
HAL Id: tel-02003508
https://pastel.hal.science/tel-02003508

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning for Predictive Maintenance in
Aviation

Panagiotis Korvesis

To cite this version:
Panagiotis Korvesis. Machine Learning for Predictive Maintenance in Aviation. Artificial Intelligence
[cs.AI]. Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLX093�. �tel-02003508�

https://pastel.hal.science/tel-02003508
https://hal.archives-ouvertes.fr

NNT : 2017SACLX093

1

Thèse de doctorat
de l’Université Paris-Saclay

préparée à l’école Polytechnique

Ecole doctorale n�580

Sciences et technologies de l’information et de la communication
Spécialité de doctorat : Informatique

par

M. Panagiotis Korvesis
Apprentissage Automatique pour la Maintenance Predictive dans

le Domaine de l’Aviation

Thèse présentée et soutenue à Palaiseau, le 21 novembre 2017.

Composition du Jury :

M. Albert Bifet Professeur (Président)
Telecom Paristech

M. Aristidis Likas Professeur (Rapporteur)
University of Ioannina

M. Andreas Stafylopatis Professeur (Rapporteur)
National Technical University of Athens

M. Themis Palpanas Professeur (Examinateur)
University of Paris Descartes

M. Jesse Read Professeur chargé de cours (Examinateur)
École Polytechnique

M. Stephane Besseau Ingénieur (Examinateur)
AIRBUS

M. Michalis Vazirgiannis Professeur (Directeur)
École Polytechnique

Panagiotis Korvesis: Machine Learning for Predictive Maintenance

in Aviation, c© 2017

A B S T R A C T

The increase of available data in almost every domain raises the

necessity of employing algorithms for automated data analysis.

This necessity is highlighted in predictive maintenance, where

the ultimate objective is to predict failures of hardware compo-

nents by continuously observing their status, in order to plan

maintenance actions well in advance. These observations are

generated by monitoring systems usually in the form of time

series and event logs and cover the lifespan of the corresponding

components. Analyzing this history of observations in order to

develop predictive models is the main challenge of data driven

predictive maintenance.

Towards this direction, Machine Learning has become ubiqui-

tous since it provides the means of extracting knowledge from a

variety of data sources with the minimum human intervention.

The goal of this dissertation is to study and address challenging

problems in aviation related to predicting failures of components

on-board. The amount of data related to the operation of aircraft

is enormous and therefore, scalability is a key requirement in

every proposed approach.

This dissertation is divided in three main parts that correspond

to the different data sources that we encountered during our

work. In the first part, we targeted the problem of predicting

system failures, given the history of Post Flight Reports. We

proposed a regression-based approach preceded by a meticu-

lous formulation and data pre-processing/transformation. Our

3

method approximates the risk of failure with a scalable solution,

deployed in a cluster environment both in training and testing.

To our knowledge, there is no available method for tackling this

problem until the time this thesis was written.

The second part presents our approach for analyzing logbook

data, which consist of text describing aircraft issues and the cor-

responding maintenance actions and it is written by maintenance

engineers. The logbook contains information that is not reflected

in the post-flight reports and it is very essential in several appli-

cations, including failure prediction. However, since the logbook

contains text written in natural language, it contains a lot of noise

that needs to be removed in order to extract useful information.

We tackled this problem by proposing an approach based on

vector representations of words (or word embeddings). Our ap-

proach exploits semantic similarities of words, learned by neural

networks that generated the vector representations, in order to

identify and correct spelling mistakes and abbreviations. Finally,

important keywords are extracted using Part of Speech Tagging.

In the third part, we tackled the problem of assessing the health

of components on-board using sensor measurements. In the cases

under consideration, the condition of the component is assessed

by the magnitude of the sensor’s fluctuation and a monotonically

increasing trend. In our approach, we formulated a time series

decomposition problem in order to separate the fluctuation from

the trend by solving an optimisation problem. To quantify the

condition of the component, we compute a risk function which

measures the sensor’s deviation from its normal behavior, which

is learned using Gaussian Mixture Models.

4

R É S U M É

L’augmentation des données disponibles dans presque tous les

domaines soulève la nécessité d’utiliser des algorithmes pour

l’analyse automatisée des données. Cette nécessité est mise en

évidence dans la maintenance prédictive, où l’objectif est de pré-

dire les pannes des systèmes en observant continuellement leur

état, afin de planifier les actions de maintenance à l’avance. Ces

observations sont générées par des systèmes de surveillance ha-

bituellement sous la forme de séries temporelles et de journaux

d’événements et couvrent la durée de vie des composants cor-

respondants. Le principal défi de la maintenance prédictive est

l’analyse de l’historique d’observation afin de développer des

modèles prédictifs.

Dans ce sens, l’apprentissage automatique est devenu omni-

présent puisqu’il fournit les moyens d’extraire les connaissances

d’une grande variété de sources de données avec une interven-

tion humaine minimale. L’objectif de cette thèse est d’étudier

et de résoudre les problèmes dans l’aviation liés à la prévisi-

on des pannes de composants à bord. La quantité de données

liées à l’exploitation des avions est énorme et, par conséquent,

l’évolutivité est une condition essentielle dans chaque approche

proposée.

Cette thèse est divisée en trois parties qui correspondent aux

différentes sources de données que nous avons rencontrées au

cours de notre travail. Dans la première partie, nous avons ciblé

le problème de la prédiction des pannes des systèmes, compte

5

tenu de l’historique des Post Flight Reports. Nous avons proposé

une approche statistique basée sur la régression précédée d’une

formulation méticuleuse et d’un prétraitement / transformation

de données. Notre méthode estime le risque d’échec avec une

solution évolutive, déployée dans un environnement de cluster

en apprentissage et en déploiement. À notre connaissance, il n’y

a pas de méthode disponible pour résoudre ce problème jusqu’au

moment où cette thèse a été écrite.

La deuxième partie consiste à analyser les données du livre de

bord, qui consistent en un texte décrivant les problèmes d’avions

et les actions de maintenance correspondantes. Le livre de bord

contient des informations qui ne sont pas présentes dans les Post

Flight Reports bien qu’elles soient essentielles dans plusieurs

applications, comme la prédiction de l’échec. Cependant, le jour-

nal de bord contient du texte écrit par des humains, il contient

beaucoup de bruit qui doit être supprimé afin d’extraire les in-

formations utiles. Nous avons abordé ce problème en proposant

une approche basée sur des représentations vectorielles de mots.

Notre approche exploite des similitudes sémantiques, apprises

par des neural networks qui ont généré les représentations vecto-

rielles, afin d’identifier et de corriger les fautes d’orthographe et

les abréviations. Enfin, des mots-clés importants sont extraits à

l’aide du Part of Speech Tagging.

Dans la troisième partie, nous avons abordé le problème de

l’évaluation de l’état des composants à bord en utilisant les mesu-

res des capteurs. Dans les cas considérés, l’état du composant est

évalué par l’ampleur de la fluctuation du capteur et une tendance

à l’augmentation monotone. Dans notre approche, nous avons

formulé un problème de décomposition des séries temporelles

6

afin de séparer les fluctuations de la tendance en résolvant un

problème convexe. Pour quantifier l’état du composant, nous

calculons à l’aide de Gaussian Mixture Models une fonction de

risque qui mesure l’écart du capteur par rapport à son comporte-

ment normal.

7

C O N T E N T S

1 introduction 1

1.1 Scope of the Thesis 1

1.1.1 Predictive Maintenance 2

1.1.2 Time Series Data 4

1.2 Data Related to Aircraft Operation 5

1.2.1 Tools and Libraries 6

1.3 Overview of Contributions 7

1.4 outline of the thesis 7

2 background 9

2.1 Learning from Data 9

2.1.1 Supervised Learning and Evaluation Metrics 10

2.2 Probability . 12

2.2.1 Survival Analysis 12

2.2.2 Survival data and Censoring 12

2.2.3 Gaussian Mixture Models and the EM algo-

rithm . 15

2.3 Regression . 17

2.3.1 Random Forests 18

2.3.2 Model Evaluation 19

2.3.3 Hyperparameter Selection 20

2.4 Learning as Optimization 23

2.4.1 The Gradient Descent 23

2.4.2 Convex Quadratic Programming 24

3 survival analysis for failure-log exploration 27

3.1 Introduction . 27

9

contents

3.1.1 Random Variables in event logs 28

3.1.2 Building a Dataset for Survival Analysis . . 30

3.2 Time Interval Between Failures 31

3.2.1 Kaplan - Meier method 32

3.2.2 Cox Proportional Hazards 33

3.3 Studying inter-event temporal differences 36

3.4 Summary . 39

4 failure prediction in post flight reports 41

4.1 Introduction . 42

4.2 Related Work . 43

4.3 Event Log Data & Preprocessing 45

4.3.1 Preprocessing 47

4.4 Methodology . 49

4.4.1 Multiple Instance Learning Setup 51

4.4.2 Prediction . 53

4.4.3 Method summary 54

4.4.4 Parameters . 55

4.5 Experimental Setup 56

4.5.1 Dataset . 56

4.5.2 Training, Validation and Test 56

4.5.3 Baseline Algorithm 57

4.5.4 Evaluation at the episode level 59

4.6 Results . 61

4.6.1 Bag-level Performance 61

4.6.2 Episode-Level Performance 62

4.6.3 Decision threshold selection 65

4.6.4 False Positives 66

4.6.5 Model Interpretation 67

4.7 Conclusions and future work 69

10

contents

4.7.1 Infusion and Impact 69

5 logbook data preprocessing 73

5.1 Related Work . 73

5.2 Logbook Data in Aviation 74

5.2.1 Data Description 75

5.2.2 Cleaning the Logbook 77

5.3 The Importance of Logbook Data 78

5.4 Context-aware Spell Correction via Word Embed-

dings . 81

5.4.1 Word Embeddings & the skip-gram Model . 82

5.4.2 Creating word embeddings from logbook

entries . 84

5.5 logbook cleaning using word embeddings 87

5.5.1 Mapping spelling errors to correct words . . 88

5.5.2 Method Summary 92

5.6 information extraction 94

5.7 Conclusions and future work 96

6 component condition assessment using time

series data 97

6.1 Degradation . 97

6.2 Related Work . 99

6.3 Dataset . 101

6.4 Modeling Degradation with GMMs 101

6.5 Time series decomposition 104

6.5.1 Quadratic Programming Formulation 105

6.5.2 Reformulating the Optimization Problem . . 109

6.6 Condition Assessment 110

6.7 Evaluation . 111

6.7.1 Discussion . 115

11

contents

6.8 Conclusions . 116

7 discussion 117

7.1 Summary of Contributions 117

7.2 Future Directions . 119

notation 121

acronyms 123

12

L I S T O F F I G U R E S

Figure 1.1 Number of passengers carried by air trans-

port . 2

Figure 1.2 Data driven predictive maintenance 3

Figure 2.1 Survival data 13

Figure 2.2 Gaussian Mixture Model example 16

Figure 2.3 Cross validation in time series data 20

Figure 2.4 Errors and Model Complexity 21

Figure 2.5 Impact of maximum depth on train and

test error . 22

Figure 3.1 Random variables in event logs 29

Figure 3.2 PFR survival data and censoring. ’rc’ for

right censoring and ’x’ is the event of in-

terest. Each interval ti,j and rci,j is a subject

in the population. 30

Figure 3.3 Kaplan-Meier estimates for four critical

events . 33

Figure 3.4 Estimated survival functions and 95% Con-

fidence Intervals for five critical failures . . 34

Figure 3.5 Empirical means and standard deviations

of temporal difference between the critical

failure and the other failures 37

Figure 3.6 Four examples of random variables that

correspond to good candidate predictors . . 38

13

List of Figures

Figure 3.7 Four examples of random variables that

do not provide useful information about

the critical failure under consideration . . . 39

Figure 4.1 Partitioning event logs into episodes 47

Figure 4.2 Sigmoid Function 50

Figure 4.3 Sliding window approach: during the crit-

ical interval the window step decreases . . 52

Figure 4.4 r̂(xi) for a single episode. Top: the whole

episode. Bottom: Last timesteps until the

occurrence of eT 53

Figure 4.5 Survival function of the target event eT . . 57

Figure 4.6 Classification for event prediction: time-

position of classes 58

Figure 4.7 Regression and classification intevals 59

Figure 4.8 Artificial Example: A true positive episode

(top) and two false positives (middle and

bottom) . 60

Figure 4.9 Baseline approach: Support Vector Ma-

chines (SVM) Receiver Operating Charac-

teristic (ROC) Curve 61

Figure 4.10 Random Forest Performance: Number of

trees vs Mean Square Error (MSE) 62

Figure 4.11 Theshold values impact on number of True

Positives (left) and number of False Posi-

tives (right) 63

Figure 4.12 r̂ vs distance (in flights) from target event . 65

Figure 4.13 Empirical Cumulative Distribution Func-

tion (CDF) of the time between false posi-

tives and eT 66

14

List of Figures

Figure 4.14 Empirical PDFs. Top: event with low score

(TeT
e1353). Bottom: event with hight score (TeT

e1244) 68

Figure 4.15 Examples of r̂(xi) for three episodes. Top:

true positive, middle: false positive, bot-

tom: false negative 71

Figure 5.1 Sentence lengths in logbook entries 76

Figure 5.2 Term frequencies in logbook entries 77

Figure 5.3 Maintenance actions’ impact on failure pre-

diction dataset 80

Figure 5.4 The skip-gram model 83

Figure 5.5 A graph created from the nearest neigh-

bors in embedding space for 4 terms: ’de-

tached’,’printer’,’tightened’,’birdstrike’ . . . 86

Figure 5.6 Wordclouds of the 40-neighborhood of terms

in the embedding space 88

Figure 5.7 Empirical distribution of Jaccard similarities 90

Figure 5.8 Wordclouds of the 40-neighborhood of terms

in the embedding space created using the

cleaned logbook 94

Figure 5.9 Maintenance keywords extracted from the

logbook - verbs via POS Tagging. The size

of each word is proportional to its number

of occurrences in the logbook 95

Figure 6.1 Example of degrading sensor 98

Figure 6.2 Example of a Gaussian Mixture Model fit-

ted on a specific sensor’s samples 102

Figure 6.3 Gaussian Mixture Model (GMM) fitted on

8 different sensors. 103

15

List of Figures

Figure 6.4 Decomposing the time series into the fluc-

tuation and the trend 104

Figure 6.5 Trend captured by solving the original QP

problem . 109

Figure 6.6 Sensor risk examples 112

Figure 6.7 Exponential Trend 113

Figure 6.8 Linear Trend 114

Figure 6.9 Step-wise Trend 115

16

L I S T O F TA B L E S

Table 2.1 Confusion Matrix 11

Table 2.2 Properties of the survival function 15

Table 3.1 A table-structured survival dataset that

records the occurrence of events of interest

and censoring 31

Table 3.2 Modelling with Cox Proportional Hazard

(CPH) for event e2095 36

Table 4.1 Event log example with renamed attributes 46

Table 4.2 parameters 55

Table 4.3 Prediction results at the episode level 64

Table 4.4 Top Ranked Features (events) 67

Table 5.1 Example of mistyped words and dictio-

nary suggestions 78

Table 5.2 Iterative correction of spelling mistakes . . 93

17

1
I N T R O D U C T I O N

Over the past decade, industry began investigating the potential

of data that have been stored for long time but hardly exploited.

Advances in data science (or machine learning?) turned very

hard problems into feasible tasks that can bring great added

value to almost every industrial domain. Nowadays, learning

models from data in order to perform tasks such as predictions

or information extraction has become very popular and therefore,

machine learning algorithms are becoming indispensable tools in

decision making. In this context, this CIFRE1 thesis summarizes

our efforts to exploit machine learning for problems arising in the

aviation industry and more precisely, in predictive maintenance.

1.1 scope of the thesis

Civil aviation is one of the most popular means of transportation

that serves billions of passengers each year (Figure 1.1). A key

parameter for the efficiency of this industry is the availability of

the aircraft, which is the percentage of time an aircraft is in good

condition and capable to fly. The availability is usually reduced

by unexpected failures, whose occurrences render the aircraft

unable to perform a flight and therefore, sometimes leading to

1Conventions Industrielles de Formation par la REcherche a.k.a CIFRE, is
an industrial Ph.D. program in France and is supported by ANRT (Association
Nationale Recherche Technologie) http://www.anrt.asso.fr/

1

http://www.anrt.asso.fr/

introduction

Figure 1.1: Number of passengers carried by air transport per
year. Source: The World Bank2

severe delays causing financial damages to airlines and reduce

the customers satisfaction. It is the goal of predictive maintenance

to prevent such situations by making predictions about potential

failures that could affect the normal aircraft operation.

1.1.1 Predictive Maintenance

Scheduled maintenance is the traditional way of maintaining equip-

ment and consists of a set of maintenance procedures defined at

aircraft design time and that must be planned in advance and per-

formed periodically. However, whenever an unexpected failure

occurs between two scheduled maintenance slots, the equipment

becomes unavailable until the necessary maintenance actions are

performed. These unexpected failures can be a costly burden to

the equipment owners because during the downtime they may

not be able to provide the expected services to their clients. On

the other hand, the goal of predictive maintenance is to prevent

such unexpected equipment failures by continuously observing

2https://data.worldbank.org/indicator/IS.AIR.PSGR

2

https://data.worldbank.org/indicator/IS.AIR.PSGR

1.1 scope of the thesis

the status of the equipment and raising alerts well in advance.

The time between the alert and the failure can be used by the

experts to plan and perform the maintenance and to avoid any

operational disturbance. In the case of aviation, where the status

of the equipment can be reflected by data related to the operation

of the aircraft, the challenge is to analyze such data, to translate

high level predictive maintenance objectives into data science

tasks (or data mining routines) and to achieve the best possible

results.

time

failure

reaction interval

present, time of alert

HISTORICAL DATA

Event Logs

Sensor time seriesWeather Data

Logbook Data

Figure 1.2: Data driven predictive maintenance

Given the increasing collections of available data generated by

monitoring processes (e.g. sensors and event logs), the goal is to

predict upcoming critical events or system failures. An important

issue is that the interval between the prediction and the failure

(Figure 1.2) should be sufficient for the planning and execution

of the corresponding maintenance actions.

Predictive maintenance and machine learning have developed

a very strong connection. However, it is not always easy or

straightforward to perform effective predictive maintenance for

several reasons:

• Lack of predictive power in the data. It is possible that

the available data does not contain relevant or adequate

information about the problem/task under consideration.

3

introduction

• Lack of annotated data. Although large datasets could be

available for analysis, when dealing with supervised tasks

one has to obtain annotated (or labeled) data. Their lack

can be a major obstacle and the acquisition can be very

expensive, since one has to consume several man-hours, in

order to manually assign the ground truth labels.

• Huge amounts of data. In many real world scenarios one

has to deal with many gigabytes or even petabytes of data

in order to be able to extract useful knowledge about the

domain.

These problems might be easier or harder to deal with de-

pending on the application and the domain under consideration.

Finally, recent advances in big-data and related technologies have

made it possible to analyze very large datasets in distributed

environments.

1.1.2 Time Series Data

The goal of this thesis is to employ modern machine learning

techniques to analyze time series data from the aviation industry.

Time series is one of the most common data types in many real

world applications (e.g., finance, meteorology, medicine, sensor

networks) that constantly draws the attention of the research com-

munity, and has been very well studied over the past decades.

During this thesis, well-known problems such as prediction and

modeling were addressed in the context of a set of predefined

industrial requirements. Additionally, the research and devel-

opment is being performed by employing modern distributed

4

1.2 data related to aircraft operation

computing frameworks, suitable for the big-data demands of the

project due to the huge amount of information generated by the

various aircraft components.

1.2 data related to aircraft operation

An aircraft generates large amounts of data during its operation,

most of which belong to one of two main categories:

• Sensor time series. These correspond to data coming from

sensors on-board, such as pressure, temperature, speed

etc. Hundreds of sensors with varying sampling frequen-

cies emit measurements that can reach the size of a few

gigabytes for every single flight.

• Events Logs. Events are generated by systems that monitor

the condition of components on-board. These systems are

designed to detect conditions that should be reported to the

crew and the generated events correspond to failures.

Another very important category of data related to the oper-

ation of the aircraft is the logbook. The logbook contains infor-

mation about the maintenance activities that were performed on

the aircraft along with issues reported by the crew, replacements

and repairs of components etc. Although these data are not gen-

erated by the aircraft and their size is limited, the information

that they contain is invaluable for performing effective predictive

maintenance.

