
HAL Id: tel-01988746
https://pastel.hal.science/tel-01988746

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Background reconstruction from multiple images
Xiaoyi Yang

To cite this version:
Xiaoyi Yang. Background reconstruction from multiple images. Image Processing [eess.IV]. Université
Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLT020�. �tel-01988746�

https://pastel.hal.science/tel-01988746
https://hal.archives-ouvertes.fr

Background Reconstruction
From Multiple Images

Thèse de doctorat de l'Université Paris-Saclay
préparée à Télécom ParisTech

 École doctorale n°580: sciences et technologies
de l’information et de la communication (STIC)

Spécialité de doctorat: traitement du signal et des images

Thèse présentée et soutenue à Paris, le 18 décembre 2018, par

 Mme Xiaoyi Yang

Composition du Jury :

M. Liming Chen
Professeur, École Centrale de Lyon, LIRIS Président

Mme Françoise Dibos
Professeur Emérite, Université Paris 13, Institut Galilée, LAGA, L2TI Rapporteur

Mme Valérie Gouet-Brunet
Directrice de Recherche, l’IGN, MATIS Rapporteur

M. Antoine Manzanera
Enseignant-Chercheur, ENSTA ParisTech, U2IS Examinateur

M. Henri Maître
Professeur Emérite, Télécom ParisTech, LTCI Directeur de thèse

M. Yohann Tendero
Maître de Conférences, Télécom ParisTech, LTCI Co-Directeur de thèse

M. Yann Gousseau
Professeur, Télécom ParisTech, LTCI Co-Directeur de thèse, Invité

N
N

T
:
2
0
1
8
S
A

C
L
T

0
2
0

 Titre: Reconstruction d’une scène masquée à partir de multi-image

 Mots clés: reconstruction d'image, suppression de masque, estimation d'arrière-plan.

Résumé: La problématique générale de cette

thèse est de reconstituer la scène de fond à

partir d’une séquence d’images en présence de

masques d’avant-plan. Nous nous sommes

intéressés aux méthodes pour détecter ce qui

constitue le fond ainsi que les solutions pour

corriger les parties cachées et les distorsions

géométrique et chromatique introduites lors de

la photographie.

Une série de processus est proposée, dont la

mise en œuvre comporte dans l'ordre l’aligne-

ment géométrique, le réglage chromatique, la

fusion des images et la correction des défauts.

Nous nous plaçons dans l’hypothèse où le

fond est porté sur une surface plane. L'aligne-

ment géométrique est alors réalisé par calcul

de l'homographie entre une image quelconque

et l’image qui sert de référence, suivi d’une

interpolation bilinéaire.

Le réglage chromatique vise à retrouver un

même contraste dans les différentes images.

Nous proposons de modéliser la mise en cor-

respondance chromatique entre images par

une approximation linéaire dont les para-

mètres sont déterminés par les résultats de la

mise en correspondance des points de contrôle

(SIFT).

Ces deux étapes sont suivies par une étape de

fusion. Plusieurs techniques sont comparées.

La première proposition est d’étendre la

définition de la médiane dans l’espace vec-

toriel. Elle est robuste lorsqu’il y a plus de

la moitié des images qui voient les pixels

d’arrière-plan. En outre, nous concevons un

algorithme original basé sur la notion de

clique. Il permet de détecter le plus grand

nuage de pixels dans l'espace RGB. Cette

approche est fiable même lorsque les pixels

d’arrière-plan sont minoritaires.

Lors de la mise en œuvre de ce protocole,

on constate que certains résultats de fusion

présentent des défauts de type flou dus à

l’existence d’erreurs d’alignement géomé-

trique. Nous proposons donc un traitement

complémentaire. Il est basé sur une compa-

raison entre le résultat de fusion et les

images alignées après passage d'un filtre

gaussien. Sa sortie est un assemblage des

morceaux très détaillés d'image alignés qui

ressemblent le plus au résultat de fusion as-

sociés.

La performance de nos méthodes est éva-

luée par un ensemble de données contenant

de nombreuses images de qualités diffé-

rentes. Les expériences confirment la fiabi-

lisé et la robustesse de notre conception

dans diverses conditions de photographie.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

 Title: Background reconstruction from multiple images

 Keywords: image reconstruction, mask removal, background estimation.

Abstract: The general topic of this thesis is

to reconstruct the background scene from a

burst of images in presence of masks. We

focus on the background detection methods

as well as on solutions to geometric and

chromatic distortions introduced during ph-

otography.

A series of process is proposed, which con-

sists of geometric alignment, chromatic ad-

justment, image fusion and defect correc-

tion.

We consider the case where the background

scene is a flat surface. The geometric align-

ment between a reference image and any

other images in the sequence, depends on

the computation of a homography followed

by a bilinear interpolation.

The chromatic adjustment aims to attach a

similar contrast to the scene in different im-

ages. We propose to model the chromatic

mapping between images with linear ap-

proximations whose parameters are decided

by matched pixels of SIFT .

These two steps are followed by a discus-

sion on image fusion. Several methods have

been compared.

The first proposition is a generation of typical

median filter to the vector range. It is robust

when more than half of the images convey

the background information. Besides, we

design an original algorithm based on the

notion of clique. It serves to distinguish the

biggest cloud of pixels in RGB space. This

approach is highly reliable even when the

background pixels are the minority.

During the implementation, we notice that

some fusion results bear blur-like defects due

to the existence of geometric alignment

errors. We provide therefore a combination

method as a complementary step to ameli-

orate the fusion results. It is based on a com-

parison between the fusion image and other

aligned images after applying a Gaussian

filter. The output is a mosaic of patches with

clear details issued from the aligned images

which are the most similar to their related

fusion patches.

The performance of our methods is evaluated

by a data set containing extensive images of

different qualities. Experiments confirm the

reliability and robustness of our design under

a variety of photography conditions.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Contents

1 Introduction 1
1.1 Challenges . 1
1.2 Overview . 3

2 Related Work 5
2.1 Manual selection of masks . 5
2.2 Special photographic technology 6

2.2.1 Multi-focus . 6
2.2.2 Light field equipments . 6

2.3 Automatic evaluation . 8
2.3.1 Mask detection . 8
2.3.2 Background detection . 10

I Image Alignment 13

3 Geometrical Alignment 15
3.1 Extraction of matched pixels . 15

3.1.1 Chosen pixels and their invariant features by SIFT 16
3.1.2 Matching pixels between images 19

3.2 Homography . 20
3.2.1 A short review of projective geometry 21
3.2.2 Sample selection and model decision 23
3.2.3 Reconstruction and interpolation 24

3.3 Experiments . 26

4 Photometric Adjustment 35
4.1 Experimental assumptions . 36
4.2 Color formation process in digital camera 36

4.2.1 From luminance to raw 37
4.2.2 From raw to RGB . 38
4.2.3 Color adjustments in RGB space 39
4.2.4 A short resume . 41

4.3 Color alignment methods . 42
4.3.1 Problem model . 42
4.3.2 Propositions of method 43
4.3.3 Sample selection . 46

4.4 Experiments . 47
4.4.1 Algorithm details . 47
4.4.2 Estimation . 51

iii

iv CONTENTS

II Fusion Methods 57

5 Median Filtering 59
5.1 Median and median filter . 60

5.1.1 Median . 60
5.1.2 Median filter . 61

5.2 Possible choices of vector median 62
5.2.1 Definitions of vector median 62
5.2.2 Performance prediction 63

5.3 Experiments . 64

6 Meaningful Clique 69
6.1 Feature of background pixels . 70
6.2 Graph and clique . 71
6.3 Clique based algorithm . 72

6.3.1 Dense clique and search 72
6.3.2 Meaningful clique and iteration 73

6.4 Experiments . 76
6.4.1 Simulated sequences . 76
6.4.2 Real sequences . 78

7 Jitter Blur Correction 83
7.1 Error sources . 84

7.1.1 Problem description . 85
7.1.2 Aberrations . 85
7.1.3 Our judgment . 86

7.2 Existing tools . 86
7.2.1 Lens distortion correction 88
7.2.2 Patch match . 88

7.3 Combination method . 89
7.3.1 General description . 89
7.3.2 Pipeline . 90
7.3.3 Parameter selection . 92

7.4 Experiments . 93
7.4.1 Attempt on the pipeline 94
7.4.2 Attempt on the iteration of pipeline 99

III Experiments 103

8 Experimental Performances 105
8.1 Data set . 105
8.2 Summary of parameters . 108
8.3 Geometrical alignment . 108
8.4 Photometric correction . 112
8.5 Image fusion . 117
8.6 Combination method . 125
8.7 Conclusion . 125

9 Conclusion 129

Source Code 133

Bibliography 149

Chapter 1

Introduction

Computational photography is a very active research field, and one of its branches,

occlusion removal, has a vast scope of prospects in terms of image editing and

video surveillance, motion detection and image understanding. However, due to

the impacts of critical conditions such as illumination changes and motionless

foreground, the actual approaches are either less robust or highly conditional.

We are hence motivated to work on this promising topic.

My thesis is dedicated to find out a reliable occlusion removal method along with

the solution of problems which will occur during the process. A burst of images

taken at different camera positions are used so that every parts of the background

are revealed at least one time. We try to realize an automatic occlusion detection

without assumptions on the mask shape, color or motion.

This chapter is devoted to a general introduction of our work. We present here a

modeling of problem and the difficulties we may meet. Then we give a description

on how we organize the manuscript.

1.1 Challenges

Our purpose is to investigate the possibility to reconstruct the background scene

with a small number of images captured by a camera or continuous frames issued

from a video. This challenge is well illustrated by a popular example of viewing an

animal through a cage. More attractive applications may be found when dealing

with some general cases such as a landscape seen through foliage, a sport event

through attendance foreground, a monument through tourists, etc. The choice

1

2 Chapter 1 Introduction

of method is critical as the separation of occlusion should be proceeded without

awareness of the mask type.

In previous works (see Chapter 2), images or video frames are usually captured by

stand-still devices to avoid the alignment problem. These methods loose their

robustness under situations of moving background, camera jitter, motionless

foreground objects, etc. Besides, the number of images impacts determinately

the scope of application. A single image is not enough to provide information

behind big masks. On the contrary, a large quantity of images required by many

estimation models are difficult to collect at one time by hand-held cameras.

Based on these considerations, we plan to add alignment process in our work

and we focus on the problems with a small set of source images. As the start

of our work, we define a context with the following requirements which will be

partially released later:

1) The background to restore is plane and quasi-Lambertian.

2) Images in the sequence (typically 5) reveal the entire target scene several times

depending on the combined motion of the photographer and the occlusions.

3) The angles of view do not change too much among images.

4) The camera parameters are manually fixed during photography.

5) Images should be captured in a very short time.

The purpose of this thesis is not limited to bringing solution to background

reconstruction. Another objective is to determine a sound methodology that is

able to adapt itself to the specific conditions of image quality in terms of contrast,

colors, relative positioning and movement of objects. Factors that may disturb

a good functioning of the background reconstruction process include but are not

limited to:

• Illumination changes. The change of lighting conditions, caused for

example by the drifting clouds or by a light switch in an indoor scene,

results in color changes in images.

• Automatic adjustments of camera. Many internal adjustments of

cameras such as white balance, auto focus and auto brightness control

may lead to color differences of the same view in different images.

• Optical aberration. The imperfection of lens deviates from the model

of a perfect optical system. Images captured by the lens with defects

become blurred or distorted depending on the type of aberration.

These problems should all be taken into consideration during our design of pro-

cess. Our work is expected to manage a general case where the user takes casually

Chapter 1 Introduction 3

a few pictures of a view with occlusion with a hand-held equipment. The process

should output a perfect mask-removed result in a short time.

1.2 Overview

The main portion of this thesis consists of three parts which are organized in a

logical order, i.e. image alignment, background pixel selection and experiments.

Chapters under these parts are as follows:

Part I: Image Alignment

Chapter 3: Geometrical Alignment. Based on the assumption of a planar target

scene, we suppose that images can be mapped onto each other by homography.

We apply a standard alignment algorithm between the selected reference image

and every other images in the sequence. The process consists of three steps

which are: the search of matched pixels using SIFT features, the computation

of homography based on DLT method with RANSAC selected samples, the re-

sampling of images on the reference grid through bilinear interpolation. The

experimental errors are controlled within a satisfying range.

Chapter 4: Photometric Correction. We notice the existence of contrast differ-

ences in images caused by illumination variations and/or the automatic adjust-

ments of camera. Based on a study of the camera processing pipeline, we set

up the color formation model and finally the color transfer relationship between

images. These color transfer functions are approximated by several linear mod-

els whose parameters are estimated with the matched pixels selected using again

RANSAC strategy. Experiments show that a quadratic polynomial is the best

model. It helps to reduce significantly the RMSE between images.

Part II: Fusion Methods

Chapter 5: Median Filter. The robust performance of median filtering makes it

a simple but good choice for pixel-level image fusion. While the classical median

filter is limited in gray-scale, we propose either to filter the scalars degenerated

from RGB values or to extend the median definition to 3D space where the

median vector minimizes the sum of its Euclidean distances to other vectors.

Experiments confirm that the extended median filter performs better than its

channel-wise counterpart since the RGB vectors convey more information than

scalars. The results are fairly satisfying as long as more than a half of the pixels

belong to the background.

4 Chapter 1 Introduction

Chapter 6: Meaningful Clique. The strong constraint of median filtering on back-

ground pixel quantity motivates us to design another process for pixel selection.

Notice that the background pixels which share similar RGB values stay close

to each other while the mask pixels scatter in RGB space. We design a clique

based algorithm to figure out the biggest cloud of similar vectors in this space.

The pixels in this cloud are supposed to convey the background information.

This method provides the best performance in terms of quality and reliability

compared with median filtering and RPCA method. It shows a good robustness

in cases where background pixels are the minority.

Chapter 7: Combination method. Blur-like defects occur in the fusion results

when we test the process with images captured by lens of poor or average quality.

They are caused by the geometrical alignment errors introduced by the lens

optical aberrations. Our idea is to replace the mosaic fusion results by the clear

patches of an aligned sequence. The source pixels are estimated according to

their Euclidean distance to the pixels in the fusion results. To eliminate the

effects of blur, the resolution of images is degraded through a Gaussian filter

before comparison. This approach is an efficient alternative to median or clique

filtering in case of serious distortions.

Part III: Experiments

Chapter 8: Experimental performances. We test the performance of our methods

through an extensive experimental study with images of different qualities. Our

data set includes synthetic sequences and real sequences captured by prime or

zoom lenses with manually controlled parameters or by embodied lenses of a

smart phone with automatic adjustment of lighting conditions. Also, we estimate

the effects of an image processing software (DxO Optics Pro11) on mask removal

results. Experiments confirm the reliability and the robustness of our design.

A part of work in this thesis leads to the publication:

A fast algorithm for occlusion detection and removal. Xiaoyi Yang, Yann

Gousseau, Henri Maitre, Yohann Tendero. International Conference on Image

Processing (ICIP), 2018.

A webpage displaying the experimental results can be found at this address:

https://combinaison-images.telecom-paristech.fr

Chapter 2

Related Work

A variety of works has been done on mask removal. All processes go through

the stages of mask/foreground detection and background restoration which are

achieved either by independent algorithms or by a synthetic method. In any

cases, the detection technology, as a link between the real data and the mathe-

matical model, plays a decisive role in the choice of approaches.

Hence, we classify the previous works according to their mask/foreground de-

tection methods, i.e. manual selection, photographic technology and automatic

evaluation. We will end up with a search of tools for background detection,

which is the our domain of interests.

2.1 Manual selection of masks

These approaches require the user to select manually the areas of occlusion in the

images [CPT03] or in the frames of videos [PSB05] where the pixel information

will be discarded. When background information is missing, the reconstruction

of missing parts is usually achieved by inpainting methods in which the sources

are found within a single frame or the whole video.

The searching process in many recent inpainting approaches relies on patch

similarity that takes into account both structural and textural consistency of

the nearby region. The missing background is completed either gradually from

the border to the center [CPT04, WR06, YWW+14, WLP+14], or is generated

globally by iteratively minimizing an energy function [Kom06, KT07, KT07,

NAF+13, LAGM17].

5

6 Chapter 2 Related Work

However, the performance of these methods is limited when the gaps to be com-

pleted are large and of varying textures. Many problems such as unconnected

edges, smoothing and blurring artifacts may occur in the results [GLM14, Tha15].

2.2 Special photographic technology

This section involves the methods relying on special experimental technologies.

They distinguish occlusions based on their distances to the camera, which can

be measured by varying the focal length or by stereo estimation. However, all

these designs are based on stringent experimental conditions.

2.2.1 Multi-focus

The multi-focus methods address a case where the occluders are: 1) thin (such as

fence and branches); 2) distant to the background; 3) out-of focus in the target

image. The irradiance at a pixel in an image is supposed to be a weighted sum

of the blurred occluder radiance and the background radiance [AFM98, HK07].

In this case, [YMK10, YTKA12, YKA13] propose to reverse the projection of

blurring masks by eliminating occluders. It involves an image focusing on the

background and two images focusing on the occluders with/without flashlight

captured by a finite aperture lens. The flashlight, introducing the radiance dif-

ference on the occluders, helps to extract their information. This information is

then used to remove masks in the background-clear image. This method is later

tested by [MLS10] with real camera images. The model and its parameters are

discussed in [FS03]. Still, camera calibration and parameter decision are always

difficult to carry out.

2.2.2 Light field equipments

Different from conventional cameras, the light field equipments provide both

intensity and direction information of the incident ray. They allow to proceed

the 3D reconstruction as well as occlusion removal by analyzing the depth of

objects in sight. Two kinds of cameras are usually mentioned:

Stereo cameras This is the general name of cameras with two (binocular)

or multiple lenses in front of their independent image sensors. The camera

deduces several images with parallax at one time. The early occlusion researches

Chapter 2 Related Work 7

focus mostly on binocular stereo [GLY92, GLY95, EW02, BW11] while the lack

of information causes many problems such as holes in the depth map, failure

estimation on large occlusions, etc [SBBB86, KKPD04]. Therefore, more and

more works are found in the domain of multiple lenses stereo, ranging from

several lens to a camera array [LH96, WJV+05, VWJL04].

Plenoptic cameras Represented by Lytro [Ng17] and Raytrix [PW12], plenop-

tic cameras can be regarded as an application of camera array. They are made

by placing an array of micro-lenses between the conventional lens and the sensor

of the camera. The light field estimation is similar to that of camera arrays in

[LH96], while the results are single light-field images after processing.

For all camera types, the idea lies in creating a depth map and selecting the ele-

ments of deep depths for image fusion. For every two identical parallel calibrated

cameras, the depth of world points equal to d = fT
δx , where f is the focal length, T

is the baseline between cameras and δx is the coordinate difference (disparity) be-

tween the related pixels on images [Aya91, Zha13]. Given a pixel in one image, its

related pixel in another image can be computed with d, then the search of depth

is converted to a search of matched pixels (mostly replaced by patches). This pro-

cess, proceeded along the epipolar line or in a global range, aims to find the patch

that minimizes an energy function established in Markov random field [HS07],

which can be generally represented as: E(d, I) = Ematch(d, I) + Econstraint(d).

The terms Ematch and Econstraint are matching and constraint costs that esti-

mate respectively the intensity and depth differences in the neighborhood. The

depth map is set up with (d, I)=argmind,I E.

The improvement of energy function has become an important research field

among the works of mask removal. Apart from the traditional SSA, SAD func-

tions, the constraints are also designed based on monotonicity of pixel order

[GLY95], the uniqueness of disparity maps [ZK00], the entropy [VLS+06], the

visibility of occlusion [SLKS05], the color similarity and spatial distance [YK06,

JM15]. Further more, there are many ameliorating methods such as adding a

k-means cluster to discard some mask pixels in multi-view stereo [DJ10, XSZ17],

optimizing the results by graph-cut segmentation [KZ01, VETC07, XWSZ14].

Even so, the results of stereo estimation are often inaccurate, The matching

process is often affected by factors such as reflection, foreshortening, optical

distortion, low texture and repetitive/ambiguous patterns.

8 Chapter 2 Related Work

2.3 Automatic evaluation

Here we focus on the mask removal approaches with no requirements on human

intervention or special equipments. These methods set up hypotheses on oc-

clusion or background based on their characteristics. We divide them into the

methods detecting masks and the methods modeling background.

2.3.1 Mask detection

Compared with background, occlusions are more often chosen as the object to be

detected since they can be easily described by some properties. The most com-

mon strategies make use of continuity of intensity variation or special hypotheses

on certain type of masks.

Continuous change of frames These methods rely on the gradual variation

of pixel intensity over time. Therefore, the input images are required to be a

series of continuous frames or several images following a consistent varying trend.

Optical flow Optical flow aims at computing a motion information at each pixel

in an image. It is based on the brightness constancy hypothesis which assume

that the intensity of brightness flows does not change from one frame to another

(see e.g.[HS81, LK+81, BSL+11]). If the brightness at (x, y) and at time t is

denoted by I(x, y, t), then we have: dI
dt = ∂I

∂x
∂x
∂t +

∂I
∂y

∂y
∂t+

∂I
∂t = ∂I

∂xu+
∂I
∂yv+

∂I
∂t = 0,

with u = ∂x
∂t , v = ∂y

∂t the velocity elements in the direction x and y. With an

additional smoothness constraint, the velocity field can be further computed (see

e.g.[BWS05]). The optical flow helps to extract occlusion from background since

they are usually at different distances to the moving camera. However, an exact

discrimination of their velocity is always difficult. The easiest way to achieve it is

to set up a threshold on velocity values [MLY14]. Besides, [GTCS+01] attempts

to find out the stable regions all along the time. [YBF04, YHCB05] propose

a Bayesian framework and estimate the likelihood of velocity values being the

motion layers. [DJB14] provides constraints on the camera coordinate system to

refine the motion analysis.

Kalman filtering The Kalman filter is an optimal estimator for a linear system

affected by Gaussian white noises during process and measurement. At time ti, it

estimates the current state X̂(ti) from the previous state X̂(ti−1) and the current

measurement X̃(ti) by computing: X̂(ti) = AX̂(ti−1)+K(ti)[X̃(ti)−CAX̂(ti−1)],

where A and C are respectively the transition of system and measurement, K(ti)

is the Kalman gain updated by minimizing the mean-square of residual error

Chapter 2 Related Work 9

[AM79, VAS82, BH+92]. For mask detection, X̂(ti) and X̃(ti) are assigned to the

predicted and actual intensities of the current frame. If their difference surpasses

threshold, a change is supposed to be detected and the foreground/background

mark reverses [KWM94]. This design is not robust to the illumination changes

of background. To fix this problem, [RMK95] applies an adaptive threshold

based on the current background variance; [Z+03] proceeds filtering after princi-

ple component analysis; [GZX01] generates the temporal filter to spatial range;

[MMSZ05] adds the estimation of an illumination map.

Hypothesis on occlusion Some methods are designed according to the prop-

erties of some special occlusions. Two common hypotheses are the approx-regular

patterns and the randomly repeating particles in image.

Regularity Fence is always discussed as the typical regular occlusion in many

works. Its detection is usually based on the search of periodic patterns and

specific orientation. The early approaches [HLEL06, PCL08] propose to select

the most repetitive patches, along with their directions. Then, the growth of

lattice progresses along the directions according to a likelihood estimation of

patches. The obtained area, including fence and its neighboring background,

will go through a segmentation of pixels by k-means clustering [LBHL08] or by

support vector machine [PBCL10] to extract the exact region of the fence. In

later works, the repetitive stick-like structure is extracted directly by a linear

clustering in [YWLH15] or by Bayes classifier in [FMG16]. The background

reconstruction is finally achieved by an inpainting method.

Repeatability Although rain and snow are distributed randomly in the spatial

domain, their repeating forms yield a high frequency contents in their spectrum

in Fourier domain [LZ03]. Methods in different works simulate in fact certain

kinds of low-pass filters that reserve detail components among high frequency

elements. The most straightforward expression is found in [ZLG+13] where an

edge-preserving filter is used to smooth the image. Further estimations in [CH13,

SO13] demonstrate that the rain patches in high frequency domain are expressed

as low-rank matrix due to the repetition of similar appearance which can be

removed by matrix decomposition. Similarly, [KLF12, SFW14] apply dictionary

learning strategy to separate sparse components from low-rank elements. A

more detailed description of rain assumes it to be similar to a Gaussian kernel

elongated along motion, then [BKN07, BNK10] remove the rain by a subtraction

of its corresponding filter in the Fourier domain.

10 Chapter 2 Related Work

2.3.2 Background detection

Directly detecting the background is the most straightforward track for mask

removal. However, this path is difficult due to the diversity and complexity of

backgrounds. The current works always need a large quantity of continuous

frames for the estimation. The process is rather time-consuming while the result

is often not accurate.

Motivated to work on this direction, we focus particularly on the approaches

dealing with a small number of input images. Difficult as it is, this task can still

be accomplished by analyzing the static-state of background based on its highly

frequent appearance in a burst of aligned images. In order to achieve this target,

the following tools can be used:

Principal component analysis (PCA) Φ= {I1, . . . , IN} denotes a set of

RGB vectors issued from the same pixel position of N aligned frames. The

effects of foreground values, which are random and sparse, can be eliminated

by modeling the primary distribution of all pixel values [MBV12]. The low-

rank principal vectors, containing the discriminative information of background,

are computed by decomposing original vectors along the principal component

direction e0 which retains the largest variance:

e0 = argmax
e

1

N

N
∑

i=1

[Iie− Ī]2, Ī=
1

N

N
∑

j=1

Ije.

The value of e0 can be obtained by SVD of data matrix [Jol11]. For the sake

of on-line application, [Row98] proposes to compute e0 using EM strategy until

convergence (xi is the mean-removed value of Ii):

ẽ←
N
∑

i=1

(xT
i et−1)xi and et ←

ẽ

∥ẽ∥ .

However, the classical principal component analysis is often corrupted by the

extreme outliers in data set. [CLMW11] starts the topic of robust principal

component analysis which is based on the low-rank and sparse decomposition.

They prove that if M is a 3×N matrix whose columns are made of RGB vectors

of Φ, it may be decomposed as:

M = L0 + S0,

where L0 is a low-rank matrix conveying the background intensities of each frame

and S0 is a sparse matrix of the foreground scene (noise). The decomposition is

Chapter 2 Related Work 11

solved by estimating the principal component pursuit (PCP):

minimize ∥L∥∗ + λ∥S∥1,
subject to L+ S = M,

where λ = 1/
√

max (3, N) , ∥L∥∗ :=
∑

i σi(L) is the sum of singular values of

L and ∥S∥1 =
∑

ij ∥Sij∥ denotes the l1-norm of S. A popular solution of PCP

problem recovers L0 and S0 depending on the augmented Lagrange multiplier

(ALM) [YY09, CGL+09, LCM10]:

(L0, S0) = argmin
L,S
∥L∥∗ + λ∥S∥1 + tr(Y (M−L−S)) + µ

2
∥M − L− S∥2,

The Lagrange multiplier matrix YK+1 = Yk + µ(M − Lk − Sk) is updated itera-

tively, and µ is a chosen parameter.

Many attempts have been made on RPCA [GBZ12, GCW14, JBJ15, CWS+16,

JJMB16], but most of them suffer from while the expensive computation. Re-

cently in [HFB14], Grassmann average is introduced as a subspace model to

replace ordinary PCA. We consider that this method, benefiting from both com-

putational efficiency and robustness, is an efficient alternative to the work we

will develop later for background detection.

[HFB14] proves that when the vectors in Φ are sampled from a Gaussian distri-

bution, their Grassmann average coincides with their first principal component.

We continue using xi to represent mean-removed value of Ii, the Grassmann

average q is computed by iterating:

ωi ← sgn(xT
i qt−1)∥xi∥,

µ(ω1:N ,x1:N)← (

N
∑

i=1

ωi)
−1

N
∑

i=1

ωi
xi

∥xi∥
(2.1)

qt ←
µ(ω1:N ,x1:N)

∥µ(ω1:N ,x1:N)∥ . (2.2)

To calculate the average robustly, [Hub11] removes p% of largest and small-

est values in data set and estimates a trimmed result. The computation of

weighted average in Equation (2.1) no longer covers every vectors but selected

ones, µ(ω1:N ,x1:N) in Equation (2.1) and Equation (2.2) should be rewritten as

µtrim(ω1:N ,x1:N). In all, a trimmed Grassmann average is used to estimate the

components in each xi.

12 Chapter 2 Related Work

Median filtering Median filtering serves to find out the number that separate

the greater and lesser halves of a set. Given a sorted scalar data set S, its median

is defined as (see Chapter 5):

med(S) :=







S(#S+1)/2 #S ∈ 2N+ 1

1
2

(

S#S/2 + S#S/2+1

)

#S ∈ 2N.

The use of median for mask removal is based on two assumptions: 1) The image

sequence has been aligned; 2) At each position, the number of background pixels

exceeds half of the total number of pixels. A pixel-wise application on an image

sequence ensures that filtering results belong to the background.

Temporal median filter has been widely used to create a single mosaic from

several images. In early applications, median results are directly used as back-

ground for movement detection [MS95, TOF02], or as a layer for image recon-

struction [WFZ02]. Later, filtering is often associated with other methods (pre-

segmentation in [FdWE03] or post-inpainting in [KR07]) to get better results.

However, no obvious improvement has been done in terms of median filtering

conception, applications have always been limited within scalar range. The re-

cent works are found either in medical imaging [JOd+15], or in an independent

implementation per channel [MP14, LPBVD15]. It is however very practical to

adapt the gray-scale filtering into vector space (see Chapter 5).

Part I

Image Alignment

13

Chapter 3

Geometrical Alignment

To make use of elements from different images, the first problem is to compensate

projective distortions. It is a common phenomenon that occurs when a scene of

3D space is mapped onto a 2D plane. Under such distortion, objects loose their

original shape such that opposite sides of a rectangular intersect and circles

become ellipses.

In our application, we want to pre-process the sequence so that the background

scenes in different images superpose perfectly on each others. We proceed to a

geometrical alignment as the first step of our process where an image is chosen

as the reference and every other images are mapped on its coordinates. As

explained earlier, the scene to restore is assumed to be planar. It is reasonable

to express the mapping between two coordinate spaces as a homography. In

order to achieve it, we rely on a classical pipeline where the local descriptors are

selected and then the homography is decided by a RANSAC procedure.

This chapter consists of three sections. First, we give a review on SIFT features

estimation, which is the standard process to extract matched pixels. Then, we

focus on the homography and the method to map original image on a reference

image grid. Finally, we give some results in our experiments.

