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The Ranking Aggregation Problem CHAPTER 1

Introduction

Ranking data naturally appears in a wide variety of situations, especially when the data comes from human activities: ballots in political elections, survey answers, competition results, customer buying behaviors or user preferences. Handling preference data, in particular to perform aggregation, refers to a long series of works in social choice theory initiated by Condorcet at the 18 th century, and modeling such distributions began to be studied in 1951 by Mallows. But ordering objects is also a task that often arises in modern applications of data processing. For instance, search engines aim at presenting to an user who has entered a given query, the list of matching results ordered from most to least relevant. Similarly, recommendation systems (for e-commerce, movie or music platforms...) aim at presenting objects that might interest an user, in an order that sticks best to her preferences. However, ranking data is much less considered in the statistics and machine learning literature than real-valued data, mainly because the space of rankings is not provided with a vector-space structure and thus classical statistics and machine learning methods cannot be applied in a direct manner. Indeed, even the basic notion of an average or a median for ranking data, namely ranking aggregation or consensus ranking, raises great mathematical and computational challenges. Hence, a vast majority of the literature rely on parametric models.

In this thesis, we investigate the hardness of ranking data problems and introduce new nonparametric statistical methods tailored to this data. In particular, we formulate the consensus ranking problem in a rigorous statistical framework and derive theoretical results concerning the statistical behavior of empirical solutions and the tractability of the problem. This framework is actually a cornerstone since it can be extended to two closely related problems, supervised and unsupervised: dimensionality reduction and ranking regression, or label ranking. Indeed, while classical algebraic-based methods for dimensionality reduction cannot be applied in this setting, we propose a mass transportation approach for ranking data. Then, we explore and build consistent rules for ranking regression, firstly by highlighting the fact that this supervised problem is an extension of ranking aggregation. In this chapter, we recall the main statistical challenges in ranking data and outline the contributions of the thesis.
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Chapter 1. Introduction

Background on Ranking Data

We start by introducing the notations and objects used along the manuscript. Consider a set of items indexed by {1, . . . , n}, that we will denote n . A ranking is an ordered list of items in n . Rankings are heterogeneous objets: they can be complete (i.e., involving all the items) or incomplete; and for both cases, they can be without-ties (total order) or with-ties (weak order).

A full ranking is a total order: i.e. complete, and without-ties ranking of the items in n . It can be seen as a permutation, i.e. a bijection σ : n → n , mapping each item i to its rank σ(i). The rank of item i is thus σ(i) and the item ranked at position j is σ -1 (j). We say that i is preferred over j (denoted by i ≺ j) according to σ if and only if i is ranked lower than j: σ(i) < σ(j). The set of all permutations over n items, endowed with the composition operation, is called the symmetric group and denoted by S n . The analysis of full ranking data thus relies on this group. Other types of rankings are particularly present in the literature, namely partial and incomplete rankings. A partial ranking is a complete ranking (i.e. involving all the items) with ties, and is also referred sometimes in the literature as a weak order or bucket order. It includes in particular the case of top-k rankings, that is to say partial rankings dividing the items in two groups: the first one being the k ≤ n most relevant (or preferred) items and the second one including all the remaining items. These top-k rankings are given a lot of attention since they are especially relevant for modern applications, such as search engines or recommendation systems where the number of items to be ranked is very large and users pay more attention to the items ranked first. Another type of ranking, also very relevant in such large-scale settings, is the case of incomplete ranking; i.e., strict orders involving only a small subset of items. A particular case of incomplete rankings is the case of pairwise comparisons, i.e. rankings involving only two items. As any ranking, of any type, can be decomposed into pairwise comparisons, the study of these rankings is exceptionally well-spread in the literature.

The heterogeneity of ranking data makes it arduous to cast in a general framework, and usually the contributions in the literature focus on one specific class of rankings. The reader may refer to Chapter 2 for a general background on this subject. In this thesis, we will focus on the case of full rankings; i.e. complete, and without-ties ranking of the items in n . However, as we will underline through the thesis, our analysis can be naturally extended to the setting of pairwise comparisons through the extensive use we make of a specific distance, namely Kendall's τ .

Ranking Aggregation

Ranking aggregation was the first problem to be considered on ranking data and was certainly the most widely studied in the literature. Originally considered in social choice for elections, the ranking aggregation problem appears nowadays in many modern applications implying machine learning (e.g., meta-search engines, information retrieval, biology). It can be viewed as a unsupervised problem, since the goal is to summarize a dataset or a distribution of rankings, as one Chapter 1. Introduction 3 would compute an average or a median for real-valued data. An overview of the mathematical challenges and state-of-the-art methods are given Chapter 3. We firstly give the formulation of the problem and then present our contributions.

Definition and Context

Consider that besides the set of n items, one is given a population of N agents. Suppose that each agent t ∈ {1, . . . , N } expresses its preferences as a full ranking over the n items, which, as said before, can be seen as a permutation σ t ∈ S n . Collecting preferences of the agents over the set of items then results in dataset of permutations D N = (σ 1 , . . . , σ N ) ∈ S N n , sometimes referred to as the profile in the social choice literature. The ranking aggregation problem consists in finding a permutation σ * ∈ S n , called consensus, that best summarizes the dataset.

This task was introduced in the study of election systems in social choice theory, and any procedure mapping a dataset to a consensus is thus called a voting rule. Interestingly, [START_REF] Arrow | Social choice and individual values[END_REF] demonstrated his famous impossibility theorem which states that no voting rule can satisfy a predefined set of axioms, each reflecting the fairness of the election (see Chapter 3). Hence, there is no canonical procedure for ranking aggregation, and each one has its advantages and its drawbacks.

This problem has thus been studied extensively and a lot of approaches have been developped, in particular in two settings. The first possibility is to consider that the dataset is constituted of noisy versions of a true ranking (e.g., realizations of a parameterized distribution centered around the true ranking), and the goal is to reconstruct the true ranking thanks to the samples (e.g., with MLE estimation). The second possibility is to formalize this problem as a discrete optimization problem over the set of rankings, and to look for the ranking which is the closest (with respect to some distance) to the rankings observed in the dataset, without any assumption on the data. The former approach tackles the problem in a rigorous manner, but can lead to heavy computational costs in practice. In particular, Kemeny ranking aggregation [START_REF] Kemeny | Mathematics without numbers[END_REF]) aims at solving:

min σ∈Sn C N (σ), (1.1) 
where C N (σ) = N t=1 d(σ, σ t ) and d is the Kendall's τ distance defined for σ, σ ∈ S n as the number of their pairwise disagreements:

d τ (σ, σ ) = 1≤i<j≤n I{(σ(j) -σ(i))(σ (j) -σ (i)) < 0}.
(1.2)

For any σ ∈ S n , we will refer to the quantity C N (σ) as its cost. A solution of (10.1) always exists, since the cardinality of S n is finite (however exploding with n, since #S n = n!), but can be multimodal. We will denote by K N the set of solutions of (10.1), namely the set of Kemeny consensus(es). This aggregation method is attractive because it has both a social choice justification (it is the unique rule satisfying some desirable properties), and a statistical one (it outputs the maximum likelihood estimator under the Mallows model), see Chapter 2 and 3 for Chapter 1. Introduction more details. However, exact Kemeny aggregation is known to be NP-hard in the worst case (see [START_REF] Dwork | Rank aggregation methods for the web[END_REF]), and cannot be solved efficiently with a general procedure. Therefore, many other methods have been used in the literature, such as scoring rules or spectral methods (see Chapter 3). The former are much more efficient in practice, but have fewer or no theoretical support.

Many contributions from the literature have focused on a particular approach to apprehend some part of the complexity of Kemeny aggregation and can be divided in three main categories.

• General guarantees for approximation procedures. These results provide a bound on the cost of one voting rule, valid for any dataset (see [START_REF] Diaconis | Spearman's footrule as a measure of disarray[END_REF]; [START_REF] Coppersmith | Ordering by weighted number of wins gives a good ranking for weighted tournaments[END_REF]; [START_REF] Van Zuylen | Deterministic algorithms for rank aggregation and other ranking and clustering problems[END_REF]; [START_REF] Ailon | Aggregating inconsistent information: Ranking and clustering[END_REF]; [START_REF] Freund | Rank aggregation: New bounds for mcx[END_REF]).

• Bounds on the approximation cost computed from the dataset. These results provide a bound, either on the cost of a consensus or on the cost of the outcome of a specific voting rule, that depends on a quantity computed from the dataset (see [START_REF] Davenport | A computational study of the kemeny rule for preference aggregation[END_REF]; [START_REF] Conitzer | Improved bounds for computing kemeny rankings[END_REF]; [START_REF] Sibony | Multiresolution analysis of incomplete rankings with applications to prediction[END_REF]).

• Conditions for the exact Kemeny aggregation to become tractable. These results ensure the tractability of exact Kemeny aggregation if the dataset satisfies some condition or if some quantity is known from the dataset (see [START_REF] Betzler | Computing kemeny rankings, parameterized by the average kt-distance[END_REF][START_REF] Betzler | How similarity helps to efficiently compute kemeny rankings[END_REF]; [START_REF] Cornaz | Kemeny elections with bounded single-peaked or singlecrossing width[END_REF]; [START_REF] Brandt | Bypassing combinatorial protections: Polynomial-time algorithms for single-peaked electorates[END_REF]).

Our contributions on the ranking aggregation problem in this thesis are summarized in the two next subsections. We firstly propose a dataset-dependent measure, which enables to upper bound the Kendall's τ distance between any candidate for the ranking aggregation problem (typically the outcome of an efficient procedure), and an (intractable) Kemeny consensus. Then, we cast the problem in a statistical setting, making the assumption that the dataset consists of realizations of a random variable drawn from a distribution P on the space of full rankings S n . As this approach may appear natural to a statistician, most contributions from the social choice or computer science literature do not analyze this problem through the distribution; however the analysis through the distribution properties is widely spread in the literature concerning pairwise comparisons, see Chapter 2 and 3. In this view, we derive statistical results and give conditions on P so that the Kemeny aggregation is tractable.

A General Method to Bound the Distance to Kemeny Consensus

Our first question was the following. Let σ ∈ S n be any consensus candidate, typically output by a computationally efficient aggregation procedure on D N = (σ 1 , . . . , σ N ). Can we use computationally tractable quantities to give an upper bound for the Kendall's τ distance d τ (σ, σ * ) between σ and a Kemeny consensus σ * ∈ K N ? The answer to this problem is positive as we will elaborate.

Chapter 1. Introduction
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Our analysis is geometric and relies on the following embedding, named Kemeny embedding: φ : S n → R ( n 2 ) , σ → (sign(σ(j) -σ(i)) 1≤i<j≤n , where sign(x) = 1 if x ≥ 0 and -1 otherwise. It has the following interesting properties. Firstly, for all σ, σ ∈ S n , φ(σ)φ(σ ) 2 = 4d τ (σ, σ ), i.e., the square of the euclidean distance between the mappings of two permutations recovers their Kendall's τ distance up to a multiplicative constant, proving at the same time that the embedding is injective. Then, Kemeny aggregation (10.1) is equivalent to the minimization problem: φ (σ t ) .

(1.3) is called the mean embedding of the dataset. The reader may refer to Chapter 4 for illustrations.

Such a quantity thus contains rich information about the localization of a Kemeny consensus, and is the key to derive our result.

We first define for any permutation σ ∈ S n , its angle θ N (σ) between φ(σ) and φ(D N ) by:

cos(θ N (σ)) = φ(σ), φ(D N ) φ(σ) φ(D N ) , (1.4) 
with 0 ≤ θ N (σ) ≤ π by convention. Our main result, relying on a geometric analysis of Kemeny aggregation in the Euclidean space R ( n 2 ) is the following.

Theorem 1.1. For any k ∈ {0, . . . , n 2 -1}, one has the following implication:

cos(θ N (σ)) > 1 - k + 1 n 2 ⇒ max σ * ∈K N d τ (σ, σ * ) ≤ k.
More specifically, the best bound is given by the minimal k ∈ {0, . . . , n 2 -1} such that cos(θ N (σ)) > 1 -(k + 1)/ n 2 . Denoting by k min (σ; D N ) this integer, it is easy to see that

k min (σ; D N ) = n 2 sin 2 (θ N (σ)) if 0 ≤ θ N (σ) ≤ π 2 n 2 if π 2 ≤ θ N (σ) ≤ π.
(1.5) where x denotes the integer part of the real x. Thus, given a dataset D N and a candidate σ for aggregation, after computing the mean embedding of the dataset and k min (σ; D N ), one obtains a bound on the distance between σ and a Kemeny consensus. The tightness of the bound is demonstrated in the experiments Chapter 4. Our method has complexity of order O(N n 2 ),

where N is the number of samples and n is the number of items to be ranked, and is very general since it can be applied to any dataset and consensus candidate.

A Statistical Framework for Ranking Aggregation

Our next question was the following. Suppose that the dataset of rankings to be aggregated D N is composed of N ≥ 1 i.i.d. copies Σ 1 , . . . , Σ N of a generic random variable Σ, defined on a probability space (Ω, F, P) and drawn from an unknown probability distribution P on S n (i.e. P (σ) = P{Σ = σ} for any σ ∈ S n ). Can we derive statistical rates of convergence for the excess of risk of an empirical consensus (i.e. based on D N ) compared to a true one (with respect to the underlying distribution)? Then, are there any conditions on P so that Kemeny aggregation becomes tractable? Once again, the answer is positive as we will detail below.

We firstly define a (true) median of distribution P w.r.t. d (any metric on S n ) as any solution of the minimization problem:

min σ∈Sn L P (σ), (1.6) 
where L P (σ) = E Σ∼P [d(Σ, σ)] denotes the expected distance between any permutation σ and Σ and shall be referred to as the risk of the median candidate σ. Any solution of (10.6), denoted σ * , will be referred to as Kemeny medians throughout the thesis, and L * P = L P (σ * ) as its risk.

Whereas problem (10.6) is NP-hard in general, in the Kendall's τ case, exact solutions can be explicited when the pairwise probabilities p i,j = P{Σ(i) < Σ(j)}, 1 ≤ i = j ≤ n (so p i,j + p j,i = 1), fulfill the following property, referred to as stochastic transitivity.

Definition 1.2. Let P be a probability distribution on S n .

(i) Distribution P is said to be (weakly) stochastically transitive iff ∀(i, j, k) ∈ n 3 : p i,j ≥ 1/2 and p j,k ≥ 1/2 ⇒ p i,k ≥ 1/2.

If, in addition, p i,j = 1/2 for all i < j, one says that P is strictly stochastically transitive.

(ii) Distribution P is said to be strongly stochastically transitive iff ∀(i, j, k) ∈ n 3 : p i,j ≥ 1/2 and p j,k ≥ 1/2 ⇒ p i,k ≥ max(p i,j , p j,k ).

which is equivalent to the following condition (see [START_REF] Davidson | Experimental tests of a stochastic decision theory[END_REF]):

∀(i, j) ∈ n 2 : p i,j ≥ 1/2 ⇒ p i,k ≥ p j,k for all k ∈ n \ {i, j}.

These conditions were firstly introduced in the psychology literature [START_REF] Fishburn | Binary choice probabilities: on the varieties of stochastic transitivity[END_REF]; [START_REF] Davidson | Experimental tests of a stochastic decision theory[END_REF]) and were used recently for the estimation of pairwise probabilities and ranking from pairwise comparisons (Shah et al. (2017); [START_REF] Shah | Simple, robust and optimal ranking from pairwise comparisons[END_REF]; [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]). Our main result on optimality for (10.6), which can be seen as a classical topological sorting result on the graph of pairwise comparisons (see Figure 2.1 Chapter 2), is the following.

Proposition 1.3. Suppose that P verifies strict (weak) stochastic transitivity. Then, the Kemeny median σ * is unique and given by the Copeland method, i.e. the following mapping:

σ * (i) = 1 + k =i I{p i,k < 1 2 } for any i in n (1.7)
An interesting additional result is that when strong stochastic transitivity holds additionally, the Kemeny median is also given by the Borda method, see Remark 5.6 in Chapter 5.

However, the functional L P (.) is unknown in practice, just like distribution P or its marginal probabilities p i,j 's. Following the Empirical Risk Minimization (ERM) paradigm (see e.g. [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF], we were thus interested in assessing the performance of solutions σ N , called empirical Kemeny medians, of min σ∈Sn L N (σ), (1.8)

where L N (σ) = 1/N N t=1 d(Σ t , σ). Notice that L N = L P N where P N = 1/N N t=1 δ Σt is the empirical distribution. Precisely, we establish rate bounds of order O P (1/ √ N ) for the excess of risk L P ( σ N ) -L * P in probability/expectation and prove they are sharp in the minimax sense, when d is the Kendall's τ distance. We also establish fast rates when the distribution P is strictly stochastically transitive and verifies a certain low-noise condition NA(h), defined for h > 0 by:

min i<j |p i,j -1/2| ≥ h.
(1.9)

This condition may be considered as analogous to that introduced in [START_REF] Koltchinskii | Exponential convergence rates in classification[END_REF] in binary classification, and was used in Shah et al. (2017) to prove fast rates for the estimation of the matrix of pairwise probabilities. Under these conditions (transitivity (10.2) and low-noise (10.9), the empirical distribution P N is also strictly stochastically transitive with overwhelming probability, and the excess of risk of empirical Kemeny medians decays at an exponential rate. In this case, the optimal solution σ * N of (10.8) is also a solution of (10.6) and can be made explicit and straightforwardly computed using Eq. (10.7) based on the empirical pairwise probabilities p i,j = 1 N N t=1 I{Σ t (i) < Σ t (j)}. This last result will be of the greatest importance for practical applications described in the next section.

Beyond Ranking Aggregation: Dimensionality Reduction and Ranking Regression

The results we obtained on statistical ranking aggregation enabled us to consider two closely related problems. The first one is another unsupervised problem, namely dimensionality reduction; we propose to represent in a sparse manner any distribution P on full rankings by a bucket order C and an approximate distribution P C relative to this bucket order. The second one is a supervised problem closely related to ranking aggregation, namely ranking regression, often called label ranking in the literature.
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Dimensionality Reduction for Ranking Data: a Mass Transportation Approach

Due to the absence of a vector space structure on S n , applying traditional dimensionality reduction techniques for vectorial data (e.g. PCA) is not possible and summarizing ranking data is challenging. We thus proposed a mass transportation framework for dimensionality reduction fully tailored to ranking data exhibiting a specific type of sparsity, extending somehow the framework we proposed for ranking aggregation. We propose a way of describing a distribution P on S n , originally described by n! -1 parameters, by finding a much simpler distribution that approximates P in the sense of the Wasserstein metric introduced below.

Definition 1.4. Let d : S 2 n → R + be a metric on S n and q ≥ 1. The q-th Wasserstein metric with d as cost function between two probability distributions P and P on S n is given by: W d,q P, P = inf

Σ∼P, Σ ∼P E d q (Σ, Σ ) , (1.10)
where the infimum is taken over all possible couplings (Σ, Σ ) of (P, P ).

We recall that a coupling of two probability distributions Q and Q is a pair (U, U ) of random variables defined on the same probability space such that the marginal distributions of U and U are Q and Q .

Let K ≤ n and C = (C 1 , . . . , C K ) be a bucket order of n with K buckets, meaning that the collection {C k } 1≤k≤K is a partition of n (i.e. the C k 's are each non empty, pairwise disjoints and their union is equal to n ), whose elements (referred to as buckets) are ordered C 1 ≺ . . . ≺ C K . For any bucket order C = (C 1 , . . . , C K ), its number of buckets K is referred to as its size, whereas the vector λ = (#C 1 , . . . , #C K ), i.e the sequence of sizes of buckets in C (verifying K k=1 #C k = n), is referred to as its shape. Observe that, when K << n, a distribution P can be naturally said to be sparse if the relative order of two items belonging to two different buckets is deterministic: for all 1 ≤ k < l ≤ K and all (i, j) ∈ K 2 , (i, j) ∈ C k × C l =⇒ p i,j = P Σ ∼P [Σ (i) < Σ (j)] = 0. Throughout the thesis, such a probability distribution is referred to as a bucket distribution associated to C. Since the variability of a bucket distribution corresponds to the variability of its marginals within each bucket, the set P C of all bucket distributions associated to C is of dimension

d C = 1≤k≤K #C k ! -1 ≤ n! -1.
A best summary in P C of a distribution P on S n , in the sense of the Wasserstein metric (10.10), is then given by any solution P * C of the minimization problem:

min P ∈P C
W dτ ,1 (P, P ).

(1.11)

For any bucket order C, the quantity Λ P (C) = min P ∈P C W dτ ,1 (P, P ) measures the accuracy of the approximation and will be referred as the distortion. In the case of Kendall's τ distance, this distortion can be written in closed-form as Λ P (C) = i≺ C j p j,i (see Chapter 6 for the investigation of other distances).

We denote by C K the set of all bucket orders C of n with K buckets. If P can be accurately approximated by a probability distribution associated to a bucket order with K buckets, a natural dimensionality reduction approach consists in finding a solution C * (K) of min C∈C K Λ P (C),

(1.12) as well as a solution P * C * (K) of (10.11) for C = C * (K) , and a coupling (Σ, Σ C * (K) ) such that E[d τ (Σ, Σ C * (K) )] = Λ P (C * (K) ).

This approach is closely connected to the consensus ranking problem we investigated before, see Chapter 6 for a deeper explanation. Indeed, observe that ∪ C∈Cn P C is the set of all Dirac distributions δ σ , σ ∈ S n . Hence, in the case K = n, dimensionality reduction as formulated above boils down to solve Kemeny consensus ranking: P * C * (n) = δ σ * and Σ C * (n) = σ * being solutions of the latter, for any Kemeny median σ * of P . In contrast, the other extreme case K = 1 corresponds to no dimensionality reduction at all: Σ C * (1) = Σ. Then, we have the following remarkable result stated below which shows that, under some conditions, P 's dispersion can be decomposed as the sum of the (reduced) dispersion of the simplified distribution P C and the minimum distortion Λ P (C).

Corollary 1.5. Suppose that P is stochastically transitive. A bucket order C = (C 1 , . . . , C K ) is said to agree with a Kemeny consensus iff we have: ∀1 ≤ k < l ≤ K, ∀(i, j) ∈ C k × C l , p j,i ≤ 1/2. Then, for any bucket order C that agrees with Kemeny consensus, we have:

L * P = L * P C + Λ P (C).
(1.13)

We obtain several results in this framework.

Fix the number of buckets K ∈ {1, . . . , n}, as well as the bucket order shape λ = (λ 1 , . . . , λ K ) ∈ {1, . . . , n} K . Let C K,λ be the class of bucket orders C = (C 1 , . . . , C K ) of shape λ (i.e. s.t. λ = (#C 1 , . . . , #C K )). We have the following result.

Theorem 1.6. Suppose that P is strongly/strictly stochastically transitive. Then, the minimizer of the distortion Λ P (C) over C K,λ is unique and given by C * (K,λ) = (C * (K,λ) 1 , . . . , C * (K,λ) K

),

where

C * (K,λ) k =    i ∈ n : l<k λ l < σ * P (i) ≤ l≤k λ l   
for k ∈ {1, . . . , K}.

(1.14)

In other words, C * (K,λ) is the unique bucket in C K,λ that agrees with σ * P , and corresponds to one of the n-1 K-1 possible segmentations of the ordered list (σ * -1 P (1), . . . , σ * -1 P (n)) into K segments.

Chapter 1. Introduction Finally, we obtained results describing the generalization capacity of solutions of the minimization problem min

C∈C K,λ Λ N (C) = i≺ C j
p j,i = Λ P N (C).

(1.15)

Precisely, we obtained rate bounds the excess risk of solutions of 10.15 or order O P (1/ √ N ) and O P (1/N ) when P satisfies additionally the low-noise condition 10.9.

However, a crucial issue in dimensionality reduction is to determine the dimension of the simpler representation of the distribution of interest, in our case, a number of buckets K and a size λ.

Suppose that a sequence {(K m , λ m )} 1≤m≤M of bucket order sizes/shapes is given (observe that

M ≤ n K=1 n-1 K-1 = 2 n-1
). Technically, we proposed a complexity regularization method to select the bucket order shape λ that uses a data-driven penalty based on Rademacher averages.

We demonstrate the relevance of our approach with experiments on real datasets, which show that one can keep a low distortion while drastically reducing the dimension of the distribution.

Ranking Median Regression: Learning to Order through Local Consensus

Beyond full or partial ranking aggregation, we were interested in the following learning problem. We suppose now that, in addition to the ranking Σ, one observes a random vector X, defined on the same probability space (Ω, F, P), valued in a feature space X (of possibly high dimension, typically a subset of R d with d ≥ 1) and modelling some information hopefully useful to predict Σ. Given such a dataset ((X 1 , Σ 1 ), . . . , (X N , Σ N )), whereas ranking aggregation methods applied to the Σ i 's would ignore the information carried by the X i 's for prediction purpose, our goal is to learn a predictive function s that maps any point X in the input space to a permutation s(X) in S n . This problem, also called label ranking in the literature, can be seen as an extension of multiclass and multilabel classification (see [START_REF] Dekel | Log-linear models for label ranking[END_REF][START_REF] Hüllermeier | Label ranking by learning pairwise preferences[END_REF]; [START_REF] Zhou | A taxonomy of label ranking algorithms[END_REF]).

We firstly showed that this problem can be seen as a natural extension of the ranking aggregation problem. The joint distribution of the r.v. (Σ, X) is described by (µ, P X ), where µ denotes X's marginal distribution and P X is the conditional probability distribution of Σ given X:

∀σ ∈ S n , P X (σ) = P{Σ = σ | X} almost-surely. The marginal distribution of Σ is then P (σ) = X P x (σ)µ(x).
Let d be a metric on S n (e.g. Kendall's τ ), assuming that the quantity d(Σ, σ) reflects the cost of predicting a value σ for the ranking Σ, one can formulate the predictive problem that consists in finding a measurable mapping s : X → S n with minimum prediction error: .16) where L P (σ) is the risk of ranking aggregation that we defined Section 10.2.3 for any P and σ ∈ S n . We denote by S the collection of all measurable mappings s : X → S n , its elements will be referred to as predictive ranking rules. The minimum of the quantity inside the expectation is thus attained as soon as s(X) is a median σ * P X for P X (see (10.6)), and the minimum prediction error can be written as

R(s) = E X∼µ [E Σ∼P X [d (s(X), Σ)]] = E X∼µ [L P X (s(X))] . ( 1 
R * = E X∼µ [L * P X ].
For this reason, the predictive problem formulated above is referred to as ranking median regression and its solutions as conditional median rankings. This motivated us to develop local learning approaches: conditional Kemeny medians of Σ at a given point X = x are relaxed to Kemeny medians within a region C of the input space containing x (i.e. local consensus), which can be computed by applying locally any ranking aggregation technique (in practice, Copeland or Borda based on theoretical insights, see Chapter 7). Beyond computational tractability, it is motivated by the fact that the optimal ranking median regression rule can be well approximated by piecewise constants under the hypothesis that the pairwise

conditional probabilities p i,j (x) = P{Σ(i) < Σ(j) | X = x}, with 1 ≤ i < j ≤ n, are
Lipschitz, i.e. there exists M < ∞ such that:

∀(x, x ) ∈ X 2 , i<j |p i,j (x) -p i,j (x )| ≤ M • ||x -x ||.
(1.17) Indeed, let P be a partition of the feature space X composed of K ≥ 1 cells C 1 , . . . , C K (i.e. the C k 's are pairwise disjoint and their union is the whole feature space X ). Any piecewise constant ranking rule s, i.e. that is constant on each subset C k , can be written as

s P,σ (x) = K k=1 σ k • I{x ∈ C k }, (1.18) 
where σ = (σ 1 , . . . , σ K ) is a collection of K permutations. Let S P be the space of piecewise constant ranking rules. Under specific assumptions, the optimal prediction rule σ * P X can be accurately approximated by an element of S P , provided that the regions C k are 'small' enough.

Theorem 1.7. Suppose that P x verifies strict stochastic transitivity and verifies (10.17) for all x ∈ X . Then, we have:

∀s P ∈ arg min s∈S P R(s), R(s P ) -R * ≤ M • δ P , (1.19)
where δ P = max C∈P sup (x,x )∈C 2 ||x -x || is the maximal diameter of P's cells. Hence, if (P m ) m≥1 is a sequence of partitions of X such that δ Pm → 0 as m tends to infinity, then

R(s Pm ) → R * as m → ∞.
Additional results under a low-noise assumption on the conditional distributions of rankings are also demonstrated. We also provide rates of convergence for the solutions of:

min s∈S 0 R N (s), (1.20)
where S 0 is a subset of S, ideally rich enough for containing approximate versions of elements of S * , and appropriate for continuous or greedy optimization (typically, S P ). Precisely, the excess of risk of solutions of (10. [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] for instance could be of interest as well.

A Structured Prediction Approach for Label Ranking

Ranking regression can also be seen as a structured prediction problem, on which a vast literature exists. In particular, we adopted the surrogate least square loss approach introduced in the context of output kernels [START_REF] Cortes | A general regression technique for learning transductions[END_REF][START_REF] Kadri | A generalized kernel approach to structured output learning[END_REF][START_REF] Brouard | Input output kernel regression: supervised and semisupervised structured output prediction with operator-valued kernels[END_REF] and recently theoretically studied by [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF][START_REF] Osokin | On structured prediction theory with calibrated convex surrogate losses[END_REF] using Calibration theory [START_REF] Steinwart | Support Vector Machines[END_REF]. This approach divides the learning task in two steps: the first one is a vector regression step in a Hilbert space where the outputs objects are represented, and the second one solves a pre-image problem to retrieve an output object in the (structured) output space, here S n . In this framework, the algorithmic performances of the learning and prediction tasks and the generalization properties of the resulting predictor crucially rely on some properties of the output objects representation.

We propose to study how to solve this problem for a family of loss functions d over the space of rankings S n based on some embedding φ : S n → F that maps the permutations σ ∈ S n into a Hilbert space F:

d(σ, σ ) = φ(σ) -φ(σ ) 2 F . (1.21)
Our main motivation is that the widely used Kendall's τ distance and Hamming distance can be written in this form. Then, this choice benefits from the theoretical results on Surrogate Least Square problems for Structured Prediction using Calibration theory [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF]. These works approach Structured Output Prediction along a common angle by introducing a surrogate problem involving a function g : X → F (with values in F) and a surrogate loss L(g(x), σ) to be minimized instead of (10.16). In the context of true risk minimization, the surrogate problem for our case writes as:

minimize g:X →F L(g), with L(g) = X ×Sn L(g(x), φ(σ))dQ(x, σ). (1.22)
where Q is the joint distribution of (X, Σ) and L is the following surrogate loss:

L(g(x), φ(σ)) = g(x) -φ(σ) 2 F . (1.23) Problem (1.22
) is in general easier to optimize since g has values in F instead of the set of structured objects, here S n . The solution of (1.22), denoted as g * , can be written for any x ∈ X :

g * (x) = E[φ(σ)|x].
Eventually, a candidate s(x) pre-image for g * (x) can then be obtained by solving:

s(x) = arg min σ∈Sn L(g * (x), φ(σ)) (1.24)
In the context of Empirical Risk Minimization, we consider an available training sample {(X i , Σ i ), i = 1, . . . N }, with N i.i.d. copies of the random variable (X, Σ). The Surrogate Least Square approach for Label Ranking Prediction decomposes into two steps:

•

Step 1: minimize a regularized empirical risk to provide an estimator of the minimizer of the regression problem in Eq. (1.22):

minimize g∈H L S (g), with L S (g) = 1 N N i=1 L(g(X i ), φ(Σ i )) + Ω(g). (1.25)
with an appropriate choice of hypothesis space H and complexity term Ω(g). We denote by g a solution of (10.25).

•

Step 2: solve, for any x in X , the pre-image problem that provides a prediction in the original space S n :

s(x) = arg min σ∈Sn φ(σ) -g(x) 2 F (1.26)
The pre-image operation can be written as s(x) = d • g(x) with d the decoding function:

d(h) = arg min σ∈Sn φ(σ) -h 2 F for all h ∈ F (1.27)
applied on g for any x ∈ X .

We studied how to leverage the choice of the embedding φ to obtain a good compromise between computational complexity and theoretical guarantees. We investigate the choice of three embeddings, namely the Kemeny, Hamming and Lehmer embedding. The two first ones benefit from the consistency results of [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF], but have still a heavy computational cost because of the pre-image step (10.26). The last one has the lowest complexity because of its trivial solving of the pre-image step, at the cost of weaker theoretical guarantees. Our method finds to be very competitive on the benchmark datasets.

Conclusion

Ranking data arise in a diverse variety of machine learning applications but due to the absence of any vectorial structure of the space of rankings, most of the classical methods from statistics and Chapter 1. Introduction multivariate analysis cannot be applied. The existing literature thus heavily relies on parametric models, but in this thesis we propose a non-parametric analysis and methods for ranking data.

Three different problems have been adressed: deriving guarantees and statistical rates of convergence about the NP-hard Kemeny aggregation problem and related approximation procedures, reducing the dimension of a ranking distribution by performing partial ranking aggregation, and predicting full rankings with features. Our analysis heavily relies on two main tricks. The first one is the use of the Kendall's tau distance, decomposing rankings over pairs. This enables us to analyze distribution over rankings through their pairwise marginals and through the transitivity assumption. The second one is the extensive use of embeddings tailored to rankings.

Outline of the Thesis

This dissertation is organized as follows.

• Chapter 2 provides a concise survey on ranking data and the relevant background to this thesis.

Part I focuses on the ranking aggregation problem.

• Chapter 3 describes the ranking aggregation problem, the challenges and the state-of-theart approaches.

• Chapter 4 presents a general method to bound the distance of any candidate solution for the ranking aggregation problem to a Kemeny consensus.

• Chapter 5 is certainly the cornerstone of this thesis; it introduces our new framework for the ranking aggregation problem and characterize the statistical behavior of its solutions.

Part II deals with problems closely connected to ranking aggregation: in particular dimensionality reduction with partial rank raggregation and ranking regression.

• Chapter 6 suggests an optimal transport approach for dimensionality reduction for ranking data; more precisely how to approximate a distribution on full rankings by a distribution respecting a (central) bucket order.

• Chapter 7 tackles the supervised problem of learning a mapping from a general feature space to the space of full rankings. We provide a statistical analysis of this problem and adapt well-known partition methods.

• Chapter 8 considers the same learning problem in the framework of structured output prediction. We propose additional algorithms relying on well-tailored embeddings for permutations.

CHAPTER 2

Background on Ranking Data

Chapter abstract This chapter provides a general background and overview on ranking data. Such data appears in a variety of applications, as input data, or output data, or both. We thus introduce the main definitions and exhibit common machine learning problems and applications involving ranking data. Rankings can be defined as ordered lists of items, and in particular, full rankings can be seen as permutations and their analysis thus relies on the symmetric group. The existing approaches in the literature to analyze ranking data can be divided in two groups, where the first one is an analysis relying on parametric models, and the other one is "non-parametric" and exploits the structure of the space of rankings.

Introduction to Ranking Data

We first introduce the main definitions and notations we will use through the thesis.

Definitions and Notations

Consider n ≥ 1, and a set of n indexed items n = {1, . . . , n}. We will use the following convention: a ≺ b means that element a is preferred to, or ranked higher than element b.

Definition 2.1. A ranking is a strict partial order ≺ on n , i.e. a binary relation satisfying the following properties:

• Irreflexivity: For all a ∈ n , a ≺ a.

• Transitivity: For all a, b, c ∈ n , if a ≺ b and b ≺ c then a ≺ c. 

• Assymetry: For all a, b ∈ n , if a ≺ b then b ≺ a. Full rankings 1 ≺ 2 ≺ 3 1 ≺ 3 ≺ 2 2 ≺ 1 ≺ 3 2 ≺ 3 ≺ 1 3 ≺ 1 ≺ 2 3 ≺ 2 ≺ 1 Partial rankings 1 ≺ 2, 3 2 ≺ 1, 3 3 ≺ 1, 2 2, 3 ≺ 1 1, 3 ≺ 2 1, 2 ≺ 3 Incomplete rankings 1 ≺ 2 2 ≺ 1 1 ≺ 3 3 ≺ 1 2 ≺ 3 3 ≺ 2
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Chapter 2. Background on Ranking Data Rankings can be complete (i.e, involving all the items) or incomplete and for both cases, they can be without-ties (total order) or with-ties (weak order). Common types of rankings which can be found in the literature are the following:

Full rankings: orders of the form a 1 ≺ a 2 ≺ . . . a n where a 1 and a n are respectively the items ranked first and last. A full ranking is thus a total order: a complete, and withoutties ranking of the items in n .

Partial rankings/Bucket orders: orders of the form a 1,1 , . . . , a 1,µ 1 ≺ • • • ≺ a r,1 , . . . , a r,µr , with r ≥ 1 and r i=1 µ i = n. They correspond to full/complete rankings with ties: all the items are involved in the ranking, but within a group (bucket), their order is not specified. Bucket orders include the particular case of top-k rankings, i.e. orders of the form a 1 . . . a k ≺ the rest, which divide items in two groups (or more if a 1 . . . a k are ranked), the first one being the k ≤ n most relevant items and the second one including all the remaining items.

Incomplete rankings: orders of the form a 1 ≺ • • • ≺ a k with 2 ≤ k < n. The fundamental difference with full or partial rankings is that an incomplete ranking only involves a small subset of items, that can vary a lot in observations. They include the specific case of pairwise comparisons (k = 2).

Rankings are thus heterogenous objects (see Table 2.1 for an example when n=3) and the contributions in the literature generally focus on studying one of the preceding classes.

Ranking Problems

Many computational or machine learning problems involve ranking data analysis. They differ in several aspects: whether they take as input and/or as output ranking data, whether they take into account additionally features or context, whether they are supervised or unsupervised. We now briefly describe common ranking problems one can find in the machine learning literature.

Ranking Aggregation. This task has been widely studied in the literature. It will be described at length Chapter 3 and our contributions on this problem Chapter 4 and 5. The goal of ranking aggregation is to find a full ranking that best summarizes a collection of rankings. A first approach is to consider that the dataset consists of noisy realizations of a true central ranking that should be reconstructed. The estimation of the central ranking can be done for instance by assuming a parametric distribution over the rankings and performing Maximum Likelihood Estimation (see [START_REF] Meila | Consensus ranking under the exponential model[END_REF]; [START_REF] Soufiani | Generalized method-of-moments for rank aggregation[END_REF]). Another approach, which is the one we focus on in this thesis, formalizes the ranking aggregation as an optimization problem over the space of rankings. Many procedures have been proposed to solve it in the literature, see Chapter 3 for an overview.

Partial Rank Aggregation. In some cases, aggregating a collection of rankings in a full ranking may be not necessary; and one may desire a bucket order instead in order to summarize the dataset. For example, an e-commerce platform may be interested in finding the top-k (k most preferred) items of its catalog, given the observed preferences of its visitors. Numerous algorithms have been proposed, inspired from Quicksort (see [START_REF] Gionis | Algorithms for discovering bucket orders from data[END_REF]; [START_REF] Ailon | Aggregating inconsistent information: Ranking and clustering[END_REF]; [START_REF] Ukkonen | A randomized approximation algorithm for computing bucket orders[END_REF]), or other heuristics (see [START_REF] Feng | Discovering bucket orders from full rankings[END_REF]; [START_REF] Kenkre | On discovering bucket orders from preference data[END_REF]; [START_REF] Xia | A maximum likelihood approach towards aggregating partial orders[END_REF]), to aggregate full or partial rankings (see [START_REF] Fagin | Comparing and aggregating rankings with ties[END_REF]; [START_REF] Ailon | Aggregation of partial rankings, p-ratings and top-m lists[END_REF]).

Our contribution on this problem is described Chapter 6. A particular case of Partial aggregation is the Top-1 recovery, i.e. find the most preferred item given a dataset of rankings/preferences, whose historical application is elections (see Condorcet (1785)). Nowadays several voting systems collect the preferences of the voters over the set of candidates as rankings (see [START_REF] Lundell | Second report of the irish commission on electronic voting[END_REF]).

Clustering. Clustering is a natural problem in the machine learning literature, where the goal is divide the dataset into clusters. It has been naturally applied to ranking data, where the dataset can represent for instance users preferences. Numerous contributions in the literature tackle this problem via the estimation of a mixture of ranking models (see Section 2.2.1 for a detailed description), e.g. Bradley-Terry-Luce model (see [START_REF] Croon | Latent class models for the analysis of rankings[END_REF]) or distance-based models (see [START_REF] Murphy | Mixtures of distance-based models for ranking data[END_REF]; [START_REF] Gormley | A mixture of experts model for rank data with applications in election studies[END_REF]; [START_REF] Meila | Dirichlet process mixtures of generalized mallows models[END_REF]; [START_REF] Lee | Mixtures of weighted distance-based models for ranking data with applications in political studies[END_REF]).

Other contributions propose non-parametric approaches for this problem, e.g. loss-function based approaches (see [START_REF] Heiser | Clustering and prediction of rankings within a kemeny distance framework[END_REF]) or clustering based on representations of ranking data (see [START_REF] Clémençon | Clustering rankings in the fourier domain[END_REF]).

Collaborative Ranking. Here the problem is, given an user feedback (e.g. ratings or rankings) on some items, to predict her preferences as a ranking on a subset of (unseen) items, for example in a recommendation setting. Collaborative Ranking is very close in spirit to the well-known Collaborative Filtering (CF, see [START_REF] Su | A survey of collaborative filtering techniques[END_REF]), a technique widely used for recommender systems, which recommend items to a user based on the tastes of similar users. A common approach, as in CF is to use matrix factorization methods to optimize pairwise ranking losses (see [START_REF] Park | Preference completion: Large-scale collaborative ranking from pairwise comparisons[END_REF]; [START_REF] Wu | Large-scale collaborative ranking in near-linear time[END_REF]).

Label ranking/Ranking Regression. This supervised problem consists in learning a mapping from some feature space X to the space of (full) rankings. The goal, for example, is to predict the preferences of an user as a ranking on the set of items, given some characteristics of the user; or to predict a ranking (by relevance) of a set of labels, given features on the instance to be labelled. An overview of existing methods in the literature can be found in [START_REF] Vembu | Label ranking algorithms: A survey[END_REF]; [START_REF] Zhou | A taxonomy of label ranking algorithms[END_REF]. They rely for instance on pairwise decomposition [START_REF] Fürnkranz | Pairwise preference learning and ranking[END_REF]); partitioning methods such as k-nearest neighbors (see [START_REF] Zhang | Ml-knn: A lazy learning approach to multi-label learning[END_REF], [START_REF] Chiang | A ranking-based knn approach for multi-label classification[END_REF]) or tree-based methods, in a parametric [START_REF] Cheng | Label ranking methods based on the plackett-luce model[END_REF]), Cheng et al. (2009), Aledo et al. (2017a)) or non-parametric way (see [START_REF] Cheng | A nearest neighbor approach to label ranking based on generalized labelwise loss minimization[END_REF], [START_REF] Yu | Preference Learning, chapter Decision tree modelling for ranking data[END_REF], [START_REF] Zhou | Random forest for label ranking[END_REF], [START_REF] Clémençon | Ranking median regression: Learning to order through local consensus[END_REF], [START_REF] Sá | Label ranking forests[END_REF]); or rule-based approaches (see [START_REF] Gurrieri | Label ranking: A new rule-based label ranking method[END_REF] loss approach [START_REF] Korba | A structured prediction approach for label ranking[END_REF]). Our contributions on this problem and proposal for new methods are presented Chapter 7 and 8.

Learning to rank. This ranking problems aim at learning a scoring function f on the set of items, so that a ≺ b if and only if f (a) > f (b). This scoring function is learnt from observations of different types, e.g. pointwise feedback (relevance labels on items), or pairwise or listwise feedback (respectively pairwise comparisons or bigger rankings of items), and the loss function is tailored to each setting, see [START_REF] Liu | Learning to rank for information retrieval[END_REF] for a survey. This is a classical problem in Information Retrieval and notably search engines, where one is interested in learning a preference function over pairs of documents given a query (see [START_REF] Carvalho | A meta-learning approach for robust rank learning[END_REF]), in order to output a ranked collection of documents given an input query. In this case, the preference function indicates to which degree one document is expected to be more relevant than another with respect to the query.

Estimation. A central statistical task consists in estimating the distribution that underlies ranking data. Numerous contributions thus proposed inference procedures for popular models (see [START_REF] Hunter | MM algorithms for generalized bradley-terry models[END_REF]; [START_REF] Lu | Learning mallows models with pairwise preferences[END_REF]; [START_REF] Azari | Random utility theory for social choice[END_REF]; [START_REF] Guiver | Bayesian inference for plackett-luce ranking models[END_REF]), or establish minimax-optimal results (see [START_REF] Hajek | Minimax-optimal inference from partial rankings[END_REF]). A large part of the recent literature focus on the estimation of pairwise probabilities, establishing also minimax-optimal results (see for instance [START_REF] Shah | Estimation from pairwise comparisons: Sharp minimax bounds with topology dependence[END_REF]Shah et al. ( , 2017))).

Applications

Ranking data arise in a wide range of applications and the literature on rankings is thus scattered across many fields of science. General reasons for this, whithout being exhaustive, can be grouped as follows.

Modelling human preferences. First, ranking data can naturally represent preferences of an agent over a set of items. The mathematical analysis of ranking data began in the 18 th century with the study of an election system for the French Académie des Sciences. In this voting system, a voter could express its preferences as a ranking of the candidates, and the goal was to elect a winner. There was a great debate between Borda and Condorcet (see [START_REF] Borda | Mémoire sur les élections au scrutin[END_REF]; Condorcet (1785); [START_REF] Risse | Why the count de borda cannot beat the marquis de condorcet[END_REF]) to develop the best voting rule, and this started the study of elections systems in social choice theory. Such voting systems are still used nowadays, for instance for presidential elections in Ireland (see [START_REF] Gormley | A mixture of experts model for rank data with applications in election studies[END_REF]). Moreover, it has been shown by psychologists (see [START_REF] Alwin | The measurement of values in surveys: A comparison of ratings and rankings[END_REF]) and computer scientists (see Carterette et al. (2008)) that is it easier for an individual to express her preferences as relative judgements, i.e.

by producing a ranking, rather than absolute judgements, for instance by giving ratings. As noted by Carterette et al. (2008), "by collecting preferences directly, some of the noise associated with difficulty in distinguishing between different levels of relevance may be reduced".

This motivated the explicit collection of preferences in this form, from classical opinion surveys (see the Berlin dataset from [START_REF] Croon | Latent class models for the analysis of rankings[END_REF], given (2014)). Similarly, in recommender systems, the central problem is to recommend items to an user based on some feedback about her preferences. This feedback can be explicitly expressed by the user, e.g. in the form of ratings, such as in the classical Netflix challenge which boosted the use of matrix completion methods (see [START_REF] Bell | Lessons from the netflix prize challenge[END_REF]). More recently, a vast literature was developed to deal with implicit feedback (e.g. clicks, view times, purchases) which is more realistic in some scenarios, in particular to cast it in the framework of pairwise comparisons (see [START_REF] Rendle | Bpr: Bayesian personalized ranking from implicit feedback[END_REF] or [START_REF] Radlinski | Query chains: learning to rank from implicit feedback[END_REF]; [START_REF] Joachims | Accurately interpreting clickthrough data as implicit feedback[END_REF] in the context of search engines) and to tackle it with methods and models from ranking data. For all these reasons, the analysis of ranking data is often seen as a subfield of Preference Learning (see [START_REF] Fürnkranz | Preference learning[END_REF]).

Competitions. Ranking data also naturally appears in the domain of sports and competitions : match results between teams or players can be recorded as pairwise comparisons and one may want to aggregate them into a full ranking. A common approach is to consider these pairwise outcomes as realizations of a probabilistic model on pairs, and this has been applied to sports and racing (see [START_REF] Plackett | The analysis of permutations[END_REF]; [START_REF] Keener | The perron-frobenius theorem and the ranking of football teams[END_REF]), or chess and gaming (see [START_REF] Elo | The rating of chessplayers, past and present[END_REF][START_REF] Herbrich | Trueskill TM : A bayesian skill rating system[END_REF]; [START_REF] Glickman | Parameter estimation in large dynamic paired comparison experiments[END_REF]).

