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Physique Théorique de la Matière condensée) Examinateur





Remerciements
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diffusion dans les milieux hétérogènes, sur la description et l’analyse de ces milieux. J’ai appris à
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General Context and motivation

Living cells, the fondamental units of life, are among the most complex objects known at the

micron scale. The chemical, functional, structural, and dynamical aspects are all intertwined in

these objects. Their dimensions can vary significantly, from a few micrometers (Escherichia Coli)

up to half a millimeter (Amoeba Proteus). They display a huge number of different components,

whose sizes span on three orders of magnitude, from a nanometer for proteins to a micrometer

for organelles. They sustain themselves by consuming nutrients from the surroundings and re-

produce. Their inner structure adapts to the local mechanical stress from their environment,

collaborate with cell partners and consume energy by elaborated cascades of chemical reactions.

As an example, inside a mitochondrion, the Krebs cycle, which extracts from old proteins car-

bohydrates and lipids the ATP molecules, providing energy for other reactions, necessitates 10

steps to be completed through the help of 8 different enzymes. While being simple compared

to other processes occurring in cells, the Kreb’s cycle is a perfect example of how elaborated

and challenging the fundamental understanding of cell functioning can be. The cell interior is

composed of different sub-units, called organelles, which can be compared to small chemical

factories.

The molecular biology of cell is already well developped, many processes undergoing the

cell life [2] are known. Various functions of organelles are known as well as the breathtaking

complexity of intertwined network of chemical reactions. Nowadays, one of the challenges is

to understand the dynamic transport of different particles inside the cell. Indeed a complete

description of the inner life of cell requires to understand not only the structural properties,

as well as the chemical reactions but also how fast they are occurring, where and by which

mechanisms.

At this scale the dynamics of particles is dominated by thermal fluctuations, i.e. never-ending
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mutual collisions of particles with their respective surrounding, resulting in irregular trajectories

of particles. This random nature of a particle’s motion could be illustrated by that of a drunkard

searching for it way home by randomly choosing the next tile on which to step on the infinite

lattice of the city (see Fig. 1).

Figure 1: “The Drunkard”, Salvador Dali, Gouache on paper (1922)

Under the condition that the particle is much larger than the surrounding objects, the motion

is adequately described by Brownian motion. It is a stochastic process for which the probability
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density P (x, t) to find a particle at a distance x from its starting point is given by a Gaussian

distribution. Due to isotropy, the Gaussian distribution is centered and symmetric.

The fluctuations of position as a function of time are solely described by the Mean Squared

Displacement (MSD), denoted 〈X2(t)〉, which is equal to

〈x2(t)〉 =

∫ ∞
−∞

x2P (x, t) = 2Dt (1)

in one dimension. Here 〈.〉 denotes for the Ensemble Average, i.e. the average over all possible

realizations of the squared position x2 at time t weighted by the probability density P (x, t). The

MSD has a linear dependence on time, and the only parameter that matters in this problem is

the diffusion coefficient D which characterizes the intensity of fluctuations of position at time t.

For more details on Brownian motion see Sec. 1.1.

However the problem is much more complicated for the cell. The cell interior is extremely

crowded, 30% to 40% [85,86,200] of its inner volume is occupied by large macromolecules. Such

a crowding has an important effect on the dynamical properties of objects in the cytoplasm.

Figure 2 illustrates well the crowdedness of the cell. Since biologists started to be able to look at

the dynamics of individual trajectories of tracers through elaborated microscopy measurements,

discrepancies from the celebrated linear MSD have been recorded. Typically one observes a

power law dependence of the MSD on time called “anomalous” diffusion, the relation is

〈X2(t)〉 = 2Dαt
α, (2)

with Dα the generalized diffusion coefficient in units m2.s−α and α the scaling exponent.

The dynamics is subdiffusive (i.e. α < 1) in many experiments testifying for slower space ex-

ploration. It is now consensual that anomalous subdiffusion can be attributed to crowding inside

the cell. However the precise physical mechanism responsible for it remains debated. Several

explanations have been given to explain this behavior, (see Sec. 1.2). In brief possible expla-

nations of subdiffusion include: long periods on which the particle is stopped (see Sec.1.2.1.2),

or due to negative correlation of the tracer’s increments due to encounters with its environment

(see Sec. 1.2.1.1) or finally because a large part of the volume is excluded so that the accessible

space is fractal (see Sec. 1.2.1.3).

The observations of anomalous subdiffusion are numerous. In solution, the motion of strep-

tavidin in the presence of dextrane obstacles is more and more subdiffusive as the concentration

8



Figure 2: Artistic view of the Mycoplasma mycoides cell interior by David Goodsell (2011),

Watercolor, the Scripps Research Institute

of dextrane decreases. The exponent α ranges from 1 at low concentration, to a plateau value

αmin = 0.74± 0.02 at large concentration. From this constatation a phenomenological relation

for the anomalous exponent has been provided

α = αmin + (1− αmin)e−φ/φ0 , (3)
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where φ0 is the typical decay depending on the type of molecule [9]. In Kv1.4 and Kv2.1

potassium ion channels, anomalous diffusion is attributed to obstructed diffusion (see Sec.

1.2.1.3) [233]. The effect of the actin network [288] when probes have a size a comparable

to the actin’s mesh size λ were reported to undergo successive trapping with power law waiting

time modeled by Continuous Time Random Walk (see Sec.1.2.1.2), the exponent being related

to the ratio a/λ.

But for smaller objects, the actin network does not act as a cage. However, labeled dextran

in the cytoplasm of HeLa cells remains subdiffusive. The anomalous behavior is better described

by anticorrelated fractional Brownian motion (see Sec. 1.2.1.1.2) [281]. Experiments on crowded

fluids reveal the same anti-correlated motion [258,282,283]. Lipid granules inside the cytoplasm

of yeast cells reveal anticorrelated motion which have been modeled by a generalized Langevin

equation (see Sec. 1.2.1.1.1); the motion of the same granules in water, after lysis of the cell was

reported to be Brownian, once again testifying for the role of crowding [265]. The motion of

mRNA in cytoplasm of prokaryotic E. Coli bacterial cells presents the same negative correlations,

but additionally, mRNA displays “periods of almost localized motion, separated by fast jumps

to a new position” associated to successive interactions with objects in the cytoplasm [106].

In [141], the motion of lipid granules in Schizosaccharomyces pombe was shown to look like a

Continuous Time Random walk (with a power law waiting time with a cut-off) inside a harmonic

trap at short-time and a motion which resembles fractional Brownian motion.

When performing the inverse problem of identifying the motion origin from a trajectory, it

is important to realize that the exponent alone does not allow to determine a microscopic mech-

anism. However the single trajectory statistics differ from one model of anomalous diffusion to

another. So the analysis of single trajectories offers a possibility to identify the correct model.

In addition to the anomalous behavior of MSD, several recent experiment looked at the

distribution of displacements and revealed unexpected features. According to recorded experi-

mental trajectories in granular media, turbulent flow, intracellular transport [111, 256] and cell

membrane motion [123, 143], the distribution of displacements is not Gaussian as one would

expect, but displays exponential tails. This interesting feature is not exclusive to cells but has

appeared in various complex media. Three typical shapes of the distribution of displacements

have been observed: (i) flat distribution near zero with an exponential tail is found in granular
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materials [209], turbulent flow [108], active gels [25,202,267], glassy material [48], (ii) exponen-

tial behavior in entangled F-actin networks [278, 279], log-return of stock prices [75], and (iii)

stretched exponential form in granular gas [229], in crowded environments [102, 103] and from

simulations of diffusion with interacting obstacles [235]. A common feature of these dynamics

is that the displacement distribution becomes Gaussian in the long-time limit [195].

The exponential tails are reminiscent of heterogeneities in the medium. What is the physical

mechanism at the origin of this observation remains an open question. However several phe-

nomenological approaches have been able to catch the main features of these heterogeneities

by considering a “diffusing diffusivity”. The tracer experiences a medium in which its diffusion

coefficient is either time or space dependent. At the experimental timescale, fluctuations of diffu-

sivity make the displacements not identically distributed which induces departure from Gaussian

distribution of displacements. Moreover, new questions arise on how to correctly measure and

model this heterogeneity. What are the relevant statistical quantities to properly identify the

mechanism responsible for this heterogeneity? How much the fluctuations of diffusivity affect

the measurement of an effective averaged diffusion coefficient ?

The crowding makes the cell in general more difficult to explore and diffusivity heterogeneities

seem to make some places even less accessible. However, the apparent difficulty of intracellular

exploration does not prevent cells to be alive. This means that other mechanisms exist to

shortcut this limitation. One of these mechanisms is well known. Vesicles are transported

along microtubules (the cellular highways) by kinesin and dynein molecular motors [7, 33, 47,

107, 146, 237]. This transport consumes energy in the form of ATP molecules that allows the

vesicles to be transported almost ballistically (i.e. the MSD exponent α = 2) making much

more efficient the trafficking of the strategic resources contained in these microscopic vehicles.

Due to fluctuations, the vesicle can detach and resort to diffusive motion until the next active

transport. The vesicle thus alternates between two phases of motion, it is an “intermittent

process”. Many biological processes are intermittent, i.e., they switch between two or several

phases. The most common examples are the run-and-tumble motion of bacteria [21, 23, 259]

and foraging strategies of animals, e.g., predators who adopt hunting strategies by alternating

between slow careful search and fast displacement (see the review [18] and references therein).

In microbiology, examples include alternating phases of three-dimensional bulk diffusion and
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one-dimensional sliding along DNA chains of DNA-binding proteins [22,171,226,275], temporal

trapping of tracers in polymer cages [95, 288], binding/unbinding of macromolecules to form

temporal ligand-receptor pairs or to neutralize pathogens by antibodies [29,199,238,245,266,293],

switching between distinct conformational states [46,98], alternating phases of bulk and surface

diffusion [17,18,166,228,231], etc. The intermittent character of the motion makes the statistical

analysis and biophysical interpretation of single particle trajectories even more challenging. If

the intermittency is ignored, switching between several phases can be (mis)interpreted as a

single effective phase with peculiar properties. For instance, switching between active (ballistic,

α = 2) and passive (diffusive, α = 1) motion of a vesicle can be effectively understood as super-

diffusion, with an intermediate scaling exponent 1 < α < 2. Moreover, intermittency can be

also misleadingly interpreted as non-stationarity or non-ergodicity of the process according to

statistical tests.

In order to observe the in vivo motion of an intracellular object, a common technique is

to attach a fluorescent protein to it and then record its motion using dedicated microscopy

technique. Due to the fact that some statistical properties are only accessible at the single

trajectory level, the analysis is very challenging. In order to reduce the fluctuations of calculated

relevant statistical quantities, many statistical tools need a large amount of trajectories in order

to properly evaluate ensemble averages. In the scenarios we will consider during this thesis,

this ensemble average is not achievable, thus even the simple MSD is not accessible. Therefore

any estimator applied to a single random trajectory will itself be a random variable. Moreover,

experimental noise always adds complexity to the problem. A possibility to reduce the variations

is to time average the quantities over a trajectory.

From a trajectory of duration texp made of N increments of duration δ (such that texp = Nδ)

recorded at discretized instants of time, the time average using a lag-time ∆ (of duration ∆δ)

is

f̄(∆δ) =
1

N −∆

N−∆∑
k=1

f(x(k + ∆)− x(k)), (4)

where f is an arbitrary smooth function and ’ ¯ ’ denotes the time-average. However when

performing this average, a question comes immediately in mind. Is the time-averaged quantity

equal to the ensemble averaged one that I was aiming at calculating? In other words, we ask

to which extent a single trajectory is representative of an ensemble of trajectories originated
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from the same dynamics. In general the answer is negative. Two conditions must be verified for

getting the positive answer: ergodicity and stationarity. The former deals with the equivalence

of time and ensemble averages in the limit of infinitely long trajectories while the latter ensures

the distribution of increments of the process to be independent of time. If both conditions are

fulfilled, the time average with respect to any well-behaved function is equal to ensemble aver-

aged counterpart. Since neither the mechanism underlying the motion nor the validity of both

properties are known, they should be tested beforehand. Then, only a thorough exploration of

the physical properties through various statistical tests can unravel the nature of the transport

mechanism. From this mechanism one can formulate an appropriate physical model. Once an

appropriate model is identified, one can estimate its parameters that are related to the intracel-

lular transport, and then rely on the theoretical knowledge about the model to predict biological

implications, e.g., biochemical reaction rates, translocation or transcription mechanisms, drug

delivery, etc. [20,35].

13



Contribution of this thesis

In this thesis, the overall question we ask is: What can one learn from a single realization of a

random trajectory about the object that produced it and its environment? We put efforts in

trying to be as close as possible to a non-biased analysis by suspending our preconceived ideas

and taking a priori no assumption. Consequently, our approach consists in combining hypothesis

testing to various statistics in order to understand the underlying dynamics.

For this purpose, in the rest of the first chapter, we describe the main models of anomalous

diffusion and non-Gaussian diffusion, their properties and propagators. We present also the

main statistical properties of continuous random processes in general in Appendix A. We also

discuss the literature for testing various hypotheses and recognizing transport processes.

In the second chapter we propose improved ergodicity and mixing estimators in order to iden-

tify nonergodic dynamics from a single particle trajectory. The estimators are based on the time

averaged characteristic function of the increments and can thus capture additional information

on the process as compared to the conventional time averaged mean square displacement. The

estimators are first investigated and validated for several models of anomalous diffusion such

as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic

continuous time random walks and scaled Brownian motion. The estimators are then applied

to two sets of earlier published trajectories of mRNA molecules inside live E. coli cells and of

Kv2.1 potassium channels in the plasma membrane. Since the estimators do not rely on ensem-

ble averages, the nonergodic features can be revealed separately for each trajectory, providing a

more flexible and reliable analysis of single-particle tracking experiments in microbiology.

In the third chapter, we propose a new model-free method to detect change points between

distinct phases in a single random trajectory of an intermittent stochastic process. The local

convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g.,
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the diameter or the volume) are used as discriminators between phases. The efficiency of the

LCH method is validated for six models of intermittent motion, including Brownian motion

with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents,

and surface-mediated diffusion. We discuss potential applications of the method for detection

of active and passive phases in the intracellular transport, temporal trapping or binding of

diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in

the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.

In Chapter 4, we propose an analytically solvable model of non-Gaussian diffusion that

generalizes the approaches [49,135,137] of diffusing diffusivity with easily physically interpretable

parameters. Depending on the parameters, the distribution of displacements can be either flat

or peaked at small displacements, with an exponential tail at large displacements. We show that

the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive

the asymptotic behavior, and discuss some implications and extensions.

In Chapter 5 we apply the statistical machinery for analyzing experiments. First we study a

macroscopic realization of planar Brownian motion by vertically vibrated disks. We perform a

systematic statistical analysis of many random trajectories of individual disks. The distribution

of increments is shown to be almost Gaussian, with slight deviations at large increments caused

by inter-disk collisions. The velocity auto-correlation function takes both positive and negative

values at short lag times but rapidly vanishes. We compare the empirical and theoretical distri-

butions of time averaged mean square displacements and discuss distinctions between its mean

and its most probable value. In the second experiment, we probe the cytoplasm by tracking

passive cytoplasm-induced intracellular motion of tracers, which yield anomalous diffusion and

non-Gaussian distributions of increments. The distributions collapse onto a single master curve

even under modification of the cytoskeleton composition. This reveals a universal scaling, man-

ifesting a generic feature of intracellular transport, which is independent of the cytoskeleton.

Hence, we show that the crowded cytosol determines the dominant mechanism of intracellular

transport, while the different cytoskeleton components control only the efficiency of intracellular

transport. Finally, we attribute the non Gaussian transport features to spatio-temporal hetero-

geneities of the cytoplasm. In Chapter 6, we summarize the major results of this thesis and

discuss perspectives for future research.

15





Chapter 1

Theoretical Background

1.1 Brownian motion

Robert Brown observed in a microscope a continuous jittery motion of minute particles ejected

from the Clarkia pollen grains suspended in water [40]. Since a more systematic study by

Jean Perrin [214, 215], the abundant experimental evidence of Brownian motion of microscopic

particles has been established [34, 96, 112, 232]. The mathematical origin of this abundance lies

in the central limit theorem which implies a universal probabilistic description of motion at

mesoscopic time and length scales, regardless microscopic dynamics.

It is Einstein [83] who first described the problem by considering the motion of a colloid in

suspension. The colloid experiences a symmetric force around its surface due to kicks by water

molecules hence the random motion is symmetric. Thus the probability P (x, t) of a colloid as

a function of time is itself symmetrical and centered at zero. The mean displacement averaged

over the concentration P (x, t) is not informative as its value is zero at all time due to the

mirror symmetry of the problem. The appropriate quantity to inquire into is the Mean Squared

Displacement (MSD), which measures the averaged squared deviations of the concentration.

Einstein found that the Fick equation describes well the problem

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
(1.1)

where D is the diffusion coefficient in unit m2.s−1. In the case of Brownian motion, the MSD

follows

〈X2(t)〉 = 2dDt, (1.2)
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in d dimensions. The dependence on time is linear with time such that the only parameter

involved in this complex process is the diffusion coefficient.

D =
kBT

6πrν
, (1.3)

with kB the Boltzmann’s constant, T is the absolute temperature, r the radius of the particle

and ν the dynamic viscosity of the viscous medium. Through the relation kB = R
NA

, where R

is the gas constant and NA the Avogadro number, the number of particle in a mole of water is

connected to the macroscopic behavior of the colloid in suspension that allowed Jean Perrin [214]

to calculate Avogadro’s number and verify the atomic hypothesis.

Another derivation was proposed by Smoluchowski in 1906 [249] where he derived the Gaus-

sian distribution as the continuum limit of a simple random walk.

Yet another approach was developed by Langevin [158] who described the motion of a colloid

of mass m by Newton’s second law of motion with friction constant γ in s−1 and an additional

random force η(t). Because the colloid is gigantic as compared to water molecules, the time

for water to equilibrate is much faster than for the colloid. There is then a separation of scales

making possible to consider the change of position dX in a time dt as a random change by

virtue of the central limit theorem which states that the sum of random Independent Identically

Distributed (IID) variable, with finite two first moments asymptotically converges in law to a

Gaussian distribution. The Langevin equation

m
d2

dt2
x(t) = −γm d

dt
x(t) + η(t), (1.4)

is the first stochastic equation. The two time scale argument allows one to consider the noise

as Gaussian with mean zero due to the symmetry 〈X(t)〉 = 0 and the covariance 〈η(t)η(t
′
)〉 =

2γkBTδ(t− t
′
).

In the limit of large friction, inertial effect disappears leading to the simplified time-rescaled

equation
d

dτ
x(τ) = η(τ). (1.5)

For a complete review see [130].
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1.2 Anomalous subdiffusion

In this section we discuss the three main models that rationalize of anomalous subdiffusion and

how to recognize between them.

1.2.1 Theoretical models of anomalous diffusion

In this section are presented the three main models of anomalous diffusion, together with their

physical interpretation and some of their properties. A good reference concerning this topic is

the book from Klafter and Sokolov [153].

1.2.1.1 Memory induced anomalous diffusion

In this section, we present three main models in which anomalous diffusion arises from the

memory of the increments. The negative - power law decaying - correlation of increments has

been identified as a rationalizing transport in several experiments.

1.2.1.1.1 The generalized Langevin equation

The Generalized Langevin Equation models a particle experiencing a viscoelatic medium. The

medium induces non Markovian friction forces of which decay is described by the friction kernel

γ(t). The equation reads

mẍ(t)−
∫ t

−∞
mγ(t− s)ẋ(t)(s)ds = F (t), (1.6)

where F (t) is a random force with covariance 〈F (t)F (t′)〉 = K(|t − t′ |) refered to as colored

noise. The random force and the memory kernel are related through the fluctuation dissipation

theorem:

K(t) = kBTγ(t) (1.7)

with kB the Boltzmann constant and T the absolute temperature of the system. The partic-

ular form of the covariance depends on the microscopic details of the dynamics, for example

hydrodynamic effects can be taken in account [94].

The Generalized Langevin equation is in general hard to solve. However in the particular

case of a linear equation with Gaussian noise, the probability density of increments is Gaussian.
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In this case the propagator is completely characterized by first and second moments. The first

moment is zero the second moment can be obtained through a Laplace transformation with

respect to time [264,277].

1.2.1.1.2 fractional Brownian Motion

The fractional Brownian motion WH(t) [154,180] is a centered Gaussian process, which is defined

by its covariance function:

〈WH(t)WH(t
′
)〉 = Dα

(
|t|2H + |t′ |2H − |t− t′ |2H

)
, (1.8)

where 0 < H < 1 is the Hurst exponent, and Dα is the generalized diffusion coefficient.

From which the expression yields from a weighted average of the Wiener increments dWt.

Increments of a Wiener process are intergated on the interval s ∈ (−∞, t). The process is

non-local in time and non-Markovian.

WH(t) = WH(0) +
Dα

Γ(H + 1/2)

[∫ 0

−∞

(
|t− s|H−1/2 − (−s)H−1/2

)
dWs +

∫ t

0
(t− s)H−1/2dWs

]
.(1.9)

The basic properties of the increments are

• Self-similarity: P(WH(at)) = a2HP(WH(t)), the process looks the same at all scales;

• Stationarity: P(WH(s + t) −WH(s)) = P(WH(t)), the distribution of its increments is

time invariant.

The fBm is an important model in mathematics as it is the only self-similar Gaussian process

with stationary increments.

The anomalous scaling of the MSD 〈X2(t)〉 = 2Dαt
2H originates from the long-time memory

of its increments. Three types of behaviors are distinguishable: anti-persistence for H < 0.5 (i.e.

rapidly changes direction), persistence for H > 0.5 (i.e. tendency to keep the same direction),

and Markovian Brownian motion for H = 0.5.

This is the long-range memory process that is often used to model anti-persistent subdiffusive

motion for H < 1/2 (e.g., the motion of a tracer in a visco-elastic medium with no characteristic

timescale [26,116,258]) and persistent superdiffusive motion for H > 1/2 (e.g., active transport

of cargos on microtubules by molecular motors [7, 33,47,69]).
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The probability of finding an object at distance x at time t from x0 at time t0 is

P (x, t|x0, t0) =
1√

4πDα(t− t0)2H
exp

(
− (x− x0)2

4Dα(t− t0)2H

)
(1.10)

In a discrete-time approximation, the increments of the fBm, ∆Xn = WH(n + 1) −WH(n)

called the fractional noise, can be simulated as a column vector ∆X using the relation

∆X = C1/2N(0, 1) (1.11)

where C is the covariance matrix of the fractional noise constructed from the autocovariance

function K(k) = Dα

[
|n− 1|2H − 2|n|2H + |n+ 1|2H

]
and N(0, 1) is a column vector of inde-

pendent standard Gaussian variables. However in pratice, computing the square root of the

covariance matrix can be time consuming, especially for long trajectories. To overcome this

difficulty, several strategies have been proposed, either exact or approximated [72].

A possible generalization of fBm is obtained by replacing the Gaussian noise by a stable

noise yielding the “fractional Lévy stable motion” [41].

The fBm is a mathematical model which is not based on a physical ground. However it is

equivalent to a force-free overdamped generalized Langevin equation (i.e. inertia is neglected) in

the long-time limit. So the phenomenological approach offered by the fBm should be physically

interpreted in term of the generalized Langevin equation.

1.2.1.1.3 Phantom polymers and Markovian embedding

Polymer dynamics can be modeled as a system of particles undergoing random motion within

an interaction potential binding together the polymer. Let us consider the simplest model, when

the interactions are approximated by harmonic potential and the beads are phantom so they

can overlap. The problem is linear and can be solved analytically. The equations on each degree

of freedom are Markovian; however the coupling between them induces some memory effects so

the marginal dynamic of a single bead is no longer Markovian. The most classical Rouse model,

where the monomers are arranged in series, displays a subdiffusive anomalous MSD exponent

α = 1/2 in the limit of infinitely many monomers [109].

The idea of Markovian embedding is to take advantage of this interaction induced anomaly

to approximate an arbitrary correlation function by choosing an appropriate structure of the

polymer. One can add imaginary particles interacting through harmonic potential with the

20



tracer of interest to model the effect of the complex surrounding viscoelastic media [109]. The

structural properties of the system are encoded in the eigenvalues of the matrix describing the

harmonic coupling that determine the decay of the VACF thus the MSD values. Choosing

appropriately the coupling constants make possible to model any correlation, any impact of

the viscoeclatic medium on the individual motion of the tracer. The description of a Gaussian

process with complicated correlation function is mapped onto the problem of a multidimensional

Markovian dynamics [212]. The Langevin equation for the system of M + 1 particles, which

describes the motion of the particle of interest x0 with M imaginary ones x1, . . . xM reads
η0ẋ = f(x, t)−

M∑
i=1

ki(x− xi) +
√

2η0kBTξ0(t)

ηiẋi = ki(xi − x) +
√

2ηikBTξi(t)

(1.12)

where for each particle i ∈ [0,M ], ηi is the viscous friction coefficient, ki is the spring constant of

the harmonic potential and ξi is a white noise with 〈ξi(t)〉 = 0 and 〈ξi(t1)ξj(t2)〉 = δijδ (t1 − t2).

A force f(x, t) applied on the system is applied only to the particle i = 0 and not the imaginary

ones i > 0.

We can describe this system as a matrix equation

Ẋ = −µX + F

where µ is the matrix describing the interactions between the monomers.

We search solutions of Ẋ = −µX. They are of the form X(t) = e−µtB(t). Now we char-

acterize the function B(t) by constant variation method which gives, with the initial condition

U = X(0),

X(t) = e−µtX(0) + e−µt
∫ t

0
dt′eµt

′
F (t′)

If the matrix µ is symmetric, it is diagonalizable in the form µ = V λV −1 where V is the

eigenvector and λ the diagonal matrix of eigenvalues. The MSD reads

〈(Xi(t)−Xi(0))2〉 =

M+1∑
n1=1

M+1∑
n2=1

M+1∑
m=1

Vin1

(
e−λn1 t − 1

)
V −1
n1m

kBT

km
Vin2

(
e−λn2 t − 1

)
V −1
n2m

+
1

λn1 + λn2

(
1− e−(λn1+λn2)t

) kBT
ηm

(1.13)

In the long-time limit, when the velocity Autocorrelation Function (VACF) of every degree

of freedom has vanished (t� max(λi)) the MSD becomes linear (as Brownian motion). At this
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timescale, interactions within the polymer are no longer affecting the marginal probability of

each monomers.

Now it is instructive to write the Fokker-Planck equation for the system of Langevin equa-

tions. The expression for this (M + 1)-dimensional dimensional Fokker-Planck equation reads

∂P (x, t)

∂t
=

M+1∑
i=1

M+1∑
j=1

∂

∂xi
µijxj(t) +

kBT

ηi

M+1∑
i=1

∂2

∂2xi

P (x, t) . (1.14)

Because the input noise is Gaussian, we expect to obtain a Gaussian distribution at the end.

So the solution in the Fourier space is given by the characteristic function of a multidimensional

Gaussian process

P (x, t, x0, t0) = exp

(
i
M∑
k=0

〈xk (t− t0)〉 −
M∑
i=0

k2
i 〈x2

i (t− t0)〉

)
. (1.15)

In order to start the system at equilibrium, the initial position of the i-th particle xi(0) is ran-

domly choosen from a Gaussian distribution of mean 〈xi(0)〉 = 0 and variance 〈x2
i (0)〉 = kBT/ki

[109] so the mean position over time 〈xi (t− t0)〉 = 0. The second term of the characteristic

function corresponds to the MSD 〈x2
i (t− t0)〉 for each particle that has already been calculated

for the Langevin equation in Eq. (1.13).

For the particle of interest x0, the marginal probability density is then

P (x0, t|x0(t0), t0) =
1√

2π〈x2
0 (t− t0)〉

exp

(
−(x0 − x0(t0))2

2〈x2
0 (t− t0)〉

)
. (1.16)

We obtain the analytical form of the distribution that takes in account correlations.

In order to be able to reproduce a power law for memory depicting anomalous diffusion, the

following system have been proposed [109]

ki =
ηαv

α
0

bα(i−1)Γ (1− α)

and

ηi =
ηαv

α−1
0 b(α−1)(i−1)

Γ (1− α)

with 0 < α < 1 and i ∈ [1,M ]. Here ηα is the viscous friction coefficient a single monomer

in the medium and v0 its initial speed. The parameter b defines the repartition of spring

constants and friction cefficients among the scales. This approximation works for the time
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period t ∈
[

1
v0
, b
M−1

v0

]
[109].

The Markovian embedding approach is very interesting as it can model complicated correlation

structures and reproduces the cross-over toward Brownian motion at long time.

1.2.1.2 Waiting time induced anomalous diffusion

Another possible explanation of anomalous diffusion due to molecular crowding is possible. A

particle can exhibit long stalling periods (waiting times) between jumps. Under the assumption

that the waiting times are power law distributed with infinite mean, the MSD is anomalous

(subdiffusive).

Continuous Time Random Walk [32] is a general model introduced by Montroll and Weiss

[201] to describe waiting situations. This approach raised a considerable interest in the physics

community as it allowed to derive various diffusion equations and notably a class of fractional

diffusion equations.

One can imagine that a molecule diffuses into a medium with a high concentration of macro-

molecules. Thus, the particle may be blocked by macromolecules and prevented from moving

for a long time, which may be comparable to the time of the experiment. The continuous time

random walk describes the discrete jumps happening in continuous time.

1.2.1.2.1 Renewal theory

The mathematical description of CTRW takes advantage of the renewal theory. For independent

jumps, the probability pn(x) of being at x after n displacements is given by the renewal formula

pn(x) =

∫ ∞
−∞

pn−1(x− x′)p(x′)dx′ (1.17)

which in the Fourier domain, by the convolution property, becomes p̂n(q) = (p̂(q))n. Given the

waiting times density φ(t) between two consecutive jumps, one can characterize in a similar way

the probability density φn(t) of the time at which the nth step has occured:

φn(t) =

∫ t

0
φn−1(t− t′)φ(t

′
)dt
′

(1.18)

which in the Laplace domain reads φ̃n(s) = (φ(s))n. Then the probability for waiting a time t

without moving, in the Laplace domain is Φ̃0(s) = 1−φ̃(s)
s Finally, the complete propagator is
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the probability of making n jumps in a time t
′

and then not moving for a time t − t′ summed

over all possible n ∈ [0,∞] which in the Laplace-Fourier domain is explicitly

ˆ̃P (q, s) =
∞∑
n=0

p̂n(q)φ̃n(s)Φ̃0(s). (1.19)

Because p(x)φ(s) < 1, one can use geometric series summation to get the Montroll-Weiss formula

ˆ̃P (q, s) =
1− φ̃(s)

s

1

1− p̂(q)φ̃(s)
. (1.20)

This expression is very general as it is independent of the distribution considered.

Assuming that φ(s) has a finite first moment (e.g. exponentially distributed) and p(x) is cen-

tered and has a finite second moment, the Taylor expansion for long time and large displacement

gives

p̂(q) ≈ 1− σ2

2
q2 (1.21)

φ̃(s) ≈ 1− λs

The solution in Fourier Laplace space is

ˆ̃P (q, s) =
1

σ2

2λq
2 + s

(1.22)

By using the properties of the Laplace and Fourier transformation, diffusion equation is

retrieved by inversion of the transforms

∂P

∂t
= D

∂2P

∂x2
(1.23)

where the diffusion coefficient D = σ2

2λ . When the mean waiting time is finite, the process is

asymptotically equivalent to a Brownian motion.

1.2.1.2.2 Time-fractional diffusion

If one chooses φ(s) to be a power law distribution (e.g. Pareto I), the mean waiting time becomes

infinite. We then have to consider the following asymptotic expansion

φ̃(s) ≈ 1− ταsα, (1.24)

for which the solution is

˜̂
P (k, s) =

ταsα−1

ταsα + q2σ2/2
. (1.25)
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By inverse Laplace and Fourier transform, one can deduce the time-fractional diffusion equation

∂P

∂t
= 0D

1−α
t Dα

∂2P

∂x2
, (1.26)

with the generalized diffusion coefficientDα = σ2

2τα in units m2.s−α and the 0D
1−α
t is the

Riemann-Liouville fractional operator defined for an arbitrary function f(t) as

0D
1−α
t f(t) =

1

Γ(α)

∂

∂t

∫ t

0

1

(t− t′)1−α f(t
′
)dt
′
. (1.27)

The emergence of this operator is directly related to the fact that the discrete times at which

jumps happen, form a fractal dust on the support of the time half-line [164]. This operator is

non-local as the integral involves all the preceding times.

A more general derivation including a force deriving from a potential is given in [12], while

the case of a time-dependent force is discussed in [124].

The exact solution to Eq. (1.26) is known to be [192,290]

P (x, t) =
1√

4πKαtα
H2,0

1,2

 x2

4πKαtα

∣∣∣∣ (1− α/2, α)

(0, 1), (1/2, 1)

 , (1.28)

where H2,0
1,2 is the Fox H function [178].

One of the properties of the CTRW is its non-ergodicity which will be discussed in Annex

B.3.

The literature on Continuous Time Random Walk is large as it makes possible a wide range of

generalizations of the diffusion equations. It is possible to derive and solve space-time fractional

diffusion equation [177] when the mean jump length is infinite.

Another intepretation is that the waiting times come from random interactions with the

surrounding [181].

1.2.1.3 Excluded volume induced anomalous diffusion

Another mechanism which can be responsible for anomalous diffusion is that the space in which

the motion occurs is obstructed by the crowded environment. Here we particularly look at the

case of self-similar spaces where the accessible volume displays a scaling relation, in the sense

that the mass m(r) contained inside a sphere of radius r scales as

m(r) ∝ rdf , (1.29)
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where df is the fractal dimension of the accessible space.

While only the dimensionality d is necessary to describe the properties of an Euclidean space,

self-similar objects need 3 dimensions to be described: the dimension of the embedding space d,

the fractal dimension df , and the spectral dimension ds.

The fractal dimension describes how the self-similar object fills the Euclidean embedding

space at different scales. For rigorous mathematical definition of the fractal dimension see

[89,91,268].

The spectral dimensions can be defined by considering that each site of the supporting object

is a particle interacting with the other through an harmonic potential. For the whole system,

the spectral density distribution p(ω) of the system follows the relation

p(ω) ∝ ωds−1, (1.30)

at low frequencies ω [222].

Another point of view is that the probability for a random walker to return to its starting

site at time t is

P (0, t) ∝ t−2ds , (1.31)

which is directly related to the anomalous exponent α = 2ds.

When considering diffusion on such structures the walk dimension dw needs to be introduced.

It corresponds to the fractal dimension of the random walk. The mean squared displacement

reads

〈X2(t)〉 ∝ tα = t2/dw , (1.32)

where dw = 2 for normal diffusion, leading to the well known linear dependence on time for

Brownian motion. Another interesting property is that the probability for the walker to return

at its initial position is one (i.e. recurrence property) only if dw > df . For some fractal structures

(see examples in Fig. 1.1), there is a relationship between three of these dimensions, known as

the Alexander-Orbach relation [3],

ds/2 = df/dw. (1.33)

Interestingly, the spectral dimension is independent of the dimension of the embedding space d

and the relation is valid for any size of the system.
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Figure 1.1: Left. Sierpinski gasket of fractal dimension df = ln 8
ln 3 Right. Percolation cluster on

the square lattice at p = 0.5928 just above the critical value pc.

However this relation breaks in fractals in which the diffusive properties asymptotically

depend on the system size such as diffusion in a cluster of Diffusion Limited Aggregation [133]

or on a fractal trees [70] (see examples in Fig. 1.2). For a finite system, the generalized diffusion

coefficient Dα depends directly on the number M of sites in the system [252]. When the time is

less than the time needed for the MSD to saturate (i.e. exploration of the whole system), the

MSD reads

〈X2(t)〉 = Mβtα (1.34)

where β = 2
ds

(ds/df − α). For a fractal verifying the Alexander-Orbach relation, ds/df = α

such that the dependence vanishes.

1.2.1.3.1 Diffusion in percolation clusters

A percolation cluster is an object obtained by randomly filling a lattice. Consider a lattice in

Rd with d > 1, each site is filled with a probability p independently of the others. This structure

can display a so-called percolation transition, meaning that there exists a critical value pc such

that if p > pc there exists with probability one a simply connected cluster of infinite size crossing

the whole system. Near the critical value p = pc+ε, the infinite cluster is known to display a self

similar pattern. The critical pc as well as the fractal dimension df , depend on the lattice type.

Alexander and Orbach conjectured that ds = 4/3 is any dimension [3]. Diffusion in percolation
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Figure 1.2: Two examples where the Alexander-Orbach relation does not hold. Left. A fractal

tree at the sixth generation with three new branches at each generation. Right. A diffusion

limited aggregation cluster simulated on a square lattice with 10000 aggregated particles [133,

287].

clusters have been reviewed in [120].

1.2.1.3.2 A scaling equation

An equation for diffusion in fractals has been proposed through scaling arguments and analogy

with a conductivity problem [244]. Starting from a spherical Fokker-Planck equation in df

dimensions in which is added a radius-dependent diffusivity D(r) = r1−df
(
∂R(r)
∂(r)

)−1
= r−θ with

θ = df +α− 2. The diffusion coefficient is deduced from the resistance in a fractal which scales

like R(r) = r−α. O’Shaughnessy and Procaccia proposed the Fokker-Planck equation

∂

∂t
P (r, t) =

1

rdf−1

∂

∂r

(
D(r)rdf−1∂P

∂r

)
, (1.35)

where D(r) = D0r
−θ is a space dependent diffusion coefficient, which can be solved analytically:

P (r, t) =
2 + θ

dfΓ(df/(2 + θ))

(
1

D0(2 + θ)2t

)df/(2+θ)

exp

(
− r2+θ

D0(2 + θ)2t

)
(1.36)

for which the MSD is anomalous. The probability of return p(0, t) ∝ t−df/(df+α) gives the

spectral dimension ds = 2df/(df + α) and the walk dimension dw = df + α.
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This equation reproduces the anomalous subdiffusion but fails to reproduce the propagator

obtained for a random walk on a self avoiding walk (which is fractal) as well as in the infinite

cluster of percolation at criticality [120]. To overcome this problem Giona et al. [105] proposed a

fractional equation which reproduces the asymptotic probability density function. This equation

is a “halved equation”, obtained by taking the couple of solutions of normal diffusion in Laplace

domain, removing the diverging solution and manually replacing the order of the time derivative

(from 1/2 to 1/dw). The equation in spherical coordinates, under radial symmetry assumption

reads

0D
1/dw
t P (r, t) = −D 1

rdf/dw−1/2

∂

∂r

(
rdf/dw−1/2P (r, t)

)
(1.37)

with 0D
1/dw
t the Riemann-Liouville operator defined in Eq.(1.27). For which the solution is not

Gaussian and scales as

P (r, t) = At−df/dw exp (−c (r/R(t))γ) (1.38)

with γ = dw
dw−1 and R(t) =

√
〈X2(t)〉 ∝ t2/dw .

