This necessity is highlighted in predictive maintenance, where the ultimate objective is to predict failures of hardware components by continuously observing their status, in order to plan maintenance actions well in advance. These observations are generated by monitoring systems usually in the form of time series and event logs and cover the lifespan of the corresponding components. Analyzing this history of observations in order to develop predictive models is the main challenge of data driven predictive maintenance.

Towards this direction, Machine Learning has become ubiquitous since it provides the means of extracting knowledge from a variety of data sources with the minimum human intervention.

The goal of this dissertation is to study and address challenging problems in aviation related to predicting failures of components on-board. The amount of data related to the operation of aircraft is enormous and therefore, scalability is a key requirement in every proposed approach. This dissertation is divided in three main parts that correspond to the different data sources that we encountered during our work. In the first part, we targeted the problem of predicting system failures, given the history of Post Flight Reports. We proposed a regression-based approach preceded by a meticulous formulation and data pre-processing/transformation. Our method approximates the risk of failure with a scalable solution, deployed in a cluster environment both in training and testing.

To our knowledge, there is no available method for tackling this problem until the time this thesis was written.

The second part presents our approach for analyzing logbook data, which consist of text describing aircraft issues and the corresponding maintenance actions and it is written by maintenance engineers. The logbook contains information that is not reflected in the post-flight reports and it is very essential in several applications, including failure prediction. However, since the logbook contains text written in natural language, it contains a lot of noise that needs to be removed in order to extract useful information.

We tackled this problem by proposing an approach based on vector representations of words (or word embeddings). Our approach exploits semantic similarities of words, learned by neural networks that generated the vector representations, in order to identify and correct spelling mistakes and abbreviations. Finally, important keywords are extracted using Part of Speech Tagging.

In the third part, we tackled the problem of assessing the health of components on-board using sensor measurements. In the cases under consideration, the condition of the component is assessed by the magnitude of the sensor's fluctuation and a monotonically increasing trend. In our approach, we formulated a time series decomposition problem in order to separate the fluctuation from the trend by solving an optimisation problem. To quantify the condition of the component, we compute a risk function which measures the sensor's deviation from its normal behavior, which is learned using Gaussian Mixture Models. R É S U M É L'augmentation des données disponibles dans presque tous les domaines soulève la nécessité d'utiliser des algorithmes pour l'analyse automatisée des données. Cette nécessité est mise en évidence dans la maintenance prédictive, où l'objectif est de prédire les pannes des systèmes en observant continuellement leur état, afin de planifier les actions de maintenance à l'avance. Ces observations sont générées par des systèmes de surveillance habituellement sous la forme de séries temporelles et de journaux d'événements et couvrent la durée de vie des composants correspondants. Le principal défi de la maintenance prédictive est l'analyse de l'historique d'observation afin de développer des modèles prédictifs.

Dans ce sens, l'apprentissage automatique est devenu omniprésent puisqu'il fournit les moyens d'extraire les connaissances d'une grande variété de sources de données avec une intervention humaine minimale. L'objectif de cette thèse est d'étudier et de résoudre les problèmes dans l'aviation liés à la prévision des pannes de composants à bord. La quantité de données liées à l'exploitation des avions est énorme et, par conséquent, l'évolutivité est une condition essentielle dans chaque approche proposée.

Cette thèse est divisée en trois parties qui correspondent aux différentes sources de données que nous avons rencontrées au cours de notre travail. Dans la première partie, nous avons ciblé le problème de la prédiction des pannes des systèmes, compte

Predictive Maintenance

Scheduled maintenance is the traditional way of maintaining equipment and consists of a set of maintenance procedures defined at aircraft design time and that must be planned in advance and performed periodically. However, whenever an unexpected failure occurs between two scheduled maintenance slots, the equipment becomes unavailable until the necessary maintenance actions are performed. These unexpected failures can be a costly burden to the equipment owners because during the downtime they may not be able to provide the expected services to their clients. On the other hand, the goal of predictive maintenance is to prevent such unexpected equipment failures by continuously observing Given the increasing collections of available data generated by monitoring processes (e.g. sensors and event logs), the goal is to predict upcoming critical events or system failures. An important issue is that the interval between the prediction and the failure (Figure 1.2) should be sufficient for the planning and execution of the corresponding maintenance actions.

Predictive maintenance and machine learning have developed a very strong connection. However, it is not always easy or straightforward to perform effective predictive maintenance for several reasons:

• Lack of predictive power in the data. It is possible that the available data does not contain relevant or adequate information about the problem/task under consideration.

• Lack of annotated data. Although large datasets could be available for analysis, when dealing with supervised tasks one has to obtain annotated (or labeled) data. Their lack can be a major obstacle and the acquisition can be very expensive, since one has to consume several man-hours, in order to manually assign the ground truth labels.

• Huge amounts of data. In many real world scenarios one has to deal with many gigabytes or even petabytes of data in order to be able to extract useful knowledge about the domain.

These problems might be easier or harder to deal with depending on the application and the domain under consideration.

Finally, recent advances in big-data and related technologies have made it possible to analyze very large datasets in distributed environments.

Time Series Data

The goal of this thesis is to employ modern machine learning techniques to analyze time series data from the aviation industry. Time series is one of the most common data types in many real world applications (e.g., finance, meteorology, medicine, sensor networks) that constantly draws the attention of the research community, and has been very well studied over the past decades.

During this thesis, well-known problems such as prediction and modeling were addressed in the context of a set of predefined industrial requirements. Additionally, the research and development is being performed by employing modern distributed computing frameworks, suitable for the big-data demands of the project due to the huge amount of information generated by the various aircraft components.

data related to aircraft operation

An aircraft generates large amounts of data during its operation, most of which belong to one of two main categories:

• Sensor time series. These correspond to data coming from sensors on-board, such as pressure, temperature, speed etc. Hundreds of sensors with varying sampling frequencies emit measurements that can reach the size of a few gigabytes for every single flight.

• Events Logs. Events are generated by systems that monitor the condition of components on-board. These systems are designed to detect conditions that should be reported to the crew and the generated events correspond to failures.

Another very important category of data related to the operation of the aircraft is the logbook. The logbook contains information about the maintenance activities that were performed on the aircraft along with issues reported by the crew, replacements and repairs of components etc. Although these data are not generated by the aircraft and their size is limited, the information that they contain is invaluable for performing effective predictive maintenance.

Tools and Libraries

In order to obtain the results presented in this thesis we performed our experiments using available tools and libraries. The ones that were mostly used in the context of the thesis are the following:

• Apache Spark [START_REF] Zaharia | Apache Spark: A Unified Engine for Big Data Processing[END_REF]. A big data processing engine which was extensively used to analyze the data involved in this thesis.

• MLlib [START_REF] Meng | MLlib: Machine Learning in Apache Spark[END_REF]. The machine learning library of Apache Spark which includes efficient implementations of machine learning algorithms for the distributed environment.

• Scikit-Learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. A python library for Machine Learning which includes a plethora of both state of the art and recent algorithms.

• CVXOPT [START_REF] Dahl | Cvxopt: A python package for convex optimization[END_REF]. A convex optimization library in python.

• Matplotlib [START_REF] Hunter | Matplotlib: A 2d Graphics Environment[END_REF]. A python plotting library that was used to generate all the figures that present analysis results.

• IPE [START_REF] Schwarzkopf | The Extensible Drawing Editor Ipe[END_REF]. A drawing editor for creating vector graphics with which all schematic diagrams were created.

overview of contributions

The contributions made in the context of the thesis can be briefly summarized as follows:

• We proposed a method from predicting aircraft failures given the history of past ones. To our knowledge, this was the first approach on such data, we achieved 25% precision with very few false positives, and we showed the impact in cost reduction of our results. Furthermore, although our target data were aircraft failures, our method can be used for event logs coming from any other domain.

• We proposed a method for cleaning logbook data using recent advances in text mining. We demonstrated the problem of dealing with such data and snapshots of our results.

Our work is the first step towards the embedding of such data in failure prediction.

• We addressed the problem of assessing the condition of sensors on board by proposing a method for quantifying the severity of the fault and consequently, the risk of its failure. Our approach was a novel modification of a recently proposed method, followed by the utilization of recent advances in neural network architectures.

For more detailed discussion of our contributions, please refer to the concluding sections in Chapters 4, 5 and 6.

outline of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 presents the minimum background in order to facilitate the reader in understanding the next, technical chapters.

• Chapter 3 demonstrates our initial steps to investigate the failure dataset.

• Chapter 4 presents our method on failure prediction • Chapter 5 is about processing technical logs that contain information about maintenance activities using text mining approaches.

• Chapter 6 presents our approach on sensor degradation monitoring using time series approaches.

• Chapter 7 concludes this thesis with a short discussion about the achievements and the future steps.

2

B A C K G R O U N D
In this chapter we present the minimum background required to follow the rest of the thesis. Due to the fact that we addressed several problems on different types of data, we had to investigate a wide range of methods and algorithms. However, in this section we describe only the key components used in each problem.

For comprehensive material in the area, one should refer to some remarkable Machine Learning books such as [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF], [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF], [START_REF] Goodfellow | Deep Learning[END_REF], Koller and Friedman (2009) and [START_REF] Theodoridis | Machine Learning: A Bayesian and Optimization Perspective[END_REF]. TP

learning from data

Machine learning is about extracting knowledge from data in order to create models that can perform tasks effectively. A typical Machine Learning application consists of the following parts:

• A task and a metric for evaluation. The task comes inherently given a real problem and the metric quantifies effectiveness of a solution.

• A model family that we believe is capable of solving the problem in hand. The selection of the model type depends on several factors, such as the amount of available training data (i.e. size of the given dataset), the complexity of the task and knowledge about its performance on similar problems [START_REF] Caruana | An Empirical Comparison of Supervised Learning Algorithms[END_REF].

• A dataset on which the best model will be trained in order to solve the task, aiming to the best performance with respect to the evaluation metric.

• A loss function that quantifies the goodness of fit. In contrast to the evaluation metric, the loss function is a differentiable and usually model-specific [START_REF] Bottou | Large-Scale Machine Learning with Stochastic Gradient Descent[END_REF].

• An optimization algorithm to train the model. The models consist of parameters (usually referred as θ), whose values reflect the performance on the loss function. Thus, an optimization strategy is required in order to select the parameter set that minimizes the loss function.

Note the difference between the first and the fourth point. In several cases these functions can be the same, for example for house price prediction, the Mean Squared Error (MSE) can be both the task objective and the loss function.

In Machine learning we are creating models that can best understand a set of available data (aka a dataset) in order to perform a specific task. A dataset X consists of a usually finite number of samples x i , i = 1, . . . n, such as images, documents or users, depending on the application.

Supervised Learning and Evaluation Metrics

Supervised learning occurs when the model is trained using input-output pairs, like in classification and regression. In this

(|X | = |Y |),
which is equal to the number of available samples.

On the other hand, unsupervised learning occurs when the model is trained using only the feature set X . The most popular unsupervised tasks is clustering, since the cluster labels are not known in advance.

In the case of supervised learning, since the labels are known in advance, we can directly assess the performance of our approach using standard metrics. When the labels are continuous (Regression), y i ∈ R d , y i ∈ Y, the popular performance metrics are the MSE, the Mean Absolute Error (MAE) and their weighted alternatives, where each sample comes with a different weight.

When the labels correspond to distinct categories (Classification) several metrics have been proposed and are mostly related to the distribution of the classes: Accuracy, Precision/Recall, F1-Score are among the most popular ones. In order to calculate these metrics, one has to compute the confusion matrix (Table 2.1).

In the context of predictive maintenance one of the most im- Censoring occurs when we are not sure about the exact time of the event's occurrence due to incomplete data. For example, if the event of interest does not occur for a subject in the population during the observation period, then we know that the survival time for this subject is at least as long as the observation period. This is probably the most common case of censoring. The three types of censoring are:

• right censoring When the time to the event of interest is more than some known value. For example, when the observation period ended without observing the event.

• left censoring When the time to the event of interest is less than some known value.

• interval censoring When the time to the event of interest is within a known interval.

In survival analysis applications it is very important to handle the censored data and therefore, all types of censoring have been extensively studied [START_REF] Klein | Survival Analysis: Techniques for Censored and Truncated Data[END_REF]. However, in the case of equipment failures we deal mostly with right censoring.

Survival and Hazard Functions

The key components of survival analysis survival and the hazard functions. The most important properties of the hazard function are a) it is always positive (h(t) ≥ 0 ∀t ≥ 0), and b)

∞ 0 h(t)dt = ∞. Property Interpretation S(0) = 1
The probability of a failure at the start of the observation is zero. lim t→∞ S(t) = 0

The event will certainly occur

S(t a) ≥ S(t b) ⇐⇒ t a ≤ t b It is monotonically decreas- ing S(t) = 1 -F(t) = 1 - ∞ t f (τ)dτ
h(t) = dS(t)/dt -S(t) (2.3) S(t) = exp - t 0 h(τ)dτ (2.4)

Gaussian Mixture Models and the EM algorithm

A Gaussian Mixture Model (GMM) is used to model the pdf of random vector x as a linear combination of densities instead of a single one (eq. 2.5), p(X) = ∑ P k p(x|k).