Computer systems. Whereas social choice and sports constitute the historical applications of ranking data, the latter has also arised in modern machine learning applications. In the domain Biological data. Ranking methods have also interesting applications in bioinformatics or life sciences. For instance, powerful techniques such as microarrays can measure the level of expressions of enormous genes but these measures can vary a lot in experiments; a common approach is then to order the genes by their expression profiles in each experiment and then aggregate the results through rank aggregation for instance (see [START_REF] Sese | Rank aggregation method for biological databases[END_REF]; [START_REF] Breitling | Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments[END_REF]; [START_REF] Brancotte | Rank aggregation with ties: Experiments and analysis[END_REF]; [START_REF] Jiao | The kendall and mallows kernels for permutations[END_REF]). Other applications include nanotoxicology (see [START_REF] Patel | Hierarchical rank aggregation with applications to nanotoxicology[END_REF]) or neuro-imaging analysis [START_REF] Gunasekar | Preference completion from partial rankings[END_REF].

Analysis of Full Rankings

We now turn to the specific case of full rankings, which will be at the core of this thesis. A full ranking a 1 ≺ a 2 ≺ . . . a n is usually described as the permutation σ on n that maps an item to its rank, i.e. such that σ(a i ) = i, ∀ i ∈ n . Item i is thus preferred over item j (denoted by i ≺ j) according to σ if and only if i is ranked lower than j: σ(i) < σ(j). A permutation can be seen as a bijection on the set n onto itself:

n → n i → σ(i)
For each i ∈ n , σ(i) represents the rank of the i-th element, whereas σ -1 (i) represents the i-th ranked element. We denote by S n the set of all permutations over n items. Endowed with the composition operation σ • σ (i) = σ(σ (i)) for all σ, σ ∈ S n , S n is a group, called the symmetric group and we denote e its identity element which maps each item j to position j.

Statistical analysis of full rankings thus relies on this group, and the variability of observations
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S n → [0, 1] σ → P (σ)
Though empirical estimation of P may appear as a simple problem at first glance, it is actually a great statistical challenge since the number of possible rankings (i.e. S n 's cardinality) explodes as n! with the number of instances to be ranked. Moreover, applying techniques from multivariate analysis is arduous for two reasons. First, for a given random permutation Σ ∈ S n , the random variables (Σ(1), . . . , Σ(n)) are highly dependent: each of them takes its values in n and their values must be different. Then, the sum of two random permutations vectors Σ = (Σ(1), . . . , Σ(n)) and Σ = (Σ (1), . . . , Σ (n)) does not correspond to another permutation vector. Hence, to represent probability distributions over permutations, several approaches exist but we can divide them between parametric versus "non-parametric" ones. The term "nonparametric" is not correct since S n is finite. What we call a "parametric" approach consists in fitting a predefined generative model on the data, analyzing the data through that model and inferring knowledge with respect to that model. In contrast, what we call "non-parametric" approach consists in choosing a structure on the symmetric group, analyzing the data with respect to that structure, and inferring knowledge through a "regularity" assumption.

Parametric Approaches

Most-known statistical models can be categorized into five classes:

• distance-based models: the probability of a ranking decreases as the distance from a central ranking increases. Example: the Mallows model (see [START_REF] Mallows | Non-null ranking models[END_REF]).

• order statistics or random utility models: the ranking reflects the ordering of latent scores given to each object. Example: the Thurstone model (see [START_REF] Thurstone | A law of comparative judgment[END_REF]).

• multistage ranking models: the ranking is modeled as a sequential process of selecting the next most preferred object. Example: the Plackett model (see [START_REF] Plackett | The analysis of permutations[END_REF]).

• paired-comparison models: the probability expression of a ranking σ considers every pair of items i, j such that i is preferred to j (P{σ} ∝ (i,j)|σ(i)<σ(j) p ij ). Example: the Bradley-Terry model (see [START_REF] Bradley | Rank analysis of incomplete block designs: I. the method of paired comparisons[END_REF]).

These models are now described at length, since through this thesis they will often be used for baselines in the experiments.

Mallows model. This model can be seen as analoguous to a Gaussian distribution for permutations. The Mallows ψ-model is parametrized by a modal or reference ranking σ * and a dispersion parameter ψ ∈ (0, 1]. Let σ be a ranking, then the Mallows model specifies:
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P (σ) = P{σ|σ * , ψ} = 1 Z ψ -d(σ,σ * )
where d is a distance for permutations (see [START_REF] Diaconis | Group representations in probability and statistics[END_REF] for several distances choices which give rise to the family of distance-based models), and Z = σ∈Sn ψ d(σ,σ * ) is the normalization constant. When ψ is equal to 1, one obtains the uniform distribution over permutations, whereas when ψ tends towards 0 one obtains a distribution that concentrates all mass on the central ranking σ * . Sometimes the model is written as P{σ|σ * , λ} = 1 Z e -λd(σ,σ * ) , where λ = -ln(ψ) ≥ 0.

Most of the time in the literature, the chosen distance is the Kendall's τ distance (see Section 2.2.3). This choice is motivated by a range of properties. Firstly, it has an intuitive and plausible interpretation as a number of pairwise choices: [START_REF] Mallows | Non-null ranking models[END_REF] argues that it provides the best possible description of the process of ranking items as performed by a human and for this reason this distance is widely used. Then, it has a number of appealing mathematical properties: it is decomposable into a sum, and its standardized distribution has a normal limit (see [START_REF] Diaconis | Group representations in probability and statistics[END_REF]). Still, this model has several inconvenients or rigidities. Firstly, permutations at the same distance from σ * have the same probability. This assumption is relaxed in the Generalized Mallows Model, which uses n spread parameters each affecting a position in the permutation, enabling to stress the consensus on some positions (see [START_REF] Fligner | Distance based ranking models[END_REF]). Then, the computation of the normalization constant is generally expensive (see [START_REF] Lu | Effective sampling and learning for mallows models with pairwise-preference data[END_REF]; [START_REF] Irurozki | Mallows and generalized mallows model for matchings[END_REF] for a closed-form when d is the Kendall's τ distance and

Hamming distance respectively).

Thurstone model. In the Thurstone model, each item is associated with a true continuous value: a judge assesses values to the items and classify them. Errors are thus a consequence of the lack of exactness of the judge. Formally, the Thurstone model is defined as follows:

given {X 1 , X 2 , . . . , X n } random variables with a continuous joint distribution F (X 1 , . . . , X n ),

we can define a random ranking σ in such a way that σ(i) is the rank that X i occupied in {X 1 , X 2 , . . . , X n } and its probability is:

P (σ) = P{X σ -1 (1) < X σ -1 (2) < • • • < X σ -1 (n) }
This model makes one assumption: all the X i 's are independent. The most common models for F are Gaussian or Gumbel distributions.

Bradley-Terry and Plackett-Luce models. Bradley and Terry suggested the following pairwise comparison model, defined by a vector of weights w = (w 1 , . . . , w n ), each one associated with an item. This model specifies the probability that item i is preferred to item j as:

P{i ≺ j} = w i w i + w j
The Plackett-Luce model generalizes the Bradley-Terry model for full rankings and is still parametrized by a support parameter w = (w 1 , w 2 , . . . , w n ) where 0 ≤ w j ≤ 1 and n j=1 w j = 1. It accounts for the construction of a ranking as a sequential process where the next most preferred item is selected from the current choice set. Specifically, this model formulates the probability of a user's ranked preferences as the product of the conditional probabilities of each choice: it models the ranking as a set of independent choices by the user, conditionally on the fact that the cardinality of the choice set is reduced by one after each choice. Given the notation σ -1 (i) the item ranked at position i, the Plackett-Luce model states that the probability of the ranking σ is:

P (σ) = P{σ|w} = n-1 i=1 w σ -1 (i) n j=i w σ -1 (j)
The parameter w j can be interpreted as the probability of item j being ranked first by a user, and the probability of item j being given a lower than first preference is proportional to its support parameter w j . This model has several interesting properties:

• It can be seen as a Thurstone model with F a Gumbel distribution (see [START_REF] Mcfadden | Conditional logit analysis of qualitative choice behavior[END_REF]; [START_REF] Yellott | The relationship between luce's choice axiom, thurstone's theory of comparative judgment, and the double exponential distribution[END_REF]).

• The choice probability ratio between two items is independent of any other items in the set. This property is called internal consistency (see [START_REF] Hunter | MM algorithms for generalized bradley-terry models[END_REF]).

• It can be equivalently defined as a Random Utility Model (RUM) (see [START_REF] Marden | Analyzing and Modeling Rank Data[END_REF], [START_REF] Yellott | The relationship between luce's choice axiom, thurstone's theory of comparative judgment, and the double exponential distribution[END_REF]): to draw a permutation, add a random i.i.d. (independent identically distributed) noise variable following the Gumbel distribution to each weight, and then sort the items in decreasing value of noisy-weights. The RUM characterization implies, in particular, that for any two disjoint pairs of element (i, j) and (i , j ), the events σ(i) < σ(j)

and σ(i ) < σ(j ) are statistically independent if σ is drawn from P .

• It can be easily extended to partial and incomplete rankings (see [START_REF] Plackett | The analysis of permutations[END_REF] However, many contributions have shown that these parametric models fail to hold in experiments on real data (see for instance [START_REF] Davidson | Experimental tests of a stochastic decision theory[END_REF]; [START_REF] Tversky | Elimination by aspects: A theory of choice[END_REF] on decision making). This motivated the analysis of ranking data through lighter (non-parametric) assumptions (e.g. on the pairwise comparisons) as we will explain in the next section.

Non-parametric Approaches

Non-parametric approaches are very diverse and use different mathematical structures on the space of rankings. Some remarkables methods are listed below.
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Embeddings and Kernels on permutations. Since the manipulation of ranking data is arduous due to the absence of a canonical and vectorial structure, a possible approach is to embed elements of S n in a vector space, typically R d with d ∈ N. Classic examples include:

• Embedding as a permutation matrix (see [START_REF] Plis | Directional statistics on permutations[END_REF]):

S n → R n×n , σ → [I {σ(i) = j}] 1≤i,j≤n
• Embedding as an acyclic graph (see [START_REF] Jiao | Controlling the distance to a kemeny consensus without computing it[END_REF]):

S n → R n(n-1)/2 , σ → (sign(σ(i) -σ(j)) 1≤i<j≤n
• Embedding as permutation code (see [START_REF] Li | Efficient rank aggregation via lehmer codes[END_REF]; [START_REF] Korba | A structured prediction approach for label ranking[END_REF]):

S n → R n , σ → c σ
Our contributions Chapter 4 and 8 provide examples of the use of such embeddings for the ranking aggregation and label ranking tasks respectively. More generally, one can define a kernel on permutations (which itself defines an implicit embedding); recently some work was devoted to the analysis of the Kendall and Mallows kernels and their properties (see [START_REF] Jiao | The kendall and mallows kernels for permutations[END_REF]; Mania et al. (2016b,a)) or their extensions to partial rankings (see [START_REF] Lomeli | Antithetic and monte carlo kernel estimators for partial rankings[END_REF]).

Modeling of pairwise comparisons. Numerous contributions consider specifically the modeling of pairwise comparisons, which can be seen as flows on a graph, see Figure 2.1 for an illustration: let p i,j = P{i ≺ j} the probability that item i is preferred to item j; each node represents an item and an arrow is drawn from a node i to a node j when i is preferred to j (i.e. p i,j ≥ 1/2). Beyond parametric modelling, many contributions have considered assumptions on these pairwise contributions, a non-exhaustive list is given Table 2.3 (notice that the two formulations of Strong transitivity are equivalent, see [START_REF] Davidson | Experimental tests of a stochastic decision theory[END_REF]).

These conditions were used to compute rates of convergence for empirical Kemeny consensus and Copeland methods (see Chapter 5 or [START_REF] Korba | A learning theory of ranking aggregation[END_REF]), rates for the approximation of pairwise comparison matrices (see [START_REF] Shah | Simple, robust and optimal ranking from pairwise comparisons[END_REF]) or convergence guarantees for algorithms (see [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]). A central assumption, called weak transitivity (sometimes solely transitivity) prevents cycles in the pairwise preferences to occur. Such cycles however can arise when one aggregates a dataset of full rankings: even if each voter has no cycle in her preferences, the empirical pairwise preferences may form cycles; this phenomenon is called a Condoret paradox (see [START_REF] Kurrild-Klitgaard | An empirical example of the condorcet paradox of voting in a large electorate[END_REF]). An interesting contribution is the one of [START_REF] Jiang | Statistical ranking and combinatorial Hodge theory[END_REF] which apply Hodge theory to decompose the space of flows over a graph (e.g., pairwise probabilities) into orthogonal components corresponding to cyclic or acyclic components (see Figure 3.2). In contrast, other contributions are interested in modeling intransitivity (see [START_REF] Chen | Modeling intransitivity in matchup and comparison data[END_REF]).

Harmonic Analysis. Another approach, much documented in the literature, consists in exploiting the algebraic structure of the noncommutative group S n and perform a harmonic analysis on the space of real-valued functions over this group: L(S n ) = {f : S n → R}. The first to introduce it for statistical analysis of ranking data was Persi Diaconis (see [START_REF] Diaconis | Group representations in probability and statistics[END_REF]), and there

1 2 3 4 p 1 , 2 ≥ 1 / 2 p 1,3 ≥ 1/2 p 1 , 4 ≥ 1 / 2 p3 ,2 ≥ 1 / 2 p 4 ,3 ≥ 1 / 2 FIGURE 2
.1: An illustration of a pairwise comparison graph for 4 items. [START_REF] Bradley | Rank analysis of incomplete block designs: I. the method of paired comparisons[END_REF])

p i,j = w i w i +w j
Weak transitivity [START_REF] Fishburn | Binary choice probabilities: on the varieties of stochastic transitivity[END_REF]) [START_REF] Fishburn | Binary choice probabilities: on the varieties of stochastic transitivity[END_REF] (Shah et al., 2017) p i,j ≥ 1/2 ⇒ p i,k ≥ p j,k Low noise [START_REF] Korba | A learning theory of ranking aggregation[END_REF] min i<j |p i,j -1/2| > h Low noise (bis) [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]) were since then many developments [START_REF] Huang | Fourier theoretic probabilistic inference over permutations[END_REF], [START_REF] Kondor | Ranking with kernels in Fourier space[END_REF]), [START_REF] Kakarala | A signal processing approach to Fourier analysis of ranking data: the importance of phase[END_REF]). This framework also extends to the analysis of full rankings with ties, referred to as partial rankings or bucket orders. This "S n -based" harmonic analysis is however not suited for the analysis of incomplete rankings, i.e. when the rankings do not involve all the items. Indeed the decomposition into S n -based translation-invariant components is inadequate to localize the information relative to incomplete rankings on specific subsets of items. In this context, inspired by advances in computational harmonic analysis and its applications to high-dimensional data analysis a specific framework was proposed recently (see [START_REF] Sibony | Multiresolution analysis of incomplete rankings with applications to prediction[END_REF], [START_REF] Sibony | Mra-based statistical learning from incomplete rankings[END_REF]), that extends the principles of wavelet theory and construct a multiresolution analysis tailored for the description of incomplete rankings.

p i,j ≥ 1/2 & p j,k ≥ 1/2 ⇒ p i,k ≥ 1/2 Strong transitivity
p i,j ≥ 1/2 & p j,k ≥ 1/2 ⇒ p i,k ≥ max(p i,j , p j,k ) Strong transitivity
p i,j ≥ 1/2 ⇒ k =i p i,k ≥ k =j p j,k

Continuous relaxations.

A classic approach is to relax a discrete set to its convex hull. In this perspective, some contributions relax S n to its convex hull, called the permutahedron (see [START_REF] Yasutake | Online linear optimization over permutations[END_REF] or, [START_REF] Ailon | Improved bounds for online learning over the permutahedron and other ranking polytopes[END_REF], [START_REF] Ailon | Bandit online optimization over the permutahedron[END_REF] in the online setting). Some other contributions relax the discrete set of permutation matrices to its convex hull, which is the Birkhoff polytope, i.e. the set of all doubly stochastic matrices (see [START_REF] Linderman | Reparameterizing the birkhoff polytope for variational permutation inference[END_REF] or [START_REF] Clémençon | Kantorovich distances between rankings with applications to rank aggregation[END_REF]).

Kernel smoothing. Another remarkable application is that of Mao and Lebanon [START_REF] Lebanon | Non-parametric modeling of partially ranked data[END_REF]) which introduces a non-parametric estimator based on kernel smoothing. This

Chapter 2. Background on Ranking Data approach has been extended to incomplete rankings [START_REF] Sun | Estimating probabilities in recommendation systems[END_REF]).

Distances on Rankings

To perform a statistical analysis on ranking data, one needs a distance d(σ, σ ) to compare two elements σ, σ ∈ S 2 n . Several distance measures have been proposed for ranking data. To be a valid distance measure, it needs to satisfy the following properties:

• Reflexivity: d(σ, σ ) = 0, • Positivity: d(σ, σ ) ≥ 0, • Symmetry: d(σ, σ ) = d(σ , σ).
These properties are called axioms by [START_REF] Kemeny | Mathematical models in the social sciences[END_REF]. Furthermore, a distance measure is said to be metric when it satisfies the triangle inequality for any triplet of rankings σ, σ and π:

d(σ, σ ) ≤ d(σ, π) + d(π, σ )
A label-invariant distance guarantees that the distance between two rankings remains the same even if the labels of the objects are permuted, which is a standard assumption when dealing with ranking data:

d is label-invariant if : ∀ π ∈ S n , d(σπ, σ π) = d(σ, σ )
In particular in this case, taking π = σ -1 , since we have σ σ -1 = e, we can write d(σ, σ ) = d(σσ -1 , e) i.e., we can always take the identity permutation as the reference one. Some labelinvariant metrics are particularly known and useful. For σ, σ ∈ S n , we can consider:

• The Kendall's τ distance, which counts the pairwise disagreements:

d τ (σ, σ ) = 1≤i<j≤n 1 (σ(j) -σ(i))(σ (j) -σ (i)) < 0
It can also be defined as the minimal number of adjacent swaps to convert σ into σ . The maximum value of the Kendall's tau distance between two permutations is n(n -1)/2 (when σ is the reverse of σ and thus σ(i) + σ (i) = n + 1 for each i).

• The Hamming distance, which counts the number of entries on which σ and σ disagree and thus corresponds to the l 0 metric:

d H (σ, σ ) = n i=1 1 σ(i) = σ (i)
The maximum value of the Hamming distance between two permutations is thus n.

• The Spearman's footrule metric, which corresponds to the l 1 metric:

d 1 (σ, σ ) = n i=1 |σ(i) -σ (i)|
• The Spearman rho's metric, which corresponds to the l 2 metric:

d 2 (σ, σ ) = ( n i=1 (σ(i) -σ (i)) 2 ) 1 2
The Kendall's τ distance is a natural discrepancy measure when permutations are interpreted as rankings and is thus the most widely used in the preference learning literature. In contrast, the Hamming distance is particularly used when permutations represent matching of bipartite graphs and is thus also very popular. Many others metrics could have been considered and are also wellspread in the literature, for example: the Cayley metric (minimum number of transpositions, not necessariry adjacent as in Kendall's tau distance, to map σ to σ ), the Ulam metric, the maximum rank difference. The reader may refer to [START_REF] Diaconis | Group representations in probability and statistics[END_REF]; [START_REF] Marden | Analyzing and Modeling Rank Data[END_REF]; [START_REF] Deza | Encyclopedia of Distances[END_REF] for detailed examples. Some of these metrics are linked by nice inequalities. For instance, Kendall's τ distance and Spearman's footrule verify that for σ, σ [START_REF] Diaconis | Spearman's footrule as a measure of disarray[END_REF], see also the Durbin-Stuart inequality in [START_REF] Kamishima | A survey and empirical comparison of object ranking methods[END_REF] for these two metrics). Similarly, for d C and d H respectively the Cayley and Hamming distance, one has:

∈ S n , d τ (σ, σ ) ≤ d 1 (σ, σ ) ≤ 2d τ (σ, σ ) (see
d C (σ, σ ) ≤ d H (σ, σ ) ≤ 2d C (σ, σ ) (see Farnoud et al. (2012b)).
Many extensions of these metrics exist. For instance, [START_REF] Kumar | Generalized distances between rankings[END_REF] propose an extension of Spearman's footrule and Kendall's τ distance to take into account position and element weights. Several distances have also been proposed for partial rankings, such as modified version of the Kendall's τ distance (parameterized by a penalty p when an item in a pair belongs to a bucket) or Haussdorff metrics [START_REF] Fagin | Comparing top k lists[END_REF][START_REF] Fagin | Comparing and aggregating rankings with ties[END_REF], or cosine distance after vectorizing the partial rankings (see [START_REF] Ukkonen | Clustering algorithms for chains[END_REF]). Another well-known distance for partial rankings is the Kemeny distance (see [START_REF] Kemeny | Mathematics without numbers[END_REF][START_REF] Kemeny | Mathematical models in the social sciences[END_REF]. Concerning incomplete rankings, [START_REF] Kidwell | Visualizing incomplete and partially ranked data[END_REF] propose to represent an incomplete ranking, possibly with ties, as the mean on the set of the consistent rankings (i.e. the full rankings extending the given incomplete ranking).

These distances can thus be used as performance metrics in machine learning tasks involving ranking data. Other measures of performance are widely used in the Learning to Rank problem (see Section 2.1.2), such as NDCG and MAP [START_REF] Liu | Learning to rank for information retrieval[END_REF]). However they are tailored to absolute judgements, and not to ranking as feedback. Some contributions have proposed to extend these metrics (see Carterette & Bennett (2008)) for relative judgements or labeling strategies (see [START_REF] Niu | Top-k learning to rank: labeling, ranking and evaluation[END_REF]) to convert rankings to ratings.

In this thesis, we will use in particular the Kendall's τ distance, which has the nice property of decomposing rankings over pairs and is the most widely used in the literature. A nice visualization of the symmetric group provided with this distance is the permutation polytope, called

Chapter 2. Background on Ranking Data permutahedron (see [START_REF] Thompson | Generalized permutation polytopes and exploratory graphical methods for ranked data[END_REF]), whose vertices correspond to permutations and whose edges correspond to adjacent transpositions of the items; so that the Kendall's τ distance is the length of the shortest path between two vertices (see Figure 2.2 for n = 4).

FIGURE 2.2: Permutahedron of order 4.

Other Frameworks

Many extended frameworks have been considered in the literature. These are beyond the scope of this thesis but they can be grouped as follows.

Incomplete observations. As explained at the beginning of this chapter, in many situations only a partial subset of preferences is observed, such as partial rankings (in particular top-k rankings) or incomplete rankings. The statistical challenge of the analysis is then to handle the two sources of variability, the one related to the observed subsets of items in the dataset (by introducing a measure on the set of items, see [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]; [START_REF] Sibony | Multiresolution analysis of incomplete rankings with applications to prediction[END_REF])

and the other related to the rankings over these subsets. Concerning the estimation of distributions over partial rankings, beyond the Plackett-Luce model, some contributions have proposed extensions of the Mallows model (see [START_REF] Meila | An exponential model for infinite rankings[END_REF] which considers that the number of items is infinite, or [START_REF] Lebanon | Non-parametric modeling of partially ranked data[END_REF] (2016) for an exhaustive review. Finally, some contributions casts online ranking as the problem of online permutation learning (see [START_REF] Yasutake | Online linear optimization over permutations[END_REF]; [START_REF] Ailon | Improved bounds for online learning over the permutahedron and other ranking polytopes[END_REF]), where at each round, the learner predicts a permutation, suffers some related loss and is revealed some feedback;

the goal being to identify as soon as possible in the learning process the best permutation (i.e. minimizing a cumulative regret).

The following Part I focuses on the ranking aggregation problem, which was certainly the most widely studied in the literature. In particular, we introduce at length the problem Chapter 3 and present our contributions Chapter 4 and 5.

PART I

Ranking Aggregation

CHAPTER 3

The Ranking Aggregation Problem

Chapter abstract In this chapter, we describe the ranking aggregation problem: given a dataset of (full) rankings, what is the most representative ranking summarizing this dataset? Originally considered in social choice for elections, the ranking aggregation problem appears nowadays in many modern applications implying machine learning (e.g., meta-search engines, information retrieval, biology). This problem has been studied extensively, in particular in two settings. The first possibility is to consider that the dataset is constituted of noisy versions of a true ranking (e.g., realizations of a parameterized distribution centered around some ranking), and the goal is to reconstruct the true ranking thanks to the samples (e.g., with MLE estimation). The second possibility is to formalize this problem as a discrete optimization problem over the set of rankings, and to look for the ranking which is the closest (with respect to some distance) to the rankings observed in the dataset, without stochastic assumptions. These former approaches tackle the problem in a rigorous manner, but can lead to heavy computational costs in practice. Therefore, many other methods have been used in the litterature, such as scoring methods or spectral methods, but with fewer or no theoretical support. In this chapter, we thus explain in detail the ranking aggregation problem, the mathematical challenges it raises and give an overview of the ranking aggregation methods in the litterature.

Ranking Aggregation

Definition

Consider a set n = {1, . . . , n} of n indexed items and N agents. Suppose that each agent t expresses her preferences as a full ranking over the n items, which, as described Chapter 2, can be seen as a permutation σ t ∈ S n . Collecting preferences of the agents over the set of items then results in dataset of permutations D N = (σ 1 , . . . , σ N ) ∈ S N n . The ranking aggregation problem consists in finding a permutation σ * , called consensus, that best summarizes the dataset (sometimes referred to as the profile) D N = (σ 1 , . . . , σ N ). This problem has been studied extensively and a lot of approaches have been developped, in particular in two settings. The first possibility is to consider that the dataset is constituted of noisy versions of a true ranking (e.g., realizations of a parameterized distribution centered around some ranking), and the goal is to reconstruct the true ranking thanks to the samples (e.g., with MLE estimation). The second possibility is to formalize this problem as a discrete optimization problem over the set of rankings, 34 Chapter 3. The Ranking Aggregation Problem and to look for the ranking which is the closest (with respect to some distance) to the rankings observed in the dataset, without stochastic assumptions. These former approaches tackle the problem in a rigorous manner, but can lead to heavy computational costs in practice. Therefore, many other methods have been used in the literature, such as scoring methods or spectral methods, but with fewer or no theoretical support. In this chapter, we thus give an overview of the ranking aggregation problem, the challenges it raises and the main methods in the literature.

Voting Rules Axioms

The ranking aggregation problem arised in the context of elections (see Section 2.1.3). Hence, many axioms for the consensus have been considered in the social choice litterature, reflecting some aspects of a fair election.

• Independance to irrelevant alternatives: the relative order of i and j in σ * should only depend on the relative order of i and j in σ 1 , . . . σ N .

• Neutrality : no item should be favored to others. If two items switch positions in σ 1 , . . . σ N , they should switch positions also in σ * .

• Monotonicity: if the ranking of an item is improved by a voter, its ranking in σ * can only improve.

• Consistency: if voters are split into two disjoint sets, and both the aggregation of voters in the first and second set prefer i to j, then i should be ranked above j in σ * .

• Non-dictatorship: there is no single voter t with the individual preference order σ t such that σ t = σ * , unless all votes are identical to σ t .

• Unanimity (or Pareto efficiency): if all voters prefer item i to item j, then also σ * should prefer i to j.

• Condorcet criterion: any item which wins every other in pairwise simple majority voting should be ranked first (see Condorcet (1785)). If there is a Condorcet winner in the profile, the latter is called a Condorcet profile.

Other criterions exist in the literature and can extend the ones listed previously. A famous example is the extended Condorcet criterion, due to Truchon (see [START_REF] Truchon | An extension of the condorcet criterion and kemeny orders[END_REF]) which states that if there exists a partition (A, B) of n , such that for any i ∈ A and any j ∈ B, the majority prefers i to j, then i should be ranked above j in σ * . However, the following theorem (see [START_REF] Arrow | Social choice and individual values[END_REF]) states the limits of the properties that any election procedure can satisfy.

Theorem 3.1. (Arrow's impossibility theorem). No voting system can satisfy simultaneously unanimity, non-dictatorship and independance to irrelevant alternatives.

Arrow's theorem states that there exists no universally fair voting rule, implying that there exists no canonical solution to the ranking aggregation problem. One will thus choose a given procedure with respect to the axioms one wants to be satisfied by the output. This problem is thus fondamentally challenging, and very diverse methods were developed in the literature to produce a consensus. These are presented in the next section.

Methods

Kemeny's Consensus

One of the most popular formulation of the ranking aggregation problem is the Kemeny definition of a consensus (see [START_REF] Kemeny | Mathematics without numbers[END_REF]). Kemeny defines the consensus ranking σ * as the one that minimizes the sum of the distances to the rankings in D N = (σ 1 , . . . , σ N ), i.e. a solution to the minimization problem:

min σ∈Sn C N (σ) (3.1)
where C N (σ) = min σ∈Sn N t=1 d(σ, σ t ) and d is a given metric on S n (see section 2.2.3). Such an element always exists, as S n is finite, but is not necessarily unique, and the solution(s) depend on the choice of the distance d.

Kemeny's rule computes the exact consensus(es) for the Kendall's τ distance d τ , which counts the number of pairwise disagreements between two permutations (see section 2.2.3). Kemeny's rule thus consists in solving:

max σ∈Sn 1≤i =j≤n N i,j I {σ(i) < σ(j)} (3.2)
where for i = j, N i,j = 1/N N t=1 I{σ t (i) < σ t (j)} is the number of times i is preferred over j in the collection (σ 1 , . . . , σ N ). This aggregation method has several justifications. Firstly, it has a social choice justification since its solution satisfies many voting properties, such as the Condorcet Criterion. In fact, the Kemeny's rule is the unique rule that meets all three of following axioms: it satisfies the Condorcet criterion, consistency under elimination, and neutrality (see [START_REF] Young | A consistent extension of condorcet's election principle[END_REF]). Then, it has a statistical justification since it outputs the maximum likelihood estimator under the Mallows model defined section 2.2.1 with the Kendall's τ distance d τ (see [START_REF] Young | Condorcet's theory of voting[END_REF]):

arg max σ∈Sn N t=1 φ -dτ (σt,σ) Z = arg min σ∈Sn N t=1 d τ (σ t , σ)
The main drawback of this method is that it is NP-hard in the number of votes N in the worst case (see [START_REF] Bartholdi | The computational difficulty of manipulating an election[END_REF]), even for N = 4 votes (see [START_REF] Dwork | Rank aggregation methods for the web[END_REF]). is the cost defined in (5.1) with d the Kendall's τ distance, σ * is a Kemeny consensus and σ 1 is a solution of (5.1) with d the Spearman's footrule distance.

Scoring Methods

Scoring methods consists in computing a score for each item, and then rank the items according to these scores (by decreasing order). Ties can occur in the scores, and then one is allowed to break them arbitrarily to output a full ranking in S n . The most popular scoring methods are

Copeland method and Positional scoring rules, including the famous Borda method.

Copeland method. The Copeland score (see [START_REF] Copeland | A reasonable social welfare function[END_REF]) of each individual item i corresponds to the number of its pairwise victories against the other items:

s C,N (i) = j =i I{N i,j > 1 2 } (3.3)
where for i = j, N i,j = 1/N N t=1 I{σ t (i) < σ t (j)} is the number of times i is preferred over j in the collection (σ 1 , . . . , σ N ). For example, the Copeland winner is the alternative that wins the most pairwise elections. The output of Copeland method then naturally verifies the Condorcet criterion.

Positional Scoring rules. Positional scoring rules rely on the absolute position of items in the ranked lists rather than their relative rankings, and compute scores for items as follows.

Given a scoring vector w = (w 1 , . . . , w n ) ∈ R n of weights respectively for each position in n , the ith alternative in a vote scores w i . A full ranking is given by sorting the averaged scores over all votes, so that the winner is the alternative with the highest total score over all the votes. The most classic representative of the class of positional ranking methods is the Borda count method, firstly proposed for electing members of the French Académie des sciences in Paris in 1770 (see [START_REF] Borda | Mémoire sur les élections au scrutin[END_REF]). In the Borda count aggregation method, the weight vector is (n, n -1, . . . , 1) and thus each individual item i ∈ n is awarded with a score which is given according to its position in the permutations:

s B,N (i) = N t=1 (n + 1 -σ t (i)) (3.4)
The final ranking is obtained by sorting items by decreasing order of their scores. The higher is the item position in the permutations (i.e., the lower are the values of σ t (i)), the greater is the score. This method has appealing properties. Firstly, it is quite intuitive: the score of an item can be seen as its average rank in the dataset. Then, it is computationally efficient since it has complexity O(N n + nlogn) (the first term comes from the computation of (3.4) and the second one from the sorting). Interestingly, the Borda score can also be written with pairwise comparisons:

s B,N (i) = 1 + j =i N i,j (3.5)
where

N i,j = 1/N N t=1 I{σ(i) < σ(j)} using the formula n + 1 -2σ(i) = n -σ(i) -(σ(i) - 1) = j =i I{σ(j) > σ(i)} -I{σ(j) < σ(i)}.
The Borda score can thus be interpreted as the probability (multiplied by n -1) that item i beats an item j drawn uniformly at random within the remaining items. This property has been recently exploited in the online learning setting (see [START_REF] Katariya | Adaptive sampling for coarse ranking[END_REF]) to estimate the Borda scores in a minimum number of queries.

Other famous examples of positional scoring rules are the plurality rule, which has the weight vector (1, 0, . . . , 0), and the k-approval rule (also called Single Non Transferable Vote) which has (1, . . . , 1, . . . , 0) containing ones in the first k positions. Many extensions or these scoring rules can be found in the literature, see [START_REF] Diss | Multi-winner scoring election methods: Condorcet consistency and paradoxes[END_REF] for additional examples. These methods are generally computationally efficient and are thus commonly used in practice. However, their main drawback is that they can produce ties between the scores, which have to be broken in order to output a final ranking in S n . Some contributions propose solutions to circumvent this problem, such as the second-order Copeland method (see [START_REF] Bartholdi | The computational difficulty of manipulating an election[END_REF]), which use the Copeland scores of the defeated opponents to decide the winner between two items with the same scores. Then, no positional method can produce rankings guaranteed to satisfy the Condorcet criterion [START_REF] Young | A consistent extension of condorcet's election principle[END_REF]), see Figure 3.1 for an example from [START_REF] Levin | An introduction to vote-counting schemes[END_REF]. Chapter 3. The Ranking Aggregation Problem However, it was shown in [START_REF] Coppersmith | Ordering by weighted number of wins gives a good ranking for weighted tournaments[END_REF] that the Borda's method outputs a 5approximation to Kemeny's rule: C N (σ B ) ≤ 5C N (σ * ) where C N is the cost defined in (5.1) with d the Kendall's τ distance, σ * is a Kemeny consensus and σ B is an output from Borda's method. The difference between Borda count and Kemeny consensus can be explained in terms of pairwise inconsistencies (i.e. non-transitivity or cycles in preferences). Indeed, [START_REF] Sibony | Multiresolution analysis of incomplete rankings with applications to prediction[END_REF] shows that Remark 3.2. (CONSENSUS REGIMES). [START_REF] Ali | Experiments with kemeny ranking: What works when?[END_REF] recommend in practice to use Copeland or Borda in the regime of weak consensus, or simply Borda in the regime of strong consensus. This is coherent with the theoretical results we obtain Chapter 5: if the distribution underlying the data verifies transitivity, Copeland method (on the true pairwise probabilities) outputs a Kemeny consensus; and moreover if it verifies strong transitivity, Borda (also with respect to the true probabilities) does as well. We also prove that under an additional lownoise assumption (see [START_REF] Korba | A learning theory of ranking aggregation[END_REF]), Copeland method applied to the empirical pairwise probabilities outputs a (true) Kemeny consensus with high probability. Another coherent results assessing this phenomenon is the one in [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF], which proves that if the distribution verifies a low-noise property (thus different from the one we use Chapter 5), the Borda method outputs a Kemeny consensus with high probability. Notice that the latter low-noise property includes the strong transitivity.

C N (σ B )-C N (σ * ) ≤ F (D N ) where F (D N ) is

Spectral Methods

Numerous algorithms, often referred to as Spectral methods are inspired by Markov chains, and propose to compute a consensus from a dataset of rankings (or solely pairwise comparisons) as follows. Markov chain methods for ranking aggregation represent the items as states of a Markov chain, which can be seen as nodes in a graph. The transition probability of going from node i to node j is based on the relative orders of these items in the rankings in the dataset, and decreases as i is more preferred to j. The consensus of the dataset is obtained by computing, or approximating, the stationary distribution of the Markov chain and then sort the nodes by decreasing probability in the stationary distribution. The position of an item in the final consensus can thus be interpreted as the probability to be visited by a random walk on this graph. Markov chain methods thus propose a general algorithm for rank aggregation, composed of three steps:

• map the set of ranked lists to a single Markov chain M , with one node per item in {1, . . . , n},

• compute (or approximate) the stationary distribution π on M ,

• rank the items in {1, . . . , n} based on π.

The key in this method is to define the appropriate mapping in the first step, from the set of ranked lists to a Markov Chain M . [START_REF] Dwork | Rank aggregation methods for the web[END_REF] proposed, analyzed, and tested four mapping schemes, called MC1, MC2, MC3 and MC4. The second step boils down to do power iteration on the transition probability matrix, which can lead to computationally efficient and iterative algorithms (see the RankCentrality algorithm from [START_REF] Negahban | Iterative ranking from pair-wise comparisons[END_REF]). Many algorithms modeling preferences as random walks on a graph were considered in the literature, such as the famous random surfer model on the webpage graph named PageRank (see [START_REF] Brin | The anatomy of a large-scale hypertextual web search engine[END_REF]). These methods have been proven to be effective in practice. For instance, Rank Centrality outputs with high probability a Kemeny consensus under the assumption that the observed comparisons are generated by a Bradley-Terry model (see [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]).

Recently, extensions to incomplete rankings have been proposed in [START_REF] Maystre | Fast and accurate inference of plackett-luce models[END_REF]; [START_REF] Agarwal | Accelerated spectral ranking[END_REF] which are consistent under the Plackett-Luce model assumption.

Other Ranking Aggregation Methods

Many other methods have been proposed in the literature, that we do not list exhaustively here.

However, many of them will be used as baselines in the experiments of Chapter 4. 2010)). Some come with statistical guarantees, for instance BTL-ML outputs a Kemeny consensus with high probability under the assumption that the pairwise probabilities verifies the low-noise (bis) assumption (see Section 2.2.2). An interesting work is also the one of [START_REF] Conitzer | Common voting rules as maximum likelihood estimators[END_REF] which states for which voting rules (e.g. scoring rules), there exists (or not) a noise model such that the voting rule is an MLE estimator under this model. Another approach, especially in the domain of chess gaming, use Bayesian statistics to estimate a ranking, assuming some priors on the items preferences (see [START_REF] Glickman | The glicko system[END_REF]; [START_REF] Herbrich | Trueskill TM : A bayesian skill rating system[END_REF]; [START_REF] Coulom | Whole-history rating: A bayesian rating system for players of time-varying strength[END_REF]). The obvious limitations of these approaches is that it depends on the unknown underlying noise model.

MLE and Bayesian approaches.

Other popular methods. Many other heuristics can be found in the literature. For instance, QuickSort recursively divides the unsorted list of items into two lists: one list comprising alternatives that are preferred to a chosen item (called the pivot), and another comprising alternatives that are less preferred, and then sorts each of the two lists. The pivot is always chosen as the first alternative. This method has been proved to be a 2-approximation for Kemeny consensus [START_REF] Ailon | Aggregating inconsistent information: Ranking and clustering[END_REF], and several variants have been proposed (see [START_REF] Ali | Experiments with kemeny ranking: What works when?[END_REF]). In [START_REF] Schalekamp | Rank aggregation: Together we're strong[END_REF], the authors propose Pick-a-Perm: a full ranking is picked randomly from S n according to the empirical distribution of the dataset D N . Another remarkably simple method, namely Median Rank Aggregation, aggregates a set of complete rankings by using the median rank for each item in the dataset D N , and is actually a practical heuristic for footrule aggregation. Indeed, if the median ranks form a permutation, then it is a footrule consensus (see [START_REF] Dwork | Rank aggregation methods for the web[END_REF]).

CHAPTER 4

A General Method to Bound the Distance to Kemeny

Consensus

Chapter abstract Due to its numerous applications, rank aggregation has become a problem of major interest across many fields of the computer science literature. In the vast majority of situations, Kemeny consensus(es) are considered as the ideal solutions. It is however well known that their computation is NP-hard. Many contributions have thus established various results to apprehend this complexity. In this chapter we introduce a practical method to predict, for a ranking and a dataset, how close this ranking is to the Kemeny consensus(es) of the dataset. A major strength of this method is its generality: it does not require any assumption on the dataset nor the ranking. Furthermore, it relies on a new geometric interpretation of Kemeny aggregation that we believe could lead to many other results.

Introduction

Given a collection of rankings on a set of alternatives, how to aggregate them into one ranking?

This rank aggregation problem has gained a major interest across many fields of the scientific literature. Starting from elections in social choice theory (see [START_REF] Borda | Mémoire sur les élections au scrutin[END_REF]; Condorcet (1785); [START_REF] Arrow | A difficulty in the concept of social welfare[END_REF]; [START_REF] Xia | Generalized decision scoring rules: Statistical, computational, and axiomatic properties[END_REF]), it has been applied to meta-search engines (see [START_REF] Dwork | Rank aggregation methods for the web[END_REF]; [START_REF] Renda | Web metasearch: rank vs. score based rank aggregation methods[END_REF]; [START_REF] Desarkar | Preference relations based unsupervised rank aggregation for metasearch[END_REF]), competitions ranking (see [START_REF] Davenport | Ranking pilots in aerobatic flight competitions[END_REF]; Deng et al. ( 2014)), analysis of biological data (see [START_REF] Kolde | Robust rank aggregation for gene list integration and metaanalysis[END_REF]; [START_REF] Patel | Hierarchical rank aggregation with applications to nanotoxicology[END_REF]) or natural language processing (see [START_REF] Li | Learning to rank for information retrieval and natural language processing[END_REF]; [START_REF] Zamani | Regression and learning to rank aggregation for user engagement evaluation[END_REF]) among others.

Among the many ways to state the rank aggregation problem stands out Kemeny aggregation [START_REF] Kemeny | Mathematics without numbers[END_REF]. Defined as the problem of minimizing a cost function over the symmetric group (see Section 4.2 for the definition), its solutions, called Kemeny consensus(es), have been shown to satisfy desirable properties from many points of view, see [START_REF] Young | Condorcet's theory of voting[END_REF].

Computing a Kemeny consensus is however NP-hard, even for only four rankings (see [START_REF] Bartholdi | The computational difficulty of manipulating an election[END_REF]; [START_REF] Cohen | Learning to order things[END_REF]; [START_REF] Dwork | Rank aggregation methods for the web[END_REF]). This fact has motivated the scientific community to introduce many approximation procedures and to evaluate them on datasets (see [START_REF] Schalekamp | Rank aggregation: Together we're strong[END_REF]; [START_REF] Ali | Experiments with kemeny ranking: What works when?[END_REF] for examples of procedures and experiments). It has also triggered a tremendous amount of work to obtain theoretical guarantees 42 Chapter 4. A General Method to Bound the Distance to Kemeny Consensus on these procedures and more generally to tackle the complexity of Kemeny aggregation from various perspectives. Some contributions have proven bounds on the approximation cost of procedures (see [START_REF] Diaconis | Spearman's footrule as a measure of disarray[END_REF]; [START_REF] Coppersmith | Ordering by weighted number of wins gives a good ranking for weighted tournaments[END_REF]; [START_REF] Van Zuylen | Deterministic algorithms for rank aggregation and other ranking and clustering problems[END_REF]; [START_REF] Ailon | Aggregating inconsistent information: Ranking and clustering[END_REF]; [START_REF] Freund | Rank aggregation: New bounds for mcx[END_REF]) while some have established recovery properties (see for instanceSaari & [START_REF] Saari | A geometric examination of kemeny's rule[END_REF]; [START_REF] Procaccia | A maximum likelihood approach for selecting sets of alternatives[END_REF]). Some other contributions have shown that exact Kemeny aggregation is tractable if some quantity is known on the dataset (see for instance [START_REF] Betzler | Computing kemeny rankings, parameterized by the average kt-distance[END_REF][START_REF] Betzler | How similarity helps to efficiently compute kemeny rankings[END_REF]; [START_REF] Cornaz | Kemeny elections with bounded single-peaked or singlecrossing width[END_REF]) or if the dataset satisfies some conditions (see [START_REF] Brandt | Bypassing combinatorial protections: Polynomial-time algorithms for single-peaked electorates[END_REF]). At last, some contributions have established approximation bounds that can be computed on the dataset (see [START_REF] Davenport | A computational study of the kemeny rule for preference aggregation[END_REF]; [START_REF] Conitzer | Improved bounds for computing kemeny rankings[END_REF]; [START_REF] Sibony | Multiresolution analysis of incomplete rankings with applications to prediction[END_REF]).

In this chapter we introduce a novel approach to apprehend the complexity of Kemeny aggregation. We consider the following question: Given a dataset and a ranking, can we predict how close the ranking is to a Kemeny consensus without computing the latter? We exhibit a tractable quantity that allows to give a positive answer to this question. The main practical application of our results is a simple method to obtain such a guarantee for the outcome of an aggregation procedure on any dataset. A major strength of our approach is its generality: it applies to all aggregation procedures, for any dataset.

Our results are based on a certain geometric structure of Kemeny aggregation (see Section 4.3) that has been barely exploited in the literature yet but constitutes a powerful tool. We thus take efforts to explain it in details. We believe that it could lead to many other results on Kemeny aggregation.

The chapter is structured as follows. Section 4.2 introduces the general notations and states the problem. The geometric structure is detailed in Section 4.3 and further studied in Section 4.5 while our main result is presented in Section 4.4. At last, numerical experiments are described in details in Section 4.6 to address the efficiency and usefulness of our method on real datasets.

Controlling the Distance to a Kemeny Consensus

Let n = {1, . . . , n} be a set of alternatives to be ranked. A full ranking a 1 • • • a n on n is seen as the permutation σ of n that maps an item to its rank: σ(a i ) = i for i ∈ n . The set of all permutations of n is called the symmetric group and denoted by S n . Given a collection of N permutations D N = (σ 1 , . . . , σ N ) ∈ S N n , Kemeny aggregation aims at solving

min σ∈Sn C N (σ), (4.1)
where C N (σ) = N t=1 d(σ, σ t ) and d is the Kendall's tau distance defined for σ, σ ∈ S n as the number of their pairwise disagreements:

d(σ, σ ) = 1≤i<j≤n I{(σ(j)-σ(i))(σ (j)-σ (i)) < 0}.
The function C N denotes the cost, and a permutation σ * solving (4.1) is called a Kemeny consensus. We denote by K N the set of Kemeny consensuses on the dataset D N . We consider the following problem.

The Problem. Let σ ∈ S n be a permutation, typically output by a computationally efficient aggregation procedure on D N . Can we use computationally tractable quantities to give an upper bound for the distance d(σ, σ * ) between σ and a Kemeny consensus σ * on D N ?

The answer to this problem is positive as we will elaborate. It is well known that the Kendall's tau distance takes its values in {0, . . . , n 2 } (see for instance [START_REF] Stanley | Enumerative Combinatorics[END_REF]). Our main result, Theorem 10.1, thus naturally takes the form: given σ and D N , if the proposed condition is satisfied for some k ∈ {0, . . . , n 2 -1}, then d(σ, σ * ) ≤ k for all consensuses σ * ∈ K n . Its application in practice is then straightforward (see Section 4.4 for an illustration). A major strength of our method is its generality: it can be applied to any dataset D N , any permutation σ. This is because it exploits a powerful geometric framework for the analysis of Kemeny aggregation.