5

introduction

1.2.1 Tools and Libraries

In order to obtain the results presented in this thesis we per-

formed our experiments using available tools and libraries. The

ones that were mostly used in the context of the thesis are the

following:

• Apache Spark Zaharia et al. (2016). A big data processing

engine which was extensively used to analyze the data

involved in this thesis.

• MLlib Meng et al. (2016). The machine learning library of

Apache Spark which includes efficient implementations of

machine learning algorithms for the distributed environ-

ment.

• Scikit-Learn Pedregosa et al. (2011). A python library for

Machine Learning which includes a plethora of both state

of the art and recent algorithms.

• CVXOPT Dahl and Vandenberghe (2006). A convex opti-

mization library in python.

• Matplotlib Hunter (2007). A python plotting library that

was used to generate all the figures that present analysis

results.

• IPE Schwarzkopf (1995). A drawing editor for creating

vector graphics with which all schematic diagrams were

created.

6

1.3 overview of contributions

1.3 overview of contributions

The contributions made in the context of the thesis can be briefly

summarized as follows:

• We proposed a method from predicting aircraft failures

given the history of past ones. To our knowledge, this was

the first approach on such data, we achieved 25% precision

with very few false positives, and we showed the impact

in cost reduction of our results. Furthermore, although our

target data were aircraft failures, our method can be used

for event logs coming from any other domain.

• We proposed a method for cleaning logbook data using

recent advances in text mining. We demonstrated the prob-

lem of dealing with such data and snapshots of our results.

Our work is the first step towards the embedding of such

data in failure prediction.

• We addressed the problem of assessing the condition of

sensors on board by proposing a method for quantifying

the severity of the fault and consequently, the risk of its

failure. Our approach was a novel modification of a recently

proposed method, followed by the utilization of recent ad-

vances in neural network architectures.

For more detailed discussion of our contributions, please refer

to the concluding sections in Chapters 4, 5 and 6.

1.4 outline of the thesis

The rest of the thesis is organized as follows:

7

introduction

• Chapter 2 presents the minimum background in order to

facilitate the reader in understanding the next, technical

chapters.

• Chapter 3 demonstrates our initial steps to investigate the

failure dataset.

• Chapter 4 presents our method on failure prediction

• Chapter 5 is about processing technical logs that contain

information about maintenance activities using text mining

approaches.

• Chapter 6 presents our approach on sensor degradation

monitoring using time series approaches.

• Chapter 7 concludes this thesis with a short discussion

about the achievements and the future steps.

8

2
B A C K G R O U N D

In this chapter we present the minimum background required to

follow the rest of the thesis. Due to the fact that we addressed

several problems on different types of data, we had to investigate

a wide range of methods and algorithms. However, in this section

we describe only the key components used in each problem.

For comprehensive material in the area, one should refer to

some remarkable Machine Learning books such as Bishop (2006),

Barber (2012), Goodfellow et al. (2016), Koller and Friedman

(2009) and Theodoridis (2015). TP

2.1 learning from data

Machine learning is about extracting knowledge from data in

order to create models that can perform tasks effectively. A

typical Machine Learning application consists of the following

parts:

• A task and a metric for evaluation. The task comes in-

herently given a real problem and the metric quantifies

effectiveness of a solution.

• A model family that we believe is capable of solving the

problem in hand. The selection of the model type depends

on several factors, such as the amount of available train-

ing data (i.e. size of the given dataset), the complexity of

9

background

the task and knowledge about its performance on similar

problems Caruana and Niculescu-Mizil (2006).

• A dataset on which the best model will be trained in order to

solve the task, aiming to the best performance with respect

to the evaluation metric.

• A loss function that quantifies the goodness of fit. In con-

trast to the evaluation metric, the loss function is a differen-

tiable and usually model-specific Bottou (2010).

• An optimization algorithm to train the model. The mod-

els consist of parameters (usually referred as θ), whose

values reflect the performance on the loss function. Thus,

an optimization strategy is required in order to select the

parameter set that minimizes the loss function.

Note the difference between the first and the fourth point. In

several cases these functions can be the same, for example for

house price prediction, the Mean Squared Error (MSE) can be both

the task objective and the loss function.

In Machine learning we are creating models that can best under-

stand a set of available data (aka a dataset) in order to perform

a specific task. A dataset X consists of a usually finite number

of samples xi, i = 1, . . . n, such as images, documents or users,

depending on the application.

2.1.1 Supervised Learning and Evaluation Metrics

Supervised learning occurs when the model is trained using

input-output pairs, like in classification and regression. In this

10

2.1 learning from data

Predicted Class
Positive Negative Total

Actual Class Positive FN TP + FN
Negative FP TN FP + TN

Total TP + FP FN + TN

Table 2.1: Confusion Matrix

scenario, the dataset consists of two subsets, the feature set X
and the label set Y , both having the same cardinality (|X | = |Y|),
which is equal to the number of available samples.

On the other hand, unsupervised learning occurs when the

model is trained using only the feature set X . The most popular

unsupervised tasks is clustering, since the cluster labels are not

known in advance.

In the case of supervised learning, since the labels are known

in advance, we can directly assess the performance of our ap-

proach using standard metrics. When the labels are continuous

(Regression), yi ∈ Rd, yi ∈ Y , the popular performance metrics

are the MSE, the Mean Absolute Error (MAE) and their weighted

alternatives, where each sample comes with a different weight.

When the labels correspond to distinct categories (Classifica-

tion) several metrics have been proposed and are mostly related

to the distribution of the classes: Accuracy, Precision/Recall, F1-

Score are among the most popular ones. In order to calculate

these metrics, one has to compute the confusion matrix (Table 2.1).

In the context of predictive maintenance one of the most im-

portant problems is to predict equipment failures. If we consider

this problem as a binary classification, our errors correspond

to either false alarms (False Positives) or missed failures (False

Negatives). Depending on the application, we have to decide the

11

background

importance of the types of errors that we encounter and we have

to deal with the balance of False Positives and False Negatives

according to industrial parameters such as the expected cost.

For example, in cases where alarms trigger costly maintenance

processes, avoiding many False Positives is very important.

2.2 probability

2.2.1 Survival Analysis

Survival analysis Miller (2011) is widely used to extract temporal

information about events. The most common application appears

in biology and medicine, where common events of interest are

population deaths, treatments etc. Furthermore, in the context of

survival analysis, questions of major interest are whether there

exist variables (covariates and interactions among them) that af-

fect the time to an event and whether two or more populations

exhibit significant difference on the time of occurrence of the

event of interest. In predictive maintenance, events usually cor-

respond to equipment failure and in engineering applications

survival analysis is called reliability theory.

2.2.2 Survival data and Censoring

A typical dataset in survival analysis consist of subjects and their

corresponding times to the event of interest (i.e. the survival time)

and occasionally, other variables associated with the subjects

if they are available. Figure (2.1), shows a small example of

depicting a survival dataset, consisting of 6 subjects (AC1 − AC6)

12

2.2 probability

and their times to the event of interest, e, (t1− t6). All the subject’s

observations are aligned in time and they begin at t = 0.

0 time

AC1 e

AC2 e

AC3 e

AC4 e

AC5 e

AC6 e

t1 t2 t3 t4 t5 t6

Figure 2.1: Survival data

A very important concept in survival analysis is censoring.

Censoring occurs when we are not sure about the exact time of

the event’s occurrence due to incomplete data. For example, if

the event of interest does not occur for a subject in the population

during the observation period, then we know that the survival

time for this subject is at least as long as the observation period.

This is probably the most common case of censoring. The three

types of censoring are:

• right censoring When the time to the event of interest is

more than some known value. For example, when the

observation period ended without observing the event.

• left censoring When the time to the event of interest is less

than some known value.

13

background

• interval censoring When the time to the event of interest is

within a known interval.

In survival analysis applications it is very important to handle

the censored data and therefore, all types of censoring have been

extensively studied Klein and Moeschberger (2005). However,

in the case of equipment failures we deal mostly with right

censoring.

2.2.2.1 Survival and Hazard Functions

The key components of survival analysis survival and the hazard

functions. The survival function (2.1), S(t), is the probability of

an event occurring after time t (or equivalently surviving at least

until time t), i.e. the probability of a failure not occurring before

time t,

S(t) = p(T > t). (2.1)

The most important properties of the survival function are

presented in Table 2.2. In brief, it is a non-increasing function

with respect to time and at the beginning of the observations it

always equals to 1, because of the assumption that no subject dies

at t = 0.

The hazard function (2.2), h(t), is the rate of the event occur-

rence (a.k.a. death rate or hazard rate) at time t,

h(t) = lim
∆t→0

p(t ≤ T < t + dt|T ≥ t)
∆t

. (2.2)

The most important properties of the hazard function are a) it

is always positive (h(t) ≥ 0 ∀t ≥ 0), and b)
∫ ∞

0 h(t)dt = ∞.

14

2.2 probability

Property Interpretation
S(0) = 1 The probability of a failure

at the start of the observa-
tion is zero.

limt→∞ S(t) = 0 The event will certainly oc-
cur

S(ta) ≥ S(tb) ⇐⇒ ta ≤ tb It is monotonically decreas-
ing

S(t) = 1− F(t) = 1−
∫ ∞

t f (τ)dτ

Table 2.2: Properties of the survival function

Consequently, it is straightforward to derive the following

relations (equations 2.3, 2.4) between the hazard and survival

functions:

h(t) =
dS(t)/dt
−S(t)

(2.3)

S(t) = exp
(
−
∫ t

0
h(τ)dτ

)
(2.4)

2.2.3 Gaussian Mixture Models and the EM algorithm

A Gaussian Mixture Model (GMM) is used to model the pdf of

random vector x as a linear combination of densities instead of a

single one (eq. 2.5),

p(X) = ∑ Pk p(x|k). (2.5)

Figure 2.2 demonstrates an example of a mixture model and a

single Gaussian fit on a sample population generated by the sum

of two random variables.

15

background

5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200 fit: mixture of 2 components
fit: signle gaussian
y = x1 + x2, x1 (10, 4), x2 (17, 1),

Figure 2.2: Gaussian Mixture Model example

The difficulty in estimating the GMM parameters using the

maximum likelihood approach is due to the latent variable, k,

which indexes the components from which sample is drawn. The

solution comes from Expectation Maximization (EM) which is an

algorithm for maximum likelihood estimation of parameters, in

the presence of latent variables or missing data.

2.2.3.1 Expectation Maximization

The algorithm to estimate the parameters of a GMM is the EM

Dempster et al. (1977). It is an iterative method to perform

Maximum Likelihood estimates of parameters in the presence of

latent variables. Its name refers to the two steps of the iterative

process, the E-step which is the estimation of the latent/missing

16

2.3 regression

variables and the M-step, which is the parameter update by

maximizing the likelihood function.

The process can be summarized in equation 2.6,

θn+1 = argmax
θ

EZ|X,θn {lnP(X, z|θ)}︸ ︷︷ ︸
E−step

︸ ︷︷ ︸
M−step

. (2.6)

For the comprehensive description of of the EM steps in GMM

estimation one can refer to Dempster et al. (1977).

2.3 regression

Regression is the task of learning (fitting) a model whose depen-

dent variables (or output variables) are continuous, i.e. M(X |Θ) =

Y where Y = {y1, . . . yd} and yi ∈ R∀i. It is one of the most stud-

ied problems with applications in almost every domain and thus,

many regression models have been proposed, such as Linear Re-

gression with regularization, Support Vector Regression, Spline

and Polynomial Regression etc.

In predictive maintenance and consequently in this thesis, tasks

like estimating the risk of a system failure, quantifying the con-

dition of a components and predicting missing sensor values

can be naturally modeled as regression problems and therefore

extensive research and experimentation was performed to select

the proper ones for each case.

17

background

2.3.1 Random Forests

Random forests Liaw and Wiener (2002) are one of the most

popular models in Machine Learning and they have been widely

used both for classification and regression. They belong to a

broad class of algorithms called ensemble learning Zhou (2012);

Zhang and Ma (2012), which is the combination of multiple,

simple models in order to solve a hard, complex tasks. In this

sense, a random forest is composed by a set of decision trees

Breiman et al. (1984), each one estimating the output variable on

a set of available features.

The most important advantages of random forests can be sum-

marized as follows:

• Scalability. Random forests can be naturally trained in

distributed environments Chen et al. (2017).

• Non-linearity. They can capture complex relationships

among the features by traversing the tree and splitting the

data based on feature values.

• Interpretability. Being composed by many simple decision

trees, several techniques can be used to assess each feature’s

importance based on the effect of the splits in which it

participates Archer and Kimes (2008).

• Simple and intuitive hyperparameters. The only1 hyper-

parameters of a random forest is the number of trees and

the maximum depth.

1Random forests can be tuned by other means, such as selecting different
impurity functions, however, this is not considered as a parameter

18

2.3 regression

2.3.2 Model Evaluation

Given a training dataset and a model class (or a class of models)

one has to decide whether the trained model will perform well

in production, i.e. will perform as well with new samples. There-

fore, there are two types of errors: a) the training error, which is

the error on the samples used to train the model and b) the gener-

alization error, which is the error on new samples that were not

used during training. The generalization error is our estimation

of our model’s performance once deployed.

Since the generalization error cannot be computed before the

actual deployment of the model, we simulate it by dividing

the available data into two sets, the training and the validation

datasets. We fit the model on the training dataset and we eval-

uate its performance on the validation one, thus obtaining the

validation error, which is our simulation for the generalization

error.

The most popular approach is k-fold cross-validation (or rotation

estimation) Kohavi (1995), in which we divide the training sets in

k non overlapping segments. Then the model is trained using the

k− 1 segments and the validation error is estimated on the other

one.

In general, the k− 1 training subsets can be selected by random

sampling the indices of the data points in the training set. How-

ever, in the special case of sequential data (such as time series),

one has to comply with a simple and intuitive rule: the sequence

of the data must be respected and thus, past samples should only

be used for training and future samples for validation 2.3.

19

background

t

testtrain

testtrain

testtrain

testtrain

testtrain

folds

Figure 2.3: Cross validation in time series data

2.3.3 Hyperparameter Selection

Machine Learning models contain parameters that cannot be

optimized during the training phase, such as the regularization

term λ in LASSO Tibshirani (1996), C in Support Vector Machines

Duan et al. (2003), the number of trees and the maximum depth

in random forests. Parameters that cannot be optimized need to

be selected by brute force approaches, such as grid-search. These

parameters are known as hyperparameters.

In gird-search, one defines the ranges of the hyperparameters

in which the search for the best model will be performed. At

every step of the search, a combination of the values within

the predefined ranges is assigned to the hyperparameters and a

k− f old cross validation is performed.

The values of the hyperparameters are closely related to over-

fitting since they control the complexity of the model. A complex

model tends to overfit since it tends to have the capacity to mimic

20

2.3 regression

the training set. However, if this complexity is not controlled, the

model will perform poorly on the test set (see Figure 2.5).

generalization error

training error

error

model complexity

overfittingunderfitting

optimal complexity

Figure 2.4: Errors and Model Complexity

Consider for example the max_depth parameter in a random

forest, which controls the maximum depth which each tree can

reach by the iterative splits and thus, the larger the depth the

more complex relationships among the features will be used for

the split and this may lead to overfitting. In Figure 2.5 we present

the impact of the max_depth parameter on the train and test

errors using the Wine Quality2 dataset.

This dataset Cortez et al. (2009) consists of 4898 instances (sam-

ples) with 12 attributes that represent characteristics of the wines.

For our purpose of demonstrating the problem of overfitting, we

formulated a regression problem aiming to predict each wine’s

score (it is one of the 12 attributes) using the other 11 features.

The method was evaluated using the Mean Square Error. The

2https://archive.ics.uci.edu/ml/datasets/wine+quality

21

https://archive.ics.uci.edu/ml/datasets/wine+quality

background

1 2 3 4 5 6 7 8 9
max_depth

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

Train Error

(a) train error

1 2 3 4 5 6 7 8 9
max_depth

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
SE

Test Error

(b) test error

0 1 2 3 4 5 6 7 8
max_depth

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
SE

Train and Test Error

Train Error
Test Error

(c) means of train and test error

Figure 2.5: Impact of maximum depth on train and test error

box-plots in 2.5 were generated using 10 runs, each one perform-

ing a 5-fold cross validation. As the figures show, the train error

drops by increasing the max-depth whereas the test error has a

minimum value when the depth is 4. The figures show that for

greater values of the depth the model starts overfitting the data.

22

2.4 learning as optimization

2.4 learning as optimization

Learning a modelM from the data requires a metric or a measure

that quantifies the quality of the fit. This measure is usually

called the loss function and quantifies errors made during the

fitting process (i.e. the samples for which the model did not

fit well) and is task dependent. Therefore, model training is an

optimization process that aims to minimize the loss function by

finding the model’s parameters that achieve this minimum loss.

A plethora of methods exist to perform this optimization, some

of them being model-specific and some more general. In the next

section we briefly present the concept of Gradient Descent (GD),

which is the most widely used optimization approach in Machine

Learning.

2.4.1 The Gradient Descent

The GD method is an iterative algorithm for optimization Ruder

(2016) and it is widely used in learning parameters in numerous

applications. In each iteration, the parameters are updated by fol-

lowing the opposite direction to the gradient of the loss function

with respect to the current parameter values (Eq 2.7).

θi+1 = θi − η∇θL(θi) (2.7)

The problem with this approach is that at each iteration, the

gradient has to be computed on the whole training set and thus,

in cases where it is very large, each step requires a lot of time.

Alternatively, Stochastic Gradient Descent (SGD) Bottou (2010) is

an extension of GD, which performs an update of the parameters

23

background

using a single sample. The term stochastic comes from the fact

that the process depends on the samples randomly selected at

each iteration.

2.4.2 Convex Quadratic Programming

When the loss function is convex, a single set of values for

the model’s parameters exists, which evaluates the function

to its global minimum. In this section, we will briefly intro-

duce a specific form of a convex optimization problem, which

is called Quadratic Programming (QP). An optimization gram is

Quadratic, if the objective function is convex quadratic, and the

constraint functions are affine Boyd and Vandenberghe (2004).

The quadratic program has the form:

min
x

xTQx + wTx + c

s.t. Gx 6 h

Ax = b

(2.8)

where Q ∈ Sn
+, G ∈ Rm×n and A ∈ Rp×n. Sn

+ is the space

of Positive Semidefinite matrices of shape n× n. A matrix M ∈
Rn×n is positive semidefinite iff xT Mx > 0, ∀x ∈ Rn×1.

The importance of convex optimization in Machine Learning

lies in the fact that formulating the parameter learning as such,

one can obtain a global minimum. Consider for example the

problem of linear regression, where we aim to minimize the

mean squared error ‖Xθ − b‖2. This problem can be formulated

as:

24

2.4 learning as optimization

min
w

θT XTX︸︷︷︸
Q

θ − 2bTX︸ ︷︷ ︸
−w

θ + bbT︸︷︷︸
c

(2.9)

which is convex.

Finally, Quadratic Programming will be the key concept for

developing the methodology in Chapter 6.

25

3

S U RV I VA L A N A LY S I S F O R FA I L U R E - L O G

E X P L O R AT I O N

In this chapter we present our approach to explore Post Flight

Report (PFR) datasets (which consists of aircraft failures) using

state of the art survival analysis techniques. Failures are the

most important entities in predictive maintenance because it’s

their occurrence that reflects problems in equipment on-board

and triggers maintenance actions. Therefore, before building

a machine learning approach for failure prediction, we extract

basic information about their occurrence for two main reasons:

a) we will use this information later to properly setup our learn-

ing process with no prior knowledge from experts and b) the

outcomes are useful to investigate differences among aircraft

types or equipment types with respect to failure rates, in order

to discover relevant vulnerabilities.

3.1 introduction

As mentioned in the previous section, survival analysis is widely

used to investigate the time-to-event in several domains, mostly

in medicine and biology and has been widely used for many

years now Kelly and Lim (2000), Binet et al. (1981), Adams et al.

(1991) Gross and Clark (1975). In engineering, suvival anaysis

(which is named reliability theory Ma and Krings (2008)) methods

27

survival analysis for failure-log exploration

are used to extract knowledge about the remaining lifetime of

components and the time to failures, Liao et al. (2006), Zhou et al.

(2014).

All these approaches study the corresponding problem in hand

using the main concepts presented in Section 2.2.1. Although

these methods provide useful information about the termporal

nature of the events, they are not capable of performing accurate

predictions and therefore, machine learning approaches have

been employed Wang et al. (2017). However, simple survival

analysis methods consist of very effective tools for exploring

failure log data.

3.1.1 Random Variables in event logs

An event log contains the sequence of failures that occurred

during the operation of the aircraft. The alphabet of failures is

finite and each failure is recorded using its unique identifier (id).