3.1 Extraction of matched pixels

This step prepares samples (i.e.matched pixels) for further calculation of homog-

raphy. It consists of two major steps: 1) selection of pixels and their features

which are robust to geometric distortions. 2) matching process carried out by

15

16 Chapter 3 Geometrical Alignment

estimating feature-similarity. We apply SIFT algorithm to achieve the first step

as is presented in Section 3.1.1. We introduce the second step in Section 3.1.2

3.1.1 Chosen pixels and their invariant features by SIFT

Scale Invariant Feature Transform (SIFT) is a widely used image matching al-

gorithm introduced by D.Lowe in 1999 [Low99]. It shows a strong robustness

to scene deformation of images under slight changes of viewpoint which is ex-

actly the case of our assumption. Although numerous detectors such as SURF

[BTVG06] and ASIFT [MHB+10] have been proposed ever since, experiences

show that SIFT is fast and accurate enough in our case. So we apply SIFT in

our process to establish the geometric relationship between images. Here is a

general description of this algorithm.

Keypoints in an image

Not all the pixels of image are suitable for feature matching. The shape of

object may bear various deformations such as translation, rotation and scaling.

Keypoints are chosen so as to be discriminative and as robust as possible to

changes such as translations, rotations or blur.

If we define the original digital image I on a grid {x | (x, y) ∈ {1, . . . ,M} × {1, . . . , N}},
a sequence of images of different blur levels are created by discrete convolutions

of the input image with a series of variable-scale Gaussian kernels Gσ(x, σ):

Lσ(x) = (I ∗Gσ)(x).

These convolutions simulate the optical blur of camera. A Gaussian kernel of

blur level σ is expressed as:

Gσ(x) =
1

2πσ2
exp(−∥x∥

2

2σ2
)

Previous work [MS04] shows that local extrema of scale-normalized Laplacian of

Gaussian σ2∇2Gσ provide the most stable features despite of scale and position

changes. However, such a differential operation is rather expensive in terms of

computation. In practice, it is replaced by a lower cost approximation, i.e. the

difference of Gaussian (DoG), followed by a precise localization of quadratic

estimation. Here, DoG is the difference of two filtered images at nearby scales

separated by a multiple factor k [Low04]:

Dσ (x) = Lkσ(x)− Lσ(x). (3.1)

Chapter 3 Geometrical Alignment 17

The local maxima of DoG give a rough estimation of keypoints. Equation (3.1)

is rewritten in form of second order Taylor expansion:

Dσ (x+ εx) = Dσ (x) + gT εx +
1

2
εTxHεx. (3.2)

g = [(Dσ x+1,y −Dσ x−1,y)/2 , (Dσ x,y+1 −Dσ x,y−1)/2]
T is the gradient vector

of DoG, and H is the 4× 4 Hessian matrix of DoG:

H =

[

h11 h12

h21 h22

]

,

h11 = Dσ x+1,y +Dσ x−1,y − 2Dσ x,y , h22 = Dσ x,y+1 +Dσ x,y−1 − 2Dσ x,y,

h12 = h21 = (Dσ x+1,y+1 +Dσ x−1,y−1 −Dσ x+1,y−1 −Dσ x−1,y+1).

The exact position of maxima is corrected by an offset that sets derivative of

Function (3.2) to zero. A more accurate candidate keypoint x̆ becomes:

x̆ = x+ εx = x−H−1g.

After the process above, pixels belonging to complex local structures should

be included in the set {x̆}. But some of them are characterized with certain

unstable features that would be seriously affected by perturbations. So it still

requires a further selection to filter candidate keypoints. Two cases are taken

into account by SIFT: 1) points of low contrast to its surrounding which risk

being enormously affected by noise; 2) points lying on edges which are hardly

localized in space.

The first case is eliminated by setting up a threshold td forDoG value. Keypoints

with their DoG value below this threshold are rejected. The second kind of

points are picked out by analyzing their Hessian matrix of DoG. In the second

case, edges always have large principal curvatures which can be estimated by

ratio between the largest and smallest eigenvalues of Hessian matrix. So another

threshold th is set up as the upper limit of this ratio. The keypoints finally

remained are those that meet both conditions:











x̆ ∈ R
2

∣

∣

∣

∣

∣

∣

∣

Dσ (x̆) > td

Tr(H)2

∥H∥ (x̆) < th











.

Until now, the keypoint-search process is complete. It is designed based on the

mathematical properties of local structure. However, it is not enough to describe

18 Chapter 3 Geometrical Alignment

the invariant features of image, because distortion conditions have not been fully

taken into account.

For the sake of scale invariance and speed, the original image is sub-sampled

at several rates to simulate all possible zoom-outs of the image. The keypoint-

search process is carried out once for each image. So, on the whole, a family

of images at different sampling rates δ and different blur levels σ are created.

This family is called the digital Gaussian scale-space. To classify these images,

those that share a same sampling rate belong to a subfamily called octave. In

each octave, images are of the same size, but of different blur level. To simplify

the representation of each image layer, σ is defined as a variable across octaves

the value of which depends on δ. So, an image layer of Gaussian scale-space is

represented as Lσ (x).

Besides, to ensure rotation invariance, each keypoint is attached to a reference

orientation. It is estimated according to the gradient orientation distribution

over a keypoint neighborhood Πgrad. Given a keypoint on image layer Lσ , all

pixels in range {x | (x, y) ∈ Πgrad} get their gradient magnitude Mgrad as well as

their orientation θgrad following:

Mgrad(x) =
√

(Lσ x+1,y + Lσ x,y+1 − Lσ x−1,y − Lσ x,y−1)2,

θgrad(x) = atan2((Lσ x,y+1 − Lσ x,y−1), (Lσ x+1,y − Lσ x−1,y)) mod 2π.
(3.3)

These orientations are used to form a histogram whose maximum peak corre-

sponds to the reference orientation of keypoint. To estimate θgrad in a discrete

way, the angle range [0, 2π] is divided into nkeybin bins of which the kth bin is

centered at 2kπ/nkeybin. Each θgrad contributes to the histogram its gradient

magnitude Mgrad weighted on a Gaussian window. So, the reference orientation

of a keypoint θkey is its dominant direction of local gradients.

Finally, a keypoint comes out to be a triplet (xkey, σkey, θkey) consisting of its

position, scale and reference orientation. It gives the center position of area to

calculate invariant features.

Descriptors of keypoints

Descriptors record the distribution of gradient orientations in the neighborhood

of keypoint. The basic idea is to form histograms in the same way as what

we did to estimate the reference orientation of keypoints. However, since a

descriptor takes into account gradient condition of not only the keypoint but

also its surrounding samples, the process in this section is far more than a simple

copy of previous one.

Chapter 3 Geometrical Alignment 19

The first change lies in the definition of the keypoint neighbor area Π̂key. To

ensure invariance of features, it is aligned by keypoint reference orientation.

Following this adjustment, the coordinate axes are rotated to the direction of

reference orientation and centered at keypoint position. If we suppose a keypoint

to be k = (xkey, σkey, θkey) with xkey = (xkey , ykey), a pixel x = (x, y) of input

image is transferred to its new coordinate x̂ = (x̂, ŷ) on image layer σkey by:

x̂ =
1

σkey
[(x− xkey) cos θkey + (y − ykey) sin θkey],

ŷ =
1

σkey
[−(x− xkey) sin θkey + (y − ykey) cos θkey].

All pixels x̂ in range of Π̂key are assigned to a gradient magnitude and an orien-

tation. Their value are obtained according to Function (3.3) despite of change

of coordinates.

More over, the neighborhood patch Π̂key is no longer taken as a whole to form

histogram. Instead, we choose an array of nwin × nwin points within Π̂key and

estimate histograms of the patches δΠ̂key ∈ Π̂key centered by them. The center

point (x̂i, ŷj) for (i, j) ∈ {1, . . . , nwin}2 is calculated by:

x̂i =
2λdes

nwin
(i− 1 + nwin

2
) , ŷj =

2λdes

nwin
(j − 1 + nwin

2
),

where λdes is a Gaussian weight parameter [Ote15].

Finally, to accumulate contributions of gradient magnitude in δΠ̂key, the angle

range is divided into ndesbin bins. The accumulated results form a vector dini(k)

of length nwin × nwin × ndesbin, which is the prototype of descriptor. It still

needs to be normalized in order to reduce the impact of non-linear illumination

changes. The final result d(k) is obtained by:

d(k) =
dini(k)

∥dini(k)∥
.

In original SIFT method, nwin and ndesbin are respectively set to 4 and 8. So

the descriptor d(k) is by default a vector of 128 components.

3.1.2 Matching pixels between images

In this section, suppose that we have already detected a set of keypoints Kori

of image to be aligned (and Kref of referential image respectively) and their

descriptors. Matching process aims to establish correspondence between images

20 Chapter 3 Geometrical Alignment

by searching keypoint pairs. It is composed by a general search for similar pixels

and a rejection of false pairs.

At first, each keypoint in image to be aligned is assumed to have a matched

keypoint in referential image. Similarity between two keypoints is estimated

according to the Euclidean distance of their descriptors. The candidate keypoint

is defined as the point that minimizes the descriptor distance:

∀ k̂ ∈ Kori, k := argmin
kr∈Kref

∥d(k̂)− d(kr)∥. (3.4)

However, this definition is not reliable as some keypoint pairs do not share the

same content. The selection of reliable matches counts on a further analysis

of distance value between keypoint descriptors. If two keypoints share a same

scene, their descriptor distance should be rather small. These keypoints can

be distinguished among all possible pairs by a threshold. In order to avoid

dependency on absolute distance, a relative threshold tmatch is designed as a ratio

between the minimum distance and the second minimum distance. Therefore,

apart from the keypoint defined in Function (3.4), it requires to define a second

nearest keypoint as:

k′ := argmin
kr∈Kref\{k̂}

∥d(k̂)− d(kr)∥.

As indicated in [Low99], a keypoint pair (k̂,k) will be kept if it satisfies the

inequality:
∥d(k̂)− d(k)∥
∥d(k̂)− d(k′)∥

≤ tmatch.

3.2 Homography

This section concerns the way to set up a coordinate mapping from images to

be aligned (defined on grid Ωori = {1, . . . ,Mori} × {1, . . . , Nori}) to referential

image (defined on grid Ωref = {1, . . . ,Mref} × {1, . . . , Nref}).

Images can be mapped onto each other by a homography if they are captured

by a camera (a pinhole model) under either of the conditions [HZ03]: 1) The

captured scene is a plane. 2) These images are acquired with the same camera

center. Since our assumption of planar scenes conforms to the first case, we

assume that the mapping between any image pair of the observed sequence can

be represented as a homography.

Chapter 3 Geometrical Alignment 21

We will explain the chosen model (i.e. homography) according to some basic

knowledge of projective transformation in Section 3.2.1. Section 3.2.2 focuses

on RANSAC algorithm which allows us to calculate homography with the most

correct samples. In the end, we apply homography and bi-linear interpolation

to align images in Section 3.2.3.

Remark that the keypoint pairs obtained in previous section will be used here as

candidate samples. In the following text, we are particularly interested in pixel

coordinates among three elements of each keypoint (see Section 3.1.1), which can

be expressed as: (x̂,x) with x̂ ∈ Ωori and x ∈ Ωref .

3.2.1 A short review of projective geometry

The explanation should start with an extension of space. In order to represent

the real world, Euclidean space is no longer convenient to be used as a geometry

frame. The drawback lies in its lack of definition at infinity, which makes it

impossible to explain why parallel lines such as railway tracks may intersect at

horizon in image.

Therefore, a more general expression – projective space is introduced to com-

puter vision problems. It is an extension of Euclidean space with an additional

definition of infinity. Under projective assumption, there is no distinction be-

tween parallelism and intersection as parallel elements (lines in 2D space for

example) meet at infinity. As a result, we are able to map every points of real

world to pixels in image without worrying about non-defined cases.

Based on this space, we try to find out geometrical properties of pinhole camera

model. It belongs in the category of central projection where the camera center

corresponds to center of projection in Definition 3.1.

Definition 3.1. Central projection is a mapping that associates a set of points

with another set of points by projection lines passing through a common point,

namely the center of projection.

Since our problem context defines the scene to restore as a plane, we restrict

therefore our condition as a specific case of central projection between 2D planes.

This kind of projections preserves col-linearity when mapping points from one

plane to another. The mapping can be expressed as a projective transformation

according to Definition 3.2.

22 Chapter 3 Geometrical Alignment

Definition 3.2. A mapping h : P
2 → P

2 is a homography (or a projective

transformation) if and only if the mapping results of three collinear points remain

collinear. [HZ03].

Here, P2 represents a 2D projective space. To represent a pixel in this space, we

add a non-zero ratio k (usually k = 1) to its Euclidean coordinates x = (x, y)T

and form homogeneous coordinates x = (kx, ky, k)T . The vector rises up to

a triplet while the degree of freedom remains two for a point. Different from

Euclidean coordinates, it is the proportion rather than the absolute value that

makes sense and the degree of freedom is always one smaller than the number of

elements. Back to the property of projective transformation, the expression of

homogeneous coordinates makes it easier to understand dimension of matrix in

Theorem 3.3 [HZ03].

Theorem 3.3. A mapping h : P2 → P
2 is a homography if and only if ∀x ∈ P

2,

h(x) = Hx. H is a non-singular 3× 3 matrix.

In brief, mapping from a planar scene to an image is a homography which can

be mathematically expressed as a non-singular matrix. With help of this con-

clusion, we are able to analyze coordinate relationship between two images in

our problem. Since projection from planar scene to each image is a homography,

mapping between two of these images should be a composition of two homogra-

phies, which is still a homography. An example is illustrated in Figure 3.1.

Figure 3.1: Mapping between images of a planar scene. Collinear
points of planar surface remain collinear on image. A point x0 maps respec-
tively to its position on image I and image II by x1 = H1x0 and x2 = H2x0.
Since H1 and H2 are non-singular matrix, it is possible to set up a mapping be-
tween x1 and x2 as: x2 = (H2H

−1

1
)x1, where (H2H

−1

1
) is a non-singular 3× 3

matrices. So mapping between images of a planar scene is again a homography.

Chapter 3 Geometrical Alignment 23

Recalling that our goal is to align photos taken from different camera positions

for a planar scene, we plan to map the coordinates of each image onto that of

an image selected as reference. The projection is carried out by calculating ma-

trix of homography and then reconstructing pixels by interpolation (see Section

3.2.3). Remark that masks do not belong to the planar background and may be

improperly reconstructed by homography in aligned image. But as they will be

removed in final result, we do not emphasize here on their accurate alignment.

Coordinates of matched pixel pairs {(x̂,x)} are used to estimate the matrix H.

For all (x̂,x) belonging to planar background in image, we have theoretically

Hx̂ = x. Under homogeneous coordinates, H is a 3× 3 matrix with 8 degrees of

freedom. It requires four pairs of matched pixels in general position (points in

2D space with 2 degrees of freedom) to calculate the matrix.

3.2.2 Sample selection and model decision

During the calculation, several conditions restrain us to select randomly four

pairs of matched pixels for homography estimation. In the first place, the dis-

tribution of four pairs of selected matched pixels is decisive to the accuracy of

homography estimation. Due to the existence of noise, a sample which covers

a large area will give a more robust result than a sample concentrating on a

small area. The homography of small area risks introducing errors later in the

alignment of sequence. More particularly to our case, some of the pixel pairs be-

longing to the masks do not obey the homography of background. Their presence

will lead to a wrong projective transformation.

Thus, we need a robust method to select samples so that the matrix fits best the

data set {(x̂,x)} despite of undesirable effects. We apply here a popular method

named RANSAC (random sample consensus) [FB87]. It is an iterative algorithm

that each time extracts randomly a minimum number of data to calculate model.

It selects inliers by filtering data set members according to an acceptable error

threshold. The model with largest number of inliers is finally selected as best

choice. In our case, the data set indicates {(x̂,x)} and we select every time four

samples to calculate the model H using the DLT method ([HZ03], chapter 3).

The error to estimate is ∥Hx̂− x∥.

Both problems of noise and outliers are resolved by this algorithm. The design of

error threshold εransac defines a tolerance of noise and the selection of candidate

with largest number of inliers ensures the result to be a model applicable in an

24 Chapter 3 Geometrical Alignment

Algorithm 1: Estimation of homography by RANSAC

Data: Matched pixel pairs X0 = {(x̂,x)| x̂ ∈ Ωori,x ∈ Ωref}
Result: Homography H, set of inlier matched pixels Xin

Initialize Xin = ∅, H = 04×4, Ninlier = 0;
for i = 1 to 10000 do

Select randomly four pixel pairs among X0 to calculate Hiter;
foreach (x̂,x) ∈ X0 do

if ∥Hiterx̂− x∥ ≤ εg then
Xiter ← (x̂,x);

end

end
if card(Xiter) > Ninlier then

Update Ninlier = card(Xiter), H = Hiter, Xin = Xiter;
end

end
return H and Xin

area as big as possible. Since we assume that background takes up most area of

image, the output H belongs certainly to the planar background.

Remark that a set of inlier pixel coordinatesXin is also derived from Algorithm 1.

They are pixel positions of scene shared by both aligned image and referential

image and will be used for photometric correction in Chapter 4.

3.2.3 Reconstruction and interpolation

Having obtained the homography H between two images, we create in the end

an aligned image defined on pixel grid Ωref of referential image. The RGB values

of pixels in aligned result is obtained by searching related pixel values in image

to be aligned.

Figure 3.2: Problem of inverse mapping. the purple grid in original
image and the blue grid in aligned image represent respectively Ωori and Ωref

with definition of RGB vectors. The blue grid in the original image is the
inverse mapping result of Ωref . Its elements rarely superpose on Ωori. As an
example, the point xal ∈ Ωref is mapped to x̂al under H

−1 with no definition
of RGB vector in original image

Chapter 3 Geometrical Alignment 25

We define here the RGB vector of image to be aligned as Iori(xori) ∈ {0, . . . , 255}3,
xori ∈ Ωori (resp. Ial(xal) ∈ {0, . . . , 255}3, xal ∈ Ωref for its aligned result).

In order to get pixel values of xal ∈ Ωref , we need to know its related position

in image to be aligned. Since H is a non-singular matrix, we set up an inverse

mapping and find out: x̂al = H−1xal in image to be aligned. However, x̂al is

very likely to be a position out of Ωori and there is no such a definition of RGB

vector as: Iori(x̂al), x̂al ̸∈ Ωori. A graphical description is shown in Figure 3.2.

Figure 3.3: Inverse map-
ping point and its surround-
ing. x̂al is inverse mapping re-
sult within scope of Ωori. It is
surrounded by four pixels defined
on grid associated with RGB vec-
tors xori1, xori2, xori3 and xori4.

This problem is solved by interpolating the RGB vector at x̂al according to

its surrounding RGB values on the grid. In our application, we use a bi-linear

interpolation to estimate the value of each vector Iori(x̂al). For the no-edge areas,

we assume that an inverse mapping result x̂al = (x̂al, ŷal), 1 ≤ x̂al ≤ Mori, 1 ≤
ŷal ≤ Nori is within the scope of Ωori. It exists four pixels xori i = (xori i, yori i),

i ∈ {1, 2, 3, 4} on grid Ωori in the neighborhood of x̂al as is shown in Figure 3.3

that relate to each other according to:

xori1 + 1 = xori2 = xori3 + 1 = xori4 ;

yori1 + 1 = yori2 + 1 = yori3 = yori4 .

Iori(x̂al) is computed by two linear interpolations in both directions x and y with

the value of these pixels. If we interpolate at the first step the value in direction

of x, we get two results at (x̂al, yori1) and (x̂al, yori3) as:

Iori(x̂al, yori1) =
xori2 − x̂al
xori2 − xori1

Iori(xori1) +
x̂al − xori1
xori2 − xori1

Iori(xori2);

Iori(x̂al, yori3) =
xori4 − x̂al
xori4 − xori3

Iori(xori3) +
x̂al − xori3
xori4 − xori3

Iori(xori4).

In a similar way, we get the final result by another interpolation in the direction

y as is presented by Function (3.5) ([[]] means keeping integer part of result).

Iori(x̂al) = Iori(x̂al, ŷal) = [[
yori3 − ŷal
yori3 − yori1

Iori(x̂al, yori1) +
ŷal − yori1
yori3 − yori1

Iori(x̂al, yori3)]].

(3.5)

26 Chapter 3 Geometrical Alignment

The obtained RGB vector is finally defined as RGB vector in aligned result:

Ial(xal) := Iori(H
−1xal) = Iori(x̂al).

3.3 Experiments

Our experiments are carried out by repeating the alignment process between a

reference image and every other images in the sequence. The reference image in

Algorithm 2 refers to the first image in the sequence. In examples we show at

the end of this chapter, the reference images are pre-cut and only their areas of

interest are put into use. This pre-processing is not essential while it ensures the

concentration of matched pixels on the plane, which is an important factor for

the proper operation of RANSAC.

Algorithm 2: Geometrical alignment

Data: A set of n images Φori = {Iori i(Ωi)}, i ∈ {1 . . . n}
Result: A set of geometrical aligned result Φal = {Ial i(Ω1)}, i ∈ {1 . . . n}
Initialize Φal = ∅;
Φal ← Iori 1(Ω1);
foreach Iori i(Ωi) ∈ Φori\Iori 1(Ω1) do

Compute matched pixels {(x̂,x)|x̂ ∈ Ωi,x ∈ Ω1} through SIFT estimation
on Iori i(Ωi) and Iori 1(Ω1);

Calculate homography H mapping Ωori i to Ωori 1 (see algorithm 1);
Re-sample Iori i on Ω1 by bi-linear interpolation of each channel as Ial i(Ω1);
Φal ← Ial i(Ω1);

end
return Φal

Since the algorithm is very classical and has been used in many previous works,

its correctness is no need to be proved. However, there are some details to notice

in actual use.

First, the assumption on homography is easy to break down due to the optical

aberration introduced by the camera lenses. To reduce the potential effects of

the aberration, we take either of the following measures during our experiments:

a) We use a prime lenses of good quality. The aim is to reduce geometrical

aberration which results in the lose of rigidity of objects in images. It appears

either as pincushion or as barrel shape which depends strongly on the zoom of

lens. A poor quality of lenses will aggravate this phenomenon. We use a prime

lens (SIGMA 30mm f1.5 DC HSM) to take most of our photos.

Chapter 3 Geometrical Alignment 27

b) We arrange our target planes in the center of image. The distortion of view

has the tendency to be more and more serious from the center to the side of a

lens. We put therefore our interest objects in the center.

c) We take pictures with a modest change of camera positions. That means the

reference image has less difference of visual angle with other images. In this way,

the projection errors will be small even under the existence of distortion.

The adjustment of parameters is another key point to the success of this pro-

cess. The iteration number of RANSAC should be decided by the matched pixel

numbers and the inlier probability which are difficult to predict. The best combi-

nation of samples may not be included and the model may be inaccurate without

enough iteration. To simplify the problem, we set it at a large number (10000).

It makes the process slow while provides enough sampling in every cases. Be-

sides, the relative threshold between nearest and second nearest neighbors in

SIFT matching is set to 15 and the threshold of residual errors is set at 1 pixel.

These thresholds are rather strict while in actual tests we get usually about 500

pairs of matched pixels for an image of size 1000 × 2000, which are enough for

our estimation.

Based on the discussion above, we tested our program with several image se-

quences and we give here three examples in Figures 3.4, 3.6, 3.8 along with their

results: Figures 3.5, 3.7, 3.9. The first images in original sequences are set as the

reference and a direct cut-off of these images are presented as the first images in

aligned results. Other images are resampled according to their vision and range.

The results turn out to be satisfying. Most of the images superpose perfectly

onto each other with errors below one or two pixels which are acceptable for

the correct operation of further steps. We will see more challenging sequences

(e.g.acquired by smart phone) in Part III.

Of course, these observations are based on the ideal condition supported by the

perfect equipments. We will see errors occur with an increasing trend from the

center to the border of image when using lenses of poor quality or with zoom. A

further discussion will be later found in Chapter 7.

28 Chapter 3 Geometrical Alignment

Figure 3.4: Example 1 -
original sequence. Canon
EOS 80D + SIGMA 30mm
f1.5 DC HSM. Exposure pro-
gram: manual; Exposure time:
1/320s; F number: F6.3; ISO
speed ratings: 100.

Chapter 3 Geometrical Alignment 29

Figure 3.5: Example 1 -
aligned results. The maxi-
mum errors appear on the bor-
ders of images. The images
superpose perfectly onto each
other in the center areas.

30 Chapter 3 Geometrical Alignment

Figure 3.6: Example 2 - original sequence. Canon EOS 80D + SIGMA
30mm f1.5 DC HSM. Exposure program: manual; Exposure time: 1/100s; F
number: F6.3; ISO speed ratings: 160.

Chapter 3 Geometrical Alignment 31

Figure 3.7: Example 2 - aligned results. The aligned results show no
obvious errors in the center. The errors appear generally on the borders of
images. The maximum errors are under 2 pixels.

32 Chapter 3 Geometrical Alignment

Figure 3.8: Example 3 - original sequence.
Canon EOS 80D + SIGMA 30mm f1.5 DC HSM. Ex-
posure program: manual; Exposure time: 1/100s; F
number: F10; ISO speed ratings: 100.

Chapter 3 Geometrical Alignment 33

Figure 3.9: Example 3 - aligned results. The maximum aligned errors
are about 1 pixel. The distribution of maximum errors does not concentrate
on certain areas.

Chapter 4

Photometric Adjustment

Having been registered, every images in sequence convey the similar background

pixels at the same positions. Yet due to the existence of color mismatches, these

images can not be directly put into use for fusion procedure. The photometric

difference between images is a common phenomenon which may be caused by

many factors. The most possible reasons are listed as follows:

a) A variation of white balance adjustment caused by lighting con-

dition changes (e.g.clouds, shadow of moving objects).

b) Changeable reflected lights from non-Lambertian objects under

different observing angles.

c) Effects of spatial chromatic aberration and vignetting on lenses.

d) Automatically changed camera parameters (aperture size, time

of exposure, ISO sensitivity) according to scene.

e) Unknown effects of camera processing (e.g.noise filtering, white

balance, content enhancement) on different scenes.

In reverse, the effects of chromatic differences can be reduced by:

- capturing images in a short delay under stable illuminating conditions;

- avoiding extreme viewing angles;

- applying professional cameras and optical lenses of good quality;

- setting manually as many as possible the parameters (mode M)

- choosing file format with less automatic processing in camera (e.g.RAW)

Even so, it is not possible to eliminate totally the problem and obtain pho-

tometrically identical images. Without any adjustment, fusion results of such

sequences risk being mottled, or even worse, bearing wrongly selected masks.

We attempt thus to design a method to unify object colors in different images.

35

36 Chapter 4 Photometric Adjustment

This chapter is dedicated to our discussion on color adjustment methods. It is

arranged as follows: Section 4.2 introduces the pipeline of color formation process

in camera. Section 4.3 includes our propositions of color alignment method.

Finally, Section 4.4 provides experimental results of photometric correction along

with our analysis on the performance of different approaches.

4.1 Experimental assumptions

In order to set up a stable model of luminance, we try to restrict the unpredictable

effects of lighting conditions. At the stage of method conception, our experiences

are carried out under three assumptions:

1) All surfaces obey Lambert hypothesis without great specular highlights. Lu-

minance value remains the same regardless of observation directions.

2) Each group of images is taken in a short time to prevent changes of lighting

conditions. Impacts of any unexpected factors are negligible.

3) Camera parameters such as aperture size, ISO value and shutter speed are

fixed when taking an image sequence.

These requirements are easy to meet when taking photos of a matte surface

with parameters fixed in a very short time. We suppose from then on that the

luminance issued from the natural space remains approximately the same when

it is received by camera at any positions.

Mathematically, we define the natural space as Πs ⊂ R
3. We denote the lumi-

nance values, issued from xs ∈ Πs, received by camera at two different positions

by L1(xs) and L2(xs). Their relationship may be expressed as:

L1(xs) = L2(xs) + εs(xs). (4.1)

where εs is a small value. The luminance will be further quantified and finally

mapped onto a 2D image grid after a complicated transformation through the

optical and electronic systems in digital camera.

4.2 Color formation process in digital camera

Every manufacturers have their own image processing algorithms, but they tend

to share a rather fixed pipeline for color adjustment. Neglecting some procedures

Chapter 4 Photometric Adjustment 37

for noise and artifacts removal, we present the major steps along with their

output formats in Figure 4.1.

In this section, we shall introduce each step of the pipeline and make clear of its

role in color formation process. Generally speaking, most procedures, other than

an optional sRGB transformation, are approximately linear. Therefore, as later

we shall see, the conversion from scene luminance to digital RGB image can be

approximately modeled by matrix.

Scene

Luminance

Lens

Aperture

Sensors

Raw Demosaicing RGB

White Balance
Color Space

Transform
RGB

Storage

Compression
JPEG

Figure 4.1: Pipeline of camera processing. Gray blocks represent main
steps during camera processing while pink blocks indicate data formats after
corresponding steps. There are also some manufacturers who put white balance
in front of demosaicing, but it makes no big difference later in image color model
because both steps are approximately linear.

4.2.1 From luminance to raw

Information of scene is firstly recorded by raw file. It is the most elementary

image format that contains almost unprocessed data from the camera sensor

([M+17] Chapter 8). To state briefly this step, the scene luminance passes

through a color-filter system then hits on a sensor array. Sensors convert pho-

ton energy into intensity values after a series of analog and digital conversions

such as sampling and quantization. The result is finally recorded by raw files

(usually on 8 to 14 bits), whose data preserves as closely as possible information

of natural scene. Most adjustments are carried out based on this original image

format.

If we denote intensity value (red, green or blue) at position x by U(x) ∈ R, the

response function that projects luminance of 3D scene space to raw data on a 2D

image grid Ω is approximately linear unless the signal is too weak or the sensor

is saturated (see e.g.[Ham13] for CCD sensors):

∀x ∈ Ω, ∃xs ∈ Πs, U(x) = GL(xs) +B + n(xs).

38 Chapter 4 Photometric Adjustment

Here, G is the ISO sensitivity function of camera that represents global gain of

the whole acquisition process. The black level B is a value purposely added in

the result by camera manufacturers in order to keep it positive. The term n is

additive noise with respect to Gaussian distribution [ADGM14].