Geometric Analysis of Kemeny Aggregation

Because of its rich mathematical structure, Kemeny aggregation can be analyzed from many different point of views. While some contributions deal directly with the combinatorics of the symmetric group (see [START_REF] Diaconis | Spearman's footrule as a measure of disarray[END_REF]; [START_REF] Blin | Median of an odd number of permutations[END_REF], some work for instance on the pairwise comparison graph (see for instance ? [START_REF] Conitzer | Improved bounds for computing kemeny rankings[END_REF]; [START_REF] Jiang | Statistical ranking and combinatorial Hodge theory[END_REF]), and others exploit the geometry of the Permutahedron (see [START_REF] Saari | A geometric examination of kemeny's rule[END_REF]). Here, we analyze it via the Kemeny embedding (see [START_REF] Jiao | The kendall and mallows kernels for permutations[END_REF]).

Definition 4.1 (Kemeny embedding). The Kemeny embedding is the mapping φ :

S n → R ( n 2 ) defined by φ : σ →      . . . sign(σ(j) -σ(i)) . . .      1≤i<j≤n ,
where sign(x) = 1 if x ≥ 0 and -1 otherwise.

The Kemeny embedding φ maps a permutation to a vector in R ( n 2 ) where each coordinate is indexed by an (unordered) pair {i, j} ⊂ n (we choose i < j by convention). Though this vector representation is equivalent to representing a permutation as a flow on the complete graph on n , it allows us to perform a geometric analysis of Kemeny aggregation in the Euclidean space R ( n 2 ) . Denoting by •, • the canonical inner product and • the Euclidean norm, the starting point of our analysis is the following result, already proven in [START_REF] Barthelemy | The median procedure in cluster analysis and social choice theory[END_REF]. where

C N (σ) = φ(σ) -φ(D N ) 2 and φ (D N ) := 1 N N t=1 φ (σ t ) . (4.3)
Remark 4.3. Proposition 4.2 says that Kemeny rule is a "Mean Proximity Rule", a family of voting rules introduced in Zwicker ( 2008) and further studied in [START_REF] Lahaie | Neutrality and geometry of mean voting[END_REF]. Our approach actually applies more generally to other voting rules from this class but we limit ourselves to Kemeny rule in the chapter for sake of clarity. 

= n(n -1)/2. No- tice that φ(σ) -φ(σ ) 2 = 4d(σ, σ ) for all σ, σ ∈ S n implies that φ is injective, in other
words that it maps two different permutations to two different points on the sphere. A dataset D N = (σ 1 , . . . , σ N ) ∈ S N n is thus mapped to a weighted point cloud on this sphere, where for any σ ∈ S n , the weight of φ(σ) is the number of times σ appears in D N . The vector φ(D N ), defined by Equation (4.3), is then equal to the barycenter of this weighted point cloud. We call it the mean embedding of D N . Now, the reformulation of Kemeny aggregation given by Equation (4.2) means that a Kemeny consensus is a permutation σ * whose embedding φ(σ * ) is closest to φ(D N ), with respect to the Euclidean norm in R ( n 2 ) .

From an algorithmic point of view, Proposition 4.2 naturally decomposes problem (4.1) of Kemeny aggregation in two steps: first compute the mean embedding φ(D N ) in the space R ( n 2 ) , and then find a consensus σ * as a solution of problem (4.2). The first step is naturally performed in O(N n 2 ) operations. The NP-hardness of Kemeny aggregation thus stems from the second step. In this regard, one may argue that having φ(D N ) does not reduce much of the complexity in identifying an exact Kemeny consensus. However, a closer look at the problem leads us to asserting that φ(D N ) greatly contains rich information about the localization of the Kemeny consensus(es). More specifically, we show in Theorem 10.1 that the knowledge of φ(D N ) helps to provide an upper bound for the distance between a given permutation σ ∈ S n and any Kemeny consensus σ * . 

Main Result

We now state our main result. For a permutation σ ∈ S n , we define the angle θ N (σ) between φ(σ) and φ(D N ) by

cos(θ N (σ)) = φ(σ), φ(D N ) φ(σ) φ(D N ) , (4.4) 
with 0 ≤ θ N (σ) ≤ π by convention.

Theorem 4.4. Let D N ∈ S N n be a dataset and σ ∈ S n a permutation. For any k ∈ {0, . . . , n 2 -1}, one has the following implication:

cos(θ N (σ)) > 1 - k + 1 n 2 ⇒ max σ * ∈K N d(σ, σ * ) ≤ k.
The proof of Theorem 10.1 along with its geometric interpretation are postponed to Section 4.5. Here we focus on its application. Broadly speaking, Theorem 10.1 ensures that if the angle θ N (σ) between the embedding φ(σ) of a permutation σ ∈ S n and the mean embedding φ(D N ) is small, then the Kemeny consensus(es) cannot be too far from σ. Its application in practice is straightforward. Assume that one applies an aggregation procedure on D N (say the Borda count for instance) with an output σ. A natural question is then: how far is it from the Kemeny consensus(es)? Of course, it is at most equal to max σ ,σ ∈Sn d(σ , σ ) = n 2 . But if one computes the quantity cos(θ N (σ)), it can happen that Theorem 10.1 allows to give a better bound. More specifically, the best bound is given by the

minimal k ∈ {0, . . . , n 2 -1} such that cos(θ N (σ)) > 1 -(k + 1)/ n 2 .
Denoting by k min (σ; D N ) this integer, it is easy to see that

k min (σ; D N ) = n 2 sin 2 (θ N (σ)) if 0 ≤ θ N (σ) ≤ π 2 n 2 if π 2 ≤ θ N (σ) ≤ π. (4.5)
where x denotes the integer part of the real x. We formalize this method in the following description.

Method 1. Let D N ∈ S N n be a dataset and let σ ∈ S n be a permutation considered as an approximation of Kemeny's rule. In practice σ is the consensus returned by a tractable voting rule.

1. Compute k min (σ; D N ) with Formula (10.5).

Then by Theorem

10.1, d(σ, σ * ) ≤ k min (σ; D N ) for any Kemeny consenus σ * ∈ K N .
The following proposition ensures that Method 1 has tractable complexity. With a concrete example, we demonstrate the applicability and the generality of Method 1 on the Sushi dataset (see [START_REF] Kamishima | Nantonac collaborative filtering: recommendation based on order responses[END_REF]). The dataset consists of N = 5000 full rankings given by different individuals of the preference order on n = 10 sushi dishes such that a bruteforce search for the Kemeny consensus is already quite computationally intensive. Indeed, the cardinality of S n is 10! = 3, 628, 000. We report Tab 4.1 the results of a case-study on this dataset. To apply our method, we select seven tractable voting rules, denoted by σ, as approximate candidates to Kemeny's rule to provide an initial guess (details of voting rules can be found Chapter 3). The last one, Pick-a-Random, can be viewed as a negative control experiment: a full ranking is picked randomly from S n according to uniform law (independent from D N ). To intuitively understand the rationale behind Pick-a-Random, let us consider the case conditioned on that the output of a voting rule has (at least) certain Kendall's tau distance to the Kemeny consensus. Compared to what Pick-a-Random would blindly pick any permutation without accessing to the dataset D N at all, a sensible voting rule should have a better chance to output one permutation with a smaller angle θ with φ(D N ) among all the permutations that share the same distance to Kemeny consensus. As we have reasoned in the geometric proof of the method that the smaller the angle θ is, the more applicable our method will be, Pick-a-Random is expected to perform worse than other voting rules in terms of applicability of our method. Table 4.1 summarizes the values of cos(θ N (σ)) and k min (σ), respectively given by Equations (10.4) and (10.5).

We recall that the maximum Kendall's tau distance is n(n -1)/2 = 45. Results show that on this particular dataset, if we use for instance Borda Count to approximate Kemeny consensus, we are confident that the exact consensus(es) have a distance of at most 14 to the approximate ranking. We leave detailed interpretation of the results to Section 4.6. 

Geometric Interpretation and Proof of Theorem 10.1

This section details the proof of Theorem 10.1 and its geometric interpretation. We deem that our proof has indeed a standalone interest, and that it could lead to other profound results on Kemeny aggregation.

Extended Cost Function

We recall that the Kemeny consensuses of a dataset D N are the solutions of Problem (4.2):

min σ∈Sn C N (σ) = φ(σ) -φ(D N ) 2 .
This is an optimization problem on the discrete set S n , naturally hard to analyze. In particular the shape of the cost function C N is not easy to understand. However, since all the vectors φ(σ)

for σ ∈ S n lie on the sphere

S = {x ∈ R ( n 2 ) | x = R} with R = n(n -1)/2, it is natural to consider the relaxed problem on S min x∈S C N (x) := x -φ(D N ) 2 . (4.6)
We call C N the extended cost function with domain S. The advantage of C N is that it has a very simple shape. We denote by θ N (x) the angle between a vector x ∈ S and φ(D N ) (with the slight abuse of notations that θ N (φ(σ)) ≡ θ N (σ)). For any x ∈ S, one has

C N (x) = R 2 + φ(D N ) 2 -2R φ(D N ) cos(θ N (x)).
This means that the extended cost C N (x) of a vector x ∈ S only depends on the angle θ N (x). Lemma 4.6. A Kemeny consensus of a dataset D N is a permutation σ * such that:

θ N (σ * ) ≤ θ N (σ)
for all σ ∈ S n .

Lemma 4.6 means that the problem of Kemeny aggregation translates into finding permutations σ * that have minimal angle θ N (σ * ). This reformulation is crucial to our approach. The second element of our approach is motivated by the following observation. Let x ∈ S be a point on the sphere and let r ≥ 0. If r is large enough, then all the points x ∈ S on the sphere that have distance x -x greater than r will have a greater angle θ N (x ). Lemma 4.7. For x ∈ S and r ≥ 0, one has the following implication:

cos(θ N (x)) > 1 - r 2 4R 2 ⇒ min x ∈S\B(x,r) θ N (x ) > θ N (x). Proof. Let φ(D N ) = φ(D N ) φ(D N )
. We discuss over two cases.

Case I: φ(D N ) -x ≥ r. By laws of cosines, this case is equivalent to:

2R 2 (1 -cos(θ N (x))) = φ(D N ) -x 2 ≥ r 2 ⇔ cos(θ N (x)) ≤ 1 - r 2 2R 2 ≤ 1 - r 2 4R 2 .
Note also that in this case, we have φ(D N ) ∈ S \ B(x, r) and hence min x ∈S\B(x,r) θ N (x ) = min x ∈S θ N (x ) = 0 ≤ θ N (x) always holds, where the minimum is attained at x = φ(D N ).

Case II:

φ(D N ) -x < r, that is φ(D N ) ∈ B(x, r). As the function x → θ N (x ) is convex
with global minimum in B(x, r), its minimum over S \ B(x, r) is attained at the boundary

S ∩ ∂B(x, r) = {x ∈ R ( n 2 ) | x = R and x -x = r}
, which is formed by cutting S with the n 2 -1 -dimensional hyperplane written as

L := x ∈ R ( n 2 ) x , x = 2R 2 -r 2 2 Straightforwardly one can verify that S ∩ ∂B(x, r) is in fact a n 2 -1 -dimensional sphere lying in L, centered at c = 2R 2 -r 2 2R 2 x with radius γ = r 1 -r 2 4R 2
. Now we take effort to identify:

x * = arg min

x ∈S∩∂B(x,r)

θ N (x ) = arg min x ∈S∩∂B(x,r) C N (x ) . Note that φ(D N ) projected onto L is the vector (φ(D N )) L := φ(D N ) -φ(D N ),x R 2
x. One can easily verify by Pythagoras rule that, for any set K ⊆ L,

arg min x ∈K x -φ(D N ) = arg min x ∈K x -(φ(D N )) L .
Therefore we have:

x * = arg min

x ∈S∩∂B(x,r)

x

-(φ(D N )) L = c + γ (φ(D N )) L (φ(D N )) L = 2R 2 -r 2 2R 2 x + r 1 - r 2 4R 2 φ(D N ) -φ(D N ),x R 2 x φ(D N ) 2 -φ(D N ),x 2 R 2 .
Tedious but essentially undemanding calculation leads to

θ N (x * ) > θ N (x) ⇔ x * , φ(D N ) > x, φ(D N ) ⇔ cos(θ N (x)) > 1 - r 2 4R 2 .
It is interesting to look at the geometric interpretation of Lemma 4.7. In fact, it is clear from the proof that x * should lie in the 2-dimensional subspace spanned by φ(D N ) and x. We are thus able to properly define multiples of an angle by summation of angles on such linear space 2θ N (x) := θ N (x) + θ N (x). In words, provided that θ N (x) ≤ π/2, x * has a smaller angle than x is equivalently written using laws of cosines as

r 2 = x -x * 2 > 2R 2 1 -cos(2θ N (x)) ⇔ cos(2θ N (x)) > 1 - r 2 2R 2 ⇔ cos(θ N (x)) > 1 - r 2 4R 2 .
This recovers exactly the condition stated in Lemma 4.7. 

φ (S n \ B(σ, k)) ⊂ S \ B(φ(σ), 2 √ k + 1)
4.5.4 Proof of Theorem 10.1

We can now prove Theorem 10.1 by combining the previous results and observations.

Proof of Theorem 10.1. Let D N ∈ S N n be a dataset and σ ∈ S n a permutation. By Lemma 4.7, one has for any r > 0,

cos(θ N (σ)) > 1 - r 2 4R 2 ⇒ min x∈S\B(φ(σ),r) θ N (x) > θ N (σ).
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We take r = 2 √ k + 1. The left-hand term becomes cos(θ N (σ)) > 1 -k+1 R 2 , which is the condition in Theorem 10.1. The right-hand term becomes:

min x∈S\B(φ(σ),2 √ k+1) θ N (x) > θ N (σ),
which implies by Lemma 4.8 that

min σ ∈Sn\B(σ,k) θ N (σ ) > θ N (σ).
This means that for all σ ∈ S n with d(σ, σ ) > k, θ N (σ ) > θ N (σ). Now, by Lemma 4.6, any

Kemeny consensus σ * necessarily satisfies θ N (σ * ) ≤ θ N (σ). One therefore has d(σ, σ * ) ≤ k,
and the proof is concluded.

Numerical Experiments

In this section we study the tightness of the bound in Theorem 10.1 and the applicability of Method 1 through numerical experiments.

Tightness of the Bound

Recall that we denote by n the number of alternatives, by D N ∈ S N n any dataset, by r any voting rule, and by r(D N ) a consensus of D N given by r. For ease of notation convenience, we assume that K N contains a single consensus (otherwise we pick one randomly as we do in all experiments). The approximation efficiency of r to Kemeny's rule is exactly measured by d(r(D N ), K N ). Applying our method with r(D N ) would return an upper bound for d(r(D N ), K N ), that is:

d(r(D N ), K N ) ≤ k min .
Notably here we are not interested in studying the approximation efficiency of a particular voting rule, but we are rather interested in studying the approximation efficiency specific to our method indicated by the tightness of the bound, i.e.,

s (r, D N , n) := k min -d(r(D N ), K N ) .
In other words, s (r, D N , n) quantifies how confident we are when we use k min to "approximate" the approximation efficiency d(r(D N ), K N ) of r to Kemeny's rule on a given dataset D N . The smaller s (r, D N , n) is, the better our method works when it is combined with the voting rule r to pinpoint the Kemeny consensus on a given dataset D N . Note that our notation stresses on the fact that s depends typically on (r, D N , n). We empirically investigate the efficiency of our proposed method by experimenting s (r, D N , n)

with various voting rules r, on different datasets D N , implicitly involving n as well. For that purpose, in each experiment we test six prevalent voting rules plus one negative-control method as approximate candidates to Kemeny's rule: three scoring rules that are Borda Count, k-approval,

Copeland; two algorithmic approaches that are QuickSort and Pick-a-Perm; one statistical approach based on Plackett-Luce ranking model; one baseline method serving a negative control that is Pick-a-Random where a random permutation is picked from S n according to uniform law (independent from the dataset D N ). Details of the voting rules may be found Chapter 3.

We first look at the the effect of different voting rules r on s (r; D N , n) with the APA dataset.

In the 1980 American Psychological Association (APA) presidential election, voters were asked to rank n = 5 candidates in order of preference and a total of N = 5738 complete ballots were The effect of datasets D N on the measure s (D N ; r, n) is tested with the Netflix data provided by [START_REF] Mattei | An empirical study of voting rules and manipulation with large datasets[END_REF]. We set n = 3 the number of ranked alternatives and take two types of data with distinct characteristics to contrast their impact: we took the 100 datasets with a Condorcet winner and randomly selected 100 datasets from those with no Condorcet winner. The rationale for this experiment is that Kemeny's rule is a Condorcet method, i.e., Kemeny rule always yields a Condorcet winner if it exists. Therefore we suppose that the efficiency of our method should also depend on this particular social characteristic present in data. As expected, it is interesting to note the clear difference shown by the two types of data shown by Figure 4.6. In words, our method is more efficient in case that a Condorcet winner is present in the dataset than the other case that a Condorcet winner is absent in the sense that s is generally smaller in the former case. We finally study how the s (n; r, D N ) grows with the size of the alternative set n using the sushi dataset found in [START_REF] Kamishima | Nantonac collaborative filtering: recommendation based on order responses[END_REF], originally provided as a dataset of N = 5000 full rankings of 10 sushi dishes. As evaluating s requires exact Kemeny consensus which can quickly become intractable when n is large, we strict in this study the number of sushi dishes n to be relatively small, and generate collections of datasets, indexed by combinations of n sushi dishes out of {1, . . . , 10}, by counting the total occurrences of such order present in the original dataset. For example, when n = 3 we have a total of 10 3 = 120 different combinations of alternatives (hence 120 collections of datasets) each generated by counting the total occurrences of preference orders of individuals restricted to these 3 alternatives. Therefore we have a total of 120; 210; 252 datasets respectively for n = 3; 4; 5. Figure 4.4 shows that s (r, D N , n) increases as n grows, a trend that is dominant and consistent across all voting rules. Since the maximal distance n 2 in S n grows quadratically with respect to n, an interesting question would remain to specify explicitly the dependency of k min on n, or the dependency of s (r, D N , n) on n, for a given voting rule.

Applicability of the Method

We have so far focused on small n (n ≤ 5) case, and verified that our method is efficient in using k min to approximate d(r(D N ), K N ). We are now mostly interested in the usefulness of our method when k min is directly combined with voting rules in pinpointing Kemeny consensus K N particularly when n is large. Now we employ our method by using k min for each dataset to upper bound the approximation performance of r(D N ) to Kemeny's rule. Moreover, suppose that we are still interested in finding the exact Kemeny consensus despite a good approximation r(D N ). Once we have computed an approximated ranking r(D N ) and k min is identified via our method, the search scope for the exact Kemeny consensuses can be narrowed down to those permutations within a distance of k min to r(D N ). Notably Wang et al. (2013, Lemma 1) proved that the total number of such permutations in S n is upper bounded by n+k min -1 We took the original sushi dataset consisting of N = 5000 individual votes on n = 10 sushi dishes and created 500 bootstrapped pseudo-samples following the same empirical distribution.

k min which is usually much smaller than |S n | = n!.
Note that k min should also depend on (r, D N , n). 

Conclusion and Discussion

We have established a theoretical result that allows to control the Kendall's tau distance between a permutation and the Kemeny consensuses of any dataset. Our results rely on the geometric properties of the Kemeny embedding. Though it has rarely been used in the literature, it provides a powerful framework to analyze Kemeny aggregation. We therefore believe that it could lead to other profound results. In particular we deem that an analysis of how the embeddings of the permutation spread on the sphere could lead to a finer condition in Theorem 10.1 which is left as future work.

Another interesting direction would certainly be to extend our method to rank aggregation from partial orders, such as pairwise comparisons or top-k rankings. Two main approaches can be followed. In the first one, a partial order would be identified with the set S ⊂ S n of its linear extensions and its distance to a permutation σ ∈ S n defined by the average (1/|S|) σ ∈S d(σ, σ ).

The Kemeny embedding would then naturally be extended to S as (1/|S|) σ ∈S φ(σ ), the barycenter of embeddings of its linear extensions. In the second approach, one would see a partial order as a collection of pairwise comparisons {i 1 j 1 , . . . , i m j m } and define its distance to a permutation σ ∈ S n by the average number of pairwise disagreements (1/m) m r=1 I{σ(i r ) > σ(j r )}. The Kemeny embedding would then naturally be extended to {i 1 j 1 , . . . , i m j m } as the embedding of any linear extension σ where the coordinate on {i, j} is put equal to 0 if {i, j} does not appear in the collection. In both cases, our approach would apply with slight changes to exploit the related geometrical properties.

In practice, in this chapter we have provided a simple and general method to predict, for any ranking aggregation procedure, for a given dataset, how close its output is from the Kemeny consensuses. However, our analysis is valid for a fixed dataset; and it is then natural to investigate the behavior of ranking aggregation rules when the number of samples in the dataset increases. In the next chapter, we investigate the generalization abilities of such rules in a formal probabilistic setup.

CHAPTER 5

A Statistical Framework for Ranking Aggregation

Chapter abstract This chapter develops a statistical learning theory for ranking aggregation in a general probabilistic setting (avoiding any rigid ranking model assumptions) which is at the core of this thesis. We assess the generalization ability of empirical ranking medians: universal rate bounds are established and the situations where convergence occurs at an exponential rate are fully characterized. Minimax lower bounds are also proved, showing that the rate bounds we obtain are optimal.

Introduction

In ranking aggregation, the goal is to summarize a collection of rankings over a set of alternatives by a single (consensus) ranking. Two main approaches have emerged in the literature to state the rank aggregation problem. The first one, originating from the seminal work of Condorcet in the 18th century (Condorcet, 1785), considers a generative probabilistic model on the rankings and the problem then consists in maximizing the likelihood of a candidate aggregate ranking. This MLE approach has been widely used in machine-learning and computational social choice, see e.g. [START_REF] Conitzer | Common voting rules as maximum likelihood estimators[END_REF]; [START_REF] Truchon | Borda and the maximum likelihood approach to vote aggregation[END_REF]; [START_REF] Conitzer | Preference functions that score rankings and maximum likelihood estimation[END_REF].

Alternatively, the metric approach consists in choosing a (pseudo-) distance on the set of rankings and then finding a barycentric/median ranking, i.e. a ranking at minimum distance from the observed ones. It encompasses numerous methods, including the popular Kemeny aggregation, which the present chapter focuses on. These two approaches can be related in certain situations however. Indeed, Kemeny aggregation can be given a statistical interpretation: it is equivalent to the MLE approach under the noise model intuited by Condorcet (see [START_REF] Young | Condorcet's theory of voting[END_REF] then formalized as the Mallows model (see definition in Remark 5.7).

Concerning the metric approach, much effort has been devoted to developing efficient algorithms for the computation of a median permutation related to a given collection of rankings, whereas statistical issues about the generalization properties of such empirical medians have been largely ignored as far as we know. The sole statistical analyses of ranking aggregation have been carried out in the restrictive setting of parametric models. Hence, in spite of this uninterrupted research activity, the generalization ability of ranking aggregation rules has not been investigated in a formal probabilistic setup, with the notable exception of Soufiani et al. (2014b),
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Chapter 5. A Statistical Framework for Ranking Aggregation where a decision-theoretic framework is introduced and the properties of Bayesian estimators for parametric models are discussed (as popular axioms in social choice). In this chapter, we develop a general statistical framework for Kemeny aggregation, on the model of the probabilistic results developed for pattern recognition (see [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF], the flagship problem in statistical learning theory. Precisely, conditions under which optimal elements can be characterized are exhibited, universal rate bounds for empirical Kemeny medians are stated and shown to be minimax. A low noise property is also introduced that allows to establish exponentially fast rates of convergence, following in the footsteps of the results obtained in [START_REF] Koltchinskii | Exponential convergence rates in classification[END_REF] for binary classification.

The chapter is organized as follows. In section 5.2, key notions of consensus ranking are briefly recalled and the statistical framework considered through the chapter is introduced at length, together with the main notations. Section 5.3 is devoted to the characterization of optimal solutions for the Kemeny aggregation problem, while section 5.4 provides statistical guarantees for the generalization capacity of empirically barycentric rankings in the form of rate bounds in expectation/probability. The proofs are deferred to section 5.6.

Background

We start with a rigorous formulation of (the metric approach of) consensus ranking and describe next the probabilistic framework for ranking aggregation we consider in this chapter. Here and throughout, the indicator function of any event E is denoted by I{E}, the Dirac mass at any point a by δ a , and we set sgn(x) = 2I{x ≥ 0} -1 for all x ∈ R. At last, the set of permutations of the ensemble n = {1, . . . , n}, n ≥ 1 is denoted by S n .

Consensus Ranking

In the simplest formulation, a (full) ranking on a set of items n is seen as the permutation σ ∈ S n that maps an item i to its rank σ(i). Given a collection of N ≥ 1 permutations σ 1 , . . . , σ N , the goal of ranking aggregation is to find σ * ∈ S n that best summarizes it. A popular approach consists in solving the following optimization problem:

min σ∈Sn N i=1 d(σ, σ i ), (5.1)
where d(., .) is a given metric on S n . Such a barycentric permutation, referred to as a consensus/median ranking sometimes, always exists, since S n is finite, but is not necessarily unique.

In the most studied version of this problem, termed Kemeny ranking aggregation, the metric considered is equal to the Kendall's τ distance (see [START_REF] Kemeny | Mathematics without numbers[END_REF]:

∀(σ, σ ) ∈ S 2 n , d τ (σ, σ ) = i<j I{(σ(i) -σ(j))(σ (i) -σ (j)) < 0},
i.e. the number of pairwise disagreements between σ and σ . Such a consensus has many interesting properties, but is NP-hard to compute. Various algorithms have been proposed in the literature to compute acceptably good solutions in a reasonable amount of time, their description is beyond the scope of the chapter, see for example [START_REF] Ali | Experiments with kemeny ranking: What works when?[END_REF] or Chapter 3 for references.

Statistical Framework

In the probabilistic setting we consider here, the collection of rankings to be aggregated is sup- where , σ)] denotes the expected distance between any permutation σ and Σ and shall be referred to as the risk of the median candidate σ throughout the thesis. The objective pursued is to recover approximately a solution σ * of this minimization problem, plus an estimate of this minimum L * P = L P (σ * ), as accurate as possible, based on the observations Σ 1 , . . . , Σ N . The minimization problem (5.2) always has a solution since the cardinality of S n is finite (however exploding with n) but can be multimodal, see Section 5.3. A median permutation σ * can be interpreted as a central value for P , a crucial location parameter, whereas the quantity L * P can be viewed as a dispersion measure. However, the functional L P (.) is unknown in practice, just like distribution P . When there is no ambiguity on the distribution considered, we write L(.) for L P (.), and L * for L * P in this chapter. We only have access to the dataset {Σ 1 , . . . , Σ N } to find a reasonable approximant of a median and would like to avoid rigid assumptions on P such as those stipulated by the Mallows model, see [START_REF] Mallows | Non-null ranking models[END_REF] and Remark 5.7. Following the Empirical Risk Minimization (ERM) paradigm (see e.g. [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF], one replaces the quantity L(σ) by a statistical version based on the sampling data, typically the unbiased estimator

posed to be composed of N ≥ 1 i.i.d. copies Σ 1 , . . . ,
L P (σ) = E Σ∼P [d(Σ
L N (σ) = 1 N N i=1 d(Σ i , σ). (5.3)
Notice that L N = L P N where P N = 1/N N t=1 δ Σt is the empirical distribution. It is the goal of the subsequent analysis to assess the performance of solutions σ N of min σ∈Sn L N (σ),

(5.4) by establishing (minimax) bounds for the excess of risk L( σ N ) -L * in probability/expectation, when d is the Kendall's τ distance. In this case, any solution of problem (5.2) (resp., of problem (5.4)) is called a Kemeny median (resp., an empirical Kemeny median) throughout the thesis.

Remark 5.1. (ALTERNATIVE DISPERSION MEASURE) An alternative measure of dispersion which can be more easily estimated than L * = L(σ * ) is given by

γ(P ) = 1 2 E[d(Σ, Σ )],
(5.5)

where Σ is an independent copy of Σ. One may easily show that γ(P ) ≤ L * ≤ 2γ(P ).

The estimator of (5.5) with minimum variance among all unbiased estimators is given by the U -statistic

γ N = 2 N (N -1) i<j d(Σ i , Σ j ).
(5.6)

In addition, we point out that confidence intervals for the parameter γ(P ) can be constructed by means of Hoeffding/Bernstein type deviation inequalities for U -statistics and a direct (smoothed) bootstrap procedure can be applied for this purpose, see [START_REF] Lahiri | Bootstrapping the studentized sample mean of lattice variables[END_REF]. In contrast, a bootstrap technique for building CI's for L * would require to solve several times an empirical version of (5.2) based on bootstrap samples. 

= sgn(Σ k (j k ) -Σ k (i k )) with e k = (i k , j k ) for 1 ≤ k ≤ N . Based on
these observations, an estimate of the risk E ν E Σ∼P [I{e = (i, j), (σ(j) -σ(i)) < 0}] of any median candidate σ ∈ S n is given by:

i<j 1 N i,j N k=1 I{e k = (i, j), k (σ(j) -σ(i)) < 0},
where N i,j = N k=1 I{e k = (i, j)}, see for instance [START_REF] Lu | Effective sampling and learning for mallows models with pairwise-preference data[END_REF] or [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF] for ranking aggregation results in this setting.

Connection to Voting Rules

In Social Choice, we have a collection of votes under the form of rankings D N = (σ 1 , . . . , σ N ).

Such a collection of votes D

N ∈ S N
n is called a profile and a voting rule, which outputs a consensus ranking on this profile, is classically defined as follows:

σ P N = arg min σ∈Sn g(σ, D N )
where g : S n × ∞ t=1 S t n → R. This definition can be easily translated in order to be applied to any given distribution P instead of a profile. Indeed, the authors of [START_REF] Prasad | Distributional rank aggregation, and an axiomatic analysis[END_REF] define a distributional rank aggregation procedure as follows:

σ P = arg min σ∈Sn g(σ, P )
where g : S n ×P n → R where P n is the set of all distributions on S n . Many classic aggregation procedures are naturally extended through this definition and thus to our statistical framework, as we have seen for Kemeny ranking aggregation previously. To detail some examples, we denote by p i,j = P{Σ(i) < Σ(j)} = 1 -p j,i for 1 ≤ i = j ≤ n and define the associated empirical estimator by [START_REF] Copeland | A reasonable social welfare function[END_REF]) consists on D N in ranking the items by decreasing order of their Copeland score, calculated for each one as the number of items it beats in pairwise duels minus the number of items it looses against:

p i,j = (1/N ) N m=1 I{Σ m (i) < Σ m (j)}. The Copeland method
s N (i) = k =i I{ p i,k ≤ 1/2} -I{ p i,k > 1/2}.
It thus naturally applies to a distribution P using the scores s

(i) = k =i I{p i,k ≤ 1/2} -I{p i,k > 1/2}.
Similarly, Borda aggregation [START_REF] Borda | Mémoire sur les élections au scrutin[END_REF] which consists in ranking items in increasing order of their score s N (i) = N m=1 Σ m (i) when applied on P N , naturally extends to P using the scores

s(i) = E P [Σ(i)].

Optimality

As recalled above, the discrete optimization problem (5.2) always has a solution, whatever the metric d chosen. In the case of the Kendall's τ distance however, the optimal elements can be explicitly characterized in certain situations. It is the goal of this section to describe the set of Kemeny medians under specific conditions. As a first go, observe that the risk of a permutation candidate σ ∈ S n can be then written as

L(σ) = i<j p i,j I{σ(i) > σ(j)} + i<j (1 -p i,j )I{σ(i) < σ(j)}.
(5.7)

Remark 5.3. (CONNECTION TO BINARY CLASSIFICATION) Let (i, j) be a random pair defined on (Ω, F, P), uniformly distributed on the set {(i, j) : 1 ≤ i < j ≤ n} and independent from Σ. Up to the factor n(n-1)/2, the risk (5.7) can be rewritten as the expectation of the error made when predicting the sign variable sgn(Σ(j) -Σ(i)) by the specific classifier sgn(σ(j) -σ(i)):

L(σ) = n(n -1) 2 E [l i,j (Σ, σ)] ,
(5.8)

where we set l i,j (σ, σ ) = I{(σ(i) -σ(j)) • (σ (i) -σ (j)) < 0} for all i < j, (σ, σ ) ∈ S 2 n . The r.v. p i,j can be viewed as the posterior related to this classification problem.
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We deduce from (5.7) that L * ≥ i<j min{p i,j , 1 -p i,j }. In addition, if there exists a permutation σ with the property that ∀i < j s.t.

p i,j = 1/2, (σ(j) -σ(i)) • (p i,j -1/2) > 0,
(5.9)

it would be necessarily a median for P (notice incidentally that L * = i<j min{p i,j , 1 -p i,j } in this case).

Definition 5.4. The probability distribution P on S n is said to be stochastically transitive if it fulfills the condition:

∀(i, j, k) ∈ n 3 , p i,j ≥ 1/2 and p j,k ≥ 1/2 ⇒ p i,k ≥ 1/2
In addition, if p i,j = 1/2 for all i < j, P is said to be strictly stochastically transitive.

Let s * : n → n be the mapping defined by:

s * (i) = 1 + k =i I{p i,k < 1 2 } (5.10)
for all i ∈ n , which induces the same ordering as the Copeland method (see Subsection 5.2.3).

Observe that, if the stochastic transitivity is fulfilled, then:

p i,j < 1/2 ⇔ s * (i) < s * (j).
Equipped with this notation, property (5.9) can be also formulated as follows: ∀i < j s.t.

s * (i) = s * (j), (σ(j) -σ(i)) • (s * (j) -s * (i)) > 0.
(5.11)

The result stated below describes the set of Kemeny median rankings under the conditions introduced above, and states the equivalence between the Copeland method and Kemeny aggregation in this setting.

Theorem 5.5. If the distribution P is stochastically transitive, there exists σ * ∈ S n such that (5.9) holds true. In this case, we have

L * = i<j min{p i,j , 1 -p i,j } (5.12) = i<j 1 2 -p i,j - 1 2 ,
the excess of risk of any σ ∈ S n is given by

L(σ) -L * = 2 i<j |p i,j -1/2| • I{(σ(j) -σ(i))(p i,j -1/2) < 0}
and the set of medians of P is the class of equivalence of σ * w.r.t. the equivalence relationship:

σR P σ ⇔ (σ(j) -σ(i))(σ (j) -σ (i)) > 0, for all i < j such that p i,j = 1/2.
(5.13)

In addition, the mapping s * belongs to S n iff P is strictly stochastically positive. In this case, s * is the unique median of P .

The proof is detailed in section 5.6. Before investigating the accuracy of empirical Kemeny medians, a few remarks are in order.

Remark 5.6. (BORDA CONSENSUS) We say that the distribution P is strongly stochastically

transitive if ∀(i, j, k) ∈ n 3 : p i,j ≥ 1/2 and p j,k ≥ 1/2 ⇒ p i,k ≥ max(p i,j , p j,k ).
Then under this condition, and for i < j, p i,j = 1 2 , there exists a unique σ * ∈ S n such that (5.9) holds true, corresponding to the Kemeny and Borda consensus both at the same time (see the section 5.6 for the proof).

Remark 5.7. (MALLOWS MODEL) The Mallows model introduced in the seminal contribution [START_REF] Mallows | Non-null ranking models[END_REF] is a probability distribution P θ on S n parametrized by θ = (σ 0 , ψ)

∈ S n × [0, 1]: ∀σ ∈ S n , P θ 0 (σ) = 1 Z ψ dτ (σ 0 ,σ) , (5.14) 
where Z = σ∈Sn ψ dτ (σ 0 ,σ) is a normalization constant. One may easily show that Z is independent from σ and that Z = n-1 i=1 i j=0 ψ j . Observe firstly that the smallest the parameter ψ, the spikiest the distribution P θ (equal to a Dirac distribution for ψ = 0). In contrast, P θ is the uniform distribution on S n when ψ = 1. Observe in addition that, as soon as ψ < 1, the Mallows model P θ fulfills the strict stochastic transitivity property. Indeed, it follows in this case from Corollary 3 in Busa-Fekete et al. ( 2014) that for any i < j, we have:

(i) σ 0 (i) < σ 0 (j) ⇐ p i,j ≥ 1 1+ψ > 1 2 with equality holding iff σ 0 (i) = σ 0 (j) -1, (ii) σ 0 (i) > σ 0 (j) ⇐ p i,j ≤ ψ 1+ψ < 1 2 with equality holding iff σ 0 (i) = σ 0 (j) + 1, (iii) p i,j > 1 2 iff σ 0 (i) < σ 0 (j) and p i,j < 1 2 iff σ 0 (i) > σ 0 (j).
This directly implies that for any i < j:

|p i,j - 1 2 | ≥ |ψ -1| 2(1 + ψ)
Therefore, according to (5.12), we have in this setting:

L * P θ ≤ n(n -1) 2 ψ 1 + ψ .
(5.15)

The permutation σ 0 of reference is then the unique mode of distribution P θ , as well as its unique median.

Remark 5.8. (BRADLEY-TERRY-LUCE-PLACKETT MODEL) The Bradley-Terry-Luce-Plackett model [START_REF] Bradley | Rank analysis of incomplete block designs: I. the method of paired comparisons[END_REF][START_REF] Luce | Individual Choice Behavior[END_REF][START_REF] Plackett | The analysis of permutations[END_REF] assumes the existence of some Chapter 5. A Statistical Framework for Ranking Aggregation hidden preference vector w = [w i ] 1≤i≤n , where w i represents the underlying preference score

of item i. For all i < j, p ij = w i w i +w j . If w 1 ≤ • • • ≤ w n , we have in this case L * P θ = i<j w i /(w i + w j ).
Observe in addition that as soon as for all i < j, w i = w j , the model fulfills the strict stochastic transitivity property. The permutation σ 0 of reference is then the one which sorts the vector w in decreasing order.

Empirical Consensus

Here, our goal is to establish sharp bounds for the excess of risk of empirical Kemeny medians, of solutions σ N of (5.4) in the Kendall's τ distance case namely. Beyond the study of universal rates for the convergence of the expected distance L( σ N ) to L * , we prove that, under the stochastic transitivity condition, exponentially fast convergence occurs, if the p i,j 's are bounded away from 1/2, similarly to the phenomenon exhibited in [START_REF] Koltchinskii | Exponential convergence rates in classification[END_REF] for binary classification under extremely low noise assumption.

Universal Rates

Such rate bounds are classically based on the fact that any minimizer σ n of (5.4) fulfills

L( σ N ) -L * ≤ 2 max σ∈Sn | L N (σ) -L(σ)|.
(5.16)

As the cardinality of the set S n of median candidates is finite, they can be directly derived from bounds (tail probabilities or expectations) for the absolute deviations of i.i.d. sample means L N (σ) from their expectations, | L N (σ) -L(σ)|. Let p i,j = (1/N ) N m=1 I{Σ m (i) < Σ m (j)} and p i,j the r.v. defined in Remark 5.3. First notice that same as in (5.7) one has for any σ ∈ S n :

L N (σ) = n(n -1) 2 E [ p i,j I{σ(i) > σ(j)} + (1 -p i,j )I{σ(i) < σ(j)}]
(5.17) which, combined with (5.16), gives

| L N (σ) -L(σ)| = n 2 |E [( p i,j -p i,j )I{σ(i) > σ(j)} -( p i,j -p i,j )I{σ(i) < σ(j)}] | (5.18)
and finally: (i) In expectation by

| L N (σ) -L(σ)| ≤ n(n -1) 2 E i,j [|p i,j -p i,j |] . ( 5 
E [L( σ N ) -L * ] ≤ n(n -1) 2 √ N
(ii) With probability higher than 1 -δ for any δ ∈ (0, 1) by

L( σ N ) -L * ≤ n(n -1) 2 2 log(n(n -1)/δ) N .
The proof is given in section 5.6. a bound for the expected excess of risk of σ N is then obtained by adding the quantity ρ to the estimation error given in Proposition 5.9.

We now establish the tightness of the upper bound for empirical Kemeny aggregation stated in Proposition 5.9. Precisely, the next theorem provides a lower bound of order O(1 √ N ) for the quantity below, referred to as the minimax risk,

R N def = inf σ N sup P E P [L P (σ N ) -L * P ] , (5.20) 
where the supremum is taken over all probability distributions on S n and the infimum is taken over all mappings σ N that maps a dataset (Σ 1 , . . . , Σ N ) composed of N independent realizations of P to an empirical median candidate .

Proposition 5.11. The minimax risk for Kemeny aggregation is lower bounded as follows:

R N ≥ 1 16e √ N .
The proof of Proposition 5.11 relies on the classical Le Cam's method, it is detailed in section 5.6. The result shows that no matter the method used for picking a median candidate from S n based on the training data, one may find a distribution such that the expected excess of risk is larger than 1/(16e

√ N ).
If the upper bound from Proposition 5.9 depends on n, it is also of order O(1/ √ N ) when N goes to infinity. Empirical Kemeny aggregation is thus optimal in this sense.

Remark 5.12. (DISPERSION ESTIMATES) In the stochastically transitive case, one may get an estimator of L * by plugging the empirical estimates p i,j into Formula (5.12):

L * = i<j min{ p i,j , 1 -p i,j } (5.21) = i<j 1 2 -p i,j - 1 2 .
One may easily show that the related MSE is of order

O(1/N ): E[( L * -L * ) 2 ] ≤ n 2 (n - 1)
2 /(16N ), see section 5.6. Notice also that, in the Kendall's τ case, the alternative dispersion measure (5.5) can be expressed as γ(P ) = i<j p i,j (1 -p i,j ) and that the plugin estimator of γ(P ) based on the p i,j 's coincides with (5.6).

While Proposition 5.9 makes no assumption about the underlying distribution P , it is also desirable to understand the circumstances under which the excess risk of empirical Kemeny medians is small. Following in the footsteps of results obtained in binary classification, it is the purpose of the subsequent analysis to exhibit conditions guaranteeing exponential convergence rates in Kemeny aggregation.

Fast Rates in Low Noise

The result proved in this subsection shows that the bound stated in Proposition 5.9 can be significantly improved under specific conditions. In binary classification, it is now well-known that (super) fast rate bounds can be obtained for empirical risk minimizers, see [START_REF] Massart | Risk bounds for statistical learning[END_REF], [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF], and for certain plug-in rules, see [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. As shown below, under the stochastic transitivity hypothesis and the following low noise assumption (then implying strict stochastic transitivity), the risk of empirical minimizers in Kemeny Proposition 5.14. Assume that P is stochastically transitive and fulfills condition NA(h) for some h > 0. The following assertions hold true.

(i) For any empirical Kemeny median σ N , we have: ∀N ≥ 1,

E [L( σ N ) -L * ] ≤ n 2 (n -1) 2 8 e -N 2 log 1 1-4h 2 .
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(ii) With probability at least 1 -(n(n -1)/4)e

-N 2 log 1 1-4h 2 , the mapping s N (i) = 1 + k =i I{ p i,k < 1 2 }
for 1 ≤ i ≤ n belongs to S n and is the unique solution of the empirical Kemeny aggregation problem (5.4). It is then referred to as the plug-in Kemeny median.

The technical proof is given in section 5.6. The main argument consists in showing that, under the hypotheses stipulated, with very large probability, the empirical distribution P N = (1/N ) N i=1 δ Σ i is strictly stochastically transitive and Theorem 5.5 applies to it. Proposition 5.14 gives a rate in O(e -α h N ) with α h = 1 2 log 1/(1 -4h 2 ) . Notice that α h → +∞ as h → 1/2, which corresponds to the situation where the distribution converges to a Dirac δ σ since P is supposed to be stochastically transitive. Therefore the greatest h is, the easiest is the problem and the strongest is the rate. On the other hand, the rate decreases when h gets smaller.

The next result proves that, in the low noise setting, the rate of Proposition 5.14 is almost sharp in the minimax sense.

Proposition 5.15. Let h > 0 and define

R N (h) = inf σ N sup P E P [L P (σ N ) -L * P ] ,
where the supremum is taken over all stochastically transitive probability distributions P on S n satisfying NA(h). We have: ∀N ≥ 1,

R N (h) ≥ h 4 e -N 2h log( 1+2h 1-2h ) .
(5.22)

The proof of Proposition 5.15 is provided section 5.6. It shows that the minimax rate is lower bounded by a rate in O(e -β h N ) with

β h = 2h log((1 + 2h)/(1 -2h)). Notice that α h ∼ β h /2
when h → 1/2. The rate obtained for empirical Kemeny aggregation in Proposition 5.14 is thus almost optimal in this case. The bound from Proposition 5.15 is however too small when h → 0 as it goes to 0. Improving the minimax lower bound in this situation is left for future work.

Computational Issues

As mentioned previously, the computation of an empirical Kemeny consensus is NP-hard and therefore usually not tractable in practice. Proposition 5.9 and 5.14 can therefore be seen as providing theoretical guarantees for the ideal estimator σ N . Under the low noise assumption however, Proposition 5.14 also has a practical interest. Part (ii) says indeed that in this case, the Copeland method (ordering items by decreasing score s N ), which has complexity in O(N n 2 ), outputs the exact Kemeny consensus with high probability. Furthermore, part (i) actually applies to any empirical median σN that is equal to σ N with probability at least Chapter 5. A Statistical Framework for Ranking Aggregation 1 -(n(n -1)/4)e -(N/2) log(1/(1-4h 2 )) thus in particular to the Copeland method. In summary, under assumption NA(h) with h > 0, the tractable Copeland method outputs the exact Kemeny consensus with high probability and has almost optimal excess risk convergence rate.

Conclusion

Whereas the issue of computing (approximately) ranking medians has received much attention in the literature, just like statistical modelling of the variability of ranking data, the generalization ability of practical ranking aggregation methods has not been studied in a general (nonparametric) probabilistic setup. By describing optimal elements and establishing learning rate bounds for empirical Kemeny ranking medians, our analysis provides a first statistical explanation for the success of these techniques, and highlights regimes where Kemeny aggregation is tractable.

This chapter closes Part I where we investigated the full ranking aggregation problem. The results we obtained on statistical ranking aggregation, especially in this chapter, enabled us to consider two closely related problems that we will investigate Part II. The first one is another unsupervised problem, namely dimensionality reduction; we propose to represent in a sparse manner any distribution P on full rankings by a partial ranking C and an approximate distribution P C relative to this partial ranking. The second one is a supervised problem closely related to ranking aggregation, namely ranking regression, often called label ranking in the literature.

Proofs

Proof of Remark 5.6

Suppose P satisfies the strongly stochastically transitive condition. According to Theorem 5, there exists σ * ∈ S n satisfying (5.9) and (5.11). We already know that σ * is a Kemeny consensus since it minimizes the loss with respect to the Kendall's τ distance. Then, Copeland's method order the items by the number of their pairwise victories, which corresponds to sort them according to the mapping s * and thus σ * is a Copeland consensus. Finally, the Borda score for an item is: s(i) = σ∈Sn σ(i)P (σ). Firstly observe that for any σ ∈ S n , 

k =i I{σ(k) < σ(i)} - k =i I{σ(k) > σ(i)} = σ(i) -1 -(n -σ(i)) = 2σ(i) -(n +
s(i) = σ∈Sn 1 2   n + 1 + k =i (2I{σ(k) < σ(i)} -1)   P (σ) = n + 1 2 + 1 2   σ∈Sn k =i 2I{σ(k) < σ(i)} -(n -1)   P (σ) = n + 1 2 - n -1 2 + k =i σ∈Sn I{σ(k) < σ(i)}P (σ) = 1 + k =i p k,i .
Let i, j such that p i,j > 1/2 (⇔ s * (i) < s * (j) under stochastic transitivity).

s(j) -s(i) = k =j p k,j - k =i p k,i = k =i,j p k,j - k =i,j p k,i + p i,j -p j,i = k =i,j p k,j -p k,i + (2p i,j -1)
With (2p i,j -1) > 0. Now we focus on the first term, and consider k = i, j.

(i) First case: p j,k ≥ 1/2. The strong stochastic transitivity condition implies that :

p i,k ≥ max(p i,j , p j,k ) 1 -p k,i ≥ max(p i,j , p j,k ) p k,j -p k,i ≥ p k,j -1 + max(p i,j , p j,k ) p k,j -p k,i ≥ -p j,k + max(p i,j , p j,k ) p k,j -p k,i ≥ max(p i,j -p j,k , 0) p k,j -p k,i ≥ 0. (ii) Second case: p k,j > 1/2. If p k,i ≤ 1/2, p k,j -p k,i > 0. Now if p k,i > 1/2, having p i,j > 1/2
, the strong stochastic transitivity condition implies that p k,j ≥ max(p k,i , p i,j ).

