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Abstract

Abstract

The objective of this doctoral research is to use a numerical approach to study the impact of
irradiation damage on the microstructure of the mixed uranium-plutonium oxide fuel (MOX).
This numerical approach comprises mainly the use of Molecular Dynamics (MD) using
empirical potential. Several empirical potentials for (U,Pu)O2 can be found in the literature.
The results of these potentials can exhibit signiĄcant diferences. For this reason an extensive
assessment of the main empirical potential found in the literature had to be performed.

Five empirical interatomic potentials were assessed in the approximation of rigid ions
and pair interactions for the (U1−y,Puy)O2 solid solution. Simulations were carried out on
the structural, thermodynamics and mechanical properties over the full range of plutonium
composition, meaning from pure UO2 to pure PuO2 and for temperatures ranging from
300 K up to the melting point. The best results are obtained by potentials referred as
Cooper and Potashnikov. The Ąrst one reproduces more accurately recommendations for the
thermodynamics and mechanical properties exhibiting ductile-like behaviour during crack
propagation, whereas the second one gives brittle behaviour at low temperature.

From our results on the empirical potentials assessment, we can move to the radiation
damage using only two potentials (Cooper and Potashnikov). In order to know the main source
of defect during irradiation, MD displacement cascades were simulated. This revealed the
damage created due to varying projectile energies. In addition, the Frenkel pair accumulation
method was chosen to investigate the dose efect. This method circumvents the highly
computing time demanding accumulation of displacement cascade by directly creating their
Ąnal states, i.e. mainly point defects. Overall, results obtained with both potentials show the
same trend. However, kinetics of point defect recombination are signiĄcantly slower with
Cooper potential implying creation of small disordered region with high energy displacement
cascades. The evolution of the primary damage with increasing dose follows the same steps
as those found previously in pure UO2. First, point defects are created. Subsequently, they
cluster and form small Frank loops, which in turn transform and grow into unfaulted loops.
We demonstrate also that increasing temperatures accelerate the production of dislocations
shifting their creation to lower doses. The efect of the plutonium content is also evidenced,
especially with Cooper potential. It shows that the dislocation density decreases when the
plutonium content increases.

Although, MD has been described as a molecular microscope due to its ability to describe
accurately systems of atoms, it has a large drawback that is the short time steps of the order
of femto-seconds needed to resolve the atomic vibrations. This limits the time typically
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few microsecond. In order to investigate processes, such as, cation difusion and rare-event
annihilation of defects after cascades, another computational tool is required. Atomistic
or object kinetic Monte Carlo (KMC) techniques can run for longer timescales than MD.
However, for KMC to work accurately, all of the possible inter-state transition mechanisms
and their associated rates need to be known a priori. For this reason, the adaptive kinetic
Monte Carlo (AKMC) is chosen to overcome these limitations. This method determines the
available transition states during simulation. In this way, it takes the system into unforeseen
states via complex mechanisms. The power and range of this tool proved to be eicient to
discover cation Frenkel pair recombination over a longer periods of time than MD.

Résumé en français

LŠobjectif de cette thèse a été dŠutiliser une approche numérique pour étudier lŠimpact des
dommages dŠirradiation sur la microstructure du combustible nucléaire composé dŠun mélange
dŠoxyde de plutonium et dŠuranium (MOX). Cette approche, réalisée à lŠéchelle atomique,
repose sur lŠutilisation de potentiels empiriques développés dans la littérature pour lŠoxyde
mixte (U,Pu)O2 dans lŠapproximation des interactions dŠions rigides.

Une première étape a été une analyse critique des propriétés structurales, thermodynamiques
et mécaniques prédites par 5 potentiels de la littérature. Les calculs de dynamique moléculaire
ont été réalisés à lŠaide du code LAMMPS, sur lŠensemble de la gamme de composition de
UO2 à PuO2 et à des températures comprises entre 300 K et le point de fusion. Nous montrons
que les potentiels les plus satisfaisants sont ceux développés par Cooper et Potashnikov. Ces
deux potentiels reproduisent correctement la stabilité thermodynamique des phases ainsi que
lŠévolution en température des paramètres de maille et de la chaleur spéciĄque. Cependant
le comportement mécanique des oxydes est diférent selon le potentiel choisi. Tout dŠabord,
on note que les constantes élastiques et le facteur dŠanisotropie obtenus par le potentiel
Cooper sont plus Ądèles aux recommandations de la littérature. Ensuite, nous montons que la
propagation dŠune fracture induit une transformation de phase en pointe de Ąssure avec le
potentiel de Cooper alors quŠune Ąssuration fragile est observée avec le potentiel Potashnikov.

Une seconde étape a été lŠétude des dommages dŠirradiation dans les oxydes mixtes en
se limitant à lŠutilisation des deux potentiels de Cooper et de Potashnikov. Des calculs de
dynamique moléculaire de cascades de déplacement ont été réalisés à diférentes énergies,
température et compositions en plutonium. Ensuite, aĄn dŠévaluer les dommages dŠirradiation
sur des temps plus longs que ceux accessibles en dynamique moléculaire, la méthode
dŠaccumulation de défauts a été utilisée. Pour les deux potentiels, lŠévolution des dommages
primaires avec lŠaugmentation de la dose suit globalement les mêmes étapes que celles
trouvées précédemment dans UO2. Tout dŠabord, les défauts ponctuels sont créés. Par la
suite, ils se regroupent et forment de petites boucles de Frank, qui après se transforment en
dislocations parfaites. Cependant, la cinétique de la recombinaison de défauts ponctuels est
signiĄcativement plus lente avec le potentiel de Cooper ce qui conduit à la création de petites
régions désordonnées pour les cascades dŠénergie élevée. LŠefet de la teneur en plutonium est
analysé. Nous montrons en particulier que la densité de dislocations crée diminue lorsque la
teneur en plutonium augmente.

Bien que la dynamique moléculaire a été décrite comme un microscope moléculaire
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en raison de sa capacité à décrire avec précision des systèmes atomiques, elle présente un
inconvénient majeur, celui lié aux temps de lŠordre de la femto-seconde nécessaires pour
résoudre les vibrations atomiques. Cela limite le temps total de simulation approximativement
quelques nanosecondes. AĄn de simuler les processus, tels que la difusion de cations, un
autre outil de calcul est nécessaire. Les techniques de Monte Carlo (KMC) atomiques peuvent
simuler de plus longtemps que la dynamique moléculaire . Cependant, pour que KMC
fonctionne avec précision, il est nécessaire de connaître a priori tous les mécanismes de
transition entre les états possibles. Pour cette raison, la methode de Monte Carlo cinétique
adaptative (aKMC) est choisie pour surmonter ces limitations. Cette méthode détermine les
états de transition disponibles pendant la simulation. De cette manière, elle entraîne le système
dans des états imprévus via des mécanismes complexes. La puissance de cet outil sŠest révélée
suisamment grande pour étudier la recombinaison de cations sur de plus longues périodes de
temps que la DM.
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Avant-propos

Introduction

The world is more than ever questioning the use and development of the diferent types of
energy, especially in the context of global warming, which represents a growing danger for us,
the human kind. From all the alternatives, nuclear power seems to be one one of the most
reliable energy to achieve our goal of a world free of human CO2 emissions (Shellenberger,
2018). However, nuclear power has always been under scrutiny, due to the impact it may have
on the environment. This fear comes from accidents such as Chernobyl or Fukushima, or its
military use linked to atomic bombs. MOX nuclear fuel cycle has as the advantage of the no
proliferation, compared to the uranium cycle. Both cycle are still under debate for choosing
the most adequate to the future worldwide need of electricity. MOX fuel cycle would be
chosen if the uranium prices increases or/and if the important criteria is the waste disposal.
Indeed, it produces less intermediate and high level waste. Last but not least important, MOX
is planned to be the fuel for the new generation of reactors, such as ASTRID.

The MOX fuel is submitted to many micro-structural changes while being inside the
reactor. One example is the restructuring of the solid matrix. It is due to the large temperatures
and temperature gradients. Voids migrate towards higher temperatures and gather in the
centre. Conversely, this causes a movement of the solid towards the outer periphery and
leads to the creation of a void in the centre. Comparing MOX and UO2 fuels, we Ąnd that in
MOX (mixed oxides) there are higher rates of Ąssion gas release, due to higher linear power
levels at the end of the irradiation and higher centre-line temperature (caused by slightly lower
thermal conductivity). In general, inside the MOX fuel many complex phenomena take place,
leaving more questions than answers. SpeciĄcally, the behaviour at atomic scale is not well
understood. Moreover, there is a lack of information related to the entire Pu content domain
and temperatures.

An important issue for the future of nuclear power is to ensure safeness and efectiveness
during processes involving MOX fuel such as fabrication, operation and recycling. Yet, the
toxicity of plutonium and high radiation levels make experiments less viable. Nonetheless,
beside previous experimental eforts gathered in the following reviews (Popov, Carbajo,
Ivanov, & Yoder, 1996) and (ESNII+, 2015) , experiments with MOX are diicult to perform,
especially at high temperatures and under irradiation condition. For these reasons, numerical
approaches can be chosen to bring some insight on basic physical phenomena that take place
in the fuel matrix. For instance, over the last decade, several atomistic approaches using
molecular dynamics (MD) simulations have been carried out to study thermal conductivity
properties in (U,Pu)O2 (Yamada, Kurosaki, Uno, & Yamanaka, 2000), (Kurosaki et al., 2001),
(Terentyev, 2007), (Arima, Yamasaki, Inagaki, & Idemitsu, 2005), (Arima, Yamasaki, Inagaki,
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& Idemitsu, 2006), (Nichenko & Staicu, 2013), (Ma et al., 2014), (Cooper, Middleburgh,
& Grimes, 2015) and (Li, Ma, Du, & Jiang, 2016). However, the reliability of the results
depends exclusively on the choice of the set of potentials. The potential parameters are usually
Ątted to reproduce a few physical properties, typically the lattice parameter, the cohesive
energy, and complementary the elastic constants, which comes from experimental values or if
not available from ab initio calculations. Therefore, each potential has its domain of validity.
Subsequently, others physical properties for which the set of parameters have not been Ątted
on need to be assessed to provide a good insight of advantages and disadvantages of each
potential and their range of validity.

This type of study has already been carried out in the case of UO2 (Govers, Lemehov, Hou,
& Verwerft, 2007), (Govers, Lemehov, Hou, & Verwerft, 2008), (Potashnikov, Boyarchenkov,
Nekrasov, & Kupryazhkin, 2011) and (Chernatynskiy, Flint, Sinnott, & Phillpot, 2012) but, to
our knowledge, not yet for MOX. Therefore, in Chapter 3, we assess available rigid ion model
empirical potentials for MOX on the structural, thermodynamics, and mechanical properties.
The assessment (Chapter 3) is performed over the full range of plutonium composition, from
pure UO2 to pure PuO2 and for temperatures ranging from 300 K to melting point. We will
present Ąrst the the results related to the thermodynamical properties: 1) lattice parameter,
2) the thermal expansion, 3) the speciĄc heat capacity, 4) a bibliography research about the
thermal conductivity, melting point and difusion, 5) and phase stability. Secondly, we present
the mechanical properties: 1) the elastic constants, 2) the anisotropy factor, 3) the stress-strain
curves under uniaxial deformation, 4) the brittle-to-ductile transition and 5) crack propagation.

It is known that MOX thermomechanical properties vary with respect to irradiation (Popov
et al., 1996), (Carbajo, Yoder, Popov, & Ivanov, 2001) and (ESNII+, 2015), yet, detailed
description of this phenomena is rather sparse due to again the great diiculties of carrying
out experiments in such materials (high toxicity and radiation levels). MD has proved to be a
useful tool to simulate ballistic damage in UO2 by means of displacement cascades studies
(Van Brutzel, Rarivomanantsoa, & Ghaleb, 2006), (Devanathan, Yu, & Weber, 2009), (Martin,
Garcia, Brutzel, Dorado, & Maillard, 2011) and (Crocombette, Brutzel, Simeone, & Luneville,
2016). Moreover, MD simulations using the Frenkel pair accumulation (FPA) technique
(Chartier, Meis, Crocombette, Weber, & Corrales, 2005, 2) and (Crocombette, Chartier, &
Weber, 2006) allows us to go further in picturing the dose efect and have been tested for
diferent oxides (Chartier, Catillon, & Crocombette, 2009, 15) and UO2 (Chartier et al., 2016).
Therefore, we will present in Chapter 4 MD ballistic radiation damage characterization of
(U,Pu)O2 solid solution, for several Pu contents, temperatures, and radiation doses. This
assessment is shown in Chapter 4 and is divided as follow: the Ąrst part provides some point
defect formation energies in order to assess the empirical potentials. The second part examines
the results on the lifetimes of Frenkel pairs, which are of importance for the two next following
sections. The third part presents the primary damage state obtained via displacement cascades.
The fourth part discusses the efect of irradiation dose on the evolution of the microstructure
using the Frenkel pair accumulation method. The Ąfth part shows the elastic moduli as a
function of the dose. Finally, we assess the simulated XRD (X-ray difraction) patterns as a
function of dose.

Generally, the MD approach that solves the motion of atoms using classic mechanics has
proven to be successful for a large number of cases. However, we recall that the physical time
MD deals with is not suicient to study many important phenomena such as cation difusion
and the reaction of some chemical substances, this makes it necessary to Ąnd a way to solve
the problem of systems evolving slowly over time. As a solution, we propose to use the aKMC
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(Adaptive Kinetic Monte-Carlo). Chapter 5 will present the basics of the aKMC method. An
example of its application will be illustrated by results obtained over a large period of time for
cation Frenkel pair recombination.
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Along this chapter we will go through general knowledge about the MOX fuel. Firstly,
we will explain what it is used for in Section 1.1. Secondly, we will compare the closed fuel
cycle with the open fuel cycle, in order to understand the importance of the MOX fuel in the
future of the nuclear power. After, we will describe the behaviour of the fuel inside the reactor
and the impact of irradiation. Then, a brief description of the Ćuorite structure and types of
defects is included.

1.1 Generation of Electricity with Nuclear Power

Nuclear power has played an important role in the production of electricity since its beginnings.
It supplies around 30% of the global demand. In Europe, this is especially important, for
example, in France it covers more than 75% of their demand. Other countries in Europe, such
as, England are still betting on this energy by constructing new reactors.
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The nuclear fuel cycle has always been under scrutiny, due to the impact it may have on the
environment. This fear comes from accidents such as Chernobyl or Fukushima. Radioactive
emissions released in such accidents, can travel around the globe, and therefore cause a vast
environmental problem. Moreover, the lack of governmental decisions about the radioactive
waste has created a bad reputation for nuclear, worldwide. However, discounting these few
major accidents, nuclear energy is important producing low-carbon electricity. This is rather
important considering the growing environmental problems related to the global warming.
Nuclear power, with its almost non-existent carbon emission is starting again to play an
important role in saving the world as we know it.

The generation of nuclear power uses mainly as fuel U235. Spontaneous Ąssion of the
uranium atoms takes place inside the fuel. This gives energy and releases energetic neutrons.
Some of the released neutrons cause further Ąssion processes, releasing more energy. The
remaining neutrons are absorbed by control mechanisms or other isotopes, such as, U238.
Further decays leads to the production of new isotopes, such as, Pu239. In certain cases, more
Ąssile materials are produced. The energy released from each Ąssion process is extremely
energetic (around 200 × 106 eV). This great amount of energy, in a small volume, makes this
type of fuel one of the most energetic. Part of this energy is transformed in heat. There is a
heat exchange between the reactor and the cooling system. The heat is then used to transform
water into steam, in order to move turbines and produce electricity.

1.2 Why using MOX?

Due to the large number of factors entering the speciĄcations of nuclear fuel, several nuclear
fuels have been proposed. The nuclear fuel cycle represents the progression of nuclear fuel
from creation to disposal. All of them share the same processes, from mining to fuel being
irradiated in the reactor. However, the key factor that diferentiate them starts after the nuclear
reactor operation. Some of them consider the option of that the irradiated fuel is reprocessed
and the nuclear material is recycled. Choosing the cycle depends on the type of reactor as
well (IAEA, 2009).

Mainly, two types of cycles have major acceptance around the globe. The Ąrst one, called
ŞThe open fuel cycleŤ, starts by irradiating the nuclear fuel in the reactor. Secondly, after
irradiation, the fuel is maintained in ponds in the same nuclear plant for years up to decades
until it is sent away (for instance in Spain at ŞEl CabrilŤ ) or it remains in the same ponds
awaiting for decisions. This nuclear spent fuel is meant to be conditioned or just packed in
special containers and put it into a Ąnal repository (IAEA, 2009). It is important to note, that
this fuel cycle strategy is the most popular around the globe. However, some countries that
were using this option now are looking forward to re-utilise this valuable material (uranium
and plutonium). Another disadvantage is that no Ąnal repository for spent fuel has yet been
constructed. The Ąrst will be the Finnish repository at Onkalo. Figure 1.1 shows a schematic
representation of this cycle.

The second cycle one is called Şclosed fuel cycleŤ. After the nuclear fuel was irradiated in
a reactor and kept cooling during a suicient period of years, the spent fuel is reprocessed to
extract the remaining uranium and plutonium (Ąssile and Ąssionable materials), separating the
Ąssion products and other actinides. After the reprocessing process, from the original spent
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Figure 1.1 Ű Schematic presentation of the open fuel cycle (MIT, 2003)

fuel 95% of the mass is reprocessed uranium, 4% is nitric acid solution containing Ąssion
products and transuranic wastes (TRU), the remaining 1% corresponds to plutonium. It is
convenient to remark that a small portion of the radioactivity is released into the atmosphere
or into liquid wastes from the reprocessing plant (Bunn, Holdren, Fetter, & Van Der Zwaan,
2005). The reprocessed uranium and plutonium are then reused in the reactors. This type of
cycle has been adopted in many countries, mainly in light water reactors (LWR) in the form of
mixed oxide (MOX) fuel. MOX fuel is being used around the world, for instance, 21 reactors
are currently using MOX in France, which generate 10% of the total French electricity. Eleven
Japanese generating companies were loading MOX fuel in their nuclear generating plants.
In the USA, ORANO is working to build the Mixed Fuel Fabrication Facility which will
manufacture MOX fuel using ex-military plutonium (AREVA, 2015). Figure 1.2, shows how
this cycle can be represented.

Figure 1.2 Ű Schematic presentation of the closed fuel cycle (MIT, 2003)

We now compare both; the open fuel cycle and the closed fuel cycle, it is argued that the
former has more advantages related to proliferation, since no material for bombs is separated,
and actual costs are favourable for this type of cycle. The latter has advantages concerning
resource utilization, due to the fact that recycled actinides reducing the need for enriched
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uranium. Moreover, another important advantage is that the closed fuel cycle can reduce
the requirements of long-term disposal. For example, if actinides are burned in a breeder
reactor or even some long-lived Ąssion products, this will impact directly on the half-life and
radiotoxicity of the waste that would be disposed (MIT, 2003).

In 2003, the fuel cycle characteristics of the worldwide deployment of nuclear power
have been summarized in Figure 1.3. The total capacity of the plants using the once-through
enrichment oxide was 325 GWe of electricity. Concerning the plants using MOX in reactors,
the total capacity was only about 27 GWe. As we can see, the majority of the plants opted for
the once-through cycle. In the case of the closed fuel cycle, the plants using this method opted
just for one recycle of the fuel before the spent nuclear fuel is put into disposal (MIT, 2003).

Figure 1.3 Ű Fuel cycle characteristics of current plants (MIT, 2003)

If we take the case where in the year 2050 the deployment under the global growth
scenario is achieved by two options. The Ąrst one consists of using the once-through cycle
in LWRs or the second one, which consists in using plutonium recycle, where all the spent
UO2 is reprocessed but none of the spent MOX. If new resources of uranium are found or
the ones that exist are suicient to maintain reasonable prices, then the closed fuel option
could not be economically attractive compared to the open fuel cycle (MIT, 2003). However,
the plutonium recycle option has an advantage concerning Ąnal waste disposal, because it
produces less intermediate and high level wastes, although it also produces greater transuranic
waste. Contrasting both cycles, both produce almost the same amount of Ąssion products
which represent most of the activity in the nuclear spent fuel. In conclusion, by mid-century,
if the prices of uranium ore stay reasonable low, the option of recycling plutonium would not
be economically attractive. However, if the prices were to become high, the second option
could become the most accepted one (MIT, 2003).

1.3 MOX inside the reactor

The nuclear fuel pellets for Pressurized Water Reactors (PWRs) are small cylinders of around
5 mm of diameter (NEA, 2014). For MOX, raw powders of UO2 and PuO2 are weighted and
then mixed to meet the Ąnal fuel composition of 7.38% (for this case) of Pu with a Oxygen to
Cation O/C ratio of 1.998% and an average grain size of 10 µm. The powder is then milled
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and granulated through pre-compaction, crushed and compacted again. Finally, the pellets
are sintered. More details of this process can be found in (KAERI, 2009). The plutonium
distribution of these pellets are shown in Figure 1.4. As we can observe, the plutonium
distribution is quite homogeneous. The maximum diameter of the Pu rich spot is 13 µm with
a Pu content of 18%. Under irradiation this inhomogeneity plays an important role.

Figure 1.4 Ű X-ray Mappings of a newly fabricated MOX pellet (KAERI, 2009). The colour
level corresponds to wt % of PuO2

An irradiation test is undertaken with an average burnup of 50 MWd/kgHM with an
irradiation time of 1020 EFPD. The peak in the temperature in the fuel centre was estimated
around 1673 K. The results of the irradiation show many Pu rich spots and metallic Ąssion
product precipitates. The Pu rich spots were found mainly in middle and peripheral regions,
in contrast to the centre where the density was lower. Pu in the spots difuses out to the UO2

matrix in the central region (KAERI, 2009). Pu spots are surrounded by a ring of small pores
called "Halo" as shown in Figure 1.5

Figure 1.5 Ű Micrographs of MOX fuel pellet. (KAERI, 2009)

The MOX fuel is submitted to many micro-structural changes while being inside the
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reactor. One example is the restructuring of the solid matrix. It is due to the large temperatures
and temperature gradients. Voids migrate towards higher temperatures and gather in the centre.
Conversely, this causes a movement of the solid towards the outer periphery and leads to the
creation of a void in the centre. An illustration of the Ąnal pellet state is shown in Figure 1.6,
which represents a micrography of a MOX pellet. This phenomena makes the peak in the
temperature decrease, since the fuel is now closer to the heat sink. Moreover, it afects the
heat transport characteristics of the pellet. In MOX, this results in the migration of oxygen
atoms through the pellet and conditions the demixing of U and Pu (Welland, 2012).

Figure 1.6 Ű Microstructure of a fast reactor pelletized MOX fuel pellet (Welland, 2012).
MOX fuel pellets are often divided into regions deĄned by their restructured state. Going
outward from the centreline we Ąnd 1) Central void, 2) Columnar grain region, 3) Equiaxed
grain growth and 4) As-fabricated microstructure.

There is a diference between MOX and UO2 pellets. In MOX, there is higher rates of
Ąssion gas release, due to higher linear power rating and higher centreline temperature (caused
by slightly lower thermal conductivity). Furthermore, the heterogeneity of the Ąssile material
would play a role as well, to increase the rate of Ąssion gas release. This is shown in Figure 1.7
for MOX fuel fabricated by the MIMAS process. The Pu rich spots are submitted to very high
burn-up. This causes restructuring, which leads to further division of grains, precipitation of
gas bubbles that go to intra-granular division which make them easily freed when a power
transient occurs (CEA, 2009).

In overall, MOX fuel pellets are more complicated to work with, than the UO2. Their
behaviour inside the reactor has to be carefully addressed, since more processes are involved
at the time of the burn-up. Moreover, at the time of producing them, the alpha decays make it
diicult to handle and decreases the number of labs capable of sensitize them. Therefore, it is
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Figure 1.7 Ű Microprobe mappings of MIMAS MOX. (CEA, 2009). The colour level
corresponds to wt % of PuO2

important to understand well what are those micro-structural changes that happen inside the
fuel under irradiation and surely the cause as well. This brings the need of new tools to assess
the problem. In particular, modelling and computer simulations are expected to contribute to
a better understanding of this phenomena.

1.4 Physical properties of MOX

The new generation of reactors are expected to work with higher Pu contents. The inĆuence
of higher Pu contents are rarely investigated by the private nuclear sector. Furthermore, the
efect of stoichiometry is expected to be very important to explain the processes inside the
fuel (see Appendix A).

Experiments on MOX are diicult to carry out. Nonetheless, efort has to be made to get
more information about this material since it is expected to be used by the new generation of
reactors. First of all, a compilation of the knowledge found in the literature about MOX has to
be done. This job was accomplished by a group of various European research organization in
1990. They built up a catalogue of properties of MOX, part of which is still used in models
of calculation of oxide fuel codes for fast neutron reactors. A new efort was carried out by
(ESNII+, 2015) to create a new catalogue of thermomechanical properties. It aimed to gather
MOX fuel data required by the fuel calculation codes as GERMINAL, TRANSURANUS,
MACROS, and TRAFIC. SpeciĄcally, input parameters as Temperature, Pu content, O/M



8 Chapter 1. MOX Fuel overview

ratio, porosity, burnup,. . . relevant for MOX fuels data needed for the reactor prototypes
ALFRED (LFR), ALLEGRO (GFR), ASTRID (SFR), and MYRRHA (ADS). Table 1.1 shows
the parameters and conditions that this catalogue comprises.

Table 1.1 Ű MOX properties catalogue (ESNII+, 2015).

Although, this catalogue is quite complete and extensive, few gaps have to be completed.
This is, for example, expand the Pu content domain and temperatures. Before the ESNII+
attempt, there have been some important works that join simulations and experiments to bring
information about MOX. An example is (Devanathan, Van Brutzel, Chartier, & Gueneau,
2010, 10) which gathers information of actinide oxides mainly about crystal structure, thermal
expansion and thermodynamic data.

Regarding the mechanical properties, It is well known that UO2 and MOX mechanical
properties are afected by the plutonium (Pu) content, the YoungŠs modulus increases slightly
(3 to 10%) with addition of PuO2 as demonstrated by experiments carried out in the seventies
on MOX fuel up to 20% PuO2 (Novion, 1970), (Nutt, Allen, & Handwerk, 1970), (Matthews,
1974). A recent study performed by Hirooka et al. (Hirooka & Kato, 2018) on MOX fuel
containing the full range of Pu content (i.e., from 0 to 100%) conĄrms a 10% increase of the
YoungŠs modulus.