However this equation holds only asymptotically and does not reduce to normal diffusion

when dw = 2.

To solve the problem, Metzler et al. [191] proposed and solved an equation generalizing both

approaches, valid at any time in any embedding dimension

0D
2/dw
t P (r, t) =

1

rdf−1

∂

∂r

(
D(r)rdf−1∂P

∂r

)
, (1.39)

from which the solution reproduces the expected propagator [120].

1.2.2 Recognizing the subdiffusive mechanism

Recognizing nature of the anomalous motion from a single trajectory can be difficult. It is a priori

clear that the observed motion has only one source of subdiffusion. One can imagine situations

where the mechanisms appear together, e.g. a viscoelastic fractal medium with energetic disorder

[188].

However, several observables based on a single-trajectory statistics were proposed. The dis-

tributions of first-passage times [59, 147] and of the maximum excursion [36, 261] are different

for the three main subdiffusive models discussed above offering thus an option to distinguish

them. Also, fundamental moments [262] allow one to distinguish between the structural and the
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energetic part of the disorder. A possibility to detect diffusion in fractal media is to evaluate if

the explored space is fractal with a dimension df < d [189] (see also [190] and references therein).

At the level of a single trajectory, elaborate statistical tools have been developed to recognize

fractional Brownian motion (fBm) [42], to distinguish between fBm and Continuous Time Ran-

dom Walk (CTRW) [87,174,283], and to reveal ergodicity breaking [175].

1.3 Non-Gaussian diffusion

In this section we review some former theoretical contributions to non-Gaussian diffusion.

1.3.1 Kärger model

One fo the first contributions on the theoretical side is the Kärger model [93,145].

The Kärger model [145] has been developed to study diffusion in a medium in which a

particle can randomly switch between two domains with distinct diffusion coefficients D1 and

D2, with the exchange rates K12 and K21. By solving two coupled diffusion-reaction equations,

the Fourier transform of the propagator can be derived [145]

P̃KM (q, t) = (1− p′) exp(−q2D′1(q)t) + p′ exp(−q2D′2(q)t), (1.40)

with

D′1(q) =
1

2

D1 +D2 +
1

q2
(K12 +K21)−

((
D2 −D1 +

1

q2
(K21 −K12)

)2

+
4K12K21

q4

)1/2
 ,(1.41)

D′2(q) =
1

2

D1 +D2 +
1

q2
(K12 +K21)

((
D2 −D1 +

1

q2
(K21 −K12)

)2

+
4K12K21

q4

)1/2
 ,

p′ =
1

D′2(q)−D′1(q)
(p1D1 + p2D2 −D′1(q)),

where p1 and p2 are relative volume fractions of two domains.

The probability density distribution is not Gaussian at short-time but converges to Gaussian

at long-times. The non Gaussian parameter γ(t) measures the departure from Gaussianity:

γ(t) =
1

3

〈X4(t)〉
〈X2(t)〉2

− 1, (1.42)

which is equal to the excess kurtosis divided by 3 (the kurtosis of the Gaussian distribution).

By definition, the non-Gaussian parameter is zero for the Gaussian distribution. The analytical
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expression of the non-Gaussian parameter from Kärger model, which was derived in [139], and

also studied in [93], is

γKM (t) = η
2

t/τ

(
1− 1

t/τ

(
1− e−t/τ

))
, (1.43)

with the coefficient η = p1p2(D1−D2)2

(p1D1+p2D2)2 .

1.3.2 Diffusing diffusivity

Chubynsky and Slater [55] proposed the concept of “diffusing diffusivity” where the diffusion

coefficient evolves as a continuous random process. Therefore, the probability π(D, t) to have a

diffusivity D at time t obeys the diffusion-advection equation

∂

∂t
π(D, t) =

∂

∂D

[
s(D)π(D, t) +

∂

∂D
[d(D)π(D, t)]

]
, (1.44)

where s(D) is the drift term and d(D) is the diffusive term. Due to physical constraints (posi-

tivity of kinetic energy), the equation is solved on the real half-line R+ with reflecting boundary

at D = 0. The problem was partly solved by considering the diffusivity in its stationary regime

so the distribution of displacements is a superposition of Gaussian distributions weighted by

the distribution of diffusivity known as superstatistics [14, 15]. From the chosen stationary

distribution of diffusivity

π(D) =
1

D0
exp (−D/D0) , (1.45)

Chubynsky and Slater deduced the purely exponential propagator

P (x, t) =
1

2
√

2D0
exp

(
− |x|

2D0t

)
. (1.46)

This propagator was in agreement with the short-time behavior experimentally found in [278]

but could not reproduce the convergence to Gaussian distribution at long time.

1.3.3 The square of the n-dimensional Ornstein-Uhlenbeck process

Jain and Sebastian solved the time-dependent problem in the case when diffusivity is the distance

to origin of an n-dimensional Ornstein-Uhlenbeck (OU) process. The OU process is a Gaussian

process modeling the diffusive motion of a particle trapped by a harmonic potential. This is

a widely used model of particle interactions (e.g., a Rouse or bead-spring model in polymer
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physics [67, 74]) and of the trapping effect of optical tweezers [26, 116, 118, 156, 286]. The one-

dimensional OU process can be defined as a solution of the Langevin equation

dXt = −1

τ
Xtdt+

√
2DdWt, (1.47)

where τ is the correlation time (which is related to the inverse of spring constant), D is the

diffusion coefficient, and Wt is the standard Brownian motion.

For the solution they used a phase space integration technique [135, 137]. The probability

distribution is given by

P̃ (q, t) =

∫ ∞
−∞

dqeiqx

(
4αe−(α−1)t/τ

(α+ 1)2 + (α− 1)2e−2αt/τ

)n
, (1.48)

with α =
√

1 + 4q2. This solution generalizes Chubinsky and Slater’s one which is retrieved for

n = 2. Additionally they were able to reproduce the convergence to Gaussian distribution at

long time, as illustrated by the non-Gaussian parameter

γ(t) =
2τ

nt
− 2τ2

nt2
(1− e−2t/τ ). (1.49)

Chechkin et al. [49] solved the same problem using the subordination technique and pointed out

that superstatistical description matches diffusing diffusivity only at short times as it cannot

reproduce convergence to a Gaussian distribution at long times. They also showed, in the

superstatistical approach that taking a stretched exponential form of the distribution of diffusion

coefficients they also obtained a stretched exponential propagator P (x, t) with a power law tail

in agreement with [143].

In all of these cases, the diffusivity fluctuations do not affect the MSD behavior which remains

linear with respect to time.

Jain and Sebastian also generalized the approach to the case where diffusivity is an Ornstein-

Uhlenbeck process driven by a one-sided (positive) Lévy noise with infinite first moment [136].

In this case the distribution was expressed as a combination of hypergeometric and exponential

functions and the MSD is superdiffusive with exponent α > 1. However this behavior has not

been observed experimentally, yet.
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Chapter 2

Revealing weak ergodicity breaking

from a single trajectory

2.1 Introduction

Statistical analysis of a single random realization of an unknown stochastic process has become

indispensable in various fields, from geosciences to microbiology and finances. In these fields,

multiple realizations of a process are either impossible due to the non-repeatable unique character

of observations (e.g., earth vibrations or stock prices), or undesirable due to spatial heterogeneity

or time evolution of the medium (e.g., motion inside living cells). One therefore needs to resort

to single observations to construct a mathematical or physical model of the unknown process. In

the perspective of identifying the transport mechanism without prior knowledge, the identifica-

tion of weak ergodicity breaking is a central point. The assessment of ergodicity property has a

two-fold interest. First, it is a necessary point for a correct assessment of an appropriate stochas-

tic process as weak ergodicity can be broken in several ways [16,181]. Second, the calibration of

model’s parameters has to rely on the (implicit) ergodicity assumption to inter-change ensemble

and time averages. However, the ergodicity can fail in active or aging systems such as living

cells [13,141,280], viscoelastic media [288] or blinking nanocrystals [38,182,183]. A finite length

of acquired trajectories and randomness of estimators make challenging verifications of ergod-

icity in single-particle tracking (SPT) experimental data. At the same time, this is a necessary

step towards reliable biophysical interpretations: if the ergodicity breaking remains undetected,
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any conclusion based on time averages along a single trajectory may be strongly misleading.

We investigate in this chapter how to reveal weak ergodicity breaking from a single trajectory

realization by generalizing the approach by Marcin Magdziarz and Aleksander Weron [175].

2.1.1 The dynamical functional

Magdziarz and Weron proposed to use the dynamical functional for testing ergodicity for a

stationary infinitely divisible (SID) process, that is, a process X(n) whose distribution can be

written as the sum of independent identically distributed (IID) random variables.. Consider the

process Y (n) constructed from the increments of X(n) such that Y (n) = X(n+ 1)−X(n) with

n ∈ [0, N ] where N + 1 is the number of increments of the trajectory. The dynamical function

D(n) is the characteristic function of the variable Y (n)− Y (0), for a frequency ω = 1:

D(n) = 〈exp[i(Y (n)− Y (0))〉 (2.1)

where 〈. . .〉 denotes the ensemble average [175]. For a SID mixing process the dynamical func-

tional verifies

lim
n→∞

D(n) = |〈exp[iY (0)]〉|2. (2.2)

From this result, they introduced the functional

E(n) ≡ 〈exp(i[Y (n)− Y (0)])〉 − |〈exp(iY (0))〉|2. (2.3)

This functional fully characterizes the mixing and ergodic properties of SID processes: a SID

process is mixing (resp., ergodic) if and only if E(n) → 0 (resp., of n−1
∑n−1

k=0 E(k) → 0) as

n → ∞. However in experimental conditions, one cannot acquire an infinitely long trajectory

and often an ensemble of trajectories is hardly accessible.

In order to apply the functional 2.3 to a single trajectory, Magdiarz and Weron made the

following argument: if Y (n) is ergodic, the ensemble and time average can be interchanged, so

the ensemble averaged dynamical functional will vanish as well as the time averaged one for an

infinitely long trajectory. The estimator is obtained just by replacing the ensemble by the time

average [175]:

Ê(n) ≡ 1

N − n+ 1

N−n∑
k=0

ei[Y (k+n)−Y (k)] −

∣∣∣∣∣
N∑
k=0

eiY (k)

N + 1

∣∣∣∣∣
2

. (2.4)
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The smallness of Ê(n) (resp., of n−1
∑n−1

k=0 Ê(k)) for large n is the necessary condition for mixing

(resp., ergodicity) whereas violation of this condition reveals the mixing/ergodicity breaking. We

emphasize that the estimators based on a single trajectory allow one to reject, with some degree

of certainty, the mixing or ergodicity hypothesis but they cannot affirm it. For instance, the

smallness of the estimator Ê(n) does not imply mixing.

2.1.2 Several issues

Applying a functional to a single random trajectory of finite length results in a random time series

that need to be characterized through its statistical properties. The smallness of the estimators

needs to be quantified (e.g., by comparing the mean estimator to its standard deviation or by

determining the confidence intervals, see [138]). The mean mixing estimator from [175] for a

Brownian motion is

〈Ê(n)〉 = cn − 1

N + 1
− 2c

(N + 1)(1− c)

(
1− 1− cN+1

(N + 1)(1− c)

)
, (2.5)

with c = e−σ
2/2 where σ is the standard deviation of the increments. Several remarks can be

made.

• First, regardless of the process considered, there is an intrinsic − 1
N+1 bias due to the finite

length of the trajectory, which has to be removed.

• Second, the estimator depends directly on the scale of fluctuations σ: a trajectory with a

smaller diffusion coefficient will have its estimator vanishing slower so that a process with a

small diffusivity can be wrongly classified as non ergodic. The impact of the dependence of the

estimator on σ and on a finite trajectory length, due to which the estimators can be relatively

large even for mixing/ergodic processes, should be reduced and controlled.

• Finally, the estimator fails to identify the nonergodic continuous time random walk (CTRW) as

nonergodic. Figure 2.1 shows that the estimator averaged over an ensemble of CTRW trajectories

remains very close to zero, not detecting the nonergodic behavior. This last point was the major

motivation for our work because macromolecular crowding strongly affects the intracellular and

membrane transport [73,129,251] and can yield nonergodic features which are often modeled by

nonergodic CTRW [141, 288]. As a consequence, a reliable analysis of single-particle tracking

in living cells urges for developing statistical tests to identify single trajectories for which time

averages are not representative, either due to ergodicity breaking, or nonstationarity of the
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Figure 2.1: Left. Illustration of 15 one-dimensional trajectories of non ergodic CTRW with

Gaussian jumps and power law waiting times φ(t) ∝ 1/t1−α where the exponent is α = 0.7.

Right. The corresponding mixing estimator averaged over 105 realizations of the CTRW with

the same parameters.

process.

2.1.3 Improved estimators

We resolve the above issues by modifying the mixing estimator as

Êω(n,N) ≡ 1

N − n+ 1

N−n∑
k=0

eiω[X(k+n)−X(k)]

− 1

N(N + 1)

∣∣∣∣∣
N∑
k=0

eiω[X(k)−X(0)]

∣∣∣∣∣
2

+
1

N
.

(2.6)

The first term can be interpreted as the time averaged characteristic function of the increment

X(k+n)−X(k) at lag time n, while the second term ensures that the estimator is strictly 0 for

a constant process X(n) = X0 (in addition, the mean estimator is strictly 0 for a process with

independent X(n)). The ergodicity estimator generalizes to

F̂ω(n,N) ≡ 1

n

n∑
k=1

Êω(k,N), (2.7)

where the summation over k was shifted from the original range 0, . . . , n− 1 for convenience.

There are three modifications with respect to the original estimators: (i) we consider all

Fourier modes, not only ω = 1, (ii) we partly remove the bias by subtracting the constant term

from the second sum and changing accordingly the normalization, and (iii) most importantly, we
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apply the estimators to the long-time increments (or positions) of a trajectory, not to the short-

time increments (or velocities), see further discussion in Sec. 2.6.1. Note that each coordinate

of a two- or three-dimensional trajectory is considered separately, i.e., X(n) is restricted to be

a one-dimensional process. Formally, the inclusion of the frequency ω can be seen as rescaling

of the process 1. While such a rescaling does not change the mixing or ergodic property of the

process and is thus redundant in the limit n → ∞, high-frequency modes with large ω become

important for a finite length trajectory. Even though the changes between Eq. (2.4) and Eq.

(2.6) are minor, the application of the improved estimators to the positions of a tracer is the key

feature. Rederiving the properties of the new estimators from scratch, we manage to reveal the

nonergodic character of both model and experimental diffusive processes from a single trajectory.

To investigate the improved mixing and ergodicity estimators (2.6, 2.7), we consider several

models of anomalous diffusion: fractional Brownian motion (fBm) [154, 180], diffusion on per-

colating clusters [100], CTRW [32, 153]. The first two processes are ergodic while the latter is

not. We also consider two intermediate cases which exhibit nonergodic features at short times

(non-equality between time and ensemble averages) but are actually ergodic as in the long time

limit both averages coincide. These processes, formerly qualified as “mildly nonergodic” (which

is mileading), are the scaled Brownian motion (sBm) [142,263] and the CTRW with exponential

cut-off. These in between cases are important to analyze because in experimental conditions, a

short trajectory may be classified as nonergodic due to finite size effect while at longer time the

classification would change. Finally, we will test geometric Brownian motion (gBm) which was

reported to be nonergodic [217].

In Sec. 2.2 we present the analytical results on the mean and variance of the estimator for Gaus-

sian processes, while corresponding results for CTRW are developped in Sec. 2.3. In Sec. 2.4

are discussed the ergodic properties of other models of anomalous diffusion. The application of

the estimator on simulated and experimental data is presented in Sec. 2.5. Section 2.6 presents

some technicalities. The results of this chapter have been published in [159].

1 Historically, first papers on mixing/ergodic properties of SID processes required a dynamical functional in

a form similar to Eq. (2.3) to vanish as n → ∞ for any frequency ω (for details, see [234], Chapter 14.4). In

other words, to validate the mixing property, one needed to check the behavior of the functional for any ω that

was impractical. Magdziarz and Weron have made a significant improvement by reducing the analysis to a single

value of ω (they set ω = 1). Here, we re-introduce the frequency ω as a mean to normalize the process but we

still consider a single value of ω (which may different from 1).
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2.2 Gaussian processes

In this section the main analytical results on mean and variance of the estimator concerning

Gaussian processes are presented. The reader not interested in the mathematical derivation can

skip directly to the conclusion in Sec. 2.2.4.

2.2.1 Mean estimators

The fBm at discrete time steps is a centered Gaussian process with 〈[X(k+n)−X(k)]2〉 = σ2n2H ,

where σ2 is the variance of one-step displacement, and 0 < H < 1 is the Hurst exponent. Using

the identity

〈eiω[X(k+n)−X(k)]〉 = e−
1
2
ω2〈[X(k+n)−X(k)]2〉, (2.8)

which is valid for any discrete centered Gaussian process, we compute

〈Êω(n,N)〉 = cn
2H − 2

N∑
k=1

N + 1− k
N(N + 1)

ck
2H
, (2.9)

〈F̂ω(n,N)〉 =
1

n

n∑
k=1

ck
2H− 2

N∑
k=1

N + 1− k
N(N + 1)

ck
2H
, (2.10)

where c = e−ω
2σ2/2. For Brownian motion (H = 1/2), one gets explicitly

〈Êω(n,N)〉 = cn −
2c
(
1− 1−cN+1

(N+1)(1−c)
)

N(1− c)
, (2.11)

〈F̂ω(n,N)〉 = c
1− cn

n(1− c)
−

2c
(
1− 1−cN+1

(N+1)(1−c)
)

N(1− c)
. (2.12)

Both 〈Êω(n,N)〉 and 〈F̂ω(n,N)〉 monotonously decrease with n and approach to the limit given

by the second term, but the decrease of the mean ergodicity estimator is much slower (as 1/n).

For both estimators, the second term presents the bias which vanishes as either N → ∞ or

ω → ∞. While the trajectory length N is fixed by experimental setup, the frequency ω of the

estimator can be increased at will. Note that the mean of the original estimator (2.4) contains

the term −1/(N + 1) that could not be removed by varying ω.

For fixed n and N , the mean mixing estimator 〈Êω(n,N)〉 from Eq. (2.11) as a function of ω

exhibits nonmonotonous behavior. When n� N andN � 1, the estimator can be approximated

as cn− 2
N(1−c) that reaches the maximum at σωc ' (8/(nN))1/4. As a consequence, the estimator
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with ω = 1 would classify Brownian motion with σ . (8/N)1/4 as a nonergodic process. This

finite length effect can be eliminated by varying the frequency ω (see Sec. 2.6.2).

2.2.2 Variance of the estimators

The variance of the mixing estimator,

var{Êω(n,N)} = 〈
∣∣Êω(n,N)

∣∣2〉 − ∣∣〈Êω(n,N)〉|2, (2.13)

can be formally expressed in terms of the covariance matrix, with

〈Êω(n,N)〉 =
1

N − n+ 1

N−n∑
k=0

Ck+n,k,0,0 −
1

N(N + 1)

N∑
k1 6=k2=0

Ck1,k2,0,0, (2.14)

and

〈|Êω(n,N)|2〉 =
1

(N − n+ 1)2

N−n∑
k,k′=0

Ck+n,k,k′+n,k′

− 2

(N − n+ 1)N(N + 1)

N−n∑
k=0

N∑
k1 6=k2=0

Ck+n,k,k1,k2

+
1

N2(N + 1)2

N∑
k1 6=k2,k3 6=k4

Ck1,k2,k3,k4 ,

(2.15)

where

Ck1,k2,k3,k4 = e−
1
2
ω2〈(X(k1)−X(k2)−X(k3)+X(k4))2〉 (2.16)

includes the elements of the covariance matrix. Even for Brownian motion, the combinatorial

computation of all terms in Eq. (2.15) is tedious while the formulas are cumbersome. It is

more instructive to investigate the variance in the limit ω → ∞, in which only the terms

Ck,k,k′,k′ = Ck,k′,k,k′ = 1 do not vanish exponentially. Keeping only these terms, one easily finds

var{Ê∞(n,N)} =
1

N − n+ 1
− 1

N(N + 1)
. (2.17)

The variance is of the order of 1/N for small n but progressively grows up to 1 at n = N . For

long trajectories (N � 1), the second term can be neglected.

The same technique yields the large ω asymptotic behavior of the variance of the ergodicity

estimator:

var{F̂∞(n,N)} =
1

n2

n∑
k=1

1

N − k + 1
− 1

N(N + 1)
, (2.18)
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Figure 2.2: The standard deviation of the mixing (a) and ergodicity (b) estimators at several

values of ω for Brownian motion with N = 100 and σ = 1. The large ω asymptotic limits given

by square roots of Eqs. (2.17, 2.18) are shown by solid lines.

in which the second term can be neglected for N � 1. When 1 � n � N , the sum can be

approximated as ln(N/(N − n + 1)) ' n/N , i.e., the variance decreases with n as 1/(nN),

in contrast to the increasing variance of the mixing estimator in Eq. (2.17). In other words,

summing contributions from different lag times greatly reduces fluctuations so that the ergodicity

estimator applied to a single trajectory yields less noisy results.

For the case of Brownian motion, Fig. 2.2 illustrates how the standard deviation of the

mixing and ergodicity estimators approaches their asymptotic limits (given by square roots of

Eqs. (2.17, 2.18)) as ω increases. One can see that the asymptotic formulas become accurate

approximations for ωσ & 2.

2.2.3 Brownian motion with two diffusion coefficients

To illustrate the potential impact of time-dependent diffusion coefficient onto the mixing estima-

tor, we consider the trajectory concatenating two Brownian trajectories with distinct diffusion

coefficients D1 and D2. In the discrete case, one can generate such process by adding indepen-

dent Gaussian variables with variance σ2
1 = 2D1δ up to the step m − 1, and then completing

the second part by independent Gaussian variables with σ2
2 = 2D2δ, m − 1/2 being the “bor-

der” between two parts. The computation of the mean mixing estimator is cumbersome but

straightforward:

〈Êω(n,N)〉 =
S1

N − n+ 1
− 2S2

N(N + 1)
, (2.19)
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Figure 2.3: The mean (a,c) and standard deviation (b,d) of the mixing (a,b) and ergodicity

(c,d) estimators at ω = 10 as a function of n/N for CTRW with α = 0.7, σ = 1, and three tra-

jectory lengths N = 100, 1000, 10000 (symbols). For comparison, solid line shows the theoretical

limits (2.51, 2.52) of the mean estimators for CTRW and the standard deviation for Brownian

motion (given by square roots of Eqs. (2.17, 2.18) with N = 100).
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where

S1 =



m ≤ N/2


(m− n)cn1 + (N + 1−m− n)cn2 +

c2(cn1−cn2 )
c2−c1 (n < m),

cn2 (N + 1− n−m+
c1−m2 (cm1 −cm2 )

c1−c2 ) (m ≤ n ≤ N −m),

cm1 c
n−m+1
2

1−(c2/c1)N+1−n

c1−c2 (n > N −m),

m > N/2


(m− n)cn1 + (N + 1−m− n)cn2 +

c2(cn1−cn2 )
c1−c2 (n ≤ N −m),

(m− n)cn1 + c2c
n
1

1−(c2/c1)N+1−m

c1−c2 (N −m < n < m),

cm1 c
n−m+1
2

1−(c2/c1)N+1−n

c1−c2 (n ≥ m),

(2.20)

S2 = −(N + 1) +
m−(m+1)c1+cm+1

1
(1−c1)2 +

N−m+1−(N−m+2)c2+cN−m+2
2

(1−c2)2 +
c2(1−cm1 )(1−cN−m+1

2 )
(1−c1)(1−c2) ,(2.21)

(2.22)

with c1 = e−ω
2σ2

1/2 and c2 = e−ω
2σ2

2/2. The estimator vanishes as ω →∞, as expected. Setting

m = 1 (or m = N + 1), one retrieves the mean mixing estimator in Eq. (2.11) for Brownian

motion.

However, normalizing the process by the standard deviation of its increments does not resolve

the problem of false nonmixing classifications. In fact, setting ω2 to be the inverse of the variance

of increments of the whole trajectory, ω−2 = µσ2
1 + (1− µ)σ2

2 (with µ = (m− 1)/N), yields

c1 = e−
1
2

[µ+(1−µ)ν]−1
, c2 = e−

1
2
ν[µ+(1−µ)ν]−1

, (2.23)

where ν = σ2
2/σ

2
1. As a consequence, varying µ and ν, one can make c1 or c2 small enough so

that the mixing estimator would not appear as small, wrongly suggesting nonmixing behavior

(similar conclusion holds for nonergodicity).

2.2.4 Main results

The estimator for fractional Brownian motion (including Brownian motion) vanishes in the long

time limit verifying the expected ergodicity property. The mean mixing estimator in Eg. 2.9

decays exponentially with n with increasing variance while the ergodicity one from Eq. 2.2.1

decays as 1/n with diminishing variance. When the process alternates between two Brownian

motions with different diffusion coefficients, both mean estimators vanish as N →∞ and w →∞

but the normalization by standard deviation may not be sufficient for correct assessment from

a short trajectory.
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2.3 Continuous Time Random Walks

We now turn to CTRW for which long stalling periods between successive jumps lead to the

nonergodic behavior [16] (see also [194] and references therein). The reader only interested in

the results can skip directly to the conclusion in Sec. 2.3.3. Using the renewal technique, we

derive the exact expressions for the mean mixing and ergodicity estimators. We consider the

CTRW with independent centered Gaussian jumps of variance σ2, separated by independent

waiting times with a prescribed probability density ψ(t). Throughout this Section, we use the

continuous-time version of the estimators, in which k, n, and N are placed by t, ∆, and T ,

respectively:

Êω(∆, T ) =
1

T −∆

T−∆∫
0

dt eiω[X(t+∆)−X(t)]

− 1

T 2

T∫
0

dt1

T∫
0

dt2 e
iω[X(t1)−X(t2)].

(2.24)

In order to obtain the mean 〈Êω(∆, T )〉, one needs to compute the expectation

hω(t,∆) ≡ 〈eiω[X(t+∆)−X(t)]〉. (2.25)

The mean mixing estimator can then be expressed as

〈Êω(∆, T )〉 =
Hω(T −∆,∆)

T −∆
− 2

T 2

T∫
0

d∆ Hω(T −∆,∆), (2.26)

where

Hω(t,∆) =

t∫
0

dt′ hω(t′,∆). (2.27)

Note that Hω(T−∆,∆)/(T−∆) is the mean time averaged characteristic function of increments

of a CTRW.

For CTRWs, the expectation in Eq. (2.25) includes the average over the jump distribution

and the average over the waiting time distribution. The first average is elementary for a Gaussian

jump distribution:

hω(t,∆) = 〈e−
1
2
ω2σ2N (t,t+∆)〉ψ, (2.28)
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where N (t, t + ∆) is the random number of jumps between times t and t + ∆, and 〈. . .〉ψ
denotes the average over waiting times. In other words, hω(t,∆) is the Laplace transform of the

probability density of N (t, t+ ∆) with respect to 1
2ω

2σ2.

2.3.1 Number of jumps

The further computation of the function hω(t,∆) relies on renewal techniques [153]. First, the

joint probability Pk,n(t,∆) for getting k jumps in the interval (0, t) and n > 0 jumps in the

interval (t, t+ ∆) can be written as

Pk,n(t,∆) =

t∫
0

dt′ψk(t
′)

t+∆∫
t

dt1ψ(t1 − t′)
t+∆∫
t1

dt2ψ(t2 − t1) . . .

. . .×
t+∆∫
tn−1

dtnψ(tn − tn−1) Ψ0(t+ ∆− tn),

=

t∫
0

dt′ψk(t
′)

∆∫
0

dt1ψ(t1 + t− t′)
∆∫
t1

dt2ψ(t2 − t1) . . .

. . .×
∆∫

tn−1

dtnψ(tn − tn−1) Ψ0(∆− tn), (2.29)

where Ψ0(t) is the probability of no jump until time t, and ψk(t) is the probability density for

the k-th jump at time t. The Laplace transform with respect to ∆ yields

P̃k,n(t, s) ≡
∞∫

0

d∆ e−s∆Pk,n(t,∆)

=

t∫
0

dt′ψk(t
′) ψ̃t−t′(s)

[
ψ̃(s)

]n−1 1− ψ̃(s)

s
,

(2.30)

where

ψ̃t(s) ≡
∞∫

0

dt′ e−st
′
ψ(t′ + t). (2.31)

The second Laplace transform with respect to t yields

˜̃Pk,n(s′, s) ≡
∞∫

0

dt e−s
′tP̃k,n(t, s)

=
[
ψ̃(s′)

]k ˜̃
ψ(s′, s)

[
ψ̃(s)

]n−1 1− ψ̃(s)

s
,

(2.32)
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where

˜̃
ψ(s′, s) ≡

∞∫
0

dte−st
∞∫

0

dt′e−t
′s′ψ(t+ t′) =

ψ̃(s)− ψ̃(s′)

s′ − s
. (2.33)

For the special case n = 0, one gets

Pk,0(t,∆) =

t∫
0

dt′ ψk(t
′) Ψ0(t+ ∆− t′), (2.34)

from which

˜̃Pk,0(s′, s) =
[
ψ̃(s′)

]k ˜̃Ψ0(s′, s)

=
[
ψ̃(s′)

]k 1

ss′

[
1− sψ̃(s′)− s′ψ̃(s)

s− s′

]
.

(2.35)

The average of the joint distribution Pk,n(t,∆) over k yields the marginal distribution of n

steps in the interval (t, t+ ∆):

Pn(t,∆) ≡
∞∑
k=0

Pk,n(t,∆), (2.36)

from which

˜̃P0(s′, s) =
1

1− ψ̃(s′)

1

ss′

[
1− sψ̃(s′)− s′ψ̃(s)

s− s′

]
,

˜̃Pn(s′, s) =
1

1− ψ̃(s′)

ψ̃(s)− ψ̃(s′)

s′ − s
[
ψ̃(s)

]n−1 1− ψ̃(s)

s
.

(2.37)

As a consequence, one gets

˜̃
hω(s′, s) =

∞∑
n=0

e−
1
2
ω2σ2n ˜̃Pn(s′, s)

=
1

ss′(e
1
2
ω2σ2 − ψ̃(s))

[
1− ψ̃(s) +

e
1
2
ω2σ2 − 1

1− ψ̃(s′)

(
1− sψ̃(s′)− s′ψ̃(s)

s− s′

)]
. (2.38)

Setting ω = 0, one retrieves the probability normalization:
˜̃
h0(s′, s) = 1/(ss′) from which

h0(t,∆) = 1, as expected. The generating function
˜̃
hω(s′, s) can be used to compute the moments

of N (t, t+ ∆).

To retrieve hω(t,∆), one needs to perform the double inverse Laplace transform. In general,

the Laplace inversion has to be performed numerically. For the special case of the exponential
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waiting time distribution, the inversion becomes simple. Setting ψ(t) = e−t/δ/δ so that ψ̃(s) =

1/(1 + sδ), one finds exactly

˜̃
hω(s′, s) =

1

s′(s+ (1− e−
1
2
ω2σ2

)/δ)
, (2.39)

from which

hω(t,∆) = exp
(
−(1− e−

1
2
ω2σ2

)∆/δ
)
. (2.40)

This function corresponds to the Poisson probability distribution of the number of jumps in the

interval (t, t+ ∆) that does not depend on t as expected:

Pn(t,∆) = e−∆/δ (∆/δ)n

n!
. (2.41)

2.3.2 Macroscopic limit

In the macroscopic limit of large t and ∆, the above expressions can be simplified by considering

small s and s′. In general, the Laplace-transformed probability density ψ̃(s) behaves as

ψ̃(s) ' 1− (δs)α + . . . (s→ 0), (2.42)

where 0 < α ≤ 1 is the scaling exponent, and δ is a time scale of one jump. This behavior

incorporates both normal diffusion (α = 1) with a finite mean waiting time δ and anomalous

diffusion (α < 1) with a heavy-tailed waiting time density: ψ(t) ' δα

|Γ(−α)| t
−1−α as t → ∞. In

the macroscopic limit, the variance σ2 of one jump scales as 2Dαδ
α, where Dα is the generalized

diffusion coefficient. As a consequence, e
1
2
ω2σ2 ' 1 +Dαω

2δα + . . . In the lowest order in δ, Eq.

(2.38) reads

˜̃
hω(s′, s) ' 1

s′
sα−1

Dαω2 + sα
+

Dαω
2(s′α−1 − sα−1)

s′α(s− s′)(Dαω2 + sα)
. (2.43)

In particular, the derivative with respect to 1
2ω

2σ2 = Dαδ
αω2 yields the mean number of jumps

〈 ˜̃N (s′, s)〉 ' s−α − s′−α

sδα(s− s′)
, (2.44)

from which

〈N (t, t+ ∆)〉 ' 1

δα

∆∫
0

dt′
(t+ t′)α−1

Γ(α)
=

(t+ ∆)α − tα

δαΓ(α+ 1)
, (2.45)

as expected.
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For normal diffusion (α = 1), the second term in Eq. (2.43) vanishes while the double inverse

Laplace transform of the first term yields

hω(t,∆) ' exp
(
−D1ω

2∆
)

(2.46)

that approximates Eq. (2.40) in the macroscopic limit.

In turn, when α < 1, the dominant contribution comes from the second term of Eq. (2.43),

especially in the limit of large ω:

˜̃
h∞(s′, s) ' s′α−1 − sα−1

s′α(s− s′)
. (2.47)

Using the identity for the double Laplace transform,

Ls1Ls2


t1∫

0

dt′f(t′)g(t1 − t′ + t2)

 = f̃(s1)
g̃(s2)− g̃(s1)

s1 − s2
, (2.48)

one can invert the above relation by setting f̃(s) = s−α and g̃(s) = sα−1:

h∞(t,∆) ' sin(πα)

π
2F1(α, α;α+ 1; (1 + ∆/t)−1)

α(1 + ∆/t)α
, (2.49)

where the integral in Eq. (2.48) was expressed in terms of the hypergeometric function 2F1(a, b; c; z):

1∫
0

dx
xb−1(1− x)c−b−1

(1− zx)a
=

Γ(b)Γ(c− b)
Γ(c)

2F1(a, b; c; z).

To compute H∞(t,∆) (i.e., the integral of h∞(t,∆) over t in Eq. (2.27)), one can add the

extra factor s′−1 to Eq. (2.47) and then again perform the Laplace inversion:

H∞(t,∆) ' tsin(πα)

πα
2F1(α, α+ 1;α+ 2; (1 + ∆/t)−1)

(1 + α)(1 + ∆/t)α
(2.50)

that gives the first term in Eq. (2.26).

Using the formula 7.512.3 from [110] to integrate H∞(T −∆,∆) over ∆, one shows that the

second term in Eq. (2.26) is equal to 1 − α. We obtain therefore the asymptotic limit of the

mean mixing estimator as ω →∞

〈Ê∞(∆, T )〉 ' α− 1 +
sin(πα)

πα(1 + α)
(1−∆/T )α 2F1

(
α, α+ 1;α+ 2; 1−∆/T

)
. (2.51)

As expected for a nonergodic CTRW, the estimator does not vanish even for infinitely long

trajectories. In fact, when T → ∞, the last term approaches 1 so that 〈Ê∞(∆,∞)〉 = α,
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independently of ∆. The same limit is formally obtained as ∆ → 0: 〈Ê∞(0, T )〉 = α. In the

opposite limit ∆→ T , the last term vanishes, yielding the negative value α− 1. In other words,

when the lag time ∆ varies from 0 to T , the mean mixing estimator decreases from α to α− 1,

in sharp contrast to the case of ergodic processes.

From Eq. (2.51), one also deduces the asymptotic behavior of the mean ergodicity estimator

〈F̂∞(∆, T )〉 ' 1

∆

∆∫
0

d∆′ 〈Ê∞(∆′, T )〉 = α−1+
sin(πα)

πα(1 + α)

T

∆

1∫
1−∆/T

dx xα 2F1

(
α, α+1;α+2;x

)
.

(2.52)

We recall that Eqs. (2.51, 2.52) are derived in the macroscopic limit when ∆ and T greatly

exceed the time step scale δ. These expressions present one of the main analytical results of

the chapter. The estimators do not vanish even for infinitely long trajectories: 〈Ê∞(n,∞)〉 =

〈F̂∞(n,∞)〉 = α, independently of n. In sharp contrast to ergodic processes, the mean mixing

estimator decreases from α to α−1 when n varies from 0 to N (Fig. 2.3a). Longer the trajectory

(larger N), closer the numerical curves to the limiting relations (2.51, 2.52). Figure 2.3b,d shows

the standard deviations of both estimators that weakly depend on the trajectory length N , in

contrast to Eq. (2.13) for discrete Gaussian processes. As a consequence, increasing N does not

improve the estimation quality in the case of nonergodic CTRW.

2.3.3 Main results

The mean mixing and ergodicity estimators have been calculated, their expressions are given

in Eq. 2.51, and Eq. 2.52. Both mean estimators never vanish even in the limit N → ∞ and

w →∞ verifying the expected behavior for non ergodic CTRW.

2.4 Several models of anomalous diffusion

In this Section, we describe the results of nonergodicity testing on several models of anomalous

diffusion and on geometric Brownian motion.
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Figure 2.4: The mean mixing (a) and ergodicity (b) estimators at ω = 1 as a function of n for

one coordinate X(n) of two-dimensional random walk of length N = 500 on a critical percolating

cluster on a 1000×1000 square lattice, with the lattice step σ = 1. Each curve presents the mean

computed by averaging over 1000 trajectories generated on one cluster. The curves obtained for

ten random clusters are almost identical. For comparison, light gray shadowed region delimits

the mean plus and minus the standard deviation of each estimator computed for Brownian

motion according to Eqs. (2.11, 2.12, 2.17, 2.18).