Therefore in any case, ∀k = i, j, p k,j -p k,i ≥ 0 and s(j) -s(i) > 0.
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Proof of Proposition 5.9

(i) By the Cauchy-Schwartz inequality,

E i,j [|p i,j -p i,j |] ≤ E i,j [(p i,j -p i,j ) 2 ] = V ar( p i,j ).
Since E i,j [p i,j -p i,j ] = 0. Then, for i < j, N p i,j ∼ B(N, p i,j )) so V ar( p i,j ) =

p i,j (1-p i,j ) N ≤ 1 4N
. Finally, we can upper bound the expectation of the excess of risk as follows:

E [L( σ N ) -L * ] ≤ 2E max σ∈Sn | L N (σ) -L(σ)| ≤ 2 n 2 1 √ 4N = n(n -1) 2 √ N .
(ii) By (5.16) one has for any t > 0

P L( σ N ) -L * > t ≤ P 2 n 2 E i,j [|p i,j -p i,j |] > t = P 1≤i<j≤n |p i,j -p i,j | > t 2 , (5.24) 
and the other hand, it holds that

P 1≤i<j≤n |p i,j -p i,j | > t 2 ≤ P 1≤i<j≤n |p i,j -p i,j | > t 2 n 2 ≤ 1≤i<j≤n P |p i,j -p i,j | > t 2 n 2 . (5.25)
Now, Hoeffding's inequality to p i,j = (1/N ) N t=1 I{Σ t (i) < Σ t (j)} gives

P |p i,j -p i,j | > t 2 n 2 ≤ 2e -2N (t/2( n 2 )) 2 .
(5.26) Therefore, combining (5.24), (5.25) and (5.26) we get

P L( σ N ) -L * > t ≤ 2 n 2 e -N t 2 2 ( n 2 ) 2 . Setting δ = 2 n 2 e -N t 2 2 ( n 2 )
2 one obtains that with probability greater than 1 -δ,

L( σ N ) -L * ≤ n 2 2 log(n(n -1)/δ) N .
Proof of Proposition 5.11

In the following proof, we follow Le Cam's method, see section 2.3 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF].

Consider two Mallows models P θ 0 and P θ 1 where θ k = (σ * k , φ) ∈ S n × (0, 1) and σ * 0 = σ * 1 . We clearly have: 

R N ≥ inf σ N max k=0, 1 E P θ k L P θ k (σ N ) -L * P θ k = inf σ N max k=0, 1 i<j E P θ k 2|p i,j - 1 2 | × I{(σ N (i) -σ N (j)(σ * k (i) -σ * k (j)) < 0} ≥ inf σ N |φ -1| (1 + φ) max k=0, 1 i<j E P θ k [I{(σ N (i) -σ N (j)(σ * k (i) -σ * k (j)) < 0}] ≥ |φ -1| 2 inf σ N max k=0, 1 E P θ k [d τ (σ N , σ * k )] , using the fact that |p i,j -1 2 | ≥ |φ-1| 2 
ψ(Σ 1 , . . . , Σ N ) = I{d τ (σ N , σ * 1 ) ≤ d τ (σ N , σ * 0 ) }.
If ψ = 1, by triangular inequality, we have:

∆ ≤ d τ (σ N , σ * 0 ) + d τ (σ N , σ * 1 ) ≤ 2d τ (σ N , σ * 0 ).
Hence, we have

E P θ 0 [d τ (σ N , σ * 0 )] ≥ E P θ 0 [d τ (σ N , σ * 0 )I{ψ = +1}] ≥ ∆ 2 P θ 0 {ψ = +1}
and similarly

E P θ 1 [d τ (σ N , σ * 1 )] ≥ E P θ 1 [d τ (σ N , σ * 1 )I{ψ = 0}] ≥ ∆ 2 P θ 1 {ψ = 0}.
Bounding by below the maximum by the average, we have:

inf σ N max k=0, 1 E P θ k [d τ (σ N , σ * k )] ≥ inf σ N ∆ 2 1 2 {P θ 1 {ψ = 0} + P θ 0 {ψ = 1}} ≥ ∆ 4 min k=0, 1 {P θ 1 {ψ * = 0} + P θ 0 {ψ * = 1}} ,
where the last inequality follows from a standard Neyman-Pearson argument, denoting by

ψ * (Σ 1 , . . . , Σ N ) = I N i=1 P θ 1 (Σ i ) P θ 0 (Σ i ) ≥ 1
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R N ≥ ∆|φ -1| 8 σ i ∈S N , 1≤i≤N min N i=1 P θ 0 (σ i ), N i=1 P θ 1 (σ i ) ,
and with Le Cam's inequality that:

R N ≥ ∆|φ -1| 16 e -N K(P θ 0 ||P θ 1 ) ,
where K(P θ 0 ||P θ 1 ) = σ∈S N P θ 0 (σ) log(P θ 0 (σ)/P θ 1 (σ)) denotes the Kullback-Leibler divergence. In order to establish a minimax lower bound of order 1/ √ N , one should choose θ 0 = (φ 0 , σ 0 ) and θ 1 = (φ 1 , σ 1 ) so that, for k ∈ {0, 1}, φ k → 1 and K(P θ 0 ||P θ 1 ) → 0 as N → +∞ at appropriate rates.

We consider the special case where φ 0 = φ 1 = φ, which results in Z 0 = Z 1 = Z for the normalization constant, and we fix σ 0 ∈ S n . Let i < j such that σ 0 (i) + 1 = σ 0 (j). We consider σ 1 = (i, j)σ 0 the permutation where the adjacent pair (i, j) has been transposed, so that σ 1 (i) = σ 1 (j) + 1 and ∆ = 1. For any σ ∈ S n , notice that

d τ (σ 0 , σ) -d τ (σ 1 , σ) = I{(σ(i) > σ(j)} -I{(σ(i) < σ(j)} (5.27)
According to (5.14), the Kullback-Leibler divergence is given by

K(P θ 0 ||P θ 1 ) = σ∈Sn P θ 0 (σ) log φ dτ (σ 0 ,σ)-dτ (σ 1 ,σ)
And combining it with (5.27) yields

K(P θ 0 ||P θ 1 ) = log(φ) σ∈Sn P θ 0 (σ) (I{(σ(i) > σ(j)} -I{(σ(i) < σ(j)})
By denoting p 0 j,i = P θ 0 [Σ(i) < Σ(j)], this gives us

K(P θ 0 ||P θ 1 ) = log(φ) p 0 j,i -p 0 i,j = log( 1 φ ) 2p 0 i,j -1 = log( 1 φ ) 1 -φ 1 + φ (5.28)
Where the last equality comes from Busa-Fekete et al. ( 2014) (Corollary 3 for adjacent items in the central permutation, see also Remark 5.7).

By taking φ = 1 -1/ √ N , we firstly have |φ -1| = 1/ √ N and

K(P θ 0 ||P θ 1 ) = -log(1 -1/ √ N ) 1/ √ N 2 -1/ √ N .
Then, since for all x < 1, x = 0, -log(1 -x) > x and for all N ≥ 1, 2 -1 √ N ≥ 1, the Kullback-Leibler divergence can be upper bounded as follows:

K(P θ 0 ||P θ 1 ) ≤ 1 √ N . 1 √ N = 1 N
and thus the exponential term e -N K(P θ 0 ||P θ 1 ) is lower bounded by e -1 . Finally:

R N ≥ ∆ 32 min k=0, 1 |φ k -1|e -N K(P θ 0 ||P θ 1 ) ≥ 1 16e √ N
Proof of Proposition 5.14

Let A N = i<j {(p i,j -1 2 )( p i,j -1 2 ) > 0}.
On the event A N , p and p satisfy the strongly stochastic transitivity property, and agree on each pair, therefore σ N = σ * and L( σ N ) -L * = 0.

We can suppose without loss of generality that for any i < j, 1 2 + h ≤ p i,j ≤ 1, and we have N p i,j ∼ B(N, p i,j ). We thus have:

P p i,j ≤ 1 2 = P N p i,j ≤ N 2 = N 2 k=0 N k p k i,j (1 -p i,j ) N -k (5.29) As k → p k i,j (1 -p i,j ) N -k is an increasing function of k since p i,j > 1 2 , we have N 2 k=0 N k p k i,j (1 -p i,j ) N -k ≤ N 2 k=0 N k .p N 2 i,j (1 -p i,j ) N 2
(5.30)

Then, since

N 2 k=0 N k + N k= N 2 N k = N k=0 N k = 2 N and p i,j ≥ 1 2 + h, we obtain N 2 k=0 N k .p N 2 i,j (1 -p i,j ) N 2 ≤ 2 N -1 . 1 4 -h 2 N 2 = 1 2 1 -4h 2 N 2 = 1 2 e -N 2 log 1 1-4h 2 ,
(5.31)

Combining (5.29), (5.30) and (5.31), yields

P p i,j ≤ 1 2 ≤ 1 2 e -N 2 log 1 1-4h 2 (5.32)
Since the probability of the complementary of A N is

P A c N = P i<j {(p i,j - 1 2 )( p i,j - 1 2 ) < 0} = P i<j { p i,j ≤ 1 2 } ,
(5.33) combining (5.32) and Boole's inequality on (5.33) yields

P A c N ≤ i<j P p i,j ≤ 1 2 ≤ n(n -1) 4 e -N 2 log 1 1-4h 2 .
(5.34)

As the expectation of the excess of risk can be written

E L( σ N ) -L * = E (L( σ N ) -L * )I{A N } + (L( σ N ) -L * )I{A c N } ,
using successively the fact that L( σ N ) -L * = 0 on A N and (5.34) we obtain finally

E L( σ N ) -L * ≤ n(n -1) 2 P A c N ≤ n 2 (n -1) 2 8 e -N 2 log 1 1-4h 2 .

Proof of Remark 12

According to (5.12) and ( 5.21) we have

E[( L * -L * ) 2 ] = E     i<j 1 2 -p i,j - 1 2 - i<j 1 2 -p i,j - 1 2   2   ,
and pushing further the calculus gives

E[( L * -L * ) 2 ] = E     i<j p i,j - 1 2 -p i,j - 1 2   2   = E     i<j |p i,j -p i,j |   2   .
Firstly, with the bias-variance decomposition we obtain

E[( L * -L * ) 2 ] = V ar   i<j |p i,j -p i,j |   +   E   i<j |p i,j -p i,j |     2 .
(5.35)

The bias in (5.35) can be written as

E   i<j |p i,j -p i,j |   = i<j p i,j > p i,j E [p i,j -p i,j ] + i<j p i,j < p i,j E [ p i,j -p i,j ] = 0
(5.36)

And the variance in (5.35) is

V ar   i<j |p i,j -p i,j |   = i<j i <j Cov |p i,j -p i,j | , p i ,j -p i ,j
(5.37)

≤ i<j i <j
V ar(|p i,j -p i,j |)V ar( p i ,j -p i ,j ).

(5.38)

Since for i < j, p i,j ∼ B(N, p i,j ), we have

V ar(|p i,j -p i,j |)V ar( p i ,j -p i ,j ) = p i,j (1 -p i,j )p i ,j (1 -p i ,j ) N 2 ≤ 1 16N 2 .
(5.39)

Therefore combining (5.39) with (5.37) gives

V ar   i<j |p i,j -p i,j |   ≤ n(n -1) 2 2 1 4N .
(5.40)

Finally according to (5.35), (5.36) and (5.40) we obtain:

E[( L * -L * ) 2 ] ≤ n 2 (n-1) 2 16N .
Proof of Proposition 5.15

Similarly to Proposition 5.11, we use Le Cam's method and consider two Mallows models P θ 0 and P θ 1 where θ k = (σ * k , φ) ∈ S n × (0, 1) and σ * 0 = σ * 1 . We can lower bound the minimax risk as follows

R N ≥ inf σ N max k=0, 1 E P θ k L P θ k (σ N ) -L * P θ k = inf σ N max k=0, 1 i<j E P θ k 2|p i,j - 1 2 | × I{(σ N (i) -σ N (j)(σ * (i) -σ * k (j)) < 0} ≥ inf σ N max k=0, 1 hE P θ k [d τ (σ N , σ * )] ≥h ∆ 4 e -N K(P θ 0 ||θ 1 )
With K(P θ 0 ||θ 1 ) = log( 1 φ ) 1-φ 1+φ accordig to (5.28) and ∆ = 1, choosing σ 0 and σ 1 as in the proof of Proposition 5.11. Now we take φ = 1-2h 1+2h so that both P θ 0 and P θ 1 satisfy NA(h), and we have K(P θ 0 ||θ 1 ) = 2h log( 1+2h 1-2h ), which gives us finally:

R N ≥ h 4 e -N 2h log( 1+2h 1-2h )
PART II

Beyond Ranking Aggregation: Dimensionality Reduction and Ranking Regression

CHAPTER 6

Dimensionality Reduction and (Bucket) Ranking:

A Mass Transportation Approach

Chapter abstract Whereas most dimensionality reduction techniques (e.g. PCA) for multivariate data essentially rely on linear algebra to a certain extent, summarizing ranking data, viewed as realizations of a random permutation Σ on a set of items indexed by i ∈ {1, . . . , n}, is a great statistical challenge, due to the absence of vector space structure for the set of permutations S n . It is the goal of this chapter to develop an original framework for possibly reducing the number of parameters required to describe the distribution of a statistical population composed of rankings/permutations, on the premise that the collection of items under study can be partitioned into subsets/buckets, such that, with high probability, items in a certain bucket are either all ranked higher or else all ranked lower than items in another bucket. In this context, Σ's distribution can be hopefully represented in a sparse manner by a bucket distribution, i.e. a bucket ordering plus the ranking distributions within each bucket. More precisely, we introduce a dedicated distortion measure, based on a mass transportation metric, in order to quantify the accuracy of such representations. The performance of buckets minimizing an empirical version of the distortion is investigated through a rate bound analysis. Complexity penalization techniques are also considered to select the shape of a bucket order with minimum expected distortion. Beyond theoretical concepts and results, numerical experiments on real ranking data are displayed in order to provide empirical evidence of the relevance of the approach promoted.

Introduction

Recommendation systems and search engines are becoming ubiquitous in modern technological tools. Operating continuously on still more content, use of such tools generate or take as input more and more data. The design of machine-learning algorithms, tailored for these data, is crucial in order to optimize the performance of such systems (e.g. rank documents by degree of relevance for a specific request in information retrieval, propose a sorted list of items/products to a prospect she/he is most liable to buy in e-commerce). The scientific challenge relies on the nature of the data feeding or being produced by such algorithms: input or/and output information generally consists of rankings/orderings, expressing preferences. Because the number of possible rankings explodes with the number of instances, it is of crucial importance to elaborate dedicated dimensionality reduction methods in order to represent ranking data efficiently. Principal Component Analysis and its numerous variants to the ranking setup, the main barrier being the absence of a vector space structure on the set of permutations. In this chapter, we develop a novel framework for representing the distribution of ranking data in a simple manner, that is shown to extend, in some sense, consensus ranking. The rationale behind the approach we promote is that, in many situations encountered in practice, the set of instances may be partitioned into subsets/buckets, such that, with high probability, objects belonging to a certain bucket are either all ranked higher or else all ranked lower than objects lying in another bucket.

In such a case, the ranking distribution can be described in a sparse fashion by: 1) a partial ranking structure (related to the buckets) and 2) the marginal ranking distributions associated to each bucket. Precisely, optimal representations are defined here as those associated to a bucket order minimizing a certain distortion measure we introduce, the latter being based on a mass transportation metric on the set of ranking distributions. In this chapter, we also establish rate bounds describing the generalization capacity of bucket order representations obtained by minimizing an empirical version of the distortion and address model selection issues related to the choice of the bucket order size/shape. Numerical results are also displayed, providing in particular strong empirical evidence of the relevance of the notion of sparsity considered, which the dimensionality reduction technique introduced is based on.

The chapter is organized as follows. In section 7.2, a few concepts and results pertaining to (Kemeny) consensus ranking are briefly recalled and the extended framework we consider for dimensionality reduction in the ranking context is described at length. Statistical results guaranteeing that optimal representations of reduced dimension can be learnt from ranking observations are established in section 6.3, while numerical experiments are presented in section 6.4 for illustration purpose. Some concluding remarks are collected in section 6.5. Technical details are deferred to section 6.7.

Preliminaries

Background on Bucket Orders

It is the purpose of this section to introduce the main concepts and definitions that shall be used in the subsequent analysis. The indicator function of any event E is denoted by I{E}, the Dirac mass as any point a by δ a , the cardinality of any finite subset A by #A. For any non empty subset A ⊂ n , any ranking σ on n naturally defines a ranking on A, denoted by Π A (σ) (i.e.
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∀i ∈ I, Π A (σ)(i) = 1 + j∈A\{i} I{σ(j) < σ(i)}).
If Σ is a random permutation on S n with distribution P , the distribution of Π A (Σ) will be referred to as the marginal of P related to the subset A. A bucket order C (also referred as a partial ranking in the literature) is a strict partial order defined by an ordered partition of n , i.e a sequence (C 1 , . . . , C K ) of K ≥ 1 pairwise disjoint non empty subsets (buckets) of n such that: (1)

∪ K k=1 C k = n , (2) ∀(i, j) ∈ n 2 , we have: i ≺ C j (i is ranked lower than j in C) iff ∃k < l s.t. (i, j) ∈ C k × C l . The items in C 1
thus have the lowest ranks whereas the items in C K have the highest ones; and the items within each bucket are incomparable. For any bucket order C = (C 1 , . . . , C K ), its number of buckets K is referred to as its size, whereas the vector λ = (#C 1 , . . . , #C K ), i.e the sequence of sizes of buckets in C (verifying K k=1 #C k = n), is referred to as its shape. Hence, any bucket order C of size n corresponds to a full ranking/permutation σ ∈ S n , whereas the set of all items n is the unique bucket order of size 1.

A Mass Transportation Approach to Dimensionality Reduction on S n

We now develop a framework, that is shown to extend consensus ranking, for dimensionality reduction fully tailored to ranking data exhibiting a specific type of sparsity. For this purpose, we consider the so-termed mass transportation approach to defining metrics on the set of probability distributions on S n as follows, see [START_REF] Rachev | Probability Metrics and the Stability of Stochastic Models[END_REF] (incidentally, this approach is also used in [START_REF] Clémençon | Kantorovich distances between rankings with applications to rank aggregation[END_REF] to introduce a specific relaxation of the consensus ranking problem). Definition 6.1. Let d : S 2 n → R + be a metric on S n and q ≥ 1. The q-th Wasserstein metric with d as cost function between two probability distributions P and P on S n is given by:

W d,q P, P = inf Σ∼P, Σ ∼P E d q (Σ, Σ ) , (6.1)
where the infimum is taken over all possible couplings1 (Σ, Σ ) of (P, P ).

As revealed by the following result, when the cost function d is equal to the Kendall's τ distance, which case the subsequent analysis focuses on, the Wasserstein metric is bounded by below by the l 1 distance between the pairwise probabilities.

Lemma 6.2. For any probability distributions P and P on S n :

W dτ ,1 P, P ≥ i<j |p i,j -p i,j |. (6.2)
The equality holds true when the distribution P is deterministic (i.e. when ∃σ ∈ S n s.t. P = δ σ ).
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The proof of Lemma 6.2 as well as discussions on alternative cost functions (the Spearman ρ distance) are deferred to section 6.7. As shown below, (6.2) is actually an equality for various distributions P built from P that are of special interest regarding dimensionality reduction.

Sparsity and Bucket Orders. Here, we propose a way of describing a distribution P on S n , originally described by n! -1 parameters, by finding a much simpler distribution that approximates P in the sense of the Wasserstein metric introduced above under specific assumptions, extending somehow the consensus ranking concept. Let 2 ≤ K ≤ n and C = (C 1 , . . . , C K ) be a bucket order of n with K buckets. In order to gain insight into the rationale behind the approach we promote, observe that a distribution P can be naturally said to be sparse if, for all 1 ≤ k < l ≤ K and all (i, j) ∈ C k × C l (i.e. i ≺ C j), we have p j,i = 0, which means that with probability one Σ (i) < Σ (j), when Σ ∼ P . In other words, the relative order of two items belonging to two different buckets is deterministic. Throughout the paper, such a probability distribution is referred to as a bucket distribution associated to C. Since the variability of a bucket distribution corresponds to the variability of its marginals within the buckets C k 's, the set

P C of all bucket distributions associated to C is of dimension d C = k≤K #C k ! -1 ≤ n! -1.
A best summary in P C of a distribution P on S n , in the sense of the Wasserstein metric (6.1), is then given by any solution P * C of the minimization problem min P ∈P C W dτ ,1 (P, P ). (6.3) Set Λ P (C) = min P ∈P C W dτ ,1 (P, P ) for any bucket order C.

Dimensionality Reduction. Let K ≤ n. We denote by C K the set of all bucket orders C of n with K buckets. If P can be accurately approximated by a probability distribution associated to a bucket order with K buckets, a natural dimensionality reduction approach consists in finding a solution C * (K) of min

C∈C K Λ P (C), (6.4) 
as well as a solution P * C * (K) of ( 6.3) for C = C * (K) and a coupling

(Σ, Σ C * (K) ) s.t. E[d τ (Σ, Σ C * (K) )] = Λ P (C * (K) ).
Connection with Consensus Ranking. Observe that ∪ C∈Cn P C is the set of all Dirac distributions δ σ , σ ∈ S n . Hence, in the case K = n, dimensionality reduction as formulated above boils down to solve Kemeny consensus ranking. Indeed, we have: ∀σ ∈ S n , W dτ ,1 (P, δ σ ) = L P (σ).

Hence, medians σ * of a probability distribution P (i.e. solutions of (5.2)) correspond to the Dirac distributions δ σ * closest to P in the sense of the Wasserstein metric (6.1):

P * C * (n) = δ σ * and Σ C * (n) = σ * .
Whereas the space of probability measures on S n is of explosive dimension Chapter 6. Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach 83 n! -1, consensus ranking can be thus somehow viewed as a radical dimension reduction technique, where the original distribution is summarized by a median permutation σ * . In constrast, the other extreme case K = 1 corresponds to no dimensionality reduction at all, i.e. Σ C * (1) = Σ.

Optimal Couplings and Minimal Distortion

Fix a bucket order C = (C 1 , . . . , C K ). A simple way of building a distribution in P C based on P consists in considering the random ranking Σ C coupled with Σ, that ranks the elements of any bucket C k in the same order as Σ and whose distribution P C belongs to P C :

∀k ∈ {1, . . . , K}, ∀i ∈ C k , Σ C (i) = 1 + l<k #C l + j∈C k I{Σ(j) < Σ(i)}, (6.5)
which defines a permutation. Distributions P and P C share the same marginals within the C k 's and thus have the same intra-bucket pairwise probabilities (p i,j ) (i,j)∈C 2 k , for all k ∈ {1, . . . , K}.

Observe that the expected Kendall τ distance between Σ and Σ C is given by:

E [d τ (Σ, Σ C )] = i≺ C j p j,i = 1≤k<l≤K (i,j)∈C k ×C l p j,i , (6.6) 
which can be interpreted as the expected number of pairs for which Σ violates the (partial) strict order defined by the bucket order C. The result stated below shows that (Σ, Σ C ) is optimal among all couplings between P and distributions in P C in the sense where (6.6) is equal to the minimum of (6.3), namely Λ P (C).

Proposition 6.3. Let P be any distribution on S n . For any bucket order C = (C 1 , . . . , C K ),

we have:

Λ P (C) = i≺ C j p j,i . (6.7)
The proof, given in section 6.7, reveals that (6.2) in Lemma 6.2 is actually an equality when P = P C and that W dτ ,1 (P,

P C ) = E [d τ (Σ, Σ C )].
Attention must be paid that it is quite remarkable that, when the Kendall τ distance is chosen as cost function, the distortion measure introduced admits a simple closed-analytical form, depending on elementary marginals solely, the pairwise probabilities namely. Hence, the distortion of any bucket order can be straightforwardly estimated from independent copies of Σ, opening up to the design of practical dimensionality reduction techniques based on empirical distortion minimization, as investigated in the next section. The case where the cost is the Spearman ρ distance is also discussed in section 6.7:

it is worth noticing that, in this situation as well, the distortion can be expressed in a simple manner, as a function of triplet-wise probabilities namely.

Property 1. Let P be stochastically transitive. A bucket order C = (C 1 , . . . , C K ) is said to agree with Kemeny consensus iff we have: i ≺ C j (i.e. ∃k < l, (i, j)

∈ C k × C l ) ⇒ p j,i ≤ 1/2.
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As recalled in the previous subsection, the quantity L * P can be viewed as a natural dispersion measure of distribution P and can be expressed as a function of the p i,j 's as soon as P is stochastically transitive. The remarkable result stated below shows that, in this case and for any bucket order C satisfying Property 1, P 's dispersion can be decomposed as the sum of the (reduced) dispersion of the simplified distribution P C and the minimum distortion Λ P (C). Corollary 6.4. Suppose that P is stochastically transitive. Then, for any bucket order C that agrees with Kemeny consensus, we have:

L * P = L * P C + Λ P (C).
(6.8)

In the case where P is strictly stochastically transitive, the Kemeny median σ * P of P is unique (see [START_REF] Korba | A learning theory of ranking aggregation[END_REF]). If C fulfills Property 1, it is also obviously the Kemeny median of the bucket distribution P C . As shall be seen in the next section, when P fulfills a strong version of the stochastic transitivity property, optimal bucket orders C * (K) necessarily agree with the Kemeny consensus, which may greatly facilitates their statistical recovery.

Related Work

The dimensionality reduction approach developed in this paper is connected with the optimal bucket order (OBO) problem considered in the literature, see e.g. Aledo et al. (2017b), [START_REF] Aledo | Approaching rank aggregation problems by using evolution strategies: the case of the optimal bucket order problem[END_REF], [START_REF] Feng | Discovering bucket orders from full rankings[END_REF], [START_REF] Gionis | Algorithms for discovering bucket orders from data[END_REF], [START_REF] Ukkonen | A randomized approximation algorithm for computing bucket orders[END_REF]. Given the pairwise probabilities (p i,j ) 1≤i =j≤n of a distribution P over S n , solving the OBO problem consists in finding a bucket order C = (C 1 , . . . , C K ) that minimizes the following cost:

Λ P (C) = i =j |p i,j -p i,j |, (6.9) 
where p i,j = 1 if i ≺ C j, p i,j = 0 if j ≺ C i and p i,j = 1/2 if i ∼ C j. In other words, the p i,j 's are the pairwise marginals of the bucket distribution P C related to C with independent and uniformly distributed partial rankings Π C k ( Σ C )'s for Σ C ∼ P C . Moreover, this cost verifies:

Λ P (C) = 2Λ P (C) + K k=1 (i,j)∈C 2 k |p i,j -1/2|. (6.10)
Observe that solving the OBO problem is much more restrictive than the framework we developed, insofar as no constraint is set about the intra-bucket marginals of the summary distributions solutions of (6.4). Another related work is documented in [START_REF] Shah | Feeling the bern: Adaptive estimators for bernoulli probabilities of pairwise comparisons[END_REF]; Pananjady et al.

(2017) and develops the concept of indifference sets. Formally, a family of pairwise probabilities ( p i,j ) is said to satisfy the indifference set partition (or bucket order) C when:

p i,j = p i ,j for all quadruples (i, j, i , j ) such that i ∼ C i and j ∼ C j , (6.11) which condition also implies that the intra-bucket marginals are s.t. p i,j = 1/2 for i ∼ C j (take i = j and j = i in (6.11)). Though related, our approach significantly differs from these works, since it avoids stipulating arbitrary distributional assumptions. For instance, it permits in contrast to test a posteriori, once the best bucket order C * (K) is determined for a fixed K, statistical hypotheses such as the independence of the bucket marginal components (i.e.

Π C * (K) k (Σ)'s
) or the uniformity of certain bucket marginal distributions. A summary distribution, often very informative and of small dimension both at the same time, is the marginal of the first bucket C * (K) 1

(the top-m rankings where m = |C * (K) 1

|).

Empirical Distortion Minimization -Rate Bounds and Model Selection

In order to recover optimal bucket orders, based on the observation of a training sample Σ 1 , . . . , Σ N of independent copies of Σ, Empirical Risk Minimization, the major paradigm of statistical learning, naturally suggests to consider bucket orders C = (C 1 , . . . , C K ) minimizing the empirical version of the distortion (6.7)

Λ N (C) = i≺ C j p j,i = Λ P N (C), (6.12) 
where the p i,j 's are the pairwise probabilities of the empirical distribution. For a given shape λ, we define the Rademacher average

R N (λ) = E 1 ,..., N   max C∈C K,λ 1 N N s=1 s i≺ C j I{Σ s (j) < Σ s (i)}   ,
where 1 , . . . , N are i.i.d. Rademacher r.v.'s (i.e. symmetric sign random variables), independent from the Σ s 's. Fix the number of buckets K ∈ {1, . . . , n}, as well as the bucket order shape λ = (λ 1 , . . . , λ K ) ∈ N * K such that K k=1 λ k = n. We recall that

C K = ∪ λ =(λ 1 ,...,λ K )∈N * K s.t. K k=1 λ k =n C K,λ .
The result stated below describes the generalization capacity of solutions of the minimization problem

min C∈C K,λ Λ N (C), (6.13) over the class C K,λ of bucket orders C = (C 1 , . . . , C K ) of shape λ (i.e. s.t. λ = (#C 1 , . . . , #C K ))
, through a rate bound for their excess of distortion. Its proof is given in section 6.7.

Chapter 6. Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach Theorem 6.5. Let C K,λ be any empirical distortion minimizer over C K,λ , i.e solution of (6.13).

Then, for all δ ∈ (0, 1), we have with probability at least 1 -δ:

Λ P ( C K,λ )-inf C∈C K Λ P (C) ≤ 4E [R N (λ)]+κ(λ) 2 log( 1 δ ) N + inf C∈C K,λ Λ P (C) -inf C∈C K Λ P (C) , where κ(λ) = K-1 k=1 λ k × (n -λ 1 -. . . -λ k ).
We point out that the Rademacher average is of order

O(1/ √ N ): R N (λ) ≤ κ(λ) 2 log n λ /N with n λ = n!/(#C 1 ! × • • • × #C K !) = #C K,λ
, where κ(λ) is the number of terms involved in (6.7)-(6.12) and n λ is the multinomial coefficient, i.e. the number of bucket orders of shape λ. Putting aside the approximation error, the rate of decay of the distortion excess is classically of order O P (1/ √ N ).

Remark 6.6. (EMPIRICAL DISTORTION MINIMIZATION OVER C K ) We point out that rate bounds describing the generalization ability of minimizers of (6.12) over the whole class C K can be obtained using a similar argument. A slight modification of Theorem 6.5's proof shows that, with probability larger than 1 -δ, their excess of distortion is less than n 2 (K -1)/K log(n 2 (K -1)#C K /(Kδ))/(2N ). Indeed, denoting by λ C the shape of

any bucket order C in C K , max C∈C K κ(λ C ) ≤ n 2 (K -1)/(2K), the upper bound being attained when K divides n for λ 1 = • • • = λ K = n/K.
In addition, we have:

#C K = K k=0 (-1) K-k K k k n .
Remark 6.7. (ALTERNATIVE STATISTICAL FRAMEWORK) Since the distortion (6.7) involves pairwise comparisons solely, an empirical version could be computed in a statistical framework stipulating that the observations are of pairwise nature, (I{Σ 1 (i 1 ) < Σ 1 (j 1 )}, . . . , I{Σ N (i N ) < Σ N (j N )}), where {(i s , j s ), s = 1, . . . , N }, are i.i.d. pairs, independent from the Σ s 's, drawn from an unknown distribution ν on the set {(i, j) : 1 ≤ i < j ≤ n} such that ν({(i, j)}) > 0 for all i < j. Based on these observations, more easily available in most practical applications (see e.g. [START_REF] Chen | Pairwise ranking aggregation in a crowdsourced setting[END_REF], [START_REF] Park | Preference completion: Large-scale collaborative ranking from pairwise comparisons[END_REF]), the pairwise probability p i,j , i < j, can be estimated by:

1 N i,j N s=1 I{(i s , j s ) = (i, j), Σ s (i s ) < Σ s (j s )}, with N i,j = N
s=1 I{(i s , j s ) = (i, j)} and the convention 0/0 = 0.

Selecting the shape of the bucket order. A crucial issue in dimensionality reduction is to determine the dimension of the simpler representation of the distribution of interest. Here we consider a complexity regularization method to select the bucket order shape λ that uses a datadriven penalty based on Rademacher averages. Suppose that a sequence {(K m , λ m )} 1≤m≤M of bucket order sizes/shapes is given (observe that M ≤ n K=1 n-1 K-1 = 2 n-1 ). In order to avoid overfitting, consider the complexity penalty given by pen(λ m , N ) = 2R N (λ m ) (6. The next result shows that the bucket order thus selected nearly achieves the performance that would be obtained with the help of an oracle, revealing the value of the index m ruling the bucket order size/shape that minimizes E[Λ P ( C Km,λm )].

Theorem 6.8. (AN ORACLE INEQUALITY) Let C K m ,λ m be any penalized empirical distortion minimizer over C K m ,λ m , i.e solution of (6.15). Then, for all δ ∈ (0, 1), we have with probability at least 1 -δ:

E Λ P ( C K m ,λ m ) ≤ min 1≤m≤M min C∈C Km,λm Λ P (C) + 2E [R N (λ m )] + 5M n 2 π 2N .
The Strong Stochastic Transitive Case. The theorem below shows that, when strong/strict stochastic transitivity properties hold for the considered distribution P , optimal buckets are those which agree with the Kemeny median.

Theorem 6.9. Suppose that P is strongly/strictly stochastically transitive. Let K ∈ {1, . . . , n} and λ = (λ 1 , . . . , λ K ) be a given bucket size and shape. Then, the minimizer of the distortion Λ P (C) over C K,λ is unique and given by C

* (K,λ) = (C * (K,λ) 1 , . . . , C * (K,λ) K
), where

C * (K,λ) k =    i ∈ n : l<k λ l < σ * P (i) ≤ l≤k λ l   
for k ∈ {1, . . . , K}. (6.16)

In addition, for any C ∈ C K,λ , we have:

Λ P (C) -Λ P (C * (K,λ) ) ≥ 2 j≺ C i (1/2 -p i,j ) • I{p i,j < 1/2}. (6.17)
In other words, C * (K,λ) is the unique bucket in C K,λ that agrees with σ * P (cf Property 1). Hence, still under the hypotheses of Theorem 6.9, the minimizer C * (K) of (6.4) also agrees with σ * P and corresponds to one of the n-1 K-1 possible segmentations of the ordered list (σ * -1 P (1), . . . , σ * -1 P (n)) into K segments. This property paves the way to design efficient algorithms for recovering bucket order representations with a fixed distortion rate of minimal dimension, avoiding to specify the size/shape in advance, see section 6.6 for further details. If, in addition, a low-noise condition for h > 0: is immediate from formula (5.10) (replacing P by P N ), as well as an estimate of C * (K,λ) , plugging σ * P N into (6.16) as implemented in the experiments below. When the empirical distribution P N is not stochastically transitive, which happens with negligible probability, the empirical median can be classically replaced by any permutation obtained from the Copeland score by breaking ties at random. The following result shows that, in the strict/strong stochastic transitive case, when the low-noise condition NA(h) is fulfilled, the excess of distortion of the empirical minimizers is actually of order O P (1/N ).

min i<j |p i,j -1/2| ≥ h (6.
Theorem 6.10. (FAST RATES) Let λ be a given bucket order shape and C K,λ any empirical distortion minimizer over C K,λ . Suppose that P is strictly/strongly stochastically transitive and fulfills condition (6.18). Then, for any δ > 0, we have with probability 1 -δ:

Λ P ( C K,λ ) -Λ P (C * (K,λ) ) ≤ 2 ( n 2 )+1 n 2 h × log n λ /δ N .
The proof is given section 6.7. In this section we illustrate the relevance of our approach through real-world ranking datasets, which exhibit the type of sparsity considered in the present article. The first one is the wellknown Sushi dataset (see [START_REF] Kamishima | Nantonac collaborative filtering: recommendation based on order responses[END_REF]), which consists of full rankings describing the preferences of N = 5000 individuals over n = 10 sushi dishes. We also considered the two Cars preference datasets2 (see E. Abbasnejad (2013)). It consists of pairwise comparisons of users between n different cars. In the first dataset, 60 users are asked to make all the possible 45 pairwise comparisons between 10 cars (around 3000 samples). In the second one, 60 users are asked to make (randomly selected) 38 comparisons between 20 cars (around 2500 samples).

Numerical Experiments on Real-world Datasets

For each dataset, the empirical ranking σ * P N is computed based on the empirical pairwise probabilities. In Figure 6.1, the dimension d C (in logarithmic scale) vs distortion Λ N (C) diagram is plotted for each dataset, for several bucket sizes (K) and shapes (λ). These buckets are obtained by segmenting σ * P N with respect to λ as explained at the end of the previous section. Each color on a plot corresponds to a specific size K, and each point in a given color thus represents a bucket order of size K. As expected, on each plot the lowest distortion is attained for high-dimensional buckets (i.e., of smaller size K). These numerical results shed light on the sparse character of these empirical ranking distributions. Indeed, the dimension d C can be drastically reduced, by choosing the size K and shape λ in an appropriate manner, while keeping a low distortion for the representation. The reader may refer to section 6.6 for additional dimension/distortion plots for different distributions which underline the sparsity observed here: specifically, these empirical distributions show intermediate behaviors between a true bucket distribution and a uniform distribution (i.e., without exhibiting bucket sparsity).

Conclusion

In this chapter, we have developed theoretical concepts to represent efficiently sparse ranking data distributions. We have introduced a distortion measure, based on a mass transportation metric on the set of probability distributions on the set of rankings (with Kendall's τ as transportation cost) in order to evaluate the accuracy of (bucket) distribution representations. This distortion measure can be related to the dispersion measure we introduced for ranking aggregation Chapter 5. We investigated the performance of empirical distortion minimizers and have also provided empirical evidence that the notion of sparsity, on which the dimensionality reduction method proposed relies, is encountered in various real-world situations. Such sparse representations could be exploited to improve the completion of certain statistical learning tasks based on ranking data (e.g. clustering, ranking prediction), by circumventing this way the curse of dimensionality. In the next chapter, we investigate another problem closely related to ranking aggregation, namely ranking regression.

Appendix A -Hierarchical Recovery of a Bucket Distribution

Motivated by Theorem 6.9, we propose a hierarchical 'bottom-up' procedure to recover, from ranking data, a bucket order representation (agreeing with Kemeny consensus) of smallest dimension for a fixed level of distortion, that does not requires to specify in advance the bucket size K and thus avoids computing the optimum (6.16) for all possible shape/size. Suppose for simplicity that P is strictly/strongly stochastically transitive. One starts with the bucket order of size n defined by its Kemeny median σ * P :

C(0) = ({σ * -1 P (1)}, . . . , {σ * -1 P (n)}). A Mass Transportation Approach
The initial representation has minimum dimension, i.e. d C(0) = 0, and maximal distortion among all bucket order representations agreeing with σ * P , i.e. Λ P (C(0)) = L * P , see Corollary 6.4. The binary agglomeration strategy we propose consists in recursively merging two adjacent buckets C k (j) and C k+1 (j) of the current bucket order C(j) = (C 1 (j), . . . , C K (j) into a single bucket, yielding the 'coarser' bucket order C(j + 1) = (C 1 (j), . . . , C k-1 (j), C k (j) ∪ C k+1 (j), C k+2 (j), . . . , C K (j)).

(6.19)

The pair (C k (j), C k+1 (j)) chosen corresponds to that maximizing the quantity

∆ (k) P (C(j)) = i∈C k (j),j∈C k+1 (j)
p j,i .

(6.20)

The agglomerative stage C(j) → C(j + 1) increases the dimension of the representation,

d C(j+1) = (d C(j) + 1) × #C k (j) + #C k+1 (j) #C k (j) -1, (6.21)
while reducing the distortion by Λ P (C(j)) -Λ P (C(j + 1)) = ∆ This algorithm is specifically designed for finding the bucket order C of minimal dimension d C (i.e. of maximal size K) such that a bucket distribution in P C approximates well the original distribution P (i.e. with small distortion Λ P (C)). The next result formally supports this idea in the limit case of P being a bucket distribution.

Theorem 6.11. Let P be a strongly/strictly stochastically transitive bucket distribution and denote K * = max{K ∈ {2, . . . , n}, ∃ bucket order C of size K s.t. P ∈ P C }.

(i) There exists a unique K * -shape λ * such that Λ P (C * (K * ,λ * ) ) = 0.

(ii) For any bucket order C such that P ∈ P

C : C = C * (K * ,λ * ) ⇒ d C > d C * (K * ,λ * ) .
(iii) The agglomerative algorithm, runned with d max = n! -1, = 0 and theoretical quantities (σ * P , ∆

P 's and Λ P ) instead of estimates, outputs C * (K * ,λ * ) .
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Proof. Straightforward if K * = n: assume K * < n in the following.

(i). Existence is ensured by definition of K * combined with Theorem 6.9. Assume there exist two distinct K * -shapes λ and λ such that Λ P (C * (K * ,λ) ) = Λ P (C * (K * ,λ ) ) = 0. Necessarily, there exists k ∈ {1, . . . , K -1} such that, for example, C * (K * ,λ) k

∩C * (K * ,λ ) k+1 = ∅ and C * (K * ,λ ) k+1 C * (K * ,λ) k
. Then, define a new bucket order C of size K * + 1 as follows:

C = C * (K * ,λ ) 1 , . . . , C * (K * ,λ ) k , C * (K * ,λ) k ∩ C * (K * ,λ ) k+1 , C * (K * ,λ ) k+1 \ C * (K * ,λ) k ∩ C * (K * ,λ ) k+1 , C * (K * ,λ ) k+2 , . . . , C * (K * ,λ ) K * .
Conclude observing that Λ P ( C) = 0 i.e. P ∈ P C , which contradicts the definition of K * .

(ii). By Theorem 6.9, any bucket order C such that P ∈ P C agrees with the Kemeny median.

Then, observe that such bucket order C of size K < K * is obtained by iteratively merging adjacent buckets of C * (K * ,λ * ) : otherwise, following the proof of (i), we could define a new bucket order C of size K * + 1 such that P ∈ P C . When K = K * -1, Eq. ( 6 

i,j = 1 if (i, j) ∈ C k (n -m) × C k+1 (n -m), p i,j = 0 if (i, j) ∈ C k+1 (n-m)×C k (n-m
) and p i,j = p i,j otherwise. Hence, P is a strongly/strictly stochastically transitive bucket distribution and C(n -m) is, by construction of P , returned by the algorithm when runned with distribution P . Hence by induction hypothesis: We now provide an illustration of the notions we introduced in this paper, in particular of a bucket distribution and of our distortion criteria. For n = 6 items, we fixed a bucket order C = (C 1 , C 2 , C 3 ) of shape λ = (2, 3, 1) and considered a bucket distribution P ∈ P C . Specifically, P is the uniform distribution over all the permutations extending the bucket order C and has thus its pairwise marginals such that p j,i = 0 as soon as (i, j) ∈ C k × C l with k < l. In We now perform a second experiment. We want to compare the distortion versus dimension graph for a true bucket distribution (i.e., for a collection of pairwise marginals that respect a bucket order) and for a uniform distribution (i.e., a collection of pairwise marginals where p j,i = 0.5 for all i, j). This corresponds to the plots on Figure 6.3. One can notice that the points are much more spread for a true bucket distribution, since some buckets will attain a very low distortion (those who agree with the true one) while some have a high distortion. In contrast, for a uniform distribution, all the buckets will perform relatively in the same way, and the scatter plot is much more compact.

P ∈ P C(n-m) . Conclude ob- serving that Λ P (C(n-m)) = Λ P (C(n-m))+ i∈C k (n-m),j∈C k+1 (n-m) p j,i = ∆ (k) P (C(n-m)), which implies that Λ P (C(n -m + 1)) = Λ P (C(n -m)) -∆ (k) P (C(n -m)) = 0.

B -Experiments on toy datasets
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C -Mass Transportation for Other Distances

The approach developed in the chapter mainly relies on the choice of the Kendall's τ distance as cost function involved in the Wasserstein metric. We now investigate two other well-known distances for permutations, the Spearman ρ distance and the Hamming distance (see section 2.2.3

Chapter 2).

The Spearman ρ case. The following result shows that the alternative study based on the 2-nd Wasserstein metric with the Spearman ρ distance d 2 as cost function would lead to a different distortion measure: Λ P (C) = min P ∈P C W d 2 ,2 (P, P ), whose explicit formula, given by the right hand side of Eq. ( 6.22), writes in terms of the triplet-wise probabilities p i,j,k = P Σ∼P {Σ(i) < Σ(j) < Σ(k)}. Moreover, the coupling (Σ, Σ C ) is also optimal in this case as the distortion verifies

Λ P (C) = E d 2 2 (Σ, Σ C ) .
Lemma 6.12. Let n ≥ 3 and P be a probability distribution on S n .

(i). For any probability distribution P on S n :

W d 2 ,2 P, P ≥ 2 n -2 a<b<c    (i,j,k)∈σ(a,b,c) max(p i,j,k , p i,j,k ) -1    ,
where σ(a, b, c) is the set of permutations of triplet (a, b, c).

(ii). If P ∈ P C with C a bucket order of n with K buckets: Proof. (i). Consider a coupling (Σ, Σ ) of two probability distributions P and P on S n . Define the triplet-wise probabilities p i,j,k = P Σ∼P {Σ(i) < Σ(j) < Σ(k)} and p i,j,k = P Σ ∼P {Σ (i) < Σ (j) < Σ (k)}. For clarity's sake, we will assume that pi,j,k = min(p i,j,k , p i,j,k ) > 0 for all triplets (i, j, k), the extension to the general case being straightforward. We also denote pi,j,k = max(p i,j,k , p i,j,k ). Given two pairs of three distinct elements of n , (i, j, k) and Chapter 6. Dimensionality Reduction and (Bucket) Ranking:

W d 2 ,2 P, P ≥ 2 n -2 1≤k<l<m≤K (a,b,c)∈C k ×C l ×Cm (n + 1)p c,b,a + n(p b,c,a + p c,a,b ) + p b,a,c + p a,c,b + 2 n -2 1≤k<l≤K (a,b,c)∈C k ×C l ×C l n(p b,c,a + p c,b,a ) + p b,a,c + p c,a,b + (a,b,c)∈C k ×C k ×C l n(p c
A Mass Transportation Approach (a, b, c), we define the following quantities:

π a,b,c|i,j,k = P Σ (a) < Σ (b) < Σ (c) | Σ(i) < Σ(j) < Σ(k) , π a,b,c|i,j,k = P Σ(a) < Σ(b) < Σ(c) | Σ (i) < Σ (j) < Σ (k) , πa,b,c|i,j,k = π a,b,c|i,j,k I{p i,j,k ≤ p i,j,k } + π a,b,c|i,j,k I{p i,j,k > p i,j,k }, πa,b,c|i,j,k = π a,b,c|i,j,k I{p i,j,k > p i,j,k } + π a,b,c|i,j,k I{p i,j,k ≤ p i,j,k }.
The interest of defining the πa,b,c|i,j,k 's is that it will allow us to choose πi,j,k|i,j,k = 1 at the end of the proof, which implies πi,j,k|i,j,k = pi,j,k pi,j,k . Throughout the proof, the triplets (a, b, c) will always be permutations of (i, j, k). Now write

E d 2 Σ, Σ 2 = n i=1 E[Σ(i) 2 ] + E[Σ (i) 2 ] -2E[Σ(i)Σ (i)],
where

E[Σ(i) 2 ] = E[(1 + j =i I{Σ(j) < Σ(i)}) 2 ] = 1 + j =i (n + 1)p j,i - k =i,j p j,i,k and E[Σ(i)Σ (i)] = 1 + j =i p j,i + p j,i + P{Σ(j) < Σ(i), Σ (j) < Σ (i)} + k =i,j P{Σ(j) < Σ(i), Σ (k) < Σ (i)}.
Hence, (6.23) where σ(a, b, c) is the set of the 6 permutations of triplet (a, b, c). Some terms simplify in Eq.

