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Titre : Bootstrap et bornes uniformes pour des châınes de Markov Harris récurrentes

Mots Clefs : Châınes de Markov, processus régénératifs, bootstrap, robustesse, inégalités

de concentration, apprentissage statistique

Résumé : Cette thèse se concentre sur certaines extensions de la théorie des processus

empiriques lorsque les données sont Markoviennes. Plus spécifiquement, nous nous con-

centrons sur plusieurs développements de la théorie du bootstrap, de la robustesse et de

l’apprentissage statistique dans un cadre Markovien Harris récurrent positif. Notre approche

repose sur la méthode de régénération qui s’appuie sur la décomposition d’une trajectoire

de la châıne de Markov atomique régénérative en blocs d’observations indépendantes et

identiquement distribuées (i.i.d.). Les blocs de régénération correspondent à des segments

de la trajectoire entre des instants aléatoires de visites dans un ensemble bien choisi (l’atome)

formant une séquence de renouvellement. Dans la première partie de la thèse nous propo-

sons un théorème fonctionnel de la limite centrale de type bootstrap pour des châınes de

Markov Harris récurrentes, d’abord dans le cas de classes de fonctions uniformément bornées

puis dans un cadre non borné. Ensuite, nous utilisons les résultats susmentionnés pour ob-

tenir un théorème de la limite centrale pour des fonctionnelles Fréchet différentiables dans un

cadre Markovien. Motivés par diverses applications, nous discutons la manière d’étendre cer-

tains concepts de robustesse à partir du cadre i.i.d. à un cas Markovien. En particulier, nous

considérons le cas où les données sont des processus Markoviens déterministes par morceaux.

Puis, nous proposons des procédures d’échantillonnage résiduel et wild bootstrap pour les

processus périodiquement autorégressifs etétablissons leur validité. Dans la deuxième partie

de la thèse, nous établissons des versions maximales d’inégalités de concentration de type

Bernstein, Hoeffding et des inégalités de moments polynomiales en fonction des nombres

de couverture et des moments des temps de retour et des blocs. Enfin, nous utilisons ces

inégalités sur les queues de distributions pour calculer des bornes de généralisation pour une

estimation d’ensemble de volumes minimum pour les châınes de Markov régénératives.
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Title : Bootstrap and uniform bounds for Harris Markov chains

Keys words : Markov chains, regenerative processes, bootstrap, robustness, concentration

inequalities, statistical learning

Abstract : This thesis concentrates on some extensions of empirical processes theory when

the data are Markovian. More specifically, we focus on some developments of bootstrap, ro-

bustness and statistical learning theory in a Harris recurrent framework. Our approach relies

on the regenerative methods that boil down to division of sample paths of the regenerative

Markov chain under study into independent and identically distributed (i.i.d.) blocks of ob-

servations. These regeneration blocks correspond to path segments between random times

of visits to a well-chosen set (the atom) forming a renewal sequence. In the first part of the

thesis we derive uniform bootstrap central limit theorems for Harris recurrent Markov chains

over uniformly bounded classes of functions. We show that the result can be generalized also

to the unbounded case. We use the aforementioned results to obtain uniform bootstrap cent-

ral limit theorems for Fréchet differentiable functionals of Harris Markov chains. Propelled

by vast applications, we discuss how to extend some concepts of robustness from the i.i.d.

framework to a Markovian setting. In particular, we consider the case when the data are

Piecewise-determinic Markov processes. Next, we propose the residual and wild bootstrap

procedures for periodically autoregressive processes and show their consistency. In the second

part of the thesis we establish maximal versions of Bernstein, Hoeffding and polynomial tail

type concentration inequalities. We obtain the inequalities as a function of covering numbers

and moments of time returns and blocks. Finally, we use those tail inequalities to derive

generalization bounds for minimum volume set estimation for regenerative Markov chains.
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High in the sky

There can be seen towering

A tall mountain,

Were one but wish to climb it

A path of ascent exists.

Emperor Meiji (1852-1912), Japan
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3 Fréchet differentiability of functionals of Markov chains . . . . . . . . . . . . 65

4 A Markov view for estimators in PDMPs . . . . . . . . . . . . . . . . . . . . 68

4.1 Example: Sparre-Andersen model with barrier . . . . . . . . . . . . . 69

4.2 Example: Kinetic Dietary Exposure Model . . . . . . . . . . . . . . . 72

5 Robustness for risk PDMP models . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Stationary measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Ruin probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Extremal index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Expected shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Residual and wild bootstrap methods for periodically autoregressive pro-

cesses 91

1 Preliminaries and Markovian form of PAR(p) processes . . . . . . . . . . . . 91

2 The least squares estimation for model’s parameters . . . . . . . . . . . . . . 97

3 Residual bootstrap for PAR processes . . . . . . . . . . . . . . . . . . . . . . 99

4 Wild bootstrap for PAR(p) time series . . . . . . . . . . . . . . . . . . . . . 104

5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Maximal concentration inequalities for regenerative and Harris recurrent

Markov chains 116

1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2 Bernstein and Hoeffding type deviation inequalities for Markov chains . . . . 122

2.1 Bernstein and Hoeffding type bounds for atomic regenerative Markov

chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.2 Maximal concentration inequalities under uniform entropy . . . . . . 132

2.3 Bernstein and Hoeffding type tail inequalities for Harris recurrent

Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3 Polynomial tail maximal concentration inequality for Markov chains . . . . . 138

4 Bound of the expectation of the supremum of an empirical process in a

Markovian setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10



6 Minimum volume set estimation for Markovian data 146

1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

2 Minimum Volume Set Estimation . . . . . . . . . . . . . . . . . . . . . . . . 148

3 Minimum Volume Set Estimation - Generalization Results . . . . . . . . . . 151

3.1 Harris recurrent case . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
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Chapter 1

Introduction

This thesis concentrates on some extensions of empirical processes theory when the data are

Markovian. We focus on some developments of bootstrap, robustness and statistical learning

theory in atomic regenerative and Harris recurrent framework.

1 Motivation

The theory of empirical processes plays a crucial role in modern statistics. It delivers ne-

cessary tools that allow to tackle many statistical problems in various fields, e.g. spectral

analysis, extreme value theory, bootstrap and statistical learning. The theory of empirical

processes for the i.i.d. data is well-studied, see for instance [87], [119] and [141].

However, in practice, the i.i.d. assumption often seems to be unrealistic. The data coming

from applications in fields such as climatology, genetics, finance, geology or telecommunica-

tion are inherently temporal by nature and consequently not i.i.d. processes. This motivates

researchers to extend the concepts of theory of empirical processes from the i.i.d. case into

dependent framework (see for instance [54] for an exhaustive survey on such developments

for stationary sequences and long-range dependent data).

The reason for investigation of regenerative atomic and Harris recurrent Markov chains

is driven both by theoretical and applicative considerations. Firstly, the class of Markov

chains (including chains with infinite memory) is very general and may approach a lot of time

series (including non-stationary processes); it is used in many econometric models involving

dependent data. The special regenerative structure of Markov chains (see for instance [112],

[12] and [111]) makes them ideal tools for extending some results from the i.i.d. setting

to the dependent case. Indeed, it is known since the work of [111], that it is possible to

cut (theoretically) regular Harris recurrent Markov chains into independent blocks by using
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an adequate probabilistic extension of the chain. The theory of aforementioned class of

Markov chains is well-studied, one can refer to [106], [136] and [111]. More specifically,

one can also look into [98] and [44] to find central limit theorems for such processes, some

bootstrap developments in [26], [122], [75] and [44], deviation inequalities in [2], [28], [22]

and applications to statistical learning in [23], [24].

There are many real world situations when the data exhibit regenerative atomic and

Harris recurrent structure. The classical examples involve storage and queuing systems, as

well as many models in finance, insurance or food risk assessment (see [106], [27], [31] and

[25]). Many results for Markov chains has been established under mixing properties which

are difficult to verify in practice. This was an additional encouragement to make use of

regenerative techniques in order to work under return time and block moment conditions

(which in many cases may be more tractable) instead.

The first part of the thesis is devoted to bootstrap considerations. The naive boot-

strap scheme was proposed by Efron in his seminal paper [59]. Given n i.i.d. observa-

tions X1, · · · , Xn distributed according to unknown distribution F, one may want to es-

timate the sampling distribution of some functional Rn(X1, · · · , Xn, F ). Here, the simple

non-parametric bootstrap method becomes handy. Firstly, we construct the empirical ver-

sion of F , i.e. Fn = 1
n

�n
i=1 δXi

. The next step involves drawing n times from Fn bootstrap

observations X∗
i , i = 1, · · · , n, which are i.i.d. conditionally on Fn. Now, we approximate

the sampling distribution of some functional of interest Rn(X1, · · · , Xn, F ) by the distribu-

tion of R∗
n(X

∗
1 , · · · , X

∗
n, Fn) conditionally on Fn. One may simply ask why we will not use

central limit theorems in order to study the behaviour or Rn(X1, · · · , Xn, F ). This approach

is however not always possible since the closed form of limiting distribution may be difficult

to obtain (refer for instance to [121] for more details and references). Moreover, it is quite

common that the distribution of limiting process depends on some unknown parameters.

Briefly speaking, bootstrap methods remedy the aforementioned problems, we elaborate on

it more in Chapter 2.

The naive non-parametric bootstrap method for the i.i.d. data has gradually evolved

and new types of bootstrap schemes in both i.i.d. and dependent settings were established

(see [76], [93] and [43], [42] for results in high dimensions). This led to tremendously vast

number of applications in almost all fields of statistics. Under conditions that hold in a

wide variety of econometric applications, bootstrap provides approximations to distribu-

tions of statistics, coverage probabilities of confidence intervals, and rejection probabilities

of hypothesis tests that are more accurate than the approximations of first-order asymptotic

distribution theory (refer to [80] and [76] for details).
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With raising interest in the statistical inference in dependent framework, new bootstrap

procedures have been developed. Most of the schemes in the dependent setting rely on block

techniques. These approaches essentially boil down to resampling block segments of observa-

tions so that dependence structure is captured. There are many variants of block bootstrap

methods for dependent data such as moving block bootstrap (MBB), non-overlapping block

bootstrap (NBB) or circular block bootstrap (CBB) to name just a few (see for instance [93]

for an exhaustive overview of the aforementioned procedures). Regrettably, as indicated by

many authors (see for instance [46] and [93]), these procedures struggle with many prob-

lems. The large drawback is that block bootstrap methods are very sensitive to the choice

of the length of the blocks. Indeed, the optimal length of the blocks heavily depend on the

sample size and the data generating processes. Moreover, popular MBB method requires the

stationarity for observations that usually results in failure of this method in non-stationary

setting (see [93] for more details). Furthermore, the asymptotic behaviour of MBB method is

highly dependent on the estimation of the bias and of the asymptotic variance of the statistic

of interest that is a significant drawback when considering practical applications. Finally, it

is noteworthy, that the rate of convergence of the MBB distribution is slower than that’s of

bootstrap distribution in the i.i.d. setting.

We focused on recalling block bootstrap methods when dealing with dependent data since

the bootstrap procedures we consider in this thesis are also based on dividing the data into

block segments. However, there are many other bootstrap schemes one can use in dependent

setting, such as residual, wild or sieve bootstrap to name just a few. We refer to [89] or [93]

for more details concerning applicability of those schemes and their limitations.

Taking into consideration the limitations of block bootstrap methods, we decided to

focus on regenerative techniques for atomic and Harris recurrent Markov chains. In the

seminal paper [26] the regenerative block bootstrap (RBB) and approximate regenerative

block bootstrap method (ARBB) are introduced. The aforementioned procedures do not

require choice of the length of the blocks, moreover, in atomic case, the division of data

into blocks is completely data driven. It is also shown in [26] that bootstrap central limit

theorems for the mean in Markovian setting hold. We developed this theory further by

establishing uniform bootstrap CLT’s over not necessarily bounded classes of functions. The

uniform bootstrap central limit theorems are helpful when proving the validity of bootstrap

procedures (see [122], [44] and [71]) and may be used in many statistical applications, one

may be interested in getting bootstrap versions of the results in [110], [68] and [69].

One can use bootstrap central limit theorems stated in [44] in order to establish boot-

strap limit results for Fréchet differentiable functionals of Harris Markov chains. Fréchet

14



differentiability is a vital concept in robust statistics since it guarantees the existence of

influence function which allows to detect the outliers in the data (see [140] for details). In

fact, it is shown in [29] that some of the concepts of robustness can be naturally extended

to a Harris Markovian case. More specifically, one can detect outliers and construct robust

plug-in estimators by eliminating blocks having either too large contribution to the statistics

of interest or having too large length resulting in an important bias on the statistics (in-

stead of consideration of the impact of a single observation on a given statistic). A further

development of these ideas has been done in Chapter 3 (see also [25]) with a special fo-

cus on applications to piecewise-deterministic Markov processes. Robust statistical methods

are applied to the solutions of many problems such as estimation of regression parameters,

estimation of scale and location or in statistical learning.

Our second direction concerning bootstrap developments in a dependent framework is a

study periodically autoregressive processes (PAR) which are an example of Harris recurrent

Markov chains. We propose residual and wild bootstrap methods and prove their validity.

The aforementioned methods are data-driven and do not need any block length calibration

which may be attractive for practitioners.

The second part of the thesis concentrates on applications of empirical processes theory to

statistical learning. Not surprisingly, the statistical learning theory is mostly studied in the

i.i.d. case (see [38], [142], [144] and [64]). However, there is a huge demand mostly propelled

by the field of big data for some extensions to the dependent framework. As mentioned

in [149], applications such as market prediction, system diagnosis, and speech recognition

are inherently temporal in nature, and consequently not i.i.d. processes. Machine learning

theory for dependent processes has been intensively investigated in the last years, see for

instance [3], [5], [132] or [78] for some results stated in a very general setting.

In statistical learning theory, numerous works established non-asymptotic bounds assess-

ing the generalization capacity of empirical risk minimizers under a large variety of complex-

ity assumptions for the class of decision rules over which optimization is performed, by means

of sharp control of uniform deviation of i.i.d. averages from their expectation, while fully

ignoring the possible dependence across training data in general. The sharp control of the

supremum distance between averages of random variables and their expectation is managed

by concentration inequalities that give an upper bound on the tail probability for suprema of

empirical processes. Those, at first glance, very theoretical probabilistic results are the cru-

cial tools when investigating the learning capacity of statistical learning algorithms. There

are many concentration results for dependent data, in (pseudo-) regenerative Markovian set-

ting one should mention [28], [2] and [1]. Despite of various concentration results we establish

15



maximal type concentration inequalities tailor-made for our applications, i.e. they are es-

tablished for non-stationary Markov processes and hold for unbounded classes of functions

F and involve easy to interpret parameters in the bound.

In this thesis we are interested in establishing generalization bounds ( so-called error

bounds) for statistical learning algorithms when the data are Markovian. We obtain such

results via empirical risk minimization approach. Our strategy essentially boils down to

3 steps.

• We obtain concentration inequalities for bounded and unbounded classes of functions

of Markov chains (see [22], [23] and [24]). Exponential (for instance Bernstein and

Hoeffding) and polynomial tail inequalities are an essential tool when one wants to

conduct empirical risk minimization or derive the rate of convergence of a statistical

learning algorithm.

• We investigate the performance of the learning algorithms (when dealing with Harris

Markov chain samples) via empirical risk minimization. It is noteworthy that the

analysis of the ERM algorithm and consistency and properties of statistical learning

procedures are very significant and urgent problems to solve.

• We investigate the generalization properties of selected statistical learning algorithm

(in atomic regenerative and Harris Markovian setting).

In this thesis we present generalization bounds for minimum volume (MV) set estimation

problem. The concept of MV-set estimation was for the first time introduced in [120] and

extends the concept of quantile for multivariate probability distributions (see [120] for de-

tails). This method offers a non-parametric framework for (unsupervised) anomaly/novelty

detection. As observed in [126], MV-set estimation can be cast in a learning framework

very similarly to empirical risk minimization in (supervised) classification. Generalization

bounds for MV-set estimation problem were established in [126] in the i.i.d. setting. Some

developments were also made in a dependent case in [55]. We extended the aforementioned

results to atomic regenerative and Harris recurrent setting in [23] and [24].

2 Basic properties of regenerative and Harris recurrent

Markov chains

In this section we introduce some notations and recall the key concepts of Markov chains

theory (we refer to [106] and [136], [27] and [112] for exhaustive reviews ). The results
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and statements provided in this section have informative character. An interested reader

is advised to look into aforementioned literature for proofs of theorems stated for Markov

chains on general (non-countable) state space. Throughout all this section IA is the indicator

function of the event A.

Let X = (Xn)n∈N be a homogeneous Markov chain on a countably generated state

space (E, E) with transition probability Π and initial probability ν. Note that for any B ∈ E

and n ∈ N, we have

X0 ∼ ν and P(Xn+1 ∈ B|X0, · · · , Xn) = Π(Xn, B) a.s.

In what follows, Px (resp. Pν) is the probability measure such that X0 = x and X0 ∈ E (resp.

X0 ∼ ν), and we write Ex (·) for the Px-expectation (resp. Eν (·) is the Pν-expectation). The

following definitions formalize the idea of a communication structure of Markov chains we

consider (see [106] for more details).

Definition 1. We say that X = (Xn)n∈N is ψ -irreducible if there exists a measure ψ on E

such that whenever ψ(B) > 0, we have

Px(τB < ∞) > 0 for all x ∈ E

and τB is the first time when X hits B.

Definition 2. We say that a Markov chain X is periodic if there exist d� > 0 ∈ N and disjoint

sets D1, D2, · · ·Dd� ( with convention Dd�+1 = D1) weighted by ψ such that

ψ(E\ ∪1≤i≤d� Di) = 0 and ∀x ∈ Di Π(x,Di+1) = 1.

The period of the chain is the greatest common divisor d (g.c.d. d) of such integers. In case

d = 1 we say that X is aperiodic.

In the following, we assume that X is ψ -irreducible and aperiodic, unless it is specified

otherwise.

2.1 Regenerative Markov chains

In this thesis, our particular interest concentrates on atomic structure of Markov chains due

to its abilities to extend the theory of empirical processes (vital for developments in the field

of bootstrap and statistical learning) from the i.i.d. case to a Markovian framework.

Definition 3. Suppose that X is aperiodic and ψ-irreducible. A set A ∈ E is an accessible

atom if for all x, y ∈ A we have Π(x, ·) = Π(y, ·) and ψ(A) > 0. In that case we call X

atomic.
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Intuitively speaking, the atom is a set from which all the transition probabilities of X are

the same. Consequently, wheneverX hits A, it forgets its past and starts afresh (regenerates).

The strong Markov property (see [106] for rigorous justification) guarantees that given any

initial law ν, the sample paths can be split into i.i.d. blocks corresponding to the consecutive

visits of the chain to the atom A. The segments of data are of the form:

Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

and take values in the torus T = ∪∞
k=1E

k.

Being ensured that our chain possesses the atomic structure, we define the sequence

of regeneration times (τA(j))j≥1. The sequence consists of the successive points of time

when the chain forgets its past. Let

τA = τA(1) = inf{n ≥ 1 : Xn ∈ A}

be the first time when the chain hits the regeneration set A and

τA(j) = inf{n > τA(j − 1), Xn ∈ A} for j ≥ 2.

We introduce few more pieces of notation: throughout the thesis we write

ln =
n�

i=1

I{Xi ∈ A}

for the total number of consecutive visits of the chain to the atomic set A, thus we have

ln + 1 data blocks. We make the convention that B
(n)
ln

= ∅ when τA(ln) = n. Furthermore,

we denote by

l(Bj) = τA(j + 1)− τA(j), j ≥ 1,

the length of regeneration blocks.

In order to make this exposition concise, we provide the blocks’ construction scheme

below. Step 3 can be omitted depending on application. We assume that we observe the

sample Xn = (X1, · · · , Xn).

Algorithm 1 Regeneration blocks construction

Step 1 Count the total number of visits ln =
�n

i=1 I{Xi ∈ A} to atom A up to time n.

Step 2 Divide the data Xn into ln+1 blocks according to the consecutive visits of the tra-

jectory to the atom A, i.e.

B0 = (X1, · · · , XτA(1)), · · · , Bj = (XτA(j)+1, · · · , XτA(j+1)), · · · ,

Bln−1 = (XτA(ln−1)+1, · · · , XτA(ln)), B
(n)
ln

= (XτA(ln)+1, · · · , Xn).

Step 3 Discard the first block B0 and the last one B
(n)
ln

if τA(ln) < n.
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In our framework, we also are interested in the asymptotic behaviour of positive recurrent

Harris Markov chains.

Definition 4 (Harris recurrent Markov chain). Assume that X is a ψ-irreducible Markov

chain. Chain X is Harris recurrent iff, starting from any point x ∈ E and any set such that

ψ(A) > 0, we have

Px(τA < +∞) = 1.

Note that the property of Harris recurrence ensures thatX visits set A infinitely often a.s..

In our framework, we are interested in the steady-state analysis of Markov chains. More

specifically, when an invariant measure is finite, then we can normalize it to a stationary

probability measure.

Theorem 1 (Kac’s theorem). Assume that Markov chain X is ψ-irreducible and admits an

atom A. Then, X is positive recurrent if and only if EA(τA) < ∞. The unique invariant

probability distribution µ is the Pitmnan’s occupation measure given by

µ(B) =
1

EA(τA)
EA

�
τA�

i=1

I{Xi ∈ B}

�
, ∀B ∈ E .

Note that the by the Kac’s theorem we have that

E(l(Bj)) = EA(τA) =
1

µ(A)
.

Consider µ− integrable function f : E → R. By

un(f) =
1

τA(ln)− τA(1)

τA(ln)�

i=1+τA(1)

f(Xi)

we denote the estimator of the unknown asymptotic mean Eµ(f(X1)).

2.2 General Harris Markov chains and the splitting technique

In this section we explain how the regenerative techniques can be stretched from atomic

case to a Harris recurrent framework due to work of [12] and [111]. In particular, Nummelin

[111] proposed the so-called splitting technique which, in simple words, allows to extend

the probabilistic structure of any Harris chain in order to artificially construct a regeneration

set. In this section, unless specified otherwise, X is assumed to be a Harris recurrent Markov

chain with transition kernel Π. In this section we follow closely the notation from [27], we

also refer therein for more details concerning the theory presented here.
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Definition 5. We say that a set S ∈ E is small if there exists a parameter δ > 0, a positive

probability measure Φ supported by S and an integer m ∈ N∗ such that

∀x ∈ S, A ∈ E Π
m(x,A) ≥ δ Φ(A), (1.1)

where Πm denotes the m-th iterate of the transition probability Π.

When (1.1) is satisfied, we say that the chain satisfies the minorization condition M =

M(m,S, δ,Φ). For the simplicity’s sake, throughout the rest of this thesis, the minorization

conditionM is satisfied withm = 1, unless specified otherwise. In order to generalize the res-

ults to casem > 1 one can replace the chain (Xn)n∈N by the chain
�
(Xnm, · · · , Xn(m+1)−1)

�
n∈N .

Remark 1. In general case, it is not obvious that small sets having positive irreducible

measure exist. As pointed out in [82] they do exist for any irreducible kernel Π under the

assumption that the state space is countably generated.

In what follows, we expand the sample space in order to define a sequence (Yn)n∈N of

independent r.v.’s with parameter δ. Let Pν,M be the joint distribution of XM = (Xn, Yn)n∈N.

The construction is based on the mixture representation of Π on S.It can be retrieved by the

following randomization of the transition probability Π each time the chain X visits the set

S. If Xn ∈ S and

• if Yn = 1 (which occurs with probability δ ∈ ]0, 1[), then Xn+1 is distributed according

to the probability measure Φ,

• if Yn = 0 (that occurs with probability 1 − δ), then Xn+1 is distributed according to

the probability measure (1− δ)−1(Π(Xn, ·)− δΦ(·)).

In what follows we introduce one more piece of notation. Let

Berδ(β) = δβ + (1− δ)(1− β)

for β ∈ {0, 1}. The bivariate Markov chain XM is called the split chain. Note that it takes

its values in E × {0, 1} and possesses transition kernel ΠM given by

• for any x /∈ S,B ∈ E , β and β� in {0, 1},

ΠM((x, β), B × {β�}) = Berδ(β
�)× Π(x,B),

• for any x ∈ S,B ∈ E , β� in {0, 1},

ΠM((x, 1), B × {β�}) = Berδ(β
�)× Π(x,B)× Φ(B),

ΠM((x, 0), A× {β�}) = Berδ(β
�)× (1− δ)−1(Π(x,B)− δΦ(B)).
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Note that XM possesses an atom S × {1}. Observe that the split chain XM inherits all the

stability and communication properties of the chain X (refer to [106] and [112] for a rigorous

treatment).

Remark 2. It should be noted that the blocks created via splitting technique are i.i.d. in

case when m = 1 in minorization condition (1.1)). If the chain X satisfies M(m,S, δ,Φ)

for m > 1, then the blocks of data are 1-dependent. In many cases, however, it is easy to

adapt the theory from the case when m = 1 by considering sums of odd and even blocks in

order to deal with dependence between B
�

js (see for instance [98] or [95]) or by vectorizing

the chain (see [106]).

2.3 Regenerative blocks for dominated families

We suppose that the family of the conditional distributions {Π(x, dy)}x∈E and the initial

distribution ν are dominated by a σ-finite measure λ of reference, so that

ν(dy) = f(y)λ(dy) and Π(x, dy) = p(x, y)λ(dy),

for all x ∈ E. The minorization condition requests that Φ is absolutely continuous with

respect to λ and that

p(x, y) ≥ δφ(y), λ(dy) a.s. for any x ∈ S

with Φ(dy) = φ(y)dy. In what follows, let Y be a binary random sequence obtained via

the Nummelin’s technique from the parameters given by condition M. Observe that the

distribution of Y (n) = (Y1, ..., Yn) conditionally to X(n+1) = (x1, ..., xn+1) is the tensor

product of Bernoulli distributions given by: for all β(n) = (β1, ..., βn) ∈ {0, 1}n , x(n+1) =

(x1, ..., xn+1) ∈ En+1,

Pν

�
Y (n) = β(n) | X(n+1) = x(n+1)

�
=

n�

i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1),

with, for 1 � i � n,

• if xi /∈ S, Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δ,

• if xi ∈ S, Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δφ(xi+1)/p(xi, xi+1).

Note that given X(n+1), from i = 1 to n, Yi is distributed according to the Bernoulli

distribution with parameter δ, unless X has hit the small set S at time i: then, Yi is
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drawn from the Bernoulli distribution with parameter δφ(Xi+1)/p(Xi, Xi+1). We denote

by L(n)(p, S, δ,φ, x(n+1)) this probability distribution. If we were able to generate Y1, · · · , Yn,

so that

XM(n) = ((X1, Y1), ..., (Xn, Yn))

be a realization of the split chainXM, then we could do the block decomposition of the sample

path XM(n) leading to asymptotically i.i.d. blocks. Note that this procedure requires know-

ledge of the transition density p(x, y) in order to generate random variables (Y1, · · · , Yn).

However, in practice the transition density is unknown and needs to be estimated. As a

consequence, we can not directly use the procedure stated above and need to apply its ap-

proximated version which was proposed in [26]. The construction consists of two steps,

firstly, build an estimator pn(x, y) of p(x, y) based on X(n+1), i.e. pn(x, y) which fulfills

pn(x, y) ≥ δφ(y), λ(dy)− a.s. and pn(x, y) > 0, 1 ≤ i ≤ n. (1.2)

In the second step, generate random vector �Yn = (�Y1, · · · , �Yn) conditionally to X(n+1)

from distribution L(n)(pn, S, δ, γ, X
(n+1)) which is an approximation of the conditional dis-

tribution L(n)(p, S, δ, γ, X(n+1)) of (Y1, · · · , Yn) for given X(n+1). The validity of this approx-

imation has been shown in [26].

In this setting, we define the successive hitting times of AM = S × {1} as

�τAM
(i), i = 1, · · · ,�ln, where �ln =

n�

i=1

I{Xi ∈ S, �Yi = 1}

is the total number of visits of the split chain to AM up to time n. Below we provide

approximated block construction scheme. Let Xn+1 = (X1, X2, · · · , Xn+1) be random sample

drawn from Harris chain X. We assume that X fulfills assumptions stated previously in this

section. Step 5 may be omitted depending on application.

Algorithm 2 Approximate regeneration blocks construction

Step 1 Construct an estimator pn(x, y) of the transition density using sample Xn+1. The

estimator pn(x, y) must fulfill the conditions in (1.2)

Step 2 Conditioned on Xn+1, draw (�Y1, · · · , �Yn) from L(n)(pn, S, δ, γ,Xn+1). In practice,

one draws �Y ’s only at those time points when Xi ∈ S (see [27] for details). At such time

point i, draw �Yi from the Bernoulli distribution with parameter δγ(Xi+1)\pn(Xi, Xi+1).

Step 3 Count the number of visits

�ln =
n�

i=1

I{Xi ∈ S, �Yi = 1)

to the atom S1 = S × {1} up to time n.
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Step 4 Cut the trajectory Xn+1 into �ln+1 approximate regeneration blocks which corres-

pond to successful consecutive visits of (X, �Y ) to S1. Approximated blocks are of the form

�B0 = (X1, · · · , X�τAM
(1)), · · · , �Bj = (X�τAM

(j)+1, · · · , X�τAM
(j+1)), · · · ,

�B�ln−1 = (X�τAM
(�ln−1)+1, · · · , X�τAM

(�ln)),
�B(n)
�ln

= (X�τAM
(�ln)+1, · · · , Xn+1).

Step 5 Discard the first block �B0 and the last one �B(n)
�ln

if �τS1(
�ln) < n.

In what follows, we denote by

�nAM
= �τAM

(�ln)− �τAM
(1) =

�ln−1�

i=1

l( �Bj)

the total number of observations after the first and before the last pseudo-regeneration times.

Let

σ2
f =

1

EAM
(τAM

)
EAM

�τAM�

i=1

{f(Xi)− µ(f)}2

�

be the asymptotic variance. Furthermore, we set that

�µn(f) =
1

�nAM

�ln−1�

i=1

f( �Bj), where f( �Bj) =

�τAM
(j+1)�

i=1+�τAM
(j)

f(Xi)

and

�σ2
n(f) =

1

�nAM

�ln−1�

i=1

�
f( �Bi)− �µn(f)l( �Bi)

�2

.

As noted in [27], the splitting technique relies heavily on a minorization condition (1.1) and

small set chosen. We find this information important and recall the details in the remark

below. The choice of size of small set and sharpness of the uniform bound from below on the

transition density of X in the minorization condition occur to be critical in order to obtain

enough blocks. The following observation comes from [27] (see the aforementioned paper for

examples of the choice of a small set for different time series).

Remark 3. Observe that if the size of a small set is increased, the uniform bound from

below for transition density of X decreases. Thus, in practice, one has to manoeuvre the

minorization conditions taking into consideration the following, for a given realization of the

trajectory, increasing the size of the small set S causes an increment of the number of points

of the trajectory that are candidates for determining a block. However, simultaneously, the

probability of dividing the trajectory decreases as size of S is larger (since the uniform lower

bound for {p(x, y)}(x,y)∈S2 decreases).
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Finally, we briefly mention that there exists a relation between α- mixing coefficients

and regeneration times for Harris recurrent Markov chains. In this framework we will work

under moment conditions imposed on τA and block moment conditions instead of making use

of mixing properties mainly due to the fact that mixing conditions are difficult to verify in

practice. However, taking into consideration the huge number of works when the dependence

between data is expressed in terms of mixing conditions, we provide few comments below.

Let F b
a be the σ-algebra generated byXa, · · · , Xb. The strong α-mixing coefficient between

σ-fields A and B is defined as

α(A,B) := sup
(A,B)∈A×B

|P(A ∩ B)− P(A)P(B)|.

The strong mixing coefficients related to a sequence of random variables are defined by

α(k) = sup
n

sup
A∈Fn

−∞

sup
B∈F+∞

n+k

|P(A ∩ B)− P(A)P(B)|.

Remark 4. Theorem 2 from [36] states that for stationary Harris chains if for some λ ≥ 0

the sum
�

m mλα(m) < ∞, then for all B ∈ E such that µ(B) > 0 we have

Eµ(τ
1+λ
B ) < ∞, where τB = inf{n ≥ 1 : Xn ∈ B}.

This result guarantees that the rate of decay of strong mixing coefficients is polynomial.

This is a weaker condition, because usually the exponential rate of decay is assumed.

2.4 A few examples of regenerative and Harris recurrent Markov

chains

In Section 1 we mentioned that many time series can be seen as atomic regenerative and

Harris recurrent Markov chains. In what follows we will provide few simple examples in

order to show that such processes appear quite naturally in the real world. The models we

present here come from [106] and [25].

Example 1 (Storage model). We consider

• L1, L2, L3, · · · , which are input times into storage systems

• inter-arrival times ΔLi which are are i.i.d. and distributed according to

G(∞, t] = P(ΔLi ≤ t)
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• random variables Sn which quantify the n−th input to the storage. Sn possesses a

distribution

H(∞, t] = P(Sn ≤ t).

The sequence S1, · · · , Sn, · · · are random variables which are independent of each other

as well as of the inter-arrival times.

In a simple storage model, between inputs, we observe steady removal from the storage

system, at rate r (in more complicated storage systems the removal can be governed by

different rules): in the period [x, x+ t] there is a decrease of the stored content by an amount

t so that contents of a storage drop by an amount rt since we do not register next input.

When the storage process reaches zero it remains on this level until the new input is observed

(the storage model does not take negative values). Thus, we consider the process

Φn+1 = [Φn + Sn − Jn]
+,

where x+ = max(x, 0) and Jn are i.i.d. random variables with

P(Jn ≤ x) = G(∞, x/r]

and r > 0. In the above setting Φ = {Φn} is a storage process and atomic regenerative

Markov chain (due to the fact that Sn+1 does not depend on Sn−1, Sn−2, ...etc., and since the

sequence of ΔLi’s is i.i.d.). When E[Sn] < E[Jn], the chain returns infinitely often to 0 and 0

is an atom. Thus, whenever Φ reaches 0 we cut the trajectory and the new bock is created.

One of the most classical examples of Harris recurrent Markov chains is a class of autore-

gressive processes. Harris recurrence property of an autoregressive model has been firstly

shown in [13]. We advise to look to the paper of [6], [106] and [27] for more examples of

Markov chains exhibiting Harris recurrent structure.

Example 2 (Autoregressive process of order p). Consider AR(1) process

Xn = ρXn−1 + θn, n ≥ 1

on state space E = R and where the noise sequence is given by θ1, θ2, · · · , which are i.i.d.

and distributed according to G. We suppose that G possesses an absolutely continuous

component. Under assumptions that

|ρ| < 1 and E log |θ| < ∞

the conditions of Theorem 2.1 from [6] are fulfilled and AR(1) process is a Harris Markov

chain.
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Figure 1.1: Regeneration block construction for AR(1) model.

As shown in [106] one can write the AR(p) process

Xn = ρ1Xn−1 + ρ2Xn−2 + · · ·+ ρkXn−k + θn

in a Markovian form by constructing the multivariate sequence

Yn = (Xn, · · · , Xn−k+1)
�

and considering the process Y = {Yn, n ≥ 0}. Indeed, Y is a Markov chain whose first

component has exactly the sample paths of the autoregressive process (see [106] for more

details) and by Theorem 2.1 in [6] is a Harris recurrent Markov chain (see Example 2.6

in [6] for more details). Figure 2 illustrates the splitting technique for a trajectory of AR(1)

process.

As the last example we present the Kinetic Exposure Model introduced in [31]. This

process is an example of a piecewise deterministic Markov process (PDMP) (see also [25]

for other examples how to relate the properties of the PDMPs (stationary distribution) with

the properties of embedded chains possesing regenerative structure.

Example 3 (Kinetic Dietary Exposure Model). The Kinetic Dietary Exposure Model (KDEM)

is a stochastic process that expresses the evolution of a contaminant in the human body along

time. Let
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Figure 1.2: Kinetic Dietary Exposure Model which describes evolution of a contaminant in

the human body.

• T1, · · · , Tn be the contaminant’s intake times

• ΔTn+1 = Tn+1 − Tn be the inter-intake time

• U1, · · · , Un be the contaminant’s intakes time at T1, · · · , Tn

The counting process {(N(t)}t≥0 is defined as

N(t) := #{i ∈ N∗ : Ti ≤ t}

for t ≥ 0 is a renewal process and

A(t) = t− TN(t)

is the backward recurrence time. We consider exposure process X(t) which dynamics is given

by the first order ordinary differential equation

dX(t) = −ωX(t)dt (1.3)

and ω > 0 is a fixed parameter called elimination rate and corresponds to body’s metabolism

dealing with the chemical elimination of contaminants. The total body burden of a given
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dietary contaminant at time t is :

X(t) = X(0) +

N(t)�

n=1

Un −
N(t)+1�

n=1

� Tn∧t

Tn−1

ωX(s)ds.

By solving (1.3), the exposure process is given by

X(t) = XTN(t)
e−ωA(t)

for any t ≥ 0. The process {X(t)}t≥0 (that is Xn = X(Tn)) is a PDMP. Let �X = (Xn)n∈N, be

an embedded chain of X. The evolution of the process �X is given by the following stochastic

recurrence equation

Xn+1 = Xn × e−ω∆Tn+1 + Un+1, n ≥ 0

which is an autoregressive process with a random coefficient.

Process �X plays an important role in the analysis of X, i.e. it describes the exposure

process immediately after each intake (refer to [31] for details). Under some additional

assumptions (specified for instance in [31]) it is possible to relate the continuous-time process

X with the embedded chain �X. Figure 3 shows the trajectory of evolution of the contaminant

in a human body along time.

3 A preview of contributions and future perspectives

As indicated in Section 1, this thesis focuses on developments in the field of bootstrap and

statistical learning when the data are Markovian. We start with uniform bootstrap central

limit theorems for Harris recurrent Markov chains. Next, we generalize the wild and residual

bootstrap procedures for autoregressive processes of order p to periodically autoregressive

processes (PAR). PAR sequences can be written in a Markovian form and are an example

of Harris recurrent Markov chains. The second part of the thesis focuses on applications

of empirical processes theory to statistical learning. We derive exponential and polynomial

type maximal inequalities in order to control the supremum distance between stationary

distribution µ of the chain X and its empirical counterpart. Concentration inequalities of

this type are crucial tool when proving the generalization bounds for statistical learning

algorithms via empirical risk minimization approach (we encourage to look into [142], [144]

and [38] for detailed treatment). In this thesis, we use this strategy in order to obtain

generalization bounds for minimum volume set estimation problem.

Having given a very general outline of the thesis, we proceed with more detailed preview

of contributions.
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1. Uniform bootstrap central limit theorems for Harris recurrent Markov chains

The first contribution involves asymptotic results for Harris recurrent Markov chains

and was published in [44], [45] and [25]. We extend the bootstrap central limit the-

orem for the mean established in [26]. We show that uniform bootstrap CLT holds

over uniformly bounded classes of functions F as well as in unbounded case when we

only require second order moment conditions imposed on the envelope F of F . In this

framework we measure the complexity of F by its covering number Np(�, Q,F) which

is interpreted as the minimal number of balls with radius � needed to cover F in the

norm Lp(Q) and Q is a measure on E with finite support. In what follows, we impose

the finiteness of the uniform entropy integral of F , namely
� ∞

0

�
logN2(�,F)d� < ∞, where N2(�,F) = sup

Q
N2(�, Q,F).

More specifically, we show that under some technical conditions (specified in [44] and

the second chapter of this thesis) imposed on X, f, class F and small set S and under

the assumption � ∞

0

�
logN2(�,F)d� < ∞

we obtain that

Z∗
n = n

∗1/2
AM


 1

n∗
AM

l∗n−1�

i=1

f(B∗
i )−

1

�nAM

�ln−1�

i=1

f( �Bi)


 (1.4)

converges in probability under Pν to a Gaussian process G indexed by F whose sample

paths are bounded and uniformly continuous with respect to the metric L2(µ). To un-

derstand Equation 1.4 we briefly mention that n∗
AM

and l∗n are bootstrap equivalents

of the quantities nAM
and ln introduced in Subsection 2 and B∗

i are bootstrap blocks

that is a sequence of i.i.d. blocks drawn with replacement from empirical distribu-

tion function based on the regenerative blocks or the approximate ones (see page 19,

Algorithm 2).

Our theorems are bootstrap versions of uniform central limit theorems for Harris chains

for bounded classes of functions presented in [98] and in unbounded case (see [137]).