Let E = {e1, . . . , ek} be the alphabet of failures. Thus, each entry

in the logbook is a tuple < ti, xi >, where ti is the timestamp

of the failure and xi ∈ E is the failure that occurred. For each

aircraft, the logbook forms a sequence of such tuples.

The alphabet of failures contains both important1 and not

important ones and thus, we are interested to analyzing and

predicting the former ones. Let eT be a critical failure that we

aim to predict. In the history of event logs this failure may appear

more than once and thus, the survival time corresponds to the

time interval between two consecutive occurrences of eT (i.e. the

1In our work, the importance of a failure is estimated by the amount of
time the aircraft has to stay on the ground until the corresponding maintenance
action is performed.

28

3.1 introduction

time interval starting from the maintenance action until its next

failure). We define k random variables that correspond to these

intervals Tei , i ∈ [1 . . . k]. Furthermore, we introduce k × k − 1

random variables Tei
ej that correspond to the time between failure

ej and the next occurrence of ei. We will use this information

later in this chapter to introduce the concept of predictors. Figure

3.1 depicts these two categories of random variables with respect

to the target failure eT .

time

eT ei eT

T
eT

T
eT
ei

Figure 3.1: Survival time: Time interval between consecutive oc-
currence of a target failure eT that occurs at times t1
and t3.

To be aligned with the concepts in survival analysis, we assume

that after each occurrence of a target failure a maintenance action

treats the failure in such way that it becomes independent of the

previous one. Although this might not be always true, it is a

reasonable assumption in most cases. Furthermore, throughout

the rest of the thesis we consider the time as a discrete variable

that is measured in flights for two main reasons. First, in order

to avoid including possible time periods of non-utilization of an

aircraft and second, the number of take-offs and landings are

more important for many failure types than the amount of hours.

29

survival analysis for failure-log exploration

3.1.2 Building a Dataset for Survival Analysis

In a typical survival analysis experiment, one starts observing

a population at t = 0, and monitors the time of occurrence of

the events. In order to structure our failure data accordingly, we

introduce a new subject of the population for interval between

two consecutive occurrences. Moreover, we consider the interval

from the beginning of the PFR log until the first occurrence of the

target failure and the interval from the last occurrence of the tar-

get failure until the end of the PFR as right-censored observations.

In Figure 3.2 we demonstrate this setup.

AC1

AC2

AC3

AC4

x x x

x x x

x x x

x x

rc1,1

rc2,1

rc3,1

rc4,1

t1,1 t1,2 rc1,2

t2,1 t2,2 rc2,2

t3,1 t3,2 rc3,2

t4,1 rc4,2

Figure 3.2: PFR survival data and censoring. ’rc’ for right censor-
ing and ’x’ is the event of interest. Each interval ti,j
and rci,j is a subject in the population.

The time-aligned dataset created by the intervals depicted in

Figure 3.2 is presented in Table 3.1. Each row is added for every

timestep at which an event occurred (either censored or not) in a

time-increasing order. The columns are:

• t is the duration from the beginning of the observation until

the event

• d(t) is the number of events at time t

30

3.2 time interval between failures

• q(t) is the number of right censoring at time t

• n(t−) is the number of subjects at risk just before time t, i.e.

the number of subjects without the event just before time t.

intervals t d(t) q(t) n(t−)
- 0 0 0 15

rc2,1, rc4,1 rc2,1 0 2 15

rc2,2 rc2,2 0 1 13

t1,1 t1,1 1 0 12

rc1,1, rc3,1 rc1,1 0 2 11

rc1,2, rc3,2 rc1,2 0 2 9

t3,2 t3,2 1 0 7

rc4,2 rc4,2 0 1 6

t3,1, t2,1 t3,1 2 0 5

t2,2, t1,2 t2,2 2 0 3

t4,1 t4,1 1 0 1

Table 3.1: A table-structured survival dataset that records the
occurrence of events of interest and censoring

This table-structured representation facilitates the Kaplan-Meier

(KM) estimation of the survival function presented in the next sec-

tion and the partial likelihood estimation for the Cox Proportional

Hazard approach presented in Section 3.2.2.

3.2 time interval between failures

In this section we study the survival functions of target failures

using the non-parametric Kaplan-Meier Kaplan and Meier (1958)

approach and furthermore, we investigate the impact of some

available covariates using the Cox Proportional Hazard method

Cox and Oakes (1984a).

31

survival analysis for failure-log exploration

3.2.1 Kaplan - Meier method

The Kaplan-Meier is a non-parametric method of estimating the

survival function. The KM estimation of the survival function is

Ŝ(t) = Ŝ(t−) p̂(T > t|T ≥ t) (3.1)

where

p̂(T > t|T ≥ t) =

{
1 if d(t) = 0
n(t−)−d(t)

n(t−) otherwise
(3.2)

and consequently, from (3.1) and (3.2) one can derive the final

form of the survival function:

Ŝ(t) = ∏
t(i)≤t

n(t−)− d(t)
n(t−)

. (3.3)

In Figure 3.3 we show an example of survival estimated for

four critical events. The dataset comes from PFR reports from 18

aircraft.

In Figure 3.4 we present the survival functions of the failures

presented in Figure 3.3. The dashed lines correspond to the

confidence intervals for 95% confidence.

Figures 3.3 and 3.4 show that events e2183 and e1987 have similar

occurrence intervals and also, the same stands for events e2095

and e2156. However, event e2136 has different behavior.

32

3.2 time interval between failures

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of flights

Ŝ
(t)

Event ID

1987

2095

2136

2156

2183

Figure 3.3: Kaplan-Meier estimates for four critical events

3.2.2 Cox Proportional Hazards

The CPH method enables the utilization of continuous and cate-

gorical covariates in the model of the hazard function and thus,

it can be used to study the effect of each one on the hazard rate.

In CPH the hazard function is modeled as the product of a

baseline hazard (h0(t, a)) which depends on time, and a term

(exp(βTx)) that depends on the covariate (3.4).

h(t, x) = h0(t, α) exp(βTx) (3.4)

The advantage of this model is that if we are interested in

investigating how the covariates affect the hazard function, then

we do not need to compute the baseline hazard, since the ratio of

33

survival analysis for failure-log exploration

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimate for event: 2095

time

Ŝ
(t)

(a) Event e2095

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimate for event: 2156

time

Ŝ
(t)

(b) Event e2156

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimate for event: 2136

time

Ŝ
(t)

(c) Event e2136

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimate for event: 1987

time

Ŝ
(t)

(d) Event e1987

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimate for event: 2183

time

Ŝ
(t)

(e) Event e2183

Figure 3.4: Estimated survival functions and 95% Confidence In-
tervals for five critical failures

two hazards at a specific time depends on the difference of the

covariates and the corresponding coefficient (3.5).

34

3.2 time interval between failures

h(t, x1)

h(t, x2)
=

h0(t, α) exp(βx1)

h0(t, α) exp(βx2)
= exp {β(x1 − x2)} (3.5)

Finally, learning the coefficients is performed by maximizing

the partial log-likelihood Lee and Wang (2013)

log L(β) =
k

∑
i=1

βxi − log

 ∑
l∈R(ti)

ebxl

 , (3.6)

where R(ti) are the subjects of the population that are at risk

and xi is the covariate vector of subject i that died at timestep i.

3.2.2.1 Modelling with Cox Proportional Hazards

In our 18-aircraft dataset we have only one categorical covariate,

the aircraft label. We use this just to demonstrate how the CPH

can be used in the future when we will add convenient covariates.

For the case of one single categorical covariate with k possible

values, the model is was built using k− 1 binary variables, for all

but one possible values of the covariate.

In Table 3.2 we present the coefficients of the model extracted

from the failure ’e2095’. The column exp(coef) shows the expo-

nential of the coefficient exp(βTx) and the p column shows the

p-value of the statistical test having null hypothesis that this

coefficient is zero.

A value x of a coefficient (exp(coef)) means that the baseline

hazard is multiplied by x, i.e. x times the hazard rate of the first

category (the one left out for the k − 1 binary variables). For

example, the value 4.419 means that the hazard rate of AC17 this

is 4.419-times the hazard rate of AC01.

35

survival analysis for failure-log exploration

coef exp(coef) se(coef) z p
xAC02 1.2312 3.425 0.486 2.5330 0.0110

xAC03 -0.2349 0.791 0.611 -0.3842 0.7000

xAC04 0.8254 2.283 0.501 1.6473 0.0990

xAC05 0.5012 1.651 0.523 0.9580 0.3400

xAC06 1.0511 2.861 0.494 2.1299 0.0330

xAC07 0.2148 1.240 0.557 0.3852 0.7000

xAC08 -0.1975 0.821 0.655 -0.3015 0.7600

xAC09 -0.0471 0.954 0.609 -0.0774 0.9400

xAC10 0.5901 1.804 0.542 1.0888 0.2800

xAC11 0.8827 2.417 0.530 1.6659 0.0960

xAC12 1.0854 2.961 0.511 2.1231 0.0340

xAC13 0.6474 1.911 0.530 1.2210 0.2200

xAC14 1.2373 3.446 0.503 2.4607 0.0140

xAC15 0.9381 2.555 0.522 1.7985 0.0720

xAC16 0.9083 2.480 0.561 1.6184 0.1100

xAC17 1.4859 4.419 0.485 3.0629 0.0022

xAC18 1.1376 3.119 0.515 2.2093 0.0270

Table 3.2: Modelling with CPH for event e2095

3.3 studying inter-event temporal differences

In Section 3.1.1 we introduced the random variables T
ej
ei that are

the number of flights between an event ej and the next occurrence

of ei. Here, given a target failure eT we aim to investigate the

random variables TeT
ej in order to identify possible predictors,

aiming to answer the following question: How many flights before

the occurrence of eT are we able to make a prediction? This question is

very important since most machine learning methods for failure

prediction form a binary classification problem Sipos et al. (2014a),

with the positive class being generated by an interval before the

failure. The determination of the length of this interval is usually

36

3.3 studying inter-event temporal differences

defined by experts, however, when this knowledge is hard to

acquire an automated approach would be very essential.

In Figure 3.5 each point corresponds to one random variable

TeT
ei , i = [1, . . . , |E |] and its coordinates are < E[TeT

ei], std{TeT
ei } >.

Intuitively, good candidate predictors appear in the bottom left

corner of the graph, since small standard deviation of TeT
ei means

that once ei occurs, one can make more confident prediction

about eT .

0 2000 4000 6000 8000 10000
empirical mean

0

1000

2000

3000

4000

5000

st
an

da
rd

 d
ev

ia
tio

n

Te408
ei

, ei e408

Figure 3.5: Empirical means and standard deviations of temporal
difference between the critical failure and the other
failures

In Figure 3.6 we present the random variables that correspond

to four failures whose representation is on the bottom left corner

of 3.5. The information coming from this figures gives us an

37

survival analysis for failure-log exploration

initial estimation on the prediction window for predicting eT
which in this specific case is 400 flights.

0 100 200 300 400 500 600 700
number of flights

0.000

0.002

0.004

0.006

0.008

Te408
e200545

0 200 400 600 800 1000 1200
number of flights

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Te408
e200378

0 200 400 600 800 1000 1200 1400
number of flights

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Te408

e13483

0 200 400 600 800 1000 1200 1400
number of flights

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Te408
e4604

Figure 3.6: Four examples of random variables that correspond
to good candidate predictors

In Figure 3.7 we present four random variables having the

highest mean values and standard deviations. It is obvious that

these failures do not contain useful information (when considered

solely) about the critical failure.

Exploring the variables TeT
ei for a critical failure gives essential

exploratory information that can be used for prediction. However,

in order to make accurate predictions given the PFR data one has

to take into account predictors that are combinations of other

failures and not single ones.

38

3.4 summary

0 2000 4000 6000 8000 10000 12000 14000 16000
number of flights

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Te408
e204

0 2000 4000 6000 8000 10000 12000 14000
number of flights

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
Te408

e1459

0 2000 4000 6000 8000 10000 12000
number of flights

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Te408
e599

0 2000 4000 6000 8000 10000 12000
number of flights

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200
Te408

e8997

Figure 3.7: Four examples of random variables that do not pro-
vide useful information about the critical failure under
consideration

3.4 summary

In this chapter we presented our exploratory analysis on the PFR

dataset. We presented an approach using state of the art survival

analysis methods in order to explore the time intervals between

failures and the possible impact of available variables on the

survival times. Moreover, we used the time intervals between

failures in order to identify candidate predictors and also, to

extract information that will be useful in failure prediction, which

is presented in the next chapter.

39

4
FA I L U R E P R E D I C T I O N I N P O S T F L I G H T

R E P O RT S

In this chapter we present an approach to tackle the problem

of event prediction for the purpose of performing predictive

maintenance in aviation. Given a collection of recorded events

that correspond to equipment failures, our method predicts the

next occurrence of one or more events of interest (target events

or critical failures). Our objective is to develop an alerting sys-

tem that would notify aviation engineers well in advance for

upcoming aircraft failures, providing enough time to prepare the

corresponding maintenance actions. We formulate a regression

problem in order to approximate the risk of occurrence of a target

event, given the past occurrences of other events. In order to

achieve the best results we employed a multiple instance learning

scheme (multiple instance regression) along with extensive data

preprocessing. We applied our method on data coming from a

fleet of aircraft and our predictions involve failures of compo-

nents onboard, specifically components that are related to the

landing gear. The event logs correspond to post flight reports

retrieved from multiple aircraft during several years of operation.

To the best of our knowledge, this is the first attempt on aircraft

failure prediction using post flight report data and finally, our

findings show high potential impact on the aviation industry.

The rest of this chapter is organised as follows: In section

4.2 we present the related work on event prediction from event

41

failure prediction in post flight reports

logs. Although there are plenty of methods for categorical time

series prediction, we emphasise on methods that address the

problem of predicting future occurrences of specific events (or

failures in predictive maintenance). In section 4.3 we present the

nature of event-log data along with our preprocessing steps and

in section 4.4 we present our approach for prediction. In section

4.5 we discuss about our data, the experimental setup and the

parameters and section 4.6 presents our results. Our conclusions

and future work are in section 4.7.

4.1 introduction

Monitoring systems generate events that reflect the condition of

the equipment or the processes that are being observed. Hard-

ware health, business processes and server activities are examples

of cases where event logs are generated in order to provide the

corresponding information. Given a set of event logs, questions

of great importance are: how can we predict when a specific

event will occur? How far before its occurrence are we able to

predict it? In this chapter we address the problem of predicting

the next occurrence of a specific event (target event), given the

history of past events. This problem is extremely significant in

predictive maintenance Kauschke et al. (2016); Susto and Beghi

(2016), where the prediction of an upcoming failure of a system

is very important.

In hardware monitoring applications, events are usually gener-

ated by software installed on the target equipment that regularly

samples sensor measurements (e.g. temperature, pressure, etc).

So far, the event logs are used mostly for debugging purposes

42

4.2 related work

by the technical experts. It is challenging and efficient to be able

to use the event logs for predicting failures instead of the raw,

time-series data, because they are much smaller in size, easily

accessible and can be transmitted in real time to a centralised

infrastructure where the prediction can take place.

Motivated by the above, we present our approach for event

prediction that could potentially be applied in a wide area of

applications.

4.2 related work

Prediction in event logs is well studied problem in a wide range

of applications Salfner et al. (2010). Each application exhibits its

own special characteristics that have great impact on the design

of the corresponding algorithm. Hard drives Son et al. (2013);

Murray et al. (2005), medical equipment Sipos et al. (2014b);

Yuan et al. (2011) and web servers Zhang et al. (2016) are some

application domains where failure prediction is important and

prediction methods have been successfully applied.

The vast majority of failure prediction methods try to solve

a classification problem; given the events that occur within a

time window, the classifier decides if a failure will occur within a

predefined interval. For example, in Weiss and Hirsh (1998) the

authors use a genetic algorithm approach in order to discover

prediction rules and perform the prediction, in Gu et al. (2008)

the authors propose an online failure prediction scheme based

on decision trees, in Yu et al. (2011) the authors employ Bayesian

classification and more recently in Zhang et al. (2016) the authors

use Long-Short Term Memory (LSTM) neural networks. Further-

43

failure prediction in post flight reports

more, in Laxman et al. (2008) the authors present a method that

predicts if the next event (given a history of events) is a target

event (an event of interest). Their approach is based on frequent

episode mining and Hidden Markov Model (HMM).

In this setup, a multiple instance learning Fu et al. (2011)

approach is more appropriate in order to tackle the problem

of falsely assigning unrelated events to the positive class (i.e.

events that randomly appeared before the failure). Towards this

direction, the authors in Sipos et al. (2014b) create one positive

sample by averaging the features extracted from the events for

each window close to the failure and multiple negative ones

for the windows far before the failure. They employ SVM Fan

et al. (2008) to perform the prediction. Similarly, the authors

in Murray et al. (2005) propose Multiple Instance Naive Bayes

(miNB), that iteratively learns the labels (positive and negative) in

each window, aiming to minimise the false positive rate.

Apart from the classification-based approaches, failure predic-

tion has been tackled by statistical methods. In Yuan et al. (2011)

the authors follow another approach based on survival analysis.

More specifically, they use Cox Proportional Hazard (CPH) model

Cox and Oakes (1984b) in order to approximate the survival

function and they use the occurrence of other events/failures as

covariates (features). In this setup, a prediction is performed by

estimating an interval during which a failure is expected. Further-

more, in Watanabe et al. (2012) the authors propose a method that

learns patterns from event log streams and the failure prediction

is performed by calculating the probability of a failure occurring

given the identified patterns.

44

4.3 event log data & preprocessing

Although a plethora of existing approaches is available in the

literature, the particularities of our data prevented us from using

any out of the shelf solution. Our target events are extremely

rare, we have a large and sparse feature space and our goal is to

develop a customisable method that could be easily adapted in

an industrial environment. Therefore, our method differs from

the ones presented above in several aspects. Initially, our primary

goal is to create a model that outputs a risk function based

on the present events and quantifies the risk of an upcoming

failure. Thus, we formulate a time-to-failure regression problem.

The value of our risk function is later employed in a simple

thresholding scheme to make a final prediction. Furthermore, our

method does not require the definition of the prediction interval

parameter (i.e the amount time before the failure’s occurrence

that is considered as a positive class) for training our predictive

model. On the contrary, we utilise a decision threshold that

can be configured according to the desired precision and recall.

Finally, several methods exist for predicting failures in aviation

but they target specific aircraft components. The most relevant

work appears in Huet et al. (2015), where the authors propose a

graph-based method to predict the most probable failures in the

upcoming flights.

4.3 event log data & preprocessing

Event logs consist of time-ordered events; Table 4.1 shows an ex-

ample of an event log file. An event is composed by a timestamp

that corresponds to the time of its occurrence and other attributes

that contain information about the event. These attributes may in-

45

failure prediction in post flight reports

clude a system or subsystem identifier that generated the event, a

task id (in information system logs), description about the activity

(in server logs), failure description (in hardware monitoring) and

a unique event identifier. In this work we target event logs and

events come from a finite and known alphabet. A timestamp and

an event id are the only attributes required by our methodology.

sys id timestamp event id source description

sys1 2013-11-10 13:30 6226 3412 failure 1

sys1 2013-11-10 14:33 3401 4902 failure 1

sys2 2013-12-10 10:12 3401 5552 failure 2

sys3 2013-12-10 11:40 408 4414 failure 2

...
...

...
...

...

Table 4.1: Event log example with renamed attributes

Let E = {e1, e2, . . . , ek}, be the finite set of possible events. Our

goal is to predict the next occurrence of a target event eT ∈ E .

Initially we partition our dataset into episodes, that correspond

to the periods between consecutive occurrences of the target event

eT for each system. Each episode epj
i of system j begins with

the first event after the occurrence of eT and ends with the next

occurrence of target event (Figure 4.1).

The events within each episode are grouped into time-segments

based on the nature of the log generation process. For example,

a segment may correspond to a day or to a single usage of the

equipment. This is essential in cases where the granularity of

the timestamp is not high enough to distinguish the order of the

events within the segment.

46

4.3 event log data & preprocessing

sys1

sys2

sys3

sys4

eTx
eTx

eTx
eTx

eTx
eTx

eTx
eTx

eTx
eTx

eTx
time

ep1
1 ep1

2

ep2
1 ep2

2

ep3
1 ep3

2

ep4
1

Figure 4.1: Partitioning event logs into episodes

Every segment is represented by an x ∈N|E |×1 vector, similar

to the bag-of-words representation (in our case bag-of-events) in

text mining Joachims (1998), and contains the number of times

each event occurred within the segment. Thus, xei ≥ 1 if the

event ei occurred within that segment and xei = 0 otherwise.