E d 2 Σ, Σ 2 = a<b<c (i,j,k)∈σ(a,b,c) 1 n -2 (n -1)(p j,i + p j,i ) -2P{Σ(j) < Σ(i), Σ (j) < Σ (i)} -p j,i,k -p j,i,k -2P{Σ(j) < Σ(i), Σ (k) < Σ (i)},
(6.23) when summing over σ(a, b, c), namely:

(i,j,k)∈σ(a,b,c) n -1 n -2 (p j,i + p j,i ) -p j,i,k -p j,i,k = 4n -2 n -2 .
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We now simply have:

E d 2 Σ, Σ 2 = a<b<c 4n -2 n -2 -2 (i,j,k)∈σ(a,b,c) 1 n -2 P{Σ(j) < Σ(i), Σ (j) < Σ (i)} + P{Σ(j) < Σ(i), Σ (k) < Σ (i)}.
(6.24)

Observe that for all triplets (a, b, c) and (i, j, k),

P(Σ (a) < Σ (b) < Σ (c), Σ(i) < Σ(j) < Σ(k)) + P(Σ (i) < Σ (j) < Σ (k), Σ(a) < Σ(b) < Σ(c)) = π a,b,c|i,j,k p i,j,k + π a,b,c|i,j,k p i,j,k .
Then, by the law of total probability, we have for all distinct i, j, k,

P{Σ(j) < Σ(i), Σ (j) < Σ (i)} = 1 2 {π j,k,i|j,k,i p j,k,i + π j,k,i|j,k,i p j,k,i } + 1 2 {π k,j,i|k,j,i p k,j,i + π k,j,i|k,j,i p k,j,i } + 1 2 {π j,i,k|j,i,k p j,i,k + π j,i,k|j,i,k p j,i,k } + 1 2 {π j,i,k|j,k,i p j,k,i + π j,i,k|j,k,i p j,k,i + π j,k,i|j,i,k p j,i,k + π j,k,i|j,i,k p j,i,k } + 1 2
{π k,j,i|j,k,i p j,k,i + π k,j,i|j,k,i p j,k,i + π j,k,i|k,j,i p k,j,i + π j,k,i|k,j,i p k,j,i } + 1 2 {π j,i,k|k,j,i p k,j,i + π j,i,k|k,j,i p k,j,i + π k,j,i|j,i,k p j,i,k + π k,j,i|j,i,k p j,i,k }, and

P{Σ(j) < Σ(i), Σ (k) < Σ (i)} = 1 2 {π j,k,i|j,k,i p j,k,i + π j,k,i|j,k,i p j,k,i } + 1 2 {π k,j,i|k,j,i p k,j,i + π k,j,i|k,j,i p k,j,i } + 1 2 {π k,j,i|j,k,i p j,k,i + π k,j,i|j,k,i p j,k,i + π j,k,i|k,j,i p k,j,i + π j,k,i|k,j,i p k,j,i } + P(Σ (j) < Σ (k) < Σ (i), Σ(j) < Σ(i) < Σ(k)) + P(Σ (k) < Σ (i) < Σ (j), Σ(j) < Σ(k) < Σ(i)) + P(Σ (k) < Σ (j) < Σ (i), Σ(j) < Σ(i) < Σ(k)) + P(Σ (k) < Σ (i) < Σ (j), Σ(k) < Σ(j) < Σ(i)) + P(Σ (k) < Σ (i) < Σ (j), Σ(j) < Σ(i) < Σ(k)),
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P{Σ(j) < Σ(i), Σ (k) < Σ (i)} + P{Σ(k) < Σ(i), Σ (j) < Σ (i)} = π j,k,i|j,k,i p j,k,i + π j,k,i|j,k,i p j,k,i
+ π k,j,i|k,j,i p k,j,i + π k,j,i|k,j,i p k,j,i + π k,j,i|j,k,i p j,k,i + π k,j,i|j,k,i p j,k,i + π j,k,i|k,j,i p k,j,i + π j,k,i|k,j,i p k,j,i

+ 1 2 π j,k,i|j,i,k p j,i,k + π j,k,i|j,i,k p j,i,k + π j,i,k|j,k,i p j,k,i + π j,i,k|j,k,i p j,k,i + 1 2 π k,i,j|j,k,i p j,k,i + π k,i,j|j,k,i p j,k,i + π j,k,i|k,i,j p k,i,j + π j,k,i|k,i,j p k,i,j + 1 2 π k,j,i|j,i,k p j,i,k + π k,j,i|j,i,k p j,i,k + π j,i,k|k,j,i p k,j,i + π j,i,k|k,j,i p k,j,i + 1 2 π k,i,j|k,j,i p k,j,i + π k,i,j|k,j,i p k,j,i + π k,j,i|k,i,j p k,i,j + π k,j,i|k,i,j p k,i,j + 1 2 π k,i,j|j,i,k p j,i,k + π k,i,j|j,i,k p j,i,k + π j,i,k|k,i,j p k,i,j + π j,i,k|k,i,j p k,i,j ,
which is symmetric by permuting indices j and k. Hence, k,j|j,k,i pj,k,i , (6.25) which is maximized when πj,k,i|j,k,i = 1 (which implies πj,k,i|j,k,i = pj,k,i pj,k,i ) and πk,j,i|j,k,i + πj,i,k|j,k,i = 1 -pj,k,i pj,k,i for all (i, j, k) ∈ σ(a, b, c) and then verifies: (6.26) which concludes the first part of the proof.

H(a, b, c) = (i,j,k)∈σ(a,b,c) 1 n -2 P{Σ(j) < Σ(i), Σ (j) < Σ (i)} + P{Σ(j) < Σ(i), Σ (k) < Σ (i)} = (i,j,k)∈σ(a,b,c) 2n -1 2(n -2) πj,k,i|j,k,i + n -1 n -2 (π k,j,i|j,k,i + πj,i,k|j,k,i ) + n -1 2(n -2) (π k,i,j|j,k,i + πi,j,k|j,k,i ) + 1 2 πi,k,j|j,k,i pj,k,i + 2n -1 2(n -2) πj,k,i|j,k,i + n -1 n -2 (π k,j,i|j,k,i + πj,i,k|j,k,i ) + n -1 2(n -2) (π k,i,j|j,k,i + πi,j,k|j,k,i ) + 1 2 πi,
H(a, b, c) ≤ (i,j,k)∈σ(a,b,c) n n -2 pi,j,k + n -1 n -2 pi,j,k = 1 n -2 (i,j,k)∈σ(a,b,c) n(p i,j,k + p i,j,k ) -pi,j,k = 1 n -2    2n - (i,j,k)∈σ(a,b,c) pi,j,k    ,
(ii). Now we consider the particular case of P ∈ P C , with C a bucket order of n with • (a, b, c) ∈ C k are in the same bucket: the maximizing conditions are πj,k,i|j,k,i = 1 and πk,j,i|j,k,i + πj,i,k|j,k,i = 1 -pj,k,i pj,k,i . Both are verified when

P = P C and Σ = Σ C as Σ(j) < Σ(k) < Σ(i) iff Σ C (j) < Σ C (k) < Σ C (i).
Hence, using Eq. ( 6.26):

H(a, b, c) ≤ 1 n -2    2n - (i,j,k)∈σ(a,b,c) pi,j,k    ≤ 2n -1 n -2 .
Moreover, this upper bound is attained when

Σ = Σ C : H(a, b, c) = 2n-1 n-2 . • (a, b, c) ∈ C k × C l × C m are in three different buckets (k < l < m):
this situation is fully characterized by the bucket structure and is hence independent of the coupling (Σ, Σ ).

For all (j, k, i) ∈ σ(a, b, c) \ {(a, b, c)}, p j,k,i = pj,k,i = 0 so Eq. (6.25) is not completely defined but H(a, b, c) rewrites more simply without the terms corresponding to the five impossible events Σ (j

) < Σ (k) < Σ (i). If (j, k, i) = (a, b, c), pj,k,i = p j,k,i and πa,b,c|j,k,i = 1 so the sum of these contributions in H(a, b, c) is: n -1 n -2 (p b,a,c + p a,c,b ) + n -1 2(n -2) (p b,c,a + p c,a,b ) + 1 2 p c,b,a . (6.27)
We have p a,b,c ≤ p a,b,c = 1 so the condition πa,b,c|a,b,c = 1 is realized and for all (i, j, k) ∈ σ(a, b, c), πi,j,k|a,b,c = p i,j,k . The sum of the corresponding contributions in H(a, b, c) is:

2n -1 n -2 p a,b,c + n -1 n -2 (p b,a,c + p a,c,b ) + n -1 2(n -2) (p b,c,a + p c,a,b ) + 1 2 p c,b,a . (6.28)
Finally, by combining equations 6.27 and 6.28,

H(a, b, c) = 2n -1 n -2 p a,b,c + 2(n -1) n -2 (p b,a,c + p a,c,b ) + n -1 n -2 (p b,c,a + p c,a,b ) + p c,b,a . • (a, b, c) ∈ C k × C l × C l are in two different buckets (k < l) such that a is ranked first among the triplet. For all (j, k, i) ∈ σ(a, b, c) \ {(a, b, c), (a, c, b)}, p j,k,i = pj,k,i = 0 so
Eq. (6.25) is not completely defined but H(a, b, c) rewrites more simply without the terms corresponding to the four impossible events Σ (j) < Σ (k) < Σ (i). For all (j, k, i) ∈ Chapter 6. Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach σ(a, b, c), π a,b,c|j,k,i + π a,c,b|j,k,i = 1, and the sum of their contributions in H(a, b, c) is: (6.30) becomes: 

2n -1 2(n -2) π a,b,c|a,b,c + n -1 n -2 π a,c,b|a,b,c p a,b,c + 2n -1 2(n -2) π a,c,b|a,c,b + n -1 n -2 π a,b,c|a,c,b p a,c,b + n -1 2(n -2) π a,b,c|b,c,a + 1 2 π a,c,b|b,c,a p b,c,a + n -1 n -2 π a,b,c|b,a,c + n -1 2(n -2) π a,c,b|b,a,c p b,a,c + n -1 2(n -2) π a,c,b|c,b,a + 1 2 π a,b,c|c,b,a p c,b,a + n -1 n -2 π a,c,b|c,a,b + n -1 2(n -2) π a
2n -1 2(n -2) (p a,b,c + p a,c,b ) + n -1 n -2 (p b,a,c + p c,a,b ) + n -1 2(n -2) (p b,c,a + p c
2n -1 2(n -2) π a,b,c|a,b,c + n -1 n -2 (π b,a,c|a,b,c + π a,c,b|a,b,c ) + n -1 2(n -2) (π b,c,a|a,b,c + π c,a,b|a,b,c ) + 1 2 π c,b,a|a,b,c p a,b,c + 2n -1 2(n -2) π a,c,b|a,c,b + n -1 n -2 (π c,a,b|a,c,b + π a,b,c|a,c,b ) + n -1 2(n -2) (π c
2n -1 2(n -2) (p a,b,c + p a,c,b ) + n -1 n -2 (p b,a,c + p c,a,b ) + n -1 2(n -2) (p b,c,a + p c,b,a ) (6.31)
with equality when Σ = Σ C . Finally, by summing the terms in 6.30 and 6.31,

H(a, b, c) ≤ 2n -1 n -2 (p a,b,c + p a,c,b ) + 2(n -1) n -2 (p b,a,c + p c,a,b ) + n -1 n -2 (p b,c,a + p c,b,a ),
where the equality holds for Σ = Σ C .
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• (a, b, c) ∈ C k × C k × C l are in two different buckets (k < l
) such that c is ranked last among the triplet. Similarly as in the previous situation, we obtain:

H(a, b, c) ≤ 2n -1 n -2 (p a,b,c + p b,a,c ) + 2(n -1) n -2 (p a,c,b + p b,c,a ) + n -1 n -2 (p c,a,b + p c,b,a ),
where the equality holds for Σ = Σ C .

As a conclusion, we proved that:

min P ∈P C W d 2 ,2 (P, P ) = W d 2 ,2 (P, P C ) = E[d 2 2 (Σ, Σ C )].
The Hamming case. We also provide a lower bound on the 1-st Wasserstein metric with the Hamming distance d H as cost function.

Lemma 6.13. For any probability distributions P and P on S n :

W d H ,1 (P, P ) ≥ n i=1    1 - n j=1 min(q i,j , q i,j )    ,
where q i,j = P Σ∼P {Σ(i) = j} and q i,j = P Σ ∼P {Σ (i) = j}.

Proof. Consider a coupling (Σ, Σ ) of two probability distributions P and P on S n . For all i, j, k, set

ρ i,j,k = P Σ (i) = k | Σ(i) = j and ρ i,j,k = P Σ(i) = k | Σ (i) = j .
For simplicity, we assume throughout the proof that min(q i,j , q i,j ) > 0 for all (i, j) ∈ n 2 , the generalization being straightforward. We may write

E d H Σ, Σ = n i=1 P Σ(i) = Σ (i) = n i=1 n j=1 k =j P Σ(i) = j, Σ (i) = k = n i=1 n j=1 k =j ρ i,j,k q i,j = n i=1 n j=1 q i,j (1 -ρ i,j,j ) = n - n i,j=1
ρ i,j,j q i,j .

(6.32)

For (i, j) ∈ n 2 , the quantity ρ i,j,j q i,j is maximized when ρ i,j,j = 1, which requires that q i,j ≤ q i,j . If q i,j > q i,j , rather write in a similar fashion:

E d H Σ, Σ = n - n i,j=1
ρ i,j,j q i,j , and set ρ i,j,j = 1. We thus have from Eq. (6.32):

W d H ,1 (P, P ) ≥ n i=1 inf (Σ,Σ ) s.t. P{Σ(i)=j}=q i,j and P{Σ (i)=j}=q i,j    1 - n j=1 P Σ(i) = Σ (i) = j    = n i=1    1 - n j=1
min(q i,j , q i,j )    .

Proofs

Proof of Lemma 6.2

Consider two probability distributions P and P on S n . Fix i = j and let (Σ, Σ ) be a pair of random variables defined on a same probability space, valued in S n and such that p i,j = P Σ∼P {Σ(i) < Σ(j)} and p i,j = P Σ ∼P {Σ (i) < Σ (j)}. Set

π i,j = P Σ (i) < Σ (j) | Σ(i) < Σ(j) .
Equipped with this notation, by the law of total probability, we have:

p i,j = p i,j π i,j + (1 -p i,j )(1 -π j,i ). (6.33)
In addition, we may write

E d τ (Σ, Σ ) = i<j E I{(Σ(i) -Σ(j))(Σ (i) -Σ (j)) < 0} = i<j E I{Σ(i) < Σ(j)}I{Σ (i) > Σ (j)} + I{Σ(i) > Σ(j)}I{Σ (i) < Σ (j)} = i<j p i,j (1 -π i,j ) + (1 -p i,j )(1 -π j,i ).
Suppose that p i,j < p i,j . Using (6.33), we have

p i,j (1 -π i,j ) + (1 -p i,j )(1 -π j,i ) = p i,j + (1 - 2π i,j )p i,j
, which quantity is minimum when π i,j = 1 (and in this case π j,i = (1 -p i,j )/(1p i,j )), and then equal to |p i,j -p i,j |. We recall that we can only set π i,j = 1 if the initial assumption p i,j < p i,j holds. In a similar fashion, if p i,j > p i,j , we have p i,j (1 

-π i,j ) + (1 - p i,j )(1 -π j,i ) = 2(1 -p i,j )(1 -π j,i ) + p i,j -p i,
P (Σ(i) -Σ(j))(Σ (i) -Σ (j)) < 0 , this proves that W dτ ,1 P, P ≥ i<j |p i,j -p i,j |.
As a remark, given a distribution P on S n , when P = P C with C a bucket order of n with K buckets, the optimality conditions on the π i,j 's are fulfilled by the coupling (Σ, Σ C ), which implies that: (6.34) where

W dτ ,1 (P, P C ) = i<j |p i,j -p i,j | = 1≤k<l≤K (i,j)∈C k ×C l p j,i ,
p i,j = P Σ C ∼P C [Σ C (i) < Σ C (j)] = p i,j I{k = l} + I{k < l}, with (k, l) ∈ {1, . . . , K} 2 such that (i, j) ∈ C k × C l .
Proof of Proposition 6.3

Let C be a bucket order of n with K buckets. Then, for P ∈ P C , Lemma 6.2 implies that:

W dτ ,1 P, P ≥ i<j |p i,j -p i,j | = K k=1 i<j,(i,j)∈C 2 k |p i,j -p i,j | + 1≤k<l≤K (i,j)∈C k ×C l p j,i ,
where the last equality results from the fact that p i,j = 1 when (i, j) ∈ C k × C l with k < l.

When P = P C , the intra-bucket terms are all equal to zero. Hence, it results from (6.34) that :

W dτ ,1 (P, P C ) = 1≤k<l≤K (i,j)∈C k ×C l p j,i = Λ P (C).
Proof of Theorem 6.5

Observe first that the excess of distortion can be bounded as follows:

Λ P ( C K,λ ) -inf C∈C K Λ P (C) ≤ 2 max C∈C K,λ Λ N (C) -Λ P (C) + inf C∈C K,λ Λ P (C) -inf C∈C K Λ P (C) .
By a classical symmetrization device (see e.g. [START_REF] Van Der | Weak convergence[END_REF]), we have:

E max C∈C K,λ Λ N (C) -Λ P (C) ≤ 2E [R N (λ)] . (6.35)
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max C∈C K,λ Λ N (C) -Λ P (C) ≤ 2E [R N (λ)] + κ(λ) log( 1 δ ) 2N .
Proof of Theorem 6.8

Following the proof of Theorem 8.1 in [START_REF] Boucheron | Theory of classification: A survey of some recent advances[END_REF], we have for all m ∈ {1, . . . , M },

E Λ P ( C K m ,λ m ) ≤ min C∈C Km,λm Λ P (C) + E [pen(λ m , N )] + M m =1 E max C∈C K m ,λ m Λ P (C) -Λ N (C) -pen(λ m , N ) + ,
where x + = max(x, 0) denotes the positive part of x. In adition, for any δ > 0, we have: using (6.35) for the first term, and both McDiarmid's inequality and Lemma 8.2 in [START_REF] Boucheron | Theory of classification: A survey of some recent advances[END_REF] for the second term. Observing that κ(λ) ≤ n 2 , integration by parts concludes the proof.

P max C∈C Km,λm Λ P (C) -Λ N (C) ≥ pen(λ m , N ) + δ ≤ P max C∈C Km,λm Λ P (C) -Λ N (C) ≥ E max C∈C Km,λm Λ P (C) -Λ N (C) + δ 5 + P R N (λ m ) ≤ E [R N (λ m )] - 2 5 δ ≤ 2 exp - 2N δ 2 25κ(λ m ) 2 ,
Proof of Theorem 6.9

Consider a bucket order C = (C 1 , . . . , C K ) of shape λ, different from (6.16). Hence, there exists at least a pair {i, j} such that j ≺ C i and σ * P (j) < σ * P (i) (or equivalently p i,j < 1/2). Consider such a pair {i, j}. Hence, there exist

1 ≤ k < l ≤ K s.t. (i, j) ∈ C k × C l . Define
the bucket order C which is the same as C except that the buckets of i and j are swapped: Considering now all the pairs {i, j} such that j ≺ C i and p i,j < 1/2, it follows by induction that

C k = {j} ∪ C k \ {i}, C l = {i} ∪ C l \ {j} and C m = C m if m ∈ {1, . . . , K} \ {k, l}. Observe that Λ P (C ) -Λ P (C) = p i,j -p j,i + a∈C k \{i} p i,a -p j,a + a∈C l \{j} p a,j -p a,i + l-1 m=k+1 a∈Cm p a,j -p a,i + p i,a -p j,a ≤ 2(p i,j -1/2) < 0.
Λ P (C) -Λ P (C * (K,λ) ) ≥ 2 j≺ C i (1/2 -p i,j ) • I{p i,j < 1/2}. (6.36)
Proof of Theorem 6.10

The fast rate analysis essentially relies on the following lemma providing a control of the variance of the empirical excess of distortion ,λ) ).

Λ N (C) -Λ N (C * (K,λ) ) = 1 N N s=1 i =j I{Σ s (j) < Σ s (i)} • (I {i ≺ C j} -I{i < C * (K,λ) j}) . Set D(C) = i =j I{Σ(j) < Σ(i)} • (I {i ≺ C j} -I{i < C * (K,λ) j}). Observe that E[D(C)] = Λ P (C) -Λ P (C * (K
Lemma 6.14. Let λ be a given bucket order shape. We have:

var (D(C)) ≤ 2 ( n 2 ) (n 2 /h) • E[D(C)].
Proof. As in the proof of Theorem 6.9, consider a bucket order C = (C 1 , . . . , C K ) of shape λ, different from (6.16), a pair {i, j} such that there exist 1 ≤ k < l ≤ K s.t. (i, j) ∈ C k × C l and σ * P (j) < σ * P (i) and the bucket order C which is the same as C except that the buckets of i and j are swapped. We have:

D(C )-D(C) = I{Σ(i) < Σ(j)}-I{Σ(j) < Σ(i)}+ a∈C k \{i} I{Σ(i) < Σ(a)}-I{Σ(j) < Σ(a)} + a∈C l \{j} I{Σ(a) < Σ(j)} -I{Σ(a) < Σ(i)} + l-1 m=k+1 a∈Cm I{Σ(a) < Σ(j)} -I{Σ(a) < Σ(i)} + I{Σ(i) < Σ(a)} -I{Σ(j) < Σ(a)}.
Hence, we have: var(D(C ) -D(C)) ≤ 4n 2 . By induction, we then obtain that:

var (D(C)) ≤ 2 ( n 2 )-1 (4n 2 )# {(i, j) : i ≺ C j and p j,i > 1/2} ≤ 2 ( n 2 )-1 (4n 2 /h) j≺ C i (1/2 -p i,j ) • I{p i,j < 1/2} ≤ 2 ( n 2 ) (n 2 /h)E[D(C)],
by combining (6.17) with condition (6.18).

Applying Bernstein's inequality to the i.i.d. average (1/N ) N s=1 D s (C), where

D s (C) = i =j I{Σ s (j) < Σ s (i)} • (I {i ≺ C j} -I{i < C * (K,λ) j}) ,
for 1 ≤ s ≤ N and the union bound over the bucket orders C in C K,λ (recall that #C K,λ = n λ ), we obtain that, for all δ ∈ (0, 1), we have with probability larger than 1 -δ: ,λ) ) ≤ 0 by assumption and using the variance control provided by Lemma 7.14 above, we obtain that, with probability at least 1 -δ, we have:

∀C ∈ C K,λ , E[D(C)] = Λ P (C) -Λ P (C * (K,λ) ) ≤ Λ N (C) -Λ N (C * (K,λ) ) + 2var(D(C)) log n λ /δ N + 4κ(λ) log( n λ /δ) 3N . Since Λ N ( C K,λ ) -Λ N (C * (K
Λ P ( C K,λ ) -Λ P (C * (K,λ) ) ≤ 2 ( n 2 )+1 n 2 Λ P ( C K,λ ) -Λ P (C * (K,λ) ) /h × log( n λ /δ) N + 4κ(λ) log( n λ /δ) 3N .
Finally, solving this inequality in Λ P ( C K,λ ) -Λ P (C * (K,λ) ) yields the desired result.

CHAPTER 7

Ranking Median Regression: Learning to Order through

Local Consensus

Chapter abstract This chapter is devoted to the problem of predicting the value taken by a random permutation Σ, describing the preferences of an individual over a set of numbered items {1, . . . , n} say, based on the observation of an input/explanatory r.v. X (e.g. characteristics of the individual), when error is measured by the Kendall τ distance. In the probabilistic formulation of the 'Learning to Order' problem we propose, which extends the framework for statistical Kemeny ranking aggregation developped in Chapter 5, this boils down to recovering conditional Kemeny medians of Σ given X from i.i.d. training examples (X 1 , Σ 1 ), . . . , (X N , Σ N ). For this reason, this statistical learning problem is referred to as ranking median regression here. Our contribution is twofold. We first propose a probabilistic theory of ranking median regression: the set of optimal elements is characterized, the performance of empirical risk minimizers is investigated in this context and situations where fast learning rates can be achieved are also exhibited. Next we introduce the concept of local consensus/median, in order to derive efficient methods for ranking median regression. The major advantage of this local learning approach lies in its close connection with the Kemeny aggregation problem we studied Chapter 5. From an algorithmic perspective, this permits to build predictive rules for ranking median regression by implementing efficient techniques for (approximate) Kemeny median computations at a local level in a tractable manner. In particular, versions of k-nearest neighbor and tree-based methods, tailored to ranking median regression, are investigated. Accuracy of piecewise constant ranking median regression rules is studied under a specific smoothness assumption for Σ's conditional distribution given X. The results of various numerical experiments are also displayed for illustration purpose.

Introduction

The machine-learning problem considered in this chapter is easy to state. Given a vector X of attributes describing the characteristics of an individual, the goal is to predict her preferences over a set of n ≥ 1 numbered items, indexed by {1, . . . , n} say, modelled as a random permutation Σ in S n . Based on the observation of independent copies of the random pair (X, Σ), the task consists in building a predictive function s that maps any point X in the input space to a permutation s(X), the accuracy of the prediction being measured by means of a certain distance between Σ and s(X), the Kendall τ distance typically. This problem is of growing importance 106

Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus these days, since users with declared characteristics express their preferences through more and more devices/interfaces (e.g. social surveys, web activities...). This chapter proposes a probabilistic analysis of this statistical learning problem: optimal predictive rules are exhibited and (fast) learning rate bounds for empirical risk minimizers are established in particular. However, truth should be said, this problem is more difficult to solve in practice than other supervised learning problems such as classification or regression, due to the structured nature of the output space. The symmetric group is not a vector space and its elements cannot be defined by means of simple operations, such as thresholding some real valued function, like in classification. Hence, it is far from straightforward in general to find analogues of methods for distribution-free regression or classification consisting in expanding the decision function using basis functions in a flexible dictionary (e.g. splines, wavelets) and fitting its coefficients from training data, with the remarkable exception of techniques building piecewise constant predictive functions, such as the popular nearest-neighbor method or the celebrated CART algorithm, see [START_REF] Breiman | Classification and Regression Trees[END_REF]. Indeed, observing that, when X and Σ are independent, the best predictions for Σ are its Kemeny medians (i.e. any permutation that is closest to Σ in expectation, see the probabilistic formulation of ranking aggregation in Chapter 5), we consider local learning approaches in this chapter. Conditional Kemeny medians of Σ at a given point X = x are relaxed to Kemeny medians within a region C of the input space containing x (i.e. local consensus), which can be computed by applying locally any ranking aggregation technique (in practice, Copeland method or Borda count). Beyond computational tractability, it is motivated by the fact that, as shall be proved in this chapter, the optimal ranking median regression rule can be well approximated by piecewise constants under the hypothesis that the pairwise conditional probabilities Beyond approximation theoretic arguments, its computational feasability and the advantages of the predictive rules it produces regarding interpretability or aggregation are also discussed to support the use of piecewise constants. The results of various numerical experiments are also displayed in order to illustrate the approach we propose.

P{Σ(i) < Σ(j) | X = x}, with 1 ≤ i < j ≤ n,
The chapter is organized as follows. In section 7.2, concepts related to stochastic transitivity and Kemeny aggregation are investigated, the ranking predictive problem being next formulated as an extension of the latter and studied from a theoretical perspective. A probabilistic theory of ranking median regression is developed in section 7.3. In section 7.4, approximation of optimal predictive rules by piecewise constants is investigated as well as two local learning methods for solving ranking median regression. The results of illustrative numerical experiments are presented in section 7.5. Technical proofs and further details can be found section 7.8.

Preliminaries

As a first go, we start with investigating further (empirical) stochastic transitivity, and introduce the ranking median regression problem.

Best Strictly Stochastically Transitive Approximation

Let T be the set of strictly stochastically transitive distributions on S n , and consider P ∈ T . It was proven Chapter 5 that under the additional low-noise condition on the pairwise marginals of P , the empirical distribution P N ∈ T as well with overwhelming probability, and that the expectation of the excess of risk of empirical Kemeny medians decays at an exponential rate. In this case, the nearly optimal solution σ * P N can be made explicit and straightforwardly computed using Eq. (5.10), namely Copeland method, based on the empirical pairwise probabilities

p i,j = 1 N N k=1 I{Σ k (i) < Σ k (j)}, i < j.
If the empirical estimation P N of P does not belong to T , solving the NP-hard problem min σ∈Sn L P N (σ) requires to get an empirical Kemeny median. A natural strategy would consist in approximating it by a strictly stochastically transitive probability distribution P as accurately as possible (in a sense that is specified below) and consider the (unique) Kemeny median of the latter as an approximate median for P N (for P , respectively). It is legitimated by the result below, whose proof is given in the section 7.8.

Lemma 7.1. Let P and P be two probability distributions on S n .

(i) Let σ P be any Kemeny median of distribution P . Then, we have:

L * P ≤ L P (σ P ) ≤ L * P + 2 i<j |p i,j -p i,j |, (7.1)
where p i,j = P Σ∼P {Σ(i) < Σ(j)} and p i,j = P Σ∼P {Σ(i) < Σ(j)} for any i < j.

(ii) Suppose that (P , P ) ∈ T 2 and set h = min i<j |p i,j -1/2|. Then, we have: (p i,j -p i,j ) 2 (7.3) can be solved efficiently (by orthogonal projection typically, when T is a vector space or a convex set, up to an appropriate reparametrization). Denoting by P the solution of ( 7.3), we deduce from Lemma 7.1 combined with Cauchy-Schwarz inequality that

d τ (σ * P , σ * P ) ≤ (1/h) i<j |p i,j -p i,j |. ( 7 
L * P N ≤ L P N (σ * P ) ≤ L * P N + 2n(n -1)   i<j ( p i,j -p i,j ) 2   1/2 ≤ L * P N + 2n(n -1)   i<j (p i,j -p i,j ) 2   1/2
, where the final upper bound can be easily shown to be of order O P (1/ √ N ).

In [START_REF] Jiang | Statistical ranking and combinatorial Hodge theory[END_REF], the case

T = {P : (p i,j -1/2) + (p j,k -1/2) + (p k,i -1/2) = 0 for all 3-tuple (i, j, k)} ⊂ T
has been investigated at length in particular. Indeed, it is shown there that the Borda count corresponds to the least squares projection of the pairwise probabilities onto this space, namely the space of gradient flows. In practice, when P N does not belong to T , we thus propose to consider as a pseudo-empirical median any permutation σ * P N that ranks the objects as the empirical Borda count:

N k=1 Σ k (i) - N k=1 Σ k (j) • σ * P N (i) -σ * P N (j) > 0 for all i < j s.t. N k=1 Σ k (i) = N k=1 Σ k (j),
breaking possible ties in an arbitrary fashion.

Predictive Ranking and Statistical Conditional Models

We suppose now that, in addition to the ranking Σ, one observes a random vector X, defined on the same probability space (Ω, F, P), valued in a feature space X (of possibly high dimension, typically a subset of R d with d ≥ 1) and modelling some information hopefully useful to predict Σ (or at least to recover some of its characteristics). The joint distribution of the r.v. (Σ, X)

is described by (µ, P X ), where µ denotes X's marginal distribution and P X means the conditional probability distribution of Σ given X: ∀σ ∈ S n , P X (σ) = P{Σ = σ | X} almost-surely.

The marginal distribution of Σ is then P (σ) = X P x (σ)µ(x). Whereas ranking aggregation for any s * ∈ S * . We assume from now on that d = d τ . If P X ∈ T with probability one, we almost-surely have s * (X) = σ * P X and

R * = i<j 1/2 - x∈X |p i,j (x) -1/2| µ(dx) ,
where p i,j (x) = P{Σ(i) < Σ(j) | X = x} for all i < j, x ∈ X . Observe also that in this case, the excess of risk is given by: ∀s ∈ S,

R(s) -R * = i<j x∈X |p i,j (x) -1/2|I{(s(x)(j) -s(x)(i)) (p i,j (x) -1/2) < 0}µ(dx).
(7.5)

The equation above shall play a crucial role in the subsequent fast rate analysis, see Proposition 7.5's proof section 7.8.

Statistical setting. We assume that we observe (X 1 , Σ 1 ) . . . , (X 1 , Σ N ), N ≥ 1 i.i.d. copies of the pair (X, Σ) and, based on these training data, the objective is to build a predictive ranking rule s that nearly minimizes R(s) over the class S of measurable mappings s : X → S n . Of course, the Empirical Risk Minimization (ERM) paradigm encourages to consider solutions of the empirical minimization problem:

min s∈S 0 R N (s), (7.6) 
where S 0 is a subset of S, supposed to be rich enough for containing approximate versions of elements of S * (i.e. so that inf s∈S 0 R(s) -R * is 'small') and ideally appropriate for continuous or greedy optimization, and

R N (s) = 1 N N i=1 d τ (s(X i ), Σ i ) (7.7)
is a statistical version of (7.4) based on the (X i , Σ i )'s. Extending those established Chapter 5 in the context of ranking aggregation, statistical results describing the generalization capacity of minimizers of (7.7) can be established under classic complexity assumptions for the class S 0 , such as the following one (observe incidentally that it is fulfilled by the class of ranking rules output by the algorithm described in subsection 7.4.3).

Assumption 1. For all i < j, the collection of sets

{{x ∈ X : s(x)(i) -s(x)(j) > 0} : s ∈ S 0 }∪{{x ∈ X : s(x)(i) -s(x)(j) < 0} : s ∈ S 0 } is of finite VC dimension V < ∞.
Proposition 7.3. Suppose that the class S 0 fulfills Assumption 1. Let s N be any minimizer of the empirical risk (7.7) over S 0 . For any δ ∈ (0, 1), we have with probability at least 1 -δ:
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111 ∀N ≥ 1, R( s N ) -R * ≤ C V log(n(n -1)/(2δ)) N + R * -inf s∈S 0 R(s) , (7.8)
where C < +∞ is a universal constant.

Refer to section 7.8 for the technical proof. It is also established that the rate bound

O P (1/ √ N )
is sharp in the minimax sense, see Remark 7.4.

Remark 7.4. (ON MINIMAXITY) Observing that, when X and Σ are independent, the best predictions are P 's Kemeny medians, it follows from Proposition 5.20 in Chapter 5 that the minimax risk can be bounded by below as follows:

inf s N sup Q E Q R Q (s N ) -R * Q ≥ 1 16e √ N ,
where the supremum is taken over all possible probability distributions Q = µ(dx) ⊗ P x (dσ)

for (X, Σ) (including the independent case) and the minimum is taken over all mappings that map a dataset (X 1 , Σ 1 ), . . . , (X N , Σ N ) made of independent copies of (X, Σ) to a ranking rule in S.

Faster learning rates. As recalled in Section 7.2, it is proved that rates of convergence for the excess of risk of empirical Kemeny medians can be much faster than O P (1/ √ N ) under transitivity and a certain noise condition, see Proposition 5.14 in Chapter 5. We now introduce the following hypothesis, involved in the subsequent analysis.

Assumption 2. For all x ∈ X , P x ∈ T and H = inf x∈X min i<j |p i,j (x) -1/2| > 0.

This condition generalizes the noise condition introduced Chapter 5, which corresponds to Assumption 2 when X and Σ are independent. The result stated below reveals that a similar fast rate phenomenon occurs for minimizers of the empirical risk (7.7) if Assumption 2 is satisfied.

Refer to the section 7.8 for the technical proof. Since the goal is to give the main ideas, it is assumed for simplicity that the class S 0 is of finite cardinality and that the optimal ranking median regression rule σ * Px belongs to it.

Proposition 7.5. Suppose that Assumption 2 is fulfilled, that the cardinality of class S 0 is equal to C < +∞ and that the unique true risk minimizer s * (x) = σ * Px belongs to S 0 . Let s N be any minimizer of the empirical risk (7.7) over S 0 . For any δ ∈ (0, 1), we have with probability at least 1 -δ:

R( s N ) -R * ≤ n(n -1) 2H × log(C/δ) N . (7.9)
Regarding the minimization problem (10.20), attention should be paid to the fact that, in contrast to usual (median/quantile) regression, the set S of predictive ranking rules is not a vector space, which makes the design of practical optimization strategies challenging and the implementation of certain methods, based on (forward stagewise) additive modelling for instance, unfeasible

Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus (unless the constraint that predictive rules take their values in S n is relaxed, see [START_REF] Clémençon | Kantorovich distances between rankings with applications to rank aggregation[END_REF] or [START_REF] Fogel | Convex relaxations for permutation problems[END_REF]). If µ is continuous (the X i 's are pairwise distinct), it is always possible to find s ∈ S such that R N (s) = 0 and model selection/regularization issues (i.e. choosing an appropriate class S 0 ) are crucial. In contrast, if X takes discrete values only (corresponding to possible requests in a search engine for instance, like in the usual 'learning to order' setting), in the set {1, . . . , K} with K ≥ 1 say, the problem (10.20) boils down to solving independently K empirical ranking median problems. However, K may be large and it may be relevant to use some regularization procedure accounting for the possible amount of similarity shared by certain requests/tasks, adding some penalization term to (7.7). The approach to ranking median regression we develop in this chapter, close in spirit to adaptive approximation methods, relies on the concept of local learning and permits to derive practical procedures for building piecewise constant ranking rules (the complexity of the related classes S 0 can be naturally described by the number of constant pieces involved in the predictive rules) from efficient (approximate) Kemeny aggregation (such as that investigated in Chapter 5), when implemented at a local level. The first method is a version of the popular nearest-neighbor technique, tailored to the ranking median regression setup, while the second algorithm is inspired by the CART algorithm and extends that introduced in Yu et al. ( 2010), see also Chapter 10 in [START_REF] Alvo | Statistical Methods for Ranking Data[END_REF].

Local Consensus Methods for Ranking Median Regression

We start here with introducing notations to describe the class of piecewise constant ranking rules and explore next approximation of a given ranking rule s(x) by elements of this class, based on a local version of the concept of ranking median recalled in the previous section. Two strategies are next investigated in order to generate adaptively a partition tailored to the training data and yielding a ranking rule with nearly minimum predictive error. Throughout this section, for any measurable set C ⊂ X weighted by µ(x), the conditional distribution of Σ given X ∈ C is denoted by P C . When it belongs to T , the unique median of distribution P C is denoted by σ * C and referred to as the local median on region C.

Piecewise Constant Predictive Ranking Rules and Local Consensus

Let P be a partition of X composed of K ≥ 1 cells C 1 , . . . , C K (i.e. the C k 's are pairwise disjoint and their union is the whole feature space X ). Suppose in addition that µ(C k ) > 0 for k = 1, . . . , K. Any ranking rule s ∈ S that is constant on each subset C k can be written as

s P,σ (x) = K k=1 σ k • I{x ∈ C k }, (7.10) 
where σ = (σ 1 , . . . , σ K ) is a collection of K permutations. We denote by S P the collection of all ranking rules that are constant on each cell of P. Notice that #S P = K × n!.

Local Ranking Medians. The following result describes the most accurate ranking median regression function in this class. The values it takes correspond to local Kemeny medians, i.e.

medians of the P C k 's. The proof is straightforward and postponed to section 7.8.

Proposition 7.6. The set S * P of solutions of the risk minimization problem min s∈S P R(s) is composed of all scoring functions s P,σ (x) such that, for all k ∈ {1, . . . , K}, the permutation σ k is a Kemeny median of distribution P C k and

min s∈S P R(s) = K k=1 µ(C k )L * P C k . If P C k ∈ T for 1 ≤ k ≤ K,
there exists a unique risk minimizer over class S P given by: ∀x ∈ X ,

s * P (x) = K k=1 σ * P C k • I{x ∈ C k }. (7.11)
Attention should be paid to the fact that the bound

min s∈S P R(s) -R * ≤ inf s∈S P E X [d τ (s * (X), s(X))] (7.12) 
is valid for all s * ∈ S * , shows in particular that the bias of ERM over the class S P can be controlled by the approximation rate of optimal ranking rules by elements of S P when error is measured by the integrated Kendall τ distance and X's marginal distribution, µ(x) namely, is the integration measure.

Approximation. We now investigate to what extent ranking median regression functions s * (x) can be well approximated by predictive rules of the form (10.18). We assume that X ⊂ R d with d ≥ 1 and denote by ||.|| any norm on R d . The following hypothesis is a classic smoothness assumption on the conditional pairwise probabilities.

Assumption 3. For all 1 ≤ i < j ≤ n, the mapping x ∈ X → p i,j (x) is Lipschitz, i.e. there exists M < ∞ such that:

∀(x, x ) ∈ X 2 , i<j |p i,j (x) -p i,j (x )| ≤ M • ||x -x ||. (7.13)
The following result shows that, under the assumptions above, the optimal prediction rule σ * P X can be accurately approximated by (7.11), provided that the regions C k are 'small' enough.

Theorem 7.7. Suppose that P x ∈ T for all x ∈ X and that Assumption 3 is fulfilled. Then, we have:

∀s P ∈ S * P . R(s P ) -R * ≤ M • δ P , (7.14) 
where δ P = max C∈P sup (x,x )∈C 2 ||x -x || is the maximal diameter of P's cells. Hence, if (P m ) m≥1 is a sequence of partitions of X such that δ Pm → 0 as m tends to infinity, then

R(s Pm ) → R * as m → ∞.
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x y M1 M2 M3 M4 FIGURE 7.1: Example of a distribution satisfying Assumptions 2-3 in R 2 .
Suppose in addition that Assumption 2 is fulfilled and that P C ∈ T for all C ∈ P. Then, we have:

E d τ σ * P X , s * P (X) ≤ sup x∈X d τ σ * Px , s * P (x) ≤ (M/H) • δ P . (7.15)
The upper bounds above reflect the fact that the the smaller the Lipschitz constant M , the easier the ranking median regression problem and that the larger the quantity H, the easier the recovery of the optimal RMR rule. In the following example and Figure 7.1, examples of distributions (µ(dx), P x ) satisfying Assumptions 2-3 both at the same time are given.

Example 7.1. We will give an example in dimension 2. Let P a partition of R 2 represented Figure 7.1. Suppose that for x ∈ X , µ(x) is null outside the colored areas (M k ) k=1,...,4 , and that on each M k for k = 1, . . . , 4, P X is constant and equals to P M k , the conditional distribution of Σ given X ∈ M k . Suppose then that P M k is a Mallows distribution with parameters (π k , φ k )

for k = 1, . . . , 4. Firstly, if for each k = 1, . . . , 4, φ k ≤ (1 -2H)/(1 + 2H), Assumption
2 is verified. Secondly, Assumption 3 is satisfied given that the M k 's cells are far from each other enough. Indeed, for any pair (x, x ), it is trivial if x and x are in the same cell. Then the M -Lipschitz condition is always satisfied, as soon as the partition P is such that d(x, x ) ≥ n(n -1)/2M for any (x, x ) not in the same cell.

Remark 7.8. (ON LEARNING RATES) For simplicity, assume that X = [0, 1] d and that P m is a partition with m d cells with diameter less than C × 1/m each, where C is a constant. Provided the assumptions it stipulates are fulfilled, Theorem 10.7 shows that the bias of the ERM method over the class S Pm is of order 1/m. Combined with Proposition 7.3, choosing m ∼ √ N gives a nearly optimal learning rate, of order O P ((log N )/N ) namely.

Remark 7.9. (ON SMOOTHNESS ASSUMPTIONS) We point out that the analysis above could be naturally refined, insofar as the accuracy of a piecewise constant median ranking regression rule is actually controlled by its capacity to approximate an optimal rule s * (x) in the µ-integrated Kendall τ sense, as shown by Eq. (7.12). Like in [START_REF] Binev | Universal algorithms for learning theory part i: piecewise constant functions[END_REF] for distribution-free regression, learning rates for ranking median regression could be investigated under the assumption Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus 115 that s * belongs to a certain smoothness class defined in terms of approximation rate, specifying the decay rate of inf s∈Sm E[d τ (s * (X), s(X))] for a certain sequence (S m ) m≥1 of classes of piecewise constant ranking rules. This is beyond the scope of the present chapter.

The next result, proved in section 7.8, states a very general consistency theorem for a wide class of RMR rules based on data-based partitioning, in the spirit of [START_REF] Lugosi | Consistency of data-driven histogram methods for density estimation and classification[END_REF] for classification. For simplicity's sake, we assume that X is compact, equal to [0, 1] d say.

Let N ≥ 1, a N -sample partitioning rule π N maps any possible training sample

D N = ((x 1 , σ 1 ), . . . , (x N , σ N )) ∈ (X × S n ) N to a partition π N (D N ) of [0, 1] d composed of bore- lian cells.
The associated collection of partitions is denoted by

F N = {π N (D N ) : D N ∈ (X × S n ) N }.
As in [START_REF] Lugosi | Consistency of data-driven histogram methods for density estimation and classification[END_REF], the complexity of F N is measured by the N -order shatter coefficient of the class of sets that can be obtained as unions of cells of a partition in F N , denoted by ∆ N (F N ). An estimate of this quantity can be found in e.g. Chapter 21 of [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] for various data-dependent partitioning rules (including the recursive partitioning scheme described in subsection 7.4.3, when implemented with axis-parallel splits). When π N is applied to a training sample D N , it produces a partition P N = π N (D N ) (that is random in the sense that it depends on D N ) associated with a RMR prediction rule: ∀x ∈ X ,

s N (x) = C∈P N σ * P C • I{x ∈ C} (7.16)
where σ * P C denotes a Kemeny median of the empirical version of Σ's distribution given X ∈ C, is given by Copeland method if P C ∈ T , the rule 7.16 is somehow theoretical, since the way the Kemeny medians σ C are obtained is not specified in general. Alternatively, using the notations of Chapter 5, one may consider the RMR rule

P C = (1/N C ) i: X i ∈C δ Σ i with N C = i I{X i ∈ C}
s N (x) = C∈P N σ * P C • I{x ∈ C}, (7.17) 
which takes values that are not necessarily local empirical Kemeny medians but can always be easily computed. Observe incidentally that, for any C ∈ P N s.t. P C ∈ T , we have s N (x) = s N (x) for all x ∈ C. The theorem below establishes the consistency of these RMR rules in situations where the diameter of the cells of the data-dependent partition and their µ-measure decay to zero but not too fast, with respect to the rate at which the quantity N/ log(∆ n (F N ))

increases.

Theorem 7.10. Let (π 1 , π 2 , . . .) be a fixed sequence of partitioning rules and for each N let F N be the collection of partitions associated with the N -sample partitioning rule π N . Suppose that P x ∈ T for all x ∈ X and that Assumption 3 is satisfied. Assume also that the conditions below are fulfilled:

(i) lim n→∞ log(∆ N (F N ))/N = 0,
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(ii) we have δ P N → 0 in probability as N → ∞ and

1/κ N = o P ( N/ log ∆ N (F N )) as N → ∞,
where κ N = inf{µ(C) : C ∈ P N }.

Then any RMR rule s N of the form (7.16) is consistent, i.e. R(s N ) → R * in probability as N → ∞.

Suppose in addition that Assumption 2 is satisfied. Then, the RMR rule s N (x) given by (7.17) is also consistent.

The next section presents two approaches for building a partition P of the predictor variable space in a data-driven fashion. The first method is a version of the nearest neighbor methods tailored to ranking median regression, whereas the second algorithm constructs P recursively, depending on the local variability of the Σ i 's, and scales with the dimension of the input space. 1. (SORT.) Sort the training points by increasing order of distance to x:

Nearest-Neighbor Rules for Ranking Median Regression

X (1,N ) -x ≤ . . . ≤ X (N,N ) -x .
2. (ESTIMATION/APPROXIMATION.) Compute the marginal empirical distribution based on the k-nearest neighbors in the input space:

P (x) = 1 k k l=1 δ Σ (k,N )
Output. Compute the local consensus in order to get the prediction at x: Fix k ∈ {1, . . . , N } and a query point x ∈ X . The k-nearest neighbor RMR rule prediction s k,N (x) is obtained as follows. Sort the training data (X 1 , Σ 1 ), . . . , (X n , Σ n ) by increasing order of the distance to x, measured, for simplicity, by X i -x for a certain norm chosen on and (7.20), which reflects the usual bias/variance trade-off ruled by k for fixed N and asymptotically vanishes as soon as k → ∞ as N → ∞ such that k = o(N ). Notice incidentally that the choice k ∼ N 2/(d+2) yields the asymptotically optimal upper bound, of order N -1/(2+d) .

s k,N (x) = σ * P (x) .
X ⊂ R d say: X (1,N ) -x ≤ . . . ≤ X (N,N ) -x .
Theorem 7.11. Suppose that Assumption 3 is fulfilled, that the r.v. X is bounded and d ≥ 3.