(2.5) The difficulty in estimating the GMM parameters using the maximum likelihood approach is due to the latent variable, k, which indexes the components from which sample is drawn. The solution comes from Expectation Maximization (EM) which is an algorithm for maximum likelihood estimation of parameters, in the presence of latent variables or missing data.

Expectation Maximization

The algorithm to estimate the parameters of a GMM is the EM [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. It is an iterative method to perform Maximum Likelihood estimates of parameters in the presence of latent variables. Its name refers to the two steps of the iterative process, the E-step which is the estimation of the latent/missing variables and the M-step, which is the parameter update by maximizing the likelihood function.

The process can be summarized in equation 2.6,

θ n+1 = argmax θ        E Z|X,θ n {lnP(X, z|θ)} E-step        M-step . (2.6)
For the comprehensive description of of the EM steps in GMM estimation one can refer to [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. In predictive maintenance and consequently in this thesis, tasks like estimating the risk of a system failure, quantifying the condition of a components and predicting missing sensor values can be naturally modeled as regression problems and therefore extensive research and experimentation was performed to select the proper ones for each case.

regression

Random Forests

Random forests [START_REF] Liaw | Classification and regression by randomforest[END_REF] are one of the most popular models in Machine Learning and they have been widely used both for classification and regression. They belong to a broad class of algorithms called ensemble learning Zhou (2012); [START_REF] Zhang | Ensemble Machine Learning: Methods and Applications[END_REF], which is the combination of multiple, simple models in order to solve a hard, complex tasks. In this sense, a random forest is composed by a set of decision trees [START_REF] Breiman | Classification and Regression Trees[END_REF], each one estimating the output variable on a set of available features.

The most important advantages of random forests can be summarized as follows:

• Scalability. Random forests can be naturally trained in distributed environments [START_REF] Chen | A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment[END_REF].

• Non-linearity. They can capture complex relationships among the features by traversing the tree and splitting the data based on feature values.

• Interpretability. Being composed by many simple decision trees, several techniques can be used to assess each feature's importance based on the effect of the splits in which it participates [START_REF] Archer | Empirical characterization of random forest variable importance measures[END_REF].

• Simple and intuitive hyperparameters. The only1 hyperparameters of a random forest is the number of trees and the maximum depth.

Model Evaluation

Given a training dataset and a model class (or a class of models) one has to decide whether the trained model will perform well in production, i.e. will perform as well with new samples. Therefore, there are two types of errors: a) the training error, which is the error on the samples used to train the model and b) the generalization error, which is the error on new samples that were not used during training. The generalization error is our estimation of our model's performance once deployed.

Since the generalization error cannot be computed before the actual deployment of the model, we simulate it by dividing the available data into two sets, the training and the validation datasets. We fit the model on the training dataset and we evaluate its performance on the validation one, thus obtaining the validation error, which is our simulation for the generalization error.

The most popular approach is k-fold cross-validation (or rotation estimation) Kohavi (1995), in which we divide the training sets in k non overlapping segments. Then the model is trained using the k -1 segments and the validation error is estimated on the other one.

In general, the k -1 training subsets can be selected by random sampling the indices of the data points in the training set. However, in the special case of sequential data (such as time series), one has to comply with a simple and intuitive rule: the sequence of the data must be respected and thus, past samples should only be used for training and future samples for validation 2.3.

Hyperparameter Selection

Machine Learning models contain parameters that cannot be optimized during the training phase, such as the regularization term λ in LASSO Tibshirani (1996), C in Support Vector Machines [START_REF] Duan | Evaluation of simple performance measures for tuning SVM hyperparameters[END_REF], the number of trees and the maximum depth in random forests. Parameters that cannot be optimized need to be selected by brute force approaches, such as grid-search. These parameters are known as hyperparameters.

In gird-search, one defines the ranges of the hyperparameters in which the search for the best model will be performed. At every step of the search, a combination of the values within the predefined ranges is assigned to the hyperparameters and a kf old cross validation is performed.

The values of the hyperparameters are closely related to overfitting since they control the complexity of the model. A complex model tends to overfit since it tends to have the capacity to mimic the training set. However, if this complexity is not controlled, the model will perform poorly on the test set (see Figure 2.5). Consider for example the max_depth parameter in a random forest, which controls the maximum depth which each tree can reach by the iterative splits and thus, the larger the depth the more complex relationships among the features will be used for the split and this may lead to overfitting. In Figure 2.5 we present the impact of the max _ depth parameter on the train and test errors using the Wine Quality2 dataset. This dataset [START_REF] Cortez | Modeling wine preferences by data mining from physicochemical properties[END_REF] consists of 4898 instances (samples) with 12 attributes that represent characteristics of the wines.

For our purpose of demonstrating the problem of overfitting, we formulated a regression problem aiming to predict each wine's score (it is one of the 12 attributes) using the other 11 features.

The method was evaluated using the Mean Square Error. The

learning as optimization

Learning a model M from the data requires a metric or a measure that quantifies the quality of the fit. This measure is usually called the loss function and quantifies errors made during the fitting process (i.e. the samples for which the model did not fit well) and is task dependent. Therefore, model training is an optimization process that aims to minimize the loss function by finding the model's parameters that achieve this minimum loss.

A plethora of methods exist to perform this optimization, some of them being model-specific and some more general. In the next section we briefly present the concept of Gradient Descent (GD), which is the most widely used optimization approach in Machine Learning.

The Gradient Descent

The GD method is an iterative algorithm for optimization [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] and it is widely used in learning parameters in numerous applications. In each iteration, the parameters are updated by following the opposite direction to the gradient of the loss function with respect to the current parameter values (Eq 2.7).

θ i+1 = θ i -η∇ θ L(θ i) (2.7)
The problem with this approach is that at each iteration, the gradient has to be computed on the whole training set and thus, in cases where it is very large, each step requires a lot of time.

Alternatively, Stochastic Gradient Descent (SGD) Bottou (2010) is an extension of GD, which performs an update of the parameters using a single sample. The term stochastic comes from the fact that the process depends on the samples randomly selected at each iteration.

Convex Quadratic Programming

When the loss function is convex, a single set of values for the model's parameters exists, which evaluates the function to its global minimum. In this section, we will briefly introduce a specific form of a convex optimization problem, which is called Quadratic Programming (QP). An optimization gram is Quadratic, if the objective function is convex quadratic, and the constraint functions are affine [START_REF] Boyd | Convex Optimization[END_REF].

The quadratic program has the form:

min x x T Qx + w T x + c s.t. Gx h Ax = b (2.8)
where

Q ∈ S n + , G ∈ R m×n and A ∈ R p×n . S n + is the space of Positive Semidefinite matrices of shape n × n. A matrix M ∈ R n×n is positive semidefinite iff x T Mx 0, ∀x ∈ R n×1 .
The importance of convex optimization in Machine Learning lies in the fact that formulating the parameter learning as such, one can obtain a global minimum. Consider for example the problem of linear regression, where we aim to minimize the mean squared error Xθb 2 . This problem can be formulated as:

min w θ T X T X Q θ -2b T X -w θ + bb T c (2.9) which is convex.
Finally, Quadratic Programming will be the key concept for developing the methodology in Chapter 6.

3

S U RV I VA L A N A LY S I S F O R FA I L U R E -L O G E X P L O R AT I O N
In this chapter we present our approach to explore Post Flight Report (PFR) datasets (which consists of aircraft failures) using state of the art survival analysis techniques. Failures are the most important entities in predictive maintenance because it's their occurrence that reflects problems in equipment on-board and triggers maintenance actions. Therefore, before building a machine learning approach for failure prediction, we extract basic information about their occurrence for two main reasons: a) we will use this information later to properly setup our learning process with no prior knowledge from experts and b) the outcomes are useful to investigate differences among aircraft types or equipment types with respect to failure rates, in order to discover relevant vulnerabilities.

introduction

As mentioned in the previous section, survival analysis is widely used to investigate the time-to-event in several domains, mostly in medicine and biology and has been widely used for many years now [START_REF] Kelly | Survival analysis for recurrent event data: an application to childhood infectious diseases[END_REF], [START_REF] Binet | A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis[END_REF], [START_REF] Adams | Long-term survival analysis in hereditary hemochromatosis[END_REF] [START_REF] Gross | Survival Distributions: Reliability Applications in the Biomedical Sciences[END_REF]. In engineering, suvival anaysis (which is named reliability theory [START_REF] Ma | Survival Analysis Approach to Reliability, Survivability and Prognostics and Health Management (PHM)[END_REF]) methods are used to extract knowledge about the remaining lifetime of components and the time to failures, Liao et al. (2006), Zhou et al. (2014).

All these approaches study the corresponding problem in hand using the main concepts presented in Section 2.2.1. Although these methods provide useful information about the termporal nature of the events, they are not capable of performing accurate predictions and therefore, machine learning approaches have been employed [START_REF] Wang | Machine Learning for Survival Analysis: A Survey[END_REF]. However, simple survival analysis methods consist of very effective tools for exploring failure log data.

Random Variables in event logs

An event log contains the sequence of failures that occurred during the operation of the aircraft. The alphabet of failures is finite and each failure is recorded using its unique identifier (id).

Let E = {e 1 , . . . , e k } be the alphabet of failures. Thus, each entry in the logbook is a tuple < t i , x i >, where t i is the timestamp of the failure and x i ∈ E is the failure that occurred. For each aircraft, the logbook forms a sequence of such tuples.

The alphabet of failures contains both important 1 and not important ones and thus, we are interested to analyzing and predicting the former ones. Let e T be a critical failure that we aim to predict. In the history of event logs this failure may appear more than once and thus, the survival time corresponds to the time interval between two consecutive occurrences of e T (i.e. the time interval starting from the maintenance action until its next failure). We define k random variables that correspond to these intervals

T e i , i ∈ [1 . . . k]. Furthermore, we introduce k × k -1 random variables T e i
e j that correspond to the time between failure e j and the next occurrence of e i . We will use this information later in this chapter to introduce the concept of predictors. To be aligned with the concepts in survival analysis, we assume that after each occurrence of a target failure a maintenance action treats the failure in such way that it becomes independent of the previous one. Although this might not be always true, it is a reasonable assumption in most cases. Furthermore, throughout the rest of the thesis we consider the time as a discrete variable that is measured in flights for two main reasons. First, in order to avoid including possible time periods of non-utilization of an aircraft and second, the number of take-offs and landings are more important for many failure types than the amount of hours.

Building a Dataset for Survival Analysis

In a typical survival analysis experiment, one starts observing a population at t = 0, and monitors the time of occurrence of the events. In order to structure our failure data accordingly, we introduce a new subject of the population for interval between two consecutive occurrences. Moreover, we consider the interval from the beginning of the PFR log until the first occurrence of the target failure and the interval from the last occurrence of the target failure until the end of the PFR as right-censored observations.

In Figure 3.2 we demonstrate this setup.

AC 1 AC 2 AC 3 AC 4 x x x x x x x x x x x rc 1,1 rc 2,1 rc 3,1 rc 4,1 t 1,1 t 1,2 rc 1,2 t 2,1 t 2,2 rc 2,2 t 3,1 t 3,2 rc 3,2 t 4,1 rc 4,2
Figure 3.2: PFR survival data and censoring. 'rc' for right censoring and 'x' is the event of interest. Each interval t i,j and rc i,j is a subject in the population.

The time-aligned dataset created by the intervals depicted in Figure 3.2 is presented in Table 3.1. Each row is added for every timestep at which an event occurred (either censored or not) in a time-increasing order. The columns are:

• t is the duration from the beginning of the observation until the event

• d(t) is the number of events at time t

• q(t) is the number of right censoring at time t

• n(t -) is the number of subjects at risk just before time t, i.e.

the number of subjects without the event just before time t. Hazard approach presented in Section 3.2.2.

intervals t d(t) q(t) n(t -) - 0 0 0 15 rc 2,1 , rc 4,1 rc 2,1 0 2 15 rc 2,2 rc 2,2 0 1 13 t 1,1 t 1,1 1 0 12 rc 1,1 , rc 3,1 rc 1,1 0 2 11 rc 1,2 , rc 3,2 rc 1,2 0 2 9 t 3,2 t 3,2 1 0 7 rc 4,2 rc 4,2 0 1 6 t 3,1 , t 2,1 t 3,1 2 0 5 t 2,2 , t 1,2 t 2,2 2 0 3 t 4,1 t 4,1 1 0 1

time interval between failures

In this section we study the survival functions of target failures using the non-parametric Kaplan-Meier [START_REF] Kaplan | Nonparametric Estimation from Incomplete Observations[END_REF] approach and furthermore, we investigate the impact of some available covariates using the Cox Proportional Hazard method Cox and Oakes (1984a).

Kaplan -Meier method

The Kaplan-Meier is a non-parametric method of estimating the survival function. The KM estimation of the survival function is

Ŝ(t) = Ŝ(t -) p(T > t|T ≥ t) (3.1)
where

p(T > t|T ≥ t) = 1 if d(t) = 0 n(t -)-d(t) n(t -) otherwise (3.2)
and consequently, from (3.1) and (3.2) one can derive the final form of the survival function:

Ŝ(t) = ∏ t (i) ≤t n(t -) -d(t) n(t -) . (3

Cox Proportional Hazards

The CPH method enables the utilization of continuous and categorical covariates in the model of the hazard function and thus, it can be used to study the effect of each one on the hazard rate.