New eforts to keep track on this material are being proposed. This is the case, for example,
of the INSPYRE project. It stands for Investigation Supporting MOX Fuel Licensing in ESNII
Prototype Reactors. The objective is to demonstrate Gen IV fast reactor technologies with
closed fuel cycle, to harness European research and industrial capabilities to build advanced fast
reactor prototypes and develop supporting infrastructure. Most of this PhD work lies under the
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task 3 (INSPYRE, 2018) It focuses on improving, developing and applying experimental and
modelling methods to reach a better understanding of the underlying mechanisms governing
the evolution of mechanical properties. One of the main questions that will be assessed is;
"Can we use UO2 thermomechanical data as MOX data in fuel performance codes?". This
PhD research focuses on answering this question by using a computer simulation approach at
the atomic scale.

Finally, extensive work has been carried out related to computer simulations (MD and
MC). There are a few institution around the world that have undertaken this task. For example,
CEA, Imperial College, Los Alamos National Lab, Ural Federal University and Japan atomic
energy agency. Their works will be addressed in Chapter 3 and Chapter 4 to compare our
results.

1.5 Crystallographic structure of MOX

The stoichiometric MOX has a Ćuorite structure. To be more speciĄc, the structure is cubic
Fm3̄m space group 225. The atomic representation of the structure is shown in Figure 1.8.

Figure 1.8 Ű Representation of the MOX Ćuorite structure.

The ideal crystal adopts a face centred cubic lattice for the cations and inside the anions
occupy the tetrahedral sites, which form a simple cubic sub-lattice. Each cation, U or Pu, is
then inside a cube where the corners are occupied by O atoms (Figure 1.9) ZU,Pu = 8. In
the same manner, the O atoms are in the centre of tetrahedrons with U or Pu in the corners
ZO = 4.

This structure possesses several symmetries. Thus, it can be described by a unique
parameter called "lattice parameter". The principal crystallographic orientation are in Miller
index: the ⟨1 0 0⟩, ⟨1 1 0⟩ and ⟨1 1 1⟩ . The MOX Ćuorite structure has large octahedral
interstitial holes, in which interstitial ions can be introduced.
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Figure 1.9 Ű Coordinance tetrahedron and cubic in the MOX Ćuorite structure.

1.6 Defects in MOX

1.6.1 Point defects

Under irradiation, the crystalline structure may present disorder when atoms are moved from
their original crystal position. Defects can be divided in two. The Ąrst type are called intrinsic
defects because those are only consisting in atoms from the same material. The extrinsic
defects relates to atom type from another material such as Ąssion products. A clear example of
this is the doping process. The totality of the work presented here is related to intrinsic defects.
The Ąrst one is the Frenkel disorder, in which an atom that is displaced from its initial lattice
site onto an interstitial one, leading this way to the creation of a couple vacancy-interstitial.
This is shown in Figure 1.10. Both anions and cations can produce this type of defect.

The next type is called Schottky defect and is related to the creation of vacancies but
these have to follow stoichiometry. For MOX, it is two Oxygen vacancies and one cation
vacancy (Pu or U). Each vacancy species should occupy its own sublattice. A schematic
diagram is shown in Figure 1.11. This leads to the third process. The "substitutional" defect
is formed when a cation switches site with an anion. The later is not expected in MOX since it
involves opposite charge ions and its distorting efect would be higher that just the creation of
interstitials and vacancies.

1.6.2 Extended defects

In certain conditions, materials such as MOX, present more complex defects. These defects
can be caused, for example, by irradiation after the gathering of point defects Section 1.6. This
type of defects can be caused for example, by, irradiation. In general, we can classify defects
by their dimension. 0-dimensional defects are point defects (again shown in Section 1.6).
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Figure 1.10 Ű Diagram showing a showing 2D projection onto (1 0 0) plane of a cation Frenkel
defect. The red circles represent cations (Pu or U) and the blue ones, anions.

Figure 1.11 Ű Diagram showing 2D projection onto (1 0 0) plane of a Schottky defect.



12 Chapter 1. MOX Fuel overview

1-dimension defects include perfect dislocation, partial dislocation, dislocation loops, grain
boundary. 2-dimension defects are related to stacking faults and grain boundaries. Finally,
3-dimension defects are, for example; precipitates, voids or cavities.

Along this section, it will be brieĆy explained this type of defects. Firstly, Figure 1.12
shows a schematic diagram of point defects and extended defects in a basic lattice.

Figure 1.12 Ű Schematic lattice network showing defects. a) Interstitial impurity atom, b)
Edge dislocation, c) Self interstitial atom, d) Vacancy, e) Precipitate of impurity atoms, f)
Vacancy type dislocation loop, g) Interstitial type dislocation loop, h) Substitutional impurity
atom (Foll, 2018).

We Ąrst consider dislocations. These defects are characterized by a vector, the Burgers
vector, b. It represents the magnitude and direction of the lattice distortion. The movement of
dislocations is the main source of plastic deformation in crystals (Foll, 2018). Dislocations
with Burgers vectors deĄning a translation of the lattice are called "perfect dislocations". Not
all the Burgers vectors deĄne a translation in lattice, as we will see later in this section. In fcc
lattices, such as the one belonging to the cation sub-lattice in MOX, the perfect dislocation
Burgers vector is normally the shortest translation vector of the lattice given by b = a/2⟨1 1 0⟩.
Perfect dislocations leave no change in the crystal structure when the dislocations move.

The fcc lattice can be represented as 3 staking planes formed by cations in a speciĄc
way. The Ąrst atomic plane will be noted A, the second B and third C. The atomic plane
B that will be stacked after the plane A has to have its atoms right over the depressions
of the A (taking each atom as circle that in conjunction with the other will Ąll the whole
space). The atomic plane C over B will have to follow the same process as for A to B. This
yields an ABCABCABC stacking sequence. Thus, the atomic alignment repeats every third
plane. There are cases when this sequence is not followed. For example, A and C planes
are neighbours. These type of extended defects are called staking faults. Staking faults are
caused by either interstitial or vacancies agglomerating. A schematic representation is shown
in Figure 1.13.

Intrinsic staking fault is caused by an agglomeration of vacancies. In the same way,
extrinsic staking faults are due to interstitials. The Burgers vector of these dislocations is
of the type b = a/3⟨1 1 1⟩. Dislocations with this type of Burgers vector are called partial
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Figure 1.13 Ű Schematic representation of stalking faults (Foll, 2018).
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dislocations or Frank dislocations. Thus, the agglomeration of point defects in fcc materials
may create "Frank loops".

Now, if we consider dislocations which do not relate on removing or adding atoms. We
have the Shockley partials dislocations. These dislocations are reproduced by cutting on a
(1 1 1) plane (in this case between A and B planes). Then, move B to C position. Thus, a
staking sequence of the type ABCACABCA will be obtained. The Burgers vector of these type
of dislocation is b = a/6⟨1 1 2⟩. Figure 1.14 shows a schematic diagram of these dislocations.

Figure 1.14 Ű Schematic representation of Shockley VS Frank dislocations (Radwan, 2018).

These three types of dislocations play an important role with respect to the plasticity of the
fcc material. They can interact with each other, giving for example, an "unfaulting" process
which will be explained next. A Frank partial dislocation formed by a vacancy disc with a
Burgers vector of the type b = a/3⟨1 1 1⟩, may split into a perfect dislocation b = a/2⟨1 1 0⟩ and a
Shockley partial b = a/6⟨1 1 2⟩. The role of the Shockley partial is to move across the loop in
order to remove the staking fault. Thus, a loop bounded by a perfect dislocation is created and
is free to move. A simple diagram of these process is shown in Figure 1.15.

Figure 1.15 Ű Schematic representation of a unfaulting process involving a Frank, perfect and
Shockley dislocations (Foll, 2018).

Finally, a cavity is made by joining an important number of vacancies. This is normally
found in the centre of displacement cascades as it is going to be shown along this work.
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Along this chapter we will describe the background of the principal computational tools
that is carried out in this work. Firstly, we will describe the basis of molecular dynamics. Then,
we will go through the available interatomic potentials available for MOX. Consequently, a
description of simulation techniques is given. Finally, we describe the tools for analysing the
atomic structure used in this work.
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2.1 Molecular Dynamics

Molecular Dynamics is a simulation technique for atomic scales. This technique is described
in some reference texts (Hoover, 1986), (Goldstein, Poole, & Safko, 2001). The theoretical
basis concerns the work of great minds of analytical mechanics such as; Euler, Hamilton,
Lagrange and of course Newton. MD allows us to build the trajectory of the particles in the
phase space of a system composed of a great number of atoms. The simplest form of MD, that
is related to structureless particles, involves the NewtonŠs equations solution (Rapaport, 2004).
In MD, the atom inputs are the masses ma, position ra and velocities va see Section 2.1.9.

2.1.1 Simulation box

Particles are in interaction inside a simulation box. The simulation box is usually a paral-
lelepiped form. This box can be described with three vectors x, y and z. The output of a MD
simulation are the individual trajectories of each atom along the time described by ra(t) and
va(t) (ra and va for simplicity). These trajectories and the dimension of the simulation box are
required to get thermomechanical properties, such as; temperature, pressure, internal energy,
etc. In addition, the MD code needs: 1) the force between atoms, 2) equations that rule the
atom trajectories, 3) an integrator that solves numerically these equations with discretization
of the temporal domain.

Due to the intrinsic scale of MD, it is often necessary to expand the domain under study.
This is done by creating inĄnitely exact replicas of the simulation box. Thus, each atom a

in the original simulation box will have inĄnity number of replicas a
′
inside the simulation

box replicas. This type of boundary conditions are called periodic. Atoms inside the original
simulation box can interact with the simulation box replicas. However, self interaction is
prohibited by setting the size of the box twice the distance of the interatomic potential cut-of.
Another situation that is allowed to happen is that an atom can cross the original simulation
box boundaries. In this case, the atom that have left will be found in one of the neighbour
replicas and strictly one atom from the replicas will go inside the original but in the opposite
side. Figure 2.1 show a simulation box with its replicas and an atom crossing the limits.

2.1.2 Atomic interactions

Along this work, the atoms are presented as points with a given charge. This representation is
usually called rigid ion type. In addition, in this model the interactions between atoms can be
taken in terms of potential energy pairs. Rigorously, the total energy of a system of N atoms
interacting can be expanded in a many-body expansion:

U(r1,r2, ....,rN ) =
∑

a

Ua
1 +

∑

a

∑

b>a

Uab
2 +

∑

a

∑

b>a

∑

c>b

Uabc
3 + .... (2.1)

Each term is important for the next discussion, thus, they are explained below;

1. U1 is the one-body term. It is related to external force Ąelds or boundary conditions.
For example, the wall of a container.
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Figure 2.1 Ű Periodic boundary conditions

2. U2 is the two-body term or pair potential. The interaction of any pair of atoms inside
the simulation box depends only on their spacing and no contribution from a third party
is taken into account.

3. U3 is the three-body term. Here the contribution of a third atom afecting the two body
term is taken into account.

This can be easily generalized to any many-body interaction. Thus, for practical reasons
we can categorize these interactions in: pair potentials (U2) and many-body potentials (U3 and
higher terms). It is important to highlight that there are examples of many-body potentials in
which multi-body efects are included implicitly and can be described through an environment
dependence of two-body terms (Zhigilei, 2016).

In the case of MOX, the potential energy can be divided in two parts: the electrostatic
coming from the Coulomb law Eab

c and the other part related to intrinsic inter-atomic
interactions (excluding of course the electrostatic) noted as φab

Ea
p = Ea

c + φ
a
=

1
2

∑

b

(Eab
c + φ

ab) (2.2)

We can deĄne the internal energy, such as, the sum of internal energies of the atoms that
compose our system under study

U =
∑

a

Ua
=

∑

a

(Ea
c + φ

a
+ Ea

k ) (2.3)
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where Ea
k

is the kinetic energy of atom a. Each component of Equation (2.3) will be explained
in the following sections. SpeciĄcally, Ea

c in Section 2.1.6, φa in Section 2.1.3 and 2.1.4 and
Ea

k
in Section 2.1.9.

2.1.3 Pair potentials

In this subsection we will discuss about the non-coulombic term φab. Generally, this term can
be divided in two contributions; one corresponding to the attractive van der Waals interaction
and the other is of the repulsive kind related to the electronic clouds which forbid two atoms
occupy the same volume. The mathematical form of the pair potential is arbitrary. Normally,
it is opted to choose a mathematical form that is in concordance with the available physics
theory.

There are 3 diferent approaches to obtain a potential function parameters for a particular
system:

1. The Ąrst one is to assume a functional form for the potential function. Consecutively,
parameters are chosen, in order to reproduce a set of experimental data. These potential
are called "empirical". Examples are Lennard-Jones, Morse, etc

2. The second is related to the calculation of the electronic wave function for Ąxed positions.
Analytic "semi-empirical" potentials are derived from quantum-mechanical theory.

3. The last is to calculate directly electronic-structure forces using ab initio MD simulations.

The main pair potential forms are the Lennard-JonesŠ potential, BuckinghamŠs potential
and MorseŠs potential. The Lennard-JonesŠ potential is directly related to the van der Waals
interaction in inert gases and molecular systems. It is often used to model general efects
rather than speciĄc properties

φab
= 4ϵαβ

[

(
σαβ

rab
)12 − (

σαβ

rab
)6
)

(2.4)

where αβ indicates the chemical elements (Pu, U and O for MOX). The Buckingham potential
provides a description of the strong repulsion due to the overlapping of closed shell electron
clouds.

φab
= Aαβe

−rab

ραβ −
Cαβ

(rab)6
(2.5)

The Morse potential (Morse, 1929, 1) is similar to Lennard-Jones but is more suitable for
cases when attractive interaction comes from the formation of chemical bonds.

φab
= Dαβ

[

e2Bαβ(r
ab−rαβ) − 2e−Bαβ(r

ab−rαβ )
]

(2.6)

It is important to highlight that Equation (2.4), Equation (2.5) and Equation (2.6) go to 0 if
rab increases. This brings the opportunity to establish a cut-of rc (distance from which all the
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interactions are set to zero) which is important for the MD codes that uses parallelisations.
Finally, the force coming from φab between two atoms a and b is calculated by

f ab
= −

1

rab

∂φab

∂rab
rab (2.7)

2.1.4 EAM porential

This type of potential includes many-body interactions, which in some case is important
for potential energy calculations. EAM stands for embedded atom method (Daw & Baskes,
1984, 12) (Finnis & Sinclair, 1984). These EAM potentials were mostly aimed for metals.
The chemical bonds between pairs of atoms in metals depend signiĄcantly on the nearby
atoms caused by quantum efects that describe the inĆuence of the electron gas. The distance
between two atoms is no longer suicient to calculate the potential energy. For these potentials
the surrounding atomic positions are needed. In general, the EAM potentials have one
pair potential contribution that simulates the basic repulsion and attraction of atoms, plus a
multi-body term that takes care of the surrounding density of charges.

VE AM(a) =

a
∑

b=1

φ(rab) + f (ρa) (2.8)

here φ is the pair potential, ρa is the local electron density and f is the embedding function.
ρa depends on the local environment around atom a, and the embedding function f represents
how the energy of an atom depends on the local electron density. The electron density
is calculated on a pair potential that maps distances between atoms to the corresponding
contribution to the local electron density.

The EAM potentials allow a better reproduction of the mechanical properties of metals
than pair potentials (Daw & Baskes, 1984, 12). Moreover, it has been applied to actinide
oxides (Cooper, Rushton, & Grimes, 2014), (Cooper et al., 2015) with Ćuorite structure in
order to reproduce the CauchyŠs violation (Axe, 1965, 4A), which cannot be reproduced by
only with pair-wise potentials.

2.1.5 ZBL porential

The ZBL potential stands for Zeigler-Biersack-Littmark (Ziegler & Biersack, 1985). It is
an universal potential design to reproduce the close repulsion between atoms. (Nordlund,
Runeberg, & Sundholm, 1997) gives the following description : "It has been constructed
by Ątting an analytical function to a large number of repulsive potentials evaluated with the
Gombas approximate method for diferent pairs". This potential is important in simulations of
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energetic ion bombardments. The form of this potential is given as

Eab
ZBL =

1
4πϵ0

ZaZbe2

rab
φ(

rab

ζ
)

ζ =
0.46850

(Za)0.23
+ (Zb)0.23

φ(x) = 0.18175e−3.19980x
+ 0.50986e0.94229x

+ 0.28022e−0.40290x
+ 0.02817e−0.20162x

(2.9)

where e is the electron charge, ϵ0 is the electrical permittivity of vacuum, and Z are the
nuclear charges. During the displacement cascades, ballistic shocks cause the interatomic
distances to be much less than their equilibrium distances. For small interatomic separations,
the ZBL potential is used for the distances less than 1.6 Å. The continuity of the cross over
between the other potentials and the ZBL potentials is achieved via a Ąfth degree polynomial
function chosen such that the potential energy, the forces, and the Ąrst derivative of the forces
are continuous at the transition.

2.1.6 Electrostatic force

The electrostatic potential energy for a simulation box with a point charge distribution qb and
their corresponding distances to rb with periodic boundary conditions is given by:

Ec =

∑

a

∑

b,a

∑

l,0

qaqb

|rab − l|
(2.10)

here, l is a linear combination of the simulation box given by l = nxx + nyy + nzz and x, y

and z the components of the vector between the two atoms under consideration.The easiest
way to calculate Equation (2.10) is to propose a cut-of that accomplishes |rab − l| < rc so
any term that does not accomplish this condition in Equation (2.10) will not be taken into
account. However, the sum in Equation (2.10) does not converge. Moreover, rc would imply a
unreasonable cut-of for the most of the simulation boxes. For this reason, diferent ways of
dealing with the electrostatic force have been investigated. Along this work we have used only
two. The Ąrst one is a method that is derived from the Ewald sum (Ewald, 1921). We used
this method for the thermophysical and mechanical properties calculation. The second is the
particle-particle particle-mesh solver (pppm) (Hockney & Eastwood, 1988). We used this
method for the crack propagation and the irradiation studies. The later, maps atom charge to a
3d mesh. It uses 3d fast Fourier transformation to solve PoissonŠs equation on the mesh, then
interpolates electric Ąelds on the mesh points back to the atoms. How to decide between both
is merely related to the computational time. The Ąrst scales faster with the number of atoms
than the second. However, it is worth to take into account that Ewald is more accurate than
pppm. Thus, it depends on the system under study for choosing which one of those methods is
going to be used. In this work, we used a rc of 1.2 nm and the accuracy of the pppm was 10−5.
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2.1.7 MOX potentials

For the mixed oxide compound (U,Pu)O2, several interatomic potentials are available in the
literature. It exists two main families of potentials. One that considers U and Pu cations as
one single entity A, hence they include only three set of parameters (C-C, C-O, and O-O) but
depends on the relative percentage of Pu in the MOX. The second one treats explicitly the U
and the Pu cations. Therefore, they include six set of parameters (U-U, U-Pu, Pu-Pu, U-O,
Pu-O, and O-O) but do not depend on the percentage of Pu. Because we are interested in
studying the spatial repartition of both cation sublattices, we will only consider and describe
the second type of force Ąeld.

We have found Ąve interatomic potentials that we will coin later on by the name of their Ąrst
author: Yamada (Yamada et al., 2000), Arima (Arima et al., 2005), Potashnikov (Potashnikov
et al., 2011), Tiwary (Tiwary, Walle, & Jeon, 2011, 9), and Cooper (Cooper et al., 2014),
(Cooper et al., 2015). These Ąve force Ąelds can be separated according the properties on
which they have been Ątted. All potentials have been Ątted to reproduce correctly the thermal
expansion up to the maximum temperature available by experiments at the time, which is
about 2100 K.

Historically, Yamada was the Ąrst one followed by Arima and Potashnikov with some
improvement at high temperature, up to the melting point. Tiwary potential includes also
Ąt on the formation energy of point defects (Frenkel pairs), while Cooper potential focusses
on experimental data for single crystal elastic constants.. However, with Tiwary potential it
was impossible to run MD simulations, the Ćuorite structure of UO2 or PuO2 is not stable,
nevertheless it gives good results using static calculations. This is probably due to the fact that
the energy landscape of this potential is very rough including a lot of none physical minima.
Therefore, we eliminate this potential from our study.

As we can see, the potentials were Ątted on diferent parameters. The results that each
potential is able to reproduce depend strongly on what they were Ątted on. All potentials try
to simulate the best, the reality. However, as a user, we have to arise some doubts of their
capabilities. Generally, at the time of recalculating the properties of which they were Ątted on,
all show good results. For instance, Cooper potential was Ątted using elastic constants. One
would then, give more conĄdence that this potential will show better results at the time of
calculating mechanical properties. Finally, when there is lack of experimental data to compare
with, the conĄdence will rely rather on the overall results that they give. Obtaining diferent
phenomena when simulating the same system, under the same conditions, for all the potentials,
give us more statistics to consider. Thus, we can give an upper and lower limits where the
real scenario is hoped to be between them. The way to explain the reality with these type of
simulations is then highly dependent on the trends in the results.

The four remaining potentials are described using a general formula with classical short-
range (Buckingham and Morse) and long-range (van der Waals and Coulomb) interactions
(see Eq. 2.11). Table 2.1 presents the forms of the four potentials.

Uαβ(r) = Aαβ e−r/ραβ −
Cαβ

r6
+ Dαβ

[

e−2γαβ(r−r0) − 2 e−γαβ(r−r0)
]

+

qα · qβ

4πϵ0r
(2.11)

where Aαβ, Cαβ, Dαβ, γαβ, qα and r0 are parameters whose values are given in Table 2.2.
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Recalling Section 2.1.3, the Ąrst term in Eq. 2.11 is designed to reproduce the repulsion
originating from the PauliŠs exclusion principle. The second term is the attractive van der
WaalsŠ interaction. The third term (Morse) is designed to describe more accurately covalent
bond and the vibrations in molecules. Finally, the last term represents the long-range Coulomb
interaction.

For the Cooper potential, an EAM (Embedded Atom Model) many-body term is added
(Eq. 2.12 and Eq. 2.13), in order to reproduce the CauchyŠs violation observed in actinide
oxides with the Ćuorite structure (i.e. C12 , C44) (Axe, 1965, 4A), which cannot be reproduced
by only pair-wise potentials.

EEAM
a = −Gα

√

∑

b,a

σβ(rab) (2.12)

where, σβ is computed as follow:

σβ(r
ab) =

1
2

(

ηβ

(rab)8

)

{

1 + erf
[

20(rab − 1.5)
]}

. (2.13)

erf stands for the error function and ηβ is a parameter. Tables 2.3 provides the EAM Cooper
potential parameters.

Table 2.1 Ű Type of physical function for the diferent interatomic potentials studied.

Potential Coulomb Buckingham Morse EAM
Yamada X X X

Arima X X

Potashnikov X X

Cooper X X X X

The functions of the pair energies as a function of the interatomic distances are displayed
in Figure 2.2 for all the potentials. The comparison per type of interaction allows us to better
visualize the diferences between each potential. In general, all the potential show similar
energy proĄles related to the interaction C - O. Diferences rise at interaction C - C. A steeper
energy proĄle is given by Cooper and Arima, in comparison with Potashnikov and Yamada.

2.1.8 LAMMPS code

In the following studies we used the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) code (LAMMPS, 2018) is a classical molecular dynamics code aimed
for materials. It can model ensembles of particles in liquid, solid or gaseous state. Moreover,
it can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems
using a variety of force Ąelds and boundary conditions.

LAMMPS is eicient in the way that it can run on single-processor machine up to big
clusters using parallelisation. There is no limitation on the number of atoms in the system
under study (only computational power limitation). It is an open source code. Thus, it can be
modiĄed for personal research objectives. It was originally developed under a US Department
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Table 2.2 Ű Parameters for the interatomic potentials.

Yamada Arima Potashnikov Cooper

q [e]
U 2.4 2.7 2.74492 2.2208
Pu 2.4 2.7 2.74492 2.2208
O -1.2 -1.35 -1.37246 -1.1104

A [eV]

U-U 442.161 2.48128×1013 0 18600
U-Pu 1752.102 7.83068×1013 - 18600
Pu-Pu 32606.8 2.80460×1014 - 18600
U-O 1018.46 55892.6 873.107 448.779
Pu-O 5329.83 57425.2 871.79 527.516
O-O 2345.9 978.718 50211.7 830.283

ρ [Å]

U-U 0.32 0.072 - 0.2747
U-Pu 0.24 0.0685 - 0.2691
Pu-Pu 0.16 0.065 - 0.2637
U-O 0.32 0.202 0.3592 0.387758
Pu-O 0.24 0.1985 0.3561 0.379344
O-O 0.32 0.332 0.18446 0.352856

C [eV.Å6] O-O 4.146 17.3544 74.7961 3.884372

Yamada Arima Potashnikov Cooper

D [eV]
U-O 0.78093 - - 0.6608
Pu-O 0.564005 - - 0.70185

γ [Å−1]
U-O 1.25 - - 2.05815
Pu-O 1.56 - - 1.98008

r0 [Å]
U-O 2.369 - - 2.38051
Pu-O 2.339 - - 2.34591

Table 2.3 Ű Parameters for Cooper EAM term.

Gα [eV.Å1.5] ηβ [Å5]
U 1.806 3450.995
Pu 2.168 3980.058
O 0.69 106.856
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Figure 2.2 Ű Details of the pair potential
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of Energy CRADA (Cooperative Research and Development Agreement) between two DOE
labs and 3 companies. It is distributed by Sandia National Labs.

Essentially, LAMMPS solves the NewtonŠs equations of motion for atoms or molecules
that interact using many diferent potentials available in its packages (or implemented by the
user). It increases its eiciency by using neighbour lists to keep track of nearby particles.
Using it in parallel machines, LAMMPS decomposes the simulation domain into small 3d
sub-domains which are assigned to each available processor. Then, processors communicate
and store "ghost" atom information for particles that border their sub-domain (LAMMPS,
2018). In order to achieve maximum eiciency, 3d simulation boxes with uniform density
have to be used. Finally, it is friendly to new users, because , it runs from an command-like
input.

2.1.9 Simulation techniques

Along this work, we have carried out structure optimization simulations which can be coined
static calculations, but also, trajectory calculations at Ąnite temperatures named as dynamic
calculations. The static calculations are based in an optimization of an atomic coordinate
function (positions and/or velocities). The molecular dynamic techniques are based on
the numeric solutions of motion equations. In general, these equations are derived from
the analytical mechanic theory formulations. These are the Lagrangian or Hamiltonian
formulations. A brief description of these techniques will be presented next. Firstly, the
description of the coordinate optimization. Consecutively, a description that simulates a
system under thermodynamic ensembles described by the statistical mechanics theory.