Moreover, our proof techniques allow to apply our reasoning into regenerative case that

enables simplification of the proof of the uniform bootstrap central limit theorem for

regenerative Markov chains established in [122]. Uniform central limit theorems (and

their bootstrap versions) are an useful tool in non-parametric maximum likelihood

estimation, kernel density estimation or wavelet density estimation (refer for instance

to [110], [68] and [69] for details).
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We are using the aforementioned results to establish bootstrap uniform central limit

theorems for Fréchet differentiable functionals of Harris Markov chains. Under some

technical conditions (uniform entropy condition, assumptions on a small set S, etc.)

we have for a Fréchet differentiable functional at µ (with respect to a metric indexed

by a class of functions, see [17] and Chapter 2 for details) that the bootstrap is asymp-

totically valid. We have chosen to work with Fréchet differentiable functionals since it

guarantees the existence of influence function useful when detecting the outliers in the

data (see [140] for details).

2. Robust estimation for Markov chains with applications to PDMPs In our next

contribution we propose a method to construct robust estimators for atomic regenerat-

ive and Harris recurrent Markov chains with a special focus on Piecewise-Deterministic

Markov Processes (PDMPs). In this framework we rely on a renewal theory for Markov

chains and further developments of the approximate regenerative block bootstrap

method. The main idea is to eliminate blocks having either too much contribution

to the statistics of interest, or having a too large length.

It is known (see [29]) that some classical concepts of robust statistics can be naturally

extended to a Markovian framework. For instance, one can define an influence function

on the torus T = ∪∞
k=1E

k. Indeed, let PT denote the set of all probability measures on

the torus T and for any b ∈ T, set

L(b) = k if b ∈ Ek, k ≥ 1.

Then the influence function on the torus can be defined as follows.

Definition . (Influence function on the torus) Let (V , � · �) be a separable Banach

space. Let T : PT → V be a functional on PT. If, for some L in PT,

t−1(T ((1− t)L+ tδb)− T (L))

has a finite limit as t → 0 for any b ∈ T, the influence function T (1) : PT → V of the

functional T at L is then said to be well-defined, and, by definition, one set for all b in

T,

T (1)(b, L) = lim
t→0

T ((1− t)L+ tδb)− T (L)

t
. (1.5)

Now it is straightforward to define Fréchet differentiability of functionals of Markov

chains.
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Definition . (Fréchet differentiability of functionals of Markov chains) The functional

T : PT → R is Fréchet differentiable at LA ∈ PT for a metric d, if there exists

a continuous linear operator DTLA
(from the set of signed measures of the form L−LA

in (R, � · �)) and a function

�(1)(·,LA) : R → (R, � · �),

which is continuous at 0 and �(1)(0,LA) = 0 such that

∀ L ∈ PT, T (L)− T (LA) = DTLA
(L− LA) +R(1)(L,LA),

where

R(1)(L,LA) = d(LA,L)�
(1)(d(LA,L),LA).

Furthermore, assume that T admits the following representation,

∀ LA ∈ PT, DTLA
(L− LA) =

�
T (1)(b,LA)L(db),

where T (1)(b,LA) is the influence function at LA.

Fréchet differentiability is a standard tool for obtaining central limit theorems for plug-

in estimators. Indeed, suppose that T : PT → R is a Fréchet differentiable functional

at LA for some metric dF (see Chapter 3 for details) , where F is a permissible class

of functions with an envelope F, satisfying the uniform entropy condition

� ∞

0

�
sup
Q

logN2(�, Q,F)d� < ∞.

Assume in addition, in the regenerative atomic case

EA

�
�

1≤j≤τA

F (Xj)

�2

< ∞, Eν(τA) < ∞, EA(τ
2
A) < ∞.

Then,

n1/2(T (Ln)− T (LA)) → N

�
0,

V ar(T (1)(Bi,LA))

EA(τA)

�
.

We establish similar results for Harris recurrent Markov chains.

In this framework, we consider in particular the construction of robust estimators

for the embedded Markov chains associated to the PDMP (which is a process whose
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behaviour is determined by random jumps at points in time and its evolution is de-

terministically ruled by an ordinary differential equation between those times).

We consider robust estimators of several risk indicators such as the ruin probability,

the expected shortfall and the extremal index of two PDMPs: the Cramér-Lundberg

with a dividend barrier and the Kinetic Dynamic Exposure Model (KDEM) used in

modeling phamarcokinetics of contaminants (see [31] for instance).

3. Wild and residual bootstrap methods for periodically autoregressive processes

This contribution is published in [46]. We consider periodically autoregressive process

(PAR) of the form

XnT+v =

p�

k=1

φk(v)XnT+v−k + �nT+v, (1.6)

where

Φ
� = [φ1(1),φ2(1), . . . ,φp(1),φ1(2), . . . ,φp(2), . . . ,φ1(T ), . . . ,φp(T )]

designates the vector of parameters and � is a transpose. The {XnT+v} denotes the series

during the n-th cycle (0 ≤ n ≤ N − 1) during v-th season (1 ≤ v ≤ T ). The {�nT+v}

is the mean zero white noise with variance of the form Var(�nT+v) = σ2
v > 0 for all

seasons v. The process in (1.6) can be written in a Markovian form using analogous

vectorization trick as in Example 2 since PAR process may be written as T -variate

autoregressive model (AR), refer to [20] for details. We obtained the least squares

estimators of model’s parameters

�Φ� =
�
�φ1(1), �φ2(1), . . . , �φp(1), �φ1(2), . . . , �φp(2), . . . , �φ1(T ), . . . , �φp(T )

�

in order to generate their bootstrap equivalents.

We propose wild and residual bootstrap procedures which are data driven (since they

do not require a choice of the length of bootstrap blocks), thus can be attractive for

practical use. The residual bootstrap procedure for PAR processes consists of the

following steps.

Residual bootstrap method for PAR processes

Step 1 Compute the ordinary least squares estimator �Φ of Φ.

Step 2 Compute the residuals of the estimated model

��nT+v = XnT+v −
p�

k=1

�φk(v)XnT+v−k,

where 1 ≤ v ≤ T, 0 ≤ n ≤ N − 1.
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Step 3 Compute the centred residuals

η̄nT+v =
��nT+v

σv

− 1

NT

N−1�

n=0

T�

v=1

��nT+v

σv

,

where NT is the number of all observations in the model.

Step 4 Generate bootstrap variables η∗nT+v by drawing randomly with replacement from

{η̄1, . . . , η̄NT}.

Step 5 Generate the bootstrap version of the model (1.6)

X∗
nT+v =

p�

k=1

�φk(v)XnT+v−k + σvη
∗
nT+v, 1 ≤ v ≤ T.

Step 6 Calculate the bootstrap estimators of parameters for each season v, 1 ≤ v ≤ T
�Φ∗(v), where

z∗(v) =
�
X∗

v , . . . , X
∗
(N−1)T+v

��
, 1 ≤ v ≤ T.

The second method we propose is wild bootstrap procedure for PAR processes.

Wild bootstrap method for PAR processes

Step 1 Compute the ordinary least squares estimator �Φ of Φ.

Step 2 Compute the residuals of the estimated model

��nT+v = XnT+v −
p�

k=1

�φk(v)XnT+v−k,

where 1 ≤ v ≤ T, 0 ≤ n ≤ N − 1.

Step 3 Generate the bootstrap process X†
nT+v for each season v, 1 ≤ v ≤ T

X†
nT+v =

p�

k=1

�φk(v)XnT+v−k + �
†
nT+v

and

�
†
nT+v = ��nT+vη

†
nT+v,

where η
†
nT+v ∼ N (0, 1) and (η†nT+v)nT+v∈R is independent of ��nT+v.

Step 4 Calculate the bootstrap estimator of parameters, namely �Φ†(v) for each season

v, 1 ≤ v ≤ T, where

z†(v) =
�
X†

v , . . . , X
†
(N−1)T+v

��
.
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Next, we proved weak consistency for both methods. More specifically, we showed for

a causal periodic autoregressive series XnT+v defined in (1.6) with finite fourth moment

that, the residual bootstrap procedure we proposed is weakly consistent, i.e.

√
N

�
�Φ∗ − �Φ

�
P ∗

−→ N
�
0, R−1

�
,

where

�Φ∗� =
�
�φ∗
1(1),

�φ∗
2(1), . . . ,

�φ∗
p(1),

�φ∗
1(2), . . . ,

�φ∗
p(2), . . . ,

�φ∗
1(T ), . . . ,

�φ∗
p(T )

�

is a vector of bootstrap estimators of parameters for each season v obtained from

residual bootstrap algorithm and R is specified in Chapter 4. Similar consistency

results are obtained for wild bootstrap procedure (see Chapter 4). Finally, we illustrate

our theoretical considerations by simulations.

4. Exponential and polynomial type maximal inequalities for Harris Markov chains

Motivated by applications in statistical learning we establish bounds for the tail probab-

ility for suprema of empirical processes in a Markovian framework. These contributions

are presented in [22], [23] and [24].

Let f : E → R be a measurable function. Since our inequalities are maximal type,

we control the class of functions via uniform entropy number. Under exponential

moments imposed on τA and f(Bj) we establish Bernstein and Hoeffding type maximal

inequalities as a function of uniform entropy number and moments of time returns and

blocks. One of main difficulties when deriving such bounds is that even if we assume

that f is bounded, f(Bj) may be unbounded over a whole block of observations. In

order to derive the inequalities we rely heavily on Montgomery-Smith’s inequality from

[108] and symmetrization techniques from [119].

We also show that under weaker conditions imposed on time returns and f(Bj)
�s,

the polynomial bounds can be established. Interestingly, the conditions imposed on

a Markov chain X are satisfied by sub-geometrically ergodic Markov chains, to which

our polynomial tail inequality can be applied.

Furthermore, we establish bounds for the expectation of the supremum of empirical

process in a Markovian setting since they occur to be particularly useful when one

wants to select a model via some penalization criterion with penalty term depending

on a complexity of the whole collection of models.

We present the aforementioned results in a detailed form in the subsequent sections.

However, to give a reader a general overview of obtained results we provide the bounds
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in a general (and somewhat simplified) form below. The detailed conditions imposed on

chain X are omitted here and stated in further sections. For the sake of simplicity we

provide the results solely in the atomic regenerative case (we formulate the inequalities

for Harris recurrent Markov chains in further sections). Let

σ2
m = max

f∈F
σ2(f) > η > 0.

• Bernstein type maximal inequality Assume that N1(�,F) < ∞. Then, under

exponential block moment conditions and exponential moments of return times

to set A, we have for any x > 0, 0 < � < x/2 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)K1

�
exp

� −n(x− 2�)2

K2 (σ2
m +K3(x− 2�))

��
,

where K1, K2 and K3 are positive parameters specified in Chapter 5.

• Hoeffding type maximal inequality Assume that N1(�,F) < ∞. Suppose fur-

ther that the class of functions F is uniformly bounded. Then, under exponential

block moment conditions and exponential moments of return times to set A, we

have for any x > 0, 0 < � < x/2 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)L1

�
exp

�
−n(x− 2�)2

L2D2

��
,

where D is a constant such that ∀f ∈ F |f | < D and L1 and L2 are positive

parameters specified later in Chapter 5.

• Polynomial tail maximal inequality Assume that N1(�,F) < ∞. Suppose

further that the p−th block moment and p-th moment of return times to the

atom A are finite. Then, we have for any x > 0, 0 < � < x/2 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ C1

N1 (�,F)

(x− 2�)pnp/2

and C1 is a positive parameter specified in Chapter 5.

• Bound for expectation of supremum of empirical processes Assume that

EA[l(B1)]
2 < ∞ and EA [F (B1)]

2 < ∞,
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where F is an envelope for F . Moreover, suppose that uniform entropy number

N1

�
�
R1
,F

�
< ∞. Then, for any � > 0 we have

EA

�
sup
f∈F

�����
1

n

ln�

i=1

(f(Bi)− µ(f(B1)))

�����

�

≤ R2


�+N

�
�

R1

,F

�
× EA[F (B1)

2]1/2

����2logN1

�
�
R1
,F

�

n


 ,

where R1 and R2 are positive constants that can be explicitly computed.

The above results may be easily generalized to a Harris recurrent case.

5. Generalization bounds for minimum volume set estimation problem The last

contributions presented in this thesis are generalization bounds for minimum volume

set (MV-set) for regenerative and Harris recurrent Markov chains. The results have

been presented in [23] and [24]. The MV-set estimation problem was firstly proposed

in [120] in the i.i.d. setting.

Let µ be a probability distribution on a measurable space (E, E). Let α ∈ (0, 1) and λ

be a σ-finite measure of reference on (E, E), any solution of the minimization problem

(1.7)

min
Ω∈E

λ(Ω) subject to µ(Ω) ≥ α (1.7)

is called aMV -set of level α. The distribution µ is assumed to be absolutely continuous

w.r.t. λ and denote by

f(x) = (dµ/dλ)(x)

the related density.

Under some technical assumptions on f , for any α ∈ (0, 1), [120] showed that the set

Ω
∗
α = {x ∈ E : f(x) > γα},

where γα is the unique number such that

�

f(x)>γα

f(x)dλ(x) = α

is the unique solution of the MV-set estimation problem (1.7). Minimum volume sets

can be interpreted as follows, for small values of the mass level α, MV -sets enable to
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recover the modes of the distribution, while their complementary sets correspond to

rare observations when α is large.

In practice, distribution µ is unknown and is replaced by its empirical counterpart

µn. Then finding finding a minimum volume set of level α boils down to solving the

following minimization problem

min
Ω∈E

λ(Ω) subject to �µn(Ω) ≥ α− ψn (1.8)

with ψn being a tolerance parameter (see Chapter 6 for more details).

The minimum volume set estimation technique can be used as an unsupervised anomaly

detection algorithm since when dealing with unlabelled data we consider anomaly as

a rare event.

Scott and Nowak [126] established generalization bounds for MV-set estimation prob-

lem in the i.i.d. setting. In order to establish generalization bounds in a Markovian

setting we retract to the framework of empirical risk minimization and thus, heavily

rely on concentration inequalities which allows us to control the suprema of empirical

processes involved. Our approach boils down to decomposition of empirical distribution

function of interest into: ∀ Ω ∈ E ,

�µn(Ω) =
1

n

τA�

i=1

I{Xi ∈ Ω}+
ln − 1

n

�
1

ln − 1

ln−1�

j=1

Sj(Ω)

�
+

1

n

n�

i=1+τA(ln)

I{Xi ∈ Ω}, (1.9)

where ln =
�n

i=1 I{Xi ∈ A} denotes the number of visits to set A (regenerations),

the occupation time of the set Ω between the j-th and (j + 1)-th regeneration times

is denoted by Sj(Ω) =
�

τA(j)<i≤τA(j+1) I{Xi ∈ Ω}. Decomposition (1.9) along with

application of polynomial tail maximal inequality for Markov chains allows us to extend

the result in [126] to the atomic regenerative and Harris recurrent case.

Let p ≥ 2. In order to establish generalization bounds for minimum volume set estim-

ation problem we assume that

EA[τ
p
A] < ∞ and Eν [τ

p
A] < ∞.

Let r ≥ 1. The collection of indicator functions on E,

F = {I{x ∈ Ω} : Ω ∈ G}

is a uniform Donsker class (relative to L1) with polynomial uniform covering numbers,

i.e. there exists a constant c > 0 s.t. ∀ζ > 0,

N1(ζ,F)
def
= sup

Q
N (ζ,F , L1(Q)) ≤ c(1/ζ)r,
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where the supremum is taken over the set of finitely discrete probability measures on

(E, E).

Under the preceding assumptions imposed on moments of return of X to the atom

A and on complexity of class F and for all δ ∈ (0, 1), and if ψn (we specify ψn in

Chapter 6) is a well-chosen penalty for class G, then, with probability at least 1− δ,

λ(�Ωn) ≤ λ(Ω∗
α) +

�
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗

α)

�

and

µ(�Ωn) ≥ α− 2ψn(δ).

The organization of this thesis corresponds to the order of contributions listed above.

In Chapter 2 we recall non-parametric bootstrap procedures for regenerative and Harris

recurrent Markov chains established in [26] and next proceed to the exposition of our uniform

bootstrap central limit theorems for Harris recurrent Markov chains. In the last part of

the chapter, we use the aforementioned results to obtain bootstrap uniform central limit

theorems for Fréchet differentiable functionals in a Markovian setting . In Chapter 3 some

tools to detect outliers in a Harris Markovian framework are presented. This chapter focus

on applications to piecewise-determinstic Markov processes. Chapter 4 presents wild and

residual bootstrap procedures for PAR processes that we formulated in [46]. Next, we show

that both methods are weakly consistent and illustrate our theoretical considerations by

simulations. In Chapter 5 we present Bernstein and Hoeffding type maximal deviation

inequalities for Markov chains. Next, we discuss how the conditions imposed on the chain

can be relaxed in order to obtain polynomial tail maximal bound. We also show how to

bound the expectation of the supremum of an empirical process in a Markovian framework.

In Chapter 6 we show how to use the bounds from Chapter 5 in order to obtain generalization

bounds for statistical learning algorithms. We illustrate this approach with minimum volume

set estimation procedure. Finally, Chapter 7 is aimed to shortly summarize the state of the

art as well as highlight main scientific contributions of this thesis. This chapter is written

only in French.
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Chapter 2

Bootstrap uniform central limit

theorems for Harris recurrent Markov

chains

The main objective of this chapter is to establish bootstrap uniform functional central limit

theorem for Harris recurrent Markov chains over uniformly bounded classes of functions.

We show that the result can be generalized also to the unbounded case. To avoid some

complicated mixing conditions, we make use of the well-known regeneration properties of

Markov chains. We show that in the atomic case the proof of the bootstrap uniform central

limit theorem for Markov chains for functions dominated by a function in L2 space proposed

by Radulović [122] can be significantly simplified. Finally, we prove bootstrap uniform central

limit theorems for Fréchet differentiable functionals in a Markovian setting.

This chapter gathers results published in [44] and[45]. Some additional remarks and

explanations (in addition to the material included in [44]) are added in order to make this

exposition more comprehensive.

1 Preliminaries

The bootstrap method was introduced by Efron in [59] for i.i.d. data. The intuition behind

this procedure is rather simple. Let X1, · · · , Xn be a sequence of i.i.d. random variables. We

are interested in studying the behaviour of some statistic Hn(X1, . . . , Xn). In particular, one

may want to compute fromHn a confidence interval for some unknown population parameter.

By
W−→ we denote weak convergence and by L(H) limiting distribution of H. Usually, in this

39



situation, weak central limit theorems are handy, i.e. as n → ∞

Hn(X1, . . . , Xn)
W−→ H

which implies that

L(Hn(X1, · · · , Xn)) ≈ L(H). (2.1)

Weak central theorems often offer a closed form of the distribution L(H) which makes the

approximate confidence interval computable.

As indicated in [54] this approach struggles with some challenges. Firstly, the closed form

of L(H) may be very difficult to obtain. Secondly, one can construct statistics Hn for which

the limiting process does not exist. Lastly, it often occurs that L(H) depends on unknown

parameters, thus confidence regions can not be computed (see much broader discussion in

[121]).

It appears that bootstrap procedures may be handy in such situations. Indeed, we build

the empirical distribution function from the data Pn = 1
n

�n
i=1 δXi

. Next we draw bootstrap

observations

X∗
1 , X

∗
2 , · · · , X

∗
n from Pn.

Such bootstrap observations are i.i.d. conditionally on X1, · · · , Xn. Next, we conclude that

P ≈ Pn essentially means that L(Pn) ≈ L(P). Thus, one can hope that

L(Hn(X1, · · · , Xn)) ≈ L(H∗
n(X

∗
1 , · · · , X

∗
n)). (2.2)

Now the crucial observation is that L(H∗
n(X

∗
1 , · · · , X

∗
n)) does not depend on any unknown

parameters and importantly, can be computed. Let d be some metric that metrizes weak

convergence (see [141] for more details). The bootstrap procedure is valid when we can show

that

d(L(Hn),L(H
∗
n)) → 0 a.s. or in probability.

It is well-known that the bootstrap methods work in many cases when the limiting process

is Gaussian. Here the theory of empirical processes kicks in. More specifically, the uniform

central limit theorems justify (2.2) for many statistics Hn (refer also to [140] and [141]). Let

Pnf =
1

n

n�

i=1

f(Xi) and Pf =

�
fdP.

Showing that (under regularity assumptions),

√
n(Pnf − Pf)f∈F

W−→ Gp(f) (2.3)
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(where Gp is a Gaussian process) enables to prove weak convergence L(Hn) → L(G) for

many statistics Hn of interest. Moreover it is shown in [71] that essentially (2.3) holds if and

only if √
n(P∗

nf − Pnf)f∈F
W−→ Gp(f)f∈F in probability.

and P∗ is conditional distribution on the data.

The above reasoning motivated us to study uniform central limit theorems and their

bootstrap versions in a regenerative atomic and Harris recurrent case. The uniform central

limit theorems have also many applications in modern statistics, an interested reader is

referred to the series of papers [110], [68] and [69]. The preceding summary is based on

a survey written by Radulović [121]. We also direct to the aforementioned work for more

details concerning developments of bootstrap in dependent case.

Interestingly, the regenerative bootstrap theory for Markov chains has received relatively

limited attention given very wide number of results concerning various bootstrap methods

for both i.i.d. and dependent data. We will give a brief overview of how the regenerative

bootstrap methods developed through last 26 years.

It is noteworthy that one of the first bootstrap results for Markov chains were obtained

in the series of papers [10] and [11]. The proposed methods rely on the renewal properties of

Markov chains when a (recurrent) state is visited infinitely often. The idea behind such pro-

cedures is to resample a deterministic number of data blocks which are corresponding to

regeneration cycles. More specifically, it was established in [10] and [11] that the distri-

bution of naive bootstrap of the pivot
√
n(�Πn − Π), where �Πn is the maximum likelihood

estimator of a transition probability matrix Π, approximates that of the pivot as n → ∞.

The approach is based on a consideration of a double array of Markov chains for which a

central limit theorem is established.

Datta and Mc Cormick [50] studied bootstrapping the distribution of the sample mean of

a fixed real function of a Markov chain. Bertail and Clémençon [26] proposed two effective

methods for bootstrapping Markov chains: Regenerative block bootstrap (RBB) method

for atomic chains and Approximate block bootstrap method (ARBB) for general Harris

recurrent Markov chains. The main intuition behind these procedures is to mimick the re-

newal (pseudo-renewal in general Harris case) structure of the chain by drawing regenera-

tion data blocks, until the length of the reconstructed bootstrap sample is larger than the

length of the original data. We recall these procedures in Section 2. In the regenerat-

ive atomic setting, the RBB method has the uniform rate of convergence of order OP(n
−1)

which is the optimal rate of convergence in the i.i.d. case. Moreover, it is proven in [26] that

the second-order correctness of the ARBB procedure in the unstudentized stationary case,
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the rate of convergence is close to that in the i.i.d. setting.

One of main advantages of aforementioned methods is the fact that the division of the data

into blocks is completely data-driven in atomic regenerative case and the ARBB procedure

relies only on the parameters of minorization condition (1.1), which is a significant advantage

in comparison to block bootstrap methods. It is noteworthy that in parallel to [26], the

Markov chains bootstrap CLT for the mean under no additional assumptions was proposed

in [122].

Bootstrap results for Markov chains in [122] and [26] showed how natural tool the regen-

erative technique is in order to extend the bootstrap theory to empirical processes indexed

by classes of functions in a Markovian setting.

To the best of our knowledge, Radulović was the first who proved the bootstrap uniform

central limit theorem over uniformly bounded classes of functions F in [122]. In this work,

Radulović studies countable regenerative Markov chains and indicates that with an additional

uniform entropy condition the bootstrap result can be extended to the uncountable case.

Gorst-Rasmussen and Bøgsted [75] have proved bootstrap uniform central limit theorem

over classes of functions with an envelope in L2. They have considered regenerative case

which was motivated by their study of queuing systems with abandonment.

We generalized in [44] the bootstrap result for empirical processes for Markov chains

obtained in [122]. We established the bootstrap uniform functional central limit theorem over

a permissible uniformly bounded classes of functions in general Harris case. We also show

that by arguments from [137], the condition of uniform boundedness of F can be weakened

and it is sufficient to require only that F has an envelope F in L2. Some applications to

Fréchet differentiable functionals are presented in Section 3

2 Non-parametric bootstrap for regenerative and Har-

ris recurrent Markov chains

In this subsection we recall non-parametric bootstrap procedures for regenerative and Harris

recurrent Markov chains. The algorithms were proposed in [26].

Remark 5. In order to avoid large bias of the estimators based on the regenerative blocks

we discard the data before the first and after the last pseudo-regeneration times (for more

details refer to [26], page 693).

We will start with Regenerative block bootstrap (RBB) procedure when the atom A in

known a priori. The algorithm allows to compute the estimate of the sample distribution
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of some statistic Tn = T (B1, · · · , Bln−1) with standarization Sn = S(B1, · · · , Bln−1). The

procedure is formalized in Algorithm 3.

Algorithm 3 Regenerative block bootstrap method

Step 1Draw sequentially bootstrap data blocksB∗
1 , · · · , B

∗
k (we denote the length of the blocks

by l(B∗
j ), j = 1, · · · , k) independently from the empirical distribution function

Ln =
1

ln − 1

ln−1�

i=1

δBi
,

where Bi, i = 1, · · · , ln − 1 are regeneration blocks. We generate bootstrap blocks until

the joint length of bootstrap blocks l∗(k) =
�k

i=1 l(B
∗
i ) exceeds n. We set

l∗n = inf{k : l∗(k) > n}.

Step 2 Bind bootstrap blocks from Step 1 and construct the RBB bootstrap sample

X∗(n) = (X∗
1 , · · · , X

∗
l∗n−1).

Step 3 Compute the RBB statistic and its RBB distribution, namely

T ∗
n = T (X∗(n)) = T (B∗

1 , · · · , B
∗
l∗n−1)

and its standarization

S∗
n = S(X∗(n)) = S(B∗

1 , · · · , B
∗
l∗n−1).

Step 4 The RBB distribution is given by

HARBB(x) = P∗(S∗−1
n (T ∗

n − Tn) ≤ x),

where P∗ is conditional probability given the data.

Taking a closer look at the steps of the RBB procedure, one can see that it is a very

natural generalization of non-parametric bootstrap method in the i.i.d. setting. The crucial

difference is that the empirical distribution function is built from blocks of data instead of

single observations (see Step 1 of Algorithm 3). The validity of RBB method has been proved

in [26] for the mean.

In this chapter we will state the uniform bootstrap central limit theorems for Har-

ris recurrent Markov chains. Thus, in this framework, we are more interested in non-

parametric bootstrap procedure formulated in a Harris recurrent case. Similarly as in RBB

method, the Approximate regenerative block bootstrap (ARBB) aims to compute the estim-

ate of the sample distribution of some statistic Tn = T ( �B1, · · · , �B�ln−1) with standarization
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Sn = S( �B1, · · · , �B�ln−1). Note, that since we deal with Harris recurrent Markov chains, in or-

der to split the data into segments, in practice we need to apply the approximate Nummelin

splitting technique. Thus, in consequence, we deal with approximated blocks �B1, · · · , �B�ln−1.

For the completeness of exposition, we recall the ARBB bootstrap procedure below. The al-

gorithm proceeds as follows.

Algorithm 4 Approximate block bootstrap

Step 1Draw sequentially bootstrap data blocksB∗
1 , · · · , B

∗
k (we denote the length of the blocks

by l(B∗
j ), j = 1, · · · , k) independently from the empirical distribution function

�Ln =
1

�ln − 1

�ln−1�

i=1

δ �Bi
,

where �Bi, i = 1, · · · ,�ln − 1 are initial pseudo-regeneration blocks. We generate bootstrap

blocks until the joint length of bootstrap blocks l∗(k) =
�k

i=1 l(B
∗
i ) exceeds n. We set

l∗n = inf{k : l∗(k) > n}.

Step 2 Bind bootstrap blocks from Step 1 and construct the ARBB bootstrap sample

X∗(n) = (X∗
1 , · · · , X

∗
l∗n−1).

Step 3 Compute the ARBB statistic and its ARBB distribution, namely

T ∗
n = T (X∗(n)) = T (B∗

1 , · · · , B
∗
l∗n−1)

and its standarization

S∗
n = S(X∗(n)) = S(B∗

1 , · · · , B
∗
l∗n−1).

Step 4 The ARBB distribution is given by

HARBB(x) = P∗(S∗−1
n (T ∗

n − Tn) ≤ x),

where P∗ is conditional probability given the data.

Observe, that analogously to the RBB method, the main innovation is that we con-

struct the empirical distribution function from data blocks instead of single observations.

Throughout this chapter, we denote by

n∗
AM

=

l∗n−1�

i=1

l(B∗
j )
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the length of the bootstrap sample,

µ∗
n(f) =

1

n∗
AM

l∗n−1�

i=1

f(B∗
i ) and σ∗2

n (f) =
1

n∗
AM

l∗n−1�

i=1

{f(B∗
i )− µ∗

n(f)l(B
∗
j )}

2

are bootstrap versions of empirical mean and variance.

In what follows, we state necessary conditions under which the ARBB procedure is con-

sistent. The assumptions have been formulated in [26] (see page 700 therein). We list them

below since our bootstrap uniform central limit theorems also require these assumptions to

be satisfied.

Let (Xn) be a positive recurrent Harris Markov chain. We assume that (αn)n∈N is a se-

quence of non-negative numbers that converges to zero. We impose the following conditions

on the chain:

1. S is chosen so that infx∈S φ(x) > 0.

2. Transition density p is estimated by pn at the rate αn (when the chain is very smooth

generally the best rate is of order αn = log(n)
n

) for the mean squared error (MSE) when

error is measured by the L∞ loss over S2 (see [9] and [26] for details and additional

references).

Moreover, we assume the following conditions (we advise to look into [26] for a compre-

hensive treatment on these assumptions). Let k ≥ 2 be a real number.

H1(f, k, ν). The small set S is such that

sup
x∈S

Ex



�

τS�

i=1

|f(Xi)|

�k

 < ∞

and

Eν



�

τS�

i=1

|f(Xi)|

�k

 < ∞.

H2(k, ν). The set S is such that

sup
x∈S

Ex(τ
k
S) < ∞ and Eν(τ

k
S) < ∞.

H3. The density p(x, y) is estimated by pn(x, y) at the rate αn for the MSE when error is

measured by the L∞ loss over S × S :

Eν

�
sup

(x,y)∈S×S

|pn(x, y)− p(x, y)|2

�
= O(αn), as n → ∞.
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H4. The density φ is such that infx∈S φ(x) > 0.

H5. The transition density p(x, y) and its estimate pn(x, y) are bounded by a constant R < ∞
over S2.

In what follows, we recall two theorems from [26] that essentially guarantee the consist-

ency of the ARBB procedure for pseudo-regeneration blocks.

Theorem 2. Suppose that the conditions [1] and [2] are satisfied by the chain and H1(f, ρ, ν), H2(ρ, ν)

with ρ ≥ 4, H3,H4 and H5 hold. Then, as n → ∞ we have

�σ2
n(f) → σ2

f in Pν − probability

and

�n1/2
AM

�µn(f)− µ(f)

�σn(f)
→ N (0, 1) in distribution under Pν .

Throughout the thesis, we denote by BL1(l
∞(F)) the set of all 1-Lipschitz bounded

functions on l∞(F). We define the bounded Lipschitz metric on l∞(F) as

dBL1(X, Y ) = sup
b∈BL1(l∞(F))

|Eb(X)− Eb(Y )|; X, Y ∈ l∞(F).

It is noteworthy that dBL1 metrizes weak convergence of empirical processes (refer to [141]

for more details). Expectations of non-measurable elements are understood as outer expect-

ations (see [141], Chapter 1) and weak convergence holds in sense of Hoffmann-Jørgensen.

Definition 6. We say that Z∗
n is weakly consistent if dBL1(Z

∗
n,Zn)

P−→ 0. Analogously, Z∗
n is

strongly consistent if dBL1(Z
∗
n,Zn)

a.s.−−→ 0.

Theorem 3. Under the hypotheses of Theorem 2 , we have the following convergence in prob-

ability under Pν:

Δn = sup
x∈R

|HARBB(x)−Hν(x)| → 0, as n → ∞,

where

Hν(x) = Pν(x)
�
�n1/2
AM

σ−1
f (�µn(f)− µ(f)) ≤ x

�

and

HARBB(x) = P∗
�
n
∗1/2
AM

�σ−1
n (f)(µ∗

n(f)− �µn(f)) ≤ x|X(n+1)
�
.

In order to make this exposition clear, we briefly mention that the convergence Xn
P ∗

−→ X

in Pν−probability (Pν -a.s.) along the sample is understood as

P∗(|Xn −X| > �|X(n+1))
n→∞−−−→ 0 in Pν − probability (Pν -a.s.).
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3 Main asymptotic results

The aim of this section is to present uniform bootstrap CLT over permissible, uniformly

bounded classes of functions F . The results has been established in [44] and are one of the

main contributions of this thesis.

The CLT’s that we obtained hold uniformly over the class of functions F . In this frame-

work we measure the complexity of F by its covering number Np(�, Q,F) which is interpreted

as the minimal number of balls with radius � needed to cover F in the norm Lp(Q) and Q is

a measure on E with finite support. In what follows, we impose the finiteness of the uniform

entropy integral of F , namely
� ∞

0

�
logN2(�,F)d� < ∞, where N2(�,F) = sup

Q
N2(�, Q,F).

We advise to refer to [141], [119] and [87] for more details regarding entropy conditions as

well as for many examples how this assumption may be verified for a specific class F .

Since main results of this section are bootstrap versions of uniform central limit theorems

established by Levental [98] (see Theorem 5.9 therein), we recall it in its original form below.

Theorem 4. Let (Xn) be a positive recurrent Harris chain taking values in (E, E). Let µ be

the invariant probability measure for (Xn). Assume further that F is a uniformly bounded

class of measurable functions on E and
� ∞

0

�
logN2(�,F)d� < ∞.

If supx∈A Ex(τA)
2+γ < ∞ (γ > 0 fixed), where A is atomic set for the chain, then the em-

pirical process Zn(f) = n1/2(µn − µ)(f) converges weakly as a random element of l∞(F) to

a Gaussian process G indexed by F whose sample paths are bounded and uniformly continu-

ous with respect to the metric L2(µ).

We are aware of the fact that permissibility condition imposed on F may be unfamiliar.

This regularity condition is rather technical and thus its definition will be omitted here, non-

etheless, the permissibility assumption allows to avoid measurability problems when dealing

with suprema of empirical processes indexed by classes of functions. A rigourous definition

can be found in Appendix C in [119].

In what follows, we present bootstrap uniform central limit theorem over permissible,

uniformly bounded classes of functions which fulfill the uniform entropy condition.

Theorem 5. Suppose that (Xn) is positive recurrent Harris Markov chain. Assume that the

conditions [1] and [2] are satisfied by the chain and H1(f, ρ, ν), H2(ρ, ν) with ρ ≥ 4, H3,H4
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and H5 hold. Suppose further that F is a permissible, uniformly bounded class of functions

and the following uniformity condition holds
� ∞

0

�
logN2(�,F)d� < ∞. (2.4)

Then the process

Z∗
n = n

∗1/2
AM


 1

n∗
AM

l∗n−1�

i=1

f(B∗
i )−

1

�nAM

�ln−1�

i=1

f( �Bi)


 (2.5)

converges in probability under Pν to a Gaussian process G indexed by F whose sample paths

are bounded and uniformly continuous with respect to the metric L2(µ).

Proof. The proof relies on bootstrap central limit theorem from [72]. In order to prove weak

convergence of process Z∗
n we have to verify:

1. Finite dimensional convergence of distributions of Z∗
n to G.

2. Stochastic asymptotic equicontinuity in probability under Pν with respect to the totally

bounded semimetric

ρ1(f, g) = E[(f − g)2]

on F .

Firstly, we prove that (Z∗
n(f1), · · · ,Z

∗
n(fk)) converges weakly in probability to (G(f1), · · · , G(fk))

for every fixed finite collection of functions {f1, · · · , fk} ⊂ F . Denote by
L−→ weak conver-

gence in law in sense of Hoffmann-Jørgensen. We want to show that for any fixed collection

(a1, · · · , ak) ∈ R we have

k�

j=1

ajZ
∗
n(fj)

L−→ N (0, γ2) in probability under Pν ,

where

γ2 = lim
n→∞

k�

j=1

a2jV ar(Zn(fj)) +
�

s�=r

aiajCov(Zn(fs),Zn(fr)).

Let h =
�k

j=1 ajfj. By linearity of h and Theorem 4 we conclude that

Zn(h)
L−→ G(h). (2.6)

The above convergence of Zn(h) coupled with Theorems 2 and 3 guarantee that

Z∗
n(h)

L−→ G(h) in probability under Pν .
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Thus, the finite dimensional convergence for the Z∗
n(f), f ∈ F is established.

In order to show [2] we need to check if for every � > 0

lim
δ→0

lim sup
n→∞

P∗(�Z∗
n�Fδ

> �) = 0 in probability under Pν , (2.7)

where

�R�Fδ
:= sup{|R(f)−R(g)| : ρ1(f, g) < δ} and R ∈ l∞(F).

Moreover, we request that F is totally bounded in L2(µ). In fact, the latter was shown in

[98]. For the completeness of exposition of the proof, we repeat the reasoning from the afore-

mentioned paper.

Consider class of functions

H = {|f − g| : f, g ∈ F}.

Denote by Qn the n-th empirical measure of an i.i.d. process whose law is µ. Using basic

properties of covering numbers we conclude that

N1(�,G, Qn) ≤
�
N2

� �
2
,F

��2

< ∞

and thus by the SLLN for Qn (see Theorem 3.6 in [98]) we have that

sup
h∈H

|(Qn − µ)(h)| → 0 a.s.(µ).

Since F is totally bounded in L1(Q) for every measure Q with finite support it follows that is

totally bounded in L1(µ).Moreover, one can show that if an envelope of F is in L2(µ), then F

is totally bounded in L2(µ).

In order to show (2.7), firstly, we replace the random numbers n∗
AM

and l∗n by their

deterministic equivalents. By the same arguments as in the proof of Theorem 3 (see [26],

page 710 for details) we have the following convergences

l(B∗
j )

n

P ∗

−→ 0 and
n∗
AM

n

P ∗

−→ 1

in Pν−probability along the sample path as n → ∞ and

l∗n
n
− EAM

(τAM
)−1 P ∗

−→ 0
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in Pν−probability along the sample path as n → ∞. Thus, we conclude that

Z∗
n(f) =

�
n∗
AM


 1

n∗
AM

l∗n−1�

i=1

f(B∗
i )−

1

�nAM

�ln−1�

i=1

f( �Bi)




=
1�
n∗
AM

�
l∗n−1�

i=1

{f(B∗
i )− �µn(f)l(B

∗
i )}

�

=
1√
n




1+

�
n

EAM
(τA)

�

�

i=1

{f(B∗
i )− �µn(f)l(B

∗
i )}


+ oP∗(1),

where � x � is an integer part of x ∈ R. The last line of above reasoning is deduced from

[26], page 710, line 15 (see also proof of Theorem 17.2.2, page 429 in [106]). The preceding

reasoning allows us to switch to the process

U∗
n(f) =

1√
n




1+

�
n

EAM
(τA)

�

�

i=1

{f(B∗
i )− �µn(f)l(B

∗
i )}


 .

Observe, that

{f(B∗
i )− �µn(f)l(B

∗
i )}i≥1

forms the sequence of i.i.d. random variables. We emphasize the fact, that the number of

observations 1 +
�

n
EAM

(τA)

�
is deterministic.

Now we use the same arguments as in [122], Step 7 of the proof of Theorem 2.2. We

are dealing with i.i.d. bootstrap blocks. It is known from [72] (see the proof of Theorem

3.1 therein, page 863) that stochastic asymptotic equicontinuity of the bootstrap process Z∗
n

is implied by stochastic asymptotic equincontinuity of the original process Zn and provided

that

E[sup
f∈F

|f(Bi)|
2] ≤ E



�

τA�

i=1

F (Xi)

�2

 < +∞

and since by result of [98] (see Theorem 4.9 therein) the original process Zn is equicontinuous,

we conclude the stochastic asymptotic equicontinuity of Z∗
n.

The above reasoning implies that (2.7) holds. We have checked that both conditions [1]

and [2] are fulfilled by Z∗
n. Thus, we can apply the bootstrap CLT from [72] which yields

the desired result.
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Remark 6. It is noteworthy that Theorem 5 is a generalization of Theorem 2.2 from

[122] for countable Markov chains. One can apply the reasoning from the above proof

to Radulović’s setting. As a consequence, the part concerning verification of the asymptotic

stochastic equicontinuity of the bootstrap version of the empirical process indexed by uni-

formly bounded class of functions F may be significantly simplified. As shown in the proof

of Theorem 5, we can switch from process

Z∗
n(f)f∈F :=

√
n∗{µ∗

n(f)− µnA
(f)},

where nA = τA(ln)− τA to process

U∗
n(f) =

1√
n



1+

�
n

EA(τA)

�

�

i=1

{f(B∗
i )− µnA

(f)l(B∗
i )}




and standard probability inequalities applied to the i.i.d. blocks of data yield the result.