In CPH the hazard function is modeled as the product of a baseline hazard (h 0 (t, a)) which depends on time, and a term (exp(β T x)) that depends on the covariate (3.4).

h(t, x) = h 0 (t, α) exp(β T x) (3.4)
The advantage of this model is that if we are interested in investigating how the covariates affect the hazard function, then we do not need to compute the baseline hazard, since the ratio of

h(t, x 1) h(t, x 2) = h 0 (t, α) exp(βx 1) h 0 (t, α) exp(βx 2) = exp {β(x 1 -x 2)} (3.5)
Finally, learning the coefficients is performed by maximizing the partial log-likelihood Lee and Wang (2013) log

L(β) = k ∑ i=1    βx i -log   ∑ l∈R(t i) e bx l      , (3.6)
where R(t i) are the subjects of the population that are at risk and x i is the covariate vector of subject i that died at timestep i.

Modelling with Cox Proportional Hazards

In our 18-aircraft dataset we have only one categorical covariate, the aircraft label. We use this just to demonstrate how the CPH can be used in the future when we will add convenient covariates.

For the case of one single categorical covariate with k possible values, the model is was built using k -1 binary variables, for all but one possible values of the covariate.

In Table 3

studying inter-event temporal differences

In Section 3.1.1 we introduced the random variables T e j e i that are the number of flights between an event e j and the next occurrence of e i . Here, given a target failure e T we aim to investigate the random variables T e T e j in order to identify possible predictors, aiming to answer the following question: How many flights before the occurrence of e T are we able to make a prediction? This question is very important since most machine learning methods for failure prediction form a binary classification problem Sipos et al. (2014a), with the positive class being generated by an interval before the failure. The determination of the length of this interval is usually 3.3 studying inter-event temporal differences defined by experts, however, when this knowledge is hard to acquire an automated approach would be very essential.

In Figure 3 Exploring the variables T e T e i for a critical failure gives essential exploratory information that can be used for prediction. However, in order to make accurate predictions given the PFR data one has to take into account predictors that are combinations of other failures and not single ones.

summary

In this chapter we presented our exploratory analysis on the PFR dataset. We presented an approach using state of the art survival analysis methods in order to explore the time intervals between failures and the possible impact of available variables on the survival times. Moreover, we used the time intervals between failures in order to identify candidate predictors and also, to extract information that will be useful in failure prediction, which is presented in the next chapter.

4

FA I L U R E P R E D I C T I O N I N P O S T F L I G H T R E P O R T S
In this chapter we present an approach to tackle the problem of event prediction for the purpose of performing predictive maintenance in aviation. Given a collection of recorded events that correspond to equipment failures, our method predicts the next occurrence of one or more events of interest (target events or critical failures). Our objective is to develop an alerting system that would notify aviation engineers well in advance for upcoming aircraft failures, providing enough time to prepare the corresponding maintenance actions. We formulate a regression problem in order to approximate the risk of occurrence of a target event, given the past occurrences of other events. In order to achieve the best results we employed a multiple instance learning scheme (multiple instance regression) along with extensive data preprocessing. We applied our method on data coming from a fleet of aircraft and our predictions involve failures of components onboard, specifically components that are related to the landing gear. The event logs correspond to post flight reports retrieved from multiple aircraft during several years of operation.

To the best of our knowledge, this is the first attempt on aircraft failure prediction using post flight report data and finally, our findings show high potential impact on the aviation industry.

The rest of this chapter is organised as follows: In section 4.2 we present the related work on event prediction from event logs. Although there are plenty of methods for categorical time series prediction, we emphasise on methods that address the problem of predicting future occurrences of specific events (or failures in predictive maintenance). In section 4.3 we present the nature of event-log data along with our preprocessing steps and in section 4.4 we present our approach for prediction. In section 4.5 we discuss about our data, the experimental setup and the parameters and section 4.6 presents our results. Our conclusions and future work are in section 4.7.

introduction

Monitoring systems generate events that reflect the condition of the equipment or the processes that are being observed. Hardware health, business processes and server activities are examples of cases where event logs are generated in order to provide the corresponding information. Given a set of event logs, questions of great importance are: how can we predict when a specific event will occur? How far before its occurrence are we able to predict it? In this chapter we address the problem of predicting the next occurrence of a specific event (target event), given the history of past events. This problem is extremely significant in predictive maintenance [START_REF] Kauschke | Predicting cargo train failures: A machine learning approach for a lightweight prototype[END_REF]; [START_REF] Susto | Dealing with time-series data in predictive maintenance problems[END_REF], where the prediction of an upcoming failure of a system is very important.

In hardware monitoring applications, events are usually generated by software installed on the target equipment that regularly samples sensor measurements (e.g. temperature, pressure, etc).

So far, the event logs are used mostly for debugging purposes more, in Laxman et al. (2008) the authors present a method that predicts if the next event (given a history of events) is a target event (an event of interest). Their approach is based on frequent episode mining and Hidden Markov Model (HMM).

In this setup, a multiple instance learning [START_REF] Fu | Milis: Multiple instance learning with instance selection[END_REF] approach is more appropriate in order to tackle the problem of falsely assigning unrelated events to the positive class (i.e.

events that randomly appeared before the failure). Although a plethora of existing approaches is available in the literature, the particularities of our data prevented us from using any out of the shelf solution. Our target events are extremely rare, we have a large and sparse feature space and our goal is to develop a customisable method that could be easily adapted in an industrial environment. Therefore, our method differs from the ones presented above in several aspects. Initially, our primary goal is to create a model that outputs a risk function based on the present events and quantifies the risk of an upcoming failure. Thus, we formulate a time-to-failure regression problem.

The value of our risk function is later employed in a simple thresholding scheme to make a final prediction. Furthermore, our method does not require the definition of the prediction interval parameter (i.e the amount time before the failure's occurrence that is considered as a positive class) for training our predictive model. On the contrary, we utilise a decision threshold that can be configured according to the desired precision and recall.

Finally, several methods exist for predicting failures in aviation but they target specific aircraft components. The most relevant work appears in [START_REF] Huet | Method and computer program for the maintenance aid of aircraft equipment[END_REF], where the authors propose a graph-based method to predict the most probable failures in the upcoming flights.

event log data & preprocessing

Event logs consist of time-ordered events; Table 4.1 shows an example of an event log file. An event is composed by a timestamp that corresponds to the time of its occurrence and other attributes that contain information about the event. These attributes may in-clude a system or subsystem identifier that generated the event, a task id (in information system logs), description about the activity (in server logs), failure description (in hardware monitoring) and a unique event identifier. In this work we target event logs and events come from a finite and known alphabet. A timestamp and an event id are the only attributes required by our methodology.

sys id timestamp event id source description Let E = {e 1 , e 2 , . . . , e k }, be the finite set of possible events. Our goal is to predict the next occurrence of a target event e T ∈ E .

Initially we partition our dataset into episodes, that correspond to the periods between consecutive occurrences of the target event e T for each system. Each episode ep j i of system j begins with the first event after the occurrence of e T and ends with the next occurrence of target event (Figure 4.1).

The events within each episode are grouped into time-segments based on the nature of the log generation process. For example, a segment may correspond to a day or to a single usage of the equipment. This is essential in cases where the granularity of the timestamp is not high enough to distinguish the order of the events within the segment. to the bag-of-words representation (in our case bag-of-events) in text mining [START_REF] Joachims | Text categorization with support vector machines: Learning with many relevant features[END_REF], and contains the number of times each event occurred within the segment. Thus, x e i ≥ 1 if the event e i occurred within that segment and x e i = 0 otherwise.

Every episode forms a |E | × t matrix,

X ep i = [x 1 , x 2 , . . . , x t],
where x 1 is the first segment of that episode and x t the last (i.e.

the segment that contains the target event e T , x t e T ≥ 1). For simplicity, we use t for the duration of every episode although the duration of each episode is different. Also, for bag-of-events representation x i e j the superscript i is the time of the segment (starting from 1 at the beginning of the episode) and the subscript e j corresponds to the event e j .

Preprocessing

In this representation it is straightforward to apply standard preprocessing techniques [START_REF] Zheng | System log pre-processing to improve failure prediction[END_REF]. In this work we employ the following ones:

• Removing events that appear less that n times. Extremely rare events (e.g. ones that occur only a few times within millions of event entries) can potentially1 be removed in order to reduce the dimensionality of the data.

• Event Collapsing: Removing multiple occurrences of events in the same segment. In other words, making the bagof-events of each segment (x i) binary. Depending on the application, multiple instances of an event at a timestep can either be noise or may not provide useful information.

• Penalising frequent events. Usually the most frequent events do not contain significant information since they correspond to issues of minor importance. A tf-idf (termfrequency -inverted document frequency) or similar approach can be used to penalise such frequent events.

• Removing events that occur in consecutive segments. This step can be significant in scenarios where events of minor importance occur and appear in every timestep until their underlying cause is treated by the technical experts. In such cases only the first time of the occurrence is important.

• Statistical Feature Selection. We propose another feature selection method that is based on the time intervals between the events e i ∈ Ee T and the target event e T . Specifically, we introduce |E | -1 random variables, T e T e i , with P(T e T e i ≤ t) being the probability of event e i occurring less than t timesteps before the next occurrence of e T . We fit Weibull distributions [START_REF] Kaiser | Predictive maintenance management using sensor-based degradation models[END_REF]; [START_REF] Nakagawa | The discrete weibull distribution[END_REF] on these random variables and we select the features e i if E T e T e i ≤ γ. A rationale for this is that good predictors for e T should occur within an expected interval before the occurrence of e T (see Section 4.6.5).

One can easily employ text-based transformations on the feature matrix, such as Latent Semantic Indexing (LSI) [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF] and word embeddings [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF] to reduce the dimensionality of the feature space and to exploit possible hidden structure. However, an initial evaluation of such transformations did not lead to improvement of our results and thus we leave it as future work.

methodology

Our goal is to learn a function r(x i) for a target event e T , r : R |E |×1 → [0, 1], that quantifies the risk of event e T occurring in the near future, given the events that occurred at timestep i, x i .

One property of r(x i) is to be monotonically increasing in time (r(x i) ≤ r(x i+1)) and its maximum value would be at the end of each episode, when e T occurs.

Our approach is driven by the assumption that as we approach the occurrence of e T , one or several events that are correlated to e T will start occurring (i.e. predictors). For an episode that starts at timestep 1 and ends at timestep t, this function at timestep i should increase significantly as the distance from the target event (ti) approaches to zero. Furthermore, r(x i) should be close to zero when the distance from the target event is relatively large. Thus, we formulate a regression problem < x, y > as

< x i , f (i; t) > where f (i; t) = 1 1 + e s((t-i)+c)) (4.1)
and we learn our function by minimising the mean squared error: ||r(x i)f (i)|| 2 2 . In figure 4.2 we present the form of this function for an episode of length 300. Parameters s and c correspond to the steepness and the shift of this sigmoid-shaped function. Selecting a proper value for c is highly significant because it represents the expectation of the time before the target event at which correlated events will start occurring. Thus, this parameter depends on the dataset and should be tuned by the corresponding area experts.

Y = [f (1; |ep 1 |) . . . f (t; |ep 1 |) ep 1 . . . f (1; |ep k |) . . . f (t; |ep k |) ep k] T .
where |ep i | is the duration of episode i.

There are several off the shelf methods that can be used to solve this regression problem. In this work, we employed the random forest regression model [START_REF] Liaw | Classification and regression by randomforest[END_REF] because it gave the best results compared to other regression techniques such as LASSO, Support Vector Regression (SVR) and Gradient Boosting.

Our feature matrix X ep i consists only of other events (E -{e T })

but it can be extended in a straightforward manner by adding extra rows for other possible additional information, such as keywords extracted by text description, environmental variables and sensor time-series data.

Finally, we aim to identify the set of predictors with respect to e T , P e T ⊆ E -{e T }, which is the subset of events that precede the target event and can lead to its prediction.

Multiple Instance Learning Setup

Multiple Instance Learning (MIL) [START_REF] Foulds | A review of multi-instance learning assumptions[END_REF] is applied when a label (class) is associated with a bag of instances (feature vectors) rather than a single instance, and it is not known in advance which subset of the vectors contributes to the class label. Similarly, in our regression formulation, a MIL setup is more appropriate: several events appear shortly before the occurrence of the target event but only a small subset of them is related to it (i.e. predictors). That is, for the interval right before the occurrence of e T where f (i; t) 0, apart from possible predictors there are other events that are not associated with e T . Therefore, if we discard this information the training set will contain wrong y values for those timesteps when only unrelated events occur before e T . Moreover, when the target event is rare, which is usual to critical events Koh (2009), we have to deal with the imbalances in the labels.