2.1.9.1 Static simulations

These type of simulations are used to obtain information about a system in a stable state.
They do not allow us to calculate dynamic quantities. However, they are important in the
sense that they complement the dynamic calculations. For instance, we can calculate states
with lowest energies. In these kind of states, the atoms are not moving, thus, we can propose
that they have temperatures equal to 0. On the other hand, there is an option that allows us
to perform the same type of calculations but with system at a certain temperature. This is
by using the harmonic approximation in order to calculate the entropy of a system from the
phonon spectrum. In general, this type of simulation is much faster than MD.

The static simulations need three elements. The inputs are the atomic positions ra, the
simulation box and the potential. The output is an equation of state that can be, for instance, the
internal energy, the enthalpy or the free energy. This function will be minimized by changing
the system input. There are several algorithms dedicated to this minimization, such as; the
conjugate gradient, the Broyden-Fletcher-Goldfarb-Shanno algorithm, the Rational Function
Optimization method, etc . Along this work, we have used only the Ąrst, the Polak-Ribiere
conjugate gradient version (Polak & Ribiere, 1969). The reason of our choice is that this
method is one of the most popular ones for solving smooth unconstrained optimization
problems due to its simplicity and low memory requirement (Yuan, Wei, & Li, 2014).
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2.1.9.2 Microcanonical ensemble

For MD simulations, the equation of motion are solved within thermodynamical ensemble.
The micro-canonical ensemble keeps the Volume, the number of particles and the internal
energy constant (NVE) during the simulation. We use the Lagrangian formulation.

L =
1
2

∑

a

ma(
∂ra

∂t
)2 − Φ (2.14)

where Φ is the potential energy. The motion equations with this formulations is given by
the Euler-Lagrange equation

∂

∂t

(∂L

∂ Ûqi

)

=

∂L

∂qi

(2.15)

qi are the generalized coordinates of the system and Ûqi their derivatives with respect of time.
From here we can get the second NewtonŠs equation putting these generalized coordinates as
the atomic positions.

m
∂2ra

∂t2
= −
∂Φ

∂ra
(2.16)

The Hamiltonian that in this case corresponds to the internal energy is kept constant during
the system evolution

H =
1
2

∑

a

ma(
∂ra

∂t
)2 + Φ (2.17)

In order to solve this equation numerically, the time has to be discretized in variable or
Ąxed time steps δt

LAMMPS uses the scheme called "Velocity Verlet" (Equation (2.18)) to solve the motion
equations.The particularity is that the velocities appear explicitly and are calculated at time t.
The following two equations are solved:

ra(t + δt) = ra(t) + δt
∂ra

∂t
(t) +

δt2

2
∂2ra

δt2
(t) (2.18)

∂ra

∂t
(t + δt) =

∂ra

∂t
(t) +

δt

2

[∂2ra

∂t2
(t) +

∂2ra

δt2
(t + δt)

]

(2.19)

2.1.9.3 Canonical ensemble (Temperature control)

Now, we will assess the case where the temperature has to be Ąxed to a certain value. This type
of situation is important to simulate various systems in nature. For example, phenomena where
the systems are surrounded by a thermal bath so the system keeps its temperature constant
by exchanging energy with the environment. With these conditions, including maintaining
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the number of particles (N) and the size of the box constants (V), we can apply the canonical
ensemble (NVT) to our system.

In general, two types of algorithms are used to maintain our system at a Ąxed temperature.
The Ąrst one consists in a correction of the dynamic variables after the integration step
(Berendsen). The second one uses a modiĄed Lagrangian (Nosé-Hoover).

2.1.9.3.1 Berendsen’s thermostat Taking into account the equipartition theorem, the
temperature is related to the kinetic energy of the particles by

T =
1

3Nkb

∑

a

ma
(∂ra

∂t

)2 (2.20)

Generally in MD, the temperature is deĄned as the quantiĄcation of the thermal agitation,
which is not exactly the same as the macroscopic temperature deĄned as the average of
Equation (2.20). The Berendsen thermostat (Berendsen, Postma, & Gunsteren, 1984) consists
then in artiĄcially Ąxing the kinetic energy in order to control the temperature. SpeciĄcally, it
makes the temperature of the system T tend to a set temperature T∗ by changing the velocity
of each atom by the factor:

λ2
= 1 +

δt

τ

(T∗

T
− 1

)

(2.21)

the factor τ controls the eiciency between the system and the thermostat. In the case
where it is big enough, we Ąnd the system evolving in a micro-canonical ensemble. Contrarily,
the temperature Ćuctuations are heavily pushed to disappear.

This thermostat is applied to systems that are far away from the desired temperature. Its
practicality makes it a powerful tool. However, we have to notice that the particles trajectories
do not strictly follow those of the Newtonian equations.

2.1.9.3.2 Nosé-Hoover thermostat In order to evolve our system close to a real physical
behaviour, another alternative from the Berendsen thermostat has to be taken. This is the
Nóse-Hoover thermostat. It consists in modifying the Newtonian Lagrangian Equation (2.14)
by adding a degree of freedom related to an external thermostat via a change of the time as:

dτ = ξdt (2.22)

This new time τ evolves in a way that the temperature can be controlled. The generalized
coordinate ξ is associated with a factious mass Q. With this the Lagrangian is

L =
ξ2

2

∑

a

(∂ra

∂τ

)2
− Φ +

Q

2

(∂ξ

∂τ

)2
− N f KBT∗ln(ξ) (2.23)
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with N f is the degrees of freedom. Following the same process as for the Newtonian
Lagrangian, the Euler-Lagrange motion equation are

∂2ra

∂t2
=

1
ma

f a −
1
ξ

∂ξ

∂t

∂ra

∂t
(2.24)

∂2ξ

∂t2
=

1
ξ

(∂ξ

∂t

)

+

ξ

Q

∑

a

ma
(∂ra

∂t

)2
−

n f kBT∗ξ

Q
(2.25)

These equations difer from Equation (2.15) by a factor 1/ξ∂ξ/∂t which is considered as
a friction factor. Equation (2.24) and Equation (2.25) are perfectly reversible in time. The
diference yields on that this system does not keep the internal energy constant, rather it
conserves the Hamiltonian

H =
1
2

∑

a

ma
(∂ra

∂t

)2
+

Q

2ξ2
(∂ξ

∂t

)2
+ Φ + n f kBT∗ln(ξ) (2.26)

This type of system that obeys Equation (2.26) will Ćuctuate around a temperature T∗.
The parameter that can be adjusted to check the eiciency of this thermostat is the Ąctitious
mass Q. One can apply the same reasoning as for the factor τ of the Berendsen thermostat. In
contrast to the Berendsen thermostat, this method is applied to system close to equilibrium
and describes a system that is in a real canonical ensemble. However, it converges slowly and
more time steps are necessary to reach the desired temperature (typically 1 ps).

2.1.9.4 Pressure control (Parrinello-Rahman barostat)

Now, we will assess systems where the pressure has to be controlled. This is the case of
systems that are in a isothermal-isobaric ensemble (NPT). For doing this, we will use the
Parrinello-Rahman barostat (Parrinello & Rahman, 1980, 14) and the Martyna integrator
(Martyna, Tuckerman, Tobias, & Klein, 1996) . It is based of the Nose Hoover thermostat
in the sense that it proposes new degrees of freedom on the components of the tensor H

associated with generalized coordinates Pg and the virtual mass W. The equation of motions
including the barostat and thermostat are

∂ra

∂t
=

pa

ma
+

Pg

W
ra (2.27)

pa

∂t
= fa −

Pg

W
pa −

( 1
N f

) tr(Pg)

W
pa −

∂ξ

∂t
pa (2.28)

∂H

∂t
=

PgH

W
(2.29)
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∂Pg

∂t
= det(H)(σext − σ) +

1
N f

∑

a

(pa)2

ma
Id −

pξ

Q
Pg (2.30)

∂ξ

∂t
=

pξ

Q
(2.31)

∂pξ

∂t
=

∑

a

(pa)2

ma
+

1
W

tr(Pt
g
Pg) − (N f + 9)kBT∗ (2.32)

Here the adjustable parameters are the masses W and Q. It also involves numerous time
steps to converge (typically 10 ps).

2.2 Atomic structure analysis

To analyse our system, we used mainly the software OVITO, which is a powerful tool to
visualize the raw data coming from MD or MC simulations. This helps the scientist to
understand the outcome of his results. It is named as Open Visualization Tool (OVITO). I was
created by (Stukowski, 2010). It is an open source program. Consequently, anyone can extend
its abilities, resulting in a vast range of applications with many examples online.

From its many functions, OVITO has three major tools that were used along this work for
post treating data. These are Wigner-Seitz cell analysis, Voronoi cell analysis and Dislocation
Extraction Algorithm (DXA). A brief description is presented below.

2.2.1 Wigner-Seitz cell method

The Wigner-Seitz cell method is used to check if defects have been created in a lattice. It
consists on comparing two diferent conĄgurations: the reference state and the displaced
conĄguration. The reference state corresponds to the conĄguration including no defects.
The displaced conĄguration, as its name proposes, is the conĄguration where changes have
occurred and where defects might have been created. The only types of defects that this
method can Ąnd are vacancies and interstitials.

The procedure of the Wigner-Seitz cell method is decomposed as follow. First, a reference
grid is deĄned. To each point of this reference grid corresponds an atom of the reference
state. Subsequently, we determine for each atom of the displaced conĄguration which atom of
the reference grid is the closest. Each time that a particular reference grid atom is found as
closest, its occupancy number is incremented by one. Hence, the occupancy is deĄned as the
number of atoms of the displaced conĄguration sitting within the Wigner-Seitz cell centred on
an atom of the reference grid.

Having the occupancy of each atom of the reference grid, we can deĄne a vacancy as
the reference grid atom that possesses occupancy equal to 0. Conversely, an interstitial is
deĄned as reference grid atom with occupancy superior or equal to 2. LetŠs note that if there
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is no change in the initial structure, all the occupancies will be equal to 1. Figure 2.3 displays
a schematic diagram of how OVITO calculates the occupancy. This tool circumvents the
explicit creation of the Voronoi cells and hence it is more computing eicient.

Figure 2.3 Ű Diagram showing how OVITO calculates the occupancy (Stukowski, 2010).

Moreover, OVITO allows tracking the type of atom. This means that we can difer from Pu
to U for the cation sites. Therefore, we can calculate the number of Pu atoms in substitution
of U atoms and vice-versa.

2.2.2 Voronoi cell method

In contrast with the Wigner-Seitz cell method, the Voronoi cell method does not need a
reference state conĄguration. It creates a spatial division of the displaced simulation box
creating explicitly Voronoi cells. An illustration of this space tessellation is given in Figure 2.4.
This method provides two new quantities: the volume of the Voronoi cells and the number
of faces attached to each Voronoi cell. The number of faces is equal to the number of the
Ąrst-nearest neighbours of each atom and deĄnes the Şcoordination numberŤ. This method
has been chosen rather than the Wigner-Seitz cell analysis because numerous disoriented
Ćuorite subdomains appear during the simulation. Consequently, the reference grid used for
the Wigner-Seitz cell analysis does not apply anymore.

The Voronoi cell volumes have an important role in our post-processing work. OVITO
allows the user to get a histogram of the Voronoi cell volumes. Figure 2.5 shows an example
of an atomic volume histogram as a function of the count of atoms from the Voronoi cell
analysis. In this Figure, one can observe that the Voronoi volume associated to interstitials
is smaller than the volume related to atoms in a regular lattice position because it has extra
neighbours closer to him. Conversely, a vacancy should have no Voronoi volume associated.
Instead, it will increase the Voronoi volume of each of its surrounding atoms. Thus, we take
into account those atoms with large Voronoi volumes (peak in the right side in Figure 2.5) in
order to calculate the number of vacancies. However, this number of count is divided by the
number of Ąrst-nearest neighbours in order to determine the exact number of vacancies. For
example, in the FCC cation sub-lattice the number of atoms corresponding to the volume of
vacancy count is divided by 12. The cut-of for counting the number vacancies (red lines in
Figure 2.5) is chosen such that it matches the number of interstitials created in the Ąrst step of
the FPA method (Ąrst introduction of FPs).
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Figure 2.4 Ű Division of the space by Voronoi cells

Figure 2.5 Ű Atomic volume vs count of atoms histogram from the Voronoi cell analysis.
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2.2.3 Dislocation Extraction Algorithm

The Dislocation Extraction Algorithm (DXA) is implemented in OVITO to search dislocation
in the defected conĄguration. It is originally created by the creator of OVITO and a major
description can be found in (Stukowski, Bulatov, & Arsenlis, 2012). It constructs the Burgers
circuits in the simulations box. The method consists in creating a sequence of atom-to-atom
steps (∆x )in the dislocated crystal that will be named Burgers circuit C. Figure 2.6 shows an
example of how the Burgers vector is created.

Figure 2.6 Ű Example of how the Burgers vector is created (Stukowski, 2010).

A mapping ∆x → ∆x′ is created from the dislocated conĄguration (a) to (b) the perfect
reference conĄguration. A sum then is made over these mappings line elements along the
associated path C′. The true Burgers vector of the dislocation enclosed by C′ is given by

b = −
∑

C ′

∆x′ (2.33)

The Burgers vector b is the closure failure of the path after transferring it to the conĄguration.
Since it is impossible to construct all the possible Burgers circuits in the conĄguration under
study. The DXA uses the Delaunay tessellation which their edges deĄne the set of elementary
∆x from which Burgers circuits will be constructed. The Delaunay tessellation for a set of
points P in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle
of any triangle in DT(P). The code then maps each edge of the Delaunay tessellation to a
corresponding vector in the perfect reference conĄguration with the help of the Common
Neighbour Analysis (CNA) described else where (Stukowski, 2010). The CNA searches for
atoms that form a perfect crystal lattice. Therefore, the DXA can diferentiate between a
perfect crystal lattice and a defected one. This leads to a division of the space in two: "good
zone" and "bad zone". SpeciĄcally, the edges adjacent to atoms that do not form a perfect
crystal are considered as "bad". The boundary between these two zones will be called interface

mesh. The interface mesh encloses all the defects inside the crystal. The Burgers circuits are
built on this surface which encloses all the dislocations. The algorithm counts all Burgers
circuits in order of increasing length. This leads to follow the remaining of the dislocation
line as shown in Figure 2.7.
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Figure 2.7 Ű Construction of dislocation lines. (Stukowski, 2010).

The dislocation lines are representations of the dislocation and are calculated by computing
the new centre of mass on the circuit each time it moves on the boundary of the dislocation
core.

The analysis of the structure in Section 4.4 evolution is carried out on-the-Ćy. We
determined the dislocation density with the DXA algorithm and examined the point defects
with Voronoi cell analysis.

2.3 Simulation of X-ray powder Diffraction

This expeerimental technique is used to non-destructively analyse, detect and determine the
composition of any crystalline phases of samples.

It is based on the principle that each crystalline solid has its unique characteristic X-ray
powder pattern which may be used as a "Ąngerprint" for its identiĄcation. This technique uses
the generation of X-rays form the bombarding a metal target (Cu, Mo usually) with a beam of
electrons emitted from a hot Ąlament (often tungsten). The incident beam of ionized electrons
from the K-shell (1s) of the target atom and X-rays are emitted as the resultant vacancies are
Ąlled by electrons dropping down from the L (2P) or M (3p) levels (zur Loye, 2013).

Theoretically, X-ray difraction is based on the principle that in order to obtain constructive
interference, the path diference between the two incident and the scattered waves, which is
2d sin(Θ), has to be a multiple of the wavelength λ. For this case, the Bragg equation gives
the relation between interplanar distance d and difraction angle Θ. In general, from the XRD
difractometer λ and Θ are known, thus the distance between any planes of atoms present
in any crystalline phases can be detected. However, if the sample has diferent crystalline
structures within, the analysis could become complex.

In this work, we use this technique in another way. We use the Debyer code (DEBYER, no
date) to create X-ray powder difraction patterns. It uses as an input a Ąle with positions of all
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the atoms. Difraction patterns are calculated using the Debye scattering equation

I(Q) =
∑

i

∑

j

f1 f j

sin(Qri j)

Qri j
(2.34)

where

1. Q is the scattering vector, called also momentum transfer vector Q = |Q| = 4π sin(Θ/λ)
being λ the wavelength

2. fi is the atomic scattering factor of i-th atom; in general it depends on Q and we should
write it as f (Q) , but we donŠt, to keep the notation simple.

It is convenient to recall some properties that can be extracted from XRD graphs. According
to BraggŠs equation, peak position (difraction angle) is a function of the distance (dhkl)
between reĆection planes (hkl) when the wavelength λ is Ąxed. Therefore, the peak position
correspond to the distance of reĆection plane. Shifting of difraction peaks, hence, can be
related to swelling (Zhou & Wang, 2003). Another important property is the "Full width at half
maximum intensity" (FWHM). This property is sensitive to the variation in microstructure and
stressŰstrain accumulation in the material. The more lattice planes with identical orientation
are contributing to a difraction peak, the sharper the difraction pattern will be. In order to
clarify more this idea, Figure 2.8 shows the efect of strain in the peaks.

2.4 Can Pu atoms be randomly distributed?

Along this work, we have assumed that MOX behaves like an ideal solid solution. This means
that we can locate both types of cations (Pu and U) in their respective cation places in the
Ćuorite conĄguration without any special restriction. Thus, we have located the Pu atoms
randomly distributed in our simulation box. This rises many questions, such as; how reliable
is this assumption?, if this assumption does not match the reality, how much this will impact
our results?. It is known that for high Pu contents and Oxygen-to-metal ratio diferent than 2,
miscibility gaps between UO2 and PuO2 can be found (Truphemus, 2013).

MD simulations are restricted due to their intrinsic time scales. Cation difusion is limited.
This means that the cation positions are somehow Ąxed along the simulations. Therefore, the
impact that cation heterogeneity (chemical disorder), zones with lower or higher Pu contents
may impact on the outcome is not known using these techniques. However, with the help
of simulations techniques such as Monte Carlo methods, we can assess this problem. The
advantage is that MC can allow exchange one cation (either Pu or U) in its respective cation
position for another one and then carry out this process in order to search in the conĄguration
space. This will allow us to really understand the thermodynamic equilibrium and study the
lower energy conĄguration of MOX solid solution.

This study could not be carried out during this PhD research due to lack of time. However,
a CEA colleague named E. Bourasseau has performed this study without publishing it yet. We
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Figure 2.8 Ű Graphic representation of the efect of strain in the crystalline structure and its
efect on the difraction peaks. a) No strain b) uniform strain c) non-uniform strain is applied.

will brieĆy explain his conclusions. He used Cooper and Potashnikov potentials for a 25% Pu
content conĄguration at 1000 K. The simulations box consisting of 96 atoms then periodically
duplicated up to 2592 atoms was obtained from ab initio methods. He divided his results in two
parts: the Ąrst consists in calculating thermodynamical properties, such as; Enthalpy, SpeciĄc
heat, thermal expansion coeicient and molar volume. The second consists in carrying out a
research on the cation distribution using the cation exchange technique. The results from the
Ąrst part suggest that interchanging cations does not inĆict a signiĄcant change (diference
of a few percentage unities) in the thermodynamic properties. The results from the second
part show a diference caused by allowing the cation exchange. From the radial distribution
function, Potashnikov potential shows a small decrease of the Pu-Pu coordination number
with an efect that increases with temperature (e.g., 2.95 instead of 3 for U75Pu25O2). For
Cooper potential inverse conclusion is found, with a small increase of the Pu-Pu coordination
number (e.gr., 3.1 instead of 3 at 300 K and 3.02 instead of 3 at 1000 K). As we can see, at
higher temperatures this potential show less Pu "clustering" than at lower temperatures. Now
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that we aboarded the clustering. He found as well that there is no signiĄcant clustering of Pu
atoms. Instead, they show an average distribution of Pu.

Having in mind the results of our colleague, we can say that the results presented herein
with the assumption of a perfect MOX ideal solid solution with random distribution of Pu are
somehow supported by the MC method. The impact on the thermodynamic properties is not
signiĄcant. However, it does not imply that the Pu atoms will not afect other kind of results,
such as; mechanical or the behaviour after irradiation. It is worth to highlight that the MC
work only assessed one Pu content. Actually, our work found that there is an impact on the
mechanical properties as a function of the Pu content. Furthermore, higher diferences are
expected to appear when the stoichiometry is diferent from 2.
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To contribute to a better understanding of MOX, we have used a computational approach.
Over the last decade, several atomistic approaches using molecular dynamics (MD) simulations
have been carried out to study thermal conductivity properties in (U,Pu)O2 (Yamada et al.,
2000), (Kurosaki et al., 2001), (Terentyev, 2007), (Arima et al., 2005), (Arima et al., 2006),
(Nichenko & Staicu, 2013), (Ma et al., 2014), (Cooper et al., 2015) and (Li et al., 2016).
However, the reliability of the results depends exclusively on the choice of the set of potentials.

37
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The potential parameters are usually Ątted to reproduce a few physical properties, typically
the lattice parameter, the cohesive energy, and complementary the elastic constants, which
comes from experimental values or if not available from ab initio calculations. Therefore,
each potential has its domain of validity. Subsequently, others physical properties for which
the set of parameters have not been Ątted on need to be assessed to provide a good insight of
advantages and disadvantages of each potential and their range of validity. Thus, we carried
out an assessment for MOX on the structural, thermodynamics, and mechanical properties.

The thermomechanical properties shown here were chosen to help the efort to create
a new catalogue which is aimed to gather MOX fuel data required by the fuel calculation
codes as GERMINAL, TRANSURANUS, MACROS, and TRAFIC (INSPYRE, 2018). The
properties will be compared to experimental values and computer simulation accordingly.

Along this work, we will compare systematically via molecular dynamics simulations
structural properties (lattice parameter, thermal expansion), thermodynamic properties (heat
capacity, enthalpy), and mechanical properties (elastic constants, toughness) for four empirical
potentials (see Section 2.1.7) over temperatures ranging from 300 K to the melting point
(approximately 3000 K) and for compounds from pure UO2 to pure PuO2. This assessment
should help us select which interatomic potential to use for studying primary damage in MOX.

The whole study was carried out using the code LAMMPS. Most of the assessment
requires relatively small system size: about 7 × 7 × 7 Ćuorite-type unit cells involving 4116
atoms. This size is large enough to avoid self-interaction, because the cut-of distance for
the interatomic potentials is equal to 12 Å. Moreover, it ensures enough statistics for the
diferent conĄgurations. However, for the crack propagation, the size of the box is increased
to 439 × 128 × 7 Ćuorite-type unit cells. In all the cases we are using the periodic boundary
conditions to avoid surface efects. The coulomb interactions are calculated with full Ewald
summation procedure with exception of the crack propagation test, where we use pppm (see
Section 2.1.6). The initial relaxation is done under NPT thermodynamic ensemble using the
Parrinello-RahmanŠs algorithm, in order to set pressure and temperature as desired. For the
thermodynamic property assessment (Section 3.1), the systems are relaxed 100 ps and all the
thermodynamic properties are averaged over the last 20 ps.

This research was limited to study of stoichiometric compounds. Therefore, were can
consider the (U1−yPuy)O2 compound as a continuous solid solution. The plutonium atoms are
then distributed randomly in the unit cell on the a-Wyckof sites (see related discussion in
Section 2.4). The plutonium concentration ranges from 0 to 100% with mainly 15% steps.

3.1 Thermodynamical properties

3.1.1 Lattice parameter

The Ąrst structural property is the evolution of the lattice parameter with the temperature. All
the interatomic potentials studied should Ąt more or less the experimental results since they
were Ątted on this property. However, Yamada and Arima Ątted their potential only up to
2100 K, whereas Potashnikov and Cooper Ątted their potential with values up to 2900 K.
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The changes in the calculated lattice parameters for pure UO2 as a function of temperature
for all potentials are shown in Figure 3.1 and compared with some experimental data
(Yamashita, Nitani, Tsuji, & Inagaki, 1997) and FinkŠs recommendations (Fink, 2000). It is
worth to mention that experimental data are really sensitive to the O/U ratio (ESNII+, 2015).

Figure 3.1 Ű Evolution with temperature of the lattice parameter for the four potentials studied
for pure UO2. The results are compared with FinkŠs recommendation (Fink, 2000) and
experimental work (Yamashita, Nitani, Tsuji, & Inagaki, 1997)

As expected, all the resulting lattice parameters calculated follow perfectly the experimental
data and recommendations up to 2100 K. At this temperature, a clear bifurcation appears
for Yamada potential, which largely underestimates the lattice parameters. Arima potential
also underestimates slightly the lattice parameter at high temperatures, while Cooper and
Potashnikov potentials follow the recommendation up to the melting point, although Cooper
potential seems closer to the recommendation.

The same comparison is made for PuO2 in Figure 3.2. However, experimental works
are scarcely available at high temperatures, thus it is diicult to estimate their reliability.
Nevertheless, Cooper, Potashnikov, and Arima potentials Ąt relatively well the experimental
data up to 1300 K. For temperatures higher than 2100 K, Arima potential deviates slightly
from Cooper and Potashnikov, underestimating consistently the lattice parameters. On the
other hand, Yamada potential shows a large discrepancy with no continuous evolution for
the full range of temperature. This behaviour has already been pointed out by Potashnikov
et al. in their potential assessment (Potashnikov et al., 2011). With Yamada potential, a
phase transition from Ćuorite to rutile-like structure occurs spontaneously for PuO2 at high
temperatures. This demonstrates that for Yamada potential this new phase is more stable than
Ćuorite contrary to experiments (Gardner, Markin, & Street, 1965). Therefore, we eliminate
this potential from the following study.

The evolution of the lattice parameters as a function of the temperature for each potential
with plutonium content of 25 and 70% respectively are shown in Appendix B. The general
behaviour is similar to pure compounds. Hence, we can Ąt MD data with a general expression
of the form: a(T, y) = AT3

+ BT2
+ CT + D + my, where y denotes the plutonium content

(0<y<1) and T is the temperature (300 K to melting point). The parameters are reported in
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Figure 3.2 Ű Evolution with temperature of the lattice parameter for the four potentials studied
for pure PuO2. The results are compared with (Yamashita, Nitani, Tsuji, & Inagaki, 1997).