In the following, we show that we can relax the assumption of uniform boundedness

imposed on class F . Due to results from [137], we can only require that F has an envelope

in L2(µ). That assumed, one can easily yield uniform bootstrap central limit theorem in the

unbounded case.

Theorem 6. Suppose that (Xn) is a positive Harris recurrent Markov chain. Suppose that the

conditions [1] and [2] are satisfied by the chain and H1(f, ρ, ν), H2(ρ, ν) with ρ ≥ 4, H3,H4

and H5 hold. Assume further that F is a permissible class of functions and such that the

envelope F satisfies

EAM


 �

τAM
<j≤τAM

(2)

F (Xj)




2

< ∞. (2.8)

Suppose, that the following uniformity condition holds

� ∞

0

�
logN2(�,F)d� < ∞. (2.9)

Then the process

Z∗
n = n

∗1/2
AM


 1

n∗
AM

l∗n−1�

i=1

f(B∗
i )−

1

�nAM

�ln−1�

i=1

f( �Bi)


 (2.10)

converges in probability under Pν to a Gaussian process G indexed by F whose sample paths

are bounded and uniformly continuous with respect to the metric L2(µ).
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Proof. The proof of Theorem 6 goes analogously to the proof of Theorem 5 with few natural

modifications. We indicate the critical points where changes are necessary. The notation

remains in the agreement with the previous theorem.

• Theorem 4.3 from [137] guarantees weak convergence

Zn(h)
L−→ G(h).

• Due to [26], Theorem 3.3 (see page 706 therein) is also valid when f is unbounded.

Thus, the finite dimensional convergence of distributions of Z∗
n to the right Gaussian

process holds.

• It is shown in [137] that F is totally bounded in L2(µ) when F fulfills only the condition

that the envelope F is in L2(µ) (see [137], page 9 for details).

Proof of stochastic asymptotic equicontinuity of process Z∗
n is exactly the same as in The-

orem 5.

4 Bootstrap uniform central limit theorems for Fréchet

differentiable functionals of Markov chains

We have shown in [44], that one can combine bootstrap uniform central limit Theorems 5 and

6 with results of Levental [98] in order to obtain bootstrap uniform central limit theorems

for general differentiable functionals over uniformly bounded classes (and with an envelope

in L2(µ)) of functions F when applying limit results from [137].

4.1 Preliminary assumptions and remarks

As previously mentioned, influence function plays a crucial role to detect outliers in the data.

More specifically, functions and estimators which have an unbounded influence function

should be carefully investigated, because the small proportion of the observations could have

too much influence on the estimator.

In what follows, we make our considerations rigorous. We denote by P the set of all

probability measures on E. We keep the notation in agreement with notation introduced

in [29].

The classical definition of influence function (which comes from [140]) is provided below.
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Definition 7. Let (ϑ, � · �) be a separable Banach space. Let T : P → ϑ be a functional

on P . If the limit
T ((1− t)µ+ tδx)− T (µ)

t
, as t → 0

exists at µ ∈ P and for any x ∈ E, then the influence function T (1)(·, µ) : E → ϑ of the

functional T at µ is given by, for all x ∈ E,

T (1)(x, µ) = lim
t→0

T ((1− t)µ+ tδx)− T (µ)

t
.

In what follows, we provide the definition of Fréchet derivative which is a significant

concept in robust statistics. More specifically, Fréchet differentiability guarantees the exist-

ence of influence function. We denote by d some metric on P .

Definition 8. We say that the functional T : P → R is Fréchet differentiable at µ0 ∈ P

for a metric d, if there exists a continuous linear operator DTµ0 (from the set of signed

measures of the form µ− µ0 in (ϑ, � · �)) and a function �(1)(·, µ0) : R → (ϑ, � · �), which is

continuous at 0 and �(1)(0, µ0) = 0 such that

∀ µ ∈ P , T (µ)− T (µ0) = DTµ0(µ− µ0) +R(1)(µ, µ0),

where

R(1)(µ, µ0) = d(µ, µ0)�
(1)(d(µ, µ0), µ0).

Furthermore, we assume that T admits the integral representation

∀ µ ∈ P , DTµ0(µ− µ0) =

�

E

T (1)(x, µ0)µ(dx).

It is noteworthy that when establishing uniform central limit theorems for generally dif-

ferentiable functionals the appropriate choice of metric is the crucial point. To be more

specific, the ’right’ choice of metric allows to control the distance d(µn, µ) and the re-

mainder R(1)(µn, µ) in a very precise way. In this framework we measure the distance d(µn, µ)

using a generalization of the Kolmogorov’s distance. We provide the definition of this metric

(in the same form as in [17]) below.

Definition 9. Let H be a class of real-valued functions (we do not assume measurability

conditions as one can work with outer measures and the Hoffmann-Jørgensen convergence).

We define a distance

dH(P,Q) := sup
h∈H

����
�

hd(P −Q)

���� (2.11)

for any P,Q ∈ P .
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We have chosen metric defined in (2.11) after careful analysis of the arguments contained

in the discussion in [17] and [58]. Essentially, metric dH enables a very precise control of the

distance d(µn, µ) as we previously required. As a further matter, in many cases we can find

a class of functions H, which makes the functionals Fréchet differentiable for dH. The latter

is a significant advantage since choice of metric that guarantees Fréchet differentiability

of functionals is usually challenging (see [17] and [58] for exhaustive discussions on this

subject).

We make an observation that permissible, uniformly bounded (or with an envelope

in L2(µ)) classes of functions F satisfy the conditions assumed on class H. Thus, we can

ease the notation and write dF for the distance defined by (2.11).

4.2 Main asymptotic results

In this section, we show how uniform central limit theorems from [98] and [137] combined

with results from previous section may be used to obtain bootstrap limit results for Fréchet

differentiable functionals. For the reader’s convenience we briefly recall the notation we will

be using. Recall that

µ∗
n =

1

n∗
AM

l∗n−1�

i=1

f(B∗
i ) and �µn =

1

�nAM

�ln−1�

i=1

f( �Bi),

where �Bi, i = 1, · · · ,�ln − 1 are pseudo-regeneration blocks. In atomic regenerative case, the

empirical mean is of the form

µn =
1

nA

ln−1�

i=1

f(Bi).

Observe that the key point to obtain bootstrap uniform CLTs for Fréchet differentiable

functionals is a very precise command of distance dF(µ
∗
n, �µn) (we require it would be suf-

ficiently small) so that we can control the remainder term R(1)(µ∗
n, �µn). Next, the uniform

central limit theorem guarantees that the linear part of the T (µ∗
n) − T (�µn) is converging

weakly to a desired normal distribution which yields our result.

Theorem 7. Let F be a permissible, uniformly bounded class of functions, such that
� ∞

0

�
logN2(�,F)d� < ∞.

Suppose that the conditions of Theorem 5 hold and T : P → R is Fréchet differentiable

functional at µ with respect to metric dF . Then, in a general Harris positive recurrent case,

we have that n1/2(T (µ∗
n)−T (�µn)) converges weakly to a normal distribution N (0, V ar(T (1))).
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Remark 7. It is a straightforward observation that the above theorem is valid also in

the regenerative case. Indeed, replace AM and the �µn for the split chain by A and µn

respectively. Then, under the assumptions of Theorem 7, we obtain weak convergence to a

desired normal distribution.

Proof. Without loss of generality, we assume that EµT
(1)(x, µ) = 0. By Fréchet differentiab-

ility formulated in Definition 8 we have

T (�µn)− T (µ) = DTµ(�µn − µ) + dF(�µn, µ)�
(1)(dF(�µn, µ), µ) (2.12)

and

T (µ∗
n)− T (µ) = DTµ(µ

∗
n − µ) + dF(µ

∗
n, µ)�

(1)(dF(µ
∗
n, µ), µ). (2.13)

Thus,
√
n(T (µ∗

n)− T (�µn)) =
√
n (DT�µn

(µ∗
n − �µn)) +

√
n
�
dF(�µn, µ)�

(1)(dF(�µn, µ), µ)
�

+
√
n
�
dF(µ

∗
n, µ)�

(1)(dF(µ
∗
n, µ), µ)

�
.

Next, we prove that dF(�µn, µ) and dF(µ
∗
n, µ) are of order OPν

(n−1/2). Theorem 4 guaran-

tees that √
ndF(�µn, µ)

L−→ sup
f∈F

|G(f)|, as n → ∞,

where G is a Gaussian process whose sample paths are bounded and uniformly continuous

with respect to the metric L2(µ). Thus, dF(�µn, µ) = OPν
(n−1/2).

Next, observe that

dF(µ
∗
n, µ) ≤ dF(µ

∗
n, �µn) + dF(�µn, µ).

From Theorem 5 we conclude that
√
ndF(µ

∗
n, �µn)

L∗

−→ sup
f∈F

|G(f)|, as n → ∞.

Thus, dF(µ
∗
n, �µn) = OP ∗

�
n−1/2

�
. We show that dF(µ

∗
n, �µn) = OPν

�
n−1/2

�
. Following similar

reasoning as in [128], we consider the sequence Sn of order OP ∗(1) in Pν−probability along

the sample, i.e.

lim
T→∞

lim sup
n→∞

P∗{|Sn| ≥ T} → 0 in Pν − probability along the sample.

Then,

lim
T→∞

lim sup
n→∞

Pν{|Sn| ≥ T} = lim
T→∞

lim sup
n→∞

Eν [P
∗{|Sn| ≥ T}]

≤ lim
T→∞

Eν

�
lim sup
n→∞

P∗{|Sn| ≥ T}

�

= Eν

�
lim
T→∞

lim sup
n→∞

P∗{|Sn| ≥ T}

�
= 0
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by the dominated convergence theorem and the Fatou’s lemma. Thus, dF(µ
∗
n, �µn) = OPν

(n−1/2)

and dF(µ
∗
n, µ) = OPν

(n−1/2).

Next, we scale (2.12) by
√
n:

√
n(T (�µn)− T (µ)) =

√
n(DTµ(�µn − µ)) + oPν

(1)

and apply Theorem 5. Note that the linear part in the above equation is Gaussian as long

as 0 < EµT
(1)(Xi, µ)

2 ≤ C2
1(µ)EµF

2(X) < ∞ (see [17], Chapter 1 for details), but that

assumption is of course fulfilled since F is uniformly bounded. Thus, the following weak

convergence in l∞(F) holds:

√
n(T (�µn)− T (µ)) =

√
n(DTµ(�µn − µ)) + oPν

(1)

=
√
n

�

E

T (1)(x, µ)(�µn − µ)d(x)

=
√
n


 1

�nAM

�nAM�

i=1

T (1)(Xi, µ)− 0


+ oPν

(1)
L−→ N (0, V ar(T (1))(x, µ)).

By the previous discussion, we also have

√
n(T (µ∗

n − T (µ))) =
√
n(DTµ(T (µ

∗
n − µ)) + oPν

(1)

=
√
n

�

E

T (1)(x, µ)(µ∗
n − µ)d(x)

=
√
n


 1

n∗
AM

n∗
AM�

i=1

T (1)(X∗
i , µ)− 0


+ oPν

(1).

The above convergences yield

√
n[T (µ∗

n)− T (�µn)] =
√
n


 1

n∗
AM

n∗
AM�

i=1

T (1)(X∗
i , µ)−

1

�nAM

�nAM�

i=1

T (1)(Xi, µ)


+ oPν

(1)

L−→ N (0, V ar(T (1))(x, µ))

converges weakly conditionally on the data in Pν-probability along the sample as n → ∞
(by Theorem 3) and this completes the proof.

Theorem 7 can be easily extended to case when F is unbounded and has an envelope

in L2(µ).
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Theorem 8. Let F be a permissible class of functions such that the envelope F satisfies

EAM


 �

τAM
<j≤τAM

(2)

F (Xj)




2

< ∞. (2.14)

Suppose, that the following uniformity condition holds

� ∞

0

�
logN2(�,F)d� < ∞. (2.15)

Assume further that the conditions of Theorem 6 hold and that T : P → R is Fréchet

differentiable functional at µ with respect to metric dF . Then, in general Harris positive

recurrent case, we have that n1/2(T (µ∗
n)− T (�µn)) converges weakly to a normal distribution

N (0, V ar(T (1))).

The proof of Theorem 8 follows analogously to the proof of Theorem 7 and thus is omitted.

We only make a brief observation that in order to prove Theorem 8 in the unbounded case we

apply limit results from [137] instead of uniform central limit theorem obtained by Levental

(where uniform boundedness of F is assumed). Moreover, we need Theorem 6 to control the

remainder term. With aforementioned changes taken into account, the reasoning goes line

by line as in the proof of Theorem 7.

Remark 8. It is noteworthy that Theorem 8 is also true in atomic regenerative case. Indeed,

replace �µn and AM by µn and A. The proof goes analogously as in the preceding theorems.

5 Conclusion

In this chapter, we have shown how the regenerative properties of Markov chains can general-

ize some concepts in non-parametric statistics from i.i.d. to dependent case. We have shown

that uniform bootstrap functional central limit theorem holds over permissible, uniformly

bounded classes of functions. We have proved that the uniform boundedness assumption

imposed on F can be weakened and it is feasible to require that F has an envelope in L2(µ).

We have worked with Markov chains on the general state space, but our results can be dir-

ectly applied to Markov chains on countable state space. Thus, some proofs of the already

existing results for the countable case, can be simplified when just applying the methodology

introduced in this paper.

The bootstrap asymptotic results for empirical processes indexed by F naturally lead

to bootstrap central limit theorems for Fréchet differentiable functionals. We have shown
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that bootstrap uniform CLTs hold in the bounded and the unbounded case over F . Similar

approach can be also applied to Hadamard differentiable functionals in order to establish

analogous asymptotic results to presented in this paper.

It is noteworthy that the aforementioned results can be extended to case when the blocks

are 1-dependent (when m > 1 in minorization condition (1.1) in Chapter 1). Indeed, one

can consider sums of even and odd blocks as explained in [98] and in Remark 29 later in

Chapter 5. Note that Levental established uniform central limit theorem for Harris Markov

chains in case m > 1 in Theorem 5.9 in [98]. Thus, (given the results in [98] for 1-dependent

blocks) it should not be difficult to establish bootstrap versions of Theorems 5, 6, 7 and 8

in general case when minorization condition (1.1) is satisfied with m > 1.
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Chapter 3

Robust estimation for Markov chains

with applications to PDMPs

The purpose of this chapter is to propose a method to build robust estimators for piecewise-

deterministic Markov processes (PDMPs) which is of particular interest when the underlying

process is contaminated by some outliers. The aforementioned method relies on a renewal

theory for Markov chains and further developments of the approximate regenerative block

bootstrap method recalled in Chapter 1. The idea is to eliminate blocks having either too

much contribution to the statistics of interest, or having a too large length, and to build

efficient and robust estimators for the embedded Markov chain associated to the PDMP.

Relating the properties of the underlying process and its embedded chain, this leads to

robust estimators for the PDMP. This chapter develops further some concepts of robustness

in a Markovian setting presented in [29].

To highlight the applicability of the method, we consider robust estimators of several risk

indicators such as the ruin probability, the expected shortfall and the extremal index of two

PDMPs: the Cramér-Lundberg with a dividend barrier and the Kinetic Dynamic Exposure

Model (KDEM) used in modeling phamarcokinetics of contaminants (see [31] for instance).

Our approach boils down to seeing most of the interesting parameters in a Markov chain

framework as functionals of the stationary measure which may itself be seen as a functional

of the distribution of the regeneration blocks. It is then possible to introduce the influence

function and the tools of robustness for such parameters. In opposition to the i.i.d. case,

many parameters are not robust (including quantiles, L-estimates, etc) in sense that a single

outlier may have a disastrous effect on the whole process because of its dynamic.

This chapter gathers material published in [25], which is Chapter 5 in [14].
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1 Definition

In this section, we define a PDMP process. We briefly mention that PDMP is a process

whose behaviour is determined by random jumps at points in time and its evolution is de-

terministically ruled by an ordinary differential equation between those times (see [51]). In

what follows we provide a brief characteristic of a general PDMP process. Our considera-

tions are based on [14], Chapter 1 and we keep the same notations. We also refer to the

aforementioned chapter for more details concerning theory of PDMPs.

In what follows, we will give a general definition of a PDMP process. Assume that (Zt)t≥0

is a time-homogeneous Markov process with càdlàg sample paths a.s.. The process Z takes

its values in an open subset X ⊆ Rn, for some n ≥ 1. Moreover, ∂X designates the frontier

of X and X̄ is the closure of X . The Markov semigroup of Z is defined as the family of

operators (Pt)t≥0 acting on a bounded measurable functions f such that, for t > 0,

Ptf(z) = E[f(Zt)|Z0 = z].

A PDMP is specified by three characteristics: a deterministic flow, a jump rate and a

jump kernel. We denote by R : X → X a vector field. We suppose further that the ordinary

differential equation �
∂tΦ(z, t) = R(Φ(z, t))

Φ(z, 0) = z
(3.1)

has a unique solution. Then, Φ : X × R → X is the flow of Z, which propels the dynamics

of the process between the jumps. We make the convention inf ∅ = +∞. The hitting times

of the frontier ∂X starting from z are of the form:

t+(x) = inf{t > 0 : Φ(z, t) ∈ ∂X},

t−(x) = inf{t > 0 : Φ(z,−t) ∈ ∂X}.

Next, we specify the jump rate λ : X → R+ which sets off the jump dynamics of the process

(observe that the larger λ(z), the higher the probability to jump). Furthermore, Q associates

a probability kernel1 over X × B(X ), which will governs the direction of the jumps of Z.

In what follows, we define the sample paths of Z in a recursive way. Provided that T0 = 0

and Z0 ∈ X , assume ΔT1 is a positive random variable such that, for all t > 0,

P(ΔT1 ≥ t) = exp

�
−
� t

0

λ(Φ(Z0, s))ds

�
I{t<t+(Z0)}. (3.2)

1Q associates to each point z ∈ X a probability measure Q(z, ·), see [85]. Q can also be assigned to as a

Markov kernel.
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Next, we denote by T1 = T0 +ΔT1 the first jump epoch and U1 is such that

PU1 = Q(Φ(Z0,ΔT1), ·).

The sample paths for Z for t ∈ [T0, T1] are constructed according to the following scheme

Zt =

�
Φ(Z0, t) if t ∈ [T0, T1)

U1 if t = T1.
(3.3)

Now, (3.3) can be recursively expanded for t ∈ [Tn, Tn+1] in order to construct the sample

paths of Z assuming that ΔTi are independent. Observe that the exponential factor in (3.2)

sets off random jumps at rate λ. Example 3 in Chapter 1 is a particular case of a PDMP

where the dynamic can be understood in Figure 3, we will further study this model in this

chapter.

2 Robust functional parameter estimation for Markov

Chains

Throughout rest of this chapter we consider the embedded chain (Xn)n∈N with Xn =

Z(Tn), n = 1, · · · ,∞. We assume that Xn is an atomic regenerative or Harris recurrent

Markov chain with initial probability ν and with transition probability Π.

The concepts of influence function and/or robustness in the i.i.d. setting provide tools

to detect outliers among the data or influential observations. It also allows to generalize the

important notion of efficient estimation in semiparametric frameworks; see [35]. Extending

the notion of influence function and/or robustness to the general time series framework is

a difficult task; see [90] or [103].

Measuring the influence of a single observation hardly makes sense, due to the depend-

ence structure across time. An extension to the Markovian setting based on martingale

approximation has been proposed in [109]. Alternatively, the regenerative approach gives

an opportunity to extend in much more natural way the notion of the influence function

based on the (approximate) regeneration blocks construction. As shown in the subsequent

analysis, this approach immediately leads to central limit and convolution theorems.

2.1 The influence function on the torus

Just like the stationary probability distribution µ(dx), most parameters of interest related to

Harris positive chains are functionals of the distribution L of the regenerative blocks on the
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torus T = ∪n�1E
n, namely the distribution of (X1, . . . , XτA) conditioned on X0 ∈ A when

the chain possesses an accessible atom A, or the distribution of (X1, . . . , XτAM
) conditioned

on (X0, Y0) ∈ AM in the general case when one considers the split chain.

For simplicity, we shall omit the subscript M and make no notational distinction between

the regenerative and pseudo-regenerative cases unless specified otherwise. Indeed, the prob-

ability distribution Pν of the Markov chain X starting from ν can be factorized as follows:

Pν((Xn)n�1) = Lν((X1, . . . ., XτA(1)
))

∞�

k=1

L((X1+τA(k), . . . ., XτA(k+1))),

where Lν means the conditional distribution of (X1, . . . , XτA) given that X0 ∼ ν. Any

functional of the law of the discrete-time process (Xn)n≥1 can be thus expressed as a func-

tional of the pair (Lν , L). In the time-series asymptotic framework, since the distribution

of Lν cannot be estimated in general, only functionals of L are of practical interest.

We propose a notion of influence function for such statistics. Let PT denote the set of all

probability measures on the torus T and for any b ∈ T, set

L(b) = k if b ∈ Ek, k ≥ 1.

We then have the following natural definition, which straightforwardly extends the classical

notion of influence function in the i.i.d. case, with the important novelty that distributions

on the torus are considered here.

Definition 10. (Influence function on the torus) Let (V , �·�) be a separable Banach
space. Let T : PT → V be a functional on PT. If, for some L in PT,

t−1(T ((1− t)L+ tδb)− T (L))

has a finite limit as t → 0 for any b ∈ T, the influence function T (1) : PT → V of the

functional T at L is then said to be well-defined, and, by definition, one set for all b in T,

T (1)(b, L) = lim
t→0

T ((1− t)L+ tδb)− T (L)

t
. (3.4)

Definition 11. (Gross-error sensitivity) A functional T is said to be Markov-robust

iff its influence function T (1)(b,L) is bounded on the torus T. The gross-error sensitivity to

block contamination is then defined as

γ∗(T,L) = sup
b∈T

�T (1)(b,L)�.
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The angle on robustness embraced in this paper is not the one deriving from the sample

break point definition (recall incidentally that it may be defined in the time series context

in several ways). The concepts we develop here serve to decide whether a specific (pseudo-)

regenerative data block has an important influence on the value of some given estimate or

not, and/or whether it may be considered as an outlier.

The notion of robustness is related to blocks of observations, instead of individual obser-

vations. Heuristically, one may consider that, given the regenerative dependence structure

of the process, a single suspiciously outlying value at some time point n may have a strong

impact on the whole trajectory, until the (split) chain regenerates again, so that not only

this particular observation but also the whole ”contaminated” segment of observations (cor-

responding to a block outlier) should be eventually removed.

Roughly stated, it turns out that examining (approximate) regeneration blocks and its

impact on the functional of interest, allows to identify more accurately outlying data in the

sample path, as well as their nature. In the time series framework, different type of outliers

may occur, such as additive or innovative outliers. By comparing the data blocks this way

(their length, as well as the values of the functional of interest on these blocks), one may

detect those which should be preferably removed from subsequent computations.

As illustrated by the three examples listed below, standard computations of the influence

function in the i.i.d. context can be straightforwardly extended to the Markovian framework.

2.2 Example 1: Sample means

Suppose that X is positive recurrent with stationary distribution µ. Let f : E → R be a

µ-integrable real function and consider the parameter µ(f) := Eµ[f(X)]. Denote by B a r.v.

valued in T with distribution L and observe that

µ(f) = EL [f(B)] /EL [L(B)] = T (L),

with the notation

f(b) :=

L(b)�

i=1

f(bi) for any b = (b1, . . . , bL(b)) ∈ T.

A classical calculation for the influence function of ratios yields

T (1)(b,L) =
d

dt
(T ((1− t)L+ tb)|t=0 =

f(b)− µ(f)L(b)

EL [L(B)]
.

Notice that EL[T
(1)(B,L)] = 0.
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In the i.i.d. setting it is known that, if f is bounded by some constant Mf < ∞, the

corresponding functional is robust and may be simply estimated by its empirical counterpart.

In the Markovian situation, even in the bounded case, T (1)(b,L) is generally not bounded

and γ∗(T,L) = ∞. This point has also been stressed in [103], with a different definition of

the influence function however.

A robustified version of this parameter can be defined as

�TM(L) =
EL [f(B)I{L(B) ≤ M}]

EL [L(B)I{L(B) ≤ M}]
,

where M is some constant larger than 1. In this case, the influence function is given by

(f(b)− �TM(L)L(b))I{L(b) ≤ M}

EL [L(B)I{L(B) ≤ M}]

and the plug-in estimator becomes
�ln−1

i f(Bi)I{Bi ≤ M}
�ln−1

i=1 L(Bi)I{Bi ≤ M}
.

This simply consists in getting rid of the blocks (or the pseudo-blocks) whose lengths are

too large compared to M .

2.3 Example 2: M-estimators.

Suppose that E ⊂ R for simplicity. Let θ be the unique solution of the equation:

Eµ [g(X, θ)] = 0, (3.5)

where g : R2 → R belongs to class C2. Equipped with the notation

g(b, θ) :=

L(b)�

i=1

g(bi, θ) for all b ∈ T,

the score equation is equivalent to EL[g(B, θ)] = 0. A computation analogous to that carried

out in the i.i.d. setting (provided that differentiating inside the expectation is authorized)

gives

T (1)
g (b,L) = − g(b, θ)

EL

�
∂g(B,θ)

∂θ

� ,

where

∂g(b, θ)/∂θ =

L(b)�

i=1

∂g(bi, θ)/∂θ.

By definition of θ, we naturally have

EL[T
(1)
g (B,L)] = 0.
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2.4 Example 3: Quantiles.

We place ourselves in the case E ⊂ R. Assume that the stationary distribution has a

continuous c.d.f. Fµ(x) = µ(] −∞, x]) and density fµ(x). Consider the α-quantile �Tα(µ) =

F−1
µ (α). This parameter can also be viewed as a functional of L, Tα(L) i.e. it is the unique

solution of the equation

EL




L(b)�

i=1

�
I{bi≤θ} − α

�

 = 0.

A straightforward computation following in the footsteps of those carried out in the i.i.d.

case (see [124] for further details) shows that, if fµ(�Tα(µ)) �= 0, the influence function is

given by

T (1)
α (b,L) =

�L(b)
i=1 (α− I{bi ≤ Tα(µ)})

EL[L(B)]fµ(�Tα(µ))
.

It follows that the gross-error sensitivity of a quantile in a dependent framework is

γ∗(Tα(µ),L) = ∞.

Thus, an empirical quantile is generally not robust in the Markovian framework. Indeed, a

possibly large excursion of a Markov chain may arise for instance from an innovative outlier

with some distribution which is very different from the stationary distribution. Such an

outlier may perturb the behavior of the Markov chain over a possibly very large stretch of

observations, making the empirical quantile inaccurate. Just like in the previous example,

the length of the blocks (or excursions) must be controlled in order to build robust estimators,

even in the case of the quantile.

3 Fréchet differentiability of functionals of Markov

chains

As mentioned in the previous chapter, Fréchet differentiability is an important concept in

robust statistics as it guarantees the existence of the influence function. Let d be some metric

on PT. In what follows, we define Fréchet differentiability of functionals of blocks of data.

Definition 12. The functional T : PT → R is Fréchet differentiable at LA ∈ PT for a met-

ric d, if there exists a continuous linear operator DTLA
(from the set of signed measures

of the form L− LA in (R, � · �)) and a function

�(1)(·,LA) : R → (R, � · �),
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which is continuous at 0 and �(1)(0,LA) = 0 such that

∀ L ∈ PT, T (L)− T (LA) = DTLA
(L− LA) +R(1)(L,LA),

where

R(1)(L,LA) = d(LA,L)�
(1)(d(LA,L),LA).

Furthermore, assume that T admits the following representation,

∀ LA ∈ PT, DTLA
(L− LA) =

�
T (1)(b,LA)L(db),

where T (1)(b,LA) is the influence function at LA.

Fréchet differentiability is a standard tool for obtaining central limit theorems for plug-in

estimators. The idea is simply that if we consider the plug-in estimator of the distribution

of blocks defined by the empirical distribution of complete blocks

Ln =

�ln−1
i δBi�ln−1

i=1 l(Bi)
,

then T may be linearized as

T (Ln)− T (L) =

�
T (1)(b,LA)Ln(db) + rn

=

�ln−1
i=1 T (1)(Bi,LA)�ln−1

i=1 l(Bi)
+ rn,

where rn is a remainder (which will be controlled with some specific metric). In particular, it

is obvious that if rn = o(n−1/2). Then, by the central limit theorem for independent random

variables, we will have

n1/2(T (Ln)− T (L)) → N

�
0,

V ar(T (1)(Bi,LA))

EAτA

�

as soon as

0 < V ar(T (1)(Bi,LA)) < ∞.

Moreover, when the influence T (1)(Bi,LA) is bounded, this will hold automatically without

imposing any additional block moment assumptions.

Thus, to obtain Fréchet differentiability of functionals as well as a precise control of the

remainder rn = o(n−1/2), a careful choice of metric must be conducted. In the following, we

work with a generalization of the Kolmogorov’s distance which is defined as follows (see also

[18] and [58]).
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Definition 13. Let F be a class of real-valued functions with envelope F > 0 (we work

with outer measures and the Hoffmann-Jørgensen convergence; see for instance [141] for

more details concerning measurability issues). We define metric

dF(L,LA) := sup
f∈F

������

� 


l(b)�

i=1

f(bi)


 (L− LA)(db)

������
. (3.6)

In what follows, we state a CLT for Fréchet differentiable functionals of blocks which

combines arguments from [26] and [44].

Theorem 9. Assume that T : PT → R is a Fréchet differentiable functional at LA for some

metric dF , where F is a permissible class of functions (see [119] ) with an envelope F,

satisfying the uniform entropy condition
� ∞

0

�
sup
Q

logN2(�, Q,F)d� < ∞.

Assume in addition, in the regenerative atomic case

EA

�
�

1≤j≤τA

F (Xj)

�2

< ∞, Eν(τA) < ∞, EA(τ
2
A) < ∞.

Then, we have

n1/2(T (Ln)− T (LA)) → N

�
0,

V ar(T (1)(Bi,LA))

EA(τA)

�
.

Alternatively, in the general Harris recurrent case with a small set S, assume

sup
x∈S

Ex


 �

1≤j≤τAM

F (Xj)




2

< ∞, Eν(τAM
) < ∞, sup

x∈S
Ex(τx)

2 < ∞.

Then, we have

n1/2(T ( �Ln)− T (LAM
)) → N

�
0,

V ar(T (1)(Bi,LAM
))

EAM
(τAM

)

�
.

Proof. Fréchet differentiability with respect to the metric dF implies that the influence func-

tion T (1)(b,LA) is bounded (up to some constant depending on LA), by
�

1≤j≤l(b) F (bj) (see

[18]). Assumed moment conditions imply that V ar(T (1)(Bi,LA)) < ∞ both in the regener-

ative and general Harris case. The proof follows from the fact that the remainder

rn = dF(Ln,LA)�
(1)(dF(Ln,LA),LA) = oP (n

−1/2),
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since by the results of [44] conditions, n1/2dF(Ln,LA) converges to the supremum of a gaus-

sian process. Similarly, the moment conditions ensure that dF(Ln, �Ln) = oP (n
1/2) yielding

dF( �Ln,LAM
) = OP (n

−1/2) and the result follows analogously.

Remark 9. Observe that with extensions of the concepts of influence function, Fréchet

differentiability or Kolmogorov’s distance to the blocks of data, one can reformulate The-

orems 7 and 8 and state uniform bootstrap central limit theorems for Fréchet differentiable

functionals defined on the torus.

4 A Markov view for estimators in PDMPs

In this part, we describe two stochastic models which are particular cases of PDMPs and

appear naturally in the risk theory. The first one comes from non-life insurance mathematics

and the second one (KDEM model) comes from dietary risk assessment. Note that we de-

scribed the KDEM model in Chapter 1 in Example 3. However, for the reader’s convenience

we provide this example again with slightly different notation we introduce in this chapter.

Throughout this section, all the random variables are defined on a probability space

(Ω,F ,P). Moreover, we assume that

(H1): (Wi)i∈N are i.i.d. nonnegative r.v’s with a common mean γ and the c.d.f. FW .

(H2): (ΔTi)i∈N∗ is an i.i.d. sequence of a.s. positive r.v.’s with the c.d.f. H independent of

the sequence (Wi)i∈N. We assume

λ = E[ΔT1] < ∞ and V ar[ΔT1] < ∞.

(H3): (Ti)i∈N, defined for all i ≥ 1 by

Ti =
i�

k=1

ΔTk

forms an increasing sequence of r.v’s. By convention, we set T0 = 0.

(H4): The counting process {(N(t)}t≥0 defined by

N(t) := # {i ∈ N∗ : Ti ≤ t}

for t ≥ 0 is a renewal process and

A(t) = t− TN(t)

is the backward recurrence time.
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4.1 Example: Sparre-Andersen model with barrier

The Sparre-Andersen (SA) model is a generalization of the Cramér-Lundberg (CL) model,

also called Poisson Point Process, and has been proposed in the 1950’s. It aims to represent

the evolution of the reserve of an insurance company. In this context, the Wi’s are the claims

that the company face, which arise at the claim arrivals or claim instants T0, T1, . . . and the

ΔTi’s are the periods between claims, called inter-arrivals or inter-claims ; see [107] and [62]

for a review of ruin models in a non-life insurance framework.

In what follows, we denote by X(t) the reserve of an insurance company at time t ≥ 0

and S(t) the total claim amount at time t, which is defined by

S(t) =

N(t)�

i=1

Wi, t ≥ 0.

Recall that the SA process evolves as follows

X(t) = ct+ u− S(t), t ≥ 0, (3.7)

where c > 1 is the fixed premium rate and u := X(0) is the initial reserve at time t = 0.

Denote XTN(t)
= X(TN(t)) the reserve of the insurance company at the latest claim before t.

It is clear that the SA model (3.7) may be rewritten as

X(t) = XTN(t)
+ cA(t), t ≥ 0. (3.8)

Hereinafter, we propose to introduce a dividend barrier d > 0 so that dividends are paid

out whenever the surplus level attains the threshold d. Then, the SA model with a dividend

barrier is defined by

X(t) = min(d,XTN(t)
+ cA(t)), t ≥ 0. (3.9)

A trajectory of the continuous-time process X ≡ {X(t)}t≥0 defined in (3.9) is displayed in

Figure 3.1. Observe the PDMP type-behavior: the deterministic motion (between claims)

punctuated by discrete random jumps (claims) appearing as a discontinuity in the trajectory

and occurring at random epochs (claim instants). Between two claims, the process grows

until it reaches the dividend barrier d and stays at this level until the next claim unless the

latest arises before attaining the barrier. Note that this model may be seen as an extension

of the ”Growth-fragmentation” model presented in Section 1.1.3.1 of Chapter 1 in [14].

The analysis of the long-term behavior of the PDMP X boils down to investigating the

properties of the embedded Markov chain �X = (Xn)n≥1, which corresponds to the PDMP
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Figure 3.1: Trajectory of the Sparre-Andersen model with a barrier. The horizontal red line

corresponds to a dividend barrier.

X evaluated on the claim instants Xn = X(Tn) for all n ≥ 1. By construction, �X satisfies

the following autoregressive structure

Xn+1 = (Xn + Zn+1)I(Xn+c∆Tn+1<d) + (d−Wn+1)I(Xn+c∆Tn+1≥d), (3.10)

where (Zi)i∈N is defined for i ≥ 0 by

Zi = cΔTi −Wi.

It is a Markov chain with an atom at d, at which the chain regenerates by independence of

the Wi’s.

In what follows, we assume the usual ”net profit condition” E[Zi] > 0 which ensures

that the average reserve of the insurance company is on the positive side: more premium

flows into the portfolio than claim sizes flow out in average. Under (H2), the r.v.’s Zi’s are

still i.i.d. since the ΔTi’s and the Wi’s are two sequences of i.i.d. r.v.’s which are mutually

independent.

The limiting behavior of the PDMP X is represented by a stationary probability measure

µ that describes the equilibrium state to which the process settles as time goes to infinity.
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Then, the stationary distribution describes asymptotic properties of the PDMPs. Neverthe-

less, µ is hardly tractable in general. One solution is to find a link between µ and �µ, the
stationary measure of the embedded chain �X which is easier to handle. This is the purpose

of the following proposition.

Proposition 1 (Stationary measure of the SA with a barrier). Let (H1)-(H4) hold. Then,

X(t) has an absolutely continuous limiting probability distribution µ given by

µ([−∞, v[) = λ−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

�
�µ(dx)H(dt), ∞ < v ≤ d, (3.11)

where (a ∧ b) is the minimum between a and b ∈ R.

This proposition will be useful later to robustify estimates of risk indicators such as the

ruin probability and the expected shortfall in Section 5.

Proof. Firstly, we consider the reversed PDMP of X, denoted by Y ≡ {Y (t)}t≥0 and defined

by

Y (t) := d−X(t)

for t ≥ 0. Its embedded chain �Y ≡ (Yn)n≥1 is defined for n ≥ 0 by

Yn+1 =

�
Yn − Zn+1, if Yn − cΔTn+1 > 0,

Wn+1 otherwise.
(3.12)

Denote µ1 (respectively �µ1) the stationary measure of Y (respectively of �Y ). Now observe

that for u ≥ 0

1

t

� s=t

s=0

I{Y (s)>u}ds =
1

t

N(t)�

k=1

� s=Tk

s=Tk−1

I{Y (s)>u}ds+
1

t

� s=t

s=TN(t)

I{Y (s)>u}ds. (3.13)

Besides, for k ≥ 0, we have

� s=Tk+1

s=Tk

I{Y (s)>u}ds = I{Y (k)>u}

�
ΔTk+1 ∧

Yk − u

c

�
.

When n → ∞, by the strong law of large numbers, it follows that for u ≥ 0

1

n

n�

k=1

� s=Tk+1

s=Tk

I{Y (s)>u}ds −→
� ∞

u

� ∞

t=0

�
t ∧ x− u

c

�
�µ1(dx)H(dt).

Note that under (H4) and since {N(t)}t≥0 is a renewal process, we have

N(t)/t → 1/λ a.s. as t → ∞.
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Therefore, the second term in the right-hand side in (5.4) tends to 0 when t → ∞ and

1

t

� ∞

s=0

I{Y (s)>u}ds −→
t→∞

µ1([u,∞)), u ≥ 0,

where µ1 is given by

µ1([u,∞)) =

� ∞

u

� ∞

t=0

�
t ∧ x− u

c

�
�µ1(dx)H(dt), u ≥ 0. (3.14)

It follows that for v ∈]−∞, d[

µ([−∞, v[) = λ−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

�
�µ(dx)H(dt),

which yields the proof.

Remark 10. We could have extended the PDMP (3.9) to the case when the premium rate

is not constant. For instance, one may consider that c ≡ C is a non-negative r.v. with c.d.f.

FC . In that case, the stationary measure is given by

µ([−∞, v[) = λ−1

� v

−∞

� ∞

0

� ∞

0

�
t ∧ v − x

c

�
�µ(dx)H(dt)FC(dc), ∞ < v ≤ d.

4.2 Example: Kinetic Dietary Exposure Model

The KDEM is a stochastic process that aims at representing the evolution of a contaminant

in the human body through time. It has been proposed few years ago in [31].

In a context of dietary risk assessment, theWi’s correspond to the intakes of contaminated

food and occur at intake instants Ti’s and we call ΔTi’s inter-arrivals understood as the

durations between the (i− 1)-th and the i-th intake and N(t) counts the number of intakes

that occurred until time t ≥ 0.

We keep the same notation as in Example 1 except now X(t) is the total body burden

of a chemical at the instant t ≥ 0. Following [31], between two intakes, we consider that

the exposure process X = (X(t))t≥0 evolves deterministically according to the first order

differential equation

dX(t) = ω ×X(t)dt (3.15)

with a fixed parameter ω > 0 called an elimination rate, that describes the metabolism

dealing with the chemical elimination.
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By solving (3.15), one may straightforwardly see that the exposure process can be written

for any t ≥ 0 as

X(t) = XTN(t)
× e−ωA(t). (3.16)

Note that the bivariate process {(X(t), A(t))}t≥0 is a PDMP.

The embedded chain of X, again denoted �X ≡ (Xn)n∈N, which is the process on the

intake instants T0, T1, . . . plays a leading role in the analysis of X and describes the exposure

process immediately after each intake; see Section 5. It is defined by the following stochastic

recurrence equation

Xn+1 = Xn × e−ω∆Tn+1 +Wn+1, n ≥ 0. (3.17)

Equation (3.17) is an autoregressive process with a random coefficient. Under (H1)-(H4)

and the additional assumption

E[log(max(1,W1))] < ∞,

the work in [31] has related the continuous-time process X with the embedded chain �X.