Then, we have:

∀N ≥ 1, ∀k ∈ {1, . . . , N }, E [R(s k,N ) -R * ] ≤ n(n -1) 2 1 √ k + 2 √ c 1 M k N 1/d (7.21)
where c 1 is a constant which only depends on µ's support.

Suppose in addition that Assumption 2 is satisfied. We then have: ∀N ≥ 1, ∀k ∈ {1, . . . , N },

E [R( s k,N ) -R * ] ≤ n(n -1) 2 1 √ k + 2 √ c 1 M k N 1/d (1 + n(n -1)/(4H)) . (7.22)
Refer to section 7.8 for the technical proof. In addition, for d ≤ 2 the rate stated in Theorem 7.11 still holds true, under additional conditions on µ, see section 7.8 for further details. In practice, as for nearest-neighbor methods in classification/regression, the success of the technique above for fixed N highly depends on the number k of neighbors involved in the computation of the local prediction. The latter can be picked by means of classic model selection methods, based on data segmentation/resampling techniques. It may also crucially depend on the distance chosen (which could be learned from the data as well, see e.g. [START_REF] Bellet | A Survey on Metric Learning for Feature Vectors and Structured Data[END_REF]) and/or appropriate preprocessing stages, see e.g. the discussion in chapter 13 of [START_REF] Friedman | The elements of statistical learning[END_REF]). The implementation of this simple local method for ranking median regression does not require to explicit the underlying partition but is classically confronted with the curse of dimensionality.

The next subsection explains how another local method, based on the popular tree induction heuristic, scales with the dimension of the input space by contrast. 2. (ITERATIONS.) For j = 0, . . . , J -1 and k = 0, . . . , 2 j -1:

Solve min C∈G, C⊂C j,k Λ j,k (C), yielding the region C j+1,2k . Then, set C j+1,2k+1 = C j,k \ C j+1,2k . 3. (LOCAL CONSENSUS.) After 2 J iterations, for each terminal cell C J,k with k ∈ {0, . . . , 2 J -1}, compute the Kemeny median estimate σ * J,k = σ * P C J,k
.

Outputs. Compute the piecewise constant ranking median regression rule: We now describe an iterative scheme for building an appropriate tree-structured partition P, adaptively from the training data. Whereas the splitting criterion in most recursive partitioning methods is heuristically motivated (see [START_REF] Friedman | Local learning based on recursive covering[END_REF]), the local learning method we describe below relies on the Empirical Risk Minimization principle formulated in Section 7.3, so as to build by refinement a partition P based on a training sample D N = {(Σ 1 , X 1 ), . . . , (Σ N , X N )} so that, on each cell C of P, the Σ i 's lying in it exhibit a small variability in the Kendall τ sense and, consequently, may be accurately approximated by a local Kemeny median. As shown below, the local variability measure we consider can be connected to the local ranking median regression risk (see Eq. (7.26)) and leads to exactly the same node impurity measure as in the tree induction method proposed in [START_REF] Yu | Preference Learning, chapter Decision tree modelling for ranking data[END_REF], see Remark 7.12. The algorithm described below differs from it in the method we use to compute the local predictions. More precisely, the goal pursued is to construct recursively a piecewise constant ranking rule associated to a partition P,

s * T 2 J (x) = 2 J -1 l=0 σ * J,l • I{x ∈ C J,l }.
s P (x) = C∈P σ C • I{x ∈ C}, with minimum empirical risk R N (s P ) = C∈P µ N (C)L P C (σ C ), (7.23) 
where µ N = (1/N ) N k=1 δ X k is the empirical measure of the X k 's. The partition P being fixed, as noticed in Proposition 7.6, the quantity (7.23) is minimum when σ C is a Kemeny median of P C for all C ∈ P. It is then equal to

min s∈S P R N (s) = C∈P µ N (C)L * P C . (7.24)
Except in the case where the intra-cell empirical distributions P C 's are all stochastically transitive (each L * P C can be then computed using formula (5.12)), computing (7.24) at each recursion of the algorithm can be very expensive, since it involves the computation of a Kemeny median within each cell C. We propose to measure instead the accuracy of the current partition by the

quantity γ P = C∈P µ N (C)γ P C , (7.25) 
which satisfies the double inequality (see Remark 5.1)

γ P ≤ min s∈S P R N (s) ≤ 2 γ P , (7.26) 
and whose computation is straightforward: ∀C ∈ P,

γ P C = 1 2 i<j p i,j (C) (1 -p i,j (C)) , (7.27) 
where

p i,j (C) = (1/N C ) k: X k ∈C I{Σ k (i) < Σ k (j)}, i < j, denote the local pairwise empiri- cal probabilities, with N C = N k=1 I{X k ∈ C}.
A ranking median regression tree of maximal depth J ≥ 0 is grown as follows. One starts from the root node C 0,0 = X . At depth level 0 ≤ j < J, any cell C j,k , 0 ≤ k < 2 j shall be split into two (disjoint) subsets C j+1,2k and C j+1,2k+1 , respectively identified as the left and right children of the interior leaf (j, k) of the ranking median regression tree, according to the following splitting rule. Splitting rule. For any candidate left child C ⊂ C j,k , picked in a class G of 'admissible' subsets (see the paragraph on the choice of the class at the end of the section), the relevance of the split C j,k = C ∪ (C j,k \ C) is naturally evaluated through the quantity:

Λ j,k (C) def = µ N (C)γ P C + µ N (C j,k \ C)γ P C j,k \C . (7.28)
The determination of the splitting thus consists in computing a solution C j+1,2k of the optimization problem min

C∈G, C⊂C j,k Λ j,k (C) (7.29)
As explained in section 7.8, an appropriate choice for class G permits to solve exactly the optimization problem very efficiently, in a greedy fashion.

Local medians. The consensus ranking regression tree is grown until depth J and on each terminal leave C J,l , 0 ≤ l < 2 J , one computes the local Kemeny median estimate by means of If P C J,l ∈ T , σ * J,l is straightforwardly obtained from formula (5.10) and otherwise, one uses the pseudo-empirical Kemeny median described in subsection 7.2.1. The ranking median regression rule related to the binary tree T 2 J thus constructed is given by:

s * T 2 J (x) = 2 J -1 l=0 σ * J,l I{x ∈ C J,l }. (7.31)
Its training prediction error is equal to L N (s * T 2 J ), while the training accuracy measure of the final partition is given by

γ T 2 J = 2 J -1 l=0 µ N (C J,l )γ P C J,l . (7.32)
Remark 7.12. We point out that the impurity measure (7.25) corresponds (up to a constant factor) to that considered in [START_REF] Yu | Preference Learning, chapter Decision tree modelling for ranking data[END_REF], where it is referred to as the pairwise Gini criterion.

Borrowing their notation, one may indeed write: for any measurable C ⊂ X , i

w (C) = 8/(n(n- 1)) × γ P C . (2) 
Now that we have summarized the tree growing stage, we present possible procedures avoiding overfitting as well as additional comments on the advantages of this method regarding interpretability and computational feasibility.

Pruning. From the original tree T 2 J , one recursively merges children of a same parent node until the root T 1 is reached in a bottom up fashion. Precisely, the weakest link pruning consists here in sequentially merging the children C j+1,2l and C j+1,2l+1 producing the smallest dispersion increase:

µ N (C j,l )γ P C j,l -Λ j,l (C j+1,2l ).

One thus obtains a sequence of ranking median regression trees

T 2 J ⊃ T 2 J -1 ⊃ • • • ⊃ T 1 , the
subtree T m corresponding to a partition with #T m = m cells. The final subtree T is selected by minimizing the complexity penalized intra-cell dispersion:

γ T = γ T + λ × #T, (7.33) 
where λ ≥ 0 is a parameter that rules the trade-off between the complexity of the ranking median regression tree, as measured by #T , and intra-cell dispersion. In practice, model selection can be performed by means of common resampling techniques.

Early stopping. One stops the splitting process if no improvement can be achieved by splitting

the current node C j,l , i.e. if min C∈G Λ(C) = 1≤k<l≤N I{(X k , X l ) ∈ C 2 j,l } • d τ (Σ k , Σ l ) (one then set C j+1,2l = C j,l by 
convention), or if a minimum node size, specified in advance, is attained.

On class G. The choice of class G involves a trade-off between computational cost and flexibility: a rich class (of controlled complexity though) may permit to capture the conditional variability of Σ given X appropriately but might significantly increase the cost of solving (7.29).

Typically, as proposed in [START_REF] Breiman | Classification and Regression Trees[END_REF], subsets can be built by means of axis parallel splits, leading to partitions whose cells are finite union of hyperrectangles. This corresponds to the case where G is stable by intersection, i.e. ∀(C, C ) ∈ G 2 , C ∩ C ∈ G, and admissible subsets of any C ∈ G are of the form C ∩ {X (m) ≥ s} or C ∩ {X (m) ≤ s}, where X (m) can be any component of X and s ∈ R any threshold value. In this case, the minimization problem can be efficiently solved by means of a double loop (over the d coordinates of the input vector X and over the data lying in the current parent node), see e.g. [START_REF] Breiman | Classification and Regression Trees[END_REF].

Interpretability and computational feasability. The fact that the computation of (local) Kemeny medians takes place at the level of terminal nodes of the ranking median regression tree T only makes the CRIT algorithm very attractive from a practical perspective. In addition, it produces predictive rules that can be easily interpreted by means of a binary tree graphic representation and, when implemented with axis parallel splits, provides, as a by-product, indicators quantifying the impact of each input variable. The relative importance of a variable can be measured by summing the decreases of empirical γ-dispersion induced by all splits involving it as splitting variable. More generally, the CRIT algorithm inherits the appealing properties of tree induction methods: it easily adapts to categorical predictor variables, training and prediction are fast and it is not affected by monotone transformations of the predictor variables.

Aggregation. Just like other tree-based methods, the CRIT algorithm may suffer from instability, meaning that, due to its hierarchical structure, the rules it produces can be much affected by a small change in the training dataset. As proposed in [START_REF] Breiman | Bagging predictors[END_REF], boostrap aggregating techniques may remedy to instability of ranking median regression trees. Applied to the CRIT method, bagging consists in generating B ≥ 1 bootstrap samples by drawing with replacement in the original data sample and running next the learning algorithm from each of these training datasets, yielding B predictive rules s 1 , . . . , s B . For any prediction point x, the ensemble of predictions s 1 (x), . . . , s B (x) are combined in the sense of Kemeny ranking aggregation, so as to produce a consensus sB (x) in S n . Observe that a crucial advantage of dealing with piecewise constant ranking rules is that computing a Kemeny median for each new prediction point can be avoided: one may aggregate the ranking rules rather than the rankings in this case. We finally point out that a certain amount of randomization can be incorporated in each bootstrap tree growing procedure, following in the footsteps of the random forest procedure proposed in [START_REF] Breiman | Random forests[END_REF], so as to increase flexibility and hopefully improve accuracy. The reader may refer to Appendix 7.7 for further details and experiments.

Numerical Experiments

For illustration purpose, experimental results based on simulated/real data are displayed.

Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus Results on Simulated Data. Here, datasets of full rankings on n items are generated according to two explanatory variables. We carried out several experiments by varying the number of items (n = 3, 5, 8) and the nature of the features. In Setting 1, both features are numerical; in Setting 2, one is numerical and the other categorical, while, in Setting 3, both are categorical.

For a fixed setting, a partition P of X composed of K cells C 1 , . . . , C K is fixed. In each trial, K permutations σ 1 , . . . , σ K (which can be arbitrarily close) are generated, as well as three datasets of N samples, where on each cell C k : the first one is constant (all samples are equal to σ k ), and the two others are noisy versions of the first one, where the samples follow a Mallows distribution (see [START_REF] Mallows | Non-null ranking models[END_REF]) centered on σ k with dispersion parameter φ. We recall that the greater the dispersion parameter φ, the spikiest the distribution (and closest to piecewise constant). We choose K=6 and N =1000. In each trial, the dataset is divided into a training set (70%) and a test set (30%). Concerning the CRIT algorithm, since the true partition is known and is of depth 3, the maximum depth is set to 3 and the minimum size in a leaf is set to the number of samples in the training set divided by 10. For the k-NN algorithm, the number of neighbors k is fixed to 5. The baseline model to which we compare our algorithms is the following: on the train set, we fit a K-means (with K=6), train a Plackett-Luce model on each cluster and assign the mode of this learnt distribution as the center ranking of the cluster. For each configuration (number of items, characteristics of feature and distribution of the dataset), the empirical risk (see 7.3, denoted as R N (s)) is averaged on 50 repetitions of the experiment.

Results of the k-NN algorithm (indicated with a star *), of the CRIT algorithm (indicated with two stars **) and of the baseline model (between parenthesis) on the various configurations are provided in Table 7.2. They show that the methods we develop recover the true partition of the data, insofar as the underlying distribution can be well approximated by a piecewise constant function (φ ≥ 2 for instance in our simulations).

Analysis of GSS Data on Job Value Preferences. We test our algorithm on the full rankings dataset which was obtained by the US General Social Survey (GSS) and which is already used in [START_REF] Alvo | Statistical Methods for Ranking Data[END_REF]. This multidimensional survey collects across years socio-demographic attributes and answers of respondents to numerous questions, including societal opinions. In particular, participants were asked to rank in order of preference five aspects about a job: "high income", "no danger of being fired", "short working hours", "chances for advancement", and "work important and gives a feeling of accomplishment". The dataset we consider contains answers collected between 1973 and 2014. As in [START_REF] Alvo | Statistical Methods for Ranking Data[END_REF], for each individual, we consider eight individual attributes (sex, race, birth cohort, highest educational degree attained, family income, marital status, number of children that the respondent ever had, and household size) and three properties of work conditions (working status, employment status, and occupation). After preprocessing, the full dataset contains 18544 samples. We average the results of our algorithms over 10 experiments: each time, a bootstrap sample of size 1000 is drawn, then randomly divided in a training set (70%) and a test set (30%), and the model is trained on the training set and evaluated on the test set. The results are stable among the experiments. Concerning the k-NN algorithm, we obtain an average empirical risk of 2.842 (for the best k = 22).

For the CRIT algorithm, we obtain an average empirical risk of 2.763 (recall that the maximum Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus 123 Kendall distance is 10) and splits coherent with the analysis in [START_REF] Alvo | Statistical Methods for Ranking Data[END_REF]: the first splitting variable is occupation (managerial, professional, sales workers and related vs services, natural resources, production, construction and transportation occupations), then at the second level the race is the most important factor in both groups (black respondents vs others in the first group, white respondents vs others in the second group). At the lower level the degree obtained seems to play an important role (higher than high school, or higher than bachelor's for example in some groups); then other discriminating variables among lower levels are birth cohort, family income or working status.

Conclusion and Perspectives

The contribution of this chapter is twofold. The problem of learning to predict preferences, expressed in the form of a permutation, in a supervised setting is formulated and investigated in a rigorous probabilistic framework (optimal elements, learning rate bounds, bias analysis), extending that recently developped for statistical Kemeny ranking aggregation Chapter 5. Based on this formulation, it is also shown that predictive methods based on the concept of local Kemeny consensus, variants of nearest-neighbor and tree-induction methods namely, are well-suited for this learning task. This is justified by approximation theoretic arguments and algorithmic simplicity/efficiency both at the same time and illustrated by numerical experiments. We point out that extensions of other data-dependent partitioning methods, such as those investigated in Chapter 21 of [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] for instance could be of interest as well. In the next chapter, we tackle the ranking regression problem in a structured prediction problem, for a specific family of loss functions, including Kendall's τ distance as well as well-spread distances for rankings.

Appendix -On Aggregation in Ranking Median Regression

Aggregation of Ranking Median Regression Rules. We now investigate RMR rules that compute their predictions by aggregating those of randomized RMR rules. Let Z be a r.v. defined on the same probability space as (X, Σ), valued in a measurable space Z say, describing the randomization mechanism. A randomized RMR algorithm is then any function The result stated below shows that, provided that P X fulfills the strict stochastic transitivity property and that the p i,j (X)'s satisfy the noise condition NA(h) for some h > 0 with probability one (we recall that fast learning rates are attained by empirical risk minimizers in this case), consistency is preserved by Kemeny aggregation, as well as the learning rate.

S : N ≥1 (X × S n ) N × Z → S that
Theorem 7.13. Let h > 0. Assume that the sequence of RMR rules (S(., Z, D N )) N ≥1 is consistent for a certain distribution of (X, Σ). Suppose also that P X is strictly stochastically transitive

Proofs

Proof of Lemma 7.1

Observe first that: ∀σ ∈ S n ,

L P (σ) = i<j p i,j I{σ(i) > σ(j)} + i<j (1 -p i,j )I{σ(i) < σ(j)}.
(7.34)

We deduce from the equality above, applied twice, that: ∀σ ∈ S n ,

|L P (σ)) -L P (σ)| ≤ i<j p i,j -p i,j . (7.35)
Hence, we may write:

L * P = inf σ∈Sn L P (σ) ≤ L P (σ P ) = L P (σ P ) + (L P (σ P ) -L P (σ P )) ≤ L * P + i<j p i,j -p i,j .
In a similar fashion, we have L * P ≤ L * P + i<j |p i,j -p i,j |, which yields assertion (i) when combined with the inequality above.

We turn to (ii) and assume now that both P and P belong to T . Let i < j. Suppose that σ * P (i) < σ * P (j) and σ * P (i) > σ * P (j). In this case, we have p i,j > 1/2 and p i,j < 1/2, so that |p i,j -p i,j |/h = p i,j -1/2 /h + 1/2 -p i,j /h ≥ 1.

More generally, we have

I {(σ * P (i) -σ * P (j)) (σ * P (i) -σ * P (j)) < 0} ≤ |p i,j -p i,j |/h
for all i < j. Summing over the pairs (i, j) establishes assertion (ii).

Proof of Proposition 7.3

First, observe that, using the definition of empirical risk minimizers and the union bound, we have with probability one: ∀N ≥ 1,

R( s N ) -R * ≤ 2 sup s∈S 0 R N (s) -R(s) + inf s∈S 0 R(s) -R * ≤ 2 i<j sup s∈S 0 1 N N k=1 I {(Σ k (i) -Σ k (j)) (s(X k )(i) -s(X k )(j)) < 0} -R i,j (s) + inf s∈S 0 R(s) -R * ,
where R i,j (s) = P{(Σ(i) -Σ(j))(s(X)(i) -s(X)(j)) < 0} for i < j and s ∈ S. Since Assumption 1 is satisfied, by virtue of Vapnik-Chervonenkis inequality (see e.g. [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF]), for all i < j and any δ ∈ (0, 1), we have with probability at least 1 -δ:

sup s∈S 0 1 N N k=1 I {(Σ k (i) -Σ k (j)) (s(X k )(i) -s(X k )(j)) < 0} -R i,j (s) ≤ c V log(1/δ)/N , (7.36) 
where c < +∞ is a universal constant. The desired bound then results from the combination of the bound above and the union bound.

Proof of Proposition 7.5

The subsequent fast rate analysis mainly relies on the lemma below.

Lemma 7.14. Suppose that Assumption 2 is fulfilled. Let s ∈ S and set

Z(s) = i<j {I {(Σ(i) -Σ(j)) (s(X)(i) -s(X)(j)) < 0 } - i<j I (Σ(i) -Σ(j)) σ * P X (i) -σ * P X (j) < 0 .
Then, we have:

V ar (Z(s)) ≤ n(n -1) 2H × (R(s) -R * ) .
Proof. Recall first that it follows from (5.11) that, for all i < j,

σ * P X (j) -σ * P X (i) (p i,j (X) -1/2) > 0.
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V ar (Z(s)) ≤ n(n -1) 2 × i<j V ar (I {(p i,j (X) -1/2) (s(X)(j) -s(X)(i)) < 0}) ≤ n(n -1) 2 × i<j E [I {(p i,j (X) -1/2) (s(X)(j) -s(X)(i)) < 0}] .
In addition, it follows from formula (7.5) for the risk excess that:

R(s) -R * ≥ H × i<j E [I {(p i,j (X) -1/2) (s(X)(j) -s(X)(i)) < 0}] .
Combined with the previous inequality, this establishes the lemma.

Since the goal is to give the main ideas, we assume for simplicity that the S 0 is of finite cardinality and that the optimal ranking median regression rule s * (x) = σ * Px belongs to it. Applying Bernstein's inequality to the i.i.d. average (1/N ) N k=1 Z k (s), where

Z k (s) = i<j {I {(Σ k (i) -Σ k (j)) (s(X k )(i) -s(X k )(j)) < 0 } - i<j I (Σ k (i) -Σ k (j)) σ * P X k (i) -σ * P X k (j) < 0 ,
for 1 ≤ k ≤ N and the union bound over the ranking rules s in S 0 , we obtain that, for all δ ∈ (0, 1), we have with probability larger than 1 -δ: ∀s ∈ S 0 ,

E[Z(s)] = R(s) -R * ≤ R N (s) -R N (s * ) + 2V ar(Z(s)) log(C/δ) N + 4 log(C/δ) 3N .
Since R N ( s N )-R N (s * ) ≤ 0 by assumption and using the variance control provided by Lemma 7.14 above, we obtain that, with probability at least 1 -δ, we have:

R( s N ) -R * ≤ n(n-1) H (R( s N ) -R * ) /H × log(C/δ) N + 4 log(C/δ) 3N .
Finally, solving this inequality in R( s N ) -R * yields the desired result.

Proof of Proposition 7.6

Let s(x) = K k=1 σ k I{x ∈ C k } in S P . It suffices to observe that we have 7.37) and that each term involved in the summation above is minimum for

R(s) = K k=1 E [I{X ∈ C k }d τ (σ k , Σ)] = K k=1 µ(C k )E [d τ (σ k , Σ) | X ∈ C k ] , ( 
σ k ∈ M P C k , 1 ≤ k ≤ K.
Proof of Theorem 10.7

Consider s P (x) = C∈P σ P C • I{x ∈ C} in S * P , i.e. σ P C ∈ M P C for all C ∈ P. R(s N ) -R * = x∈X L Px (s N (x)) -L * Px µ(dx) = C∈P x∈C L Px (σ P C ) -L * Px µ(dx).
Now, by virtue of assertion (i) of Lemma 7.1, we have

R(s P ) -R * ≤ 2 i<j C∈P x∈C |p i,j (C) -p i,j (x)| µ(dx).
Now, observe that, for any C ∈ P, all x ∈ C and i < j, it results from Jensen's inequality and Assumption 3 that

|p i,j (C) -p i,j (x)| ≤ x∈C p i,j (x ) -p i,j (x) µ(dx )/µ(C) ≤ M δ P ,
which establishes (10.19).

We now prove the second assertion. For any measurable set C ⊂ X such that µ(C) > 0, we set p i,j (C) = P{Σ(i) < Σ(j) | X ∈ C} for i < j. Suppose that x ∈ C k , k ∈ {1, . . . , K}. It follows from assertion (ii) in Lemma 7.1 combined with Jensen's inequality and Assumption 3 that:

d τ σ * Px , s * P (x) = d τ σ * Px , σ * P C k ≤ (1/H) i<j |p i,j (x) -p i,j (C k )| ≤ (1/H) i<j E [|p i,j (x) -p i,j (X)| | X ∈ C k ] ≤ (M/H) sup x ∈C k ||x -x || ≤ (M/H) • δ P .
Proof of Theorem 7.10

We start with proving the first assertion and consider a RMR rule s N of the form (7.16). With the notations of Theorem 10.7, we have the following decomposition: (7.39) probability as N → ∞, which concludes the proof of the first assertion of the theorem.

R(s N ) -R * = (R(s N ) -R(s P N )) + (R(s P N ) -R * ) . ( 7 
We now consider the RMR rule (7.17). Observe that

R( s N ) -R(s P N ) = C∈P N L P C ( σ * P C ) -L * P C µ(C) = C∈P N I{ P C ∈ T } L P C (σ * P C ) -L * P C µ(C) + C∈P N I{ P C / ∈ T } L P C ( σ * P C ) -L * P C µ(C) ≤ R(s N ) -R(s P N ) + n(n -1) 2 C∈P N I{ P C / ∈ T }µ(C). (7.42)
Recall that it has been proved previously that R(s N ) -R(s P N ) → 0 in probability as N → ∞.

Observe in addition that

I{ P C / ∈ T } ≤ I{P C / ∈ T } + I{ P C / ∈ T and P C ∈ T }
and, under Assumption 2,

{P C / ∈ T } ⊂ {δ P N ≥ M/H}, { P C / ∈ T and P C ∈ T } ⊂ ∪ i<j {| p i,j (C) -p i,j (C)| ≥ H},
so that C∈P N I{ P C / ∈ T }µ(C) is bounded by

I{δ P N ≥ M/H} + i<j C∈P N I{| p i,j (C) -p i,j (C)| ≥ H}µ(C) ≤ I{δ P N ≥ M/H} + i<j C∈P N | p i,j (C) -p i,j (C)|µ(C)/H ≤ I{δ P N ≥ M/H} + 1 H i<j {A N (i, j) + B N /κ N } ,
re-using the argument that previously lead to (7.41). This bound clearly converges to zero in probability, which implies that R( s N ) -R(s P N ) → 0 in probability when combined with (7.42) and concludes the proof of the second assertion of the theorem.

Proof of Theorem 7.11

Denote by p i,j (x)'s the pairwise probabilities related to distribution P (x). It follows from Lemma 7.1 combined with Jensen's inequality, that

E [R(s k,N ) -R * ] = E x∈X (L Px (s k,N (x)) -L * Px )µ(dx) ≤ 2 i<j x∈X E [|p i,j (x) -p i,j (x)|] ≤ 2 i<j x∈X E (p i,j (x) -p i,j (x)) 2 1/2
Following the argument of Theorem 6.2's proof in [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF], write:

E ( p i,j (x) -p i,j (x)) 2 = E ( p i,j (x) -E [ p i,j (x)|X 1 , . . . , X N ]) 2 + E (E [ p i,j (x)|X 1 , . . . , X N ] -p i,j (x)) 2 = I 1 (x) + I 2 (x).
The first term can be upper bounded as follows:

I 1 (x) = E   1 k k l=1 I Σ (l,N ) (i) < Σ (l,N ) (j) -p i,j (X (l,N ) ) 2   = E 1 k 2 k l=1 V ar(I {Σ(i) < Σ(j)} |X = X (l,N ) ) ≤ 1 4k .
For the second term, we use the following result.

Lemma 7.16. (Lemma 6.4, [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF]) Assume that the r.v. X is bounded. If d ≥ 3, then:

E X (1,N ) (x) -x 2 ≤ c 1 N 2/d ,
where c 1 is a constant that depends on µ's support only.

Observe first that, following line by line the argument of Theorem 6.2's proof in [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] (see p.95 therein), we have:

I 2 (x) = E   1 k k l=1 p i,j (X (l,N ) ) -p i,j (x) 2   ≤ E   1 k k l=1 M X (l,N ) -x 2   ≤ M 2 E X (1, N/k ) (x) -x 2 .
Next, by virtue of Lemma 7.16, we have:

1 M 2 N/k 2/d x∈X I 2 (x)µ(dx) ≤ c 1 .
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Finally, we have:

E [R(s k,N ) -R * ] ≤ 2 i<j x∈X I 1 (x) + I 2 (x)µ(dx) ≤ n(n -1) 2 1 √ k + 2 √ c 1 M k N 1/d
.

We now consider the problem of bounding the expectation of the excess of risk of the RMR rule s k,N . Observing that s k,N (x) = s k,N (x) when P (x) ∈ T , we have:

E [R( s k,N ) -R * ] = E x∈X I{ P (x) ∈ T }(L Px ( s k,N (x)) -L * Px )µ(dx) + E x∈X I{ P (x) / ∈ T }(L Px ( s k,N (x)) -L * Px )µ(dx) ≤ E [R(s k,N ) -R * ] + n(n -1) 2 E x∈X I{ P (x) / ∈ T }µ(dx) .
Notice in addition that, under Assumption 2, we have, for all x ∈ X ,

{ P (x) / ∈ T } ⊂ ∪ i<j {| p i,j (x) -p i,j (x) ≥ H|} , (7.43) 
so that

I{ P (x) / ∈ T } ≤ i<j | p i,j (x) -p i,j (x)| H . (7.44)
Hence, the second assertion finally results directly from the bounds established to prove the first one.

Let S x, denote the closed ball centered at x of radius > 0. For d ≤ 2, the rates of convergence hold under the following additional conditions on µ (see [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] 

CHAPTER 8

A Structured Prediction Approach for Label Ranking

Chapter abstract In this chapter, we propose to solve the ranking regression problem, sometimes referred to in the literature as label ranking, as a structured output regression task. We adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: the regression step in a well-chosen feature space and the pre-image step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. We also propose their natural extension the case of partial rankings and prove their efficiency on real-world datasets.

Introduction

Label ranking is a prediction task which aims at mapping input instances to a (total) order over a given set of labels indexed by {1, . . . , n}. This problem is motivated by applications where the output reflects some preferences, or order of relevance, among a set of objects. Hence there is an increasing number of practical applications of this problem in the machine learning litterature.

In pattern recognition for instance [START_REF] Geng | Multilabel ranking with inconsistent rankers[END_REF], label ranking can be used to predict the different objects which are the more likely to appear in an image among a predefined set. Similarly, in sentiment analysis, [START_REF] Wang | Ranking social emotions by learning listwise preference[END_REF] where the prediction of the emotions expressed in a document is cast as a label ranking problem over a set of possible affective expressions. In ad targeting, the prediction of preferences of a web user over ad categories [START_REF] Djuric | Non-linear label ranking for large-scale prediction of long-term user interests[END_REF] can be also formalized as a label ranking problem, and the prediction as a ranking guarantees that each user is qualified into several categories, eliminating overexposure. Another application is metalearning, where the goal is to rank a set of algorithms according to their suitability based on the characteristics of a target dataset and learning problem (see [START_REF] Brazdil | Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results[END_REF]; [START_REF] Aiguzhinov | A similarity-based adaptation of naive bayes for label ranking: Application to the metalearning problem of algorithm recommendation[END_REF]). Interestingly, the label ranking problem can also be seen as an extension of several supervised tasks, such as multiclass classification or multi-label ranking (see [START_REF] Dekel | Log-linear models for label ranking[END_REF]; [START_REF] Fürnkranz | Pairwise preference learning and ranking[END_REF]). Indeed for these tasks, a prediction can be obtained by postprocessing the output of a label ranking model in a suitable way. However, label ranking differs from other ranking problems, such as in information retrieval or recommender systems, 138 Chapter 8. A Structured Prediction Approach for Label Ranking where the goal is (generally) to predict a target variable under the form of a rating or a relevance score [START_REF] Cao | Learning to rank: from pairwise approach to listwise approach[END_REF].

More formally, the goal of label ranking is to map a vector x lying in some feature space X to a ranking y lying in the space of rankings Y. A ranking is an ordered list of items of the set {1, . . . , n}. These relations linking the components of the y objects induce a structure on the output space Y. The label ranking task thus naturally enters the framework of structured output prediction for which an abundant litterature is available [START_REF] Nowozin | Structured learning and prediction in computer vision[END_REF]. In this paper, we adopt the Surrogate Least Square Loss approach introduced in the context of output kernels [START_REF] Cortes | A general regression technique for learning transductions[END_REF][START_REF] Kadri | A generalized kernel approach to structured output learning[END_REF][START_REF] Brouard | Input output kernel regression: supervised and semisupervised structured output prediction with operator-valued kernels[END_REF] and recently theoretically studied by [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF] and [START_REF] Osokin | On structured prediction theory with calibrated convex surrogate losses[END_REF] using Calibration theory [START_REF] Steinwart | Support Vector Machines[END_REF]. This approach divides the learning task in two steps: the first one is a vector regression step in a Hilbert space where the outputs objects are represented through an embedding, and the second one solves a pre-image problem to retrieve an output object in the Y space. In this framework, the algorithmic complexity of the learning and prediction tasks as well as the generalization properties of the resulting predictor crucially rely on some properties of the embedding. In this work we study and discuss some embeddings dedicated to ranking data.

Our contribution is three folds: (1) we cast the label ranking problem into the structured prediction framework and propose embeddings dedicated to ranking representation, (2) for each embedding we propose a solution to the pre-image problem and study its algorithmic complexity and (3) we provide theoretical and empirical evidence for the relevance of our method.

The paper is organized as follows. In section 8.2, definitions and notations of objects considered through the paper are introduced, and section 8.3 is devoted to the statistical setting of the learning problem. section 8.4 describes at length the embeddings we propose and section 8.5 details the theoretical and computational advantages of our approach. Finally section 8.6 contains empirical results on benchmark datasets.

Preliminaries

Mathematical Background and Notations

Consider a set of items indexed by {1, . . . , n}, that we will denote n . Rankings, i.e. ordered lists of items of n , can be complete (i.e, involving all the items) or incomplete and for both cases, they can be without-ties (total order) or with-ties (weak order). A full ranking is a complete, and without-ties ranking of the items in n . It can be seen as a permutation, i.e a bijection σ : n → n , mapping each item i to its rank σ(i). The rank of item i is thus σ(i) and the item ranked at position j is σ -1 (j). We say that i is preferred over j (denoted by i j) according to σ if and only if i is ranked lower than j: σ(i) < σ(j). The set of all permutations over n items is the symmetric group which we denote by S n . A partial ranking is a complete ranking including ties, and is also referred as a weak order or bucket order in the litterature (see [START_REF] Kenkre | On discovering bucket orders from preference data[END_REF]). This includes in particular the top-k rankings, that is to say partial rankings dividing items in two groups, the first one being the k ≤ n most relevant items and the second one including all the rest. These top-k rankings are given a lot of attention because of their relevance for modern applications, especially search engines or recommendation systems (see [START_REF] Ailon | Aggregation of partial rankings, p-ratings and top-m lists[END_REF]). An incomplete ranking is a strict order involving only a small subset of items, and includes as a particular case pairwise comparisons, another kind of ranking which is very relevant in large-scale settings when the number of items to be ranked is very large. We now introduce the main notations used through the paper. For any function f , Im(f ) denotes the image of f , and f -1 its inverse. The indicator function of any event E is denoted by I{E}. We will denote by sign the function such that for any x ∈ R, sign(x) = I{x > 0} -I{x < 0}.

The notations . and |.| denote respectively the usual l 2 and l 1 norm in an Euclidean space.

Finally, for any integers a ≤ b, a, b denotes the set {a, a + 1, . . . , b}, and for any finite set C, #C denotes its cardinality.

Related Work

An overview of label ranking algorithms can be found in [START_REF] Vembu | Label ranking algorithms: A survey[END_REF][START_REF] Zhou | A taxonomy of label ranking algorithms[END_REF]), but we recall here the main contributions. One of the first proposed approaches, called pairwise classification (see [START_REF] Fürnkranz | Pairwise preference learning and ranking[END_REF]) transforms the label ranking problem into n(n -1)/2 binary classification problems. For each possible pair of labels 1 ≤ i < j ≤ n, the authors learn a model m ij that decides for any given example whether i j or j i holds. The model is trained with all examples for which either i j or j i is known (all examples for which nothing is known about this pair are ignored). At prediction time, an example is submitted to all n(n -1)/2 classifiers, and each prediction is interpreted as a vote for a label: if the classifier m ij predicts i j, this counts as a vote for label i. The labels are then ranked according to the number of votes. Another approach (see ?) consists in learning for each label a linear utility function from which the ranking is deduced. Then, a large part of the dedicated literature was devoted to adapting classical partitioning methods such as k-nearest neighbors (see [START_REF] Zhang | Ml-knn: A lazy learning approach to multi-label learning[END_REF] 2017)). Finally, some approaches are rule-based (see [START_REF] Gurrieri | Label ranking: A new rule-based label ranking method[END_REF][START_REF] Sá | Preference rules for label ranking: Mining patterns in multi-target relations[END_REF]). We will compare our numerical results with the best performances attained by these methods on a set of benchmark datasets of the label ranking problem in section 8.6.

Structured Prediction for Label Ranking

Learning Problem

Our goal is to learn a function s : X → Y between a feature space X and a structured output space Y, that we set to be S n the space of full rankings over the set of items n . The quality of a prediction s(x) is measured using a loss function ∆ : S n × S n → R, where ∆(s(x), σ)

is the cost suffered by predicting s(x) for the true output σ. We suppose that the input/output pairs (x, σ) come from some fixed distribution P on X × S n . The label ranking problem is then defined as:

minimize s:X →Sn R(s), with R(s) = X ×Sn ∆(s(x), σ)dP (x, σ). (8.1)
In this paper, we propose to study how to solve this problem and its empirical counterpart for a family of loss functions based on some ranking embedding φ : S n → F that maps the permutations σ ∈ S n into a Hilbert space F:

∆(σ, σ ) = φ(σ) -φ(σ ) 2 F . (8.2)
This loss presents two main advantages: first, there exists popular losses for ranking data that can take this form within a finite dimensional Hilbert Space F, second, this choice benefits from the theoretical results on Surrogate Least Square problems for structured prediction using Calibration Theory of [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF] and of works of [START_REF] Brouard | Input output kernel regression: supervised and semisupervised structured output prediction with operator-valued kernels[END_REF] on Structured Output Prediction within vector-valued Reproducing Kernel Hilbert Spaces. These works approach Structured Output Prediction along a common angle by introducing a surrogate problem involving a function g : X → F (with values in F) and a surrogate loss L(g(x), σ) to be minimized instead of Eq. 8.1. The surrogate loss is said to be calibrated if a minimizer for the surrogate loss is always optimal for the true loss [START_REF] Calauzenes | On the (non-) existence of convex, calibrated surrogate losses for ranking[END_REF]. In the context of true risk minimization, the surrogate problem for our case writes as:

minimize g:X →F L(g), with L(g) = X ×Sn L(g(x), φ(σ))dP (x, σ). (8.3)
with the following surrogate loss: In the context of Empirical Risk Minimization, a training sample S = {(x i , σ i ), i = 1, . . . , N }, with N i.i.d. copies of the random variable (x, σ) is available. The Surrogate Least Square approach for Label Ranking Prediction decomposes into two steps:

L(g(x), φ(σ)) = g(x) -φ(σ) 2 F . ( 8 
•

Step 1: minimize a regularized empirical risk to provide an estimator of the minimizer of the regression problem in Eq. ( 8.3):

minimize g∈H L S (g), with L S (g) = 1 N N i=1 L(g(x i ), φ(σ i )) + Ω(g). (8.6)
with an appropriate choice of hypothesis space H and complexity term Ω(g). We denote by g a solution of (8.6).

•

Step 2: solve, for any x in X , the pre-image problem that provides a prediction in the original space S n :

s(x) = arg min σ∈Sn φ(σ) -g(x) 2 F . (8.7)
The pre-image operation can be written as s(x) = d • g(x) with d the decoding function:

d(h) = arg min σ∈Sn φ(σ) -h 2 F for all h ∈ F, (8.8) 
applied on g for any x ∈ X .

This paper studies how to leverage the choice of the embedding φ to obtain a good compromise between computational complexity and theoretical guarantees. Typically, the pre-image problem on the discrete set S n (of cardinality n!) can be eased for appropriate choices of φ as we show in section 4, leading to efficient solutions. In the same time, one would like to benefit from theoretical guarantees and control the excess risk of the proposed predictor s.

In the following subsection we exhibit popular losses for ranking data that we will use for the label ranking problem.

Losses for Ranking

We now present losses ∆ on S n that we will consider for the label ranking task. A natural loss for full rankings, i.e. permutations in S n , is a distance between permutations. Several distances on S n are widely used in the literature [START_REF] Deza | Encyclopedia of Distances[END_REF], one of the most popular being the Kendall's τ distance, which counts the number of pairwise disagreements between two permutations σ, σ ∈ S n :

∆ τ (σ, σ ) = i<j I[(σ(i) -σ(j))(σ (i) -σ (j)) < 0]. (8.9)
The maximal Kendall's τ distance is thus n(n -1)/2, the total number of pairs. Another wellspread distance between permutations is the Hamming distance, which counts the number of entries on which two permutations σ, σ ∈ S n disagree:

∆ H (σ, σ ) = n i=1 I[σ(i) = σ (i)]. (8.10)
The maximal Hamming distance is thus n, the number of labels or items.

The Kendall's τ distance is a natural discrepancy measure when permutations are interpreted as rankings and is thus the most widely used in the preference learning literature. In contrast, the Hamming distance is particularly used when permutations represent matching of bipartite graphs and is thus also very popular (see [START_REF] Fathony | Efficient and consistent adversarial bipartite matching[END_REF]). In the next section we show how these distances can be written as Eq. ( 10.21) for a well chosen embedding φ.

Output Embeddings for Rankings

In what follows, we study three embeddings tailored to represent full rankings/permutations in S n and discuss their properties in terms of link with the ranking distances ∆ τ and ∆ H , and in terms of algorithmic complexity for the pre-image problem (8.5) induced.

The Kemeny Embedding

Motivated by the minimization of the Kendall's τ distance ∆ τ , we study the Kemeny embedding, previously introduced for the ranking aggregation problem (see [START_REF] Jiao | Controlling the distance to a kemeny consensus without computing it[END_REF]):

φ τ : S n → R n(n-1)/2 σ → (sign(σ(j) -σ(i))) 1≤i<j≤n .
which maps any permutation σ ∈ S n into Im(φ τ ) {-1, 1} n(n-1)/2 (that we have embedded into the Hilbert space (R n(n-1)/2 , ., . )). One can show that the square of the euclidean distance between the mappings of two permutations σ, σ ∈ S n recovers their Kendall's τ distance (proving at the same time that φ τ is injective) up to a constant:

φ τ (σ)-φ τ (σ ) 2 = 4∆ τ (σ, σ ).
The Kemeny embedding then naturally appears to be a good candidate to build a surrogate loss related to ∆ τ . By noticing that φ τ has a constant norm (∀σ ∈ S n , φ τ (σ) = n(n -1)/2),

we can rewrite the pre-image problem (8.7) under the form:

s(x) = arg min σ∈Sn -φ τ (σ), g(x)
. (8.11) To compute (8.11), one can first solve an Integer Linear Program (ILP) to find φ σ = arg min φσ∈Im(φτ ) -φ σ , g(x) , and then find the output object σ = φ -1 τ ( φ σ ). The latter step, i.e. inverting φ τ , can be performed in O(n 2 ) by means of the Copeland method (see [START_REF] Merlin | Copeland method ii: Manipulation, monotonicity, and paradoxes[END_REF]), which ranks the items by their number of pairwise victories 1 . In contrast, the ILP problem is harder to solve since it involves a minimization over Im(φ τ ), a set of structured vectors since their coordinates are strongly correlated by the transitivity property of rankings. Indeed, consider a vector v ∈ Im(φ τ ), so ∃σ ∈ S n such that v = φ τ (σ).

Then, for any 1 ≤ i < j < k ≤ n, if its coordinates corresponding to the pairs (i, j) and (j, k) are equal to one (meaning that σ(i) < σ(j) and σ(j) < σ(k)), then the coordinate corresponding to the pair (i, k) cannot contradict the others and must be set to one as well.

Since φ σ = (φ σ ) i,j ∈ Im(φ τ ) is only defined for 1 ≤ i < j ≤ n, one cannot directly encode the transitivity constraints that take into account the components (φ σ ) i,j with j > i.

Thus to encode the transitivity constraint we introduce φ σ = (φ σ ) i,j ∈ R n(n-1) defined by (φ σ ) i,j = (φ σ ) i,j if 1 ≤ i < j ≤ n and (φ σ ) i,j = -(φ σ ) i,j else, and write the ILP problem as follows:

φ σ = arg min φ σ 1≤i,j≤n g(x) i,j (φ σ ) i,j , s.c.          (φ σ ) i,j ∈ {-1, 1} ∀ i, j (φ σ ) i,j + (φ σ ) j,i = 0 ∀ i, j -1 ≤ (φ σ ) i,j + (φ σ ) j,k + (φ σ ) k,i ≤ 1 ∀ i, j, k s.t. i = j = k.
(8.12)

Such a problem is NP-Hard. In previous works (see [START_REF] Calauzenes | On the (non-) existence of convex, calibrated surrogate losses for ranking[END_REF]; [START_REF] Ramaswamy | Convex calibrated surrogates for low-rank loss matrices with applications to subset ranking losses[END_REF]), the complexity of designing calibrated surrogate losses for the Kendall's τ distance had already been investigated. In particular, [START_REF] Calauzenes | On the (non-) existence of convex, calibrated surrogate losses for ranking[END_REF] proved that there exists no convex n-dimensional calibrated surrogate loss for Kendall's τ distance. As a consequence, optimizing this type of loss has an inherent computational cost. However, in practice, branch and bound based ILP solvers find the solution of (8.12) in a reasonable time for a reduced number of labels n. We discuss the computational implications of choosing the Kemeny embedding section 8.5.2. We now turn to the study of an embedding devoted to build a surrogate loss for the Hamming distance.

The Hamming Embedding

Another well-spread embedding for permutations, that we will call the Hamming embedding, consists in mapping σ to its permutation matrix φ H (σ): which is, as for the Kemeny embedding previously, divided in a minimization step, i.e. find φ σ = arg min φσ∈Im(φ H ) -φ σ , g(x) , and an inversion step, i.e. compute σ = φ -1 H ( φ σ ). The inversion step is of complexity O(n 2 ) since it involves scrolling through all the rows (items i) of the matrix φ σ and all the columns (to find their positions σ(i)). The minimization step itself writes as the following problem:

φ H : S n → R n×n σ → (I{σ(i) = j})
φ σ = arg max φσ 1≤i,j≤n g(x) i,j (φ σ ) i,j , s.c    (φ σ ) i,j ∈ {0, 1} ∀ i, j i (φ σ ) i,j = j (φ σ ) i,j = 1 ∀ i, j , (8.14) 
which can be solved with the Hungarian algorithm (see [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]) in O(n 3 ) time. Now we turn to the study of an embedding which presents efficient algorithmic properties.

Lehmer Code

A permutation σ = (σ(1), . . . , σ(n)) ∈ S n may be uniquely represented via its Lehmer code (also called the inversion vector), i.e. a word of the form

c σ ∈ C n = ∆ {0} × 0, 1 × 0, 2 × • • • × 0, n -1 , where for j = 1, . . . , n: c σ (j) = #{i ∈ n : i < j, σ(i) > σ(j)}. (8.15)
The coordinate c σ (j) is thus the number of elements i with index smaller than j that are ranked higher than j in the permutation σ. By default, c σ (1) = 0 and is typically omitted. For instance, we have: e 1 2 3 4 5 6 7 8 9 σ 2 1 4 5 7 3 6 9 8 c σ 0 1 0 0 0 3 1 0 1

It is well known that the Lehmer code is bijective, and that the encoding and decoding algorithms have linear complexity O(n) (see [START_REF] Mareš | Linear-time ranking of permutations[END_REF], [START_REF] Myrvold | Ranking and unranking permutations in linear time[END_REF] 2017)). Our idea is thus to consider the following Lehmer mapping for label ranking;

φ L : S n → R n σ → (c σ (i))) i=1,...,n ,
which maps any permutation σ ∈ S n into the space C n (that we have embedded into the Hilbert space (R n , ., . )). The loss function in the case of the Lehmer embedding is thus the following: (8.16) which does not correspond to a known distance over permutations [START_REF] Deza | Encyclopedia of Distances[END_REF]. Notice

∆ L (σ, σ ) = φ L (σ) -φ L (σ ) 2 ,
that |φ L (σ)| = d τ (σ, e
) where e is the identity permutation, a quantity which is also called the number of inversions of σ. Therefore, in contrast to the previous mappings, the norm φ L (σ) is not constant for any σ ∈ S n . Hence it is not possible to write the loss ∆ L (σ, σ )

as -φ L (σ), φ L (σ )2 .Moreover, this mapping is not distance preserving and it can be proven [START_REF] Wang | Compression in the space of permutations[END_REF]). However, the Lehmer embedding still enjoys great advantages. Firstly, its coordinates are decoupled, which will enable a trivial solving of the inverse image step (8.7). Indeed we can write explicitly its solution as:

that 1 n-1 ∆ τ (σ, σ ) ≤ |φ L (σ) -φ L (σ )| ≤ ∆ τ (σ, σ ) (see
s(x) = φ -1 L • d L d • g(x) with d L : R n → C n (h i ) i=1,...,n → (arg min j∈ 0,i-1 (h i -j)) i=1,...,n , (8.17) 
where d is the decoding function defined in (8.8). Then, there may be repetitions in the coordinates of the Lehmer embedding, allowing for a compact representation of the vectors.