In order to tackle both problems, we adopt a sliding window approach in order to oversample the intervals where f (i; t) 0 and create more samples where possible predictors occur. Specifically, for the intervals where f (i; t) ≥ 0.1, we apply a sliding window over the feature vectors, x i , by averaging their values,

x = 1 w ∑ i+w i
x i and retain as y value the sigmoid output of the last timestep within that window, y = f (i + w; t) (Figure 4.3). The window length w should be large enough to create multiple instances where P e T is present. Also, for our approach we set the step size equal to 1.

Prediction

The trained model's output, r(x i) corresponds to risk of e T , given the events that occurred in x i . Once the model is deployed and new sequences of events arrive, we obtain a new risk timeseries

[r(x 1), r(x 2), . . .] which we use to perform the prediction of e T . In order to decide wether e T will occur we employ a simple thresholding approach. Specifically, we define a thresholding parameter, h and make a positive prediction if r(x i) ≥ h. In order to make a correct prediction in the example 4.4, the threshold could be set as h ≥ 0.2. Unlike the probability thresholds in binary classification that are used to generate the ROC curves, increasing this threshold does not guarantee the reduction of false positives. However, we study the value of the threshold and its relationship to precision and recall in section 4.6.2.

Method summary

The steps of our methodology for creating and deploying the prediction model are the following:

1. Preprocessing

• Partition the data into episodes.

• Group the events of each episode into segments. The segment size should comply to the log collection characteristics.

• Create matrices X ep i for all episodes.

• Apply the preprocessing steps.

Training/Validation

• Group segments into windows of size w.

• Create the response vector [f (i; t)] T for each episode

• Form the regression dataset < X, Y >

• Train the desired regression model via cross validation

Testing/Deployment

• As new segments arrive, keep the latest by applying a sliding window (w) and create the event matrix X w

• For each new segment update and preprocess X w

experimental setup

We apply our method on event logs generated by monitoring systems onboard, where the events correspond to failures of aircraft components. Our goal is to predict such failures that are critical to the function of the aircraft. When these failures occur, the aircraft must stay on the ground for control or repair and therefore, being able to predict these failures in advance and plan the corresponding maintenance increases the availability of the aircraft.

Dataset

Our data consists of event logs from a fleet of 60 aircraft and spans within several years of operation. The alphabet of events consists of more than 3400 distinct failures. Each failure corresponds to a system; the information about the system comes from each failure's Air Transport Association (ATA)2 chapter.

The target event e T is predefined and corresponds to a failure that affects the landing gear (ATA 32). We partition each sequence of events of every aircraft in AC e T into episodes and we discard the events that occurred after the last occurrence of e T of every aircraft. Our approach is leave k episodes out, that is, we randomly select k episodes from AC e T for the training set. We select half of the aircraft in AC e T for training and half for testing. In order to train the random forest model and select the proper parameters we use 5-fold cross validation on the training set.

Baseline Algorithm

In order to assess the performance of our method we employ a simple, yet popular approach Murray et al. The depicted intervals in Figure 4.6 correspond to:

• positive class: This interval corresponds to the time before e T when a prediction is correct and useful.

• w: The prediction margin. Corresponds to the minimum amount of time required by experts to respond to a failure.

• negative class: Instances within this interval are classified as negative since they are distant to e T

• in f ected period: This is the period that follows the occurrence of the target event.

The intervals above should be defined by field experts, so that they correspond to actual requirements. For a fair comparison, we set the positive class with respect to shift parameter c of our approach (Figure 4.7).

We employ linear Support Vector Machines (SVM) Fan et al.

(2008) with l1 regularisation for the classification. Also, we perform the same train/validation/test scheme and we create the positive and negative instances similar to [START_REF] Sipos | Logbased predictive maintenance[END_REF]. In prediction/classification problems one can evaluate the performance of a method using standard metrics, such as F1-score, precision, recall and Area Under the Curve (AUC). In the literature, these metrics are evaluated at the instance level, (i.e. for each bag or for every feature vector). However, when dealing with event prediction in temporal environments these metrics should be evaluated at the episode level. In order to justify this approach consider the following artificial, extreme-case example: In Figure have a cost and it is critical to minimize their amount. Therefore, episode-level evaluation is more important in this context and we evaluate our method accordingly.

Regarding our regression approach, the evaluation at the instance level is performed by the mean squared error whereas for the episode level, we use the aforementioned thresholding approach.

Specifically, assuming that the threshold was crossed at i flights before the occurrence of e T the episode is true positive if ν ≤ i ≤ 2c, where c is the shift parameter of our sigmoid function and ν is a constant that determines the minimum time before the occurrence of e T when the prediction is useful3 . For fair comparison with the baseline we set ν = w, the prediction margin.

4.6 results

results

Bag-level Performance

In Figure 4.9 we present the ROC curve for the baseline model at the instance level. We performed 5-fold cross validation to estimate the best parameters for the SVM classifier. Table 4.3 shows the prediction results at the episode level, considering the best parameters for both our approach (Random Forest Regression (RFR)) and the baseline (SVM). An episode is considered a true positive if e T is predicted between 5 and 200 flights before its end. More specifically, we compute the number of flight before the target failure that the decision threshold, γ, was cross for the first time. Consequently, if the threshold was crossed more than 200 flights before the occurrence of e T , the episode is a false positive and finally, an episode is false negative if the threshold was never higher that γ.

Similar to [START_REF] Sipos | Logbased predictive maintenance[END_REF], we evaluate our experiments using standard metrics adapted in predictive maintenance: • precision: TPs / (TPs + FPs)

• recall: TPs / all failures The threshold value that lead to the best prediction results was chosen. In the next section we discuss the most important aspects for selecting a proper threshold value.

Finally, we have to note that several other approaches were tested but we omit the corresponding results because of the poor performance. Specifically, we performed similar experiment using Hidden Markov Models but we had to limit the amount of time-steps before the failure (or the episode length) because of the performance constraints. Thus, with this limitation the HMM was unable to give any significant results. Moreover, we tested association rule mining, aiming towards estimating rules of the form P e T → e T in order to capture the aforementioned predictors.

The main constraints in this approach were the lack of the cardinality information and the formation of large buckets to capture predictors that occurred many flights before the failures, which led to many high-confidence rules. Finally, sequence prediction approaches were not able to perform well, mainly due to the fact that most of the failures were spurious and not related to the target failure.

Decision threshold selection

The decision threshold h constitutes a very important parameter of our approach and thus, we investigate its impact on the results with respect to the evaluation metrics.

In Figure 4.11 we present the impact of different threshold values on the final prediction.

Setting a proper threshold value can be performed according to the desired TPR and FPR and also, to the time before the target event at which a prediction is desired. In figure 4.12 we present the impact of the different threshold values to time that a prediction is performed. On the x-axis we place the different threshold values and on the y-axis the first time (at every episode) at which the threshold was crossed. Unfortunately, a false positive may appear far before the occurrence of e T . However, a possible explanation of their presence is the intervention of engineers that affected the target event, by performing actions that prevented its occurrence.

Model Interpretation

In predictive maintenance it is important to understand and interpret the prediction model for two main reasons: first, it can provide very useful feedback to experts and second, it is a qualitative way of evaluating a model (i.e. the features make sense).

In this work, our features consists only of other events/failures and therefore, we can identify candidate predictors P e T from the features weights assigned by the random forest. If the decision threshold is set as h = 0.6, then the first one (left), shows a true positive episode where a prediction was correctly made 100 flights before the occurrence of e T , while during the first 8700 flights the output value of our risk function was low.

The second episode (middle) is a false positive since our models output was grater than the threshold more than 3000 flights before the target's occurrence and finally, the last episode is a false negative.

conclusions and future work

In this chapter we presented a method for predicting future events from event logs in the context of predictive maintenance.

It constitutes a novel combination of state of the art statistical and machine learning techniques and our experimental evaluation shows that it outperforms a common baseline approach. A major contribution of this work is the fact that it constitutes the first attempt to perform failure prediction given only post flight reports. Our future work will aim to increase the performance by exploiting information from a variety of sources, such as sensors, maintenance logs and environmental variables.

Infusion and Impact

The importance of failure prediction and the possible impact of our approach can be highlighted by studying its impact on airlines. Specifically, stats show that the unexpected occurrence of our target event4 can lead to either a flight delay that costs approximately 4000 USD to the airline or to a flight cancellation, costing 15.000 USD5 . Within a year of observations on several airlines, its occurrence costed around 2.000.000 USD and therefore, being able to predict 20% of its occurrences on time, can lead to saving up to 400.000 USD per year for this particular failure. In this chapter we present our approach for logbook data preprocessing and information extraction. Specifically, given a set of logbook entries, we propose an unsupervised method for cleaning and extracting information regarding aircraft maintenance activities. Our approach is based on recent advances in text mining using neural networks and traditional Natural Language Processing (NLP) techniques. Our results show the potential of using our method for unsupervised cleaning of such logs using zero domain knowledge.

related work

Event reports or logbook entries are being collected in many domains and it is not until recently that researchers started analyzing these data, since they contain valuable information about the domain and are written by experts [START_REF] Ittoo | Text analytics in industry: Challenges, desiderata and trends[END_REF]. For It is evident that the logbook contains information that comes from domain expertise and thus, being able to extract it could be of great benefit for many applications. Towards this direction, we devoted most of our efforts in cleaning the free-text in our maintenance logs and we developed a context-aware approach for correcting errors in our corpus, which is based on word embeddings.

logbook data in aviation

In aviation, the logbook is the place to store the information about any maintenance action performed on an aircraft, either scheduled or not. Its schema contains technical information about issues along with the corresponding maintenance actions. The most important pieces of information are stored in the following columns:

• Aircraft identifier: An alphanumeric that is unique for each aircraft, such as aircraft registration number or Manufacturer Serial Number (MSN).

• Date and time of issue and the corresponding action

• Issue text: The text that describes why the maintenance was requested, such as noise or system failure. Usually this is written by the crew. If the maintenance was scheduled then this field contains an identifier that corresponds to the maintenance type.

• Action text: The action that was performed to resolve the issue. In case of scheduled maintenance with no issues found this is empty.

• Equipment replaced: If a component was replaced during the action then the serial numbers of both the new and the old one are written here.

• Related flight: If maintenance was requested by an issue that occurred during a flight, then the flight number is also included.

As indicated above, there are two types of maintenance actions that can take place: scheduled and requested. An entry for a scheduled maintenance activity, such as a daily inspection does not contain an action text unless something was discovered that required an action. On the other hand, a logbook entry for a requested maintenance will consist of the irregularities spotted by the crew and the actions performed by the maintenance personnel.

Data Description

Logbook entries contain usually short text that comes from a very specific vocabulary. The sentences are very compact and descriptive and usually, both the issue and the maintenance text consist of a single sentence. In Figure 5.1 we present the the length of the sentences in logarithmic scale for our dataset, which shows that the vast majority of the entries have less than 20 words (log e (20) ≈ 2.99). The figure was generated using 440.000 issue text entries and 440.000 maintenance text entries (440.000 + 440.000 = 880.000).

Cleaning the Logbook

In every application where input is directly entered by users there is a lot of noise and when the input is free text, it usually contains typos and syntactical errors. Moreover, people tend to develop their own, domain specific language that consists of many abbreviations. Since our purpose is to use the logbook information for predictive maintenance, we have to process the raw data and make sure that we will be able to extract as much information as possible that is related to the maintenance actions that took place and the the reasons that triggered the actions (if not scheduled).

In Table 5.1 we show some examples of words that have been mistyped and the suggestions obtained by using the Enchant1 spell checker (using the Python bindings pyenchant2).

Correct Suggestions

Wrong Moreover, Table 5.1 highlights the need of using domain-aware methods for cleaning the text. For example, consider the suggestion rplcd → purpled that maps a common abbreviation to a wrong word. We treat this problem by proposing a context aware method that learns the context from the set of available logbook entries.

the importance of logbook data

It is evident that the logbook contains very important information about the components of the aircraft, however, we have to define specific objectives according to expected outcomes of processing such data. More precisely, have to answer the following questions: On the other hand, there are more reasons that are not so obvious and are highly important, especially for our ultimate objective, failure prediction in predictive maintenance. Aviation industry exists for many years now and precious knowledge has been empirically gathered by experts and has been exchanged

withing their communities. Although there are many types of analysis that could benefit from such prior knowledge, in the context of our thesis we dealt with a very specific problem. Recall the predictor 3 events from Section 3 and consider the following example: When such predictors occurs, some maintenance engineers may know from experience that this will lead to the failure of our target failure and thus, he takes some actions that prohibit the target event's occurrence. Furthermore, the same effect could possibly occur when something is identified and fixed during a scheduled maintenance by a replacement or a repair. All this information appears in the logbook and the existence of such cases impact the formation of our machine learning dataset in the following manner:

• Since the target event does not occur after the engineer's intervention, our training set does not assign the proper risk for the flights when the predictors occur. In Figure 5.3

we illustrate this problem.

• Consecutively, this will affect the evaluation of the algorithm by increasing the number of false positives. The model outputs high risk by observing one or more predictors, however, since the target event will not occur due to the maintenance, the episode will be marked as false positive. As a result, once the information from the logbook is extracted we can use it in order to solve the two problems accordingly:

• Form a different learning dataset which will also include maintenance actions related to the target failure as events, or

• Infuse this information directly on the regression problem by adding features extracted from the maintenance actions text.