Table 3.1. The percentage of diference with FinkŠs recommendation for pure UO2 (y = 0) is
less than 1% for all remaining potentials, which denotes a good structural evolution of the
potentials. Nonetheless, it is worth to point out that the discrepancy with Yamada potential
increases with the increasing amount of plutonium content.

Table 3.1 Ű Parameters for the third degree polynomial that Ąts the evolution of the lattice
parameters as the function of temperature and plutonium content.

A [Å.K−3] B [Å.K−2] C [Å.K−1] D [Å] m [Å]
Arima 1.03 × 10−12 3.89 × 10−9 4.99 × 10−5 5.450 -0.074
Potashnikov 1.80 × 10−12 1.82 × 10−9 6.12 × 10−5 5.441 -0.065
Cooper 1.90 × 10−12 2.82 × 10−9 5.16 × 10−5 5.453 -0.072

In order to analyse closely the diferences among the potentials, we display the evolution
of the lattice parameters as a function of the plutonium content at 300 K in Figure 3.3. Since
the ionic radius of uranium is higher than for plutonium, the lattice parameter of UO2 is
higher than PuO2. Between both pure compounds the evolution of the stoichiometric solid
solution is expected to follow the VegardŠs law (Popov et al., 1996) and (ESNII+, 2015). We
recall that VegardŠs law states that the lattice parameters of a solid solution vary linearly with
concentration at constant temperature. The lattice parameter is controlled by the relative size
of the atoms or species exchanged. It can be expressed with the following equation:

aT
= aT

UO2
(1 − y) + aT

PuO2
(y) (3.1)

Where, y, is the mole fraction of Pu and, aT , denotes the lattice parameters at a constant
temperature.

The three remaining potentials follow well VegardŠs law at 300 K. However, Potashnikov
potential slightly underestimates the lattice parameters for compounds enriched in uranium
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Figure 3.3 Ű Evolution of the lattice parameter as a function of Pu content at 300 K.

content.

The VegardŠs law for stoichiometric MOX compounds has been veriĄed up to 2000 K
(Popov et al., 1996) and (ESNII+, 2015). We investigated this behaviour with all three
remaining potentials up to melting points. The percentage of deviation from VegardŠs law as
function of temperature for compounds with plutonium content of 25 and 70% are presented
in Figure 3.4 and Figure 3.5, respectively.

Both compounds behave similarly for all potentials. From 300 to 2000 K the VegardŠs law
is veriĄed within ±0.02%. From 2000 K to melting point, we observe for Potashnikov and
Cooper potentials a signiĄcant deviation from VegardŠs law, whereas Arima potential seems
to follow VegardŠs law for the full temperature range. The discrepancy with Potashnikov and
Cooper potentials is usually attributed to a high sublattice oxygen disorder (see next chapter
for more details).

Nevertheless, the behaviour for temperatures lower than 2000 K is coherent with both
experimental value and recommendation.

3.1.2 Thermal expansion coefficient

A more sensitive quantity to evaluate the structural property with temperature is the linear
thermal expansion coeicient (LTEC). This coeicient is calculated as the Ąrst derivative of
the lattice parameter with respect of temperature with the following expression:

α(a) =
1
a0

(
∂a

∂T
)P (3.2)
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Figure 3.4 Ű Percentage of deviation from VegardŠs Law for (U0.75Pu0.25)02.

Figure 3.5 Ű Percentage of deviation from VegardŠs Law for (U0.30Pu0.70)02.
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Where, a0, is the lattice parameter at 300 K and, ( ∂a
∂T
)P, is the Ąrst derivative at constant

pressure calculated by numerical diferentiation from the lattice parameter evolution shown in
Section 3.1.1. Figure 3.6, displays the LTEC with Cooper potential for diferent plutonium
contents. These values are compared to UchidaŠs experimental data for pure PuO2 (Uchida,
Sunaoshi, Konashi, & Kato, 2014) and FinkŠs recommendation for pure UO2 up to 2000 K.

Figure 3.6 Ű Linear thermal expansion coeicient obtained with Cooper potential for diferent
plutonium contents.

As expected the LTEC follows the experimental data and the recommendation from 300
to 2000 K. There is also no noticeable diference with the plutonium content for this range
of temperature. After 2000 K, peaks appear which are dependent of the plutonium content.
For Cooper potential they depend on the plutonium content as previously mentioned (Cooper
et al., 2015). These peaks, referred to as λ-peak, were studied by Bredig et al. for most of the
Ćuorite-like structures (Dworkin & Bredig, 1968) and can be attributed to a difusing phase
transition that turns compounds into a superionic conductor. Several reviews of experimental
works (Ronchi & Hyland, 1994) and (Ralph, 1987, 7) and theoretical works (Yakub, Ronchi,
& Staicu, 2007), (Lunev & Tarasov, 2011), (Potashnikov et al., 2011) and (Cooper et al., 2015)
show that this transition occurs around 0.8 Tm, where Tm is the melting temperature. It is often
associated with premelting of the oxygen sublattice.

For the Cooper potential, as already stated by the authors (Cooper et al., 2015), the
λ-peak for pure UO2 occurs around 2600 K in concordance with the experimental value of
superionic transition temperature of 2670 K (Hiernaut, Hyland, & Ronchi, 1993). For the
case of pure PuO2, there is no experimental data available which could conĄrm the existence
of a superionic transition. However, according to the theory of 0.8 Tm, it should occur around
2400 K since the melting temperature in PuO2 was recently measured at 3040 K (Bohler et al.,
2014). Therefore, the superionic transition temperature of 2300 K found with the Cooper
potential for PuO2 is maybe slightly underestimated but still in the range. Moreover, λ-peaks
decreases with the increase of the plutonium content, which is in agreement with previous
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studies (Cooper et al., 2015).

Figure 3.7, displays the results of the LTEC for Potashnikov potential. The values from
300 to 2000 K are higher than the experimental data and the recommendation. The λ-peaks
are present but less pronounced than for the Cooper potential. Furthermore, no clear diference
appears on the increment with plutonium content.

Figure 3.7 Ű Linear thermal expansion coeicient obtained with Potashnikov potential for
diferent plutonium contents.

Figure 3.8 displays the results of LTEC for Arima potential. Like for the two others,
the LTEC behaves linearly up to 2000 K. At higher temperatures, although there are small
oscillations, no clear λ-peak can be noticed for all plutonium content up to 3000 K. However,
previous studies on pure UO2 (Potashnikov et al., 2011) show a clear λ-peak with the Arima
potential around 3500 K. The melting point with this potential is found to be around 4500 K,
which overestimates the experimental data. Nevertheless, it still follows the theory of the 0.8
Tm.

Overall, all potentials give a good estimation of the LTEC up to 2000 K. Diferences
between potentials appear at higher temperatures, i.e. in condition for which the experimental
data for MOX and PuO2 are lacking. It is then somehow diicult to choose the best potential,
which reproduces the best the real material. However, the behaviour of the superionic transition
temperature can provide more indication. The Cooper potential, gives a clear distinction
between the superionic transition temperatures with the plutonium content and seems to
follow best the theoretical λ-peak temperatures while the Potashnikov potential does not
show signiĄcant change with the increase of the plutonium content. Finally, Arima potential
reproduces no λ-peaks in the range of the temperatures studied.



3.1. Thermodynamical properties 45

Figure 3.8 Ű Linear thermal expansion coeicient obtained with Arima potential for diferent
plutonium contents.

3.1.3 Enthalpy and specific heat

Figure 3.9, shows the evolution as a function of the temperature up to the melting point of
the enthalpy increment calculated with Potashnikov, Cooper, and Arima potentials. The
enthalpy values up to 2000 K are almost identical and Ąt perfectly the FinkŠs recommendation.
Discrepancy appears at 2400 K, where Arima potential still gives linear feature, while FinkŠs
recommendation and both Potashnikov and Cooper potentials deviates from linearity. For
these two last potentials discrepancy with FinkŠs recommendation appears around 2600 K,
which is the temperature of the λ-peak.

More noticeable changes can be extracted with the analysis of the speciĄc heat. The
speciĄc heat capacity coeicients at constant pressure can be calculated directly by numerical
diferentiation from the enthalpy increment function with the following relationship:

Cp =
1
n

(∂H

∂T

)

P
(3.3)

where n is the number of moles. The evolution of CP as a function of temperature for
diferent plutonium contents for the three potentials are shown in Figure 3.10, Figure 3.11
and Figure 3.12 . The temperature range investigated herein is above the Debye temperatures
calculated with the diferent potentials, which are between 350 and 480 K. Overall, the
behaviour is similar to that of the LTEC. However, λ-peaks appear more clearly than with
the LTEC in the case of the Potashnikov potential even though no clear dependence with the
plutonium content can be drawn. This demonstrates that this potential can also reproduce
the superionic transition, as already been shown in the case of pure UO2 (Potashnikov et al.,
2011). On the other hand, Arima potential seems not to include this transition up to 3000 K.
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Figure 3.9 Ű Evolution of the enthalpy increment as a function of temperature calculated
with Potashnikov, Cooper, and Arima potentials. These values are compared with FinkŠs
recommendation

Figure 3.10 Ű Evolution of the SpeciĄc hear CP as a function of the temperature for diferent
plutonium contents for Cooper potential.
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Figure 3.11 Ű Evolution of the SpeciĄc hear CP as a function of the temperature for diferent
plutonium contents for Potashnikov potential.

Figure 3.12 Ű Evolution of the SpeciĄc hear CP as a function of the temperature for diferent
plutonium contents for Arima potential.
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3.1.4 Thermal conductivity

We did not carry out simulations of thermal conductivity in this work. The reason is that this
property has been already highly assessed in the literature. This property is very important for
the performance of the fuel inside the reactor. (ESNII+, 2015) has compiled experimental
data about the thermal conductivity until 2015. Early recommendations (until the year 1990)
indicate say that MOX can be taken as UO2 in the range between 500 K < T < melting point,
O/M ≤ 0, Pu content 0 < y < 0.30 and porosity 0 ≤ p ≤ 0.4. Later in-pile measurements
of the temperature history at the pellet centre during irradiation with a thermocouple by the
Halden Reactor Project (ESNII+, 2015) give a formula to obtain the thermal conductivity for
MOX. This formula is obtained by multiplying the phonon term of the formula for UO2 by a
factor 0.92, corresponding to the ratio of the conductivities of fresh UO2 and LWR MOX.

(Nichenko & Staicu, 2013) gives a critical overview of the experimental and modelling
results until 2013. They say that it is generally accepted that the fresh LWR and FBR (fast
breeder reactor) MOX thermal conductivity is lower than that for UO2. However, in their
overview, it is shown that experimental results exist only within the plutonium concentration
range from 0 to 30% and are contradictory. Moreover, the carried out MD simulations for
temperatures between 300 to 1700 K using the Arima potential. They obtained a thermal
conductivity not constant between 3 to 30% Pu content. The minimum value is found at 45%
of the Pu content with a 14% decrease compared to the one of UO2.

Ab initio simulations (Wang, Zheng, Qu, Li, & Zhang, 2015) show that phonon group
velocities for PuO2 are larger that those of UO2 along the three crystallographic directions.
Thus, PuO2 thermal conductivity is larger than that of UO2.

Finally, (Cooper et al., 2015) MD work at temperatures between 300 to 2000 K show a
small reduction in thermal conductivity in MOX compared to the end members (UO2 and
PuO2). With the minimum at 25% Pu content and a higher thermal conductivity for PuO2

than UO2. In conclusion, Arima and Cooper potentials show good results since the thermal
conductivity decreases for MOX compared to UO2 and PuO2.

3.1.5 Melting point

Concerning the melting points for the chosen empirical potentials, most of the potentialsŠ
authors calculated this property. Therefore, we did not compute them. However, the method
with which they were obtained varies from each other. (Potashnikov et al., 2011) conducted a
series of simulations at temperatures where melting may occur then the melting points were
detected by sharp changes in density and enthalpy, obtaining this way temperatures around
4000 K. In contrast, Cooper determined the melting points using a moving interface method
similar to that used by (Govers et al., 2008). He reported a melting temperature for UO2

around 3000 to 3100 K (Cooper et al., 2014) and for PUO2 around 2800 K (Cooper et al.,
2015). The diference between the melting points from both authors arises from their method.
Potashnikov states that the cause of too high melting temperatures is that crystals which are
MD-simulated under PBC melt in a superheated state (spinodal condition) due to the lack
of surface (Potashnikov et al., 2011). Cooper potential gives melting points closer to the
experimental values.
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3.1.6 Diffusion in MOX

We did not carry out any difusion calculation. However, we present some literature review
about it here. The rates of difusion of diferent ionic constituents are diferent. The difusion
mechanism of the constituents are based on the diferent ionic defects. The cationic defects
are heavier in terms of their mass than the anionic defects. Therefore, anionic defects are
more likely to difuse at lower temperature.

Anionic difusion of MOX has been experimentally investigated mostly by the Thermo-
gravimetry experiment. Bayoglu have studied the oxygen chemical difusion extensively with
20% of Plutonium content (Bayoglu & Lorenzelli, 1979), (Bayoglu & Lorenzelli, 1980),
(Bayoglu & Lorenzelli, 1981). These results have shown that the difusion of oxygen varies
with the variation of temperature and oxygen to metal ratio. Bayoglu has also proposed several
relations between oxygen chemical difusion and temperature for systems with several oxygen
to metal ratio. These relations are developed using the Arrhenius deĄnition framework of
Difusion coeicient. These relations shows that the activation energy of oxygen chemical
difusion is diferent with diferent ratios of oxygen to metal. The variation of activation
energy between a hypo-stoichiometric system and a hyper-stoichiometric system is larger
than the variation of activation energy between two hypo-stoichiometric systems or, between
two hyper-stoichiometric systems. On the other hand, Kato has studied the oxygen chemical
difusion of MOX with two diferent Plutonium content- 20% Plutonium MOX and 30%
Plutonium MOX (Kato, Konashi, & Nakae, 2009). These results also shows that the oxygen
chemical difusion varies with the variation of plutonium content in MOX. Recently, Vauchy
et al. determined the oxygen self-difusion coeicient in MOX with a high enrichment of
45% plutonium for two diferent temperatures (Vauchy et al., 2015). A comparative study of
MooreŠs model, KatoŠs model and VauchyŠs experimental data of Oxygen self difusion is
presented in Figure 3.13.

Figure 3.13 Ű Comparative study of MooreŠs model, KatoŠs model and VauchyŠs experimental
data for 1273 K (a) and 1073 K (b) respectively. Taken from (Chakraborty, 2017).

Moore and Kato, separately, developed two diferent models for the calculation of oxygen
difusion in MOX (Moore, Guéneau, & Crocombette, 2017), (Kato, Watanabe, Matsumoto,
Hirooka, & Akashi, 2017). MooreŠs sublattice model deĄnes the difusion mechanism based
on the migration of interstitial oxygen ion and vacancy and the migration of regular oxygen
and vacancy. Whereas, KatoŠs model deĄnes the difusion mechanism as the migration of
electrons and holes in the system.

Although, cations have much higher mass than the anions, the cationic difusion also takes
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place at the higher temperature in MOX. Riemer and Scherf evaluated the MOX with 15%
enrichment at the temperature range of 1573 K to 1773 K (Riemer & Scherf, 1971). These
results are showing the temperature dependence of plutonium difusion in MOX. The rate of
difusion increases with the increment of temperature. Matzke and Lambert have studied the
self-difusion of plutonium in various MOX system with various enrichment (15%, 18% and
20%) (Matzke & Lambert, 1974), (Lambert, 1978), (Matzke, 1983). In these results, it is very
evident that the rate of difusion of plutonium depends on the plutonium enrichment as well as
oxygen-to-metal ratio.

Anion difusion has been calculated with MD for the three potentials by the authors of
each potential (for Cooper potential (Cooper et al., 2015)) with exception of Arima potential
which was calculated by Potashnikov in (Potashnikov et al., 2011). For Cooper potential, it
can be seen that the super-ionic transition occurs at a higher temperature in UO2 compared
to PuO2. The addition of uranium to PuO2 increases the superionic transition temperature
for all the MOX compositions studied. Potashnikov potential shows as well this transition
at a temperature around 2600 K for UO2. Finally, Arima potential shows this transition at
temperatures above 3000 K.

3.1.7 Phase stability (Energy-volume plots)

It is important for the potential assessment to check the relative phase stability of these phases
to ensure that Ćuorite structure is the most stable phase for (U,Pu)O2 compounds. For this
reason, we have undertaken energy-volume studies shown in Figure 3.14 with Ąve diferent
structures for both pure UO2 and PuO2 . The process consists on each step deforming the
simulation box by 1% and carry out a coordinate minimization using the Conjugate gradient.

The structures considered in this calculations are: Ćuorite (Fm3̄m), cotunnite (Pnma),
rutile (P42/mnm), scrutinyite (Pbcn), and marcasite (Pnnm). This study follows previous
works on pure UO2 (Chernatynskiy et al., 2012; Fossati, Van Brutzel, Chartier, & Crocombette,
2013) carried out with other empirical potentials and DFT calculations. We conĄrm that for
both compounds the Ćuorite structure corresponds to the ground state at zero pressure for all
three empirical potentials studied. As previously demonstrated with DFT calculations (Desai
& Uberuaga, 2009; Fossati et al., 2013), we also Ąnd that cotunnite structure is the most stable
at high isotropic pressure (compression) and that either rutile or scrutinyite structures are the
most stable under negative isotropic pressure (tensile load in all the three directions). These
two phases are almost energetically degenerate, hence it is diicult to distinguish which of
the two phases is the most favourable. Using the common tangent method and given that
P = − ∂U

∂V
, we calculate the transition pressures from Ćuorite structure to the other phases.

These transition pressures are presented in Table 3.2 for pure UO2 . For all the potentials and
pure UO2, the lowest transition pressure under tensile loading is found for the transition from
Ćuorite to rutile structure, which is coherent with results of the crack propagation.

From Table 3.2, we can observe that Cooper potential presents the lowest transition
pressures from the three potentials. Arima potential transition pressures are found in between
of those of Cooper and Potashnikov. Finally, Potashnikov potential presents the highest
transition pressures. Experimental values for UO2 show transition pressures of Ćuorite to
cotunnite structures of 42 ((Idiri, Le Bihan, Heathman, & Rebizant, 2004)) and 29 ((Benedict,
Andreetti, Fournier, & Waintal, 1982)) GPa. DFT transition pressure value from Ćuorite
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(a) (b)

(c)

Figure 3.14 Ű Energy-volume plots shown with Ąve diferent structures for pure UO2.

to scrutyite structures is < 5 GPa (Desai & Uberuaga, 2009). Arima potential presents
values closer to the ones of experiments. Cooper potential renders values closer to the DFT
ones given in (Desai & Uberuaga, 2009). Moreover, (Fossati, 2012) presents DFT and MD
values (calculated with 4 empirical potentials including Arima potential) which are closer
to Potashnikov potential. As a conclusion, Cooper potential underestimates the transition
pressures, whereas, Arima and Potashnikov present pressures close to the experimental and
DFT values.

Table 3.2 Ű Transition pressure at T = 0 K from Ćuorite structure to secondary phases in GPa
for the three interatomic potentials for pure UO2 and pure PuO2. The negative sign denotes
tensile loading.

Ćuorite (Fm3̄m) to
Cotunnite Rutile Scrutinyite Marcasite

Pnma P42/mnm Pbcn Pnnm

UO2 PuO2 UO2 PuO2 UO2 PuO2 UO2 PuO2

Arima 44.3 106.9 -8.3 -9.3 -9.6 -7.4 - -
Potashnikov 16.0 19.6 -10.6 -11.8 -12.1 -13.3 - -13.5
Cooper 3.0 4.0 -6.8 -10.3 -8.0 -8.2 -16.0 -15.8
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3.2 Mechanical properties

3.2.1 Elastic constants

The assessment of the elastic constants as a function of temperature and plutonium content is
important because the Potashnikov and Arima potentials were not Ątted on those properties.
Furthermore, the Cooper potentials has been Ątted only with experimental data at room
temperature. It is then an important checkpoint on the reliability of these potentials for
further studies of the mechanical properties under irradiation. In addition, evolution of elastic
properties with temperature in MOX is rather scarce in the literature, thus, atomic simulation
could bring some insight in the subject.

The elastic constants, at Ąnite temperature, are computed in a stepwise fashion. First,
small deformations (0.1%) are imposed on the box for all the six Voigt components of the
strain tensor εi. This step is followed by an equilibration at constant temperature and constant
volume for 10 ps. Elastic moduli were then calculated as initial slopes of stress-strain curves
obtained using appropriate components of stress and strain tensors. More speciĄcally, the
YoungŠs modulus is deduced by applying uniaxial tension and compression strains individually
and calculated as σi/εi, where σi are the components of the stress tensor. Since Ćuorite
structure is cubic, we obtain only three none zero independent elastic stifness coeicients:
C11, C12, and C44.

Since we are assessing the mechanical behaviour in the (U1−yPuy)O2 solid solution, it
is important to check the inĆuence of the Pu content on the elastic properties. Figure 3.15
shows the evolution for the three potentials of the YoungŠs modulus and as a function of the Pu
content. For the YoungŠs modulus, apart from the diference of scale, the three potentials show
an increase of about 5% with an increase of the Pu content. Recent sound wave measurements
carried out by (Hirooka & Kato, 2018) on monocrystal MOX show also an increase of the
YoungŠs modulus (about 12%) when the plutonium content increases. Generally, in the
litterature (U,Pu)O2 elastic constants is taken identical to those of UO2. However, a moderate
increase (about 3%) with the addition of plutonium content is indicated by some authors
(Novion, 1970; Nutt et al., 1970).

The results that we have obtained for the evolution of the elastic properties as a function
of the temperature with MD simulations can be compared to the recommendation based on
the review of (ESNII+, 2015), who assesses experimental data from mainly polycrystalline
materials. In this review, the authors concluded that the elastic constants of stoichiometric
(U,Pu)O2 should be taken identical to those of UO2. Also, recommendation shows only the
evolution of YoungŠs and shear moduli. In consequence, we will compare computed YoungŠs
(noted E) and shear (noted G) moduli calculated from elastic stifness tensor coeicients
using the Voigt- Reuss-Hill approximation for randomly oriented polycrystals (Hill & Cottrell,
1952), (Mehl, Barry, & Papaconstantopoulos, 1995) and (Schreiber, Anderson, & Soga, 1973)
. The equations to transform the elastic stifness coeicients found in monocrystal into shear
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Figure 3.15 Ű Evolution of monocrystal YoungŠs modulus as a function of the plutonium
content calculated with Arima, Potashnikov, and Cooper potentials and are compared with the
experimental values in (Hirooka & Kato, 2018)

and YoungŠs polycrystalline moduli for a cubic system are presented below:

Gpolycrystal = (GReuss + GVoigt)/2

with GReuss =
5(C11 − C12)C44

[4C44 + 3(C11 − C12)]

and GVoigt = (C11 − C12 + 3C44)/5

Epolycrystal =
−9BGpolycrystal

(3B + Gpolycrystal)

(3.4)

where B = (C11 + 2C12)/3 is the bulk modulus.

Figure 3.16(a), Figure 3.16(b), and Figure 3.16(c) show the evolution as a function of
temperature and plutonium content of YoungŠs, shear, and bulk moduli, respectively. All
moduli for all compositions decrease with increasing temperature. Between 300 and 1600 K,
the decrease seems to be linear for the three potentials, whereas at higher temperatures, they
decrease more rapidly in agreement with the recommendations in ESNII (ESNII+, 2015).

Comparing the diferent potentials, it appears clearly that the Arima potential gives the
highest elastic constant overestimating largely the recommendation for the YoungŠs modulus.
The Potashnikov potential underestimates the YoungŠs and shear moduli at low temperatures
but Ąts well the recommendations around 2400 K up to melting point. The Cooper potential
Ąts really well the recommendations over the full range of temperature. We recall here that
the Cooper potential has been designed to reproduce the elastic constant of experimental
data for single crystal. Therefore, it is expected that it reproduces well the Bulk modulus
compared to the monocrystal experimental values of (Hutchings, 1987). In comparison,
Potashnikov potential underestimates the values of the bulk modulus by approximatively 40%.
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Figure 3.16 Ű Evolution of YoungŠs (a) shear (b) and bulk (c) polycrystalline moduli as a
function temperature and plutonium content calculated with Arima, Potashnikov, and Cooper
potentials (the value of y indicates the plutonium content, (U1−yPuy)O2). (a) and (b) are
compared with the recommendations in (ESNII+, 2015) and (c) is compared with experimental
date of (Hutchings, 1987).
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However, it is interesting to mention that the absolute values of the YoungŠs modulus without
the polycristal correction for Potashnikov potential are in the order of the YoungŠs modulus
recommendation of (ESNII+, 2015) for polycrystalline MOX.

3.2.2 Anisotropy factor (Zener’s)

Another important criterion is the anisotropy factor that reĆects the diference of bonding with
the diferent direction of the crystal. In cubic system the anisotropy can be quantify by the
ZenerŠs anisotropy factor deĄned as follow:

Z =
(2C44)

(C11 − C12)
. (3.5)

When Z is equal to 1, the system is perfectly isotropic, conversely a deviation from 1
shows that the system is anisotropic. Figure 3.17 and Figure 3.18 display the evolution for the
three potentials of the ZenerŠs factor as a function of the temperature for pure UO2 and pure
PuO2, respectively.

Figure 3.17 Ű Evolution of the ZenerŠs anisotropy factor as a function of temperature for pure
UO2 for the three interatomic potentials.

The crystals produced with the Arima and Cooper potentials are anisotropic for the full
range of temperature (Z ∼ 0.5), whereas with the Potashnikov potential the crystal is isotropic
at lower temperatures and becomes slightly anisotropic around 2400 K where the BredigŠs
transition takes place for this potential. The Z value calculated from the experimental elastic
constants (Hutchings, 1987) increases from 0.52 to 0.65 in the same range of temperature.
It is worth noting that other experimental values calculated at 300 K are closer to values
obtained with Cooper potential and range between 0.44 to 0.47 (Wachtman, Wheat, Anderson,
& Bates, 1965) (Berman, Tully, Belle, & Goldberg, no date). Moreover, Z < 1 indicates that
the YoungŠs modulus values will be maximum along the ⟨1 0 0⟩ direction and minimum along
the ⟨1 1 1⟩ direction. Furthermore, for the three potentials the anisotropic factor at 1600 K
(temperature studied for the irradiated case) is still in the order of the one at 300 K.
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Figure 3.18 Ű Evolution of the ZenerŠs anisotropy factor as a function of temperature for pure
PuO2 for the three interatomic potentials.