4.2.2 From raw to RGB

The sensor we mentioned above consists of a color filter array (CFA) on top

of CCD or CMOS elements. Taking Bayer filter as an example, it is the most

commonly used CFA in camera (see Figure 4.2). A periodic pattern of red, green

and blue filters separates light elements according to their wavelength range.

The raw file, which records the color information received by sensors, presents

therefore the image by mosaic of red, green and blue intensities.

Figure 4.2: Example of Bayer filter array. [Wik06] It is the three-color
filter layer covering a sensor array (gray grid). Incoming light is decomposed
into blue, red and green elements. The filter leaves element of its own color
passing through its layer and arriving at sensor array. These sensors record
then intensity of light and output an image called Bayer pattern image in Raw
file. It requires a further demosaicing process to become a full-color image.

The part of work to compute a full-color image from the mosaic of three pri-

mary colors is known as demosaicing. Many algorithms [ZW05, CC06, BCMS09,

Get12] have been proposed to accomplish this conversion, and most of them share

the idea of interpolation. Hence, this process is often approximately regarded as

a linear conversion.

Following Function (4.1), we further assume the approximate equality of RGB

vectors between images after demosaicing. We define respectively two digital

images on grid Ω1 and Ω2. If a point xs ∈ Πs is mapped on these images at

x ∈ Ω1 and x̂ ∈ Ω2, the RGB vectors after demosaicing of these two pixels are

related by (εrgb is a small value):

Imosaic1(x) = Imosaic2(x̂) + εrgb(x̂). (4.2)

Chapter 4 Photometric Adjustment 39

4.2.3 Color adjustments in RGB space

Three color components obtained from the sensor are strongly dependent on

the physical properties of both the CFA and the sensors. Yet in actual use,

the signal is required to be compatible with various devices such as screen and

printer in absence of the camera sensor information. It is thus necessary to

convert the RGB vectors obtained from previous steps into a conventional color

space. Moreover, to get rid of the specific illuminating conditions of scene (as the

human visual system does), it may be appreciated to apply a adjustment named

white balance. Both operations, which will be described in this section, may

introduce photometric differences to the images. Some other occasional effects,

such as non-Lambertian reflexion and coloring lights of moving objects, will not

be discussed here.

White balance

White balance, or more generally color balance, is used to correct color intensi-

ties of image in order to reduce the influence of ambient color. This adjustment

is originally raised based on the fact that camera sensors do not have color

constancy ability as human vision system. Human is able to perceive color of

objects regardless of ambient lights, while as a device without subjective per-

ception, camera records objectively a combined result of all illuminants. The

recorded result is physically correct but subjectively deviates from perceived

colors of objects.

White balance serves as a corrector of this perceived unreality. The basic idea

is to set up a map between a chosen pixel vector in image (neutral color) and a

defined intensity vector. Other colors in image are then calibrated by this map

in order to return back to their wanted appearance. In RGB channel space, this

procedure is interpreted as a rotation of color vector in color space [Pro17]). It

is expressed as a 3×3 diagonal matrix whose parameters are calculated indepen-

dently according to intensity distribution of each channel. We continue repre-

senting original RGB vector at x ∈ Ω as Imosaic(x), and we define Ibalance(x) as

the vector after white balance. The adjustment is, at most of the time, written

as a change of scale on each axis [VK05]:

Ibalance(x) = WImosaic(x), W=







wr 0 0

0 wg 0

0 0 wb






wr, wg, wb ̸=0. (4.3)

40 Chapter 4 Photometric Adjustment

There are many possible choices for diagonal factors. To give some examples,

they would be inverse of neutral color value [WCF05], deviation of intensity av-

erage from gray [Lam05], or inverse of maximal channel value. All these methods

indicate that diagonal factors are decided according to lighting conditions of the

whole image. As a result, white balance matrix of two images are different as

long as their content is not exactly the same. That explains where comes the

color difference of same content in different images.

Color space transformation

For the sake of image interoperability on diverse devices, it is necessary to map

pixel values onto a suitable color space (such as HSI, CIE, YCbCr and CMYK)

according to certain requirements of using condition. In our case, vector trans-

formation on CIE space helps improving visual experience, a further optional

transformation on sRGB space provides a perfect color expression for 8-bit stor-

age and a good compatibility with display systems.

1) CIE-xyz color space which is derived from physical experiments is regarded

as a good estimate of physiologically perceived color space [WS82, Hun05]. Due

to the different spectral sensitivities between camera sensor and human vision

system, data captured by camera sensors is not adapted to describe exactly what

people see. In this case, we interpret the captured color in CIE-xyz color space in

order to simulate human color sensation. This transformation is approximately

described as a linear projection from color balance result Ibalance(x) to Icie(x)

[FBH97]:

Icie(x) = CIbalance(x), C =







2.7688 1.7517 1.1301

1.0000 4.5906 0.0601

0.0000 0.0565 5.5942






. (4.4)

2) sRGB is a type of RGB color space well adapted to physical display devices. It

maps image data from 16-bit to 8-bit on a limited gamut. Such a transformation

will certainly lead to a loss in dynamic range. Even so, it is still a popular

optional step in camera processing based on the consideration of 8-bit format

requirement of most output devices. What is more, the transfer function of

sRGB takes into account a gamma correction, from which the image benefits a

better adaptation to display character of some devices such as CRT systems.

Chapter 4 Photometric Adjustment 41

A transformation from CIE-xyz space to sRGB color space consists of two steps.

The first step is a linear projection carried out by a matrix multiplication. We de-

fine the vector obtained after linear step as Ilinear(x). The linear transformation

step can be described by Function (4.5) as:

Ilinear(x) = S Icie(x), S =







3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570






. (4.5)

The second step is gamma correction in form of power-law equation [SACM12]. It

is now widely used for sake of a better visual quality and storage efficiency (The

original log compression was designed for the sake of compatibility with CRT

displays and tube cameras). sRGB defines its gamma correction as a piecewise

function performing identically at each channel of color vector. To simplify

our expression, we represent uniformly channel element i ∈ {red, green, blue} of
Ilinear(x) as Ilinear i(x). It relates to channel element Ii(x) of output vector I(x).

The function is expressed as:

Ii(x) = fγ(Ilinear(x)) =







12.92 Ilinear i(x), Ilinear i(x) ≤ b

(1 + a) Ilinear i(x)
1/2.4 − a, Ilinear i(x) > b

(4.6)

with b usually set at 0.0031308 and a = 12.92b−b1/2.4

b1/2.4−1
= 0.055.

By the end of this step, the image processing inside camera is almost complete.

There is still a step of compression in pipeline (Figure 4.1). It is proceeded at cost

of losing patch details, which will interfere our analysis on pixels in further steps.

Fortunately, the compression options, along with file types, become selectable in

many cameras. Therefore, we choose in our experiments the image files with less

compression and {I(x)|x ∈ Ω} is regarded approximately as the final output of

camera in our analysis.

4.2.4 A short resume

To sum up, color variation is an associate result of multiple causes. It can be

reduced by fixing parameters such as aperture size, shutter speed and ISO value.

But the effects of internal adjustment in camera can not be totally removed by

manual control.

Some internal algorithms such as white balance are involved in image lighting

conditions of the whole scene captured by image. As we change camera positions

42 Chapter 4 Photometric Adjustment

to get information of areas blocked by masks, the variation of lighting conditions,

as well as distortion of color in images is inevitable.

Fortunately, the major procedures of color adjustment in camera are clear and

rather fixed. They can be expressed as a series of linear transformations followed

by a gamma correction. This knowledge gives us the possibility to set up a color

mapping between two images, and we will discuss our mapping propositions in

the next section.

4.3 Color alignment methods

This section is devoted to the discussion of color alignment propositions and

sampling methods. Since internal parameters of camera may vary with scene,

it is impossible to establish a transfer function shared by all images. Similar

to our geometric alignment method in Chapter 3, our idea is to define a refer-

ential image and adjust each time one image in sequence according to a color

transfer function. If it works well, we will get a new sequence of images sharing

photometric information of referential image.

Our work is organized as follows: Section 4.3.1 summarizes mathematical model

of color formation process in camera and then defines our adjustment problem.

Next, Section 4.3.2 is dedicated to propose possible methods for photometric

correction. At the end, Section 4.3.3 focuses on the choice of samples for transfer

function estimation.

4.3.1 Problem model

Given two digital images after geometric alignment defined on grid Ωtr (image

to be adjusted) and Ωref (referential image), X0= {(x̂,x)|x̂ ∈ Ωtr,x ∈ Ωref} is
a set of pixel pairs sharing the same content of natural scene. Itr(x̂) and Iref (x)

defined on [0, 1]3 refer to normalized output vectors after sRGB transformation.

Our objective is to define a color transfer function:

∀(x̂,x) ∈ X0, g : Itr(x̂) 7→ Iref (x).

We focus first of all on color vector transformation of Section 4.2.3. We represent

all procedures changing a demosaicing RGB vector to its output vector after

sRGB adjustment with a single symbol f . Among all color adjustment steps

in RGB space, the only procedure introducing a nonlinear operation is gamma

Chapter 4 Photometric Adjustment 43

correction fγ . Thus, we set it aside and define the linear part as fl := SCW

(with S defined in Function (4.5), C defined in Function (4.4), W defined in

Function (4.3)). Then f is expressed as a composition of two parts:

f = fγ ◦ fl.

Here, fl is a non-singular matrix. The coefficients of some linear transform

methods (e.g. white balance) vary with the content of images. So fl and f vary

with images (noted as fref.l and fref for reference image, ftr.l and ftr for image

to be adjusted). fγ (see Function (4.6)) has its inverse function expressed as:

fγ
−1(Ii(x)) =







Ii(x)/12.92, Ii(x) ≤ 12.92b

[(Ii(x) + a)/(1 + a)]2.4 Ii(x) > 12.92b
(4.7)

with b = 0.0031308, a = 12.92b−b1/2.4

b1/2.4−1
= 0.055.

Thus, f is an invertible function and the original RGB vectors of Itr(x̂) and

Iref (x) are represented as: ftr
−1(Itr(x̂)) = ftr.l

−1◦fγ−1(Itr(x̂)) and fref
−1(Iref (x)) =

fref.l
−1 ◦fγ−1(Iref (x)). Since two images convey the same content at x and x̂, it

is possible to set up a mapping between original RGB vectors of the two images.

From Function (4.2), we assume that:

fref
−1(Iref (x)) = ftr

−1(Itr(x̂)) + εrgb(x̂)

fref.l
−1 ◦ fγ−1(Iref (x)) = ftr.l

−1 ◦ fγ−1(Itr(x̂)) + εrgb(x̂). (4.8)

In the end, we get the expression of g as:

g(Itr(x̂)) = Iref (x) = fref ◦ (ftr−1(Itr(x̂)) + εrgb(x̂)). (4.9)

This function can not be further simplified as f is nonlinear. Our problem will

be solved if we can describe Function (4.9) or its equivalent form, Function (4.8).

4.3.2 Propositions of method

As we have discussed, the key point to this problem is to decide a mathematical

formula for color transfer model. It is necessary to be noted that the pipeline

in Section 4.2 is rather general without taking into account any unpredictable

factors such as vignetting and aberration. What’s more, there may be still

some algorithms added optionally by camera manufacturers. As a result, if the

associated effects of these factors are important enough, a delicate explication of

theoretical model may introduce errors to the result as well.

44 Chapter 4 Photometric Adjustment

Thus, although we have given parameters for S, C and W in Section 4.2.3, it is

computational costly and unnecessary to calculate f with these parameters. On

the contrary, if we can find a easier way to estimate a model with the help of

samples in images, the result may be more appropriate to the real case.

We have principally two ideas based on different expressions of model. The first

method is derived from Function (4.8). We attempt to set up a linear relationship

by removing nonlinear part of function. Our second design is an estimation of

g. We abandon details of Function (4.9) and approximate g with polynomials.

The degree of polynomial will be limited to 2.

sRGB reduction

Our idea is first to eliminate the gamma correction in sRGB conversion, and

then to apply a linear transformation between two images. It means that we

regard Ĩtr(x̂) = fγ
−1(Itr(x̂)) and Ĩref (x) = fγ

−1(Iref (x)) as our new estimators.

Function (4.8) can be rewritten as:

Ĩref (x) = fref.l ◦ (ftr.l−1(̃Itr(x̂)) + εrgb).

In consideration of unknown factors involved in color formation process of cam-

era, we will not simplify this expression any further. Yet it is convincing enough

that the transfer relation between Ĩtr(x̂) and Ĩref (x) can be described by an

affine gs. The transfer process is composed of five steps:

1) Mapping Itr(x̂) to Ĩtr(x̂) (resp. Iref (x) to Ĩref (x)) by Function (4.7);

2) Estimating gs by selected pixel pairs {(̃Itr(x̂), Ĩref (x))};
3) Removing effect of gamma correction on Itr;

4) Adjusting colors with gs;

5) Applying gamma correction by Function (4.6) to create a new image.

We express gs as a 3× 4 affinity matrix. We extend vectors as triplets: Ĩtr(x̂) =

[Ĩtr 1(x̂), Ĩtr 2(x̂), Ĩtr 3(x̂)]
T and Ĩref (x) = [Ĩref 1(x), Ĩref 2(x), Ĩref 3(x)]

T . An affine

mapping is of the form:







Ĩref 1(x)

Ĩref 2(x)

Ĩref 3(x)






=







a11 a12 a13

a21 a22 a23

a31 a32 a33













Ĩtr 1(x̂)

Ĩtr 2(x̂)

Ĩtr 3(x̂)






+







b1

b2

b3






,

where aij and bi with i, j ∈ {1, 2, 3} are coefficients to estimate. We modify the

form of input vectors Ĩtr(x̂) by adding a constant 1 as its fourth element. Then

its equivalent expression can be written as the multiplication between a vector

Chapter 4 Photometric Adjustment 45

and a matrix:







Ĩref 1(x)

Ĩref 2(x)

Ĩref 3(x)






=







a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3



















Ĩtr 1(x̂)

Ĩtr 2(x̂)

Ĩtr 3(x̂)

1













. (4.10)

where gs is represented as:

gs :=







a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3






.

Its 12 coefficients will be decided by 4 pairs of vectors (̃Itr(x̂r), Ĩref (xr)), r ∈
{1, 2, 3, 4}. We reorganize the function as:







Ĩref 1(x1) Ĩref 1(x2) Ĩref 1(x3) Ĩref 1(x4)

Ĩref 2(x1) Ĩref 2(x2) Ĩref 2(x3) Ĩref 2(x4)

Ĩref 3(x1) Ĩref 3(x2) Ĩref 3(x3) Ĩref 3(x4)






=gs ·













Ĩtr 1(x̂1) Ĩtr 1(x̂2) Ĩtr 1(x̂3) Ĩtr 1(x̂4)

Ĩtr 2(x̂1) Ĩtr 2(x̂2) Ĩtr 2(x̂3) Ĩtr 2(x̂4)

Ĩtr 3(x̂1) Ĩtr 3(x̂2) Ĩtr 3(x̂3) Ĩtr 3(x̂4)

1 1 1 1













.

(4.11)

The least-square solution of gs is computed and further applied for adjustment.

Polynomial regression

Since Function (4.9) is difficult to calculate, we attempt to approach g by re-

gression analysis. What is more, our experience shows that the correlation of

channels is weak. To simplify this problem, we decide to estimate each channel

independently. Our regression model is a n-degree polynomial of the form:

g(Itr i(x̂)) = Iref i(x) =

n
∑

k=0

αk i Itr i(x̂)
k, i ∈ {1, 2, 3}.

The choice of n is a decisive factor to estimation accuracy. A high degree ap-

proximates a curve by a precise description of samples, but at the same time,

it makes the curve too sensitive to noises. In our tests, we have found once the

false color of tiny area at degree 2. Therefore, we stop trying higher degrees and

we decide to choose polynomial of degree 1 and 2 as two possible models of our

46 Chapter 4 Photometric Adjustment

estimation. The function becomes either linear or quadratic:

gl(Itr i(x̂)) = Iref i(x) = αl0 i + αl1 i Itr i(x̂) or (4.12)

gq(Itr i(x̂)) = Iref i(x) = αq0 i + αq1 i Itr i(x̂) + αq2 i Itr i(x̂)
2. (4.13)

Regression parameters are computed by pixel pairs. Taken Function (4.13) as

example, We rewrite the relationship of a single channel between reference and

its matched pixels in form of vector multiplication as:

Iref i(x) =
[

1 Itr i(x̂) Itr i(x̂)
2
]

· [αq0 i αq1 i αq2 i]
T

It requires three pairs of vectors (Itr(x̂r), Iref (xr)), r ∈ {1, 2, 3} to calculate the

coefficients αq0 i , αq1 i , αq2 i . We write them together in an matrix as:







Iref i(x1)

Iref i(x2)

Iref i(x3)






=







1 Itr i(x̂1) Itr i(x̂1)
2

1 Itr i(x̂2) Itr i(x̂2)
2

1 Itr i(x̂3) Itr i(x̂3)
2













αq0 i

αq1 i

αq2 i






. (4.14)

A similar expression, obtained from Function (4.12) with two pairs of vectors, is

presented as:

[

Iref i(x1)

Iref i(x2)

]

=

[

1 Itr i(x̂1)

1 Itr i(x̂2)

][

αl0 i

αl1 i

]

. (4.15)

The coefficients in Function (4.14) and Function (4.15) can be calculated by

least-square estimation.

Remark that we use the same pairs of matched pixels to compute parameters of

different channels in order to avoid errors caused by the estimation on samples

of different deviations. There are in total 6 parameters to decide for linear

approximation (9 for quadratic approximation), the number of vector pairs in

need remains 2 (3 for quadratic approximation).

4.3.3 Sample selection

Our designs require respectively 2, 3 or 4 pairs of matched pixels to decide the

mapping parameters which will be used in all range of image. A random selection

of samples is highly risky and that may lead to the failure of adjustment. For

sample selection, two major sources of mistakes should be taken into account:

Chapter 4 Photometric Adjustment 47

1) Some samples do not convey the same content of scene. That will lead to a

total mistake in the computation of parameters. Images corrected by this kind

of models will bear chromatic distortion in all range of scene.

2) Samples convey the content of masks. Chromatic transformation models of

different objects are probably not the same. A mapping that adjusts successfully

certain occlusion may perform incorrectly in the background region.

Therefore, we apply RANSAC strategy (see Chapter 3) to enhance the robustness

of sample selection. The model with largest number of inliers should describe

the chromatic transformation of background since it is supposed to occupy the

majority of image range. Models computed by incorrect samples (either case 1

or 2) will be rejected during the selection due to its little amount of inliers.

4.4 Experiments

Discussion in previous sections give a general description on our designs while

many details such as the selection of samples, the choice of parameters are still

not decided. This section concentrates on the algorithms and provides evaluation

on the performance of different models. Section 4.4.1 presents the algorithms of

transfer models and the related choices. Section 4.4.2 evaluates quantitatively

and qualitatively the results of chromatic adjustments.

4.4.1 Algorithm details

Our idea is to uniform the contrast of images by proceeding chromatic adjustment

between the reference image and any other images in sequence. sRGB method,

linear and quadratic approximations in Section 4.3.2 are described by Algorithms

3-5. As we come to the stage of experimental tests, parameters in algorithms and

sampling resources should be discussed now. Remark that chromatic adjustment

is proceeded after geometric alignment (see Chapter 3), our design will be based

on aligned images and some results of previous step.

Despite of the computation of coefficients, RANSAC strategy is applied similarly

in these algorithms. It is therefore reasonable to share RANSAC parameters

which are the number of iteration times and threshold of residual differences

between reference and adjusted RGB vectors. We choose 1000 as the number of

iterations times which provides us with enough computed models for selection.

In linear and quadratic adjustments, threshold for residual errors per channel

48 Chapter 4 Photometric Adjustment

Algorithm 3: Chromatic adjustment with sRGB model

Data: Pixel pair positions X0 = {(x̂,x)| x̂ ∈ Ωtr,x ∈ Ωref};
Image to be adjusted Itr(Ωtr); reference image Iref (Ωref).

Result: Chromatic corrected image Is(Ωtr).
Initialize gs = 03×4, Ninlier = 0;

Map Itr(Ωtr) to Ĩtr(Ωtr) (resp. Iref (Ωref) to Ĩref (Ωref)) by Function (4.7);
for n = 1 to 1000 do

Select randomly 4 pixel pairs in X0 to calculate giter by solving Function
(4.11);

foreach (x̂,x) ∈ X0 do

Compute adjusted vector Ĩnew(x̂) of Ĩtr(x̂) by Function (4.10);

if ∀i ∈ {1, 2, 3}, |Ĩref i(x)− Ĩnew i(x̂)| ≤ ϵ̃c then
Xiter ← (x̂,x);

end

end
if card(Xiter) > Ninlier then

Update Ninlier = card(Xiter), gs = giter;
end
Clear Xiter;

end

Compute adjusted results Ĩs(Ωtr) of Ĩtr(Ωtr) by Function (4.10);

Map Ĩs(Ωtr) back to Is(Ωtr) with gs by Function (4.6);
return Is(Ωtr).

Algorithm 4: Chromatic adjustment with linear model

Data: Pixel pair positions X0 = {(x̂,x)| x̂ ∈ Ωtr,x ∈ Ωref};
Image to be adjusted Itr(Ωtr); reference image Iref (Ωref).

Result: Chromatic corrected image Il(Ωtr).
Initialize Ninlier = 0, ∀i ∈ {1, 2, 3} αl0 i = 0, αl1 i = 0;
for n = 1 to 1000 do

Select randomly 2 pixel pairs in X0 to calculate αiter0 i αiter1 i,∀i ∈ {1, 2, 3}
by solving Function (4.15) ;

foreach (x̂,x) ∈ X0 do
Compute adjusted vector Inew(x̂) of Itr(x̂) by Function (4.12);
if ∀i ∈ {1, 2, 3}, |Iref i(x)− Inew i(x̂)| ≤ ϵc then

Xiter ← (x̂,x);
end

end
if card(Xiter) > Ninlier then

Update Ninlier = card(Xiter);
∀i ∈ {1, 2, 3}, αl0 i = αiter0 i, αl1 i = αiter1 i;

end
Clear Xiter;

end

Compute adjusted results Il(Ωtr) of Ĩtr(Ωtr) with αl0 i, αl1 i by Function (4.12);
return Il(Ωtr).

Chapter 4 Photometric Adjustment 49

Algorithm 5: Chromatic adjustment with quadratic model

Data: Pixel pair positions X0 = {(x̂,x)| x̂ ∈ Ωtr,x ∈ Ωref};
Image to be adjusted Itr(Ωtr); reference image Iref (Ωref).

Result: Chromatic corrected image Iq(Ωtr).
Initialize Ninlier=0, ∀i ∈ {1, 2, 3} αq0 i=0 αq1 i=0 αq2 i=0;
for n = 1 to 1000 do

Select randomly 3 pixel pairs in X0 to calculate αiter0 i αiter1 i αiter2 i,
∀i ∈ {1, 2, 3} by solving Function (4.14) ;

foreach (x̂,x) ∈ X0 do
Compute adjusted vector Inew(x̂) of Itr(x̂) by Function (4.13);
if ∀i ∈ {1, 2, 3}, |Iref i(x)− Inew i(x̂)| ≤ ϵc, then

Xiter ← (x̂,x);
end

end
if card(Xiter) > Ninlier then

Update Ninlier=card(Xiter);
∀i ∈ {1, 2, 3}, αq0 i=αiter0 i, αq1 i=αiter1 i, αq2 i=αiter2 i;

end
Clear Xiter;

end

Compute adjusted results Iq(Ωtr) of Ĩtr(Ωtr) with αq0 i, αq1 i αq2 i by
Function (4.13);
return Iq(Ωtr).

is set at ϵc =0.01 for normalized intensities ranging within [0, 1]. This value is

decided after lots of tests confirming that the threshold can be assigned to a

fixed number and 0.01 is a good choice which always leaves enough inliers for

models. In sRGB approach, the threshold is modified as ϵ̃c = 0.0007 following

the non-linear mapping in Function (4.7).

Apart from parameters in algorithms, the choice of samples has not been de-

cided. Following previous discussion, most of the samples should be pixel pairs

conveying the same view of background. A small amount of badly matched pairs

are tolerable as they will be discarded by RANSAC selection. While the major-

ity of samples should be accurately matched and be able to represent multiple

colors appearing in image. Based on these considerations, we come up with two

ideas which both have their pros and cons:

SIFT results The first idea is to use SIFT results issued from geometric align-

ment step. These matched pixel pairs are reliable while they often present a

limitation on color range. Because SIFT chooses pixels located in the area with

highly variation of contrast despite of their colors. Therefore, colors of matched

50 Chapter 4 Photometric Adjustment

pixels concentrate probably on certain types and the accuracy of transfer func-

tion computed with these pixels remains to be tested.

Pixels on grid We assume that pixels from different images superpose one to

another except in area with masks. It is possible to define a grid (for example

with elements of 5px×5px) and select pixels on grid as our samples. This design

benefits from a well distributed samples on a large color range, but at the same

time, the grid increases the complexity of outlier cases. Thus, this design counts

on an accurate geometric alignment and a careful RANSAC selection.

(a) Reference image (woman) (b) Adjusted result (woman)

(c) Reference image (planet) (d) Adjusted result (planet)

Figure 4.3: Examples of samples on grid They are adjusted by Algo-
rithm 5 with samples on grids. ’Woman’ is well aligned, ’planet’ has 2-pixel
errors.

Experiments confirms that SIFT results are better choices than pixels en grid.

Figure 4.3 helps to explain our abandon of grid. After geometric alignment, series

’woman’ performs well with nearly no error while ’planet’ bears a few pixels of

Chapter 4 Photometric Adjustment 51

mismatch. The result of ’woman ’ is well presented which means the minority

of badly matched pixels caused by masks are correctly eliminated by RANSAC.

However, ’planet’ is wrongly adjusted with chromatic distortion. That means

its transfer model is computed with mismatched pixels and RANSAC selection

has failed in case where lots of pixels on grid are badly matched because of

alignment errors. This kind of failures have never occurred in the approaches

proceeded with SIFT results. In addition, tests show that both the quantity and

the chromatic distribution of SIFT results meet the sampling requirements as is

shown in Figure 4.4. It is thus the robust sample resources for our adjustments.

(a) Matched pixels in reference image (b) Matched pixels in aligned image

Figure 4.4: SIFT sampling Positions marked with red cross present 137
pairs of inliers of the color transfer model chosen by RANSAC among 746 SIFT
samples. They are distributed in varies parts of background scene. Most of
representative colors in background are included ranging from yellow to purple.

4.4.2 Estimation

In order to observe the color differences between images, we arrange the elements

of two images in one mosaic as is shown in Figures 4.5, 4.6, 4.7. Differences are

obvious in the areas that should be of uniform colors in the original view. In

all the examples, linear and quadratic approximation plays always a positive

role to align the contrast in images while sRGB performs randomly and even

provides serious mistakes in Figures 4.5c, 4.6c. More concretely, the performance

of quadratic adjustment is better than that of linear model. It provides always

the most uniform mosaics among all. On the contrary, sRGB adjustment seems

to worsen the contrast difference and the trend of change is out of control.

To further evaluate the performance of three methods, we calculate the root mean

square error (RMSE) of matched RGB vectors before and after adjustments. The

52 Chapter 4 Photometric Adjustment

(a) Original mosaic (b) Linear adjusted mosaic

(c) sRGB adjusted mosaic (d) Quadratic adjusted mosaic

Figure 4.5: Chromatic adjusted results (School). Linear and quadratic
adjustment provide similar mosaic results of uniform colors. sRGB adjustment
seems to have eliminated the differences of white area. But its result presents
extreme mistakes in the region of red colors.

estimation is limited to samples so as to exclude mask pixels. Table 4.1 shows

the results of five sequences computed between the reference image and ith image

(marked as 1−i) with normalized values ranging from 0 to 1. More experimental

facts can be found in Chapter 8.

The results of RMSE confirm our judgment through observation. Quadratic and

linear approximation reduce the contrast differences between images and their

RMSE decrease nearly all the time. These methods usually give similar results

while quadratic model shows its advantage in case where the original differences

are important. What’s more, quadratic approximation performs robustly as it

never results in RMSE larger than its value before adjustment. On the contrary,

sRGB approach is not an appropriate method for color alignment as it always

causes failures, A possible explication is that sRGB model may not include en-

tirely the image processing steps inside the camera we use, some more non linear

transformations apart from Function (4.6) probably exist in its pipeline.

Chapter 4 Photometric Adjustment 53

Over all, we come to a conclusion that both polynomial approximation methods

are effective for chromatic adjustment and quadratic polynomial provide better

performance. In all tests, RMSE values after quadratic adjustment never exceed

15 (i.e. 0.067 in range of 0 to 1). This value provides a criterion for determining

whether two pixels express the same content. It will be used in the later designs.

Original Linear Quadratic sRGB

School

1-2 0.038 0.017 0.015 0.057

1-3 0.044 0.015 0.015 0.432

1-4 0.072 0.021 0.018 0.350

1-5 0.054 0.014 0.013 0.391

Rose

1-2 0.125 0.046 0.037 1.051

1-3 0.144 0.084 0.033 1.652

1-4 0.139 0.085 0.035 3.919

1-5 0.149 0.089 0.036 2.794

Dancer

1-2 0.214 0.056 0.039 2.219

1-3 0.238 0.058 0.042 7.667

1-4 0.231 0.069 0.047 5.477

1-5 0.253 0.067 0.042 4.525

Woman

1-2 0.015 0.013 0.013 0.316

1-3 0.017 0.014 0.014 0.123

1-4 0.034 0.014 0.014 8.593

1-5 0.024 0.014 0.014 2.807

Bakery

1-2 0.021 0.021 0.021 0.421

1-3 0.028 0.021 0.024 1.906

1-4 0.024 0.025 0.024 1.733

1-5 0.034 0.024 0.025 0.488

Table 4.1: RMSE of matched pixels. 1−i means the photometric transfor-
mation is proceeded between the first and the i-th images in sequence. Values
in the table are the RMSE of SIFT matches before/after adjustment. For
normalized images, intensities vary by steps of 1/256 = 0.004. So we assume
that color differences under 0.004 can not be distinguished by eyes and RMSEs
under 0.004×

√
3 = 0.007 are negligible.

54 Chapter 4 Photometric Adjustment

(a) Original mosaic (b) Linear adjusted mosaic

(c) sRGB adjusted mosaic (d) Quadratic adjusted mosaic

Figure 4.6: Chromatic adjusted results (Rose). Linear approximation
correct a part of the contrast differences in two images. It performs well in the
adjustment of purple area as the color of roses becomes uniform. But the yellow
region is not correctly expressed. sRGB gives a total failure of adjustment in
this example with wrong colors everywhere. The result of quadratic adjustment
is acceptable in all range of background with every types of color well aligned.
No obvious contrast difference is found in mosaic.