Our efforts were initiated by observing the aforementioned problems and consequently, we devoted significant amount of time in cleaning the maintenance logs.

context-aware spell correction via word embeddings

Let L = {lb 1 , lb 2 , . . . , lb m } be the logbook containing m entries.

For our purposes we only use the information in the issue and the maintenance text (i.e. we don't perform per aircraft or per component analysis so we discard this information) and thus, each logbook entry consists of two documents, lb j = {lb issue j , lb maint j }, the issue and the maintenance text respectively. Furthermore, Let W = {w 1 , . . . w k } be the set of unique words in the logbook, i.e. the vocabulary, which contains both correct words and typos (both intentional and intentional)4 .

Our main idea is to correct these typos using contextual information, that is, information that comes from the neighboring words in the sentence. For example, since the words "replaced","rplaced" and "rpld" will usually occur in similar sentences, we aim to use this information for better text cleaning. It is obvious that most traditional spellcheckers will fail to map the word "rpld" to the word "replaced".

This type of similarity has been recently obseverd in word embeddings, or vector representation of words. Thus the approach presented in the next sections is based on such methodology.

Word Embeddings & the skip-gram Model

Vector representation of words (or word embeddings) Maas et al.

(2011) are representations of words in d-dimensional spaces, i.e. mappings of a vocabulary W to a high dimentional space; f : W -→ R d . When an embedding is generated, it aims to capture some specific kind of information so as to be reflected in the projected space. For example Latent Semantic Indexing (LSI) Lan- The objective function to be minimized by the skip-gram model is the average log probability: Currently, there are several out of the shelf embeddings that one can use. These embeddings have been trained on huge corpora and provide vector representations that can be used directly by researcher on several tasks, such as text categorization, topic discovery and keyword extraction. Word2Vec5 and GloVe6 are probably the most popular ones. However, for our purpose we have to build our own ebeddings for three main reasons:

1 T T ∑ t=1 ∑ -c≤j≤c log p(w t+j |w t) (5.1) w t w t-1 w t+1 w t+2 w t-2 M 2 R k×d
• We want to obtain the representations of words that are certainly not available in the available embedding collections, such as typos and abbreviations.

• The available embeddings are trained on huge corpora and the representations capture more global structure and similarities. In our case, we have a limited vocabulary and thus we need more specialized vector representations.

• Due to the particularities of the logbook entries we need to learn the representation in order to capture the contextual information of each word in the context of maintenance in aviation.

Therefore, in the following section we present our approach for creating the embeddings based on word2vec, trained on the available logbook entries.

Creating word embeddings from logbook entries

Our corpus consists of 2m = 880000 documents (where m is the number of entries in the logbook) because we consider the issue and the maintenance text of each entry as two distinct documents,

D = {lb issue 1 d 1 , lb maint 1 d 2 , . . . , lb issue m d 2m-1 , lb maint m d 2m

}

For every word in each document we predict all the other words that exist in the document. We selected this approach because the logbook entries are short and the syntax is not important. Thus, our objective function is slightly modified:

1 2m 2m ∑ i=1 ∑ w∈d i log p({w ∈ d i -{w}}|w) (5.2)
After training the neural network, we obtain the emdedding matrix M ∈ R k×d . Figure 5.5 shows an interesting example of the generated word embeddings that highlights the main idea of our approach, which is described in the following section.

The graph was created by selecting 4 terms, detached, printer, tightened and replaced, and for each one, we selected the 10 most similar terms in the embedding space using the cosine similarity.

Then, we created the graph whose edges correspond to pairs of words that have cosine similarity greater than 0.6 (i.e. their vector representation). Interestingly, the graph consists of 3 connected components (and not 4). Birdstrike's and printer's neighborhoods consist of words that are related to their context, such as impact, blood, feather and paper, printing along with many misstyped version of these words. Tightened's and detached's neighborhoods exhibit the same behaviour, however, they are connected by edges that connect nodes such as fallen-resecured and tightened-lose and thus, the corresponding context is captured by the graph and the underlying embeddings. Such graphs were the key to observe this information which was captured in the embedding space and lead to the development of our method.

Finally, althought work has been done to combine information about topics and word embeddings [START_REF] Liu | Topical Word Embeddings[END_REF], to our knowledge, our approach is the first one to perform text cleaning using contextual information that comes from the embeddings.

Let M ∈ R m×d the embedding vectors in R d of each word. It bors in embedding space for 4 terms: 'detached','printer','tightened','birdstrike [START_REF] Sordoni | A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion[END_REF] that the similarity (e.g. cosine) of words in the vector representation is related to semantic similarity. Motivated by this, we explored the euclidean neighborhood in this space of important words such as "replaced", "tightened", and we discovered that it contains three different kinds of neighboring words:

• Typos/abbreviations

• Words of the same root and synonyms

• Words that belong to the same topic/context In figure 5.6, we present some examples of the neighborhood of 4 words in the embedding space. The neighborhood is calculated with the cosine similarity,

cos(x, y) = ∑ n i=1 x i y i ∑ n i=1 x 2 i ∑ n i=1 y 2 i (5.3)
which is the most popular similarity metric used in comparing word embeddings.

logbook cleaning using word embeddings

Based on the observations presented in the previous section, we start by splitting the vocabulary into three subsets:

• Proper words W p : Words that are correctly spelled.

• Serial numbers W s : Words consisting of characters and numbers and are unique for aircraft parts

• Misspelled words W m : Words that are typos Note that W p ∪ W s ∪ W m = W and W p ∩ W p ∩ W m = ∅, that is, W p , W s and W m are proper subsets of W. Algorithm 1 divides the vocabulary into these three subsets. The input consists of the vocabulary and a set T , which is a thesaurus of the language in which the logbooks are written. The thesaurus is a set containing all the words of the corresponding language. Furthermore, the condition in line three, where we check is a serial number, can be re-written as a regular expression that matches the serial numbers or even more simply, by just checking if a word contains both numbers and letters (although in some cases this could be a spelling error).

W m ← W m ∪ w 9:
end if 10: end for using their vector representations. By using this approach we assume that every misspelled word has been correctly spelled in another part of the logbook but this assumption is correct for the vast majority of the cases. We define G(w i , k), the k-neighborhood of a word w i in the embedding space as the k most similar words given a distance/similarity measure. In the following sections, we will omit any details related to the creation of the vector representations and we will use the notation G L (w i , k), to state that the neighborhood is calculated based on the vectors learned using the logbook L.

The neighborhood of a word in the embedding space is not enough to provide accurate mappings, because its closest neighbors in the representation space are not only misspelled occurrences of itself. Thus, assigning all these neighbors to each word will lead to multiple false matches (see Figure 5.6 where the neighborhood of the words don't consist only of spelling mistakes).

We therefore take into account the actual characters of which the ones. On the other hand, since the terms blood and lamp are not frequently misspelled, their neighborhood consists of mostly contextually similar terms and the distribution is composed by only a singe component.

Given a proper word w ∈ W p , we retrieve the misspelled words in it's neighborhood, w ∈ G(w, k) ∩ W m , using their Jaccard similarities. We employ a simple yet effective thresholdbased approach to decide whether each non-proper word in the neighborhood is a typo by comparing the Jaccard similarity with the threshold. Given a proper word w, the set of misstyped words that will be match to it is {v|v ∈ G(w, k) ∩ W m i f J(w, v) > γ}.

(5.5)

Algorithm 2 presents CorrectWords, the process of mapping misspelled words to proper ones.

Algorithm 2 CorrectWords

Input: L, γ, G Returns: L c 1: W p , W m , W m ← VocabularySplit(W) 2: L c ← L 3: for w p ∈ W p do 4:
g ← G(w, k) # Find the nearest neighbors

Method Summary

Finally, the result of algorithm 2 is the cleaned logbook. However, we observed that not all misspelled words are being mapped to proper ones and therefore, we investigated the application of our method iteratively. At each iteration, we clean the logbook and we re-train the neural network, which in turn leads to new word embeddings. Algorithm 3 presents the full approach. In our work, we are interested in extracting the actions which are expressed with verbs in the corresponding logbook entries, such as replace, fix, tight and clean. We use the standard POS tagger of the very well know library NLTK7 . Figure 5.9 shows some extracted verbs.

Figure 5.9: Maintenance keywords extracted from the logbookverbs via POS Tagging. The size of each word is proportional to its number of occurrences in the logbook Our motivation for extracting the verbs is twofold: First, it is important to identify which actions were performed on specific components in order to use this information for failure prediction.

Second, it would be of great benefit to study the impact of each action on the lifetime of the corresponding component. In this Chapter we present a method for assessing the condition of equipment on-board, using time series generated by sensors that monitor their health. We formulate and solve a time series decomposition problem in order to extract the trend and the fluctuation of each time series, and along with statistical properties of the samples, we quantify the severity of the fault. Finally, our method doesn't require any prior knowledge and our results demonstrate the effectiveness of our approach.

degradation

Hardware is not imperishable and may fade through time and thus, monitoring its condition is very important. In this section we present our work on faulty hardware detection and risk assignment. More specifically, given a collection of sensor time series that monitor the condition of several components from multiple aircraft, we aim to detect when a sensor starts emitting abnormal values and we aim to estimate a function that quantifies the degradation level.

The sensors under consideration have a specific pattern when the corresponding component is fading: the emitting values show gradually increasing behavior with increased variance. Figure 6.1

shows an example.

related work

Trend extraction [START_REF] Alexandrov | A Review of Some Modern Approaches to the Problem of Trend Extraction[END_REF] is a well studied problem in time series analysis. Aiming towards an effective solution, a plethora of methods have been proposed due to the fact that there is no standard definition for the trend [START_REF] Wu | On the trend, detrending, and variability of nonlinear and nonstationary time series[END_REF] and thus, each approach is driven by a specific application. However, most of the existing work does not tackle the problem under the monotonicity constraint that is critical for our application.

Two simple yet sometimes effective approaches are Low-pass filtering [START_REF] Harvey | General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series[END_REF] and linear regression [START_REF] Weisberg | Applied Linear Regression[END_REF]. Using a low pass filter can remove the fluctuation however, it is not guaranteed that the trend will be monotonic. On the other hand, fitting a line on the data will lead to a monotonic but linear trend. Unfortunately, in most applications including ours, the trend is not linear.

Another two popular approaches are the Singular Spectrum Analysis (SSA) [START_REF] Elsner | Singular Spectrum Analysis: A New Tool in Time Series Analysis[END_REF] and the Empirical Mode Decomposition (EMD) [START_REF] Mhamdi | Trend extraction for seasonal time series using ensemble empirical mode decomposition[END_REF][START_REF] Flandrin | Detrending and denoising with empirical mode decompositions[END_REF].

SSA is based on Singular Value Decomposition of the traversal matrix 1 of the time series and EMD is a method that decomposes the time series based on oscillatory components. However, both of them do not guarantee a monotonic trend. Similarly, since trend extraction is a special case of time series decomposition, Independent Component Analysis (ICA) [START_REF] Comon | Independent Component Analysis, a New Concept? Signal Process[END_REF] can be also used when monotonicity is not a constraint.

More recently, Gaussian Process (GP) Regression using monotonicity or shape constraints has been proposed and could be employed for trend extraction (Wang andBerger (2016) Golchi et al. (2015)). In these approaches the monotonicity is achieved by introducing virtual derivative points (with positive values for increasing behavior) in order to enforce the desired behavior.

Although they have not been studied for the problem of trend extraction, we investigated their capability and we experimented with the one presented in [START_REF] Riihimaki | Gaussian processes with monotonicity information[END_REF] as a baseline for comparison. A major drawback of GP approach is that the values of the derivatives must be manually selected whereas automatic approaches have been proposed for the positions of the points. However although monotonicity (increasing) becomes likely by adding the virtual points iteratively in positions where the derivative is expected to be negative, it is not enforced.

Finally, we build our approach upon an existing one that was proposed for a similar problem, in the context of sensor degradation analysis. In this approach Ulanova et al. (2015a), the authors formulate an optimization problem to separate the monotonic trend from the fluctuation. However, we deviate from the original one by introducing a regularization term in the objective function that guarantees that the trend will be close to the original time series and by modifying the constraint in order to allow negative values for the fluctuation.

Our approach is the only one to fulfill all the constraints for the problem in hand with respect to the trend: a) guaranteed monononically increasing, b) non-linear and c) close2 to the original time series.

dataset

Our dataset consists of measurements coming from 23 aircraft over a few hundreds of flights (the number of flights per aircraft varies). We targeted 32 sensors of interest that exhibit the aforementioned degrading behavior. Therefore, we form 23 matrices, X i , i = 1, . . . 23, one for each aircraft. All matrices have 32 rows that correspond to the 32 sensors, and the number of columns vary according to the number of flights available for each aircraft.