They show that the limiting distribution µ and �µ are linked by the following equation

µ([u,∞[) = λ−1

� ∞

u

� ∞

0

�
t ∧ ω−1 log(x/u)

�
�µ(dx)H(dt), u > 0. (3.18)

Remark 11. One may allow the elimination parameter ω ∼ F (dω) to be random. In this

case, the limiting distribution µ and �µ are linked by the following equation

µ([u,∞[) = λ−1

� ∞

0

� ∞

u

� ∞

0

�
t ∧ ω−1 log(x/u)

�
�µ(dx)H(dt)F (dω), u > 0.

Remark 12. We may also consider a linear elimination. In this case, the study of the PDMP

X boils down to Example 1 with barrier at d = 0, except that it is reversed. Indeed, with

the same notation, the continuous-time process is defined by

X(t) = max(0, XTN(t)
− ωA(t))

and the embedded chain is given by

Xn+1 =

�
Xn − Zn+1, if Xn − cΔTn+1 > 0,

Wn+1 otherwise.
(3.19)

where for i ≥ 0, Zi = cΔTi −Wi and ω is the constant elimination parameter.

The stationary distribution of this PDMP is given in equation (3.14) in the proof of

Proposition 1.
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5 Robustness for risk PDMP models

We suppose that E ⊂ R and, for simplicity, place ourselves in the atomic case, where the

chain under study possesses a Harris atom A. In this section, we focus on the robustification

of estimators of risk indicators of PDMP.

6 Stationary measure

As we have seen in Section 4, in most of the risk models, the stationary distribution µ of

the PDMP X -the continuous-time process- is itself a bounded functional of the stationary

distribution �µ of its embedded chain; see Proposition 1 for instance. Then it is easy to

construct a robust estimator of µ by just plugging the expression of a robust estimator of

�µ for which we can most of the time easily get an explicit formulae. This is the purpose of

this section.

Recall that if �µ is the stationary measure of the embedded chain �X, from the Kac’s

theorem, it can be written as a functional of the distribution of the blocks:

F�µ(y) =
EA

��τA
i=1 I{Xi≤y}

�

EA[τA]
.

Let M > 0. Consider the robustified version of this c.d.f., which is simply obtained by elim-

inating too large blocks, and given by

�FL,M(y) =
EA

���τA
i=1 I{Xi≤y}

�
I{τA≤M}

�

EA[τAI{τA≤M}]
.

A straightforward computation of the influence function of �FL,M(y) leads to the expression

�F (1)
M (b, y,L) =

�L(b)
i=1

�
I{bi≤y} − Fµ(y)

�
I{L(b)≤M}

EA[τAI{τA≤M}]
, ∀b ∈ T.

From this expression, we deduce that

� �FL,M − Fµ�∞ = sup
y

|FL,M(y)− Fµ(y)| → 0

a.s. when M → ∞.

With the norm � · �∞, its gross-error sensitivity is bounded by M/EA[τAI{τA≤M}]. Notice

that EA[τAI{τA ≤ M}] may also be written as EL[L(B)I{L(B) ≤ M}] with B∼ L. It follows

that the plug-in estimator of this quantity is given by

�FL,M,n(y) =

�ln−1
i

�τA(i+1)
j=τA(i)+1 I{Xj≤y}I{τA(i+1)−τA(i)≤M}

�ln−1
i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}

.
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A robust estimator of µ is obtained by plugging �FL,M,n as it is illustrated in the following

two examples.

Application to the Sparre-Andersen model with a barrier

We go back to Subsection 4.1 and recall that the stationary distribution µ of the Sparre-

Andersen process with a barrier d is given by

µ([−∞, v[) = λ−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

�
�µ(dx)H(dt), ∞ < v ≤ d,

which may be also rewritten as a functional of the blocks :

µ([−∞, v[) = λ−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

�
EA [

�τA
i=1 δXi

(dx)]

EA[τA]
H(dt)

=
1

λEA[τA]
EA

�
τA�

i=1

� ∞

−∞
I{x≤v}

� ∞

0

�
t ∧ v − x

c

�
δXi

(dx)H(dt)

�

=
1

λEA[τA]
EA

�
τA�

i=1

I{Xi≤v}

� ∞

0

�
t ∧ v −Xi

c

�
H(dt)

�
.

Its robustified version is given by

µ([−∞, v[) = λ
−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

�
EA

�
(
�τA

i=1 δXi
(dx)}) I{τA≤M}

�

EA[τAI{τA≤M}]
H(dt)

=
1

λEA[τAI{τA≤M}]
EA

�
τA�

i=1

I{Xi≤v}

� ∞

0

�
t ∧ v −Xi

c

�
I{τA≤M}H(dt)

�

and can be estimated by the robust plug-in estimator

�µn([−∞, v[)

= λ
−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

�
�FL,M,n(dx)H(dt)

= λ
−1

� v

−∞

� ∞

0

�
t ∧ v − x

c

� �ln−1
i

�τA(i+1)
j=τA(i)+1 δXj

(dx)I{τA(i+1)−τA(i)≤M}
�ln−1

i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}

H(dt),

=

�ln−1
i

�τA(i+1)
j=τA(i)+1 I{τA(i+1)−τA(i)≤M}I{Xi≤v}

�∞
0

�
t ∧ v−Xj

c

�
H(dt)

λ
�ln−1

i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}

.

Notice that in these expressions we have

� ∞

0

�
t ∧ v −Xj

c

�
H(dt) =

� v−Xj
c

0

tH(dt) +
v −Xj

c

� ∞

v−Xj
c

H(dt).
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In particular, if we consider the Cramér-Lundberg model with an exponential inter-arrival

then we get an explicit estimator by using the fact that

� ∞

0

�
t ∧ v −Xj

c

�
H(dt) = −(v −Xj)

c
exp

�
−(v −Xj)

cλ

�

+ λ− λ exp

�
−(v −Xj)

λc

�

+

�
(v −Xj)

c

�
exp

�
−(v −Xj)

cλ

�

= λ

�
1− exp

�
−(v −Xj)

λc

��
.

It follows that the estimator is essentially a mean of λ
�
1− exp

�
− (v−Xj)

λc

��
over the X �

is

lower than ν which belongs to blocks with length smaller than M that is

�µn([−∞, v[) =

�ln−1
i

�τA(i+1)
j=τA(i)+1 I{τA(i+1)−τA(i)≤M}I{Xi≤v}

�
1− exp

�
− (v−Xj)

λc

��

�ln−1
i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}

.

Notice that, in that case, the plug-in (non robust) estimator of the stationary measure is

simply given by

µn([−∞, v[) = 1− n−1

n�

i=1

exp

�
−(v −Xi)

λc

�
I{Xi≤v}.

It is clear by a straightforward computation that this estimator is not robust, due to the

presence of a large contaminated block.

Application to the Kinetic Dietary Exposure Model

Similarly, for the KDEM model, using Kac’s representation, we have the expression of the

stationary measure of the continuous process given by

µ([u,∞[) = λ−1

� ∞

u

� ∞

0

�
t ∧ ω−1 log(x/u)

� EA (
�τA

i=1 δXi
(dx))

EA[τA]
H(dt), u > 0,

and the robust estimator is thus given by

�µn([u,∞[) = λ−1

� ∞

u

� ∞

0

�
t ∧ ω−1 log(x/u)

� �FL,M,n(dx)H(dt)

=

�ln−1
i=1

�τA(i+1)
j=τA(i)+1 I{τA(i+1)−τA(i)≤M}

�∞
u

�∞
0

(t ∧ ω−1 log(x/u)) δXj
(dx)H(dt)

λ
�ln−1

i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}
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=

�ln−1
i

�τA(i+1)
j=τA(i)+1 I{τA(i+1)−τA(i)≤M}I{Xj≥u}

�∞
0

(t ∧ ω−1 log(Xj/u))H(dt)

λ
�ln−1

i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}

.

Similarly to the Sparre-Andersen case, in the exponential inter-arrival case, we have the

expression

� ∞

0

�
t ∧ ω−1 log(Xj/u)

�
H(dt) =

� ω−1 log(Xj/u)

0

tλ−1 exp(−λ−1t)dt

+ ω−1 log(Xj/u)

� ∞

ω−1 log(Xj/u)

λ−1 exp(−λ−1t)dt

= λ

�
1− exp

�
− log(Xj/u

ωλ

��

= λ
�
1− (Xj/u)

−1/(ωλ)
�
.

Notice that in that case, the (non robust) plug-in estimator of µ([u,∞[) is of the form

µn([u,∞[) =
1

n

n�

i=1

I{Xj≥u}

�
1− (Xj/u)

−1/(ωλ)
�
.

The robust estimator is simply the version of its mean only over the X �
is which do not belong

to large blocks, i.e.

�µn([u,∞[) =

�ln−1
i=1

�τA(i+1)
j=τA(i)+1 I{τA(i+1)−τA(i)≤M}I{Xj≥u}

�
1− (Xj/u)

−1/(ωλ)
�

�ln−1
i=1 (τA(i+ 1)− τA(i)) I{τA(i+1)−τA(i)≤M}

.

6.1 Ruin probability

In many PDMP models, especially when modelling reserves in insurance or level of contam-

inants in the body in pharmacokinetics or more generally in risk theory, one is interested not

only on the stationary measure but also on the ruin probability, that is the probability that

the maximum - or minimum, depending on the application field- of the process over a given

time window exceeds a threshold d ∈ R. In non-life insurance mathematics for instance, the

ruin probability plays a leading role to estimate the risk an insurance company is exposed at;

see [8] for an exhaustive review. In this subsection we focus on this type of models under the

assumption that the deterministic part of the PDMP X is monotone. This is in particular

the case for treated in Subsections 4.1 and 4.2.

Consider a PDMP X ≡ {X(s)}s∈R+ which is decreasing between each jumps (if it is in-

creasing consider the minimum instead of the maximum) with embedded chain �X = (Xi)i∈N.
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Under the assumption, that the deterministic part is monotone, the maxima of X are neces-

sarily reached on the embedded chain �X. Then the probability of ruin denoted by Ψ for a

threshold d ∈ R over an interval [0, T ], T > 0 is defined by

Ψ(d, T ) = P

�
sup

s∈[0,T ]

X(s) > d

�
= P

�
max

0≤i≤N(T )
Xi > d

�
,

where N(T ) := card{i ≥ 0 : Ti ≤ T}.

We assume that N(T ) defines a renewal process (see Chapter 1 in [14] for further details

on renewal processes) so that
N(T )

T
→ 1/λ a.s.

when T → ∞. The jump instants T �
is are such that the sequence

ΔTi+1 = Ti+1 − Ti

are independent with E[ΔTi+1] = λ. It is then clear in that case that the study of the

ruin probability reduces to the study of the submaxima. The purpose of this subsection is

to show how it is possible with the preceding tools to obtain a robust estimator of the ruin

probability with our tools.

For this, consider the case when X possesses a known accessible atom A. For instance in

Subsection 4.1, the atom is given by value d of the barrier. In Subsection 4.2, the atom can

be constructed via the Nummelin splitting technique by taking as a small set any interval

[0, ε] for some small ε > 0 (provided that the observed chain visits this set a large number

of times); see Section 8 for some numerical examples.

For j ≥ 1, define the submaximum over the j-th cycle of the sample path as

ζj = max
1+τA(j)≤i≤τA(j+1)

Xi. (3.20)

We use the usual convention that max ∅ = −∞. Note that

• ζ0 = max1≤i≤τA Xi has a distribution which depends on the distribution of initial value

X0 ∼ ν.

• ζ
(n)
ln

= max1+τA(ln)≤i≤n Xi, then the maximum over the last non-regenerative block is

based on a data block which may be an incomplete block.

For n ≥ 0, define

Mn := max
1≤i≤n

Xi.
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Then we have

Mn = max

�
ζ0, max

1≤j≤ln−1
ζj, ζ

(n)
ln

�
. (3.21)

Since the blocks are independent, the ζj’s are i.i.d. random variables with common distri-

bution function

GA(x) = PA( max
1≤i≤τA

Xi ≤ x).

Moreover, by Harris recurrence property, the number of blocks is of order

ln ∼ n/EAτA Pν-a.s. as n → ∞.

Thus, Mn behaves like the maximum of n/EAτA i.i.d. r.v.’s.

Similarly, since N(T ) is a renewal process, we expect to have N(T ) ∼ T/λ so that we

expect MN(T ) to behave like the maximum of T
λEAτA

independent submaxima of distribu-

tion GA. The following result shows that the limiting distribution of the sample maximum

of X is entirely determined by the tail behavior of GA and relies on this crucial asymptotic

independence of the blocks.

Proposition 2. Assume that the first block does not affect the extremal behavior, i.e.

Pν

�
ζ0 > max

1≤k≤l
ζk

�
→ 0 as l → ∞. (3.22)

Then, we have

sup
x∈R

|Pν(Mn ≤ x)−GA(x)
n/EAτA | → 0 as n → ∞. (3.23)

Moreover, the survival distribution of the ruin probability converges uniformly to GA(d)
T/(λEAτA).

Precisely,

sup
d∈R

|1−Ψ(d, T )−GA(d)
T/(λEAτA)| → 0 as T → ∞. (3.24)

Proof. The first result (3.23) has been proved in [125]. The second result (3.24) is an adapt-

ation of Theorem 3.1 in [125] with n = N(T ) (see also [32]). Recalling

N(T )/T → 1/λ a.s.,

similar arguments hold.
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As a consequence, the limiting behavior of the maximum of these PDMPs may be de-

duced by using Fischer-Typett-Gnedenko theorem (see [123], Chapter 1) with the marginal

distribution replaced by the marginal distribution of a regenerative block, namely

FA(x) := GA(x)
1/EAτA .

Then, the asymptotic behavior of the sample maximum is entirely determined by the tail

properties of FA. In particular, the limiting distribution of Mn (for a suitable normaliza-

tion) that is the distribution of the maximum when observing n jumps, or Ψ(d, T ) correctly

normalized is the generalized extreme value distribution; see [30] for more details.

To simplify the notation, we assume that n jumps have been observed if the process is

observed only during a period [0, T ]. Simply replace n by T/λ to obtain similar results.

Just as before,

GA(x) = PA

�
max

1≤i≤τA
Xi ≤ x

�
= ELA

�
I{max1≤i≤τA

Xi≤x}

�

is a functional of the distribution of the block with the influence function given by

G
(1)
A (b, x) = I{max1≤i≤l(b) bi≤x} −GA(x)

which is a bounded function for each block. It follows that, in the atomic case, a robust

plug-in estimator of GA is given by its empirical counterpart, from the observation of a

random number ln − 1 of complete regenerative cycles, namely

GA,n(x) =
1

ln − 1

ln−1�

j=1

I{ζj(f) ≤ x} (3.25)

with Gf,n ≡ 0 by the convention when ln ≤ 1.

Observe that we have dropped the first and the last (non-regenerative blocks) because

they are independent but with a different distribution. Actually, thanks to the robustness

of the estimator, we could have included them with no asymptotic changes.

Applying Glivenko-Cantelli’s theorem it follows that

Δn = sup
x∈R

|GA,n(x)−GA(x)| → 0, Pν a.s..

Moreover, by the law of iterated logarithm, we also have

Δn = O(
�
log log(n)/n) a.s..
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Notice, however, that the real quantity of interest in this setting is rather the phantom

distribution

FA(x) = GA(x)
1/EAτA .

A Markovian influence function is given by

F
(1)
A (b, x) =

∂

∂t

��
E(1−t)LA+tb(I{max1≤i≤τA

Xi≤x})
�1/((1−t)EAτA+tl(b))

�

= FA(x)




�
I{max1≤i≤l(b) bi≤x} −GA(x)

�

EAτAGA(x)
− log(GA(x)(l(b)− EAτA)

(EAτA)2


 .

Observe that this influence function strongly depends on the length of the blocks (which

was not the case for the robust empirical counterpart estimator GA,n(x) of the distribution

function GA(x)) and thus is non robust. A robustified version of the phantom distribution

can thus be obtained by excluding blocks of large size, considering for instance

FM
n,A(x) =

�
1

ln − 1

ln−1�

j=1

I{ζj ≤ x}

� �ln−1
i=1

1{l(Bi)≤M}
�ln−1

i=1
l(Bi)1{l(Bi)≤M}

.

The following theorem, which is an adaptation of [30] shows that if we observe the process

over an interval [0, T ], then typically the number of observations is

n = N(T ) = O(T/λ)

so that we can predict (with the plug-in rule) the ruin probability over an interval [0, T ∗],

such that T ∗ satisfies

T ∗ = o

�
T 1/2

log log(T )1/2

�
. (3.26)

Theorem 10 (Robust estimator for the ruin probability). Let X be a PDMP with a decreas-

ing deterministic motion and Harris recurrent embedded chain with the atom A. Assume that

N is a renewal process with a constant intensity function λ and observe the process on an

interval [0, T ]. Then, considering T ∗ as in (3.26), we have

lim
M→∞

sup
d∈R

|1−Ψ(d, T ∗)− FM
N(T ),A(d)

T ∗/λ| → 0 a.s. T → ∞.

6.2 Extremal index

We turn our attention to the extremal index (see [32] and [33] for details how to estimate

extremal index when the data are Harris Markov chain) , and keep the same notation as in
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the preceding section. The inverse of this index is an indicator of the average size of the

cluster of the extreme values of the embedded chain so that λ
θ
can be interpreted as the

average duration of the PDMP over a high threshold.

Again we assume that the embedded chain (Xi)i∈N of the PDMP {X(s)}s∈R+ is Harris

recurrent. Without loss of the generality we assume that (Xi)i∈N possesses an atom A and

denote by �µ its stationary measure. It has been shown (see [125] or [96]) that there exists

some index θ ∈ [0, 1], called the extremal index of the sequence (Xi)i∈N such that

P�µ

�
Mn = max

0≤i≤n
(Xi) ≤ un

�
∼

n→∞
F�µ(un)

nθ, (3.27)

for any sequence un = un(η) such that n(1− F�µ(un)) → η when n → ∞, see also [117].

Now observe that using a straightforward Taylor expansion, we have

θ = lim
n→∞

log(GA(un))

EAτA log(F�µ(un))

= lim
n→∞

log(1−GA(un))

EAτA log(1− F �µ(un))

= lim
n→∞

GA(un))

EAτAF �µ(un)
.

Define for some fixed level u

θ(u) =
GA(u)

EAτAF �µ(u)
=

EA

�
I{max1≤i≤τA

Xi≥x}

�

EA

��τA
i=1 I{Xi≥x}

� .

Its influence function is given by

θ(1)(b, u) =
I{max1≤i≤l(b) bi≥x} −GA(u)

EAτAF �µ(u)
−

GA(u)
��l(b)

i=1 I{Xi≥x} − EAτAF �µ(u)
�

(EAτAF �µ(u))2
.

Notice again that because of the presence of F�µ, the denominator of this influence function

is not bounded due to the length of the blocks.

In [30] it is proposed to estimate θ by its empirical counterpart defined by

θn(u) =

�ln−1
j=1 I{ζj>u}�n
i=1 I{Xi>u}

,

with the convention that θn(u) = 0 if Mn < u.

However, if we want a robust estimator of this quantity, it is more appropriate to eliminate

large blocks in the denominator, leading to the robust estimator

θn(u,M) =

�ln−1
j=1 I{ζj>u}

�ln−1
i

�τA(i+1)
j=τA(i)+1 I{Xj≤y}I{τA(i+1)−τA(i)≤M}

with the convention that θn(u,M) = 0 if Mn < u. Finally, we have the following result.
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Theorem 11. Under the assumptions of Theorem 10, let (rn)n∈N be increasing to infinity

in a way that

rn = o(
�

n/ log log n) as n → ∞.

Consider (vn)n∈N such that

rn(1−GA(vn)) → η < ∞ as n → ∞.

Suppose that EvτA < ∞ and EAτ
2
A < ∞ are fulfilled. Then,

θn(vn,M) → θ Pν-a.s., as n → ∞ and M → ∞. (3.28)

Moreover, we have

�
n/rn (θn(vn,M)− θ(vn,M)) ⇒ N (0, θ2/η), as n → ∞ and M → ∞, (3.29)

where

θ(u,M) =
EA(I{max1≤i≤τA Xi ≥ x})

EA ((
�τA

i=1 I{Xi ≥ x})I{τA ≤ M})
.

Notice that the recentering for the central limit theorem is not completely satisfactory

since it depends both on the thresholdM and the level u.We would be more interested in cen-

tering by θ. As discussed in [30], this can be done by controlling the bias
�

n/rn(θ(vn,M)−θ)

with some higher second order technical conditions.

From a practical point of view, the choices of the thresholds M and νn are obtained by

plotting the values of θ(vn,M) and by detecting an area of stability of the estimator; see

the discussion on θ(vn) in [30]. Observe that vn is defined as an upper quantile of the true

underlying submaximum distribution, which is unknown in practice. An empirical choice

can also be obtained by taking rn equal to the quantile G−1
A,n(1−η/rn) which is automatically

robust. Because of the condition

rn = o(
�

n/ log log n),

notice that the best attainable rate with our method is close to n1/4.

Similar results are obtained in the general non-regenerative case in [30], with an adequate

choice of the level νn depending on the rate of convergence of the estimator of the transition

density estimator.
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7 Expected shortfall

The ruin probability and the extremal index studied in Subsections 6.1 and 6.2 provide

information about the probability that the PDMP goes above a threshold or about the

replication of extremal events of the PDMP, but give no information on the exceedences

themselves. To fill this gap, we finally focus on the expected shortfall, which takes into

account the mean of the PDMP when the process has already reached the reference threshold

d. It is in particular a Gerber-Shiu measure; see [92] for more details.

Let X be a PDMP with stationary measure µ. The expected shortfall of X is defined, for

u ∈ R, by

SE(u, µ) = Eµ[X − u | X > u] =

� ∞

x=u

(x− u)µ(dx)/µ(]u,∞[).

Since the expected shortfall is defined as a functional of the probability function of the

stationary measure, using the Kac’s representation, we can express it as a functional of the

distribution of the blocks, i.e.

SE(u,LA) =

�∞
x=u

(x− u)EA (
�τA

i=1 δXi
(dx))

EA

��τA
i=1 I{Xi≥u}

� .

The influence function of this quantity is defined by

S
(1)
E (b, u,LA) =

∂

∂t

�
(1− t)

�∞
x=u(x− u)EA (

�τA
i=1 δXi

(dx)) + t
�l(b)

i=1(bi − u)

(1− t)EA

��τA
i=1 I{Xi≥u}

�
+ t

�l(b)
i=1 I{bi≥u}

�

t=0

=

�l(b)
i=1(bi − u)−

�∞
x=u(x− u)EA (

�τA
i=1 δXi

(dx))

EA

��τA
i=1 I{Xi≥u}

�

−
�∞
x=u(x− u)EA (

�τA
i=1 δXi

(dx))
��l(b)

i=1 I{bi≥u} − EA

��τA
i=1 I{Xi≥u}

��

�
EA

��τA
i=1 I{Xi≥u}

��2 .

Again this influence function is not robust and a robust estimator is simply obtained by

truncating the blocks with large value and large size.

Consider for this the robustified functional

SE(u,LA,M1,M2) =

�∞
0
(x− u)I{0<x−u≤M1}EA

��τA
i=1 δXi

(dx)I{τA≤M2}

�

EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

� .

It is easy to see that

SE(u,LA,M1,M2) → SE(u,LA) when M1,M2 → ∞.
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Now its influence function is given by

S
(1)
E (b, u,LA,M1,M2)

=
(
�l(b)

i=1(bi − u)I{0<bi−u≤M1}I{l(b)≤M2}

EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

�

−
�∞
0
(x− u)I{0<x−u≤M1}EA

��τA
i=1 δXi

(dx)I{τA≤M2}

�

EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

�

−
� ∞

0

(x− u)I{0<x−u≤M1}EA

�
τA�

i=1

δXi
(dx)I{τA≤M2}

�
×

�
(
�l(b)

i=1 I{bi≥u}I{l(b)≤M2} − EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

�
�
EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

��2

− EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

�
�
EA

��τA
i=1 I{Xi≥u}I{τA≤M2}

��2

�

which is rather complicated, but obviously bounded.

As a consequence, the plug-in estimator is simply obtained by plugging the distribution

�ln−1
i f(Bi)I{L(Bi)≤M2}�ln−1
i=1 L(Bi)I{L(Bi)≤M2}

in the functional SE(u,LA,M1,M2).

Proposition 3 (Expected shortfall of PDMPs). A robust estimator of the expected shortfall

is given by

�SE,n(u,LA,M1,M2) =

�ln−1
i

�τA(i+1)
τA(i)+1(Xi − u)I�

0<
�τA(i+1)

τA(i)+1
(Xi−u)≤M1

�I{L(Bi)≤M2}

�ln−1
i L(Bi)I{L(Bi)≤M2}

.

8 Simulations

In this section we present simulation results on the standard Cramér-Lundberg model with a

barrier. We have chosen to simulate this model because of its simplicity and also to highlight

some practical problems and difficulties that can be encountered in practice.

We have chosen c = 1, d = 3, ΔTn i.i.d. with exponential distribution with a parameter

0.6 ( with mean λ = 1/0.6) and Wn having exponential distribution with mean 1/0.8. As a
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consequence, the chain will return an infinite number of times to the barrier, which is an atom

of the chain. Figure 8 shows how the (embedded) chain can be split into independent blocks.

When the chains stays at the atom then blocks of size one, consisting in the atom itself, are

constructed. As a consequence, the mass at the atom is simply obtained by computing the

frequency that the embedded chain visits the atom, here 0.21 (the true value obtained by

simulation is actually close to 0.244). We choose n = 1000 in all our simulations but we only

consider chains of size 200. The average length of a block is 4.25 so that the average number

of blocks is close to 235.

Figure 3.2: An illustration of the splitting technique on the C.L. model with a barrier.

Observations between two vertical green lines correspond to independent blocks. The barrier

is the horizontal blue line, here at d = 3 and the process starts at X(0) = 5.
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When there is no contamination, the plug-in estimator is rather close to the true distribu-

tion (except for a few simulations exhibiting large blocks which also perturb the estimation

procedure). In Figure 3.3, we represent the continuous part of the stationary distribution of

the associated PDMP.

Figure 3.3: Comparison between the true distribution (the red line) and the plug-in estimator

(the black line) when there is no contamination.

On the contrary, a few outliers may completely perturb the trajectory of the PDMP and of

the embedded chain and destroy the properties of the plug-in estimator. In our simulations,

we choose to introduce a Dirac measure at −25 (a fixed loss) for the distribution of Wn for

4 successive times (around the date 75 for a series of length 200, more generally [3/8n] in

all our simulations). In most simulations, this induces a very large block as shown in Figure

3.4. This single block completely perturbs the estimators at different levels: first the number

of blocks is clearly underestimated (as a consequence the mass of the stationary distribution

is totally underestimated), second this induces an important bias on the continuous part

of the stationary distribution, both in term of the values of the estimator itself and its

standardization.

The robustified estimator �µn([−∞, v[) gives a reasonable estimator for an adequate choice

of the truncation; see Figure 3.5. We choose a fixed level equal to 30 (up to the truncation

level 45, this does not change the results) which is of the order of magnitude of the largest
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Figure 3.4: Trajectory of the C.L. model when a contamination is added (around 75) thanks

to a Dirac measure.

excursion when there is no outlier (on a strecht of size n = 1000). Notice that the contam-

ination is of the same order. When choosing a truncation which is too small, the robust

estimator is based on too few blocks and gives poor results. We recommend to select the

level of the truncation as a quantile of the distribution of the length of the blocks, typically

when using the 95% quantile we obtain 35 and efficiently get rid of the largest blocks. Other

simulation results on specific functionals (robustified quantiles, robustifed means, winsorized

means, R-estimators) may be found in [29]. Their examples also show the importance of

robustifying bootstrap estimators as well, since resampling large blocks may also lead to the

inconsistency of the bootstrap procedure.

Finally, we would like to conclude on a specific problem encountered in the general

Harris recurrent case. When dealing with non-regenerative processes, the procedure is more

complex and requires a preliminary estimator of the kernel density of the embedded chain.

This actually may cause some difficulty in the procedure if the kernel estimator is based on
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Figure 3.5: Comparison between the true distribution (the red line), the plug-in estimator

(the black line) and the robustify estimator (the green line) in the presence of contamination.

all observations. Indeed, kernel density estimators are not robust to the outliers, so that the

splitting procedure may be considerably perturbed in this step. We propose the following

empirical rule to avoid such problem:

1. Estimate the kernel using observations with very few long excursions from the mean.

2. Compute the blocks with this estimator to split the time series into approximate blocks.

3. Eliminate large blocks (eliminate for instance the α% largest blocks).

4. Recompute the kernel estimator on the remaining observations, and split again the

time series with this new estimator.

The procedure may be iterated until the estimator of the density is stable. The preliminary

empirical results that we obtain with this algorithm are encouraging, but the theoretical

aspects require further investigation.
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9 Conclusion

In this chapter we studied the properties of Markov chains of the embedded chain associated

to PDMPs. In particular, we explored regenerative (or approximately regenerative) approach

in the framework of PDMPs and showed how to relate the properties of PDMPs (stationary

distribution) to the properties of embedded chains, for which we can build efficient robust

estimators based on regeneration blocks. In this work, we have developed some tools to

detect outliers and build robust plug-in estimators by eliminating blocks having either too

much contribution to the statistics of interest or having a length too large, resulting in an

important bias on the statistics. We illustrated our approach on two stochastic models which

are PDMPs: the Sparre-Andersen model with barrier and the Kinetic Dietary Exposure

Model.
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Chapter 4

Residual and wild bootstrap methods

for periodically autoregressive

processes

The main objective of this chapter is to establish the residual and the wild bootstrap proced-

ures for periodically autoregressive models. We use the least squares estimators of model’s

parameters and generate their bootstrap equivalents. We prove that the bootstrap proced-

ures for causal periodic autoregressive time series with finite fourth moments are weakly

consistent. Finally, we confirm our theoretical considerations by simulations.

This chapter gathers results published in [46]. Some additional remarks and explanations

are added in order to make this exposition more comprehensive.

1 Preliminaries and Markovian form of PAR(p) pro-

cesses

As mentioned in Chapters 1 and 2, since the ’naive’ bootstrap algorithm for the i.i.d data was

proposed by Efron [59], many bootstrap schemes for dependent data have been introduced.

A very natural idea is to try to switch from time dependence in the data back to an i.i.d.

framework by fitting a parametric model. One of the approaches is to apply so called residual

bootstrap. This method was primarily developed for an autoregressive stationary process

with finite order, i.e.

A(L)yt = �t,
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where {�t} is and i.i.d. sequence with zero mean and finite second moment. By

Y = [y1, · · · , yt]
�

we denote vector of observations and A(L) is an invertible polynomial in lag operator (see

for instance [39], page 84).

Autoregressive process of order one (AR(1)) was bootstrapped for the first time in [60] and

[147] and AR(p) in [134]. Since then, the residual bootstrap procedure has been adapted to

many other processes, for instance Shimizu [131] bootstraps AR-ARCH or ARMA-GARCH

models. We also refer to a survey [21] treating bootstrapping time series for more details and

references. The classical residual bootstrap procedure for AR(p) process consists of 6 steps.

Algorithm 5 Residual bootstrap for AR(p) process

Step 1 Compute the estimator �A(L) of A(L).
Step 2 Compute centred residuals of the estimated model

�̄t = �A(L)yt.

Step 3 Generate bootstrap variables �∗t by resampling with replacement from �̄t.

Step 4 Generate the bootstrap version of Y i.e.

�A(L)y∗t = �∗t

conditioned on Y ∗
0 .

Step 5 Compute bootstrap estimates �A∗(L) of the model.

Step 6 Repeat steps 3 − 6 many times in order to construct the targeted empirical

distribution function.

It is noteworthy that the residual bootstrap method is primarily designed for homosce-

dastic models. In case when the model is heteroscedastic, one may apply wild bootstrap

procedure instead. Main innovation when comparing to residual bootstrap presented in Al-

gorithm 0 is to compute variables �†t = ��tw†
t , where w

†
t ∼ N (0, 1) is an i.i.d. sequence. Next,

we generate bootstrap version Y † of Y in Step 5 such that �A(L)y†t = �
†
t , see [93] and [131]

for details.

Furthermore, residual and wild bootstrap methods may be useful when considering peri-

odically correlated (PC) times series. PC sequences were for the first time considered by

Gladyšhev [73] and since then have received much attention due to the fact that they can

model many phenomena in the real world. Standard time series analysis often relies on the

stationarity assumption. However, this condition is not satisfied by many processes in the
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real world applications. In this case, one may want to work with PC time series since they are

non-stationary processes with many properties of stationary processes. Thus, this motivated

many researchers to model many physical phenomena using PC processes. PC time series

were primarily applied to the field of hydrology in [135] where they have been used to model

monthly stream flow of the rivers. Since then, PC processes are widely used in numerous

fields, for instance in climatology (see [56], [66], [84]), finance and econometrics (see [34],

[40], [81]) or analysis of genome and biological signals (see [7], [67], [101]). In this chapter we

focus on PAR processes which are periodic versions of well-studied autoregressive processes.

PAR processes can model phenomena in many fields such as hydrology (river flows), see [116]

or in finance (see for example [40])and more generally, are useful in any applications when

one needs to analyze a process consisting of AR sub-models across the seasons.

It is noteworthy that most of the schemes in the dependent setting are block techniques.

These procedures rely on resampling block segments of observations so that dependence

structure is preserved. There are many types of block bootstrap methods for dependent data

such as moving block bootstrap (MBB), non-overlapping block bootstrap (NBB), circular

block bootstrap (CBB) or stationary bootstrap (SB) to name just a few (see for instance

[93] for a detailed survey of the aforementioned procedures). MBB, NBB and CBB methods

resample blocks of data choosing a block length which is non-random (see [93] and [94])

which causes many problems. One of main drawbacks is that block bootstrap procedures

are very sensitive to the choice of the length of the blocks. Indeed, the optimal length of the

blocks depends on the sample size and the data generating processes. As mentioned in [94]

bias and the variance of a block bootstrap estimator are highly dependent on the length of

the block (which plays the role smoothing parameter in this case) and either of them can be

the leading term in the expansion for the mean-squared error (MSE) of a block bootstrap

estimator. The SB method resamples blocks of random length, however the same amount of

bias is asymptotically the same as in case of MBB, NBB and CBB methods. As mentioned in

[94] the variances of the SB estimators are always at least twice larger compared to variances

of the respective NBB estimators and at least three times larger comparing to those of the

MBB and CBB estimators. Moreover, popular MBB method requires the stationarity for

observations that usually results in failure of this method in non-stationary setting (see

[93] for more details). Finally, it is noteworthy, that the rate of convergence of the MBB

distribution is slower than that’s of bootstrap distribution in the i.i.d. setting. Bootstrap

methods proposed in this chapter do not require block length calibration and are data-driven.

In this chapter we study periodic autoregressive (PAR) models which are extensions of

autoregressive (AR) models, i.e. autoregressive parameters vary with the seasons. It essen-
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tially means that we define a different AR model for each season in a period. PAR processes

are fairly well-studied. Bresford [83] investigated moment estimation for PAR sequences.

Pagano [113] proved the asymptotic normality of parameter estimates based on periodic

Yule-Walker equations. Vecchia [145] analyzed the correlation structure and the parameter

estimation of the periodic autoregression moving average processes (PARMA) with a focus

on the moment estimation and maximum likelihood estimation. Basawa and Lund [20] have

studied large sample properties of parameter estimates for PARMA models and derived a

general limit result for coefficients of such models. Shao and Ni [130] have studied the

least-squares estimation and ANOVA for PAR series. They showed that the limit results

for PARMA from [20] also hold exclusively for PAR sequences. Ursu and Duchesne [138]

have generalized limit results from [20] and [130] to vector periodic autoregressive time series

model (PVAR).

In what follows we make our considerations formal. For the reader’s convenience we recall

the notation introduced for PAR processes in Chapter 1. The periodic autoregressive model

of interest is given by

XnT+v =

p�

k=1

φk(v)XnT+v−k + �nT+v, (4.1)

where

Φ
� = [φ1(1),φ2(1), . . . ,φp(1),φ1(2), . . . ,φp(2), . . . ,φ1(T ), . . . ,φp(T )]

denotes the vector of parameters and � is a transpose. The {XnT+v} designates the series

during the n-th cycle (0 ≤ n ≤ N − 1) during v-th season (1 ≤ v ≤ T ). The {�nT+v} is

the mean zero white noise with variance of the form Var(�nT+v) = σ2
v > 0 for all seasons v.

In the following, we slightly abuse the notation, i.e. the periodic notations will be used

interchangeably with the non-periodic ones, namely {Xt}, {�t}. There is no loss of generality

in considering the autoregressive model order equal to p instead of p(v) (for each season) as

we can take

p = max
1≤v≤T

p(v)

and set

φk(v) = 0 for p(v) < k ≤ p.
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Figure 4.1: Trajectory of PAR(2) process with 12 seasons and 100 observations.

Note that other periodic notations for the process (4.1) are used in the literature (see for

instance [19] and references therein). We have adopted form (4.1) in order to emphasize that

the process (4.1) is AR difference equation with periodically varying coefficients. Observe

that for T = 1, (1.6) is an AR process. There is a strong relation between PAR and AR

processes. We formalize this connection in the following remark (we also refer to [20] for

further details). We keep our notation consistent with [20].

Remark 13. It is noteworthy that PAR process given in (4.1) may be written as a T -variate

AR process. Indeed, the T -variate AR is given by the difference equation

Φ0
−→
X n −

p∗�

k=1

Φk
−→
X n−k =

−→� n, (4.2)

where −→
X n = [XnT+1, . . . , XnT+T ]

� and −→� n = [�nT+1, . . . , �nT+T ]
�.
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We denote by p∗ = �p/T � the order of T -variate AR and write �y� for the smallest integer

greater than or equal to y. The T × T autoregressive coefficients of (4.2) are of the form

(Φ0)i,j =





1 if i = j

0 if i < j

−φi−j(i) if i > j

and

(Φk)i,j = φkT+i−j(i), 1 ≤ k ≤ p∗

with the convention φk(v) = 0 for k > p.

Remark 13 leads us to next conclusion.

Remark 14 (Markovian structure of PAR process). Recall that AR process is a Harris

recurrent Markov chain (see Example 2 in Chapter 1). This combined with the fact that

PAR process is T -variate AR sequence implies that PAR is also a Harris recurrent Markov

chain. Indeed, we just construct multivariate sequence

−→
Y n = (

−→
X n, · · · ,

−→
X n−k)

�

and consider process
−→
Y = {

−→
Y n, n ≥ 0}.

We assume that the roots of characteristic function

zp
∗ −

p∗�

k=1

Φkz
p∗−k = 0

are less than one in absolute value. This fact is equivalent to PAR model of interest being

causal (see also [131], Remark 3.1, page 22).

It is known that when the model is causal, then the stationary T -variate solution {
−→
X n}

to (4.2) is unique. Process {Xt} is periodically correlated since we have periodic stationarity

of the moments, namely

E (Xn+T ) = E (Xn) and Cov (Xn+T , Xm+T ) = Cov (Xn, Xm) .

Models Xt which fulfill above moment conditions are called periodically correlated or cyc-

lostationary (see [19] and [73] for further details).
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2 The least squares estimation for model’s parameters

In order to generate valid bootstrap approximations we have to obtain the least squares

estimator of Φ, namely

�Φ� =
�
�φ1(1), �φ2(1), . . . , �φp(1), �φ1(2), . . . , �φp(2), . . . , �φ1(T ), . . . , �φp(T )

�
.

In what follows, we carry out an analogous analysis as in [138], where the least squares

estimators were obtained for PVAR processes. Equation (1.6) can be written as

�nT+v = XnT+v −
p�

k=1

φk(v)XnT+v−k. (4.3)

Next, we minimize the sum of squared errors

S(Φ) =
T�

v=1

e�(v)e(v),

where

e(v) =
�
�v, �T+v, . . . , �(N−1)T+v

�

is 1×N vector of errors. In order to compute the least squares estimator of Φ we differentiate

S(Φ) with respect to each parameter φk(v), k = 1, . . . , p(v); v = 1, . . . , T . Thus, we get

∂S(Φ)

∂φk(v)
= −2

N−1�

n=0

XnT+v−k�nT+v.

Next, we set the derivatives equal to zero (for k = 1, . . . , p(v)) and obtain for a given

season v
N−1�

n=0

Wn(v)�nT+v =
−→
0 , (4.4)

where
−→
0 is p(v)× 1 vector of zeros and

Wn(v) =
�
XnT+v−1, . . . , XnT+v−p(v)

��
(4.5)

are p(v) × 1 random vectors, n = 0, 1, . . . , N − 1. Vectors defined in (4.5) form a N × p(v)

random matrix

W (v) = [W0(v), . . . ,WN−1(v)]
� .

We consider

�nT+v = XnT+v −W �
n(v)Φ(v), (4.6)

97



where Φ(v) = [φ1(v), . . . ,φp(v)(v)]
�. The normal equations for (4.6) at the season v are of the

form
N−1�

n=0

Wn(v)XnT+v =

�
N−1�

n=0

Wn(v)W
�
n(v)

�
Φ(v).