2.4.1 Diffusion on percolating clusters

Anomalous diffusion on fractals which can mimic a multiscale hierarchical structure of the

medium, is a common model for interpreting single particle tracking experiments. In particular,

diffusion on percolating clusters has numerous applications for modeling transport phenomena

in porous media [255]. For illustrative purposes, we only consider two-dimensional percolating

clusters on a square lattice at the critical threshold probability pc ≈ 0.59 . . . These clusters are

known to have the fractal dimension df = 91/48 ≈ 1.896 . . . and to yield the anomalous diffusion

with α ≈ 0.7 [100,205]. To test the mixing and ergodicity estimators, we first generate 10 random

clusters on a 1000×1000 square lattice, and then simulate 1000 random walk trajectories of length

N = 500 for each cluster. Figure 2.4 shows the mean mixing and ergodicity estimators obtained

by averaging over 1000 trajectories, each curve representing the average over one cluster. These

curves are almost indistinguishable, suggesting a very weak dependence on the particular random

realization of the cluster. Both estimators do not reveal nonmixing/nonergodic behavior as

expected. A small bias (deviation from 0) at large n can be attributed to the relatively short

trajectory length: the bias is reduced for longer trajectories (not shown).
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2.4.2 Scaled Brownian motion

We also consider the scaled Brownian motion (sBm), a simple model of anomalous diffusion,

in which the diffusion coefficient varies with time as D(t) = αDαt
α−1, where 0 < α < 2 is the

scaling exponent, andDα is the generalized diffusion coefficient [142,263]. This is a nonstationary

Gaussian process obtained by rescaling Brownian motion W (t): X(t) =
√

2Dα W (tα), for which

〈[X(t1)−X(t2)]2〉 = 2Dα|tα1 − tα2 |. The mean mixing estimator is then

〈Êω(n,N)〉 =
1

N − n+ 1

N−n∑
k=0

c(k+n)α−kα − 2

N(N + 1)

N−1∑
k1=0

N∑
k2=k1+1

ck
α
2−kα1 , (2.53)

where c = e−ω
2σ2/2 and σ2 = 2Dαδ

α, δ being the time step (the expression for the mean

ergodicity estimator follows from its definition). In the limit of large ωσ, both mean estimators

vanish, showing no evidence for nonmixing/nonergodic behavior. At the same time, one can

easily check that the ensemble averaged MSD, 〈X2(t)〉 = 2Dαt
α, differs from the time averaged

MSD along the trajectory of length T

1

T − t

T−t∫
0

dt0 〈[X(t0 + t)−X(t0)]2〉 ' 2DαT
α−1t (2.54)

(for t � T ). In contrast to CTRW, this weak ergodicity breaking progressively vanishes as

the trajectory length T (or N) goes to infinity [142, 263]. Figuratively speaking, the scaled

Brownian motion falls in between ergodic and nonergodic processes, with nonergodic features

appearing only for finite length trajectories. The mixing and ergodicity estimators do not capture

this peculiar behavior that illustrates the difference between weak ergodicity breaking and non

equality of ensemble and time average at short time.

2.4.3 CTRW with exponential cut-off

It is instructive to consider CTRW with exponential cut-off to “switch” between ergodic and

nonergodic behavior. In order to simulate such CTRW trajectories, we generate random waiting

times with the Pareto type III distribution defined by the cumulative function

F (t) = 1−
(

1 +
t

δs

)−α
exp

(
− t

Tc

)
, (2.55)

where δs is the time scale (fixed to be 1), α the scaling exponent, and Tc is the cut-off time.

As discussed in [31], the cumulative function (2.55) can be explicitly inverted to generate the
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Figure 2.5: The mean (a,c) and standard deviation (b,d) of the mixing (a,b) and ergodicity

(c,d) estimators at ω = 1 (lines) and ω = 10 (symbols) for CTRW with N = 1000, α = 0.7,

σ = 1, δs = 1, and exponential cut-off at Tc = 10, 102, 103.
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waiting times τ from the uniformly distributed variable η:

τ = αTc W

(
β

α
eβ/α(1− η)−1/α

)
− δs, (2.56)

where β = δs/Tc, and W (x) is the real branch of the Lambert function satisfying W (x)eW (x) = x.

In the limit Tc →∞ (no cut-off), one retrieves the standard Pareto waiting times generated as

τ = δs
[
(1− η)−1/α − 1

]
.

The characteristic function and the moments of τ can be written as [31]

〈eikτ 〉 = 1 + ikδs e
β−ikδ(β − ikδ)α−1Γ(1− α, β − ikδ),

〈τn〉 = δns e
β

n∑
j=1

(
n

j

)
j(−1)n−j

βj−α
Γ(j − α, β),

where Γ(k, z) is the incomplete Gamma function. In particular, the mean waiting time,

〈τ〉 = δs e
δs/Tc(δs/Tc)

α−1Γ(1− α, δs/Tc), (2.57)

asymptotically behaves as

〈τ〉 '


Tc(δs/Tc)

αΓ(1− α), (Tc � δs),

Tc, (Tc � δs).

(2.58)

The generated sequence of waiting times, {τk}, is then applied to produce positions of CTRW

at equal time steps δ by assigning the same random position xk toXn over a time interval between

τ1 + . . .+ τk and τ1 + . . .+ τk + τk+1:

Xn =


0, 0 ≤ nδ < τ1,

xk,
∑k

j=1 τj ≤ nδ <
∑k+1

j=1 τj ,

(2.59)

where xk = xk−1 + χk, with χk being independent Gaussian displacements with mean zero and

variance σ2.

Figure 2.5 shows the mean and standard deviation of the mixing and ergodicity estimators

as a function of n computed numerically for CTRW with exponential cut-off. When the cut-off

time Tc is significantly smaller than the trajectory length (here, N = 1000), the mean mixing

estimator 〈Êω(n,N)〉 vanishes very rapidly with n (dash-dotted line or circles), as expected for

Brownian motion. In turn, for larger Tc, long waiting times break the ergodicity and mixing

(dashed and solid lines or triangles). Note also that 〈Êω(n,N)〉 at ω = 1 and ω = 10 almost
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Figure 2.6: The mean mixing (a) and ergodicity (b) estimators at ω = 1 as a function of n

for geometric Brownian motion with µ = 0 and σ = 0.01, σ = 0.1, and σ = 1. Each generated

trajectory was normalized by the empirical standard deviation of its increments in order to get

comparable results for different σ. The mean was computed numerically by averaging over 1000

trajectories.

coincide (similar for 〈F̂ω(n,N)〉). For the ergodic case (Tc = 10), this is a visual artifact because

the mixing estimator at ω = 10 decreases much faster than that at ω = 1. In turn, the weak

dependence of the estimator on ω for large ω is expected for nonergodic CTRW due to the

nontrivial limiting relations (2.51, 2.52).

The standard deviation of the mixing estimator is close to that given by square root of Eq.

(2.17) for Brownian motion for Tc = 10 while it is larger for the nonergodic cases Tc = 102 and

Tc = 103 (similar for the ergodicity estimator). As for the mean value, the standard deviation

does not much depend on ω (once ω is large enough). The minimum of the standard deviation

at an intermediate n for the nonergodic cases can be related to vanishing of the mean value

when it crosses the horizontal axis.

2.4.4 Geometric Brownian motion

We consider geometric (or exponential) Brownian motion X(t) which is the basic model in

finance, in particular, in the Black-Scholes model for option pricing [131]. This stochastic

process can be expressed as

X(t) = X(0) exp
(
(µ− σ2/2)t+ σW (t)

)
, (2.60)
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where µ and σ are drift and standard deviation, W (t) is a Wiener process (a standard Brownian

motion), and the term (µ− σ2/2)t is explicitly added in order to prevent exponential growth of

the variance of X(t). This nonstationary process was recently reported to be nonergodic [217]

that may eventually affect current views on trading strategies [216]. After a random exploration

time, the trajectory of geometric Brownian motion tends to remain close 0 for a very long time

that explains the nonergodic behavior.

Figure 2.6 shows the mean mixing and ergodicity estimators at ω = 1 as a function of n

for geometric Brownian motion with µ = 0. During the simulation time (N = 1000), the gBm

with σ = 0.01 does not have enough time to be stuck near 0, yielding a rapid decay of both

estimators (dash-dotted line). This is a finite length effect: much longer trajectories would

attend the “trapped” state near 0 and thus exhibit nonergodic behavior (not shown). Instead of

increasing the trajectory length, we take larger σ for which the trapped state is reached earlier on

average. The nonmixing/nonergodic behavior is clearly seen for σ = 0.1 and σ = 1. The latter

case is also instructive to illustrate that the estimator can take very small values for moderate

n for a nonergodic process. This is due to the fact that a large part of the trajectory is almost

0. Inspecting the whole dependence on n can thus be informative.

2.5 Application

2.5.1 Measurement noise and practical issues

Since both estimators vanish in the limit ω → ∞ for mixing and ergodic processes but remain

nonzero for nonergodic CTRW, the estimation at very large ω might be thought as optimal.

However, this strategy is not convenient in practice because of measurement artifacts such as

localization errors, blurring, or electronic noises [8,24]. To account for some of these effects, the

intrinsic trajectory X(t) can be superimposed with a measurement noise ε(t): X̃(t) = X(t)+ε(t).

If ε(t) is a white Gaussian noise independent of the tracer’s dynamics X(t), two contributions

are factored out:

〈eiω[X̃(n+k)−X̃(k)]〉 = 〈eiω[X(n+k)−X(k)]〉 e−σ2
εω

2
, (2.61)

where the second factor is the average over the white noise of variance σ2
ε (when the measurement

noise is not Gaussian, its effect onto the estimators can be different and needs further analysis).
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Figure 2.7: The mean mixing estimator 〈Êω(1, 1000)〉 as a function of ω for CTRW with α = 0.7

and σ = 1, and four levels of white Gaussian noise: σε = 0 (circles) and σε = 0.01, 0.1, 1 (lines).

Note that the plateau at 0.6 is smaller than the value α = 0.7 expected from Eq. (2.51) because

of the finite length effect (N = 1000).

Even if the intrinsic dynamics is not mixing/ergodic, both estimators will be strongly attenuated

in the limit of large ω by the second factor coming from the ergodic white noise. This is illustrated

on Fig. 2.7 which shows the mean mixing estimator as a function of frequency ω for a CTRW

corrupted by white Gaussian noise with different σε. When there is no noise (σε = 0), the mean

estimator rapidly saturates on a plateau, in agreement with the above theoretical analysis. In

turn, the presence of noise attenuates the estimator. This effect is not yet seen at σε = 0.01

because the factor e−ω
2σ2
ε remains close to 1 for the considered range of ω, but it is clearly seen

for σε = 0.1 and σε = 1.

To limit this noise-induced attenuation, the rule of thumb consists in keeping ωσ of the order

of 1, σ being the empirical standard deviation of increments. In practice, one can normalize the

trajectory by σ and then consider ω between 1 and 3. On one hand, this normalization helps

to eliminate false nonergodicity identifications due to too small σ. On the other hand, if the

noise level σε is much smaller than σ, the condition ωσ ∼ 1 ensures that the estimator is not
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much attenuated due to noise (i.e., the factor e−σ
2
εω

2
remains close to 1). At the same time,

one can construct counterexamples for which this normalization is not enough. For instance,

the trajectory concatenating two Brownian motions with different diffusion coefficients can be

made appearing as nonergodic (Section 2.2.3). Extending this construction to diffusion in a

heterogeneous medium consisting of regions of random sizes and random diffusivities, one can

produce a truly nonergodic process under simple assumptions on the distribution of the sizes

and diffusivities [172,184].

2.5.2 Validation on anomalous diffusion models

In order to validate the proposed statistical tool, we apply the mixing and ergodicity estimators

to four single trajectories generated according to four anomalous diffusion models with the

same exponent α = 2H = 0.7: fBm, CTRW, sBm, and diffusion on percolating cluster (in

the last case, the exponent is random and distributed around 0.7 due to the random shape of

percolating clusters, see Appendix 2.4 for details). Each trajectory is generated with the same

one-step variance σ2 = 1. To render the comparison closer to the experimental situation, all

trajectories were corrupted by white Gaussian noise with standard deviation σε = 0.2. Figure

2.8 shows four simulated trajectories and the corresponding curves of the mixing and ergodicity

estimators. One can clearly distinguish the nonmixing feature of a CTRW trajectory even from

noisy curves of the mixing estimator. These curves allow one to reject the mixing hypothesis

with a high degree of certainty. Similarly, the nonergodic behavior is seen from the ergodicity

estimator. In turn, the estimator curves for three other trajectories vanish as n increases so

that the mixing/ergodicity hypothesis cannot be rejected. However, it does not imply mixing

or ergodicity for these models. Moreover, the “mild nonergodicity” of the scaled Brownian

motion is not detected by both estimators due to a relatively short trajectory length. This is

not surprising because the one-step standard deviation varies from 1 at n = 1 to 500(α−1)/2 ≈ 0.4

at n = 500. To detect the nonergodic-like behavior of this model, one needs higher variations

and thus much longer trajectories.

To illustrate the statistical variability of estimators, we repeat the same analysis for ten sim-

ulated trajectories for each model. Note that Janczura and Weron have managed to reveal the

ergodic property of fBm from empirical ensemble averages over many trajectories (the smallest

analyzed sample containing ten trajectories) [138]. Here, we aim at probing nonergodicity indi-
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Figure 2.8: (Top). Examples of trajectories of four anomalous diffusion models: fBm, CTRW,

diffusion on percolating clusters, and sBm, with the same scaling exponent α = 0.7 and one-step

size σ = 1. Each trajectory was corrupted by the white Gaussian noise of level σε = 0.2 and

then normalized by the empirical standard deviation of its increments. (Bottom). The real

part of the mixing and ergodicity estimators at ω = 2 applied to these four trajectories.
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Figure 2.9: The real part of the mixing estimator at ω = 2 for ten simulated trajectories from

two anomalous diffusion models: ergodic fBm with 2H = 0.7 (a) and nonergodic CTRW with

the same exponent α = 0.7 (b) (in both cases, we set σ = 1 and N = 500). All trajectories

were corrupted by white Gaussian noise with standard deviation σε = 0.1. Each trajectory is

normalized by the empirical standard deviation of its increments. Light gray shadowed region

delimits the typical range of fluctuations for Brownian motion, i.e., the mean plus and minus

the standard deviation.

vidually for each single trajectory. Figure 2.9 shows the results for the mixing estimator (only

for fBm and CTRW), while the ergodicity estimator is illustrated in Fig. 2.10. Both estimators

allow one to clearly identify the nonergodic character of CTRW from a single trajectory, even for

the trajectory length as small as N = 500. Since the ergodicity estimator yields much smoother

curves, it is more appropriate for the analysis of single-particle tracking experiments (note that

although mixing and ergodicity are not equivalent, they are satisfied or violated simultaneously

in many diffusive processes).

In addition, both estimators were also successfully tested on CTRW with exponential cut-off

which allows one to “switch” between ergodic and nonergodic behavior (Section 2.4.3), and on

the nonergodic geometric Brownian motion (Section 2.4.4) that plays a major role in finances

[216,217].

2.5.3 Application to experimental data

Now, we apply both estimators to two samples of experimental trajectories: (i) mRNA molecules

inside live E. coli cells [106], and (ii) Kv2.1 potassium channels in the plasma membrane [280].
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Figure 2.10: The real part of the ergodicity estimator at ω = 2 for ten simulated trajectories

from four anomalous diffusion models with the same exponent α = 2H = 0.7: fBm (a), CTRW

(b), diffusion on percolating cluster (c), and sBm (d) (in all cases, we set σ = 1 and N = 500).

All trajectories were corrupted by white Gaussian noise with standard deviation σε = 0.1. Each

trajectory was normalized by the empirical standard deviation of its increments.
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Figure 2.11: The real part of the mixing (a) and ergodicity (b) estimators at ω = 2 as a

function of n for two experimental trajectories of around N = 1500 points: the motion of mRNA

molecule inside live E. coli cell [106] and Kv2.1 potassium channel anomalous dynamics in the

plasma membrane [280]. Both trajectories (shown in insets) were normalized by the empirical

standard deviation of their increments. Light gray shadowed region delimits the typical range

of fluctuations of estimators for Brownian motion, i.e., the mean plus and minus the standard

deviation.

Figure 2.11a shows that the mixing estimator applied to a trajectory of mRNA molecule (dashed

line) rapidly decreases with n and then fluctuates around 0 within the typical range of fluctu-

ations for Brownian motion. In other words, this test does not reveal nonmixing behavior, in

agreement with conclusion of Ref. [175]. Similarly, the ergodicity estimator in Fig. 2.11b rapildy

vanishes at large n, as expected for ergodic dynamics. However, many trajectories are needed

to confirm that the dynamics is indeed mixing/ergodic (see further discussion in Sec. 2.7). In

turn, both mixing and ergodicity estimators for a trajectory of the Kv2.1 potassium channel

(solid line) lie outside the typical range and do not vanish as n increases. This is a signature of

the nonmixing/nonergodic behavior, in agreement with the conclusion of Weigel et al. based on

the analysis of ensemble averages over multiple trajectories [280].

We also applied both estimators to the trajectories of optically trapped (sub)micron-sized

beads in living cells and actin solutions [26,116]. These tests (not shown) did not reveal noner-

godic behavior, as expected for a harmonically trapped particle.

The important advantage of these single-particle estimators is the possibility to probe non-

ergodicity for each trajectory. Figure 2.12 shows the real part of the ergodicity estimator at
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Figure 2.12: The real part of the ergodicity estimator at ω = 2 for ten experimental trajectories

of two samples: the motion of mRNA molecules inside live E. coli cells [106] and Kv2.1 potassium

channel anomalous dynamics in the plasma membrane [280]. Each trajectory is normalized by

the empirical standard deviation of its increments. The trajectory length ranges between 400-

500 points for the first set and around 1500 points for the second set. Light gray shadowed

region delimits the typical range of fluctuations for Brownian motion, i.e., the mean plus and

minus the standard deviation.

ω = 2 for ten experimental trajectories from two samples: the motion of mRNA molecules

inside live E. coli cells [106] and Kv2.1 potassium channel anomalous dynamics in the plasma

membrane [280]. One can see that the dispersion of the estimator curves is higher for the

Kv2.1 potassium channel, in particular, several trajectories can be classified as nonergodic. As

a consequence, the ergodicity estimator allows one to reject, with some degree of certainty, the

ergodicity hypothesis. Weigel et al. identified transient binding to the actin cytoskeleton as a

plausible biophysical origin of nonergodicity in this dynamics. In turn, the estimator curves for

mRNA molecule trajectories are less dispersed and vanish as n grows, showing no evidence for

nonergodic behavior.

It is also instructive to compare Fig. 2.12 to Fig. 2.10 for simulated trajectories. One can see

that the ergodicity estimator curves for both experimental samples behave somewhat in between

those for fBm and CTRW. In fact, their dispersion is larger than that for fBm but smaller than

that for CTRW.
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2.6 Discussion

2.6.1 Positions versus increments

The form of both mixing and ergodicity estimators originate from the analysis of stationary

infinitely divisible (SID) processes by Magdziarz and Weron [175]. For instance, the mixing

estimator aims at testing whether two increments Y (k + n) and Y (k) become asymptotically

independent as n increases. However, the use of these short-time increments (or velocities) may

be inconvenient for the analysis of anomalous intracellular transport because the most common

nonergodic model of anomalous diffusion, the CTRW, cannot be classified as nonergodic since

most of its increments are zero. Figure 2.13 illustrates this problem by comparing the increments-

based method (as originally proposed by Magdziarz and Weron) and our positions-based method.

For this purpose, we first apply the mixing and ergodicity estimators to the increments of a

single CTRW trajectory, {X(1)−X(0), X(2)−X(1), . . . , X(N)−X(N − 1)}, and then to the

positions of the same trajectory, {X(0), X(1), . . . , X(N)} (note that the improved estimators

operate with long-time increments, namely, X(k + n) − X(k) and X(k) − X(0) stand in Eq.

(2.6)). As expected, both original estimators applied to the short-time increments are very close

to 0 that does not allow one to reveal its nonergodic character. In turn, the estimators applied

to the positions of the same CTRW reveal its nonergodicity/nonmixing behavior. It is worth

noting that the two methods can both work well (correctly identifying CTRW trajectories as

nonergodic) or both fail (missing such identifications). This is related to the high sensitivity of

the estimators to the presence of long stalling periods in a finite length trajectory. However,

the use of the positions-based estimators results in statistically more reliable identifications of

CTRW as nonergodic.

While we kept essentially the same form of both mixing and ergodicity estimators, their

application to the positions of a trajectory has changed the theoretical paradigm. In particular,

the improved mixing estimator probes now the asymptotic independence of the positionsX(k+n)

and X(k) or, equivalently, of the long-time increments X(k + n) − X(0) and X(k) − X(0) at

different lag times. Alternatively, this estimator can be seen as the time averaged characteristic

function of the increment X(k + n)−X(k) at lag time n. In other words, the key modification

consists in looking at the long-time increments instead of short-time ones (such as X(k + 1) −
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Figure 2.13: The real parts of the mixing (a) and ergodicity (b) estimators at ω = 1 applied

to the increments of a single CTRW trajectory (dashed line) and to the positions of the same

trajectory (solid line), with N = 1000, α = 0.7, and σ = 1. In both cases, X(n) are normalized

by the empirical standard deviation of the increments. Thin dash-dotted line presents the mean

estimators from Eqs. (2.51, 2.52).

X(k)). To some extent, the difference between the increments-based and the positions-based

estimators resembles the difference in estimation of the velocity auto-correlation function and

the mean square displacement, the latter being less noisy and thus more robust and easier to

estimate.

To further illustrate the difference between two methods, we plot in Fig. 2.14 the real

part of the original ergodicity estimator [175] applied to the increments of ten experimental

trajectories of mRNA molecules and of Kv2.1 potassium channels 2. Given that the mRNA

and Kv2.1 trajectories were recorded in different length units, the increments of each trajectory

were normalized by their standard deviation. Following [175], only the first 200 lag times are

plotted. One can see that the original estimators look very similar for two sets of experimental

data, suggesting the ergodic behavior in both cases. In contrast, our improved estimator reveals

more distinct behavior in two samples (Fig. 2.12).

2 Note that Magdziarz and Weron have analyzed the same set of experimental trajectories of mRNA molecules

reported in [106]. As a consequence, Fig. 2.14a resembles Fig. 6a from [175], except for the opposite sign which

may be related to different normalizations of the increments and the shifted summation range (k = 1, . . . , n

instead of k = 0, . . . , n− 1) in the ergodicity estimator that was actually used in [175] (private communication by

M. Magdziarz).
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Figure 2.14: The real part of the original ergodicity estimator, Re{n−1
∑n−1

k=0 Ê(k)} from [175],

applied to ten experimental trajectories of two samples: (a) the motion of mRNA molecules

inside live E. coli cells [106] and (b) Kv2.1 potassium channel anomalous dynamics in the

plasma membrane [280]. The estimator is applied to the increments of each trajectory which

are normalized by their empirical standard deviation. The trajectory length ranges between

400-500 points for the first set and around 1500 points for the second set.

2.6.2 Role of the frequency

The introduction of variable frequency ω is important to avoid wrong identifications of nonmix-

ing/nonergodic behavior due to deviations of the mixing or ergodicity estimators from 0. This

problem can be relevant for both the original increments-based method and our positions-based

method. In order to illustrate this point, we consider two examples: fractional Gaussian noise

(fGn) and Brownian motion.

IfX(n) are centered stationary Gaussian increments defined by a covariance function 〈X(k1)X(k2)〉 =

γ(|k1 − k2|), the mean mixing and ergodicity estimators read

〈Êω(n,N)〉 = e−ω
2η(n) − 2

N∑
k=1

N − k + 1

N(N + 1)
e−ω

2η(k),

〈F̂ω(n,N)〉 =
1

n

n∑
k=1

e−ω
2η(k) − 2

N∑
k=1

N − k + 1

N(N + 1)
e−ω

2η(k),

where η(n) = γ(0) − γ(n). For instance, if X(n) are the increments of fractional Brownian

motion (the so-called fractional Gaussian noise), one has

γ(n) =
σ2

2

[
|n− 1|2H + (n+ 1)2H − 2n2H

]
. (2.62)
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Figure 2.15: The real part of the ergodicity estimator as a function of n for a single fGn

trajectory with N = 500, H = 0.9, and σ = 1. At ω = 1 (solid line), the estimator deviates

from zero that may wrongly suggest nonergodic behavior. Increasing ω, one can eliminate this

false conclusion.

For H = 1/2, one retrieves the discrete white noise with γ(n) = σ2δn,0 that implies 〈Êω(n,N)〉 =

〈F̂ω(n,N)〉 = 0. More generally, both mean estimators are strictly zero for independent X(n).

In turn, for correlated increments, the original estimators at ω = 1 can deviate from 0

even for ergodic processes. Figure 2.15 shows the real part of the ergodicity estimator for a

single realization of ergodic fGn. At ω = 1, the estimator deviates from zero that may wrongly

be interpreted as nonergodic behavior. Increasing the frequency ω allows one to re-establish

the vanishing behavior of the estimator and thus to avoid such false conclusions. While the

deviations are relatively small for the considered case of fGn (and are even smaller for other

choices of H and σ), they could be stronger for some other ergodic processes. In general, the

frequency ω is needed to control the amplitude of increments.

The effect of amplitude can be much more important when the estimators are applied to

the positions of a trajectory instead of its increments. In particular, even Brownian motion

can be falsely identified as nonergodic if the diffusion coefficient is small. This statement is
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Figure 2.16: The mean mixing (a) and ergodicity (c) estimators as a function of n for a

Brownian motion trajectory with N = 1000 and σ2 = 0.04. At ω = 1 (solid line), both

estimators are not small that may wrongly suggest nonmixing/nonergodic behavior. Increasing

ω, one can eliminate this false conclusion. The same conclusions can be made from the real part

of the mixing (b) and ergodicity (d) estimators for a single Brownian motion trajectory with

the same parameters.

illustrated on Fig. 2.16 that shows the mean mixing and ergodicity estimators as well as the real

part of both estimators for a single Brownian motion trajectory with N = 1000 and σ2 = 0.04.

Distinct deviations from 0 are clearly seen at ω = 1. This is a finite length effect that would

disappear for a much longer trajectory. For a fixed N , this false conclusion can be removed by

increasing ω that is equivalent to rescaling the variance σ2. In practice, we suggest to normalize

the trajectory by the empirical standard deviation of its increments, in which case the frequency

ω can be kept in the order of 1.
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Figure 2.17: The real part of the mixing (a) and ergodicity (b) estimators at ω = 1 as a function

of n for an original Brownian motion trajectory with N = 1000 and σ = 1 (solid line) and for

the same trajectory corrupted by resetting ten randomly chosen points to 0 (dashed line). In

both cases, the trajectory was normalized by the empirical standard deviation of its increments.

Light gray shadowed region delimits the mean plus and minus the standard deviation of each

estimator computed for Brownian motion according to Eqs. (2.11, 2.12, 2.17, 2.18).

2.6.3 Impact of outliers

In addition to noise, experimental data can contain “outliers”, i.e., singular erroneous points

coming from instrumental or software failures, data recording or transmission problems, or hu-

man factors. The problem of outliers is particularly relevant for financial data [131]. These erro-

neous points whose statistical properties strongly deviate from the remaining “normal” points,

may appear as nonergodic features in the analysis of a single finite length trajectory by means

of the mixing/ergodicity estimators. In order to illustrate the potential impact of outliers, we

generate a Brownian trajectory with N = 1000 steps and then reset 10 randomly chosen points

of this trajectory to 0. This procedure results in 20 increments of anomalously large amplitude

(as compared to the other increments). While only 1% of data points are assigned as outliers,

both mixing and ergodicity estimators suggest nonmixing/nonergodic behavior, as illustrated

on Fig. 2.17.

2.6.4 Discrete displacements

Digital acquisition systems or lattice models can produce discretely spaced positions of ex-

perimental or simulated trajectories, resulting in a periodic (nonvanishing) behavior of both
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estimators as functions of the frequency ω. To illustrate this “artifact”, we consider the one-

dimensional projection of a d-dimensional random walk in which X(n) is the sum of independent

random variables χk taking the values ±σ with probability 1/(2d), or 0 with probability 1−1/d.

For this process, 〈eiω(X(n+k)−X(k))〉 = [φ(ω)]n, where φ(ω) is the characteristic function of χk:

φ(ω) = 1− (1− cos(ωσ))/d. The mean mixing and ergodicity estimators are still given by Eqs.

(2.11, 2.12), with c = φ(ω). One can see that both mean estimators are 2π-periodic functions

of ωσ. As a consequence, too large values of ωσ do not improve the quality of estimation.

Moreover, the estimators would lead to false nonmixing or nonergodicity identifications at the

values ωσ = 2πm (with an integer m), at which c = 1. In turn, there is an optimal value

minimizing c which corresponds to ωσ = π/2 ' 1.57 for this model. Note that if the trajectory

was normalized by the standard deviation of its increments, σ/
√
d, the characteristic function

would be φ(ω) = 1− (1− cos(ω/
√
d))/d, and the optimal value would be ω =

√
d π/2. Since the

underlying model is not known for experimental data, the rule of thumb consists in analyzing

the estimators for several values of ω in the range between 1 and 3.

2.7 Conclusions

In summary, we proposed, investigated and validated the improved mixing and ergodicity esti-

mators based on long-time increments (or positions) of a single trajectory. Aiming applications

to experimental trajectories which a priori are neither stationary, nor infinitely divisible, we

extended the range of applicability of the estimators beyond SID processes. The new estimators

rely on the time averaged characteristic function of the increments that can bring complemen-

tary information as compared to the time averaged MSD or VAF, especially for non-Gaussian

processes. We showed that the ergodicity estimator vanishes for basic ergodic models of anoma-

lous diffusion (fBm, diffusion on fractals) and remains nonzero for nonergodic models (CTRW,

geometric Brownian motion). The significant advantage of the present method is that nonmix-

ing or nonergodic behavior can be revealed from a single trajectory, with no need in ensemble

averages over many trajectories that may be difficult or even impossible to collect.

As discussed by Magdziarz and Weron [175], the smallness of the estimators is the necessary

but not sufficient condition for mixing and ergodicity. In other words, these statistical tests

can reveal nonmixing or nonergodic properties from a single trajectory but many trajectories
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are needed to confirm mixing or ergodicity. For instance, a constant process X(n) = x0 with

a random initial position x0 is not ergodic, and this property cannot in principle be revealed

from a single trajectory. In particular, the mixing and ergodicity estimators are strictly zero for

this process but their smallness is not a signature of ergodicity but rather a failure in detecting

nonergodicity. In general, the finite trajectory length and the randomness of the estimators

based on a single trajectory remain the major challenges for inference problems that aim at

characterizing an unknown stochastic process from its single random realization. Deviations

of the estimators from 0 can be either a signature of nonmixing/nonergodic or nonstationary

dynamics, or a consequence of too short trajectory, or a measurement artifact (e.g., the presence

of outliers, see Sec. 2.6.3), or a specific feature of the process (e.g., discrete displacements, see

Sec. 2.6.4).

While probing nonergodicity of an unknown stochastic process from a single finite length

trajectory remains debatable from the mathematical point of view, the ergodicity and mixing

estimators partially answer the important practical question whether the time average along

a single trajectory is representative or not. However the scaled Brownian motion is a counter

example where, only at short time, the time and ensemble average are different, such a departure

is not recognized by our estimators because the process is ergodic. If the estimators do not vanish

with the lag time n, conclusions based on time averages can be strongly misleading. In particular,

large values of the estimators indicate peculiar properties of the stochastic process that should

warn scientists against a blind use of time averages. Along with other single-particle methods

[7, 77, 148, 149, 173, 188, 189, 194, 240, 261, 269, 273, 283], the mixing and ergodicity estimators

provide a powerful statistical tool for a more reliable interpretation of SPT experiments.

An important perspective of this work consists in formulating nonergodicity and nonmixing

test statistics (that can be converted to an estimated yes/no answer) and in quantifying their

properties (p-values, confidence intervals, etc.) [168–170]. For this purpose, the probability dis-

tribution of the estimators needs to be investigated for various stochastic processes. In addition,

the role of small sample statistics can be analyzed for the improved estimators (see [138] for

details).
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Chapter 3

Unravelling intermittent features

from a single trajectory

3.1 Introduction

In the previous chapter, we discussed a test for detecting weak ergodicity breaking in order

to verify the interpretability of time averaged quantities obtained from a single trajectory. In

some cases, the ergodicity hypothesis can fail due to the intermittent nature of the process

observed (switching between two or several phases of motion). Even in conditions where each

phase of the process is stationary and ergodic, the length of the trajectory can be too short

for an effective regime to establish resulting in large fluctuations of a quantity averaged along a

trajectory. For some applications, given that the intermittent nature of the process is known, a

statistical description of the effective dynamic can be sufficient. A contrario, for identifying the

underlying transport mechanism, it is no longer sufficient. Many procedures have been proposed

to recognize the different phases of motion (see Annex A), but most of them are aimed to test

a specific statistical change along the property.

In this chapter, we go a step further by addressing the challenging question of detection of

change points between distinct phases in a single random trajectory without prior knowledge

of the underlying stochastic model. The phases are distinguished by their dynamical properties

such as different (i) diffusivities, (ii) drifts, (iii) auto-correlations of increments, (iv) distributions

of increments, (v) dimensionalities (e.g., bulk/surface), (vi) isotropic/anisotropic character, or
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(vii) space accessibility (e.g., restricted character due to reflecting obstacles or confinement). The

basic idea of such model-free methods consists in considering a local functional of the trajectory,

Q(n), which depends on a relatively small number of points around the point xn. When applied

to successive points along the trajectory, this local functional transforms the trajectory into a

new time series, which can then be used either to characterize the dynamics (e.g., to get local

drift or diffusivity), or to discriminate between different phases of the motion. For instance, the

points xn with Q(n) below some threshold can be assigned to one phase while the remaining

points are assigned to the other phase. In contrast to Bayesian methods, the functional Q(n),

which is used to process the data, does not depend on the model, though the efficiency of this

binary classification clearly depends on the choice of the functional Q(n). The simplest choices,

Qµ(n) =
1

2∆
(xn+∆ − xn−∆), (3.1)

Qσ(n) =
1

2∆ + 1

∆∑
k=−∆

‖xn+k+1 − xn+k‖2, (3.2)

are respectively the drift estimator and the variance estimator (over a window of size 2∆ + 1)

of isotropic Brownian motion. Another standard functional is the angle between successive

increments of the trajectory, which is often used to detect ballistic parts of the motion [146] or

even a combination of them [7]. Having a differential form (i.e., involving differences between

points), these functionals are rather sensitive to noise, exhibit large fluctuations and thus yield

large statistical uncertainties. This drawback can be reduced by increasing the window size

∆. However, too large ∆ would make the functional Q(n) less sensitive to phase alternations,

especially for short phases. Several improvements have been proposed, e.g., the root mean square

estimator for the variance [114] or the scaling exponent extracted from the local TA MSD [7].

Nevertheless, these improved estimators still have the differential form and thus remain sensitive

to noise.

To overcome this fundamental limitation, we propose the geometric properties of a local

convex hull (LCH) as robust discriminators of different phases. In contrast to earlier used

differential-like estimators, the convex hull is intrinsically an integral-like characteristic that is

thus less sensitive to noise, as shown below. This new method is applicable for the analysis of

single trajectories of any dimensionality. The method is model-free because it relies exclusively

on geometric properties of the trajectory. We demonstrate its efficiency in recognizing different
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intermittent dynamical scenarios inspired from biology. The results of this chapter have been

published in [160].

In this chapter we first describe the LCH method in Sec. 3.2, how it works and the different

quantities associated to it. In Sec. 3.3 we test the efficiency of the method on six scenarios of

intermittent motion inspired from biology. Finally we discuss some limitations and concerns for

the future developments of the method in Sec. 3.4.

3.2 Local Convex Hull Method

The convex hull of a finite set of points, {x1, . . . ,xn} ⊂ Rd, is the set of all convex combinations

based on these points:

Conv(x1, . . . ,xn) =

{
n∑
k=1

αkxk | αk ≥ 0,
n∑
k=1

αk = 1

}
. (3.3)

In simpler terms, it is the minimal convex shape that encloses all the points x1, . . . ,xn. In the

planar case, the convex hull of a finite set of points {x1, . . . ,xn} is a convex polygon whose

vertices are some of the points in this set. The construction of a convex hull is thus reduced

to identifying these points in a clockwise or counter-clockwise order. In higher dimensions,

the convex hull is a convex polytope (e.g., a convex polyhedron in three dimensions) whose

vertices are some of the points in the input set. Among several efficient algorithms [66,208], we

chose the quickhull algorithm [10] because of its available implementation in Matlab as functions

“convhull” (in two dimensions) and “convhulln” (in higher dimensions). The convex hull has

been used for home range estimations of animal territories [101,223,289] and for computation of

fractal dimensions [206]. Some basic properties of the convex hull applied to stochastic processes

are summarized in Appendix C.

We propose to consider the diameter and the volume of the local convex hull, computed over

2∆ + 1 trajectory points xn−∆,xn−∆+1, . . . ,xn+∆, as two functionals:

Qd(n) = diam(Conv(xn−∆, . . . ,xn+∆)), (3.4)

Qv(n) = vold(Conv(xn−∆, . . . ,xn+∆)) (3.5)

(the volume is replaced by the area in two dimensions). Note that the diameter of the LCH

is simply the largest distance between any two points in the sequence {xn−∆, . . . ,xn+∆}, i.e.,
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Figure 3.1: Illustration of the local convex hull method applied to an intermittent planar

trajectory, alternating a “fast” phase of Brownian motion (with D = 1/4) and a “slow” phase of

an Ornstein-Uhlenbeck process (with D = 1/4 and k = 0.1, see Sec. 3.3.4), of equal durations

T1 = T2 = 40. Only two LCHs (based on 2∆ + 1 = 41 points) are shown by shadowed regions

that correspond to the fast (dark red) and slow (light green) phases.

it is particularly easy to compute. Any significant change in the dynamics (i.e., switching

between phases) is expected to be reflected in a notable change in the geometric form of the

trajectory that is captured here by the local convex hull (Fig. 3.1). For instance, an increase in

the diffusion coefficient or in the drift leads to larger increments and thus a larger LCH, with

larger Qd(n) and Qv(n). In addition, anisotropic features of the motion, such as dimensionality

reduction or presence of a reflecting wall, would be reflected in an anisotropic shape and in a

reduced volume of the LCH. Depending on the observable chosen, the identification will be more

sensitive to a particular aspect of the motion. The diameter is more sensitive to correlations

and diffusion coefficients, whereas the volume is more sensitive to changes in the dimensionality

and anisotropy. The window size ∆ is a parameter of the method that controls the compromise

between reactivity and robustness in change points detection: smaller ∆ facilitates identification

of short phases (the method is more reactive) but makes it less robust, as the estimators become

more sensitive to fluctuations, noises, and outliers.