Chapter 4 Photometric Adjustment 55

(a) Original mosaic (b) Linear adjusted mosaic

(c) sRGB adjusted mosaic (d) Quadratic adjusted mosaic

Figure 4.7: Chromatic adjusted results (Dancer). Original mosaic
shows an obvious contrast difference, the reference is much clear than another
image. Linear approximation ameliorate the mosaic but it is still easy to dis-
tinguish the dark patches from the bright ones. sRGB model gives incorrect
result which becomes green in all range of image. Quadratic approximation
provides the best result with a uniform appearance of image mosaic.

Part II

Fusion Methods

57

Chapter 5

Median Filtering

From now on, we suppose that images have been aligned and photometrically

corrected. Here starts a discussion on how to restore the hidden parts. We

consider the case where we do not make any additional assumption on masks.

Inpainting methods are a possible choices which have been widely used to com-

plete lost parts of images by extending geometrical and statistical properties

from the existing region to the missing area [BSCB00, CPT04]. However, it de-

pends on the most likely patches searched outside the occlusion in the image to

fill the gaps. These patches are often quite different from the real missing parts

when the texture of background varies greatly or has nothing in common with

the surrounding area.

Since we have several images at our disposal, it is possible to restore the real

scene behind masks. So we attempt to distinguish the background according

to their appearance frequency. At each pixel position, we get a stack of RGB

vectors each being issued from one image. These vectors can be divided into two

categories that convey respectively the background and the masks. If we take

into account the quantity of the two sorts of pixels, there should be four possible

situations for each stack:

1) All pixels are of background.

2) A majority of pixels are of background and a minority of pixels are of masks;

3) A minority of pixels are of background and a majority of pixels are of masks;

4) All pixels are of masks.

In this chapter, we focus particularly on case 1) and 2). We choose to apply a

filter which is not sensitive to unknown values of masked pixels. A good candidate

would be the median filter which was once applied in [YSL04] for gray-scale light

59

60 Chapter 5 Median Filtering

field completion. It provides a good estimate under two constraints: 1) There

exists certain camera positions where hidden parts can be seen. 2) The areas to

be restored are revealed in more than half of the aligned images.

Compared with previous work, our case is more complicated as the pixels of color

images convey 3-dimensional vectors rather than gray-scale scalars. We need to

choose an adequate definition of median filtering for the this case.

This chapter consists of three parts. Section 5.1 introduces the median filter.

Then, we propose some possible vector filtering methods for color image fusion

in Section 5.2. Section 5.3 estimates the performance of different approaches.

Finally, we will analyze their results and give our conclusions.

5.1 Median and median filter

We start from a short review on median definition and properties. Then, we

present the previous application of median filtering and explain our reason to

choose it as the mask removal method.

5.1.1 Median

The median is a common concept in scalar field. It refers to the middle number

of a sorted data set. Its position-dependency character results in two definitions

depending on the parity (odd/even) of member quantity [Hub11]:

Definition 5.1. Given n ∈ N, ∀1 ≤ i ≤ n, si ∈ R. Let S = {si} be a sorted set

(in descending or ascending order). The median of S is :

med(S) :=











sn+1
2

n ∈ 2N+ 1

1
2

(

sn
2
+ sn

2
+1

)

n ∈ 2N.

Definition shows that a median value is characterized by the order rather than

the value of members in data set. It benefits from a low sensitivity to the extreme

values. The median satisfies the optimality property described by Theorem 5.2.

Theorem 5.2. Median of a set S = {si}, i ∈ {1, . . . , n} minimizes the sum of

absolute difference between a set member and itself:

∀j ∈ {1, . . . , n},
n
∑

i=1

| med(S)− si |≤
n
∑

i=1

| sj − si | .

Chapter 5 Median Filtering 61

A search of median can be achieved by approximating iteratively the value that

minimizes its distance to data set members. However, the data set is required

to have odd number of members. In Definition 5.1, when n is even, median will

be a value out of data set between sn
2
and sn

2
+1.

Proposition 5.3. Given an odd-member data set S={si}, si∈R, i∈{1, . . . , n},
n ∈ 2N. Median of the set is a member that minimizes its distance to other

members:

med(S) = argmin
s∈R

n
∑

i=1

| s− si | .

This limitation can be broken in image fusion problems as the median value

will be selected among the data set members. This is not only for convenience,

but also because we need to avoid new created pixel values (artificial colors) in

fusion results. Therefore, strictly speaking, we search for a member of the data

set which is closest to the median value.

5.1.2 Median filter

When proceeding the median filter in image processing, a mobile window passes

through a data area and leaves the median value in each window. In all, previous

applications of median filter are always limited to gray-scale despite of problem

contexts.

A widely used application is image noise reduction as median filter is able to

eliminate the extreme values in the neighborhood. A window of fixed-pattern

passes over each pixel and replaces its intensity by the median value of neighbor-

hood [SN94]. The image is smoothed with less noise. Median filter is especially

effective in reducing impulse noises.

Another application of median filter is to remove masks in gray-scale image

sequences [YSL04]. The data is a sequence of aligned images with masks in

some areas. A window stretches across different images at each pixel position

under an assumption that the number of background pixels exceeds half of the

number of images in sequence. Therefore, the median of data set will be the

background pixel and the hidden part is restored after filtering.

Our problem is very similar to the second case but we need to replace gray-scale

images (as in [YSL04]) by color images. It is reasonable to make use of the basic

idea of median selection, but actually there is not much reference on the vector

median filtering. We need to find an appropriate median definition in vector

range which performs well for mask removal of color image sequences.

62 Chapter 5 Median Filtering

5.2 Possible choices of vector median

We recall here our model. Given n ∈ N digital images defined on grid Ω after

geometric and photometric alignments (see Chapters 3 and 4). For all pixel

position x ∈ Ω, we wish to define median med(Φ(x)) of its vector data set

Φ(x)={I1(x), . . . , In(x)}, where Ii(x)=(Iir(x), Iig(x), Iib(x))
T , ∀i ∈ {1, . . . , n}.

This section gives several possible definitions of the vector median. After a brief

list of these possibilities, we will analyze their behaviors and select some of them

for further tests in Section 5.3.

5.2.1 Definitions of vector median

We have four propositions of vector median. Definitions 5.4 and 5.5 relates to

a direct search of vector while Definitions 5.6 and 5.7 pick out a vector corre-

sponding to a certain type of scalar median.

Definition 5.4. Marginal median is a vector formed by the median on each

channel [Pur71, MGS11] :

med(Φ(x)) := (med({Iir(x)}),med({Iig(x)}),med({Iib(x)}))T , i ∈ {1, . . . , n}.

Definition 5.5. Geometric median is a vector minimizing the sum of its

Euclidean distances to all other vector of data set [AHN90] :

med(Φ(x)) := argmin
I(x)∈Φ(x)

n
∑

i=1

∥I(x)− Ii(x)∥. (5.1)

Definition 5.6. Degenerated median is a vector corresponding to the median

of intensity value. The conversion function from RGB vector to its intensity value

is defined according to [AMCS96].

si(x) := 0.2126Iir(x) + 0.7152Iig(x) + 0.0722Iib(x). (5.2)

med(Φ(x)) :=Ij(x)∈Φ(x) such that sj(x)=med({si(x), i∈{1, . . . , n}}).

Definition 5.7. Space-curve median is a vector corresponding to the median

of space-filling curve orders (see Figure 5.1). The order is length of curve from

origin to the end of vector [SLP83]. If we represent order mapping as I(x) →
c(I(x)), then space-curve median is defined as:

med(Φ(x)) := I(x) ∈ Φ(x) such that c(I(x)) = med({c(Ii(x))}), i ∈ {1, . . . , n}.

Chapter 5 Median Filtering 63

Figure 5.1: Example of 2D space-filling curve construction [Wik07].
Space-filling curve is a continuous curve that passes through every elements in
digital space. Its pattern depends on the function chosen for extension. This
example shows how a space-filling curve (here a Peano curve) is constructed
iteratively. It is possible to set up a bijection between vector and length of
curve it cuts, namely curve order.

5.2.2 Performance prediction

Definitions in Section 5.2.1 are carefully designed and some of them have already

been used in some applications. For sake of some particular demands in our case

(prevention of artificial colors for example), we analyze here their behaviors and

reject some choices before further tests.

Marginal median is the first definition to be abandoned. Indeed, medians of

each channel belong probably to different vectors. In order to avoid generation

of artificial colors, our application requires that the median result should belong

to its original data set, which is not the case for the marginal median.

Geometric median extends median operation to vector space. It is well-

designed as its definition degenerates to the definition of scalar median when

the space dimension reduces to one. Unlike marginal median, geometric median

is unique and belongs to the original data set by definition. Thus, we regard it

as a good candidate of vector median for our further tests.

Degenerated median makes use of intensity value to express content of scene.

Its feasibility is proved by previous mask removal method on gray-scale images

[YSL04]. However, as we convert colored images to gray-scale images for median

selection, pixel expression bears certainly a loss of information during their de-

generation from vectors to scalars. It is still not sure if this process would lead

to an ambiguity of colors, so the robustness of this method is to be estimated in

further tests.

Space-curve median is directly rejected based on two major considerations:

first, it is difficult to decide an appropriate pattern of space-filling lines to express

vectors. Figure 5.2 shows how a bad choice of curve pattern leads to a wrong

64 Chapter 5 Median Filtering

selection of median. What’s more, the estimation of mapping between vector

and curve length introduces great computation. Space-curve median is not a

good solution to our application.

Figure 5.2: Incorrect median caused
by improper choice of space-filling
curve pattern We take 2D Peano curve
as an example. Suppose that I1, I2 and
I3 three vectors in 2D space. According to
their ending points on Peano curve, their
order obeys an inequality c(I1) < c(I2) <
c(I3). Then the median of these orders
should be c(I2) and I2 represents ’middle
state’ of three vectors, which is obviously
incorrect.

Based on the analysis above, geometric median and degenerated median can be

selected as the candidate methods for mask removal. Their performance remains

to be evaluated in our experiments.

5.3 Experiments

Based on the discussion in Section 5.2, we test the performance of geometric

and degenerated median according to Algorithms 6 and 7. The minimal sum of

distance is taken as a criterion to pick out the median pixel for fusion results.

Algorithm 6 calculates the distance based on Definition 5.5. Algorithm 7 com-

putes at first the the gray-scale image related to each colored image according

to Definition 5.2, then estimates the scalar distances following Proposition 5.3.

Many sequences have been put into use for evaluation, we present here three

examples shown by Figures 5.3, 5.4 and 5.5. A more systematic assessment with

quantitative and qualitative estimations of pixel selection methods can be found

in Chapter 8.

Both median methods proceed effectively for mask removal when the assumption

on background pixel quantity is achieved. The general appearance of their results

are very similar to each other as is shown by Figures 5.3a and 5.3b, Figures 5.4a

and 5.4d, Figures 5.5a and 5.5c.

However, the filtering qualities of these approaches are not exactly the same as

we find many differences in the enlarged details. Degenerated median results

present a lot of small areas of remaining masks (see Figures 5.3d, 5.4c and 5.5d).

Geometric median results present better the background scene with less incorrect

Chapter 5 Median Filtering 65

Algorithm 6: Image fusion by geometric median filtering

Data: Aligned image sequence {Ii(Ω)}, i ∈ {1 . . . n}
Result: Median image Imed

foreach x ∈ Ω do
Initialize Smin = +∞;
for i = 1 to n do

Compute S =
n
∑

j=1
∥Ii(x)− Ij(x)∥;

if S < Smin then
Smin = S;
Imed(x) = Ii(x);

end

end

end
return Imed(Ω)

Algorithm 7: Image fusion by degenerated median filtering

Data: Aligned image sequence {Ii(Ω)}, i ∈ {1 . . . n}
Result: Median image Imed

foreach Ii(Ω) in sequence do
Compute si(Ω)=0.2126Iir(Ω) + 0.7152Iig(Ω) + 0.0722Iib(Ω);

end
foreach x ∈ Ω do

Initialize Smin = +∞;
for i = 1 to n do

Compute S =
n
∑

j=1
|si(x)− sj(x)|;

if S < Smin then
Smin = S;
Imed(x) = Ii(x);

end

end

end
return Imed(Ω)

pixel selections. This phenomenon exist more or less in every image sequences

depending on the intensity differences between the occlusion and the background.

Later in Chapter 8, more obvious differences can be found between two median

results in some examples.

The observations are consistent with our prediction that the degenerated com-

putation results in a lose of color information. Mistakes may occur when pixels

of significant color differences are expressed by similar intensity values. In re-

verse, geometric median, benefiting from the full information of RGB vectors,

66 Chapter 5 Median Filtering

can properly express the color relationship of pixels.

Therefore, we confirms that both extensions of vector median help to remove

some of the masks in image sequence while the geometric median performs better.

It is therefore the robust vector median filtering method for image fusion.

Nevertheless, the assumption on background pixel quantity is rather stringent.

Many sequences, as for example the sequence in Figure 5.4, can not meet the

requirement in all the range of image and their fusion results bear much remain-

ing masks. Thus, it is necessary to design another method which is able to deal

with more general cases. That will be discussed in Chapter 6.

(a) Geometric median result (b) Degenerated median result

(c) Zoom of 5.3a (d) Zoom of 5.3b

Figure 5.3: Fusion results (Dance). The general appearance of two me-
dian results are similar to each other. But the enlarged details show that it
exists many small areas of mask in the result of degenerated median filtering.
Geometric median provides better result with accurate details.

Chapter 5 Median Filtering 67

(a) Geometric median result

(b) Zoom of 5.4a

(c) Zoom of 5.4d (d) Degenerated median result

Figure 5.4: Fusion results (Rose). Both median results leave a short bar
on the girl’s clothes of the fusion results. The quality of geometric median is
better than degenerated median since small area of occlusions remains in the
enlarged result of degenerated median image.

(a) Geometric median result (b) Zoom of 5.5a

(c) Degenerated median result (d) Zoom of 5.5c

Figure 5.5: Fusion results (Orient). No obvious mask has been left in this
example. The enlarged figures show that geometric median performs better
the details than degenerated median. Some yellow spots belonging to the mask
remains in degenerated median result

Chapter 6

Meaningful Clique

As shown in Chapter 5, median filter works well under the assumption that more

than 50% of the pixels belong to the background, but this requirement is rather

stringent to reach within all range of images. As for example, we meet often the

case where several pedestrians wander into the view one after another, only to

leave a few revealed pixels of the background. Consequently, the median decision

fails and selects blindly the pixels of mask according to their orders.

Essentially, these failures are due to the difference between problem features

and the assumption of median filtering. Median filtering concerns the rank of

elements in a data set. Yet, for our problem, the pixels of background share

similar intensities while the masks vary randomly. Therefore, the density of

distribution, rather than the order of intensities, is more appropriate to describe

the background pixels.

Hence, this chapter is devoted to a design of pixel selection process based on the

intensity distribution. Inspired by the concepts in graph theory, we gather the

background information with a new-defined data set named meaningful clique.

The algorithm is shown to fit with more general mask removal cases. It provides

a better performance than median filter in terms of quality and reliability.

This chapter is organized as follows: first, Section 6.1 describes the special char-

acteristics of background pixels. Then, Section 6.2 gives a short review of some

concepts in graph theory. Later, Section 6.3 goes into details the definition of

meaningful clique and the procedures of our new algorithm. Finally, Section 6.4

evaluates qualitatively and quantitatively the performances of median filter and

our meaningful clique method.

69

70 Chapter 6 Meaningful Clique

6.1 Feature of background pixels

After the steps presented in Chapter 3 and Chapter 4, pixels at the same position

on image grid convey the view of a fixed point captured at different moments.

On the one hand, the background pixels bear the similar colors as they share

the same content, on the other hand, the mask pixels show big differences due

to the movement of both photographer and obstructions.

Mathematically, these pixels are expressed as discrete points in RGB space. The

chromatic similarity (or difference) is expressed as the close (or long) distance

between points. Therefore, the background pixels, which are similar to each

other, gather as dense clouds. The mask pixels of various colors are more likely

to spread about as the isolated points.

Figure 6.1: Pixel distribution in color
space. We express the pixels as the points
in RGB space. The three red points rep-
resent the background pixels form a dense
cloud. The other points are the pixels of
masks changing all the time. The brown
and green points posit occasionally close.
While they are not as numerous as the back-
ground pixels.

Remark that some mask pixels are also possible to gather as clouds. It happens

when the motion is not enough to span the homogenous area of mask or when

several occlusions appearing at the same position share coincidentally the similar

colors. This phenomenon rarely occurs along with the perspective variation

during photography and the clouds of these pixels are usually smaller than the

cloud of background.

Still, to ensure the precision of our description, we assume that the repetition

of similar masks should be less than that of the background. Different from the

median filter which separates points into two groups regardless of their distances

(see Chapter 5), we are in need of a method more adapted to the pixel distribution

characteristic in RGB space that is able to distinguish the biggest dense cloud

apart from other pixels.

Chapter 6 Meaningful Clique 71

6.2 Graph and clique

The cloud of points close to each other briefly described in Section 6.1 reminds

us of the definition of clique in graph theory [BM+76]. Therefore, we give first

a short review on several concepts that help us to design our own method, and

we discuss then the modification according to our case.

Two basic notions should be mentioned here. We start from the concept of graph

which is widely applied to define the data structure in many fields. It is often

used to model a binary relationship between the objects.

Definition 6.1. A graph is a pair of sets G(V,E) consisting of a set of vertices

V and a set of edges E. An undirected graph is a graph in which edges have no

orientation. [GR13]

There is a further definition on the subset of vertices whose members have links

to each other, namely clique (first raised by [LP49]).

Definition 6.2. In an undirected graph G(V,E), a subset C ⊆ V of vertices V

is called a clique if there exists edges to connect every two vertices of this subset.

The maximum cliques are the cliques of the biggest cardinality [Gol04].

Figure 6.2: Cliques in an undirected graph. The diagram shows an
example of undirected graph with its vertices V = {V1, V2, V3, V4, V5} and its
edges represented by the black bars. According to definition 6.2, the vertices
with bars connecting every two of them constitute cliques (for example {V3, V4},
{V1, V2, V5} and {V2, V4, V5}). The clique of biggest cardinality, which refers to
{V2, V3, V4, V5} here, is the maximum clique.

The clique represents a set of vertices which are somehow related to each other

among all the vertices in graph. Its definition is similar but not exactly identical

to the description of cloud in Section 6.1. We regard the points in RGB space as

the vertices and the Euclidean distances between points as the edges. According

to Definition 6.2, a point can be classified simultaneously into several cliques as

long as it is connected to every other members of the cliques. It means that a

pixel can be marked at the same time as both background and masks.

72 Chapter 6 Meaningful Clique

Therefore, we should modify Definition 6.2 so as to eliminate the compatibility

of cliques. Our idea is to cut off the connections between vertices (points) of

different cliques by marking these edges (Euclidean distances) as invalid. The

proposed definition will be presented in Section 6.3.

6.3 Clique based algorithm

We come back now to the core section of this chapter that gives a new algorithm

for background simulation. We name a set of neighboring pixels as the dense

clique.

This section consists of two parts. The first part focuses on the definition of

dense clique and its search process. The second part gives a description of the

meaningful clique as well as a general view of the whole iteration.

In our discussion, we input a stack of images after the geometric and photometric

alignments described in Chapters 3 and 4

Φ(x) = {Ii(x), i ∈ {1, . . . , n}} (6.1)

defined for all x ∈ Ω ⊂ R
2, where Ii(x) ∈ R

3. To estimate the background, for

each pixel x, we need to decide which value Ĩ(x) represents best the background.

6.3.1 Dense clique and search

Following the analysis in Section 6.2, we define dense cliques of cardinality m

which are exclusive to each other by adding the valid/invalid mark on edges:

1) The edges are defined as Euclidean distance of points in R
3;

2) For a set of m vertices C ⊂ V , if the edges linking ∀v ∈ C and every other

vertices in C \{v} are the m−1 shortest edges issued from v, then the edges

between every two vertices of C are valid. Otherwise, all of them are invalid.

By doing so, the edges become distinguishing links. A m-member dense clique

is a m-member subset C ⊆ V of vertices if there exists valid edges to connect

every two vertices of C. The definition is organized as follows:

Definition 6.3. (Dense clique) Let v1, . . . , vn∈R3 and V :={v1, . . . , vn}. A

clique C ⊂V such that card V=m is said dense if ∀ v ∈ C its m−1 nearest

neighbors in V are in C \ {v}.

Chapter 6 Meaningful Clique 73

This definition ensures that the intersection of dense cliques of the same cardi-

nality is always empty. It can be proved by contradiction: For v ∈ V , we suppose

that it exists two m-member dense cliques C1 ̸= C2 such that v ∈ C1 and v ∈ C2,

then the m−1 nearest neighbors of v in V are also included in C1 and C2. Since

C1 and C2 are of m members, C1 = C2 = {v}
∪{m− 1 nearest neighbors of v}.

In actual use, dense clique is the subsets of Φ(x) and the points indicate pixel

color channel intensity Ii(x). For every x ∈ Ω, the cliques given in Definition 6.3,

applied with Φ(x), can be computed using Algorithm 8.

Algorithm 8: Dense clique computation.

Data: Set Φ(x) (see (6.1)), positive integer m
Result: Dense clique set S(x).
Set S = ∅ and compute the n×m matrix M made with indexes of nearest
neighbors (NN) of Ii(x) s.t. ∀i∈{1,. . ., n}, row(M,i)=(i,1st-NN . . .,m−1th-NN).
for i=1,. . . , n do

Compute the set E1 := {M(i, 1 : m)}
for j=2,. . . , m do

Compute the set E2 := {M(M(i, j), 1 : m)}
if E1 ̸= E2 then

Break
end
if j==m then

S := S ∪ E1

end

end

end
return S

The algorithm is a direct translation of Definition 6.3 by code. Each time, the

search is carried out based on the observed value at x, namely Ii(x) ∈ Φ(x) ∀i∈
{1,. . ., n} and its m− 1 nearest neighbors that form together a candidate clique

E1. For every members I ∈ E1, we compute a set E2 including I and its m − 1

nearest neighbors. The candidate clique E1 will be kept to the end only if it

equals every time to such E2.

6.3.2 Meaningful clique and iteration

As we have argued in Section 6.1, if a group of images display similar values, then

one of these groups is assumed to be the background. Under ideal conditions,

the clique of background should have the biggest cardinality. But in practice,

74 Chapter 6 Meaningful Clique

the case is more complicated as it involves some pseudo-dense cliques. It requires

thus more constraints to define the clique we need, namely meaningful clique.

Figure 6.3: Pseudo-dense clique. The
diagram shows an example of pseudo-dense
clique. The four blue points is among the
nearest three neighbors of each other al-
though they are not really adjacent. If we
search for clique of three members, we will
get the real dense clique of the red points
and an other clique of three blue points. As
what we have designed, we will pass to the
search of four-member cliques and we get
only a clique of blue points. Without any
constraint on density, this clique will be out-
put by mistake.

We start with the explanation of pseudo-dense clique. As is represented by the

group of blue points in Figure 6.3, it consists of several points that are rather

dispersive. Even so, their distance to each other is relatively smaller than the

distance to other points in the data set. Consequently, they are also selected as

the candidate cliques according to Definition 6.3.

This problem comes from the lack of description on the density of clique. Def-

inition 6.3 explains only the relationship between a isolated subset and other

members in data set. No constraint is added to evaluate the intensity variance

of pixels in the subset.

The unrestricted search of clique is designed due to the difficulty of threshold

choice. A large threshold is useless while a small value may limit the growth of

background clique (Sometimes the subset of repeated masks may have a smaller

variance than the set of background, a badly selected threshold may reject the

background clique but save the mask clique).

Therefore, instead of passing checks on every searches of dense clique, we choose

to add a restriction at the last moment of the process in order to avoid its impact

on the growth of clique. Also, this design is out of consideration that a pseudo-

dense clique will introduce errors only if its size is no less than the real dense

clique. Otherwise, it will be rejected during the growth of clique. We define the

inclusive clique based on which the clique size grows.

Definition 6.4. (Inclusive clique) We say that a clique Cin is inclusive if

∀k ∈ {2, . . . , card Cin−1}, it exists dense clique C̃, card C̃ = k.

Chapter 6 Meaningful Clique 75

Finally, the clique which is supposed to contain background pixels of similar

RGB values is defined as follows:

Definition 6.5. (Meaningful clique) Let σT > 0 be a given threshold. The

meaningful clique C is a largest inclusive clique Cm with var Cm ≤ σT , or a

second largest inclusive clique of minimal variance.

In practice, we iterate the search of inclusive clique according to Definition 6.4

and we update each time the latest and previous results until only one inclusive

clique is found. This clique will be output if its variance is below the thresh-

old. Otherwise, it is suspicious to be a pseudo clique and the clique of smallest

variance value among the previous results will be returned. The threshold in set

to σT = 15 for the images valued in {0, . . . , 255}3, which is the empirical maxi-

mum RMSE of chromatic aligned results we’ve ever obtained in experiments (see

Chapter 4). This process is described by Algorithm 9.

Algorithm 9: Meaningful clique computation (see Definition 6.5).

Data: Set Φ(x) (see (6.1)), treshold σT .
Result: Meaningful clique C(x).
Set n :=card Φ(x), m :=2, s :=0, Spre :=Scur :=∅
do

Set Spre := Scur, Scur := Algorithm 8 (Φ(x),m), m := m+ 1 and
s := card Scur

while s ≥ 2

Compute σ2 :=

{

+∞ if Scur = ∅
σ2 := var C, for C ∈ Scur

if σ2 ≤ σ2
T then

return C ∈ Scur

else
return argminC∈Spre

var C
end

Theoretically, if the minimum size of background clique is α, the number of

images should be controlled under 3α + 2 (limit case with an α-member back-

ground clique and two (α + 1)-member pseudo-dense cliques) so that there will

be at most one pseudo-dense clique bigger than the background clique . Yet,

in practice the appearance of double pseudo-dense cliques never occurred since

we use at most 7 images which ensures a minimum size of background clique at

2. What’s more, even the single pseudo-dense clique is rather rare during the

search, needless to say the double case.

We consider that the meaningful clique contains pixels of the same view. Since

it is almost the maximum inclusive clique, the highly repeated view is very likely

76 Chapter 6 Meaningful Clique

to be the background. To strengthen the robustness of result, we estimate Ĩ(x)

given Φ(x) by computing a median point of the meaningful clique C(x) obtained

with Algorithm 9:

Ĩ(x) ∈ argmin
I(x)∈C(x)

∑

Ii(x)∈C(x)

∥Ii(x)− I(x)∥22

6.4 Experiments

We now turn to evaluate the performance of the proposed algorithm. Both sim-

ulated and real sequences are used to evaluate qualitatively and quantitatively

our approach. Two other algorithms, the median based method and the robust

PCA method [HFB14], are also estimated. In the following, we first give quan-

titative tests on simulated sequences and then exhibit the results on real image

sequences. More experiments can be found in [YGMT18].

6.4.1 Simulated sequences

In our experiments, we benefit from the quantitative estimation on simulated

sequences that eliminate the impact of alignment errors. An image sequence is

generated by choosing an image as the ground-truth, and then superimposing

randomly occlusions on the background. Also, we add white Gaussian noise to

simulate the temporal images noise. In a such sequence, we denote, hereinafter,

I0 the ground-truth and Ĩ the estimated result. Two examples are given by

Figures 6.4 and 6.5.

Our idea is to compute the proportion of pixels conveying the mask content,

namely the error rate. The estimations are carried out on different areas of the

whole scene where every positions share the same number of background pixels

out of all images in sequence. In all, we compute the error rates under a given

number of correct sources.

To do so, the pixels where the background is observed k ∈ {1, . . . , n} times, in a

sequence of n images, are given by the set

T (k) := {x ∈ Ω : φ(x) = k}, (6.2)

where φ(x) := card {i ∈ {1, . . . , n} : ∥Ii(x)− I0(x)∥2 < ε} and ε ≥ 0 is some

noise dependent threshold. For k ∈ {1, . . . , n}, the error rate is defined by:

Chapter 6 Meaningful Clique 77

R(k) :=
card

{
∥

∥

∥
I0(x)− Ĩ(x)

∥

∥

∥

2
< ε

}

card T (k)
. (6.3)

Tables 6.1-6.2 give the error rates for four simulated sequences of five images

in the noiseless and noisy cases. In these experiments, the clique method based

on Algorithm 9 performs for most of the time better than two other methods.

Especially when the background pixels account for less than 50% of pixels in the

stacks (first and second column in the Tables 6.1-6.2). On the one hand, the

median filtering becomes less reliable and errors is very likely to occur unless the

background pixels happen to rank in the median positions. On the other hand,

the clique method keeps its reliability when the background pixels form a clique

of cardinality 2 or more.

1 2 3 4 5

Seq.1
Clique 91.1 3.2 0.0 0.0 0.0
Median 96.7 57.8 0.0 0.0 0.0
RPCA 97.8 79.8 0.0 0.0 0.0

Seq.2
Clique 26.0 0.0 0.0 0.0
Median 77.4 0.0 0.0 0.0
RPCA 98.1 0.0 0.0 0.0

Seq.3
Clique 0.0 2.1 0.0 0.0
Median 0.0 60.7 0.0 0.0
RPCA 100 99.9 98.4 97.9

Seq.4
Clique 0.0 0.0 0.0 0.0
Median 0.0 47.7 0.0 0.0
RPCA 100 100 99.9 99.8

Table 6.1: Error rates for four noiseless simulations with clique, median and
RPCA methods. The table provides the erroneous decision percentages when
the background is observed k times. Each sequence has 5 images. Blue cells
indicate that the error rates there are negligible. The median decision is correct
if k ≥ 3. The clique method performs better.

The robust PCA method shows poor performance although its results look very

similar to the median images through a direct observation (see Figures 6.1 and

6.2). That is because the image contrast has been changed during the estimation

of low-rank component and the distance
∥

∥

∥
I0(x)− Ĩ(x)

∥

∥

∥

2
turns out to be larger.

To explain this phenomenon, we recall here the main idea of robust PCA method.