The least squares estimators of Φ(v) fulfill the following relation

�Φ(v) =
�
(W �(v)W (v))

−1
W �(v)

�
z(v),

where

z(v) =
�
Xv, XT+v, . . . , X(N−1)T+v

��

is N × 1 random vector and

�Φ(v) =
�
φ1(v), . . . ,φp(v)(v)

��

is p(v)× 1 vector of the least squares estimates of parameters of model (4.6) at the season v,

v = 1, . . . , T . The invertibility of W �(v)W (v) is ensured by Proposition 4.1 from [19]. For

the sake of completeness, we provide it below.

Remark 15. If σv > 0 for each 1 ≤ v ≤ T, then for a causal PAR model, W �(v)W (v) is

invertible for each n ≥ 1.

Thus, the residuals are of the form

��nT+v = XnT+v −
�
W �

n(v)�Φ(v)
�
. (4.7)

In what follows we discuss the asymptotic normality of �Φ(v), 1 ≤ v ≤ T . This limit

result is inevitable for our bootstrap theory to work. We are heavily relying on central limit

theorems presented in [130] and [20]. For the reader’s convenience, we provide the theorem

of Shao and Ni from [130] which is a general limit result for PAR(p) process. We denote

by
D−→ the convergence in distribution.

Theorem 12. Assume that a periodic autoregressive series {XnT+v} defined in (1.6) is

causal and has finite fourth moment. Then,

√
N

�
�Φ− Φ

�
D−→ N

�
0, R−1

�
as n → ∞,

where R = Rφ(v1, v2) and is defined in the following way: for any k ≥ 1, l ≤ p and v1 ≥ 1,

v2 ≤ T

Rφ(v1, v2) = E

��
∂ ��n

∂φk(v1)

��
∂ ��n

∂φl(v2)

���
,
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where

��� =
�
���0,���1, . . . ,���N−1

�
, ���n =

�
�nT+1

σ1

,
�nT+2

σ2

, . . . ,
�nT+T

σT

�

and σv is the standard deviation of �nT+v at the season v (1 ≤ v ≤ T ).

Remark 16. Note that in the above theorem σv is assumed to be known for each sea-

son v (1 ≤ v ≤ T ). However, in case when σv is unknown, it can be replaced by
√
N -consistent

estimator. The limiting distribution of �Φ remains unchanged (see [20] for details).

3 Residual bootstrap for PAR processes

In what follows we present residual bootstrap method for PAR(p) processes. As mentioned

before, residual method allows to avoid problems of block bootstrap methods for time series,

i.e. we do not need to struggle with the choice of the length of the block. We recall briefly

that residual bootstrap method is originally designed for heteroscedastic models, however

it is possible to adapt it in order to make it applicable for PAR sequences. The second

method we present is the wild bootstrap which is tailor-made for heteroscedastic models.

Both methods we propose require to obtain the ordinary least squares estimator �Φ of Φ and

secondly to compute residuals

��nT+v = XnT+v −
p�

i=1

�φk(v)XnT+v−k. (4.8)

As in the case of bootstrapping AR(p) processes, the difference between residual and wild

bootstrap procedures boils down to a different way of computing bootstrap version of re-

siduals. In residual bootstrap one draws randomly with replacement centred and scaled

residuals in order to get bootstrap random variables η̄∗nT+v. In order to preserve the peri-

odic structure of the bootstrap version of XnT+v, we multiply η̄∗nT+v by standard deviation

of corresponding season and XnT+v. Finally, we generate the bootstrap version X∗
nT+v of

the PAR process and compute bootstrap estimates �Φ∗. In the wild bootstrap method we

obtain bootstrap version of residuals (4.8) by multiplying ��nT+v by random variables drawn

from normal distribution with zero mean and variance 1. From now, we generate bootstrap

version of process XnT+v with bootstrap residuals �†nT+V . Thus, the wild bootstrap method

results in obtaining bootstrap estimates �Φ†.

Typically, one uses the wild bootstrap when there is heteroscedasticity in the model.

Residual bootstrap method is designed for models that are homoscedastic. PAR models

are heteroscedastic, thus a natural way is to use the wild bootstrap method. However, we
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adjusted residual bootstrap procedure (by dividing residuals by σv in Step 3 and multiplying

residuals by σv in Step 5) such that it can be used for PAR sequences.

It is noteworthy that from a second order theory point of view (see [76] for details) the

residual bootstrap outperforms the wild bootstrap (generated by Gaussian noise). Indeed,

the second one can not correct adequately the skewness of the distribution. However, in

practice, this difference between the two methods is difficult to distinguish (except for very

small samples, see our simulation studies at the end of this chapter).

The bootstrap procedure for PAR(p) processes is formulated in Algorithm 6.

Algorithm 6 Residual bootstrap method for PAR processes

Step 1 Compute the ordinary least squares estimator �Φ of Φ.

Step 2 Compute the residuals of the estimated model

��nT+v = XnT+v −
p�

k=1

�φk(v)XnT+v−k,

where 1 ≤ v ≤ T, 0 ≤ n ≤ N − 1.

Step 3 Compute the centred residuals

η̄nT+v =
��nT+v

σv

− 1

NT

N−1�

n=0

T�

v=1

��nT+v

σv

,

where NT is the number of all observations in the model.

Step 4 Generate bootstrap variables η∗nT+v by drawing randomly with replacement from

{η̄1, . . . , η̄NT}.

Step 5 Generate the bootstrap version of the model (1.6)

X∗
nT+v =

p�

k=1

�φk(v)XnT+v−k + σvη
∗
nT+v, 1 ≤ v ≤ T.

Step 6 Calculate the bootstrap estimators of parameters for each season v, 1 ≤ v ≤ T

�Φ∗(v) =
�
W �(v)W (v)

�−1
W �(v)z∗(v),

where

z∗(v) =
�
X∗

v , . . . , X
∗
(N−1)T+v

��
, 1 ≤ v ≤ T.

Remarks 13. In what follows we will give few remarks concerning some steps of Algorithm 6.
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1. In Step 3 in the case when σ2
v are known, we divide ��nT+v by the true standard devi-

ation σv. When σ2
v are unknown, we replace it by a

√
N-consistent estimator of σ2

v;

e.g., one can use the sample variance of the residuals obtained in Step 2, that is from

sample {��nT+v}
N−1
n=0 .

2. In Step 4 variables η∗nT+v, 0 ≤ n ≤ N − 1, 1 ≤ v ≤ T are conditionally independent on

the data. Their common distribution is defined as

P∗ (η∗1 = η̄nT+v) =
1

NT
, (4.9)

where P∗ is the distribution of η∗ conditionally on the observations.

3. Note that in Step 6 vector of bootstrap estimates �Φ∗ can be written as

�Φ∗(v) =
�
W �(v)W (v)

�−1
W �(v)

�
W (v)�Φ(v) + g∗(v)

�

= �Φ(v) +
�
W �(v)W (v)

�−1
W �(v)g∗(v),

where

g∗(v) =
�
�∗v, . . . , �

∗
(N−1)T+v

��
=
�
σvη

∗
v , . . . , σvη

∗
(N−1)T+v

��
.

In what follows we show that the bootstrap procedure proposed in Algorithm 6 for a periodic

autoregressive series XnT+v is weakly consistent. Our proof of the validity of bootstrap is

kept in spirit of the proof of Theorem 3.1 from [131]. We recall that
P ∗

−→ denotes weak

convergence conditionally on the data in probability.

Theorem 14. Suppose that a periodic autoregressive series XnT+v defined in (4.1) is causal

and has finite fourth moment. Then, the residual bootstrap procedure given by the Algorithm 6

is weakly consistent in probability, i.e.

√
N

�
�Φ∗ − �Φ

�
P ∗

−→ N
�
0, R−1

�
.

Proof. Central limit theorem for PAR processes from [130] guarantees that

√
N

�
�Φ− Φ

�
D−→ N

�
0, R−1

�
,

where

R = Rφ (v1, v2) = E

�
∂��n

∂φk(v1)
·

∂��n
∂φl(v2)

�
, 1 ≤ v1, v2 ≤ T

and

���n =

�
�nT+1

σ1

,
�nT+2

σ2

, . . . ,
�nT+T

σT

�
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and σv is the standard deviation of �nT+v for 1 ≤ v ≤ T.

Moreover, Shao and Ni [130] proved that the estimates of Φ(v1) and Φ(v2) are asymptot-

ically independent if v1 �= v2. It follows from point 3 from Remarks 13 that

�Φ∗(v)− �Φ(v) =
�
W �(v)W (v)

�−1
W �(v)g∗(v). (4.10)

Observe that the analysis of the PAR(p) model is equivalent to the analysis of AR(p(v))

model for each fixed v (1 ≤ v ≤ T ), respectively. This fact enables us to apply directly

the asymptotic results from [77]. Note however, that our method is more general and the

proof based on [130] also allows us to use dependent heteroscedastic residuals.

By Hamilton’s remarks (see [77], Chapter 8, Page 215), we have for a given v, 1 ≤ v ≤ T,

1

N
W �(v)W (v)

P−→ R, (4.11)

where
P−→ denotes convergence in probability. Thus, by the virtue of (4.11) combined with

the Slutsky theorem, it suffices to prove that

1√
N
W �(v)g∗(v)

P ∗

−→ N
�
0, σ2

vR
�
.

Note that for a given season v we have

1√
N
W �(v)g∗(v) =

1√
N

N−1�

n=0

�∗nT+v(v)Wn(v).

In order to keep the exposition simple, we introduce one more piece of notation. We write

y∗n =
�∗nT+vWn(v)√

N
.

In order to show the consistency of bootstrap procedure formulated in Algorithm 6, we verify

if the conditions of Lyapunov’s central limit theorem hold. Firstly, observe that

E∗ (y∗n) =
1√
N
Wn(v)E

�
�∗nT+v

�
= 0,

because

�∗nT+v = σ(v)η∗nT+v and E(η∗nT+v) = 0

since {η∗nT+v}0≤n≤N−1 are drawn from the empirical distribution function given by (4.9).

Next, we have
N−1�

n=0

E∗ (y∗ny
∗�
n ) =

1

N

N−1�

n=0

Wn(v)W
�
n(v)E

∗ ��∗2nT+v

�
.

102



For a given season v we obtain

E∗ ��∗2nT+v

�
=

1

N

N−1�

n=0

σ2
vη

∗2
n (v)

=
1

N

N−1�

n=0

(��n(v)− �̄)2

=
1

N

N−1�

n=0

�� 2n(v)− �̄2

= E
�
�2n(v)

�
− E2(�n(v)) + oP(1), (4.12)

where

η∗n(v) =
�
η∗nT+v−1, . . . , η

∗
nT+v−p(v)

��

and

��n(v) =
�
��nT+v−1, . . . ,��nT+v−p(v)

��
.

Thus, by (4.11) and (4.12) we can deduce that

N−1�

n=0

E∗ (y∗ny
∗�
n ) =

1

N

N−1�

n=0

Wn(v)W
�
n(v)E

∗ ��∗2nT+v

� P−→ σ2
vR. (4.13)

Let c ∈ Rp and

s2N =
N−1�

n=0

E∗ (c�y∗n)
2 P−→ c�σ2

vRc

by (4.13) and the Cramér-Wold device. We check the Lyapunov’s condition for γ = 1.

1

s3N

N−1�

n=0

E∗ |c�y∗n|
3
=

1

s3N

N−1�

n=0

1

N3/2
E∗ ���∗nT+v

��3 |c�Wn(v)|
3

=
1

s3N

N−1�

n=0

1√
N
E∗ ���∗nT+v

��3 1

N
|c�Wn(v)|

3
. (4.14)

Notice, that by the similar arguments as in (4.12) we have for a given v

E∗ ���∗nT+v

��3 = 1

N

N−1�

n=0

|��n(v)− �̄|3 = oP(1). (4.15)

Moreover,
1

N
|c�Wn(v)|

3
= OP(1) (4.16)
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since we assumed that XnT+v has finite fourth moment.

In the view of above discussion, we conclude that

1

s3N

N−1�

n=0

E∗|c�y∗n|
3 = oP(1).

We have checked that the Lyapunov’s conditions for the central limit theorem are sat-

isfied. In what follows, we consider the sequence c�0y
∗
0, . . . , c

�
N−1y

∗
N−1. We apply to that se-

quence the Cramér-Wold theorem and the central limit theorem for triangular arrays. Thus,

we obtain the following convergence

1√
N

N−1�

n=0

y∗n
P ∗

−→ N
�
0, σ2

vR
�
. (4.17)

Combining (4.11) and (4.17) with the Slutsky theorem we obtain immediately that

√
N

�
�Φ∗ − �Φ

�
P ∗

−→ N
�
0, R−1

�

taking scaled versions of {��n}0≤n≤N−1 and {�∗�n }0≤n≤N−1, namely

���n =

�
�nT+1

σ1

, . . . ,
�nT+T

σT

�

and

��∗�n =

�
�∗nT+1

σ1

, . . . ,
�∗nT+T

σT

�

which completes the proof.

It is easy to see that Theorem 14 generalizes the results for AR processes (compare with

Chapter 8 in [93]). At the end of this chapter we present simulation study which demonstrates

the large sample properties of the residual bootstrap for PAR sequences.

4 Wild bootstrap for PAR(p) time series

In this section we briefly present the wild bootstrap method for periodically autoregressive

models as an alternative to the residual bootstrap procedure from the previous section. We

investigate the behaviour of those two methods through simulations study in Section 5.

As mentioned before, in the wild boostrap procedure one obtains the bootstrap version of

residuals �†nT+v by multiplying the residuals ��nT+v by realizations from normal distribution

N (0, 1). This procedure is described in details for example in [88] or [100]. The wild bootstrap

procedure for PAR(p) processes is presented in Algorithm 7.
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Algorithm 7 Wild bootstrap method for PAR processes

Step 1 Compute the ordinary least squares estimator �Φ of Φ.

Step 2 Compute the residuals of the estimated model

��nT+v = XnT+v −
p�

k=1

�φk(v)XnT+v−k,

where 1 ≤ v ≤ T, 0 ≤ n ≤ N − 1.

Step 3 Generate the bootstrap process X†
nT+v for each season v, 1 ≤ v ≤ T

X†
nT+v =

p�

k=1

�φk(v)XnT+v−k + �
†
nT+v

and

�
†
nT+v = ��nT+vη

†
nT+v,

where η
†
nT+v ∼ N (0, 1) and (η†nT+v)nT+v∈R is independent of ��nT+v.

Step 4 Calculate the bootstrap estimator of parameters, namely

�Φ†(v) = (W �(v)W (v))−1W �(v)z†(v)

for each season v, 1 ≤ v ≤ T, where

z†(v) =
�
X†

v , . . . , X
†
(N−1)T+v

��
.

Remark 17. In Step 4, note that �Φ† can be written as

�Φ†(v) =
�
W �(v)W (v)

�−1
W �(v)

�
W (v)�Φ(v) + g†(v)

�

= �Φ(v) +
�
W �(v)W (v)

�−1
W �(v)g†(v),

where

g†(v) =
�
�†v, . . . , �

†
(N−1)T+v

��
=
�
��vη†v, . . . ,��(N−1)T+vη

†
(N−1)T+v

��
.

In what follows we show weak consistency of the wild bootstrap procedure for PAR sequences

formulated in Algorithm 7. We present this theorem in the same form as we did it in [46].

Theorem 15. Assume that a periodic autoregressive series XnT+v defined in (4.1) is causal

and has finite fourth moment. Then, the wild bootstrap procedure defined in Algorithm 7 is

weakly consistent in probability, i.e.

√
N(�Φ† − �Φ) P ∗

−→ N (0, R−1),
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where

R = Rφ (v1, v2) = E

�
∂��n

∂φk(v1)
·

∂��n
∂φl(v2)

�
, 1 ≤ v1, v2 ≤ T

and

���n =

�
�nT+1

σ1

,
�nT+2

σ2

, . . . ,
�nT+T

σT

�

and σv is the standard deviation of �nT+v for 1 ≤ v ≤ T.

Proof. The proof of Theorem 15 is analogous to the proof of Theorem 14 and boils down to

verifying conditions of Lyapunov’s central limit theorem.

5 Simulations

The purpose of these simulations is to analyze the performance of the residual and the wild

bootstrap for PAR processes. Firstly, we compare densities of
√
N(�Φ∗ − �Φ) and asymptotic

density of
√
N(�Φ−Φ). Secondly, we compare densities

√
N(�Φ†− �Φ) and asymptotic density

of
√
N(�Φ − Φ). Next, we compute actual coverage probabilities (ACP) for simulated PAR

sequences. We perform simulations for three different PAR(p) processes in order to show

that both methods work well for simple and more complicated models with different numbers

of periods and seasons. In the residual bootstrap procedure in the third step of Algorithm

6 we used the sample variance of the residuals obtained in the second step of Algorithm 6

since for simulations we assume that σ2
v are unknown (see Remarks 13). We consider the

following PAR models:

M1 PAR(1), T = 3, σ1 = 1, σ2 = 1, σ3 = 1, φ1(1) = 0.2, φ1(2) = 0.3, φ1(3) = 0.2,

M2 PAR(3), T = 3, σ1 = 1, σ2 = 1, σ3 = 1, φ1(1) = 0.2, φ2(1) = 0.1, φ3(1) = 0.05,

φ1(2) = 0.3, φ2(2) = 0.2, φ3(2) = 0.1, φ1(3) = 0.2, φ2(3) = 0.1, φ3(3) = 0.05,

M3 PAR(2), T = 2, σ1 = 1, σ2 = 2, φ1(1) = 0.2, φ2(1) = 0.1, φ1(2) = 0.3, φ2(2) = 0.2.

In our simulations we take 599 bootstrap repetitions. We observe that both bootstrap

methods work well for n = 100 and larger samples, below we illustrate the case when n = 300.

Our simulations revealed that the residual and the wild bootstrap methods struggle when

sample size n < 100. We show that the wild bootstrap method behaves worse than the

residual bootstrap when the samples are small, below we give an example for n = 30.

Figures 4.2-4.7 show that for all considered models tails of distributions are well estimated

(when applying the residual and the wild bootstrap procedures). We observe that especially
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for the residual bootstrap the centers of the distributions are not very well estimated, however

this problem occurs also when bootstrapping i.i.d. data.

When a sample is small (n = 30) the distributions are not well estimated (see Figures 4.8

and 4.9). Moreover, in this case we observe worse behaviour of the wild bootstrap method.

To determinate whether
√
N(�φ∗

k(v) − �φk(v)) and
√
N(�φ†

k(v) − �φk(v)) follow a normal

distribution we use the Lilliefors test. The received p-values for model M3 are gathered in

Table 4.7. One can see that the p-values are larger than the significance level, the decision is

to fail to reject the null hypothesis because we do not have enough evidence to conclude that

the data do not follow a normal distribution. The Lilliefors test confirm that the distribution

of considered statistics is approximately normal when n = 300, and we reject that hypothesis

when n = 30.

In our simulations we have considered 95% confidence intervals. The whole procedure

was repeated 500 times and the ACPs were calculated. Results gathered in Tables 4.1-4.3

show that the actual coverage probabilities for simulated PAR models with n = 300 are very

well estimated. The results for both bootstrap methods are very similar but in most of the

cases the ACP for all coefficients is closer to the nominal confidence level in the residual

bootstrap method, especially when sample size is small (see Table 4.1). For model M2,

where we estimate relatively many parameters and additionally number of cycles is smaller

comparing with model M1 or model M3 of the same size n = 300, the ACP is 3.8% lower

than the nominal confidence level for the wild bootstrap method for φ2(2) and 2.8% lower

than the nominal confidence level for residual bootstrap method for coefficient φ1(1). We

obtain similar result for φ3(3), this time ACPs are too large, but not larger by 2.8% than

the nominal level. However, obtained results for model M2 are still satisfactory.

6 Conclusion

In this chapter, we have formulated two bootstrap procedures for periodically autoregressive

time series. We have established a general limit results for bootstrap estimates of models’

coefficients. We have shown that the residual and the wild bootstrap methods for periodic

sequences is a natural generalization of bootstrap procedure for simple autoregressive pro-

cesses given in Lahiri [93]. Finally, we have illustrated our theoretical results by simulations.

The simulations confirmed the weak consistency of the residual and the wild bootstrap for

PAR sequences.
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(a) k = 1, v = 1 (b) k = 1, v = 2 (c) k = 1, v = 3

Figure 4.2: The residual bootstrap distribution (thick dashed lines:
√
N(�φ∗

k(v)− �φk(v)))

and the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v)−φk(v))) for

model M1 and sample size n = 300.

(a) k = 1, v = 1 (b) k = 1, v = 2 (c) k = 1, v = 3

Figure 4.3: The wild bootstrap distribution (thick dashed lines:
√
N(�φ†

k(v)− �φk(v))) and

the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v) − φk(v))) for

model M1 and sample size n = 300.
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(a) k = 1, v = 1 (b) k = 2, v = 1 (c) k = 3, v = 1

(d) k = 1, v = 2 (e) k = 2, v = 2 (f) k = 3, v = 2

(g) k = 1, v = 3 (h) k = 2, v = 3 (i) k = 3, v = 3

Figure 4.4: The residual bootstrap distribution (thick dashed lines:
√
N(�φ∗

k(v)− �φk(v)))

and the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v)−φk(v))) for

M2 and sample size n = 300.
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(a) k = 1, v = 1 (b) k = 2, v = 1 (c) k = 3, v = 1

(d) k = 1, v = 2 (e) k = 2, v = 2 (f) k = 3, v = 2

(g) k = 1, v = 3 (h) k = 2, v = 3 (i) k = 3, v = 3

Figure 4.5: The wild bootstrap distribution (thick dashed lines:
√
N(�φ†

k(v)− �φk(v))) and

the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v)−φk(v))) for M2

and sample size n = 300.

110



(a) k = 1, v = 1 (b) k = 2, v = 1

(c) k = 1, v = 2 (d) k = 2, v = 2

Figure 4.6: The residual bootstrap distribution (thick dashed lines:
√
N(�φ∗

k(v)− �φk(v)))

and the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v)−φk(v))) for

model M3 and sample size n = 300.

(a) k = 1, v = 1 (b) k = 2, v = 1

(c) k = 1, v = 2 (d) k = 2, v = 2

Figure 4.7: The wild bootstrap distribution (thick dashed lines:
√
N(�φ†

k(v)− �φk(v))) and

the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v) − φk(v))) for

model M3 and sample size n = 300.
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(a) k = 1, v = 1 (b) k = 2, v = 1

(c) k = 1, v = 2 (d) k = 2, v = 2

Figure 4.8: The residual bootstrap distribution (thick dashed lines:
√
N(�φ∗

k(v)− �φk(v)))

and the least squares estimators asymptotic distribution (thin lines:
√
N(�φk(v)−φk(v))) for

model M3 and sample size n = 30.

(a) k = 1, v = 1 (b) k = 2, v = 1

(c) k = 1, v = 2 (d) k = 2, v = 2

Figure 4.9: The wild bootstrap (thick dashed lines:
√
N(�φ†

k(v) − �φk(v))) and the least

squares estimators asymptotic distribution (thin lines:
√
N(�φk(v) − φk(v))) for model M3

and sample size n = 30.
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ACP

Model M1

bootstrap n φ1(1) φ2(1) φ3(1)

residual 300 94.0% 95.0% 96.8%

wild 300 93.8% 94.6% 95.8%

Table 4.1: Actual coverage probabilities for model M1. Rows 4 and 5 contain results for the

residual and the wild bootstrap, respectively. For both methods ACPs when sample sizes

n = 300 are presented.

ACP

Model M2

bootstrap n φ1(1) φ2(1) φ3(1) φ1(2) φ2(2) φ3(2) φ1(3) φ3(3) φ3(3)

residual 300 92.2% 93.8% 92.8% 93.2% 92.6% 93.2% 92.2% 97.8% 95.4%

wild 300 91.6% 94.0% 92.6% 93.6% 91.2% 92.2% 92.4% 97.0% 94.2%

Table 4.2: Actual coverage probabilities for model M2. Rows 4 and 5 contain results for the

residual and the wild bootstrap, respectively. For both methods ACPs when sample sizes

n = 300 are presented.

ACP

Model M3

bootstrap n φ1(1) φ2(1) φ1(2) φ2(2)

residual
30 85.8% 86.0% 87.4% 92.8%

300 95.0% 92.2% 94.0% 94.8%

wild
30 85.4% 83.6% 85.4% 84.0%

300 95.0% 92.8% 93.2% 94.0%

Table 4.3: Actual coverage probabilities for model M3. Rows 4-5 and 6-7 contain results for

the residual and the wild bootstrap, respectively. For both methods ACPs for two sample

sizes n = 30 and n = 300 are presented.
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average lengths of CI

ModelM1

bootstrap n φ1(1) φ2(1) φ3(1)

residual 300 0.38057 0.38084 0.37138

wild 300 0.38456 0.38297 0.37376

Table 4.4: Average lengths of confidence intervals for model M1. Rows 4 and 5 contain

results for the residual and the wild bootstrap, respectively. For both methods the average

lengths of confidence intervals when sample sizes n = 300 are presented.

average lengths of CI

Model M2

bootstrap n φ1(1) φ2(1) φ3(1) φ1(2) φ2(2) φ3(2) φ1(3) φ3(3) φ3(3)

residual 300 0.38665 0.39142 0.38653 0.38419 0.39462 0.40491 0.39923 0.36842 0.39067

wild 300 0.38390 0.39003 0.38654 0.38650 0.39608 0.40737 0.39400 0.36586 0.38926

Table 4.5: Average lengths of confidence intervals for model M2. Rows 4 and 5 contain

results for the residual and the wild bootstrap, respectively. For both methods the average

lengths of confidence intervals when sample sizes n = 300 are presented.

average lengths of CI

Model M3

bootstrap n φ1(1) φ2(1) φ1(2) φ2(2)

residual
30 0.47100 1.94341 0.86581 0.95234

300 0.15566 0.63470 0.29701 0.33056

wild
30 0.48486 1.97151 0.85201 0.91483

300 0.15580 0.63781 0.29656 0.32909

Table 4.6: Average lengths of confidence intervals for model M3. Rows 4-5 and 6-7 contain

results for the residual and the wild bootstrap, respectively. For both methods the average

lengths of confidence intervals for two sample sizes n = 30 and n = 300 are presented.
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p-values of normality test

Model M3

bootstrap n φ1(1) φ2(1) φ1(2) φ2(2)

residual
30 0.0138 0.5276 0.1332 0.0312

300 0.4796 0.1746 0.9999 0.5738

wild
30 0.5314 0.8883 0.5915 0.7716

300 0.8925 0.0899 0.5294 0.9267

Table 4.7: p-values of the Lilliefors test that determinate normality of
√
N(�φ∗

k(v) − �φk(v))

and
√
N(�φ†

k(v)− �φk(v)) for model M3.
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Chapter 5

Maximal concentration inequalities

for regenerative and Harris recurrent

Markov chains

The purpose of this chapter is to present Bernstein’s, Hoeffding’s and polynomial tail func-

tional inequalities for regenerative Markov chains. Furthermore, we generalize these results

and establish exponential and polynomial bounds for suprema of empirical processes over a

class of functions F which size is controlled by its uniform entropy number. All constants

involved in the bounds of the considered inequalities are given in an explicit form which can

be advantageous in practical considerations. Finally, we establish bound of the expectation

of the supremum of an empirical process in a Markovian setting.

This chapter gathers material presented in [22]; and partially [23] and [24]. Some additional

remarks and explanations are added in order to make this exposition more comprehensive.

1 Preliminaries

Tail inequalities are a powerful tool that allows to control the probability that a random vari-

able X exceeds some prescribed value t. They have been extensively investigated by many

researchers due to the fact that they are a crucial step in deriving many results in numerous

fields such as statistics, learning theory, discrete mathematics, statistical mechanics, inform-

ation theory or convex geometry. There is a vast literature that provides a comprehensive

overview of the theory of tail inequalities in the i.i.d. setting. We direct an interested reader

to the classical books regarding this topic [15], [37] and [141].

In this thesis we are interested in exponential type tail inequalities. Such results are
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important when studying limit results such as central limit theorems and law of iterated

logarithm (refer to [15] for details). Exponential rate is also desired when considering conver-

gence rates in probability. In this thesis, as mentioned in Chapter 1, we focus on applications

of those probabilistic results to statistical learning theory. There is plenty of exponential

results such as Bennet, Bernstein, Hoeffding, Prohov or Petrov type exponential inequalities

to name just a few (see [15] and [118]). In this thesis we focus on studying Bernstein and

Hoeffding type inequalities. For completeness of exposition the aforementioned bounds in the

i.i.d. framework are provided. Firstly, we recall Hoeffding’s inequality that was established

in [79].

Theorem 16 (Hoeffding’s inequality). Let X1, X2, · · · , Xn be independent random variables

such that ai ≤ Xi ≤ bi (i = 1, · · · , n), then for t > 0

P

������

n�

i=1

(Xi − EXi)

����� ≥ t

�
≤ 2 exp

�
− 2t2�n

i=1(bi − ai)2

�
.

In what follows, we provide Bernstein’s inequality which can be applied to unbounded

random variables ( see [37]).

Theorem 17 (Bernstein’s inequality). Let X1, · · · , Xn be independent random variables such

that, for all integers p ≥ 2, there exists σ2
l such that

E|Xl|
p ≤ p!Rp−2σ2

l /2 for all l ∈ {1, · · · , n}.

Then, for all t > 0,

P

������

n�

i=1

(Xl − EXl)

����� ≥ t

�
≤ 2 exp

�
− t2

2(σ2 +Rt)

�
,

where σ2 =
�n

l=1 σ
2
l .

In this thesis we also investigate tail inequalities in the case when the random variables

X1, · · · , Xn do not possess exponential moments. We are particularly interested in the

Rosenthal type inequalities which essentially require the finiteness of moments E|Xk|
p. For

the reader’s convenience Rosenthal’s inequality for independent random variables is recalled

below (see Theorem 2.9 in [118]).

Theorem 18 (Rosenthal’s inequality). Let X1, · · · , Xn be independent and centered random

variables and assume that E|Xi|
p < ∞ for all p ≥ 2. Then,

E

������

n�

i=1

Xi

�����

�p

≤ cp




n�

i=1

E|Xi|
p +

�
n�

i=1

EX2
i

�p/2



for constant cp = max
�
pp, pp/2+1ep

�∞
0

xp/2−1(1− x)−pdx
�
.
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The proof of the above theorem can be found in [118]. Below we provide a slight modifica-

tion of original Rosenthal’s inequality for i.i.d. random variables. We provide the polynomial

tail inequality in the similar form as in Theorem 2.10 in [118].

Corollary 1 (Polynomial tail inequality). Let X1, · · · , Xn be i.i.d. and centered random

variables and assume that E|Xi|
p < ∞ for all p ≥ 2. Then,

P

������
1

n

n�

i=1

Xi

����� ≥ x

�
≤ Cp E|X1|

p

xpnp/2

for constant Cp = 2max
�
pp, pp/2+1ep

�∞
0

xp/2−1(1− x)−pdx
�
.

Proof. A proof of Corollary 1 can be deduced from the proof of Theorem 2.10 in [118].

Indeed, one can observe that

�
n�

i=1

E[Xi]
2

�p/2

≤
n�

i=1

E[Xi]
p

and constant Cp = 2max
�
pp, pp/2+1ep

�∞
0

xp/2−1(1− x)−pdx
�
. A reader is directed to the

proof of Theorem 2.10 in [118] for details.

In this thesis we are interested in maximal versions of Bernstein’s, Hoeffding’s and poly-

nomial tail inequalities. When establishing tail bounds for suprema of empirical processes

over a class of functions F , one needs to control the size of F . In this framework we measure

the complexity of F via covering number and uniform entropy number. We briefly recall

that covering number Np(�, Q,F) is interpreted as the minimal number of balls

{g : �g − f�Lp(Q) < �}

of radius � needed to cover F in the norm Lp(Q) and Q is a discrete probability measure.

Moreover, uniform entropy number is defined as

Np(�,F) = sup
Q

Np(�, Q,F),

where the supremum is taken over all discrete probability measures Q. Refer to [87] and [141]

to learn more about the properties of the aforementioned quantities.

In this chapter we also study bounds for expectation of suprema of empirical processes

over classes of functions F whose size is controlled via covering and uniform entropy number.

Such bounds are particularly useful when one wants to select a model via some penalization

criterion with penalty term depending on a complexity of the whole collection of models.

We recall below a result for the i.i.d. processes proposed in [70] (see Theorem 3.1 therein).
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Theorem 19. Assume that F has an envelope F < 1. Suppose further that

logN2(�, Q,F) ≤ H(�F�L2(Q)/�)

for some non-decreasing function H independent of Q and fulfilling some mild conditions.

Let X1, · · · , Xn be a sequence of i.i.d. random variables with an arbitrary distribution P.

Then we have

E

�
sup
f∈F

�����

n�

i=1

f(Xi)− Ef(Xi)

�����

�
≤ C(H)

�
σ
�

nH(2σ−1�F�L2(P)) +H(2σ−1�F�L2(P))
�
,

where C(H) > 0 is a constant depending on H and σ ∈ (0, 1] is such that

sup
f∈F

V ar(f(X1)) ≤ σ2.

The wealth of possible applications of tail inequalities has naturally led to development

of this theory in a dependent setting.

Remark 18. We emphasize that when deriving tail inequalities for Markov chains (or any

other process with some dependence structure) one can not expect to recover fully the

classical results from the i.i.d. case. The goal is then to get some counterparts of the

inequalities for i.i.d. random variables with some extra terms that appear in the bound as

a consequence of a Markovian structure of the considered process.

In the recent years such (non-)asymptotic results have been obtained for Markov chains

via many approaches: martingale arguments (see [74], where Hoeffding’s inequality for uni-

formly ergodic Markov chains has been presented), coupling techniques (see [41] and [53]).

In fact, it is proved in [53] that Hoeffding’s inequality holds when a Markov chain is geo-

metrically ergodic and thus weakened the assumptions imposed on the Markov chain in [74].

Winterberger [148] has generalized the result in [53] by showing that Hoeffding’s inequal-

ity is also valid for unbounded functions of geometrically ergodic Markov chains provided

that the sum is correctly self-normalized. Paulin [114] has presented McDiarmid’s inequality

for Markov chains using Merton coupling and spectral methods. Adamczak [1], Adamczak

and Bednorz [2], Clémençon [47] and Bertail and Clémençon [28] have obtained exponential

inequalities for ergodic Markov chains via regenerative techniques.

There is a fair amount of results generalizing Rosenthal type bound from the independent

setting to dependent case. Shao [129] established Rosenthal bound for ρ−mixing processes,

Peligrad [115] and Utev [139] obtained the extensions for φ−mixing sequences, Viennet [146]

studied the case when processes are β−mixing. Merlevède and Peligrad [105] established
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Rosenthal type bound for stationary sequences including martingales (see also the aforemen-

tioned work for more exhaustive literature review). To the best of our knowledge there is

no Rosenthal type inequalities for Markov chains obtained via regenerative techniques that

precede our work presented in [23] and [24].

Most of the existing bounds for expected value of supremum of empirical process are

obtained for Gaussian or sub-Gaussian processes (see [37], Chapter 13 for an extensive over-

view). Baraud [16] provided an upper bound for the expectation of supremum of the em-

pirical process over elements of class F having a small variance. This result can be applied

when F is a VC subgraph or a VC major class (see [16] for more details). The bound involves

explicit constants and it is not expressed in terms of entropy of F . Ready to use result was

obtained in [97], where a bound for more general class of empirical processes admitting weak

moment conditions imposed of functions that belong to F is derived.

We point out that the upper bounds for tail inequalities and the bound for expectation

of suprema of empirical processes in a Markovian setting presented in this thesis depend on

many parameters (which are fairly easy to estimate/compute) such as moments of return

times to (pseudo-)atom A, moments of length of blocks, etc. We present them in a detailed

form in the subsequent sections. However, to give a reader a general overview of obtained

results we provide the bounds in a general (and somewhat simplified) form below. The

detailed conditions imposed on chain X are omitted here and stated in further sections.

For the sake of simplicity we provide the results solely in the atomic regenerative case (we

formulate the inequalities for Harris recurrent Markov chains in further sections). Let σ2
m =

maxf∈F σ2(f) > η > 0.

• Bernstein type maximal inequality Assume that N1(�,F) < ∞. Then, under

exponential block moment conditions and exponential moments of return times to

set A, we have for any x > 0, 0 < � < x/2 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)K1

�
exp

� −n(x− 2�)2

K2 (σ2
m +K3(x− 2�))

��
,

where K1, K2 and K3 are positive parameters specified later in this chapter.

• Hoeffding type maximal inequality Assume that N1(�,F) < ∞. Suppose further

that the class of functions F is uniformly bounded. Then, under exponential block

moment conditions and exponential moments of return times to set A, we have for any

x > 0, 0 < � < x/2 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)L1

�
exp

�
−n(x− 2�)2

L2D2

��
,
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where D is a constant such that ∀f ∈ F |f | < D and L1 and L2 are positive parameters

specified later in this chapter.

• Polynomial tail maximal inequality Assume that N1(�,F) < ∞. Suppose further

that the p−th block moment and p-th moment of return times to the atom A are finite.

Then, we have for any x > 0, 0 < � < x/2 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ C1

N1 (�,F)

(x− 2�)pnp/2

and C1 is a positive parameter specified later in this chapter.

• Bound for expectation of supremum of empirical processes Assume that

EA[l(B1)]
2 < ∞ and EA [F (B1)]

2 < ∞,

where F is an envelope for F .Moreover, suppose that uniform entropy numberN1

�
�
R1
,F

�
<

∞. Then, for any � > 0 we have

EA

�
sup
f∈F

�����
1

n

ln�

i=1

(f(Bi)− µ(f(B1)))

�����

�

≤ R2


�+N

�
�

R1

,F

�
× EA[F (B1)

2]1/2

����2logN1

�
�
R1
,F

�

n


 ,

where R1 and R2 are positive constants that can be explicitly computed.

Remark 19. We indicated many times that our results are tailor-made for statistical learn-

ing applications (see next chapter). However, we want to emphasize that the above bounds

stand on their own and can be used in other statistical problems.

All our results rely heavily on Montgomery-Smith’s inequality. For the reader’s conveni-

ence we provide Theorem 1.1.5 from [52] (page 6 therein) below (see also [108]).

Theorem 20 (Montgomery-Smith’s (1993) inequality). If Xi, i ∈ N are independent and

identically distributed random variables, then for 1 ≤ k ≤ n < ∞ and all t > 0 we have

P

�
max
1≤k≤n

�
k�

i=1

Xi� > t

�
≤ 9P

�
�

n�

i=1

Xi� > t/30

�
.

Montgomery-Smith’s inequality is particularly useful when dealing with random number

of blocks ln.
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2 Bernstein and Hoeffding type deviation inequalities

for Markov chains

In this section we firstly present simple tail inequalities for atomic regenerative Markov

chains. We rely on the following decomposition of the sum
�n

i=1 f(Xi) :

n�

i=1

f(Xi) =
ln�

i=1

f(Bi) +Δn,

where

Δn =

τA�

i=1

f(Xi) +
n�

i=τA(ln−1)

f(Xi).

Furthermore, recall that

σ2(f) =
1

EA(τA)
EA

�
τA�

i=1

{f(Xi)− µ(f)}

�2

is the asymptotic variance.

2.1 Bernstein and Hoeffding type bounds for atomic regenerative

Markov chains

In the following, we denote f̄(x) = f(x)− µ(f). Moreover, we write respectively

f̄(B1) =

τA�

i=1

f̄(Xi) and |f̄ |(B1) =

τA�

i=1

|f̄ |(Xi).

We will work under following conditions.

A1. (Bernstein’s block moment condition) There exists a positive constant M1 such that

for any p ≥ 2 and for every f ∈ F

EA

��f̄(B1)
��p ≤ 1

2
p!σ2(f)Mp−2

1 . (5.1)

A2. (Non-regenerative block exponential moment assumption) There exists λ0 > 0 such

that for every f ∈ F we have

Eν

�
exp

�
λ0

�����

τA�

i=1

f̄(Xi)

�����

��
< ∞.
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A3. (Exponential block moment assumption) There exists λ1 > 0 such that for every f ∈ F

we have

EA

�
exp

�
λ1

��f̄
�� (B1)

��
< ∞.

Remark 20. Observe that assumption A1 implies the existence of an exponential moment

of f̄(B1) :

EA

�
exp(λf̄(B1))

�
≤ exp

�
λ2/2

1−M1|λ|

�
for all λ <

1

M1

.

In what follows, we present two Bernstein type inequalities for Markov chains. Both results

has been established in [22]. The crucial tool to obtain the bounds is Montgomery-Smith’s

inequality (see Theorem 20) which results in larger constants comparing to the i.i.d. setting.

