq) is the largest (resp. the smallest) expiry date lesser (resp. greater) than the unobservable maturity t i `∆τ j for every i P t0, . . . , N u (see Definition 4.11).

Then, we consider V i the market value of a variable volume Swing option at time t i defined at the supremum over the control variable (consumption strategy) q " pq i q 1ďiďN

V i " sup

where CF i is the future cash flow starting from date t i are given by CF i pO i:N , Q i:N , q i:N q " N ´1 ÿ j"i q j pϕpO j q ´λq `PN pO N , Q N q.

Above, CF i is the future returns starting from date t i for a given consumption pq j q iďjďN and underlying values pO j q iďjďN .

In the following, we present a version of the Swing option example given in [BBD `06, Case 1] with weekly exercise.

Example 4.13 (Weekly Swing options). Consider an option where the buyer has the right to purchase each first day of N " 52 weeks a gas quantity q P rq min , q max s at a fixed strike price λ. But he must purchase globally over the year a volume Q P rQ min , Q max s. Here, we take the following parameters: q min " 0, q max " 6, Q min " 1300, Q max " 1900, λ " 20, T " 1 year with weekly exercise N " 52.

Writing the associated DDPE. The dynamic programming equation related to the Swing option valuation is described in terms of a Markov chain pO t , Q t q, which is controlled by the local consumption q " pq i q 0ďiďN . Then the price V i " V pt i , O, Qq is defined as the supremum of the expectation of CF i over all admissible consumption q.

Following the dynamic programing principle (see [START_REF] Dimitir | Stochastic optimal control: the discrete-time case[END_REF], for more details in discrete-time stochastic control problem), we obtain the related DPE V pt N , O, Qq " P N pO, Qq, V pt i , O, Qq " max qPrq min ,qmaxs " qpϕpOq ´λq `ErV pt i`1 , O i`1 , Q `qq | O i " Os * .

Here, we allow the local consumption to break the total volume constraint. Otherwise, we can simply take an infinity penalty (i.e., α 1 " α 2 " `8) which leads to the following constraint q min ď q ď q max Q min ´pN ´iqq max ď Q `q ď Q max ´pN ´iqq min .

This is a classical approach to solve swing option valuation problem (see [START_REF] Wilhelm | Finite element valuation of Swing options[END_REF], for finite element method).

Numerical results related to those applications are in prospection. Please see the later version of [START_REF] Gobet | A Non-Intrusive Stratified Resampler for Multi-Factor Models: Application to the Pricing of Bermudan and Swing options[END_REF] for further details.