It supposes that the background information is conveyed by the low-rank com-

ponent of intensity vectors which can be obtained by aligning original vectors

along the direction of principal component [GVL12, CLMW11]. [SBZ16] pro-

vides a method to compute correctly the first principal component despite of

78 Chapter 6 Meaningful Clique

1 2 3 4 5

Seq.1
Clique 94.7 10.5 8.4e-2 2.9e-3 0.0
Median 97.4 61.8 2.0e-2 0.0 0.0
RPCA 92.7 71.9 5.3e-2 4.5e-3 2.7e-3

Seq.2
Clique 47.6 8.5e-2 5.5e-3 0.0
Median 80.3 1.7e-2 0.0 0.0
RPCA 89.3 0.0 0.0 0.0

Seq.3
Clique 0.0 6.7 1.4e-2 0.0
Median 0.0 63.3 5.9e-3 0.0
RPCA 94.7 53.7 59.3 51.3

Seq.4
Clique 100 1.0 1.2e-2 1.1e-3 0.0
Median 100 52.9 0.0 0.0 0.0
RPCA 0.0 83.6 41.8 23.8 18.4

Table 6.2: Error rates in percentage. Noisy simulations with σ = 5 additive
Gaussian noise. The table is organized as Table 6.1 (ε := 35). The clique
method always performs better or very similarly.

the existence of outliers. The background reconstruction depends on a selection

among the partial intensity after decomposition (the detailed method is pre-

sented in Chapter 2). Hence, the estimation on robust PCA method should be

based on a synthesis of observation and qualitative analysis.

6.4.2 Real sequences

Figures 6.6 and 6.7 show two examples on real image sequences. In the areas

where the background pixels account for more than half of the whole sequence, all

methods are reliable. When this assumption breaks down, median filtering loose

its robustness while robust PCA method seems to perform better sometimes.

The proposed clique based method always works the best even for cases where

there are only two background pixels to constitute minimum cliques.

To conclude, our new method that relies on the computation of meaningful

clique is fast, simple and robust without assumption on the occlusion shapes,

textures, colors or motions. It is demonstrated to be advantageous in terms of

quality and reliability when comparing with a color median and with a much

more sophisticated method, RPCA.

Chapter 6 Meaningful Clique 79

(a) Images in sequence(1st-5th image) and ground-truth(6th image)

(b) Median result (c) RPCA result (d) Clique result

Figure 6.4: Simulated sequence with σ = 5 additive Gaussian noise.
Median filtering and robust PCA method give the similar results. Meaningful
clique method removes most of the masks.

80 Chapter 6 Meaningful Clique

(a) Images in sequence(1st-5th image) and ground-truth(6th image)

(b) Median result (c) RPCA result (d) Clique result

Figure 6.5: Noiseless simulated sequence. In this example, the median
filtering and robust PCA method give the similar results. The meaningful
clique method performs the best with the least mask left in its result.

Chapter 6 Meaningful Clique 81

(a) Images in sequence

(b) Median result (c) RPCA result

(d) Meaningful clique result

Figure 6.6: Real sequence 1. Median
filtering losse its robustness in the areas
where 2 pixels out of 4 belong to fore-
ground. The robust PCA and meaningful
clique method give both the results with
all masks removed. They are more reli-
able when the assumption on background
number breaks down.

82 Chapter 6 Meaningful Clique

(a) Five images in sequence (b) Median result

(c) RPCA result (d) Meaningful clique result

Figure 6.7: Real sequence 2. The meaningful clique method gives better
result than median filtering and robust PCA method in this example.

Chapter 7

Jitter Blur Correction

During the conception of our process, we were at first dedicated to justifying

the correctness of our model. The experiments were carried out with carefully

selected lenses (SIGMA 30mm f1.5 DC HSM) in order to eliminate the effects

such as distortion and chromatic aberration. As we moved to the next stage,

we need to test the robustness of our method so we released the requirements

on lenses. It turned out that the fusion results were no longer perfect with

blur-pattern defects getting worse from the center to the border.

This phenomenon reminds us that the accuracy of steps presented in previous

chapters may be affected by lenses quality. If so, certain parts of the algorithm

should be modified in order to deal with broader conditions of use.

This chapter focuses particularly on this issue. It opens with a discussion on error

sources followed by the search for possible solutions. In Section 7.1, experiments

show that the errors come mainly from the lenses distortions which lead to

misalignment between images. Section 7.2 reviews several existing tools either to

correct the distortion or to replace the homography resampling method. Analysis

shows that these methods are not appropriate to our case. Therefore, we propose

in Section 7.3 an original method as an additional step of the whole process.

Remark that this method is an optional process aiming at reducing the jitter blur

artifacts. The combination will not help eliminating the mask area in fusion

results if pixels issued from the masks remain in the background after pixel

selection step. So this approach is not an essential step when image sequences

are well aligned.

83

84 Chapter 7 Jitter Blur Correction

7.1 Error sources

In this section, we present the defects observed in fusion results. Then, we

analyze the possible sources of error and the steps they may affect. We focus

here particularly on the types of problem caused by aberration. The existence

of each type of error is inspected either by a direct observation or by a further

test and we will come to a conclusion in the end of this section.

Figure 7.1: Fusion result with defects and its partial enlarged details
The upper figure is a fusion result of a sequence of images captured by a zoom
lenses. From left to right, it corresponds to the center till the left border of the
original images. The middle figures show the enlarged detail of areas framed
up in the upper figure. The lower figures gives a comparison issued from one
of the aligned images in the original sequence.

Chapter 7 Jitter Blur Correction 85

7.1.1 Problem description

Figure 7.1 gives a good example of the defect pattern in fusion results. It shows

that a pixel, which should be present only one time in the sharp image, may ap-

pear repeatedly in its neighborhood. In serious cases, the patterns look as blurry

areas out of focus. What is more, the appearance of these defects concentrates

mainly on the border of image. As to Figure 7.1, its left part, issuing from the

center of original image, is almost free of defects, while its right part, which is

also the right border of the original image, bears important defects everywhere.

7.1.2 Aberrations

Since the problem is brought about by the change of lenses, we focus on the

defect which is named as optic aberrations. It explains the performance of real

optical system apart from the ideally predicted model. Strictly speaking, every

images bear the associated effects of aberration while the seriousness and the

types of these effects varies from lenses. Basically, the aberration results in either

distortion or blur (chromatically or mono-chromatically). Blur can be directly

observed by an enlargement of image details while the distortion is difficult to

be judged without a comparison with the corrected exemplar.

In case of blur, the accuracy of matched key-points of SIFT is no longer guaran-

teed. One of the possible problems is that the blur may worsen the redundancy

of interest points. It is a character of SIFT that it tends to build local descriptors

in a redundant way. A structure may be represented by several key-points in a

slight change of positions or scales [RDGM10]. This phenomenon exists but is not

serious in normal case. However, a blurry area may introduce many redundant

points while the standard RANSAC algorithm does not have the mechanism to

detect and discard them. As a result, both geometrical and chromatic alignment

will be affected since they make use of the matched key-points to calculate the

homography and the color transfer model.

In case of distortion, the transfer model between two images can not be expressed

as a homography. Because of distortion, each object looses its rigidity in images.

The original shapes will be modified in a way that straight lines become curves

and figures deform increasingly from the center to the borders. No object will

keep its form, not even to say the particular case of planar. If so, errors will

occur in our process during the generation and the application of homography,

which involves the RANSAC algorithm and the interpolation step of geometrical

alignment.

86 Chapter 7 Jitter Blur Correction

7.1.3 Our judgment

The factor of blur is first excluded. Our operation ensures the image quality

as we carried out the outdoor experiments under good lighting conditions with

high shutter speed and we used tripod for indoor photography. Through a direct

observation on enlarged details, images in most of the sequences remain sharp

everywhere. Blur occurs occasionally in small areas of very few images. There-

fore, even if the blur problem results in inaccuracy during alignment, it should

not have a general effect on the fusion results of every sequences.

In contrast, distortion is more suspicious as it is particularly associated with

zoom lenses (although it may also be found in prime lenses of high quality).

Further more, the presence of defects in fusion results which is severer on the

border than in the center is also in accordance with the characteristics of distor-

tion. The jitter blur defects may probably be explained as the fusion results of

several misaligned images that present the same content within a certain range

of neighborhood.

To justify our judgment, we derived the geometrically aligned images and counted

their errors of alignment. As predicted, these errors varying from one pixel up

to twenty pixels are rather important. The most significant errors appear in the

sequences where the angle of view between two images changes a lot. That is

consistent with the losing-rigidity prediction as these sequences require dramatic

transformations that introduce more obvious errors than other cases.

Moreover, we tried to correct the distortion with a commercial image processing

software DxO Optics Pro11 which takes into account the tabulated values of

aberration for each pair of lenses and camera. The errors decrease but can not

be totally removed. The fusion results become sharper but not good enough.

(see Figure 7.2)

Here, we come to a conclusion that the major source of defects is the misalign-

ment errors caused by the distortion of zoom lenses. It breaks down the hypothe-

sis on rigid transformation model between images. Therefore, our following work

will be dedicated to defect restoration.

7.2 Existing tools

Two applications are dedicated to alignment errors. Lens distortion correction

may be added as the post-processing to deal with original images, while patch

Chapter 7 Jitter Blur Correction 87

(a) Median image of original sequence

(b) Median image of sequence after distortion correction

(c) Enlarged detail of 7.2a (d) Enlarged detail of 7.2b

Figure 7.2: Comparison between the median filtering results of the
images with/without distortion correction. Figure 7.2a, along with its
enlarged detail Figure 7.2c, is the fusion result of the original sequence without
additional process. Figures 7.2b and 7.2d show the median result of the same
sequence while every images are geometrically corrected using the software
DxO Optics Pro11 before being put into use. The maximum error among the
aligned images reduces from 17 pixels to 6 pixels. The details of Figure 7.2d is
clearer than Figure 7.2c but it is still not sharp enough.

88 Chapter 7 Jitter Blur Correction

match would be a substitution of geometrical alignment. However, they turn out

to be either less effective or unfavorable to image fusion.

7.2.1 Lens distortion correction

The algorithms for lenses distortion correction have been studied for many years.

The general idea is to map the distorted coordinates onto the corrected grids.

Different models [Dua71, Len87, Fit01, CF05] have been raised ever since to

deal with this problem, while the most popular expressions are those given by

Fitzgibbon [Fit01]:

x = xc +
x̃− xc

1 + k1r2 + k2r4 + . . .
,

y = yc +
ỹ − yc

1 + k1r2 + k2r4 + . . .
.

Here (x̃, ỹ) and (x, y) are respectively the distorted and corrected coordinates,

(xc, yc) is the center of camera distortion model which is often represented by

image center, (k1, k2 . . .) are the distortion parameters.

The accuracy of parameter estimation has a direct impact on the effects of cor-

rection. Without camera information, most algorithms compute the parameters

by minimizing the distortion error of string-like objects in image [DF01]. The se-

lection of lines, either by manual identification [WQS09, AGS11] or by detection

algorithms [CGPV03, BD13], gives very few results at disposal. Consequently,

these methods tend to define less parameters in their model (2 for example),

their work can not correct the slight distortion in real image.

In contrast, the calibrated systems such as DxO Optics Pro11 make use of the

correction tables adapted to every pairs of camera and lenses. Their model ben-

efits from more parameters and targeted description of photography equipments.

We choose thus this software to reverse the effects of distortion. However, this

measure is not enough to solve totally our problem. Just as is shown in Fig-

ure 7.2, the fusion result ameliorates but bears still some defects.

7.2.2 Patch match

Patch match is a randomized method for searching approximate nearest-neighbor

matches between image patches in a very short time [BSFG09]. When we input

a reference image Iref and an image to be aligned Ialign, the algorithm estimates

Chapter 7 Jitter Blur Correction 89

the position of patch in Ialign which is most similar to the patch of Iref . A map

of patch coordinates, namely nearest-neighbor field [BSGF10], helps to edit a

new image using the patches of Ialign to replace the patches of Iref . In other

words, we apply Ialign as the source of patch to recreate Iref . If we replace the

homography transformation by patch match, there will be no alignment errors

between the aligned images.

Even so, this approach is not suitable for our application. In the mask region of

reference image, the aligned images will express either the same mask (if they

have found the similar source patches) or a random pattern. Both cases, losing

the truth of background, will lead to mistakes in fusion result.

7.3 Combination method

Since the existing methods can not satisfy our requirements, we turn to design

our own approach. Remark that the ideal geometrical theory is too delicate

to bear the associated effects of photography, we abandon directly the idea of

improving alignment process. Instead, we try to add an additional step to correct

the fusion results. This section goes through details of our basic idea, the method

pipeline as well as the adjustment of parameters.

7.3.1 General description

Under the condition of perfect alignment, the fusion result can be explained

as the restoration of one of the images in a sequence by removing its masks.

Therefore, we come up with an idea based on the mixture of the fusion result

and a selected image after alignment.

In fact, such two images have their qualities and imperfection which are just

complementary. The selected image presents perfectly most parts of the back-

ground except those blocked by the occlusions. On the contrary, the fusion result

bears defects caused by the alignment errors while it reveals the content behind

the masks. Our attempt takes advantage of both images by covering the content

of fusion result onto the masks of the selected image.

Still, there are two problems to be solved during the conception. First, the

aligned image must be selected rather than be picked randomly due to the ex-

istence of alignment errors. What is more, the comparison between two images

should take into account the defects in fusion result.

90 Chapter 7 Jitter Blur Correction

The process consists of three steps. First, we select an image that will be later

combined with the fusion result. Next, a difference map is set up to indicate the

mask areas in the chosen image. In the end, we redefine an associated result of

these two images according to the map. In the following, the selected image and

the fusion result of either median or clique method, mapped on the same grid

Ω, will be denoted with Is(x), If (x) : Ω→ {0, . . . , 255}3.

Before going into details, we declare the limitations of our design even though

they are extreme cases that rarely occur in our experiments:

a) Tiny masks such as spots or lines will be re-added into the result.

b) Defects located in the masks area will not be removed.

7.3.2 Pipeline

The procedures involve the choice of sharp image with masks, estimation of

blurry area and region replacement. Here is a detailed description and analysis

of the proposed approach.

Image selection

Strictly speaking, it is not an independent step in the program, while the choice

of image should be logically finished before all other process in the pipeline. The

selected image is required to have the least alignment difference from the fusion

result in order to avoid combining errors in final result.

In practice, the reference image, which is used as the template to align other

images in Chapter 3 and Chapter 4, holds the post of Is. A justification is that

the reference image can be considered as the average form of view in a sequence

if we regard the alignment errors as a stretch of view towards a random direction.

Its pixels are more often to be chosen during the fusion process and it turns out

to be the best choice for a combination with the fusion result.

Difference map

The difference map is a binary image of size Ω that distinguish the points of

masks from those of the background. Ideally, it can be obtained by filtering the

intensity difference between Is(x) and If (x) with a threshold. The area with a

distance exceeding the threshold is recorded as the mask in the map. However,

this simple procedure is not robust to the effects of alignment errors. Some

differences between two images, as for instance the misaligned contours, will be

classified as the masks.

Chapter 7 Jitter Blur Correction 91

Hence, it is necessary to somehow modify the images before calculating their

intensity distances. We have noticed that the pattern of defects looks like a fitful

repetition of the adjacent texture. In extreme cases, it is similar with the blurry

parts of image. These blur-like defects, along with the slight misalignment of

contours, can be covered up in images of low resolution. So our strategy is:

a) to degrade resolution of Is and If by low pass filtering;

b) to filter the intensity distances between low resolution images;

c) to create a difference map from the filtered results.

In order to get low resolution images, we convolve the original images with

Gaussian filter. This method is widely used to reduce the details while enhancing

the structure of images. The visual effect of this process is to produce images of

the same view acquired at furthest distance.

The filtering proceeds as a weight matrix namely Gaussian kernel passes through

the original image. The new value of each pixel is a weighted average of its neigh-

borhood. In practice, we use the discrete approximation of Gaussian function

(of the normal distribution) to build the Gaussian kernel. The weight values of

the kernel are calculated by:

Gσ(xd, yd) =
1

2πσ2
exp(−x2d + y2d

2σ2
),

where xd and yd are the horizontal and vertical pixel distances to the kernel

center, σ is the standard deviation of the Gaussian distribution. A larger σ

results in a flatter Gaussian distribution and further a more important blur. We

are thus allowed to adjust the blur level of the convolution results.

Definition 7.1. A blurred image Bσ : Ω → {0, . . . , 255}3 of its original image

I : Ω→ {0, . . . , 255}3 is the convolution result of I and the Gaussian kernel Gσ:

∀x ∈ Ω, Bσ(x) := (Gσ ∗ I)(x).

Having eliminated the influence of contours and defects, we calculate now the

intensity distance between blurred images Bσ,s and Bσ,f (see Definition 7.1).

With a carefully chosen σ, the area with great difference reveals the mask in

selected image and in fusion image (if there is any left). Since the images are

no longer sharp, these areas will be a little bit larger than the mask themselves.

Yet, we appreciate this imprecision because it ensures the total removal of masks

latter in the new defined result.

92 Chapter 7 Jitter Blur Correction

We estimate the difference of each pixel with a threshold ϵ > 0. The difference

map is defined by Definition 7.2.

Definition 7.2. Given some ϵ > 0, the difference map Mϵ : Ω → {0, 1} of two

blurred images Bσ,s and Bσ,f is a binary map whose value is defined by:

∀x ∈ Ω, Mϵ(x) :=







0 if ∥Bσ,s(x)−Bσ,f (x)∥2 < ϵ

1 otherwise.

Image generation

We generate in this step the new image without defects. Following the previous

step, the area with Mϵ = 0 conveys the identical views of Is and If despite of the

misalignment errors and the defects. Here, Is benefits from its spatial continuity

while If risks being imperfect as it consists of several images. So we apply the

pixel values of Is to define this area in the new image. On the contrary, If

explains better than Is the content behind masks. It is thus selected to complete

the area Mϵ = 1 of new image. Over all, the defect corrected image is created

by the following definition:

Definition 7.3. The corrected image Ic of If is a combination of If and its

reference image Is based on their difference map Mϵ.

∀x ∈ Ω, Ic(x) :=







Is(x) if Mϵ(x) = 0

If (x) if Mϵ(x) = 1.

It should be noted that we express the masks as the difference between Is and

If marked with Mϵ = 1. This expression is generally correct except when there

are masks left in If . These masks, marked with either Mϵ = 0 (if they share the

view of Is) or Mϵ = 1 (if they are issued from other images), will be remained

in Ic. That explains why we declare from the very beginning that our method

helps removing misalignment defects (either spatially or photometrically) rather

than improving mask removal efficiency.

7.3.3 Parameter selection

The standard deviation σ of Gaussian filter and the threshold ϵ of intensity

distance are two parameters to be decided during the process. At present, we

adjust manually these parameters according to the severity of misalignment in

Chapter 7 Jitter Blur Correction 93

different sequences. Nevertheless, it is necessary to start with reasonable values

and to predict the effects of their variation.

In a discrete application of Gaussian filter (command ’imgaussfilt’ in matlab),

the standard deviation decides not only the pattern of distribution but also the

size of kernel window. As for our case, the filter takes into account 95.45%

probability as near certainty with a window [−2σ, 2σ]2, centered at x ∈ Ω. It is

reasonable to set up a relationship between σ and the maximum misalignment

error δa as δa is related to the level of jitter blur defects. Within the error range,

pixels conveying repetitively the same view should be distributed large weights

during the blurry simulation. For a conservative estimate, we assume that pixels,

within the range of [−3δa, 3δa]2 centered at x ∈ Ω, are included in the window

and the start value of standard deviation is assigned to σ = 1.5 δa. As we try

to retain the accuracy of our estimation, the standard deviation is not desired

to be of great value. It will be slightly raised only if the blurred image is too

sensitive to the change of intensity threshold.

The start value of ϵ is chosen according to the statistic analysis on RMSE of

identical patches after chromatic alignment. It is often set to 15 which is the

maximum value we have got in all of our experiments. During the adjustment,

the threshold value varies only in a limited range after the Gaussian filter has

been chosen. On one hand, a small value is so sensitive that the defects and

misalignment errors may be classified as the masks. On the other, a big value

risks omitting some parts of the masks.

To get the optimal combination of two parameters, our strategy is to initialize

them at (σ, ϵ) = (1.5 δa, 15). With σ fixed, we adjust ϵ to get a better result: if

it exists defects of misalignment problem, ϵ should be increased; if masks of Is

remains in the result, ϵ should be reduced. When a slight change of ϵ leads to

a mutuality between the problem of defects and masks, it means the dynamic

range of ϵ is not enough and σ should be increased.

7.4 Experiments

We exploited the idea of Section 7.3 into two approaches. The first approach is

to use the pipeline directly by combining a selected image with the fusion result.

Further more, we modified the program in an iterative way in order that most

area of the final image (even the masks) benefits from spatial continuity. The

results of these methods are presented in this section.

94 Chapter 7 Jitter Blur Correction

7.4.1 Attempt on the pipeline

The key to success of our method is its ability to distinguish defects from masks.

If it works well, the defects should be removed while no more masks other than

those left in fusion results will be added into the output image.

Algorithm 10: Combination method

Data: Is, If , σ, ϵ
Result: Corrected image Ic
Calculate blurred image Bσ,s of Is and Bσ,f of If (see Definition 7.1);
Generate difference map Mϵ with Bσ,s and Bσ,f (see Definition 7.2);
Define an image Ic by combining Is and If according to Mϵ (see Definition 7.3);
return Ic

The pipeline in Section 7.3.2 can be expressed by Algorithm 10. We want to

make sure that this method can be implanted as a universal step of our whole

work. Therefore, it is required to be able to deal with every types of sequence in

our tests. These sequences are generally divided into four categories according

to the imperfections in their fusion results.

Type 1 Type 2 Type 3 Type 4

Defects × × √ √

Mask × √ × √

Table 7.1: Imperfection types in fusion results. There are respectively
two criteria: with/without defects; with/without masks.

As is shown in Table 7.1, the imperfection type depends on the appearance of

defects and masks in the fusion results. In our tests, the defects are mainly

caused by the distortion introduced by the zoom lenses (see Section 7.1). So

the option ’with’ and ’without’ defects corresponds to the sequences captured by

zoom lenses or by the nice prime lenses. While the remain of masks is related to

the density of masks in original sequence which has been discussed in Chapter 5

and Chapter 6. Thus, we classify our samples as:

1. captured by prime lenses + follow the hypotheses for pixel selection;

2. captured by prime lenses + break the hypotheses for pixel selection;

3. captured by zoom lenses + follow the hypotheses for pixel selection;

4. captured by zoom lenses + break the hypotheses for pixel selection.

Figures 7.3 - 7.6 give respectively one example for each sequence type. In these

examples, we choose the median images as fusion results and we select the refer-

ence images of each sequence to replace the areas with defects. These choices are

Chapter 7 Jitter Blur Correction 95

reasonable as no significant misalignment problem is found in the areas where

two images join together.

In terms of defects, Figures 7.3 and 7.4 show that our method will not add

extra problems onto the fusion results when the alignments are accurate. While

Figures 7.5 and 7.6 demonstrate the efficiency of our method in detecting and

removing defects since the jitter blur parts located in the mask-free areas of

selected images are replaced by the sharp view.

In terms of masks, Figure 7.4b (resp. Figure 7.6b) conveys visually the same

occlusion as Figure 7.4a (resp. Figure 7.6a). No additional mask issued from the

selected image is introduced into the final result.

What is more, the parameter setting discussed in Section 7.3.3 shows its conve-

nience in the tests. Table 7.2 lists the alignment errors of Figures 7.3-7.6 and

the parameters we set during the experiments. The applied values show no big

differences to their start values and the adjustment is always unidirectional with

σ increasing and with ϵ decreasing.

Alignment error Start values Applied values

Figure 7.3 2px (3, 15) (3, 13)

Figure 7.4 1px (1.5, 15) (2, 15)

Figure 7.5 17px (25.5, 15) (27, 15)

Figure 7.6 13px (19.5, 15) (21, 11)

Table 7.2: Parameter pairs (σ, ϵ) in Figures 7.3-7.6. Alignment error
δa indicates the maximum error between two images in the sequence. It is
obtained based on a cursory observation. Start values are (σ, ϵ) mentioned in
Section 7.3.3 which are set by σ = 1.5δa and ϵ = 15. Applied values are the
pairs of (σ, ϵ) deriving the best results in our experiments.

In all, the test results prove the efficiency and robustness of our method when

dealing with defects. The new created images benefit from the sharp view of

the selected image in most of the areas. Still, not all the defects are removed

in this approach. It is limited by the lack of information behind masks in the

selected image. Therefore, a further improvement focuses on a larger range of

replacement of fusion result by the original images which will be presented in

the next section.

96 Chapter 7 Jitter Blur Correction

(a) Original fusion result

(b) Corrected image

Figure 7.3: Defect-correction
Sequence of imperfection type 1: no defects, no masks.

(a) Original fusion result (b) Corrected image

Figure 7.4: Defect-correction
Sequence of imperfection type 2: no defects, with masks.

Chapter 7 Jitter Blur Correction 97

(a) Original fusion result

(b) Corrected image

(c) Enlarged detail of 7.5a (d) Enlarged detail of 7.5b

Figure 7.5: Defect-correction
Sequence of imperfection type 3: with defects, no masks.

98 Chapter 7 Jitter Blur Correction

(a) Original fusion result

(b) Corrected image

(c) Enlarged detail of 7.6a (d) Enlarged detail of 7.6b

Figure 7.6: Defect-correction
Sequence of imperfection type 4: with defects, with masks.

Chapter 7 Jitter Blur Correction 99

7.4.2 Attempt on the iteration of pipeline

Figure 7.7 and Figure 7.8 help to explain why we make a further attempt on the

iteration of our method. The red circles in Figure 7.7a and Figure 7.8a lighten

the areas where the defects left in the results of the no-iteration process. They

are located in the mask areas of the selected images whose content is filled in by

the fusion images. Consequently, the defects in these regions remain after the

process as is shown in Figure 7.7b and Figure 7.8b.

In order to remove these defects, it requires further combinations to other original

images conveying the background view. That inspires us to modify Algorithm 10

in an iterative way so that the fusion results can be replaced as much as possible

by others images in the sequence.

Algorithm 11: Iterative combination method

Data: {Ii} i ∈ {1, . . . , n}, If , σ, ϵ
Result: Corrected image Ic
Initialize S = {Ii}, Z = 1Ω, Ic = If ;
while Z is not equal to 0Ω do

Set Ntotal = 0, index = 0, Mϵ = 0Ω ;
for i = 1 to n do

/* Select an image for combination */

Generate Mϵ,i of S{i} and If according to Definitions 7.1 and 7.2;

Define combining area Mcombine,i(x) :=

{

0 Mϵ,i(x) = 0&&Z(x) = 1
1 else

if Ntotal < card {Mcombine,i(x) = 0} then
Ntotal = card {Mcombine,i(x) = 0}, index = i, Mϵ = Mcombine,i;

end

end
/* Combine the selected image to the present result */

Define new Ic with present Ic and S{index}based on Mϵ (see
Definition 7.3);
/* Update the image set and the area left */

Update Z(x) :=

{

0 Mϵ = 0
Z(x) else

and S = S \S{index};

if S = ∅ then
return Ic

end

end
return Ic

Algorithm 11 shows the detail of the iterative method. The basic pipeline and the

choice of parameters remain the same while the slight change lies in the selection

of image to be joined. Instead of deciding an image on purpose, we estimate

100 Chapter 7 Jitter Blur Correction

the common area between the aligned sequence and the fusion region remained

after the previous loop. We choose the image sharing the largest common area

with the fusion region for the next combination. It is reasonable as decision

because it allows us to use less images so as to reduce the mismatch risks along

the combining boundary.

The experimental results turns out to be satisfying. Generally speaking, the

iterative method gives similar results as the no-iterative method in most of the

area. What is more, its outputs present perfectly the details everywhere despite

of the masks in certain original images (see comparison between Figures 7.7b

and 7.7c, between Figures 7.8b and 7.8c). That makes it a better choice than

the method without loop.

Up to now, we achieve our goal that the region, apart from the remaining masks

in the fusion result, is replaced by the spatial continuous view of the original

aligned images. The defects caused by the geometrical alignment errors has

been removed by our approach. Since the method is shown to be robust in many

cases, it is therefore added as a general step of our whole project.

(a) Location of the enlarged detail in the selected image

(b) Detail without iteration (c) Detail after iteration

Figure 7.7: Comparison between outputs of Algorithms 10 and 11

Chapter 7 Jitter Blur Correction 101

(a) Location of the enlarged detail in the selected image

(b) Detail without iteration (c) Detail after iteration

Figure 7.8: Comparison between outputs of Algorithms 10 and 11.
Without iteration, obvious defects can be seen on the purple and green areas of
result which are blocked by the mask in original image. The iterative approach
provides a better result with clearer details.

Part III

Experiments

103

Chapter 8

Experimental Performances

In this chapter, we provide extensive experiments. They serve as a more in

depth evaluation on methods compared with the experiments at the end of each

previous chapter, which help basically to explain how we decide steps in algo-

rithms. We set up here our own data set and give a general estimation on the

performances of each step in the pipeline.

We start by presenting the data sets, then we go into details on experiments. The

objective is to evaluate the robustness of approaches that have been presented in

the previous chapters under different conditions. This chapter will end up with

a summary of our design.

8.1 Data set

Geometrical alignment errors and contrast differences are very important un-

der practical field conditions and the whole pipeline is deployed with the aim

of eliminating their effects. Data selection should therefore account for these

variations.

In order to fully test our algorithm, the data set should contain sequences of

various qualities. According to the discussion in previous chapters, geometrical

alignment errors and contrast differences are related respectively to the optical

distortion of lenses and the color adjustment inside cameras. Hence, we choose

three combinations of equipment in our experiments, respectively producing im-

ages of high, intermediary or poor quality.