Figure 3.19 Ű Evolution of the ZenerŠs anisotropy factor as a function of the Pu content at
300 K for the three interatomic potentials.
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The behaviour of the anisotropy factor with respect of the Pu content at 300 K is shown
in Figure 3.19 for the three potentials. For Potashnikov, Z = 1 through the entire range of
Pu content, showing no change in the isotropic behaviour. Conversely, for Cooper potential
the Z factor decreases quasi linearly as the Pu content increases, yielding to an even more
pronounced anisotropy for PuO2 (i.e., E111 is 45% of E100 for UO2 and E111 decreases to 35%
of E100 for PuO2). This behaviour is also found with DFT+U calculations (Dorado & Garcia,
2013, 19) but with Z factor decreasing from 0.7 to 0.6 between UO2 to U75Pu25O2. Arima
potential shows no efect due to the Pu content. In all cases the elastic behaviour is quasi-linear
with respect to the Pu content. Therefore one intermediate composition between pure urania
and plutonia should be suicient to follow the following behaviour with radiation dose.

3.2.3 Stress-strain curves

In order to assess the empirical potentials on the cracking behaviour of (U,Pu)O2 solid solution,
we carried out simulations with 7 × 7 × 7 Ćuorite-type unit cells to evaluate the stresses
as a function of strain for diferent plutonium contents and at diferent temperatures. The
stress-strain curves are calculated by imposing an uniaxial deformation on the box with a
constant strain rate (108/s) until the system cracks in two. During the simulation the stress
component corresponding to the direction of deformation is recorded while relaxing the other
components of the stress tensor under NσT.

We Ąrst check the stress-strain curves loaded with the three main crystallographic directions
of the Ćuorite crystal (i.e. ⟨1 0 0⟩, ⟨1 1 0⟩, and ⟨1 1 1⟩). The results for the three potentials at
300 K for pure UO2 and pure PuO2 are displayed in Figure 3.20. For all cases, the shapes of
the stress-strain curves are consistent with a classical brittle fracture. Indeed, we observe a
linear increase of the stress corresponding to the elastic deformation followed by an abrupt
decrease indicating the loss of the crystal structure. The highest stress point is then deĄned
as the ultimate tensile strength (σUTS) at which the system begins to crack. For all the
potentials the stifest direction appears clearly to be the ⟨1 0 0⟩ direction. The ultimate tensile
strengths in the ⟨1 1 0⟩ and ⟨1 1 1⟩ directions are very close to each other in the case of the
Arima and Potashnikov potentials. However, with the Cooper potential, σUTS is slightly
lower in the ⟨1 1 1⟩ direction. This in agreement with theoretical (Fossati et al., 2013) and
experimental results (Rapperport & Huntress, 1960) (Robins & Baldock, 1960) that show that
crack propagates mainly along the ⟨1 1 1⟩ planes. Therefore, for the rest of the investigation,
we will only focus on the ⟨1 1 1⟩ direction.

The impact of the temperature on σUTS obtained from the stress-strain curves ranging
from 300 K to the melting point for pure UO2 and pure PuO2 for the Arima, Potashnikov, and
Cooper potentials is shown in Figure 3.21.

The ultimate tensile strength decreases almost linearly as the temperature increases for
all potentials. Also, there is a slight increase due to the plutonium content. This is in
disagreement with recommendations found in the European Commission state of art of MOX
fuel report (ESNII+, 2015) in which it states that the yield and ultimate stress for MOX are on
a precautionary basis the same as UO2, whatever the Pu content, and up to 1500 K. Our MD
study suggests that an increase of around 5% is recommended.
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(a)

(b)

(c)

Figure 3.20 Ű Stress-strain curves for the three interatomic potentials ((a) Arima, (b)
Potashnikov, and (c) Cooper) at 300 K strained in the main three crystallographic directions of
the Ćuorite crystal (i.e. ⟨1 0 0⟩, ⟨1 1 0⟩, and ⟨1 1 1⟩). For each potential, it is shown the results
for pure UO2 and pure PuO2.
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Figure 3.21 Ű UTS as a function of temperatures for the three potentials. y = 0 corresponds to
urania and y = 1 corresponds to Pu

3.2.4 Brittle-to-ductile transition

Another important thermomechanical property is the brittle-to-ductile transition, which occurs
at high temperature around half the melting point in both UO2 and MOX fuel (Roberts &
Wrona, 1971). This transition is deĄned as the temperature (TC) where yield stress and ultimate
strength deviate from one another. Namely, below TC fuel behaviour is brittle whereas above
TC fuel behaviour exhibits some plastic features. This temperature can be obtained as well
from the stress-strain curves.

In our simulations, yield stress is deĄned using the following procedure. Regularly during
the uniaxial deformation under tensile mode, the system is unloaded along the same direction
until zero stress is reached. Then, the point where the resulting strain of the unloaded system
is not equal to zero is taken as the yield stress.

We can deĄne a ratio between the yield stress and σUTS, which equals 1 at low temperature
where the yield stress is combined with σUTS. The results of this ratio as a function of the
temperature is reported in Figure 3.22. For all the potentials, we Ąnd the same behaviour. As
expected, from low temperatures up to around 1500 K for the Copper potential and around
1900 K for the Potashnikov and Arima potentials, yield stress and σUTS are the same; the
ratio is equal to 1. Above these temperatures, the ratio decreases rapidly until a plateau is
reached. The transition between these two regimes is the brittle-to-ductile temperature. First,
all potentials are able to reproduce this brittle-to-ductile behaviour. Cooper potential gives
TC very close to the experimental value (∼1673 K (Roberts, 1973; Roberts & Wrona, 1971))
while the others overestimate it by about 300 K. After the transition, the ratio stabilizes at 0.85,
0.80, and 0.75 for the Potashnikov, Arima, and Cooper potentials, respectively. This indicates
that with the Cooper potential the material is inclined to experience plastic deformation for
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lower temperatures than with the other potentials.

Figure 3.22 Ű Ratio between the Yield stress and the ultimate tensile strength (σYield/σUTS)
as a function of temperature. These values are compared with experimental data found in
(Roberts & Wrona, 1971).

However, conclusion about the reliability of the potentials based on this property needs
to be taken with care. Indeed, the experimental values for the brittle-to-ductile transition
are obtained from polycrystal samples and under strain rates far lower than the one of MD
simulations. The physical phenomena underneath this transition are rather complex involving
thermal creep which can not be captured by MD simulations. Therefore, the accuracy between
MD and experiment could be a coincidence. Nonetheless, it still provides an indication on the
behaviour at high temperatures.

3.2.5 Crack propagation

To complete the assessment on the mechanical properties, we investigate crack propagation
behaviour. The crack propagation simulations require large systems in order to include an
initial crack and enough material to analyse its propagation. We use the thin strip geometry,
where a constant strain is applied perpendicularly to the initial crack. The advantage of this
geometry is that the energy release rate does not depend on the crack length, and can be found
analytically by considering the energetics of an advancing crack. This is applicable if the
system length (x-direction) to height (y-direction) ratio is at least 4 (i.e., Lx ≥ 4Ly) (Buehler,
Abraham, & Gao, 2003; Knauss, 1966). The geometry is illustrated in Figure 3.23.

Therefore, we use a system including 4 × 106 atoms with initial box size roughly equal
to 240 × 60 × 4 nm in the x, y, and z directions respectively. The initial notch is designed
as an ellipse to ensure maximal stress concentration at the crack tip and equals 40 × 10 nm
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Figure 3.23 Ű Representation of the thin strip geometry of the system used for cracking
simulation.

in the x and y directions respectively. Such simulations are computationally expensive due
to the size of the system. Therefore, only one simulation per interatomic potential is carried
out. We choose a system with 25 at% of plutonium at 300 K and the load is applied along the
<111> crystal orientation, which is considered the weakest. Loading is applied with constant
strain-rate (108/s) until complete cracking of the system occurs. During the simulation, the
stress tensor is recorded.

The mechanism of crack propagation can be determined by analysing the snapshots during
the simulations. All the Ągures of these snapshots are shown in Figure 3.24. Clear diferences
appear between the diferent potentials. For the Potashnikov potential, the crack propagates
classically with cleavage-like behaviour, the crack opens straight with steady velocity. This
behaviour is expected for a pure brittle material. Conversely, for the Arima and Cooper
potentials the crack propagates at the interface or within a secondary phase that forms ahead
of the crack tip. One can also observe small cavities forming which grow and coalesce with
the main crack. This secondary phase (marked in grey colour in Figure 3.24) is of rutile-like
structure. In the case of Cooper potential, it covers relatively a large zone before crack
actually opens up. This type of propagation denotes an unusual plastic-like behaviour at low
temperature. However, the high strain-rate used here could cause to overestimate the stress
Ąeld necessary for crack propagation and then the volume afected with the secondary phase.
But, this phase transition ahead of crack tip has already been observed with MD simulations
for pure UO2 with diferent interatomic potentials (Fossati et al., 2013; Zhang et al., 2012).

The stress-strain curves calculated during the crack propagation are displayed in Figure 3.25.
The strain at which crack starts to propagate is diferent for the three potentials. Crack initiates
Ąrst with the Potashnikov potential at around 4% followed by Arima at 5% and Ąnally Cooper
at 6%. However, the corresponding σUTS is the highest for Arima potential at 10 GPa followed
by Cooper at 8 GPa, and Potashnikov at 5.5 GPa. These σUTS are much lower than for the bulk
case due to the presence of the initial crack, which concentrates the stresses at the crack tip.



62 Chapter 3. Thermomechanical assessment of empirical potentials

(a) (b)

(c)

Figure 3.24 Ű Snapshots during crack propagation in (U,Pu)O2 system with 25 at.% of
plutonium at 300 K for (a) Arima, (b) Potashnikov, and (c) Cooper potentials. The load is
applied along the ⟨1 1 1⟩ crystallographic direction in the Ćuorite structure. The inserts in
each Ągure depict a close up of the crack front where phase transition occurs.

These values can also be related to the lower transition pressures in Table 3.2. For the Arima
and Cooper potentials, σUTS is greater than their relative transition pressure from Ćuorite to
rutile structure. Therefore, the transition may occur at the crack tip where the stresses are the
highest, explaining the plastic-like behaviour observed. However, it is noteworthy that these
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secondary phases are less stable than the Ćuorite structure and disappear behind the crack
front as the crack advances. This could explain why this secondary phase cannot be directly
observed experimentally. However, discrepancies between GriithŠs theory and experimental
results could be described by this behaviour (Zhang et al., 2012).

Figure 3.25 Ű Stress-strain curves for the three interatomic potentials during crack propagation
in (U,Pu)O2 system with 25 at.% of plutonium at 300 K. The load is applied along the ⟨1 1 1⟩
crystallographic direction in the Ćuorite structure.

3.3 Conclusions

In this section, we assess empirical potentials for the (U1−yPuy)O2 solid solution. To date, only
empirical potentials using rigid ion model are available. Since we are interested in studying the
point defects spacial distribution under irradiation, both cations need to be explicitly modelled.
Therefore, we found in the literature Ąve interatomic potentials fulĄlling these requirements
coined by the name for their Ąrst author: Yamada, Arima, Potashnikov, Tiwary, and Cooper. In
our assessment, the structural (lattice parameter, relative phase stability) and thermodynamics
(thermal expansion, Heat capacity) properties are systematically calculated for the full range
of temperature from 300 K to melting point, and for the full range of plutonium content from
pure UO2 to pure PuO2. We also investigate the potentials through their mechanical properties
(elastic and crack propagation). Thus, this assessment includes ranges of temperatures and
compositions as well as properties that have not been studied by the authors.

Tiwary potential turns quickly to be unstable with MD simulation. Namely, the Ćuorite
structure collapses after a few steps of simulation. Therefore, we eliminate this potential
from our study. Yamada potential shows large discrepancies on the lattice parameter at high
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temperatures (> 2100 K) with FinkŠs recommendation. Therefore, we also eliminate this
potential from the rest of the assessment. For the three potentials remaining (i.e. Arima,
Potashnikov, and Cooper), thermal expansion and heat capacity show good agreement up
to 2000 K. Nevertheless, at higher temperature with the Potashnikov and Cooper potentials
so called λ-peak appear, whereas no clear λ-peak appears with the Arima potential up to
3000 K. These peaks are usually associated with a superionic transition corresponding to the
premelting of the oxygen atoms sublattice and have been observed experimentally around
0.8 of the melting point in UO2. The assessment shows as well that temperatures and the
behaviour with plutonium content for the superionic transition seem better reproduced with
the Cooper potential.

The mechanical elastic properties are also investigated as a function of temperature
and plutonium content. The results show clearly that the elastic stifness constants are
best reproduced with the Cooper potential, which has been Ątted on the elastic constant of
experimental data for single crystal. The Potashnikov potential gives fairly good agreement
with experimental data while Arima potential overestimates largely the elastic stifness
constants. However, anisotropy is present even at low temperature for the Cooper and Arima
potentials whereas it appears only at high temperatures for Potashnikov potential. Hence,
Cooper potential appears to be the best potential to reproduce the mechanical elastic properties.

Analysis of stress-strain curves obtained with uniaxial loading shows that the ⟨1 1 1⟩
crystallographic direction gives lowest ultimate tensile strength, in agreement with experimental
observations. We also Ąnd a brittle-to-ductile transition for the three potentials with transition
temperature in good agreement with experimental values for Cooper potential and relatively
close for the two others. Furthermore, all these mechanical properties show little dependence
on the plutonium content, conĄrming the assumption that mechanical properties of UO2 can
be, to a large extent, applied to MOX.

Finally, the behaviour during crack propagation simulations is very diferent between the
three potentials. For the Cooper and Arima potentials the crack propagates through secondary
phase of rutile-like structure that appears ahead of the crack tip leading to an unexpected
plastic-like behaviour. Conversely, for Potashnikov potential crack propagates by cleavage,
which is typical of a brittle-like behaviour. However, it is strenuous to conclude which potential
reproduces best the reality since no direct experimental observation is available.

Overall, with the structural, thermodynamics, and mechanical properties assessment the
Cooper interatomic potential reproduces the best the FinkŠs recommendation, yet it renders
an unexpected plastic-like behaviour during crack propagation. The Potashnikov potential
gives fairly good agreement for structural and thermodynamics. It also presents expected
brittle behaviour during crack propagation but renders isotropic elastic behaviour. Finally, the
Arima potential gives good results for structural and thermodynamics properties under 2100 K,
but presents discrepancies at high temperatures and gives average results for the mechanical
properties. As a consequence, we decide to use Cooper and Potashnikov potentials for our
radiation assessment in Chapter 4.
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Safety analyses are required to ensure that MOX fuel can be burned safely in reactors.
They require to take into account the thermomechanical properties of MOX as a function
of irradiation, dose and Pu content. It is known that MOX thermomechanical properties
vary with respect to irradiation (Popov et al., 1996) (ESNII+, 2015), yet, detailed description
of this phenomena is rather sparse due to the great diiculties of carrying out experiments
in such materials (high toxicity and radiation levels). In order to circumvent the problems,
atomistic simulations can bring valuable information and increase the scope of knowledge in
the understanding of radiation-induced defects.

This section is decomposed as follow. Section 4.1 provides some point defect formation
energies in order to assess the empirical potentials. Section 4.2 examines the results on
the lifetimes of Frenkel pairs, which are of importance for the two next following sections.
Section 4.3 presents the primary damage state obtained via displacement cascades. Section 4.4
discusses the efect of irradiation dose on the evolution of the microstructure using the Frenkel
pair accumulation method. Section 4.5 assesses the evolution of mechanical properties such
as Zener ratio and YoungŠs modulus as a function of dose. Finally, Section 4.6 presents
simulated XRD patterns as a function of dose.

65
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4.1 Defect formation energies

Ballistic efects of irradiation result primarily in the production of intrinsic point defects,
which may further anneal or cluster. It is then important to assess their formation energies.
In our MD simulations the number of atoms remains constant. Therefore, we will analyse
only Frenkel pairs and Schottky defects. We recall that in MOX, since its structure can be
represented as the interconnection between a primitive-cubic anion sublattice embedded in
a face-centred cubic cation lattice, two types of FPs can be found: cation and anion. They
will be coined hereafter respectively C-FP and O-FP. The second type is the Schottky defect,
which implies two oxygen vacancies and one cation vacancy. This defect has been found
by positron annihilation spectroscopy to be the most predominant defect detected in the α
irradiated UO2 (Wiktor et al., 2014).

Authors of the interatomic potentials used herein have already calculated part of these
defect formation energies but using diferent approaches and mainly for urania and plutonia.
Hence, in order to assess both potentials consistently for diferent Pu contents, we calculate
for both potentials formation energies of C-FP, O-FP, and SD defects for 0, 25, 50, and 100%
Pu contents.

The formation energy of each defect is calculated by minimization of the energy at 0 K.
This method uses an optimization of the ion coordinates of the defected supercell using a
conjugate gradient algorithm, more speciĄcally the version of Polak-Ribiere available within
the LAMMPS code (referred in Section 2.1.9.1). The defect formation energy is simply
calculated by computing the diference between the energy per atom of the defectless system
(Ebulk) and the energy per atom of the system containing the defect Edefect as follow:

Efp = Edefect − Ebulk (4.1)

Esch = E N−3
defect −

N − 3
N

E N
bulk (4.2)

The FP is created by displacing one atom from its lattice position and placing it in a
corresponding interstitial site in the supercell. The SD is created by simply removing one
cation and two oxygen atoms. Thus, the resulting supercell will be a neutrally charged crystal
with periodically copied defects. For each family of defect two types are initiated according to
the separation distance between the vacancy and the interstitial and the three vacancies for the
FP and the SD respectively. The Ąrst type corresponds to the bounded defect where the point
defect (vacancy or interstitial) are connected, namely Ąrst nearest neighbour. Three diferent
bounded Schottky defects are possible with the crystallographic orientation of the cubic
structure. They are noted SD⟨1 0 0⟩, SD⟨1 1 0⟩ and SD⟨1 1 1⟩. Concerning the bounded FP, it
is found that the Ąrst nearest neighbour recombines instantly during the relaxation. For this
reason, bounded FP energies are calculated for the second nearest neighbour sites. Conversely,
the second type corresponds to the distance between point defects at the "inĄnite". To calculate
these values the size of the supercell is gradually increased from n = 4 to n = 18 units cells.
For each supercell size, we separate the point defects with the maximal distance within the
simulation box. Subsequently, the defect formation energy is calculated as a function of their
separation distance. As previously shown by Potashnikov et al. (Potashnikov et al., 2011),
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the defect formation energies decreases as the inverse of the separation distance. Therefore,
one can extrapolate the values of the defect formation energy at an inĄnite separation. These
values are noted as FP∞ and SD∞.

In the case of MOX, numerous conĄgurations for the cation arrangements are possible.
Instead of studying each conĄguration systematically, we rather assess seven conĄgurations
with Pu atoms randomly distributed. The defect formation energy is then averaged over the
seven conĄgurations. This provides an indication of the efect of the local surrounding on
the defect formation energies. All the defect formation energies with their standard deviation
when applicable are reported in Table 4.1.

Table 4.1 Ű Formation energies of Frenkel pairs and Schottky defects.

Defect energy Cooper Potashnikov
(eV) UO2 U0.75Pu0.25O2 U0.5Pu0.5O2 PuO2 UO2 U0.75Pu0.25O2 U0.5Pu0.5O2 PuO2

C-FP∞ 15.4 15.6±0.7 15.5±0.8 15.9 15.5 15.7±0.3 15.8±0.3 16.4
C-FP 11.0 11.5±0.8 11.0±0.5 11.8 12.0 12.4±0.3 12.5±0.3 13.2
O-FP∞ 5.9 5.8±0.1 5.6±0.1 5.5 4.1 4.0±0 4.0±0 3.9
O-FP 4.9 4.8±0.2 4.8±0.1 4.5 3.3 3.3±0.1 3.3±0.1 3.3
SD∞ 10.9 11.0±0.7 10.5±0.9 10.0 9.7 9.7±0.3 9.6±0.3 9.5
SD <100> 6.2 6.5±0.6 5.8±0.6 5.9 5.6 5.8±0.3 5.6±0.3 5.8
SD <110> 5.3 5.5±0.6 5.0±0.6 5.0 5.0 5.2±0.3 5.0±0.3 5.1
SD <111> 5.0 5.4±0.7 4.7±0.6 4.8 4.8 5.0±0.3 4.9±0.3 5.0

Overall, the defect formation energies are consistent for both potentials and our results
show similar trends than previous calculations with the same potentials (Potashnikov et al.,
2011) (Cooper et al., 2015). The C-FP formation energies are higher than the SD formation
energies which is slightly higher than the O-FP formation energies. Ab initio studies of these
formation energies in UO2 are numerous in the literature. However, there are no studies linked
to PuO2 or MOX. They suggest for UO2 that Schottky energy is in the range of 5.6 to 10.6 eV
(Freyss, Petit, & Crocombette, 2005) (Geng et al., 2008, 10), the separated oxygen FP ranges
from 2.6 to 5.77 eV (Yu, Devanathan, & Weber, 2009) (Dorado, Jomard, Freyss, & Bertolus,
2010, 3) and the uranium FP is 10.6 to 17.2 eV (Geng et al., 2008, 10) (Crocombette, Jollet,
Nga, & Petit, 2001, 10). Potashnikov shows formation energy values in agreement with these
ab initio values, whereas, Cooper shows values slightly higher. Qualitatively, from these
results, both potentials show no drawback for posterior studies since both are in agreement
with DFT values.

For the SD defect, the SD⟨1 1 1⟩ conĄguration which possesses the longest distance
between the oxygen vacancies shows the lowest energy. This is in agreement with previous
MD simulations in UO2 (Cooper et al., 2014) but in contradiction with ab initio calculations
with smaller supercells for which the SD⟨1 1 0⟩ is the most favourable (Vathonne, Wiktor,
Freyss, Jomard, & Bertolus, 2014). Cooper suggests that this diference is caused by an
artefact of the relatively small supercell used in the ab initio calculations.

Due to the large Ćuctuation in the formation energies for MOX, the Pu content inĆuence
must be handled with care. However, results obtained for pure urania and plutonia show
for both potentials that C-FP formation energies increase from urania to plutonia whereas
O-FP and SD formation energies decrease. Furthermore, the amplitudes of the standard
deviations calculated with Cooper potential are signiĄcantly higher than those calculated with
Potashnikov potential with the same MOX conĄgurations. This suggests that Cooper potential
is more sensitive to the local conĄguration surrounding the defect. But a more detailed study
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on the local environments is needed to conĄrm this hypothesis.

4.2 Frenkel pair recombination

During displacement cascades numerous FPs with small distances between the interstitial and
the vacancy are created. In UO2, most of them do not survive and recombine within a few
picoseconds (Van Brutzel et al., 2006) (Martin et al., 2011). Assessing the lifetime of such
defects is important to interpret the results of displacement cascades and set the parameters
for the point defect accumulation method. In this section, we investigate the lifetimes of
close C-FPs for both potentials at three temperatures T = 30, 300 and 1600 K, and for Ąve
Pu contents: 0, 25, 50, 75, 100%. Previous studies have suggested that the anion sublattice
recovers accordingly to the cation sublattice to form perfect Ćuorite structure (Crocombette
et al., 2006). Also, we have just veriĄed that for the Ąrst and the second neighbour the O-FP
recombine spontaneously.

To calculate the recovery time of the defect, the supercell is Ąrst relaxed for 5 ps in the
NPT ensemble in order to Ąnd the temperature dependent lattice parameter. Subsequently, a
C-FP is created and the system is relaxed under NPT ensemble during 100 ps. If annealing of
the C-FP occurs, the time of recombination is recorded. The time of 100 ps for the relaxation
is chosen according to the previous studies of FPs recovery in UO2, for which most of the
lifetimes are found under this time limit (Van Brutzel, Chartier, & Crocombette, 2008, 2)
(Devynck, Iannuzzi, & Krack, 2012, 18). It is worth to introduce here that longer periods of
time are achieved using aKMC as shown in Chapter 5.

The FPs are classiĄed according to the distance between the interstitial and the vacancy as
Ąrst-, second-, third- and fourth-nearest neighbours as shown in Figure 4.1. Due to the Ćuorite
symmetry, there are: 6 Ąrst, 8 second, 24 third, and 48 fourth possible nearest neighbours for
the C-FPs. For simplicity, we limit the number of third- and fourth-nearest neighbours studied
to 8 (all shown in Figure 4.1). For each MOX case, seven diferent conĄgurations with Pu
randomly distributed are investigated. The time of recovery is then averaged over 42 for the
Ąrst neighbour (7 × 6), and 56 (7 × 8) for the second, third and fourth neighbours. If for a
speciĄc microstructure there is no recombination, the case is simply excluded from the average.
Therefore, the resulting lifetime corresponds to the lowest limit of the recombination time.
Nevertheless, it gives an indication of whether recombination may occur or not. Table 4.2
compiles all the results of the averaged lifetimes with their standard deviation. The symbol,
≪, corresponds to spontaneous recombination i.e., inferior to 1 ps whereas the symbol, >,
signiĄes that no recombination takes place within the 100 ps of the simulation for all the cases
studied.

1. First-nearest neighbours always recombine instantaneously (recombination occurs in
less than 1 ps) for all cases.

2. In contrast, second-nearest neighbours do not recombine for all cases. This is due
to the energy barrier imposed by the oxygen laying between the interstitial and the
vacancy, as already seen in previous studies in Ćuorite-like structure using rigid ion
interatomic potentials (Pannier, Guglielmetti, Brutzel, & Chartier, 2009). However,
investigation with another method (aKMC see Chapter 5) that allows more relaxation
time recombination occurs via complex process.
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Figure 4.1 Ű Schematic diagram of the ⟨1 0 0⟩ and ⟨1 1 0⟩ planes showing the possible
crystallographic position for the cation interstitials in a Ćuorite-like lattice. The positions are
classiĄed as 1st , 2nd , 3rd , and 4th nearest neighbour according to their distance to the vacancy.

3. For the third- and fourth-nearest neighbours the recombination process is rather complex
and involves two or three successive replacements as previously shown in UO2 (Van
Brutzel et al., 2008, 2) (Devynck et al., 2012, 18). Furthermore, there is a clear
dependence on the temperature. At higher temperatures, the process of recombination
is more probable, indicating a thermal activated process.

4. The recombination process is more probable and occurs at lower temperatures for
Potashnikov potential than for Cooper potential.