According to Eqs. (3.4, 3.5), the point xn contributes to 2∆+1 estimators Qd(k) (or Qv(k))

with k ∈ [n−∆, n+∆]. It is therefore natural to classify the point xn by using all the estimators
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Qd(k) (or Qv(k)), to which it contributed. We define thus the discriminator Sd(n) as a weighted

sum of Qd(k) over ∆ left and ∆ right neighbors of xn (similar for Sv(n)). The simplest choice

consists in setting equal weights to each contribution:

Sd(n) =
1

2∆ + 1

n+∆∑
k=n−∆

Qd(k), (3.6)

Sv(n) =
1

2∆ + 1

n+∆∑
k=n−∆

Qv(k). (3.7)

Other weighting schemes (e.g., exponential) are as well possible. A priori, it is not clear why

the point n should be at the center of the window when calculating Qd(n) (resp. Qv(n)). In

fact, choosing equal weight for each contribution makes Sd(n) (resp. Sv(n)) independent of the

choice of the position of n in the functional Qd(n) (resp. Qv(n)), which solves the ambiguity.

The LCH method for change points detection consists in two steps. In the first step, for a

given trajectory with N points, discriminators Sd(n) and Sv(n) are computed for all points xn

with n from 2∆ + 1 to N − 2∆ (the first and last 2∆ points of the trajectory are discarded

and remain unclassified). In other words, these discriminators transform the trajectory in Rd

into two new one-dimensional time series. Due to the integral-like nature of the LCH, these

times series are expected to be less erratic than trajectories and more sensitive to changes in

the dynamics. In the second step, these time series are used to detect change points between

two phases. In the basic setting, the points xn with Sd(n) > Sd (or Sv(n) > Sv) are classified

as belonging to the “fast” phase whereas the points xn with Sd(n) ≤ Sd (or Sv(n) ≤ Sv) as

belonging to the “slow” phase. The choice of the threshold value Sd (resp. Sv) is crucial for

an efficient detection of change points. Without a priori knowledge of the underlying stochastic

process, we set Sd (resp. Sv) to be the empirical mean of Sd(n) (resp., of Sv(n)) over the

trajectory, i.e.,

Sd =
1

N − 4∆

N−2∆∑
n=2∆+1

Sd(n),

Sv =
1

N − 4∆

N−2∆∑
n=2∆+1

Sv(n).

(3.8)

In Sec. 3.4.2, we discuss this point and possible improvements.

We emphasize that the LCH method can be applied to a single trajectory of essentially

any intermittent stochastic process. In turn, the quality of change points detection depends
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on how distinct the geometric properties of two phases are, as well as on durations of these

phases. We also stress that the method does not rely on specific properties of the underlying

stochastic model, nor does it identify the properties of each phase. This analysis can be done

by conventional methods after the change points detection. Finally, the same two phases do not

need to be repeated along the trajectory. Although many distinct phases could in principle be

present in a single trajectory, we focus on the particular case of two alternating phases (that we

qualitatively called “fast” and “slow”).

Note that the convex hull diameter can be considered as an alternative to the maximal

excursion, i.e., the greatest distance from the origin that a particle reaches until time t [27].

The latter has been shown to have a narrower distribution than the conventional TA MSD, and

thus proposed as an estimator of the scaling exponent that can be applied to single particle

trajectories [261].

3.3 Numerical validation

In this section we investigate the efficiency of the LCH method by simulating six models of

intermittent processes with the following phases:

1. two planar Brownian motions with distinct diffusion coefficients D1 and D2 (change in

diffusivity);

2. two planar Brownian motions with the same diffusion coefficient D, with and without drift

(change in directionality);

3. two planar fractional Brownian motions with distinct Hurst exponents H1 and H2 (change

in auto-correlations);

4. planar Brownian motion and Ornstein-Uhlenbeck process (change in auto-correlations);

5. planar Brownian motion and exponential flights (change in the distribution of increments);

6. surface-mediated diffusion, with alternating phases of three-dimensional bulk diffusion and

two-dimensional surface diffusion (change in dimensionality).

Although many other intermittent processes could be considered, we focus on the above cases

as representative examples.
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The simulations are performed as follows.

1. First, we generate thousand random trajectories, each with thousand points (i.e., N =

1000). The intermittency is implemented by partitioning these points into two alternating

phases by assigning random, exponentially distributed durations, with prescribed mean

durations T1 and T2 of two phases. Throughout this section, we consider two phases of

equal mean duration, T1 = T2 = T , while the situation of unequal phases is discussed in

Sec. 3.4.3. A white Gaussian noise of standard deviation σn is added to each trajectory

point in order to check the robustness of the LCH method to measurement noises. The

noise level σn is set to be proportional to the empirical standard deviation σ of increments,

computed for each trajectory. Note that the noise has a stronger impact onto the “slow”

phase than onto the “fast” phase.

2. Second, we fix the window size ∆ and compute the diameter, Qd(n), and the volume,

Qv(n), of the LCH at all time steps n from ∆+1 to N −∆ for each trajectory. These esti-

mators are then transformed into the weighted discriminators Sd(n) and Sv(n) according

to Eqs. (3.6, 3.7) for n from 2∆ + 1 to N − 2∆. The default value of the window size ∆

is 10, other sizes being considered in Sec. 3.4.2.

3. Third, for each trajectory, we assign the points with Sd(n) > Sd (resp. Sv(n) > Sv) to

the “fast” phase and the points with Sd(n) ≤ Sd (resp. Sv(n) ≤ Sv) to the “slow” phase,

where Sd (resp. Sv) is the empirical mean diameter (resp., volume) of the LCH given by

Eq. (3.8). We stress that the threshold value is computed separately for each trajectory.

In this way, we obtain two unrelated binary classifications, the one based on the diameter

and the other based on the volume. A priori, it is unclear which classification results in a

better detection of change points. In practice, one would use one of these classifications,

depending on the anticipated properties of the phases.

4. Finally, to quantify the efficiency of the LCH method, we introduce the recognition score,

R, as the fraction of points that have been correctly classified. This score is computed for

each trajectory and then averaged over all simulated trajectories. The score 0.5 would be

obtained by a completely random classification, whereas the score 1 corresponds to the

perfect classification. We will analyze how the efficiency of the LCH method is affected by
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the phase duration T , the window size ∆, and noise level σn. We emphasize that the phase

classification is performed individually for each trajectory, whereas the ensemble average

appears only at the last step to assess the quality of the method through the recognition

score.

Throughout the chapter, we employ dimensionless units. In particular, time is identified with

the point index n.

3.3.1 Two Brownian motions

We start with heterogeneous diffusion, in which a particle diffuses in a composite medium with

high and low diffusivities. A simplified model of this dynamics is a Brownian motion switching

between two diffusion coefficients D1 and D2. This model can also represent the motion of a

polymer that switches between two conformational states having distinct hydrodynamic radii

(e.g., a compact globular structure versus an extended fibrous one).

Figure 3.2 a shows a single planar trajectory with two alternating phases of slow (D1 = 1/2)

and fast (D2 = 2) diffusion, each phase of the mean duration T = 100. The weighted LCH

diameter Sd(n) with the window size ∆ = 10 is shown in Fig. 3.2b. The change points are

identified as crossings of Sd(n) by the dashed horizontal line which indicates the empirical mean

Sd over that trajectory. As expected, the detected change points are slightly delayed with respect

to the actual change points (shown by changes of color/brightness in the curve). This delay is

caused by the fact that the LCH at the actual change point, nc, includes half points of one

phase and half points of the other phase. Only when n = nc + 2∆ + 1, the LCH gets rid off

the points of the previous phase. As a consequence, the delay is expected to be of the order of

2∆, as qualitatively confirmed by this figure. The delay results in a false classification of some

points, as illustrated by pink shadowed regions in Fig. 3.2b. The false classification can also

result from spontaneous crossings by Sd(n) of the dashed horizontal line (e.g., see the shadowed

region at the time step around 640). This is just a random nature of the motion: the particle

in the “fast” (resp., “slow”) phase starts to explore the space slower (resp., faster) than usual

due to stochastic fluctuations.

Figure 3.2c shows the recognition score R as a function of the mean phase duration T for

the diameter-based discriminator Sd(n). When the phase duration is too short (say, T = 10),
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Figure 3.2: Model 1 (a) A single trajectory of planar Brownian motion alternating a “slow”

phase (D1 = 1/2, dark blue) and a “fast” phase (D2 = 2, light green), of the mean phase duration

T = 100. Circle and square indicate the starting and ending points. (b) The weighted LCH

diameter Sd(n) with the window size ∆ = 10, applied to this trajectory. Pink shadow highlights

the false classification zones. Dashed horizontal line shows the empirical mean Sd over that

trajectory. (c,d,e) Recognition score R of the diameter-based discriminator Sd(n) (c), the

volume-based discriminator Sv(n) (d), and the TA MSD-based discriminator (e) as a function

of the mean phase duration T . Lines show the results for the case D1 = 1/2, D2 = 2 with

three noise levels σn: 0 (blue solid), 0.5σ (red dashed), and σ (gray dash-dotted) (σ being the

empirical standard deviation of increment calculated for each trajectory). Symbols correspond

to the case D1 = 1/2, D2 = 1 with the same levels of noise σn: 0 (circles), 0.5σ (crosses), and

σ (triangles). Thin black solid line shows the hypothetical curve 1 − ∆/(2T ) for qualitative

comparison.
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Figure 3.3: Distribution of Sd(n) (Left) Sv(n) (Right) for one trajectory of N = 106 steps of

planar Brownian motion with diffusion coefficient D = 1/2 (blue curve) and D = 2 (dashed

red curve) as well as an intermittent Brownian motion alternating the two previous diffusion

coefficients (dashed black curve) with mean phase duration λ = 100 calculated for ∆ = 10.

the LCH of window size ∆ = 10 includes 21 consecutive points and thus almost always contains

points from both phases. In this extreme case, the method is clearly unable to detect change

points, in agreement with the obtained recognition score close to 0.5. When the phase duration

T is comparable to 2∆+1 = 21 (the number of points used to construct the LCH) and two phases

are quite distinct (the example D1 = 1/2, D2 = 2), the recognition score is around 0.67, i.e.,

two thirds of points are correctly classified. The recognition score further increases up to 88%

as the mean phase duration grows up to T = 100. If the delay in detection was equal on average

to c∆, the curve would be (T − c∆)/T = 1− c∆/T , as illustrated by thin black line for c = 1/2.

One can see that this hypothetical curve over-estimates the recognition score probably because

of additional spontaneous false classifications due to the overlapping of the distribution of the

LCH for Brownian motion alone with D1 = 1/2 and D2 = 2, as shown in Fig. 3.3. According

to Fig. 3.3, both distributions of Sd(n) overlap more than that of Sv(n) explaining why the

hypothetical curve fits better the case of the volume. We expect that when the distributions do

not overlap at all, the hypothetical curve would fully reproduce the simulated results.

Figure 3.2d presents the recognition score for the volume-based classification. While this

classification slightly outperforms the diameter-based one, the behavior is very similar to that

shown in Fig. 3.2c. This is not surprising because both phases and thus the shapes of the

LCHs are isotropic so that the volume and the diameter of the LCH bear essentially the same
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information.

Figures 3.2c,d also show that the LCH estimators are robust again measurement noises. In

fact, adding the white Gaussian noise of amplitude σn which is comparable to the amplitude

of one-step increments, has almost no effect on the recognition score. This is an important

advantage of the LCH method, which is based on integral-like characteristics of the trajectory,

as compared to conventional techniques based on differential-like estimators such as local TA

MSD, which are more sensitive to noise. This point is illustrated in Fig. 3.2e, which shows

the recognition score of the classification scheme, in which the LCH-based estimator Qd(n) is

replaced by the local TA MSD estimator Qσ(n) from Eq. (3.2). We use the same window

size ∆ = 10 as for the LCH estimators. When there is no noise, the local TA MSD estimator

outperforms the LCH-based estimators Qd(n) and Qv(n). This is not surprising as the diffusivity

estimator Qσ(n) is known to be optimal for Brownian motion [24, 114, 274]. However, the

presence of noise drastically deteriorates the quality of change points detection by TA MSD. In

turn, the effect of the same level of noise onto the LCH-based estimator is much weaker.

When the diffusion coefficients of two phases become closer, the recognition score is reduced.

This is illustrated in Fig. 3.2c,d,e by symbols that show the recognition score for the case

D1 = 1/2 and D2 = 1. In the ultimate case D1 = D2, the two phases become identical, and any

phase detection would meaningless, yielding the recognition score close to 0.5 (not shown).

3.3.2 Brownian motion with a drift

In the second example, we consider a planar Brownian motion alternating two phases (of the

same diffusivity), without and with a drift µ in a fixed direction. This is a very basic model

for active intracellular transport, in which cargos can attach to motor proteins, be transported

ballistically along microtubules, spontaneously detach, and resume diffusion [33, 35]. If the in-

termittent character of this process was ignored, switching between two phases would effectively

look like a superdiffusive motion with a scaling exponent α between 1 and 2.

As the drift tends to elongate the trajectory in one direction, one should be able to identify

the drifted phase via anisotropic and larger LCH. To test the efficiency of the LCH method,

we generate a planar Brownian motion alternating two phases, one of which has a small drift

µ in a fixed direction. As previously, durations of both phases are random and exponentially

distributed variables with the mean phase duration T . Figure 3.4 shows an example of a single
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Figure 3.4: Model 2 (a) A single trajectory of an intermittent process alternating a “slow”

phase of planar Brownian motion without drift (dark blue) and a “fast” phase with drift (µ = 0.5,

light green), of the mean phase duration T = 100 (both phases with D = 1/2). Circle and square

indicate the starting and ending points. (b) The weighted LCH diameter Sd(n) with the window

size ∆ = 10 applied to this trajectory. Pink shadow highlights the false classification zones.

Dashed horizontal line shows the empirical mean Sd over that trajectory. (c,d,e) Recognition

score R of the diameter-based discriminator Sd(n) (c), the volume-based discriminator Sv(n)

(d), and the TA MSD-based discriminator (e) as a function of the mean phase duration T .

Lines show the results for the case µ = 0.5 with three noise levels σn: 0 (blue solid), 0.5σ

(red dashed), and σ (gray dash-dotted) (σ being the empirical standard deviation of increment

calculated for each trajectory). Symbols correspond to the case µ = 0.1 with the same levels of

noise σn: 0 (circles), 0.5σ (crosses), and σ (triangles).81



trajectory of this process, the weighted LCH diameter Sd(n), and the recognition scores for the

diameter-based and volume-based discriminators. For a relatively strong drift, µ = 0.5 (with

the one-step standard deviation σ = 1), both estimators efficiently detect the change points.

For a much smaller drift µ = 0.1, the recognition scores are decreased but remain good enough.

For instance, one attains the recognition score of 80% at the mean phase duration T = 100. In

both cases, the diameter-based discriminator outperforms the volume-based discriminator, and

both discriminators are very robust against noise. As expected, the local TA MSD estimator,

which is a priori not adapted to detect drift, shows a poor performance (Fig. 3.4e).

3.3.3 Two fractional Brownian motions

For each planar trajectory, X and Y coordinates were generated by concatenating independent

“pieces” (phases) of one-dimensional fBm with alternating phases of subdiffusive (H1 = 0.35)

and superdiffusive (H2 = 0.7) motion, with DH = 1/2 in both cases. As previously, durations

of phases are independent exponentially distributed random variables, with a prescribed mean

phase duration T . In other words, the numerical algorithm consists in (i) generating a sequence

of independent exponentially distributed durations τ1, τ2, . . ., from which the integer change

points are defined as tk = tk−1 + bτkc (with t0 = 0); and (ii) generating successive phases

{xtk−1+1, . . . , xtk} and {ytk−1+1, . . . , ytk} (with k = 1, 2, . . .) as one-dimensional fBms, with the

covariance defined in Chapter 1, where H is equal to H1 for even k and to H2 for odd k. The

starting point of the “piece” k is the ending point of the “piece” k − 1. The whole trajectory is

thus composed of points{
(x1, y1), . . . , (xt1 , yt1)︸ ︷︷ ︸

“piece” 1: fast phase

, (xt1+1, yt1+1), . . . , (xt2 , yt2)︸ ︷︷ ︸
“piece” 2: slow phase

,

(xt2+1, yt2+1), . . . , (xt3 , yt3)︸ ︷︷ ︸
“piece” 3: fast phase

, . . . , (xtK+1, ytK+1), . . . , (xN , yN )︸ ︷︷ ︸
“piece” K

}
.

Note that the last “piece” (with index K) is truncated to get the whole trajectory with N points.

We emphasize that this algorithm yields the successive phases that are independent from each

other, and there is no cross-correlation in increments along X and Y coordinates. In this model,

switching between two phases mimics changes in auto-correlations of increments.

Figure 3.5 shows an example of such intermittent trajectory, the weighted LCH diameter

Sd(n) with the window size ∆ = 10 applied to this trajectory, and the recognition score for both
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the diameter-based and the volume-based classifications. The results are similar to that shown

in Fig. 3.2 for intermittent Brownian motion. When the distinction between two phases is lower

(the example with H1 = 0.35 and H2 = 0.5), the recognition scores are reduced (symbols) but

remain satisfactory. These scores are particularly favorably compared to that of the TA MSD

discriminator which cannot detect phases at all (Fig. 3.5e). Although the conventional TA MSD

estimator may be modified to show a better performance, such a modification would implicate

additional knowledge on the model. The results for the case H1 = 0.5 and H2 = 0.7 (normal

versus superdiffusive motion) are very similar to the latter case and thus not shown.

3.3.4 Brownian motion and Ornstein-Uhlenbeck process

For each planar trajectory, X and Y coordinates were generated as two independent intermittent

processes, alternating a “fast” phase of Brownian motion (k = 0) and a “slow” phase of Ornstein-

Uhlenbeck process (k > 0), with D = 1/2 for both phases. Phase durations were independent

exponentially distributed random variables, with a prescribed mean phase duration T . This

intermittent process can model the motion of a particle evolving in a medium where it freely

moves until it interacts with an attracting trap, fluctuates near this trap via the OU process,

liberates itself until the next interaction, etc. In neurosciences, the OU process is traditionally

used as a model of the instantaneous firing rate of neurons in the neocortex [4, 5]. Recently, a

change-point detection procedure to detect changes in the spiking activity of neurons has been

proposed [186]. In this section, we check the ability of the LCH method to detect the phases of

motion governed by the OU process.

Figure 3.6 shows an example of such intermittent trajectory, the weighted LCH diameter

Sd(n) with the window size ∆ = 10 applied to this trajectory, and the recognition score for

both the diameter-based and the volume-based classifications. The results are similar to that

shown in Fig. 3.2 for intermittent Brownian motion. When k is getting smaller, the OU process

becomes close to Brownian motion, and the recognition scores are reduced (symbols). The TA

MSD discriminator shows poorer performance (Fig. 3.6e).
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Figure 3.5: Model 3 (a) A single trajectory of planar fBm, alternating a “slow” phase

(H1 = 0.35, dark blue) and a “fast” phase (H2 = 0.7, light green), of the mean phase duration

T = 100 and DH = 1/2. Circle and square indicate the starting and ending points. (b) The

weighted LCH diameter Sd(n) with the window size ∆ = 10 applied to this trajectory. Pink

shadow highlights the false classification zones. Dashed horizontal line shows the empirical

mean Sd over that trajectory. (c,d,e) Recognition score R of the diameter-based discriminator

Sd(n) (c), the volume-based discriminator Sv(n) (d), and the TA MSD-based discriminator (e)

as a function of the mean phase duration T . Lines show the results for the case H1 = 0.35,

H2 = 0.7 with three noise levels σn: 0 (blue solid), 0.5σ (red dashed), and σ (gray dash-dotted)

(σ being the empirical standard deviation of increment calculated for each trajectory). Symbols

correspond to the case H1 = 0.35, H2 = 0.5 with the same levels of noise σn: 0 (circles), 0.5σ

(crosses), and σ (triangles). 84
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Figure 3.6: Model 4 (a) A single trajectory of planar motion, alternating a “fast” phase

(k = 0, dark blue) and a “slow” phase (k = 0.1, light green), with D = 1/2 and the mean

phase duration T = 100. Circle and square indicate the starting and ending points. (b) The

weighted LCH diameter Sd(n) with the window size ∆ = 10 applied to this trajectory. Pink

shadow highlights the false classification zones. Dashed horizontal line shows the empirical mean

Sd over that trajectory. (c,d,e) Recognition score R of the diameter-based discriminator Sd(n)

(c), the volume-based discriminator Sv(n) (d), and the TA MSD-based discriminator (e) as a

function of the mean phase duration T . Lines show the results for the case k = 1 with three noise

levels σn: 0 (blue solid), 0.5σ (red dashed), and σ (gray dash-dotted) (σ being the empirical

standard deviation of increment calculated for each trajectory). Symbols correspond to the case

k = 0.1 with the same levels of noise σn: 0 (circles), 0.5σ (crosses), and σ (triangles).
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3.3.5 Brownian motion and exponential flights

In order to test the efficiency of the LCH method in detection of change points between phases

with distinct distributions of increments, we consider an intermittent process, alternating a

“slow” phase of planar Brownian motion (with D = 1/2) and a “fast” phase of two-dimensional

exponential flights. In the “fast” phase, an increment at each time step was generated inde-

pendently from the others as (r cos θ, r sin θ), with the exponential distribution of flight length

r (with the mean length `) and the uniform distribution of angle θ. In other words, Gaussian

increments (in the “slow” phase) are just replaced by such exponentially distributed increments

(in the “fast” phase).

Figure 3.7 shows an example of such intermittent trajectory, the weighted LCH diameter

Sd(n) with the window size ∆ = 10 applied to this trajectory, and the recognition score for both

the diameter-based and the volume-based classifications. The results are similar to that shown

in Fig. 3.2 for intermittent Brownian motion. The second choice of the mean flight length,

` =
√

2, ensures that the variances of exponential flights and of Gaussian jumps are equal. In

this case, two phases differ only in the distribution of increments (Gaussian versus exponential).

Although these two distributions are relatively close (e.g., both distributions prohibit very large

increments), the achieved classification is reasonably good. The performance of the TA MSD

discriminator is comparable to that of the LCH for small noises but is reduced significantly for

a larger noise.

We emphasize that our realization of exponential flights is different from the run-and-tumble

model of bacteria motion, in which case a walker performs a ballistic motion for a random time

and then undergoes random rotations [21, 23]. We expect that the recognition score would be

even higher for the run-and-tumble motion (as compared to our model) because two phases are

geometrically more distinct.

3.3.6 Surface-mediated diffusion

In many biological and chemical applications, particles can adsorb to and desorb from the

surface and thus alternate between bulk and surface diffusions. For instance, this so-called

surface-mediated diffusion has been suggested as an efficient search mechanism for DNA-binding

proteins [22, 171, 226, 275]. The statistics of durations of bulk and surface phases plays an
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Figure 3.7: Model 5 (a) A single trajectory of an intermittent process, alternating a “slow”

phase of planar Brownian motion (with D = 1/2, dark blue) and a “fast” phase of two-

dimensional exponential flights (with ` = 3, light green), of the mean phase duration T = 100.

Circle and square indicate the starting and ending points. (b) The weighted LCH diameter

Sd(n) with the window size ∆ = 10 applied to this trajectory. Pink shadow highlights the false

classification zones. Dashed horizontal line shows the empirical mean Sd over that trajectory.

(c,d,e) Recognition score R of the diameter-based discriminator Sd(n) (c), the volume-based

discriminator Sv(n) (d), and the TA MSD-based discriminator (e) as a function of the mean

phase duration T . Lines show the results for the case ` = 3 with three noise levels σn: 0 (blue

solid), 0.5σ (red dashed), and σ (gray dash-dotted) (σ being the empirical standard deviation

of increment calculated for each trajectory). Symbols correspond to the case ` =
√

2 with the

same levels of noise σn: 0 (circles), 0.5σ (crosses), and σ (triangles).87



important role, in particular, in predicting the mean first passage times [17, 18, 228, 231]. For

this reason, we test the LCH method on the surface-mediated diffusion inside a three-dimensional

sphere of radius R. The particle starts from the origin of the sphere and undergoes Brownian

motion in the bulk with diffusion coefficient D3d, until the first arrival onto the surface. From

this moment, the particle adsorbs to the surface and diffuses on the surface with the diffusion

coefficient D2d. The surface diffusion occurs during a random exponentially distributed waiting

time (with the rate λ). After desorption, the particle is ejected into the bulk to the distance

a = 0.05R from the boundary and then resumes its bulk diffusion. Here we consider the equal

diffusion coefficients D2d = D3d = 10−3.

Figure 3.8 shows an example of such intermittent trajectory, the weighted LCH diameter

Sd(n) with the window size ∆ = 10 applied to this trajectory, and the recognition score for both

the diameter-based and the volume-based classifications. The significant difference of the surface-

mediated diffusion as compared to the earlier considered models of intermittent processes is that

the bulk phase duration is not an exponentially distributed random variable, it is determined

by the statistics of first arrivals onto the surface. In turn, the duration of surface diffusion

can be controlled by the desorption rate λ. Given that the mean surface duration is 1/λ, we

formally set T = 1/λ. This distinction explains new features in the recognition scores shown

in Fig. 3.8c,d. First, one can see that the volume-based discriminator greatly outperforms the

diameter-based one. This is not surprising because the volume of the LCH is much more sensitive

to the dimensionality reduction than the diameter. Second, in both cases, the recognition score

does not grow monotonously with the mean phase duration T . In fact, the mean duration of

the bulk phase, (R2− (R− a)2)/(6D), is fixed (and equal to 16.25 in our example), whereas the

mean duration of the surface phase is progressively increased. As a consequence, as T grows,

it becomes more difficult to detect the short bulk phases that results in the decrease of the

recognition score. A similar behavior can be seen in Fig. 3.12 for intermittent Brownian motion

(Model 1) when the durations of two phases differ significantly. Note also that the impact of

noise is stronger than in other cases. The performance of the TA MSD discriminator is good

but poorer than that of the volume-based estimator. This good performance is explained by the

fact that the change in dimensionality from three dimensions to two dimensions also reduces the

MSD from 6Dt and 4Dt that is captured by TA MSD estimator.
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Figure 3.8: Model 6 (a) A single trajectory of surface-mediated diffusion in a three-dimensional

sphere of radius R = 1, alternating bulk diffusion (light green) and surface diffusion (dark blue),

with D2d = D3d = 10−3 and λ = 10−2. Circle and square indicate the starting and ending points.

(b) The weighted LCH diameter Sd(n) with the window size ∆ = 10 applied to this trajectory.

Pink shadow highlights the false classification zones. Dashed horizontal line shows the empirical

mean Sd over that trajectory. (c,d,e) Recognition score R of the diameter-based discriminator

Sd(n) (c), the volume-based discriminator Sv(n) (d), and the TA MSD-based discriminator (e)

as a function of the mean duration of the surface phase T = 1/λ. Three curves correspond to

three noise levels σn: 0, 0.5σ, and σ (σ being the empirical standard deviation of increment

calculated for each trajectory).
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3.4 Discussion

The numerical validation has shown that the LCH method can detect change points between

the phases that differ either by amplitudes of increments, or by the presence of drift, or by

auto-correlations between increments, or by distribution of increments, or by dimensionality of

the explored space. Moreover, the method is robust against noise due to the integral-like nature

of the LCH-based estimators. In this section, we discuss the choice of the parameters, several

limitations and future improvements of the method.

3.4.1 Infinite moments

Even in the case where one of the phases has infinite mean displacement length (e.g. random

walk with heavy tailed distribution of increments), the calculation of the discriminator Sd(n)

(resp. Sv(n)) is still possible. We illustrate this point in Fig. 3.9 by considering an intermittent

process alternating Brownian motion with standard deviation of increments σ = 1 and Lévy walk

that is, random walk with random uniformly distributed direction and random jump lengths

picked from a stable distribution. The stable distribution is defined by its characteristic function

P (k) = exp (−iµk + |σk|α(1− i βsign(k) tan(πα/2))) , (3.9)

for α 6= 1, where µ ∈ [0,∞] is the position of the maximum of the distribution, the exponent

α ∈ [0, 2] describes the decay of distribution’s tails, σ ∈ [0,∞] is the scale of fluctuations and β

is the asymmetry parameter such that β = 0 is symmetric while β = −1, 1 is totally skewed. In

the special case α = 2, β = 0, one retrieves the characteristic function of a Gaussian distribution.

In our example we choose the parameters α = 0.7, β = 1, σ = 1, and µ = 0, such that the

displacement length is always positive with infinite mean. We also corrupt the trajectories with

white Gaussian noise, but this time its standard deviation σn is fixed to be proportional to the

standard deviation of increment of the Brownian motion. We choose three levels of noise σn:

0, σ, 10σ, the latter case is extreme because the noise level is ten fold higher than the mean

displacement length of Brownian motion.

In this configuration, a small amount of extreme events from the Lévy walk dominates the

threshold Sd (resp. Sv) that determines the discrimination. In this case using the empirical
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average as a threshold leads to distinguishing the extreme events from the rest but not exactly

the two states of motion. As an example, Fig. 3.9 (a) shows that Sd(n) is dominated by two

contributions from Lévy walk. This is a standard situation when dealing with heavy-tailed

processes. As a consequence the recognition with Sd(n) in Fig. 3.9 (c) (resp. Sv(n) in Fig. 3.9

(e)) is not satisfactory.

A possible solution is to consider the logarithm of the discriminator, logSd(n) (resp. logSv(n)),

and to use as a criterion the empirical average of the transformed time series. Figure 3.9 (b)

shows that this non-linear transformation reveals the alternation of the phases of motion for

which the new threshold is more adapted. Results for logSd(n) in Fig.3.9 (d) (resp. logSv(n)

in Fig.3.9 (f)) are particularly good considering the difficulty of the task. The reason for this

transformation to be efficient is that it evaluates how the discriminator is localized on the differ-

ent scales. The discriminator for the Brownian motion alone remains roughly on a single scale

due to the finite standard deviation of the increments while the Lévy walk is scale invariant

therefore still displays significant fluctuations in log-scale.

3.4.2 Parameters of the method

Although the LCH method is model-free, there are two parameters to be chosen: the window

size ∆ and the threshold Sd (or Sv) used for the binary classification. Let us discuss the choice

of these parameters in more detail.

Throughout Sec. 3.3, we set ∆ = 10. Figure 3.10 shows the effect of the window size ∆ on

the recognition score R for intermittent Brownian motion (Model 1) with D1 = 1/2, D2 = 2,

and the mean phase durations T1 = T2 = 40. First, one can see that the recognition score as a

function of ∆ is not monotonous, i.e., there is an optimal window size ∆c that maximizes the

recognition score. This optimality results from a compromise between the reactivity and the

robustness of the method. When ∆ is too large, the LCH contains too many points that leads to

larger delays between actual and detected change points and thus increases the fraction of false

classifications. In turn, when ∆ is too small, the method is reactive (delays are short) but also

too sensitive to stochastic fluctuations within one phase; as a consequence, the fraction of false

classifications is also higher due to spontaneous crossings of the discriminator Sd(n) (or Sv(n))

of the mean level Sd (or Sv). This latter effect is drastically enhanced in the presence of noise

(see how the curves with larger noise levels σn are diminished at short ∆). As a consequence,
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Figure 3.9: (a,b) Results for a two-dimensional intermittent process, alternating a “slow” phase

of Brownian motion with standard deviation of increments in each dimension σ = 1 (blue) and

a “fast” phase of Lévy walk with stable increments of parameters α = 0.7, β = 1, σ = 1, and

µ = 0 (light green). (a) The weighted LCH diameter Sd(n) with the window size ∆ = 10 applied

to a single trajectory of length N = 1000. Dotted line shows the empirical average of Sd. (b)

The logarithm of Sd(n) from (a). Dotted line shows the empirical average of logSd. (a,b) Pink

shadow highlights the false classification zones. (c,e) Recognition score R of the diameter-based

discriminator Sd(n), and (c) and the volume-based discriminator Sv(n) (e). (d,f) Recognition

score R of the diameter-based discriminator logSd(n) (d) and the volume-based discriminator

logSv(n) (f). (c,d,e,f) Plot as a function of the mean phase duration T . Lines show the results

with three noise levels σn: 0 (blue solid), σ (red dashed), and 10σ (gray dash-dotted) (σ being

the being the standard deviation of increments of the Brownian phase).92
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Figure 3.10: Effect of the window size ∆ on the recognition score R for intermittent Brownian

motion (Model 1) with D1 = 1/2, D2 = 2, and the mean phase durations T1 = T2 = 40. (a)

The diameter-based discriminator Sd(n); (b) the volume-based discriminator Sv(n). Four curves

correspond to four noise levels σn: 0, 0.5σ, σ, and 2σ (σ being the empirical standard deviation

of increment calculated for each trajectory).

the optimal window size ∆c is increased for noisier data. Clearly, the ∆c should also depend

on the phase duration. One cannot therefore choose the optimal window size without a priori

knowledge about the noise and phase durations. In practice, the range 5 ≤ ∆ ≤ 10 seems to

be the reasonable choice of the window size. Note that the recognition score versus ∆ for the

intermittent fBm (Model 3) exhibits very similar behavior (not shown).

The second parameter of the method is the threshold Sd (or Sv) that is used to distinguish

“slow” and “fast” phases. Without prior knowledge about the process, we chose the arithmetic

mean of the discriminator Sd(n) (or Sv(n)) over the trajectory as the threshold. However, this

choice is not necessarily optimal. For instance, one could use another mean (e.g., quadratic,

harmonic or geometric, as we used in Sec. 3.4.1), or set the threshold to be proportional to the

mean, or choose another function or constant. In order to justify this empirical choice, we con-

sider a receiver operating characteristic (ROC) curve for both diameter-based and volume-based

discriminators. For this purpose, we compute the true positive rate (the fraction of “fast” phase

points that were identified as “fast”) and the false positive rate (the fraction of “slow” phase

points that were identified as “fast”) by varying the threshold from the minimal to the maximal

value of the discriminator Sd(n) (or Sv(n)). Figure 3.11 shows the ROC curves for six considered

models and for two discriminators at the mean duration time T = 40. An ideal discriminator
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would yield the true positive rate at 1 and the false positive rate at 0 (the left upper corner),

whereas a random discriminator would fill the diagonal. The threshold at the minimal value of

the discriminator classifies all points as belonging to the “fast” phase (as Sd(n) ≥ minn{Sd(n)})

that corresponds to the right upper corner. Similarly, the threshold at the maximal value of the

discriminator classifies all points as belonging to the “slow” phase (as Sd(n) ≤ maxn{Sd(n)})

that corresponds to the left lower corner. The intermediate thresholds yield a concave ROC

curve lying above the diagonal. The diamond symbols indicate the threshold at the mean value

Sd (or Sv) that we suggest and use in this chapter. One can see that this value is the closest to

the left upper corner and thus the optimal choice, at least for the considered models and sets of

parameters.

The choice of the threshold is related to another important question about the choice of the

LCH-based geometric property as the discriminator. The local convex hull captures changes in

the mutual arrangement of points, in a somewhat similar way as our eyes do. The diameter

and the volume are the basic geometric characteristics of the LCH that reflect, respectively,

the overall size and anisotropy of points. Although these characteristics appear to be natural,

one can use any function of these (or other) characteristics as well. It is still unclear what

is the optimal function of the local convex hull to distinguish between two phases. In other

words, among all possible functions of the LCH, which one would yield the highest recognition

score. We expect that the optimal choice that maximizes the recognition score, depends on the

stochastic model of both phases as illustrated in Sec. 3.4.1 where one of the phases is heavy a

tailed process.

3.4.3 Phase durations

In all examples studied in Sec. 3.3 (except for surface-mediated diffusion), phase durations

were chosen as independent exponentially distributed random variables with equal mean phase

durations: T1 = T2 = T . This means that all phases have distinct but similar durations, whose

average and standard deviation are equal to T .

When two phases have significantly different durations, the detection of the shorter phase can

be problematic. To illustrate this point, we consider again the intermittent Brownian motion

(Model 1), in which one phase duration is kept fixed, whereas the other phase duration is variable

(in contrast to earlier figures, here the phase durations are fixed, not exponentially distributed).
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Figure 3.11: Effect of the threshold on the recognition quality for six models (following the

enumeration at the beginning of Sec. 3.3), for the diameter-based discriminator (top 6 plots)

and the volume-based discriminator (bottom 6 plots). The left upper corner and the right lower

corner correspond to the threshold at the minimal and the maximal values, whereas diamonds

indicate the mean value Sd (or Sv) used as the threshold throughout the chapter. Legend of six

curves on each plot is the same as in Figs. 3.2, 3.4, 3.5, 3.6, 3.7, 3.8 for the recognition score

(three levels of noise and two sets of model parameters, except for the Model 6).
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Figure 3.12: Effect of unequal phase durations for planar Brownian motion alternating “slow”

and “fast” phases (Model 1). Recognition score R of the diameter-based discriminator Sd(n)

(a) and the volume-based discriminator Sv(n) (b) as a function of the second phase duration

T2 while the first phase duration T1 is kept fixed: T1 = 40. Solid line: the first phase is “slow”

(D1 = 1/2), the second phase is “fast” (D2 = 2); dashes line: the first phase is “fast” (D1 = 2),

the second phase is “slow” (D2 = 1/2).

Figure 3.12 shows the recognition score as a function of T2/T1, with fixed T1 = 40. Solid line

corresponds to the case, in which the first phase is “slow” and the second phase is “fast”. As

the duration of the fast phase increases, its points start to dominate in the geometric properties

of the LCH, and thus to shift the threshold Sd (or Sv) to higher values. As a consequence, the

detection of shorter slow phases becomes more difficult, and the recognition score decreases. In

the opposite (dashed line) case when the first phase is “fast” and the second phase is “slow”,

the situation is slightly different. One can see that the recognition score first increases and then

decreases. We conclude that short “slow” phases are on average more difficult to detect than

short “fast” phases. In both cases, the method is incapable of detecting the phases shorter than

or comparable to the window size ∆, which in turn should not be smaller than 5− 10 steps.

If we assume that there are no phases shorter than some T0 (≈ 10− 20), any shorter phase

detected by the algorithm can be attributed to a spontaneous crossing of Sd(n) (or Sv(n)) of the

mean level. The recognition quality can thus be improved by re-classifying such inappropriate

phases. For instance, if a too short slow phase is detected between two fast phases, the slow phase

can be re-classified into the fast one, i.e., these three consecutive phases are merged and classified

as a single fast phase. This post-processing correction is particularly important when one aims
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at getting the statistics of slow and fast phase durations. In fact, a spurious short slow phase of

the above example cut a long fast phase into two shorter pieces and thus significantly affected

the statistics of phase durations. For a better performance, such post-processing corrections

or more elaborate statistical techniques (such as an estimation of likelihood of short phases)

need to be elaborated and tested on an application-specific basis. Note also that even if the

corrected short phase was not spurious (and thus the correction was erroneous), the correction

may still improve the overall recognition score, as it eliminates two false classifications related

to the delays. We emphasize that this correction procedure has not been used in this chapter.