Note that each sensor is regularly sampled within each flight, however, here we analyze the mean value per flight because it is capable of capturing the type of degradation that we aim to study.

modeling degradation with gmms

We assume that each sample is drawn from a mixture of two distributions, that correspond to the condition of the sensor. Specifically, one mixture component that corresponds to the normal condition of the sensor and another one that corresponds to the degraded condition. Since our dataset is not annotated and we don't know in advance which samples correspond to normal and degraded condition of the component, we treat each The information of the learned distributions will be used at the final step of the risk assessment. In the next session we proceed with the description of the main component of our approach and finally, we put everything together in section 6.5.

time series decomposition

We propose an approach that is based on the decomposition of each time series into the two aforementioned components, the

u -v|| 2 + ∑ (m i -m j)W ij s.t. Bu > 0 v > 0 (6.4)
where,

B =        -1 1 0 . . . 0 0 -1 1 . . . 0 0 0 . . . -1 1        ∈ {0, 1} n-1×n
Regarding the constraints, the product Bu produces the pairwise differences between every pair of points in u in a sliding window, and thus, the constraint Bu > 0 guarantees that the trend u will be increasing. Regarding the objective function, ||su -v|| 2 is the reconstruction error and ∑ K i,j=1 (m im j)W ij , is the term that achieves the stationarity. More precisely, the time series is partitioned into K segments having mean values m 1 , m 2 , . . . , m K and thus, minimizing the weighted difference between them enforces stationarity. The weight matrix W ∈ R K×K can be used to configure the importance of the differences between the segments. It can be simply set to all ones, or if one needs to make sure that the mean will not change as the distance between the segments increases, it can be set as W ij = |i -j|.

However, the problem presented in 6.4 is not in a solvable form.

In order to achieve it, we introduce:

• x = [u; v] ∈ R 2n×1 ,
a vector that is the concatenation of the trend and the fluctuation.

• E 2 = [I I] ∈ R n×2n
, where I ∈ R n×n is the identity matrix

• E 1 = [0 n×n I],
where 0 n×n is the n × n all zeros matrix

• C = [B 0 n-1×n-1] ∈ R n-1×2n-1 • L = D -W, where D = diag(W • 1 K×K), 1 K×K is the all 1s K × K matrix. Additionally, E =                   1/l . . . 1/l 0 . . . 0 0 • • • 0 l 0 . . . 0 1/l • • • 1/l 0 • • • 0 l . l 0 0 • • • 0 0 0 1/l . . . 1/l                  
, where l is the segment length after partitioning the time series into K segments (l = n/K). Having the definitions above, we can now start building the final formulation of the optimization problem.

The term ∑ K i,j=1 (m im j)W ij can be rewritten as (E 1 x) T E T LE (E 1 x), because E 1 x = v and Ev = m. Next, the reconstruction error ||su -v|| 2 can be written as:

s -u -v 2 = s - =u+v (E 2 x) 2 = (s -E 2 x) T (s -E 2 x) = s T s -2 E T 2 s x + x T E T 2 E 2 x (6.5)
From 6.5 and REF, the final form of the objective function is

min s -u -v 2 + ∑ (m i -m j)W ij = min s T s -2 E T 2 s x + x T E T 2 E 2 x + x T E T 1 E T LE (E 1 x) = min -2 E T 2 s x + x T E T 2 E 2 x + x T E T 1 E T LE (E 1 x) = min x T E T 2 E 2 + E T 1 E T LE E 1 x -2 E T 2 s x (6.6)
Finally, the new constraints are Cx > 0 and x > 0 and therefore, the final formulation is

min x T E T 2 E 2 + E T 1 E T LE E 1 x -2 E T 2 s x s.t. Cx > 0 x > 0 (6.7)
The optimization problem 6.7 is convex. A quadratic optimization problem of the form min x T Qx + w T x is convex if Q is positive semidefinite. This holds in 6.7 because E T 2 E 2 + E T 1 E T LE E 1 is a sum of positive semidefinite matrices.

Reformulating the Optimization Problem

Our approach differs from the one presented in [START_REF] Ulanova | Efficient long-term degradation profiling in time series for complex physical systems[END_REF] in two ascpects: a) we introduce the extra penalization term and b) we allow negative values for the noise. Although our approach loses in efficiency compared to the non-negative quadratic programming, we achieve better fit of the trend on (Figure 6.5), which is critical for our application. We add a new term on the objective function, in order to deal with the issue depicted in 6.5. The term is su 2 . In order to properly add the term in the objective function, we define a matrix E 3 = [I n×n 0 n×n] so that we can express the regularization term as follows:

s -u 2 = s - =u (E 3 x) 2 = (s -E 3 x) T (s -E 3 x) = s T s -2 E T 3 s x + x T E T 3 E 3 x (6.8)
Finally, by embedding 6.8 (by omitting s T s) and remove the constraint x > 0 we obtain our final form of the convex, quadratic problem:

min x T E T 2 E 2 + E T 1 E T LE E 1 + 2E 3 E T 3 x -2 E T 2 s + 2E T 3 s x s.t. Cx > 0 (6.9)
Problem 6.9 is still convex since the matrix E 3 E T 3 is positive semidefinite.

condition assessment

Having decomposed the signal into the fluctuation and the trend,

i (t) = 0 i f u t ≤ E X|k=0;µ 0 ,σ 0 [X] u t -∞ P(x|k = 1; µ 1 , σ 1)dx otherwise (6.10)
where

• u t is the trend extracted at timestep t • E X|k=0;µ 0 ,σ 0 [X]
is the expected value of the samples in normal condition

• u t -∞ P(x|k = 1; µ 1 , σ 1
)dx is the cumulative density of the mixture that corresponds to the degrading state The proposed function r i (t) is zero when the trend extracted at timestep t is lower that the mean value of the PDF that corresponds to the normal condition. Furthermore, using the cdf in order to quantify the risk fulfills the major requirements of the risk function: a) it is increasing, it is bounded within [0 -1] and c) it is compatible with the distribution of the abnormal values, i.e. it is maximized when the trend reaches values that are too high (rightmost part of the corresponding pdf).

In Figure 6.6 we demonstrate our risk function for several sensors.

evaluation

We evaluate our approach using synthetic data since for our sensor data there is no ground truth for the trend. Furthremore, we compare against the Gaussian Process (GP) approach presented The first model is an exponential trend with additive noise, y(t) = e αt + n t . In Figure 6.7 we present: a) on the top left the mean squared error of the trend estimation using the GP approximation, b) on the top right the mean squared error of the trend estimation using our approach, c) on the bottom right the average error for both approaches in order to make a clear comparison and d) the execution time of both approaches. The second model is a linear model y(t) = αt + n t . In Figure 6.8 we present the same types of results. This is the only case where the Gaussian Process outperforms our approach in our synthetic datasets.

Finally, the third model consists of a step-wise increase with additive noise. In Figure 6.9 we present the results. In most of the cases, the Quadratic Programming approach outperforms the Gaussian Process both in efficiency and in effectiveness. Moreover, we should note that the execution time of the Gaussian Process is affected by the number of derivative points that have to be added in order to achieve monotonicity. In most cases, this is related to the amplitude of the fluctuation.

D I S C U S S I O N

The goal of this thesis was to propose Machine Learning approaches for solving problems in the aviation industry, in the context of predictive maintenance. Our work was performed under the regime of a CIFRE Ph.D. and consequently, both our objectives and the evaluation methods were derived from an industrial perspective. We targeted problems that have high impact on the industry and our solutions are completely data driven, using minimum intervention and prior knowledge from maintenance experts.

summary of contributions

The main contributions of the thesis can be summarized as follows.

• In Chapter 3 we presented some exploratory analysis outcomes using survival analysis techniques. The outcomes from such an analysis are useful when designing prediction experiments, by acquiring knowledge about the interval distribution of a target failure, by evaluating possible predictors and also, by studying the impact of variables on target failure's occurrence.

• In Chapter 4 we presented our approach on predicting upcoming failures, using only the history of failure logs.

To our knowledge, this is the first proposed solution that achieves results. The difficulty of this problem enforced a detailed design of all the methods steps. Finally, we showed the expected impact of our predictions on the industry.

• In Chapter 5 we studied the problem of cleaning and extracting information from logbook data. We proposed an approach which is based on recent advances in neural networks and we identified the potential of creating our own vector of the words in the logbook.

• In Chapter 6 we proposed an unsupervised method for analyzing the decaying behavior of sensors/equipment onboard and quantifying their level of degradation. Our approach is based on a time-series decomposition technique by formulating a Quadratic Programming problem.

A key point which should be highlighted is that this thesis constitutes an holistic approach, that investigated almost all the available data related to the operation of the aircraft in order to achieve the aforementioned results. Consecutively, we explored a wide range of methods related to all of the data types and the problems that we encountered and we obtained valuable knowledge regarding the potential of every approach, regardless of its effectiveness. In industry, this information is critical in order to a) avoid future (and potentially repeated) attempts with insignificant results and b) identify cases where methods will probably produce significant results.

future directions

During our work we identified several interesting outcomes which due to the limited duration of the thesis could not be further investigated.

• Inject data from multiple sources into our failure prediction approach. The design of our approach facilitates the utilization of any data in a per-flight manner. Such data could be measurements coming from sensors on-board or meteorological data related to the weather condition during the flight.

• Identify which variables contribute to the sensor degradation presented in Chapter 6. Having computed the risk, a regression problem could be formulated that aims to investigate the connection between several variables and the increase of risk.

• Identify the impact of maintenance actions on the survival function of target events. The keywords extracted from the logbook could be used as time-dependent covariates in survival analysis. This information can lead to assessing the effectiveness of maintenance actions.

Finally, the design of a data-centric architecture that supports Machine Learning applications using aircraft data is a potential future direction with great impact on the industry.

Title : Machine Learning for Predictive Maintenance in Aviation

Keywords : predictive maintenance, aviation, machine learning Abstract : The increase of available data in almost every domain raises the necessity of employing algorithms for automated data analysis. This necessity is highlighted in predictive maintenance, where the ultimate objective is to predict failures of hardware components by continuously observing their status, in order to plan maintenance actions well in advance. These observations are generated by monitoring systems usually in the form of time series and event logs and cover the lifespan of the corresponding components. Analyzing this history of observation in order to develop predictive models is the main challenge of data driven predictive maintenance. Towards this direction, Machine Learning has become ubiquitous since it provides the means of extracting knowledge from a variety of data sources with the minimum human intervention. The goal of this dissertation is to study and address challenging problems in aviation related to predicting failures of components on-board. The amount of data related to the operation of aircraft is enormous and therefore, scalability is a key requirement in every proposed approach. This dissertation is divided in three main parts that correspond to the different data sources that we encountered during our work. In the first part, we targeted the problem of predicting system failures, given the history of Post Flight Reports. We proposed a regression-based approach preceded by a meticulous formulation and data preprocessing/transformation. Our method approximates the risk of failure with a scalable solution, deployed in a cluster environment both in training and testing. To our knowledge, there is no available method for tackling this problem until the time this thesis was written.

The second part consists analyzing logbook data, which consist of text describing aircraft issues and the corresponding maintenance actions and it is written by maintenance engineers. The logbook contains information that is not reflected in the post-flight reports and it is very essential in several applications, including failure prediction. However, since the logbook contains text written by humans, it contains a lot of noise that needs to be removed in order to extract useful information. We tackled this problem by proposing an approach based on vector representations of words (or word embeddings). Our approach exploits semantic similarities of words, learned by neural networks that generated the vector representations, in order to identify and correct spelling mistakes and abbreviations. Finally, important keywords are extracted using Part of Speech Tagging.

In the third part, we tackled the problem of assessing the health of components on-board using sensor measurements. In the cases under consideration, the condition of the component is assessed by the magnitude of the sensor's fluctuation and a monotonically increasing trend. In our approach, we formulated a time series decomposition problem in order to separate the fluctuation from the trend by solving a convex program. To quantify the condition of the component, we compute a risk function which measures the sensor's deviation from it's normal behavior, which is learned using Gaussian Mixture Models.

Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

 Panagiotis Korvesis: Machine Learning for Predictive Maintenance in Aviation, c 2017 A B S T R A C T The increase of available data in almost every domain raises the necessity of employing algorithms for automated data analysis.

 Figure 1.1 Number of passengers carried by air transport .

Figure 1. 2

 2 Figure 1.2 Data driven predictive maintenance

Figure 2. 1

 1 Figure 2.1 Survival data

Figure 2. 2

 2 Figure 2.2 Gaussian Mixture Model example

Figure 2. 3

 3 Figure 2.3Cross validation in time series data

Figure 2. 4

 4 Figure 2.4 Errors and Model Complexity

Figure 2. 5

 5 Figure 2.5 Impact of maximum depth on train and test error .

Figure 3. 1

 1 Figure 3.1 Random variables in event logs

Figure 3. 2

 2 Figure 3.2 PFR survival data and censoring. 'rc' for right censoring and 'x' is the event of interest. Each interval t i,j and rc i,j is a subject in the population.

Figure 3. 3

 3 Figure 3.3 Kaplan-Meier estimates for four critical events .

Figure 3. 4

 4 Figure 3.4 Estimated survival functions and 95% Confidence Intervals for five critical failures . .

Figure 3. 5

 5 Figure 3.5 Empirical means and standard deviations of temporal difference between the critical failure and the other failures Figure 3.6 Four examples of random variables that correspond to good candidate predictors . .

Figure 3. 7

 7 Figure 3.7 Four examples of random variables that do not provide useful information about the critical failure under consideration . . .