Every episode forms a |E | × t matrix, Xepi = [x1, x2, . . . , xt],

where x1 is the first segment of that episode and xt the last (i.e.

the segment that contains the target event eT , xt
eT ≥ 1). For

simplicity, we use t for the duration of every episode although

the duration of each episode is different. Also, for bag-of-events

representation xi
ej

the superscript i is the time of the segment

(starting from 1 at the beginning of the episode) and the subscript

ej corresponds to the event ej.

4.3.1 Preprocessing

In this representation it is straightforward to apply standard

preprocessing techniques Zheng et al. (2009). In this work we

employ the following ones:

47

failure prediction in post flight reports

• Removing events that appear less that n times. Extremely

rare events (e.g. ones that occur only a few times within

millions of event entries) can potentially1 be removed in

order to reduce the dimensionality of the data.

• Event Collapsing: Removing multiple occurrences of events

in the same segment. In other words, making the bag-

of-events of each segment (xi) binary. Depending on the

application, multiple instances of an event at a timestep can

either be noise or may not provide useful information.

• Penalising frequent events. Usually the most frequent

events do not contain significant information since they

correspond to issues of minor importance. A tf-idf (term-

frequency - inverted document frequency) or similar ap-

proach can be used to penalise such frequent events.

• Removing events that occur in consecutive segments. This

step can be significant in scenarios where events of minor

importance occur and appear in every timestep until their

underlying cause is treated by the technical experts. In such

cases only the first time of the occurrence is important.

• Statistical Feature Selection. We propose another feature

selection method that is based on the time intervals between

the events ei ∈ E − eT and the target event eT . Specifically,

we introduce |E | − 1 random variables, TeT
ei , with P(TeT

ei ≤
t) being the probability of event ei occurring less than t

timesteps before the next occurrence of eT . We fit Weibull

distributions Kaiser and Gebraeel (2009); Nakagawa and

1Some rare events can be important for predicting the target event and
thus, this step should be evaluated experimentally

48

4.4 methodology

Osaki (1975) on these random variables and we select the

features ei if E
{

TeT
ei

}
≤ γ. A rationale for this is that good

predictors for eT should occur within an expected interval

before the occurrence of eT (see Section 4.6.5).

One can easily employ text-based transformations on the fea-

ture matrix, such as Latent Semantic Indexing (LSI) Deerwester

et al. (1990) and word embeddings Mikolov et al. (2013c) to

reduce the dimensionality of the feature space and to exploit

possible hidden structure. However, an initial evaluation of such

transformations did not lead to improvement of our results and

thus we leave it as future work.

4.4 methodology

Our goal is to learn a function r(xi) for a target event eT , r :

R|E |×1 7→ [0, 1], that quantifies the risk of event eT occurring in

the near future, given the events that occurred at timestep i, xi.

One property of r(xi) is to be monotonically increasing in time

(r(xi) ≤ r(xi+1)) and its maximum value would be at the end of

each episode, when eT occurs.

Our approach is driven by the assumption that as we approach

the occurrence of eT , one or several events that are correlated to eT
will start occurring (i.e. predictors). For an episode that starts

at timestep 1 and ends at timestep t, this function at timestep

i should increase significantly as the distance from the target

event (t− i) approaches to zero. Furthermore, r(xi) should be

close to zero when the distance from the target event is relatively

large. Thus, we formulate a regression problem < x, y > as

< xi, f (i; t) > where

49

failure prediction in post flight reports

f (i; t) =
1

1 + es((t−i)+c))
(4.1)

and we learn our function by minimising the mean squared

error: ||r(xi)− f (i)||22.

In figure 4.2 we present the form of this function for an episode

of length 300. Parameters s and c correspond to the steepness and

the shift of this sigmoid-shaped function. Selecting a proper value

for c is highly significant because it represents the expectation of

the time before the target event at which correlated events will

start occurring. Thus, this parameter depends on the dataset and

should be tuned by the corresponding area experts.

0 50 100 150 200 250 300

i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
(i
;3
00

)

Example of risk function for a single episode of length 300

s = 0.1, c = 80
s = 0.1, c = 120
s = 0.5, c = 80
s = 0.5, c = 120

Figure 4.2: Sigmoid Function

For a collection of k episodes we can estimate this function by

solving a regression problem < X, Y > where X = [Xep1 ; Xep2 ; . . . ; Xepk]

50

4.4 methodology

is the set of feature (event) matrices and Y is the set of the k vec-

tors with the risk values,

Y = [f (1; |ep1|) . . . f (t; |ep1|)︸ ︷︷ ︸
ep1

. . . f (1; |epk|) . . . f (t; |epk|)︸ ︷︷ ︸
epk

]T.

where |epi| is the duration of episode i.

There are several off the shelf methods that can be used to

solve this regression problem. In this work, we employed the

random forest regression model Liaw and Wiener (2002) because

it gave the best results compared to other regression techniques

such as LASSO, Support Vector Regression (SVR) and Gradient

Boosting.

Our feature matrix Xepi consists only of other events (E −{eT })
but it can be extended in a straightforward manner by adding

extra rows for other possible additional information, such as

keywords extracted by text description, environmental variables

and sensor time-series data.

Finally, we aim to identify the set of predictors with respect to

eT , P eT ⊆ E − {eT }, which is the subset of events that precede

the target event and can lead to its prediction.

4.4.1 Multiple Instance Learning Setup

Multiple Instance Learning (MIL) Foulds and Frank (2010) is

applied when a label (class) is associated with a bag of instances

(feature vectors) rather than a single instance, and it is not known

in advance which subset of the vectors contributes to the class

label. Similarly, in our regression formulation, a MIL setup is more

51

failure prediction in post flight reports

appropriate: several events appear shortly before the occurrence

of the target event but only a small subset of them is related

to it (i.e. predictors). That is, for the interval right before the

occurrence of eT where f (i; t)� 0, apart from possible predictors

there are other events that are not associated with eT . Therefore,

if we discard this information the training set will contain wrong

y values for those timesteps when only unrelated events occur

before eT . Moreover, when the target event is rare, which is usual

to critical events Koh (2009), we have to deal with the imbalances

in the labels.

In order to tackle both problems, we adopt a sliding window

approach in order to oversample the intervals where f (i; t)� 0

and create more samples where possible predictors occur. Specif-

ically, for the intervals where f (i; t) ≥ 0.1, we apply a sliding

window over the feature vectors, xi, by averaging their values,

x′ = 1
w ∑i+w

i xi and retain as y value the sigmoid output of the

last timestep within that window, y′ = f (i + w; t) (Figure 4.3).

eT

t
ei 2 PeT

w

w

w

w

w

w

ww

Figure 4.3: Sliding window approach: during the critical interval
the window step decreases

52

4.4 methodology

The window length w should be large enough to create mul-

tiple instances where P eT is present. Also, for our approach we

set the step size equal to 1.

4.4.2 Prediction

The trained model’s output, r̂(xi) corresponds to risk of eT , given

the events that occurred in xi. Once the model is deployed and

new sequences of events arrive, we obtain a new risk timeseries

[r̂(x1), r̂(x2), . . .] which we use to perform the prediction of eT .

Figure 4.4 shows a real example of well fitted r̂(xi) of a single

episode from our test set, consisting of 7446 timesteps. The top

part of the figure shows the whole episode and the bottom part

presents the last timesteps.

0 1000 2000 3000 4000 5000 6000 7000 8000

time

0

0.2

0.4

0.6

0.8

1
Test set - Episode Example

f(i; t)
r̂(xi)

7300 7320 7340 7360 7380 7400 7420 7440

time

0

0.2

0.4

0.6

0.8

1
Test set - Last Timepoints of episode

f(i; t)
r̂(xi)

Figure 4.4: r̂(xi) for a single episode. Top: the whole episode.
Bottom: Last timesteps until the occurrence of eT

53

failure prediction in post flight reports

In order to decide wether eT will occur we employ a simple

thresholding approach. Specifically, we define a thresholding

parameter, h and make a positive prediction if r(xi) ≥ h. In order

to make a correct prediction in the example 4.4, the threshold

could be set as h ≥ 0.2. Unlike the probability thresholds in

binary classification that are used to generate the ROC curves,

increasing this threshold does not guarantee the reduction of

false positives. However, we study the value of the threshold and

its relationship to precision and recall in section 4.6.2.

4.4.3 Method summary

The steps of our methodology for creating and deploying the

prediction model are the following:

1. Preprocessing

• Partition the data into episodes.

• Group the events of each episode into segments. The

segment size should comply to the log collection char-

acteristics.

• Create matrices Xepi for all episodes.

• Apply the preprocessing steps.

2. Training/Validation

• Group segments into windows of size w.

• Create the response vector [f (i; t)]T for each episode

• Form the regression dataset < X, Y >

• Train the desired regression model via cross validation

54

4.4 methodology

3. Testing/Deployment

• As new segments arrive, keep the latest by applying a

sliding window (w) and create the event matrix Xw

• For each new segment update and preprocess Xw

• Compute r̂ and raise an alert if r̂ ≥ h

4.4.4 Parameters

In Table 4.2 we present the list of parameters of our method.

Most of the parameters can be selected via cross validation while

training. Parameters w, γ and c should be defined by experts

because they quantify the expected time (in segments) before the

occurrence of eT at which a prediction is possible. However, if no

prior knowledge is available or it is hard to acquire, one can use

the method presented in the previous chapter, that investigates

the intervals between eT and the other failures. The value of

the decision threshold h can be configured according to desired

confidence and the prediction interval (see section 4.6.3).

stage parameter description

preprocessing

w window size
c sigmoid shift
s sigmoid steepness
γ feature selection

model training #trees number of trees
#depth max depth of each tree

model deployment h decision threshold

Table 4.2: parameters

55

failure prediction in post flight reports

4.5 experimental setup

We apply our method on event logs generated by monitoring

systems onboard, where the events correspond to failures of

aircraft components. Our goal is to predict such failures that are

critical to the function of the aircraft. When these failures occur,

the aircraft must stay on the ground for control or repair and

therefore, being able to predict these failures in advance and plan

the corresponding maintenance increases the availability of the

aircraft.

4.5.1 Dataset

Our data consists of event logs from a fleet of 60 aircraft and spans

within several years of operation. The alphabet of events consists

of more than 3400 distinct failures. Each failure corresponds to

a system; the information about the system comes from each

failure’s Air Transport Association (ATA) 2 chapter.

The target event eT is predefined and corresponds to a failure

that affects the landing gear (ATA 32). Figure 4.5 shows the

survival function Cox and Oakes (1984b) of eT . In 50% of the

total cases this failure occurs around 2000 flights after its previous

occurrence.

4.5.2 Training, Validation and Test

In order to create the training set for the target event eT we ini-

tially select the subset of the aircraft at which the corresponding

2https://en.wikipedia.org/wiki/ATA_100

56

https://en.wikipedia.org/wiki/ATA_100

4.5 experimental setup

0 5000 10000 15000

number of flights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
rv

iv
o
r

fu
n
c
ti
o
n

Figure 4.5: Survival function of the target event eT

failure occurred (ACeT ⊆ AC). For the training set we select only

aircraft from ACeT .

We partition each sequence of events of every aircraft in ACeT

into episodes and we discard the events that occurred after the

last occurrence of eT of every aircraft. Our approach is leave

k episodes out, that is, we randomly select k episodes from

ACeT for the training set. We select half of the aircraft in ACeT

for training and half for testing. In order to train the random

forest model and select the proper parameters we use 5-fold cross

validation on the training set.

4.5.3 Baseline Algorithm

In order to assess the performance of our method we employ a

simple, yet popular approach Murray et al. (2005); Sipos et al.

(2014b) for comparison. In our baseline approach, the event pre-

diction is performed by a binary classifier trained in the multiple

instance learning context. The classifier takes as input an instance

57

failure prediction in post flight reports

(or a bag of instances) and predicts if the target event will occur

in the near future. Figure 4.6 shows where the instances of the

two classes lay with respect to the target event.

positive

class

negative

eT eT

class

infected

period

positive

classclass

negative t
w w

Figure 4.6: Classification for event prediction: time-position of
classes

The depicted intervals in Figure 4.6 correspond to:

• positive class: This interval corresponds to the time before

eT when a prediction is correct and useful.

• w: The prediction margin. Corresponds to the minimum

amount of time required by experts to respond to a failure.

• negative class: Instances within this interval are classified

as negative since they are distant to eT

• in f ected period: This is the period that follows the occur-

rence of the target event.

The intervals above should be defined by field experts, so that

they correspond to actual requirements. For a fair comparison,

we set the positive class with respect to shift parameter c of our

approach (Figure 4.7).

We employ linear Support Vector Machines (SVM) Fan et al.

(2008) with l1 regularisation for the classification. Also, we per-

form the same train/validation/test scheme and we create the

positive and negative instances similar to Sipos et al. (2014b).

58

4.5 experimental setup

positive

class

negative

eT

class

t
w

regression curve

classification intervals

Figure 4.7: Regression and classification intevals

4.5.4 Evaluation at the episode level

In prediction/classification problems one can evaluate the per-

formance of a method using standard metrics, such as F1-score,

precision, recall and Area Under the Curve (AUC). In the litera-

ture, these metrics are evaluated at the instance level, (i.e. for each

bag or for every feature vector). However, when dealing with

event prediction in temporal environments these metrics should

be evaluated at the episode level. In order to justify this approach

consider the following artificial, extreme-case example: In Figure

4.8 we present the output of a hypothetical classification-based

prediction method for three episodes. The blue lines correspond

to the binary classifier’s output and below each line the classifica-

tion intervals are shown. The two blue spikes correspond to two

instances, falsely marked as positives (false positives). It is clear

that at the bag/instance level, the performance of the classifier is

very high. However, at the episode level, only the first episode is

a true positive, the following two are false positives.

In many real world applications and specifically in predictive

maintenance, a false positive triggers unnecessary processes that

59

failure prediction in post flight reports

eT

eT

eT

Figure 4.8: Artificial Example: A true positive episode (top) and
two false positives (middle and bottom)

have a cost and it is critical to minimize their amount. Therefore,

episode-level evaluation is more important in this context and

we evaluate our method accordingly.

Regarding our regression approach, the evaluation at the in-

stance level is performed by the mean squared error whereas

for the episode level, we use the aforementioned thresholding

approach.

Specifically, assuming that the threshold was crossed at i

flights before the occurrence of eT the episode is true positive

if ν ≤ i ≤ 2c, where c is the shift parameter of our sigmoid

function and ν is a constant that determines the minimum time

before the occurrence of eT when the prediction is useful3. For

fair comparison with the baseline we set ν = w, the prediction

margin.

3A prediction is useful if it is performed within a significant time pe-
riod before eT in order to provide enough time to plan the corresponding
maintenance.

60

4.6 results

4.6 results

4.6.1 Bag-level Performance

In Figure 4.9 we present the ROC curve for the baseline model

at the instance level. We performed 5-fold cross validation to

estimate the best parameters for the SVM classifier.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver Operating Characteristic

ROC curve (area = 0.69)

Figure 4.9: Baseline approach: SVM ROC Curve

Figure 4.10 presents the mean squared error of our random

forest regression approach with respect to the number of trees.

The parameters that lead to the minimum MSE at the validation

set were selected.

61

failure prediction in post flight reports

Figure 4.10: Random Forest Performance: Number of trees vs
Mean Square Error (MSE)

4.6.2 Episode-Level Performance

Table 4.3 shows the prediction results at the episode level, con-

sidering the best parameters for both our approach (Random

Forest Regression (RFR)) and the baseline (SVM). An episode is

considered a true positive if eT is predicted between 5 and 200

flights before its end. More specifically, we compute the number

of flight before the target failure that the decision threshold, γ,

was cross for the first time. Consequently, if the threshold was

crossed more than 200 flights before the occurrence of eT , the

episode is a false positive and finally, an episode is false negative

if the threshold was never higher that γ.

Similar to Sipos et al. (2014b), we evaluate our experiments

using standard metrics adapted in predictive maintenance:

62

4.6 results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
threshold value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tr
u
e
 p

o
si

ti
v
e
 r

a
te

True Positive Rate (TPR) for different desicion threshold values

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
threshold value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fa
ls

e
 p

o
si

ti
v
e
 r

a
te

False Positive Rate (FPR) for different desicion threshold values

Figure 4.11: Theshold values impact on number of True Positives
(left) and number of False Positives (right)

• precision: TPs / (TPs + FPs)

63

failure prediction in post flight reports

• recall: TPs / all failures

• f1-score: 2 precision·recall
precision+recall

Our experimental evaluation presented in Table 4.3 shows that

our method, RFR, outperforms the selected baseline approach,

which has very poor performance.

method precision recall F1-score
SVM 0.21 0.02 0.03

RFR 0.64 0.23 0.34

Table 4.3: Prediction results at the episode level

The threshold value that lead to the best prediction results was

chosen. In the next section we discuss the most important aspects

for selecting a proper threshold value.

Finally, we have to note that several other approaches were

tested but we omit the corresponding results because of the poor

performance. Specifically, we performed similar experiment us-

ing Hidden Markov Models but we had to limit the amount of

time-steps before the failure (or the episode length) because of

the performance constraints. Thus, with this limitation the HMM

was unable to give any significant results. Moreover, we tested

association rule mining, aiming towards estimating rules of the

form PeT → eT in order to capture the aforementioned predictors.

The main constraints in this approach were the lack of the cardi-

nality information and the formation of large buckets to capture

predictors that occurred many flights before the failures, which

led to many high-confidence rules. Finally, sequence prediction

approaches were not able to perform well, mainly due to the fact

that most of the failures were spurious and not related to the

target failure.

64

4.6 results

4.6.3 Decision threshold selection

The decision threshold h constitutes a very important parameter

of our approach and thus, we investigate its impact on the results

with respect to the evaluation metrics.

In Figure 4.11 we present the impact of different threshold

values on the final prediction.

Setting a proper threshold value can be performed according

to the desired TPR and FPR and also, to the time before the

target event at which a prediction is desired. In figure 4.12 we

present the impact of the different threshold values to time that

a prediction is performed. On the x-axis we place the different

threshold values and on the y-axis the first time (at every episode)

at which the threshold was crossed.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
threshold value

2000

0

2000

4000

6000

8000

10000

12000

14000

16000

n
u
m

b
e
r

o
f

fl
ig

h
ts

Flights before target event that the threshold was crossed

Figure 4.12: r̂ vs distance (in flights) from target event

65

failure prediction in post flight reports

Figure 4.12 also shows that the risk function r̂ crosses higher

threshold values when approaching the target event. The infor-

mation from this box plot can be used to compute a confidence

value for the time to the target event after observing failures for

several flights

4.6.4 False Positives

As stated previously, false positives’ absence is very important

in predictive maintenance and it is very critical to study their

occurrence and their time of occurrence with respect to the target

event. In Figure 4.13 we present the empirical cumulative dis-

tribution function (ecdf) of the false positives’ distance from the

target event.

0 2000 4000 6000 8000 10000 12000 14000

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF of false-positive time before eT

Figure 4.13: Empirical CDF of the time between false positives
and eT

66

4.6 results

Unfortunately, a false positive may appear far before the occur-

rence of eT . However, a possible explanation of their presence

is the intervention of engineers that affected the target event, by

performing actions that prevented its occurrence.

4.6.5 Model Interpretation

In predictive maintenance it is important to understand and in-

terpret the prediction model for two main reasons: first, it can

provide very useful feedback to experts and second, it is a quali-

tative way of evaluating a model (i.e. the features make sense).

In this work, our features consists only of other events/failures

and therefore, we can identify candidate predictors PeT from the

features weights assigned by the random forest.

Table 4.4 presents the top most important features/events as

they were ranked by the random forest. The feature with the

highest score corresponds to a failure that also belongs to the

landing gear (ATA 32).

event id score ATA chapter
6226 0.260 32-31

1244 0.167 46-20

2813 0.090 77-23

4604 0.088 27-92

6444 0.041 73-21

348 0.026 30-31

Table 4.4: Top Ranked Features (events)

Figure 4.14 shows the Empirical Probability Density Function

(PDF) for of the random variables described in Section 4.3 that

67

failure prediction in post flight reports

correspond to a low ranked feature e1353 and the third highest

one, e6226.

0 2000 4000 6000 8000 10000 12000 14000
time (in flights)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
Empirical PDF of event 1353

0 1000 2000 3000 4000 5000 6000
time (in flights)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
Empirical PDF of event 1244

Figure 4.14: Empirical PDFs. Top: event with low score (TeT
e1353).

Bottom: event with hight score (TeT
e1244)

68

4.7 conclusions and future work

In Figure 4.15 we show three examples of our model’s output.