Extension to Partial and Incomplete Rankings

In many real-world applications, one does not observe full rankings but only partial or incomplete rankings (see the definitions section 8.2.1). We now discuss to what extent the embeddings we propose for permutations can be adapted to this kind of rankings as input data. Firstly, the Kemeny embedding can be naturally extended to partial and incomplete rankings since it encodes relative information about the positions of the items. Indeed, we propose to map any partial ranking σ to the vector: (8.18) where each coordinate can now take its value in {-1, 0, 1} (instead of {-1, 1} for full rankings).

φ( σ) = (sign( σ(i) -σ(j)) 1≤i<j≤n ,
For any incomplete ranking σ, we also propose to fill the missing entries (missing comparisons) in the embedding with zeros. This can be interpreted as setting the probability that i j to 1/2 for a missing comparison between (i, j). In contrast, the Hamming embedding, since it encodes c φ = max σ∈Sn φ(σ) . We will denote by s * a minimizer of the true risk (8.1), g * a minimizer of the surrogate risk (8.3), and d a decoding function as (8.8)3 . Given an estimator g of g * from

Step 1, i.e. a minimizer of the empirical surrogate risk (8.6) we can then consider in Step 2 an estimator s = d • g. The following theorem reveals how the performance of the estimator s we propose can be related to a solution s * of (8.1) for the considered embeddings. (ii) For the loss (10.21) defined by the Lehmer embedding φ L :

R(d • g) -R(s * ) ≤ n(n -1) 2 L( g) -L(g * ) + R(d • g * ) -R(s * ) + O(n √ n)
The full proof is given section 8.8.1. Assertion (i) is a direct application of Theorem 2 in [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF]. In particular, it comes from a preliminary consistency result which shows that R(d • g * ) = R(s * ) for both embeddings. Concerning the Lehmer embedding, it is not possible to apply their consistency results immediately; however a large part of the arguments of their proof is used to bound the estimation error for the surrogate risk, and we remain with an approximation error R(d 

O(n 2 N ) NP-hard φ H O(nN ) O(n 3 N ) φ L O(nN ) O(nN ) Regressor Step 1 (b) Step 2 (a) kNN O(1) O(N m) Ridge O(N 3 ) O(N m)

Algorithmic Complexity

We now discuss the algorithmic complexity of our approach. We recall that n is the number of items/labels whereas N is the number of samples in the dataset. For a given embedding φ, the total complexity of our approach for learning decomposes as follows.

Step 1 in Section 8. Random Forest Label Ranking (Zhou RF) [START_REF] Zhou | Random forest for label ranking[END_REF]. In their analysis, if d X is the size of input features and D max the maximum depth of a tree, then RF have a complexity in O(D max d X n 2 N 2 ).

Numerical Experiments

Finally we evaluate the performance of our approach on standard benchmarks. We present the results obtained with two regressors : Kernel Ridge regression (Ridge) and k-Nearest Neighbors (kNN). Both regressors were trained with the three embeddings presented in Section 8.4. We adopt the same setting as [START_REF] Cheng | Label ranking methods based on the plackett-luce model[END_REF] and firstly report the results of our predictors in terms of mean Kendall's τ : 

k τ = C -D n(n -1)/2    C : number of concordant

Conclusion

This paper introduces a novel framework for label ranking, which is based on the theory of Surrogate Least Square problem for structured prediction. The structured prediction approach we propose comes along with theoretical guarantees and efficient algorithms, and its performance has been shown on real-world datasets. To go forward, extensions of our methodology to predict partial and incomplete rankings are to be investigated. In particular, the framework of prediction with abstention should be of interest.

and then:

E(d • g * ) -E(s * ) = X ×Y φ(d • g * (x)) -φ(σ) 2 F -φ(s * (x)) -φ(σ) 2 F dP (x, σ) ≤ X ×Y φ(d • g(x)) -φ(s * (x)), φ(d • g(x)) + φ(s * (x)) -2φ(σ) F dP (x, σ) ≤ 4c ∆ X φ(d • g * (x)) -φ(s * (x)) F dP (x) ≤ 4c ∆ X d L • g * (x)) -d L • φ(s * (x)) F dP (x) ≤ 4c ∆ X g * (x)) -φ(s * (x)) F dP (x) + O(n √ n)
where we used that φ(s

* (x)) ∈ C n so d L • φ(s * (x)) = φ(s * (x)
). Then we can plug (8.23) in the right term:

E(d • g * ) -E(s * ) ≤ 4c ∆ X Y φ(σ)dP (σ|x) -φ(s * (x)) F dP (x) + O(n √ n) ≤ 4c ∆ X ×Y φ(σ) -φ(s * (x)) F dP (x) + O(n √ n) ≤ 4c ∆ E(s * ) + O(n √ n)
Remark 8.4. As proved in Theorem 19 in [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF], since the space of rankings Y is finite, ∆ L necessarily satisfies Assumption 1 with some continuous embedding ψ. If the approach we developped was relying on this ψ, we would have consistency for the minimizer g * of the Lehmer loss (8.16). However, the choice of φ L is relevant because it yields a pre-image problem with low computational complexity.

Lehmer Embedding for Partial Rankings

An example, borrowed from [START_REF] Li | Efficient rank aggregation via lehmer codes[END_REF] illustrating the extension of the Lehmer code for partial rankings is the following: e 1 2 3 4 5 6 7 8 9 σ 1 1 2 2 3 1 2 3 3 σ 1 2 4 5 7 3 6 8 9 c σ 0 0 0 0 0 3 1 0 0

IN 1 2 1 2 1 3 3 2 3 c σ 0 0 0 0 0 3 1 0 0 c σ 0 1 0 1 0 5 3 1 2
where each row represents a step to encode a partial ranking. Details concerning the parameter grids. We first recall our notations for vector valued kernel ridge regression. Let H K be a vector-valued Reproducing Kernel Hilbert Space associated to an operator-valued kernel K : X × X → L(R n ). Solve:

min g∈H K N k=1 g(x k ) -φ(σ k ) 2 + λ h 2 H K (8.24)
The solution of this problem is unique and admits an expansion: g(.) = N i=1 K(x i , .)c i (see [START_REF] Micchelli | Learning the kernel function via regularization[END_REF]). Moreover, it has the following closed-form solution:

g(.) = ψ x (.)(K x + λI N ) -1 Y N (8.25)
where K x is the N ×N block-matrix, with each block of the form K(x k , x l ), Y N is the vector of all stacked vectors φ(σ 1 ), . . . , φ(σ N ), and ψ x is the matrix composed of [K(., x 1 ), . . . , K(., x N )].

In all our experiments, we used a decomposable gaussian kernel K(x, y) = exp(-γ xy 2 )I m . The bandwith γ and the regularization parameter λ were chosen in the set {10 -i , 5 • 10 -i } for i ∈ 0, . . . , 5 during the gridsearch cross-validation steps. For the k-Nearest Neighbors experiments, we used the euclidean distance and the neighborhood size was chosen in the set {1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 50}.

Experimental results. We report additional results in terms of rescaled Hamming distance

(d Hn (σ, σ ) = d H (σ,σ ) n 2
) on the datasets presented in the paper and in terms of Kendall's τ coefficient on other datasets. All the results have been obtained in the same experimental conditions: ten folds cross-validation are repeated five times with the parameters tuned in a five folds inner cross-validation. The results presented in Table 8.3 correspond to the mean normalized Hamming distance between the prediction and the ground truth (lower is better). Whereas

Hamming based embeddings led to very low results on the task measured using the Kendall's τ coefficient, they outperform other embeddings for the Hamming distance minimization problem as expected.

In Table 8.4, we show that Lehmer and Hamming based embeddings stay competitive on other standard benchmark datasets. The Ridge results have not been reported due to scalability issues as the number of inputs elements and the output space size grow.

Chapter 9. Conclusion, Limitations & Perspectives the sense that the relative order of two items belonging to two different buckets is deterministic.

This approximate distribution minimizes a distortion measure, that is closely related to the risk of a consensus, extending thus the framework we proposed for ranking aggregation. Then, we considered the supervised problem of ranking regression/label ranking, and exhibited that it is also a direct extension of the ranking aggregation problem. Our first proposal is thus to compute piecewise constant methods, partitioning the feature space into regions and locally computing consensus to assign a final label (in this case, a ranking) to each region. We provided theoretical results assessing that solutions of this problem can be well approximated by such local learning approaches, and investigated in particular a k-nearest neighbor algorithm and a decision-tree algorithm tailored for this data. Finally, this ranking regression problem can be also casted in the structured prediction framework which benefits from an abundant literature. In this view, we proposed a structured prediction approach for this problem, relying on embedding maps enjoying theoretical and computational advantages. One of these embeddings being at the core of our first contribution for ranking aggregation, this final work closed this thesis.

Rankings are heterogenous objects, and the literature generally focus on studying of their classes:

full rankings, partial rankings or incomplete rankings. The main limitation of this thesis is that we derive our results for the case of full rankings, i.e. on the space of permutations named the symmetric group. In future work, one could investigate the case of distributions over incomplete and partial rankings. Since we make an extensive use of the Kendall's tau distance, decomposing rankings over pairs, our work could be extended to this setting by introducing a distribution over the subsets of items to be observed, such as in [START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]; [START_REF] Sibony | Multiresolution analysis of incomplete rankings with applications to prediction[END_REF].

CHAPTER 10 • Conditions pour que l'agrégation exacte de Kemeny devienne tractable. Ces résultats assurent la tractabilité de l'agrégation exacte de Kemeny si l'ensemble de données satisfait certaines conditions ou si une certaine quantité est connue à partir de l'ensemble de données (voir Betzler et al. (2008(voir Betzler et al. ( , 2009)); [START_REF] Cornaz | Kemeny elections with bounded single-peaked or singlecrossing width[END_REF]; [START_REF] Brandt | Bypassing combinatorial protections: Polynomial-time algorithms for single-peaked electorates[END_REF]). Alors que le problème (10.6) est NP-difficile en général, dans le cas de la distance du τ de Kendall, les solutions exactes peuvent être explicitées lorsque les probabilités par paires p i,j = P{Σ(i) < Σ(i) < Σ(j)}, 1 ≤ i = j ≤ n (donc p i,j + p j,i = 1), vérifient la propriété suivante, appelée transitivité stochastique.

Résumé en français

d τ (σ, σ ) = 1≤i<j≤n I{(σ(j) -σ(i))(σ (j) -σ (i) < 0}. ( 10 
Definition 10.2. Soit P une distribution de probabilité sur S n .

(i) La distribution P est dite (faiblement) transitive stochastiquement ssi ∀(i, j, k) ∈ n 3 : p i,j ≥ 1/2 and p j,k ≥ 1/2 ⇒ p i,k ≥ 1/2. Si, en plus, p i,j = 1/2 pour tous les i < j, on dit que P est strictement transitive stochastiquement.

(ii) la distribution P est dite fortement transitive stochastiquement ssi ∀(i, j, k) ∈ n 3 : p i,j ≥ 1/2 and p j,k ≥ 1/2 ⇒ p i,k ≥ max(p i,j , p j,k ). ce qui est équivalent à la condition suivante (voir [START_REF] Davidson | Experimental tests of a stochastic decision theory[END_REF]): ∀(i, j) ∈ n 2 : p i,j ≥ 1/2 ⇒ p i,k ≥ p j,k for all k ∈ n \ {i, j}.

Ces conditions ont d'abord été introduites dans la littérature en psychologie [START_REF] Fishburn | Binary choice probabilities: on the varieties of stochastic transitivity[END_REF]; [START_REF] Davidson | Experimental tests of a stochastic decision theory[END_REF]) et ont été utilisées récemment pour l'estimation des probabilités par paires et le classement à partir de comparaisons par paires (Shah et al. (2017) K-1 = 2 n-1 ). Théoriquement, nous avons proposé une méthode de régularisation de la complexité pour sélectionner la forme de l'ordre par paquets λ, qui utilise des complexités de Rademacher (pénalités basées sur l'ensemble de données). Nous démontrons la pertinence de notre approche par des expériences sur des ensembles de données simulées et réelles, qui mettent en évidence que l'on peut maintenir une faible distorsion tout en réduisant drastiquement la dimension de la distribution. 

Une Approche de Prédiction Structurée pour la Régression de Classements

La régression de classement peut aussi être considérée comme un problème de prédiction structurée, sur laquelle une vaste littérature existe. En particulier, nous avons adopté l'approche de substitution pour la perte des moindres carrés introduite dans le contexte des noyaux de sortie [START_REF] Cortes | A general regression technique for learning transductions[END_REF][START_REF] Kadri | A generalized kernel approach to structured output learning[END_REF][START_REF] Brouard | Input output kernel regression: supervised and semisupervised structured output prediction with operator-valued kernels[END_REF] et récemment étudiée par [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF][START_REF] Osokin | On structured prediction theory with calibrated convex surrogate losses[END_REF] en utilisant la théorie de la calibration [START_REF] Steinwart | Support Vector Machines[END_REF]. Cette approche divise la tâche d'apprentissage en deux étapes: la première est une étape de régression vectorielle dans un espace de Hilbert où les objets de sortie sont L'approche de substitution pour les moindres carrés pour la régression de classement se décompose en deux étapes :

• Étape 1 : minimiser un risque empirique régularisé pour fournir un estimateur du minimiseur du problème de régression dans Eq. (1.22) :

minimiser g∈H L S (g), avec L S (g) = 1 N N i=1 L(g(X i ), φ(Σ i )) + Ω(g). (10.25) avec un choix approprié de l'espace d'hypothèse H et du terme de régularisation Ω(g).

Nous dénotons par g une solution de (10.25).

• Étape 2 : résoudre, pour tout x de X , le problème de pré-image qui fournit une prédiction 

Plan de la Thèse

Cette thèse est organisée comme suit.

• Le chapitre 2 fournit un aperçu concis sur les données de classements et les préliminaires nécessaires pour cette thèse.

La Partie I se concentre sur le problème d'agrégation de classements.

Chapter 10. Résumé en français

• Le chapitre 3 décrit le problème d'agrégation de classements, les défis mathématiques et computationnels ainsi les différentes approches dans la littérature pour ce problème.

• Le chapitre 4 présente une méthode générale pour borner la distance de toute solution candidate au problème d'agrégation de classements à un consensus de Kemeny.

• Le chapitre 5 est certainement la pierre angulaire de cette thèse; il présente notre nouveau cadre statistique pour le problème d'agrégation de classements et caractérise le comportement statistique de ses solutions.

La partie II traite de problèmes étroitement liés à l'agrégation de classements : en particulier la réduction de dimension avec l'agrégation partielle de classements et la régression de classements.

• Le chapitre 6 suggère une approche de transport optimal pour la réduction de dimension pour les données de classements; plus précisément comment approximer une distribution sur les classement complets par une distribution respectant un ordre partiel des objets.

• Le chapitre 7 aborde le problème supervisé de l'apprentissage d'une règle de prédiction de classements, d'un espace objet (espace de caractéristiques) à l'espace des classements complets. Nous fournissons une analyse statistique de ce problème et adaptons des méthodes de partition bien connues pour la prédiction de classements.

• Le chapitre 8 considère le même problème d'apprentissage dans le cadre de la prédiction de sorties structurées. Nous y proposons d'autres algorithmes reposant sur des fonctions de représentation bien choisies.
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  min σ∈Sn C N (σ), where C N (σ) = φ(σ) -φ(D N )

  FIGURE 3.1: An election where Borda count does not elect the Condorcet winner .

  a quantitative measure of the amount of local pairwise inconsistencies in the dataset D N , and in Jiang et al. (2011) it is proven that Borda count corresponds to an l2 projection of the data (pairwise probabilities, or "flows") on the space of gradient flows (localizing the global consistencies) orthogonal to the space of divergence-free flows (localizing local pairwise inconsistencies), see Figure 3.2 from the reference therein. The Borda count thus provides a good trade-off between Kemeny approximation accuracy and computational cost in empirical experiments, see also Remark 3.2.

FIGURE 3

 3 FIGURE 3.2: Hodge/Helmotz decomposition of the space of pairwise rankings.

  A common approach is to consider that the observed rankings, for examples pairwise comparisons, are generated according to a given model centered around a true underlying order. The outcomes of the pairwise comparisons are then noisy versions of the true relative orders under some model, and one can perform MLE (Maximum Likelihood Estimation) to recover the underlying central ranking. Several models and settings have been considered. This idea actually originally arised in the work of Condorcet (see Condorcet (1785)) under a particular noise model (equivalent to Mallows, see Lu & Boutilier (2011)): a voter ranks correctly two candidates with probability p > 1/2. Numerous contributions thus Chapter 3. The Ranking Aggregation Problem consider a Mallows model (see Fligner & Verducci (1990); Meila et al. (2007); Braverman & Mossel (2008)), a γ-noise model (P{i ≺ j} = 1/2 + γ for all i < j, see Braverman & Mossel (2008)), Bradley-Terry model (see BTL-ML algorithm in Rajkumar & Agarwal (2014)), or more original ones such as the coset-permutation distance based stagewise (CPS) model (see Qin et al. (

  Chapter 4. A General Method to Bound the Distance to Kemeny Consensus Proposition 4.2 (Background results). For all σ, σ ∈ S n , φ(σ) = n(n -1) 2 and φ(σ) -φ(σ ) 2 = 4d(σ, σ ), and for any dataset D N = (σ 1 , . . . σ N ) ∈ S N n , Kemeny aggregation (4.1) is equivalent to the minimization

  Proposition 4.2 leads to the following geometric interpretation of Kemeny aggregation, illustrated by Figure4.1. First, as φ(σ) = n(n -1)/2 for all σ ∈ S n , the embeddings of all the permutations in S n lie on the sphere S of center 0 and radius R :

  FIGURE 4.1: Kemeny aggregation for n = 3.

  Proposition 4.5 (Complexity of the method). The application of Method 1 has complexity in time O(N n 2 ).

  The level sets of C N are thus of the form {x ∈ S | θ N (x) = α}, for 0 ≤ α ≤ π. If n = 3, these Chapter 4. A General Method to Bound the Distance to Kemeny Consensus level sets are circles in planes orthogonal to φ(D N ), each centered around the projection of the latter on the plane (Figure4.2). This property implies the following result.

FIGURE 4 . 2 :

 42 FIGURE 4.2: Level sets of C N over S.

  Formally, we denote by B(x, r) = {x ∈ R ( n 2 ) | x -x < r} the (open) ball of center x and radius r. Then one has the following result.

  Figure 4.3 provides an illustration of Lemma 4.7 in this 2-dimensional subspace from the geometric point of view, with r taking integer values (representing possible Kendall's tau distance). In this illustration, the smallest integer value for r such that these inequalities hold is r = 2. Chapter 4. A General Method to Bound the Distance to Kemeny Consensus

FIGURE 4

 4 FIGURE 4.3: Illustration of Lemma 4.7.

  FIGURE 4.4: Boxplot of s (r, D N , n) over sampling collections of datasets shows the effect from different size of alternative set n with restricted sushi datasets (n = 3; 4; 5, N = 5000).

  FIGURE 4.5: Boxplot of s (r, D N , n) over sampling collections of datasets shows the effect from different voting rules r with 500 bootstrapped pseudo-samples of the APA dataset (n = 5, N = 5738).

  FIGURE 4.6: Boxplot of s (r, D N , n) over sampling collections of datasets shows the effect from datasets D N . 100 Netflix datasets with the presence of Condorcet winner and 100 datasets with no Condorcet winner (n = 4 and N varies for each sample).

  FIGURE 4.7: Boxplot of k min over 500 bootstrapped pseudo-samples of the sushi dataset (n = 10, N = 5000).

  Remark 5.2. (ALTERNATIVE FRAMEWORK) Since the computation of Kendall's τ distance involves pairwise comparisons only, one could compute empirical versions of the risk functional L in a statistical framework stipulating that the observations are less complete than {Σ 1 , . . . , Σ N } and formed by i.i.d. pairs {(e k , k ), k = 1, . . . , N }, where the e k = (i k , j k )'s are independent from the Σ k 's and drawn from an unknown distribution ν on the set E n such that ν(e) > 0 for all e ∈ E n and k

  .19) This leads to the bounds in expectation and probability for ERM in the context of Kemeny ranking aggregation stated below, unsurprisingly of order O(1/ √ N ). Proposition 5.9. Let N ≥ 1 and σ N be any Kemeny empirical median based on i.i.d. training data Σ 1 , . . . , Σ N , i.e. a minimizer of (5.3) over S n with d = d τ . The excess risk of σ N is upper bounded:

Remark 5 .

 5 10. As the problem (5.4) is NP-hard in general, one uses in practice an optimization algorithm to produce an approximate solution σ N of the original minimization problem, with a control of the form: L N ( σ N ) ≤ min σ∈Sn L N (σ) + ρ, where ρ > 0 is a tolerance fixed in advance, see e.g.[START_REF] Jiao | Controlling the distance to a kemeny consensus without computing it[END_REF] or Chapter 4. As pointed out in[START_REF] Bottou | The trade-offs of large-scale learning[END_REF],

  aggregation converges exponentially fast to L * and remarkably, with overwhelming probability, empirical Kemeny aggregation has a unique solution that coincides with a natural plug-in estimator of the true median (namely s * in this situation, see Theorem 5.5). For h > 0, we define condition:NA(h): min i<j |p i,j -1/2| ≥ h.Remark 5.13. (LOW NOISE FOR PARAMETRIC MODELS ) Condition NA(h) is fulfilled by many parametric models. For example, the Mallows model (5.14) parametrized by θ = (σ 0 , φ) ∈ S n × [0, 1] satisfies NA(h) iff φ ≤ (1 -2h)/(1 + 2h). For the Bradley-Terry-Luce-Plackett model with preference vector w= [w i ] 1≤i≤n , condition NA(h) is satisfied iff min 1≤i≤n |w iw i+1 | ≥ (4h)/(1 -2h), see[START_REF] Chen | Spectral mle: Top-k rank aggregation from pairwise comparisons[END_REF] where minimax bounds are obtained for the problem of identifying top-K items. This condition may be considered as analogous to that introduced in[START_REF] Koltchinskii | Exponential convergence rates in classification[END_REF] in binary classification, and was used inShah et al. (2017) to prove fast rates for the estimation of the matrix of pairwise probabilities.

  1). (5.23) Chapter 5. A Statistical Framework for Ranking Aggregation 69 According to (5.23), we have the following calculations:

  (1+φ) (based on Corollary 3 from Busa-Fekete et al. (2014), see Remark 5.7). Set ∆ = d τ (σ * 0 , σ * 1 ) ≥ 1, and consider the test statistic related to σ N :
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  Chapter 6. Dimensionality Reduction and (Bucket) Ranking:A Mass Transportation Approach Whatever the type of task considered (supervised, unsupervised), machine-learning algorithms generally rest upon the computation of statistical quantities such as averages or linear combinations of the observed features, representing efficiently the data. However, summarizing ranking variability is far from straightforward and extending simple concepts such as that of an average or median in the context of preference data, i.e. ranking aggregation, raises a certain number of deep mathematical and computational problems, on which we focused on Part I. Regarding dimensionality reduction, it is far from straightforward to adapt traditional techniques such as

  14) Chapter 6. Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach 87 and the minimizer C K m ,λ m of the penalized empirical distortion, with m = arg min 1≤m≤M Λ N ( C Km,λm ) + pen(λ m , N ) and Λ N ( C K,λ ) = min C∈C

  18) is verified by P , then P N is strictly stochastically transitive (which then happens with overwhelming probability (see Proposition 5.14 in Chapter 5), the computation of the empirical Chapter 6. Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach Kemeny median σ * P N

  FIGURE 6.1: Dimension-Distortion plot for different bucket sizes on real-world preference datasets.

  Input. Training data {Σ i } N i=1 , maximum dimension d max ≥ 0, distortion tolerance ≥ 0. }. Set K ← n. 3. Iterations. While K ≥ 3 and Λ N (C(n -K)) > , (a) Compute k ∈ arg max 1≤l≤K-1 ∆ (l) P N (C(n -K)) and C(n -K + 1). (b) If d C(n-K+1) > d max : go to 4. Else: set K ← K -1.4.Output. Bucket order C(n -K).

  .21) proves that d C > d C * (K * ,λ * ) . The general result follows by induction. (iii). By induction on n-K * ∈ {0, . . . , n-2}. Initialization is straightforward for K * = n. Let m ∈ {3, . . . , n} and assume that the proposition is true for any strongly/strictly stochastically transitive bucket distribution with K * = m. Let P be a strongly/strictly stochastically transitive bucket distribution with K * = m -1. By definition of K * , the algorithm runned with distribution P cannot stop before computing C(n -m + 1), which results from merging the adjacent buckets C k (n -m) and C k+1 (n -m) (with k ∈ {1, . . . , m -1}). Then consider a distribution P with pairwise marginals p

  FIGURE 6.2: Dimension-Distortion plot for different bucket sizes on simulated datasets.

Figure 6

 6 Figure6.2, the first plot on the left is a scatterplot of all buckets of size K ∈ {2, 3} where for any bucket C of size K, the horizontal axis is the distortion Λ P (C ) (see (6.7)) and the vertical axis is the dimension of P C in log scale. On the left plot, one can see that one bucket of size K = 3 attains a null distortion, i.e. when C = C, and two buckets of size K = 2 as well, i.e. when C = (C 1 ∪ C 2 , C 3 ) and when C = (C 1 , C 2 ∪ C 3 ). Then, a dataset of 2000 samples from P was drawn, and for a certain part of the samples, a pair of items was randomly swapped within the sample. The middle and right plot thus represent the empirical distortions Λ N (C ) for any C computed on these datasets, where respectively 20% and 50% of the samples were contaminated. One can notice that the datapoints shift more and more to the right, i.e. the distortion is increasing with the noise, still, the best bucket of size 3 remains C = C. However, the buckets C attaining the minimum distortion in the noisy case are of size 2, because the distortion involves a smaller number of terms κ(λ C ) for a smaller size.

  ,a,b + p c,b,a ) + p a,c,b + p b,c,a , (6.22) with equality when P = P C is the distribution of Σ C .

Chapter 6 .

 6 Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach 97 K buckets. We propose to prove that min P ∈P C W d 2 ,2 (P, P ) = W d 2 ,2 (P, P C ) = E[d 2 2 (Σ, Σ C )] and to obtain an explicit expression. Given three distinct indices 1 ≤ a < b < c ≤ n, we analyze the following four possible situations to reveal what are the optimal values of the conditional probabilities in Eq. (6.25):

  ,b,c|c,a,b p c,a,b . (6.29) Observe that the expression above is maximized when π a,b,c|a,b,c = π a,c,b|a,c,b = πa,b,c|b,c,a = πa,b,c|b,a,c = πa,c,b|c,b,a = πa,c,b|c,a,b = 1, which is verified by Σ = Σ C . In this case, Eq.

  ,b,a ) (6.30) Now consider (j, k, i) ∈ {(a, b, c), (a, c, b)}: p a,b,c + p a,c,b = 1 and the corresponding contributions to H(a, b, c) sum as follows:

  ,b,a|a,c,b + π b,a,c|a,c,b ) + 1 2 π b,c,a|a,c,b p a,c,b , which is maximized when π a,c,b|a,b,c = π c,a,b|a,b,c = π c,b,a|a,b,c = 0 and π a,b,c|a,c,b = π b,a,c|a,c,b = π b,c,a|a,c,b = 0: both conditions are true for Σ = Σ C . Then, the expression above is upper bounded by:
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  are Lipschitz. Two methods based on the notion of local Kemeny consensus are investigated here. The first technique is a version of the popular nearest neighbor method tailored to ranking median regression, while the second one, refered to as the CRIT algorithm (standing for 'Consensus RankIng Tree'), produces, by successive data-driven refinements, an adaptive partitioning of the input space X formed of regions, where the Σ i 's exhibit low variability. Like CART, the recursive learning process CRIT can be described by a binary tree, whose terminal leafs are associated with the final regions. It can be seen as a variant of the methodology introduced in Yu et al. (2010): we show here that the node impurity measure they originally propose can be related to the local ranking median regression risk, the sole major difference being the specific computationally effective method we consider for computing local predictions, i.e. for assigning permutations to terminal nodes.

  and the convention 0/0 = 0, for any measurable set C s.t. µ(C) > 0. Notice that, although σ * P C

  THE k-NN ALGORITHM Inputs. Training dataset D N = {(X 1 , Σ 1 ), . . . , (X N , Σ N )}. Norm ||.|| on the input space X ⊂ R d . Number k ∈ {1, . . . , N } of neighbours. Query point x ∈ X .
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 72 FIGURE 7.2: Pseudo-code for the k-NN algorithm.

P

  Consider next the empirical distribution calculated using the k training points closest to x s k,N (x) = σ P (x) , (7.19) where σ P (x) is a Kemeny median of distribution (7.18). Alternatively, one may compute next the pseudo-empirical Kemeny median, as described in subsection 7.2.1, yielding the k-NN prediction at x: s k,N (x) = σ * P (x) . (7.20) Observe incidentally that s k,N (x) = s k,N (x) when P (x) is strictly stochastically transitive. The result stated below provides an upper bound for the expected risk excess of the RMR rules (7.19)
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Chapter 7 .

 7 Ranking Median Regression: Learning to Order through Local Consensus the best strictly stochastically transitive approximation method investigated in subsection 7

  maps any pair (z, D N ) to a RMR rule S(., z, D N ). Given the training sample D N , its risk is R(S(., ., D N )) = E (X,Σ,Z) [d τ (Σ, S(X, Z, D N ))]. Given any RMR algorithm and any training set D N , one may compute an aggregated rule as follows.

  .38) Consider first the second term on the right hand side of the equation above. It results from the argument of Theorem 10.7's that: R(s P N ) -R * ≤ M δ P N → 0 in probability as N → ∞.

  , Chiang et al. (2012)) or tree-based methods, in a parametric (Cheng et al. (2010), Cheng et al. (2009), Aledo et al. (2017a)) or a non-parametric way (see Cheng & Hüllermeier (2013), Yu et al. (2010), Zhou & Qiu (2016), Clémençon et al. (2017), Sá et al. (

  .4) Problem of Eq. (8.3) is in general easier to optimize since g has values in F instead of the set of structured objects Y, here S n . The solution of (8.3), denoted as g * , can be written for any x ∈ X : g * (x) = R[φ(σ)|x]. Eventually, a candidate s(x) pre-image for g * (x) can then be obtained by solving: s(x) = arg min σ∈Sn L(g * (x), φ(σ)). (8.5)

Theorem 8. 1 .

 1 The excess risks of the proposed predictors are linked to the excess surrogate risks as: (i) For the loss (10.21) defined by the Kemeny and Hamming embedding φ τ and φ H respectively: R(d • g) -R(s * ) ≤ c φ L( g) -L(g * ) with c φτ = n(n-1) 2 and c φ H = √ n.

  3 can be decomposed in two steps: a preprocessing step(Step 1 (a)) consisting in mapping the training sample {(x i , σ i ), i = 1, . . . , N } to {(x i , φ(σ i )), i = 1, . . . , N }, and a second step (Step 1 (b)) that consists in computing the estimator g of the Least squares surrogate empirical minimization (8.6). Then, at prediction time, Step 2 Section 8.3 can also be decomposed in two steps: a first one consisting in mapping new inputs to a Hilbert space using g (Step 2 (a)), and then solving the preimage problem (8.7) (Step 2 (b)). The complexity of a predictor corresponds to the worst complexity across all steps. The complexities resulting from the choice of an embedding and a regressor are summarized Table8.1, where we denoted by m the dimension of the ranking embedded representations. The Lehmer embedding with kNN regressor thus provides the fastest theoretical complexity of O(nN ) at the cost of weaker theoretical guarantees.The fastest methods previously proposed in the litterature typically involved a sorting procedure at prediction[START_REF] Cheng | Label ranking methods based on the plackett-luce model[END_REF] leading to a O(N nlog(n)) complexity. In the experimental section we compare our approach with the former (denoted as Cheng PL), but also with the label wise decomposition approach in Cheng & Hüllermeier (2013) (Cheng LWD) involving a kNN regression followed by a projection on S n computed in O(n 3 N ), and the more recent

10. 2 . 1

 21 Définition et ContexteSupposons maintenant qu'en plus de l'ensemble des éléments n, nous disposons d'une population de N agents. Supposons que chaque agent t ∈ {1, . . . , N } exprime ses préférences sous forme de classement complet sur n, ce qui, comme dit précédemment, peut être vu comme une permutation σ t ∈ S n . La collecte des préférences des agents par rapport à l'ensemble des éléments de n résulte alors en un ensemble de données de permutations D N = (σ 1 , . . . , σ N ) ∈ S N n , parfois appelé le profil dans la littérature du choix social. Le problème d'agrégation de classements consiste alors à trouver une permutation σ * ∈ S n , appelé consensus, qui résume le mieux l'ensemble de données. Cette tâche a été introduite dans l'étude des systèmes électoraux dans la théorie du choix social, et toute procédure de mise en correspondance d'un ensemble de données avec un consensus s'appelle donc une règle de vote. Fait intéressant,[START_REF] Arrow | Social choice and individual values[END_REF] a démontré son célèbre théorème d'impossibilité qui affirme qu'aucune règle de vote ne peut satisfaire un ensemble prédéfini d'axiomes, chacun reflétant l'équité de l'élection (voir Chapitre 3). Il n'existe donc pas de procédure canonique d'agrégation de classements, et chacune a ses avantages et ses inconvénients. Ce problème a donc été largement étudié et de nombreuses approches ont été développées, en particulier dans deux contextes. La première possibilité est de considérer que l'ensemble de données est constitué de versions bruitées d'un vrai classement (par exemple, la réalisation d'une distribution paramétrique centrée autour d'un vrai classement), et l'objectif alors est de reconstruire le vrai classement grâce aux échantillons (par exemple, avec une estimation du maximum de vraisemblance). La deuxième possibilité est de formaliser ce problème comme un problème d'optimisation discret sur l'ensemble des classements, et de rechercher le classement Chapter 10. Résumé en français qui est le plus proche (au sens d'une certaine distance) des classements observés dans l'ensemble de données, sans faire aucune hypothèse sur les données. Cette dernière approche aborde le problème de manière rigoureuse, mais peut entraîner des coûts de calcul élevés en pratique. En particulier, l'agrégation de Kemeny (Kemeny (1959)) vise à résoudre : min σ∈Sn C N (σ), (10.1) où C N (σ) = N t=1 d(σ, σ t ) et d est la distance du τ de Kendall définie pour σ, σ ∈ S n comme le nombre de leurs désaccords par paires :

  Nos contributions sur le problème de l'agrégation de classements dans cette thèse sont résumées dans les deux sous-sections suivantes. Nous proposons tout d'abord une quantité dépendant de l'ensemble de données, qui permet de borner supèrieurement la distance du τ de Kendall entre tout candidat pour le problème d'agrégation de classement (généralement le résultat d'une procédure efficace), et un consensus deKemeny (intractable). Ensuite, nous formalisons le problème dans un cadre statistique, en supposant que l'ensemble de données est constitué de réalisations d'une variable aléatoire suivant une distribution P sur l'espace des classements complets/permutations S n . Bien que cette approche puisse sembler naturelle pour un statisticien, la plupart des contributions de la littérature en choix social ou en informatique n'analysent pas ce problème à travers la distribution des données; cependant, l'analyse à travers les propriétés de distribution est largement répandue dans la littérature concernant les comparaisons par paires, voir chapitre 2 et 3. Dans cette optique, nous dérivons des résultats statistiques et donnons des conditions sur P pour que l'agrégation de Kemeny soit tractable. 10.2.2 Une Méthode Générale pour Borner la Distance au Consensus de Kemeny Notre première question était la suivante. Soit σ ∈ S n un candidat pour le consensus, généralement produit par une procédure d'agrégation efficace sur D N = (σ 1 , . . . , σ N ). Peut-on utiliser une quantité tractable pour donner une borne supérieure à la distance du τ de Kendall d τ (σ, σ * ) entre σ et un consensus de Kemeny σ * ∈ K N ? La réponse à ce problème est positive, comme nous allons le développer. Notre analyse est géométrique et repose sur la fonction de réprésentation suivante, nommée représentation de Kemeny : φ : S n → R ( n 2 ) , σ → [sign(σ(j) -σ(i)] 1≤i<j<j≤n , où sign(x) = 1 si x ≥ 0 et -1 sinon. Elle a les propriétés suivantes. Premièrement, pour tous σ, σ ∈ S n , φ(σ) -φ(σ ) 2 = 4d τ (σ, σ ), c'est-à-dire, le carré de la distance euclidienne entre les représentations de deux permutations correspond à leur distance du τ de leur Kendall à une constante multiplicative près, prouvant en même temps que la fonction de représentation est injective. Ensuite, l'agrégation de Kemeny (10.1) est équivalente au problème de minimisation suivant: min σ∈Sn C N (σ), où C N (σ) = φ(σ) -φ(D N ) représentation moyenne de l'ensemble de données. Le lecteur peut se référer au chapitre 4 pour des illustrations. Une telle quantité contient donc une information riche sur la localisation d'un consensus Kemeny, qui sera la clef pour en déduire notre résultat. Chapter 10. Résumé en français Nous définissons premièrement pour toute permutation σ ∈ S n , son angle θ N (σ) entre φ(σ) et φ(D N ) par: cos(θ N (σ)) = φ(σ), φ(D N ) φ(σ) φ(D N ) , (10.4) avec 0 ≤ θ N (σ) ≤ π par convention. Notre résultat principal, basé sur une analyse géométrique de l'agrégation de Kemeny dans l'espace euclidien R ( n 2 ) , est le suivant.Theorem 10.1. Pour tout k ∈ {0, . . . , n 2 -1}, nous avons l'implication suivante:cos(θ N (σ)) > 1 -N d τ (σ, σ * ) ≤ k.Plus précisément, la meilleure borne est donnée par le plus petit k ∈ {0, . . . , n 2 -1} tel que cos(θ N (σ)) > 1 -(k + 1)/ n 2 .En notant par k min (σ; D N ) cet entier, il est facile de montrer que:k min (σ; D N ) = n 2 sin 2 (θ N (σ)) if 0 ≤ θ N (σ) ≤ π 2 n 2 if π 2 ≤ θ N (σ) ≤ π.(10.5) où x est la partie entière du réel x. Ainsi, étant donné un ensemble de données D N et un candidat σ pour l'agrégation, après avoir calculé la représentation moyenne de l'ensemble de données et k min (σ; D N ), on obtient une borne sur la distance entre σ et un consensus de Kemeny. La finesse de la borne est mise en évidence dans les expériences Chapitre 4. Notre méthode a une complexité d'ordre O(N n 2 ), où N est le nombre de classements (taille de l'ensemble de données) et n est le nombre d'objets à classer, et est très générale puisqu'elle peut être appliquée à tout jeu de données et tout candidat pour le consensus. 10.2.3 Un Cadre Statistique pour l'Agrégation de Classements Notre deuxième question était la suivante. Supposons que l'ensemble de des classements à agréger D N est composé de N ≥ 1 copies i.i.d. Σ 1 , ; . . . , ; Σ N d'une variable aléatoire générique Σ, définie sur un espace de probabilité (Ω, ; F, ; P) et suivant une distribution de probabilité inconnue P sur S n (i.e. P (σ) = P{Σ = σ} pour tout σ ∈ S n ). Pouvons-nous calculer la vitesse de convergence pour l'excès de risque d'un consensus empirique (c.-à-d. basé sur D N ) par rapport à un vrai consensus (par rapport à la distribution sous-jacente) ? Ensuite, y a-t-il des conditions sur P pour que l'agrégation de Kemeny devienne tractable ? Encore une fois, la réponse est positive, comme nous le détaillons ci-dessous. Nous définissons d'abord une (vraie) médiane de la distribution P par rapport d (n'importe quelle métrique sur S n ) comme une solution du problème de minimisation : min σ∈Sn L P (σ), (10.6) où L P (σ) = E Σ∼P [d(Σ, σ)] correspond à la distance en espérance entre toute permutation σ et Σ et sera appelé risque du candidat médian σ. Toute solution de (10.6), dénotée σ * , sera appelée médiane Kemeny tout au long de cette thèse, et L * P = L P (σ * ) son risque, aussi appelé dispersion de P .