3.5 Conclusion

We introduced a new model-free local convex hull method for detecting change points in a

single-particle trajectory. The LCH is constructed on a small number of consecutive points of

the trajectory and thus reflects the dynamics locally. In this way, the trajectory is transformed

into two time series, the diameter and the volume of the LCH along the trajectory. These time

series are then used for a binary classification into “slow” and “fast” phases.

The LCH method was validated on six common models of intermittent processes: Brownian

motion with two diffusivities, Brownian motion with and without drift, fractional Brownian

motion with different Hurst exponents, Brownian motion with and without harmonic potential,

Brownian motion and exponential flights, and surface-mediated diffusion. For all these models,

we computed the recognition score R as the fraction of successfully classified points. We showed

that R grows with the mean phase duration and reaches the values as high as 90% at T = 100

when two phases were quite distinct for a trajectory of N = 1000 steps. We analyzed how

distinct two phases should be for a robust classification. We showed that recognition errors are

mostly localized at the transition between two phases, but can also occur due to the overlapping

of the distributions of LCH from the pure processes. We also showed that, due to the integral-like

character of the LCH, the method is much more robust against noise than conventional methods

such as, e.g., time averaged mean square displacement. In particular, the TA MSD discriminator

has outperformed the LCH discriminators only in the case of two alternating Brownian motions

and only without noise. In all other cases, the performance of LCH estimators was much higher.

In the case where one of the phases displays infinite moments, the discrimination procedure
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should be based on the logarithm of Sd(n) (resp. Sv(n)) be compared with the average of

logSd(n) (resp. logSv(n)). In general choosing a window ∆ = 10 is a good compromise between

reactivity and robustness of the detection. The choice of the threshold to be the arithmetic mean

of Sd(n) (resp. Sv(n)) is the best in the cases considered (when the moments of displacements

are finite). However this choice is not universal, it can depend on the process itself and on the

proportion of each phase. Nevertheless this choice seems to be robust when the proportion of

one phase is greater than 10% of the trajectory.

The LCH method, being based on purely geometric features of the trajectory, can be applied

to a wide range of relevant intermittent processes such as animal foraging, active/passive motion

inside the cell, run and tumble motion of bacteria or motion exhibiting a change in dimension-

ality. The LCH method also has the potential to be successfully applied to detect changes in

instantaneous firing rates in neurons. Further development will be directed to a more automa-

tized version of this test. First it would be interesting to develop a strategy for verifying that the

process is indeed intermittent before applying the LCH method. A second development would

be to find an appropriate window size ∆ directly from the data, or to consider all possible ∆ in

the spirit of persistent homology [104]. Finally an LCH-based functional sensitive to anisotropy

should be relevant for many situations.
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Chapter 4

Non-Gaussian diffusion in

heterogeneous media

4.1 Introduction

There is an abundance of empirical observations of non-Gaussian diffusion [25, 48, 75, 102, 103,

108, 111, 123, 202, 209, 229, 235, 256, 267, 278, 279] (see Chapter 1). The observation of the dis-

tribution of displacements with exponential tails in multiple systems suggests that it is rem-

iniscent of heterogeneous complex media despite differences in experimental and microscopic

setups. Aiming at modeling these exponential tails, we proceed in this chapter by a meso-

scopic approach, which describes a system with time-dependent macroscopic quantities. More

particularly we focus on the case when non-Gaussian diffusion originates from local changes in

diffusive properties of the medium. We propose an analytically solvable generalization of for-

mer models [49, 55, 135, 137, 278], in which the parameters have a clear physical interpretation,

then we discuss the relevant statistical properties and investigate them analytically and numeri-

cally. Within this chapter, analytical results are corroborated by Monte Carlo simulations using

Milstein scheme [127].

We present in Sec. 4.2 a three parameter model of non-Gaussian diffusion in which diffu-

sivity is fluctuating around an average value D̄ (m2/s) (which constitutes the effective diffusion

coefficient at long time), with the correlation time τ (s) and the amplitude of fluctuations σ

(m/s). The description is formulated in terms of coupled Langevin equations from which the
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characteristic function of displacements is derived in an exact explicit form. The shape of the

distribution is tuned by one dimensionless parameter

ν =
D̄

σ2τ
, (4.1)

which compares the diffusivity fluctuation time D̄/σ2 and the diffusivity correlation time τ .

Depending on ν, the distribution of displacements can be close to exponential (ν = 1), parabolic

(ν > 1) or peaked (ν < 1) at the origin. In all cases, the distribution of displacements exhibits

an exponential tail with eventual power law corrections. We show that this description leads to

a linear dependence of the MSD on time, while fluctuations of time-averaged MSD span up at

long times depicting the effect of heterogeneous diffusivity. In Sec. 4.4 we derive the asymptotic

behavior of the probability distribution as a function of time and space in several cases. Then

in Sec. 4.5 we derive and analyze statistical properties of the model: (i) the autocorrelation of

squared increments which describes memory loss of diffusivity, (ii) the convergence to a Gaussian

distribution through the non-Gaussian parameter, (iii) the ergodic and self-averaging properties.

In Sec. 4.6 we show that two models with the same non-Gaussian parameter can be different and

briefly discuss a generalization to anomalous diffusion. Finally, we conclude the investigations

in Sec. 4.7.

4.2 Model of non-Gaussian diffusion

We propose a model of a tracer motion in a heterogeneous medium, in which the diffusivity

is a stochastic process instead of being a constant. In order to justify this description, let us

consider a single particle tracking measurement of duration texp with a timestep ∆t between

two position recordings. If the motion occurs in a homogeneous environment, the distribution

of displacements becomes Gaussian very fast, in a time tloc of equilibration of the tracer with

its local environment. For a heterogeneous medium, in which the diffusivity can vary spatio-

temporally (noted Dx,t), we introduce the time tsys for a particle to explore the whole medium

and to average diffusivities experienced in the medium. On one hand, if tloc � tsys < ∆t,

increments of the motion are already coarse-grained at a measurement timestep ∆t and therefore

are Gaussian. On the other hand, if tloc < ∆t � tsys, the motion is not necessarily Gaussian

because diffusivity evolves in time, and the tracer continuously moves from one equilibrium state
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to another. This can be interpreted as the effect of spatio-temporal heterogeneities in the medium

seen from the point of view of a single particle. To simplify the analysis we describe diffusivity as

a stochastic process in time, Dt, with the idea that the stochasticity is an annealed simplification

of the spatio-temporal disorder. The particle experiences a fluctuating diffusivity around an

average value D̄ toward which the time-averaged effective diffusion coefficient converges at long

times (i.e. t� tsys). Two physical constraints for a fluctuating diffusivity are (i) the distribution

of displacements converges to a Gaussian one at long times, so diffusivity should have a stationary

distribution in the long-time limit, with the average value D̄; (ii) diffusivity as a measure of local

kinetic energy of the tracer should be non-negative.

We propose to model time-dependent diffusivity Dt as a Feller process [92, 99] or square

root process, also known in financial literature as the Cox-Ingersoll-Ross process (CIR) [61].

This process has been developed in order to rationalize fluctuations of volatility in price asset

returns. In the CIR model, the diffusivity fluctuates in a harmonic potential centered on D̄

and remains non-negative thanks to the balance between the pulling of harmonic potential and

the noise reduction of diffusivity-dependent fluctuations at small Dt. Moreover, the stationary

distribution of diffusivity is known to be a Gamma distribution. For the sake of clarity, we first

formulate the model for one-dimensional motion and then show its straightforward extension

to the multi-dimensional isotropic case. For a tracer starting at x0 with diffusivity D0, the

corresponding coupled Langevin equations read: dxt =
√

2DtdW
(1)
t ,

dDt = 1
τ (D̄ −Dt)dt+ σ

√
2DtdW

(2)
t ,

(4.2)

where xt and Dt are stochastic time-dependent position and diffusivity of the tracer, dW
(1)
t and

dW
(2)
t are increments of independent Wiener processes (white noises). The model includes three

parameters: the average diffusivity D̄ (in m2/s), the correlation time τ (in s) and the amplitude

of fluctuations σ (in m/s).

The approach by Chubynsky and Slater [55] is retrieved by setting a diffusivity bias s(D) =

− 1
τ (D − D̄) and a diffusivity of diffusivity d(D) = σ2

√
2D, although in our model, a reflecting

boundary is necessary only at D = 0 (see below). Jain and Sebastian [135] and Chechkin et

al. [49] considered the diffusivity as the distance from the origin of an n-dimensional Ornstein-

Uhlenbeck process, which is a particular case of our model. To emphasize this point we
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present the derivation of the Cox-Ingersoll-Ross model starting from the n-dimensional Ornstein-

Uhlenbeck process in the next paragraph.

Let us consider a collection of independent Ornstein-Uhlenbeck processes indexed by i ∈

[1, n], each of them obeying the Langevin equation:

dY
(i)
t = −1

2
βY

(i)
t dt+ σdW

(i)
t , (4.3)

where β is the inverse correlation time, σ is the level of fluctuations, and W
(i)
t are independent

Wiener processes. Following [49,135] the diffusing diffusivity is modeled as

Dt =
n∑
i=1

(
Y

(i)
t

)2
. (4.4)

Let f(y1, y2..., yn) =
n∑
i=1

y2
i so that ∂

∂yi
f = 2yi and ∂2

∂yi∂yj
f = 2δij . According to Itô formula, we

get

dDt =
n∑
i=1

∂

∂yi
fdY

(i)
t +

1

2

n∑
i,j=1

∂2

∂yi∂yj
fdY

(i)
t dY

(j)
t

=

n∑
i=1

2Y
(i)
t

(
−1

2
βY

(i)
t dt+ σdW

(i)
t

)
+

n∑
i=1

(
−1

2
βY

(i)
t dt+ σdW

(i)
t

)2

=
n∑
i=1

2Y
(i)
t

(
−1

2
βY

(i)
t dt+ σdW

(i)
t

)
+ nσ2dt

=

(
nσ2 − β

n∑
i=1

(
Y

(i)
t

)2
)
dt+ 2σ

n∑
i=1

Y
(i)
t dW

(i)
t

=
(
nσ2 − βDt

)
dt+ 2σ

n∑
i=1

Y
(i)
t dW

(i)
t

=
(
nσ2 − βDt

)
dt+ 2σ

√
Dt

n∑
i=1

Y
(i)
t√
Dt
dW

(i)
t .

The stochastic process Wt defined as Wt =
n∑
i=1

∫ t
0
Y

(i)
s√
Ds
dW

(i)
s is a martingale because it has no drift

[187]. For its increments, dWt =
n∑
i=1

Y
(i)
t√
Dt
dW

(i)
t , we verify that dWtdWt =

n∑
i=1

(
Y

(i)
t

)2

Dt

(
dW

(i)
t

)2
=

dt, so the increments are properly normalized. We conclude that Wt is a Wiener process. We

now can rewrite the above equation as:

dDt =
(
nσ2 − βDt

)
dt+

√
2σ
√

2DtdWt. (4.5)
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Setting σ̃ =
√

2σ, β = 1/τ and n = D̄
σ̃2τ

= ν one finally retrieves the Cox-Ingersoll-Ross equation

dDt =
1

τ

(
D̄ −Dt

)
dt+ σ̃

√
2DtdWt. (4.6)

It is now then evident that the results of former studies can be reproduced for integer values

n = D̄
σ2τ

and the range of applicability is thus widened because parameters in our model are

continuous: {τ, D̄, σ} ∈ (0,∞). In particular, the case ν < 1, which yields a peaked distribution

of displacements and the most peculiar properties of heterogeneous diffusion (see below), was

not accessible so far.

We introduce the propagator P (x,D, t|x0, D0), i.e. the probability density for a tracer to be

at x with diffusivity D at time t, when started from x0, D0 at t = 0. The corresponding forward

Fokker-Planck equation in the Itô interpretation reads

∂

∂t
P (x,D, t|x0, D0) =

1

τ

∂

∂D

[
(D − D̄)P

]
+

∂2

∂x2
(DP ) + σ2 ∂2

∂D2
(DP ) , (4.7)

with the initial condition P (x,D, t = 0|x0, D0) = δ(x− x0)δ(D −D0).

Following Dragulescu and Yakovenko [75], this equation is solved by performing the Fourier

transform with respect to position x, and the Laplace transform with respect to diffusivity

D ≥ 0:

P̃ (q, s, t|x0, D0) =

∫ ∞
−∞

dx

∫ ∞
0

dDe−iqx−DsP (x,D, t|x0, D0), (4.8)

where q and s are the dual variables to position and diffusivity, respectively. Inserting Eq. (4.8)

into Eq. (4.7) leads to the first order partial differential equation:

∂

∂t
P̃ +

(
σ2s2 +

1

τ
s− q2

)
∂

∂s
P̃ = −1

τ
D̄sP̃ + JD(D = 0, t), (4.9)

subject to the initial condition P̃ (q, s, t = 0|x0, D0) = e−iqx0e−sD0 . The last term

JD(D = 0, t) =

(
D̄

τ
− σ2

)
P (q,D = 0, t|X0, D0) (4.10)

can be interpreted as a probability density flux across the boundary D = 0 in the phase space

(x,D). In the case of an absorbing diffusivity boundary at D = 0, there is an atom of probability

measure at D = 0 which “accumulates” absorbed trajectories. The probability of having D = 0

grows with time and is related to the function JD(D = 0, t) which can be deduced from initial

conditions by solving an integral equation (see Sec. 4.3.4). In our model, the diffusivity cannot
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be physically zero and the distribution must have a nontrivial stationary solution to match

convergence to a Gaussian distribution at long times, so we choose reflecting boundary condition

at D = 0 and thus JD(D = 0, t) = 0. In this case, the solution for any ν ≥ 0 is (see Sec. 4.3.2

for detailed derivation)

P̃ (q, s, t|x0, D0) = F (x0, D0, s)

(
σ2τ

ω

[(
s+

1 + ω

2σ2τ

)
−
(
s+

1− ω
2σ2τ

)
e−ωt/τ

]
e(

ω−1
2 )t/τ

)−ν
,

(4.11)

with

F (x0, D0, s) = exp

[
−iqx0 −

D0

2σ2τ

(
−1− ω +

2ω

1− ξe−ωt/τ

)]
, (4.12)

ξ = 1− 2ω

1 + ω + 2σ2τs
, (4.13)

and

ω =
√

1 + 4σ2τ2q2. (4.14)

The inverse Fourier and Laplace transforms yield P (x,D, t|x0, D0).

However, this solution provides too detailed information which can hardly be confronted to

single particle tracking data with no direct access to diffusivities D and D0. We thus integrate

the solution over D (which is equivalent to set s = 0) to get the marginal distribution of

positions. We also assume that the tracer’s initial diffusivity D0 is taken from its stationary

Gamma distribution Π(D0) (see Sec. 4.3.2):

Π(D0) =
ννDν−1

0

Γ (ν) D̄ν
exp

(
− ν
D̄
D0

)
, (4.15)

where the shape parameter ν is defined in Eq. (4.1). The average over D0 yields the marginal

distribution

P (x, t|x0) =
1

2π

∫ ∞
−∞

dq e−iqx0P̃ (q, t), (4.16)

with

P̃ (q, t) =

e− 1
2

(ω−1)t/τ 4ω

(ω + 1)2

(
1−

(
ω − 1

ω + 1

)2

e−ωt/τ

)−1
ν

. (4.17)

An alternative solution using the subordination concept, inspired from [49], is given in Sec.

4.3.3.

When particles undergo isotropic motion in Rd, the formula for the distribution of displacements
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remains almost unchanged, except that one has to perform multi-dimensional inverse Fourier

transform in Rd, with q,x and x0 being vectors:

P (x, t|x0) =

∫
Rd

ddq

(2π)d
eiq(x−x0)P̃ (|q|, t), (4.18)

with w =
√

1 + 4σ2τ2|q|2. Since the characteristic function P̃ (|q|, t) depends only on |q|, one

can use spherical coordinates and integrate out the angular variables, yielding

P (r, t) =
r1−d/2

(2π)d/2

∞∫
0

dq qd/2J d−2
2

(qr) P̃ (q, t), (4.19)

where Jα(x) is the Bessel function of the first kind, r = |x − x0|, and P̃ (q, t) is given by Eq.

(4.17). In what follows, we focus on the one-dimensional case, bearing in mind straightforward

extensions to the multi-dimensional case.

Figure 4.1 illustrates the convergence of the distribution of displacements to a Gaussian one

as t increases. Note also a perfect agreement between the theoretical formula (4.16) and Monte

Carlo simulations.

Figure 4.2 shows the effect of the shape parameter ν on the distribution of displacements at

time t = 1. The parameter ν changes the shape of the distribution. When ν ≤ 1, fluctuations

are strong compared to both the average diffusivity D̄ and the correlation time τ . In this case,

the probability of diffusivity close to zero is large that makes the distribution of displacements

peaked near x = 0. In turn, the distribution gets closer and closer to Gaussian as ν → ∞ (see

Sec. 4.4.1).

On the length scale στ , the diffusivity remains roughly the same. Intuitively, if
√
D̄t� στ ,

a particle has not enough time to explore the system. The distribution P (x, t|x0) could be

considered as a superstatistical description of independent particles with constant but randomly

chosen diffusion coefficients (see Sec. 4.4.2). Inversely, when
√
D̄t� στ , the particle has enough

time to explore the medium and the distribution progressively becomes Gaussian. We introduce

thus the time-dependent dimensionless diffusion length:

µ(t) =

√
D̄t

στ
. (4.20)

As µ(t)→∞, the particle explores the space beyond the correlation length, and the distribution

gets closer to a Gaussian one. We show in Fig. 4.3 how µ(t) impacts the shape of the distribution.
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Figure 4.1: Distribution of displacements at times t = {1, 10, 100}. Here τ = 10, D̄ = 1,

σ = 1/
√
τ and thus ν = 1. Theoretical results (lines) are compared to Monte Carlo simulations

(symbols) with M = 106 particles.

For instance at µ(t) = 1, the distribution is already almost Gaussian. When µ(t) decreases, the

distribution becomes more peaked. Note that the quantity µ(t) is directly related to the non-

Gaussian parameter (see Eq. (4.85) below).

Figure 4.4 illustrates four random trajectories and corresponding displacements. The envelop

of time series of displacements shows patterns of fluctuations correlated on timescale τ . For small

τ , the envelop becomes constant as in the Brownian motion case.

4.3 Solution of the Fokker-Planck equation

4.3.1 Statement of the problem

In this section we present the detailed solution to the two-dimensional forward Fokker-Planck

equation (Eq. (4.7)). This section concerns the necessary mathematical steps for obtaining the

solution presented and commented in Sec. 4.2.
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Figure 4.2: Distribution of normalized displacements, with x∗ = x/
√
D̄t, at fixed time t = 1 for

different parameters ν = {0.6, 1, 2}. For each case, we kept D̄ = 1 and τ = 100 and varied σ.

Theoretical results (lines) are compared to Monte Carlo simulations (symbols) with M = 106

particles.

The Fokker-Planck equation on position and diffusivity with the initial condition P (x,D, t =

0|x0, D0) = δ(x − x0)δ(D −D0). The equation on P (x,D, t|x0, D0) can be formally expressed

in term of a two-dimensional probability density flux ~J = {Jx, JD}

∂

∂t
P (x,D, t|x0, D0) = −div

(
~J
)
, (4.21)

with components

Jx = −D ∂

∂x
P, (4.22)

JD = −1

τ

(
D − D̄

)
P − σ2 ∂

∂D
[DP ] . (4.23)

This equation can be solved by transforming the position x into the Fourier space, and the

diffusivity, defined on the real half line D ∈ [0,∞), into the Laplace space:

P̃ (q, s, t|x0, D0) =

∫ ∞
−∞

dxe−iqx
∫ ∞

0
dDe−DsP (x,D, t|x0, D0). (4.24)
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Figure 4.3: Distribution of normalized displacements, with x∗ = x/
√
D̄t, at fixed time t = 1, with

µ(t) from Eq. (4.20) being varied in the range {1/10, 1/7, 1} corresponding to ν = {1, 2, 100},

by changing σ and keeping D̄ = 1 and τ = 100. Theoretical results (lines) are compared to

Monte Carlo simulations (symbols) with M = 106 particles.
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Figure 4.4: Left. Trajectories simulated for several values of τ = {1, 10, 100, 1000}. Here ν is kept

equal to one, with D̄ = 1 and σ = 1/
√
τ . Right. Corresponding time series of position increments

with lag-time δt = 1. For clarity, the time series are artificially shifted (with increasing τ values

from top to bottom), but remain with zero mean.
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so that Eq. (4.21) becomes:

∂

∂t
P̃ =

∫ ∞
−∞

dxe−iqx
∫ ∞

0
dDe−Ds

(
D
∂2

∂x2
P − ∂

∂D
JD

)
(4.25)

This leads to the first-order partial differential equation:

∂

∂t
P̃ +G(s)

∂

∂s
P̃ = −D̄

τ
sP̃ + JD(D = 0, t), (4.26)

with

G(s) = σ2 (s− s1) (s− s2) (4.27)

where

s1 =
−1 + ω

2σ2τ
, s2 =

−1− ω
2σ2τ

, (4.28)

and

ω =
√

1 + 4σ2τ2q2. (4.29)

The initial condition is now P̃ (q, s, t = 0|x0, D0) = e−iqx0e−sD0 . The last term in Eq. (4.26)

is the probability density flux at D = 0 which can be equivalently written JD(D = 0, t) =

σ2(ν − 1)P (q,D = 0, t|x0, D0). First we solve the problem for the model of reflecting boundary

in Sec. 4.3.2 and then demonstrate the effect with absorbing boundary condition at D = 0 in

Sec. 4.3.4.

4.3.2 Reflecting boundary condition at D = 0

First we solve the problem in the case of reflecting boundary condition, i.e. without flux at

D = 0: JD(D = 0, t) = 0. For ν ≥ 0, we search for the solution of the equation

∂

∂t
P̃ +G(s)

∂

∂s
P̃ = −D̄

τ
sP̃ , (4.30)

in the form:

P̃ (q, s, t|x0, D0) = f (t− g (s))h (s) , (4.31)

with three unknown functions f, g, h. Nontrivial solutions are found by solving
1− g′G = 0,

Gh′ + D̄
τ sh = 0,

(4.32)
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which gives 
g(s) = τ

ω ln
(
s−s1
s−s2

)
,

h(s) = (s− s1)
−D̄
ω
s1(s− s2)

D̄
ω
s2 .

(4.33)

Now we use the initial condition to deduce the function f :

P̃ (q, s, t = 0|x0, D0) = e−iqx0e−sD0 = f (−g (s))h (s) , (4.34)

from which we get

f(z) =
e−iqx0e−D0g−1(−z)

h (g−1 (−z))
, (4.35)

or equivalently,

f(z) =
( ω

σ2τ

)ν
e−iqx0 exp

(
−D0

s1 − s2e
−ωz/τ

1− e−ωz/τ

)
(1− e−ωz/τ )−νe−D̄s1z/τ . (4.36)

The solution is finally

P̃ (q, s, t|x0, D0) = F (x0, D0, s)
( ω

σ2τ

)ν (
s− s2 − (s− s1)e−ωt/τ

)−ν
exp

(
−D̄

(
ω − 1

2σ2τ

)
t/τ

)
,

(4.37)

with ν from Eq. (4.1) and

F (x0, D0, s) = exp

(
−iqx0 −D0

s1 − s2
s−s1
s−s2 e

−ωt/τ

1− s−s1
s−s2 e

−ωt/τ

)
. (4.38)

Substituting s1 and s2 in Eq. (4.37) and Eq. (4.38), we get Eq. (4.11).

In practice, it is hard to access directly the time-dependent diffusivity. It is therefore conve-

nient to integrate the joint probability density over diffusivity to get the marginal distribution

P̃ (q, t|x0, D0), which can be obtained in the Laplace domain by simply setting s = 0:

P̃ (q, t|x0, D0) = F (x0, D0, s = 0|x0)


(

2ω
1+ω

)
1−

(
1− 2ω

1+ω

)
e−ωt/τ

ν

exp

(
−D̄

(
ω − 1

2σ2τ

)
t/τ

)
.

(4.39)

Another issue is the dependence on the initial diffusivity D0. If the system is in a stationary

regime for the diffusivity, one can average over the stationary distribution Π(D0). This distri-

bution can be obtained from Eq. (4.11) by averaging over position (i.e. by setting q = 0), then
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taking the limit t→∞ and using the inverse Laplace transform relation

Π(D0) = L−1

[(
s+

1

σ2τ

)−ν]
=

νν

Γ(ν)D̄ν
Dν−1

0 exp

(
− D0

σ2τ

)
, (4.40)

also known from [92]. Then, the average over initial diffusivity reads

P̃ (q, t|x0) =

∞∫
0

Π(D0)P̃ (q, t|x0, D0)dD0. (4.41)

Taking the integral, we deduce Eq. (4.17).

4.3.3 Subordination

In this section we present an alternative derivation of the propagator P (q, t|x0) in Eq. (4.41)

using Subordination technique. Subordination is an elegant mathematical tool to describe com-

plex processes, in particular anomalous diffusion [262,284]. Chechkin et al. [49] applied it in the

diffusing diffusivity context by observing that the Fokker-Planck equation

∂

∂t
P (x, t) = D(t)

∂2

∂x2
P (x, t), (4.42)

can be written in the subordinated form:
∂p(x, u)

∂u
=

∂2

∂x2
p(x, u),

∂u

∂t
= D(t),

(4.43)

where p(x, u) = 1√
4πu

exp
(
−x2

4u

)
is the Gaussian propagator. Let T (u, t) be the probability

density of u(t) =
t∫

0

D(s)ds. The solution of Eq. (4.42) can be expressed as

P (x, t) =

∞∫
0

p(x, u)T (u, t)du =

∞∫
0

e−
x2

4u

√
4πu

T (u, t)du. (4.44)

Now the Fourier transform with respect to x yields:

P̃ (q, t) =

∞∫
0

T (u, t)e−q
2udu = T̃ (q2, t), (4.45)

where T̃ (q2, t) denotes the Laplace transform of T with respect to s = q2. In our model, the

description of diffusivity is made in term of the Cox-Ingersoll-Ross equation which reads

∂Π(D, t|D0)

∂t
=

1

τ

∂

∂D

[
(D − D̄)Π

]
+ σ2 ∂2

∂D2
(DΠ) . (4.46)
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In the Laplace domain, one has

∂

∂t
Π̃(s, t) +G(s)

∂

∂s
Π̃(s, t) = −1

τ
D̄sΠ̃(s, t), (4.47)

with G(s) = s(σ2s + 1
τ ). The initial condition is now Π̃(s, t = 0|D0) = e−sD0 . The integral

T̃ (s, t) =
t∫

0

Π̃(s, t′)dt′ is known from [76]

T (s, t|D0) =

[
et
∗/2

cosh(ωst∗/2) + 1
ωs

sinh(ωst∗/2)

]ν
exp

[
−sD0τ

ωs

2 sinh(ωst
∗/2)

cosh(ωst∗/2) + 1
ωs

sinh(ωst∗/2)

]
,

(4.48)

with t∗ = t/τ and ωs =
√

1 + 4sσ2τ2. According to Eq. (4.45), one deduces thus the character-

istic function as a function of initial diffusivity D0:

P̃ (q, t|D0) =

[
et
∗/2

cosh(ωt∗/2) + 1
ω sinh(ωt∗/2)

]ν
exp

[
−D0q

2τ

ω

2 sinh(ωt∗/2)

cosh(ωt∗/2) + 1
ω sinh(ωt∗/2)

]
,

(4.49)

with ω =
√

1 + 4q2σ2τ2. After integration over initial diffusivity the characteristic function

yields

P̃ (q, t) =

[
et
∗/2

cosh(ωt∗/2) + 1
ω sinh(ωt∗/2)

]ν (
1 +

2σ2q2τ2 sinh(ωt∗/2)

ω cosh(ωt∗/2) + (1− 2ωσ2q2τ2) sinh(ωt∗/2)

)ν
.

(4.50)

This is an alternative representation of the characteristic function P̃ (q, t) from Eq. (4.16).

4.3.4 Absorbing boundary condition at D = 0

In the case with absorbing boundary condition at D = 0, the Fokker-Planck equation represents

the evolution with time of the probability density of being at position x with diffusivity D

starting at x0, D0, without ever having diffusivity D = 0. In other words, we look at the

propagator of particles which have never stopped. For simplicity we adopt the notation JD(D =

0, t) = σ2(ν − 1)φ(t). This problem is solved using the method of characteristics. The solution

of the equation

dt =
ds

G(s)
=

dP̃

σ2(ν − 1)φ(t)− sD̄
τ P̃

(4.51)

gives

s =
s1 − s2C1e

ωt/τ

1− C1eωt/τ
, (4.52)
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with a constant C1. This expression is used to deduce the homogeneous solution of the second

equation in Eq. (4.51):

P̃h(q, s, t) =
[
C1e

ωt/τ
]− ν

2 (1− 1
ω ) [

1− C1e
ωt/τ

]ν
. (4.53)

Together with the particular solution we find

P̃ (q, s, t|x0, D0) = P̃h(q, s, t)

C2 + σ2(ν − 1)

t∫
0

dt
′ φ(t

′
)[

C1eωt
′/τ
]− ν

2 (1− 1
ω ) [

1− C1eωt
′/τ
]ν
 .
(4.54)

We pose that C2 is an arbitrary function H of C1: C2 = H(C1). The initial condition determines

the function H:

H(u) = e−iqx0 exp

(
−D0

s1 − s2u

1− u

)
[u]

ν
2 (1− 1

ω ) [1− u]−ν . (4.55)

For brevity we make the substitution ρ = s−s1
s−s2 . Inserting Eq. (4.52) and Eq. (4.55) to Eq.

(4.54) leads to the solution

P̃ (q, s, t|x0, D0) = e−iqx0 exp

(
−D0

s1 − s2ρe
−ωt/τ

1− ρe−ωt/τ

)(
e−ωt/τ

) ν
2 (1− 1

ω )
(

1− ρe−ωt/τ

1− ρ

)−ν
(4.56)

+σ2(ν − 1)

t∫
0

dt
′ φ(t

′
)(

e−ω(t−t′ )/τ
)− ν

2 (1− 1
ω )

(
1− ρe−ω(t−t′ )/τ

1− ρ

)−ν
,

with the function φ(t) to be determined. Following Feller [92], we require that the inverse

Laplace transform of the propagator exists. At large s, P̃ becomes

P̃ (q, s→∞, t|x0, D0) = s−ν

(
1− e−ωt/τ

s1 − s2

)−ν (
e−ωt/τ

) ν
2 (1− 1

ω )
(4.57)

×

[
e−iqx0 exp

(
−D0

s1 − s2ρe
−ωt/τ

1− ρe−ωt/τ

)

+σ2(ν − 1)

t∫
0

dt
′ φ(t

′
)(

e−ωt
′/τ
) ν

2 (1− 1
ω )

(
1− e−ω(t−t′ )/τ

1− e−ωt/τ

)−ν ]
.

At this stage one sees that for ν ≥ 1, the existence of the inverse Laplace transform is ensured

by the s−ν factor so taking φ(t) = 0 gives the exact solution, and the particle never gets D = 0.
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When ν < 1, the finite solution at D = 0 exists only if the sum cancels in the right hand side,

leading to the integral equation (cf. [92]):

t∫
0

dt
′ φ(t

′
)(

eωt
′/τ
) ν

2 (1− 1
ω )

(
1− e−ω(t−t′ )/τ

1− e−ωt/τ

)−ν
= − e−iqx0

σ2(ν − 1)
exp

(
−D0

s1 − s2e
−ωt/τ

1− e−ωt/τ

)
. (4.58)

Using the variable change 1− e−Ωt = z−1 and 1− e−Ωt
′

= ξ−1 and defining

g(u) =
τ

ω
φ(u)eiqx0eD0s2σ2(ν − 1)

1

(1− u−1)
ν
2 (1− 1

ω ) u(u− 1)1−ν
, (4.59)

we get
∞∫

0

dξg(ξ)(ξ − z)−ν = e−D0(s1−s2)z. (4.60)

The solution g is an exponential function, from which

φ(z) = ω
e−iqx0e−D0s2

σ2τ(ν − 1)

[D0(s1 − s2)]1−ν

Γ(1− ν)
e−D0(s1−s2)z

(
1− z−1

) ν
2 (1− 1

ω )
z(z − 1)1−ν . (4.61)

The complete solution for the case ν < 1 now reads

P̃ (q, s, t, x0, D0) = e−iqx0 exp

(
−D0

s1 − s2ρe
−ωt/τ

1− ρe−ωt/τ

)(
e−ωt/τ

) ν
2 (1− 1

ω )
(

1− ρe−ωt/τ

1− ρ

)−ν
(4.62)

× 1

Γ(1− ν)
γ

(
1− ν, D0ω

σ2τ

(1− ρ)(
1− ρe−ωt/τ

) e−ωt/τ(
1− e−ωt/τ

)) ,
where γ(a, x) is the lower incomplete gamma function: γ(a, x) =

x∫
0

du e−uua−1. The probability

of D > 0 can be obtained by integrating over x and D (setting respectively q = 0 and s = 0).

As a consequence, we retrieve the Feller’s formula for the probability [92] of getting D = 0 up

to time t

π(D = 0, t|D0) = 1− 1

Γ(1− ν)
γ

(
1− ν, D0

σ2τ

e−t/τ(
1− e−t/τ

)) . (4.63)

Once the process reaches the absorbing boundary at D = 0, it remains trapped there, so that the

probability π(D = 0, t|D0) is a norm decreasing function of time. Figure 4.5 shows the behavior

of the probability D = 0 as a function of ν. At all times, this probability is zero at ν = 1 and is

equal to 1 at ν = 0. As time increases, the diffusivity distribution is getting localized at D = 0.
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Figure 4.5: Probability of D = 0 as a function of ν for three different dimensionless times

t/τ = {0.1, 1, 10}. ν is varied from 0 to 1 by keeping σ = 1, τ = 10 and adjusting D̄ = νσ2τ

with initial diffusivity D0 = D̄.

4.4 Asymptotic behavior

4.4.1 Brownian limit

We first consider the limiting case στ → 0, which can either be interpreted as diffusivity be-

having deterministically (σ → 0) or the mean reversion significantly stronger than fluctuations

of diffusivity (τ → 0). In this limit one recovers P̃ (q, t) = e−q
2D̄t, from which the Gaussian

propagator for Brownian motion is retrieved:

P (x, t|x0) =
1√

4πD̄t
exp

(
−(x− x0)2

4D̄t

)
. (4.64)

This distribution also corresponds to the limit ν →∞.

4.4.2 Short-time behavior

The superstatistical approach [14, 15] consists in writing the distribution of displacements as a

superposition of Gaussian distributions weighted by a stationary distribution of diffusivity. In a
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recent work, Chechkin et al. [49] showed that non-Gaussian diffusion can be described at short

times by superstatistics. Since diffusivity does not evolve much during the correlation time τ ,

one can imagine an ensemble of particles with independent diffusivities. In our model, we use

this relation to establish the short-time behavior.

One can relate our model to the superstatistical approach in the following terms. At short

times we have

xt =

∫ t

0

√
2DsdW

(1)
s ≈

√
2D0W

(1)
t , (4.65)

and consider D0 in the stationary regime. This short-time description looses track of the dy-

namics. We calculate P0(r, t), the probability density to be at distance r from the starting point

in d dimensions, where the subscript 0 highlights that it is a short-time description:

P0(r, t) =

∫ ∞
0

dD0 Π(D0)
1

(4πD0t)d/2
exp

(
− r2

4D0t

)
, (4.66)

with the stationary distribution Π(D0) of the CIR model from Eq. (4.15), which gives

P0(r, t) =
21−ν−d/2νd/2

Γ (ν) (πD̄t)d/2

(
r

√
ν

D̄t

)ν−d/2
Kν−d/2

(
r

√
ν

D̄t

)
, (4.67)

where Kα(x) is the modified Bessel function of the second kind. Using the small x expansion of

Kα(x), one gets for ν > d/2

P0(r = 0, t) =
Γ(ν − d/2)

Γ (ν) (4πt)d/2

( ν
D̄

)d/2
. (4.68)

In the case ν = 1 and d = 1, the distribution is purely exponential

P0(r, t) =
1

2
√
D̄t

exp

(
− |r|√

D̄t

)
, (4.69)

(note that in this case the displacement r is distributed over (−∞,∞) that explains the extra

factor 1/2).

This approach is applicable at short times (µ(t) < 1) but fails at long times because the

underlying processes are fundamentally different. One can compare our model to this approach

by calculating the non-Gaussian parameter

γ(t) =
1

3

〈X4(t)〉
〈X2(t)〉2

− 1, (4.70)

116



which is equal to the excess kurtosis divided by 3 (the kurtosis of the Gaussian distribution). By

definition, the non-Gaussian parameter is zero for the Gaussian distribution. For superstatistics

with d = 1 and x0 = 0, the MSD is 〈x2(t)〉0 = 2D̄t and the fourth moment 〈x4(t)〉0 = 12t2D̄2 ν+1
ν ,

which leads to the non-Gaussian parameter:

γ0(t) =
1

ν
. (4.71)

In contrast to our model (see Sec. 4.5.1), the distribution of displacements P0(r, t) spreads at

all times but does not change its shape: changing time just rescales space coordinates of the

distribution. From this argument it is clear that the only way to reproduce convergence to a

Gaussian distribution at long times is to make the stationary distribution Π(D0) of diffusivity

time-dependent, which does not make sense. This is a branching point among non-Gaussian

models, as constant or vanishing non-Gaussian parameter implies different miscroscopic mech-

anisms. Note that the distinction between interpretations can also be made using the autocor-

relation of diffusivity: it is a Dirac delta distribution δ(τ) in a superstatistical approach and an

exponentially vanishing function in our model (see Sec. 4.5.2).