5. Concerning the Pu content, for Cooper potential it seems that the recombination
processes are facilitated with the increase of the Pu content. For Potashnikov potential
this tendency is less pronounced especially for the third-nearest neighbours.

6. First and second neighbours for the oxygen FPs present recombination processes that
last less than 1 ps.

7. Recombination processes seem to be more efective for Potashnikov potential than for
Cooper based on both; the recombination times and temperatures at which they occur.

Overall, recombination of C-FPs falls into two regimes: Ąrst, a spontaneous regime where
recombination events occur in less than 1 ps and second, a thermally activated regime. This
is important for the parameter of our next study using accumulation of FPs. Therefore, the
relaxation time between integration of FPs will be set to 2 ps, which gives enough time for
spontaneous recombination.
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Table 4.2 Ű Recombination times in ps for C-FPs for both Cooper and Potashnikov potentials
at diferent Pu contents and temperatures. The symbol, ≪, corresponds to a spontaneous
recombination (less than 1 ps) and the symbol, >, signiĄes that no recombination takes place
within the 100 ps of the simulation. The number in parenthesis corresponds to the number of
recombination that occurs over the averaged cases.

Pu Temperature Cooper Potashnikov
Content (K) 1st 2nd 3rd 4th 1st 2nd 3rd 4th

0% Pu
30 ≪ > > > ≪ > > >

300 ≪ > > > ≪ > > >

1600 ≪ > 29.7±36.6 (8) 45.6±37.8 (2) ≪ > 2.5±3.6 (6) 10.0±7.0 (2)

25% Pu
30 ≪ > > > ≪ > > >

300 ≪ > > > ≪ > 5.5±8.2 (29) 51.7±68.5 (26)
1600 ≪ > 28.1±12.1 (50) 29.6±22.6 (18) ≪ > 6.5±5.7 (54) 18.5±17.4 (20)

50% Pu
30 ≪ > > > ≪ > > >

300 ≪ > > > ≪ > 11.7±15.6 (26) 19.8±6.0 (9)
1600 ≪ > 21.7±6.2 (55) 28.6±16.1 (28) ≪ > 20.2±9.1 (50) 21.5±18.1 (17)

75% Pu
30 ≪ > > > ≪ > > >

300 ≪ > > > ≪ > 7.3±6.0 (34) 15.6±21.6 (10)
1600 ≪ > 10.3±3.8 (56) 28.5±13.8 (34) ≪ > 8.0±5.4 (54) 29.8±22.0 (27)

100% Pu
30 ≪ > > > ≪ > > >

300 ≪ > > > ≪ > 5.6±4.1 (6) 15.0±0.0 (2)
1600 ≪ > 5.0±6.2 (8) 26.3±37.5 (2) ≪ > 5.6±7.0 (6) 0.7±0.1 (2)

4.3 Primary damage state

This type of simulation helps us to understand the aging of materials. After being irradiated
in the reactor, the fuel spends many years in storage. Self-irradiation processes happen inside
the fuel. α decay will create during few picoseconds numerous defects. In contrast, β and
γ decays will release their energy mainly through electronic efects (Robinson, 1994). The
damage production can in most cases be divided into two categories: the primary damage
that is formed immediately (within a few picoseconds) after the ion/neutron/electron impact
by atomic collision processes far from thermodynamic equilibrium, and the long-time scale
(nanoseconds to years) damage evolution caused by thermally activated processes. The
primary damage state is studied via simulations of displacement cascades. The Ąrst step of the
displacement cascade method consists of relaxing the supercell under constant temperature
(300 K) and zero pressure during 25 ps. The collision sequence starts by choosing a cation
(Pu or U), which is coined hereafter PKA for Primary Knock-on Atom to mimic a recoil
nucleus. Subsequently, kinetic energy is given to the PKA. The system is then relaxed under
the microcanonical ensemble for around 50 ps. Three PKA energies are studied: 5, 10 and
75 keV. The highest energy correspond to a realistic energy of the recoil nucleus during an
α-decay (Van Brutzel et al., 2006). The size of the supercell is chosen so that it contains all
the cascade body to avoid cascade self-interaction due to the use of the periodic boundary
conditions. For instance, it is 38 × 38 × 38 nm for 75 keV PKA the maximum size reached.
Moreover with this box size, at the end of the cascade just a small increase of temperature
occurs, less than 150 K. Therefore, no signiĄcant change is expected for the recombination or
difusion process of point defects. Hence, no rescaling temperature layer is implemented to
release this excess of thermal energy. Due to computational time, only three Pu contents are
assessed: 0, 50 and 100%. For 5 and 10 keV PKA energies, 15 diferent cascades are studied
for each Pu content. Initial PKA orientation and localization vary between each cascade as
well as the micro-structure in order to increase statistics. Pu atoms are randomly distributed in
the supercell. Due to the intensive computational time, only 5 cascades with PKA energy of
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75 keV for each Pu content are studied.

The end of the cascade is reached when the temperature of the simulation box is constant.
At that point, we analyse the number of permanently displaced atoms i.e., atoms that has
been moved by more than 0.1 nm from their initial crystallographic position and the number
of defects, namely the number of FPs. This is achieved by the Wigner-Seitz cell analysis
(Section 2.2.1). With the same software, further analysis is completed via dislocation analysis
(DXA) (Section 2.2.3) with the cation sublattice to identify disordered regions i.e., regions
where the cation structure is not in fcc structure.

A classical cascade behaviour is observed. Within the Ąrst picosecond, the PKA sufers
several collisions releasing its kinetic energy in the form of a large amount of atomic
displacements in all directions. These atomic displacements induce a temporary local disorder
of the crystal in the core of the cascade. Numerous FPs are created during this stage.
Subsequently, the system evolves releasing energy in the form of thermal vibrations, causing
a drastic increase of the local temperature. This last stage is usually named the thermal
spike. Consequently, numerous recombination events take place, which mainly lead to the
reconstruction of the Ćuorite lattice leaving only a few remaining point defects.

Figure 4.2 shows the number of displaced cations and anions as a function of PKA energy.
The error bars correspond to the standard deviation from the average over the diferent cascades.
This number is compared to the theoretical number of displaced atoms estimated by the
Kinshin-Pease linear law (Kinchin & Pease, 1955):

NKP
disp. =

EPKA

2Ed

(4.3)

herein, EPKA, is the initial kinetic energy of the projectile and Ed is the threshold displacement
energy in the material. The value of Ed is taken as classically equal to 40 eV and 20 eV for the
cations and the anions respectively (Soullard, 1985).

Both potentials show similar results. The number of displaced atoms is higher than the
theoretical estimation, except for cations at 5 keV PKA, indicating that the Ed for the empirical
potentials are probably lower than the ones used in Equation (4.3). Furthermore, the ratio
between the number of displaced anions and the number of displaced cations is approximatively
equal to 4.3 and 5.5 for Cooper and Posthnikov potentials respectively. Consequently, the
anion sublattice is more afected than the cation sublattice by the cascade event. We also Ąnd
no inĆuence of the Pu content on those results.

The numbers of remaining FPs at the end of the cascades are reported in Figure 4.3. They
compare with the theoretical linear law proposed by (Norgett, Robinson, & Torrens, 1975)
(NRT) who rescale the Kinshin-Pease equation by a factor 0.8 as follow:

NNRT
FP =

0.4EPKA

Ed

(4.4)

We can observe a slight increment in the number of FP with the increase of the Pu content,
especially for Cooper potential. The number of FPs found at the end of the cascades is
signiĄcantly lower than the one estimated with the NRT law. This diference resides from
the fact that realistically the NRT law does not include the defect recombination during
thermal spikes as demonstrated with very high energy cascades in UO2 by Crocombette et al.
(Crocombette et al., 2016). However, the number of FPs is signiĄcantly higher with Cooper
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potential especially at high energy PKA. This is directly linked to a disordered structure that
will be mentioned below in which most of the atoms are detected as defects. The ratio between
the number of O-FPs and C-FPs is close to 3.1 and 2.2 for Cooper and Potashnikov potentials
respectively.These ratios are close to the stoichiometry and lower than those found for the
number of displaced atoms. This suggests that the oxygen defects recombine with a higher
rate than the cation defects and follow the cation disorder. It also shows that recombination
of defects is more efective with Potashnikov potential in agreement with results presented
in Section 4.2. All these results conĄrm that the long-time kinetics of defect recovery with
the Cooper potential play a crucial role and this explains the unexpected formation of the
disordered region found at high energy PKA.

Figure 4.2 Ű Evolution of the number of (a) cation and (b) anion displaced atoms at the end of
displacements cascades as a function of PKA energy for both potentials (C for Cooper and P
for Potashnikov) and the three Pu contents. The black doted line corresponds to the theoretical
number of displaced atoms estimated with the Kinshin-Pease law.

Figure 4.3 Ű Evolution of the number of (a) cation and (b) anion FPs present at the end of
displacements cascades as a function of PKA energy for both potentials (C for Cooper and P
for Potashnikov) and the three Pu contents. The black doted line corresponds to the theoretical
number of FPs estimated with the NRT law.

For the cascades initiated at 75 keV with Cooper potential, this recovery stage does not
lead to full reconstruction of the Ćuorite structure. Instead, a large disordered region with
no crystallographic atomic structure of several nanometers (> 5 nm) is found at the cascade
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core. An illustration of this disordered region is shown in Figure 4.4. In contrast, only a few
point defects remain for cascades initiated with the same energy with Potashnikov potential
(Figure 4.5).

Figure 4.4 Ű Snapshot of the defect analysis at the end of the cascade initiated with 75 keV
PKA for Cooper potential for 50% Pu content. The red zone marked the regions where
structure departs from perfect Ćuorite structure. The insets represent close-up visualisation of
the atoms in the main disordered region.

Two explanations can be put forward to explain this behaviour. First, the disordered
structure is more energetically favourable. This seems unlikely because the Ćuorite structure
has been found by Cooper et al. (Cooper et al., 2014) to have the lowest cohesive energy
compared to some other crystallographic structures (see Section 3.1.7) and because up to
10 keV PKA reconstruction of the Ćuorite structure is observed. Second, the long time kinetics
of defects recovery with Cooper potential is too long compared to the time of MD simulation.
Hence, the disordered structure could be trapped in a metastable state.

We also analysed how the defects are spatially distributed. Spatial repartition of point
defects at the end of the cascade is determined with a cluster analysis. We deĄne a cluster
as connected defects of the same type (vacancy or interstitial). The cut-of distances for
connected defect is respectively set to 0.237 nm and 0.386 nm for vacancy and interstitial,
which correspond to the distance of Ąrst-nearest neighbours in the Ćuorite structure. The
number of members of each cluster deĄnes its size. Figure 4.6 shows the ratio in percentage
between the number of defects in cluster of a Ąxed size and the total number of defects as a
function of cluster size. In Appendix C, we can Ąnd the results of the clustering test for each
PKA energy and Pu content for both potentials, including cation and anion separately. Only
the results from 10 keV PKA are presented in this section because it was the most comparative
option we have, since, the presence of disordered regions at high energy with the Cooper
potential does not permit to carry out the clustering test. For both potentials no signiĄcant
diference is found with the diferent Pu contents. Therefore, the results of the three Pu content
are brought together to increase the statistics. Is it also important to highlight that these Ągures
do not show the contribution of single point defect which contribute to the majority of defect.
Hence, the total shown in the Ągures does not reach 100%.
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Figure 4.5 Ű Snapshot of the defect analysis at the end of the cascade initiated with 75 keV
PKA for Potashnikov potentials for 50% Pu content. The red zone marked the regions where
structure departs from perfect Ćuorite structure. The insets represent close-up visualisation of
the atoms in the main disordered region.

Overall, both potentials show the same general behaviour even if it is more predominant
for Potashnikov potential. Only small interstitial clusters containing up to 4-5 interstitials are
found. Conversely, large vacancy clusters up to 22 vacancies corresponding to nanocavities of
1 nm size are found. These large cavities are even more present with Potashnikov potential.
One possible explanation for this behaviour comes from visual inspection of the spatial
repartition of defects. It shows that vacancy clusters are mainly created in the core of the
cascade whereas interstitial clusters are located preferentially at the periphery. Consequently,
all remaining vacancies are close to one an other and are more likely to form clusters.

4.4 Dose effect

Displacement cascades provide characterization of the primary damage state, which mainly
accounts for radiation on single crystal. Therefore, in order to study the dose efect (accu-
mulation of damage) on the MOX microstructure, we use the defect accumulation method.
With this method we introduce periodically and consistently FP defects, while the structure is
continuously allowed to relax under constant pressure and temperature. The FPs are randomly
introduced with minimum distance between the vacancy and the interstitial greater than
1.4 Å. In Section 4.2, we showed that the oxygen sublattice seems to follow the cation disor-
der(Crocombette & Chartier, 2007), consequently only C-FPs (i.e., U or Pu) are introduced in
order to reduce the computational time.

A common way to measure irradiation dose on materials is the use of displacement per
atom (dpa). This is also a very simple metric from the atomistic simulations point of view. It
is deĄned simply by the number of displacements (on average) of one atom, which exactly
corresponds to what is simulated with the FPA method. Since only C-FPs are created, we
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Figure 4.6 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function
of their size for Cooper and Potashnikov potentials calculated from 10 keV PKA cascades.
The error bars correspond to the standard deviation of the diferent values averaged over the
diferent microstructures.
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express the dose in displacement per cation (dpc) rather than the classic dpa.

The time between two subsequent C-FP introductions is set to 2 ps. This time corresponds
with the Ąrst regime of recombination discussed in Section 4.2. Thus, we allow the system to
have spontaneous recombination events. At each C-FP introduction sequence i.e., every 2 ps,
700 FPs are created for Potashnikov potential and 300 for Cooper potential. Therefore, for
each C-FP introduction, the dose is increased by 1.17 × 10−3 and 2.73 × 10−3 dpc for Cooper
and Potashnikov potentials respectively. These numbers have been chosen to minimize the
computational time and to ensure that within the time-lapse between two FP introductions the
system is relaxed. Namely, the temperature and the pressure are back to the desired values.
Because the defect recombination time is higher for Cooper potential (see Section 4.2 ), less
FPs can be introduced within the same time interval. An alternative could have been to
increase this time interval, but the computational time to reach equivalent dose would have
been out-of-range. To verify that this diference in dose rate does not afect the result, we
carried out one simulation with Potashnikov potential introducing 300 FPs every 2 ps.

It is worth to mention that experimental dose rates are at least 12 order of magnitudes
higher than in the FPA method (10−4 dpc/s in comparison to our MD of about 109 dpc/s).
However, A. Chartier suggests in ((Chartier et al., 2016)) a justiĄcation to our method. He
argues that dose rates from 10−3 dpc/s and higher fall into the, so called, recombination regime
where mainly athermal nearby FP recombination yields to the restructuring of the Ćuorite
structure.

In that regime, no thermal difusion participates to the defect annealing. This is due to
the very low uranium self-difusion coeicients, even in presence of defects, which ranges
between 10−31 to 10−25 m2/s. Rapid calculation shows that the time necessary to recombine a
FP with a distance between the vacancy and interstitial of 2.4 nm (typical distance between two
displaced atoms for a dose rate 10−3 dpc/s) is greater than 103 s. Therefore, FPA simulations
model the same mechanism than in the experimental observations. Moreover, (Rest, 2004)
shows that in the recombination regime at steady state the dislocation density, ρ, scales with
the dose rate K0 as follows ρ = cK

1/6
0 . Therefore, only rescaling of 10−3 needs to be applied

to compare our MD results on dislocation density with the experimental data.

Due to the high increase in energy arising from each FP introduction, the NPT relaxation
is done with the Berendsen algorithm provided by the LAMMPS code Section 2.1.6 in order
to reach the desired temperature within the 2 ps. Two diferent temperatures are investigated
300 and 1600 K as well as three Pu contents 0%, 50%, and 100% for both potentials. These
two temperatures were chosen in concordance with our study in Section 4.2 that shows a
thermal activated recombination at high temperatures. In all the cases studied herein, the size
of the system includes 40 × 40 × 40 Ćuorite unit cells, involving 256000 cations.

Figure 4.9 and Figure 4.10 display snapshots of the damage as a function of dose expressed
in dpc obtained with Cooper and Potashnikov potentials respectively for MOX with 50%
Pu at 1600 K and 300 K . Only, dislocations and main zones where structure departs from
perfect Ćuorite structure are reported in these Ągures for clarity. Overall, both potentials
show the same general trend for the evolution of the microstructure with the dose at 1600
K. However, diferences appear in the dose at which it occurs. The evolution of the system
follows 3 main stages. First, point defect concentration increases without formation of a
dislocation (see snapshot 0.2 dpc with cooper potential). Subsequently, at about 0.5 dpc for
Cooper and 0.1 dpc for Potashnikov Frank loops with BurgerŠs vector 1/3⟨1 1 1⟩ nucleate from
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interstitial clustering. This point is illustrated by the fact that the concentration of interstitials
decreases at the dose at which loops nucleate while concentration of vacancies still increases
(see Figure 4.7 and Figure 4.8). As the dose increases, these loops transform into perfect
loops with BurgerŠs vector 1/2⟨1 1 0⟩ following this way the "unfaulting" process shown in
Section 1.6.2. However, for Cooper potential the number of Frank loops is considerably
smaller, which suggests that most of the these loops are highly unstable. Finally, perfect loops
grow and self-organise into dislocation lines (last snapshots). The same behaviour was found
in UO2 with MD simulations (Chartier et al., 2016) and observed experimentally (Onofri,
Sabathier, Baumier, et al., 2016)(Onofri, Sabathier, Palancher, et al., 2016). Howver, for the
experimental observations no Frank loops could be detected because of the limitation of the
microscope resolution.

Figure 4.7 Ű Evolution of dislocation densities as a function of dose (expressed in dpc)
obtained with (a) Cooper and (b) Potashnikov potentials at 1600 K for 0%, 50%, and 100% Pu.

Figure 4.8 Ű Evolution of the number of point defects (vacancy and interstitial) as a function
of dose (expressed in dpc) obtained with (a) Cooper and (b) Potashnikov potentials at 1600 K
for 0%, 50%, and 100% Pu.

It is worth noting that for Cooper potential, contrary to what is observed at high energy
cascades, no large high disordered region (> 5 nm) is found. Only, small (1-2 nm) regions
composed of defect clusters along with prismatic dislocations are found. This leads us to
believe that, like for the Potashnikov potential, radiation-induced microstructure likely involves
point defects and dislocations instead of highly disordered area. In that case, it conĄrms our
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(a)

(b)

Figure 4.9 Ű Snapshots of the evolution of extended defects as a function of dose (expressed
in dpc) for Cooper potential at a) 300 K and b) 1600 K for 50% Pu. The red zone marked the
regions where structure departs from perfect Ćuorite structure. The cyan lines are 1/3⟨1 1 1⟩
Frank loops, the green lines are 1/6⟨1 1 2⟩ Shockley partial dislocations, and the dark blue lines
are 1/2⟨1 1 0⟩ perfect dislocations.
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(a)

(b)

Figure 4.10 Ű Snapshots of the evolution of extended defects as a function of dose (expressed
in dpc) for Potashnikov potential at a) 300 K and b) 1600 K for 50% Pu. The red zone marked
the regions where structure departs from perfect Ćuorite structure. The cyan lines are 1/3⟨1 1 1⟩
Frank loops, the green lines are 1/6⟨1 1 2⟩ Shockley partial dislocations, and the dark blue lines
are 1/2⟨1 1 0⟩ perfect dislocations.
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hypothesis that with Cooper potential the kinetics of recovery for the high disordered structure
is too long compared to the time-frame of the MD simulation.

Temperature plays an important role in the evolution of the extended defects. With Cooper
potential no dislocation formation is observed at 300 K whereas some appear for 1600 K. This
diference could come from the fact that defect recombination at 300 K for Cooper potential
is highly improbable as shown in Section 4.2 For Potashnikov potential some quantitative
diferences occur between 300 and 1600 K. Figure 4.11 shows the evolution of the dislocation
densities as a function of dose obtained at 300 and 1600 K using the same initial conĄguration
(50% Pu content) with Potashnikov potential. For both temperatures, one can observe easily
the same sequence of the diferent types of dislocation appearing as the dose increases. First,
Frank loops nucleate, peak and decrease abruptly corresponding to the increase of perfect
loop density. This transformation is corroborated by the appearance of Shockley partials
(BurgerŠs 1/6⟨1 1 2⟩) at the dose where Frank loops decrease and perfect loops increase. At the
higher doses the density of perfect loops stabilizes and a steady state appears. This behaviour
is shifted to lower doses as the temperature increases. Peaks of Frank loop and perfect loop
density appear successively at 0.4 and 0.8 dpc for 1600 K whereas they appear at 0.6 and
1.2 dpc for 300 K. Moreover, at 1600 K Frank loops are sill present at high doses with density
oscillating around 5 × 1014m−2 while they are almost non-existent at 300 K. This suggest
that at high temperature Frank loops are still created inside the nano-domains delimited by
the unfaulted dislocations. This behaviour changes with temperature has been observed
experimentally in UO2 (Onofri, Sabathier, Baumier, et al., 2016). In this irradiation study
performed at -180◦C and 600◦C, the dose at which the loops transform into lines decreases
with increasing temperature and loop growth does not occur for the low temperature. The
authors suggest that this ofset in the defect changes is attributed to higher defect mobility
under irradiation as the temperature rises.

Figure 4.11 Ű Evolution of dislocation densities as a function of dose (expressed in dpc)
obtained with Potashnikov potential at 300 and 1600 K for 50% Pu. (circle) 1/3⟨1 1 1⟩ Frank
loops, (triangle) 1/6⟨1 1 2⟩ Shockley partial dislocations, (star) 1/2⟨1 1 0⟩ perfect dislocations.
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We discuss in the following the inĆuence of the Pu content on the primary radiation
damage. Figure 4.7 shows the evolution of the density of dislocations as a function of dose
obtained with Cooper and Potashnikov potentials at 1600 K. A clear trend is found with
Cooper potential. The dislocation density decreases as the Pu content increases and peaks of
density shift to higher dose with increasing Pu content. Therefore, the creation of dislocations
is easier in urania than in MOX or plutonia. As a hypothesis, we suggest that this behaviour
is caused by the fact that for Cooper potential the recombination processes are facilitated
with the increase of the Pu content (see Section 4.2). Thus, more defects in urania are able
to create dislocations, such as, Frank dislocations and initiate the unfaulting process that
Ąnish in perfect dislocations. In contrast, defects being annealed faster in plutonia will create
less Frank dislocations and therefore less perfect dislocations. It is worth noting that for this
potential, few Frank loops nucleate implying that they are highly unstable. With Potashnikov
potential, the Pu inĆuence on the dislocation density is less signiĄcant, even if above 2 dpc
the density of 1/2⟨1 1 0⟩ dislocations seems slightly higher for the MOX than for plutonia.

Dependency on Pu content can also be found with the evolution of the number of point
defects (vacancy and interstitial). Figure 4.8 displays this evolution carried out at 1600 K
for both potentials as a function of dose. For both potentials, a similar trend is observed.
The number of vacancies and interstitials slightly increases as Pu content increases. Since
interstitial defects feed dislocations, this behaviour corroborates previous conclusion stating
that less dislocations are formed as Pu content increases. A similar clustering test to the one
in Section 4.3 for Ąnding clusters was carried out for this section. Results show that there is
no clustering of cation species (U clustering with U or Pu clustering with Pu). As maximum,
clusters of around 7 cations of the same specie can be found along the whole process.

4.5 Elastic moduli vs dose

Radiation induced damage afects the structure and the thermomechanical properties of all the
nuclear core components. In particular, pellet-cladding interaction can increase due to the
increasing stresses induced by the fuel swelling onto the cladding (Michel, Sercombe, Nonon,
& Fandeur, 2012) (Baurens et al., 2014). Therefore, to ensure the stability and durability of the
nuclear reactor core in these operating conditions, a solid knowledge of the thermomechanical
properties under irradiation of the fuel is needed. For this reason, we assess some of the
mechanical properties as a function of dose in this section. The elastic mechanical properties
are then evaluated as a function of the irradiation dose. Figure 4.12 and Figure 4.13 compare
respectively the evolution of the bulk modulus and of the Zener ratio as a function of dose
calculated at 1600 K for pure UO2 and PuO2 and for a solid solution containing 50% Pu.

For both potentials we observed the same behaviour for the bulk modulus. It decreases
rapidly for doses less than 0.1-0.2 dpc, and becomes almost constant for the highest dose
levels. The decrease is sensibly the same for all Pu contents indicating no real inĆuence of the
Pu content on the elastic moduli after accumulation of damage, even with Cooper potential.
This decrease at low doses is strongly correlated with the rapid increase of the point defects for
the same doses. This indicates that point defects contribute for the most part in the reduction
of the bulk modulus at low doses. This behaviour has already been reported by (Gao & Weber,
2004, 22) for another ceramic material, SiC. Furthermore, the analysis of simulated XRD
pattern in UO2 (Chartier et al., 2016) shows that the lattice expansion at low doses is mainly
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related to point defects accumulation, while the onset of lattice contraction starts when perfect
dislocations nucleate. The bulk modulus being a measure of the resistance to compressibility,
it is not surprising that a decrease of the bulk modulus promotes swelling.

Contrarily, the evolution of the anisotropy factor really difers between the two potentials.
For Cooper potential, the Zener ratio Ąrst exhibits a rapid increase and saturates for higher
doses, corresponding to a decrease of the anisotropy. The Pu content also has an impact; the
richest Pu content shows higher anisotropy. This behaviour is similar to the one found for
bulk modulus and indicates that point defects play a major role in this evolution.

Conversely, for Potashnikov potential, which renders isotropic feature, the Zener ratio
drops rapidly to a minimum of Z = 0.87 before increasing around 0.2-0.3 dpc and returns to
almost perfect isotropic behaviour at high doses. This short anisotropy increase is related to
point defect creation, but also to the creation of Frank loops, which almost reaches its peak
density at that dose. After 0.5-0.6 dpc, Frank loops transform into perfect dislocations and at
that point Zener ratio almost reaches back to its value for non-irradiated (U,Pu)O2.

Figure 4.12 Ű Evolution of the bulk modulus as a function of irradiated dose expressed in
displacement per cation (dpc) for (a) Cooper and (b) Potashnikov potentials at 1600 K.