105

106 Chapter 8 Experimental Performances

Sequence Camera Lenses Model
Parameters

Focal Aperture Speed ISO

Mario Canon EOS 80D Sigma 30mm F1.4 DC HSM 30mm F11.0 1/80s 160

Dance Canon EOS 80D Sigma 30mm F1.4 DC HSM 30mm F10.0 1/160s 100

Bakery Canon EOS 80D Sigma 30mm F1.4 DC HSM 30mm F6.3 1/100s 160

Leopard Canon EOS 80D Sigma 30mm F1.4 DC HSM 30mm F10.0 1/125s 100

Woman Canon EOS 80D Sigma 30mm F1.4 DC HSM 30mm F10.0 1/100s 100

Monster Canon EOS 80D
Canon EF S17-55mm F2.8

IS USM
17mm F8.0 1/125s 640

Cartoon
Canon EOS 7D

Mark II
Canon EF S17-55mm F2.8

IS USM
37mm F6.3 1/80s 400

Inversion
Canon EOS 7D

Mark II
Canon EF S17-50mm F2.8

EX DC OS HSM
21mm F7.1 1/125s 250

Orient
Canon EOS 7D

Mark II
Canon EF S17-50mm F2.8

EX DC OS HSM
35mm F9.0 1/200s 100

Snoopy
Canon EOS 7D

Mark II
Canon EF S17-50mm F2.8

EX DC OS HSM
38mm F7.1 1/100s 100

Babs IPhone 4S IPhone 4S Lens 4.3mm F2.4 Auto Auto

Garfield IPhone 4S IPhone 4S Lens 4.3mm F2.4 Auto Auto

Banc IPhone 4S IPhone 4S Lens 4.3mm F2.4 Auto Auto

Mexican IPhone 4S IPhone 4S Lens 4.3mm F2.4 Auto Auto

Planet IPhone 4S IPhone 4S Lens 4.3mm F2.4 Auto Auto

Syn 1 – – – – – –

Syn 2 – – – – – –

Syn 3 – – – – – –

Syn 4 – – – – – –

Syn 5 – – – – – –

Table 8.1: Photographic information. There are in total twenty sequences
in our data set. Each sequence consists of 3, 4 or 5 images. They are divided
into four groups according to the photographic equipments. The first five se-
quences are captured by a prime lens with every parameters fixed. The second
five sequences are obtained using a zoom lenses of poor optical quality. The
third group of sources are smart phone images whose contrasts are automat-
ically adjusted. The last five series are synthetic sequences with background
covered randomly by image patches as masks. Gaussian noise is then added
onto these images.

Chapter 8 Experimental Performances 107

Images with less errors are taken by good lenses of fixed focal length. (We

call it hereinafter the prime lenses.) In our tests, we choose Sigma 30mm F1.4

DC HSM combined with a Canon EOS 80D camera to take a group of high-

quality sequences. This combination, along with manually fixed parameters,

is considered to accurately record the scene with little geometric or chromatic

distortions.

The second choice is to employ lenses whose focal lengths are adjustable (zoom

lenses). Images captured by these lenses may not be as good as those of the

first group since zoom of lenses may introduce distortion problems. The lenses

we use in experiments are Canon EF S17-55mm F2.8 IS USM and Canon EF

S17-50mm F2.8 EX DC OS HSM.

The most uncontrollable case comes from the use of embodied lenses of smart

phone with automatic adjustment on focusing and lighting conditions. Serious

contrast differences and distortion problems may be introduced to images which

challenge greatly the performance of our algorithm. We select five sequences

issued from IPhone 4S that are thought to be of limited quality.

In addition, we create five synthetic sequences for quantitative evaluation of

fusion methods in order to avoid the effects of alignment errors on the results.

Each image is made of a background scene covered randomly by occlusions with

Gaussian noise (σ = 5) independently distributed in RGB channels. In all, Table

8.1 shows the details of our data source.

Besides, DxO Optics Pro11 is supposed to have a positive effect on the correction

of distortion (see Chapter 7). It is also instructive to be aware of the perfor-

mance of our algorithm when dealing with images exported from such image

processing software. Therefore, each real sequence provides a new sequence with

pre-processing of DxO geometric correction. As a whole, our data set consists

of 6 kinds of real sequences and the synthetic sequences.

Prime
Lenses

Zoom
Lenses

Smart
Phone

Synthetic

DxO
correction

✓/✗ ✓/✗ ✓/✗ ✗

Table 8.2: Seven kinds of sequences in data set. Sequences captured
by prime lenses, zoom lenses and smart phone will be pre-proceeded by DxO
Optics Pro11 to eliminate the geometric distortion. Along with three kinds
of original groups and the synthetic series, they are taken as new kinds of
sequences in our tests.

108 Chapter 8 Experimental Performances

8.2 Summary of parameters

Table 8.3 summarizes all the parameters to be adjusted during the process and

their values used in our experiments. These values are decided based on either

their experimental performances (iiter, ϵg, ϵc, σ), or on the evaluation of results

in previous steps (σT , ϵ).

Geometric

Alignment

relative threshold between nearest and second nearest

neighbors in SIFT matching tmatch = 15;

RANSAC number of iteration: iiter = 10000;

maximum residual geometric error: ϵg = 1.

Chromatic

Adjustment
maximum residual chromatic error per channel: ϵc = 0.01.

Meaningful

Clique
maximum variance of vectors in clique: σT = 15.

Combination

Method

standard deviation of the Gaussian distribution: σ = 1.5ϵa;

(ϵa is the size of blur-like defects.)

maximum distance of similar blurred vector: ϵ = 15.

Table 8.3: Parameter values used during tests. The explication of
parameter choices are found in Chapter 3 Section 3.3 for tmatch ,iiter, ϵg; in
Chapter 4 Section 4.4.1 for ϵc; in Chapter 6 Section 6.3.2 for σT ; in Chapter 7
Section 7.3.3 for σ, ϵ.

8.3 Geometrical alignment

To visually examine the geometric alignment errors, we make mosaics of aligned

images in sequences. They consist of patches issued from two images which are

alternately arranged. If errors exist among aligned images, there will be twisted

shapes in mosaic results. We test on real sequences, with or without DxO pre-

processing, captured by prime lenses, zoom lenses and lenses of smart phone (six

types of real sequences in Table 8.2).

Results show that the degree of distortion varies from lenses types as we have

predicted. It exists a big difference of alignment errors based on the photography

equipments. DxO pre-processing plays more or less a positive role to correct

distortion while it is not enough to deal with this problem independently for the

sake of an accurate pixel selection later in fusion step.

Chapter 8 Experimental Performances 109

(a) mosaic of original images (b) mosaic of dxo images

(c) Zoom of original mosaic (d) Zoom of dxo mosaic

Figure 8.1: Mosaic - Prime lenses sequence (Dance). The mosaic of
original images has no obvious geometric distortion. Lines of patches connect
smoothly even in the partial enlarged area marked by red square. It exists no
much difference with/without DxO pre-processing.

Images captured by prime lenses are of good quality. Without any pre-processing,

their aligned results superpose already perfectly one to another. Tests show

similar results as what is presented in Chapter 3. We observed that most of the

errors in original sequences are below one pixel. They are acceptable for use

in further steps. The mosaic images, as is shown in the example of Figure 8.1,

have no obvious distortion. DxO correction makes no big difference in terms of

homography accuracy and its use here is therefore optional.

110 Chapter 8 Experimental Performances

(a) mosaic of original images

(b) mosaic of dxo images

(c) Zoom of original mosaic (d) Zoom of dxo mosaic

Figure 8.2: Mosaic - Zoom lenses sequence (Monster). Distortion
becomes more and more serious from the center to the border of images. DxO
corrected result is much better than original one while small errors exist still.

Zoom lenses introduce more geometric distortion to sequences. In Figure 8.2,

mosaic in the center presents well the connection of texture in neighboring area.

However, distortion is detected on the borders as dislocation of patches appears

in the mosaic of two images. The DxO pre-processing corrects efficiently the

errors as can be seen in Figure 8.2b, when compared with Figure 8.2a. Still,

Chapter 8 Experimental Performances 111

small errors of three to four pixels remain among corrected images. These errors

may result in tiny blur-like profile of objects in fusion results.

(a) mosaic of original images

(b) mosaic of dxo images

(c) Zoom of original mosaic (d) Zoom of dxo mosaic

Figure 8.3: Mosaic - Smart phone sequence (Babs). Distortion exists
in most range of the image. Serious errors result in a repeated expression of
scene in close proximity. Letters in the enlarged Figure 8.3c cannot be clearly
distinguished. DxO corrected result presents better the scene while errors are
still evident on the borders. (see Figure 8.3d)

Distortion is so severe in sequences captured by smart phone that some align-

ment errors reach more than fifteen pixels and its effects spread even to the

quasi-center range of image (see example in Figure 8.3). In this case, the DxO

pre-processing provides a great improvement on these images which restore the

112 Chapter 8 Experimental Performances

correct presentation of patches in their center area. However, it does not manage

to compensate the important deformation on the borders where dislocation of

patches is still obvious as is shown by Figures 8.3b and 8.3d.

8.4 Photometric correction

We estimate our chromatic adjustment methods in this section. In Chapter 4,

we have found that sRGB model performs somehow randomly and brings about

some extreme failure cases. Here, we concentrate on the performance of linear

and quadratic models under different photography conditions. Tables 8.4 and

8.5 show the RMSE results for each sequence that are computed between the

matched pixel vectors in reference image and any of another image in sequence.

The release of manual control on parameters introduce more chromatic differ-

ences to images as the original RMSEs of automatic adjusted sequences (smart

phone) are generally much bigger than that of sequences with parameters fixed

(prime/zoom lenses). While in any cases, linear and quadratic adjustment have

nearly all the time positive effects on reducing contrast differences. The assump-

tion of fixed camera parameters that we set up during model conception seems

not to be an essential condition to the success of our adjustment. It may be

released in later application.

Two kinds of approximation provide similar results. However, quadratic model

performs better as it never gives updated RMSEs bigger than their original

values. Linear model, even though its errors are always negligible (for example

0.001, 0.002), is less robust. We confirm therefore our judgment in Chapter 4

that quadratic approximation would be the best choice for chromatic alignment.

The DxO pre-processing does not have much impact on this step since there is no

obvious trend of change between Table 8.4 and Table 8.5. A possible explication

is that SIFT matched points are robust to deformation and distortion correction

may only result in a change of sample choices.

Chapter 8 Experimental Performances 113

Original Linear Quadratic

Mario

1-2 0.022 0.018 0.019

1-3 0.019 0.019 0.019

1-4 0.019 0.018 0.019

1-5 0.024 0.020 0.021

Dance
1-2 0.040 0.026 0.026

1-3 0.044 0.026 0.027

Bakery

1-2 0.021 0.021 0.021

1-3 0.028 0.021 0.024

1-4 0.024 0.025 0.024

1-5 0.034 0.024 0.025

Leopard

1-2 0.036 0.026 0.027

1-3 0.034 0.033 0.031

1-4 0.037 0.028 0.028

1-5 0.047 0.083 0.039

Woman

1-2 0.015 0.013 0.013

1-3 0.017 0.014 0.014

1-4 0.034 0.014 0.014

1-5 0.024 0.014 0.014

Cartoon

1-2 0.022 0.022 0.021

1-3 0.022 0.022 0.022

1-4 0.047 0.024 0.023

1-5 0.061 0.025 0.023

Inversion

1-2 0.024 0.023 0.023

1-3 0.031 0.032 0.030

1-4 0.040 0.037 0.037

1-5 0.036 0.034 0.033

Orient

1-2 0.025 0.022 0.022

1-3 0.021 0.017 0.018

1-4 0.023 0.020 0.019

Monster

1-2 0.041 0.041 0.038

1-3 0.044 0.038 0.036

1-4 0.052 0.039 0.038

1-5 0.030 0.030 0.030

Table 8.4 – Continued on next page

114 Chapter 8 Experimental Performances

Continued from previous page

Original Linear Quadratic

Snoopy

1-2 0.022 0.018 0.019

1-3 0.020 0.014 0.015

1-4 0.025 0.019 0.019

1-5 0.034 0.017 0.017

Babs

1-2 0.066 0.028 0.026

1-3 0.043 0.027 0.028

1-4 0.076 0.028 0.027

Planet

1-2 0.086 0.073 0.060

1-3 0.053 0.054 0.050

1-4 0.090 0.053 0.052

1-5 0.072 0.056 0.054

Garfield

1-2 0.247 0.072 0.063

1-3 0.042 0.035 0.036

1-4 0.039 0.030 0.032

Banc
1-2 0.035 0.036 0.035

1-3 0.208 0.037 0.038

Mexican

1-2 0.099 0.033 0.038

1-3 0.106 0.039 0.036

1-4 0.087 0.048 0.041

1-5 0.345 0.043 0.054

Table 8.4: RMSE of matched pixels in original sequences. 1− i means
evaluations are carried out between the reference image (1 st image) and an-
other image (i th image) in sequence. Values are computed based on the nor-
malized RGB vectors whose range has been transformed from {1, . . . 255}3 to
[0, 1]3. Therefore, differences per channel under 1/255 = 0.004 can be ne-
glected. Similarly, differences of RMSE which are related to vector-distances
are negligible under

√
3/255 = 0.007. The bold values gives are smallest RMSE

of each row. The red values marks the values bigger than original RMSE.

Chapter 8 Experimental Performances 115

Original Linear Quadratic

Mario

1-2 0.022 0.018 0.018

1-3 0.019 0.020 0.019

1-4 0.020 0.020 0.020

1-5 0.024 0.019 0.020

Dance
1-2 0.038 0.025 0.025

1-3 0.043 0.026 0.026

Bakery

1-2 0.021 0.021 0.021

1-3 0.028 0.021 0.021

1-4 0.024 0.025 0.024

1-5 0.034 0.024 0.025

Leopard

1-2 0.036 0.027 0.027

1-3 0.033 0.030 0.031

1-4 0.035 0.028 0.028

1-5 0.047 0.043 0.043

Woman

1-2 0.016 0.014 0.014

1-3 0.017 0.014 0.015

1-4 0.034 0.013 0.013

1-5 0.025 0.016 0.015

Cartoon

1-2 0.020 0.021 0.020

1-3 0.021 0.022 0.020

1-4 0.046 0.023 0.022

1-5 0.061 0.025 0.025

Inversion

1-2 0.023 0.021 0.021

1-3 0.033 0.032 0.031

1-4 0.035 0.034 0.033

1-5 0.034 0.027 0.027

Orient

1-2 0.064 0.047 0.047

1-3 0.062 0.048 0.048

1-4 0.044 0.041 0.038

Monster

1-2 0.077 0.052 0.059

1-3 0.074 0.047 0.045

1-4 0.068 0.041 0.042

1-5 0.057 0.041 0.039

Table 8.5 – Continued on next page

116 Chapter 8 Experimental Performances

Continued from previous page

Original Linear Quadratic

Snoopy

1-2 0.047 0.030 0.029

1-3 0.044 0.021 0.020

1-4 0.080 0.038 0.038

1-5 0.068 0.019 0.019

Babs

1-2 0.072 0.028 0.027

1-3 0.042 0.027 0.026

1-4 0.077 0.027 0.027

Planet

1-2 0.120 0.104 0.083

1-3 0.067 0.061 0.056

1-4 0.100 0.074 0.070

1-5 0.094 0.074 0.072

Garfield

1-2 0.213 0.062 0.057

1-3 0.057 0.064 0.051

1-4 0.060 0.038 0.039

Banc
1-2 0.036 0.035 0.036

1-3 0.206 0.039 0.038

Mexican

1-2 0.094 0.034 0.037

1-3 0.107 0.034 0.034

1-4 0.085 0.046 0.045

1-5 0.342 0.051 0.044

Table 8.5: RMSE of matched pixels in DxO sequences. This table
is organized as Table 8.4. The sequences are pre-proceeded with DxO Optics
Pro11. Quadratic model performs the best with no obvious mistakes.

Chapter 8 Experimental Performances 117

8.5 Image fusion

We compare four fusion methods in this section which are: meaningful clique

(as is introduced in Chapter 6), geometric and degenerated medians (later called

median 1 and 2) in Chapter 5 and RPCA, mentioned in Chapter 2. Synthetic

sequences, benefiting from accurate alignment and reference without occlusion,

are used to evaluate the error rates in fusion results. Real sequences, on the other

hand, show the performance of different approaches in real field conditions.

Error rates in Table 8.6 give a general estimation on the ability of four methods

to select the background. Apart from the badly evaluation on RPCA, probably

due to the change of contrast, nearly all the worst cases come from the results

of median 2. It is reasonable as median 2 is the only method depending on the

analysis on intensity rather than RGB values. Degeneration leads to a loss of

information. Median 1 shows high robustness when the background pixels exceed

half of the total number (values in columns 4 and 5 are all zeros). However, its

error rates increase significantly when the assumption on pixel number is no

longer true. Its application is therefore limited.

Meaningful clique gives the best results based on its robustness under different

conditions. Its error rates in columns 4 and 5 are nearly negligible, as for example,

the number of wrongly-selected pixels in Seq.1 columns 4 equals approximately

to: 60000×0.0029%=1.74. More importantly, it provides rather accurate choices

until the case where only one pixel belongs to background and the minimum

clique can not be set up.

In the tests on real sequences, the effects of geometric alignment errors involves

in image resources which may affect fusion results by adding blur-like defects

along contours of object. Hence, we focus here not only on the size of remaining

masks, but also on the blurry defects of texture. In Figures 8.4, 8.5 and 8.6, we

mark remaining masks with blue squares and we indicate areas to be enlarged

for texture observation by red squares.

Figure 8.4 shows typical fusion results of prime lenses sequences. Meaning-

ful clique method gives images with the least masks and the outputs of other

methods are more or less the same. More concretely, RPCA performs some-

times better sometimes worse than median 1 while median 2 is always the worst.

There is no obvious blur-like defect in results since aligned images do not leave

much errors in previous steps. The enlarged areas of sequence with/without DxO

pre-processing present hence the similar textures.

118 Chapter 8 Experimental Performances

For zoom lenses sequences, both remaining masks and blur-like defects should be

taken into consideration. As is shown by Figure 8.5, meaningful clique method

leave again the least amount of masks in its results. Besides, we enlarge an area

on the border of original image where there exists geometric errors of about 2

or 3 pixels. The chosen example represents a case where alignment errors are

small but not negligible. Textures appear to be blurred due to a number of

wrongly-selected pixels on contours (defects).

DxO pre-processing, which corrects efficiently errors of zoom lenses sequences,

impacts positively the results of pixel selection. Enlarged details of DxO sequence

(Figures 8.5j, 8.5l, 8.5n, 8.5p) are much sharper than those of original sequence

(Figures 8.5i, 8.5k, 8.5m, 8.5o) for all fusion methods. There are still some tiny

errors left along borders, nevertheless, applying DxO for distortion correction is

an available way to ameliorate fusion quality of these sequences.

The performance differences of the four algorithms are more obvious in smart

phone results with large error size. We select the sequence ’Mexican’ as an

example which is shown in Figure 8.6. This time, meaningful clique and RPCA

leave similar amount of masks which is less than that of two median results.

In enlarged area, defects are presented as gray or yellow shade along brim of

hat marked by red circles. Different from tiny blur in previous Figure 8.5, it is

possible to distinguish the pixel selection ability of each approach in existence of

alignment errors.

Result of meaningful clique (Figure 8.6c) has the least defects, RPCA and median

1 results (Figures 8.6e and 8.6k) show similar range of gray area. Median 2 gives

the worst result where it select even the yellow elements coming from a wrongly

stretch of hat. These differences can be explained theoretically as meaningful

cliques depend on the compact of elements while median selection is based on

the order of elements. When the alignment errors account for more than half of

the data set, median filter make more mistakes than meaningful clique method.

RPCA refers to a decomposition of compact component in every elements (no

element is discarded as meaningful clique). Logically, its performance should be

between the above methods.

With DxO pre-processing, we notice no big change in terms of masks remaining

in results. But the correction of aligned image indeed improves image quality as

defects are reduced in enlarged area. Overall, meaningful clique method is our

best choice for image fusion. It is consistently better to pre-proceed images with

DxO correction for the sake of accuracy results.

Chapter 8 Experimental Performances 119

1 2 3 4 5 Total

Syn.1

(1e3) (1e4) (4e4) (6e4) (2e5) (3e5)

Clique 94.7 10.5 8.4e-2 2.9e-3 0.0 9.0e-1

Median 1 97.4 61.8 2.0e-2 0.0 0.0 3.1

Median 2 91.3 67.7 1.6 5.6e-1 0.0 3.6

RPCA 92.7 71.9 5.3e-2 4.5e-3 2.7e-3 3.5

Syn.2

(0) (1e3) (2e4) (5e4) (5e5) (6e5)

Clique – 47.6 8.5e-2 5.5e-3 0.0 8.9e-2

Median 1 – 80.3 1.7e-2 0.0 0.0 1.4e-1

Median 2 – 93.7 1.1 3.8e-1 0.0 2.4e-1

RPCA – 89.3 0.0 0.0 0.0 1.6e-1

Syn.3

(0) (7e3) (3e4) (7e4) (8e5) (9e5)

Clique – 6.7 1.4e-2 0.0 0.0 5.3e-2

Median 1 – 63.3 5.9e-3 0.0 0.0 4.9e-1

Median 2 – 84.3 1.5 5.2e-1 0.0 7.6e-1

RPCA – 94.7 53.7 59.3 51.3 52.4

Syn.4

(1) (1e4) (2e4) (9e4) (8e5) (9e5)

Clique 100 1.0 1.2e-2 1.1e-3 0.0 1.5e-2

Median 1 100 52.9 0.0 0.0 0.0 7.6e-1

Median 2 0.0 63.2 2.1 6.9e-1 0.0 1.0

RPCA 0.0 83.6 41.8 23.8 18.4 20.4

Syn.5

(2e3) (1e4) (5e4) (1e5) (1e5) (3e5)

Clique 99.4 8.2 4.4e-2 0.0 0.0 1.1

Median 1 99.6 85.8 3.5e-3 0.0 0.0 5.4

Median 2 99.5 90.2 1.3 5.6e-1 0.0 6.1

RPCA 99.6 95.3 5.0e-1 3.7e-2 3.0e-2 6.0

Table 8.6: Error rates in percentage. Computing method of this table has
been presented in Chapter 6 Section 6.4.1. Its first row indicates the numbers
of background-observed time. Values in parentheses refer to the quantity of
pixels. The lowest rate in each column are marked in bold letter. The worst
cases are marked in blue. Since the contrast of RPCA results are changed,
their error rates are not taken into account.

120 Chapter 8 Experimental Performances

(a) Meaningful clique: original sequence (b) Meaningful clique: DxO sequence

(c) RPCA: original sequence (d) RPCA: DxO sequence

(e) Median 1: original sequence (f) Median 1: DxO sequence

(g) Median 2: original sequence (h) Median 2: DxO sequence

(i) Zoom of 8.4a (j) Zoom of 8.4b (k) Zoom of 8.4c (l) Zoom of 8.4d

(m) Zoom of 8.4e (n) Zoom of 8.4f (o) Zoom of 8.4g (p) Zoom of 8.4h

Figure 8.4: Fusion – Prime lenses sequence (Leopard).

Chapter 8 Experimental Performances 121

(a) Meaningful clique: original sequence (b) Meaningful clique: DxO sequence

(c) RPCA: original sequence (d) RPCA: DxO sequence

(e) Median 1: original sequence (f) Median1: DxO sequence

122 Chapter 8 Experimental Performances

(g) Median 2: original sequence (h) Median 2: DxO sequence

(i) Zoom of 8.5a (j) Zoom of 8.5b (k) Zoom of 8.5c (l) Zoom of 8.5d

(m) Zoom of 8.5e (n) Zoom of 8.5f (o) Zoom of 8.5g (p) Zoom of 8.5h

Figure 8.5: Fusion – Zoom lenses sequence (Orient).

Chapter 8 Experimental Performances 123

(a) Meaningful clique: original sequence

(b) Meaningful clique: DxO sequence

(c) Zoom of 8.6a (d) Zoom of 8.6b (e) Zoom of 8.6g (f) Zoom of 8.6h

(g) RPCA: original sequence

(h) RPCA: DxO sequence

124 Chapter 8 Experimental Performances

(i) Median 1: original sequence

(j) Median 1: DxO sequence

(k) Zoom of 8.6i (l) Zoom of 8.6j (m) Zoom of 8.6o (n) Zoom of 8.6p

(o) Median 2: original sequence

(p) Median 2: DxO sequence

Figure 8.6: Fusion – Smart phone sequence (Mexican).

Chapter 8 Experimental Performances 125

8.6 Combination method

Finally, pixels in fusion results can be re-selected in order to remove totally the

blur-like defects. Prime lenses results, usually accurate enough, show no big

difference before/after this step. The enlarged patches in Figure 8.7 present very

similar appearances without any newly introduced defects.

For results of zoom lenses sequences, some blur-like defects remain from previous

step, as in Figure 8.8, the hand of boy is not clear enough in both zoom of original

and DxO proceeded results. Our Gaussian strategy replaces this area by a more

complete expression in original image, its results present textures with clear

details even without using the DxO correction (see Figures 8.8d, 8.8h).

In smart phone sequences, defects are more serious as the bench and shoe loses

their texture in Figures 8.9b and 8.9f. These patterns are restored by applying

our method as is shown in Figures 8.9d and 8.9h. Again, sequences with/with-

out DxO pre-processing present all perfect details. Because difference of fusion

results lies in the size of defects, which will not affect the replacement of patches.

As a whole, our combination method appears as a simple yet very robust and

efficient method to remove the blur-like defects left in fusion results.

8.7 Conclusion

To summarize, we propose a pipeline for mask removal consisting of four major

steps which are geometric alignment, chromatic adjustment, image fusion and

defect removal. It is able to deal with general cases where image sequences of nice

or limited quality are taken with manually or automatically adjusted parameters.

Best choices of each step are respectively homography transformation, quadratic

approximation, meaningful clique method and combination method.

Quality of image determines the level of distortion which is major source of errors

in homography transformation and pixel selection. DxO pre-processing amelio-

rate but can not eliminate this phenomenon when errors are rather important.

Fortunately, the last step of our method enhances the robustness of pipeline and

ensures result accuracy. Therefore, our approach has the ability to manage dif-

ferent conditions ranging from sequences captured by nice prime lenses to smart

phone images without any intentional control. The use of other image processing

software is not indispensable thanks to the efficient fallback offered by our defect

removal strategy.

126 Chapter 8 Experimental Performances

(a) Original fusion

(b) Original fusion after Gaussian processing

(c) Zoom of 8.7a (d) Zoom of 8.7b (e) Zoom of 8.7g (f) Zoom of 8.7h

(g) DxO fusion

(h) DxO fusion after Gaussian processing

Figure 8.7: Defect removal – Prime lenses sequence (Mario): maxi-
mum alignment errors are below 1 pixel, sigma of Gaussian filter is set at 1.
The enlarged area is marked by red square in each image.

Chapter 8 Experimental Performances 127

(a) Original fusion

(b) Zoom of 8.8a

(c) Original fusion after Gaussian processing

(d) Zoom of 8.8c

(e) DxO fusion

(f) Zoom of 8.8e

(g) DxO fusion after Gaussian processing

(h) Zoom of 8.8g

Figure 8.8: Defect removal – Zoom lenses sequence (Inversion): max-
imum alignment errors are 4 to 5 pixels, sigma of Gaussian filter is set at 7.

128 Chapter 8 Experimental Performances

(a) Original fusion (b) Zoom of 8.9a

(c) Original fusion after Gaussian processing (d) Zoom of 8.9c

(e) DxO fusion (f) Zoom of 8.9e

(g) DxO fusion after Gaussian processing (h) Zoom of 8.9g

Figure 8.9: Defect removal – Smart phone sequence (Banc): maximum
alignment errors are about 16 pixels, sigma of Gaussian filter is set at 25.

Chapter 9

Conclusion

Here we come to the conclusion of our work, in which we have addressed several

problems to perform blind mask removal in digital images. We have focused on

the multi-image problems so as to get enough information about the background

(in particular avoiding inpainting techniques). Several problems appearing in

real field conditions have been fixed by our algorithms. These solutions can be

organized into three points:

1. Adjustment of background contrast and color differences.

The differences can be effectively reduced by robustly estimated

quadratic mappings on every RGB channels. The parameters

of the mapping functions are computed with matched pixels is-

sued from a feature extraction method (SIFT in our case) and

then selected by a RANSAC strategy. This approach avoids the

classical limitations of classical histogram adjustment methods

in the case where the contents is changing a lot between images.

2. Design of a pixel selection method with lenient assump-

tions. We suppose that pixels originating from different images

with the same content form a dense cloud of points in the RGB

space. The cloud corresponding to the background is supposed

to be the largest one and is picked out by a recursive algorithm

searching for a dense clique. This method is proved to be more

effective for background reconstruction than both a color median

method and a robust PCA method.

3. Elimination of fusion defects caused by geometrical align-

ment errors in the initial sequence. The areas with blur-like

defects are replaced by sharp patches of aligned images after a

129

130 Chapter 9 Conclusion

similarity estimation. The estimation relies on a comparison be-

tween a threshold and the distance of pixels from images after

a Gaussian filtering. This fallback solution permits us to re-

lax many requirements ensuring that images can be perfectly

aligned.

As a syntheses of the discussion in previous chapters, we propose a pipeline

for mask removal shown by Figure 9.1. It is an automatic and fast method

that releases the constraints in many previous works on the size and shape of

occlusions. The missing areas are filled in with factual scene. Further more,

although we have listed many assumptions in each chapter to ensure theoretically

the performance of our design, the whole process shows its robustness when we

release some of the constraints during the tests. Finally, the context can be

generalized as:

1. The background to restore is a planar or a 3D view if it is cap-

tured with the optical center fixed.

2. Images in the sequence (typically 5) reveal the entire target scene

several times depending on the combined motion of the photog-

rapher and the occlusions.

3. The angles of view do not change too much among images.

4. Cameras with manual or automatic sets are all available as long

as the surface is quasi-Lambertian.

5. Images can be captured at different moments as long as there is

no big change of lighting conditions.

Experiments in Chapter 8 confirms the good performance of our design. From

another perspective, the assumptions on the context restrict the applying range

of our approach. Therefore, the future work may focus on releasing limitations

such as:

1. The target can not be a general 3D object.

2. No glossy or specular reflection should be found on the surface.

3. Masks should not be of similar color and be the predominant

content in the stack of images.

To deal with the first constraint, the geometric alignment should be modified to a

certain extent. If the 3D area is small, it is possible to keep actual steps and add

patch-match [BSFG09, BSGF10] to ameliorate 3D region in aligned results. If the

whole target is a complicated view, then the homography model should be totally

Chapter 9 Conclusion 131

Figure 9.1: Pipeline for mask removal. It consists of four steps to restore
the plane background from a sequence of images taken at different camera
positions. In case of perfect shooting conditions, some of the steps can be
omitted.

abandoned and we may account on 3D reconstruction in stereo-vision [JM15] or

a more sophisticated application, bundle adjustment [HZ03, Mic18, TMHF99].