4.4.3 Large x behavior

We investigate the asymptotic behavior of the propagator at large x. Let us first consider the

particular case ν = 1. As the propagator P (x, t|x0) is obtained as the inverse Fourier transform

of P̃ (q, t), it is instructive to search for the poles of P̃ (q, t) in the complex plane of q in order to

compute the inverse Fourier transform by the residue theorem. We write

P̃ (q, t) =
ω et

∗/2

f+(ω) f−(ω)
, (4.72)

where

f+(ω) = ω cosh(t∗ω/4) + sinh(t∗ω/4), (4.73)

f−(ω) = ω sinh(t∗ω/4) + cosh(t∗ω/4). (4.74)

Setting ω = i4α/t∗, we search for α at which these functions vanish, i.e.,

f+(ω) = i(4α/t∗) cos(α) + sin(α) = 0, (4.75)

f−(ω) = −(4α/t∗) sin(α) + cos(α) = 0. (4.76)
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Both equations have infinitely many solutions. The solutions of the first equation lie in the

intervals
∞⋃

k=−∞
(π/2 + kπ, π+ kπ) (including the trivial solution α = 0), whereas the solutions of

the second equation lie in the intervals
∞⋃

k=−∞
(kπ, π/2 + kπ). Since ω = 0 is not a pole of P̃ (q, t)

(as it is compensated by the numerator), we exclude this point. The pole with the smallest

absolute value is thus given as the smallest positive solution of the second equation that we

rewrite as

αt∗ sinαt∗ =
t∗

4
cosαt∗ . (4.77)

The smallest positive solution of this equation, αt∗ , is a monotonously increasing function of t∗,

ranging from 0 at t∗ = 0 to π/2 at t∗ = ∞. The corresponding value of ω will determine the

asymptotic exponential decay of the propagator.

Since i4αt∗/t
∗ = ω =

√
1 + 4q2σ2τ2, we identify the pole in the q plane:

q0 = ±iβt∗
1

2στ
, βt∗ =

√
1 + (4αt∗/t∗)2 . (4.78)

Applying the residue theorem, we get

P (x, t|x0) =

∞∫
−∞

dq

2π
eiq(x−x0)P̃ (q, t) = 2πi

∑
n

eiqn(x−x0)

2π
resqn{P̃ (q, t)}, (4.79)

where the sum runs over the poles. The asymptotic behavior at large |x− x0| is determined by

the pole with the smallest |q0|. We get thus

P (x, t|x0) ∝ exp

(
−|x− x0|βt∗

2στ

)
(|x− x0| → ∞), (4.80)

This agrees with experimental observations of a distribution of displacements with exponential

tails [75, 278,279].

One can also compute the prefactor by evaluating the residue of P̃ (q, t) at q = q0. Note that

for large t∗, one has αt∗ ≈ π/2, and thus the dependence on t∗ is eliminated, yielding βt∗ ' 1

as t∗ →∞. In turn, when t∗ is small, one has α∗t '
√
t∗/2, and thus βt∗ '

√
1 + 4/t∗ →∞. As

a consequence, the distribution becomes more and more narrowed, as expected. We emphasize

that this analysis is not rigorous enough, as the relation between q and ω involves the square

root and thus requires some cuts in the complex plane to avoid multiple branches.

When ν is a strictly positive integer, the above analysis remains applicable. However, the

pole is not simple (as for ν = 1) but has a degree ν. The degree ν > 1 results in a more
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complicated computation of the residue and, more importantly, in power law corrections to the

exponential decay

P (x, t|x0) ∝ |x− x0|ν−1 exp

(
−|x− x0|βt∗

2στ

)
(|x− x0| → ∞). (4.81)

We also emphasize that the current analysis only focuses on the dependence on |x − x0| and

does not capture the complete dependence on t∗ which enters through different coefficients.

We expect that the same asymptotic behavior remains valid for any ν > 0 (even non-integer),

although its rigorous demonstration requires much finer analysis and is beyond the scope of

this chapter. We conclude that the propagator exhibits a universal exponential decay at large

increments, whereas the value of ν determines the power law corrections.

4.5 Statistical properties

In this section we describe the statistical properties of our model.

4.5.1 Moments and the non-Gaussian parameter

First we calculate the second and fourth moments using the relation

〈Xk(t)〉 = (−i)k
(
∂k

∂qk
P̃ (q, t)

) ∣∣∣∣
q=0

, (4.82)

where 〈.〉 denotes the expectation. The second moment reads

〈X2(t)〉 = 2D̄t. (4.83)

We observe thus the mean squared displacement grows linearly with time, as in the Brownian

case. In Sec. 4.6, an extension to anomalous diffusion through scaling arguments is proposed.

The process described in this chapter possesses many characteristics which are not deducible

from the MSD. So we go further and calculate the fourth moment:

〈X4(t)〉 = 12D̄2t2 + 24σ2D̄τ2t+ 24σ2D̄τ3
(
e−t/τ − 1

)
. (4.84)

From the second and fourth moments in Eqs.(4.83,4.84), we calculate the non-Gaussian param-

eter in Eq. (4.70)

γ(t) =
2σ2τ2

D̄t

(
1− 1

t/τ

(
1− e−t/τ

))
. (4.85)
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As t→∞, the distribution slowly converges to a Gaussian distribution, as 1/t. The theoretical

formula is verified by simulations (Fig. 4.6). The leading term can be expressed in terms

of µ(t) as 2σ2τ2

D̄t
= 1

2µ(t)−2 (see Eq. (4.20)), which shows that non-Gaussianity is related to

space exploration, but the complete description also requires to take into account the correction

terms from memory effects. Interestingly, we obtained the same form of γ(t) as in the Kärger

model [93,145] with a finite number of equilibrium states (i.e. diffusivities), due to the averaging

over diffusivity disorder (see also Sec. 4.6.1). The same results are evidently valid for the

diffusivity modeled as the distance from the origin of an n-dimensional Ornstein-Uhlenbeck

process [49,137].

100 101 102

t

10-3

10-2

10-1

100

γ
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Figure 4.6: The non-Gaussian parameter calculated from Eq. (4.85) (lines) and from Monte

Carlo simulations (symbols) with M = 105 particles, for different values of τ = {0.2, 1, 5}, while

keeping ν = 1, D̄ = 1 and σ = 1/
√
τ .

4.5.2 Autocorrelation of squared increments

Diffusing diffusivity models introduce a new level of complexity, far beyond the reach of the

mean squared displacement analysis, and new tools are needed to describe such processes. A

wide range of models with fluctuating volatility (or diffusivity in physical language) have already
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been studied in finance [50, 61, 126]. Since the square of an increment is a local measure of

diffusivity, its autocorrelations can reveal information on memory effects of diffusivity. On one

hand, it is possible to evaluate the autocorrelation of diffusivity directly from a given trajectory

by calculating the autocorrelation of its squared increments. On the other hand, this quantity

is accessible theoretically. Let us go through this calculation.

We have dxt =
√

2DtdW
(1)
t and the diffusivity in the integral form reads

Dt = D0e
−t/τ + D̄(1− e−t/τ ) + e−t/τ

∫ t

0
es/τ

√
2DsdW

(2)
s . (4.86)

We define the centered squared increments dx2∗
t = dx2

t − 〈dx2
t 〉.

Their autocorrelation is then

〈dx2∗
t dx

2∗
t+∆〉 = 〈dx2

tdx
2
t+∆〉 − 〈dx2

t 〉〈dx2
t∆〉 (4.87)

= 4〈DtDt+∆〉
〈(

dW
(1)
t dW

(1)
t+∆

)2
〉
− 4〈Dt〉〈Dt+∆〉

〈(
dW

(1)
t

)2
〉〈(

dW
(1)
t+∆

)2
〉
.

For ∆ = 0, we calculate

〈(dx2∗
t )2〉 = 12〈D2

t 〉 − 4〈Dt〉2, (4.88)

which is obtained directly from Eq. (4.86):

〈(dx2∗
t )2〉 = 12

[
σ2D̄τ

(
1− e−t/τ

)2
+ 2σ2τD0

(
e−t/τ − e−2t/τ

)]
+8
(
D0e

−t/τ + D̄
(

1− e−t/τ
))2

.

(4.89)

In the case ∆ > 0, as dW
(1)
t is independent from dW

(1)
t+∆, one has〈(

dW
(1)
t dW

(1)
t+∆

)2
〉

=

〈(
dW

(1)
t

)2
〉〈(

dW
(1)
t+∆

)2
〉

(4.90)

which leads to

〈dx2∗
t dx

2∗
t+∆〉 = 4〈DtDt+∆〉 − 4〈Dt〉〈Dt+∆〉. (4.91)

The autocorrelation of squared increments is explicitly related to the autocorrelation of diffu-

sivity as

〈dx2∗
t dx

2∗
t+∆〉 = 4e−(2t+∆)/τ

∫ t

0

∫ t+∆

0
e(s1+s2)/τ 〈

√
Ds1Ds2〉〈dW (2)

s1 dW
(2)
s2 〉, (4.92)

from which

〈dx2∗
t dx

2∗
t+∆〉 = 4e−∆/τ

[
σ2D̄τ

(
1− e−t/τ

)2
+ 2σ2τD0

(
e−t/τ − e−2t/τ

)]
. (4.93)
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To summarize, in our model we find

〈dx2∗
t dx

2∗
t+∆〉 =

 12σ2τ
(
1− e−t/τ

)2 [
D̄ + 2D0

e−t/τ

1−e−t/τ

]
+ 8

(
(D0 − D̄)e−t/τ + D̄

)2
(∆ = 0),

4e−∆/τ
[
σ2D̄τ

(
1− e−t/τ

)2
+ 2σ2τD0

(
e−t/τ − e−2t/τ

)]
(∆ > 0).

(4.94)

One notes the exponentially vanishing dependence on initial conditions. In the long-time limit

t→∞, one simply gets

lim
t→∞
〈dx2∗

t dx
2∗
t+∆〉 =

 12σ2D̄τ + 8D̄2 (∆ = 0),

4σ2D̄τe−∆/τ (∆ > 0).
(4.95)

The mean-reverting property of the Feller process results in the exponential autocorrelation

of diffusivity. If an experimentally measured autocorrelation of squared increments is not ex-

ponentially vanishing, the mean reverting property cannot be described by a simple harmonic

potential centered on D̄, and thus another model (or an extension of the present model) should

be considered.

4.5.3 Ergodicity and finite sample effects

Data analysis is usually performed with time-averaged quantities because of small data samples.

Then a natural question of equivalence between time and ensemble averages arises: “Is a time-

averaged quantity from one particle representative of other particles from the same system?”.

For a system at thermodynamical equilibrium, the time average over an infinitely long trajectory

matches the ensemble average over an infinite number of particles, this statement is known as

the ergodicity hypothesis. This hypothesis is not satisfied in aging random media [32].

From the Langevin equation (4.2), one can directly see that our model is ergodic: as the

diffusivity is fluctuating around its average, fluctuations will be averaged out in the limit of

infinitely long trajectories. But for a finite duration of experiment, what can be said about

ergodicity of the system?

If the experiment duration texp is shorter than the time to explore heterogeneities of the

system, texp < tsys, different tracers probe regions with different diffusivities. As a consequence,

on such a timescale, tracers would appear as experiencing different dynamics, so that one could

wrongly conclude that the dynamics of the system is nonergodic. Inversely, if the experiment is

sufficiently long (i.e. texp � tsys), tracers have enough time to visit every region of the system,
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and one concludes correctly that the ergodicity hypothesis is fulfilled. The experiment duration

plays therefore an important role and should be chosen accurately.

To illustrate this point we study two quantities characterizing ergodicity by different strate-

gies. We show that depending on the parameters of the model, the results of the tests can sound

contradictory. First we use the Ergodicity Breaking parameter EB(∆, texp) [43, 122,196] which

quantifies the dispersion of the time-averaged MSD δ̄2(∆, texp) [114,115,246] with

δ̄2(∆, texp) =
1

texp −∆

texp−∆∑
n=1

(xn+∆ − xn)2 (4.96)

as a function of the experiment duration texp (i.e. the trajectory length) evaluated with a

time-lag ∆:

EB(∆, texp) =
〈(δ̄2(∆, texp))

2〉
〈δ̄2(∆, texp)〉2

− 1. (4.97)

For an ergodic process, lim
texp→∞

EB(∆, texp) = 0 for any ∆, meaning that for a fixed ∆, the

distribution of TAMSD converges to a Dirac delta distribution with δ̄2(∆, texp →∞) = 〈X2(∆)〉.

Figure 4.7 shows that fluctuations of TAMSD are impacted by two characteristics: the shape

parameter ν and the correlation time τ . The smaller the parameter ν, the longer it takes for

the EB parameter to vanish. Indeed, for ν ≤ 1, diffusivity can be small with high probability

that would slow down the dynamics. The correlation time τ also influences the convergence

of EB(∆, texp): larger τ implies longer time to recover from small diffusivities and thus slower

dynamics. Setting ν = 1 and varying τ , the EB parameter has a transient behavior until

≈ 2τ and decays as a power law 1/texp as in the Brownian case for which the exact formula,

in the discrete case, is EB(∆, texp) = (2∆+1/∆)
3(texp−∆+1) [220]. Note that a slow decrease of the EB

parameter due to disorder was also discussed for fluctuating diffusivity [53] and diffusion in a

periodic potential [152].

We also discuss the ergodicity test based on the dynamical functional developed in Chapter

2. In Fig. 4.8, the estimator F̃ω(∆, texp) decays fast so that the temporal disorder due to

diffusivity does not affect much this quantity, in contrast to the EB parameter. If this estimator

vanishes for a single particle trajectory, one can expect asymptotic independence and ergodicity.

This implies that getting longer data indeed increases the accuracy of time averaged quantities

(smaller EB(∆, texp)).

The ergodicity breaking parameter shows that the distribution of TAMSD slowly converges

to a delta distribution. In turn, the ergodicity estimator F̃ω(∆, texp) indicates that the process

123



101 102 103

t
exp

10-2

100

E
B

(∆
,t

ex
p)

ν=0.6

ν=1

ν=2

Brownian

101 102 103

t
exp

10-2

100

E
B

(∆
,t

ex
p)

τ=100

τ=10

τ=1

Brownian

Figure 4.7: Ergodicity breaking parameter calculated by averaging over M = 103 simulated

trajectory of length texp = 103. The result for Brownian motion (solid line) is also plotted for

comparison. Top. Results for variable shape parameter ν = {0.6, 1, 2} by varying τ , with D̄ = 1

and σ = 1 being constant.Bottom. Results for variable correlation time τ = {1, 10, 100} while

keeping ν = 1, D̄ = 1 and σ = 1/
√
τ .
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Figure 4.8: Mean ergodicity estimator F̃ω(∆, texp), calculated with M = 103 simulated trajec-

tories of length texp = 103. The mean estimator for Brownian motion (solid line) is also plotted

for comparison. Top. Different values of the shape parameter ν = {0.6, 1, 2} by varying τ , with

D̄ = 1 and σ = 1/
√
τ . Bottom. Different values of τ = {1, 10, 100} while keeping ν = 1, D̄ = 1

and σ = 1/
√
τ .
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looses its memory and implies that the TAMSD distribution narrows with increasing texp (with-

out specifying how). These two quantities do not answer the ergodicity question in the same

way, they are complementary. If one needs to know the degree of dispersion of TAMSD, the EB

parameter has to be used. The estimator F̃ω(∆, texp), which can be applied to a single trajectory,

does not quantifies fluctuations, but allows to verify ergodicity, even in the presence of dynamic

disorder because it relies on the estimation of the characteristic function of the process.

4.6 Discussion

4.6.1 Fourth moment is not enough

The analytical expression of the non-Gaussian parameter from Kärger model (see Chapter 1)

has the same functional form as γ(t) from Eq. (4.85):

γKM (t) =
2η

t/τ

(
1− 1

t/τ

(
1− e−t/τ

))
, (4.98)

with the coefficient η = p1p2(D1−D2)2

(p1D1+p2D2)2 , which corresponds in our case to σ2τ
D̄

, and τ is the exchange

time: τ = 1/K12 = 1/K21.

Figure 4.9 compares distributions for the Kärger model and our approach. In the case ν > 1,

both distributions are very close at all times. In the case ν ≤ 1, obtained here by setting different

relative volumes p1 and p2, the Kärger model does not reproduce the peak at 0. In other words,

the Kärger model as a superposition of only two Gaussian distributions does not match our

model with infinitely many Gaussian distributions (see Sec. 4.4.2).

We conclude that these two distributions having identical second and fourth moments, are

still different. While it was known that mean squared displacement is not sufficient to character-

ize a model, here we illustrate that even the fourth moment (and the non-Gaussian parameter)

is not enough.

4.6.2 Anomalous diffusion

In biology there are many experimental evidences of anomalous diffusion [13, 129, 181, 233, 281]

when the mean squared displacement scales as a power law with time 〈X2(t)〉 = 2Dαt
α, where

Dα is the generalized diffusion coefficient and α is the anomalous exponent. We propose an
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Figure 4.9: Distribution of displacements for the Kärger model (dashed lines) and our model

(solid lines) at time t = 1 (top), t = 10 (middle), t = 100 (bottom). We choose the parameters

for the Kärger model and deduce D̄ = p1D1 + p2D2 and σ =
√
D̄η/τ . Left column. Parameters

of the Kärger model are p1 = 1/2, p2 = 1/2, D1 = 1 and D2 = 10 and τ = 10, leading to

ν ≈ 1.5. Right column. Parameters of the Kärger model are p1 = 4/5, p2 = 1/5, D1 = 1 and

D2 = 10 and τ = 10, leading to ν ≈ 0.6.

extension by a simple scaling of the time t/τ ⇒ (t/τ)α, so that P̃ (q, t) from Eq. (4.17) is

replaced by

P̃ (q, t) =

e− 1
2

(ω−1)(t/τ)α 4ω

(ω + 1)2

(
1−

(
ω − 1

ω + 1

)2

e−ω(t/τ)α

)−1
ν

. (4.99)
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The non-Gaussian parameter would now depend on α:

γ(t) =
2σ2τ1+α

D̄tα

(
1− 1

(t/τ)α

(
1− e−(t/τ)α

))
. (4.100)

As expected, in the subdiffusive case α < 1, the convergence to a Gaussian distribution is slower

as compared to the superdiffusive case α > 1, because larger α means faster exploration of space.

4.7 Conclusion

We presented a model of non-Gaussian diffusion, based on coupled Langevin equations. We

derived the explicit exact formula for the distribution of displacements in the Fourier-Laplace

domain and studied different asymptotic regimes. We showed that this distribution exhibits

exponential tails and converges slowly, as 1/t, to a Gaussian one. Depending on the shape

parameter ν, the distribution can be flat (ν > 1) or peaked (ν ≤ 1) at zero. The MSD evolves

linearly with time in spite of non-Brownian character of the motion. We pointed that the er-

godicity estimator F̃ω(∆, texp) catches ergodic nature of the process while the random nature

of diffusivity makes fluctuations of TAMSD to span up at long times as demonstrated by the

ergodicity breaking parameter EB(∆, texp) making the TAMSD a bad estimator of the aver-

age diffusion coeffficient D̄. We used the autocorrelation of squared increments to determine

the autocovariance structure of diffusivity. Given that small diffusivities are made much more

probable in the case 0 < ν < 1 (which was not accessible in former models), the underlying

process exhibits a richer phenomenology. We expect that this model will help to understand

more deeply dynamical heterogeneities observed in experiments. An important perspective is to

relate the correlation structure of the stochastic diffusivity Dt with spatial correlations structure

of the medium [272]. One can also analyze the first passage time (FPT) statistics in our model

of heterogeneous diffusion to reveal the impact of the diffusing diffusivity. Although the mean

squared displacement grows linearly with time, the distribution of FPT can be sensitive to the

related annealed disorder (e.g., see [125] for models of quenched disorder).

128



Chapter 5

Application to experiments

5.1 Introduction

In this chapter we present the analysis of two experiments realized in collaboration with two ex-

perimental groups. In both experiments, individual random trajectories of particles are recorded.

Using single trajectory analysis, developed in this thesis, we propose a physical interpretation

of the mechanism underlying the tracer’s motion.

The first experiment (Sec. 5.2) concerns a system of vertically vibrated disks undergoing

random motion. It has been designed by O. Dauchot and carried out by G. Briand at ESPCI

in Paris, France. The analysis has been performed by Y. Lanoiselée and D. S. Grebenkov. The

results of this experiment are decribed in [161] (under revision).

The second experiment (Sec. 5.3) explores the effect of cytoskeleton components on the ran-

dom motion of an inert tracer inside the cytoplasm. The experiment has been designed by D.

Heinrich (Leiden University, Netherlands) and T. Franosch (Innsbruck University, Austria) and

carried out in D. Heinrich’s group by M. Götz (Leiden University, Netherlands). The statistical

analysis has been jointly performed by Y. Lanoiselée, P. Witzel (Leiden University, Netherlands)

and D. S. Grebenkov. The text of Sec. 5.3 was based on and adapted from the joint publication

(submitted).
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5.2 Macroscopic realization of Brownian motion

Experimental observations of Brownian motion in the macroscopic world are rarer. In fact, it is

quite difficult to design an experiment with macroscopic objects that would result in Brownian

trajectories. On one hand, the motion is strongly influenced by inertial effects, resulting in

ballistic segments of the trajectory at the macroscopic scale (e.g., the motion of balls in a

billiard). On the other hand, the number of interacting objects in a macroscopic system is much

smaller than the number of water molecules involved in the motion of a microscopic particle,

whereas the separation between the time scale of an elementary displacement and the duration

of the measurement is not large enough. As a consequence, the motion of macroscopic objects

is not enough randomized by their collisions. In particular, the dynamics of granular matter

is typically far from Brownian motion [51, 54, 113, 134, 241]. For instance, there is a rather

narrow range of packing fractions, for which the motion of spherical beads is fluid-like: in the

low density regime, collisions between beads are rare while the mean free path is long so that

too large experimental setups would be needed to observe a Brownian trajectory; in the high

density regime, inter-bead collisions are often but collective modes of motion (e.g., crystallization

or jamming) become dominant.

From the practical point of view, a well-controlled experimental realization of a macro-

scopic diffusive motion with an excellent statistics of long trajectories can serve as a bench-

mark for testing various statistical tools developed for the analysis of single particle trajectories

(see [7, 24, 97, 150, 159, 160, 175, 193, 197, 198, 220, 273] and references therein). In fact, it is

essential to disentangle finite time average and finite sampling effects when performing single

probe experiments in biology (e.g., the intracellular transport or the motion of proteins on cell

membranes). While statistical tools are commonly tested on simulated trajectories, a macro-

scopic realization of diffusive motions can present a rare opportunity to confront simulations

and theoretical results to an experimental situation with true experimental noise, uncertainties,

resolution issues, etc.

In this first part of the chapter, we report an experimental observation of the diffusive motion

realized by macroscopic disks of 4 mm diameter on a vertically vibrating plate (see Sec. 5.2.1).

Vibrations pump in the system the kinetic energy that substitutes thermal energy that drives the

motion in a microscopic system. We undertake a systematic statistical analysis of the acquired
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trajectories of individual disks (Sec. 5.2.2). In particular, we analyze the distribution of one-

step displacements, the ergodicity, the velocity auto-correlation function, and the distribution of

time averaged mean square displacements (TAMSD). This analysis shows that the macroscopic

motion of disks exhibits small deviations from Brownian motion at short times but approaches

it at longer times.

5.2.1 Experimental setup

The experimental system, made of vibrated disks, has been described in details previously [68].

We recall here the key ingredients of the set-up. Experiments with shaken granular particles are

notoriously susceptible to systematic deviations from pure vertical vibration and special care

must be taken to avoid them. First, to ensure the rigidity of the tray supporting the particles,

we use a 110 mm thick truncated cone of expanded polystyrene sandwiched between two nylon

disks. The top disk (diameter 425 mm) is covered by a glass plate on which lay the particles.

The bottom one (diameter 100 mm) is mounted on the slider of a stiff square air-bearing (C40-

03100-100254, IBSPE), which provides virtually friction-free vertical motion and sub-micron

amplitude residual horizontal motion. The vertical alignment is controlled by set screws. The

vibration is produced with an electromagnetic servo-controlled shaker (V455/6-PA1000L,LDS),

the accelerometer for the control being fixed at the bottom of the top vibrating disk, embedded

in the expanded polystyrene. A 400 mm long brass rod couples the air-bearing slider and the

shaker. It is flexible enough to compensate for the alignment mismatch, but stiff enough to ensure

mechanical coupling. The shaker rests on a thick wooden plate ballasted with 460 kg of lead

bricks and isolated from the ground by rubber mats (MUSTshock 100x100xEP5, Musthane).

We have measured the mechanical response of the whole setup and found no resonances in

the window 70 − 130 Hz. We use a sinusoidal vibration of frequency f = 95 Hz and set the

relative acceleration to gravity Γ = a(2πf)2/g = 2.4, where the vibration amplitude a at a peak

acceleration is 100 µm. Using a triaxial accelerometer (356B18, PCB Electronics), we checked

that the horizontal to vertical ratio is lower than 10−2 and that the spatial homogeneity of the

vibration is better than 1%.

The particles are micro-machined copper-beryllium disks (diameter d = 4± 0.03 mm). The

contact with the vibrating plate is that of an extruded cylinder, resulting in a total height h = 2.0

mm. They are sandwiched between two thick glass plates separated by a gap H = 2.4 mm and

131



laterally confined in an arena of diameter 320 mm. A CCD camera with a spatial resolution of

1728 x 1728 pixels and standard tracking software is used to capture the motion of the particles

at a frame rate of 25 Hz. In a typical experiment, the motion of the disks is recorded during

600 seconds, producing 15 000 images. The resolution on the position ~r of the particles is better

than 0.05 particle diameter (i.e., 0.2 mm).

In the following, particle trajectories are tracked within a circular region of interest (ROI) of

diameter 50d = 200 mm, far from the border of the arena, where the long-time averaged density

field is homogeneous. The average packing fractions φ measured inside the ROI ranges from 0.3

to 0.64, and the total number of particles ranges from 1000 to 2500. As the onset of spatial

order typically takes place at φ† ' 0.71, we always deal with a liquid state.

5.2.2 Statistical analysis

We performed a systematic statistical analysis of the acquired random trajectories. Examples

of such trajectories are shown in Fig. 5.1.

5.2.3 Data description

We analyzed 14 samples with different surface packing fractions φ, ranging between 0.298 and

0.637 (Table 5.1). The time step (i.e., the duration of one displacement) is fixed by the acquisition

frequency: δ = 1/25 Hz = 0.04 s. The positions are measured in units of the disk diameter,

d = 4 mm. To avoid boundary effects, only the disks within the ROI were used for the analysis.

In particular, a trajectory is terminated when the disk leaves the ROI, and a new trajectory

is initiated when a disk enters the ROI. As a consequence, the acquired trajectories have very

different lengths varying from 1 to 15 000. To improve the statistical accuracy of our results, we

discarded all the trajectories whose length was shorter than 1000. The disks exhibited multiple

mutual collisions during the experiments. Although the collective motion of these disks might be

studied as the dynamics of interacting particles in a large phase space, we look at this problem

from the single-particle point of view and treat each disk as a single particle interacting with

its complex dynamic environment. This view is typical for single-particle tracking experiments

in microbiology when one can record only the motion of a labeled (e.g., fluorescent) particle,

whereas the dynamics of all other constitutes of the cytoplasm remains inaccessible.
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4cm

Figure 5.1: (Top) Example of random trajectories of 4 disks that were originally located close

to each other (inside the black circle) and then diffused during 600 seconds (i.e., 15 000 points

in each trajectory). (Bottom) Example of random trajectories of 34 disks that were originally

located close to each other and then diffused during 464.6 seconds (i.e., 11 615 points in each

trajectory).

5.2.4 Distribution of increments

We start by verifying whether the one-step increments obey a Gaussian distribution. For each

sample, we collected the one-step increments along X and Y axes for each trajectory in the

sample and constructed their histogram. Having checked for the isotropy of the statistics, we
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sample φ std/d D (in mm2/s)

1 0.298 0.0956 1.83

2 0.324 0.0938 1.76

3 0.350 0.0932 1.74

4 0.376 0.1048 2.20

5 0.402 0.1025 2.10

6 0.428 0.1107 2.45

7 0.454 0.1052 2.21

8 0.480 0.1005 2.02

9 0.507 0.0978 1.91

10 0.533 0.0950 1.81

11 0.559 0.0926 1.71

12 0.585 0.0942 1.78

13 0.611 0.0936 1.75

14 0.637 0.0895 1.60

Table 5.1: Summary of experimental data: the sample index, the surface fraction φ, the

standard deviation of one-step one-dimensional increments (in units of the disk diameter d =

4 mm), and the corresponding diffusion coefficient: D = std2/(2δ), with δ = 0.04 s. For

comparison the maximal disk packing fraction, corresponding to the close-packed hexagonal

lattice, is π/(2
√

3) ' 0.9069; and the crystallization transition for equilibrium hard disks takes

place at φ† ' 0.71.

focus on one-dimensional increments and merge increments along X and Y coordinates in order

to get a representative statistics even for large increments. Figure 5.2(a) shows these histograms

(presented in the form of probability densities at the semilogarithmic scale) for 14 samples.

These densities are close to each other and exhibit a parabolic shape reminiscent of a Gaussian

distribution. The standard deviations of one-step increments are summarized in Table 5.1.

These values are also close to each other and show no systematic dependence on the packing

fraction. At first sight, there is no systematic variation of probability densities with the packing

fraction. This suggests that the randomness of motion essentially comes from the rotational
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symmetry of the disk, which undergoes a displacement in a random direction after each kick

by the vibrating plate. Note that the frequency of plate vibrations is 4 times higher than the

acquisition frequency meaning that each displacement results from 4 random kicks.
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Figure 5.2: (a) The empirical distributions of one-step one-dimensional increments for 14 sam-

ples (in units of the disk diameter, d = 4 mm). (b) The empirical distributions of rescaled

one-step increments for 14 samples. Thick black curve shows the standard Gaussian density

e−x
2/2/
√

2π. Color of thin curves changes from dark blue for the lowest packing fraction φ to

dark red for the highest one.

Despite their delicate machining, the precise contact of the disks with the vibrating plate is

influenced by minor asperities, which differ from disk to disk but also depend on the location

of the disks on the vibrating plate. In order to reduce these factors of diversity, we rescale the

one-step increments from one trajectory by the empirical standard deviation of these increments.

Such a rescaling partly levels off eventual heterogeneities between trajectories. Once calculated,
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the rescaled increments along X and Y coordinates are merged from different trajectories in

each sample. The obtained distributions are presented in Fig. 5.2(b). One can see that the

distributions for all 14 samples almost collapse and remain close to the standard Gaussian

density exp(−x2/2)/
√

2π. However, now that heterogeneities between trajectories have been

levelled off by the rescaling, one distinguishes small but statistically significant deviations for

large increments. These deviations progressively increase with the packing fraction, and can

therefore be attributed to disk-disk collisions.

5.2.5 Ergodicity hypothesis
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Figure 5.3: The real part of the ergodicity estimator, Re{F̂ω(n)} (with ω = 1/σ), averaged

over trajectories in each of 14 samples (thin lines). Color of thin curves changes from dark blue

for the lowest packing fraction φ to dark red for the highest one. Thick black line shows the

mean value of this estimator for Brownian motion.

We analyze whether the system of vibrated disks can be considered as being at equilibrium.

In practice, we test the ergodicity hypothesis which is a necessary but not sufficient condition

for equilibrium. The ergodicity hypothesis claims that the ensemble average over many particles

is equal to the time average over an (infinitely) long trajectory of one particle. Under the
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stationarity hypothesis of the motion, we employ the ergodicity estimator F̂ω(n) from Chapter

2 [159,175].

Figure 5.3 shows the real part of the ergodicity estimator averaged over all the trajectories in

each of 14 samples. For small n, higher the packing fraction, slower the decrease of the estimator

with n. However, for large n the 1/n scaling predicted in the case of the Brownian motion is

recovered and we can safely formulate the hypothesis that ergodicity is satisfied.

5.2.6 Velocity auto-correlations

We also study the velocity auto-correlations function (VACF) which is defined as

C(t) = 〈v(t) · v(0)〉 , (5.1)

where v(t) is the velocity at time t, and 〈· · · 〉 is the ensemble average. In the experimental

setting, the positions are recorded with the time step δ = 0.04 s, so that t = nδ, and the

velocity is proportional to the one-step increment: v(nδ) = (xn+1 − xn)/δ, with xn = x(nδ).

To improve statistics, we combine the time average along the trajectory of each disk and the

ensemble average over many trajectories:

C(nδ) =
1

Mδ2

M∑
m=1

1

Nm − n− 1

Nm−n−1∑
k=1

(
∆x

(m)
n+k ·∆x

(m)
k

)
, (5.2)

where ∆x
(m)
n = x

(m)
n+1 − x

(m)
n is the n-th one-step increment of the m-th disk, M is the number

of disks in a sample, and Nm is the length of the m-th trajectory.

Figure 5.4 shows the normalized VACF, C(nδ)/C(0), which varies between −1 and 1, as a

function of the lag time nδ. For all considered samples, the VACF rapidly decreases with time

and becomes close to zero for n ≥ 10. By construction, the normalized VACF is equal to 1 at

n = 0. Positive auto-correlations at lag time n = 1 can potentially be attributed to inertial

effects. The negative auto-correlations observed for n > 1 take their root in an excess of reverse

bouncing of the disks when they successively hit the trail, but not only. Since they become more

pronounced when the packing fraction increases, they should also come from inter-disk collisions.

In all cases, although the successive increments exhibit small but noticeable correlations, they

drop very rapidly as the lag time increases. We recall that the normalized VACF for a discrete-

time Brownian motion (a random walk) is 1 for n = 0 and 0 otherwise. Strictly speaking, the
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Figure 5.4: The normalized VACF, C(nδ)/C(0), as a function of the lag time nδ, for 14 samples.

Color changes from dark blue for the lowest packing fraction φ to dark red for the highest one.

This change is also indicated by an arrow.

disk trajectories acquired at time step δ = 0.04 s are therefore not Brownian but remain close

to Brownian ones.

5.2.7 Estimation of diffusion coefficient

Now we focus on the time averaged mean square displacement, which is the most common

statistical tool to probe diffusive properties of single-particle trajectories [97]. The TAMSD

with the lag time n over a trajectory of length N is defined as

χn,N =
1

N − n

N−n∑
k=1

‖xk+n − xk‖2. (5.3)

If xk are positions of planar Brownian motion with diffusion coefficient D, then the ergodicity

of this process implies that

χn,N −−−−→
N→∞

4Dt = 4Dnδ, (5.4)

whereas the variance of χn,N vanishes as N → ∞ [114, 220]. In other words, the TAMSD

allows one to estimate the diffusion coefficient D from a single random trajectory, and longer

138



the trajectory, better the estimation.

For a fixed N , the smallest variance (and thus the best estimation) corresponds to n = 1, in

which case χ1,N is the estimator of the variance of increments. This estimator is known to be

optimal for the case of Brownian motion, i.e., it is the best possible way to estimate the diffusion

coefficient [62,114,116]. In practice, however, even if the studied particle is supposed to undergo

Brownian motion, the acquired trajectory can be altered by various “measurement noises” such

as localization error, electronic noise, drift or vibrations of the sample, post-processing errors,

etc. When some of these noises are anticipated, the estimator can be adapted to provide the

(nearly) optimal estimation [24, 116, 197, 198, 273]. However, the Brownian character of the

studied but yet unknown process is not granted and has to be checked from the analysis of the

TAMSD. In this situation, the rule of thumb consists in plotting the TAMSD versus the lag

time n to first check the linear dependence and then to estimate the diffusion coefficient from

the slope of the linear plot. Given the randomness of the TAMSD, this procedure can bring

biases and additional statistical errors. Moreover, since fluctuations of the TAMSD grow with n

(see [114,220]), the fit is often limited to small n. Figure 5.5 illustrates large fluctuations of the

TAMSD estimator around the ensemble averaged TAMSD which exhibits a linear growth with

n. As a consequence, an accurate estimation of the diffusion coefficient from a single trajectory

is only possible over a narrow range of small lag times n. Note that the diffusion coefficient fitted

by the ensemble average, 1.47 mm2/s, is smaller than that estimated from the standard deviation

of one-step increments, 1.83 mm2/s (see Table 5.1). This discrepancy can be caused by eventual

noises (that would affect the standard deviation of one-step increments) and auto-correlations

(that would affect the TAMSD).

5.2.8 Distribution of TAMSD

One of the significant advantages of single-particle tracking is the possibility to infer information

from single events, without ensemble averages. This is particularly important in microbiology

because many events in a cell life are triggered by a small number of molecules. Even when

many particles are tracked simultaneously, they explore different spatial regions of the cell and

experience different interactions with the intracellular environment. If inferred properly, such

heterogeneities may bring a much more detailed information about the cell than an ensemble

average. The estimation of the diffusion coefficient from each single trajectory naturally leads
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Figure 5.5: The time averaged MSD, χn,N , as a function of the lag time t = nδ (with n

varying from 1 to 1000), for 10 trajectories of length N = 1001 from the sample 1 with the

lowest packing fraction. Black thick line shows the ensemble average of TAMSD over 12444

trajectories of length N = 1001 in this sample. The fitted diffusion coefficient from this line is

1.47 mm2/s.

to their distribution [77, 203, 210]. However, it is important to stress that the experimentally

obtained distributions include two sources of randomness: (i) the biological variability and (ii)

the intrinsic randomness of the TAMSD estimator obtained from a single finite length trajectory.

As a consequence, a proper biological interpretation of such distributions requires to disentangle

two sources and, ideally, to remove the second one. This correction needs the knowledge of the

distribution of the TAMSD estimator.

The distribution of TAMSD in the biological context was first studied via numerical simula-

tions by Saxton [236,240]. A more general theoretical analysis of TAMSD for Gaussian processes

was later performed in Refs. [6, 114,116,246]. We compute the distribution numerically via the

inverse Fourier transform of the characteristic function of TAMSD for which the exact matrix

formula was provided in Ref. [114]. This computation was shown to be fast and very accurate.

The theoretical distribution of TAMSD for Brownian motion can be compared to the empiri-
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cal distribution of TAMSD obtained from the trajectories of disks. On one hand, this comparison

allows one to check to which extent the acquired trajectories are close to Brownian motion. On

the other hand, one can investigate in a well-controlled way the applicability of the theoretical

distribution to experimental data.

Figure 5.6(a) shows the empirical distribution of TAMSD with the lag time n = 1 obtained by

splitting each trajectory into fragments of length N = 100. This artificial splitting is performed

to be closer to the common situation in biological applications, when the acquired trajectories

are rather short. Moreover, such splitting significantly improves the statistics of the TAMSD. We

compare the probability density functions of TAMSD among 14 samples and with the theoretical

curves for Brownian motion. One can see notable deviations from the theoretical distribution,

indicating that the acquired trajectories are not Brownian, in agreement with the analysis of

Sec. 5.2.6. The two plausible reasons for the observed deviations are: (i) auto-correlations of

increments at small lag times (as seen in Fig. 5.4), and (ii) small deviations from the Gaussian

distribution of increments (as seen in Fig. 5.2). To check for the first reason, we plot in Fig.