Figure 4. 1

 1 Figure 4.1 Partitioning event logs into episodes

Figure 4. 2

 2 Figure 4.2 Sigmoid Function

Figure 4. 3

 3 Figure 4.3Sliding window approach: during the critical interval the window step decreases . .

Figure 4

 4 Figure 4.4 r(x i) for a single episode. Top: the whole episode. Bottom: Last timesteps until the occurrence of e T

Figure 4. 5

 5 Figure 4.5 Survival function of the target event e T . .

Figure 4. 6

 6 Figure 4.6 Classification for event prediction: timeposition of classes

Figure 4. 7

 7 Figure 4.7 Regression and classification intevals

Figure 4. 8

 8 Figure 4.8 Artificial Example: A true positive episode (top) and two false positives (middle and bottom) .

Figure 4. 9

 9 Figure 4.9 Baseline approach: Support Vector Machines (SVM) Receiver Operating Characteristic (ROC) Curve

Figure 4

 4 Figure 4.10 Random Forest Performance: Number of trees vs Mean Square Error (MSE)

Figure 4. 11

 11 Figure 4.11 Theshold values impact on number of True Positives (left) and number of False Positives (right)

Figure 4

 4 Figure 4.12 r vs distance (in flights) from target event .

Figure 4

 4 Figure 4.13 Empirical Cumulative Distribution Function (CDF) of the time between false positives and e T

Figure 4 Figure 5 . 3 Figure 5 Figure 6 . 1 Figure 6 . 2

 45356162 Figure 4.14 Empirical PDFs. Top: event with low score (T e T e 1353). Bottom: event with hight score (T e T e 1244) 68 Figure 4.15 Examples of r(x i) for three episodes. Top: true positive, middle: false positive, bottom: false negative 71 Figure 5.1 Sentence lengths in logbook entries 76 Figure 5.2 Term frequencies in logbook entries 77 Figure 5.3 Maintenance actions' impact on failure prediction dataset 80 Figure 5.4 The skip-gram model 83 Figure 5.5 A graph created from the nearest neighbors in embedding space for 4 terms: 'detached','printer','tightened','birdstrike' . . . 86 Figure 5.6 Wordclouds of the 40-neighborhood of terms in the embedding space 88 Figure 5.7 Empirical distribution of Jaccard similarities 90 Figure 5.8 Wordclouds of the 40-neighborhood of terms in the embedding space created using the cleaned logbook 94 Figure 5.9 Maintenance keywords extracted from the logbook -verbs via POS Tagging. The size of each word is proportional to its number of occurrences in the logbook 95 Figure 6.1 Example of degrading sensor 98 Figure 6.2 Example of a Gaussian Mixture Model fitted on a specific sensor's samples 102 Figure 6.3 Gaussian Mixture Model (GMM) fitted on 8 different sensors. 103

Figure 6. 5

 5 Figure 6.5 Trend captured by solving the original QP problem .

Figure 6. 6

 6 Figure 6.6 Sensor risk examples

Figure 6. 7

 7 Figure 6.7 Exponential Trend

Figure 6. 8

 8 Figure 6.8 Linear Trend

Figure 6. 9

 9 Figure6.9Step-wise Trend

I

 Figure 1.1: Number of passengers carried by air transport per year. Source: The World Bank 2

2Figure 1 . 2 :

 12 Figure 1.2: Data driven predictive maintenance

Figure 2 .Figure 2 . 2 :

 222 Figure 2.2 demonstrates an example of a mixture model and a single Gaussian fit on a sample population generated by the sum of two random variables.

Figure 2 . 4 :

 24 Figure 2.4: Errors and Model Complexity

 Figure 2.5: Impact of maximum depth on train and test error

Figure

3. 1 Figure 3 . 1 :

 131 Figure 3.1: Survival time: Time interval between consecutive occurrence of a target failure e T that occurs at times t 1 and t 3 .

 .3) In Figure 3.3 we show an example of survival estimated for four critical events. The dataset comes from PFR reports from 18 aircraft. In Figure 3.4 we present the survival functions of the failures presented in Figure 3.3. The dashed lines correspond to the confidence intervals for 95% confidence.

Figures 3. 3 Figure 3

 33 Figures 3.3 and 3.4 show that events e 2183 and e 1987 have similar occurrence intervals and also, the same stands for events e 2095 and e 2156 . However, event e 2136 has different behavior.

Figure 3 . 4 :

 34 Figure 3.4: Estimated survival functions and 95% Confidence Intervals for five critical failures

Figure 3 . 5 :Figure 3

 353 Figure 3.5: Empirical means and standard deviations of temporal difference between the critical failure and the other failures

Figure 3 . 7 :

 37 Figure 3.7: Four examples of random variables that do not provide useful information about the critical failure under consideration

 Towards this direction, the authors in[START_REF] Sipos | Logbased predictive maintenance[END_REF] create one positive sample by averaging the features extracted from the events for each window close to the failure and multiple negative ones for the windows far before the failure. They employ SVM[START_REF] Fan | Liblinear: A library for large linear classification[END_REF] to perform the prediction. Similarly, the authors in[START_REF] Murray | Machine learning methods for predicting failures in hard drives: A multiple-instance application[END_REF] propose Multiple Instance Naive Bayes (miNB), that iteratively learns the labels (positive and negative) in each window, aiming to minimise the false positive rate.Apart from the classification-based approaches, failure prediction has been tackled by statistical methods. In[START_REF] Yuan | Event log modeling and analysis for system failure prediction[END_REF] the authors follow another approach based on survival analysis.More specifically, they use Cox Proportional Hazard (CPH) model[START_REF] Cox | Analysis of survival data[END_REF] in order to approximate the survival function and they use the occurrence of other events/failures as covariates (features). In this setup, a prediction is performed by estimating an interval during which a failure is expected. Furthermore, in[START_REF] Watanabe | Online failure prediction in cloud datacenters by real-time message pattern learning[END_REF] the authors propose a method that learns patterns from event log streams and the failure prediction is performed by calculating the probability of a failure occurring given the identified patterns.

Figure 4 . 1 :

 41 Figure 4.1: Partitioning event logs into episodes

 Figure 4.2: Sigmoid Function

Figure 4 . 3 :

 43 Figure 4.3: Sliding window approach: during the critical interval the window step decreases

Figure 4 .Figure 4

 44 Figure 4.4 shows a real example of well fitted r(x i) of a single episode from our test set, consisting of 7446 timesteps. The top part of the figure shows the whole episode and the bottom part presents the last timesteps.

Figure 4 . 5 :

 45 Figure 4.5: Survival function of the target event e T failure occurred (AC e T ⊆ AC). For the training set we select only aircraft from AC e T .

Figure 4 . 6 :

 46 Figure 4.6: Classification for event prediction: time-position of classes

Figure 4 . 7 :

 47 Figure 4.7: Regression and classification intevals

4. 8 Figure 4 . 8 :

 848 Figure 4.8: Artificial Example: A true positive episode (top) and two false positives (middle and bottom)

Figure 4 . 9 :

 49 Figure 4.9: Baseline approach: SVM ROC Curve

Figure 4 .

 4 Figure 4.10: Random Forest Performance: Number of trees vs Mean Square Error (MSE)

 (FPR) for different desicion threshold values

Figure 4 . 11 :

 411 Figure 4.11: Theshold values impact on number of True Positives (left) and number of False Positives (right)

 event that the threshold was crossed

Figure 4 .

 4 Figure 4.12: r vs distance (in flights) from target event

 Figure 4.13: Empirical CDF of the time between false positives and e T

Figure 4 .

 4 Figure 4.14: Empirical PDFs. Top: event with low score (T e T e 1353). Bottom: event with hight score (T e T e 1244)

Figure 4

 4 Figure 4.15: Examples of r(x i) for three episodes. Top: true positive, middle: false positive, bottom: false negative

 examlple, the authors inTixier et al. (2016a) and[START_REF] Tixier | Word Embeddings for the Construction Domain[END_REF] analyze injury reports in the construction domain and their goal is to extract keywords and predict accidents. In our field, aviation, the authors in[START_REF] Saeeda | Iterative Approach for Information Extraction and Ontology Learning from Textual Aviation Safety Reports[END_REF] analyze safety reports in order to extract related onotologies and in[START_REF] Tanguy | Natural language processing for aviation safety reports: From classification to interactive analysis[END_REF] they study the probelm of topic modelling in similar data. In[START_REF] Deleger | Extracting medical information from narrative patient records: the case of medication-related information[END_REF] they use a simple, rule-based approach to extract information from patient records containing information about medication, in[START_REF] Savova | Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications[END_REF] the authors propose cTAKES, an NLP system for processing free-text clinical records and in[START_REF] Siklosi | Context-Aware Correction of Spelling Errors in Hungarian Medical Documents[END_REF] the authors propose a method to correct spelling mistakes from clinical records.

Figure 5 . 1 :

 51 Figure 5.1: Sentence lengths in logbook entries

Figure 5 . 2 :

 52 Figure 5.2: Term frequencies in logbook entries

5. 3

 3 the importance of logbook data What do we expect to gain by including our logbook data in predictive maintenance? How should we integrate them into our predictive models? As mentioned in the beginning of this chapter, logs written by experts have already attracted the attention of the data mining community because they contain invaluable information about the specific domain. Having the history of all maintenance actions gives the ability to perform very interesting experiments such as analyzing the lifetime of individual components, estimating the effectiveness of the actions performed and proposing maintenance actions based on occurring issues.

Figure 5 . 3 :

 53 Figure 5.3: Maintenance actions' impact on failure prediction dataset

 dauer et al. (1998) can be seen as an embedding of words which preserves information about latent topics: Words that belong in the same topic are close in the projected space. More recently, these representations are being generated by neural networks Mikolov et al. (2013a,b) that are trained on a given corpus. The word embeddings come from the coefficients (or parameters) of the neural network (usually the hidden layer), similarly to other domains, such as image embeddings. In our work we use the skip-gram Mikolov et al. (2013b) (Figure 5.4) model, a recent approach based on neural networks. Its objective is to predict a given word's context, i.e. its neighboring words in a sentence.

Figure 5 . 4 :

 54 Figure 5.4: The skip-gram model

Figure 5

 5 Figure 5.5: A graph created from the nearest neighbors in embedding space for 4 terms: 'detached','printer','tightened','birdstrike'

 Figure 5.6: Wordclouds of the 40-neighborhood of terms in the embedding space

 m ∈ g ∩ W m do 6: if J(w m , w p) < γ then 7: w m ← w p # replace the misspelled word w m 8:W m = W m -{v} 9: L c ← L c (w m ← w p)The operation L c (w m ← w p) in line 9 of algorithm 2 means that all occurrences of w m in L are replaced with the word w p . Finally, in Figure5.8 we present the new neighborhoods of the same words presented in 5.6. The new WordClouds contain more information about their context, since the mistyped terms have been successfully replaced.

Algorithm 3

 3 CleanLogbookIterInput: L, n iter , γ Returns: mathcalL n iter 1: for i ∈ [1, . . . , n iter] At every step of the iteration, the vocabulary size is reduced since the set W m decreases. Intuitively, at every iteration the neighborhood of each word contains more semantically similar ones, since the mispelled words are removed. Finally, in Table5.2we show examples of words mapped at the first iteration steps.

 Figure 5.8: Wordclouds of the 40-neighborhood of terms in the embedding space created using the cleaned logbook

6C

 O M P O N E N T C O N D I T I O N A S S E S S M E N T U S I N G T I M E S E R I E S D ATA Time series generated by sensors on-board constitute the core of the data generated by aircraft. The event logs presented in the previous chapters are generated by sampling and analyzing sensor values. One the other hand, since sensor measurements directly reflect the health of every component, they are the most complete source of information. Therefore, in predictive maintenance, if one cannot achieve the desired results using other sources of information, the analysis of sensor time series becomes indispensable.

Figure 6 . 1 :

 61 Figure 6.1: Example of degrading sensor

 fluctuation and the trend Alexandrov et al. (2012) (Figure 6.4).