Many previous works have been done on reflection removal [LZW03, LZW04,

BY08, SKG+12, GCM14]. These are of particular interest. Some of them set

up their models with the motion information obtained by optical flow [SAA00,

XRLF15] or by SIFT flow [LB13]. We may learn from these methods to modify

either geometric alignment or image fusion step in our pipeline so as to release

the second constraint.

In the case where the mask is very large and do not present color changes, tem-

poral filtering is not enough and spatial information of patch is required. A

possible solution is to generalize the meaningful clique approach to a spatio-

temporal filtering method. Otherwise, the optical flow may help to distinguish

the background and masks while it requires the images in sequence to be con-

tinuous frames in the video [MLY12, HS81].

Over all, we have discussed in detail the essential process for multi-image mask

removal in this thesis. The final pipeline we proposed is simple and practical,

but some assumptions in this design restrict its use to a certain extent. These

limits require a future work on this topic that may relax the hypothesis in some

steps of the pipeline.

Source Code

Geometric alignment and photometric adjustment (main.cpp)

#include <opencv2/opencv.hpp >

#include "opencv2/nonfree/nonfree.hpp"

#include <vector >

#include <sys/types.h>

#include <dirent.h>

#include <algorithm >

///

/// Geometric and photometric adjustment: align images in the sequence

/// @argv [1], directory of the folder of original images

///

int main(int , char *argv [])

{

std::vector < cv::Mat > img_res , img_geo , homo_inliers;

DIR* folder_dir = opendir(argv [1]);

struct dirent* file_info;

cv::Mat img_scene ,descriptors_scene;

std::vector <cv::KeyPoint > keypoints_scene;

cv::SIFT sift;

cv:: BFMatcher matcher;

std::vector < std::vector <cv::Point2f > > match_posi;

const float ratio = 0.8;

//**-- Step1: Geometric alignment --**//

while((file_info = readdir(folder_dir)) != NULL)

{

if(strcmp(file_info ->d_name ,".") !=0 && strcmp(file_info ->d_name ,"..") !=0)

{

std:: string dir_whole = argv [1];

dir_whole = dir_whole +"/"+ file_info ->d_name;

if(img_res.empty ())

{

img_res.push_back(cv:: imread(dir_whole));

cv:: cvtColor(img_res [0],img_scene ,cv:: COLOR_RGB2GRAY);

133

134 Appendix Source Code

sift(img_scene , cv::Mat(), keypoints_scene , descriptors_scene);

img_res [0]. convertTo(img_res [0], CV_32FC3);

}

else

{

cv::Mat img_object ,descriptors_object;

cv::Mat img_ori = cv:: imread(dir_whole);

cv:: cvtColor(img_ori ,img_object ,cv:: COLOR_RGB2GRAY);

img_ori.convertTo(img_ori ,CV_32FC3);

// SIFT keypoints and descriptors //

std::vector <cv::KeyPoint > keypoints_object;

sift(img_object , cv::Mat(), keypoints_object , descriptors_object);

// Match descriptors using FLANN matcher //

std::vector <std::vector <cv::DMatch > > matches;

matcher.knnMatch(descriptors_object , descriptors_scene , matches , 2);

std::vector <cv::DMatch > good_matches;

for (size_t i = 0; i < matches.size(); ++i)

{

if (matches[i][0]. distance < ratio * matches[i][1]. distance)

good_matches.push_back(matches[i][0]);

}

// Get coordinates of matched pixels //

std::vector <cv::Point2f > obj ,scene;

for(size_t i = 0; i < good_matches.size(); ++i)

{

obj.push_back(keypoints_object[good_matches[i]. queryIdx].pt);

scene.push_back(keypoints_scene[good_matches[i]. trainIdx].pt);

}

match_posi.push_back(scene);

// Compute homography //

cv::Mat inlier_mask;

cv::Mat H = findHomography(obj ,scene ,CV_RANSAC ,1, inlier_mask);

homo_inliers.push_back(inlier_mask);

// Bilinear interpolation //

std::vector <cv::Mat > img_ch ,img_interp (3);

cv::split(img_ori ,img_ch);

cv:: warpPerspective(img_ch [0], img_interp [0],H,img_scene.size(),cv::

INTER_LINEAR);

cv:: warpPerspective(img_ch [1], img_interp [1],H,img_scene.size(),cv::

INTER_LINEAR);

cv:: warpPerspective(img_ch [2], img_interp [2],H,img_scene.size(),cv::

INTER_LINEAR);

cv::Mat img_al;

Appendix Source Code 135

cv::merge(img_interp ,img_al);

img_geo.push_back(img_al);

}

}

}

//**-- Step2: Chromatic adjustment --**//

std::vector <cv::Mat > colchannel_scene , colchannel_obj;

cv::Mat pow_two ,obj_all;

for(size_t img_num =0; img_num != img_geo.size(); ++ img_num)

{

// Prepare intensity matrix //

cv::Mat obj_col , scene_col;

std::vector <int > rand_posi;

int match_num = 0;

for(int i=0; i!= homo_inliers[img_num].rows; ++i)

{

if(homo_inliers[img_num].at <uchar >(i)==1)

{

obj_col.push_back(img_geo[img_num].at<cv::Vec3f >((match_posi[img_num])[i]))

;

scene_col.push_back(img_res [0].at<cv::Vec3f >((match_posi[img_num])[i]));

rand_posi.push_back(match_num);

++ match_num;

}

}

std:: random_shuffle(rand_posi.begin(), rand_posi.end());

cv::split(scene_col ,colchannel_scene);

cv::Mat all_one(obj_col.size(),CV_32FC3 ,cv:: Scalar (1,1,1));

cv::pow(obj_col ,2,pow_two);

cv:: hconcat(all_one ,obj_col ,obj_all);

cv:: hconcat(obj_all ,pow_two ,obj_all);

cv::split(obj_all ,colchannel_obj);

// Calculate transfer model with RANSAC //

int inliers_max = 0;

std::vector <cv::Mat > final_model;

for(size_t i=0; i!=(rand_posi.size()/3); ++i)

{

cv::Mat inliers = cv::Mat::ones(colchannel_scene [0]. size(),CV_8UC1);

std::vector <cv::Mat > model (3);

for(int j=0; j!=3; ++j)

{

cv::Mat ref = (cv::Mat_ <float >(3 ,1)

<<colchannel_scene[j].at<float >(rand_posi [3*i]),

colchannel_scene[j].at<float >(rand_posi [3*i+1]),

colchannel_scene[j].at<float >(rand_posi [3*i+2]));

cv::Mat tar(3,3, CV_32FC1);

136 Appendix Source Code

colchannel_obj[j].row(rand_posi [3*i]).copyTo(tar.row(0));

colchannel_obj[j].row(rand_posi [3*i+1]).copyTo(tar.row(1));

colchannel_obj[j].row(rand_posi [3*i+2]).copyTo(tar.row(2));

model[j] = tar.inv(cv:: DECOMP_SVD)*ref;

// Search inliers //

cv::Mat check = (cv::abs(colchannel_obj[j]* model[j]-colchannel_scene[j])

<=15) /255;

cv:: multiply(inliers ,check ,inliers);

}

int inliers_actual = cv::sum(inliers)[0];

if(inliers_actual >inliers_max)

{

final_model.assign(model.begin(),model.end());

inliers_max = inliers_actual;

}

}

// Adjust image colors //

std::vector <cv::Mat > color_ch (3),geo_channel (3);

cv::split(img_geo[img_num],geo_channel);

for(int j=0;j!=3;++j)

{

color_ch[j] = final_model[j].at <float >(0 ,0)*cv::Mat::ones(geo_channel[j].size()

,CV_32FC1)+

final_model[j].at<float >(1 ,0)*geo_channel[j];

cv::Mat pow_interp;

cv::pow(geo_channel[j],2,pow_interp);

color_ch[j] = color_ch[j]+ final_model[j].at <float >(2 ,0)*pow_interp;

}

cv::Mat img_colal;

cv::merge(color_ch ,img_colal);

img_res.push_back(img_colal);

}

closedir(folder_dir);

return 0;

}

Appendix Source Code 137

Meaningful clique (main.cpp detail.h detail.cpp)

#include <opencv2/opencv.hpp >

#include <vector >

#include <math.h>

#include "detail.h"

//

/// meaningful clique: select the pixels belonging to the most dense clouds

/// @argv [1], directory of image folder

/// @argv [2], thershold of variance

//

int main(int , char *argv [])

{

/* input images , convert them into float format */

std::vector <cv::Mat > Input_image;

size_t n_file = ReadImagesFromFolder(argv[1], Input_image);

/* create pointers for original images */

std::vector <cv::Mat_ <cv::Vec3f >:: iterator > Pt_img;

for (size_t i=0; i!= n_file; ++i)

Pt_img.push_back(Input_image[i].begin <cv::Vec3f >());

cv::Mat_ <cv::Vec3f >:: iterator pt_end = Input_image [0].end <cv::Vec3f >();

/* give an ascending order to the distance between every images */

std::vector <cv::Mat > Image_dist;

PixelDistance(Input_image ,n_file ,Image_dist);

/* create pointers for distance array */

std::vector <cv::Mat_ <float >:: iterator > Pt_dist;

for (size_t i=0; i!= Image_dist.size(); ++i)

Pt_dist.push_back(Image_dist[i].begin <float >());

/* create pointer for output image */

cv::Mat Output(Input_image [0].rows , Input_image [0].cols , CV_32FC3);

cv::Mat_ <cv::Vec3f >:: iterator pt_out = Output.begin <cv::Vec3f >();

/* traverse every pixel positions , select the cloud of pixels */

while (Pt_img [0]!= pt_end)

{

/* examine if there are more than 2 pixels */

int num_valable =0;

for(size_t n_im =0; n_im!= n_file; ++n_im)

{

if(!isnan ((* Pt_img[n_im])[0]))

{

*pt_out = *Pt_img[n_im];

++ num_valable;

138 Appendix Source Code

}

}

if(num_valable >1)

{

/* distance between every two images */

std::vector <float > Member;

for (size_t i=0; i!= Image_dist.size(); ++i)

Member.push_back (*(Pt_dist[i]));

/* get the distance order */

cv::Mat matrix_order(n_file ,n_file ,CV_32FC1);

getDistOrder(Member ,n_file ,matrix_order);

/* get the candidate dense clouds */

getCandiCloud(matrix_order ,atof(argv [2]), Pt_img , pt_out);

}

else if(num_valable ==0)

*pt_out = cv:: Vec3f (255 ,255 ,255);

/* pass to the next pixel position */

for (size_t i=0; i!= n_file; ++i)

++ Pt_img[i];

for (size_t i=0; i!= Image_dist.size(); ++i)

++ Pt_dist[i];

++ pt_out;

}

/* save new image */

std:: string name_out = argv [1];

name_out = name_out +" _clique.png";

imwrite(name_out ,Output);

return 0;

}

#ifndef MAJOR_STEPS

#define MAJOR_STEPS

#include <opencv2/opencv.hpp >

#include <vector >

void valueOrder(std::vector <float > &source , std::vector <int > &image_order);

size_t searchVecElemNum(size_t i, size_t j, size_t n_file);

float calculateVari(cv::Mat &matchan3);

void findMedian(cv::Mat &cloud , cv::Mat_ <cv::Vec3f >:: iterator img_out);

size_t ReadImagesFromFolder(char *folder_name , std::vector <cv::Mat > &Input_Image);

void PixelDistance(std::vector <cv::Mat > &Image , size_t n_file , std::vector <cv::Mat > &

Image_dist);

Appendix Source Code 139

void getDistOrder(std::vector <float > &Member , size_t n_file , cv::Mat &order_mat);

void getCandiCloud(cv::Mat &order , float vari_thershold , std::vector <cv::Mat_ <cv::Vec3f >::

iterator > &Pt_img , cv::Mat_ <cv::Vec3f >:: iterator img_out);

#endif

#include <sys/types.h>

#include <dirent.h>

#include <string >

#include <vector >

#include <algorithm >

#include <math.h>

#include <opencv2/opencv.hpp >

size_t searchVecElemNum(size_t i, size_t j, size_t n_file)

{

return j-1+i*(n_file -1)-i*(i+1)/2;

}

void valueOrder(std::vector <float > &source , std::vector <int > &image_order)

{

std::vector <float > temporary (1,INFINITY);

int accumulator =0;

for(std::vector <float >:: size_type src_num =0; src_num != source.size(); ++ src_num)

{

std::vector <int >:: iterator iter_ord=image_order.begin();

for(std::vector <float >:: iterator iter_tem=temporary.begin();iter_tem != temporary.end

();++ iter_tem)

{

if(source[src_num]>=* iter_tem)

++ iter_ord;

else

{

temporary.insert(iter_tem ,source[src_num]);

break;

}

}

image_order.insert(iter_ord ,accumulator);

++ accumulator;

}

}

float calculateVari(cv::Mat &matchan3)

{

cv::Mat matrix;

matchan3.copyTo(matrix);

140 Appendix Source Code

float px_num = matrix.rows;

cv:: Scalar mean = cv::mean(matrix);

matrix -= mean;

cv::pow(matrix ,2,matrix);

cv:: Scalar somme = cv::sum(matrix);

float all = somme [0]+ somme [1]+ somme [2];

all /= px_num;

return sqrt(all);

}

/**

* @brief find the median of a cloud of RGB vectors

* @param cloud , Mat::CV_32FC3 , a column of RGB vectors of the best cloud

* @param img_out , Mat_ <Vec3f >:: iterator , save the median RGB vector of the cloud

* @return none

*/

void findMedian(cv::Mat &cloud ,cv::Mat_ <cv::Vec3f >:: iterator img_out)

{

float dist_min = INFINITY;

for (int i=0; i!= cloud.rows; ++i)

{

cv::Mat member;

cloud.copyTo(member);

cv::Mat center(member.rows ,1,CV_32FC3 ,cv:: Scalar(member.at <cv::Vec3f >(i,0)[0],

member.at <cv::Vec3f >(i,0)[1], member.at <cv::Vec3f >(i,0) [2]));

member -= center;

cv::pow(member ,2,member);

std::vector < cv::Mat > channel (3);

cv::split(member ,channel);

cv::Mat somme = channel [0]+ channel [1]+ channel [2];

cv::pow(somme ,0.5, somme);

cv:: Scalar dist = cv::sum(somme);

if (dist[0]< dist_min)

{

dist_min = dist [0];

*img_out = cloud.at <cv::Vec3f >(i,0);

}

}

}

/**

* @brief read several image files in a folder , save them into a vector of Mat

* @param Folder_name , char *, image folder

* @param Input_Image , vector of Mat:: CV_32FC3

* @return number of files

Appendix Source Code 141

*/

size_t ReadImagesFromFolder(char *folder_name , std::vector <cv::Mat > &Input_Image)

{

DIR* folder_dir = opendir(folder_name);

struct dirent* file_info;

while((file_info = readdir(folder_dir)) != NULL)

{

if(strcmp(file_info ->d_name ,".") !=0 && strcmp(file_info ->d_name ,"..") !=0)

{

std:: string whole_dir = folder_name;

whole_dir = whole_dir +"/"+ file_info ->d_name;

cv::Mat Image = cv:: imread(whole_dir);

Image.convertTo(Image ,CV_32FC3);

cv::Mat border_mask;

cv:: inRange(Image ,cv:: Scalar (255 ,255 ,255),cv:: Scalar (255 ,255 ,255),border_mask);

Image.setTo(cv:: Scalar(NAN ,NAN ,NAN),border_mask);

Input_Image.push_back(Image);

}

}

closedir(folder_dir);

return Input_Image.size();

}

/**

* @brief calculate matrix of euclidean distance between RGB vectors at the same position

of two images

* @param Image , vector of Mat::CV_32FC3 , Input images , already defined

* @param n_file , unsigned , number of images

* @param Image_dist , vector of Mat::CV_32FC1 , matrix of euclidean distance , defined here

such matrix between

* image i and image j (i<j) is saved at position j-1+i*(n_file -1)-i*(i+1) /2. the search of

position in

* Image_dist is achieved by searchVecElemNum in detail_preparation.cpp

* @return none

*/

void PixelDistance(std::vector <cv::Mat > &Image , size_t n_file , std::vector <cv::Mat > &

Image_dist)

{

for(size_t i=0; i<n_file -1; ++i)

{

for(size_t j=i+1; j<n_file; ++j)

{

std::vector <cv::Mat > Image_channel;

cv::Mat image_diff = Image[i]-Image[j];

cv::pow(image_diff ,2, image_diff);

cv:: split(image_diff ,Image_channel);

142 Appendix Source Code

cv::Mat dist_ij = Image_channel [0]+ Image_channel [1]+ Image_channel [2];

cv::pow(dist_ij ,0.5, dist_ij);

Image_dist.push_back(dist_ij);

}

}

}

/**

* @brief sort the distance of vector of images to the vector of a certain image , save

orderly

* the image numbers as a row of matrix

* @param Member , vector of float , euclidean distance of two RGB vectors of every two

images at a certain pixel

* position

* @param n_file , unsigned , number of images

* @param order_mat , n_file*n_file Mat of CV_32FC1 , map of distance order whose row save

the image numbers on

* ascending order , already defined

* @return none

*/

void getDistOrder(std::vector <float > &Member , size_t n_file , cv::Mat &order_mat)

{

for(size_t i=0; i<n_file; ++i)

{

/* pixel distances to pixel i */

std::vector <float > dist_to_i;

for(size_t j=0; j<n_file; ++j)

{

if(j==i)

dist_to_i.push_back (0);

else if(i<j)

dist_to_i.push_back(Member[searchVecElemNum(i,j,n_file)]);

else

dist_to_i.push_back(Member[searchVecElemNum(j,i,n_file)]);

}

/* sort members in ascending order , return a map of image numbers */

std::vector <int > vec_order;

valueOrder(dist_to_i , vec_order);

for (size_t k=0; k<n_file; ++k)

order_mat.at<float >(i,k)=vec_order[k];

}

}

/**

* @brief get one or several clouds of RGB vectors sharing the similar values. for each

cloud of pixels , save

* the number of their belonging images as a vector

Appendix Source Code 143

* @param order , Mat::CV_32FC1 , map of pixel distances

* @param storage_cloud , vector of float vector , save image numbers of each cloud

* @return none

*/

void getCandiCloud(cv::Mat &order , float vari_thershold , std::vector <cv::Mat_ <cv::Vec3f >::

iterator > &Pt_img , cv::Mat_ <cv::Vec3f >:: iterator img_out)

{

const size_t size_mini (2), size_maxi(order.rows);

std::vector < std::vector <float > > storage_cloud;

/* increase the size of cloud by iteration */

for (size_t size_current=size_mini; size_current <= size_maxi; ++ size_current)

{

std::vector < std::vector <float > > actual_cloud;

/* select each time a pixel to find possible dense cloud */

for (size_t center =0; center != size_maxi; ++ center)

{

/* select the members most approche to the center */

cv::Mat center_mat;

order(cv::Rect(0,center ,size_current ,1)).copyTo(center_mat);

std::set <float > center_set(center_mat.begin <float >(),center_mat.end <float >());

/* initialize the first member set as center set */

std::set <float > member_set1(center_set.begin (),center_set.end());

/* calculate the intersection of two member sets */

bool isFinish = 0;

for (size_t mem_num =1; mem_num != size_current ;++ mem_num)

{

size_t row_num = center_mat.at<float >(0, mem_num);

cv::Mat member_mat;

order(cv::Rect(0,row_num ,size_current ,1)).copyTo(member_mat);

std::set <float > member_set2(member_mat.begin <float >(),member_mat.end <float

>());

std::set <float > intersect;

std:: set_intersection(member_set1.begin(), member_set1.end(), member_set2.

begin(), member_set2.end(), inserter(intersect , intersect.begin ()));

/* analyze the result , prepare for the next iteration */

if(intersect.size()!= size_current)

break;

else

{

member_set1.clear ();

member_set1.insert(intersect.begin (),intersect.end());

}

144 Appendix Source Code

/* ensure the iteration has been accomplished */

if (mem_num ==(size_current -1))

isFinish = 1;

}

/* save a candidate result */

if (isFinish)

{

std::vector <float > candidate_cloud;

candidate_cloud.insert(candidate_cloud.begin(),member_set1.begin(),

member_set1.end());

std::vector < std::vector <float > >::iterator repetation = std::find(

actual_cloud.begin (),actual_cloud.end(),candidate_cloud);

if (repetation == actual_cloud.end())

actual_cloud.push_back(candidate_cloud);

}

}

/* examine the number clouds in storage */

size_t cloud_size = actual_cloud.size();

if (cloud_size >1) // >1:continue searching; update storage

{

storage_cloud.clear ();

storage_cloud = actual_cloud;

}

else if(cloud_size ==1) // 1: maybe find target cloud; examine variance

{

cv::Mat single_cloud(size_current ,1,CV_32FC3);

for(size_t candi_num =0; candi_num != size_current; ++ candi_num)

{

size_t img_num = (actual_cloud [0])[candi_num];

single_cloud.at <cv::Vec3f >(candi_num ,0) = *(Pt_img[img_num]);

}

float vari = calculateVari(single_cloud);

if(vari <vari_thershold || size_current ==2)

{

findMedian(single_cloud ,img_out);

break;

}

else

cloud_size = 0;

}

if (cloud_size ==0) // 0: select a cloud among previous result

{

/* search the values of pixels in different clouds */

cv::Mat cloud_vari_mini;

Appendix Source Code 145

float vari_mini(INFINITY);

size_t size_previous = size_current -1;

for(size_t cloud_num =0; cloud_num != storage_cloud.size(); ++ cloud_num)

{

cv::Mat single_cloud(size_previous ,1,CV_32FC3);

for(size_t ele_num =0; ele_num != size_previous; ++ ele_num)

{

size_t img_num = (storage_cloud[cloud_num])[ele_num];

single_cloud.at<cv::Vec3f >(ele_num ,0) = *(Pt_img[img_num]);

}

float vari = calculateVari(single_cloud);

if(vari <vari_mini)

{

vari_mini = vari;

cloud_vari_mini = cv::Mat();

single_cloud.copyTo(cloud_vari_mini);

}

}

findMedian(cloud_vari_mini ,img_out);

break;

}

}

}

Jitter blur correction (main.cpp)

#include <opencv2/opencv.hpp >

#include "opencv2/nonfree/nonfree.hpp"

#include <vector >

#include <sys/types.h>

#include <dirent.h>

#include <stdlib.h>

///

/// jitter blur corrector: replace the fusion area by patches in aligned images

/// @argv [1], directory of aligned image folder

/// @argv [2], name of the fusion image

/// @argv [3], sigma of Gaussian distribution

/// @argv [4], threshold of color distances

///

int main(int , char *argv [])

{

int sigma = atoi(argv [3]);

int wsize = sigma *4+1; // gaussian window size

float thresh = atof(argv [4]);

// read in images

146 Appendix Source Code

cv::Mat fusion = cv:: imread(argv [2]);

fusion.convertTo(fusion ,CV_32FC3);

cv::Mat fusion_blur;

cv:: GaussianBlur(fusion ,fusion_blur ,cv::Size(wsize ,wsize),sigma ,sigma ,cv::

BORDER_REFLECT);

std::vector <cv::Mat > aligned;

DIR* folder_dir = opendir(argv [1]);

struct dirent* file_info;

std::vector <cv::Mat > similar; //’difference ’ is marked as 0, ’similarity ’ is marked as

1.

while((file_info = readdir(folder_dir)) != NULL)

{

if(strcmp(file_info ->d_name ,".") !=0 && strcmp(file_info ->d_name ,"..") !=0)

{

std:: string dir_whole = argv [1];

dir_whole = dir_whole +"/"+ file_info ->d_name;

cv::Mat img_ori = cv:: imread(dir_whole);

img_ori.convertTo(img_ori ,CV_32FC3);

aligned.push_back(img_ori);

//**-- Step1: blur images --**//

cv::Mat img_blur;

cv:: GaussianBlur(img_ori ,img_blur ,cv::Size(wsize ,wsize),sigma ,sigma ,cv::

BORDER_REFLECT);

//**-- Step2: create distance cards --**//

cv::Mat vdist = img_blur -fusion_blur;

cv::pow(vdist ,2,vdist);

std::vector < cv::Mat > cdist (3);

cv:: split(vdist ,cdist);

cv::Mat ndist = cdist [0]+ cdist [1]+ cdist [2];

cv::pow(ndist ,0.5, ndist);

ndist.setTo(-1,ndist >= thresh);

ndist.setTo(0,ndist !=-1);

ndist = ndist +1;

similar.push_back(ndist);

}

}

cv::Mat index = cv::Mat::ones(aligned.size() ,1,CV_32FC1); //0: the image has been used

cv::Mat left = cv::Mat::ones(fusion.size(),CV_32FC1);//1: area left to be corrected

cv::Mat result(fusion.size(),CV_32FC3 ,cv:: Scalar (0,0,0));

std::vector < cv::Mat > cresult (3);

cv:: split(result ,cresult);

while(cv::sum(index)[0]!=0 && cv::sum(left)[0]!=0)

{

//**-- Step3: find candidate aligned image --**//

Appendix Source Code 147

int max_area = 0, best_choice = -1;

for(int i=0; i!= similar.size(); ++i)

{

if(index.at <float >(i,0)==0)

continue;

int actual_area = cv::sum(similar[i].mul(left))[0];

if(actual_area >max_area)

{

max_area = actual_area;

best_choice = i;

}

}

//**-- Step4: fill in the final image --**//

cv::Mat mask = similar[best_choice].mul(left);

std::vector < cv::Mat > caligned (3);

cv::split(aligned[best_choice],caligned);

cresult [0] = cresult [0]+ caligned [0]. mul(mask);

cresult [1] = cresult [1]+ caligned [1]. mul(mask);

cresult [2] = cresult [2]+ caligned [2]. mul(mask);

//**-- Step5: update index and area left to be corrected --**//

index.at <float >(best_choice ,0) = 0;

left = left.mul(1-mask);

}

cv:: merge(cresult ,result);

result.convertTo(result ,CV_8UC3);

cv:: imshow("result", result);

cv:: waitKey (0);

return 0;

}

Bibliography

[ADGM14] Cecilia Aguerrebere, Julie Delon, Yann Gousseau, and Pablo Musé.

Best algorithms for hdr image generation. a study of performance

bounds. SIAM Journal on Imaging Sciences, 7(1):1–34, 2014.

[AFM98] Naoki Asada, Hisanaga Fujiwara, and Takashi Matsuyama. Anal-

ysis of photometric properties of occluding edges by the reversed

projection blurring model. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20(2):155–167, 1998.

[AGS11] Luis Alvarez, Luis Gómez, and J Rafael Sendra. Accurate depth

dependent lens distortion models: an application to planar view

scenarios. Journal of Mathematical Imaging and Vision, 39(1):75–

85, 2011.

[AHN90] Jaakko Astola, Petri Haavisto, and Yrjo Neuvo. Vector median

filters. Proceedings of the IEEE, 78(4):678–689, 1990.

[AM79] Brian DO Anderson and John B Moore. Optimal filtering. Engle-

wood Cliffs, 21:22–95, 1979.

[AMCS96] Matthew Anderson, Ricardo Motta, Srinivasan Chandrasekar, and

Michael Stokes. Proposal for a standard default color space for

the internetsrgb. In Color and imaging conference, pages 238–245.

Society for Imaging Science and Technology, 1996.

[Aya91] Nicholas Ayache. Artificial vision for mobile robots: stereo vision

and multisensory perception. Mit Press, 1991.

[BCMS09] Antoni Buades, Bartomeu Coll, Jean-Michel Morel, and Catalina

Sbert. Self-similarity driven color demosaicking. IEEE Transactions

on Image Processing, 18(6):1192–1202, 2009.

[BD13] Faisal Bukhari and Matthew N Dailey. Automatic radial distortion

estimation from a single image. Journal of mathematical imaging

and vision, 45(1):31–45, 2013.

149

Bibliography BIBLIOGRAPHY

[BH+92] Robert Grover Brown, Patrick YC Hwang, et al. Introduction to

random signals and applied Kalman filtering, volume 3. Wiley New

York, 1992.

[BKN07] Peter Barnum, Takeo Kanade, and Srinivasa Narasimhan. Spatio-

temporal frequency analysis for removing rain and snow from videos.

In Proceedings of the First International Workshop on Photomet-

ric Analysis For Computer Vision-PACV 2007, pages 8–p. INRIA,

2007.

[BM+76] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al.

Graph theory with applications, volume 290. Citeseer, 1976.

[BNK10] Peter C Barnum, Srinivasa Narasimhan, and Takeo Kanade. Anal-

ysis of rain and snow in frequency space. International journal of

computer vision, 86(2-3):256, 2010.

[BSCB00] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma

Ballester. Image inpainting. In Proceedings of the 27th annual con-

ference on Computer graphics and interactive techniques, pages 417–

424. ACM Press/Addison-Wesley Publishing Co., 2000.

[BSFG09] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B

Goldman. Patchmatch: A randomized correspondence algorithm

for structural image editing. ACM Transactions on Graphics (ToG),

28(3):24, 2009.

[BSGF10] Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam

Finkelstein. The generalized patchmatch correspondence algo-

rithm. In European Conference on Computer Vision, pages 29–43.

Springer, 2010.

[BSL+11] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J

Black, and Richard Szeliski. A database and evaluation method-

ology for optical flow. International Journal of Computer Vision,

92(1):1–31, 2011.

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded

up robust features. In European conference on computer vision,

pages 404–417. Springer, 2006.

[BW11] Randolph Blake and Hugh Wilson. Binocular vision. Vision re-

search, 51(7):754–770, 2011.

Bibliography 151

[BWS05] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. Lu-

cas/kanade meets horn/schunck: Combining local and global optic

flow methods. International journal of computer vision, 61(3):211–

231, 2005.

[BY08] Efrat Be’Ery and Arie Yeredor. Blind separation of superimposed

shifted images using parameterized joint diagonalization. IEEE

Transactions on Image Processing, 17(3):340–353, 2008.

[CC06] K-H Chung and Y-H Chan. Color demosaicing using variance

of color differences. IEEE Transactions on Image Processing,

15(10):2944–2955, 2006.

[CF05] David Claus and Andrew W Fitzgibbon. A rational function lens

distortion model for general cameras. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-

ference on, volume 1, pages 213–219. IEEE, 2005.

[CGL+09] Minming Chen, Arvind Ganesh, Zhouchen Lin, Yi Ma, JohnWright,

and Leqin Wu. Fast convex optimization algorithms for exact recov-

ery of a corrupted low-rank matrix. Coordinated Science Laboratory

Report no. UILU-ENG-09-2214, 2009.