If the decision threshold is set as h = 0.6, then the first one (left),

shows a true positive episode where a prediction was correctly

made 100 flights before the occurrence of eT , while during the

first 8700 flights the output value of our risk function was low.

The second episode (middle) is a false positive since our models

output was grater than the threshold more than 3000 flights

before the target’s occurrence and finally, the last episode is a

false negative.

4.7 conclusions and future work

In this chapter we presented a method for predicting future

events from event logs in the context of predictive maintenance.

It constitutes a novel combination of state of the art statistical

and machine learning techniques and our experimental evalua-

tion shows that it outperforms a common baseline approach. A

major contribution of this work is the fact that it constitutes the

first attempt to perform failure prediction given only post flight

reports. Our future work will aim to increase the performance by

exploiting information from a variety of sources, such as sensors,

maintenance logs and environmental variables.

4.7.1 Infusion and Impact

The importance of failure prediction and the possible impact

of our approach can be highlighted by studying its impact on

airlines. Specifically, stats show that the unexpected occurrence

69

failure prediction in post flight reports

of our target event 4 can lead to either a flight delay that costs

approximately 4000 USD to the airline or to a flight cancellation,

costing 15.000 USD5. Within a year of observations on several air-

lines, its occurrence costed around 2.000.000 USD and therefore,

being able to predict 20% of its occurrences on time, can lead to

saving up to 400.000 USD per year for this particular failure.

4The target event was not selected based on the financial impact of its
occurrence and thus, there are other failures that may have much bigger
financial impact on the airlines and our approach could be of greater benefit.

5the numbers were calculated based on information from this docu-
ment: https://www.eurocontrol.int/sites/default/files/content/
documents/sesar/business-case/european_airline_delay_cost_
reference_values_2011.pdf

70

https://www.eurocontrol.int/sites/default/files/content/documents/sesar/business-case/european_airline_delay_cost_reference_values_2011.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/sesar/business-case/european_airline_delay_cost_reference_values_2011.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/sesar/business-case/european_airline_delay_cost_reference_values_2011.pdf

4.7 conclusions and future work

0 2000 4000 6000 8000
time (in flights)

0.0

0.2

0.4

0.6

0.8

1.0

A true positive episode

8500 8600 8700 8800
0.0

0.5

1.0

0 2000 4000 6000 8000 10000
time (in flights)

0.0

0.2

0.4

0.6

0.8

1.0

A false positive episode

10000 10500 11000
0.0

0.5

1.0

0 1000 2000 3000 4000 5000
time (in flights)

0.0

0.2

0.4

0.6

0.8

1.0

A false negative episode

5400 5500
0.0

0.5

1.0

Figure 4.15: Examples of r̂(xi) for three episodes. Top: true
positive, middle: false positive, bottom: false

negative
71

5

L O G B O O K D ATA P R E P R O C E S S I N G

In this chapter we present our approach for logbook data pre-

processing and information extraction. Specifically, given a set of

logbook entries, we propose an unsupervised method for clean-

ing and extracting information regarding aircraft maintenance

activities. Our approach is based on recent advances in text

mining using neural networks and traditional Natural Language

Processing (NLP) techniques. Our results show the potential of

using our method for unsupervised cleaning of such logs using

zero domain knowledge.

5.1 related work

Event reports or logbook entries are being collected in many

domains and it is not until recently that researchers started ana-

lyzing these data, since they contain valuable information about

the domain and are written by experts Ittoo et al. (2016). For

examlple, the authors in Tixier et al. (2016a) and Tixier et al.

(2016b) analyze injury reports in the construction domain and

their goal is to extract keywords and predict accidents. In our

field, aviation, the authors in Saeeda (2017) analyze safety reports

in order to extract related onotologies and in Tanguy et al. (2016)

they study the probelm of topic modelling in similar data. In

Deleger et al. (2010) they use a simple, rule-based approach to

73

logbook data preprocessing

extract information from patient records containing information

about medication, in Savova et al. (2010) the authors propose

cTAKES, an NLP system for processing free-text clinical records

and in Siklosi et al. (2013) the authors propose a method to correct

spelling mistakes from clinical records.

It is evident that the logbook contains information that comes

from domain expertise and thus, being able to extract it could

be of great benefit for many applications. Towards this direction,

we devoted most of our efforts in cleaning the free-text in our

maintenance logs and we developed a context-aware approach

for correcting errors in our corpus, which is based on word

embeddings.

5.2 logbook data in aviation

In aviation, the logbook is the place to store the information

about any maintenance action performed on an aircraft, either

scheduled or not. Its schema contains technical information about

issues along with the corresponding maintenance actions. The

most important pieces of information are stored in the following

columns:

• Aircraft identifier: An alphanumeric that is unique for each

aircraft, such as aircraft registration number or Manufacturer

Serial Number (MSN).

• Date and time of issue and the corresponding action

• Issue text: The text that describes why the maintenance

was requested, such as noise or system failure. Usually this

is written by the crew. If the maintenance was scheduled

74

5.2 logbook data in aviation

then this field contains an identifier that corresponds to the

maintenance type.

• Action text: The action that was performed to resolve the

issue. In case of scheduled maintenance with no issues

found this is empty.

• Equipment replaced: If a component was replaced during

the action then the serial numbers of both the new and the

old one are written here.

• Related flight: If maintenance was requested by an issue

that occurred during a flight, then the flight number is also

included.

As indicated above, there are two types of maintenance ac-

tions that can take place: scheduled and requested. An entry

for a scheduled maintenance activity, such as a daily inspection

does not contain an action text unless something was discovered

that required an action. On the other hand, a logbook entry for

a requested maintenance will consist of the irregularities spot-

ted by the crew and the actions performed by the maintenance

personnel.

5.2.1 Data Description

Logbook entries contain usually short text that comes from a

very specific vocabulary. The sentences are very compact and

descriptive and usually, both the issue and the maintenance

text consist of a single sentence. In Figure 5.1 we present the

the length of the sentences in logarithmic scale for our dataset,

75

logbook data preprocessing

which shows that the vast majority of the entries have less than

20 words (loge(20) ≈ 2.99). The figure was generated using

440.000 issue text entries and 440.000 maintenance text entries

(440.000 + 440.000 = 880.000).

0 200000 400000 600000 800000
sentence index (sorted by length)

0

1

2

3

4

5

6

7

8

le
ng

th

Sentence Length

Figure 5.1: Sentence lengths in logbook entries

Furthermore Figure 5.2 shows the logarithm term-frequency

of all the terms in our dataset. There exist 54000 unique terms

and around half of them occur only once. Moreover, since more

than 95% of the terms occur less than 55 times (loge(55) ≈ 4)

in 880.000 entries, we can see that the vocabulary used is very

limited. Moreover, as we will see in the next sections, a large

percentage of the terms consist of typos and thus the actual

number of terms is much lower.

76

5.2 logbook data in aviation

0 10000 20000 30000 40000 50000
term index (sorted by frequency)

0

2

4

6

8

10

12
lo

g(
fre

qu
en

cy
)

Term Frequency at log scale

Figure 5.2: Term frequencies in logbook entries

5.2.2 Cleaning the Logbook

In every application where input is directly entered by users

there is a lot of noise and when the input is free text, it usually

contains typos and syntactical errors. Moreover, people tend

to develop their own, domain specific language that consists of

many abbreviations. Since our purpose is to use the logbook

information for predictive maintenance, we have to process the

raw data and make sure that we will be able to extract as much

information as possible that is related to the maintenance actions

that took place and the the reasons that triggered the actions (if

not scheduled).

77

logbook data preprocessing

In Table 5.1 we show some examples of words that have been

mistyped and the suggestions obtained by using the Enchant1

spell checker (using the Python bindings pyenchant2).

Correct Suggestions Wrong Suggestions
mistyped word suggestion mistyped word suggestion

windoe window windo wino
prinat printer priner prineer

wheeels wheels whls whys
erplaced replaced rplcd purpled
birdstrike bird strike birstroke masterstroke

landinf landing langing slanging
barke brake brakelt brakemen
lihgt light ligt gilt

tihgten tighten untighen untiring

Table 5.1: Example of mistyped words and dictionary suggestions

Moreover, Table 5.1 highlights the need of using domain-aware

methods for cleaning the text. For example, consider the sug-

gestion rplcd→ purpled that maps a common abbreviation to a

wrong word. We treat this problem by proposing a context aware

method that learns the context from the set of available logbook

entries.

5.3 the importance of logbook data

It is evident that the logbook contains very important information

about the components of the aircraft, however, we have to define

specific objectives according to expected outcomes of processing

such data. More precisely, have to answer the following questions:

1https://www.abisource.com/projects/enchant/
2https://pypi.python.org/pypi/pyenchant/

78

https://www.abisource.com/projects/enchant/
https://pypi.python.org/pypi/pyenchant/

5.3 the importance of logbook data

What do we expect to gain by including our logbook data in

predictive maintenance? How should we integrate them into our

predictive models?

As mentioned in the beginning of this chapter, logs written by

experts have already attracted the attention of the data mining

community because they contain invaluable information about

the specific domain. Having the history of all maintenance ac-

tions gives the ability to perform very interesting experiments

such as analyzing the lifetime of individual components, esti-

mating the effectiveness of the actions performed and proposing

maintenance actions based on occurring issues.

On the other hand, there are more reasons that are not so

obvious and are highly important, especially for our ultimate

objective, failure prediction in predictive maintenance. Aviation

industry exists for many years now and precious knowledge has

been empirically gathered by experts and has been exchanged

withing their communities. Although there are many types of

analysis that could benefit from such prior knowledge, in the

context of our thesis we dealt with a very specific problem. Recall

the predictor3 events from Section 3 and consider the following

example: When such predictors occurs, some maintenance engi-

neers may know from experience that this will lead to the failure

of our target failure and thus, he takes some actions that prohibit

the target event’s occurrence. Furthermore, the same effect could

possibly occur when something is identified and fixed during

a scheduled maintenance by a replacement or a repair. All this

information appears in the logbook and the existence of such

3given a target failure that we aim to predict, a predictor is a failure whose
occurrence increases the confidence that the target failure will occur in the
near future

79

logbook data preprocessing

cases impact the formation of our machine learning dataset in

the following manner:

• Since the target event does not occur after the engineer’s

intervention, our training set does not assign the proper

risk for the flights when the predictors occur. In Figure 5.3

we illustrate this problem.

• Consecutively, this will affect the evaluation of the algo-

rithm by increasing the number of false positives. The

model outputs high risk by observing one or more pre-

dictors, however, since the target event will not occur due

to the maintenance, the episode will be marked as false

positive.

ei 2 PeT

maintenance actions

time at which eT should have occurredpredictors occurrence

actual risk curve

correct risk curve

if maintenance actions did not affect it

time

Figure 5.3: Maintenance actions’ impact on failure prediction
dataset

As a result, once the information from the logbook is extracted

we can use it in order to solve the two problems accordingly:

• Form a different learning dataset which will also include

maintenance actions related to the target failure as events,

or

80

5.4 context-aware spell correction via word embeddings

• Infuse this information directly on the regression problem

by adding features extracted from the maintenance actions

text.

Our efforts were initiated by observing the aforementioned

problems and consequently, we devoted significant amount of

time in cleaning the maintenance logs.

5.4 context-aware spell correction via word embed-

dings

Let L = {lb1, lb2, . . . , lbm} be the logbook containing m entries.

For our purposes we only use the information in the issue and the

maintenance text (i.e. we don’t perform per aircraft or per com-

ponent analysis so we discard this information) and thus, each

logbook entry consists of two documents, lbj = {lbissue
j , lbmaint

j },
the issue and the maintenance text respectively. Furthermore,

LetW = {w1, . . . wk} be the set of unique words in the logbook,

i.e. the vocabulary, which contains both correct words and typos

(both intentional and intentional)4.

Our main idea is to correct these typos using contextual in-

formation, that is, information that comes from the neighbor-

ing words in the sentence. For example, since the words "re-

placed","rplaced" and "rpld" will usually occur in similar sen-

tences, we aim to use this information for better text cleaning. It

is obvious that most traditional spellcheckers will fail to map the

word "rpld" to the word "replaced".

4we consider abbreviations to be intentional typos. For example, the word
"replaced" may appear in the logbook as "rplcd"

81

logbook data preprocessing

This type of similarity has been recently obseverd in word em-

beddings, or vector representation of words. Thus the approach

presented in the next sections is based on such methodology.

5.4.1 Word Embeddings & the skip-gram Model

Vector representation of words (or word embeddings) Maas et al.

(2011) are representations of words in d-dimensional spaces,

i.e. mappings of a vocabulary W to a high dimentional space;

f :W 7−→ Rd. When an embedding is generated, it aims to cap-

ture some specific kind of information so as to be reflected in the

projected space. For example Latent Semantic Indexing (LSI) Lan-

dauer et al. (1998) can be seen as an embedding of words which

preserves information about latent topics: Words that belong in

the same topic are close in the projected space.

More recently, these representations are being generated by

neural networks Mikolov et al. (2013a,b) that are trained on a

given corpus. The word embeddings come from the coefficients

(or parameters) of the neural network (usually the hidden layer),

similarly to other domains, such as image embeddings.

In our work we use the skip-gram Mikolov et al. (2013b) (Figure

5.4) model, a recent approach based on neural networks. Its

objective is to predict a given word’s context, i.e. its neighboring

words in a sentence.

The objective function to be minimized by the skip-gram model

is the average log probability:

1
T

T

∑
t=1

∑
−c≤j≤c

log p(wt+j|wt) (5.1)

82

5.4 context-aware spell correction via word embeddings

wt

wt−1

wt+1

wt+2

wt−2

M 2 R
k×d

Figure 5.4: The skip-gram model

Given a document, the training set is generated by a sliding

window over the words of the document following the direction

of the text flow. Furthermore, the authors introduce the method

of negative sampling in order to increase the efficiency of the

training process. For more information on the skip-gram we

encourage to read the original paper Mikolov et al. (2013a).

Currently, there are several out of the shelf embeddings that

one can use. These embeddings have been trained on huge

corpora and provide vector representations that can be used

directly by researcher on several tasks, such as text categorization,

topic discovery and keyword extraction. Word2Vec5 and GloVe6

are probably the most popular ones. However, for our purpose

we have to build our own ebeddings for three main reasons:

5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/

83

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/

logbook data preprocessing

• We want to obtain the representations of words that are cer-

tainly not available in the available embedding collections,

such as typos and abbreviations.

• The available embeddings are trained on huge corpora

and the representations capture more global structure and

similarities. In our case, we have a limited vocabulary and

thus we need more specialized vector representations.

• Due to the particularities of the logbook entries we need to

learn the representation in order to capture the contextual

information of each word in the context of maintenance in

aviation.

Therefore, in the following section we present our approach

for creating the embeddings based on word2vec, trained on the

available logbook entries.

5.4.2 Creating word embeddings from logbook entries

Our corpus consists of 2m = 880000 documents (where m is the

number of entries in the logbook) because we consider the issue

and the maintenance text of each entry as two distinct documents,

D = {lbissue
1︸ ︷︷ ︸
d1

, lbmaint
1︸ ︷︷ ︸
d2

, . . . , lbissue
m︸ ︷︷ ︸

d2m−1

, lbmaint
m︸ ︷︷ ︸
d2m

}

For every word in each document we predict all the other

words that exist in the document. We selected this approach

because the logbook entries are short and the syntax is not im-

portant. Thus, our objective function is slightly modified:

84

5.4 context-aware spell correction via word embeddings

1
2m

2m

∑
i=1

∑
w∈di

log p({w ∈ di − {w}}|w) (5.2)

After training the neural network, we obtain the emdedding

matrix M ∈ Rk×d. Figure 5.5 shows an interesting example of

the generated word embeddings that highlights the main idea

of our approach, which is described in the following section.

The graph was created by selecting 4 terms, detached, printer,

tightened and replaced, and for each one, we selected the 10 most

similar terms in the embedding space using the cosine similarity.

Then, we created the graph whose edges correspond to pairs of

words that have cosine similarity greater than 0.6 (i.e. their vector

representation). Interestingly, the graph consists of 3 connected

components (and not 4). Birdstrike’s and printer’s neighborhoods

consist of words that are related to their context, such as impact,

blood, feather and paper, printing along with many misstyped

version of these words. Tightened’s and detached’s neighborhoods

exhibit the same behaviour, however, they are connected by edges

that connect nodes such as fallen-resecured and tightened-lose and

thus, the corresponding context is captured by the graph and the

underlying embeddings. Such graphs were the key to observe

this information which was captured in the embedding space

and lead to the development of our method.

Finally, althought work has been done to combine informa-

tion about topics and word embeddings Liu et al. (2015), to our

knowledge, our approach is the first one to perform text cleaning

using contextual information that comes from the embeddings.

Let M ∈ Rm×d the embedding vectors in Rd of each word. It

has been recently shown Choi et al. (2017) Grbovic et al. (2015)

85

logbook data preprocessing

birstrike

impacts

retighted

retorqued

feathers

detatched

snapped
paper

printe

birdsrike

hanging

birdsimpact

adrift

grub

printerpaper

torn

resecuerd

printing

referse

brocken

prionter

bird

priter

tightned

tighten

accars

tighted

papeer

fell

blood

loose

birdstike

tightend

pritner

resecured

ingestion

lose

retightened

fallen

Figure 5.5: A graph created from the nearest neigh-
bors in embedding space for 4 terms: ’de-
tached’,’printer’,’tightened’,’birdstrike’

Sordoni et al. (2015) that the similarity (e.g. cosine) of words in the

vector representation is related to semantic similarity. Motivated

by this, we explored the euclidean neighborhood in this space of

important words such as "replaced", "tightened", and we discovered

that it contains three different kinds of neighboring words:

• Typos/abbreviations

• Words of the same root and synonyms

• Words that belong to the same topic/context

86

5.5 logbook cleaning using word embeddings

In figure 5.6, we present some examples of the neighborhood of

4 words in the embedding space. The neighborhood is calculated

with the cosine similarity,

cos(x, y) = ∑n
i=1 xiyi√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

(5.3)

which is the most popular similarity metric used in comparing

word embeddings.

5.5 logbook cleaning using word embeddings

Based on the observations presented in the previous section, we

start by splitting the vocabulary into three subsets:

• Proper wordsWp: Words that are correctly spelled.

• Serial numbers Ws: Words consisting of characters and

numbers and are unique for aircraft parts

• Misspelled wordsWm: Words that are typos

Note thatWp ∪Ws ∪Wm =W andWp ∩Wp ∩Wm = ∅, that

is,Wp,Ws andWm are proper subsets ofW . Algorithm 1 divides

the vocabulary into these three subsets. The input consists of the

vocabulary and a set T , which is a thesaurus of the language in

which the logbooks are written. The thesaurus is a set containing

all the words of the corresponding language. Furthermore, the

condition in line three, where we check is a serial number, can be

re-written as a regular expression that matches the serial numbers

or even more simply, by just checking if a word contains both

numbers and letters (although in some cases this could be a

spelling error).

87

logbook data preprocessing

(a) term: replaced (b) term: blood

(c) term: leak (d) term: paper

(e) term: oil (f) term: lamp

(g) term: coffee (h) term: runway

Figure 5.6: Wordclouds of the 40-neighborhood of terms in the
embedding space

5.5.1 Mapping spelling errors to correct words

In our approach we create a function (or mapping) f :Wm 7→ Wp

that maps each misspelled word or abbreviation to a proper one

88

5.5 logbook cleaning using word embeddings

Algorithm 1 VocabularySplit

Input: W , T
Returns: Wp,Ws,Wm

1: Wp,Ws,Wm ← ∅
2: for w ∈ W do
3: if w is serial number then
4: Ws ←Ws ∪ w
5: else if w ∩ T 6= ∅ then
6: Wp ←Wp ∪ w
7: else
8: Wm ←Wm ∪ w
9: end if

10: end for

using their vector representations. By using this approach we

assume that every misspelled word has been correctly spelled in

another part of the logbook but this assumption is correct for the

vast majority of the cases.

We define G(wi, k), the k-neighborhood of a word wi in the em-

bedding space as the k most similar words given a distance/similarity

measure. In the following sections, we will omit any details re-

lated to the creation of the vector representations and we will use

the notation GL(wi, k), to state that the neighborhood is calculated

based on the vectors learned using the logbook L.

The neighborhood of a word in the embedding space is not

enough to provide accurate mappings, because its closest neigh-

bors in the representation space are not only misspelled occur-

rences of itself. Thus, assigning all these neighbors to each word

will lead to multiple false matches (see Figure 5.6 where the neigh-

borhood of the words don’t consist only of spelling mistakes).