Figure 4.13 Ű Evolution of the Zener ratio as a function of irradiated dose expressed in
displacement per cation (dpc) for (a) Cooper and (b) Potashnikov potentials at 1600 K.
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4.6 X-ray powder Diffraction

Simulated X-ray difraction (XRD) have been generated with the code DEBYER as exposed
in section Section 4.6, for snapshots corresponding to diferent doses for both potential at
1600 K. Each conĄguration has been relaxed 50 ps under NPT to allow extra annealing of the
defects. The atomic positions are then taken as input for the DEBYER code. Subsequently,
XRD patterns are generated and analysed.

As an example, Figure 4.14 shows the evolution of the XRD patter for UO2 as a function
of dose obtained with Cooper potential. We observe easily a big shift of the peaks as the dose
increases from 0 to 0.3 dpc. This is correlated to the increase of the lattice parameter and
hence to the swelling to the system. It is worth noticing that this dose corresponds as well to
the dose at which the number of point defects is the highest (see Figure 4.8). Hence, we can
correlate the point defects contribution directly to the swelling. This is congruent with studies
in UO2 about swelling by (Chartier et al., 2016).

Another interesting feature of the XRD pattern is the analysis of the full width at half
maximum intensity (FWHM) of the peaks. It provides indication about the disorder and the
non-uniform strain inside materials. However, it is not usually related directly to a particular
defect. Since our MD simulations ofer a detail description of the microstructure we can
overcome this diiculty.

We analysed the FWHM of the Ąrst peak (1 1 1) because it is the most intense. Figure 4.15
and Figure 4.16 show simultaneously the FWHM and dislocation densities as a function of
dose calculated at 1600 K for Cooper and Potashnikov potentials, respectively.

We can easily notice from the evolution of the FWHM peaks that it correlates with the
perfect dislocation densities along the whole range of dose for both potentials. The link
between the broadening of the difraction peaks and a dislocation density is well known and
the theory dates back to the works of Wilkens (Wilkens, 1970). However, our results indicates
that the broadening is only due to the perfect dislocation density, implying that the contribution
of Frank loops is negligible. Two points can be put forward to explain this observation. First,
the magnitude of the Burgers vector of the Frank loop b = a/3⟨1 1 1⟩, is lower than that of
the perfect dislocations b = a/2⟨1 1 0⟩. Because the strains Ąelds generated by dislocations is
proportional to the magnitude of the Burgers vector, a smaller broadening is expected with
smaller Burgers vectors. Second, the strain Ąeld generated by a dislocation loop decreases
much faster with the distance (1/r3 decay) than for a straight dislocation (1/r decay).

4.7 Conclusions

In this section, we assessed the primary radiation damage in (U1−y,Puy)O2 solid solution
with molecular dynamics simulations. Two interatomic potentials were studied, as coined by
Cooper and Potashnikov. These potentials were chosen according to the conclusions of our
previous thermomechanical assessment in Chapter 3. The radiation assessment consisted of
six diferent studies: 1) defect formation energies; 2) Frenkel pair recombination; 3) Primary
state damage via displacement cascades; and 4) study of radiation dose efect with Frenkel
pair accumulation method; 5) elastic moduli vs dose and 6) X-ray powder Difraction. In each
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Figure 4.14 Ű Evolution of the XRD pattern for UO2 for Cooper potential as a function of dose

Figure 4.15 Ű Evolution of the FWHM and dislocation densities for Cooper potential.
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Figure 4.16 Ű Evolution of the FWHM and dislocation densities for Potashnikov potential.

study several Pu contents and temperatures were investigated.

For the defect formation energies, both potentials give approximately the same values and
corroborate with existing data for urania. Concerning the FP recombination, the recombination
of C-FPs falls into two regimes: Ąrst, a spontaneous regime where recombination events occur
in less than 1 ps and second, a thermally activated regime. Recombination processes seem to
be more efective for Potashnikov potential that for Cooper based on both; the recombination
times and temperatures at which they occur.

From the simulation of displacement cascades, we obtained the classical cascade behavior;
within the Ąrst picosecond, the PKA sufers several collisions releasing its kinetic energy
in the form of a large amount of atomic displacements in all directions. These atomic
displacements induce a temporary local disorder of the crystal in the core of the cascade.
Numerous FPs are created during this stage. Subsequently, the system evolves releasing
energy in the form of thermal vibrations, causing a drastic increase of the local temperature
(thermal spike). Consequently, numerous recombination events take place, which mainly
leads to the reconstruction of the Ćuorite lattice leaving only a few remaining point defects.
Diferences start to appear at 75 keV. For the cooper potential, the recovery stage does not
lead to full reconstruction of the Ćuorite structure. Instead, a large disordered region with no
crystallographic atomic structure of several nanometres is found at the cascade core. This
behaviour is probably linked to the slow kinetics of Frenkel pair recombination. In contrast,
Potashnikov potential presents a quasi-total reconstruction of the Ćuorite structure.

The FP accumulation study was carried out to investigate the dose efect. Whatever the
Pu content, Potashnikov potential presents a similar evolution in three main stages as the
dose increases: accumulation of point defects that cluster and form Frank loops which in
turn transform into perfect loop and dislocation lines. This behaviour is diferent for Cooper
potential. With this potential at 300 K no dislocation is found. Nevertheless, at 1600 K
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dislocations form but only few Frank loops are observed suggesting a direct mechanism for the
creation of perfect loops or that they are highly unstable. Hence, the temperature plays a major
role.This diference between both temperatures 300 and 1600 K could come from the fact
that defect recombination at 300 K for Cooper potential is highly improbable as shown in the
FP recombination study. Concerning the Pu content, a clear trend is found. The dislocation
density decreases and dislocations appear for higher doses as the Pu content increases.

Concerning the elastic moduli vs dose, for both potentials we observed the same behaviour
for the bulk modulus. It decreases rapidly for doses less than 0.1-0.2 dpc, and becomes almost
constant for the highest dose levels. This decrease at low doses is strongly correlated with the
rapid increase of the point defects for the same doses. Moreover, point defects are as well the
most important factor for changes in the Zener ratio, since it drops rapidly to a minimum of
Z = 0.87 where the point defects are at their maximum.

The X-ray powder difraction study shows that a high number of point defects produce
the most notorious shift in the difraction peak. Hence, we can correlate the points defects
contribute the most to swelling. In contrast, the evolution of the FWHM is highly correlated
with the perfect dislocation densities along the whole range of dose for both potentials.

Overall, this assessment shows that both potentials have advantages and disadvantages
when studying radiation-induced damage in (U,Pu)O2 solid solution. Cooper potential seems
to be more sensitive to Pu content than Potashnikov potential. However, with Cooper potential,
displacement cascades at high energies lead to very high disordered microstructure, which
seems to be contradictory with experimental results that show no amorphisation for UO2 or
MOX even at high doses. Nevertheless, microstructure evolution with radiation dose studied
with FPA method shows no amorphisation. We hypothesize that this diference of behaviour
could be explained by the kinetics of the defect recovery. Therefore, this potential could be
more suitable for fast kinetic radiation phenomena or for methods, like kinetic Monte-Carlo,
where time-frame is less constrained.
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5.1 Simulation time scale

Our journey to understand the behaviour of systems along time is not a simple task. Atomistic
scale systems can show a large gamut of phenomena during their time evolution. In all the
cases, the conĄguration of atoms evolves along time caused by either just thermal agitation or
another more complex phenomena. How the atoms interact between each other has always
been a question for the human kind. We have tried to answer this question since we rationalized
the concept of an atom. During this long process, some new human tools have been created
such as computers. This new tool has given us the capability to search along a vast quantity
of scenarios that a pen and paper have not been able to get us close to. The increasing
computational power allowed us to solve numerically mathematical forms that represent the
interaction between atoms. The higher the computational power is, the longer the systems
being analysed can be. This is the case of MD which is presented in Chapter 2. Generally,
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the MD approach that solves the motion of atoms using classic mechanics has proven to be
enough for a large number of cases. However, one of the strongest properties of MD which
is showing the "exact" position and velocity of each atom is as well one of its weak points.
Thermal vibration frequencies are in the order of 1013 Hz, thus, in order to reach laboratory
times or to simulate "rare events" using MD, it would take hundreds of human lifespans using
the most powerful super computer available nowadays. This leads us to look for another way
to deal with the problem of systems evolving slowly a long time.

5.2 Transition state theory

This theory focuses on rare events. Atomic systems usually can be found trapped in a local
potential energy minimum for long periods. Due to the complexity of those systems (various
atomic conĄgurations, temperatures, pressures, etc), we can expect that there are many other
local potential energy minimums available. The rate of shifting from one minimum to another
is very important to understand the behaviour of systems along time. This is the aim of
the Transition State Theory (TST). It has been a decisive theory in the physics, chemistry,
engineering and biology domains for a long time. Henry Eyring is one of the progenitors of
this theory. This can be found in his works about chemical reactions published around the
year 1935 (Eyring, 1935) and (Glasstone, Laidler, & Eyring, 1941). This theory explains how
in a chemical reaction, the reactants are in stable state with a low potential energy. After,
the reactants form a complex which has higher energy and is unstable. The complex decays
rapidly forming products with lower potential energy. An application to solids was developed
by (Wert & Zener, 1949, 8) and (Vineyard, 1957).

The next step is to try to get a mathematical expression for the transition rate from one state
to another k from basic concepts. First, letŠs note that each atomic conĄguration of the system
under study has a corresponding potential energy. Thus, we can deĄne a potential energy
surface such as the one deĄned by the value of the potential energy at each atomic conĄguration.
This potential energy surface is usually multidimensional. It would be convenient to make
a projection of this multidimensional space in order to work just with one scalar which is
called reaction coordinate. A reaction coordinate can be for example the distance between two
atoms or molecules.Figure 5.1 shows a one dimensional potential as a function of a reaction
coordinate with the most important points highlighted.

It will be assumed that the reaction coordinate x in this case is the distance between two
particles. We can deduce a mathematical expression for the rate k using the Boltzmann-
Maxwell distribution (Toda, Kubo, & Saito, 1992). At equilibrium, the probability distribution
as a function of positions x and velocities v is given by

P(x, v) =
exp −

(

1
kT
(1

2mv
2
+ V(x))

)
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exp−
(

1
kT
(1

2mv2
+ V(x))

)

dxdv
(5.1)

LetŠs focus our attention to the particles ubicated close to the potential energy maximum
E+. This maximum will be called saddle point. More strictically we deĄne a saddle point
such as a point on a potential surface at which the force is zero and at which there is one
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negative curvature. Since any particle with an x that surpasses this energy will fall into the
potential energy V b and in the other sense it will fall into the potential energy Va. The latter
can be expressed with the next inequalities.

x+ − v∆t > x < x+

v > 0
(5.2)

The Boltzman distribution will help us to calculate the probability Pc(∆t) of crossing the
saddle point in a time ∆t.
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using Equation (5.2) we have
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solving
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Ąnally
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We want to know what is the relation or rate of particles that will cross the saddle point in
comparison with the particles in the state a, thus

k = lim
t→0

Pc(∆t)

Pa∆t
(5.7)

The probability that the particle is initially in the state a is
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where
∫

Ω
is the unidimensional surface integral in the state A. Using Equation (5.7), Equa-

tion (5.8) and Equation (5.6) we have that
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Here is when the harmonic approximation will be taken in to account by using a Taylor
approximation of V(x) around xa. This approximations afects directly the prefactor in
Equation (5.13). Its advantages and disadvantages are discussed in the next paragraphs.

V(x) = V(xa) +
1
2

mw
2(x − xa)

2
+O(x − xa)

3 ≈ Ea +
1
2

mw
2(x − xa)

2 (5.10)

w is the angular frequency. The next step is to approximate the integral over Ω to a integral
over all the space, which can be done since the resulting Gaussian function will decay at large
distances from xa. Then
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Using this with Equation (5.9) we have a simple expression for the rate k as a function of
temperature

k(T) =
w

2π
e

−(E+−Ea )
kT (5.12)

This process was generalized for N dimensions by (Vineyard, 1957). He used the assumption
that the surface can be considered as a heat bath of harmonic oscillators as we did in
Equation (5.10). The system is then described by N normal modes with angular frequencies
w

a
n in the state corresponding to the minimum potential energy Ea for all the 3N − 6 normal

coordinates, and w
+

n are the angular frequencies of vibrations at the saddle point corresponding
to the maximum of potential energy E+, however, the mode corresponding to traversing the
reaction coordinate which connects the saddle point with the reactants and products has an
imaginary frequency and has to be excluded. Therefore, there are 3N-7 normal modes at E+.
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As we can notice, all the quantities can be evaluated directly from the potential energy
surface without dynamical calculations and entropic or thermal efect was included through
the harmonic partition function. However, the calculation of the prefactors gives an additional
computational cost which we are not strictly necessary forced to take since the relevant phonon
modes are not expected to vary much from site to site whereas the exponential term can
vary several orders of magnitude. Thus, practically it is often chosen to only use an order
of magnitude for the prefactor. This can be done using the Debye temperature ΘD of the
substrate as Γ0 ≈ kBΘD/h, or with the VdenskyŠs harmonic approximation Γ0 ≈ 2kBT/h

(Clarke & Vvedensky, 1987, 21). Usually, the prefactor ranges between 1012 to 1013 s−1.
Recent studies about the importance of the prefactor show than it has more importance that it
was believed. This is the case of some difusion mechanisms that would not be accessible if
using a constant prefactor. (Lazauskas, Kenny, & Smith, 2014) working with the inĆuence of
the prefactor on motion of defects in α − Fe found that the calculated prefactor increases the
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relative interstitial-vacancy difusion rates by an order of magnitude compared to the constant
one. Moreover, the rate table changes, as well. He compared his results with MD and TAD
(Temperature Accelerated Dynamics).

5.3 Accelerated dynamics

Now that we have a theory that gives us the transition rates, the problem is then located at
identifying the states of a system and Ąnding the mechanism from a current state to a new one.
This is not a simple task. The system can be composed of a large number of atoms implying a
large number of degrees of freedom. Search through this complex potential energy for saddle
points will spend most of computational time available. The uncertainty coming from the Ąnal
states of low lying saddle points is considerable with these complex potential energy systems.
There are some methods available in the literature that will help us to face this problem. These
methods were invented to increase the chances of the rare events to occur, increasing in this
way the real time of simulations while keeping the same computational time.

One method is to add a repulsive potential energy (bias potential) to the actual potential in
order to increase the probability of rare events. This bias potentials will increase the potential
energy minima in such a way that it will not modify the potential of unknown transition states.
Therefore, the dynamics of this speciĄc system would not be changed. Voter has proposed a
formulation of this method (Voter, 1997a) (Voter, 1997b, 20). In order to achieve this, the
bias potential must vanish at the transition state. Consequently, under the harmonic TST, a
energy rim near the saddle points should be stated as the cut-of for the bias potential. The
evolution of the system with the added potential is in concordance with the one without in the
sense that the probability of having any particular sequence of states is the same for both. The
problem with this method comes at the time of building the bias potential itself. Figure 5.2
shows a bias potential constructed in such a way that it replaces the real potential by a constant
equal to an energy called "boost energy" when the real potential energy is below this boost
energy. Therefore, this boost energy will help to overcome the energy barriers. It is worth to
emphasize that the bias potential has to be lower than the saddle point in order to maintain the
dynamics untouched. Finally, the time is calculated as for regular MD but multiplied by an
instantaneous boost factor, the inverse Boltzmann factor for the bias potential at that point.

The second method is called Parallel Replica Dynamics (Voter, 1998, 22). The main
objective of this method is to replicate a system into several processors in order to explore
more extensively the phase space. SpeciĄcally, a system is copied to N number of processors
and for each case the momenta is periodically randomized to eliminate correlations between
replicas. When an escape pathway is detected, a signal is sent to the other processors to
stop the current simulation. After, the system where the transition happened is copied to
the available processors and the cycle starts again. The simulation time is advanced taking
into account all the accumulated trajectory time summed over all replicas. Therefore, this
time corresponds to the total time spent at the basin until an transition of state happens. An
advantage using this method is that there is no corruption in the probabilities of the possible
escape paths.

The last method is the one known as Temperature Accelerated Dynamics (TAD) (Sorensen
& Voter, 2000). It consists in increasing the temperature from a temperature of interest Tl to
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Figure 5.2 Ű Bias potential constructed in such a way that it replaces the real potential by a
constant equal to an energy called "boost energy"

Th in order to drive the system to higher transition probabilities. However, transitions that
should not have happened at Tl have to be removed while evolving the system. The harmonic
TST is used to describe the system evolution. The process consists in letting the system
evolve with T equal to Th and when a transition is detected the new state basin is recorded.
Consecutively, the corresponding saddle point is calculated using the Nudged Elastic Band
method (Henkelman & Jonsson, 1999; Henkelman, Uberuaga, & Jonsson, 2000) (Henkelman
& Jpnsson, 2000). A list of escape paths and attempted escape times for the system at Th is
recorded. Using Equation (5.13) it can be extrapolated the escape time at Tl . Finally, the
process with shortest time at Tl is chosen to be the correct transition and the system clock is
advanced by the shortest time at Tl .

Other methods to explore longer periods of time, for instance k-Dynamics (Lu, Makarov,
& Henkelman, 2010) are equally important. For more information about these methods, a
complete and comparative study of this method and the last three as well as the improvement
on these techniques can be found elsewhere (Uberuaga, Perez, & Voter, 2018).

5.4 The dimer method

The dimer method has the objective of Ąnding the saddle points of a system. The dimer
concept comes from the fact that the process is focused on two images or two diferent replicas.
Thus, the dimer is the ensemble of these two replicas. Both replicas atom coordinates difer by
a small displacement. The purpose is to Ąnd the path in the potential energy surface from the
local minima up towards a saddle point. A rotation is done along the way to Ąnd the lowest
curvature mode at the point where the dimer is located(Henkelman & Jonsson, 1999). The
lowest energy orientation is located along the lowest curvature mode which allows us to avoid
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calculating the Hessian matrix. This method was proposed by Voter (Voter, 1997b, 20). The
process consists on letting free the dimer to rotate. Then a rotational force is calculated with
the diference of the force of both replicas. A minimization is carried out to align the dimer
with the lowest curvature mode.

Now that dimer will orient itself along the lowest rotational mode, we need to translate it
to the saddle point. A saddle point is located at the maximum along the lowest curvature mode
direction and a minimum in all other directions. The dimer quantities are calculated from the
energy and force acting at the two images. Translate the dimer up in the potential surface
can be achieved by deĄning a efective force on the dimer at the middle point between the
replicas which is simply the average between both the force of both images. The later force
has pulled the dimer towards a minimum. Thus, a modiĄed force is proposed having the force
component along the dimer inverted. A minimization of this modiĄed force will move the
dimer to a saddle point. It was found that is most eicient to give a tolerance for the rotational
force rather than fully converge the dimer orientation. This means that the dimer will rotate a
few times until the rotational force reaches the cut-of saving this way some computational
time. Figure 5.3 shows an example of the dimer method process for Ąnding saddle points.

One important feature of this method is that when the system size is increased, given this
way an increase at the number of degrees of freedom, the number of force evaluations rises
slowly. The reason is that it avoids the calculation of the second derivative Hessian matrix.

The dimer searches are started close to a local minima by moving the atom coordinates
slightly. The dimension of this change is important for the eiciency of Ąnding the saddle
points. There are three modes of displacing the atom coordinates. The Ąrst one is a very
generic concept. It displaces all the atoms by a normally distributed random amount. The
reason of doing this is that by displacing them randomly, we can hope that the new positions
will result to a value of the potential energy closer to a saddle point. This does not assure us
that we will Ąnd them all. However, the problem becomes just to sample them. The second
method relies on the fact that we can save some computational power if we have certain
information a priori of the kinetic events. Knowing beforehand this, we can focus our dimer
searches to the atoms that we know are participants of the main kinetic events. This is done
by choosing the "important" atoms and displacing atoms in the local region. Bear in mind
that those displacement do not constrain the events to the local minimum (Xu & Henkelman,
2008). The Ąnal displacement mode is related to a choice of a local region. In other way, the
user chooses the area of interest. The later has a meaning when addressing surface difusion
and phenomena happening just in a certain part of the system. Identifying which of these
three displacement mode is better to engage the eiciency at the time of Ąnding the saddle
points is not usually a evident issue. Problems can arise when the system is totally unknown a
priori. The user can wrongly bias the search, given this way undesirable transitions. Finally,
the magnitude of the initial displacement is important. Small displacements will lead to a
poor distribution of saddle points around the local minima. Large ones may bring searches at
forbidden energies or others that lead to a saddle points that do not lead to the initial minimum.
For this reason, minimisations are carried out for both directions around the saddle to point.
If the local minimum is not reached, the saddle point is discarded.

One question of the optimal number of saddle point searches is now discussed. This
questions is quite important for a good simulation of the system under study. A successful
search of saddle point will result in an accurate rate table that will be used by the Monte
Carlo method (see Section 5.6). A stopping criterion is proposed to evaluate when there were
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Figure 5.3 Ű Dimer method in a two-dimensional potential surface. The system is initially
in state A. (a) Ten dimer searches are started from random positions around the minimum.
They converge on four distinct saddle points (two of the searches practically overlap). (b) The
system is then made to go down the minimum energy path (gray lines) on either side of the
saddle points which are indicated with *. Here, all four saddle points have a minimum energy
path starting at the initial state minimum A, but this does not have to be the case. The rate of
each process is then calculated using Equation (5.13). A process is chosen at random using the
kinetic Monte Carlo algorithm. In this case (see section Section 5.6), process 1 gets chosen.
The system is moved to the Ąnal state of this process, to minimum B. (c) Dimer searches are
run from the new minimum, again four distinct saddle points are found. (d) Minimum energy
paths are traced out, and the process repeated (Henkelman & Jonsson, 2001)

enough saddle points found. It is based on the history of previous searches to evaluate that an
important saddle point has been missed. The advantages are that this criterion gives a level of
conĄdence to the accuracy and it saves computational time by relating the number of searches
with the number of processes that each state has. For instance, states with only a small number
of processes require only a small number of searches and vice versa. If it is assumed that all
saddle points are found with an equal probability as they are found, we have

C = (1 −
1
Nr

) (5.14)

where Nr is the number of sequential searches that Ąnd relevant but redundant (non-unique)
processes. How to deduce this formula can be found elsewhere (Xu & Henkelman, 2008). As
an example, if we set C = 95% then Nr = 20 so the computer will complete saddle searches
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until Nr = 20 without Ąnding a new, unique saddle point. The assumption that all saddle
points have an equal probability to be found is quite strong. However, it can be smoothed
by introducing a parameter α which is the relative probability of Ąnding the saddle point
that is least likely to be found as compared to the ideal case above. Thus, we have the next
correlation:

C = (1 −
1

Nrα
) (5.15)

Here α runs from 0 to 1. It is easy to note that if α is equal to 1 we get the same as
Equation (5.14). This parameter is added because there is some non-uniform probability
distribution of Ąnding the saddle points.

It is important now to set how relevant is a kinetic event occurring in the system under
study. We can recall that the number of saddle points increases exponentially with the system
size. Many of these kinetic events are in a energy range that is extremely high for the type of
phenomena under study. It is expected that an accurate rate table would contain all low energy
saddle points with high rates. For this reason, a parameter has to be introduced in order to let
us truncate the saddle point energy range of the system. The range of relevant kinetic events
can be found within mkBT of the lowest saddle point energy, for an m accordingly to the case.
Figure 5.4 shows a schematic diagram of these energy window.

Figure 5.4 Ű Reaction mechanisms with barriers within mkBT of the lowest saddle point
energy are considered relevant (Xu & Henkelman, 2008).

Proposing an m equal to 20 means that an event with higher energy is e20 as likely to occur
as the lower energy event, if the two have similar prefactor (see Equation (5.13)). From this
an important assumption for this work will take place. Given that the exponential grows faster
than any other function, along this work it will be set a constant prefactor for all the cases
under study even if they can vary many order of magnitude.

5.5 Recycling saddle points and super basins

Up to the moment, we have set all the saddle points that are going to be included in our rate
table with a certain conĄdence criteria. It is the job of the Monte Carlo method to advance
the system to its new state. At this new state, a new rate table has to be calculated taking in
account all these new probable events. One could hope that some of these new events are
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similar to the ones of the last state. This would save us an important amount of computational
time at the time of building the new event table. Mainly, this is aimed to processes that are
localized to a speciĄc area and the rest of the system remains largely unchanged. Therefore, a
distance parameter dR is introduced for deciding when to recycle or not. Atoms that move
by more of this parameter in the chosen process are set in the Ąnal conĄguration, whereas,
atoms that move less than this parameter are placed in the conĄguration of the saddle points
of the recycled process. Xu and Henkelman (2008) carried out a test for Al atoms system with
diferent sizes. Figure 5.5 shows their results on the saddle points recycling.

Figure 5.5 Ű Force evaluations vs system size for three diferent Al system sizes (Xu &
Henkelman, 2008).

In order to end our discussion about saddle points, a discussion about the issue of states
connected by low energy saddle points will be undertaken. This topic is important since the
KMC eiciency is directly impacted by the choice of saddle points. For instance, if the rate
table has mainly rates coming from low energy (compared with minimum) saddle points, the
system evolution through time will be poor. The KMC will spend must of its computation
time evolving the system in states connected closely in time which is the contrary of the main
purpose of investigating systems in the largest possible time periods.

Figure 5.6 shows a couple of states connected by a low energy saddle point compared to
those that will lead the system to leave the superbasin. It can be proposed that if the system
evolves quickly from A to B, an equilibrium will be soon reached, thus, these two states can
be considered as a single superbasin. When the system is found in a new state, the rate of each
event is compared to the total rate to leave the state, then a ratio between both is calculate
and set as a parameter to Ąnd superbasins. This way, if a state has a dominant process which
leads to another state that is under this later parameter, then those are grouped in a superbasin.
Consecutively, a new rate table is built with all the processes that lead out the superbasin.
Finally, if two low barrier states are visited a posteriori, then a combined rate table is created
to go out of the superbasin.
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Figure 5.6 Ű Superbasin composed by two states (a and b) and the two barriers (∆E1,∆E2)

(Xu & Henkelman, 2008)

5.6 Monte Carlo

Monte Carlo (MC) methods are related with the application of random sampling to problems
of applied mathematics.Table 5.1 shows a general possible classiĄcation of diferent numerical
methods (Lambert, 1961). As we can notice, the Monte Carlo methods are stochastic solutions
to exactly formulated problems.

Table 5.1 Ű ClassiĄcation of diferent numerical methods.