Before we state the theorems, we will give a short discussion on already existing results

for exponential inequalities for Markov chains.

Remarks 21. Since there is plenty of results concerning exponential inequalities for Markov

chains under many assumptions, it may be difficult to compare their strength (measured by

assumptions imposed on the chain) and applicability. Thus, before we present the proofs of

Theorem 22 and Theorem 23 , we make a short comparison of our result to already existing

inequalities for Markov chains. We also strongly recommend seeing an exhaustive overview

on the recent results of that type in [2].

1. The bounds obtained in this paper are related to the Fuk and Nagaev sharp bound in-

equality obtained in [28] which is based on the regenerative properties and decomposition

of the chain. However, our techniques of proof differ and allow us to obtain a better

rate in the main sub-Gaussian part of the inequality under the hypotheses. The proofs

of the inequalities are simplified and do not require the partitioning arguments which

were used in [28].

2. It is noteworthy that we do not impose stationarity condition of the considered Markov

chain as in [41] and [53] or any restrictions on the starting point of the chain as in

[53]. Moreover, Adamczak and Bednorz [2] use the assumption of strong aperiodicity

for Harris Markov chain. We state a remark that this condition can be relaxed and we

can only assume that Harris Markov chain is aperiodic (see Remark 29).

3. Many results concerning exponential inequalities for Markov chains are established for

bounded functions f (see for instance [1], [47] and [53]). Our inequalities work for

unbounded functions satisfying Bernstein’s block moment condition. Adamczak and

Bednorz [2] established exponential bound in case when f is unbounded, however our
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bounds allow faster rate of growth of functions from F . More specifically, Adamczak

and Bednorz [2] expressed the condition on the growth of the function f in terms of

drift function. This condition is very strict (even simple AR(1) model does not satisfy

it). Moreover, all terms involved in our inequalities are given by explicit formulas.

Thus, the results can be directly used in practical considerations. Note also that all the

constants are given in simple, easy to interpret form and they do not depend on other

underlying parameters.

4. Winterberger [148] has established exponential inequalities in unbounded case extending

the result of [53] to the case when the chain can start from any x ∈ E. However, the

constant involved in the bound of the Theorem 2.1 in [148] (obtained for bounded and

unbounded functions) is very large.

5. As indicated in [1], there are many exponential inequalities that satisfy spectral gaps

(see for instance [65] and [99]). Spectral gap inequalities allow to recover Bernstein

type inequality at its full strength. We need to mention that the geometric ergodicity

assumption does not ensure in the non-reversible case that considered Markov chains

admit a spectral gap (see Theorem 1.4 in [86]).

In what follows we present our Bernstein type inequality for Markov chains in the same

form as in [22].

Theorem 22. Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain.

Then, under assumptions A1− A3, we have for any x > 0 and for all n ≥ 1

Pν

������

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ 18 exp

�
− x2

2× 902 (nσ2(f) +M1x/90)

�

+ C1 exp

�
−λ0x

3

�
+ C2 exp

�
−λ1x

3

�
,

where

C1 = Eν

�
exp

�����λ0

τA�

i=1

f̄(Xi)

�����

�
and C2 = EA

�
exp[λ1

��f̄
�� (B1)]

�
.

Remark 21. Observe that we do not impose a moment condition on EA[τA]
p < ∞ for

p ≥ 2. At the first glance, this might be surprising since one usually assumes the existence of

EA[τA]
2 < ∞ when proving central limit theorem for regenerative Markov chains. A simple

analysis of the proof of the central limit theorem in a Markovian case (see for instance [106])

reveals that it is sufficient to require only EA[τA] < ∞ when we consider centered function

f̄ instead of f.
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Proof. Firstly, we consider the sum of random variables of the following form

Zn(f̄) =
ln�

i=1

f̄(Bj). (5.2)

Furthermore, we have that

Sn(f̄) = Zn(f̄) +Δn(f̄).

Next, recall that ln is random and correlated with blocks itself. In order to apply Bernstein’s

inequality for the i.i.d. random variables we apply Montgomery-Smith’s inequality (see

Theorem 20) . It follows easily that

PA

������

ln�

i=1

f̄(Bi)

����� ≥ x/3

�
≤ PA

�
max
1≤k≤n

�����

k�

i=1

f̄(Bi)

����� ≥ x/3

�
≤ 9PA

������

n�

i=1

f̄(Bi)

����� ≥ x/90

�

and under Bernstein’s condition A1 we obtain

PA

������

n�

i=1

f̄(Bi)

����� ≥ x/90

�
≤ 2 exp

�
− x2

2× 902 (M1x/90 + nσ2(f))

�
.

Next, we want to control the remainder term Δn.

Δn =

τA�

i=1

f̄(Xi) +
n�

i=τA(ln−1)

f̄(Xi).

The control of Δn is simply guaranteed by Markov’s inequality, i.e.

Pν

������

τA�

i=1

f̄(Xi)

����� ≥
x

3

�
≤ Eν

�
exp

�����λ0

τA�

i=1

f̄(Xi)

�����

�
exp

�
−λ0x

3

�
.

We deal similarly with the last term of Δn. We complement the data 1 + τA(ln) + 1 by

observations up to the next regeneration time 1 + τA(ln + 1) and obtain

Pν



������

n�

i=1+τA(ln)+1

f̄(Xi)

������
≥ x

3


 ≤ Pν




n�

i=1+τA(ln)+1

��f̄
�� (Xi) ≥

x

3




≤ Pν




1+τA(ln+1)�

i=1+τA(ln)+1

��f̄
�� (Xi) ≥

x

3




≤ EA

�
exp[λ1

��f̄
�� (B1)]

�
exp

�
−λ1x

3

�
.
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It is noteworthy that although Montgomery-Smith’s inequality allows to obtain easily

Bernstein’s bound for Markov chains, the constants are rather large. Interestingly, under an

additional assumption on EA[τA]
p we can obtain Bernstein type inequality for regenerative

Markov chains with much smaller constants for the dominating counterpart of the bound.

A4. (Block length moment assumption) There exists a positive constant M2 such that for

any p ≥ 2

EA[τA]
p ≤ p!Mp−2

2 EA[τ
2
A] and Eν [τA]

p ≤ p!Mp−2
2 Eν [τ

2
A].

Before we formulate Bernstein’s inequality for regenerative Markov chains we introduce a

lemma which provides a bound for tail probability of
√
n
�

ln
n
− 1

EA[τA]

�
which will be crucial

for the proof of Bernstein’s bound but also may be of independent interest.

Lemma 1. Suppose that condition A4 holds. Then

Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
≥ x

�

is bounded by

exp


−1

2

(EA[τA]x
√
n− 2EA[τA])

2

�
Eντ

2
A + ( n

EA[τA]
+ x

√
n)EAτ

2
A

�
+ (EA[τA]x

√
n+ EντA)M2

�
Eντ

2
A + ( n

EA[τA]
+ x

√
n)EAτ

2
A

�1/2


 .

Remark 22. Note that when n → ∞, the dominating part in the exponential term is of

order

1

2

EA[τA]
2x2

EAτ
2
A/EA[τA] + EA[τA]1/2xM2 (EAτ

2
A)

1/2
+O(n−1/2)

=
1

2

EA[τA]
2x2

EAτ
2
A/EA[τA](1 + EA[τA]xM2 (EAτ

2
A/EA[τA])

−1/2
)
+O(n−1/2)

=
1

2

(EA[τA]x)
2/ (EAτ

2
A/EA[τA])

(1 + EA[τA]xM2 (EAτ
2
A/EA[τA])

−1/2
)
+O(n−1/2),

thus we have a Gaussian tail with the right variance for moderate x and an exponential tail

for large x and, in consequence, the constants are asymptotically optimal.

Proof of Lemma 1. Let τk be the time of the k-th visit to the atom A (S×{1} in the general

case).
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In the following we make use of the argument from [53] and observe that we have for any

k ≤ n

Pν(ln ≥ k) = Pν(τk ≤ n) = Pν(
k�

i=1

Δτk ≤ n)

= P((Δτ1 − EντA) +
k�

i=2

(Δτi − α) ≤ n− (k − 1)α− EντA).

It follows that if x >
√
n(1− α−1) (α = EAτA), then

Pν

�
n1/2

�
ln
n
− 1

α

�
≥ x

�
= 0

and if 0 < x ≤ √
n(1− α−1), then

Pν

�
n1/2

�
ln
n
− 1

α

�
≥ x

�
= Pν

�
ln ≥ n

α
+ x

√
n
�

≤ Pν

�
ln ≥

�n
α
+ x

√
n
��

≤ P((Δτ1 − EντA) +

[n
α
+x

√
n]�

i=2

(Δτi − α) ≤ n− ([
n

α
+ x

√
n]− 1)α− EντA),

where [.] is the integer part.

Since n
α
+ x

√
n− 1 ≤ [n

α
+ x

√
n] ≤ n

α
+ x

√
n, we get

n− ([
n

α
+ x

√
n]− 1)α− EντA) ≤ n− (

n

α
+ x

√
n− 2)α− EντA

= −αx
√
n+ 2α− EντA.

It follows that

Pν

�
n1/2

�
ln
n
− 1

α

�
≥ x

�
≤ P

�
(Δτ1 − EντA) +

�[n
α
+x

√
n]

i=2 (Δτi − α) ≤ −αx
√
n+ 2α− EντA

�
,

where [.] is the integer part

Now, we can apply any Bennett’s or Bernstein’s inequality on these centered i.i.d. random

variables to get an exponential bound. This can be done since we assumed A4. Note that

other bounds (polynomial for instance) can be obtained under appropriate modifications

of A4. In our case we get

P((Δτ1 − EντA) +

[n
α
+x

√
n]�

i=2

(Δτi − α) ≤ −αx
√
n+ 2α− EντA)

≤ exp

�
−

1
2
(αx

√
n− 2α + Eντ

2
A)/S

2
n

1 + (αx
√
n− 2α + EντA)M2/Sn

�
,
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where

S2
n = Eντ

2
A + ([

n

α
+ x

√
n]− 1)EAτ

2
A.

The above bound can be reduced to

exp

�
−1

2

(αx
√
n− 2α)2

�
Eντ

2
A + (n

α
+ x

√
n)EAτ

2
A

�
+ (αx

√
n+ EντA)M2

�
Eντ

2
A + (n

α
+ x

√
n)EAτ

2
A

�1/2

�
.

In what follows we present an alternative Bernstein type inequality for regenerative

Markov chains, where under additional condition on the length of the blocks we can ob-

tain much better inequality in terms of constants.

Theorem 23. Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain.

Then, under assumptions A1-A4 we have for any a > 0, any x > 0, any N > 0 and for all

n ≥ 1 that

Pν

������

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ 2 exp


 −x2

2× 32(1 + a)2
��

n
EA[τA]

�
σ2(f) + M1

3
x

1+a

�




+ 18 exp

�
−a2x2

2× 902(1 + a)2
�
N
√
nσ2(f) + M1

90
ax
1+a

�
�

+ Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
> N

�
+ C1 exp

�
−λ0x

3

�
+ C2 exp

�
−λ1x

3

�
, (5.3)

where

C1 = Eν

�
exp

�����λ0

τA�

i=1

f̄(Xi)

�����

�
and C2 = EA

�
exp[λ1

��f̄
�� (B1)]

�
.

Remark 23. In the proof of Theorem 23 we are interested in bounding for some t > 0

the probability

PA




�������

max(
�

n
EA[τA]

�
, ln)�

i=min(
�

n
EA[τA]

�
, ln)

f̄(Bi)

�������
≥ t


 .

We control this quantity by using truncation argument for the total number of regenera-

tion times ln, i.e. for some N > 0 we cut
√
n
�
ln
n
− 1

EA[τA]

�
≤ N. The magnitude of N

(we want it to be relatively small) is significant since it appears in the final bound for
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Pν [|
�n

i=1 f(Xi)− µ(f)| ≥ x] . Observe that if we choose N = log(n), then by Lemma 1 we

can see that

Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
≥ log(n)

�
= o

�
1

n

�

and in that case the second term in (5.3) remains small uniformly in x.

Proof. We start by the obvious observation that

Pν

������

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ PA

������

ln�

i=1

f̄(Bi)

����� ≥ x/3

�

+ Pν

������

τA�

i=1

f̄(Xi)

����� ≥ x/3

�
+ PA



������

n�

i=τA(ln−1)

f̄(Xi)

������
≥ x/3


 . (5.4)

Remark 24. Note that instead of dividing x by 3 in (5.4), one can use a different splitting

to improve a little bit the final constants.

The bounds for the first and the last non-regenerative blocks can be handled the same

way as in Theorem 22. Next, we observe that, for any a > 0, we have

PA

������

ln�

i=1

f̄(Bi)

����� ≥ x/3

�
≤ PA




�������

�
n

EA[τA]

�

�

i=1

f̄(Bi)

�������
≥ x

3(1 + a)


+ PA



������

ln2�

i=ln1

f̄(Bi)

������
≥ ax

3(1 + a)


 ,

where ln1 = min(
�

n
EA[τA]

�
, ln) and ln2 = max(

�
n

EA[τA]

�
, ln). We observe that

�
�

n
EA[τA]

�

i=1 f̄(Bi)

is a sum of independent, identically distributed and sub-exponential random variables. Thus,

we can directly apply Bernstein’s bound and obtain

PA




�������

�
n

EA[τA]

�

�

i=1

f̄(Bi)

�������
≥ x

3(1 + a)


 ≤ 2 exp


 −x2

2× 32(1 + a)2
��

n
EA[τA]

�
σ2(f) +M1x/3(1 + a)

�


 .

(5.5)

The control of
�ln2

ln1
f̄(Bi) is slightly more challenging due to the fact that ln is random

and correlated with the blocks itself. In what follows, we will rely on Montgomery-Smith’s

inequality. Notice however, that since we expect the number of terms in this sum to be at

most of the order
√
n, this term will be much smaller than the leading term (5.5) and will
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be asymptotically negligible. We have

PA



������

ln2�

i=ln1

f̄(Bi)

������
≥ ax

3(1 + a)


 ≤ PA



������

ln2�

i=ln1

f̄(Bi)

������
≥ ax

3(1 + a)
,
√
n

�
ln
n
− 1

EA[τA]

�
≤ N




+ Pν

�√
n

�
ln
n
− 1

EA[τA]

�
> N

�
= I + II. (5.6)

Firstly, we will bound term I in (5.6) using Montgomery-Smith’s inequality and the fact

that if √
n

�
ln
n
− 1

EA[τA]

�
≤ N, then ln2 − ln1 ≤

√
nN.

Note that it is sufficient to consider just the case when
�

n
EA[τA]

�
< ln. In what follows we rely

on the following observation

ln = sup{s :
s�

i=1

l(Bi) ≤ n}.

Thus,

PA



������

ln2�

i=ln1

f̄(Bi)
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≥ ax

3(1 + a)
,
√
n

�
ln
n
− 1

EA[τA]

�
≤ N




=

N
√
n�

k=1

PA




�������

�
n
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�
+k�
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�

n
EA[τA]

�
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≥ ax

3(1 + a)
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�
n
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�
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=

N
√
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k=1
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ax

3(1 + a)
,

�
n
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�
+k�

i=1

l(Bi) ≤ n <

�
n

EA[τA]

�
+k+1�

i=1

l(Bi)
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and by exchangeability of the blocks we have

N
√
n�

k=1

PA



�����
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i=1

f̄(Bi)
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ax

3(1 + a)
,

�
n
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�
n

EA[τA]

�
+k+1�

i=1

l(Bi)




=

N
√
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k=1
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ax

3(1 + a)
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�
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�
+ k
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=

N
√
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�
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�������
≥ ax

3(1 + a)
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≥ ax
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, ln −

�
n
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�
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√
n


 .

Now, we use Montgomery-Smith’s inequality and obtain

PA
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ln−
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n
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i=1

f̄(Bi)
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≥ ax

3(1 + a)
, ln −

�
n

EA[τA]

�
≤ N

√
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= PA

�
max

1≤k≤N
√
n

�����

k�

i=1

f̄(Bi)

����� ≥
ax

3(1 + a)

�

≤ 9PA



������

N
√
n�

i=1

f̄(Bi)
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≥ ax

90(1 + a)




≤ 18 exp

�
−a2x2

2× 902(1 + a)2
�
N
√
nσ2(f) + M1

90
ax
1+a

�
�
.

Lemma 1 allows to control term II.

Remark 25. The use of Montgomery-Smith’s inequality is generating much larger constants

when comparing to the i.i.d. case (however, our bounds preserve the same rates as in the i.i.d.

setting in terms of n). We do believe that one can use different technique to deal with the

random number of blocks ln to obtain smaller constants in the final bound and simultaneously

keep the i.i.d. rates. Moreover, there should be emphasized that using Lemma 1, the large

constants appear only in front of terms which are nonetheless asymptotically negligible.
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2.2 Maximal concentration inequalities under uniform entropy

In this section we present maximal versions of Bernstein and Hoeffding type inequalities for

atomic regenerative Markov chains. We control the size of class F via covering and uniform

entropy numbers.

In what follows, we state assumptions on the size of considered class of functions F .

Rather than considering assumptions A2 and A3, we impose the conditions on the first and

the last non-regenerative blocks for an envelope F of F .

A2�. (Non-regenerative block exponential moment assumption) There exists λ0 > 0 such

that

Eν

�
exp

�
2λ0

�����

τA�

i=1

F̄ (Xi)

�����

��
< ∞.

A3�. (Exponential block moment assumption) There exists λ1 > 0 such that

EA

�
exp

�
2λ1

��F̄
�� (B1)

��
< ∞.

A5. (Uniform entropy number condition) N1(�,F) < ∞.

Remark 26. Assumption A5 is a typical condition imposed on class F in empirical processes

theory. This assumption is fulfilled by many classes of functions, for instance Besov or

Sobolev type (see [141] for details).

Before we present Bernstein concentration type inequality for unbounded classes of functions,

we introduce one more piece of notation. Let

σ2
m = max

f∈F
σ2(f) > η > 0.

Theorem 24. Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain.

Then, under assumptions A1, A2�, A3� and A5 and for any x > 0, 0 < � < x/2 and for all

n ≥ 1 we have

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)

�
18 exp

�
− (x− 2�)2n

2× 902 (σ2
m +M1(x− 2�)/90)

�

+C1 exp

�
−λ0(x− 2�)n

3

�
+ C2 exp

�
−λ1(x− 2�)n

3

��
, (5.7)

where

C1 = Eν

�
exp

�����2λ0

τA�

i=1

F (Xi)

�����

�
and C2 = EA [exp[2λ1 |F | (B1)]]

and F is an envelope function for F .
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Remark 27. Notice that our bound depends on a notion of uniform entropy number over a

certain class of probability measures. However, for some classes of functions, this uniformity

holds naturally, see for instance [149].

Observe that if F belongs to a ball of a Hölder space CP (E �) on a compact set E � of an

Euclidean space endowed with the norm

||f ||CP (E�) = sup
x∈E�

|f(x)|+ sup
x1∈E�, x2∈E�

�
f(x1)− f(x2)

d(x1, x2)p

�

then we have

M = supx∈XF (x) < ∞
as well as

L = supf,g∈F ,f �=g supz
|f(z)− g(z)|

||f − g||CP (E�)

< ∞

so that we can directly control the empirical sum by the obvious inequality

sup
f,g∈F

�����
1

n

n�

i=1

f(Xi)− g(Xi)

����� ≤ L||f − g||CP (E�).

We refer to [49] and [149] for more details. See also examples of such classes of functions used

in statistical learning in the latter. It follows that if we replace the notion of uniform cover-

ing number N1(ε,F) with respect to the norm �.�L1(Q) by the covering numbers NCp(ε,F)

with respect to ||.||CP (E�) (which does not depend on underlying probability) provided that

N1(ε,F) is replaced by NCp( ε
L
,F) in the inequality, Theorem 24 still holds.

Proof of Theorem 24. We choose functions g1, g2, · · · , gM , where M = N1(�,F) such that

min
j

Q|f − µ(f)− gj + µ(g1)| ≤ 2� for each f ∈ F ,

where Q is any discrete probability measure. We also assume that g1, g2, · · · , gM belong to F

and satisfy conditions A1, A2�, A3�. We write f ∗ for the gj, where the minimum is achieved.

Next, by definition of uniform covering numbers we obtain
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�����
1

n

n�
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�

≤ Pν

�
sup
f∈F

������
1

n

n�

i=1
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1
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����� ≥ x− 2�

�
.
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We set the notation that

gj = gj − µ(gj).

In what follows, our reasoning is analogous as in the proof of Theorem 22. Instead of

taking any f ∈ F , we work with the functions gj ∈ F . Thus, we consider now the processes

Zn(gj) =
ln�

i=1

gj(Bi) (5.8)

and

Sn(gj) = Zn(gj) +Δn(gj).

Under the assumptions A1, A2� and A3� for gj, we get the analogous to that from The-

orem 22 Bernstein’s bound for Zn(gj), namely

PA

������
1

n

ln�
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gj(Bi)

����� ≥ x− 2�

�
≤ 18 exp

�
− (x− 2�)2n

2× 902 (σ2(gj) +M1(x− 2�)/90)

�
. (5.9)

We find the upper bound for the remainder term Δn(gj) applying the same reasoning as in

Theorem 22. Thus,
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gj(Xi)
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3
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≤ C1 exp
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(5.10)

and
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 ≤ C2 exp

�
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3

�
, (5.11)

where

C1 = Eν

�
exp

�����λ0

τA�
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�����

�
and C2 = EA

�
exp[λ1

��gj
�� (B1)]

�
.

Finally, observe that
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�
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exp
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F (Xi)
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< ∞

and

EA

�
exp[λ1

��gj
�� (B1)]

�
≤ EA [exp[2λ1 |F | (B1)]] < ∞

and insert them into (5.10) and (5.11) which yields the proof.
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Below we will formulate a maximal version of Theorem 23.

Theorem 25. Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain.

Then, under assumptions A1, A2�, A3�, A4 − A5 and for any x > 0, any 0 < � < x/2, any

N > 0 and for all n ≥ 1 we have
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2× 902(1 + a)2
�
N
√
nσ2(f) + M1

90
a(x−2�)
1+a

�




+Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
> N

�
+ C1 exp

�
−λ0(x− 2�)n

3

�
+ C2 exp

�
−λ1(x− 2�)n

3

��
,

where

C1 = Eν

�
exp

�����2λ0

τA�

i=1

F (Xi)

�����

�
and C2 = EA [exp[2λ1 |F | (B1)]] .

Proof. The proof is a combination of the proofs of Theorem 23 and Theorem 24. We deal

with the supremum over F the same way as in Theorem 24. Then we apply Theorem 23.

We can obtain even sharper upper bound when class F is uniformly bounded. In the

following, we will show that it is possible to get a Hoeffding type inequality and have a

stronger control of moments of the sum Sn(f) which is a natural consequence of uniform

boundedness assumption imposed on F .

A6. The class of functions F is uniformly bounded, i.e. there exists a constant D such that

∀f ∈ F |f | < D.

Theorem 26. Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain.

Then, under assumptions A1, A2�, A3�, A5 − A6 and for any x > 0, any 0 < � < x/2 and

for all n ≥ 1 we have

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)

�
18 exp

�
−(x− 2�)2n

2× 902D2

�

+C1 exp

�
−λ0(x− 2�)n

3

�
+ C2 exp

�
−λ1(x− 2�)n

3

��
, (5.12)
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where

C1 = Eν exp |2λ0τAD| and C2 = EA exp |2λ1l(B1)D| .

Proof. The proof bears resemblance to the proof of Theorem 24, with a few natural modi-

fications which are a consequence of the uniform boundedness of F .

Remark 28. Under condition A4 and applying Lemma 1 we can obtain easily the bound

with smaller constants, we follow the analogous way as in Theorem 25.

2.3 Bernstein and Hoeffding type tail inequalities for Harris re-

current Markov chains

It is a purpose of this subsection to show that Theorems 22, 24, 26 are also valid in Harris

recurrent case under slightly modified assumptions. In what follows we will apply the regen-

erative approach also in a Harris recurrent case via the Nummelin’s splitting technique. In

order to generalize the results from previous subsections to a Harris recurrent framework,

we impose necessary conditions on Harris chain XM.

AH1. (Bernstein’s block moment condition) There exists a positive constant M1 such that

for any p ≥ 2 and for every f ∈ F

sup
y∈S

Ey

��f̄(B1)
��p ≤ 1

2
p!σ2(f)Mp−2

1 . (5.13)

AH2. (Non-regenerative block exponential moment assumption) There exists a constant λ0 >

0 such that for every f ∈ F we have

Eν

�
exp

�����λ0

τS�

i=1

f̄(Xi)

�����

�
< ∞.

AH3. (Exponential block moment assumption) There exists a constant λ1 > 0 such that for

every f ∈ F we have

sup
y∈S

Ey

�
exp[λ1

��f̄
�� (B1)]

�
< ∞.

In order to shorten the notation we designate

sup
y∈S

Ey [τS] = αM < ∞.

In what follows we will formulate Bernstein type inequality for unbounded classes of func-

tions in the Harris recurrent case (equivalent of Theorem 22). Theorems 24 and 26 can be

reformulated for Harris chains in a similar way.
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Theorem 27. Assume that XM is a Harris recurrent, strongly aperiodic Markov chain.

Then, under assumptions AH1-AH3, for any x > 0 and for all n ≥ 1 we have that

Pν

������

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ 18 exp

�
− x2

2× 902 (nσ2(f) +M1x/90)

�

+ C1 exp

�
−λ0x

3

�
+ C2 exp

�
−λ1x

3

�
, (5.14)

where

C1 = Eν

�
exp

�����λ0

τS�

i=1

f(Xi)

�����

�
and C2 = sup

y∈S
Ey

�
exp[λ1

��f
�� (B1)

�
.

The proof of Theorem 27 is analogous to the proof of Theorem 22. We can obtain a

bound with much smaller constants under an extra block moment condition.

AH4. (Block length moment assumption) There exists a positive constant M2 such that for

any p ≥ 2

sup
y∈S

Ey [τS]
p ≤ p!Mp−2

2 sup
y∈S

Eyτ
2
S and Eν [τS]

p ≤ p!Mp−2
2 Eντ

2
S.

Theorem 28. Assume that XM is a Harris recurrent, strongly aperiodic Markov chain.

Then, under assumptions AH1-AH4, we have for any x > 0, any N > 0 and for all n ≥ 1

Pν

������

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ 2 exp

�
−x2

2× 32(1 + a)2
��

n
α

�
σ2(f) + M1

3
x

1+a

�
�

+ 18 exp

�
−a2x2

2× 902(1 + a)2
�
N
√
nσ2(f) + M1

90
ax
1+a

�
�

+ Pν

�
n1/2

�
ln
n
− 1

α

�
> N

�

+ C1 exp

�
−λ0x

3

�
+ C2 exp

�
−λ1x

3

�
,

where

C1 = Eν

�
exp

�����λ0

τS�

i=1

f(Xi)

�����

�
and C2 = sup

y∈S
Ey

�
exp[λ1

��f
�� (B1)]

�
.

Remark 29. In the Theorem 27 we assumed that XM is strongly aperiodic. It is easy,

however, to relax this assumption and impose only the aperiodicity condition on Harris

chain by using the same trick as in [98]. Note that if XM satisfies M(m,S, δ,Φ) for m > 1,

then the blocks of data are 1-dependent. Denote by S = S∪{∗}, where {∗} is an ideal point
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which is not in S. Next, we define a pseudo-atom αM = S × {1}. In order to impose only

aperiodicity in this case it is sufficient to consider two processes {Ei} and {Oi} such that

Oi = f(Xi) if ταM
(2k + 1) < i ≤ ταM

(2k + 2)

and Oi = ∗ otherwise

Ei = f(Xi) if ταM
(2k) < i ≤ ταM

(2k + 1),

for some k ≥ 0 and Ei = ∗. Every function f : S → R will be considered as defined on S with

identification f(∗) = 0 (see also [98] for more details concerning those two processes). Then,

we prove Bernstein type inequality similarly as we prove Theorems 22 and 27 applying all the

reasoning to {Ei} and {Oi} separately, yielding to a similar inequality up to an additional

multiplicative constant 2.

3 Polynomial tail maximal concentration inequality for

Markov chains

In this section we show polynomial tail concentration inequality for atomic regenerative

Markov chains. We will relax the assumptions that exponential block moments and ex-

ponential moments of return times to the atom A must be finite. Then, using the same

techniques as in the previous section it is possible to obtain polynomial bound for tail prob-

ability Pν

�
supf∈F

�� 1
n

�n
i=1 f̄Bi

�� ≥ x
�
.

Let p ≥ 2. Before we formulate polynomial tail inequality, we state the following assump-

tions for chain X.

Assumption 1. We have:

EA[τ
p
A] < ∞ and Eν [τ

p
A] < ∞.

Recall that F is an envelope of class F . We need also the following condition.

Assumption 2. We have EA[F (B1)
p] < ∞.

We also impose a condition on the size of class F .

Assumption 3. We assume N1 (�,F) < ∞.

Now we are ready to state our concentration result.
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Theorem 29 (Polynomial tail maximal inequality for regenerative Markov chains). Assume

that Assumptions 1, 2 and 3 are satisfied by chain X = (Xn)n∈N. Then, we have for any

x > 0, any 0 < � < x/2, any N > 0 and for all n ≥ 1 that

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f̄(Bi)

����� ≥ x

�
≤ N1 (�,F)

�
3pEν [|

�τA
i=1 F (Xi)|]

p

np(x− 2�)p
+

3pEA [F (B1)]
p

np(x− 2�)p

+
6p CpEA|F (B1)|

p

np/2(x− 2�)p
+

6p CpEA|F (B1)|
pNp

n3p/4(x− 2�)p
+ Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
≥ N

��
,

where Cp = 24max
�
pp, pp/2+1ep

�∞
0

xp/2−1(1− x)−pdx
�
.

Remark 30. Note that

Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
≥ N

�

may be controlled by Lemma 1. It is noteworthy that under Assumption 1, one can obtain

polynomial bound

Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
≥ N

�
≤ 4p[2p + 1]

EA[τA]pNp
+

4p[2p + 1]

Np/2np/4

by slightly modifying the proof of Lemma 1 (see Appendix in [22] for details).

The proof of Theorem 29 relies on the same techniques as in the previous section. We

briefly recall main steps below.

Proof of Theorem 29. Let g1, g2, · · · , gM be a collection of functions such M = N1(�,F) and

min
j

Q|f − µ(f)− gj + µ(g1)| ≤ 2� for each f ∈ F ,

where Q is any discrete probability measure. We also assume that g1, g2, · · · , gM belong to F

and satisfy Assumptions 1 and 2.

By the same arguments as in Theorem 24 we immediately obtain that

Pν

�
sup
f∈F

�����
1

n

n�

i=1

(f(Xi)− µ(f))

����� ≥ x

�
≤ N1 (�,F) max

j∈{1,··· ,N1(�,F)}
Pν

�
1

n

�����

n�

i=1

gj(Xi)− µ(gj)

����� ≥ x− 2�

�
.

We set the notation that

gj = gj − µ(gj).

In what follows, we obtain the bound for

Pν

�
1

n

�����

n�

i=1

ḡj(Xi)

����� ≥ x− 2�

�
. (5.15)
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We rely on the following decomposition of (5.15)

Pν

�
1

n

�����

n�

i=1

ḡj(Xi)

����� ≥ x− 2�

�
≤ Pν

�
1

n

�����

n�

i=1

ḡj(Xi)

����� ≥ (x− 2�)/3

�

+ PA

�
1

n

�����

ln�

i=1

ḡj(Bi)

����� ≥ (x− 2�)/3

�
+ PA


 1

n

������

n�

i=τA(ln−1)

ḡj(Xi)

������
≥ (x− 2�)/3


 .

The bounds for the first and the last non-regenerative blocks can be easily obtained using

Markov’s inequality. In order to control

PA

�
1

n

�����

ln�

i=1

ḡj(Bi)

����� ≥ (x− 2�)/3

�

we apply the same reasoning as in Theorem 23, i.e.

PA

�
1

n

�����

ln�

i=1

ḡj(Bi)

����� ≥ (x− 2�)/3

�
≤ PA



1

n

�������

�
n

EA[τA]

�

�

i=1

ḡj(Bi)

�������
≥ x/6


+ PA


 1

n

������

ln2�

i=ln1

ḡj(Bi)

������
≥ x/6


 ,

where ln1 = min(
�

n
EA[τA]

�
, ln) and ln2 = max(

�
n

EA[τA]

�
, ln). Next, since

�
�

n
EA[τA]

�

i=1 ḡj(Bi) are

i.i.d., we apply Corollary 1 and get

PA



1

n

�������

�
n

EA[τA]

�

�

i=1

ḡj(Bi)

�������
≥ x/6


 ≤ N1 (�,F)

CpEA|F (B1)|
p

np/2(6(x− 2�)p
.

Next, we proceed the same way as in Theorem 23. Indeed, for any N > 0 we have

PA


 1

n

������

ln2�

i=ln1

ḡj(Bi)

������
≥ 6(x− 2�)


 ≤ PA


 1

n

������

ln2�

i=ln1

ḡj(Bi)

������
≥ 6(x− 2�),

√
n

�
ln
n
− 1

EA[τA]

�
≤ N




+ Pν

�√
n

�
ln
n
− 1

EA[τA]

�
> N

�
. (5.16)

Using analogous reasoning as in Theorem 24, we get that

PA


 1

n

������

ln2�

i=ln1

ḡj(Bi)

������
≥ 6(x− 2�),

√
n

�
ln
n
− 1

EA[τA]

�
≤ N


 ≤ CpEA|F (B1)|

pNp

6pn3p/4(x− 2�)p
.
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It is noteworthy that under Assumption 1, the ergodicity rate of the chain X is at least

subgeometric, polynomial namely, in the sense that suph: ||h||∞≤1 |h(Xn)−µ(h)| = O(1/np−1).

Polynomial tail maximal concentration inequality for Harris recurrent Markov

chains

It is straightforward to obtain polynomial tail maximal inequality for Harris recurrent Markov

chains. In order to do it we slightly modify conditions for chain X due to the fact that one

must consider split chain XM which can be decomposed into i.i.d. blocks. In what follows,

let p ≥ 2.

Assumption 4. We have:

sup
y∈S

Ey[τ
p
S] < ∞, Eν [τ

p
S] < ∞ and sup

y∈S
Ey[l(B1)

p] < ∞.

We denote by F an envelope of class F . We need also the following condition.

Assumption 5. We have for all f ∈ F :

sup
y∈S

Ey[f(B1)
p] < ∞ and sup

y∈S
Ey[F (B1)

p] < ∞.

Theorem 30 (Polynomial tail functional inequality for Harris Markov chains). Let (Xn)n∈N

be a regenerative Markov chain taking its values in (E, E) and Assumptions 4, 5 and 3 hold.

Then, we have for any x > 0, 0 < � < x/2, any N > 0 and for all n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f̄(Bi)

����� ≥ x

�
≤ N1 (�,F)

�
3pEν [|

�τS
i=1 F (Xi)|]

p

np(x− 2�)p
+

3p supy∈S Ey [F (B1)]
p

np(x− 2�)p

+
6p Cp supy∈S Ey|F (B1)|

p

np/2(x− 2�)p
+

6p Cp supy∈S Ey|F (B1)|
pNp

n3p/4(x− 2�)p
+ Pν

�
n1/2

�
ln
n
− 1

α

�
≥ N

��

where Cp = 24max
�
pp, pp/2+1ep

�∞
0

xp/2−1(1− x)−pdx
�
is a constant.

The proof of polynomial tail inequality for Harris chains is analogous to the proof of

Theorem 29 and thus omitted.

4 Bound of the expectation of the supremum of an

empirical process in a Markovian setting

Control of the fluctuation of empirical process is an important tool when one wants to obtain

generalization bounds for learning algorithms. Bounds for the expectation of the supremum
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of empirical process are particularly useful when one wants to select a model via some

penalization criterion with penalty term depending on a complexity of the whole collection

of models (see for instance [142], [143] and [144]).

To the best of our knowledge, there is no results using regeneration techniques that

extend the bounds from the i.i.d. setting into atomic regenerative or Harris recurrent case.

In this section we will present the bound of the expectation of the supremum of an empirical

process which we established in [24]. Our result is stated for general classes of functions (not

necessarily VC), class F does not have to be bounded.

Theorem 31. Assume that (Xn)n∈N is a regenerative Markov chain, such that

EA[l(B1)]
2 < ∞ and EA [F (B1)]

2 < ∞,

where F is an envelope for F . Moreover, suppose that N1

�
�

MEA[τA]
,F

�
< ∞. Then, for any

� > 0 and M > 1 we have

EA

�
sup
f∈F

�����
1

n

ln�

i=1

(f(Bi)− µ(f(B1)))

�����

�
≤ 540EA[F (B1)

2]1/2
[V ar[l(B1)]]

1/2.

n1/2EA[τ 2A]
1/2

√
M − 1

+ 540


�+N1

�
�

MEA[τA]
,F

�
× EA[F (B1)

2]1/2

����2logN1

�
�

MEA[τA]
,F

�

n


 .

Proof. In order to deal with the random number of blocks ln we use Montgomery-Smith’s

inequality

Pν

�
sup
f∈F

�����
1

n

ln�

i=1

(f(Bi)− µ(f(B1)))

����� ≥ x

�
≤ PA

�
max
k≤n

sup
f∈F

�����
1

n

k�

i=1

(f(Bi)− µ(f(B1)))

����� ≥ x

�

≤ 9PA

�
sup
f∈F

�����
1

n

n�

i=1

f(Bi)− µ(f(B1))

����� ≥
x

30

�

(5.17)

combined with formula E[|X|] =
�∞
0

P(X > t)dt :

EA

�
sup
f∈F

�����
1

n

ln�

i=1

f(Bi)− µ(f(B1))

�����

�
≤ 270EA

�
sup
f∈F

�����
1

n

n�

i=1

f(Bi)− µ(f(B1))

�����

�
.

Ghost sample of regeneration blocks and randomization.

In the following, we denote by B� = (B�
1, · · · , B

�
n) an independent copy of B = (B1, · · · , Bn)

(so called ’ghost’) sample. Let (�1, · · · , �n) be independent Rademacher variables. Let

�l�PBn
=

�n
i=1 l(Bi)

nEA[τA]
.
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Note that for any M > 0 we have that

270 EA

�
sup
f∈F

�����
1

n

n�

i=1

f(Bi)− µ(f(B1))

�����

�
≤ 540 E�EB

�
sup
f∈F

�����
1

n

n�

i=1

f(Bi)�i

�����

�

≤ 540 E�EB

�
sup
f∈F

�����
1

n

n�

i=1

f(Bi)�i

����� I�l�PBn
≤ MEA[τA]

�

+ 540 E�EB

�
sup
f∈F

�����
1

n

n�

i=1

f(Bi)�i

����� I�l�PBn
> MEA[τA]

�

= I + II.

Uniform covering for F .

We define an uniform covering g1, · · · , gW , where W = N1

�
x

MEA[τA]
,F

�
and

min
j

Q|f − µ(f)− gj + µ(gj)| ≤ � for each f ∈ F

and Q is any discrete probability measure. We also assume that g1, g2, · · · , gW belong to F

and satisfy Assumption 1. We write f ∗ for gj, where the minimum is achieved. Then,

I ≤ 540 E�EB

�
sup
f∈F

������
1

n

n�

i=1

(f(Bi)− µ(f)− f ∗(Bi) + µ(f ∗))�i

�����+
�����
1

n

n�

i=1

(f ∗(Bi)− µ(f ∗))�i

�����

��

≤ 540


�+ E�EB


N1

�
�

MEA[τA]
,F

�
max

j∈1,··· ,N1

�
�

MEA[τA]
,F

�

�����
1

n

n�

i=1

gj(Bi)�i

����� I�l�PBn
≤ MEA[τA]




 .

(5.18)

In what follows we will use Massart’s Finite Class Lemma (see [104], Lemma 5.2, page 300).

For the reader’s convenience, we recall this result below.

Lemma 2. Let A be some finite subset of Rn. Let N denote the cardinality of A and let

R = supa∈A [
�n

i=1 a
2
i ]

1/2
, then

E

�
supa∈A

n�

i=1

ai�i

�
≤ R

�
2logN. (5.19)
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We bound (5.18) by applying directly (5.19):

(5.18) ≤ EA


�+ max

j∈
�
1,··· ,N1

�
�

MEA[τA]
,F

��

�
1

n

n�

i=1

(gj(Bi)
2)

�1/2

×

����2logN1

�
�

MEA[τA]
,F

�

n




≤ 540


�+N1

�
�

MEA[τA]
,F

�
× EA[F (B1)

2]1/2

����2logN1

�
�

MEA[τA]
,F

�

n


 .

In what follows, we derive an upper bound for II.