[CGPV03] Rita Cucchiara, Costantino Grana, Andrea Prati, and Roberto Vez-

zani. A hough transform-based method for radial lens distortion

correction. In Image Analysis and Processing, 2003. Proceedings.

12th International Conference on, pages 182–187. IEEE, 2003.

[CH13] Yi-Lei Chen and Chiou-Ting Hsu. A generalized low-rank appear-

ance model for spatio-temporally correlated rain streaks. In Pro-

ceedings of the IEEE International Conference on Computer Vision,

pages 1968–1975, 2013.

[CLMW11] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Ro-

bust principal component analysis? Journal of the ACM (JACM),

58(3):11, 2011.

[CPT03] Antonio Criminisi, Patrick Perez, and Kentaro Toyama. Object re-

moval by exemplar-based inpainting. In Computer Vision and Pat-

tern Recognition, 2003. Proceedings. 2003 IEEE Computer Society

Conference on, volume 2. IEEE, 2003.

Bibliography BIBLIOGRAPHY

[CPT04] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region fill-

ing and object removal by exemplar-based image inpainting. IEEE

Transactions on image processing, 13(9):1200–1212, 2004.

[CWS+16] Wenfei Cao, Yao Wang, Jian Sun, Deyu Meng, Can Yang, Andrzej

Cichocki, and Zongben Xu. Total variation regularized tensor rpca

for background subtraction from compressive measurements. IEEE

Transactions on Image Processing, 25(9):4075–4090, 2016.

[DF01] Frederic Devernay and Olivier Faugeras. Straight lines have to be

straight. Machine vision and applications, 13(1):14–24, 2001.

[DJ10] Cuong Manh Do and Bahram Javidi. 3d integral imaging recon-

struction of occluded objects using independent component analysis-

based k-means clustering. Journal of display technology, 6(7):257–

262, 2010.

[DJB14] Daniel D Doyle, Alan L Jennings, and Jonathan T Black. Opti-

cal flow background estimation for real-time pan/tilt camera object

tracking. Measurement, 48:195–207, 2014.

[Dua71] C Brown Duane. Close-range camera calibration. Photogramm. Eng,

37(8):855–866, 1971.

[EW02] Geoffrey Egnal and Richard P Wildes. Detecting binocular half-

occlusions: Empirical comparisons of five approaches. IEEE Trans-

actions on pattern analysis and machine intelligence, 24(8):1127–

1133, 2002.

[FB87] Martin A Fischler and Robert C Bolles. Random sample consensus:

a paradigm for model fitting with applications to image analysis

and automated cartography. In Readings in computer vision, pages

726–740. Elsevier, 1987.

[FBH97] Hugh S Fairman, Michael H Brill, and Henry Hemmendinger. How

the cie 1931 color-matching functions were derived from wright-guild

data. Color Research & Application: Endorsed by Inter-Society

Color Council, The Colour Group (Great Britain), Canadian Soci-

ety for Color, Color Science Association of Japan, Dutch Society for

the Study of Color, The Swedish Colour Centre Foundation, Colour

Society of Australia, Centre Français de la Couleur, 22(1):11–23,

1997.

Bibliography 153

[FdWE03] Dirk Farin, Peter HN de With, and Wolfgang Effelsberg. Robust

background estimation for complex video sequences. In Image Pro-

cessing, 2003. ICIP 2003. Proceedings. 2003 International Confer-

ence on, volume 1, pages I–145. IEEE, 2003.

[Fit01] Andrew W Fitzgibbon. Simultaneous linear estimation of multiple

view geometry and lens distortion. In Computer Vision and Pat-

tern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conference on, volume 1, pages I–I. IEEE, 2001.

[FMG16] Muhammad Shahid Farid, Arif Mahmood, and Marco Grangetto.

Image de-fencing framework with hybrid inpainting algorithm. Sig-

nal, Image and Video Processing, 10(7):1193–1201, 2016.

[FS03] Paolo Favaro and Stefano Soatto. Seeing beyond occlusions (and

other marvels of a finite lens aperture). In Computer Vision and

Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer So-

ciety Conference on, volume 2, pages II–II. IEEE, 2003.

[GBZ12] Charles Guyon, Thierry Bouwmans, and El-hadi Zahzah. Robust

principal component analysis for background subtraction: System-

atic evaluation and comparative analysis. In Principal component

analysis. InTech, 2012.

[GCM14] Xiaojie Guo, Xiaochun Cao, and Yi Ma. Robust separation of re-

flection from multiple images. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 2187–

2194, 2014.

[GCW14] Zhi Gao, Loong-Fah Cheong, and Yu-Xiang Wang. Block-sparse

rpca for salient motion detection. IEEE transactions on pattern

analysis and machine intelligence, 36(10):1975–1987, 2014.

[Get12] Pascal Getreuer. Image demosaicking with contour stencils. Image

Processing On Line, 2:22–34, 2012.

[GLM14] Christine Guillemot and Olivier Le Meur. Image inpainting:

Overview and recent advances. IEEE signal processing magazine,

31(1):127–144, 2014.

[GLY92] Davi Geiger, Bruce Ladendorf, and Alan Yuille. Occlusions and

binocular stereo. In European Conference on Computer Vision,

pages 425–433. Springer, 1992.

Bibliography BIBLIOGRAPHY

[GLY95] Davi Geiger, Bruce Ladendorf, and Alan Yuille. Occlusions

and binocular stereo. International Journal of Computer Vision,

14(3):211–226, 1995.

[Gol04] Martin Charles Golumbic. Algorithmic graph theory and perfect

graphs, volume 57. Elsevier, 2004.

[GR13] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume

207. Springer Science & Business Media, 2013.

[GTCS+01] Daniel Gutchess, M Trajkovics, Eric Cohen-Solal, Damian Lyons,

and Anil K Jain. A background model initialization algorithm for

video surveillance. In Computer Vision, 2001. ICCV 2001. Proceed-

ings. Eighth IEEE International Conference on, volume 1, pages

733–740. IEEE, 2001.

[GVL12] Gene H Golub and Charles F Van Loan. Matrix computations, vol-

ume 3. JHU Press, 2012.

[GZX01] Da-shan Gao, Jie Zhou, and Le-ping Xin. A novel algorithm of adap-

tive background estimation. In Image Processing, 2001. Proceedings.

2001 International Conference on, volume 2, pages 395–398. IEEE,

2001.

[Ham13] Hamamatsu. Learning center in digital imaging : Charge coupled

device ccd linearity. on line, 2013.

[HFB14] Soren Hauberg, Aasa Feragen, and Michael J Black. Grassmann

averages for scalable robust pca. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 3810–

3817, 2014.

[HK07] Samuel W Hasinoff and Kiriakos N Kutulakos. A layer-based

restoration framework for variable-aperture photography. In Com-

puter Vision, 2007. ICCV 2007. IEEE 11th International Confer-

ence on, pages 1–8. IEEE, 2007.

[HLEL06] James Hays, Marius Leordeanu, Alexei A Efros, and Yanxi Liu. Dis-

covering texture regularity as a higher-order correspondence prob-

lem. In European Conference on Computer Vision, pages 522–535.

Springer, 2006.

[HS81] Berthold KP Horn and Brian G Schunck. Determining optical flow.

Artificial intelligence, 17(1-3):185–203, 1981.

Bibliography 155

[HS07] Heiko Hirschmuller and Daniel Scharstein. Evaluation of cost func-

tions for stereo matching. In Computer Vision and Pattern Recogni-

tion, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[Hub11] Peter J Huber. Robust statistics. In International Encyclopedia of

Statistical Science, pages 1248–1251. Springer, 2011.

[Hun05] Robert William Gainer Hunt. The reproduction of colour. John

Wiley & Sons, 2005.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003.

[JBJ15] Sajid Javed, Theirry Bouwmans, and Soon Ki Jung. Depth extended

online rpca with spatiotemporal constraints for robust background

subtraction. In Frontiers of Computer Vision (FCV), 2015 21st

Korea-Japan Joint Workshop on, pages 1–6. IEEE, 2015.

[JJMB16] Sajid Javed, Soon Ki Jung, Arif Mahmood, and Thierry Bouwmans.

Motion-aware graph regularized rpca for background modeling of

complex scenes. In Pattern Recognition (ICPR), 2016 23rd Inter-

national Conference on, pages 120–125. IEEE, 2016.

[JM15] Laura Fernández Julià and Pascal Monasse. Bilaterally weighted

patches for disparity map computation. Image Processing On Line,

5:73–89, 2015.

[JOd+15] NP Jerome, MR Orton, JA dArcy, T Feiweier, N Tunariu, DM Koh,

MO Leach, and DJ Collins. Use of the temporal median and

trimmed mean mitigates effects of respiratory motion in multiple-

acquisition abdominal diffusion imaging. Physics in Medicine &

Biology, 60(2):N9, 2015.

[Jol11] Ian Jolliffe. Principal component analysis. In International ency-

clopedia of statistical science, pages 1094–1096. Springer, 2011.

[KKPD04] Sabine Kurz, Frank Krummenauer, Norbert Pfeiffer, and

H Burkhard Dick. Monocular versus binocular pupillometry. Jour-

nal of Cataract & Refractive Surgery, 30(12):2551–2556, 2004.

[KLF12] Li-Wei Kang, Chia-Wen Lin, and Yu-Hsiang Fu. Automatic single-

image-based rain streaks removal via image decomposition. IEEE

Transactions on Image Processing, 21(4):1742, 2012.

Bibliography BIBLIOGRAPHY

[Kom06] Nikos Komodakis. Image completion using global optimization. In

Computer Vision and Pattern Recognition, 2006 IEEE Computer

Society Conference on, volume 1, pages 442–452. IEEE, 2006.

[KR07] Thommen Korah and Christopher Rasmussen. Spatiotemporal in-

painting for recovering texture maps of occluded building facades.

IEEE Transactions on Image Processing, 16(9):2262–2271, 2007.

[KT07] Nikos Komodakis and Georgios Tziritas. Image completion using ef-

ficient belief propagation via priority scheduling and dynamic prun-

ing. IEEE Transactions on Image Processing, 16(11):2649–2661,

2007.

[KWM94] Dieter Koller, Joseph Weber, and Jitendra Malik. Robust multiple

car tracking with occlusion reasoning. In European Conference on

Computer Vision, pages 189–196. Springer, 1994.

[KZ01] Vladimir Kolmogorov and Ramin Zabih. Computing visual corre-

spondence with occlusions using graph cuts. In Computer Vision,

2001. ICCV 2001. Proceedings. Eighth IEEE International Confer-

ence on, volume 2, pages 508–515. IEEE, 2001.

[LAGM17] Thuc Le, Andrés Almansa, Yann Gousseau, and Simon Masnou.

Motion-consistent video inpainting. In ICIP 2017: IEEE Interna-

tional Conference on Image Processing, 2017.

[Lam05] Edmund Y Lam. Combining gray world and retinex theory for

automatic white balance in digital photography. In Consumer Elec-

tronics, 2005.(ISCE 2005). Proceedings of the Ninth International

Symposium on, pages 134–139. IEEE, 2005.

[LB13] Yu Li and Michael S Brown. Exploiting reflection change for auto-

matic reflection removal. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2432–2439, 2013.

[LBHL08] Yanxi Liuy, Tamara Belkina, James H Hays, and Roberto Lublin-

erman. Image de-fencing. In Computer Vision and Pattern Recog-

nition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,

2008.

[LCM10] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange

multiplier method for exact recovery of corrupted low-rank matrices.

arXiv preprint arXiv:1009.5055, 2010.

Bibliography 157

[Len87] Reimar Lenz. Linsenfehlerkorrigierte eichung von halbleiterkameras

mit standardobjektiven für hochgenaue 3dmessungen in echtzeit. In

Mustererkennung 1987, pages 212–216. Springer, 1987.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings

of the 23rd annual conference on Computer graphics and interactive

techniques, pages 31–42. ACM, 1996.

[LK+81] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration

technique with an application to stereo vision. 1981.

[Low99] David G Lowe. Object recognition from local scale-invariant fea-

tures. In Computer vision, 1999. The proceedings of the seventh

IEEE international conference on, volume 2, pages 1150–1157. Ieee,

1999.

[Low04] David G Lowe. Distinctive image features from scale-invariant key-

points. International journal of computer vision, 60(2):91–110, 2004.

[LP49] R Duncan Luce and Albert D Perry. A method of matrix analysis

of group structure. Psychometrika, 14(2):95–116, 1949.

[LPBVD15] Benjamin Laugraud, Sébastien Piérard, Marc Braham, and Marc

Van Droogenbroeck. Simple median-based method for stationary

background generation using background subtraction algorithms. In

International Conference on Image Analysis and Processing, pages

477–484. Springer, 2015.

[LZ03] M Langer and Q Zhang. Rendering falling snow using an inverse

fourier transform. ACM SIGGRAPH technical sketches program,

2003.

[LZW03] Anat Levin, Assaf Zomet, and Yair Weiss. Learning to perceive

transparency from the statistics of natural scenes. In Advances in

Neural Information Processing Systems, pages 1271–1278, 2003.

[LZW04] Anat Levin, Assaf Zomet, and Yair Weiss. Separating reflections

from a single image using local features. In Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004

IEEE Computer Society Conference on, volume 1, pages I–I. IEEE,

2004.

[M+17] Henri Mâıtre et al. From Photon to pixel: the digital camera hand-

book. John Wiley & Sons, 2017.

Bibliography BIBLIOGRAPHY

[MBV12] C Marghes, T Bouwmans, and R Vasiu. Background modeling

and foreground detection via a reconstructive and discriminative

subspace learning approach. In Proceedings of the International

Conference on Image Processing, Computer Vision, and Pattern

Recognition (IPCV), page 1. The Steering Committee of The World

Congress in Computer Science, Computer Engineering and Applied

Computing (WorldComp), 2012.

[MGS11] Samuel Morillas, Valent́ın Gregori, and Almanzor Sapena. Adaptive

marginal median filter for colour images. Sensors, 11(3):3205–3213,

2011.

[MHB+10] Elmar Mair, Gregory D Hager, Darius Burschka, Michael Suppa,

and Gerhard Hirzinger. Adaptive and generic corner detection based

on the accelerated segment test. In European conference on Com-

puter vision, pages 183–196. Springer, 2010.

[Mic18] MicMac. MicMac main page, 2018.

[MLS10] Scott McCloskey, Michael Langer, and Kaleem Siddiqi. Removing

partial occlusion from blurred thin occluders. In Pattern Recognition

(ICPR), 2010 20th International Conference on, pages 4400–4403.

IEEE, 2010.

[MLY12] Yadong Mu, Wei Liu, and Shuicheng Yan. Video de-fencing. arXiv

preprint arXiv:1210.2388, 2012.

[MLY14] Yadong Mu, Wei Liu, and Shuicheng Yan. Video de-fencing.

IEEE Transactions on Circuits and Systems for Video Technology,

24(7):1111–1121, 2014.

[MMSZ05] Stefano Messelodi, Carla Maria Modena, Nicola Segata, and Michele

Zanin. A kalman filter based background updating algorithm robust

to sharp illumination changes. In International Conference on Image

Analysis and Processing, pages 163–170. Springer, 2005.

[MP14] L Maddalena and A Petrosino. Background model initialization for

static cameras. Background Modeling and Foreground Detection for

Video Surveillance, pages 3–1, 2014.

[MS95] Nigel JB McFarlane and C Paddy Schofield. Segmentation and

tracking of piglets in images. Machine vision and applications,

8(3):187–193, 1995.

Bibliography 159

[MS04] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant

interest point detectors. International journal of computer vision,

60(1):63–86, 2004.

[NAF+13] Alasdair Newson, Andrés Almansa, Matthieu Fradet, Yann

Gousseau, and Patrick Pérez. Towards fast, generic video inpaint-

ing. In Proceedings of the 10th European Conference on Visual Me-

dia Production, page 7. ACM, 2013.

[Ng17] Ren Ng. Lytro redefines photography with light field cameras, 2017.

[Ote15] Ives Rey Otero. Anatomy of the SIFT Method. PhD thesis, École

normale supérieure de Cachan-ENS Cachan, 2015.

[PBCL10] Minwoo Park, Kyle Brocklehurst, Robert T Collins, and Yanxi Liu.

Image de-fencing revisited. In Asian Conference on Computer Vi-

sion, pages 422–434. Springer, 2010.

[PCL08] Minwoo Park, Robert T Collins, and Yanxi Liu. Deformed lattice

discovery via efficient mean-shift belief propagation. In European

Conference on Computer Vision, pages 474–485. Springer, 2008.

[Pro17] Edoardo Provenzi. Computational Color Science: Variational

Retinex-like Methods. John Wiley & Sons, 2017.

[PSB05] Kedar A Patwardhan, Guillermo Sapiro, and Marcelo Bertalmio.

Video inpainting of occluding and occluded objects. In Image Pro-

cessing, 2005. ICIP 2005. IEEE International Conference on, vol-

ume 2, pages II–69. IEEE, 2005.

[Pur71] Madan Lal Puri. Nonparametric methods in multivariate analysis.

Technical report, 1971.

[PW12] Christian Perwass and Lennart Wietzke. Single lens 3d-camera with

extended depth-of-field. In Human Vision and Electronic Imaging

XVII, volume 8291, page 829108. International Society for Optics

and Photonics, 2012.

[RDGM10] Julien Rabin, Julie Delon, Yann Gousseau, and Lionel Moisan. Mac-

ransac: a robust algorithm for the recognition of multiple objects.

In Fifth International Symposium on 3D Data Processing, Visual-

ization and Transmission (3DPTV 2010), page 051, 2010.

Bibliography BIBLIOGRAPHY

[RMK95] Christof Ridder, Olaf Munkelt, and Harald Kirchner. Adaptive

background estimation and foreground detection using kalman-

filtering. In Proceedings of International Conference on recent Ad-

vances in Mechatronics, pages 193–199. Citeseer, 1995.

[Row98] Sam T Roweis. Em algorithms for pca and spca. In Advances in

neural information processing systems, pages 626–632, 1998.

[SAA00] Richard Szeliski, Shai Avidan, and P Anandan. Layer extraction

from multiple images containing reflections and transparency. In

cvpr, page 1246. IEEE, 2000.

[SACM12] Michael Stokes, Mattew Anderson, Srinivasan Chandrasekar, and

Ricardo Motta. A standard default color space for the internetsrgb,

1996. URL http://www. w3. org/Graphics/Color/sRGB, 2012.

[SBBB86] James E Sheedy, Ian L Bailey, Markus Buri, and Eric Bass. Binocu-

lar vs. monocular task performance. American journal of optometry

and physiological optics, 63(10):839–846, 1986.

[SBZ16] Andrews Sobral, Thierry Bouwmans, and E-h Zahzah. Lrslibrary:

Low-rank and sparse tools for background modeling and subtrac-

tion in videos. Robust Low-Rank and Sparse Matrix Decomposition:

Applications in Image and Video Processing, 2016.

[SFW14] Shao-Hua Sun, Shang-Pu Fan, and Yu-Chiang Frank Wang. Ex-

ploiting image structural similarity for single image rain removal.

In Image Processing (ICIP), 2014 IEEE International Conference

on, pages 4482–4486. IEEE, 2014.

[SKG+12] Sudipta N Sinha, Johannes Kopf, Michael Goesele, Daniel

Scharstein, and Richard Szeliski. Image-based rendering for scenes

with reflections. ACM Trans. Graph., 31(4):100–1, 2012.

[SLKS05] Jian Sun, Yin Li, Sing Bing Kang, and Heung-Yeung Shum. Sym-

metric stereo matching for occlusion handling. In Computer Vision

and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Soci-

ety Conference on, volume 2, pages 399–406. IEEE, 2005.

[SLP83] RJ Stevens, AF Lehar, and FH Preston. Manipulation and presen-

tation of multidimensional image data using the peano scan. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages

520–526, 1983.

Bibliography 161

[SN94] Tong Sun and Yrjö Neuvo. Detail-preserving median based filters in

image processing. Pattern Recognition Letters, 15(4):341–347, 1994.

[SO13] Hayden Schaeffer and Stanley Osher. A low patch-rank interpreta-

tion of texture. SIAM Journal on Imaging Sciences, 6(1):226–262,

2013.

[Tha15] Bansi B Thanki. Overview of an image inpainting techniques.

International Journal For Technological Research In Engineering,

2(5):388–391, 2015.

[TMHF99] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W

Fitzgibbon. Bundle adjustmenta modern synthesis. In International

workshop on vision algorithms, pages 298–372. Springer, 1999.

[TOF02] Emanuele Trucco, Francesca Odone, and Andrea Fusiello. Layered

representation of a video shot with mosaicing. Pattern Analysis &

Applications, 5(3):296–305, 2002.

[VAS82] KK VASILEV. Kalman filter theory. Radioelektronika, 25:102–104,

1982.

[VETC07] George Vogiatzis, Carlos Hernández Esteban, Philip HS Torr, and

Roberto Cipolla. Multiview stereo via volumetric graph-cuts and

occlusion robust photo-consistency. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(12):2241–2246, 2007.

[VK05] Johannes Von Kries. Influence of adaptation on the effects produced

by luminous stimuli. handbuch der Physiologie des Menschen, 3:109–

282, 1905.

[VLS+06] Vaibhav Vaish, Marc Levoy, Richard Szeliski, C Lawrence Zitnick,

and Sing Bing Kang. Reconstructing occluded surfaces using syn-

thetic apertures: Stereo, focus and robust measures. In Computer

Vision and Pattern Recognition, 2006 IEEE Computer Society Con-

ference on, volume 2, pages 2331–2338. IEEE, 2006.

[VWJL04] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy. Using plane+ par-

allax for calibrating dense camera arrays. In Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proc. 2004 IEEE Comp.

Soc. Conf., volume 1, pages I–I. IEEE, 2004.

[WCF05] Ching-Chih Weng, Homer Chen, and Chiou-Shann Fuh. A novel

automatic white balance method for digital still cameras. In Circuits

Bibliography BIBLIOGRAPHY

and Systems, 2005. ISCAS 2005. IEEE International Symposium

on, pages 3801–3804. IEEE, 2005.

[WFZ02] Yonatan Wexler, Andrew Fitzgibbon, and Andrew Zisserman.

Bayesian estimation of layers from multiple images. In European

Conference on Computer Vision, pages 487–501. Springer, 2002.

[Wik06] Wikipedia. Bayer pattern on sensor, 2006.

[Wik07] Wikipedia. Three iterations of a peano curve construction, whose

limit is a space-filling curve., 2007.

[WJV+05] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala,

Emilio Antunez, Adam Barth, Andrew Adams, Mark Horowitz, and

Marc Levoy. High performance imaging using large camera arrays.

In ACM Transactions on Graphics (TOG), volume 24, pages 765–

776. ACM, 2005.

[WLP+14] Jing Wang, Ke Lu, Daru Pan, Ning He, and Bing-kun Bao. Robust

object removal with an exemplar-based image inpainting approach.

Neurocomputing, 123:150–155, 2014.

[WQS09] Aiqi Wang, Tianshuang Qiu, and Longtan Shao. A simple method

of radial distortion correction with centre of distortion estimation.

Journal of Mathematical Imaging and Vision, 35(3):165–172, 2009.

[WR06] Jiying Wu and Qiuqi Ruan. Object removal by cross isophotes

exemplar-based inpainting. In Pattern Recognition, 2006. ICPR

2006. 18th International Conference on, volume 3, pages 810–813.

IEEE, 2006.

[WS82] Gunter Wyszecki and Walter Stanley Stiles. Color science, vol-

ume 8. Wiley New York, 1982.

[XRLF15] Tianfan Xue, Michael Rubinstein, Ce Liu, and William T Freeman.

A computational approach for obstruction-free photography. ACM

Transactions on Graphics (TOG), 34(4):79, 2015.

[XSZ17] Zhaolin Xiao, Lipeng Si, and Guoqing Zhou. Seeing beyond fore-

ground occlusion: A joint framework for sap-based scene depth and

appearance reconstruction. IEEE Journal of Selected Topics in Sig-

nal Processing, 11(7):979–991, 2017.

[XWSZ14] Zhaolin Xiao, Qing Wang, Lipeng Si, and Guoqing Zhou. Recon-

structing scene depth and appearance behind foreground occlusion

Bibliography 163

using camera array. In Image Processing (ICIP), 2014 IEEE Inter-

national Conference on, pages 41–45. IEEE, 2014.

[YBF04] Hulya Yalcin, Michael J Black, and Ronan Fablet. The dense es-

timation of motion and appearance in layers. In Computer Vision

and Pattern Recognition Workshop, 2004. CVPRW’04. Conference

on, pages 165–165. IEEE, 2004.

[YGMT18] Xiaoyi Yang, Yann Gousseau, Henri Mâıtre, and Yohann Tendero.

Webpage of Occlusion Removal Method, 2018.

[YHCB05] Hulya Yalcin, Martial Hebert, Robert Collins, and Michael J Black.

A flow-based approach to vehicle detection and background mo-

saicking in airborne video. In Computer Vision and Pattern Recog-

nition, 2005. CVPR 2005. IEEE Computer Society Conference on,

volume 2, pages 1202–vol. IEEE, 2005.

[YK06] Kuk-Jin Yoon and In So Kweon. Adaptive support-weight approach

for correspondence search. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(4):650–656, 2006.

[YKA13] Atsushi Yamashita, Toru Kaneko, and Hajime Asama. Precise ex-

traction of visual information from images by image processing tech-

niques. In International Symposium on Ultraprecision Engineering

and Nanotechnology, Tokyo, Japan, pages 37–42, 2013.

[YMK10] Atsushi Yamashita, Akiyoshi Matsui, and Toru Kaneko. Fence re-

moval from multi-focus images. In Pattern Recognition (ICPR),

2010 20th International Conference on, pages 4532–4535. IEEE,

2010.

[YSL04] Liron Yatziv, Guillermo Sapiro, and Marc Levoy. Lightfield com-

pletion. In Image Processing, 2004. ICIP’04. 2004 International

Conference on, volume 3, pages 1787–1790. IEEE, 2004.

[YTKA12] Atsushi Yamashita, Fumiya Tsurumi, Toru Kaneko, and Hajime

Asama. Automatic removal of foreground occluder from multi-focus

images. In Robotics and Automation (ICRA), 2012 IEEE Interna-

tional Conference on, pages 5410–5416. IEEE, 2012.

[YWLH15] Jingyu Yang, Jun Wang, Leijie Liu, and Chunping Hou. Rifo:

Restoring images with fence occlusions. In MMSP, pages 1–6, 2015.

Bibliography BIBLIOGRAPHY

[YWW+14] Jianjun Yang, Yin Wang, Honggang Wang, Kun Hua, Wei Wang,

and Ju Shen. Automatic objects removal for scene completion.

In Computer Communications Workshops (INFOCOM WKSHPS),

2014 IEEE Conference on, pages 553–558. IEEE, 2014.

[YY09] Xiaoming Yuan and Junfeng Yang. Sparse and low-rank matrix

decomposition via alternating direction methods. preprint, 12:2,

2009.

[Z+03] Jing Zhong et al. Segmenting foreground objects from a dynamic

textured background via a robust kalman filter. In Computer Vision,

2003. Proceedings. Ninth IEEE International Conference on, pages

44–50. IEEE, 2003.

[Zha13] Song Zhang. Handbook of 3D machine vision: Optical metrology

and imaging. CRC press, 2013.

[ZK00] C Lawrence Zitnick and Takeo Kanade. A cooperative algorithm

for stereo matching and occlusion detection. IEEE Transactions on

pattern analysis and machine intelligence, 22(7):675–684, 2000.

[ZLG+13] Xianhui Zheng, Yinghao Liao, Wei Guo, Xueyang Fu, and Xinghao

Ding. Single-image-based rain and snow removal using multi-guided

filter. In International Conference on Neural Information Process-

ing, pages 258–265. Springer, 2013.

[ZW05] Lei Zhang and Xiaolin Wu. Color demosaicking via directional lin-

ear minimum mean square-error estimation. IEEE Transactions on

Image Processing, 14(12):2167–2178, 2005.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	1 Introduction
	1.1 Challenges
	1.2 Overview

	2 Related Work
	2.1 Manual selection of masks
	2.2 Special photographic technology
	2.2.1 Multi-focus
	2.2.2 Light field equipments

	2.3 Automatic evaluation
	2.3.1 Mask detection
	2.3.2 Background detection

	I Image Alignment
	3 Geometrical Alignment
	3.1 Extraction of matched pixels
	3.1.1 Chosen pixels and their invariant features by SIFT
	3.1.2 Matching pixels between images

	3.2 Homography
	3.2.1 A short review of projective geometry
	3.2.2 Sample selection and model decision
	3.2.3 Reconstruction and interpolation

	3.3 Experiments

	4 Photometric Adjustment
	4.1 Experimental assumptions
	4.2 Color formation process in digital camera
	4.2.1 From luminance to raw
	4.2.2 From raw to RGB
	4.2.3 Color adjustments in RGB space
	4.2.4 A short resume

	4.3 Color alignment methods
	4.3.1 Problem model
	4.3.2 Propositions of method
	4.3.3 Sample selection

	4.4 Experiments
	4.4.1 Algorithm details
	4.4.2 Estimation

	II Fusion Methods
	5 Median Filtering
	5.1 Median and median filter
	5.1.1 Median
	5.1.2 Median filter

	5.2 Possible choices of vector median
	5.2.1 Definitions of vector median
	5.2.2 Performance prediction

	5.3 Experiments

	6 Meaningful Clique
	6.1 Feature of background pixels
	6.2 Graph and clique
	6.3 Clique based algorithm
	6.3.1 Dense clique and search
	6.3.2 Meaningful clique and iteration

	6.4 Experiments
	6.4.1 Simulated sequences
	6.4.2 Real sequences

	7 Jitter Blur Correction
	7.1 Error sources
	7.1.1 Problem description
	7.1.2 Aberrations
	7.1.3 Our judgment

	7.2 Existing tools
	7.2.1 Lens distortion correction
	7.2.2 Patch match

	7.3 Combination method
	7.3.1 General description
	7.3.2 Pipeline
	7.3.3 Parameter selection

	7.4 Experiments
	7.4.1 Attempt on the pipeline
	7.4.2 Attempt on the iteration of pipeline

	III Experiments
	8 Experimental Performances
	8.1 Data set
	8.2 Summary of parameters
	8.3 Geometrical alignment
	8.4 Photometric correction
	8.5 Image fusion
	8.6 Combination method
	8.7 Conclusion

	9 Conclusion
	Source Code
	Bibliography