  ;[START_REF] Shah | Simple, robust and optimal ranking from pairwise comparisons[END_REF];[START_REF] Rajkumar | A statistical convergence perspective of algorithms for rank aggregation from pairwise data[END_REF]). Notre résultat principal sur l'optimalité pour (10.6), qui peut être considéré comme un résultat de tri topologique classique sur le graphe des comparaisons par paires (voir Figure2.1. Chapitre 2), est le suivant.Proposition 10.3. Supposons que P est strictement (et faiblement) transitive stochastiquement.Alors, la médiane de Kemeny σ * est unique et donnée par la méthodede Copeland, c.-à-dintéressant est que lorsque la transitivité stochastique est forte, la médiane de Kemeny est également donnée par la méthode de Borda, voir Remarque 5.6 au chapitre 5. Cependant, la quantité L P (.) est inconnue en pratique, tout comme la distribution P ou ses probabilités marginales p i,j . Suivant le paradigme de la minimisation du risque empirique (MRE)Chapter 10. Résumé en français(voir Vapnik, 2000), nous nous sommes donc intéressés à l'évaluation de la performance des solutions σ N , appelées médiane de Kemeny empiriques, du problèmemin σ∈Sn L N (σ), (10.8) où L N (σ) = 1/N N t=1 d(Σ t , σ). Remarquez que L N = L P N où P N = 1/N Nt=1 δ Σt est la distribution empirique. Précisément, nous établissons des vitesses de l'ordre de O P (1/ √ N ) pour l'excès de risque L P ( σ N ) -L * P en probabilité/en espérance et prouvons qu'elles sont minimax, lorsque d est la distance τ de Kendall. Nous établissons également des vitesses rapides lorsque la distribution P est strictement transitive stochastiquement et vérifie une certaine condition de bruit faible NA(h), définie pour h > 0 par : min i<j |p i,j -1/2| ≥ h. (10.9) Cette condition peut être considérée comme analogue à celle introduite dans Koltchinskii & Beznosova (2005) pour la classification binaire, et a été utilisée dans Shah et al. (2017) pour prouver des vitesses rapides pour l'estimation de la matrice des probabilités par paires. Dans ces conditions (transitivité (10.2) et bruit faible (10.9)), la distribution empirique P N est aussi strictement transitive stochastiquement avec très grande probabilité, et l'excès de risque d'une médiane empirique de Kemeny décroît à vitesse exponentielle. Dans ce cas, la solution optimale σ * N de (10.8) est aussi une solution de (10.6) et peut être rendue explicite et très simplement calculée avec Eq. (10.7), à partir des probabilités empiriques par paires empiriques pi,j = 1 N N t=1 I{Σ t (i) < Σ t (j)}.Ce dernier résultat sera de la plus haute importance pour les applications pratiques décrites dans la section suivante.10.3 Au-delà de l'Agrégation de Classements : la Réduction de Dimension et la Régression de ClassementsLes résultats que nous avons obtenus sur l'agrégation de classements statistique nous ont permis de considérer deux problèmes étroitement liés. Le premier est un autre problème non supervisé, à savoir la réduction de dimension; nous proposons de représenter de manière parcimonieuse toute distribution P sur les classements complets par un ordre partiel C et une distribution approximative P C relative à cet ordre partiel. Le second est un problème supervisé étroitement lié à l'agrégation de classements, à savoir la régression de classements.10.3.1 Réduction de Dimension pour les Données de Classements : une Approche de Transport de MasseEn raison de l'absence d'une structure d'espace vectoriel sur S n , il n'est pas possible d'appliquer de manière directe les techniques traditionnelles de réduction de dimension pour les données vectorielles (ex: l'ACP), et la synthèse des données de classements est difficile. Nous avons donc proposé un cadre de transport de masse pour la réduction de dimension adapté aux données de classements présentant un type spécifique de parcimonie, prolongeant en quelque sorte le cadre statistique que nous avons proposé pour l'agrégation de classement. Nous proposons une manière de décrire une distribution P sur S n , initialement caractérisée par n!-1 paramètres, en trouvant une distribution beaucoup plus simple proche de P au sens de la distance de Wasserstein introduite ci-dessous.Definition 10.4. Soit d : S 2 n → R + une métrique sur S n et q ≥ 1. La distance de Wasserstein d'ordre q avec d comme fonction de coût entre deux distributions de probabilité P et P sur S n est donnée par :W d,q P, P = inf Σ∼P, Σ ∼P E d q (Σ, Σ ) , (10.10) où l'infimum est pris sur tous les couplages possibles (Σ, Σ ) de (P, P ).Rappelons qu'un couplage de deux distributions de probabilités Q et Q est une paire (U, U )de variables aléatoires définies sur le même espace de probabilité de sorte que les distributionsmarginales de U et U sont Q et Q . Soit K ≤ n et C = (C1 , ; . . . , ; C K ) un ordre partiel ou ordre par paquets sur n avec K paquets, ce qui signifie que la collection {C k } 1≤k≤K est une partition de n (c.-à-d. les C k sont chacun non vides, disjoints par paires et leur union est n ), dont les éléments (appelés paquets) sont classés C 1 ≺ . . . ≺ C K . Pour tout ordre par paquets C = (C 1 , . . . , C K ), son nombre de paquets K est appelé sa taille, tandis que le vecteur λ = (#C 1 , . . . , #C K ), c.-à-d. la séquence des tailles des paquets de C (vérifiant K k=1 #C k = n), est appelée sa forme. Remarquez que, lorsque K << n, une distribution P peut naturellement être dite parcimonieuse lorsque l'ordre relatif de deux éléments appartenant à deux paquets différents est déterministe : pour tout1 ≤ k < l ≤ K et tout (i, j) ∈ K 2 , (i, j) ∈ C k × C l =⇒ p i,j = P Σ ∼P [Σ (i) < Σ (j)] = 0.Tout au long de cette thèse, une telle distribution de probabilité est appelée distribution en paquets associée à C. Puisque la variabilité d'une distribution en paquets correspond à la variabilité de ses probabilités marginales par paires dans chaque paquet, l'ensemble P C de toutes les distributions par paquets associées à C est de dimensiond C = 1≤k≤K #C k ! -1 ≤ n! -1.Un meilleur résumé en P C d'une distribution P sur S n , au sens de la distance de Wasserstein (10.10), est alors donné par toute solution P * C du problème de minimisation: min P ∈P C W dτ ,1 (P, P ). (10.11) Pour tout ordre par paquets C, la quantité Λ P (C) = min P ∈P C W dτ ,1 (P, P ) mesure la précision de l'approximation et sera appelée distorsion. Dans le cas de la distance du τ de Kendall, cette distorsion peut être écrite sous forme close comme Λ P (C) = i≺ C j p j,i (voir Chapitre 6 pour d'autres distances).Nous désignons par C K l'ensemble des ordres par paquets C de n avec K paquets. Si P peut être approchée avec précision par une distribution de probabilité associée à un ordre parChapter 10. Résumé en français paquets de taille K, une approche naturelle pour la réduction de dimension consiste à trouver une solution C * (K) de min C∈C K Λ P (C), (10.12) ainsi qu'une solution P * C * (K)de (10.11) pour C = C * (K) , et un couplage (Σ, Σ C * (K) ) tel que E[d τ (Σ, Σ C * (K) )] = Λ P (C * (K) ).Cette approche est étroitement liée au problème d'agrégation de classements que nous avons étudié précédemment, voir Chapitre 6 pour une explication plus approfondie. En effet, remarquez que ∪ C∈Cn P C est l'ensemble des distributions Dirac δ σ , σ ∈ S n . Ainsi, dans le cas K = n, la réduction de dimension telle que formulée ci-dessus se résume à résoudre l'agrégation de Kemeny :P * C * (n) = δ σ * et Σ C * (n) = σ * étantles solutions du second, pour toute médiane de Kemeny σ * de P . En revanche, l'autre cas extrême K = 1 correspond à aucune réduction de dimension: Σ C * (1) = Σ. Ensuite, nous avons le résultat remarquable suivant énoncé ci-dessous qui montre que, dans certaines conditions, la dispersion de P peut être décomposée comme la somme de la dispersion (réduite) de la distribution simplifiée P C et de la distorsion minimale Λ P (C).Corollary 10.5. Supposons que P soit transitive stochastiquement. Une ordre par paquets C = (C 1 , . . . , C K ) s'accorde avec un consensus Kemeny si nous avons:∀1 ≤ k < l ≤ K, ∀(i, j) ∈ C k × C l , p j,i ≤ 1/2.Ensuite, pour tout ordre par paquets C qui s'accorde avec le consensus de Kemeny, nous avons: L * P = L * P C + Λ P (C). (10.13) Nous obtenons plusieurs résultats dans ce cadre. Fixons le nombre de paquets K ∈ {1, . . . , n}, ainsi que la forme de l'ordre par paquets λ = (λ 1 , . . . , λ K ) ∈ {1, . . . , n} K . Soit C K,λ l'ensemble des ordres par paquets C = (C 1 , . . . , C K ) de forme λ (c.-à-d. tel que λ = (#C 1 , . . . , #C K )). Nous avons le résultat suivant.Theorem 10.6. Supposons que P est fortement/strictement transitive stochastiquement. Alors, le minimiseur de la distorsion Λ P (C) sur C K,λ est unique et donné par C * (K,λ) autres termes, C * (K,λ) est l'unique ordre par paquets de C K,λ qui s'accorde avec σ * P , et correspond donc à l'une des n-1 K-1 segmentations possibles de la liste ordonnée (σ * -1 P (1), . . . , σ * -1 P (n)) en K segments. Enfin, nous avons obtenu des résultats décrivant la capacité de généralisation des solutions du problème de minimisation min C∈C K,λ Λ N (C) = i≺ C j p j,i = Λ P N (C). (10.15) Précisément, nous avons calculé des bornes sur l'excès de risque des solutions de (10.15) d'ordre O P (1/ √ N ), et O P (1/N ) lorsque P satisfait additionnellement la condition de bruit faible (10.9). Cependant, une question cruciale pour la réduction de dimension est de déterminer la dimension de la représentation approximative de la distribution d'intérêt; dans notre cas, un nombre de paquets K et une forme λ. Supposons qu'une séquence {(K m , λ m )} 1≤m≤M de formes soit donnée (observez que M ≤ n K=1 n-1

  10.3.2 Régression Médiane de Classements: Apprendre à Classer à travers des Consensus LocauxAu-delà de l'agrégation de classements en un classement complet ou partiel, nous nous sommes intéressés au problème d'apprentissage suivant. Nous supposons maintenant que, en plus du classement Σ, on observe un vecteur aléatoire X, défini sur le même espace de probabilité (Ω, F, P), à valeurs dans un espace objet X (possiblement de grande dimension, généralement un sous ensemble de R d avec d ≥ 1) et contenant peut-être quelques informations utiles pour prédire Σ. Étant donné un tel ensemble de données ((X 1 , Σ 1 ), . . . , (X N , Σ N )), alors que les méthodes d'agrégation de classements appliquées aux Σ i 's ignoreraient les informations portées par les X i pour la prédiction, notre objectif est d'apprendre une règle prédictive s qui met en correspondance tout point X de l'espace d'entrée avec une permutation s(X) de S n . Ce problème, appelé régression de classements, peut être considéré comme une extension de la classification multiclasse et multilabel (voir Dekel et al. (2004); Hüllermeier et al. (2008); Zhou et al. (2014)). Nous avons d'abord montré que ce problème peut être considéré comme une extension naturelle du problème d'agrégation de classements. La distribution jointe de la v.a. (Σ, X) est décrite par (µ, P X ), où µ désigne la distribution marginale de X et P X est la distribution de probabilité conditionnelle de Σ sachant X : ∀σ ∈ S n , P X (σ) = P{Σ = σ | X} presque sûrement.La distribution marginale de Σ est alors P (σ) = X P x (σ)µ(x). Soit d une métrique sur S n (par ex. la distance du τ de Kendall), en supposant que la quantité d(Σ, σ) reflète le coût de prédiction de la valeur σ pour le classement Σ, on peut formuler le problème qui consiste à apprendre une règle s : X → S n avec erreur de prédiction minimale:R(s) = E X∼µ [E Σ∼P X [d (s(X), Σ)]] = E X∼µ [L P X (s(X))] . (10.16) où L P (σ) est le risque d'agrégation de classements que nous avons défini Section 10.2.3 pour tout P et σ ∈ S n . Nous désignons par S la collection de toutes les règles mesurables s : X → S n , ses éléments seront appelés règles prédictives de classements. Le minimum de la quantité à l'intérieur de l'espérance est donc atteint dès que s(X) est une médiane σ * P X pour P X (voir (10.6)), et l'erreur de prévision minimale peut être écrite comme R * = E X∼µ [L * P X ]. Pour cette raison, le problème prédictif formulé ci-dessus est appelé régréssion médiane de classements et ses solutions comme classements médians conditionnels.Cela nous a incité à développer des approches d'apprentissage local : le calcul d'une médiane conditionnelle de Kemeny de Σ à un point donné X = x est relaxé au calcul d'une médiane de Kemeny d'une cellule C de l'espace objet contenant x (c.-à-d. le consensus local), qui peut être calculé en appliquant localement toute technique d'agrégation de classements (en pratique,Copeland ou Borda sur la base de nos connaissances théoriques, voir chapitre 7). Au-delà de la tractabilité, cette approche est motivée par le fait que la règle de régression médiane de classements optimale peut être bien approchée par des règles constantes par morceaux sous l'hypothèse que les probabilités conditionnelles par paires p i,j (x) = P{Σ(i) < Σ(j) | X = x}, avec 1 ≤ i < j ≤ n, sont Lipschitz, c.-à-d. il existe M < ∞ tel que: ∀(x, x ) ∈ X 2 , i<j |p i,j (x) -p i,j (x )| ≤ M • ||x -x ||.(10.17) En effet, supposons que P soit une partition de l'espace objet X composé de K ≥ 1 cellules C 1 , . . . , C K (c.-à-d. les C k 's sont disjoints par paires et leur union est l'espace objet X ). Toute règle de classement constante par morceaux s, c'est-à-dire constante sur chaque cellule C k , peut être écrite comme suit:s P,σ (x) = K k=1 σ k • I{x ∈ C k },(10.18) où σ = (σ 1 , . . . , σ K ) est une collection de K permutations. Soit S P l'espace des règles de classement constantes par morceaux. Sous des hypothèses spécifiques, la règle de prédiction optimale σ * P X peut être approchée avec précision par un élément de S P , à condition que les régions C k soient suffisamment petites.Theorem 10.7. Supposons que P x vérifie la transitivité stochastique stricte et vérifie (10.17) pour tout x ∈ X . Alors, nous avons:∀s P ∈ arg min s∈S P R(s), R(s P ) -R * ≤ M • δ P , (10.19) où δ P = max C∈P sup (x,x )∈C 2 ||x -x || est le diamètre maximal des cellules de P. Par conséquent, si (P m ) m≥1 est une séquence de partitions de X telle que δ Pm → 0 quand m tend vers l'infini, alors R(s Pm ) → R * quand m → ∞. D'autres résultats sont aussi démontrés sous une hypothèse de bruit faible sur les distributions conditionnelles des classements. Nous calculons également des vitesses de convergence pour les solutions de : min s∈S 0 R N (s), (10.20) où S 0 est un sous-ensemble de S, idéalement assez riche pour contenir des versions approximatives d'éléments de S * , et appropriées pour une optimisation continue ou gourmande (généralement, S P ). Précisément, l'excès de risque des solutions de (10.20) est d'ordre O P (1/ √ N ) sous une hypothèse de dimension VC finie sur S 0 , et d'ordre O P (1/N ) lorsque les distributions conditionnelles des classements vérifient l'hypothèse de bruit faible. Enfin, deux méthodes de partitionnement dépendant des données, basées sur la notion de consensus de Kemeny local sont étudiées. La première technique est une version de la méthode des k plus proches voisins et la seconde de CART (Classification and Regression Trees), toutes deux adaptées à la régression médiane de classements. Nous démontrons que de telles méthodes prédictives basées sur le concept de consensus de Kemeny local sont bien adaptées à cette tâche d'apprentissage. Ceci est justifié par des arguments théoriques d'approximation ainsi que de simplicité/efficacité algorithmique, et illustré par des expériences numériques. Nous soulignons que les extensions d'autres méthodes de partitionnement dépendantes des données, telles que celles étudiées au chapitre 21 de Devroye et al. (1996) par exemple, pourraient également être d'intérêt pour ce problème.

  représentés, et la seconde résout un problème de pré-image pour récupérer un objet de sortie dans l'espace de sortie (structuré), ici S n . Dans ce cadre, les performances algorithmiques des tâches d'apprentissage et de prédiction et les propriétés de généralisation du prédicteur résultant reposent essentiellement sur certaines propriétés de la représentation des objets de sortie.Nous proposons d'étudier comment résoudre ce problème pour une famille de fonctions de perte ∆ sur l'espace des classements S n basé sur une fonction de réprésentation φ : S n → F qui envoie les permutations σ ∈ S n dans un espace Hilbert F :∆(σ, σ ) = φ(σ) -φ(σ ) 2 F .(10.21)Chapter 10. Résumé en français Notre motivation principale est que la distance τ de Kendall et la distance de Hamming, largement utilisées dans la littérature sur les permutations et les préférences, peuvent être écrites sous cette forme avec une fonction de représentation explicite. Ensuite, ce choix bénéficie des résultats théoriques sur l'approche de substitution pour la perte des moindres carrés pour la prédiction structurée utilisant la théorie de la calibration[START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF]. Ces travaux abordent la prédiction d'objets structurée sous un angle commun en introduisant un problème de substitution impliquant une fonction g : X → F (à valeurs dans F) et une perte de substitution L(g(x), σ)à minimiser plutôt que (10.16). Dans le contexte de minimisation du vrai risque, le problème de substitution pour notre cas est le suivant :minimiser g:X →F L(g), avec L(g) = X ×Sn L(g(x), φ(σ))dQ(x, σ). (10.22)où Q est la distribution jointe de (X, Σ) et L est la perte de substitution suivante :L(g(x), φ(σ)) = g(x) -φ(σ) 2 F . (10.23) Le problème (10.22) est en général plus facile à optimiser puisque g est à valeurs dans F au lieu d'être à valeurs dans l'ensemble des objets structurés, ici S n . La solution de (10.22), désignée par g * , peut être écrite pour tout x ∈ X : g * (x) = E[φ(σ)|x]. Éventuellement, une pré-image s(x) pour g * (x) peut alors être obtenue en résolvant : s(x) = arg min σ∈Sn L(g * (x), φ(σ))) (10.24) Dans le contexte de la minimisation du risque empirique, nous considérons un échantillon d'entraînement disponible {(X i , Σ i ), i = 1, . . . N }, avec N copies i.i.d. de la v.a. (X, Σ).

  dans l'espace original S n : s(x) = arg min σ∈Sn φ(σ) -g(x) 2 F (10.26) L'opération de pré-image peut s'écrire s(x) = d • g(x) avec d la fonction de décodage : d(h) = arg min σ∈Sn φ(σ) -h 2 F for all h ∈ F (10.27) appliquée sur g pour tout x ∈ X . Nous avons étudié comment tirer parti du choix de la fonction de représentation φ pour obtenir un bon compromis entre complexité de calcul et garanties théoriques. Nous étudions le choix de trois représentations, à savoir la représentation de Kemeny, d'Hamming et de Lehmer. Les deux premières bénéficient des résultats de consistance de Ciliberto et al. (2016), mais ont encore un coût de calcul élevé en raison de l'étape de pré-image (10.26). La dernière a la complexité la plus faible en raison de sa résolution triviale de l'étape de pré-image, au prix de garanties théoriques plus faibles. Notre méthode s'avère compétitive (en termes de résultats numériques et complexité) sur les ensembles de données de référence pour ce problème. 10.4 Conclusion Les données de classement apparaissent dans une grande variété d'applications d'apprentissage automatique, mais en raison de l'absence de structure vectorielle de l'espace des classements, la plupart des méthodes classiques de statistiques et d'analyse multivariée ne peuvent être appliquées. La littérature existante s'appuie donc largement sur des modèles paramétriques, mais dans cette thèse, nous proposons une analyse non paramétrique et des méthodes d'apprentissage adaptées aux données de classements. Trois problèmes différents ont été abordés: la démonstration de garanties et des vitesses de convergence pour le problème de l'agrégation de Kemeny et les procédures d'approximation associées, la réduction de dimension d'une distribution sur les classements en effectuant une agrégation de classements partielle, et la prédiction de classements complets avec caractéristiques. Notre analyse s'appuie largement sur deux astuces principales. La première est l'utilisation de la distance du τ de Kendall, qui décompose les classements en comparaisons par paires. Cela nous permet d'analyser la distribution sur les classements à travers ses marginales par paires et l'hypothèse de transitivité stochastique. La deuxième est l'utilisation extensive de fonction de représentation adaptées aux classements.
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	1.1 Background on Ranking Data	15
	2.1	

  Finally, two data-dependent partition methods, based on the notion of local Kemeny consensus are investigated. The first technique is a version of the popular nearest neighbor method and the second of CART (Classification and Regression Trees), both tailored to ranking median regression. It is shown that such predictive methods based on the concept of local Kemeny consensus, are well-suited for this learning task. This is justified by approximation theoretic arguments and algorithmic simplicity/efficiency both at the same time and illustrated by numerical experiments. We point out that extensions of other data-dependent partitioning methods, such as those investigated in Chapter 21 of

20) is of order O P (1/ √ N ) under a finite VC-dimension assumption on S 0 , and of order O P (1/N ) when the conditional distributions of rankings verify the low-noise Chapter 1. Introduction assumption.
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.1: Possible rankings for n = 3.

  ;[START_REF] Sá | Preference rules for label ranking: Mining patterns in multi-target relations[END_REF]); or based on the surrogate least square

			Chapter 2. Background on Ranking Data
	Ranking	Answers	Ranking	Answers
	1≺2≺3≺4	137	3≺1≺2≺4	330
	1≺2≺4≺3	29	3≺1≺4≺2	294
	1≺3≺2≺4	309	3≺2≺1≺4	117
	1≺3≺4≺2	255	3≺2≺4≺1	69
	1≺4≺2≺3	52	3≺4≺1≺2	70
	1≺4≺3≺2	93	3≺4≺2≺1	34
	2≺1≺3≺4	48	4≺1≺2≺3	21
	2≺1≺4≺3	23	4≺1≺3≺2	30
	2≺3≺1≺4	61	4≺2≺1≺3	29
	2≺3≺4≺1	55	4≺2≺3≺1	52
	2≺4≺1≺3	33	4≺3≺1≺2	35
	2≺4≺3≺1	39	4≺3≺2≺1	27

TABLE 2
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.2: The dataset from

Croon (1989) (p.111)

, which collected 2262 answers. After the fall of the Berlin wall a survey of German citizens was conducted where they were asked to rank four political goals: (1) maintain order, (2) give people more say in government, (3) fight rising prices, (4) protect freedom of speech.
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 2 

.2 or the "Song" dataset from Critchlow et al. (1991)), to more modern applications such as crowdsourcing (e.g., annotators are asked to compare pair of labels or items, see Gomes et al. (2011); Lee et al. (2011); Chen et al. (2013); Yi et al. (2013); Dong et al. (2017)) and peer grading (see Shah et al. (2013); Raman & Joachims

  Another application where ranking data arises is recommender systems, where the feedback from users can be implicit as explained at the beginning of the section and thus can be modeled as ranking data, and the learner may want to recommend items as a ranked list. A vast literature focused about this problem, especially Collaborative ranking (see Section 2.1.2).

	the training phase. Another modern problem, called metasearch, consists in combining outputs
	of different search engines, and can be formalized as a ranking aggregation problem. This
	motivated the application of classical voting rules and the development of more efficient ones
	(see Dwork et al. (2001); Aslam & Montague (2001); Renda & Straccia (2003); Lam & Leung
	(2004); Liu et al. (2007); Akritidis et al. (2011); Desarkar et al. (2016); Bhowmik & Ghosh
	(2017)).

of Information Retrieval, search engines aims at presenting to a user a list of documents, ranked by relevance, given some query. Whereas in the original formulation of this problem, such as in the Yahoo Learning to Rank challenge (see

[START_REF] Chapelle | Yahoo! learning to rank challenge overview[END_REF]

), the documents relevance was labeled on a predefined scale (called absolute relevant judgement method), a vast number of contributions dealt with rankings and comparisons between documents (see

[START_REF] Radlinski | Active exploration for learning rankings from clickthrough data[END_REF]

;

[START_REF] Xia | Listwise approach to learning to rank: theory and algorithm[END_REF]

;

[START_REF] Wu | Listwise learning to rank by exploring structure of objects[END_REF]

) and sometimes use a labelling strategy to convert ranking data into scores (see

[START_REF] Niu | Top-k learning to rank: labeling, ranking and evaluation[END_REF]

;

[START_REF] Bashir | A document rating system for preference judgements[END_REF]

;

[START_REF] Niu | Which noise affects algorithm robustness for learning to rank[END_REF]

) in

TABLE 2 .

 2 3: An overview of popular assumptions on the pairwise probabilities.

TABLE 4 .

 4 1: Summary of a case-study on the validity of Method 1 with the sushi dataset (N = 5000, n = 10). Rows are ordered by increasing k min (or decreasing cosine) value. For randomized methods such as Pick-a-Perm and Pick-a-Random, results are averaged over 10 000 computations.

	Voting rule	cos(θ N (σ)) k min (σ)
	Borda	0.820	14
	Copeland	0.822	14
	QuickSort	0.822	14
	Plackett-Luce	0.80	15
	2-approval	0.745	20
	1-approval	0.710	22
	Pick-a-Perm	0.383 †	34.85 †
	Pick-a-Random	0.377 †	35.09 †
	†		

  Since our bound is established in general with any σ ∈ S n and does take into consideration the approximation efficiency of specific voting rules to Kemeny's rule, the predicted k min should significantly rely on the approximate voting rules utilized and should be biased more in favor to voting rules with good approximation to Kemeny's rule since k min can never be inferior to d(r(D N ), K N ). As shown in Figure4.7, Pick-a-Random and Pick-a-Perm typically perform poorly, but this is largely due to the fact that the two voting rules are too naive to well approximate Kemeny's rule per se. On the contrary, we observe that Borda, Copeland and QuickSort combined with our method best pinpoint Kemeny consensuses with k min of a median distance 14. This further means that in order to obtain all the exact Kemeny consensuses now, on average we need to search through at most10+14-1 

14

= 817, 190 permutations instead of 10! = 3, 628, 800 permutations, where 77% of permutations in S 10 are removed from consideration.

  Σ N of a generic random variable Σ defined on a probability space (Ω, F, P) drawn from an unknown probability distribution P on S n (i.e. P (σ) = P{Σ = σ} for any σ ∈ S n ). With respect to a certain metric d(., .) on S

n (e.g. the Kendall τ distance), a (true) median of distribution P w.r.t. d is any solution of the minimization problem: min σ∈Sn L P (σ), (5.2)

  j , which is minimum for π j,i = 1 (we have Chapter 6. Dimensionality Reduction and (Bucket) Ranking: A Mass Transportation Approach 101 incidentally π i,j = p i,j /p i,j in this case) and then equal to |p i,j -p i,j |. Since we clearly have W dτ ,1 P, P ≥

		inf
	i<j	(Σ,Σ ) s.t. P{Σ(i)<Σ(j)}=p i,j and P{Σ (i)<Σ (j)}=p i,j

  .2) Chapter 7. Ranking Median Regression: Learning to Order through Local ConsensusWe go back to the approximate Kemeny aggregation problem and suppose that it is known a priori that the underlying probability P belongs to a certain subset T of T , on which the

	quadratic minimization problem	
	min P ∈T	i<j

TABLE 7 .

 7 1: Empirical risk averaged on 50 trials on simulated data for kNN, CRIT and parametric baseline.

	Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus	135

  Chapter 8. A Structured Prediction Approach for Label Ranking properties with the Kemeny embedding: first, it is also of constant (Froebenius) norm, since ∀σ ∈ S n , φ H (σ) = √ n. Then, the squared euclidean distance between the mappings of two permutations σ, σ ∈ S n recovers their Hamming distance (proving that φ H is also injective):φ H (σ) -φ H (σ ) 2 = ∆ H (σ, σ ).Once again, the pre-image problem consists in solving the

	linear program:		
	s(x) = arg min	-φ H (σ), g(x) ,	(8.13)
	σ∈Sn		

1≤i,j≤n , where we have embedded the set of permutation matrices Im(φ H ) {0, 1} n×n into the Hilbert space (R n×n , ., . ) with ., . the Froebenius inner product. This embedding shares similar

  ) when the number of training points tends to infinity. Examples of such methods that we use in our experiments to learn g, are the k-nearest neighbors (kNN) or kernel ridge regression[START_REF] Micchelli | Learning the kernel function via regularization[END_REF]) methods whose consistency have been proved (see Chapter 5 in[START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] and[START_REF] Caponnetto | Optimal rates for the regularized least-squares algorithm[END_REF]). In this case the control of the excess of the surrogate risk L( g) -L(g * ) implies the control of R( s) -R(s * ) where s = d • g by Theorem 8.1.

	Embedding Step 1 (a) Step 2 (b)		
	φ τ		
	(n	√	n) resulting in Assertion (ii). In Remark 8.4 in
	section 8.8.1, we give several insights about this approximation error. Firstly we show that it can be upper bounded by 2 √ 2 n(n -1)R(s Remark 8.2. We clarify that the consistency results of Theorem 1 are established for the task
	of predicting full rankings which is adressed in this paper. In the case of predicting partial or
	incomplete rankings, these results are not guaranteed to hold. Providing theoretical guarantees
	for this task is left for future work.		

• g * ) -R(s * ) + O* ) + O(n √ n).

Then, we explain how this term results from using φ L in the learning procedure. The Lehmer embedding thus have weaker statistical

guarantees, but has the advantage of being more computationnally efficient, as we explain in the next subsection.

Notice that for Step 1, one can choose a consistent regressor with vector values g, i.e such that L( g) → L(g *

TABLE 8 .

 8 

1: Embeddings and regressors complexities.

  of a ten-foldcross-validation (c.v.). Note that k τ is an affine transformation of the Kendall's tau distance ∆ τ mapping on the [-1, 1] interval. We also report the standard deviation of the resulting scores as in[START_REF] Cheng | A nearest neighbor approach to label ranking based on generalized labelwise loss minimization[END_REF]. The parameters of our regressors were tuned in a five folds inner c.v. for each training set. We report our parameter

	from five repetitions grids in section 8.8.3.					
		authorship	glass	iris	vehicle	vowel	wine
	kNN Hamming 0.01±0.02	0.08±0.04 -0.15±0.13 -0.21±0.04 0.24±0.04 -0.36±0.04
	kNN Kemeny	0.94±0.02	0.85±0.06 0.95±0.05	0.85±0.03	0.85±0.02 0.94±0.05
	kNN Lehmer	0.93±0.02	0.85±0.05 0.95±0.04	0.84±0.03	0.78±0.03 0.94±0.06
	ridge Hamming -0.00±0.02 0.08±0.05 -0.10±0.13 -0.21±0.03 0.26±0.04 -0.36±0.03
	ridge Lehmer	0.92±0.02	0.83±0.05 0.97±0.03	0.85±0.02	0.86±0.01 0.84±0.08
	ridge Kemeny	0.94±0.02	0.86±0.06 0.97±0.05	0.89±0.03	0.92±0.01 0.94±0.05
	Cheng PL	0.94±0.02	0.84±0.07 0.96±0.04	0.86±0.03	0.85±0.02 0.95±0.05
	Cheng LWD	0.93±0.02	0.84±0.08 0.96±0.04	0.85±0.03	0.88±0.02 0.94±0.05
	Zhou RF	0.91	0.89	0.97	0.86	0.87		0.95
		TABLE 8.2: Mean Kendall's τ coefficient on benchmark datasets
				pairs between 2 rankings	,	(8.21)
		D : number of discordant pairs between 2 rankings	

The Kemeny and Lehmer embedding based approaches are competitive with the state of the art methods on these benchmarks datasets. The Hamming based methods give poor results in terms of k τ but become the best choice when measuring the mean Hamming distance between predictions and ground truth (see section 8.8.3). In contrast, the fact that the Lehmer embedding performs well for the optimization of the Kendall's τ distance highlights its practical relevance for label ranking. In section 8.8.3 we present additional results (on additional datasets and results in terms of Hamming distance) which show that our method remains competitive with the state of the art. The code to reproduce our results is available at: https://github. com/akorba/Structured_Approach_Label_Ranking/.

  Les données de classement apparaissent naturellement dans une grande variété de situations, en particulier lorsque les données proviennent d'activités humaines: bulletins de vote aux élections, enquêtes d'opinion, résultats de compétitions, comportements d'achat de clients ou préférences d'utilisateurs. Le traitement des données de préférences, en particulier pour en effectuer l'agrégation, fait référence à une longue série de travaux sur la théorie du choix social initiés par Condorcet au 18 e siècle, et la modélisation des distributions sur les données de préférences a commencé à être étudiée en 1951 par Mallows. Mais ordonner des objets est aussi une tâche qui se pose souvent dans les applications modernes de traitement des données. Par Chapter 10. Résumé en français soulignant le fait que ce problème supervisé est une extension de l'agrégation de classements.Dans ce chapitre, nous rappelons les principaux défis statistiques liés au traitement des données de classements et soulignons les contributions de cette thèse.10.1 Préliminaires sur les Données de ClassementsNous commençons par présenter les notations et les objets utilisés tout le long de ce manuscrit.Considérons un ensemble d'éléments indexés par {1, . . . , n}, que nous désignerons par n .Un classement est une liste ordonnée d'éléments de n . Les classements sont des objets hétérogènes: ils peuvent être complets (c'est-à-dire qu'ils impliquent tous les éléments) ou incomplets; dans les deux cas, ils peuvent être sans liens entre les éléments ou avec liens, où ici un lien désigne le fait que deux éléments soient incomparables. Un classement complet est un ordre total: c'est-à-dire complet, et sans liens entre les éléments. Il peut être vu comme une attention aux éléments classés en premier. Un autre type de classements, également très pertinent dans de tels contextes à grande échelle, est le cas du classement incomplet ; c'est-àdire un ordres strict ne concernant qu'un petit sous-ensemble d'éléments. Un cas particulier de classements incomplets est celui des comparaisons par paires, c'est-à-dire des classements ne comportant que deux élements. Comme tout classement, de tout type, peut être décomposé naturellement s'étendre à l'analyse des comparaisons par paires grâce à l'utilisation extensive que nous faisons d'une distance spécifique, à savoir la distance du τ de Kendall. 'agrégation de classements a été le premier problème à être considéré sur les données de classement et a certainement été le plus étudié dans la littérature. Considéré à l'origine en choix social pour les élections, le problème de l'agrégation de classements apparaît aujourd'hui dans de nombreuses applications modernes impliquant l'apprentissage automatique (par exemple, les métamoteurs de recherche, la recherche d'informations, la biologie). Il peut être considéré comme un problème non supervisé, puisque l'objectif est de résumer un ensemble de données ou une distribution sur les classements, comme on calculerait une moyenne ou une médiane pour des données à valeur réelle. Un aperçu des défis mathématiques et des méthodes de l'état de l'art est donné chapitre 3. Nous donnons d'abord la formulation du problème, puis nous présentons nos contributions.

	10.2 L'agrégation de Classements
	Dans cette thèse, nous étudions la difficulté des problèmes impliquant des données de classement
	et introduisons de nouvelles méthodes statistiques non paramétriques adaptées à ces données.
	En particulier, nous formulons le problème de l'agrégation de classements dans un cadre statis-
	tique rigoureux et en tirons des résultats théoriques concernant le comportement statistique des
	solutions empiriques et la tractabilité du problème. Ce cadre est en fait une pierre angulaire en comparaisons par paires, l'étude de ces classements est aussi largement répandue dans la
	de cette thèse puisqu'il peut être étendu à deux problèmes étroitement liés, respectivement su-littérature.
	pervisé et non supervisé : la réduction de dimension et la régression de classement. En effet, L'hétérogénéité des données de classement rend difficile l'établissement d'un cadre général, et
	bien que les méthodes classiques de réduction de dimension ne puissent être appliquées dans ce

exemple, les moteurs de recherche visent à présenter à un utilisateur qui a saisi une certaine requête, la liste des résultats classés du plus pertinent au moins pertinent. De même, les systèmes de recommandation (pour le e-commerce, plateformes de contenus cinéma et musique...) visent à présenter des objets susceptibles d'intéresser un utilisateur, dans l'ordre qui correspond le mieux à ses préférences. Cependant, les données de classement sont beaucoup moins prises en compte dans la littérature sur les statistiques et l'apprentissage machine que les données à valeur réelle, principalement parce que l'espace des classements n'est pas doté d'une structure vectorielle et que les statistiques classiques et les méthodes d'apprentissage machine ne peuvent être appliquées de manière directe. En effet, même la notion de moyenne ou de médiane pour les données de classement, à savoir l' agrégation de classement ou classement par consensus, pose de grands défis mathématiques et computationnels. Par conséquent, la plupart des contributions dans la littérature s'appuient sur des modèles paramétriques. contexte, puisque souvent basées sur de l'algèbre et une structure vectorielle, nous proposons une approche de transport de masse pour l'appliquer à des données de classement. Ensuite, nous explorons et construisons des règles consistantes pour la régression de classements, d'abord en 158 permutation, c'est-à-dire une bijection σ : n → n , faisant correspondre chaque élément i à son rang σ(i). Le rang de l'élément i est donc σ(i) et l'élément classé à la position j est σ -1 (j).

Nous dirons que i est préféré à j (indiqué par i ≺ j) selon σ si et seulement si i a un classement inférieur à j : σ(i) < σ(j). L'ensemble de toutes les permutations sur n, doté de l'opération de composition, est appelé le groupe symétrique et noté S n . L'analyse des données de classements complets repose donc sur ce groupe. D'autres types de classements sont particulièrement présents dans la littérature, notamment les classements partiels et incomplets. Un classement partiel est un classement complet (c'est-à-dire impliquant tous les éléments) avec des liens, et est aussi parfois désigné dans la littérature comme un ordre partiel ou un classements en paquets. Il comprend notamment le cas des classements top-k, c'est-à-dire des classements partiels divisant les élements de n en deux groupes: le premier comprenant les k ≤ n élements les plus pertinents (ou préférés) et le second comprenant tous les éléments restants. Ces classements top-k reçoivent beaucoup d'attention dans la littérature car ils sont particulièrement pertinents pour les applications modernes, comme les moteurs de recherche ou les systèmes de recommandation où le nombre d'éléments à classer est très important et où les utilisateurs accordent plus d'les contributions de la littérature portent habituellement sur une catégorie particulière de classements. Le lecteur peut se référer au chapitre 2 pour un historique général sur ce sujet. Dans cette thèse, nous nous concentrerons sur le cas des classements complets, c'est-à-dire impliquant tous les éléments de n , et sans liens. Cependant, comme nous le soulignerons dans la thèse, notre analyse peut L

  Ces résultats fournissent une borne sur le coût d'une règle de vote, valable pour tout ensemble de données (voir

	Diaconis & Graham (1977); Coppersmith et al. (2006); Van Zuylen & Williamson (2007);
	Ailon et al. (2008); Freund & Williamson (2015)).
	• Borne sur le coût d'approximation calculée à partir de l'ensemble de données. Ces
	résultats fournissent une borne, soit sur le coût d'un consensus, soit sur le coût du résul-
	tat d'une règle de vote spécifique, qui dépend d'une quantité calculée à partir du jeu de
	données (voir Davenport & Kalagnanam (2004); Conitzer et al. (2006); Sibony (2014)).

.2) Pour tout σ ∈ S n , nous ferons référence à la quantité C N (σ) comme son coût. Une solution de (10.1) existe toujours, puisque la cardinalité de S n est finie (même si explosant avec n, puisque #S n = n!), mais peut être multimodale. Nous noterons K N l'ensemble des solutions de (10.1), à savoir l'ensemble des consensus de Kemeny. Cette méthode d'agrégation est attrayante parce qu'elle a à la fois une justification en choix social (c'est l'unique règle qui satisfait certaines propriétés désirables) et une justification statistique (elle correspond à l'estimateur du maximum de vraisemblance sous le modèle de Mallows), voir Chapitre 2 et 3 pour plus de détails. Cependant, l'agrégation de Kemeny est connue pour être NP-difficile dans le pire des cas (voir Dwork et al. (2001)), et ne peut être résolue efficacement par une procédure générale.

Par conséquent, de nombreuses autres méthodes ont été utilisées dans la littérature, comme les méthodes de vote pondérés ou les méthodes spectrales (voir Chapitre 3). Les premières sont beaucoup plus efficaces en pratique, mais n'ont que peu ou pas de support théorique.

De nombreuses contributions de la littérature se sont concentrées sur une approche particulière pour appréhender une partie de la complexité de l'agrégation de Kemeny, et peuvent être divisées en trois grandes catégories.

• Garanties générales pour les procédures d'approximation.

Recall that a coupling of two probability distributions Q and Q is a pair (U, U ) of random variables defined on the same probability space such that the marginal distributions of U and U are Q and Q .

http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html, First experiment.

> 0, a non negative g such that for all x ∈ R d and 0 < ≤ 0 , µ(S x, ) > g(x) d and

1/g(x) 2/d µ(dx) < ∞.

Copeland method firstly affects a score si for item i as: si = j =i I{σ(i) < σ(j)} and then ranks the items by decreasing score.

The scalar product of two embeddings of two permutations φL(σ), φL(σ ) is not maximized for σ = σ .

Note that d = φ -1 L • dL for φL and is obtained as the composition of two steps for φτ and φH : solving an optimization problem and compute the inverse of the embedding.

Remerciements

List of Symbols n

Number of objects n methods applied to the Σ i 's would ignore the information carried by the X i 's for prediction purpose, our goal is to learn a predictive function s that maps any point X in the input space to a permutation s(X) in S n . This problem can be seen as a generalization of multiclass classification and has been referred to as label ranking in [START_REF] Tsoumakas | Mining multi-label data[END_REF] and [START_REF] Vembu | Label ranking algorithms: A survey[END_REF] for instance. Some approaches are rule-based (see [START_REF] Gurrieri | Label ranking: A new rule-based label ranking method[END_REF]), while certain others adapt classic algorithms such as those investigated in section 7.4 to this problem (see [START_REF] Yu | Preference Learning, chapter Decision tree modelling for ranking data[END_REF]), but most of the methods documented in the literature rely on parametric modeling (see Cheng & Hüllermeier (2009), Cheng et al. (2009), [START_REF] Cheng | Label ranking methods based on the plackett-luce model[END_REF]). In parallel, several authors proposed to model explicitly the dependence of the parameter θ w.r.t. the covariate X and rely next on MLE or Bayesian techniques to compute a predictive rule. One may refer to [START_REF] Rendle | Bpr: Bayesian personalized ranking from implicit feedback[END_REF] or [START_REF] Lu | Individualized rank aggregation using nuclear norm regularization[END_REF]. In contrast, the approach we develop in the next section aims at formulating the ranking regression problem, free of any parametric assumptions, in a general statistical framework. In particular, we show that it can be viewed as an extension of statistical ranking aggregation.

Ranking Median Regression

Let d be a metric on S n , assuming that the quantity d(Σ, σ) reflects the cost of predicting a value σ for the ranking Σ, one can formulate the predictive problem that consists in finding a measurable mapping s : X → S n with minimum prediction error:

where L P (σ) is the risk of ranking aggregation that we defined Chapter 5 for any P and σ ∈ S n .

We denote by S the collection of all measurable mappings s : X → S n , its elements will be referred to as predictive ranking rules. As the minimum of the quantity inside the expectation is attained as soon as s(X) is a median for P X , the set of optimal predictive rules can be easily made explicit, as shown by the proposition below.

Proposition 7.2. (OPTIMAL ELEMENTS) The set S * of minimizers of the risk (7.4) is composed of all measurable mappings s * : X → S n such that s * (X) ∈ M X with probability one, denoting by M x the set of median rankings related to distribution P x , x ∈ X .

For this reason, the predictive problem formulated above is referred to as ranking median regression and its solutions as conditional median rankings. It extends the ranking aggregation problem in the sense that S * coincides with the set of medians of the marginal distribution P when Σ is independent from X. Equipped with the notations above, notice incidentally that the minimum prediction error can be written as R * = E X∼µ [L * P X ] and that the risk excess of any s ∈ S can be controlled as follows: and satisfies condition NA(h) with probability one. Then, for any B ≥ 1, any Kemeny aggregated RMR rule sB is consistent as well and its learning rate is at least that of S(., Z, D N ).

Proof. Recall the following formula for the risk excess: ∀s ∈ S, [START_REF] Clémençon | Ranking median regression: Learning to order through local consensus[END_REF]. In addition, the definition of the Kemeny median combined with triangular inequality implies that we a.s. have:

Combined with the formula/bound above, we obtain that

The proof is then immediate.

Experimental Results. For illustration purpose, experimental results based on simulated data are displayed. Datasets of full rankings on n items are generated according to p=2 explanatory variables. We carried out several experiments by varying the number of items (n = 3, 5, 8) and the "level of noise" of the distribution of permutations. For a given setting, one considers a fixed partition on the feature space, so that on each cell, the rankings/preferences are drawn from a certain Mallows distribution centered around a permutation with a fixed dispersion parameter φ.

We recall that the greater φ, the spikiest the distribution (so closest to piecewise constant and less noisy in this sense). In each trial, the dataset of N = 1000 samples is divided into a training set (70%) and a test set (30%). We compare the results of (a randomized variant of) the CRIT algorithm vs the aggregated version: in our case, the randomization is a boostrap procedure.

Concerning the CRIT algorithm, since the true partition is known and can be recovered by means of a tree-structured recursive partitioning of depth 3, the maximum depth is set to 3 and the minimum size in a leaf is set to the number of samples in the training set divided by 10. For each configuration (number of items n and distribution of the dataset parameterized by Φ), the empirical risk, denoted as R N (s), is averaged over 50 replications of the experiment.

Results of the aggregated version of the (randomized) CRIT algorithm (one star * indicates the aggregate over 10 models, two stars over 30 models **) and of the CRIT algorithm (without stars) in the various configurations are provided in Table 7.2. In practice, for n = 8, the outputs of the randomized algorithms are aggregated with the Copeland procedure so that the running time remains reasonable. The results show notably that the noisier the data (smaller φ) and the larger the number of items n to be ranked, the more difficult the problem and the higher the risk.

In a nutshell, and as confirmed by additional experiments, the results show that aggregating the randomized rules globally improves the average performance and reduces the standard deviation of the risk.

Chapter 7. Ranking Median Regression: Learning to Order through Local Consensus

We now turn to the first term. Notice that, by virtue of Lemma 7.1, (7.40) where, for any i < j and all measurable C ⊂ X , we set

, with the convention that p i,j (C) = 0 when µ N (C) = 0. We incidentally point out that the p i,j (C)'s are the pairwise probabilities related to the distribution

Observe that for all i < j and C ∈ P N , we have:

Combining this equality with the previous bound yields

where we set

The following result is a straightforward application of the VC inequality for data-dependent partitions stated in Theorem 21.1 of [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF].

Lemma 7.15. Under the hypotheses of Theorem 7.10, the following bounds hold true: ∀ > 0,

The terms A N (i, j) and B N are both of order O P ( log(∆ N (F N ))/N )), as shown by the lemma above. Hence, using Eq. (7.41) and the assumption that κ N → 0 in probability as

Chapter 8. A Structured Prediction Approach for Label Ranking the absolute positions of the items, is tricky to extend to map partial or incomplete rankings where this information is missing. Finally, the Lehmer embedding falls between the two latter embeddings. It also relies on an encoding of relative rankings and thus may be adapted to take into account the partial ranking information. Indeed, in [START_REF] Li | Efficient rank aggregation via lehmer codes[END_REF], the authors propose a generalization of the Lehmer code for partial rankings. We recall that a tie in a ranking happens when #{i = j, σ(i) = σ(j)} > 0. The generalized representation c takes into account ties, so that for any partial ranking σ:

Clearly, c σ (j) ≥ c σ (j) for all j ∈ n . Given a partial ranking σ, it is possible to break its ties to convert it in a permutation σ as follows: (8.20) where

An example illustrating the extension of the Lehmer code to partial rankings is given section 8.8.2. However, computing each coordinate of the Lehmer code c σ (j) for any j ∈ n requires to sum over the n items. As an incomplete ranking do not involve the whole set of items, it is also tricky to extend the Lehmer code to map incomplete rankings.

Taking as input partial or incomplete rankings only modifies Step 1 of our method since it corresponds to the mapping step of the training data, and in Step 2 we still predict a full ranking.

Extending our method to the task of predicting as output a partial or incomplete ranking raises several mathematical questions that we did not develop at length here because of space limitations. For instance, to predict partial rankings, a naive approach would consist in predicting a full ranking and then converting it to a partial ranking according to some threshold (i.e, keep the top-k items of the full ranking). A more formal extension of our method to make it able to predict directly partial rankings as outputs would require to optimize a metric tailored for this data and which could be written as in Eq. (10.21). A possibility for future work could be to consider the extension of the Kendall's τ distance with penalty parameter p for partial rankings proposed in [START_REF] Fagin | Comparing and aggregating rankings with ties[END_REF].

8.5 Computational and Theoretical Analysis

Theoretical Guarantees

In this section, we give some statistical guarantees for the estimators obtained by following the steps described in section 8.3. To this end, we build upon recent results in the framework of Surrogate Least Square by [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF]. Consider one of the embeddings φ on permutations presented in the previous section, which defines a loss ∆ as in Eq. (10.21). Let (i) Fisher Consistency:

Notice that any discrete set Y is compact and φ : Y → F is continuous. We now prove the two assertions of Theorem 8.1.

Proof of Assertion(i) in Theorem 8.1. Firstly, Y = S n is finite. Then, for the Kemeny and

Hamming embeddings, ∆ satisfies Assumption 1 with V = -id (where id denotes the identity operator) , and ψ = φ K and ψ = φ H respectively. Theorem 8.3 thus applies directly.

Proof of Assertion(ii) in Theorem 8.1. In the following proof, Y denotes S n , φ denotes φ L and d = φ -1 L • d L with d L as defined in (8.17). Our goal is to control the excess risk E(s) -E(s * ).

Chapter 8. A Structured Prediction Approach for Label Ranking 151 Consider the first term (A).

The first term (A1) can be upper bounded as follows:

Since X g * (x) -g(x) 2 F dP (x) = R( g) -R(g * ) (see [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF]) we get the first term of Assertion (i). For the second term (A2), we can actually follow the proof of Theorem 12 in [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF] and we get:

Consider the second term (2). By Lemma 8 in [START_REF] Ciliberto | A consistent regularization approach for structured prediction[END_REF], we have that: On the sushi dataset [START_REF] Kamishima | A survey and empirical comparison of object ranking methods[END_REF], we additionally tested our approach Ridge Kemeny which obtained the same results as Cheng PL (0.32 Kendall's τ ).

CHAPTER 9

Conclusion, Limitations & Perspectives

Ranking data arise in a diverse variety of machine learning applications but due to the absence of any vectorial structure of the space of rankings, most of the classical methods from statistics and multivariate analysis cannot be applied. The existing literature thus heavily relies on parametric models, but in this thesis we propose a non-parametric analysis and methods for ranking data. In particular, three different problems have been adressed: deriving guarantees and statistical guarantees about the NP-hard Kemeny aggregation problem and related approximation procedures, reducing the dimension of a ranking distribution by performing partial ranking aggregation, and predicting full rankings with features.

Concerning the ranking aggregation problem, we have firstly proposed a dataset-dependent measure, based on a specific embedding for rankings, enabling to upper bound the Kendall's τ distance between the output of any ranking aggregation procedure, and a Kemeny consensus. This measure relies on a mean embedding of the rankings in the dataset, for a well-chosen embedding which preserves Kendall's tau distance in a vectorial space. We thus provided a practical procedure to evaluate the accuracy of any aggregegation procedure, on any dataset, with a reasonable complexity in the number of items and samples. Then, we have casted the ranking aggregation problem in a rigorous statistical framework, reformulating it in terms of ranking distributions. The expected distance between a consensus candidate and realizations of a given distribution appears to be written as a risk, and can be viewed as a dispersion measure. In this framework, we demonstrated rates of convergence for the excess of risk of empirical solutions of the Kemeny aggregation problem; in particular, we exhibited classical rates of convergence for any distribution, and (exponential) fast rates when the distribution satisfies the transitivity and low-noise conditions. In the latter case, the solution of the NP-hard Kemeny aggregation is given by the Copeland ranking with high probability.

Then, we extended the statistical framework we proposed to two related machine learning tasks, unsupervised and supervised respectively. The first one is a proposal for dimensionality reduction for ranking data. This is a classical machine learning task, which is especially relevant in our context since modern machine-learning applications typically involve a very large number of items to be ranked. Since popular methods (e.g. PCA) cannot be applied for the non-vectorial data we consider, we propose a mass transportation approach to approximate any distribution over rankings by a distribution involving a much smaller number of parameters, namely a bucket distribution. This bucket distribution, parametrized by a partial ranking/bucket order, is sparse in Abstract : Ranking data, i.e., ordered list of items, naturally appears in a wide variety of situations, especially when the data comes from human activities (ballots in political elections, survey answers, competition results) or in modern applications of data processing (search engines, recommendation systems). The design of machine-learning algorithms, tailored for these data, is thus crucial. However, due to the absence of any vectorial structure of the space of rankings, and its explosive cardinality when the number of items increases, most of the classical methods from statistics and multivariate analysis cannot be applied in a direct manner. Hence, a vast majority of the literature rely on parametric models. In this thesis, we propose a nonparametric theory and methods for ranking data. Our analysis heavily relies on two main tricks.

The first one is the extensive use of the Kendall's tau distance, which decomposes rankings into pairwise comparisons. This enables us to analyze distributions over rankings through their pairwise marginals and through a specific assumption called transitivity, which prevents cycles in the preferences from happening. The second one is the extensive use of embeddings tailored to ranking data, mapping rankings to a vector space. Three different problems, unsupervised and supervised, have been addressed in this context: ranking aggregation, dimensionality reduction and predicting rankings with features.

The first part of this thesis focuses on the ranking aggregation problem, where the goal is to summarize a dataset of rankings by a consensus ranking. Among the many ways to state this problem stands out the Kemeny aggregation method, whose solutions have been shown to satisfy many desirable properties, but can be NP-hard to compute. In this work, we have investigated the hardness of this problem in two ways. Firstly, we proposed a method to upper bound the Kendall's tau distance between any consensus candidate (typically the output of a tractable procedure) and a Kemeny consensus, on any dataset. Then, we have casted the ranking aggregation problem in a rigorous statistical framework, reformulating it in terms of ranking distributions, and assessed the generalization ability of empirical Kemeny consensus.

The second part of this thesis is dedicated to machine learning problems which are shown to be closely related to ranking aggregation. The first one is dimensionality reduction for ranking data, for which we propose a mass-transportation approach to approximate any distribution on rankings by a distribution exhibiting a specific type of sparsity. The second one is the problem of predicting rankings with features, for which we investigated several methods. Our first proposal is to adapt piecewise constant methods to this problem, partitioning the feature space into regions and locally assigning as final label (a consensus ranking) to each region. Our second proposal is a structured prediction approach, relying on embedding maps for ranking data enjoying theoretical and computational advantages.