PROBLEM FORMULATION
exact stochastic

METHOD OF
SOLUTION

exact Numerical analysis Probability theory
stochastic Monte Carlo methods Simulation methods

MC algorithms (Amar, 2006) (Gardiner, 2009) have been used for many applications,
such as, materials science, nuclear power, economy, etc. Its use started around 1940 and 1950
with the apparition of computers (Metropolis, 1987). The name is linked with the statical
properties of random events found at gambling in the casinos of Monte Carlo.

MC has a mathematical basis that will be slightly shown in this work. The MC algorithm
starts with the speciĄcation of a sampling procedure to estimate characteristic of a stochastic
process. Normally, every MC computation is dedicated to estimate the value of an integral

θ =

∫

M

f (x)p(x)dx (5.16)
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here f (x) is a known function of x and p(x) is a known probability density function deĄned
over the space M. Now a sampling procedure is proposed in order to get an unbiased estimate
θˆ of θ. Equation (5.16) can be interpreted using the deĄnitions of the expectation operator E
as

θ = E[ f (x)] (5.17)

where the expectation E is with respect to p(x). The mean θ in Equation (5.17) is estimated by
the sampling mean θˆ

N
, deĄned by

θˆN , N−1
N
∑

j

f (x j) (5.18)

Using the notation x j , [x j ; j = 1,2, ...,N] for a random sample of size N drawn from the
probability density function p(x). As we can notice the subscript denotes that the estimate
is based on a Ąnite sample of size N. Finally, we have that the random variable θˆ

N
is one

stochastic solution to the exactly formulated integral Equation (5.16). The mathematical basis
of MC is supported by two main theorems (Handschin, 1968):

1.- The strong law of large numbers

Let x j denote a random sample of size N drawn from the probability density function
p(x) to compute the random variable θˆ

N
using Equation (5.18). If the independent variates

( f (x j); j = 1,2, ....,N) have a common distribution and if the integral of Equation (5.17) exists
in the ordinary sense, then θˆ

N
converges with probability one to θ as N tends to inĄnity.

2.- The central limit theorem

On the premises that the second order moment θ(2) , E[ f 2(x)], deĄned by

E[ f 2(x)] ,

∫

X

f 2(x)p(x)dx (5.19)

exits and the sample size N is large, the probability that the event E, deĄned by E: θ − δ 6
θˆ

N
6 θ + δ, occurs is asymptotically independent of the exact nature of f (x) or p(x). Indeed,

the probability depends only on N and the variance of f (x), deĄned by

var( f (x)) , E[( f (x) − θ)2] =

∫

X

( f (x) − θ)2p(x)dx (5.20)

We can subtract from the theorems that the probability is highly dependent of the sampling
size N. The more sampling we make, the better. Moreover, theorem 2 postulates that the exact
nature of f(x) or p(x) is not important.

The next mathematical step that will help us to understand the Monte Carlo type used
in this work (Kinetic Monte Carlo) is the concept of Markov Chains. First, we denote as
uncorrelated chains of a particular sequence of a system which transits from its initial state xi

to its Ąnal state x f whose probability of occurrence is statically uncorrelated

P(xi, xi+1, ....., x f−1, x f ) = P1(xi)P1(xi+1)....P1(x f ) (5.21)
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where P1(x) is independent probability of occurrence for the state x. The Markov chain is a
correlated sequence of random events whose probability densities at a time interval depend
upon the previous states of the system. It can be deĄned using the transition probability
W(xa → xb) which successfully gives state xb from xa, thus, the probability of having a
sequence of states x is

P(xi, xi+1, ....., x f−1, x f ) = P1(xi)W(xi → xx+1)W(xx+1 → xx+2)...W(x f−1 → x f ) (5.22)

From here we can set the time evolution of the transition probability P(x, t) of the system in
state x given by the Markovian master equation (Levi & Kotrla, 1996) (K. & W, 2010)

∂P(x f , t)

∂t
= −

∑

x f

W(x f → xi)P(x f , t) +
∑

xi

W(xi → x f )P(xi, t) (5.23)

P(x, t) is the probability that a system is in state x at time t and W(xi → x f ) is the transition
probability per unit time that the system will transit from state xi to state x f . The Ąrst term on
the right hand side of the Markovian Equation represents all processes where one moves away
from the considered state xi at the moment in time t and hence its probability is decreased,
while the second term contains all reverse processes which hence lead to an increase of the
probability of Ąnding xi. Here the controlling factor is the transition probability. In many
cases the system is in a steady state. For example, it occurs when the system is at thermal
equilibrium. in this case the occupation probability is Ąxed according to the Boltzmann
distribution

Pi ∝ e−Ei/kBT (5.24)

where Ei is the energy of state i, T is the temperature, and kb is the BoltzmannŠs constant.

The steady state occurs when the time derivative of the Markovian Equation is zero, that is
∂P(x f ,t)

∂t
= 0. This implies that the sum of all the transitions into a particular state xi equals the

sum of all the transitions out of a particular state x f . Therefore, the steady state can be stated
as

∑

x f

W(x f → xi)P(x f , t) =
∑

xi

W(xi → x f )P(xi, t) (5.25)

To be consistent with the Boltzmann distribution in equilibrium, the detailed-balance
criterion is usually imposed on the MC transition probabilities. It can be written as

W(xi → x f )P(xi, t = ∞) = W(x f → xi)P(x f , t = ∞) (5.26)

Equation (5.26) implies that the ratio of the transition probabilities for a move x f → xi

and the inverse move xi → x f depends only on the energy change. It is worth to highlight that
the detailed balance is a necessary but not suicient condition for thermodynamic equilibrium.

This type of MC that evolves form state to state is usually called Kinetic Monte Carlo
or KMC. It was developed around 1970s for atomistic systems of crystal growth using
probabilistic rules to govern deposition, difusion and other phenomena. It was Ąrst adopted
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by (Abraham, 1970) and (Gilmer & Bennema, 1972). The KMC is usually applied to simulate
the evolution of a physical system through numerical sampling of (Markovian) stochastic
processes. In contrast the traditional MC method is applied to systems close to equilibrium,
while KMC allow us to advance our system under study along time, giving us this way the
opportunity to study phenomena out of equilibrium. The basic principle of KMC is to carry
out elementary jumps on a grid, in order to represent real atomic jumps on a crystal. The
code Ąrst make a random selection to a process with the use of transition rates for all possible
processes. Then, the selected transition is performed and the corresponding change of the
state vector. Finally, the time counter and transitions probabilities are updated.

5.7 Adaptive Kinetic Monte Carlo

The Adaptive Kinetic Monte Carlo (aKMC) method is a relatively new type of MC. It surpasses
its predecessors by calculating its rate or event table every time the system is advanced to a
new state (Henkelman & Jonsson, 2001). In contrast, the KMC has to have an accurate event
table a priori. Therefore, only events that were included in the beginning of the simulation
can be used to advance the system. Moreover, the KMC uses an on-lattice approximation
that prohibits the simulation of materials that have gone through large deformations such as
nuclear materials inside the reactor.

Having the ability to calculate on-the-Ćy the event table allows the aKMC to search into
unforeseen states that would arise from complicated mechanisms. Thus, it beneĄts of longer
periods of time while maintaining an atomic representation of the system in evolution under
the force coming from an interatomic potential.

The aKMC has already been tested for nuclear materials. The Nuclear National Laboratory
has used the open source DL//AK MC code developed within the ScientiĄc Computing group
at the Science and Technology Facilities Council (STFC) Daresbury laboratory (Gunn, Allan,
& Purton, 2014, 33) to study oxygen difusion in UO2. The results showed that aKMC
predicts anion difusion coeicient close to the ones calculated with MD (Platts & Bankhead,
2017). Moreover, aKMC has been used to study the evolution of radiation damage near grain
boundaries in fcc Ni and a Ni-Cr alloy (Tooq & Kenny, 2013).

The newest versions of DL//AK MC include both parallelisation fo the transition states
searches and saddle point re-cycling. Up to the moment the code has succeeded in demon-
strating a good scaling up to many hundreds of CPU cores. Figure 5.7 shows the schematic of
the parallelisation and simulation process implemented in DL//AK MC.

5.8 Long term recombination

As we stated in Section 4.2, during displacement cascades numerous FPs with small distances
between the interstitial and the vacancy are created. In the same section we analysed them
using MD. In the present section, we have used the DL//AK MC code to analyse again the
possible FPs that displacements cascades produce. This study will allow us to search for
longer periods of time compared to MD.
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Figure 5.7 Ű Schematic of the parallelisation and simulation process implemented in
DL_AK MC (Gunn, Allan, & Purton, 2014, 33)

Almost the same process is followed as in Section 4.2. To calculate the recovery time
of the defect, the supercell is Ąrst relaxed for 5 ps in the NPT ensemble in order to Ąnd the
temperature dependent lattice parameter using MD. A C-FP is created after this relaxation.
This defected structure is used as input for the DL//AK MC code. If annealing of the C-FP
occurs, the time of recombination is recorded. The FPs are classiĄed according to the distance
between the interstitial and the vacancy as second-, third- and fourth-nearest neighbours as
shown in Figure 4.1. First neighbours are excluded since they anneal instantly. Due to the
Ćuorite symmetry, there are: 8 second, 24 third, and 48 fourth possible nearest neighbours for
the C-FPs. For simplicity, we limit the number of third- and fourth-nearest neighbours studied
to 8 (all shown in Figure 4.1).

Due to the high computational power needed to carry out MC simulations, we could
only analyze 5 MOX, 2 UO2 and 1 PuO2 structures. MOX structures have Pu randomly
distributed. If for a speciĄc structure there is no recombination, the case is simply excluded
from the average. Therefore, the resulting lifetime corresponds to the lowest limit of the
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recombination time. Nevertheless, it gives an indication of whether recombination may
occur or not. Table 5.2 compiles all the results of the averaged lifetimes with their standard
deviation obtained with the aKMC. Only Potashnikov potential could be implemented. Eforts
to implement Cooper potentials are being made. Only one temperature 1600 K was assessed
again due to the high computational power required. We chose this temperature because it is
the most important in Section 4.2 since at higher temperatures, the process of recombination
is more probable, indicating a thermally activated process.

The supercells consisted of 3 × 3 × 3 Ćuorite unitary cells. The dimer method (see
Section 5.4 is chosen to carry out the search of saddle points. A minimum activation energy
of 1 eV for a transition to be allowed was chosen in order to limit the search of transitions only
for cations . The energy parameter m is chosen at 160 (see Figure 5.4). This gives a range of
energy of 1 to 22 eV. This range was chosen in this way to focus only on cation movements.

Table 5.2 Ű Recombination times in µs for C-FPs for Potashnikov potential at diferent Pu
contents for the second-, third- and fourth-nearest neighbours. The number in parenthesis
corresponds to the number of recombination that occurs over the averaged cases.

Pu content 2th 3rd 4th

0% 28±29 (4) 40±54 (4) -
50% 16±36 (9) 16±54 (12) 0.8 (1)
100% 17 (1) 29±50 -

The Ąrst important point that comes to light from Table 5.2 is that aKMC allows to search
for much longer periods of time compared with MD. In Section 4.2, we limited our research to
100 ps. Here we reached up to almost milliseconds. Secondly, we could limited our research
on only rare events. This is cation movements. As a consequence, we found that 2nd are able
to anneal at this speciĄc conditions for times around 10 µs. The process that gives annealing
for the 2nd neighbour is quite complex. It is not a direct recombination, meaning that the
interstitial does not go directly to the vacancy. Instead, two surrounding cations to the vacancy
plus the interstitial needed to move in order to have annealing of the 2nd neighbour. This is
not surprising due to the energy barrier imposed by the oxygen laying between the interstitial
and the vacancy, as already seen in previous studies in Ćuorite-like structure using rigid ion
interatomic potentials (Pannier et al., 2009).

The recombination time for third neighbours is quite long compared to our study in
Section 4.2. This is probably due to our energy window. Since we limited the minimum
activation energy of 1 eV for a transition to be allowed. This could block recombination paths
that give short recombination times found in Section 4.2. Finally, only one recombination
event for the fourth neighbours is found. This could mean that recombination at this
interstitial distance from the vacancy involves processes with energy below 1 eV. The later
is in concordance with fourth-neighbour activation energies for UO2 that are around 0.6 eV
(Van Brutzel et al., 2008, 2).

5.9 Conclusions

As a conclusion, we proved that aKMC is a powerful tool to overcome the time of MD
simulations. It allows to search for much longer periods of time. Important results due to this
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longer period of times are achieved, for example, we found that 2nd are able to anneal at this
speciĄc conditions for times around 10 µs. In contrast, we could not Ąnd any annealing for the
second neighbour in MD. Moreover, results show that recombination is possible to happen at
times around milliseconds. However, the number of recombination events is lower that those
that take place before 100 ps. As a consequence, we propose that recombination of C-FPs
falls into three regimes: Ąrst, a spontaneous regime where recombination events occur in
less than 1 ps and second, a thermally activated regime and Ąnally, rare-event recombination
events taking place in longer periods of time (up to milliseconds in this study).

Both techniques working together could give broader insights than each one working
separately could give. More eforts have to be made to increase the limits of this research. For
example. the implementation of Cooper potential or analyze extended defects with aKMC
such as, dislocations or cavities.



6
Conclusions

Nuclear fuel inside the reactor sufers micro-structural changes. One example is the restructur-
ing of the solid matrix mainly due to high temperatures and large temperature gradients. Voids
migrate towards higher temperatures and gather in the centre. Conversely, a movement of the
solid matrix takes place towards the outer periphery. There is a diference between MOX and
UO2 pellets. In MOX, there are higher rates of Ąssion gas release, due to higher linear power
levels at the end of the irradiation and higher centre-line temperature (caused by slightly lower
thermal conductivity). Furthermore, the heterogeneity of the Ąssile material would play a
role as well. The Pu rich spots are submitted to very high burn-up. This causes restructuring,
which leads to further division of grains, precipitation of gas bubbles that go to intra-granular
division which make them easily freed when a power transient occurs. In general, MOX fuel
pellets are more complicated to work with compared to UO2. Their behaviour inside the
reactor has to be carefully addressed, since more processes are involved at the time of the
burn-up. Moreover, at the time of producing them, the alpha decay make them a diicult
task and decreases the number of capable labs that are able to sensitize them. Therefore, it
is important to understand well what are the micro-structural changes which happen inside
the fuel under irradiation and surely the cause as well. This brings the need of new tools to
assess the problem. For example, this PhD work research focuses on answering this question
by using a computer simulation approach at the atomic scale.

One of the purpose of this doctoral research is to contribute to the knowledge concerning
MOX and its thermomechanical properties. This will help to build updated catalogues of
MOX properties for the new reactor prototypes. Moreover, our work is part of the European
project INSPYRE which focuses on the investigation of fast reactor and MOX fuel. Most
of this PhD work lies under the work package 3, which focuses on improving, developing
and applying experimental and modelling methods to reach a better understanding of the
underlying mechanisms governing the evolution of mechanical properties.

Our Ąrst computational tool was MD. The reliability of the results obtained with this
tool depends on the choice of the set of potentials. For this reason, we assessed empirical

105
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potentials for the (U1−y,Puy)O2 solid solution. We found in the literature Ąve interatomic
potentials coined by the name for their Ąrst author: Yamada, Arima, Potashnikov, Tiwary,
and Cooper. In our assessment, the structural (lattice parameter, relative phase stability) and
thermodynamics (thermal expansion, heat capacity) properties are systematically calculated
for 300 K to melting point, and for the full range of plutonium content from pure UO2 to
pure PuO2. We also investigate the potentials through their mechanical properties (elastic and
crack propagation). Thus, this assessment included ranges of temperatures and compositions
as well as properties that have not been studied by the authors.

Our Ąrst study was to compute the evolution of the lattice parameter. This helped us to
Ąnd that Tiwary potential is unstable with MD simulations. For this potential the Ćuorite
structure collapses after few steps of the simulation. Thus, we removed this potential for the
following tests. Furthermore, this test allowed us to eliminate, as well, Yamada potential, since
it shows large discrepancies on the Ćuorite structure at high temperatures (>2100 K). The
three remaining potentials seem to behave in a similar way for the thermodynamic properties
(thermal expansion and heat capacity).

For the mechanical properties, results show that the elastic stifness constants and brittle-
to-ductile transition are best reproduced with the Cooper potential. The Potashnikov potential
gives fairly good agreement with experimental data while Arima potential overestimates largely
the elastic stifness constants. However, anisotropy is presented even at low temperature for
the Cooper and Arima potentials whereas it appears only at high temperatures for Potashnikov
potential. Therefore, the main diference between potentials concerning the mechanical
properties is the anisotropy.

Concerning the Pu content, only Cooper potential shows a small sensitivity on the
thermodynamics properties. This sensitivity is linked to a greater accuracy to predict melting
temperature according the Pu content.. However, all the mechanical properties show little
dependence on the plutonium content, conĄrming the assumption that mechanical properties
of UO2 can be, to a large extent, applied to MOX.

Overall, with the structural, thermodynamics, and mechanical properties assessment, the
three remaining potentials show advantages and disadvantages. The Cooper interatomic
potential reproduces the best the FinkŠs recommendation, yet it renders an unexpected
plastic-like behaviour during crack propagation. The Potashnikov potential gives fairly good
agreement for structural, thermodynamics. It also presents the expected brittle behaviour
during crack propagation but renders isotropic elastic behaviour. Finally, the Arima potential
gives good results for structural and thermodynamics properties under 2100 K, but presents
discrepancies at high temperatures and gives average results for the mechanical properties. As
a consequence, we have decided to keep Cooper and Potashnikov potentials for our radiation
assessment.

The radiation assessment is performed is four steps. First, the calculation of the formation
energy of point defects that assesses the potentials on their capability to reproduce correctly or
not the creation of point defects. Second, the analysis of the Frenkel pair recombination time,
which is used as set parameter for the last step. Third, simulations of displacement cascades
that render the type and number of defect created by one single radiation event. And last,
simulations of Frenkel pair accumulation, which is designed to study the dose efect.

From defect formation energies study, both potentials give approximately the same values
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and corroborate with existing data for urania.

Concerning the FP recombination. There is a clear dependence on the temperature. At
high temperatures (1600 K), the process of recombination is more probable, indicating a
thermal activated process. Recombination processes seem to be more efective for Potashnikov
potential than for Cooper based on both; the recombination times and temperatures at which
they occur.

For displacement cascades the same general behaviour is observed for both potentials.
Within the Ąrst picosecond, the PKA sufers several collisions releasing its kinetic energy
in the form of a large amount of atomic displacements in all directions. These atomic
displacements induce a temporary local disorder of the crystal in the core of the cascade.
Numerous FPs are created during this stage. Subsequently, the system evolves releasing energy
in the form of thermal vibrations, causing a drastic increase of the local temperature (thermal
spike). Consequently, numerous recombination events take place, which mainly leads to the
reconstruction of the Ćuorite lattice leaving only a few remaining point defects. However,
diferences between potentials start to appear at 75 keV. For the Cooper potential, the recovery
stage does not lead to full reconstruction of the Ćuorite structure. Instead, a large disordered
region with no crystallographic atomic structure of several manometers is found at the cascade
core. This behaviour is probably linked to the slow kinetics of Frenkel pair recombination. In
contrast, Potashnikov potential presents a quasi-total reconstruction of the Ćuorite structure.

The Frenkel Pair accumulation study was carried out to investigate the dose efect.
Potashnikov potential presents the following process as the dose increases: accumulation of
point defects that cluster and form Frank loops which in turn transform into perfect loop and
dislocation lines. This behaviour is diferent for Cooper potential. At 1600 K, dislocations are
formed but only few Frank loops are observed suggesting either a direct mechanism for the
creation of perfect loops or that they are highly unstable.

Temperature plays also an important role in the evolution of the extended defects. With
Cooper potential no dislocation formation is observed at 300 K whereas some appear at 1600 K.
This diference could come from the fact that defect recombination at 300 K for Cooper
potential is highly improbable as shown in the FP recombination study. For Potashnikov
potential some quantitative diferences occur; the full process is shifted to lower doses as the
temperature increases.

About the Pu content, the dislocation density decreases as the Pu content increases and
peaks of density shift to higher dose with increasing Pu content. Therefore, the creation of
dislocations is easier in urania than in MOX or plutonia. As a hypothesis, we suggest that
this behaviour is caused by the fact that for Cooper potential the recombination processes
are facilitated with the increase of the Pu content. Thus, more defects in urania are able to
create dislocations, such as, Frank dislocations and initiate the process that ends in perfect
dislocations. In contrast, defects being annealed faster in plutonia will create less Frank
dislocations and therefore less perfect dislocations. This is in agreement with the number of
defects, which shows that the number of vacancies and interstitials slightly increases as Pu
content increases. Finally, we could not Ąnd any inĆuence of the Pu content on the elastic
moduli as a function of the dose and the X-ray powder difraction studies. In general, Cooper
potential is more sensitive to changes in the Pu content.

The spatial repartition of defects was analysed after displacement cascades occurs and
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Frenkel pair accumulation simulations. In general, we could not Ąnd an important role of the
Pu content on the morphology of defects. This means that we did not Ąnd any trend of Pu
atoms clustering with Pu atoms (same can be applied to U). However, we could Ąnd important
clustering in point defects at the end of the cascades. Interstitials cluster less than vacancies.
Vacancies can cluster until a point they form nanocavities of 1 nm size.

We continued our study on the efect of dose. The elastic moduli as a function of dose
and the X-ray powder difraction studies agreed on one point. The points defects were one of
the most important factors that played a role when accumulating dose. They caused a sharp
decrease in both; the Bulk modulus and the Zener ratio. In contrast, the evolution of the
FWHM is highly correlated to the perfect dislocations.

Finally, we used aKMC, which is a powerful tool to overcome the time of MD. It allowed
to search for much longer periods of time compared with MD. Important results due to this
longer period of times were achieved, for example, we found that 2nd neighbours were able to
anneal after about 10 µs at 1600 K. In contrast, we could not Ąnd any annealing for the second
neighbours by MD.

In general, along the whole PhD work, we systematically carried out studies with the Pu
content, temperature and diferent potentials as variables of interest. We gave pros and contras
of each potential. We tested our results when available with the scarce experiment values in
the literature. Therefore, the trends found through our results are believed to be representative
of the material under study; MOX.

There is still an important amount work left to do in order to better understand MOX,
starting with exploring or creating new potentials that are able to simulate phenomena out of
stoichiometry. Secondly, the local conĄguration around defects has to be analysed in order to
evaluate the inĆuence of changing U for Pu and vice versa on the formation energy of defects.
In the same way, an study of the impact of the diference between cation species could bring a
insight of the annealing path in the FP recombination study. Thirdly, the spatial repartition of
defects could be used as input for the FP accumulation method so each step of the latter will
simulate the Ąnal state of a cascade (including nanocavities). Finally, the aKMC method has a
huge potential to expand our studies to longer time periods.



A
Phase diagram of MOX

In order to understand better which states the MOX fuel goes through at diferent temperatures
and Pu contents, the ternary phase diagram O-Pu-U will be assessed. This is shown in
Figure A.1 for a system at 1500 K.

Here the legend "C1MOX2" corresponds to the Ćuorite structure, PUO161 to PuO1.61

and the rest is self-explicit. Above 1000 K, MOX forms a solid solution across their entire
composition range. In the sub-stoichiometric range, the loss of O atoms is compensated by
the reduction of Pu+4 to Pu+3 (Moore, 2015). On the other hand, the over-stoichiometric
region consists on the extra oxygen interstitial and the oxidation of U+4 to U+5 at temperatures
below 1000 K. The highest stoichiometric ratio is 2.2 for Pu content in the range 60 % > x >
32 % (Guéneau et al., 2011). The deviation in stoichiometry as a function of Pu content at
1500 K is shown in Figure A.2.

At 1500 K, the stoichiometry changes as a function of the plutonium content. The
sub-stoichiometry goes from a UOx slightly below 2 all the way up to PuO1.61 at higher
plutonium contents. The hyper-stoichiometry decreases as well, going from a value slightly
above 2.2 to less that 2.1.

We now present the stability of the system for a wider temperature range. Figure A.3
shows the O-Pu-U ternary system at diferent temperatures as a function of the O/M ratio.

We observe in Figure A.3 that a miscibility gap appears for temperatures below 900 K
and in the O/M range from 1.77 to almost 2. It is worth to highlight that all the simulation
work done in this PhD research was done for MOX stoichiometric. Thus, no miscibility gap is
expected.
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Figure A.1 Ű Ternary phase diagram of the O-Pu-U system at 1500 K (Guéneau et al., 2011)
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Figure A.2 Ű MagniĄed snapshot of O-Pu-U phase diagram as a function of composition and
Pu content calculated at 1500 K(Guéneau et al., 2011)
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Figure A.3 Ű Experimental O/M ratios of (U0.55Pu0.45)O2−x as a function of temperature
(orange triangles) as determined according to (1) obtained from (Markin & Street, 1967). The
red dashed lines correspond to calculated equilibria involving Thermo-Calc Software and
the thermodynamic model proposed by (Guéneau et al., 2011). Taken from (Vauchy, Belin,
Robisson, & Hodaj, 2016)



B
Extended lattice parameter

Figure B.1 Ű Evolution with temperature of the lattice parameter for the four potentials studied
in (U0.75Pu0.25)02 compound.
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Figure B.2 Ű Evolution with temperature of the lattice parameter for the four potentials studied
in (U0.3Pu0.70)02 compound.



C
Cluster analysis

This appendix shows distribution of point defects in cluster (interstitial and vacancy) as a
function of their size for Cooper and Potashnikov potentials calculated from all PKA energies.
Cation (Pu and U) vacancy and interstitial will me named U for simplicity.

Figure C.1 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Potashnikov potentials calculated from 75 keV PKA cascade and 50% Pu
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Figure C.2 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Potashnikov potentials calculated from 75 keV PKA cascade and 25% Pu

Figure C.3 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Potashnikov potentials calculated from 10 keV PKA cascade and 50% Pu
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Figure C.4 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Cooper potentials calculated from 10 keV PKA cascade and 50% Pu

Figure C.5 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Cooper potentials calculated from 10 keV PKA cascade and 25% Pu
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Figure C.6 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Potashnikov potentials calculated from 10 keV PKA cascade and 25% Pu

Figure C.7 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Potashnikov potentials calculated from 5 keV PKA cascade and 50% Pu
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Figure C.8 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Cooper potentials calculated from 5 keV PKA cascade and 50% Pu

Figure C.9 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Cooper potentials calculated from 5 keV PKA cascade and 25% Pu
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Figure C.10 Ű Distribution of point defects in cluster (interstitial and vacancy) as a function of
their size for Potashnikov potentials calculated from 5 keV PKA cascade and 25% Pu
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