5.6(b,c) the distributions of the TAMSD with larger lag times n = 10 and n = 20, at which the

VACF was negligible. One gets thus a much better agreement with the theoretical distribution.

In order to check the second reason of deviations (weak non-Gaussianity), the increments

of all trajectories in each sample were randomly reshuffled to fully destroy auto-correlations,

and then new artificial trajectories were constructed from these increments. If the original

increments were correlated Gaussian variables with the same variance, such a procedure would

yield independent identically distributed Gaussian variables so that the resulting trajectories

would represent Brownian motion. In this case, a perfect agreement between empirical and

theoretical curves would be expected. Figure 5.6(d) shows empirical and theoretical distributions

of TAMSD at the lag time n = 1 for reshuffled samples. The agreement is not perfect but is

much better than in Fig. 5.6(a). Small residual deviations can potentially be attributed to weak

non-Gaussianity of the distribution of increments.

5.2.9 Mean versus the most probable TAMSD

The non symmetric shape of the distribution of TAMSD implies that the mean value of the

TAMSD is different from its mode, i.e., the most probable value or, equivalently, the position

of the maximum of the PDF. This difference becomes particularly important for the analysis
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Figure 5.6: (a,b,c) Probability density functions of the rescaled TAMSD, χn,N/(4Dt), with

N = 100, t = nδ, and n = 1 (a), n = 10 (b), and n = 20 (c), for 14 samples (thin lines), and the

theoretical ones for Brownian motion (thick black line). Color of thin curves changes from dark

blue for the lowest packing fraction φ to dark red for the highest one. (d) Probability density

functions of the rescaled TAMSD with N = 100, t = nδ, and n = 1, for 14 reshuffled samples.

of single particle trajectories. When the sample of such individual trajectories is large, the

empirical mean of TAMSD estimated from these trajectories is close to the expectation. In

turn, when the TAMSD is estimated from few trajectories (or even from a single trajectory), it

is more probable to observe a random realization near the maximum of the PDF. This issue,

which was not relevant for symmetric distribution (e.g., a Gaussian distribution), may become

an important bias in the analysis of TAMSD.

As discussed in Ref. [114], the distribution of TAMSD for Brownian motion is wider and

more skewed for larger n/N . Moreover, the difference between the mean and the mode also

grows with n/N . As suggested in [114], the distribution of TAMSD for Brownian motion and

some other centered Gaussian processes (like fractional Brownian motion) can be accurately
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approximated by a generalized Gamma distribution, which has a simple explicit PDF

p(z) =
zν−1 exp(−a/z − z/b)
2(ab)ν/2Kν(2

√
a/b)

(z > 0), (5.5)

with three parameters: a ≥ 0, b > 0, and ν ∈ R. The moments of this distribution can be

expressed as

〈[χn,N ]k〉 = (ab)k/2
Kν+k(2

√
a/b)

Kν(2
√
a/b)

(k = 1, 2, 3, . . .), (5.6)

whereas the mode is

χmode
n,N =

√
(1− ν)2b2 + 4ab− (1− ν)b

2
. (5.7)

For a given empirical distribution of TAMSD, the first three moments, evaluated directly from

the data, can be used to calculate the parameters a, b and ν by solving numerically the system

of three equations in Eqs. (5.6) for k = 1, 2, 3. In other words, one does not need to fit the

empirical distribution in order to get this approximation.

Figure 5.7 shows the pdf of the TAMSD for the trajectories with the lowest packing fraction,

with the sample length N = 100 and three lag times, n = 1, n = 10 and n = 20 (shown by

symbols). From these empirical data, we evaluated the first three moments and calculated the

parameters a, b and ν of the generalized gamma distribution (shown by lines). The excellent

agreement validates the use of this theoretical approximation even for experimental trajectories.

5.3 Passive diffusion in the cytoplasm

In this section, we report an universal, but non-Gaussian motion type in the cellular interior,

which is independent of the presence of the cytoskeleton components. We alter the cytoskeleton

in a controlled manner and analyze the statistical properties of nano-tracer step-width distri-

butions revealing non-Gaussian features for four distinct cytoskeleton states, which include and

exclude the actin cortex and the microtubule network. The central result is a single univer-

sal scaling of these four increment probability densities with exponential tails, independent of

cytoskeleton components present in the cell. This indicates an ubiquitous dynamic feature of

intracellular transport in the cytoplasm. We are able to assign the observed anomalous trans-

port features to spatio-temporal heterogeneities within the cytoplasmic matter and we find that

the cytoskeleton components are responsible for regulating the efficiency of intracellular motion

without changing the unique transport feature.
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Figure 5.7: Probability density functions of the rescaled TAMSD, χn,N/(4Dt), for the sample

with the lowest packing fraction, with N = 100, t = nδ, and n = 1 (blue circle), n = 10 (gray

squares), and n = 20 (red triangles). Lines show the generalized gamma distribution p(z) from

Eq. (5.5) whose parameters were obtained from the first three moments (see the text): a = 3.27,

b = 0.03, ν = 28.13 (n = 1), a = 1.94, b = 0.27, ν = 1.34 (n = 10), and a = 1.03, b = 0.58,

ν = 0.31 (n = 20). The modes of these distributions are shown by vertical dashed lines: 0.97

(n = 1), 0.78 (n = 10), and 0.60 (n = 20), whereas the mean is fixed to be 1 by rescaling.

5.3.1 Presentation of the experiment

The purpose of the second experiment is to investigate the influence of cytoskeleton components

on passive, cytoplasm driven, intracellular transport of particles with a diameter of 150 nm. In

this respect, Dictyostelium discoideum cells have been prepared in four different cytoskeleton

states (Fig. 5.10a): untreated wild type (WT), depolymerized microtubules (noMT), depolymer-

ized actin cortex (noAct), and without cytoskeleton by combination of both depolymerizations

(noCyt) as D. discoideum cells exhibit no stress fibers or intermediate filaments and are capable

of surviving both cytoskeleton depolymerizations. For all experiments cell-mediated, bio-motor

regulated transport (e.g. along microtubules), has been effectively excluded by using tracer par-
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ticles that cannot bind to cellular components and thus reflect only interior cell dynamics. These

particles that are not enclosed by vesicles have been injected directly into the cytosol and thus

reflect the passive dynamics of the cytoplasmic space exclusively. As obtained by single-particle

tracking, we analyzed the probability densities P (r, t) of absolute magnitudes of one-dimensional

increments r for different lag times ∆, based on more than 320, 000 data points of nano-particle

trajectories (insets of Fig. 5.10 b-e).

5.3.1.1 Data description

Single-particle tracking was performed in Dictyostelium discoideum cells prepared in four dif-

ferent cytoskeleton states: untreated wild type (WT), depolymerized actin cortex (noAct), de-

polymerized microtubules (noMT), and combination of both depolymerisations (noCyt). An

overview of the number of data points for each state is presented in Table 5.2.

Cytoskeleton state Total WT noAct noMT NoCyt

Number of cells 68 16 18 18 16

Number of trajectories 149 33 54 38 24

Number of data points 327,444 76,435 80,533 88,302 82,174

Table 5.2: Additional information for the data sets of intracellular tracer trajectories for all four

different cytoskeleton states: untreated wild type (WT), depolymerized actin cortex (noAct),

depolymerized microtubules (noMT), and combination of both depolymerizations (noCyt).

The data acquisition has been performed on a microscope with spatial resolution of 54nm per

pixel. The tracers, of diameter 150nm, within D. discoideum cells were imaged every δ = 49ms

adjusting the focal plane manually. The z coordinate is not recorded so the trajectories are

two-dimensional.

All statistical analyses are applied to two-dimensional single-particle trajectories, i.e. the

successive positions {xm(nδ), ym(nδ)} (n = 1, , Nm) of the m-th tracer acquired at equal time

intervals of duration δ (here Nm is the number of points of the m−th trajectory).
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5.3.2 Ergodicity

Before further analysis, we demonstrate the ergodic properties of the trajectories, justifying the

use of time averaged quantities in the rest of the study. First, we use the ergodicity estimator

F̂ω(∆, texp) developed in Chapter 2, measuring the independence of increments at lag-time ∆.

Figure 5.8 demonstrates that F̂ω(∆, texp) applied to each trajectory vanish individually, as 1/∆,

similarly to Brownian motion. We conclude that the ergodicity hypothesis is not rejected.

Consequently, we assume that time averaged quantities converge to their ensemble averages as

the length of the trajectory increases, i.e. they are representative measures of physical quantities

associated to the trajectories.
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Figure 5.8: The ergodicity estimator F̂ω(∆, texp) applied to each trajectory of duration texp as

function of lag time ∆(s). The results are displayed for each cytoskeleton state: wild type (a),

depolymerized actin (b), disrupted microtubules (c), and deprived of both actin and micro-

tubules (d). Black lines indicates the ∝ 1/∆ decay of Brownian motion.

Then we inquire into understanding how increasing the length of trajectories reduces of the

variance of the TA MSD. For this purpose we proceed by measuring the decay of the ergodicity

breaking parameter (EB)(See Chapter 1). Figure 5.9 shows that the fluctuations of variance
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decay as ∝ 1/texp in each cytoskeleton state. In all cases, there is a transition near texp = 2s

slowing down the decay to zero, due to a change in the factor in front of 1/texp.
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Figure 5.9: Ergodicity breaking parameter EB as a function of the trajectory length texp. The

test is applied to each cytoskeleton state: Wild Type (red crossed lines), Depolymerized actin

(green circles), Disrupted microtubules (dark blue squares), and deprived of both actin and

microtubules (cyan triangles). Black line denotes the ∝ 1/texp decay for Brownian motion.

5.3.3 Probability distribution

In this section we study the probability density function of absolute increments.

5.3.3.1 Departure from Gaussianity

First, for each trajectory in all states, we test the hypothesis that the distribution of incre-

ments is Gaussian. It is not straightforward to verify this hypothesis due to a limited length

of individual trajectories that prohibits an accurate computation of the probability density of

increments for each single trajectory. For this reason, we resort to statistical tests of Gaussianity

which can be applied to individual trajectories. Among various statistical tests, we chose the

Anderson-Darling and the Shapiro-Wilk tests that were shown to be the most efficient for testing
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Gaussianity on small samples [207,243]. For each cytoskeleton state, we provide in Tabla 5.3 the

fraction of the trajectories, for which the hypothesis of a Gaussian distribution of increments

is rejected (with the p-value below 5%). Qualitatively speaking, higher fractions mean higher

number of a non-Gaussian distribution. Both tests suggest that distributions of increments of

an individual trajectory cannot be considered as Gaussian because the percentage of trajectories

where the hypothesis is rejected is significantly larger than the 5% (the threshold that could be

obtained by chance from a Gaussian distribution).

% Rejected ( p-value< 5% ) Wild Type No Microtubules No Actin No Cytoskeleton

Anderson-Darling test 79% 50% 72.2% 44.9%

Shapiro-Wilk test 100% 60.6% 37.5% 66.3%

Table 5.3: The % of trajectories where the hypothesis H0 that the increments are Gaussian is

rejected according to the Anderson-Darling and the Shapiro-Wilk tests of Gaussianity applied

to the increments of each individual trajectory.

The different fractions in two tests originate from the distinct features of an empirical dis-

tribution that are examined by the tests: the Shapiro-Wilk test [243] is based on a measure of

discrepancy between theoretical and sample based variance, whereas the Anderson-Darling test

relies on a measure of a distance between the distribution of increments obtained from the data

and the theoretical one.

In summary, individual trajectories present non-Gaussian features testifying for the complex

dynamics underlying the tracer’s motion in the medium. Aware of the non-Gaussian character

of our trajectories, we analyze more extensively the probability density and the van Hove self-

correlation function used to that purpose.

5.3.3.2 The van Hove self-correlation function

In stochastic theory, the probability distribution function of increments, also known as the van

Hove self-correlation function [144] and the averaged propagator, characterizes the increments

~r of a stochastic process ~r(t),

Ps(~r, t) = 〈δ(~r(t)− ~r(0)− ~r)〉 (5.8)
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where 〈. . .〉 denotes the expectation, i.e, the average over all trajectories of the process until

time t, and δ(. . .) is the Dirac distribution. This definition is closely related to the propagator

P (~r, t|~r0, 0) that describes the probability density of finding the particle at position ~r at time t

if it was started from ~r0 at time t = 0:

Ps(~r, t) =

∫ ∞
0

d~r0ρ(~r0)P (~r + ~r0, t|~r0, 0) (5.9)

where ρ(~r0) is the initial density of particles. For diffusion in a homogeneous medium P (~r +

~r0, t|~r0, 0) = P (~r, t|0, 0) = Ps(~r, t) independently of ρ(~r0). For instance, this is the case for

simple Brownian motion, which has the Gaussian propagator and

Ps(~r) = (4πDt)−d/2 exp(−|~r|2/(4Dt)) (5.10)

where d is the space dimension. In turn, the cytoplasm exhibits spatial heterogeneities so that

the propagator and the probability density function of increments are in general not equivalent.

The tracers exploring different regions inside the cell (e.g. near the nucleus and near the plasma

membrane) may have distinct dynamics. In that case Ps(~r, t) represents an average over those

realizations. In an experiment, the stochastic process is not known, and one aims at inferring

its properties from the measured trajectories. In this case, the expectation is replaced by an

ensemble average over M independent trajectories ~r1(t), ~r2(t), . . . , ~rM (t):

Ps(~r, t) =
1

M

M∑
m=1

δ(~rm(t)− ~rm(0)− ~r) (5.11)

where the index m enumerates different trajectories. In practice, one discretizes the space of

increments ~r by small boxes and counts how many times the observed increment ~rm(t)− ~rm(0)

falls into each box (see Sec. 5.3.3.3). However, a statistically accurate computation of such

empirical two or three-dimensional probability density would require a very large number of

increments that is still challenging for experimental in vivo data. For this reason, for an isotropic

process, it is convenient to analyze the radial van Hove function to improve the statistics:

P (r, t) =

(
2πd/2

Γ(d/2)

)
rd−1Ps(|~r|, t) (5.12)

where the factor in parentheses is the surface area of the d-dimensional sphere accounting for

angular directions. Alternatively, one can consider the probability density of the one-dimensional

projections of increments that for an isotropic process is equivalent to the radial density function.
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In our case, both probability densities yield the same results, therefore we adopted the latter

option as the projections on X and Y coordinates can be merged to further improve the statistics.

5.3.3.3 Application to the experiment

The density P (r, t) of absolute magnitudes of one-dimensional increments r at different lag

times t have been calculated, based on more than 320,000 data points (meaning around 80,000

for each cytoskeleton state) of two-dimensional single particle trajectories. The density P (r, t)

was evaluated at discrete points r = kρ (with a chosen bin size ρ) and t = ∆δ as

P (kρ,∆δ) =
pk(∆δ)

ρp(∆δ)
, (5.13)

where pk(t) is the number of times that the absolute one-dimensional increment |xm(qδ+ ∆δ)−

xm(qδ)| or |ym(qδ + ∆δ) − ym(qδ)| belongs to the interval (kρ, (k + 1)ρ) and the normaliza-

tion factor p(∆δ) is the sum of all pk(∆δ). Here, one uses the increments for all tracers in

a cytoskeleton state (i.e. m = 1, . . . ,M) and for all possible shifts along each trajectory (i.e.

q = 1, . . . , Nm − ∆). In other words, the probability density of increments includes the en-

semble average over all trajectories in a state (e.g. the WT case) and the time average along

each trajectory. The time average was crucial to improve the statistics of increments. For the

same purpose, the increments along X and Y coordinates were merged. From all trajectories in

each of four cytoskeleton states (see Table 5.2), we had 152, 804, 160, 958, 176, 528, and 164, 300

one-step increments for the WT, noAct, noMT, and noCyt cases, respectively. Based on these

increments, histograms were produced for each cytoskeleton state and at different lag times,

from δ to 100δ (Fig. 5.10).

These probability densities (Fig. 5.10 b-e) start with a Gaussian-like regime for small incre-

ments and exhibit an exponential tail for larger increments. For both cases of deprived actin

(noAct, noCyt) an additional second exponential tail emerges for larger values of increments.

Here, the absence of the dense actin network by F-actin depolymerization leads to a broader in-

crement distribution (Fig. 5.10c) due to less restricted particle motion, as compared to the WT

state (Fig. 5.10b). In contrast, single-particle trajectories in cells lacking microtubules (noMT)

yield a confined track distribution where the corresponding probability density (Fig. 5.10d)

behaves similarly to that of the WT state hence exhibiting smaller increments. In the noMT
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state, the cell is set to a state of pure crowding, where the cytoplasm is more viscous, lacking

the fluidifying effect of the microtubules. Depolymerising both actin cortex and microtubules

comprises these effects (Fig. 5.10e): the cell misses both the confinement by the actin cortex

and the active stirring by microtubule motion. This results in a constrained particle motion

with slightly larger increments than the noMT state, in particular, at longer lag times. This

probability density analysis reveals the opposing functions of the two cytoskeleton components

in a living cell: while the actin cortex confines the motion within the cell, the actively driven

dynamics of the microtubules fluidifies the cytoplasm, fighting against crowding.

5.3.4 Origin of non-Gaussian distribution

So far, transport processes with non-Gaussian increments were observed in many complex sys-

tems (see Chapter 1). These experimental findings have been rationalized either by

1. Sample-based variability: The construction of the distribution of increments by concate-

nating normally distributed increments from trajectories with different diffusion coefficient

would result in a superposition of Gaussian distributions which is not Gaussian.

2. Rare, independently occurring strong events, e.g. kicks from nearly passing MT, cargos,

actin waves, that would result in more probable large displacements. Due to this reason,

the enhanced tails make the distribution non-Gaussian.

3. Spatial or temporal heterogeneities of the medium that change the transport properties

over time (e.g. non-constant diffusion coefficient), the increments are not identically dis-

tributed breaking the resulting in non-Gaussian distribution at least a short lag-times.

Here, we investigate which of these reasons is applicable to the eukaryotic intracellular medium,

starting with sample-based variability.

5.3.4.1 Sample-based variability

In order to reduce sample-based cell-related variability (see Item 1), the one-step increments

of each trajectory were rescaled by their standard deviation. The empirical standard deviation

of the m-th trajectory has been calculated by averaging the standard deviation from the two
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coordinates σxm and σym so

σm =
σxm + σym

2
. (5.14)

Figure 5.11 shows the rescaled distributions of all four cytoskeleton states at three lag times:

δ, 10δ, and 100δ, where δ is the one-step duration of 49 ms. The probability densities collapse for

all states to a single curve at the smallest lag times, whereas they are paired into two groups at

the longest lag times: the WT and noAct states exhibit larger increments caused by the sweeping

motion of the microtubules, and the noMT and noCyt states show smaller increments arising

from passive intracellular motion without the influence of the microtubules. Furthermore, this

rescaling eliminates the second exponential tails (Fig. 5.11) in the noAct and noCyt states, due

to depolymerisation of the actin cortex. Thus, these second exponential tails in the increment

probability densities can be attributed to a sample variability among different cells also displayed

by the larger spread in one-step increment standard deviations between individual cells in both

actin deprived cases (see Table 5.5). Therefore, the vanishing of the second exponential elucidates

the important role of the actin cortex unifying the cellular interior for well-regulated transport

processes.

In all cytoskeleton states for the rescaled data, the transition from Gaussian-like-distributed

increments to an exponential tail remains present. This occurrence of an exponential tail even

in the noCyt case, without any dynamic cytoskeleton components, evidences against the second

option of rare, independently occurring strong events (see Item 2), since all active dynamics

have been eliminated.

5.3.4.2 Correlation of increments

To address the third cause for non-Gaussian behavior of increments distribution, a spatially

heterogeneous medium (see Item 3), the auto-correlation function was calculated (Fig. 5.12)

increments, was computed for each trajectory (m = 1, . . . ,M) as

Um(∆) =
1

2

(
Uxm(∆)

Uxm(0)
+
Uym(∆)

Uym(0)

)
(5.15)

where Uxm(n) is the TA VACF (see Chapter 1) of one-step increments along X coordinate

(similarly Uym(n) for the Y coordinate). Positive correlations over time scales of about 2 seconds

in both the WT and the noAct cases arise from microtubule induced swinging motions that

indirectly disturb the tracers. Without microtubules, in the noMT and noCyt cases, there are
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only very short-ranged negative correlations on a sub 100 ms time scale. This result cannot

explain the observed exponential tail of increment distributions, at least for the noMT and

noCyt cases. In fact, the distribution of increments would be unavoidably Gaussian at large

lag times by the central limit theorem, if the one-step increments were independent or weakly

correlated and identically distributed.

The auto-correlation function, however, does not capture all possible correlations of incre-

ments. Even if orientations of increments are uncorrelated (see Fig. 5.11), their absolute values

can still remain correlated.

To confirm that the observed non-Gaussian behavior arises from the absolute value corre-

lations, the rescaled one-step increments of each experimental trajectory have been randomly

re-shuffled (Fig. 5.13) to fully destroy any correlation. As expected, the reshuffled increment

probability densities collapse for all four cytoskeleton states and are Gaussian at all lag times.

A plausible scenario for getting correlated absolute values of increments is based on a changing

effective diffusivity along the trajectory. This arises either by a slowly evolving environment

around the tracer or by the exploration of a quasi-static but spatially heterogeneous cytoplasm,

or both. These two physically different scenarios correspond to random motion with either time-

or space-dependent diffusion coefficients, or again both. Thus, the ∆-step increments, composed

of ∆ successive one-step increments with variable diffusion coefficients, become correlated.

These findings illustrate that this new way of analysis yields additional aspects to the dynam-

ics within the cell interior in comparison to earlier studies based on mean-squared displacement

or auto-correlations. To our knowledge, this presents the first experimental evidence of medium

induced spatio-temporal correlations influencing intracellular transport. We now support our

analysis by calculating the autocorrelation of the squared increments in Sec. 5.3.4.3.

5.3.4.3 Correlation of squared increments

The knowledge of the mean square displacement or the velocity autocorrelation function, which

are both related to the covariance of increments, fully determines a centered Gaussian process.

For this reason, most former works were almost exclusively focused on these basic characteris-

tics. However, such a characterization is not complete for non-Gaussian processes, in particular,

for heterogeneous diffusions. In fact, a particle diffusing in a heterogeneous medium experiences

distinct local diffusivities on its way. When the equilibration of a particle with its local environ-
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ment occurs on a time scale much shorter than the diffusion characteristic time, the i-th one-step

increment can formally be represented as σiξi, where ξi is a normalized random fluctuation (e.g.,

thermal noise) and σi its amplitude (representing the local diffusivity). This representation is

inspired from a general stochastic Langevin equation,

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt. (5.16)

Setting the drift term to zero, µ(Xt, t) = 0, one gets an infinitesimal increment as the product

of space and time-dependent volatility σ(Xt, t) and a normalized Gaussian fluctuation dWt

(white noise). Since the local diffusivity can change in time and space, σi depends on a random

position of the particle and can thus be understood as a random variable. Even though σi

and ξi are independent in the Itô stochastic convention, the autocorrelation structure of these

variables is in general very complicated. Nevertheless, we will argue that the autocorrelation of

squared increments can bring some evidence on the heterogeneity of diffusivities. To illustrate

our arguments, we resort to a simplified model, in which fluctuations ξi are centered Gaussian

variables with unit variance, which are independent from the amplitudes σi. In this setting, the

autocorrelation of increments is factored into autocorrelations of ξi and σi,

〈σiξiσjξj〉 − 〈σiξi〉〈σjξj〉 = 〈ξiξj〉〈σiσj〉. (5.17)

If the local diffusivities (the amplitudes σi) were constant, this would be simply the auto-

correlation of fluctuations ξi. In general, however, the VACF combines the persistence (or

anti-persistence) of fluctuations along the trajectory (the first factor) and the diffusivity hetero-

geneities (the second factor). For this reason, it is instructive to consider the autocorrelation

structure of squared increments:

Wij = 〈 (σiξi)2(σjξj)
2 〉 − 〈 (σiξi)2 〉 〈 (σjξj)2 〉. (5.18)

The independence of ξi and σi and the Gaussian distribution of ξi imply

Wij = 〈σ2
i σ

2
j 〉(1 + 2〈ξiξj〉2)− 〈σ2

i 〉2. (5.19)

Since the autocorrelation 〈ξiξj〉 of fluctuations is less than 1 and decays when the lag |i −

j| increases, the term 〈ξiξj〉2 can be neglected at large lags, so that Wij essentially reflects

the autocorrelation of the local diffusivities (squared amplitudes σ2
i ), i.e., their heterogeneities
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probed by the random trajectory. We emphasize again that this discussion is limited to the

simplified model and relies on the strong assumption of independence of fluctuations and their

amplitudes. Even though this assumption is not satisfied in general and thus the interpretation

of the autocorrelation of squared increments is not so straightforward, this autocorrelation can

still bring some valuable information and may evidence diffusivity heterogeneities. For this

reason, we evaluate this quantity on the experimental trajectories by setting

ξ2∗
∆ (t) = ( dx∆(t)− 〈dx∆(t)〉 )2 − 〈 ( dx∆(t)− 〈dx∆(t)〉 )2 〉, (5.20)

with dx∆(t) = xt+∆ − xt. Here we consider an increment dx∆(t) at lag time ∆, subtract

its empirical mean value 〈dx∆(t)〉, square the difference, and also subtract the mean value of

the resulting centered squared increment ξ2∗
∆ (t). The time averaged autocorrelation of squared

increments averaged over different realizations (trajectories) is then

W (∆) =

〈
1

N −∆

N−∆∑
i=1

ξ2∗
∆ (t)ξ2∗

∆ (t+ i)

〉
M

(5.21)

The autocorrelation is then W (∆)/W (0), as for the VACF. Figure 5.14 shows the decay of

the autocorrelation of squared increments with the lag time ∆ for four cytoskeleton states. In

all cases, the autocorrelations are positive and slowly decreasing with the lag time. When the

cytoskeleton elements are progressively removed, the local diffusivity autocorrelations are getting

lower, from the WT and noAct states to noMT and noCyt states. This qualitative observation

agrees with the expected reduction of heterogeneities in these cytoskeleton states.

5.3.4.4 Scaling form

Performing an additional rescaling of the n-step increments by their mean absolute increment

〈r〉t at lag time t = nδ, the probability densities for all cytoskeleton states superimpose and

become independent of the lag time (Fig. 5.15 for each cytoskeleton state).

Thus, the probability density of absolute increments exhibits a universal scaling,

P (r, t) = r−1p(r∗), r∗ =
r

〈r〉t
(5.22)

independently of the lag time ∆ and whether the motion is influenced by active cytoskeleton

components or not. The inverse increment r in Eq. (5.22) accounts for the dimensionality of

the probability density. Thus, the transition of the increment distributions from a Gaussian-like
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regime to an exponential tail is an intrinsic property of the underlying dynamics, and the shape

of the probability density is captured by the master curve p. To rationalize this behavior of the

master curve p, we propose a simple two-parameter distributed model of Gaussian increments

with random standard deviations σ. An explicit form of the master curve p is deduced (see Sec.

5.3.5) by assuming a superposition of Gaussian where their standard deviations σ is distributed

according to the χ-distribution:

p(r) =
(αr∗)ν+1/2Kν−1/2 (αr∗)

√
π2ν−3/2Γ(ν)

, α =
2Γ(ν + 1/2)√

πΓ(ν)
(5.23)

where Kν−1/2 is the modified Bessel function of the second kind, Γ(ν) denotes the Gamma func-

tion, and the shape parameter ν quantifies the spread of standard deviations ν. The resulting

probability densities P (r, t) reproduce both a plateau at small increments and an exponential

tail at large increments, in perfect agreement with experimental data for all cytoskeleton states

and all lag times (see Fig. 5.15).

5.3.5 Superstatistical description

When the tracers explore a heterogeneous or time-evolving medium, changes in the effective

diffusivity can strongly affect the probability density of increments. In the conventional case,

each tracer is assumed to follow Brownian motion with random diffusion coefficient D. This

model can describe

1. the effect of the ensemble average over multiple tracers, each following Brownian motion

with a fixed diffusivity which changes from one tracer to another (e.g. due to tracer size

polydispersity or regional variations of the medium viscosity)

2. a single tracer exploring spatially heterogeneous or time-varying medium whose increments

along the trajectory have variable amplitudes and thus affecting the increment probability

density function.

In our case, Gaussianity test for individual trajectories have already excluded the first interpre-

tation (see Sec. 5.3.3.1), that lets the heterogeneities in the medium as a plausible explanation.

The variability is modeled by the distribution pt(D) of diffusion coefficients. The observed statis-

tics of increments from an ensemble of such tracers is the average over all random realizations
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of D:

Ps(~r, t) =

∫ ∞
0

dDpt(D)
1

(4πDt)d/2
exp(−|~r|2/4Dt), (5.24)

where pt(D) is the time-dependent distribution of diffusion coefficients D. At first thought, the

introduction of the time-dependent probability density pt(σ) does not simplify the description as

compared to the probability density of increments Ps(~r, t). However, we will propose a scaling

form of the density, pt(σ), in which the time dependence will be expressed only through the

scale parameter. The probability density pt(D) characterising the heterogeneity of the medium

is not known but may be inferred from fitting the probability density function of increments

by multiple Gaussians [202, 211, 267] (that would correspond to approximating pt(σ) by a sum

of Dirac delta peaks), exponentials or stretched-exponential functions [278, 279]. This method

suffers from numerous parameters that need further to be interpreted. We therefore choose an

alternative approach by modeling the probability density pt(σ) by a phenomenological distri-

bution. Without any prior knowledge about the statistical properties of σ, one can choose any

convenient distribution and check whether the resulting probability density of increments fits

the data. If one chooses a one-sided Gaussian distribution,

pt(σ) =
2

λt
√

2π
exp

(
−σ2/(2λ2

t )
)

(5.25)

with a single parameter λt, the probability density function of one-dimensional increments would

be 2/(πλt)K0(r/λt). This probability density function logarithmically diverges at small incre-

ments and thus is not suitable for fitting experimental data showing a plateau at r ≈ 0. The

divergence is caused by the choice (5.25) of the density pt(σ) that allows arbitrarily small stan-

dard deviations. To prohibit such values, one can multiply the exponential function in Eq. (5.25)

by a power law vanishing at r = 0:

pt(σ) =
21−νt

λtΓ(νt)
(σ/λt)

2νt−1 exp
(
−σ2/(2λ2

t )
)

(5.26)

The scale parameter λt > 0 and the shape parameter νt ≥ 1/2 of this χ-distribution can be

related to the moments of the random variable σ:

〈σ〉 = λt
√

2
Γ(νt + 1/2)

Γ(νt)
(5.27)

〈σ2〉 = 2νtλ
2
t (5.28)

157



while the mode of the distribution (i.e. the most probable value) is equal to

σm = λt
√

2νt − 1. (5.29)

The ratio
〈rt〉√
〈r2
t 〉/2

=
2√
π

Γ(νt + 1/2)
√
νtΓ(νt)

, (5.30)

is independent of λt and might potentially be inverted numerically to extract νt and then de-

termine the second parameter λt from the above relations. It is worth noting however that the

ratio (5.30) only weakly depends on νt, for instance, when νt ranges from 1 to 5, this ratio varies

from 1 to 1.1. The numerical inversion will thus be sensitive to eventual deviations of empirical

data from the theoretical fit, for instance, due to the presence of the second exponential tail in

the probability density of increments. At the same time, this observation tells us that the mean

absolute increment 〈rt〉 and the mean square displacement 〈r2
t 〉 behave very similarly.

Figure 5.16 shows the time dependence of the parameters λt and νt, obtained by fitting

empirical increment probability density function at different lag times by the theoretical fit

model of Eq. (5.26), by a standard nonlinear Levenberg-Marquardt least-squares algorithm in

Matlab (lsqcurvefit).

The scale parameter λt behaves similarly to the mean increment 〈rt〉 (see Fig. 5.17), as

expected from Eq. (5.27).

In turn, the shape parameter νt reaches a more or less constant value at long times. Its

fluctuations can be attributed to the fact that the fit formula (5.27) weakly depends on νt

so that its estimation is thus rather sensitive to noise. Finally, larger values at short lag time

suggests a narrower distribution pt(σ) of standard deviations that is consistent with the fact that

during shorter time a tracer explores a smaller region and thus experiences less heterogeneities.

We conclude that, although we have originally admitted a time dependence of both parame-

ters of the χ-distribution (5.26), the shape parameter νt is found to be asymptotically constant at

long times. As a consequence, the increment probability density exhibits the long-time asymp-

totic scaling in Eq. (5.22). with the universal scaling function

p(r) =
(αr∗)ν+1/2Kν−1/2 (αr∗)

√
π2ν−3/2Γ(ν)

, α =
2Γ(ν + 1/2)√

πΓ(ν)
(5.31)

which is deduced by performing the integration in Eq. (5.24) with the probability pt(σ) from

Eq. (5.26).
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5.3.6 Cell-based variability

In order to demonstrate the cell related variability, we performed the separate analysis of ac-

quired trajectories for each individual cell. When several trajectories were acquired in the same

cell, their increments were analyzed together, as though they came from a single trajectory. Ta-

ble 5.4 summarizes the estimated standard deviation of one-step increments for each cell. One

can see that these values change substantially from cell to cell.

WT noactin noMT noCyt

n N σ N σ N σ N σ

1 7000 8.8 6146 27.3 4984 11.7 6997 14.1

2 2271 13.5 1095 18.2 5835 15.8 3500 10.9

3 2154 13.1 1617 26.5 5669 8.6 3995 16.3

4 3869 11.8 4350 23.3 6393 14.2 4668 15.0

5 3593 11.3 1571 25.9 6776 16.7 959 24.1

6 6716 7.6 5625 17.9 3782 13.4 7000 16.4

7 6678 9.7 3460 13.8 6331 9.8 7000 9.9

8 7000 12.7 4925 16.2 3875 8.8 2088 14.4

9 1356 14.7 6732 15.0 5416 13.5 2092 18.2

10 5411 16.0 6395 14.3 1300 7.7 4455 10.6

11 736 11.5 4852 14.3 5787 13.7 7000 16.6

12 6973 12.9 1212 14.1 2215 14.3 7000 16.3

13 7000 7.9 4511 21.3 5433 15.8 7000 10.6

14 845 8.6 4413 13.6 2442 11.8 5001 14.4

15 6858 14.1 5492 16.5 3998 10.9 6423 12.7

16 6976 11.4 4998 22.2 6309 15.8 6996 11.5

17 5136 13.0 5947 10.6

18 7000 18.7 5811 9.8

Table 5.4: n index of each cell in the first column, for each cytoskeleton state, four columns

present: the number of increments N in one (or few) trajectory acquired in this cell; the standard

deviation of one-step increments (of lag-time δ = 49ms), in nm.
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The distribution of these cell-specific standard deviations can be characterized by the mean

and standard deviation for four cytoskeleton states (Table 5.5). Note that the broadness of

the distribution of cell specific standard deviations, estimated as the relative standard devi-

ation (standard deviation divided mean), remains comparable in four cases. Note also that

the standard deviation of increments at lag time δ = 49 ms of a spherical tracer of diameter

d = 150 nm in an aquatic solution at ambient temperature would be
√

2Dδ = 536 nm, where

D = kBT/(6πaη) = 2.93 ± 103nm2ms−1 is the diffusion coefficient according to the Stokes-

Einstein relation. This estimate gives an idea of how the intracellular crowding affects the

tracer motion.

Cytoskeleton state Mean and standard deviation (nm) Relative standard deviation

WT 11.6± 2.5 0.22

noAct 18.4± 4.7 0.26

noMT 12.5± 3.0 0.24

noCyt 14.4± 3.6 0.25

Table 5.5: The mean, standard deviation and the relative standard deviation of cell-specific

standard deviations obtained from Table 5.4.

5.4 Conclusion

In this chapter, from the statistical analysis of single trajectories, we were able to clarify the

motion type in each experiment. A separate conclusion for both studies is given below.

5.4.1 Conclusion on the vibrated disks

We proposed a macroscopic realization of planar Brownian motion by vertically vibrated disks.

We performed a systematic statistical analysis of many random trajectories of individual disks.

The distribution of one-step increments was shown to be almost Gaussian. Since small deviations

at large increments increase with the disk packing fraction, they were attributed to inter-disk

collisions. The velocity auto-correlation function was positive at the lag time n = 1 and took

negative values at n > 1 that rapidly vanish with n. We also analyzed the behavior of the
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time averaged mean square displacement as a function of the lag time, and its fluctuations from

one trajectory to another. We compared the empirical and theoretical distributions of TAMSD

and revealed the sensitivity of this distribution at small lag times to eventual auto-correlations

and weak non-Gaussianity. We also verified that the empirical distribution can be accurately

approximated by the generalized Gamma distribution. Finally, we discussed distinctions between

the mean TAMSD and the mode of its distribution. These well-controlled experimental data

can serve for validating statistical tools developed for the analysis of single-particle trajectories

in microbiology.

5.4.2 Conclusion on passive intracellular transport

We conclude that the dynamics-related differences between the four cytoskeleton states are

captured solely by the mean absolute increments 〈r〉t, shown in Fig. 5.17 as a function of the lag

time t. In agreement with the above analysis of auto-correlations, 〈r〉t exhibits superdiffusive

behavior for the WT and noAct cases and diffusive behavior for the other noMT and noCyt cases.

Therefore, the presence of cytoskeleton components and their change in ATP-induced activity is

necessary to enable cell viability as the underlying dynamics itself are not capable of sustaining

the non-active transport within a cell. Thus, microtubules and the actin cortex regulate the

intracellular transport like a gear shift based on a single universal transport mechanism. In

summary, the analysis of absolute increment probability densities from single particle tracking

has revealed (i) the homogenizing role of the actin network unifying intracellular transport, (ii)

spatio-temporal heterogeneities as the reason for the non-Gaussian transport features in living

cells that present (iii) a universal scaling of the increment probability densities independent of

cytoskeleton components. These results pave the way for a more specific analysis of intracellular

transport features based on spatio-temporal medium fluctuations also in different cell types.
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Figure 5.10: Probability density of increments of four different cytoskeleton states: (a) illus-

tration of a cell with partly depolymerized cytoskeleton components (grey: membrane, black:

nucleus, green: microtubule organizing center with microtubules, red: actin cortex; (b-e) prob-

ability densities of absolute magnitudes of one-dimensional projected increments, P (r, t), for lag

times t = δ, 2δ, . . . , 10δ, 20δ, . . . , 100δ with the inverse frame rate δ = 49 ms for four different

cytoskeleton states: (b) wild type (WT), (c) depolymerized actin cortex (noAct), (d) depoly-

merized microtubules (noMT) and (e) both depolymerizations (noCyt); solid lines show the fit

of a Gaussian function (grey) for small increments followed by an exponential fit (blue) and for

some lag times in the actin deprived cases (noAct and noCyt) a second exponential fit (green);

insets present the acquired trajectories of particle motion displayed in different colors for each

trajectory.
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Figure 5.11: Van hove correlation fuction at time 1δ (Top), 10δ (middle), and 100δ (Bottom),

where the increments of the trajectories are rescaled by their standard deviation calculated at

lag-time ∆ = 1. Each cytoskeletal state is displayed: Wild Type (red crossed lines), Depoly-

merized actin (green circles), Disrupted microtubules (dark blue squares), and deprived of

both actin and microtubules (cyan triangles).