We therefore take into account the actual characters of which the

89

logbook data preprocessing

word is composed by using the Jaccard similarity Cohen et al.

(2003),

J(A, B) =
|A ∩ B|
|A ∪ B| (5.4)

which is the number of common letters in strings A and B,

divided by the total number of unique letters of both these strings.

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

Ja
cc

ar
d

Si
m

ila
rit

y

Normalized histogram: word "replaced"

(a) term: replaced

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

Ja
cc

ar
d

Si
m

ila
rit

y

Normalized histogram: word "tightened"

(b) term: tightened

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ja
cc

ar
d

Si
m

ila
rit

y

Normalized histogram: word "blood"

(c) term: blood

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

Ja
cc

ar
d

Si
m

ila
rit

y

Normalized histogram: word "lamp"

(d) term: lamp

Figure 5.7: Empirical distribution of Jaccard similarities

In Figure 5.7 we present the empirical distribution of the Jac-

card similarity of the neighborhood for 4 terms. The neighbor-

hoods of the terms replaced and tightened contain several typos

(see Figure 5.6) and thus, the distribution consists of two com-

ponents, one with high expected value that corresponds to the

misspelled words and one that correspond to contextually similar

90

5.5 logbook cleaning using word embeddings

ones. On the other hand, since the terms blood and lamp are

not frequently misspelled, their neighborhood consists of mostly

contextually similar terms and the distribution is composed by

only a singe component.

Given a proper word w ∈ Wp, we retrieve the misspelled

words in it’s neighborhood, w ∈ G(w, k) ∩Wm, using their Jac-

card similarities. We employ a simple yet effective threshold-

based approach to decide whether each non-proper word in the

neighborhood is a typo by comparing the Jaccard similarity with

the threshold. Given a proper word w, the set of misstyped words

that will be match to it is

{v|v ∈ G(w, k) ∩Wm i f J(w, v) > γ}. (5.5)

Algorithm 2 presents CorrectWords, the process of mapping

misspelled words to proper ones.

Algorithm 2 CorrectWords

Input: L, γ, G
Returns: Lc

1: Wp,Wm,Wm ← VocabularySplit(W)
2: Lc ← L
3: for wp ∈ Wp do
4: g← G(w, k) # Find the nearest neighbors
5: for wm ∈ g ∩Wm do
6: if J(wm,wp) < γ then
7: wm ← wp# replace the misspelled word wm
8: Wm =Wm − {v}
9: Lc ← Lc(wm ← wp)

10: end if
11: end for
12: end for

91

logbook data preprocessing

The operation Lc(wm ← wp) in line 9 of algorithm 2 means

that all occurrences of wm in L are replaced with the word wp.

Finally, in Figure 5.8 we present the new neighborhoods of the

same words presented in 5.6. The new WordClouds contain more

information about their context, since the mistyped terms have

been successfully replaced.

5.5.2 Method Summary

Finally, the result of algorithm 2 is the cleaned logbook. However,

we observed that not all misspelled words are being mapped to

proper ones and therefore, we investigated the application of our

method iteratively. At each iteration, we clean the logbook and

we re-train the neural network, which in turn leads to new word

embeddings. Algorithm 3 presents the full approach.

Algorithm 3 CleanLogbookIter

Input: L, niter, γ
Returns: mathcalLniter

1: for i ∈ [1, . . . , niter] do
2: G ← TrainModel(L)
3: L ← CorrectWords(L, γ,G)
4: end for

At every step of the iteration, the vocabulary size is reduced

since the set Wm decreases. Intuitively, at every iteration the

neighborhood of each word contains more semantically similar

ones, since the mispelled words are removed. Finally, in Table 5.2

we show examples of words mapped at the first iteration steps.

92

5.5 logbook cleaning using word embeddings

iteration 1 iteration 2 iteration 3

replaced ’replced’, ’repled’,
’relaced’, ’rplaced’,
’relpaced’, ’replacedi’,
’repalced’, ’rplcd’,
’replacded’, ’replaed’,
’replacecd’, ’reo-
laced’, ’replaqced’,
’replacde’, ’replace-
diaw’

’repleced’,
’de-
splaced’,
’re-
placeed’,
’re-
plpaced’

’replacedv’,
’teplaced’

tightened ’retighned’, ’tight-
eded’, ’retight-
ened’, ’tightned’,
’tightenedchecked’,
’tigten’, ’retighted’,
’retighrnrd’, ’tight-
tened’, ’tighened’,
’retightend’, ’tigh-
teened’, ’tightend’,
’tigtened’, ’tightewed’,
’tightnrd’, ’tighted’,
’retightned’

’retighed’,
’thigh-
tened’,
’thigth-
ened’

’tighetened’,
’tichtened’

replacement ’replaement’, ’re-
placenent’, ’re-
placemnt’, ’remplace-
ment’, ’repalcement’

’repacement’,
’replace-
mant’,
’replaace-
ment’

’recplacement’,
’replamce-
ment’

leakage ’leack’, ’lek’
paper ’paer’, ’xpaper’,

’paiper’, ’paperv’,
’papere’, ’papper’,
’ppaper’, ’papeer’,
’papaer’

’paperl’,
’papar’,
’pepr’,
’parper’

’opaper’

repaired ’reapired’, ’repaied’,
’repaireref’, ’reaired’,
’reppaired’, ’re-
paider’, ’rpaired’

’repais’,
’repait’

’repairede’,
’repiared’

Table 5.2: Iterative correction of spelling mistakes

93

logbook data preprocessing

(a) term: replaced (b) term: blood

(c) term: leak (d) term: paper

(e) term: oil (f) term: lamp

(g) term: coffee (h) term: runway

Figure 5.8: Wordclouds of the 40-neighborhood of terms in the
embedding space created using the cleaned logbook

5.6 information extraction

Part of speech tagging Brill (1992) Toutanova et al. (2003) is the

task of identifying the part of speech (noun, verb, etc.) of each

94

5.6 information extraction

word in a document. It is an important NLP task and it is used in

keyword and information extraction Liu et al. (2009) Califf and

Mooney (1999).

In our work, we are interested in extracting the actions which

are expressed with verbs in the corresponding logbook entries,

such as replace, fix, tight and clean. We use the standard POS

tagger of the very well know library NLTK7. Figure 5.9 shows

some extracted verbs.

Figure 5.9: Maintenance keywords extracted from the logbook -
verbs via POS Tagging. The size of each word is pro-
portional to its number of occurrences in the logbook

Our motivation for extracting the verbs is twofold: First, it is

important to identify which actions were performed on specific

components in order to use this information for failure prediction.

Second, it would be of great benefit to study the impact of each

action on the lifetime of the corresponding component.

7http://www.nltk.org

95

http://www.nltk.org

logbook data preprocessing

5.7 conclusions and future work

In this chapter we presented our approach for pre-processing

and information extraction from logbook data. We used vector

representations in order to capture contextual information and

clean the logbook. Furthermore, we used standard Part-of-Speech

tagging in order to extract the maintenance actions (verbs) and

the objects (nouns) from the cleaned text.

96

6
C O M P O N E N T C O N D I T I O N A S S E S S M E N T

U S I N G T I M E S E R I E S D ATA

Time series generated by sensors on-board constitute the core

of the data generated by aircraft. The event logs presented in

the previous chapters are generated by sampling and analyzing

sensor values. One the other hand, since sensor measurements

directly reflect the health of every component, they are the most

complete source of information. Therefore, in predictive main-

tenance, if one cannot achieve the desired results using other

sources of information, the analysis of sensor time series becomes

indispensable.

In this Chapter we present a method for assessing the condition

of equipment on-board, using time series generated by sensors

that monitor their health. We formulate and solve a time series

decomposition problem in order to extract the trend and the fluc-

tuation of each time series, and along with statistical properties

of the samples, we quantify the severity of the fault. Finally, our

method doesn’t require any prior knowledge and our results

demonstrate the effectiveness of our approach.

6.1 degradation

Hardware is not imperishable and may fade through time and

thus, monitoring its condition is very important. In this section

97

component condition assessment using time series data

we present our work on faulty hardware detection and risk as-

signment. More specifically, given a collection of sensor time

series that monitor the condition of several components from

multiple aircraft, we aim to detect when a sensor starts emitting

abnormal values and we aim to estimate a function that quantifies

the degradation level.

The sensors under consideration have a specific pattern when

the corresponding component is fading: the emitting values show

gradually increasing behavior with increased variance. Figure 6.1

shows an example.

0 25 50 75 100 125 150 175 200
time (in flights)

30

35

40

45

50

se
ns

or
 v

al
ue

Sensor degradation example

Figure 6.1: Example of degrading sensor

In this example the component functions normally for approx-

imately the first 90 flights until it starts fluctuating. Separating

the fluctuation from the increasing trend is the key concept of our

approach, since the degradation level is a function of those two:

98

6.2 related work

the sensors condition is reflected by the deviation of the trend

from the normal value and the variance of the fluctuation.

6.2 related work

Trend extraction Alexandrov et al. (2012) is a well studied prob-

lem in time series analysis. Aiming towards an effective solution,

a plethora of methods have been proposed due to the fact that

there is no standard definition for the trend Wu et al. (2007) and

thus, each approach is driven by a specific application. However,

most of the existing work does not tackle the problem under the

monotonicity constraint that is critical for our application.

Two simple yet sometimes effective approaches are Low-pass

filtering Harvey and Trimbur (2003) and linear regression Weis-

berg (2005). Using a low pass filter can remove the fluctuation

however, it is not guaranteed that the trend will be monotonic. On

the other hand, fitting a line on the data will lead to a monotonic

but linear trend. Unfortunately, in most applications including

ours, the trend is not linear.

Another two popular approaches are the Singular Spectrum

Analysis (SSA) Elsner and Tsonis (2013) and the Empirical Mode

Decomposition (EMD) Mhamdi et al. (2011) Flandrin et al. (2004).

SSA is based on Singular Value Decomposition of the traversal

matrix1 of the time series and EMD is a method that decomposes

the time series based on oscillatory components. However, both

of them do not guarantee a monotonic trend. Similarly, since

trend extraction is a special case of time series decomposition,

1it is the Hankel Iokhvidov (1982) matrix whose rows are segments created
by a sliding window over the tme series

99

component condition assessment using time series data

Independent Component Analysis (ICA) Comon (1994) can be

also used when monotonicity is not a constraint.

More recently, Gaussian Process (GP) Regression using mono-

tonicity or shape constraints has been proposed and could be

employed for trend extraction (Wang and Berger (2016) Golchi

et al. (2015)). In these approaches the monotonicity is achieved

by introducing virtual derivative points (with positive values

for increasing behavior) in order to enforce the desired behavior.

Although they have not been studied for the problem of trend

extraction, we investigated their capability and we experimented

with the one presented in Riihimaki and Vehtari (2010) as a base-

line for comparison. A major drawback of GP approach is that

the values of the derivatives must be manually selected whereas

automatic approaches have been proposed for the positions of

the points. However although monotonicity (increasing) becomes

likely by adding the virtual points iteratively in positions where

the derivative is expected to be negative, it is not enforced.

Finally, we build our approach upon an existing one that was

proposed for a similar problem, in the context of sensor degrada-

tion analysis. In this approach Ulanova et al. (2015a), the authors

formulate an optimization problem to separate the monotonic

trend from the fluctuation. However, we deviate from the original

one by introducing a regularization term in the objective function

that guarantees that the trend will be close to the original time

series and by modifying the constraint in order to allow negative

values for the fluctuation.

Our approach is the only one to fulfill all the constraints for

the problem in hand with respect to the trend: a) guaranteed

100

6.3 dataset

monononically increasing, b) non-linear and c) close2 to the origi-

nal time series.

6.3 dataset

Our dataset consists of measurements coming from 23 aircraft

over a few hundreds of flights (the number of flights per aircraft

varies). We targeted 32 sensors of interest that exhibit the afore-

mentioned degrading behavior. Therefore, we form 23 matrices,

Xi, i = 1, . . . 23, one for each aircraft. All matrices have 32 rows

that correspond to the 32 sensors, and the number of columns

vary according to the number of flights available for each aircraft.

Note that each sensor is regularly sampled within each flight,

however, here we analyze the mean value per flight because it

is capable of capturing the type of degradation that we aim to

study.

6.4 modeling degradation with gmms

We assume that each sample is drawn from a mixture of two

distributions, that correspond to the condition of the sensor.

Specifically, one mixture component that corresponds to the nor-

mal condition of the sensor and another one that corresponds

to the degraded condition. Since our dataset is not annotated

and we don’t know in advance which samples correspond to

normal and degraded condition of the component, we treat each

2closeness in enforced by penalizing the trend’s distance from the original
time series. This will be presented in section 6.5.2

101

component condition assessment using time series data

sample as a random variable that comes from a Gaussian Mixture

Model (GMM) of two components:

P(x) = θ1p(x|k = 1) + θ2p(x|k = 2) (6.1)

Given a history of sensor measurements, we fit a GMM of two

components, aiming to capture the normal and the abnormal

condition of the sensor. In Figure 6.2 we present an example

mixture that was estimated on a specific sensor. After learning

the mixture using the standard Expectation Maximization (EM)

algorithm, we label the mixture component having the lowest

mean as the normal and the other as the degraded.

80 100 120 140
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fitted GMM results
1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

Figure 6.2: Example of a Gaussian Mixture Model fitted on a
specific sensor’s samples

We fit one GMM for each sensor because our goal is to be able

to assess the condition of each sensor without having necessarily

102

6.4 modeling degradation with gmms

access to the others. Figure 6.3 shows more examples of this

approach.

25 50 75 100 125
0.0

0.1

0.2
1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

20 40 60 80
0.00

0.05

0.10

0.15 1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

50 100 150
0.00

0.05

0.10

0.15
1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

20 40 60 80 100
0.00

0.05

0.10

0.15 1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

40 60 80 100 120
0.00

0.05

0.10

0.15 1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

25 50 75 100 125
0.00

0.05

0.10

0.15 1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

40 60 80 100
0.000

0.025

0.050

0.075
1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

25 50 75 100 125
0.00

0.05

0.10

0.15 1st Mixture Component - Normal Values
2nd Mixture Component - Abnormal Values
Sensor sample histogram

Figure 6.3: GMM fitted on 8 different sensors.

Furthermore, the mixture model can be used in order to label

each sample according to the probability of it being generated by

each one of the two components:

c(xi) = argmax
j

θj p(xi|k = j). (6.2)

103

component condition assessment using time series data

The information of the learned distributions will be used at the

final step of the risk assessment. In the next session we proceed

with the description of the main component of our approach and

finally, we put everything together in section 6.5.

6.5 time series decomposition

We propose an approach that is based on the decomposition of

each time series into the two aforementioned components, the

fluctuation and the trend Alexandrov et al. (2012) (Figure 6.4).

0 25 50 75 100 125 150 175
−10

0

10

20

30

40

50
original
trend
fluctuation

Figure 6.4: Decomposing the time series into the fluctuation and
the trend

104

6.5 time series decomposition

For a time series s ∈ Rn×1, finding the trend u ∈ Rn×1 and the

fluctuation v ∈ Rn×1, so that s = u + v (which is the common

formulation Alexandrov et al. (2012)), can be translated into an

optimization problem having the following structure:

min
u,v

‖s− u− v‖2

s.t. u is non-decreasing

(6.3)

A solution to this problem has already been recently provided

by Ulanova et al. (2015b), in which the authors formulate an

non-negative quadratic problem. However, we modified this

algorithm in order to better match our requirements, by solving

a convex, quadratic programming problem instead. Our main

deviation from their work is the addition of a regularization term

which, although deprives3 the formulation of a non-negative

quadratic problem, gives more accurate and robust estimation of

the trend component.

6.5.1 Quadratic Programming Formulation

We start by presenting and discussing the solution proposed

by the authors in Ulanova et al. (2015b). Introducing two spec-

ifications for the fluctuation, being wide sense stationary and

non-negative, the optimization problem in 6.3 can be written as

follows:

3The multiplicative updates for solving a non-negative convex quadratic
problem lead to faster convergence Sha et al. (2003, 2007)

105

component condition assessment using time series data

min ||s− u− v||2 + ∑ (mi −mj)Wij

s.t. Bu > 0

v > 0
(6.4)

where,

B =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
...

0 0 . . . −1 1

 ∈ {0, 1}n−1×n

Regarding the constraints, the product Bu produces the pair-

wise differences between every pair of points in u in a sliding

window, and thus, the constraint Bu > 0 guarantees that the

trend u will be increasing. Regarding the objective function,

||s− u− v||2 is the reconstruction error and ∑K
i,j=1 (mi −mj)Wij,

is the term that achieves the stationarity. More precisely, the

time series is partitioned into K segments having mean values

m1, m2, . . . , mK and thus, minimizing the weighted difference be-

tween them enforces stationarity. The weight matrix W ∈ RK×K

can be used to configure the importance of the differences be-

tween the segments. It can be simply set to all ones, or if one

needs to make sure that the mean will not change as the distance

between the segments increases, it can be set as Wij = |i− j|.
However, the problem presented in 6.4 is not in a solvable form.

In order to achieve it, we introduce:

• x = [u; v] ∈ R2n×1, a vector that is the concatenation of the

trend and the fluctuation.

106

6.5 time series decomposition

• E2 = [I I] ∈ Rn×2n, where I ∈ Rn×n is the identity matrix

• E1 = [0n×n I], where 0n×n is the n× n all zeros matrix

• C = [B 0n−1×n−1] ∈ Rn−1×2n−1

• L = D−W, where D = diag(W · 1K×K), 1K×K is the all 1s

K× K matrix.

Additionally,

E =



1/l . . . 1/l 0 . . . 0 0 · · · 0

︸ ︷︷ ︸
l

0 . . . 0 1/l · · · 1/l 0 · · · 0

︸ ︷︷ ︸
l

...
...

...
...

...
l︷ ︸︸ ︷

0 0 · · · 0 0 0 1/l . . . 1/l


,

where l is the segment length after partitioning the time series

into K segments (l = n/K). Having the definitions above, we

can now start building the final formulation of the optimization

problem.

The term ∑K
i,j=1 (mi −mj)Wij can be rewritten as (E1x)T (ET LE

)
(E1x),

because E1x = v and Ev = m. Next, the reconstruction error

||s− u− v||2 can be written as:

107

component condition assessment using time series data

‖s− u− v‖2 =

∥∥∥∥∥∥s−
=u+v︷ ︸︸ ︷
(E2x)

∥∥∥∥∥∥
2

= (s− E2x)T(s− E2x)

= sTs− 2
(

ET
2 s
)

x + xTET
2 E2x

(6.5)

From 6.5 and REF, the final form of the objective function is

min ‖s− u− v‖2 + ∑ (mi −mj)Wij

= min sTs− 2
(

ET
2 s
)

x + xTET
2 E2x + xTET

1

(
ET LE

)
(E1x)

= min −2
(

ET
2 s
)

x + xTET
2 E2x + xTET

1

(
ET LE

)
(E1x)

= min xT
(

ET
2 E2 + ET

1

(
ET LE

)
E1

)
x− 2

(
ET

2 s
)

x
(6.6)

Finally, the new constraints are Cx > 0 and x > 0 and therefore,

the final formulation is

min xT
(

ET
2 E2 + ET

1

(
ET LE

)
E1

)
x− 2

(
ET

2 s
)

x

s.t. Cx > 0

x > 0
(6.7)

The optimization problem 6.7 is convex. A quadratic optimiza-

tion problem of the form min xTQx + wTx is convex if Q is posi-

tive semidefinite. This holds in 6.7 because ET
2 E2 + ET

1
(
ET LE

)
E1

is a sum of positive semidefinite matrices.

108

6.5 time series decomposition

6.5.2 Reformulating the Optimization Problem

Our approach differs from the one presented in Ulanova et al.

(2015b) in two ascpects: a) we introduce the extra penalization

term and b) we allow negative values for the noise. Although

our approach loses in efficiency compared to the non-negative

quadratic programming, we achieve better fit of the trend on

(Figure 6.5), which is critical for our application.

0 25 50 75 100 125 150 175

10

20

30

40

50
original
trend
fluctuation

Figure 6.5: Trend captured by solving the original QP problem

We add a new term on the objective function, in order to deal

with the issue depicted in 6.5. The term is ‖s− u‖2. In order

to properly add the term in the objective function, we define a

matrix E3 = [In×n 0n×n] so that we can express the regularization

term as follows:

109

component condition assessment using time series data

‖s− u‖2 =

∥∥∥∥∥∥s−
=u︷ ︸︸ ︷

(E3x)

∥∥∥∥∥∥
2

= (s− E3x)T(s− E3x)

= sTs− 2
(

ET
3 s
)

x + xTET
3 E3x

(6.8)

Finally, by embedding 6.8 (by omitting sTs) and remove the

constraint x > 0 we obtain our final form of the convex, quadratic

problem:

min xT
(

ET
2 E2 + ET

1

(
ET LE

)
E1 + 2E3ET

3

)
x− 2

(
ET

2 s + 2ET
3 s
)

x

s.t. Cx > 0

(6.9)

Problem 6.9 is still convex since the matrix E3ET
3 is positive

semidefinite.