II ≤ 540 E�EB



�
1

n

n�

i=1

F (Bi)

�2


1/2

�
P
�
�l�PBn

> MEA[τA]
��1/2

= 540 EA[F (B1)
2]1/2 ×

�
P
�
�l�PBn

> MEA[τA]
��1/2

.

Note that for M > 1 and by the fact that �l�PBn
=

�n
i=1 l(Bi)

nEA[τA]
we have

�
P
�
�l�PBn

− 1 ≥ M − 1
��1/2

=

�
P

�
1

n

�n
i=1 l(Bi)− EA[τA]

EA[τA]
− 1 ≥ M − 1

��1/2

≤ [V ar[l(B1)]]
1/2

n1/2EA[τ 2A]
1/2

√
M − 1

by Markov’s inequality and the fact that EA[l(B1)]
2 < ∞.

5 Conclusion

In this chapter we presented Bernstein, Hoeffding and polynomial tail maximal inequalities

for atomic regenerative and Harris recurrent Markov chains. We established the aforemen-

tioned bounds having in mind applications to statistical learning, however the results state

on their own and may be applied to various statistical problems where the data exhibit

Markovian structure. Moreover, we established bound of the expectation of the supremum

of an empirical process in a Markovian setting.

Despite of many concentration results we felt the need to establish maximal type con-

centration inequalities tailor-made for our applications, i.e. they are established for non-

stationary Markov processes and hold for unbounded classes of functions F , recover rates

from the i.i.d. framework and involve easy to interpret parameters in the bound.
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One of the main difficulties when obtaining both asymptotic and non-asymptotic results

for regenerative Markov chains is the random number of blocks ln when we control random

sum of blocks
�ln

i=1 f(Bi). We dealt with this problem via Montgomery-Smith’s inequality.

However, this approach resulted in obtaining large constants in the final bounds comparing

to the i.i.d. versions of studied inequalities. It is noteworthy that thanks to Lemma 1, the

large constants are involved in terms which are asymptotically negligible in a final bound.

However, we believe that using other techniques instead of Montgomery-Smith’s bound may

give smaller constants in the bounds.
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Chapter 6

Minimum volume set estimation for

Markovian data

In statistical learning theory, numerous works established non-asymptotic bounds assessing

the generalization capacity of empirical risk minimizers under a large variety of complexity

assumptions for the class of decision rules over which optimization is performed, by means

of sharp control of uniform deviation of i.i.d. averages from their expectation, while fully

ignoring the possible dependence across training data in general. It is the purpose of this

chapter to show that similar results can be obtained when statistical learning is based on a

data sequence drawn from a (Harris positive) Markov chain X, through the running example

of estimation of minimum volume sets (MV -sets) related to X’s stationary distribution, an

unsupervised statistical learning approach to anomaly/novelty detection. Based on maximal

concentration inequalities from Chapter 5, we prove using the regenerative method, that

learning rate bounds depend not only on the complexity of the class of candidate sets but

also on the ergodicity rate of the chain X, expressed in terms of tail conditions for the length

of the regenerative cycles.

1 Preliminaries

Empirical Risk Minimization (ERM in abbreviated form) is the main paradigm of statistical

learning (see for instance e.g. [144]). It has been studied in several contexts, stipulating

various complexity assumptions (involving e.g. VC dimension, Rademacher averages or

metric entropies) for the collection of decision rules over which optimization is performed.

In a classical i.i.d. framework we consider i.i.d. sample ((x1, y1), · · · , (xn, yn)) from a

distribution P (x, y). We want to investigate the unknown functional dependency between xi
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and yi ∈ {0, 1} (more generally, one can also consider yi ∈ {0, 1, · · · , k}). More specifically,

we would like to build a classifier function h which given a new input x� delivers best available

approximation of y� by assessing the loss, or discrepancy

L(h) = P (h(x) �= y)

between y and h(x). In general, with the help of data, a good classifier is searched from some

class of classifiers H. In statistical learning framework, each classifier function h from H is

scored across all data points via risk functional

R(h) = EP [L(h(x), y)] =

�
L(h(x), y)dP.

The task of finding the “best” classifier boils down to finding a function which minimizes the

true risk. In practice however, the risk function can not be computed since P is unknown.

The empirical risk minimization paradigm boils down to replacing the unknown distribution

P (x, y) by its empirical version Pn(x, y). Then we consider empirical risk

Rn(h) = En[L(h(x), y)] =

�
L(h(x), y)dPn(x, y) =

1

n

n�

i=1

L(h(xi), yi).

We choose a classifier hn that minimizes empirical risk over H, i.e.

hn = arg inf
h∈H

Rn(h).

Whereas empirical risk minimization approach has been vastly investigated in the i.i.d.

framework (see for instance [142] and [143]), very little attention has been paid to situations

where training observations are dependent. Most works devoted to this issue assumes in

general that the training dataset used to compute the empirical risk functional is composed

of i.i.d. data and rely on accurate control of uniform deviation of estimated risks from their

true values.

When empirical risk takes the form of a sample mean statistic, just like in classification,

the flagship problem in statistical learning theory, concentration inequalities for empirical

processes can be directly used to establish generalization bounds for empirical risk minim-

izers. Among the seldom works coping with learning theory in situations where training

data exhibit a (possibly complex) dependence structure, one may mention [133] for statist-

ical guarantees of ERM based on weakly dependent data (see also [4] for analogous results

in the online framework) and [48] when the data used to train the decision rule are drawn

using sampling/survey schemes.
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The goal of this chapter is to show that the generalization ability of decision rules based

on (Harris positive) Markovian data can be established. More precisely, as a case in point,

we establish here generalization bounds for empirical minimum volume sets related to the

stationary distribution µ(dx) of a positive recurrent Markov chain X = (Xn)n∈N at a given

level α ∈ (0, 1), based on a sample path of length n. Originally introduced in the seminal

contribution [61], minimum volume sets (MV -sets in a shortened version) generalize the

concept of quantile for multivariate probability distributions (see also [120]) and offers a

non-parametric framework for (unsupervised) anomaly/novelty detection. As observed in

[126], MV -set estimation can be cast in a learning framework very similarly to ERM in (su-

pervised) classification. In this chapter we rely on concentration results from the previous

chapter. More precisely, we use maximal concentration bounds in order to obtain generaliza-

tion bounds for minimum volume set estimation problem. We point out that the regenerative

method we rely on is far from being the sole technique to obtain learning rate bounds in

M -estimation problems based on Markovian data. However, although such results can be

obtained for instance by means of coupling results under appropriate decay rate assumptions

for mixing coefficients (see e.g. [133], [3], [5], [132], [78], [91] or [55] in the context of MV -set

estimation), the regenerative method imposes much less restrictions on the ergodicity prop-

erties of the chain than most alternative techniques. As shall be seen below, this approach

is entirely tailored to the Markovian framework.

Additionally, another advantage of the approach (based on regenerative properties of

Markov chain X) we develop here lies in its frequentist interpretability, in contrast with

alternative methods: the learning rate is directly linked to the average number of cycles

observed over a finite length trajectory, the latter playing the role of number of training

examples in the i.i.d. statistical framework.

2 Minimum Volume Set Estimation

The notion of minimum volume set (MV -set) has been proposed in [61] in order to extend

the definition of quantile for 1-dimensional probability distributions. Consider a probability

distribution µ on a measurable space (E, E). Let α ∈ (0, 1) and λ be a σ-finite measure of

reference on (E, E), any solution of the minimization problem (6.1)

min
Ω∈E

λ(Ω) subject to µ(Ω) ≥ α (6.1)
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is called a MV -set of level α. Throughout this chapter, the distribution µ is assumed to be

absolutely continuous w.r.t. λ and denoted by

f(x) = (dµ/dλ)(x)

the related density. For any α ∈ (0, 1), under the assumptions that the density f is bounded

and that the image of µ by f , denoted by µf , is a continuous probability on R+, it is shown

in [120] that the set

Ω
∗
α = {x ∈ E : f(x) > γα},

where γα is the unique number such that
�

f(x)>γα

f(x)dλ(x) = α

is the unique solution of the MV -set estimation problem (6.1). The MV -set estimation is a

useful tool in unsupervised learning setting when one wants to detect anomalies (recall that

in unsupervised learning framework an anomaly is a rare event).

The intuition behind minimum volume sets is as follows:

• for small values of α one captures the modes

• for large values of α; samples that are in the MV -set will be considered as normal; and

samples are not in the MV -set will be considered as anomalies.
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In other words, we want to find the region where the data are mostly concentrated and

anomalies which are assumed to be rare events, are located in the tail of the distribution.

Empirical MV -sets in the i.i.d. setting.

A level α ∈ (0, 1) being preliminarily fixed, a natural way of building estimates of the

set Ω∗
α from i.i.d. data

X1, . . . , Xn ∼ µ(dx)

consists in solving a statistical version of the constrained optimization problem (6.1)

min
Ω∈E

λ(Ω) subject to �µn(Ω) ≥ α− ψn (6.2)

where the empirical distribution

�µn = (1/n)
n�

i=1

δXi

(or a smoothed counterpart of the latter) replaces the unknown probability measure µ,

minimization is restricted to a subset G of E , expected to be sufficiently rich to include a

reasonable approximation of Ω∗
α, and ψn plays the role of a tolerance parameter that controls

hiw much the empirical mass can deviate from the targeted value α.

This approach, that essentially boils down to replacing the true (unknown) probability

measure µ(dx) by its statistical counterpart is referred to as MV-ERM in [126]. The class G

is ideally made of sets Ω ∈ E whose volume λ(Ω) can be efficiently computed or estimated, e.g.

by Monte-Carlo simulation. Under usual complexity assumptions on the class G combined

with an appropriate choice of ψn, non-asymptotic statistical guarantees for solutions �Ωα

of (6.2) have been obtained in [126]. Below we provide the definition of penalty for class G.

We provide it in the same form as in [126].

Definition 14 (Scott and Nowak [126], Definition 2 ). We say that ψn is a (distribution

free) complexity penalty for class G if and only if all distributions P and all δ ∈ (0, 1) we

have with probability 1− δ

sup
Ω∈G

(|P (Ω)− Pn(Ω)|− ψn(δ)) ≤ 0.

Taking a closer look at the above definition, one can notice that ψ allows to control the

rate of uniform convergence of empirical ditribution Pn to P for Ω ∈ G (see [126], page

670 for more details). For the completeness of exposition we recall Theorem 3 from [126]

that states a generalization bound for minimum volume set estimation problem in the i.i.d.

framework.
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Theorem 32 (Scott and Nowak [126], Theorem 3). If ψn is a complexity penalty for class

G, then with probability 1− δ we have

λ(�Ωn) ≤ λ(Ω∗
α) +

�
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗

α)

�

and

µ(�Ωn) ≥ α− 2ψn(δ).

As indicated by Scott and Nowak [126], penalties for many classes G are known.

Example 4 (VC classes). Assume that G is a class of sets with VC dimension V. Penalty ψ

for class G is given by

ψn(δ) =

�
32

V log n+ log(8/δ)

n
.

In this chapter we aim to show that similar generalization bounds can be obtained when

training data take the form of a sample path segment of a positive recurrent Markov chain

with stationary distribution µ. A reader interested in investigating methods for solving prac-

tically the optimization problem (6.2) is referred to [63] and the references therein. In this

chapter rate bounds involving the complexity of class G in terms of covering numbers and

the ergodicity rate of the chain in terms of speed at which the (extended) chain regenerates

are established. The main tool used to derive these results is a functional polynomial tail

inequality for positive Harris chains obtained in the previous chapter.

3 Minimum Volume Set Estimation - Generalization

Results

Based on the results established in the previous chapter, we investigate the performance

of solutions of the problem (6.2) when the empirical probability estimates �µn(Ω) are based

on a Markovian trajectory of length n ≥ 1. Firstly, we assume that Markov chain X is

atomic regenerative (with the same communication properties as specified in Chapter 1).

For simplicity, we assume that E ⊂ Rd with d ≥ 1 and that λ(dx) is the restriction of

Lebesgue measure on E equipped with its Borel σ-algebra.

The stationary distribution is then given by

µ(B) =
1

EA[τA]
EA

�
τA�

i=1

I{Xi ∈ B}

�
, for all B ∈ E (6.3)
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and its empirical counterpart based on the sequence X1, . . . , Xn can be rewritten as:

∀Ω ∈ E ,

�µn(Ω) =
1

n

τA�

i=1

I{Xi ∈ Ω}+
ln − 1

n

�
1

ln − 1

ln−1�

j=1

Sj(Ω)

�
+

1

n

n�

i=1+τA(ln)

I{Xi ∈ Ω}. (6.4)

Recall that ln =
�n

i=1 I{Xi ∈ A} denotes the number of visits to A (regenerations), the

occupation time of the set Ω between the j-th and (j + 1)-th regeneration times is denoted

by

Sj(Ω) =
�

τA(j)<i≤τA(j+1)

I{Xi ∈ Ω} for j ≥ 1

and ln > 1 and with the usual convention that empty summation is equal to zero. Observe

that since µ is a stationary distribution of atomic regenerative chain X = (X1, · · · , Xn), the

Sj(Ω)’s are integrable i.i.d. r.v.’s with common mean EA[τA]µ(A) and

ln ∼ n/EA[τA] a.s. as n → +∞

and the first and last terms in the equation above both asymptotically vanish with probab-

ility one. Hence, the random variables Sj(Ω) play the role of training observations in the

subsequent analysis: the smaller the expected cycle length E[τA], the larger the probability

to observe a high number of training observations. However, as explained in Chapter 1,

though asymptotically i.i.d., the block sums involved in (6.4) are not independent, the sum

of their length being less than n. Except of the i.i.d. situation (notice that in such case,

the whole state space E can be viewed as an atom), the frequency of visits to a candidate

set Ω over the path X1, . . . , Xn is not an i.i.d. average. Decomposition (6.4) is the main

ingredient to control supΩ∈G |�µn(Ω)− µ(Ω)|.

Let p ≥ 2. In what follows we provide the conditions we impose on chain X that we will

need in the subsequent analysis. Since we heavily rely on results from the previous chapter,

the conditions stated here are related (or are the same) as imposed on atomic regenerative

Markov chains as in Chapter 5. The moment condition provided below is the same as

Assumption 1 in Chapter 5.

Condition 1. We have: EA[τ
p
A] < ∞ and Eν [τ

p
A] < ∞.

It is noteworthy that under Condition 1, the ergodicity rate of the chain X is at least

subgeometric, polynomial namely, in the sense that

sup
h: ||h||∞≤1

|h(Xn)− µ(h)| = O(1/np−1).
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The above observation can be deduced from polynomial tail inequality (see Chapter 5).

The following condition is just a particular case of Assumption 3 from the previous

chapter, when F is a class of indicator functions. Let r ≥ 1.

Condition 2. The collection of indicator functions on E,

F = {I{x ∈ Ω} : Ω ∈ G}

is a uniform Donsker class (relative to L1) with polynomial uniform covering numbers, i.e.

there exists a constant c > 0 s.t. ∀ζ > 0,

N1(ζ,F)
def
= sup

Q
N (ζ,F , L1(Q)) ≤ c(1/ζ)r,

where the supremum is taken over the set of finitely discrete probability measures on (E, E).

As the following theorem shows, Condition 1 combined with Condition 2 allows to control

the fluctuations of (6.4) uniformly over G.

Theorem 33. Suppose that Conditions 1-2 are fulfilled. For all

δ = δ1 + δ2 + δ3 + δ4 + δ5 + δ6 ∈ (0, 1),

we have with probability at least 1− δ : ∀n ≥ 1,

sup
Ω∈G

|�µn(Ω)− µ(Ω)| ≤ max

��
D1Eν [τ

p
A]

δ1np

�1/(p+r)

,

�
D1EA[τ

p
A]

δ2np

�1/(p+r)

,

�
D2EA[τ

p
A]

np/2δ3

�1/(p+r)

,

�
D3EA[τ

p
A]

n3p/8δ4

�1/(p+r)

,

�
D4

EA[τ
p
A]δ5n

3p/8

�1/r

,

�
D4

δ6n7p/16

�1/r
�

(6.5)

where D1, D2, D3, D4 are constants that can be explicitly computed and are specified in the

proof.

Proof. The proof relies on Theorem 29:

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f̄(Bi)

����� ≥ ζ

�
≤ N1 (�,F)

�
3pEν [|

�τA
i=1 F (Xi)|]

p

np(ζ − 2�)p
+

3pEA [F (B1)]
p

np(ζ − 2�)p

+
6p CpEA|F (B1)|

p

np/2(ζ − 2�)p
+

6p CpEA|F (B1)|
pNp

n3p/4(ζ − 2�)p
+ Pν

�
n1/2

�
ln
n
− 1

EA[τA]

�
≥ N

��
,
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when F is a class of indicator functions. In what follows we set � = ζ/4 and N = n3/8. Note

that under Condition 2 we get

Pν

�
sup
Ω∈G

|�µn(Ω)− µ(Ω)| ≥ ζ

�

≤
�
1

ζ

�r �
D1Eν [τ

p
A]

ζpnp
+

D1EA[τ
p
A]

ζpnp
+

D2EA[τ
p
A]

np/2ζp

+
D3EA[τ

p
A]

n3p/8ζp
+

D4

EA[τ
p
A]n

3p/8ζp
+

D4

ζpn7p/16

�
, (6.6)

where D1 = c 4r12p, D2 = c 4r2pCp, D3 = c 4r2pCp, D4 = c 4r+p(2p +1) and Cp is the same

constant as in Corollary 1. Constant c comes from Condition 2.

Next, we solve the following equations for ζ:

δ1 =
D1Eν [τ

p
A]

ζpnp
,

δ2 =
D1EA[τ

p
A]

ζpnp

δ3 =
D2EA[τ

p
A]

np/2ζp

δ4 =
D3EA[τ

p
A]

n3p/8ζp

δ5 =
D4

EA[τ
p
A]n

3p/8ζp

δ6 =
D4

ζpn7p/16
.

Standard calculations show the desired bound.

A direct application of Theorem 33 to theMV -set estimation problem yields the following

result.

Theorem 34. Suppose that assumptions of Theorem 33 are fulfilled. Then, for all

δ = δ1 + δ2 + δ3 + δ4 + δ5 + δ6 ∈ (0, 1),

and for n large enough, any solution �Ωn of (6.2) with

ψn(δ)
def
= max

��
D1Eν [τ

p
A]

δ1np

�1/(p+r)

,

�
D1EA[τ

p
A]

δ2np

�1/(p+r)

,

�
D2EA[τ

p
A]

np/2δ3

�1/(p+r)

,

�
D3EA[τ

p
A]

n3p/8δ4

�1/(p+r)

,

�
D4

EA[τ
p
A]n

3p/8δ5

�1/r

,

�
D4

δ6n7p/16

�1/r
�
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satisfies, with probability at least 1− δ,

λ(�Ωn) ≤ λ(Ω∗
α) +

�
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗

α)

�

and

µ(�Ωn) ≥ α− 2ψn(δ).

Constants D1, D2.D3, D4 are given in the proof of Theorem 33.

Remark 31. Note that Theorem 34 works for n of the magnitude of ψn(δ) in order to ensure

that

α− 2ψn(δ) > 0.

Proof. The proof is analogous to that of Theorem 11 in [126]. Let K = (X1, · · · , Xn) be

a Markovian sample. Define

Θµ = {K : µ(�Ωn) < α− 2ψn(K, δ)},

Θλ = {Ω ∈ G : λ(Ωn) > λ(Ω)},

Γµ = {K : sup
Ω∈G

|�µn(Ω)− µ(Ω)|− ψn(K, δ) > 0}.

Now, one can deduce the same way as in [126], page 670 ( see also Appendix A therein) that

Θµ ∪Θλ ⊂ Γµ

which yields the result.

The following remark is an observation made in [126], page 670.

Remark 32. Note that

Θµ ∪Θλ ⊂ Γµ,

where Θµ, Θλ and Γµ are defined in the proof of Theorem 34; can be seen as an analogy to

the result in classification, namely

R(�h)− inf
h∈H

R(h) ≤ 2 sup
h∈H

|R(h)−Rn(h)|,

where �h is the empirical risk minimizer and H is a set of classifiers.

Remark 33. One can establish analogous bound in sub-exponential case by using Bernstein

or Hoeffding type maximal inequalities for Markov chains established in Chapter 5. In

consequence, one can get sharper control of tolerance parameter ψn(δ). Moreover, one can

assume that exponential moments of return time to the atom A exist for chain X and use

Lemma 1 in order to make the terms involving parameter N asymptotically negligible.
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3.1 Harris recurrent case

It is straightforward to extend the preceding results into a Harris recurrent case when the

regeneration properties for Harris chains can be recovered via the Nummelin’s splitting tech-

nique. The following condition is the same as Assumption 4 from Chapter 5. We state it

below again in order to make this chapter self-contained.

Condition 3. We have:

sup
x∈S

Ex[τ
p
S] < ∞, and Eν [τ

p
S] < ∞.

It is noteworthy that the hypothesis above is independent from the small set chosen.

Recall also that this condition can be replaced by Foster-Lyapunov drift conditions that are

much more tractable in practice, see e.g. Chapter 11 in [106]. The following theorem gives

a generalization bound for MV -set estimation problem in a Harris recurrent case.

Theorem 35. Suppose that Conditions 2-3 are fulfilled. Then, for all

δ = δ1 + δ2 + δ3 + δ4 + δ5 + δ6 ∈ (0, 1),

and for n large enough, any solution �Ωn of (6.2) with

ψn(δ)
def
= max

��
D1Eν [τ

p
S]

δ1np

�1/(p+r)

,

�
D1 supy∈S Ey[τ

p
S]

δ2np

�1/(p+r)

,

�
D2 supy∈S Ey[τ

p
S]

np/2δ3

�1/(p+r)

,

�
D3 supy∈S Ey[τ

p
S]

n3p/8δ4

�1/(p+r)

,

�
D4

n3p/8 supy∈S Ey[τ
p
S]δ5

�1/r

,

�
D4

δ6n7p/16

�1/r
�

satisfies, with probability at least 1− δ,

λ(�Ωn) ≤ λ(Ω∗
α) +

�
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗

α)

�

and

µ(�Ωn) ≥ α− 2ψn(δ).

The constants D1, D2, D3 and D4 can be explicitly computed and are analogous to the con-

stants given in the proof of Theorem 34.

Proof. The proof is analogous to the proof of Theorem 34. The difference boils down to

using polynomial tail inequality for Harris recurrent Markov chains stated in Theorem 30.

We obtain different constants as a result that now we work under Condition 3.
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4 Simulations

In this section we carry out some numerical experiments in order to illustrate the performance

of MV-set method when the data are Markovian. Note that our goal is not to compare

our method with other algorithms but rather show that our estimators’ behaviour agree

with the theory. We will provide a short discussion of the behaviour of the MV-set method

when considering different penalties. Below, we present numerical results where approximate

solutions of (6.2) are built by means of a dyadic recursive partitioning scheme (we used the

mex/matlab code from http://web.eecs.umich.edu/ cscott). We refer to [127] for details of

dyadic trees construction and to [126] for details concerning applications to minimum volume

set estimation. We illustrate the performance of the MV -set estimation method with dyadic

trees approach with M/G/2 bivariate queuing process. M/G/2 queue is a sub-geometric

regenerative Markov chain with atom A = (0, 0) (see for instance [57] for more details). The

M/G/2 queue we consider is of the following form

�
x1,t+1

x2,t+2

�
= max

��
u1,t

u2,t

�
−
�

w1,t

w2,t

�
, 0

�
,

where the process Ut = [u1,t, u2,t] has bivariate exponential distribution with parameters

(λ1,λ2) and correlation ρu. Process Wt = [w1,t, w2,t] has bivariate Pareto distribution with a

density given by

f(w1, w2) =
p(p+ 1)(θ1θ2)

p+1

(θ2w1 + θ1w2 − θ1θ2)p+2

and correlation Cor(w, v) = 1/p for p > 2. We draw from bivariate Pareto distribution using

inverse sampling which requires the cumulative distribution functions of both marginal and

conditional distributions. The marginal and conditional density functions are given in [102]

and are of the form

f(w2) =
pθ2

wp+1
2

and f(w1|w2) =
(p+ 1)

�
θ1
θ2
w2

�p+1

�
w1 +

theta1
θ2

w2 − θ1

�p+2 .

Figure 6.1 show 10000 samples from M/G/2 such that (we denote this process as Process 1)

λ1 = λ2 = 0.4 and ρu = 0.4.

The parameters of Pareto distributions are:

θ1 = 3, θ2 = 3 and ρw = 1/3.
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The estimated mean inter-renewal time is �EA[τA] = 2.06 (computed by Monte-Carlo simula-

tion). We set level α = 0.9 for the true minimum volume set. We consider constant penalty

of one per leaf, Rademacher upper bound, exact Rademacher and Rademacher upper bound

with volume term respectively (see [126] for more details for the choice of penalization).

Figure 6.2 show 10000 realizations of M/G/2 such that (we denote this process as Process

2)

λ1 = λ2 = 0.3 and ρu = 0.6.

The parameters of Pareto distributions are:

θ1 = 3, θ2 = 3 and ρw = 1/6.

The estimated mean inter-renewal time is �EA[τA] = 26.27. We set level α = 0.90 for the true

minimum volume set. Penalties are chosen as in the preceding case. Figure 6.3 demonstrate

the behaviour of the minimum volume set when we generate 10000 samples from M/G/2

model with parameters (we denote this process as Process 3):

λ1 = λ2 = 0.3, ρu = 0.7, θ1 = θ2 = 3 and ρw = 1/8.

The estimated mean inter-renewal time is �EA[τA] = 82.86. Visual inspection of the resulting

minimum volume set estimates allows to detect some of the characteristics of the different

penalties and their behaviour as a function of the sample size. Reconstructions are based

on con = constant penalty, rad = Rademacher penalty, radub = Rademacher upper bound

(which is tight up to a factor 1/
√
2, radvol = Rademacher upper bound with volume term

(adds a volume to empirical mass in the radub penalty). We refer to [126] and description

of the code in http://web.eecs.umich.edu/ cscott for the definitions of the aforementioned

penalties and more comments.

We observe that Rademacher upper bound with volume term allows isolated leafs into the

final set estimate (especially for Process 2 and Process 3), which is somewhat unappealing.

We see that applying Rademacher upper bound significantly eliminates the problem. The

exact Rademacher penalty results in giving very reasonable estimates. Applying the constant

penalty of one per leaf provides equally satisfactory results as in exact Rademacher case.

Finally, Figure 6.4 shows the error rate as a function of sample size. We see that the

decrease of error rate to zero depends on �EA[τA] and is the fastest for the process with
�EA[τA] = 2.06 and the slowest for process with �EA[τA] = 82.86. This agrees with the theory,

since Sj(Ω)/EA[τA] play the role of training observations: the smaller the expected cycle

length E[τA], the larger the probability to observe a high number of training observations.
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5 Conclusion

In this chapter we have shown how uniform tail bounds for suprema of empirical processes

can be used to obtain generalization bounds for statistical learning algorithm when the

data are Markovian. In this work we considered minimum volume set estimation algorithm

which can be applied to outlier/anomaly detection, determining highest posterior density or

multivariate confidence regions or clustering, see [126] for more details. More specifically,

we have shown how to estimate minimum volume sets via empirical risk minimization and

structural risk minimization paradigm. Finally, we illustrated our theoretical considerations

by simulations.

It is noteworthy that our generalization bounds depend on parameters that can be expli-

citly computed and work for all n ≥ 1. However, when dealing with sub-geometric case, we

struggle with full recovery of the i.i.d. rates. Interestingly, in sub-exponential case, the i.i.d.

rates can be recovered ( we can apply Bernstein/ Hoeffding inequality for Markov chains,

see Chapter 5). The sub-geometric case requires further investigation.
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(a) con (b) ar

(c) radub (d) radvol

Figure 6.1: Minimum volume set estimates based on dyadic quadtrees for Process 1, α =

0.9, n = 10000 .
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(a) con (b) rad

(c) radub (d) radvol

Figure 6.2: Minimum volume set estimates based on dyadic quadtrees for Process 2, α =

0.9, n = 10000 .
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(a) con (b) rad

(c) radub (d) radvol

Figure 6.3: Minimum volume set estimates based on dyadic quadtrees for Process 3, α = 0.90,

n = 10000 .
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Figure 6.4: The error E[�Ωn] as a function of sample size for Process 1 (dotted line), Process

2 (dashed line) and Process 3 (solid line).
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Chapter 7

Résumé substantiel

Cette thèse se concentre sur quelques extensions de la théorie des processus empiriques

lorsque les données sont Markoviennes. Nous nous intéressons dans cette thèse à quelques

extensions en matière de bootstrap, de robustesse et d’apprentissage statistique dans le cadre

des châınes de Markov atomiques régénératives et Harris récurrentes.

1 Motivation

La théorie des processus empiriques joue un rôle important dans les statistiques modernes.

Elle fournit des outils qui permettent de résoudre de nombreux problèmes statistiques dans

différents domaines, tels l’analyse spectrale, la théorie des valeurs extrêmes, le bootstrap et

l’apprentissage statistique. La théorie des processus empririques dans le cas de données i.i.d.

a déjà été étudiée en détails , voir par exemple [87], [119] et [141].

Cependant, l’hypothèse de variables i.i.d. est souvent irréaliste en pratique. Les données

qui proviennent de domaines tels que la climatologie, la génétique, la finance, la géologie

ou les télécommunications sont intrinsèquement temporelles par nature et par conséquent

constituent des processus non i.i.d.. D’où la volonté des chercheurs d’étendre les concepts de

la théorie des processus empiriques au cas dépendant (voir par example [54] pour une analyse

détaillée des résultats obtenus pour les suites stationnaires et les données dépendantes).

Les châınes de Markov atomiques régénératives et Harris récurrentes présentent un intérêt

à la fois théorique et applicatif. Tout d’abord, la classe des châınes de Markov (y compris

les châınes à mémoire infinie) est très générale et contient de nombreuses séries temporelles

(y compris des processus non stationnaires) ; elles sont utilisées dans de nombreux modèles

économétriques utilisant des données dépendantes. De plus, la structure régénérative des

châınes de Markov (voir par exemple [112], [12] et [111]) en fait un outil idéal pour étendre
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certains résultats du cas i.i.d. au cas dépendant. En effet, [111] a prouvé qu’il était possible de

découper (théoriquement) les châınes Harris récurrentes en blocs indépendants en utilisant

une extension probabiliste de la châıne. La théorie des châınes de Markov Harris récurrentes

est bien étudiée, le lecteur pourra se reporter à [106], [136] et [111]. En particulier, on trouvera

dans [98] et [44] un théorème central limite pour de tels processus, des développements

bootstrap dans [26], [122], [75], des inégalités de concentration dans [2], [28], [22] et des

applications à l’apprentissage statistique dans [23], [24].

De nombreux exemples de la vie réelle présentent les propriétés des châınes de Markov

régénératives atomiques et Harris récurrentes : les systèmes de stockage et les files d’attente,

beaucoup de modèles dans les domaines de la finance, de l’assurance ou de l’évaluation des

risques alimentaires (voir [106], [27], [31] et [25]). De nombreux résultats pour les châınes de

Markov ont été établis avec des propriétés de mélange qui sont difficiles à vérifier en pratique.

La première partie de la thèse se concentre sur des aspects relatifs au bootstrap. Le boots-

trap naif a été proposé par Efron [59]. Étant données n observations X1, · · · , Xn i.i.d. ayant

une loi inconnue F, on souhaite estimer la loi d’échantillonnage de certaines fonctionnelles

Rn(X1, · · · , Xn, F ). Dans cette situation, la méthode bootstrap simple non paramétrique est

facile à implémenter. Tout d’abord, nous construisons la version empirique de F , c’est-à-dire

Fn = 1
n

�n
i=1 δXi

. L’étape suivante consiste à tirer n observations selon Fn : X∗
i , i = 1, · · · , n,

où les X∗
i sont i.i.d. conditionnellement à Fn. On approxime la loi d’échantillonnage d’une

fonctionnelle d’intérêt Rn(X1, · · · , Xn, F ) par la loi de R∗
n(X

∗
1 , · · · , X

∗
n, Fn) conditionnelle-

ment à Fn. On peut se demander pourquoi ne pas simplement utiliser le theorème central

limite pour étudier Rn(X1, · · · , Xn, F ). Cette approche n’est pas toujours possible car la

forme explicite de la loi limite peut être difficile à obtenir (voir par exemple [121] pour plus

de détails et de références). Il est assez courant que la loi du processus de la limite dépend de

certains paramètres inconnus. En résumé, les méthodes bootstrap permettent de remédier

aux problèmes susmentionnés (voir le Chapitre 2 pour plus de détails).

Les méthodes de bootstrap non paramétrique pour les données i.i.d. ont progressivement

évolué et de nouveaux types de bootstrap dans le cas i.i.d. et le cas dépendant ont été

établis (voir [76], [93] et [43], [42] pour les résultats en grande dimension). Cela a conduit

à énormément d’applications dans la plupart tous les domaines des statistiques (voir par

example [80] et [76] pour plus de détails). Suite à l’intérêt accru porté à l’inférence statistique

dans un cadre dépendant, de nouvelles procédures de bootstrap ont été développées. La

plupart des modèles dans le cadre dépendant reposent sur des techniques exploitant une

structure par blocs. Ces approches se résument essentiellement au rééchantillonnage de blocs

d’observations de sorte que la structure de dépendance soit capturée. Il existe de nombreuses
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variantes aux méthodes de block bootstrap pour les données dépendantes telles que le moving

block bootstrap (MBB), non-overlapping block bootstrap (NBB) ou circular bootstrap (CBB)

pour n’en nommer que quelques-unes (voir par exemple [93] pour un aperçu exhaustif des

procédures susmentionnées).

Malheureusement, comme indiqué par de nombreux auteurs (voir par exemple [46] et

[93]), ces procédures se heurtent à de nombreux problèmes. Le gros inconvénient est que les

méthodes de bloc bootstrap sont très sensibles au choix de la longueur des blocs. En effet,

la longueur optimale des blocs dépend fortement de la taille de l’échantillon et du processus

de génération de données. De plus, la méthode populaire MBB nécessite la propriété de

stationnarité pour les observations ce qui entrâıne généralement l’échec de cette méthode en

mode non stationnaire (voir [93] pour plus de détails).

Nous nous sommes attachés à rappeler les principales méthodes de bootstrap par blocs

pour des données dépendantes. En effet, les procédures de bootstrap que nous considérons

dans cette thèse reposent également sur la segmentation des données en blocs. Il existe

cependent de nombreux autres méthodes du bootstrap que l’on peut utiliser dans le cas des

données sont dépendantes, tels que bootstrap résiduel ou le wild bootstrap. Nous renvoyons

le lecteur à [89] et [93] pour plus de détails sur la mise en pratique de ces procédures et leurs

limitations.

Compte tenu des limitations des méthodes de bootstrap par blocs, nous avons décidé de

nous concentrer sur les techniques de régénération des châınes de Markov atomiques et Harris

récurrentes. Dans [26], la procédure du bloc bootstrap régénératif (RBB) et la méthode

approximative du bloc bootstrap régénératif (ARBB) sont présentées. Ces procédures ne

requièrent pas le choix de la longueur des blocs contrairement à les méthodes de bootstrap

par blocs. Dans le cas atomique, la division des blocs de données est entièrement determinée

par les données. Comme indiqué dans [26], le théorème central limite de type bootstrap pour

la moyenne dans le cadre Markovien est valide. Nous avons développé cette théorie plus loin

en établissant des théorèmes de la limite centrale du bootstrap uniformes sur des classes de

fonctions non nécessairement bornées. Les théorèmes fonctionnels de la limite centrale de

type bootstrap sont utiles pour prouver la validité des procédures de bootstrap (voir [122],

[44] et [71]) et peuvent être utilisés dans de nombreuses applications statistiques, afin par

exemple d’obtenir des versions bootstrap des résultats dans [110], [68] et [69].

Ensuite, nous utilisons les résultats susmentionnés pour obtenir un théorème de la li-

mite centrale pour des fonctionnelles Fréchet différentiables dans un cadre Markovien. La

différentiabilité de Fréchet est un concept essentiel de la statistique robuste, car elle garantit

l’existence d’une fonction d’influence qui permet de détecter les valeurs aberrantes dans les
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données (voir [140] pour plus de détails). Plus spécifiquement, on peut détecter des valeurs

aberrantes et construire des estimateurs de plug-in robustes en éliminant les blocs ayant

soit une contribution trop importante aux statistiques d’intérêt ou ayant une longueur trop

grande, ce qui entrâıne un biais important dans les statistiques (au lieu de prendre en compte

l’impact d’une seule observation sur une statistique donnée).

Notre deuxième direction concernant les développements bootstrap dans un cadre dépendant

s’attache à étudier des processus autorégressifs périodiques (PAR) qui sont un exemple de

châınes de Markov Harris récurrentes. Nous proposons des méthodes d’échantillonage résiduel

et de wild bootstrap et prouvons leur validité. Ces méthodes sont uniquement basées sur les

données et ne nécessitent donc aucun étalonnage de la longueur de bloc, un aspect qui peut

être fort attrayant en pratique.

La deuxième partie de la thèse se concentre sur les applications de l’apprentissage sta-

tistique à la théorie des processus empiriques. Sans surprise, la théorie de l’apprentissage

statistique est principalement étudiée dans le cas i.i.d. (voir [38], [142], [144] et [64]). Ce-

pendant, il existe une forte demande motivée par le domaine du Big Data afin d’étendre

les résultats au cas dépendant. La théorie de l’apprentissage automatique des processus

dépendants a fait l’objet de recherches approfondies au cours des dernières années ; voir par

exemple [3], [5], [132] ou [78] pour certains résultats présentés dans un cadre très général.

Dans la théorie de l’apprentissage statistique, de nombreux travaux ont établi des li-

mites non asymptotiques évaluant la capacité de généralisation de minimiseurs empiriques du

risque sous une grande variété d’hypothèses de complexité pour la classe de règles de décision

sur laquelle l’optimisation est effectuée via le contrôle de la distance entre les moyennes des

variables aléatoires et leurs espérance (et est géré par les inégalités de concentration qui

donnent une borne supérieure sur la probabilité de taille pour suprema de processus empi-

riques). Ces résultats, à première vue très théoriques, sont des outils cruciaux pour étudier la

capacité d’apprentissage des algorithmes d’apprentissage statistique. Il existe de nombreux

résultats de concentration pour les données dépendantes. Les resultats dans le cas Markovien

doivent être mentionnés [28], [2] et [1]. En dépit de divers résultats de concentration, nous

établissons des inégalités de concentration de type maximales sur mesure pour nos applica-

tions, c’est-à-dire qu’elles sont établies pour des processus de Markov non stationnaires et

pour des classes de fonctions non bornées F .

Dans cette thèse, nous souhaiterons établir des bornes de généralisation pour les algo-

rithmes d’apprentissage statistique lorsque les données sont Markoviennes. Nous obtenons

de tels résultats via une approche empirique de minimisation des risques. Notre stratégie se

résume essentiellement à 3 étapes.
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• Nous obtenons des inégalités de concentration pour des classes de fonctions bornées et

non bornées des châınes de Markov (voir [22], [23] et [24]). Les inégalités exponentielles

(par exemple Bernstein et Hoeffding) et les inégalités de moments polynomiales sont

un outil essentiel lorsque l’on veut contrôller une minimisation empirique des risques

ou calculer la vitesse de convergence d’un algorithme d’apprentissage statistique.

• Nous étudions la performance des algorithmes d’apprentissage via une minimisation

empirique du risque. Il est à noter que l’analyse de l’algorithme ERM et des propriétés

des algorithmes d’apprentissage statistique sont des problèmes très importants et ur-

gents à résoudre.

• Nous étudions les propriétés de généralisation d’un algorithme d’apprentissage statis-

tique sélectionné (dans le cadre régénératif atomique et Harris Markovien).

Dans cette thèse, nous présentons les bornes de généralisation pour l’estimation d’ensemble à

volume minimal problème ( minimum volume (MV) set en anglais). Le concept d’estimation

MV-set a été introduit pour la première fois dans [120] et étend le concept de quantile pour les

distributions de probabilité multivariées (voir [120] pour plus de détails). Cette méthode offre

un cadre non paramétrique pour la detection (non supervisée) des anomalies / nouveautés.

Comme observé dans [126], l’estimation de MV-set peut être transposée dans un cadre

d’apprentissage très semblable à la minimisation empirique du risque dans la classification

(supervisée). Des bornes de généralisation du problème d’estimation de l’ensemble MV ont

été établies dans [126] dans le cas i.i.d.. Certains résultats ont obtenus dans le cas dépendant

dans [55]. Nous avons étendu les résultats précédents aux cas atomique et Harris récurrent

dans [23] et [24].

2 Propriétés fondamentales des châınes de Markov

régénératives atomiques et Harris récurrentes

Dans cette section, nous introduisons quelques notations et rappelons les concepts clés de

la théorie des châınes de Markov (se référer à [106] et [136], [27] et [112] pour des rappels

exhaustifs). Les resultats fournis dans cette section ont un caractère purement informatif.