Figure 6 . 4 :

 64 Figure 6.4: Decomposing the time series into the fluctuation and the trend

Figure 6 . 5 :

 65 Figure 6.5: Trend captured by solving the original QP problem

 we now use this information to compute an indicator that reflects the condition of the component. This indicator should be interpreted as a risk function, bounded in the interval [0, 1], as a scaled function of the trend 4 . Values of the function close to zero correspond to properly functioning components, whereas higher values quantify the level of degradation. At timestep t, given a sample our formula is

 r

Figure 6 . 6 :

 66 Figure 6.6: Sensor risk examples

 Figure 6.8: Linear Trend

 Figure 6.9: Step-wise Trend

NL

 s 1 , . . . , s t] sensor time series u = [u 1 , . . . , u t] trend of time series v = [v 1 , . . . , v t] fluctuation of time series r(•) risk function notation post flight report and failure prediction symbol meaning AC set of aircraft E = {e i , . . . , e k } system failure ids = {lb 1 , . . . , lb m } set of logbook entries W = {w 1 , . . . , w k } set of unique terms in the logbook G L () skip-gram model trained in logbook L G L (w, k) k-nearest neighbors in the embedding space created by G using L J(w i , w j) Jaccard similarity of words w i and w j colophon This document was typeset in L A T E X using the typographical look-and-feel classicthesis. The bibliography is typeset using biblatex. Titre : Apprentissage Automatique pour la Maintenance Predictive dans le Domaine de l'Aviation Mots clefs : maintenance predictive, aviation, apprentissage automatique Résumé : L'augmentation des données disponibles dans presque tous les domaines soulève la nécessité d'utiliser des algorithmes pour l'analyse automatisée des données. Cette nécessité est mise en évidence dans la maintenance prédictive, où l'objectif est de prédire les pannes des systèmes en observant continuellement leur état, afin de planifier les actions de maintenance à l'avance. Ces observations sont générées par des systèmes de surveillance habituellement sous la forme de séries temporelles et de journaux d'événements et couvrent la durée de vie des composants correspondants. Le principal défi de la maintenance prédictive est l'analyse de l'historique d'observation afin de développer des modèles prédictifs. Dans ce sens, l'apprentissage automatique est devenu omniprésent puisqu'il fournit les moyens d'extraire les connaissances d'une grande variété de sources de données avec une intervention humaine minimale. L'objectif de cette thèse est d'étudier et de résoudre les problèmes dans l'aviation liés à la prévision des pannes de composants à bord. La quantité de données liées à l'exploitation des avions est énorme et, par conséquent, l'évolutivité est une condition essentielle dans chaque approche proposée. Cette thèse est divisée en trois parties qui correspondent aux différentes sources de données que nous avons rencontrées au cours de notre travail. Dans la première partie, nous avons ciblé le problème de la prédiction des pannes des systèmes, compte tenu de l'historique des Post Flight Reports. Nous avons proposé une approche statistique basée sur la régression précédée d'une formulation méticuleuse et d'un prétraitement / transformation de données. Notre méthode estime le risque d'échec avec une solution évolutive, déployée dans un en-vironnement de cluster en apprentissage et en déploiement. À notre connaissance, il n'y a pas de méthode disponible pour résoudre ce problème jusqu'au moment où cette thèse a été écrite. La deuxième partie consiste à analyser les données du livre de bord, qui consistent en un texte décrivant les problèmes d'avions et les actions de maintenance correspondantes. Le livre de bord contient des informations qui ne sont pas présentes dans les Post Flight Reports bien qu'elles soient essentielles dans plusieurs applications, comme la prédiction de l'échec. Cependant, le journal de bord contient du texte écrit par des humains, il contient beaucoup de bruit qui doit être supprimé afin d'extraire les informations utiles. Nous avons abordé ce problème en proposant une approche basée sur des représentations vectorielles de mots. Notre approche exploite des similitudes sémantiques, apprises par des neural networks qui ont généré les représentations vectorielles, afin d'identifier et de corriger les fautes d'orthographe et les abréviations. Enfin, des mots-clés importants sont extraits à l'aide du Part of Speech Tagging. Dans la troisième partie, nous avons abordé le problème de l'évaluation de l'état des composants à bord en utilisant les mesures des capteurs. Dans les cas considérés, l'état du composant est évalué par l'ampleur de la fluctuation du capteur et une tendance à l'augmentation monotone. Dans notre approche, nous avons formulé un problème de décomposition des séries temporelles afin de séparer les fluctuations de la tendance en résolvant un problème convexe. Pour quantifier l'état du composant, nous calculons à l'aide de Gaussian Mixture Models une fonction de risque qui mesure l'écart du capteur par rapport à son comportement normal.

Table 2 .

 2 1 Confusion Matrix Properties of the survival function

	Table 2.2	
	Table 3.1	A table-structured survival dataset that
		records the occurrence of events of interest

and censoring

Table 3.2 Modelling with Cox Proportional Hazard (CPH) for event e 2095 Table 4.1 Event log example with renamed attributes Table 4.2 parameters Table 4.3 Prediction results at the episode level Table 4.4 Top Ranked Features (events) Table 5.1 Example of mistyped words and dictionary suggestions Table 5.2 Iterative correction of spelling mistakes . .

Table 2

 2

	.2: Properties of the survival function
	Consequently, it is straightforward to derive the following
	relations (equations 2.3, 2.4) between the hazard and survival
	functions:

Table 3

 3

.1: A table-structured survival dataset that records the occurrence of events of interest and censoring This table-structured representation facilitates the Kaplan-Meier (KM) estimation of the survival function presented in the next section and the partial likelihood estimation for the Cox Proportional

Table 3

 3

	p-value of the statistical test having null hypothesis that this
	coefficient is zero.
	A value x of a coefficient (exp(coef)) means that the baseline
	hazard is multiplied by x, i.e. x times the hazard rate of the first
	category (the one left out for the k -1 binary variables). For example, the value 4.419 means that the hazard rate of AC17 this
	is 4.419-times the hazard rate of AC01.

.2 we present the coefficients of the model extracted from the failure 'e 2095 '. The column exp(coef) shows the exponential of the coefficient exp(β T x) and the p column shows the .2: Modelling with CPH for event e 2095

 ParametersIn Table4.2 we present the list of parameters of our method.

	• Compute r and raise an alert if r ≥ h
	4.4.4 stage	parameter	description
		w	window size
	preprocessing	c s	sigmoid shift sigmoid steepness
		γ	feature selection
	model training	#trees #depth	number of trees max depth of each tree
	model deployment	h	decision threshold
	Table 4.2: parameters

Most of the parameters can be selected via cross validation while training. Parameters w, γ and c should be defined by experts because they quantify the expected time (in segments) before the occurrence of e T at which a prediction is possible. However, if no prior knowledge is available or it is hard to acquire, one can use the method presented in the previous chapter, that investigates the intervals between e T and the other failures. The value of the decision threshold h can be configured according to desired confidence and the prediction interval (see section 4.6.3).

Table 4

 4

	• f1-score: 2	precision•recall precision+recall	
	Our experimental evaluation presented in Table 4.3 shows that
	our method, RFR, outperforms the selected baseline approach,
	which has very poor performance.	
	method precision recall F1-score
	SVM	0.21	0.02	0.03
	RFR	0.64	0.23	0.34

.3: Prediction results at the episode level

Table 4

 4

	.4 presents the top most important features/events as
	they were ranked by the random forest. The feature with the
	highest score corresponds to a failure that also belongs to the
	landing gear (ATA 32).		
	event id score ATA chapter
	6226	0.260	32-31
	1244	0.167	46-20
	2813	0.090	77-23
	4604	0.088	27-92
	6444	0.041	73-21
	348	0.026	30-31
	Table 4.4: Top Ranked Features (events)
	Figure 4.14 shows the Empirical Probability Density Function
	(PDF) for of the random variables described in Section 4.3 that

Table 5

 5

	Suggestions

.1: Example of mistyped words and dictionary suggestions

Conventions Industrielles de Formation par la REcherche a.k.a CIFRE, is an industrial Ph.D. program in France and is supported by ANRT (Association Nationale Recherche Technologie) http://www.anrt.asso.fr/

Random forests can be tuned by other means, such as selecting different impurity functions, however, this is not considered as a parameter

https://archive.ics.uci.edu/ml/datasets/wine+quality

In our work, the importance of a failure is estimated by the amount of time the aircraft has to stay on the ground until the corresponding maintenance action is performed.

3.1 introduction

Some rare events can be important for predicting the target event and thus, this step should be evaluated experimentally

https://en.wikipedia.org/wiki/ATA_100

A prediction is useful if it is performed within a significant time period before e T in order to provide enough time to plan the corresponding maintenance.

The target event was not selected based on the financial impact of its occurrence and thus, there are other failures that may have much bigger financial impact on the airlines and our approach could be of greater benefit.

the numbers were calculated based on information from this document:https://www.eurocontrol.int/sites/default/files/content/ documents/sesar/business-case/european_airline_delay_cost_ reference_values_2011.pdf

https://www.abisource.com/projects/enchant/

https://pypi.python.org/pypi/pyenchant/

given a target failure that we aim to predict, a predictor is a failure whose occurrence increases the confidence that the target failure will occur in the near future

we consider abbreviations to be intentional typos. For example, the word "replaced" may appear in the logbook as "rplcd"

https://code.google.com/archive/p/word2vec/

https://nlp.stanford.edu/projects/glove/

http://www.nltk.org

it is the Hankel[START_REF] Iokhvidov | Hankel and Toeplitz matrices and forms: algebraic theory[END_REF] matrix whose rows are segments created by a sliding window over the tme series

closeness in enforced by penalizing the trend's distance from the original time series. This will be presented in section 6.5.2

The multiplicative updates for solving a non-negative convex quadratic problem lead to faster convergence[START_REF] Sha | Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines[END_REF][START_REF] Sha | Multiplicative Updates for Nonnegative Quadratic Programming[END_REF]

This decision was made according to the requirements of the application

by the technical experts. It is challenging and efficient to be able to use the event logs for predicting failures instead of the raw, time-series data, because they are much smaller in size, easily accessible and can be transmitted in real time to a centralised infrastructure where the prediction can take place. Motivated by the above, we present our approach for event prediction that could potentially be applied in a wide area of applications.

related work

Prediction in event logs is well studied problem in a wide range of applications [START_REF] Salfner | A survey of online failure prediction methods[END_REF]. Each application exhibits its own special characteristics that have great impact on the design of the corresponding algorithm. Hard drives [START_REF] Son | Evaluation and comparison of mixed effects model based prognosis for hard failure[END_REF]; [START_REF] Murray | Machine learning methods for predicting failures in hard drives: A multiple-instance application[END_REF], medical equipment [START_REF] Sipos | Logbased predictive maintenance[END_REF]; [START_REF] Yuan | Event log modeling and analysis for system failure prediction[END_REF] and web servers [START_REF] Zhang | Automated it system failure prediction: A deep learning approach[END_REF] are some application domains where failure prediction is important and prediction methods have been successfully applied.

The vast majority of failure prediction methods try to solve a classification problem; given the events that occur within a time window, the classifier decides if a failure will occur within a predefined interval. For example, in [START_REF] Weiss | Learning to predict rare events in event sequences[END_REF] the authors use a genetic algorithm approach in order to discover prediction rules and perform the prediction, in [START_REF] Gu | Online failure forecast for fault-tolerant data stream processing[END_REF] the authors propose an online failure prediction scheme based on decision trees, in [START_REF] Yu | Practical online failure prediction for blue gene/p: Period-based vs event-driven[END_REF] the authors employ Bayesian classification and more recently in [START_REF] Zhang | Automated it system failure prediction: A deep learning approach[END_REF] the authors use Long-Short Term Memory (LSTM) neural networks. Further-word is composed by using the Jaccard similarity [START_REF] Cohen | A Comparison of String Distance Metrics for Name-matching Tasks[END_REF],

which is the number of common letters in strings A and B, divided by the total number of unique letters of both these strings. 'repled', 'relaced', 'rplaced', 'relpaced', 'replacedi', 'repalced', 'rplcd', 'replacded', 'replaed', 'replacecd', 'reolaced', 'replaqced In this chapter we presented our approach for pre-processing and information extraction from logbook data. We used vector representations in order to capture contextual information and clean the logbook. Furthermore, we used standard Part-of-Speech tagging in order to extract the maintenance actions (verbs) and the objects (nouns) from the cleaned text. sample as a random variable that comes from a Gaussian Mixture Model (GMM) of two components:

Given a history of sensor measurements, we fit a GMM of two components, aiming to capture the normal and the abnormal condition of the sensor. In Figure 6.2 we present an example mixture that was estimated on a specific sensor. After learning the mixture using the standard Expectation Maximization (EM) algorithm, we label the mixture component having the lowest mean as the normal and the other as the degraded. Furthermore, the mixture model can be used in order to label each sample according to the probability of it being generated by each one of the two components:

For a time series s ∈ R n×1 , finding the trend u ∈ R n×1 and the fluctuation v ∈ R n×1 , so that s = u + v (which is the common formulation Alexandrov et al. (2012)), can be translated into an optimization problem having the following structure:

A solution to this problem has already been recently provided by [START_REF] Ulanova | Efficient long-term degradation profiling in time series for complex physical systems[END_REF], in which the authors formulate an non-negative quadratic problem. However, we modified this algorithm in order to better match our requirements, by solving a convex, quadratic programming problem instead. Our main deviation from their work is the addition of a regularization term which, although deprives 3 the formulation of a non-negative quadratic problem, gives more accurate and robust estimation of the trend component.

Quadratic Programming Formulation

We start by presenting and discussing the solution proposed by the authors in [START_REF] Ulanova | Efficient long-term degradation profiling in time series for complex physical systems[END_REF]. Introducing two specifications for the fluctuation, being wide sense stationary and non-negative, the optimization problem in 6.3 can be written as follows:

In this chapter we presented our approach for assessing the condition of components on-board using sensor time series. We used Gaussian Mixture Models in order to identify abnormal values and we formulated a quadratic programming approach in order to extract the trend of the time series and separate it from the fluctuation. This approach was driven by the specific, monotonically increasing degradation pattern of the time series in hand. Finally, our method outputs the risk which is computed as the trend's deviation from the expected normal values, using the information from the Mixture Models.