6.6 condition assessment

Having decomposed the signal into the fluctuation and the trend,

we now use this information to compute an indicator that re-

flects the condition of the component. This indicator should be

interpreted as a risk function, bounded in the interval [0, 1], as a

scaled function of the trend4. Values of the function close to zero

correspond to properly functioning components, whereas higher

values quantify the level of degradation.

At timestep t, given a sample our formula is

4This decision was made according to the requirements of the application

110

6.7 evaluation

ri(t) =

{
0 i f ut ≤ EX|k=0;µ0,σ0

[X]∫ ut
−∞ P(x|k = 1; µ1, σ1)dx otherwise

(6.10)

where

• ut is the trend extracted at timestep t

• EX|k=0;µ0,σ0
[X] is the expected value of the samples in nor-

mal condition

•
∫ ut
−∞ P(x|k = 1; µ1, σ1)dx is the cumulative density of the

mixture that corresponds to the degrading state

The proposed function ri(t) is zero when the trend extracted

at timestep t is lower that the mean value of the PDF that corre-

sponds to the normal condition. Furthermore, using the cdf in

order to quantify the risk fulfills the major requirements of the

risk function: a) it is increasing, it is bounded within [0− 1] and

c) it is compatible with the distribution of the abnormal values,

i.e. it is maximized when the trend reaches values that are too

high (rightmost part of the corresponding pdf).

In Figure 6.6 we demonstrate our risk function for several

sensors.

6.7 evaluation

We evaluate our approach using synthetic data since for our sen-

sor data there is no ground truth for the trend. Furthremore, we

compare against the Gaussian Process (GP) approach presented

111

component condition assessment using time series data

−50

0

50

100

original
trend
fluctuation

0 50 100 150 200 250 300 350 400
0.3

0.4

0.5

0.6

0.7 risk

−20

0

20

40

60

original
trend
fluctuation

0 50 100 150 200 250 300 350 400
0.2

0.4

0.6

0.8 risk

−10

0

10

20

30

40

original
trend
fluctuation

0 50 100 150 200 250 300 350 400

0.3

0.4

0.5 risk

0

20

40
original
trend
fluctuation

0 50 100 150 200

0.2

0.3

0.4

0.5

0.6
risk

0

20

40

60

80

original
trend
fluctuation

0 50 100 150 200 250 300 350 400
0.25

0.30

0.35

0.40 risk

Figure 6.6: Sensor risk examples

112

6.7 evaluation

in Riihimaki and Vehtari (2010) both in the effectiveness and effi-

ciency. We created three different types of synthetic data which

consist of a monotonically increasing trend and additive random

noise in order to emulate the fluctuation. Our experiments are

performed on several values of σ in order to simulate different

magnitudes of the fluctuation.

1 2 3 4 5 6 7 8 9 10
Noise STD

34

36

38

40

42

44

46

48

M
ea

n
Sq

ua
re

 E
rro

r

MSE: Gaussian Process

(a) Gaussian Process MSE

1 2 3 4 5 6 7 8 9 10
Noise STD

0

5

10

15

20

25

30

35

40

M
ea

n
Sq

ua
re

 E
rro

r

MSE: Quadratic Programming

(b) Quadratic Programming MSE

0 1 2 3 4 5 6 7 8 9
Noise STD

0

10

20

30

40

M
ea

n
Sq

ua
re

 E
rro

r

Quadratic Programming vs Gaussina Process
GP
QP

(c) QP vs GP: MSE

0 1 2 3 4 5 6 7 8 9
Noise STD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec
ut
io
n
Ti
m
e

Quadratic Programming vs Gaussina Process
GP
QP

(d) QP vs GP: Execution Time

Figure 6.7: Exponential Trend

The first model is an exponential trend with additive noise,

y(t) = eαt + nt. In Figure 6.7 we present: a) on the top left

the mean squared error of the trend estimation using the GP

approximation, b) on the top right the mean squared error of

the trend estimation using our approach, c) on the bottom right

113

component condition assessment using time series data

the average error for both approaches in order to make a clear

comparison and d) the execution time of both approaches.

1 2 3 4 5 6 7 8 9 10
Noise STD

5

10

15

20

25

M
ea

n
Sq

ua
re

 E
rro

r

MSE: Gaussian Process

(a) Gaussian Process MSE

1 2 3 4 5 6 7 8 9 10
Noise STD

0

5

10

15

20

25

30

35

40

M
ea

n
Sq

ua
re

 E
rro

r

MSE: Quadratic Programming

(b) Quadratic Programming MSE

0 1 2 3 4 5 6 7 8 9
Noise STD

0

5

10

15

20

25

M
ea

n
Sq

ua
re

 E
rro

r

Quadratic Programming vs Gaussina Process
GP
QP

(c) QP vs GP: MSE

0 1 2 3 4 5 6 7 8 9
Noise STD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec
ut
io
n
Ti
m
e

Quadratic Programming vs Gaussina Process
GP
QP

(d) QP vs GP: Execution Time

Figure 6.8: Linear Trend

The second model is a linear model y(t) = αt + nt. In Figure

6.8 we present the same types of results. This is the only case

where the Gaussian Process outperforms our approach in our

synthetic datasets.

Finally, the third model consists of a step-wise increase with

additive noise. In Figure 6.9 we present the results.

114

6.7 evaluation

1 2 3 4 5 6 7 8 9 10
Noise STD

40

50

60

70

80

90
M

ea
n

Sq
ua

re
 E

rro
r

MSE: Gaussian Process

(a) Gaussian Process MSE

1 2 3 4 5 6 7 8 9 10
Noise STD

0

5

10

15

20

25

30

35

40

M
ea

n
Sq

ua
re

 E
rro

r

MSE: Quadratic Programming

(b) Quadratic Programming MSE

0 1 2 3 4 5 6 7 8 9
Noise STD

0

10

20

30

40

50

60

70

80

M
ea

n
Sq

ua
re

 E
rro

r

Quadratic Programming vs Gaussina Process
GP
QP

(c) QP vs GP: MSE

0 1 2 3 4 5 6 7 8 9
Noise STD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec
ut
io
n
Ti
m
e

Quadratic Programming vs Gaussina Process
GP
QP

(d) QP vs GP: Execution Time

Figure 6.9: Step-wise Trend

6.7.1 Discussion

In most of the cases, the Quadratic Programming approach out-

performs the Gaussian Process both in efficiency and in effective-

ness. Moreover, we should note that the execution time of the

Gaussian Process is affected by the number of derivative points

that have to be added in order to achieve monotonicity. In most

cases, this is related to the amplitude of the fluctuation.

115

component condition assessment using time series data

6.8 conclusions

In this chapter we presented our approach for assessing the

condition of components on-board using sensor time series. We

used Gaussian Mixture Models in order to identify abnormal

values and we formulated a quadratic programming approach

in order to extract the trend of the time series and separate it

from the fluctuation. This approach was driven by the specific,

monotonically increasing degradation pattern of the time series

in hand. Finally, our method outputs the risk which is computed

as the trend’s deviation from the expected normal values, using

the information from the Mixture Models.

116

7
D I S C U S S I O N

The goal of this thesis was to propose Machine Learning ap-

proaches for solving problems in the aviation industry, in the

context of predictive maintenance. Our work was performed

under the regime of a CIFRE Ph.D. and consequently, both our

objectives and the evaluation methods were derived from an

industrial perspective. We targeted problems that have high

impact on the industry and our solutions are completely data

driven, using minimum intervention and prior knowledge from

maintenance experts.

7.1 summary of contributions

The main contributions of the thesis can be summarized as fol-

lows.

• In Chapter 3 we presented some exploratory analysis out-

comes using survival analysis techniques. The outcomes

from such an analysis are useful when designing prediction

experiments, by acquiring knowledge about the interval

distribution of a target failure, by evaluating possible pre-

dictors and also, by studying the impact of variables on

target failure’s occurrence.

• In Chapter 4 we presented our approach on predicting

upcoming failures, using only the history of failure logs.

117

discussion

To our knowledge, this is the first proposed solution that

achieves results. The difficulty of this problem enforced a

detailed design of all the methods steps. Finally, we showed

the expected impact of our predictions on the industry.

• In Chapter 5 we studied the problem of cleaning and ex-

tracting information from logbook data. We proposed an

approach which is based on recent advances in neural net-

works and we identified the potential of creating our own

vector of the words in the logbook.

• In Chapter 6 we proposed an unsupervised method for

analyzing the decaying behavior of sensors/equipment on-

board and quantifying their level of degradation. Our ap-

proach is based on a time-series decomposition technique

by formulating a Quadratic Programming problem.

A key point which should be highlighted is that this thesis

constitutes an holistic approach, that investigated almost all the

available data related to the operation of the aircraft in order to

achieve the aforementioned results. Consecutively, we explored

a wide range of methods related to all of the data types and

the problems that we encountered and we obtained valuable

knowledge regarding the potential of every approach, regardless

of its effectiveness. In industry, this information is critical in

order to a) avoid future (and potentially repeated) attempts with

insignificant results and b) identify cases where methods will

probably produce significant results.

118

7.2 future directions

7.2 future directions

During our work we identified several interesting outcomes

which due to the limited duration of the thesis could not be

further investigated.

• Inject data from multiple sources into our failure predic-

tion approach. The design of our approach facilitates the

utilization of any data in a per-flight manner. Such data

could be measurements coming from sensors on-board or

meteorological data related to the weather condition during

the flight.

• Identify which variables contribute to the sensor degrada-

tion presented in Chapter 6. Having computed the risk, a

regression problem could be formulated that aims to in-

vestigate the connection between several variables and the

increase of risk.

• Identify the impact of maintenance actions on the survival

function of target events. The keywords extracted from

the logbook could be used as time-dependent covariates in

survival analysis. This information can lead to assessing

the effectiveness of maintenance actions.

Finally, the design of a data-centric architecture that supports

Machine Learning applications using aircraft data is a potential

future direction with great impact on the industry.

119

N O TAT I O N

machine learning and probability

symbol meaning

p(·) probability mass function

S(t) survival function

h(t) hazard function

EP[X] expected value of X, w.r.t. distribution P

θ model parameters

L() likelihood function

n number of samples in the dataset

X ∈ Rn×d feature matrix

Y ∈ Rn×1 labels

sensor time series

symbol meaning

s = [s1, . . . , st] sensor time series

u = [u1, . . . , ut] trend of time series

v = [v1, . . . , vt] fluctuation of time series

r(·) risk function

121

notation

post flight report and failure prediction

symbol meaning

AC set of aircraft

E = {ei, . . . , ek} system failure ids

eT critical (target) failure

P eT predictors for eT
w window of flights length

Tei
ei time interval between ei and ej

r(·) risk function

γ risk decision threshold

logbook data analysis

symbol meaning

L = {lb1, . . . , lbm} set of logbook entries

W = {w1, . . . , wk} set of unique terms in the logbook

GL() skip-gram model trained in logbook L
GL(w, k) k-nearest neighbors in the embedding

space created by G using L
J(wi, wj) Jaccard similarity of words wi and wj

122

A C R O N Y M S

MSE Mean Square Error

MAE Mean Absolute Error

GMM Gaussian Mixture Model

EM Expectation Maximization

GD Gradient Descent

SGD Stochastic Gradient Descent

PFR Post Flight Report

QP Quadratic Programming

KM Kaplan-Meier

CPH Cox Proportional Hazard

HMM Hidden Markov Model

miNB Multiple Instance Naive Bayes

SVM Support Vector Machines

LSI Latent Semantic Indexing

SVR Support Vector Regression

MSN Manufacturer Serial Number

MIL Multiple Instance Learning

123

acronyms

ROC Receiver Operating Characteristic

ATA Air Transport Association

AUC Area Under the Curve

RFR Random Forest Regression

PDF Probability Density Function

CDF Cumulative Distribution Function

NLP Natural Language Processing

SSA Singular Spectrum Analysis

EMD Empirical Mode Decomposition

ICA Independent Component Analysis

GP Gaussian Process

124

B I B L I O G R A P H Y

Adams, P. C., Speechley, M., and Kertesz, A. E. (1991). Long-term

survival analysis in hereditary hemochromatosis. Gastroenterol-

ogy, 101(2):368–372.

Alexandrov, T., Bianconcini, S., Dagum, E. B., Maass, P., and

McElroy, T. S. (2012). A Review of Some Modern Approaches to

the Problem of Trend Extraction. Econometric Reviews, 31(6):593–

624.

Archer, K. J. and Kimes, R. V. (2008). Empirical characterization

of random forest variable importance measures. Computational

Statistics & Data Analysis, 52(4):2249–2260.

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cam-

bridge University Press. Google-Books-ID: yxZtddB_Ob0C.

Binet, J. L., Auquier, A., Dighiero, G., Chastang, C., Piguet, H.,

Goasguen, J., Vaugier, G., Potron, G., Colona, P., Oberling, F.,

Thomas, M., Tchernia, G., Jacquillat, C., Boivin, P., Lesty, C.,

Duault, M. T., Monconduit, M., Belabbes, S., and Gremy, F.

(1981). A new prognostic classification of chronic lymphocytic

leukemia derived from a multivariate survival analysis. Cancer,

48(1):198–206.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.

Springer. Google-Books-ID: kTNoQgAACAAJ.

125

Bibliography

Bottou, L. (2010). Large-Scale Machine Learning with Stochastic

Gradient Descent. In Proceedings of COMPSTAT’2010, pages

177–186. Physica-Verlag HD. DOI: 10.1007/978-3-7908-2604-

3_16.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Opti-

mization. Cambridge University Press. Google-Books-ID:

mYm0bLd3fcoC.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984).

Classification and Regression Trees. Taylor & Francis.

Brill, E. (1992). A Simple Rule-based Part of Speech Tagger.

In Proceedings of the Workshop on Speech and Natural Language,

HLT ’91, pages 112–116, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Califf, M. E. and Mooney, R. J. (1999). Relational Learning of

Pattern-match Rules for Information Extraction. In Proceed-

ings of the Sixteenth National Conference on Artificial Intelligence

and the Eleventh Innovative Applications of Artificial Intelligence

Conference Innovative Applications of Artificial Intelligence, AAAI

’99/IAAI ’99, pages 328–334, Menlo Park, CA, USA. American

Association for Artificial Intelligence.

Caruana, R. and Niculescu-Mizil, A. (2006). An Empirical Com-

parison of Supervised Learning Algorithms. In Proceedings of

the 23rd International Conference on Machine Learning, ICML ’06,

pages 161–168, New York, NY, USA. ACM.

Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., and Li, K.

(2017). A Parallel Random Forest Algorithm for Big Data in

126

Bibliography

a Spark Cloud Computing Environment. IEEE Transactions on

Parallel and Distributed Systems, 28(4):919–933.

Choi, H., Cho, K., and Bengio, Y. (2017). Context-dependent word

representation for neural machine translation. Computer Speech

& Language, 45:149–160.

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A Com-

parison of String Distance Metrics for Name-matching Tasks. In

Proceedings of the 2003 International Conference on Information In-

tegration on the Web, IIWEB’03, pages 73–78, Acapulco, Mexico.

AAAI Press.

Comon, P. (1994). Independent Component Analysis, a New

Concept? Signal Process., 36(3):287–314.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009).

Modeling wine preferences by data mining from physicochem-

ical properties. Decision Support Systems, 47(4):547–553.

Cox, D. R. and Oakes, D. (1984a). Analysis of survival data, vol-

ume 21. CRC Press.

Cox, D. R. and Oakes, D. (1984b). Analysis of survival data, vol-

ume 21. CRC Press.

Dahl, J. and Vandenberghe, L. (2006). Cvxopt: A python package

for convex optimization. Proc. eur. conf. op. res.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,

and Harshman, R. (1990). Indexing by latent semantic analysis.

Journal of the American society for information science, 41(6):391.

127

Bibliography

Deleger, L., Grouin, C., and Zweigenbaum, P. (2010). Extracting

medical information from narrative patient records: the case of

medication-related information. Journal of the American Medical

Informatics Association : JAMIA, 17(5):555–558.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum

likelihood from incomplete data via the EM algorithm. Journal

of the Royal Statistical Society, Series B, 39(1):1–38.

Duan, K., Keerthi, S. S., and Poo, A. N. (2003). Evaluation of sim-

ple performance measures for tuning SVM hyperparameters.

Neurocomputing, 51:41–59.

Elsner, J. B. and Tsonis, A. A. (2013). Singular Spectrum Analysis:

A New Tool in Time Series Analysis. Springer Science & Business

Media. Google-Books-ID: 5sfSBwAAQBAJ.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.

(2008). Liblinear: A library for large linear classification. Journal

of machine learning research, 9(Aug):1871–1874.

Flandrin, P., Gonçalvès, P., and Rilling, G. (2004). Detrending and

denoising with empirical mode decompositions. In 2004 12th

European Signal Processing Conference, pages 1581–1584.

Foulds, J. and Frank, E. (2010). A review of multi-instance learn-

ing assumptions. The Knowledge Engineering Review, 25(01):1–25.

Fu, Z., Robles-Kelly, A., and Zhou, J. (2011). Milis: Multiple

instance learning with instance selection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 33(5):958–977.

128

Bibliography

Golchi, S., Bingham, D., Chipman, H., and Campbell, D. (2015).

Monotone Emulation of Computer Experiments. SIAM/ASA

Journal on Uncertainty Quantification, 3(1):370–392.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.

MIT Press. Google-Books-ID: Np9SDQAAQBAJ.

Grbovic, M., Djuric, N., Radosavljevic, V., Silvestri, F., and

Bhamidipati, N. (2015). Context- and Content-aware Embed-

dings for Query Rewriting in Sponsored Search. In Proceedings

of the 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’15, pages 383–392,

New York, NY, USA. ACM.

Gross, A. J. and Clark, V. (1975). Survival Distributions: Reliability

Applications in the Biomedical Sciences. Wiley. Google-Books-ID:

VFhrAAAAMAAJ.

Gu, X., Papadimitriou, S., Yu, P. S., and Chang, S. P. (2008).

Online failure forecast for fault-tolerant data stream processing.

In 2008 IEEE 24th International Conference on Data Engineering,

pages 1388–1390.

Harvey, A. C. and Trimbur, T. M. (2003). General Model-Based

Filters for Extracting Cycles and Trends in Economic Time

Series. The Review of Economics and Statistics, 85(2):244–255.

Huet, J., Besseau, S., Maillard, B., and Michaud, F. (2015). Method

and computer program for the maintenance aid of aircraft

equipment. US Patent App. 14/341,272.

Hunter, J. D. (2007). Matplotlib: A 2d Graphics Environment.

Computing in Science & Engineering, 9(3):90–95.

129

Bibliography

Iokhvidov, I. S. (1982). Hankel and Toeplitz matrices and forms: alge-

braic theory. Birkhäuser. Google-Books-ID: jQPvAAAAMAAJ.

Ittoo, A., Nguyen, L. M., and van den Bosch, A. (2016). Text ana-

lytics in industry: Challenges, desiderata and trends. Computers

in Industry, 78:96–107.

Joachims, T. (1998). Text categorization with support vector

machines: Learning with many relevant features. In European

conference on machine learning, pages 137–142. Springer.

Kaiser, K. A. and Gebraeel, N. Z. (2009). Predictive maintenance

management using sensor-based degradation models. Sys-

tems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 39(4):840–849.

Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation

from Incomplete Observations. Journal of the American Statistical

Association, 53(282):457–481.

Kauschke, S., Fürnkranz, J., and Janssen, F. (2016). Predict-

ing cargo train failures: A machine learning approach for

a lightweight prototype. In International Conference on Discovery

Science, pages 151–166. Springer.

Kelly, P. J. and Lim, L. L.-Y. (2000). Survival analysis for recurrent

event data: an application to childhood infectious diseases.

Statistics in Medicine, 19(1):13–33.

Klein, J. P. and Moeschberger, M. L. (2005). Survival Analysis:

Techniques for Censored and Truncated Data. Springer Science &

Business Media.

130

Bibliography

Koh, Y. S. (2009). Rare Association Rule Mining and Knowledge

Discovery: Technologies for Infrequent and Critical Event Detection:

Technologies for Infrequent and Critical Event Detection, volume 3.

IGI Global.