Le lecteur intéressé trouvera dans la littérature susmentionnée les preuves des théorèmes

énoncés pour des châınes de Markov à espace d’état général. Dans toute cette section, IA est

la fonction indicatrice de l’événement A.

On suppose que X = (Xn)n∈N est une châıne de Markov homogène sur un espace d’état

général (E, E) avec probabilité de transition Π et loi initiale ν. Le lecteur pourra noter que
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pour tout B ∈ E , et n ∈ N, nous avons

X0 ∼ ν et P(Xn+1 ∈ B|X0, · · · , Xn) = Π(Xn, B) p.s.

Dans ce qui suit, Px (respectivement Pν) est la mesure de probabilité telle queX0 = x etX0 ∈
E (respectivement X0 ∼ ν), et nous écrivons Ex (·) pour la Px-espérance (respectivement

Eν (·) la Pν-espérance).

Dans ce qui suit, on suppose que X est ψ−irréductible et apériodique.

2.1 Châınes de Markov régénératives atomiques

Dans cette thèse, notre intérêt particulier s’est porté sur la structure atomique des châınes

de Markov en raison de sa capacité à étendre la théorie des processus empiriques (essentielle

aux développements dans le domaine du bootstrap et de l’apprentissage statistique) à partir

du cas i.i.d. au cadre Markovien.

Supposons que X soit apériodique et ψ-irréductible. Un ensemble A ∈ E est un atome

accessible si pour tout x, y ∈ A nous avons Π(x, ·) = Π(y, ·) et ψ(A) > 0. Dans ce cas,

nous appelons X atomique. Intuitivement, l’atome est un ensemble à partir duquel toutes

les probabilités de transition sont les mêmes. Par conséquent, chaque fois que X arrive à A,

il oublie son passé et recommence (se régénère).

La propriété de Markov forte (voir [106] pour une justification rigoureuse) garantit que,

étant donné la loi initiale ν,, les trajectoires pouvent être découpées en blocs i.i.d. corres-

pondant aux visites consécutives de l’atome A par la châıne. Les blocs sont de la forme :

Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

et prennent des valeurs dans le tore T = ∪∞
k=1E

k.

Sachant que la châıne possède la structure atomique, nous définissons la séquence des temps

de régénération (τA(j))j≥1. La séquence est constituée des temps successifs auxquels la châıne

oublie son passé. Soit

τA = τA(1) = inf{n ≥ 1 : Xn ∈ A}

la première fois où la châıne arrive à l’atome A et

τA(j) = inf{n > τA(j − 1), Xn ∈ A} for j ≥ 2.

Nous introduisons quelques notations supplémentaires : tout au long de la thèse, nous

écrivons

ln =
n�

i=1

I{Xi ∈ A}
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pour le nombre total de visites consécutives de l’ensemble atomique A par la châıne, donc

nous avons ln + 1 blocs. Nous faisons la convention B
(n)
ln

= ∅ quand τA(ln) = n. De plus, on

note

l(Bj) = τA(j + 1)− τA(j), j ≥ 1,

la longueur des blocs de régénération.

Ci-dessous, nous fournissons le schéma de construction des blocs. L’étape 3 n’est perti-

nente que dans le cadre de résultats non-asymptotiques. Nous supposons que nous observons

la trajectoire Xn = (X1, · · · , Xn).

Construction de blocs de régénération

Étape 1 Compter le nombre total de visites ln =
�n

i=1 I{Xi ∈ A} de l’atome A jusqu’à temps n.

Étape 2 Diviser les données Xn en ln+1 blocs en fonction des visites consécutives de l’atome A :

B0 = (X1, · · · , XτA(1)), · · · , Bj = (XτA(j)+1, · · · , XτA(j+1)), · · · ,

Bln−1 = (XτA(ln−1)+1, · · · , XτA(ln)), B
(n)
ln

= (XτA(ln)+1, · · · , Xn).

Étape 3 Supprimer le premier bloc B0 et le dernier B
(n)
ln

si τA(ln) < n.

Dans le cadre de notre étude, nous nous intéressons également au comportement asympto-

tique des châınes de Harris Markov positives et récurrentes. Supposons que X est une châıne

de Markov ψ-irréductible. La châıne X est Harris récurrente si, à partir de tout point x ∈ E

et de tout ensemble tel que ψ(A) > 0, nous avons

Px(τA < +∞) = 1.

La propriété de Harris récurrence garantit que X visite tout ensemble A infiniment sou-

vent p.s..

Dans notre cadre, nous nous intéressons à l’analyse en régime permanent des châınes de

Markov. Plus spécifiquement, quand une mesure invariante est finie, on peut la normaliser

en une mesure de probabilité stationnaire. D’après le théorème de Kac, la châıne de Markov

X est récurrente positive si et seulement si EA(τA) < ∞. L’unique loi de probabilité unique

invariante µ est la mesure d’occupation de Pitmnan donnée par

µ(B) =
1

EA(τA)
EA

�
τA�

i=1

I{Xi ∈ B}

�
, ∀B ∈ E .
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Nous avons par le théorème de Kac :

E(l(Bj)) = EA(τA) =
1

µ(A)
.

On considère la fonction µ−intégrable f : E → R. Par

un(f) =
1

τA(ln)− τA(1)

τA(ln)�

i=1+τA(1)

f(Xi),

on désigne l’estimateur de la moyenne asymptotique inconnue Eµ(f(X1)).

2.2 Châınes de Markov Harris récurrentes et scission

de Nummelin

Dans cette section, nous expliquons comment les techniques de régénération peuvent être

étendues du cas atomique à un cadre Harris récurrent grâce aux travaux de [12] et [111].

Nummelin [111] a notamment proposé la technique dite de scission qui permet, en termes

simples, d’étendre la structure probabiliste de toute châıne de Harris afin de construire

artificiellement un ensemble de régénération. Dans cette section, X est une châıne de Markov

Harris récurrente avec noyau de transition Π. Dans cette section, nous adoptons les notations

introduites dans [27] et invitons le lecteur à s’y référer pour un exposé détaillé de la théorie

présentée ci-dessous.

Un ensemble S ∈ E est dit petit s’il existe un paramètre δ > 0, une mesure de probabilité

positive Φ supportée par S et un entier m ∈ N∗ tels que

∀x ∈ S, A ∈ E Π
m(x,A) ≥ δ Φ(A), (7.1)

où Πm désigne le m−ième itéré de la probabilité de transition Π.

Comme indiqué dans [82], les petits ensembles existent pour tout noyau irréductible sous

l’hypothèse que l’espace d’état est généré de manière dénombrable.

Dans ce qui suit, nous élargissons l’espace échantillon afin de définir une suite (Yn)n∈N

de variables aléatoires indépendantes de paramètre δ. Soit Pν,M la loi conjointe de XM =

(Xn, Yn)n∈N. La construction est basée sur la représentation de Π, définie sur S, à savoir

Π(x,A) = δΦ(A) + (1− δ)
Π(x,A)− δΦ(A)

1− δ
.

Il peut être obtenu par la randomisation suivante de la transition probabilité Π chaque fois

que la châıne X visite l’ensemble S. Si Xn ∈ S et
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Figure 7.1 : Construction de bloc de régénération pour le modèle AR (1).

• si Yn = 1 (cela arrive avec probabilité δ ∈ ]0, 1[), alors Xn+1 est distribué selon la

mesure de probabilité Φ,

• si Yn = 0 (cela arrive avec probabilité 1− δ), alors Xn+1 est distribué selon la mesure

de probabilité (1− δ)−1(Π(Xn, ·)− δΦ(·)).

Cette châıne de Markov bivariée XM est appelée châıne scindée. Elle prend ses valeurs dans

E × {0, 1} et possède un atome S × {1} . Cette châıne scindée XM hérite de toutes les

propriétés de stabilité et de communication de la châıne X (voir [106] et [112] pour une

présentation rigoureuse). La Figure 2.2 illustre la technique de scission pour une trajectoire

de processus AR(1). Il est connu que le processus autorégressif d’ordre 1 est une châıne de

Markov Harris récurrente (voir par exemple [106] pour plus de détails).

Il convient de noter que les blocs créés par la technique de fractionnement sont i.i.d. dans

le cas où m = 1 sous condition de minoration (7.1). Si la châıne X satisfait M(m,S, δ,Φ)

pour m > 1, alors les blocs de données sont 1-dépendants. Cependant, dans de nombreux

cas, il est facile d’adapter la théorie du cas m = 1 en considérant des sommes de blocs pairs

et impairs afin de traiter la dépendance entre les Bj (voir par exemple [98] ou [95] pour plus

de détails) ou en vectorisant la châıne (voir [106]).
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Par souci de simplicité, dans la suite de ce manuscrit, la condition de minoration M est

satisfaite avec m = 1, sauf indication contraire.

2.3 Blocs régénératifs pour les familles dominées

Nous supposons que la famille de lois conditionnelles {Π(x, dy)}x∈E et la loi initiale ν sont

dominées par une σ mesure finie λ de référence de sorte que

ν(dy) = f(y)λ(dy) et Π(x, dy) = p(x, y)λ(dy),

pour tout x ∈ E. On suppose également que Φ est absolument continue par rapport à λ de

telle sorte que

p(x, y) ≥ δφ(y), λ(dy) p.s. pour tout x ∈ S

avec Φ(dy) = φ(y)dy. Dans ce qui suit, soit Y une suite aléatoire binaire obtenue via la

technique de Nummelin à partir des paramètres donnés par la condition M. La loi de Y (n) =

(Y1, ..., Yn) conditionnellement à X(n+1) = (x1, ..., xn+1) est le produit tensoriel des lois de

Bernoulli données par : pour tous β(n) = (β1, ..., βn) ∈ {0, 1}n , x(n+1) = (x1, ..., xn+1) ∈ En+1,

Pν

�
Y (n) = β(n) | X(n+1) = x(n+1)

�
=

n�

i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1),

avec, pour 1 � i � n,

• si xi /∈ S, Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δ,

• si xi ∈ S, Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δφ(xi+1)/p(xi, xi+1).

Étant donné X(n+1), de i = 1, · · · , n, Yi est distribué suivant la loi de Bernoulli de paramètre

δ, à l’exception du cas où X frappe le petit ensemble S au temps i : alors, Yi est tiré selon la

loi de Bernoulli de paramètre δφ(Xi+1)/p(Xi, Xi+1). On note L(n)(p, S, δ,φ, x(n+1)) cette loi

de probabilité. Si nous pouvions générer Y1, ..., Yn, de sorte que

XM(n) = ((X1, Y1), ..., (Xn, Yn))

soit une réalisation de la châıne scindéeXM, alors nous pourrions procéder à une décomposition

en blocs de la trajectoire de l’échantillon XM(n) conduisant à des blocs asymptotiquement

i.i.d.. Le lecteur pourra noter que cette procédure nécessite de connâıtre la densité de transi-

tion p(x, y) afin de générer des variables aléatoires (Y1, · · · , Yn). Cependant, en pratique, la

densité de transition est inconnue et doit être estimée. Par conséquent, nous ne pouvons pas
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utiliser directement la procédure indiquée ci-dessus et devons appliquer la version approchée

proposée dans [26]. La construction se decompose en deux étapes, premièrement, construire

un estimateur pn(x, y) de p(x, y) basé sur X(n+1), de sorte que pn(x, y) satisfait

pn(x, y) ≥ δφ(y), λ(dy)− p.s. et pn(x, y) > 0, 1 ≤ i ≤ n. (7.2)

Dans la deuxième étape, générer un vecteur aléatoire �Yn = (�Y1, · · · , �Yn) conditionnellement

à X(n+1) de loi L(n)(pn, S, δ, γ, X
(n+1)) qui est une approximation de la loi conditionnelle

L(n)(p, S, δ, γ, X(n+1)) de (Y1, · · · , Yn) sachant X
(n+1). La validité de cette approximation a

été prouvée dans [26].

Dans ce cadre, nous définissons les temps de visite successifs de AM = S × {1} par

�τAM
(i), i = 1, · · · ,�ln, où �ln =

n�

i=1

I{Xi ∈ S, �Yi = 1}

est le nombre total de visites de la châıne scindée en AM jusqu’à n. Ci-dessous, nous fournis-

sons un schéma de construction approximatif. Soit Xn+1 = (X1, X2, · · · , Xn+1) un échantillon

aléatoire tiré selon une châıne Harris récurrente X. On suppose que X vérifie les hypothèses

énoncées précédemment dans cette section. L’étape 5 n’est pertinente que dans le cadre de

résultats non-asymptotiques. Pour ce qui est des résultats asymptotiques, elle pourra être

omise.

Construction approximative de blocs de régénération

Étape 1 Construire un estimateur pn(x, y) de la densité de transition à l’aide de l’échantillon

Xn+1. L’estimateur pn(x, y) doit satisfaire les conditions (7.2).

Étape 2 Conditionnellement à Xn+1, tirer (�Y1, · · · , �Yn) à partir de L(n)(pn, S, δ, γ,Xn+1). En

pratique, �Y est tiré seulement lorsque Xi ∈ S (voir [27] pour plus de détails). A

l’instant i, tel que Xi ∈ S, tirer �Yi selon la loi de Bernoulli de δγ(Xi+1)\pn(Xi, Xi+1).

Étape 3 Compter le nombre de visites

�ln =
n�

i=1

I{Xi ∈ S, �Yi = 1}

à l’atome S1 = S × {1} jusqu’à n.

Étape 4 Couper la trajectoire Xn+1 en �ln + 1 blocs de régénération approximatifs qui corres-

pondent à visites réussies consécutives de (X, �Y ) à S1. Les blocs approximatifs sont de
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la forme

�B0 = (X1, · · · , X�τAM
(1)), · · · , �Bj = (X�τAM

(j)+1, · · · , X�τAM
(j+1)), · · · ,

�B�ln−1 = (X�τAM
(�ln−1)+1, · · · , X�τAM

(�ln)),
�B(n)
�ln

= (X�τAM
(�ln)+1, · · · , Xn+1).

Étape 5 Supprimer le premier bloc �B0 et le dernier �B(n)
�ln

si �τS1(
�ln) < n.

Dans ce qui suit, nous désignons par

�nAM
= �τAM

(�ln)− �τAM
(1) =

�ln−1�

i=1

l( �Bj)

le nombre total d’observations après le premier et avant les derniers temps de pseudo-

régénération. Soit

σ2
f =

1

EAM
(τAM

)
EAM

�τAM�

i=1

{f(Xi)− µ(f)}

�2

la variance asymptotique. En outre, nous définissons

�µn(f) =
1

�nAM

�ln−1�

i=1

f( �Bj), où f( �Bj) =

�τAM
(j+1)�

i=1+�τAM
(j)

f(Xi)

et

�σ2
n(f) =

1

�nAM

�ln−1�

i=1

�
f( �Bi)− �µn(f)l( �Bi)

�2

.

Comme indiqué dans [27], la technique de Nummelin repose fortement sur la condition de

minoration et un petit ensemble bien choisis. Le choix du petit ensemble ainsi que la précision

du minorant uniforme sur la densité de transition de X (dans la condition de minoration)

joue un rôle crucial pour obtenir suffisamment de blocs. L’observation suivante provient

de [27] (voir l’article susmentionné pour des exemples de choix d’un petit ensemble pour

différentes séries temporelles).

Si la taille d’un petit ensemble augmente, le minorant uniforme pour la densité de transi-

tion de X diminue. Inversement : pour une réalisation donnée de la trajectoire, augmenter la

taille du petit ensemble S fait crôıtre le nombre de points de la trajectoire qui sont candidats

à la détermination d’un bloc. Il convient donc de trouver un équilibre entre taille de S et

δ = δ(S).

Enfin, nous mentionnons brièvement qu’il existe une relation entre les coefficients de α−
mélange et les temps de régénération pour les châınes de Markov Harris récurrentes. Pour ce
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faire, nous faisons l’hypothèse de conditions de moment imposées sur τA et de conditions de

moment des blocs plutôt qu’utiliser des propriétés de mélange principalement en raison du

fait qu’il est difficile, en pratique, de vérifier les conditions de mélange. Cependant, compte

tenu du nombre considérable de travaux exprimant la dépendance en termes de conditions

de mélange, nous fournissons quelques commentaires ci-dessous.

Soit F b
a la σ-algèbre engendrée par Xa, · · · , Xb. Le coefficient d’α-mélange entre deux

σ-algèbres A et B est défini comme

α(A,B) := sup
(A,B)∈A×B

|P(A ∩ B)− P(A)P(B)|.

Les coefficients de mélange liés à une suite de variables aléatoires sont définis par

α(k) = sup
n

sup
A∈Fn

−∞

sup
B∈F+∞

n+k

|P(A ∩ B)− P(A)P(B)|.

Le Théorème 2 de [36] indique que pour les châınes de Harris stationnaires pour un choix

de λ ≥ 0 tel que la somme
�

m mλα(m) < ∞, alors pour tout B ∈ E tel que µ(B) > 0 nous

avons

Eµ(τ
1+λ
B ) < ∞, où τB = inf{n ≥ 1 : Xn ∈ B}.

Ce résultat garantit une décroissance polynomiale des coefficients de mélange forts. C’est une

condition faible, car on suppose généralement que le taux de décroissance soit exponentiel.

3 Un aperçu des contributions et des perspectives fu-

tures

Comme indiqué dans la Section 1, cette thèse porte sur les développements dans le domaine

du bootstrap et de l’apprentissage statistique lorsque les données sont Markoviennes. Nous

commençons par les théorèmes central limite bootstrap uniformes pour les châınes de Mar-

kov Harris récurrentes. Ensuite, nous généralisons les procédures d’échantillonnage résiduel

et wild bootstrap pour les processus autorégressifs d’ordre p en processus autorégressifs

périodiques (PAR). Les suites de PAR peuvent être écrites sous une forme markovienne et

constituent un exemple de châınes de Markov Harris récurrentes. La deuxième partie de la

thèse porte sur les applications de la théorie des processus empiriques à l’apprentissage sta-

tistique. Nous obtenons des inégalités maximales de type exponentiel et polynomiales. Les

inégalités de concentration sont un outil crucial pour etudier la capacité de généralisation

des algorithmes d’apprentissage statistique via une approche empirique de minimisation des
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risques (nous renvoyons à [142], [144] et [38] pour un exposé détaillé). Dans cette thèse,

nous utilisons cette stratégie afin d’obtenir des bornes de généralisation pour un problème

d’estimation d’ensembles de volumes minimaux.

Théorèmes de la limite centrale fonctionnel de type bootstrap pour des châınes

de Markov Harris récurrentes

La première contribution concerne les résultats asymptotiques pour les châınes de Mar-

kov Harris récurrentes et a été publiée dans [44] et [25]. Nous étendons le théorème de la

limite centrale bootstrap pour la moyenne établie dans [26]. Nous montrons que le théorème

central limite (TCL) de type bootstrap uniforme est valable pour les classes de fonctions F

uniformément bornées, ainsi que dans les cas non bornés lorsque nous n’exigeons que des

conditions de second ordre imposées à l’enveloppe F de F .

Dans ce cadre, nous mesurons la complexité de F par le nombre de recouvrements

Np(�, Q,F), i.e. le nombre minimum de boules de rayon � nécessaires pour couvrir F au

sens de la norme Lp(Q), où Q est une mesure sur E dont le support est fini. Dans ce qui

suit, nous imposons que intégrale d’entropie uniforme de F soit finie, c’est-à-dire :

� ∞

0

�
logN2(�,F)d� < ∞, où N2(�,F) = sup

Q
N2(�, Q,F).

Plus spécifiquement, nous montrons que sous certaines conditions techniques (spécifiées dans

[44] et le deuxième chapitre de cette thèse) imposées àX, f, à la classe F et au petit ensemble

S et sous l’hypothèse � ∞

0

�
logN2(�,F)d� < ∞

on obtient

Z∗
n = n

∗1/2
AM


 1

n∗
AM

l∗n−1�

i=1

f(B∗
i )−

1

�nAM

�ln−1�

i=1

f( �Bi)


 (7.3)

converge en probabilité sous Pν vers un processus Gaussien G indexé par F dont les trajec-

toires sont bornés et uniformément continus. Pour comprendre l’équation (7.3), nous men-

tionnons brièvement que n∗
AM

et l∗n sont des équivalents bootstrap des quantités nAM
et ln

introduites dans la sous-section 2 et B∗
i sont des blocs bootstrap, c’est-à-dire des suites i.i.d.

de blocs échantillonnés avec remise à partir de la fonction de répartition empririque, basée

sur les blocs régénératifs ou approximatifs.

Nos théorèmes sont des versions bootstrap des théorèmes des limites centrales uniformes

pour les châınes de Harris pour les classes de fonctions bornées présentées dans [98] et dans
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le cas non borné (voir [137]). De plus, les techniques mises en oeuvre dans nos preuves per-

mettent d’appliquer notre raisonnement à des cas régénératifs simplifiant ainsi la preuve du

théorème uniforme de la limite centrale bootstrap pour les châınes de Markov régénératives

établies dans [122]. Les théorèmes de la limite centrale uniformes (et leurs versions de type

booststrap) sont un outil utile pour l’estimation non paramétrique, la theorie du maximum de

vraisemblance, l’estimation de densité par noyaux ou l’estimation de la densité en ondelettes

(voir par exemple [110], [68] et [69] pour plus de détails).

Nous utilisons les résultats susmentionnés pour établir des théorèmes de limite centrale

uniformes pour les fonctionnelles de Fréchet différentiables des châınes de Harris Markov.

Sous certaines conditions techniques (condition d’entropie uniforme, hypothèses sur un petit

ensemble S, etc.) nous avons que, pour une fonctionelle Fréchet différentiable en µ (pour une

métrique indexée par une classe de fonctions, voir [17] et le Chapitre 2 pour plus de détails)

le bootstrap est valide asymptotiquement.

Estimation robuste pour les châınes de Markov avec applications aux PDMP

Dans la contribution souivante, nous proposons une méthode pour construire des estimateurs

robustes pour les châınes de Markov régénératives atomiques et Harris récurrentes, en met-

tant l’accent sur les processus de Markov déterministes (PDMP). Dans ce cadre, nous nous

appuyons sur la théorie du renouvellement des châınes de Markov et sur le développement

ultérieur de la méthode du bootstrap par blocs régénératifs approximatif. L’idée principale

est d’éliminer les blocs ayant soit trop de contribution aux statistiques d’intérêt, soit ayant

une longueur trop grande.

Il est connu (voir [29]) que certains concepts classiques de statistiques robustes peuvent

être étendus naturellement à un cadre Markovien. Par exemple, une fonction d’influence

peut être définie sur le tore T = ∪∞
k=1E

k. En effet, prenons PT l’ensemble des mesures de

probabilité sur le tore T et pour tout b ∈ T, définissons

L(b) = k si b ∈ Ek, k ≥ 1.

La fonction d’influence sur le tore peut alors être définie comme suit. Soient (V , � · �) un

espace de Banach séparable et T : PT → V une fonctionnelle sur PT. Pour L dans PT, si

t−1(T ((1− t)L+ tδb)− T (L))

existe lorsque t → 0 pour tout b ∈ T, la fonction d’influence T (1) : PT → V de la fonctionnelle
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T en L et pour tout b dans T est definie par

T (1)(b, L) = lim
t→0

T ((1− t)L+ tδb)− T (L)

t
. (7.4)

La fonctionnelle T : PT → R est dite Fréchet différentiable en LA ∈ PT pour une métrique d,

s’il existe un opérateur linéaire continu DTLA
(de l’ensemble des mesures signées de la forme

L− LA dans (R, � · �)) et une fonction

�(1)(·,LA) : R → (R, � · �),

qui est continue en 0 avec �(1)(0,LA) = 0 telle que

∀ L ∈ PT, T (L)− T (LA) = DTLA
(L− LA) +R(1)(L,LA),

où

R(1)(L,LA) = d(LA,L)�
(1)(d(LA,L),LA).

De plus, T admet la représentation suivante,

∀ LA ∈ PT, DTLA
(L− LA) =

�
T (1)(b,LA)L(db),

où T (1)(b,LA) est la fonction d’influence en LA.

La différentiabilité de Fréchet est un outil standard pour obtenir des théorèmes de la

limite centrale pour les estimateurs plug-in. En effet, supposons que T : PT → R est Fréchet

differentiable en LA pour certaines métriques dF (voir le Chapitre 3 pour plus de détails),

où F est une classe admissible de fonctions avec une enveloppe F, satisfaisant la condition

d’entropie uniforme
� ∞

0

�
sup
Q

logN2(�, Q,F)d� < ∞.

Supposons en outre, dans le cas atomique régénératif

EA

�
�

1≤j≤τA

F (Xj)

�2

< ∞, Eν(τA) < ∞, EA(τ
2
A) < ∞.

Puis,

n1/2(T (Ln)− T (LA)) → N

�
0,

V ar(T (1)(Bi,LA))

EA(τA)

�
.

Nous établissons des résultats similaires pour les châınes de Markov Harris récurrentes.
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Dans ce cadre, nous considérons en particulier la construction d’estimateurs robustes

pour la châıne de Markov immergée associée au PDMP (processus dont le comportement

est déterminé par des sauts aléatoires à des points du temps et dont l’évolution est régie de

manière déterministe par une équation différentielle ordinaire entre ces moments).

Nous considérons des estimateurs robustes de plusieurs indicateurs de risque tels que

la probabilité de ruine, le déficit attendu et l’indice extrémal de deux PDMP : le modèle

Cramér-Lundberg et le modèle dynamique d’exposition à un risque alimentaire (brièvement

KDEM -Kinetic Dietary Exposure Model en anglais) utilisé dans la modélisation de la phar-

macocinétique des contaminants (voir [31] par exemple).

Les procédures d’échantillonnage résiduel et le wild bootstrap pour les processus

autorégressifs périodiques (PAR)

Cette contribution est publiée dans [46]. Nous considérons un processus périodiquement

autorégressif (PAR) de la forme

XnT+v =

p�

k=1

φk(v)XnT+v−k + �nT+v, (7.5)

où

Φ
� = [φ1(1),φ2(1), . . . ,φp(1),φ1(2), . . . ,φp(2), . . . ,φ1(T ), . . . ,φp(T )]

désigne le vecteur de paramètres et � est la transposée. {XnT+v} dénote la série au cours du

n -ième cycle (0 ≤ n ≤ N − 1) et v -ème saison (1 ≤ v ≤ T ). Le {�nT+v} est le bruit blanc

nul moyen avec une variance de la forme Var(�nT+v) = σ2
v > 0 pour toutes les saisons v. Le

processus dans (7.5) peut être écrit sous une forme Markovienne en utilisant une astuce de

vectorisation analogue à celle de l’exemple 2 puisque le processus PAR peut être écrit sous

la forme d’un modèle autorégressif (AR) T -varié (voir [20] pour plus de détails). Nous avons

obtenu les estimateurs des moindres carrés des paramètres du modèle

�Φ� =
�
�φ1(1), �φ2(1), . . . , �φp(1), �φ1(2), . . . , �φp(2), . . . , �φ1(T ), . . . , �φp(T )

�

afin de générer leurs équivalents bootstrap.
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Figure 7.2 : Trajectoire du processus PAR(2) avec 12 saisons et 100 observations.

Nous proposons des procédures wild bootstrap et résiduel les basées sur les données (car

elles ne nécessitent pas de choix de la longueur des blocs bootstrap), elles peuvent donc être

intéressantes pour une utilisation pratique. La procédure d’échantillonnage résiduel pour les

processus autorégressifs périodiques comprend les étapes suivantes.

La procédure d’échantillonnage résiduel pour les processus autorégressifs périodiques

Étape 1 Calculer l’estimateur des moindres carrés ordinaires �Φ de Φ.

Étape 2 Calculer les résidus du modèle estimé

��nT+v = XnT+v −
p�

k=1

�φk(v)XnT+v−k,

où 1 ≤ v ≤ T, 0 ≤ n ≤ N − 1.
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Étape 3 Calculer les résidus centrés

η̄nT+v =
��nT+v

σv

− 1

NT

N−1�

n=0

T�

v=1

��nT+v

σv

,

où NT est le nombre total d’observations dans le modèle.

Étape 4 Générer des variables η∗nT+v en tirant avec remise parmi

{η̄1, . . . , η̄NT}.

Étape 5 Générer la version bootstrap du modèle (7.5)

X∗
nT+v =

p�

k=1

�φk(v)XnT+v−k + σvη
∗
nT+v, 1 ≤ v ≤ T.

Étape 6 Calculer les estimateurs bootstrap des paramètres pour chaque saison v, 1 ≤ v ≤ T
�Φ∗(v), où

z∗(v) =
�
X∗

v , . . . , X
∗
(N−1)T+v

��
, 1 ≤ v ≤ T.

La deuxième méthode que nous proposons est la procédure de wild bootstrap pour les pro-

cessus PAR.

La procédure wild bootstrap pour les processus autorégressifs périodiques

Étape 1 Calculer l’estimateur des moindres carrés ordinaire �Φ de Φ.

Étape 2 Calculer les résidus du modèle estimé

��nT+v = XnT+v −
p�

k=1

�φk(v)XnT+v−k,

où 1 ≤ v ≤ T, 0 ≤ n ≤ N − 1.

Étape 3 Générer le processus de bootstrap X†
nT+v pour chaque saison v, 1 ≤ v ≤ T

X†
nT+v =

p�

k=1

�φk(v)XnT+v−k + �
†
nT+v

et

�
†
nT+v = ��nT+vη

†
nT+v,

où η
†
nT+v ∼ N (0, 1) et (η†nT+v)nT+v∈R est indépendant de ��nT+v.
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Étape 4 Calculer l’estimateur bootstrap des paramètres �Φ†(v) pour chaque saison v, 1 ≤ v ≤ T,

où

z†(v) =
�
X†

v , . . . , X
†
(N−1)T+v

��
.

Nous obtenons une consistance faible pour les deux méthodes. Plus précisément, nous avons

montré pour une série autorégressive périodique causale XnT+v définie dans (7.5) avec un

quatrième moment fini que, la procédure de bootstrap résiduel que nous avons proposée est

faiblement cohérente, c’est-à-dire, qand N → ∞,

√
N

�
�Φ∗ − �Φ

�
P ∗

−→ N
�
0, R−1

�
,

où
�Φ∗� =

�
�φ∗
1(1),

�φ∗
2(1), . . . ,

�φ∗
p(1),

�φ∗
1(2), . . . ,

�φ∗
p(2), . . . ,

�φ∗
1(T ), . . . ,

�φ∗
p(T )

�

est un vecteur d’estimateurs de bootstrap des paramètres pour chaque saison v obtenue à

partir de l’algorithme bootstrap résiduel et R est spécifié dans le Chapitre 4. Des résultats de

cohérence similaires sont obtenus pour la procédure du wild bootstrap (voir le Chapitre 4).

Enfin, nous illustrons nos considérations théoriques par des simulations.

Inégalités maximales de type exponentiel et de type polynomial pour les châınes

Harris récurrentes

Motivés par les applications en apprentissage statistique, nous établissons des bornes pour la

probabilité de dépassement des processus empiriques dans un cadre Markovien. Ces contri-

butions sont présentées dans [22], [23] et [24].

Soit f : E → R une fonction mesurable. Puisque nos inégalités sont de type maximales,

nous contrôlons la classe de fonctions via un nombre d’entropie uniforme. Sous l’existence

des moments exponentiels sur τA et f(Bj), nous établissons des inégalités maximales de type

Bernstein et Hoeffding en fonction du nombre d’entropie uniforme et des moments des temps

de retours et des blocs. Une des principales difficultés lors de la détermination de telles bornes

est que même si nous supposons que f est bornée, f(Bj) peut être non bornée sur tout un

bloc d’observations. Pour établir les inégalités, nous nous appuyons beaucoup sur l’inégalité

de Montgomery-Smith et les techniques de symétrisation de [119].

Nous montrons aussi que dans des conditions plus faibles imposées sur les temps de

retours et les f(Bj), les bornes polynomiales peuvent être établies. Les conditions imposées

sont satisfaites par des châınes de Markov sous-géométriquement ergodiques, auxquelles notre

inégalité de type polynomiale peut être appliquée.
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De plus, nous établissons des bornes pour l’espérance du suprémum du processus empi-

rique dans un contexte Markovien, car elles s’avèrent particulièrement utiles lorsque l’on veut

sélectionner un modèle via un critère de pénalisation avec un terme de pénalité dépendant

de la complexité de l’ensemble des modèles.

Nous détaillons les résultats susmentionnés dans le Chapitre 5. Cependant, pour donner

au lecteur un aperçu général des résultats obtenus, nous fournissons les bornes sous une

forme générale (et un peu simplifiée) ci-dessous. Les conditions détaillées imposées sur la

châıne X sont omises ici et énoncées dans d’autres sections. Par souci de simplicité, nous

fournissons les résultats uniquement dans le cas de la régénération atomique (nous formulons

les inégalités pour les châınes de Markov Harris récurrentes dans Chapitre 5). Soit

σ2
m = max

f∈F
σ2(f) > η > 0.

• Une inégalité de concentration de type Bernstein On suppose que N1(�,F) <

∞. Ensuite, dans des conditions de moments exponentiels des blocs et de temps de

retour à l’atome A, nous avons pour tout x > 0, 0 < � < x/2 et pour tout n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)K1

�
exp

� −n(x− 2�)2

K2 (σ2
m +K3(x− 2�))

��
,

où K1, K2 et K3 sont des paramètres positifs spécifiés au le Chapitre 5.

• Une inégalité de concentration de type Hoeffding On suppose que N1(�,F) <

∞. On suppose en outre que la classe de fonctions F est uniformément bornée. Sous

des conditions de moments exponentiels des blocs et du temps de retour à l’atome A,

nous avons pour tout x > 0, 0 < � < x/2 et pour tout n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ N1 (�,F)L1

�
exp

�
−n(x− 2�)2

L2D2

��
,

où D est une constante telle que ∀f ∈ F |f | < D et L1 et L2 sont des paramètres

positifs spécifiés au Chapitre 5.

• Une inégalité de moments polynomiales On suppose que N1(�,F) < ∞. Suppo-

sons de plus que le moment du bloc p et les moments des temps de retour à l’atome A

soient finis. Nous avons pour tout x > 0, 0 < � < x/2 et pour tout n ≥ 1

Pν

�
sup
f∈F

�����
1

n

n�

i=1

f(Xi)− µ(f)

����� ≥ x

�
≤ C1

N1 (�,F)

(x− 2�)pnp/2

et C1 est un paramètre positif spécifié au Chapitre 5.
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• Une borne pour l’espérance de supremum de processus empiriques On

suppose que

EA[l(B1)]
2 < ∞ et EA [F (B1)]

2 < ∞,

où F est une enveloppe pour F . De plus, supposons que le nombre d’entropie uniforme

N1

�
�
R1
,F

�
< ∞. Pour tout � > 0 nous avons

EA

�
sup
f∈F

�����
1

n

ln�

i=1

(f(Bi)− µ(f(B1)))

�����

�

≤ R2


�+N

�
�

R1

,F

�
× EA[F (B1)

2]1/2

����2logN1

�
�
R1
,F

�

n


 ,

où R1 et R2 sont des constantes positives pouvant être calculées explicitement.

Les résultats ci-dessus peuvent facilement être généralisés au cas Harris récurrent.

Bornes de généralisation pour le problème d’estimation d’ensembles de volume

minimum

Les dernières contributions présentées dans cette thèse sont des bornes de généralisation

pour l’estimation d’ensemble de volume minimum (ensemble MV) pour des châınes de Mar-

kov régénératives et Harris récurrentes. Les résultats ont été présentés dans [23] et [24]. Le

problème d’estimation de MV-set a été proposé pour la première fois dans [120] dans le cadre

i.i.d..

Soit µ une loi de probabilité sur un espace mesurable (E, E). Soient α ∈ (0, 1) et λ une

mesure de référence σ-finie sur (E, E), toute solution du problème de minimisation (7.6)

min
Ω∈E

λ(Ω) sous contrainte µ(Ω) ≥ α (7.6)

est appelée un ensemble MV de niveau α. La loi µ est supposée être absolument continue

par rapport à la mesure de Lebesgue λ et on note

f(x) = (dµ/dλ)(x)

la densité associée.

Sous certaines hypothèses techniques sur f , pour tout α ∈ (0, 1), il a été montré dans

[120] que l’ensemble

Ω
∗
α = {x ∈ E : f(x) > γα},
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Figure 7.3 : Pour les grandes valeurs de α, les points de l’échantillon qui sont dans d’ensemble

de volumes minimum seront considérés comme normaux ; et les autres seront considérés

comme des anomalies.

où γα est le nombre unique tel que
�

f(x)>γα

f(x)dλ(x) = α

est la solution unique au problème d’estimation d’ensemble MV (7.6).

Les ensembles de volumes minimaux peuvent être interprétés comme suit : pour les petites

valeurs du niveau de masse α, les ensembles MV permettent de récupérer les modes de la

loi, tandis que les ensembles complémentaires correspondent aux observations rares lorsque

α est grand.

En pratique, la loi µ est inconnue et est remplacée par sa version empirique µn. Trouver

un volume minimal de niveau α revient à résoudre le problème de minimisation suivant

min
Ω∈E

λ(Ω) sous contrainte �µn(Ω) ≥ α− ψn, (7.7)

ψn étant un paramètre de tolérance (voir le Chapitre 6 pour plus de détails).

La technique d’estimation d’ensembles de volume minimaux peut être utilisée en tant

qu’algorithme de détection d’anomalie non supervisée puisque, dans le cas de données non

étiquetées, nous considérons l’anomalie comme un événement rare.

Scott et Nowak [126] ont établi des bornes de généralisation pour le problème d’estimation

d’ensembles MV dans le cadre i.i.d.. Afin d’établir des bornées de généralisation dans un
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cadre Markovien, nous nous restreignons au cadre de minimisation du risque empirique et,

par conséquent, nous nous appuyons fortement sur les inégalités de concentration, ce qui

nous permet de contrôler le supremum des processus empiriques impliqués. Notre approche

se résume à la décomposition de la fonction de loi empirique d’intérêt en : ∀ Ω ∈ E ,

�µn(Ω) =
1

n

τA�

i=1

I{Xi ∈ Ω}+
ln − 1

n

�
1

ln − 1

ln−1�

j=1

Sj(Ω)

�
+

1

n

n�

i=1+τA(ln)

I{Xi ∈ Ω}, (7.8)

où ln =
�n

i=1 I{Xi ∈ A} indique le nombre de visites de l’atome A (régénérations), les temps

d’occupation du Ω entre les j-éme et (j + 1)-éme temps de régénération est indiqué par

Sj(Ω) =
�

τA(j)<i≤τA(j+1)

I{Xi ∈ Ω}.

La décomposition (7.8) ainsi que l’application de l’inégalité maximale de type polynomiale

pour les châınes de Markov nous permettent d’étendre le résultat de [126] au cas régénératif

atomique et au cas Harris récurrent.

Soit p ≥ 2. Afin d’établir des bornes de généralisation pour le problème d’estimation

d’ensembles de volumes minimaux, nous supposons que

EA[τ
p
A] < ∞ et Eν [τ

p
A] < ∞.

Soit r ≥ 1. La collection de fonctions indicatrices sur E,

F = {I{x ∈ Ω} : Ω ∈ G}

est une classe uniforme de Donsker (par rapport à L1) avec des nombres de couverture

uniformes polynomiaux tels qu’il existe une constante c > 0 telle que ∀ζ > 0,

N1(ζ,F)
def
= sup

Q
N (ζ,F , L1(Q)) ≤ c(1/ζ)r,

où le supremum est pris sur l’ensemble des mesures de probabilité discrètes sur (E, E).

Sous les hypothèses précédentes sur les moments de retour de X à l’atome A et sur la

complexité de la classe F et pour tout δ ∈ (0, 1), et si ψn (nous spécifions ψn au le Chapitre

6) est une pénalité bien choisie pour la classe G, alors, avec probabilité au moins 1− δ,

λ(�Ωn) ≤ λ(Ω∗
α) +

�
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗

α)

�

et

µ(�Ωn) ≥ α− 2ψn(δ).
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[48] S. Clémençon, P. Bertail, and G. Papa. Learning from survey training samples: rate

bounds for Horvitz-Thompson risk minimizers. In Proceedings of ACML’16, 2016.

194



[49] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the

American Mathematical Society, 39:1–49, 2002.

[50] S. Datta and W. McCormick. Some continuous Edgeworth expansions for Markov

chains with applications to bootstrap. Journal of Multivariate Analysis, 52:83–106,

1995.

[51] M.H.A. Davis. Piecewise-deterministic Markov processes: A general class of non-

diffusion stochastic models. Journal of the Royal Statistical Society. Series B, 46:353–

388, 1984.
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[70] E. Giné and V.Koltchinskii. Concentration inequalities and asymptotic results for ratio

type empirical processes. The Annals of Probability, 34:1143–1216, 2006.
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