163



0.5 1 1.5 2 2.5
∆(s)

-1

-0.5

0

0.5

1

〈 
dx

t d
x t+

∆
〉

(a)

0.5 1 1.5 2 2.5
∆(s)

-1

-0.5

0

0.5

1

〈 
dx

t d
x t+

∆
〉

(b)

0.5 1 1.5 2 2.5
∆(s)

-1

-0.5

0

0.5

1

〈 
dx

t d
x t+

∆
〉

(c)

0.5 1 1.5 2 2.5
∆(s)

-1

-0.5

0

0.5

1

〈 
dx

t d
x t+

∆
〉

(d)

Figure 5.12: Time-averaged velocity auto-correlation function for different cytoskeleton states:

Wild Type (a), depolymerised microtubules (b), depolymerised actin cortex (c), and and de-

prived of both actin and microtubules (d), black lines correspond to the mean value obtained by

averaging the velocity auto-correlations for each trajectory in the respective cytoskeleton state,

red lines marks the individual TA VACF.
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Figure 5.13: Van hove correlation function at lag-time 1δ (Top), 10δ and (Bottom) 100δ (mid-

dle) where the increments of the trajectories are shuffled to destroy any correlation and rescaled

by their standard deviation calculated at lag-time ∆ = 1. Each cytoskeleton state is displayed:

Wild type (red crossed lines), depolymerized actin (green circles), disrupted microtubules

(dark blue squares), and deprived of both actin and microtubules (cyan triangles). Solid

lines correspond to Gaussian fits in each state.
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Figure 5.14: Time-averaged autocorrelation function of squared increments for different cy-

toskeleton states: wild type (a), depolymerized microtubules (b), depolymerized actin cortex

(c), and deprived of both actin and microtubules (d), black lines correspond to the mean value

obtained by averaging the autocorrelation for each trajectory in the respective cytoskeleton

state, red lines marks the individual TA VACF.
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Figure 5.15: Van hove correlation fuction at lag-time (Top) 1δ, (middle) 10δ and (Bottom)

100δ where the increments at lag-time ∆ are rescaled by their mean absolute displacement 〈r〉∆.

Each cytoskeletal state is displayed (red crossed lines) Wild Type (green circles) Depoly-

merized actin (dark blue squares) Disrupted microtubules and (cyan triangles) deprived of

both actin and microtubules. Solid lines correspond to Gaussian fits in each state.
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Figure 5.16: Parameters λ (top) and ν (bottom) fitted at each lag-time ∆ for four cytoskeleton

states: Wild type (red line), depolymerized actin (cyan dashed line), disrupted microtubules

(dash-dotted green line), and deprived of both actin and microtubules (dotted blue line).

black line (resp. dotted black line) is visual guideline ∝ ∆0.7(s) (resp. ∝ ∆0.5(s)).
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Figure 5.17: Mean absolute increment 〈r〉t for each cytoskeleton state (red line) Wild type

(green dashed line), depolymerized actin (dash-dotted blue line), disrupted microtubules

and (black dotted line) deprived of both actin and microtubules. Black line (resp. black

dashed lines) is visual guideline ∝ ∆0.7(s) (resp. ∝ ∆0.5(s)).
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Chapter 6

Conclusion

During this thesis we analyzed different problems related to the analysis of a single realization of

an unknown process. In this chapter, we discuss the future research directions that are suggested

by this thesis.

Ergodicity

In the second chapter, the goal was to develop a methodology for assessing the exchangeability

of time and ensemble averages without having access to an ensemble of trajectories. For this

purpose, we proposed an estimator that can be applied to a single trajectory in order to detect

weak ergodicity breaking.

Our estimator partly removes the bias of the former estimator by Magdziarz and Weron [175]

due to finite size of the trajectory. By rescaling the increments of trajectories, we removed the

dependence of the estimator on the level of fluctuations. In that way, our estimator shows

the same distribution for any Brownian motion of fixed duration independently of its diffusion

coefficient.

A functional applied to a random process is itself random. In order to show that our estimator

predicts the expected behavior for three typical models of anomalous diffusion (detailed in

Chapter 1), we calculated the mean estimator for these different models. The mean estimator

was calculated analytically for fractional Brownian motion and shown to vanish as the lag-time

increases. For the case of diffusion on fractals the mean estimator obtained from simulations

confirms the known ergodic behavior of this model. After a detailed analytical analysis, we
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showed that in contrast with its predecessor, our estimator does not vanish for CTRW even for

an infinitely long trajectory.

We applied the estimator to two sets of experimental data. The first dataset has been

recorded from the motion of mRNA in E.coli cell and shows no ergodicity breaking. In turn, the

motion in Kv2.1 potassium channels revealed weak ergodicity breaking. Both of these results

have been previously obtained from an ensemble of trajectories, but here we made the statement

stronger by establishing it for each trajectory individually.

Magdziarz and Weron have mathematically proven that their estimator, based on one-step

increments x(n+ 1)−x(n), vanishes for any ergodic stationary infinitely divisible (SID) process

[175]. By using the long-time increments of the process x(n + ∆) − x(n), our estimator was

shown to detect ergodicity breaking for the CTRW which is not a stationary infinitely divisible

process. This is one of the main results of this chapter.

However, how the estimator behaves in general for a non SID ergodic process remains an open

question. In future research, we will investigate this question in order to know to which extent

one can apply our estimator to trajectories with non-stationary increments. Another difficult

question concerns the introduction of a significance level. Because the estimator applied to

a finite trajectory will never exactly vanish, it is important to set a confidence interval above

which the trajectory is considered as nonergodic. This significance level could allow an automatic

testing of the ergodicity hypothesis. The group of Weron found a path to this end using the

concept of ε-ergodicity [168–170]. They take in account the finiteness of the trajectory length

and devise what should be the length of a trajectory in order to detect with a degree of certainty

the ergodicity of the trajectory. However, in order to predict the desired length of the trajectory

for a safe assessment, one has to specify a model on which the analytical prediction will be made.

In practice, in the direction to detect ergodicity with a controlled degree of certainty, the nature

of the process needs to be known, and for the nature of the process to be known, the ergodicity

hypothesis needs to be verified. In future work, it would be interesting to find a way to break

this circle.

Finally, the single trajectory analysis raises questions that go beyond ergodicity. Mathemat-

ically, ergodicity is defined in the limit of infinitely long trajectories. However in practice, all

trajectories have finite length. Thus, the knowledge of the behavior in the long-time limit is not

sufficient to ensure a precise measurement based on time averaged quantities.
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The important instruction that provides the validity of the ergodicity hypothesis is that

as the trajectory length increases, the variance of time-averaged quantities vanishes and the

distribution of time-averaged quantities converges to the ensemble average. Ergodicity does not

tell how fast the variance vanishes but at least ensures that it will vanish. A striking example

when this result is not sufficient is provided in Chapter 4. The non-Gaussian diffusion model

displays stationary increments at long times and it is ergodic, as also revealed by our estimator.

However, the large distribution of these increments due to fluctuations of diffusivity makes much

more slower the vanishing of the variance of the TA MSD. For a diffusivity correlation time

τ = 100 (arbitrary units), and the parameter ν = 1, the TA MSD calculated with trajectories

of length 1000 steps presents the same variance as that of a Brownian motion with 10 steps.

To obtain the same precision as in homogeneous diffusion, the length of trajectories obeying

this non-Gaussian diffusion model should be recorded on much longer times. As the estimator

is based on the time-averaged Fourier transform of the trajectory, it contains more information

than ergodicity alone. Future work will be dedicated to relate the decay of the estimator to the

variance of time-averaged quantities.

Intermittent processes

In Chapter 2 we introduced a new method for detecting different phases of an intermittent

motion. The salient point and also the main difficulty of that approach is that we do not

make an a priori assumption on the underlying mechanism of the different phases of motion.

For this purpose, we applied a geometric functional along a trajectory that is not specific to a

given statistical property but is sensitive to a wide range of temporal changes in the statistical

properties. We used as functionals two quantities derived from the convex hull: its diameter and

its volume. We tested the method successfully on six models of intermittent processes presenting

different intermittent properties (drift, diffusion coefficient, mean-reversion, distribution, and

dimensionality) without changing any parameter of the method. Due to the integral-like nature

of the convex hull, the results were shown to be robust to noise compared to other differential-like

estimators (e.g. variance functional).

This chapter showed that functionals based on geometrical features of the trajectory are very

powerful and can be useful in a wide range of applications.
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Several further steps could be made in order to enlarge the impact of the method. First the

window size (21 points) that we have chosen works well in the examples because it is sufficiently

large to average out the noise and small enough to be reactive to changes in the dynamics.

However, this window size is not optimal in general. Thus a question would be “how to choose

appropriately the window size without prior knowledge on the process?”.

In the same vein, the threshold value used for discriminating between the two processes has

been chosen to be the empirical mean of the functional considered along the trajectory. We

have no proof that this is the optimal choice, but we expect that it is close to optimal when the

proportions of each phases are of the same order. We showed that the quality of the estimation

decreases when the proportion gets more and more unequal, the empirical mean as a threshold

is no longer optimal. Finding a proper threshold based on the trajectories themselves would be

very interesting.

Perhaps a solution would be to take some assumptions from which one could deduce optimal

choices of the lag-time and threshold value. But in this case, it would require to properly

describe the statistics of the convex hull applied to a random process. So far, most of the

theoretical knowledge concerns the mean volume or perimeter of the convex hull, but almost

nothing is known analytically on their probability density. Moreover, we are not aware of any

results concerning the diameter of the convex hull.

Our method presupposes that the process is intermittent. In the perspective of automatizing

the procedure, it is crucial to develop a test that could decide beforehand whether the trajectory

is intermittent or not. For now, we can calculate statistical properties associated to each sub

trajectory and verify that they come from two or more well separated group in the space of all

reachable statistical properties.

Non-Gaussian diffusion

Non-Gaussian diffusion is the manifestation of heterogeneities that affect the dynamic properties

of the medium. In the model we presented in Chapter 4, non-Gaussian diffusion is modeled by a

time-dependent diffusivity. We make a description based on a coupled Langevin equation where

the diffusivity is fluctuating, with diffusivity of diffusivity σ, around an average value D̄ with a

diffusivity correlation time τ . This model can reproduce the propagator with exponential tails
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with either peaked of smooth behavior near zero. We showed that the shape is determined by

the parameter ν = D̄
σ2τ

. The parameter ν close to zero means strong disorder characterized

by an accumulation of time intervals where diffusivity is close to zero, so the distribution of

displacements is peaked near zero. When fluctuations of diffusivity are smaller ν > 1, diffusivity

cannot approach arbitratily close to zero, so the distribution of displacements is smooth at the

center. The parameter τ controls the correlations of diffusivity. Diffusivity does not evolve much

on a range t < τ , so increasing τ makes time averaged quantities slower converge to the ensemble

average value since the process slower explores all possible diffusivities. An interesting tool for

measuring the fluctuations of diffusivity is the autocorrelation of the squared increments of the

process. It can be analytically calculated from the Langevin equation on diffusivity and directly

compared to experimental data.

The correlations of diffusivity are limited to an exponential decay because of the harmonic

trapping of the diffusivity. This unchangeable correlation structure may be limiting to some

experimental cases. For example the measurement in Chapter 5 of tracers in the cytoplasm

may display power-law correlated square increments. From a more general point of view, the

quest to develop a continuous strictly positive process with a prescribed correlation structure is

appealing in itself.

Meanwhile, we could also interrogate other interpretations of non-Gaussian diffusion. The

effect of spatially dependent diffusivity is not easy to distinguish against time dependent one.

Some work is needed in order to clearly state in which situation the diffusivity is space or time

dependent inside the cell. It would also be helpful to understand to which extent spatial and time

dependent diffusivity looks the same. In this case it could easier to treat some space-dependent

diffusivity problems by approximating them by time-dependent ones.

In future work, one may look for a precise physical mechanism that is responsible for the

fluctuations interpreted as diffusivity. The diffusion coefficient remains an average quantity that

does not mean much without specifying an underlying mechanism.

Finally, in order to understand the impact of non-Gaussian diffusion induced by the dynamic

heterogeneities on chemical reactions at the cellular level, the knowledge of the model is not

sufficient. The reaction kinetics are governed by the first passage of a reactive particle to a

target site. These quantities necessitate another type of description of the dynamics. Our model

can then be formulated in term of a Fokker-Planck equation that is an appropriate equation for
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studying first-passage problems.

Experimental evidence

In the experiment with vibrated disks of diameter 4mm, we observed a realization of Brownian

motion at the macroscopic scale. We were also able to measure the effect of the packing fraction

on the dynamic of the disks. The packing fraction was modified by adding new disks on the

vibrating plate. At short time, negative correlations become more and more pronounced as the

packing fraction increases, but the MSD remains diffusive even at rather high surface fraction.

The disks crowding the plate do not induce anomalous diffusion. However the distribution

of increments is affected by higher packing fraction. The Gaussian distribution of increments

presents small deviations from Gaussianity on the tails. In a future experiment it would be

interesting to be able to compare the collective motion of the disks with a single disk moving

on the plate. In this way we could distinguish which effect is intrinsic to the system itself and

which is due to the local shocks with other disks.

In the experiment in the cytoplasm, we observed the motion of a passive tracer of diameter

150nm in Dictyostelium discoideum cells. The cells have been prepared in four different states :

Wild type (WT) compared to depolymerized actin (NoAct), disrupted microtubules (noMT), or

both treatments (noCyt). On the basis of the statistical analysis developed in this study, we can

state that the tracer in a medium deprived of actin displays superdiffusion which we attributed to

the sweeping motion of the microtubules that constantly mix the cell content. This mechanism is

a good way to fight against the macromolecular crowding inside the cell. Meanwhile, the actin

network slows down the diffusivity but homogenizes the cell. Moreover, we detected a non-

Gaussian distribution of increments that is independent of the cytoskeleton state. The shape of

the distribution is similar to that of our model in Chapter 4 with parameter ν > 1 (mild disorder).

The superstatistical approach used to describe the distribution corresponds to the short-time

limit of our diffusing diffusivity model. However two characteristics mismatch between this

experiment and our model. First the autocorrelation of squared increments seem to decays as

a power law rather than exponentially as in our model. Second, the non-Gaussian parameter

obtained from experimental trajectories do not vanish during the time of the experiment, it

remains mostly constant. A possible explanation would be that the correlation time of diffusivity
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can be significantly larger than the trajectory duration so the increments of the trajectories

are not stationary so the distribution do not converge to a Gaussian distribution. The same

argument would be true for space-dependent diffusivity: if the distribution does not become

Gaussian, it means that the time to explore the whole heterogeneity of the cell is significantly

large than the trajectory duration.
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Appendix A

Résumé en Français

Cette thèse est dédiée á l’analyse et la modélisation d’expériences où la position d’un traceur

dans le milieu cellulaire est enregistrée au cours du temps. Il s’agit de pouvoir de retirer le

maximum d’information à partir d’une seule trajectoire observée expérimentalement. L’enjeu

principal consiste à identifier les mécanismes de transport sous-jacents au mouvement observé.

La difficulté de cette tâche réside dans l’analyse de trajectoires individuelles, qui requiert de

développer de nouveaux outils d’analyse statistique. Dans le premier chapitre, un aperçu est

donné de la grande variété des dynamiques observables dans le milieu cellulaire. Notamment, une

revue de différents modèles de diffusion anormale et non-Gaussienne est réalisée. Dans le second

chapitre, un test est proposé afin de révéler la rupture d’ergodicité faible à partir dune trajectoire

unique. Cest une généralisation de lapproche de M. Magdziarz et A. Weron basée sur la fonction

caractéristique du processus moyennée au cours du temps. Ce nouvel estimateur est capable

didentifier la rupture dergodicité de la marche aléatoire à temps continu où les temps d’attente

sont distribués selon une loi puissance. Par le calcul de la moyenne de lestimateur pour plusieurs

modèles typiques de sous diffusion, l’applicabilité de la méthode est démontrée. Dans le troisième

chapitre, un algorithme est proposé afin reconnâıtre à partir d’une seule trajectoire les différentes

phases d’un processus intermittent (e.g. le transport actif/passif à l’intérieur des cellules, etc.).

Ce test suppose que le processus alterne entre deux phases distinctes mais ne nécessite aucune

hypothèse sur la dynamique propre dans chacune des phases. Les changements de phase sont

capturés par le calcul de quantités associées à l’enveloppe convexe locale (volume, diamètre)

évaluées au long de la trajectoire. Il est montré que cet algorithme est efficace pour distinguer
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les états dune large classe de processus intermittents (6 modèles testés). De plus, cet algorithme

est robuste à de forts niveaux de bruit en raison de la nature intégrale de l’enveloppe convexe.

Dans le quatrième chapitre, un modèle de diffusion dans un milieu hétérogène où le coefficient de

diffusion évolue aléatoirement est introduit et résolu analytiquement. La densité de probabilité

des déplacements présente des queues exponentielles et converge vers une Gaussienne au temps

long. Ce modèle généralise les approches précédentes et permet ainsi d’étudier en détail les

hétérogénéités dynamiques. En particulier, il est montré que ces hétérogénéités peuvent affecter

de manière drastique la précision de mesures effectuées sur une trajectoire par des moyennes

temporelles. Dans le dernier chapitre, les méthodes danalyses de trajectoires individuelles sont

utilisées pour étudier deux expériences. La première analyse effectuée révèle que les traceurs

explorant le cytoplasme montrent que la densité de probabilité des déplacements présente des

queues exponentielles sur des temps plus longs que la seconde. Ce comportement est indépendant

de la présence de microtubules ou du réseau dactine dans la cellule. Les trajectoires observées

présentent donc des fluctuations de diffusivité témoignant pour la première fois de la présence

dhétérogénéités dynamiques au sein du cytoplasme. La seconde analyse traite une expérience

dans laquelle un ensemble de disques de 4mm de diamètre a été vibré verticalement sur une

plaque, induisant un mouvement aléatoire des disques. Par une analyse statistique approfondie,

il est démontré que cette expérience est proche d’une réalisation macroscopique d’un mouvement

Brownien. Cependant les densités de probabilité des déplacements des disques présentent des

déviations par rapport à la Gaussienne qui sont interprétées comme le résultat des chocs inter-

disque. Dans la conclusion, les limites des approches adoptées ainsi que les futures pistes de

recherches ouvertes par ces travaux sont discutées en détail.
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Appendix B

Properties of random processes and

how to test them

An unknown process can be characterized through its statistical properties. A good model for

a random process should reproduce most of its statistical properties. In this section, we discuss

the main statistical properties of random processes and the relevant methodologies to test them.

B.1 Markov property

Processes verifying the Markov property have no memory effect. The probability of an event

Xn+1 at the (n+ 1)th step only depends on Xn:

P (Xn+1|Xn, Xn−1, . . . , X1) = P (Xn+1|Xn) (B.1)

Examples of processes verifying the Markov hypothesis are the Brownian motion and the diffu-

sion in a fractal medium.

B.1.1 Ljung-Box Test

There are different way to test the Markov hypothesis [80–82, 90], we present here the Ljung-

Box Test [167] which test the hypothesis H0 that a timeseries with Gaussian increments has no

serial correlation except due to randomness. The hypothesis H1 is that increments are serially
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correlated up to the lag-time k. It is based on the statistics

Q = N(N + 2)
τ∑
k=1

{YtYt+k}2

N − τ
(B.2)

where N is the length of the time series, τ is the maximal lag-time for which the sample

autocorrelation {YtYt+k} can be evaluated.

When H0 is valid, the distribution of the statistic Q is χ2(τ) distributed. For a given

significance level α, H0 is rejected if the statistic Q > χ2
1−α,τ .

B.2 Stationarity

B.2.1 Strong stationarity

The strong stationarity states that the joint probability of events is time invariant

P (xt1+τ , xt2+τ , . . . , xtn+τ ) = P (xt1 , xt2 , . . . , xtn). (B.3)

As a consequence, any statistical quantity derived from it is time invariant such as the moments

of the distribution.

B.2.2 Weak stationarity

The weak, or wide-sense stationarity, requires that only the first moment and the autocovariance

are time invariant. Then, the statistics of the process between two times t1, t2 depends only on

the time difference t2 − t1. As an example, the covariance of a weak stationary process reads

〈Xt1Xt2〉 = K(|t2 − t1|). (B.4)

This means that the systems is independent of its initial conditions. However, this assumption

does not hold anymore for aging systems such as the CTRW with power law waiting times for

which 〈Xt1Xt2〉 = K(t2/t1) such that the process depends of all its history [44, 163]. Strong

stationarity implies the weak one. The situation where the only time invariant moment of

the process is the first one (resp. second one) is refered to as first-order (resp. second-order)

stationarity. Some methodologies were proposed to test first-order stationarity of the mean

based on the logarithm of the Fourier transform of the process [219] and also for second-order

stationarity using wavelet analysis [204].
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B.2.3 Unit root

The concept of unit root is widely used in the time series analysis. Consider the autoregressive

process of order k

yn = ρyn−i + ηn (B.5)

where ηn are IID variable with zero mean and variance σ2.

Then its characteristic polynomial is

Q(m) =
k∑
i=0

aim
p−i (B.6)

with a0 = 1.

If the equation Q(m) = 0 has a root m = 1 of order d, then the process is “integrated of

order d” (i.e. differentiating the process d times give a stationary time-series).

If all the roots are smaller than one, the process is stationary while it is called explosive

when a root is larger than 1.

Dickey-Fuller test [71] propose to test the hypothesis of the presence of a unit root (i.e.

ρ = 1). For this purpose one needs to calculate the statistic

ρ̂ =

∑N−1
n=1 ynyn+1∑N

n=1 y
2
n

(B.7)

Several models can be tested for the presence of unit root:

• Unit root yn = δyn−1 + ηn

• Unit root with drift yn = µ+ δyn−1 + ηn

• Unit root with drift and linear trend yn = µ+ βn+ δyn−1 + ηn

Each time, the corresponding distribution of ρ̂ can be calculated analytically, resulting in an

analytical form for a significance level α.

B.2.4 Trend stationarity

A time series is trend stationary if it can be written in the form

Y (t) = f(t) + ηt (B.8)
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with f(t) a deterministic function and ηt a stationary random process. The fractional Brownian

motion has trend stationary increments. But also processes with drift can verify this property.

The Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) [157] is aimed to test the null hypothesis

of the process being trend-stationary against the alternative that is has unit root.

yt = νt+ rt + εt, (B.9)

with ν the coefficient of the linear trend, εt a stationary error and rt a random walk defined by

rt = rt−1 +ηt with ηt IID random variables with variance σ2
ε . Define en be the nth residual from

the linear fitting of yt. Then the partial sum process is defined as Sn =
∑n

k=1 en. In this case,

the statistic

LM =
1

σε

N∑
n=1

S2
n (B.10)

B.3 Ergodicity

B.3.1 Statement of the problem

In many experimental cases, only a few trajectories are accessible making the use of an ensemble

average (over the probability space) impossible. In this case, applying time average along a

trajectory is an alternative way to identify and to characterize the process.

For this purpose, it is necessary for the system to verify the ergodicity hypothesis. For an

ergodic system, the statistics over an ensemble of realizations of the process at a given time

is equal to the time average over a trajectory of infinite length. This is know as the Birkhoff

ergodic theorem

lim
N→∞

N∑
k=1

g[Y (k)] = 〈g[Y (0)]〉, (B.11)

where g(.) an integrable deterministic function.

The ergodicity hypothesis is a fundamental basis for the equilibrium kinetic theory of gazes.

This is the theory describing macroscopic statitical properties of an ensemble of particles at

equilibrium. Boltzmann invoked ergodicity in order to derive the equipartition energy theorem

[28].

It states that a particle, as time t → ∞, will sample the whole phase space of the system

and thus it is equivalent to look at one particle or at an instantaneous picture of independent
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particle distributed on the whole phase space. A rigorous definition of ergodicity for dynamical

systems is given in Sec. B.3.2.

However a variety of systems do not satisfy this hypothesis. A first class is encountered in

the situation where the phase space is not simply connex, so that a portion of the phase space

is not accessible to an individual particle. Thus, the average of a quantity calculated along the

trajectory cannot lead to a description of the complete system. This is referred to as strong

ergodicity breaking which is simply impossible to identify from a single trajectory.

A second class is the weak ergodicity breaking where the phase space is simply connex, but

the dynamics of the object is slowed down and the phase space cannot be fully explored even

in the limit of an infinitely long trajectory. The only way to sample correctly systems breaking

the ergodicity hypothesis is to average over an ensemble of particles.

Cells are intrinsically out-of-equilibrium as there is a continuous consumption of energy in

order to ensure its functioning.

The ergodicity breaking has been thoroughly investigated for various processes, including

anomalous diffusions (see reviews [45,176,194] and references therein). Ito proved [132] that for a

stationary Gaussian process, a sufficient condition is that the VACF verifies: limτ→∞〈XtXt+τ 〉 =

0. This results has been further generalized by Khinchin’s theorem that relates ergodicity to

the long-time vanishing of the VACF of a stationary process without requiring the process to

be Gaussian [43,151,162].

Among the three models of anomalous diffusion discussed in Sec. 1.2, only the CTRW is

nonergodic.

B.3.2 Definition of ergodicity for dynamical systems

Consider an infinitely divisible stationary process (SID), that is, a process X(n) whose distribu-

tion can be written as the sum of independent identically distributed (IID) random variables.

Under this definition, X(n) can be represented as a probability measure in space (Ω, B), where

Ω is the phase space of functions f : N → R and B is the σ-algebra of events. The dynamical

system with the probability space (Ω, B, P ) is associated to the transformation S : Ω → Ω,

where S(f(n)) = f(n + 1) completely describes the temporal evolution of the process. The

dynamical system (Ω, B, P, S) is ergodic if for each invariant set A ∈ B (i.e. a set C is invariant

if for each trajectory X(t), it verifies X(t) ∈ C ⇒ X(t
′
) ∈ C, ∀ t′ > t), one has P (A) = 0 or
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P (A) = 1, there is no invariant set except for a constant process. From these definitions, the

mathematical formulation of the mixing and ergodicity conditions reads respectively

lim
n→∞

P[A ∩ Sn(B)] = P(A)P(B) (B.12)

and

lim
n→∞

1

n− 1

n−1∑
k=0

P[A ∩ Sk(B)] = P(A)P(B) (B.13)

Eq. (B.12) expresses the asymptotic independence of A and B under the transformation S.

According to Eq. (B.13), the mixing property implies ergodicity, as ergodicity is the time

average of the first condition [173].

B.3.3 Ergodicity Breaking Parameter

The ergodicity breaking (EB) parameter characterizes the normalized variance of the time

averaged mean squared displacement (TAMSD) δ̄2(∆, texp))
2 evaluated with a lag-time ∆ on

trajectory of duration texp (see Sec. B.4). It was introduced to quantify deviations from ergod-

icity in numerous models of anomalous diffusion [43,45,122,194,196] . The ergodicity breaking

parameter EB(∆, texp) as a function of the experiment duration texp (i.e. the trajectory length)

evaluated with a time-lag ∆ is

EB(∆, texp) =
〈(δ̄2(∆, texp))

2〉
〈δ̄2(∆, texp)〉2

− 1. (B.14)

For an ergodic process, lim
texp→∞

EB(∆, texp) = 0 for any ∆, meaning that for a fixed ∆, the

distribution of TAMSD converges to a Dirac delta distribution with δ̄2(∆, texp →∞) = 〈X2(∆)〉.

Since both the VACF and EB parameter rely on ensemble averages, many trajectories are needed

to reveal ergodicity breaking.

B.4 Time Averaged moments

Once ergodicity and stationarity of a process are verified, one can measure moments from a

single trajectory which behaves similarly to their ensemble averaged counterparts, in average. A

widely used quantity is the time-averaged mean squared displacement TA MSD, which in fact

should be call TA SD because the “Mean” has no signification for a single trajectory. For a
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trajectory of duration texp where the position has been recorded N times at regular interval of

duration δ (texp = Nδ), the TA MSD at a lag-time ∆ is

δ̄2(∆, texp) =
1

N −∆

N−∆∑
k=0

(x(k + ∆)− x(k))2 (B.15)

The ensemble average TAMSD has been studied for many anomalous diffusion models (see

[?, 150, 194]. But the distribution of the TAMSD is only known for Gaussian process [114,115],

they can be approximated by a generalized Gamma distribution. The properties fo the TAMSD

in confined domain were studied [140].

In the case of nonergodic CTRW with waiting times distributed as ∝ t−α, the TAMSD does not

behave as the MSD but shows a linear dependence on the lag-time ∆

〈δ̄2(∆, texp)〉 ∝
∆

t1−αexp
(B.16)

The TA MSD has been proposed in order to determine size of confinement zones in [221] from

the TAMSD.

The time averaged velocity autocorrelation function (TA VACF) is

¯XtXt+∆ =
1

N −∆

N−∆∑
k=1

Y (k + ∆)Y (k) (B.17)

Note that for ∆ = 0 the empirical variance of the process is recovered.

B.5 Testing the distribution of increments

B.5.1 General goodness-of-fit tests

Goodness-of-fit tests question the hypothesis that fluctuations around the theoretical fit are just

due to intrinsic variability of data set against that the fitting distribution is not appropriate.

The test is operated in three steps

• to fit the data with the desired distribution.

• to construct a probability distribution of the distance between a cumulative distribution,

obtained from simulated random data set with the fitted parameters, and the correspond-

ing theoretical model that is chosen for fitting.
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• to evaluate the probability for the empirical data for the distance using the simulated

cumulative distributions.

• to reject the hypothesis if the probability is smaller than the p-value chosen

For this purpose, one has to choose a distance measure between two distributions. A general

measure is

Ω2 = n

∫ ∞
−∞

(Fn(x)− F (x))2 ω(x)dx, (B.18)

where n is the number of data points, Fn(f) is the empirical cumulative distribution, F (x) is

the theoretical one and ω(x) is a weighting function. The weight ω(x) is chosen to accentuate

different parts of the distribution. For ω(x) = 1 the Von Cràmer statistic is obtained but with

ω(x) = F (x) (1− F (x)) the Anderson-Darling statistics is often preferred as it gives more weight

to the tails of the distribution. In particular, the AD was shown to be one of the best statistics

for testing Gaussianity [207,291].

B.5.2 Shapiro-wilk test

The Shapiro-Wilk statistics [243], test the hypothesis that a vector x1, . . . , xN with first k

moments m1, . . . ,mk with expression

mk =

∫ ∞
−∞

xk
dF (x)

dx
(B.19)

and covariance matrix C is distributed according to a Gaussian distribution. The test statistic

is

W =

(∑N
i=1 aix̄i

)2

∑N
i=1(xi − {xi})2

, (B.20)

where x̄i is the i-th smaller value of the sample and the vector

(a1, . . . , an) =
mTC−1

√
mTC−1C−1m

(B.21)

Then the statistics has to be compared with tables in [243]. It was shown that this is the most

efficient for testing Gaussianity on small samples [207], while Anderson-Darling test comes in

second position.
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B.6 Bayesian Inference

Bayesian methods based on prior knowledge on the motion are popular [1,11,30,128,230]. The

prior knowledge is represented by the probability P (x1, . . . ,xN | a1, . . . , aK) of observing a

trajectory x1, . . . ,xN with N points, given the parameters a1, . . . , aK of the model. In other

words, one defines a specific model-based functional of the trajectory to “process” the observed

data. Once the model is chosen, its parameters a1, . . . , aK can be found by maximizing the

likelihood of the observed trajectory according to the Bayesian rules.

B.7 Identifying Intermittent Processes

Different statistical methods have been developed to detect change points of an intermittent

stochastic process. Other attempts have been dedicated to the use of “hidden Markov model”

where the trajectory is randomly swhitching between a finite number of states of motion with

given exchange rates. It is possible to consider switching between two diffusion coefficient [63],

or more [257], as well as alternating Brownian motion and harmonical trap [247]. Another

solution is based on the maximum likelihood ratio which has been used to detect time dependent

diffusivity of fractional Brownian motion [155]. Even more general method can be obtained for

detecting change either in drift, diffusivity, or Hurst index for intermittent fractional Brownian

motion [37].

The complete description of an intermittent process would ideally require to recognize each

phase without prior, in order to limit human bias, and then identify the nature of each phase

separately.
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Appendix C

Matlab code for ergodicity testing

For completeness, we provide a short Matlab code that can be directly applied for analyzing

single-particle tracking data.

function [E,F] = EFestimator(X,omega);

% This Matlab function implements the improved mixing and ergodicity estimators

% by Y. Lanoiselee and D. Grebenkov

% INPUT: X - vector containing positions of the analyzed trajectory

% omega - (optional) frequency (the default value is 2)

% OUTPUT: E - the mixing estimator as a function of n

% F - the ergodicity estimator as a function of n

if (nargin < 2) omega = 2; end % Default value for omega

N = length(X)-1; % Trajectory points are enumerated as X(0), ..., X(N)

X = X/std(diff(X)); % Normalization by the empirical standard deviation of displacements

for n=0:N,

D(n+1) = sum( exp( (1i)*omega*(X(n+1:end) - X(1:end-n)) ) )/(N-n+1);

end

E = D - abs(sum( exp((1i)*omega*X) ))^2/N/(N+1) + 1/N;

for n=1:N, F(n) = sum( E(2:n+1) )/n; end

F(N+1) = NaN; % The last point is not defined

end % end of the function
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Appendix D

Some properties of the convex hull

The convex hull of points of a random trajectory is a highly nontrivial geometric functional

of this trajectory. Here we summarize several rigorous results for both Brownian motion and

simple random walk.

Takacs showed that the mean perimeter of the convex hull of standard Brownian motion Wt

in the plane is

E{vol1(Conv(Wt))} =
√

16πDt, (D.1)

whereas El Bachir obtained the mean area [179,260]

E{vol2(Conv(Wt))} = πDt. (D.2)

More general results for a standard Brownian motion Wt in Rd read [84]

E{vold(Conv(Wt))} =
(πDt)d/2

Γ(d/2 + 1)2
, (D.3)

E{vold−1(Conv(Wt))} =
2(4πDt)(d−1)/2

Γ(d)
. (D.4)

Extensions to a set of n Brownian paths have been provided in [179]. The perimeter of the planar

convex hull in the case of confinement to a semi-infinite domain presents nontrivial behavior as

a function of distance from the starting point to the boundary [56].

These formulas are exact for continuous Brownian motion. However, experimental trajecto-

ries are discretized so that Eqs. (D.3, D.4) can only be valid asymptotically when the number

of points in the convex hull is large. In turn, our LCH estimators are based on a relatively small

number of points, and Eqs. (D.3, D.4) are thus not applicable. Spitzer and Widom considered
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a two-dimensional discrete random walk, modeled as a sum of independent random variables in

the complex plane, and derived the average perimeter of the related convex hull [254],

E{LN} = 2
N∑
k=1

E{|xk + iyk|}
k

(D.5)

(here xk + iyk is the position of the walker in the complex plane after k steps), with the concen-

tration inequality [250]

P{|LN − E{LN}| ≥ ε} ≤ 2 exp

(
− ε2

8π2N

)
. (D.6)

Some other properties were reported in [250]. The asymptotic behavior of the mean perimeter

and the mean area of the convex hull over planar random walks was investigated in [119]. The

obtained formulas are even applicable to a moderate number of jumps that makes them suitable

for the analysis of the local convex hulls. The distributions of the area and of the perimeter of

the convex hull were computed numerically by a sophisticated large-deviation approach in [57].

The properties of the convex hull of Gaussian samples and of d-dimensional fractional Brownian

motion were analyzed in [64,65].
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Titre : Révéler les mécanismes de transport à partir d’une trajectoire individuelle dans les cellules vivantes

Mots clés : Analyse de trajectoires individuelles, diffusion anormale, processus intermittents, diffusion non-
Gaussienne

Résumé : De nombreuses expériences visant à com-
prendre les mécanismes de transport dans le milieu
intracellulaire reposent sur le suivi de traceurs indi-
viduels. Cette thèse vise à déduire des informations
sur le milieu cellulaire, le traceur observé et leurs
interactions à partir de l’analyse statistique d’une
trajectoire. Afin de révéler la non-ergodicité à par-
tir d’une seule trajectoire, un estimateur basé sur la
fonctionnelle dynamique est proposé. Aussi, un al-
gorithme est introduit pour reconnaı̂tre les différents

états d’un processus intermittent. Par l’analyse des
données expérimentales, nous révélons que les tra-
ceurs explorant le cytoplasme montrent une distribu-
tion non Gaussienne des déplacements, témoignant
des hétérogénéités de diffusivité dans le cytoplasme.
Pour rationaliser ces résultats, un modèle où la diffu-
sivité est un processus stochastique est analysé. Les
outils d’analyse son finalement utilisés pour analyser
le mouvement aléatoire de disques posés sur un pla-
teau vibrant.

Title : Revealing the transport mechanisms from a single trajectory in living cells

Keywords : Single trajectory analysis, anomalous diffusion, intermittent processes, non-Gaussian diffusion

Abstract : Many experiments designed to understand
the transport mechanisms in the intracellular environ-
ment rely on the recording the motion of individual tra-
cers. This thesis aims to deduce information on the
cellular environment, the observed tracer and their in-
teractions from the statistical analysis of a trajectory.
In order to reveal ergodicity breaking from a single
trajectory, an estimator based on dynamical functio-
nal is proposed. Also, an algorithm is introduced to

recognize the different states of an intermittent pro-
cess. Through the analysis of experimental data, we
revealed that tracers exploring the cytoplasm show a
non-Gaussian distribution of displacements, reflecting
the heterogeneity of diffusivity in the cytoplasm. To ra-
tionalize these results, a model where diffusivity is a
stochastic process is analyzed. The single trajectory
analysis tools are finally used to analyze the random
motion of disks placed on a vibrating plate.
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