Kohavi, R. (1995). A Study of Cross-validation and Bootstrap

for Accuracy Estimation and Model Selection. In Proceedings

of the 14th International Joint Conference on Artificial Intelligence -

Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA.

Morgan Kaufmann Publishers Inc.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Mod-

els: Principles and Techniques. MIT Press. Google-Books-ID:

7dzpHCHzNQ4C.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An introduc-

tion to latent semantic analysis. Discourse Processes, 25(2-3):259–

284.

Laxman, S., Tankasali, V., and White, R. W. (2008). Stream pre-

diction using a generative model based on frequent episodes

in event sequences. In Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

KDD ’08, pages 453–461, New York, NY, USA. ACM.

Lee, E. T. and Wang, J. W. (2013). Statistical Methods for Sur-

vival Data Analysis. John Wiley & Sons. Google-Books-ID:

_fD9AAAAQBAJ.

Liao, H., Zhao, W., and Guo, H. (2006). Predicting remaining

useful life of an individual unit using proportional hazards

model and logistic regression model. In RAMS ’06. Annual

Reliability and Maintainability Symposium, 2006., pages 127–132.

131

Bibliography

Liaw, A. and Wiener, M. (2002). Classification and regression by

randomforest. R news, 2(3):18–22.

Liu, F., Pennell, D., Liu, F., and Liu, Y. (2009). Unsupervised

Approaches for Automatic Keyword Extraction Using Meeting

Transcripts. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the

Association for Computational Linguistics, NAACL ’09, pages 620–

628, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Liu, Y., Liu, Z., Chua, T.-S., and Sun, M. (2015). Topical Word

Embeddings.

Ma, Z. and Krings, A. W. (2008). Survival Analysis Approach to

Reliability, Survivability and Prognostics and Health Manage-

ment (PHM). In 2008 IEEE Aerospace Conference, pages 1–20.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and

Potts, C. (2011). Learning Word Vectors for Sentiment Analysis.

In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies - Volume

1, HLT ’11, pages 142–150, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu,

D., Freeman, J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R.,

Franklin, M. J., Zadeh, R., Zaharia, M., and Talwalkar, A. (2016).

MLlib: Machine Learning in Apache Spark. J. Mach. Learn. Res.,

17(1):1235–1241.

132

Bibliography

Mhamdi, F., Poggi, J.-M., and Jaïdane, M. (2011). Trend extraction

for seasonal time series using ensemble empirical mode decom-

position. Advances in Adaptive Data Analysis, 03(03):363–383.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Ef-

ficient Estimation of Word Representations in Vector Space.

arXiv:1301.3781 [cs]. arXiv: 1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.

(2013b). Distributed Representations of Words and Phrases and

their Compositionality. In Burges, C. J. C., Bottou, L., Welling,

M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances

in Neural Information Processing Systems 26, pages 3111–3119.

Curran Associates, Inc.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). Linguistic regulari-

ties in continuous space word representations. In HLT-NAACL,

pages 746–751.

Miller, R. G. (2011). Survival Analysis. John Wiley & Sons. Google-

Books-ID: MvO9I8g3zxAC.

Murray, J. F., Hughes, G. F., and Kreutz-Delgado, K. (2005). Ma-

chine learning methods for predicting failures in hard drives:

A multiple-instance application. J. Mach. Learn. Res., 6:783–816.

Nakagawa, T. and Osaki, S. (1975). The discrete weibull distribu-

tion. IEEE Transactions on Reliability, 24(5):300–301.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,

133

Bibliography

M., and Duchesnay, E. (2011). Scikit-learn: Machine Learning in

Python. Journal of Machine Learning Research, 12(Oct):2825–2830.

Riihimaki, J. and Vehtari, A. (2010). Gaussian processes with

monotonicity information. In PMLR, pages 645–652.

Ruder, S. (2016). An overview of gradient descent optimization

algorithms. arXiv:1609.04747 [cs]. arXiv: 1609.04747.

Saeeda, L. (2017). Iterative Approach for Information Extraction

and Ontology Learning from Textual Aviation Safety Reports.

In The Semantic Web, Lecture Notes in Computer Science, pages

236–245. Springer, Cham.

Salfner, F., Lenk, M., and Malek, M. (2010). A survey of online

failure prediction methods. ACM Computing Surveys (CSUR),

42(3):10.

Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S.,

Kipper-Schuler, K. C., and Chute, C. G. (2010). Mayo clinical

Text Analysis and Knowledge Extraction System (cTAKES):

architecture, component evaluation and applications. Journal of

the American Medical Informatics Association, 17(5):507–513.

Schwarzkopf, O. (1995). The Extensible Drawing Editor Ipe. In

Proceedings of the Eleventh Annual Symposium on Computational

Geometry, SCG ’95, pages 410–411, New York, NY, USA. ACM.

Sha, F., Lin, Y., Saul, L. K., and Lee, D. D. (2007). Multiplicative

Updates for Nonnegative Quadratic Programming. Neural

Computation, 19(8):2004–2031.

Sha, F., Saul, L. K., and Lee, D. D. (2003). Multiplicative Updates

for Nonnegative Quadratic Programming in Support Vector

134

Bibliography

Machines. In Becker, S., Thrun, S., and Obermayer, K., editors,

Advances in Neural Information Processing Systems 15, pages 1065–

1072. MIT Press.

Siklosi, B., Novák, A., and Prószéky, G. (2013). Context-Aware

Correction of Spelling Errors in Hungarian Medical Documents.

In Statistical Language and Speech Processing, Lecture Notes in

Computer Science, pages 248–259. Springer, Berlin, Heidelberg.

Sipos, R., Fradkin, D., Moerchen, F., and Wang, Z. (2014a). Log-

based predictive maintenance. In Proceedings of the 20th ACM

SIGKDD international conference on knowledge discovery and data

mining, pages 1867–1876. ACM.

Sipos, R., Fradkin, D., Moerchen, F., and Wang, Z. (2014b). Log-

based predictive maintenance. In Proceedings of the 20th ACM

SIGKDD international conference on knowledge discovery and data

mining, pages 1867–1876. ACM.

Son, J., Zhou, Q., Zhou, S., Mao, X., and Salman, M. (2013). Eval-

uation and comparison of mixed effects model based prognosis

for hard failure. IEEE Transactions on Reliability, 62(2):379–394.

Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen,

J., and Nie, J.-Y. (2015). A Hierarchical Recurrent Encoder-

Decoder for Generative Context-Aware Query Suggestion. In

Proceedings of the 24th ACM International on Conference on Infor-

mation and Knowledge Management, CIKM ’15, pages 553–562,

New York, NY, USA. ACM.

Susto, G. A. and Beghi, A. (2016). Dealing with time-series data

in predictive maintenance problems. In Emerging Technologies

135

Bibliography

and Factory Automation (ETFA), 2016 IEEE 21st International

Conference on, pages 1–4. IEEE.

Tanguy, L., Tulechki, N., Urieli, A., Hermann, E., and Raynal, C.

(2016). Natural language processing for aviation safety reports:

From classification to interactive analysis. Computers in Industry,

78:80–95.

Theodoridis, S. (2015). Machine Learning: A Bayesian and Optimiza-

tion Perspective. Academic Press. Google-Books-ID: NHOD-

BAAAQBAJ.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the

Lasso. Journal of the Royal Statistical Society. Series B (Methodolog-

ical), 58(1):267–288.

Tixier, A. J. P., Hallowell, M. R., Rajagopalan, B., and Bowman,

D. (2016a). Automated content analysis for construction safety:

A natural language processing system to extract precursors

and outcomes from unstructured injury reports. Automation in

Construction, 62:45–56.

Tixier, A. J.-P., Vazirgiannis, M., and Hallowell, M. R.

(2016b). Word Embeddings for the Construction Domain.

arXiv:1610.09333 [cs]. arXiv: 1610.09333.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003).

Feature-rich Part-of-speech Tagging with a Cyclic Dependency

Network. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics

on Human Language Technology - Volume 1, NAACL ’03, pages

173–180, Stroudsburg, PA, USA. Association for Computational

Linguistics.

136

Bibliography

Ulanova, L., Yan, T., Chen, H., Jiang, G., Keogh, E., and Zhang,

K. (2015a). Efficient Long-Term Degradation Profiling in Time

Series for Complex Physical Systems. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’15, pages 2167–2176, New York, NY,

USA. ACM.

Ulanova, L., Yan, T., Chen, H., Jiang, G., Keogh, E., and Zhang,

K. (2015b). Efficient long-term degradation profiling in time

series for complex physical systems. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’15, pages 2167–2176, New York, NY,

USA. ACM.

Wang, P., Li, Y., and Reddy, C. K. (2017). Machine Learning

for Survival Analysis: A Survey. arXiv:1708.04649 [cs]. arXiv:

1708.04649.

Wang, X. and Berger, J. (2016). Estimating Shape Constrained

Functions Using Gaussian Processes. SIAM/ASA Journal on

Uncertainty Quantification, 4(1):1–25.

Watanabe, Y., Otsuka, H., Sonoda, M., Kikuchi, S., and Mat-

sumoto, Y. (2012). Online failure prediction in cloud datacen-

ters by real-time message pattern learning. In Cloud Computing

Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on, pages 504–511. IEEE.

Weisberg, S. (2005). Applied Linear Regression. John Wiley & Sons.

Google-Books-ID: xd0tNdFOOjcC.

Weiss, G. M. and Hirsh, H. (1998). Learning to predict rare events

in event sequences. In KDD, pages 359–363.

137

Bibliography

Wu, Z., Huang, N. E., Long, S. R., and Peng, C.-K. (2007). On the

trend, detrending, and variability of nonlinear and nonstation-

ary time series. Proceedings of the National Academy of Sciences,

104(38):14889–14894.

Yu, L., Zheng, Z., Lan, Z., and Coghlan, S. (2011). Practical

online failure prediction for blue gene/p: Period-based vs

event-driven. In Dependable Systems and Networks Workshops

(DSN-W), 2011 IEEE/IFIP 41st International Conference on, pages

259–264. IEEE.

Yuan, Y., Zhou, S., Sievenpiper, C., Mannar, K., and Zheng, Y.

(2011). Event log modeling and analysis for system failure

prediction. IIE Transactions, 43(9):647–660.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave,

A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., Gh-

odsi, A., Gonzalez, J., Shenker, S., and Stoica, I. (2016). Apache

Spark: A Unified Engine for Big Data Processing. Commun.

ACM, 59(11):56–65.

Zhang, C. and Ma, Y. (2012). Ensemble Machine Learning: Methods

and Applications. Springer Science & Business Media. Google-

Books-ID: CjAs4stLXhAC.

Zhang, K., Xu, J., Min, M. R., Jiang, G., Pelechrinis, K., and

Zhang, H. (2016). Automated it system failure prediction: A

deep learning approach. In Big Data (Big Data), 2016 IEEE

International Conference on, pages 1291–1300. IEEE.

Zheng, Z., Lan, Z., Park, B. H., and Geist, A. (2009). System

log pre-processing to improve failure prediction. In Depend-

138

Bibliography

able Systems & Networks, 2009. DSN’09. IEEE/IFIP International

Conference on, pages 572–577. IEEE.

Zhou, Q., Son, J., Zhou, S., Mao, X., and Salman, M. (2014).

Remaining useful life prediction of individual units subject to

hard failure. IIE Transactions, 46(10):1017–1030.

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms.

CRC Press. Google-Books-ID: BDB50Ev2ur4C.

139

colophon

This document was typeset in LATEX using the typographical

look-and-feel classicthesis. The bibliography is typeset using

biblatex.

Titre : Apprentissage Automatique pour la Maintenance Predictive dans le
Domaine de l’Aviation

Mots clefs : maintenance predictive, aviation, apprentissage automatique

Résumé : L’augmentation des données dispo-
nibles dans presque tous les domaines soulève la né-
cessité d’utiliser des algorithmes pour l’analyse au-
tomatisée des données. Cette nécessité est mise en
évidence dans la maintenance prédictive, où l’ob-
jectif est de prédire les pannes des systèmes en ob-
servant continuellement leur état, afin de planifier
les actions de maintenance à l’avance. Ces observa-
tions sont générées par des systèmes de surveillance
habituellement sous la forme de séries temporelles
et de journaux d’événements et couvrent la durée
de vie des composants correspondants. Le princi-
pal défi de la maintenance prédictive est l’analyse
de l’historique d’observation afin de développer des
modèles prédictifs.
Dans ce sens, l’apprentissage automatique est de-
venu omniprésent puisqu’il fournit les moyens d’ex-
traire les connaissances d’une grande variété de
sources de données avec une intervention humaine
minimale. L’objectif de cette thèse est d’étudier
et de résoudre les problèmes dans l’aviation liés à
la prévision des pannes de composants à bord. La
quantité de données liées à l’exploitation des avions
est énorme et, par conséquent, l’évolutivité est une
condition essentielle dans chaque approche propo-
sée.
Cette thèse est divisée en trois parties qui cor-
respondent aux différentes sources de données que
nous avons rencontrées au cours de notre travail.
Dans la première partie, nous avons ciblé le pro-
blème de la prédiction des pannes des systèmes,
compte tenu de l’historique des Post Flight Re-
ports. Nous avons proposé une approche statistique
basée sur la régression précédée d’une formulation
méticuleuse et d’un prétraitement / transformation
de données. Notre méthode estime le risque d’échec
avec une solution évolutive, déployée dans un en-

vironnement de cluster en apprentissage et en dé-
ploiement. À notre connaissance, il n’y a pas de
méthode disponible pour résoudre ce problème jus-
qu’au moment où cette thèse a été écrite.
La deuxième partie consiste à analyser les données
du livre de bord, qui consistent en un texte décri-
vant les problèmes d’avions et les actions de main-
tenance correspondantes. Le livre de bord contient
des informations qui ne sont pas présentes dans les
Post Flight Reports bien qu’elles soient essentielles
dans plusieurs applications, comme la prédiction
de l’échec. Cependant, le journal de bord contient
du texte écrit par des humains, il contient beau-
coup de bruit qui doit être supprimé afin d’extraire
les informations utiles. Nous avons abordé ce pro-
blème en proposant une approche basée sur des re-
présentations vectorielles de mots. Notre approche
exploite des similitudes sémantiques, apprises par
des neural networks qui ont généré les représenta-
tions vectorielles, afin d’identifier et de corriger les
fautes d’orthographe et les abréviations. Enfin, des
mots-clés importants sont extraits à l’aide du Part
of Speech Tagging.
Dans la troisième partie, nous avons abordé le pro-
blème de l’évaluation de l’état des composants à
bord en utilisant les mesures des capteurs. Dans
les cas considérés, l’état du composant est évalué
par l’ampleur de la fluctuation du capteur et une
tendance à l’augmentation monotone. Dans notre
approche, nous avons formulé un problème de dé-
composition des séries temporelles afin de séparer
les fluctuations de la tendance en résolvant un pro-
blème convexe. Pour quantifier l’état du compo-
sant, nous calculons à l’aide de Gaussian Mixture
Models une fonction de risque qui mesure l’écart du
capteur par rapport à son comportement normal.

2

Title : Machine Learning for Predictive Maintenance in Aviation

Keywords : predictive maintenance, aviation, machine learning

Abstract : The increase of available data in
almost every domain raises the necessity of em-
ploying algorithms for automated data analysis.
This necessity is highlighted in predictive mainte-
nance, where the ultimate objective is to predict
failures of hardware components by continuously
observing their status, in order to plan maintenance
actions well in advance. These observations are ge-
nerated by monitoring systems usually in the form
of time series and event logs and cover the lifespan
of the corresponding components. Analyzing this
history of observation in order to develop predic-
tive models is the main challenge of data driven
predictive maintenance.
Towards this direction, Machine Learning has be-
come ubiquitous since it provides the means of ex-
tracting knowledge from a variety of data sources
with the minimum human intervention. The goal of
this dissertation is to study and address challenging
problems in aviation related to predicting failures
of components on-board. The amount of data re-
lated to the operation of aircraft is enormous and
therefore, scalability is a key requirement in every
proposed approach.
This dissertation is divided in three main parts
that correspond to the different data sources that
we encountered during our work. In the first part,
we targeted the problem of predicting system fai-
lures, given the history of Post Flight Reports.
We proposed a regression-based approach prece-
ded by a meticulous formulation and data pre-
processing/transformation. Our method approxi-
mates the risk of failure with a scalable solution,
deployed in a cluster environment both in training

and testing. To our knowledge, there is no available
method for tackling this problem until the time this
thesis was written.
The second part consists analyzing logbook data,
which consist of text describing aircraft issues and
the corresponding maintenance actions and it is
written by maintenance engineers. The logbook
contains information that is not reflected in the
post-flight reports and it is very essential in several
applications, including failure prediction. However,
since the logbook contains text written by humans,
it contains a lot of noise that needs to be removed
in order to extract useful information. We tackled
this problem by proposing an approach based on
vector representations of words (or word embed-
dings). Our approach exploits semantic similarities
of words, learned by neural networks that genera-
ted the vector representations, in order to identify
and correct spelling mistakes and abbreviations. Fi-
nally, important keywords are extracted using Part
of Speech Tagging.
In the third part, we tackled the problem of as-
sessing the health of components on-board using
sensor measurements. In the cases under considera-
tion, the condition of the component is assessed by
the magnitude of the sensor’s fluctuation and a mo-
notonically increasing trend. In our approach, we
formulated a time series decomposition problem in
order to separate the fluctuation from the trend by
solving a convex program. To quantify the condi-
tion of the component, we compute a risk function
which measures the sensor’s deviation from it’s nor-
mal behavior, which is learned using Gaussian Mix-
ture Models.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

3

	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Scope of the Thesis
	1.1.1 Predictive Maintenance
	1.1.2 Time Series Data

	1.2 Data Related to Aircraft Operation
	1.2.1 Tools and Libraries

	1.3 Overview of Contributions
	1.4 outline of the thesis

	2 Background
	2.1 Learning from Data
	2.1.1 Supervised Learning and Evaluation Metrics

	2.2 Probability
	2.2.1 Survival Analysis
	2.2.2 Survival data and Censoring
	2.2.3 Gaussian Mixture Models and the EM algorithm

	2.3 Regression
	2.3.1 Random Forests
	2.3.2 Model Evaluation
	2.3.3 Hyperparameter Selection

	2.4 Learning as Optimization
	2.4.1 The Gradient Descent
	2.4.2 Convex Quadratic Programming

	3 Survival Analysis for Failure-Log Exploration
	3.1 Introduction
	3.1.1 Random Variables in event logs
	3.1.2 Building a Dataset for Survival Analysis

	3.2 Time Interval Between Failures
	3.2.1 Kaplan - Meier method
	3.2.2 Cox Proportional Hazards

	3.3 Studying inter-event temporal differences
	3.4 Summary

	4 Failure Prediction in Post Flight Reports
	4.1 Introduction
	4.2 Related Work
	4.3 Event Log Data & Preprocessing
	4.3.1 Preprocessing

	4.4 Methodology
	4.4.1 Multiple Instance Learning Setup
	4.4.2 Prediction
	4.4.3 Method summary
	4.4.4 Parameters

	4.5 Experimental Setup
	4.5.1 Dataset
	4.5.2 Training, Validation and Test
	4.5.3 Baseline Algorithm
	4.5.4 Evaluation at the episode level

	4.6 Results
	4.6.1 Bag-level Performance
	4.6.2 Episode-Level Performance
	4.6.3 Decision threshold selection
	4.6.4 False Positives
	4.6.5 Model Interpretation

	4.7 Conclusions and future work
	4.7.1 Infusion and Impact

	5 Logbook data preprocessing
	5.1 Related Work
	5.2 Logbook Data in Aviation
	5.2.1 Data Description
	5.2.2 Cleaning the Logbook

	5.3 The Importance of Logbook Data
	5.4 Context-aware Spell Correction via Word Embeddings
	5.4.1 Word Embeddings & the skip-gram Model
	5.4.2 Creating word embeddings from logbook entries

	5.5 logbook cleaning using word embeddings
	5.5.1 Mapping spelling errors to correct words
	5.5.2 Method Summary

	5.6 information extraction
	5.7 Conclusions and future work

	6 Component Condition Assessment using Time Series Data
	6.1 Degradation
	6.2 Related Work
	6.3 Dataset
	6.4 Modeling Degradation with GMMs
	6.5 Time series decomposition
	6.5.1 Quadratic Programming Formulation
	6.5.2 Reformulating the Optimization Problem

	6.6 Condition Assessment
	6.7 Evaluation
	6.7.1 Discussion

	6.8 Conclusions

	7 Discussion
	7.1 Summary of Contributions
	7.2 Future Directions

	Notation
	Acronyms
	Colophon

